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PREFACE

This book can be viewed as a reasonably comprehensive compendium of mathematical
definitions, formulas, and theorems intended for researchers, university teachers, engineers,
and students of various backgrounds in mathematics. The absence of proofs and a concise
presentation has permitted combining a substantial amount of reference material in a single
volume.

When selecting the material, the authors have given a pronounced preference to practical
aspects, namely, to formulas, methods, equations, and solutions that are most frequently
used in scientific and engineering applications. Hence some abstract concepts and their
corollaries are not contained in this book.

• This book contains chapters on arithmetics, elementary geometry, analytic geometry,
algebra, differential and integral calculus, differential geometry, elementary and special
functions, functions of one complex variable, calculus of variations, probability theory,
mathematical statistics, etc. Special attention is paid to formulas (exact, asymptotical, and
approximate), functions, methods, equations, solutions, and transformations that are of
frequent use in various areas of physics, mechanics, and engineering sciences.

• The main distinction of this reference book from other general (nonspecialized) math-
ematical reference books is a significantly wider and more detailed description of methods
for solving equations and obtaining their exact solutions for various classes of mathematical
equations (ordinary differential equations, partial differential equations, integral equations,
difference equations, etc.) that underlie mathematical modeling of numerous phenomena
and processes in science and technology. In addition to well-known methods, some new
methods that have been developing intensively in recent years are described.

• For the convenience of a wider audience with different mathematical backgrounds,
the authors tried to avoid special terminology whenever possible. Therefore, some of the
methods and theorems are outlined in a schematic and somewhat simplified manner, which
is sufficient for them to be used successfully in most cases. Many sections were written
so that they could be read independently. The material within subsections is arranged in
increasing order of complexity. This allows the reader to get to the heart of the matter
quickly.

The material in the first part of the reference book can be roughly categorized into the
following three groups according to meaning:

1. The main text containing a concise, coherent survey of the most important definitions,
formulas, equations, methods, and theorems.

2. Numerous specific examples clarifying the essence of the topics and methods for
solving problems and equations.

3. Discussion of additional issues of interest, given in the form of remarks in small
print.

For the reader’s convenience, several long mathematical tables—finite sums, series,
indefinite and definite integrals, direct and inverse integral transforms (Laplace, Mellin,
and Fourier transforms), and exact solutions of differential, integral, functional, and other
mathematical equations—which contain a large amount of information, are presented in
the second part of the book.

This handbook consists of chapters, sections, subsections, and paragraphs (the titles of
the latter are not included in the table of contents). Figures and tables are numbered sep-
arately in each section, while formulas (equations) and examples are numbered separately
in each subsection. When citing a formula, we use notation like (3.1.2.5), which means

xxvii
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formula 5 in Subsection 3.1.2. At the end of each chapter, we present a list of main and
additional literature sources containing more detailed information about topics of interest
to the reader.

Special font highlighting in the text, cross-references, an extensive table of contents,
and an index help the reader to find the desired information.

We would like to express our deep gratitude to Alexei Zhurov for fruitful discussions
and valuable remarks. We also appreciate the help of Vladimir Nazaikinskii and Grigorii
Yosifian for translating several chapters of this book and are thankful to Kirill Kazakov and
Mikhail Mikhin for their assistance in preparing the camera-ready copy of the book.

The authors hope that this book will be helpful for a wide range of scientists, university
teachers, engineers, and students engaged in the fields of mathematics, physics, mechanics,
control, chemistry, biology, engineering sciences, and social and economical sciences.
Some sections and examples can be used in lectures and practical studies in basic and
special mathematical courses.

Andrei D. Polyanin
Alexander V. Manzhirov



Main Notation

Special symbols

= equal to
≡ identically equal to
≠ not equal to
≈ approximately equal to
∼ of same order as (used in comparisons of infinitesimals or infinites)
< less than; “a less than b” is written as a < b (or, equivalently, b > a)
≤ less than or equal to; a less than or equal to b is written as a ≤ b
� much less than; a much less than b is written as a� b
> greater than; a greater than b is written as a > b (or, equivalently, b < a)
≥ greater than or equal to; a greater than or equal to b is written as a ≥ b
� much greater than; a much greater than b is written as a� b
+ plus sign; the sum of numbers a and b is denoted by a+ b and has the property

a + b = b + a
– minus sign; the difference of numbers a and b is denoted by a – b
⋅ multiplication sign; the product of numbers a and b is denoted by either ab

or a ⋅ b (sometimes a × b) and has the property ab = ba; the inner product of
vectors a and b is denoted by a ⋅ b

× multiplication sign; the product of numbers a and b is sometimes denoted by
a × b; the cross-product of vectors a and b is denoted by a × b

: division sign; the ratio of numbers a and b is denoted by a :b or a/b
! factorial sign: 0! = 1! = 1, n! = 1 ⋅ 2 ⋅ 3 . . . (n – 1)n, n = 2, 3, 4, . . .

!! double factorial sign: 0!! = 1!! = 1, (2n)!! = 2 ⋅ 4 ⋅ 6 . . . (2n), (2n + 1)!! =
1 ⋅ 3 ⋅ 5 . . . (2n + 1), where n = 1, 2, 3, . . .

% percent sign; 1% is one hundredth of the entire quantity
∞ infinity
→ tends (infinitely approaches) to; x→ a means that x tends to a

=⇒ implies; consequently
⇐⇒ is equivalent to (if and only if . . . )

∀ for all, for any
∃ there exists
� belongs to; a � A means that a is an element of the set A
� does not belong to; a � A means that a is not an element of the set A
∪ union (Boolean addition); A ∪B stands for the union of sets A and B
∩ intersection (Boolean multiplication); A∩B stands for the intersection (com-

mon part) of sets A and B
⊂ inclusion; A ⊂ B means that the set A is part of the set B
⊆ nonstrict inclusion; A⊆B means that the setA is part of the setB or coincides

with B
∅ empty set
∑

sum,
n∑

k=1
ak = a1 + a2 + · · · + an

∏
product,

n∏

k=1
ak = a1 ⋅ a2 ⋅ . . . ⋅ an

∂ symbol used to denote partial derivatives and differential operators; ∂x is the
operator of differentiation with respect to x
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∇ vector differential operator “nabla”; ∇a is the gradient of a scalar a
∫

integral;
∫ b

a
f (x) dx is the integral of a function f (x) over the interval [a, b]

∮
contour integral (denotes an integral over a closed contour)

⊥ perpendicular
‖ parallel

Roman alphabet

Arg z argument of a complex number z = x + iy; by definition, tan(Arg z) = y/x
arg z principal value of Arg z; by definition, arg z = Arg z, where –π < Arg z ≤ π√

a square root of a number a, defined by the property (
√
a )2 = a

n
√
a nth root of a number a (n= 2, 3, . . . , a≥ 0), defined by the property ( n

√
a )n =a

|a| absolute value (modulus) of a real number a, |a| =
{
a if a ≥ 0
–a if a < 0

a vector, a = {a1, a2, a3}, where a1, a2, a3 are the vector components
|a| modulus of a vector a, |a| =

√
a ⋅ a

a ⋅ b inner product of vectors a and b, denoted also by (a ⋅ b)
a × b cross-product of vectors a and b
[abc] triple product of vectors a, b, c
(a, b) interval (open interval) a < x < b
(a, b] half-open interval a < x ≤ b
[a, b) half-open interval a ≤ x < b
[a, b] interval (closed interval) a ≤ x ≤ b

arccos x arccosine, the inverse function of cosine: cos(arccos x) = x, |x| ≤ 1
arccot x arccotangent, the inverse function of cotangent: cot(arccot x) = x
arcsin x arcsine, the inverse function of sine: sin(arcsin x) = x, |x| ≤ 1
arctan x arctangent, the inverse function of tangent: tan(arctan x) = x

arccosh x hyperbolic arccosine, the inverse function of hyperbolic cosine; also denoted
by arccosh x = cosh–1 x; arccosh x = ln

(
x +

√
x2 – 1

)
(x ≥ 1)

arccoth x hyperbolic arccotangent, the inverse function of hyperbolic cotangent; also

denoted by arccoth x = coth–1 x; arccoth x =
1
2

ln
x + 1
x – 1

(|x| > 1)

arcsinh x hyperbolic arcsine, the inverse function of hyperbolic sine; also denoted by
arcsinh x = sinh–1 x; arcsinh x = ln

(
x +

√
x2 + 1

)

arctanh x hyperbolic arctangent, the inverse function of hyperbolic tangent; also denoted

by arctanh x = tanh–1 x; arctanh x =
1
2

ln
1 + x
1 – x

(|x| < 1)

Ckn binomial coefficients, also denoted by
(
n
k

)
,Ckn =

n!
k! (n – k)!

, k= 1, 2, . . . , n

C Euler constant, C = lim
n→∞

(
1 +

1
2

+
1
3

+ · · · +
1
n

– lnn
)

= 0.5772156 . . .
cos x cosine, even trigonometric function of period 2π

cosec x cosecant, odd trigonometric function of period 2π: cosec x =
1

sinx
cosh x hyperbolic cosine, cosh x = 1

2 (ex + e–x)
cot x cotangent, odd trigonometric function of period π, cot x = cos x/sinx

coth x hyperbolic cotangent, coth x = cosh x/sinh x
detA determinant of a matrix A = (aij)
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div a divergence of a vector a
e the number “e” (base of natural logarithms), e = 2.718281 . . . ; definition:

e = lim
n→∞

(
1 +

1
n

)n

erf x Gauss error function, erf x =
2√
π

∫ x

0
exp

(
–ξ2) dξ

erfc x complementary error function, erfc x =
2√
π

∫ ∞
x

exp
(
–ξ2) dξ

expx exponential (exponential function), denoted also by exp x = ex

grad a gradient of a scalar a, denoted also by ∇a

Hn(x) Hermite polynomial, Hn(x) = (–1)nex
2 dn

dxn
(
e–x2)

Iν(x) modified Bessel function of the first kind, Iν (x) =
∞∑

n=0

(x/2)ν+2n

n! Γ(ν + n + 1)

Im z imaginary part of a complex number; if z = x + iy, then Im z = y
inf A infimum of a (numerical) set A; if A = (a, b) or A = [a, b), then inf A = a

Jν(x) Bessel function of the first kind, Jν (x) =
∞∑

n=0

(–1)n(x/2)ν+2n

n! Γ(ν + n + 1)

Kν(x) modified Bessel function of the second kind, Kν (x) =
π

2
I–ν (x) – Iν(x)

sin(πν)
lim
x→a

f (x) limit of a function f (x) as x→ a

lnx natural logarithm (logarithm to base e)
loga x logarithm to base a

max
a≤x≤b

f (x) maximum of a function f (x) on the interval a ≤ x ≤ b

min
a≤x≤b

f (x) minimum of a function f (x) on the interval a ≤ x ≤ b

n! factorial: 0! = 1! = 1, n! = 1 ⋅ 2 ⋅ 3 . . . (n – 1)n, n = 2, 3, 4, . . .

Pn(x) Legendre polynomial, Pn(x) =
1

n! 2n
dn

dxn
(x2 – 1)n

R set of real numbers, R = {–∞ < x < ∞}
Re z real part of a complex number; if z = x + iy, then Re z = x

r, ϕ, z cylindrical coordinates, r =
√
x2 + y2 and x = r cosϕ, y = r sinϕ

r, θ, ϕ spherical coordinates, r =
√
x2 +y2 +z2 and x = r sin θ cosϕ, y = sin θ sinϕ,

z = r cos θ
rankA rank of a matrix A
curl a curl of a vector a, also denoted by rot a

sec x secant, even trigonometric function of period 2π: sec x =
1

cos x
sign x “sign” function: it is equal to 1 if x > 0, –1 if x < 0, and 0 if x = 0

sinx sine, odd trigonometric function of period 2π
sinh x hyperbolic sine, sinh x = 1

2 (ex – e–x)
supA supremum of a (numerical) set A; if A = (a, b) or A = (a, b], then supA = b
tanx tangent, odd trigonometric function of period π, tanx = sinx/cos x

tanh x hyperbolic tangent, tanh x = sinhx/cosh x
x independent variable, argument

x, y, z spatial variables (Cartesian coordinates)
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Yν(x) Bessel function of the second kind; Yν(x) =
Jν (x) cos(πν) – J–ν (x)

sin(πν)
y dependent variable, function; one often writes y = y(x) or y = f (x)

y′x first derivative of a function y = f (x), also denoted by y′,
dy

dx
, f ′(x)

y′′xx second derivative of a function y = f (x), also denoted by y′′,
d2y

dx2 , f ′′(x)

y(n)
x nth derivative of a function y = f (x), also denoted by

dny

dxn

z = x + iy complex number; x is the real part of z, y is the imaginary part of z, i2 = –1
z̄ = x – iy complex conjugate number, i2 = –1

|z| modulus of a complex number; if z = x + iy, then |z| =
√
x2 + y2.

Greek alphabet

Γ(α) gamma function, Γ(α) =
∫ ∞

0
e–ttα–1 dt

γ(α,x) incomplete gamma function, γ(α,x) =
∫ x

0
e–ttα–1 dt

Φ(a, b;x) degenerate hypergeometric function, Φ(a, b;x)= 1+
∞∑

n=1

a(a+1) . . . (a+n–1)
b(b+1) . . . (b+n–1)

xn

n!

Δ Laplace operator; in the two-dimensional case, Δw = ∂2w
∂x2 + ∂2w

∂y2 , where x

and y are Cartesian coordinates
Δx increment of the argument
Δy increment of the function; if y = f (x), then Δy = f (x + Δx) – f (x)

δnm Kronecker delta, δnm =
{ 1 if n = m

0 if n ≠ m
π the number “pi” (ratio of the circumference to the diameter), π = 3.141592 . . .

Remarks

1. If a formula or a solution contains an expression like
f (x)
a – 2

, it is often not stated

explicitly that the assumption a ≠ 2 is implied.

2. If a formula or a solution contains derivatives of some functions, then the functions
are assumed to be differentiable.

3. If a formula or a solution contains definite integrals, then the integrals are supposed
to be convergent.

4. ODE and PDE are conventional abbreviations for ordinary differential equation and
partial differential equation, respectively.
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Chapter 1

Arithmetic and Elementary Algebra

1.1. Real Numbers
1.1.1. Integer Numbers

1.1.1-1. Natural, integer, even, and odd numbers.

Natural numbers: 1, 2, 3, . . . (all positive whole numbers).
Integer numbers (or simply integers): 0, �1, �2, �3, . . .
Even numbers: 0, 2, 4, . . . (all nonnegative integers that can be divided evenly by 2).

An even number can generally be represented as n = 2k, where k = 0, 1, 2, . . .

Remark 1. Sometimes all integers that are multiples of 2, such as 0, �2, �4, . . . , are considered to be
even numbers.

Odd numbers: 1, 3, 5, . . . (all natural numbers that cannot be divided evenly by 2). An
odd number can generally be represented as n = 2k + 1, where k = 0, 1, 2, . . .

Remark 2. Sometimes all integers that are not multiples of 2, such as �1, �3, �5, . . . , are considered to
be odd numbers.

All integers as well as even numbers and odd numbers form infinite countable sets,
which means that the elements of these sets can be enumerated using the natural numbers
1, 2, 3, . . .

1.1.1-2. Prime and composite numbers.

A prime number is a positive integer that is greater than 1 and has no positive integer
divisors other than 1 and itself. The prime numbers form an infinite countable set. The first
ten prime numbers are: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .

A composite number is a positive integer that is greater than 1 and is not prime, i.e.,
has factors other than 1 and itself. Any composite number can be uniquely factored into
a product of prime numbers. The following numbers are composite: 4 = 2 × 2, 6 = 2 × 3,
8 = 23, 9 = 32, 10 = 2 × 5, 12 = 22 × 3, . . .

The number 1 is a special case that is considered to be neither composite nor prime.

1.1.1-3. Divisibility tests.

Below are some simple rules helping to determine if an integer is divisible by another
integer.

All integers are divisible by 1.
Divisibility by 2: last digit is divisible by 2.
Divisibility by 3: sum of digits is divisible by 3.
Divisibility by 4: two last digits form a number divisible by 4.
Divisibility by 5: last digit is either 0 or 5.

3
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Divisibility by 6: divisible by both 2 and 3.
Divisibility by 9: sum of digits is divisible by 9.
Divisibility by 10: last digit is 0.
Divisibility by 11: the difference between the sum of the odd numbered digits (1st, 3rd,

5th, etc.) and the sum of the even numbered digits (2nd, 4th, etc.) is divisible by 11.

Example 1. Let us show that the number 80729 is divisible by 11.
The sum of the odd numbered digits is Σ1 = 8 + 7 + 9 = 24. The sum of the even numbered digits is

Σ2 = 0 + 2 = 2. The difference between them is Σ1 – Σ2 = 22 and is divisible by 11. Consequently, the original
number is also divisible by 11.

1.1.1-4. Greatest common divisor and least common multiple.

1◦. The greatest common divisor of natural numbers a1, a2, . . . , an is the largest natural
number, b, which is a common divisor to a1, . . . , an.

Suppose some positive numbers a1, a2, . . . , an are factored into products of primes so
that

a1 = pk11
1 pk12

2 . . . pk1m
m , a2 = pk21

1 pk22
2 . . . pk2m

m , . . . , an = pkn1
1 pkn2

2 . . . pknm
m ,

where p1, p2, . . . , pn are different prime numbers, the kij are positive integers (i = 1, 2,
. . . , n; j = 1, 2, . . . ,m). Then the greatest common divisor b of a1, a2, . . . , an is calculated
as

b = pσ1
1 p

σ2
2 . . . pσm

m , σj = min
1≤i≤n

kij .

Example 2. The greatest common divisor of 180 and 280 is 22 × 5 = 20 due to the following factorization:

180 = 22 × 32 × 5 = 22 × 32 × 51 × 70,

280 = 23 × 5 × 7 = 23 × 30 × 51 × 71.

2◦. The least common multiple of n natural numbers a1, a2, . . . , an is the smallest natural
number, A, that is a multiple of all the ak.

Suppose some natural numbers a1, . . . , an are factored into products of primes just as
in Item 1◦. Then the least common multiple of all the ak is calculated as

A = pν1
1 p

ν2
2 . . . pνm

m , νj = max
1≤i≤n

kij .

Example 3. The least common multiple of 180 and 280 is equal to 23 × 32 × 51 × 71 = 2520 due to their
factorization given in Example 2.

1.1.2. Real, Rational, and Irrational Numbers

1.1.2-1. Real numbers.

The real numbers are all the positive numbers, negative numbers, and zero. Any real number
can be represented by a decimal fraction (or simply decimal), finite or infinite. The set of
all real numbers is denoted by R.

All real numbers are categorized into two classes: the rational numbers and irrational
numbers.
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1.1.2-2. Rational numbers.

A rational number is a real number that can be written as a fraction (ratio) p/q with integer
p and q (q ≠ 0). It is only the rational numbers that can be written in the form of finite
(terminating) or periodic (recurring) decimals (e.g., 1/8 = 0.125 and 1/6 = 0.16666 . . . ).
Any integer is a rational number.

The rational numbers form an infinite countable set. The set of all rational numbers is
everywhere dense. This means that, for any two distinct rational numbers a and b such that
a < b, there exists at least one more rational number c such that a < c < b, and hence there
are infinitely many rational numbers between a and b. (Between any two rational numbers,
there always exist irrational numbers.)

1.1.2-3. Irrational numbers.

An irrational number is a real number that is not rational; no irrational number can
be written as a fraction p/q with integer p and q (q ≠ 0). To the irrational numbers
there correspond nonperiodic (nonrepeating) decimals. Examples of irrational numbers:√

3 = 1.73205 . . . , π = 3.14159 . . .
The set of irrational numbers is everywhere dense, which means that between any

two distinct irrational numbers, there are both rational and irrational numbers. The set of
irrational numbers is uncountable.

1.2. Equalities and Inequalities. Arithmetic Operations.
Absolute Value

1.2.1. Equalities and Inequalities

1.2.1-1. Basic properties of equalities.

� Throughout Paragraphs 1.2.1-1 and 1.2.1-2, it is assumed that a, b, c, d are real numbers.

1. If a = b, then b = a.
2. If a = b, then a + c = b + c, where c is any real number; furthermore, if a + c = b + c, then
a = b.

3. If a = b, then ac = bc, where c is any real number; furthermore, if ac = bc and c ≠ 0, then
a = b.

4. If a = b and b = c, then a = c.
5. If ab = 0, then either a = 0 or b = 0; furthermore, if ab ≠ 0, then a ≠ 0 and b ≠ 0.

1.2.1-2. Basic properties of inequalities.

1. If a < b, then b > a.
2. If a ≤ b and b ≤ a, then a = b.
3. If a ≤ b and b ≤ c, then a ≤ c.
4. If a < b and b ≤ c (or a ≤ b and b < c), then a < c.
5. If a < b and c < d (or c = d), then a + c < b + d.
6. If a ≤ b and c > 0, then ac ≤ bc.
7. If a ≤ b and c < 0, then ac ≥ bc.
8. If 0 < a ≤ b (or a ≤ b < 0), then 1/a ≥ 1/b.
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1.2.2. Addition and Multiplication of Numbers

1.2.2-1. Addition of real numbers.

The sum of real numbers is a real number.
Properties of addition:

a + 0 = a (property of zero),
a + b = b + a (addition is commutative),
a + (b + c) = (a + b) + c = a + b + c (addition is associative),

where a, b, c are arbitrary real numbers.
For any real number a, there exists its unique additive inverse, or its opposite, denoted

by –a, such that
a + (–a) = a – a = 0.

1.2.2-2. Multiplication of real numbers.

The product of real numbers is a real number.
Properties of multiplication:

a × 0 = 0 (property of zero),
ab = ba (multiplication is commutative),
a(bc) = (ab)c = abc (multiplication is associative),
a × 1 = 1 × a = a (multiplication by unity),
a(b + c) = ab + ac (multiplication is distributive),

where a, b, c are arbitrary real numbers.
For any nonzero real number a, there exists its unique multiplicative inverse, or its

reciprocal, denoted by a–1 or 1/a, such that

aa–1 = 1 (a ≠ 0).

1.2.3. Ratios and Proportions

1.2.3-1. Operations with fractions and properties of fractions.

Ratios are written as fractions: a : b = a/b. The number a is called the numerator and the
number b (b ≠ 0) is called the denominator of a fraction.

Properties of fractions and operations with fractions:

a

1
= a,

a

b
=
ab

bc
=
a : c
b : c

(simplest properties of fractions);

a

b
�
c

b
=
a � c

b
,

a

b
�
c

d
=
ad � bc

bd
(addition and subtraction of fractions);

a

b
× c =

ac

b
,

a

b
×
c

d
=
ac

bc
(multiplication by a number and by a fraction);

a

b
: c =

a

bc
,

a

b
:
c

d
=
ad

bc
(division by a number and by a fraction).
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1.2.3-2. Proportions. Simplest relations. Derivative proportions.

A proportion is an equation with a ratio on each side. A proportion is denoted by a/b = c/d
or a : b = c : d.

1◦. The following simplest relations follow from a/b = c/d:

ad = bc,
a

c
=
b

d
, a =

bc

d
, b =

ad

c
.

2◦. The following derivative proportions follow from a/b = c/d:

ma + nb
pa + qb

=
mc + nd
pc + qd

,

ma + nc
pa + qc

=
mb + nd
pb + qd

,

where m, n, p, q are arbitrary real numbers.
Some special cases of the above formulas:

a � b

b
=
c � d

d
,

a – b
a + b

=
c – d
c + d

.

1.2.4. Percentage

1.2.4-1. Definition. Main percentage problems.

A percentage is a way of expressing a ratio or a fraction as a whole number, by using 100 as
the denominator. One percent is one per one hundred, or one hundredth of a whole number;
notation: 1%.

Below are the statements of main percentage problems and their solutions.

1◦. Find the number b that makes up p% of a number a. Answer: b = ap
100 .

2◦. Find the number a whose p% is equal to a number b. Answer: a = 100b
p .

3◦. What percentage does a number b make up of a number a? Answer: p = 100b
a %.

1.2.4-2. Simple and compound percentage.

1◦. Simple percentage. Suppose a cash deposit is increased yearly by the same amount
defined as a percentage, p%, of the initial deposit, a. Then the amount accumulated after
t years is calculated by the simple percentage formula

x = a
(

1 +
pt

100

)
.

2◦. Compound percentage. Suppose a cash deposit is increased yearly by an amount defined
as a percentage, p%, of the deposit in the previous year. Then the amount accumulated after
t years is calculated by the compound percentage formula

x = a
(

1 +
p

100

)t
,

where a is the initial deposit.



8 ARITHMETIC AND ELEMENTARY ALGEBRA

1.2.5. Absolute Value of a Number (Modulus of a Number)

1.2.5-1. Definition.

The absolute value of a real number a, denoted by |a|, is defined by the formula

|a| =
{
a if a ≥ 0,
–a if a < 0.

An important property: |a| ≥ 0.

1.2.5-2. Some formulas and inequalities.

1◦. The following relations hold true:

|a| = |–a| =
√
a2, a ≤ |a|,

∣∣|a| – |b|
∣∣ ≤ |a + b| ≤ |a| + |b|,

∣∣|a| – |b|
∣∣ ≤ |a – b| ≤ |a| + |b|,

|ab| = |a| |b|, |a/b| = |a|/|b|.

2◦. From the inequalities |a| ≤ A and |b| ≤ B it follows that |a + b| ≤ A +B and |ab| ≤ AB.

1.3. Powers and Logarithms
1.3.1. Powers and Roots

1.3.1-1. Powers and roots: the main definitions.

Given a positive real number a and a positive integer n, the nth power of a, written as an,
is defined as the multiplication of a by itself repeated n times:

an = a × a × a × · · · × a︸ ︷︷ ︸
n multipliers

.

The number a is called the base and n is called the exponent.
Obvious properties: 0n = 0, 1n = 1, a1 = a.
Raising to the zeroth power: a0 = 1, where a ≠ 0. Sometimes 00 is taken as undefined,

but it is often sensibly defined as 1.

Raising to a negative power: a–n =
1
an

, where n is a positive integer.

If a is a positive real number and n is a positive integer, then the nth arithmetic root or
radical of a, written as n

√
a, is the unique positive real number b such that bn = a. In the

case of n = 2, the brief notation
√
a is used to denote 2

√
a.

The following relations hold:

n
√

0 = 0, n
√

1 = 1,
(

n
√
a
)n

= a.

Raising to a fractional power p = m/n, where m and n are natural numbers:

ap = am/n = n
√
am, a ≥ 0.
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1.3.1-2. Operations with powers and roots.

The properties given below are valid for any rational and real exponents p and q (a > 0,
b > 0):

a–p =
1
ap

, apaq = ap+q,
ap

aq
= ap–q,

(ab)p = apbp,
( a
b

)q
=
aq

bq
, (ap)q = apq.

In operations with roots (radicals) the following properties are used:

n
√
ab = n

√
a n
√
b, n

√
a

b
=

n
√
a

n
√
b

, n
√
am =

(
n
√
a
)m

, n

√
m
√
a = mn

√
a.

Remark. It often pays to represent roots as powers with rational exponents and apply the properties of
operations with powers.

1.3.2. Logarithms

1.3.2-1. Definition. The main logarithmic identity.

The logarithm of a positive number b to a given base a is the exponent of the power c to
which the base a must be raised to produce b. It is written as loga b = c.

Equivalent representations:

loga b = c ⇐⇒ ac = b,

where a > 0, a ≠ 1, and b > 0.
Main logarithmic identity:

aloga b = b.

Simple properties:
loga 1 = 0, loga a = 1.

1.3.2-2. Properties of logarithms. The common and natural logarithms.

Properties of logarithms:

loga(bc) = loga b + loga c, loga
( b
c

)
= loga b – loga c,

loga(bk) = k loga b, logak b =
1
k

loga b (k ≠ 0),

loga b =
1

logb a
(b ≠ 1), loga b =

logc b
logc a

(c ≠ 1),

where a > 0, a ≠ 1, b > 0, c > 0, and k is any number.
The logarithm to the base 10 is called the common or decadic logarithm and written as

log10 b = log b or sometimes log10 b = lg b.

The logarithm to the base e (the base of natural logarithms) is called the natural
logarithm and written as

loge b = ln b,

where e = lim
n→∞

(
1 + 1

n

)n
= 2.718281 . . .
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1.4. Binomial Theorem and Related Formulas
1.4.1. Factorials. Binomial Coefficients. Binomial Theorem
1.4.1-1. Factorials. Binomial coefficients.

Factorial:
0! = 1! = 1,
n! = 1 × 2 × 3 × . . . × (n – 1)n, n = 2, 3, 4, . . .

Double factorial:

0!! = 1!! = 1,

n!! =
{

(2k)!! if n = 2k,
(2k + 1)!! if n = 2k + 1,

(2k)!! = 2 × 4 × 6 × . . . × (2k – 2)(2k) = 2kk!,
(2k + 1)!! = 1 × 3 × 5 × . . . × (2k – 1)(2k + 1),

where n and k are natural numbers.
Binomial coefficients:

Ckn =
(n
k

)
=

n!
k! (n – k)!

=
n(n – 1) . . . (n – k + 1)

k!
, k = 1, 2, 3, . . . , n;

Cka =
a(a – 1) . . . (a – k + 1)

k!
, where k = 1, 2, 3, . . . ,

where n is a natural number and a is any number.

1.4.1-2. Binomial theorem.

Let a, b, and c be real (or complex) numbers. The following formulas hold true:

(a � b)2 = a2
� 2ab + b2,

(a � b)3 = a3
� 3a2b + 3ab2

� b3,

(a � b)4 = a4
� 4a3b + 6a2b2

� 4ab3 + b4,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a + b)n =
n∑

k=0

Ckna
n–kbk, n = 1, 2, . . .

The last formula is known as the binomial theorem, where the Ckn are binomial coefficients.

1.4.2. Related Formulas
1.4.2-1. Formulas involving powers ≤ 4.

a2 – b2 = (a – b)(a + b),

a3 + b3 = (a + b)(a2 – ab + b2),

a3 – b3 = (a – b)(a2 + ab + b2),

a4 – b4 = (a – b)(a + b)(a2 + b2),

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc,
a4 + a2b2 + b4 = (a2 + ab + b2)(a2 – ab + b2).
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1.4.2-2. Formulas involving arbitrary powers.

Let n be any positive integer. Then

an – bn = (a – b)(an–1 + an–2b + · · · + abn–2 + bn–1).

If n is a positive even number, then

an – bn = (a + b)(an–1 – an–2b + · · · + abn–2 – bn–1)

= (a – b)(a + b)(an–2 + an–4b2 + · · · + a2bn–4 + bn–2).

If n is a positive odd number, then

an + bn = (a + b)(an–1 – an–2b + · · · – abn–2 + bn–1).

1.5. Arithmetic and Geometric Progressions. Finite
Sums and Products

1.5.1. Arithmetic and Geometric Progressions

1.5.1-1. Arithmetic progression.

1◦. An arithmetic progression, or arithmetic sequence, is a sequence of real numbers for
which each term, starting from the second, is the previous term plus a constant d, called the
common difference. In general, the terms of an arithmetic progression are expressed as

an = a1 + (n – 1)d, n = 1, 2, 3, . . . ,

where a1 is the first term of the progression. An arithmetic progression is called increasing
if d > 0 and decreasing if d < 0.

2◦. An arithmetic progression has the property

an = 1
2 (an–1 + an+1).

3◦. The sum of n first terms of an arithmetic progression is called an arithmetic series and
is calculated as

Sn = a1 + · · · + an = 1
2 (a1 + an)n = 1

2 [2a1 + (n – 1)d]n.

1.5.1-2. Geometric progression.

1◦. A geometric progression, or geometric sequence, is a sequence of real numbers for
which each term, starting from the second, is the previous term multiplied by a constant q,
called the common ratio. In general, the terms of a geometric progression are expressed as

an = a1q
n–1, n = 1, 2, 3, . . . ,

where a1 is the first term of the progression.

2◦. A geometric progression with positive terms has the property

an =
√
an–1an+1.

3◦. The sum of n first terms of an arithmetic progression is called a geometric series and is
calculated as (q ≠ 1)

Sn = a1 + · · · + an = a1
1 – qn

1 – q
.
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1.5.2. Finite Series and Products
1.5.2-1. Notations for finite series and products.

A finite series is just the sum of a finite number of terms and a finite product is the product
of a finite number of terms. These are written as

a1 + a2 + · · · + an =
n∑

k=1

ak, am + am+1 + · · · + an =
n∑

k=m

ak;

a1a2 . . . an =
n∏

k=1

ak, amam+1 . . . an =
n∏

k=m

ak,

where m is a nonnegative integer (m ≤ n). The variable k appearing on the right-hand
sides of the above formulas is called the index of summation (for series) or the index of
multiplication (for products). The 1 and n (or the m and n) are the upper and lower limits
of summation (multiplication).

The values of sums (products) are independent of the names used to denote the index of

summation (multiplication):
n∑

k=1
ak =

n∑

j=1
aj ,

n∏

k=1
ak =

n∏

i=1
ai. Such indices are called dummy

indices.

1.5.2-2. Formulas for summation of some finite series.

n∑

k=1

k =
n(n + 1)

2
;

n∑

k=1

(–1)kk = (–1)n
[
n – 1

2

]
, [m] is the integer part of m;

n∑

k=0

(2k + 1) = (n + 1)2;

n∑

k=0

(–1)k(2k + 1) = (–1)n(n + 1);

n∑

k=1

k2 =
1
6
n(n + 1)(2n + 1);

n∑

k=1

(–1)kk2 = (–1)n
n(n + 1)

2
;

n∑

k=0

(2k + 1)2 =
1
3

(n + 1)(2n + 1)(2n + 3);

n∑

k=0

(–1)k(2k + 1)2 = 2(–1)n(n + 1)2 –
1
2
[

1 + (–1)n
]
;

n∑

k=1

(k + a)(k + b) =
1
6
n(n + 1)(2n + 1 + 3a + 3b) + nab.

� A large number of formulas for the summation of various finite series can be found in
Section T1.1.



1.6. MEAN VALUES AND INEQUALITIES OF GENERAL FORM 13

1.6. Mean Values and Inequalities of General Form
1.6.1. Arithmetic Mean, Geometric Mean, and Other Mean Values.

Inequalities for Mean Values

1.6.1-1. Arithmetic mean, geometric mean, and other mean values.

The arithmetic mean of a set of n real numbers a1, a2, . . . , an is defined as

ma =
a1 + a2 + · · · + an

n
. (1.6.1.1)

Geometric mean of n positive numbers a1, a2, . . . , an:

mg = (a1a2 . . . an)1/n. (1.6.1.2)

Harmonic mean of n real numbers a1, a2, . . . , an:

mh =
n

(1/a1) + (1/a2) + · · · + (1/an)
, ak ≠ 0. (1.6.1.3)

Quadratic mean (or root mean square) of n real numbers a1, a2, . . . , an:

mq =

√
a2

1 + a2
2 + · · · + a2

n

n
. (1.6.1.4)

1.6.1-2. Basic inequalities for mean values.

Given n positive numbers a1, a2, . . . , an, the following inequalities hold true:

mh ≤ mg ≤ ma ≤ mq, (1.6.1.5)

where the mean values are defined above by (1.6.1.1)–(1.6.1.4). The equalities in (1.6.1.5)
are attained only if a1 = a2 = · · · = an.

To make it easier to remember, let us rewrite inequalities (1.6.1.5) in words as

harmonic mean ≤ geometric mean ≤ arithmetic mean ≤ quadratic mean .

1.6.1-3. General approach to defining mean values.

Let f (x) be a continuous monotonic function defined on the interval 0 ≤ x < ∞.
The functional mean with respect to the function f (x) for n positive real numbers a1, a2,

. . . , an is introduced as follows:

mf = f –1
(
f (a1) + f (a2) + · · · + f (an)

n

)
, (1.6.1.6)

where f –1(y) is the inverse of f (x).
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The mean values defined by (1.6.1.1)–(1.6.1.4) in Paragraph 1.6.1-1 are all special cases
of the functional mean (1.6.1.6), provided the real numbers a1, a2, . . . , an are all positive.
Specifically,

the arithmetic mean is the functional mean with respect to f (x) = x,
the geometric mean is the functional mean with respect to f (x) = lnx,
the harmonic mean is the functional mean with respect to f (x) = 1/x,

the quadratic mean is the functional mean with respect to f (x) = x2.

1.6.2. Inequalities of General Form

1.6.2-1. Triangle inequality, Cauchy inequality, and related inequalities.

Let ak and bk be real numbers with k = 1, 2, . . . , n.
Generalized triangle inequality:

∣∣
∣∣

n∑

k=1

ak

∣∣
∣∣ ≤

n∑

k=1

|ak |.

Cauchy’s inequality (also known as the Cauchy–Bunyakovski inequality or Cauchy–
Schwarz–Bunyakovski inequality):

( n∑

k=1

akbk

)2
≤
( n∑

k=1

a2
k

)( n∑

k=1

b2
k

)
.

Minkowski’s inequality:

( n∑

k=1

|ak + bk |p
)1
p

≤
( n∑

k=1

|ak |p
)1
p

+

( n∑

k=1

|bk |p
)1
p

, p ≥ 1.

Hölder’s inequality (reduces to Cauchy’s inequality at p = 2):

∣∣
∣∣

n∑

k=1

akbk

∣∣
∣∣ ≤
( n∑

k=1

|ak |p
)1
p
( n∑

k=1

|bk|
p
p–1
)p–1

p
, p > 1.

1.6.2-2. Chebyshev’s inequalities.

Chebyshev’s inequalities:

( n∑

k=1

ak

)( n∑

k=1

bk

)
≤ n
( n∑

k=1

akbk

)
if 0 < a1 ≤ a2 ≤ · · · < an, 0 < b1 ≤ b2 ≤ · · · < bn;

( n∑

k=1

ak

)( n∑

k=1

bk

)
≥ n
( n∑

k=1

akbk

)
if 0 < a1 ≤ a2 ≤ · · · < an, b1 ≥ b2 ≥ · · · ≥ bn > 0;



1.7. SOME MATHEMATICAL METHODS 15

Generalized Chebyshev inequalities:

(
1
n

n∑

k=1

apk

)1/p( 1
n

n∑

k=1

bpk

)1/p
≤
(

1
n

n∑

k=1

apkb
p
k

)1/p

if 0 < a1 ≤ a2 ≤ · · · < an, 0 < b1 ≤ b2 ≤ · · · < bn;
(

1
n

n∑

k=1

apk

)1/p( 1
n

n∑

k=1

bpk

)1/p
≥
(

1
n

n∑

k=1

apkb
p
k

)1/p

if 0 < a1 ≤ a2 ≤ · · · < an, b1 ≥ b2 ≥ · · · ≥ bn > 0.

1.6.2-3. Generalizations of inequalities for means.

1◦. The following inequality holds:

(
ap1

1 a
p2
2 . . . apn

n

) 1
p1+p2+···+pn ≤

a1p1 + a2p2 + · · · + anpn
p1 + p2 + · · · + pn

,

where the ak and pk are all positive. In the special case p1 = p2 = · · · = pn = 1, we have the
well-known inequality stating that the geometric mean of a series of positive numbers does
not exceed their arithmetic mean (see Paragraph 1.6.1-2).

2◦. The following inequality holds:

p1 + p2 + · · · + pn
(p1/a1) + (p2/a2) + · · · + (pn/an)

≤
(
ap1

1 a
p2
2 . . . apn

n

) 1
p1+p2+···+pn ,

where the ak and pk are all positive. In the special case p1 = p2 = · · · = pn = 1, we have the
well-known inequality stating that the harmonic mean of a series of positive numbers does
not exceed their geometric mean (see Paragraph 1.6.1-2).

1.6.2-4. Jensen’s inequality.

If f (x) is a convex function (in particular, with f ′′ > 0), then the following Hölder–Jensen
inequality holds:

f

(∑
pkxk∑
pk

)
≤
∑
pkf (xk)
∑
pk

, (1.6.2.1)

where the xk are any numbers and the pk are any positive numbers; the summation is
performed over all k (the limits are omitted for simplicity). The equality is attained if and
only if either x1 = x2 = · · · = xn or f (x) is a linear function. If f (x) is a concave function
(f ′′ < 0), inequality (1.6.2.1) is the other way around.

The Hölder–Jensen inequality is often used to obtain various inequalities; in particular,
the previous two inequalities as well as the Hölder inequality follow from it.

1.7. Some Mathematical Methods
1.7.1. Proof by Contradiction
Proof by contradiction (also known as reductio ad absurdum) is an indirect method of
mathematical proof. It is based on the following reasoning:
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1. Suppose one has to prove some statement S.
2. One assumes that the opposite of S is true.
3. Based on known axioms, definitions, theorems, formulas, and the assumption of

Item 2, one arrives at a contradiction (deduces some obviously false statement).
4. One concludes that the assumption of Item 2 is false and hence the original state-

ment S is true, which was to be proved.
Example. (Euclid’s proof of the irrationality of the square root of 2 by contradiction.)
1. It is required to prove that

√
2 is an irrational number, that is, a real number that cannot be represented

as a fraction p/q, where p and q are both integers.
2. Assume the opposite:

√
2 is a rational number. This means that

√
2 can be represented as a fraction√

2 = p/q. (1.7.1.1)

Without loss of generality the fraction p/q is assumed to be irreducible, implying that p and q are mutually
prime (have no common factor other than 1).

3. Square both sides of (1.7.1.1) and then multiply by q2 to obtain

2q2 = p2. (1.7.1.2)

The left-hand side is divisible by 2. Then the right-hand side, p2, and hence p is also divisible by 2. Consequently,
p is an even number so that

p = 2n, (1.7.1.3)

where n is an integer. Substituting (1.7.1.3) into (1.7.1.2) and then dividing by 2 yields

q2 = 2p2. (1.7.1.4)

Now it can be concluded, just as above, that q2 and hence q must be divisible by 2. Consequently, q is an even
number so that

q = 2m, (1.7.1.5)

where m is an integer.
It is now apparent from (1.7.1.3) and (1.7.1.5) that the fraction p/q is not simple, since p and q have a

common factor 2. This contradicts the assumption made in Item 2.
4. It follows from the results of Item 3 that the representation of

√
2 in the form of a fraction (1.7.1.1) is

false, which means that
√

2 is irrational.

1.7.2. Mathematical Induction
The method of proof by (complete) mathematical induction is based on the following
reasoning:

1. Let A(n) be a statement dependent on n with n = 1, 2, . . . (A is a hypothesis at this
stage).

2. Base case. Suppose the initial statement A(1) is true. This is usually established by
direct substitution n = 1.

3. Induction step. Assume thatA(n) is true for anyn and then, based on this assumption,
prove that A(n + 1) is also true.

4. Principle of mathematical induction. From the results of Items 2–3 it is concluded
that the statement A(n) is true for any n.

Example.
1. Prove the formula for the sum of odd numbers,

1 + 3 + 5 + · · · + (2n – 1) = n2, (1.7.2.1)

for any natural n.
2. For n = 1, we have an obvious identity: 1 = 1.
3. Let us assume that formula (1.7.2.1) holds for any n. To consider the case of n + 1, let us add the next

term, (2n + 1), to both sides of (1.7.2.1) to obtain

1 + 3 + 5 + · · · + (2n – 1) + (2n + 1) = n2 + (2n + 1) = (n + 1)2.

Thus, from the assumption of the validity of formula (1.7.2.1) for any n it follows that (1.7.2.1) is also valid
for n + 1.

4. According to the principle of mathematical induction, this proves formula (1.7.2.1).
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Remark. The first step, the formulation of an original hypothesis, is the most difficult part of the method
of mathematical induction. This step is often omitted from the method.

1.7.3. Proof by Counterexample

A counterexample is an example which is used to prove that a statement (proposition) is
false. Counterexamples play an important role in mathematics. Whereas a complicated
proof may be the only way to demonstrate the validity of a particular theorem, a single
counter example is all that is need to refute the validity of a proposed theorem.

In general, the scheme of a proof by counterexample is as follows:
1. Given a proposition: all elements a that belong to a setA also belong to a set (possess

a property) B.
2. Refutation of the proposition: one specifies an element a∗ (counterexample) that

belongs to A but does not belong to B.

Example. Proposition: Numbers in the form 22n

+ 1, where n is a positive integer, were once thought to
be prime.

These numbers are prime for n = 1, 2, 3, 4. But for n = 5, we have a counterexample, since

225
+ 1 = 4294967297 = 641 × 6700417;

it is a composite number.
Conclusion: When faced with a number in the form 22n

+ 1, we are not allowed to assume it is either prime
or composite, unless we know for sure for some other reason.

1.7.4. Method of Undetermined Coefficients

The method of undetermined coefficients is employed to find coefficients in expressions
(such as formulas, series expansions, solutions to mathematical equations), the form of
which is either known in advance or assigned based on intuitive judgment.

Example. The fractional function
x + 2

x(x2 – 1)
, (1.7.4.1)

whose denominator can be rewritten in the factored form x(x + 1)(x – 1), can be represented as the sum of
partial fractions

A

x
+

B

x + 1
+

C

x – 1
, (1.7.4.2)

whereA,B, C are (undetermined) coefficients whose values are to be found. Equating (1.7.4.1) with (1.7.4.2),
multiplying by x(x2 – 1), and rearranging, one obtains

(A +B + C)x2 + (–B + C – 1)x –A – 2 = 0.

For this equation to be valid for any x, the coefficients of the different powers of x must be set equal to zero.
This results in the system of linear algebraic equations

A + B + C = 0, C – B – 1 = 0, –A – 2 = 0.

On solving this system, one determines the coefficients in (1.7.4.2):

A = –2, B = 1
2 , C = 3

2 .
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Chapter 2

Elementary Functions

Basic elementary functions: power, exponential, logarithmic, trigonometric, and inverse
trigonometric (arc-trigonometric or antitrigonometric) functions. All other elementary
functions are obtained from the basic elementary functions and constants by means of
the four arithmetic operations (addition, subtraction, multiplication, and division) and the
operation of composition (composite functions).

The graphs and the main properties of the basic as well as some other frequently
occurring elementary functions of the real variable are described below.

2.1. Power, Exponential, and Logarithmic Functions
2.1.1. Power Function: y = xα (α is an Arbitrary Real Number)

2.1.1-1. Graphs of the power function.

General properties of the graphs: the point (1, 1) belongs to all the graphs, and y > 0 for
x > 0. For α > 0, the graphs pass through the origin (0, 0); for α < 0, the graphs have the
vertical asymptote x = 0 (y → +∞ as x→ 0, x > 0). For α = 0, the graph is a straight line
parallel to the x-axis.

Consider more closely the following cases.
Case 1: y = x2n, where n is a positive integer (n = 1, 2, . . . ). This function is defined

for all real x and its range consists of all y ≥ 0. This function is even, nonperiodic, and
unbounded. It crosses the axisOy and is tangential to the axisOx at the origin x = 0, y = 0.
On the interval (–∞, 0) this function decreases, and it increases on the interval (0, +∞). It
attains its minimum y = 0 at x = 0. The graph of the function y = x2 (parabola) is given in
Fig. 2.1 a.

Case 2: y = x2n+1, where n is a positive integer. This function is defined on the entire
x-axis and its range coincides with the y-axis. This function is odd, nonperiodic, and
unbounded. It crosses the x-axis and the y-axis at the origin x = 0, y = 0. It is an increasing
function on the entire real axis with no points of extremum, the origin being its inflection
point. The graph of the function y = x3 (cubic parabola) is shown in Fig. 2.1 a.

Case 3: y = x–2n, where n is a positive integer. This function is defined for all x ≠ 0,
and its range is the semiaxis y > 0. It is an even, nonperiodic, unbounded function having
no intersection with the coordinate axes. It increases on the interval (–∞, 0), decreases on
the interval (0, +∞), and has no points of extremum. This function has a vertical asymptote
x = 0. The graph of the function y = x–2 is given in Fig. 2.1 b.

Case 4: y = x–2n+1, where n is a positive integer. This function is defined for all x ≠ 0,
and its range is the entire y-axis. It is an odd, nonperiodic, unbounded function with no
intersections with the coordinate axes. This is a decreasing function on the entire real axis
with no points of extremum. It has a vertical asymptote x = 0. The graph of the function
y = x–1 is given in Fig. 2.1 b.

19
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Figure 2.1. Graphs of the power function y = xn, where n is an integer.

Case 5: y = xα with a noninteger α > 0. This function is defined for all* x ≥ 0 and
its range is the semiaxis y ≥ 0. This function is neither odd nor even and it is nonperiodic
and unbounded. It crosses the axes Ox and Oy at the origin x = 0, y = 0 and increases
everywhere in its domain, taking its smallest value at the limit point x = 0, y = 0. The graph
of the function y = x1/2 is given in Fig. 2.2.
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1/2

Figure 2.2. Graphs of the power function y = xα, where α is a noninteger.

Case 6: y = xα with a noninteger α < 0. This function is defined for all x ≥ 0 and its
range is the semiaxis y ≥ 0. This function is neither odd nor even, it is nonperiodic and
unbounded, and it has no intersections with the coordinate axes, which coincide with its
horizontal and vertical asymptotes. This function is decreasing on its entire domain and has
no points of extremum. The graph of the function y = x–1/2 is given in Fig. 2.2.

* In fact, the power function y = x1/n with an odd integer n is defined and negative for all x < 0. Here,
however, it is always assumed that x ≥ 0. A similar assumption is made with regard to the functions of the
form y = xm/n, where m is a positive integer and m/n is an irreducible fraction.
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2.1.1-2. Properties of the power function.

Basic properties of the power function:

xαxβ = xα+β , (x1x2)α = xα1 x
α
2 , (xα)β = xαβ ,

for any α and β, where x > 0, x1 > 0, x2 > 0.
Differentiation and integration formulas:

(xα)′ = αxα–1,
∫
xα dx =

{
xα+1

α + 1
+ C if α ≠ –1,

ln |x| + C if α = –1.

The Taylor series expansion in a neighborhood of an arbitrary point:

xα =
∞∑

n=0

Cnαx
α–n
0 (x – x0)n for |x – x0| < |x0|,

where Cnα =
α(α – 1) . . . (α – n + 1)

n!
are binomial coefficients.

2.1.2. Exponential Function: y = ax (a > 0, a ≠ 1)

2.1.2-1. Graphs of the exponential function.

This function is defined for all x and its range is the semiaxis y > 0. This function is neither
odd nor even, it is nonperiodic and unbounded, and it crosses the axis Oy at y = 1 and
does not cross the axis Ox. For a > 1, it is an increasing function on the entire real axis;
for 0 < a < 1, it is a decreasing function. This function has no extremal points; the axis
Ox is its horizontal asymptote. The graphs of these functions have the following common
property: they pass through the point (0, 1). The graph of y = ax is symmetrical to the
graph of y = (1/a)x with respect to the y-axis. For a > 1, the function ax grows faster than
any power of x as x → +∞, and it decays faster than any power of 1/x as x→ –∞. The
graphs of the functions y = 2x and y = (1/2)x are given in Fig. 2.3.
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1 3212

x x

Figure 2.3. Graphs of the exponential function.
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2.1.2-2. Properties of the exponential function.

Basic properties of the exponential function:

ax1ax2 = ax1+x2 , axbx = (ab)x, (ax1 )x2 = ax1x2 .

Number e, base of natural (Napierian) logarithms, and the function ex:

e = lim
n→∞

(
1 +

1
n

)n
= 2.718281 . . . , ex = lim

n→∞

(
1 +

x

n

)n
.

The formula for passing from an arbitrary base a to the base e of natural logarithms:

ax = ex ln a.

The inequality

ax1 > ax2 ⇐⇒
{
x1 > x2 if a > 1,
x1 < x2 if 0 < a < 1.

The limit relations for any a > 1 and b > 0:

lim
x→+∞

ax

|x|b
= ∞, lim

x→–∞ax|x|b = 0.

Differentiation and integration formulas:

(ex)′ = ex,
∫
ex dx = ex + C;

(ax)′ = ax ln a,
∫
ax dx =

ax

ln a
+ C .

The expansion in power series:

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+ · · · +

xn

n!
+ · · · =

∞∑

k=0

xk

k!
.

2.1.3. Logarithmic Function: y = loga x (a > 0, a ≠ 1)

2.1.3-1. Graphs of the logarithmic function.

This function is defined for all x > 0 and its range is the entire y-axis. The function is
neither odd nor even; it is nonperiodic and unbounded; it crosses the axis Ox at x = 1 and
does not cross the axis Oy. For a > 1, this function is increasing, and for 0 < a < 1, it is
a decreasing function; it has no extremal points, and the axis Oy is its vertical asymptote.
The common property of the graphs of such functions is that they all pass through the point
(1, 0). The graph of the function y = loga x is symmetric to that of y = log1/a xwith respect
to the x-axis. The modulus of the logarithmic function tends to infinity slower than any
power of x as x→ +∞; and it tends to zero slower than any power of 1/x as x→ +0. The
graphs of the functions y = log2 x and y = log1/2 x are shown in Fig. 2.4.
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Figure 2.4. Graphs of the logarithmic function.

2.1.3-2. Properties of the logarithmic function.

By definition, the logarithmic function is the inverse of the exponential function. The
following equivalence relation holds:

y = loga x ⇐⇒ x = ay ,

where a > 0, a ≠ 1.
Basic properties of the logarithmic function:

aloga x = x, loga(x1x2) = loga x1 + loga x2,

loga(xk) = k loga x, loga x =
logb x
logb a

,

where x > 0, x1 > 0, x2 > 0, a > 0, a ≠ 1, b > 0, b ≠ 1.
The simplest inequality:

loga x1 > loga x2 ⇐⇒
{
x1 > x2 if a > 1,
x1 < x2 if 0 < a < 1.

For any b > 0, the following limit relations hold:

lim
x→+∞

loga x
xb

= 0, lim
x→+0

xb loga x = 0.

The logarithmic function with the base e (base of natural logarithms, Napierian base)
is denoted by

loge x = lnx,

where e = lim
n→∞

(
1 +

1
n

)n
= 2.718281 . . .

Formulas for passing from an arbitrary base a to the Napierian base e:

loga x =
lnx
ln a

.

Differentiation and integration formulas:

(lnx)′ =
1
x

,
∫

lnx dx = x lnx – x + C .

Expansion in power series:

ln(1 + x) = x –
x2

2
+
x3

3
– · · · + (–1)n–1 x

n

n
+ · · · =

∞∑

k=1

(–1)k–1 x
k

k
, –1 < x < 1.



24 ELEMENTARY FUNCTIONS

2.2. Trigonometric Functions
2.2.1. Trigonometric Circle. Definition of Trigonometric Functions

2.2.1-1. Trigonometric circle. Degrees and radians.

Trigonometric circle is the circle of unit radius with center at the origin of an orthogonal
coordinate systemOxy. The coordinate axes divide the circle into four quarters (quadrants);
see Fig. 2.5. Consider rotation of the polar radius issuing from the origin O and ending
at a point M of the trigonometric circle. Let α be the angle between the x-axis and the
polar radius OM measured from the positive direction of the x-axis. This angle is assumed
positive in the case of counterclockwise rotation and negative in the case of clockwise
rotation.

O

M

1

1

xα

y

1

1

Figure 2.5. Trigonometric circle.

Angles are measured either in radians or in degrees. One radian is the angle at the vertex
of the sector of the trigonometric circle supported by its arc of unit length. One degree is
the angle at the vertex of the sector of the trigonometric circle supported by its arc of length
π/180. The radians are related to the degrees by the formulas

1 radian =
180◦

π
; 1◦ =

π

180
.

2.2.1-2. Definition of trigonometric functions.

The sine of α is the ordinate (the projection to the axisOy) of the point on the trigonometric
circle corresponding to the angle of α radians. The cosine of α is the abscissa (projection
to the axis Ox) of that point (see Fig. 2.5). The sine and the cosine are basic trigonometric
functions and are denoted, respectively, by sinα and cosα.

Other trigonometric functions are tangent, cotangent, secant, and cosecant. These are
derived from the basic trigonometric functions, sine and cosine, as follows:

tanα =
sinα
cosα

, cotα =
cosα
sinα

, sec α =
1

cosα
, cosecα =

1
sinα

.

Table 2.1 gives the signs of the trigonometric functions in different quadrants. The
signs and the values of sinα and cosα do not change if the argument α is incremented by
�2πn, where n = 1, 2, . . . The signs and the values of tanα and cotα do not change if the
argument α is incremented by �πn, where n = 1, 2, . . .

Table 2.2 gives the values of trigonometric functions for some values of their argument
(the symbol ∞ means that the function is undefined for the corresponding value of its
argument).
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TABLE 2.1
Signs of trigonometric functions in different quarters

Quarter Angle in radians sinα cosα tanα cotα secα cosecα

I 0 <α< π
2 + + + + + +

II
π
2 <α<π + – – – – +

III π<α< 3π
2

– – + + – –

IV 3π
2 <α< 2π – + – – + –

TABLE 2.2
Numerical values of trigonometric functions for some angles α (in radians)

Angle α 0 π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6 π

sinα 0 1
2

√
2

2

√
3

2 1
√

3
2

√
2

2
1
2 0

cosα 1
√

3
2

√
2

2
1
2 0 – 1

2 –
√

2
2 –

√
3

2 –1

tanα 0
√

3
3 1

√
3 ∞ –

√
3 –1 –

√
3

3 0

cotα ∞ √
3 1

√
3

3 0 –
√

3
3 –1 –

√
3 ∞

2.2.2. Graphs of Trigonometric Functions

2.2.2-1. Sine: y = sinx.

This function is defined for all x and its range is y � [–1, 1]. The sine is an odd, bounded,
periodic function (with period 2π). It crosses the axis Oy at the point y = 0 and crosses
the axis Ox at the points x = πn, n = 0,�1,�2, . . . The sine is an increasing function
on every segment [– π2 + 2πn, π2 + 2πn] and is a decreasing function on every segment
[ π2 + 2πn, 3

2π + 2πn]. For x = π
2 + 2πn, it attains its maximal value (y = 1), and for

x = – π2 + 2πn it attains its minimal value (y = –1). The graph of the function y = sinx is
called the sinusoid or sine curve and is shown in Fig. 2.6.

O

1

ππ
x

y

π
2

1

y x= sin

π
2

Figure 2.6. The graph of the function y = sinx.

2.2.2-2. Cosine: y = cos x.

This function is defined for all x and its range is y � [–1, 1]. The cosine is a bounded,
even, periodic function (with period 2π). It crosses the axis Oy at the point y = 1, and
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crosses the axis Ox at the points x = π
2 + πn. The cosine is an increasing function on every

segment [–π + 2πn, 2πn] and is a decreasing function on every segment [2πn,π + 2πn],
n = 0,�1,�2, . . . For x = 2πn it attains its maximal value (y = 1), and for x = π + 2πn
it attains its minimal value (y = –1). The graph of the function y = cos x is a sinusoid
obtained by shifting the graph of the function y = sinx by π

2 to the left along the axis Ox
(see Fig. 2.7).

O

1

π
x

y

π

1

y x= cos

π
2

π
2

Figure 2.7. The graph of the function y = cos x.

2.2.2-3. Tangent: y = tanx.

This function is defined for all x ≠ π
2 + πn, n = 0,�1,�2, . . . , and its range is the entire

y-axis. The tangent is an unbounded, odd, periodic function (with period π). It crosses the
axisOy at the point y = 0 and crosses the axisOx at the points x = πn. This is an increasing
function on every interval (– π2 +πn, π2 +πn). This function has no points of extremum and
has vertical asymptotes at x = π

2 +πn, n = 0,�1,�2, . . . The graph of the function y = tan x
is given in Fig. 2.8.

2.2.2-4. Cotangent: y = cot x.

This function is defined for all x ≠ πn, n = 0,�1,�2, . . . , and its range is the entire y-axis.
The cotangent is an unbounded, odd, periodic function (with period π). It crosses the axis
Ox at the points x = π

2 +πn, and does not cross the axisOy. This is a decreasing function on
every interval (πn,π+πn). This function has no extremal points and has vertical asymptotes
at x = πn, n = 0,�1,�2, . . . The graph of the function y = cot x is given in Fig. 2.9.

O

1
x

y

π π
1

y x� tan

π
2

π
2

Figure 2.8. The graph of the function y = tanx.

O

1
x

y

π π
1

y x� cot

π
2

π
2

3π
2

Figure 2.9. The graph of the function y = cot x.
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2.2.3. Properties of Trigonometric Functions

2.2.3-1. Simplest relations.

sin2 x + cos2 x = 1, tan x cot x = 1,
sin(–x) = – sin x, cos(–x) = cos x,

tanx =
sinx
cos x

, cot x =
cos x
sinx

,

tan(–x) = – tan x, cot(–x) = – cot x,

1 + tan2 x =
1

cos2 x
, 1 + cot2 x =

1
sin2 x

.

2.2.3-2. Reduction formulas.

sin(x � 2nπ) = sinx,
sin(x � nπ) = (–1)n sinx,

sin
(
x �

2n + 1
2

π
)

= �(–1)n cos x,

sin
(
x �

π

4

)
=

√
2

2
(sinx � cos x),

tan(x � nπ) = tanx,

tan
(
x �

2n + 1
2

π
)

= – cot x,

tan
(
x �

π

4

)
=

tanx � 1
1 � tanx

,

cos(x � 2nπ) = cos x,
cos(x � nπ) = (–1)n cos x,

cos
(
x �

2n + 1
2

π
)

= �(–1)n sin x,

cos
(
x �

π

4

)
=

√
2

2
(cos x � sinx),

cot(x � nπ) = cot x,

cot
(
x �

2n + 1
2

π
)

= – tan x,

cot
(
x �

π

4

)
=

cot x � 1
1 � cot x

,

where n = 1, 2, . . .

2.2.3-3. Relations between trigonometric functions of single argument.

sinx = �

√
1 – cos2 x = �

tanx√
1 + tan2 x

= �
1√

1 + cot2 x
,

cos x = �

√
1 – sin2 x = �

1√
1 + tan2 x

= �
cot x√

1 + cot2 x
,

tanx = �
sin x√

1 – sin2 x
= �

√
1 – cos2 x

cos x
=

1
cot x

,

cot x = �

√
1 – sin2 x

sin x
= �

cos x√
1 – cos2 x

=
1

tan x
.

The sign before the radical is determined by the quarter in which the argument takes its
values.
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2.2.3-4. Addition and subtraction of trigonometric functions.

sinx + sin y = 2 sin
(x + y

2

)
cos
( x – y

2

)
,

sinx – sin y = 2 sin
( x – y

2

)
cos
(x + y

2

)
,

cos x + cos y = 2 cos
( x + y

2

)
cos
(x – y

2

)
,

cos x – cos y = –2 sin
(x + y

2

)
sin
(x – y

2

)
,

sin2 x – sin2 y = cos2 y – cos2 x = sin(x + y) sin(x – y),

sin2 x – cos2 y = – cos(x + y) cos(x – y),

tanx � tan y =
sin(x � y)
cos x cos y

, cot x � cot y =
sin(y � x)
sin x sin y

,

a cos x + b sinx = r sin(x + ϕ) = r cos(x – ψ).

Here, r =
√
a2 + b2, sinϕ = a/r, cosϕ = b/r, sinψ = b/r, and cosψ = a/r.

2.2.3-5. Products of trigonometric functions.

sin x sin y = 1
2 [cos(x – y) – cos(x + y)],

cos x cos y = 1
2 [cos(x – y) + cos(x + y)],

sin x cos y = 1
2 [sin(x – y) + sin(x + y)].

2.2.3-6. Powers of trigonometric functions.

cos2 x = 1
2 cos 2x + 1

2 ,

cos3 x = 1
4 cos 3x + 3

4 cos x,

cos4 x = 1
8 cos 4x + 1

2 cos 2x + 3
8 ,

cos5 x = 1
16 cos 5x + 5

16 cos 3x + 5
8 cos x,

sin2 x = – 1
2 cos 2x + 1

2 ,

sin3 x = – 1
4 sin 3x + 3

4 sin x,

sin4 x = 1
8 cos 4x – 1

2 cos 2x + 3
8 ,

sin5 x = 1
16 sin 5x – 5

16 sin 3x + 5
8 sinx,

cos2n x =
1

22n–1

n–1∑

k=0

Ck2n cos[2(n – k)x] +
1

22nC
n
2n,

cos2n+1 x =
1

22n

n∑

k=0

Ck2n+1 cos[(2n – 2k + 1)x],

sin2n x =
1

22n–1

n–1∑

k=0

(–1)n–kCk2n cos[2(n – k)x] +
1

22nC
n
2n,

sin2n+1 x =
1

22n

n∑

k=0

(–1)n–kCk2n+1 sin[(2n – 2k + 1)x].

Here, n = 1, 2, . . . and Ckm =
m!

k! (m – k)!
are binomial coefficients (0! = 1).
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2.2.3-7. Addition formulas.

sin(x � y) = sinx cos y � cos x sin y,

tan(x � y) =
tan x � tan y

1 � tanx tan y
,

cos(x � y) = cos x cos y � sin x sin y,

cot(x � y) =
1 � tanx tan y
tan x � tan y

.

2.2.3-8. Trigonometric functions of multiple arguments.

cos 2x = 2 cos2 x – 1 = 1 – 2 sin2 x,

cos 3x = –3 cosx + 4 cos3 x,

cos 4x = 1 – 8 cos2 x + 8 cos4 x,

cos 5x = 5 cosx – 20 cos3 x + 16 cos5 x,

sin 2x = 2 sinx cosx,

sin 3x = 3 sinx – 4 sin3 x,

sin 4x = 4 cosx (sin x – 2 sin3 x),

sin 5x = 5 sinx – 20 sin3 x + 16 sin5 x,

cos(2nx) = 1 +
n∑

k=1

(–1)k
n2(n2 – 1) . . . [n2 – (k – 1)2]

(2k)!
4k sin2k x,

cos[(2n+1)x] = cosx

{
1+

n∑

k=1

(–1)k
[(2n+1)2 –1][(2n+1)2–32] . . . [(2n+1)2 –(2k–1)2]

(2k)!
sin2k x

}
,

sin(2nx) = 2n cosx

[
sin x +

n∑

k=1

(–4)k
(n2 – 1)(n2 – 22) . . . (n2 – k2)

(2k – 1)!
sin2k–1 x

]
,

sin[(2n+1)x]=(2n+1)

{
sinx+

n∑

k=1

(–1)k
[(2n+1)2–1][(2n+1)2–32] . . . [(2n+1)2–(2k–1)2]

(2k+1)!
sin2k+1 x

}
,

tan 2x =
2 tanx

1 – tan2 x
, tan 3x =

3 tanx – tan3 x

1 – 3 tan2 x
, tan 4x =

4 tanx – 4 tan3 x

1 – 6 tan2 x + tan4 x
,

where n = 1, 2, . . .

2.2.3-9. Trigonometric functions of half argument.

sin2 x

2
=

1 – cos x
2

, cos2 x

2
=

1 + cos x
2

,

tan
x

2
=

sinx
1 + cos x

=
1 – cos x

sin x
, cot

x

2
=

sinx
1 – cos x

=
1 + cos x

sin x
,

sinx =
2 tan x

2
1 + tan2 x

2
, cos x =

1 – tan2 x
2

1 + tan2 x
2

, tanx =
2 tan x

2
1 – tan2 x

2
.

2.2.3-10. Differentiation formulas.

d sinx
dx

= cos x,
d cos x
dx

= – sin x,
d tan x
dx

=
1

cos2 x
,

d cot x
dx

= –
1

sin2 x
.
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2.2.3-11. Integration formulas.

∫
sin x dx = – cos x + C ,

∫
cos x dx = sinx + C ,

∫
tan x dx = – ln | cos x| + C ,

∫
cot x dx = ln | sinx| + C ,

where C is an arbitrary constant.

2.2.3-12. Expansion in power series.

cos x = 1 –
x2

2!
+
x4

4!
–
x6

6!
+ · · · + (–1)n

x2n

(2n)!
+ · · · (|x| < ∞),

sinx = x –
x3

3!
+
x5

5!
–
x7

7!
+ · · · + (–1)n

x2n+1

(2n + 1)!
+ · · · (|x| < ∞),

tanx = x +
x3

3
+

2x5

15
+

17x7

315
+ · · · +

22n(22n – 1)|B2n|
(2n)!

x2n–1 + · · · (|x| < π/2),

cot x =
1
x

–

(
x

3
+
x3

45
+

2x5

945
+ · · · +

22n|B2n|
(2n)!

x2n–1 + · · ·
)

(0 < |x| < π),

where Bn are Bernoulli numbers (see Subsection 18.1.3).

2.2.3-13. Representation in the form of infinite products.

sinx = x

(
1 –

x2

π2

)(
1 –

x2

4π2

)(
1 –

x2

9π2

)
. . .

(
1 –

x2

n2π2

)
. . .

cos x =

(
1 –

4x2

π2

)(
1 –

4x2

9π2

)(
1 –

4x2

25π2

)
. . .

(
1 –

4x2

(2n + 1)2π2

)
. . .

2.2.3-14. Euler and de Moivre formulas. Relationship with hyperbolic functions.

ey+ix = ey(cos x + i sin x), (cos x + i sin x)n = cos(nx) + i sin(nx), i2 = –1,
sin(ix) = i sinh x, cos(ix) = cosh x, tan(ix) = i tanh x, cot(ix) = –i coth x.

2.3. Inverse Trigonometric Functions
2.3.1. Definitions. Graphs of Inverse Trigonometric Functions

2.3.1-1. Definitions of inverse trigonometric functions.

Inverse trigonometric functions (arc functions) are the functions that are inverse to the
trigonometric functions. Since the trigonometric functions sin x, cos x, tan x, cot x are
periodic, the corresponding inverse functions, denoted by Arcsin x, Arccos x, Arctan x,
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Arccot x, are multi-valued. The following relations define the multi-valued inverse trigono-
metric functions:

sin
(
Arcsinx

)
= x, cos

(
Arccos x

)
= x,

tan
(
Arctanx

)
= x, cot

(
Arccot x

)
= x.

These functions admit the following verbal definitions: Arcsinx is the angle whose sine is
equal to x; Arccos x is the angle whose cosine is equal to x; Arctanx is the angle whose
tangent is equal to x; Arccot x is the angle whose cotangent is equal to x.

The principal (single-valued) branches of the inverse trigonometric functions are denoted
by

arcsin x ≡ sin–1 x (arcsine is the inverse of sine),

arccos x ≡ cos–1 x (arccosine is the inverse of cosine),

arctan x ≡ tan–1 x (arctangent is the inverse of tangent),

arccot x ≡ cot–1 x (arccotangent is the inverse of cotangent)

and are determined by the inequalities

– π2 ≤ arcsin x ≤ π
2 , 0 ≤ arccos x ≤ π (–1 ≤ x ≤ 1);

– π2 < arctan x < π
2 , 0 < arccot x < π (–∞ < x < ∞).

The following equivalent relations can be taken as definitions of single-valued inverse
trigonometric functions:

y = arcsin x, – 1 ≤ x ≤ 1 ⇐⇒ x = sin y, –
π

2
≤ y ≤

π

2
;

y = arccos x, – 1 ≤ x ≤ 1 ⇐⇒ x = cos y, 0 ≤ y ≤ π;

y = arctan x, – ∞ < x < +∞ ⇐⇒ x = tan y, –
π

2
< y <

π

2
;

y = arccot x, – ∞ < x < +∞ ⇐⇒ x = cot y, 0 < y < π.

The multi-valued and the single-valued inverse trigonometric functions are related by
the formulas

Arcsinx = (–1)n arcsin x + πn,
Arccos x = � arccos x + 2πn,
Arctanx = arctan x + πn,
Arccot x = arccot x + πn,

where n = 0, �1, �2, . . .
The graphs of inverse trigonometric functions are obtained from the graphs of the

corresponding trigonometric functions by mirror reflection with respect to the straight line
y = x (with the domain of each function being taken into account).

2.3.1-2. Arcsine: y = arcsin x.

This function is defined for all x � [–1, 1] and its range is y � [– π2 , π
2 ]. The arcsine is an

odd, nonperiodic, bounded function that crosses the axes Ox and Oy at the origin x = 0,
y = 0. This is an increasing function in its domain, and it takes its smallest value y = – π2 at
the point x = –1; it takes its largest value y = π

2 at the point x = 1. The graph of the function
y = arcsin x is given in Fig. 2.10.
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2.3.1-3. Arccosine: y = arccos x.

This function is defined for all x � [–1, 1], and its range is y � [0,π]. It is neither odd nor
even. It is a nonperiodic, bounded function that crosses the axis Oy at the point y = π

2 and
crosses the axis Ox at the point x = 1. This is a decreasing function in its domain, and at
the point x = –1 it takes its largest value y = π; at the point x = 1 it takes its smallest value
y = 0. For all x in its domain, the following relation holds: arccos x = π

2 – arcsin x. The
graph of the function y = arccos x is given in Fig. 2.11.

O 1

y xarcsin�

x

y

1

π
2

π
2

Figure 2.10. The graph of the function y = arcsin x.

O 1

π

x

y

y x= arccos

1

π
2

Figure 2.11. The graph of the function y = arccos x.

2.3.1-4. Arctangent: y = arctan x.

This function is defined for all x, and its range is y � (– π2 , π
2 ). The arctangent is an odd,

nonperiodic, bounded function that crosses the coordinate axes at the origin x = 0, y = 0.
This is an increasing function on the real axis with no points of extremum. It has two
horizontal asymptotes: y = – π2 (as x → –∞) and y = π

2 (as x → +∞). The graph of the
function y = arctan x is given in Fig. 2.12.

2.3.1-5. Arccotangent: y = arccot x.

This function is defined for all x, and its range is y � (0,π). The arccotangent is neither odd
nor even. It is a nonperiodic, bounded function that crosses the axis Oy at the point y = π

2
and does not cross the axis Ox. This is a decreasing function on the entire real axis with
no points of extremum. It has two horizontal asymptotes y = 0 (as x→ +∞) and y = π (as
x→ –∞). For all x, the following relation holds: arccot x = π

2 – arctan x. The graph of the
function y = arccot x is given in Fig. 2.13.

O 1
x

y

1

y xarctan�π
2

π
2

Figure 2.12. The graph of the function y = arctanx.

O 1
x

y

π

1

y xarccot�
π
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Figure 2.13. The graph of the function y = arccot x.
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2.3.2. Properties of Inverse Trigonometric Functions

2.3.2-1. Simplest formulas.

sin(arcsin x) = x, cos(arccos x) = x,
tan(arctan x) = x, cot(arccot x) = x.

2.3.2-2. Some properties.

arcsin(–x) = – arcsin x,
arctan(–x) = – arctan x,

arccos(–x) = π – arccos x,
arccot(–x) = π – arccot x,

arcsin(sin x) =

{
x – 2nπ if 2nπ – π

2 ≤ x ≤ 2nπ + π
2 ,

–x + 2(n + 1)π if (2n + 1)π – π
2 ≤ x ≤ 2(n + 1)π + π

2 ,

arccos(cos x) =
{
x – 2nπ if 2nπ ≤ x ≤ (2n + 1)π,
–x + 2(n + 1)π if (2n + 1)π ≤ x ≤ 2(n + 1)π,

arctan(tan x) = x – nπ if nπ – π
2 < x < nπ + π

2 ,

arccot(cot x) = x – nπ if nπ < x < (n + 1)π.

2.3.2-3. Relations between inverse trigonometric functions.

arcsinx+arccosx = π
2 , arctanx+arccotx = π

2 ;

arcsin x =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

arccos
√

1 –x2 if 0 ≤ x ≤ 1,

– arccos
√

1 –x2 if –1 ≤ x ≤ 0,

arctan
x√

1 –x2
if –1 < x < 1,

arccot

√
1 –x2

x
–π if –1 ≤ x < 0;

arccosx =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

arcsin
√

1 –x2 if 0 ≤ x ≤ 1,

π–arcsin
√

1 –x2 if –1 ≤ x ≤ 0,

arctan

√
1 –x2

x
if 0 < x ≤ 1,

arccot
x√

1 –x2
if –1 < x < 1;

arctanx =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arcsin
x√

1 +x2
for any x,

arccos
1√

1 +x2
if x ≥ 0,

– arccos
1√

1 +x2
if x ≤ 0,

arccot
1
x

if x > 0;

arccotx =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arcsin
1√

1 +x2
if x > 0,

π–arcsin
1√

1 +x2
if x < 0,

arctan
1
x

if x > 0,

π+arctan
1
x

if x < 0.

2.3.2-4. Addition and subtraction of inverse trigonometric functions.

arcsin x + arcsin y = arcsin
(
x
√

1 – y2 + y
√

1 – x2
)

for x2 + y2 ≤ 1,

arccos x � arccos y = � arccos
[
xy �

√
(1 – x2)(1 – y2)

]
for x � y ≥ 0,
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arctan x + arctan y = arctan
x + y

1 – xy
for xy < 1,

arctan x – arctan y = arctan
x – y

1 + xy
for xy > –1.

2.3.2-5. Differentiation formulas.

d

dx
arcsin x =

1√
1 – x2

,
d

dx
arccos x = –

1√
1 – x2

,

d

dx
arctan x =

1
1 + x2 ,

d

dx
arccot x = –

1
1 + x2 .

2.3.2-6. Integration formulas.

∫
arcsinxdx = x arcsinx +

√
1 – x2 + C,

∫
arccosxdx = x arccosx –

√
1 – x2 + C,

∫
arctanxdx = x arctanx –

1
2

ln(1 + x2) + C,
∫

arccotxdx = x arccotx +
1
2

ln(1 + x2) + C,

where C is an arbitrary constant.

2.3.2-7. Expansion in power series.

arcsinx = x+
1
2
x3

3
+

1 × 3
2 × 4

x5

5
+

1 × 3 × 5
2 × 4 × 6

x7

7
+ · · ·+ 1 × 3 × · · ·× (2n – 1)

2 × 4 × · · ·× (2n)
x2n+1

2n + 1
+ · · · (|x| < 1),

arctanx = x –
x3

3
+
x5

5
–
x7

7
+ · · ·+ (–1)n–1 x

2n–1

2n – 1
+ · · · (|x| ≤ 1),

arctanx =
π

2
–

1
x

+
1

3x3 –
1

5x5 + · · ·+ (–1)n
1

(2n – 1)x2n–1 + · · · (|x| > 1).

The expansions for arccos x and arccot x can be obtained from the relations arccos x =
π
2 – arcsin x and arccot x = π

2 – arctan x.

2.4. Hyperbolic Functions
2.4.1. Definitions. Graphs of Hyperbolic Functions

2.4.1-1. Definitions of hyperbolic functions.

Hyperbolic functions are defined in terms of the exponential functions as follows:

sinh x =
ex – e–x

2
, cosh x =

ex + e–x

2
, tanh x =

ex – e–x

ex + e–x , coth x =
ex + e–x

ex – e–x .

The graphs of hyperbolic functions are given below.



2.4. HYPERBOLIC FUNCTIONS 35

2.4.1-2. Hyperbolic sine: y = sinh x.

This function is defined for all x and its range is the entire y-axis. The hyperbolic sine is an
odd, nonperiodic, unbounded function that crosses the axes Ox and Oy at the origin x = 0,
y = 0. This is an increasing function in its domain with no points of extremum. The graph
of the function y = sinh x is given in Fig. 2.14.

2.4.1-3. Hyperbolic cosine: y = cosh x.

This function is defined for all x, and its range is y � [1, +∞). The hyperbolic cosine is
a nonperiodic, unbounded function that crosses the axis Oy at the point 1 and does not
cross the axis Ox. This function is decreasing on the interval (–∞, 0) and is increasing on
the interval (0, +∞); it takes its smallest value y = 1 at x = 0. The graph of the function
y = cosh x is given in Fig. 2.15.
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Figure 2.14. The graph of the function y = sinh x.
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Figure 2.15. The graph of the function y = cosh x.

2.4.1-4. Hyperbolic tangent: y = tanh x.

This function is defined for all x, and its range is y � (–1, 1). The hyperbolic tangent is an
odd, nonperiodic, bounded function that crosses the coordinate axes at the origin x= 0, y = 0.
This is an increasing function on the entire real axis and has two horizontal asymptotes:
y = –1 (as x→ –∞) and y = 1 (as x→ +∞). The graph of the function y = tanh x is given
in Fig. 2.16.

2.4.1-5. Hyperbolic cotangent: y = coth x.

This function is defined for allx≠ 0, and its range consists of all y � (–∞, –1) and y � (1, +∞).
The hyperbolic cotangent is an odd, nonperiodic, unbounded function that does not cross
the coordinate axes. This is a decreasing function on each of the semiaxes of its domain;
it has no points of extremum and does not cross the coordinate axes. It has two horizontal
asymptotes: y = –1 (as x → –∞) and y = 1 (as x → +∞). The graph of the function
y = coth x is given in Fig. 2.17.
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Figure 2.16. The graph of the function y = tanh x.
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Figure 2.17. The graph of the function y = coth x.

2.4.2. Properties of Hyperbolic Functions

2.4.2-1. Simplest relations.

cosh2 x – sinh2 x = 1,
sinh(–x) = – sinh x,

tanh x =
sinh x
cosh x

,

tanh(–x) = – tanh x,

1 – tanh2 x =
1

cosh2 x
,

tanh x cothx = 1,
cosh(–x) = cosh x,

coth x =
cosh x
sinh x

,

coth(–x) = – coth x,

coth2 x – 1 =
1

sinh2 x
.

2.4.2-2. Relations between hyperbolic functions of single argument (x ≥ 0).

sinh x =
√

cosh2 x – 1 =
tanh x√

1 – tanh2 x
=

1√
coth2 x – 1

,

cosh x =
√

sinh2 x + 1 =
1√

1 – tanh2 x
=

cothx√
coth2 x – 1

,

tanh x =
sinh x√

sinh2 x + 1
=

√
cosh2 x – 1

coshx
=

1
coth x

,

coth x =

√
sinh2 x + 1

sinh x
=

coshx√
cosh2 x – 1

=
1

tanh x
.

2.4.2-3. Addition formulas.

sinh(x � y) = sinh x cosh y � sinh y cosh x, cosh(x � y) = cosh x cosh y � sinh x sinh y,

tanh(x � y) =
tanh x � tanh y

1 � tanh x tanh y
, coth(x � y) =

cothx coth y � 1
coth y � coth x

.
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2.4.2-4. Addition and subtraction of hyperbolic functions.

sinh x � sinh y = 2 sinh
(x � y

2

)
cosh

(x � y
2

)
,

coshx + cosh y = 2 cosh
(x + y

2

)
cosh

( x – y
2

)
,

coshx – cosh y = 2 sinh
(x + y

2

)
sinh
( x – y

2

)
,

sinh2 x – sinh2 y = cosh2 x – cosh2 y = sinh(x + y) sinh(x – y),

sinh2 x + cosh2 y = cosh(x + y) cosh(x – y),
(cosh x � sinh x)n = cosh(nx) � sinh(nx),

tanh x � tanh y =
sinh(x � y)

cosh x cosh y
, cothx � coth y = �

sinh(x � y)
sinh x sinh y

,

where n = 0, �1, �2, . . .

2.4.2-5. Products of hyperbolic functions.

sinh x sinh y = 1
2 [cosh(x + y) – cosh(x – y)],

cosh x cosh y = 1
2 [cosh(x + y) + cosh(x – y)],

sinh x cosh y = 1
2 [sinh(x + y) + sinh(x – y)].

2.4.2-6. Powers of hyperbolic functions.

cosh2 x= 1
2 cosh 2x+ 1

2 ,

cosh3 x= 1
4 cosh 3x+ 3

4 cosh x,

cosh4 x= 1
8 cosh 4x+ 1

2 cosh 2x+ 3
8 ,

cosh5 x= 1
16 cosh 5x+ 5

16 cosh 3x+ 5
8 cosh x,

sinh2 x= 1
2 cosh 2x– 1

2 ,

sinh3 x= 1
4 sinh 3x– 3

4 sinh x,

sinh4 x= 1
8 cosh 4x– 1

2 cosh 2x+ 3
8 ,

sinh5 x= 1
16 sinh 5x– 5

16 sinh 3x+ 5
8 sinh x,

cosh2n x=
1

22n–1

n–1∑

k=0

Ck2n cosh[2(n–k)x]+
1

22n C
n
2n,

cosh2n+1 x=
1

22n

n∑

k=0

Ck2n+1 cosh[(2n– 2k+ 1)x],

sinh2n x=
1

22n–1

n–1∑

k=0

(–1)kCk2n cosh[2(n–k)x]+
(–1)n

22n Cn2n,

sinh2n+1 x=
1

22n

n∑

k=0

(–1)kCk2n+1 sinh[(2n– 2k+ 1)x].

Here, n = 1, 2, . . . ; and Ckm are binomial coefficients.
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2.4.2-7. Hyperbolic functions of multiple argument.

cosh 2x = 2 cosh2 x– 1,

cosh 3x = –3 cosh x+ 4 cosh3 x,

cosh 4x = 1 – 8 cosh2 x+ 8 cosh4 x,

cosh 5x = 5 cosh x– 20 cosh3 x+ 16 cosh5 x,

sinh 2x = 2 sinh x cosh x,

sinh 3x = 3 sinh x+ 4 sinh3 x,

sinh 4x = 4 cosh x(sinh x+ 2 sinh3 x),

sinh 5x = 5 sinh x+ 20 sinh3 x+ 16 sinh5 x.

cosh(nx) = 2n–1 coshn x+
n

2

[n/2]∑

k=0

(–1)k+1

k+ 1
Ck–2
n–k–22n–2k–2(cosh x)n–2k–2,

sinh(nx) = sinh x
[(n–1)/2]∑

k=0

2n–k–1Ckn–k–1(cosh x)n–2k–1.

Here, Ckm are binomial coefficients and [A] stands for the integer part of the number A.

2.4.2-8. Hyperbolic functions of half argument.

sinh
x

2
= signx

√
cosh x – 1

2
, cosh

x

2
=

√
cosh x + 1

2
,

tanh
x

2
=

sinh x
cosh x + 1

=
cosh x – 1

sinh x
, coth

x

2
=

sinh x
cosh x – 1

=
coshx + 1

sinh x
.

2.4.2-9. Differentiation formulas.

d sinh x
dx

= cosh x,
d cosh x
dx

= sinh x,

d tanh x
dx

=
1

cosh2 x
,

d coth x
dx

= –
1

sinh2 x
.

2.4.2-10. Integration formulas.

∫
sinh x dx = coshx + C ,

∫
cosh x dx = sinh x + C ,

∫
tanhx dx = ln cosh x + C ,

∫
coth x dx = ln | sinh x| + C ,

where C is an arbitrary constant.
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2.4.2-11. Expansion in power series.

cosh x = 1 +
x2

2!
+
x4

4!
+
x6

6!
+ · · · +

x2n

(2n)!
+ · · · (|x| < ∞),

sinh x = x+
x3

3!
+
x5

5!
+
x7

7!
+ · · · +

x2n+1

(2n + 1)!
+ · · · (|x| < ∞),

tanh x = x –
x3

3
+

2x5

15
–

17x7

315
+ · · · + (–1)n–1 22n(22n – 1)|B2n |x2n–1

(2n)!
+ · · · (|x| < π/2),

coth x =
1
x

+
x

3
–
x3

45
+

2x5

945
– · · · + (–1)n–1 22n|B2n|x2n–1

(2n)!
+ · · · (|x| < π),

where Bn are Bernoulli numbers (see Subsection 18.1.3).

2.4.2-12. Relationship with trigonometric functions.

sinh(ix) = i sin x, cosh(ix) = cos x, tanh(ix) = i tan x, coth(ix) = –i cot x, i2 = –1.

2.5. Inverse Hyperbolic Functions
2.5.1. Definitions. Graphs of Inverse Hyperbolic Functions

2.5.1-1. Definitions of inverse hyperbolic functions.

Inverse hyperbolic functions are the functions that are inverse to hyperbolic functions. The
following notation is used for inverse hyperbolic functions:

arcsinh x ≡ sinh–1 x (inverse of hyperbolic sine),

arccosh x ≡ cosh–1 x (inverse of hyperbolic cosine),

arctanh x ≡ tanh–1 x (inverse of hyperbolic tangent),

arccoth x ≡ coth–1 x (inverse of hyperbolic cotangent).

Inverse hyperbolic functions can be expressed in terms of logarithmic functions:

arcsinh x = ln
(
x +

√
x2 + 1

)
(x is any); arccosh x = ln

(
x +

√
x2 – 1

)
(x ≥ 1);

arctanh x =
1
2

ln
1 + x
1 – x

(|x| < 1); arccoth x =
1
2

ln
x + 1
x – 1

(|x| > 1).

Here, only one (principal) branch of the function arccosh x is listed, the function itself being
double-valued. In order to write out both branches of arccosh x, the symbol � should be
placed before the logarithm on the right-hand side of the formula.

Below, the graphs of the inverse hyperbolic functions are given. These are obtained
from the graphs of the corresponding hyperbolic functions by mirror reflection with respect
to the straight line y = x (with the domain of each function being taken into account).

2.5.1-2. Inverse hyperbolic sine: y = arcsinh x.

This function is defined for all x, and its range coincides with the y-axis. The arcsinh x is an
odd, nonperiodic, unbounded function that crosses the axes Ox and Oy at the origin x = 0,
y = 0. This is an increasing function on the entire real axis with no points of extremum.
The graph of the function y = arcsinh x is given in Fig. 2.18.
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2.5.1-3. Inverse hyperbolic cosine: y = arccosh x.

This function is defined for all x � [1, +∞), and its range consists of y � [0, +∞). The
arccosh x is neither odd nor even; it is nonperiodic and unbounded. It does not cross the
axis Oy and crosses the axisOx at the point x = 1. It is an increasing function in its domain
with the minimal value y = 0 at x = 1. The graph of the function y = arccosh x is given in
Fig. 2.19.
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Figure 2.18. The graph of the function y = arcsinh x.
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Figure 2.19. The graph of the function y = arccosh x.

2.5.1-4. Inverse hyperbolic tangent: y = arctanh x.

This function is defined for all x � (–1, 1), and its range consists of all y. The arctanh x
is an odd, nonperiodic, unbounded function that crosses the coordinate axes at the origin
x = 0, y = 0. This is an increasing function in its domain with no points of extremum and
an inflection point at the origin. It has two vertical asymptotes: x = �1. The graph of the
function y = arctanh x is given in Fig. 2.20.

2.5.1-5. Inverse hyperbolic cotangent: y = arccoth x.

This function is defined for x � (–∞, –1) and x � (1, +∞). Its range consists of all y ≠ 0.
The arccoth x is an odd, nonperiodic, unbounded function that does not cross the coordinate
axes. It is a decreasing function on each of the semiaxes of its domain. This function has
no points of extremum and has one horizontal asymptote y = 0 and two vertical asymptotes
x = �1. The graph of the function y = arccoth x is given in Fig. 2.21.
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Figure 2.20. The graph of the function y=arctanh x.
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Figure 2.21. The graph of the function y = arccoth x.
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2.5.2. Properties of Inverse Hyperbolic Functions

2.5.2-1. Simplest relations.

arcsinh(–x) = – arcsinh x, arctanh(–x) = – arctanh x, arccoth(–x) = – arccoth x.

2.5.2-2. Relations between inverse hyperbolic functions.

arcsinh x = arccosh
√
x2 + 1 = arctanh

x√
x2 + 1

,

arccosh x = arcsinh
√
x2 – 1 = arctanh

√
x2 – 1
x

,

arctanh x = arcsinh
x√

1 – x2
= arccosh

1√
1 – x2

= arccoth
1
x

.

2.5.2-3. Addition and subtraction of inverse hyperbolic functions.

arcsinh x � arcsinh y = arcsinh
(
x
√

1 + y2 � y
√

1 + x2
)
,

arccosh x � arccosh y = arccosh
[
xy �

√
(x2 – 1)(y2 – 1)

]
,

arcsinh x � arccosh y = arcsinh
[
xy �

√
(x2 + 1)(y2 – 1)

]
,

arctanh x � arctanh y = arctanh
x � y

1 � xy
, arctanh x � arccoth y = arctanh

xy � 1
y � x

.

2.5.2-4. Differentiation formulas.

d

dx
arcsinh x =

1√
x2 + 1

,

d

dx
arctanh x =

1
1 – x2 (x2 < 1),

d

dx
arccosh x =

1√
x2 – 1

,

d

dx
arccoth x =

1
1 – x2 (x2 > 1).

2.5.2-5. Integration formulas.

∫
arcsinh x dx = x arcsinh x –

√
1 + x2 + C ,

∫
arccosh x dx = x arccosh x –

√
x2 – 1 + C ,

∫
arctanh x dx = x arctanh x +

1
2

ln(1 – x2) + C ,
∫

arccoth x dx = x arccoth x +
1
2

ln(x2 – 1) + C ,

where C is an arbitrary constant.
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2.5.2-6. Expansion in power series.

arcsinhx = x –
1
2
x3

3
+

1 × 3
2 × 4

x5

5
– · · · + (–1)n

1 × 3 × · · · × (2n – 1)
2 × 4 × · · · × (2n)

x2n+1

2n + 1
+ · · · (|x| < 1),

arcsinhx = ln(2x) +
1
2

1
2x2 +

1 × 3
2 × 4

1
4x4 + · · · +

1 × 3 × · · · × (2n – 1)
2 × 4 × · · · × (2n)

1
2nx2n

+ · · · (|x| > 1),

arccoshx = ln(2x) –
1
2

1
2x2 –

1 × 3
2 × 4

1
4x4 – · · · –

1 × 3 × · · · × (2n – 1)
2 × 4 × · · · × (2n)

1
2nx2n

– · · · (|x| > 1),

arctanhx = x +
x3

3
+
x5

5
+
x7

7
+ · · · +

x2n+1

2n + 1
+ · · · (|x| < 1),

arccothx =
1
x

+
1

3x3 +
1

5x5 +
1

7x7 + · · · +
1

(2n + 1)x2n+1 + · · · (|x| > 1).
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Chapter 3

Elementary Geometry

3.1. Plane Geometry
3.1.1. Triangles

3.1.1-1. Plane triangle and its properties.

1◦. A plane triangle, or simply a triangle, is a plane figure bounded by three straight line
segments (sides) connecting three noncollinear points (vertices) (Fig. 3.1a). The smaller
angle between the two rays issuing from a vertex and passing through the other two vertices
is called an (interior) angle of the triangle. The angle adjacent to an interior angle is called
an external angle of the triangle. An external angle is equal to the sum of the two interior
angles to which it is not adjacent.

A

a

(a) (b)

α

b

c

γ

β
B

C

Figure 3.1. Plane triangle (a). Midline of a triangle (b).

A triangle is uniquely determined by any of the following sets of its parts:
1. Two angles and their included side.
2. Two sides and their included angle.
3. Three sides.

Depending on the angles, a triangle is said to be:
1. Acute if all three angles are acute.
2. Right (or right-angled) if one of the angles is right.
3. Obtuse if one of the angles is obtuse.

Depending on the relation between the side lengths, a triangle is said to be:
1. Regular (or equilateral) if all sides have the same length.
2. Isosceles if two of the sides are of equal length.
3. Scalene if all sides have different lengths.

2◦. Congruence tests for triangles:
1. If two sides of a triangle and their included angle are congruent to the corresponding

parts of another triangle, then the triangles are congruent.
2. If two angles of a triangle and their included side are congruent to the corresponding

parts of another triangle, then the triangles are congruent.

43
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3. If three sides of a triangle are congruent to the corresponding sides of another triangle,
then the triangles are congruent.

3◦. Triangles are said to be similar if their corresponding angles are equal and their corre-
sponding sides are proportional.

Similarity tests for triangles:
1. If all three pairs of corresponding sides in a pair of triangles are in proportion, then the

triangles are similar.
2. If two pairs of corresponding angles in a pair of triangles are congruent, then the triangles

are similar.
3. If two pairs of corresponding sides in a pair of triangles are in proportion and the

included angles are congruent, then the triangles are similar.

The areas of similar triangles are proportional to the squares of the corresponding linear
parts (such as sides, altitudes, diagonals, etc.).

4◦. The line connecting the midpoints of two sides of a triangle is called a midline of the
triangle. The midline is parallel to and half as long as the third side (Fig. 3.1b).

Let a, b, and c be the lengths of the sides of a triangle; let α, β, and γ be the respective
opposite angles (Fig. 3.1a); let R and r be the circumradius and the inradius, respectively;
and let p = 1

2 (a + b + c) be the semiperimeter.
Table 3.1 represents the basic properties and relations characterizing triangles.

TABLE 3.1
Basic properties and relations characterizing plane triangles

No. The name of property Properties and relations

1 Triangle inequality The length of any side of a triangle does not exceed
the sum of lengths of the other two sides

2
Sum of angles of

a triangle α + β + γ = 180◦

3 Law of sines
a

sinα
=

b

sinβ
=

c

sin γ
= 2R

4 Law of cosines c2 = a2 + b2 – 2ab cos γ

5 Law of tangents
a + b
a – b

=
tan
[ 1

2 (α + β)
]

tan
[ 1

2 (α – β)
] =

cot
( 1

2 γ
)

tan
[ 1

2 (α – β)
]

6
Theorem on projections

(law of cosines) c = a cosβ + b cosα

7
Trigonometric
angle formulas

sin
γ

2
=

√
(p – a)(p – b)

ab
, cos

γ

2
=

√
p(p – c)
ab

,

tan
γ

2
=

√
(p – a)(p – b)
p(p – c)

, sin γ =
2
ab

√
p(p – a)(p – b)(p – c)

8 Law of tangents tan γ =
c sinα

b – c cosα
=

c sinβ
a – c cosβ

9 Mollweide’s formulas

a + b
c

=
cos
[ 1

2 (α – β)
]

sin
( 1

2 γ
) =

cos
[ 1

2 (α – β)
]

cos
[ 1

2 (α + β)
] ,

a – b
c

=
sin
[ 1

2 (α – β)
]

cos
( 1

2 γ
) =

sin
[ 1

2 (α – β)
]

sin
[ 1

2 (α + β)
]
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Table 3.2 permits one to find the sides and angles of an arbitrary triangle if three
appropriately chosen sides and/or angles are given. From the relations given in Tables 3.1
and 3.2, one can derive all missing relations by cyclic permutations of the sides a, b, and c
and the angles α, β, and γ.

TABLE 3.2
Solution of plane triangles

No. Three parts
specified

Formulas for the remaining parts

1 Three sides
a, b, c

First method.

One of the angles is determined by the law of cosines, cosα =
b2 + c2 – a2

2bc
.

Then either the law of sines or the law of cosines is applied.
Second method.

One of the angles is determined by trigonometric angle formulas. Further
proceed in a similar way.

Remark. The sum of lengths of any two sides must be greater than the length of
the third side.

2 Two sides a, b
and the included

angle γ

First method.
The side c is determined by the law of cosines, c =

√
a2 + b2 – 2ab cos γ.

The angle α is determined by either the law of cosines or the law of sines. The
angle β is determined from the sum of angles in triangle, β = 180◦ – α – γ.

Second method.
α + β is found from the sum of angles in triangle, α + β = 180◦ – γ;

α – β is found from the law of tangents, tan
α – β

2
=
a – b
a + b

cot
γ

2
.

Then α and β can be found. The third side c is determined by either the law of
cosines or the law of sines.

3 A side c
and the two
angles α, β
adjacent to it

The third angle γ is found from the sum of angles in triangle, γ = 180◦ – α – β.
Sides a and b are determined by the law of sines.

4 Two sides a, b
and the angle α
opposite one

of them

The second angle is determined by the law of sines, sinβ =
b

a
sinα.

The third angle is γ = 180◦ – α – β.

The third side is determined by the law of sines, c = a
sin γ
sinα

.

Remark. Five cases are possible:
1. a > b; i.e., the angle is opposite the greater side. Then α > β, β < 90◦ (the larger

angle is opposite the larger side), and the triangle is determined uniquely.
2. a = b; i.e., the triangle is isosceles and is determined uniquely.
3. a < b and b sinα < a. Then there are two solutions, β1 + β2 = 180◦.
4. a < b and b sinα = a. Then the solution is unique, β = 90◦.
5. a < b and b sinα > a. Then there are no solutions.

3.1.1-2. Medians, angle bisectors, and altitudes of triangle.

A straight line through a vertex of a triangle and the midpoint of the opposite side is called
a median of the triangle (Fig. 3.2a). The three medians of a triangle intersect in a single
point lying strictly inside the triangle, which is called the centroid or center of gravity of
the triangle. This point cuts the medians in the ratio 2:1 (counting from the corresponding
vertices).
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a

( )a ( )b ( )c

ma

c

b a b
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h
h
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b
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b
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Figure 3.2. Medians (a), angle bisectors (b), and altitudes (c) of a triangle.

The length of the median ma to the side a opposite the angle α is equal to

ma =
1
2

√
2(b2 + c2) – a2 =

1
2

√
a2 + b2 + 2ab cos γ. (3.1.1.1)

An angle bisector of a triangle is a line segment between a vertex and a point of the
opposite side and dividing the angle at that vertex into two equal parts (Fig. 3.2b). The three
angle bisectors intersect in a single point lying strictly inside the triangle. This point is
equidistant from all sides and is called the incenter (the center of the incircle of the triangle).
Concerning the radius r of the incircle, see Paragraph 3.1.1-3. The angle bisector through
a vertex cuts the opposite side in ratio proportional to the adjacent sides of the triangle.

The length of the angle bisector la drawn to the side a is given by the formulas

la =
√
bc – b1c1 =

√
bc[(b + c)2 – a2]

b + c
=

√
4p(p – a)bc
b + c

,

la =
2cb cos

( 1
2α
)

b + c
= 2R

sin β sin γ

cos
[ 1

2 (β – γ)
] = 2p

sin
( 1

2β
)

sin
( 1

2γ
)

sin β + sin γ
,

(3.1.1.2)

where b1 and c1 are the segments of the side a cut by bisector la and adjacent to the sides b
and c, respectively, and R is the circumradius (see Paragraph 3.1.1-3).

An altitude of a triangle is a straight line passing through a vertex and perpendicular to
the straight line containing the opposite side (Fig. 3.2c). The three altitudes of a triangle
intersect in a single point, called the orthocenter of the triangle.

The length of the altitude ha to the side a is given by the formulas

ha = b sin γ = c sin β =
bc

2R
,

ha = 2(p – a) cos
α

2
cos

β

2
cos

γ

2
= 2(p – b) sin

α

2
sin

β

2
cos

γ

2
.

(3.1.1.3)

The lengths of the altitude, the angle bisector, and the median through the same vertex
satisfy the inequality ha ≤ la ≤ma. If ha = la =ma, then the triangle is isosceles; moreover,
the first equality implies the second, and vice versa.

3.1.1-3. Circumcircle, incircle, and excircles.

A straight line passing through the midpoint of a segment and perpendicular to it is called
the perpendicular bisector of the segment. The circle passing through the vertices of a
triangle is called the circumcircle of the triangle. The center O1 of the circumcircle, called
the circumcenter, is the point where the perpendicular bisectors of the sides of the triangle
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Figure 3.3. The circumcircle of a triangle. The circumcenter (a), the Simpson line (b), and the Euler line (c).

meet (Fig. 3.3a). The feet of the perpendiculars drawn from a point Q on the circumcircle
to the three sides of the triangle lie on the same straight line called the Simpson line of Q
with respect to the triangle (Fig. 3.3b). The circumcenter, the orthocenter, and the centroid
lie on a single line, called the Euler line (Fig. 3.3c).

The circle tangent to the three sides of a triangle and lying inside the triangle is called
the incircle of the triangle. The center O2 of the incircle (the incenter) is the point where
the angle bisectors meet (Fig. 3.4a). The straight lines connecting the vertices of a triangle
with the points at which the incircle is tangent to the respective opposite sides intersect in
a single point G called the Gergonne point (Fig. 3.4b).

a a
b bR

c c

2 2O O

( )a

G

( )b

Figure 3.4. The incircle of a triangle (a). The incenter and the Gergonne point (b).

The circle tangent to one side of a triangle and to the extensions of the other two sides is
called an excircle of the triangle. Each triangle has three excircles. The center of an excircle
(an excenter) is the point of concurrency of two external angle bisectors and an interior
angle bisector. The straight lines connecting the vertices of a triangle with the points at
which the respective opposite sides are tangent to the excircles intersect in a single pointN ,
called the Nagel point (Fig. 3.5).

The inradius r, the circumradius R, and the exradii ρa, ρb, and ρc satisfy the relations

r =

√
(p – a)(p – b)(p – c)

p
= p tan

α

2
tan

β

2
tan

γ

2

= 4R sin
α

2
sin

β

2
sin

γ

2
= (p – c) tan

γ

2
=
S

p
, (3.1.1.4)

R =
a

2 sinα
=

b

2 sin β
=

c

2 sin γ
=
abc

4S
=

p

4 cos
( 1

2α
)

cos
( 1

2β
)

cos
( 1

2γ
) , (3.1.1.5)

1
r

=
1
ρa

+
1
ρb

+
1
ρc

. (3.1.1.6)
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Figure 3.5. Excircles of a triangle. The Nagel point.

The distance d1 between the circumcenter and the incenter and the distance d2 between
the circumcenter and the excenter are given by the expressions

d1 =
√
R2 – 2Rr, (3.1.1.7)

d2 =
√
R2 + 2Rρa. (3.1.1.8)

3.1.1-4. Area of a triangle.

The area S of a triangle is given by the formulas

S = aha =
1
2
ab sin γ = rp,

S =
√
p(p – a)(p – b)(p – c) (Heron’s formula),

S =
abc

4R
= 2R2 sinα sin β sin γ,

S = c2 sinα sin β
2 sin γ

= c2 sinα sin β
2 sin(α + β)

.

(3.1.1.9)

3.1.1-5. Theorems about points and lines related to triangle.

CEVA’S THEOREM. Let points C1, A1, and B1 lie on the sides AB, BC , and CA,
respectively, of a triangle (Fig. 3.6). The straight lines AA1, BB1, and CC1 are concurrent
or parallel if and only if

AC1

C1B
⋅
BA1

A1C
⋅
CB1

B1A
= 1. (3.1.1.10)

STEWART’S THEOREM. If a straight line through a vertex of a triangle divides the opposite
side into segments of lengths m and n (Fig. 3.7), then

(m + n)(p2 +mn) = b2m + c2n. (3.1.1.11)
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Figure 3.6. Ceva’s theorem.
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B

A

Figure 3.7. Stewart’s theorem.

MENELAUS’S THEOREM. If a straight line intersects sides AB,BC , and CA of a triangle
(Fig. 3.8) or their extensions at points C1, A1, and B1, respectively, then

AC1

C1B
⋅
BA1

A1C
⋅
CB1

B1A
= –1. (3.1.1.12)

CA

B

B
A

C

1
1

1

Figure 3.8. Menelaus’s theorem.

A
C

B

2
2

2

CA

B

Figure 3.9. Morley’s theorem.

Straight lines dividing the interior angles of a triangle into three equal parts are called
angle trisectors.

MORLEY’S THEOREM. The three points of intersection of adjacent angle trisectors of a
triangle form an equilateral triangle (Fig. 3.9).

In a triangle, the midpoints of the three sides, the feet of the three altitudes, and the
midpoints of the segments of the altitudes between the orthocenter and the vertices all lie
on a single circle, the nine-point circle (Fig. 3.10).

C

O

A

B
Euler

lin
e

Figure 3.10. Nine-point circle.

FEUERBACH’S THEOREM. The nine-point circle is tangent to the incircle and the three
excircles. The points of tangency are called the Feuerbach points. The center of the
nine-point circle lies on the Euler line (see Paragraph 3.1.1-3).
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Figure 3.11. A right triangle.

3.1.1-6. Right (right-angled) triangles.

A right triangle is a triangle with a right angle. The side opposite the right angle is called
the hypotenuse, and the other two sides are called the legs (Fig. 3.11).

The hypotenuse c, the legs a and b, and the angles α and β opposite the legs satisfy the
following relations:

α + β = 90◦;

sinα = cos β =
a

c
, sin β = cosα =

b

c
,

tanα = cot β =
a

b
, tan β = cotα =

b

a
.

(3.1.1.13)

One also has

a2 + b2 = c2 (PYTHAGOREAN THEOREM), (3.1.1.14)
h2 = mn, a2 = mc, b2 = nc, (3.1.1.15)

where h is the length of the altitude drawn to the hypotenuse; moreover, the altitude cuts
the hypotenuse into segments of lengths m and n.

In a right triangle, the length of the median mc drawn from the vertex of the right
angle coincides with the circumradius R and is equal to half the length of the hypotenuse c,
mc = R = 1

2 c. The inradius is given by the formula r = 1
2 (a + b – c). The area of the right

triangle is S = aha = 1
2ab (see also Paragraphs 3.1.1-2 to 3.1.1-4).

3.1.1-7. Isosceles and equilateral triangles.

1◦. An isosceles triangle is a triangle with two equal sides. These sides are called the legs,
and the third side is called the base (Fig. 3.12a).

a a

( )a ( )b

α α

a a

a

Figure 3.12. An isosceles triangle (a). An equilateral triangle (b).
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Properties of isosceles triangles:
1. In an isosceles triangle, the angles adjacent to the base are equal.
2. In an isosceles triangle, the median drawn to the base is the angle bisector and the

altitude.
3. In an isosceles triangle, the sum of distances from a point of the base to the legs is

constant.

Criteria for a triangle to be isosceles:
1. If two angles in a triangle are equal, then the triangle is isosceles.
2. If a median in a triangle is also an altitude, then the triangle is isosceles.
3. If a bisector in a triangle is also an altitude, then the triangle is isosceles.

2◦. An equilateral (or regular) triangle is a triangle with all three sides equal (Fig. 3.12b).
All angles of an equilateral triangle are equal to 60◦. In an equilateral triangle, the circum-
radius R and the inradius r satisfy the relation R = 2r.

For an equilateral triangle with side length a, the circumradius and the inradius are given
by the formulas R =

√
3

3 a and r =
√

3
6 a, and the area is equal to S =

√
3

4 a2.

3.1.2. Polygons

3.1.2-1. Polygons. Basic information.

A polygon is a plane figure bounded by a closed broken line, i.e., a line obtained if one takes
n distinct points such that no three successive points are collinear and draws a straight line
segment between each of these points and its successor as well as between the last point and
the first point (Fig. 3.13a). The segments forming a polygon are called the sides (or edges),
and the points themselves are called the vertices of the polygon. Two sides sharing a vertex,
as well as two successive vertices (the endpoints of the same edge), are said to be adjacent.
A polygon can be self-intersecting, but the points of self-intersection should not be vertices
(Fig. 3.13b). A polygon is said to be plane if its vertices are coplanar. A polygon is said to
be simple if its nonadjacent sides do not have common interior or endpoints. A polygon is
said to be convex if it lies on one side of any straight line passing through two neighboring
vertices (Fig. 3.13c). In what follows, we consider only plane simple convex polygons.

( )c( )a ( )b

Figure 3.13. Polygons. Nonself-intersecting (a), self-intersecting (b), and convex (c) polygon.

An (interior) angle of a convex polygon is the angle between two sides meeting in a
vertex. An angle adjacent to an interior angle is called an external angle of the convex
polygon. A convex polygon is said to be inscribed in a circle if all of its vertices lie on the
circle. A polygon is said to be circumscribed about a circle if all of its sides are tangent to
the circle.

For a convex polygon with n sides, the sum of interior angles is equal to 180◦(n – 2),
and the sum of external angles is equal to 360◦.
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One can find the area of an arbitrary polygon by dividing it into triangles.

3.1.2-2. Properties of quadrilaterals.

1. The diagonals of a convex quadrilateral meet.
2. The sum of interior angles of a convex quadrilateral is equal to 360◦ (Fig. 3.14a and b).
3. The lengths of the sides a, b, c, and d, the diagonals d1 and d2, and the segment
m connecting the midpoints of the diagonals satisfy the relation a2 + b2 + c2 + d2 =
d2

1 + d2
2 + 4m2.

4. A convex quadrilateral is circumscribed if and only if a + c = b + d.
5. A convex quadrilateral is inscribed if and only if α + γ = β + δ.
6. The relation ac + bd = d1d2 holds for inscribed quadrilaterals (PTOLEMY’S THEOREM).

φ

m

d

cb

a

d

d
1

2

( )a ( )b

β

γ

δ

α
d

cb

a

Figure 3.14. Quadrilaterals.

3.1.2-3. Areas of quadrilaterals.

The area of a convex quadrilateral is equal to

S =
1
2
d1d2 sinϕ =

√

p(p – a)(p – b)(p – c)(p – d) – abcd cos2 β + δ
2

, (3.1.2.1)

where ϕ is the angle between the diagonals d1 and d2 and p = 1
2 (a + b + c + d).

The area of an inscribed quadrilateral is

S =
√
p(p – a)(p – b)(p – c)(p – d). (3.1.2.2)

The area of a circumscribed quadrilateral is

S =

√

abcd sin2 β + δ
2

. (3.1.2.3)

If a quadrilateral is simultaneously inscribed and circumscribed, then

S =
√
abcd. (3.1.2.4)

3.1.2-4. Basic quadrilaterals.

1◦. A parallelogram is a quadrilateral such that both pairs of opposite sides are parallel
(Fig. 3.15a).
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Figure 3.15. A parallelogram (a) and a rhombus (b).

Attributes of parallelograms (a quadrilateral is a parallelogram if):

1. Both pairs of opposite sides have equal length.
2. Both pairs of opposite angles are equal.
3. Two opposite sides are parallel and have equal length.
4. The diagonals meet and bisect each other.

Properties of parallelograms:

1. The diagonals meet and bisect each other.
2. Opposite sides have equal length, and opposite angles are equal.
3. The diagonals and the sides satisfy the relation d2

1 + d2
2 = 2(a2 + b2).

4. The area of a parallelogram isS =ah, where h is the altitude (see also Paragraph 3.1.2-3).

2◦. A rhombus is a parallelogram in which all sides are of equal length (Fig. 3.15b).

Properties of rhombi:

1. The diagonals are perpendicular.
2. The diagonals are angle bisectors.
3. The area of a rhombus is S = ah = a2 sinα = 1

2d1d2.

3◦. A rectangle is a parallelogram in which all angles are right angles (Fig. 3.16a).

b

a d

( )a

b

a d

( )b

Figure 3.16. A rectangle (a) and a square (b).

Properties of rectangles:

1. The diagonals have equal lengths.
2. The area of a rectangle is S = ab.

4◦. A square is a rectangle in which all sides have equal lengths (Fig. 3.16b). A square is
also a special case of a rhombus (all angles are right angles).
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Properties of squares:
1. All angles are right angles.
2. The diagonals are equal to d = a

√
2.

3. The diagonals meet at a right angle and are angle bisectors.
4. The area of a square is equal to S = a2 = 1

2d
2.

5◦. A trapezoid is a quadrilateral in which two sides are parallel and the other two sides
are nonparallel (Fig. 3.17). The parallel sides a and b are called the bases of the trapezoid,
and the other two sides are called the legs. In an isosceles trapezoid, the legs are of equal
length. The line segment connecting the midpoints of the legs is called the median of the
trapezoid. The length of the median is equal to half the sum of the lengths of the bases,
m = 1

2 (a + b).

c d

h

b

a

m

Figure 3.17. A trapezoid.

The perpendicular distance between the bases is called the altitude of a trapezoid.

Properties of trapezoids:
1. A trapezoid is circumscribed if and only if a + b = c + d.
2. A trapezoid is inscribed if and only if it is isosceles.
3. The area of a trapezoid is S = 1

2 (a + b)h = mh = 1
2d1d2 sinϕ, where ϕ is the angle

between the diagonals d1 and d2.
4. The segment connecting the midpoints of the diagonals is parallel to the bases and has

the length 1
2 (b – a).

Example 1. Consider an application of plane geometry to measuring distances in geodesy. Suppose that
the angles α, β, γ, and δ between a straight lineAB and the directions to pointsD and C are known at pointsA
and B (Fig. 3.18a). Suppose also that the distance a = AB (or b = DC) is known and the task is to find the
distance b = DC (or a = AB).

A B

( )a ( )b

C

D

O

σφ

β
α γ

δ

ψ

σ A

B

C

D

a

x
z

φ

βα

γ

y

ψ
b

Figure 3.18. Applications of plane geometry in geodesy.

Let us find the angles ϕ and ψ. Since σ is the angle at the vertex O in both triangles AOB and DOC,
it follows that α + γ = ϕ + ψ. Let ε1 = 1

2 (ϕ + ψ). We twice apply the law of sines (Table 3.1) and find the
half-difference of the desired angles. The main formulas read

AD

a
=

sin γ
sin(π – α – β – γ)

=
sin γ

sin(α + β + γ)
,

BC

a
=

sinα
sin(α + γ + δ)

,
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b

AD
=

sinβ
sin γ

,
b

BC
=

sin δ
sinϕ

.

These relations imply that

b

a
=

sinβ sin γ
sinψ sin(α + β + γ)

=
sin δ sinα

sinϕ sin(α + γ + δ)
(3.1.2.5)

and hence
sinϕ
sinψ

=
sin δ sinα sin(α + β + γ)
sinβ sin γ sin(α + γ + δ)

= cot η,

where η is an auxiliary angle. By adding and subtracting, we obtain

sinϕ – sinψ
sinϕ + sinψ

=
cot η – 1
cot η + 1

,
2 cos

[ 1
2 (ϕ + ψ)

]
sin
[ 1

2 (ϕ – ψ)
]

2 sin
[ 1

2 (ϕ + ψ)
]

cos
[ 1

2 (ϕ – ψ)
] =

cot
( 1

4π
)

cot η – 1
cot η + cot

( 1
4π
) ,

tan
ϕ – ψ

2
= tan

ϕ + ψ
2

cot
( π

4
+ η
)

= tan
α + γ

2
cot
( π

4
+ η
)

.

From this we find ε2 = 1
2 (ϕ – ψ) and, substituting ϕ = ε1 + ε2 and ψ = ε1 – ε2 into (3.1.2.5), obtain the

desired distance.

Example 2. Suppose that the mutual position of three points A, B, and C is determined by the seg-
ments AC = a and BC = b, and the angle ∠ACB = γ. Suppose that the following angles have been measured
at some point D: ∠CDA = α and ∠CDB = β.

In the general case, one can find the position of point D with respect to A, B, and C, i.e., uniquely
determine the segments x, y, and z (Fig. 3.18b). For this to be possible, it is necessary that D does not lie on
the circumcircle of the triangle ABC. We have

ϕ + ψ = 2π – (α + β + γ) = 2ε1. (3.1.2.6)

By the law of sines (Table 3.1), we obtain

sinϕ =
z

a
sinα, sinψ =

z

b
sinβ, (3.1.2.7)

which implies that
sinϕ
sinψ

=
b sinα
a sinβ

= cot η, (3.1.2.8)

where η is an auxiliary angle. We find the angles ϕ and ψ from (3.1.2.6) and (3.1.2.8), substitute them
into (3.1.2.7) to determine z, and finally apply the law of sines to obtain x and y.

3.1.2-5. Regular polygons.

A convex polygon is said to be regular if all of its sides have the same length and all of its
interior angles are equal. A convex n-gon is regular if and only if it is taken to itself by the
rotation by an angle of 2π/n about some point O. The point O is called the center of the
regular polygon. The angle between two rays issuing from the center and passing through
two neighboring vertices is called the central angle (Fig. 3.19).

α
γ

r

R
β

Figure 3.19. A regular polygon.
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Properties of regular polygons:
1. The center is equidistant from all vertices as well as from all sides of a regular polygon.
2. A regular polygon is simultaneously inscribed and circumscribed; the centers of the

circumcircle and the incircle coincide with the center of the polygon itself.
3. In a regular polygon, the central angle is α = 360◦/n, the external angle is β = 360◦/n,

and the interior angle is γ = 180◦ – β.
4. The circumradius R, the inradius r, and the side length a of a regular polygon satisfy

the relations
a = 2

√
R2 – r2 = 2R sin

α

2
= 2r tan

α

2
. (3.1.2.9)

5. The area S of a regular n-gon is given by the formula

S =
arn

2
= nr2 tan

α

2
= nR2 sin

α

2
=

1
4
na2 cot

α

2
. (3.1.2.10)

Table 3.3 presents several useful formulas for regular polygons.

TABLE 3.3
Regular polygons (a is the side length)

No. Name Inradius r Circumradius R Area S

1 Regular polygon
a

2 tan π
n

a

2 sin π
n

1
2
arn

2 Triangle
√

3
6
a

√
3

3
a

√
3

4
a2

3 Square 1
2
a

1√
2
a a2

4 Pentagon

√
5 + 2

√
5

20
a

√
5 +

√
5

10
a

√
25 + 10

√
5

4
a2

5 Hexagon
√

3
2
a a 3

√
3

2
a2

6 Octagon 1 +
√

2
2

a

√
2 +

√
2

2
a 2(1 +

√
2)a2

7 Enneagon 5 + 2
√

5
2

a
1 +

√
5

2
a

√
5 + 2

√
5

2
a2

8 Dodecagon 2 +
√

3
2

a
3 +

√
3√

6
a 3(2 +

√
3)a2

3.1.3. Circle

3.1.3-1. Some definitions and formulas.

The circle of radius R centered at O is the set of all points of the plane at a fixed distance
R from a fixed point O (Fig. 3.20a). A plane figure bounded by a circle is called a disk.
A segment connecting two points on a circle is called a chord. A chord passing through
the center of a circle is called a diameter of the circle (Fig. 3.20b). The diameter length
is d = 2R. A straight line that meets a circle at a single point is called a tangent, and the
common point is called the point of tangency (Fig. 3.20c). An angle formed by two radii is
called a central angle. An angle formed by two chords with a common endpoint is called
an inscribed angle.
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Figure 3.20. A circle (a). A diameter (b) and a tangent (c) of a circle.

Properties of circles and disks:

1. The circumference is L = 2πR = πd = 2
√
πS.

2. The area of a disk is S = πR2 = 1
4πd

2 = 1
4Ld.

3. The diameter of a circle is a longest chord.
4. The diameter passing through the midpoint of the chord is perpendicular to the chord.
5. The radius drawn to the point of tangency is perpendicular to the tangent.
6. An inscribed angle is half the central angle subtended by the same chord, α = 1

2 ∠BOC
(Fig. 3.21a).

7. The angle between a chord and the tangent to the circle at an endpoint of the chord is
β = 1

2 ∠AOC (Fig. 3.21a).

8. The angle between two chords is γ = 1
2 (

�
BC +

�
ED) (Fig. 3.21b).

9. The angle between two secants is α = 1
2 (

�
DE –

�
BC) (Fig. 3.21c).
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Figure 3.21. Properties of circles and disks.

10. The angle between a secant and the tangent to the circle at an endpoint of the secant is
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β = 1
2 (
�
FE –

�
BF ) (Fig. 3.21c).

11. The angle between two tangents is α = 1
2 (

�
BDC –

�
BEC) (Fig. 3.21d).

12. If two chords meet, then AC ⋅AD = AB ⋅AE = R2 –m2 (Fig. 3.21b).
13. For secants, AC ⋅AD = AB ⋅AE = m2 – R2 (Fig. 3.21c).
14. For a tangent and a secant, AF ⋅AF = AC ⋅AD (Fig. 3.21c).

3.1.3-2. Segment and sector.

A plane figure bounded by two radii and one of the subtending arcs is called a (circular)
sector. A plane figure bounded by an arc and the corresponding chord is called a segment
(Fig. 3.22a). If R is the radius of the circle, l is the arc length, a is the chord length, α is the
central angle (in degrees), and h is the height of the segment, then the following formulas
hold:

a = 2
√

2hR – h2 = 2R sin
α

2
,

h = R –

√

R2 –
a2

4
= R

(
1 – cos

α

2

)
=
a

2
tan

α

4
,

l =
2πRα

360
≈ 0.01745Rα.

(3.1.3.1)

The area of a circular sector is given by the formula

S =
lR

2
=
πR2α

360
≈ 0.00873R2α, (3.1.3.2)

and the area of a segment not equal to a half-disk is given by the expression

S1 =
πR2α

360
� SΔ, (3.1.3.3)

where SΔ is the area of the triangle with vertices at the center of the disk and at the endpoints
of the radii bounding the corresponding sector. One takes the minus sign for α < 180 and
the plus sign for α > 180.

The arc length and the area of a segment can be found by the approximate formulas

l ≈
8b – a

3
, l ≈

√

a2 +
16h2

3
,

S1 ≈
h(6a + 8b)

15
,

(3.1.3.4)

where b is the chord of the half-segment (see Fig. 3.22a).

3.1.3-3. Annulus.

An annulus is a plane figure bounded by two concentric circles of distinct radii (Fig. 3.22b).
Let R be the outer radius of an annulus (the radius of the outer bounding circle), and let r
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Figure 3.22. A segment (a) and an annulus (b).

be the inner radius (the radius of the inner bounding circle). Then the area of the annulus
is given by the formula

S = π(R2 – r2) =
π

4
(D2 – d2) = 2πρδ, (3.1.3.5)

where D = 2R and d = 2r are the outer and inner diameters, ρ = 1
2 (R + r) is the midradius,

and δ = R – r is the width of the annulus.
The area of the part of the annulus contained in a sector of central angle ϕ, given in

degrees (see Fig. 3.22b), is given by the formula

S =
πϕ

360
(R2 – r2) =

πϕ

1440
(D2 – d2) =

πϕ

180
ρδ. (3.1.3.6)

3.2. Solid Geometry
3.2.1. Straight Lines, Planes, and Angles in Space

3.2.1-1. Mutual arrangement of straight lines and planes.

1◦. Two distinct straight lines lying in a single plane either have exactly one point of
intersection or do not meet at all. In the latter case, they are said to be parallel. If two
straight lines do not lie in a single plane, then they are called skew lines.

The angle between skew lines is determined as the angle between lines parallel to them
and lying in a single plane (Fig. 3.23a). The distance between skew lines is the length of
the straight line segment that meets both lines and is perpendicular to them.

α

( )a ( )b

Figure 3.23. The angle between skew lines (a). The angle between a line and a plane (b).

2◦. Two distinct planes either intersect in a straight line or do not have common points.
In the latter case, they are said to be parallel. Coinciding planes are also assumed to be
parallel. If two planes are perpendicular to a single straight line or each of them contains a
pair of intersecting straight lines parallel to the corresponding lines in the other pair, then
the planes are parallel.
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3◦. A straight line either entirely lies in the plane, meets the plane at a single point, or has
no common points with the plane. In the last case, the line is said to be parallel to the plane.

The angle between a straight line and a plane is equal to the angle between the line
and its projection onto the plane (Fig. 3.23b). If a straight line is perpendicular to two
intersecting straight lines on a plane, then it is perpendicular to each line on the plane, i.e.,
perpendicular to the plane.

3.2.1-2. Polyhedral angles.

1◦. A dihedral angle is a figure in space formed by two half-planes issuing from a single
straight line as well as the part of space bounded by these half-planes. The half-planes are
called the faces of the dihedral angle, and their common straight line is called the edge. A
dihedral angle is measured by its linear angle ABC (Fig. 3.24a), i.e., by the angle between
the perpendiculars raised to the edge DE of the dihedral angle in both planes (faces) at the
same point.

A

C B

E

( )a ( )b

D

Figure 3.24. A dihedral (a) and a trihedral (b) angle.

2◦. A part of space bounded by an infinite triangular pyramid is called a trihedral angle
(Fig. 3.24b). The faces of this pyramid are called the faces of the trihedral angle, and the
vertex of the pyramid is called the vertex of a trihedral angle. The rays in which the faces
intersect are called the edges of a trihedral angle. The edges form face angles, and the faces
form the dihedral angles of the trihedral angle. As a rule, one considers trihedral angles
with dihedral angles less than π (or 180◦), i.e., convex trihedral angles. Each face angle of
a convex trihedral angle is less than the sum of the other two face angles and greater than
their difference.

Two trihedral angles are equal if one of the following conditions is satisfied:

1. Two face angles, together with the included dihedral angle, of the first trihedral angle
are equal to the respective parts (arranged in the same order) of the second trihedral
angle.

2. Two dihedral angles, together with the included face angle, of the first trihedral angle
are equal to the respective parts (arranged in the same order) of the second trihedral
angle.

3. The three face angles of the first trihedral angle are equal to the respective face angles
(arranged in the same order) of the second trihedral angle.

4. The three dihedral angles of the first trihedral angle are equal to the respective dihedral
angles (arranged in the same order) of the second trihedral angle.

3◦. A polyhedral angle OABCDE (Fig. 3.25a) is formed by several planes (faces) having
a single common point (the vertex) and successively intersecting along straight lines OA,
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Figure 3.25. A polyhedral (a) and a solid (b) angle.

OB, . . . , OE (the edges). Two edges belonging to the same face form a face angle of the
polyhedral angle, and two neighboring faces form a dihedral angle.

Polyhedral angles are equal (congruent) if one can be transformed into the other by
translations and rotations. For polyhedral angles to be congruent, the corresponding parts
(face and dihedral angles) must be equal. However, if the corresponding equal parts are
arranged in reverse order, then the polyhedral angles cannot be transformed into each other
by translations and rotations. In this case, they are said to be symmetric.

A convex polyhedral angle lies entirely on one side of each of its faces. The sum
∠AOB +∠BOC + · · ·+∠EOA of face angles (Fig. 3.25a) of any convex polyhedral angle
is less that 2π (or 360◦).

4◦. A solid angle is a part of space bounded by straight lines issuing from a single point
(vertex) to all points of some closed curve (Fig. 3.25b). Trihedral and polyhedral angles are
special cases of solid angles. A solid angle is measured by the area cut by the solid angle
on the sphere of unit radius centered at the vertex. Solid angles are measured in steradians.
The entire sphere forms a solid angle of 4π steradians.

3.2.2. Polyhedra

3.2.2-1. General concepts.

A polyhedron is a solid bounded by planes. In other words, a polyhedron is a set of finitely
many plane polygons satisfying the following conditions:

1. Each side of each polygon is simultaneously a side of a unique other polygon, which is
said to be adjacent to the first polygon (via this side).

2. From each of the polygons forming a polyhedron, one can reach any other polygon by
successively passing to adjacent polygons.

These polygons are called the faces, their sides are called the edges, and their vertices
are called the vertices of a polyhedron.

A polyhedron is said to be convex if it lies entirely on one side of the plane of any of its
faces; if a polyhedron is convex, then so are its faces.

EULER’S THEOREM. If the number of vertices in a convex polyhedron is e, the number
of edges is f , and the number of faces is g, then e + f – g = 2.

3.2.2-2. Prism. Parallelepiped.

1◦. A prism is a polyhedron in which two faces are n-gons (the base faces of the prism)
and the remaining n faces (joining faces) are parallelograms. The base faces of a prism are
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( )a ( )b

Figure 3.26. A prism (a) and a truncated prism (b).

equal (congruent) and lie in parallel planes (Fig. 3.26a). A right prism is a prism in which
the joining faces are perpendicular to the base faces. A right prism is said to be regular if
its base face is a regular polygon.

If l is the joining edge length, S is the area of the base face,H is the altitude of the prism,
Psec is the perimeter of a perpendicular section, and Ssec is the area of the perpendicular
section, then the area of the lateral surface Slat and the volume V of the prism can be
determined by the formulas

Slat = Psecl

V = SH = Ssecl.
(3.2.2.1)

The portion of a prism cut by a plane nonparallel to the base face is called a truncated
prism (Fig. 3.26b). The volume of a truncated prism is

V = LP1, (3.2.2.2)

where L is the length of the segment connecting the centers of the base faces and P1 is the
area of the section of the prism by a plane perpendicular to this segment.

2◦. A prism whose bases are parallelograms is called a parallelepiped. All four diagonals
in a parallelepiped intersect at a single point and bisect each other (Fig. 3.27a). A paral-
lelepiped is said to be rectangular if it is a right prism and its base faces are rectangles. In
a rectangular parallelepiped, all diagonals are equal (Fig. 3.27b).

a

d c

b

( )a ( )b

Figure 3.27. A parallelepiped (a) and a rectangular parallelepiped (b).

If a, b, and c are the lengths of the edges of a rectangular parallelepiped, then the
diagonal d can be determined by the formula d2 = a2 + b2 + c2. The volume of a rectangular
parallelepiped is given by the formula V = abc, and the lateral surface area is Slat = PH ,
where P is the perimeter of the base face.

3◦. A rectangular parallelepiped all of whose edges are equal (a = b = c) is called a cube.
The diagonal of a cube is given by the formula d2 = 3a2. The volume of the cube is V = a3,
and the lateral surface area is Slat = 4a2.
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3.2.2-3. Pyramid, obelisk, and wedge.

1◦. A pyramid is a polyhedron in which one face (the base of the pyramid) is an arbitrary
polygon and the other (lateral) faces are triangles with a common vertex, called the apex of
the pyramid (Fig. 3.28a). The base of an n-sided pyramid is an n-gon. The perpendicular
through the apex to the base of a pyramid is called the altitude of the pyramid.

H

C

O

E

A B

D

( )a ( )b

Figure 3.28. A pyramid (a). The attitude DO, the plane DAE, and the side BC in a triangular pyramid (b).

The volume of a pyramid is given by the formula

V =
1
3
SH , (3.2.2.3)

where S is the area of the base and H is the altitude of the pyramid.

The apex of a pyramid is projected onto the circumcenter of the base if one of the
following conditions is satisfied:
1. The lengths of all lateral edges are equal.
2. All lateral edges make equal angles with the base plane.

The apex of a pyramid is projected onto the incenter of the base if one of the following
conditions is satisfied:
3. All lateral faces have equal apothems.
4. The angles between all lateral faces and the base are the same.

If DO is the altitude of the pyramid ABCD and DA⊥BC , then the plane DAE is
perpendicular to BC (Fig. 3.28b).

If the pyramid is cut by a plane (Fig. 3.29a) parallel to the base, then

SA1

A1A
=
SB1

B1B
= · · · =

SO1

O1O
,

SABCDEF
SA1B1C1D1E1F1

=

(
SO

SO1

)2
,

(3.2.2.4)

where SO is the altitude of the pyramid, i.e., the segment of the perpendicular through the
vertex to the base.

The altitude of a triangular pyramid passes through the orthocenter of the base if and
only if all pairs of opposite edges of the pyramid are perpendicular. The volume of a
triangular pyramid (Fig. 3.29b), where DA = a, DB = b, DC = c, BC = p, AC = q, and
AB = r, is given by the formula

V 2 =
1

288

∣
∣∣
∣∣
∣∣
∣

0 r2 q2 a2 1
r2 0 p2 b2 1
q2 p2 0 c2 1
a2 b2 c2 0 1
1 1 1 1 0

∣
∣∣
∣∣
∣∣
∣

, (3.2.2.5)
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Figure 3.29. The pyramid cut by a plane and the original pyramid (a). A triangular pyramid (b).

where the right-hand side contains a determinant.
A pyramid is said to be regular if its base is a regular n-gon and the altitude passes

through the center of the base. The altitude (issuing from the apex) of a lateral face is called
the apothem of a regular pyramid. For a regular pyramid, the lateral surface area is

Slat =
1
2
Pl, (3.2.2.6)

where P is the perimeter of the base and l is the apothem.

2◦. If a pyramid is cut by a plane parallel to the base, then it splits into two parts, a pyramid
similar to the original pyramid and the frustum (Fig. 3.30a). The volume of the frustum is

V =
1
3
h(S1 + S2 +

√
S1S2) =

1
3
hS2

[
1 +

a

A
+
a2

A2

]
, (3.2.2.7)

where S1 and S2 are the areas of the bases, a and A are two respective sides of the bases,
and h is the altitude (the perpendicular distance between the bases).
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Figure 3.30. A frustum of a pyramid (a), an obelisk (b), and a wedge (c).

For a regular frustum, the lateral surface area is

Slat =
1
2

(P1 + P2)l, (3.2.2.8)

where P1 and P2 are the perimeters of the bases and l is the altitude of the lateral face.
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3◦. A hexahedron whose bases are rectangles lying in parallel planes and whose lateral
faces form equal angles with the base, but do not meet at a single point, is called an obelisk
(Fig. 3.30b). If a, b and a1, b1 are the sides of the bases and h is the altitude, then the
volume of the hexahedron is

V =
h

6
[(2a + a1)b + (2a1 + a)b1]. (3.2.2.9)

4◦. A pentahedron whose base is a rectangle and whose lateral faces are isosceles triangles
and isosceles trapezoids is called a wedge (Fig. 3.30c). The volume of the wedge is

V =
h

6
(2a + a1)b. (3.2.2.10)

3.2.2-4. Regular polyhedra.

A polyhedron is said to be regular if all of its faces are equal regular polygons and all
polyhedral angles are equal to each other. There exist five regular polyhedra (Fig. 3.31),
whose properties are given in Table 3.4.

Tetrahedron Cube Octahedron

Dodecahedron Icosahedron

Figure 3.31. Five regular polyhedra.

3.2.3. Solids Formed by Revolution of Lines

3.2.3-1. Cylinder.

A cylindrical surface is a surface in space swept by a straight line (the generator) moving
parallel to a given direction along some curve (the directrix) (Fig. 3.32a).

1◦. A solid bounded by a closed cylindrical surface and two planes is called a cylinder; the
planes are called the bases of the cylinder (Fig. 3.32b).

If P is the perimeter of the base, Psec is the perimeter of the section perpendicular to the
generator, Ssec is the area of this section, Sbas is the area of the base, and l is the length of
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TABLE 3.4
Regular polyhedra (a is the edge length)

No. Name
Number of faces

and its shape
Number

of vertices
Number
of edges Total surface area Volume

1 Tetrahedron 4 triangles 4 6 a2√3 a3√2
12

2 Cube 6 squares 8 12 6a2 a3

3 Octahedron 8 triangles 6 12 2a2√3
a3√2

3

4 Dodecahedron 12 pentagons 20 30 3a2
√

25 + 10
√

5
a3

4
(15 + 7

√
5)

5 Icosahedron 20 triangles 12 30 3a2√3
5a3

12
(3 +

√
5)

l

H

( )a ( )b

Figure 3.32. A cylindrical surface (a). A cylinder (b).

the generator, then the lateral surface area Slat and the volume V of the cylinder are given
by the formulas

Slat = PH = Psecl,
V = SbasH = Ssecl.

(3.2.3.1)

In a right cylinder, the bases are perpendicular to the generator. In particular, if the
bases are disks, then one speaks of a right circular cylinder. The volume, the lateral surface
area, and the total surface area of a right circular cylinder are given by the formulas

V = πR2H ,
Slat = 2πRH ,
S = 2πR(R +H),

(3.2.3.2)

where R is the radius of the base.
A right circular cylinder is also called a round cylinder, or simply a cylinder.

2◦. The part of a cylinder cut by a plane nonparallel to the base is called a truncated cylinder
(Fig. 3.33a).

The volume, the lateral surface area, and the total surface area of a truncated cylinder
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Figure 3.33. A truncated cylinder (a), a “hoof” (b), and a cylindrical tube (c).

are given by the formulas

V = πR2 H1 +H2

2
,

Slat = πR(H1 +H2),

S = πR

[

H1 +H2 +R +

√

R2 +

(
H2 – H1

2

)2
]

,

(3.2.3.3)

where H1 and H2 are the maximal and minimal generators.

3◦. A segment of a round cylinder (a “hoof”) is a portion of the cylinder cut by a plane that
is nonparallel to the base and intersects it. IfR is the radius of the cylindrical segment, h is
the height of the “hoof,” and b is its width (for the other notation, see Fig. 3.33b), then the
volume V and the lateral surface area Slat of the “hoof” can be determined by the formulas

V =
h

3b
[
a(3R2 – a2) + 3R2(b –R)α

]
=
hR3

b

(
sinα –

sin3 α

3
– α cosα

)
,

Slat =
2πR
b

[(b – R)α + a],

(3.2.3.4)

where α = 1
2ϕ is measured in radians.

4◦. A solid bounded by two closed cylindrical surfaces and two planes is called a cylindrical
tube; the planes are called the bases of the tube. The volume of a round cylindrical tube
(Fig. 3.33c) is

V = πH(R2 – r2) = πHδ(2R – r) = πHδ(2r + δ) = 2πHδρ, (3.2.3.5)

where R and r are the outer and inner radii, δ = R – r is the thickness, ρ = 1
2 (R + r) is the

midradius, and H is the height of the pipe.

3.2.3-2. Conical surface. Cone. Frustum of cone.

A conical surface is the union of straight lines (generators) passing through a fixed point
(the apex) in space and any point of some space curve (the directrix) (Fig. 3.34a).
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Figure 3.34. Conical surface (a). A cone (b), a right circular cone (c), and a frustum of a cone (d).

1◦. A solid bounded by a conical surface with closed directrix and a plane is called a cone;
the plane is the base of the cone (Fig. 3.34b). The volume of an arbitrary cone is given by
the formula

V =
1
3
HSbas, (3.2.3.6)

where H is the altitude of the cone and Sbas is the area of the base.
A right circular cone (Fig. 3.34c) has a disk as the base, and its vertex is projected onto

the center of the disk. If l is the length of the generator and R is the radius of the base, then
the volume, the lateral surface area, and the total surface area of the right circular cone are
given by the formulas

V =
1
3
πR2H ,

Slat = πRl = πR
√
R2 + H2,

S = πR(R + l).

(3.2.3.7)

2◦. If a cone is cut by a plane parallel to the base, then we obtain a frustum of a cone
(Fig. 3.34d). The length l of the generator, the volume V , the lateral surface area Slat, and
the total surface area S of the frustum of a right circular cone are given by the formulas

l =
√
h2 + (R – r)2,

V =
πh

3
(R2 + r2 +Rr),

Slat = πl(R + r),

S = π[l(R + r) +R2 + r2],

(3.2.3.8)

where r is the radius of the upper base and h is the altitude of the frustum of a cone.

3.2.3-3. Sphere. Spherical parts. Torus.

1◦. The sphere of radius R centered at O is the set of points in space at the distance R
from the point O (Fig. 3.35a). A solid bounded by a sphere is called a ball. Any section
of the sphere by a plane is a circle. The section of the sphere by a plane passing through
its center is called a great circle of radius R. There exists exactly one great circle passing
through two arbitrary points on the sphere that are not antipodal (i.e., are not the opposite
endpoints of a diameter). The smaller arc of this great circle is the shortest distance on the
sphere between these points. Concerning the geometry of the sphere, see Section 3.3. The
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surface area S of the sphere and the volume V of the ball bounded by the sphere are given
by the formulas

S = 4πR = πD2 =
3√36πV 2,

V =
4πR3

3
=
πD3

6
=

1
6

√
S3

π
,

(3.2.3.9)

where D = 2R is the diameter of the sphere.
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Figure 3.35. A sphere (a), a spherical cap (b), and a spherical sector (c).

2◦. A portion of a ball cut from it by a plane is called a spherical cap (Fig. 3.35b). The
width a, the area Slat of the curved surface, the total surface area S, and the volume V of a
spherical cap can be found from the formulas

a2 = h(2R – h),

Slat = 2πRh = π(a2 + h2),

S = Slat + πa2 = π(2Rh + a2) = π(h2 + 2a2),

V =
πh

6
(3a2 + h2) =

πh2

3
(3R – h),

(3.2.3.10)

where R and h are the radius and the height of the spherical cap.

3◦. A portion of a ball bounded by the curved surface of a spherical cap and the conical
surface whose base is the base of the cap and whose vertex is the center of the ball is called
a spherical sector (Fig. 3.35c). The total surface area S and the volume V of a spherical
sector are given by the formulas

S = πR(2h + a),

V =
2
3
πR2h,

(3.2.3.11)

where a is the width, h is the height, and R is the radius of the sector.

4◦. A portion of a ball contained between two parallel plane secants is called a spherical
segment (Fig. 3.36a). The curved surface of a spherical segment is called a spherical zone,
and the plane circular surfaces are the bases of a spherical segment. The radius R of the
ball, the radii a and b of the bases, and the height h of a spherical segment satisfy the relation

R2 = a2 +

(
a2 – b2 – h2

2h

)2
. (3.2.3.12)
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The curved surface area Slat, the total surface area S, and the volume V of a spherical
segment are given by the formulas

Slat = 2πRh,

S = Slat + π(a2 + b2) = π(2Rh + a2 + b2),

V =
πh

6
(3a2 + 3b2 + h2).

(3.2.3.13)

R
r

R

2a

2b

(a) (b) (c)

h

R

2a

2b

h

Figure 3.36. A spherical segment (a) and a spherical segment without the truncated cone inscribed in it (b).
A torus (c).

If V1 is the volume of the truncated cone inscribed in a spherical segment (Fig. 3.36b)
and l is the length of its generator, then

V – V1 =
πhl2

6
. (3.2.3.14)

4◦. A torus is a surface generated by revolving a circle about an axis coplanar with the
circle but not intersecting it. If the directrix is a circle (Fig. 3.36c), the radius R of the
directrix is not less than the radius r of the generating circle (R ≥ r), and the center of the
generator moves along the directrix, then the surface area and the volume of the torus are
given by the formulas

S = 4π2Rr = π2Dd,

V = 2π2Rr2 =
π2Dd2

4
,

(3.2.3.15)

where D = 2R and d = 2r are the diameters of the generator and the directrix.

3.3. Spherical Trigonometry
3.3.1. Spherical Geometry

3.3.1-1. Great circle.

A great circle is a section of a sphere by a plane passing through the center.

Properties of great circles:
1. The radius of a great circle is equal to the radius of the sphere.
2. There is only one great circle through two arbitrary points that are not the opposite

endpoints of a diameter.

The smaller arc of the great circle through two given points is called a geodesic, and the
length of this arc is the shortest distance on the sphere between the two points. The great
circles on the sphere play a role similar to the role of straight lines on the plane.
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Any two points on the sphere determine a pencil of planes. The intersection of each
plane in the pencil with the sphere is a circle. If two points are not the opposite endpoints
of a diameter, then the plane passing through the center of the sphere determines the largest
circle in the pencil, which is a great circle. The other circles are called small circles; the
intersection with the sphere of the plane perpendicular to the plane containing the great
circle is the smallest circle.

3.3.1-2. Measurement of arcs and angles on sphere. Spherical biangles.

The distances on the sphere are measured along great circle arcs. The great circle arc length
between points A and B is given by the relation

�
AB = Rα, (3.3.1.1)

where R is the radius of the sphere and α is the corresponding central angle (in radians).
If only the unit sphere (the radius R = 1) is considered, then each great circle arc can
be characterized by the corresponding central angle (in radians). The angle between two
intersecting great circle arcs is measured by the linear angle between the tangents to the
great circles at the point of intersection or, which is the same, by the dihedral angle between
the planes of the great circles.

Two intersecting great circles on the sphere form four spherical biangles. The area of a
spherical biangle with the angle α is given by the formula

S = 2R2α. (3.3.1.2)

3.3.2. Spherical Triangles

3.3.2-1. Basic notions and properties.

A figure formed by three great circle arcs pairwise connecting three arbitrary points on
the sphere is called a spherical triangle (Fig. 3.37a). The vertices of a spherical triangle
are the points of intersection of three rays issuing from the center of the sphere with the
sphere. The angles less than π between the rays are called the sides a, b, and c of a spherical
triangle. Such spherical triangles are called Euler triangles. To each side of a triangle there
corresponds a great circle arc on the sphere. The angles α, β, and γ opposite the sides a,
b, and c of a spherical triangle are the angles between the great circle arcs corresponding
to the sides of the triangle, or, equivalently, the angles between the planes determined by
these rays.

a

a

(b)(a)

α

α

b

b

c

c

ββ

γγ

Figure 3.37. A spherical triangle.
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By analogy with the circumcircle of a plane triangle, there is a “circumscribed cone of
revolution” that contains the three straight lines determining the triangle; the axis of this
cone is the intersection of the planes perpendicular to the sides at their midpoints. There
also exists an “inscribed cone of revolution” that is tangent to the three planes corresponding
to the spherical triangle; the axis of this cone is the intersection of the angle bisector planes.
The “circumradius” R and the “inradius” r are defined as the angles equal to half the angles
at the vertices of the first and the second cone, respectively.

If R is the radius of the sphere, then the area S of the spherical triangle is given by the
formula

S = R2ε, (3.3.2.1)

where ε is the spherical excess defined as

ε = α + β + γ – π (3.3.2.2)

and measured in radians.

A spherical triangle is uniquely determined (up to a symmetry transformation) by:
1. Three sides.
2. Three angles.
3. Two sides and their included angle.
4. Two angles and their included side.

Let α, β, and γ be the angles and a, b, and c the sides opposite these angles in a spherical
triangle (Fig. 3.37b). Table 3.5 presents the basic properties and relations characterizing
spherical triangles (with the notation 2p = a + b + c and 2P = α + β + γ – π). From the
relations given in Table 3.5, one can derive all missing relations by cyclically permuting the
sides a, b, and c and the angles α, β, and γ.

LEGENDRE’S THEOREM. The area of a spherical triangle with small sides (i.e., with sides
that are small compared with the radius of the sphere) is approximately equal to the area of
a plane triangle with the same sides; the difference between each angle of the plane triangle
and the corresponding angle of the spherical triangle is approximately equal to one-third of
the spherical excess.

The law of sines, the law of cosines, and the half-angle theorem in spherical trigonometry
for small sides become the corresponding theorems of the linear (plane) trigonometry.

Table 3.6 allows one to find the sides and angles of an arbitrary spherical triangle if
three appropriately chosen sides and/or angles are given.

3.3.2-2. Rectangular spherical triangle.

A spherical triangle is said to be rectangular if at least one of its angles, for example, γ, is
equal to 1

2π (Fig. 3.38a); the opposite side c is called the hypotenuse.

a

(a) (b)

α
b

c

π
2

β
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b

α c

π

π
2

2
β

Figure 3.38. A rectangular spherical triangle (a). The Neper rules (b).
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TABLE 3.5
Basic properties and relations characterizing spherical triangles

No. The name of property Properties and relations

1 Triangle inequality

The sum of lengths of two sides is greater than the length of the third side.
The absolute value of the difference between the lengths of two sides is

less than the length of the third side,
a + b > c, |a – b| < c

2
Sum of two angles

of a triangle

The sum of two angles of a triangle is greater than
the third angle increased by π,

α + β < π + γ

3
The greatest side and

the greatest angle

The greatest side is opposite the greatest angle,
a < b if α < β;
a = b if α = β

4
Sum of angles
of a triangle

The sum of the angles lies between π and 3π,
π < α + β + γ < 3π

5
Sum of sides
of a triangle

The sum of sides lies between 0 and 2π
0 < a + b + c < 2π

6 The law of sines
sin a
sinα

=
sin b
sinβ

=
sin c
sin γ

7 The law of cosines
of sides

cos c = cos a cos b + sin a sin b cos γ

8
The law of cosines

of angles cos γ = – cosα cosβ + sinα sinβ cos c

9 Half-angle formulas
sin

γ

2
=

√
sin(p – a) sin(p – b)

sin a sin b
, cos

γ

2
=

√
sin p sin(p – c)

sin a sin b
,

tan
γ

2
=

√
sin(p – a) sin(p – b)

sin p sin(p – c)

10 Half-side theorem
sin

c

2
=

√
– sinP sin(P – γ)

sinα sinβ
, cos

c

2
=

√
sin(P – α) sin(P – β)

sinα sinβ
,

tan
c

2
=

√
– sinP sin(P – γ)

sin(P – α) sin(P – β)

11 Neper’s analogs

tan
c

2
cos

α – β
2

= tan
a + b

2
cos

α + β
2

,

tan
c

2
sin

α – β
2

= tan
a – b

2
sin

α + β
2

,

cot
γ

2
cos

a – b
2

= tan
α + β

2
cos

a + b
2

,

cot
γ

2
sin

a – b
2

= tan
α – β

2
sin

a + b
2

12 D’Alembert (Gauss)
formulas

sin
γ

2
sin

a + b
2

= sin
c

2
cos

α – β
2

, sin
γ

2
sin

a + b
2

= cos
c

2
cos

α + β
2

,

cos
γ

2
sin

a – b
2

= sin
c

2
sin

α – β
2

, cos
γ

2
cos

a – b
2

= cos
c

2
sin

α + β
2

13 Product formulas
sin a cosβ = cos b sin c – cosα sin b cos c,
sin a cos b = cosβ sin c – cos a sinβ cos γ

14 The “circumradius” R cotR =

√
sin(P – α) sin(P – β) sin(P – γ)

sinP
= cot

α

2
sin(α – P )

15 The “inradius” r tan r =

√
sin(p – α) sin(p – β) sin(p – γ)

sin p
= tan

α

2
sin(p – α)
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TABLE 3.5 (continued)
Basic properties and relations characterizing spherical triangles

No. The name of property Properties and relations

16
Willier’s formula for
the spherical excess ε tan

P

2
= tan

ε

4
=

√

tan
p

2
tan

p – a
2

tan
p – b

2
tan

p – c
2

17 L’Huiller equation tan
( γ

2
–
ε

4

)
=

√
tan p–a

2 tan p–b
2

tan p
2 tan p–c

2

TABLE 3.6.
Solution of spherical triangles

No. Three parts
specified

Formulas for the remaining parts

1 Three sides
a, b, c

The angles α, β, and γ are determined by the half-angle formulas and the cyclic
permutation.
Remark. 0 <a+b+c< 2π. The sum and difference of two sides are greater than the third.

2 Three angles
α, β, γ

The sides a, b, and c are determined by the half-side theorems and the cyclic
permutation.
Remark. π<α+β+γ < 3π. The sum of two angles is less than π plus the third angle.

3 Two sides a, b
and the

included
angle γ

First method.
α + β and α – β are determined from Neper’s analogs, then α and β can be found;

side a is determined from the law of cosines, sin c = sin γ
sin a
sinα

.

Second method.
The law of cosines of sides is applied, cos c = cos a cos b + sin a sin b cos γ,

cosβ =
cos b – sin a sin c

sin a sin c
, cosα =

cos a – sin b sin c
sin b sin c

.

Remark 1. If γ > β (γ < β), then c must be chosen so that c > b (c < b).
Remark 2. The quantities c, α, and β are determined uniquely.

4 A side c
and the two
angles α, β
adjacent to it

First method.
a + b and a – b are determined from Neper’s analogs, then a and b can be found;

angle γ is determined from the law of sines, sin γ = sin c
sinα
sin a

.

Second method.
The law of cosines of angles is applied, cos γ = – cosα cosβ + sinα sinβ cos c,

cos a =
cosα + cos β cos γ

sinβ sin γ
, cos b =

cosβ + cosα cos γ
sinα sin γ

.

Remark 1. If c > b (c < b), then γ must be chosen so that γ > β (γ < β).
Remark 2. The quantities γ, a, and b are determined uniquely.

5 Two sides a, b
and the angle α
opposite one

of them

β is determined by the law of sines, sinβ = sinα
sin b
sin a

.

The elements c and γ can be found from Neper’s analogs.
Remark 1.The problem has a solution for sin b sinα ≤ sin a.
Remark 2. Different cases are possible:
1. If sin a ≥ sin b, then the solution is determined uniquely.
2. If sin b sinα < sin a, then there are two solutions β1 and β2, β1 + β2 = π.
3. If sin b sinα = sin a, then the solution is unique: β = 1

2π.

6 Two angles
α, β and the

side a opposite
one of them

b is determined by the law of sines, sin b = sin a
sinβ
sinα

.

The elements c and γ can be found from Neper’s analogs.
Remark 1. The problem has a solution for sin a sinβ ≤ sinα.
Remark 2. Different cases are possible:
1. If sinα ≥ sinβ, then the solution is determined uniquely.
2. If sinβ sinα < sin a, then there are two solutions b1 and b2, b1 + b2 = π.
3. If sinβ sinα = sin a, then the solution is unique: b = 1

2π.
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The following basic relations hold for spherical triangles:

sin a = cos
(
π
2 – a

)
= sinα sin c = cot

(
π
2 – b

)
cot β = tan b cot β,

sin b = cos
(
π
2 – b

)
= sin β sin c = cot

(
π
2 – a

)
cotα = tan a cotα,

cos c = sin
(
π
2 – a

)
sin
(
π
2 – b

)
= cos a cos b = cotα cot β,

cosα = sin
(
π
2 – a

)
sin β = cos a sin β = cot

(
π
2 – b

)
cot c = tan b cot c,

cos β = sin
(
π
2 – b

)
sinα = cos b sinα = cot

(
π
2 – a

)
cot c = tan a cot c,

(3.3.2.3)

which can be obtained from the Neper rules: if the five parts of a spherical triangle (the right
angle being omitted) are written in the form of a circle in the order in which they appear in
the triangle and the legs a and b are replaced by their complements to 1

2π (Fig. 3.38b), then
the cosine of each part is equal to the product of sines of the two parts not adjacent to it, as
well as to the product of the cotangents of the two parts adjacent to it.
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Chapter 4

Analytic Geometry

4.1. Points, Segments, and Coordinates
on Line and Plane

4.1.1. Coordinates on Line

4.1.1-1. Axis and segments on axis.

A straight line on which a sense is chosen is called an axis. If an axis is given and a scale
segment, i.e., a linear unit used to measure any segment of the axis, is indicated, then the
segment length is defined (see Fig. 4.1).

A CB

Figure 4.1. Axis.

A segment bounded by points A and B is called a directed segment if its initial point
and endpoint are chosen. Such a segment with initial point A and endpoint B is denoted
by

−−→
AB. Directed segments are usually called simply “segments” for brevity.
The value of a segment

−−→
AB of some axis is defined as the number AB equal to its

length taken with the plus sign if the senses of the interval and the axis coincide, and with
the minus sign if the senses are opposite. Obviously, the length of a segment is its absolute
value. The segment length is usually denoted by the symbol |AB|. It follows from the
above that

AB = –BA, |AB| = |BA|. (4.1.1.1)

Main identity. For any arbitrary arrangement of points A, B, and C on the axis, the
values of the segments

−−→
AB,

−−→
BC, and

−→
AC satisfy the relation

AB + BC = AC . (4.1.1.2)

4.1.1-2. Coordinates on line. Number axis.

One says that a coordinate system is introduced on an axis if there is a one-to-one corre-
spondence between points of the axis and numbers.

Suppose that a sense, a scale segment, and a point O called the origin are chosen on a
line. The value of a segment

−→
OA is called the coordinate of the point A on the axis. It is

usually denoted by the letter x. The coordinates of different points are usually denoted by
subscripts; for example, the coordinates of pointsA1, . . . ,An are x1, . . . , xn. The pointAn
with coordinate xn is denoted by An(xn). An axis with a coordinate system on it is called
a number axis.

77
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4.1.1-3. Distance between points on axis.

The value A1A2 of the segment
−−→
A1A2 on an axis is equal to the difference between the

coordinate x2 of the endpoint and the coordinate x1 of the initial point:

A1A2 = x2 – x1. (4.1.1.3)

The distance d between two arbitrary points A1(x1) and A2(x2) on the line is given by the
relation

d = |A1A2| = |x2 – x1|. (4.1.1.4)
Remark. If segments do not lie on some axis but are treated as arbitrary segments on the plane or in space,

then there is no reason to assign any sign to their lengths. In such cases, the symbol of absolute value is usually
omitted in the notation of lengths of segments. We adopt this convention in the sequel.

4.1.2. Coordinates on Plane
4.1.2-1. Rectangular Cartesian coordinates on plane.

If a one-to-one correspondence between points on the plane and numbers (pairs of numbers)
is specified, then one says that a coordinate system is introduced on the plane.

A rectangular Cartesian coordinate system is determined by a scale segment for mea-
suring lengths and two mutually perpendicular axes. The point of intersection of the axes is
usually denoted by the letterO and is called the origin, while the axes themselves are called
the coordinate axes. As a rule, one of the coordinate axes is horizontal and the right sense is
positive. This axis is called the abscissa axis and is denoted by the letter X or by OX. On
the vertical axis, which is called the ordinate axis and is denoted by Y or OY , the upward
sense is usually positive (see Fig. 4.2a). The coordinate system introduced above is often
denoted by XY or OXY .

( )c

( )a

( )d

( )b

O

O

O

O

A

A

A

II I

Left Right

Upper half-plane

Lower half-plane

III IV

half-planehalf-plane

X

Y

X

X

X

X

Y

Y

Y

Y

Figure 4.2. A rectangular Cartesian coordinate system.
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The abscissa axis divides the plane into the upper and lower half-planes (see Fig. 4.2b),
while the ordinate axis divides the plane into the right and left half-planes (see Fig. 4.2c).
The two coordinate axes divide the plane into four parts, which are called quadrants and
numbered as shown in Fig. 4.2d.

Take an arbitrary point A on the plane and project it onto the coordinate axes, i.e.,
draw perpendiculars to the axes OX and OY through A. The points of intersection of the
perpendiculars with the axes are denoted by AX and AY , respectively (see Fig. 4.2a). The
numbers

x = OAX , y = OAY , (4.1.2.1)

where OAX and OAY are the respective values of the segments
−→
OAX and

−→
OAY on the

abscissa and ordinate axes, are called the coordinates of the point A in the rectangular
Cartesian coordinate system. The number x is the first coordinate, or the abscissa, of the
point A, and y is the second coordinate, or the ordinate, of the point A. One says that the
point A has the coordinates (x, y) and uses the notation A(x, y).

Example 1. Let A be an arbitrary point in the right half-plane. Then the segment
−→
OAX has the positive

sense on the axis OX, and hence the abscissa x = OAX of A is positive. But if A lies in the left half-plane,
then the segment AX has the negative sense on the axis OX, and the number x = OAX is negative. If the
point A lies on the axis OY , then its projection on the axis OX coincides with the point O and x = OAX = 0.

Thus all points in the right half-plane have positive abscissas (x > 0), all points in the left half-plane have
negative abscissas (x < 0), and the abscissas of points lying on the axis OY are zero (x = 0).

Similarly, all points in the upper half-plane have positive ordinates (y > 0), all points in the lower half-plane
have negative ordinates (y < 0), and the ordinates of points lying on the axis OX are zero (y = 0).

Remark 1. Strictly speaking, the coordinate system introduced above is a right rectangular Cartesian
coordinate system. A left rectangular Cartesian coordinate system can, for example, be obtained by changing
the sense of one of the axes. There also exist right and left oblique Cartesian coordinate systems, where the
coordinate axes intersect at an arbitrary angle.

Remark 2. A right rectangular Cartesian coordinate system is usually called simply a Cartesian coordinate
system.

4.1.2-2. Transformation of Cartesian coordinates under parallel translation of axes.

Suppose that two rectangular Cartesian coordinate systems OXY and ÔX̂Ŷ are given and
the first system is taken to the second by the translation of the origin O of the first system to
the origin Ô of the second system. Under this translation, the axes preserve their directions
(the respective axes of the systems are parallel), and the origin moves by x0 in the direction
of the OX-axis and by y0 in the direction of the OY -axis (see Fig. 4.3a). Obviously, the
point Ô has the coordinates (x0, y0) in the coordinate system OXY .

Let an arbitrary point A have coordinates (x, y) in the system OXY and coordi-
nates (x̂, ŷ) in the system ÔX̂Ŷ . The transformation of rectangular Cartesian coordinates
by the parallel translation of the axes is given by the formulas

x = x̂ + x0,
y = ŷ + y0

or
x̂ = x – x0,
ŷ = y – y0.

(4.1.2.2)

4.1.2-3. Transformation of Cartesian coordinates under rotation of axes.

Suppose that two rectangular Cartesian coordinate systems OXY and OX̂Ŷ are given and
the first system is taken to the second by the rotation around the point O by an angle α
(see Fig. 4.3b).
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Figure 4.3. Transformation of Cartesian coordinates under parallel translation (a), under rotation (b), and
under translation and rotation (c) of axes.

Let an arbitrary point A have coordinates (x, y) in the system OXY and coordi-
nates (x̂, ŷ) in the system OX̂Ŷ . The transformation of rectangular Cartesian coordinates
by the rotation of axes is given by the formulas

x = x̂ cosα – ŷ sinα,
y = x̂ sinα + ŷ cosα

or
x̂ = x cosα + y sinα,
ŷ = –x sinα + y cosα.

(4.1.2.3)

4.1.2-4. Transformation of coordinates under translation and rotation of axes.

Suppose that two rectangular Cartesian coordinate systems OXY and ÔX̂Ŷ are given and
the first system is taken to the second by the translation of the origin O(0, 0) of the first
system to the origin Ô(x0, y0) of the second system followed by the rotation of the system
around the point Ô by an angle α (see Fig. 4.3c and Paragraphs 4.1.2-2 and 4.1.2-3).

Let an arbitrary point A have coordinates (x, y) in the system OXY and coordi-
nates (x̂, ŷ) in the system ÔX̂Ŷ . The transformation of rectangular Cartesian coordinates
by the parallel translation and rotation of axes is given by the formulas

x = x̂ cosα – ŷ sinα + x0,

y = x̂ sinα + ŷ cosα + y0,
or

x̂ = (x – x0) cosα + (y – y0) sinα,

ŷ = –(x – x0) sinα + (y – y0) cosα.
(4.1.2.4)

4.1.2-5. Polar coordinates.

A polar coordinate system is determined by a point O called the pole, a ray OA issuing
from this point, which is called the polar axis, a scale segment for measuring lengths, and
the positive sense of rotation around the pole. Usually, the anticlockwise sense is assumed
to be positive (see Fig. 4.4a).

The position of each point B on the plane is determined by two polar coordinates, the
polar radius ρ = |OB| and the polar angle θ = ∠AOB (the values of the angle θ are defined
up to the addition of �2πn, where n is an integer). To be definite, one usually assumes that
0 ≤ θ ≤ 2π or –π ≤ θ ≤ π. The polar radius of the pole is zero, and its polar angle does not
have any definite value.

4.1.2-6. Relationship between Cartesian and polar coordinates.

Suppose that B is an arbitrary point on the plane, (x, y) are its rectangular Cartesian coor-
dinates, and (ρ, θ) are its polar coordinates (see Fig. 4.4b). The formulas of transformation
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Figure 4.4. A polar coordinate system (a). Relationship between Cartesian and polar coordinates (b).

from one coordinate system to the other have the form

x = ρ cos θ,
y = ρ sin θ

or
ρ =
√
x2 + y2,

tan θ = y/x,
(4.1.2.5)

where the polar angle θ is determined with regard to the quadrant where the point B lies.

Example 2. Let us find the polar coordinates ρ, θ (0 ≤ θ ≤ 2π) of the point B whose Cartesian coordinates
are x = –3, y = –3.

From formulas (4.1.2.5), we obtain ρ =
√

(–3)2 + (–3)2 = 3
√

2 and tan θ = –3
–3 = 1. Since the point B lies

in the third quadrant, we have θ = arctan 1 + π = 5
4 π.

4.1.3. Points and Segments on Plane

4.1.3-1. Distance between points on plane.

The distance d between two arbitrary points A1 and A2 on the plane is given by the formula

d =
√

(x2 – x1)2 + (y2 – y1)2, (4.1.3.1)

where x and y with the corresponding subscripts are the Cartesian coordinates of these
points, and by the formula

d =
√
ρ2

1 + ρ2
2 – 2ρ1ρ2 cos(θ2 – θ1), (4.1.3.2)

where ρ and θ with the corresponding subscripts are the polar coordinates of these points.

4.1.3-2. Segment and its projections.

Suppose that an axis u and an arbitrary segment
−−→
A1A2 are given on the plane (see Fig. 4.5a).

From the points A1 and A2, we draw the perpendiculars to u and denote the points of
intersection of the perpendiculars with the axis by P1 and P2. The value P1P2 of the
segment

−−→
P1P 2 of the axis u is called the projection of the segment

−−→
A1A2 onto the axis u.

Usually one writes pru
−−→
A1A2 =P1P2. Ifϕ (0 ≤ϕ≤π) is the angle between the segment

−−→
A1A2

and the axis u, then
pru

−−→
A1A2 = d cosϕ. (4.1.3.3)

For two arbitrary points A1(x1, y1) and A2(x2, y2), the projections x and y of the
segment

−−→
A1A2 onto the coordinate X- and Y-axes are given by the formulas (see Fig. 4.5b)

prX
−−→
A1A2 = x2 – x1, prY

−−→
A1A2 = y2 – y1. (4.1.3.4)
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Figure 4.5. Projection of the segment onto the axis u (a) and onto the coordinate X- and Y-axes (b).

Thus, to obtain the projections of a segment onto the coordinate axes, one subtracts the
coordinates of its initial point from the respective coordinates of its endpoint.

The projections of the segment
−−→
A1A2 onto the coordinate axes can be found if its length d

(see (4.1.3.1)) and polar angle θ are known (see Fig. 4.5b). The corresponding formulas
are

prX
−−→
A1A2 = d cos θ, prY

−−→
A1A2 = d sin θ, tan θ =

y2 – y1

x2 – x1
. (4.1.3.5)

4.1.3-3. Angles between coordinate axes and segments.

The angles αx ≡ θ and αy between the segment
−−→
A1A2 and the coordinate x- and y-axes are

determined by the expressions

cosαx =
x2 – x1√

(x2 – x1)2 + (y2 – y1)2
, cosαy =

y2 – y1√
(x2 – x1)2 + (y2 – y1)2

, (4.1.3.6)

and αy = π – αx.
The angle β between arbitrary segments

−−→
A1A2 and

−−→
A3A4 joining the points A1(x1, y1),

A2(x2, y2) and A3(x3, y3), A4(x4, y4), respectively, can be found from the relation

cos β =
(x2 – x1)(x4 – x3) + (y2 – y1)(y4 – y3)

√
(x2 – x1)2 + (y2 – y1)2

√
(x4 – x3)2 + (y4 – y3)2

. (4.1.3.7)

4.1.3-4. Division of segment in given ratio.

The numberλ=p/q, wherep=A1A and q =AA2 are the values of the directed segments
−−→
A1A

and
−→
AA2, is called the ratio in which point A divides the segment

−−→
A1A2. It is independent

of the sense of the segment (i.e., one could use the segment
−−→
A2A1) and the scale segment.

The coordinates of the point A dividing the segment
−−→
A1A2 in a ratio λ are given by the

formulas

x =
x1 + λx2

1 + λ
=
qx1 + px2

q + p
, y =

y1 + λy2

1 + λ
=
qy1 + py2

q + p
, (4.1.3.8)

where –∞ ≤ λ ≤ ∞.
For the coordinates of the midpoint of the segment

−−→
A1A2, we have

x =
x1 + x2

2
, y =

y1 + y2

2
; (4.1.3.9)

i.e., each coordinate of the midpoint of a segment is equal to the half-sum of the respective
coordinates of its endpoints.
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4.1.3-5. Area of triangle area.

The area S3 of the triangle with vertices A1, A2, and A3 is given by the formula

�S3 =
1
2

[(x2 – x1)(y3 – y1) – (x3 – x1)(y2 – y1)]

=
1
2

∣
∣∣ x2 – x1 y2 – y1
x3 – x1 y3 – y1

∣
∣∣ =

1
2

∣∣
∣∣
∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣
∣∣
∣
, (4.1.3.10)

where x and y with respective subscripts are the Cartesian coordinates of the vertices, and
by the formula

�S3 =
1
2

[ρ1ρ2 sin(θ2 – θ1) + ρ2ρ3 sin(θ3 – θ2) + ρ3ρ1 sin(θ1 – θ3)], (4.1.3.11)

where ρ and θ with respective subscripts are the polar coordinates of the vertices. In
formulas (4.1.3.10) and (4.1.3.11), one takes the plus sign if the vertices are numbered
anticlockwise (see Fig. 4.6a) and the minus sign otherwise.

O O
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( )a ( )b

Figure 4.6. Area of triangle (a) and of a polygon (b).

4.1.3-6. Area of a polygon.

The area Sn of the polygon with vertices A1, . . . , An is given by the formula

�Sn =
1
2

[(x1 – x2)(y1 + y2) + (x2 – x3)(y2 + y3) + · · · + (xn – x1)(yn + y1)], (4.1.3.12)

where x and y with respective subscripts are the Cartesian coordinates of the vertices, and
by the formula

�Sn =
1
2

[ρ1ρ2 sin(θ2 – θ1) + ρ2ρ3 sin(θ3 – θ2) + · · · + ρnρ1 sin(θ1 – θn)], (4.1.3.13)

where ρ and θ with respective subscripts are the polar coordinates of the vertices. In
formulas (4.1.3.12) and (4.1.3.13), one takes the plus sign if the vertices are numbered
anticlockwise (see Fig. 4.6b) and the minus sign otherwise.

Remark. One often says that formulas (4.1.3.10)–(4.1.3.13) express the oriented area of the corresponding
figures.



84 ANALYTIC GEOMETRY

4.2. Curves on Plane
4.2.1. Curves and Their Equations

4.2.1-1. Basic definitions.

A curve on the plane determined by an equation in some coordinate system is the geometric
locus of points of the plane whose coordinates satisfy this equation.

An equation of a curve on the plane in a given coordinate system is an equation with
two variables such that the coordinates of the points lying on the curve satisfy the equation
and the coordinates of the points that do not lie on the curve do not satisfy it.

The coordinates of an arbitrary point of a curve occurring in an equation of the curve
are called current coordinates.

4.2.1-2. Equation of curve in Cartesian coordinate system.

An equation of a curve in the Cartesian coordinate system OXY can be written as

F (x, y) = 0. (4.2.1.1)

The image of a curve determined by an equation of the form

y = f (x) (4.2.1.2)

is called the graph of the function f (x).

Example 1. Let us plot the curve determined by the equation x2 – y = 0. We express one coordinate via
the other (e.g., y via x) from this equation: y = x2. Specifying various values of x, we find the corresponding
values of y and thus construct a sequence of points of the desired curve. By joining these points, we obtain the
curve itself (see Fig. 4.7a).
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Figure 4.7. Cartesian coordinate system. Loci of points for equations x2 – y = 0 (a), y – 5 = 0 (b), and
x2 – y2 = 0 (c).

4.2.1-3. Special kinds of equations.

1. The equation of a curve on the plane may contain only one of the current coordinates
but still determine a certain curve.
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Example 2. Suppose that the equation y – 5 = 0 (or y = 5) is given. The locus of points whose coordinates
are equal to five is the straight line parallel to the axis OX and passing through the point y = 5 of the axis OY
(see Fig. 4.7b).

Similarly, the equation x + 7 = 0 determines a straight line parallel to the axis OY .

2. If the left-hand side of equation (4.2.1.1) can be factorized, then, equating each factor
separately with zero, we obtain several new equations, each of which can determine a
certain curve.

Example 3. Consider the equation x2 – y2 = 0. Factorizing the left-hand side of this equation, we
obtain (x + y)(x – y) = 0. Obviously, the latter equation determines the pair of straight lines x + y = 0
and x – y = 0, which are the bisectors of the coordinate angles (see Fig. 4.7c).

3. Equation (4.2.1.1) may determine a locus consisting of one or several isolated points.

Example 4. The equation x2 + y2 = 0 determines the single point with coordinates (0, 0).

Example 5. The equation (x2 – 9)2 + (y2 – 25)2 = 0 defines the locus consisting of the four points (3, 5),
(3, –5), (–3, 5), and (–3, –5).

4. There exist equations that do not determine any locus.

Example 6. The equation x2 + y2 + 5 = 0 does not have solutions for any real x and y.

4.2.1-4. Equation of curve in polar coordinate system.

An equation of a curve in a polar coordinate system can be written as

Φ(ρ, θ) = 0, (4.2.1.3)

where ρ is the polar radius and θ is the polar angle. This equation is satisfied by the polar
coordinates of any point lying on the curve and is not satisfied by the coordinates of the
points that do not lie on the curve.

Example 7. Consider the equation ρ – a cos θ = 0 (or ρ = a cos θ), where a is a positive number. By B
we denote the point with polar coordinates (ρ, θ), and by A we denote the point with coordinates (a, 0).
If ρ = a cos θ, then the angle OBA is a right angle, and vice versa. Therefore, the locus of points whose
coordinates satisfy this equation is a circle with diameter a (see Fig. 4.8).

O θ A
a

ρ

B

Figure 4.8. Polar coordinate system. Locus of points for equations ρ – a cos θ = 0.

Example 8. Consider the equation ρ – aθ = 0 (or ρ = aθ), where a is a positive constant. The curve
determined by this equation is called a spiral of Archimedes.

As θ increases starting from zero, the pointB(ρ, θ) issues from the pole and moves around it in the positive
sense, simultaneously moving away from it. For each point of this curve with positive coordinates (ρ, θ), one
has the corresponding point (–ρ, –θ) on the same curve. Figures 4.9a and b show the branches of the spiral of
Archimedes corresponding to the positive and negative values of θ, respectively.

Note that the spiral of Archimedes divides each polar ray into equal segments (except for the segment
nearest to the pole).
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Figure 4.9. A spiral of Archimedes ρ = aθ corresponding to the positive (a) and negative (b) values of θ.
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Figure 4.10. A hyperbolic spiral ρ = a/θ corresponding to the positive (a) and negative (b) values of θ.
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Figure 4.11. A logarithmic spiral ρ = aθ corresponding to the values a > 1 (a) and 0 < a < 1 (b).

Example 9. Consider the equation ρ – a/θ = 0 (or ρ = a/θ), where a is a positive number. The curve
determined by this equation is called a hyperbolic spiral.

As θ increases, the pointB(ρ, θ) moves around the pole in the positive sense while approaching it endlessly.
As θ tends to zero, the point B approaches the line y = a while moving to infinity. Figures 4.10a and b show
the branches of the hyperbolic spiral corresponding to the positive and negative values of θ, respectively.

Example 10. Consider the equation ρ – aθ = 0 (or ρ = aθ), where a is a positive number. The curve
determined by this equation is called the logarithmic spiral.

Figures 4.11a and b show the branches of the logarithmic spiral corresponding to the values a > 1
and 0 < a < 1, respectively. For a = 1, we obtain the equation of a circle.



4.2. CURVES ON PLANE 87

4.2.1-5. Parametric equations of a curve.

Parametric equations of a curve on the plane have the form

x = ϕ(t), y = ψ(t), (4.2.1.4)

where x and y are treated as the coordinates of some point A for each value of the variable
parameter t. In general, the variables x and y vary with t, and the point A moves on the
plane.

Parametric equations play an important role in applied mathematics and mechanics,
where they are called the equations of motion of a mass point. The parameter t has the
meaning of time.

Remark 1. Eliminating the parameter t from equations (4.2.1.4), we obtain an equation of the curve in
the form (4.2.1.1).

Remark 2. In different problems, the variable parameter in equations (4.2.1.4) may have different mean-
ings.

Example 11. The circle of radiusa centered at the origin is described by the following parametric equations
for the Cartesian system:

x = a cos t, y = a sin t.

By squaring these equations and by adding them, we obtain the equation of the circle in the form

x2 + y2 = a2.

Example 12. The spiral of Archimedes (a), the hyperbolic spiral (b), and the logarithmic spiral (c) are
described by the following equations in the polar coordinate system:

(a) ρ = aθ; (b) ρ =
a

θ
; (c) ρ = aθ .

The parametric equations for the Cartesian coordinates of these curves have the form

(a) x = aθ cos θ, y = aθ sin θ;

(b) x =
a cos θ
θ

, y =
a sin θ
θ

;

(c) x = aθ cos θ, y = aθ sin θ.

In all three cases, the variable parameter is the polar angle θ.

4.2.1-6. Algebraic curves.

The curves given by algebraic equations of the form

Ax +By + C = 0,

Ax2 + Bxy + Cy2 +Dx + Ey + F = 0,

Ax3 + Bx2y + Cxy2 +Dy3 +Ex2 + Fxy +Gy2 +Hx + Iy + K = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(4.2.1.5)

in a rectangular Cartesian coordinate system are called algebraic curves on the plane.
A curve given by an algebraic equation of degree n in a rectangular Cartesian coordinate

system is called an nth-order algebraic curve.
When passing from one rectangular Cartesian coordinate system to another, the degree

of the equation of an algebraic curve does not change; i.e., any nth-order algebraic curve
remains such in any rectangular Cartesian coordinate system.
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4.2.2. Main Problems of Analytic Geometry for Curves

4.2.2-1. Construction of equation for given curve.

Suppose that a curve is defined on the plane as a locus of points and one needs to construct
an equation of this curve. This is the first main problem of analytic geometry for curves.

Example 1. Suppose that a circle of radiusR is given on the plane. In the rectangular Cartesian coordinate
system OXY , its origin is point A(x0, y0). It is required to derive an equation of this circle (see Fig. 4.12a).
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( )a ( )b
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Y

Figure 4.12. Construction of equation for given curve (a) and construction of curve with given equation (b).

By B(x, y) we denote the variable point of the circle. Obviously, the circle is the locus of points lying at
the distance R from the point A(x0, y0); i.e., AB = R, or

√
(x – x0)2 + (y – y0)2 = R.

This is the desired equation of the circle of radius R centered at the point A(x0, y0), which is usually written as

(x – x0)2 + (y – y0)2 = R2.

4.2.2-2. Construction of curve with given equation.

Suppose that an equation with two variables is given and one needs to construct the curve
determined by this equation on the plane. This is the second main problem of analytic
geometry for curves.

Example 2. Consider the equation x – y = 0 or y = x. The points whose coordinates satisfy this equation
lie in the first and third quadrants at equal distances from the coordinate axes. Thus the locus of points whose
coordinates satisfy this equation is the bisector of the first and third coordinate angles (see Fig. 4.12b).

4.2.2-3. Intersection of two curves.

Consider two curves determined by the equations

F (x, y) = 0, G(x, y) = 0. (4.2.2.1)

To find the points of intersection of these curves, one solves system (4.2.2.1). Each real
solution of this system gives a point of intersection. If the system is inconsistent or does
not have real solutions, then the curves do not meet.

Example 3. Let us find the points of intersection of two curves (a circle and a straight line) with the
equations

x2 + y2 – 25 = 0, 2x – y + 5 = 0.
These equations form a system of two equations with two unknowns. For example, if we express y from the
second equation and substitute the resulting expression into the first equation, then we obtain x2 +4x= 0, whence
we find x1 = 0, x2 = –4 and y1 = 5, y2 = –3. This means that the curves have two points of intersection, (0, 5)
and (–4, –3).

Remark. For equations (4.2.2.1) written, for example, in a polar coordinate system, it is natural to use ρ
and θ instead of the variables x and y.
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4.3. Straight Lines and Points on Plane
4.3.1. Equations of Straight Lines on Plane

4.3.1-1. Slope-intercept equation of straight line.

The tangent of the angle of inclination of a straight line to the axis OX is called the slope
of the straight line. The slope characterizes the direction of the line. For straight lines
perpendicular to the OX-axis, slope does not make sense, although one often says that the
slope of such straight lines is equal to infinity.

The slope-intercept equation of a straight line in the rectangular Cartesian coordinate
system OXY has the form

y = kx + b, (4.3.1.1)

where k = tanϕ = (y – b)/x is the slope of the line and b is the y-intercept of the line, i.e.,
the signed distance from the point of intersection of the line with the ordinate axis to the
origin. Equation (4.3.1.1) is meaningful for any straight line that is not perpendicular to the
abscissa axis (see Fig. 4.13a).
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Figure 4.13. Straight lines on plane.

If a straight line is not perpendicular to the OX-axis, then its equation can be written
as (4.3.1.1), but if a straight line is perpendicular to the OX-axis, then its equation can be
written as

x = a, (4.3.1.2)

where a is the abscissa of the point of intersection of this line with the OX-axis (see
Fig. 4.13b).

For the slope of a straight line, we also have the formula

k =
y2 – y1

x2 – x1
, (4.3.1.3)

where A1(x1, y1) and A2(x2, y2) are two arbitrary points of the line.

4.3.1-2. Point-slope equation of straight line.

In the rectangular Cartesian coordinate system OXY , the equation of a straight line with
slope k passing through a point A(x1, y1) has the form

y – y1 = k(x – x1). (4.3.1.4)

Remark. If we set x1 = 0 and y1 = b in equation (4.3.1.4), then we obtain equation (4.3.1.1).
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4.3.1-3. Equation of straight line passing through two given points.

In the rectangular Cartesian coordinate system OXY , the equation of a straight line with
slope k passing through points A1(x1, y1) and A2(x2, y2) has the form (4.3.1.4), where k is
given by the expression (4.3.1.3):

y – y1 =
y2 – y1

x2 – x1
(x – x1). (4.3.1.5)

This equation is usually written as
x – x1

x2 – x1
=
y – y1

y2 – y1
. (4.3.1.6)

Equation (4.3.1.6) is also called the canonical equation of the straight line passing through
two given points on the plane.

Sometimes one writes this equation in terms of a third-order determinant as follows:
∣∣
∣∣
∣

x y 1
x1 y1 1
x2 y2 1

∣∣
∣∣
∣

= 0. (4.3.1.7)

Example 1. Let us derive the equation of the straight line passing through the pointsA1(5, 1) andA2(7, 3).
Substituting the coordinates of these points into formula (4.3.1.5), we obtain

x – 5
2

=
y – 1

2
or y = x – 4.

4.3.1-4. General equation of straight line on plane.

An equation of the form
Ax + By + C = 0 (4.3.1.8)

is called the general equation of a straight line in the rectangular Cartesian coordinate
system OXY . In rectangular Cartesian coordinates, each straight line is determined by an
equation of degree 1, and, conversely, each equation of degree 1 determines a straight line.

If B ≠ 0, then equation (4.3.1.8) can be written as (4.3.1.1), where k = –A/B and
b = –C/B. If B = 0, then equation (4.3.1.8) can be written as (4.3.1.2), where a = –C/A.

If C = 0, then the equation of a straight line becomes Ax + By = 0 and determines a
straight line passing through the origin.

If B = 0 and A ≠ 0, then the equation of a straight line becomes Ax + C = 0 and
determines a straight line parallel to the axis OY .

If A = 0 and B ≠ 0, then the equation of a straight line becomes By + C = 0 and
determines a straight line parallel to the axis OX.

4.3.1-5. General equation of straight line passing through given points on plane.

In the rectangular Cartesian coordinate systemOXY , the general equation of a straight line
passing through the point A(x1, y1) on the plane has the form

A(x – x1) + B(y – y1) = 0. (4.3.1.9)

If this equation is written in the form
x – x1

B
=
y – y1

–A
, (4.3.1.10)

then it is called the canonical equation of a straight line passing through a given point on
the plane. If B = 0, then one sets x – x0 = 0, and if A = 0, then one sets y – y0 = 0.

Remark. The general equation of the straight line passing through two given points on the plane has the
form (4.3.1.6).
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4.3.1-6. Parametric equations of straight line on plane.

The parametric equations of a straight line on the plane through the point A(x1, y1) in the
rectangular Cartesian coordinate system OXY have the form

x = x1 + Bt, y = y1 –At, (4.3.1.11)

whereA andB are the coefficients of the general equation (4.3.1.8) or (4.3.1.9) of a straight
line and t is a variable parameter.

In the rectangular Cartesian coordinate system OXY , the parametric equations of the
straight line passing through two points A(x1, y1) and A(x2, y2) on the plane can be written
as

x = x1(1 – t) + x2t,
y = y1(1 – t) – y2t.

(4.3.1.12)

Remark. Eliminating the parameter t from equations (4.3.1.11) and (4.3.1.12), we obtain equations
(4.3.1.9) and (4.3.1.6), respectively.

4.3.1-7. Intercept-intercept equation of straight line.

The intercept-intercept equation of a straight line in the rectangular Cartesian coordinate
system OXY has the form

x

a
+
y

b
= 1, (4.3.1.13)

where a and b are the x- and y-intercepts of the line, i.e., the signed distances from the
points of intersection of the line with the coordinate axes to the origin (see Fig. 4.14).

Xa

b

Y

O

Figure 4.14. A straight line with intercept-intercept equation.

4.3.1-8. Normalized equation of straight line.

Suppose that a rectangular Cartesian coordinate system OXY and a straight line are given
on the plane. We draw the perpendicular to the straight line through the origin. This
perpendicular is called the normal to the line. By P we denote the point of intersection of
the normal with the line.

The equation
x cosα + y sinα – p = 0, (4.3.1.14)

where α is the polar angle of the normal and p is the length of the segmentOP (the distance
from the origin to the straight line) (see Fig. 4.15), is called the normalized equation of
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X

α

p
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O
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Figure 4.15. A straight line with normalized equation.

the straight line in the rectangular Cartesian coordinate system OXY . In the normalized
equation of a straight line, p ≥ 0 and cos2 α + sin2 α = 1.

For all positions of the straight line with respect to the coordinate axes, its equation can
always be written in normalized form.

The general equation of a straight line (4.3.1.8) can be reduced to a normalized
form (4.3.1.14) by setting

cosα = �
A√

A2 + B2
, sinα = �

B√
A2 + B2

, p = �
C√

A2 +B2
, (4.3.1.15)

where the upper sign is taken for C < 0 and the lower sign for C > 0. For C = 0, either sign
can be taken.

4.3.1-9. Equation of straight line in polar coordinates.

The equation of a straight line in polar coordinates can be written as

ρ cos(θ – α) = p , (4.3.1.16)

where ρ and θ are the polar radius and the polar angle of the current point B of the straight
line, α is the polar angle of the normal, and p is the distance from the pole to the line (see
Fig. 4.16).

X

α

θ

p
ρ

O

B

Figure 4.16. A straight line with equation in polar coordinates.

4.3.1-10. Equation of a pencil of straight lines.

The set of all straight lines passing through a pointA on the plane is called a pencil of straight
lines, and the point A itself is called the center of the pencil. The equations determining all
straight lines in the pencil are called equations of the pencil.
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1◦. If the Cartesian coordinates of the pencil center A(x0, y0) are known, then the equation
of any straight line in the pencil that is not parallel to the OY -axis has the form

y – y0 = k(x – x0), (4.3.1.17)

where k is the slope of the straight line. For the straight line in the pencil parallel to the
OY -axis,

x = x0. (4.3.1.18)

2◦. If the equations of two straight lines in the pencil are known, for example, A1x+B1y +
C1 = 0 and A2x +B2y + C2 = 0, then the equation of the pencil can be written as

α(A1x + B1y + C1) + β(A2x +B2y + C2) = 0, (4.3.1.19)

where α and β are any numbers that are not simultaneously zero.

4.3.2. Mutual Arrangement of Points and Straight Lines

4.3.2-1. Condition for three points to be collinear.

Suppose that points A1(x1, y1), A2(x2, y2), and A3(x3, y3) are given in the Cartesian coor-
dinate system OXY on the planes. They are collinear (lie on the same straight line) if and
only if

x3 – x1

x2 – x1
=
y3 – y1

y2 – y1
. (4.3.2.1)

4.3.2-2. Deviation of point from straight line.

The number δ, equal to the length of the perpendicular to a straight line through a point
taken with the plus sign if the point and the origin lie on opposite sides of the line and with
the minus sign otherwise, is called the deviation of the point from the line. Obviously, the
deviation is zero for points lying on the line.

To find the deviation of a point A(x0, y0) from a straight line, one substitutes the
coordinates of A into the left-hand side of the normalized equation of the line (see Para-
graph 4.3.1-8) for the current Cartesian coordinates:

δ = x0 cosα + y0 sinα – p. (4.3.2.2)

4.3.2-3. Distance from point to straight line.

The distance d from a point to a straight line is the absolute value of the deviation. It can
be calculated by the formula

d = |x0 cosα + y0 sinα – p |. (4.3.2.3)

The distance from a point A(x0, y0) to a straight line given by the general equation
Ax + By + C = 0 can be calculated by the formula

d =
|Ax0 +By0 + C |√

A2 +B2
. (4.3.2.4)

Example 1. Let us find the distance from the point A(2, 1) to the straight line 3x + 4y + 5 = 0. We use
formula (4.3.2.4) to obtain

d =
|Ax0 +By0 + C |√

A2 + B2
=

|3 ⋅ 2 + 4 ⋅ 1 + 5|√
32 + 42

=
15
5

= 3.
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4.3.2-4. Angle between two straight lines.

We consider two straight lines given by the equations

y = k1x + b1 and y = k2x + b2, (4.3.2.5)

where k1 = tanϕ1 and k2 = tanϕ2 are the slopes of the respective lines (see Fig. 4.17). The
angle α between these lines can be obtained by the formula

tanα =
k2 – k1

1 + k1k2
, (4.3.2.6)

where k1k2 ≠ –1. If k1k2 = –1, then α = 1
2π.

Remark. If at least one of the lines is perpendicular to the axisOX, then formula (4.3.2.6) does not make
sense. In this case, the angle between the lines can be calculated by the formula

α = ϕ2 – ϕ1. (4.3.2.7)

X

y=
k x+

b

y=
k

x+
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Figure 4.17. Angle between two straight lines.

The angle α between the two straight lines given by the general equations

A1x + B1y + C1 = 0 and A2x +B2y + C2 = 0 (4.3.2.8)

can be calculated using the expression

tanα =
A1B2 – A2B1

A1A2 +B1B2
, (4.3.2.9)

where A1A2 +B1B2 ≠ 0. If A1A2 + B1B2 = 0, then α = 1
2π.

Remark. If one needs to find the angle between straight lines and the order in which they are considered
is not defined, then this order can be chosen arbitrarily. Obviously, a change in the order results in a change in
the sign of the tangent of the angle.
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4.3.2-5. Point of intersection of straight lines.

Suppose that two straight lines are defined by general equations in the form (4.3.2.8).
Consider the system of two first-order algebraic equations (4.3.2.8):

A1x +B1y + C1 = 0,
A2x +B2y + C2 = 0.

(4.3.2.10)

Each common solution of equations (4.3.2.10) determines a common point of the tow lines.
If the determinant of system (4.3.2.10) is not zero, i.e.,

∣∣
∣
A1 B1
A2 B2

∣∣
∣ = A1B2 – A2B1 ≠ 0, (4.3.2.11)

then the system is consistent and has a unique solution; hence these straight lines are distinct
and nonparallel and meet at the point A(x0, y0), where

x0 =
B1C2 – B2C1

A1B2 – A2B1
, y0 =

C1A2 – C2A1

A1B2 – A2B1
. (4.3.2.12)

Condition (4.3.2.11) is often written as

A1

A2
≠
B1

B2
. (4.3.2.13)

Example 2. To find the point of intersection of the straight lines y = 2x – 1 and y = –4x + 5, we solve
system (4.3.2.10):

2x – y – 1 = 0,

–4x – y + 5 = 0,

and obtain x = 1, y = 1. Thus the intersection point has the coordinates (1, 1).

4.3.2-6. Condition for straight lines to be perpendicular.

For two straight lines determined by slope-intercept equations (4.3.2.5) to be perpendicular,
it is necessary and sufficient that

k1k2 = –1. (4.3.2.14)

Relation (4.3.2.14) is usually written as

k1 = –
1
k2

, (4.3.2.15)

and one also says that the slopes of perpendicular straight lines are inversely proportional
in absolute value and opposite in sign.

If the straight lines are given by general equations (4.3.2.8), then a necessary and
sufficient condition for them to be perpendicular can be written as (see Paragraph 4.3.2-4)

A1A2 + B1B2 = 0. (4.3.2.16)

Example 3. The lines 3x+y–3 = 0 andx–3y+8 = 0 are perpendicular since they satisfy condition (4.3.2.16):

A1A2 +B1B2 = 3 ⋅ 1 + 1 ⋅ (–3) = 0.
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4.3.2-7. Condition for straight lines to be parallel.

For two straight lines defined by slope-intercept equations (4.3.2.5) to be parallel and not
to coincide, it is necessary and sufficient that

k1 = k2, b1 ≠ b2. (4.3.2.17)

If the straight lines are given by general equations (4.3.2.8), then a necessary and
sufficient condition for them to be parallel can be written as

A1

A2
=
B1

B2
≠
C1

C2
; (4.3.2.18)

in this case, the straight lines do not coincide (see Fig. 4.18).
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Figure 4.18. Parallel straight lines.

Example 4. The straight lines 3x + 4y + 5 = 0 and 3/2 x + 2y + 6 = 0 are parallel since the following
condition (4.3.2.18) is satisfied:

3
3/2

=
4
2

≠
5
6

.

4.3.2-8. Condition for straight lines to coincide.

For two straight lines given by slope-intercept equations (4.3.2.5) to coincide, it is necessary
and sufficient that

k1 = k2, b1 = b2. (4.3.2.19)

If the straight lines are given by general equations (4.3.2.8), then a necessary and
sufficient condition for them to coincide has the form

A1

A2
=
B1

B2
=
C1

C2
. (4.3.2.20)

Remark. Sometimes the case of coinciding straight lines is considered as a special case of parallel straight
lines and it not distinguished as an exception.

4.3.2-9. Distance between parallel lines.

The distance between the parallel lines given by equations (see Paragraph 4.3.2-7)

A1x + B1y + C1 = 0 and A1x +B1y + C2 = 0 (4.3.2.21)

can be found using the formula (see Paragraph 4.3.2-3)

d =
|C1 – C2|
√
A2

1 + B2
1

. (4.3.2.22)
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4.3.2-10. Condition for a straight line to separate points of plane.

Suppose that a straight line in the Cartesian coordinate systemOXY is given by an equation
of the form

Ax +By + C = 0. (4.3.2.23)

Obviously, this straight line divides the plane into two half-planes. We consider two arbitrary
points A1(x1, y1) and A2(x2, y2) of the plane that do not lie on the line. The points are said
to be nonseparated by the straight line if they belong to the same half-plane (lie on the
same side of the straight line and possibly coincide). The points are said to be separated by
the straight line if they belong to different half-planes (lie on opposite sides of the straight
line).

Two points A1(x1, y1) and A2(x2, y2) that do not belong to the straight line (4.3.2.23)
are separated by this line if and only if the numbers Ax1 + By1 + C and Ax2 + By2 + C
have opposite signs.

4.4. Second-Order Curves
4.4.1. Circle

4.4.1-1. Definition and canonical equation of circle.

A curve on the plane is called a circle if there exists a rectangular Cartesian coordinate
system OXY in which the equation of this curve has the form (see Fig. 4.19a)

x2 + y2 = a2, (4.4.1.1)

where the point O(0, 0) is the center of the circle and a > 0 is its radius. Equation (4.4.1.1)
is called the canonical equation of a circle.

O O

M

N

X X

a

a a

a

Y Y( )a ( )b

Figure 4.19. Circle.

The circle defined by equation (4.4.1.1) is the locus of points equidistant (lying at the
distance a) from its center. If a circle of radius a is centered at a point C(x0, y0), then its
equation can be written as

(x – x0)2 + (y – y0)2 = a2. (4.4.1.2)

The area of the disk bounded by a circle of radius a is given by the formula S = πa2.
The length of this circle is L = 2πa. The area of the figure bounded by the circle and the
chord passing through the points M (x0, y0) and N (x0, –y0) is (see Fig. 19b)

S =
πa2

2
+ x0

√
a2 – x2

0 + a2 arcsin
x0

a
. (4.4.1.3)
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4.4.1-2. Parametric and other equations of circle.

The parametric equations of the circle (4.4.1.1) have the form

x = a cos θ, y = a sin θ, (4.4.1.4)

where the angle in the polar coordinate system plays the role of the variable parameter (see
Paragraphs 4.2.1-4 and 4.2.1-5).

The equation of the circle (4.4.1.1) in the polar coordinate system has the form

ρ = a (4.4.1.5)

and does not contain the polar angle θ.

Remark. The form of the equation of a circle in a polar coordinate system depends on the choice of the
pole and the polar axis (see Example 7 in Subsection 4.2.1).

4.4.2. Ellipse

4.4.2-1. Definition and canonical equation of ellipse.

A curve on the plane is called an ellipse if there exists a rectangular Cartesian coordinate
system OXY in which the equation of the curve has the form

x2

a2 +
y2

b2 = 1, (4.4.2.1)

where a ≥ b > 0 (see Fig. 4.20). The coordinates in which the equation of an ellipse has the
form (4.4.2.1) are called the canonical coordinates for this ellipse, and equation (4.4.2.1)
itself is called the canonical equation of the ellipse.
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Figure 4.20. Ellipse.

The segments A1A2 and B1B2 joining the opposite vertices of an ellipse, as well as
their lengths 2a and 2b, are called the major and minor axes, respectively, of the ellipse.
The axes of an ellipse are its axes of symmetry. In Fig. 4.20a, the axes of symmetry of the
ellipse coincide with the axes of the rectangular Cartesian coordinate system OXY . The
numbers a and b are called the semimajor and semiminor axes of the ellipse. The number
c =

√
a2 – b2 is called the linear eccentricity, and the number 2c is called the focal distance.

The number e = c/a =
√

1 – a2/b2, where, obviously, 0 ≤ e < 1, is called the eccentricity
or the numerical eccentricity. The number p = b2/a is called the focal parameter or simply
the parameter of the ellipse.
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The point O(0, 0) is called the center of the ellipse. The points of intersection A1(–a, 0),
A2(a, 0) and B1(0, –b), B2(0, b) of the ellipse with the axes of symmetry are called its
vertices. The points F1(–c, 0) and F2(c, 0) are the focus of the ellipse. This explains why
the major axis of an ellipse is sometimes called its focal axis. The straight lines x = �a/e
(e ≠ 0) are called the directrices. The focus F2(c, 0) and the directrix x = a/e are said to be
right, and the focus F1(–c, 0) and the directrix x = –a/e are said to be left. A focus and a
directrix are said to be like if both of them are right or left simultaneously.

The segments joining a point M (x, y) of an ellipse with the foci F1(–c, 0) and F2(c, 0)
are called the left and right focal radii of this point. We denote the lengths of the left and
right focal radii by r1 = |F1M0| and r2 = |F2M0|, respectively.

Remark. For a = b (c = 0), equation (4.4.2.1) becomes x2 +y2 = a2 and determines a circle; hence a circle
can be considered as an ellipse for which b = a, c = 0, e = 0, and ρ = 0, i.e., the semiaxes are equal to each
other, the foci coincide with the center, the eccentricity is zero (the directrices are not defined), and the focal
parameter is zero.

The area of the figure bounded by the ellipse is given by the formula S = πab. The length
of the ellipse can be calculated approximately by the formula L ≈ π

[
1.5 (a+ b) –

√
ab
]
. The

area of the figure bounded by the ellipse and the chord passing through the points M (x0, y0)
and N (x0, –y0) is equal to (see Fig. 20b)

S =
πab

2
+
b

a

(
x0

√
a2 – x2

0 + a2 arcsin
x0

a

)
. (4.4.2.2)

4.4.2-2. Focal property of ellipse.

The ellipse defined by equation (4.4.2.1) is the locus of points on the plane for which the
sum of distances to the foci F1 and F2 is equal to 2a (see Fig. 4.21). We write this property
as

r1 + r2 = 2a, (4.4.2.3)

where r1 and r2 satisfy the relations

r1 =
√

(x + c)2 + y2 = a + ex,

r2 =
√

(x – c)2 + y2 = a – ex.
(4.4.2.4)
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Figure 4.21. Focal property of ellipse.

Remark. One can show that equation (4.4.2.1) implies equation (4.4.2.3) and vice versa; hence the focal
property of an ellipse is often used as its definition.
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4.4.2-3. Focus-directrix property of ellipse.

The ellipse determined by equation (4.4.2.1) on the plane is the locus of points for which
the ratio of distances to a focus and the like directrix is equal to e:

r1

∣
∣∣x +

a

e

∣
∣∣
–1

= e, r2

∣
∣∣x –

a

e

∣
∣∣
–1

= e. (4.4.2.5)

4.4.2-4. Equation of tangent and optical property of ellipse.

The tangent to the ellipse (4.4.2.1) at an arbitrary point M0(x0, y0) is described by the
equation

x0x

a2 +
y0y

b2 = 1. (4.4.2.6)

The distances d1 and d2 from the foci F1(–c, 0) and F2(c, 0) to the tangent to the ellipse
at the point M0(x0, y0) are given by the formulas (see Paragraph 4.3.2-4)

d1 =
1
Na

|x0e + a| =
r1(M0)
Na

,

d2 =
1
Na

|x0e – a| =
r2(M0)
Na

,
N =

√(x0

a2

)2
+
( y0

b2

)2
, (4.4.2.7)

where r1(M0) and r2(M0) are the lengths of the focal radii of M0.
The tangent at an arbitrary point M0(x0, y0) of an ellipse forms acute angles ϕ1 and ϕ2

with the focal radii of the point of tangency, and

sinϕ1 =
d1

r1
=

1
Na

, sinϕ2 =
d2

r2
=

1
Na

. (4.4.2.8)

This implies the optical property of the ellipse:

ϕ1 = ϕ2, (4.4.2.9)

which means that all light rays issuing from one focus of the ellipse converge at the other
focus after the reflection in the ellipse.

4.4.2-5. Diameters of ellipse.

A straight line passing through the midpoints of parallel chords of an ellipse is called a
diameter of the ellipse. All diameters of an ellipse pass through its center. Two diameters
of an ellipse are said to be conjugate if their slopes satisfy the relation

k1k2 = –
b2

a2 . (4.4.2.10)

Two perpendicular conjugate diameters are called the principal diameters of the ellipse.

Remark. If a = b, i.e., the ellipse is a circle, then condition (4.4.2.10) becomes the perpendicularity
condition: k1k2 = –1. Thus any two conjugate diameters of a circle are perpendicular to each other, and each
of the diameters is a principal diameter.
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4.4.2-6. Ellipse in polar coordinate system.

In polar coordinates (ρ,ϕ), the equation of an ellipse becomes

ρ =
p

1 – e cosϕ
, (4.4.2.11)

where 0 ≤ ϕ ≤ 2π.

4.4.3. Hyperbola

4.4.3-1. Definition and canonical equation of hyperbola.

A curve on the plane is called a hyperbola if there exists a rectangular Cartesian coordinate
system OXY in which the equation of this curve has the form

x2

a2 –
y2

b2 = 1, (4.4.3.1)

where a > 0 and b > 0 (see Fig. 4.22a). The coordinates in which the equation of a
hyperbola has the form (4.4.3.1) are called the canonical coordinates for the hyperbola, and
equation (4.4.3.1) itself is called the canonical equation of the hyperbola.

O XF

M x y( , )

F AA

r r

21

1 2

21

b

( )a ( )b

φ

b

Y

O X

M

N

AA 21

Y

Figure 4.22. Hyperbola.

The hyperbola is a central curve of second order. It is described by equation (4.4.3.1)
and consists of two connected parts (arms) lying in the domains x > a and x < –a. The
hyperbola has two asymptotes given by the equations

y =
b

a
x and y = –

b

a
x. (4.4.3.2)

More precisely, its arms lie in the two vertical angles formed by the asymptotes and are
called the left and right arms of the hyperbola. A hyperbola is symmetric about the axesOX
and OY , which are called the principal (real, or focal, and imaginary) axes.

The angle between the asymptotes of a hyperbola is determined by the equation

tan
ϕ

2
=
b

a
, (4.4.3.3)

and if a = b, then ϕ = 1
2π (an equilateral hyperbola).
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The number a is called the real semiaxis, and the number b is called the imaginary
semiaxis. The number c =

√
a2 + b2 is called the linear eccentricity, and 2c is called the

focal distance. The number e = c/a =
√
a2 + b2/a, where, obviously, e > 1, is called

the eccentricity, or the numerical eccentricity. The number p = b2/a is called the focal
parameter or simply the parameter of the hyperbola.

The pointO(0, 0) is called the center of the hyperbola. The pointsA1(–a, 0) andA2(a, 0)
of intersection of the hyperbola with the real axis are called the vertices of the hyperbola.
Points F1(–c, 0) and F2(c, 0) are called the foci of the hyperbola. This is why the real axis of
a hyperbola is sometimes called the focal axis. The straight lines x = �a/e (y ≠ 0) are called
the directrices of the hyperbola corresponding to the foci F2 and F1. The focus F2(c, 0) and
the directrix x = a/e are said to be right, and the focus F1(–c, 0) and the directrix x = –a/e
are said to be left. A focus and a directrix are said to be like if both of them are right or left
simultaneously.

The segments joining a point M (x, y) of the hyperbola with the foci F1(–c, 0) and
F2(c, 0) are called the left and right focal radii of this point. We denote the lengths of the
left and right focal radii by r1 = |F1M | and r2 = |F2M |, respectively.

Remark. For a = b, the hyperbola is said to be equilateral, and its asymptotes are mutually perpendicular.
The equation of an equilateral hyperbola has the form x2 – y2 = a2. If we take the asymptotes to be the
coordinate axes, then the equation of the hyperbola becomes xy = a2/2; i.e., an equilateral hyperbola is the
graph of inverse proportionality.

The curvature radius of a hyperbola at a point M (x, y) is

R = a2b2
(
x2

a4 +
y2

b4

)3/2
=

√
(r1r2)3

ab
. (4.4.3.4)

The area of the figure bounded by the right arm of the hyperbola and the chord passing
through the points M (x1, y1) and N (x1, –y1) is equal to (see Fig. 4.22b)

S = x1y1 – ab ln
(x1

a
+
y1

b

)
. (4.4.3.5)

4.4.3-2. Focal properties of hyperbola.

The hyperbola determined by equation (4.4.3.1) is the locus of points on the plane for
which the difference of the distances to the foci F1 and F2 has the same absolute value 2a
(see Fig. 4.22a). We write this property as

|r1 – r2| = 2a, (4.4.3.6)

where r1 and r2 satisfy the relations

r1 =
√

(x + c)2 + y2 =
{
a + ex for x > 0,
–a – ex for x < 0,

r2 =
√

(x – c)2 + y2 =
{

–a + ex for x > 0,
a – ex for x < 0.

(4.4.3.7)

Remark. One can show that equation (4.4.3.1) implies equation (4.4.3.6) and vice versa; hence the focal
property of a hyperbola is often used as the definition.
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4.4.3-3. Focus-directrix property of hyperbola.

The hyperbola defined by equation (4.4.3.1) on the plane is the locus of points for which
the ratio of distances to a focus and the like directrix is equal to e:

r1

∣∣
∣x +

a

e

∣∣
∣
–1

= e, r2

∣∣
∣x –

a

e

∣∣
∣
–1

= e. (4.4.3.8)

4.4.3-4. Equation of tangent and optical property of hyperbola.

The tangent to the hyperbola (4.4.3.1) at an arbitrary point M0(x0, y0) is described by the
equation

x0x

a2 –
y0y

b2 = 1. (4.4.3.9)

The distances d1 and d2 from the foci F1(–c, 0) and F2(0, c) to the tangent to the
hyperbola at the point M0(x0, y0) are given by the formulas (see Paragraph 4.3.2-4)

d1 =
Na

|x0e + a|
=
r1

Na
,

d2 =
Na

|x0e – a|
=
r2

Na
,

N =

√(x0

a2

)2
+
( y0

b2

)2
, (4.4.3.10)

where r1 and r2 are the lengths of the focal radii of the point M0.
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Figure 4.23. The tangent to the hyperbola (a). Optical property of a hyperbola (b).

The tangent at any point M0(x0, y0) of the hyperbola forms acute angles ϕ1 and ϕ2 with
the focal radii of the point of tangency (see Fig. 4.23a), and

sinϕ1 =
d1

r1
=

1
Na

, sinϕ2 =
d2

r2
=

1
Na

. (4.4.3.11)

This implies the optical property of a hyperbola:

ϕ1 = ϕ2, (4.4.3.12)

which means that all light rays issuing from a focus appear to be issuing from the other
focus after the mirror reflection in the hyperbola (see Fig. 4.23b).

The tangent and normal to a hyperbola at any point bisect the angles between the straight
lines joining this point with the foci. The tangent to a hyperbola at either of its vertices
intersects the asymptotes at two points such that the distance between them is equal to 2b.
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4.4.3-5. Diameters of hyperbola.

A straight line passing through the midpoints of parallel chords of a hyperbola is called a
diameter of the hyperbola. Two diameters of a hyperbola are said to be conjugate if their
slopes satisfy the relation

k1k2 =
b2

a2 . (4.4.3.13)

A hyperbola meets the diameter y = kx if and only if

k2 <
b2

a2 . (4.4.3.14)

The lengths l1 and l2 of the conjugate diameters with slopes k1 and k2 satisfy the relation

l1l2 sin(arctan k2 – arctan k1) = 4ab. (4.4.3.15)

Two perpendicular conjugate diameters are called the principal diameters of a hyper-
bola; they are its principal axes.

4.4.3-6. Hyperbola in polar coordinate system.

In polar coordinates (ρ,ϕ), the equation for two connected parts of a hyperbola becomes

ρ =
�p

1 � e cosϕ
, (4.4.3.16)

where upper and lower signs correspond to right and left parts of a hyperbola, respectively.

4.4.4. Parabola

4.4.4-1. Definition and canonical equation of parabola.

A curve on the plane is called a parabola if there exists a rectangular Cartesian coordinate
system OXY , in which the equation of this curve has the form

y2 = 2px, (4.4.4.1)

where p > 0 (see Fig. 4.24a). The coordinates in which the equation of a parabola has the
form (4.4.4.1) are called the canonical coordinates for the parabola, and equation (4.4.4.1)
itself is called the canonical equation of the parabola.

O

(a) (b)

X
p
2 F

r

Y

M

O X

Y

M

N

Figure 4.24. Parabola.
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A parabola is a noncentral line of second order. It consists of an infinite branch
symmetric about the OX-axis. The point O(0, 0) is called the vertex of the parabola. The
point F (p/2, 0) is called the focus of the parabola. The straight line x = –p/2 is called
the directrix. The focal parameter p is the distance from the focus to the directrix. The
number p/2 is called the focal distance.

The segment joining a point M (x, y) of the parabola with the focus F (p/2, 0) is called
the focal radius of the point. The curvature radius of the parabola at a point M (x, y) can be
found from the formula

R =
(p + 2x)3/2

√
p

. (4.4.4.2)

The area of the figure bounded by the parabola and the chord passing through the
points M (x1, y1) and N (x1, –y1) is equal to (see Fig. 4.24b)

S =
4
3
x1y1. (4.4.4.3)

4.4.4-2. Focal properties of parabola.

The parabola defined by equation (4.4.4.1) on the plane is the locus of points equidistant
from the focus F (p/2, 0) and the directrix x = –p/2 (see Fig. 4.24a).

We denote the length of the focal radius by r and write this property as

r = x +
p

2
, (4.4.4.4)

where r satisfies the relation

r =

√(
x –

p

2

)2
+ y2. (4.4.4.5)

Remark. One can show that equation (4.4.4.1) implies equation (4.4.4.5) and vice versa; hence the focal
property of a parabola is often used as the definition.

4.4.4-3. Focus-directrix property of parabola.

The parabola defined by equation (4.4.4.1) on the plane is the locus of points for which the
ratio of distances to the focus and the directrix is equal to 1:

r

|x + p/2|
= 1. (4.4.4.6)

4.4.4-4. Equation of tangent and optical property of parabola.

The tangent to the parabola (4.4.4.1) at an arbitrary point M0(x0, y0) is described by the
equation

yy0 = p(x + x0). (4.4.4.7)

The direction vector of the tangent (4.4.4.7) has the coordinates (y0, p), and the direction
vector of the line passing through the points M0(x0, y0) and F (p/2, 0) has the coordinates



106 ANALYTIC GEOMETRY

O X

φφ

φ

F

Y
( )a ( )b

M0

O XF

Y

Figure 4.25. The tangent to the parabola (a). Optical property of a parabola (b).

(x0 – p/2, y0) (see Fig. 4.25a). Thus, in view of the focus-directrix property, the angle ϕ
between these lines satisfies the relation

cosϕ =
y0(x0 – p/2) + py0√

y2
0 + p2

√
(x0 – p/2)2 + y2

0

=
y0√
y2

0 + p2
. (4.4.4.8)

But the same relation also holds for the angle between the tangent (4.4.4.7) and theOX-axis.
This property of a parabola is called the optical property: all light rays issuing from

the focus of a parabola form a pencil parallel to the axis of the parabola after the mirror
reflection in the parabola (see Fig. 4.25b).

The tangent and normal to a parabola at any point bisect the angles between the focal
radius and the diameter.

4.4.4-5. Diameters of parabola.

A straight line passing through the midpoints of parallel chords of a parabola is called a
diameter of the parabola. The diameter corresponding to the chords perpendicular to the
axis of the parabola is the axis itself. The diameter of the parabola y2 = 2px corresponding
to the chords with slope k (k > 0) is given by the equation

y =
p

k
. (4.4.4.9)

The OX-axis (the axis of symmetry of a parabola), in contrast to the other diameters
of the parabola, is the diameter perpendicular to the chords conjugate to it. This diameter
is called the principal diameter of the parabola. The slope of any diameter of a parabola is
zero. A parabola does not have mutually conjugate diameters.

4.4.4-6. Parabola with vertical axis.

The equation of a parabola with vertical axis has the form

y = ax2 + bx + c (a ≠ 0). (4.4.4.10)

For a > 0, the vertex of the parabola is directed downward, and for a < 0, the vertex is
directed upward. The vertex of a parabola has the coordinates

x0 =
b

2
, y0 =

4ac – b2

4a
. (4.4.4.11)
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4.4.4-7. Parabola in polar coordinates.

In the polar coordinates (ρ,ϕ) (the pole lies at the focus of the parabola, and the polar axis
is directed along the parabola axis), the equation of the parabola has the form

ρ =
p

1 – cosϕ
, (4.4.4.12)

where – 1
2π ≤ ϕ ≤ 1

2π.

4.4.5. Transformation of Second-Order Curves to Canonical Form

4.4.5-1. General equation of second-order curve.

The set of points on the plane whose coordinates in the rectangular Cartesian coordinate
system satisfy the second-order algebraic equation

a11x
2 + 2a12xy + a22y

2 + 2a13x + 2a23y + a33 = 0 or
(a11x + a12y + a13)x + (a21x + a22y + a23)y + a31x + a32y + a33 = 0,
aij = aji (i, j = 1, 2, 3)

(4.4.5.1)

is called a second-order curve.

4.4.5-2. Nine canonical second-order curves.

There exists a rectangular Cartesian coordinate system in which equations (4.4.5.1) can be
reduced to one of the following nine canonical forms:

1.
x2

a2 +
y2

b2 = 1, an ellipse;

2.
x2

a2 –
y2

b2 = 1, a hyperbola;

3. y = 2px, a parabola;

4.
x2

a2 +
y2

b2 = –1, an imaginary ellipse;

5.
x2

a2 –
y2

b2 = 0, a pair of intersecting straight lines;

6.
x2

a2 +
y2

b2 = 0, a pair of imaginary intersecting straight lines;

7. x2 – a2 = 0, a pair of parallel straight lines;
8. x2 + a2 = 0, a pair of imaginary parallel straight lines;
9. x2 = 0, a pair of coinciding straight lines.

4.4.5-3. Invariants of second-order curves.

Second-order curves can be studied with the use of the three invariants

I = a11 + a22, δ =
∣
∣∣ a22 a23
a32 a33

∣
∣∣ , Δ =

∣∣
∣∣
∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣
∣∣
∣
, (4.4.5.2)
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whose values do not change under parallel translation and rotation of the coordinate axes,
and the semi-invariant

σ =
∣
∣∣ a22 a23
a32 a33

∣
∣∣ +
∣
∣∣ a11 a13
a31 a33

∣
∣∣ , (4.4.5.3)

whose value does not change under rotation of the coordinate axes.
The invariant Δ is called the large discriminant of equation (4.4.2.1). The invariant δ

is called the small discriminant.
Table 1 presents the classification of second-order curves based on invariants.

TABLE 4.1
Classification of second-order curves

Type Δ ≠ 0 Δ = 0

Δ

I
> 0 Real ellipse (for I2 = 4δ or a11 = a22

and a12 = 0, this is a circle)Elliptic
δ > 0

Pair of imaginary straight lines intersecting at
a real point (ellipse degenerating into a point)Δ

I
< 0 Imaginary ellipse (no real points)

Hyperbolic
δ < 0

Hyperbola Pair of real intersecting straight lines
(degenerate hyperbola)

σ > 0 Pair of imaginary parallel straight lines

σ < 0 Pair of real parallel straight linesParabolic
δ = 0 Parabola

σ = 0
Pair of coinciding straight lines

(a single straight line)

4.4.5-4. Characteristic equation of second-order curves.

The properties of second-order curves can be studied with the use of the characteristic
equation ∣∣

∣
a11 – λ a12
a21 a22 – λ

∣∣
∣ = 0 or λ2 – Iλ + δ = 0. (4.4.5.4)

The roots λ1 and λ2 of the characteristic equation (4.4.5.4) are the eigenvalues of the
real symmetric matrix [aij] and, as a consequence, are real.

Obviously, the invariants I and δ of second-order curves are expressed as follows in
terms of the roots λ1 and λ2 of the characteristic equation (4.4.5.4):

I = λ1 + λ2, δ = λ1λ2. (4.4.5.5)

4.4.5-5. Centers and diameters of second-order curves.

A straight line passing through the midpoints of parallel chords of a second-order curve is
called a diameter of this curve. A diameter is said to be conjugate to the chords (or to the
direction of chords) which it divides into two parts. The diameter conjugate to chords forms
an angle ϕ with the positive direction of the OX-axis and is determined by the equation

(a11x + a12y + a13) cosϕ + (a21x + a22y + a23) sinϕ = 0. (4.4.5.6)
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All diameters of a second-order curve with δ ≠ 0 meet at a single point called the center
of the curve, and in this case the curve is said to be central. The center coordinates (x0, y0)
satisfy the system of equations

a11x0 + a12y0 + a13 = 0,
a21x0 + a22y0 + a23 = 0,

(4.4.5.7)

which implies that

x0 = –
1
δ

∣
∣
∣
a13 a12
a23 a22

∣
∣
∣ , y0 = –

1
δ

∣
∣
∣
a11 a13
a21 a23

∣
∣
∣ . (4.4.5.8)

All diameters of a second-order curve with δ = 0 are parallel or coincide. A second-order
curve does not have a center if and only if δ = 0 and Δ ≠ 0. A second-order curve has a
center line if and only if δ = 0 and Δ = 0.

Example 1. The centers of nine canonical second-order curves are as follows:
1. Ellipse, δ = 1 and Δ = –1: the single center O(0, 0);
2. Hyperbola, δ = –1 and Δ = 1: the single center O(0, 0);
3. Parabola, δ = 0 and Δ = –1: no centers;
4. Imaginary ellipse, δ = 1 and Δ = –1: the single center O(0, 0);
5. Pair of intersecting straight lines, δ = –1 and Δ = 0: the single center O(0, 0);
6. Pair of imaginary intersecting straight lines, δ = 1 and Δ = 0: the single center O(0, 0);
7. Pair of imaginary parallel straight lines, δ = 0 and Δ = 0: the center line y = 0;
8. Pair of coinciding straight lines, δ = 0 and Δ = 0: the center line y = 0.

Each of the two conjugate diameters of a central second-order curve bisects the chords
parallel to the other diameter.

4.4.5-6. Principal axes.

A diameter perpendicular to the chords conjugate to it is called a principal axis. A principal
axis is a symmetry axis of a second-order curve. For each central second-order curve (δ ≠ 0),
either there are two perpendicular principal axes or each of its diameters is a principal axis
(the circle). A second-order curve with δ = 0 has a unique principal axis. The points of
intersection of a second-order curve with its principal axes are called its vertices.

The directions of principal axes coincide with the directions of the eigenvectors of the
symmetric matrix [aij] (i, j = 1, 2); i.e., the direction cosines cos θ, sin θ of the normals to
the principal axes are determined from the system of equations

(a11 – λ) cos θ + a12 sin θ = 0,
a21 cos θ + (a22 – λ) sin θ = 0,

(4.4.5.9)

where λ is a nonzero root of characteristic equation (4.4.5.4).
The directions of principal axes and of their conjugate chords are called the principal

directions of a second-order curve. The angle between the positive direction of the axisOX
and each of the two principal directions of a second-order curve is given by the formula

tan 2ϕ = tan 2θ =
2a12

a11 – a22
. (4.4.5.10)

Remark. The circle has undetermined principal directions.
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4.4.5-7. Reduction of central second-order curves to canonical form.

A second-order curve with δ ≠ 0 has a center. By shifting the origin to the center O1(x0, y0)
whose coordinates are determined by formula (4.4.5.8), we can reduce equation (4.4.5.1)
to the form

a11x
2
1 + 2a12x1y1 + a22y

2
1 +

Δ
δ

= 0, (4.4.5.11)

where x1 and y1 are the new coordinates.
By rotating the axes O1X1 and O1Y1 by the angle θ determined by (4.4.5.10), we

transform equation (4.4.5.11) as follows:

A11x̂
2 + A22ŷ

2 +
Δ
δ

= 0. (4.4.5.12)

The coefficients A11 and A22 are the roots of the characteristic equation (4.4.5.4).
We note the following formulas for the ellipse:

a2 = –
1
λ2

Δ
δ

= –
Δ
λ1λ2

2
, b2 = –

1
λ1

Δ
δ

= –
Δ
λ2

1λ2
, (4.4.5.13)

where a and b are the parameters of the canonical equation, δ and Δ are the invariants, and
λ1 and λ2 are the roots of the characteristic equation (4.4.5.4).

Similarly, for the hyperbola one has

a2 = –
1
λ1

Δ
δ

= –
Δ
λ2

1λ2
, b2 =

1
λ1

Δ
δ

=
Δ
λ2

1λ2
. (4.4.5.14)

4.4.5-8. Reduction of noncentral second-order curves to canonical form.

If δ = 0, then the curve does not have any center or does not have a definite center, and its
equation can be written as

(αx + βy)2 + 2a13x + 2a23y + a33 = 0. (4.4.5.15)

If the coefficients a13 and a23 are proportional to the coefficients α and β, i.e., a13 = kα
and a23 = kβ, then equation (4.4.5.15) becomes (αx + βy)2 + 2k(αx + βy) + a33 = 0, and
hence

αx + βy = –k �
√
k2 – a33 (4.4.5.16)

is a pair of real parallel straight lines.
If the coefficients a13 and a23 are not proportional to the coefficients α and β, then

equation (4.4.5.15) can be written as

(αx + βy + γ)2 + 2k(βx – αx + q) = 0. (4.4.5.17)

The parameters k, γ, and q can be determined by comparing the coefficients in equa-
tions (4.4.5.15) and (4.4.5.17). For the axis O1X one should take the line αx + βy + γ = 0,
and for the axis O1Y , the line βx – αx + q = 0. We denote

x̂ =
βx – αx + q

�
√
α2 + β2

, ŷ =
αx + βy + γ

�
√
α2 + β2

; (4.4.5.18)
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then equation (4.4.5.17) acquires the form

ŷ2 = 2px̂, (4.4.5.19)

where p = |k|/
√
α2 + β2. The axis O1X points into the half-plane where the sign of

βx – αx + q is opposite to that of k.
If one only needs to find the canonical equation of a parabola and it is not necessary to

construct the graph of the parabola in the coordinate system OXY , then the parameter p
is determined via the invariants I , δ, and Δ and the roots λ1 and λ2 (λ1 ≥ λ2) of the
characteristic equation (4.4.5.4) by the formulas

p =
1
I

√

–
Δ
I

=
1
λ1

√

–
Δ
λ1

> 0, λ2 = 0. (4.4.5.20)

4.4.5-9. Geometric definition of nondegenerate second-order curve.

There exists a coordinate system in which equation (4.4.5.1) has the form

y2 = 2px – (1 – e2)x2, (4.4.5.21)

where p > 0 is a parameter and e is the eccentricity. Obviously, the curve (4.4.5.21) passes
through the origin of the new coordinate system. The axis OX is a symmetry axis of the
curve.

The equation of the directrix of the curve (4.4.5.21) is

x = –
p

(1 + e)e
. (4.4.5.22)

The coordinates of the focus are

x =
p

1 + e
, y = 0. (4.4.5.23)

The distance from the focus to the directrix is equal to p/e. For a central second-order
curve, the line

x =
p

1 – e2 = a (4.4.5.24)

is a symmetry axis.

Remark. All types of second-order curves can be obtained as plane sections of a right circular cone for
various positions of the secant plane with respect to the cone.

4.4.5-10. Tangents and normals to second-order curves.

The equation of the tangent to a second-order curve at a point M0(x0, y0) has the form

(a11x0 + a12y0 + a13)x + (a21x0 + a22y0 + a23)y + a31x0 + a32y0 + a33 = 0. (4.4.5.25)

The equation of the normal to a second-order curve at the point M0(x0, y0) has the form

x – x0

a11x0 + a12y0 + a13
=

y – y0

a21x0 + a22y0 + a23
. (4.4.5.26)
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TABLE 4.2
Ellipse, hyperbola, parabola. Main formulas

Ellipse Hyperbola Parabola

Canonical
equation

x2

a2 +
y2

b2 = 1 x2

a2 –
y2

b2 = 1 y2 = 2px

Equation
in polar coordinates

ρ =
p

1 – e cosϕ
ρ =

�p

1 � e cosϕ
ρ =

p

1 – cosϕ

Eccentricity e =
c

a
=

√

1 –
b2

a2 < 1 e =
c

a
=

√

1 +
b2

a2 > 1 e =
c

a
= 1

Foci (�ae, 0) (�ae, 0)
( p

2
, 0
)

Focal radii
(distance from the
foci to an arbitrary

point (x, y) of curve)

r1 = a + ex

r2 = a – ex

r1 =
{
a + ex for x > 0
–a – ex for x < 0

r2 =
{

–a + ex for x > 0
a – ex for x < 0

r = x +
p

2

Focal
parameter p =

b2

a
p =

b2

a
p

Equation
of directrices

x = �
a

e
x = �

a

e
x = –

p

2
Equation of

diameter conjugate
to chords with slope k

y = –
b2

a2k
x y =

b2

a2k
x y =

p

k

Area of segment
bounded by an arc
convex to the left

and the chord
joining points

(x0, y0) and (x0, –y0)

πab

2
+
b

a

(
x0

√
a2 – x2

0

+ a2 arcsin
x0

a

)
x0y0 – ab ln

(
x0

a
+
y0

b

)

= x0y0 – ab arccosh
x0

a

4
3
x0y0

Curvature radius
at point (x, y) a2b2

(
x2

a4 +
y2

b4

)3/2

=

√
(r1r2)3

ab
a2b2
(
x2

a4 +
y2

b4

)3/2

=

√
(r1r2)3

ab

(p + 2x)3/2

√
p

Equations of
tangents to a curve
which pass through

an arbitrary
point (x0, y0)

y – y0

x – x0

=
–x0y0 �

√
a2y2

0 +b2x2
0 –a2b2

a2 – x2
0

y – y0

x – x0

=
–x0y0 �

√
a2y2

0 –b2x2
0 +a2b2

a2 – x2
0

y – y0

x – x0

=
y0 �

√
y2

0 – 2px0

2x0

Equation of tangent
at point (x0, y0)

x0x

a2 +
y0y

b2 = 1 x0x

a2 –
y0y

b2 = 1 yy0 = p(x + x0)

Equation of
tangent with slope k y = kx �

√
k2a2 + b2 y = kx �

√
k2a2 – b2 y = kx +

p

2k
Equation of normal

at point (x0, y0)
y – y0

x – x0
=
a2y0

b2x0

y – y0

x – x0
= –

a2y0

b2x0

y – y0

x – x0
= –

y0

p

Coordinates of pole
(x0, y0) of straight line
Ax +By + C = 0

w.r.t. a curve

x0 = –
a2A

C
, y0 = –

b2B

C
x0 = –

a2A

C
, y0 =

b2B

C
x0 =

A

C
, y0 = –

pB

C

The polar is the set of points Q that are harmonically conjugate to a point P , called
the pole of a second-order curve, with respect to points R1 and R2 of intersection of the
second-order curve with secants passing through P ; i.e.,

R1P

PR2
= –

R1Q

QR2
.
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If the point P lies outside the second-order curve (one can draw two tangents through P ),
then the polar line passes through the points at which this curve is tangent to straight lines
drawn through point P . If the point lies on a second-order curve, then the polar line is a
straight line tangent to this curve at this point. If the polar line of a point P passes through
a point Q, then the polar line of Q passes through P .

4.5. Coordinates, Vectors, Curves,
and Surfaces in Space

4.5.1. Vectors. Cartesian Coordinate System

4.5.1-1. Notion of vector.

A directed segment with initial point A and endpoint B (see Fig. 4.26) is called the vector−−→
AB. A nonnegative number equal to the length of the segment AB joining the points A
and B is called the length |−−→AB| of the vector

−−→
AB. The vector

−−→
BA is said to be opposite to

the vector
−−→
AB.

A

B

Figure 4.26. Vector.

Two directed segments
−−→
AB and

−−→
CD of the same length and the same direction determine

the same vector a; i.e., a =
−−→
AB =

−−→
CD.

Two vectors are said to be collinear (parallel) if they lie on the same straight line or
on parallel lines. Three vectors are said to be coplanar if they lie in the same plane or
in parallel planes. A vector 0 whose initial point and endpoint coincide is called the zero
vector. The length of the zero vector is equal to zero (|0| = 0), and the direction of the zero
vector is assumed to be arbitrary. A vector e of unit length is called a unit vector.

The sum a + b of vectors a and b is defined as the vector directed from the initial point
of a to the endpoint of b under the condition that b is applied at the endpoint of a. The rule
for addition of vectors, which is contained in this definition, is called the triangle rule or the
rule of closing a chain of vectors (see Fig. 4.27a). The sum a + b can also be found using
the parallelogram rule (see Fig. 4.27b). The difference a – b of vectors a and b is defined
as follows: b + (a – b) = a (see Fig. 4.27c).

a+b
a+b a

ba

( )a ( )b ( )c

a a

b

b b

Figure 4.27. The sum of vectors: triangle rule (a) and parallelogram rule (b). The difference of vectors (c).

The product λa of a vector a by a number λ is defined as the vector whose length is
equal to |λa| = |λ||a| and whose direction coincides with that of the vector a if λ > 0 or is
opposite to the direction of the vector a if λ < 0.
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Remark. If a = 0 or λ = 0, then the absolute value of the product is zero, i.e., it is the zero vector. In this
case, the direction of the product λa is undetermined.

Main properties of operations with vectors:

1. a + b = b + a (commutativity).
2. a + (b + c) = a + (b + c) (associativity of addition).
3. a + 0 = a (existence of the zero vector).
4. a + (–a) = 0 (existence of the opposite vector).
5. λ(a + b) = λa + λb (distributivity with respect to addition of vectors).
6. (λ + μ)a = λa + μa (distributivity with respect to addition of constants).
7. λ(μa) = (λμ)a (associativity of product).
8. 1a = a (multiplication by unity).

4.5.1-2. Projection of vector onto axis.

A straight line with a unit vector e lying on it determining the positive sense of the line is
called an axis. The projection pre a of a vector a onto the axis (see Fig. 4.28) is defined as
the directed segment on the axis whose signed length is equal to the scalar product of a by
the unit vector e, i.e., is determined by the formula

pre a = |a| cosϕ, (4.5.1.1)

where ϕ is the angle between the vectors a and e.

a

eφ

pr ae

Figure 4.28. Projection of a vector onto the axes.

Properties of projections:

1. pre(a + b) = pre a + pre b (additivity).
2. pre(λa) = λ pre a (homogeneity).

4.5.2. Coordinate Systems

4.5.2-1. Cartesian coordinate system.

If a one-to-one correspondence between points in space and numbers (triples of numbers)
is given, then one says that a coordinate system is introduced in space.

A rectangular Cartesian coordinate system is determined by a scale segment for mea-
suring lengths and three pairwise perpendicular directed straight lines OX, OY , and OZ
(the coordinate axes) concurrent at a single point O (the origin). The three coordinate axes
divide the space into eight parts called octants.

We choose an arbitrary point M in space and project it onto the coordinate axes, i.e.,
draw the perpendiculars to the axes OX, OY , and OZ through M . We denote the points
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r

X

x yO Y

Z

z

M x y z( , , )

M

M

M

X

Y

Z

Figure 4.29. Point in rectangular Cartesian coordinate system.

of intersection of the perpendiculars with the axes by MX , MY , and MZ , respectively. The
numbers (see Fig. 4.29)

x = OMX , y = OMY , z = OMZ , (4.5.2.1)

where OMX , OMY , and OMZ are the signed lengths of the directed segments
−−→
OMX ,−−→

OMY , and
−−→
OMZ of the axes OX, OY , and OZ , respectively, are called the coordinates of

the point M in the rectangular Cartesian coordinate system. The number x is called the first
coordinate or the abscissa of the point M , the number y is called the second coordinate or
the ordinate of the point M , and the number z is called the third coordinate or the applicate
of the point M . Usually one says that the point M has the coordinates (x, y, z), and the
notation M (x, y, z) is used.

To each point M of three-dimensional space one can assign its position vector. The
directed segment

−−→
OM is called the position vector of the point M . The position vector

determines the vector r (r =
−−→
OM ) whose coordinates are its projections on the axes OX,

OY, and OZ , respectively. Obviously, the triple (x, y, z) of numbers can be called the
pointM whose coordinates are these numbers, or the position vector

−−→
OM whose projections

are these numbers. An arbitrary vector (x, y, z) can be represented as

(x, y, z) = xi + yj + zk, (4.5.2.2)

where i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1) are the unit vectors with the same directions
as the coordinate axes OX, OY , and OZ . The distance between points M1(x1, y1, z1) and
M2(x2, y2, z2) is determined by the formula

d =
√

(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2 = |r2 – r1|, (4.5.2.3)

where r2 =
−−→
OM2 and r1 =

−−→
OM1 are the position vectors of the points M1 and M2,

respectively (see Fig. 4.30).

r
r r

r

1

2

1

2 1

2

M

M

X

Y

Z

O

Figure 4.30. Distance between points.
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Two vectors a = (x1, y1, z1) and b = (x2, y2, z2) are equal to each other if and only if the
following relations hold simultaneously:

x1 = x2, y1 = y2, z1 = z2.

For arbitrary vectors, one has the relations

(x1, y1, z1) � (x2, y2, z2) = (x1 � x2, y1 � y2, z1 � z2),
α(x, y, z) = (αx,αy,αz).

(4.5.2.4)

If a pointM divides the directed segment
−−−→
M1M2 in the ratio p/q =λ, then the coordinates

of this point are given by the formulas

x =
x1 + λx2

1 + λ
=
qx1 + px2

q + p
,

y =
y1 + λy2

1 + λ
=
qy1 + py2

q + p
,

z =
z1 + λz2

1 + λ
=
qz1 + pz2

q + p
,

or r =
r1 + λr2

1 + λ
=
qr1 + pr2

q + p
, (4.5.2.5)

where –∞ ≤ λ ≤ ∞. In the special case of the midpoint of the segment
−−−→
M1M2 (p = q,

λ = 1), the coordinates are

x =
x1 + x2

2
, y =

y1 + y2

2
, z =

z1 + z2

2
or r =

r1 + r2

2
;

i.e., each coordinate of the midpoint of a segment is equal to the half-sum of the corre-
sponding coordinates of its endpoints.

The angles α, β, and γ between the segment
−−−→
M1M2 and the coordinate axes OX, OY ,

and OZ are determined by the expressions

cosα =
x2 – x1

|r2 – r1|
, cos β =

y2 – y1

|r2 – r1|
, cos γ =

z2 – z1

|r2 – r1|
, (4.5.2.6)

and
cos2 α + cos2 β + cos2 γ = 1.

The numbers cosα, cos β, and cos γ are called the direction cosines of the segment
−−−→
M1M2.

The angle ϕ between arbitrary directed segments
−−−→
M1M2 and

−−−→
M3M4 joining the points

M1(x1, y1, z1), M2(x2, y2, z2) and M3(x3, y3, z3),M4(x4, y4, z4), respectively, can be found
from the relation

cosϕ =
(x2 – x1)(x4 – x3) + (y2 – y1)(y4 – y3) + (z2 – z1)(z4 – z3)

|r2 – r1| |r4 – r3|
. (4.5.2.7)

The area of the triangle with vertices M1, M2, and M3 is given by the formula

S =
1
4

√√
√
√
∣
∣∣
∣∣

y1 z1 1
y2 z2 1
y3 z3 1

∣
∣∣
∣∣

2

+

∣
∣∣
∣∣

z1 x1 1
z2 x2 1
z3 x3 1

∣
∣∣
∣∣

2

+

∣
∣∣
∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣
∣∣
∣∣

2

. (4.5.2.8)
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The volume of the pyramid with vertices M1, M2, M3, and M4 is equal to

V = �
1
6

∣
∣
∣∣
∣

x2 – x1 y2 – y1 z2 – z1
x3 – x1 y3 – y1 z3 – z1
x4 – x1 y4 – y1 z4 – z1

∣
∣
∣∣
∣

= �
1
6

∣∣
∣
∣∣
∣∣

1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4

∣∣
∣
∣∣
∣∣
, (4.5.2.9)

and the volume of the parallelepiped spanned by vectors
−−−→
M1M2,

−−−→
M1M3, and

−−−→
M1M4 is

equal to

V = �

∣∣
∣∣
∣

x2 – x1 y2 – y1 z2 – z1
x3 – x1 y3 – y1 z3 – z1
x4 – x1 y4 – y1 z4 – z1

∣∣
∣∣
∣

= �

∣
∣∣
∣∣
∣∣

1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4

∣
∣∣
∣∣
∣∣

. (4.5.2.10)

The coordinate surfaces, on which one of the coordinates is constant, are planes parallel
to the coordinate planes, and the coordinate lines, along which only one coordinate varies,
are straight lines parallel to the coordinate axes. Coordinate surfaces meet in the coordinate
lines.

4.5.2-2. Transformation of Cartesian coordinates under parallel translation of axes.

Suppose that two rectangular Cartesian coordinate systems OXY Z and ÔX̂Ŷ Ẑ are given
and the first system can be made to coincide with the second system by translating the
origin O of the first system to the origin Ô of the second system. Under this translation the
axes preserve their direction (the respective axes of the systems are parallel), and the origin
moves by x0 in the direction of the axisOX, by y0 in the direction of the axisOY , and by z0
in the direction of the axis OZ . Obviously, the point Ô in the coordinate system OXY Z
has the coordinates (x0, y0, z0).

An arbitrary point M has coordinates (x, y, z) in the system OXY Z and coordinates
(x̂, ŷ, ẑ) in the system ÔX̂Ŷ Ẑ . The transformation of rectangular Cartesian coordinates by
the parallel translation of axes is determined by the formulas

x = x̂ + x0,
y = ŷ + y0,
z = ẑ + z0

or
x̂ = x – x0,
ŷ = y – y0,
ẑ = z – z0.

(4.5.2.11)

4.5.2-3. Transformation of Cartesian coordinates under rotation of axes.

Suppose that two rectangular Cartesian coordinate systems OXY Z and OX̂Ŷ Ẑ are given
and the first system can be made to coincide with the second system by rotating the first
system around the point O.

An arbitrary point M has coordinates (x, y, z) in the system OXY Z and coordinates
(x̂, ŷ, ẑ) in the system OX̂Ŷ Ẑ. If the axis OX̂ has the direction cosines e11, e21, e31, the
axis OŶ has the direction cosines e12, e22, e32, and the axis OẐ has the direction cosines
e13, e23, e33 in the coordinate system OXY Z , then the axis OX has the direction cosines
e11, e12, e13, the axis OY has the direction cosines e21, e22, e23, and the axis OZ has the
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direction cosines e31, e32, e33 in the coordinate system OX̂Ŷ Ẑ. The transformation of
rectangular Cartesian coordinates by the rotation of axes is determined by the formulas

x = e11x̂ + e12ŷ + e13ẑ,
y = e21x̂ + e22ŷ + e23ẑ,
z = e31x̂ + e32ŷ + e33ẑ,

or
x̂ = e11x + e21y + e31z,
ŷ = e12x + e22y + e32z,
ẑ = e13x + e23y + e33z.

(4.5.2.12)

4.5.2-4. Transformation of coordinates under translation and rotation of axes.

Suppose that two rectangular Cartesian coordinate systems OXY Z and ÔX̂Ŷ Ẑ are given
and the first system can be made to coincide with the second system by translating the origin
O(0, 0, 0) of the first system to the origin Ô(x0, y0, z0) of the second system, and then by
rotating the first system around the point Ô (see Paragraphs 4.5.1-2 and 4.5.1-3).

An arbitrary point M has coordinates (x, y, z) in the system OXY Z and coordinates
(x̂, ŷ, ẑ) in the system ÔX̂Ŷ Ẑ . The transformation of rectangular Cartesian coordinates by
the parallel translation and the rotation of axes is determined by the formulas

x=e11x̂ + e12ŷ + e13ẑ + x0,

y=e21x̂ + e22ŷ + e23ẑ + y0,

z=e31x̂ + e32ŷ + e33ẑ + z0,

or

x̂=e11(x – x0) + e21(y – y0) + e31(z – z0),

ŷ=e12(x – x0) + e22(y – y0) + e32(z – z0),

ẑ=e13(x – x0) + e23(y – y0) + e33(z – z0).

(4.5.2.13)

4.5.2-5. Cylindrical and spherical coordinates.

A more general curvilinear coordinate system is obtained if one introduces three families
of coordinate surfaces such that exactly one surface of each family passes through each
point of space. The position of a point in such a system is determined by the values of the
parameters of the coordinate surfaces passing through this point. The most commonly used
curvilinear coordinate systems (cylindrical and spherical) are described below.

The cylindrical coordinates of a point M are defined as the polar coordinates ρ and ϕ
(see Paragraph 4.1.2-5) of the projection of M onto the base plane (usually OXY ) and the
distance (usually z) fromM to the base plane, which is called the applicate (see Fig. 4.31a).
To be definite, one usually assumes that 0 <ϕ≤ 2π or –π <ϕ≤π. For cylindrical coordinates,
the coordinate surfaces are the planes z = const perpendicular to the axisOZ , the half-planes
ϕ = const bounded by the axis OZ , and the cylindrical surfaces ρ = const with axis OZ .
The coordinate surfaces intersect in the coordinate lines.

r

X

φ φ

θ

ρ

O O

X

Y Y

Z

z

( )a ( )bZ

M x y z( , , ) M x y z( , , )

Figure 4.31. Point in cylindrical (a) and spherical (b) coordinates.
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The spherical (polar) coordinates are defined as the length r = |−−→OM | of the radius
vector, the longitude ϕ, and the polar distance θ, called the latitude (see Fig. 4.31b). To be
definite, one usually assumes that 0 < ϕ ≤ 2π, 0 ≤ θ ≤ π or –π < ϕ ≤ π, and 0 ≤ θ ≤ π.
For spherical coordinates, the coordinate surfaces are the spheres r = const centered at the
origin, the half-planes ϕ = const bounded by the axis OZ , and the cones θ = const with
vertex O and axis OZ . The coordinate surfaces intersect in the coordinate lines.

4.5.2-6. Relationship between Cartesian, cylindrical, and spherical coordinates.

Let M be an arbitrary point in space with rectangular Cartesian coordinates (x, y, z), cylin-
drical coordinates (ρ,ϕ, z), and spherical coordinates (r,ϕ, θ). The formulas of transition
from the cylindrical coordinate system to the Cartesian coordinate system and vice versa
have the form

x = ρ cosϕ,
y = ρ sinϕ,
z = z,

or
ρ =
√
x2 + y2,

tanϕ = y/x,
z = z,

(4.5.2.14)

where the polar angle ϕ is taken with regard to the quadrant in which the projection of the
point M onto the base plane lies. The formulas of transition from the spherical coordinate
system to the Cartesian coordinate system and vice versa have the form

x = r sin θ cosϕ,
y = r sin θ sinϕ,
z = r cos θ,

or

r =
√
x2 + y2 + z2,

tanϕ = y/x,

tan θ =
√
x2 + y2/z,

(4.5.2.15)

where the angle ϕ is determined from the same considerations as in the case of cylindrical
coordinates.

4.5.2-7. Surfaces and curves in space.

A surface in space determined by an equation in some coordinate system is the locus of
points in space whose coordinates satisfy this equation.

An equation of a surface in space in a given coordinate system is an equation with three
variables satisfied by the coordinates of points lying on the surface and not satisfied by the
coordinates of points that do not lie on the surface.

The coordinates of an arbitrary point of the surface occurring in the equation of the
surface are called the current coordinates.

Example 1. The equation

(x – x0)2 + (y – y0)2 + (z – z0)2 = r2

defines the sphere of radius r centered at the point (x0, y0, z0), i.e., the locus of points lying at the distance r
from the point (x0, y0, z0).

Example 2. The equation x2 + y2 + (z – 1)2 = 0 determines the single point with coordinates (0, 0, 1).

Example 3. The equation x2 + y2 + z2 + 1 = 0 does not have solutions for any real x, y, and z.

In the general case, the equation of a surface in the Cartesian coordinate systemOXY Z
can be written as

F (x, y, z) = 0. (4.5.2.16)
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On the other hand, a surface (continuous surface) can be defined parametrically; i.e., a
surface is defined as the set of points whose coordinates satisfy the system of parametric
equations

x = x(u, v), y = y(u, v), z = z(u, v) (4.5.2.17)

for appropriate values of the parameters u and v.
In spatial analytic geometry, each curve is treated as the intersection of two surfaces and

hence is defined by a system of two equations

F (x, y, z) = 0, G(x, y, z) = 0. (4.5.2.18)

On the other hand, each curve (continuous curve) can be defined parametrically; i.e., a curve
is defined as the set of points whose coordinates satisfy the system of parametric equations

x = x(t), y = y(t), z = z(t) or r = r(t) (–∞ ≤ t1 ≤ t ≤ t2 ≤ ∞). (4.5.2.19)

4.5.3. Vectors. Products of Vectors

4.5.3-1. Scalar product of two vectors.

The scalar product of two vectors is defined as the product of their absolute values times
the cosine of the angle between the vectors (see Fig. 4.32),

a ⋅ b = |a||b| cosϕ. (4.5.3.1)

If the angle between vectors a and b is acute, then a ⋅ b > 0; if the angle is obtuse, then
a ⋅ b < 0; if the angle is right, then a ⋅ b = 0. Taking into account (4.5.1.1), we can write the
scalar product as

a ⋅ b = |a||b| cosϕ = |a| pra b = |b| prb a. (4.5.3.2)

Remark. The scalar product of a vector a by a vector b is also denoted by (a, b) or ab.

a

b

φ

Figure 4.32. Scalar product of two vectors.

The angle ϕ between vectors is determined by the formula

cosϕ =
a ⋅ b
|a||b|

=
axbx + ayby + azbz√

a2
x + a2

y + a2
z

√
b2
x + b2

y + b2
z

. (4.5.3.3)

Properties of scalar product:

1. a ⋅ b = b ⋅ a (commutativity).
2. a ⋅ (b + c) = a ⋅ b + a ⋅ c (distributivity with respect to addition of vectors). This property

holds for any number of summands.
3. If vectors a and b are collinear, then a ⋅ b = �|a||b|. (The sign + is taken if the vectors a

and b have the same sense, and the sign – is taken if the senses are opposite.)
4. (λa) ⋅ b = λ(a ⋅ b) (associativity with respect to a scalar factor).
5. a ⋅ a = |a|2. The scalar product a ⋅ a is denoted by a2 (the scalar square of the vector a).
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6. The length of a vector is expressed via the scalar product by

|a| =
√

a ⋅ a =
√

a2.

7. Two nonzero vectors a and b are perpendicular if and only if ab = 0.
8. The scalar products of basis vectors are

i ⋅ j = i ⋅ k = j ⋅ k = 0, i ⋅ i = j ⋅ j = k ⋅ k = 1.

9. If vectors are given by their coordinates, a = (ax, ay, az) and b = (bx, by , bz), then

a ⋅ b = (axi + ayj + azj)(bxi + byj + bzj) = axbx + ayby + azbz . (4.5.3.4)

10. The Cauchy–Schwarz inequality

|a ⋅ b| ≤ |a||b|.

11. The Minkowski inequality
|a + b| ≤ |a| + |b|.

4.5.3-2. Cross product of two vectors.

The cross product of a vector a by a vector b is defined as the vector c (see Fig. 4.33)
satisfying the following three conditions:
1. Its absolute value is equal to the area of the parallelogram spanned by the vectors a and

b; i.e.,
|c| = |a × b| = |a||b| sinϕ. (4.5.3.5)

2. It is perpendicular to the plane of the parallelogram; i.e., c⊥a and c⊥b.
3. The vectors a, b, and c form a right-handed trihedral; i.e., the vector c points to the side

from which the sense of the shortest rotation from a to b is anticlockwise.

Figure 4.33. Cross product of two vectors.

Remark 1. The cross product of a vector a by a vector b is also denoted by c = [a, b].

Remark 2. If vectors a and b are collinear, then the parallelogram OADB is degenerate and should be
assigned the zero area. Hence the cross product of collinear vectors is defined to be the zero vector whose
direction is arbitrary.

Properties of cross product:
1. a × b = –b × a (anticommutativity).
2. a × (b + c) = a × b + a × c (distributivity with respect to the addition of vectors). This

property holds for any number of summands.
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3. Vectors a and b are collinear if and only if a × b = 0. In particular, a × a = 0 and
a(a × b) = b(a × b) = 0.

4. (λa) × b = a × (λb) = λ(a × b) (associativity with respect to a scalar factor).
5. The cross product of basis vectors is

i × i = j × j = k × k = 0, i × j = k, j × k = i, k × i = j.

6. If the vectors are given by their coordinates a = (ax, ay, az) and b = (bx, by , bz), then

a × b =

∣
∣∣
∣
∣

i j k
ax ay az
bx by bz

∣
∣∣
∣
∣

= (aybz – azby)i + (azbx – axbz)j + (axby – aybx)k. (4.5.3.6)

7. The area of the parallelogram spanned by vectors a and b is equal to

S = |a × b| =

√∣
∣∣ ay az
by bz

∣
∣∣

2
+
∣
∣∣ ax az
bx bz

∣
∣∣

2
+
∣
∣∣ ax ay
bx by

∣
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2
. (4.5.3.7)

8. The area of the triangle spanned by vectors a and b is equal to

S =
1
2

|a × b| =
1
2

√∣
∣
∣
ay az
by bz

∣
∣
∣

2
+
∣
∣
∣
ax az
bx bz

∣
∣
∣

2
+
∣
∣
∣
ax ay
bx by

∣
∣
∣

2
. (4.5.3.8)

Example 1. The moment with respect to the pointO of a force F applied at a pointM is the cross product
of the position vector

−−→
OM by the force F; i.e., M =

−−→
OM × F.

4.5.3-3. Conditions for vectors to be parallel or perpendicular.

A vector a is collinear to a vector b if

b = λa or a × b = 0. (4.5.3.9)

A vector a is perpendicular to a vector b if

a ⋅ b = 0. (4.5.3.10)

Remark. In general, the condition a ⋅ b = 0 implies that the vectors a and b are perpendicular or one of
them is the zero vector. The zero vector can be viewed to be perpendicular to any other vector.

4.5.3-4. Triple cross product.

The triple cross product of vectors a, b, and c is defined as the vector

d = a × (b × c). (4.5.3.11)

The triple cross product is coplanar to the vectors b and c; it can be expressed via b and c
as follows:

a × (b × c) = b ⋅ (a ⋅ c) – c ⋅ (a ⋅ b). (4.5.3.12)
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4.5.3-5. Scalar triple product of three vectors.

The scalar triple product of vectors a, b, and c is defined as the scalar product of a by the
cross product of b and c:

[abc] = a ⋅ (b × c). (4.5.3.13)

Remark. The scalar triple product of three vectors a, b, and c is also denoted by abc.

Properties of scalar triple product:
1. [abc] = [bca] = [cab] = –[bac] = –[cba] = –[acb].
2. [(a + b)cd] = [acd] + [bcd] (distributivity with respect to addition of vectors). This

property holds for any number of summands.
3. [λabc] = λ[abc] (associativity with respect to a scalar factor).
4. If the vectors are given by their coordinates a = (ax, ay , az), b = (bx, by, bz), and

c = (cx, cy , cz), then

[abc] =

∣∣
∣∣
∣

ax ay az
bx by bz
cx cy cz

∣∣
∣∣
∣

. (4.5.3.14)

5. The scalar triple product [abc] is equal to the volume V of the parallelepiped spanned by
the vectors a, b, and c taken with the sign + if the vectors a, b, and c form a right-handed
trihedral and the sign – if the vectors form a left-handed trihedral,

[abc] = �V . (4.5.3.15)

6. Three nonzero vectors a, b, and c are coplanar if and only if [abc] = 0. In this case, the
vectors a, b, and c are linearly dependent; they satisfy a relation of the form c = αa+βb.

4.5.4. Curves and Surfaces in Space

4.5.4-1. Methods for defining curves.

A continuous curve in three-dimensional space is the set of points whose coordinates satisfy
a system of parametric equations (4.5.2.19). This method for defining a curve is referred
to as parametric. The curve can also be defined by an equivalent system of equations
(4.5.2.18), i.e., described as the intersection of two surfaces (see Paragraph 4.5.4-2).

Remark 1. A curve may have more than one branch.

Remark 2. One can obtain the equation of the projection of the curve (4.5.2.19) onto the plane OXY by
eliminating the variable x from equations (4.5.2.19)

4.5.4-2. Methods for defining surfaces.

A continuous surface in three-dimensional space is the set of points whose coordinates
satisfy a system of parametric equations (4.5.2.17). This method for defining a surface is
referred to as parametric. The surface can also be determined by an equation (4.5.2.16) or
z = f (x, y).

Remark 1. A surface may have more than one sheet.

Remark 2. The surfaces determined by the equations

F (x, y, z) = 0 and λF (x,y, z) = 0

coincide provided that the constant λ is nonzero.
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Remark 3. For any real number λ, the equation

F1(x, y, z) + λF2(x, y, z) = 0

describes a surface passing through the line of intersection of the surfaces (4.5.2.18), provided that this line
exists.

Remark 4. The equation
F1(x,y, z) ⋅ F2(x, y, z) = 0

describes the surface that is formed by points of both surfaces in (4.5.2.18) and does not contain any other
points.

4.6. Line and Plane in Space
4.6.1. Plane in Space

4.6.1-1. Equation of plane passing through point M0 and perpendicular to vector N.

A plane is a first-order algebraic surface. In a Cartesian coordinate system, a plane is given
by a first-order equation.

The equation of the plane passing through a point M0(x0, y0, z0) and perpendicularly to
a vector N = (A,B,C) has the form

A(x – x0) + B(y – y0) + C(z – z0) = 0, or (r – r0) ⋅ N = 0, (4.6.1.1)

where r and r0 are the position vectors of the point M (x, y, z) and M0(x0, y0, z0), re-
spectively (see Fig. 4.34). The vector N is called a normal vector. Its direction cosines
are

cosα =
A√

A2 +B2 + C2
, cos β =

B√
A2 + B2 + C2

, cos γ =
C√

A2 + B2 + C2
. (4.6.1.2)

N

M

M x y z( , , )

0

Figure 4.34. Plane passing through a point M0 and perpendicularly to a vector N.

Example 1. Let us write out the equation of the plane that passes through the point M0(1, 2, 1) and is
perpendicular to the vector N = (3, 2, 3).

According to (4.6.1.1), the desired equation is 3(x – 1) + 2(y – 2) + 3(z – 1) = 0 or 3x + 2y + 3z – 10 = 0.

4.6.1-2. General equation of plane.

The general (complete) equation of a plane has the form

Ax +By + Cz +D = 0, or r ⋅ N + D = 0. (4.6.1.3)

It follows from (4.6.1.1) that D = –Ax0 – By0 – Cz0. If one of the coefficients in the
equation of a plane is zero, then the equation is said to be incomplete:
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Figure 4.35. Basis in plane.

1. For D = 0, the equation has the form Ax + By + Cz = 0 and defines a plane passing
through the origin.

2. For A = 0 (respectively, B = 0 or C = 0), the equation has the form By + Cz + D = 0
and defines a plane parallel to the axis OX (respectively, OY or OZ).

3. ForA=D= 0 (respectively,B=D= 0 orB=D= 0), the equation has the formBy+Cz= 0
and defines a plane passing through the axis OX (respectively, OY or OZ).

4. ForA=B = 0 (respectively, A=C = 0 orB =C = 0), the equation has the formCz+D = 0
and defines a plane parallel to the plane OXY (respectively, OXZ or OY Z).

4.6.1-3. Parametric equation of plane.

Each vector
−−−→
M0M = r – r0 lying in a plane (where r and r0 are the position vectors of the

points M and M0, respectively) can be represented as (see Fig. 4.35)

−−−→
M0M = tR1 + sR2, (4.6.1.4)

where R1 = (l1,m1,n1) and R2 = (l2,m2,n2) are two arbitrary noncollinear vectors lying in
the plane. Obviously, these two vectors form a basis in this plane. The parametric equation
of a plane passing through the point M0(x0, y0, z0) has the form

r = r0 + tR1 + sR2, or
x = x0 + tl1 + sl2,
y = y0 + tm1 + sm2,
z = z0 + tn1 + sn2.

(4.6.1.5)

4.6.1-4. Intercept equation of plane.

A plane Ax+By +Cz +D = 0 that is not parallel to the axisOx (i.e.,A ≠ 0) meets this axis
at a (signed) distance a = –D/A from the origin (see Fig. 4.36). The number a is called the
x-intercept of the plane. Similarly, one defines the y-intercepts b = –D/B (for B ≠ 0) and
the z-intercept c = –D/C (for C ≠ 0). Then such a plane can be defined by the equation

x

a
+
y

b
+
z

c
= 1, (4.6.1.6)

which is called the intercept equation of the plane.
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Figure 4.36. A plane with intercept equation.
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0

X

Y

Z

Figure 4.37. A plane with normalized equation.

Remark 1. Equation (4.6.1.6) can be obtained as the equation of the plane passing through three given
points.

Remark 2. A plane parallel to the axis OX but nonparallel to the other two axes is defined by the
equation y/b + z/c = 1, where b and c are the y- and z-intercepts of the plane. A plane simultaneously parallel
to the axes OY and OZ can be represented in the form z/c = 1.

Example 2. Consider the plane given by the general equation 2x + 3y – z + 6 = 0. Let us rewrite it in
intercept form.

The x-, y-, and z-intercepts of this plane are

a = –
D

A
= –

6
2

= –3, b = –
D

B
= –

6
3

= –2, and c = –
D

C
= –

6
–1

= 6.

Thus the intercept equation of the plane reads
x

–3
+
y

–2
+
z

6
= 0.

4.6.1-5. Normalized equation of plane.

The normalized equation of a plane has the form

r ⋅ N0 – p = 0, or x cosα + y cos β + z cos γ – p = 0, (4.6.1.7)

where N0 = (cosα, cos β, cos γ) is a unit vector and p is the distance from the plane to
the origin; here cosα, cos β, and cos γ are the direction cosines of the normal to the
plane (see Fig. 4.37). The numbers cosα, cos β, cos γ, and p can be expressed via the
coefficients A, B, C as follows:

cosα = �
A√

A2 + B2 + C2
, cos β = �

B√
A2 +B2 + C2

,

cos γ = �
C√

A2 +B2 + C2
, p = �

D√
A2 + B2 + C2

,
(4.6.1.8)

where the upper sign is taken if D < 0 and the lower sign is taken if D > 0. For D = 0,
either sign can be taken.

The normalized equation (4.6.1.7) can be obtained from a general equation (4.6.1.3) by
multiplication by the normalizing factor

μ = �
1√

A2 + B2 + C2
, (4.6.1.9)

where the sign of μ must be opposite to that of D.
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Example 3. Let us reduce the equation of the plane –2x + 2y – z – 6 = 0 to normalized form.
Since D = –6 < 0, we see that the normalizing factor is

μ =
1

√
(–2)2 + 22 + (–1)2

=
1
3

.

We multiply the equation by this factor and obtain

–
2
3
x +

2
3
y –

1
3
z – 2 = 0.

Hence for this plane we have

cosα = –
2
3

, cos β =
2
3

, cos γ = –
1
3

, p = 2.

Remark. The numbers cosα, cos β, cos γ, and p are also called the polar parameters of a plane.

4.6.1-6. Equation of plane passing through point and parallel to another plane.

The plane that passes through a point M1(x1, y1, z1) and is parallel to a plane Ax + By +
Cz +D = 0 is given by the equation

A(x – x1) +B(y – y1) + C(z – z1) +D = 0. (4.6.1.10)

Example 4. Let us derive the equation of the plane that passes through the point M1(1, 2, –1) and is
parallel to the plane x + 2y + z + 2 = 0.

According to (4.6.1.1), the desired equation is (x – 1) + 2(y – 2) + (z + 1) + 2 = 0 or

x + 2y + z – 2 = 0.

4.6.1-7. Equation of plane passing through three points.

The plane passing through three points M1(x1, y1, z1), M2(x2, y2, z2), and M3(x3, y3, z3)
(see Fig. 4.38) is described by the equation

∣
∣∣
∣∣

x – x1 y – y1 z – z1
x2 – x1 y2 – y1 z2 – z1
x3 – x1 y3 – y1 z3 – z1

∣
∣∣
∣∣

= 0, or
[
(r – r1)(r2 – r1)(r3 – r1)

]
= 0, (4.6.1.11)

where r, r1, r2, and r3 are the position vectors of the points M (x, y, z), M1(x1, y1, z1),
M2(x2, y2, z2), and M3(x3, y3, z3), respectively.

M

M

M

M x y z( , , )

1

2

3

Figure 4.38. Plane passing through three points.
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Remark 1. Equation (4.6.1.11) means that the vectors
−−−→
M1M ,

−−−→
M1M 2, and

−−−→
M1M 3 are coplanar.

Remark 2. Equation (4.6.1.11) of the plane passing through three given points can be represented via a
fourth-order determinant as follows: ∣

∣
∣
∣∣
∣
∣

x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣
∣
∣
∣∣
∣
∣

= 0. (4.6.1.11a)

Remark 3. If the three points M1(x1, y1, z1), M2(x2, y2, z2), and M3(x3, y3, z3) are collinear, then equa-
tions (4.6.1.11) and (4.6.1.11a) become identities.

Example 5. Let us construct an equation of the plane passing through the three points M1(1, 1, 1),
M2(2, 2, 1), and M3(1, 2, 2).

Obviously, the points M1, M2, and M3 are not collinear, since the vectors
−−−→
M1M 2 = (1, 1, 0) and

−−−→
M1M 3 =

(0, 1, 1) are not collinear. According to (4.6.1.11), the desired equation is
∣∣
∣
∣
∣

x – 1 y – 1 z – 1
1 1 0
0 1 1

∣∣
∣
∣
∣

= 0,

whence
x – y + z – 1 = 0.

4.6.1-8. Equation of plane passing through two points and parallel to line.

The equation of the plane passing through two points M1(x1, y1, z1) and M2(x2, y2, z2) and
parallel to a straight line with direction vector R = (l,m,n) (see Fig. 4.39) is

∣∣
∣∣
∣

x – x1 y – y1 z – z1
x2 – x1 y2 – y1 z2 – z1
l m n

∣∣
∣∣
∣

= 0, or
[
(r – r1)(r2 – r1)R

]
= 0, (4.6.1.12)

where r, r1, and r2 are the position vectors of the points M (x, y, z), M1(x1, y1, z1), and
M2(x2, y2, z2), respectively.

R

R

M

M

M x y z( , , )2

1

Figure 4.39. Plane passing through two points and parallel to line.

Remark. If the vectors
−−−→
M1M 2 and R are collinear, then equations (4.6.1.12) become identities.

Example 6. Let us construct an equation of the plane passing through the pointsM1(0, 1, 0) andM2(1, 1, 1)
and parallel to the straight line with direction vector R = (0, 1, 1).

According to (4.6.1.12), the desired equation is
∣
∣
∣∣
∣

x – 0 y – 1 z – 0
1 – 0 1 – 1 1 – 0

0 1 1

∣
∣
∣∣
∣

= 0,

whence
–x – y + z + 1 = 0.
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R

R

M x y z( , , )
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1

1

2

2

Figure 4.40. Plane passing through a point and parallel to two straight lines.

4.6.1-9. Equation of plane passing through point and parallel to two straight lines.

The equation of the plane passing through a point M1(x1, y1, z1) and parallel to two straight
lines with direction vectors R1 = (l1,m1,n1) and R2 = (l2,m2,n2) (see Fig. 4.40) is

∣
∣∣
∣
∣

x – x1 y – y1 z – z1
l1 m1 n1
l2 m2 n2

∣
∣∣
∣
∣

= 0, or
[
(r – r1)R1R2

]
= 0, (4.6.1.13)

where r and r1 are the position vectors of the points M (x, y, z) and M1(x1, y1, z1), respec-
tively.

Example 7. Let us find the equation of the plane passing through the point M1(0, 1, 0) and parallel to the
straight lines with direction vectors R1 = (1, 0, 1) and R2 = (0, 1, 2).

According to (4.6.1.13), the desired equation is
∣
∣
∣
∣∣

x – 0 y – 1 z – 0
1 0 1
0 1 2

∣
∣
∣
∣∣

= 0,

whence
–x – 2y + z + 2 = 0.

4.6.1-10. Plane passing through two points and perpendicular to given plane.

The plane (see Fig. 4.41) passing through two points M1(x1, y1, z1) and M2(x2, y2, z2) and
perpendicular to the plane given by the equation Ax + By + Cz + D = 0 is determined by
the equation

∣∣
∣∣
∣

x – x1 y – y1 z – z1
x2 – x1 y2 – y1 z2 – z1
A B C

∣∣
∣∣
∣

= 0, or
[
(r – r1)(r2 – r1)N

]
= 0, (4.6.1.14)

where r, r1, and r2 are the position vectors of the points M (x, y, z), M1(x1, y1, z1), and
M2(x2, y2, z2), respectively.

Remark. If the straight line passing through points M1(x1, y1, z1) and M2(x2, y2, z2) is perpendicular to
the original plane, then the desired plane is undetermined and equations (4.6.1.14) become identities.
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Figure 4.41. Plane passing through two points and perpendicular to given plane.

Example 8. Let us find an equation of the plane passing through the points M1(0, 1, 2) and M2(2, 2, 3)
and perpendicular to the plane x – y + z + 5 = 0.

According to (4.6.1.14), the desired equation is
∣
∣
∣∣
∣

x – 0 y – 1 z – 2
2 – 0 2 – 1 3 – 2

1 –1 1

∣
∣
∣∣
∣

= 0,

whence
2x – y – 3z + 7 = 0.

4.6.1-11. Plane passing through point and perpendicular to two planes.

The plane (see Fig. 4.42) passing through a point M1(x1, y1, z1) and perpendicular to two
(nonparallel) planes A1x +B1y +C1z +D1 = 0 and A2x +B2y +C2z +D2 = 0 is given by
the equation

∣∣
∣
∣∣

x – x1 y – y1 z – z1
A1 B1 C1
A2 B2 C2

∣∣
∣
∣∣

= 0, or
[
(r – r1)N1N2

]
= 0, (4.6.1.15)

where N1 = (A1,B1,C1) and N2 = (A2,B2,C2) are the normals to the given planes and r
and r1 are the position vectors of the points M (x, y, z) and M1(x1, y1, z1), respectively.

Figure 4.42. Plane passing through a point and perpendicular to two planes.

Remark 1. Equations (4.6.1.15) mean that the vectors
−−−→
M1M , N1, and N2 are coplanar.
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Remark 2. If the original planes are parallel, then the desired plane is undetermined. In this case,
equations (4.6.1.15) become identities.

Example 9. Let us find an equation of the plane passing through the point M1(0, 1, 2) and perpendicular
to the planes x – y + z + 5 = 0 and –x + y + z – 1 = 0.

According to (4.6.1.15), the desired equation is
∣
∣∣
∣
∣

x – 0 y – 1 z – 2
1 –1 1
–1 1 1

∣
∣∣
∣
∣

= 0,

whence
x + y – 1 = 0.

4.6.1-12. Equation of plane passing through line of intersection of planes.

The planes passing through the line of intersection of the planes A1x +B1y +C1z +D1 = 0
and A2x +B2y + C2z +D2 = 0 are given by the equation

α(A1x +B1y + C1z +D1) + β(A2x +B2y + C2z +D2) = 0, (4.6.1.16)

which is called the equation of a pencil of planes. Here α and β are arbitrary parameters.
Let α ≠ 0. Set β/α = λ; then equation (4.6.1.16) becomes

A1x +B1y + C1z +D1 + λ(A2x +B2y + C2z +D2) = 0. (4.6.1.17)

By varying the parameter λ from –∞ to +∞, we obtain all the planes in the pencil. For
λ = �1, we obtain equations of the planes that bisect the angles between the given planes
provided that the equations of the latter are given in normalized form.

Remark. The passage from equation (4.6.1.16) to equation (4.6.1.17) excludes the case α = 0. Equa-
tion (4.6.1.17) does not define the plane A2x + B2y + C2z + D2 = 0; i.e., equation (4.6.1.17) for various λ
defines all the planes in the pencil but one (the second of the two given planes).

4.6.2. Line in Space

4.6.2-1. Parametric equation of straight line.

The parametric equation of the line that passes through a pointM1(x1, y1, z1) and is parallel
to a direction vector R = (l,m,n) (see Fig. 4.43) is

x = x1 + lt, y = y1 + mt, z = z1 + nt, or r = r1 + tR, (4.6.2.1)

where r =
−−→
OM and r1 =

−−−→
M1M . As the parameter t varies from –∞ to +∞, the pointM with

position vector r = (x, y, z) determined by formula (4.6.2.1) runs over the entire straight
line in question. It is convenient to use the parametric equation (4.6.2.1) if one needs to
find the point of intersection of a straight line with a plane.

The numbers l,m, and n characterize the direction of the straight line in space; they are
called the direction coefficients of the straight line. For a unit vector R = R0, the coefficients
l,m, n are the cosines of the angles α, β, and γ formed by this straight line (the direction of
the vector R0) with the coordinate axesOX,OY , and OZ . These cosines can be expressed
via the coordinates of the direction vector R as

cosα =
l√

l2 +m2 + n2
, cos β =

m√
l2 + m2 + n2

, cos γ =
n√

l2 + m2 + n2
. (4.6.2.2)

Example 1. Let us find the equation of the straight line that passes through the point M1(2, –3, 1) and is
parallel to the direction vector R = (1, 2, –3).

According to (4.6.2.1), the desired equation is

x = 2 + t, y = –3 + 2t, z = 1 – 3t.
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Figure 4.43. Straight line passing through a point and parallel to direction vector.

4.6.2-2. Canonical equation of straight line.

The equation

x – x1

l
=
y – y1

m
=
z – z1

n
, or (r – r1) × R = 0, (4.6.2.3)

is called the canonical equation of the straight line passing through the point M1(x1, y1, z1)
with position vector r1 = (x1, y1, z1) and parallel to the direction vector R = (l,m,n).

Remark 1. One can obtain the canonical equation (4.6.2.3) from the parametric equations (4.6.2.1) by
eliminating the parameter t.

Remark 2. In the canonical equation, all coefficients l, m, and n cannot be zero simultaneously, since
|R| ≠ 0. But some of them may be zero. If one of the denominators in equations (4.6.2.3) is zero, this means
that the corresponding numerator is also zero.

Example 2. The equations (x – 1)/1 = (y – 3)/4 = (z – 3)/0 determine the straight line passing through
the point M1(1, 3, 3) and perpendicular to the axis OZ. This means that the line lies in the plane z = 3, and
hence z – 3 = 0 for all points of the line.

Example 3. Let us find the equation of the straight line passing through the pointM1(2, –3, 1) and parallel
to the direction vector R = (1, 2, –3).

According to (4.6.2.3), the desired equation is

x – 2
1

=
y + 3

2
=
z – 1
–3

.

4.6.2-3. General equation of straight line.

The general equation of a straight line in space defines it as the line of intersection of two
planes (see Fig. 4.44) and is given analytically by a system of two linear equations

A1x +B1y + C1z + D1 = 0,
A2x +B2y + C2z + D2 = 0,

or
r ⋅ N1 +D1 = 0,
r ⋅ N2 +D2 = 0,

(4.6.2.4)

where N1 = (A1,B1,C1) and N2 = (A2,B2,C2) are the normals to the planes and r is the
position vector of the point (x, y, z).

The direction vector R is equal to the cross product of the normals N1 and N2; i.e.,

R = N1 × N2, (4.6.2.5)
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Figure 4.44. Straight line as intersection of two planes.

and its coordinates l, m, and n can be obtained by the formulas

l =
∣∣
∣
B1 C1
B2 C2

∣∣
∣ , m =

∣∣
∣
C1 A1
C2 A2

∣∣
∣ , n =

∣∣
∣
A1 B1
A2 B2

∣∣
∣ . (4.6.2.6)

Remark 1. Simultaneous equations of the form (4.6.2.4) define a straight line if and only if the coefficients
A1, B1, and C1 in one of them are not proportional to the respective coefficients A2, B2, and C2 in the other.

Remark 2. For D1 = D2 = 0 (and only in this case), the line passes through the origin.

Example 4. Let us reduce the equation of the straight line

x + 2y – z + 1 = 0, x – y + z + 3 = 0

to canonical form.
We choose one of the coordinates arbitrarily; say, x = 0. Then

2y – z + 1 = 0, –y + z + 3 = 0,

and hence y = –4, z = –7. Thus the desired line contains the pointM (0, –4, –7). We find the cross product of the
vectors N1 = (1, 2, –1) and N2 = (1, –1, 1) and, according to (4.6.2.5), obtain the direction vector R = (1, –2, –3)
of the desired line. Therefore, with (4.6.2.3) taken into account, the equation of the line becomes

x

1
=
y + 4

–2
=
z + 7

–3
.

4.6.2-4. Equation of line in projections.

The equation of a line in projections can be obtained by eliminating first z and then y from
the general equations (4.6.2.4):

y = kx + a, z = hx + b. (4.6.2.7)

Each of two equations (4.6.2.7) defines a plane projecting the straight line onto the planes
OXY and OXZ (see Fig. 4.45).

Remark 1. For straight lines parallel to the plane OYZ, this form of the equations cannot be used; one
should take the projections onto some other pair of coordinate planes.

Remark 2. Equations (4.6.2.7) can be represented in the canonical form

x – 0
1

=
y – a
k

=
z – b
h

. (4.6.2.8)
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x

O

y

z

Figure 4.45. Straight line with equation in projections.

4.6.2-5. Equation of straight line passing through two points.

The canonical equation of the straight line (see Fig. 4.46) passing through two points
M1(x1, y1, z1) and M2(x2, y2, z2) is

x – x1

x2 – x1
=
y – y1

y2 – y1
=
z – z1

z2 – z1
, or (r – r1) × (r2 – r1) = 0, (4.6.2.9)

where r, r1, and r2 are the position vectors of the points M (x, y, z), M1(x1, y1, z1), and
M2(x2, y2, z2), respectively.

The parametric equations of the straight line passing through two points M1(x1, y1, z1)
andM2(x2, y2, z2) in the rectangular Cartesian coordinate system OXY Z can be written as

x = x1(1 – t) + x2t,
y = y1(1 – t) + y2t,
z = z1(1 – t) + z2t,

or r = (1 – t)r1 + tr2. (4.6.2.10)

Remark. Eliminating the parameter t from equations (4.6.2.10), we obtain equations (4.6.2.9).

r

r

r

2

1
2

1

M
M

M x y z( , , )

X

O Y

Z

Figure 4.46. Straight line passing through two
points.

N

M0

Figure 4.47. Straight line passing through point
and perpendicular to plane.

4.6.2-6. Equation of straight line passing through point and perpendicular to plane.

The equation of the straight line passing through a point M0(x0, y0, z0) and perpendicular
to the plane given by the equation Ax+By +Cz +D = 0, or r ⋅ N +D = 0 (see Fig. 4.47), is

x – x0

A
=
y – y0

B
=
z – z0

C
, (4.6.2.11)

where N = (A,B,C) is the normal to the plane.
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4.6.3. Mutual Arrangement of Points, Lines, and Planes

4.6.3-1. Angles between lines in space.

Consider two straight lines determined by vector parametric equations r = r1 + tR1 and
r = r2 + tR2. The angle ϕ between these lines (see Fig. 4.48) can be obtained from the
formulas

cosϕ =
R1 ⋅ R2

|R1| |R2|
, sinϕ =

|R1 × R2|
|R1| |R2|

.

If the lines are given by the canonical equations

x – x1

l1
=
y – y1

m1
=
z – z1

n1
and

x – x2

l2
=
y – y2

m2
=
z – z2

n2
,

then the angle ϕ between the lines can be found from the formulas

cosϕ =
l1l2 + m1m2 + n1n2√

l2
1 +m2

1 + n2
1

√
l2

2 +m2
2 + n2

2

,

sinϕ =

√∣
∣∣m1 n1
m2 n2

∣
∣∣

2
+
∣
∣∣n1 l1
n2 l2

∣
∣∣

2
+
∣
∣∣ l1 m1
l2 m2

∣
∣∣

2

√
l2

1 + m2
1 + n2

1

√
l2

2 +m2
2 + n2

2

,

(4.6.3.1)

which coincide with formulas (4.6.3.1) written in coordinate form.

R

R

2

1

φ

Figure 4.48. Angles between lines in space.

Example 1. Let us find the angle between the lines

x

1
=
y – 2

2
=
z + 1

2
and

x

0
=
y – 2

3
=
z + 1

4
.

Using the first formula in (4.6.3.1), we obtain

cosϕ =
1 ⋅ 0 + 3 ⋅ 2 + 4 ⋅ 2√

02 + 32 + 42
√

12 + 22 + 22
=

14
15

,

and hence ϕ ≈ 0.3672 rad.

4.6.3-2. Conditions for two lines to be parallel.

Two straight lines given by vector parametric equations r = r1 + tR1 and r = r2 + tR2 are
parallel if

R2 = λR1 or R2 × R1 = 0,
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i.e., if their direction vectors R1 and R2 are collinear. If the straight lines are given by
canonical equations, then the condition that they are parallel can be written as

l1

l2
=
m1

m2
=
n1

n2
. (4.6.3.2)

Remark. If parallel lines have a common point (i.e., r1 = r2 in parametric equations), then they coincide.

Example 2. Let us show that the lines

x – 1
2

=
y – 3

1
=
z

2
and

x – 3
4

=
y + 1

2
=
z

4

are parallel to each other.
Indeed, condition (4.6.3.2) is satisfied,

2
4

=
1
2

=
2
4

,

and hence the lines are parallel.

4.6.3-3. Conditions for two lines to be perpendicular.

Two straight lines given by vector parametric equation r = r1 + tR1 and r = r2 + tR2 are
perpendicular if

R1 ⋅ R2 = 0. (4.6.3.3)

If the lines are given by canonical equations, then the condition that they are perpendicular
can be written as

l1l2 +m1m2 + n1n2 = 0, (4.6.3.3a)

which coincides with formula (4.6.3.3) written in coordinate form.

Example 3. Let us show that the lines

x – 1
2

=
y – 3

1
=
z

2
and

x – 2
1

=
y + 1

2
=
z

–2

are perpendicular.
Indeed, condition (4.6.3.3a) is satisfied,

2 ⋅ 1 + 1 ⋅ 2 + 2 ⋅ (–2) = 0,

and hence the lines are perpendicular.

4.6.3-4. Theorem on the arrangement of two lines in space.

THEOREM ON THE ARRANGEMENT OF TWO LINES IN SPACE. Two lines in space can:
a) be skew;
b) lie in the same plane and not meet each other, i.e., be parallel;
c) meet at a point;
d) coincide.

A general characteristic of all four cases is the determinant of the matrix

(
x2 – x1 y2 – y1 z2 – z1
l1 m1 n1
l2 m2 n2

)

, (4.6.3.4)
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whose entries are taken from the canonical equations

x – x1

l1
=
y – y1

m1
=
z – z1

n1
and

x – x2

l2
=
y – y2

m2
=
z – z2

n2

of the lines.
In cases a–d of the theorem, for the matrix (4.6.3.4) we have, respectively:

a) the determinant is nonzero;
b) the last two rows are proportional to each other but are not proportional to the first row;
c) the last two rows are not proportional, and the first row is their linear combination;
d) all rows are proportional.

4.6.3-5. Angles between planes.

Consider two planes given by the general equations

A1x +B1y + C1z + D1 = 0,
A2x +B2y + C2z + D2 = 0,

or
r ⋅ N1 +D1 = 0,
r ⋅ N2 +D2 = 0,

(4.6.3.5)

where N1 = (A1,B1,C1) and N2 = (A2,B2,C2) are the normals to the planes and r is the
position vector of the point (x, y, z).

N

N

1

2

φ

Figure 4.49. Angles between planes.

The angle between two planes (see Fig. 4.49) is defined as any of the two adjacent
dihedral angles formed by the planes (if the planes are parallel, then the angle between
them is by definition equal to 0 or π). One of these dihedral angles is equal to the angle ϕ
between the normal vectors N1 = (A1,B1,C1) and N2 = (A2,B2,C2) to the planes, which
can be determined by the formula

cosϕ =
A1A2 + B1B2 + C1C2√

A2
1 +B2

1 + C2
1

√
A2

2 + B2
2 + C2

2

=
N1 ⋅ N2

|N1| |N2|
. (4.6.3.6)

If the planes are given by vector parametric equations

r = r1 + R1t + R2s or r′ = r′1 + R′
1t + R′

2s, (4.6.3.7)

then the angle between the planes is given by the formula

cosϕ =
(R1 × R2) ⋅ (R′

1 × R′
2)

|R1 × R2| |R′
1 × R′

2|
. (4.6.3.8)
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4.6.3-6. Conditions for two planes to be parallel.

Two planes given by the general equations (4.6.3.5) in coordinate form are parallel if and
only if the following condition for the planes to be parallel is satisfied:

A1

A2
=
B1

B2
=
C1

C2
≠
D1

D2
; (4.6.3.9)

in this case, the planes do not coincide. For planes given by the general equations (4.6.3.5)
in vector form, the condition becomes

N2 = λN1 or N2 × N1 = 0; (4.6.3.10)

i.e., the planes are parallel if their normals are parallel.

Example 4. Let us show that the planes x – y + z = 0 and 2x – 2y + 2z + 5 = 0 are parallel.
Since condition (4.6.3.9) is satisfied,

1
2

=
–1
–2

=
1
2

,

we see that the planes are parallel to each other.

4.6.3-7. Conditions for planes to coincide.

Two planes coincide if they are parallel and have a common point.
Two planes given by the general equations (4.6.3.5) coincide if and only if the following

condition for the planes to coincide is satisfied:

A1

A2
=
B1

B2
=
C1

C2
=
D1

D2
. (4.6.3.11)

Remark. Sometimes the case in which the planes coincide is treated as a special case of parallel straight
lines and is not distinguished as an exceptional case.

4.6.3-8. Conditions for two planes to be perpendicular.

Planes are perpendicular if their normals are perpendicular.
Two planes determined by the general equations (4.6.3.5) are perpendicular if and only

if the following condition for the planes to be perpendicular is satisfied:

A1A2 + B1B2 + C1C2 = 0 or N1 ⋅ N2 = 0, (4.6.3.12)

where N1 = (A1,B1,C1) and N2 = (A2,B2,C2) are the normals to the planes.

Example 5. Let us show that the planes x – y + z = 0 and x – y – 2z + 5 = 0 are perpendicular.
Since condition (4.6.3.12) is satisfied,

1 ⋅ 1 + (–1) ⋅ (–1) + 1 ⋅ (–2) = 0,

we see that the planes are perpendicular to each other.
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4.6.3-9. Intersection of three planes.

The point of intersection of three planes given by the equations

A1x +B1y + C1z +D1 = 0, A2x + B2y + C2z +D2 = 0, A3x + B3y + C3z +D3 = 0,

has the following coordinates:

x0 =–
1
Δ

∣∣
∣
∣∣

D1 B1 C1
D2 B2 C2
D3 B3 C3

∣∣
∣
∣∣
, y0 =–

1
Δ

∣∣
∣
∣∣

A1 D1 C1
A2 D2 C2
A3 D3 C3

∣∣
∣
∣∣
, z0 =–

1
Δ

∣∣
∣
∣∣

A1 B1 D1
A2 B2 D2
A3 B3 D3

∣∣
∣
∣∣
, (4.6.3.13)

where Δ is given by the formula

Δ =

∣
∣∣
∣∣

A1 B1 C1
A2 B2 C2
A3 B3 C3

∣
∣∣
∣∣
. (4.6.3.14)

Remark. Three planes are concurrent at a single point if Δ ≠ 0. If Δ = 0 and at least one of the second-
order minors is nonzero, then all planes are parallel to a single line. If all minors are zero, then the planes are
concurrent in a single line.

4.6.3-10. Intersection of four planes.

If four planes given by the equations

A1x + B1y + C1z + D1 = 0, A2x +B2y + C2z +D2 = 0,
A3x + B3y + C3z + D3 = 0, A4x +B4y + C4z +D4 = 0,

are concurrent at a single point, then
∣
∣∣
∣∣
∣∣

x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣
∣∣
∣∣
∣∣

= 0. (4.6.3.15)

To find the points of intersection, it suffices to find the point of intersection of any three
of them (see Paragraph 4.6.3-9). The remaining equation follows from the three other
equations.

4.6.3-11. Angle between straight line and plane.

Consider a plane given by the general equation

Ax +By + Cz + D = 0, or r ⋅ N + D = 0 (4.6.3.16)

and a line given by the canonical equation
x – x1

l
=
y – y1

m
=
z – z1

n
, or (r – r1) × R = 0, (4.6.3.17)

where N = (A,B,C) is the normal to the plane, r and r1 are the respective position vectors
of the points (x, y, z) and (x1, y1, z1), and R = (l,m,n) is the direction vector of the line.

The angle between the line and the plane (see Fig. 4.50) is defined as the complementary
angle θ of the angle ϕ between the direction vector R of the line and the normal N to the
plane. For this angle, one has the formula

sin θ = cosϕ =
Al +Bm + Cn√

A2 + B2 + C2
√
l2 + m2 + n2

=
N ⋅ R

|N| |R|
. (4.6.3.18)
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Figure 4.50. Angle between straight line and plane.

4.6.3-12. Conditions for line and plane to be parallel.

A plane given by the general equation (4.6.3.16) and a line given by the canonical equa-
tion (4.6.3.17) are parallel if

Al +Bm + Cn = 0,
Ax1 + By1 + Cz1 + D ≠ 0,

or
N ⋅ R = 0,
N ⋅ r1 + D ≠ 0;

(4.6.3.19)

i.e., a line is parallel to a plane if the direction vector of the line is perpendicular to the
normal to the plane. Conditions (4.6.3.19) include the condition under which the line is not
contained in the plane.

4.6.3-13. Condition for line to be entirely contained in plane.

A straight line given by the canonical equation (4.6.3.17) is entirely contained in a plane
given by the general equation (4.6.3.16) if

Al +Bm + Cn = 0,
Ax1 + By1 + Cz1 + D = 0,

or
N ⋅ R = 0,
N ⋅ r1 +D = 0.

(4.6.3.20)

Remark. Sometimes the case in which a line is entirely contained in a plane is treated as a special case of
parallel straight lines and is not distinguished as an exception.

4.6.3-14. Condition for line and plane to be perpendicular.

A line given by the canonical equation (4.6.3.17) and a plane given by the general equa-
tion (4.6.3.16) are perpendicular if the line is collinear to the normal to the plane (is a normal
itself), i.e., if

A

l
=
B

m
=
C

n
, or N = λR, or N × R = 0. (4.6.3.21)

4.6.3-15. Intersection of line and plane.

Consider a plane given by the general equation (4.6.3.16) and a straight line given by the
parametric equation

x = x1 + lt, y = y1 + mt, z = z1 + nt, or r = r1 + tR.
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The coordinates of the point M0(x0, y0, z0) of intersection of the line with the plane (see
Fig. 4.50), if the point exists at all, are determined by the formulas

x0 = x1 + lt0, y0 = y1 + mt0, z0 = z1 + nt0, or r = r1 + t0R, (4.6.3.22)

where the parameter t0 is determined from the relation

t0 = –
Ax1 + By1 + Cz1 + D

Al + Bm + Cn
= –

N ⋅ r1 + D
N ⋅ R

. (4.6.3.23)

Remark. To obtain formulas (4.6.3.22) and (4.6.3.23), one should rewrite the equation of the straight line
in parametric form and replace x, y, and z in equation (4.6.3.16) of the plane by their expressions via t. From
the resulting expression, one finds the parameter t0 and then the coordinates x0, y0, and z0 themselves.

Example 6. Let us find the point of intersection of the line x/2 = (y – 1)/1 = (z + 1)/2 with the plane
x + 2y + 3z – 29 = 0.

We use formula (4.6.3.23) to find the value of the parameter t0:

t0 = –
1 ⋅ 0 + 2 ⋅ 1 + 3 ⋅ (–1) – 29

1 ⋅ 2 + 2 ⋅ 1 + 3 ⋅ 2
= –

–30
10

= 3.

Then, according to (4.6.3.22), we finally obtain the coordinates of the point of intersection in the form

x0 = 0 – 2 ⋅ 3 = 6, y0 = 1 – 1 ⋅ 3 = 4, z0 = –1 – 2 ⋅ 3 = 5.

4.6.3-16. Distance from point to plane.

The deviation of a point from a plane is defined as the number δ equal to the length of the
perpendicular drawn from this point to the plane and taken with sign + if the point and the
origin lie on opposite sides of the plane and with sign – if they lie on the same side of the
plane. Obviously, the deviation is zero for the points lying on the plane.

To obtain the deviation of a point M1(x1, y1, z1) from a given plane, one should re-
place the current Cartesian coordinates (x, y, z) on the left-hand side in the normal equa-
tion (4.6.1.7) of this plane by the coordinates of the point M1:

δ = x1 cosα + y1 cos β + z1 cos γ – p = r1 ⋅ N0 – p, (4.6.3.24)

where N0 = (cosα, cos β, cos γ) is a unit vector and r1 is the position vector of the point
M1(x1, y1, z1). If the plane is given by the parametric equation (4.6.1.5), then the deviation
of the point M1 from the plane is equal to

δ =
[(r1 – r0)R1R2]

|R1 × R2|
. (4.6.3.25)

The distance from a point to a plane is defined as the nonnegative number d equal to
the absolute value of the deviation; i.e.,

d = |δ| = |x0 cosα + y0 cos β + z0 cos γ – p |. (4.6.3.26)

Let us write out some more representations of the distance for the cases in which the plane
is given by the general equation (4.6.1.3) and the parametric equation (4.6.1.5):

d =
|Ax0 +By0 + Cz0 +D|√

A2 +B2 + C2
=

∣∣[(r1 – r0)R1R2]
∣∣

|R1 × R2|
. (4.6.3.27)

Example 7. Let us find the distance from the point M (5, 1, –1) to the plane x – 2y – 2z + 1 = 0.
Using formula (4.6.3.27), we obtain the desired distance

d =
|1 ⋅ 5 + (–2) ⋅ 1 + (–2) ⋅ (–1) + 1|

√
12 + (–2)2 + (–2)2

=
6
3

= 2.
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4.6.3-17. Distance between two parallel planes.

We consider two parallel planes given by the general equations Ax+By +Cz +D1 = 0 and
Ax + By + Cz +D2 = 0. The distance between them is

d =
|D1 –D2|√
A2 +B2 + C2

. (4.6.3.28)

4.6.3-18. Distance from point to line.

The distance from a point M0(x0, y0, z0) to a line given by the canonical equation (4.6.2.3)
is determined by the formula

d =

∣
∣R × (r0 – r1)|

|R
∣
∣ =

√∣∣
∣ m n
y1 – y0 z1 – z0

∣∣
∣

2
+
∣∣
∣ n l
z1 – z0 x1 – x0

∣∣
∣

2
+
∣∣
∣ l m
x1 – x0 y1 – y0

∣∣
∣

2

√
l2 + m2 + n2

. (4.6.3.29)

Note that the last formulas are significantly simplified if R is the unit vector (l2 +m2 +n2 = 1).
Remark. The numerator of the fraction (4.6.3.29) is the area of the triangle spanned by the vectors r0 – r1

and R, while the denominator of this fraction is the length of the base of the triangle. Hence the fraction itself
is the altitude d of this triangle.

Example 8. Let us find the distance from the point M0(3, 0, 4) to the line x/1 = (y – 1)/2 = z/2.
We use formula (4.6.3.29) to obtain the desired distance

d =

√∣
∣
∣

2 2
1 – 0 0 – 4

∣
∣
∣

2
+
∣
∣
∣

2 1
0 – 4 0 – 3

∣
∣
∣

2
+
∣
∣
∣

1 2
0 – 3 1 – 0

∣
∣
∣

2

√
12 + 22 + 22

=

√
153
3

.

4.6.3-19. Distance between lines.

Consider two nonparallel lines (see Fig. 4.51) given in the canonical form
x – x1

l1
=
y – y1

m1
=
z – z1

n1
, or (r – r1) × R1 = 0

and
x – x2

l2
=
y – y2

m2
=
z – z2

n2
, or (r – r2) × R2 = 0.

R

R

1

2

M

M

1

2

Figure 4.51. Distance between lines.
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The distance between them can be calculated by the formula

d =

∣∣[(r1 – r2)R1R2]
∣∣

|R1 × R2|
=

�

∣∣
∣∣
x1 – x2 y1 – y2 z1 – z2
l1 m1 n1
l2 m2 n2

∣∣
∣∣

√∣
∣∣ l1 m1
l2 m2

∣
∣∣

2
+
∣
∣∣m1 n1
m2 n2

∣
∣∣

2
+
∣
∣∣ n1 l1
n2 l2

∣
∣∣

2
. (4.6.3.30)

The condition that the determinant in the numerator in (4.6.3.30) is zero is the condition for
the two lines in space to meet.

Remark 1. The numerator of the fraction in (4.6.3.30) is the volume of the parallelepiped spanned by the
vectors r1 – r2, R1, and R2, while the denominator of the fraction is the area of its base. Hence the fraction
itself is the altitude d of this parallelepiped.

Remark 2. If the lines are parallel (i.e., l1 = l2 = l, m1 = m2 = m, and n1 = n2 = n, or R1 = R2 = R),
then the distance between them should be calculated by formula (4.6.3.29) with r0 replaced by r2.

4.7. Quadric Surfaces (Quadrics)
4.7.1. Quadrics (Canonical Equations)

4.7.1-1. Central surfaces.

A segment joining two points of a surface is called a chord. If there exists a point in space,
not necessarily lying on the surface, that bisects all chords passing through it, then the
surface is said to be central and the point is called the center of the surface.

The equations listed below in Paragraphs 4.7.1-2 to 4.7.1-4 for central surfaces are given
in canonical form; i.e., the center of a surface is at the origin, and the surface symmetry
axes are the coordinate axes. Moreover, the coordinate planes are symmetry planes.

4.7.1-2. Ellipsoid.

An ellipsoid is a surface defined by the equation

x2

a2 +
y2

b2 +
z2

c2 = 1, (4.7.1.1)

where the numbers a, b, and c are the lengths of the segments called the semiaxes of the
ellipsoid (see Fig 4.52a).

Y Y

Z Z( )a ( )b

X X
a

a

a
a

b b

c

c

b b

c c

O O

Figure 4.52. Triaxial ellipsoid (a) and spheroid (b).
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If a ≠ b ≠ c, then the ellipsoid is said to be triaxial, or scalene. If a = b ≠ c, then the
ellipsoid is called a spheroid; it can be obtained by rotating the ellipse x2/a2 + z2/c2 = 1,
y = 0 lying in the plane OXZ about the axis OZ (see Fig. 4.52b). If a = b > c, then the
ellipsoid is an oblate spheroid, and if a = b < c, then the ellipsoid is a prolate spheroid. If
a = b = c, then the ellipsoid is the sphere of radius a given by the equation x2 + y2 + z2 = a2.

An arbitrary plane section of an ellipsoid is an ellipse (in a special case, a circle). The
volume of an ellipsoid is equal to V = 4

3πabc.

Remark. About the sphere, see also Paragraph 3.2.3-3.

4.7.1-3. Hyperboloids.

A one-sheeted hyperboloid is a surface defined by the equation

x2

a2 +
y2

b2 –
z2

c2 = 1, (4.7.1.2)

where a and b are the real semiaxes and c is the imaginary semiaxis (see Fig. 4.53a).
A two-sheeted hyperboloid is a surface defined by the equation

x2

a2 +
y2

b2 –
z2

c2 = –1, (4.7.1.3)

where c is the real semiaxis and a and b are the imaginary semiaxes (see Fig 4.53b).

Y
Y

Z Z( )a ( )b

X

Xa

c

b
O O

c

Figure 4.53. One-sheeted (a) and two-sheeted (b) hyperboloids.

A hyperboloid approaches the surface

x2

a2 +
y2

b2 –
z2

c2 = 0,

which is called an asymptotic cone, infinitely closely.
A plane passing through the axis OZ intersects each of the hyperboloids (4.7.1.2) and

(4.7.1.3) in two hyperbolas and the asymptotic cone in two straight lines, which are the
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c
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O

Figure 4.54. A cone.

asymptotes of these hyperbolas. The section of a hyperboloid by a plane parallel to OXY
is an ellipse. The section of a one-sheeted hyperboloid by the plane z = 0 is an ellipse,
which is called the gorge or throat ellipse.

For a = b, we deal with the hyperboloid of revolution obtained by rotating a hyperbola
with semiaxes a and c about its focal axis 2c (which is an imaginary axis for a one-sheeted
hyperboloid and a real axis for a two-sheeted hyperboloid). If a = b = c, then the hyperboloid
of revolution is said to be right, and its sections by the planesOXZ andOY Z are equilateral
hyperbolas.

A one-sheeted hyperboloid is a ruled surface (see Paragraph 4.7.1-6).

4.7.1-4. Cone.

A cone is a surface defined by the equation

x2

a2 +
y2

b2 –
z2

c2 = 0. (4.7.1.4)

The cone (see Fig. 4.54) defined by (4.7.1.4) has vertex at the origin, and for its base we
can take the ellipse with semiaxes a and b in the plane perpendicular to the axis OZ at the
distance c from the origin. This cone is the asymptotic cone for the hyperboloids (4.7.1.2)
and (4.7.1.3). For a = b, we obtain a right circular cone.

A cone is a ruled surface (see Paragraph 4.7.1-6).
Remark. About the cone, see also Paragraph 3.2.3-2.

4.7.1-5. Paraboloids.

In contrast to the surfaces considered above, paraboloids are not central surfaces. For the
equations listed below, the vertex of a paraboloid lies at the origin, the axis OZ is the
symmetry axis, and the planes OXZ and OY Z are symmetry planes.

An elliptic paraboloid (see Fig 4.55a) is a surface defined by the equation

x2

p
+
y2

q
= 2z, (4.7.1.5)
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where p > 0 and q > 0 are parameters.

Y
Y

Z Z( )a ( )b

X X
O

O

Figure 4.55. Elliptic (a) and hyperbolic (b) paraboloids.

The sections of an elliptic paraboloid by planes parallel to the axis OZ are parabolas,
and the sections by planes parallel to the plane OXY are ellipses. For example, let the
parabola x2 = 2pz, y = 0, obtained by the section of an elliptic paraboloid by the plane
OXZ be fixed and used as the directrix, and let the parabola x2 = 2qz, x = 0, obtained by the
section of the elliptic paraboloid by the plane OY Z be movable and used as the generator.
Then the paraboloid can be obtained by parallel translation of the movable parabola (the
generator) in a given direction along the fixed parabola (the directrix).

If p = q, then we have a paraboloid of revolution, which is obtained by rotating the
parabola 2pz = x2 lying in the plane OXZ about its axis.

The volume of the part of an elliptic paraboloid cut by the plane perpendicular to its
axis at a height h is equal to V = 1

2πabh, i.e., half the volume of the elliptic cylinder with
the same base and altitude.

A hyperbolic paraboloid (see Fig 4.55b) is a surface defined by the equation

x2

p
–
y2

q
= 2z, (4.7.1.6)

where p > 0 and q > 0 are parameters.
The sections of a hyperbolic paraboloid by planes parallel to the axis OZ are parabolas,

and the sections by planes parallel to the plane OXY are hyperbolas. For example, let the
parabola x2 = 2pz, y = 0, obtained by the section of the hyperbolic paraboloid by the plane
OXZ be fixed and used as the directrix, and let the parabola x2 = –2qz, x = 0, obtained
by the section of the hyperbolic paraboloid by the plane OY Z be movable and used as
the generator. Then the paraboloid can be obtained by parallel translation of the movable
parabola (the generator) in a given direction along the fixed parabola (the directrix).

A hyperbolic paraboloid is a ruled surface (see Paragraph 4.7.1-6).

4.7.1-6. Rulings of ruled surfaces.

A ruled surface is a surface swept out by a moving line in space. The straight lines
forming a ruled surface are called rulings. Examples of ruled surfaces include the cone
(see Paragraph 3.2.3-2 and 4.7.1-4), the cylinder (see Paragraph 3.2.3-1), the one-sheeted
hyperboloid (see Paragraph 4.7.1-3), and the hyperbolic paraboloid (see Paragraph 4.7.1-5).
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The cone (4.7.1.4) has one family of rulings,

αx = βy,

√
α2a2 + β2b2

ab
x =

β

c
z.

Properties of rulings of the cone:
1. There is a unique ruling through each point of the cone.
2. Two arbitrary distinct rulings of the cone meet at the point O(0, 0, 0).
3. Three pairwise distinct rulings of the cone are not parallel to any plane.

The one-sheeted hyperboloid (4.7.1.2) has two families of rulings:

α
( x
a

+
z

c

)
= β
(

1 +
y

b

)
, β

(x
a

–
z

c

)
= α
(

1 –
y

b

)
;

γ
( x
a

+
z

c

)
= δ
(

1 –
y

b

)
, δ

( x
a

–
z

c

)
= γ
(

1 +
y

b

)
.

(4.7.1.7)

One of these families is shown in Fig. 4.56a.

Y Y

Z Z( )a ( )b

X

X
O O

Figure 4.56. Families of rulings for one-sheeted hyperboloid (a) and for hyperbolic paraboloid (b).

Properties of rulings of the one-sheeted hyperboloid:
1. In either family, there is a unique ruling through each point of the one-sheeted hyper-

boloid.
2. Any two rulings in different families lie in a single plane.
3. Any two distinct rulings in the same family are skew.
4. Three distinct rulings in the same family are not parallel to any plane.

The hyperbolic paraboloid (4.7.1.6) has two families of rulings:

α

(
x√
p

+
y√
q

)
= 2β, β

(
x√
p

–
y√
q

)
= αz;

γ

(
x√
p

+
y√
q

)
= δz, δ

(
x√
p

–
y√
q

)
= 2γ.

(4.7.1.8)

One of these families is shown in Fig. 4.56b.
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Properties of rulings of a hyperbolic paraboloid:
1. In either family, there is a unique ruling through each point of the hyperbolic paraboloid.
2. Any two rulings in different families lie in a single plane and meet.
3. Any two distinct rulings in the same family are skew.
4. All rulings in either family are parallel to a single plane.

4.7.2. Quadrics (General Theory)

4.7.2-1. General equation of quadric.

A quadric is a set of points in three-dimensional space whose coordinates in the rectangular
Cartesian coordinate system satisfy a second-order algebraic equation

a11x
2 + a22y

2 + a33z
2 + 2a12xy + 2a13xz + 2a23yz

+ 2a14x + 2a24y + 2a34z + a44 = 0, (4.7.2.1)

or
(a11x + a12y + a13z + a14)x + (a21x + a22y + a23z + a24)y

+ (a31x + a32y + a33z + a34)z + a41x + a42y + a43z + a44 = 0,

where aij = aji (i, j = 1, 2, 3, 4). If equation (4.7.2.1) does not define a real geometric
object, then one says that this equation defines an imaginary quadric. Equation (4.7.2.1) in
vector form reads

(Ar) ⋅ r + 2a ⋅ r + a44 = 0, (4.7.2.2)

where A is the affinor with coordinates Aij = aij and a is the vector with coordinates ai = ai4.

4.7.2-2. Classification of quadrics.

There exists a rectangular Cartesian coordinate system in which equation (4.7.2.1), depend-
ing on the coefficients, has 1 of 17 canonical forms, each of which is associated with a
certain class of quadrics (see Table 4.3).

4.7.2-3. Invariants of quadrics.

The shape of a quadric can be determined by using four invariants and two semi-invariants
without reducing equation (4.7.2.1) to canonical form.

The main invariants are the quantities

S = a11 + a22 + a33, (4.7.2.3)

T =
∣∣
∣
a11 a12
a21 a22

∣∣
∣ +
∣∣
∣
a11 a13
a31 a33

∣∣
∣ +
∣∣
∣
a22 a23
a23 a33

∣∣
∣ , (4.7.2.4)

δ =

∣
∣∣
∣∣

a11 a12 a13
a12 a22 a23
a13 a23 a33

∣
∣∣
∣∣
, (4.7.2.5)

Δ =

∣
∣∣
∣∣
∣∣

a11 a12 a13 a14
a12 a22 a23 a24
a13 a23 a33 a34
a14 a24 a34 a44

∣
∣∣
∣∣
∣∣
, (4.7.2.6)

whose values are preserved under parallel translations and rotations of the coordinate axes.
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TABLE 4.3
Canonical equations and classes of quadrics

No. Surface Canonical equation Type Class

Irreducible surfaces

1 Ellipsoid x2

a2 +
y2

b2 +
z2

c2 = 1
Elliptic

2 Imaginary ellipsoid x2

a2 +
y2

b2 +
z2

c2 = –1

3 One-sheeted hyperboloid x2

a2 +
y2

b2 –
z2

c2 = 1
Hyperbolic Nondegenerate

4 Two-sheeted hyperboloid x2

a2 +
y2

b2 –
z2

c2 = –1

5 Elliptic paraboloid x2

p
+
y2

q
= 2z

Parabolic
(p > 0, q > 0)

6 Hyperbolic paraboloid x2

p
–
y2

q
= 2z

7 Elliptic cylinder x2

a2 +
y2

b2 = 1

8 Imaginary elliptic cylinder x2

a2 +
y2

b2 = –1
Cylindrical

9 Hyperbolic cylinder x2

a2 –
y2

b2 = 1
Degenerate

10 Parabolic cylinder y2 = 2px

11 Real cone x2

a2 +
y2

b2 –
z2

c2 = 0
Conic

12 Imaginary cone with real vertex x2

a2 +
y2

b2 +
z2

c2 = 0

Reducible surfaces

13 Pair of real intersecting planes x2

a2 –
y2

b2 = 0

14
Pair of imaginary planes

intersecting in a real straight line
x2

a2 +
y2

b2 = 0
Pairs of planes Degenerate

15 Pair of real parallel planes x2 = a2

16 Pair of imaginary parallel planes x2 = –a2

17 Pair of real coinciding planes x2 = 0

The semi-invariants are the quantities

σ = Δ11 + Δ22 + Δ33, (4.7.2.7)

Σ =
∣∣
∣
a11 a14
a41 a44

∣∣
∣ +
∣∣
∣
a22 a24
a42 a44

∣∣
∣ +
∣∣
∣
a33 a34
a44 a44

∣∣
∣ , (4.7.2.8)

whose values are preserved only under rotations of the coordinate axes. Here Δij is the
cofactor of the entry aij in Δ.

The classification of quadrics based on the invariants S, T , δ, and Δ and the semi-
invariants σ and Σ is given in Tables 4.4 and 4.5.
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TABLE 4.4
Classification of quadrics (central surfaces δ ≠ 0)

Class Sδ > 0 or T > 0 Sδ > 0 and T > 0 but not both

Δ < 0
Ellipsoid

x2

a2 +
y2

b2 +
z2

c2 = 1

Two-sheeted hyperboloid
x2

a2 +
y2

b2 –
z2

c2 = –1
Nondegenerate surfaces (Δ ≠ 0)

Δ > 0
Imaginary ellipsoid
x2

a2 +
y2

b2 +
z2

c2 = –1

One-sheeted hyperboloid
x2

a2 +
y2

b2 –
z2

c2 = 1

Degenerate surfaces (Δ = 0)
Imaginary cone with real vertex

x2

a2 +
y2

b2 +
z2

c2 = 0

Real cone
x2

a2 +
y2

b2 –
z2

c2 = 0

TABLE 4.5
Classification of quadrics (central surfaces δ = 0)

Class and type T > 0 T < 0 T = 0

Δ > 0

Hyperbolic
paraboloid
x2

p
–
y2

q
= 2zNondegene-

rate surfaces
(Δ ≠ 0)

Δ < 0
Elliptic paraboloid
x2

p
+
y2

q
= 2z

Elliptic cylinder

Cylindrical
surfaces
(σ ≠ 0)

Imaginary
(σS > 0)

x2

a2 +
y2

b2 = –1

Real
(σS < 0)
x2

a2 +
y2

b2 = 1

Hyperbolic
cylinder

x2

a2 –
y2

b2 = 1

Parabolic cylinder
y2 = 2px

Degenerate
surfaces
(Δ = 0) Pair of real reducible planes (Σ = 0)

x2 = 0
Reducible
surfaces
(σ = 0)

Pair of imaginary planes,
intersecting in a real

straight line
x2

a2 +
y2

b2 = 0

Pair of real
intersecting

planes
x2

a2 –
y2

b2 = 0

Pair of imaginary
parallel planes

(Σ > 0)
x2 = –a2

Pair of real
parallel planes

(Σ > 0)
x2 = a2

4.7.2-4. Characteristic quadratic form of quadric.

The characteristic quadratic form

F (x, y, z) = a11x
2 + a22y

2 + a33z
2 + 2a12xy + 2a13xz + a23yz (4.7.2.9)

corresponding to equation (4.7.2.1) and its characteristic equation

∣
∣∣
∣∣

a11 – λ a12 a13
a12 a22 – λ a23
a13 a23 a33 – λ

∣
∣∣
∣∣

= 0, or λ3 – Sλ2 + Tλ – δ = 0 (4.7.2.10)

permit studying the main properties of quadrics.
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The roots λ1, λ2, and λ3 of the characteristic equation (4.7.2.10) are the eigenvalues of
the real symmetric matrix [aij] and hence are always real. The invariants S, T , and δ can
be expressed in terms of the roots λ1, λ2, and λ3 as follows:

S = λ1 + λ2 + λ3, T = λ1λ2 + λ1λ3 + λ2λ3, δ = λ1λ2λ3. (4.7.2.11)

4.7.2-5. Diameters and diameter plane.

The locus of midpoints of parallel chords of a quadric is the diameter plane conjugate to
these chords (or the direction of these chords). The diameter plane conjugate to the chords
with direction cosines cosα, cos β, and cos γ is determined by the equation

(a11x + a12y + a13z + a14) cosα + (a21x + a22y + a23z + a24) cos β
+ (a31x + a32y + a33z + a34) cos γ = 0. (4.7.2.12)

The line in which two diameter planes meet is called the diameter conjugate to the
family of planes parallel to the conjugate chords of these diameter planes. The equation
of the diameter conjugate to the family of planes with given direction cosines cos l, cosm,
and cosn of the normals has the form

a11x+a12y+a13z+a14

cos l
=
a21x+a22y+a23z+a24

cosm
=
a31x+a32y+a33z+a34

cos n
. (4.7.2.13)

If a surface is central (for δ ≠ 0), then all diameters are concurrent at a single point,
called the center of the surface. For δ = 0, all diameters are parallel or lie in a single plane.

For central quadrics, the coordinates x0, y0, z0 of the center are determined by the
system of equations

a11x0 + a12y0 + a13z0 + a14 = 0,
a21x0 + a22y0 + a23z0 + a24 = 0,
a31x0 + a32y0 + a33z0 + a34 = 0,

whence it follows that

x0 =–
1
δ

∣
∣
∣∣
∣

a14 a12 a13
a24 a22 a23
a34 a32 a33

∣
∣
∣∣
∣
, y0 =–

1
δ

∣
∣
∣∣
∣

a11 a14 a13
a21 a24 a23
a31 a34 a33

∣
∣
∣∣
∣
, z0 =–

1
δ

∣
∣
∣∣
∣

a11 a12 a14
a21 a22 a24
a31 a32 a34

∣
∣
∣∣
∣
. (4.7.2.14)

For a central surface, the translation of the origin to its center (4.7.2.14) transforms the
equation of the surface to the form

a11x
2
1 + a22y

2
1 + a33z

2
1 + 2a12x1y1 + 2a13x1z1 + a23y1z1 +

Δ
δ

= 0, (4.7.2.15)

where x1, y1, and z1 are the coordinates in the new system.
Three diameters of a central quadric are said to be conjugate if each of them is conjugate

to the plane of the other two diameters.

4.7.2-6. Principal planes and principal axes.

A principal plane of a quadric is a diameter plane perpendicular to the chords conjugate
to it. A principal plane is a plane of symmetry of the quadric. Any quadric has at least
one principal plane and at least two symmetry planes. Cylinders have symmetry planes
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perpendicular to the generators; these are not principal planes. Each nondegenerate quadric
has at least two principal planes perpendicular to each other. Any central quadric has at
least three principal planes, three of which are pairwise perpendicular.

A principal axis is a diameter that is the line of intersection of two principal planes. A
principal axis is a symmetry axis of the quadric. If a quadric has two principal axes, then
it also has the third axis perpendicular to the first two principal axes. Any nondegenerate
quadric has at least one principal axis. A central quadric has at least three pairwise
perpendicular principal axes, which are normal to its principal diameter planes; three of the
principal axes of a central surface are pairwise perpendicular.

4.7.2-7. Transformation of equation of quadric to canonical form.

Translating the origin and rotating the coordinate axes so that the normal to each of the
pairwise perpendicular symmetry planes of a surface becomes parallel to one of the new
coordinate axes, we can transform equation (4.7.2.1) of any nondegenerate quadric to one
of the forms listed in Table 4.6.

TABLE 4.6
Expression of the parameters of the main quadrics via the invariants T ,
δ, and Δ and the roots λ1, λ2, and λ3 of the characteristic equation

Surface Canonical equation
The parameters a, b, c, p, q expressed via

the invariants T , δ, Δ and the roots λ1, λ2, λ3
of the characteristic equation

Remarks

Ellipsoid x2

a2 +
y2

b2 +
z2

c2 = 1
a2 = –

1
λ3

Δ

δ
, b2 = –

1
λ2

Δ

δ
,

c2 = –
1
λ1

Δ

δ
, δ = λ1λ2λ3

a ≥ b ≥ c,

λ1 ≥ λ2 ≥ λ3 > 0

One-sheeted
hyperboloid

x2

a2 +
y2

b2 –
z2

c2 = 1
a2 = –

1
λ2

Δ

δ
, b2 = –

1
λ1

Δ

δ
,

c2 =
1
λ3

Δ

δ
, δ = λ1λ2λ3

a ≥ b,

λ1 ≥ λ2 > 0 > λ3

Two-sheeted
hyperboloid

x2

a2 +
y2

b2 –
z2

c2 = –1
a2 =

1
λ3

Δ

δ
, b2 =

1
λ2

Δ

δ
,

c2 = –
1
λ1

Δ

δ
, δ = λ1λ2λ3

a ≥ b,

λ1 > 0 > λ2 ≥ λ3

Elliptic
paraboloid

x2

p
+
y2

q
= 2z p =

1
λ2

√

–
Δ

T
, q =

1
λ1

√

–
Δ

T
, T = λ1λ2

p > 0, q > 0,

λ1 ≥ λ2 > λ3 = 0

Hyperbolic
paraboloid

x2

p
–
y2

q
= 2z p =

1
λ1

√

–
Δ

T
, q = –

1
λ3

√

–
Δ

T
, T = λ1λ3

p > 0, q > 0,

λ1 > λ2 = 0 > λ3

4.7.2-8. Tangent planes and normals to quadric.

The equation of the tangent plane to the surface (4.7.2.1) at a point M (x1, y1, z1) has the
form

a11x1x + a22y1y + a33z1z + a12(y1x + x1y) + a13(z1x + x1z)
+ a23(y1z + z1y) + a14(x1 + x) + a24(y1 + y) + a34(z1 + z) + a44 = 0.
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or

(a11x1 + a12y1 + a13z1 + a14)x + (a21x1 + a22y1 + a23z1 + a24)y
+ (a31x1 + a32y1 + a33z1 + a34)z + a41x1 + a42y1 + a43z1 + a44 = 0.

The equation of the normal to the surface (4.7.2.1) at a point M (x1, y1, z1) has the form

x – x1

a11x1 + a12y1 + a13z1 + a14
=

y – y1

a21x1 + a22y1 + a23z1 + a24
=

z – z1

a31x1 + a32y1 + a33z1 + a34
.
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Chapter 5

Algebra

5.1. Polynomials and Algebraic Equations
5.1.1. Polynomials and Their Properties

5.1.1-1. Definition of polynomial.

A polynomial of degree n of a scalar variable x is an expression of the form

f (x) ≡ anxn + an–1x
n–1 + · · · + a1x + a0 (an ≠ 0), (5.1.1.1)

where a0, . . . , an are real or complex numbers (n = 0, 1, 2, . . .). Polynomials of degree
zero are nonzero numbers.

Two polynomials are equal if they have the same coefficients of like powers of the
variable.

5.1.1-2. Main operations over polynomials.

1◦. The sum (difference) of two polynomials f (x) of degree n and g(x) of degree m is the
polynomial of degree l ≤ max{n,m} whose coefficient of each power of x is equal to the
sum (difference) of the coefficients of the same power of x in f (x) and g(x), i.e. if

g(x) ≡ bmxm + bm–1x
m–1 + · · · + b1x + b0, (5.1.1.2)

then the sum (difference) of polynomials (5.1.1.1) and (5.1.1.2) is

f (x) � g(x) = clx
l + cl–1x

l–1 + · · · + c1x + c0, where ck = ak � bk (k = 0, 1, . . . , l).

If n > m then bm+1 = . . . = bn = 0; if n < m then an+1 = . . . = am = 0.

2◦. To multiply a polynomial f (x) of degree n by a polynomial g(x) of degree m, one
should multiply each term in f (x) by each term in g(x), add the products, and collect
similar terms. The degree of the resulting polynomial is n+m. The product of polynomials
(5.1.1.1) and (5.1.1.2) is

f (x)g(x) = cn+mx
n+m + cn+m–1x

n+m–1 + · · · + c1x + c0, ck =
i+j=k∑

i,j=0

aibj ,

where k = 0, 1, . . . , n +m.

3◦. Each polynomial f (x) of degree n can be divided by any other polynomial p(x) of
degreem (p(x) ≠ 0) with remainder, i.e., uniquely represented in the form f (x) = p(x)q(x)+
r(x), where q(x) is a polynomial of degree n – m (for m ≤ n) or q(x) = 0 (for m > n),
referred to as the quotient, and r(x) is a polynomial of degree l < m or r(x) = 0, referred to
as the remainder.

If r(x) = 0, then f (x) is said to be divisible by p(x) (without remainder).
If m > n, then q(x) = 0 and r(x) ≡ f (x).

155
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5.1.1-3. Methods for finding quotient and remainder.

1◦. Horner’s scheme. To divide a polynomial f (x) of degree n (see (5.1.1.1)) by the
polynomial p(x) = x – b, one uses Horner’s scheme: the coefficients of f (x) are written out
in a row, starting from an; b is written on the left; then one writes the number an under an,
the number anb + an–1 = bn–1 under an–1, the number bn–1b + an–2 = bn–2 under an–2, . . . ,
the number b1b + a0 = b0 under a0. The number b0 is the remainder in the division of f (x)
by p(x), and an, bn–1, . . . , b1 are the coefficients of the quotient.

Remark. To divide f (x) by p(x) = ax+ b (a ≠ 0) with remainder, one first uses Horner’s scheme to divide
by p1(x) = x – (– b

a
); now if q1(x) and r1 are the quotient and remainder in the division of f (x) by p1(x), then

q(x) = 1
a
q1(x) and r = r1 are the quotient and remainder in the division of f (x) by p(x).

Example 1. Let us divide f (x) = x3 – 2x2 – 10x + 3 by p(x) = 2x + 5.
We use Horner’s scheme to divide f (x) by p1(x) = x + 5/2:

1 –2 –10 3

–
5
2

1 –
9
2

5
4

–
1
8

Thus f (x) = p(x)q(x) + r(x), where

q(x) =
1
2

(
x2 –

9
2
x +

5
4

)
=

1
2
x2 –

9
4
x +

5
8

, r = –
1
8

.

POLYNOMIAL REMAINDER THEOREM. The remainder in the division of a polynomial
f (x) by the polynomial p(x) = x – b is the number equal to the value of the polynomial f (x)
at x = b.

2◦. Long division. To divide a polynomial f (x) of degree n by a polynomial p(x) of degree
m ≤ n, one can use long division.

Example 2. Let us divide f (x) = x3 + 8x2 + 14x – 5 by p(x) = x2 + 3x – 1.
We use long division:

x3 + 8x2 + 14x – 5 x2 + 3x – 1–
x3 + 3x2 – x x + 5

5x2 + 15x – 5–
5x2 + 15x – 5

0

Thus f (x) = p(x)q(x) + r(x), where q(x) = x + 5 and r(x) = 0; i.e., f (x) is divisible by p(x).

Example 3. Let us divide f (x) = x3 – 4x2 + x + 1 by p(x) = x2 + 1.
We use long division:

x3 – 4x2 + x + 1 x2 + 1–
x3 + x x – 4

– 4x2 + 1–
– 4x2 – 4

5

Thus f (x) = p(x)q(x) + r(x), where q(x) = x – 4 and r(x) = 5.

5.1.1-4. Expansion of polynomials in powers of linear binomial.

For each polynomial f (x) given by equation (5.1.1.1) and any number c, one can write out
the expansion of f (x) in powers of x – c:

f (x) = bn(x – c)n + bn–1(x – c)n–1 + · · · + b1(x – c) + b0.
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To find the coefficients b0, . . . , bn of this expansion, one first divides f (x) by x – c with
remainder. The remainder is b0 , and the quotient is some polynomial g0 (x). Then one divides
g0(x) by x – c with remainder. The remainder is b1, and the quotient is some polynomial
g1(x). Then one divides g1(x) by x – c, obtaining the coefficient b2 as the remainder, etc. It
is convenient to perform the computations by Horner’s scheme (see Paragraph 5.1.1-3).

Example 4. Expand the polynomial f (x) = x4 – 5x3 – 3x2 + 9 in powers of the difference x – 3 (c = 3).
We write out Horner’s scheme, where the first row contains the coefficients of the polynomial f (x), the

second row contains the coefficients of the quotient g0(x) and the remainder b0 obtained when dividing f (x)
by x – 3, the third row contains the coefficients of the quotient g1(x) and the remainder b1 obtained when
dividing g0(x) by x – 3, etc.:

1 –5 –3 0 9
3 1 –2 –9 –27 –72

1 1 –6 –45
1 4 6
1 7
1

Thus the expansion of f (x) in powers of x – 3 has the form

f (x) = (x – 3)4 + 7(x – 3)3 + 6(x – 3)2 – 45(x – 3) – 72.

The coefficients in the expansion of a polynomial f (x) in powers of the difference x – c
are related to the values of the polynomial and its derivatives at x = c by the formulas

b0 = f (c), b1 =
f ′x(c)

1!
, b2 =

f ′′xx(c)
2!

, . . . , bn =
f (n)
x (c)
n!

,

where the derivative of a polynomial f (x) = anxn + an–1x
n–1 + · · · + a1x + x0 with real or

complex coefficients a0 , . . . , an is the polynomial f ′x(x) =nanxn–1+(n–1)an–1x
n–2+· · ·+a1,

f ′′xx(x) = [f ′x(x)]′x, etc. Thus Horner’s scheme permits one tofind the values of the derivatives
of the polynomial f (x) at x = c.

Example 5. In Example 4, the values of the derivatives of the polynomial f (x) at x = 3 are

f (3) = –72, f ′(3) = –45 × 1! = –45, f ′′(3) = 6 × 2! = 12, f ′′′(3) = 7 × 3! = 42, f IV(3) = 1 × 4! = 24.

The expansion of a polynomial in powers of x–c can be used to compute the partial frac-
tion decomposition of a rational function whose denominator is a power of a linear binomial.

Example 6. Find the partial fraction decomposition of the rational function Φ(x) =
x2 + x + 1
(x – 2)4 .

First, we expand the polynomial f (x) = x2 + x + 1 in powers of the binomial x – (–2) = x + 2:

1 1 1
–2 1 –1 3

1 –3
1

Thus f (x) = (x + 2)2 – 3(x + 2) + 3. As a result, we obtain Φ(x) =
f (x)

(x + 2)4 =
1

(x + 2)2 –
3

(x + 2)3 +
3

(x + 2)4 .

5.1.2. Linear and Quadratic Equations

5.1.2-1. Linear equations.

The linear equation
ax + b = 0 (a ≠ 0)

has the solution

x = –
b

a
.
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5.1.2-2. Quadratic equations.

The quadratic equation
ax2 + bx + c = 0 (a ≠ 0) (5.1.2.1)

has the roots

x1,2 =
–b �

√
b2 – 4ac

2a
.

The existence of real or complex roots is determined by the sign of the discriminant D =
b2 – 4ac:

Case D > 0. There are two distinct real roots.
Case D < 0. There are two distinct complex conjugate roots.
Case D = 0. There are two equal real roots.

VIÈTE THEOREM. The roots of a quadratic equation (5.1.2.1) satisfy the following
relations:

x1 + x2 = –
b

a
,

x1x2 =
c

a
.

5.1.3. Cubic Equations

5.1.3-1. Incomplete cubic equation.

1◦. Cardano’s solution. The roots of the incomplete cubic equation

y3 + py + q = 0 (5.1.3.1)

have the form

y1 = A +B, y2,3 = –
1
2

(A + B) � i

√
3

2
(A –B),

where

A =
(

–
q

2
+
√
D
)1/3

, B =
(

–
q

2
–
√
D
)1/3

, D =
( p

3

)3
+
( q

2

)2
, i2 = –1,

and A, B are arbitrary values of the cubic roots such that AB = – 1
3 p.

The number of real roots of a cubic equation depends on the sign of the discriminant D:
Case D > 0. There is one real and two complex conjugate roots.
Case D < 0. There are three real roots.
Case D = 0. There is one real root and another real root of double multiplicity (this

case is realized for p = q = 0).

2◦. Trigonometric solution. If an incomplete cubic equation (5.1.3.1) has real coefficients
p and q, then its solutions can be found with the help of the trigonometric formulas given
below.

(a) Let p < 0 and D < 0. Then

y1 = 2
√

–
p

3
cos

α

3
, y2,3 = –2

√
–
p

3
cos
(α

3
�
π

3

)
,

where the values of the trigonometric functions are calculated from the relation

cosα = –
q

2
√

–(p/3)3
.



5.1. POLYNOMIALS AND ALGEBRAIC EQUATIONS 159

(b) Let p > 0 and D ≥ 0. Then

y1 = 2
√
p

3
cot(2α), y2,3 =

√
p

3

[
cot(2α) � i

√
3

sin(2α)

]
,

where the values of the trigonometric functions are calculated from the relations

tanα =
(

tan
β

2

)1/3
, tan β =

2
q

( p
3

)3/2
, |α| ≤

π

4
, |β| ≤

π

2
.

(c) Let p < 0 and D ≥ 0. Then

y1 = –2
√

–
p

3
1

sin(2α)
, y2,3 =

√
–
p

3

[ 1
sin(2α)

� i
√

3 cot(2α)
]
,

where the values of the trigonometric functions are calculated from the relations

tanα =
(

tan
β

2

)1/3
, sin β =

2
q

(
–
p

3

)3/2
, |α| ≤

π

4
, |β| ≤

π

2
.

In the above three cases, the real value of the cubic root should be taken.

5.1.3-2. Complete cubic equation.

The roots of a complete cubic equation

ax3 + bx2 + cx + d = 0 (a ≠ 0) (5.1.3.2)

are calculated by the formulas

xk = yk –
b

3a
, k = 1, 2, 3,

where yk are the roots of the incomplete cubic equation (5.1.3.1) with the coefficients

p = –
1
3

( b
a

)2
+
c

a
, q =

2
27

( b
a

)3
–
bc

3a2 +
d

a
.

VIÈTE THEOREM. The roots of a complete cubic equation (5.1.3.2) satisfy the following
relations:

x1 + x2 + x3 = –
b

a
,

x1x2 + x1x3 + x2x3 =
c

a
,

x1x2x3 = –
d

a
.

5.1.4. Fourth-Degree Equation

5.1.4-1. Special cases of fourth-degree equations.

1◦. The biquadratic equation
ax4 + bx2 + c = 0

can be reduced to a quadratic equation (5.1.2.1) by the substitution ξ = x2. Therefore, the
roots of the biquadratic equations are given by

x1,2 = �

√
–b +

√
b2 – 4ac

2a
, x3,4 = �

√
–b –

√
b2 – 4ac

2a
.
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2◦. The reciprocal (algebraic) equation

ax4 + bx3 + cx2 + bx + a = 0
can be reduced to a quadratic equation by the substitution

y = x +
1
x

.

The resulting quadratic equation has the form

ay2 + by + c – 2a = 0.

3◦. The modified reciprocal equation

ax4 + bx3 + cx2 – bx + a = 0
can be reduced to a quadratic equation by the substitution

y = x –
1
x

.

The resulting quadratic equation has the form

ay2 + by + 2a + c = 0.

4◦. The generalized reciprocal equation

ab2x4 + bx3 + cx2 + dx + ad2 = 0
can be reduced to a quadratic equation by the substitution

y = bx +
d

x
.

The resulting quadratic equation has the form

ay2 + y + c – 2abd = 0.

5.1.4-2. General fourth-degree equation.

1◦. Reduction of a general equation of fourth-degree to an incomplete equation. The
general equation of fourth-degree

ax4 + bx3 + cx2 + dx + e = 0 (a ≠ 0)

can be reduced to an incomplete equation of the form

y4 + py2 + qy + r = 0 (5.1.4.1)

by the substitution

x = y –
b

4a
.

2◦. Descartes–Euler solution. The roots of the incomplete equation (5.1.4.1) are given by
the formulas

y1 = 1
2
(√
z1 +

√
z2 +

√
z3
)
, y2 = 1

2
(√
z1 –

√
z2 –

√
z3
)
,

y3 = 1
2
(
–
√
z1 +

√
z2 –

√
z3
)
, y4 = 1

2
(
–
√
z1 –

√
z2 +

√
z3
)
,

(5.1.4.2)

where z1, z2, z3 are the roots of the cubic equation (cubic resolvent of equation (5.1.4.1))

z3 + 2pz2 + (p2 – 4r)z – q2 = 0. (5.1.4.3)

The signs of the roots in (5.1.4.2) are chosen from the condition√
z1
√
z2
√
z3 = –q.

The roots of the fourth-degree equation (5.1.4.1) are determined by the roots of the
cubic resolvent (5.1.4.3); see Table 5.1.
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3◦. Ferrari solution. Let z0 be any of the roots of the auxiliary cubic equation (5.1.4.3).
Then the four roots of the incomplete equation (5.1.4.1) are found by solving the following
two quadratic equations:

y2 –
√
z0 y +

p + z0

2
+

q

2√z0
= 0,

y2 +
√
z0 y +

p + z0

2
–

q

2√z0
= 0.

TABLE 5.1
Relations between the roots of an incomplete equation of fourth-degree and the roots of its cubic resolvent

Cubic resolvent (5.1.4.3) Fourth-degree equation (5.1.4.1)

All roots are real and positive* Four real roots

All roots are real: one is positive and two are negative* Two pairs of complex conjugate roots

One real root and two complex conjugate roots Two real roots and two complex conjugate roots

5.1.5. Algebraic Equations of Arbitrary Degree and Their Properties

5.1.5-1. Simplest equations of degree n and their solutions.

1◦. The binomial algebraic equation

xn – a = 0 (a ≠ 0)

has the solutions

xk+1 =

⎧
⎪⎪⎨

⎪⎪⎩

a1/n
(

cos
2kπ
n

+ i sin
2kπ
n

)
for a > 0,

|a|1/n
(

cos
(2k + 1)π

n
+ i sin

(2k + 1)π
n

)
for a < 0,

where k = 0, 1, . . . ,n – 1 and i2 = –1.

2◦. Equations of the form

x2n + axn + b = 0,

x3n + ax2n + bxn + c = 0,

x4n + ax3n + bx2n + cxn + d = 0
are reduced by the substitution y = xn to a quadratic, cubic, and fourth-degree equation,
respectively, whose solution can be expressed by radicals.

Remark. In the above equations, n can be noninteger.

3◦. The reciprocal (algebraic) equation

a0x
2n + a1x

2n–1 + a2x
2n–2 + · · · + a2x

2 + a1x + a0 = 0 (a0 ≠ 0)

can be reduced to an equation of degree n by the substitution

y = x +
1
x

.

* By the Viète theorem, the product of the roots z1, z2, z3 is equal to q2 ≥ 0.
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Example 1. The equation

ax6 + bx5 + cx4 + dx3 + cx2 + bx + a = 0

can be reduced to the cubic equation

ay3 + by2 + (c – 3a)y + d – 2b = 0

by the substitution y = x + 1/x.

5.1.5-2. Equations of general form and their properties.

An algebraic equation of degree n has the form

anx
n + an–1x

n–1 + · · · + a1x + a0 = 0 (an ≠ 0), (5.1.5.1)

where ak are real or complex coefficients. Denote the polynomial of degree n on the
right-hand side in equation (5.1.5.1) by

Pn(x) ≡ anxn + an–1x
n–1 + · · · + a1x + a0 (an ≠ 0). (5.1.5.2)

A value x = x1 such that Pn(x1) = 0 is called a root of equation (5.1.5.1) (and also
a root of the polynomial Pn(x)). A value x = x1 is called a root of multiplicity m if
Pn(x) = (x–x1)mQn–m(x), wherem is an integer (1 ≤m ≤ n), andQn–m(x) is a polynomial
of degree n –m such that Qn–m(x1) ≠ 0.

THEOREM 1 (FUNDAMENTAL THEOREM OF ALGEBRA). Any algebraic equation of degree
n has exactly n roots (real or complex), each root counted according to its multiplicity.

Thus, the left-hand side of equation (5.1.5.1) with roots x1, x2, . . . , xs of the respective
multiplicities k1, k2, . . . , ks (k1 + k2 + · · · + ks = n) can be factorized as follows:

Pn(x) = an(x – x1)k1 (x – x2)k2 . . . (x – xs)
ks .

THEOREM 2. Any algebraic equation of an odd degree with real coefficients has at least
one real root.

THEOREM 3. Suppose that equation (5.1.5.1) with real coefficients has a complex root
x1 = α + iβ. Then this equation has the complex conjugate root x2 = α – iβ, and the roots
x1, x2 have the same multiplicity.

THEOREM 4. Any rational root of equation (5.1.5.1) with integer coefficients ak is an
irreducible fraction of the form p/q, where p is a divisor of a0 and q is a divisor of an. If
an = 1, then all rational roots of equation (5.1.5.1) (if they exist) are integer divisors of the
free term.

THEOREM 5 (ABEL–RUFFINI THEOREM). Any equation (5.1.5.1) of degree n ≤ 4 is
solvable by radicals, i.e., its roots can be expressed via its coefficients by the operations
of addition, subtraction, multiplication, division, and taking roots (see Subsections 5.1.2–
5.1.4). In general, equation (5.1.5.1) of degree n > 4 cannot be solved by radicals.
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5.1.5-3. Relations between roots and coefficients. Discriminant of an equation.

VIÈTE THEOREM. The roots of equation (5.1.5.1) (counted according to their multiplicity)
and its coefficients satisfy the following relations:

(–1)k
an–k

an
= Sk (k = 1, 2, . . . , n),

where Sk are elementary symmetric functions of x1, x2, . . . , xn:

S1 =
n∑

i=1

xi, S2 =
n∑

1≤i<j

xixj , S3 =
n∑

1≤i<j<k

xixjxk, . . . , Sn = x1x2 . . . xn.

Note also the following relations:

(n – k)an–k +
k∑

j=1

an–(k–j)sj = 0 (k = 1, 2, . . . , n)

with symmetric functions sj =
n∑

i=1
xji .

The discriminant D of an algebraic equation is the product of a2n–2
n and the squared

Vandermonde determinant Δ(x1,x2, . . . ,xn) of its roots:

D = a2n–2
n [Δ(x1,x2, . . . ,xn)]2 = a2n–2

n

∏

1≤j<i≤n

(xi – xj)
2.

The discriminant D is a symmetric function of the roots x1, x2, . . . , xn, and is equal to zero
if and only if the polynomial Pn(x) has at least one multiple root.

5.1.5-4. Bounds for the roots of algebraic equations with real coefficients.

1◦. All roots of equation (5.1.5.1) in absolute value do not exceed

N = 1 +
A

|an|
, (5.1.5.3)

where A is the largest of |a0|, |a1|, . . . , |an–1|.
The last result admits the following generalization: all roots of equation (5.1.5.1) in

absolute value do not exceed

N1 = ρ +
A1

|an|
, (5.1.5.4)

where ρ > 0 is arbitrary and A1 is the largest of

|an–1|,
|an–2|
ρ

,
|an–3|
ρ2 , . . . ,

|a0|
ρn–1 .

For ρ = 1, formula (5.1.5.4) turns into (5.1.5.3).
Remark. Formulas (5.1.5.3) and (5.1.5.4) can also be used for equations with complex coefficients.

Example 2. Consider the following equation of degree 4:

P4(x) = 9x4 – 9x2 – 36x + 1.

Formula (5.1.5.3) for n = 4, |an| = 9, A = 36 yields a fairly rough estimateN = 5, i.e., the roots of the equation
belong to the interval [–5, 5]. Formula (5.1.5.4) for ρ = 2, n = 4, |an| = 9, A1 = 9 yields a better estimate for
the bounds of the roots of this polynomial, N1 = 3.
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2◦. A constant K is called an upper bound for the real roots of equation (5.1.5.1) or the
polynomial Pn(x) if equation (5.1.5.1) has no real roots greater than or equal to K; in a
similar way, one defines a lower and an upper bound for positive and negative roots of an
equation or the corresponding polynomial.

Let
K1 be an upper bound for the positive roots of the polynomial Pn(x),
K2 be an upper bound for the positive roots of the polynomial Pn(–x),
K3 > 0 be an upper bound for the positive roots of the polynomial xnPn(1/x),
K4 > 0 be an upper bound for the positive roots of the polynomial xnPn(–1/x).

Then all nonzero real roots of the polynomial Pn(x) (if they exist) belong to the intervals
(–K2, –1/K4) and (1/K3,K1).

Next, we describe three methods for finding upper bounds for positive roots of a
polynomial.

Maclaurin method. Suppose that the first m leading coefficients of the polynomial
(5.1.5.2) are nonnegative, i.e., an > 0, an–1 ≥ 0, . . . , an–m+1 ≥ 0, and the next coefficient is
negative, an–m < 0. Then

K = 1 +
( B
an

)1/m
(5.1.5.5)

is an upper bound for the positive roots of this polynomial, where B is the largest of the
absolute values of negative coefficients of Pn(x).

Example 3. Consider the fourth-degree equation from Example 2. In this case, m = 2, B = 36 and
formula (5.1.5.5) yieldsK =K1 = 1+(36/9)1/2 = 3. Now, consider the polynomial P4(–x) = 9x4 –9x2 +36x+1.
Its positive roots has the upper boundK2 = 1 +(9/9)1/2 = 2. For the polynomial x4P4(1/x) = x4 – 36x3 – 9x2 + 9,
we havem = 1,K3 = 1 + 36 = 37. Finally, for the polynomial x4P4(–1/x) = x4 + 36x3 – 9x2 + 9, we havem = 2,
k4 = 1 + 91/2 = 4. Thus if P4(x) has real roots, they must belong to the intervals (–2, –1/4) and (1/37, 3).

Newton method. Suppose that for x = c, the polynomial Pn(x) and all its derivatives
P ′
n(x), . . . , P (n)

n (x) take positive values. Then c is an upper bound for the positive roots
of Pn(x).

Example 4. Consider the polynomial from Example 2 and calculate the derivatives

P4(x) = 9x4 – 9x2 – 36x + 1,

P ′
4 (x) = 36x3 – 18x – 36,

P ′′
4 (x) = 108x2 – 18,

P ′′′
4 (x) = 216x,

P ′′′′
4 (x) = 216.

It is easy to check that for x = 2 this polynomial and all its derivatives take positive values, and therefore c = 2
is an upper bound for its positive roots.

A method based on the representation of a polynomial as a sum of polynomials. As-
suming an > 0, let us represent the polynomial (5.1.5.4) (without rearranging its terms) as
the sum Pn(x) = f1(x) + . . . + fm(x), where each polynomial fk(x) (k = 1, 2, . . . , m) has a
positive leading coefficient and the sequence of its coefficients does not change sign more
than once. Suppose that for c > 0 all these polynomials are positive, f1(c) > 0, . . . , fm(c) > 0.
Then c is an upper bound for the positive roots of Pn(x).

Example 5. The polynomial

P7(x) = x7 + 2x6 – 4x5 – 7x4 + 2x3 – 3x2 + ax + b (a > 0, b > 0)

can be represented as a sum of three polynomials

f1(x) = x7 + 2x6 – 4x5 – 7x4 = x4(x3 + 2x2 – 4x – 7), f2(x) = 2x3 – 3x2 = x2(2x – 3), f3(x) = ax + b
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(in the first two polynomials the sign of the sequence of coefficients changes once, and in the last polynomial
the coefficients do not change sign). It is easy to see that all these polynomials are positive for x = 2. Therefore,
c = 2 is an upper bound for the positive roots of the given polynomial.

5.1.5-5. Theorems on the number of real roots of polynomials.

The number all negative roots of a polynomial Pn(x) is equal to the number of all positive
roots of the polynomial Pn(–x).

1◦. The exact number of positive roots of a polynomial whose coefficients form a sequence
that does not change sign or changes sign only once can be found with the help of the
Descartes theorem.

DESCARTES THEOREM. The number of positive roots (counted according to their mul-
tiplicity) of a polynomial Pn(x) with real coefficients is either equal to the number of sign
alterations in the sequence of its coefficients or is by an even number less.

Applying the Descartes theorem to Pn(–x), we obtain a similar theorem for the negative
roots of the polynomial Pn(x).

Example 6. Consider the cubic polynomial

P3(x) = x3 – 3x + 4.

Its coefficients have the signs + – +, and therefore we have two alterations of sign. Therefore, the number of
positive roots of P3(x) is equal either to 2 or to 0. Now, consider the polynomial P3(–x) = –x3 + 2x + 1. The
sequence of its coefficients changes sign only once. Therefore, the original equation has one negative root.

2◦. A stronger version of the Descartes theorem. Suppose that all roots of a polynomial
Pn(x) are real∗; then the number of positive roots of Pn(x) is equal to the number of sign
alterations in the sequence of its coefficients, and the number of its negative roots is equal
to the number of sign alterations in the sequence of coefficients of the polynomial Pn(–x).

Example 7. Consider the characteristic polynomial of the symmetric matrix

P3(x) =

∣
∣
∣
∣
∣

–2 – x 1 1
1 1 – x 3
1 3 1 – x

∣
∣
∣
∣
∣

= –x3 + 14x + 20,

which has only real roots. The sequence of its coefficients changes sign only once, and therefore it has a single
positive root. The number of its negative roots is equal to two, since this polynomial has three nonzero real
roots and only one of them can be positive.

3◦. If two neighboring coefficients of a polynomial Pn(x) are equal to zero, then the roots
of the polynomial cannot be all real (in this case, the stronger version of the Descartes
theorem cannot be used).

4◦. The number of real roots of a polynomial Pn(x) greater than a fixed c is either equal to
the number of sign alterations in the sequence Pn(c), . . . , P (n)

n (c) or is by an even number
less. If all roots of Pn(x) are real, then the number of its roots greater than c coincides with
the number of sign alterations in the sequence Pn(c), . . . , P (n)

n (c).

Example 8. Consider the polynomial

P4(x) = x4 – 3x3 + 2x2 – 2a2x + a2.

For x = 1, we have P4(1) = –a2, P ′
4 (1) = –1 – 2a2, P ′′

4 (1) = –2, P ′′′
4 (1) = 6, P ′′′′

4 (1) = 24. Thus, there is a single
sign alteration, and therefore the polynomial has a single real root greater than unity.

∗ This is the case, for instance, if we are dealing with the characteristic polynomial of a symmetric matrix.
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5◦. Budan–Fourier method. Let N (x) be the number of sign alterations in the sequence
Pn(x), . . . , P (n)

n (x) consisting of the values of the polynomial (5.1.5.2) and its derivatives.
Then the number of real roots of equation (5.1.5.1) on the interval [a, b] with Pn(a) ≠ 0,
Pn(b) ≠ 0 is either equal to N (a) – N (b) or is less by an even number. When calculating
N (a), zero terms of the sequence are dropped. When calculating N (b), it may happen that
P (i)
n (b) = 0 for k ≤ i ≤ m and P (k–1)

n (b) ≠ 0, P (m+1)
n (b) ≠ 0; then P (i)

n (b) should be replaced
by (–1)m+1–i signP (m+1)

n (b).

6◦. Sturm method for finding the number of real roots. Consider a polynomial Pn(x) with
no multiple roots and denote by N (x) the number of sign alterations in the sequence of
values of the polynomials (zero terms of the sequence are not taken into account):

f0(x) = g0(x)f1(x) – f2(x),
f1(x) = g1(x)f2(x) – f3(x),
. . . . . . . . . . . . . . . . . . . . . . . . ,

where f0(x) = Pn(x), f1(x) = P ′
n(x); for k > 1, every polynomial –fk(x) is the residue after

dividing the polynomial fk–2(x) by fk–1(x); the last polynomial fn(x) is a nonzero constant.
Then the number of all real roots of equation (5.1.5.1) on the segment [a, b] for Pn(a) ≠ 0,
Pn(b) ≠ 0 is equal to N (a) –N (b).

Remark 1. Taking a = –L and b = L and passing to the limit as L → ∞, we obtain the overall number
of real roots of the algebraic equation.

Example 9. Consider the following cubic equation with the parameter a:

P3(x) = x3 + 3x2 – a = 0.

The Sturm system for this equation has the form

P3(x) = f0(x) = x3 + 3x2 – a,

[P3(x)]′x = f1(x) = 3x2 + 6x,

f2(x) = 2x + a,

f3(x) = 3
4 a(4 – a).

Case 0 < a < 4. Let us find the number of sign alterations in the Sturm system for x = –∞ and x = ∞:

x f0(x) f1(x) f2(x) f3(x) number of sign alterations

–∞ – + – + 3
∞ + + + + 0

It follows that N (–∞) – N (∞) = 3. Therefore, for 0 < a < 4, the given polynomial has three real roots.
Case a < 0 or a > 4. Let us find the number of sign alterations in the Sturm system:

x f0(x) f1(x) f2(x) f3(x) number of sign alterations

–∞ – + – – 2
∞ + + + – 1

It follows that N (–∞) – N (∞) = 1, and therefore for a < 0 or a > 4, the given polynomial has one real root.

Remark 2. If equation Pn(x) = 0 has multiple roots, then Pn(x) and P ′
n(x) have a common divisor and

the multiple roots are found by equating to zero this divisor. In this case, fn(x) is nonconstant andN (a) –N (b)
is the number of roots between a and b, each multiple root counted only once.
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5.1.5-6. Bounds for complex roots of polynomials with real coefficients.

1◦. Routh–Hurwitz criterion. For an algebraic equation (5.1.5.1) with real coefficients, the
number of roots with positive real parts is equal to the number of sign alterations in any of
the two sequences

T0, T1, T2/T1, . . . , Tn/Tn–1;
T0, T1, T1T2, . . . , Tn–2Tn–1, a0;

where Tm (it is assumed that Tm ≠ 0 for all m) are defined by

T0 = an > 0, T1 = an–1, T2 =
∣
∣∣ an–1 an
an–3 an–2

∣
∣∣ , T3 =

∣∣
∣∣
∣

an–1 an 0
an–3 an–2 an–1
an–5 an–4 an–3

∣∣
∣∣
∣
,

T4 =

∣∣
∣∣
∣∣
∣

an–1 an 0 0
an–3 an–2 an–1 an
an–5 an–4 an–3 an–2
an–7 an–6 an–5 an–4

∣∣
∣∣
∣∣
∣
, T5 =

∣
∣∣
∣
∣∣
∣∣

an–1 an 0 0 0
an–3 an–2 an–1 an 0
an–5 an–4 an–3 an–2 an–1
an–7 an–6 an–5 an–4 an–3
an–9 an–8 an–7 an–6 an–5

∣
∣∣
∣
∣∣
∣∣

, . . .

2◦. All roots of equation (5.1.5.1) have negative real parts if and only if all T0, T1, . . . , Tn
are positive.

3◦. All roots of an nth-degree equation (5.1.5.1) have negative real parts if and only if this
is true for the following (n – 1)st-degree equation:

an–1x
n–1 +

(
an–2 –

an
an–1

an–3

)
xn–2 + an–3x

n–3 +
(
an–4 –

an
an–1

an–5

)
xn–2 + · · · = 0.

5.2. Matrices and Determinants
5.2.1. Matrices

5.2.1-1. Definition of a matrix. Types of matrices.

A matrix of size (or dimension)m×n is a rectangular table with entries aij (i = 1, 2, . . . , m;
j = 1, 2, . . . , n) arranged in m rows and n columns:

A ≡

⎛

⎜
⎜
⎝

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎞

⎟
⎟
⎠ .

Note that, for each entry aij , the index i refers to the ith row and the index j to the jth
column. Matrices are briefly denoted by uppercase letters (for instance, A, as here), or by
the symbol [aij], sometimes with more details: A ≡ [aij] (i = 1, 2, . . . , m; j = 1, 2, . . . , n).
The numbers m and n are called the dimensions of the matrix. A matrix is said to be finite
if it has finitely many rows and columns; otherwise, the matrix is said to be infinite. In what
follows, only finite matrices are considered.

The null or zero matrix is a matrix whose entries are all equal to zero: aij = 0 (i =
1, 2, . . . , m, j = 1, 2, . . . , n).

A column vector or column is a matrix of size m × 1. A row vector or row is a matrix
of size 1 × n. Both column and row vectors are often simply called vectors.
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TABLE 5.2
Types of square matrices (āij is the complex conjugate of a number aij)

Type of square matrix [aij ] Entries

Unit (identity)
I = [δij ] aij = δij =

{ 1, i = j,
0, i ≠ j, (δij is the Kronecker delta)

Diagonal aij =
{ any, i = j,

0, i ≠ j
Upper triangular
(superdiagonal) aij =

{ any, i ≤ j,
0, i > j

Strictly
upper triangular aij =

{ any, i < j,
0, i ≥ j

Lower triangular
(subdiagonal) aij =

{ any, i ≥ j,
0, i < j

Strictly
lower triangular aij =

{ any, i > j,
0, i ≤ j

Symmetric aij = aji (see also Paragraph 5.2.1-3)

Skew-symmetric
(antisymmetric)

aij = –aji (see also Paragraph 5.2.1-3)

Hermitian
(self-adjoint)

aij = āji (see also Paragraph 5.2.1-3)

Skew-Hermitian
(antihermitian)

aij = –āji (see also Paragraph 5.2.1-3)

Monomial
(generalized permutation)

Each column and each row contain exactly one nonzero entry

A square matrix is a matrix of size n × n, and n is called the dimension of this square
matrix. The main diagonal of a square matrix is its diagonal from the top left corner to
the bottom right corner with the entries a11 a22 . . . ann. The secondary diagonal of a
square matrix is the diagonal from the bottom left corner to the top right corner with the
entries an1 a(n–1)2 . . . a1n. Table 5.2 lists the main types of square matrices (see also
Paragraph 5.2.1-3).

5.2.1-2. Basic operations with matrices.

Two matrices are equal if they are of the same size and their respective entries are equal.

The sum of two matrices A ≡ [aij] and B ≡ [bij] of the same size m × n is the matrix
C ≡ [cij] of size m × n with the entries

cij = aij + bij (i = 1, 2, . . . , m; j = 1, 2, . . . , n).

The sum of two matrices is denoted by C = A + B, and the operation is called addition of
matrices.

Properties of addition of matrices:

A + O = A (property of zero),
A + B = B +A (commutativity),
(A +B) + C = A + (B + C) (associativity),

where matrices A, B, C , and zero matrix O have the same size.
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The difference of two matrices A ≡ [aij] and B ≡ [bij] of the same size m × n is the
matrix C ≡ [cij] of size m × n with entries

cij = aij – bij (i = 1, 2, . . . , m; j = 1, 2, . . . , n).

The difference of two matrices is denoted by C = A – B, and the operation is called
subtraction of matrices.

The product of a matrix A ≡ [aij] of size m × n by a scalar λ is the matrix C ≡ [cij] of
size m × n with entries

cij = λaij (i = 1, 2, . . . , m; j = 1, 2, . . . , n).

The product of a matrix by a scalar is denoted by C = λA, and the operation is called
multiplication of a matrix by a scalar.

Properties of multiplication of a matrix by a scalar:

0A = O (property of zero),
(λμ)A = λ(μA) (associativity with respect to a scalar factor),
λ(A + B) = λA + λB (distributivity with respect to addition of matrices),
(λ + μ)A = λA + μA (distributivity with respect to addition of scalars),

where λ and μ are scalars, matrices A, B, C , and zero matrix O have the same size.
The additively inverse (opposite) matrix for a matrixA ≡ [aij] of sizem×n is the matrix

C ≡ [cij] of size m × n with entries

cij = –aij (i = 1, 2, . . . , m; j = 1, 2, . . . , n),

or, in matrix form,
C = (–1)A.

Remark. The difference C of two matrices A and B can be expressed as C = A + (–1)B.

The product of a matrix A ≡ [aij] of size m × p and a matrix B ≡ [bij] of size p × n is
the matrix C ≡ [cij] of size m × n with entries

cij =
p∑

k=1

aikbkj (i = 1, 2, . . . , m; j = 1, 2, . . . , n);

i.e., the entry cij in the ith row and jth column of the matrix C is equal to the sum of
products of the respective entries in the ith row of A and the jth column of B. Note that
the product is defined for matrices of compatible size; i.e., the number of the columns in
the first matrix should be equal to the number of rows in the second matrix. The product of
two matrices A and B is denoted by C = AB, and the operation is called multiplication of
matrices.

Example 1. Consider two matrices

A =
( 1 2

6 –3

)
and B =

( 0 10 1
–6 –0.5 20

)
.

The product of the matrix A and the matrix B is the matrix

C = AB =
( 1 2

6 –3

) ( 0 10 1
–6 –0.5 20

)

=
( 1 × 0 + 2 × (–6) 1 × 10 + 2 × (–0.5) 1 × 1 + 2 × 20

6 × 0 + (–3) × (–6) 6 × 10 + (–3) × (–0.5) 6 × 1 + (–3) × 20

)
=
( –12 9 41

18 61.5 –54

)
.

Two square matricesA andB are said to commute ifAB =BA, i.e., if their multiplication
is subject to the commutative law.
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Properties of multiplication of matrices:

AO = O1, A + O = A (property of zero matrix),
(AB)C = A(BC) (associativity of the product of three matrices),
AI = A (multiplication by unit matrix),
A(B + C) = AB +AC (distributivity with respect to a sum of two matrices),
λ(AB) = (λA)B = A(λB) (associativity of the product of a scalar and two matrices),
SD = DS (commutativity for any square and any diagonal matrices),

where λ is a scalar, matrices A, B, C , square matrix S, diagonal matrix D, zero matrices O
and O1, and unit matrix I have the compatible sizes.

5.2.1-3. Transpose, complex conjugate matrix, adjoint matrix.

The transpose of a matrix A ≡ [aij] of size m × n is the matrix C ≡ [cij ] of size n ×m with
entries

cij = aji (i = 1, 2, . . . , n; j = 1, 2, . . . , m).

The transpose is denoted by C = AT .

Example 2. If A = (a1, a2) then AT =
(
a1
a2

)
.

Properties of transposes:

(A + B)T = AT +BT , (λA)T = λAT , (AT )T = A,

(AC)T = CTAT , OT = O1, IT = I ,

where λ is a scalar; matrices A, B, and zero matrix O have size m × n; matrix C has size
n × l; zero matrix O1 has size n × m.

A square matrix A is said to be orthogonal if ATA = AAT = I , i.e., AT = A–1 (see
Paragraph 5.2.1-6).

Properties of orthogonal matrices:
1. If A is an orthogonal matrix, then AT is also orthogonal.
2. The product of two orthogonal matrices is an orthogonal matrix.
3. Any symmetric orthogonal matrix is involutive (see Paragraph 5.2.1-7).

The complex conjugate of a matrix A ≡ [aij] of size m × n is the matrix C ≡ [cij] of
size m × n with entries

cij = āij (i = 1, 2, . . . , m; j = 1, 2, . . . , n),

where āij is the complex conjugate of aij . The complex conjugate matrix is denoted
by C = A.

The adjoint matrix of a matrix A ≡ [aij] of size m × n is the matrix C ≡ [cij] of size
n × m with entries

cij = āji (i = 1, 2, . . . , n; j = 1, 2, . . . , m).

The adjoint matrix is denoted by C = A∗.
Properties of adjoint matrices:

(A + B)∗ = A∗ + B∗, (λA)∗ = λ̄A∗, (A∗)∗ = A,
(AC)∗ = C∗A∗, O∗ = O1, I∗ = I ,

where λ is a scalar; matrices A, B, and zero matrix O have size m × n; matrix C has size
n × l; zero matrix O1 has a size n × m.
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Remark. If a matrix is real (i.e., all its entries are real), then the corresponding transpose and the adjoint
matrix coincide.

A square matrix A is said to be normal if A∗A = AA∗. A normal matrix A is said to be
unitary if A∗A = AA∗ = I , i.e., A∗ = A–1 (see Paragraph 5.2.1-6).

5.2.1-4. Trace of a matrix.

The trace of a square matrix A ≡ [aij] of size n × n is the sum S of its diagonal entries,

S = Tr(A) =
n∑

i=1

aii.

If λ is a scalar and square matrices A and B has the same size, then

Tr(A + B) = Tr(A) + Tr(B), Tr(λA) = λTr(A), Tr(AB) = Tr(BA),

5.2.1-5. Linear dependence of row vectors (column vectors).

A row vector (column vector) B is a linear combination of row vectors (column vectors)
A1, . . . , Ak if there exist scalars α1, . . . , αk such that

B = α1A1 + · · · + αkAk.

Row vectors (column vectors) A1, . . . , Ak are said to be linearly dependent if there
exist scalars α1, . . . , αk (α2

1 + · · · + α2
k ≠ 0) such that

α1A1 + · · · + αkAk = O,

where O is the zero row vector (column vector).
Row vectors (column vectors) A1, . . . , Ak are said to be linearly independent if, for

any α1, . . . , αk (α2
1 + · · · + α2

k ≠ 0) we have

α1A1 + · · · + αkAk ≠ O.

THEOREM. Row vectors (column vectors) A1, . . . , Ak are linearly dependent if and
only if one of them is a linear combination of the others.

5.2.1-6. Inverse matrices.

Let A be a square matrix of size n × n, and let I be the unit matrix of the same size.
A square matrix B of size n × n is called a right inverse of A if AB = I . A square

matrix C of size n × n is called a left inverse of A if CA = I . If one of the matrices B
or C exists, then the other exists, too, and these two matrices coincide. In such a case, the
matrix A is said to be nondegenerate (nonsingular).

THEOREM. A square matrix is nondegenerate if and only if its rows (columns) are
linearly independent.

Remark. Generally, instead of the terms “left inverse matrix” and “right inverse matrix”, the term “inverse
matrix” is used with regard to the matrix B = A–1 for a nondegenerate matrix A, since AB = BA = I .

UNIQUENESS THEOREM. The matrix A–1 is the unique matrix satisfying the condition
AA–1 = A–1A = I for a given nondegenerate matrix A.

Remark. For the existence theorem, see Paragraph 5.2.2-7.
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Properties of inverse matrices:

(AB)–1 = B–1A–1, (λA)–1 = λ–1A–1,

(A–1)–1 = A, (A–1)T = (AT )–1, (A–1)∗ = (A∗)–1,

where square matrices A and B are assumed to be nondegenerate and scalar λ ≠ 0.
The problem of finding the inverse matrix is considered in Paragraphs 5.2.2-7, 5.2.4-5,

and 5.5.2-3.

5.2.1-7. Powers of matrices.

A product of several matrices equal to one and the same matrixA can be written as a positive
integer power of the matrix A: AA = A2, AAA = A2A = A3, etc. For a positive integer k,
one defines Ak = Ak–1A as the kth power of A. For a nondegenerate matrix A, one defines
A0 = AA–1 = I , A–k = (A–1)k. Powers of a matrix have the following properties:

ApAq = Ap+q , (Ap)q = Apq,

where p and q are arbitrary positive integers and A is an arbitrary square matrix; or p and q
are arbitrary integers and A is an arbitrary nondegenerate matrix.

There exist matrices Ak whose positive integer power is equal to the zero matrix, even
if A ≠ O. If Ak = O for some integer k > 1, then A is called a nilpotent matrix.

A matrix A is said to be involutive if it coincides with its inverse: A = A–1 or A2 = I .

5.2.1-8. Polynomials and matrices. Basic functions of matrices.

A polynomial with matrix argument is the expression obtained from a scalar polynomial f (x)
by replacing the scalar argument x with a square matrix X:

f (X) = a0I + a1X + a2X
2 + · · · ,

where ai (i = 0, 1, 2, . . .) are real or complex coefficients. The polynomial f (X) is a square
matrix of the same size as X.

A polynomial with matrix coefficients is an expression obtained from a polynomial f (x)
by replacing its coefficients ai (i = 0, 1, 2, . . .) with matrices Ai (i = 0, 1, 2, . . .) of the
same size:

F (x) = A0 +A1x +A2x
2 + · · · .

Example 3. For the matrix

A =

( 4 –8 1
5 –9 1
4 –6 –1

)

,

the characteristic matrix (see Paragraph 5.2.3-2) is a polynomial with matrix coefficients and argument λ:

F (λ) ≡ A – λI = A0 +A1λ =

( 4 – λ –8 1
5 –9 – λ 1
4 –6 –1 – λ

)

,

where

A0 = A =

( 4 –8 1
5 –9 1
4 –6 –1

)

, A1 = –I =

(
–1 0 0

0 –1 0
0 0 –1

)

.

The corresponding adjugate matrix (see Paragraph 5.2.2-7) can also be represented as a polynomial with matrix
coefficients:

G(λ) =

(
λ2 + 10λ + 15 –8λ – 14 λ + 1

5λ + 9 λ2 – 3λ – 8 λ + 1
4λ + 6 –6λ – 8 λ2 + 5λ + 4

)

= A0 + A1λ +A2λ
2,
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where

A0 =

( 15 –14 1
9 –8 1
6 –8 4

)

, A1 =

( 10 –8 1
5 –3 1
4 –6 5

)

, A2 = I =

( 1 0 0
0 1 0
0 0 1

)

.

The variable x in a polynomial with matrix coefficients can be replaced by a matrix X,
which yields a polynomial of matrix argument with matrix coefficients. In this situation,
one distinguishes between the “left” and the “right” values:

F (X) = A0 +A1X +A2X
2 + · · · ,

F̂ (X) = A0 +XA1 +X2A2 + · · · .

The exponential function of a square matrix X can be represented as the following
convergent series:

eX = 1 +X +
X2

2!
+
X3

3!
+ · · · =

∞∑

k=0

Xk

k!
.

The inverse matrix has the form

(eX )–1 = e–X = 1 – X +
X2

2!
–
X3

3!
+ · · · =

∞∑

k=0

(–1)k
Xk

k!
.

Remark. Note that eXeY ≠ eY eX , in general. The relation eXeY = eX+Y holds only for commuting
matrices X and Y .

Some other functions of matrices can be expressed in terms of the exponential function:

sinX =
1

2i
(eiX – e–iX), cosX =

1
2

(eiX + e–iX ),

sinhX =
1
2

(eX – e–X ), coshX =
1
2

(eX + e–X ).

5.2.1-9. Decomposition of matrices.

THEOREM 1. For any square matrix A, the matrix S1 = 1
2 (A + AT ) is symmetric and

the matrix S2 = 1
2 (A – AT ) is skew-symmetric. The representation of A as the sum of

symmetric and skew-symmetric matrices is unique: A = S1 + S2.

THEOREM 2. For any square matrixA, the matricesH1 = 1
2 (A+A∗) andH2 = 1

2i (A–A∗)
are Hermitian, and the matrix iH2 is skew-Hermitian. The representation of A as the sum
of Hermitian and skew-Hermitian matrices is unique: A = H1 + iH2.

THEOREM 3. For any square matrix A, the matrices AA∗ and A∗A are nonnegative
Hermitian matrices (see Paragraph 5.7.3-1).

THEOREM 4. Any square matrix A admits a polar decomposition

A = QU and A = U1Q1,

where Q and Q1 are nonnegative Hermitian matrices, Q2 = AA∗ and Q2
1 = A∗A, and U

andU1 are unitary matrices. The matricesQ andQ1 are always unique, while the matricesU
and U1 are unique only in the case of a nondegenerate A.
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5.2.1-10. Block matrices.

Let us split a given matrix A ≡ [aij] (i = 1, 2, . . . , m; j = 1, 2, . . . , n) of size m × n into
separate rectangular cells with the help of (M – 1) horizontal and (N – 1) vertical lines. Each
cell is a matrixAαβ ≡ [aij] (i = iα, iα + 1, . . . , iα +mα – 1; j = jβ , jβ + 1, . . . , jβ +nβ – 1) of
size mα ×nβ and is called a block of the matrix A. Here iα = mα–1 + iα–1, jβ = nβ–1 + jβ–1.
Then the given matrix A can be regarded as a new matrix whose entries are the blocks:
A ≡ [Aαβ] (α = 1, 2, . . . , M ; β = 1, 2, . . . , N ). This matrix is called a block matrix.

Example 4. The matrix

A ≡

⎛

⎜
⎜
⎜
⎝

a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55

⎞

⎟
⎟
⎟
⎠

can be regarded as the block matrix

A ≡
(
A11 A12
A21 A22

)

of size 2 × 2 with the entries being the blocks

A11 ≡
(
a11 a12 a13
a21 a22 a23

)
, A12 ≡

(
a14 a15
a24 a25

)
,

A21 ≡

(
a31 a32 a33
a41 a42 a43
a51 a52 a53

)

, A22 ≡

(
a34 a35
a44 a45
a54 a55

)

of size 2 × 3, 2 × 2, 3 × 3, 3 × 2, respectively.

Basic operations with block matrices are practically the same as those with common
matrices, the role of the entries being played by blocks:
1. For matrices A ≡ [aij] ≡ [Aαβ] and B ≡ [bij] ≡ [Bαβ] of the same size and the same

block structure, their sum C ≡ [Cαβ] = [Aαβ + Bαβ] is a matrix of the same size and
the same block structure.

2. For a matrixA ≡ [aij] of sizem×n regarded as a block matrixA ≡ [Aαβ] of sizeM ×N ,
the multiplication by a scalar is defined by λA = [λAαβ] = [λaij].

3. Let A ≡ [aik] ≡ [Aαγ] and B ≡ [bkj] ≡ [Bγβ] be two block matrices such that the
number of columns of each block Aαγ is equal to the number of the rows of the
block Bγβ . Then the product of the matrices A and B can be regarded as the block
matrix C ≡ [Cαβ] = [

∑
γ AαγBγβ].

4. For a matrixA ≡ [aij] of sizem×n regarded as a block matrixA ≡ [Aαβ] of sizeM ×N ,
the transpose has the form AT = [ATβα].

5. For a matrixA ≡ [aij] of sizem×n regarded as a block matrixA ≡ [Aαβ] of sizeM ×N ,
the adjoint matrix has the form A∗ = [A∗

βα].

Let A be a nondegenerate matrix of size n × n represented as the block matrix

A ≡
(
A11 A12
A21 A22

)
,

where A11 and A22 are square matrices of size p × p and q × q, respectively (p + q = n).
Then the following relations, called the Frobenius formulas, hold:

A–1 =

(
A–1

11 +A–1
11A12NA21A

–1
11 –A–1

11A12N

–NA21A
–1
11 N

)
,

A–1 =

(
K –KA12A

–1
22

–A–1
22A21K A–1

22 + A–1
22A21KA12A

–1
22

)
.

Here, N = (A22 –A21A
–1
11A12)–1, K = (A11 –A12A

–1
22A21)–1; in the first formula, the matrix

A11 is assumed nondegenerate, and in the second formula, A22 is assumed nondegenerate.
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The direct sum of two square matrices A and B of size m × m and n × n, respectively,

is the block matrix C = A⊕B =
(
A 0
0 B

)
of size m + n.

Properties of the direct sum of matrices:
1. For any square matrices A, B, and C the following relations hold:

(A⊕B) ⊕ C = A⊕ (B ⊕ C) (associativity),
Tr(A⊕B) = Tr(A) + Tr(B) (trace property).

2. For nondegenerate square matrices A and B, the following relation holds:

(A⊕ B)–1 = A–1 ⊕B–1.

3. For square matrices Am, Bm of size m × m and square matrices An, Bn of size n × n,
the following relations hold:

(Am ⊕An) + (Bm ⊕Bn) = (Am +Bm) ⊕ (An +Bn);
(Am ⊕An)(Bm ⊕Bn) = AmBm ⊕AnBn.

5.2.1-11. Kronecker product of matrices.

The Kronecker product of two matrices A ≡ [aiaja] and B ≡ [bibjb] of size ma × na and
mb × nb, respectively, is the matrix C ≡ [ckh] of size mamb × nanb with entries

ckh = aiajabibjb (k = 1, 2, . . . , mamb; h = 1, 2, . . . , nanb),

where the index k is the serial number of a pair (ia, ib) in the sequence (1, 1), (1, 2), . . . ,
(1,mb), (2, 1), (2, 2), . . . (ma,mb), and the index h is the serial number of a pair (ja, jb)
in a similar sequence. This Kronecker product can be represented as the block matrix
C ≡ [aiajaB].

Note that if A and B are square matrices and the number of rows in C is equal to the
number of rows inA, and the number of rows inD is equal to the number of rows inB, then

(A⊗B)(C ⊗D) = AC ⊗BD.

The following relations hold:

(A⊗B)T = AT ⊗BT , Tr(A⊗B) = Tr(A)Tr(B).

5.2.2. Determinants

5.2.2-1. Notion of determinant.

With each square matrixA ≡ [aij] of size n×n one can associate a numerical characteristic,
called its determinant. The determinant of such a matrix can be defined by induction with
respect to the size n.

For a matrix of size 1 × 1 (n = 1), the first-order determinant is equal to its only entry,

Δ ≡ detA = a11.

For a matrix of size 2 × 2 (n = 2), the second-order determinant, is equal to the
difference of the product of its entries on the main diagonal and the product of its entries
on the secondary diagonal:

Δ ≡ detA ≡
∣∣
∣
a11 a12
a21 a22

∣∣
∣ = a11a22 – a12a21.
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For a matrix of size 3 × 3 (n = 3), the third-order determinant,

Δ ≡ detA ≡

∣∣
∣∣
∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣
∣∣
∣

= a11a22a33 + a12a23a31 + a21a32a13 – a13a22a31 – a12a21a33 – a23a32a11.

This expression is obtained by the triangle rule (Sarrus scheme), illustrated by the following
diagrams, where entries occurring in the same product with a given sign are joined by
segments:

+ ∣∣∣
∣∣
∣∣

� � �

� � �

� � �

�
�

�
��

�
��

�����

�
�
�
��

�
��
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�
�
�
��
∣
∣∣
∣∣
∣∣

– ∣∣∣
∣∣
∣∣

� � �

� � �

� � �

�
�

�
��

�
��

�����

�
�

�
��

�
��

�����

�
�

�
��

∣
∣∣
∣∣
∣∣

For a matrix of size n ×n (n > 2), the nth-order determinant is defined as follows under
the assumption that the (n – 1)st-order determinant has already been defined for a matrix of
size (n – 1) × (n – 1).

Consider a matrix A = [aij] of size n × n. The minor M i
j corresponding to an entry aij

is defined as the (n – 1)st-order determinant of the matrix of size (n – 1) × (n – 1) obtained
from the original matrix A by removing the ith row and the jth column (i.e., the row and
the column whose intersection contains the entry aij). The cofactor Aij of the entry aij is
defined by Aij = (–1)i+jM i

j (i.e., it coincides with the corresponding minor if i + j is even,
and is the opposite of the minor if i + j is odd).

The nth-order determinant of the matrix A is defined by

Δ ≡ detA ≡

∣∣
∣∣
∣∣
∣∣

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

∣∣
∣∣
∣∣
∣∣

=
n∑

k=1

aikA
i
k =

n∑

k=1

akjA
k
j .

This formula is also called the ith row expansion of the determinant of A and also the jth
column expansion of the determinant of A.

Example 1. Let us find the third-order determinant of the matrix

A =

( 1 –1 2
6 1 5
2 –1 –4

)

.

To this end, we use the second-column expansion of the determinant:

detA =
3∑

i=1

(–1)i+2ai2M
i

2 = (–1)1+2 × (–1) ×
∣
∣
∣

6 5
2 –4

∣
∣
∣ + (–1)2+2 × 1 ×

∣
∣
∣

1 2
2 –4

∣
∣
∣ + (–1)3+2 × (–1) ×

∣
∣
∣

1 2
6 5

∣
∣
∣

= 1 × [6 × (–4) – 5 × 2] + 1 × [1 × (–4) – 2 × 2] + 1 × [1 × 5 – 2 × 6] = –49.

5.2.2-2. Properties of determinants.

Basic properties:
1. Invariance with respect to transposition of matrices:

detA = detAT .

2. Antisymmetry with respect to the permutation of two rows (or columns): if two rows
(columns) of a matrix are interchanged, its determinant preserves its absolute value, but
changes its sign.
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3. Linearity with respect to a row (or column) of the corresponding matrix: suppose
that the ith row of a matrix A ≡ [aij] is a linear combination of two row vectors,
(ai1, . . . , ai3) = λ(b1, . . . , bn) + μ(c1, . . . , cn); then

detA = λ detAb + μ detAc,

where Ab and Ac are the matrices obtained from A by replacing its ith row with
(b1, . . . , bn) and (c1, . . . , cn). This fact, together with the first property, implies that a
similar linearity relation holds if a column of the matrix A is a linear combination of
two column vectors.

Some useful corollaries from the basic properties:
1. The determinant of a matrix with two equal rows (columns) is equal to zero.
2. If all entries of a row are multiplied by λ, the determinant of the resulting matrix is

multiplied by λ.
3. If a matrix contains a row (columns) consisting of zeroes, then its determinant is equal

to zero.
4. If a matrix has two proportional rows (columns), its determinant is equal to zero.
5. If a matrix has a row (column) that is a linear combination of its other rows (columns),

its determinant is equal to zero.
6. The determinant of a matrix does not change if a linear combination of some of its rows

is added to another row of that matrix.

THEOREM (NECESSARY AND SUFFICIENT CONDITION FOR A MATRIX TO BE DEGENER-
ATE). The determinant of a square matrix is equal to zero if and only if its rows (columns)
are linearly dependent.

5.2.2-3. Minors. Basic minors. Rank and defect of a matrix.

Let A ≡ [aij] be a matrix of size n × n. Its mth-order (m ≤ n) minor of the first kind,
denoted by M i1i2...im

j1j2...jm
, is the mth-order determinant of a submatrix obtained from A by

removing some of its n – m rows and n – m columns. Here, i1, i2, . . . , im are the
indices of the rows and j1, j2, . . . , jm are the indices of the columns involved in that
submatrix. The (n – m)th-order determinant of the second kind, denoted by M

i1i2...im
j1j2...jm , is

the (n – m)th-order determinant of the submatrix obtained from A by removing the rows
and the columns involved in M i1i2...im

j1j2...jm
. The cofactor of the minor M i1i2...im

j1j2...jm
is defined by

Ai1i2...im
j1j2...jm

= (–1)i1 +i2+···+im+j1+j2+···+jmM i1i2...im
j1j2...jm .

Remark. minors of the first kind can be introduced for any rectangular matrixA ≡ [aij ] of sizem ×n. Its
kth-order (k ≤ min{m,n}) minor M i1i2...ik

j1j2...jk
is the determinant of the submatrix obtained from A by removing

some of its m – k rows and n – k columns.

LAPLACE THEOREM. Given m rows with indices i1, . . . , im (or m columns with indices
j1, . . . , jm) of a square matrix A, its determinant Δ is equal to the sum of products of all
mth-order minorsM i1i2...im

j1j2...jm
in those rows (resp., columns) and their cofactorsAi1i2...im

j1j2...jm
, i.e.,

Δ ≡ detA =
∑

j1,j2,...,jm

M i1i2...im
j1j2...jm

Ai1i2...im
j1j2...jm

=
∑

i1,i2,...,im

M i1i2...im
j1j2...jm

Ai1i2...im
j1j2...jm

.

Here, in the first sum i1, . . . , im are fixed, and in the second sum j1, . . . , jm are fixed.
Let A ≡ [aij] be a matrix of size m × n with at least one nonzero entry. Then there is a

positive integer r ≤ n for which the following conditions hold:
i) the matrix A has an rth-order nonzero minor, and

ii) any minor of A of order (r + 1) and higher (of it exists) is equal to zero.
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The integer r satisfying these two conditions is called the rank of the matrix A and is
denoted by r = rank (A). Any nonzero rth-order minor of the matrix A is called its basic
minor. The rows and the columns whose intersection yields its basic minor are called basic
rows and basic columns of the matrix. The rank of a matrix is equal to the maximal number
of its linearly independent rows (columns). This implies that for any matrix, the number of
its linearly independent rows is equal to the number of its linearly independent columns.

When calculating the rank of a matrix A, one should pass from submatrices of a smaller
size to those of a larger size. If, at some step, one finds a submatrix Ak of size k × k
such that it has a nonzero kth-order determinant and the (k + 1)st-order determinants of all
submatrices of size (k+ 1) × (k+ 1) containing Ak are equal to zero, then it can be concluded
that k is the rank of the matrix A.

Properties of the rank of a matrix:
1. For any matrices A and B of the same size the following inequality holds:

rank (A + B) ≤ rank (A) + rank (B).

2. For a matrixA of size m×n and a matrixB of size n×k, the Sylvester inequality holds:

rank (A) + rank (B) – n ≤ rank (AB) ≤ min{rank (A), rank (B)}.

For a square matrix A of size n ×n, the value d = n – rank (A) is called the defect of the
matrix A, and A is called a d-fold degenerate matrix. The rank of a nondegenerate square
matrix A ≡ [aij] of size n × n is equal to n.

THEOREM ON BASIC MINOR. Basic rows (resp., basic columns) of a matrix are linearly
independent. Any row (resp., any column) of a matrix is a linear combination of its basic
rows (resp., columns).

5.2.2-4. Expression of the determinant in terms of matrix entries.

1◦. Consider a system of mutually distinct β1, β2, . . . , βn, with each βi taking one of the
values 1, 2, . . . , n. In this case, the system β1, β2, . . . , βn is called a permutation of the set
1, 2, . . . , n. If we interchange two elements in a given permutation β1, β2, . . . , βn, leaving
the remaining n – 2 elements intact, we obtain another permutation, and this transformation
of β1, β2, . . . , βn is called transposition. All permutations can be arranged in such an order
that the next is obtained from the previous by a single transposition, and one can start from
an arbitrary permutation.

Example 2. Let us demonstrate this statement in the case of n = 3 (there are n! = 6 permutations).
If we start from the permutation 1 2 3, then we can order all permutations, for instance, like this (we

underline the numbers to be interchanged):
1 2 3 −→ 2 1 3 −→ 3 1 2 −→ 1 3 2 −→ 2 3 1 −→ 321.

Thus, from any given permutation of n symbols, one can pass to any other permutation
by finitely many transpositions.

One says that in a given permutation, the elements βi and βj form an inversion if βi > βj
for i < j. The total number of inversions in a permutation β1, β2, . . . , βn is denoted
by N (β1,β2, . . . ,βn). A permutation is said to be even if it contains an even number of
inversions; otherwise, the permutation is said to be odd.

Example 3. The permutation 4 5 1 3 2 (n = 5) containsN (4 5 1 3 2) = 7 inversions and is, therefore, odd.
Any of its transposition (for instance, that resulting in the permutation 4 3 1 5 2) yields an even permutation.

The nth-order determinant of a matrix A ≡ [aij] of size n ×n can be defined as follows:

Δ ≡ detA =
∑

β1,β2,...,βn

(–1)N (β1 ,β2,...,βn)aβ11aβ22 . . . aβnn,

where the sum is over all possible permutations β1, β2, . . . , βn of the set 1, 2, . . . , n.
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Example 4. Using the last formula, let us calculate the third-order determinant of the matrix from Exam-
ple 1. The numbers β1, β2, β3 represent permutations of the set 1, 2, 3. We have

Δ ≡ detA = (–1)N(1,2,3)a11a22a33 + (–1)N(1,3,2)a11a32a23 + (–1)N(2,1,3)a21a12a33

+ (–1)N(2,3,1)a21a32a13 + (–1)N(3,1,2)a31a12a23 + (–1)N(3,2,1)a31a22a13

= (–1)0 × 1 × 1 × (–4) + (–1)1 × 1 × (–1) × 5 + (–1)1 × 6 × (–1) × (–4)

+ (–1)2 × 6 × (–1) × 2 + (–1)2 × 2 × (–1) × 5 + (–1)3 × 2 × 1 × 2 = –49,

which coincides with the result of Example 1.

2◦. The nth-order determinant can also be defined as follows:

Δ ≡ detA =
n∑

β1=1

n∑

β2=1

· · ·
n∑

βn=1

δβ1β2...βnaβ11aβ22 . . . aβnn,

where δβ1β2...βn is the Levi-Civita symbol:

δβ1β2...βn =

{ 0, if some of β1, β1, . . . , βn coincide,
1, if β1, β1, . . . , βn form an even permutation,
–1, if β1, β1, . . . , βn form an odd permutation.

5.2.2-5. Calculation of determinants.

1◦. Determinants of specific matrices are often calculated with the help of the formulas
for row expansion or column expansion (see Paragraph 5.2.2-1). For this purpose, its is
convenient to take rows or columns containing many zero entries.

2◦. The determinant of a triangular (upper or lower) and a diagonal matrices is equal to the
product of its entries on the main diagonal. In particular, the determinant of the unit matrix
is equal to 1.

3◦. The determinant of a strictly triangular (upper or lower) matrix is equal to zero.

4◦. For block matrices, the following formula can be used:
∣∣
∣
A O
B C

∣∣
∣ =
∣∣
∣
A B
O C

∣∣
∣ = detA detC ,

where A, B, C are square matrices of size n × n and O is the zero matrix of size n × n.

5◦. The Vandermonde determinant is the determinant of the Vandermonde matrix:

Δ(x1,x2, . . . ,xn) ≡

∣∣
∣
∣∣
∣∣
∣∣
∣

1 1 · · · 1
x1 x2 · · · xn
x2

1 x2
2 · · · x2

n
...

...
. . .

...
xn–1

1 xn–1
2 · · · xn–1

n

∣∣
∣
∣∣
∣∣
∣∣
∣

=
∏

1≤j<i≤n

(xi – xj).

5.2.2-6. Determinant of a sum and a product of matrices.

The determinant of the product of two matrices A and B of the same size is equal to the
product of their determinants,

det(AB) = detA detB.

The determinant of the direct sum of a matrix A of size m × m and B of size n × n is
equal to the product of their determinants,

det(A⊕B) = detA detB.
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The determinant of the direct product of a matrix A of size m × m and B of size n × n
is calculated by the formula

det(A⊗B) = (detA)n(detB)m.

5.2.2-7. Relation between the determinant and the inverse matrix.

EXISTENCE THEOREM. A square matrix A is invertible if and only if its determinant is
different from zero.

Remark. A square matrix A is nondegenerate if its determinant is different from zero.

The adjugate (classical adjoint) for a matrixA ≡ [aij] of size n×n is a matrix C ≡ [cij]
of size n×nwhose entries coincide with the cofactors of the entries of the transposeAT , i.e.,

cij = Aji (i, j = 1, 2, . . . , n). (5.2.2.9)

The inverse matrix of a square matrix A ≡ [aij] of size n × n is the matrix of size n × n
obtained from the adjugate matrix by dividing all its entries by detA, i.e.,

A–1 =

⎛

⎜
⎜⎜
⎝

A11
detA

A21
detA · · · An1

detA
A12

detA
A22

detA · · · An2
detA

...
...

. . .
...

A1n
detA

A2n
detA · · · Ann

detA

⎞

⎟
⎟⎟
⎠

. (5.2.2.10)

JACOBI THEOREM. For minors of the matrix of cofactors of a matrix A, the following
relations hold: ∣

∣∣
∣
∣∣
∣∣
∣

Ai1
j1

Ai1
j2

· · · Ai1
jk

Ai2
j1

Ai2
j2

· · · Ai2
jk

...
...

. . .
...

Aikj1
Aikj2

· · · Aikjk

∣
∣∣
∣
∣∣
∣∣
∣

= (detA)k–1Ai1i2...ik
j1j2...jk

.

5.2.3. Equivalent Matrices. Eigenvalues

5.2.3-1. Equivalence transformation.

Matrices A and Ã of size m × n are said to be equivalent if there exist nondegenerate
matrices S and T of size m × m and n × n, respectively, such that A and Ã are related by
the equivalence transformation

Ã = SAT .

THEOREM. Two matrices of the same size are equivalent if and only if they are of the
same rank.

Remark 1. One of the square matrices S and T may coincide with the unit matrix. Thus, we have
equivalent matrices A and B if there is a nondegenerate square matrix S such that Ã = SA or Ã = AS.

Remark 2. Triangular decomposition of a matrix A corresponds to its equivalence transformation with
Ã ≡ I , so that A = S–1T –1 = LU , where L = S–1 and P = T –1 are an upper and lower triangular matrix. This
representation is also called the LU -decomposition.

Any equivalence transformation can be reduced to a sequence of elementary transfor-
mations of the following types:
1. Interchange of two rows (columns).
2. Multiplication of a row (column) by a nonzero scalar.
3. Addition to some row (column) of another row (column) multiplied by a scalar.



5.2. MATRICES AND DETERMINANTS 181

These elementary transformations are accomplished with the help of elementary matri-
ces obtained from the unit matrix by the corresponding operations with its rows (columns).
With the help of elementary transformations, an arbitrary matrix A of rank r > 0 can be
reduced to normal (canonical) form, which has a block structure with the unit matrix I of
size r × r in the top left corner.

Example 1. The LU -decomposition of a matrix

A =

( 2 1 4
3 2 1
1 3 3

)

can be obtained with the help of the following sequence of elementary transformations:

S1︷ ︸︸ ︷( 1/2 0 0
0 1 0
0 0 1

)( 2 1 4
3 2 1
1 3 3

)

→

S2︷ ︸︸ ︷( 1 0 0
–3 1 0
0 0 1

)( 1 1/2 2
3 2 1
1 3 3

)

→

S3︷ ︸︸ ︷( 1 0 0
0 1 0

–1 0 1

)( 1 1/2 2
0 1/2 –5
1 3 3

)

→

→
( 1 1/2 2

0 1/2 –5
0 5/2 1

)
T1︷ ︸︸ ︷( 1 –1/2 0

0 1 0
0 0 1

)

→
( 1 0 2

0 1/2 –5
0 5/2 1

)
T2︷ ︸︸ ︷( 1 0 –2

0 1 0
0 0 1

)

→

→

S4︷ ︸︸ ︷( 1 0 0
0 2 0
0 0 1

)( 1 0 0
0 1/2 –5
0 5/2 1

)

→

S5︷ ︸︸ ︷( 1 0 0
0 1 0
0 –5/2 1

)( 1 0 0
0 1 –10
0 5/2 1

)

→

→
( 1 0 0

0 1 –10
0 0 26

)
T3︷ ︸︸ ︷( 1 0 0

0 1 10
0 0 1

)

→

S6︷ ︸︸ ︷( 1 0 0
0 1 0
0 0 1/26

)( 1 0 0
0 1 0
0 0 26

)

→
( 1 0 0

0 1 0
0 0 1

)

.

These transformations amount to the equivalence transformation I = SAT , where T = T1T2T3:

S = S6S5S4S3S2S1 =

( 1/2 0 0
–3 2 0

7/26 –5/26 1/26

)

and T = T1T2T3 =

( 1 –1/2 –7
0 1 10
0 0 1

)

.

Hence, we obtain

L = S–1 =

( 2 0 0
3 1/2 0
1 5/2 26

)

and U = T –1 =

( 1 1/2 2
0 1 –10
0 0 1

)

.

5.2.3-2. Similarity transformation.

Two square matrices A and Ã of the same size are said to be similar if there exists a square
nondegenerate matrix S of the same size, the so-called transforming matrix, such that A
and Ã are related by the similarity transformation

Ã = S–1AS or A = SÃS–1.

Properties of similar matrices:
1. If A and B are square matrices of the same size and C = A + B, then

C̃ = Ã + B̃ or S–1(A +B)S = S–1AS + S–1BS.
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2. If A and B are square matrices of the same size and C = AB, then

C̃ = ÃB̃ or S–1(AB)S = (S–1AS)(S–1BS).
3. If A is a square matrix and C = λA where λ is a scalar, then

C̃ = λB̃ or S–1(λB)T = λS–1BS.
4. Two similar matrices have the same rank, the same trace, and the same determinant.

Under some additional conditions, there exists a similarity transformation that turns a
square matrixA into a diagonal matrix with the eigenvalues ofA (see Paragraph 5.2.3-5) on
the main diagonal. There are three cases in which a matrix can be reduced to diagonal form:
1. All eigenvalues of A are mutually distinct (see Paragraph 5.2.3-5).
2. The defects of the matricesA–λiI are equal to the multiplicitiesm′

i of the corresponding
eigenvalues λi (see Paragraph 5.2.3-6). In this case, one says that the matrix has a simple
structure.

3. Symmetric matrices.

For a matrix of general structure, one can only find a similarity transformation that
reduces the matrix to the so-called quasidiagonal canonical form or the canonical Jordan
form with a quasidiagonal structure. The main diagonal of the latter matrix consists of the
eigenvalues of A, each repeated according to its multiplicity. The entries just above the
main diagonal are equal either to 1 or 0. The other entries of the matrix are all equal to zero.
The matrix in canonical Jordan form is a diagonal block matrix whose blocks form its main
diagonal, each block being either a diagonal matrix or a so-called Jordan cell of the form

Λk ≡

⎛

⎜
⎜⎜
⎝

λk 1 0 · · · 0
0 λk 1 · · · 0
0 0 λk · · · 0
...

...
...

. . .
...

0 0 0 · · · λk

⎞

⎟
⎟⎟
⎠

.

5.2.3-3. Congruent and orthogonal transformations.

Square matricesA and Ã of the same size are said to be congruent if there is a nondegenerate
square matrix S such that A and Ã are related by the so-called congruent or congruence
transformation

Ã = STAS or A = SÃST .
This transformation is characterized by the fact that it preserves the symmetry of the

original matrix.
For any symmetric matrix A of rank r there is a congruent transformation that reduces

A to a canonical form which is a diagonal matrix of the form,

Ã = STAS =

(
Ip

–Ir–p
O

)

,

where Ip and Ir–p are unit matrices of size p × p and (r – p) × (r – p). The number p is called
the index of the matrix A, and s = p – (r – p) = 2p – r is called its signature.

THEOREM. Two symmetric matrices are congruent if they are of the same rank and have
the same index (or signature).

A similarity transformation defined by an orthogonal matrix S (i.e., ST = S–1) is said
to be orthogonal. In this case

Ã = S–1AS = STAS.
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Example 2. Consider a three-dimensional orthogonal coordinate system with the axes OX1, OX2, OX3
and a new coordinate system obtained from this one by its rotation by the angle ϕ around the axis OX3, i.e.,

x̃1 = x1 cosϕ – x2 sinϕ, x̃2 = x1 sinϕ + x2 cosϕ, x̃3 = x3.

The matrix of this coordinate transformation has the form

S3 =

(
cosϕ – sinϕ 0
sinϕ cosϕ 0

0 0 1

)

.

Rotations of the given coordinate system by the angles ψ and θ around the axes OX1 and OX2, respectively,
correspond to the matrices

S1 =

( 1 0 0
0 cosψ – sinψ
0 sinψ cosψ

)

, S2 =

(
cos θ 0 sin θ

0 1 0
– sin θ 0 cos θ

)

.

The matrices S1, S2, S3 are orthogonal (S–1
j = ST

j ).
The transformation that consists of simultaneous rotations around of the coordinate axes by the angles

ψ, θ, ϕ is defined by the matrix
S = S3S2S1.

5.2.3-4. Conjunctive and unitary transformations.

1◦. Square matrices A and Ã of the same size are said to be conjunctive if there is a
nondegenerate matrix S such that A and Ã are related by the conjunctive transformation

Ã = S∗AS or A = SÃS∗,

where S∗ is the adjoint of S.

2◦. A similarity transformation of a matrixA is said to be unitary if it is defined by a unitary
matrix S (i.e., S∗ = S–1). In this case,

Ã = S–1AS = S∗AS.

Some basic properties of the above matrix transformations are listed in Table 5.3.

TABLE 5.3
Matrix transformations

Transformation Ã Invariants

Equivalence SAT Rank

Similarity S–1AS Rank, determinant, eigenvalues

Congruent STAS Rank and symmetry

Orthogonal S–1AS = STAS Rank, determinant, eigenvalues, and symmetry

Conjunctive S∗AS Rank and self-adjointness

Unitary S–1AS = S∗AS Rank, determinant, eigenvalues, and self-adjointness

5.2.3-5. Eigenvalues and spectra of square matrices.

An eigenvalue of a square matrix A is any real or complex λ for which the matrix F (λ) ≡
A – λI is degenerate. The set of all eigenvalues of a matrix A is called its spectrum,
and F (λ) is called its characteristic matrix. The inverse of an eigenvalue, μ = 1/λ, is called
a characteristic value.
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Properties of spectrum of a matrices:
1. Similar matrices have the same spectrum.
2. Ifλ is an eigenvalue of a normal matrixA (see Paragraph 5.2.1-3), then λ̄ is an eigenvalue

of the matrix A∗; Reλ is an eigenvalue of the matrix H1 = 1
2 (A + A∗); and Imλ is an

eigenvalue of the matrix H2 = 1
2i (A – A∗).

3. All eigenvalues of a normal matrix are real if and only if this matrix is similar to a
Hermitian matrix.

4. All eigenvalues of a unitary matrix have absolute values equal to 1.
5. A square matrix is nondegenerate if and only if all its eigenvalues are different from

zero.

A nonzero (column) vector X (see Paragraphs 5.2.1-1 and 5.2.1-2) satisfying the con-
dition

AX = λX

is called an eigenvector of the matrix A corresponding to the eigenvalue λ. Eigenvectors
corresponding to distinct eigenvalues of A are linearly independent.

5.2.3-6. Reduction of a square matrix to triangular form.

THEOREM. For any square matrixA there exists a similarity transformation Ã = S–1AS

such that Ã is a triangular matrix.

The diagonal entries of any triangular matrix similar to a square matrix A of size n × n
coincide with the eigenvalues of A; each eigenvalue λi of A occurs m′

i ≥ 1 times on the
diagonal. The positive integer m′

i is called the algebraic multiplicity of the eigenvalue λi.
Note that

∑

i
m′
i = n.

The trace Tr(A) is equal to the sum of all eigenvalues of A, each eigenvalue counted
according to its multiplicity, i.e.,

Tr(A) =
∑

i

m′
iλi.

The determinant detA is equal to the product of all eigenvalues of A, each eigenvalue
counted according to its multiplicity, i.e.,

detA =
∏

i

λ
m′

i
i .

5.2.3-7. Reduction of a square matrix to diagonal form.

THEOREM 1. If A is a square matrix similar to some normal matrix, then there is a
similarity transformation Ã = S–1AS such that the matrix Ã is diagonal.

THEOREM 2. Two Hermitian matrices A and B can be reduced to diagonal form by the
same similarity transformation if and only if AB = BA.

THEOREM 3. For any Hermitian matrix A, there is a nondegenerate matrix S such that
Ã = S∗AS is a diagonal matrix. The entries of Ã are real.

THEOREM 4. For any real symmetric matrix A, there is a real nondegenerate matrix T
such that Ã = STAS is a diagonal matrix.
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Example 3. Consider the real symmetric matrix

A =

( 11 –6 2
–6 10 –4

2 –4 6

)

.

Its eigenvalues are λ1 = 18, λ2 = 6, λ3 = 3 and the respective eigenvectors are

X1 =

( 1
2
2

)

, X2 =

( 2
1
–2

)

, X3 =

( 2
–2
1

)

.

Consider the matrix S with the columns X1, X2, and X3:

S =

( 1 2 2
2 1 –2
2 –2 1

)

.

Taking Ã1 = STAS, we obtain a diagonal matrix:

Ã1 = STAS =

( 1 2 2
2 1 –2
2 –2 1

)( 11 –6 2
–6 10 –4

2 –4 6

)( 1 2 2
2 1 –2
2 –2 1

)

=

( 27 0 0
0 54 0
0 0 162

)

.

Taking Ã2 = S–1AS, we obtain a diagonal matrix with the eigenvalues on the main diagonal:

Ã2 = S–1AS = –
1

27

(
–3 –6 –6
–6 –3 6
–6 6 –3

)( 11 –6 2
–6 10 –4

2 –4 6

)( 1 2 2
2 1 –2
2 –2 1

)

=

( 3 0 0
0 6 0
0 0 18

)

.

We note that Ã1 = 9Ã2.

5.2.3-8. Characteristic equation of a matrix.

The algebraic equation of degree n

fA(λ) ≡ det(A – λI) ≡ det [aij – λδij] ≡

∣
∣
∣∣
∣∣
∣∣

a11 – λ a12 · · · a1n
a21 a22 – λ · · · a2n

...
...

. . .
...

an1 an2 · · · ann – λ

∣
∣
∣∣
∣∣
∣∣

= 0

is called the characteristic equation of the matrix A of size n × n, and fA(λ) is called its
characteristic polynomial. The spectrum of the matrix A (i.e., the set of all its eigenvalues)
coincides with the set of all roots of its characteristic equation. The multiplicity of every
root λi of the characteristic equation is equal to the multiplicity m′

i of the eigenvalue λi.

Example 4. The characteristic equation of the matrix

A =

( 4 –8 1
5 –9 1
4 –6 –1

)

has the form

fA(λ) ≡ det

( 4 – λ –8 1
5 –9 – λ 1
4 –6 –1 – λ

)

= –λ3 – 6λ2 – 11λ – 6 = –(λ + 1)(λ + 2)(λ + 3).

Similar matrices have the same characteristic equation.
Let λj be an eigenvalue of a square matrix A. Then

1) αλj is an eigenvalue of the matrix αA for any scalar α;
2) λpj is an eigenvalue of the matrixAp (p= 0,�1, . . . ,�N for a nondegenerateA; otherwise,

p = 0, 1, . . . ,N ), where N is a natural number;
3) a polynomial f (A) of the matrix A has the eigenvalue f (λ).
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Suppose that the spectra of matrices A and B consist of eigenvalues λj and μk, respec-
tively. Then the spectrum of the Kronecker product A⊗ B is the set of all products λjμk.
The spectrum of the direct sum of matrices A = A1 ⊕ . . .⊕An is the union of the spectra of
the matrices A1, . . . , An. The algebraic multiplicities of the same eigenvalues of matrices
A1, . . . , An are summed.

Regarding bounds for eigenvalues see Paragraph 5.6.3-4.

5.2.3-9. Cayley–Hamilton theorem. Sylvester theorem.

CAYLEY–HAMILTON THEOREM. Each square matrix A satisfies its own characteristic equa-
tion; i.e., fA(A) = 0.

Example 5. Let us illustrate the Cayley–Hamilton theorem by the matrix in Example 4:

fA(A) = –A3 – 6A2 – 11A – 6I

= –

( 70 –116 19
71 –117 19
64 –102 11

)

– 6

(
–20 34 –5
–21 35 –5
–18 28 –1

)

– 11

( 4 –8 1
5 –9 1
4 –6 –1

)

– 6

( 1 0 0
0 1 0
0 0 1

)

= 0.

A scalar polynomial p(λ) is called an annihilating polynomial of a square matrix A if
p(A) = 0. For example, the characteristic polynomial fA(λ) is an annihilating polynomial
of A. The unique monic annihilating polynomial of least degree is called the minimal
polynomial of A and is denoted by ψ(λ). The minimal polynomial is a divisor of every
annihilating polynomial.

By dividing an arbitrary polynomial f (λ) of degree n by an annihilating polynomial p(λ)
of degree m (p(λ) ≠ 0), one obtains the representation

f (λ) = p(λ)q(λ) + r(λ),

where q(λ) is a polynomial of degree n – m (if m ≤ n) or q(λ) = 0 (if m > n) and r(λ) is a
polynomial of degree l < m or r(λ) = 0. Hence

f (A) = p(A)q(A) + r(A),

where p(A) = 0 and f (A) = r(A). The polynomial r(λ) in this representation is called the
interpolation polynomial of A.

Example 6. Let
f (A) = A4 + 4A3 + 2A2 – 12A – 10I ,

where the matrix A is defined in Example 4. Dividing f (λ) by the characteristic polynomial fA(λ) = –λ3 –
6λ2 – 11λ – 6, we obtain the remainder r(λ) = 3λ2 + 4λ + 2. Consequently,

f (A) = r(A) = 3A2 + 4A + 2I .

THEOREM. Every analytic function of a square n × n matrix A can be represented as a
polynomial of the same matrix,

f (A) =
1

Δ(λ1,λ2, . . . ,λn)

n∑

k=1

Δn–kA
n–k,

where Δ(λ1,λ2, . . . ,λn) is the Vandermonde determinant and Δi is obtained from Δ by
replacing the (i + 1)st row by (f (λ1), f (λ2), . . . , f (λn)).

Example 7. Let us find r(A) by this formula for the polynomial in Example 6.
We find the eigenvalues of A from the characteristic equation fA(λ) = 0: λ1 = –1, λ2 = –2, and λ3 = –3.

Then the Vandermonde determinant is equal to Δ(λ1,λ2,λ3) = –2, and the other determinants are Δ1 = –4,
Δ2 = –8, and Δ3 = –6. It follows that

f (A) =
1

–2
[(–6)A2 + (–8)A + (–4)I] = 3A2 + 4A + 2I .
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The Cayley–Hamilton theorem can also be used to find the powers and the inverse of a
matrix A (since if fA(A) = 0, then AkfA(A) = 0 for any positive integer k).

Example 8. For the matrix in Examples 4–7, one has

fA(A) = –A3 – 6A2 – 11A – 6I = 0.

Hence we obtain
A3 = –6A2 – 11A – 6I .

By multiplying this expression by A, we obtain

A4 = –6A3 – 11A2 – 6A.

Now we use the representation of the cube of A via lower powers of A and eventually arrive at the formula

A4 = 25A2 + 60A + 36I .

For the inverse matrix, by analogy with the preceding, we obtain

A–1fA(A) = A–1(–A3 – 6A2 – 11A – 6I) = –A2 – 6A – 11I – 6A–1 = 0.

The definitive result is

A–1 = –
1
6

(A2 + 6A + 11I).

In some cases, an analytic function of a matrix A can be computed by a formula in the
following theorem.

SYLVESTER’S THEOREM. If all eigenvalues of a matrix A are distinct, then

f (A) =
n∑

k=1

f (λk)Zk, Zk =

∏
i≠k(A – λiI)
∏
i≠k(λk – λi)

,

and, moreover, Zk = Zmk (m = 1, 2, 3, . . .).

5.3. Linear Spaces
5.3.1. Concept of a Linear Space. Its Basis and Dimension

5.3.1-1. Definition of a linear space.

A linear space or a vector space over a field of scalars (usually, the field of real numbers
or the field of complex numbers) is a set V of elements x, y, z, . . . (also called vectors) of
any nature for which the following conditions hold:
I. There is a rule that establishes correspondence between any pair of elements x, y � V

and a third element z � V , called the sum of the elements x, y and denoted by z = x + y.
II. There is a rule that establishes correspondence between any pair x, λ, where x is an

element of V and λ is a scalar, and an element u � V , called the product of a scalar λ
and a vector x and denoted by u = λx.

III. The following eight axioms are assumed for the above two operations:
1. Commutativity of the sum: x + y = y + x.
2. Associativity of the sum: (x + y) + z = x + (y + z).
3. There is a zero element 0 such that x + 0 = x for any x.
4. For any element x there is an opposite element x′ such that x + x′ = 0.
5. A special role of the unit scalar 1: 1 ⋅ x = x for any element x.
6. Associativity of the multiplication by scalars: λ(μx) = (λμ)x.
7. Distributivity with respect to the addition of scalars: (λ + μ)x = λx + μx.
8. Distributivity with respect to a sum of vectors: λ(x + y) = λx + λy.
This is the definition of an abstract linear space. We obtain a specific linear space if

the nature of the elements and the operations of addition and multiplication by scalars are
concretized.
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Example 1. Consider the set of all free vectors in three-dimensional space. If addition of these vectors
and their multiplication by scalars are defined as in analytic geometry (see Paragraph 4.5.1-1), this set becomes
a linear space denoted by B3.

Example 2. Consider the set {x} whose elements are all positive real numbers. Let us define the sum of
two elements x and y as the product of x and y, and define the product of a real scalar λ and an element x as the
λth power of the positive real x. The number 1 is taken as the zero element of the space {x}, and the opposite
of x is taken equal to 1/x. It is easy to see that the set {x} with these operations of addition and multiplication
by scalars is a linear space.

Example 3. Consider the n-dimensional coordinate space R
n, whose elements are ordered sets of n

arbitrary real numbers (x1, . . . , xn). The generic element of this space is denoted by x, i.e., x = (x1, . . . , xn),
and the reals x1, . . . , xn are called the coordinates of the element x. From the algebraic standpoint, the set R

n

may be regarded as the set of all row vectors with n real components.
The operations of addition of element of R

n and their multiplication by scalars are defined by the following
rules:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . ,xn + yn),

λ(x1, . . . , xn) = (λx1, . . . ,λxn).

Remark. If the field of scalars λ, μ, . . . in the above definition is the field of all real numbers, the
corresponding linear spaces are called real linear spaces. If the field of scalars is that of all complex numbers,
the corresponding space is called a complex linear space. In many situations, it is clear from the context which
field of scalars is meant.

The above axioms imply the following properties of an arbitrary linear space:
1. The zero vector is unique, and for any element x the opposite element is unique.
2. The zero vector 0 is equal to the product of any element x by the scalar 0.
3. For any element x, the opposite element is equal to the product of x by the scalar –1.
4. The difference of two elements x and y, i.e., the element z such that z + y = x, is unique.

5.3.1-2. Basis and dimension of a linear space. Isomorphisms of linear spaces.

An element y is called a linear combination of elements x1, . . . , xk of a linear space V if
there exist scalars α1, . . . , αk such that

y = α1x1 + · · · + αkxk.

Elements x1, . . . , xk of the space V are said to be linearly dependent if there exist scalars
α1, . . . , αk such that |α1|2 + · · · + |αk |2 ≠ 0 and

α1x1 + · · · + αkxk = 0,

where 0 is the zero element of V .
Elements x1, . . . , xk of the space V are said to be linearly independent if for any scalars

α1, . . . , αk such that |α1|2 + · · · + |αk |2 ≠ 0, we have

α1x1 + · · · + αkxk ≠ 0.

THEOREM. Elements x1, . . . , xk of a linear space V are linearly dependent if and only
if one of them is a linear combination of the others.

Remark. If at least one of the elements x1, . . . , xk is equal to zero, then these elements are linearly depen-
dent. If some of the elements x1, . . . , xk are linearly dependent, then all these elements are linearly dependent.

Example 4. The elements i1 = (1, 0, . . . , 0), i2 = (0, 1, . . . , 0), . . . , in = (0, 0, . . . , 1) of the space R
n (see

Example 3) are linearly independent. For any x = (x1, . . . ,xn) � R
n, the vectors x, i1, . . . , in are linearly

dependent.
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A basis of a linear space V is defined as any system of linearly independent vectors
e1, . . . , en such that for any element x of the space V there exist scalars x1, . . . , xn such
that

x = x1e1 + · · · + xnen.

This relation is called the representation of an element x in terms of the basis e1, . . . , en,
and the scalars x1, . . . , xn are called the coordinates of the element x in that basis.

UNIQUENESS THEOREM. The representation of any element x � V in terms of a given
basis e1, . . . , en is unique.

Let e1, . . . , en be any basis in V and vectors x and y have the coordinates x1, . . . , xn and
y1, . . . , yn in that basis. Then the coordinates of the vector x + y in that basis are x1 + y1,
. . . , xn + yn, and the coordinates of the vector λx are λx1, . . . , λxn for any scalar λ.

Example 5. Any three noncoplanar vectors form a basis in the linear space B3 of all free vectors. The n
elements i1 = (1, 0, . . . , 0), i2 = (0, 1, . . . , 0), . . . , in = (0, 0, . . . , 1) form a basis in the linear space R

n. Any
basis of the linear space {x} from Example 2 consists of a single element. This element can be arbitrarily
chosen of nonzero elements of this space.

A linear spaceV is said to ben-dimensional if it containsn linearly independent elements
and any n + 1 elements are linearly dependent. The number n is called the dimension of
that space, n = dimV .

A linear space V is said to be infinite-dimensional (dimV = ∞) if for any positive
integer N it contains N linearly independent elements.

THEOREM 1. If V is a linear space of dimension n, then any n linearly independent
elements of that space form its basis.

THEOREM 2. If a linear space V has a basis consisting of n elements, then dimV = n.

Example 6. The dimension of the space B3 of all vectors is equal to 3. The dimension of the space R
n is

equal to n. The dimension of the space {x} is equal to 1.

Two linear spaces V and V ′ over the same field of scalars are said to be isomorphic
if there is a one-to-one correspondence between the elements of these spaces such that if
elements x and y from V correspond to elements x′ and y′ from V ′, then the element x + y
corresponds to x′ + y′ and the element λx corresponds to λx′ for any scalar λ.

Remark. If linear spaces V and V ′ are isomorphic, then the zero element of one space corresponds to the
zero element of the other.

THEOREM. Any two n-dimensional real (or complex) spaces V and V ′ are isomorphic.

5.3.1-3. Affine space.

An affine space is a nonempty set A that consists of elements of any nature, called points,
for which the following conditions hold:
I. There is a given linear (vector) space V , called the associated linear space.

II. There is a rule by which any ordered pair of points A,B � A is associated with an
element (vector) from V; this vector is denoted by

−−→
AB and is called the vector issuing

from the point A with endpoint at B.
III. The following conditions (called axioms of affine space) hold:

1. For any point A � A and any vector a � V , there is a unique point B � A such that−−→
AB = a.
2.

−−→
AB +

−−→
BC =

−→
AC for any three points A,B,C � A.
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By definition, the dimension of an affine space A is the dimension of the associated
linear space V , dimA = dimV .

Any linear space may be regarded as an affine space.
In particular, the space R

n can be naturally considered as an affine space. Thus if A =
(a1, . . . , an) and B = (b1, . . . , bn) are points of the affine space R

n, then the corresponding
vector

−−→
AB from the linear space R

n is defined by
−−→
AB = (b1 – a1, . . . , bn – an).

LetA be an n-dimensional affine space with the associated linear space V . A coordinate
system in the affine space A is a fixed point O � A, together with a fixed basis e1, . . . ,
en � V . The point O is called the origin of this coordinate system.

Let M be a point of an affine space A with a coordinate system Oe1 . . . en. One says
that the pointM has affine coordinates (or simply coordinates) x1, . . . ,xn in this coordinate
system, and one writesM = (x1, . . . ,xn) if x1, . . . xn are the coordinates of the radius-vector−−→
OM in the basis e1, . . . , en, i.e.,

−−→
OM = x1e1 + · · · + xnen.

5.3.2. Subspaces of Linear Spaces

5.3.2-1. Concept of a linear subspace and a linear span.

A subset L of a linear space V is called a linear subspace of V if the following condi-
tions hold:
1. If x and y belong to L, then the sum x + y belongs to L.
2. If x belongs to L and λ is an arbitrary scalar, then the element λx belongs to L.

The null subspace in a linear space V is its subset consisting of the single element zero.
The space V itself can be regarded as its own subspace. These two subspaces are called
improper subspaces. All other subspaces are called proper subspaces.

Example 1. A subset B2 consisting of all free vectors parallel to a given plane is a subspace in the linear
space B3 of all free vectors.

The linear span L(x1, . . . , xm) of vectors x1, . . . , xm in a linear space V is, by definition,
the set of all linear combinations of these vectors, i.e., the set of all vectors of the form

α1x1 + · · · + αmxm,

where α1, . . . , αm are arbitrary scalars. The linear span L(x1, . . . , xm) is the least subspace
of V containing the elements x1, . . . , xm.

If a subspace L of an n-dimensional space V does not coincide with V , then dimL <
n = dimV .

Let elements e1, . . . , ek form a basis in a k-dimensional subspace of an n-dimensional
linear space V . Then this basis can be supplemented by elements ek+1, . . . , en of the space
V , so that the system e1, . . . , ek, ek+1, . . . , en forms a basis in the space V .

THEOREM OF THE DIMENSION OF A LINEAR SPAN. The dimension of a linear span
L(x1, . . . , xm) of elements xm, . . . , xm is equal to the maximal number of linearly indepen-
dent vectors in the system x1, . . . , xm.

5.3.2-2. Sum and intersection of subspaces.

The intersection of subspaces L1 and L2 of one and the same linear space V is, by definition,
the set of all elements x of V that belong simultaneously to both spaces L1 and L2. Such
elements form a subspace of V .

The sum of subspaces L1 and L2 of one and the same linear space V is, by definition,
the set of all elements of V that can be represented in the form y + z, where y is an element
of V1 and z is an element of L2. The sum of subspaces is also a subspace of V .
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THEOREM. The sum of dimensions of arbitrary subspaces L1 and L2 of a finite-
dimensional space V is equal to the sum of the dimension of their intersection and the
dimension of their sum.

Example 2. Let V be the linear space of all free vectors (in three-dimensional space). Denote by L1 the
subspace of all free vectors parallel to the plane OXY , and by L2 the subspace of all free vectors parallel to
the plane OXZ. Then the sum of the subspaces L1 and L2 coincides with V , and their intersection consists of
all free vectors parallel to the axis OX.

The dimension of each space L1 and L2 is equal to two, the dimension of their sum is equal to three, and
the dimension of their intersection is equal to unity.

5.3.2-3. Representation of a linear space as a direct sum of its subspaces.

A linear space V can be represented as a direct sum of its subspaces, V1 and V2 if each
element x � V admits the unique representation x = x1 + x2, where x1 � V1 and x2 � V2. In
this case, one writes V = V1 ⊕ V2.

Example 3. The space V of all free vectors (in three-dimensional space) can be represented as the direct
sum of the subspace V1 formed by all free vectors parallel to the plane OXY and the subspace V2 formed by
all free vectors parallel to the axis OZ.

THEOREM. An n-dimensional space V is a direct sum of its subspaces V1 and V2 if and
only if the intersection of V1 and V2 is the null subspace and dimV = dimV1 + dimV2.

Remark. If R is the sum of its subspaces R1 and R2, but not the direct sum, then the representation
x = x1 + x2 is nonunique, in general.

5.3.3. Coordinate Transformations Corresponding to Basis
Transformations in a Linear Space

5.3.3-1. Basis transformation and its inverse.

Let e1, . . . , en and ẽ1, . . . , ẽn be two arbitrary bases of an n-dimensional linear space V .
Suppose that the elements ẽ1, . . . , ẽn are expressed via e1, . . . , en by the formulas

ẽ1 = a11e1 + a12e2 + · · · + a1nen,
ẽ2 = a21e1 + a22e2 + · · · + a2nen,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ẽn = an1e1 + an2e2 + · · · + annen.

Thus, the transition from the basis e1, . . . , en to the basis ẽ1, . . . , ẽn is determined by the
matrix

A ≡

⎛

⎜
⎜
⎝

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

⎞

⎟
⎟
⎠ .

Note that detA ≠ 0, i.e., the matrix A is nondegenerate.
The transition from the basis ẽ1, . . . , ẽn to the basis e1, . . . , en is determined by the

matrix B ≡ [bij] = A–1. Thus, we can write

ẽi =
n∑

j=1

aijej , ek =
n∑

j=1

bkj ẽj (i, k = 1, 2, . . . , n). (5.3.3.1)
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5.3.3-2. Relations between coordinate transformations and basis transformations.

Suppose that in a linear n-dimensional space V , the transition from its basis e1, . . . , en to
another basis ẽ1, . . . , ẽn is determined by the matrix A (see Paragraph 5.3.3-1). Let x be
any element of the space V with the coordinates (x1, . . . ,xn) in the basis e1, . . . , en and the
coordinates (x̃1, . . . , x̃n) in the basis ẽ1, . . . , ẽn, i.e.,

x = x1e1 + · · · + xnen = x̃1ẽ1 + · · · + x̃nẽn.

Then using formulas (5.3.3.1), we obtain the following relations between these coordinates:

xj =
n∑

i=1

x̃iaij , x̃k =
n∑

l=1

xlblk, j, k = 1, . . . ,n.

In terms of matrices and row vectors, these relations can be written as follows:

(x1, . . . ,xn) = (x̃1, . . . , x̃n)A, (x̃1, . . . , x̃n) = (x1, . . . ,xn)A–1

or, in terms of column vectors,

(x1, . . . ,xn)T = AT (x̃1, . . . , x̃n)T , (x̃1, . . . , x̃n)T = (A–1)T (x1, . . . ,xn)T ,

where the superscript T indicates the transpose of a matrix.

5.4. Euclidean Spaces
5.4.1. Real Euclidean Space

5.4.1-1. Definition and properties of a real Euclidean space.

A real Euclidean space (or simply, Euclidean space) is a real linear space V endowed with a
scalar product (also called inner product), which is a real-valued function of two arguments
x � V , y � V called the scalar product of these elements, denoted by x ⋅ y, and satisfying the
following conditions (axioms of the scalar product):

1. Symmetry: x ⋅ y = y ⋅ x.
2. Distributivity: (x1 + x2) ⋅ y = x1 ⋅ y + x2 ⋅ y.
3. Homogeneity: (λx) ⋅ y = λ(x ⋅ y) for any real λ.
4. Positive definiteness: x ⋅ x ≥ 0 for any x, and x ⋅ x = 0 if and only if x = 0.
If the nature of the elements and the scalar product is concretized, one obtains a specific

Euclidean space.

Example 1. Consider the linear space B3 of all free vectors in three-dimensional space. The space B3
becomes a Euclidean space if the scalar product is introduced as in analytic geometry (see Paragraph 4.5.3-1):

x ⋅ y = |x| |y| cosϕ,

where ϕ is the angle between the vectors x and y.

Example 2. Consider the n-dimensional coordinate space R
n whose elements are ordered systems of n

arbitrary real numbers, x = (x1, . . . ,xn). Endowing this space with the scalar product

x ⋅ y = x1y1 + · · · + xnyn,

we obtain a Euclidean space.
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THEOREM. For any two elements x and y of a Euclidean space, the Cauchy–Schwarz
inequality holds:

(x ⋅ y)2 ≤ (x ⋅ x)(y ⋅ y).

A linear space V is called a normed space if it is endowed with a norm, which is a
real-valued function of x � V , denoted by ‖x‖ and satisfying the following conditions:

1. Homogeneity: ‖λx‖ = |λ|‖x‖ for any real λ.
2. Positive definiteness: ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0.
3. The triangle inequality (also called the Minkowski inequality) holds for all elements

x and y:
‖x + y‖ ≤ ‖x‖ + ‖y‖. (5.4.1.1)

The value ‖x‖ is called the norm of an element x or its length.

THEOREM. Any Euclidean space becomes a normed space if the norm is introduced by

‖x‖ =
√

x ⋅ x. (5.4.1.2)

COROLLARY. In any Euclidean space with the norm (5.4.1.2), the triangle inequality
(5.4.1.1) holds for all its elements x and y.

The distance between elements x and y of a Euclidean space is defined by

d(x, y) = ‖x – y‖.

One says that ϕ � [0, 2π] is the angle between two elements x and y of a Euclidean
space if

cosϕ =
x ⋅ y

‖x‖ ‖y‖ .

Two elements x and y of a Euclidean space are said to be orthogonal if their scalar product
is equal to zero, x ⋅ y = 0.

PYTHAGOREAN THEOREM. Let x1, . . . xm be mutually orthogonal elements of a Eu-
clidean space, i.e., xj ⋅ xj = 0 for i ≠ j. Then

‖x1 + · · · + xm‖2 = ‖x1‖2 + · · · + ‖xm‖2.

Example 3. In the Euclidean space B3 of free vectors with the usual scalar product (see Example 1), the
following relations hold:

‖a‖ = |a|, (a ⋅ b)2 ≤ |a|2 |b|2, |a + b| ≤ |a| + |b|.
In the Euclidean space R

n of ordered systems of n numbers with the scalar product defined in Example 2,
the following relations hold:

‖x‖ =
√
x2

1 + · · · + x2
n,

(x1y1 + · · · + xnyn)2 ≤ (x2
1 + · · · + x2

n)(y2
1 + · · · + y2

n),
√

(x1 + y1)2 + · · · + (xn + yn)2 ≤
√
x2

1 + · · · + x2
n

√
y2

1 + · · · + y2
n.

5.4.1-2. Orthonormal basis in a finite-dimensional Euclidean space.

For elements x1, . . . , xm of a Euclidean space, the mth-order determinant det[xi ⋅ xj] is
called their Gram determinant. These elements are linearly independent if and only if their
Gram determinant is different from zero.
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One says that n elements i1, . . . , in of an n-dimensional Euclidean space V form its
orthonormal basis if these elements have unit norm and are mutually orthogonal, i.e.,

ii ⋅ ij =
{ 1 for i = j,

0 for i ≠ j.

THEOREM. In any n-dimensional Euclidean space V , there exists an orthonormal basis.

Orthogonalization of linearly independent elements:

Let e1, . . . , en be n linearly independent vectors of an n-dimensional Euclidean space V .
From these vectors, one can construct an orthonormal basis of V using the following
algorithm (called Gram–Schmidt orthogonalization):

ii =
gi√

gi ⋅ gi
, where gi = ei –

i∑

j=1

(ei ⋅ ij)ij (i = 1, 2, . . . , n). (5.4.1.3)

Remark. In any n-dimensional (n > 1) Euclidean space V , there exist infinitely many orthonormal bases.

Properties of an orthonormal basis of a Euclidean space:
1. Let i1, . . . , in be an orthonormal basis of a Euclidean space V . Then the scalar product

of two elements x = x1i1 + · · · + xnin and y = y1i1 + · · · + ynin is equal to the sum of
products of their respective coordinates:

x ⋅ y = x1y1 + · · · + xnyn.

2. The coordinates of any vector x in an orthonormal basis i1, . . . , in are equal to the scalar
product of x and the corresponding vector of the basis (or the projection of the element
x on the axis in the direction of the corresponding vector of the basis):

xk = x ⋅ ik (k = 1, 2, . . . , n).

Remark. In an arbitrary basis e1, . . . , en of a Euclidean space, the scalar product of two elements
x = x1e1 + · · · + xnen and y = y1e1 + · · · + ynen has the form

x ⋅ y =
n∑

i=1

n∑

j=1

aijxiyj ,

where aij = ei ⋅ ej (i, j = 1, 2, . . . , n).

Let X , Y be subspaces of a Euclidean space V . The subspace X is called the orthogonal
complement of the subspace Y inV if any element x ofX is orthogonal to any element y ofY
and X ⊕ Y = V .

THEOREM. Any n-dimensional Euclidean space V can be represented as the direct sum
of its arbitrary subspace Y and its orthogonal complement X .

Two Euclidean spaces V and Ṽ are said to be isomorphic if one can establish a one-to-one
correspondence between the elements of these spaces satisfying the following conditions:
if elements x and y of V correspond to elements x̃ and ỹ of Ṽ , then the element x + y
corresponds to x̃ + ỹ; the element λx corresponds to λx̃ for any λ; the scalar product (x ⋅ y)V
is equal to the scalar product (x̃ ⋅ ỹ)Ṽ .

THEOREM. Any two n-dimensional Euclidean spaces V and Ṽ are isomorphic.
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5.4.2. Complex Euclidean Space (Unitary Space)

5.4.2-1. Definition and properties of complex Euclidean space (unitary space).

A complex Euclidean space (or unitary space) is a complex linear space V endowed with
a scalar product (also called inner product), which is a complex-valued function of two
arguments x � V and y � V called their scalar product, denoted by x ⋅ y, satisfying the
following conditions (called axioms of the scalar product):

1. Commutativity: x ⋅ y = y ⋅ x.
2. Distributivity: (x1 + x2) ⋅ y = x1 ⋅ y + x2 ⋅ y.
3. Homogeneity: (λx) ⋅ y = λ(x ⋅ y) for any complex λ.
4. Positive definiteness: x ⋅ x ≥ 0; and x ⋅ x = 0 if and only if x = 0.

Here y ⋅ x is the complex conjugate of a number y ⋅ x.

Example 1. Consider the n-dimensional complex linear space R
n
∗ whose elements are ordered systems

of n complex numbers, x = (x1, . . . , xn). We obtain a unitary space if the scalar product of two elements
x = (x1, . . . , xn) and y = (y1, . . . , yn) is introduced by

x ⋅ y = x1ȳ1 + · · · + xnȳn,

where ȳj is the complex conjugate of yj .

THEOREM. For any two elements x and y of an arbitrary unitary space, the Cauchy–
Schwarz inequality holds:

|x ⋅ y|2 ≤ (x ⋅ x)(y ⋅ y).

THEOREM. Any unitary space becomes a normed space if the norm of its element x is
introduced by

‖x‖ =
√

x ⋅ x. (5.4.2.1)

COROLLARY. For any two elements x and y of a normed Euclidean space with the norm
(5.4.2.1), the triangle inequality (5.4.1.1) holds.

The distance between elements x and y of a unitary space is defined by

d(x, y) = ‖x – y‖. (5.4.2.2)

Two elements x and y of a unitary space are said to be orthogonal if their scalar product
is equal to zero, x ⋅ y = 0.

5.4.2-2. Orthonormal basis in a finite-dimensional unitary space.

Elements x1, . . . , xm of a unitary space V are linearly independent if and only if their Gram
determinant is different from zero, det[xi ⋅ xj] ≠ 0.

One says that elements i1, . . . , in of an n-dimensional unitary space V form an or-
thonormal basis of that space if these elements are mutually orthogonal and have unit norm,
i.e.,

ii ⋅ ij =
{ 1 for i = j,

0 for i ≠ j.

Given any n linearly independent elements of a unitary space, one can construct an
orthonormal basis of that space using the procedure described in Paragraph 5.4.1-2 (see
formulas (5.4.1.3)).
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Properties of an orthonormal basis of a unitary space:
1. Let i1, . . . , in be an orthonormal basis in a unitary space. Then the scalar product of

two elements x = x1i1 + · · · + xnin and y = y1i1 + · · · + ynin is equal to the sum

x ⋅ y = x1ȳ1 + · · · + xnȳn.

2. The coordinates of any vector in an orthonormal basis i1, . . . , in are equal to the scalar
products of this vector and the vectors of the bases (or the projections of this element
on the axes in the direction of the corresponding basis vectors):

xk = x ⋅ ik (k = 1, 2, . . . , n).

Two unitary spaces V and Ṽ are said to be isomorphic if there is a one-to-one corre-
spondence between their elements satisfying the following conditions: if elements x and
y of V correspond to elements x̃ and ỹ of Ṽ , then x + y corresponds to x̃ + ỹ; the element
λx corresponds to λx̃ for any complex λ; the scalar product (x ⋅ y)V is equal to the scalar
product (x̃ ⋅ ỹ)Ṽ .

THEOREM. Any two n-dimensional unitary spaces V and Ṽ are isomorphic.

5.4.3. Banach Spaces and Hilbert Spaces

5.4.3-1. Convergence in unitary spaces. Banach space.

Any normed linear space is a metric space with the metric (5.4.2.2).
A sequence {bs} of elements of a normed space V is said to be convergent to an element

b � V as s→ ∞ if lim
s→∞ ‖bs – b‖ = 0.

A series x0 + x1 + · · · with terms in a normed space is said to be convergent to an element

x (called its sum; one writes x = lim
n→∞

n∑

k=0
xk =

∞∑

k=0
xk) if the sequence of its partial sums

forms a sequence convergent to x, i.e., lim
n→∞

∥
∥∥x –

n∑

k=0
xk
∥
∥∥ = 0.

A normed linear space V is said to be complete if any sequence of its elements s0,
s1, . . . satisfying the condition

lim
n,m→∞ ‖sn – sm‖ = 0

is convergent to some element s of the space V .
A complete normed linear space is called a Banach space.

Remark. Any finite-dimensional normed linear space is complete.

5.4.3-2. Hilbert space.

A complete unitary space is called a Hilbert space.
Any complete subspace of a Hilbert space is itself a Hilbert space.

PROJECTION THEOREM. Let V1 be a complete subspace of a unitary space V . Then for
any x � V , there is a unique vector xp � V1 such that

min
y�V1

‖x – y‖ = ‖x – xp‖.
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Moreover, the vector xp is the unique element of V1 for which the difference x – xp is
orthogonal to any element x1 of V1, i.e.,

(x – xp) ⋅ x1 = 0 for all x1 � V1.

The mapping x → xp is a bounded linear operator from V to V1 called the orthogonal
projection of the space V to its subspace V1.

5.5. Systems of Linear Algebraic Equations
5.5.1. Consistency Condition for a Linear System

5.5.1-1. Notion of a system of linear algebraic equations.

A system of m linear equations with n unknown quantities has the form

a11x1 + a12x2 + · · · + a1kxk + · · · + a1nxn = b1,
a21x1 + a22x2 + · · · + a2kxk + · · · + a2nxn = b2,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
am1x1 + am2x2 + · · · + amkxk + · · · + amnxn = bm,

(5.5.1.1)

where a11, a12, . . . , amn are the coefficients of the system; b1, b2, . . . , bm are its free terms;
and x1, x2, . . . , xn are the unknown quantities.

System (5.5.1.1) is said to be homogeneous if all its free terms are equal to zero. Other-
wise (i.e., if there is at least one nonzero free term) the system is called nonhomogeneous.

If the number of equations is equal to that of the unknown quantities (m = n), sys-
tem (5.5.1.1) is called a square system.

A solution of system (5.5.1.1) is a set of n numbers x1, x2, . . . , xn satisfying the
equations of the system. A system is said to be consistent if it admits at least one solution.
If a system has no solutions, it is said to be inconsistent. A consistent system of the
form (5.5.1.1) is called a determined system—it has a unique solution. A consistent system
with more than one solution is said to be underdetermined.

It is convenient to use matrix notation for systems of the form (5.5.1.1),

AX = B, (5.5.1.2)

where A ≡ [aij] is a matrix of size m × n called the basic matrix of the system; X ≡ [xi] is
a column vector of size n; B ≡ [bi] is a column vector of size m.

5.5.1-2. Existence of nontrivial solutions of a homogeneous system.

Consider a homogeneous system
AX = Om, (5.5.1.3)

where A ≡ [aij] is its basic matrix of size m × n, X ≡ [xi] is a column vector of size n,
and Om ≡ [0] is a column vector of size m. System (5.5.1.3) is always consistent since it
always has the so-called trivial solution X ≡ On.

THEOREM. A homogeneous system (5.5.1.3) has a nontrivial solution if and only if the
rank of the matrix A is less than the number of the unknown quantities n.

It follows that a square homogeneous system has a nontrivial solution if and only if the
determinant of its matrix of coefficients is equal to zero, detA = 0.
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Properties of the set of all solutions of a homogeneous system:
1. All solutions of a homogeneous system (5.5.1.3) form a linear space.
2. The linear space of all solutions of a homogeneous system (5.5.1.3) with n unknown

quantities and a basic matrix of rank r is isomorphic to the space An–r of all ordered
systems of (n – r) numbers. The dimension of the space of solutions is equal to n – r.

3. Any system of (n–r) linearly independent solutions of the homogeneous system (5.5.1.3)
forms a basis in the space of all its solutions and is called a fundamental system of
solutions of that system. The fundamental system of solutions corresponding to the
basis i1 = (1, 0, . . . , 0), i2 = (0, 1, . . . , 0), . . . , in–r = (0, 0, . . . , 1) of the space An–r is
said to be normal.

5.5.1-3. Consistency condition for a general linear system.

System (5.5.1.1) or (5.5.1.2) is associated with two matrices: the basic matrix A of size
m×n and the augmented matrixA1 of sizem×(n+1) formed by the matrixA supplemented
with the column of the free terms, i.e.,

A1 ≡

⎛

⎜
⎜
⎝

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2

...
...

. . .
...

...
am1 am2 · · · amn bm

⎞

⎟
⎟
⎠ . (5.5.1.4)

KRONECKER–CAPELLI THEOREM. A linear system (5.5.1.1) [or (5.5.1.2)] is consistent
if and only if its basic matrix and its augmented matrix (5.5.1.4) have the same rank, i.e.
rank (A1) = rank (A).

5.5.2. Finding Solutions of a System of Linear Equations

5.5.2-1. System of two equations with two unknown quantities.

A system of two equations with two unknown quantities has the form

a1x + b1y = c1,
a2x + b2y = c2.

(5.5.2.1)

Depending on the coefficients ak, bk, ck, the following three cases are possible:

1◦. If Δ = a1b2 – a2b1 ≠ 0, then system (5.5.2.1) has a unique solution,

x =
c1b2 – c2b1

a1b2 – a2b1
, y =

a1c2 – a2c1

a1b2 – a2b1
.

2◦. If Δ = a1b2 – a2b1 = 0 and a1c2 – a2c1 = 0 (the case of proportional coefficients), then
system (5.5.2.1) has infinitely many solutions described by the formulas

x = t, y =
c1 – a1t

b1
(b1 ≠ 0),

where t is arbitrary.

3◦. If Δ = a1b2 – a2b1 = 0 and a1c2 – a2c1 ≠ 0, then system (5.5.2.1) has no solutions.
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5.5.2-2. General square system of linear equations.

A square system of linear equations has the form

AX = B, (5.5.2.2)

where A is a square matrix.

1◦. If the determinant of system (5.5.2.2) is different from zero, i.e. detA ≠ 0, then the
system has a unique solution,

X = A–1B.

2◦. Cramer rule. If the determinant of the matrix of system (5.5.2.2) is different from zero,
i.e. Δ = detA ≠ 0, then the system admits a unique solution, which is expressed by

x1 =
Δ1

Δ
, x2 =

Δ2

Δ
, . . . , xn =

Δn

Δ
, (5.5.2.3)

where Δk (k = 1, 2, . . . , n) is the determinant of the matrix obtained from A by replacing
its kth column with the column of free terms:

Δk =

∣∣
∣∣
∣∣
∣∣

a11 a12 . . . b1 . . . a1n
a21 a22 . . . b2 . . . a2n

...
...

...
...

. . .
...

an1 an2 . . . bn . . . ann

∣∣
∣∣
∣∣
∣∣

.

Example 1. Using the Cramer rule, let us find the solution of the system of linear equations

2x1 + x2 + 4x3 = 16,

3x1 + 2x2 + x3 = 10,

x1 + 3x2 + 3x3 = 16.

The determinant of its basic matrix is different from zero,

Δ =

∣
∣
∣∣
∣

2 1 4
3 2 1
1 3 3

∣
∣
∣∣
∣

= 26 ≠ 0,

and we have

Δ1 =

∣
∣
∣∣
∣

16 1 4
10 2 1
16 3 3

∣
∣
∣∣
∣

= 26, Δ2 =

∣
∣
∣∣
∣

2 16 4
3 10 1
1 16 3

∣
∣
∣∣
∣

= 52, Δ3 =

∣
∣
∣∣
∣

2 1 16
3 2 10
1 3 16

∣
∣
∣∣
∣

= 78.

Therefore, by the Cramer rule (5.5.2.3), the only solution of the system has the form

x1 =
Δ1

Δ
=

26
26

= 1, x2 =
Δ2

Δ
=

52
26

= 2, x3 =
Δ3

Δ
=

78
26

= 3.

3◦. Gaussian elimination of unknown quantities.
Two systems are said to be equivalent if their sets of solutions coincide.
The method of Gaussian elimination consists in the reduction of a given system to an

equivalent system with an upper triangular basic matrix. The latter system can be easily
solved. This reduction is carried out in finitely many steps. On every step, one performs an
elementary transformation of the system (or the corresponding augmented matrix) and ob-
tains an equivalent system. The elementary transformations are of the following three types:
1. Interchange of two equations (or the corresponding rows of the augmented matrix).
2. Multiplication of both sides of one equation (or the corresponding row of the augmented

matrix) by a nonzero constant.
3. Adding to both sides of one equation both sides of another equation multiplied by a

nonzero constant (adding to some row of the augmented matrix its another row multiplied
by a nonzero constant).
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Suppose that detA≠ 0. Then by consecutive elementary transformations, the augmented
matrix of the system A1 [see (5.5.1.4)] of size n × (n + 1) can be reduced to the form

U1 ≡

⎛

⎜⎜
⎝

1 u12 · · · u1n y1
0 1 · · · u2n y2
...

...
. . .

...
...

0 0 · · · 1 yn

⎞

⎟⎟
⎠

and one obtains an equivalent system with an upper triangular basic matrix,

x1 + u12x2 + u13x3 + · · · + u1nxn = y1,
x2 + u23x3 + · · · + u2nxn = y2,
. . . . . . . . . . . . . . . . . . . . . . . . . . .

xn = yn.

This system is solved by the so-called “backward substitution”: inserting xn = yn (obtained
from the last equation) into the preceding (n – 1)st equation, one finds xn–1. Then inserting
the values obtained for xn, xn–1 into the (n – 2)nd equation, one finds xn–2. Proceeding in
this way, one finally finds x1. This back substitution process is described by the formulas

xk = yk –
n∑

s=k+1

uksxs (k = n – 1,n – 2, . . . , 1).

Suppose that detA = 0 and rank (A) = r, 0 < r < n. In this case, the system is
either inconsistent (i.e., has no solutions) or has infinitely many solutions. By elementary
transformations and, possibly, reindexing the unknown quantities (i.e., introducing new
unknown quantities y1 = xσ(1), . . . , yn = xσ(n), where σ(1), . . . , σ(n) is a permutation of
the indices 1, 2, . . . , n), one obtains a system of the form (for the sake of brevity, we retain
the notation xj for the reindexed unknown quantities)

c11x1 + · · · + c1rxr + c1,r+1xr+1 + · · · + c1nxn = d1,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

crrxr + cr,r+1xr+1 + · · · + crnxn = dr,
0 = dr+1,
. . .

0 = dn,

where the matrix [cij] (i, j = 1, 2, . . . , r) of size r × r is nondegenerate. If at least one
of the right-hand sides dr+1, . . . , dn is different from zero, then the system is inconsistent.
If dr+1 = . . . = dn = 0, then the last n – r equations can be dropped and it remains to find all
solutions of the first r equations. Transposing all terms containing the variables xr+1, . . . ,xn
to the right-hand sides and regarding these variables as arbitrary free parameters, we obtain
a linear system for the unknown quantities x1, . . . , xr with the nondegenerate basic matrix
[cij] (j, j = 1, 2, . . . , r).

Example 2. Let us find a solution of the system from Example 1 by the Gaussian elimination method.
By elementary transformations of the augmented matrix, we obtain
⎛

⎝
2 1 4 16
3 2 1 10
1 3 3 16

⎞

⎠ →
⎛

⎝
1 1/2 2 8
0 1/2 –5 –14
0 5/2 1 8

⎞

⎠ →
⎛

⎝
1 1/2 2 8
0 1 –10 –28
0 0 26 78

⎞

⎠ →
⎛

⎝
1 1/2 2 8
0 1 –10 –28
0 0 1 3

⎞

⎠ .
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The transformed system has the form

x1 + 1
2 x2 + 2x3 = 8,

x2 – 10x3 = –28,

x3 = 3.

Hence, we find that
x3 = 3, x2 = –28 + 10x3 = 2, x1 = 8 – 1

2 x2 – 2x3 = 1.

4◦. Gauss-Jordan elimination of unknown quantities.
This method consists of applying elementary transformations for reducing a system with

a nondegenerate basic matrix to an equivalent system with the identity matrix. On the kth
step (k = 1, 2, . . . , n) the rows of the augmented matrix A′

1 obtained on the preceding step
can be transformed as follows:

a′′kj =
a′kj
a′kk

, b′′k =
b′k
a′kk

(j = k, k + 1, . . . ,n),

a′′ij = a′ij – a′ik
a′kj
a′kk

, b′′i = b′i – aik
b′k
a′kk

(i = 1, 2, . . . , n, i ≠ k, j = k, k + 1, . . . ,n),

provided that the diagonal element obtained on each step is not equal to zero. After n steps,
the basic matrix is transformed to the identity matrix and the right-hand side turns into the
desired solution.

Example 3. For the linear system from Examples 1 and 2 we have
⎛

⎝
2 1 4 16
3 2 1 10
1 3 3 16

⎞

⎠→
⎛

⎝
1 1/2 2 8
0 1/2 –5 –14
0 5/2 1 8

⎞

⎠→
⎛

⎝
1 0 7 22
0 1 –10 –28
0 0 26 78

⎞

⎠→
⎛

⎝
1 0 0 1
0 1 0 2
0 0 1 3

⎞

⎠ ,

and therefore x1 = 1, x2 = 2, x3 = 3.

The diagonal element obtained on some step of the above elimination procedure may
happen to be equal to zero. In this case, the formulas become more complicated and
reindexing of the unknown quantities may be required.

5◦. Method of LU -decomposition.
This method is based on the representation of the basic matrix A as the product of a

lower triangular matrix L and an upper triangular matrix U , i.e., in the form A = LU . This
factorization is called a triangular representation or the LU -representation of a matrix (see
also Paragraph 5.2.3-1).

Given such anLU -representation of the matrixA, the systemAX =B can be represented
in the formLUX =B, and its solution can be obtained by solving the following two systems:

LY = B, UX = Y .

Due to the triangular structure of the matrices L ≡ [lij] and U ≡ [uij], these systems can be
solved with the help of the formulas

yi =
1
lii

(
bi –

i–n∑

j=i

lijyj

)
(i = 1, 2, . . . , n),

xk = yk –
n∑

s=k+1

uksxs (k = n,n – 1, . . . , 1),

provided that lii ≠ 0.
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There exist various methods for the construction of LU -decompositions. In particular
if the following conditions hold:

a11 ≠ 0,
∣
∣∣ a11 a12
a21 a22

∣
∣∣ ≠ 0, . . . , detA ≠ 0,

then the elements of the desired matrices L and U can be calculated by the formulas

lij =

⎧
⎪⎨

⎪⎩
aij –

j–1∑

s=1

lisusj for i ≥ j,

0 for i < j,

uij =

⎧
⎪⎪⎨

⎪⎪⎩

1
lii

(
aij –

i–1∑

s=1

lisusj

)
for i < j

1 for i = j,
0 for i > j.

5.5.2-3. Solutions of a square system with different right-hand sides.

1◦. One often has to solve a system of linear equations with a given basic matrix A
and different right-hand sides. For instance, consider the systems AX (1) = B(1), . . . ,
AX (m) = B(m). These m systems can be regarded as a single matrix equation AX = B,
where X and B are matrices of size n × m whose columns coincide with X (j) and B(j)

(j = 1, 2, . . . , m).
Example 5. Suppose that we have to solve the equation AX = B with the given basic matrix A and

different right-hand sides:

A =

( 1 2 –3
3 –2 1

–2 1 3

)

, B(1) =

( 7
1
5

)

, B(2) =

( 10
6

–5

)

.

Using the Gauss-Jordan procedure, we obtain
⎛

⎝
1 2 –3 7 10
3 –2 1 1 6
–2 1 3 5 –5

⎞

⎠→
⎛

⎝
1 2 –3 7 10
0 –8 10 –20 –24
0 5 –3 19 15

⎞

⎠ →
⎛

⎝
1 0 –1/2 2 4
0 1 –5/4 5/2 3
0 0 13/4 1/32 0

⎞

⎠ →
⎛

⎝
1 0 0 3 4
0 1 0 5 3
0 0 1 2 0

⎞

⎠.

Therefore,

X (1) =

( 3
5
2

)

, X (2) =

( 4
3
0

)

.

2◦. If B = I , where I is the identity matrix of size n × n, then the solution of the matrix
equation AX = I coincides with the matrix X = A–1.

Example 6. Find the inverse of the matrix

A =

( 2 1 0
–3 0 7
–5 4 1

)

.

Let us transform the augmented matrix of the system, using the Gauss-Jordan method. We get
⎛

⎝
2 1 0 1 0 0

–3 0 7 0 1 0
–5 4 –1 0 0 1

⎞

⎠→
⎛

⎝
1 1/2 0 1/2 0 0
0 3/2 7 3/2 1 0
0 13/2 –1 5/2 0 1

⎞

⎠ →

→
⎛

⎝
1 0 –7/3 0 –1/3 0
0 1 14/3 1 2/3 0
0 0 –94/3 –4 –13/3 1

⎞

⎠ →
⎛

⎝
1 0 0 14/47 –1/94 –7/94
0 1 0 19/47 1/47 7/47
0 0 1 6/47 13/94 –3/94

⎞

⎠ .



5.5. SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS 203

5.5.2-4. General system of m linear equations with n unknown quantities.

Suppose that system (5.5.1.1) is consistent and its basic matrix A has rank r. First, in
the matrix A, one finds a submatrix of size r × r with nonzero rth-order determinant
and drops the m – r equations whose coefficients do not belong to this submatrix (the
dropped equations follow from the remaining ones and can, therefore, be neglected). In
the remaining equations, the n – r unknown quantities (free unknown quantities) that are
not involved in the said submatrix should be transferred to the right-hand sides. Thus, one
obtains a system of r equations with r unknown quantities, which can be solved by any of
the methods described in Paragraph 5.5.2-2.

Remark. If the rank r of the basic matrix and the rank of the augmented matrix of system (5.5.1.1) are
equal to the number of the unknown quantities n, then the system has a unique solution.

5.5.2-5. Solutions of homogeneous and corresponding nonhomogeneous systems.

1◦. Suppose that the basic matrix A of the homogeneous system (5.5.1.3) has rank r and
its submatrix in the left top corner, B = [aij] (i, j = 1, . . . , r), is nondegenerate. Let
M = detB ≠ 0 be the determinant of that submatrix. Any solution x1, . . . ,xn has n – r
free components xr+1, . . . ,xn and its first components x1, . . . ,xr are expressed via the free
components as follows:

x1 = –
1
M

[xr+1M1(ai(r+1)) + xr+2M1(ai(r+2)) + · · · + xnM1(ain)],

x2 = –
1
M

[xr+1M2(ai(r+1)) + xr+2M2(ai(r+2)) + · · · + xnM2(ain)],
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xr = –
1
M

[xr+1Mr(ai(r+1)) + xr+2Mr(ai(r+2)) + · · · + xnMr(ain)],

(5.5.2.4)

whereMj(aik) is the determinant of the matrix obtained fromB by replacing its jth column
with the column whose components are a1k, a2k, . . . , ark:

Mj(aik) =

∣∣
∣
∣∣
∣∣
∣

a11 a12 . . . a1k . . . a1r
a21 a22 . . . a2k . . . a2r

...
...

...
...

. . .
...

ar1 ar2 . . . ark . . . arr

∣∣
∣
∣∣
∣∣
∣

.

2◦. Using (5.5.2.4), we obtain the following n – r linearly independent solutions of the
original system (5.5.1.3):

X1 =

(
–
M1(ai(r+1))

M
–
M2(ai(r+1))

M
· · · –

Mr(ai(r+1))
M

1 0 · · · 0
)

,

X2 =

(
–
M1(ai(r+2))

M
–
M2(ai(r+2))

M
· · · –

Mr(ai(r+2))
M

0 1 · · · 0
)

,

Xn–r =

(
–
M1(ain)
M

–
M2(ain)
M

· · · –
Mr(ain)
M

0 0 · · · 1
)

.

Any solution of system (5.5.1.3) can be represented as their linear combination

X = C1X1 + C2X2 + · · · + Cn–rXn–r, (5.5.2.5)

where C1, C2, . . . , Cn–r are arbitrary constants. This formula gives the general solution of
the homogeneous system.
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3◦. Relations between solutions of the nonhomogeneous system (5.5.1.1) and solutions of
the corresponding homogeneous system (5.5.1.3).
1. The sum of any solution of the nonhomogeneous system (5.5.1.1) and any solution of

the corresponding homogeneous system (5.5.1.3) is a solution of system (5.5.1.1).
2. The difference of any two solutions of the nonhomogeneous system (5.5.1.1) is a solution

of the homogeneous system (5.5.1.3).
3. The sum of a particular solution X0 of the nonhomogeneous system (5.5.1.1) and the

general solution (5.5.2.5) of the corresponding homogeneous system (5.5.1.3) yields the
general solution X of the nonhomogeneous system (5.5.1.1).

5.6. Linear Operators
5.6.1. Notion of a Linear Operator. Its Properties

5.6.1-1. Definition of a linear operator.

An operator A acting from a linear space V of dimension n to a linear space W of dimension
m is a mapping A : V →W that establishes correspondence between each element x of the
space V and some element y of the space W . This fact is denoted by y = Ax or y = A(x).

An operator A : V → W is said to be linear if for any elements x1 and x2 of the space
V and any scalar λ, the following relations hold:

A(x1 + x2) = Ax1 + Ax2 (additivity of the operator),
A(λx) = λAx (homogeneity of the operator).

A linear operator A : V → W is said to be bounded if it has a finite norm, which is
defined as follows:

‖A‖ = sup
x�V
‖x‖≠0

‖Ax‖
‖x‖ = sup

‖x‖=1
‖Ax‖ ≥ 0.

Remark. If A is a linear operator from a Hilbert space V into itself, then

‖A‖ = sup
x�V
‖x‖≠0

‖Ax‖
‖x‖ = sup

‖x‖=1
‖Ax‖ = sup

x,y≠0

|(x, Ay)|
‖x‖ ‖y‖ = sup

‖x‖=‖y‖=1
|(x, Ay)|.

THEOREM. Any linear operator in a finite-dimensional normed space is bounded.

The set of all linear operators A : V → W is denoted by L(V ,W).
A linear operator O in L(V ,W) is called the zero operator if it maps any element x of

V to the zero element of the space W: Ox = 0.
A linear operator A in L(V ,V) is also called a linear transformation of the space V .
A linear operator I in L(V ,V) is called the identity operator if it maps each element x

of V into itself: Ix = x.

5.6.1-2. Basic operations with linear operators.

The sum of two linear operators A and B in L(V ,W) is a linear operator denoted by A + B
and defined by

(A + B)x = Ax + Bx for any x � V .

The product of a scalar λ and a linear operator A in L(V ,W) is a linear operator denoted
by λA and defined by

(λA)x = λAx for any x � V .
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The opposite operator for an operator A � L(V ,W) is an operator denoted by –A and
defined by

–A = (–1)A.

The product of two linear operators A and B in L(V ,V) is a linear operator denoted by
AB and defined by

(AB)x = A(Bx) for any x � V .

Properties of linear operators in L(V ,V):

(AB)C = A(BC) (associativity of the product of three operators),
λ(AB) = (λA)B (associativity of multiplication of a scalar and two operators),
(A + B)C = AC + BC (distributivity with respect to the sum of operators),

where λ is a scalar; A, B, and C are linear operators in L(V ,V).
Remark. Property 1 allows us to define the product A1A2 . . .Ak of finitely many operators in L(V ,V)

and the kth power of an operator A,
Ak = AA . . .A︸ ︷︷ ︸

k times

.

The following relations hold:
Ap+q = ApAq, (Ap)q = Apq. (5.6.1.1)

5.6.1-3. Inverse operators.

A linear operator B is called the inverse of an operator A in L(V ,V) if AB = BA = I. The
inverse operator is denoted by B = A–1. If the inverse operator exists, the operator A is said
to be invertible or nondegenerate.

Remark. If A is an invertible operator, then A–k = (A–1)k = (Ak)–1 and relations (5.6.1.1) still hold.

A linear operator A from V to W is said to be injective if it maps any two different
elements of V into different elements of W , i.e., for x1 ≠ x2, we have Ax1 ≠ Ax2.

If A is an injective linear operator from V to V , then each element y � V is an image of
some element x � V: y = Ax.

THEOREM. A linear operator A : V → V is invertible if and only if it is injective.

5.6.1-4. Kernel, range, and rank of a linear operator.

The kernel of a linear operator A : V → V is the set of all x in V such that Ax = 0. The
kernel of an operator A is denoted by ker A and is a linear subspace of V .

The range of a linear operator A : V → V is the set of all y in V such that y = Ax. The
range of a linear operator A is denoted by im A and is a subspace of V .

Properties of the kernel, the range, and their dimensions:
1. For a linear operator A : V → V in n-dimensional space V , the following relation holds:

dim (im A) + dim (ker A) = n.

2. Let V1 and V2 be two subspaces of a linear space V and dimV1 + dimV2 = dimV . Then
there exists a linear operator A : V → V such that V1 = im A and V2 = ker A.

A subspace V1 of the space V is called an invariant subspace of a linear operator
A : V →V if for any x in V1, the element Ax also belongs to V1. A linear operator A : V →V
is said to be reducible if V can be represented as a direct sum V = V1 ⊕ · · · ⊕ VN of two or
more invariant subspaces V1, . . . , VN of the operator A, where N is a natural number.

Example 1. ker A and im A are invariant subspaces of any linear operator A : V → V .
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The rank of a linear operator A is the dimension of its range: rank (A) = dim (im A).
Properties of the rank of a linear operator:

rank (AB) ≤ min{rank (A), rank (B)},
rank (A) + rank (B) – n ≤ rank (AB),

where A and B are linear operators in L(V ,V) and n = dimV .
Remark. If rank (A) = n then rank (AB) = rank (BA) = rank (B).

THEOREM. Let A : V → V be a linear operator. Then the following statements are
equivalent:
1. A is invertible (i.e., there exists A–1).
2. ker A = 0.
3. im A = V .
4. rank (A) = dimV .

5.6.1-5. Notion of a adjoint operator. Hermitian operators.

Let A � L(V ,V) be a bounded linear operator in a Hilbert space V . The operator A∗ in
L(V ,V) is called its adjoint operator if

(Ax) ⋅ y = x ⋅ (A∗y)

for all x and y in V .

THEOREM. Any bounded linear operator A in a Hilbert space has a unique adjoint
operator.

Properties of adjoint operators:

(A + B)∗ = A∗ + B∗, (λA)∗ = λ̄A∗, (A∗)∗ = A,

(AB)∗ = B∗A∗, O∗ = O, I∗ = I,

(A–1)∗ = (A∗)–1, ‖A∗‖ = ‖A‖, ‖A∗A‖ = ‖A‖2,

(Ax) ⋅ (By) ≡ x ⋅ (A∗By) ≡ (B∗Ax) ⋅ y for all x and y in V ,

where A and B are bounded linear operators in a Hilbert space V , λ̄ is the complex conjugate
of a number λ.

A linear operator A �L(V ,V) in a Hilbert space V is said to be Hermitian (self-adjoint) if

A∗ = A or (Ax) ⋅ y = x ⋅ (Ay).

A linear operator A � (V ,V) in a Hilbert space V is said to be skew-Hermitian if

A∗ = –A or (Ax) ⋅ y = –x ⋅ (Ay).

5.6.1-6. Unitary and normal operators.

A linear operator U � L(V ,V) in a Hilbert space V is called a unitary operator if for all x
and y in V , the following relation holds:

(Ux) ⋅ (Uy) = x ⋅ y.

This relation is called the unitarity condition.
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Properties of a unitary operator U:

U∗ = U–1 or U∗U = UU∗ = I,
‖Ux‖ = ‖x‖ for all x in V .

A linear operator A in L(V ,V) is said to be normal if

A∗A = AA∗.

THEOREM. A bounded linear operator A is normal if and only if ‖Ax‖ = ‖A‖ ‖x‖.
Remark. Any unitary or Hermitian operator is normal.

5.6.1-7. Transpose, symmetric, and orthogonal operators.

The transpose operator of a bounded linear operator A � L(V ,V) in a real Hilbert space V
is the operator AT � L(V ,V) such that for all x, y in V , the following relation holds:

(Ax) ⋅ y = x ⋅ (AT y).

THEOREM. Any bounded linear operator A in a real Hilbert space has a unique transpose
operator.

The properties of transpose operators in a real Hilbert space are similar to the properties
of adjoint operators considered in Paragraph 5.6.1-5 if one takes AT instead of A∗.

A linear operator A � L(V ,V) in a real Hilbert space V is said to be symmetric if

AT = A or (Ax) ⋅ y = x ⋅ (Ay).

A linear operator A � L(V ,V) in a real Hilbert space V is said to be skew-symmetric if

AT = –A or (Ax) ⋅ y = –x ⋅ (Ay).

The properties of symmetric linear operators in a real Hilbert space are similar to the
properties of Hermitian operators considered in Paragraph 5.6.1-5 if one takes AT instead
of A∗.

A linear operator P � L(V ,V) in a real Hilbert space V is said to be orthogonal if for
any x and y in V , the following relations hold:

(Px) ⋅ (Py) = x ⋅ y.

This relation is called the orthogonality condition.
Properties of orthogonal operator P:

PT = P–1 or PTP = PPT = I,
‖Px‖ = ‖x‖ for all x in V .

5.6.1-8. Positive operators. Roots of an operator.

A Hermitian (symmetric, in the case of a real space) operator A is said to be
a) nonnegative (resp., nonpositive), and one writes A ≥ 0 (resp., A ≤ 0) if (Ax) ⋅ x ≥ 0

(resp., (Ax) ⋅ x ≤ 0) for any x in V .
b) positive or positive definite (resp., negative or negative definite) and one writes A > 0

(A < 0) if (Ax) ⋅ x > 0 (resp., (Ax) ⋅ x < 0) for any x ≠ 0.

An mth root of an operator A is an operator B such that Bm = A.

THEOREM. If A is a nonnegative Hermitian (symmetric) operator, then for any positive
integer m there exists a unique nonnegative Hermitian (symmetric) operator A1/m.



208 ALGEBRA

5.6.1-9. Decomposition theorems.

THEOREM 1. For any bounded linear operator A in a Hilbert space V , the operator
H1 = 1

2 (A + A∗) is Hermitian and the operator H2 = 1
2 (A – A∗) is skew-Hermitian. The

representation of A as a sum of Hermitian and skew-Hermitian operators is unique: A =
H1 + H2.

THEOREM 2. For any bounded linear operator A in a real Hilbert space, the operator
S1 = 1

2 (A + AT ) is symmetric and the operator S2 = 1
2 (A – AT ) is skew-symmetric. The

representation of A as a sum of symmetric and skew-symmetric operators is unique: A =
S1 + S2.

THEOREM 3. For any bounded linear operator A in a Hilbert space, AA∗ and A∗A are
nonnegative Hermitian operators.

THEOREM 4. For any linear operator A in a Hilbert space V , there exist polar decom-
positions

A = QU and A = U1Q1,

where Q and Q1 are nonnegative Hermitian operators, Q2 = AA∗, Q2
1 = A∗A, and U, U1

are unitary operators. The operators Q and Q1 are always unique, while the operators U
and U1 are unique only if A is nondegenerate.

5.6.2. Linear Operators in Matrix Form

5.6.2-1. Matrices associated with linear operators.

Let A be a linear operator in an n-dimensional linear space V with a basis e1, . . . , en. Then
there is a matrix [ajj] such that

Aej =
n∑

i=1

aijei.

The coordinates yj of the vector y = Ax in that basis can be represented in the form

yi =
n∑

j=1

aijx
j (i = 1, 2, . . . , n), (5.6.2.1)

where xj are the coordinates of x in the same basis e1, . . . , en. The matrix A ≡ [aij] of size
n × n is called the matrix of the linear operator A in a given basis e1, . . . , en.

Thus, given a basis e1, . . . , en, any linear operator y = Ax can be associated with its
matrix in that basis with the help of (5.6.2.1).

If A is the zero operator, then its matrix is the zero matrix in any basis. If A is the unit
operator, then its matrix is the unit matrix in any basis.

THEOREM 1. Let e1, . . . , en be a given basis in a linear space V and let A ≡ [aij] be a
given square matrix of size n × n. Then there exists a unique linear operator A : V → V
whose matrix in that basis coincides with the matrix A.

THEOREM 2. The rank of a linear operator A is equal to the rank of its matrix A in any
basis: rank (A) = rank (A).

THEOREM 3. A linear operator A : V → V is invertible if and only if rank (A) = dim V .
In this case, the matrix of the operator A is invertible.
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5.6.2-2. Transformation of the matrix of a linear operator.

Suppose that the transition from the basis e1 , . . . , en to another basis ẽ1 , . . . , ẽn is determined
by a matrix U ≡ [uij] of size n × n, i.e.

ẽi =
n∑

j=1

uijej (i = 1, 2, . . . , n).

THEOREM. Let A and Ã be the matrices of a linear operator A in the basis e1, . . . , en
and the basis ẽ1, . . . , ẽn, respectively. Then

A = U–1ÃU or Ã = UAU–1.

Note that the determinant of the matrix of a linear operator does not depend on the
basis: detA = det Ã. Therefore, one can correctly define the determinant det A of a linear
operator as the determinant of its matrix in any basis:

det A = detA.

The trace of the matrix of a linear operator, Tr(A), is also independent of the basis. Therefore,
one can correctly define the trace Tr(A) of a linear operator as the trace of its matrix in any
basis:

Tr(A) = Tr(A).

In the case of an orthonormal basis, a Hermitian, skew-Hermitian, normal, or unitary
operator in a Hilbert space corresponds to a Hermitian, skew-Hermitian, normal, or unitary
matrix; and a symmetric, skew-symmetric, or transpose operator in a real Hilbert space
corresponds to a symmetric, skew-symmetric, or transpose matrix.

5.6.3. Eigenvectors and Eigenvalues of Linear Operators

5.6.3-1. Basic definitions.

1◦. A scalar λ is called an eigenvalue of a linear operator A in a vector space V if there is
a nonzero element x in V such that

Ax = λx. (5.6.3.1)

A nonzero element x for which (5.6.3.1) holds is called an eigenvector of the operator A
corresponding to the eigenvalue λ. Eigenvectors corresponding to distinct eigenvalues are
linearly independent. For an eigenvalue λ ≠ 0, the inverse μ = 1/λ is called a characteristic
value of the operator A.

THEOREM. If x1, . . . , xk are eigenvectors of an operator A corresponding to its eigen-
value λ, then α1x1 + · · · + αkxk (α2

1 + · · · + α2
k ≠ 0) is also an eigenvector of the operator A

corresponding to the eigenvalue λ.

The geometric multiplicity mi of an eigenvalue λi is the maximal number of linearly
independent eigenvectors corresponding to the eigenvalue λi. Thus, the geometric multi-
plicity of λi is the dimension of the subspace formed by all eigenvectors corresponding to
the eigenvalue λi.

The algebraic multiplicity m′
i of an eigenvalue λi of an operator A is equal to the

algebraic multiplicity of λi regarded as an eigenvalue of the corresponding matrix A.
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The algebraic multiplicity m′
i of an eigenvalue λi is always not less than the geometric

multiplicity mi of this eigenvalue.
The trace Tr(A) is equal to the sum of all eigenvalues of the operator A, each eigenvalue

counted according to its multiplicity, i.e.,

Tr(A) =
∑

i

m′
iλi.

The determinant det A is equal to the product of all eigenvalues of the operator A, each
eigenvalue entering the product according to its multiplicity,

det A =
∏

i

λ
m′

i
i .

5.6.3-2. Eigenvectors and eigenvalues of normal and Hermitian operators.

Properties of eigenvalues and eigenvectors of a normal operator:
1. A normal operator A in a Hilbert space V and its adjoint operator A∗ have the same

eigenvectors and their eigenvalues are complex conjugate.
2. For a normal operator A in a Hilbert space V , there is a basis {ek} formed by eigenvectors

of the operators A and A∗. Therefore, there is a basis in V in which the operator A has
a diagonal matrix.

3. Eigenvectors corresponding to distinct eigenvalues of a normal operator are mutually
orthogonal.

4. Any bounded normal operator A in a Hilbert space V is reducible. The space V can
be represented as a direct sum of the subspace spanned by an orthonormal system of
eigenvectors of A and the subspace consisting of vectors orthogonal to all eigenvectors
of A. In the finite-dimensional case, an orthonormal system of eigenvectors of A is a
basis of V .

5. The algebraic multiplicity of any eigenvalue λ of a normal operator is equal to its
geometric multiplicity.

Properties of eigenvalues and eigenvectors of a Hermitian operator:
1. Since any Hermitian operator is normal, all properties of normal operators hold for

Hermitian operators.
2. All eigenvalues of a Hermitian operator are real.
3. Any Hermitian operator A in an n-dimensional unitary space has nmutually orthogonal

eigenvectors of unit length.
4. Any eigenvalue of a nonnegative (positive) operator is nonnegative (positive).
5. Minimax property. Let A be a Hermitian operator in an n-dimensional unitary space V ,

and let Em be the set of allm-dimensional subspaces of V (m <n). Then the eigenvalues
λ1, . . . , λn of the operator A (λ1 ≥ . . . ≥ λn) can be defined by the formulas

λm+1 = min
Y�Em

max
x⊥Y

(Ax) ⋅ x
x ⋅ x

.

6. Let i1, . . . , in be an orthonormal basis in an n-dimensional space V , and let all ik
are eigenvectors of a Hermitian operator A, i.e., Aik = λkik. Then the matrix of
the operator A in the basis i1, . . . , in is diagonal and its diagonal elements have the
form akk = λk.
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7. Let i1, . . . , in be an arbitrary orthonormal basis in an n-dimensional Euclidean space V .
Then the matrix of an operator A in the basis i1, . . . , in is symmetric if and only if the
operator A is Hermitian.

8. In an orthonormal basis i1, . . . , in formed by eigenvectors of a nonnegative Hermitian
operator A, the matrix of the operator A1/m has the form

⎛

⎜
⎜⎜
⎝

λ
1/m
1 0 · · · 0
0 λ

1/m
2 · · · 0

...
...

. . .
...

0 0 · · · λ
1/m
n

⎞

⎟
⎟⎟
⎠

.

5.6.3-3. Characteristic polynomial of a linear operator.

Consider the finite-dimensional case. The algebraic equation

fA(λ) ≡ det(A – λI) = 0 (5.6.3.2)

of degree n is called the characteristic equation of the operator A and fA(λ) is called the
characteristic polynomial of the operator A.

Since the value of the determinant det(A – λI) does not depend on the basis, the
coefficients of λk (k = 0, 1, . . . , n) in the characteristic polynomial fA(λ) are invariants
(i.e., quantities whose values do not depend on the basis). In particular, the coefficient
of λk–1 is equal to the trace of the operator A.

In the finite-dimensional case, λ is an eigenvalue of a linear operator A if and only if λ is
a root of the characteristic equation (5.6.3.2) of the operator A. Therefore, a linear operator
always has eigenvalues.

In the case of a real space, a root of the characteristic equation can be an eigenvalue of
a linear operator only if this root is real. In this connection, it would be natural to find a
class of linear operators in a real Euclidean space for which all roots of the corresponding
characteristic equations are real.

THEOREM. The matrix A of a linear operator A in a given basis i1, . . . , in is diagonal if
and only if all ii are eigenvectors of this operator.

5.6.3-4. Bounds for eigenvalues of linear operators.

The modulus of any eigenvalue λ of a linear operator A in an n-dimensional unitary space
satisfies the estimate:

|λ| ≤ min(M1,M2), M1 = max
1≤i≤n

n∑

j=1

|aij |, M2 = max
1≤j≤n

n∑

i=1

|aij |,

where A ≡ [aij] is the matrix of the operator A. The real and the imaginary parts of
eigenvalues satisfy the estimates:

min
1≤i≤n

(Re aii – Pi) ≤ Reλ ≤ max
1≤i≤n

(Re aii + Pi),

min
1≤i≤n

(Im aii – Pi) ≤ Im λ ≤ max
1≤i≤n

(Im aii + Pi),
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where Pi =
n∑

j=1, j≠i

|aij |, and Pi can be replaced by Qi =
n∑

j=1, i≠i

|aji|.

The modulus of any eigenvalue λ of a Hermitian operator A in an n-dimensional unitary
space satisfies the inequalities

|λ|2 ≤
∑

i

∑

j

|aij |2, |λ| ≤ ‖A‖ = sup
‖x‖=1

[(Ax) ⋅ x],

and its smallest and its largest eigenvalues, denoted, respectively, by m and M , can be
found from the relations

m = inf
‖x‖=1

[(Ax) ⋅ x], M = sup
‖x‖=1

[(Ax) ⋅ x].

5.6.3-5. Spectral decomposition of Hermitian operators.

Let i1, . . . , in be a fixed orthonormal basis in an n-dimensional unitary space V . Then any
element of V can be represented in the form (see Paragraph 5.4.2-2)

x =
n∑

j=1

(x ⋅ ij)ij .

The operator Pk (k = 1, 2, . . . , n) defined by

Pkx = (x ⋅ ik)ik

is called the projection onto the one-dimensional subspace generated by the vector ik. The
projection Pk is a Hermitian operator.

Properties of the projection Pk:

PkPl =
{

Pk for k = l,
O for k ≠ l, Pmk = Pk (m = 1, 2, 3, . . .),

n∑

j=1
Pj = I, where I is the identity operator.

For a normal operator A, there is an orthonormal basis consisting of its eigenvectors,
Aik = λik. Then one obtains the spectral decomposition of a normal operator:

Ak =
n∑

j=1

λkjPj (k = 1, 2, 3, . . .). (5.6.3.3)

Consider an arbitrary polynomial p(λ) =
m∑

j=1
cjλ

j . By definition, p(A) =
m∑

j=1
cjAj . Then,

using (5.6.3.3), we get

p(A) =
m∑

i=1

p(λi)Pi.

CAYLEY-HAMILTON THEOREM. Every normal operator satisfies its own characteristic
equation, i.e., fA(A) = O.
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5.6.3-6. Canonical form of linear operators.

An element x is called an associated vector of an operator A corresponding to its eigenvalueλ
if for some m ≥ 1, we have

(A – λI)mx ≠ 0, (A – λI)m+1x = 0.

The number m is called the order of the associated vector x.

THEOREM. Let A be a linear operator in an n-dimensional unitary space V . Then there
is a basis {imk } (k = 1, 2, . . . , l, m = 1, 2, . . . , nk, n1 + n2 + · · · + nl = n) in V consisting
of eigenvectors and associated vectors of the operator A such that the action of the operator
A is determined by the relations

Ai1
k = λki1

k (k = 1, 2, . . . , l),

Aimk = λkimk + im–1
k (k = 1, 2, . . . , l, m = 2, 3, . . . , nk).

Remark 1. The vectors i1
k (k = 1, 2, . . . , l) are eigenvectors of the operator A corresponding to the

eigenvalues λk.

Remark 2. The matrix A of the linear operator A in the basis {imk } has canonical Jordan form, and the
above theorem is also called the theorem on the reduction of a matrix to canonical Jordan form.

5.7. Bilinear and Quadratic Forms

5.7.1. Linear and Sesquilinear Forms

5.7.1-1. Linear forms in a unitary space.

A linear form or linear functional on V is a linear operator A in L(V , C), where C is the
complex plane.

THEOREM. For any linear form f in a finite-dimensional unitary space V , there is a
unique element h in V such that

f (x) = x ⋅ h for all x � V .

Remark. This statement is true also for a Euclidean space V and a real-valued linear functional.

5.7.1-2. Sesquilinear forms in unitary space.

A sesquilinear form on a unitary space V is a complex-valued function B(x, y) of two
arguments x, y � V such that for any x, y, z in V and any complex scalar λ, the following
relations hold:
1. B(x + y, z) = B(x, z) + B(y, z).
2. B(x, y + z) = B(x, y) + B(x, z).
3. B(λx, y) = λB(x, y).
4. B(x,λy) = λ̄B(x, y).
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Remark. Thus, B(x, y) is a scalar function that is linear with respect to its first argument and antilinear
with respect to its second argument. For a real space V , sesquilinear forms turn into bilinear forms (see
Paragraph 5.7.2).

THEOREM. Let B(x, y) be a sesquilinear form in a unitary space V . Then there is a
unique linear operator A in L(V ,V) such that

B(x, y) = x ⋅ (Ay).

COROLLARY. IfB(x, y) is a sesquilinear form in a unitary space V , then there is a unique
linear operator A in L(V ,V) such that

B(x, y) = (Ax) ⋅ y.

5.7.1-3. Matrix of a sesquilinear form.

Any sesquilinear form B(x, y) on an n-dimensional linear space with a given basis e1, . . . ,
en can be uniquely represented as

B(x, y) =
n∑

i,j=1

bijξiη̄j , bij = B(ei, ej),

and ξi, ηj are the coordinates of x and y in the given basis. The matrix B ≡ [bij] of size
n × n is called the matrix of the sesquilinear form B(x, y) in the given basis e1, . . . , en.
This sesquilinear form can also be represented as

B(x, y) = XTBY , XT ≡ (ξ1, . . . , ξn), Y T ≡ (η̄1, . . . , η̄n).

5.7.2. Bilinear Forms

5.7.2-1. Definition of a bilinear form.

A bilinear form on a real linear space V is a real-valued function B(x, y) of two arguments
x � L, y � V satisfying the following conditions for any vectors x, y, and z in V and any
real λ:
1. B(x + y, z) = B(x, z) + B(y, z).
2. B(x, y + z) = B(x, y) + B(x, z).
3. B(λx, y) = B(x,λy) = λB(x, y).

THEOREM. LetB(x, y) be a bilinear form in a Euclidean space V . Then there is a unique
linear operator A in L(V ,V) such that

B(x, y) = (Ax) ⋅ y.

A bilinear form B(x, y) is said to be symmetric if for any x and y, we have

B(x, y) = B(y, x).

A bilinear form B(x, y) is said to be skew-symmetric if for any x and y, we have

B(x, y) = –B(y, x).

Any bilinear form can be represented as the sum of symmetric and skew-symmetric bilinear
forms.

THEOREM. A bilinear form B(x, y) on a Euclidean space V is symmetric if and only if
the linear operator A in the representation (5.6.6.1) is Hermitian (A = A∗).
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5.7.2-2. Bilinear forms in finite-dimensional spaces.

Any bilinear form B(x, y) on an n-dimensional linear space with a given basis e1, . . . , en
can be uniquely represented as

B(x, y) =
n∑

i,j=1

bijξiηj , bij = B(ei, ej),

and ξi, ηj are the coordinates of the vectors x and y in the given basis. The matrix B ≡ [bij]
of size n × n is called the matrix of the bilinear form in the given basis e1, . . . , en. The
bilinear form can also be represented as

B(x, y) = XTBY , XT ≡ (ξ1, . . . , ξn), Y T ≡ (η1, . . . , ηn).

Remark. Any square matrix B ≡ [bij] can be regarded as a matrix of some bilinear form in a given basis
e1, . . . , en. If this matrix is symmetric (skew-symmetric), then the bilinear form is symmetric (skew-symmetric).

The rank of a bilinear form B(x, y) on a finite-dimensional linear space L is defined as
the rank of the matrix B of this form in any basis: rankB(x, y) = rank (B).

A bilinear form on a finite dimensional space V is said to be nondegenerate (degenerate)
if its rank is equal to (is less than) the dimension of the space V , i.e., rankB(x, y) = dimV
(rankB(x, y) < dimV).

5.7.2-3. Transformation of the matrix of a bilinear form in another basis.

Suppose that the transition from a basis e1, . . . , en to a basis ẽ1, . . . , ẽn is determined by
the matrix U ≡ [uij] of size n × n, i.e.

ẽi =
n∑

j=1

uijej (i = 1, 2, . . . , n).

THEOREM. The matrices B and B̃ of a bilinear form B(x, y) in the bases e1, . . . , en and
ẽ1, . . . , ẽn, respectively, are related by

B̃ = UTBU .

5.7.2-4. Multilinear forms.

A multilinear form on a linear space V is a scalar function B(x1, . . . , xp) of p arguments
x1, . . . , xp � V , which is linear in each argument for fixed values of the other arguments.

A multilinear form B(x, y) is said to be symmetric if for any two arguments xl and xl,
we have

B(x1, . . . , xk, . . . , xl, . . . , xp) = B(x1, . . . , xl, . . . , xk, . . . , xp).

A multilinear form B(x, y) is said to be skew-symmetric if for any two arguments xl and xl,
we have

B(x1, . . . , xk, . . . , xl, . . . , xp) = –B(x1, . . . , xl, . . . , xk, . . . , xp).
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5.7.3. Quadratic Forms
5.7.3-1. Definition of a quadratic form.

A quadratic form on a real linear space is a scalar function B(x, x) obtained from a bilinear
form B(x, y) for x = y.

Any symmetric bilinear formB(x, y) is polar with respect to the quadratic formB(x, x).
These forms are related by

B(x, y) = 1
2 [B(x + y, x + y) – B(x, x) – B(y, y)].

5.7.3-2. Quadratic forms in a finite-dimensional linear space.

Any quadratic form B(x, x) in an n-dimensional linear space with a given basis e1, . . . , en
can be uniquely represented in the form

B(x, x) =
n∑

i,j=1

bijξiξj , (5.7.3.1)

where ξi are the coordinates of the vector x in the given basis, and B ≡ [bij] is a symmetric
matrix of size n × n, called the matrix of the bilinear form B(x, x) in the given basis. This
quadratic form can also be represented as

B(x, x) = XTBX, XT ≡ (ξ1, . . . , ξn).
Remark. Any quadratic form can be represented in the form (5.7.3.1) with infinitely many matrices B

such that B(x, x) = XTBX. In what follows, we consider only one of such matrices, namely, the symmetric
matrix. A quadratic form is real-valued if its symmetric matrix is real.

A real-valued quadratic form B(x, x) is said to be:
a) positive definite (negative definite) if B(x, x) > 0 (B(x, x) < 0) for any x ≠ 0;
b) alternating if there exist x and y such that B(x, x) > 0 and B(y, y) < 0;
c) nonnegative (nonpositive) if B(x, x) ≥ 0 (B(x, x) ≤ 0) for all x.

If B(x, y) is a polar bilinear form with respect to some positive definite quadratic form
B(x, x), then B(x, y) satisfies all axioms of the scalar product in a Euclidean space.

Remark. The axioms of the scalar product can be regarded as the conditions that determine a bilinear
form that is polar to some positive definite quadratic form.

The rank of a quadratic form on a finite-dimensional linear space V is, by definition,
the rank of the matrix of that form in any basis of V , rankB(x, x) = rank (B).

A quadratic form on a finite-dimensional linear space V is said to be nondegenerate
(degenerate) if its rank is equal to (is less than) the dimension ofV , i.e., rankB(x, x) = dimV
(rankB(x, x) < dimV).

5.7.3-3. Transformation of a bilinear form in another basis.

Suppose that the transition from the basis e1, . . . , en to the basis ẽ1, . . . , ẽn is given by the
matrix U ≡ [uij] of size n × n, i.e.

ẽi =
n∑

j=1

uijej (i = 1, 2, . . . , n).

Then the matrices B and B̃ of the quadratic form B(x, x) in the bases e1, . . . , en and
ẽ1, . . . , ẽn, respectively, are related by

B̃ = UTBU .
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5.7.3-4. Canonical representation of a real quadratic form.

Let g1, . . . , gn be a basis in which the real quadratic form B(x, x) in a linear space V admits
the representation

B(x, x) =
n∑

i=1

λiη
2
i , (5.7.3.2)

where η1, . . . , ηn are the coordinates of x in that basis. This representation is called a
canonical representation of the quadratic form, the real coefficients λ1, . . . , λn are called
the canonical coefficients, and the basis g1, . . . , gn is called the canonical basis.

The number of nonzero canonical coefficients is equal to the rank of the quadratic form.

THEOREM. Any real quadratic form on an n-dimensional real linear space V admits a
canonical representation (5.7.3.2).

1◦. Lagrange method. The basic idea of the method consists of consecutive transformations
of the quadratic form: on every step, one should single out the perfect square of some linear
form.

Consider a quadratic form

B(x, x) =
n∑

i,j=1

bijξiξj .

Case 1. Suppose that for some m (1 ≤ m ≤ n), we have bmm ≠ 0. Then, letting

B(x, x) =
1

bmm

( n∑

k=1

bmkξk

)2
+ B2(x, x),

one can easily verify that the quadratic form B2(x, x) does not contain the variable ξm.
This method of separating a perfect square in a quadratic form can always be applied if the
matrix [bij] (i, j = 1, 2, . . . , n) contains nonzero diagonal elements.

Case 2. Suppose that bmm = 0, bss = 0, but bms ≠ 0. In this case, the quadratic form
can be represented as

B(x, x) =
1

2bsm

[ n∑

k=1

(bmk + bsk)ξk

]2
–

1
2bsm

[ n∑

k=1

(bmk – bsk)ξk

]2
+B2(x, x),

whereB2(x, x) does not contain the variables ξm, ξs, and the linear forms in square brackets
are linearly independent (and therefore can be taken as new independent variables or
coordinates).

By consecutive combination of the above two procedures, the quadratic formB(x, x) can
always be represented in terms of squared linear forms; these forms are linearly independent,
since each contains a variable which is absent in the other linear forms.

2◦. Jacobi method. Suppose that

Δ1 ≡ b11 ≠ 0, Δ2 ≡
∣∣
∣
b11 b12
b21 b22

∣∣
∣ ≠ 0, . . . , Δn ≡ detB ≠ 0,

where B ≡ [bij] is the matrix of the quadratic form B(x, x) in some basis e1, . . . , en. One
can obtain a canonical representation of this form using the formulas

λ1 = Δ1, λi =
Δi

Δi–1
(i = 2, 3, . . . ,n).
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The basis e1, . . . , en is transformed to the canonical basis g1, . . . , gn by the formulas

gi =
n∑

j=1

αijej (i = 1, 2, . . . , n),

αij = (–1)i+j
Δi–1,j

Δi–1
,

where Δi–1,j is the minor of the submatrix of B ≡ [bij] formed by the elements on the
intersection of its rows with indices 1, 2, . . . , i – 1 and columns with indices 1, 2, . . . , j – 1,
j + 1, i.

5.7.3-5. Normal representation of a real quadratic form.

Let g1, . . . , gn be a basis of a linear space V in which the quadratic formB(x, x) is written as

B(x, x) =
n∑

i=1

εiη
2
i , (5.7.3.3)

where η1, . . . , ηn are the coordinates of x in that basis, and ε1, . . . , εn are coefficients
taking the values –1, 0, or 1. Such a representation of a quadratic form is called its normal
representation.

Any real quadratic form B(x, x) in an n-dimensional real linear space V admits a
normal representation (5.7.3.3). Such a representation can be obtained by the following
transformations:
1. One obtains its canonical representation (see Paragraph 5.7.3-4):

B(x, x) =
n∑

i=1

λiμ
2
i .

2. By the nondegenerate coordinate transformation

ηi =

⎧
⎪⎨

⎪⎩

1√
λi
μi for λi > 0,

1√
–λi
μi for λi < 0,

μi for λi = 0,

the canonical representation turns into a normal representation.

LAW OF INERTIA OF QUADRATIC FORMS. The number of terms with positive coefficients
and the number of terms with negative coefficients in any normal representation of a real
quadratic form does not depend on the method used to obtain such a representation.

The index of inertia of a real quadratic form is the integer k equal to the number of
nonzero coefficients in its canonical representation (this number coincides with the rank
of the quadratic form). Its positive index of inertia is the integer p equal to the number
of positive coefficients in the canonical representation of the form, and its negative index
of inertia is the integer q equal to the number of its negative canonical coefficients. The
integer s = p – q is called the signature of the quadratic form.

A real quadratic form B(x, x) on an n-dimensional real linear space V is
a) positive definite (resp., negative definite) if p = n (resp., q = n);
b) alternating if p ≠ 0, q ≠ 0;
c) nonnegative (resp., nonpositive) if q = 0, p < n (resp., p = 0, q < n).



5.7. BILINEAR AND QUADRATIC FORMS 219

5.7.3-6. Criteria of positive and negative definiteness of a quadratic form.

1◦. A real quadratic form B(x, x) is positive definite, negative definite, alternating, non-
negative, nonpositive if the eigenvalues λi of its matrix B ≡ [bij] are all positive, are all
negative, some are positive and some negative, are all nonnegative, are all nonpositive,
respectively.

2◦. Sylvester criterion. A real quadratic form B(x, x) is positive definite if and only if the
matrix of B(x, x) in some basis e1, . . . , en satisfies the conditions

Δ1 ≡ b11 > 0, Δ2 ≡
∣
∣∣ b11 b12
b21 b22

∣
∣∣ > 0, . . . , Δn ≡ detB > 0.

If the signs of the minor determinants alternate,

Δ1 < 0, Δ2 > 0, Δ3 < 0, . . . ,

then the quadratic form is negative definite.

3◦. A real matrix B is nonnegative and symmetric if and only if there is a real matrix C
such that B = CTC .

5.7.4. Bilinear and Quadratic Forms in Euclidean Space

5.7.4-1. Reduction of a quadratic form to a sum of squares.

THEOREM 1. Let B(x, y) be a symmetric bilinear form on a n-dimensional Euclidean
space V . Then there is an orthonormal basis i1, . . . , in in V and there are real numbers λk
such that for any x � V the real quadratic form B(x, x) can be represented as the sum of
squares of the coordinates ξk of x in the basis i1, . . . , in:

B(x, x) =
n∑

k=1

λkξ
2
k.

THEOREM 2. Let A(x, y) and B(x, y) be symmetric bilinear forms in a n-dimensional
real linear space V , and suppose that the quadratic form A(x, x) is positive definite. Then
there is a basis i1, . . . , in of V such that the quadratic forms A(x, x) and B(x, x) can be
represented in the form

A(x, x) =
n∑

k=1

λkξ
2
k, B(x, x) =

n∑

k=1

ξ2
k,

where ξk are the coordinates of x in the basis i1, . . . , in. The set of real λ1, . . . , λn coincides
with the spectrum of eigenvalues of the matrix B–1A (the matrices A and B can be taken
in any basis), and this set consists of the roots of the algebraic equation

det(A – λB) = 0.
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5.7.4-2. Extremal properties of quadratic forms.

A point x0 on a smooth surface S is called a stationary point of a differentiable function f
defined on S if the derivative of f at the point x0 in any direction on S is equal to zero. The
value f (x0) of the function f at a stationary point x0 is called its stationary value.

The unit sphere in a Euclidean space V is the set of all x � V such that

x ⋅ x = 1 (‖x‖ = 1). (5.7.4.1)

THEOREM. Let B(x, x) be a real quadratic form and let B(x, y) = (Ax) ⋅ y be the
corresponding polar bilinear form, where A is a Hermitian operator. The stationary values
of the quadratic form B(x, x) on the unit sphere (5.7.4.1) coincide with eigenvalues of the
operator A. These stationary values are attained, in particular, on the unit eigenvectors ek
of the operator A.

Remark. If the eigenvalues of the operator A satisfy the inequalities λ1 ≥ . . . ≥ λn, then λ1 and λn are
the largest and the smallest values of B(x, x) on the sphere x ⋅ x = 1.

5.7.5. Second-Order Hypersurfaces

5.7.5-1. Definition of a second-order hypersurface.

A second-order hypersurface in an n-dimensional Euclidean space V is the set of all points
x � V satisfying an equation of the form

A(x, x) + 2B(x) + c = 0, (5.7.5.1)

where A(x, x) is a real quadratic form different from identical zero, B(x) is a linear form,
and c is a real constant. Equation (5.7.5.1) is called the general equation of a second-order
hypersurface.

Suppose that in some orthonormal basis i1, . . . , in, we have

A(x, x) = XTAX =
n∑

i,j=1

aijxixk, B(x) = BX =
n∑

i=1

bixi,

XT = (x1, . . . ,xn), A ≡ [aij], B = (b1, . . . , bn).

Then the general equation (5.7.5.1) of a second-order hypersurface in the Euclidean space V
with the given orthonormal basis i1, . . . , in can be written as

XTAX + 2BX + c = 0.

The term A(x, x) = XTAX is called the group of the leading terms of equation (5.7.5.1),
and the terms B(x) + c = BX + c are called the linear part of the equation.

5.7.5-2. Parallel translation.

A parallel translation in a Euclidean space V is a transformation defined by the formulas

X = X ′ +
◦
X, (5.7.5.2)

where
◦
X is a fixed point, called the new origin.



5.7. BILINEAR AND QUADRATIC FORMS 221

In terms of coordinates, (5.7.5.2) takes the form

xk = x′k +
◦
xk (k = 1, 2, . . . , n),

where XT = (x1, . . . ,xn), X ′T = (x′1, . . . ,x′n),
◦
XT = (

◦
x1, . . . ,

◦
xn).

Under parallel translations any basis remains unchanged.
The transformation of the spaceV defined by (5.7.5.2) reduces the hypersurface equation

(5.7.5.1) to
A(x′, x′) + 2B′(x′) + c′ = 0,

where the linear form B′(x′) and the constant c′ are defined by

B′(x′) = A(x′,
◦
x) + B(x′), c′ = A(

◦
x,

◦
x) + 2B(

◦
x) + c,

or, in coordinate notation,

B′(x′) ≡ B′X ′ =
n∑

i=1

b′ix
′
i, c′ =

n∑

i=1

(b′i + bi)
◦
xi + c, b′i =

n∑

j=1

aij
◦
xj + bi.

Under parallel translation the group of the leading terms preserves its form.

5.7.5-3. Transformation of one orthonormal basis into another.

The transition from one orthonormal basis i1, . . . , in to another orthonormal basis i′1, . . . , i′n
is defined by an orthogonal matrix P ≡ [pij] of size n × n, i.e.,

i′i =
n∑

j=1

pijij (i = 1, 2, . . . , n).

Under this orthogonal transformation, the coordinates of points are transformed as
follows:

X ′ = PX,

or, in coordinate notation,

x′k =
n∑

i=1

pkixi (k = 1, 2, . . . , n), (5.7.5.3)

where XT = (x1, . . . ,xn), X ′T = (x′1, . . . ,x′n).

If the transition from the orthonormal basis i1, . . . , in to the orthonormal basis i′1, . . . , i′n
is defined by an orthogonal matrix P , then the hypersurface equation (5.7.5.1) in the new
basis takes the form

A′(x′, x′) + 2B′(x′) + c′ = 0.

The matrix A′ ≡ [a′ij] (A′(x′, x′) = X ′TA′X ′) is found from the relation

A′ = P –1AP .

Thus, when passing from one orthonormal basis to another orthonormal basis, the matrix
of a quadratic form is transformed similarly to the matrix of some linear operator. Note
that the operator A whose matrix in an orthonormal basis coincides with the matrix of the
quadratic form A(x, x) is Hermitian.
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The coefficients b′i of the linear form B′(x′) =
n∑

i=1
b′ix′i are found from the relations [to

this end, one should use (5.7.5.3)]

n∑

i=1

b′ix
′
i =

n∑

i=1

bixi,

and the constant is c′ = c.

5.7.5-4. Invariants of the general equation of a second-order hypersurface.

An invariant of the general second-order hypersurface equation (5.7.5.1) with respect to
parallel translations and orthogonal transformations of an orthogonal basis is, by definition,
any function f (a11, . . . , ann, b1, . . . , bn, c) of the coefficients of this equation that does not
change under such transformations of the space.

THEOREM. The coefficients of the characteristic polynomial of the matrix A of the

quadratic form A(x, x) and the determinant det Ã of the block matrix Ã =
(
A B
BT c

)
are

invariants of the general second-order hypersurface equation (5.7.5.1).

Remark. The quantities detA, Tr(A), rank (A), and rank (Ã) are invariants of equation (5.7.5.1).

5.7.5-5. Center of a second-order hypersurface.

The center of a second-order hypersurface is a point
◦
x such that the linear form B′(x′)

becomes identically equal to zero after the parallel translation that makes
◦
x the new origin.

Thus, the coordinates of the center can be found from the system of equations of the center
of a second-order hypersurface

n∑

j=1

aij
◦
xj + bi = 0 (i = 1, 2, . . . , n).

If the center equations for a hypersurface S have a unique solution, then S is called a
central hypersurface. If a hypersurface S has a center, then S consists of pairs of points,
each pair being symmetric with respect to the center.

Remark 1. For a second-order hypersurface S with a center, the invariants detA, det Ã, and the free
term c′ are related by

det Ã = c′ detA.

Remark 2. If the origin is shifted to the center of a central hypersurface S, then the equation of that
hypersurface in new coordinates has the form

A(x, x) +
det Ã
detA

= 0.
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5.7.5-6. Simplification of a second-order hypersurface equation.

Let A be the operator whose matrix in an orthonormal basis i1, . . . , in coincides with
the matrix of a quadratic form A(x, x). Suppose that the transition from the orthonormal
basis i1, . . . , in to the orthonormal basis i′1, . . . , i′n is defined by an orthogonal matrix P ,
and A′ = P –1AP is a diagonal matrix with the eigenvalues of the operator A on the main
diagonal. Then the equation of the hypersurface (5.7.5.1) in the new basis takes the form

n∑

i=1

λix
′
i

2 + 2
n∑

i=1

b′ix
′
i + c = 0, (5.7.5.4)

where the coefficients b′i are determined by the relations

n∑

i=1

b′ix
′
i =

n∑

i=1

bixi.

The reduction of any equation of a second-order hypersurface S to the form (5.7.5.4) is
called the standard simplification of this equation (by an orthogonal transformation of the
basis).

5.7.5-7. Classification of central second-order hypersurfaces.

1◦. Let i2, . . . , in be an orthonormal basis in which a second-order central hypersurface is
defined by the equation (called its canonical equation)

n∑

i=1

εi
x2
i

a2
i

+ sign
det Ã
detA

= 0, (5.7.5.5)

where x1, . . . , xn are the coordinates of x in that basis, and the coefficients ε1, . . . , εn take
the values –1, 0, or 1. The constants ak > 0 are called the semiaxes of the hypersurface.

The equation of any central hypersurface S can be reduced to the canonical equation
(5.7.5.5) by the following transformations:
1. By the parallel translation that shifts the origin to the center of the hypersurface, its

equation is transformed to (see Paragraph 5.7.5-5):

A(x, x) +
det Ã
detA

= 0.

2. By the standard simplification of the last equation, one obtains an equation of the
hypersurface in the form

n∑

i=1

λix
2
i +

det Ã
detA

= 0.

3. Letting

1
a2
k

=

⎧
⎨

⎩
|λk |

| detA|
| det Ã|

if det Ã ≠ 0,

|λk | if det Ã = 0,
εk = sign λk (k = 1, 2, . . . , n),

one passes to the canonical equation (5.7.5.5) of the central second-order hypersurface.
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2◦. Let p be the number of positive eigenvalues of the matrix A and q the number of
negative ones. Central second-order hypersurfaces admit the following classification. A
hypersurface is called:

a) an (n– 1)-dimensional ellipsoid if p = n and sign det Ã
detA = –1, or q = n and sign det Ã

detA = 1∗;

b) an imaginary ellipsoid if p = n and sign det Ã
detA = 1, or q = n and sign det Ã

detA = –1;

c) a hyperboloid if 0 < p < n (0 < q < n) and sign det Ã
detA ≠ 0;

d) degenerate if sign det Ã
detA = 0.

5.7.5-8. Classification of noncentral second-order hypersurfaces.

1◦. Let i2, . . . , in be an orthonormal basis in which a noncentral second-order hypersurface
is defined by the equation (called its canonical equation)

p∑

i=1

λix
2
i + 2μxn + c′ = 0, (5.7.5.6)

where x1, . . . , xn are the coordinates of x in that basis: p = rank (A).
The equation of any noncentral second-order hypersurface S can be reduced to the

canonical form (5.7.5.6) by the following transformations:
1. If p = rank (A), then after the standard simplification and renumbering the basis vectors,

equation (5.7.5.1) turns into
p∑

i=1

λix
′
i

2 + 2
p∑

i=1

b′ix
′
i + 2

n∑

i=p+1

b′ix
′
i + c = 0.

2. After the parallel translation

x′′k =

⎧
⎨

⎩
x′k +

b′k
λk

for k = 1, 2, . . . , p,

x′k for k = p + 1, p + 2, . . . , n,

the last equation can be represented in the form
p∑

i=1

λix
′′
i

2 + 2
n∑

i=p+1

b′ix
′′
i + c′ = 0, c′ = c –

p∑

i=1

b′i
λi

.

3. Leaving intact the first p basis vectors and transforming the last basis vectors so that the

term
n∑

i=p+1
b′ix′′i turns into μx′′′n , one reduces the hypersurface equation to the canonical

form (5.7.5.6).

2◦. Noncentral second-order hypersurfaces admit the following classification.
A hypersurface is called:

a) a paraboloid if μ ≠ 0 and p = n – 1; in this case, the parallel translation in the direction
of the xn-axis by – c′

2μ yields the canonical equation of a paraboloid

n–1∑

i=1

λix
2
i + 2μxn = 0;

∗ If a1 = . . . = an = R, then the hypersurface is a sphere of radius R in n-dimensional space.
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b) a central cylinder if μ = 0, p < n; its canonical equation has the form

p∑

i=1

λix
2
i + c′ = 0;

c) a paraboloidal cylinder if μ ≠ 0, p < n – 1; in this case, the parallel translation along the
xn-axis by – c′

2μ yields the canonical equation of a paraboloidal cylinder

p∑

i=1

λix
2
i + 2μxn = 0.

5.8. Some Facts from Group Theory
5.8.1. Groups and Their Basic Properties

5.8.1-1. Composition laws.

Let T be a mapping defined on ordered pairs a, b of elements of a set A and mapping each
pair a, b to an element c of A. In this case, one says that a composition law is defined on the
set A. The element c � A is called the composition of the elements a, b � A and is denoted
by c = aTb.

A composition law is commonly expressed in one of the two forms:
1. Additive form: c = a + b; the corresponding composition law is called addition and c is

called the sum of a and b.
2. Multiplicative form: c = ab; the corresponding composition law is called multiplication

and c is called the product of a and b.

A composition law is said to be associative if

aT(bTc) = (aTb)Tc for all a, b, c � A.

In additive form, this relation reads a + (b + c) = (a + b) + c; and in multiplicative form,
a(bc) = (ab)c.

A composition law is said to be commutative if

aTb = bTa for all a, b � A.

In additive form, this relation reads a + b = b + a; and in multiplicative form, ab = ba.
An element e of the set A is said to be neutral with respect to the composition law T if

aTe = a for any a � A.
In the additive case, a neutral element is called a zero element, and in the multiplicative

case, an identity element.
An element b is called an inverse of a � A if aTb = e. The inverse element is denoted

by b = a–1.
In the additive case, the inverse element of a is called the negative of a and it is denoted

by –a.

Example 1. Addition and multiplication of real numbers are composition laws on the set of real numbers.
Both these laws are commutative. The neutral element for the addition is zero. The neutral element for the
multiplication is unity.
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5.8.1-2. Notion of a group.

A group is a set G with a composition law T satisfying the conditions:
1. The law T is associative.
2. There is a neutral element e � G.
3. For any a � G, there is an inverse element a–1.

A groupG is said to be commutative or abelian if its composition law T is commutative.

Example 2. The set Z of all integer numbers is an abelian group with respect to addition. The set of all
positive real numbers is an abelian group with respect to multiplication. Any linear space is an abelian group
with respect to the addition of its elements.

Example 3. Permutation groups. Let E be a set consisting of finitely many elements a, b, c, . . . . A
permutation of E is a one-to-one mapping of E onto itself. A permutation f of the set E can be expressed in
the form

f =
(

a b c . . .
f (a) f (b) f (c) . . .

)
.

On the set P of all permutations of E, the composition law is introduced as follows: if f1 and f2 are two
permutations of E, then their composition f2 ◦ f1 is the permutation obtained by consecutive application of f1
and f2. This composition law is associative. The set of all permutations of E with this composition law is a
group.

Example 4. The group Z2 that consists of two elements 0 and 1 with the multiplication defined by

0 ⋅ 0 = 0, 0 ⋅ 1 = 1, 1 ⋅ 0 = 1, 1 ⋅ 1 = 1

and the neutral element 0 is called the group of modulo 2 residues.

Properties of groups:
1. If aTa–1 = e, then a–1Ta = e.
2. eTa = a for any a.
3. If aTx = e and aTy = e, then x = y.
4. The neutral element e is unique.

5.8.1-3. Homomorphisms and isomorphisms.

Recall that a mapping f : A→ B of a set A into a set B is a correspondence that associates
each element of A with an element of B. The range of the mapping f is the set of all
b � B such that b = f (a). One says that f is a one-to-one mapping if it maps different
elements of A into different elements of B, i.e., for any a1, a2 � A such that a1 ≠ a2, we
have f (a1) ≠ f (a2).

A mapping f : A→ B is called a mapping of the set A onto the set B if each element
of B is an image of some element of A, i.e., for any b � B, there is a � A such that b = f (a).

A mapping f of A onto B is said to be invertible if there is a mapping g : B → A such
that g(f (a)) = a for any a � A. The mapping g is called the inverse of the mapping f and
is denoted by g = f –1.

For definiteness, we use the multiplicative notation for composition laws in what follows,
unless indicated otherwise.

Let G be a group and let G̃ be a set with a composition law. A mapping f : G→ G̃ is
called a homomorphism if

f (ab) = f (a)f (b) for all a, b � G;

and the subset of G̃ consisting of all elements of the form f (a), a � G, is called a homo-
morphic image of the group G and is denoted by f (G). Note that here the set G̃ with a
composition law is not necessarily a group. However, the following result holds.
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THEOREM. The homomorphic image f (G) is a group. The image f (e) of the identity
element e � G is the identity element of the group f (G). Mutually inverse elements of G
correspond to mutually inverse images in f (G).

Two groups G1 and G2 are said to be isomorphic if there exists a one-to-one mapping
f of G1 onto G2 such that f (ab) = f (a)f (b) for all a, b � G1. Such a mapping is called an
isomorphism or isomorphic mapping of the group G1 onto the group G2.

THEOREM. Any isomorphism of groups is invertible, and the inverse mapping is also
an isomorphism.

An isomorphic mapping of a group G onto itself is called an automorphism of G. If
f1 : G→ G and f2 : G→ G are two automorphisms of a group G, one can define another
automorphism f1 ◦ f2 : G → G by letting (f1 ◦ f2)(g) = f1(f2(g)) for all g � G. This
automorphism is called the composition of f1 and f2, and with this composition law, the set
of all automorphisms of G becomes a group called the automorphism group of G.

5.8.1-4. Subgroups. Cosets. Normal subgroups.

Let G be a group. A subset G1 of the group G is called a subgroup if the following
conditions hold:
1. For any a and b belonging to G1, the product ab belongs to G1.
2. For any a belonging to G1, its inverse a–1 belongs to G1.

These conditions ensure that any subgroup of a group is itself a group.

Example 5. The identity element of a group is a subgroup. The subset of all even numbers is a subgroup
of the additive group of all integers.

The product of two subsets H1 and H2 of a group G is a set H3 that consists of all
elements of the form h1h2, where h1 � H1, h2 � H2. In this case, one writes H3 = H1H2.

Let H be a subgroup of a group G and a some fixed element of G. The set aH is called
a left coset, and the set Ha is called a right coset of the subgroup H in G.

Properties of left cosets (right cosets have similar properties):
1. If a � H , then aH ≡ H .
2. Cosets aH and bH coincide if a–1b � H .
3. Two cosets of the same subgroup H either coincide or have no common elements.
4. If aH is a coset, then a � aH .

A subgroup H of a group G is called a normal subgroup of G if H = a–1Ha for any
a � G. This is equivalent to the condition that aH = Ha for any a � G, i.e., every right
coset is a left coset.

5.8.1-5. Factor groups.

Let H be a normal subgroup of a group G. Then the product of two cosets aH and bH
(as subsets of G) is the coset abH . Consider the set Q whose elements are cosets of the
subgroup H in G, and define the product of the elements of Q as the product of cosets.
Endowed with this product, Q becomes a group, denoted by Q = G/H and called the
quotient group of G with respect to the normal subgroup H .

The mapping f : G→ G/H that maps each a � G to the corresponding coset aH is a
homomorphism of G onto G/H .

If f :G→G is a homomorphism of groups, the set of all elements ofGmapped into the
identity element ofG is called the kernel of f and is denoted by ker f = {g �G : f (g) = f (e)}.
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THEOREM 1. If f is a homomorphism of a group G onto a group G and H is the set
of all elements of G that are mapped to f (e) (e is the identity element of G), then H is a
normal subgroup in G.

THEOREM 2 (ON GROUP HOMOMORPHISMS). If f is a homomorphism of a group G onto
a group G and H is the normal subgroup of G consisting of the elements mapped to the
identity element of G, then the group G and the quotient group G/H are isomorphic.

Thus, given a homomorphism f of a group G onto a group G̃, the kernel H of the
homomorphism is a normal subgroup of G, and conversely any normal subgroup H of G is
the kernel of the homomorphism of G onto the quotient group G/H .

Remark. Given a homomorphism of a group G onto a set G, all elements of the group G are divided into
mutually disjoint classes, each class containing all elements of G that are mapped into the same element of G.

Example 6. Let R
n be the n-dimensional linear coordinate space, which is an abelian group with respect

to addition of its elements. This space is the direct product of one-dimensional spaces:

R
n = R

1
(1) ⊗ · · · ⊗ R

1
(n).

Since R
1
(n) is an abelian subgroup, the set R

1
(n) is a normal subgroup of the group R

n. The coset corresponding
to an element a � R

n is the straight line passing through a in the direction parallel to the straight line R
1
(n), and

the quotient group R
n/R1

(n) is isomorphic to the (n – 1)-dimensional space R
n–1:

R
n–1 = R

n/R1
(n) = R

1
(1) ⊗ · · · ⊗ R

1
(n–1).

5.8.2. Transformation Groups

5.8.2-1. Group of linear transformations. Its subgroups.

Let V be a real finite-dimensional linear space and let A : V → V be a nondegenerate linear
operator. This operator can be regarded as a nondegenerate linear transformation of the
space V , since A maps different elements of V into different elements, and for any y � V
there is a unique x � V such that Ax = y.

The set of all nondegenerate linear transformations A of the n-dimensional real linear
space V is denoted by GL(n).

The product AB of linear transformations A and B in GL(n) is defined by the relation

(AB)x = A(Bx) for all x � V .

This product is a composition law on GL(n).

THEOREM. The setGL(n) of nondegenerate linear transformations of an n-dimensional
real linear space V with the above product is a group.

The group GL(n) is called the general linear group of dimension n.
A subset of GL(n) consisting of all linear transformations A such that det A = 1 is a

subgroup of GL(n) called the special linear group of dimension n and denoted by SL(n).

A sequence {Ak} of elements ofGL(n) is said to be convergent to an element A�GL(n)
as k → ∞ if the sequence {Akx} converges to Ax for any x � V .

Types of subgroups of GL(n):
1. Finite subgroups are subgroups with finitely many elements.
2. Discrete subgroups are subgroups with countably many elements.
3. Continuous subgroups are subgroups with uncountably many elements.
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Example 1. The subgroup of reflections with respect to the origin is finite and consists of two elements:
the identity transformation and the reflection x → –x.

The subgroup of rotations of a plane with respect to the origin by the angles kϕ (k = 0, �1, �2, . . . and ϕ
is a fixed angle incommensurable with π) is a discrete subgroup.

The subgroups of all rotations of a three-dimensional space about a fixed axis are a continuous subgroup.

A continuous subgroup of GL(n) is said to be compact if from any infinite sequence of
its elements one can extract a subsequence convergent to some element of the subgroup.

5.8.2-2. Group of orthogonal transformations. Its subgroups.

Consider the setO(n) that consists of all orthogonal transformations P of the n-dimensional
Euclidean space V , i.e., PTP = PPT = I (see Paragraph 5.2.3-3 and Section 5.4). This set
is a subgroup of GL(n) called the orthogonal group of dimension n.

All orthogonal transformations are divided into two classes:
1. Proper orthogonal transformations, for which det P = +1.
2. Improper orthogonal transformations, for which det P = –1.
The set of proper orthogonal transformations forms a group called the special orthogonal
group of dimension n and denoted by SO(n).

In the two-dimensional orthogonal group O(2) there is a subgroup of rotations by the
angles kϕ, where k = 0,�1,�2, . . . and ϕ is fixed. If ak is its element corresponding to k
and a = a1, then the element ak (k > 0) has the form

ak = a ⋅ a ⋅ . . . ⋅ a︸ ︷︷ ︸
k times

= ak (k = 1, 2, 3, . . . ).

Denoting by a–1 the inverse of a = a1, and the identity element by a0, we see that each
element of this group has the form

ak = ak (k = 0, �1, �2, . . . ).

Groups whose elements admit such a representation in terms of a single element are said to
be cyclic. Such groups are discrete.

There are two cyclic groups of rotations (p and q are coprime numbers):
1. Ifϕ ≠ 2πp/q (i.e., the angle ϕ is incommensurable with π), then all elements are distinct.
2. If ϕ = 2πp/q, then ak+q = ak (aq = a0). Such groups are called cyclic groups of order q.

Consider groups of mirror symmetry. Each of them consists of two elements: the
identity element and a reflection with respect to the origin.

Let {I, P} be a subgroup of O(3) consisting of the identity I and the reflection P of
the three-dimensional space with respect to the origin, Px = –x. This is an improper
subgroup. It is isomorphic to the group Z2 of residues modulo 2. The subgroup {I, P}
is a normal subgroup in O(3), and the subgroup SO(3) (consisting of proper orthogonal
transformations) is isomorphic to the quotient group O(3)/{I, P}.

5.8.2-3. Unitary groups.

By analogy with Paragraph 5.8.2-2, one can consider groups of linear transformations of a
complex linear space.

In the general linear group of transformations of a unitary space, one considers unitary
groups U (n), which are analogues of orthogonal groups. In the group U (n) of unitary
transformations, one considers the subgroup SU (n) that consists of unitary transformations
whose determinant is equal to 1.
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5.8.3. Group Representations

5.8.3-1. Linear representations of groups. Terminology.

A linear representation of a group G in the finite-dimensional Euclidean space Vn is a
homomorphism of G to the group of nondegenerate linear transformations of Vn; in other
words, a linear representation of G is a mapping D that associates each element a � G with
a nondegenerate linear transformation D(a) of the space Vn, so that for any a1 and a2 in G,
we have D(a1a2) = D(a1)D(a2).

Thus, for any g �G, its image D(g) is an element of the group GL(n), and the set D(G)
consisting of all transformations D(g), g � G, is a subgroup of GL(n) isomorphic to the
quotient group G/kerD, where kerD is the kernel of the homomorphism D, i.e., the set of
all g such that D(g) is the identity element of the group GL(n).

The subgroup D(G) is often also called a representation of the group G.
The space Vn is called the representation space; n is called the dimension of the

representation; and the basis in Vn is called the representation basis.
The trivial representation of a group is its homomorphic mapping onto the identity

element of the group GL(n).
A faithful representation of a groupG is an isomorphism ofG onto a subgroup ofGL(n).

5.8.3-2. Matrices of linear representations. Equivalent representations.

IfD(μ)(G) is a representation of a groupG, each g �G corresponds to a linear transformation
D(μ)(g), whose matrix in the basis of the representation D(μ)(G) is denoted by [D(μ)

ij (g)].

Two representations D(μ1)(G) and D(μ2)(G) of a group G in the same space En are said
to be equivalent if there exists a nondegenerate linear transformation C of the space En

such that D(μ1)(g) = C–1D(μ2)(g)C for each g � G.
The choice of a basis in the representation space is important, since the matrices

corresponding to the group elements may have some standard fairly simple form in that basis,
and this allows one to make important conclusions with regards to a given representation.

5.8.3-3. Reducible and irreducible representations.

A subspace V ′ of Vn is called invariant for a representation D(G) if it is invariant with
respect to each linear operator in D(G).

Suppose that all matrices of some three-dimensional representation D(G) have the form

(
A1 A2

O A3

)
, A1 ≡

(
a11 a12

a21 a22

)
, A2 ≡

(
a13

a23

)
, A3 ≡ ( a33 ) , O ≡ ( 0 0 ) .

The product of such matrices has the form (see Paragraph 5.2.1-10)

(
A′

1 A′
2

O A′
3

)(
A′′

1 A′′
2

O A′′
3

)
=

(
A′

1A
′′
1 A′′′

2
O A′

3A
′′
3

)
,

and therefore the structure of the matrices is preserved. Thus, the matrices A1 form a
two-dimensional representation of the given group G and the matrices A3 form its one-
dimensional representation. In such cases, one says thatD(G) is a reducible representation.
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If all matrices of a representation have the form of size n × n
(
A1 O

O A2

)
,

then the square matrices A1 and A2 form representations, the sum of their dimensions
being equal to n. In this case, the representation is said to be completely reducible. The
representation induced on an invariant space by a given representation D(G) is called a part
of the representation D(G).

A representation D(G) of a group G is said to be irreducible if it has only two invariant
subspaces, Vn and O. Otherwise, it is said to be reducible. Any representation can be
expressed in terms of irreducible representations.

5.8.3-4. Characters.

Let D(G) be an n-dimensional representation of a group G, and let [Dij(g)] be the matrix
of the operator corresponding to the element g � G. The character of an element g � G in
the representation D(G) is defined by

χ(g) =
n∑

i=1

Dii(g) = Tr([Dij(g)]).

Thus, the character of an element does not depend on the representation basis and is,
therefore, an invariant quantity.

An element b � G is said to be conjugate to the element a �G if there exists u � G such
that

uau–1 = b.

Properties of conjugate elements:
1. Any element is conjugate to itself.
2. If b is conjugate to a, then a is conjugate to b.
3. If b is conjugate to a and c is conjugate to b, then c is conjugate to a.

The characters of all elements belonging to one and the same class of conjugate elements
coincide. The characters of elements for equivalent representations coincide.

5.8.3-5. Examples of group representations.

1◦. Let G be a group of symmetry of three-dimensional space consisting of two elements:
the identity transformation I and the reflection P with respect to the origin, G = {I, P}.

The multiplication of elements of this group is described by the table

I P
I I P
P P I

1. One-dimensional representation of the group G.
In the space E1, we chose a basis e1 and consider the matrix A(1) of the nondegenerate

transformation A1 of this space: A(1) = (1). The transformation A1 forms a subgroup in the
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group GL(1) of all linear transformations of E1, and the multiplication in this subgroup is
described by the table

A(1)

A(1) A(1)

We obtain a one-dimensional representationD(1)(G) of the groupG by lettingD(1)(I) = A(1),
D(1)(P) = A(1). These relations define a homomorphism of the group G to GL(1) and thus
define its representation.
2. A two-dimensional representation of the group G.

In E2, we choose a basis e1, e2 and consider the matrices A(2), B(2) of linear transfor-
mations A2, B2 of this space: A(2) =

(1
0

0
1
)
,B(2) =

(0
1

1
0
)
. The transformations A2, B2 form

a subgroup in the group GL(2) of linear transformations of E2. The multiplication in this
subgroup is defined by the table

A(2) B(2)

A(2) A(2) B(2)

B(2) B(2) A(2)

We obtain a two-dimensional representationD(2)(G) of the groupG by lettingD(2)(I) = A(2),
D(2)(P) = B(2). These relations define an isomorphism of G onto the subgroup {A(2), B(2)}
of GL(2), and therefore define its representation.
3. A three-dimensional representation of the group G.

Consider the linear transformation A(3) of E3 defined by the matrix

A(3) =

( 1 0 0
0 1 0
0 0 1

)

.

This transformation forms a subgroup inGL(3) with the multiplication law A(3)A(3) = A(3).
One obtains a three-dimensional representation D(3)(G) of the group G by letting D(3)(I) =
A(3), D(3)(P) = A(3).
4. A four-dimensional representation of the group G.

Consider linear transformations A(4) and B(4) of E4 defined by the matrices

A(4) =

⎛

⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎠ , B(4) =

⎛

⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎠ .

The transformations A(4) and B(4) form a subgroup inGL(4) with the multiplication defined
by a table similar to that in the two-dimensional case. One obtains a four-dimensional
representation D(4)(G) of the group G by letting D(4)(I) = A(4), D(4)(P) = A(B).

Remark. The matricesA(4) andB(4) may be written in the formA(4) =
(
A(2) 0

0 A(2)

)
,B(4) =

(
B(2) 0

0 B(2)

)
,

and therefore the representation D(4)(G) is sometimes denoted byD(4)(G) = D(2)(G) +D(2)(G) = 2D(2)(G). In
a similar way, one may use the notation D(3)(G) = 3D(1)(G). In this way, one can construct representations of
the group G of arbitrary dimension.

2◦. The symmetry groupG = {I, P} for the three-dimensional space is a normal subgroup of
the group O(3). The subgroup SO(3) ⊂O(3) formed by proper orthogonal transformations
is isomorphic to the quotient group O(3)/{I, P}.
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Since any group admits a homomorphic mapping onto its quotient group, there is a
homomorphism of the group O(3) onto SO(3). This homomorphism is defined as follows:
if a is a proper orthogonal transformation in O(3), its image in SO(3) coincides with
a; and if a′ is an improper orthogonal transformation, its image is the proper orthogonal
transformation Pa′.

In this way, one obtains a three-dimensional representation DO(3) of the group of
orthogonal transformations O(3) in terms of the group SO(3) of proper orthogonal trans-
formations.
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Chapter 6

Limits and Derivatives

6.1. Basic Concepts of Mathematical Analysis
6.1.1. Number Sets. Functions of Real Variable

6.1.1-1. Real axis, intervals, and segments.

The real axis is a straight line with a point O chosen as the origin, a positive direction, and
a scale unit.

There is a one-to-one correspondence between the set of all real numbers R and the set
of all points of the real axis, with each real x being represented by a point on the real axis
separated from O by the distance |x| and lying to the right of O for x > 0, or to the left of O
for x < 0.

One often has to deal with the following number sets (sets of real numbers or sets on
the real axis).

1. Sets of the form (a, b), (–∞, b), (a, +∞), and (–∞, +∞) consisting, respectively, of
all x � R such that a < x < b, x < b, x > a, and x is arbitrary are called open intervals
(sometimes simply intervals).

2. Sets of the form [a, b] consisting of all x � R such that a ≤ x ≤ b are called closed
intervals or segments.

3. Sets of the form (a, b], [a, b), (–∞, b], [a, +∞) consisting of all x such that a < x ≤ b,
a ≤ x < b, x ≤ b, x ≥ a are called half-open intervals.

A neighborhood of a point x◦ � R is defined as any open interval (a, b) containing x◦
(a < x◦ < b). A neighborhood of the “point” +∞, –∞, or ∞ is defined, respectively, as
any set of the form (b, +∞), (–∞, c) or (–∞, –a) ∪ (a, +∞) (here, a ≥ 0).

6.1.1-2. Lower and upper bound of a set on a straight line.

The upper bound of a set of real numbers is the least number that bounds the set from above.
The lower bound of a set of real numbers is the largest number that bounds the set from
below.

In more details: let a set of real numbersX �R be given. A number β is called its upper
bound and denoted supX if for any x � X the inequality x ≤ β holds and for any β1 < β
there exists an x1 � X such that x1 > β1. A number α is called the lower bound of X and
denoted inf X if for any x � X the inequality x ≥ α holds and for any α1 > α there exists
an x1 � X such that x1 < α1.

Example 1. For a set X consisting of two numbers a and b (a < b), we have

infX = a, supX = b.

Example 2. For intervals (open, closed, and half-open), we have

inf(a, b) = inf[a, b] = inf(a, b] = inf[a, b) = a,

sup(a, b) = sup[a, b] = sup(a, b] = sup[a, b) = b.

235
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One can see that the upper and lower bounds may belong to a given set (e.g., for closed intervals) and may not
(e.g., for open intervals).

The symbol +∞ (resp., –∞) is called the upper (resp., lower) bound of a set unbounded
from above (resp., from below).

6.1.1-3. Real-valued functions of real variable. Methods of defining a function.

1◦. Let D and E be two sets of real numbers. Suppose that there is a relation between
the points of D and E such that to each x � D there corresponds some y � E, denoted by
y = f (x). In this case, one speaks of a function f defined on the set D and taking its values
in the setE. The setD is called the domain of the function f , and the subset ofE consisting
of all elements f (x) is called the range of the function f . This functional relation is often
denoted by y = f (x), f : D → E, f : x �→ y.

The following terms are also used: x is the independent variable or the argument; y is
the dependent variable.

2◦. The most common and convenient way to define a function is the analytic method: the
function is defined explicitly by means of a formula (or several formulas) depending on the
argument x; for instance, y = 2 sin x + 1.

Implicit definition of a function consists of using an equation of the form F (x, y) = 0,
from which one calculates the value y for any fixed value of the argument x.

Parametric definition of a function consists of defining the values of the independent
variable x and the dependent variable y by a pair of formulas depending on an auxiliary
variable t (parameter): x = p(t), y = q(t).

Quite often functions are defined in terms of convergent series or by means of tables or
graphs. There are some other methods of defining functions.

3◦. The graph of a function is the representation of a function y = f (x) as a line on the plane
with orthogonal coordinates x, y, the points of the line having the coordinates x, y = f (x),
where x is an arbitrary point from the domain of the function.

6.1.1-4. Single-valued, periodic, odd and even functions.

1◦. A function is single-valued if each value of its argument corresponds to a unique value
of the function. A function is multi-valued if there is at least one value of its argument
corresponding to two or more values of the function. In what follows, we consider only
single-valued functions, unless indicated otherwise.

2◦. A function f (x) is called periodic with period T (or T -periodic) if f (x + T ) = f (x) for
any x.

3◦. A function f (x) is called even if it satisfies the condition f (x) = f (–x) for any x. A
function f (x) is called odd if it satisfies the condition f (x) = –f (–x) for any x.

6.1.1-5. Decreasing, increasing, monotone, and bounded functions.

1◦. A function f (x) is called increasing or strictly increasing (resp., nondecreasing) on a set
D⊂ R if for any x1,x2 �D such that x1 > x2, we have f (x1) > f (x2) (resp., f (x1) ≥ f (x2)).
A function f (x) is called decreasing or strictly decreasing (resp., nonincreasing) on a set
D if for all x1,x2 �D such that x1 > x2, we have f (x1) < f (x2) (resp., f (x1) ≤ f (x2) ). All
such functions are called monotone functions. Strictly increasing or decreasing functions
are called strictly monotone.



6.1. BASIC CONCEPTS OF MATHEMATICAL ANALYSIS 237

2◦. A function f (x) is called bounded on a set D if |f (x)| < M for all x � D, where M is
a finite constant. A function f (x) is called bounded from above (bounded from below) on a
set D if f (x) < M (M < f (x)) for all x � D, where M is a real constant.

6.1.1-6. Composite and inverse functions.

1◦. Consider a function u = u(x), x � D, with values u � E, and let y = f (u) be a function
defined on E. Then the function y = f

(
u(x)

)
, x � D, is called a composite function or the

superposition of the functions f and u.

2◦. Consider a function y = f (x) that maps x � D into y � E. The inverse function of
y = f (x) is a function x = g(y) defined on E and such that x = g(f (x)) for all x � D. The
inverse function is often denoted by g = f –1.

For strictly monotone functions f (x), the inverse function always exists. In order to
construct the inverse function g(y), one should use the relation y = f (x) to express x
through y. The function g(y) is monotonically increasing or decreasing together with f (x).

6.1.2. Limit of a Sequence

6.1.2-1. Some definitions.

Suppose that there is a correspondence between each positive integer n and some (real or
complex) number denoted, for instance, by xn. In this case, one says that a numerical
sequence (or, simply, a sequence) x1, x2, . . . , xn, . . . is defined. Such a sequence is often
denoted by {xn}; xn is called the generic term of the sequence.

Example 1. For the sequence {n2 – 2}, we have x1 = –1, x2 = 2, x3 = 7, x4 = 14, etc.

A sequence is called bounded (bounded from above, bounded from below) if there is a
constant M such that |xn| < M (respectively, xn < M , xn > M ) for all n = 1, 2, . . .

6.1.2-2. Limit of a sequence.

A number b is called the limit of a sequence x1, x2, . . . , xn, . . . if for any ε > 0 there is
N = N (ε) such that |xn – b| < ε for all n > N .

If b is the limit of the sequence {xn}, one writes lim
n→∞xn = b or xn → b as n→ ∞.

The limit of a constant sequence {xn = c} exists and is equal to c, i.e., lim
n→∞ = c. In this

case, the inequality |xn – c| < ε takes the form 0 < ε and holds for all n.

Example 2. Let us show that lim
n→∞

n

n + 1
= 1.

Consider the difference
∣
∣
∣
n

n + 1
– 1
∣
∣
∣ =

1
n + 1

. The inequality
1

n + 1
< ε holds for all n >

1
ε

– 1 = N (ε).

Therefore, for any positive ε there is N =
1
ε

– 1 such that for n > N we have
∣
∣∣
n

n + 1
– 1
∣
∣∣ < ε.

It may happen that a sequence {xn} has no limit at all, for instance, the sequence
{xn} = {(–1)n}. A sequence that has a finite limit is called convergent.

THEOREM (BOLZANO–CAUCHY). A sequence xn has a finite limit if and only if for any
ε > 0, there is N such that the inequality

|xn – xm| < ε

holds for all n > N and m > N .
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6.1.2-3. Properties of convergent sequences.

1. Any convergent sequence can have only one limit.
2. Any convergent sequence is bounded. From any bounded sequence one can extract

a convergent subsequence.*
3. If a sequence converges to b, then any of its subsequence also converges to b.
4. If {xn}, {yn} are two convergent sequences, then the sequences {xn�yn}, {xn ⋅yn},

and {xn/yn} (in this ratio, it is assumed that yn ≠ 0 and lim
n→∞ yn ≠ 0) are also convergent

and
lim
n→∞(xn � yn) = lim

n→∞xn � lim
n→∞ yn;

lim
n→∞(cxn) = c lim

n→∞xn (c = const);

lim
n→∞(xn ⋅ yn) = lim

n→∞xn ⋅ lim
n→∞ yn;

lim
n→∞

xn
yn

=
lim
n→∞xn

lim
n→∞ yn

.

5. If {xn}, {yn} are convergent sequences and the inequality xn ≤ yn holds for all n,
then lim

n→∞xn ≤ lim
n→∞ yn.

6. If the inequalities xn ≤ yn ≤ zn hold for all n and lim
n→∞xn = lim

n→∞ zn = b, then

lim
n→∞ yn = b.

6.1.2-4. Increasing, decreasing, and monotone sequences.

A sequence {xn} is called increasing or strictly increasing (resp., nondecreasing) if the
inequality xn+1 > xn (resp., xn+1 ≥ xn) holds for all n. A sequence {xn} is called decreasing
or strictly decreasing (resp., nonincreasing) if the inequality xn+1 < xn (resp., xn+1 ≤ xn)
holds for all n. All such sequences are called monotone sequences. Strictly increasing or
decreasing sequences are called strictly monotone.

THEOREM. Any monotone bounded sequence has a finite limit.

Example 3. It can be shown that the sequence
{(

1 +
1
n

)n}
is bounded and increasing. Therefore, it is

convergent. Its limit is denoted by the letter e:

e = lim
n→∞

(
1 +

1
n

)n

(e ≈ 2.71828).

Logarithms with the base e are called natural or Napierian, and loge x is denoted by
lnx.

6.1.2-5. Properties of positive sequences.

1◦. If a sequence xn (xn > 0) has a limit (finite or infinite), then the sequence

yn = n
√
x1 ⋅ x2 . . . xn

has the same limit.

* Let {xn} be a given sequence and let {nk} be a strictly increasing sequence with k and nk being natural
numbers. The sequence {xnk } is called a subsequence of the sequence {xn}.
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2◦. From property 1◦ for the sequence

x1,
x2

x1
,
x3

x2
, . . . ,

xn
xn–1

,
xn+1

xn
, . . . ,

we obtain a useful corollary

lim
n→∞

n
√
xn = lim

n→∞
xn+1

xn
,

under the assumption that the second limit exists.

Example 4. Let us show that lim
n→∞

n
n
√
n!

= e.

Taking xn =
nn

n!
and using property 2◦, we get

lim
n→∞

n
n
√
n!

= lim
n→∞

xn+1

xn
= lim

n→∞

(
1 +

1
n

)n

= e.

6.1.2-6. Infinitely small and infinitely large quantities.

A sequence xn converging to zero as n→ ∞ is called infinitely small or infinitesimal.
A sequence xn whose terms infinitely grow in absolute values with the growth of n

is called infinitely large or “tending to infinity.” In this case, the following notation is
used: lim

n→∞xn = ∞. If, in addition, all terms of the sequence starting from some number

are positive (negative), then one says that the sequence xn converges to “plus (minus)
infinity,” and one writes lim

n→∞xn = +∞ (
lim
n→∞xn = –∞). For instance, lim

n→∞(–1)nn2 = ∞,

lim
n→∞

√
n = +∞, lim

n→∞(–n) = –∞.

THEOREM (STOLZ). Let xn and yn be two infinitely large sequences, yn → +∞, and yn
increases with the growth of n (at least for sufficiently large n): yn+1 > yn. Then

lim
n→∞

xn
yn

= lim
n→∞

xn – xn–1

yn – yn–1
,

provided that the right limit exists (finite or infinite).

Example 5. Let us find the limit of the sequence

zn =
1k + 2k + · · · + nk

nk+1 .

Taking xn = 1k + 2k + · · · + nk and yn = nk+1 in the Stolz theorem, we get

lim
n→∞

zn = lim
n→∞

nk

nk+1 – (n – 1)k+1 .

Since (n – 1)k+1 = nk+1 – (k + 1)nk + · · · , we have nk+1 – (n – 1)k+1 = (k + 1)nk + · · · , and therefore

lim
n→∞

zn = lim
n→∞

nk

(k + 1)nk + · · · =
1

k + 1
.
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6.1.2-7. Upper and lower limits of a sequence.

The limit (finite or infinite) of a subsequence of a given sequence xn is called a partial limit
of xn. In the set of all partial limits of any sequence of real numbers, there always exists the
largest and the least (finite or infinite). The largest (resp., least) partial limit of a sequence
is called its upper (resp., lower) limit. The upper and lower limits of a sequence xn are
denoted, respectively,

lim
n→∞xn, lim

n→∞
xn.

Example 6. The upper and lower limits of the sequence xn = (–1)n are, respectively,

lim
n→∞

xn = 1, lim
n→∞

xn = –1.

A sequence xn has a limit (finite or infinite) if and only if its upper limit coincides with
its lower limit:

lim
n→∞xn = lim

n→∞xn = lim
n→∞

xn.

6.1.3. Limit of a Function. Asymptotes

6.1.3-1. Definition of the limit of a function. One-sided limits.

1◦. One says that b is the limit of a function f (x) as x tends to a if for any ε > 0 there is
δ = δ(ε) > 0 such that |f (x) – b| < ε for all x such that 0 < |x – a| < δ.

Notation: lim
x→a

f (x) = b or f (x) → b as x→ a.

One says that b is the limit of a function f (x) as x tends to +∞ if for any ε > 0 there is
N = N (ε) > 0 such that |f (x) – b| < ε for all x > N .

Notation: lim
x→+∞ f (x) = b or f (x) → b as x→ +∞.

In a similar way, one defines the limits for x→ –∞ or x→ ∞.

THEOREM (BOLZANO–CAUCHY 1). A function f (x) has a finite limit as x tends to a
(a is assumed finite) if and only if for any ε > 0 there is δ > 0 such that the inequality

|f (x1) – f (x2)| < ε (6.1.3.1)

holds for all x1, x2 such that |x1 – a| < δ and |x2 – a| < δ.

THEOREM (BOLZANO–CAUCHY 2). A function f (x) has a finite limit as x tends to +∞
if and only if for any ε > 0 there is Δ > 0 such that the inequality (6.1.3.1) holds for all
x1 > Δ and x2 > Δ.

2◦. One says that b is the left-hand limit (resp., right-hand limit) of a function f (x) as x
tends to a if for any ε > 0 there is δ = δ(ε) > 0 such that |f (x) – b| < ε for a – δ < x < a (resp.,
for a < x < a + δ).

Notation: lim
x→a–0

f (x) = b or f (a – 0) = b (resp., lim
x→a+0

f (x) = b or f (a + 0) = b).

6.1.3-2. Properties of limits.

Let a be a number or any of the symbols ∞, +∞, –∞.
1. If a function has a limit at some point, this limit is unique.
2. If c is a constant function of x, then lim

x→a
c = c.
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3. If there exist lim
x→a

f (x) and lim
x→a

g(x), then

lim
x→a

[
f (x) � g(x)

]
= lim
x→a

f (x) � lim
x→a

g(x);

lim
x→a

cf (x) = c lim
x→a

f (x) (c = const);

lim
x→a

f (x) ⋅ g(x) = lim
x→a

f (x) ⋅ lim
x→a

g(x);

lim
x→a

f (x)
g(x)

=
lim
x→a

f (x)

lim
x→a

g(x)

(
if g(x) ≠ 0, lim

x→a
g(x) ≠ 0

)
.

4. Let f (x) ≤ g(x) in a neighborhood of a point a (x ≠ a). Then lim
x→a

f (x) ≤ lim
x→a

g(x),

provided that these limits exist.
5. If f (x) ≤ g(x) ≤ h(x) in a neighborhood of a point a and lim

x→a
f (x) = lim

x→a
h(x) = b,

then lim
x→a

g(x) = b.

These properties hold also for one-sided limits.

6.1.3-3. Limits of some functions.

First noteworthy limit: lim
x→0

sin x
x

= 1.

Second noteworthy limit: lim
x→∞

(
1 +

1
x

)x
= e.

Some other frequently used limits:

lim
x→0

(1 + x)n – 1
x

= n, lim
x→∞

anx
n + an–1x

n–1 + · · · + a1x + a0

bnxn + bn–1xn–1 + · · · + b1x + b0
=
an
bn

,

lim
x→0

1 – cos x
x2 =

1
2

, lim
x→0

tan x
x

= 1, lim
x→0

arcsin x
x

= 1, lim
x→0

arctan x
x

= 1,

lim
x→0

ex – 1
x

= 1, lim
x→0

ax – 1
x

= ln a, lim
x→0

ln(1 + x)
x

= 1, lim
x→0

loga(1 + x)
x

= loga e,

lim
x→0

sinh x
x

= 1, lim
x→0

tanh x
x

= 1, lim
x→0

arcsinh x
x

= 1, lim
x→0

arctanh x
x

= 1,

lim
x→+0

xa lnx = 0, lim
x→+∞x–a lnx = 0, lim

x→+∞xae–x = 0, lim
x→+0

xx = 1,

where a > 0 and bn ≠ 0.

� See Paragraph 6.2.3-2, where L’Hospital rules for calculating limits with the help of
derivatives are given.

6.1.3-4. Asymptotes of the graph of a function.

An asymptote of the graph of a function y = f (x) is a straight line whose distance from the
point (x, y) on the graph of y = f (x) tends to zero if at least one of the coordinates (x, y)
tends to zero.
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The line x = a is a vertical asymptote of the graph of the function y = f (x) if at least
one of the one-sided limits of f (x) as x→ a � 0 is equal to +∞ or –∞.

The line y = kx + b is an oblique asymptote of the graph of y = f (x) if at least one of
the limit relations holds: lim

x→+∞[f (x) – kx – b] = 0 or lim
x→–∞[f (x) – kx – b] = 0.

If there exist finite limits

lim
x→+∞

f (x)
x

= k, lim
x→+∞[f (x) – kx] = b, (6.1.3.2)

then the line y = kx + b is an oblique asymptote of the graph for x→ +∞ (in a similar way,
one defines an asymptote for x→ –∞).

Example. Let us find the asymptotes of the graph of the function y =
x2

x – 1
.

1◦. The graph has a vertical asymptote x = 1, since lim
x→1

x2

x – 1
= ∞.

2◦. Moreover, for x → �∞, there is an oblique asymptote y = kx + b whose coefficients are determined by
the formulas (6.1.3.2):

k = lim
x→�∞

x

x – 1
= 1, b = lim

x→�∞

( x2

x – 1
– x
)

= lim
x→�∞

x

x – 1
= 1.

Thus, the equation of the oblique asymptote has the form y = x + 1. Fig. 6.1 shows the graph of the function
under consideration and its asymptotes.

O
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3

Figure 6.1. The graph and asymptotes of the function y =
x2

x – 1
.

6.1.4. Infinitely Small and Infinitely Large Functions

6.1.4-1. Definitions.

A function f (x) is called infinitely small for x→ a if lim
x→a

f (x) = 0.
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A function f (x) is said to be infinitely large for x → a if for any K > 0 the inequality
|f (x)| >K holds for all x ≠ a in a small neighborhood of the point a. In this case, one writes
f (x) → ∞ as x→ a or lim

x→a
f (x) = ∞. (In these definitions, a is a finite number or any of

the symbols ∞, +∞, –∞.) If f (x) is infinitely large for x→ a and f (x) > 0 (f (x) < 0) in
a neighborhood of a (for x ≠ a), one writes lim

x→a
f (x) = +∞ (resp., lim

x→a
f (x) = –∞).

6.1.4-2. Properties of infinitely small and infinitely large functions.

1. The sum and the product of finitely many infinitely small functions for x→ a is an
infinitely small function.

2. The product of an infinitely small function f (x) for x→ a and a function g(x) which
is bounded in a neighborhood U of the point a (i.e., |g(x)| < M for all x � U , where M > 0
is a constant) is an infinitely small function.

3. lim
x→a

f (x) = b if and only if f (x) = b + g(x), where g(x) is infinitely small for x→ a.

4. A function f (x) is infinitely large at some point if and only if the function g(x) =
1

f (x)
is infinitely small at the same point.

6.1.4-3. Comparison of infinitely large quantities. Symbols of the order: O and o.

Functions f (x) and g(x) that are infinitely small for x → a are called equivalent near a if

lim
x→a

f (x)
g(x)

= 1. In this case one writes f (x) ∼ g(x).

Examples of equivalent infinitely small functions:

(1 + ε)n – 1 ∼ nε, aε – 1 ∼ ε ln a, loga(1 + ε) ∼ ε loga e,

sin ε ∼ ε, tan ε ∼ ε, 1 – cos ε ∼ 1
2 ε

2, arcsin ε ∼ ε, arctan ε ∼ ε,

where ε = ε(x) is infinitely small for x→ a.
Functions f (x) and g(x) are said to be of the same order for x → a, and one writes

f (x) = O
(
g(x)
)

if lim
x→a

f (x)
g(x)

= K, 0 < |K | < ∞.*

A functionf (x) is of a higher order of smallness compared with g(x) for x → a if

lim
x→a

f (x)
g(x)

= 0, and in this case, one writes f (x) = o
(
g(x)
)
.

6.1.5. Continuous Functions. Discontinuities of the First and the
Second Kind

6.1.5-1. Continuous functions.

A function f (x) is called continuous at a point x = a if it is defined in that point and its
neighborhood and lim

x→a
f (x) = f (a).

For continuous functions, a small variation of their argument Δx = x –a corresponds to
a small variation of the function Δy = f (x) – f (a), i.e., Δy→ 0 as Δx→ 0. (This property
is often used as a definition of continuity.)

* There is another definition of the symbol O. Namely, f (x) = O
(
g(x)

)
for x → a if the inequality

|f (x)| ≤ K |g(x)|, K = const, holds in some neighborhood of the point a (for x ≠ a).
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A function f (x) is called right-continuous at a point x = a if it is defined in that point
(and to its right) and lim

x→a+0
f (x) = f (a). A function f (x) is called left-continuous at a point

x = a if it is defined in that point (and to its left) and lim
x→a–0

f (x) = f (a).

6.1.5-2. Properties of continuous functions.

1. Suppose that functions f (x) and g(x) are continuous at some point a. Then the

functions f (x) � g(x), cf (x), f (x)g(x),
f (x)
g(x)

(g(a) ≠ 0) are also continuous at a.

2. Suppose that a function f (x) is continuous on the segment [a, b] and takes values of
different signs at its endpoints, i.e., f (a)f (b) < 0. Then there is a point c between a and b
at which f (x) vanishes:

f (c) = 0 (a < c < b).

3. If f (x) is continuous at a point a and f (a) > 0 (resp., f (a) < 0), then there is δ > 0
such that f (x) > 0 (resp., f (x) < 0) for all x � (a – δ, a + δ).

4. Any function f (x) that is continuous at each point of a segment [a, b] attains its
largest and its smallest values, M and m, on that segment.

5. A function f (x) that is continuous on a segment [a, b] takes any value c � [m,M ] on
that segment, where m and M are, respectively, its smallest and its largest values on [a, b].

6. If f (x) is continuous and increasing (resp., decreasing) on a segment [a, b], then on
the segment

[
f (a), f (b)

]
(resp.,

[
f (b), f (a)

]
) the inverse function x = g(y) exists, and is

continuous and increasing (resp., decreasing).
7. If u(x) is continuous at a point a and f (u) is continuous at b=u(a), then the composite

function f
(
u(x)

)
is continuous at a.

Remark. Any elementary function is continuous at each point of its domain.

6.1.5-3. Points of discontinuity of a function.

A point a is called a point of discontinuity of the first kind for a function f (x) if there exist
finite one-sided limits f (a+ 0) and f (a– 0), but the relations lim

x→a+0
f (x) = lim

x→a–0
f (x) = f (a)

do not hold. The value |f (a + 0) – f (a – 0)| is called the jump of the function at the point a.
In particular, if f (a+ 0) = f (a– 0) ≠ f (a), then a is called a point of removable discontinuity.

Examples of function with discontinuities of the first kind.

1. The function f (x) =
{ 0 for x < 0,

1 for x ≥ 0 has a jump equal to 1 at the discontinuity point x = 0.

2. The function f (x) =
{ 0 for x ≠ 0,

1 for x = 0 has a removable discontinuity at the point x = 0.

A point a is called a point of discontinuity of the second kind if at least one of the
one-sided limits f (a + 0) or f (a – 0) does not exist or is equal to infinity.

Examples of functions with discontinuities of the second kind.

1. The function f (x) = sin
1
x

has a second-kind discontinuity at the point x = 0 (since this function has

no one-sided limits as x→ �0).
2. The function f (x) = 1/x has an infinite jump at the point x = 0.
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6.1.5-4. Properties of monotone functions at points of discontinuity.

Any monotone function f (x) always has a left-hand limit and a right-hand limit at its
discontinuity point x = x0; moreover, if f (x) is a nonincreasing function, then

f (x0 – 0) ≥ f (x0) ≥ f (x0 + 0);

if f (x) is a nondecreasing function, then

f (x0 – 0) ≤ f (x0) ≤ f (x0 + 0).

6.1.6. Convex and Concave Functions
6.1.6-1. Definition of convex and concave functions.

1◦. A function f (x) defined and continuous on a segment [a, b] is called convex (or convex
downward) if for any x1,x2 in [a, b], the Jensen inequality holds:

f

(
x1 + x2

2

)
≤
f (x1) + f (x2)

2
. (6.1.6.1)

The geometrical meaning of convexity is that all points of the graph curve between two
graph points lie below or on the rectilinear segment joining the two graph points (see
Fig. 6.2 a).
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2
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2
21x +x

Figure 6.2. Graphs of convex (a) and concave (b) functions.

If for x1 ≠ x2, condition (6.1.6.1) holds with < instead of ≤, then the function f (x) is
called strictly convex.

2◦. A function f (x) defined and continuous on a segment [a, b] is called concave (or convex
upward) if for any x1, x2 in [a, b] the following inequality holds:

f

(
x1 + x2

2

)
≥
f (x1) + f (x2)

2
. (6.1.6.2)

The geometrical meaning of concavity is that all points of the graph curve between two
graph points lie above or on the rectilinear segment joining the two graph points (see
Fig. 6.2 b).

If for x1 ≠ x2, condition (6.1.6.2) holds with > instead of ≥, then the function f (x) is
called strictly concave.
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6.1.6-2. Generalized Jensen inequalities.

The inequalities (6.1.6.1) and (6.1.6.2) admit the following generalizations:

f (q1x1 + · · · + qnxn) ≤ q1f (x1) + · · · + qnxn for a convex function,
f (q1x1 + · · · + qnxn) ≥ q1f (x1) + · · · + qnxn for a concave function,

where q1, . . . , qn are arbitrary positive numbers such that q1 + · · · + qn = 1, and x1, . . . ,xn
are arbitrary points of the segment [a, b].

6.1.6-3. Properties of convex and concave functions.

1. The product of a convex (concave) function and a positive constant is a convex
(concave) function.

2. The sum of two or more convex (concave) functions is a convex (concave) function.
3. If ϕ(u) is a convex increasing function and u = f (x) is a convex function, then the

composite function ϕ(f (x)) is convex. Some other properties of composite functions:

ϕ(u) is convex and decreasing, u = f (x) is concave =⇒ ϕ(f (x)) is convex,
ϕ(u) is concave and increasing, u = f (x) is concave =⇒ ϕ(f (x)) is concave,
ϕ(u) is concave and decreasing, u = f (x) is convex =⇒ ϕ(f (x)) is concave.

4. A non-constant convex (resp., concave) function f (x) on a segment [a, b] cannot
attain its largest (resp., smallest) value inside the segment.

5. If y = f (x) and x = g(y) are single-valued mutually inverse functions (on the corre-
sponding intervals), then the following properties hold:

f (x) is convex and increasing ⇐⇒ g(y) is concave and increasing,
f (x) is convex and decreasing ⇐⇒ g(y) is convex and decreasing,
f (x) is concave and increasing ⇐⇒ g(y) is convex and increasing,
f (x) is concave and decreasing ⇐⇒ g(y) is concave and decreasing.

6. A function f (x) that is continuous on a segment [a, b] and twice differentiable on the
interval (a, b) is convex downward (resp., convex upward) if and only if f ′′(x) ≥ 0 (resp.,
f ′′(x) ≤ 0) on that interval.

7. Any convex function f (x) satisfying the condition f (x0) = 0 can be represented as
the integral

f (x) =
∫ x

x0

h(t) dt,

where h(t) is a nondecreasing right-continuous function.

6.1.7. Functions of Bounded Variation

6.1.7-1. Definition of a function of bounded variation.

1◦. Let f (x) be a function defined on a finite segment [a, b]. Consider an arbitrary partition
of the segment by the points

a = x0 < x1 < x2 < · · · < xn–1 < xn = b
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and construct the sum

v =
n–1∑

k=0

∣
∣f (xk+1) – f (xk)

∣
∣ (6.1.7.1)

whose terms are absolute values of the increments of f (x) on each segment of the partition.
If, for all partitions, the sums (6.1.7.1) are bounded by a constant independent of the

partition, one says that the function f (x) has bounded variation on the segment [a, b]. The
supremum of all such sums over all partitions is called the total variation of the function
f (x) on the segment [a, b]. The total variation is denoted by

b

V
a

f (x) = sup{v}.

A function f (x) is said to have bounded variation on the infinite interval [a,∞) if it is
a function of bounded variation on any finite segment [a, b] and its total variation on [a, b]
is bounded by a constant independent of b. By definition,

∞
V
a

f (x) = sup
b>a

{ b

V
a

f (x)
}

.

2◦. In the above definitions, the continuity of the function f (x) is not mentioned. A contin-
uous function (without additional conditions) may have bounded or unbounded variation.

Example. Consider the continuous function

f (x) =

{
x cos

π

2x
if x ≠ 0,

0 if x = 0
and the partition of the segment [0, 1] by the points

0 <
1

2n
<

1
2n – 1

< · · · <
1
3

<
1
2

< 1.

Then the sums (6.1.7.1) corresponding to this partition have the form

vn = 1 +
1
2

+ · · · +
1
n

→ ∞ as n→ ∞.

Therefore,
1

V
0
f (x) = ∞.

6.1.7-2. Classes of functions of bounded variation.

Next, we list some common classes of functions of bounded variation.
1. Any bounded monotone function has bounded variation. Its total variation on the

segment [a, b] is defined by
b

V
a
f (x) = |f (b) – f (a)|.

Remark. The last statement is true for infinite intervals (–∞, a] and [a,∞); in the latter case, the total

variation is equal to
∞
V
a

f (x) = |f (∞) – f (a)|.

2. Suppose that f (x) is a bounded function on [a, b] and this segment can be divided
into finitely many parts

[ak, ak+1] (k = 0, 1, . . . ,m – 1; a0 = a, am = b),

so that the function f (x) is monotone on each part. Then f (x) has bounded variation on
[a, b].

Remark. This statement is also true for infinite segments.
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3. Let f (x) be a function on a finite segment [a, b] satisfying the Lipschitz condition
∣
∣f (x1) – f (x2)

∣
∣ ≤ L|x1 – x2|,

for any x1 and x2 in [a, b], where L is a constant. Then f (x) has bounded variation and
b

V
a
f (x) ≤ L(b – a).

4. Let f (x) be a function on a finite segment [a, b] with a bounded derivative |f ′(x)| ≤L,

where L = const. Then, f (x) is of bounded variation and
b

V
a
f (x) ≤ L(b – a).

5. Let f (x) be a function on [a, b] or [a,∞) and suppose that f (x) can be represented
as an integral with variable upper limit,

f (x) = c +
∫ x

a
ϕ(t) dt,

where ϕ(t) is an absolutely continuous function on the interval under consideration. Then
f (x) has bounded variation and

b

V
a

f (x) =
∫ b

a
|ϕ(x)| dx.

COROLLARY. Suppose that ϕ(t) on a finite segment [a, b] or [a,∞) is integrable, but
not absolutely integrable. Then the total variation of f (x) is infinite.

6.1.7-3. Properties of functions of bounded variation.

Here, all functions are considered on a finite segment [a, b].
1. Any function of bounded variation is bounded.
2. The sum, difference, or product of finitely many functions of bounded variation is a

function of bounded variation.
3. Let f (x) and g(x) be two functions of bounded variation and |g(x)| ≥ K > 0. Then

the ratio f (x)/g(x) is a function of bounded variation.
4. Let a < c < b. If f (x) has bounded variation on the segment [a, b], then it has bounded

variation on each segment [a, c] and [c, b]; and the converse statement is true. In this case,
the following additivity condition holds:

b

V
a

f (x) =
c

V
a

f (x) +
b

V
c

f (x).

5. Let f (x) be a function of bounded variation of the segment [a, b]. Then, for a ≤ x ≤ b,
the variation of f (x) with variable upper limit

F (x) =
x

V
a

f (x)

is a monotonically increasing bounded function of x.
6. Any function f (x) of bounded variation on the segment [a, b] has a left-hand limit

lim
x→x0–0

f (x) and a right-hand limit lim
x→x0+0

f (x) at any point x0 � [a, b].
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6.1.7-4. Criteria for functions to have bounded variation.

1. A function f (x) has bounded variation on a finite segment [a, b] if and only if there is
a monotonically increasing bounded function Φ(x) such that for all x1,x2 � [a, b] (x1 < x2),
the following inequality holds:

|f (x2) – f (x1)| ≤ Φ(x2) – Φ(x1).

2. A function f (x) has bounded variation on a finite segment [a, b] if and only if f (x)
can be represented as the difference of two monotonically increasing bounded functions on
that segment: f (x) = g2(x) – g1(x).

Remark. The above criteria are valid also for infinite intervals (–∞, a], [a,∞), and (–∞,∞).

6.1.7-5. Properties of continuous functions of bounded variation.

1. Let f (x) be a function of bounded variation on the segment [a, b]. If f (x) is

continuous at a point x0 (a < x0 < b), then the function F (x) =
x

V
a
f (x) is also continuous

at that point.
2. A continuous function of bounded variation can be represented as the difference of

two continuous increasing functions.
3. Let f (x) be a continuous function on the segment [a, b]. Consider a partition of the

segment
a = x0 < x1 < x2 < · · · < xn–1 < xn = b

and the sum v =
n–1∑

k=0

∣
∣f (xk+1) – f (xk)

∣
∣. Letting λ = max |xk+1 – xk | and passing to the limit

as λ→ 0, we get

lim
λ→0

v =
b

V
a

f (x).

6.1.8. Convergence of Functions

6.1.8-1. Pointwise, uniform, and nonuniform convergence of functions.

Let {fn(x)} be a sequence of functions defined on a setX⊂R. The sequence {fn(x)} is said
to be pointwise convergent to f (x) as n→∞ if for any fixed x �X, the numerical sequence
{fn(x)} converges to f (x). The sequence {fn(x)} is said to be uniformly convergent to a
function f (x) on X as n → ∞ if for any ε > 0 there is an integer N = N (ε) and such that
for all n > N and all x � X, the following inequality holds:

|fn(x) – f (x)| < ε. (6.1.8.1)

Note that in this definition, N is independent of x. For a sequence {fn(x)} pointwise
convergent to f (x) as n → ∞, by definition, for any ε > 0 and any x � X, there is
N = N (ε,x) such that (6.1.8.1) holds for all n > N (ε,x). If one cannot find such N
independent of x and depending only on ε (i.e., one cannot ensure (6.1.8.1) uniformly; to be
more precise, there is δ > 0 such that for any N > 0 there is kN > N and xN � X such that
|fkN

(xN ) – f (xN )| ≥ δ), then one says that the sequence {fn(x)} converges nonuniformly
to f (x) on the set X.
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6.1.8-2. Basic theorems.

Let X be an interval on the real axis.

THEOREM. Let fn(x) be a sequence of continuous functions uniformly convergent to
f (x) on X. Then f (x) is continuous on X.

COROLLARY. If the limit function f (x) of a pointwise convergent sequence of contin-
uous functions {fn(x)} is discontinuous, then the convergence of the sequence {fn(x)} is
nonuniform.

Example. The sequence {fn(x)} = {xn} converges to f (x) ≡ 0 as n → ∞ uniformly on each segment
[0, a], 0 < a < 1. However, on the segment [0, 1] this sequence converges nonuniformly to the discontinuous

function f (x) =
{ 0 for 0 ≤ x < 1,

1 for x = 1.
CAUCHY CRITERION. A sequence of functions {fn(x)} defined on a setX �R uniformly

converges to f (x) as n → ∞ if and only if for any ε > 0 there is an integer N = N (ε) > 0
such that for all n > N and m > N , the inequality |fn(x) – fm(x)| < ε holds for all x � X.

6.1.8-3. Geometrical meaning of uniform convergence.

Let fn(x) be continuous functions on the segment [a, b] and suppose that {fn(x)} uniformly
converges to a continuous function f (x) asn→∞. Then all curves y =fn(x), for sufficiently
large n > N , belong to the strip between the two curves y = f (x) – ε and y = f (x) + ε (see
Fig. 6.3).
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Figure 6.3. Geometrical meaning of uniform convergence of a sequence of functions {fn(x)} to a continuous
function f (x).

6.2. Differential Calculus for Functions of a Single
Variable

6.2.1. Derivative and Differential, Their Geometrical and Physical
Meaning

6.2.1-1. Definition of derivative and differential.

The derivative of a function y = f (x) at a point x is the limit of the ratio

y′ = lim
Δx→0

Δy
Δx

= lim
Δx→0

f (x + Δx) – f (x)
Δx

,

where Δy = f (x+Δx)–f (x) is the increment of the function corresponding to the increment

of the argument Δx. The derivative y′ is also denoted by y′x, ẏ,
dy

dx
, f ′(x),

df (x)
dx

.
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Example 1. Let us calculate the derivative of the function f (x) = x2.
By definition, we have

f ′(x) = lim
Δx→0

(x + Δx)2 – x2

Δx
= lim

Δx→0
(2x + Δx) = 2x.

The increment Δx is also called the differential of the independent variable x and is
denoted by dx.

A function f (x) that has a derivative at a point x is called differentiable at that point.
The differentiability of f (x) at a point x is equivalent to the condition that the increment
of the function, Δy = f (x + dx) – f (x), at that point can be represented in the form
Δy = f ′(x) dx + o(dx) (the second term is an infinitely small quantity compared with dx as
dx→ 0).

A function differentiable at some point x is continuous at that point. The converse is
not true, in general; continuity does not always imply differentiability.

A function f (x) is called differentiable on a set D (interval, segment, etc.) if for any
x �D there exists the derivative f ′(x). A function f (x) is called continuously differentiable
on D if it has the derivative f ′(x) at each point x �D and f ′(x) is a continuous function on
D.

The differential dy of a function y = f (x) is the principal part of its increment Δy at the
point x, so that dy = f ′(x)dx, Δy = dy + o(dx).

The approximate relation Δy ≈ dy or f (x + Δx) ≈ f (x) + f ′(x)Δx (for small Δx) is
often used in numerical analysis.

6.2.1-2. Physical and geometrical meaning of the derivative. Tangent line.

1◦. Let y = f (x) be the function describing the path y traversed by a body by the time x.
Then the derivative f ′(x) is the velocity of the body at the instant x.

2◦. The tangent line or simply the tangent to the graph of the function y = f (x) at a point
M (x0, y0), where y0 = f (x0), is defined as the straight line determined by the limit position
of the secant MN as the point N tends to M along the graph. If α is the angle between
the x-axis and the tangent line, then f ′(x0) = tanα is the slope ratio of the tangential line
(Fig. 6.4).
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Figure 6.4. The tangent to the graph of a function y = f (x) at a point (x0, y0).

Equation of the tangent line to the graph of a function y = f (x) at a point (x0, y0):

y – y0 = f ′(x0)(x – x0).
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Equation of the normal to the graph of a function y = f (x) at a point (x0, y0):

y – y0 = –
1

f ′(x0)
(x – x0).

6.2.1-3. One-sided derivatives.

One-sided derivatives are defined as follows:

f ′+(x) = lim
Δx→+0

Δy
Δx

= lim
Δx→+0

f (x + Δx) – f (x)
Δx

right-hand derivative,

f ′–(x) = lim
Δx→–0

Δy
Δx

= lim
Δx→–0

f (x + Δx) – f (x)
Δx

left-hand derivative.

Example 2. The function y = |x| at the point x = 0 has different one-sided derivatives: y′+(0) = 1, y′–(0) = –1,
but has no derivative at that point. Such points are called angular points.

Suppose that a function y = f (x) is continuous at x = x0 and has equal one-sided
derivatives at that point, y′+(x0) = y′–(x0) = a. Then this function has a derivative at x = x0
and y′(x0) = a.

6.2.2. Table of Derivatives and Differentiation Rules

The derivative of any elementary function can be calculated with the help of derivatives of
basic elementary functions and differentiation rules.

6.2.2-1. Table of derivatives of basic elementary functions (a = const).

(a)′ = 0, (xa)′ = axa–1,

(ex)′ = ex, (ax)′ = ax ln a,

(lnx)′ =
1
x

, (loga x)′ =
1

x ln a
,

(sinx)′ = cos x, (cos x)′ = – sin x,

(tanx)′ =
1

cos2 x
, (cot x)′ = –

1
sin2 x

,

(arcsin x)′ =
1√

1 – x2
, (arccos x)′ = –

1√
1 – x2

,

(arctan x)′ =
1

1 + x2 , (arccot x)′ = –
1

1 + x2 ,

(sinh x)′ = cosh x, (cosh x)′ = sinh x,

(tanh x)′ =
1

cosh2 x
, (coth x)′ = –

1
sinh2 x

,

(arcsinh x)′ =
1√

1 + x2
, (arccosh x)′ =

1√
x2 – 1

,

(arctanh x)′ =
1

1 – x2 , (arccoth x)′ =
1

x2 – 1
.
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6.2.2-2. Differentiation rules.

1. Derivative of a sum (difference) of functions:

[u(x) � v(x)]′ = u′(x) � v′(x).

2. Derivative of the product of a function and a constant:

[au(x)]′ = au′(x) (a = const).

3. Derivative of a product of functions:

[u(x)v(x)]′ = u′(x)v(x) + u(x)v′(x).

4. Derivative of a ratio of functions:
[u(x)
v(x)

]′
=
u′(x)v(x) – u(x)v′(x)

v2(x)
.

5. Derivative of a composite function:
[
f (u(x))

]′
= f ′u(u)u′(x).

6. Derivative of a parametrically defined function x = x(t), y = y(t):

y′x =
y′t
x′t

.

7. Derivative of an implicit function defined by the equation F (x, y) = 0:

y′x = –
Fx
Fy

(Fx and Fy are partial derivatives).

8. Derivative of the inverse function x = x(y) (for details see footnote*):

x′y =
1
y′x

.

9. Derivative of a composite exponential function:

[u(x)v(x)]′ = uv lnu ⋅ v′ + vuv–1u′.

10. Derivative of a composite function of two arguments:

[f (u(x), v(x))]′ = fu(u, v)u′ + fv(u, v)v′ (fu and fv are partial derivatives).

Example 1. Let us calculate the derivative of the function
x2

2x + 1
.

Using the rule of differentiating the ratio of two functions, we obtain
( x2

2x + 1

)′
=

(x2)′(2x + 1) – x2(2x + 1)′

(2x + 1)2 =
2x(2x + 1) – 2x2

(2x + 1)2 =
2x2 + 2x
(2x + 1)2 .

Example 2. Let us calculate the derivative of the function ln cos x.
Using the rule of differentiating composite functions and the formula for the logarithmic derivative from

Paragraph 6.2.2-1, we get

(ln cosx)′ =
1

cosx
(cosx)′ = – tanx.

Example 3. Let us calculate the derivative of the function xx. Using the rule of differentiating the
composite exponential function with u(x) = v(x) = x, we have

(xx)′ = xx lnx + xxx–1 = xx(lnx + 1).

* Let y = f (x) be a differentiable monotone function on the interval (a, b) and f ′(x0) ≠ 0, where x0 � (a, b).

Then the inverse function x = g(y) is differentiable at the point y0 = f (x0) and g′(y0) =
1

f ′(x0)
.
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6.2.3. Theorems about Differentiable Functions. L’Hospital Rule

6.2.3-1. Main theorems about differentiable functions.

ROLLE THEOREM. If the function y = f (x) is continuous on the segment [a, b], differ-
entiable on the interval (a, b), and f (a) = f (b), then there is a point c � (a, b) such that
f ′(c) = 0.

LAGRANGE THEOREM. If the function y = f (x) is continuous on the segment [a, b] and
differentiable on the interval (a, b), then there is a point c � (a, b) such that

f (b) – f (a) = f ′(c)(b – a).

This relation is called the formula of finite increments.
CAUCHY THEOREM. Let f (x) and g(x) be two functions that are continuous on the

segment [a, b], differentiable on the interval (a, b), and g′(x) ≠ 0 for all x � (a, b). Then
there is a point c � (a, b) such that

f (b) – f (a)
g(b) – g(a)

=
f ′(c)
g′(c)

.

6.2.3-2. L’Hospital’s rules on indeterminate expressions of the form 0/0 and ∞/∞.

THEOREM 1. Let f (x) and g(x) be two functions defined in a neighborhood of a point
a, vanishing at this point, f (a) = g(a) = 0, and having the derivatives f ′(a) and g′(a), with
g′(a) ≠ 0. Then

lim
x→a

f (x)
g(x)

=
f ′(a)
g′(a)

.

Example 1. Let us calculate the limit lim
x→0

sinx
1 – e–2x

.

Here, both the numerator and the denominator vanish for x = 0. Let us calculate the derivatives

f ′(x) = (sinx)′ = cosx =⇒ f ′(0) = 1,

g′(x) = (1 – e–2x)′ = 2e–2x =⇒ g′(0) = 2 ≠ 0.

By the L’Hospital rule, we find that

lim
x→0

sinx
1 – e–2x

=
f ′(0)
g′(0)

=
1
2

.

THEOREM 2. Let f (x) and g(x) be two functions defined in a neighborhood of a point
a, vanishing at a, together with their derivatives up to the order n – 1 inclusively. Suppose
also that the derivatives f (n)(a) and g(n)(a) exist and are finite, g(n)(a) ≠ 0. Then

lim
x→a

f (x)
g(x)

=
f (n)(a)
g(n)(a)

.

THEOREM 3. Let f (x) and g(x) be differentiable functions and g′(x) ≠ 0 in a neighbor-
hood of a point a (x ≠ a). If f (x) and g(x) are infinitely small or infinitely large functions

for x→ a, i.e., the ratio
f (x)
g(x)

at the point a is an indeterminate expression of the form
0
0

or
∞
∞ , then

lim
x→a

f (x)
g(x)

= lim
x→a

f ′(x)
g′(x)

(provided that there exists a finite or infinite limit of the ratio of the derivatives).
Remark. The L’Hospital rule 3 is applicable also in the case of a being one of the symbols ∞, +∞, –∞.
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6.2.3-3. Methods for interpreting other indeterminate expressions.

1◦. Expressions of the form 0 ⋅∞ and ∞–∞ can be reduced to indeterminate expressions
0
0

or
∞
∞ by means of algebraic transformations, for instance:

u(x) ⋅ v(x) =
u(x)

1/v(x)
transformation rule 0 ⋅ ∞ =⇒ 0

0
,

u(x) – v(x) =

(
1

u(x)
–

1
v(x)

)
:

1
u(x)v(x)

transformation rule ∞ – ∞ =⇒ 0
0

.

2◦. Indeterminate expressions of the form 1∞, ∞0, 00 can be reduced to expressions of

the form
0
0

or
∞
∞ by taking logarithm and using the formulas lnuv = v lnu =

lnu
1/v

.

Example 2. Let us calculate the limit lim
x→0

(cosx)1/x2
.

We have the indeterminate expression 1∞. We find that

ln lim
x→0

(cosx)1/x2
= lim

x→0
ln(cosx)1/x2

= lim
x→0

ln cosx
x2 = lim

x→0

(ln cosx)′

(x2)′
= lim

x→0

(– tanx)
2x

= –
1
2

.

Therefore, lim
x→0

(cosx)1/x2
= e–1/2 =

1√
e

.

6.2.4. Higher-Order Derivatives and Differentials. Taylor’s Formula

6.2.4-1. Derivatives and differentials of higher orders.

The second-order derivative or the second derivative of a function y = f (x) is the derivative

of the derivative f ′(x). The second derivative is denoted by y′′ and also by y′′xx,
d2y

dx2 , f ′′(x).

The derivative of the second derivative of a function y = f (x) is called the third-order
derivative, y′′′ = (y′′)′. The nth-order derivative of the function y = f (x) is defined as the
derivative of its (n – 1)th derivative:

y(n) = (y(n–1))′.

The nth-order derivative is also denoted by y(n)
x ,

dny

dxn
, f (n)(x).

The second-order differential is the differential of the first-order differential, d 2y =
d(dy). If x is the independent variable, then d2y = y′′ ⋅ (dx)2. In a similar way, one defines
differentials of higher orders.

6.2.4-2. Table of higher-order derivatives of some elementary functions.

(xa)(n) = a(a – 1) . . . (a – n + 1)xa–n, (ax)(n) = (ln a)nax,

(lnx)(n) = (–1)n–1(n – 1)!
1
xn

, (loga x)(n) = (–1)n–1 (n – 1)!
ln a

1
xn

,

(sinx)(n) = sin

(
x +

πn

2

)
, (cos x)(n) = cos

(
x +

πn

2

)
,

(sinh x)(n) =
{

cosh x if n is odd,
sinh x if n is even,

(cosh x)(n) =
{

coshx if n is even,
sinh x if n is odd.
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6.2.4-3. Rules for calculating higher-order derivatives.

1. Derivative of a sum (difference) of functions:

[u(x) � v(x)](n) = u(n)(x) � v(n)(x).

2. Derivatives of a function multiplied by a constant:

[au(x)](n) = au(n)(x) (a = const).

3. Derivatives of a product:

[u(x)v(x)]′′ = u′′(x)v(x) + 2u′(x)v′(x) + u(x)v′′(x),

[u(x)v(x)]′′′ = u′′′(x)v(x) + 3u′′(x)v′(x) + 3u′(x)v′′(x) + u(x)v′′′(x),

[u(x)v(x)](n) =
n∑

k=0

Cknu
(k)(x)v(n–k)(x) (Leibnitz formula),

where Ckn are binomial coefficients, u(0)(x) = u(x), v(0)(x) = v(x).
4. Derivatives of a composite function:

[
f (u(x))

]′′
= f ′′uu(u′x)2 + f ′uu

′′
xx,

[
f (u(x))

]′′′
= f ′′′uuu(u′x)3 + 3f ′′uuu

′
xu

′′
xx + f ′uu

′′′
xxx.

5. Derivatives of a parametrically defined function x = x(t), y = y(t):

y′′ =
x′ty′′tt – y′tx′′tt

(x′t)3 , y′′′ =
(x′t)2y′′′ttt – 3x′tx′′tty′′tt + 3y′t(x′′tt)2 – x′ty′tx′′′ttt

(x′t)5 , y(n) =
(y(n–1))′t
x′t

.

6. Derivatives of an implicit function defined by the equation F (x, y) = 0:

y′′ =
1
F 3
y

(
–F 2

yFxx + 2FxFyFxy – F 2
xFyy

)
,

y′′′ =
1
F 5
y

(
–F 4

yFxxx + 3FxF 3
yFxxy – 3F 2

xF
3
yFxyy + F 3

xFyFyyy + 3F 3
yFxxFxy

– 3FxF 2
yFxxFyy – 6FxF 2

yF
2
xy – 3F 3

xF
2
yy + 9F 2

xFyFxyFyy
)
,

where the subscripts denote the corresponding partial derivatives.
7. Derivatives of the inverse function x = x(y):

x′′yy = –
y′′xx

(y′x)3 , x′′′yyy = –
y′′′xxx
(y′x)4 + 3

(y′′xx)2

(y′x)5 , x(n)
y =

1
y′x

[x(n–1)
y ]′x.
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6.2.4-4. Taylor’s formula.

Suppose that in a neighborhood of a point x = a, the function y = f (x) has derivatives
up to the order (n + 1) inclusively. Then for all x in that neighborhood, the following
representation holds:

f (x) = f (a) +
f ′(a)

1!
(x – a) +

f ′′(a)
2!

(x – a)2 + · · · +
f (n)(a)
n!

(x – a)n +Rn(x), (6.2.4.1)

where Rn(x) is the remainder term in the Taylor formula.
The remainder term can be represented in different forms (6.2.4.1):

Rn(x) = o[(x – a)n] (Peano),

Rn(x) =
f (n+1)

(
a + k(x – a)

)

(n + 1)!
(x – a)n+1 (Lagrange),

Rn(x) =
f (n+1)

(
a + k(x – a)

)

n!
(1 – k)n(x – a)n+1 (Cauchy),

Rn(x) =
f (n+1)

(
a + k(x – a)

)

n!p
(1 – k)n+1–p(x – a)n+1 (Schlömilch and Roche),

Rn(x) =
1
n!

∫ x

a
f (n+1)(t)(x – t)n dt (integral form),

where 0 < k < 1 and p > 0; k depends on x, n, and the structure of the remainder term.
The remainders in the form of Lagrange and Cauchy can be obtained as special cases of the
Schlömilch formula with p = n + 1 and p = 1, respectively.

For a = 0, the Taylor formula (6.2.4.1) turns into

f (x) = f (0) +
f ′(0)

1!
x +

f ′′(0)
2!

x2 + · · · +
f (n)(0)
n!

xn +Rn(x)

and is called the Maclaurin formula.
The Maclaurin formula for some functions:

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+ · · · +

xn

n!
+ Rn(x),

sinx = x –
x3

3!
+
x5

5!
–
x7

7!
+ · · · + (–1)n

x2n+1

(2n + 1)!
+ R2n+1(x),

cos x = 1 –
x2

2!
+
x4

4!
–
x6

6!
+ · · · + (–1)n

x2n

(2n)!
+R2n(x).

6.2.5. Extremal Points. Points of Inflection

6.2.5-1. Maximum and minimum. Points of extremum.

Let f (x) be a differentiable function on the interval (a, b) and f ′(x) > 0 (resp., f ′(x) < 0)
on (a, b). Then f (x) is an increasing (resp., decreasing) function on that interval*.

Suppose that there is a neighborhood of a point x0 such that for all x ≠ x0 in that
neighborhood we have f (x) > f (x0) (resp., f (x) < f (x0)). Then x0 is called a point of local
minimum (resp., local maximum) of the function f (x).

Points of local minimum or maximum are called points of extremum.

* At some points of the interval, the derivative may vanish.
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6.2.5-2. Necessary and sufficient conditions for the existence of extremum.

NECESSARY CONDITION OF EXTREMUM. A function f (x) can have an extremum only at
points in which its derivative either vanishes or does not exist (or is infinite).

FIRST SUFFICIENT CONDITION OF EXTREMUM. Suppose that f (x) is continuous in some
neighborhood (x0 –δ, x0 +δ) of a point x0 and differentiable at all points of the neighborhood
except, possibly, x0. If f ′(x) > 0 for x � (x0 – δ, x0) and f ′(x) < 0 for x � (x0, x0 + δ),
then x0 is a point of local maximum of this function. If f ′(x) < 0 for x � (x0 – δ, x0) and
f ′(x) > 0 for x � (x0, x0 + δ), then x0 is a point of local minimum of this function.

If f ′(x) is of the same sign for all x ≠ x0, x � (x0 – δ, x0 + δ), then x0 cannot be a point
of extremum.

SECOND SUFFICIENT CONDITION OF EXTREMUM. Let f (x) be a twice differentiable
function in a neighborhood of x0. Then the following implications hold:

(i) f ′(x0) = 0 and f ′′(x0) < 0 =⇒ f (x) has a local maximum at the point x0;

(ii) f ′(x0) = 0 and f ′′(x0) > 0 =⇒ f (x) has a local minimum at the point x0.

THIRD SUFFICIENT CONDITION OF EXTREMUM. Let f (x) be a function that is n times
differentiable in a neighborhood of a point x0 and f ′(x0) = f ′′(x0) = · · · = f (n–1)(x0) = 0,
but f (n)(x0) ≠ 0. Then the following implications hold:

(i) n is even and f (n)(x0) < 0 =⇒ f (x) has a local maximum at the point x0;

(ii) n is even and f (n)(x0) > 0 =⇒ f (x) has a local minimum at the point x0.

If n is odd, then x0 cannot be a point of extremum.

6.2.5-3. Largest and the smallest values of a function.

Let y = f (x) be continuous on the segment [a, b] and differentiable at all points of this
segment except, possibly, finitely many points. Then the largest and the smallest values
of f (x) on [a, b] belong to the set consisting of f (a), f (b), and the values f (xi), where
xi � (a, b) are the points at which f ′(x) is either equal to zero or does not exist (is infinite).

6.2.5-4. Direction of the convexity of the graph of a function.

The graph of a differentiable function y = f (x) is said to be convex upward (resp., convex
downward) on the interval (a, b) if for each point of this interval, the graph lies below (resp.,
above) the tangent line at that point.

If the function y = f (x) is twice differentiable on the interval (a, b) and f ′′(x) < 0 (resp.,
f ′′(x) > 0), then its graph is convex upward (resp., downward) on that interval. (At some
points of the interval, the second derivative may vanish.)

Thus, in order to find the intervals on which the graph of a twice differentiable function
f (x) is convex upward (resp., downward), one should solve the inequality f ′′(x) < 0 (resp.,
f ′′(x) > 0).

6.2.5-5. Inflection points.

An inflection point on the graph of a function y = f (x) is defined as a point (x0, f (x0)) at
which the graph passes from one side of its tangent line to another. At an inflection point,
the graph changes the direction of its convexity.
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Suppose that the function y = f (x) has a continuous second derivative f ′′(x) in some
neighborhood of a point x0. If f ′′(x0) = 0 and f ′′(x) changes sign as x passes through the
point x0, then (x0, f (x0)) is an inflection point.

6.2.6. Qualitative Analysis of Functions and Construction of Graphs

6.2.6-1. General scheme of analysis of a function and construction of its graph.

1. Determine the domain in which the function is defined.
2. Find the asymptotes of the graph.
3. Find extremal points and intervals of monotonicity.
4. Determine the directions of convexity of the graph and its inflection points.
5. Determine whether the function is odd or even and whether it is periodic.
6. Find the points at which the graph crosses the coordinate axes.
7. Draw the graph, using the properties 1 to 6.

Example. Let us examine the function y =
lnx
x

and construct its graph.

We use the above general scheme.
1. This function is defined for all x such that 0 < x < +∞.

2. The straight line x = 0 is a vertical asymptote, since lim
x→+0

lnx
x

= –∞. We find the oblique asymptotes:

k = lim
x→+∞

y

x
= 0, b = lim

x→+∞
(y – kx) = 0.

Therefore, the line y = 0 is a horizontal asymptote of the graph.

3. The derivative y′ =
1 – lnx
x2 vanishes for lnx = 1. Therefore, the function may have an extremum at

x = e. For x � (0, e), we have y′ > 0, i.e., the function is increasing on this interval. For x � (e, +∞), we have
y′ < 0, and therefore the function is decreasing on this interval. At x = e the function attains its maximal value

ymax =
1
e

.

One should also examine the points at which the derivative does not exist. There is only one such point,
x = 0, and it corresponds to the vertical asymptote (see Item 1).

4. The second derivative y′′ =
2 lnx – 3

x3 vanishes for x = e3/2. On the interval (0, e3/2), we have y′′ < 0,

and therefore the graph is convex upward on this interval. For x � (e3/2, +∞), we have y′′ > 0, and therefore
the graph is convex downward on this interval. The value x = e3/2 corresponds to an inflection point of the
graph, with the ordinate y = 3

2 e
–3/2.

5. This function is neither odd nor even, since it is defined only for x > 0 and the relations f (–x) = f (x)
or f (–x) = –f (x) cannot hold. Obviously, this function is nonperiodic.

6. The graph of this function does not cross the y-axis, since for x = 0 the function is undefined. Further,
y = 0 only if x = 1, i.e., the graph crosses the x-axis only at the point (1, 0).

7. Using the above results, we construct the graph (Fig. 6.5).

6.2.6-2. Transformations of graphs of functions.

Let us describe some methods which in many cases allow us to construct the graph of a
function if we have the graph of a simpler function.

1. The graph of the function y = f (x) + a is obtained from that of y = f (x) by shifting
the latter along the axis Oy by the distance |a|. For a > 0 the shift is upward, and for a < 0
downward (see Fig. 6.6 a).

2. The graph of the function y = f (x + a) is obtained from that of y = f (x) by shifting
the latter along the Ox by the distance |a|. For a > 0 the shift is to the left, and for a < 0 to
the right (see Fig. 6.6 b).
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Figure 6.5. Graph of the function y = ln x
x

.

3. The graph of the function y = –f (x) is obtained from that of y = f (x) by symmetric
reflection with respect to the axis Ox (see Fig. 6.6 c).

4. The graph of the function y = f (–x) is obtained from that of y = f (x) by symmetric
reflection with respect to the axis Oy (see Fig. 6.6 d).

5. The graph of the function y = kf (x) for k > 1 is obtained from that of y = f (x) by
extending the latter k times from the axis Ox, and for 0 < k < 1 by contracting the latter 1/k
times to the axis Ox. The points at which the graph crosses the axis Ox remain unchanged
(see Fig. 6.6 e).

6. The graph of the function y = f (kx) for k > 1 is obtained from that of y = f (x)
by contracting the latter k times to the axis Oy, and for 0 < k < 1 by extending the latter
1/k times from the axis Oy. The points at which the graph crosses the axis Oy remain
unchanged (see Fig. 6.6 f ).

7. The graph of the function y = |f (x)| is obtained from that of y = f (x) by preserving
the parts of the latter for which f (x) ≥ 0 and symmetric reflection, with respect to the axis
Ox, of the parts for which f (x) < 0 (see Fig. 6.6 g).

8. The graph of the inverse function y = f –1(x) is obtained from that of y = f (x) by
symmetric reflection with respect to the straight line y = x (see Fig. 6.6 h).

6.2.7. Approximate Solution of Equations
(Root-Finding Algorithms for Continuous Functions)

6.2.7-1. Preliminaries.

For a vast majority of algebraic (transcendental) equations of the form

f (x) = 0, (6.2.7.1)

where f (x) is a continuous function, there are no exact closed-form expressions for the
roots.

When solving the equation approximately, the first step is to bracket the roots, i.e., find
sufficiently small intervals containing exactly one root each. Such an interval [a, b], where
the numbers a and b satisfy the condition f (a)f (b) < 0 (which is assumed to hold in what
follows), can be found, say, graphically.

The second step is to compute successive approximations xn � [a, b] (n = 1, 2, . . .) to
the desired root c = lim

n→∞xn, usually by one of the following methods.
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Figure 6.6. Transformations of graphs of functions.

6.2.7-2. Bisection method.

To find the root of equation (6.2.7.1) on the interval [a, b], we bisect the interval. If

f
(a + b

2

)
= 0, then c =

a + b
2

is the desired root. If f
(a + b

2

)
≠ 0, then of the two

intervals
[
a,
a + b

2

]
and
[ a + b

2
, b
]

we take the one at whose endpoints the function f (x)

has opposite signs. Now we bisect the new, smaller interval, etc. As a result, we obtain
either an exact root of equation (6.2.7.1) at some step or an infinite sequence of nested
intervals [a1, b1], [a2, b2], . . . such that f (an)f (bn) < 0. The root is given by the formula
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c = lim
n→∞an = lim

n→∞ bn, and the estimate

0 ≤ c – an ≤
1

2n
(b – a)

is valid.
The following two methods are more efficient.

6.2.7-3. Regula falsi method (false position method).

Suppose that the derivatives f ′(x) and f ′′(x) exist on the interval [a, b] and the inequalities
f ′(x) ≠ 0 and f ′′(x) ≠ 0 hold for all x � [a, b].

If f ′(a)f ′′(a) > 0, then we take x0 = a for the zero approximation; the subsequent
approximations are given by the formulas

xn+1 = xn –
f (xn)

f (b) – f (xn)
(b – xn), n = 0, 1, . . .

If f ′(a)f ′′(a) < 0, then we take x0 = b for the zero approximation; the subsequent
approximations are given by the formulas

xn+1 = xn –
f (xn)

f (a) – f (xn)
(a – xn), n = 0, 1, . . .

The regula falsi method has the first order of local convergence as n→ ∞:

|xn+1 – c| ≤ k|xn – c|,

where k is a constant depending on f (x) and c is the root of equation (6.2.7.1).
The regula falsi method has a simple geometric interpretation. The straight line (secant)

passing through the points (a, f (a)) and (b, f (b)) of the curve y = f (x) meets the abscissa
axis at the point x1; the value xn+1 is the abscissa of the point where the line passing through
the points (x0, f (x0)) and (xn, f (xn)) meets the x-axis (see Fig. 6.7 a).

x x

y y

O Oa c cx x

x x

1 1

2 2

ab b

f a( )

( )a ( )b

f a( )

f b( )

y f x= ( ) y f x= ( )

f b( )

Figure 6.7. Graphical construction of successive approximations to the root of equation (6.2.7.1) by the regula
falsi method (a) and the Newton–Raphson method (b).

6.2.7-4. Newton–Raphson method.

Suppose that the derivatives f ′(x) and f ′′(x) exist on the interval [a, b] and the inequalities
f ′(x) ≠ 0 and f ′′(x) ≠ 0 hold for all x � [a, b].
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If f (a)f ′′(a) > 0, then we take x0 = a for the zero approximation; if f (b)f ′′(b) > 0, then
x0 = b. The subsequent approximations are computed by the formulas

xn+1 = xn –
f (xn)
f ′(xn)

, n = 0, 1, . . .

If the initial approximation x0 is sufficiently close to the desired root c, then the Newton–
Raphson method exhibits quadratic convergence:

|xn+1 – c| ≤
M

2m
|xn – c|2,

where M = max
a≤x≤b

|f ′′(x)| and m = min
a≤x≤b

|f ′(x)|.
The Newton–Raphson method has a simple geometric interpretation. The tangent to the

curve y = f (x) through the point (xn, f (xn)) meets the abscissa axis at the point xn+1 (see
Fig. 6.7 b).

The Newton–Raphson method has a higher order of convergence than the regula falsi
method. Hence the former is more often used in practice.

6.3. Functions of Several Variables. Partial Derivatives
6.3.1. Point Sets. Functions. Limits and Continuity

6.3.1-1. Sets on the plane and in space.

The distance between two points A and B on the plane and in space can be defined as
follows:

ρ(A,B) =
√

(xA – xB)2 + (yA – yB)2 (on the plane),

ρ(A,B) =
√

(xA – xB)2 + (yA – yB)2 + (zA – zB)2 (in three-dimensional space),

ρ(A,B) =
√

(x1A – x1B)2 + · · · + (xnA – xnB)2 (in n-dimensional space).

where xA, yA and xB , yB, and xA, yA, zA and xB , yB , zB , and x1A, . . . , xnA and
x1B , . . . , xnB are Cartesian coordinates of the corresponding points.

An ε-neighborhood of a point M0 (on the plane or in space) is the set consisting of all
points M (resp., on the plane or in space) such that ρ(M ,M0) < ε, where it is assumed
that ε > 0. An ε-neighborhood of a set K (on the plane or in space) is the set consisting
of all points M (resp., on the plane or in space) such that inf

M0�K
ρ(M ,M0) < ε, where it is

assumed that ε > 0.
An interior point of a setD is a point belonging toD, together with some neighborhood

of that point. An open set is a set containing only interior points. A boundary point of a
set D is a point such that any of its neighborhoods contains points outside D. A closed set
is a set containing all its boundary points. A set D is called a bounded set if ρ(A,B) < C
for any points A,B � D, where C is a constant independent of A,B. Otherwise (i.e., if
there is no such constant), the set D is called unbounded.

6.3.1-2. Functions of two or three variables.

A (numerical) function on a set D is, by definition, a relation that sets up a correspondence
between each point M � D and a unique numerical value. If D is a plane set, then each
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point M � D is determined by two coordinates x, y, and a function z = f (M ) = f (x, y)
is called a function of two variables. If D belongs to a three-dimensional space, then one
speaks of a function of three variables. The set D on which the function is defined is called
the domain of the function. For instance, the function z =

√
1 – x2 – y2 is defined on the

closed circle x2 + y2 ≤ 1, which is its domain.
The graph of a function z = f (x, y) is the surface formed by the points (x, y, f (x, y)) in

three-dimensional space. For instance, the graph of the function z = ax + by + c is a plane,
and the graph of the function z =

√
1 – x2 – y2 is a half-sphere.

A level line of a function z = f (x, y) is a line on the plane x, y with the following
property: the function takes one and the same value z = c at all points of that line. Thus, the
equation of a level line has the form f (x, y) = c. A level surface of a function u = f (x, y, z)
is a surface on which the function takes a constant value, u = c; the equation of a level
surface has the form f (x, y, z) = c.

A function f (M ) is called bounded on a set D if there is a constant C such that
|f (M )| ≤ C for all M � D.

6.3.1-3. Limit of a function at a point and its continuity.

Let M be a point that comes infinitely close to some point M0, i.e., ρ = ρ(M0,M ) → 0. It
is possible that the values f (M ) come close to some constant b.

One says that b is the limit of the function f (M ) at the point M0 if for any (arbitrarily
small) ε > 0, there is δ > 0 such that for all pointsM belonging to the domain of the function
and satisfying the inequality 0 < ρ(M0,M ) < δ, we have |f (M ) – b| < ε. In this case, one
writes lim

ρ(M ,M0)→0
f (M ) = b.

A function f (M ) is called continuous at a point M0 if lim
ρ(M ,M0)→0

f (M ) = f (M0). A

function is called continuous on a set D if it is continuous at each point of D. Any
continuous function f (M ) on a closed bounded set is bounded on that set and attains its
smallest and its largest values on that set.

6.3.2. Differentiation of Functions of Several Variables
For the sake of brevity, we consider the case of a function of two variables. However, all
statements can be easily extended to the case of n variables.

6.3.2-1. Total and partial increments of a function. Partial derivatives.

A total increment of a function z = f (x, y) at a point (x, y) is

Δz = f (x + Δx, y + Δy) – f (x, y),

where Δx, Δy are increments of the independent variables. Partial increments in x and in
y are, respectively,

Δxz = f (x + Δx, y) – f (x, y),
Δyz = f (x, y + Δy) – f (x, y).

Partial derivatives of a function z in x and in y at a point (x, y) are defined as follows:

∂z

∂x
= lim

Δx→0

Δxz

Δx
,

∂z

∂y
= lim

Δy→0

Δyz

Δy
(provided that these limits exist). Partial derivatives are also denoted by zx and zy , ∂xz
and ∂yz, or fx(x, y) and fy(x, y).
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6.3.2-2. Differentiable functions. Differential.

A function z = f (x, y) is called differentiable at a point (x, y) if its increment at that point
can be represented in the form

Δz = A(x, y)Δx + B(x, y)Δy + o(ρ), ρ =
√

(Δx)2 + (Δy)2,

where o(ρ) is a quantity of a higher order of smallness compared with ρ as ρ → 0 (i.e.,
o(ρ)/ρ → 0 as ρ → 0). In this case, there exist partial derivatives at the point (x, y), and
z′x = A(x, y), z′y = B(x, y).

A function that has continuous partial derivatives at a point (x, y) is differentiable at that
point.

The differential of a function z = f (x, y) is defined as follows:

dz = f ′x(x, y)Δx + f ′y(x, y)Δy.

Taking the differentials dx and dy of the independent variables equal to Δx and Δy,
respectively, one can also write dz = f ′x(x, y) dx + f ′y(x, y) dy.

The relation Δz = dz + o(ρ) for small Δx and Δy is widely used for approximate
calculations, in particular, for finding errors in numerical calculations of values of a function.

Example 1. Suppose that the values of the arguments of the function z = x2y5 are known with the error
x = 2 � 0.01, y = 1 � 0.01. Let us calculate the approximate value of the function.

We find the increment of the function z at the point x = 2, y = 1 for Δx = Δy = 0.01, using the formula
Δz ≈ dz = 2 ⋅ 2 ⋅ 15 ⋅ 0.01 + 5 ⋅ 22 ⋅ 14 ⋅ 0.01 = 0.24. Therefore, we can accept the approximation z = 4 � 0.24.

If a function z = f (x, y) is differentiable at a point (x0, y0), then

f (x, y) = f (x0, y0) + f ′x(x0, y0)(x – x0) + f ′y(x0, y0)(y – y0) + o(ρ).

Hence, for small ρ (i.e., for x ≈ x0, y ≈ y0), we obtain the approximate formula

f (x, y) ≈ f (x0, y0) + f ′x(x0, y0)(x – x0) + f ′y(x0, y0)(y – y0).

The replacement of a function by this linear expression near a given point is called lin-
earization.

6.3.2-3. Composite function.

Consider a function z = f (x, y) and let x = x(u, v), y = y(u, v). Suppose that for (u, v) �D,
the functions x(u, v), y(u, v) take values for which the function z = f (x, y) is defined. In this
way, one defines a composite function on the set D, namely, z(u, v) = f

(
x(u, v), y(u, v)

)
.

In this situation, f (x, y) is called the outer function and x(u, v), y(u, v) are called the inner
functions.

Partial derivatives of a composite function are expressed by

∂z

∂u
=
∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u
,

∂z

∂v
=
∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v
.

For z = z(t,x, y), let x = x(t), y = y(t). Thus, z is actually a function of only one
variable t. The derivative dz

dt is calculated by

dz

dt
=
∂z

∂t
+
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
.

This derivative, in contrast to the partial derivative ∂z
∂t , is called a total derivative.
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6.3.2-4. Second partial derivatives and second differentials.

The second partial derivatives of a function z = f (x, y) are defined as the derivatives of its
first partial derivatives and are denoted as follows:

∂2z

∂x2 = zxx ≡ (zx)x,
∂2z

∂x ∂y
= zxy ≡ (zx)y ,

∂2z

∂y ∂x
= zyx ≡ (zy)x,

∂2z

∂y2 = zyy ≡ (zy)y .

The derivatives zxy and zyx are called mixed derivatives. If the mixed derivatives are
continuous at some point, then they coincide at that point, zxy = zyx.

In a similar way, one defines higher-order partial derivatives.
The second differential of a function z = f (x, y) is the expression

d2z = d(dz) = (dz)xΔx + (dz)yΔy = zxx(Δx)2 + 2zxyΔxΔy + zyy(Δy)2.

In a similar way, one defines d3z, d4z, etc.

6.3.2-5. Taylor’s formula.

If at some point (x, y) the function z = f (x, y) possesses partial derivatives up to the order
n inclusively, then its increment Δz at that point can be expressed by

Δz = dz +
d2z

2!
+
d3z

3!
+ · · · +

dnz

n!
+ o(ρn),

where ρ =
√

(Δx)2 + (Δy)2.

6.3.2-6. Implicit functions and their differentiation.

Consider the equation F (x, y) = 0 with a solution (x0, y0). Suppose that the derivative
Fy(x, y) is continuous in a neighborhood of the point (x0, y0) and Fy(x, y) ≠ 0 in that
neighborhood. Then the equation F (x, y) = 0 defines a continuous function y = y(x) (called
an implicit function) of the variable x in a neighborhood of the point x0. Moreover, if in a
neighborhood of (x0, y0) there exists a continuous derivative Fx, then the implicit function

y = y(x) has a continuous derivative expressed by
dy

dx
= –

Fx
Fy

.

Consider the equation F (x, y, z) = 0 that establishes a relation between the variables
x, y, z. If F (x0, y0, z0) = 0 and in a neighborhood of the point (x0, y0, z0) there exist contin-
uous partial derivatives Fx, Fy , Fz such that Fz(x0, y0, z0) ≠ 0, then equation F (x, y, z) = 0,
in a neighborhood of (x0, y0), has a unique solution z = ϕ(x, y) such that ϕ(x0, y0) = z0;
moreover, the function z = ϕ(x, y) is continuous and has continuous partial derivatives
expressed by

∂z

∂x
= –

Fx
Fz

,
∂z

∂y
= –

Fy
Fz

.

Example 2. For the equation x sin y+z+ez = 0 we have Fz = 1 +ez ≠ 0. Therefore, this equation defines

a function z = ϕ(x, y) on the entire plane, and its derivatives have the form
∂z

∂x
= –

sin y
1 + ez

,
∂z

∂y
= –

x cos y
1 + ez

.
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6.3.2-7. Jacobian. Dependent and independent functions. Invertible transformations.

1◦. Two functions f (x, y) and g(x, y) are called dependent if there is a function Φ(z) such
that g(x, y) = Φ(f (x, y)); otherwise, the functions f (x, y) and g(x, y) are called independent.

The Jacobian is the determinant of the matrix whose elements are the first partial
derivatives of the functions f (x, y) and g(x, y):

∂(f , g)
∂(x, y)

≡

∣
∣
∣∣
∣

∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

∣
∣
∣∣
∣
. (6.3.2.1)

1) If the Jacobian (6.3.2.1) in a domainD is identically equal to zero, then the functions
f (x, y) and g(x, y) are dependent in D.

2) If the Jacobian (6.3.2.1) is separated from zero in D, then the functions f (x, y) and
g(x, y) are independent in D.

2◦. Functions fk(x1,x2, . . . ,xn), k = 1, 2, . . . ,n, are called dependent in a domain D if
there is a function Φ(z1, z2, . . . , zn) such that

Φ
(
f1(x1,x2, . . . ,xn), f2(x1,x2, . . . ,xn), . . . , fn(x1,x2, . . . ,xn)

)
= 0 (in D);

otherwise, these functions are called independent.
The Jacobian is the determinant of the matrix whose elements are the first partial

derivatives:
∂(f1, f2, . . . , fn)
∂(x1,x2, . . . ,xn)

≡ det

(
∂fi
∂xj

)
. (6.3.2.2)

The functions fk(x1,x2, . . . ,xn) are dependent in a domain D if the Jacobian (6.3.2.2) is
identically equal to zero inD. The functions fk(x1,x2, . . . ,xn) are independent inD if the
Jacobian (6.3.2.2) does not vanish in D.

3◦. Consider the transformation

yk = fk(x1,x2, . . . ,xn), k = 1, 2, . . . ,n. (6.3.2.3)

Suppose that the functions fk are continuously differentiable and the Jacobian (6.3.2.2)
differs from zero at the point (x◦1,x◦2, . . . ,x◦n). Then, in a sufficiently small neighborhood of
this point, equations (6.3.2.3) specify a one-to-one correspondence between the points of that
neighborhood and the set of points (y1, y2, . . . , yn) consisting of the values of the functions
(6.3.2.3) in the corresponding neighborhood of the point (y◦1 , y◦2 , . . . , y◦n). This means that
the system (6.3.2.3) is locally solvable in a neighborhood of the point (x◦1,x◦2, . . . ,x◦n), i.e.,
the following representation holds:

xk = gk(y1, y2, . . . , yn), k = 1, 2, . . . ,n,

where gk are continuously differentiable functions in the corresponding neighborhood of
the point (y◦1 , y◦2 , . . . , y◦n).

6.3.3. Directional Derivative. Gradient. Geometrical Applications

6.3.3-1. Directional derivative.

One says that a scalar field is defined in a domain D if any point M (x, y) of that domain
is associated with a certain value z = f (M ) = f (x, y). Thus, a thermal field and a pressure
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field are examples of scalar fields. A level line of a scalar field is a level line of the function
that specifies the field (see Subsection 6.3.1). Thus, isothermal and isobaric curves are,
respectively, level lines of thermal and pressure fields.

In order to examine the behavior of a field z = f (x, y) at a point M0(x0, y0) in the
direction of a vector�a = {a1, a2}, one should construct a straight line passing through M0 in
the direction of the vector �a (this line can be specified in terms of the parametric equations
x = x0 +a1t, y = y0 +a2t) and study the function z(t) = f (x0 +a1t, y0 +a2t). The derivative
of the function z(t) at the point M0 (i.e., for t = 0) characterizes the change rate of the field
at that point in the direction �a. Dividing z′(0) by |�a| =

√
a2

1 + a2
2, we obtain the so-called

derivative in the direction �a of the given field at the given point:
∂f

∂�a
=

1
|�a|
[
a1f

′
x(x0, y0) + a2f

′
y(x0, y0)

]
.

The gradient of the scalar field z = f (x, y) is, by definition, the vector-valued function

grad f = f ′x(x, y)�i + f ′y(x, y)�j,

where �i and �j are unit vectors along the coordinate axes x and y. At each point, the
gradient of a scalar field is orthogonal to the level line passing through that point. The
gradient indicates the direction of maximal growth of the field. In terms of the gradient, the
directional derivative can be expressed as follows:

∂f

∂�a
=
�a

|�a|
grad f .

The gradient is also denoted by ∇f = grad f .
Remark. The above facts for a plane scalar field obviously can be extended to the case of a spatial scalar

field.

6.3.3-2. Geometrical applications of the theory of functions of several variables.

The equation of the tangent plane to the surface z = f (x, y) at a point (x0, y0, z0), where
z0 = f (x0, y0), has the form

z = f (x0, y0) + fx(x0, y0)(x – x0) + fy(x0, y0)(y – y0).

The vector of the normal to the surface at that point is

�n =
{

–fx(x0, y0), –fy(x0, y0), 1
}

.

If a surface is defined implicitly by the equation Φ(x, y, z) = 0, then the equation of its
tangent plane at the point (x0, y0, z0) has the form

Φx(x0, y0, z0)(x – x0) + Φy(x0, y0, z0)(y – y0) + Φz(x0, y0, z0)(z – z0) = 0.

The vector of the normal to the surface at that point is

�n =
{
Φx(x0, y0, z0), Φy(x0, y0, z0), Φz(x0, y0, z0)

}
.

Consider a surface defined by the parametric equations

x = x(u, v), y = y(u, v), z = z(u, v)

or, in vector form,�r =�r(u, v), where�r = {x, y, z}, and letM0
(
x(u0, v0), y(u0, v0), z(u0, v0)

)

be the point of the surface corresponding to the parameter values u = u0, v = v0. Then the
vector of the normal to the surface at the point M0 can be expressed by

�n(u, v) =
∂�r

∂u
×
∂�r

∂v
=

∣
∣
∣∣
∣

�i �j �k
xu yu zu
xv yv zv

∣
∣
∣∣
∣
,

where all partial derivatives are calculated at the point M0.
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6.3.4. Extremal Points of Functions of Several Variables

6.3.4-1. Conditions of extremum of a function of two variables.

1◦. Points of minimum, maximum, or extremum. A point (x0, y0) is called a point of local
minimum (resp., maximum) of a function z = f (x, y) if there is a neighborhood of (x0, y0)
in which the function is defined and satisfies the inequality f (x, y) > f (x0, y0) (resp.,
f (x, y) < f (x0, y0)). Points of maximum or minimum are called points of extremum.

2◦. A necessary condition of extremum. If a function has the first partial derivatives at a
point of its extremum, these derivatives must vanish at that point. It follows that in order
to find points of extremum of such a function z = f (x, y), one should find solutions of the
system of equations

fx(x, y) = 0, fy(x, y) = 0.

The points whose coordinates satisfy this system are called stationary points. Any point of
extremum of a differentiable function is its stationary point, but not every stationary point
is a point of its extremum.

3◦. Sufficient conditions of extremum are used for the identification of points of extremum
among stationary points. Some conditions of this type are given below.

Suppose that the function z = f (x, y) has continuous second derivatives at a stationary
point. Let us calculate the value of the determinant at that point:

Δ = fxxfyy – f 2
xy.

The following implications hold:

1) If Δ > 0, fxx > 0, then the stationary point is a point of local minimum;
2) If Δ > 0, fxx < 0, then the stationary point is a point of local maximum;
3) If Δ < 0, then the stationary point cannot be a point of extremum.

In the degenerate case, Δ = 0, a more delicate analysis of a stationary point is required. In
this case, a stationary point may happen to be a point of extremum and maybe not.

Remark. In order to find points of extremum, one should check not only stationary points, but also points
at which the first derivatives do not exist or are infinite.

4◦. The smallest and the largest values of a function. Let f (x, y) be a continuous function
in a closed bounded domain D. Any such function takes its smallest and its largest values
in D.

If the function has partial derivatives in D, except at some points, then the follow-
ing method can be helpful for determining the coordinates of the points (xmin, ymin) and
(xmax, ymax) at which the function attains its minimum and maximum, respectively. One
should find all internal stationary points and all points at which the derivatives are infinite
or do not exist. Then one should calculate the values of the function at these points and
compare these with its values at the boundary points of the domain, and then choose the
largest and the smallest values.

6.3.4-2. Extremal points of functions of three variables.

For functions of three variables, points of extremum are defined in exactly the same way as
for functions of two variables. Let us briefly describe the scheme of finding extremal points
of a function u = Φ(x, y, z). Finding solutions of the system of equations

Φx(x, y, z) = 0, Φy(x, y, z) = 0, Φz(x, y, z) = 0,
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we determine stationary points. For each stationary point, we calculate the values of

Δ1 = Φxx, Δ2 =
∣∣
∣
Φxx Φxy

Φxy Φyy

∣∣
∣ , Δ3 =

∣
∣∣
∣∣

Φxx Φxy Φxz

Φxy Φyy Φyz

Φxz Φyz Φzz

∣
∣∣
∣∣
.

The following implications hold:

1) If Δ1 > 0, Δ2 > 0, Δ3 > 0, then the stationary point is a point of local minimum;
2) If Δ1 < 0, Δ2 > 0, Δ3 < 0, then the stationary point is a point of local maximum.

6.3.4-3. Conditional extremum of a function of two variables. Lagrange function.

A point (x0, y0) is called a point of conditional or constrained minimum (resp., maximum)
of a function

z = f (x, y) (6.3.4.1)

under the additional condition*
ϕ(x, y) = 0 (6.3.4.2)

if there is a neighborhood of the point (x0, y0) in which f (x, y) > f (x0, y0) (resp., f (x, y) <
f (x0, y0)) for all points (x, y) satisfying the condition (6.3.4.2).

For the determination of points of conditional extremum, it is common to use the
Lagrange function

Φ(x, y,λ) = f (x, y) + λϕ(x, y),

where λ is the so-called Lagrange multiplier. Solving the system of three equations (the
last equation coincides with the condition (6.3.4.2))

∂Φ
∂x

= 0,
∂Φ
∂y

= 0,
∂Φ
∂λ

= 0,

one finds stationary points of the Lagrange function (and also the value of the coefficient λ).
The stationary points may happen to be points of extremum. The above system yields
only necessary conditions of extremum, but these conditions may be insufficient; it may
happen that there is no extremum at some stationary points. However, with the help of other
properties of the function under consideration, it is often possible to establish the character
of a critical point.

Example 1. Let us find an extremum of the function

z = xny, (6.3.4.3)

under the condition
x + y = a (a > 0, n > 0, x ≥ 0, y ≥ 0). (6.3.4.4)

Taking F (x, y) = xny and ϕ(x, y) = x + y – a, we construct the Lagrange function

Φ(x, y,λ) = xny + λ(x + y – a).

Solving the system of equations
Φx ≡ nxn–1y + λ = 0,

Φy ≡ xn + λ = 0,

Φλ ≡ x + y – a = 0,

we find the coordinates of a unique stationary point,

x◦ =
an

n + 1
, y◦ =

a

n + 1
, λ◦ = –

(
an

n + 1

)n

,

which corresponds to the maximum of the given function, zmax =
an+1nn

(n + 1)n+1 .

* This condition is also called a constraint.
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Remark. In order tofind points of conditional extremum of functions of two variables, it is often convenient
to express the variable y through x (or vice versa) from the additional equation (6.3.4.2) and substitute the
resulting expression into the right-hand side of (6.3.4.1). In this way, the original problem is reduced to the
problem of extremum for a function of a single variable.

Example 2. Consider again the extremum problem of Example 1 for the function of two variables (6.3.4.3)
with the constraint (6.3.4.4). After the elimination of the variabley from (6.3.4.3)–(6.3.4.4), the original problem
is reduced to the extremum problem for the function z = xn(a – x) of one variable.

6.3.4-4. Conditional extremum of functions of several variables.

Consider a function u = f (x1, . . . ,xn) of n variables under the condition that x1, . . . , xn
satisfy m equations (m < n):

⎧
⎪⎪⎨

⎪⎪⎩

ϕ1(x1, . . . ,xn) = 0,
ϕ2(x1, . . . ,xn) = 0,
. . . . . . . . . . . . . . . . . . ,
ϕm(x1, . . . ,xn) = 0.

In order to find the values of x1, . . . , xn for which f may have a conditional maximum or
minimum, one should construct the Lagrange function

Φ(x1, . . . ,xn;λ1, . . . ,λm) = f + λ1ϕ1 + λ2ϕ2 + · · · + λmϕm

and equate to zero its first partial derivatives in the variables x1, . . . , xn and the parameters
λ1, . . . , λm. From the resulting n +m equations, one finds x1, . . . , xn (and also the values
of the unknown Lagrange multipliers λ1, . . . , λm). As in the case of functions of two
variables, the question whether the given function has points of conditional extremum can
be answered on the basis of additional investigation.

Example 3. Consider the problem of finding the shortest distance from the point (x0, y0, z0) to the plane

Ax +By + Cz +D = 0. (6.3.4.5)

The squared distance between the points (x0, y0, z0) and (x, y, z) is equal to

R2 = (x – x0)2 + (y – y0)2 + (z – z0)2. (6.3.4.6)

In our case, the coordinates (x, y, z) should satisfy equation (6.3.4.5) (this point should belong to the plane).
Thus, our problem is to find the minimum of the expression (6.3.4.6) under the condition (6.3.4.5). The
Lagrange function has the form

Φ = (x – x0)2 + (y – y0)2 + (z – z0)2 + λ(Ax +By + Cz +D).

Equating to zero the derivatives of Φ in x, y, z, λ, we obtain the following system of algebraic equations:

2(x – x0) +Aλ = 0, 2(y – y0) +Bλ = 0, 2(z – z0) + Cλ = 0, Ax +By + Cz + D = 0.

Its solution has the form

x = x0 –
1
2
Aλ, y = y0 –

1
2
Bλ, z = z0 –

1
2
Cλ, λ =

2(Ax0 + By0 + Cz0 +D)
A2 +B2 + C2 . (6.3.4.7)

Thus we have a unique answer, and since the distance between a given point and the plane can be realized at a
single point (x, y, z), the values obtained should correspond to that distance. Substituting the values (6.3.4.7)
into (6.3.4.6), we find the squared distance

R2 =
(Ax0 + By0 + Cz0 + D)2

A2 +B2 + C2 .
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6.3.5. Differential Operators of the Field Theory

6.3.5-1. Hamilton’s operator and first-order differential operators.

The Hamilton’s operator or the nabla vector is the symbolic vector

∇ =�i
∂

∂x
+�j

∂

∂y
+ �k

∂

∂z
.

This vector can be used for expressing the following differential operators:
1) gradient of a scalar function u(x, y, z):

grad u =�i
∂u

∂x
+�j

∂u

∂y
+ �k

∂u

∂z
= ∇u;

2) divergence of a vector field �a = P�i + Q�j + R�k:

div�a =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
= ∇ ⋅ �a

(scalar product of the nabla vector and the vector �a);
3) rotation of a vector field �a = P�i + Q�j +R�k:

curl�a =

∣
∣∣
∣∣
∣

�i �j �k
∂
∂x

∂
∂y

∂
∂z

P Q R

∣
∣∣
∣∣
∣

= ∇ × �a

(vector product of the nabla vector and the vector �a).
Each scalar field u(x, y, z) generates a vector field grad u. A vector field �a(x, y, z)

generates two fields: the scalar field div�a and the vector field curl�a.

6.3.5-2. Second-order differential operators.

The following differential identities hold:

1) curl grad u = �0 or (∇ × ∇)u = �0,
2) div curl�a = 0 or ∇ ⋅ (∇ × �a) = 0.

The following differential relations hold:

1) div grad u = Δu =
∂2u

∂x2 +
∂2u

∂y2 +
∂2u

∂z2 ,

2) curl curl�a = grad div�a – Δ�a,

where Δ is the Laplace operator, Δu = ∇ ⋅ (∇u) = ∇2u.
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Chapter 7

Integrals

7.1. Indefinite Integral
7.1.1. Antiderivative. Indefinite Integral and Its Properties

7.1.1-1. Antiderivative.

An antiderivative (or primitive function) of a given function f (x) on an interval (a, b) is a
differentiable function F (x) such that its derivative is equal to f (x) for all x � (a, b):

F ′(x) = f (x).
Example 1. Let f (x) = 2x. Then the functions F (x) = x2 and F1(x) = x2 – 1 are antiderivatives of f (x),

since (x2)′ = 2x and (x2 – 1)′ = 2x.

THEOREM. Any function f (x) continuous on an interval (a, b) has infinitely many con-
tinuous antiderivatives on (a, b). If F (x) is one of them, then any other antiderivative has
the form F (x) + C , where C is a constant.

7.1.1-2. Indefinite integral.

The indefinite integral of a function f (x) is the set, F (x) +C , of all its antiderivatives. This
fact is conventionally written as

∫
f (x) dx = F (x) + C .

Here, f (x) is called the integrand (or the integrand function). The process of finding an
integral is called integration. The differential dx indicates that the integration is carried out
with respect to x.

Example 2.
∫

6x2 dx = 2x3 + C, since (2x3)′ = 6x2.

7.1.1-3. Most important corollaries of the definition of the indefinite integral.

Differentiation is the inverse of integration:
d

dx

(∫
f (x) dx

)
= f (x).

Integration is the inverse of differentiation:*∫
f ′(x) dx = f (x) + C .

The latter formula serves to make up tables of indefinite integrals. The procedure is
often reverse here: an integral is first given in explicit form (i.e., the function f (x) on the
right-hand side is prescribed), and then the integrand is obtained by differentiation.

* Integration recovers the function from its derivative, to an additive constant.
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7.1.2. Table of Basic Integrals. Properties of the Indefinite Integral.
Integration Examples

7.1.2-1. Table of basic integrals.

Listed below are most common indefinite integrals, which are important for the integration
of more complicated expressions:
∫
xa dx =

xa+1

a + 1
+ C (a ≠ –1),

∫
dx

x
= ln |x| + C,

∫
dx

x2 + a2 =
1
a

arctan
x

a
+ C,

∫
dx

x2 – a2 =
1

2a
ln
∣
∣
∣
x – a
x + a

∣
∣
∣ + C,

∫
dx√
a2 – x2

= arcsin
x

a
+ C,

∫
dx√
x2 + a

= ln
∣∣x +

√
x2 + a

∣∣ + C,
∫
ex dx = ex + C,

∫
ax dx =

ax

ln a
+ C,

∫
lnxdx = x lnx – x + C,

∫
ln ax dx = x ln ax – x + C,

∫
sinxdx = – cosx + C,

∫
cosx dx = sinx + C,

∫
tanxdx = – ln |cosx| + C,

∫
cot x dx = ln |sinx| + C,

∫
dx

sinx
= ln
∣
∣
∣tan

x

2

∣
∣
∣ + C,

∫
dx

cos x
= ln
∣
∣
∣tan
( x

2
+
π

4

)∣∣
∣ + C,

∫
dx

sin2 x
= – cot x + C,

∫
dx

cos2 x
= tanx + C,

∫
arcsinx dx = x arcsinx +

√
1 – x2 + C,

∫
arccos xdx = x arccos x –

√
1 – x2 + C,

∫
arctanx dx = x arctanx –

1
2

ln(1 + x2) + C,
∫

arccot x dx = x arccot x +
1
2

ln(1 + x2) + C,
∫

sinhx dx = cosh x + C,
∫

cosh xdx = sinh x + C,
∫

tanhx dx = ln cosh x + C,
∫

cothx dx = ln |sinhx| + C,
∫

dx

sinh x
= ln
∣
∣∣tanh

x

2

∣
∣∣ + C,

∫
dx

cosh x
= 2 arctan ex + C,

∫
dx

sinh2 x
= – coth x + C,

∫
dx

cosh2 x
= tanhx + C,

∫
arcsinh xdx = x arcsinh x –

√
1 + x2 + C,

∫
arccosh xdx = x arccosh x –

√
x2 – 1 + C,

∫
arctanh xdx = x arctanh x +

1
2

ln(1 – x2) + C,
∫

arccoth xdx = x arccoth x +
1
2

ln(x2 – 1) + C,

where C is an arbitrary constant.

� A more extensive table of indefinite integrals can be found in Section T2.1.

7.1.2-2. Properties of the indefinite integral.

1. A constant factor can be taken outside the integral sign:

∫
af (x) dx = a

∫
f (x) dx (a = const).
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2. Integral of the sum or difference of functions (additivity):
∫

[f (x) � g(x)] dx =
∫
f (x) dx �

∫
g(x) dx.

3. Integration by parts:
∫
f (x)g′(x) dx = f (x)g(x) –

∫
f ′(x)g(x) dx.

4. Repeated integration by parts (generalization of the previous formula):
∫
f (x)g(n+1)(x) dx = f (x)g(n)(x) – f ′(x)g(n–1)(x) + · · · + (–1)nf (n)(x)g(x)

+ (–1)n+1
∫
f (n+1)(x)g(x) dx, n = 0, 1, . . .

5. Change of variable (integration by substitution):
∫
f (x) dx =

∫
f (ϕ(t))ϕ′

t(t) dt, x = ϕ(t).

On computing the integral using the change of variable x = ϕ(t), one should rewrite the
resulting expression in terms of the original variable x using the back substitution t=ϕ–1(x).

7.1.2-3. Examples of direct integration of elementary functions.

1◦. With simple algebraic manipulation and the properties listed in Paragraph 7.1.2-2, the
integration may often be reduced to tabulated integrals.

Example 1.
∫

2x – 1√
x

dx =
∫ (

2
√
x –

1√
x

)
dx = 2

∫
x1/2 dx –

∫
x–1/2 dx =

4
3
x3/2 – 2x1/2 + C.

2◦. Tabulated integrals can also be used where any function ϕ(x) appears in place of x; for
example, ∫

ex dx = ex + C =⇒
∫
eϕ(x) dϕ(x) = eϕ(x) + C;

∫
dx

x
= ln |x| + C =⇒

∫
d sin x
sin x

= ln |sinx| + C .

The reduction of an integral to a tabulated one may often be achieved by taking some
function inside the differential sign.

Example 2.
∫

tanxdx =
∫

sinxdx
cosx

=
∫

–d cosx
cosx

= –
∫

d cosx
cosx

= – ln |cosx| + C.

3◦. Integrals of the form
∫

dx

ax2 + bx + c
,
∫

dx√
ax2 + bx + c

can be computed by making

a perfect square:

ax2 + bx + c = a
(
x +

b

2a

)2
–
b2

4a
+ c.

Then one should replace dx with the equal differential d
(
x +

b

2a

)
and use one of the four

formulas in the second and third rows in the table of integrals given in Paragraph 7.1.2-1.
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Example 3.
∫

dx√
2x – x2

=
∫

dx
√

1 – (x – 1)2
=
∫

d(x – 1)
√

1 – (x – 1)2
= arcsin(x – 1) + C.

4◦. The integration of a polynomial multiplied by an exponential function can be accom-
plished by using the formula of integration by parts (or repeated integration by parts) given
in Paragraph 7.1.2-2.

Example 4. Compute the integral
∫

(3x + 1) e2x dx.

Taking f (x) = 3x + 1 and g′(x) = e2x, one finds that f ′(x) = 3 and g(x) = 1
2 e

2x. On substituting these
expressions into the formula of integration by pars, one obtains
∫

(3x + 1) e2x dx =
1
2

(3x + 1) e2x –
3
2

∫
e2x dx =

1
2

(3x + 1) e2x –
3
4
e2x + C =

( 3
2
x –

1
4

)
e2x + C.

Remark 1. More complex examples of the application of integration by parts or repeated integration by
parts can be found in Subsection 7.1.6.

Remark 2. Examples of using a change of variables (see Item 5 in Paragraph 7.1.2-2) for the computation
of integrals can be found in Subsections 7.1.4 and 7.1.5.

7.1.2-4. Remark on uncomputable integrals.

The differentiation of elementary functions is known to always result in elementary func-
tions. However, this is not the case with integration, which is the reverse of differentiation.
The integrals of elementary functions are often impossible to express in terms elementary
functions using finitely many arithmetic operations and compositions.

Here are examples of integrals that cannot be expressed via elementary functions:

∫
dx√
x3 + 1

,
∫

exp(–x2) dx,
∫

ex

x
dx,

∫
dx

lnx
,
∫

cos x
x

dx,
∫

sin(x2) dx.

Such integrals are sometimes called intractable. It is significant that all these integrals exist;
they generate nonelementary (special) functions.

7.1.3. Integration of Rational Functions

7.1.3-1. Partial fraction decomposition of a rational function.

A rational function (also know as a rational polynomial function) is a quotient of polyno-
mials:

R(x) =
Pn(x)
Qm(x)

, (7.1.3.1)

where
Pn(x) = anx

n + · · · + a1x + a0,
Qm(x) = bmx

m + · · · + b1x + b0.

The fraction (7.1.3.1) is called proper if m > n and improper if m ≤ n.
Every proper fraction (7.1.3.1) can be decomposed into a sum of partial fractions. To

this end, one should factorize the denominator Qm(x) into irreducible multipliers of the
form

(x – αi)
pi , i = 1, 2, . . . , k; (7.1.3.2a)

(x2 + βjx + γj)
qj , j = 1, 2, . . . , s, (7.1.3.2b)
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where the pi and qj are positive integers satisfying the condition p1 +· · ·+pk+2(q1 +· · ·+qs) =
m; β2

j – 4γj < 0. The rational function (7.1.3.1) can be represented as a sum of irreducibles
and to each irreducible of the form (7.1.3.2) there correspond as many terms as the power
pi or qi:

Ai,1

x – αi
+

Ai,2

(x – αi)2 + · · · +
Ai,pi

(x – αi)pi
; (7.1.3.3a)

Bj,1x +Dj,1

x2 + βjx + γj
+

Bj,2x + Dj,2

(x2 + βjx + γj)2 + · · · +
Bj,qjx + Dj,qj

(x2 + βjx + γj)qj
. (7.1.3.3b)

The constants Ai,l, Bj,r, Dj,r are found by the method of undetermined coefficients.
To that end, one should equate the original rational fraction (7.1.3.1) with the sum of the
above partial fractions (7.1.3.3) and reduce both sides of the resulting equation to a common
denominator. Then, one collects the coefficients of like powers of x and equates them with
zero, thus arriving at a system of linear algebraic equations for the Ai,l, Bj,r, and Dj,r.

Example 1. This is an illustration of how a proper fraction can be decomposed into partial fractions:

b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x + b0

(x + a)(x + c)3(x2 + k2)
=
A1,1

x + a
+
A2,1

x + c
+

A2,2

(x + c)2 +
A2,3

(x + c)3 +
Bx +D
x2 + k2 .

7.1.3-2. Integration of a proper fraction.

1◦. To integrate a proper fraction, one should first rewrite the integrand (7.1.3.1) in the
form of a sum of partial fractions. Below are the integrals of most common partial fractions
(7.1.3.3a) and (7.1.3.3b) (with qj = 1):

∫
A

x – α
dx = A ln |x – α|,

∫
A

(x – α)p
dx = –

A

(p – 1)(x – α)p–1 ,
∫

Bx + D
x2 + βx + γ

dx =
B

2
ln(x2 + βx + γ) +

2D – Bβ
√

4γ – β2
arctan

2x + β
√

4γ – β2
.

(7.1.3.4)

The constant of integration C has been omitted here. More complex integrals of partial
fractions (7.1.3.3b) with qj > 1 can be computed using the formula

∫
Bx +D

(x2 + βx + γ)q
dx =

P (x)
(x2 + βx + γ)q–1 + λ

∫
dx

x2 + βx + γ
, (7.1.3.5)

where P (x) is a polynomial of degree 2q–3. The coefficients of P (x) and the constant λ can
be found by the method of undetermined coefficients by differentiating formula (7.1.3.5).

Remark. The following recurrence relation may be used in order to compute the integrals on the left-hand
side in (7.1.3.5):

∫
Bx +D

(x2 + βx + γ)q
dx =

(2D – Bβ)x +Dβ – 2Bγ
(q – 1)(4γ – β2)(x2 + βx + γ)q–1 +

(2q – 3)(2D –Bβ)
(q – 1)(4γ – β2)

∫
dx

(x2 + βx + γ)q–1 .

Example 2. Compute the integral
∫

3x2 – x – 2
x3 + 8

dx.

Let us factor the denominator of the integrand, x3 + 8 = (x+ 2)(x2 – 2x+ 4), and perform the partial fraction
decomposition:

3x2 – x – 2
(x + 2)(x2 – 2x + 4)

=
A

x + 2
+

Bx + D
x2 – 2x + 4

.
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Multiplying both sides by the common denominator and collecting the coefficients of like powers of x, we
obtain

(A +B – 3)x2 + (–2A + 2B + D + 1)x + 4A + 2D + 2 = 0.

Now equating the coefficients of the different powers of xwith zero, we arrive at a system of algebraic equations
for A, B, and D:

A +B – 3 = 0, –2A + 2B +D + 1 = 0, 4A + 2D + 2 = 0.

Its solution is: A = 1, B = 2, D = –3. Hence, we have

∫
3x2 – x – 2
x3 + 8

dx =
∫

1
x + 2

dx +
∫

2x – 3
x2 – 2x + 4

dx

= ln |x + 2| + ln
(
x2 – 2x + 4

)
–

1√
3

arctan
x – 1√

3
+ C.

Here, the last integral of (7.1.3.4) has been used.

2◦. The integrals of proper rational functions defined as the ratio of a polynomial to a power
function (x – α)m are given by the formulas

∫
Pn(x)

(x – α)m
dx = –

n∑

k=0

P (k)
n (α)

k! (m – k – 1)(x – α)m–k–1 + C , m > n + 1;

∫
Pn(x)

(x – α)n+1 dx = –
n–1∑

k=0

P (k)
n (α)

k! (n – k)(x – α)n–k +
P (n)
n (α)
n!

ln |x – α| + C ,

where Pn(x) is a polynomial of degree n and P (k)
n (α) is its kth derivative at x = α.

3◦. Suppose the roots in the factorization of the denominator of the fraction (7.1.3.1) are
all real and distinct:

Qm(x) = bmx
m + · · · + b1x + b0 = bm(x – α1)(x – α2) . . . (x – αm), αi ≠ αj .

Then the following formula holds:

∫
Pn(x)
Qm(x)

dx =
m∑

k=1

Pn(αk)
Q′
m(αk)

ln |x – αk| + C ,

where m > n and the prime denotes a derivative.

7.1.3-3. Integration of improper fractions.

1◦. In order to integrate an improper fraction, one should first isolate a proper fraction by
division with remainder. As a result, the improper fraction is represented as the sum of a
polynomial and a proper fraction,

anx
n + · · · + a1x + a0

bmxm + · · · + b1x + b0
= cmx

n–m + · · · + c1x+ c0 +
sm–1x

m–1 + · · · + s1x + s0

bmxm + · · · + b1x + b0
(n ≥ m),

which are then integrated separately.
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Example 3. Evaluate the integral I =
∫

x2

x – 1
dx.

Let us rewrite the integrand (improper fraction) as the sum of a polynomial and a proper fraction:
x2

x – 1
=

x + 1 +
1

x – 1
. Hence, I =

∫ (
x + 1 +

1
x – 1

)
dx = 1

2 x
2 + x + ln |x – 1| + C.

2◦. The integrals of improper rational functions defined as the ratio of a polynomial to a
simple power function (x – α)m are evaluated by the formula

∫
Pn(x)

(x – α)m
dx =

n∑

k=m

P (k)
n (α)

k! (k –m + 1)
(x – α)k–m+1 +

P (m–1)
n (α)

(m – 1)!
ln |x – α|

–
m–2∑

k=0

P (k)
n (α)

k! (m – k – 1)(x – α)m–k–1 + C ,

where n ≥ m.

Remark 1. The indefinite integrals of rational functions are always expressed in terms of elementary
functions.

Remark 2. Some of the integrals reducible to integrals of rational functions are considered in Subsections
7.1.5 and 7.1.6.

7.1.4. Integration of Irrational Functions
The integration of some irrational functions can be reduced to that of rational functions using
a suitable change of variables. In what follows, the functions R(x, y) and R(x1, . . . ,xk) are
assumed to be rational functions in each of the arguments.

7.1.4-1. Integration of expressions involving radicals of linear-fractional functions.

1◦. The integrals with roots of linear functions
∫
R
(
x, n

√
ax + b

)
dx

are reduced to integrals of rational functions by the change of variable z = n
√
ax + b.

Example 1. Evaluate the integral I =
∫
x
√

1 – x dx.

With the change of variable
√

1 – x = z, we have x = 1 –z2 and dx = –2z dz. Substituting these expressions
into the integral yields

I = –2
∫

(1 – z2)z2 dz = –
2
3
z3 +

2
5
z5 + C = –

2
3
√

(1 – x)3 +
2
5
√

(1 – x)5 + C.

2◦. The integrals with roots of linear-fractional functions

∫
R

(
x, n

√
ax + b
cx + d

)
dx

are reduced to integrals of rational functions by the substitution z = n

√
ax + b
cx + d

.
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3◦. The integrals of the more general form
∫
R

(
x,
( ax + b
cx + d

)q1
, . . . ,

( ax + b
cx + d

)qk
)
dx,

where q1, . . . , qk are rational numbers, are reduced to integrals of rational functions using

the change of variable zm =
ax + b
cx + d

, where m is the common denominator of the fractions
q1, . . . , qk.

4◦. Integrals containing the product of a polynomial by a simple power function of the form
(x – a)β are evaluated by the formula

∫
Pn(x)(x – a)β dx =

n∑

k=0

P (k)
n (a)

k! (k + β + 1)
(x – a)k+β+1,

where Pn(x) is a polynomial of degree n, P (k)
n (a) is its kth derivative at x = a, and β is any

positive or negative proper fraction (to be more precise, β ≠ –1, –2, . . . , –n – 1).

7.1.4-2. Euler substitutions. Trigonometric substitutions.

We will be considering integrals involving the radical of a quadratic trinomial:
∫
R
(
x,
√
ax2 + bx + c

)
dx,

where b2 ≠ 4ac. Such integrals are expressible in terms of elementary functions.

1◦. Euler substitutions. The given integral is reduced to the integral of a rational fraction
by one of the following three Euler substitutions:

1)
√
ax2 + bx + c = t � x

√
a if a > 0;

2)
√
ax2 + bx + c = xt �

√
c if c > 0;

3)
√
ax2 + bx + c = t(x – x1) if 4ac – b2 < 0,

where x1 is a root of the quadratic equation ax2 +bx+c = 0. In all three cases, the variable x
and the radical

√
ax2 + bx + c are expressible in terms of the new variable t as (the formulas

correspond to the upper signs in the substitutions):

1) x =
t2 – c

2
√
a t+ b

,
√
ax2 + bx+ c =

√
a t2 + bt+ c

√
a

2
√
a t+ b

, dx = 2
√
a t2 + bt+ c

√
a

(2
√
a t+ b)2 dt;

2) x =
2
√
c t – b
a – t2 ,

√
ax2 + bx+ c =

√
c t2 – bt+ c

√
a

a – t2 , dx = 2
√
c t2 – bt+ c

√
a

(a – t2)2 dt;

3) x =
(t2 + a)x1 + b

t2 – a
,

√
ax2 + bx+ c =

(2ax1 + b)t
t2 – a

, dx = –2
(2ax1 + b)t

(t2 – a)2 dt.

2◦. Trigonometric substitutions. The function
√
ax2 + bx + c can be reduced, by making a

perfect square in the radicand, to one of the three forms:

1)
√
a
√

(x – p)2 + q2 if a > 0;

2)
√
a
√

(x – p)2 – q2 if a > 0;

3)
√

–a
√
q2 – (x – p)2 if a < 0,
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where p = – 1
2 b/a. Different trigonometric substitutions are further used in each case to

evaluate the integral:

1) x – p = q tan t,
√

(x – p)2 + q2 =
q

cos t
, dx =

q dt

cos2 t
;

2) x – p =
q

cos t
,
√

(x – p)2 – q2 = q tan t, dx =
q sin t dt

cos2 t
;

3) x – p = q sin t,
√
q2 – (x – p)2 = q cos t, dx = q cos t dt.

Example 2. Evaluate the integral
∫ √

6 + 4x – 2x2 dx.

This integral corresponds to case 3 with a = –2, p = 1, and q = 2. The integrand can be rewritten in the
form: √

6 + 4x – 2x2 =
√

2
√

3 + 2x – x2 =
√

2
√

4 – (x – 1)2.

Using the trigonometric substitution x–1 = 2 sin t and the formulas
√

3 + 2x – x2 = 2 cos t and dx = 2 cos t dt,
we obtain

∫ √
6 + 4x – 2x2 dx = 4

√
2
∫

cos2 t dt = 2
√

2
∫

(1 + cos 2t) dt

= 2
√

2t +
√

2 sin 2t + C = 2
√

2 arcsin
x – 1

2
+
√

2 sin
(

2 arcsin
x – 1

2

)
+ C

= 2
√

2 arcsin
x – 1

2
+

√
2

2
(x – 1)

√
4 – (x – 1)2 + C.

7.1.4-3. Integral of a differential binomial.

The integral of a differential binomial,
∫
xm(a + bxn)p dx,

where a and b are constants, and n, m, p are rational numbers, is expressible in terms of
elementary functions in the following three cases only:

1) If p is an integer. For p ≥ 0, removing the brackets gives the sum of power functions.
For p < 0, the substitution x = tr, where r is the common denominator of the fractions
m and n, leads to the integral of a rational function.

2) If
m + 1
n

is an integer. One uses the substitution a + bxn = tk, where k is the

denominator of the fraction p.

3) If
m + 1
n

+ p is an integer. One uses the substitution ax–n + b = tk, where k is the

denominator of the fraction p.
Remark. In cases 2 and 3, the substitution z = xn leads to integrals of the form 3◦ from Paragraph 7.1.4-1.

7.1.5. Integration of Exponential and Trigonometric Functions

7.1.5-1. Integration of exponential and hyperbolic functions.

1. Integrals of the form
∫
R(epx, eqx) dx, where R(x, y) is a rational function of its

arguments and p, q are rational numbers, may be evaluated using the substitution zm = ex,
where m is the common denominator of the fractions p and q. In the special case of integer
p and q, we have m = 1, and the substitution becomes z = ex.
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Example 1. Evaluate the integral
∫

e3xdx

ex + 2
.

This integral corresponds to integer p and q: p = 1 and q = 3. So we use the substitution z = ex. Then

x = ln z and dx =
dz

z
. Therefore,

∫
e3xdx

ex + 2
=
∫

z2dz

z + 2
=
∫ (

z – 2 +
4

z + 2

)
dz =

1
2
z2 – 2z + 4 ln |z + 2| + C =

1
2
e2x – 2ex + 4 ln(ex + 2) + C.

2. Integrals of the form
∫
R(sinh ax, cosh ax) dx are evaluated by converting the

hyperbolic functions to exponentials, using the formulas sinh ax = 1
2 (eax – e–ax) and

cosh ax = 1
2 (eax + e–ax), and performing the substitution z = eax. Then

∫
R(sinh ax, cosh ax) dx =

1
a

∫
R

(
z2 – 1

2z
,
z2 + 1

2z

)
dz

z
.

Alternatively, the substitution t = tanh
( ax

2

)
can also be used to evaluate integrals of

the above form. Then
∫
R(sinh ax, cosh ax) dx =

2
a

∫
R

(
2t

1 – t2 ,
1 + t2

1 – t2

)
dt

1 – t2 .

7.1.5-2. Integration of trigonometric functions.

1. Integrals of the form
∫
R(sin ax, cos ax) dx can be converted to integrals of rational

functions using the versatile trigonometric substitution t = tan
( ax

2

)
:

∫
R(sin ax, cos ax) dx =

2
a

∫
R

(
2t

1 + t2 ,
1 – t2

1 + t2

)
dt

1 + t2 .

Example 2. Evaluate the integral
∫

dx

2 + sinx
.

Using the versatile trigonometric substitution t = tan
x

2
, we have

∫
dx

2 + sinx
= 2
∫

dt
(

2 +
2t

1 + t2

)
(1 + t2)

=
∫

dt

t2 + t + 1
= 2
∫

d(2t + 1)
(2t + 1)2 + 3

=
2√

3
arctan

2t + 1√
3

+ C =
2√

3
arctan

(
2√

3
tan

x

2
+

1√
3

)
+ C.

2. Integrals of the form
∫
R(sin2 ax, cos2 ax, tan ax) dx are converted to integrals of

rational functions with the change of variable z = tan ax:
∫
R(sin2 ax, cos2 ax, tan ax) dx =

1
a

∫
R

(
z2

1 + z2 ,
1

1 + z2 , z

)
dz

1 + z2 .

3. Integrals of the form
∫

sin ax cos bx dx,
∫

cos ax cos bx dx,
∫

sin ax sin bx dx
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are evaluated using the formulas

sinα cos β = 1
2 [sin(α + β) + sin(α – β)],

cosα cos β = 1
2 [cos(α + β) + cos(α – β)],

sinα sin β = 1
2 [cos(α – β) – cos(α + β)].

4. Integrals of the form
∫

sinm x cosn x dx, where m and n are integers, are evaluated

as follows:
(a) if m is odd, one uses the change of variable cosx = z, with sinx dx = –dz;
(b) if n is odd, one uses the change of variable sin x = z, with cosx dx = dz;
(c) if m and n are both even nonnegative integers, one should use the degree reduction

formulas

sin2 x = 1
2 (1 – cos 2x), cos2 x = 1

2 (1 + cos 2x), sinx cos x = 1
2 sin 2x.

Example 3. Evaluate the integral
∫

sin5 xdx.

This integral corresponds to odd m: m = 5. With simple rearrangement and the change of variable
cosx = z, we have

∫
sin5 xdx =

∫
(sin2 x)2 sinxdx = –

∫
(1 – cos2 x)2 d cosx = –

∫
(1 – z2)2 dz

= 2
3 z

3 – 1
5 z

5 – z + C = 2
3 cos3 x – 1

5 cos5 x – cosx + C.

Remark. In general, the integrals
∫

sinp x cosq x dx are reduced to the integral of a differential binomial

by the substitution y = sinx.

7.1.6. Integration of Polynomials Multiplied by Elementary Functions
� Throughout this section, Pn(x) designates a polynomial of degree n.

7.1.6-1. Integration of the product of a polynomial by exponential functions.

General formulas:
∫
Pn(x)eax dx = eax

[
Pn(x)
a

–
P ′

n(x)
a2 + · · ·+ (–1)n

P (n)
n (x)
an+1

]
+C,

∫
Pn(x) cosh(ax) dx = sinh(ax)

[
Pn(x)
a

+
P ′′

n (x)
a3 + · · ·

]
– cosh(ax)

[
P ′

n(x)
a2 +

P ′′′
n (x)
a4 + · · ·

]
+C,

∫
Pn(x) sinh(ax) dx = cosh(ax)

[
Pn(x)
a

+
P ′′

n (x)
a3 + · · ·

]
– sinh(ax)

[
P ′

n(x)
a2 +

P ′′′
n (x)
a4 + · · ·

]
+C.

These formulas are obtained by repeated integration by parts; see formula 4 from Para-
graph 7.1.2-2 with f (x) = Pn(x) for g(n+1)(x) = eax, g(n+1)(x) = cosh(ax), and g(n+1)(x) =
sinh(ax), respectively.

In the special case Pn(x) = xn, the first formula gives

∫
xneax dx = eax

n∑

k=0

(–1)n–k

an+1–k

n!
k!
xk + C .
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7.1.6-2. Integration of the product of a polynomial by a trigonometric function.

1◦. General formulas:
∫
Pn(x) cos(ax) dx = sin(ax)

[
Pn(x)
a

–
P ′′

n (x)
a3 + · · ·

]
+ cos(ax)

[
P ′

n(x)
a2 –

P ′′′
n (x)
a4 + · · ·

]
+ C,

∫
Pn(x) sin(ax) dx = sin(ax)

[
P ′

n(x)
a2 –

P ′′′
n (x)
a4 + · · ·

]
– cos(ax)

[
Pn(x)
a

–
P ′′

n (x)
a3 + · · ·

]
+ C.

These formulas are obtained by repeated integration by parts; see formula 4 from Para-
graph 7.1.2-2 with f (x) =Pn(x) for g(n+1)(x) = cos(ax) and g(n+1)(x) = sin(ax), respectively.

2◦. To evaluate integrals of the form
∫
Pn(x) cosm(ax) dx,

∫
Pn(x) sinm(ax) dx,

with m = 2, 3, . . . , one should first use the trigonometric formulas

cos2k(ax) =
1

22k–1

k–1∑

i=0

Ci2k cos[2(k – i)ax] +
1

22k C
k
2k (m = 2k),

cos2k+1(ax) =
1

22k

k∑

i=0

Ci2k+1 cos[(2k – 2i + 1)ax] (m = 2k + 1),

sin2k(ax) =
1

22k–1

k–1∑

i=0

(–1)k–iCi2k cos[2(k – i)ax] +
1

22k C
k
2k (m = 2k),

sin2k+1(ax) =
1

22k

k∑

i=0

(–1)k–iCi2k+1 sin[(2k – 2i + 1)ax] (m = 2k + 1),

thus reducing the above integrals to those considered in Item 1◦.

3◦. Integrals of the form
∫
Pn(x) eax sin(bx) dx,

∫
Pn(x) eax cos(bx) dx

can be evaluated by repeated integration by parts.
In particular,

∫
xneax sin(bx) = eax

n+1∑

k=1

(–1)k+1n!
(n – k + 1)! (a2 + b2)k/2 x

n–k+1 sin(bx + kθ) + C ,

∫
xneax cos(bx) = eax

n+1∑

k=1

(–1)k+1n!
(n – k + 1)! (a2 + b2)k/2 x

n–k+1 cos(bx + kθ) + C ,

where

sin θ = –
b√

a2 + b2
, cos θ =

a√
a2 + b2

.
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7.1.6-3. Integrals involving power and logarithmic functions.

1◦. The formula of integration by parts with g′(x) = Pn(x) is effective in the evaluation of
integrals of the form

∫
Pn(x) ln(ax) dx = Qn+1(x) ln(ax) – a

∫
Qn+1(x)

x
dx,

where Qn+1(x) =
∫
Pn(x) dx is a polynomial of degree n+1. The integral on the right-hand

side is easy to take, since the integrand is the sum of power functions.

Example. Evaluate the integral
∫

lnx dx.

Setting f (x) = lnx and g′(x) = 1, we find f ′(x) =
1
x

and g(x) = x. Substituting these expressions into

the formula of integration by parts, we obtain
∫

lnxdx = x lnx –
∫
dx = x lnx – x + C.

2◦. The easiest way to evaluate integrals of the more general form

I =
∫ n∑

i=0

lni(ax)

( m∑

j=0

bijx
βij

)
dx,

where the βij are arbitrary numbers, is to use the substitution z = ln(ax), so that

I =
∫ n∑

i=0

zi
( m∑

j=0

bij
aβij+1 e

(βij+1)z
)
dz.

By removing the brackets, one obtains a sum of integrals like
∫
xneax dx, which are easy

to evaluate by the last formula in Paragraph 7.1.6-1.

7.1.6-4. Integrals involving inverse trigonometric functions.

1◦. The formula of integration by parts with g′(x) = Pn(x) also allows the evaluation of the
following integrals involving inverse trigonometric functions:

∫
Pn(x) arcsin(ax) dx = Qn+1(x) arcsin(ax) – a

∫
Qn+1(x)√

1 – a2x2
dx,

∫
Pn(x) arccos(ax) dx = Qn+1(x) arccos(ax) + a

∫
Qn+1(x)√

1 – a2x2
dx,

∫
Pn(x) arctan(ax) dx = Qn+1(x) arctan(ax) – a

∫
Qn+1(x)
a2x2 + 1

dx,
∫
Pn(x) arccot(ax) dx = Qn+1(x) arccot(ax) + a

∫
Qn+1(x)
a2x2 + 1

dx,

where Qn+1(x) =
∫
Pn(x) dx is a polynomial of degree n+1. The integrals with radicals on

the right-hand side in the first two formulas can be evaluated using the techniques described
in Paragraph 7.1.4-2. The integrals of rational functions on the right-hand side in the last
two formulas can be evaluated using the techniques described in Subsection 7.1.3.
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Remark. The above formulas can be generalized to contain any rational functionsR′(x) andR(x) instead
of the polynomials Pn(x) and Qn+1(x), respectively.

2◦. The following integrals are taken using a change of variable:

∫
Pn(x) arcsinm(ax) dx =

1
a

∫
cos z Pn

(
sin z
a

)
zm dz, substitution z = arcsin(ax);

∫
Pn(x) arccosm(ax) dx = –

1
a

∫
sin z Pn

(
cos z
a

)
zm dz, substitution z = arccos(ax),

where m = 2, 3, . . . The expressions cos z sink z and sin z cosk z (k = 1, . . . ,n) in the
integrals on the right-hand sides should be expressed as sums of sines and cosines with
appropriate arguments. Then it remains to evaluate integrals considered in Paragraph
7.1.6-2.

7.2. Definite Integral
7.2.1. Basic Definitions. Classes of Integrable Functions.

Geometrical Meaning of the Definite Integral

7.2.1-1. Basic definitions.

Let y = f (x) be a bounded function defined on a finite closed interval [a, b]. Let us partition
this interval into n elementary subintervals defined by a set of points {x0,x1, . . . ,xn} such
that a = x0 < x1 < · · · < xn = b. Each subinterval [xk–1,xk] will be characterized by its
length Δxk = xk – xk–1 and an arbitrarily chosen point ξk � [xk–1,xk]. Let us make up an
integral sum (a Cauchy–Riemann sum, also known as a Riemann sum)

sn =
n∑

k=1

f (ξk)Δxk (xk–1 ≤ ξk ≤ xk).

If, as n → ∞ and, accordingly, Δxk → 0 for all k, there exists a finite limit of the
integral sums sn and it depends on neither the way the interval [a, b] was split up, nor the

selection of the points ξk, then this limit is denoted
∫ b

a
f (x) dx and is called the definite

integral (also the Riemann integral) of the function y = f (x) over the interval [a, b]:

∫ b

a
f (x) dx = lim

n→∞ sn

(
max

1≤k≤n
Δxk → 0 as n→ ∞

)
.

In this case, the function f (x) is called integrable on the interval [a, b].

7.2.1-2. Classes of integrable functions.

1. If a function f (x) is continuous on an interval [a, b], then it is integrable on this
interval.

2. If a bounded function f (x) has finitely many jump discontinuities on [a, b], then it is
integrable on [a, b].

3. A monotonic bounded function f (x) is always integrable.
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7.2.1-3. Geometric meaning of the definite integral.

If f (x) ≥ 0 on [a, b], then the integral
∫ b

a
f (x) dx is equal to the area of the domain

D = {a ≤ x ≤ b, 0 ≤ y ≤ f (x)} (the area of the curvilinear trapezoid shown in Fig. 7.1).

D

y f x� ( )

y

x

a bO

Figure 7.1. The integral of a nonnegative function f (x) on an interval [a, b] is equal to the area of the shaded
region.

7.2.2. Properties of Definite Integrals and Useful Formulas

7.2.2-1. Qualitative properties of integrals.

1. If a function f (x) is integrable on [a, b], then the functions cf (x), with c = const, and
|f (x)| are also integrable on [a, b].

2. If two functions f (x) and g(x) are integrable on [a, b], then their sum, difference,
and product are also integrable on [a, b].

3. If a function f (x) is integrable on [a, b] and its values lie within an interval [c, d],
where a function g(y) is defined and continuous, then the composite function g(f (x)) is also
integrable on [a, b].

4. If a function f (x) is integrable on [a, b], then it is also integrable and on any subin-
terval [α,β] ⊂ [a, b]. Conversely, if an interval [a, b] is partitioned into a number of
subintervals and f (x) is integrable on each of the subintervals, then it is integrable on the
whole interval [a, b].

5. If the values of a function are changed at finitely many points, this will not affect the
integrability of the function and will not change the value of the integral.

7.2.2-2. Properties of integrals in terms of identities.

1. The integral over a zero-length interval is zero:

∫ a

a
f (x) dx = 0.

2. Antisymmetry under the swap of the integration limits:

∫ b

a
f (x) dx = –

∫ a

b
f (x) dx.

This property can be taken as the definition of a definite integral with a > b.
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3. Linearity. If functions f (x) and g(x) are integrable on an interval [a, b], then

∫ b

a

[
Af (x) �Bg(x)

]
dx = A

∫ b

a
f (x) dx � B

∫ b

a
g(x) dx

for any numbers A and B.
4. Additivity. If c � [a, b] and f (x) is integrable on [a, b], then

∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx.

5. Differentiation with respect the variable upper limit. If f (x) is continuous on [a, b],
then the function Φ(x) =

∫ x

a
f (t) dt is differentiable on [a, b], and Φ′(x) = f (x). This can

be written in one relation:
d

dx

(∫ x

a
f (t) dt

)
= f (x).

6. Newton–Leibniz formula:

∫ b

a
f (x) dx = F (x)

∣∣
∣
b

a
= F (b) – F (a),

where F (x) is an antiderivative of f (x) on [a, b].
7. Integration by parts. If functions f (x) and g(x) have continuous derivatives on [a, b],

then ∫ b

a
f (x)g′(x) dx =

[
f (x)g(x)

]∣∣∣
b

a
–
∫ b

a
f ′(x)g(x) dx.

8. Repeated integration by parts:

∫ b

a
f (x)g(n+1)(x) dx =

[
f (x)g(n)(x) – f ′(x)g(n–1)(x) + · · · + (–1)nf (n)(x)g(x)

]b

a

+ (–1)n+1
∫ b

a
f (n+1)(x)g(x) dx, n = 0, 1, . . .

9. Change of variable (substitution) in a definite integral. Let f (x) be a continuous
function on [a, b] and let x(t) be a continuously differentiable function on [α,β]. Suppose
also that the range of values of x(t) coincides with [a, b], with x(α) = a and x(β) = b. Then

∫ b

a
f (x) dx =

∫ β

α
f
(
x(t)
)
x′(t) dt.

Example. Evaluate the integral
∫ 3

0

dx

(x – 8)
√
x + 1

.

Perform the substitution x + 1 = t2, with dx = 2t dt. We have t = 1 at x = 0 and t = 2 at x = 3. Therefore
∫ 3

0

dx

(x – 8)
√
x + 1

=
∫ 2

1

2t dt
(t2 – 9)t

= 2
∫ 2

1

dt

t2 – 9
=

1
3

ln
∣∣
∣
t – 3
t + 3

∣∣
∣

∣
∣
∣
∣

2

1
=

1
3

ln
2
5

.

10. Differentiation with respect to a parameter. Let f (x,λ) be a continuous function in
a domain a ≤ x ≤ b, λ1 ≤ λ ≤ λ2 and let it has a continuous partial derivative ∂

∂λ f (x,λ) in the
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same domain. Also let u(λ) and v(λ) be differentiable functions on the interval λ1 ≤ λ ≤ λ2
such that a ≤ u(λ) ≤ b and a ≤ v(λ) ≤ b. Then

d

dλ

∫ u(λ)

v(λ)
f (x,λ) dx = f

(
u(λ),λ

) du(λ)
dλ

– f
(
v(λ),λ

) dv(λ)
dλ

+
∫ u(λ)

v(λ)

∂

∂λ
f (x,λ) dx.

11. Cauchy’s formula for multiple integration:
∫ x

a
dx1

∫ x1

a
dx2 . . .

∫ xn–1

a
f (xn) dxn =

1
(n – 1)!

∫ x

a
(x – t)n–1f (t) dt.

7.2.3. General Reduction Formulas for the Evaluation of Integrals
Below are some general formulas, involving arbitrary functions and parameters, that could
facilitate the evaluation of integrals.

7.2.3-1. Integrals involving functions of a linear or rational argument.

∫ b

a
f (a + b – x) dx =

∫ b

a
f (x) dx;

∫ a

0
[f (x) + f (a – x)] dx = 2

∫ a

0
f (x) dx;

∫ a

0
[f (x) – f (a – x)] dx = 0;

∫ a

–a
f (x) dx = 0 if f (x) is odd;

∫ a

–a
f (x) dx = 2

∫ a

0
f (x) dx if f (x) is even;

∫ b

a
f (x, a + b – x) dx = 0 if f (x, y) = –f (y,x);

∫ 1

0
f
(

2x
√

1 – x2
)
dx =

∫ 1

0
f
(

1 – x2) dx.

7.2.3-2. Integrals involving functions with trigonometric argument.

∫ π

0
f (sinx) dx = 2

∫ π/2

0
f (sinx) dx;

∫ π/2

0
f (sinx) dx =

∫ π/2

0
f (cos x) dx;

∫ π/2

0
f (sinx, cos x) dx = 0 if f (x, y) = –f (y,x);

∫ π/2

0
f (sin 2x) cos x dx =

∫ π/2

0
f (cos2 x) cos x dx;
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∫ nπ

0
xf (sinx) dx = πn2

∫ π/2

0
f (sinx) dx if f (x) = f (–x);

∫ nπ

0
xf (sinx) dx = (–1)n–1πn

∫ π/2

0
f (sinx) dx if f (–x) = –f (x);

∫ 2π

0
f (a sinx + b cos x) dx =

∫ 2π

0
f
(√
a2 + b2 sinx

)
dx = 2

∫ π

0
f
(√
a2 + b2 cos x

)
dx;

∫ π

0
f

(
sin2 x

1 + 2a cos x + a2

)
dx =

∫ π

0
f (sin2 x) dx if |a| ≥ 1;

∫ π

0
f

(
sin2 x

1 + 2a cos x + a2

)
dx =

∫ π

0
f

(
sin2 x

a2

)
dx if 0 < |a| < 1.

7.2.3-3. Integrals involving logarithmic functions.

∫ b

a
f (x) lnn x dx =

[( d

dλ

)n ∫ b

a
xλf (x) dx

]

λ=0
,

∫ b

a
f (x) lnn g(x) dx =

[( d

dλ

)n ∫ b

a
f (x)[g(x)]λ dx

]

λ=0
,

∫ b

a
f (x)[g(x)]λ lnn g(x) dx =

( d

dλ

)n ∫ b

a
f (x)[g(x)]λ dx.

7.2.4. General Asymptotic Formulas for the Calculation of Integrals

Below are some general formulas, involving arbitrary functions and parameters, that may
be helpful for obtaining asymptotics of integrals.

7.2.4-1. Asymptotic formulas for integrals with weak singularity as ε→ 0.

1◦. We will consider integrals of the form

I(ε) =
∫ a

0

xβ–1f (x) dx
(x + ε)α

,

where 0 < a < ∞, β > 0, f (0) ≠ 0, and ε > 0 is a small parameter.
The integral diverges as ε→ 0 for α ≥ β, that is, lim

ε→0
I(ε) = ∞. In this case, the leading

term of the asymptotic expansion of the integral I(ε) is given by

I(ε) =
Γ(β)Γ(α – β)

Γ(α)
f (0)εβ–α +O(εσ) if α > β,

I(ε) = –f (0) ln ε + O(1) if α = β,

where Γ(β) is the gamma function and σ = min[β – α + 1, 0].
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2◦. The leading term of the asymptotic expansion, as ε→ 0, of the more general integral

I(ε) =
∫ a

0

xβ–1f (x) dx
(xk + εk)α

with 0 < a < ∞, β > 0, k > 0, ε > 0, and f (0) ≠ 0 is expressed as

I(ε) =
f (0)
kΓ(α)

Γ
(
β

k

)
Γ
(
α –

β

k

)
εβ–αk + O(εσ) if αk > β,

I(ε) = –f (0) ln ε +O(1) if αk = β,

where σ = min[β – αk + 1, 0].

3◦. The leading terms of the asymptotic expansion, as ε→ 0, of the integral

I(ε) =
∫ ∞

a
xα exp

(
–εxβ

)
f (x) dx

with a > 0, β > 0, ε > 0, and f (0) ≠ 0 has the form

I(ε) =
1
β
f (0)Γ

(
α + 1
β

)
ε
–α+1

β if α > –1,

I(ε) = –
1
β
f (0) ln ε if α = –1.

4◦. Now consider potential-type integrals

Π(f ) =
∫ 1

–1

f (ξ) dξ
√

(ξ – z)2 + r2
,

with z, r,ϕ being cylindrical coordinates in the three-dimensional space. The function Π(f )
is simple layer potential concentrated on the interval z � [–1, 1] with density f (z). If the
density is continuous, then Π(f ) satisfies the Laplace equation ΔΠ = 0 outside z � [–1, 1]
and vanishes at infinity.

Asymptotics of the integral as r → 0:

Π(f ) = –2f (z) ln r + O(1),

where |z| ≤ 1 – δ with 0 < δ < 1.

7.2.4-2. Asymptotic formulas for Laplace integrals of special form as λ→ ∞.

1◦. Consider a Laplace integral of the special form

I(λ) =
∫ a

0
xβ–1 exp

(
–λxα

)
f (x) dx,

where 0 < a < ∞, α > 0, and β > 0.
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The following formula, called Watson’s asymptotic formula, holds as λ→ ∞:

I(λ) =
1
α

n∑

k=0

f (k)(0)
k!

Γ
( k + β

α

)
λ–(k+β)/α + O

(
λ–(n+β+1)/α).

Remark 1. Watson’s formula also holds for improper integrals witha=∞ if the original integral converges
absolutely for some λ0 > 0.

Remark 2. Watson’s formula remains valid in the case of complex parameter λ as |λ| → ∞, where
|argλ| ≤ π

2 – ε < π
2 (ε > 0 can be chosen arbitrarily small but independent of λ).

Remark 3. The Laplace transform corresponds to the above integral with a = ∞ and α = β = 1.

2◦. The leading term of the asymptotic expansion, as λ→ ∞, of the integral

I(λ) =
∫ a

0
xβ–1 |lnx|γ e–λxf (x) dx

with 0 < a < ∞, β > 0, and f (0) ≠ 0 is expressed as

I(λ) = Γ(β)f (0)λ–β(lnλ)γ .

7.2.4-3. Asymptotic formulas for Laplace integrals of general form as λ→ ∞.

Consider a Laplace integral of the general form

I(λ) =
∫ b

a
f (x) exp[λg(x)] dx, (7.2.4.1)

where [a, b] is a finite interval and f (x), g(x) are continuous functions.

1◦. Leading term of the asymptotic expansion of the integral (7.2.4.1) as λ→∞. Suppose
the function g(x) attains a maximum on [a, b] at only one pointx0 � [a, b] and is differentiable
in a neighborhood of it, with g′(x0) = 0, g′′(x0) ≠ 0, and f (x0) ≠ 0. Then the leading term
of the asymptotic expansion of the integral (7.2.4.1), as λ→ ∞, is expressed as

I(λ) = f (x0)

√

–
2π

λg′′(x0)
exp[λg(x0)] if a < x0 < b,

I(λ) =
1
2
f (x0)

√

–
2π

λg′′(x0)
exp[λg(x0)] if x0 = a or x0 = b.

(7.2.4.2)

Note that the latter formula differs from the former by the factor 1/2 only.
Under the same conditions, if g(x) attains a maximum at either endpoint, x0 = a or

x0 = b, but g′(x0) ≠ 0, then the leading asymptotic term of the integral, as λ→ ∞, is

I(λ) =
f (x0)

|g′(x0)|
1
λ

exp[λg(x0)], where x0 = a or x0 = b. (7.2.4.3)

For more accurate asymptotic estimates for the Laplace integral (7.2.4.1), see below.
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2◦. Leading and subsequent asymptotic terms of the integral (7.2.4.1) as λ→ ∞. Let g(x)
attain a maximum at only one internal point of the interval, x0 � (a < x0 < b), with g′(x0) = 0
and g′′(x0) ≠ 0, and let the functions f (x) and g(x) be, respectively, n and n + 1 times
differentiable in a neighborhood of x = x0. Then the asymptotic formula

I(λ) = exp[λg(x0)]

( n–1∑

k=0

ckλ
–k–1 +O(λ–n)

)
(7.2.4.4)

holds as λ→ ∞, with

ck =
1

(2k)! 2k+1/2 Γ
(
k +

1
2

)
lim
x→x0

(
d

dx

)k[
f (x)

(
g(x0) – g(x)

(x – x0)2

)–k–1/2]
.

Suppose g(x) attains a maximum at the endpoint x = a only, with g′(a) ≠ 0. Suppose
also that f (x) and g(x) are, respectively, n and n + 1 times differentiable in a neighborhood
of x = a. Then we have, as λ→ ∞,

I(λ) = exp[λg(a)]

( n–1∑

k=0

ckλ
–k–1 +O(λ–n)

)
, (7.2.4.5)

where

c0 = –
f (a)
g′(a)

; ck = (–1)k+1
[(

1
g′(x)

d

dx

)k f (x)
g′(x)

]

x=a
, k = 1, 2, . . .

Remark 1. The asymptotic formulas (7.2.4.2)–(7.2.4.5) hold also for improper integrals with b = ∞ if
the original integral (7.2.4.1) converges absolutely at some λ0 > 0.

Remark 2. The asymptotic formulas (7.2.4.2)–(7.2.4.5) remain valid also in the case of complex λ as
|λ| → ∞, where |argλ| ≤ π

2 – ε < π
2 (ε > 0 can be chosen arbitrarily small but independent of λ).

3◦. Some generalizations. Let g(x) attain a maximum at only one internal point of the
interval, x0 � (a < x0 < b), with g′(x0) = · · · = g(2m–1)(x0) = 0 and g(2m)(x0) ≠ 0, m ≥ 1
and f (x0) ≠ 0. Then the leading asymptotic term of the integral (7.2.4.1), as λ → ∞, is
expressed as

I(λ) =
1
m

Γ
(

1
2m

)
f (x0)

[
–

(2m)!
g(2m)(x0)

] 1
2m
λ– 1

2m exp[λg(x0)].

Let g(x) attain a maximum at the endpoint x = a only, with g′(a) = · · · = g(m–1)(a) = 0
and g(m)(a) ≠ 0, where m ≥ 1 and f (a) ≠ 0. Then the leading asymptotic term of the
integral (7.2.4.1), as λ→ ∞, has the form

I(λ) =
1
m

Γ
(

1
m

)
f (a)

[
–

m!
g(m)(a)

] 1
m
λ– 1

m exp[λg(a)].
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7.2.4-4. Asymptotic formulas for a power Laplace integral.

Consider the power Laplace integral, which is obtained from the exponential Laplace
integral (7.2.4.1) by substituting ln g(x) for g(x):

I(λ) =
∫ b

a
f (x)[g(x)]λ dx, (7.2.4.6)

where [a, b] is a finite closed interval and g(x) > 0. It is assumed that the functions f (x)
and g(x) appearing in the integral (7.2.4.6) are continuous; g(x) is assumed to attain a
maximum at only one point x0 = [a, b] and to be differentiable in a neighborhood of x = x0,
with g′(x0) = 0, g′′(x0) ≠ 0, and f (x0) ≠ 0. Then the leading asymptotic term of the integral,
as λ→ ∞, is expressed as

I(λ) = f (x0)

√

–
2π

λg′′(x0)
[g(x0)]λ+1/2 if a < x0 < b,

I(λ) =
1
2
f (x0)

√

–
2π

λg′′(x0)
[g(x0)]λ+1/2 if x0 = a or x0 = b.

Note that the latter formula differs from the former by the factor 1/2 only.
Under the same conditions, if g(x) attains a maximum at either endpoint, x0 = a or

x0 = b, but g′(x0) ≠ 0, then the leading asymptotic term of the integral, as λ→ ∞, is

I(λ) =
f (x0)

|g′(x0)|
1
λ

[g(x0)]λ+1/2, where x0 = a or x0 = b.

7.2.4-5. Asymptotic behavior of integrals with variable integration limit as x→ ∞.

Let f (t) be a continuously differentiable function and let g(t) be a twice continuously
differentiable function. Also let the following conditions hold:

f (t) > 0, g′(t) > 0; g(t) → ∞ as t→ ∞;

f ′(t)/f (t) = o
(
g′(t)

)
as t→ ∞; g′′(t) = o

(
g′2(t)

)
as t→ ∞.

Then the following asymptotic formula holds, as x→ ∞:
∫ x

0
f (t) exp[g(t)] dt � f (x)

g′(x)
exp[g(x)].

7.2.4-6. Limiting properties of integrals involving periodic functions with parameter.

1◦. Riemann property of integrals involving periodic functions. Let f (x) be a continuous
function on a finite interval [a, b]. Then the following limiting relations hold:

lim
λ→∞

∫ b

a
f (x) sin(λx) dx = 0,

lim
λ→∞

∫ b

a
f (x) cos(λx) dx = 0.

Remark. The condition of continuity of f (x) can be replaced by the more general condition of absolute
integrability of f (x) on a finite interval [a, b].
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2◦. Dirichlet’s formula. Let f (x) be a monotonically increasing and bounded function on
a finite interval [0, a], with a > 0. Then the following limiting formula holds:

lim
λ→∞

∫ a

0
f (x)

sin(λx)
x

dx =
π

2
f (+0).

7.2.4-7. Limiting properties of other integrals with parameter.

Let f (x) and g(x) be continuous and positive functions on [a, b]. Then the following limiting
relations hold:

lim
n→∞

n
√
In = max

x�[a,b]
f (x),

lim
n→∞

In+1

In
= max
x�[a,b]

f (x),

where In =
∫ b

a
g(x)[f (x)]n dx.

7.2.5. Mean Value Theorems. Properties of Integrals in Terms of
Inequalities. Arithmetic Mean and Geometric Mean of
Functions

7.2.5-1. Mean value theorems.

THEOREM 1. If f (x) is a continuous function on [a, b], there exists at least one point
c � (a, b) such that

∫ b

a
f (x) dx = f (c)(b – a).

The number f (c) is called the mean value of the function f (x) on [a, b].

THEOREM 2. If f (x) is a continuous function on [a, b], and g(x) is integrable and of
constant sign (g(x) ≥ 0 or g(x) ≤ 0) on [a, b], then there exists at least one point c � (a, b)
such that ∫ b

a
f (x)g(x) dx = f (c)

∫ b

a
g(x) dx.

THEOREM 3. If f (x) is a monotonic and nonnegative function on an interval (a, b), with
a ≥ b, and g(x) is integrable, then there exists at least one point c � (a, b) such that

∫ b

a
f (x)g(x) dx = f (a)

∫ c

a
g(x) dx if f (x) is nonincreasing;

∫ b

a
f (x)g(x) dx = f (b)

∫ b

c
g(x) dx if f (x) is nondecreasing.

THEOREM 4. If f (x) and g(x) are bounded and integrable functions on an interval [a, b],
with a < b, and g(x) satisfies inequalities A ≤ g(x) ≤ B, then there exists a point c � [a, b]
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such that

∫ b

a
f (x)g(x) dx = A

∫ c

a
f (x) dx +B

∫ b

c
f (x) dx if g(x) is nondecreasing;

∫ b

a
f (x)g(x) dx = B

∫ c

a
f (x) dx + A

∫ b

c
f (x) dx if g(x) is nonincreasing;

∫ b

a
f (x)g(x) dx = g(a)

∫ c

a
f (x) dx + g(b)

∫ b

c
f (x) dx if g(x) is strictly monotonic.

7.2.5-2. Properties of integrals in terms of inequalities.

1. Estimation theorem. If m ≤ f (x) ≤ M on [a, b], then

m(b – a) ≤
∫ b

a
f (x) dx ≤ M (b – a).

2. Inequality integration theorem. If ϕ(x) ≤ f (x) ≤ g(x) on [a, b], then

∫ b

a
ϕ(x) dx ≤

∫ b

a
f (x) dx ≤

∫ b

a
g(x) dx.

In particular, if f (x) ≥ 0 on [a, b], then
∫ b

a
f (x) dx ≥ 0.

� Further on, it is assumed that the integrals on the right-hand sides of the inequalities of
Items 3–8 exist.

3. Absolute value theorem (integral analogue of the triangle inequality):

∣
∣∣
∣

∫ b

a
f (x) dx

∣
∣∣
∣ ≤
∫ b

a
|f (x)| dx.

4. Bunyakovsky’s inequality (Cauchy–Bunyakovsky inequality):

(∫ b

a
f (x)g(x) dx

)2
≤
∫ b

a
f 2(x) dx

∫ b

a
g2(x) dx.

5. Cauchy’s inequality:

(∫ b

a
[f (x) + g(x)]2 dx

)1/2
≤
(∫ b

a
f 2(x) dx

)1/2
+

(∫ b

a
g2(x) dx

)1/2
.

6. Minkowski’s inequality (generalization of Cauchy’s inequality):

(∫ b

a
|f (x) + g(x)|p dx

)1
p

≤
(∫ b

a
|f (x)|p dx

)1
p

+

(∫ b

a
|g(x)|p dx

)1
p

, p ≥ 1.
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7. Hölder’s inequality (at p = 2, it translates into Bunyakovsky’s inequality):

∣
∣∣
∣

∫ b

a
f (x)g(x) dx

∣
∣∣
∣ ≤
(∫ b

a
|f (x)|p dx

)1
p
(∫ b

a
|g(x)|

p
p–1 dx

)p–1
p

, p > 1.

8. Chebyshev’s inequality:

(∫ b

a
f (x)h(x) dx

)(∫ b

a
g(x)h(x) dx

)
≤
(∫ b

a
h(x) dx

)(∫ b

a
f (x)g(x)h(x) dx

)
,

where f (x) and g(x) are monotonically increasing functions and h(x) is a positive integrable
function on [a, b].

9. Jensen’s inequality:

f

(∫ b
a g(t)x(t) dt
∫ b
a g(t) dt

)
≤
∫ b
a g(t)f (x(t)) dt
∫ b
a g(t) dt

if f (x) is convex (f ′′ > 0);

f

(∫ b
a g(t)x(t) dt
∫ b
a g(t) dt

)
≥
∫ b
a g(t)f (x(t)) dt
∫ b
a g(t) dt

if f (x) is concave (f ′′ < 0),

where x(t) is a continuous function (a ≤ x ≤ b) and g(t) ≥ 0. The equality is attained if
and only if either x(t) = const or f (x) is a linear function. Jensen’s inequality serves as a
general source for deriving various integral inequalities.

10. Steklov’s inequality. Let f (x) be a continuous function on [0,π] and let it have
everywhere on [0,π], except maybe at finitely many points, a square integrable deriva-
tive f ′(x). If either of the conditions

(a) f (0) = f (π) = 0,

(b)
∫ π

0
f (x) dx = 0

is satisfied, then the following inequality holds:
∫ π

0
[f ′(x)]2 dx ≥

∫ π

0
[f (x)]2 dx.

The equality is only attained for functions f (x) = A sin x in case (a) and functions f (x) =
B cos x in case (b).

11. A π-related inequality. If a > 0 and f (x) ≥ 0 on [0, a], then

(∫ a

0
f (x) dx

)4
≤ π2

(∫ a

0
f 2(x) dx

)(∫ a

0
x2f 2(x) dx

)
.

7.2.5-3. Arithmetic, geometric, harmonic, and quadratic means of functions.

Let f (x) be a positive function integrable on [a, b]. Consider the values of f (x) on a discrete
set of points:

fkn = f (a + kδn), δn =
b – a
n

(k = 1, . . . ,n).
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The arithmetic mean, geometric mean, harmonic mean, and quadratic mean of a function
f (x) on an interval [a, b] are introduced using the definitions of the respective mean values
for finitely many numbers (see Subsection 1.6.1) and going to the limit as n→ ∞.

1. Arithmetic mean of a function f (x) on [a, b]:

lim
n→∞

1
n

n∑

k=1

fkn =
1

b – a

∫ b

a
f (x) dx.

This definition is in agreement with another definition of the mean value of a function f (x)
on [a, b] given in Theorem 1 from Paragraph 7.2.5-1.

2. Geometric mean of a function f (x) on [a, b]:

lim
n→∞

( n∏

k=1

fkn

)1/n
= exp

(
1

b – a

∫ b

a
ln f (x) dx

)
.

3. Harmonic mean of a function f (x) on [a, b]:

lim
n→∞n

( n∑

k=1

1
fkn

)–1
= (b – a)

(∫ b

a

dx

f (x)

)–1
.

4. Quadratic mean of a function f (x) on [a, b]:

lim
n→∞

(
1
n

n∑

k=1

f 2
kn

)1/2
=

(
1

b – a

∫ b

a
f 2(x) dx

)1/2
.

This definition differs from the common definition of the norm of a square integrable
function given in Paragraph 7.2.13-2 by the constant factor 1/

√
b – a.

The following inequalities hold:

(b–a)

(∫ b

a

dx

f (x)

)–1

≤ exp

(
1

b – a

∫ b

a

ln f (x) dx

)
≤

1
b – a

∫ b

a

f (x) dx ≤
(

1
b – a

∫ b

a

f 2(x) dx

)1/2

.

To make it easier to remember, let us rewrite these inequalities in words as

harmonic mean ≤ geometric mean ≤ arithmetic mean ≤ quadratic mean .

The equality is attained for f (x) = const only.

7.2.5-4. General approach to defining mean values.

Let g(y) be a continuous monotonic function defined in the range 0 ≤ y < ∞.
The mean of a function f (x) with respect to a function g(x) on an interval [a, b] is

defined as

lim
n→∞ g–1

(
1
n

n∑

k=1

g(fkn)

)
= g–1

(
1

b – a

∫ b

a
g
(
f (x)

)
dx

)
,

where g–1(z) is the inverse of g(y).
The means presented in Paragraph 7.2.5-3 are special cases of the mean with respect to

a function:
arithmetic mean of f (x) = mean of f (x) with respect to g(y) = y,
geometric mean of f (x) = mean of f (x) with respect to g(y) = ln y,
harmonic mean of f (x) = mean of f (x) with respect to g(y) = 1/y,

quadratic mean of f (x) = mean of f (x) with respect to g(y) = y2.
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7.2.6. Geometric and Physical Applications of the Definite Integral

7.2.6-1. Geometric applications of the definite integral.

1. The area of a domain D bounded by curves y = f (x) and y = g(x) and straight lines
x = a and x = b in the x, y plane (see Fig. 7.2 a) is calculated by the formula

S =
∫ b

a

[
f (x) – g(x)

]
dx.

If g(x) ≡ 0, this formula gives the area of a curvilinear trapezoid bounded by the x-axis, the
curve y = f (x), and the straight lines x = a and x = b.

D

y f x� ( )

( )a ( )b

ρ φf� ( )

α
β

y g x� ( )

y

x

a bO

Figure 7.2. (a) A domainD bounded by two curves y = f (x) and y = g(x) on an interval [a, b]; (b) a curvilinear
sector.

2. Area of a domainD. Let x=x(t) and y = y(t), with t1 ≤ t≤ t2, be parametric equations
of a piecewise-smooth simple closed curve bounding on its left (traced counterclockwise)
a domain D with area S. Then

S = –
∫ t2

t1

y(t)x′(t) dt =
∫ t2

t1

x(t)y′(t) dt =
1
2

∫ t2

t1

[
x(t)y′(t) – y(t)x′(t)

]
dt.

3. Area of a curvilinear sector. Let a curve ρ = f (ϕ), with ϕ � [α,β], be defined in the
polar coordinates ρ, ϕ. Then the area of the curvilinear sector {α ≤ ϕ ≤ β; 0 ≤ ρ ≤ f (ϕ)}
(see Fig. 7.2 b) is calculated by the formula

S =
1
2

∫ β

α
[f (ϕ)]2 dϕ.

4. Area of a surface of revolution. Let a surface of revolution be generated by rotating
a curve y = f (x) ≥ 0, x � [a, b], about the x-axis; see Fig. 7.3. The area of this surface is
calculated as

S = 2π
∫ b

a
f (x)

√
1 + [f ′(x)]2 dx.

5. Volume of a body of revolution. Let a body of revolution be obtained by rotating
about the x-axis a curvilinear trapezoid bounded by a curve y = f (x), the x-axis, and straight
lines x = a and x = b; see Fig. 7.3. Then the volume of this body is calculated as

V = π
∫ b

a
[f (x)]2 dx.
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y f x� ( )

y

x

z

a bO

Figure 7.3. A surface of revolution generated by rotating a curve y = f (x).

6. Arc length of a plane curve defined in different ways.
(a) If a curve is the graph of a continuously differentiable function y = f (x), x � [a, b],

then its length is determined as

L =
∫ b

a

√
1 + [f ′(x)]2 dx.

(b) If a plane curve is defined parametrically by equations x = x(t) and y = y(t), with
t � [α,β] and x(t) and y(t) being continuously differentiable functions, then its length is
calculated by

L =
∫ β

α

√
[x′(t)]2 + [y′(t)]2 dt.

(c) If a curve is defined in the polar coordinates ρ, ϕ by an equation ρ = ρ(ϕ), with
ϕ � [α,β], then its length is found as

L =
∫ β

α

√
ρ2(ϕ) + [ρ′(ϕ)]2 dϕ.

7. The arc length of a spatial curve defined parametrically by equations x = x(t),
y = y(t), and z = z(t), with t� [α,β] and x(t), y(t), and z(t) being continuously differentiable
functions, is calculated by

L =
∫ β

α

√
[x′(t)]2 + [y′(t)]2 + [z′(t)]2 dt.

7.2.6-2. Physical application of the integral.

1. Work of a variable force. Suppose a point mass moves along the x-axis from a point
x = a to a point x = b under the action of a variable force F (x) directed along the x-axis.
The mechanical work of this force is equal to

A =
∫ b

a
F (x) dx.
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2. Mass of a rectilinear rod of variable density. Suppose a rod with a constant cross-
sectional area S occupies an interval [0, l] on the x-axis and the density of the rod material
is a function of x: ρ = ρ(x). The mass of this rod is calculated as

m = S
∫ l

0
ρ(x) dx.

3. Mass of a curvilinear rod of variable density. Let the shape of a plane curvilinear rod
with a constant cross-sectional area S be defined by an equation y = f (x), with a ≤ x ≤ b,
and let the density of the material be coordinate dependent: ρ = ρ(x, y). The mass of this
rod is calculated as

m = S
∫ b

a
ρ
(
x, f (x)

)√
1 + [y′(x)]2 dx.

If the shape of the rod is defined parametrically by x = x(t) and y = y(t), then its mass
is found as

m = S
∫ b

a
ρ
(
x(t), y(t)

)√
[x′(t)]2 + [y′(t)]2 dt.

4. The coordinates of the center of mass of a plane homogeneous material curve whose
shape is defined by an equation y = f (x), with a ≤ x ≤ b, are calculated by the formulas

xc =
1
L

∫ b

a
x
√

1 + [y′(x)]2 dx, yc =
1
L

∫ b

a
f (x)

√
1 + [y′(x)]2 dx,

where L is the length of the curve.
If the shape of a plane homogeneous material curve is defined parametrically by x = x(t)

and y = y(t), then the coordinates of its center of mass are obtained as

xc =
1
L

∫ b

a
x(t)
√

[x′(t)]2 + [y′(t)]2 dt, yc =
1
L

∫ b

a
y(t)
√

[x′(t)]2 + [y′(t)]2 dt.

7.2.7. Improper Integrals with Infinite Integration Limit
An improper integral is an integral with an infinite limit (limits) of integration or an integral
of an unbounded function.

7.2.7-1. Integrals with infinite limits.

1◦. Let y = f (x) be a function defined and continuous on an infinite interval a ≤ x < ∞. If

there exists a finite limit lim
b→∞

∫ b

a
f (x) dx, then it is called a (convergent) improper integral

of f (x) on the interval [a,∞) and is denoted
∫ ∞
a

f (x) dx. Thus, by definition

∫ ∞

a
f (x) dx = lim

b→∞

∫ b

a
f (x) dx. (7.2.7.1)

If the limit is infinite or does not exist, the improper integral is called divergent.

The geometric meaning of an improper integral is that the integral
∫ ∞
a

f (x) dx, with
f (x) ≥ 0, is equal to the area of the unbounded domain between the curve y = f (x), its
asymptote y = 0, and the straight line x = a on the left.
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2◦. Suppose an antiderivative F (x) of the integrand function f (x) is known. Then the
improper integral (7.2.7.1) is

(i) convergent if there exists a finite limit lim
x→∞F (x) = F (∞);

(ii) divergent if the limit is infinite or does not exist.

In case (i), we have ∫ ∞

a
f (x) dx = F (x)

∣∣∞
a

= F (∞) – F (a).

Example 1. Let us investigate the issue of convergence of the improper integral I =
∫ ∞

a

dx

xλ
, a > 0.

The integrand f (x) =x–λ has an antiderivative F (x) =
1

1 – λ
x1–λ. Depending on the value of the parameter

λ, we have

lim
x→∞

F (x) =
1

1 – λ
lim

x→∞
x1–λ =

{ 0 if λ > 1,
∞ if λ ≤ 1.

Therefore, if λ > 1, the integral is convergent and is equal to I = F (∞) – F (a) =
a1–λ

λ – 1
, and if λ ≤ 1, the

integral is divergent.

3◦. Improper integrals for other infinite intervals are defined in a similar way:

∫ b

–∞
f (x) dx = lim

a→–∞

∫ b

a
f (x) dx,

∫ ∞

–∞
f (x) dx =

∫ c

–∞
f (x) dx +

∫ ∞

c
f (x) dx.

Note that if either improper integral on the right-hand side of the latter relation is convergent,
then, by definition, the integral on the left-hand side is also convergent.

4◦. Properties 2–4 and 6–9 from Paragraph 7.2.2-2, where a can be equal to –∞ and b can
be ∞, apply to improper integrals as well; it is assumed that all quantities on the right-hand
sides exist (the integrals are convergent).

7.2.7-2. Sufficient conditions for convergence of improper integrals.

In many problems, it suffices to establish whether a given improper integral is convergent
or not and, if yes, evaluate it. The theorems presented below can be useful in doing so.

THEOREM 1 (CAUCHY’S CONVERGENCE CRITERION). For the integral (7.2.7.1) to be
convergent it is necessary and sufficient that for any ε > 0 there exists a number R such that
the inequality ∣

∣∣
∣

∫ β

α
f (x) dx

∣
∣∣
∣ < ε

holds for any β > α > R.

THEOREM 2. If 0 ≤ f (x) ≤ g(x) for x ≥ a, then the convergence of the integral∫ ∞
a

g(x) dx implies the convergence of the integral
∫ ∞
a

f (x) dx; moreover,
∫ ∞
a

f (x) dx ≤
∫ ∞
a

g(x) dx. If the integral
∫ ∞
a

f (x) dx is divergent, then the integral
∫ ∞
a

g(x) dx is also

divergent.
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THEOREM 3. If the integral
∫ ∞
a

|f (x)| dx is convergent, then the integral
∫ ∞
a

f (x) dx
is also convergent; in this case, the latter integral is called absolutely convergent.

Example 2. The improper integral
∫ ∞

1

sinx
x2 dx is absolutely convergent, since

∣
∣
∣

sinx
x2

∣
∣
∣ ≤ 1

x2 and the

integral
∫ ∞

1

1
x2 dx is convergent (see Example 1).

THEOREM 4. Let f (x) and g(x) be integrable functions on any finite interval a ≤ x ≤ b
and let there exist a limit, finite or infinite,

lim
x→∞

f (x)
g(x)

= K.

Then the following assertions hold:
1. If 0 < K < ∞, both integrals

∫ ∞
a

f (x) dx,
∫ ∞
a

g(x) dx (7.2.7.2)

are convergent or divergent simultaneously.
2. If 0 ≤ K < ∞, the convergence of the latter integral in (7.2.7.2) implies the conver-

gence of the former integral.
3. If 0 <K ≤ ∞, the divergence of the latter integral in (7.2.7.2) implies the divergence

of the former integral.

THEOREM 5 (COROLLARY OF THEOREM 4). Given a function f (x), let its asymptotics
for sufficiently large x have the form

f (x) =
ϕ(x)
xλ

(λ > 0).

Then: (i) if λ > 1 and ϕ(x) ≤ c < ∞, then the integral
∫ ∞
a

f (x) dx is convergent; (ii) if
λ ≤ 1 and ϕ(x) ≥ c > 0, then the integral is divergent.

THEOREM 6. Let f (x) be an absolutely integrable function on an interval [a,∞) and let
g(x) be a bounded function on [a,∞). Then the product f (x)g(x) is an absolutely integrable
function on [a,∞).

THEOREM 7 (ANALOGUE OF ABEL’S TEST FOR CONVERGENCE OF INFINITE SERIES). Let
f (x) be an integrable function on an interval [a,∞) such that the integral (7.2.7.1) is
convergent (maybe not absolutely) and let g(x) be a monotonic and bounded function on
[a,∞). Then the integral ∫ ∞

a
f (x)g(x) dx (7.2.7.3)

is convergent.

THEOREM 8 (ANALOGUE OF DIRICHLET’S TEST FOR CONVERGENCE OF INFINITE SE-
RIES). Let (i) f (x) be an integrable function on any finite interval [a,A] and

∣∣
∣∣
∫ A

a
f (x) dx

∣∣
∣∣ ≤ K < ∞ (a ≤ A < ∞);

(ii) g(x) be a function tending to zero monotonically as x→ ∞: lim
x→∞ g(x) = 0. Then the

integral (7.2.7.3) is convergent.
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Example 3. Let us show that the improper integral
∫ ∞

a

sinx
xλ

dx is convergent for a > 0 and λ > 0.

Set f (x) = sinx and g(x) = x–λ and verify conditions (i) and (ii) of Theorem 8. We have

(i)

∣
∣
∣
∣

∫ A

a
sinx dx

∣
∣
∣
∣ = |cos a – cosA| ≤ 2;

(ii) since λ > 0, the function x–λ is monotonically decreasing and goes to zero as x→ ∞.

So both conditions of Theorem 8 are met, and therefore the given improper integral is convergent.

7.2.7-3. Some remarks.

1◦. If an improper integral is convergent and the integrand function tends to a limit as
x → ∞, then this limit can only be zero (it is such situations that were dealt with in
Examples 1–3). However, the property lim

x→∞ f (x) = 0 is not a necessary condition for

convergence of the integral (7.2.7.1).
An integral can also be convergent if the integrand function does not have a limit as

x→ ∞. For example, this is the case for Fresnel’s integrals:

∫ ∞

0
sin(x2) dx =

∫ ∞

0
cos(x2) dx =

1
2

√
π

2
.

Furthermore, it can be shown that the integral
∫ x

1 + x6 sin2 x
dx is convergent regard-

less of the fact that the integrand function, being everywhere positive, is not even bounded
(f (πk) = πk, k = 1, 2, . . . ). The graph of this function has infinitely many spikes with
heights increasing indefinitely and base widths vanishing. At the points lying outside the
spike bases, the function rapidly goes to zero.

2◦. If f (x) is a monotonic function for x ≥ 0 and the improper integral
∫ ∞

0
f (x) dx is

convergent, then the following limiting relation holds:

∫ ∞

0
f (x) dx = lim

ε→0
ε

∞∑

n=1

f (εn).

7.2.8. General Reduction Formulas for the Calculation of Improper
Integrals

Below are some general formulas, involving arbitrary functions and parameters, that may
facilitate the calculation of improper integrals.

7.2.8-1. Improper integrals involving power functions.

∫ ∞

0
f

(
a + bx
1 + x

)
dx

(1 + x)2 =
1

b – a

∫ b

a
f (x) dx;

∫ ∞

0

f (ax) – f (bx)
x

dx =
[
f (0) – f (∞)

]
ln
b

a
if a > 0, b > 0, f (x) is continuous

on [0,∞), and f (∞) = lim
x→∞ f (x) is a finite quantity;
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∫ ∞

0

f (ax) – f (bx)
x

dx = f (0) ln
b

a
if a > 0, b > 0, f (x) is continuous on [0,∞),

and the integral
∫ ∞

c

f (x)
x

dx exists; c > 0;
∫ ∞

0
f

(∣∣∣
∣ax –

b

x

∣
∣∣
∣

)
dx =

1
a

∫ ∞

0
f (|x|) dx if a > 0, b > 0;

∫ ∞

0
x2f

(∣∣
∣∣ax –

b

x

∣∣
∣∣

)
dx =

1
a3

∫ ∞

0
(x2 + ab)f (|x|) dx if a > 0, b > 0;

∫ ∞

0
f

(∣∣∣
∣ax –

b

x

∣
∣∣
∣

)
dx

x2 =
1
b

∫ ∞

0
f (|x|) dx if a > 0, b > 0;

∫ ∞

0
f

(
x,

1
x

)
dx

x
= 2
∫ 1

0
f

(
x,

1
x

)
dx

x
if f (x, y) = f (y,x);

∫ ∞

0
f

(
x,
a

x

)
dx

x
= 0 if f (x, y) = –f (y,x), a > 0 (the integral is assumed to exist).

7.2.8-2. Improper integrals involving logarithmic functions.

∫ ∞

0
f

(
x

a
+
a

x

)
lnx
x

dx = ln a
∫ ∞

0
f

(
x

a
+
a

x

)
dx

x
if a > 0;

∫ ∞

0
f

(
xp

a
+
a

xp

)
lnx
x

dx =
ln a
p

∫ ∞

0
f

(
xp

a
+
a

xp

)
dx

x
if a > 0, p > 0;

∫ ∞

0
f (xa + x–a)

lnx
1 + x2 dx = 0 (a special case of the integral below);

∫ ∞

0
f

(
x,

1
x

)
lnx

1 + x2 dx = 0 if f (x, y) = f (y,x) (the integral is assumed to exist);

∫ ∞

0
f

(
x,

1
x

)
lnx
x

dx = 0 if f (x, y) = f (y,x) (the integral is assumed to exist).

7.2.8-3. Improper integrals involving trigonometric functions.

∫ ∞

0
f (x)

sinx
x

dx =
∫ π/2

0
f (x) dx if f (x) = f (–x) and f (x + π) = f (x);

∫ ∞

0
f (x)

sinx
x

dx =
∫ π/2

0
f (x) cos x dx if f (x) = f (–x) and f (x + π) = –f (x);

∫ ∞

0

f (sinx)
x

dx =
∫ π/2

0

f (sinx)
sinx

dx if f (–x) = –f (x);

∫ ∞

0

f (sinx)
x2 dx =

∫ π/2

0

f (sinx)
sin2 x

dx if f (x) = f (–x);

∫ ∞

0

f (sinx)
x

cos x dx =
∫ π/2

0

f (sinx)
sinx

cos2 x dx if f (–x) = –f (x);
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∫ ∞

0

f (sinx)
x

tanx dx =
∫ π/2

0
f (sinx) dx if f (–x) = f (x);

∫ ∞

0

f (sinx)
x2 + a2 dx =

sinh(2a)
2a

∫ π/2

0

f (sinx) dx

cosh2 a – cos2 x
if f (–x) = f (x);

∫ ∞

0
f

(
x +

1
x

)
arctan x
x

dx =
π

4

∫ ∞

0
f

(
x +

1
x

)
dx

x
.

7.2.8-4. Calculation of improper integrals using analytic functions.

Suppose

F (z) = f (r,x) + ig(r,x), z = r(cos x + i sin x), i2 = –1,

where F (z) is a function analytic in a circle of radius r. Then the following formulas hold:

∫ ∞

0

f (x, r)
x2 + a2 dx =

π

2a
F (re–a);

∫ ∞

0

xg(x, r)
x2 + a2 dx =

π

2
[F (re–a) – F (0)];

∫ ∞

0

g(x, r)
x

dx =
π

2
[F (r) – F (0)];

∫ ∞

0

g(x, r)
x(x2 + a2)

dx =
π

2a2 [F (r) – F (re–a)].

� Paragraph 10.1.2-8 presents a method for the calculation of improper integrals using the
theory of functions of a complex variable.

7.2.8-5. Calculation of improper integrals using the Laplace transform.

The following classes of improper integrals may be evaluated using the Laplace transform:

∫ ∞

0

f (x)
x

dx =
∫ ∞

0
f̃ (p) dp,

∫ ∞

0
xnf (x) dx = (–1)n+1

[
dn

dpn
f̃ (p)

]∞

0
, n = 1, 2, . . . ,

(7.2.8.1)

where f̃ (p) is the Laplace transform of the function f (x), which is defined as

f̃ (p) =
∫ ∞

0
e–pxf (x) dx.

Short notation for the Laplace transform: f̃ (p) = L
{
f (x)

}
.

Section 11.2 presents properties and methods for determining the Laplace transform,
and Section T3.1 gives tables of the Laplace transforms of various functions.
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Example 1. Evaluate the integral
∫ ∞

0

sin(ax)
x

dx.

Using Table 11.2 from Subsection 11.2.2 (or the table from Subsection T3.1.6), we find the Laplace

transform of the function sin(ax): L
{

sin(ax)
}

=
a

a2 + p2 . Substitute this expression into the first formula

in (7.2.8.1) and integrate to obtain

∫ ∞

0

sin(ax)
x

dx =
∫ ∞

0

a dp

a2 + p2 = arctan
p

a

∣
∣∣
∣

∞

0
=
π

2
.

Example 2. Evaluate Frullani’s integral
∫ ∞

0

e–ax – e–bx

x
dx, where a > 0 and b > 0.

Using the first formula in (7.2.8.1) and Table 11.2 from Subsection 11.2.2 (or the table from Subsec-

tion T3.1.3), we obtain L
{
e–ax} =

1
p + a

. Integrating yields

∫ ∞

0

e–ax – e–bx

x
dx =

∫ ∞

0

(
1

p + a
–

1
p + b

)
dp = ln

p + a
p + b

∣
∣
∣
∣

∞

0
= – ln

a

b
= ln

b

a
.

7.2.9. General Asymptotic Formulas for the Calculation of Improper
Integrals

Below are some general formulas, involving arbitrary functions and parameters, that may
be useful for determining the asymptotic behavior of improper integrals.

7.2.9-1. Asymptotic formulas for some improper integrals with parameter.

1◦. For asymptotics of improper Laplace integrals

I(λ) =
∫ ∞

a
f (x) exp[λg(x)] dx

as λ→ ∞, see Remark 1 in Paragraph 7.2.4-3.

2◦. For λ → ∞, the following asymptotic expansions of improper integrals involving
trigonometric functions and a Bessel function hold:

∫ ∞

0
cos(λx)f (x) dx =

n∑

k=1

(–1)kf (2k–1)(0)λ–2k + O(λ–2n–1),

∫ ∞

0
sin(λx)f (x) dx =

n–1∑

k=0

(–1)kf (2k)(0)λ–2k–1 + O(λ–2n–1),

∫ ∞

0
J0(λx)f (x) dx =

1√
π

n–1∑

k=0

(–1)k

k!
Γ
(
k +

1
2

)
f (2k)(0)λ–2k–1 +O(λ–2n–1).

The function f (x) is assumed to have 2n + 1 partial derivatives with respect to x for x ≥ 0
that monotonically go to zero as x→ ∞.
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3◦. For λ→ ∞, the following asymptotic expansions hold:
∫ ∞

0
f (x)g

(
x

λ

)
dx =

n∑

k=0

(–1)k

k!
F (k)(0)g(k)(0)λ–k +O(λ–n–1),

∫ ∞

0
f (λx)g(x) dx =

n∑

k=0

(–1)k

k!
F (k)(0)g(k)(0)λ–k–1 +O(λ–n–2),

where F (t) =
∫ ∞

0
f (x)e–xt dx is the Laplace transform of the function f (x).

4◦. For λ→ ∞, the following asymptotic expansions hold:
∫ ∞

0

f (x) dx
x + λ

=
n∑

k=0

F (k)(0)
λk+1 +O(λ–n–2),

where F (t) =
∫ ∞

0
f (x)e–xt dx is the Laplace transform of the function f (x).

7.2.9-2. Behavior of integrals with variable limit of integration as x→ ∞.

Let f (t) be a continuously differentiable function, let g(t) be a twice continuously differen-
tiable function, and let the following conditions hold:

f (t) > 0, g′(t) > 0; g(t) → ∞ as t→ ∞;

f ′(t)/f (t) = o
(
g′(t)

)
as t→ ∞; g′′(t) = o

(
g′2(t)

)
as t→ ∞.

Then the following asymptotic relation holds as x→ ∞:
∫ ∞

x
f (t) exp[–g(t)] dt � f (x)

g′(x)
exp[–g(x)].

7.2.9-3. π-related inequality.

If f (x) ≥ 0, the inequality
(∫ ∞

0
f (x) dx

)4
≤ π2

(∫ ∞

0
f 2(x) dx

)(∫ ∞

0
x2f 2(x) dx

)

holds, provided the integral on the left-hand side exists. The constant π2 is best in the sense
that there exist functions f (x) � 0 for which the equality is attained.

7.2.10. Improper Integrals of Unbounded Functions

7.2.10-1. Basic definitions.

1◦. Let a function f (x) be defined and continuous for a ≤ x < b, but lim
x→b–0

f (x) = ∞. If

there exists a finite limit lim
λ→b–0

∫ λ

a
f (x) dx, it is called the (convergent) improper integral

of the unbounded function f (x) over the interval [a, b]. Thus, by definition
∫ b

a
f (x) dx = lim

λ→b–0

∫ λ

a
f (x) dx. (7.2.10.1)
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If no finite limit exists, the integral is called divergent.
If lim
x→a+0

f (x) = ∞, then, by definition, it is assumed that

∫ b

a
f (x) dx = lim

γ→a+0

∫ b

γ
f (x) dx.

Finally, if f (x) is unbounded near a point c � (a, b) and both integrals
∫ c

a
f (x) dx and

∫ b

c
f (x) dx are convergent, then, by definition,

∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx.

2◦. The geometric meaning of an improper integral of an unbounded function and also
sufficient conditions for convergence of such integrals are similar to those for improper
integrals with infinite limit(s).

7.2.10-2. Convergence tests for improper integrals of unbounded functions.

Presented below are theorems for the case where the only singular point of the integrand
function is the right endpoint of the interval [a, b].

THEOREM 1 (CAUCHY’S CONVERGENCE CRITERION). For the integral (7.2.10.1) to be
convergent is it necessary and sufficient that for any ε > 0 there exists a number δ > 0 such
that for any δ1 and δ2 satisfying 0 < δ1 < δ and 0 < δ2 < δ the following inequality holds:

∣
∣∣
∣

∫ b–δ2

b–δ1

f (x) dx

∣
∣∣
∣ < ε.

THEOREM 2. If 0 ≤ f (x) ≤ g(x) for a ≤ x < b, then the convergence of the inte-

gral
∫ b

a
g(x) dx implies the convergence of the integral

∫ b

a
f (x) dx, with

∫ b

a
f (x) dx ≤

∫ b

a
g(x) dx. If the integral

∫ b

a
f (x) dx is divergent, then the integral

∫ b

a
g(x) dx is also

divergent.

Example. For any continuous function ϕ(x) such that ϕ(1) = 0, the improper integral
∫ 1

0

dx

ϕ2(x) +
√

1 – x

is convergent and does not exceed 2, since
1

ϕ2(x) +
√

1 – x
<

1√
1 – x

, while the integral
∫ 1

0

dx√
1 – x

is

convergent and is equal to 2.

THEOREM 3. Let f (x) and g(x) be continuous functions on [a, b) and let the following
limit exist:

lim
x→b

f (x)
g(x)

= K (0 < K < ∞).

Then both integrals
∫ b

a
f (x) dx,

∫ b

a
g(x) dx

are either convergent or divergent simultaneously.
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THEOREM 4. Let a function f (x) be representable in the form

f (x) =
ϕ(x)

(b – x)λ
(λ > 0),

where ϕ(x) is continuous on [a, b] and the condition ϕ(b) ≠ 0 holds.

Then: (i) if λ < 1 and ϕ(x) ≤ c < ∞, then the integral
∫ b

a
f (x) dx is convergent; (ii) if

λ ≥ 1 and ϕ(x) ≥ c > 0, this integral is divergent.

Remark. The issue of convergence of the integral of an unbounded function (7.2.10.1) at x = b can be
reduced by a simple change of variable to the issue of convergence of an improper integral with an infinite
limit: ∫ b

a

f (x) dx = (b – a)
∫ ∞

1
f
( a – b

z
+ b
) dz
z2 , z =

b – a
b – x

.

7.2.10-3. Calculation of integrals using infinite sums of special form.

Let a function f (x) be continuous and monotonic on the interval (0, 1), whose endpoints

can be singular. If the integral (proper or improper)
∫ 1

0
f (x) dx exists, then the following

limiting relations hold:

∫ 1

0
f (x) dx = lim

n→∞
1
n

n–1∑

k=1

f

(
k

n

)
= lim
n→∞

1
n

n∑

k=1

f

(
2k – 1

2n

)
.

7.2.11. Cauchy-Type Singular Integrals

7.2.11-1. Hölder and Lipschitz conditions.

We say that f (x) satisfies the Hölder condition on [a, b] if for any two points x1 � [a, b] and
x2 � [a, b] we have

|f (x2) – f (x1)| < A|x2 – x1|λ, (7.2.11.1)

where A and λ are positive constants. The number A is called the Hölder constant and λ
is called the Hölder exponent. If λ > 1, then by condition (7.2.11.1) the derivative f ′x(x)
vanishes everywhere, and f (x) must be constant. Therefore, we assume that 0 < λ ≤ 1. For
λ = 1, the Hölder condition is often called the Lipschitz condition. Sometimes the Hölder
condition is called the Lipschitz condition of order λ.

If x1 and x2 are sufficiently close to each other and if the Hölder condition holds for
some exponent λ1, then this condition certainly holds for each exponent λ < λ1. In general,
the converse assertion fails. The smaller λ, the broader is the class of Hölder continuous
functions. The narrowest class is that of functions satisfying the Lipschitz condition.

It follows from the last property that if functions f1(x) and f2(x) satisfy the Hölder
condition with exponents λ1 and λ2, respectively, then their sum and the product, as well
as their ratio provided that the denominator is nonzero, satisfy the Hölder condition with
exponent λ = min(λ1,λ2).

If f (x) is differentiable and has a bounded derivative, then f (x) satisfies the Lipschitz
condition. In general, the converse assertion fails.
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7.2.11-2. Principal value of a singular integral.

1◦. Consider the integral ∫ b

a

dx

x – c
, a < c < b.

Evaluating this integral as an improper integral, we obtain
∫ b

a

dx

x – c
= lim
ε1→0
ε2→0

(
–
∫ c–ε1

a

dx

c – x
+
∫ b

c+ε2

dx

x – c

)
= ln

b – c
c – a

+ lim
ε1→0
ε2→0

ln
ε1

ε2
. (7.2.11.2)

The limit of the last expression obviously depends on the way in which ε1 and ε2 tend
to zero. Hence, the improper integral does not exist. This integral is called a singular
integral. However, this integral can be assigned a meaning if we assume that there is some
relationship between ε1 and ε2. For example, if the deleted interval is symmetric with
respect to the point c, i.e.,

ε1 = ε2 = ε, (7.2.11.3)

we arrive at the notion of the Cauchy principal value of a singular integral.
The Cauchy principal value of the singular integral

∫ b

a

dx

x – c
, a < c < b

is the number

lim
ε→0

(∫ c–ε

a

dx

x – c
+
∫ b

c+ε

dx

x – c

)
.

With regard to formula (7.2.11.2), we have
∫ b

a

dx

x – c
= ln

b – c
c – a

. (7.2.11.4)

2◦. Consider the more general integral
∫ b

a

f (x)
x – c

dx, (7.2.11.5)

where f (x) � [a, b] is a function satisfying the Hölder condition. Let us understand this
integral in the sense of the Cauchy principal value, which we define as follows:

∫ b

a

f (x)
x – c

dx = lim
ε→0

(∫ c–ε

a

f (x)
x – c

dx +
∫ b

c+ε

f (x)
x – c

dx

)
.

We have the identity
∫ b

a

f (x)
x – c

dx =
∫ b

a

f (x) – f (c)
x – c

dx + f (c)
∫ b

a

dx

x – c
;

moreover, the first integral on the right-hand side is convergent as an improper integral,
because it follows from the Hölder condition that

∣
∣∣
∣
f (x) – f (c)
x – c

∣
∣∣
∣ <

A

|x – c|1–λ , 0 < λ ≤ 1,

and the second integral coincides with (7.2.11.4).
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Thus, we see that the singular integral (7.2.11.5), where f (x) satisfies the Hölder
condition, exists in the sense of the Cauchy principal value and is equal to

∫ b

a

f (x)
x – c

dx =
∫ b

a

f (x) – f (c)
x – c

dx + f (c) ln
b – c
c – a

.

Some authors denote singular integrals by special symbols like v.p.
∫

(valeur principale).
However, this is not necessary because, on the one hand, if an integral of the form (7.2.11.5)
exists as a proper or an improper integral, then it exists in the sense of the Cauchy principal
value, and their values coincide; on the other hand, we shall always understand a singular
integral in the sense of the Cauchy principal value. For this reason, we denote a singular
integral by the usual integral sign.

7.2.12. Stieltjes Integral

7.2.12-1. Basic definitions.

Let f (x) and ϕ(x) be functions defined on an interval [a, b]. Let us partition this interval
into n elementary subintervals defined by a set of points {x0,x1, . . . ,xn} such that a =
x0 < x1 < · · · < xn = b. Each subinterval [xk–1,xk] will be characterized by its length
Δxk = xk – xk–1 and an arbitrarily chosen point ξk � [xk–1,xk]. Let us make up a Stieltjes
integral sum

sn =
n∑

k=1

f (ξk)Δkϕ(x),

where Δkϕ(x) =ϕ(xk)–ϕ(xk–1) is the increment of the function ϕ(x) on the kth elementary
subinterval.

If there exists a limit of the integral sums sn, as the number of subintervals n increases
indefinitely so that the length of every subinterval Δxk vanishes, and this limit depends
on neither the way the interval [a, b] was partitioned nor the way the points ξk were
selected, then this limit is called the Stieltjes integral of the function f (x) with respect to
the function ϕ(x) over the interval [a, b]:

∫ b

a
f (x) dϕ(x) = lim

λ→0
sn

(
max

1≤k≤n
Δxk → 0 as n→ ∞

)
.

Then f (x) is called an integrable function with respect to ϕ(x), and ϕ(x) is called an
integrating function.

The Stieltjes integral is a generalization of the Riemann integral; the latter corresponds
to the special case ϕ(x) = x + const.

7.2.12-2. Properties of the Stieltjes integral.

The Stieltjes integral has properties analogous to those of the definite Riemann integral:

1)
∫ b

a
dϕ(x) = ϕ(b) – ϕ(a);

2)
∫ b

a

[
Af (x) � Bg(x)

]
dϕ(x) = A

∫ b

a
f (x) dϕ(x) �B

∫ b

a
g(x) dϕ(x);
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3)
∫ b

a
f (x) d[Aϕ(x) � Bψ(x)] = A

∫ b

a
f (x) dϕ(x) � B

∫ b

a
f (x) dψ(x);

4)
∫ b

a
f (x) dϕ(x) =

∫ c

a
f (x) dϕ(x) +

∫ b

c
f (x) dϕ(x) (a < c < b).

It is assumed that all integrals on the left- and right-hand sides exist.

THEOREM (MEAN VALUE). If a function f (x) satisfies inequalities m ≤ f (x) ≤ M on an
interval [a, b] and is integrable with respect to an increasing function ϕ(x), then

∫ b

a
f (x) dϕ(x) = μ[ϕ(b) – ϕ(a)],

where m < μ < M .

7.2.12-3. Existence theorems for the Stieltjes integral.

The existence of the Stieltjes integral and its reduction to the Riemann integral is established
by the following theorem.

THEOREM 1. If f (x) is continuous on [a, b] andϕ(x) has a bounded variation* on [a, b],

then the integral
∫ b

a
f (x) dϕ(x) exists.

THEOREM 2. Let f (x) be integrable on [a, b] in the sense of Riemann and let ϕ(x)
satisfy the Lipschitz condition

|ϕ(x2) – ϕ(x1)| < K |x2 – x1|,

where x1 and x2 are arbitrary points of the interval [a, b] and K is a fixed positive constant.
Then the function f (x) is integrable with respect to the function ϕ(x).

THEOREM 3. Let f (x) be integrable on [a, b] in the sense of Riemann and let ϕ(x)
be differentiable and have an integrable derivative on [a, b]. Then the function f (x) is
integrable with respect to the function ϕ(x) and, moreover,

∫ b

a
f (x) dϕ(x) =

∫ b

a
f (x)ϕ′(x) dx,

where the integral on the right-hand side is understood in the sense of Riemann.

Remark. If a function f (x) is integrable on an interval [a, b] with respect to a function ϕ(x), then, vice
versa, the function ϕ(x) is also integrable with respect to the function f (x) on [a, b]. Owing to this property,
the functions f (x) and ϕ(x) are interchangeable in Theorems 1 and 2.

THEOREM 4. Let f (x) be continuous on [a, b] and let ϕ(x) have an absolutely integrable
derivative ϕ′(x) everywhere on [a, b], except, perhaps, finitely many points. Let, in addition,
the function ϕ(x) undergo a jump discontinuity at finitely many points

a = c0 < c1 < · · · < cm = b.

* A function ϕ(x) is said to have a bounded variation on an interval [a, b] if there exists a number M > 0

such that for any set of points a = x0 < x1 < · · · < xn = b the inequality
n∑

k=1
|ϕ(xk+1) – ϕ(xk)| < M holds (see

also Subsection 6.1.7).
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Then the Stieltjes integral exists and is calculated as
∫ b

a
f (x) dϕ(x) =

∫ b

a
f (x)ϕ′(x) dx + f (a)[ϕ(a + 0) – ϕ(a)]

+
m–1∑

k=1

f (ck)[ϕ(ck + 0) – ϕ(ck – 0)] + f (b)[ϕ(b) – ϕ(b – 0)],

where the right-hand side contains a Riemann integral. Note the presence of terms outside
the integral on the right-hand side, where, apart from the ordinary jumps of the function ϕ(x)
at the internal points of discontinuity, there are terms with one-sided jumps at the endpoints
(if there is no jump at either endpoint, the corresponding term vanishes).

The Stieltjes integral is useful for finding static moments, moments of inertia, and some
other distributed quantities on an interval [a, b], where, apart from continuous distributions,
there are concentrated quantities like point masses that correspond to a discontinuous
function ϕ(x) with finite jumps.

7.2.13. Square Integrable Functions

7.2.13-1. Definitions.

A function f (x) is said to be square integrable on an interval [a, b] if f 2(x) is integrable
on [a, b]. The set of all square integrable functions is denoted by L2(a, b) or, briefly, L2.*
Likewise, the set of all integrable functions on [a, b] is denoted by L1(a, b) or, briefly, L1.

7.2.13-2. Basic properties of functions from L2.

1◦. The sum of two square integrable functions is a square integrable function.

2◦. The product of a square integrable function by a constant is a square integrable function.

3◦. The product of two square integrable functions is an integrable function.

4◦. If f (x) �L2 and g(x) �L2, then the following Cauchy–Schwarz–Bunyakovsky inequal-
ity holds:

(f , g)2 ≤ ‖f‖2‖g‖2,

(f , g) =
∫ b

a
f (x)g(x) dx, ‖f‖2 = (f , f ) =

∫ b

a
f 2(x) dx.

The number (f , g) is called the inner product of the functions f (x) and g(x) and the
number ‖f‖ is called the L2-norm of f (x).

5◦. For f (x) � L2 and g(x) � L2, the following triangle inequality holds:

‖f + g‖ ≤ ‖f‖ + ‖g‖.

6◦. Let functions f (x) and f1(x), f2(x), . . . , fn(x), . . . be square integrable on an interval
[a, b]. If

lim
n→∞

∫ b

a

[
fn(x) – f (x)

]2
dx = 0,

* In the most general case the integral is understood as the Lebesgue integral of measurable functions. As
usual, two equivalent functions—i.e., equal everywhere, or distinct on a negligible set (of zero measure)—are
regarded as one and the same element of L2.
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then the sequence f1(x), f2(x), . . . is said to be mean-square convergent to f (x).
Note that if a sequence of functions {fn(x)} from L2 converges uniformly to f (x), then

f (x) � L2 and {fn(x)} is mean-square convergent to f (x).

7.2.14. Approximate (Numerical) Methods for Computation of
Definite Integrals

7.2.14-1. Rectangle, trapezoidal, and Simpson’s rules.

For approximate computation of an integral like
∫ b

a
f (x) dx, let us break up the interval

[a, b] into n equal subintervals with length h =
b – a
n

. Introduce the notation: x0 = a, x1,

. . . , xn = b (the partition points), yi = f (xi), i = 0, 1, . . . , n.

1◦. Rectangle rules: ∫ b

a
f (x) dx ≈ h(y0 + y1 + · · · + yn–1),

∫ b

a
f (x) dx ≈ h(y1 + y2 + · · · + yn).

The error of these formulas, Rn, is proportional to h and is estimated using the inequality

|Rn| ≤ 1
2h(b – a)M1, M1 = max

a≤x≤b

∣
∣f ′(x)

∣
∣.

2◦. Trapezoidal rule:

∫ b

a
f (x) dx ≈ h

( y0 + yn
2

+ y1 + y2 + · · · + yn–1

)
.

The error of this formula is proportional to h2 and is estimated as

|Rn| ≤ 1
12h

2(b – a)M2, M2 = max
a≤x≤b

∣
∣f ′′(x)

∣
∣.

3◦. Simpson’s rule:

∫ b

a
f (x) dx ≈ 1

3h[y0 + yn + 4(y1 + y3 + · · · + yn–1) + 2(y2 + y4 + · · · + yn–2)],

where n is even. The error of approximation by Simpson’s rule is proportional to h4:

|Rn| ≤ 1
180h

4(b – a)M4, M4 = max
a≤x≤b

∣∣f (4)(x)
∣∣.

Simpson’s rule yields exact results for the case where the integrand function is a polynomial
of degree two or three.

Remark. The above approximation formulas are often used for numerical computation of definite integrals;
to achieve a higher accuracy, large n are normally taken.
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7.2.14-2. Computation of integrals using uniformly distributed sequences.

1◦. Consider a sequence of real numbers {xn} whose members all belong to the closed
interval [0, 1]. Let νn(a, b) be the number of the members of the sequence with subscript < n
that belong to [a, b]� [0, 1]. The sequence {xn} is called uniformly distributed on the interval
[0, 1] if

lim
n→∞

νn(a, b)
n

= b – a.

In the language of probability theory, this definition means that the probability of a
randomly selected element of the sequence to fall into a subinterval [a, b] is equal to the
length of this subinterval.

A simple example of a uniformly distributed sequence is the sequence of all proper
fractions m/n with n = 2, 3, . . . and m = 1, 2, . . . n – 1:

1
2

,
1
3

,
2
3

,
1
4

,
2
4

,
3
4

, . . .

The following theorem serves as an unlimited source for constructing uniformly dis-
tributed sequences.

THEOREM 1. Let ϑ be an arbitrary irrational number. Then the sequence xn =nϑ–[nϑ],
n = 1, 2, . . . , is uniformly distributed on the interval [0, 1]; the symbol [z] stands for the
integer part of z (the maximum integer not exceeding z).

2◦. Uniformly distributed sequences can be used for the calculation of integrals on the basis
of the following two theorems.

THEOREM 2. If a number sequence {xn} is uniformly distributed on the interval [0, 1],
then the following limiting relation holds for any function f (x) integrable on [0, 1]:

∫ 1

0
f (x) dx = lim

n→∞
1
n

n∑

k=1

f (xk). (7.2.14.1)

Conversely, if this relation holds, it follows that the sequence {xn} is uniformly distributed
on [0, 1].

Remark. Formula (7.2.14.1) can be used for approximate calculation of integrals by defining a uniformly
distributed sequence {xn} and computing the sum with a large n. The integrals defined on an arbitrary interval

[a, b] are first reduced by the change of variable z =
x – a
b – a

to an integral over the interval [0, 1].

THEOREM 3. If a number sequence {xn} is uniformly distributed on [0, 1], then the
following limiting relation holds for any function f (x) integrable on [0, 1] and any mono-
tonically decreasing sequence of positive numbers {αn} with a divergent sum:

∫ 1

0
f (x) dx = lim

n→∞
α1f (x1) + α2f (x2) + · · · + αnf (xn)

α1 + α2 + · · · + αn
.
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7.2.14-3. Computation of integrals by series expansion of the integrand function.

THEOREM 4. If a sequence of functions, {fn(x)}, continuous on an interval [a, b] uni-
formly converges on [a, b] to a function f (x), then the sequence of functions

{∫ b
a fn(x) dx

}

uniformly converges on [a, b] to the function
{∫ b

a f (x) dx
}

.

THEOREM 5. If the functions of a sequence {un(x)} are continuous on an interval [a, b]

and the series
∞∑

n=1
un(x) uniformly converges on [a, b] to a function f (x), then the series

∞∑

n=1

∫ x
a un(t) dt is also uniformly convergent on [a, b] and

∞∑

n=1

∫ b

a
un(x) dx =

∫ b

a

( ∞∑

n=1

un(x) dx

)
=
∫ b

a
f (x) dx;

∞∑

n=1

∫ x

a
un(t) dt =

∫ x

a

( ∞∑

n=1

un(t) dt

)
=
∫ x

a
f (t) dt (a ≤ x ≤ b).

This theorem is used for the calculation of integrals by expanding the integrand func-
tions f (x) into a uniformly convergent series.

Remark 1. Since a series of positive continuous functions with a continuous sum is always uniformly
convergent, then this series can be integrated termwise.

Remark 2. In general, the convergence of a sequence of continuous integrand functions, {fn(x)}, at each
point of the integration interval does not guarantee that it is permitted to proceed to the limit under the sign of
integral.

7.3. Double and Triple Integrals
7.3.1. Definition and Properties of the Double Integral

7.3.1-1. Definition and properties of the double integral.

Suppose there is a bounded set of points defined on the plane, so that it can be placed in
a minimal enclosing circle. The diameter of this circle is called the diameter of the set.
Consider a domainD in the x, y plane. Let us partitionD into n nonintersecting subdomains
(cells). The largest of the cell diameters is called the partition diameter and is denoted
λ = λ(Dn), where Dn stands for the partition of the domain D into cells. Let a function
z = f (x, y) be defined in D. Select an arbitrary point in each cell (xi, yi), i = 1, 2, . . . , n,
and make up an integral sum,

sn =
n∑

i=1

f (xi, yi) ΔSi,

where ΔSi is the area of the ith subdomain.
If there exists a finite limit, J , of the sums sn as λ → 0 and it depends on neither the

partition Dn nor the selection of the points (xi, yi), this limit is denoted
∫∫

D
f (x, y) dx dy

and is called the double integral of the function f (x, y) over the domain D:
∫∫

D
f (x, y) dx dy = lim

λ→0
sn.

This means that for any ε > 0 there exists a δ > 0 such that for all partitions Dn such that
λ(Dn) < δ and for any selection of the points (xi, yi), the inequality |sn – J | < ε holds.
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7.3.1-2. Classes of integrable functions.

Further on, it is assumed that D is a closed bounded domain.
1. If f (x, y) is continuous in D, then the double integral

∫∫

D
f (x, y) dx dy exists.

2. If f (x, y) is bounded and the set of points of discontinuity of f (x, y) has a zero area
(e.g., the points of discontinuity lie on finitely many continuous curves in the x, y plane),
then the double integral of f (x, y) over the domain D exists.

7.3.1-3. Properties of the double integral.

1. Linearity. If functions f (x, y) and g(x, y) are integrable in D, then

∫∫

D

[
af (x, y) � bg(x, y)

]
dx dy = a

∫∫

D
f (x, y) dx dy � b

∫∫

D
g(x, y) dx dy,

where a and b are any numbers.
2. Additivity. If the domain D is split into two subdomains D1 and D2 that do not have

common internal points and if the function f (x, y) is integrable in either subdomain, then

∫∫

D
f (x, y) dx dy =

∫∫

D1

f (x, y) dx dy +
∫∫

D2

f (x, y) dx dy.

3. Estimation theorem. If m ≤ f (x, y) ≤ M in D, then

mS ≤
∫∫

D
f (x, y) dx dy ≤ MS,

where S is the area of the domain D.
4. Mean value theorem. If f (x, y) is continuous in D, then there exists at least one

internal point (x̄, ȳ) � D such that

∫∫

D
f (x, y) dx dy = f (x̄, ȳ)S.

The number f (x̄, ȳ) is called the mean value of the function f (x, y) in D.
5. Integration of inequalities. If ϕ(x, y) ≤ f (x, y) ≤ g(x, y) in D, then

∫∫

D
ϕ(x, y) dx dy ≤

∫∫

D
f (x, y) dx dy ≤

∫∫

D
g(x, y) dx dy.

In particular, if f (x, y) ≥ 0 in D, then
∫∫

D
f (x, y) dx dy ≥ 0.

6. Absolute value theorem

∣∣
∣∣

∫∫

D
f (x, y) dx dy

∣∣
∣∣ ≤
∫∫

D

∣
∣f (x, y)

∣
∣ dx dy.
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O

Figure 7.4. A double integral of a nonnegative function f (x, y) over a domain D is equal to the volume of a
cylindrical body with base D in the plane z = 0 and bounded from above by the surface z = f (x, y).

7.3.1-4. Geometric meaning of the double integral.

Let a function f (x, y) be nonnegative in D. Then the double integral
∫∫

D
f (x, y) dx dy is

equal to the volume of a cylindrical body with base D in the plane z = 0 and bounded from
above by the surface z = f (x, y); see Fig. 7.4.

7.3.2. Computation of the Double Integral

7.3.2-1. Use of iterated integrals.

1◦. If a domainD is defined in thex, y plane by the inequalities a≤x≤ b and y1 (x)≤y ≤y2(x)
(see Fig. 7.5 a), then*

∫∫

D
f (x, y) dx dy =

∫ b

a
dx

∫ y2(x)

y1(x)
f (x, y) dy. (7.3.2.1)

The integral on the right-hand side is called an iterated integral.

y y x� �( )

x x y� �( )
x x y� �( )

y y x� 2( )

y y

x x

a

c

d

bO O

( )a ( )b

D D

Figure 7.5. Computation of a double integral using iterated integrals: (a) illustration to formula (7.3.2.1),
(b) illustration to formula (7.3.2.2).

* It is assumed that in (7.3.2.1) and (7.3.2.2) the double integral on the right-hand side and the inner integral
on the right-hand side exist.
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2◦. If D = {c ≤ y ≤ d, x1(y) ≤ x ≤ x2(y)} (see Fig. 7.5 b), then

∫∫

D
f (x, y) dx dy =

∫ d

c
dy

∫ x2(y)

x1(y)
f (x, y) dx. (7.3.2.2)

Example 1. Compute the integral

I =
∫∫

D

dx dy

(ax + by)2 ,

where D = {0 ≤ x ≤ 1, 1 ≤ y ≤ 3} is a rectangle, a > 0, and b > 0.
Using formula (7.3.2.2), we get

∫∫

D

dx dy

(ax + by)2 =
∫ 3

1
dy

∫ 1

0

dx

(ax + by)2 .

Compute the inner integral:

∫ 1

0

dx

(ax + by)2 = –
1

a(ax + by)

∣
∣
∣∣

x=1

x=0
=

1
a

(
1
by

–
1

by + a

)
.

It follows that

I =
1
a

∫ 3

1

(
1
by

–
1

by + a

)
dy =

1
ab

ln
3(a + b)
a + 3b

.

3◦. Consider a domain D inscribed in a rectangle {a ≤ x ≤ b, c ≤ y ≤ d}. Let the boundary
of D, within the rectangle, be intersected by straight lines parallel to the coordinate axes
at two points only, as shown in Fig. 7.6 a. Then, by comparing formulas (7.3.2.1) and
(7.3.2.2), we arrive at the relation

∫ b

a
dx

∫ y2(x)

y1(x)
f (x, y) dy =

∫ d

c
dy

∫ x2(y)

x1(y)
f (x, y) dx,

which shows how the order of integration can be changed.

y y

x x

a a

c

D

D

DD

D

1

22

3

d

bO O

( )a ( )b

Figure 7.6. Illustrations to the computation of a double integral in a simple (a) and a complex (b) domain.

4◦. In the general case, the domain D is first split into subdomains considered in Items 1◦
and 2◦, and then the property of additivity of the double integral is used. For example, the
domain D shown in Fig. 7.6 b is divided by the straight line x = a into three subdomains
D1, D2, and D3. Then the integral over D is represented as the sum of three integrals over
the resulting subdomains.
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7.3.2-2. Change of variables in the double integral.

1◦. Let x = x(u, v) and y = y(u, v) be continuously differentiable functions that map
one-to-one a domain D1 in the u, v plane onto a domain D in the x, y plane, and let f (x, y)
be a continuous function in D. Then

∫∫

D
f (x, y) dx dy =

∫∫

D1

f
(
x(u, v), y(u, v)

)|J(u, v)| du dv,

where J(u, v) is the Jacobian (or Jacobian determinant) of the mapping of D1 onto D:

J(u, v) =
∂(x, y)
∂(u, v)

=

∣
∣∣
∣
∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣
∣∣
∣
∣

=
∂x

∂u

∂y

∂v
–
∂x

∂v

∂y

∂u
.

The fraction before the determinant is a common notation for a Jacobian.
The absolute value of the Jacobian characterizes the extension (contraction) of an

infinitesimal area element when passing from x, y to u, v.

2◦. The Jacobian of the mapping defining the change from the Cartesian coordinates x, y
to the polar coordinates ρ, ϕ,

x = ρ cosϕ, y = ρ sinϕ, (7.3.2.3)

is equal to
J(ρ,ϕ) = ρ. (7.3.2.4)

Example 2. Given a sphere of radius R and a right circular cylinder of radius a < R whose axis passes
through the sphere center, find the volume of the figure the cylinder cuts out of the sphere.

The volume of this figure is calculated as

V =
∫∫

x2+y2≤a2

√
R2 – x2 – y2 dx dy.

Passing in the integral from x, y to the polar coordinates (7.3.2.3) and taking into account (7.3.2.4), we obtain

V =
∫ 2π

0

∫ a

0

√
R2 – ρ2 ρ dρ dϕ =

4π
3
[
R3 – (R2 – a2)3/2].

3◦. The Jacobians of some common transformations in the plane are listed in Table 7.1.

TABLE 7.1
Some common curvilinear coordinates in the plane and the respective Jacobians

Name of coordinates Transformation Jacobian, J

Polar coordinates ρ,ϕ x = ρ cosϕ, y = ρ sinϕ ρ

Generalized polar coordinates ρ,ϕ x = aρ cosϕ, y = bρ sinϕ abρ

Elliptic coordinates u, v
(special system; u ≥ 0, 0 ≤ v ≤ π) x = a cosh u cos v, y = a sinhu sin v a2(sinh2 u + sin2 v)

Parabolic coordinates σ, τ x = aστ , y = 1
2 a(τ 2 – σ2) a2(σ2 + τ 2)

Bipolar coordinates σ, τ x =
a sinh τ

cosh τ – cos σ
, y =

a sinσ
cosh τ – cosσ

a2

(cosh τ – cos σ)2
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7.3.2-3. Differentiation of the double integral with respect to a parameter.

1◦. In various applications, situations may arise where the integrand function and the
integration domain depend on a parameter, t. The derivative of such a double integral with
respect to t is expressed as

d

dt

∫∫

D(t)
f (x, y, t) dx dy =

∫∫

D(t)

∂

∂t
f (x, y, t) dx dy +

∫

L(t)
(�n ⋅ �v)f (x, y, t) dl, (7.3.2.5)

where L(t) is the boundary of the domain D(t), �n is outer unit normal to L(t), and �v is the
velocity of motion of the points of L(t).

2◦. If the boundary L(t) is specified by equations in parametric form

x = X(λ, t), y = Y (λ, t), α ≤ λ ≤ β, (7.3.2.6)

then

�n =

{
Yλ√

X2
λ + Y 2

λ

, –
Xλ√
X2

λ + Y 2
λ

}
, �v =

{
Xt,Yt

}
, (�n ⋅ �v) =

YλXt –XλYt√
X2

λ + Y 2
λ

, dl =
√
X2

λ + Y 2
λ ;

the subscripts λ and t denote the respective partial derivatives. The last integral in (7.3.2.5)
becomes

∫

L(t)
(�n ⋅ �v)f (x, y, t) dl =

∫ β

α
f
(
X(λ, t),Y (λ, t), t

)
(YλXt – XλYt) dλ. (7.3.2.7)

Example 3. Let D(t) be a deformable plane domain bounded by an ellipse

x2

a2(t)
+

y2

b2(t)
= 1. (7.3.2.8)

Let us rewrite the equation of the ellipse (7.3.2.8) in parametric form as

x = a(t) cosλ, y = b(t) sinλ, 0 ≤ λ ≤ 2π,

which corresponds to the special case of (7.3.2.6) with X(λ, t) = a(t) cosλ and Y (λ, t) = b(t) sinλ. Taking
into account the aforesaid and using formula (7.3.2.7), we obtain

∫

L(t)
(�n ⋅ �v)f (x, y, t) dl =

∫ 2π

0
f
(
a(t) cos λ, b(t) sinλ, t

)
(a′tb cos2 λ + ab′t sin2 λ) dλ. (7.3.2.9)

Let us dwell on the simple special case of f (x, y, t) = 1, when the first integral on the right-hand side of
(7.3.2.5) vanishes. Evaluate the second integral by formula (7.3.2.9) to obtain

∫

L(t)
(�n ⋅ �v) dl =

∫ 2π

0
(a′tb cos2 λ + ab′t sin2 λ) dλ = a′tb

∫ 2π

0
cos2 λ dλ + ab′t

∫ 2π

0
sin2 λdλ

= π[a′(t)b(t) + a(t)b′(t)]. (7.3.2.10)

Remark. Formula (7.3.2.10) is easy to derive directly from (7.3.2.5) noting that, for f (x, y, t) = 1, the
integral on the left-hand side of (7.3.2.5) gives the area of the ellipse, S = πa(t)b(t). Differentiating this formula
yields (7.3.2.10).

3◦. If the boundary L(t) is specified by an equation in implicit form,

F (x, y, t) = 0,

then one should take into account in (7.3.2.5) that

�n =

{
Fx√
F 2
x + F 2

y

,
Fy√
F 2
x + F 2

y

}
, �v =

{
–
Ft
Fx

, –
Ft
Fy

}
, (�n ⋅ �v) = –

2Ft√
F 2
x + F 2

y

.

For an elliptic domain, specified by equation (7.3.2.8), we have

F (x, y, t) =
x2

a2(t)
+

y2

b2(t)
– 1.
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7.3.3. Geometric and Physical Applications of the Double Integral

7.3.3-1. Geometric applications of the double integral.

1. Area of a domain D in the x, y plane:

S =
∫∫

D
dx dy.

2. Area of a surface defined by an equation z = f (x, y) with (x, y) � D (the surface is
projected onto a domain D in the x, y plane):

S =
∫∫

D

√( ∂f
∂x

)2
+
( ∂f
∂y

)2
+ 1 dx dy.

3. Area of a surface defined parametrically by equations x = x(u, v), y = y(u, v),
z = z(u, v), with (u, v) � D1:

S =
∫∫

D1

√
EG – F 2 du dv.

Notation used:

E =

(
∂x

∂u

)2
+

(
∂y

∂u

)2
+

(
∂z

∂u

)2
,

G =

(
∂x

∂v

)2
+

(
∂y

∂v

)2
+

(
∂z

∂v

)2
,

F =
∂x

∂u

∂x

∂v
+
∂y

∂u

∂y

∂v
+
∂z

∂u

∂z

∂v
.

4. Area of a surface defined by a vector equation �r = �r(u, v) = x(u, v)�i + y(u, v)�j +
z(u, v)�k, with (u, v) � D1:

S =
∫∫

D1

∣∣�n(u, v)
∣∣ du dv.

Here, the unit normal is calculated as �n(u, v) = �r ′u ×�r ′v.

Remark. The formulas from Items 3 and 4 are equivalent—they define one and the same surface in two
forms, scalar and vector, respectively.

5. Calculation of volumes. If a domain U of the three-dimensional space is defined by{
(x, y) �D, f (x, y) ≤ z ≤ g(x, y)

}
, where D is a domain in the x, y plane, the volume of U

is calculated as

V =
∫∫

D

[
g(x, y) – f (x, y)

]
dx dy.

The three-dimensional domainU is a cylinder with baseD bounded by the surface z=f (x, y)
from below and the surface z = g(x, y) from above. The lateral surface of this body consists
of segments of straight lines parallel to the z-axis.
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7.3.3-2. Physical applications of the double integral.

Consider a flat plate that occupies a domain D in the x, y plane. Let γ(x, y) be the surface
density of the plate material (the case γ = const corresponds to a homogeneous plate).

1. Mass of a flat plate:

m =
∫∫

D
γ(x, y) dx dy.

2. Coordinates of the center of mass of a flat plate:

xc =
1
m

∫∫

D
xγ(x, y) dx dy, yc =

1
m

∫∫

D
yγ(x, y) dx dy,

where m is the mass of the plate.
3. Moments of inertia of a flat plate about the coordinate axes:

Ix =
∫∫

D
y2γ(x, y) dx dy, Iy =

∫∫

D
x2γ(x, y) dx dy.

The moment of inertia of the plate about the origin of coordinates is calculated as I0 = Ix+Iy .

7.3.4. Definition and Properties of the Triple Integral

7.3.4-1. Definition of the triple integral.

Let a function f (x, y, z) be defined in a domain U of the three-dimensional space. Let us
break up U into n subdomains (cells) that do not have common internal points. Denote by
λ = λ(Un) the diameter of the resulting partition Un, i.e., the maximum of the cell diameters
(the diameter of a domain in space is the diameter of the minimal sphere enclosing the
domain). Select an arbitrary point, (xi, yi, zi), i = 1, 2, . . . , n, in each cell and make up an
integral sum

sn =
n∑

i=1

f (xi, yi, zi) ΔVi,

where ΔVi is the volume of the ith cell. If there exists a finite limit of the sums sn
as λ(Un) → 0 that depends on neither the partition Un nor the selection of the points
(xi, yi, zi), then it is called the triple integral of the function f (x, y, z) over the domain U
and is denoted ∫∫∫

U
f (x, y, z) dx dy dz = lim

λ→0
sn.

7.3.4-2. Properties of the triple integral.

The properties of triple integrals are similar to those of double integrals.
1. Linearity. If functions f (x, y, z) and g(x, y, z) are integrable in a domain U , then
∫∫∫

U

[
af (x, y, z) � bg(x, y, z)

]
dx dy dz

= a
∫∫∫

U
f (x, y, z) dx dy dz � b

∫∫∫

U
g(x, y, z) dx dy dz,

where a and b are any numbers.
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2. Additivity. If a domain U is split into two subdomains, U1 and U2, that do not have
common internal points and if a function f (x, y, z) is integrable in either subdomain, then

∫∫∫

U
f (x, y, z) dx dy dz =

∫∫∫

U1

f (x, y, z) dx dy dz +
∫∫∫

U2

f (x, y, z) dx dy dz.

3. Estimation theorem. If m ≤ f (x, y, z) ≤ M in a domain U , then

mV ≤
∫∫∫

U
f (x, y, z) dx dy dz ≤ MV ,

where V is the volume of U .
4. Mean value theorem. If f (x, y, z) is continuous in U , then there exists at least one

internal point (x̄, ȳ, z̄) � U such that

∫∫∫

U
f (x, y, z) dx dy dz = f (x̄, ȳ, z̄)V .

The number f (x̄, ȳ, z̄) is called the mean value of the function f in the domain U .
5. Integration of inequalities. If ϕ(x, y, z) ≤ f (x, y, z) ≤ g(x, y, z) in a domain U , then

∫∫∫

U
ϕ(x, y, z) dx dy dz ≤

∫∫∫

U
f (x, y, z) dx dy dz ≤

∫∫∫

U
g(x, y, z) dx dy dz.

6. Absolute value theorem:

∣∣
∣∣

∫∫∫

U
f (x, y, z) dx dy dz

∣∣
∣∣ ≤
∫∫∫

U

∣
∣f (x, y, z)

∣
∣ dx dy dz.

7.3.5. Computation of the Triple Integral. Some Applications.
Iterated Integrals and Asymptotic Formulas

7.3.5-1. Use of iterated integrals.

1◦. Consider a three-dimensional body U bounded by a surface z = g(x, y) from above and
a surface z = h(x, y) from below, with a domain D being the projection of it onto the x, y
plane. In other words, the domain U is defined as {(x, y) �D : h(x, y) ≤ z ≤ g(x, y)}. Then

∫∫∫

U
f (x, y, z) dx dy dz =

∫∫

D
dx dy

∫ g(x,y)

h(x,y)
f (x, y, z) dz.

2◦. If, under the same conditions as in Item 1◦, the domain D of the x, y plane is defined
as {a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x)}, then

∫∫∫

U
f (x, y, z) dx dy dz =

∫ b

a
dx

∫ y2(x)

y1(x)
dy

∫ g(x,y)

h(x,y)
f (x, y, z) dz.
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7.3.5-2. Change of variables in the triple integral.

1◦. Let x = x(u, v,w), y = y(u, v,w), and z = z(u, v,w) be continuously differentiable
functions that map, one to one, a domain Ω of the u, v,w space into a domain U of the
x, y, z space, and let a function f (x, y, z) be continuous in U . Then
∫∫∫

U
f (x, y, z) dx dy dz=

∫∫∫

Ω
f
(
x(u, v,w), y(u, v,w), z(u, v,w)

) |J(u, v,w)| du dv dw,

where J(u, v,w) is the Jacobian of the mapping of Ω into U :

J(u, v,w) =
∂(x, y, z)
∂(u, v,w)

=

∣∣
∣∣
∣
∣∣

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣
∣∣
∣
∣∣
.

The expression in the middle is a very common notation for a Jacobian.
The absolute value of the Jacobian characterizes the expansion (or contraction) of an

infinitesimal volume element when passing from x, y, z to u, v, w.

2◦. The Jacobians of most common transformations in space are listed in Table 7.2.

TABLE 7.2
Common curvilinear coordinates in space and the respective Jacobians

Name of coordinates Transformation Jacobian, J

Cylindrical coordinates ρ,ϕ, z x = ρ cosϕ, y = ρ sinϕ, z = z ρ

Generalized cylindrical
coordinates ρ,ϕ, z x = aρ cosϕ, y = bρ sinϕ, z = z abρ

Spherical coordinates r,ϕ, θ x = r cosϕ sin θ, y = r sinϕ sin θ, z = r cos θ r2 sin θ

Generalized spherical
coordinates r,ϕ, θ

x = ar cosϕ sin θ, y = br sinϕ sin θ,
z = cr cos θ abcr2 sin θ

Coordinates of prolate ellipsoid of
revolution σ, τ ,ϕ (σ ≥ 1 ≥ τ ≥ –1)

x = a
√

(σ2 – 1)(1 – τ 2) cosϕ,
y = a

√
(σ2 – 1)(1 – τ 2) sinϕ,
z = aστ

a3(σ2 – τ 2)

Coordinates of oblate ellipsoid of
revolution σ, τ ,ϕ (σ ≥ 0, –1 ≤ τ ≤ 1)

x = a
√

(1 + σ2)(1 – τ 2) cosϕ,
y = a

√
(1 + σ2)(1 – τ 2) sinϕ,
z = aστ

a3(σ2 + τ 2)

Parabolic coordinates σ, τ ,ϕ x = στ cosϕ, y = στ sinϕ, z = 1
2 (τ 2 – σ2) στ (σ2 + τ 2)

Parabolic cylinder
coordinates σ, τ , z x = στ , y = 1

2 (τ 2 – σ2), z = z σ2 + τ 2

Bicylindrical coordinates σ, τ , z x =
a sinh τ

cosh τ – cos σ
, y =

a sinσ
cosh τ – cosσ

, z = z
a2

(cosh τ – cos σ)2

Toroidal coordinates σ, τ ,ϕ
(–π ≤ σ ≤ π, 0 ≤ τ < ∞, 0 ≤ ϕ < 2π)

x =
a sinh τ cosϕ
cosh τ – cosσ

, y =
a sinh τ sinϕ
cosh τ – cosσ

,

z =
a sinσ

cosh τ – cosσ

a3 sinh τ
(cosh τ – cos σ)2

Bipolar coordinates σ, τ ,ϕ
(σ is any, 0 ≤ τ < π, 0 ≤ ϕ < 2π)

x =
a sin τ cosϕ

cosh σ – cos τ
, y =

a sin τ sinϕ
cosh σ – cos τ

,

z =
a sinh σ

cosh σ – cos τ

a3 sin τ
(cosh σ – cos τ )2
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7.3.5-3. Differentiation of the triple integral with respect to a parameter.

Let the integrand function and the integration domain of a triple integral depend on a
parameter, t. The derivative of this integral with respect to t is expressed as

d

dt

∫∫∫

U (t)
f (x, y, z, t) dx dy dz

=
∫∫∫

U (t)

∂

∂t
f (x, y, z, t) dx dy dz +

∫∫

S(t)
(�n ⋅ �v)f (x, y, z, t) ds,

where S(t) is the boundary of the domain U (t), �n is the unit normal to S(t), and �v is the
velocity of motion of the points of S(t).

7.3.5-4. Some geometric and physical applications of the triple integral.

1. Volume of a domain U :

V =
∫∫∫

U
dx dy dz.

2. Mass of a body of variable density γ = γ(x, y, z) occupying a domain U :

m =
∫∫∫

U
γ dx dy dz.

3. Coordinates of the center of mass:

xc =
1
m

∫∫∫

U
xγ dx dy dz, yc =

1
m

∫∫∫

U
yγ dx dy dz, zc =

1
m

∫∫∫

U
zγ dx dy dz.

4. Moments of inertia about the coordinate axes:

Ix =
∫∫∫

U
ρ2
yzγ dx dy dz, Iy =

∫∫∫

U
ρ2
xzγ dx dy dz, Iz =

∫∫∫

U
ρ2
xyγ dx dy dz,

where ρ2
yz = y2 + z2, ρ2

xz = x2 + z2, and ρ2
xy = x2 + y2.

If the body is homogeneous, then γ = const.

Example. Given a bounded homogeneous elliptic cylinder,

x2

a2 +
y2

b2 = 1, 0 ≤ z ≤ h,

find its moment of inertia about the z-axis.
Using the generalized cylindrical coordinates (see the second row in Table 7.2), we obtain

Ix = γ
∫∫∫

U

(x2 + y2) dx dy dz = γ
∫ h

0

∫ 2π

0

∫ 1

0
ρ2(a2 cos2 ϕ + b2 sin2 ϕ)abρ dρ dϕ dz

=
1
4
abγ

∫ h

0

∫ 2π

0
(a2 cos2 ϕ + b2 sin2 ϕ) dϕ dz =

1
4
abγ

∫ 2π

0

∫ h

0
(a2 cos2 ϕ + b2 sin2 ϕ) dz dϕ

=
1
4
abhγ

∫ 2π

0
(a2 cos2 ϕ + b2 sin2 ϕ) dϕ =

1
4
ab(a2 + b2)hγ.
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5. Potential of the gravitational field of a body U at a point (x, y, z):

Φ(x, y, z) =
∫∫∫

U
γ(ξ, η, ζ)

dξ dη dζ

r
, r =

√
(x – ξ)2 + (y – η)2 + (z – ζ)2,

where γ = γ(ξ, η, ζ) is the body density. A material point of mass m is pulled by the
gravitating body U with a force �F . The projections of �F onto the x-, y-, and z-axes are
given by

Fx = km
∂Φ
∂x

= km
∫∫∫

U
γ(ξ, η, ζ)

ξ – x
r3 dξ dη dζ ,

Fy = km
∂Φ
∂y

= km
∫∫∫

U
γ(ξ, η, ζ)

η – y
r3 dξ dη dζ ,

Fz = km
∂Φ
∂z

= km
∫∫∫

U
γ(ξ, η, ζ)

ζ – z
r3 dξ dη dζ ,

where k is the gravitational constant.

7.3.5-5. Multiple integrals. Asymptotic formulas.

Multiple integrals in n variables of integration are an obvious generalization of double and
triple integrals.

1◦. Consider the Laplace-type multiple integral

I(λ) =
∫

Ω
f (x) exp[λg(x)] dx,

where x = {x1, . . . ,xn}, dx = dx1 . . . dxn, Ω is a bounded domain in R
n, f (x) and g(x)

are real-valued functions of n variable, and λ is a real or complex parameter.
Denote by

Sε =
{
λ : arg |λ| ≤

π

2
– ε
}

, 0 < ε <
π

2
,

a sector in the complex plane of λ.

THEOREM 1. Let the following conditions hold:

(1) the functions f (x) and g(x) are continuous in Ω,
(2) the maximum of g(x) is attained at only one point x0 � Ω (x0 is a nondegenerate

maximum point), and
(3) the function g(x) has continuous third derivatives in a neighborhood of x0.

Then the following asymptotic formula holds as λ→ ∞, λ � Sε:

I(λ) = (2π)n/2 exp[λg(x0)]
f (x0) + O(λ–1)√
λn det[gxixj (x0)]

,

where the gxixj (x) are entries of the matrix of the second derivatives of g(x).

2◦. Consider the power Laplace multiple integral

I(λ) =
∫

Ω
f (x)[g(x)]λ dx.

THEOREM 2. Let g(x) > 0 and let the conditions of Theorem 1 hold. Then the following
asymptotic formula holds as λ→ ∞, λ � Sε:

I(λ) = (2π)n/2[g(x0)](2λ+n)/2 f (x0) + o(1)√
λn det[gxixj (x0)]

.
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7.4. Line and Surface Integrals
7.4.1. Line Integral of the First Kind

7.4.1-1. Definition of the line integral of the first kind.

Let a function f (x, y, z) be defined on a piecewise smooth curve
�
AB in the three-dimensional

space R
3. Let the curve

�
AB be divided into n subcurves by points A = M0, M1, M2, . . . ,

Mn = B, thus defining a partition Ln. The longest of the chords M0M1, M1M2, . . . ,
Mn–1Mn is called the diameter of the partition Ln and is denoted λ = λ(Ln). Let us select
on each arc

�
Mi–1Mi an arbitrary point (xi, yi, zi), i = 1, 2, . . . , n, and make up an integral

sum

sn =
n∑

i=1

f (xi, yi, zi) Δli,

where Δli is the length of
�

Mi–1Mi.
If there exists a finite limit of the sums sn as λ(Ln) → 0 that depends on neither the

partition Ln nor the selection of the points (xi, yi, zi), then it is called the line integral of
the first kind of the function f (x, y, z) over the curve

�
AB and is denoted

∫

AB
f (x, y, z) dl = lim

λ→0
sn.

A line integral is also called a curvilinear integral or a path integral.
If the function f (x, y, z) is continuous, then the line integral exists. The line integral

of the first kind does not depend of the direction the path
�
AB is traced; its properties are

similar to those of the definite integral.

7.4.1-2. Computation of the line integral of the first kind.

1. If a plane curve is defined in the form y = y(x), with x � [a, b], then

∫

AB
f (x, y) dl =

∫ b

a
f
(
x, y(x)

)√
1 + (y′x)2 dx.

2. If a curve
�
AB is defined in parametric form by equations x = x(t), y = y(t), and

z = z(t), with t � [α,β], then

∫

AB
f (x, y, z) dl =

∫ β

α
f
(
x(t), y(t), z(t)

)√
(x′t)2 + (y′t)2 + (z′t)2 dt. (7.4.1.1)

If a function f (x, y) is defined on a plane curve x = x(t), y = y(t), with t � [α,β], one
should set z′t = 0 in (7.4.1.1).

Example. Evaluate the integral
∫

AB

xy dl, where
�
AB is a quarter of an ellipse with semiaxes a and b.

Let us write out the equations of the ellipse for the first quadrant in parametric form:

x = a cos t, y = b sin t (0 ≤ t ≤ π/2).
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We have
√

(x′
t)2 + (y′t)2 =

√
a2 sin2 t + b2 cos2 t. To evaluate the integral, we use formula (7.4.1.1) with

z′t = 0:
∫

AB

xy dl =
∫ π/2

0
(a cos t) (b sin t)

√
a2 sin2 t + b2 cos2 t dt

=
ab

2

∫ π/2

0
sin 2t

√
a2

2
(1 – cos 2t) +

b2

2
(1 + cos 2t) dt =

ab

4

∫ 1

–1

√
a2 + b2

2
+
b2 – a2

2
z dz

=
ab

4
2

b2 – a2
2
3

(
a2 + b2

2
+
b2 – a2

2
z

)3/2∣∣
∣
∣

1

–1
=
ab

3
a2 + ab + b2

a + b
.

7.4.1-3. Applications of the line integral of the first kind.

1. Length of a curve
�
AB:

L =
∫

AB
dl.

2. Mass of a material curve
�
AB with a given line density γ = γ(x, y, z):

m =
∫

AB
γ dl.

3. Coordinates of the center of mass of a material curve
�
AB:

xc =
1
m

∫

AB
xγ dl, yc =

1
m

∫

AB
yγ dl, zc =

1
m

∫

AB
zγ dl.

To a material line with uniform density there corresponds γ = const.

7.4.2. Line Integral of the Second Kind

7.4.2-1. Definition of the line integral of the second kind.

Let a vector field

�a(x, y, z) = P (x, y, z)�i + Q(x, y, z)�j +R(x, y, z)�k

and a piecewise smooth curve
�
AB be defined in some domain in R

3. By dividing the curve
by points A = M0, M1, M2, . . . , Mn = B into n subcurves, we obtain a partition Ln. Let
us select on each arc

�
Mi–1Mi an arbitrary point (xi, yi, zi), i = 1, 2, . . . ,n, and make up a

sum of dot products

sn =
n∑

i=1

�a(xi, yi, zi) ⋅ −−−−−→Mi–1Mi,

called an integral sum.
If there exists a finite limit of the sums sn as λ(Ln) → 0 that depends on neither the

partition Ln nor the selection of the points (xi, yi, zi), then it is called the line integral of
the second kind of the vector field �a(x, y, z) along the curve

�
AB and is denoted

∫

AB
�a ⋅ d�r, or

∫

AB
P dx + Qdy +Rdz.
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The line integral of the second kind depends on the direction the path is traced, so that
∫

AB
�a ⋅ d�r = –

∫

BA
�a ⋅ d�r.

A line integral over a closed contour C is called a closed path integral (or a circulation)
of a vector field �a around C and is denoted

∮

C
�a ⋅ d�r.

Physical meaning of the line integral of the second kind:
∫

AB
�a ⋅ d�r determines the

work done by the vector field �a(x, y, z) on a particle of unit mass when it travels along the
arc

�
AB.

7.4.2-2. Computation of the line integral of the second kind.

1◦. For a plane curve
�
AB defined as y = y(x), with x � [a, b], and a plane vector field �a,

we have ∫

AB
�a ⋅ d�r =

∫ b

a

[
P
(
x, y(x)

)
+Q
(
x, y(x)

)
y′x(x)

]
dx.

2◦. Let
�
AB be defined by a vector equation�r = �r(t) = x(t)�i + y(t)�j + z(t)�k, with t � [α,β].

Then
∫

AB

�a ⋅ d�r =
∫

AB

P dx +Qdy +Rdz

=
∫ β

α

[
P
(
x(t), y(t), z(t)

)
x′t(t) +Q

(
x(t), y(t), z(t)

)
y′t(t) +R

(
x(t), y(t), z(t)

)
z′t(t)

]
dt. (7.4.2.1)

For a plane curve
�
AB and a plane vector field �a, one should set z′(t) = 0 in (7.4.2.1).

7.4.2-3. Potential and curl of a vector field.

1◦. A vector field �a = �a(x, y, z) is called potential if there exists a function Φ(x, y, z) such
that

�a = grad Φ, or �a =
∂Φ
∂x
�i +

∂Φ
∂y
�j +

∂Φ
∂z

�k.

The function Φ(x, y, z) is called a potential of the vector field �a. The line integral of the
second kind of a potential vector field along a path

�
AB is equal to the increment of the

potential along the path: ∫

AB
�a ⋅ d�r = Φ

∣∣
B

– Φ
∣∣
A

.

2◦. The curl of a vector field �a(x, y, z) = P�i + Q�j +R�k is the vector defined as

curl�a =

(
∂R

∂y
–
∂Q

∂z

)
�i +

(
∂P

∂z
–
∂R

∂x

)
�j +

(
∂Q

∂x
–
∂P

∂y

)
�k =

∣∣
∣∣
∣∣

�i �j �k
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣
∣∣
∣∣

.

The vector curl�a characterizes the rate of rotation of �a and can also be described as the
circulation density of �a. Alternative notations: curl�a ≡ ∇ × �a ≡ rot�a.
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7.4.2-4. Necessary and sufficient conditions for a vector field to be potential.

Let U be a simply connected domain in R
3 (i.e., a domain in which any closed contour can

be deformed to a point without leaving U ) and let �a(x, y, z) be a vector field in U . Then the
following four assertions are equivalent to each other:

(1) the vector field �a is potential;
(2) curl�a ≡�0;
(3) the circulation of �a around any closed contour C � U is zero, or, equivalently,∮

C �a ⋅ d�r = 0;

(4) the integral
∫

AB
�a ⋅ d�r is independent of the shape of

�
AB � U (it depends on the

starting and the finishing point only).

7.4.3. Surface Integral of the First Kind

7.4.3-1. Definition of the surface integral of the first kind.

Let a function f (x, y, z) be defined on a smooth surface D. Let us break up this surface into
n elements (cells) that do not have common internal points and let us denote this partition
by Dn. The diameter, λ(Dn), of a partition Dn is the largest of the diameters of the cells (see
Paragraph 7.3.4-1). Let us select in each cell an arbitrary point (xi, yi, zi), i = 1, 2, . . . , n,
and make up an integral sum

sn =
n∑

i=1

f (xi, yi, zi) ΔSi,

where ΔSi is the area of the ith element.
If there exists a finite limit of the sums sn as λ(Dn) → 0 that depends on neither the

partition Dn nor the selection of the points (xi, yi, zi), then it is called the surface integral
of the first kind of the function f (x, y, z) and is denoted

∫∫

D
f (x, y, z) dS.

7.4.3-2. Computation of the surface integral of the first kind.

1◦. If a surface D is defined by an equation z = z(x, y), with (x, y) � D1, then

∫∫

D
f (x, y, z) dS =

∫∫

D1

f
(
x, y, z(x, y)

)√
1 + (z′x)2 + (z′y)2 dx dy.

2◦. If a surfaceD is defined by a vector equation�r =�r(x, y, z)=x(u, v)�i+y(u, v)�j+z(u, v)�k,
where (u, v) � D2, then

∫∫

D
f (x, y, z) dS =

∫∫

D2

f
(
x(u, v), y(u, v), z(u, v)

)|�n(u, v)| du dv,

where �n(u, v) = �ru × �rv is the unit normal to the surface D; the subscripts u and v denote
the respective partial derivatives.
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7.4.3-3. Applications of the surface integral of the first kind.

1◦. Area of a surface D:

SD =
∫∫

D
dS.

2◦. Mass of a material surface D with a surface density γ = γ(x, y, z):

m =
∫∫

D
γ(x, y, z) dS.

3◦. Coordinates of the center of mass of a material surface D:

xc =
1
m

∫∫

D
xγ dS, yc =

1
m

∫∫

D
yγ dS, zc =

1
m

∫∫

D
zγ dS.

To the uniform surface density there corresponds γ = const.

7.4.4. Surface Integral of the Second Kind

7.4.4-1. Definition of the surface integral of the second kind.

Let D be an oriented surface defined by an equation

�r = �r(u, v) = x(u, v)�i + y(u, v)�j + z(u, v)�k,

where u and v are parameters. The fact that D is oriented means that every point M � D
has an associated unit normal �n(M ) = �n(u, v) continuously dependent on M . Two cases
are possible: (i) the associated unit normal is �n(u, v) = �ru × �rv or (ii) the associated unit
normal is opposite, �n(u, v) = �rv ×�ru = –�ru ×�rv.

Remark. If a surface is defined traditionally by an equation z = z(x, y), its representation in vector form
is as follows: �r = �r(x, y) = x�i + y�j + z(x, y)�k.

Let a vector field �a(x, y, z) = P�i +Q�j +R�k be defined on a smooth oriented surface D.
Let us perform a partition, Dn, of the surface D into n elements (cells) that do not have
common internal points. Also select an arbitrary point Mi(xi, yi, zi), i = 1, 2, . . . ,n, for

each cell and make up an integral sum sn =
n∑

i=1
�a(xi, yi, zi) ⋅ �n◦

i ΔSi, where ΔSi is area of

the ith cell and �n◦
i is the unit normal to the surface at the point Mi, the orientation of which

coincides with that of the surface.
If there exists a finite limit of the sums sn as λ(Dn) → 0 that depends on neither the

partition Dn nor the selection of the pointsMi(xi, yi, zi), then it is called the surface integral
of the second kind (or the flux of the vector field �a across the oriented surface D) and is
denoted ∫∫

D
�a(x, y, z) ⋅ −→dS, or

∫∫

D
P dy dz +Qdxdz + Rdxdy.

Note that the surface integral of the second kind changes its sign when the orientation of
the surface is reversed.
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7.4.4-2. Computation of the surface integral of the second kind.

1◦. If a surface D is defined by a vector equation �r = �r(u, v), where (u, v) � D1, then

∫∫

D
�a(x, y, z) ⋅ −→dS = �

∫∫

D1

�a
(
x(u, v), y(u, v), z(u, v)

)
⋅ �n(u, v) du dv.

The plus sign is taken if the unit normal associated with the surface is �n(u, v) =�ru ×�rv, and
the minus sign is taken in the opposite case.

2◦. If a surface D is defined by an equation z = z(x, y), with (x, y) � D2, then the normal
�n(x, y) = �rx ×�ry = –zx�i – zy�j + �k orients the surface D “upward,” in the positive direction
of the z-axis; the subscripts x and y denote the respective partial derivatives. Then

∫∫

D
�a ⋅ −→dS = �

∫∫

D2

(
–zxP – zyQ +R

)
dx dy,

where P = P
(
x, y, z(x, y)

)
, Q = Q

(
x, y, z(x, y)

)
, and R = R

(
x, y, z(x, y)

)
. The plus sign

is taken if the surface has the “upward” orientation, and the minus sign is chosen in the
opposite case.

7.4.5. Integral Formulas of Vector Calculus

7.4.5-1. Ostrogradsky–Gauss theorem (divergence theorem).

Let a vector field�a(x, y, z) = P (x, y, z)�i +Q(x, y, z)�j +R(x, y, z)�k be continuously differ-
entiable in a finite simply connected domain V ⊂ R

3 oriented by the outward normal and
let S denote the boundary of V . Then the Ostrogradsky–Gauss theorem (or the divergence
theorem) holds: ∫∫

S
�a ⋅ −→dS =

∫∫∫

V
div�a dx dy dz,

where div�a is the divergence of the vector �a, which is defined as follows:

div�a =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
.

Thus, the flux of a vector field across a closed surface in the outward direction is equal
to the triple integral of the divergence of the vector field over the volume bounded by the
surface. In coordinate form, the Ostrogradsky–Gauss theorem reads

∫∫

S
P dy dz +Qdxdz +Rdxdy =

∫∫∫

V

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dx dy dz.

7.4.5-2. Stokes’s theorem (curl theorem).

1◦. Let a vector field �a(x, y, z) be continuously differentiable in a domain of the three-
dimensional space R

3 that contains an oriented surface D. The orientation of a surface
uniquely defines the direction in which the boundary of the surface is traced; specifically,
the boundary is traced counterclockwise when looked at from the direction of the normal to
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the surface. Then the circulation of the vector field around the boundary C of the surface D
is equal to the flux of the vector curl�a across D:

∮

C
�a ⋅ d�r =

∫∫

D
curl�a ⋅ −→dS.

In coordinate notation, Stokes’s theorem reads
∮

C
P dx+Qdy+Rdz =

∫∫

D

(
∂R

∂y
–
∂Q

∂z

)
dy dz+

(
∂P

∂z
–
∂R

∂x

)
dx dz+

(
∂Q

∂x
–
∂P

∂y

)
dx dy.

2◦. For a plane vector field �a(x, y) = P (x, y)�i + Q(x, y)�j, Stokes’s theorem reduces to
Green’s theorem: ∮

C
P dx + Qdy =

∫∫

D

(
∂Q

∂x
–
∂P

∂y

)
dx dy,

where the contour C of the domain D on the x, y plane is traced counterclockwise.

7.4.5-3. Green’s first and second identities. Gauss’s theorem.

1◦. Let Φ = Φ(x, y, z) and Ψ = Ψ(x, y, z) be twice continuously differentiable functions
defined in a finite simply connected domain V ⊂ R

3 bounded by a piecewise smooth
boundary S.

Then the following formulas hold:
∫∫∫

V
ΨΔΦ dV +

∫∫∫

V
∇Φ ⋅ ∇Ψ dV =

∫∫

S
Ψ
∂Φ
∂n

dS (Green’s first identity),
∫∫∫

V
(ΨΔΦ – ΦΔΨ) dV =

∫∫

S

(
Ψ
∂Φ
∂n

– Φ
∂Ψ
∂n

)
dS (Green’s second identity),

where ∂
∂n denotes a derivative along the (outward) normal to the surface S, and Δ is the

Laplace operator.

2◦. In applications, the following special cases of the above formulas are most common:
∫∫∫

V
ΦΔΦ dV +

∫∫∫

V
|∇Φ|2 dV =

∫∫

S
Φ
∂Φ
∂n

dS (first identity with Ψ = Φ),
∫∫∫

V
ΔΦ dV =

∫∫

S

∂Φ
∂n

dS (second identity with Ψ = 1).
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Chapter 8

Series

8.1. Numerical Series and Infinite Products
8.1.1. Convergent Numerical Series and Their Properties. Cauchy’s

Criterion

8.1.1-1. Basic definitions.

Let {an} be a numerical sequence. The expression

a1 + a2 + · · · + an + · · · =
∞∑

n=1

an

is called a numerical series (infinite sum, infinite numerical series), an is the generic term
of the series, and

sn = a1 + a2 + · · · + an =
n∑

k=1

ak

is the nth partial sum of the series. If there exists a finite limit lim
n→∞ sn = S, the series

is called convergent, and S is called the sum of the series. In this case, one writes
∞∑

n=1
an = S. If lim

n→∞ sn does not exist (or is infinite), the series is called divergent. The

series an+1 + an+2 + an+3 + · · · is called the nth remainder of the series.

Example 1. Consider the series
∞∑

n=1
aqn–1 = a + aq + aq2 + · · · whose terms form a geometric progression

with ratio q. This series is convergent for |q| < 1 (its sum has the form S = a
1–q

) and is divergent for |q| ≥ 1.

8.1.1-2. Necessary condition for a series to be convergent. Cauchy’s criterion.

1. A necessary condition for a series to be convergent. For a convergent series
∞∑

n=1
an,

the generic term must tend to zero, lim
n→∞an = 0. If lim

n→∞an ≠ 0, then the series is divergent.

Example 2. The series
∞∑

n=1
cos

1
n

is divergent, since its generic term an = cos
1
n

does not tend to zero as

n→ ∞.

The above necessary condition is insufficient for the convergence of a series.

Example 3. Consider the series
∞∑

n=1

1√
n

. Its generic term tends to zero, lim
n→∞

1√
n

= 0, but the series

∞∑

n=1

1√
n

is divergent because its partial sums are unbounded,

sn =
1√

1
+

1√
2

+ · · · +
1√
n

> n
1√
n

=
√
n→ ∞ as n→ ∞.

337



338 SERIES

2. Cauchy’s criterion of convergence of a series. A series
∞∑

n=1
an is convergent if and

only if for any ε > 0 there is N = N (ε) such that for all n > N and any positive integer k,
the following inequality holds: |an+1 + · · · + an+k | < ε.

8.1.1-3. Properties of convergent series.

1. If a series is convergent, then any of its remainders is convergent. Removal or
addition of finitely many terms does not affect the convergence of a series.

2. If all terms of a series are multiplied by a nonzero constant, the resulting series
preserves the property of convergence or divergence (its sum is multiplied by that constant).

3. If the series
∞∑

n=1
an and

∞∑

n=1
bn are convergent and their sums are equal to S1 and S2,

respectively, then the series
∞∑

n=1
(an � bn) are convergent and their sums are equal to S1 �S2.

4. Terms of a convergent series can be grouped in successive order; the resulting series
has the same sum. In other words, one can insert brackets inside a series in an arbitrary
order. The inverse operation of opening brackets is not always admissible. Thus, the series
(1 – 1)+(1 – 1)+ · · · is convergent (its sum is equal to zero), but, after removing the brackets,
we obtain the divergent series 1 – 1 + 1 – 1 + · · · (its generic term does not tend to zero).

8.1.2. Convergence Criteria for Series with Positive (Nonnegative)
Terms

8.1.2-1. Basic convergence (divergence) criteria for series with positive terms.

1. The first comparison criterion. If 0 ≤ an ≤ bn (starting from some n), then conver-

gence of the series
∞∑

n=1
bn implies convergence of

∞∑

n=1
an; and divergence of the series

∞∑

n=1
an

implies divergence of
∞∑

n=1
bn.

2. The second convergence criterion. Suppose that there is a finite limit

lim
n→∞

an
bn

= σ,

where 0 < σ < ∞. Then
∞∑

n=1
an is convergent (resp., divergent) if and only if

∞∑

n=1
bn is

convergent (resp., divergent).
Corollary. Suppose that an+1/an ≤ bn+1/bn starting from some N (i.e., for n > N ).

Then convergence of the series
∞∑

n=1
bn implies convergence of

∞∑

n=1
an, and divergence of

∞∑

n=1
an implies divergence of

∞∑

n=1
bn.

3. D’Alembert criterion. Suppose that there exists the limit (finite or infinite)

lim
n→∞

an+1

an
= D.
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If D < 1, then the series
∞∑

n=1
an is convergent. If D > 1, then the series is divergent. For

D = 1, the D’Alembert criterion cannot be used for deciding whether the series is convergent
or divergent.

Example 1. Let us examine convergence of the series
∞∑

n=1
nkxn withx > 0, using the D’Alembert criterion.

Taking an = nkxn, we get
an+1

an
=

(
1 +

1
n

)k

x→ x as n→ ∞.

Therefore, D = x. It follows that the series is convergent for x < 1 and divergent for x > 1.

4. Cauchy’s criterion. Suppose that there exists the limit (finite or infinite)

lim
n→∞

n
√
an = K.

For K < 1, the series
∞∑

n=1
an is convergent; for K > 1, the series is divergent. For K = 1,

the Cauchy criterion cannot be used to establish convergence of a series.

Remark. The Cauchy criterion is stronger than the D’Alembert criterion, but the latter is simpler than the
former.

5. Gauss’ criterion. Suppose that the ratio of two consecutive terms of a series can be
represented in the form

an
an+1

= λ +
μ

n
+ o

(
1
n

)
as n→ ∞.

The series
∞∑

n=1
an is convergent if λ > 1 or λ = 1, μ > 1. The series is divergent if λ < 1 or

λ = 1, μ ≤ 1.
6. Maclaurin–Cauchy integral criterion. Let f (x) be a nonnegative nonincreasing

continuous function on the interval 1 ≤ x < ∞. Let f (1) = a1, f (2) = a2, . . . , f (n) = an, . . .

Then the series
∞∑

n=1
an is convergent if and only if the improper integral

∫ ∞
1

f (x) dx is

convergent.

Example 2. The harmonic series
∞∑

n=1

1
n

= 1 +
1
2

+
1
3

+ · · · is divergent, since the integral
∫ ∞

1

1
x
dx is

divergent. In a similar way, one finds that the series
∞∑

n=1

1
nα

is convergent for α > 1 and divergent for α ≤ 1.

8.1.2-2. Other criteria of convergence (divergence) of series with positive terms.

1. Raabe criterion. Suppose that there exists the limit (finite or infinite)

lim
n→∞n

(
an
an+1

– 1
)

= R.

Then, for R > 1 the series
∞∑

n=1
an is convergent, and for R < 1 it is divergent. For R = 1,

the Raabe criterion is inapplicable.
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2. Bertrand criterion. Suppose that there exists the limit (finite or infinite)

lim
n→∞ lnn

[
n

(
an
an+1

– 1
)

– 1
]

= B.

Then, for B > 1 the series
∞∑

n=1
an is convergent, and for B < 1 it is divergent. For R = 1, the

Bertrand criterion is inapplicable.
3. Kummer criterion. Let bn be an arbitrary sequence with positive terms. Suppose that

there exists the limit (finite or infinite)

lim
n→∞

(
bn

an
an+1

– bn+1

)
= K.

Then, for K > 0, the series
∞∑

n=1
an is convergent. If K < 0 and the additional condition

∞∑

n=1

1
bn

= ∞ holds, then the series is divergent.

Remark. From the Kummer criterion, we obtain the D’Alembert criterion (taking bn = 1), the Raabe
criterion (taking bn = n), and the Bertrand criterion (taking bn = n lnn).

4. Ermakov criterion. Let f (x) be a positive monotonically decreasing continuous
function on the interval 1 ≤ x < ∞. Let f (1) = a1, f (2) = a2, . . . , f (n) = an, . . . Then the
following implications hold:

1) If
exf (ex)
f (x)

≤ q < 1, then the series
∞∑

n=1

an is convergent.

2) If
exf (ex)
f (x)

≥ 1, then the series
∞∑

n=1

an is divergent.

Here, it suffices to have the inequalities on the left for sufficiently large x ≥ x0.
5. Generalized Ermakov criterion. Let f (x) be the function involved in the Ermakov

criterion, and let ϕ(x) be an arbitrary positive monotonically increasing function that has a
continuous derivative and satisfies the inequality ϕ(x) > x. Then the following implications
hold:

1) If
ϕ(x)f

(
ϕ(x)

)

f (x)
≤ q < 1, then the series

∞∑

n=1

an is convergent.

2) If
ϕ(x)f

(
ϕ(x)

)

f (x)
≥ 1, then the series

∞∑

n=1

an is divergent.

Here, it suffices to have the inequalities on the left for sufficiently large x ≥ x0.
6. Sapogov criterion. Let a1, a2, . . . be a monotonically increasing sequence. Then the

series ∞∑

n=1

(
1 –

an
an+1

) [
as well as

∞∑

n=1

(
an
an+1

– 1
)]

is convergent, provided that the sequence an is bounded (an ≤ L). Otherwise, this series is
divergent.
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7. Special Cauchy criterion. Suppose that a1, a2, . . . is a monotonically decreasing

sequence. Then the series
∞∑

n=1
an is convergent (resp., divergent) if and only if the series

∞∑

n=1
2na2n is convergent (resp., divergent).

8. Abel–Dini criterion. If the series
∞∑

n=1
an is divergent and sn denotes its partial sum,

then the series
∞∑

n=1

an
sn

is also divergent, while the series
∞∑

n=1

an
s1+σ
n

(σ > 0) is convergent.

9. Dini criterion. If the series
∞∑

n=1
an is convergent and γn denotes its remainder after

the nth term, then the series
∞∑

n=1

an
γn–1

is divergent, while the series
∞∑

n=1

an
γσn–1

(0 < σ < 1) is

convergent.
10. Bugaev criterion. If the function ϕ′(x)u

(
ϕ(x)

)
is monotone for large enough x,

then the series
∞∑

n=1
u(n) and

∞∑

n=1
ϕ′(n)u

(
ϕ(n)

)
are convergent or divergent simultaneously.

11. Lobachevsky criterion. Let u(x) be a monotonically decreasing function defined for

all x. Then the series
∞∑

n=1
u(n) is convergent or divergent if and only if the series

∞∑

k=1
pk2–k

is convergent or divergent, where pk is defined from the relation u(pk) = 2–k .

8.1.3. Convergence Criteria for Arbitrary Numerical Series. Absolute
and Conditional Convergence

8.1.3-1. Arbitrary series. Leibnitz, Abel, and Dirichlet convergence criteria.

1. Leibnitz criterion. Suppose that the terms an of a series
∞∑

n=1
an have alternating signs,

their absolute values form a nonincreasing sequence, and an → 0 as n → ∞. Then this
“alternating” series is convergent. If S is the sum of the series and sn is its nth partial sum,
then the following inequality holds for the error |S – sn| ≤ |an+1|.

Example 1. The series 1 –
1

22 +
1

33 –
1

44 +
1

55 – · · · is convergent by the Leibnitz criterion. Taking

S ≈ s4 = 1 –
1

22 +
1

33 –
1

44 , we obtain the error less than a5 =
1

55 = 0.00032.

2. Abel criterion. Consider the series

∞∑

n=1

anbn = a1b1 + a2b2 + · · · + anbn + · · · , (8.1.3.1)

where an and bn are two sequences or real numbers.
Series (8.1.3.1) is convergent if the series

∞∑

n=1

bn = b1 + b2 + · · · + bn + · · · (8.1.3.2)

is convergent and the an form a bounded monotone sequence (|an| < K).
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3. Dirichlet criterion. Series (8.1.3.1) is convergent if partial sums of series (8.1.3.2)
are bounded uniformly in n,

∣
∣∣
n∑

k=1

bk

∣
∣∣ ≤ M (n = 1, 2, . . . ),

and the sequence an → 0 is monotone.

Example 2. Consider the series
∞∑

n=1
an sin(nx), where an → 0 is a monotonically decreasing sequence.

Taking bn = sin(nx) and using a well-known identity, we find the partial sum

sn =
n∑

k=1

sin(kx) =
cos
( 1

2 x
)

– cos
[(
n + 1

2

)
x
)

2 sin
( 1

2x
) (x ≠ 2mπ; m = 0, �1, �2, . . .).

This sum is bounded for x ≠ 2mπ:

|sn| ≤
1∣

∣sin
( 1

2 x
)∣∣ .

Therefore, by the Dirichlet criterion, the series
∞∑

n=1
an sin(nx) is convergent for any x ≠ 2mπ. Direct verification

shows that this series is also convergent for x = 2mπ (since all its terms at these points are equal to zero).

Remark. The Leibnitz and the Able criteria can be deduced from the Dirichlet criterion.

8.1.3-2. Absolute and conditional convergence.

1. Absolutely convergent series. A series
∞∑

n=1
an (with terms of arbitrary sign) is called

absolutely convergent if the series
∞∑

n=1
|an| is convergent.

Any absolutely convergent series is convergent. In order to establish absolute conver-
gence of a series, one can use all convergence criteria for series with nonnegative terms
given in Subsection 8.1.2 (in these criteria, an should be replaced by |an|).

Example 3. The series 1 +
1

22 –
1

32 –
1

42 +
1

52 +
1

62 – · · · is absolutely convergent, since the series with

the absolute values of its terms,
∞∑

n=1

1
n2 , is convergent (see the second series in Example 2 of Subsection 8.1.2

for α = 2).

2. Conditionally convergent series. A convergent series
∞∑

n=1
an is called conditionally

convergent if the series
∞∑

n=1
|an| is divergent.

Example 4. The series 1 –
1
2

+
1
3

–
1
4

+ · · · is conditionally convergent, since it is convergent (by the

Leibnitz criterion), but the series with absolute values of its terms is divergent (it is a harmonic series; see
Example 2 in Subsection 8.1.2).

Any rearrangement of the terms of an absolutely convergent series (in particular, a
convergent series with nonnegative terms) neither violates its absolute convergence nor
changes its sum. Conditionally convergent series do not possess this property: the terms of
a conditionally convergent series can be rearranged in such order that the sum of the new
series becomes equal to any given value; its terms can also be rearranged so as to result in
a divergent series.
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8.1.4. Multiplication of Series. Some Inequalities

8.1.4-1. Multiplication of series. Cauchy, Mertens, and Abel theorems.

A product of two infinite series
∞∑

n=0
an and

∞∑

n=0
bn is understood as a series whose terms

have the form anbm (n, m = 0, 1, . . .). The products anbm can be ordered to form a series
in many different ways. The following theorems allow us to decide whether it is possible
to multiply series.

CAUCHY THEOREM. Suppose that the series
∞∑

n=0
an and

∞∑

n=0
bn are absolutely convergent

and their sums are equal to A and B, respectively. Then any product of these series
is an absolutely convergent series and its sum is equal to AB. The following Cauchy
multiplication formula holds:

( ∞∑

n=0

an

)( ∞∑

n=0

bn

)
=

∞∑

n=0

( n∑

m=0

ambn–m

)
. (8.1.4.1)

MERTENS THEOREM. The Cauchy multiplication formula (8.1.4.1) is also valid if one of

the series,
∞∑

n=0
an or

∞∑

n=0
bn, is absolutely convergent and the other is (conditionally) conver-

gent. In this case, the product is a convergent series, possibly, not absolutely convergent.
ABEL THEOREM. Consider two convergent series with sums A and B. Suppose that the

product of these series in the form of Cauchy (8.1.4.1) is a convergent series with sum C .
Then C = AB.

8.1.4-2. Inequalities.

1. Generalized triangle inequality:
∣∣
∣
∞∑

n=1

an

∣∣
∣ ≤

∞∑

n=1

|an|.

2. Cauchy inequality (Cauchy–Bunyakovsky inequality):
( ∞∑

n=1

anbn

)2
≤
( ∞∑

n=1

a2
n

)( ∞∑

n=1

b2
n

)
.

3. Minkowski inequality:

( ∞∑

n=1

|an + bn|p
)1
p ≤
( ∞∑

n=1

|an|p
)1
p +
( ∞∑

n=1

|bn|p
)1
p , p ≥ 1.

4. Hölder inequality (for p = 2 coincides with the Cauchy inequality):

∣∣
∣
∞∑

n=1

anbn

∣∣
∣ ≤
( ∞∑

n=1

|an|p
)1
p
( ∞∑

n=1

|bn|
p
p–1
)p–1
p , p > 1.

5. An inequality with π:
( ∞∑

n=1

an

)4
≤ π2

( ∞∑

n=1

a2
n

)( ∞∑

n=1

n2a2
n

)
.

In all these inequalities it is assumed that the series in the right-hand sides are convergent.
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8.1.5. Summation Methods. Convergence Acceleration

8.1.5-1. Some simple methods for calculating the sum of a series.

THEOREM 1. Suppose that the terms of a series
∞∑

n=1
an can be represented in the form

an = bn – bn+1, where bn is a sequence with a finite limit b∞. Then
∞∑

n=1

an = b1 – b∞.

Example 1. Let us find the sum of the infinite series S =
∞∑

n=1

1
n(n + 1)

.

We have

an =
1

n(n + a)
=

1
n

–
1

n + 1
=⇒ bn =

1
n

.

Since b1 = 1 and lim
n→∞

bn = 0, we get S = 1.

THEOREM 2. Suppose that the terms of a series
∞∑

n=0
an can be represented in the form

an = bn – bn+m,

where m is a positive integer and the sequence bn has a finite limit b∞. Then
∞∑

n=1

an = b0 + b1 + · · · + bm–1 – mb∞.

THEOREM 3. Suppose that the terms of a series
∞∑

n=0
an can be represented in the form

an = α1bn+1 + α2bn+2 + · · · + αmbn+m, (8.1.5.1)

where m ≥ 2 is a fixed positive integer, the sequence bn has a finite limit b∞, and αk satisfy
the condition

α1 + α2 + · · · + αm = 0. (8.1.5.2)

Then the series is convergent and
∞∑

n=0

an =α1b1 +(α1 +α2)b2 +· · ·+(α1 +α2 +· · ·+αm–1)bm–1 +[α2 +2α3 +· · ·+(m–1)αm]b∞.

(8.1.5.3)

Example 2. For the series
∞∑

n=0

4n + 6
(n + 1)(n + 2)(n + 3)

, we have

an =
4n + 6

(n + 1)(n + 2)(n + 3)
=

1
n + 1

+
2

n + 2
–

3
n + 3

,

which corresponds to the following values in (8.1.5.1):

α1 = 1, α2 = 2, α3 = –3, bn =
1
n

.

Thus, condition (8.1.5.2) holds: 1 + 2 – 3 = 0, and the sequence bn tends to zero: b∞ = 0. Using (8.1.5.3), we
find the sum of the series

∞∑

n=0

4n + 6
(n + 1)(n + 2)(n + 3)

= 1 ⋅ 1 + (1 + 2)
1
2

=
5
2

.
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8.1.5-2. Summation of series with the help of Laplace transforms.

Let a(k) be the Laplace transform of a given function f (x),

a(k) =
∫ ∞

0
e–kxf (x) dx.

Then the following summation formulas hold:

∞∑

k=1

a(k) =
∫ ∞

0

f (x) dx
ex – 1

,

∞∑

k=1

(–1)ka(k) = –
∫ ∞

0

f (x) dx
ex + 1

,

(8.1.5.4)

provided that the series are convergent.

Example 3. It is easy to check that

a

k2 + a2 =
∫ ∞

0
e–kx sin(ax)dx.

Therefore, using the first formula in (8.1.5.4), we get

∞∑

k=1

1
k2 + a2 =

1
a

∫ ∞

0

sin(ax) dx
ex – 1

=
π

2a
coth(πa) –

1
2a2 .

8.1.5-3. Kummer and Abel transformations. Acceleration of convergence of series.

1◦. Kummer transformation. Consider a series with positive (nonnegative) terms

∞∑

n=1

an (8.1.5.5)

and an auxiliary series with a finite sum

B =
∞∑

n=1

bn. (8.1.5.6)

Suppose that there is a finite limit

K = lim
n→∞

bn
an

≠ 0.

Under these conditions, the series (8.1.5.5) is convergent and the following identity holds:

∞∑

n=1

an =
B

K
+

∞∑

n=1

(
1 –

1
K

bn
an

)
an. (8.1.5.7)

The right-hand side of (8.1.5.7) is called the Kummer transformation of the given series.
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Remark. The Kummer transformation is used for accelerating convergence of series, since the generic

term a(1)
n =

(
1 –

1
K

bn
an

)
an of the transformed series (8.1.5.7) tends to zero faster that the generic term {an}

of the original series (8.1.5.5): lim
n→∞

a(1)
n /an = 0. The auxiliary sequence {bn} is chosen in such a way that

the sum (8.1.5.6) is known beforehand.

2◦. Abel transformation:

∞∑

n=1

anbn =
∞∑

n=1

(an – an+1)Bn, Bn =
n∑

k=1

bk.

Here, it is assumed that the sequence {Bn} is bounded and lim
n→∞an = 0 (for example, these

conditions are satisfied if the sequence {an} has finitely many nonzero terms).

Remark. The Abel transformation is used for accelerating convergence of series whose convergence is
slow (if lim

n→∞
an+1/an = 1 and bn = O(1)).

8.1.6. Infinite Products

8.1.6-1. Convergent and divergent infinite products.

An infinite product is an expression of the form

a1a2a3 · · · =
∞∏

n=1

an (an ≠ 0),

where an are real (in the general case, complex) numbers. The expression

pn = a1a2 · · · an =
n∏

k=1

ak (8.1.6.1)

is called a finite product.
One says that an infinite product is convergent to p if there exists a finite nonzero limit

of the partial products:

lim
n→∞

n∏

k=1

ak = p. (8.1.6.2)

If there is no such limit, or p = ∞, or p = 0, one says that the infinite product is divergent.
In the last case one says that the infinite product diverges to zero (p = 0).

The simplest examples of infinite products
∞∏

n=1
an:

for an = 1 the infinite product is convergent, pn → 1;

for an = (–1)n the infinite product is divergent, pn has no limit;

for an = n the infinite product is divergent, pn → ∞;

for an = 1/n the infinite product is divergent to zero, pn → 0.
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8.1.6-2. Infinite products with positive factors.

Taking logarithm of relation (8.1.6.1), one can reduce the problem of convergence of infinite
products with positive factors an to the problem of convergence of partial sums of numerical
series:

sn ≡ ln pn =
n∑

k=1

ln ak.

Therefore, in order to examine convergence of infinite products, one can use the convergence
criteria for infinite series considered in Subsections 8.1.2–8.1.3 (with an replaced by ln an).

In a similar way, one can examine convergence of infinite products containing finitely
many negative factors (infinite products with infinitely many negative factors are divergent;
see Corollary in Paragraph 8.1.6-3). To that end, one should consider the part of the infinite
product with positive factors.

8.1.6-3. Necessary condition for an infinite product to be convergent.

If an infinite product
∞∏

n=1
an is convergent, then lim

n→∞an = 1; if lim
n→∞an ≠ 1, then the infinite

product is divergent. (This necessary condition is insufficient to ensure convergence of a
product.)

COROLLARY. For a convergent infinite product, there isN such that an > 0 for all n >N
(i.e., a convergent infinite product can have only finitely many negative factors).

8.1.6-4. Convergence criteria for infinite products.

In the criteria given below, Δn denotes the difference of the factor and its limit, which is
equal to 1 (see the above necessary condition of convergence):

Δn = an – 1.

THEOREM 1. Suppose that for sufficiently large n, the difference Δn does not change

sign. Then the infinite product
∞∏

n=1
an is convergent if and only if the series

∞∑

n=1

Δn (8.1.6.3)

is convergent.

THEOREM 2. If series (8.1.6.3) and the series

∞∑

n=1

Δ2
n

are convergent, then the infinite product
∞∏

n=1
an is convergent. (Here, the difference Δn may

change sign.)
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THEOREM 3 (AN ANALOGUE OF THE D’ALEMBERT THEOREM). Suppose that the terms
of an infinite product satisfy the necessary condition of convergence, i.e., an→ 1 as n→∞,
and there exists the limit (finite or infinite)

lim
n→∞

Δn+1

Δn
= lim
n→∞

an+1 – 1
an – 1

= D.

Then, for D < 1 the infinite product
∞∏

n=1
an is convergent, and for D > 1 it is divergent. (For

D = 1, this criterion is inapplicable.)

8.1.6-5. Absolute convergence of infinite products.

An infinite product
∞∏

n=1
an is said to be absolutely convergent if the product

∞∏

n=1
(1 + |Δn|) is

convergent.

THEOREM 4. An infinite product
∞∏

n=1
an is absolutely convergent if the series

∞∑

n=1
|Δn|

is convergent.

An infinite product is commutation convergent (i.e., its value does not depend on the
order of its factors) if and only if it is absolutely convergent.

8.2. Functional Series

8.2.1. Pointwise and Uniform Convergence of Functional Series

8.2.1-1. Convergence of a functional series at a point. Convergence domain.

A functional series is a series of the form

u1(x) + u2(x) + · · · + un(x) + · · · =
∞∑

n=1

un(x),

where un(x) are functions defined on a set X on the real axis. The series
∞∑

n=1
un(x) is called

convergent at a point x0 �X if the numerical series
∞∑

n=1
un(x0) is convergent. The set of all

x � X for which the functional series is convergent is called its convergence domain. The
sum of the series is a function of x defined on its convergence domain.

In order to find the convergence domain for a functional series, one can use the con-
vergence criteria for numerical series described in Subsections 8.1.2 and 8.1.3 (with the
variable x regarded as a parameter).

A series
∞∑

n=1
un(x) is called absolutely convergent on a set X if the series

∞∑

n=1
|un(x)| is

convergent on that set.
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Example. The functional series 1 + x + x2 + x3 + · · · is convergent for –1 < x < 1 (see Example 1 in

Subsection 8.1.1). Its sum is defined on this interval, S =
1

1 – x
.

The series
∞∑

k=n+1
uk(x) is called the remainder of a functional series

∞∑

n=1
un(x). For a

series convergent on a set X, the relation S(x) = sn(x) + rn(x) (sn(x) is the partial sum of
the series, rn(x) is the sum of its remainder) implies that lim

n→∞ rn(x) = 0 for x � X.

8.2.1-2. Uniformly convergent series. Condition of uniform convergence.

A functional series is called uniformly convergent on a set X if for any ε > 0 there is N

(depending on ε but not on x) such that for all n > N , the inequality
∣∣
∣

∞∑

k=n+1
uk(x)

∣∣
∣ < ε holds

for all x � X.
A necessary and sufficient condition of uniform convergence of a series. A series

∞∑

n=1
un(x) is uniformly convergent on a set X if and only if for any ε > 0 there is N

(independent of x) such that for all n > N and all m = 1, 2, . . . , the inequality

∣
∣∣
∣

n+m∑

k=n+1

uk(x)

∣
∣∣
∣ < ε

holds for all x � X.

8.2.2. Basic Criteria of Uniform Convergence. Properties of
Uniformly Convergent Series

8.2.2-1. Criteria of uniform convergence of series.

1. Weierstrass criterion of uniform convergence. A functional series
∞∑

n=1
un(x) is uni-

formly convergent on a set X if there is a convergent series
∞∑

n=1
an with nonnegative terms

such that |un(x)| ≤ an for all sufficiently large n and all x � X. The series
∞∑

n=1
an is called

a majorant series for
∞∑

n=1
un(x).

Example. The series
∞∑

n=1
(–1)n

sinnx
n2 is uniformly convergent for –∞ <x<∞, since

∣
∣
∣(–1)n

sinnx
n2

∣
∣
∣ ≤

1
n2 ,

and the numerical series
∞∑

n=1

1
n2 is convergent (see the second series in Example 2 in Subsection 8.1.2).

2. Abel criterion of uniform convergence of functional series. Consider a functional
series

∞∑

n=1

un(x)vn(x) = u1(x)v1(x) + u2(x)v2(x) + · · · + un(x)vn(x) + · · · , (8.2.2.1)

where un(x) and vn(x) are sequences of functions of the real variable x � [a, b].
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Series (8.2.2.1) is uniformly convergent on the interval [a, b] if the series
∞∑

n=1

vn(x) = v1(x) + v2(x) + · · · + vn(x) + · · · (8.2.2.2)

is uniformly convergent on [a, b] and the functions un(x) form a monotone sequence for
each x and are uniformly bounded (i.e., |un(x)| ≤K with a constantK independent of n, x).

3. Dirichlet criterion of uniform convergence of functional series. Series (8.2.2.1) is
uniformly convergent on the interval [a, b] if the partial sums of the series (8.2.2.2) are
uniformly bounded, i.e.,

∣
∣∣
n∑

k=1

vk(x)
∣
∣∣ ≤ M = const (x � [a, b], n = 1, 2, . . . ),

and the functions un(x) form a monotone sequence (for each x) that uniformly converges
to zero on [a, b] as n→ ∞.

8.2.2-2. Properties of uniformly convergent series.

Let
∞∑

n=1
un(x) be a functional series that is uniformly convergent on a segment [a, b], and let

S(x) be its sum. Then the following statements hold.

THEOREM 1. If all terms un(x) of the series are continuous at a point x0 � [a, b], then
the sum S(x) is continuous at that point.

THEOREM 2. If the terms un(x) are continuous on [a, b], then the series admits term-
by-term integration:

∫ b

a
S(x) dx =

∫ b

a

( ∞∑

n=1

un(x)

)
dx =

∞∑

n=1

∫ b

a
un(x) dx.

Remark. The condition of continuity of the functionsun (x) on [a, b] can be replaced by a weaker condition
of their integrability on [a, b].

THEOREM 3. If all terms of the series have continuous derivatives and the functional

series
∞∑

n=1
u′n(x) is uniformly convergent on [a, b], then the sum S(x) is continuously differ-

entiable on [a, b] and

S′(x) =

( ∞∑

n=1

un(x)

)′
=

∞∑

n=1

u′n(x)

(i.e., the series admits term-by-term differentiation).

8.3. Power Series
8.3.1. Radius of Convergence of Power Series. Properties of Power

Series
8.3.1-1. Abel theorem. Convergence radius of a power series.

A power series is a functional series of the form
∞∑

n=0

anx
n = a0 + a1x + a2x

2 + a3x
3 + · · · (8.3.1.1)
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(the constants a0, a1, . . . are called the coefficients of the power series), and also a series of
a more general form

∞∑

n=0

an(x – x0)n = a0 + a1(x – x0) + a2(x – x0)2 + a3(x – x0)3 + · · · ,

where x0 is a fixed point. Below, we consider power series of the first form, since the
second series can be transformed into the first by the replacement x̄ = x – x0.

ABEL THEOREM. A power series
∞∑

n=0
anx

n that is convergent for somex=x1 is absolutely

convergent for all x such that |x| < |x1|. A power series that is divergent for some x = x2 is
divergent for all x such that |x| > |x2|.

Remark. There exist series convergent for all x, for instance,
∞∑

n=1

xn

n!
. There are series convergent only

for x = 0, for instance,
∞∑

n=1
n! xn.

For a given power series (8.3.1.1), let R be the least upper bound of all |x| such that the
series (8.3.1.1) is convergent at point x. Thus, by the Abel theorem, the series is (absolutely)
convergent for all |x| < R, and the series is divergent for all |x| > R. The constant R is
called the radius of convergence of the power series, and the interval (–R,R) is called its
interval of convergence. The problem of convergence of a power series at the endpoints
of its convergence interval has to be studied separately in each specific case. If a series is
convergent only for x = 0, the convergence interval degenerates into a point (and R = 0); if
a series is convergent for all x, then, obviously, R = ∞.

8.3.1-2. Formulas for the radius of convergence of power series.

1◦. The radius of convergence of a power series (8.3.1.1) with finitely many zero terms can
be calculated by the formulas

R = lim
n→∞

∣
∣∣
∣
an
an+1

∣
∣∣
∣ (obtained from the D’Alembert criterion for numerical series),

R = lim
n→∞

1
n
√

|an|
(obtained from the Cauchy criterion for numerical series).

Example 1. For the power series
∞∑

n=1

3n

n
xn, using the first formula for the radius of convergence, we get

R = lim
n→∞

∣
∣
∣
an

an+1

∣
∣
∣ = lim

n→∞

∣
∣
∣
n + 1

3n

∣
∣
∣ =

1
3

.

Therefore, the series is absolutely convergent on the interval – 1
3 < x < 1

3 and is divergent outside that interval.

At the left endpoint of the interval, for x = – 1
3 , we have the conditionally convergent series

∞∑

n=1

(–1)n

n
, and at the

right endpoint, for x = 1
3 , we have the divergent numerical series

∞∑

n=1

1
n

. Thus, the series under consideration

is convergent on the semi-open interval
[
– 1

3 , 1
3

)
.

2◦. Suppose that a power series (8.3.1.1) is convergent at a boundary point of its convergence
interval, say, for x = R. Then its sum is left-hand continuous at that point,

lim
x→R–0

∞∑

n=0

anx
n =

∞∑

n=0

anR
n.
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Example 2. Having the expansion

ln(1 + x) = x –
x2

2
+
x3

3
– · · · + (–1)n+1 x

n

n
+ · · · (R = 1)

in the domain –1 < x < 1 and knowing that the series

1 –
1
2

+
1
3

– · · · + (–1)n+1 1
n

+ · · ·
is convergent (by the Leibnitz criterion for series with terms of alternating sign), we conclude that the sum of
the last series is equal to ln 2.

8.3.1-3. Properties of power series.

On any closed segment belonging to the (open) convergence interval of a power series,
the series is uniformly convergent. Therefore, on any such segment, the series has all the
properties of uniformly convergent series described in Subsection 8.2.2. Therefore, the
following statements hold:

1. A power series (8.3.1.1) admits term-by-term integration on any segment [0,x] for
|x| < R,

∫ x

0

( ∞∑

n=0

anx
n

)
dx =

∞∑

n=0

an
n + 1

xn+1

= a0x +
a1

2
x2 +

a2

3
x3 + · · · +

an
n + 1

xn+1 + · · · .

Remark 1. The value of x in this formula may coincide with an endpoint of the convergence interval
(x = –R and/or x = R), provided that series (8.3.1.1) is convergent at that point.

Remark 2. The convergence radii of the original series and the series obtained by its term-by-term
integration on the segment [0, x] coincide.

2. Inside the convergence interval (for |x| < R), the series admits term-by-term differ-
entiation of any order, in particular,

d

dx

( ∞∑

n=0

anx
n

)
=

∞∑

n=1

nanx
n–1

= a1 + 2a2x + 3a3x
2 + · · · + nanx

n–1 + · · · .

Remark 1. This statement remains valid for an endpoint of the convergence interval if the series (8.3.1.1)
is convergent at that point.

Remark 2. The convergence radii of the original series and the series obtained by its term-by-term
differentiation coincide.

8.3.2. Taylor and Maclaurin Power Series

8.3.2-1. Basic definitions.

Let f (x) is an infinitely differentiable function at a point x0. The Taylor series for this
function is the power series

∞∑

n=0

1
n!
f (n)(x0)(x – x0)n = f (x0) + f ′(x0)(x – x0) +

1
2
f ′′(x0)(x – x0)2 + · · · ,

where 0! = 1 and f (0)(x0) = f (x0).
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A special case of the Taylor series (for x0 = 0) is the Maclaurin series:

∞∑

n=0

1
n!
f (n)(0)xn = f (0) + f ′(0)x +

1
2
f ′′(0)x2 + · · · .

A formal Taylor series (Maclaurin series) for a function f (x) may be:

1) divergent for x ≠ x0,
2) convergent in a neighborhood of x0 to a function different from f (x),
3) convergent in a neighborhood of x0 to the function f (x).

In the last case, one says that f (x) admits expansion in Taylor series in the said neighborhood,
and one writes

f (x) =
∞∑

n=0

1
n!
f (n)(x0)(x – x0)n.

8.3.2-2. Conditions of expansion in Taylor series.

A necessary and sufficient condition for a function f (x) to be represented by its Taylor
series in a neighborhood of a point x0 is that the remainder term in the Taylor formula*
should tend to zero as n→ ∞ in this neighborhood of x0.

In order that f (x) could be represented by its Taylor series in a neighborhood of x0,
it suffices that all its derivatives in that neighborhood be bounded by the same constant,
|f (n)(x)| ≤ M for all n.

Uniqueness of the Taylor series expansion. For a function f (x) that can be represented
as the sum of a power series, the coefficients of this series are determined uniquely (since

this series is the Taylor series of f (x) and its coefficients have the form
f (n)(x0)
n!

, where

n = 0, 1, 2, . . . ). Therefore, in problems of representing a function by a power series, the
answer does not depend on the method adopted for this purpose.

8.3.2-3. Representation of some functions by the Maclaurin series.

The following representations of elementary functions by Maclaurin series are often used
in applications:

ex = 1 + x +
x2

2!
+
x3

3!
+ · · · +

xn

n!
+ · · · ;

sinx = x –
x3

3!
+
x5

5!
– · · · + (–1)n–1 x2n–1

(2n – 1)!
+ · · · ;

cos x = 1 –
x2

2!
+
x4

4!
– · · · + (–1)n

x2n

(2n)!
+ · · · ;

sinh x = x +
x3

3!
+
x5

5!
+ · · · +

x2n–1

(2n – 1)!
+ · · · ;

* Different representations of the remainder in the Taylor formula are given in Paragraph 6.2.4-4.
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cosh x = 1 +
x2

2!
+
x4

4!
+ · · · +

x2n

(2n)!
+ · · · ;

(1 + x)α = 1 + αx +
α(α – 1)

2!
x2 + · · · +

α(α – 1) . . . (α – n + 1)
n!

xn + · · · ;

ln(1 + x) = x –
x2

2
+
x3

3
– · · · + (–1)n+1 x

n

n
+ · · · ;

arctan x = x –
x3

3
+
x5

5
– · · · + (–1)n+1 x

2n–1

2n – 1
+ · · · .

The first five series are convergent for –∞ < x < ∞ (R = ∞), and the other series have unit
radius of convergence, R = 1.

8.3.3. Operations with Power Series. Summation Formulas for
Power Series

8.3.3-1. Addition, subtraction, multiplication, and division of power series.

1. Addition and subtraction of power series. Two series
∞∑

n=0
anx

n and
∞∑

n=0
bnx

n with

convergence radii Ra and Rb, respectively, admit term-by-term addition and subtraction on
the intersection of their convergence intervals:

∞∑

n=0

anx
n
�

∞∑

n=0

bnx
n =

∞∑

n=0

cnx
n, cn = an � bn.

The radius of convergence of the resulting series satisfies the inequality Rc ≥ min[Ra,Rb].

2. Multiplication of power series. Two series
∞∑

n=0
anx

n and
∞∑

n=0
bnx

n, with the respective

convergence radii Ra and Rb, can be multiplied on the intersection of their convergence
intervals, and their product has the form

( ∞∑

n=0

anx
n

)( ∞∑

n=0

bnx
n

)
=

∞∑

n=0

cnx
n, cn =

n∑

k=0

akbn–k.

The convergence radius of the product satisfies the inequality Rc ≥ min[Ra,Rb].

3. Division of power series. The ratio of two power series
∞∑

n=0
anx

n and
∞∑

n=0
bnx

n, b0 ≠ 0,

with convergence radii Ra and Rb can be represented as a power series

∞∑

n=0
anx

n

∞∑

n=0
bnxn

= c0 + c1x + c2x
2 + · · · =

∞∑

n=0

cnx
n, (8.3.3.1)

whose coefficients can be found, by the method of indefinite coefficients, from the relation

(a0 + a1x + a2x
2 + · · ·) = (b0 + b1x + b2x

2 + · · ·)(c0 + c1x + c2x
2 + · · ·).
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Thus, for the unknown cn, we obtain a triangular system of linear algebraic equations

an =
n∑

k=0

bkcn–k, n = 0, 1, . . . ,

which is solved consecutively, starting from the first equation:

c0 =
a0

b0
, c1 =

a1b0 – a0b1

b2
0

, cn =
an
b0

–
1
b0

n∑

k=1

bkcn–k, n = 2, 3, . . .

The convergence radius of the series (8.3.3.1) is determined by the formula

R1 = min
[
Ra,

ρ

M + 1

]
,

where ρ is any constant such that 0 < ρ <Rb; ρ can be chosen arbitrarily close toRb; andM
is the least upper bound of the quantities |bm/b0|ρm (m = 1, 2, . . .), so that |bm/b0|ρm ≤ M
for all m.

8.3.3-2. Composition of functions representable by power series.

Consider a power series

z = f (y) = a0 + a1y + a2y
2 + · · · =

∞∑

n=0

any
n (8.3.3.2)

with convergence radius R. Let the variable y be a function of x that can be represented by
a power series

y = ϕ(x) = b0 + b1x + a2x
2 + · · · =

∞∑

n=0

bnx
n (8.3.3.3)

with convergence radius r. It is required to represent z as a power series of x and find the
convergence radius of this series.

Formal substitution of (8.3.3.3) into (8.3.3.2) yields

z = f
(
ϕ(x)

)
=

∞∑

n=0

an

( ∞∑

k=0

bkx
k
)n

= A0 + A1x +A2x
2 + · · · =

∞∑

n=0

Anx
n, (8.3.3.4)

where
A0 = a0 + a1b0 + a2b

2
0 + · · · ,

A1 = a1b1 + 2a2b0b1 + 3a3b
2
0b1 + · · · ,

A2 = a1b2 + a2(b2
1 + 2b0b2) + 3a3(b0b

2
1 + b2

0b2) + · · · ,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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THEOREM ON CONVERGENCE OF SERIES (8.3.3.4).
(i) If series (8.3.3.2) is convergent for all y (i.e., R = ∞), then the convergence radius

of series (8.3.3.4) coincides with the convergence radius r of series (8.3.3.3).
(ii) If 0 ≤ |b0| < R, then series (8.3.3.4) is convergent on the interval (–R1,R1), where

R1 =
(R – |b0|)ρ
M +R – |b0|

,

and ρ is an arbitrary constant such that 0 < ρ < r; ρ can be chosen arbitrarily close to r; and
M is the least upper bound of the quantities |bm|ρm (m = 1, 2, . . .), so that |bm|ρm ≤ M for
all m.

(iii) If |b0| > R, then series (8.3.3.4) is divergent.
Remark. Case (i) is realized, for instance if (8.3.3.2) has finitely many terms.

8.3.3-3. Local inversion of a function represented by power series.

1. Suppose that y = y(x) is a function that can be represented, in a neighborhood of a
point x = x0, by the power series

y = y0 + a(x – x0) + b(x – x0)2 + c(x – x0)3 + d(x – x0)4 + · · · , a ≠ 0.

Then the inverse function x = x(y), in a neighborhood of y = y0, can be represented by the
series

x = x0 +
1
a

(y – y0) –
b

a3 (y – y0)2 +
2b2 – ac
a5 (y – y0)3 +

5abc – 5b3 – a2d

a7 (y – y0)4 + · · · .

2. Bürman–Lagrange formula. Suppose that for a given function

y = f (x), (8.3.3.5)

the auxiliary function

ϕ(x) =
x

f (x)

is holomorphic in a neighborhood of the point x = 0 (i.e., it can be represented by a
convergent power series in a neighborhood of that point). Then there is ε > 0 such that on
the interval |y| < ε, the function (8.3.3.5) is invertible and its inverse x = g(y) is holomorphic
on that interval,

x =
∞∑

n=1

bny
n, bn =

1
n!

[
dn–1

dxn–1 ϕ
n(x)

]

x=0
.

The expression for the coefficients bn is called the Bürman–Lagrange formula.

Example 1. Consider the function

y = x(x + b) (b ≠ 0),

for which the auxiliary function has the form ϕ(x) = (x + a)–1. Using the Bürman–Lagrange formula and the
relation

dn–1

dxn–1
1

(x + a)n
=

(–1)n–1n(n + 1) · · · (2n – 2)
(x + a)2n–1 ,

we find the representation of the given function by power series:

x =
y

a
–
y2

a3 + · · · + (–1)n–1 (2n – 2)!
(n – 1)!n!

yn

a2n–1 + · · · .
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8.3.3-4. Simplest summation formulas for power series.

Suppose that the sum of a power series is known,

∞∑

k=0

akx
k = S(x). (8.3.3.6)

Then, using term-by-term integration (on the convergence interval), one can find the fol-
lowing sums:

∞∑

k=0

akk
mxk =

(
x
d

dx

)m
S(x);

∞∑

k=0

ak(nk + m)xnk+m–1 =
d

dx

[
xmS(xn)

]
;

∞∑

k=0

ak
nk + m

xnk+m =
∫ x

0
xm–1S(xn) dx, n > 0, m > 0;

∞∑

k=0

ak
nk + s
nk +m

xnk+s = x
d

dx

[
xs–m

∫ x

0
xm–1S(xn) dx

]
, n > 0, m > 0;

∞∑

k=0

ak
nk +m
nk + s

xnk+s =
∫ x

0
xs–m d

dx

[
xmS(xn)

]
dx, n > 0, s > 0.

(8.3.3.7)

Example 2. Let us find the sum of the series
∞∑

n=0
kxk–1.

We start with the well-known formula for the sum of an infinite geometrical progression:
∞∑

k=0

xk =
1

1 – x
(|x| < 1).

This series is a special case of (8.3.3.6) with ak = 1, S(x) = 1/(1 – x). The series
∞∑

n=0
kxk–1 can be obtained

from the left-hand side of the second formula in (8.3.3.7) for m = 0 and n = 1. Substituting S(x) = 1/(1 – x)
into the right-hand side of that formula, we get

∞∑

k=0

kxk–1 =
d

dx

1
1 – x

=
1

(1 – x)2 (|x| < 1).

8.4. Fourier Series
8.4.1. Representation of 2π-Periodic Functions by Fourier Series.

Main Results

8.4.1-1. Dirichlet theorem on representation of a function by Fourier series.

A function f (x) is said to satisfy the Dirichlet conditions on an interval (a, b) if:
1) this interval can be divided into finitely many intervals on which f (x) is monotone

and continuous;
2) at any discontinuity point x0 of the function, there exist finite one-sided limits

f (x0 + 0) and f (x0 – 0).
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DIRICHLET THEOREM. Any 2π-periodic function that satisfies the Dirichlet conditions
on the interval (–π,π) can be represented by its Fourier series

f (x) =
a0

2
+

∞∑

n=1

(
an cosnx + bn sinnx

)
(8.4.1.1)

whose coefficients are defined by the Euler–Fourier formulas

an =
1
π

∫ π

–π
f (x) cos nxdx, n = 0, 1, 2, . . . ,

bn =
1
π

∫ π

–π
f (x) sin nxdx, n = 1, 2, 3, . . .

(8.4.1.2)

At the points of continuity of f (x), the Fourier series converges to f (x), and at any
discontinuity point x0, the series converges to 1

2 [f (x0 + 0) + f (x0 – 0)].
The coefficients an and bn of the series (8.4.1.1) are called the Fourier coefficients.

Remark. Instead of the integration limits –π and π in (8.4.1.2), one can take c and c + 2π, where c is an
arbitrary constant.

8.4.1-2. Lipschitz and Dirichlet–Jordan convergence criteria for Fourier series.

LIPSCHITZ CRITERION. Suppose that f (x) is continuous at a point x0 and for sufficiently
small ε > 0 satisfies the inequality |f (x0 � ε) – f (x0)| ≤ Kεσ, where L and σ are constants,
0 < σ ≤ 1. Then the representation (8.4.1.1)–(8.4.1.2) holds at x = x0.

In particular, the conditions of the Lipschitz criterion hold for continuous piecewise
differentiable functions.

Remark. The Fourier series of a continuous periodic function with no additional conditions (for instance,
of its regularity) may happen to be divergent at infinitely many (even uncountably many) points.

DIRICHLET–JORDAN CRITERION. Suppose that f (x) is a function of bounded variation
on some interval (x0 – h,x0 + h) � (–π,π) (i.e., f (x) can be represented as a difference of
two monotonically increasing functions). Then the Fourier series (8.4.1.1)–(8.4.1.2) of the
function f (x) at the point x0 converges to the value 1

2 [f (x0 + 0) + f (x0 – 0)].

8.4.1-3. Riemann localization principle.

RIEMANN LOCALIZATION PRINCIPLE. The behavior of the Fourier series of a function
f (x) at a point x0* depends only on its values near that point, i.e., values in an arbitrarily
small neighborhood of that point.

Thus, for two functions that coincide in a neighborhood of a point x0, but differ
outside that neighborhood, the corresponding Fourier series at x0 are either both convergent
or divergent and have the same sum in the case of convergence, although their Fourier
coefficients may be different, being dependent on all values of the functions.

* What is meant here is the fact of convergence or divergence of the Fourier series at x0, and also the
numerical value of its sum in the case of convergence.
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8.4.1-4. Asymptotic properties of Fourier coefficients.

1◦. Fourier coefficients of an absolutely integrable function tend to zero asn goes to infinity:
an → 0 and bn → 0 as n→ ∞.

2◦. Fourier coefficients of a continuous 2π-periodic function have the following limit
properties:

lim
n→∞(nan) = 0, lim

n→∞(nbn) = 0,

i.e., an = o(1/n), bn = o(1/n).

3◦. If a continuous periodic function is continuously differentiable up to the order m – 1
inclusively, then its Fourier coefficients have the following limit properties:

lim
n→∞(nman) = 0, lim

n→∞(nmbn) = 0,

i.e., an = o
(
n–m
)
, bn = o

(
n–m
)
.

8.4.1-5. Integration and differentiation of Fourier series.

1◦. The Fourier series of a continuous periodic function of bounded variation admits term-
by-term integration, and the resulting series is uniformly convergent.

2◦. The Fourier series of a k times continuously differentiable function admits term-by-
term differentiation (k – 1) times, the resulting series still being uniformly convergent (the
kth differentiation yields the kth derivative of the function, but the resulting series may have
only mean-square convergence, not necessarily pointwise convergence).

8.4.2. Fourier Expansions of Periodic, Nonperiodic, Odd, and Even
Functions

8.4.2-1. Expansion of 2l-periodic and nonperiodic functions in Fourier series.

1◦. The case of 2l-periodic functions can be easily reduced to that of 2π-periodic functions

by changing the variable x to z =
πx

l
. In this way, all the results described above for

2π-periodic functions can be easily extended to 2l-periodic functions.
The Fourier expansion of a 2l-periodic function f (x) has the form

f (x) =
a0

2
+

∞∑

n=1

(
an cos

nπx

l
+ bn sin

nπx

l

)
, (8.4.2.1)

where

an =
1
l

∫ l

–l
f (x) cos

nπx

l
dx, bn =

1
l

∫ l

–l
f (x) sin

nπx

l
dx. (8.4.2.2)

2◦. A nonperiodic (aperiodic) function f (x) defined on the interval (–l, l) can also be
represented by a Fourier series (8.4.2.1)–(8.4.2.2); however, outside that interval, the sum
of that series S(x) may differ from f (x)*.

* The sum S(x) is a 2l-periodic function defined for all x, but f (x) may happen to be nonperiodic, or even
undefined outside the interval (–l, l).
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8.4.2-2. Fourier expansion of odd and even functions.

1◦. Let f (x) be an even function, i.e., f (x) = f (–x). Then the Fourier expansion of f (x)
on the interval (–l, l) has the form of the cosine Fourier series:

f (x) =
a0

2
+

∞∑

n=1

an cos
nπx

l
,

where the Fourier coefficients have the form

an =
2
l

∫ l

0
f (x) cos

nπx

l
dx (bn = 0).

2◦. Let f (x) be an odd function, i.e., f (x) = –f (–x). Then the Fourier expansion of f (x)
on the interval (–l, l) has the form of the sine Fourier series:

f (x) =
∞∑

n=1

bn sin
nπx

l
,

where the Fourier coefficients have the form

bn =
2
l

∫ l

0
f (x) sin

nπx

l
dx (an = 0).

Example. Let us find the Fourier expansion of the function f (x) = x on the interval (–π, π).
Taking l = π and f (x) = x in the formula for the Fourier coefficients and integrating by parts, we obtain

bn =
2
π

∫ π

0
x sin(nx) dx =

2
π

(
–

1
n
x cos(nx)

∣
∣
∣
π

0
+

1
n

∫ π

0
cos(nx) dx

)
= –

2
n

cos(nπ) = (–1)n+1 2
n

.

Therefore, the Fourier expansion of f (x) = x has the form

f (x) = 2
∞∑

n=1

(–1)n+1 sin(nx)
n

(–π < x < π).

3◦. If f (x) is defined on the interval (0, l) and satisfies the Dirichlet conditions, it can be
represented by the cosine Fourier series, as well as the sine Fourier series (with the help of
the above formulas).* Both series on the interval (0, l) give the values of f (x) at points of
its continuity and the value 1

2 [f (x0 + 0) + f (x0 – 0)] at points of its discontinuity; outside
the interval (0, l), these two series represent different functions.

8.4.2-3. Fourier series in complex form.

The complex Fourier expansion of a function f (x) on an interval (–l, l) has the form

f (x) =
∞∑

n=–∞
cne

iωnx,

where

ωn =
nπ

l
, cn =

1
2l

∫ l

–l
f (x)e–iωnx dx; n = 0, �1, �2, . . .

The expressions eiωnx are called harmonics, the coefficients cn are complex amplitudes, ωn
are wave numbers of the function f (x), and the set of all wave numbers {ωn} is called the
discrete spectrum of the function.

* The cosine Fourier expansion of f (x) on the interval (0, l) corresponds to the extension of f (x) to the
interval (–l, 0) as an even function: f (–x) = f (x). The sine Fourier expansion of f (x) on (0, l) corresponds to
the extension of f (x) to the interval (–l, 0) as an odd function: f (–x) = –f (x).
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8.4.3. Criteria of Uniform and Mean-Square Convergence of Fourier
Series

8.4.3-1. Criteria of uniform convergence of Fourier series.

LIPSCHITZ CRITERION. The Fourier series of a function f (x) converges uniformly to that
function on an interval [–l, l] if on a wider interval [–L,L] (–L < –l < l < L) the following
inequality holds:

|f (x1) – f (x2)| ≤ K |x1 – x2|σ for all x1,x2 � [L,L],

where K and σ are constants, 0 < σ ≤ 1.
Corollary. The Fourier series of a continuous function f (x) uniformly converges to

that function on an interval [–l, l] if on a wider interval the function f (x) has a bounded
derivative f ′(x).

DIRICHLET–JORDAN CRITERION. Suppose that on an interval (–l, l) � [–L,L], a contin-
uous function f (x) has bounded variation (i.e., can be represented as the difference of two
monotonically increasing functions). Then its Fourier series is uniformly convergent to that
function on the interval (–l, l).

For any continuously differentiable 2l-periodic function f (x), its Fourier series [defined
by formulas (8.4.2.1)–(8.4.2.2)] is uniformly convergent to f (x).

8.4.3-2. Fourier series of square-integrable functions. Parseval identity.

1◦. For a continuous 2π-periodic function f (x), its Fourier series (8.4.1.1)–(8.4.1.2) con-
verges to f (x) in mean square, i.e.,

∫ π

–π

∣∣f (x) – fn(x)
∣∣2 dx→ 0 as n→ ∞,

where fn(x) = 1
2a0 +

n∑

k=1
(ak cos kx + bk sin kx) is a partial sum of the Fourier series.

2◦. If f (x) is integrable on the segment [–π,π] and the integral
∫ π

–π
|f (x)|2 dx exists as an

improper integral with finitely many singularities, then the Fourier series (8.4.1.1)–(8.4.1.2)
is mean-square convergent to f (x).

3◦. Let f (x) � L2[–π,π] be a square-integrable function on the segment [–π,π]. Then
its Fourier series (8.4.1.1)–(8.4.1.2) is mean-square convergent to f (x), and the Parseval
identity holds:

a2
0

2
+

∞∑

n=1

(a2
n + b2

n) =
1
π

∫ π

–π
f 2(x) dx,

where an, bn are defined by (8.4.1.2). Note that the functions considered in Items 1◦ and 2◦
belong to L2[–π,π].
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8.4.4. Summation Formulas for Trigonometric Series

8.4.4-1. Summation of trigonometric series with the help of Laplace transforms.

When finding sums of trigonometric series, the following formulas may be useful:

∞∑

n=1

F (n) sin(nx) =
1
2

sinx
∫ ∞

0

f (t) dt
cosh t – cos x

, 0 ≤ x ≤ π;

∞∑

n=1

F (n) cos(nx) =
1
2

∫ ∞

0

cos x – e–t

cosh t – cos x
f (t) dt, 0 ≤ x ≤ π,

where

F (x) =
∫ ∞

0
f (t)e–xt dt.

For specific F (x), the corresponding functions f (t) can be found in tables of inverse Laplace
transforms (see Section T3.2).

8.4.4-2. Summation of series with the help of functions of complex variable.

Suppose that trigonometric series

a0

2
+

∞∑

n=1

an cos(nx) = f1(x), (8.4.4.1)

∞∑

n=1

an sin(nx) = f2(x) (8.4.4.2)

have positive (nonnegative) coefficients an and the auxiliary series
∞∑

n=1

an
n

is convergent.

Then the series (8.4.4.1) and (8.4.4.2) are Fourier series representing continuous functions.
In order to find the sums f1(x) and f2(x) of the series (8.4.4.1) and (8.4.4.2), it is

sometimes possible to use functions of complex variable. Let

ϕ(z) =
a0

2
+

∞∑

n=1

anz
n

be the sum of a series that is convergent in the circle |z| < 1. If lim
|z|→1

ϕ(z) = lim
r→1

ϕ(reix) =

ϕ(eix), then f1(x) + if2(x) = ϕ(eix). Thus, after separating the real and the imaginary parts
of the function ϕ(eix), we get

f1(x) = Re[ϕ(eix)], f2(x) = Im[ϕ(eix)].

Example. Let us sum up the series

1 +
∞∑

n=1

cos(nx)
n!

= f1(x),

∞∑

n=1

sin(nx)
n!

= f2(x).
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Taking

ϕ(z) = 1 +
∞∑

n=1

zn

n!
= ez

and representing z in exponential form z = reix, let us pass to the limit as r → 1. We find that

exp(eix) = ecos x+i sin x = ecos x[cos(sinx) + i sin(sinx)] = 1 +
∞∑

n=1

(cos x + i sinx)n

n!
.

Using the Moivre formula (cosx + i sinx)n = cos(nx) + i sin(nx), we obtain

ecos x cos(sinx) + iecos x sin(sinx) = 1 +
∞∑

n=1

cos(nx)
n!

+ i
∞∑

n=1

sin(nx)
n!

.

It follows that

1 +
∞∑

n=1

cos(nx)
n!

= ecos x cos(sinx),

∞∑

n=1

sin(nx)
n!

= ecos x sin(sinx).

8.5. Asymptotic Series
8.5.1. Asymptotic Series of Poincaré Type. Formulas for the

Coefficients

8.5.1-1. Definition of asymptotic series. Illustrative example.

Suppose that for large x the function f (x) can be represented in the form

f (x) =
n∑

k=0

ak
xk

+ o
(
x–n) as x→ ∞. (8.5.1.1)

Then one writes

f (x) ∼
∞∑

k=0

ak
xk

. (8.5.1.2)

The infinite series on the right-hand side is called an asymptotic series of Poincaré’s type
(or an asymptotic expansion) of the function f (x).

Asymptotic series may happen to be convergent or divergent.

Example. Consider the function defined by the integral

f (x) =
∫ ∞

x

ex–t dt

t
.

Repeated integration by parts yields

f (x) =
1
x

–
1
x2 +

2!
x3 – · · · + (–1)n–1 (n – 1)!

xn
+Rn(x), (8.5.1.3)

where the remainder is defined by

Rn(x) = (–1)nn!
∫ ∞

x

ex–t

tn+1 dt.

The following estimate holds:

|Rn(x)| = n!
∫ ∞

x

ex–t

tn+1 dt < n!
1

xn+1

∫ ∞

x

ex–t dt = –
n!
xn+1 e

x–t
∣
∣∣
t=∞

t=x
=

n!
xn+1 .
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Therefore, Rn(x) = o
(
x–n
)

and we can write

f (x) ∼ 1
x

–
1
x2 +

2!
x3 – · · · + (–1)n–1 (n – 1)!

xn
+ · · · .

This asymptotic series is divergent, since for any fixed x we have

lim
n→∞

|an| = lim
n→∞

(n – 1)!
xn

= ∞.

The motivation of using divergent asymptotic series of the form (8.5.1.2) is that a finite
sum of the series (8.5.1.1) provides a good approximation for the given function for x→∞.
For a fixed n, the accuracy of the approximations increases with the growth of x.

8.5.1-2. Uniqueness of an asymptotic series representing a function.

1. For a function f (x) that admits the representation by asymptotic series (8.5.1.2),
such a representation is unique and the coefficients an of the series are determined by

an = lim
x→∞xn

[
f (x) –

n–1∑

k=0

akx
–k
]

.

2. There exist functions that are not identically equal to zero, but having all coefficients
an in their asymptotic expansion (8.5.1.2) equal to zero. Such a function is called asymptotic
zero. The class of asymptotic zeroes includes any function f (x) such that for large x and
any positive integer n the following estimate holds:

f (x) = o(x–n).

For instance, the functions f (x) = e–x, f (x) = xe–2x, f (x) = exp(–x2) belong to this class.
Adding such functions to the left-hand side of the asymptotic expansion (8.5.1.2) does not
change its right-hand side.

COROLLARY. The coefficients of the asymptotic expansion of a function f (x) do not
uniquely determine the function.

Remark. Addition of a suitable asymptotic zero can be used, in some cases, for the construction of
approximations that not only correctly describe the behavior of a function for large x, but give fairly accurate
numerical results for moderate values of x (i.e., x = O(1); sometimes even for small x). This method is
often used in applications, for instance in engineering, to obtain formulas applicable in a wide range of some
characteristic parameter.

8.5.2. Operations with Asymptotic Series

8.5.2-1. Addition, subtraction, multiplication, and division of asymptotic series.

1. Asymptotic expansions of functions f (x) ∼
∞∑

n=0
anx

–n and g(x) ∼
∞∑

n=0
bnx

–n admit

term-by-term addition and subtraction:

f (x) � g(x) ∼
∞∑

n=0

anx
–n

�

∞∑

n=0

bnx
–n =

∞∑

n=0

(an � bn)x–n.
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2. Asymptotic expansions f (x) ∼
∞∑

n=0
anx

–n and g(x) ∼
∞∑

n=0
bnx

–n can be formally

multiplied, according to the Cauchy rule:

f (x)g(x) ∼
( ∞∑

n=0

anx
–n
)( ∞∑

n=0

bnx
–n
)

=
∞∑

n=0

cnx
–n, cn =

n∑

k=0

akbn–k.

3. Asymptotic expansion f (x)∼
∞∑

n=0
anx

–n can be formally divided by g(x)∼
∞∑

n=0
bnx

–n,

provided that b0 ≠ 0. The coefficients of the resulting asymptotic expansion h(x) ∼
∞∑

n=0
bnx

–n are found by the method of indefinite coefficients with the help of the relation

f (x) = g(x)h(x): the corresponding expansions should be inserted into this relation and
then similar terms gathered.

8.5.2-2. Composition of series. Integration of asymptotic series.

1. Suppose that in a neighborhood of y = 0, the function g(y) can be represented by

a convergent power series, g(y) =
∞∑

m=0
bmy

m, and for x → ∞, the function f (x) can be

represented as an asymptotic series f (x)∼
∞∑

n=1
anx

–n with a0 = 0. Then, for large enough x,

the composite function

g
(
f (x)

)
=

∞∑

m=0

bm[f (x)]m (8.5.2.1)

makes sense and admits an asymptotic expansion, which can be obtained from (8.5.2.1) if
f (x) is replaced by its asymptotic expansion, after which similar terms should be gathered.

2. Suppose that the asymptotic expansion of a function f (x) starts with a2x
–2 [i.e.,

a0 = a1 = 0 in (8.5.1.2)]. Then this asymptotic expansion admits term-by-term integration
from x to ∞,

∫ ∞

x
f (x) dx ∼

∫ ∞

x

( ∞∑

n=2

an
xn

)
dx =

∞∑

n=2

∫ ∞

x

an
xn

dx =
∞∑

n=2

an
(n – 1)xn–1 .

3. Term-by-term differentiation of asymptotic series is impossible, in general.

Example. To illustrate the last statement, consider the function f (x) = e–x sin(ex).
For all n, we have

lim
x→∞

xnf (x) = 0,

and therefore the asymptotic expansion of this function has zero coefficients, f (x) ∼ 0. Term-by-term
differentiation of this relation also yields zero, f ′(x) ∼ 0.

On the other hand, the derivative of this function, f ′(x) = –e–x sin(ex) + cos(ex), admits no asymptotic
expansion at all, since there is no limit lim

x→∞
f ′(x)!
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Chapter 9

Differential Geometry

9.1. Theory of Curves
9.1.1. Plane Curves

9.1.1-1. Regular points of plane curve.

A plane curve Γ in a Cartesian coordinate system can be defined by equations in the
following form:

Explicitly,
y = f (x). (9.1.1.1)

Implicitly,
F (x, y) = 0.

Parametrically,
x = x(t), y = y(t). (9.1.1.2)

In vector form,
r = r(t), where r(t) = x(t)i + y(t)j .

In a polar coordinate system, the curve is usually given by the equation

r = r(ϕ),

where the relationship between Cartesian and polar coordinates is given by formulas
x = r cosϕ and y = r sinϕ.

Remark. The explicit equation (9.1.1.1) can be obtained from the parametric equations (9.1.1.2) if the
abscissa is taken for the parameter: x = t, y = f (t).

A point M (x(t), y(t)) is said to be regular if the functions x(t) and y(t) have continuous
first derivatives not simultaneously equal to zero in a sufficiently small neighborhood
of this point. For implicitly defined functions, a point M (x, y) is said to be regular if
gradF = ∇F ≠ 0 at this point.

If a curve is given parametrically (9.1.1.2), then the positive sense is defined on this curve,
i.e., the direction in which the point M (x(t), y(t)) of the curve moves as the parameter t
increases. If the curve is given explicitly by (9.1.1.1), then the positive sense corresponds
to the direction in which the abscissa increases (i.e., moves from left to right). In a polar
coordinate system, the positive sense corresponds to the direction in which the angle ϕ
increases (i.e., the positive sense is counterclockwise).

If s is the curve length from some constant point M0 to M , then the infinitesimal length
increment of the arc M0M is approximately expressed by the formula for the arc length

367
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differential ds; i.e., the following formulas hold:

Δs ≈ ds =
√

1 + (y′x)2 dx, if the curve is given explicitly,

Δs ≈ ds =
√

(x′t)2 + (y′t)2 dt, if the curve is given parametrically,

Δs ≈ ds =
√
r2 + (r′ϕ)2 dϕ, for a curve in the polar coordinate system.

Example 1. The arc length differential of the curve y = cosx has the form ds =
√

1 + sinxdx.

Example 2. For the semicubical parabola x = t2, y = t3, the arc length differential is equal to ds =
t
√

4 + 9t2 dt.

Example 3. For the hyperbolic spiral r = a/ϕ for r > 0, the arc length differential is equal to ds =
a
√

1 + ϕ2/ϕ2 dϕ.

9.1.1-2. Tangent and normal.

The tangent to a curve Γ at a regular point M0 is defined to be the straight line that is the
limit position of the secant M0M1 as the point M1 approaches the point M0; the normal is
defined to be the straight line passing throughM1 and perpendicular to the tangent (Fig. 9.1).

norm
al

tangent

MM
10

Figure 9.1. Tangent and normal.

At each regular point M (x0, y0) = M (x(t0), y(t0)), the curve Γ has a unique tangent
given by one of the equations (depending on how the curve is defined)

y – y0 = y′x(x – x0), if the curve is given explicitly,

Fx(x – x0) + Fy(y – y0) = 0, if the curve is given implicitly,
y – y0

y′t
=
x – x0

x′t
, if the curve is given parametrically,

r = r0 + λrt, if the curve is given in vector form,

where r0 is the position vector of the pointM0, λ is an arbitrary parameter, and all derivatives
are evaluated at x = x0, y = y0, and t = t0.

The slope of the tangent is determined by the angle α between the positive direction of
the OX-axis and the positive direction of the tangent (Fig. 9.2a). The slope of the tangent
(and the angle α) is determined by the formulas

tanα = y′x = –
Fx
Fy

=
y′t
x′t

.
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Figure 9.2. Slope of the tangent.

If a curve is given in the polar coordinate system, then the slope of the tangent is
determined by the angle θ between the direction of the position vector r = OM and the
positive direction of the tangent (Fig. 9.2b). The angle θ is determined by the formula

tan θ =
r

ϕ′
r

.

The normal at each regular point M (x0, y0) = M (x(t0), y(t0)) is given, depending on
the method for defining the curve, by the equations

y – y0 = –
x – x0

y′x
, if the curve is given explicitly,

x – x0

Fx
=
y – y0

Fy
, if the curve is given implicitly,

(y – y0)y′t + (x – x0)x′t = 0, if the curve is given parametrically,

where all the derivatives are evaluated at x = x0, y = y0, and t = t0.
The positive sense of the tangent coincides with the positive sense of the curve at the

point of tangency; and the positive sense of the normal can in some way be made consistent
with the positive sense of the tangent; for example, it can be obtained from the positive
sense of the tangent by counterclockwise rotation around M by an angle of 90◦ (Fig. 9.3).
The point M divides the tangent and the normal into positive and negative half-lines.

M

Figure 9.3. Positive sense of tangent.

Example 4. Let us find the equations of the tangent and the normal to the parametrically given semicubical
parabola x = t2, y = t3 at the point M0(1, 1), t = 1.

The equation of the tangent,

y – t3

3t2 =
x – t2

2t
or y =

3
2
tx –

1
2
t3,

at the point M0(1, 1) is

y =
3
2
x –

1
2

.



370 DIFFERENTIAL GEOMETRY

The equation of the normal,

2t(x – t2) + 3t2(y – t3) = 0 or 2x + 3ty = t2(2 + 3t2),

at the point M0(1, 1) is (Fig. 9.4a)
2x + 3y = 5.

M

y x= 3 1
2 2

X1

1

1

2

2

3

3

O 2 3 4

Y

2 +3 =5

x
y

0 M

O 22

2

2

4

4 X

Y

(a) (b)

x
y+
=8

y
x=

0

Figure 9.4. Tangents and normals to the semicubical parabola (a) and to the circle (b).

Example 5. Let us find the equation of the tangent and the normal to the circle x2 + y2 = 8 at the point
M0(2, 2).

We write the equation of the circle as F (x,y) = 0:

x2 + y2 – 8 = 0,

i.e., F (x,y) = x2 + y2 – 8. Obviously, we obtain

Fx = 2x, Fy = 2y.

The equation of the tangent is
2x0(x – x0) + 2y0(y – y0) = 0,

or, taking into account the original equation of the circle,

xx0 + yy0 = 8.

At the point M0(2, 2), we have
x + y = 4.

The equation of the normal is
x – x0

2x0
=
y – y0

2y0
,

or
y =

y0

x0
x.

At the point M0(2, 2) (Fig. 9.4b), we have
y = x.
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Figure 9.5. The tangent and the normal to the curve y = cos x.

Example 6. Let us find the equations of the tangent and the normal to the curve y = cosx at the point
M0(π/2, 0).

The equation of the tangent is

y – cosx0 = – sinx0(x – x0) or y = cosx0 – sinx0(x – x0).

At the point M0(π/2, 0), we have

y =
π

2
– x.

The equation of the normal is

y – cosx0 = –
x – x0

– sinx0
or y = cosx0 +

x – x0

sinx0
.

At the point M0(π/2, 0) (Fig. 9.5), we have

y = x –
π

2
.

9.1.1-3. Singular points.

A point is said to be singular if it is not regular.
Implicit equations of the form F (x, y) = 0 are used as a rule to find singular points of a

curve and analyze their character. At any singular point M0(x0, y0), both partial derivatives
of the function F (x, y) are zero:

Fx(x0, y0) = 0 and Fy(x0, y0) = 0.

If both first partial derivatives are zero at M0 and simultaneously at least one of the second
derivatives Fxx, Fxy , and Fyy is nonzero, thenM0 is called a double point. This is the most
widely known case of singular points. If both first partial derivatives and simultaneously all
second partial derivatives are zero at M0 but not all third partial derivatives are zero at M0,
then the point M0 is said to be triple. In general, if all partial derivatives of F (x, y) up to
order n – 1 inclusive are zero at M0 but at least one of the nth derivatives is nonzero at M0,
then the point M0 is called an n-fold singular point. At an n-fold singular point M0, the
curve has n tangents, some of which may coincide or be imaginary. For example, for a
double singular point M0, the slopes λ = y′x of the two tangents at this point are the roots
of the quadratic equation

Fyy(x0, y0)λ2 + 2Fxy(x0, y0)λ + Fxx(x0, y0) = 0. (9.1.1.3)

The roots of equation (9.1.1.3) depend on the sign of the expression

Δ =
∣∣
∣
Fxx Fxy
Fyx Fyy

∣∣
∣ = FxxFyy – F 2

xy ,

where the second derivatives are evaluated at the point M0(x0, y0).
If Δ > 0, then the roots of the quadratic equation (9.1.1.3) are complex conjugate. In

this case, a sufficiently small neighborhood of M0(x0, y0) does not contain any other points
of the curve except for M0 itself. Such a point is called an isolated point.
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Example 7. The curve
y2 + 4x2 – x4 = 0

has the isolated point (0, 0) (Fig. 9.6a).

O X112

5

5

2

Y ( )a ( )b

O X

Y

Figure 9.6. Examples of the isolated point (a) and the node (b).

If Δ < 0, then the quadratic equation (9.1.1.3) has two distinct real roots. In this case,
there are two branches of the curve passing through the point M0(x0, y0); these branches
have distinct tangents whose directions are just determined by equation (9.1.1.3). Such a
point is called a node (a point of self-intersection).

Example 8. The point (0, 0) of the curve

y2 – x2 = 0
is the node (0, 0) (Fig. 9.6b).

If Δ = 0, then the roots of the quadratic equation (9.1.1.3) coincide. In this case, the
singular point of the curve is either isolated or characterized by the fact that all branches
approaching the singular point M0 have a common tangent at this point:
1. Cusps of the first kind are points approached by two branches of the curve that have a

common tangent at this point and lie on the same side of the common normal and on
opposite sides of the common tangent.

2. Cusps of the second kind are points approached by two branches of the curve that have
a common tangent at this point and lie on the same side of the common normal and on
the same side of the common tangent.

3. Points of osculation are points at which the curve is tangential to itself.
Example 9. For the curve (cissoid of Diocles)

(2a – x)y2 – x3 = 0,

shown in Fig. 9.7a, the origin is a cusp of the first kind, which is clear from the explicit equation

y = �

√
x3

2a – x
of the curve. For x < 0, no y satisfy the equation, and for x > 0 the values �y lie on opposite sides of the tangent
x = 0 at the origin.

O O O2a

( )a ( )b ( )c

1 1

1

1

1

1

1

2X X X

Y Y Y

Figure 9.7. Examples of a cusp of the first kind (a), a cusp of the second kind (b), and an osculation point (c).
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Example 10. For the curve (Fig. 9.7b)

(y2 – x2)2 – x5 = 0,

the origin is a cusp of the second kind, which easily follows from equation

y = x2
� x5/2

of the curve. It is also obvious that the curve consists of two branches tangent to the axis OX at the origin, and
for 0 < x < 1 the value of y is positive for both branches.

Example 11. The curve (Fig. 9.7c)
y2 – x4 = 0

has an osculation point at the origin.

Remark 1. If all the second partial derivatives are zero at the point M0, i.e., Fxx = Fxy = Fyy = 0, then
more than two branches of the curve can pass through this point. For example, for the trefoil

(x2 + y2)2 – ax(x2 – y2) = 0,

three branches with tangents x = 0 and x � y = 0 pass through the origin (Fig. 9.8).

O a X

Y

Figure 9.8. The trefoil.

Remark 2. If the equation F (x,y) = 0 does not contain constant terms and terms of degree 1, then the
origin is a double point. The equation of the tangent at a double point can readily be obtained by equating all
terms of degree 2 with zero. For example, for the cissoid of Diocles (Example 9), the equation of the tangent
x = 0 follows from the equation –xy2 – x3 = 0. If the equation F (x,y) = 0 does not contain constant terms and
terms of degrees 1 and 2, then the origin is a triple point, etc.

Along with the singular points listed above, there are many other singular points with
specific names:
1. Break points are points at which the curve changes its direction by a “jump” and, in

contrast to cusps, the tangents to both parts of the curve are distinct (Fig. 9.9a).
2. Termination points are points at which the curve terminates (Fig. 9.9b).
3. Asymptotic points are points around which the curve winds infinitely many times while

infinitely approaching them (Fig. 9.9c).

( )a ( )b ( )c

Figure 9.9. The break point (a), the termination point (b), and the asymptotic point (c).

Remark. A break point corresponds to a jump discontinuity of the derivative dy/dx. Termination points
correspond to either a jump discontinuity or termination of the function y = f (x). Asymptotic points can be
found most easily in curves given in the polar coordinate system.
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9.1.1-4. Asymptotes.

A straight line is called an asymptote of a curve Γ if the distance from a point M (x, y) of
the curve to this straight line tends to zero as x2 +y2 →∞. The limit position of the tangent
to a regular point of the curve is an asymptote; the converse assertion is generally not true.

For a curve given explicitly as y = f (x), vertical asymptotes are determined as points
of discontinuity of the function y = f (x), while horizontal and skew asymptotes have the
form y = kx + b, where

k = lim
t→∞

f (x)
x

, b = lim
t→∞[f (x) – kx];

both limits must be finite.

Example 12. Let us find the asymptotes of the curve y = x3/(x2 + 1). Since the limits

k = lim
t→∞

f (x)
x

= lim
t→∞

x3

x(x2 + 1)
= 1,

b = lim
t→∞

[f (x) – kx] = lim
t→∞

(
x3

x2 + 1
– x

)
= lim

t→∞

(
–x

x2 + 1

)
= 0

exist, the asymptote is given by the equation y = x.

To find an asymptote of a parametrically defined curve x = x(t), y = y(t), one should
find the values t = ti for which x(t) → ∞ or y(t) → ∞.

If
x(ti) = ∞ but y(ti) = c ≠ ∞,

then the straight line y = c is a horizontal asymptote. If

y(ti) = ∞ but x(ti) = a ≠ ∞,

then the straight line x = a is a vertical asymptote. If

x(ti) = ∞ and y(ti) = ∞,

then one should calculate the following two limits:

k = lim
t→ti

y(t)
x(t)

and b = lim
t→ti

[y(t) – kx(t)]. (9.1.1.4)

If both limits exist, then the curve has the asymptote y = kx + b.

Example 13. Let us find the asymptote of the Folium of Descartes

x =
3at
t3 + 1

, y =
3at2

t3 + 1
(–∞ ≤ t ≤ ∞).

Since x(–1) = ∞ and y(–1) = ∞, one should use formulas (9.1.1.4),

k = lim
t→–1

y(t)
x(t)

= lim
t→–1

3at2

t3 + 1
3at
t3 + 1

= lim
t→–1

t = –1,

b = lim
t→–1

[y(t) – kx(t)] = lim
t→–1

(
3at2

t3 + 1
+

3at
t3 + 1

)
= lim

t→–1

3at(t + 1)
(t + 1)(t2 – t + 1)

= –a,

which imply that the asymptote is given by the equation y = –x – a.



9.1. THEORY OF CURVES 375

Suppose that the function F (x, y) in the equation F (x, y) = 0 is a polynomial in the
variables x and y. We choose the terms of the highest order in F (x, y). By Φ(x, y) we
denote the set of highest-order terms and solve the equation for the variables x and y:

x = ϕ(y), y = ψ(x).

The values yi = c for which x = ∞ give the horizontal asymptotes y = c; the values xi = a
for which y = ∞ give the horizontal asymptotes x = a.

To find skew asymptotes, one should substitute the expression y = kx + b into F (x, y).
We write the resulting polynomial F (x, kx + b) as

F (x, kx + b) = f1(k, b)xn + f2(k, b)xn–1 + . . .

If the system of equations
f1(k, b) = 0, f2(k, b) = 0

is consistent, then its solutions k, b are the parameters of the asymptotes y = kx + b.

9.1.1-5. Osculating circle.

The osculating circle (circle of curvature) of a curve Γ at a point M0 is defined to be the
limit position of the circle passing through M0 and two neighboring points M1 and M2 of
the curve as M1 →M0 and M2 →M0 (Fig. 9.10).

C

M

M

M

2

1

0

Figure 9.10. The osculating circle.

The center of this circle (the center of curvature of the curve Γ at the point M1) is called
the center of the osculating circle and lies on the normal to this curve (Fig. 9.10). The
coordinates of the center of curvature can be found by the following formulas:

for a curve defined explicitly,

xc = x0 –
y′x
[

1 + (y′x)2]

y′′xx
, yc = y0 +

1 + (y′x)2

y′′xx
;

for a curve defined implicitly,

xc = x0 –
Fx
(
Fx

2 + Fy2)

2FxyFxFy – F 2
xFyy – F 2

yFxx
, yc = y0 +

Fy
(
Fx

2 + Fy2)

2FxyFxFy – F 2
xFyy – F 2

yFxx
;
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for a curve defined parametrically,

xc = x0 –
y′t
[
(x′t)2 + (y′t)2]

x′ty′′tt – y′tx′′tt
, yc = y0 +

x′t
[
(x′t)2 + (y′t)2]

x′ty′′tt – y′tx′′tt
;

for a curve in polar coordinates,

xc = r0 cosϕ0 –

[
r2

0 +
(
r′ϕ
)2](

r0 cosϕ0 + r′ϕ sinϕ0
)

r2
0 + 2

(
r′ϕ
)2

– r0r′′ϕϕ
,

yc = r0 sinϕ0 –

[
r2

0 +
(
r′ϕ
)2](

r0 sinϕ0 – r′ϕ cosϕ0
)

r2
0 + 2

(
r′ϕ
)2

– r0r′′ϕϕ
,

x0 = r0 cosϕ0, y0 = r0 sinϕ0,

where all derivatives are evaluated at x = x0, y = y0, t = t0, and ϕ = ϕ0.

The radius of the osculating circle is called the radius of curvature of the curve at the
point M0(x0, y0); its length in a Cartesian coordinate system is

ρ =

[
1 + (y′x)2]3/2
∣∣y′′xx
∣∣ =

(
Fx

2 + Fy2)3/2
∣∣2FxyFxFy – F 2

xFyy – F 2
yFxx

∣∣ =

[(
x′t
)2

+
(
y′t
)2]3/2

∣∣x′ty′′tt – y′tx′′tt
∣∣ ,

and in the polar coordinate system it is

ρ =

[
r2

0 +
(
r′ϕ
)2]3/2

∣
∣r2

0 + 2
(
r′ϕ
)2

– r0r′′ϕϕ
∣
∣

,

where all derivatives are evaluated at x = x0, y = y0, t = t0, and ϕ = ϕ0.

9.1.1-6. Curvature of plane curves.

The limit ratio of the tangent rotation angle Δϕ to the corresponding arc length Δs of the
curve Γ as Δs→ 0 (Fig. 9.11),

k = lim
Δs→0

∣
∣
∣
Δϕ
Δs

∣
∣
∣,

is called the curvature of Γ at the point M1.

M1

α α+dα

d =α
φΔ

Δs

X

Y

Figure 9.11. The curvature of the curve.
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The curvature and the radius of curvature are reciprocal quantities,

k =
1
ρ

.

The more bent a curve is near a point, the larger k is and the smaller ρ is at this point.
For a circle of radius a, the radius of curvature is ρ = a and the curvature is k = 1/a (they
are constant at all points of the circle); for a straight line, ρ = ∞ and k = 0; for all other
curves, the curvature varies from point to point.

Remark. All points of inflection are points of zero curvature.

9.1.1-7. Frénet formulas.

To each point M of a plane curve, one can naturally assign a local coordinate system. The
role of the origin O is played by point M itself, and the role of the axes OX and OY are
played by the tangent and normal at this point. The unit tangent and normal vectors to the
curve are usually denoted by t and n, respectively (Fig. 9.12).

M t

n

Figure 9.12. The unit tangent t and normal n vectors to the curve.

Suppose that the arc length is taken as a (natural) parameter on the curve:

r = r(s);

then the Frénet formulas
t′s = kn, n′

s = –kt

hold, where k is the curvature of the curve.
With first-order accuracy, the Frénet formulas determine the rotation of the vectors t

and n when translated along the curve to a close point, s→ s + Δs.

9.1.1-8. Envelope of a family of curves.

A one-parameter family of curves is the set of curves defined by the equation

F (x, y,C) = 0, (9.1.1.5)

which is called the equation of the family. Here C is a parameter varying in a certain range,
C1 ≤ C ≤ C2; in particular, the range can be –∞ ≤ C + ∞.

A curve that is tangent at each point to some curve of a one-parameter family of
curves (9.1.1.5) is called the envelope of the family. The point of tangency of the envelope
to a curve of the family is called a characteristic point of the curve of the family (Fig. 9.13).

Figure 9.13. The envelope of the family of curves.
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The equation of the envelope of a one-parameter family is obtained by elimination of
the parameter C from the system of equations

F (x, y,C) = 0,
∂F (x, y,C)

∂C
= 0,

(9.1.1.6)

which determines the discriminant curve of this family.
The discriminant curve (9.1.1.6) of a one-parameter family is an envelope if it does not

consist of singular points of the curves.

X

Y

Figure 9.14. The envelope of the family of semicubical parabolas.

Example 14. Consider the family of semicubical parabolas (Fig. 9.14)

3(y – C)2 – 2(x – C)3 = 0.

Differentiating with respect to the parameter C, we obtain

y – C – (x – C)2 = 0.

Solving the system
3(y – C)2 – 2(x – C)3 = 0,

y – C – (x – C)2 = 0,

we obtain
x – C = 0, y – C = 0;

x – C =
2
3

, y – C =
4
9

.

Eliminating the parameter C, we see that the discriminant curve splits into the pair of straight lines x = y and
x – y = 2/9. Only the second of these two straight lines is an envelope, because the first straight line is the
locus of singular points.

9.1.1-9. Evolute and evolvent.

The locus of centers of curvature of a curve is called its evolute. If a curve is defined via a
natural parameter s, then the position vector of a point of the evolute of a plane curve p can
be expressed in terms of the radius vector r of a point of this curve, the normal vector n,
and its radius of curvature ρ as follows:

p = r + ρn.

To obtain the equation of the evolute, it also suffices to treat xc and yc in the equations
for the coordinates of the center of curvature as the current coordinates of the evolute.
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Geometric properties of the evolute:

1. The normals to the original curve coincide with the tangents to the evolute at the
corresponding points.

2. If the radius of curvature ρ varies monotonically on a given part of the curve, then its
increment is equal to the distance passed by the center of curvature along the evolute.

3. At the points of extremum of the radius of curvature ρ, the evolute has a cusp of the first
kind.

4. Since the radius of curvature ρ is always positive, any point of the evolute lies on a
normal to the curve on the concave side.

5. The evolute is the envelope of the family of normals to the original curve.

A curve that intersects all curves of a family at the right angle is called an orthogonal
trajectory of a one-parameter family of curves. A trajectory orthogonal to tangents to a
given curve is called an evolvent of this curve.

If a curve is defined via its natural parameter s, then the vector equation of its evolvent
has the form

p = r + (s0 – s)t,

where s0 is an arbitrary constant.

Basic properties of the evolvent:

1. The tangent to the original curve at each point is the normal to the evolvent at the
corresponding point.

2. The distance between the corresponding points of two evolvents of a given curve is
constant.

3. For s = s0, the evolvent has cusps of the first kind.

The evolute and the evolvent are related to each other. The original curve is the evolvent
of its evolute. The converse assertion is also true; i.e., the original curve is the evolute of
its evolvent. The normal to the evolvent is tangent to the evolute.

9.1.2. Space Curves

9.1.2-1. Regular points of space curve.

A space curve Γ is in general determined parametrically or in vector form by the equations

x = x(t), y = y(t), z = z(t) or r = r(t) = x(t)i + y(t)j + z(t)k,

where i, j, and k are the unit vectors (see (4.5.2.2)), t is an arbitrary parameter (t � [t1, t2]),
and t1 and t2 can be –∞ and +∞, respectively.

A point M (x(t), y(t), z(t)) is said to be regular if the functions x(t), y(t), and z(t) have
continuous first derivatives in a sufficiently small neighborhood of this point and these
derivatives are not simultaneously zero, i.e., if dr/dt ≠ 0.

If the functions x(t), y(t), and z(t) have continuous derivatives with respect to t and
dr/dt ≠ 0 for all t � [t1, t2], then Γ is a regular arc.

For the parameter t it is convenient to take the arc length s, that is, the length of the arc
from a point M0(x(t0), y(t0), z(t0)) to M1(x(t1), y(t1), z(t1)),

s =
∫

Γ
ds =

∫

Γ

√
dr ⋅ dr =

∫ t1

t0

√
(x′t)2 + (y′t)2 + (z′t)2 dt. (9.1.2.1)
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The sign of ds is chosen arbitrarily, and it determines the positive sense of the curve and
the tangent.

A space curve can also be defined as the intersection of two surfaces

F1(x, y, z) = 0, F2(x, y, z) = 0. (9.1.2.2)

For a curve determined as the intersection of two planes, a point M0 is regular if the
vectors ∇F1 and ∇F2 are not linearly dependent at this point.

9.1.2-2. Tangents and normals.

A straight line is called the tangent to a curve Γ at a regular pointM0 if it is the limit position
of the secant passing through M0 and a point M1 infinitely approaching the point M0.

At a regular point M0, the equation of the tangent has the form

r = r0 + λr′t(t0), (9.1.2.3)

where λ is a variable parameter.
Eliminating the parameter λ from (9.1.2.3), we obtain the canonical equation

x – x0

x′t(t0)
=
y – y0

y′t(t0)
=
z – z0

z′t(t0)

of the tangent.
The equation of the tangent at a point M0 of the curve Γ obtained as the intersec-

tion (9.1.2.2) of two planes is

x – x0

(F1)y(F2)z– (F1)z(F2)y
=

y – y0

(F1)z(F2)x– (F1)x(F2)z
=

z – z0

(F1)x(F2)y– (F1)y(F2)x
,

where all derivatives are evaluated at x = x0 and y = y0.
A perpendicular to the tangent at the point of tangency is called a normal to a space

curve. Obviously, at each point of the curve, there are infinitely many normals that form
the plane perpendicular to the tangent.

The plane passing through the point of tangency and perpendicular to the tangent is
called the normal plane (Fig. 9.15).

rt

Figure 9.15. The normal plane.
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At a regular point M0, the equation of the normal plane has the form

(x – x0)x′t(t0) + (y – y0)y′t(t0) + (z – z0)z′t(t0) = 0 or (r – r0) ⋅ r′t(t0) = 0, (9.1.2.4)

and for the curve Γ obtained as the intersection (9.1.2.2) of two planes, we have
∣
∣∣
∣∣

x – x0 y – y0 z – z0
(F1)x (F1)y (F1)z
(F2)x (F2)y (F2)z

∣
∣∣
∣∣

= 0, (9.1.2.5)

where all derivatives are evaluated at x = x0 and y = y0.

1◦. Consider a curve defined via its natural parameter s, r = r(s). Unlike the derivatives
with respect to an arbitrary parameter, the derivatives with respect to s will be denoted by
primes. Consider the vectors r′s and r′′ss. It follows from (9.1.2.1) that |r′s| = 1. Thus the
first derivative with respect to the natural parameter s of the position vector of a point on a
curve is the unit vector tangent to the curve.

2◦. The second derivative with respect to the natural parameter s of the position vector of
a point of a curve is equal to the first derivative of the unit vector r′s, i.e., of a vector of
constant length, and hence it is perpendicular to this vector. But since the vector of the first
derivative is tangent to the curve, the vector of the second derivative with respect to the
natural parameter s is normal to the curve. This normal is called the principal normal to
the curve.

At a regular point M0, the equation of the principal normal has the form
x – x0

y′tn – z′tm
=

y – y0

z′tl – x′tn
=

z – z0

x′tm – y′tl
or r = r0 + λr′t × (r′t × r′′tt),

l = y′tz
′′
tt – y′′ttz

′
t, m = z′tx

′′
tt – z′′ttx

′
t, n = x′ty

′′
tt – x′′tty

′
t,

(9.1.2.6)

where all derivatives are evaluated at t = t0.

9.1.2-3. Osculating plane.

Any plane passing through the tangent line to a curve is called a tangent plane. A tangent
plane passing through a principal normal to the curve is called the osculating plane.

A curve has exactly one osculating plane at each of its points (assuming that the vectors
r′t and r′′tt are linearly independent). This plane passes through the vectors r′t and r′′tt
drawn from the point of tangency. The osculating plane is independent of the choice of the
parameter t on the curve.

Remark. If t is time and r = r(t) is an equation of motion, then the vector r′′tt is called the acceleration
vector of a moving point. The acceleration vector always lies in the osculating plane of the trajectory of a
moving point.

Since the family of all planes in space depends on three parameters and the position of
a plane is determined by three noncollinear points, the osculating plane can be determined
as the limit position of the plane passing through three points of the curve that infinitely
approach one another (Fig. 9.16).

Figure 9.16. The osculating plane.
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The equation of the osculating plane at the point M0 has the form

∣∣
∣
∣∣

x – x0 y – y0 z – z0
x′t(t0) y′t(t0) z′t(t0)
x′′tt(t0) y′′tt(t0) z′′tt(t0)

∣∣
∣
∣∣

= 0 or
[
(r – r0)r′t(t0)r′′tt(t0)

]
= 0.

This equation becomes meaningless for the points of the curve at which

r′t(t0) × r′′tt(t0) = 0 . (9.1.2.7)

The points satisfying (9.1.2.7) are called points of rectification. The osculating plane at
these points is undefined and, in what follows, we exclude them from consideration together
with singular points of the curve.

Remark. This is inadmissible for a curve entirely consisting of points of rectification, because a curve
consisting of points of rectification is a straight line.

9.1.2-4. Moving trihedral of curve.

The normal perpendicular to the osculating plane is called the binormal.
At each point of a curve, the tangent, the principal normal, and the binormal determine

a trihedral with three right angles at the vertex, which lies on the curve. This trihedral is
called the moving or natural trihedral of a curve. The faces of the moving trihedral are
three mutually perpendicular planes:

1. The normal plane is the plane containing the principal normal and the binormal.
2. The osculating plane is the plane containing the tangent and the principal normal.
3. The rectifying plane is the plane containing the tangent and the binormal.

The direction vector of the tangent is equal to the first derivative

T = r′t.

The direction vector of the binormal is equal to the vector product of the vectors of the first
and second derivatives (see Fig. 9.17):

B = r′t × r′′tt.

r

N r= B

r

B r r= t

t

t

t

t

t

t

Figure 9.17. Direction vectors of the tangent, of the binormal, and of the principal normal.
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The direction vector of the principal normal is perpendicular to the tangent and binormal
vectors. Hence it can be set equal to their vector product

N = r′t × B.

The moving trihedral permits one to assign a rectangular coordinate system to each
point of the curve; the axes of this coordinate system coincide with the tangent, the principal
normal, and the binormal. To determine the sense of these axes, one introduces positive
unit vectors of these axes.

Consider a curve defined via the natural parameter s.
1. The unit tangent vector is defined to coincide with the first derivative of the position

vector with respect to the natural parameter,

t = r′s. (9.1.2.8)

2. The unit principal normal vector n is defined in such a way that its sense coincides with
that of the vector of the second derivative with respect to the parameter,

n =
r′′ss

|r′′ss|
=

1
k

r′′ss.

The vector kn = r′′ss is called the curvature vector; here k is the curvature, studied in
Paragraph 9.1.2-6.

3. The unit binormal vector b is chosen from the condition that t, n, and b is a right triple
of vectors,

b = t × n.

If the direction of arc length increase is changed, then the tangent and binormal vectors
also change their sense, but the sense of the principal normal vector remains the same.

9.1.2-5. Equations for elements of trihedral.

At a regular point M0, the equation of the tangent has the form [see also (9.1.2.3)]

r = r0 + λt,

where λ is a variable parameter.
At a regular point M0, the equation of the principal normal has the form [see also

(9.1.2.5)]
r = r0 + λn,

where λ is a variable parameter.
At a regular point M0, the equation of the binormal has the form

r = r0 + λb,

where λ is a variable parameter.
The vector equation of the osculating plane at a regular point M0 is

(r – r1) ⋅ b = 0
[see also (9.1.2.6)].

The vector equation of the normal plane at a regular point M0 is

(r – r0) ⋅ t = 0
[see also (9.1.2.4)].

The vector equation of the rectifying plane at a regular point M0 is

(r – r0) ⋅ n = 0.
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9.1.2-6. Curvature of space curves.

The curvature of a space curve at a point M0 is determined by analogy with the curvature of
a plane curve (see Paragraph 9.1.1-7); i.e., the curvature of a curve at a point M0 is the limit
ratio of the tangent rotation angle along an arc shrinking toM0 to the arc length (Fig. 9.18),

k = lim
Δs→0

∣∣
∣
Δt
Δs

∣∣
∣ =
∣∣
∣
dt
ds

∣∣
∣. (9.1.2.9)

M

M

1

0t

tt
tΔ+

t
tΔ+Δt Δφ

Δs

Figure 9.18. The curvature of a space curve.

Remark. The curvature k can be determined as the angular velocity of the vector t (or, which is the same,
the angular velocity of the tangent) at a given point of the curve with respect to the distance s passed along the
curve.

It follows from (9.1.2.8) and (9.1.2.9) that

k = |r′′ss| =
√

(x′′ss)2 + (y′′ss)2 + (z′′ss)2. (9.1.2.10)

For an arbitrary choice of the parameter, the curvature k is calculated by the formulas

k =
|r′t × r′′tt |

|r′t|3 ,

k =

√[
(x′t)2 + (y′t)2 + (z′t)2

][
(x′′tt)2 + (y′′tt)2 + (z′′tt)2

]
–
(
x′tx′′tt + y′ty′′tt + z′tz′′tt

)2

[
(x′t)2 + (y′t)2 + (z′t)2

]3/2 .

The radius of curvature and the curvature are reciprocal quantities; i.e., ρ = 1/k. For
space curves, ρ and k are always positive.

Example 1. Let us find the curvature of the helix x = a cos t, y = a sin t, z = bt.
Expressing the parameter t in terms of the arc length s as

s =
√
a2 + b2t,

we obtain

x = a cos
s√

a2 + b2
, y = a sin

s√
a2 + b2

, z =
bs√
a2 + b2

.

Formula (9.1.2.10) implies

k =
a

a2 + b2 , ρ =
a2 + b2

a
.
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M

M

1

0

b bΔ+

b bΔ+

Δb

b
b

β
Δs

Figure 9.19. The torsion of a space curve.

9.1.2-7. Torsion of space curves.

In addition to curvature, space curves are also characterized by torsion. The torsion of
a space curve is defined to be a quantity whose absolute value is equal to the limit ratio
of the rotation angle of the binormal along an arc, shrinking to a given point to the arc
length (Fig. 9.19):

|τ | = lim
Δs→0

β

Δs
= lim

Δs→0

∣
∣∣
Δb
Δs

∣
∣∣ =
∣
∣∣
db
ds

∣
∣∣.

Remark 1. The torsion τ does not change (including the sign) if the direction of increase of the parameter s
is changed to the opposite.

Remark 2. The torsion τ can be defined as the angular velocity of the binormal b at the corresponding
point with respect to the distance s passed along the curve.

In the special case of a plane curve, the torsion is zero at all points; conversely, if the
torsion is zero at all points of a curve, then the entire curve lies in a single plane, which is
the common osculating plane for all of its points.

For an arbitrary choice of the parameter t, the torsion τ is calculated by the formulas

τ = ρ2 r′tr′′ttr′′′ttt
|r′t |3 =

∣∣
∣∣
∣∣

x′t y′t z′t
x′′tt y′′tt z′′tt
x′′′ttt y′′′ttt z′′′ttt

∣∣
∣∣
∣∣

[
(x′t)2 + (y′t)2 + (z′t)2

][
(x′′tt)2 + (y′′tt)2 + (z′′tt)2

]
– (x′tx′′tt + y′ty′′tt + z′tz′′tt)2 .

(9.1.2.11)
But if the arc length is taken as the parameter, then τ is calculated by the formulas

τ = ρ2 (r′sr′′ssr′′′sss)
|r′s|3 =

∣
∣∣
∣∣
∣

x′s y′s z′s
x′′ss y′′ss z′′ss
x′′′sss y′′′sss z′′′sss

∣
∣∣
∣∣
∣

[
(x′′ss)2 + (y′′ss)2 + (z′′ss)2

]2 .

The quantity ρτ = 1/τ inverse to the torsion is called the radius of torsion.

Example 2. Let us find the torsion of the helix x = a cos t, y = a sin t, z = bt. Using formula (9.1.2.11),
we obtain

τ =

∣
∣
∣∣
∣

–a sin t a cos t b
–a cos t –a sin t 0
a sin t –a cos t 0

∣
∣
∣∣
∣

(
a2 sin2 t + a2 cos2 t + b2

)(
a2 cos2 t + a2 sin2 t

)
–
(
a2 sin t cos t – a2 cos t sin t

)2 =
b

a2 + b2
.
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9.1.2-8. Serret–Frénet formulas.

The derivatives of the vectors t, n, and b with respect to the parameter s at each point of the
curve satisfy the Serret–Frénet formulas

t′s = kn, n′
s = –kt + τb, b′

s = –τn,

where k is the curvature of the curve and τ is the torsion of the curve.

As the parameter s increases, the point M moves along Γ; in this case
1. The tangent rotates around the instantaneous position of the binormal b at a positive

angular velocity equal to the curvature k of Γ at M .
2. The binormal b rotates around the instantaneous position of the tangent at an angular

velocity equal to the torsion τ of Γ at M ; here the torsion is positive if the shape of the
curve resembles a right helix.

3. The trihedral rotates as a solid around an instantaneous axis whose direction is deter-
mined by the Darboux vector Ω = τ t + kb at a positive angular velocity equal to the
total curvature of Γ M , i.e., to |Ω| =

√
τ 2 + k2.

The Serret–Frénet formulas permit one to find the coefficients in the decomposition of
the derivatives of the position vector in the vectors of the moving trihedral. The following
recursion formulas hold for the decomposition of the derivatives of the position vector of a
point on the curve with respect to the arc length:

r(n)
s = Ant +Bnn + Cnb,

where

An+1 = (An)′s – Bnk, Bn+1 = (Bn)′s + Ank – Cnτ , Cn+1 = (Cn)′s +Bnτ .

For example, using the relation r′′ss = kn, we can decompose r′′′sss as

r′′′sss = –k2t + k′sn + kτb.

9.2. Theory of Surfaces
9.2.1. Elementary Notions in Theory of Surfaces

9.2.1-1. Equation of surface.

Any surface can be determined by equations in one of the following forms:
Explicitly,

z = f (x, y).

Implicitly,
F (x, y, z) = 0. (9.2.1.1)

Parametrically,
x = x(u, v), y = y(u, v), z = z(u, v).

In vector form,

r = r(u, v), or r = x(u, v)i + y(u, v)j + z(u, v)k.
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Varying the parameters u and v arbitrarily, we obtain the position vector and the coordi-
nates of various points on the surface. Eliminating the parameters u and v from a parametric
equation of a surface, we obtain an implicit equation of the surface. The explicit equation
is a special case (u = x and v = y) of the parametric equation.

It is assumed that the vectors ru ≡ ∂r/∂u and rv ≡ ∂r/∂v are nonparallel, i.e.,

ru × rv ≠ 0. (9.2.1.2)

The points at which condition (9.2.1.2) holds are said to be regular. This condition
satisfied at a point M on the surface guarantees that the equation of the surface near this
point can be solved for one of the coordinates. Condition (9.2.1.2) also guarantees a one-
to-one correspondence between points on the surface and pairs of values of u and v in the
corresponding range of u and v.

Condition (9.2.1.2) for a surface defined implicitly becomes

gradF ≠ 0 .

For a surface defined parametrically, all functions have continuous first partial derivatives,
and the rank of the matrix (

xu yu zu
xv yv zv

)

is equal to 2.

Example 3. The sphere defined by the implicit equation

x2 + y2 + z2 – a2 = 0

is described in parametric form as

x = a cosu sin v, y = a sinu sin v, z = a cos v

and in vector form as
r = a cos u sin vi + a sinu sin vj + a cos vk.

9.2.1-2. Curvilinear coordinates on surface.

We consider a surface or part of the surface such that it can be topologically (i.e., bijectively
and continuously) mapped onto a plane domain and assume that a point M of this surface
is taken to a point M0 with rectangular coordinates u and v on the plane (see Fig. 9.20). If
such a mapping is given, then the surface is said to be parametrized, and u and v are called
curvilinear (Gaussian) coordinates of the point M on the surface. Since the mapping is
continuous, each curve on the plane gives rise to a curve on the surface. In particular, the
straight lines u = const and v = const are associated with the curves on the surface, which
are called parametric or curvilinear lines of the surface. Since the mapping is one-to-one,
there is a single curve of the family u = const and a single curve of the family v = const that
pass through each point of the parametrized surface. Both families together form a regular
net, which is called the coordinate net.

In the case of rectangular Cartesian coordinates, the coordinate net on the plane is formed
by all possible straight lines parallel to coordinate axes; in the case of polar coordinates, the
coordinate net is formed by circles centered at the pole and half-lines issuing from the pole.

Example 4. In the parametric equations

x = a cosu sin v, y = a sinu sin v, z = a cos v

of the sphere, u is the longitude and v the polar distance of a point.



388 DIFFERENTIAL GEOMETRY

M

M0

u

v

Figure 9.20. The parametrized surface.

9.2.1-3. Tangent line to surface.

A straight line is said to be tangent to a surface if it is tangent to a curve lying in this
surface. Suppose that a surface is given in vector form (9.2.1.1) and a curve lying on it is
parametrized by the parameter t. Then to each parameter value there corresponds a point
of the curve, and the position of this point on the surface is specified by some values of the
curvilinear coordinates u and v. Thus the curvilinear coordinates of points of a curve lying
on a surface are functions of the parameter t.

The system of equations
u = u(t), v = v(t) (9.2.1.3)

is called the intrinsic equations of the curve on the surface.
The intrinsic equations completely characterize the curve if the vector equation of the

surface is given, since the substitution of (9.2.1.3) into (9.2.1.1) results in the equation

r = r[u(t), v(t)], (9.2.1.4)

which is called the parametric equation of the curve.
The differential of the position vector is equal to

dr = ru du + rv dv, (9.2.1.5)

where du = u′t(t) dt and dv = v′t(t) dt. The vectors ru and rv are called the coordinate
vectors corresponding to the point whose curvilinear coordinates have been used in the
computations. The coordinate vectors are tangent vectors to coordinate curves (Fig. 9.21).

N

r

r

v

u

Figure 9.21. Coordinate vectors.
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Formula (9.2.1.5) shows that the direction vector of any tangent line to a surface at a
given point is a linear combination of the coordinate vectors corresponding to this point;
i.e., the tangent to a curve lies in the plane spanned by the vectors ru and rv at this point.

The direction of the tangent to a curve on a surface at a point M is completely charac-
terized by the ratio dv :du of differentials taken along this curve.

9.2.1-4. Tangent plane and normal.

If all possible curves are drawn on a surface through a given regular point M0(r0) =
M0(x0, y0, z0) = M (u0, v0) of the surface, then their tangents at M0 lie in the same plane,
which is called the tangent plane to the surface at M0. The tangent plane can be defined
as the limit position of the plane passing through three distinct points M0, M1, and M2 on
the surface as M1 →M0 and M2 →M0; here M1 and M2 should move along curves with
distinct tangents at M0.

The tangent plane at M0 can be viewed as the plane passing through M0 and perpen-
dicular to the vector

ru × rv ;

i.e., it passes through the vectors ru and rv. Thus the tangent plane at M0, depending on
the method for defining the surface, is given by one of the equations

∣∣
∣
∣∣

x – x0 y – y0 z – z0
xu yu zu
xv yv zv

∣∣
∣
∣∣

= 0, [(r – r0)rurv] = 0,

Fx(x – x0) + Fy(y – y0) + Fz(z – z0) = 0, zx(x – x0) + zy(y – y0) = z – z0,

where all the derivatives are evaluated at the point M0(r0) = M0(x0, y0, z0) = M (u0, v0).
The straight line passing through M0 and perpendicular to the tangent plane is called

the normal to the surface at M0. The vector N = ru × rv/|ru × rv | is called the unit normal
vector. The sense of the vector N is called the positive normal direction; the vector ru, the
vector rv , and the positive normal form a right triple.

The equation of the normal, depending on the method for defining the surface, has one
of the forms

x – x0∣∣
∣
yu zu
yv zv

∣∣
∣

=
y – y0∣∣
∣
zu xu
zv xv

∣∣
∣

=
z – z0∣∣
∣
xu yu
xv yv

∣∣
∣
, r = r0 + λ(ru × rv) or r = r0 + λN,

x – x0

Fx
=
y – y0

Fy
=
z – z0

Fz
,

x – x0

zx
=
y – y0

zy
=
z – z0

–1
,

where all derivatives are evaluated at the point M0(r0) = M0(x0, y0, z0) = M (u0, v0).

Example 5. For the sphere given by the implicit equation

x2 + y2 + z2 – a2 = 0,

the tangent plane at the point M0(x0, y0, z0) is given by the equation

2x0(x – x0) + 2y0(y – y0) + 2z0(z – z0) = 0 or xx0 + yy0 + zz0 = 0,

and the normal is given by the equation

x – x0

2x0
=
y – y0

2y0
=
z – z0

2z0
or

x

x0
=
y

y0
=
z

z0
.
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9.2.1-5. First quadratic form.

If a surface is given parametrically or in vector form, M1(u, v) is an arbitrary point, and
M2(u + du, v + dv) is a nearby point on the surface, then the length of the arc M1M2 on the
surface is approximately expressed in terms of the arc length differential or in terms of the
linear surface element by the formula

ds2 = E du2 + 2F dudv + Gdv2, (9.2.1.6)

where the coefficients E, F , and G are given by the formulas

E = r2
u = x2

u + y2
u + z2

u,
F = ru ⋅ rv = xuxv + yuyv + zuzv,

G = r2
v = x2

v + y2
v + z2

v.

The right-hand side of formula (9.2.1.6) is also called the first quadratic form of the surface
given parametrically or in vector form; its coefficients E, F , and G depend on the point on
the surface. At each regular point on the surface corresponding to (real) coordinates u and
v, the first quadratic form (0.2.1.12) is positive definite; i.e.,

E > 0, G > 0, EG – F 2 > 0.

Example 6. For the sphere given by the equation

r = a cos u sin vi + a sinu sin vj + a cos vk,

the coefficients E, F , and G are equal to

E = a2 sin2 v, F = 0, G = a2,

and the first quadratic form is
ds2 = a2(sin2 v du2 + dv2).

For a surface given explicitly, the coefficients E, F , and G are given by the formulas

E = 1 + z2
x, F = zxzy, G = 1 + z2

y.

The arc length of the curve u = u(t), v = v(t), t � [t0, t1], on the surface can be calculated
by the formula

L =
∫ t1

t0

ds =
∫ t1

t0

√
Eu2

t + 2Futvt +Gv2
t dt. (9.2.1.7)

The angle γ between two curves (i.e., between their tangents) intersecting in a point M
and having the direction vectors dr = (du, dv) and δr = (δu, δv) at this point (Fig. 9.22) can
be calculated by the formula

cos γ =
dr δr

|dr||δr|
=

E du δu + F (du δv + dv δu) + Gdv δv√
E du2 + 2F dudv + Gdv2

√
E δu2 + 2F δu δv +Gδv2

. (9.2.1.8)

(The coefficients E, F , and G are evaluated at point M .)

dr

δr

γ

Figure 9.22. The angle between two space curves.
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In particular, the angle γ1 between the coordinate curves u = const and v = const passing
through a point M (u, v) is determined by the formulas

cos γ1 =
F√
EG

, sin γ1 =

√
EG – F 2
√
EG

.

The coordinate lines are perpendicular if F = 0.
The area of a domain U bounded by some curve on the surface can be calculated as the

double integral

S =
∫

U
dS =

∫

U

√
EG – F 2 du dv. (9.2.1.9)

Thus if the coefficients E, F , and G of the first quadratic form are known, then one can
measure lengths, angles, and areas on the surface according to formulas (9.2.1.7), (9.2.1.8),
and (9.2.1.9); i.e., the first quadratic form completely determines the intrinsic geometry of
the surface (see Subsection 9.2.3 for details).

To calculate surface areas in three-dimensional space, one can use the following theo-
rems.

THEOREM 1. If a surface is given in the explicit form z = f (x, y) and a domain U on
the surface is projected onto a domain V on the plane (x, y), then

S =
∫

V

√
1 + f 2

x + f 2
y dx dy.

THEOREM 2. If the surface is given implicitly (F (x, y, z) = 0) and a domain U on the
surface is projected bijectively onto a domain V on the plane (x, y), then

S =
∫

V

|gradF |
|Fz |

dx dy,

where |Fz | = ∂F/∂z ≠ 0 for (x, y, z) lying in the domain U .

THEOREM 3. If a surface is the parametric form r = r(u, v) or x = x(u, v), y = y(u, v),
z = z(u, v), then

S =
∫

V
|ru × rv | du dv.

9.2.1-6. Singular (conic) points of surface.

A point M0(x0, y0, z0) on a surface given implicitly, i.e., determined by the equation
F (x, y) = 0, is said to be singular (conic) if its coordinates satisfy the system of equa-
tions

Fx(x0, y0, z0) = 0, Fy(x0, y0, z0) = 0, Fz(x0, y0, z0) = 0, F (x0, y0, z0) = 0.

All tangents passing through a singular point M0(x0, y0, z0) do not lie in the same plane
but form a second-order cone defined by the equation

Fxx(x – x0) + Fyy(y – y0) + Fzz(z – z0) + 2Fxy(x – x0)(y – y0)

+ 2Fyz(y – y0)(z – z0) + 2Fzx(z – z0)(x – x0) = 0.

The derivatives are evaluated at the point M0(x0, y0, z0); if all six second partial derivatives
are simultaneously zero, then the singular point is of a more complicated type (the tangents
form a cone of third or higher order).
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9.2.2. Curvature of Curves on Surface

9.2.2-1. Normal curvature. Meusnier’s theorem.

Of the plane sections of a surface, the planes containing the normal to the surface at a given
point are said to be normal. In this case, there exists a unique normal section Γ0 containing
a given tangent to the curve Γ.

MEUSNIER THEOREM. The radius of curvature at a given point of a curve Γ lying on a
surface is equal to the radius of curvature of the normal section Γ0 taken at the same point
with the same tangent, multiplied by the cosine of the angle α between the osculating plane
of the curve at this point and the plane of the normal section Γ0; i.e.,

ρ = ρN cosα‡

The normal curvature of a curve Γ at a point M (u, v) is defined as

kN = kn ⋅ N = r′′ss ⋅ N = –r′s ⋅ N′
s.

The normal curvature is the curvature of the normal section.
The geodesic curvature of a curve Γ at a point M (u, v) is defined as

kG = kr′snN = r′sr
′′
ssN.

The geodesic curvature is the angular velocity of the tangent to the curve around the normal.
The geodesic curvature is the curvature of the projection of the curve Γ onto the tangent
plane.

For any point u, v of the curve Γ given by equation (9.2.1.4) and lying on the surface,
the curvature vector can be represented as a sum of two vectors,

r′′ss = kn = kGN × r′s + kNN, (9.2.2.1)

where N is the unit normal vector to the surface. The first term on the right-hand side
in (9.2.2.1) is called the geodesic (tangential) curvature vector, and the second term is
called the normal curvature vector. The geodesic curvature vector lies in the tangent plane,
and the normal curvature vector is normal to the surface.

9.2.2-2. Second quadratic form. Curvature of curve on surface.

The quadratic differential form

– dr ⋅ dN = Ldu2 + 2M dudv + N dv2,

L = –ru ⋅ Nu =
ruururv√
EG – F 2

, N = –rv ⋅ Nv =
rvvrurv√
EG – F 2

,

M = –ru ⋅ Nv = –rv ⋅ Nu =
ruvrurv√
EG – F 2

(all derivatives are evaluated at the point M (u, v)) is called the second quadratic form of
the surface.
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The coefficients L, N , and M for surfaces given parametrically or implicitly can be
calculated by the formulas

L =
1√

EG – F 2

∣
∣∣
∣∣

xuu yuu zuu
xu yu zu
xv yv zv

∣
∣∣
∣∣

= zxx
√

1 + z2
x + z2

y ,

M =
1√

EG – F 2

∣
∣∣
∣∣

xuv yuv zuv
xu yu zu
xv yv zv

∣
∣∣
∣∣

= zxy
√

1 + z2
x + z2

y ,

N =
1√

EG – F 2

∣
∣∣
∣∣

xvv yvv zvv
xu yu zu
xv yv zv

∣
∣∣
∣∣

= zyy
√

1 + z2
x + z2

y .

The curvature kN of a normal section can be calculated by the formula

kN = –
dr ⋅ dN
ds2 =

Ldu2 + 2M dudv +N dv2

E du2 + 2F dudv +Gdv2 .

A point on the surface at which the curvature ρN of a normal section takes the same
value for any normal section (L : M : N = E : F : G) is said to be umbilical (circular). At
each nonumbilical point, there are two normal sections called the principal normal sections.
They are characterized by the maximum and minimum values k1 and k2 of the curvature ρN ,
which are called the principal curvatures of the surface U at the point M (u, v). The planes
of principal normal sections are mutually perpendicular.

EULER THEOREM. For a normal section at M (u, v) whose plane forms an angle θ with
the plane of one of the principal normal sections, one has

kN = k1 cos2 θ + k2 sin2 θ or kN = k1 + (k2 – k1) sin2 θ.

The quantities k1 and k2 are the roots of the characteristic equation
∣∣
∣
L – kE M – kF
M – kF N – kG

∣∣
∣ = 0.

The curves on a surface whose directions at each point coincide with the directions of
the principal normal sections are called the curvature lines; their differential equation is

∣∣
∣∣
∣

dv2 –dv du du2

E F G
L M N

∣∣
∣∣
∣

= 0.

Asymptotic lines are defined to be the curves for which ρN = 0 at each point. The
asymptotic lines are determined by the differential equation

Ldu2 + 2M dudv +N dv2 = 0.

9.2.2-3. Mean and Gaussian curvatures.

The symmetric functions

H(u, v) =
k1 + k2

2
and K(u, v) = k1k2
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are called the mean and Gaussian (extrinsic) curvature, respectively, of the surface U at the
point M (u, v). They are given by the formulas

H(u, v) =
EN – 2FM + LG

2(EG – F 2)
,

K(u, v) =
LN – M2

EG – F 2 . (9.2.2.2)

The mean and Gaussian curvatures are related by the inequality

H2 –K =
(k1 + k2)2

4
– k1k2 =

(k1 – k2)2

4
≥ 0.

The mean and Gaussian curvatures can be used to characterize the deviation of the
surface from a plane. In particular, if H = 0 and K = 0 at all points of the surface, then the
surface is a plane.

Example 1. For a circular cylinder (of radius a),

H =
a

2
, K = 0.

If a surface is represented by the equation z = f (x, y), then the mean and Gaussian
curvature can be determined by the formulas

H =
r(1 + q2) – 2pqs + t(1 + p2)

2
√

(1 + p2 + q2)3
, K =

rt – s2

(1 + p2 + q2)3 ,

where the following notation is used:

p = zx, q = zy, r = zxx, s = zxy , t = zyy , h =
√

1 + p2 + q2.

The surfaces for which the mean curvature H is zero at all points are said to be minimal.
The surfaces for which the Gaussian curvature K is constant at all points are called surfaces
of constant curvature.

9.2.2-4. Classification of points on surface.

The points of a surface can be classified according to the values of the Gaussian curvature:
1. A point M at which K = k1k2 > 0 (the principal normal sections are convex in the same

direction from the tangent plane; example: any point of an ellipsoid) is called an elliptic
point; the analytic criterion for this case is LN – M2 > 0. In the special case k1 = k2,
the point is umbilical (circular): R = const for all normal sections at this point.

2. A point M at which K = k1k2 < 0 (the principal normal sections are convex in opposite
directions; the surface intersects the tangent plane and has a saddle character; example:
any point of a one-sheeted hyperboloid) is called a hyperbolic (saddle) point; the analytic
criterion for this case is LN –M2 < 0.

3. A point M at which K = k1k2 = 0 (one principal normal section has an inflection point
or is a straight line; example: any point of a cylinder) is called a parabolic point; the
analytic criterion for this case is LN – M2 = 0.

Any umbilical point (k1 = k2) is either elliptic or parabolic.



9.2. THEORY OF SURFACES 395

9.2.3. Intrinsic Geometry of Surface

9.2.3-1. Intrinsic geometry and bending of surface.

Suppose that two surfaces U and U∗ are given and there is one-to-one correspondence
between their points such that the length of each curve on U is equal to the length of the
corresponding curve on U∗. Such a one-to-one mapping of U into U∗ is called a bending
of the surface U into the surface U∗, and the surfaces U and U∗ are said to be applicable.

The correspondence between U and U∗ is said to be isometric.
The intrinsic geometry of a surface studies geometric constructions and quantities related

to the surface that can be determined solely from the first quadratic form. The notions of
length of a segment, angle between two curves, and area of part of a surface all belong in
intrinsic geometry.

On the opposite, the curvature of a curve given on the surface by the equations

u = u(t), v = v(t)

cannot be found using only the first quadratic form, and hence it does not belong in intrinsic
geometry.

9.2.3-2. Index notation. Surface as Riemannian space.

From now on in this chapter, the following notation related to tensor analysis is used:

u1 = u, u2 = v;
g11 = E, g12 = g21 = F , g22 = G;
b11 = L, b12 = b21 = M , b22 = N ;
r1 = ru, r2 = rv, r12 = r21 = rvu = ruv, r11 = ruu, r22 = rvv .

In the new notation, the first fundamental quadratic form becomes

E du2 + 2F dudv +Gdv2 =
2∑

α=1

2∑

β=1

gαβ du
α duβ = gαβ du

α duβ ,

and the second fundamental quadratic form is

Ldu2 + 2M dudv +N dv2 =
2∑

α=1

2∑

β=1

bαβ du
α duβ = bαβ du

α duβ .

The expressions for the coefficients of the first and second quadratic forms in the new
notation become

gij = ri ⋅ rj , bij = rij ⋅ N,

where N is the unit normal vector to the surface; i and j are equal to either 1 or 2.
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9.2.3-3. Derivation formula.

The Christoffel symbols Γk,ij of the first kind are defined to be the scalar products of the
vectors rk and rij; i.e.,

rk ⋅ rij = Γk,ij.

The Christoffel symbols of the first kind satisfy the formula

Γk,ij =
1
2

( ∂gki
∂uj

+
∂gkj
∂ui

–
∂gij
∂uk

)
.

This is one of the basic formulas in the theory of surfaces; this formula means that the
scalar products of the second partial derivatives of the position vector r(ui,uj) by its partial
derivatives can be expressed in terms of the coefficients of the first quadratic form (more
precisely, in terms of their derivatives).

The Christoffel symbols Γkij of the second kind are defined by the relations

Γkij =
n∑

t=1

gktΓk,ij ,

where gkt is given by
n∑

k=1

gktgks =
{ 1, if t = s,

0, if t ≠ s.

The Christoffel symbols of the second kind are the coefficients in the decomposition of
the vector rij in two noncollinear vectors r1 and r2 and the unit normal vector N:

rij = Γ1
ijr1 + Γ2

ijr2 + bijN (i, j = 1, 2). (9.2.3.1)

Formulas (9.2.3.1) are called the first group of derivation formulas (the Gauss derivation
formulas).

The formulas
N1 = –b1

1r1 – b2
1r2, N1 = –b1

2r1 – b2
2r2, (9.2.3.2)

where bji =biαgαj , are called the second group of derivation formulas (Weingarten formulas).
The formulas in the second group of derivation formulas express the partial derivatives of
the unit normal vector N in terms of the variables u1 and u2 in the decomposition in the
basis vectors r1, r2, and N.

Formulas (9.2.3.1) and (9.2.3.2) express the partial derivatives with respect to u1 and
u2 of the basis vectors, i.e., of the two tangent vectors r1 and r2 and the normal vector N,
at a given point on a surface. These partial derivatives of r1, r2 and N are obtained as a
decomposition in the vectors r1, r2 and N themselves.

9.2.3-4. Gauss formulas. Peterson–Codazzi formulas.

If the first quadratic form of the surface is given, then the second quadratic form cannot be
chosen arbitrarily, since its discriminant (LN –M2) is completely determined by the Gauss
formula

b11b22 – b2
12 =

∂2g12

∂u1∂u2 –
1
2
∂2g11

∂u2∂u2 –
1
2
∂2g22

∂u1∂u1 + Γγ12Γ
δ
12gγδ – Γα11Γ

β
22gαβ , (9.2.3.3)

where γ, δ, α, and β are independent summation indices equal to either 1 or 2.
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We use (9.2.3.3) to reduce relation (9.2.2.2) to the form

K(u, v) = k1k2 =
LN –M2

EG – F 2 =
b11b22 – b2

12
g11g22 – g2

12
. (9.2.3.4)

In view of (9.2.3.4), the Gaussian curvature of the surface is completely determined
by the coefficients of the first quadratic form and by their first and second derivatives with
respect to u1 and u2.

The coefficients b11, b12, b22 of the second quadratic form and their first derivatives are
related to the coefficients g11, g12, g22 of the first quadratic form and their first derivatives
(contained only in Γkij) by differential equations known as the Peterson–Codazzi formulas:

∂bi1

∂u2 – Γ1
i2b11 – Γ2

i2b21 =
∂bi2

∂u1 – Γ1
i1b12 – Γ2

i1b22 (i = 1, 2).

The Gauss formula and the Peterson–Codazzi formulas are necessary and sufficient
conditions for two analytically determined quadratic differential forms to be the fist and
second quadratic forms of some surface.
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Chapter 10

Functions of Complex Variable

10.1. Basic Notions
10.1.1. Complex Numbers. Functions of Complex Variable

10.1.1-1. Complex numbers.

The set of complex numbers is an extension of the set of real numbers. An expression of
the form z = x + iy, where x and y are real numbers, is called a complex number, and the
symbol i is called the imaginary unit: i2 = –1. The numbers x and y are called, respectively,
the real and imaginary parts of z and denoted by

x = Re z and y = Im z. (10.1.1.1)

The complex number x + i0 is identified with real number x, and the number 0 + iy is
denoted by iy and is said to be pure imaginary. Two complex numbers z1 = x1 + iy1 and
z2 = x2 + iy2 are assumed to be equal if x1 = x2 and y1 = y2.

The complex number z̄ = x – iy is said to be conjugate to the number z.
The sum or difference of complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 is defined to

be the number
z1 � z2 = x1 � x2 + i(y1 � y2). (10.1.1.2)

Addition laws:
1. z1 + z2 = z2 + z1 (commutativity).
2. z1 + (z2 + z3) = (z1 + z2) + z3 (associativity).

The product z1z2 of complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 is defined to be
the number

z1z2 = (x1x2 – y1y2) + i(x1y2 – x2y1). (10.1.1.3)

Multiplication laws:
1. z1z2 = z2z1 (commutativity).
2. z1(z2z3) = (z1z2)z3 (associativity).
3. (z1 + z2)z3 = z1z3 + z2z3 (distributivity with respect to addition).

The product of a complex number z = x + iy by its conjugate is always nonnegative:

zz̄ = x2 + y2. (10.1.1.4)

For a positive integer n, the n-fold product of z by itself is called the nth power of the
number z and is denoted by zn. A number w is called an nth root of a number z and is
denoted by w = n

√
z if wn = z.

If z2 ≠ 0, then the quotient of z1 and z2 is defined as
z1

z2
=
x1x2 + y1y2

x2
2 + y2

2
+ i
x2y1 – x1y2

x2
2 + y2

2
. (10.1.1.5)

Relation (10.1.1.5) can be obtained by multiplying the numerator and the denominator of
the fraction z1/z2 by z̄2.

399
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10.1.1-2. Geometric interpretation of complex number.

There is a one-to-one correspondence between complex numbers z = x + iy and points M
with coordinates (x, y) on the plane with a Cartesian rectangular coordinate system OXY

or with vectors
−−→
OM connecting the origin O with M (Fig. 10.1). The length r of the vector−−→

OM is called the modulus of the number z and is denoted by r = |z|, and the angle ϕ formed
by the vector

−−→
OM and the positive direction of the OX-axis is called the argument of the

number z and is denoted by ϕ = Arg z.

X

Y

r

φ

M

O

Figure 10.1. Geometric interpretation of complex number.

The modulus of a complex number is determined by the formula

|z| =
√
zz̄ =

√
x2 + y2. (10.1.1.6)

The argument Arg z is determined up to a multiple of 2π, Arg z = arg z + 2kπ, where k is
an arbitrary integer and arg z is the principal value of Arg z determined by the condition
–π < arg z ≤ π. The principal value arg z is given by the formula

arg z =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

arctan(y/x) for x > 0,
π + arctan(y/x) for x < 0, y ≥ 0,
–π + arctan(y/x) for x < 0, y < 0,
π/2 for x = 0, y > 0,
–π/2 for x = 0, y < 0.

(10.1.1.7)

For z = 0, Arg z is undefined.
Since x = r cosϕ and y = r sinϕ, it follows that the complex number can be written in

the trigonometric form
z = x + iy = r(cosϕ + i sinϕ). (10.1.1.8)

For numbers z1 = r1(cosϕ1 + i sinϕ1) and z2 = r2(cosϕ2 + i sinϕ2), written in trigonometric
form, the following rules of algebraic operations are valid:

z1z2 = r1r2
[
cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2)

]
,

z1

z2
=
r1

r2

[
cos(ϕ1 – ϕ2) + i sin(ϕ1 – ϕ2)

]
.

(10.1.1.9)

In the latter formula, it is assumed that z ≠ 0. For any positive integer n, this implies the de
Moivre formula

zn = rn(cos nϕ + i sin nϕ), (10.1.1.10)

as well as the formula for extracting the root of a complex number. For z ≠ 0, there are
exactly n distinct values of the nth root of the number z = r(cosϕ + i sinϕ). They are
determined by the formulas

n
√
z = n

√
r
(

cos
ϕ + 2kπ

n
+ i sin

ϕ + 2kπ
n

)
(k = 0, 1, 2, . . . ,n – 1). (10.1.1.11)
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Example. Let us find all values of 3√i.
We represent the complex number z = i in trigonometric form. We have r = 1 and ϕ = arg z = 1

2π.
The distinct values of the third root are calculated by the formula

ωk = 3√
i
(

cos
π
2 + 2πk

3
+ i sin

π
2 + 2πk

3

)
(k = 0, 1, 2),

so that

ω0 = cos
π

6
+ i sin

π

6
=

√
3

2
+ i

1
2

,

ω1 = cos
5π

6
+ i sin

5π
6

= –

√
3

2
+ i

1
2

,

ω2 = cos
3π

2
+ i sin

3π
2

= –i.

The roots are shown in (Fig. 10.2).

X

Y

i

i

ω

ω

ω1

2

0

√3 √3

2

2 2

Figure 10.2. The roots of 3√i.
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z+z
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1

1

1
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2
2

Figure 10.3. The sum and difference of complex
numbers.

The plane OXY is called the complex plane, the axis OX is called the real axis, and
the axis OY is called the imaginary axis. The notions of complex number and point on the
complex plane are identical.

The geometric meaning of the operations of addition and subtraction of complex num-
bers is as follows: the sum and the difference of complex numbers z1 and z2 are the vectors
equal to the directed diagonals of the parallelogram spanned by the vectors z1 and z2
(Fig. 10.3). The following inequalities hold (Fig. 10.3):

|z1 + z2| ≤ |z1| + |z2|, |z1 – z2| ≥
∣∣|z1| – |z2|

∣∣. (10.1.1.12)

Inequalities (10.1.1.12) become equalities if and only if the arguments of the complex
numbers z1 and z2 coincide (i.e., arg z1 = arg z2) or one of the numbers is zero.

10.1.2. Functions of Complex Variable

10.1.2-1. Notion of function of complex variable.

A subset D of the complex plane such that each point of D has a neighborhood contained
in D (i.e., D is open) and two arbitrary points of D can be connected by a broken line lying
in D (i.e., D is connected) is called a domain on the complex plane. A point that does not
itself lie in D but whose arbitrary neighborhood contains points of D is called a boundary
point of D. The set of all boundary points of D is called the boundary of D, and the union
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ofD with its boundary is called a closed domain and is denoted byD. The positive sense of
the boundary is defined to be the sense for which the domain lies to the left of the boundary.
The boundary of a domain can consist of finitely many closed curves, segments, and points;
the curves and cuts are assumed to be piecewise smooth.

The simplest examples of domains are neighborhoods of points on the complex plane.
A neighborhood of a point a on the complex plane is understood as the set of points z such
that |z – a| < R, i.e., the interior of the disk of radius R > 0 centered at the point a. The
extended complex plane is obtained by augmenting the complex plane with the fictitious
point at infinity. A neighborhood of the point at infinity is understood as the set of points z
such that |z| > R (including the point at infinity itself).

If to each point z of a domain D there corresponds a point w (resp., a set of points w),
then one says that there is a single-valued (resp., multivalued) function w = f (z) defined
on the domain D. If we set z = x + iy and w = u + iv, then defining a function w = f (z)
of the complex variable is equivalent to defining two functions Re f = u = u(x, y) and
Im f = v = v(x, y) of two real variables. If the function w = f (z) is single-valued on D and
the images of distinct points ofD are distinct, then the mapping determined by this function
is said to be schlicht. The notions of boundedness, limit, and continuity for single-valued
functions of the complex variable do not differ from the corresponding notions for functions
of two real variables.

10.1.2-2. Differentiability and analyticity.

Let a single-valued function w = f (z) be defined in a neighborhood of a point z. If there
exists a limit

lim
h→0

f (z + h) – f (z)
h

= f ′z(z), (10.1.2.1)

then the function w = f (z) is said to be differentiable at the point z and f ′z(z) is called its
derivative at the point z.

Cauchy–Riemann conditions. If the functions u(x, y) = Re f (z) and v(x, y) = Im f (z)
are differentiable at a point (x, y), then the Cauchy–Riemann conditions

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= –

∂v

∂x
(10.1.2.2)

are necessary and sufficient for the functionw=f (z) to be differentiable at the point z =x+iy.

If the function w = f (z) is differentiable, then

w′
z = ux + ivx = vy – iuy = ux + iuy = vy + ivx, (10.1.2.3)

where the subscripts x and y indicate the corresponding partial derivatives.
Remark. The Cauchy–Riemann conditions are sometimes also called the d’Alembert–Euler conditions.

The rules for algebraic operations on the derivatives and for calculating the derivative
of the composite function and the inverse function (if it exists) have exactly the same form
as in the real case:
1.
[
αf1(z) � βf2(z)

]′
z

= α[f1(z)]′z � β[f2(z)]′z , where α and β are arbitrary complex
constants.

2.
[
f1(z)f2(z)

]′
z

= [f1(z)]′zf2(z) + f1(z)[f2(z)]′z .

3.
[ f1(z)
f2(z)

]′
z

=
[f1(z)]′zf2(z) – f1(z)[f2(z)]′z

f 2
2 (z)

(f2(z) � 0).

4. If a function w = f (z) is differentiable at a point z and a function W = F (w) is
differentiable at the point w = f (z), then the composite function W = F (f (z)) is
differentiable at the point z and W ′

z = [F (f (z))]′z = F ′
f (f )f ′z(z).
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5. If a functionw=f (z) is differentiable at a point z and the inverse function z =g(w)≡f –1(w)
exists and is differentiable at the point w and satisfies [f –1(w)]′w ≠ 0, then

f ′z(z) =
1

[f –1(w)]′w
.

A single-valued function differentiable in some neighborhood of a point z0 is said to be
analytic (regular, holomorphic) at this point.

A function w = f (z) is analytic at a point z0 if and only if it can be represented by a
power series

f (z) =
∞∑

k=0

ck(z – z0)k (10.1.2.4)

converging in some neighborhood of z0.
A function analytic at each point of the domain D is said to be analytic in D.
A function w = f (z) is said to be analytic at the point at infinity if the function

F (z) = f (1/z) is analytic at the point z = 0. In this case, f ′z(∞) = (–z2 F ′
z)
∣
∣
z=0 by definition.

A function w = f (z) is analytic at the point at infinity if and only if this function can be
represented by a power series

f (z) =
∞∑

k=0

bkz
–k (10.1.2.5)

converging for sufficiently large |z|.
If a function w = f (z) is analytic at a point z0 and f ′z(z0) ≠ 0, then f (z) has an analytic

inverse function z(w) defined in a neighborhood of the point w0 = f (z0). If a function
w = f (z) is analytic at a point z0 and the function W = F (w) is analytic at the point
w0 = f (z0), then the composite function W = F [f (z)] is analytic at the point z0. If a
function is analytic in a domain D and continuous in D, then its value at any interior point
of the domain is uniquely determined by its values on the boundary of the domain. The
analyticity of a function at a point implies the existence and analyticity of its derivatives of
arbitrary order at this point.

MAXIMUM MODULUS PRINCIPLE. If a function w = f (z) that is not identically constant
is analytic in a domain D and continuous in D, then its modulus cannot attain a maximum
at an interior point of D.

LIOUVILLE’S THEOREM. If a function w = f (z) is analytic and bounded in the entire
complex plane, then it is constant.

Remark. The Liouville theorem can be stated in the following form:
if a function w = f (z) is analytic in the extended complex plane, then it is constant.

Geometric meaning of the absolute value of the derivative. Suppose that a function
w = f (z) is analytic at a point z0 and f ′z(z0) ≠ 0. Then the value |f ′z(z0)| determines the
dilatation (similarity) coefficient at the point z0 under the mapping w = f (z). The value
|f ′z(z0)| is called the dilatation ratio if |f ′z(z0)| > 1 and the contraction ratio if |f ′z(z0)| < 1.

Geometric meaning of the argument of the derivative. The argument of the derivative
f ′z(z0) is equal to the angle by which the tangent at the point z0 to any curve passing
through z0 should be rotated to give the tangent to the image of the curve at the point
w0 = f (z0). For ϕ = arg f ′z(z) > 0, the rotation is anticlockwise, and for ϕ = arg f ′z(z) < 0,
the rotation is clockwise.

Single-valued functions, as well as single-valued branches of multi-valued functions,
are analytic everywhere on the domains where they are defined. It follows from (10.1.2.2)
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that the real and imaginary parts u(x, y) and v(x, y) of a function analytic in a domain are
harmonic in this domain, i.e., satisfy the Laplace equation

Δf = fxx + fyy = 0 (10.1.2.6)

in this domain.

Remark. If u(x, y) and v(x, y) are two arbitrary harmonic functions, then the function f (z) = u(x, y) +
iv(x, y) is not necessarily analytic, since for the analyticity of f (z) the functions u(x, y) and v(x, y) must satisfy
the Cauchy–Riemann conditions.

Example 1. The function w = z2 is analytic.
Indeed, since z = x + iy, we have w = (x+ iy)2 = x2 – y2 + i2xy, u(x, y) = x2 – y2, and v(x, y) = 2xy. The

Cauchy–Riemann conditions
ux = vy = 2x, uy = vx = –2y

are satisfied at all points of the complex plane, and the function w = z2 is analytic.

Example 2. The function w = z̄ is not analytic.
Indeed, since z = x + iy, we have w = x – iy, u(x, y) = x, v(x, y) = –y. The Cauchy–Riemann conditions

are not satisfied,
ux = 1 ≠ –1 = vy , uy = vx = 0,

and the function w = z̄ is not analytic.

10.1.2-3. Elementary functions.

1◦. The functionsw=zn andw= n
√
z for positive integern are defined in Paragraph 10.1.1-2.

The function
w = zn (10.1.2.7)

is single-valued. It is schlicht in the sectors 2πk/n < ϕ < 2π(k + 1)/n, k = 0, 1, 2, . . . , each
of which is transformed by the mapping w = zn into the plane w with a cut on the positive
semiaxis.

The function
w = n

√
z (10.1.2.8)

is an n-valued function for z ≠ 0, and its value is determined by the value of the argument
chosen for the point z. If a closed curve C does not surround the point z = 0, then, as the
point z goes around the entire curve C , the point w = n

√
z for a chosen value of the root

also moves along a closed curve and returns to the initial value of the argument. But if
the curve C surrounds the origin, then, as the point z goes around the entire curve C in
the positive sense, the argument of z increases by 2π and the corresponding point w = n

√
z

does not return to the initial position. It will return there only after the point z goes n times
around the entire curve C . If a domain D does not contain a closed curve surrounding the
point z = 0, then one can singe out n continuous single-valued functions, each of which takes
only one of the values w = n

√
z; these functions are called the branches of the multi-valued

function w = n
√
z. One cannot single n separate branches of the function w = n

√
z in any

neighborhood of the point z = 0; accordingly, the point z = 0 is called a branch point of this
function.

2◦. The Zhukovskii function

w =
1
2

(
z +

1
z

)
(10.1.2.9)

is defined and single-valued for all z ≠ 0; it is schlicht in any domain that does not
simultaneously contain any points z1 and z2 such that z1z2 = 1.



10.1. BASIC NOTIONS 405

3◦. The exponential function w = ez is defined by the formula

w = ez = ex+iy = ex(cos y + i sin y). (10.1.2.10)

The function w = ez is analytic everywhere. For the exponential function, the usual
differentiation rule is preserved:

(ez)′z = ez .

The basic property of the exponential function (addition theorem) is also preserved:

ez1ez2 = ez1+z2 .

For x = 0 and y = ϕ, the definition of the exponential function implies the Euler formula
eiϕ = cosϕ + i sinϕ, which permits one to write any complex number with modulus r and
argument ϕ in the exponential form

z = r(cosϕ + i sinϕ) = reiϕ. (10.1.2.11)

The exponential function is 2π-periodic, and the mapping w = ez is schlicht in the
strip 0 ≤ y < 2π.

4◦. The logarithm is defined as the inverse of the exponential function: if ew = z, then

w = Ln z. (10.1.2.12)

This function is defined for z ≠ 0. The logarithm satisfies the following relations:

Ln z1 + Ln z2 = Ln(z1z2), Ln z1 – Ln z2 = Ln
z1

z2
,

Ln(zn) = nLn z, Ln n
√
z =

1
n

Ln z.

The exponential form of complex numbers readily shows that the logarithm is infinite-
valued:

Ln z = ln |z| + iArg z = ln |z| + i arg z + 2πki, k = 0, �1, �2, . . . (10.1.2.13)

The value ln z = ln |z| + i arg z is taken to be the principal value of this function. Just as
with the function w = n

√
z, we see that if the point z = 0 is surrounded by a closed curve C ,

then the point w = Ln z does not return to its initial position after z goes around C in the
positive sense, since the argument of w increases by 2πi. Thus if a domain D does not
contain a closed curve surrounding the point z = 0, then in D one can single out infinitely
many continuous and single-valued branches of the multi-valued function w = Ln z; the
differences between the values of these branches at each point of the domain have the form
2πki, where k is an integer. This cannot be done in an arbitrary neighborhood of the point
z = 0, and this point is called a branch point of the logarithm.

5◦. Trigonometric functions are defined in terms of the exponential function as follows:

cos z =
eiz + e–iz

2
, sin z =

eiz – e–iz

2i
,

tan z =
sin z
cos z

= –i
eiz – e–iz

eiz + e–iz , cot z =
cos z
sin z

= i
eiz + e–iz

eiz – e–iz .

(10.1.2.14)
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Properties of the functions cos z and sin z:
1. They are analytic for any z.
2. The usual differentiation rules are valid:

(sin z)′z = cos z, (cos z)′z = sin z.

3. They are periodic with real period T = 2π.
4. sin z is an odd function, and cos z is an even function.
5. In the complex domain, they are unbounded.
6. The usual trigonometric relations hold:

cos2 z + sin2 z = 1, cos 2z = cos2 z – sin2 z, etc.

The function tan z is analytic everywhere except for the points

zk =
π

2
+ kπ, k = 0, �1, �2, . . . ,

and the function cot z is analytic everywhere except for the points

zk = kπ, k = 0, �1, �2, . . .

The functions tan z and cot z are periodic with real period T = π.

6◦. Hyperbolic functions are defined by the formulas

cosh z =
ez + e–z

2
, sinh z =

ez – e–z

2
,

tanh z =
sinh z
cosh z

=
ez – e–z

ez + e–z , coth z =
cosh z
sinh z

=
ez + e–z

ez – e–z .
(10.1.2.15)

For real values of the argument, each of these functions coincides with the corresponding
real function. Hyperbolic and trigonometric functions are related by the formulas

cosh z = cos iz, sinh z = –i sin iz, tanh z = –i tan iz, coth z = i cot iz.

7◦. Inverse trigonometric and hyperbolic functions are expressed via the logarithm and
hence are infinite-valued:

Arccos z = –iLn(z +
√
z2 – 1), Arcsin z = –iLn(iz +

√
1 – z2),

Arctan z = –
i

2
Ln

1 + iz
1 – iz

, Arccot z = –
i

2
Ln

z + i
z – i

,

arccosh z = Ln(z +
√
z2 – 1), arcsinh z = Ln(z +

√
z2 – 1),

arctanh z =
1
2

Ln
1 + z
1 – z

, arccoth z =
1
2

Ln
z + 1
z – 1

.

(10.1.2.16)

The principal value of each of these functions is obtained by choosing the principal
value of the corresponding logarithmic function.

8◦. The power w = zγ is defined by the relation

zγ = eγ Ln z, (10.1.2.17)

where γ = α + iβ is an arbitrary complex number. Substituting z = reiϕ into (10.1.2.17),
we obtain

zγ = eα ln r–β(ϕ+2kπ)eiα(ϕ+2kπ)+iβ ln r, k = 0, �1, �2, . . . (10.1.2.18)

It follows from relation (10.1.2.18) that the function w = zγ has infinitely many values
for β ≠ 0.
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9◦. The general exponential function is defined by the formula

w = γz = ez Lnγ = ez ln |γ|eziArg γ , (10.1.2.19)

where γ = α + iβ is an arbitrary nonzero complex number. The function (10.1.2.19) is a
set of separate mutually independent single-valued functions that differ from one another
by the factors e2kπiz, k = 0, �1, �2, . . .

Example 3. Let us calculate the values of some elementary functions at specific points:
1. cos 2i = 1

2 (e2ii + e–2ii) = 1
2 (e2 + e–2) = cosh 2 ≈ 3.7622.

2. ln(–2) = ln 2 + iπ, since | – 2| = 2 and the principal value of the argument is equal to π.
3. Ln(–2) is calculated by formula (10.1.2.13):

Ln(–2) = ln 2 + iπ + 2πki = ln 2 + (1 + 2k)iπ (k = 0, �1, �2, . . .).

4. ii = ei Ln i = ei(iπ/2+2πk) = e–π/2–2πk (k = 0, �1, �2, . . .).

The main elementary functions w = f (z) = u(x, y) + iv(x, y) of the complex variable
z = x + iy are given in Table 10.1.

10.1.2-4. Integration of function of complex variable.

Suppose that an oriented curve C connecting points z = a and z = b is given on the complex
plane and a function w = f (z) of the complex variable is defined on the curve. We divide
the curve C into n parts, a = z0, z1, . . . , zn–1, zn = b, arbitrarily choose ξk � [zk, zk+1], and
compose the integral sum

n–1∑

k=0

f (ξk)(zk+1 – zk).

If there exists a limit of this sum as max |zk+1 – zk | → 0, independent of the construction of
the partition and the choice of points ξk, then this limit is called the integral of the function
w = f (z) over the curve C and is denoted by

∫

C
f (z) dz. (10.1.2.20)

Properties of the integral of a function of a complex variable:
1. If α, β are arbitrary constants, then

∫
C [αf (z)+βg(z)] dz = α

∫
C f (z) dz+β

∫
C g(z) dz.

2. If C̃ is the same curve as C but with the opposite sense, then
∫
C̃
f (z) dz = –

∫
C f (z) dz.

3. If C = C1 ∪ · · · ∪ Cn, then
∫
C f (z) dz =

∫
C1
f (z) dz + . . . +

∫
Cn
f (z) dz.

4. If |f (z)| ≤ M at all points of the curve C , then the following estimate of the absolute

value of the integral holds:
∣∣
∣
∫
C f (z) dz

∣∣
∣≤ Ml, where l is the length of the curve C .

If C is a piecewise smooth curve and f (z) is bounded and piecewise continuous, then
the integral (10.1.2.20) exists. If z = x+ iy and w = u(x, y) + iv(x, y), then the computation
of the integral (10.1.2.20) is reduced to finding two ordinary curvilinear integrals:

∫

C
f (z) dz =

∫

C
u(x, y) dx – v(x, y) dy + i

∫

C
v(x, y) dx + u(x, y) dy. (10.1.2.21)

Remark. Formula (10.1.2.21) can be rewritten in a form convenient for memorizing:
∫

C

f (z) dz =
∫

C

(u + iv)(dx + i dy).
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TABLE 10.1
Main elementary functions w = f (z) = u(x, y) + iv(x, y) of complex variable z = x + iy

No.
Complex
function
w = f (z)

Algebraic form
f (z) = u(x, y) + iv(x, y) Zeros of nth order Singularities

1 z x + iy z = 0, n = 1
z = ∞
is a first-order pole

2 z2 x2 – y2 + i 2xy z = 0, n = 2
z = ∞
is a second-order pole

3

1
z– (x0 +iy0)
(x0, y0 are

real numbers)

x–x0

(x–x0)2 + (y–y0)2 + i
–(y–y0)

(x–x0)2 + (y–y0)2 z = ∞, n = 1
z = x0 + iy0

is a first-order pole

4
1
z2

x2 – y2

(x2 + y2)2 + i
–2xy

(x2 + y2)2
z = ∞, n = 2

z = 0
is a second-order pole

5
√
z �

[( x+
√
x2 +y2

2

)1/2
+i
( –x+

√
x2 +y2

2

)1/2
]

z = 0 is a branch
point

z = 0 is a first-order

branch point

z = ∞ is a first-order

branch point

6 ez ex cos y + iex sin y —
z = ∞ is an essential

singular point

7 Ln z
ln |z| + i(arg z + 2kπ),

k = 0, �1, �2, . . .

z = 1, n = 1
(for the branch
corresponding

to k = 0)

Logarithmic

branch points

for z = 0, z = ∞

8 sin z sinx cosh y + i cos x sinh y z = πk, n = 1
(k = 0, �1, �2, . . .)

z = ∞ is an essential

singular point

9 cos z cosx cosh y + i(– sinx sinh y) z = 1
2π + πk, n = 1

(k = 0, �1, �2, . . .)
z = ∞ is an essential

singular point

10 tan z
sin 2x

cos 2x + cosh 2y
+ i

sinh 2y
cos 2x + cosh 2y

z = πk, n = 1
(k = 0, �1, �2, . . .)

z = 1
2π + πk

(k = 0, �1, �2, . . .)

are first-order poles

If the curve C is given by the parametric equations x = x(t), y = y(t) (t1 ≤ t ≤ t2), then
∫

C
f (z) dz =

∫ t2

t1

f (z(t))z′t(t) dt, (10.1.2.22)

where z = z(t) = x(t) + iy(t) is the complex parametric equation of the curve C .
If f (z) is an analytic function in a simply connected domain D containing the points

z = a and z = b, then the Newton–Leibniz formula holds:
∫ b

a
f (z) dz = F (b) – F (a), (10.1.2.23)

where F (z) is a primitive of the function f (z), i.e., F ′
z(z) = f (z) in the domain D.
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If f (z) and g(z) are analytic functions in a simply connected domain D and z = a and
z = b are arbitrary points of the domain D, then the formula of integration by parts holds:

∫ b

a
f (z) dg(z) = f (b)g(b) – f (a)g(a) –

∫ b

a
g(z) df (z). (10.1.2.24)

If an analytic function z = g(w) determines a single-valued mapping of a curve C̃ onto
a curve C , then ∫

C
f (z) dz =

∫

C̃
f (g(w))g′w(w) dw. (10.1.2.25)

CAUCHY’S THEOREM FOR A SIMPLY CONNECTED DOMAIN. If a function f (z) is analytic
in a simply connected domain D bounded by a contour C and is continuous in D, then∫
C f (z) dz = 0.

CAUCHY’S THEOREM FOR A MULTIPLY CONNECTED DOMAIN. If a function f (z) is analytic
in a multiply connected domain D bounded by a contour Γ consisting of several closed
curves and is continuous in D, then

∫
Γ f (z) dz = 0 provided that the sense of all curves

forming Γ is chosen in such a way that the domain D lies to one side of the contour.

If a function f (z) is analytic in an n-connected domain D and continuous in D, and
C is the boundary of D, then for any interior point z of this domain the Cauchy integral
formula holds:

f (z) =
1

2πi

∫

C

f (ξ)
ξ – z

dξ. (10.1.2.26)

(Here integration is in the positive sense of C; i.e., the domain D lies to the left of C .)
Under the same assumptions as above, formula (10.1.2.26) implies expressions for the value
of the derivative of arbitrary order of the function f (z) at any interior point z of the domain:

f (n)
z (z) =

n!
2πi

∫

C

f (ξ)
(ξ – z)n+1 dξ (n = 1, 2, . . .). (10.1.2.27)

For an arbitrary smooth curve C , not necessarily closed, and for a function f (ξ) every-
where continuous on C , possibly except for finitely many points at which this function has
an integrable discontinuity, the right-hand side of formula (10.1.2.26) defines a Cauchy-type
integral. The function F (z) determined by a Cauchy-type integral is analytic at any point
that does not belong toC . IfC divides the plane into several domains, then the Cauchy-type
integral generally determines different analytic functions in these domains.

Formulas (10.1.2.26) and (10.1.2.27) allow one to calculate the integrals
∫

C

f (ξ)
ξ – z

dξ = 2πif (z),
∫

C

f (ξ)
(ξ – z)n

dξ =
2πi
n!

f (n)
z (z). (10.1.2.28)

Example 4. Let us calculate the integral ∫

C

Im z dz,

where C is the semicircle |z| = 1, 0 ≤ arg z ≤ π (Fig. 10.4).

X11

Y

C

Figure 10.4. The semicircle |z| = 1, 0 ≤ arg z ≤ π.
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Using formula (10.1.2.21), we obtain
∫

C

Im z dz =
∫

C

y(dx + i dy) =
∫

C

y dx + i
∫

C

y dy =
∫ –1

1

√
1 – x2 dx – i

∫ –1

1
x dx = –

π

2
.

Example 5. Let us calculate the integral
∫

C

dz

z – z0
,

where C is the circle of radius R centered at a point z0 with anticlockwise sense.
Using the Cauchy integral formula (10.1.2.28), we obtain

∫

C

1
z – z0

dz = 2πi.

Example 6. Let us calculate the integral
∫

C

dz

z2 + 1
,

where C is the circle of unit radius centered at the point i with anticlockwise sense.
To apply the Cauchy integral formula (10.1.2.26), we transform the integrand as follows:

1
1 + z2 =

1
(z – i)(z + i)

=
1

z + i
1

z – i
=
f (z)
z + i

, f (z) =
1

z + i
.

The function f (z) = 1/(z + i) is analytic in the interior of the domain under study and on its boundary; hence
the Cauchy integral formula (10.1.2.26) and the first of formulas (10.1.2.28) hold. From the latter formula, we
obtain ∫

C

dz

z2 + 1
=
∫

C

f (z)
z – i

dz = 2πif (i) = 2πi 1
2i

= π.

Formulas (10.1.2.26) and (10.1.2.27) imply the Cauchy inequalities

|f (n)
z (z)| ≤

n!
2π

∣
∣∣
∫

C

f (ξ)
(ξ – z)n+1 dξ

∣
∣∣≤

n!Ml

2πRn+1 , (10.1.2.29)

where M = max
z�D

∣∣f (z)
∣∣ is the maximum modulus of the function f (z) in the domain D, R

is the distance from the point z to the boundary C , and l is the length of the boundary C .
If, in particular, f (z) is analytic in the disk D = |z – z0| < R, and bounded in D̄, then we

obtain the inequality

|f (n)
z (z0)| ≤

n!M
Rn

(n = 0, 1, 2, . . .). (10.1.2.30)

MORERA’S THEOREM. If a function f (z) is continuous in a simply connected domain D
and
∫
C f (z) dz = 0 for any closed curve C lying inD, then f (z) is analytic in the domainD.

10.1.2-5. Taylor and Laurent series.

If a series ∞∑

n=0

fn(z) (10.1.2.31)

of analytic functions in a simply connected domain D converges uniformly in this domain,
then its sum is analytic in the domain D.

If a series (10.1.2.31) of functions analytic in a domainD and continuous inD converges
uniformly in D, then it can be differentiated termwise any number of times and can be
integrated termwise over any piecewise smooth curve C lying in D.
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ABEL’S THEOREM. If the power series

∞∑

n=0

cn(z – a)n (10.1.2.32)

converges at a point z0, then it also converges at any point z satisfying the condition
|z – a| < |z0 – a|. Moreover, the series converges uniformly in any disk |z – a| < q|z0 – a|,
where 0 < q < 1.

It follows from Abel’s theorem that the domain of convergence of a power series is an
open disk centered at the point a; moreover, this disk can fill the entire plane. The radius of
this disk is called the radius of convergence of a power series. The sum of the power series
inside the disk of convergence is an analytic function.

Remark. The radius of convergence R can be found by the Cauchy–Hadamard formula

1
R

= lim
n→∞

n
√

|cn |,

where lim denotes the upper limit.

If a function f (z) is analytic in the open disk D of radius R centered at a point z = a,
then this function can be represented in this disk by its Taylor series

f (z) =
∞∑

n=0

cn(z – a)n,

whose coefficients are determined by the formulas

cn =
f (n)
z (a)
n!

=
1

2πi

∫

C

f (ξ)
(ξ – z)n+1 dξ (n = 0, 1, 2, . . .), (10.1.2.33)

where C is the circle |z – a| = qR, 0 < q < 1. In any closed domain belonging to the
disk D, the Taylor series converges uniformly. Any power series expansion of an analytic
function is its Taylor expansion. The Taylor series expansions of the functions given in
Paragraph 10.1.2-3 in powers of z have the form

ez = 1 + z +
z2

2!
+
z3

3!
+ . . . (|z| < ∞), (10.1.2.34)

cos z = 1 –
z2

2!
+
z4

4!
– . . . , sin z = z –

z3

3!
+
z5

5!
– . . . (|z| < ∞), (10.1.2.35)

cosh z = 1 +
z2

2!
+
z4

4!
+ . . . , sinh z = z +

z3

3!
+
z5

5!
+ . . . (|z| < ∞), (10.1.2.36)

ln(1 + z) = z –
z2

2!
+
z3

3!
– . . . (|z| < 1), (10.1.2.37)

(1 + z)a = 1 + az +
a(a – 1)

2!
z2 +

a(a – 1)(a – 2)
3!

z3 + . . . (|z| < 1). (10.1.2.38)

The last two expansions are valid for the single-valued branches for which the values of the
functions for z = 0 are equal to 0 and 1, respectively.
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Remark. Series expansions (10.1.2.34)–(10.1.2.38) coincide with analogous expansions of the corre-
sponding elementary functions of the real variable (see Paragraph 8.3.2-3).

To obtain the Taylor series for other branches of the multi-valued function Ln(1 + z),
one has to add the numbers 2kπi, k = �1,�2, . . . to the expression in the right-hand side:

Ln(1 + z) = z –
z2

2!
+
z3

3!
– . . . + 2kπ.

The domain of convergence of the function series
∞∑

n=–∞
cn(z – a)n is a circular annulus

K : r < |z – a| < R, where 0 ≤ r ≤ ∞ and 0 ≤ R ≤ ∞. The sum of the series is an analytic
function in the annulus of convergence. Conversely, in any annulus K where the function
f (z) is analytic, this function can be represented by the Laurent series expansion

f (z) =
∞∑

n=–∞
cn(z – a)n

with coefficients determined by the formulas

cn =
1

2πi

∫

γ

f (ξ)
(ξ – z)n+1 dξ (n = 0,�1,�2, . . .), (10.1.2.39)

where γ is the circle |z –a| = ρ, r < ρ <R. In any closed domain contained in the annulus K,
the Laurent series converges uniformly.

The part of the Laurent series with negative numbers,

–1∑

n=–∞
cn(z – a)n =

∞∑

n=1

c–n

(z – a)n
, (10.1.2.40)

is called its principal part, and the part with nonnegative numbers,
∞∑

n=0

cn(z – a)n, (10.1.2.41)

is called the regular part. Any expansion of an analytic function in positive and negative
powers of z – a is its Laurent expansion.

Example 7. Let us consider Laurent series expansions of the function

f (z) =
1

z(1 – z)

in a Laurent series in the domain 0 < |z| < 1. This function is analytic in the annulus 0 < |z| < 1 and hence can
be expanded in the corresponding Laurent series. We write this function as the sum of elementary fractions:

f (z) =
1

z(1 – z)
=

1
z

+
1

1 – z
.

Since |z| < 1, we can use formula (10.1.2.39) and obtain the expansion

1
z(1 – z)

=
1
z

+ 1 + z + z2 + . . .

Example 8. Let us consider Laurent series expansions of the function

f (z) = e1/z

in a Laurent series in a neighborhood of the point z0 = 0. To this end, we use the well-known expan-
sion (10.1.2.34), where we should replace z by 1/z. Thus we obtain

e1/z = 1 +
1

1!z
+

1
2!z2 + . . . +

1
n!zn

+ . . . (z ≠ 0).
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10.1.2-6. Zeros and isolated singularities of analytic functions.

A point z = a is called a zero of a function f (z) if f (a) = 0. If f (z) is analytic at the
point a and is not zero identically, then the least order of nonzero coefficients in the Taylor
expansion of f (z) centered at a, in other words, the number n of the first nonzero derivative
f (n)(a), is called the order of zero of this function. In a neighborhood of a zero a of order n,
the Taylor expansion of f (z) has the form

f (z) = cn(z – a)n + cn+1(z – a)n+1 + . . . (cn ≠ 0, n ≥ 1).

In this case, f (z) = cn(z – a)ng(z), where the function g(z) is analytic at the point a and
g(a) ≠ 0. A first-order zero is said to be simple. The point z = ∞ is a zero of order n for a
function f (z) if z = 0 is a zero of order n for F (z) = f (1/z).

If a function f (z) is analytic at a point a and is not identically zero in any neighborhood
of a, then there exists a neighborhood of a in which f (z) does not have any zeros other
than a.

UNIQUENESS THEOREM. If functions f (z) and g(z) are analytic in a domain D and their
values coincide on some sequence ak of points converging to an interior point a of the
domain D, then f (z) ≡ g(z) everywhere in D.

ROUCHÉ’S THEOREM. If functions f (z) and g(z) are analytic in a simply connected
domainD bounded by a curveC , are continuous inD, and satisfy the inequality |f (z)| > |g(z)|
on C , then the functions f (z) and f (z) + g(z) have the same number of zeros in D.

A point a is called an isolated singularity of a single-valued analytic function f (z) if
there exists a neighborhood of this point in which f (z) is analytic everywhere except for
the point a itself. The point a is called
1. A removable singularity if lim

z→a
f (z) exists and is finite.

2. A pole if lim
z→a

f (z) = ∞.

3. An essential singularity if lim
z→a

f (z) does not exist.

A necessary and sufficient condition for a point a to be a removable singularity of a
function f (z) is that the Laurent expansion of f (z) around a does not contain the principal
part. If a function f (z) is bounded in a neighborhood of an isolated singularity a, then a is
a removable singularity of this function.

A necessary and sufficient condition for a point a to be a pole of a function f (z) is that
the principal part of the Laurent expansion of f (z) around a contains finitely many terms:

f (z) =
c–n

(z – a)n
+ . . . +

c–1

(z – a)
+

∞∑

k=0

ck(z – a)k. (10.1.2.42)

The order of a pole a of a function f (z) is defined to be the order of the zero of the
function F (z) = f (1/z). If c–n ≠ 0 in expansion (10.1.2.42), then the order of the pole a of
the function f (z) is equal to n. For n = 1, we have a simple pole.

A necessary and sufficient condition for a point a to be an essential singularity of a
function f (z) is that the principal part of the Laurent expansion of f (z) around a contains
infinitely many nonzero terms.

SOKHOTSKII’S THEOREM. If a is an essential singularity of a function f (z), then for each
complex number A there exists a sequence of points zk → a such that f (zk) → A.
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Example 9. Let us consider some functions with different singular points.

1◦. The function f (z) = (1 – cos z)/z2 has a removable singularity at the origin, since its Laurent expansion
about the origin,

1 – cos z
z2 =

1
2

–
z2

24
+
z4

720
– . . . ,

does not contain the principal part.

2◦. The function f (z) = 1/(1+ez2
) has infinitely many poles at the points z = �

√
(2k + 1)πi (k = 0,�1, �2, . . .).

All these poles are simple poles, since the function 1/f (z) = 1 + ez2
has simple zeros at these points. (Its

derivative is nonzero at these points.)

3◦. The function f (z) = sin(1/z) has an essential singularity at the origin, since the principal part of its Laurent
expansion

sin
1
z

=
1
z

–
1
z3 3!

+ . . .

contains infinitely many terms.

The following two simplest classes of single-valued analytic functions are distinguished
according to the character of singular points.

1. Entire functions. A function f (z) is said to be entire if it does not have singular points
in the finite part of the plane. An entire function can be represented by an everywhere
convergent power series

f (z) =
∞∑

n=0

cnz
n.

An entire function can have only one singular point at z = ∞. If this singularity is a pole of
order n, then f (z) is a polynomial of degree n. If z = ∞ is an essential singularity, then f (z)
is called an entire transcendental function. If z = ∞ is a regular point (i.e., f (z) is analytic
for all z), then f (z) is constant (Liouville’s theorem). All polynomials, the exponential
function, sin z, cos z, etc. are examples of entire functions. Sums, differences, and products
of entire functions are themselves entire functions.

2. Meromorphic functions. A function f (z) is said to be meromorphic if it does not
have any singularities except for poles. The number of these poles in each finite closed
domain D is always finite.

Suppose that a function f (z) is analytic in a neighborhood of the point at infinity. The
definition of singular points can be generalized to this function without any changes. But
the criteria for the type of a singular point at infinity related to the Laurent expansion are
different.

THEOREM. In the case of a removable singularity at the point at infinity, the Laurent
expansion of a function f (z) in a neighborhood of this point does not contain positive
powers of z. In the case of a pole, it contains finitely many positive powers of z. In the case
of an essential singularity, it contains infinitely many powers of z.

Let f (z) be a multi-valued function defined in a neighborhood D of a point z = a except
possibly for the point a itself, and let f1(z), f2(z) . . . be its branches, which are single-valued
continuous functions in the domain where they are defined. The point a is called a branch
point (ramification point) of the function f (z) if f (z) passes from one branch to another
as the point z goes along a closed curve around the point z in a neighborhood of D. If
the original branch is reached again for the first time after going around this curve m times
(in the same sense), then the number m – 1 is called the order of the branch point, and the
point a itself is called a branch point of order m – 1.
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If all branches fk(z) tend to the same finite or infinite limit as z→ a, then the point a is
called an algebraic branch point. (For example, the point z = 0 is an algebraic branch point
of the function f (z) = m

√
z.) In this case, the single-valued function

F (z) = f (zm + a)

has a regular point or a pole for z = 0.
If the limit of fk(z) as z → a does not exist, then the point a is called a transcendental

branch point. For example, the point z = 0 is a transcendental branch point of the function
f (z) = exp( m

√
1/z ).

In a neighborhood of a branch point a of finite order, the function f (z) can be expanded
in a fractional power series (Puiseux series)

f (z) =
∞∑

k=–∞
ck(z – a)k/m. (10.1.2.43)

If a new branch is obtained each time after going around this curve (in the same sense),
then the point a is called a branch point of infinite order (a logarithmic branch point).
For example, the points z = 0 and z = ∞ are logarithmic branch points of the multivalued
function w = Ln z. A logarithmic branch point is classified as a transcendental branch point.

For a ≠ ∞, the expansion (10.1.2.43) contains finitely many terms with negative k
(infinitely many in the case of a transcendental point).

10.1.2-7. Residues.

The residue res f (a) of a function f (z) at an isolated singularity a is defined as the number

res f (a) =
1

2πi

∮

C
f (z) dz, (10.1.2.44)

where the integral is taken in the positive sense over a contour C surrounding the point a
and containing no other singularities of f (z) in the interior.

Remark. Residues are sometimes denoted by res[f (z); a] or resz=a f (z).

The residue res f (a) of a function f (z) at a singularity a is equal to the coefficient of
(z – a)–1 in the Laurent expansion of f (z) in a neighborhood of the point a,

res f (a) =
1

2πi

∮

C
f (z) dz = c–1. (10.1.2.45)

Basic rules for finding the residues:
1. The residue of a function at a removable singularity is always zero.
2. If a is a pole of order n, then

res f (a) =
1

(n – 1)!
lim
z→a

dn–1

dzn–1

[
f (z)(z – a)n

]
. (10.1.2.46)

3. For a simple pole (n = 1),

res f (a) = lim
z→a

[
f (z)(z – a)n

]
. (10.1.2.47)



416 FUNCTIONS OF COMPLEX VARIABLE

4. If f (z) is the quotient of two analytic functions,

f (z) =
ϕ(z)
ψ(z)

,

in a neighborhood of a point a and ϕ(a) ≠ 0, ψ(a) = 0, but ψ′
z(a) ≠ 0 (i.e., a is a simple pole

of f (z)), then

res f (a) =
ϕ(a)
ψ′
z(a)

. (10.1.2.48)

5. If a is an essential singularity of f (z), then to obtain res f (a), one has to find the
coefficient c–1 in the Laurent expansion of f (z) in a neighborhood of a.

A function f (z) is said to be continuous on the boundary C of the domain D if for each
boundary point z0 there exists a limit lim

z→z0
f (z) = f (z0) as z → z0, z � D.

CAUCHY’S RESIDUE THEOREM. Let f (z) be a function continuous on the boundary C
of a domain D and analytic in the interior of D everywhere except for finitely many points
a1,. . . ,an. Then ∫

C
f (z) dz = 2πi

n∑

k=1

res f (ak), (10.1.2.49)

where the integral is taken in the positive sense of C .
The logarithmic residue of a function f (z) at a point a is by definition the residue of its

logarithmic derivative
[
ln f (z)

]′
z

=
f ′z(z)
f (z)

.

THEOREM. The logarithmic derivative f ′z(z)/f (z) has first-order poles at the zeros and
poles of f (z). Moreover, the logarithmic residue of f (z) at a zero or a pole of f (z) is equal
to the order of the zero or minus the order of the pole, respectively.

The residue of a function f (z) at infinity is defined as

res f (∞) =
1

2πi

∮

Γ
f (z) dz, (10.1.2.50)

where Γ is a circle of sufficiently large radius |z| = ρ and the integral is taken in the clockwise
sense (so that the neighborhood of the point z = ∞ remains to the left of the contour, just
as in the case of a finite point).

The residue of f (z) at infinity is equal to minus the coefficient of z–1 in the Laurent
expansion of f (z) in a neighborhood of the point z = ∞,

res f (∞) = –c–1. (10.1.2.51)

Note that
res f (∞) = lim

z→∞[–zf (z)], (10.1.2.52)

provided that this limit exists.

THEOREM. If a function f (z) has finitely many singular points a1,. . . ,an in the extended
complex plane, then the sum of all its residues, including the residue at infinity, is zero:

res f (∞) +
n∑

k=1

res f (ak) = 0. (10.1.2.53)
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Example 10. Let us calculate the integral

∮

C

ln(z + 2)
z2 dz,

where C is the circle |z| = 1
2 .

In the disk |z| ≤ 1
2 , there is only one singular point of the integrand, z = 0, which is a second-order pole.

The residue of f (z) at z = 0 is calculated by the formula (10.1.2.46)

res f (0) = lim
z→0

[
z2 ln(z + 2)

z2

]′

z
= lim

z→0
[ln(z + 2)]′z = lim

z→0

1
z + 2

=
1
2

.

Using formula (10.1.2.44), we obtain

1
2

=
1

2πi

∮

C

ln(z + 2)
z2 dz,

∮

C

ln(z + 2)
z2 dz = πi.

10.1.2-8. Calculation of definite integrals.

Suppose that we need to calculate the integral of a real function f (x) over a (finite or infinite)
interval (a, b). Let us supplement the interval (a, b) with a curve Γ that, together with (a, b),
bounds a domain D, and then analytically continue the function f (x) into D. Then the
residue theorem can be applied to this analytic continuation of f (z), and by this theorem,

∫ b

a
f (x) dx +

∫

Γ
f (z) dz = 2πiΛ, (10.1.2.54)

where Λ is the sum of residues of f (z) in D. If
∫
Γ f (z) dz can be calculated or expressed

in terms of the desired integral
∫ b
a f (x) dx, then the problem will be solved.

When calculating integrals of the form
∫∞

–∞ f (x) dx, one should apply (10.1.2.49) to the
contour C that consists of the interval (–R,R) of the real axis and the arc CR of the circle
|z| = R in the upper half-plane. Sometimes it is only possible to find the limit as R → ∞
of the integral over the contour CR rather than to calculate it, and often it turns out that the
limit of this integral is equal to zero.

The integral over the curve Γ can be estimated using the following lemmas.

JORDAN LEMMA. If a function g(z) tends to zero uniformly with respect to arg z along
a sequence of circular arcs CRn : |z| = Rn, Im z > –a (where Rn → ∞ and a is fixed), then

lim
n→∞

∫

CRn

g(z)eimz dz = 0 (10.1.2.55)

for each positive number m.

If a function f (z) is analytic for |z| > R0 and zf (z) → 0 as |z| → ∞ for y ≥ 0, then

lim
R→∞

∫

CR

f (z) dz = 0, (10.1.2.56)

where CR is the arc of the circle |z| = R in the upper half-plane.
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XR

ai

R

Y

CR

Figure 10.5. The contour to calculate the Laplace integral.

Example 11 (Laplace integral). To calculate the integral
∫ ∞

0

cosx
x2 + a2 dx,

one uses the auxiliary function

f (z) =
eiz

z2 + a2 = g(z)eiz, g(z) =
1

z2 + a2

and the contour shown in Fig. 10.5. Since g(z) satisfies the inequality |g(z)| < (R2 – a2)–1 on CR, it follows
that this function uniformly tends to zero as R → ∞, and by the Jordan lemma we obtain

∫

CR

f (z) dz =
∫

CR

g(z)eiz dz → 0

as R → ∞.
By the residue theorem, ∫ R

–R

eix

x2 + a2 dx +
∫

CR

f (z) dz = 2πi e
–a

2ai

for eachR> 0. (The residue at the singular point z =ai of the function f (z), which is a first-order pole and which
is the only singular point of this function lying inside the contour, can be calculated by formula (10.1.2.48).)
In the limit as R → ∞, we obtain ∫ ∞

–∞

eix

x2 + a2 dx =
π

aea
.

Separating the real part and using the fact that the function is even, we obtain
∫ ∞

0

cos x
x2 + a2 dx =

π

2aea
.

10.1.2-9. Analytic continuation.

Let two domains D1 and D2 have a common part γ of the boundary, and let single-valued
analytic functions f1(z) and f2(z), respectively, be given in these domains. The function
f2(z) is called a direct analytic continuation of f1(z) into the domain D2 if there exists a
function f (z) analytic in the domain D1 ∪ γ ∪D2 and satisfying the condition

f (z) =
{
f1(z) for z � D1,
f2(z) for z � D2. (10.1.2.57)

If such a continuation is possible, then the function f (z) is uniquely determined. If the
domains are simply connected and the functions f1(z) and f2(z) are continuous in D1 ∪ γ
and D2 ∪ γ, respectively, and coincide on γ, then f2(z) is the direct analytic continuation
of f1(z) into the domain D2. In addition, suppose that the domains D1 and D2 are allowed
to have common interior points. A function f2(z) is called a direct analytic continuation
of f1(z) through γ if f1(z) and f2(z) are continuous in D1 ∪ γ and D2 ∪ γ, respectively,
and their values on γ coincide. At the common interior points of D1 and D2, the function
determined by relation (10.1.2.57) can be double-valued.
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10.2. Main Applications
10.2.1. Conformal Mappings

10.2.1-1. Generalities.

A one-to-one mapping
w = f (z) = u(x, y) + iv(x, y) (10.2.1.1)

of a domain D onto a domain D∗ is said to be conformal if the principal linear part of this
mapping at any point of D is an orthogonal orientation-preserving transformation.

Main properties of conformal mappings:

1. Circular property. A conformal mapping takes infinitesimal circles to infinitesimal
circles (up to higher-order infinitesimals).

2. Angle preservation property. A conformal mapping preserves the angles between
intersecting curves at points of intersection.

THEOREM. A function w = f (z) is a conformal mapping of a domain D if and only if
it is analytic and schlicht in D and the derivative f ′z(z) vanishes nowhere in D.

The main problem in the theory of conformal mappings is as follows: given domains D
and D∗, construct a function that gives a conformal mapping of one of the domains onto
the other.

THE MAIN THEOREM OF THE THEORY OF CONFORMAL MAPPINGS (RIEMANN THEOREM).
For any simply connected domains D and D∗ (with boundaries consisting of more than a
single point), any points z0 �D and w0 �D

∗, and any real number α0, there exists a unique
conformal mapping

w = f (z)

of D onto D∗ such that
f (z0) = w0, arg f ′z(z0) = α0.

10.2.1-2. Boundary correspondence.

On the boundary C of a domain D, let us introduce a real arc length parameter s reckoned
from some point of C , so that ζ = ζ(s) on C . If f (z) is a continuous function in the closed
domain D, then on the boundary C one can set

f (ζ) = f [ζ(s)] = ϕ(s).

The function ϕ(s) is called the boundary function for f (z).

THEOREM ON THE BOUNDARY CORRESPONDENCE. Suppose that a function w = f (z)
specifies a conformal mapping between domains D and D∗. Then the following assertions
hold.

1. If the boundary of D∗ does not have infinite branches, then f (z) is continuous on the
boundary of D and the boundary function w = f (ζ) = ϕ(s) is a continuous one-to-one
correspondence between the boundaries of the domains D and D∗.

2. If the boundaries of D and D∗ do not contain infinite branches and have a continuous
curvature at each point, then the boundary function ϕ(s) is continuously differentiable.
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BOUNDARY CORRESPONDENCE PRINCIPLE. Let D and D∗ be two simply connected
domains with boundaries C and C∗, and let the domain D∗ be bounded. Suppose that a
function w = f (z) satisfies the following conditions:

1. It is analytic in D and continuous in D. If the point at infinity lies in the interior of
the domain D∗, then the boundary correspondence principle remains valid provided
that w = f (z) is continuous in D and analytic in D everywhere except for an interior
point z0, at which this function has a simple pole.

2. It is a one-to-one sense-preserving mapping of C onto C∗.

Then f(z) is a (schlicht) conformal mapping of D onto D∗.

Example 1. The exponential function w = ez maps
a) the strip between the straight lines y = k(x – a1) and y = k(x – a2) onto the strip lying between the

logarithmic spirals (Fig. 10.6). (If k(a2 –a1) = 2π, then the spirals coincide, and we obtain a mapping onto
the plane with the spiral cut; for k(a2 – a1) > 2π, the mapping is not schlicht);

b) the strip 0 < Im z < π onto the upper half-plane (Fig. 10.7); here the point πi is taken to the point –1, and
the point 0 is taken to the point 1;

c) the half-strip 0 < Im z < π, Re z < 0, onto the half-disk |w| < 1, Imw > 0 (Fig. 10.8);
d) a rectangle onto a half-annulus (Fig. 10.9).

X U

Y V

a a ae ea1
1 2

2

Figure 10.6. The exponential function w = ez maps the strip between the straight lines onto the strip lying
between the logarithmic spirals.

X

πi

11 U

Y V

Figure 10.7. The exponential function w = ez maps the strip 0 < Im z < π onto the upper half-plane.

X U11

Y V

πi

Figure 10.8. The exponential function w = ez maps the half-strip 0 < Im z < π, Re z < 0, onto the half-disk.
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X U

Y V

πi

a a1 2
a ae e1 2

Figure 10.9. The exponential function w = ez maps a rectangle onto a half-annulus.

Example 2. The function w = z2 maps the interior of a circle onto the interior of a cardioid (Fig. 10.10).
The circle given in polar coordinates by the equation r = cosϕ is taken to the cardioid ρ = 1

2 (1 + cos θ),
where θ = 2ϕ.

XO 1 1O U

Y V

Figure 10.10. The function w = z2 maps the interior of a circle onto the interior of a cardioid.

Example 3. The function w =
√
z maps the interior of a circle onto the interior of the right branch of

a lemniscate (Fig. 10.11). The circle r = cosϕ is taken to the right branch of the lemniscate ρ =
√

cos 2θ,
where θ = 1

2ϕ.

XO 1 1O U

Y V

Figure 10.11. The function w =
√
z maps the interior of a circle onto the interior of the right branch of a

lemniscate.

Example 4. The function w = – ln(1 – z) maps the interior of the unit circle onto the interior of the curve
u = – ln(2 cos v) (Fig. 10.12).

Example 5. The function w = ln
z – 1
1 + z

maps the upper half-plane onto the strip 0 < Im z < π (Fig. 10.13).

The function z = – coth 1
2w specifies the inverse mapping of the strip 0 < Im z < π onto the upper half-plane.
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XO1 ln

π

π

2

2

2 O U

Y V

Figure 10.12. The function w = – ln(1 – z) maps the interior of the unit circle onto the interior of the curve
u = – ln(2 cos v).

X

πi

O U

Y V

Figure 10.13. The function w = ln
z – 1
1 + z

maps the upper half-plane onto the strip 0 < Im z < π.

10.2.1-3. Linear-fractional mappings.

The mappings given by linear-fractional functions

w =
az + b
cz + d

, (10.2.1.2)

where a, b, c, and d are complex constants and ad – bc ≠ 0, are called linear-fractional
mappings. The function (10.2.1.2) is defined on the extended complex plane. (Its value at
the point z = –d/c is defined to be ∞, and the value at the point z = ∞ is defined to be a/c.)
A linear-fractional function defines a schlicht mapping of the extended z-plane onto the
extended w-plane. Linear-fractional functions are the only functions with this property.

Points z and z∗ are said to be symmetric about the circle C0 : |z – z0| = R0 if they lie on
the same ray passing through z0 and |z – z0||z∗ – z0| = R2

0.
The transformation taking each point z to the point z∗ symmetric to z about the circleC0

is called the symmetry, or the inversion, about the circle.
Points z and z∗ are symmetric about a circle C0 if and only if they are the vertices of a

pencil of circles orthogonal to the circle C0.

THEOREM. An arbitrary linear-fractional function

w =
az + b
cz + d

, ad – bc ≠ 0,

defines a schlicht conformal mapping of the extended z-plane onto the extended w-plane.
This mapping transforms any circle on the extended z-plane into a circle on the extended
w-plane (the circular property) and transforms any pair of points symmetric about a circleC
into a pair of points symmetric about the image of the circle C (preservation of symmetric
points).
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Let us present some formulas that allow one to find the images of straight lines and
circles for an arbitrary linear-fractional mapping (10.2.1.2).

1. The straight lines Re(λz) = α that do not pass through the point z = –d/c (α ≠
– Re(λd/c)) are taken to the circles |w – w0| = ρ, where

w0 =
2aαc̄ + ad̄λ̄ + bc̄λ
2α|c|2 + 2 Re(cd̄λ̄)

, ρ =
∣∣
∣
a

c
– w0

∣∣
∣.

2. The straight lines Re(λz) = – Re(λd/c) passing through the point z = –d/c are taken
to the straight lines

Re
( ad – bc

c2 λw̄
)

= Re
( ad – bc

c2
λā

c̄

)
.

3. The circles |z – z0| = r that do not pass through the point z = –d/c (r ≠ |z0 + d/c|) are
taken to the circles |w – w0| = ρ, where

w0 =
(az0 + b)(c̄z̄0 + d̄) – ac̄r2

|cz0 + d|2 – |c|2r2 , ρ =
r|ad – bc|∣

∣|cz0 + d|2 – |c|2r2
∣
∣ .

4. The circles |z – z0| = |z0 + d/c| are taken to the straight lines

Re
[ ad – bc
c(cz0 + d)

w̄
]

=
|ad – bc|2 + 2 Re[c(az0 + b)(ad – bc)]

2|c(cz0 + d)|2 .

If a linear-fractional mapping takes four points z1, z2, z3, and z to points w1, w2, w3,
and w, respectively, then the following relation holds:

w – w1

w – w3

w2 – w3

w2 – w1
=
z – z1

z – z3

z2 – z3

z2 – z1
. (10.2.1.3)

THEOREM. There exists a unique linear-fractional mapping of the extended z-plane onto
the extended w-plane taking three arbitrary distinct points z1, z2, and z3 to three arbitrary
distinct points w1, w2, and w3, respectively.

THEOREM. Any disk of the extended z-plane can be transformed into any disk of the
extended w-plane by a linear-fractional function.

Example 6. A mapping of the upper half-plane onto the unit disk.
Let a be the point of the upper half-plane which should be taken to the centerw = 0 of the disk (Fig. 10.14).

Then the problem is solved by the linear-fractional function

w = eiβ z – a
z – ā

,

where β is an arbitrary real number. (Changing α means rotating the disk around the center w = 0.)

X

a

Y

UO

V

Figure 10.14. A mapping of the upper half-plane onto the unit disk.
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Example 7. A mapping of the unit disk onto the upper half-plane.
Let a = ih be the point of the upper half-plane to which the center z = 0 of the disk should be taken

(Fig. 10.15). Then the problem is solved by the linear-fractional function

w = ih
eiβ + z
eiβ – z

,

where β is an arbitrary real number. (Changing β means rotating the disk around the center w = 0.)

U

ih

V

XO

Y

Figure 10.15. A mapping of the unit disk onto the upper half-plane.

Example 8. A mapping of the unit disk onto the unit disk.
Let a be the point of the disk |z| < 1 that should be taken to the center of the disk |w| < 1 (Fig. 10.16). Then

the problem is solved by the linear-fractional function

w = eiβ z – a
1 – zā

, (10.2.1.4)

where β is an arbitrary real number.

X Xa O

Y Y

Figure 10.16. A mapping of the unit disk onto the unit disk.

Geometrically, β is the angle of rotation of the mapping (10.2.1.4) at the point a:

β = arg
dw

dz
.

If the radius of the disk in the z-plane is equal toR, then the function w = f (z) mapping this disk onto the disk
|w| < 1 and satisfying f (a) = 0 and arg f ′

z(a) = β has the form

w = eiβ R(z – a)
R2 – zā

.

10.2.1-4. Mappings determined by the Zhukovskii function.

The mapping (see also Paragraph 10.1.2-3)

w =
1
2

(
z +

1
z

)
(10.2.1.5)

is conformal except at the points z = �1.
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The mapping given by the Zhukovskii function is equivalent to the following mappings:

z = w +
√
w2 – 1 or

w – 1
w + 1

=
( z – 1
z + 1

)2
. (10.2.1.6)

If we denote z = reiϕ and w = u + iv, then the mapping (10.2.1.5) can be written as

u =
1
2

(
r +

1
r

)
cosϕ, v =

1
2

(
r –

1
r

)
sinϕ. (10.2.1.7)

The main properties of the mapping (10.2.1.5) are given in Table 10.2.

TABLE 10.2

Properties of mapping w =
1
2

(
z +

1
z

)
, where z = x + iy = reiϕ, w = u + iv = ρeiθ

No. z-plane w-plane Remarks

1
Circle

|z| = r0 < 1

Ellipse
u2

a2 +
v2

b2 = 1,

where a = 1
2 (1/r0 + r0),

b = 1
2 (1/r0 – r0)

The ellipse has the negative sense.

The foci are at the points �1.

2
Circle

|z| = r0 > 1

Ellipse
u2

a2 +
v2

b2 = 1,

where a = 1
2 (1/r0 + r0),

b = 1
2 (1/r0 – r0)

The ellipse has the positive sense.

The foci are at the points �1.

3
Radii

arg z = ϕ0 (0 < r < 1)

Hyperbolas
u2

cos2 ϕ0
–

v2

sin2 ϕ0
= 1 The foci are at the points �1.

4
Semicircle

|z| = 1, Im z ≥ 0
Segment

| Rew| ≤ 1, Imw = 0 u decreases with increasing ϕ.

5
Semicircle

|z| = 1, Im z ≤ 0
Segment

| Rew| ≤ 1, Imw = 0 u increases with increasing ϕ.

6 Segment
0 < Re z < 1, Im z = 0

Half-line
Rew > 1, Imw = 0

—

7 Segment
–1 < Re z < 0, Im z = 0

Half-line
Rew < –1, Imw = 0

—

8 Half-line
Re z > 1, Im z = 0

Half-line
Rew > 1, Imw = 0

—

9 Half-line
Re z < –1, Im z = 0

Half-line
Rew < –1, Imw = 0

—

Example 9. The Zhukovskii function defines the following conformal maps:
1. It maps the interior of the semicircle |z| < 1, Im z > 0, onto the lower half-plane (Fig. 10.17). The point
z = 1 is taken to the point w = 1, and the point z = i is taken to the point w = 0.

2. It maps the upper half-plane with the disk |z| < 1 deleted onto the upper half-plane (Fig. 10.18).
3. It maps the half-annulus 1 < |z| < k, Im z > 0, onto the half-ellipse given by the equation

( 2ku
k2 + 1

)2
+
( 2kv
k2 – 1

)2
= 1

on the w-plane (Fig. 10.19).
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X1
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V

Figure 10.17. Zhukovskii function maps the interior of the semicircle |z| < 1, Im z > 0, onto the lower half-plane.

1

i

UX

VY

Figure 10.18. Zhukovskii function maps the upper half-plane with the disk |z| < 1 deleted onto the upper
half-plane.
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Figure 10.19. Zhukovskii function maps the half-annulus 1 < |z| < k, Im z > 0, onto the half-ellipse.

10.2.1-5. Symmetry principle and mapping of polygons.

In a special case, the symmetry principle gives a simple sufficient condition for the existence
of an analytic continuation of a function realizing a conformal mapping.

THE RIEMANN–SCHWARZ THEOREM. Suppose that a function w = f1(z) realizes a
conformal mapping of a domain D1 onto a domain D∗

1 and takes a circular arc C of the
boundary of D1 to a circular arc C∗ of the boundary of D∗

1 . Then the function f1(z) admits
an analytic continuation f2(z) through the arcC into a domainD2 symmetric toD1 aboutC ,
the function w = f2(z) realizes a conformal mapping of the domainD2 onto the domain D∗

2
symmetric to D∗

1 about C∗, and the function

w = f (z) =

{
f1(z) in D1,
f1(z) = f2(z) on C ,
f2(z) in D2

realizes a conformal mapping of the domain D1 + C +D2 onto the domain D∗
1 +C∗ +D∗

2 .

An arc C is said to be analytic if it can be described by parametric equations

x = x(t), y = y(t) (α ≤ t ≤ β)

such that x(t) and y(t) are analytic functions of the real variable t on the interval (α,β).

SCHWARZ’S ANALYTIC CONTINUATION PRINCIPLE. Suppose that a function w = f (z)
realizes a conformal mapping of a domain D onto a domain D∗ and takes an analytic arc C
of the boundary of D to an arc C∗ of the boundary of D∗. Then the function w = f (z) can
be analytically continued through the arc C .
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THE SCHWARZ–CHRISTOFFEL THEOREM. If a function w = f (z) realizes a conformal
mapping of the upper half-plane Im z > 0 onto the interior of a bounded polygon Δ with
angles παk (0 < αk ≤ 2, k = 1, 2, . . . ,n) at the vertices and if the points ak of the real axis
(–∞ < a1 < . . . < an < ∞) corresponding to the vertices of this polygon are known, then
the function f (z) can be represented by the Schwarz–Christoffel integral

f (z) = C
∫ z

z0

(z – a1)α1–1(z – a2)α2–1 · · · (z – an)αn–1 dz + C1,

where z0, C , and C1 are some constants.

The Schwarz–Christoffel integral is obtained under the assumption that the points ak
corresponding to the vertices Ak of the polygon are known. In practice, only the vertices of
the polygon are given, and the points ak are unknown. Determining the points ak is a very
difficult task.

Table 10.3 presents some conformal mappings of given domains D onto the unit disk.

TABLE 10.3
Conformal mappings onto the unit disk |w| ≤ 1, where z = x + iy = r(cosϕ + i sinϕ)

No. Domain Mapping

1 Upper half-plane, Im z > 0 w = eiβ z – a
z – ā

(β is a real number)

2 Right half-plane, Re z > 0 w = eiβ z – a
z – ā

(β is a real number)

3 Disk of radius R, |z| < R w = eiβ R(z – a)
R2 – āz

(β is a real number)

4 Strip of width 1
2π, – 1

4π < Re z < 1
4π w = tan z

5
Sector of unit disk,

|z| < 1, 0 < arg z < πα w =
(1 + z1/α)2 – i(1 – z1/α)2

(1 + z1/α)2 + i(1 – z1/α)2

6
Plane with cut from z = 0 to z = ∞

along the positive real axis w =
√
z – i√
z + i

7 Exterior of the ellipse,
x2

a2 +
y2

b2 = 1 z = R
(
mw +

1
w

)
, R =

a + b
2

, m =
a – b
a + b

8 Exterior of the parabola, r cos2 ϕ

2
= 1 z =

( 2
w + 1

)2

9 Interior of the parabola, r cos2 ϕ

2
= 1 w = tan2

( π
4
√
z
)

10 Half-disk,
|z| < R, Re z > 0 w = i

z2 + 2Rz –R2

z2 – 2Rz –R2

Remark. In the items 1, 2, and 3 the point z = a of the domain is taken to the center w = 0 of the disk;
β determines the rotation of the disk about the center w = 0.

10.2.2. Boundary Value Problems

10.2.2-1. Dirichlet problem.

Find a function u(z) harmonic in the domain D, continuous in D, and taking given contin-
uous values u(ξ) on the boundary of D.
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Generalized Dirichlet problem. Given a function u(ξ) defined on the boundary C of a
domain D and continuous everywhere except for finitely many points ξ1, . . . , ξn, where it
has jump discontinuities, find a function u(z) harmonic and bounded inD and equal to u(ξ)
at all points of continuity of this function on C .

THEOREM ON THE UNIQUENESS OF A SOLUTION OF THE GENERALIZED DIRICHLET PROB-
LEM. In a given domain for a given boundary function u(ξ), there exists at most one solution
of the generalized Dirichlet problem.

THEOREM ON THE EXISTENCE OF A SOLUTION OF THE GENERALIZED DIRICHLET PROB-
LEM. For any simply connected domainD and any piecewise continuous boundary function
u(ξ) with jump discontinuities, the generalized Dirichlet problem has a solution.

POISSON’S THEOREM. The solution of the generalized Dirichlet problem for the unit
disk is given by the Poisson integral

u(z) =
1

2π

∫ 2π

0
u(eit)

1 – r2

1 – 2r cos(t – ϕ) + r2 dt (z = reit). (10.2.2.1)

1◦. Let z0 be an arbitrary point of a domain D, and let

w = f (z; z0), f (z0; z0) = 0 (10.2.2.2)

be a function mapping the domain D onto the unit disk |w| < 1. The function

g(z; z0) = ln
1

|f (z; z0)|
(10.2.2.3)

is called a Green’s function of the domain D. A Green’s function is harmonic everywhere
in D except for the point z0 at which it has a pole.

The solution of the generalized Dirichlet problem is given by Green’s formula

u(z) =
1

2π

∫ 2π

0
u(ξ)gn(ξ, z)ds, (10.2.2.4)

where gn is the inward normal derivative.
Green’s formula expresses the solution of the Dirichlet problem for some domain D

in terms of the logarithm of the conformal mapping of the domain D onto the unit disk,
i.e., reduces solving the Dirichlet problem to solving the conformal mapping problem. The
converse statement is also true. If the solution of the Dirichlet problem is known for some
domain D, then a conformal mapping of this domain onto the unit disk can be constructed.

2◦. Suppose that we need to find a function f (z) that is analytic in the disk |z| < 1 and whose
real part on the circle takes given values u(ξ) at each point of continuity of the function
u(ξ). The solution of this problem is given by the Schwarz formula

f (z) =
1

2π

∫ 2π

0
u(ξ)

ξ + z
ξ – z

dt + iC (ξ = eit), (10.2.2.5)

where C is a real constant. The integral on the right-hand side in (10.2.2.5) is called the
Schwarz integral.
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3◦. Suppose that a bounded function u(t) with finitely many points of discontinuity is
given on the real axis and there exist finite limits of u(t) as t → �∞. The solution of the
Dirichlet problem for the upper half-plane is given by the following Poisson integral for the
half-plane:

u(z) =
1
π

∫ +∞

–∞
u(t)

y

(t – x)2 + y2 dt. (10.2.2.6)

Since
y

(t – x)2 + y2 = Re
1

i(t – z)
,

we can also write out the Schwarz integral for the half-plane in the form

f (z) =
1

2π

∫ 2π

0
u(t)

dt

t – z
+ iC , (10.2.2.7)

where C is a real constant.

10.2.2-2. Neumann problem.

Find a function u(z) harmonic in the domain D with given normal derivative

un = ux cosα + uy sinα = g(ξ) (10.2.2.8)

on the boundary C and given value u(z0) at a point z0 of the domain D.
It is assumed in (10.2.2.8) that the outward normal is considered and α is the angle

between this normal and the axis OX. The function g(ξ) is allowed to have only finitely
many points of jump discontinuity on C; the function u(z) and its first partial derivatives
are assumed to be bounded.

Necessary condition for the solvability of Neumann problem:
∫

C
g(ξ) ds = 0. (10.2.2.9)

If, in addition, we assume that the partial derivatives are continuous in D, then solving
the Neumann problem can be reduced to solving the Dirichlet problem for the conjugate
harmonic function. Suppose that v(z) is a harmonic function conjugate to u(z). By the
Cauchy–Riemann conditions written for the curve C in the directions of s and n, we have

vs = un = g(ξ).

If vs along the curve C is known, then straightforward integration gives

v(ξ) =
∫ ξ

ξ0

vs ds =
∫ ξ

ξ0

g(ξ) ds. (10.2.2.10)

Now the problem of determining v(z) in the domain D is reduced to the Dirichlet problem.
If v(z) is known, then the desired function u(z) can also be obtained by integration.

Now suppose that the domainD is the unit disk. If we set f (z) = u+iv, then the function
f (z) satisfies the formula

f (z) = –
1
π

∫ 2π

0
g(eit) ln(eit – z) dt + const. (10.2.2.11)

Separating the real part, we obtain the formula for the desired function:

u(z) = –
1
π

∫ 2π

0
g(eit) ln |eit – z| dt + const, (10.2.2.12)

which is called the Dini formula.
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10.2.2-3. Cauchy-type integral.

Suppose that C is an arbitrary curve without cusps, not necessarily closed. Let an arbitrary
function f (ξ), which is assumed to be finite and integrable, be given on this curve.

The integral

F (z) =
1

2πi

∫

C

f (ξ) dξ
ξ – z

(10.2.2.13)

is called a Cauchy-type integral.
The Cauchy-type integral is a function analytic at any point z that does not lie on C .

If the curve C divides the plane into several domains, then, in general, the Cauchy-type
integral defines different analytic functions in these domains.

One says that the function f (ξ) satisfies the Hölder condition with exponent μ ≤ 1 at a
point ξ = ξ0 of the contour C if there exists a constant M such that the inequality

|f (ξ) – f (ξ0)| ≤ M |ξ – ξ0|μ (0 < μ ≤ 1) (10.2.2.14)

holds for all points ξ � C sufficiently close to ξ0. The Hölder condition means that the
increment of the function is an infinitesimal of order at least μ with respect to the increment
of the argument.

The principal value of the integral is defined as the limit

lim
r→0

∫

C–c

f (ξ) dξ
ξ – ξ0

=
∫

C

f (ξ) dξ
ξ – ξ0

, (10.2.2.15)

where c is the segment of the curve C between the points of intersection ofC with the circle
|z – ξ0| = r.

The singular integral in the sense of the Cauchy principal value is defined as the integral
given by the formula
∫

C–c

f (ξ) dξ
ξ – ξ0

=
∫

C

f (ξ) – f (ξ0)
ξ – ξ0

dξ + f (ξ0) ln
b – ξ0

a – ξ0
+ iπf (ξ0) +O(r), (10.2.2.16)

where a and b are the endpoints of C and O(r) → 0 as r → 0.

THEOREM. If the function f (ξ) satisfies the Hölder condition with exponent μ ≤ 1 at a
point ξ0 which is a regular (nonsingular) point of the contour C and does not coincide with
its endpoints, then the Cauchy-type integral exists at this point as a singular integral and its
principal value can be expressed in terms of the usual integral by the formula

F (ξ0) =
1

2πi

∫

C

f (ξ) dξ
ξ – ξ0

=
1

2πi

∫

C

f (ξ) – f (ξ0)
ξ – ξ0

dξ+
f (ξ0)

2
+
f (ξ0)

2πi
ln
b – ξ0

a – ξ0
. (10.2.2.17)

If the curve C is closed, then a = b and formula (10.2.2.17) becomes

F (ξ0) =
1

2πi

∫

C

f (ξ) dξ
ξ – ξ0

=
1

2πi

∫

C

f (ξ) – f (ξ0)
ξ – ξ0

dξ +
f (ξ0)

2
. (10.2.2.18)

Suppose that the function f (ξ) satisfies the Hölder condition with exponent μ ≤ 1 at the
point ξ = ξ0 and the point z tends to ξ0 so that the ratio of h = |z – ξ0| to d (dh is the shortest
distance from z to the points of C) remains bounded. Then

lim
z→ξ0

∫

C

f (ξ) – f (ξ0)
ξ – z

dξ =
∫

C

f (ξ) – f (ξ0)
ξ – ξ0

dξ. (10.2.2.19)
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SOKHOTSKII’S THEOREM. Suppose that ξ0 is a regular (nonsingular) point of the con-
tour C and does not coincide with its endpoints, the function f (ξ) satisfies the Hölder
condition with exponent μ ≤ 1 at this point, and z → ξ0 so that the ratio h/d remains
bounded. Then the Cauchy-type integral has limit values F +(ξ0) and F –(ξ0) to which this
integral tends as z → ξ0 from the left and, respectively, from the right of C , and

F +(ξ0) = F (ξ0) +
1
2
f (ξ0), F –(ξ0) = F (ξ0) –

1
2
f (ξ0), (10.2.2.20)

where F (ξ0) is the singular integral (10.2.2.18).
The Cauchy-type integral experiences a jump when passing through the integration

contour C at the point ξ0:
F +(ξ0) – F –(ξ0) = f (ξ0). (10.2.2.21)

The condition
F –(ξ) = 0 (10.2.2.22)

at each point of C is necessary and sufficient for a Cauchy-type integral to be the Cauchy
integral.

THEOREM. If a function f (ξ) satisfies the Hölder condition with exponent μ ≤ 1 at each
point of a closed contour C , then, for its values to be the boundary values of a function
analytic in the interior of C , it is necessary and sufficient that

∫

C
ξnf (ξ) dξ = 0 (n = 0, 1, 2, . . .). (10.2.2.23)

THEOREM. If a function f (ξ) satisfies the Hölder condition with exponent μ ≤ 1 at each
point of a closed contour C , then, for the values of f (ξ) to be the boundary values of a
function analytic in the interior of C , it is necessary and sufficient that

1
2πi

∫

C

f (ξ) dξ
ξ – z

= 0 (10.2.2.24)

for all points z lying in the exterior of C .

THEOREM. If a function f (ξ) satisfies the Hölder condition with exponent μ ≤ 1 at each
point of a closed contour C , then, for the values of f (ξ) to be the boundary values of a
function analytic in the exterior of C , it is necessary and sufficient that

1
2πi

∫

C

f (ξ) dξ
ξ – z

= f (∞) (10.2.2.25)

for all points z lying in the interior of C .

THEOREM. For the values of a function f (ξ) satisfying the Hölder condition with ex-
ponent μ ≤ 1 to be the boundary values of a function analytic (a) in the interior of the disk
|z| < 1 or (b) in the exterior of this disk, it is necessary and sufficient that the following
respective conditions hold:

for all z in the interior of C ,

1
2πi

∫

C

f (ξ) dξ
ξ – z

= f (0), (10.2.2.26)

for all z in the exterior of C
1

2πi

∫

C

f (ξ) dξ
ξ – z

= 0. (10.2.2.27)
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Example (the first main problem of elasticity).
Let D be the unit disk. Find the elastic equilibrium for given external stresses Fn = Xn + iYn on the unit

circle C, where Xn and Yn are the components of a surface force vector.
The problem is to find functions ϕ and ψ satisfying the boundary condition

ϕ(ξ) + ξϕ′
ξ(ξ) + ψ(ξ) = f (ξ),

where f (ξ) = i
∫ ξ

ξ0
Fn ds is a function given on C.

To be definite, we set
ψ(0) = Imϕ′

ξ(0) = 0.

By formula (10.2.2.26), the relation

1
2πi

∫

C

ψ(ξ) dξ
ξ – z

=
1

2πi

∫

C

f (ξ) dξ
ξ – z

–
1

2πi

∫

C

ϕ(ξ) dξ
ξ – z

–
1

2πi

∫

C

ξϕ′
ξ(ξ)

ξ – z
dξ = 0

holds for all |z| < 1. Since the function ϕ(z) is analytic in the disk |z| < 1, we can use the Cauchy formula and
rewrite this relation as

ϕ(z) +
1

2πi

∫

C

ξϕ′
ξ(ξ)

ξ – z
dξ =

1
2πi

∫

C

f (ξ) dξ
ξ – z

.

Thus we obtain an equation for the function ϕ(z). Omitting the details, we write out the definitive result:

ϕ(z) =
1

2πi

∫

C

f (ξ) dξ
ξ – z

–
z

4πi

∫

C

f (ξ) dξ
ξ2 .

To find the function ψ(z), we pass from the boundary condition ϕ(ξ) +ξϕ′
ξ(ξ) +ψ(ξ) = f (ξ) to the complex

conjugate condition and solve it for ψ(z). Thus we obtain

ψ(ξ) = f (ξ) – ϕ(ξ) – ξϕ′
ξ(ξ).

We calculate the Cauchy-type integral of the expressions in both sides, which is reduced to the Cauchy integral
in either case, and obtain

ψ(z) =
1

2πi

∫

C

f (ξ) dξ
ξ – z

+
1

4πiz

∫

C

f (ξ) dξ
ξ2 –

ϕ′
ξ(ξ)
z

.

10.2.2-4. Hilbert–Privalov boundary value problem.

Privalov boundary value problem. Given two complex functions a(ξ) ≠ 0 and b(ξ) satisfying
the Hölder condition with exponent μ ≤ 1 on a closed curve C , find a function f –(z) analytic
in the exterior of C including the point at infinity z = ∞ and a function f+(z) analytic in the
interior of C such that the boundary values f –(ξ) and f+(ξ) of these functions on C exist
and satisfy the relation

f –(ξ) = a(ξ)f+(ξ) + b(ξ). (10.2.2.28)

If b(ξ) = 0, i.e., if the boundary relation has the form

f –(ξ) = a(ξ)f+(ξ), (10.2.2.29)

then the Privalov boundary value problem is called the Hilbert boundary value problem.
The index (winding number) of a function a(ξ) is defined to be the integer equal to the

net increment of its argument along the closed curve C , divided by 2π:

1
2π

ΔC arg a(ξ) =
1

2πi

∫

C
d ln a(ξ). (10.2.2.30)

GAKHOV’S FIRST THEOREM. The Hilbert problem

f –(ξ) = a(ξ)f+(ξ)

has a family of solutions depending on n + 1 arbitrary constants if the index n of the
boundary function a(ξ) is not positive. If the index n is positive, then the problem does not
have solutions analytic in the corresponding domains.
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The solutions of the Hilbert problem can be written as

f –(ξ) =
(
a0 +

a1

z
+ · · · +

an
zn

)
exp[–F –

1 (z)],

f+(ξ) = (a0z
n + a1z

n–1 + · · · + an) exp[–F +
1 (z)],

(10.2.2.31)

where

F1(z) =
1

2πi

∫

C

ln[ξna(ξ)]
ξ – z

dξ.

The constants a0, . . . , an in formula (10.2.2.31) are arbitrary, and a0 is determined by the
choice of the value f –(∞).

GAKHOV’S SECOND THEOREM. The Privalov problem

f –(ξ) = a(ξ)f+(ξ) + b(ξ)

has a family of solutions depending on n + 1 arbitrary constants if the index n of the
boundary function a(ξ) is not positive. If the index n of the function a(ξ) is positive, then
the problem is solvable only if the function b(ξ) satisfies the condition

∫

C

b(ξ) exp[–F –
1 (ξ)]

ξk+1 dξ = 0 (k = 1, 2, . . . ,n). (10.2.2.32)

The solutions of the Privalov problem can be written as

f –(ξ) =
[
a0 +

a1

z
+ . . . +

an
zn

+ F –
2 (z)
]

exp[–F –
1 (z)],

f+(ξ) =
[
a0z

n + a1z
n–1 + . . . + an + znF +

2 (z)
]

exp[–F +
1 (z)],

(10.2.2.33)

where a0, . . . , an are arbitrary constants and F2(z) is determined by the formula

F2(z) = –
1

2πi

∫

C

b(ξ) exp[–F1(ξ)]
ξ – z

dξ.

References for Chapter 10
Ablowitz, M. J. and Fokas, A. S., Complex Variables: Introduction and Applications (Cambridge Texts in

Applied Mathematics), 2nd Edition, Cambridge University Press, Cambridge, 2003.
Berenstein, C. A. and Roger Gay, R., Complex Variables: An Introduction (Graduate Texts in Mathematics),

Springer, New York, 1997.
Bieberbach, L., Conformal Mapping, American Mathematical Society, Providence, Rhode Island, 2000.
Bronshtein, I. N., Semendyayev, K. A., Musiol, G., and Mühlig, H., Handbook of Mathematics, 4th Edition,

Springer, New York, 2004.
Brown, J. W. and Churchill, R. V., Complex Variables and Applications, 7th Edition, McGraw-Hill, New

York, 2003.
Caratheodory, C., Conformal Representation, Dover Publications, New York, 1998.
Carrier, G. F., Krock, M., and Pearson, C. E., Functions of a Complex Variable: Theory and Technique

(Classics in Applied Mathematics), Society for Industrial & Applied Mathematics, University City Science
Center, Philadelphia, 2005.

Cartan, H., Elementary Theory of Analytic Functions of One or Several Complex Variables, Dover Publications,
New York, 1995.

Conway, J. B., Functions of One Complex Variable I (Graduate Texts in Mathematics), 2nd Edition, Springer,
New York, 1995.



434 FUNCTIONS OF COMPLEX VARIABLE

Conway, J. B., Functions of One Complex Variable II (Graduate Texts in Mathematics), 2nd Edition, Springer,
New York, 1996.

Dettman, J. W., Applied Complex Variables (Mathematics Series), Dover Publications, New York, 1984.
England, A. H., Complex Variable Methods in Elasticity, Dover Edition, Dover Publications, New York, 2003.
Fisher, S. D., Complex Variables (Dover Books on Mathematics), 2nd Edition, Dover Publications, New York,

1999.
Flanigan, F. J., Complex Variables, Dover Ed. Edition, Dover Publications, New York, 1983.
Greene, R. E. and Krantz, S. G., Function Theory of One Complex Variable (Graduate Studies in Mathematics),

Vol. 40, 2nd Edition, American Mathematical Society, Providence, Rhode Island, 2002.
Ivanov, V. I. and Trubetskov, M. K., Handbook of Conformal Mapping with Computer-Aided Visualization,

CRC Press, Boca Raton, 1995.
Korn, G. A and Korn, T. M., Mathematical Handbook for Scientists and Engineers: Definitions, Theorems,

and Formulas for Reference and Review, Dover Edition, Dover Publications, New York, 2000.
Krantz, S. G., Handbook of Complex Variables, Birkhäuser, Boston, 1999.
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Chapter 11

Integral Transforms

11.1. General Form of Integral Transforms. Some
Formulas

11.1.1. Integral Transforms and Inversion Formulas
Normally an integral transform has the form

f̃ (λ) =
∫ b

a
ϕ(x,λ)f (x) dx. (11.1.1.1)

The function f̃ (λ) is called the transform of the function f (x) and ϕ(x,λ) is called the
kernel of the integral transform. The function f (x) is called the inverse transform of f̃ (λ).
The limits of integration a and b are real numbers (usually, a = 0, b = ∞ or a = –∞, b = ∞).
For brevity, we rewrite formula (11.1.1.1) as follows: f̃ (u) = L{f (x)}.

General properties of integral transforms (linearity):

L{kf (x)} = kL{f (x)},
L{f (x) � g(x)} = L{f (x)} � L{g(x)}.

Here, k is an arbitrary constant; it is assumed that integral transforms of the functions f (x)
and g(x) exist.

In Subsections 11.2–11.6, the most popular (Laplace, Mellin, Fourier, etc.) integral
transforms are described. These subsections also describe the corresponding inversion
formulas, which normally have the form

f (x) =
∫

C
ψ(x,λ)f̃ (λ) dλ (11.1.1.2)

and make it possible to recover f (x) if f̃ (λ) is given. The integration path C can lie either
on the real axis or in the complex plane.

In many cases, to evaluate the integrals in the inversion formula (11.1.1.2)—in particular,
to find the inverse Laplace, Mellin, and Fourier transforms — methods of the theory of
functions of a complex variable can be applied, including the residue theorem and the
Jordan lemma, which are briefly outlined below in Subsection 11.1.2.

11.1.2. Residues. Jordan Lemma
11.1.2-1. Residues. Calculation formulas.

The residue of a function f (z) holomorphic in a deleted neighborhood of a point z = a
(thus, a is an isolated singularity of f ) of the complex plane z is the number

res
z=a

f (z) =
1

2πi

∫

Cε

f (z) dz, i2 = –1,

where Cε is a circle of sufficiently small radius ε described by the equation |z – a| = ε.

435
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If the point z = a is a pole of order n* of the function f (z), then we have

res
z=a

f (z) =
1

(n – 1)!
lim
z→a

dn–1

dxn–1

[
(z – a)nf (z)

]
.

For a simple pole, which corresponds to n = 1, this implies

res
z=a

f (z) = lim
z→a

[
(z – a)f (z)

]
.

If f (z) =
ϕ(z)
ψ(z)

, where ϕ(a) ≠ 0 and ψ(z) has a simple zero at the point z = a, i.e.,

ψ(a) = 0 and ψ′
z(a) ≠ 0, then

res
z=a

f (z) =
ϕ(a)
ψ′
z(a)

.

11.1.2-2. Jordan lemma.

If a function f (z) is continuous in the domain |z| ≥ R0, Im z ≥ α, where α is a chosen real
number, and if lim

z→∞ f (z) = 0, then

lim
R→∞

∫

CR

eiλzf (z) dz = 0

for any λ > 0, where CR is the arc of the circle |z| = R that lies in this domain.

� For more details about residues and the Jordan lemma, see Paragraphs 10.1.2-7 and
10.1.2-8.

11.2. Laplace Transform
11.2.1. Laplace Transform and the Inverse Laplace Transform

11.2.1-1. Laplace transform.

The Laplace transform of an arbitrary (complex-valued) function f (x) of a real variable x
(x ≥ 0) is defined by

f̃ (p) =
∫ ∞

0
e–pxf (x) dx, (11.2.1.1)

where p = s + iσ is a complex variable.
The Laplace transform exists for any continuous or piecewise-continuous function

satisfying the condition |f (x)| < Meσ0x with some M > 0 and σ0 ≥ 0. In the following,
σ0 often means the greatest lower bound of the possible values of σ0 in this estimate; this
value is called the growth exponent of the function f (x).

For any f (x), the transform f̃ (p) is defined in the half-plane Re p > σ0 and is analytic
there.

For brevity, we shall write formula (11.2.1.1) as follows:

f̃ (p) = L
{
f (x)

}
, or f̃ (p) = L

{
f (x), p

}
.

* In a neighborhood of this point we have f (z) ≈ const (z – a)–n.
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11.2.1-2. Inverse Laplace transform.

Given the transform f̃ (p), the function f (x) can be found by means of the inverse Laplace
transform

f (x) =
1

2πi

∫ c+i∞

c–i∞
f̃ (p)epx dp, i2 = –1, (11.2.1.2)

where the integration path is parallel to the imaginary axis and lies to the right of all
singularities of f̃ (p), which corresponds to c > σ0.

The integral in inversion formula (11.2.1.2) is understood in the sense of the Cauchy
principal value: ∫ c+i∞

c–i∞
f̃ (p)epx dp = lim

ω→∞

∫ c+iω

c–iω
f̃ (p)epx dp.

In the domain x < 0, formula (11.2.1.2) gives f (x) ≡ 0.
Formula (11.2.1.2) holds for continuous functions. If f (x) has a (finite) jump discontinu-

ity at a point x=x0 > 0, then the left-hand side of (11.2.1.2) is equal to 1
2 [f (x0 –0)+f (x0 +0)]

at this point (for x0 = 0, the first term in the square brackets must be omitted).
For brevity, we write the Laplace inversion formula (11.2.1.2) as follows:

f (x) = L–1{f̃ (p)
}

or f (x) = L–1{f̃ (p), x
}

.

There are tables of direct and inverse Laplace transforms (see Sections T3.1 and T3.2),
which are handy in solving linear differential and integral equations.

11.2.2. Main Properties of the Laplace Transform. Inversion
Formulas for Some Functions

11.2.2-1. Convolution theorem. Main properties of the Laplace transform.

1◦. The convolution of two functions f (x) and g(x) is defined as an integral of the form∫ x

0
f (t)g(x – t) dt, and is usually denoted by f (x) ∗ g(x) or

f (x) ∗ g(x) =
∫ x

0
f (t) g(x – t) dt.

By performing substitution x – t = u, we see that the convolution is symmetric with respect
to the convolved functions: f (x) ∗ g(x) = g(x) ∗ f (x).

The convolution theorem states that

L
{
f (x) ∗ g(x)

}
= L
{
f (x)

}
L
{
g(x)
}

and is frequently applied to solve Volterra equations with kernels depending on the difference
of the arguments.

2◦. The main properties of the correspondence between functions and their Laplace trans-
forms are gathered in Table 11.1.

3◦. The Laplace transforms of some functions are listed in Table 11.2; for more detailed
tables, see Section T3.1 and the list of references at the end of this chapter.
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TABLE 11.1
Main properties of the Laplace transform

No. Function Laplace transform Operation

1 af1(x) + bf2(x) af̃ 1(p) + bf̃ 2(p) Linearity

2 f (x/a), a > 0 af̃ (ap) Scaling

3
f (x – a),

f (ξ) ≡ 0 for ξ < 0 e–apf̃ (p)
Shift of

the argument

4 xnf (x); n = 1, 2, . . . (–1)nf̃ (n)
p (p)

Differentiation
of the transform

5
1
x
f (x)

∫ ∞

p
f̃ (q) dq Integration

of the transform

6 eaxf (x) f̃ (p – a)
Shift in

the complex plane

7 f ′
x(x) pf̃ (p) – f (+0) Differentiation

8 f (n)
x (x) pnf̃ (p) –

n∑

k=1
pn–kf (k–1)

x (+0) Differentiation

9 xmf (n)
x (x), m = 1, 2, . . . (–1)m

dm

dpm

[
pnf̃ (p) –

n∑

k=1
pn–kf (k–1)

x (+0)
]

Differentiation

10 dn

dxn

[
xmf (x)

]
, m ≥ n (–1)mpn dm

dpm
f̃ (p) Differentiation

11
∫ x

0
f (t) dt f̃ (p)

p
Integration

12
∫ x

0
f1(t)f2(x – t) dt f̃ 1(p)f̃2(p) Convolution

TABLE 11.2
The Laplace transforms of some functions

No. Function, f (x) Laplace transform, f̃ (p) Remarks

1 1 1/p

2 xn
n!
pn+1 n = 1, 2, . . .

3 xa Γ(a + 1)p–a–1 a > –1
4 e–ax (p + a)–1

5 xae–bx Γ(a + 1)(p + b)–a–1 a > –1

6 sinh(ax)
a

p2 – a2

7 cosh(ax)
p

p2 – a2

8 lnx –
1
p

(ln p + C) C = 0.5772 . . .
is the Euler constant

9 sin(ax)
a

p2 + a2

10 cos(ax)
p

p2 + a2

11 erfc

(
a

2
√
x

)
1
p

exp
(
–a

√
p
)

a ≥ 0

12 J0(ax)
1

√
p2 + a2 J0(x) is the Bessel function
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11.2.2-2. Inverse transforms of rational functions.

Consider the important case in which the transform is a rational function of the form

f̃ (p) =
R(p)
Q(p)

, (11.2.2.1)

where Q(p) and R(p) are polynomials in the variable p and the degree of Q(p) exceeds that
of R(p).

Assume that the zeros of the denominator are simple, i.e.,

Q(p) ≡ const (p – λ1)(p – λ2) . . . (p – λn).

Then the inverse transform can be determined by the formula

f (x) =
n∑

k=1

R(λk)
Q′(λk)

exp(λkx), (11.2.2.2)

where the primes denote the derivatives.
If Q(p) has multiple zeros, i.e.,

Q(p) ≡ const (p – λ1)s1 (p – λ2)s2 . . . (p – λm)sm ,

then

f (x) =
m∑

k=1

1
(sk – 1)!

lim
p→sk

dsk–1

dpsk–1

[
(p – λk)sk f̃ (p)epx

]
. (11.2.2.3)

Example 1. The transform

f̃ (p) =
b

p2 – a2 (a, b real numbers)

can be represented as the fraction (11.2.2.1) with R(p) = b and Q(p) = (p – a)(p + a). The denominator Q(p)
has two simple roots, λ1 = a and λ2 = –a. Using formula (11.2.2.2) with n = 2 and Q′(p) = 2p, we obtain the
inverse transform in the form

f (x) =
b

2a
eax –

b

2a
e–ax =

b

a
sinh(ax).

Example 2. The transform

f̃ (p) =
b

p2 + a2 (a, b real numbers)

can be written as the fraction (11.2.2.1) with R(p) = b and Q(p) = (p – ia)(p + ia), i2 = –1. The denominator
Q(p) has two simple pure imaginary roots, λ1 = ia and λ2 = –ia. Using formula (11.2.2.2) with n = 2, we find
the inverse transform:

f (x) =
b

2ia
eiax –

b

2ia
e–iax = –

bi

2a
[
cos(ax) + i sin(ax)

]
+
bi

2a
[
cos(ax) – i sin(ax)

]
=
b

a
sin(ax).

Example 3. The transform
f̃ (p) = ap–n,

where n is a positive integer, can be written as the fraction (11.2.2.1) with R(p) = a and Q(p) = pn. The
denominator Q(p) has one root of multiplicity n, λ1 = 0. By formula (11.2.2.3) with m = 1 and s1 = n, we
find the inverse transform:

f (x) =
a

(n – 1)!
xn–1.

� Fairly detailed tables of inverse Laplace transforms can be found in Section T3.2.
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11.2.2-3. Inversion of functions with finitely many singular points.

If the function f̃ (p) has finitely many singular points, p1, p2, . . . , pn, and tends to zero
as p → ∞, then the integral in the Laplace inversion formula (11.2.1.2) may be evaluated
using the residue theory by applying the Jordan lemma (see Subsection 11.1.2). In this case

f (x) =
n∑

k=1

res
p=pk

[f̃ (p)epx]. (11.2.2.4)

Formula (11.2.2.4) can be extended to the case where f̃ (p) has infinitely many singular
points. In this case, f (x) is represented as an infinite series.

11.2.3. Limit Theorems. Representation of Inverse Transforms as
Convergent Series and Asymptotic Expansions

11.2.3-1. Limit theorems.

THEOREM 1. Let 0 ≤ x < ∞ and f̃ (p) = L
{
f (x)

}
be the Laplace transform of f (x). If

a limit of f (x) as x→ 0 exists, then

lim
x→0

f (x) = lim
p→∞

[
pf̃ (p)

]
.

THEOREM 2. If a limit of f (x) as x→ ∞ exists, then

lim
x→∞ f (x) = lim

p→0

[
pf̃ (p)

]
.

11.2.3-2. Representation of inverse transforms as convergent series.

THEOREM 1. Suppose the transform f̃ (p) can be expanded into series in negative powers
of p,

f̃ (p) =
∞∑

n=1

an
pn

,

convergent for |p| > R, where R is an arbitrary positive number; note that the transform
tends to zero as |p| → ∞. Then the inverse transform can be obtained by the formula

f (x) =
∞∑

n=1

an
(n – 1)!

xn–1,

where the series on the right-hand side is convergent for all x.

THEOREM 2. Suppose the transform f̃ (p), |p| > R, is represented by an absolutely
convergent series,

f̃ (p) =
∞∑

n=0

an
pλn

, (11.2.3.1)



11.3. MELLIN TRANSFORM 441

where {λn} is any positive increasing sequence, 0 < λ0 < λ1 < · · · →∞. Then it is possible
to proceed termwise from series (11.2.3.1) to the following inverse transform series:

f (x) =
∞∑

n=0

an
Γ(λn)

xλn–1, (11.2.3.2)

where Γ(λ) is the Gamma function. Series (11.2.3.2) is convergent for all real and complex
values of x other than zero (if λ0 ≥ 1, the series is convergent for all x).

11.2.3-3. Representation of inverse transforms as asymptotic expansions as x→ ∞.

1◦. Let p = p0 be a singular point of the Laplace transform f̃ (p) with the greatest real part
(it is assumed there is only one such point). If f̃ (p) can be expanded near p = p0 into an
absolutely convergent series,

f̃ (p) =
∞∑

n=0

cn(p – p0)λn (λ0 < λ1 < · · · → ∞) (11.2.3.3)

with arbitrary λn, then the inverse transform f (x) can be expressed in the form of the
asymptotic expansion

f (x) ∼ ep0x
∞∑

n=0

cn
Γ(–λn)

x–λn–1 as x→ ∞. (11.2.3.4)

The terms corresponding to nonnegative integer λn must be omitted from the summation,
since Γ(0) = Γ(–1) = Γ(–2) = · · · = ∞.

2◦. If the transform f̃ (p) has several singular points, p1, . . . , pm, with the same greatest
real part, Re p1 = · · · = Re pm, then expansions of the form (11.2.3.3) should be obtained
for each of these points and the resulting expressions must be added together.

11.2.3-4. Post–Widder formula.

In applications, one can find f (x) if the Laplace transform f̃ (t) on the real semiaxis is
known for t = p ≥ 0. To this end, one uses the Post–Widder formula

f (x) = lim
n→∞

[
(–1)n

n!

(n
x

)n+1
f̃ (n)
t

(n
x

)]
. (11.2.3.5)

Approximate inversion formulas are obtained by taking sufficiently large positive integer n
in (11.2.3.5) instead of passing to the limit.

11.3. Mellin Transform
11.3.1. Mellin Transform and the Inversion Formula
11.3.1-1. Mellin transform.

Suppose that a function f (x) is defined for positive x and satisfies the conditions
∫ 1

0
|f (x)|xσ1–1 dx < ∞,

∫ ∞

1
|f (x)|xσ2–1 dx < ∞

for some real numbers σ1 and σ2, σ1 < σ2.
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The Mellin transform of f (x) is defined by

f̂ (s) =
∫ ∞

0
f (x)xs–1 dx, (11.3.1.1)

where s = σ + iτ is a complex variable (σ1 < σ < σ2).
For brevity, we rewrite formula (11.3.1.1) as follows:

f̂ (s) = M{f (x)} or f̂ (s) = M{f (x), s}.

11.3.1-2. Inverse Mellin transform.

Given f̂ (s), the function f (x) can be found by means of the inverse Mellin transform

f (x) =
1

2πi

∫ σ+i∞

σ–i∞
f̂ (s)x–s ds (σ1 < σ < σ2), (11.3.1.2)

where the integration path is parallel to the imaginary axis of the complex plane s and the
integral is understood in the sense of the Cauchy principal value.

Formula (11.3.1.2) holds for continuous functions. If f (x) has a (finite) jump discontinu-
ity at a point x=x0 > 0, then the left-hand side of (11.3.1.2) is equal to 1

2
[
f (x0 –0)+f (x0 +0)

]

at this point (for x0 = 0, the first term in the square brackets must be omitted).
For brevity, we rewrite formula (11.3.1.2) in the form

f (x) = M–1{f̂ (s)} or f (x) = M–1{f̂ (s), x}.

11.3.2. Main Properties of the Mellin Transform. Relation Among the
Mellin, Laplace, and Fourier Transforms

11.3.2-1. Main properties of the Mellin transform.

1◦. The main properties of the correspondence between the functions and their Mellin
transforms are gathered in Table 11.3.

2◦. The integral relations
∫ ∞

0
f (x)g(x) dx = M–1{f̂ (s)ĝ(1 – s)},

∫ ∞

0
f (x)g

( 1
x

)
dx = M–1{f̂(s)ĝ(s)}

hold for fairly general assumptions about the integrability of the functions involved (see
Ditkin and Prudnikov, 1965).

11.3.2-2. Relation among the Mellin, Laplace, and Fourier transforms.

There are tables of direct and inverse Mellin transforms (see Sections T3.5 and T3.6 and
the references listed at the end of the current chapter) that are useful in solving specific
integral and differential equations. The Mellin transform is related to the Laplace and
Fourier transforms as follows:

M{f (x), s} = L{f (ex), –s} + L{f (e–x), s} = F{f (ex), is},

which makes it possible to apply much more common tables of direct and inverse Laplace
and Fourier transforms.
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TABLE 11.3
Main properties of the Mellin transform

No. Function Mellin transform Operation

1 af1(x) + bf2(x) af̂ 1(s) + bf̂ 2(s) Linearity

2 f (ax), a > 0 a–sf̂ (s) Scaling

3 xaf (x) f̂ (s + a)
Shift of the argument

of the transform

4 f (x2) 1
2 f̂
( 1

2 s
)

Squared argument

5 f (1/x) f̂ (–s)
Inversion of the argument

of the transform

6 xλf
(
axβ), a > 0, β ≠ 0

1
β
a

s+λ
β f̂
( s + λ

β

)
Power law transform

7 f ′
x(x) –(s – 1)f̂ (s – 1) Differentiation

8 xf ′
x(x) –sf̂ (s) Differentiation

9 f (n)
x (x) (–1)n

Γ(s)
Γ(s – n)

f̂ (s – n) Multiple differentiation

10
(
x
d

dx

)n

f (x) (–1)nsnf̂ (s) Multiple differentiation

11 xα

∫ ∞

0
tβf1(xt)f2(t) dt f̂ 1(s + α)f̂ 2(1 – s – α + β) Complicated integration

12 xα

∫ ∞

0
tβf1

( x
t

)
f2(t) dt f̂ 1(s + α)f̂ 2(s + α + β + 1) Complicated integration

11.4. Various Forms of the Fourier Transform
11.4.1. Fourier Transform and the Inverse Fourier Transform

11.4.1-1. Standard form of the Fourier transform.

The Fourier transform is defined as follows:

f̃ (u) =
1√
2π

∫ ∞

–∞
f (x) e–iux dx. (11.4.1.1)

For brevity, we rewrite formula (11.4.1.1) as follows:

f̃ (u) = F{f (x)} or f̃ (u) = F{f (x),u}.

Given f̃ (u), the function f (x) can be found by means of the inverse Fourier transform

f (x) =
1√
2π

∫ ∞

–∞
f̃ (u) eiux du. (11.4.1.2)

Formula (11.4.1.2) holds for continuous functions. If f (x) has a (finite) jump disconti-
nuity at a point x=x0, then the left-hand side of (11.4.1.2) is equal to 1

2
[
f (x0 –0)+f (x0 +0)

]

at this point.
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TABLE 11.4
Main properties of the Fourier transform

No. Function Fourier transform Operation

1 af1(x) + bf2(x) af̃ 1(u) + bf̃ 2(u) Linearity

2 f (x/a), a > 0 af̃ (au) Scaling

3 xnf (x); n = 1, 2, . . . inf̃ (n)
u (u)

Differentiation
of the transform

4 f ′′
xx(x) –u2f̃ (u) Differentiation

5 f (n)
x (x) (iu)nf̃ (u) Differentiation

6
∫ ∞

–∞
f1(ξ)f2(x – ξ) dξ f̃ 1(u)f̃2(u) Convolution

For brevity, we rewrite formula (11.4.1.2) as follows:

f (x) = F–1{f̃ (u)} or f (x) = F–1{f̃ (u), x}.

11.4.1-2. Asymmetric form of the Fourier transform. Alternative Fourier transform.

1◦. Sometimes it is more convenient to define the Fourier transform by

f̌ (u) =
∫ ∞

–∞
f (x)e–iux dx.

In this case, the Fourier inversion formula reads

f (x) =
1

2π

∫ ∞

–∞
f̌ (u)eiux du.

2◦. Sometimes the alternative Fourier transform is used (and called merely the Fourier
transform), which corresponds to the renaming e–iux � eiux on the right-hand sides of
(11.4.1.1) and (11.4.1.2).

11.4.1-3. Convolution theorem. Main properties of the Fourier transforms.

1◦. The convolution of two functions f (x) and g(x) is defined as

f (x) ∗ g(x) ≡
1√
2π

∫ ∞

–∞
f (x – t)g(t) dt.

By performing substitution x – t = u, we see that the convolution is symmetric with respect
to the convolved functions: f (x) ∗ g(x) = g(x) ∗ f (x).

The convolution theorem states that

F
{
f (x) ∗ g(x)

}
= F
{
f (x)

}
F
{
g(x)
}

.

2◦. The main properties of the correspondence between functions and their Fourier trans-
forms are gathered in Table 11.4.
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11.4.1-4. n-dimensional Fourier transform.

The Fourier transform admits n-dimensional generalization:

f̃ (u) =
1

(2π)n/2

∫

Rn

f (x)e–i(u⋅x) dx, (u ⋅ x) = u1x1 + · · · + unxn, (11.4.1.3)

where f (x) = f (x1, . . . ,xn), f̃ (u) = f (u1, . . . ,un), and dx = dx1 . . . dxn.
The corresponding inversion formula is

f (x) =
1

(2π)n/2

∫

Rn

f̃ (u)ei(u⋅x) du, du = du1 . . . dun.

The Fourier transform (11.4.1.3) is frequently used in the theory of linear partial differ-
ential equations with constant coefficients (x � R

n).

11.4.2. Fourier Cosine and Sine Transforms

11.4.2-1. Fourier cosine transform.

1◦. Let a function f (x) be integrable on the semiaxis 0 ≤ x < ∞. The Fourier cosine
transform is defined by

f̃ c(u) =

√
2
π

∫ ∞

0
f (x) cos(xu) dx, 0 < u < ∞. (11.4.2.1)

For given f̃ c(u), the function can be found by means of the Fourier cosine inversion
formula

f (x) =

√
2
π

∫ ∞

0
f̃ c(u) cos(xu) du, 0 < x < ∞. (11.4.2.2)

The Fourier cosine transform (11.4.2.1) is denoted for brevity by f̃ c(u) = Fc
{
f (x)

}
.

2◦. It follows from formula (11.4.2.2) that the Fourier cosine transform has the property
F2

c = 1.
Some other properties of the Fourier cosine transform:

Fc
{
x2nf (x)

}
= (–1)n

d2n

du2n Fc
{
f (x)

}
, n = 1, 2, . . . ;

Fc
{
f ′′(x)

}
= –u2Fc

{
f (x)

}
.

Here, f (x) is assumed to vanish sufficiently rapidly (exponentially) as x → ∞. For the
second formula, the condition f ′(0) = 0 is assumed to hold.

Parseval’s relation for the Fourier cosine transform:
∫ ∞

0
Fc
{
f (x)

}
Fc
{
g(x)
}
du =

∫ ∞

0
f (x)g(x) dx.

There are tables of the Fourier cosine transform (see Section T3.3 and the references
listed at the end of the current chapter).

3◦. Sometimes the asymmetric form of the Fourier cosine transform is applied, which is
given by the pair of formulas

f̌ c(u) =
∫ ∞

0
f (x) cos(xu) dx, f (x) =

2
π

∫ ∞

0
f̌ c(u) cos(xu) du.
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11.4.2-2. Fourier sine transform.

1◦. Let a function f (x) be integrable on the semiaxis 0 ≤ x <∞. The Fourier sine transform
is defined by

f̃ s(u) =

√
2
π

∫ ∞

0
f (x) sin(xu) dx, 0 < u < ∞. (11.4.2.3)

For given f̃ s(u), the function f (x) can be found by means of the inverse Fourier sine
transform

f (x) =

√
2
π

∫ ∞

0
f̃ s(u) sin(xu) du, 0 < x < ∞. (11.4.2.4)

The Fourier sine transform (11.4.2.3) is briefly denoted by f̃ s(u) = Fs
{
f (x)

}
.

2◦. It follows from formula (11.4.2.4) that the Fourier sine transform has the property
F2

s = 1.
Some other properties of the Fourier sine transform:

Fs
{
x2nf (x)

}
= (–1)n

d2n

du2n Fs
{
f (x)

}
, n = 1, 2, . . . ;

Fs
{
f ′′(x)

}
= –u2Fs

{
f (x)

}
.

Here, f (x) is assumed to vanish sufficiently rapidly (exponentially) as x → ∞. For the
second formula, the condition f (0) = 0 is assumed to hold.

Parseval’s relation for the Fourier sine transform:
∫ ∞

0
Fs
{
f (x)

}
Fs
{
g(x)
}
du =

∫ ∞

0
f (x)g(x) dx.

There are tables of the Fourier cosine transform (see Section T3.4 and the references
listed at the end of the current chapter).

3◦. Sometimes it is more convenient to apply the asymmetric form of the Fourier sine
transform defined by the following two formulas:

f̌ s(u) =
∫ ∞

0
f (x) sin(xu) dx, f (x) =

2
π

∫ ∞

0
f̌ s(u) sin(xu) du.

11.5. Other Integral Transforms
11.5.1. Integral Transforms Whose Kernels Contain Bessel

Functions and Modified Bessel Functions

11.5.1-1. Hankel transform.

1◦. The Hankel transform is defined as follows:

f̃ν(u) =
∫ ∞

0
xJν (ux)f (x) dx, 0 < u < ∞, (11.5.1.1)
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where ν > – 1
2 and Jν (x) is the Bessel function of the first kind of order ν (see Section SF.6).

For given f̃ ν(u), the function f (x) can be found by means of the Hankel inversion
formula

f (x) =
∫ ∞

0
uJν (ux)f̃ν (u) du, 0 < x < ∞. (11.5.1.2)

Note that if f (x) = O(xα) as x→ 0, where α + ν + 2 > 0, and f (x) = O(xβ) as x→ ∞,
where β + 3

2 < 0, then the integral (11.5.1.1) is convergent.
The inversion formula (11.5.1.2) holds for continuous functions. If f (x) has a (finite)

jump discontinuity at a point x = x0, then the left-hand side of (11.5.1.2) is equal to
1
2 [f (x0 – 0) + f (x0 + 0)] at this point.

For brevity, we denote the Hankel transform (11.5.1.1) by f̃ν(u) = Hν

{
f (x)

}
.

2◦. It follows from formula (11.5.1.2) that the Hankel transform has the property H2
ν = 1.

Other properties of the Hankel transform:

Hν

{
1
x
f (x)

}
=
u

2ν
Hν–1

{
f (x)

}
+
u

2ν
Hν+1

{
f (x)

}
,

Hν

{
f ′(x)

}
=

(ν – 1)u
2ν

Hν+1
{
f (x)

}
–

(ν + 1)u
2ν

Hν–1
{
f (x)

}
,

Hν

{
f ′′(x) +

1
x
f ′(x) –

ν2

x2 f (x)

}
= –u2Hν

{
f (x)

}
.

The conditions

lim
x→0

[
xνf (x)

]
= 0, lim

x→0

[
xν+1f ′(x)

]
= 0, lim

x→∞
[
x1/2f (x)

]
= 0, lim

x→∞
[
x1/2f ′(x)

]
= 0

are assumed to hold for the last formula.
Parseval’s relation for the Hankel transform:

∫ ∞

0
uHν

{
f (x)

}Hν

{
g(x)
}
du =

∫ ∞

0
xf (x)g(x) dx, ν > –

1
2

.

11.5.1-2. Meijer transform.

The Meijer transform is defined as follows:

f̂μ(s) =

√
2
π

∫ ∞

0

√
sxKμ(sx)f (x) dx, 0 < s < ∞,

where Kμ(x) is the modified Bessel function of the second kind (the Macdonald function)
of order μ (see Section SF.7).

For given f̃μ(s), the function f (x) can be found by means of the Meijer inversion
formula

f (x) =
1

i
√

2π

∫ c+i∞

c–i∞

√
sx Iμ(sx)f̂μ(s) ds, 0 < x < ∞,

where Iμ(x) is the modified Bessel function of the first kind of order μ (see Section SF.7).
For the Meijer transform, a convolution is defined and an operational calculus is developed.
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11.5.1-3. Kontorovich–Lebedev transform.

The Kontorovich–Lebedev transform is introduced as follows:

F (τ ) =
∫ ∞

0
Kiτ (x)f (x) dx, 0 < τ < ∞,

where Kμ(x) is the modified Bessel function of the second kind (the Macdonald function)
of order μ (see Section SF.7) and i =

√
–1.

For given F (τ ), the function can be found by means of the Kontorovich–Lebedev
inversion formula

f (x) =
2
π2x

∫ ∞

0
τ sinh(πτ )Kiτ (x)F (τ ) dτ , 0 < x < ∞.

11.5.1-4. Y -transform.

The Y -transform is defined by

Fν(u) =
∫ ∞

0

√
uxYν(ux)f (x) dx,

where Yν(x) is the Bessel function of the second kind of order ν.
Given a transform Fν (u), the inverse Y -transform f (x) is found by the inversion formula

f (x) =
∫ ∞

0

√
uxHν(ux)Fν (u) du,

where Hν(x) is the Struve function, which is defined as

Hν(x) =
∞∑

j=0

(–1)j (x/2)ν+2j+1

Γ
(
j + 3

2
)
Γ
(
ν + j + 3

2
) .

11.5.2. Summary Table of Integral Transforms. Areas of Application
of Integral Transforms

11.5.2-1. Summary table of integral transforms.

Table 11.5 summarizes the integral transforms considered above and also lists some other
integral transforms; for the constraints imposed on the functions and parameters occurring
in the integrand, see the references given at the end of this section.

11.5.2-2. Areas of application of integral transforms.

Integral transforms are widely used for the evaluation of integrals, summation of series,
and solution of various mathematical equations and problems. In particular, the application
of an appropriate integral transform to linear ordinary differential, integral, and difference
equations reduces the problem to a linear algebraic equation for the transform; and linear
partial differential equations are reduced to an ordinary differential equation.
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TABLE 11.5
Summary table of integral transforms

Integral transform Definition Inversion formula

Laplace
transform

f̃ (p)=
∫ ∞

0
e–pxf (x) dx f (x)=

1
2πi

∫ c+i∞

c–i∞
epxf̃ (p) dp

Laplace–
Carlson
transform

f̃ (p)=p
∫ ∞

0
e–pxf (x) dx f (x)=

1
2πi

∫ c+i∞

c–i∞
epx f̃ (p)

p
dp

Two-sided
Laplace
transform

f̃∗(p)=
∫ ∞

–∞
e–pxf (x) dx f (x)=

1
2πi

∫ c+i∞

c–i∞
epxf̃∗(p) dp

Fourier
transform

f̃ (u)=
1√
2π

∫ ∞

–∞
e–iuxf (x) dx f (x)=

1√
2π

∫ ∞

–∞
eiuxf̃ (u) du

Fourier sine
transform f̃ s(u)=

√
2
π

∫ ∞

0
sin(xu)f (x) dx f (x)=

√
2
π

∫ ∞

0
sin(xu)f̃ s(u) du

Fourier cosine
transform f̃ c(u)=

√
2
π

∫ ∞

0
cos(xu)f (x) dx f (x)=

√
2
π

∫ ∞

0
cos(xu)f̃ c(u) du

Hartley
transform

f̃ h(u)=
1√
2π

∫ ∞

–∞
(cosxu + sinxu)f (x) dx f (x)=

1√
2π

∫ ∞

–∞
(cosxu + sinxu)f̃ h(u) du

Mellin
transform

f̂ (s)=
∫ ∞

0
xs–1f (x) dx f (x)=

1
2πi

∫ c+i∞

c–i∞
x–sf̂ (s) ds

Hankel
transform

f̂ν(w)=
∫ ∞

0
xJν(xw)f (x) dx f (x)=

∫ ∞

0
wJν(xw)f̂ν(w) dw

Y -transform Fν(u)=
∫ ∞

0

√
ux Yν(ux)f (x)dx f (x)=

∫ ∞

0

√
uxHν(ux)Fν(u) du

Meijer
transform
(K-transform)

f̂ (s)=

√
2
π

∫ ∞

0

√
sxKν(sx)f (x) dx f (x)=

1
i
√

2π

∫ c+i∞

c–i∞

√
sx Iν(sx)f̂ (s) ds

Bochner
transform

f̃ (r)=
∫ ∞

0
Jn/2–1(2πxr)G(x, r)f (x) dx,

G(x, r)= 2πr(x/r)n/2, n= 1, 2, . . .
f (x)=

∫ ∞

0
Jn/2–1(2πrx)G(r,x)f̃ (r) dr

Weber
transform

Fa(u)=
∫ ∞

a
Wν(xu, au)xf (x) dx,

Wν(β,μ)≡Jν(β)Yν(μ) – Jν(μ)Yν(β)
f (x)=

∫ ∞

0

Wν(xu, au)
J2

ν(au) + Y 2
ν (au)

uFa(u) du

Hardy
transform

F (u)=
∫ ∞

0
Cν(xu)xf (x)dx,

Cν(z)≡cos(πp)Jν(z) + sin(πp)Yν(z)

f (x)=
∫ ∞

0
Φ(xu)uF (u) du

Φ(z)=
∞∑

n=0

(–1)n(z/2)ν+2p+2n

Γ(p+n+1)Γ(ν+p+n+1)

Kontorovich–
Lebedev
transform

F (τ )=
∫ ∞

0
Kiτ(x)f (x)dx f (x)=

2
π2x

∫ ∞

0
τ sinh(πτ )Kiτ(x)F (τ )dτ

Meler–Fock
transform

F̃ (τ )=
∫ ∞

1
P– 1

2 +iτ(x)f (x) dx f (x)=
∫ ∞

0
τ tanh(πτ )P– 1

2 +iτ(x)F̃ (τ ) dτ

Euler
transform of
the 1st kind*

F (x)=
1

Γ(μ)

∫ x

a

f (t) dt
(x – t)1–μ

0 <μ< 1, x>a
f (x)=

1
Γ(1 – μ)

d

dx

∫ x

a

F (t) dt
(x – t)μ
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TABLE 11.5 (continued)
Summary table of integral transforms

Integral transform Definition Inversion formula

Euler
transform of
the 2nd kind*

F (x)=
1

Γ(μ)

∫ a

x

f (t) dt
(t – x)1–μ

0 <μ< 1, x<a
f (x)=–

1
Γ(1 – μ)

d

dx

∫ a

x

F (t) dt
(t – x)μ

Gauss
transform** F (x)=

1√
πa

∫ ∞

–∞
exp

[
–

(x – t)2

a

]
f (t) dt f (x)=exp

(
–
a

4
d2

dx2

)
F (x)

Hilbert
transform*** F̂ (s)=

1
π

∫ ∞

–∞
f (x)
x – s

dx f (x)=–
1
π

∫ ∞

–∞

F̂ (s)
s – x

ds

NOTATION: i=
√

–1, Jμ(x) andYμ(x) are the Bessel functions of thefirst and the second kind, respectively;
Iμ(x) and Kμ(x) are the modified Bessel functions of the first and the second kind, respectively; Pμ(x) is the
Legendre spherical function of the second kind; and Hμ(x) is the Struve function (see Subsection 11.5.1-4).

REMARKS.
* The Euler transform of the first kind is also known as Riemann–Liouville integral (the left fractional

integral of order μ or, for short, the fractional integral). The Euler transform of the second kind is also called
the right fractional integral of order μ.

** If a= 4, the Gauss transform is called the Weierstrass transform. In the inversion formula, the exponential

is represented by an operator series: exp
(
k d2

dx2

)
≡ 1 +

∞∑

n=1

kn

n!
d2n

dx2n .

*** In the direct and inverse Hilbert transforms, the integrals are understood in the sense of the Cauchy
principal value.

Table 11.6 presents various areas of application of integral transforms with literature
references.

Example.
Consider the Cauchy problem for the integro-differential equation

dy

dx
+
∫ x

0
K(x – t)y(t) dt = f (x) (0 ≤ t < ∞) (11.5.2.1)

with the initial condition
y = a at t = 0. (11.5.2.2)

Multiply equation (11.5.2.1) by e–px and then integrate with respect to x from zero to infinity. Using
properties 7 and 12 of the Laplace transform (Table 11.1) and taking into account the initial condition (11.5.2.2),
we obtain a linear algebraic equation for the transform ỹ(p):

pỹ(p) – a + K̃(p)ỹ(p) = f̃ (p).
It follows that

ỹ(p) =
f̃ (p) + a

p + K̃(p)
.

By the inversion formula (11.2.1.2), the solution to the original problem (11.5.2.1)–(11.5.2.2) is found in the
form

y(x) =
1

2πi

∫ c+i∞

c–i∞

f̃ (p) + a

p + K̃(p)
epx dp, i2 = –1. (11.5.2.3)

Consider the special case of a = 0 and K(x) = cos(bx). From row 10 of Table 11.2 it follows that

K̃(p) =
p

p2 + b2 . Rearrange the integrand of (11.5.2.3):

f̃ (p)

p + K̃(p)
=

p2 + b2

p(p2 + b2 + 1)
f̃ (p) =

(
1
p

–
1

p(p2 + b2 + 1)

)
f̃ (p).

In order to invert this expression, let us use the convolution theorem (see formula 16 of Subsection T3.2.1) as
well as formulas 1 and 28 for the inversion of rational functions, Subsection T3.2.1. As a result, we arrive at
the solution in the form

y(x) =
∫ x

0

b2 + cos
(
t
√
b2 + 1

)

b2 + 1
f (x – t) dt.
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TABLE 11.6
Areas of application of integral transforms (first in the last column

come references to appropriate sections of the current book)

Area of application Integral transforms References

Evaluation of improper integrals Laplace, Mellin Paragraph 7.2.8-5;
Ditkin & Prudnikov (1965)

Summation of series
Laplace

(direct and inverse)
Paragraphs 8.1.5-2 and 8.4.4-1

Computation of coefficients
of asymptotic expansions

Laplace, Mellin Paragraph 7.2.9-1

Linear constant- and variable-coefficient
ordinary differential equations

Laplace, Mellin,
Euler, and others

Paragraphs 12.4.1-3 and 12.4.2-6;
Ditkin & Prudnikov (1965);

Doetsch (1974); E. Kamke (1977);
Sveshnikov & Tikhonov (1970);

LePage (1980)
Systems of linear constant-coefficient

ordinary differential equations
Laplace Paragraph 12.6.1-4; Doetsch (1974);

Ditkin & Prudnikov (1965)

Linear equations
of mathematical physics

Laplace, Fourier,
Fourier sine, Hankel,

Kontorovich–Lebedev,
and others

Section 14.5; Doetsch (1974);
Ditkin & Prudnikov (1965);

Antimirov (1993); Sneddon (1995);
Zwillinger (1997); Bracewell (1999);

Polyanin (2002); Duffy (2004)

Linear integral equations
Laplace, Mellin,

Fourier, Meler–Fock,
Euler, and others

Subsections 16.1.3, 16.2.3, 16.3.2, 16.4.6;
Krasnov, Kiselev, & Makarenko (1971);

Ditkin & Prudnikov (1965);
Samko, Kilbas, & Marichev (1993);

Polyanin & Manzhirov (1998)

Nonlinear integral equations Laplace, Mellin,
Fourier

Paragraphs 16.5.2-1 and 16.5.3-2;
Krasnov, Kiselev, & Makarenko (1971);

Polyanin & Manzhirov (1998)

Linear difference equations Laplace Ditkin & Prudnikov (1965)

Linear differential-difference equations Laplace Bellman & Roth (1984)

Linear integro-differential equations Laplace, Fourier Paragraph 11.5.2-2; LePage (1980)
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Chapter 12

Ordinary Differential Equations

12.1. First-Order Differential Equations
12.1.1. General Concepts. The Cauchy Problem. Uniqueness and

Existence Theorems

12.1.1-1. Equations solved for the derivative. General solution.

A first-order ordinary differential equation* solved for the derivative has the form

y′x = f (x, y). (12.1.1.1)

Sometimes it is represented in terms of differentials as dy = f (x, y) dx.
A solution of a differential equation is a function y(x) that, when substituted into

the equation, turns it into an identity. The general solution of a differential equation is
the set of all its solutions. In some cases, the general solution can be represented as a
function y = ϕ(x,C) that depends on one arbitrary constant C; specific values of C define
specific solutions of the equation (particular solutions). In practice, the general solution
more frequently appears in implicit form, Φ(x, y,C) = 0, or parametric form, x = x(t,C),
y = y(t,C).

Geometrically, the general solution (also called the general integral) of an equation is
a family of curves in the xy-plane depending on a single parameter C; these curves are
called integral curves of the equation. To each particular solution (particular integral) there
corresponds a single curve that passes through a given point in the plane.

For each point (x, y), the equation y′x = f (x, y) defines a value of y′x, i.e., the slope
of the integral curve that passes through this point. In other words, the equation generates
a field of directions in the xy-plane. From the geometrical point of view, the problem of
solving a first-order differential equation involves finding the curves, the slopes of which at
each point coincide with the direction of the field at this point.

Figure 12.1 depicts the tangent to an integral curve at a point (x0, y0); the slope of
the integral curve at this point is determined by the right-hand side of equation (12.1.1.1):
tanα = f (x0, y0). The little lines show the field of tangents to the integral curves of the
differential equation (12.1.1.1) at other points.

12.1.1-2. Equations integrable by quadrature.

To integrate a differential equation in closed form is to represent its solution in the form
of formulas written using a predefined bounded set of allowed functions and mathematical
operations. A solution is expressed as a quadrature if the set of allowed functions consists
of the elementary functions and the functions appearing in the equation and the allowed

* In what follows, we often call an ordinary differential equation a “differential equation” or, even shorter,
an “equation.”
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Figure 12.1. The direction field of a differential equation and the integral curve passing through a point (x0, y0).

mathematical operations are the arithmetic operations, a finite number of function compo-
sitions, and the indefinite integral. An equation is said to be integrable by quadrature if its
general solution can be expressed in terms of quadratures.

12.1.1-3. Cauchy problem. The uniqueness and existence theorems.

The Cauchy problem: find a solution of equation (12.1.1.1) that satisfies the initial condition

y = y0 at x = x0, (12.1.1.2)

where y0 and x0 are some numbers.
Geometrical meaning of the Cauchy problem: find an integral curve of equation

(12.1.1.1) that passes through the point (x0, y0); see Fig. 12.1.
Condition (12.1.1.2) is alternatively written y(x0) = y0 or y|x=x0 = y0.

THEOREM (EXISTENCE, PEANO). Let the function f (x, y) be continuous in an open
domain D of the xy-plane. Then there is at least one integral curve of equation (12.1.1.1)
that passes through each point (x0, y0) � D; each of these curves can be extended at both
ends up to the boundary of any closed domain D0 ⊂ D such that (x0, y0) belongs to the
interior of D0.

THEOREM (UNIQUENESS). Let the function f (x, y) be continuous in an open domain D
and have in D a bounded partial derivative with respect to y (or the Lipschitz condition
holds: |f (x, y) – f (x, z)| ≤ M |y – z|, where M is some positive number). Then there is a
unique solution of equation (12.1.1.1) satisfying condition (12.1.1.2).

12.1.1-4. Equations not solved for the derivative. The existence theorem.

A first-order differential equation not solved for the derivative can generally be written as

F (x, y, y′x) = 0. (12.1.1.3)

THEOREM (EXISTENCE AND UNIQUENESS). There exists a unique solution y = y(x) of
equation (12.1.1.3) satisfying the conditions y|x=x0 = y0 and y′x|x=x0 = t0, where t0 is
one of the real roots of the equation F (x0, y0, t0) = 0 if the following conditions hold in a
neighborhood of the point (x0, y0, t0):

1. The function F (x, y, t) is continuous in each of the three arguments.
2. The partial derivative Ft exists and is nonzero.
3. There is a bounded partial derivative with respect to y, |Fy | ≤ M .

The solution exists for |x – x0| ≤ a, where a is a (sufficiently small) positive number.



12.1. FIRST-ORDER DIFFERENTIAL EQUATIONS 455

12.1.1-5. Singular solutions.

1◦. A point (x, y) at which the uniqueness of the solution to equation (12.1.1.3) is violated
is called a singular point. If conditions 1 and 3 of the existence and uniqueness theorem
hold, then

F (x, y, t) = 0, Ft(x, y, t) = 0 (12.1.1.4)

simultaneously at each singular point. Relations (12.1.1.4) define a t-discriminant curve in
parametric form. In some cases, the parameter t can be eliminated from (12.1.1.4) to give
an equation of this curve in implicit form, Ψ(x, y) = 0. If a branch y = ψ(x) of the curve
Ψ(x, y) = 0 consists of singular points and, at the same time, is an integral curve, then this
branch is called a singular integral curve and the function y = ψ(x) is a singular solution
of equation (12.1.1.3).

2◦. The singular solutions can be found by identifying the envelope of the family of integral
curves, Φ(x, y,C) = 0, of equation (12.1.1.3). The envelope is part of the C-discriminant
curve, which is defined by the equations

Φ(x, y,C) = 0, ΦC(x, y,C) = 0.

The branch of the C-discriminant curve at which

(a) there exist bounded partial derivatives, |Φx| < M1 and |Φy | < M2, and
(b) |Φx| + |Φy | ≠ 0

is the envelope.

12.1.1-6. Point transformations.

In the general case, a point transformation is defined by

x = F (X,Y ), y = G(X,Y ), (12.1.1.5)

where X is the new independent variable, Y = Y (X) is the new dependent variable, and
F and G are some (prescribed or unknown) functions.

The derivative y′x under the point transformation (12.1.1.5) is calculated by

y′x =
GX + GY Y ′

X

FX + FY Y ′
X

,

where the subscripts X and Y denote the corresponding partial derivatives.
Transformation (12.1.1.5) is invertible if FXGY – FYGX ≠ 0.
Point transformations are used to simplify equations and reduce them to known equa-

tions. Sometimes a point transformation allows the reduction of a nonlinear equation to a
linear one.

Example. The hodograph transformation is an important example of a point transformation. It is defined
by x = Y , y = X, which means that y is taken to be the independent variable and x the dependent one. In this
case, the derivative is expressed as

y′x =
1
X ′

Y

.

Other examples of point transformations can be found in Subsections 12.1.2 and 12.1.4–
12.1.6.



456 ORDINARY DIFFERENTIAL EQUATIONS

12.1.2. Equations Solved for the Derivative. Simplest Techniques of
Integration

12.1.2-1. Equations with separated or separable variables.

1◦. An equation with separated variables (a separated equation) has the form

f (y)y′x = g(x).

Equivalently, the equation can be rewritten as f (y) dy = g(x) dx (the right-hand side depends
on x alone and the left-hand side on y alone). The general solution can be obtained by
termwise integration: ∫

f (y) dy =
∫
g(x) dx + C ,

where C is an arbitrary constant.

2◦. An equation with separable variables (a separable equation) is generally represented
by

f1(y)g1(x)y′x = f2(y)g2(x).

Dividing the equation by f2(y)g1(x), one obtains a separated equation. Integrating yields
∫

f1(y)
f2(y)

dy =
∫

g2(x)
g1(x)

dx + C .

Remark. In termwise division of the equation by f2(y)g1(x), solutions corresponding to f2(y) = 0 can be
lost.

12.1.2-2. Equation of the form y′x = f (ax + by).

The substitution z = ax + by brings the equation to a separable equation, z′x = bf (z) + a;
see Paragraph 12.1.2-1.

12.1.2-3. Homogeneous equations y′x = f (y/x).

1◦. A homogeneous equation remains the same under simultaneous scaling (dilatation) of
the independent and dependent variables in accordance with the rule x → αx, y → αy,
where α is an arbitrary constant (α ≠ 0). Such equations can be represented in the form

y′x = f
( y
x

)
.

The substitution u=y/x brings a homogeneous equation to a separable one, xu′x =f (u)–u;
see Paragraph 12.1.2-1.

2◦. The equations of the form

y′x = f
(a1x + b1y + c1

a2x + b2y + c2

)

can be reduced to a homogeneous equation. To this end, for a1x + b1y ≠ k(a2x + b2y), one
should use the change of variables ξ = x – x0, η = y – y0, where the constants x0 and y0
are determined by solving the linear algebraic system

a1x0 + b1y0 + c1 = 0,
a2x0 + b2y0 + c2 = 0.
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As a result, one arrives at the following equation for η = η(ξ):

η′ξ = f

(
a1ξ + b1η

a2ξ + b2η

)
.

On dividing the numerator and denominator of the argument of f by ξ, one obtains a
homogeneous equation whose right-hand side is dependent on the ratio η/ξ only:

η′ξ = f

(
a1 + b1η/ξ

a2 + b2η/ξ

)
.

For a1x + b1y = k(a2x + b2y), see the equation of Paragraph 12.1.2-2.

12.1.2-4. Generalized homogeneous equations and equations reducible to them.

1◦. A generalized homogeneous equation (a homogeneous equation in the generalized
sense) remains the same under simultaneous scaling of the independent and dependent
variables in accordance with the rule x → αx, y → αky, where α ≠ 0 is an arbitrary
constant and k is some number. Such equations can be represented in the form

y′x = xk–1f (yx–k).

The substitution u = yx–k brings a generalized homogeneous equation to a separable
equation, xu′x = f (u) – ku; see Paragraph 12.1.2-1.

Example. Consider the equation
y′x = ax2y4 + by2. (12.1.2.1)

Let us perform the transformation x = αx̄, y = αkȳ and then multiply the resulting equation by α1–k to
obtain

ȳ′x̄ = aα3(k+1)x̄2ȳ4 + bαk+1ȳ2. (12.1.2.2)

It is apparent that if k = –1, the transformed equation (12.1.2.2) is the same as the original one, up to notation.
This means that equation (12.1.2.1) is generalized homogeneous of degree k = –1. Therefore the substitution
u = xy brings it to a separable equation: xu′

x = au4 + bu2 + u.

2◦. The equations of the form
y′x = yf (eλxy)

can be reduced to a generalized homogeneous equation. To this end, one should use the
change of variable z = ex and set λ = –k.

12.1.2-5. Linear equation y′x + f (x)y = g(x).

A first-order linear equation is written as

y′x + f (x)y = g(x).

The solution is sought in the product form y = uv, where v = v(x) is any function that
satisfies the “truncated” equation v′x + f (x)v = 0 [as v(x) one takes the particular solution
v = e–F , where F =

∫
f (x) dx]. As a result, one obtains the following separable equation

for u = u(x): v(x)u′x = g(x). Integrating it yields the general solution:

y(x) = e–F
(∫

eF g(x) dx + C
)

, F =
∫
f (x) dx,

where C is an arbitrary constant.
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12.1.2-6. Bernoulli equation y′x + f (x)y = g(x)ya.

A Bernoulli equation has the form

y′x + f (x)y = g(x)ya, a ≠ 0, 1.

(For a = 0 and a = 1, it is a linear equation; see Paragraph 12.1.2-5.) The substitution
z = y1–a brings it to a linear equation, z′x + (1 – a)f (x)z = (1 – a)g(x), which is discussed
in Paragraph 12.1.2-5. With this in view, one can obtain the general integral:

y1–a = Ce–F + (1 – a)e–F
∫
eF g(x) dx, where F = (1 – a)

∫
f (x) dx.

12.1.2-7. Equation of the form xy′x = y + f (x)g(y/x).

The substitution u = y/x brings the equation to a separable equation, x2u′x = f (x)g(u);
see Paragraph 12.1.2-1.

12.1.2-8. Darboux equation.

A Darboux equation can be represented as
[
f
( y
x

)
+ xah

( y
x

)]
y′x = g

( y
x

)
+ yxa–1h

( y
x

)
.

Using the substitution y = xz(x) and taking z to be the independent variable, one obtains
a Bernoulli equation, which is considered in Paragraph 12.1.2-6:

[
g(z) – zf (z)

]
x′z = xf (z) + xa+1h(z).

� Some other first-order equations integrable by quadrature are treated in Section T5.1.

12.1.3. Exact Differential Equations. Integrating Factor

12.1.3-1. Exact differential equations.

An exact differential equation has the form

f (x, y) dx + g(x, y) dy = 0, where
∂f

∂y
=
∂g

∂x
.

The left-hand side of the equation is the total differential of a function of two variables
U (x, y).

The general integral, U (x, y) = C , where C is an arbitrary constant and the function U
is determined from the system:

∂U

∂x
= f ,

∂U

∂y
= g.

Integrating thefirst equation yields U =
∫
f (x, y) dx+Ψ(y) (while integrating, the variable y

is treated as a parameter). On substituting this expression into the second equation, one
identifies the function Ψ (and hence, U ). As a result, the general integral of an exact
differential equation can be represented in the form

∫ x

x0
f (ξ, y) dξ +

∫ y

y0
g(x0, η) dη = C ,

where x0 and y0 are any numbers.
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TABLE 12.1
An integrating factor μ = μ(x, y) for some types of ordinary differential equations f dx + g dy = 0, where

f = f (x, y) and g = g(x,y). The subscripts x and y indicate the corresponding partial derivatives

No. Conditions for f and g Integrating factor Remarks

1 f = yϕ(xy), g = xψ(xy) μ = 1
xf–yg

xf – yg � 0;
ϕ(z) and ψ(z) are any functions

2 fx = gy , fy = –gx μ = 1
f 2+g2

f + ig is an analytic function
of the complex variable x + iy

3
fy–gx

g
= ϕ(x) μ = exp

[∫
ϕ(x) dx

]
ϕ(x) is any function

4
fy–gx

f
= ϕ(y) μ = exp

[
–
∫
ϕ(y) dy

]
ϕ(y) is any function

5
fy–gx

g–f
= ϕ(x + y) μ = exp

[∫
ϕ(z) dz

]
, z = x + y ϕ(z) is any function

6
fy–gx

yg–xf
= ϕ(xy) μ = exp

[∫
ϕ(z) dz

]
, z = xy ϕ(z) is any function

7 x2(fy–gx )
yg+xf

= ϕ
(

y
x

)
μ = exp

[
–
∫
ϕ(z) dz

]
, z = y

x
ϕ(z) is any function

8
fy–gx

xg–yf
= ϕ(x2 + y2) μ = exp

[ 1
2
∫
ϕ(z) dz

]
, z = x2 +y2 ϕ(z) is any function

9 fy – gx = ϕ(x)g – ψ(y)f μ = exp
[∫
ϕ(x) dx +

∫
ψ(y)dy

]
ϕ(x) and ψ(y) are any functions

10
fy–gx

gωx–fωy
= ϕ(ω) μ = exp

[∫
ϕ(ω) dω

] ω = ω(x, y) is any function
of two variables

Example. Consider the equation

(ayn + bx)y′x + by + cxm = 0, or (by + cxm) dx + (ayn + bx) dy = 0,

defined by the functions f (x, y) = by + cxm and g(x,y) = ayn + bx. Computing the derivatives, we have
∂f

∂y
= b,

∂g

∂x
= b =⇒ ∂f

∂y
=
∂g

∂x
.

Hence the given equation is an exact differential equation. Its solution can be found using the last formula from
Paragraph 12.1.3-1 with x0 = y0 = 0:

a

n + 1
yn+1 + bxy +

c

m + 1
xm+1 = C.

12.1.3-2. Integrating factor.

An integrating factor for the equation

f (x, y) dx + g(x, y) dy = 0
is a function μ(x, y) � 0 such that the left-hand side of the equation, when multiplied by
μ(x, y), becomes a total differential, and the equation itself becomes an exact differential
equation.

An integrating factor satisfies the first-order partial differential equation,

g
∂μ

∂x
– f

∂μ

∂y
=

(
∂f

∂y
–
∂g

∂x

)
μ,

which is not generally easier to solve than the original equation.
Table 12.1 lists some special cases where an integrating factor can be found in explicit

form.
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12.1.4. Riccati Equation

12.1.4-1. General Riccati equation. Simplest integrable cases.

A Riccati equation has the general form

y′x = f2(x)y2 + f1(x)y + f0(x). (12.1.4.1)

If f2 ≡ 0, we have a linear equation (see Paragraph 12.1.2-5), and if f0 ≡ 0, we have a
Bernoulli equation (see Paragraph 12.1.2-6 fora= 2), whose solutions were given previously.
For arbitrary f2, f1, and f0, the Riccati equation is not integrable by quadrature.

Listed below are some special cases where the Riccati equation (12.1.4.1) is integrable
by quadrature.

1◦. The functions f2, f1, and f0 are proportional, i.e.,

y′x = ϕ(x)(ay2 + by + c),

where a, b, and c are constants. This equation is a separable equation; see Para-
graph 12.1.2-1.

2◦. The Riccati equation is homogeneous:

y′x = a
y2

x2 + b
y

x
+ c.

See Paragraph 12.1.2-3.

3◦. The Riccati equation is generalized homogeneous:

y′x = axny2 +
b

x
y + cx–n–2.

See Paragraph 12.1.2-4 (with k = –n–1). The substitution z = xn+1y brings it to a separable
equation: xz′x = az2 + (b + n + 1)z + c.

4◦. The Riccati equation has the form

y′x = ax2ny2 +
m – n
x

y + cx2m.

By the substitution y = xm–nz, the equation is reduced to a separable equation: x–n–mz′x =
az2 + c.

� Some other Riccati equations integrable by quadrature are treated in Section T5.1 (see
equations T5.1.6 to T5.1.22).

12.1.4-2. Polynomial solutions of the Riccati equation.

Let f2 = 1, f1(x), and f0(x) be polynomials. If the degree of the polynomial

Δ = f 2
1 – 2(f1)′x – 4f0

is odd, the Riccati equation cannot possess a polynomial solution. If the degree of Δ is
even, the equation involved may possess only the following polynomial solutions:

y = – 1
2
(
f1 �

[√
Δ
])

,

where
[√

Δ
]

denotes an integer rational part of the expansion of
√

Δ in decreasing powers

of x (for example,
[√
x2 – 2x + 3

]
= x – 1).



12.1. FIRST-ORDER DIFFERENTIAL EQUATIONS 461

12.1.4-3. Use of particular solutions to construct the general solution.

1◦. Given a particular solution y0 = y0(x) of the Riccati equation (12.1.4.1), the general
solution can be written as

y = y0(x) + Φ(x)
[
C –

∫
Φ(x)f2(x) dx

]–1
, (12.1.4.2)

where C is an arbitrary constant and

Φ(x) = exp
{∫ [

2f2(x)y0(x) + f1(x)
]
dx
}

. (12.1.4.3)

To the particular solution y0(x) there corresponds C = ∞.

2◦. Let y1 = y1(x) and y2 = y2(x) be two different particular solutions of equation (12.1.4.1).
Then the general solution can be calculated by

y =
Cy1 + U (x)y2

C + U (x)
, where U (x) = exp

[∫
f2(y1 – y2) dx

]
.

To the particular solution y1(x), there corresponds C =∞; and to y2(x), there corresponds
C = 0.

3◦. Let y1 = y1(x), y2 = y2(x), and y3 = y3(x) be three distinct particular solutions of
equation (12.1.4.1). Then the general solution can be found without quadrature:

y – y2

y – y1

y3 – y1

y3 – y2
= C .

This means that the Riccati equation has a fundamental system of solutions.

12.1.4-4. Some transformations.

1◦. The transformation (ϕ, ψ1, ψ2, ψ3, and ψ4 are arbitrary functions)

x = ϕ(ξ), y =
ψ4(ξ)u + ψ3(ξ)
ψ2(ξ)u + ψ1(ξ)

reduces the Riccati equation (12.1.4.1) to a Riccati equation for u = u(ξ).

2◦. Let y0 = y0(x) be a particular solution of equation (12.1.4.1). Then the substitution
y = y0 + 1/w leads to a linear equation for w = w(x):

w′
x +
[

2f2(x)y0(x) + f1(x)
]
w + f2(x) = 0.

For solution of linear equations, see Paragraph 12.1.2-5.

12.1.4-5. Reduction of the Riccati equation to a second-order linear equation.

The substitution
u(x) = exp

(
–
∫
f2y dx

)

reduces the general Riccati equation (12.1.4.1) to a second-order linear equation:

f2u
′′
xx –

[
(f2)′x + f1f2

]
u′x + f0f

2
2u = 0,

which often may be easier to solve than the original Riccati equation.
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12.1.4-6. Reduction of the Riccati equation to the canonical form.

The general Riccati equation (12.1.4.1) can be reduced with the aid of the transformation

x = ϕ(ξ), y =
1
F2
w –

1
2
F1

F2
+

1
2

(
1
F2

)′

ξ

, where Fi(ξ) = fi(ϕ)ϕ′
ξ , (12.1.4.4)

to the canonical form
w′
ξ = w2 + Ψ(ξ). (12.1.4.5)

Here, the function Ψ is defined by the formula

Ψ(ξ) = F0F2 –
1
4
F 2

1 +
1
2
F ′

1 –
1
2
F1
F ′

2
F2

–
3
4

(
F ′

2
F2

)2
+

1
2
F ′′

2
F2

;

the prime denotes differentiation with respect to ξ.
Transformation (12.1.4.4) depends on a function ϕ = ϕ(ξ) that can be arbitrary. For a

specific original Riccati equation, different functions ϕ in (12.1.4.4) will generate different
functions Ψ in equation (12.1.4.5). In practice, transformation (12.1.4.4) is most frequently
used with ϕ(ξ) = ξ.

12.1.5. Abel Equations of the First Kind

12.1.5-1. General form of Abel equations of the first kind. Some integrable cases.

An Abel equation of the first kind has the general form

y′x = f3(x)y3 + f2(x)y2 + f1(x)y + f0(x), f3(x) � 0. (12.1.5.1)

In the degenerate case f2(x) = f0(x) = 0, we have a Bernoulli equation (see Para-
graph 12.1.2-6 with a = 3). The Abel equation (12.1.5.1) is not integrable in closed form
for arbitrary fn(x).

Listed below are some special cases where the Abel equation of thefirst kind is integrable
by quadrature.

1◦. If the functions fn(x) (n = 0, 1, 2, 3) are proportional, i.e., fn(x) = ang(x), then
(12.1.5.1) is a separable equation (see Paragraph 12.1.2-1).

2◦. The Abel equation is homogeneous:

y′x = a
y3

x3 + b
y2

x2 + c
y

x
+ d.

See Paragraph 12.1.2-3.

3◦. The Abel equation is generalized homogeneous:

y′x = ax2n+1y3 + bxny2 +
c

x
y + dx–n–2.

See Paragraph 12.1.2-4 for k = –n – 1. The substitution w = xn+1y leads to a separable
equation: xw′

x = aw3 + bw2 + (c + n + 1)w + d.
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4◦. The Abel equation

y′x = ax3n–my3 + bx2ny2 +
m – n
x

y + dx2m

can be reduced with the substitution y = xm–nz to a separable equation: x–n–mz′x =
az3 + bz2 + c.

5◦. Let f0 ≡ 0, f1 ≡ 0, and (f3/f2)′x = af2 for some constant a. Then the substitution
y = f2f

–1
3 u leads to a separable equation: u′x = f 2

2 f
–1

3 (u3 + u2 + au).

6◦. If

f0 =
f1f2

3f3
–

2f 3
2

27f 2
3

–
1
3
d

dx

f2

f3
, fn = fn(x),

then the solution of equation (12.1.5.1) is given by

y(x) = E
(
C – 2

∫
f3E

2 dx
)–1/2

–
f2

3f3
, where E = exp

[∫ (
f1 –

f 2
2

3f3

)
dx

]
.

For other solvable Abel equations of the first kind, see the books by Kamke (1977) and
Polyanin and Zaitsev (2003).

12.1.5-2. Reduction of the Abel equation of the first kind to the canonical form.

The transformation

y = U (x)η(ξ) –
f2

3f3
, ξ =

∫
f3U

2 dx, where U (x) = exp

[∫ (
f1 –

f 2
2

3f3

)
dx

]
,

brings equation (12.1.5.1) to the canonical (normal) form

η′ξ = η3 + Φ(ξ).

Here, the function Φ(ξ) is defined parametrically (x is the parameter) by the relations

Φ =
1

f3U3

(
f0 –

f1f2

3f3
+

2f 3
2

27f 2
3

+
1
3
d

dx

f2

f3

)
, ξ =

∫
f3U

2 dx.

12.1.5-3. Reduction to an Abel equation of the second kind.

Let y0 = y0(x) be a particular solution of equation (12.1.5.1). Then the substitution

y = y0 +
E(x)
z(x)

, where E(x) = exp
[ ∫

(3f3y
2
0 + 2f2y0 + f1) dx

]
,

leads to an Abel equation of the second kind:

zz′x = –(3f3y0 + f2)Ez – f3E
2.

For equations of this type, see Subsection 12.1.6.
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12.1.6. Abel Equations of the Second Kind

12.1.6-1. General form of Abel equations of the second kind. Some integrable cases.

An Abel equation of the second kind has the general form

[y + g(x)]y′x = f2(x)y2 + f1(x)y + f0(x), g(x) � 0. (12.1.6.1)

The Abel equation (12.1.6.1) is not integrable for arbitrary fn(x) and g(x). Given
below are some special cases where the Abel equation of the second kind is integrable by
quadrature.

1◦. If g(x) = const and the functions fn(x) (n = 0, 1, 2) are proportional, i.e., fn(x) =
ang(x), then (12.1.6.1) is a separable equation (see Paragraph 12.1.2-1).

2◦. The Abel equation is homogeneous:

(y + sx)y′x =
a

x
y2 + by + cx.

See Paragraph 12.1.2-3. The substitution w = y/x leads to a separable equation.

3◦. The Abel equation is generalized homogeneous:

(y + sxn)y′x =
a

x
y2 + bxn–1y + cx2n–1.

See Paragraph 12.1.2-4 for k = n. The substitution w = yx–n leads to a separable equation:
x(w + s)w′

x = (a – n)w2 + (b – ns)w + c.

4◦. The Abel equation
(y + a2x + c2)y′x = b1y + a1x + c1

is a special case of the equation treated in Paragraph 12.1.2-3 (see Item 2◦ with f (w) = w
and b2 = 1).

5◦. The unnormalized Abel equation

[(a1x + a2x
n)y + b1x + b2x

n]y′x = c2y
2 + c1y + c0

can be reduced to the form (12.1.6.1) by dividing it by (a1x + a2x
n). Taking y to be the

independent variable and x = x(y) to be the dependent one, we obtain the Bernoulli equation

(c2y
2 + c1y + c0)x′y = (a1y + b1)x + (a2y + b2)xn.

See Paragraph 12.1.2-6.

6◦. The general solution of the Abel equation

(y + g)y′x = f2y
2 + f1y + f1g – f2g

2, fn = fn(x), g = g(x),

is given by

y = –g + CE + E
∫

(f1 + g′x – 2f2g)E–1 dx, where E = exp
(∫

f2 dx
)

.

7◦. If f1 = 2f2g – g′x, the general solution of the Abel equation (12.1.6.1) has the form

y = –g �E
[

2
∫

(f0 + gg′x – f2g
2)E–2 dx + C

]1/2
, where E = exp

(∫
f2 dx

)
.

For other solvable Abel equations of the second kind, see the books by Kamke (1977)
and Polyanin and Zaitsev (2003).
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12.1.6-2. Reduction of the Abel equation of the second kind to the canonical form.

1◦. The substitution

w = (y + g)E, where E = exp
(

–
∫
f2 dx

)
, (12.1.6.2)

brings equation (12.1.6.1) to the simpler form

ww′
x = F1(x)w + F0(x), (12.1.6.3)

where
F1 = (f1 – 2f2g + g′x)E, F0 = (f0 – f1g + f2g

2)E2.

2◦. In turn, equation (12.1.6.3) can be reduced, by the introduction of the new independent
variable

z =
∫
F1(x) dx, (12.1.6.4)

to the canonical form
ww′

z – w = R(z). (12.1.6.5)

Here, the function R(z) is defined parametrically (x is the parameter) by the relations

R =
F0(x)
F1(x)

, z =
∫
F1(x) dx.

Substitutions (12.1.6.2) and (12.1.6.4), which take the Abel equation to the canonical form,
are called canonical.

Remark 1. The transformation w = aŵ, z = aẑ + b brings (12.1.6.5) to a similar equation, ŵŵ′
ẑ – ŵ =

a–1R(aẑ + b). Therefore the function R(z) in the right-hand side of the Abel equation (12.1.6.5) can be
identified with the two-parameter family of functions a–1R(az + b).

Remark 2. Any Abel equations of the second kind related by linear (in y) transformations x̃ = ϕ1(x),
ỹ = ϕ2(x)y + ϕ3(x) have identical canonical forms (up to the two-parameter family of functions specified in
Remark 1).

12.1.6-3. Reduction to an Abel equation of the first kind.

The substitution y + g = 1/u leads to an Abel equation of the first kind:

u′x + (f0 – f1g + f2g
2)u3 + (f1 – 2f2g + g′x)u2 + f2u = 0.

For equations of this type, see Subsection 12.1.5.

12.1.7. Equations Not Solved for the Derivative

12.1.7-1. Method of “integration by differentiation.”

In the general case, a first-order equation not solved for the derivative,

F (x, y, y′x) = 0, (12.1.7.1)

can be rewritten in the equivalent form

F (x, y, t) = 0, t = y′x. (12.1.7.2)
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We look for a solution in parametric form: x = x(t), y = y(t). In accordance with the first
relation in (12.1.7.2), the differential of F is given by

Fx dx + Fy dy + Ft dt = 0. (12.1.7.3)

Using the relation dy = t dx, we eliminate successively dy and dx from (12.1.7.3). As a
result, we obtain the system of two first-order ordinary differential equations:

dx

dt
= –

Ft
Fx + tFy

,
dy

dt
= –

tFt
Fx + tFy

. (12.1.7.4)

By finding a solution of this system, one thereby obtains a solution of the original equa-
tion (12.1.7.1) in parametric form, x = x(t), y = y(t).

Remark 1. The application of the above method may lead to loss of individual solutions (satisfying the
condition Fx + tFy = 0); this issue should be additionally investigated.

Remark 2. One of the differential equations of system (12.1.7.4) can be replaced by the algebraic equation
F (x,y, t) = 0; see equation (12.1.7.2). This technique is used subsequently in Paragraphs 12.1.7-2, 12.1.7-3,
and 12.1.7-5.

12.1.7-2. Equations of the form y = f (y′x).

This equation is a special case of equation (12.1.7.1), with F (x, y, t) = y – f (t). The
procedure described in Paragraph 12.1.7-1 yields

dx

dt
=
f ′(t)
t

, y = f (t). (12.1.7.5)

Here, the original equation is used instead of the second equation in system (12.1.7.4); this
is valid because the first equation in (12.1.7.4) does not depend on y explicitly.

Integrating the first equation in (12.1.7.5) yields the solution in parametric form,

x =
∫ f ′(t)

t
dt + C , y = f (t).

12.1.7-3. Equations of the form x = f (y′x).

This equation is a special case of equation (12.1.7.1), with F (x, y, t) = x – f (t). The
procedure described in Paragraph 12.1.7-1 yields

x = f (t),
dy

dt
= tf ′(t). (12.1.7.6)

Here, the original equation is used instead of the first equation in system (12.1.7.4); this is
valid because the second equation in (12.1.7.4) does not depend on x explicitly.

Integrating the second equation in (12.1.7.5) yields the solution in parametric form,

x = f (t), y =
∫
tf ′(t) dt + C .
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12.1.7-4. Clairaut’s equation y = xy′x + f (y′x).

Clairaut’s equation is a special case of equation (12.1.7.1), with F (x, y, t) = y – xt – f (t).
It can be rewritten as

y = xt + f (t), t = y′x. (12.1.7.7)

This equation corresponds to the degenerate case Fx + tFy ≡ 0, where system (12.1.7.4)
cannot be obtained. One should proceed in the following way: the first relation in (12.1.7.7)
gives dy = x dt + t dx + f ′(t) dt; performing the substitution dy = t dx, which follows from
the second relation in (12.1.7.7), one obtains

[x + f ′(t)] dt = 0.

This equation splits into dt = 0 and x + f ′(t) = 0. The solution of the first equation is
obvious: t = C; it gives the general solution of Clairaut’s equation,

y = Cx + f (C), (12.1.7.8)

which is a family of straight lines. The second equation generates a solution in parametric
form,

x = –f ′(t), y = –tf ′(t) + f (t), (12.1.7.9)

which is a singular solution and is the envelope of the family of lines (12.1.7.8).

Remark. There are also “compound” solutions of Clairaut’s equation; they consist of part of curve
(12.1.7.9) joined with the tangents at finite points; these tangents are defined by formula (12.1.7.8).

12.1.7-5. Lagrange’s equation y = xf (y′x) + g(y′x).

Lagrange’s equation is a special case of equation (12.1.7.1), with F (x, y, t) = y–xf (t)–g(t).
In the special case f (t) ≡ t, it coincides with Clairaut’s equation; see Paragraph 12.1.7-4.

The procedure described in Paragraph 12.1.7-1 yields

dx

dt
+

f ′(t)
f (t) – t

x =
g′(t)
t – f (t)

, y = xf (t) + g(t). (12.1.7.10)

Here, the original equation is used instead of the second equation in system (12.1.7.4); this
is valid because the first equation in (12.1.7.4) does not depend on y explicitly.

The first equation of system (12.1.7.10) is linear. Its general solution has the form
x = ϕ(t)C + ψ(t); the functions ϕ and ψ are defined in Paragraph 12.1.2-5. Substituting
this solution into the second equation in (12.1.7.10), we obtain the general solution of
Lagrange’s equation in parametric form,

x = ϕ(t)C + ψ(t), y =
[
ϕ(t)C + ψ(t)

]
f (t) + g(t).

Remark. With the above method, solutions of the form y = tkx + g(tk), where the tk are roots of the
equation f (t) – t = 0, may be lost. These solutions can be particular or singular solutions of Lagrange’s
equation.
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12.1.8. Contact Transformations
12.1.8-1. General form of contact transformations.

A contact transformation has the form
x = F (X,Y ,Y ′

X),

y = G(X,Y ,Y ′
X),

(12.1.8.1)

where the functions F (X,Y ,U ) and G(X,Y ,U ) are chosen so that the derivative y′x does
not depend on Y ′′

XX :

y′x =
y′X
x′X

=
GX +GY Y ′

X +GUY ′′
XX

FX + FY Y ′
X + FUY ′′

XX

= H(X,Y ,Y ′
X). (12.1.8.2)

The subscripts X, Y , and U after F and G denote the respective partial derivatives (it is
assumed that FU � 0 and GU � 0).

It follows from (12.1.8.2) that the relation

∂G

∂U

( ∂F
∂X

+ U
∂F

∂Y

)
–
∂F

∂U

( ∂G
∂X

+ U
∂G

∂Y

)
= 0 (12.1.8.3)

holds; the derivative is calculated by

y′x =
GU
FU

, (12.1.8.4)

where GU/FU � const.
The application of contact transformations preserves the order of differential equations.

The inverse of a contact transformation can be obtained by solving system (12.1.8.1) and
(12.1.8.4) for X, Y , Y ′

X .

12.1.8-2. Method for the construction of contact transformations.

Suppose the function F = F (X,Y ,U ) in the contact transformation (12.1.8.1) is specified.
Then relation (12.1.8.3) can be viewed as a linear partial differential equation for the second
function G. The corresponding characteristic system of ordinary differential equations (see
Subsection 13.1.1),

dX

1
=
dY

U
= –

FU dU

FX + UFY
,

admits the obvious first integral:

F (X,Y ,U ) = C1, (12.1.8.5)

where C1 is an arbitrary constant. It follows that, to obtain the general representation of the
function G = G(X,Y ,U ), one has to deal with the ordinary differential equation

Y ′
X = U , (12.1.8.6)

whose right-hand side is defined in implicit form by (12.1.8.5). Let the first integral of
equation (12.1.8.6) have the form

Φ(X,Y ,C1) = C2.

Then the general representation of G = G(X,Y ,U ) in transformation (12.1.8.1) is given
by

G = Ψ(F , Φ̃),

where Ψ(F , Φ̃) is an arbitrary function of two variables, F = F (X,Y ,U ) and Φ̃ =
Φ(X,Y ,F ).
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12.1.8-3. Examples of contact transformations.

Example 1. Legendre transformation:

x = Y ′
X , y = XY ′

X – Y , y′x = X (direct transformation);

X = y′x, Y = xy′x – y, Y ′
X = x (inverse transformation).

This transformation is used for solving some equations. In particular, the nonlinear equation

(xy′x – y)af (y′x) + yg(y′x) + xh(y′x) = 0

can be reduced by the Legendre transformation to a Bernoulli equation: [Xg(X)+h(X)]Y ′
X =g(X)Y –f (X)Y a

(see Paragraph 12.1.2-6).

Example 2. Contact transformation (a ≠ 0):

x = Y ′
X + aY , y = beaXY ′

X , y′x = beaX (direct transformation);

X =
1
a

ln
y′x
b

, Y =
1
a

(
x –

y

y′x

)
, Y ′

X =
y

y′x
(inverse transformation).

Example 3. Contact transformation (a ≠ 0):

x = Y ′
X + aX, y = 1

2 (Y ′
X)2 + aY , y′x = Y ′

X (direct transformation);

X =
1
a

(
x – y′x

)
, Y =

1
2a
[

2y – (y′x)2], Y ′
X = y′x (inverse transformation).

12.1.9. Approximate Analytic Methods for Solution of Equations

12.1.9-1. Method of successive approximations (Picard method).

The method of successive approximations consists of two stages. At the first stage, the
Cauchy problem

y′x = f (x, y) (equation), (12.1.9.1)

y(x0) = y0 (initial condition) (12.1.9.2)

is reduced to the equivalent integral equation:

y(x) = y0 +
∫ x

x0
f (t, y(t)) dt. (12.1.9.3)

Then a solution of equation (12.1.9.3) is sought using the formula of successive approxi-
mations:

yn+1(x) = y0 +
∫ x

x0
f (t, yn(t)) dt; n = 0, 1, 2, . . .

The initial approximation y0(x) can be chosen arbitrarily; the simplest way is to take y0
to be a number. The iterative process converges as n→ ∞, provided the conditions of the
theorems in Paragraph 12.1.1-3 are satisfied.
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12.1.9-2. Method of Taylor series expansion in the independent variable.

A solution of the Cauchy problem (12.1.9.1)–(12.1.9.2) can be sought in the form of the
Taylor series in powers of (x – x0):

y(x) = y(x0) + y′x(x0)(x – x0) +
y′′xx(x0)

2!
(x – x0)2 + · · · . (12.1.9.4)

The first coefficient y(x0) in solution (12.1.9.4) is prescribed by the initial condition
(12.1.9.2). The values of the derivatives of y(x) at x = x0 are determined from equa-
tion (12.1.9.1) and its derivative equations (obtained by successive differentiation), taking
into account the initial condition (12.1.9.2). In particular, setting x = x0 in (12.1.9.1) and
substituting (12.1.9.2), one obtains the value of the first derivative:

y′x(x0) = f (x0, y0). (12.1.9.5)

Further, differentiating equation (12.1.9.1) yields

y′′xx = fx(x, y) + fy(x, y)y′x. (12.1.9.6)

On substituting x = x0, as well as the initial condition (12.1.9.2) and the first deriva-
tive (12.1.9.5), into the right-hand side of this equation, one calculates the value of the
second derivative:

y′′xx(x0) = fx(x0, y0) + f (x0, y0)fy(x0, y0).

Likewise, one can determine the subsequent derivatives of y at x = x0.
Solution (12.1.9.4) obtained by this method can normally be used in only some suffi-

ciently small neighborhood of the point x = x0.
Example. Consider the Cauchy problem for the equation

y′ = ey + cos x

with the initial condition y(0) = 0.
Since x0 = 0, we will be constructing a series in powers of x. If follows from the equation that y′(0) =

e0 + cos 0 = 2. Differentiating the original equation yields y′′ = eyy′ – sinx. Using the initial condition
and the condition y′(0) = 2 just obtained, we have y′′(0) = e0 × 2 – sin 0 = 2. Similarly, we find that
y′′′ = eyy′′ + ey(y′)2 – cosx, whence y′′′(0) = e0 × 2 + e0 × 22 – cos 0 = 5.

Substituting the values of the derivatives at x = 0 into series (12.1.9.4), we obtain the desired series
representation of the solution: y = 2x + x2 + 5

6 x
3 + · · · .

12.1.9-3. Method of regular expansion in the small parameter.

Consider a general first-order ordinary differential equation with a small parameter ε:

y′x = f (x, y, ε). (12.1.9.7)

Suppose the function f is representable as a series in powers of ε:

f (x, y, ε) =
∞∑

n=0

εnfn(x, y). (12.1.9.8)

One looks for a solution of the Cauchy problem for equation (12.1.9.7) with the initial
condition (12.1.9.2) as ε → 0 in the form of a regular expansion in powers of the small
parameter:

y =
∞∑

n=0

εnYn(x). (12.1.9.9)
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Relation (12.1.9.9) is substituted in equation (12.1.9.7) taking into account (12.1.9.8). Then
one expands the functions fn into a power series in ε and matches the coefficients of like
powers of ε to obtain a system of equations for Yn(x):

Y ′
0 = f0(x,Y0), (12.1.9.10)

Y ′
1 = g(x,Y0)Y1 + f1(x,Y0), g(x, y) =

∂f0

∂y
. (12.1.9.11)

Only the first two equations are written out here. The prime denotes differentiation with
respect to x. The initial conditions for Yn can be obtained from (12.1.9.2) taking into
account (12.1.9.9):

Y0(x0) = y0, Y1(x0) = 0.

Success in the application of this method is primarily determined by the possibility of
constructing a solution of equation (12.1.9.10) for the leading term in the expansion of Y0.
It is significant that the remaining terms of the expansion, Yn with n ≥ 1, are governed by
linear equations with homogeneous initial conditions.

Remark 1. Paragraph 12.3.5-2 gives an example of solving a Cauchy problem by the method of regular
expansion for a second-order equation and also discusses characteristic features of the method.

Remark 2. The methods of scaled coordinates, two-scale expansions, and matched asymptotic expansions
are also used to solve problems defined by first-order differential equations with a small parameter. The basic
ideas of these methods are given in Subsection 12.3.5.

12.1.10. Numerical Integration of Differential Equations

12.1.10-1. Method of Euler polygonal lines.

Consider the Cauchy problem for the first-order differential equation

y′x = f (x, y)

with the initial condition y(x0) = y0. Our aim is to construct an approximate solution
y = y(x) of this equation on an interval [x0,x∗].

Let us split the interval [x0,x∗] into n equal segments of length Δx =
x∗ – x0

n
. We

seek approximate values y1, y2, . . . , yn of the function y(x) at the partitioning points x1, x2,
. . . , xn = x∗.

For a given initial value y0 = y(x0) and a sufficiently small Δx, the values of the
unknown function yk = y(xk) at the other points xk = x0 +kΔx are calculated successively
by the formula

yk+1 = yk + f (xk, yk)Δx (Euler polygonal line),

where k = 0, 1, . . . , n – 1. The Euler method is a single-step method of the first-order
approximation (with respect to the step Δx).

12.1.10-2. Single-step methods of the second-order approximation.

Two single-step methods for solving the Cauchy problem in the second-order approximation
are specified by the recurrence formulas

yk+1 = yk + f
(
xk + 1

2 Δx, yk + 1
2 fkΔx)Δx,

yk+1 = yk + 1
2
[
fk + f (xk+1, yk + fkΔx)

]
Δx,

where fk = f (xk, yk); k = 0, 1, . . . , n – 1.
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12.1.10-3. Runge–Kutta method of the fourth-order approximation.

This is one of the widely used methods. The unknown values yk are successively found by
the formulas

yk+1 = yk + 1
6 (f1 + 2f2 + 2f3 + f4)Δx,

where
f1 = f (xk, yk), f2 = f (xk + 1

2 Δx, yk + 1
2 f1Δx),

f3 = f (xk + 1
2 Δx, yk + 1

2 f2Δx), f4 = f (xk + Δx, yk + f3Δx).

Remark 1. All methods described in Subsection 12.1.10 are special cases of the Runge–Kutta method (a
detailed description of this method can be found in the monographs listed at the end of the current chapter).

Remark 2. In practice, calculations are performed on the basis of any of the above recurrence formulas
with two different steps Δx, 1

2 Δx and an arbitrarily chosen small Δx. Then one compares the results
obtained at common points. If these results coincide within the given order of accuracy, one assumes that the
chosen step Δx ensures the desired accuracy of calculations. Otherwise, the step is halved and the calculations
are performed with the steps 1

2 Δx and 1
4 Δx, after which the results are compared again, etc. (Quite often,

one compares the results of calculations with steps varying by ten or more times.)

12.2. Second-Order Linear Differential Equations
12.2.1. Formulas for the General Solution. Some Transformations

12.2.1-1. Homogeneous linear equations. Formulas for the general solution.

1◦. Consider a second-order homogeneous linear equation in the general form

f2(x)y′′xx + f1(x)y′x + f0(x)y = 0. (12.2.1.1)

The trivial solution, y = 0, is a particular solution of the homogeneous linear equation.
Let y1(x), y2(x) be a fundamental system of solutions (nontrivial linearly independent

particular solutions) of equation (12.2.1.1). Then the general solution is given by

y = C1y1(x) + C2y2(x), (12.2.1.2)

where C1 and C2 are arbitrary constants.

2◦. Let y1 = y1(x) be any nontrivial particular solution of equation (12.2.1.1). Then its
general solution can be represented as

y = y1

(
C1 + C2

∫
e–F

y2
1
dx

)
, where F =

∫
f1

f2
dx. (12.2.1.3)

3◦. Consider the equation
y′′xx + f (x)y = 0,

which is written in the canonical form; see Paragraph 12.2.1-3 for the reduction of equations
to this form. Let y1(x) be any nontrivial partial solution of this equation. The general
solution can be constructed by formula (12.2.1.3) with F = 0 or formula (12.2.1.2) in which

y2(x) = y1

∫
[f (x) – 1][y2

1 – (y′1)2]

[y2
1 + (y′1)2]2 dx +

y′1
y2

1 + (y′1)2 .

Here, y1 = y1(x) and the prime denotes differentiation with respect to x. The last formula
is suitable where y1 vanishes at some points.
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4◦. The second-order constant coefficient linear equation

y′′xx + ay′x + by = 0

has the following fundamental system of solutions:

y1(x) = exp
(
– 1

2 ax
)

sinh
( 1

2x
√
a2 – 4b

)
, y2(x) = exp

(
– 1

2ax
)

cosh
( 1

2x
√
a2 – 4b

)
if a2 > 4b;

y1(x) = exp
(
– 1

2 ax
)

sin
( 1

2x
√

4b – a2
)
, y2(x) = exp

(
– 1

2ax
)

cos
( 1

2x
√

4b – a2
)

if a2 < 4b;

y1(x) = exp
(
– 1

2 ax
)
, y2(x) = x exp

(
– 1

2 ax
)

if a2 = 4b.

5◦. The Euler equation
x2y′′xx + axy′x + by = 0

is reduced by the change of variable x = ket (k ≠ 0) to the second-order constant coefficient
linear equation y′′tt + (a – 1)y′t + by = 0, which is treated in Item 4◦.

� Solutions to some other second-order linear equations can be found in Section T5.2.

12.2.1-2. Wronskian determinant and Liouville’s formula.

The Wronskian determinant (or Wronskian) is defined by

W (x) =
∣∣
∣
y1(x) y2(x)
y′1(x) y′2(x)

∣∣
∣ ≡ y1(y2)′x – y2(y1)′x,

where y1(x), y2(x) is a fundamental system of solutions of equation (12.2.1.1).
Liouville’s formula:

W (x) = W (x0) exp

[
–
∫ x

x0

f1(t)
f2(t)

dt

]
.

12.2.1-3. Reduction to the canonical form.

1◦. The substitution

y = u(x) exp

(
–

1
2

∫
f1

f2
dx

)
(12.2.1.4)

brings equation (12.2.1.1) to the canonical (or normal) form

u′′xx + f (x)u = 0, where f =
f0

f2
–

1
4

(
f1

f2

)2
–

1
2

(
f1

f2

)′

x

. (12.2.1.5)

2◦. The substitution (12.2.1.4) is a special case of the more general transformation (ϕ is an
arbitrary function)

x = ϕ(ξ), y = u(ξ)
√

|ϕ′
ξ(ξ)| exp

(
–

1
2

∫
f1(ϕ)
f2(ϕ)

dϕ

)
,

which also brings the original equation to the canonical form.



474 ORDINARY DIFFERENTIAL EQUATIONS

12.2.1-4. Reduction to the Riccati equation.

The substitution u = y′x/y brings the second-order homogeneous linear equation (12.2.1.1)
to the Riccati equation:

f2(x)u′x + f2(x)u2 + f1(x)u + f0(x) = 0,

which is discussed in Subsection 12.1.4.

12.2.1-5. Nonhomogeneous linear equations. The existence theorem.

A second-order nonhomogeneous linear equation has the form

f2(x)y′′xx + f1(x)y′x + f0(x)y = g(x). (12.2.1.6)

THEOREM (EXISTENCE AND UNIQUENESS). On an open interval a < x < b, let the
functions f2, f1, f0, and g be continuous and f2 ≠ 0. Also let

y(x0) = A, y′x(x0) = B

be arbitrary initial conditions, where x0 is any point such that a < x0 < b, and A and B are
arbitrary prescribed numbers. Then a solution of equation (12.2.1.6) exists and is unique.
This solutions is defined for all x � (a, b).

12.2.1-6. Nonhomogeneous linear equations. Formulas for the general solution.

1◦. The general solution of the nonhomogeneous linear equation (12.2.1.6) is the sum of the
general solution of the corresponding homogeneous equation (12.2.1.1) and any particular
solution of the nonhomogeneous equation (12.2.1.6).

2◦. Let y1 = y1(x), y2 = y2(x) be a fundamental system of solutions of the corresponding
homogeneous equation, with g ≡ 0. Then the general solution of equation (12.2.1.6) can
be represented as

y = C1y1 + C2y2 + y2

∫
y1
g

f2

dx

W
– y1

∫
y2
g

f2

dx

W
, (12.2.1.7)

where W = y1(y2)′x – y2(y1)′x is the Wronskian determinant.

3◦. Given a nontrivial particular solution y1 = y1(x) of the homogeneous equation (with
g ≡ 0), a second particular solution y2 = y2(x) can be calculated from the formula

y2 = y1

∫
e–F

y2
1
dx, where F =

∫
f1

f2
dx, W = e–F . (12.2.1.8)

Then the general solution of equation (12.2.1.6) can be constructed by (12.2.1.7).

4◦. Let ȳ1 and ȳ2 be respective solutions of the nonhomogeneous differential equations
L [ȳ1] = g1(x) and L [ȳ2] = g2(x), which have the same left-hand side but different right-
hand sides, where L [y] is the left-hand side of equation (12.2.1.6). Then the function
ȳ = ȳ1 + ȳ2 is a solution of the equation L [ȳ] = g1(x) + g2(x).
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12.2.1-7. Reduction to a constant coefficient equation (a special case).

Let f2 = 1, f0 ≠ 0, and the condition

1
|f0|

d

dx

√
|f0| +

f1√
|f0|

= a = const

be satisfied. Then the substitution ξ =
∫ √

|f0| dx leads to a constant coefficient linear
equation,

y′′ξξ + ay′ξ + y sign f0 = 0.

12.2.1-8. Kummer–Liouville transformation.

The transformation
x = α(t), y = β(t)z + γ(t), (12.2.1.9)

where α(t), β(t), and γ(t) are arbitrary sufficiently smooth functions (β � 0), takes any
linear differential equation for y(x) to a linear equation for z = z(t). In the special case
γ ≡ 0, a homogeneous equation is transformed to a homogeneous one.

Special cases of transformation (12.2.1.9) are widely used to simplify second- and
higher-order linear differential equations.

12.2.2. Representation of Solutions as a Series in the Independent
Variable

12.2.2-1. Equation coefficients are representable in the ordinary power series form.

Let us consider a homogeneous linear differential equation of the general form

y′′xx + f (x)y′x + g(x)y = 0. (12.2.2.1)

Assume that the functions f (x) and g(x) are representable, in the vicinity of a point
x = x0, in the power series form,

f (x) =
∞∑

n=0

An(x – x0)n, g(x) =
∞∑

n=0

Bn(x – x0)n, (12.2.2.2)

on the interval |x – x0| < R, where R stands for the minimum radius of convergence of the
two series in (12.2.2.2). In this case, the point x = x0 is referred to as an ordinary point,
and equation (12.2.2.1) possesses two linearly independent solutions of the form

y1(x) =
∞∑

n=0

an(x – x0)n, y2(x) =
∞∑

n=0

bn(x – x0)n. (12.2.2.3)

The coefficients an and bn are determined by substituting the series (12.2.2.2) into equa-
tion (12.2.2.1) followed by extracting the coefficients of like powers of (x – x0).*

* Prior to that, the terms containing the same powers (x – x0)k, k = 0, 1, . . . , should be collected.
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12.2.2-2. Equation coefficients have poles at some point.

Assume that the functions f (x) and g(x) are representable, in the vicinity of a point x=x0,
in the form

f (x) =
∞∑

n=–1

An(x – x0)n, g(x) =
∞∑

n=–2

Bn(x – x0)n, (12.2.2.4)

on the interval |x–x0| <R. In this case, the point x = x0 is referred to as a regular singular
point. Let λ1 and λ2 be roots of the quadratic equation

λ2
1 + (A–1 – 1)λ + B–2 = 0.

There are three cases, depending on the values of the exponents of the singularity.

1. If λ1 ≠ λ2 and λ1 – λ2 is not an integer, equation (12.2.2.1) has two linearly
independent solutions of the form

y1(x) = |x – x0|λ1
[

1 +
∞∑

n=1

an(x – x0)n
]
,

y2(x) = |x – x0|λ2
[

1 +
∞∑

n=1

bn(x – x0)n
]
.

(12.2.2.5)

2. If λ1 = λ2 = λ, equation (12.2.2.1) possesses two linearly independent solutions:

y1(x) = |x – x0|λ
[

1 +
∞∑

n=1

an(x – x0)n
]
,

y2(x) = y1(x) ln |x – x0| + |x – x0|λ
∞∑

n=0

bn(x – x0)n.

3. If λ1 = λ2 + N , where N is a positive integer, equation (12.2.2.1) has two linearly
independent solutions of the form

y1(x) = |x – x0|λ1
[

1 +
∞∑

n=1

an(x – x0)n
]
,

y2(x) = ky1(x) ln |x – x0| + |x – x0|λ2

∞∑

n=0

bn(x – x0)n,

where k is a constant to be determined (it may be equal to zero).

To construct the solution in each of the three cases, the following procedure should
be performed: substitute the above expressions of y1 and y2 into the original equa-
tion (12.2.2.1) and equate the coefficients of (x–x0)n and (x–x0)n ln |x–x0 | for different
values of n to obtain recurrence relations for the unknown coefficients. From these recur-
rence relations the solution sought can be found.
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12.2.3. Asymptotic Solutions

This subsection presents asymptotic solutions, as ε → 0 (ε > 0), of some second-order
linear ordinary differential equations containing arbitrary functions (sufficiently smooth),
with the independent variable being real.

12.2.3-1. Equations not containing y′x. Leading asymptotic terms.

1◦. Consider the equation

ε2y′′xx – f (x)y = 0 (12.2.3.1)

on a closed interval a ≤ x ≤ b.

Case 1. With the condition f ≠ 0, the leading terms of the asymptotic expansions of
the fundamental system of solutions, as ε→ 0, are given by the formulas

y1 = f –1/4 exp
(

–
1
ε

∫ √
f dx

)
, y2 = f –1/4 exp

( 1
ε

∫ √
f dx

)
if f > 0,

y1 = (–f )–1/4 cos
( 1
ε

∫ √
–f dx

)
, y2 = (–f )–1/4 sin

( 1
ε

∫ √
–f dx

)
if f < 0.

Case 2. Discuss the asymptotic solution of equation (12.2.3.1) in the vicinity of the
point x = x0, where function f (x) vanishes, f (x0) = 0 (such a point is referred to as a
transition point). We assume that the function f can be presented in the form

f (x) = (x0 – x)ψ(x), where ψ(x) > 0.

In this case, the fundamental solutions, as ε→ 0, are described by three different formulas:

y1 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
|f (x)|1/4 sin

[ 1
ε

∫ x

x0

√
|f (x)| dx +

π

4

]
if x – x0 ≥ δ,

√
π

[εψ(x0)]1/6 Ai(z) if |x – x0| ≤ δ,

1
2[f (x)]1/4 exp

[
–

1
ε

∫ x0

x

√
f (x) dx

]
if x0 – x ≥ δ,

y2 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
|f (x)|1/4 cos

[ 1
ε

∫ x

x0

√
|f (x)| dx +

π

4

]
if x – x0 ≥ δ,

√
π

[εψ(x0)]1/6 Bi(z) if |x – x0| ≤ δ,

1
[f (x)]1/4 exp

[ 1
ε

∫ x0

x

√
f (x) dx

]
if x0 – x ≥ δ,

where Ai(z) and Bi(z) are the Airy functions of the first and second kind, respectively
(see Section 18.8), z = ε–2/3[ψ(x0)]1/3(x0 – x), and δ = O(ε2/3).
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12.2.3-2. Equations not containing y′x. Two-term asymptotic expansions.

The two-term asymptotic expansions of the solution of equation (12.2.3.1) with f > 0, as
ε→ 0, on a closed interval a ≤ x ≤ b, has the form

y1 = f –1/4 exp
(

–
1
ε

∫ x

x0

√
f dx

){
1 – ε

∫ x

x0

[ 1
8
f ′′xx
f 3/2 –

5
32

(f ′x)2

f 5/2

]
dx +O(ε2)

}
,

y2 = f –1/4 exp
( 1
ε

∫ x

x0

√
f dx

){
1 + ε

∫ x

x0

[ 1
8
f ′′xx
f 3/2 –

5
32

(f ′x)2

f 5/2

]
dx + O(ε2)

}
,

(12.2.3.2)
where x0 is an arbitrary number satisfying the inequality a ≤ x0 ≤ b.

The asymptotic expansions of the fundamental system of solutions of equation
(12.2.3.1) with f < 0 are derived by separating the real and imaginary parts in either
formula (12.2.3.2).

12.2.3-3. Equations of special form not containing y′x.

Consider the equation
ε2y′′xx – xm–2f (x)y = 0 (12.2.3.3)

on a closed interval a≤x≤ b, where a< 0 and b> 0, under the conditions thatm is a positive
integer and f (x) ≠ 0. In this case, the leading term of the asymptotic solution, as ε → 0,
in the vicinity of the point x = 0 is expressed in terms of a simpler model equation, which
results from substituting the function f (x) in equation (12.2.3.3) by the constant f (0) (the
solution of the model equation is expressed in terms of the Bessel functions of order 1/m).

We specify below formulas by which the leading terms of the asymptotic expansions of
the fundamental system of solutions of equation (12.2.3.3) with a < x < 0 and 0 < x < b
are related (excluding a small vicinity of the point x = 0). Three different cases can be
extracted.

1◦. Let m be an even integer and f (x) > 0. Then,

y1 =

⎧
⎪⎨

⎪⎩

[f (x)]–1/4 exp
[ 1
ε

∫ x

0

√
f (x) dx

]
if x < 0,

k–1[f (x)]–1/4 exp
[ 1
ε

∫ x

0

√
f (x) dx

]
if x > 0,

y2 =

⎧
⎪⎨

⎪⎩

[f (x)]–1/4 exp
[
–

1
ε

∫ x

0

√
f (x) dx

]
if x < 0,

k[f (x)]–1/4 exp
[
–

1
ε

∫ x

0

√
f (x) dx

]
if x > 0,

where f = f (x), k = sin
( π
m

)
.

2◦. Let m be an even integer and f (x) < 0. Then,

y1 =

⎧
⎪⎨

⎪⎩

|f (x)|–1/4 cos
[
–

1
ε

∫ x

0

√
|f (x)| dx +

π

4

]
if x < 0,

k–1|f (x)|–1/4 cos
[ 1
ε

∫ x

0

√
|f (x)| dx –

π

4

]
if x > 0,

y2 =

⎧
⎪⎨

⎪⎩

|f (x)|–1/4 cos
[
–

1
ε

∫ x

0

√
|f (x)| dx –

π

4

]
if x < 0,

k|f (x)|–1/4 cos
[ 1
ε

∫ x

0

√
|f (x)| dx +

π

4

]
if x > 0,
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where f = f (x), k = tan
( π

2m

)
.

3◦. Let m be an odd integer. Then,

y1 =

⎧
⎪⎨

⎪⎩

|f (x)|–1/4 cos
[
–

1
ε

∫ x

0

√
|f (x)| dx +

π

4

]
if x < 0,

1
2
k–1[f (x)]–1/4 exp

[ 1
ε

∫ x

0

√
f (x) dx

]
if x > 0,

y2 =

⎧
⎪⎨

⎪⎩

|f (x)|–1/4 cos
[
–

1
ε

∫ x

0

√
|f (x)| dx –

π

4

]
if x < 0,

k[f (x)]–1/4 exp
[
–

1
ε

∫ x

0

√
f (x) dx

]
if x > 0,

where f = f (x), k = sin
( π

2m

)
.

12.2.3-4. Equations not containing y′x. Equation coefficients are dependent on ε.

Consider an equation of the form

ε2y′′xx – f (x, ε)y = 0 (12.2.3.4)

on a closed interval a ≤ x ≤ b under the condition that f ≠ 0. Assume that the following
asymptotic relation holds:

f (x, ε) =
∞∑

k=0

fk(x)εk , ε→ 0.

Then the leading terms of the asymptotic expansions of the fundamental system of solutions
of equation (12.2.3.4) are given by the formulas

y1 = f –1/4
0 (x) exp

[
–

1
ε

∫ √
f0(x) dx +

1
2

∫ f1(x)√
f0(x)

dx
][

1 + O(ε)
]
,

y2 = f –1/4
0 (x) exp

[ 1
ε

∫ √
f0(x) dx +

1
2

∫ f1(x)√
f0(x)

dx
][

1 +O(ε)
]
.

12.2.3-5. Equations containing y′x.

1◦. Consider an equation of the form

εy′′xx + g(x)y′x + f (x)y = 0

on a closed interval 0 ≤ x ≤ 1. With g(x) > 0, the asymptotic solution of this equation,
satisfying the boundary conditions y(0) = C1 and y(1) = C2, can be represented in the
form

y = (C1 – kC2) exp
[
–ε–1g(0)x

]
+ C2 exp

[∫ 1

x

f (x)
g(x)

dx
]

+ O(ε),

where k = exp
[∫ 1

0

f (x)
g(x)

dx
]
.
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2◦. Now let us take a look at an equation of the form

ε2y′′xx + εg(x)y′x + f (x)y = 0 (12.2.3.5)

on a closed interval a ≤ x ≤ b. Assume

D(x) ≡ [g(x)]2 – 4f (x) ≠ 0.

Then the leading terms of the asymptotic expansions of the fundamental system of solutions
of equation (12.2.3.5), as ε→ 0, are expressed by

y1 = |D(x)|–1/4 exp
[
–

1
2ε

∫ √
D(x) dx –

1
2

∫ g′x(x)√
D(x)

dx
][

1 + O(ε)
]
,

y2 = |D(x)|–1/4 exp
[ 1

2ε

∫ √
D(x) dx –

1
2

∫ g′x(x)√
D(x)

dx
][

1 + O(ε)
]
.

12.2.3-6. Equations of the general form.

The more general equation

ε2y′′xx + εg(x, ε)y′x + f (x, ε)y = 0

is reducible, with the aid of the substitution y = w exp
(

–
1

2ε

∫
g dx
)

, to an equation of the

form (12.2.3.4),
ε2w′′

xx + (f – 1
4 g

2 – 1
2 εg

′
x)w = 0,

to which the asymptotic formulas given above in Paragraph 12.2.3-4 are applicable.

12.2.4. Boundary Value Problems

12.2.4-1. First, second, third, and mixed boundary value problems (x1 ≤ x ≤ x2).

We consider the second-order nonhomogeneous linear differential equation

y′′xx + f (x)y′x + g(x)y = h(x). (12.2.4.1)

1◦. The first boundary value problem: Find a solution of equation (12.2.4.1) satisfying the
boundary conditions

y = a1 at x = x1, y = a2 at x = x2. (12.2.4.2)

(The values of the unknown are prescribed at two distinct points x1 and x2.)

2◦. The second boundary value problem: Find a solution of equation (12.2.4.1) satisfying
the boundary conditions

y′x = a1 at x = x1, y′x = a2 at x = x2. (12.2.4.3)

(The values of the derivative of the unknown are prescribed at two distinct points x1
and x2.)
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3◦. The third boundary value problem: Find a solution of equation (12.2.4.1) satisfying the
boundary conditions

y′x – k1y = a1 at x = x1,

y′x + k2y = a2 at x = x2.
(12.2.4.4)

4◦. The third boundary value problem: Find a solution of equation (12.2.4.1) satisfying the
boundary conditions

y = a1 at x = x1, y′x = a2 at x = x2. (12.2.4.5)

(The unknown itself is prescribed at one point, and its derivative at another point.)
Conditions (12.2.4.2), (12.2.4.3), (12.2.4.4), and (12.2.4.5) are called homogeneous if

a1 = a2 = 0.

12.2.4-2. Simplification of boundary conditions. The self-adjoint form of equations.

1◦. Nonhomogeneous boundary conditions can be reduced to homogeneous ones by the
change of variable z =A2x

2 +A1x+A0 +y (the constants A2, A1, and A0 are selected using
the method of undetermined coefficients). In particular, the nonhomogeneous boundary
conditions of the first kind (12.2.4.2) can be reduced to homogeneous boundary conditions
by the linear change of variable

z = y –
a2 – a1

x2 – x1
(x – x1) – a1.

2◦. On multiplying by p(x) = exp
[∫

f (x) dx
]
, one reduces equation (12.2.4.1) to the

self-adjoint form:
[p(x)y′x]′x + q(x)y = r(x). (12.2.4.6)

Without loss of generality, we can further consider equation (12.2.4.6) instead of
(12.2.4.1). We assume that the functions p, p′x, q, and r are continuous on the inter-
val x1 ≤ x ≤ x2, and p is positive.

12.2.4-3. Green’s function. Linear problems for nonhomogeneous equations.

The Green’s function of the first boundary value problem for equation (12.2.4.6) with
homogeneous boundary conditions (12.2.4.2) is a function of two variables G(x, s) that
satisfies the following conditions:

1◦. G(x, s) is continuous in x for fixed s, with x1 ≤ x ≤ x2 and x1 ≤ s ≤ x2.

2◦. G(x, s) is a solution of the homogeneous equation (12.2.4.6), with r = 0, for all
x1 < x < x2 exclusive of the point x = s.

3◦. G(x, s) satisfies the homogeneous boundary conditions G(x1, s) = G(x2, s) = 0.

4◦. The derivative G′
x(x, s) has a jump of 1/p(s) at the point x = s, that is,

G′
x(x, s)

∣∣
x→s,x>s – G′

x(x, s)
∣∣
x→s,x<s =

1
p(s)

.

For the second, third, and mixed boundary value problems, the Green’s function is de-
fined likewise except that in 3◦ the homogeneous boundary conditions (12.2.4.3), (12.2.4.4),
and (12.2.4.5), with a1 = a2 = 0, are adopted, respectively.
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The solution of the nonhomogeneous equation (12.2.4.6) subject to appropriate homo-
geneous boundary conditions is expressed in terms of the Green’s function as follows:*

y(x) =
∫ x2

x1
G(x, s)r(s) ds.

12.2.4-4. Representation of the Green’s function in terms of particular solutions.

We consider the first boundary value problem. Let y1 = y1(x) and y2 = y2(x) be linearly
independent particular solutions of the homogeneous equation (12.2.4.6), with r = 0, that
satisfy the conditions

y1(x1) = 0, y2(x2) = 0.

(Each of the solutions satisfies one of the homogeneous boundary conditions.)
The Green’s function is expressed in terms of solutions of the homogeneous equation

as follows:

G(x, s) =

⎧
⎪⎪⎨

⎪⎪⎩

y1(x)y2(s)
p(s)W (s)

for x1 ≤ x ≤ s,

y1(s)y2(x)
p(s)W (s)

for s ≤ x ≤ x2,
(12.2.4.7)

where W (x) = y1(x)y′2(x) – y′1(x)y2(x) is the Wronskian determinant.

Remark. Formula (12.2.4.7) can also be used to construct the Green’s functions for the second, third, and
mixed boundary value problems. To this end, one should find two linearly independent solutions, y1 = y1(x)
and y2 = y2(x), of the homogeneous equation; the former satisfies the corresponding homogeneous boundary
condition at x = x1 and the latter satisfies the one at x = x2.

12.2.5. Eigenvalue Problems

12.2.5-1. Sturm–Liouville problem.

Consider the second-order homogeneous linear differential equation

[p(x)y′x]′x + [λs(x) – q(x)]y = 0 (12.2.5.1)

subject to linear boundary conditions of the general form

α1y
′
x + β1y = 0 at x = x1,

α2y
′
x + β2y = 0 at x = x2.

(12.2.5.2)

It is assumed that the functions p, p′x, s, and q are continuous, and p and s are positive
on an interval x1 ≤ x ≤ x2. It is also assumed that |α1| + |β1| > 0 and |α2| + |β2| > 0.

The Sturm–Liouville problem: Find the values λn of the parameter λ at which problem
(12.2.5.1), (12.2.5.2) has a nontrivial solution. Such λn are called eigenvalues and the cor-
responding solutions yn = yn(x) are called eigenfunctions of the Sturm–Liouville problem
(12.2.5.1), (12.2.5.2).

* The homogeneous boundary value problem—with r(x) = 0 and a1 = a2 = 0—is assumed to have only
the trivial solution.
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12.2.5-2. General properties of the Sturm–Liouville problem (12.2.5.1), (12.2.5.2).

1◦. There are infinitely (countably) many eigenvalues. All eigenvalues can be ordered so
that λ1 < λ2 < λ3 < · · · . Moreover, λn → ∞ as n→ ∞; hence, there can only be a finite
number of negative eigenvalues. Each eigenvalue has multiplicity 1.

2◦. The eigenfunctions are defined up to a constant factor. Each eigenfunction yn(x) has
precisely n – 1 zeros on the open interval (x1,x2).

3◦. Any two eigenfunctions yn(x) and ym(x), n ≠ m, are orthogonal with weight s(x)
on the interval x1 ≤ x ≤ x2:

∫ x2

x1
s(x)yn(x)ym(x) dx = 0 if n ≠ m.

4◦. An arbitrary function F (x) that has a continuous derivative and satisfies the boundary
conditions of the Sturm–Liouville problem can be decomposed into an absolutely and
uniformly convergent series in the eigenfunctions

F (x) =
∞∑

n=1

Fnyn(x),

where the Fourier coefficients Fn of F (x) are calculated by

Fn =
1

‖yn‖2

∫ x2

x1
s(x)F (x)yn(x) dx, ‖yn‖2 =

∫ x2

x1
s(x)y2

n(x) dx.

5◦. If the conditions
q(x) ≥ 0, α1β1 ≤ 0, α2β2 ≥ 0 (12.2.5.3)

hold true, there are no negative eigenvalues. If q ≡ 0 and β1 = β2 = 0, the least eigenvalue
is λ1 = 0, to which there corresponds an eigenfunction y1 = const. In the other cases where
conditions (12.2.5.3) are satisfied, all eigenvalues are positive.

6◦. The following asymptotic formula is valid for eigenvalues as n→ ∞:

λn =
π2n2

Δ2 +O(1), Δ =
∫ x2

x1

√
s(x)
p(x)

dx. (12.2.5.4)

Paragraphs 12.2.5-3 through 12.2.5-6 will describe special properties of the Sturm–
Liouville problem that depend on the specific form of the boundary conditions.

Remark 1. Equation (12.2.5.1) can be reduced to the case where p(x) ≡ 1 and s(x) ≡ 1 by the change
of variables

ζ =
∫ √

s(x)
p(x)

dx, u(ζ) =
[
p(x)s(x)

]1/4
y(x).

In this case, the boundary conditions are transformed to boundary conditions of similar form.

Remark 2. The second-order linear equation

ϕ2(x)y′′xx + ϕ1(x)y′x + [λ + ϕ0(x)]y = 0

can be represented in the form of equation (12.2.5.1) where p(x), s(x), and q(x) are given by

p(x) = exp
[ ∫ ϕ1(x)

ϕ2(x)
dx
]
, s(x) =

1
ϕ2(x)

exp
[ ∫ ϕ1(x)

ϕ2(x)
dx
]
, q(x) = –

ϕ0(x)
ϕ2(x)

exp
[ ∫ ϕ1(x)

ϕ2(x)
dx
]
.
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TABLE 12.2
Example estimates of the first eigenvalue λ1 in Sturm–Liouville problems with boundary conditions of the first
kind y(0) = y(1) = 0 obtained using the Rayleigh–Ritz principle [the right-hand side of relation (12.2.5.6)]

Equation Test function λ1, approximate λ1, exact

y′′xx + λ(1 + x2)–2y = 0 z = sinπx 15.337 15.0

y′′xx + λ(4 – x2)–2y = 0 z = sinπx 135.317 134.837

[(1 + x)–1y′x]′x + λy = 0 z = sinπx 7.003 6.772
(√

1 + x y′x
)′

x
+ λy = 0 z = sinπx 11.9956 11.8985

y′′xx + λ(1 + sinπx)y = 0
z = sinπx
z = x(1 – x)

0.54105 π2

0.55204 π2
0.54032 π2

0.54032 π2

12.2.5-3. Problems with boundary conditions of the first kind.

Let us note some special properties of the Sturm–Liouville problem that is the first boundary
value problem for equation (12.2.5.1) with the boundary conditions

y = 0 at x = x1, y = 0 at x = x2. (12.2.5.5)

1◦. For n → ∞, the asymptotic relation (12.2.5.4) can be used to estimate the eigenval-
ues λn. In this case, the asymptotic formula

yn(x)
‖yn‖ =

[
4

Δ2p(x)s(x)

]1/4
sin

[
πn

Δ

∫ x

x1

√
s(x)
p(x)

dx

]
+O
( 1
n

)
, Δ =

∫ x2

x1

√
s(x)
p(x)

dx

holds true for the eigenfunctions yn(x).

2◦. If q ≥ 0, the following upper estimate holds for the least eigenvalue (Rayleigh–Ritz
principle):

λ1 ≤

∫ x2

x1

[
p(x)(z′x)2 + q(x)z2] dx
∫ x2

x1
s(x)z2 dx

, (12.2.5.6)

where z = z(x) is any twice differentiable function that satisfies the conditions z(x1) =
z(x2)= 0. The equality in (12.2.5.6) is attained if z=y1(x), where y1(x) is the eigenfunction

corresponding to the eigenvalue λ1. One can take z = (x–x1)(x2 –x) or z = sin
[π(x – x1)
x2 – x1

]

in (12.2.5.6) to obtain specific estimates.
It is significant to note that the left-hand side of (12.2.5.6) usually gives a fairly precise

estimate of the first eigenvalue (see Table 12.2).

3◦. The extension of the interval [x1,x2] leads to decreasing in eigenvalues.

4◦. Let the inequalities

0 < pmin ≤ p(x) ≤ pmax, 0 < smin ≤ s(x) ≤ smax, 0 < qmin ≤ q(x) ≤ qmax

be satisfied. Then the following bilateral estimates hold:

pmin

smax

π2n2

(x2 – x1)2 +
qmin

smax
≤ λn ≤

pmax

smin

π2n2

(x2 – x1)2 +
qmax

smin
.



12.2. SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS 485

5◦. In engineering calculations for eigenvalues, the approximate formula

λn =
π2n2

Δ2 +
1

x2 – x1

∫ x2

x1

q(x)
s(x)

dx, Δ =
∫ x2

x1

√
s(x)
p(x)

dx (12.2.5.7)

may be quite useful. This formula provides an exact result if p(x)s(x) = const and
q(x)/s(x) = const (in particular, for constant equation coefficients, p = p0, q = q0, and
s = s0) and gives a correct asymptotic behavior of (12.2.5.4) for any p(x), q(x), and s(x).
In addition, relation (12.2.5.7) gives two correct leading asymptotic terms as n → ∞ if
p(x) = const and s(x) = const [and also if p(x)s(x) = const].

6◦. Suppose p(x) = s(x) = 1 and the function q = q(x) has a continuous derivative.
The following asymptotic relations hold for eigenvalues λn and eigenfunctions yn(x) as
n→ ∞:

√
λn =

πn

x2 – x1
+

1
πn

Q(x1,x2) +O
( 1
n2

)
,

yn(x) = sin
πn(x – x1)
x2 – x1

–
1
πn

[
(x1 – x)Q(x,x2) + (x2 – x)Q(x1,x)

]
cos

πn(x – x1)
x2 – x1

+O
( 1
n2

)
,

where

Q(u, v) =
1
2

∫ v

u
q(x) dx. (12.2.5.8)

7◦. Let us consider the eigenvalue problem for the equation with a small parameter

y′′xx + [λ + εq(x)]y = 0 (ε→ 0)

subject to the boundary conditions (12.2.5.5) with x1 = 0 and x2 = 1. We assume that
q(x) = q(–x).

This problem has the following eigenvalues and eigenfunctions:

λn = π2n2 – εAnn +
ε2

π2

∑

k≠n

A2
nk

n2 – k2 + O(ε3), Ank = 2
∫ 1

0
q(x) sin(πnx) sin(πkx) dx;

yn(x) =
√

2 sin(πnx) – ε

√
2

π2

∑

k≠n

Ank
n2 – k2 sin(πkx) +O(ε2).

Here, the summation is carried out over k from 1 to ∞. The next term in the expansion
of yn can be found in Nayfeh (1973).

12.2.5-4. Problems with boundary conditions of the second kind.

Let us note some special properties of the Sturm–Liouville problem that is the second
boundary value problem for equation (12.2.5.1) with the boundary conditions

y′x = 0 at x = x1, y′x = 0 at x = x2.

1◦. If q > 0, the upper estimate (12.2.5.6) is valid for the least eigenvalue, with z = z(x)
being any twice-differentiable function that satisfies the conditions z′x(x1) = z′x(x2) = 0.
The equality in (12.2.5.6) is attained if z = y1(x), where y1(x) is the eigenfunction
corresponding to the eigenvalue λ1.
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2◦. Suppose p(x) = s(x) = 1 and the function q = q(x) has a continuous derivative.
The following asymptotic relations hold for eigenvalues λn and eigenfunctions yn(x) as
n→ ∞: √

λn =
π(n – 1)
x2 – x1

+
1

π(n – 1)
Q(x1,x2) +O

( 1
n2

)
,

yn(x) = cos
π(n – 1)(x – x1)

x2 – x1
+

1
π(n – 1)

[
(x1 – x)Q(x,x2)

+ (x2 – x)Q(x1,x)
]

sin
π(n – 1)(x – x1)

x2 – x1
+O
( 1
n2

)
,

where Q(u, v) is given by (12.2.5.8).

12.2.5-5. Problems with boundary conditions of the third kind.

We consider the third boundary value problem for equation (12.2.5.1) subject to condi-
tion (12.2.5.2) with α1 = α2 = 1. We assume that p(x) = s(x) = 1 and the function q = q(x)
has a continuous derivative.

The following asymptotic formulas hold for eigenvalues λn and eigenfunctions yn(x)
as n→ ∞:

√
λn =

π(n – 1)
x2 – x1

+
1

π(n – 1)

[
Q(x1,x2) – β1 + β2

]
+O
( 1
n2

)
,

yn(x) = cos
π(n – 1)(x – x1)

x2 – x1
+

1
π(n – 1)

{
(x1 – x)

[
Q(x,x2) + β2

]

+ (x2 – x)
[
Q(x1,x) – β1

]}
sin

π(n – 1)(x – x1)
x2 – x1

+O
( 1
n2

)
,

where Q(u, v) is defined by (12.2.5.8).

12.2.5-6. Problems with mixed boundary conditions.

Let us note some special properties of the Sturm–Liouville problem that is the mixed
boundary value problem for equation (12.2.5.1) with the boundary conditions

y′x = 0 at x = x1, y = 0 at x = x2.

1◦. If q ≥ 0, the upper estimate (12.2.5.6) is valid for the least eigenvalue, with z = z(x)
being any twice-differentiable function that satisfies the conditions z′x(x1) = 0 and z(x2) = 0.
The equality in (12.2.5.6) is attained if z = y1(x), where y1(x) is the eigenfunction
corresponding to the eigenvalue λ1.

2◦. Suppose p(x) = s(x) = 1 and the function q = q(x) has a continuous derivative.
The following asymptotic relations hold for eigenvalues λn and eigenfunctions yn(x) as
n→ ∞: √

λn =
π(2n – 1)

2(x2 – x1)
+

2
π(2n – 1)

Q(x1,x2) +O
( 1
n2

)
,

yn(x) = cos
π(2n – 1)(x – x1)

2(x2 – x1)
+

2
π(2n – 1)

[
(x1 – x)Q(x,x2)

+ (x2 – x)Q(x1,x)
]

sin
π(2n – 1)(x – x1)

2(x2 – x1)
+ O
( 1
n2

)
,

where Q(u, v) is defined by (12.2.5.8).
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12.2.6. Theorems on Estimates and Zeros of Solutions

12.2.6-1. Theorems on estimates of solutions.

Let fn(x) and gn(x) (n = 1, 2) be continuous functions on the interval a ≤ x ≤ b and let the
following inequalities hold:

0 ≤ f1(x) ≤ f2(x), 0 ≤ g1(x) ≤ g2(x).

If yn = yn(x) are some solutions to the linear equations

y′′n = fn(x)yn + gn(x) (n = 1, 2)

and y1(a) ≤ y2(a) and y′1(a) ≤ y′2(a), then y1(x) ≤ y2(x) and y′1(x) ≤ y′2(x) on each interval
a ≤ x ≤ a1, where y2(x) > 0.

12.2.6-2. Sturm comparison theorem on zeros of solutions.

Consider the equation

[f (x)y′]′ + g(x)y = 0 (a ≤ x ≤ b), (12.2.6.1)

where the function f (x) is positive and continuously differentiable, and the function g(x)
is continuous.

THEOREM (COMPARISON, STURM). Let yn = yn(x) be nonzero solutions of the linear
equations

[fn(x)y′n]′ + gn(x)yn = 0 (n = 1, 2)

and let the inequalities f1(x) ≥ f2(x) > 0 and g1(x) ≤ g2(x) hold. Then the function y2
has at least one zero lying between any two adjacent zeros, x1 and x2, of the function y1
(it is assumed that the identities f1 ≡ f2 and g1 ≡ g2 are not satisfied on any interval
simultaneously).

COROLLARY 1. If g(x) ≤ 0 or there exists a constant k1 such that

f (x) ≥ k1 > 0, g(x) < k1

(
π

b – a

)2
,

then every nontrivial solution to equation (12.2.6.1) has no more than one zero on the
interval [a, b].

COROLLARY 2. If there exists a constant k2 such that

0 < f (x) ≤ k2, g(x) > k2

(
πm

b – a

)2
, where m = 1, 2, . . . ,

then every nontrivial solution to equation (12.2.6.1) has at least m zeros on the interval
[a, b].
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12.2.6-3. Qualitative behavior of solutions as x→ ∞.

Consider the equation
y′′ + f (x)y = 0, (12.2.6.2)

where f (x) is a continuous function for x ≥ a.

1◦. For f (x) ≤ 0, every nonzero solution has no more than one zero, and hence y ≠ 0 for
sufficiently large x.

If f (x) ≤ 0 for all x and f (x) � 0, then y ≡ 0 is the only solution bounded for all x.

2◦. Suppose f (x) ≥ k2 > 0. Then every nontrivial solution y(x) and its derivative y′(x)
have infinitely many zeros, with the distance between any adjacent zeros remaining finite.

If f (x) → k2 > 0 for x→ ∞ and f ′ ≥ 0, then the solutions of the equation for large x
behave similarly to those of the equation y′′ + k2y = 0.

3◦. Let f (x) → –∞ for |x| → ∞. Then every nonzero solution has only finitely many
zeros, and |y′/y| →∞ as |x| →∞. There are two linearly independent solutions, y1 and y2,
such that y1 → 0, y′1 → 0, y2 → ∞, and y′2 → –∞ as x→ –∞, and there are two linearly
independent solutions, ȳ1 and ȳ2, such that ȳ1 → 0, ȳ′1 → 0, ȳ2 → ∞, and ȳ′2 → ∞ as
x→ ∞.

4◦. If the function f in equation (12.2.6.2) is continuous, monotonic, and positive, then the
amplitude of each solution decreases (resp., increases) as f increases (resp., decreases).

12.3. Second-Order Nonlinear Differential Equations
12.3.1. Form of the General Solution. Cauchy Problem

12.3.1-1. Equations solved for the derivative. General solution.

A second-order ordinary differential equation solved for the highest derivative has the form

y′′xx = f (x, y, y′x). (12.3.1.1)

The general solution of this equation depends on two arbitrary constants, C1 and C2. In
some cases, the general solution can be written in explicit form, y = ϕ(x,C1,C2), but more
often implicit or parametric forms of the general solution are encountered.

12.3.1-2. Cauchy problem. The existence and uniqueness theorem.

Cauchy problem: Find a solution of equation (12.3.1.1) satisfying the initial conditions

y(x0) = y0, y′x(x0) = y1. (12.3.1.2)

(At a point x = x0, the value of the unknown function, y0, and its derivative, y1, are
prescribed.)

EXISTENCE AND UNIQUENESS THEOREM. Let f (x, y, z) be a continuous function in
all its arguments in a neighborhood of a point (x0, y0, y1) and let f have bounded par-
tial derivatives fy and fz in this neighborhood, or the Lipschitz condition is satisfied:
|f (x, y, z) – f (x, ȳ, z̄)| ≤ A

(
|y – ȳ| + |z – z̄|

)
, where A is some positive number. Then

a solution of equation (12.3.1.1) satisfying the initial conditions (12.3.1.2) exists and is
unique.
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12.3.2. Equations Admitting Reduction of Order

12.3.2-1. Equations not containing y explicitly.

In the general case, an equation that does not contain y implicitly has the form

F (x, y′x, y′′xx) = 0. (12.3.2.1)

Such equations remain unchanged under an arbitrary translation of the dependent variable:
y → y + const. The substitution y′x = z(x), y′′xx = z′x(x) brings (12.3.2.1) to a first-order
equation: F (x, z, z′x) = 0.

12.3.2-2. Equations not containing x explicitly (autonomous equations).

In the general case, an equation that does not contain x implicitly has the form

F (y, y′x, y′′xx) = 0. (12.3.2.2)

Such equations remain unchanged under an arbitrary translation of the independent vari-
able: x → x + const. Using the substitution y′x = w(y), where y plays the role of the
independent variable, and taking into account the relations y′′xx = w′

x = w′
yy

′
x = w′

yw, one
can reduce (12.3.2.2) to a first-order equation: F (y,w,ww′

y) = 0.

Example 1. Consider the autonomous equation

y′′xx = f (y),

which often arises in the theory of heat and mass transfer and combustion. The change of variable y′x =
w(y) leads to a separable first-order equation: ww′

y = f (y). Integrating yields w2 = 2F (w) + C1, where
F (w) =

∫
f (w) dw. Solving for w and returning to the original variable, we obtain the separable equation

y′x = �
√

2F (w) + C1. Its general solution is expressed as
∫

dy√
2F (w) + C1

= �x + C2, where F (w) =
∫
f (w) dw.

Remark. The equation y′′xx = f (y+ax2 +bx+c) is reduced by the change of variable u = y+ax2 +bx+c
to an autonomous equation, u′′

xx = f (u) + 2a.

12.3.2-3. Equations of the form F (ax + by, y′x, y′′xx) = 0.

Such equations are invariant under simultaneous translations of the independent and depen-
dent variables in accordance with the rule x→ x + bc, y → y – ac, where c is an arbitrary
constant.

For b = 0, see equation (12.3.2.1). For b ≠ 0, the substitution bw = ax + by leads to
equation (12.3.2.2): F (bw,w′

x – a/b,w′′
xx) = 0.

12.3.2-4. Equations of the form F (x,xy′x – y, y′′xx) = 0.

The substitution w(x) = xy′x – y leads to a first-order equation: F (x,w,w′
x/x) = 0.
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12.3.2-5. Homogeneous equations.

1◦. The equations homogeneous in the independent variable remain unchanged under
scaling of the independent variable, x→ αx, where α is an arbitrary nonzero number. In
the general case, such equations can be written in the form

F (y,xy′x,x2y′′xx) = 0. (12.3.2.3)

The substitution z(y) = xy′x leads to a first-order equation: F (y, z, zz′y – z) = 0.

2◦. The equations homogeneous in the dependent variable remain unchanged under scaling
of the variable sought, y → αy, where α is an arbitrary nonzero number. In the general
case, such equations can be written in the form

F (x, y′x/y, y′′xx/y) = 0. (12.3.2.4)

The substitution z(x) = y′x/y leads to a first-order equation: F (x, z, z′x + z2) = 0.

3◦. The equations homogeneous in both variables are invariant under simultaneous scaling
(dilatation) of the independent and dependent variables, x→ αx and y→ αy, where α is
an arbitrary nonzero number. In the general case, such equations can be written in the form

F (y/x, y′x,xy′′xx) = 0. (12.3.2.5)

The transformation t = ln |x|, w = y/x leads to an autonomous equation (see Paragraph
12.3.2-2): F (w,w′

t + w,w′′
tt + w′

t) = 0.
Example 2. The homogeneous equation

xy′′xx – y′x = f (y/x)

is reduced by the transformation t = ln |x|, w = y/x to the autonomous form: w′′
tt = f (w) + w. For solution

of this equation, see Example 1 in Paragraph 12.3.2-2 (the notation of the right-hand side has to be changed
there).

12.3.2-6. Generalized homogeneous equations.

1◦. The generalized homogeneous equations remain unchanged under simultaneous scaling
of the independent and dependent variables in accordance with the rule x → αx and
y → αky, where α is an arbitrary nonzero number and k is some number. Such equations
can be written in the form

F (x–ky,x1–ky′x,x2–ky′′xx) = 0. (12.3.2.6)

The transformation t = lnx, w = x–ky leads to an autonomous equation (see Paragraph
12.3.2-2):

F
(
w,w′

t + kw,w′′
tt + (2k – 1)w′

t + k(k – 1)w
)

= 0.

2◦. The most general form of representation of generalized homogeneous equations is as
follows:

F(xnym,xy′x/y,x2y′′xx/y) = 0. (12.3.2.7)

The transformation z = xnym, u = xy′x/y brings this equation to the first-order equation

F(z,u, z(mu + n)u′z – u + u2) = 0.

Remark. For m ≠ 0, equation (12.3.2.7) is equivalent to equation (12.3.2.6) in which k = –n/m. To
the particular values n = 0 and m = 0 there correspond equations (12.3.2.3) and (12.3.2.4) homogeneous in
the independent and dependent variables, respectively. For n = –m ≠ 0, we have an equation homogeneous in
both variables, which is equivalent to equation (12.3.2.5).
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12.3.2-7. Equations invariant under scaling–translation transformations.

1◦. The equations of the form

F (eλxy, eλxy′x, eλxy′′xx) = 0 (12.3.2.8)

remain unchanged under simultaneous translation and scaling of variables, x → x + α
and y → βy, where β = e–αλ and α is an arbitrary number. The substitution w = eλxy
brings (12.3.2.8) to an autonomous equation: F (w, w′

x – λw, w′′
xx – 2λw′

x + λ2w) = 0 (see
Paragraph 12.3.2-2).

2◦. The equation
F (eλxyn, y′x/y, y′′xx/y) = 0 (12.3.2.9)

is invariant under the simultaneous translation and scaling of variables, x → x + α and
y → βy, where β = e–αλ/n and α is an arbitrary number. The transformation z = eλxyn,
w = y′x/y brings (12.3.2.9) to a first-order equation: F

(
z,w, z(nw + λ)w′

z + w2) = 0.

3◦. The equation
F (xneλy ,xy′x,x2y′′xx) = 0 (12.3.2.10)

is invariant under the simultaneous scaling and translation of variables, x → αx and
y → y + β, where α = e–βλ/n and β is an arbitrary number. The transformation z = xneλy ,
w = xy′x brings (12.3.2.10) to a first-order equation: F

(
z,w, z(λw + n)w′

z – w
)

= 0.

� Some other second-order nonlinear equations are treated in Section T5.3.

12.3.2-8. Exact second-order equations.

The second-order equation
F (x, y, y′x, y′′xx) = 0 (12.3.2.11)

is said to be exact if it is the total differential of some function, F =ϕ′
x, where ϕ=ϕ(x, y, y′x).

If equation (12.3.2.11) is exact, then we have a first-order equation for y:

ϕ(x, y, y′x) = C , (12.3.2.12)

where C is an arbitrary constant.
If equation (12.3.2.11) is exact, then F (x, y, y′x, y′′xx) must have the form

F (x, y, y′x, y′′xx) = f (x, y, y′x)y′′xx + g(x, y, y′x). (12.3.2.13)

Here, f and g are expressed in terms of ϕ by the formulas

f (x, y, y′x) =
∂ϕ

∂y′x
, g(x, y, y′x) =

∂ϕ

∂x
+
∂ϕ

∂y
y′x. (12.3.2.14)

By differentiating (12.3.2.14) with respect to x, y, and p = y′x, we eliminate the
variable ϕ from the two formulas in (12.3.2.14). As a result, we have the following test
relations for f and g:

fxx + 2pfxy + p2fyy = gxp + pgyp – gy ,
fxp + pfyp + 2fy = gpp.

(12.3.2.15)

Here, the subscripts denote the corresponding partial derivatives.
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If conditions (12.3.2.15) hold, then equation (12.3.2.11) with F of (12.3.2.13) is exact.
In this case, we can integrate the first equation in (12.3.2.14) with respect to p = y′x to
determine ϕ = ϕ(x, y, y′x):

ϕ =
∫
f (x, y, p) dp + ψ(x, y), (12.3.2.16)

where ψ(x, y) is an arbitrary function of integration. This function is determined by
substituting (12.3.2.16) into the second equation in (12.3.2.14).

Example 3. The left-hand side of the equation

yy′′xx + (y′x)2 + 2axyy′x + ay2 = 0 (12.3.2.17)

can be represented in the form (12.3.2.13), where f = y and g = p2 + 2axyp + ay2. It is easy to verify that
conditions (12.3.2.15) are satisfied. Hence, equation (12.3.2.17) is exact. Using (12.3.2.16), we obtain

ϕ = yp + ψ(x, y). (12.3.2.18)

Substituting this expression into the second equation in (12.3.2.14) and taking into account the relation g =
p2 + 2axyp + ay2, we find that 2axyp + ay2 = ψx + pψy. Since ψ = ψ(x,y), we have 2axy = ψy and
ay2 = ψx. Integrating yields ψ = axy2 + const. Substituting this expression into (12.3.2.18) and taking into
account relation (12.3.2.12), we find a first integral of equation (12.3.2.17):

yp + axy2 = C1, where p = y′x.

Setting w = y2, we arrive at the first-order linear equation w′
x + 2axw = 2C1, which is easy to integrate. Thus,

we find the solution of the original equation in the form:

y2 = 2C1 exp
(
–ax2)

∫
exp
(
ax2) dx + C2 exp

(
–ax2).

12.3.3. Methods of Regular Series Expansions with Respect to the
Independent Variable

12.3.3-1. Method of expansion in powers of the independent variable.

A solution of the Cauchy problem

y′′xx = f (x, y, y′x), (12.3.3.1)
y(x0) = y0, y′x(x0) = y1 (12.3.3.2)

can be sought in the form of a Taylor series in powers of the difference (x–x0), specifically:

y(x) = y(x0) + y′x(x0)(x – x0) +
y′′xx(x0)

2!
(x – x0)2 +

y′′′xxx(x0)
3!

(x – x0)3 + · · · . (12.3.3.3)

The first two coefficients y(x0) and y′x(x0) in solution (12.3.3.3) are defined by the initial
conditions (12.3.3.2). The values of the subsequent derivatives of y at the point x = x0 are
determined from equation (12.3.3.1) and its derivative equations (obtained by successive
differentiation of the equation) taking into account the initial conditions (12.3.3.2). In
particular, setting x = x0 in (12.3.3.1) and substituting (12.3.3.2), we obtain the value of
the second derivative:

y′′xx(x0) = f (x0, y0, y1). (12.3.3.4)
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Further, differentiating (12.3.3.1) yields

y′′′xxx = fx(x, y, y′x) + fy(x, y, y′x)y′x + fy′x(x, y, y′x)y′′xx. (12.3.3.5)

On substituting x = x0, the initial conditions (12.3.3.2), and the expression of y′′xx(x0)
of (12.3.3.4) into the right-hand side of equation (12.3.3.5), we calculate the value of the
third derivative:

y′′′xxx(x0) = fx(x0, y0, y1) + fy(x0, y0, y1)y1 + f (x0, y0, y1)fy′x(x0, y0, y1).

The subsequent derivatives of the unknown are determined likewise.
The thus obtained solution (12.3.3.3) can only be used in a small neighborhood of the

point x = x0.

Example 1. Consider the following Cauchy problem for a second-order nonlinear equation:

y′′xx = yy′x + y3; (12.3.3.6)

y(0) = y′x(0) = 1. (12.3.3.7)

Substituting the initial values of the unknown and its derivative (12.3.3.7) into equation (12.3.3.6) yields
the initial value of the second derivative:

y′′xx(0) = 2. (12.3.3.8)

Differentiating equation (12.3.3.6) gives

y′′′xxx = yy′′xx + (y′x)2 + 3y2y′x. (12.3.3.9)

Substituting here the initial values from (12.3.3.7) and (12.3.3.8), we obtain the initial condition for the third
derivative:

y′′′xxx(0) = 6. (12.3.3.10)

Differentiating (12.3.3.9) followed by substituting (12.3.3.7), (12.3.3.8), and (12.3.3.10), we find that

y′′′′xxxx(0) = 24. (12.3.3.11)

On substituting the initial data (12.3.3.7), (12.3.3.8), (12.3.3.10), and (12.3.3.11) into (12.3.3.3), we arrive at
the Taylor series expansion of the solution about x = 0 :

y = 1 + x + x2 + x3 + x4 + · · · . (12.3.3.12)

This geometric series is convergent only for |x| < 1.

12.3.3-2. Padé approximants.

Suppose the k + 1 leading coefficients in the Taylor series expansion of a solution to
a differential equation about the point x = 0 are obtained by the method presented in
Paragraph 12.3.3-1, so that

yk+1(x) = a0 + a1x + · · · + akx
k. (12.3.3.13)

The partial sum (12.3.3.13) pretty well approximates the solution at small x but is poor
for intermediate and large values of x, since the series can be slowly convergent or even
divergent. This is also related to the fact that yk →∞ as x→∞, while the exact solution
can well be bounded.

In many cases, instead of the expansion (12.3.3.13), it is reasonable to consider a
Padé approximant PNM (x), which is the ratio of two polynomials of degree N and M ,
specifically,

PNM (x) =
A0 + A1x + · · · + ANxN

1 +B1x + · · · + BMxM
, where N +M = k. (12.3.3.14)
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The coefficients A1, . . . , AN and B1, . . . , BM are selected so that the k + 1 leading
terms in the Taylor series expansion of (12.3.3.14) coincide with the respective terms of the
expansion (12.3.3.13). In other words, the expansions (12.3.3.13) and (12.3.3.14) must be
asymptotically equivalent as x→ 0.

In practice, one usually takes N = M (the diagonal sequence). It often turns out that
formula (12.3.3.14) pretty well approximates the exact solution on the entire range of x
(for sufficiently large N ).

Example 2. Consider the Cauchy problem (12.3.3.6)–(12.3.3.7) again. The Taylor series expansion of
the solution about x = 0 has the form (12.3.3.12). This geometric series is convergent only for |x| < 1.

The diagonal sequence of Padé approximants corresponding to series (12.3.3.12) is

P 1
1 (x) =

1
1 – x

, P 2
2 (x) =

1
1 – x

, P 3
3 (x) =

1
1 – x

. (12.3.3.15)

It is not difficult to verify that the function y(x) =
1

1 – x
is the exact solution of the Cauchy prob-

lem (12.3.3.6)–(12.3.3.7). Hence, in this case, the diagonal sequence of Padé approximants recovers the exact
solution from only a few terms in the Taylor series.

Example 3. Consider the Cauchy problem for a second-order nonlinear equation:

y′′xx = 2yy′x; y(0) = 0, y′x(0) = 1. (12.3.3.16)

Following the method presented in Paragraph 12.3.3-1, we obtain the Taylor series expansion of the solution
to problem (12.3.3.16) in the form

y(x) = x + 1
3 x

3 + 2
15 x

5 + 17
315 x

7 + · · · . (12.3.3.17)

The exact solution of problem (12.3.3.16) is given by y(x) = tanx. Hence it has singularities at x =
�

1
2 (2n + 1)π. However, any finite segment of the Taylor series (12.3.3.17) does not have any singularities.

With series (12.3.3.17), we construct the diagonal sequence of Padé approximants:

P 2
2 (x) =

3x
3 – x2 , P 3

3 (x) =
x(x2 – 15)
3(2x2 – 5)

, P 4
4 (x) =

5x(21 – 2x2)
x4 – 45x2 + 105

. (12.3.3.18)

These Padé approximants have singularities (at the points where the denominators vanish):

x 	 �1.732 for P 2
2 (x),

x 	 �1.581 for P 3
3 (x),

x 	 �1.571 and x 	 �6.522 for P 4
4 (x).

It is apparent that the Padé approximants are attempting to recover the singularities of the exact solution at
x = �π/2 and x = �3π/2.

In Fig. 12.2, the solid line shows the exact solution of problem (12.3.3.16), the dashed line corresponds
to the four-term Taylor series solution (12.3.3.17), and the dot-and-dash line depicts the Padé approximants
(12.3.3.18). It is evident that the Padé approximant P 4

4 (x) gives an accurate numerical approximation of the
exact solution on the interval |x| ≤ 2 ; everywhere the error is less than 1%, except for a very small neighborhood
of the point x = �π/2 (the error is 1% for x = �1.535 and 0.84% for x = �2).

12.3.4. Movable Singularities of Solutions of Ordinary Differential
Equations. Painlevé Transcendents

12.3.4-1. Preliminary remarks. Singular points of solutions.

1◦. Singular points of solutions to ordinary differential equations can be fixed or movable.
The coordinates of fixed singular points remain the same for different solutions of an
equation.* The coordinates of movable singular points vary depending on the particular
solution selected (i.e., they depend on the initial conditions).

* Solutions of linear ordinary differential equations can only have fixed singular points, and their positions
are determined by the singularities of the equation coefficients.
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Figure 12.2. Comparison of the exact solution to problem (12.3.3.16) with the approximate truncated series
solution (12.3.3.17) and associated Padé approximants (12.3.3.18).

Listed below are simple examples of first-order ordinary differential equations and their
solutions having movable singularities:

Equation Solution Solution’s singularity type

y′z = –y2 y = 1/(z – z0) movable pole

y′z = 1/y y = 2
√
z – z0 algebraic branch point

y′z = e–y y = ln(z – z0) logarithmic branch point

y′z = –y ln2 y y = exp[1/(z – z0)] essential singularity

Algebraic branch points, logarithmic branch points, and essential singularities are called
movable critical points.

2◦. The Painlevé equations arise from the classification of the following second-order
differential equations over the complex plane:

y′′zz = R(z, y, y′z),

where R = R(z, y,w) is a function rational in y and w and analytic in z. It was shown
by P. Painlevé (1897–1902) and B. Gambier (1910) that all equations of this type whose
solutions do not have movable critical points (but are allowed to have fixed singular points
and movable poles) can be reduced to 50 classes of equations. Moreover, 44 classes out of
them are integrable by quadrature or admit reduction of order. The remaining 6 equations
are irreducible; these are known as the Painlevé equations or Painlevé transcendents, and
their solutions are known as the Painlevé transcendental functions.

The canonical forms of the Painlevé transcendents are given below in Paragraphs
12.3.4-2 through 12.3.4-6. Solutions of the first, second, and fourth Painlevé transcendents
have movable poles (no fixed singular points). Solutions of the third and fifth Painlevé
transcendents have two fixed logarithmic branch points, z = 0 and z = ∞. Solutions of the
sixth Painlevé transcendent have three fixed logarithmic branch points, z = 0, z = 1, and
z = ∞.

It is significant that the Painlevé equations often arise in mathematical physics.
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12.3.4-2. First Painlevé transcendent.

1◦. The first Painlevé transcendent has the form

y′′zz = 6y2 + z. (12.3.4.1)

The solutions of the first Painlevé transcendent are single-valued functions of z.
The solutions of equation (12.3.4.1) can be presented, in the vicinity of movable pole zp,

in terms of the series

y =
1

(z – zp)2 +
∞∑

n=2

an(z – zp)n,

a2 = – 1
10 zp, a3 = – 1

6 , a4 = C , a5 = 0, a6 = 1
300 z

2
p ,

where zp and C are arbitrary constants; the coefficients aj (j ≥ 7) are uniquely defined
in terms of zp and C .

2◦. In a neighborhood of a fixed point z = z0, the solution of the Cauchy problem for
the first Painlevé transcendent (12.3.4.1) can be represented by the Taylor series (see
Paragraph 12.3.3-1):

y =A+B(z–z0)+ 1
2 (6A2+z0)(z–z0)2+ 1

6 (12AB+1)(z–z0 )3+ 1
2 (6A3+B2+Az0)(z–z0)4+· · · ,

where A and B are initial data of the Cauchy problem, so that y|z=z0 =A and y′z |z=z0 =B.
Remark. The solutions of the Cauchy problems for the second and fourth Painlevé transcendents can be

expressed likewise (fixed singular points should be excluded from consideration for the remaining Painlevé
transcendents).

3◦. For large values of |z|, the following asymptotic formula holds:

y ∼ z1/2℘
( 4

5 z
5/4 – a; 12, b

)
,

where the elliptic Weierstrass function ℘(ζ; 12, b) is defined implicitly by the integral

ζ =
∫ d℘
√

4℘3 – 12℘ – b
;

a and b are some constants.

12.3.4-3. Second Painlevé transcendent.

1◦. The second Painlevé transcendent has the form

y′′zz = 2y3 + zy + α. (12.3.4.2)

The solutions of the second Painlevé transcendent are single-valued functions of z.
The solutions of equation (12.3.4.2) can be represented, in the vicinity of a movable

pole zp, in terms of the series

y =
m

z – zp
+

∞∑

n=1

bn(z – zp)n,

b1 = – 1
6mzp, b2 = – 1

4 (m + α), b3 = C , b4 = 1
72 zp(m + 3α),

b5 = 1
3024
[
(27 + 81α2 – 2z3

p )m + 108α – 216Czp
]
,

where zp and C are arbitrary constants, m = �1, and the coefficients bn (n ≥ 6) are
uniquely defined in terms of zp and C .
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2◦. For fixed α, denote the solution by y(z,α). Then the following relation holds:

y(z, –α) = –y(z,α), (12.3.4.3)

while the solutions y(z,α) and y(z,α – 1) are related by the Bäcklund transformations:

y(z,α – 1) = –y(z,α) +
2α – 1

2y′z(z,α) – 2y2(z,α) – z
,

y(z,α) = –y(z,α – 1) –
2α – 1

2y′z(z,α – 1) + 2y2(z,α – 1) + z
.

(12.3.4.4)

Therefore, in order to study the general solution of equation (12.3.4.2) with arbitrary α, it
is sufficient to construct the solution for all α out of the band 0 ≤ Reα < 1

2 .
Three solutions corresponding to α and α � 1 are related by the rational formulas

yα+1 = –
(yα–1 + yα)(4y3

α + 2zyα + 2α + 1) + (2α – 1)yα
2(yα–1 + yα)(2y2

α + z) + 2α – 1
,

where yα stands for y(z,α).
The solutions y(z,α) and y(z, –α – 1) are related by the Bäcklund transformations:

y(z, –α – 1) = y(z,α) +
2α + 1

2y′z(z,α) + 2y2(z,α) + z
,

y(z,α) = y(z, –α – 1) –
2α + 1

2y′z(z, –α – 1) + 2y2(z, –α – 1) + z
.

3◦. For α = 0, equation (12.3.4.2) has the trivial solution y = 0. Taking into account this
fact and relations (12.3.4.3) and (12.3.4.4), we find that the second Painlevé transcendent
with α = �1, �2, . . . has the rational particular solutions

y(z,�1) = �
1
z

, y(z,�2) = �

( 1
z

–
3z2

z3 + 4

)
, . . .

For α = 1
2 , equation (12.3.4.2) admits the one-parameter family of solutions:

y(z, 1
2 ) = –

w′
z

w
, where w =

√
z
[
C1J1/3

(√2
3 z

3/2) + C2Y1/3
(√2

3 z
3/2)
]
. (12.3.4.5)

(Here, the function w is a solution of the Airy equation, w′′
zz + 1

2 zw = 0.) It follows
from (12.3.4.3)–(12.3.4.5) that the second Painlevé transcendent for all α = n + 1

2 with
n = 0, �1, �2, . . . has a one-parameter family of solutions that can be expressed in terms
of Bessel functions.

12.3.4-4. Third Painlevé transcendent.

1◦. The third Painlevé transcendent has the form

y′′zz =
(y′z)

2

y
–
y′z
z

+
1
z

(αy2 + β) + γy3 +
δ

y
. (12.3.4.6)

In terms of the new independent variable ζ defined by z = eζ , the solutions of the
transformed equation will be single-valued functions of ζ .

In some special cases, equation (12.3.4.6) can be integrated by quadrature.
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2◦. Any solution of the Riccati equation

y′z = ky2 +
α – k
kz

y + c, (12.3.4.7)

where k2 = γ, c2 = –δ, kβ +c(α– 2k) = 0, is a solution of equation (12.3.4.6). Substituting

z = λτ , y = –
u′z
ku

, where λ2 =
1
kc

, into (12.3.4.7), we obtain a linear equation

u′′ττ +
k – α
kτ

u′τ + u = 0,

whose general solution is expressed in terms of Bessel functions:

u = τ
α

2k
[
C1J α

2k
(τ ) + C2Y α

2k
(τ )
]
.

12.3.4-5. Fourth Painlevé transcendent.

1◦. The fourth Painlevé transcendent has the form

y′′zz =
(y′z)2

2y
+

3
2
y3 + 4zy2 + 2(z2 – α)y +

β

y
. (12.3.4.8)

The solutions of the fourth Painlevé transcendent are single-valued functions of z.
The Laurent-series expansion of the solution of equation (12.3.4.8) in the vicinity of a

movable pole zp is given by

y =
m

z – zp
– zp –

m

3
(z2

p + 2α – 4m)(z – zp) + C(z – zp)2 +
∞∑

j=3

aj(z – zp)j ,

where m = �1; zp and C are arbitrary constants; and the aj (j ≥ 3) are uniquely defined
in terms of α, β, zp, and C .

2◦. Two solutions of equation (12.3.4.8) corresponding to different values of the parameters
α and β are related to each other by the Bäcklund transformations:

ỹ =
1

2sy
(y′z – q – 2szy – sy2), q2 = –2β,

y = –
1

2sỹ
(ỹ′z – p + 2szỹ + sỹ2), p2 = –2β̃,

2β = –(α̃s – 1 – 1
2 p)

2
, 4α = –2s – 2α̃ – 3sp,

where y = y(z,α,β), ỹ = ỹ(z, α̃, β̃), and s is an arbitrary parameter.

3◦. If the condition β + 2(1 + αm)2 = 0, where m = �1, is satisfied, then every solution
of the Riccati equation

y′z = my2 + 2mzy – 2(1 + αm)

is simultaneously a solution of the fourth Painlevé equation (12.3.4.8).
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12.3.4-6. Fifth and sixth Painlevé transcendents.

1◦. The fifth Painlevé transcendent has the form

y′′zz =
3y – 1

2y(y – 1)
(y′z)2 –

y′z
z

+
(y – 1)2

z2

(
αy +

β

y

)
+ γ

y

z
+
δy(y + 1)
y – 1

.

2◦. The sixth Painlevé transcendent has the form

y′′zz =
1
2

( 1
y

+
1

y – 1
+

1
y – z

)
(y′z)2 –

( 1
z

+
1

z – 1
+

1
y – z

)
y′z

+
y(y – 1)(y – z)
z2(z – 1)2

[
α + β

z

y2 + γ
z – 1

(y – 1)2 + δ
z(z – 1)
(y – z)2

]
.

For details about these equations, see the list of references given at the end of the current
chapter.

12.3.5. Perturbation Methods of Mechanics and Physics

12.3.5-1. Preliminary remarks. A summary table of basic methods.

Perturbation methods are widely used in nonlinear mechanics and theoretical physics for
solving problems that are described by differential equations with a small parameter ε.
The primary purpose of these methods is to obtain an approximate solution that would be
equally suitable at all (small, intermediate, and large) values of the independent variable as
ε→ 0.

Equations with a small parameter can be classified according to the following:

(i) the order of the equation remains the same at ε = 0;
(ii) the order of the equation reduces at ε = 0.

For the first type of equations, solutions of related problems* are sufficiently smooth (little
varying as ε decreases). The second type of equation is said to be degenerate at ε = 0,
or singularly perturbed. In related problems, thin boundary layers usually arise whose
thickness is significantly dependent on ε; such boundary layers are characterized by high
gradients of the unknown.

All perturbation methods have a limited domain of applicability; the possibility of
using one or another method depends on the type of equations or problems involved. The
most commonly used methods are summarized in Table 12.3 (the method of regular series
expansions is set out in Paragraph 12.3.5-2). In subsequent paragraphs, additional remarks
and specific examples are given for some of the methods. In practice, one usually confines
oneself to few leading terms of the asymptotic expansion.

In many problems of nonlinear mechanics and theoretical physics, the independent
variable is dimensionless time t. Therefore, in this subsection we use the conventional t
(0 ≤ t < ∞) instead of x.

* Further on, we assume that the initial and/or boundary conditions are independent of the parameter ε.
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TABLE 12.3
Perturbation methods of nonlinear mechanics and theoretical physics

(the third column gives n leading asymptotic terms with respect to the small parameter ε).

Method
name

Examples of problems
solved by the method

Form of the solution
sought

Additional
conditions and remarks

Method
of scaled

parameters
(0 ≤ t<∞)

One looks for periodic
solutions of the equation
y′′tt+ω2

0y=εf (y,y′t);
see also Paragraph 12.3.5-3

y(t)=
n–1∑

k=0
εkyk(z),

t=z
(

1+
n–1∑

k=1
εkωk

)

Unknowns: yk and ωk;
yk+1/yk =O(1);

secular terms are eliminated
through selection

of the constants ωk

Method
of strained
coordinates
(0 ≤ t<∞)

Cauchy problem:
y′t=f (t, y, ε); y(t0)=y0
(f is of a special form);

see also the problem in the
method of scaled parameters

y(t)=
n–1∑

k=0
εkyk(z),

t=z+
n–1∑

k=1
εkϕk(z)

Unknowns: yk and ϕk;
yk+1/yk =O(1),
ϕk+1/ϕk =O(1)

Averaging
method

(0 ≤ t<∞)

Cauchy problem:
y′′tt+ω2

0y=εf (y,y′t),
y(0)=y0, y′t(0)=y1;

for more general problems,
see Paragraph 12.3.5-4,

Item 2◦

y=a(t) cosϕ(t),
the amplitude a and phase ϕ

are governed by the equations
da
dt

=– ε
ω0
fs(a),

dϕ
dt

=ω0– ε
aω0

fc(a)

Unknowns: a and ϕ;
fs = 1

2π

∫ 2π

0 sinϕF dϕ,

fc = 1
2π

∫ 2π

0 cosϕF dϕ,
F =f (a cosϕ,–aω0 sinϕ)

Krylov–
Bogolyubov–
Mitropolskii

method
(0 ≤ t<∞)

One looks for periodic
solutions of the equation
y′′tt+ω2

0y=εf (y,y′t);
Cauchy problem for this

and other equations

y=a cosϕ+
n–1∑

k=1
εkyk(a,ϕ),

a and ϕ are determined
by the equations

da
dt

=
n∑

k=1
εkAk(a),

dϕ
dt

=ω0+
n∑

k=1
εkΦk(a)

Unknowns: yk, Ak, Φk;
yk are 2π-periodic

functions of ϕ;
the yk are assumed
not to contain cosϕ

Method
of two-scale
expansions
(0 ≤ t<∞)

Cauchy problem:
y′′tt+ω2

0y=εf (y,y′t),
y(0)=y0, y′t(0)=y1;

for boundary value problems,
see Paragraph 12.3.5-5,

Item 2◦

y=
n–1∑

k=0
εkyk(ξ, η), where

ξ=εt, η= t
(

1+
n–1∑

k=2
εkωk

)
,

d
dt

=ε ∂
∂ξ

+
(

1+ε2ω2+· · ·) ∂
∂η

Unknowns: yk and ωk;
yk+1/yk =O(1);

secular terms are
eliminated through

selection of ωk

Multiple
scales

method
(0 ≤ t<∞)

One looks for periodic
solutions of the equation
y′′tt+ω2

0y=εf (y,y′t);
Cauchy problem for this

and other equations

y=
n–1∑

k=0
εkyk, where

yk =yk(T0,T1, . . . ,Tn), Tk =εkt
d
dt

= ∂
∂T0

+ε ∂
∂T1

+· · ·+εn ∂
∂Tn

Unknowns: yk;
yk+1/yk =O(1);

for n= 1, this method
is equivalent to

the averaging method

Method of
matched

asymptotic
expansions
(0 ≤x≤b)

Boundary value problem:
εy′′xx+f (x, y)y′x=g(x,y),

y(0)=y0, y(b)=yb

(f assumed positive);
for other problems, see

Paragraph 12.3.5-6, Item 2◦

Outer expansion:

y=
n–1∑

k=0
σk(ε)yk(x), O(ε)≤x≤b;

inner expansion (z=x/ε):

ỹ=
n–1∑

k=0
σ̃k(ε)ỹk(z), 0 ≤x≤O(ε)

Unknowns: yk, ỹk, σk, σ̃k;
yk+1/yk =O(1),
ỹk+1/ỹk =O(1);
the procedure of

matching expansions is used:
y(x→0)= ỹ(z→∞)

Method of
composite
expansions
(0 ≤x≤b)

Boundary value problem:
εy′′xx+f (x, y)y′x=g(x,y),

y(0)=y0, y(b)=yb

(f assumed positive);
boundary value problems

for other equations

y=Y (x, ε)+Ỹ (z, ε),

Y =
n–1∑

k=0
σk(ε)Yk(x),

Ỹ =
n–1∑

k=0
σ̃k(ε)Ỹk(z), z=

x

ε
;

here, Ỹk→0 as z→∞

Unknowns: Yk, Ỹk, σk, σ̃k;
Y (b, ε)=yb,

Y (0, ε)+Ỹ (0, ε)=y0;
two forms of representation

of the equation
(in terms of x and z)

are used to obtain solutions
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12.3.5-2. Method of regular (direct) expansion in powers of the small parameter.

We consider an equation of general form with a parameter ε:

y′′tt + f (t, y, y′t, ε) = 0. (12.3.5.1)

We assume that the function f can be represented as a series in powers of ε:

f (t, y, y′t, ε) =
∞∑

n=0

εnfn(t, y, y′t). (12.3.5.2)

Solutions of the Cauchy problem and various boundary value problems for equa-
tion (12.3.5.1) with ε→ 0 are sought in the form of a power series expansion:

y =
∞∑

n=0

εnyn(t). (12.3.5.3)

One should substitute expression (12.3.5.3) into equation (12.3.5.1) taking into account
(12.3.5.2). Then the functions fn are expanded into a power series in the small parameter
and the coefficients of like powers of ε are collected and equated to zero to obtain a system
of equations for yn:

y′′0 + f0(t, y0, y′0) = 0, (12.3.5.4)

y′′1 + F (t, y0, y′0)y′1 + G(t, y0, y′0)y1 + f1(t, y0, y′0) = 0, F =
∂f0

∂y′
, G =

∂f0

∂y
. (12.3.5.5)

Here, only the first two equations are written out. The prime denotes differentiation with
respect to t. To obtain the initial (or boundary) conditions for yn, the expansion (12.3.5.3)
is taken into account.

The success in the application of this method is primarily determined by the possibility
of constructing a solution of equation (12.3.5.4) for the leading term y0. It is significant to
note that the other terms yn with n ≥ 1 are governed by linear equations with homogeneous
initial conditions.

Example 1. The Duffing equation
y′′tt + y + εy3 = 0 (12.3.5.6)

with initial conditions
y(0) = a, y′t(0) = 0

describes the motion of a cubic oscillator, i.e., oscillations of a point mass on a nonlinear spring. Here, y is
the deviation of the point mass from the equilibrium and t is dimensionless time.

For ε → 0, an approximate solution of the problem is sought in the form of the asymptotic expan-
sion (12.3.5.3). We substitute (12.3.5.3) into equation (12.3.5.6) and initial conditions and expand in powers
of ε. On equating the coefficients of like powers of the small parameter to zero, we obtain the following
problems for y0 and y1:

y′′0 + y0 = 0, y0 = a, y′0 = 0;

y′′1 + y1 = –y3
0 , y1 = 0, y′1 = 0.

The solution of the problem for y0 is given by

y0 = a cos t.

Substituting this expression into the equation for y1 and taking into account the identity cos3 t = 1
4 cos 3t +

3
4 cos t, we obtain

y′′1 + y1 = – 1
4 a

3(cos 3t + 3 cos t), y1 = 0, y′1 = 0.
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Integrating yields
y1 = – 3

8 a
3t sin t + 1

32 a
3(cos 3t – 3 cos t).

Thus the two-term solution of the original problem is given by

y = a cos t + εa3[– 3
8 t sin t + 1

32 (cos 3t – 3 cos t)
]

+O(ε2).

Remark 1. The term t sin t causes y1/y0 → ∞ as t → ∞. For this reason, the solution obtained is
unsuitable at large times. It can only be used for εt
 1; this results from the condition of applicability of the
expansion, y0 � εy1.

This circumstance is typical of the method of regular series expansions with respect to the small parameter;
in other words, the expansion becomes unsuitable at large values of the independent variable. This method is
also inapplicable if the expansion (12.3.5.3) begins with negative powers of ε. Methods that allow avoiding
the above difficulties are discussed below in Paragraphs 12.3.5-3 through 12.3.5-5.

Remark 2. Growing terms as t → ∞, like t sin t, that narrow down the domain of applicability of
asymptotic expansions are called secular.

12.3.5-3. Method of scaled parameters (Lindstedt–Poincaré method).

We illustrate the characteristic features of the method of scaled parameters with a specific
example (the transformation of the independent variable we use here as well as the form of
the expansion are specified in the first row of Table 12.3).

Example 2. Consider the Duffing equation (12.3.5.6) again. On performing the change of variable

t = z(1 + εω1 + · · ·),
we have

y′′zz + (1 + εω1 + · · ·)2(y + εy3) = 0. (12.3.5.7)

The solution is sought in the series form y = y0(z) + εy1(z) + · · · . Substituting it into equation (12.3.5.7) and
matching the coefficients of like powers of ε, we arrive at the following system of equations for two leading
terms of the series:

y′′0 + y0 = 0, (12.3.5.8)

y′′1 + y1 = –y3
0 – 2ω1y0, (12.3.5.9)

where the prime denotes differentiation with respect to z.
The general solution of equation (12.3.5.8) is given by

y0 = a cos(z + b), (12.3.5.10)

where a and b are constants of integration. Taking into account (12.3.5.10) and rearranging terms, we reduce
equation (12.3.5.9) to

y′′1 + y1 = – 1
4 a

3 cos
[

3(z + b)
]

– 2a
( 3

8 a
2 + ω1

)
cos(z + b). (12.3.5.11)

For ω1 ≠ – 3
8 a

2, the particular solution of equation (12.3.5.11) contains a secular term proportional to z cos(z+b).
In this case, the condition of applicability of the expansion y1/y0 = O(1) (see the first row and the last column
of Table 12.3) cannot be satisfied at sufficiently large z. For this condition to be met, one should set

ω1 = – 3
8 a

2. (12.3.5.12)

In this case, the solution of equation (12.3.5.11) is given by

y1 = 1
32 a

3 cos
[

3(z + b)
]
. (12.3.5.13)

Subsequent terms of the expansion can be found likewise.
With (12.3.5.10), (12.3.5.12), and (12.3.5.13), we obtain a solution of the Duffing equation in the form

y = a cos(ωt + b) + 1
32 εa

3 cos
[

3(ωt + b)
]

+O(ε2),

ω =
[

1 – 3
8 εa

2 +O(ε2)
]–1

= 1 + 3
8 εa

2 +O(ε2).
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12.3.5-4. Averaging method (Van der Pol–Krylov–Bogolyubov scheme).

1◦. The averaging method involved two stages. First, the second-order nonlinear equation

y′′tt + ω2
0y = εf (y, y′t) (12.3.5.14)

is reduced with the transformation

y = a cosϕ, y′t = –ω0a sinϕ, where a = a(t), ϕ = ϕ(t),

to an equivalent system of two first-order differential equations:

a′t = –
ε

ω0
f (a cosϕ, –ω0a sinϕ) sinϕ,

ϕ′
t = ω0 –

ε

ω0a
f (a cosϕ, –ω0a sinϕ) cosϕ.

(12.3.5.15)

The right-hand sides of equations (12.3.5.15) are periodic in ϕ, with the amplitude a being
a slow function of time t. The amplitude and the oscillation character are changing little
during the time the phase ϕ changes by 2π.

At the second stage, the right-hand sides of equations (12.3.5.15) are being averaged
with respect to ϕ. This procedure results in an approximate system of equations:

a′t = –
ε

ω0
fs(a),

ϕ′
t = ω0 –

ε

ω0a
fc(a),

(12.3.5.16)

where

fs(a) =
1

2π

∫ 2π

0
sinϕf (a cosϕ, –ω0a sinϕ) dϕ,

fc(a) =
1

2π

∫ 2π

0
cosϕf (a cosϕ, –ω0a sinϕ) dϕ.

System (12.3.5.16) is substantially simpler than the original system (12.3.5.15)—the first
equation in (12.3.5.16), for the oscillation amplitude a, is a separable equation and, hence,
can readily be integrated; then the second equation in (12.3.5.16), which is linear in ϕ, can
also be integrated.

Note that the Krylov–Bogolyubov–Mitropolskii method (see the fourth row in Ta-
ble 12.3) generalizes the above approach and allows obtaining subsequent asymptotic terms
as ε→ 0.

2◦. Below we outline the general scheme of the averaging method. We consider the
second-order nonlinear equation with a small parameter:

y′′tt + g(t, y, y′t) = εf (t, y, y′t). (12.3.5.17)

Equation (12.3.5.17) should first be transformed to the equivalent system of equations

y′t = u,

u′t = –g(t, y,u) + εf (t, y,u).
(12.3.5.18)

Suppose the general solution of the “truncated” system (12.3.5.18), with ε = 0, is known:

y0 = ϕ(t,C1,C2), u0 = ψ(t,C1,C2), (12.3.5.19)



504 ORDINARY DIFFERENTIAL EQUATIONS

where C1 and C2 are constants of integration. Taking advantage of the method of variation
of constants, we pass from the variables y, u in (12.3.5.18) to Lagrange’s variables x1, x2
according to the formulas

y = ϕ(t,x1,x2), u = ψ(t,x1,x2), (12.3.5.20)

where ϕ and ψ are the same functions that define the general solution of the “truncated”
system (12.3.5.19). Transformation (12.3.5.20) allows the reduction of system (12.3.5.18)
to the standard form

x′1 = εF1(t,x1,x2),

x′2 = εF2(t,x1,x2).
(12.3.5.21)

Here, the prime denotes differentiation with respect to t and

F1 =
ϕ2f (t,ϕ,ψ)
ϕ2ψ1 – ϕ1ψ2

, F2 = –
ϕ1f (t,ϕ,ψ)
ϕ2ψ1 – ϕ1ψ2

; ϕk =
∂ϕ

∂xk
, ψk =

∂ψ

∂xk
,

ϕ = ϕ(t,x1,x2), ψ = ψ(t,x1,x2).

It is significant to note that system (12.3.5.21) is equivalent to the original equa-
tion (12.3.5.17). The unknowns x1 and x2 are slow functions of time.

As a result of averaging, system (12.3.5.21) is replaced by a simpler, approximate
autonomous system of equations:

x′1 = εF1(x1,x2),

x′2 = εF2(x1,x2),
(12.3.5.22)

where

Fk(x1,x2) =
1
T

∫ T

0
Fk(t,x1,x2) dt if Fk is a T -periodic function of t;

Fk(x1,x2) = lim
T→∞

1
T

∫ T

0
Fk(t,x1,x2) dt if Fk is not periodic in t.

Remark 1. The averaging method is applicable to equations (12.3.5.14) and (12.3.5.17) with nonsmooth
right-hand sides.

Remark 2. The averaging method has rigorous mathematical substantiation. There is also a procedure
that allows finding subsequent asymptotic terms. For this procedure, e.g., see the books by Bogolyubov and
Mitropolskii (1974), Zhuravlev and Klimov (1988), and Arnold, Kozlov, and Neishtadt (1993).

12.3.5-5. Method of two-scale expansions (Cole–Kevorkian scheme).

1◦. We illustrate the characteristic features of the method of two-scale expansions with a
specific example. Thereafter we outline possible generalizations and modifications of the
method.

Example 3. Consider the Van der Pol equation

y′′tt + y = ε(1 – y2)y′t. (12.3.5.23)

The solution is sought in the form (see the fifth row in Table 12.3):

y = y0(ξ, η) + εy1(ξ, η) + ε2y2(ξ, η) + · · · ,

ξ = εt, η =
(

1 + ε2ω2 + · · ·)t.
(12.3.5.24)
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On substituting (12.3.5.24) into (12.3.5.23) and on matching the coefficients of like powers of ε, we obtain the
following system for two leading terms:

∂2y0

∂η2 + y0 = 0, (12.3.5.25)

∂2y1

∂η2 + y1 = –2 ∂2y0

∂ξ∂η
+ (1 – y2

0 )
∂y0

∂η
. (12.3.5.26)

The general solution of equation (12.3.5.25) is given by

y0 = A(ξ) cos η +B(ξ) sin η. (12.3.5.27)

The dependence of A and B on the slow variable ξ is not being established at this stage.
We substitute (12.3.5.27) into the right-hand side of equation (12.3.5.26) and perform elementary manip-

ulations to obtain

∂2y1

∂η2 + y1 =
[
–2B′

ξ + 1
4B(4 –A2 –B2)

]
cos η +

[
2A′

ξ – 1
4A(4 –A2 –B2)

]
sin η

+ 1
4 (B3 – 3A2B) cos 3η + 1

4 (A3 – 3AB2) sin 3η. (12.3.5.28)

The solution of this equation must not contain unbounded terms as η→∞; otherwise the necessary condition
y1/y0 = O(1) is not satisfied. Therefore the coefficients of cos η and sin η must be set equal to zero:

–2B′
ξ + 1

4B(4 – A2 – B2) = 0,

2A′
ξ – 1

4A(4 – A2 – B2) = 0.
(12.3.5.29)

Equations (12.3.5.29) serve to determine A =A(ξ) and B =B(ξ). We multiply the first equation in (12.3.5.29)
by –B and the second by A and add them together to obtain

r′ξ – 1
8 r(4 – r2) = 0, where r2 = A2 + B2. (12.3.5.30)

The integration by separation of variables yields

r2 =
4r2

0

r2
0 + (4 – r2

0)e–ξ
, (12.3.5.31)

where r0 is the initial oscillation amplitude.
On expressing A and B in terms of the amplitude r and phase ϕ, we have A = r cosϕ and B = –r sinϕ.

Substituting these expressions into either of the two equations in (12.3.5.29) and using (12.3.5.30), we find that
ϕ′

ξ = 0 or ϕ = ϕ0 = const. Therefore the leading asymptotic term can be represented as

y0 = r(ξ) cos(η + ϕ0),

where ξ = εt and η = t, and the function r(ξ) is determined by (12.3.5.31).

2◦. The method of two-scale expansions can also be used for solving boundary value
problems where the small parameter appears together with the highest derivative as a factor
(such problems for 0 ≤ x ≤ a are indicated in the seventh row of Table 12.3 and in Paragraph
12.3.5-6). In the case where a boundary layer arises near the point x = 0 (and its thickness
has an order of magnitude of ε), the solution is sought in the form

y = y0(ξ, η) + εy1(ξ, η) + ε2y2(ξ, η) + · · · ,

ξ = x, η = ε–1[g0(x) + εg1(x) + ε2g2(x) + · · ·],
where the functions yk = yk(ξ, η) and gk = gk(x) are to be determined. The derivative
with respect to x is calculated in accordance with the rule

d

dx
=
∂

∂ξ
+ η′x

∂

∂η
=
∂

∂ξ
+

1
ε

(
g′0 + εg′1 + ε2g′2 + · · ·) ∂

∂η
.

Additional conditions are imposed on the asymptotic terms in the domain under consider-
ation; namely, yk+1/yk = O(1) and gk+1/gk = O(1) for k = 0, 1, . . . , and g0(x) → x as
x→ 0.

Remark. The two-scale method is also used to solve problems that arise in mechanics and physics and
are described by partial differential equations.
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12.3.5-6. Method of matched asymptotic expansions.

1◦. We illustrate the characteristic features of the method of matched asymptotic expansions
with a specific example (the form of the expansions is specified in the seventh row of
Table 12.3). Thereafter we outline possible generalizations and modifications of the method.

Example 4. Consider the linear boundary value problem

εy′′xx + y′x + f (x)y = 0, (12.3.5.32)

y(0) = a, y(1) = b, (12.3.5.33)

where 0 < f (0) < ∞.
At ε = 0 equation (12.3.5.32) degenerates; the solution of the resulting first-order equation

y′x + f (x)y = 0 (12.3.5.34)

cannot meet the two boundary conditions (12.3.5.33) simultaneously. It can be shown that the condition at
x = 0 has to be omitted in this case (a boundary layer arises near this point).

The leading asymptotic term of the outer expansion, y =y0(x)+O(ε), is determined by equation (12.3.5.34).
The solution of (12.3.5.34) that satisfies the second boundary condition in (12.3.5.33) is given by

y0(x) = b exp

[ ∫ 1

x

f (ξ) dξ

]
. (12.3.5.35)

We seek the leading term of the inner expansion, in the boundary layer adjacent to the left boundary, in the
following form (see the seventh row and third column in Table 12.3):

ỹ = ỹ0(z) +O(ε), z = x/ε, (12.3.5.36)

where z is the extended variable. Substituting (12.3.5.36) into (12.3.5.32) and extracting the coefficient of ε–1,
we obtain

ỹ′′0 + ỹ′0 = 0, (12.3.5.37)

where the prime denotes differentiation with respect to z. The solution of equation (12.3.5.37) that satisfies
the first boundary condition in (12.3.5.33) is given by

ỹ0 = a – C + Ce–z . (12.3.5.38)

The constant of integration C is determined from the condition of matching the leading terms of the outer and
inner expansions:

y0(x→ 0) = ỹ0(z → ∞). (12.3.5.39)

Substituting (12.3.5.35) and (12.3.5.38) into condition (12.3.5.39) yields

C = a – be〈f 〉, where 〈f 〉 =
∫ 1

0
f (x) dx. (12.3.5.40)

Taking into account relations (12.3.5.35), (12.3.5.36), (12.3.5.38), and (12.3.5.40), we represent the ap-
proximate solution in the form

y =

⎧
⎨

⎩

be〈f 〉 +
(
a – be〈f 〉)e–x/ε for 0 ≤ x ≤ O(ε),

b exp
[∫ 1

x
f (ξ) dξ

]
for O(ε) ≤ x ≤ 1.

(12.3.5.41)

It is apparent that inside the thin boundary layer, whose thickness is proportional to ε, the solution rapidly
changes by a finite value, Δ = be〈f 〉 – a.

To determine the function y on the entire interval x � [0, 1] using formula (12.3.5.41), one has to “switch”
at some intermediate point x = x0 from one part of the solution to the other. Such switching is not convenient
and, in practice, one often resorts to a composite solution instead of using the double formula (12.3.5.41). In
similar cases, a composite solution is defined as

y = y0(x) + ỹ0(z) –A, A = lim
x→0

y0(x) = lim
z→∞

ỹ0(z).

In the problem under consideration, we have A = be〈f 〉 and hence the composite solution becomes

y =
(
a – be〈f 〉)e–x/ε + b exp

[∫ 1

x
f (ξ) dξ

]
.

For ε
 x ≤ 1, this solution transforms to the outer solution y0(x) and for 0 ≤ x
 ε, to the inner solution,
thus providing an approximate representation of the unknown over the entire domain.
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2◦. We now consider an equation of the general form

εy′′xx = F (x, y, y′x) (12.3.5.42)

subject to boundary conditions (12.3.5.33).
For the leading term of the outer expansion y = y0(x) + · · · , we have the equation

F (x, y0, y′0) = 0.

In the general case, when using the method of matched asymptotic expansions, the
position of the boundary layer and the form of the inner (extended) variable have to be
determined in the course of the solution of the problem.

First we assume that the boundary layer is located near the left boundary. In (12.3.5.42),
we make a change of variable z = x/δ(ε) and rewrite the equation as

y′′zz =
δ2

ε
F
(
δz, y,

1
δ
y′z
)

. (12.3.5.43)

The function δ = δ(ε) is selected so that the right-hand side of equation (12.3.5.43) has a
nonzero limit value as ε→ 0, provided that z, y, and y′z are of the order of 1.

Example 5. For F (x, y, y′x) = –kxλy′x + y, where 0 ≤ λ < 1, the substitution z = x/δ(ε) brings
equation (12.3.5.42) to

y′′zz = –
δ1+λ

ε
kzλy′z +

δ2

ε
y.

In order that the right-hand side of this equation has a nonzero limit value as ε→ 0, one has to set δ1+λ/ε = 1

or δ1+λ/ε = const, where const is any positive number. It follows that δ = ε
1

1+λ .
The leading asymptotic term of the inner expansion in the boundary layer, y = ỹ0(z) + · · · , is determined

by the equation ỹ′′0 + kzλỹ′0 = 0, where the prime denotes differentiation with respect to z.

If the position of the boundary layer is selected incorrectly, the outer and inner expansions
cannot be matched. In this situation, one should consider the case where an arbitrary
boundary layer is located on the right (this case is reduced to the previous one with the
change of variable x = 1 –z). In Example 5 above, the boundary layer is on the left if k > 0
and on the right if k < 0.

There is a procedure for matching subsequent asymptotic terms of the expansion (see
the seventh row and last column in Table 12.3). In its general form, this procedure can be
represented as

inner expansion of the outer expansion (y-expansion for x→ 0)
= outer expansion of the inner expansion (ỹ-expansion for z → ∞).

Remark 1. The method of matched asymptotic expansions can also be applied to construct periodic
solutions of singularly perturbed equations (e.g., in the problem of relaxation oscillations of the Van der Pol
oscillator).

Remark 2. Two boundary layers can arise in some problems (e.g., in cases where the right-hand side of
equation (12.3.5.42) does not explicitly depend on y′x).

Remark 3. The method of matched asymptotic expansions is also used for solving equations (in semi-
infinite domains) that do not degenerate at ε = 0. In such cases, there are no boundary layers; the original
variable is used in the inner domain, and an extended coordinate is introduced in the outer domain.

Remark 4. The method of matched asymptotic expansions is successfully applied for the solution of
various problems in mathematical physics that are described by partial differential equations; in particular, it
plays an important role in the theory of heat and mass transfer and in hydrodynamics.
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12.3.6. Galerkin Method and Its Modifications (Projection Methods)

12.3.6-1. General form of an approximate solution.

Consider a boundary value problem for the equation

F[y] – f (x) = 0 (12.3.6.1)

with linear homogeneous boundary conditions* at the points x=x1 and x=x2 (x1 ≤x≤x2).
Here, F is a linear or nonlinear differential operator of the second order (or a higher order
operator); y = y(x) is the unknown function and f = f (x) is a given function. It is assumed
that F[0] = 0.

Let us choose a sequence of linearly independent functions (called basis functions)

ϕ = ϕn(x) (n = 1, 2, . . . , N ) (12.3.6.2)

satisfying the same boundary conditions as y = y(x). According to all methods that will
be considered below, an approximate solution of equation (12.3.6.1) is sought as a linear
combination

yN =
N∑

n=1

Anϕn(x), (12.3.6.3)

with the unknown coefficients An to be found in the process of solving the problem.
The finite sum (12.3.6.3) is called an approximation function. The remainder term

RN obtained after the finite sum has been substituted into the left-hand side of equation
(12.3.6.1),

RN = F[yN ] – f (x). (12.3.6.4)

If the remainder RN is identically equal to zero, then the function yN is the exact
solution of equation (12.3.6.1). In general, RN � 0.

12.3.6-2. Galerkin method.

In order to find the coefficients An in (12.3.6.3), consider another sequence of linearly
independent functions

ψ = ψk(x) (k = 1, 2, . . . , N ). (12.3.6.5)

Let us multiply both sides of (12.3.6.4) by ψk and integrate the resulting relation over the
region V = {x1 ≤ x ≤ x2}, in which we seek the solution of equation (12.3.6.1). Next,
we equate the corresponding integrals to zero (for the exact solutions, these integrals are
equal to zero). Thus, we obtain the following system of linear algebraic equations for the
unknown coefficients An:

∫ x2

x1
ψkRN dx = 0 (k = 1, 2, . . . , N ). (12.3.6.6)

Relations (12.3.6.6) mean that the approximation function (12.3.6.3) satisfies equation
(12.3.6.1) “on the average” (i.e., in the integral sense) with weights ψk. Introducing

* Nonhomogeneous boundary conditions can be reduced to homogeneous ones by the change of variable
z = A2x

2 + A1x + A0 + y (the constants A2, A1, and A0 are selected using the method of undetermined
coefficients).
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the scalar product 〈g,h〉 =
∫ x2

x1
gh dx of arbitrary functions g and h, we can consider

equations (12.3.6.6) as the condition of orthogonality of the remainder RN to all weight
functions ψk.

The Galerkin method can be applied not only to boundary value problems, but also to
eigenvalue problems (in the latter case, one takes f = λy and seeks eigenfunctions yn,
together with eigenvalues λn).

Mathematical justification of the Galerkin method for specific boundary value problems
can be found in the literature listed at the end of Chapter 12. Below we describe some other
methods that are in fact special cases of the Galerkin method.

Remark. Most often, one takes suitable sequences of polynomials or trigonometric functions as ϕn(x)
in the approximation function (12.3.6.3).

12.3.6-3. Bubnov–Galerkin method, the moment method, the least squares method.

1◦. The sequences of functions (12.3.6.2) and (12.3.6.5) in the Galerkin method can be
chosen arbitrarily. In the case of equal functions,

ϕk(x) = ψk(x) (k = 1, 2, . . . , N ), (12.3.6.7)

the method is often called the Bubnov–Galerkin method.

2◦. The moment method is the Galerkin method with the weight functions (12.3.6.5) being
powers of x,

ψk = xk. (12.3.6.8)

3◦. Sometimes, the functions ψk are expressed in terms of ϕk by the relations

ψk = F[ϕk] (k = 1, 2, . . .),

where F is the differential operator of equation (12.3.6.1). This version of the Galerkin
method is called the least squares method.

12.3.6-4. Collocation method.

In the collocation method, one chooses a sequence of points xk, k = 1, . . . ,N , and imposes
the condition that the remainder (12.3.6.4) be zero at these points,

RN = 0 at x = xk (k = 1, . . . ,N ). (12.3.6.9)

When solving a specific problem, the points xk, at which the remainder RN is set equal
to zero, are regarded as most significant. The number of collocation points N is taken equal
to the number of the terms of the series (12.3.6.3). This allows one to obtain a complete
system of algebraic equations for the unknown coefficients An (for linear boundary value
problems, this algebraic system is linear).

Note that the collocation method is a special case of the Galerkin method with the
sequence (12.3.6.5) consisting of the Dirac delta functions:

ψk = δ(x – xk).

In the collocation method, there is no need to calculate integrals, and this essentially
simplifies the procedure of solving nonlinear problems (although usually this method yields
less accurate results than other modifications of the Galerkin method).
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Example. Consider the boundary value problem for the linear variable-coefficient second-order ordinary
differential equation

y′′xx + g(x)y – f (x) = 0 (12.3.6.10)

subject to the boundary conditions of the first kind

y(–1) = y(1) = 0. (12.3.6.11)

Assume that the coefficients of equation (12.3.6.10) are smooth even functions, so that f (x) = f (–x) and
g(x) = g(–x). We use the collocation method for the approximate solution of problem (12.3.6.10)–(12.3.6.11).

1◦. Take the polynomials
yn(x) = x2n–2(1 – x2), n = 1, 2, . . . N ,

as the basis functions; they satisfy the boundary conditions (12.3.6.11), yn(�1) = 0.
Let us consider three collocation points

x1 = –σ, x2 = 0, x3 = σ (0 < σ < 1) (12.3.6.12)

and confine ourselves to two basis functions (N = 2), so that the approximation function is taken in the form

y(x) = A1(1 – x2) + A2x
2(1 – x2). (12.3.6.13)

Substituting (12.3.6.13) in the left-hand side of equation (12.3.6.10) yields the remainder

R(x) = A1
[
–2 + (1 – x2)g(x)

]
+A2

[
2 – 12x2 + x2(1 – x2)g(x)

]
– f (x).

It must vanish at the collocation points (12.3.6.12). Taking into account the properties f (σ) = f (–σ) and
g(σ) = g(–σ), we obtain two linear algebraic equations for the coefficients A1 and A2:

A1
[
–2 + g(0)

]
+ 2A2 – f (0) = 0 (at x = 0),

A1
[
–2 + (1 – σ2)g(σ)

]
+A2

[
2 – 12σ2 + σ2(1 – σ2)g(σ)

]
– f (σ) = 0 (at x = �σ).

(12.3.6.14)

2◦. To be specific, let us take the following functions entering equation (12.3.6.10):

f (x) = –1, g(x) = 1 + x2. (12.3.6.15)

On solving the corresponding system of algebraic equations (12.3.6.14), we find the coefficients

A1 =
σ4 + 11

σ4 + 2σ2 + 11
, A2 = –

σ2

σ4 + 2σ2 + 11
. (12.3.6.16)

In Fig. 12.3, the solid line depicts the numerical solution to problem (12.3.6.10)–(12.3.6.11), with the
functions (12.3.6.15), obtained by the shooting method (see Paragraph 12.3.7-3). The dashed lines 1 and 2
show the approximate solutions obtained by the collocation method using the formulas (12.3.6.13), (12.3.6.16)
with σ = 1

2 (equidistant points) and σ =
√

2
2 (Chebyshev points, see Subsection 12.4.4), respectively. It is evident

that both cases provide good coincidence of the approximate and numerical solutions; the use of Chebyshev
points gives a more accurate result.

0.5 √2√2
22
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0.5 11

1 1

2

y

x

O

Figure 12.3. Comparison of the numerical solution of problem (12.3.6.10), (12.3.6.11), (12.3.6.15) with the
approximate analytical solution (12.3.6.13), (12.3.6.16) obtained with the collocation method.

Remark. The theorem of convergence of the collocation method for linear boundary value problems is
given in Subsection 12.4.4, where nth-order differential equations are considered.
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12.3.6-5. Method of partitioning the domain.

The domain V = {x1 ≤ x ≤ x2} is split into N subdomains: Vk = {xk1 ≤ x ≤ xk2},
k = 1, . . . ,N . In this method, the weight functions are chosen as follows:

ψk(x) =
{ 1 for x � Vk,

0 for x � Vk.

The subdomains Vk are chosen according to the specific properties of the problem under
consideration and can generally be arbitrary (the union of all subdomains Vk may differ
from the domain V , and some Vk and Vm may overlap).

12.3.6-6. Least squared error method.

Sometimes, in order to find the coefficients An of the approximation function (12.3.6.3),
one uses the least squared error method based on the minimization of the functional:

Φ =
∫ x2

x1
R2
N dx→ min . (12.3.6.17)

For given functions ϕn in (12.3.6.3), the integral Φ is a function with respect to the
coefficients An. The corresponding necessary conditions of minimum in (12.3.6.17) have
the form

∂Φ
∂An

= 0 (n = 1, . . . ,N ).

This is a system of algebraic (transcendental) equations for the coefficients An.

12.3.7. Iteration and Numerical Methods

12.3.7-1. Method of successive approximations (Cauchy problem).

The method of successive approximations is implemented in two steps. First, the Cauchy
problem

y′′xx = f (x, y, y′x) (equation), (12.3.7.1)
y(x0) = y0, y′x(x0) = y′0 (initial conditions) (12.3.7.2)

is reduced to an equivalent system of integral equations by the introduction of the new
variable u(x) = y′x. These integral equations have the form

u(x) = y′0 +
∫ x

x0
f
(
t, y(t),u(t)

)
dt, y(x) = y0 +

∫ x

x0
u(t) dt. (12.3.7.3)

Then the solution of system (12.3.7.3) is sought by means of successive approximations
defined by the following recurrence formulas:

un+1(x) = y′0 +
∫ x

x0
f
(
t, yn(t),un(t)

)
dt, yn+1(x) = y0 +

∫ x

x0
un(t) dt; n = 0, 1, 2, . . .

As the initial approximation, one can take y0(x) = y0 and u0(x) = y′0.
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12.3.7-2. Runge–Kutta method (Cauchy problem).

For the numerical integration of the Cauchy problem (12.3.7.1)–(12.3.7.2), one often uses
the Runge–Kutta method.

Let Δx be sufficiently small. We introduce the following notation:

xk = x0 + kΔx, yk = y(xk), y′k = y′x(xk), fk = f (xk, yk, y′k); k = 0, 1, 2, . . .

The desired values yk and y′k are successively found by the formulas

yk+1 = yk + y′kΔx + 1
6 (f1 + f2 + f3)(Δx)2,

y′k+1 = y′k + 1
6 (f1 + 2f2 + 2f3 + f4)Δx,

where
f1 = f

(
xk, yk, y′k

)
,

f2 = f
(
xk + 1

2 Δx, yk + 1
2 y

′
kΔx, y′k + 1

2 f1Δx
)
,

f3 = f
(
xk + 1

2 Δx, yk + 1
2 y

′
kΔx + 1

4 f1(Δx)2, y′k + 1
2 f2Δx

)
,

f4 = f
(
xk + Δx, yk + y′kΔx + 1

2 f2(Δx)2, y′k + f3Δx
)
.

In practice, the step Δx is determined in the same way as for first-order equations (see
Remark 2 in Paragraph 12.1.10-3).

12.3.7-3. Shooting method (boundary value problems).

In order to solve the boundary value problem for equation (12.3.7.1) with the boundary
conditions

y(x1) = y1, y(x2) = y2, (12.3.7.4)

one considers an auxiliary Cauchy problem for equation (12.3.7.1) with the initial conditions

y(x1) = y1, y′x(x1) = a. (12.3.7.5)

(The solution of this Cauchy problem can be obtained by the Runge–Kutta method or some
other numerical method.) The parameter a is chosen so that the value of the solution
y = y(x, a) at the point x = x2 coincides with the value required by the second boundary
condition in (12.3.7.4):

y(x2, a) = y2.

In a similar way one constructs the solution of the boundary value problem with mixed
boundary conditions

y(x1) = y1, y′x(x2) + ky(x2) = y2. (12.3.7.6)

In this case, one also considers the auxiliary Cauchy problem (12.3.7.1), (12.3.7.5). The
parameter a is chosen so that the solution y =y(x, a) satisfies the second boundary condition
in (12.3.7.6) at the point x = x2.
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12.3.7-4. Method of accelerated convergence in eigenvalue problems.

Consider the Sturm–Liouville problem for the second-order nonhomogeneous linear equa-
tion

[f (x)y′x]′x + [λg(x) – h(x)]y = 0 (12.3.7.7)

with linear homogeneous boundary conditions of the first kind

y(0) = y(1) = 0. (12.3.7.8)

It is assumed that the functions f , f ′x, g, h are continuous and f > 0, g > 0.
First, using the Rayleigh–Ritz principle, one finds an upper estimate for the first eigen-

value λ0
1 [this value is determined by the right-hand side of relation (12.2.5.6)]. Then, one

solves numerically the Cauchy problem for the auxiliary equation

[f (x)y′x]′x + [λ0
1g(x) – h(x)]y = 0 (12.3.7.9)

with the boundary conditions

y(0) = 0, y′x(0) = 1. (12.3.7.10)

The function y(x,λ0
1) satisfies the condition y(x0,λ0

1) = 0, where x0 < 1. The criterion of
closeness of the exact and approximate solutions, λ1 and λ0

1, has the form of the inequality
|1 – x0| ≤ δ, where δ is a sufficiently small given constant. If this inequality does not hold,
one constructs a refinement for the approximate eigenvalue on the basis of the formula

λ1
1 = λ0

1 – ε0f (1)
[y′x(1)]2

‖y‖2 , ε0 = 1 – x0, (12.3.7.11)

where ‖y‖2 =
∫ 1

0
g(x)y2(x) dx. Then the value λ1

1 is substituted for λ0
1 in the Cauchy

problem (12.3.7.9)–(12.3.7.10). As a result, a new solution y and a new point x1 are
found; and one has to check whether the criterion |1 – x1| ≤ δ holds. If this inequality is
violated, one refines the approximate eigenvalue by means of the formula

λ2
1 = λ1

1 – ε1f (1)
[y′x(1)]2

‖y‖2 , ε1 = 1 – x1, (12.3.7.12)

and repeats the above procedure.

Remark 1. Formulas of the type (12.3.7.11) are obtained by a perturbation method based on a transfor-
mation of the independent variable x (see Paragraph 12.3.5-2). If xn > 1, the functions f , g, and h are
smoothly extended to the interval (1, ξ], where ξ ≥ xn.

Remark 2. The algorithm described above has the property of accelerated convergence εn+1 ∼ ε2
n, which

ensures that the relative error of the approximate solution becomes 10–4 to 10–8 after two or three iterations
for ε0 ∼ 0.1. This method is quite effective for high-precision calculations, is fail-safe, and guarantees against
accumulation of roundoff errors.

Remark 3. In a similar way, one can compute subsequent eigenvalues λm, m = 2, 3, . . . (to that end, a
suitable initial approximation λ0

m should be chosen).

Remark 4. A similar computation scheme can also be used in the case of boundary conditions of the
second and the third kinds, periodic boundary conditions, etc. (see the reference below).
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Example 1. The eigenvalue problem for the equation

y′′xx + λ(1 + x2)–2y = 0
with the boundary conditions (12.3.7.8) admits an exact analytic solution and has eigenvalues λ1 = 15, λ2 = 63,
. . . , λn = 16n2 – 1.

According to the Rayleigh–Ritz principle, formula (12.2.5.6) for z = sin(πx) yields the approximate value
λ0

1 = 15.33728. The solution of the Cauchy problem (12.3.7.9)–(12.3.7.10) with f (x) = 1, g(x) = λ(1 + x2)–2,
h(x) = 0 yields x0 = 0.983848, 1 – x0 = 0.016152, ‖y‖2 = 0.024585, y′x(x0) = –0.70622822.

The first iteration for the first eigenvalue is determined by (12.3.7.11) and results in the value λ1
1 = 14.99245

with the relative error Δλ/λ1
1 = 5 × 10–4.

The second iteration results in λ2
1 = 14.999986 with the relative error Δλ/λ2

1 < 10–6.

Example 2. Consider the eigenvalue problem for the equation

(
√

1 + x y′x)′x + λy = 0
with the boundary conditions (12.3.7.8).

The Rayleigh–Ritz principle yields λ0
1 = 11.995576. The next two iterations result in the values λ1

1 =
11.898578 and λ2

1 = 11.898458. For the relative error we have Δλ/λ2
1 < 10–5.

� For more details about finite-difference methods and other numerical methods, see, for
instance, the books by Lambert (1973), Keller (1976), Schiesser (1993), and Zwillinger
(1997).

12.4. Linear Equations of Arbitrary Order
12.4.1. Linear Equations with Constant Coefficients

12.4.1-1. Homogeneous linear equations.

An nth-order homogeneous linear equation with constant coefficients has the general form

y(n)
x + an–1y

(n–1)
x + · · · + a1y

′
x + a0y = 0. (12.4.1.1)

The general solution of this equation is determined by the roots of the characteristic
equation

P (λ) = 0, where P (λ) = λn + an–1λ
n–1 + · · · + a1λ + a0. (12.4.1.2)

The following cases are possible:

1◦. All roots λ1, λ2, . . . , λn of the characteristic equation (12.4.1.2) are real and distinct.
Then the general solution of the homogeneous linear differential equation (12.4.1.1) has the
form

y = C1 exp(λ1x) + C2 exp(λ2x) + · · · + Cn exp(λnx).

2◦. There are m equal real roots λ1 = λ2 = · · · = λm (m ≤ n), and the other roots are real
and distinct. In this case, the general solution is given by

y = exp(λ1x)(C1 + C2x + · · · + Cmx
m–1)

+ Cm+1 exp(λm+1x) + Cm+2 exp(λm+2x) + · · · + Cn exp(λnx).

3◦. There are m equal complex conjugate roots λ = α � iβ (2m ≤ n), and the other roots
are real and distinct. In this case, the general solution is

y = exp(αx) cos(βx)(A1 +A2x + · · · +Amx
m–1)

+ exp(αx) sin(βx)(B1 + B2x + · · · + Bmx
m–1)

+ C2m+1 exp(λ2m+1x) + C2m+2 exp(λ2m+2x) + · · · + Cn exp(λnx),

where A1, . . . , Am, B1, . . . , Bm, C2m+1, . . . , Cn are arbitrary constants.
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4◦. In the general case, where there are r different roots λ1, λ2, . . . , λr of multiplicities
m1, m2, . . . , mr, respectively, the left-hand side of the characteristic equation (12.4.1.2)
can be represented as the product

P (λ) = (λ – λ1)m1 (λ – λ2)m2 . . . (λ – λr)
mr ,

where m1 + m2 + · · · + mr = n. The general solution of the original equation is given by
the formula

y =
r∑

k=1

exp(λkx)(Ck,0 + Ck,1x + · · · + Ck,mk–1x
mk–1),

where Ck,l are arbitrary constants.
If the characteristic equation (12.4.1.2) has complex conjugate roots, then in the above

solution, one should extract the real part on the basis of the relation exp(α�iβ) = eα(cos β�
i sin β).

Example 1. Find the general solution of the linear third-order equation

y′′′ + ay′′ – y′ – ay = 0.

Its characteristic equation is λ3 + aλ2 – λ – a = 0, or, in factorized form,

(λ + a)(λ – 1)(λ + 1) = 0.

Depending on the value of the parameter a, three cases are possible.
1. Case a ≠ �1. There are three different roots, λ1 = –a, λ2 = –1, and λ3 = 1. The general solution of the

differential equation is expressed as y = C1e
–ax + C2e

–x + C3e
x.

2. Case a = 1. There is a double root, λ1 = λ2 = –1, and a simple root, λ3 = 1. The general solution of the
differential equation has the form y = (C1 + C2x)e–x + C3e

x.
3. Case a = –1. There is a double root, λ1 = λ2 = 1, and a simple root, λ3 = –1. The general solution of

the differential equation is expressed as y = (C1 + C2x)ex + C3e
–x.

Example 2. Consider the linear fourth-order equation

y′′′′xxxx – y = 0.

Its characteristic equation, λ4 – 1 = 0, has four distinct roots, two real and two pure imaginary,

λ1 = 1, λ2 = –1, λ3 = i, λ4 = –i.

Therefore the general solution of the equation in question has the form (see Item 3◦)

y = C1e
x + C2e

–x + C3 sinx + C4 cosx.

12.4.1-2. Nonhomogeneous linear equations. Forms of particular solutions.

1◦. An nth-order nonhomogeneous linear equation with constant coefficients has the gen-
eral form

y(n)
x + an–1y

(n–1)
x + · · · + a1y

′
x + a0y = f (x). (12.4.1.3)

The general solution of this equation is the sum of the general solution of the corre-
sponding homogeneous equation with f (x) ≡ 0 (see Paragraph 12.4.1-1) and any particular
solution of the nonhomogeneous equation (12.4.1.3).

If all the roots λ1, λ2, . . . , λn of the characteristic equation (12.4.1.2) are different,
equation (12.4.1.3) has the general solution:

y =
n∑

ν=1

Cνe
λνx +

n∑

ν=1

eλνx

P ′
λ(λν)

∫
f (x)e–λνx dx (12.4.1.4)

(for complex roots, the real part should be taken).
In the general case, if the characteristic equation (12.4.1.2) has multiple roots, the

solution to equation (12.4.1.3) can be constructed using formula (12.4.2.5).
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TABLE 12.4
Forms of particular solutions of the constant coefficient nonhomogeneous linear equation

y(n)
x + an–1y

(n–1)
x + · · · + a1y

′
x + a0y = f (x) that correspond to some special forms of the function f (x)

Form of the
function f (x)

Roots of the characteristic equation
λn + an–1λ

n–1 + · · · + a1λ + a0 = 0
Form of a particular

solution y = ỹ(x)

Zero is not a root of the
characteristic equation (i.e., a0 ≠ 0) P̃m(x)

Pm(x)
Zero is a root of the

characteristic equation (multiplicity r) xrP̃m(x)

α is not a root of the
characteristic equation P̃m(x)eαx

Pm(x)eαx

(α is a real constant) α is a root of the
characteristic equation (multiplicity r) xrP̃m(x)eαx

iβ is not a root of the
characteristic equation

P̃ν (x) cosβx
+ Q̃ν(x) sinβxPm(x) cosβx

+Qn(x) sinβx
iβ is a root of the

characteristic equation (multiplicity r)
xr[P̃ν(x) cos βx

+ Q̃ν(x) sinβx]

α + iβ is not a root of the
characteristic equation

[P̃ν (x) cosβx

+ Q̃ν (x) sinβx]eαx

[Pm(x) cos βx
+ Qn(x) sinβx]eαx

α + iβ is a root of the
characteristic equation (multiplicity r)

xr[P̃ν(x) cos βx

+ Q̃ν (x) sinβx]eαx

Notation: Pm and Qn are polynomials of degrees m and n with given coefficients; P̃m, P̃ν , and Q̃ν are
polynomials of degrees m and ν whose coefficients are determined by substituting the particular solution
into the basic equation; ν = max(m, n); and α and β are real numbers, i2 = –1.

2◦. Table 12.4 lists the forms of particular solutions corresponding to some special forms
of functions on the right-hand side of the linear nonhomogeneous equation.

3◦. Consider the Cauchy problem for equation (12.4.1.3) subject to the homogeneous initial
conditions

y(0) = y′x(0) = . . . = y(n–1)
x (0) = 0. (12.4.1.5)

Let y(x) be the solution of problem (12.4.1.3), (12.4.1.5) for arbitrary f (x) and let u(x) be
the solution of the auxiliary, simpler problem (12.4.1.3), (12.4.1.5) with f (x) ≡ 1, so that
u(x) = y(x)|f (x)≡1. Then the formula

y(x) =
∫ x

0
f (t)u′x(x – t) dt

holds. It is called the Duhamel integral.

12.4.1-3. Solution of the Cauchy problem using the Laplace transform.

Consider the Cauchy problem for equation (12.4.1.3) with arbitrary initial conditions

y(0) = y0, y′x(0) = y1, . . . , y(n–1)
x (0) = yn–1, (12.4.1.6)

where y0, y1, . . . , yn–1 are given constants.
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Problem (12.4.1.3), (12.4.1.6) can be solved using the Laplace transform based on the
formulas (for details, see Section 11.2)

ỹ(p) = L
{
y(x)
}

, f̃ (p) = L
{
f (x)

}
, where L

{
f (x)

}
≡
∫ ∞

0
e–pxf (x) dx.

To this end, let us multiply equation (12.4.1.3) by e–px and then integrate with respect to x
from zero to infinity. Taking into account the differentiation rule

L
{
y(n)
x (x)

}
= pnỹ(p) –

n∑

k=1

pn–ky(k–1)
x (+0)

and the initial conditions (12.4.1.6), we arrive at a linear algebraic equation for the trans-
form ỹ(p):

P (p)ỹ(p) – Q(p) = f̃ (p), (12.4.1.7)

where

P (p) = pn + an–1p
n–1 + · · · + a1p + a0, Q(p) = bn–1p

n–1 + · · · + b1p + b0,
bk = yn–k–1 + an–1yn–k–2 + · · · + ak+2y1 + ak+1y0, k = 0, 1, . . . , n – 1.

The polynomial P (p) coincides with the characteristic polynomial (12.4.1.2) at λ = p.
The solution of equation (12.4.1.7) is given by the formula

ỹ(p) =
f̃ (p) +Q(p)

P̃ (p)
. (12.4.1.8)

On applying the Laplace inversion formula (see in Section 11.2) to (12.4.1.8), we obtain a
solution to problem (12.4.1.3), (12.4.1.6) in the form

y(x) =
1

2πi

∫ c+i∞

c–i∞

f̃ (p) +Q(p)

P̃ (p)
epx dp. (12.4.1.9)

Since the transform ỹ(p) (12.4.1.8) is a rational function, the inverse Laplace transform
(12.4.1.9) can be obtained using the formulas from Paragraph 11.2.2-2 or the tables of
Section T3.2.

Remark. In practice, the solution method for the Cauchy problem based on the Laplace transform leads
to the solution faster than the direct application of general formulas like (12.4.1.4), where one has to determine
the coefficients C1, . . . ,Cn.

Example 3. Consider the following Cauchy problem for a homogeneous fourth-order equation:

y′′′′xxxx + a4y = 0; y(0) = y′x(0) = y′′′xxx(0) = 0, y′′xx(0) = b.

Using the Laplace transform reduces this problem to a linear algebraic equation for ỹ(p): (p4 + a4)ỹ(p) –
bp = 0. It follows that

ỹ(p) =
bp

p4 + a4 .

In order to invert this expression, let us use the table of inverse Laplace transforms T3.2.2 (see row 52) and take
into account that a constant multiplier can be taken outside the transform operator to obtain the solution to the
original Cauchy problem in the form

y(x) =
b

a2 sin
( ax√

2

)
sinh
( ax√

2

)
.
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12.4.2. Linear Equations with Variable Coefficients

12.4.2-1. Homogeneous linear equations. Structure of the general solution.

The general solution of the nth-order homogeneous linear differential equation

fn(x)y(n)
x + fn–1(x)y(n–1)

x + · · · + f1(x)y′x + f0(x)y = 0 (12.4.2.1)

has the form
y = C1y1(x) + C2y2(x) + · · · + Cnyn(x). (12.4.2.2)

Here, y1(x), y2(x), . . . , yn(x) is a fundamental system of solutions (the yk are linearly
independent particular solutions, yk � 0); C1, C2, . . . , Cn are arbitrary constants.

12.4.2-2. Utilization of particular solutions for reducing the order of the equation.

1◦. Let y1 =y1(x) be a nontrivial particular solution of equation (12.4.2.1). The substitution

y = y1(x)
∫
z(x) dx

results in a linear equation of order n – 1 for the function z(x).

2◦. Let y1 = y1(x) and y2 = y2(x) be two nontrivial linearly independent solutions of
equation (12.4.2.1). The substitution

y = y1

∫
y2w dx – y2

∫
y1w dx

results in a linear equation of order n – 2 for w(x).

3◦. Suppose that m linearly independent solutions y1(x), y2(x), . . . , ym(x) of equation
(12.4.2.1) are known. Then one can reduce the order of the equation to n –m by successive
application of the following procedure. The substitution y = ym(x)

∫
z(x) dx leads to an

equation of order n – 1 for the function z(x) with known linearly independent solutions:

z1 =
( y1

ym

)′
x
, z2 =

( y2

ym

)′
x
, . . . , zm–1 =

( ym–1

ym

)′
x
.

The substitution z = zm–1(x)
∫
w(x) dx yields an equation of order n – 2. Repeating this

procedure m times, we arrive at a homogeneous linear equation of order n – m.

12.4.2-3. Wronskian determinant and Liouville formula.

The Wronskian determinant (or simply, Wronskian) is the function defined as

W (x) =

∣∣
∣∣
∣∣
∣

y1(x) · · · yn(x)
y′1(x) · · · y′n(x)
· · · · · · · · ·

y(n–1)
1 (x) · · · y(n–1)

n (x)

∣∣
∣∣
∣∣
∣

, (12.4.2.3)

where y1(x), . . . , yn(x) is a fundamental system of solutions of the homogeneous equa-

tion (12.4.2.1); y(m)
k (x) =

dmyk
dxm

, m = 1, . . . , n – 1; k = 1, . . . , n.

The following Liouville formula holds:

W (x) = W (x0) exp

[
–
∫ x

x0

fn–1(t)
fn(t)

dt

]
.
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12.4.2-4. Nonhomogeneous linear equations. Construction of the general solution.

1◦. The general nonhomogeneous nth-order linear differential equation has the form

fn(x)y(n)
x + fn–1(x)y(n–1)

x + · · · + f1(x)y′x + f0(x)y = g(x). (12.4.2.4)

The general solution of the nonhomogeneous equation (12.4.2.4) can be represented as the
sum of its particular solution and the general solution of the corresponding homogeneous
equation (12.4.2.1).

2◦. Let y1(x), . . . , yn(x) be a fundamental system of solutions of the homogeneous equa-
tion (12.4.2.1), and let W (x) be the Wronskian determinant (12.4.2.3). Then the general
solution of the nonhomogeneous linear equation (12.4.2.4) can be represented as

y =
n∑

ν=1

Cνyν(x) +
n∑

ν=1

yν(x)
∫ Wν(x) dx
fn(x)W (x)

, (12.4.2.5)

where Wν(x) is the determinant obtained by replacing the νth column of the matrix
(12.4.2.3) by the column vector with the elements 0, 0, . . . , 0, g.

3◦. Let y(x,σ) be the solution to the Cauchy problem for the homogeneous equation
(12.4.2.1) with nonhomogeneous initial conditions at x = σ:

y(σ) = y′x(σ) = · · · = y(n–2)
x (σ) = 0, y(n–1)

x (σ) = 1,

where σ is an arbitrary parameter. Then a particular solution of the nonhomogeneous linear
equation (12.4.2.4) with homogeneous boundary conditions

y(x0) = y′x(x0) = · · · = y(n–1)
x (x0) = 0

is given by the Cauchy formula

ȳ(x) =
∫ x

x0

y(x,σ)
g(σ)
fn(σ)

dσ.

4◦. Superposition principle. The solution of a nonhomogeneous linear equation

L[y] =
m∑

k=1

gk(x), L[y] ≡ fn(x)y(n)
x + fn–1(x)y(n–1)

x + · · · + f1(x)y′x + f0(x)y

is determined by adding together the solutions,

y =
m∑

k=1

yk,

of m (simpler) equations,

L[yk] = gk(x), k = 1, 2, . . . , m,

corresponding to respective nonhomogeneous terms in the original equation.
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12.4.2-5. Euler equation.

1◦. The nonhomogeneous Euler equation has the form

xny(n)
x + an–1x

n–1y(n–1)
x + · · · + a1xy

′
x + a0y = f (x).

The substitution x = bet (b ≠ 0) leads to a constant coefficient linear equation of the
form (12.4.1.3).

2◦. Particular solutions of the homogeneous Euler equation [with f (x) ≡ 0] are sought in
the form y = xk. If all k are real and distinct, its general solution is expressed as

y(x) = C1|x|k1 + C2|x|k2 + · · · + Cn|x|kn .

Remark. To a pair of complex conjugate values k = α� iβ there corresponds a pair of particular solutions:
y = |x|α sin(β|x|) and y = |x|α cos(β|x|).

12.4.2-6. Solution of equations using the Laplace transform. Laplace equation.

1◦. Some classes of equations (12.4.2.1) or (12.4.2.4) with polynomial coefficients

fk(x) =
sk∑

m=0

akmx
m

may be solved using the Laplace transform (see Paragraph 12.4.1-3 and Section 11.2). To
this end, one uses the following formula for the Laplace transform of the product of a power
function and a derivative of the unknown function:

L
{
xmy(n)

x (x)
}

= (–1)m
dm

dpm

[
pnỹ(p) –

n∑

k=1

pn–ky(k–1)
x (+0)

]
. (12.4.2.6)

The right-hand side contains initial data y(m)
x (+0), m = 0, 1, . . . , n – 1 (specified in the

Cauchy problem). As a result, one arrives at a linear ordinary differential equation, with
respect to p, for the transform ỹ(p); the order of this equation is equal to max

1≤k≤n
{sk}, the

highest degree of the polynomials that determine the equation coefficients. In some cases,
the equation for ỹ(p) turns out to be simpler than the initial equation for y(x) and can be
solved in closed form. The desired function y(x) is found by inverting the transform ỹ(p)
using the formulas from Paragraph 11.2.2-2 of the tables from Section T3.2.

2◦. Consider the Laplace equation

(an + bnx)y(n)
x + (an–1 + bn–1x)y(n–1)

x + · · · + (a1 + b1x)y′x + (a0 + b0x)y = 0, (12.4.2.7)

whose coefficients are linear functions of the independent variable x. The application of the
Laplace transform, in view of formulas (12.4.2.6), brings it to a linear first-order ordinary
differential equation for the transform ỹ(p).
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Example 1. Consider a special case of equation (12.4.2.7):

xy′′xx + y′x + axy = 0. (12.4.2.8)

Denote y(0) = y0 and y′x(0) = y1. Let us apply the Laplace transform to this equation using formulas (12.4.2.6).
On rearrangement, we obtain a linear first-order equation for ỹ(p):

–(p2ỹ – y0p – y1)′p + (pỹ – y0) – aỹ′p = 0 =⇒ (p2 + a)ỹ′p + pỹ = 0.

Its general solution is expressed as

ỹ =
C

√
p2 + a

, (12.4.2.9)

where C is an arbitrary constant. Applying the inverse Laplace transform to (12.4.2.9) and taking into account
formulas 19 and 20 from Subsection T3.2.3, we find a solution to the original equation (12.4.2.8):

y(x) =

{
CJ0(x

√
a ) if a > 0,

CI0(x
√

–a ) if a < 0,
(12.4.2.10)

where J0(x) is the Bessel function of the first kind and I0(x) is the modified Bessel function of the first kind.
In this case, only one solution (12.4.2.10) has been obtained. This is due to the fact that the other solution

goes to infinity as x → 0, and hence formula (12.4.2.6) cannot be applied to it; this formula is only valid for
finite initial values of the function and its derivatives.

12.4.2-7. Solution of equations using the Laplace integral.

Solutions to linear differential equations with polynomial coefficients can sometimes be
represented as a Laplace integral in the form

y(x) =
∫

K
epxu(p) dp. (12.4.2.11)

For now, no assumptions are made about the domain of integration K; it could be a segment
of the real axis or a curve in the complex plane.

Let us exemplify the usage of the Laplace integral (12.4.2.11) by considering equation
(12.4.2.7). It follows from (12.4.2.11) that

y(k)
x (x) =

∫

K
epxpku(p) dp,

xy(k)
x (x) =

∫

K
xepxpku(p) dp =

[
epxpku(p)

]

K
–
∫

K
epx

d

dp

[
pku(p)

]
dp.

Substituting these expressions into (12.4.2.7) yields
∫

K
epx
{ n∑

k=0

akp
ku(p) –

n∑

k=0

bk
d

dp

[
pku(p)

]}
dp +

n∑

k=0

bk

[
epxpku(p)

]

K
= 0. (12.4.2.12)

This equation is satisfied if the expression in braces vanishes, thus resulting in a linear
first-order ordinary differential equation for u(p):

u(p)
n∑

k=0

akp
k –

d

dp

[
u(p)

n∑

k=0

bkp
k
]

= 0. (12.4.2.13)

The remaining term in (12.4.2.12) must also vanish:

[ n∑

k=0

bke
pxpku(p)

]

K
= 0. (12.4.2.14)

This condition can be met by appropriately selecting the path of integration K. Consider
the example below to illustrate the aforesaid.
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Example 2. The linear variable-coefficient second-order equation

xy′′xx + (x + a + b)y′x + ay = 0 (a > 0, b > 0) (12.4.2.15)

is a special case of equation (12.4.2.7) with n = 2, a2 = 0, a1 = a + b, a0 = a, b2 = b1 = 1, and b0 = 0. On
substituting these values into (12.4.2.13), we arrive at an equation for u(p):

p(p + 1)u′
p – [(a + b – 2)p + a – 1]u = 0.

Its solution is given by
u(p) = pa–1(p + 1)b–1. (12.4.2.16)

It follows from condition (12.4.2.14), in view of formula (12.4.2.16), that
[
epx(p + p2)u(p)

]β

α
=
[
epxpa(p + 1)b

]β

α
= 0, (12.4.2.17)

where a segment of the real axis, K = [α, β], has been chosen to be the path of integration. Condition (12.4.2.17)
is satisfied if we set α = –1 and β = 0. Consequently, one of the solutions to equation (12.4.2.15) has the form

y(x) =
∫ 0

–1
epxpa–1(p + 1)b–1 dp. (12.4.2.18)

Remark 1. If a is noninteger, it is necessary to separate the real and imaginary parts in (12.4.2.18) to
obtain real solutions.

Remark 2. By setting α = –∞ and β = 0 in (12.4.2.17), one can find a second solution to equation
(12.4.2.15) (at least for x > 0).

12.4.3. Asymptotic Solutions of Linear Equations
This subsection presents asymptotic solutions, as ε → 0 (ε > 0), of some higher-order
linear ordinary differential equations containing arbitrary functions (sufficiently smooth),
with the independent variable being real.

12.4.3-1. Fourth-order linear equations.

1◦. Consider the equation
ε4y′′′′xxxx – f (x)y = 0

on a closed interval a ≤ x ≤ b. With the condition f > 0, the leading terms of the asymptotic
expansions of the fundamental system of solutions, as ε→ 0, are given by the formulas

y1 = [f (x)]–3/8 exp

{
–

1
ε

∫
[f (x)]1/4 dx

}
, y2 = [f (x)]–3/8 exp

{
1
ε

∫
[f (x)]1/4 dx

}
,

y3 = [f (x)]–3/8 cos

{
1
ε

∫
[f (x)]1/4 dx

}
, y4 = [f (x)]–3/8 sin

{
1
ε

∫
[f (x)]1/4 dx

}
.

2◦. Now consider the “biquadratic” equation

ε4y′′′′xxxx – 2ε2g(x)y′′xx – f (x)y = 0. (12.4.3.1)

Introduce the notation
D(x) = [g(x)]2 + f (x).

In the range where the conditions f (x) ≠ 0 and D(x) ≠ 0 are satisfied, the leading terms
of the asymptotic expansions of the fundamental system of solutions of equation (12.4.3.1)
are described by the formulas

yk = [λk(x)]–1/2[D(x)]–1/4 exp

{
1
ε

∫
λk(x) dx –

1
2

∫
[λk(x)]′x√
D(x)

dx

}
; k = 1, 2, 3, 4,

where
λ1(x) =

√
g(x) +

√
D(x), λ2(x) = –

√
g(x) +

√
D(x),

λ3(x) =
√
g(x) –

√
D(x), λ4(x) = –

√
g(x) –

√
D(x).
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12.4.3-2. Higher-order linear equations.

1◦. Consider an equation of the form

εny(n)
x – f (x)y = 0

on a closed interval a ≤ x ≤ b. Assume that f ≠ 0. Then the leading terms of the asymptotic
expansions of the fundamental system of solutions, as ε→ 0, are given by

ym =
[
f (x)

]– 1
2 + 1

2n exp

{
ωm
ε

∫ [
f (x)

] 1
n dx

}
[

1 +O(ε)
]
,

where ω1, ω2, . . . , ωn are roots of the equation ωn = 1:

ωm = cos
( 2πm

n

)
+ i sin

( 2πm
n

)
, m = 1, 2, . . . , n.

2◦. Now consider an equation of the form

εny(n)
x + εn–1fn–1(x)y(n–1)

x + · · · + εf1(x)y′x + f0(x)y = 0 (12.4.3.2)
on a closed interval a ≤ x ≤ b. Let λm = λm(x) (m = 1, 2, . . . ,n) be the roots of the
characteristic equation

P (x,λ) ≡ λn + fn–1(x)λn–1 + · · · + f1(x)λ + f0(x) = 0.

Let all the roots of the characteristic equation be different on the interval a ≤ x ≤ b, i.e., the
conditions λm(x) ≠ λk(x), m ≠ k, are satisfied, which is equivalent to the fulfillment of
the conditions Pλ(x,λm) ≠ 0. Then the leading terms of the asymptotic expansions of the
fundamental system of solutions of equation (12.4.3.2), as ε→ 0, are given by

ym = exp

{
1
ε

∫
λm(x) dx –

1
2

∫
[λm(x)]′x

Pλλ
(
x,λm(x)

)

Pλ
(
x,λm(x)

) dx
}

,

where

Pλ(x,λ) ≡
∂P

∂λ
= nλn–1 + (n – 1)fn–1(x)λn–2 + · · · + 2λf2(x) + f1(x),

Pλλ(x,λ) ≡
∂2P

∂λ2 = n(n – 1)λn–2 + (n – 1)(n – 2)fn–1(x)λn–3 + · · · + 6λf3(x) + 2f2(x).

12.4.4. Collocation Method and Its Convergence

12.4.4-1. Statement of the problem. Approximate solution.

1◦. Consider the linear boundary value problem defined by the equation

Ly ≡ y(n)
x + fn–1(x)y(n–1)

x + · · · + f1(x)y′x + f0(x)y = g(x), –1 < x < 1, (12.4.4.1)

and the boundary conditions
n–1∑

j=0

[
αijy

(j)
x (–1) + βijy

(j)
x (1)

]
= 0, i = 1, . . . ,n. (12.4.4.2)

2◦. We seek an approximate solution to problem (12.4.4.1)–(12.4.4.2) in the form
ym(x) = A1ϕ1(x) + A2ϕ2(x) + · · · + Amϕm(x),

where ϕk(x) is a polynomial of degree n + k – 1 that satisfies the boundary conditions
(12.4.4.2). The coefficients Ak are determined by the linear system of algebraic equations[

Lym – g(x)
]
x=xi

= 0, i = 1, . . . ,m, (12.4.4.3)

with Chebyshev nodes xi = cos
( 2i – 1

2m
π
)

, i = 1, . . . , m.
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12.4.4-2. Convergence theorem for the collocation method.

THEOREM. Let the functions fj(x) (j = 0, . . . ,n – 1) and g(x) be continuous on the
interval [–1, 1] and let the boundary value problem (12.4.4.1)–(12.4.4.2) have a unique
solution, y(x). Then there exists an m0 such that system (12.4.4.3) is uniquely solvable for
m ≥ m0; and the limit relations

max
–1≤x≤1

∣
∣y(k)
m (x) – y(k)(x)

∣
∣→ 0, k = 0, 1, . . . , n – 1;

{∫ 1

–1

∣∣y(n)
m (x) – y(n)(x)

∣∣2

√
1 – x2

dx

}1/2
→ 0

hold for m→ ∞.

Remark. A similar result holds true if the nodes are roots of some orthogonal polynomials with some
weight function. If the nodes are equidistant, the method diverges.

12.5. Nonlinear Equations of Arbitrary Order

12.5.1. Structure of the General Solution. Cauchy Problem

12.5.1-1. Equations solved for the highest derivative. General solution.

An nth-order differential equation solved for the highest derivative has the form

y(n)
x = f (x, y, y′x, . . . , y(n–1)

x ). (12.5.1.1)

The general solution of this equation depends on n arbitrary constants C1, . . . ,Cn. In
some cases, the general solution can be written in explicit form as

y = ϕ(x,C1, . . . ,Cn). (12.5.1.2)

12.5.1-2. Cauchy problem. The existence and uniqueness theorem.

The Cauchy problem: find a solution of equation (12.5.1.1) with the initial conditions

y(x0) = y0, y′x(x0) = y(1)
0 , . . . , y(n–1)

x (x0) = y(n–1)
0 . (12.5.1.3)

(At a point x0, the values of the unknown function y(x) and all its derivatives of orders
≤ n – 1 are prescribed.)

EXISTENCE AND UNIQUENESS THEOREM. Suppose the function f (x, y, z1, . . . , zn–1) is
continuous in all its arguments in a neighborhood of the point (x0, y0, y(1)

0 , . . . , y(n–1)
0 )

and has bounded derivatives with respect to y, z1, . . . , zn–1 in this neighborhood. Then
a solution of equation (12.5.1.1) satisfying the initial conditions (12.5.1.3) exists and is
unique.
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12.5.1-3. Construction of a differential equation by a given general solution.

Suppose a general solution (12.5.1.2) of an unknownnth-order ordinary differential equation
is given. The equation corresponding to the general solution can be obtained by eliminating
the arbitrary constants C1, . . . , Cn from the identities

y = ϕ(x,C1, . . . ,Cn),

y′x = ϕ′
x(x,C1, . . . ,Cn),

. . . . . . . . . . . . . . . . . . . . . . . . . .

y(n)
x = ϕ(n)

x (x,C1, . . . ,Cn),

obtained by differentiation from formula (12.5.1.2).

12.5.1-4. Reduction of an nth-order equation to a system of n first-order equation.

The differential equation (12.5.1.1) is equivalent to the following system of n first-order
equations:

y′0 = y1, y′1 = y2, . . . , y′n–2 = yn–1, y′n–1 = f (x, y0, y1, . . . , yn–1),

where the notation y0 ≡ y is adopted.

12.5.2. Equations Admitting Reduction of Order

12.5.2-1. Equations not containing y, y′x, . . . , y(k)
x explicitly.

An equation that does not explicitly contain the unknown function and its derivatives up to
order k inclusive can generally be written as

F
(
x, y(k+1)

x , . . . , y(n)
x

)
= 0 (1 ≤ k + 1 < n). (12.5.2.1)

Such equations are invariant under arbitrary translations of the unknown function, y →
y + const (the form of such equations is also preserved under the transformation u(x) =
y+akxk+· · ·+a1x+a0, where the am are arbitrary constants). The substitution z(x) = y(k+1)

x
reduces (12.5.2.1) to an equation whose order is by k + 1 smaller than that of the original
equation, F

(
x, z, z′x, . . . , z(n–k–1)

x

)
= 0.

12.5.2-2. Equations not containing x explicitly (autonomous equations).

An equation that does not explicitly contain x has in the general form

F
(
y, y′x, . . . , y(n)

x

)
= 0. (12.5.2.2)

Such equations are invariant under arbitrary translations of the independent variable, x→
x + const. The substitution y′x = w(y) (where y plays the role of the independent variable)
reduces by one the order of an autonomous equation. Higher derivatives can be expressed
in terms of w and its derivatives with respect to the new independent variable, y′′xx = ww′

y ,
y′′′xxx = w2w′′

yy + w(w′
y)2, . . .
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12.5.2-3. Equations of the form F
(
ax + by, y′x, . . . , y(n)

x

)
= 0.

Such equations are invariant under simultaneous translations of the independent variable
and the unknown function, x→ x + bc and y → y – ac, where c is an arbitrary constant.

For b = 0, see equation (12.5.2.1). For b ≠ 0, the substitution w(x) = y + (a/b)x leads
to an autonomous equation of the form (12.5.2.2).

12.5.2-4. Equations of the form F
(
x,xy′x – y, y′′xx, . . . , y(n)

x

)
= 0.

The substitution w(x) = xy′x – y reduces the order of this equation by one.
This equation is a special case of the equation

F
(
x,xy′x – my, y(m+1)

x , . . . , y(n)
x

)
= 0, where m = 1, 2, . . . , n – 1. (12.5.2.3)

The substitution w(x) = xy′x –my reduces by one the order of equation (12.5.2.3).

12.5.2-5. Homogeneous equations.

1◦. Equations homogeneous in the independent variable are invariant under scaling of the
independent variable, x→ αx , where α is an arbitrary constant (α ≠ 0). In general, such
equations can be written in the form

F
(
y,xy′x,x2y′′xx, . . . ,xny(n)

x

)
= 0.

The substitution z(y) = xy′x reduces by one the order of this equation.

2◦. Equations homogeneous in the unknown function are invariant under scaling of the
unknown function, y → αy, where α is an arbitrary constant (α ≠ 0). Such equations can
be written in the general form

F
(
x, y′x/y, y′′xx/y, . . . , y(n)

x /y
)

= 0.

The substitution z(x) = y′x/y reduces by one the order of this equation.

3◦. Equations homogeneous in both variables are invariant under simultaneous scaling
(dilatation) of the independent and dependent variables, x→ αx and y → αy, where α
is an arbitrary constant (α ≠ 0). Such equations can be written in the general form

F
(
y/x, y′x,xy′′xx, . . . ,xn–1y(n)

x

)
= 0.

The transformation t = ln |x|, w = y/x leads to an autonomous equation considered in
Paragraph 12.5.2-2.

12.5.2-6. Generalized homogeneous equations.

1◦. Generalized homogeneous equations (equations homogeneous in the generalized sense)
are invariant under simultaneous scaling of the independent variable and the unknown
function, x → αx and y → αky, where α ≠ 0 is an arbitrary constant and k is a given
number. Such equations can be written in the general form

F
(
x–ky,x1–ky′x, . . . ,xn–ky(n)

x

)
= 0.

The transformation t = lnx, w = x–ky leads to an autonomous equation considered in
Paragraph 12.5.2-2.
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2◦. The most general form of generalized homogeneous equations is

F(xnym,xy′x/y, . . . ,xny(n)
x /y

)
= 0.

The transformation z = xnym, u = xy′x/y reduces the order of this equation by one.

12.5.2-7. Equations of the form F
(
eλxyn, y′x/y, y′′xx/y, . . . , y(n)

x /y
)

= 0.

Such equations are invariant under simultaneous translation and scaling of variables,
x→ x + α and y → βy, where β = exp(–αλ/n) and α is an arbitrary constant. The
transformation z = eλxyn, w = y′x/y leads to an equation of order n – 1.

12.5.2-8. Equations of the form F
(
xneλy, xy′x, x2y′′xx, . . . , xny(n)

x

)
= 0.

Such equations are invariant under simultaneous scaling and translation of variables, x→
αx and y→y+β, where α=exp(–βλ/n) and β is an arbitrary constant. The transformation
z = xneλy , w = xy′x leads to an equation of order n – 1.

12.5.2-9. Other equations.

Consider the nonlinear differential equation

F
(
x, L1[y], . . . , Lk[y]

)
= 0, (12.5.2.4)

where the Ls[y] are linear homogeneous differential forms,

Ls[y] =
ns∑

m=0

ϕ(s)
m (x)y(m)

x , s = 1, . . . , k.

Let y0 = y0(x) be a common particular solution of the linear equations

Ls[y0] = 0 (s = 1, . . . , k).

Then the substitution
w = ϕ(x)

[
y0(x)y′x – y′0(x)y

]
(12.5.2.5)

with an arbitrary function ϕ(x) reduces by one the order of equation (12.5.2.4).

Example. Consider the third-order equation

xy′′′xxx = f (xy′x – 2y).

It can be represented in the form (12.5.2.4) with

k = 2, F (x,u,w) = xu – f (w), L1[y] = y′′′xxx, L2[y] = xy′x – 2y.

The linear equations Lk[y] = 0 are
y′′′xxx = 0, xy′x – 2y = 0.

These equations have a common particular solution y0 = x2. Therefore, the substitution w = xy′x – 2y (see
formula (12.5.2.5) with ϕ(x) = 1/x) leads to a second-order autonomous equation: w′′

xx = f (w). For the
solution of this equation, see Example 1 in Subsection 12.3.2.
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12.6. Linear Systems of Ordinary Differential Equations

12.6.1. Systems of Linear Constant-Coefficient Equations

12.6.1-1. Systems of first-order linear homogeneous equations. The general solution.

1◦. In general, a homogeneous linear system of constant-coefficient first-order ordinary
differential equations has the form

y′1 = a11y1 + a12y2 + · · · + a1nyn,

y′2 = a21y1 + a22y2 + · · · + a2nyn,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y′n = an1y1 + an2y2 + · · · + annyn,

(12.6.1.1)

where a prime stands for the derivative with respect tox. In the sequel, all the coefficients aij
of the system are assumed to be real numbers.

The homogeneous system (12.6.1.1) has the trivial particular solution y1 = y2 = · · · =
yn = 0.

Superposition principle for a homogeneous system: any linear combination of particular
solutions of system (12.6.1.1) is also a solution of this system.

The general solution of the system of differential equations (12.6.1.1) is the sum of its
n linearly independent (nontrivial) particular solutions multiplied by an arbitrary constant.

System (12.6.1.1) can be reduced to a single homogeneous linear constant-coefficient
nth-order equation; see Paragraph 12.7.1-3.

2◦. For brevity (and clearness), system (12.6.1.1) is conventionally written in vector-matrix
form:

y′ = ay, (12.6.1.2)

where y = (y1, y2, . . . , yn)T is the column vector of the unknowns and a = (aij) is the matrix
of the equation coefficients. The superscript T denotes the transpose of a matrix or a vector.
So, for example, a row vector is converted into a column vector:

(y1, y2)T ≡
(
y1

y2

)
.

The right-hand side of equation (12.6.1.2) is the product of the n ×n square matrix a by the
n × 1 matrix (column vector) y.

Let yk = (yk1, yk2, . . . , ykn)T be linearly independent particular solutions* of the ho-
mogeneous system (12.6.1.1), where k = 1, 2, . . . , n; the first subscript in ykm = ykm(x)
denotes the number of the solution and the second subscript indicates the component of
the vector solution. Then the general solution of the homogeneous system (12.6.1.2) is
expressed as

y = C1y1 + C2y2 + · · · + Cnyn. (12.6.1.3)

A method for the construction of particular solutions that can be used to obtain the general
solution by formula (12.6.1.3) is presented below.

* This means that the condition det |ymk(x)| ≠ 0 holds.



12.6. LINEAR SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS 529

12.6.1-2. Systems of first-order linear homogeneous equations. Particular solutions.

Particular solutions to system (12.6.1.1) are determined by the roots of the characteristic
equation

Δ(λ) = 0, where Δ(λ) ≡

∣
∣∣
∣∣
∣
∣

a11 – λ a12 . . . a1n
a21 a22 – λ . . . a2n
. . . . . . . . . . . .
an1 an2 . . . ann – λ

∣
∣∣
∣∣
∣
∣

. (12.6.1.4)

The following cases are possible:

1◦. Let λ = λk be a simple real root of the characteristic equation (12.6.1.4). The corre-
sponding particular solution of the homogeneous linear system of equations (12.6.1.1) has
the exponential form

y1 = A1e
λx, y2 = A2e

λx, . . . , yn = Ane
λx, (12.6.1.5)

where the coefficients A1, A2, . . . , An are determined by solving the associated homoge-
neous system of algebraic equations obtained by substituting expressions (12.6.1.5) into the
differential equation (12.6.1.1) and dividing by eλx:

(a11 – λ)A1 + a12A2 + · · · + a1nAn = 0,
a21A1 + (a22 – λ)A2 + · · · + a2nAn = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an1A1 + an2A2 + · · · + (ann – λ)An = 0.

(12.6.1.6)

The solution of this system is unique to within a constant factor.
If all roots of the characteristic equation λ1, λ2, . . . , λn are real and distinct, then the

general solution of system (12.6.1.1) has the form

y1 = C1A11e
λ1x + C2A12e

λ2x + · · · + CnA1ne
λnx,

y2 = C1A21e
λ1x + C2A22e

λ2x + · · · + CnA2ne
λnx,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yn = C1An1e
λ1x + C2An2e

λ2x + · · · + CnAnne
λnx,

(12.6.1.7)

where C1, C2, . . . , Cn are arbitrary constants. The second subscript in Amk indicates a
coefficient corresponding to the root λk.

2◦. For each simple complex root, λ = α � iβ, of the characteristic equation (12.6.1.4),
the corresponding particular solution is obtained in the same way as in the simple real root
case; the associated coefficients A1, A2, . . . , An in (12.6.1.5) will be complex. Separating
the real and imaginary parts in (12.6.1.5) results in two real particular solutions to system
(12.6.1.1); the same two solutions are obtained if one takes the complex conjugate root,
λ̄ = α – iβ.

3◦. Let λ be a real root of the characteristic equation (12.6.1.4) of multiplicity m. The
corresponding particular solution of system (12.6.1.1) is sought in the form

y1 = P1(x)eλx, y2 = P2(x)eλx, . . . , yn = Pn(x)eλx, (12.6.1.8)

where the Pk(x) =
m–1∑

i=0
Bkix

i are polynomials of degree m – 1. The coefficients of these

polynomials result from the substitution of expressions (12.6.1.8) into equations (12.6.1.1);
after dividing by eλx and collecting like terms, one obtains n equations, each representing
a polynomial equated to zero. By equating the coefficients of all resulting polynomials
to zero, one arrives at a linear algebraic system of equations for the coefficients Bki; the
solution to this system will contain m free parameters.
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4◦. For a multiple complex, λ = α + iβ, of multiplicity m, the corresponding particular
solution is sought, just as in the case of a multiple real root, in the form (12.6.1.8); here
the coefficients Bki of the polynomials Pk(x) will be complex. Finally, in order to obtain
real solutions of the original system (12.6.1.1), one separates the real and imaginary parts
in formulas (12.6.1.8), thus obtaining two particular solutions withm free parameters each.
The two solutions correspond to the complex conjugate roots λ = α � iβ.

5◦. In the general case, where the characteristic equation (12.6.1.4) has simple and multiple,
real and complex roots (see Items 1◦– 4◦), the general solution to system (12.6.1.1) is
obtained as the sum of all particular solutions multiplied by arbitrary constants.

Example 1. Consider the homogeneous system of two linear differential equations

y′1 = y1 + 4y2,

y′2 = y1 + y2.

The associated characteristic equations,
∣
∣
∣
∣

1 – λ 4
1 1 – λ

∣
∣
∣
∣ = λ2 – 2λ – 3 = 0,

has distinct real roots:
λ1 = 3, λ2 = –1.

The system of algebraic equations (12.6.1.6) for solution coefficients becomes

(1 – λ)A1 + 4A2 = 0,

A1 + (1 – λ)A2 = 0.
(12.6.1.9)

Substituting the first root, λ = 3, into system (12.6.1.9) yieldsA1 = 2A2. We can setA1 = 2 andA2 = 1, since
the solution is determined to within a constant factor. Thus the first particular solution of the homogeneous
system of linear ordinary differential equations (12.6.1.9) has the form

y1 = 2e3x, y2 = e3x. (12.6.1.10)

The second particular solution, corresponding to λ = –1, is found in the same way:

y1 = –2e–x, y2 = e–x. (12.6.1.11)

The sum of the two particular solutions (12.6.1.10), (12.6.1.11) multiplied by arbitrary constants,C1 andC2,
gives the general solution to the original homogeneous system of linear ordinary differential equations:

y1 = 2C1e
3x – 2C2e

–x, y2 = C1e
3x + C2e

–x.

Example 2. Consider the system of ordinary differential equations

y′1 = –y2,

y′2 = 2y1 + 2y2.
(12.6.1.12)

The characteristic equation, ∣
∣
∣
∣

–λ –1
2 2 – λ

∣
∣
∣
∣ = λ2 – 2λ + 2 = 0

has complex conjugate roots:
λ1 = 1 + i, λ2 = 1 – i.

The algebraic system (12.6.1.6) for the complex coefficients A1 and A2 becomes

–λA1 – A2 = 0,

2A1 + (2 – λ)A2 = 0.

With λ = 1 + i, one nonzero solution is given by A1 = 1 and A2 = –1 – i. The corresponding complex solution
to system (12.6.1.12) has the form

y1 = e(1+i)x, y2 = (–1 – i)e(1+i)x.
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Separating the real and imaginary parts, taking into account the formulas

e(1+i)x = ex(cosx + i sinx) = ex cosx + iex sinx,

(–1 – i)e(1+i)x = –(1 + i)ex(cosx + i sinx) = ex(sinx – cosx) – iex(sinx + cosx),

and making linear combinations from them, one arrives at the general solution to the original system (12.6.1.12):

y1 = C1e
x cos x + C2e

x sinx,

y2 = C1e
x(sinx – cos x) – C2e

x(sinx + cosx).

Remark. Systems of two homogeneous linear constant-coefficient second-order differential equations are
treated in detail in Paragraph 12.6.1-7.

12.6.1-3. Nonhomogeneous systems of linear first-order equations.

1◦. In general, a nonhomogeneous linear system of constant-coefficient first-order ordinary
differential equations has the form

y′1 = a11y1 + a12y2 + · · · + a1nyn + f1(x),

y′2 = a21y1 + a22y2 + · · · + a2nyn + f2(x),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y′n = an1y1 + an2y2 + · · · + annyn + fn(x).

(12.6.1.13)

For brevity, the conventional vector notation will also be used:

y′ = ay + f(x),

where f(x) = (f1(x), f2(x), . . . , fn(x))T.
The general solution of this system is the sum of the general solution to the corresponding

homogeneous system with fk(x) ≡ 0 [see system (12.6.1.1)] and any particular solution of
the nonhomogeneous system (12.6.1.13).

System (12.6.1.13) can also be reduced to a single nonhomogeneous linear constant-
coefficient nth-order equation; see Paragraph 12.7.1-3.

2◦. Let ym = (Dm1(x),Dm1(x), . . . ,Dmn(x))T be particular solutions to the homogeneous
linear system of constant-coefficient first-order ordinary differential equations (12.6.1.1)
that satisfy the special initial conditions

ym(0) = 1, yk(0) = 0 if k ≠ m; m, k = 1, . . . , n.

Then the general solution to the nonhomogeneous system (12.6.1.13) is expressed as

yk(x) =
n∑

m=1

∫ x

0
fm(t)Dmk(x – t) dt +

n∑

m=1

CmDmk(x), k = 1, . . . ,n. (12.6.1.14)

Alternatively, the general solution to the nonhomogeneous linear system of equations
(12.6.1.13) can be obtained using the formulas from Paragraph 12.6.2-2.

The solution of the Cauchy problem for the nonhomogeneous system (12.6.1.13) with
arbitrary initial conditions,

y1(0) = y◦1 , y2(0) = y◦2 , . . . , yn(0) = y◦n, (12.6.1.15)

is determined by formulas (12.6.1.14) with Cm = y◦m, m = 1, . . . ,n.
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12.6.1-4. Homogeneous linear systems of higher-order differential equations.

An arbitrary system of homogeneous linear systems of constant-coefficient ordinary dif-
ferential equations consists of n equations, each representing a linear combination of
unknowns, yk, and their derivatives, y′k, y′′k , . . . , y(mk)

k , k = 1, 2, . . . , n.
The general solution of such systems is a linear combination of particular solutions

multiplied by arbitrary constants. In total, such a system has m1 + m2 + · · · + mn linearly
independent particular solutions (the system is assumed to be consistent and nondegenerate,
so that the constituent equations are linearly independent).

Particular solutions of the system are sought in the form (12.6.1.5). On substituting these
expressions into the differential equations and dividing by eλx, one obtains a homogeneous
linear algebraic system for coefficients A1, A2, . . . , An. For this system to have nontrivial
solutions, the determinant of the system must vanish. This results in an algebraic equation
for the exponent λ; in physics, this equation is called a dispersion equation. To different
roots of the dispersion equation there correspond different particular solutions of the original
system of equations. For simple real and complex-conjugate roots, the procedure of finding
particular solutions is the same as in the case of a linear system of first-order equations
(12.6.1.1).

Example 3. Consider the linear system of constant-coefficient second-order equations

y′′1 + y′2 + ay2 = 0,

y′′2 + y′1 + ay1 = 0.
(12.6.1.16)

Particular solutions are sought in the form

y1 = A1e
λx, y2 = A2e

λx. (12.6.1.17)

Substituting (12.6.1.17) into (12.6.1.16) yields a homogeneous linear algebraic system for the coefficients A1
and A2:

λ2A1 + (λ + a)A2 = 0,

(λ + a)A1 + λ2A2 = 0.
(12.6.1.18)

For this system to have nontrivial solutions, its determinant must vanish. This results in the dispersion equation

∣∣
∣
∣
λ2 λ + a
λ + a λ2

∣∣
∣
∣ = λ4 – (λ + a)2 = 0.

Its roots are

λ1,2 = 1
2 �

√
1
4 + a, λ3,4 = – 1

2 �

√
1
4 – a. (12.6.1.19)

Let us confine ourselves to the simplest case of – 1
4 < a < 1

4 , where all roots of the dispersion equation are
real and distinct. It follows from the system of algebraic equations (12.6.1.18) that A1 = λ + a and A2 = –λ2,
where λ = λn. Substituting these values into (12.6.1.17) yields the particular solutions y1n = (λn + a)eλnx,
y2n = –λ2

ne
λnx (n = 1, 2, 3, 4). A linear combination of the particular solutions gives the general solution of

system (12.6.1.16):

y1 = C1(λ1 + a)eλ1x + C2(λ2 + a)eλ2x + C3(λ3 + a)eλ3x + C4(λ4 + a)eλ4x,

y2 = –C1λ
2
1e

λ1x – C2λ
2
2e

λ2x – C3λ
2
3e

λ3x – C4λ
2
4e

λ4x,

where C1, C2, C3, and C4 are arbitrary constants, and the roots λn are determined by formulas (12.6.1.19).

Remark. Paragraph 12.6.1-6 (see Item 2◦) presents a method for the solution of systems of arbitrary
homogeneous linear constant-coefficients ordinary differential equations using the Laplace transform.
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12.6.1-5. Nonhomogeneous higher-order linear systems. D’Alembert’s method.

Consider the system of two linear constant-coefficient mth-order differential equations

y(m)
1 = a11y1 + a12y2 + f1(x),

y(m)
2 = a21y1 + a22y2 + f2(x).

(12.6.1.20)

Let us multiply the second equation of system (12.6.1.20) by k and add it termwise to
the first equation to obtain, after rearrangement,

(y1 + ky2)(m) = (a11 + ka21)

(
y1 +

a12 + ka22

a11 + ka21
y2

)
+ f1(x) + kf2(x). (12.6.1.21)

Let us take the constant k so that
a12 + ka22

a11 + ka21
= k, which results in a quadratic equation

for k:
a21k

2 + (a11 – a22)k – a12 = 0. (12.6.1.22)

In this case, (12.6.1.21) is a nonhomogeneous linear constant-coefficient equation for z =
y1 + ky2: z(m) = (a11 + ka21)z + f1(x) + kf2(x). Integrating this equation yields

y1 + ky2 = C1ϕ1(x, k) + · · · + Cmϕm(x, k) + ψ(x, k).

It follows that if the roots of the quadratic equation (12.6.1.22) are distinct, we have two
relations,

y1 + k1y2 = C1ϕ1(x, k1) + · · · + Cmϕm(x, k1) + ψ(x, k1),
y1 + k2y2 = Cm+1ϕ1(x, k2) + · · · + C2mϕm(x, k2) + ψ(x, k2),

which represent a linear algebraic system of equations for the functions y1 and y2.

Remark 1. The above method for the solution of system (12.6.1.20) is known as D Alembert’s method.
The quantity z = y1 + ky2 in the above reasoning gives an example of an integrable combination (see
Paragraph 12.7.2-1).

Remark 2. The more complicated system where y1 and y2 on the right-hand side are replaced by the
derivatives of the same order, y(n)

1 and y(n)
2 , can be treated likewise.

Remark 3. System (12.6.1.20) can be solved using the Laplace transform (see Paragraph 12.6.1-6).

12.6.1-6. Usage of the Laplace transform for solving linear systems of equations.

1◦. To solve the Cauchy problem for the nonhomogeneous linear system of differential
equations (12.6.1.13) with the initial conditions (12.6.1.15), one can use the Laplace trans-
form, based on the following formulas (for details, see Section 11.2):

ỹk(p) = L
{
yk(x)

}
, f̃k(p) = L

{
fk(x)

}
, where L

{
f (x)

}
≡
∫ ∞

0
e–pxf (x) dx.

To this end, one should multiply each equation in (12.6.1.13) by e–px and then integrate
with respect to x from zero to infinity. In view of the differentiation rule L

{
y′k(x)

}
=
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pỹk(p)–yk(0) and the initial conditions (12.6.1.15), one arrives at a nonhomogeneous linear
system of algebraic equations for the transforms ỹk(p):

(a11 – p)ỹ1 + a12ỹ2 + · · · + a1nỹn = –f̃ 1(p) – y◦1 ,

a21ỹ1 + (a22 – p)ỹ2 + · · · + a2nỹn = –f̃ 2(p) – y◦2 ,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1ỹ1 + an2ỹ2 + · · · + (ann – p)ỹn = –f̃n(p) – y◦n.

(12.6.1.23)

The solution of this system is obtained by Kramer’s rule and is given by

ỹk =
Δk(p)
Δ(p)

; k = 1, . . . ,n, (12.6.1.24)

where Δ(p) is the determinant of the basic matrix of system (12.6.1.23), coinciding with
the determinant in (12.6.1.4) with λ = p, and Δk(p) is the determinant of the matrix
obtained from the basic matrix by replacing its kth column with the column of free terms
of system (12.6.1.23).

On applying the Laplace inversion formula (see Section 11.2) to (12.6.1.24), one obtains
a solution to the Cauchy problem (12.6.1.13), (12.6.1.15) in the form

yk(x) =
1

2πi

∫ c+i∞

c–i∞

Δk(p)
Δ(p)

epx dp; k = 1, . . . ,n.

The formulas from Paragraph 11.2.2-2 and tables from Section T3.2 can be used to find the
inverse Laplace transform of the function Δk(p)/Δ(p).

2◦. The Laplace transform is also suitable for the solution of systems of constant-coefficient
second- and higher-order ordinary differential equations.

Example 4. Consider the Cauchy problem for the nonhomogeneous linear system of constant-coefficient
second-order differential equations

n∑

k=1

(
amky

′′
k + bmky

′
k + cmkyk

)
= fm(x), m = 1, 2, . . . , n,

subject to the initial conditions

yk(0) = αk , y′k(0) = βk, k = 1, 2, . . . , n.

The Laplace transform reduces this problem to a linear system of algebraic equations for the transform ỹk(p):

n∑

k=1

(
amkp

2 + bmkp + cmk

)
ỹk(p) = f̃m(p) +

n∑

k=1

[
(amkp + bmk)αk + βk

]
, m = 1, 2, . . . , n.

The solution to this system can be obtained using Kramer’s rule. By applying then the inverse Laplace transform
to the resulting expressions of ỹk(p), one obtains the solution to the Cauchy problem.

12.6.1-7. Classification of equilibrium points of two-dimensional linear systems.

Let us study the behavior of solutions near the equilibrium (also called stationary, steady-
state, or fixed) point x = y = 0 for the system of two homogeneous linear constant-coefficient
equations

x′t = a11x + a12y,

y′t = a21x + a22y.
(12.6.1.25)
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By convention, for clearness and convenience of interpretation of the results, t will be used
to designate the independent variable and will be treated as time. A solution x = x(t),
y = y(t) of system (12.6.1.25) plotted in the plane x, y (the phase plane) is called a (phase)
trajectory of the system.

A solution to system (12.6.1.25) will be sought in the form

x = k1e
λt, y = k2e

λt. (12.6.1.26)

On substituting (12.6.1.26) into (12.6.1.25), one obtains the characteristic equation for the
exponent λ:
∣∣
∣∣
a11 – λ a12

a21 a22 – λ

∣∣
∣∣ = 0, or λ2 – (a11 + a22)λ + a11a22 – a12a21 = 0. (12.6.1.27)

The coefficients k1 and k2 are found as

k1 = Ca12, k2 = C(λ – a11), (12.6.1.28)

whereC is an arbitrary constant. To two different roots of the quadratic equation (12.6.1.27)
there correspond two pairs of coefficients (12.6.1.28).

Denote the discriminant of the quadratic equation (12.6.1.27) by

D = (a11 – a22)2 + 4a12a21. (12.6.1.29)

Three situations are possible.

1◦. If D > 0, the roots of the characteristic equation (12.6.1.27) are real and distinct
(λ1 ≠ λ2):

λ1,2 = 1
2 (a11 + a22) � 1

2

√
D.

The general solution of system (12.6.1.25) is expressed as

x = C1a12e
λ1t + C2a12e

λ2t,

y = C1(λ1 – a11)eλ1t + C2(λ2 – a11)eλ2t,
(12.6.1.30)

where C1 and C2 are arbitrary constants. For C1 = 0, C2 ≠ 0 and C2 = 0, C1 ≠ 0, the
trajectories in the phase plane x, y are straight lines. Four cases are possible here.

1.1. Two negative real roots, λ1 < 0 and λ2 < 0. This corresponds to a11 + a22 < 0 and
a11a22–a12a21 > 0. The equilibrium point is asymptotically stable and all trajectories starting
within a small neighborhood of the origin tend to the origin as t → ∞. To C1 = 0, C2 ≠ 0
and C2 = 0, C1 ≠ 0 there correspond straight lines passing through the origin. Figure 12.4 a
depicts the arrangement of the phase trajectories near an equilibrium point called a stable
node (or a sink). The direction of motion along the trajectories with increasing t is shown
by arrows.

O

( )a

stable node
(sink)

λ < 0, λ < 01 2
( )b

O

unstable node
(source)

λ > 0, λ > 01 2

Figure 12.4. Phase trajectories of a system of differential equations near an equilibrium point of the node type.
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1.2. λ1 > 0 and λ2 > 0. This corresponds to a11 + a22 > 0 and a11a22 – a12a21 > 0.
The phase trajectories in the vicinity of the equilibrium point have the same pattern as in
the preceding case; however, the trajectories go in the opposite direction, away from the
equilibrium point; see Fig. 12.4 b. An equilibrium point of this type is called an unstable
node (or a source).

1.3. λ1 > 0 and λ2 < 0 (or λ1 < 0 and λ2 > 0). This corresponds to a11a22 – a12a21 < 0.
In this case, the equilibrium point is also unstable, since the trajectory (12.6.1.30) with
C2 = 0 goes beyond a small neighborhood of the origin as t increases. If C1C2 ≠ 0, then the
trajectories leave the neighborhood of the origin as t → –∞ and t → ∞. An equilibrium
point of this type is called a saddle (or a hyperbolic point); see Fig. 12.5.

O

λ > 0, λ < 0
(λ < 0, > )λ 0

saddle

1

1

2

2

Figure 12.5. Phase trajectories of a system of differential equations near an equilibrium point of the saddle
type.

1.4. λ1 = 0 and λ2 = a11 +a22 ≠ 0. This corresponds to a11a22 –a12a21 = 0. The general
solution of system (12.6.1.25) is expressed as

x = C1a12 + C2a12e
(a11+a22)t,

y = –C1a11 + C2a22e
(a11+a22)t,

(12.6.1.31)

where C1 and C2 are arbitrary constants. By eliminating time t from (12.6.1.31), one
obtains a family of parallel lines defined by the equation a22x – a12y = a12(a11 + a22)C1.
To C2 = 0 in (12.6.1.31) there corresponds a one-parameter family of equilibrium points
that lie on the straight line a11x + a12y = 0.

(i) If λ2 < 0, then the trajectories approach the equilibrium point lying as t → ∞; see
Fig. 12.6. The equilibrium point x = y = 0 is stable (or neutrally stable)—there is no
asymptotic stability.

O x

y
λ = 0, λ < 0

a x a y+ = 0

1

11 12

2

Figure 12.6. Phase trajectories of a system of differential equations near a set of equilibrium points located on
a straight line.
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(ii) If λ2 > 0, the trajectories have the same pattern as in case (i), but they go, as t→∞,
in the opposite direction, away from the equilibrium point. The point x = y = 0 is unstable.

2◦. If D < 0, the characteristic equation (12.6.1.27) has complex-conjugate roots:

λ1,2 = α � iβ, α = 1
2 (a11 + a22), β = 1

2

√
|D|, i2 = –1.

The general solution of system (12.6.1.25) has the form

x = eαt[C1 cos(βt) + C2 sin(βt)],

y = eαt[C∗
1 cos(βt) + C∗

2 sin(βt)],
(12.6.1.32)

where C1 and C2 are arbitrary constants, and C∗
1 and C∗

2 are defined by linear combinations
of C1 and C2. The following cases are possible.

2.1. For α < 0, the trajectories in the phase plane are spirals asymptotically approaching
the origin of coordinates (the equilibrium point) as t → ∞; see Fig. 12.7 a. Therefore the
equilibrium point is asymptotically stable and is called a stable focus (also a stable spiral
point or a spiral sink). A focus is characterized by the fact that the tangent to a trajectory
changes its direction all the way to the equilibrium point.

O O

( )a

α < 0 α > 0

stable focus
(spiral sink)

( )bunstable focus
(spiral source)

stable focus
(spiral sink)

Figure 12.7. Phase trajectories of a system of differential equations near an equilibrium point of the focus type.

2.2. For α > 0, the phase trajectories are also spirals, but unlike the previous case they
spiral away from the origin as t→∞; see Fig. 12.7 b. Therefore such an equilibrium point
is called an unstable focus (also an unstable spiral point or a spiral source).

2.3. At α = 0, the phase trajectories are closed curves, containing the equilibrium point
inside (see Fig. 12.8). Such an equilibrium point is called a center. A center is a stable
equilibrium point. Note that there is no asymptotic stability in this case.

O

α = 0
center

Figure 12.8. Phase trajectories of a system of differential equations near an equilibrium point of the center
type.
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3◦. If D = 0, the characteristic equation (12.6.1.27) has a double real root, λ1 = λ2 =
1
2 (a11 + a22). The following cases are possible.

3.1. If λ1 = λ2 = λ < 0, the general solution of system (12.6.1.25) has the form

x = a12(C1 + C2t)e
λt,

y = [(λ – a11)C1 + C2 + C2(λ – a11)t]eλt,
(12.6.1.33)

where C1 and C2 are arbitrary constants.
Since there is a rapidly decaying factor, eλt, all trajectories tend to the equilibrium point

as t→∞; see Fig. 12.9 a. ToC2 = 0 there corresponds a straight line in the phase plane x, y.
The equilibrium point is asymptotically stable and is called a stable node (a sink). Such a
node is in intermediate position between a node from Item 1.1 and a focus from Item 2.1.

unstable node
(source)

O O

( )a ( )b

λ = λ < 0

stable node
(sink)

1 2 λ = λ > 01 2

Figure 12.9. Phase trajectories of a system of differential equations near an equilibrium point of the node type
in the case of a double root, λ1 = λ2.

3.2. If λ1 = λ2 = λ > 0, the general solution of system (12.6.1.25) is determined by
formulas (12.6.1.33). The phase trajectories are similar to those from Item 3.1, but they
go in the opposite direction, as t → ∞, rapidly away from the equilibrium point. Such an
equilibrium point is called an unstable node (a source); see Fig. 12.9 b.

3.3. If λ1 = λ2 = 0, which corresponds to

a11 + a22 = 0 and a11a22 – a12a21 = 0

simultaneously, the general solution of system (12.6.1.25) is obtained by substituting λ = 0
into (12.6.1.33) and has the form

x = a12C1 + a12C2t,
y = C2 – a11C1 – a11C2t.

For a12 ≠ 0 all trajectories are parallel straight lines. As t → �∞, the trajectories go away
from the origin. The equilibrium point is unstable.

For clearness, the classification results for equilibrium points of systems of two linear
constant-coefficient differential equations (12.6.1.25) are summarized in Table 12.5.

Remark. For general definitions of a stable and an unstable equilibrium point, see Section 7.3.
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TABLE 12.5
Classification of equilibrium points for systems of constant-coefficient equations (12.6.1.25);

the symbols ◦ and ∗ indicate stable and unstable equilibrium points, respectively, where not clearly stated

Discriminant D,
formula (12.6.1.29)

Roots of quadratic
equation (12.6.1.27), λ1 and λ2

Conditions for coefficients of
differential equations (12.6.1.25)

Type of equilibrium points or
shape of phase trajectories

D > 0

λ1 < 0, λ2 < 0, λ1 ≠λ2
λ1 > 0, λ2 > 0, λ1 ≠λ2
roots have unlike signs

λ1 = 0, λ2 < 0
λ1 = 0, λ2 > 0

a11+a22 < 0, a11a22–a12a21 > 0
a11+a22 > 0, a11a22–a12a21 > 0

a11a22–a12a21 < 0
a11+a22 < 0, a11a22–a12a21 = 0
a11+a22 > 0, a11a22–a12a21 = 0

stable node
unstable node

saddle∗
parallel lines◦
parallel lines∗

D < 0
λ1,2 =α�iβ, α > 0
λ1,2 =α�iβ, α < 0

λ1,2 = �iβ, imaginary roots

a11+a22 < 0, (a11–a22)2+4a12a21 < 0
a11+a22 > 0, (a11–a22)2+4a12a21 < 0
a11+a22 = 0, a11a22–a12a21 > 0

stable focus
unstable focus

center◦

D = 0
λ1 =λ2 < 0
λ1 =λ2 > 0
λ1 =λ2 = 0

a11+a22 < 0, (a11–a22)2+4a12a21 = 0
a11+a22 > 0, (a11–a22)2+4a12a21 = 0
a11+a22 = 0, a11a22–a12a21 = 0

stable node
unstable node

saddle∗
parallel lines∗

12.6.2. Systems of Linear Variable-Coefficient Equations

12.6.2-1. Homogeneous systems of linear first-order equations.

1◦. In general, a homogeneous linear system of variable-coefficient first-order ordinary
differential equations has the form

y′1 = f11(x)y1 + f12(x)y2 + · · · + f1n(x)yn,

y′2 = f21(x)y1 + f22(x)y2 + · · · + f2n(x)yn,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y′n = fn1(x)y1 + fn2(x)y2 + · · · + fnn(x)yn,

(12.6.2.1)

where the prime denotes a derivative with respect to x. It is assumed further on that the
functions fij(x) are continuous of an interval a ≤ x ≤ b (intervals are allowed with a = –∞
or/and b = +∞).

Any homogeneous linear system of the form (12.6.2.1) has the trivial particular solution
y1 = y2 = · · · = yn = 0.

Superposition principle for a homogeneous system: any linear combination of particular
solutions to system (12.6.2.1) is also a solution to this system.

2◦. Let

yk = (yk1, yk2, . . . , ykn)T, ykm = ykm(x); k, m = 1, 2, . . . , n (12.6.2.2)

be nontrivial particular solutions of the homogeneous system of equations (12.6.2.1). So-
lutions (12.6.2.2) are linearly independent if the Wronskian determinant is nonzero:

W (x) ≡

∣∣
∣∣
∣∣
∣∣

y11(x) y12(x) · · · y1n(x)
y21(x) y22(x) · · · y2n(x)

...
...

. . .
...

yn1(x) yn2(x) · · · ynn(x)

∣∣
∣∣
∣∣
∣∣

≠ 0. (12.6.2.3)

If condition (12.6.2.3) is satisfied, the general solution of the homogeneous system
(12.6.2.1) is expressed as

y = C1y1 + C2y2 + · · · + Cnyn, (12.6.2.4)

where C1, C2, . . . , Cn are arbitrary constants. The vector functions y1, y2, . . . , yn in
(12.6.2.4) are called fundamental solutions of system (12.6.2.1).
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3◦. Suppose condition (12.6.2.3) is met. Then the Liouville formula

W (x) = W (x0) exp

[∫ x

x0

( n∑

s=1

fss(t)

)
dt

]

holds.

COROLLARY. Particular solutions (12.6.2.2) are linearly independent on the interval
[a, b] if and only if there exists a point x0 � [a, b] such that the Wronskian determinant is
nonzero at x0: W (x0) ≠ 0.

4◦. Suppose a nontrivial particular solution of system (12.6.2.1),

y1 = (u1,u2, . . . ,un)T, um = um(x), m = 1, 2, . . . , n,

is known. Then the number of unknowns can be reduced by one. To this end, one considers
the auxiliary homogeneous linear system of n – 1 equations

z′k =
n∑

q=2

[
fkq(x) –

uk(x)
u1(x)

f1q(x)

]
zq , k = 2, . . . ,n. (12.6.2.5)

Let
zp = (zp2, zp3, . . . , zpn)T, zmk = zmk(x); p = 2, . . . ,n,

be a fundamental system of solutions to system (12.6.2.5) and let

Zp = (0, zp2, zp3, . . . , zpn)T, Fp(x) =
∫ (

1
u1(x)

n∑

s=2

f1s(x)zps(x)

)
dx, p = 2, . . . ,n,

the vector Zp having an additional component compared with zp. Then the vector functions
yp = Fp(x)y1 + zp (p = 2, . . . ,n) together with y1 form a fundamental system of solutions
to the initial homogeneous system of equations (12.6.2.1).

12.6.2-2. Nonhomogeneous systems of linear first-order equations.

1◦. In general, a nonhomogeneous linear system of variable-coefficient first-order differ-
ential equations has the form

y′1 = f11(x)y1 + f12(x)y2 + · · · + f1n(x)yn + g1(x),

y′2 = f21(x)y1 + f22(x)y2 + · · · + f2n(x)yn + g2(x),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y′n = fn1(x)y1 + fn2(x)y2 + · · · + fnn(x)yn + gn(x).

(12.6.2.6)

Alternatively, the system can be written in the short vector-matrix notation as

y′ = f(x)y + g(x),

with f(x) =
(
fij(x)

)
being the matrix of equation coefficients and g(x) =

(
g1(x), g2(x),

. . . , gn(x)
)T

being the vector function defining the nonhomogeneous part of the equations.
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EXISTENCE AND UNIQUENESS THEOREM. Let the functions fij(x) and gi(x) be continu-
ous on an interval a < x < b. Then, for any set of values x◦, y◦1 , . . . , y◦n, where a < x◦ < b,
there exists a unique solution y1 = y1(x), . . . , yn = yn(x) satisfying the initial conditions

y1(x◦) = y◦1 , . . . , yn(x◦) = y◦n,

and this solution is defined on the whole interval a < x < b.

2◦. Let
ȳ = (ȳ1, ȳ2, . . . , ȳn)T, ȳk = ȳk(x); k = 1, 2, . . . , n,

be a particular solution to the nonhomogeneous system of equations (12.6.2.6). The general
solution of this system is the sum of the general solution of the corresponding homogeneous
system (12.6.2.1), which corresponds to gk(x) ≡ 0 in (12.6.2.6), and any particular solution
of the nonhomogeneous system (12.6.2.6), or

y = C1y1 + C2y2 + · · · + Cnyn + ȳ, (12.6.2.7)

where y1, y2, . . . , yn are linearly independent solutions of the homogeneous system
(12.6.2.1).

3◦. Given a fundamental system of solutions ykm(x) (12.6.2.2) of the homogeneous system
(12.6.2.1), a particular solution of the nonhomogeneous system (12.6.2.6) is found as

ȳk =
n∑

m=1

ymk(x)
∫

Wm(x)
W (x)

dx, k = 1, 2, . . . , n,

where Wm(x) is the determinant obtained by replacing the mth row in the Wronskian
determinant (12.6.2.3) by the row of free terms, g1(x), g2(x), . . . , gn(x), of equation
(12.6.2.6). The general solution of the nonhomogeneous system (12.6.2.6) is given by
(12.6.2.7).

4◦. Superposition principle for a nonhomogeneous system. A particular solution, y = ȳ, of
the nonhomogeneous system of linear differential equations,

y′ = f(x)y +
m∑

k=1

gk(x),

is given by the sum

y =
m∑

k=1

yk,

where the yk are particular solutions of m (simpler) systems of equations

y′k = f(x)yk + gk(x), k = 1, 2, . . . , m,

corresponding to individual nonhomogeneous terms of the original system.
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12.6.2-3. Euler system of ordinary differential equations.

1◦. A homogeneous Euler system is a homogeneous linear system of ordinary differential
equations composed by linear combinations of the following terms:

yk, xy′k, x2y′′k , . . . , xmky(mk)
k ; k = 1, 2, . . . , n.

Such a system is invariant under scaling in the independent variable (i.e., it preserves its form
under the change of variable x→αx, where α is any nonzero number). A nonhomogeneous
Euler system contains additional terms, given functions.

The substitution x = bet (b ≠ 0) brings an Euler system, both homogeneous and nonho-
mogeneous, to a constant-coefficient linear system of equations.

Example. In general, a nonhomogeneous Euler system of second-order equations has the form
n∑

k=1

(
amkx

2 d
2yk

dx2 + bmkx
dyk

dx
+ cmkyk

)
= fm(x), m = 1, 2, . . . , n. (12.6.2.8)

The substitutions x = �et bring this system to a constant-coefficient linear system,
n∑

k=1

[
amk

d2yk

dt2 + (bmk – amk)
dyk

dt
+ cmkyk

]
= fm(�et), m = 1, 2, . . . , n,

which can be solved using, for example, the Laplace transform (see Example 4 from Paragraph 12.6.1-6).

2◦. Particular solutions to a homogeneous Euler system (for system (12.6.2.8), correspond-
ing to fm(x) ≡ 0) are sought in the form of power functions:

y1 = A1x
σ, y2 = A2x

σ, . . . , yn = Anx
σ, (12.6.2.9)

where the coefficients A1, A2, . . . , An are determined by solving the associated homoge-
neous system of algebraic equations obtained by substituting expressions (12.6.2.9) into
the differential equations of the system in question and dividing by xσ. Since the system is
homogeneous, for it to have nontrivial solutions, its determinant must vanish. This results
in a dispersion equation for the exponent σ.

12.7. Nonlinear Systems of Ordinary Differential
Equations

12.7.1. Solutions and First Integrals. Uniqueness and Existence
Theorems

12.7.1-1. Systems solved for the derivative. A solution and the general solution.

We will be dealing with a system of first-order ordinary differential equations solved for
the derivatives

y′k = fk(x, y1, . . . , yn), k = 1, . . . ,n. (12.7.1.1)

Here and henceforth throughout the current chapter, the prime denotes a derivative with
respect to the independent variable x.

A set of numbers x, y1, . . . , yn is convenient to treat as a point in the (n+ 1)-dimensional
space.

For brevity, system (12.7.1.1) is conventionally written in vector form:

y′ = f(x, y),

where y and f are the vectors defined as y = (y1, . . . , yn)T and f = (f1, . . . , fn)T .
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A solution (also an integral or an integral curve) of a system of differential equations
(12.7.1.1) is a set of functions y1 = y1(x), . . . , yn = yn(x) such that, when substituted into
all equations (12.7.1.1), they turn them into identities. The general solution of a system of
differential equations is the set of all its solutions. In the general case, the general solution
of system (12.7.1.1) depends on n arbitrary constants.

12.7.1-2. Existence and uniqueness theorems.

THEOREM (EXISTENCE, PEANO). Let the functions fk(x, y1, . . . , yn) (k = 1, . . . ,n) be
continuous in a domain G of the (n + 1)-dimensional space of the variables x, y1, . . . , yn.
Then there is at least one integral curve passing through every pointM (x◦, y◦1 , . . . , y◦n) inG.
Each of such curves can be extended on both ends up to the boundary of any closed domain
completely belonging to G and containing the point M inside.

Remark. If there is more than one integral curve passing through the point M , there are infinitely many
integral curves passing through M .

THEOREM (UNIQUENESS). There is a unique integral curve passing through the point
M (x◦, y◦1 , . . . , y◦n) if the functions fk have partial derivatives with respect to all ym, con-
tinuous in x, y1, . . . , yn in the domain G, or if each function fk in G satisfies the Lipschitz
condition:

|fk(x, ȳ1, . . . , ȳn) – fk(x, y1, . . . , yn)| ≤ A
n∑

m=1

|ȳm – ym|,

where A is some positive number.

12.7.1-3. Reduction of systems of equations to a single equation.

Suppose the right-hand sides of equations (12.7.1.1) are n times differentiable in all vari-
ables. Then system (12.7.1.1) can be reduced to a single nth-order equation. Indeed, using
the chain rule, let us differentiate the first equation of system (12.7.1.1) with respect to x to
get

y′′1 =
∂f1

∂x1
+
∂f1

∂y1
y′1 + · · · +

∂f1

∂yn
y′n. (12.7.1.2)

Then change the first derivatives y′k in (12.7.1.2) to fk(x, y1, . . . , yn) [the right-hand sides
of equations (12.7.1.1)] to obtain

y′′1 = F2(x, y1, . . . , yn), (12.7.1.3)

where F2(x, y1, . . . , yn)≡
∂f1

∂x1
+
∂f1

∂y1
f1+· · ·+ ∂f1

∂yn
fn. Now differentiate equation (12.7.1.3)

with respect to x and replace the first derivatives y′k on the right-hand side of the resulting
equation by fk. As a result, we obtain

y′′′1 = F3(x, y1, . . . , yn),

where F3(x, y1, . . . , yn) ≡
∂F2

∂x1
+
∂F2

∂y1
f1 + · · ·+

∂F2

∂yn
fn. Repeating this procedure as many

times as required, one arrives at the following system of equations:

y′1 = F1(x, y1, . . . , yn),

y′′1 = F2(x, y1, . . . , yn),
. . . . . . . . . . . . . . . . . . . . . . .

y(n)
1 = Fn(x, y1, . . . , yn),
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where

F1(x, y1, . . . , yn) ≡ f1(x, y1, . . . , yn), Fk+1(x, y1, . . . , yn) ≡
∂Fk
∂x1

+
∂Fk
∂y1

f1 + · · ·+ ∂Fk
∂yn

fn.

Expressing y2, y3, . . . , yn from the n – 1 first equations of this system in terms of x, y1, y′1,
. . . , y(n–1)

1 and then substituting the resulting expressions into the last equation of system
(12.7.1.1), one finally arrives at an nth-order equation:

y(n)
1 = Φ(x, y1, y′1, . . . , y(n–1)

1 ). (12.7.1.4)

Remark 1. If (12.7.1.1) is a linear system of first-order differential equations, then (12.7.1.4) is a linear
nth-order equation.

Remark 2. Any equation of the form (12.7.1.4) can be reduced to a system on n first-order equations (see
Paragraph 12.5.1-4).

12.7.1-4. First integrals. Using them to reduce system dimension.

1◦. A relation of the form
Ψ(x, y1, . . . , yn) = C , (12.7.1.5)

where C is an arbitrary constant, is called a first integral of system (12.7.1.1) if its left-hand
side Φ, generally not identically constant, is turned into a constant by any particular solution,
y1, . . . , yn, of system (12.7.1.1). In the sequel, we consider only continuously differentiable
functions Ψ(x, y1, . . . , yn) in a given domain of variation of its arguments.

THEOREM. An expression of the form (12.7.1.5) is a first integral of system (12.7.1.1)
if and only if the function Ψ = Ψ(x, y1, . . . , yn) satisfies the relation

∂Ψ
∂x

+
n∑

k=1

∂Ψ
∂yk

fk(x, y1, . . . , yn) = 0.

This relation may be treated as a first-order partial differential equation for Ψ.
Different first integrals of system (12.7.1.1) are called independent if the Jacobian of

their left-hand sides is nonzero.
System (12.7.1.1) admits n independent first integrals if the conditions of the uniqueness

theorem from Paragraph 12.7.1-2 are met.

2◦. Given a first integral (12.7.1.5) of system (12.7.1.1), it may be treated as an implicit
specification of one of the unknowns. Solving (12.7.1.5), for example, for yn yields
yn = G(x, y1, . . . , yn–1). Substituting this expression into the first n – 1 equations of system
(12.7.1.1), one obtains a system in n – 1 variables with one arbitrary constant.

Likewise, given m independent first integrals of system (12.7.1.1),

Ψk(x, y1, . . . , yn) = Ck, k = 1, . . . ,m (m < n),

the system may be reduced to a system of n – m first-order equations in n – m unknowns.
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12.7.2. Integrable Combinations. Autonomous Systems
of Equations

12.7.2-1. Integrable combinations.

In some cases, first integrals of systems of differential equations may be obtained by finding
integrable combinations. An integrable combination is a differential equation that is easy
to integrate and is a consequence of the equations of the system under consideration. Most
commonly, an integrable combination is an equation of the form

dΨ(x, y1, . . . , yn) = 0 (12.7.2.1)

or an equation reducible by a change of variables to one of the integrable types of equations
in one unknown.

Example 1. Consider the nonlinear system

ay′1 = (b – c)y2y3, by′2 = (c – a)y1y3, cy′3 = (a – b)y1y2, (12.7.2.2)

where a, b, and c are some constants. Such systems arise in the theory of motion of a rigid body.
Let us multiply the first equation by y1, the second by y2, and the third by y3 and add together to obtain

ay1y
′
1 + by2y

′
2 + cy3y

′
3 = 0 =⇒ d(ay2

1 + by2
2 + cy2

3 ) = 0.

Integrating yields a first integral:
ay2

1 + by2
2 + cy2

3 = C1. (12.7.2.3)

Now multiply the first equation of the system by ay1, the second by by2, and the third by cy3 and add
together to obtain

a2y1y
′
1 + b2y2y

′
2 + c2y3y

′
3 = 0 =⇒ d(a2y2

1 + b2y2
2 + c2y2

3) = 0.

Integrating yields another first integral:

a2y2
1 + b2y2

2 + c2y2
3 = C2. (12.7.2.4)

If the case a = b = c, where system (12.7.2.2) can be integrated directly, does not take place, the above two
first integrals (12.7.2.3) and (12.7.2.4) are independent. Hence, using them, one can express y2 and y3 in terms
of y1 and then substitute the resulting expressions into the first equation of system (12.7.2.2). As a result, one
arrives at a single separable first-order differential equation for y1.

In this example, the integrable combinations have the form (12.7.2.1).

Example 2. A specific example of finding an integrable combination reducible with a change of variables
to a simpler, integrable equation in one unknown can be found in Paragraph 12.6.1-5.

12.7.2-2. Autonomous systems and their reduction to systems of lower dimension.

1◦. A system of equations is called autonomous if the right-hand sides of the equations do
not depend explicitly on x. In general, such systems have the form

y′k = fk(y1, . . . , yn), k = 1, . . . ,n. (12.7.2.5)

If y(x) is a solution of the autonomous system (12.7.2.5), then the function y(x + C),
where C is an arbitrary constant, is also a solution of this system.

A point y◦ = (y◦1 , . . . , y◦n) is called an equilibrium point (or a stationary point) of the
autonomous system (12.7.2.5) if

fk(y◦1 , . . . , y◦n) = 0, k = 1, . . . ,n.

To an equilibrium point there corresponds a special, simplest particular solution when all
unknowns are constant:

y1 = y◦1 , . . . , yn = y◦n, k = 1, . . . ,n.

2◦. Any n-dimensional autonomous system of the form (12.7.2.5) can be reduced to an
(n – 1)-dimensional system of equations independent of x. To this end, one should select
one of the equations and divide the other n – 1 equations of the system by it.
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Example 3. The autonomous system of two first-order equations
y′x = f1(y, z), z′x = f2(y, z) (12.7.2.6)

is reduced by dividing the first equation by the second to a single equation for y = y(z):

y′z =
f1(y, z)
f2(y, z)

. (12.7.2.7)

If the general solution of equation (12.7.2.7) is obtained in the form
y = ϕ(z,C1), (12.7.2.8)

then z = z(x) is found in implicit form from the second equation in (12.7.2.6) by quadrature:∫
dz

f2(ϕ(z,C1), z)
= x + C2. (12.7.2.9)

Formulas (12.7.2.8)–(12.7.2.9) determine the general solution of system (12.7.2.6) with two arbitrary constants,
C1 and C2.

Remark. The dependent variables y and z in the autonomous system (12.7.2.6) are often called phase
variables; the plane y, z they form is called a phase plane, which serves to display integral curves of equation
(12.7.2.7).

12.7.3. Elements of Stability Theory

12.7.3-1. Lyapunov stability. Asymptotic stability.

1◦. In many applications, time t plays the role of the independent variable, and the associated
system of differential equations is conventionally written in the following notation:

x′k = fk(t,x1, . . . ,xn), k = 1, . . . ,n. (12.7.3.1)
Here the xk = xk(t) are unknown functions that may be treated as coordinates of a moving
point in an n-dimensional space.

Let us supply system (12.7.3.1) with initial conditions

xk = x◦k at t = t◦ (k = 1, . . . , n). (12.7.3.2)
Denote by

xk = ϕk(t; t◦,x◦1, . . . ,x◦n), k = 1, . . . , n, (12.7.3.3)
the solution of system (12.7.3.1) with the initial conditions (12.7.3.2).

A solution (12.7.3.3) of system (12.7.3.1) is called Lyapunov stable if for any ε > 0 there
exists a δ > 0 such that if

|x◦k – x̃◦k | < δ, k = 1, . . . , n, (12.7.3.4)

then the following inequalities hold for t◦ ≤ t < ∞:∣∣ϕk(t; t◦,x◦1, . . . ,x◦n) – ϕk(t; t◦, x̃◦1, . . . , x̃◦n)
∣∣ < ε, k = 1, . . . , n.

Any solution which is not stable is called unstable. Solution (12.7.3.3) is called unper-
turbed and the solution ϕk(t; t◦, x̃◦1, . . . , x̃◦n) is called perturbed. Geometrically, Lyapunov
stability means that the trajectory of the perturbed solution stays at all times t ≥ t◦ within a
small neighborhood of the associated unperturbed solution.

2◦. A solution (12.7.3.3) of system (12.7.3.1) is called asymptotically stable if it is Lyapunov
stable and, in addition, with inequalities (12.7.3.4) met, satisfies the conditions

lim
t→∞

∣∣ϕk(t; t◦,x◦1, . . . ,x◦n) – ϕk(t; t◦, x̃◦1, . . . , x̃◦n)
∣∣ = 0, k = 1, . . . , n. (12.7.3.5)

Remark. Condition (12.7.3.5) alone does not suffice for the solution to be Lyapunov stable.

3◦. In stability analysis, it is normally assumed, without loss of generality, that t◦ = x◦1 =
· · · = x◦n = 0 (this can be achieved by shifting each of the variables by a constant value).
Further, with the changes of variables

zk = xk – ϕk(t; t◦,x◦1, . . . ,x◦n) (k = 1, . . . , n),
the stability analysis of any solution is reduced to that of the zero solution z1 = · · · = zn = 0.
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12.7.3-2. Theorems of stability and instability by first approximation.

In studying stability of the trivial solution x1 = · · ·=xn = 0 of system (12.7.3.1) the following
method is often employed. The right-hand sides of the equations are approximated by the
principal (linear) terms of the expansion into Taylor series about the equilibrium point:

fk(t,x1, . . . ,xn) ≈ak1(t)x1 +· · ·+akn(t)xn, akm(t) =
∂fk
∂xm

∣∣
∣∣
x1=···=xn=0

, k = 1, . . . , n.

Then a stability analysis of the resulting simplified, linear system is performed. The question
arises: Is it possible to draw correct conclusions about the stability of the original nonlinear
system (12.7.3.1) from the analysis of the linearized system? Two theorems stated below
give a partial answer to this question.

THEOREM (STABILITY BY FIRST APPROXIMATION). Suppose in the system

x′k = ak1x1 + · · · + aknxn + ψk(t,x1, . . . ,xn), k = 1, . . . ,n, (12.7.3.6)

the functions ψk are defined and continuous in a domain t ≥ 0, |xk | ≤ b (k = 1, . . . ,n) and,
in addition, the inequality

n∑

k=1

|ψk | ≤ A
n∑

k=1

|xk| (12.7.3.7)

holds for some constant A. In particular, this implies that ψk(t, 0, . . . , 0) = 0, and therefore

x1 = · · · = xn = 0 (12.7.3.8)

is a solution of system (12.7.3.6). Suppose further that

n∑

k=1

|ψk |

n∑

k=1

|xk |
→ 0 as

n∑

k=1

|xk| → 0 and t→ ∞, (12.7.3.9)

and the real parts of all roots of the characteristic equation

det |aij – λδij | = 0, δij =
{ 1 if i = j,

0 if i ≠ j (12.7.3.10)

are negative. Then solution (12.7.3.8) is stable.

Remark 1. Necessary and sufficient conditions for the real parts of all roots of the characteristic equation
(12.7.3.10) to be negative are established by Hurwitz’s theorem, which allows avoiding its solution.

Remark 2. In the above system, the aij , xk, and ψk may be complex valued.

THEOREM (INSTABILITY BY FIRST APPROXIMATION). Suppose conditions (12.7.3.7) and
(12.7.3.9) are met and the conditions for the functions ψk from the previous theorem are
also met. If at least one root of the characteristic equation (12.7.3.10) has a positive real
part, then the equilibrium point (12.7.3.8) of system (12.7.3.6) is unstable.

Example 1. Consider the following two-dimensional system of the form (12.7.3.6) with real coefficients:

x′
t = a11x + a12y + ψ1(t,x, y),

y′t = a21x + a22y + ψ2(t,x, y).
(12.7.3.11)
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We assume that the functions ψ1 and ψ2 satisfy conditions (12.7.3.7) and (12.7.3.9).
The characteristic equation of the linearized system (obtained by setting ψ1 = ψ2 = 0) is given by

λ2 – bλ + c = 0, where b = a11 + a22, c = a11a22 – a12a21. (12.7.3.12)

1. Using the theorem of stability by first approximation and examining the roots of the quadratic equation
(12.7.3.12), we obtain two sufficient stability conditions for system (12.7.3.11):

b < 0, 0 < 1
4 b

2 < c (complex roots with negative real part);

b < 0, 0 < c < 1
4 b

2 (negative real roots).

The two conditions can be combined into one:

b < 0, c > 0, or a11 + a22 < 0, a11a22 – a12a21 > 0.

These inequalities define the second quadrant in the plane b, c; see Fig. 12.10.

Stability undecided

c

b

O

Domain of instability

Domain of instabilityDomain of stability

Stability undecided
I

IVIII

II

Figure 12.10. Domains of stability and instability of the trivial solution of system (12.7.3.11).

2. Using the theorem of instability by first approximation and examining the roots of the quadratic equation
(12.7.3.12), we get three sufficient instability conditions for system (12.7.3.11):

b > 0, 0 < 1
4 b

2 < c (complex roots with positive real part);

b > 0, 0 < c < 1
4 b

2 (positive real roots);

c < 0, b is any (real roots with different signs).

The first two conditions can be combined into one:

b > 0, c > 0, or a11 + a22 > 0, a11a22 – a12a21 > 0.

The domain of instability of system (12.7.3.11) covers the first, third, and fourth quadrants in the plane b, c
(shaded in Fig. 12.10).

3. The conditions obtained above in Items 1 and 2 do not cover the whole domain of variation of the
parameters aij . Stability or instability is not established for the boundary of the second quarter (shown by thick
solid line in Fig. 12.10). This corresponds to the cases

b = 0, c ≥ 0 (two pure imaginary or two zero roots);

c = 0, b ≤ 0 (one zero root and one negative real or zero root).

Specific examples of such systems are considered below in Paragraph 12.7.3-3.

Remark. When the conditions of Item 1 or 2 hold, the phase trajectories of the nonlinear system (12.7.3.11)
have the same qualitative arrangement in a neighborhood of the equilibrium point x = y = 0 as that of the phase
trajectories of the linearized system (with ψ2 = ψ1 = 0). A detailed classification of equilibrium points of linear
systems with associated arrangements of the phase trajectories can be found in Paragraph 12.6.1-7.
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12.7.3-3. Lyapunov function. Theorems of stability and instability.

In the cases where the theorems of stability and instability by first approximation fail to
resolve the issue of stability for a specific system of nonlinear differential equations, more
subtle methods must be used. Such methods are considered below.

A Lyapunov function for system of equations (12.7.3.1) is a differentiable function
V = V (x1, . . . ,xn) such that

1) V > 0 if
n∑

k=1

x2
k ≠ 0, V = 0 if x1 = · · · = xn = 0;

2)
dV

dt
=

n∑

k=1

fk(t,x1, . . . ,xn)
∂V

∂xk
≤ 0 for t ≥ 0.

Remark. The derivative with respect to t in the definition of a Lyapunov function is taken along an integral
curve of system (12.7.3.1).

THEOREM (STABILITY, LYAPUNOV). Let system (12.7.3.1) have the trivial solution x1 =
x2 = · · · = xn = 0. This solution is stable if there exists a Lyapunov function for the system.

THEOREM (ASYMPTOTIC STABILITY, LYAPUNOV). Let system (12.7.3.1) have the trivial
solution x1 = · · · = xn = 0. This solution is asymptotically stable if there exists a Lyapunov
function satisfying the additional condition

dV

dt
≤ –β < 0 with

n∑

k=1

x2
k ≥ ε1 > 0, t ≥ ε2 ≥ 0,

where ε1 and ε2 are any positive numbers.
Example 2. Let us perform a stability analysis of the two-dimensional system

x′
t = –ay – xϕ(x, y), y′t = bx – yψ(x, y),

where a > 0, b > 0, ϕ(x, y) ≥ 0, and ψ(x, y) ≥ 0 (ϕ and ψ are continuous functions).
A Lyapunov function will be sought in the form V = Ax2 + By2, where A and B are constants to be

determined. The first condition characterizing a Lyapunov function will be satisfied automatically ifA > 0 and
B > 0 (it will be shown later that these inequalities do hold). To verify the second condition, let us compute
the derivative:

dV

dt
= f1(x, y)

∂V

∂x
+ f2(x, y)

∂V

∂y
= –2Ax[ay + xϕ(x,y)] + 2By[bx – yψ(x,y)]

= 2(Bb –Aa)xy – 2Ax2ϕ(x, y) – 2By2ψ(x, y).

Setting here A = b > 0 and B = a > 0 (thus satisfying the first condition), we obtain the inequality

dV

dt
= –2bx2ϕ(x, y) – 2ay2ψ(x,y) ≤ 0.

This means that the second condition characterizing a Lyapunov function is also met. Hence, the trivial solution
of the system in question is stable.

Example 3. Let us perform a stability analysis for the trivial solution of the nonlinear system

x′
t = –xy2, y′t = yx4.

Let us show that the V (x, y) = x4 + y2 is a Lyapunov function for the system. Indeed, both conditions are
satisfied:

1) x4 + y2 > 0 if x2 + y2 ≠ 0, V (0, 0) = 0 if x = y = 0;

2)
dV

dt
= –4x4y2 + 2x4y2 = –2x4y2 ≤ 0.

Hence the trivial solution of the system is stable.
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Remark. No stability analysis of the systems considered in Examples 2 and 3 is possible based on the
theorem of stability by first approximation.

THEOREM (INSTABILITY, CHETAEV). Suppose there exists a differentiable function W =
W (x1, . . . ,xn) that possesses the following properties:

1. In an arbitrarily small domain R containing the origin of coordinates, there exists a
subdomain R+ ⊂ R in which W > 0, with W = 0 on part of the boundary of R+ in R.

2. The condition
dW

dt
=

n∑

k=1

fk(t,x1, . . . ,xn)
∂W

∂xk
> 0

holds in R+ and, moreover, in the domain of the variables where W ≥ α > 0, the inequality
dW

dt
≥ β > 0 holds.

Then the trivial solution x1 = · · · = xn = 0 of system (12.7.3.1) is unstable.

Example 4. Perform a stability analysis of the nonlinear system

x′
t = y3ϕ(x, y, t) + x5, y′t = x3ϕ(x, y, t) + y5,

where ϕ(x, y, t) is an arbitrary continuous function.
Let us show that the W = x4 – y4 satisfies the conditions of the Chetaev theorem. We have:
1. W > 0 for |x| > |y|, W = 0 for |x| = |y|.

2.
dW

dt
= 4x3[y3ϕ(x, y, t) + x5] – 4y3[x3ϕ(x, y, t) + y5] = 4(x8 – y8) > 0 for |x| > |y|.

Moreover, if W ≥ α > 0, we have
dW

dt
= 4α(x4 + y4) ≥ 4α2 = β > 0. It follows that the equilibrium point

x = y = 0 of the system in question is unstable.
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Chapter 13

First-Order Partial Differential Equations

13.1. Linear and Quasilinear Equations
13.1.1. Characteristic System. General Solution

13.1.1-1. Equations with two independent variables. General solution. Examples.

1◦. A first-order quasilinear partial differential equation with two independent variables
has the general form

f (x, y,w)
∂w

∂x
+ g(x, y,w)

∂w

∂y
= h(x, y,w). (13.1.1.1)

Such equations are encountered in various applications (continuum mechanics, gas dy-
namics, hydrodynamics, heat and mass transfer, wave theory, acoustics, multiphase flows,
chemical engineering, etc.).

If two independent integrals,

u1(x, y,w) = C1, u2(x, y,w) = C2, (13.1.1.2)

of the characteristic system

dx

f (x, y,w)
=

dy

g(x, y,w)
=

dw

h(x, y,w)
(13.1.1.3)

are known, then the general solution of equation (13.1.1.1) is given by

Φ(u1,u2) = 0, (13.1.1.4)

where Φ(u, v) is an arbitrary function of two variables. With equation (13.1.1.4) solved for
u1 or u2, we often specify the general solution in the form

uk = Ψ(u3–k),

where k = 1, 2 and Ψ(u) is an arbitrary function of one variable.

2◦. For linear equations (13.1.1.1) with the functions f , g, and h independent of the
unknown w, the first integrals (13.1.1.2) of the characteristic system (13.1.1.3) have a
simple structure (one integral is independent of w and the other is linear in w):

U (x, y) = C1, w – V (x, y) = C2.

In this case the general solution can be written in explicit form

w = V (x, y) + Ψ(U (x, y)),

where Ψ(U ) is an arbitrary function of one variable.

553
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TABLE 13.1
General solutions to some special types of linear and quasilinear first-order partial differential equations; Ψ(u)

is an arbitrary function. The subscripts x and y indicate the corresponding partial derivatives

No. Equations General solutions Notation, remarks

1 wx + [f (x)y + g(x)]wy = 0 w = Ψ
(
e–F y –

∫
e–F g(x)dx

)
F =

∫
f (x) dx

2 wx + [f (x)y + g(x)yk]wy = 0 w = Ψ
(
e–F y1–k – (1 – k)

∫
e–F g(x) dx

)
F = (1 – k)

∫
f (x) dx

3 wx + [f (x)eλy + g(x)]wy = 0 w = Ψ
(
e–λyE + λ

∫
f (x)E dx

)
E = exp

(
λ
∫
g(x) dx

)

4 f (x)wx + g(y)wy = 0 w = Ψ
(∫

dx
f (x) –

∫
dy
g(y)

)

5 awx + bwy = f (x)g(w)
∫

dw
g(w) = 1

a

∫
f (x) dx + Ψ(bx – ay) solution in implicit form

6 f (x)wx + g(y)wy = h(w)
∫

dw
h(w) =

∫
dx

f (x) + Ψ(u) u =
∫

dx
f (x) –

∫
dy

g(y)

7 wx + f (w)wy = 0 y = xf (w) + Ψ(w) solution in implicit form

8 wx + [f (w) + ay]wy = 0 x = 1
a

ln
∣
∣ay + f (w)

∣
∣ + Ψ(w), a ≠ 0 solution in implicit form

9 wx + [f (w) + g(x)]wy = 0 y = xf (w) +
∫
g(x)dx + Ψ(w) solution in implicit form

Example 1. Consider the linear constant coefficient equation

∂w

∂x
+ a

∂w

∂y
= 0.

The characteristic system for this equation is

dx

1
=
dy

a
=
dw

0
.

It has two independent integrals:
y – ax = C1, w = C2.

Hence, the general solution of the original equation is given by Φ(y – ax, w) = 0. On solving this equation
for w, one obtains the general solution in explicit form

w = Ψ(y – ax).

It is the traveling wave solution.

Example 2. Consider the quasilinear equation

∂w

∂x
+ aw

∂w

∂y
= 1.

The characteristic system
dx

1
=
dy

aw
=
dw

1
has two independent integrals:

x – w = C1, 2y – aw2 = C2.

Hence, the general solution of the original equation is given by

Φ(x – w, 2y – aw2) = 0.

3◦. Table 13.1 lists general solutions to some linear and quasilinear first-order partial
differential equations in two independent variables.

� In Sections T7.1–T7.2, many more first-order linear and quasilinear partial differential
equations in two independent variables are considered than in Table 13.1.
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13.1.1-2. Construction of a quasilinear equations when given its general solution.

Given a set of functions
w = F

(
x, y, Ψ(G(x, y))

)
, (13.1.1.5)

where F (x, y, Ψ) andG(x, y) are prescribed and Ψ(G) is arbitrary, there exists a quasilinear
first-order partial differential equation such that the set of functions (13.1.1.5) is its general
solution. To prove this statement, let us differentiate (13.1.1.5) with respect to x and y and
then eliminate the partial derivative ΨG from the resulting expression to obtain

wx – Fx
Gx

=
wy – Fy
Gy

. (13.1.1.6)

On solving the relation w = F (x, y, Ψ) [see (13.1.1.5)] for Ψ and substituting the resulting
expression into (13.1.1.6), one arrives at the desired partial differentiable equation.

Example 3. Let us construct a partial differential equation whose general solution is given by

w = xkΨ(axn + bym), (13.1.1.7)

where Ψ(z) is an arbitrary function.
Differentiating (13.1.1.7) with respect to x and y yields the relations wx = kxk–1Ψ + anxk+n–1Ψz and

wy = bmxkym–1Ψz . Eliminating Ψz from them gives

wx – kxk–1Ψ

anxn–1 =
wy

bmym–1 . (13.1.1.8)

Solving the original relation (13.1.1.7) for Ψ, we get Ψ = x–kw. Substituting this expression into (13.1.1.8)
and rearranging, we arrive at the desired equation

bmxym–1 ∂w

∂x
– anxn ∂w

∂y
= bkmym–1,

whose general solution is the function (13.1.1.7).

13.1.1-3. Equations with n independent variables. General solution.

A first-order quasilinear partial differential equation with n independent variables has the
general form

f1(x1, . . . ,xn,w)
∂w

∂x1
+ · · · + fn(x1, . . . ,xn,w)

∂w

∂xn
= g(x1, . . . ,xn,w). (13.1.1.9)

Let n independent integrals,

u1(x1, . . . ,xn,w) = C1, . . . , un(x1, . . . ,xn,w) = Cn,

of the characteristic system

dx1

f1(x1, . . . ,xn,w)
= · · · =

dxn
fn(x1, . . . ,xn,w)

=
dw

g(x1, . . . ,xn,w)

be known. Then the general solution of equation (13.1.1.9) is given by

Φ(u1, . . . ,un) = 0,

where Φ is an arbitrary function of n variables.



556 FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS

13.1.2. Cauchy Problem. Existence and Uniqueness Theorem

13.1.2-1. Cauchy problem.

Consider two formulations of the Cauchy problem.

1◦. Generalized Cauchy problem. Find a solution w = w(x, y) of equation (13.1.1.1)
satisfying the initial conditions

x = h1(ξ), y = h2(ξ), w = h3(ξ), (13.1.2.1)

where ξ is a parameter (α ≤ ξ ≤ β) and the hk(ξ) are given functions.
Geometric interpretation: find an integral surface of equation (13.1.1.1) passing through

the line defined parametrically by equation (13.1.2.1).

2◦. Classical Cauchy problem. Find a solution w =w(x, y) of equation (13.1.1.1) satisfying
the initial condition

w = ϕ(y) at x = 0, (13.1.2.2)

where ϕ(y) is a given function.
It is convenient to represent the classical Cauchy problem as a generalized Cauchy

problem by rewriting condition (13.1.2.2) in the parametric form

x = 0, y = ξ, w = ϕ(ξ). (13.1.2.3)

13.1.2-2. Procedure of solving the Cauchy problem.

The procedure of solving the Cauchy problem (13.1.1.1), (13.1.2.1) involves several steps.
First, two independent integrals (13.1.1.2) of the characteristic system (13.1.1.3) are deter-
mined. Then, to find the constants of integration C1 and C2, the initial data (13.1.2.1) must
be substituted into the integrals (13.1.1.2) to obtain

u1
(
h1(ξ),h2(ξ),h3(ξ)

)
= C1, u2

(
h1(ξ),h2(ξ),h3(ξ)

)
= C2. (13.1.2.4)

Eliminating C1 and C2 from (13.1.1.2) and (13.1.2.4) yields

u1(x, y,w) = u1
(
h1(ξ),h2(ξ),h3(ξ)

)
,

u2(x, y,w) = u2
(
h1(ξ),h2(ξ),h3(ξ)

)
.

(13.1.2.5)

Formulas (13.1.2.5) are a parametric form of the solution of the Cauchy problem (13.1.1.1),
(13.1.2.1). In some cases, one may succeed in eliminating the parameter ξ from relations
(13.1.2.5), thus obtaining the solution in an explicit form.

Example 1. Consider the Cauchy problem for linear equation
∂w

∂x
+ a

∂w

∂y
= bw (13.1.2.6)

subjected to the initial condition (13.1.2.2).
The corresponding characteristic system for equation (13.1.2.6),

dx

1
=
dy

a
=
dw

bw
,

has two independent integrals
y – ax = C1, we–bx = C2. (13.1.2.7)

Represent the initial condition (13.1.2.2) in parametric form (13.1.2.3) and then substitute the data (13.1.2.3)
into the integrals (13.1.2.7). As a result, for the constants of integration we obtain C1 = ξ and C2 = ϕ(ξ). Sub-
stituting these expressions into (13.1.2.7), we arrive at the solution of the Cauchy problem (13.1.2.6), (13.1.2.2)
in parametric form:

y – ax = ξ, we–bx = ϕ(ξ).
By eliminating the parameter ξ from these relations, we obtain the solution of the Cauchy problem (13.1.2.6),
(13.1.2.2) in explicit form:

w = ebxϕ(y – ax).
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13.1.2-3. Existence and uniqueness theorem.

Let G0 be a domain in the xy-plane and let G be a cylindrical domain of the xyw-space
obtained from G0 by adding the coordinatew, with the condition |w| <A1 being satisfied. Let
the coefficients f , g, and h of equation (13.1.1.1) be continuously differentiable functions
of x, y, andw in G and let x = h1(ξ), y = h2(ξ), andw = h3(ξ) be continuously differentiable
functions of ξ for |ξ| < A2 defining a curve C in G with a simple projection C0 onto G0.
Suppose that (h′1)2 + (h′2)2 ≠ 0 (the prime stands for the derivative with respect to ξ) and
fh′2 – gh′1 ≠ 0 on C . Then there exists a subdomain G0 ⊂ G0 containing C0 where
there exists a continuously differentiable function w = w(x, y) satisfying the differential
equation (13.1.1.1) in G0 and the initial condition (13.1.2.1) on C0. This function is unique.

It is important to note that this theorem has a local character, i.e., the existence of a
solution is guaranteed in some “sufficiently narrow,” unknown neighborhood of the line C
(see the remark at the end of Example 2).

Example 2. Consider the Cauchy problem for Hopf’s equation

∂w

∂x
+ w

∂w

∂y
= 0 (13.1.2.8)

subject to the initial condition (13.1.2.2).
First, we rewrite the initial condition (13.1.2.2) in the parametric form (13.1.2.3). Solving the characteristic

system
dx

1
=
dy

w
=
dw

0
, (13.1.2.9)

we find two independent integrals,
w = C1, y – wx = C2. (13.1.2.10)

Using the initial conditions (13.1.2.3), we find that C1 = ϕ(ξ) and C2 = ξ. Substituting these expressions
into (13.1.2.10) yields the solution of the Cauchy problem (13.1.2.8), (13.1.2.2) in the parametric form

w = ϕ(ξ), (13.1.2.11)

y = ξ + ϕ(ξ)x. (13.1.2.12)

The characteristics (13.1.2.12) are straight lines in the xy-plane with slope ϕ(ξ) that intersect the y-axis at the
points ξ. On each characteristic, the function w has the same value equal to ϕ(ξ) (generally, w takes different
values on different characteristics).

For ϕ′(ξ) > 0, different characteristics do not intersect and, hence, formulas (13.1.2.11) and (13.1.2.12)
define a unique solution. As an example, we consider the initial profile

ϕ(ξ) =

⎧
⎨

⎩

w1 for ξ ≤ 0,
w2ξ

2 + εw1

ξ2 + ε
for ξ > 0,

(13.1.2.13)

where w1 < w2 and ε > 0. Formulas (13.1.2.11)–(13.1.2.13) give a unique smooth solution in the entire
half-plane x > 0. In the domain filled by the characteristics y = ξ +w1x (for ξ ≤ 0), the solution is constant, i.e.,

w = w1 for y/x ≤ w1. (13.1.2.14)

For ξ > 0, the solution is determined by relations (13.1.2.11)–(13.1.2.13).
Let us look how this solution is transformed in the limit case ε → 0, which corresponds to the piecewise-

continuous initial profile

ϕ(ξ) =

{
w1 for ξ ≤ 0,
w2 for ξ > 0, where w1 < w2. (13.1.2.15)

We further assume that ξ > 0 [for ξ ≤ 0, formula (13.1.2.14) is valid]. If ξ = const ≠ 0 and ε → 0, it follows
from (13.1.2.13) that ϕ(ξ) = w2. Hence, in the domain filled by the characteristics y = ξ +w2x (for ξ > 0), the
solution is constant, i.e., we have

w = w2 for y/x ≥ w2 (as ε→ 0). (13.1.2.16)

For ξ → 0, the function ϕ can assume any value between w1 and w2 depending on the ratio of the small
parameters ε and ξ; the first term on the right-hand side of equation (13.1.2.12) can be neglected. As a result,
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we find from equations (13.1.2.11) and (13.1.2.12) that the solution has the following asymptotic behavior in
explicit form:

w = y/x for w1 ≤ y/x ≤ w2 (as ε→ 0). (13.1.2.17)

By combining relations (13.1.2.14), (13.1.2.16), and (13.1.2.17) together, we obtain the solution of the Cauchy
problem for equation (13.1.2.8) subject to the initial conditions (13.1.2.15) in the form

w(x, y) =

{
w1 for y ≤ w1x,
y/x for w1x ≤ y ≤ w2x,
w2 for y ≥ w2x.

(13.1.2.18)

Figure 13.1 shows characteristics of equation (13.1.2.8) that satisfy condition (13.1.2.15) with w1 = 1
2 and

w2 = 2. This figure also depicts the dependence of w on y (for x = x0 = 1). In applications, such a solution is
referred to as a centered rarefaction wave (see also Subsection 13.1.3).

x

y

w

y

w�

w�

y�y�

x�

�

�

y w x� � ��

y w x� � ��

Figure 13.1. Characteristics of the Cauchy problem (13.1.2.8), (13.1.2.2) with the initial profile (13.1.2.15)
and the dependence of the unknown w on the coordinate y for w1 = 1

2 , w2 = 2, and x0 = 1.

Remark. If there is an interval where ϕ′(ξ) < 0, then the characteristics intersect in some domain.
According to equation (13.1.2.11), at the point of intersection of two characteristics defined by two distinct
values ξ1 and ξ2 of the parameter, the functionw takes two distinct values equal toϕ(ξ1) and ϕ(ξ2), respectively.
Therefore, the solution is not unique in the domain of intersecting characteristics. This example illustrates
the local character of the existence and uniqueness theorem. These issues are discussed in Subsections 13.1.3
and 13.1.4 in more detail.

13.1.3. Qualitative Features and Discontinuous Solutions of
Quasilinear Equations

13.1.3-1. Model equation of gas dynamics.

Consider a quasilinear equation of the special form*

∂w

∂x
+ f (w)

∂w

∂y
= 0, (13.1.3.1)

* Equations of the general form are discussed in Subsection 13.1.4.
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which represents a conservation law of mass (or another quantity) and is often encountered
in continuum mechanics, gas dynamics, hydrodynamics, wave theory, acoustics, multiphase
flows, and chemical engineering. This equation is a model for numerous processes of mass
transfer: sorption and chromatography, two-phase flows in porous media, flow of water
in river, street traffic development, flow of liquid films along inclined surfaces, etc. The
independent variables x and y in equation (13.1.3.1) usually play the role of time and spatial
coordinate, respectively, w is the density of the quantity being transferred, and f (w) is the
rate of w.

13.1.3-2. Solution of the Cauchy problem. Rarefaction wave. Wave “overturn.”

1◦. The solution w = w(x, y) of the Cauchy problem for equation (13.1.3.1) subject to the
initial condition

w = ϕ(y) at x = 0 (–∞ < y < ∞) (13.1.3.2)

can be represented in the parametric form

y = ξ + F(ξ)x, w = ϕ(ξ), (13.1.3.3)

where F(ξ) = f
(
ϕ(ξ)

)
.

Consider the characteristics y = ξ + F(ξ)x in the yx-plane for various values of the
parameter ξ. These are straight lines with slope F(ξ). Along each of these lines, the
unknown function is constant, w = ϕ(ξ). In the special case f = a = const, the equation
in question is linear; solution (13.1.3.3) can be written explicitly as w = ϕ(y – ax), thus
representing a traveling wave with a fixed profile. The dependence of f on w leads to a
typical nonlinear effect: distortion of the profile of the traveling wave.

We further consider the domain x ≥ 0 and assume* that f > 0 for w > 0 and f ′w > 0.
In this case, the greater values of w propagate faster than the smaller values. If the initial
profile satisfies the condition ϕ′(y) > 0 for all y, then the characteristics in the yx-plane that
come from the y-axis inside the domain x > 0 are divergent lines, and hence there exists a
unique solution for all x > 0. In physics, such solutions are referred to as rarefaction waves.

Example 1. Figures 13.2 and 13.3 illustrate characteristics and the evolution of a rarefaction wave for
Hopf’s equation [for f (w) = w in (13.1.3.1)] with the initial profile

ϕ(y) =
4
π

arctan(y – 2) + 2. (13.1.3.4)

It is apparent that the solution is smooth for all x > 0.

	

	 
� y

x

Figure 13.2. Characteristics for the Hopf’s equation (13.1.2.8) with the initial profile (13.1.3.4).

* By the change x = –x̃ the consideration of the domain x ≤ 0 can be reduced to that of the domain x̃ ≥ 0.
The case f < 0 can be reduced to the case f > 0 by the change y = –ỹ.
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Figure 13.3. The evolution of a rarefaction wave for the Hopf’s equation (13.1.2.8) with the initial profile
(13.1.3.4).

2◦. Let us now look at what happens if ϕ′(y) < 0 on some interval of the y-axis. Let y1
and y2 be points of this interval such that y1 < y2. Then f (y1) > f (y2). It follows from the
first relation in (13.1.3.3) that the characteristics issuing from the points y1 and y2 intersect
at the “time instant”

x∗ =
y2 – y1

f (w1) – f (w2)
, where w1 = ϕ(y1), w2 = ϕ(y2).

Since w has different values on these characteristics, the solution cannot be continuously
extended to x > x∗. If ϕ′(y) < 0 on a bounded interval, then there exists xmin = min

y1,y2
x∗ such

that the characteristics intersect in the domain x > xmin (see Fig. 13.4). Therefore, the front
part of the wave where its profile is a decreasing function of y will “overturn” with time.
The time xmin when the overturning begins is defined by

xmin = –
1

F ′(ξ0)
,

where ξ0 is determined by the condition |F ′(ξ0)| = max |F ′(ξ)| for F ′(ξ) < 0, and the wave
is also said to break. A formal extension of the solution to the domain x > xmin makes
this solution nonunique. The boundary of the uniqueness domain in the yx-plane is the
envelope of the characteristics. This boundary can be represented in parametric form as

y = ξ + F(ξ)x, 0 = 1 + F ′(ξ)x.

0

2

4

2 4 6 8 y

x

�����

�� �� �������

Figure 13.4. Characteristics for the Hopf’s equation (13.1.2.8) with the initial profile (13.1.3.5).
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Figure 13.5. The evolution of a solitary wave for the Hopf’s equation (13.1.2.8) with the initial profile (13.1.3.5).

Example 2. Figure 13.5 illustrates the evolution of a solitary wave with the initial profile

ϕ(y) = cosh–2(y – 2) + 1 (13.1.3.5)

for equation (13.1.3.1) with f (w) = w. It is apparent that for x > xmin, where xmin = 3
4

√
3 ≈ 1.3, the wave

“overturns” (the wave profile becomes triple-valued).

13.1.3-3. Shock waves. Jump conditions.

In most applications where the equation under consideration is encountered, the unknown
function w(x, y) is the density of a medium and must be unique for its nature. In these
cases, one has to deal with a generalized (nonsmooth) solution describing a step-shaped
shock wave rather than a continuous smooth solution. The many-valued part of the wave
profile is replaced by an appropriate discontinuity, as shown in Fig. 13.6. It should be
emphasized that a discontinuity can occur for arbitrarily smooth functions f (w) and ϕ(y)
entering equation (13.1.3.1) and the initial condition (13.1.3.2).

w

ys x� �

Figure 13.6. Replacement of the many-valued part of the wave profile by a discontinuity that cuts off domains
with equal areas (shaded) from the profile of a breaking wave.

In what follows, we assume that w(x, y) experiences a jump discontinuity at the line
y=s(x) in the yx-plane. On both sides of the discontinuity the functionw(x, y) is smooth and
single-valued; as before, it is described by equations (13.1.3.3). The speed of propagation
of the discontinuity, V , is expressed as V = s′ (the prime stands for the derivative) and must
satisfy the condition

V =
F (w2) – F (w1)

w2 – w1
, F (w) =

∫
f (w) dw, (13.1.3.6)

where the subscript 1 refers to values before the discontinuity and the subscript 2 to those
after the discontinuity. In applications, relation (13.1.3.6), expressing a conservation law at
discontinuity, is conventionally referred to as the Rankine–Hugoniot jump condition (this
condition is derived below in Paragraph 13.1.3-4).
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The continuous wave “overturns” (breaks), thus resulting in a discontinuity if and only
if the propagation velocity f (w) decreases as y increases, i.e., the inequalities

f (w2) < V < f (w1) (13.1.3.7)

are satisfied. Conditions (13.1.3.7) have the geometric meaning that the characteristics
issuing from the x-axis (these characteristics “carry” information about the initial data) must
intersect the line of discontinuity (see Fig. 13.7). In this case, the discontinuous solution
is stable with respect to small perturbations of the initial profile (i.e., the corresponding
solution varies only slightly).

y

x
line of discontinuity

characteristics

characteristics

Figure 13.7. Mutual arrangement of characteristics and lines of discontinuity in the case of a stable shock
wave.

The position of the point of discontinuity in the yw-plane may be determined geometri-
cally by following Whitham’s rule: the discontinuity must cut off domains with equal areas
from the overturning wave profile (these domains are shaded in Fig. 13.6). Mathematically,
the position of the point of discontinuity can be determined from the equations

s(x) = ξ1 + F1x,
s(x) = ξ2 + F2x,

w2F2 – w1F1 = F (w2) – F (w1) +
F2 – F1

ξ2 – ξ1

∫ ξ2

ξ1

w dξ.

(13.1.3.8)

Here, w and F are defined as functions of ξ by w = ϕ(ξ) and F = f (w), the function F (w)
is introduced in equation (13.1.3.6), and the subscripts 1 and 2 refer to the values of the
corresponding quantities at ξ = ξ1 and ξ2. Equations (13.1.3.8) permit one to determine
the dependences s = s(x), ξ1 = ξ1(x), and ξ2 = ξ2(x). It is possible to show that the jump
condition (13.1.3.6) follows from the last equation in (13.1.3.8).

Example 3. For Hopf’s equation, which corresponds to f (w) = w in equation (13.1.3.1), the jump
condition (13.1.3.6) can be represented as

V =
w1 + w2

2
.

Here, we take into account the relation F (w) = 1
2w

2. System (13.1.3.8), which determines the position of the
point of discontinuity, becomes

s(x) = ξ1 + ϕ(ξ1)x,

s(x) = ξ2 + ϕ(ξ2)x,

ϕ(ξ1) + ϕ(ξ2)
2

=
1

ξ2 – ξ1

∫ ξ2

ξ1

ϕ(ξ) dξ,

where the function ϕ(ξ) specifies the initial wave profile.
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Figure 13.8 illustrates the formation of the shock wave described by the generalized solution of Hopf’s
equation with f (w) = w and generated from a solitary wave with the smooth initial profile (13.1.3.5).

The nonsmooth “step” curves depicted in Fig. 13.8 (for x = 0.15, 0.20, and 0.25) are obtained from the
smooth (but many-valued) curves shown in Fig. 13.5 by means of Whitham’s rule of equal areas.

� 	 �

��

��

x ��� �� �� �� �� ��
w

y

Figure 13.8. The formation of a shock wave generated from a solitary wave with the smooth initial profile.

13.1.3-4. Utilization of integral relations for determining generalized solutions.

Generalized solutions which are described by piecewise-smooth (piecewise-continuous)
functions may formally be introduced by considering the following equation written in an
integral form:

–
∫∫

D

[
w
∂ψ

∂x
+ F (w)

∂ψ

∂y

]
dy dx = 0. (13.1.3.9)

Here, D is an arbitrary rectangle in the yx-plane, ψ = ψ(x, y) is any “test” function with
continuous first derivatives in D that is zero at the boundary of D, and the function F (w)
is defined in equation (13.1.3.6). If w and F (w) are continuously differentiable, then
equation (13.1.3.9) is equivalent to the original differential equation (13.1.3.1). Indeed,
multiplying equation (13.1.3.1) by ψ, integrating over the domain D, and then integrating
by parts, we obtain equation (13.1.3.9). Conversely, integrating (13.1.3.9) by parts yields

∫∫

D

[
∂w

∂x
+
∂F (w)
∂y

]
ψ dy dx = 0.

Since this equation must be satisfied for any test function ψ and since F ′(w) = f (w), we
obtain the original equation (13.1.3.1). However, equation (13.1.3.9) has a wider class
of solutions since the admissible functions w(x, y) need not necessarily be differentiable.
The functions w(x, y) satisfying the integral relation (13.1.3.9) for all test functions ψ are
referred to as generalized (or weak) solutions of equation (13.1.3.1).

The use of generalized solutions is convenient for the description of discontinuities,
since it permits one to obtain jump conditions automatically. Consider a solution of equa-
tion (13.1.3.9) continuously differentiable in two portions D1 and D2 of the rectangle D,
which has a jump discontinuity at the interface Γ between D1 and D2. Integrating equa-
tion (13.1.3.9) by parts in each of the subdomains D1 and D2 yields

∫∫

D1

[
∂w

∂x
+
∂F (w)
∂y

]
ψ dy dx +

∫∫

D2

[
∂w

∂x
+
∂F (w)
∂y

]
ψ dy dx +

∫

Γ

{
[w] dy – [F (w)] dx

}
ψ = 0,

where [w] = w2 –w1 and [F (w)] = F (w2) –F (w1) are jumps of w and F (w) across Γ. The
curvilinear integral over Γ is formed by the boundary terms of the integrals overD1 and D2
that result from the integration by parts. Since the relation obtained must be valid for all
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test functions ψ, it follows that equation (13.1.3.1) is valid inside each of the subdomains
D1 and D2 and, moreover, the relation

[w] dy – [F (w)] dx = 0 (on Γ)

must hold. Assuming as before that the line of discontinuity is defined by the equation
y = s(x), we arrive at the jump condition (13.1.3.6).

It is worth noting that condition (13.1.3.7) does not follow from the integral rela-
tion (13.1.3.9) but is deduced from the additional condition of stability of the solution.

13.1.3-5. Conservation laws. Viscosity solutions.

Point out also other ways of introducing generalized solutions.

1◦. Generalized solution may be introduced using the conservation law

d

dx

∫ y2

y1

w dy + F (w2) – F (w1) = 0, (13.1.3.10)

where w = w(x, y) and wn = w(x, yn) (n = 1, 2). Just as in equation (13.1.3.6), the

function F (w) is defined as F (w) =
∫
f (w) dw. Relation (13.1.3.10) is assumed to hold

for any y1 and y2. It has a simple physical interpretation: the rate of change of the total
value of w distributed over the interval (y1, y2) is compensated for by the “flux” of the
function F (w) through the endpoints of the interval.

Let w be a continuously differentiable solution of the conservation law. Then, dif-
ferentiating equation (13.1.3.10) with respect to y2 and setting y2 = y, we arrive at equa-
tion (13.1.3.1). The conservation law (13.1.3.10) is convenient for the reason that is
admits discontinuous solutions. It is not difficult to show that in this case the jump condi-
tion (13.1.3.6) must hold. For this reason, conservation laws like (13.1.3.10) are sometimes
used as the basis for determining generalized solutions.

2◦. An alternative approach to determining generalized solutions involves the consideration
of an auxiliary equation of the parabolic type of the form

∂w

∂x
+ f (w)

∂w

∂y
= ε

∂2w

∂x2 , ε > 0. (13.1.3.11)

The generalized solution of the Cauchy problem (13.1.3.1), (13.1.3.2) (for a finite initial
profile) is defined as the limit of the solution of equation (13.1.3.11) with the same initial
condition (13.1.3.2) as ε → 0. It is shown by Oleinik (1957) and Gelfand (1959) that the
above definitions of the generalized solution leads to the same results.

The parameter ε plays the role of “viscosity” (by analogy with the viscosity of a fluid),
which “smooths out” the jump, thus making the profile of the unknown w continuous.
Therefore, the above construction, based on proceeding to the limit as ε → 0, is called
the method of vanishing viscosity and the limit function obtained is called the viscosity
solution. Equation (13.1.3.11) with small ε is not infrequently used as a basis for numerical
simulation of discontinuous solutions of equation (13.1.3.1); in this case, one need not
specially separate in the numerical scheme a domain of discontinuity.

Remark. In specific problems, first-order quasilinear equations are often a consequence of integral con-
servation laws, having clear physical interpretation. In such cases, one should introduce generalized solutions
on the basis of these conservation laws; for example, see Whitham (1974) and Rozhdestvenskii and Yanenko
(1983). The thus obtained nonsmooth generalized solutions may differ from those described above.
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13.1.3-6. Hopf’s formula for the generalized solution.

Below we give a general formula for a generalized solution of the Cauchy problem
(13.1.3.1), (13.1.3.2), describing discontinuous solutions that satisfy the stability condi-
tion (13.1.3.7). As above, we assume that x ≥ 0 and f > 0 for w > 0; f ′w > 0.

Consider the function

Z(s) = min
w

{
ws – F (w)

}
, where F (w) =

∫
f (w) dw. (13.1.3.12)

We set

H(x, y, η) =
∫ η

0
ϕ(η̄) dη̄ + xZ

(
y – η
x

)
. (13.1.3.13)

This is a continuous function of η for fixed x and y. It can be shown that for fixed x and with
the exception of a countable set of values of y, function (13.1.3.13) has a unique minimum
with respect to η. Denote the position of this minimum by η = ξ, where ξ = ξ(x, y). The
stable generalized solution of equation (13.1.3.1) subject to the initial condition (13.1.3.2)
is given by

w(x, y) = Z
(
y – ξ
x

)
, where Z(s) =

dZ

ds
. (13.1.3.14)

The function Z = Z(s) defined by relation (13.1.3.12) can be represented in the para-
metric form

s = f (w), Z = ws –
∫
f (w) dw. (13.1.3.15)

Hence follows the parametric representation for its derivative Z = Z(s):

s = f (w), Z = w. (13.1.3.16)

The position of the minimum η = ξ(x, y) of function (13.1.3.13) is determined by the
condition Hη = 0, which results in the following equation for ξ:

ϕ(ξ) – Z
(
y – ξ
x

)
= 0. (13.1.3.17)

To illustrate the utilization of the above formulas, we consider two cases.

1◦. Let the algebraic (or transcendental) equation (13.1.3.17) have a unique solution ξ =
ξ(x, y) in some domain of the xy-plane. We set s= (y–ξ)/x in (13.1.3.16) and consider these
relations in conjunction with equation (13.1.3.17). Eliminating the functions f (w) and Z
from these equations yields a solution of the problem in the parametric form (13.1.3.3). In
this case, we obtain a smooth (classical) solution describing a rarefaction wave.

2◦. Let the algebraic (or transcendental) equation (13.1.3.17) have two different solutions,
ξ1 and ξ2, that are functions of x and y. For both cases, solution (13.1.3.3) is valid, where
either ξ = ξ1 or ξ = ξ2. At each point (x, y), we choose that solution ξn (n = 1, 2) which
minimizes the function H(x, y, ξn) defined by equation (13.1.3.13). In this case, we obtain
a discontinuous (generalized) solution describing a shock wave.
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13.1.3-7. Problem of propagation of a signal.

In the problem of propagation of a signal and other physical applications, one seeks a
solution of equation (13.1.3.1) subject to the conditions

w = w0 at x = 0 (initial condition),
w = g(x) at y = 0 (boundary condition),

(13.1.3.18)

where w0 is some constant and g(x) is a prescribed function. One considers the domain
x > 0, y > 0, where x plays the role of time and y the role of the spatial coordinate. It is
assumed that f (w) > 0.

The characteristics of this problem issue from the positive semiaxis y and the positive
semiaxis x (see Fig. 13.9). We have w = w0 at the characteristics issuing from the y-axis.
Hence, these characteristics are straight lines defined by y – a0x = const, where a0 = f (w0).
It follows that

w = w0 for y > a0x. (13.1.3.19)

As far as the characteristics issuing from the x-axis are concerned, we assume that one
of the characteristics starts from a point x = τ . The solution of equation (13.1.3.1) subject
to conditions (13.1.3.18) can be represented in the parametric form

y = G(τ )(x – τ ), w = g(τ ), (13.1.3.20)

where G(τ ) = f
(
g(τ )
)
. This solution can be related to solution (13.1.3.3) of the Cauchy

problem (13.1.3.1), (13.1.3.2) by setting

ξ = –τG(τ ), ϕ(ξ) = g(τ ), F(ξ) = G(τ ). (13.1.3.21)

This corresponds to the continuation of characteristics through the points y = 0, x = τ to
the y-axis and to the designation of the points of intersection by y = ξ. In this case, the
problem of propagation of a signal is formulated as a Cauchy problem.

yw w� �

x

y ���

x ���

line of discontinuity

characteristics

Figure 13.9. Characteristics of the problem of propagation of a signal.

Each domain of nonuniqueness in solution (13.1.3.20) should be replaced by a jump
discontinuity. If

G(+0) > a0, where a0 = f (w0),
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such a domain arises instantaneously, since the first characteristic y = G(+0)x is ahead of
the last characteristic y = a0x of the unperturbed domain. In this case, the discontinuity
appears at the origin of coordinates and the relation

G –G0 = (w – w0)G –
1

x – τ

∫ τ

0

[
G(τ̄ ) – G0

]
dτ̄ (13.1.3.22)

holds. The quantities w, G, and G are functions of τ in the domain behind the discontinuity
and are given by

w = g(τ ), G = f
(
g(τ )
)
, G = F

(
g(τ )
)
.

The subscript 0 refers to the values of these variables ahead of the discontinuity, w = w0,
G0 = f (w0), and G0 = F (w0).

Relations (13.1.3.20) describe the solution in the perturbed domain behind the disconti-
nuity. Equation (13.1.3.22) serves to determine τ (x) at the point of discontinuity; by setting
this value into relations (13.1.3.20), we find both the position of the discontinuity and the
value of w immediately behind it.

If g(x) remains constant and equal to wc, then for ac > a0, where ac = f (wc), the
solution has a jump discontinuity propagating at a constant velocity and separating two
homogeneous domains with w = wc and w = w0.

13.1.4. Quasilinear Equations of General Form. Generalized
Solution, Jump Condition, and Stability Condition

13.1.4-1. Quasilinear equations in conservative form.

In the general case, the quasilinear equation

∂w

∂x
+ f (x, y,w)

∂w

∂y
= g(x, y,w) (13.1.4.1)

can be represented in an equivalent, conservative form as

∂w

∂x
+
∂

∂y
F (x, y,w) = G(x, y,w), (13.1.4.2)

where

F (x, y,w) =
∫ w

w0

f (x, y, t) dt, G(x, y,w) = g(x, y,w)+
∫ w

w0

∂

∂y

[
f (x, y, t)

]
dt, (13.1.4.3)

and w0 is an arbitrary number. In what follows we assume that the functions f and g are
continuous and have continuous first derivatives.

As was shown by examples in Subsections 13.1.2 and 13.1.3, characteristics of equa-
tion (13.1.4.1) can intersect in some domain, which results in the nonuniqueness of the
solution and the absence of a physical interpretation of this solution. For this reason, one
has to make use of a generalized solution, described by a discontinuous function instead of
a classical smooth solution.

We consider the class of functions w(x, y) � K satisfying the following conditions:

1◦. In any bounded portion of the half-plane x ≥ 0, there exists a finite number of lines and
points of discontinuity; outside these lines and points, the function w(x, y) is continuous
and has continuous first derivatives.

2◦. At the lines of discontinuity, y =y(x), the left and right limit values ofw exist: w(x, y–0)
and w(x, y + 0).
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13.1.4-2. Generalized solution. Jump condition and stability condition.

A generalized solution may be introduced in the following manner. Let ψ(x, y) � C1 be a
continuous finite function (which vanishes outside a finite portion of the xy-plane) having
continuous first derivatives.

Multiply equation (13.1.4.1) by ψ(x, y) and integrate the resulting relation over the
half-plane Ω = {0 ≤ x < ∞, –∞ < y < ∞}. On integrating by parts, we obtain
∫∫

Ω

[
w
∂ψ

∂x
+ F (x, y,w)

∂ψ

∂y
+G(x, y,w)ψ(x, y)

]
dy dx +

∫ ∞

–∞
w(0, y)ψ(0, y) dy = 0.

(13.1.4.4)
The function F (x, y,w) is defined in equation (13.1.4.3). The integral relation (13.1.4.4)
does not contain derivatives of the unknown function and does not lose its meaning for
discontinuous w(x, y). The function w(x, y) � K will be called the generalized solution of
equation (13.1.4.1) if inequalities (13.1.4.4) hold for any finite ψ(x, y) � C1.

Basic properties of the stable generalized solution:

1◦. In the domain where the solution w is continuously differentiable, equations (13.1.4.1)
and (13.1.4.4) are equivalent.

2◦. Let y = y(x) be the equation of a discontinuity line of w(x, y). Then the Rankine–
Hugoniot jump condition must hold. It expresses the speed of motion of the discontinuity
line via the solution parameters ahead of and behind the discontinuity as

V =
[F (x, y,w)]

[w]
≡
F
(
x, y(x),w2(x)

)
– F
(
x, y(x),w1(x)

)

w2(x) – w1(x)
, (13.1.4.5)

where
V = y′(x), w1(x) = w

(
x, y(x) – 0

)
, w2(x) = w

(
x, y(x) + 0

)
.

3◦. For f ′w(x, y,w) ≠ 0, the generalized solution stable with respect to small perturbations
of the initial profile (it is stable solutions that are physically realizable) must satisfy the
condition

f
(
x, y(x),w2(x)

)
≤ V ≤ f

(
x, y(x),w1(x)

)
. (13.1.4.6)

The stability condition (13.1.4.6) has the geometrical meaning that the characteristics issu-
ing from the x-axis (these characteristics “carry” information about the initial data) must
intersect the discontinuity line (see Fig. 13.7). This condition is very important since it
allows for the existence of a stable generalized solution and provides its uniqueness.

The properties of Items 1◦ and 2◦ follow from the integral relation (13.1.4.4), and the
condition of Item 3◦ is additional [it cannot be deduced from the integral relation (13.1.4.4)].
If the stability condition of Item 3◦ is not imposed, then various generalized solutions
satisfying Items 1◦ and 2◦ may be constructed.

Example 4. Consider the Cauchy problem for equation (13.1.2.8) with the initial condition (13.1.2.15).
We set

w(x, y) =
{
w1 for y < V x,
w2 for y > V x, where V =

w1 + w2

2
. (13.1.4.7)

This function is constant from the left and right of the discontinuity line y = V x, where the jump condi-
tion (13.1.4.5) is met [since F (x, y,w) = 1

2w
2], and satisfies the initial condition (13.1.2.15). Hence, w is a

generalized solution.
Figure 13.10 shows the discontinuity line and characteristics corresponding to solution (13.1.4.7). One

can see that the characteristics “issue” from the discontinuity line and do not intersect the x-axis. Therefore,
solution (13.1.4.7) is unstable, does not satisfy condition (13.1.4.6), and is not physically realizable. A stable
solution of this problem was constructed earlier; see relation (13.1.2.18).
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Figure 13.10. Characteristics and the discontinuity line for an unstable discontinuous solution (13.1.4.7).

If f ′w(x, y,w) is not a function of fixed sign, the stability condition for the generalized
solution becomes more complicated:

F (x, y,w∗) – F (x, y,w2)
w∗ – w2

≤ V ≤
F (x, y,w∗) – F (x, y,w1)

w∗ – w1
,

y = y(x), w1 < w∗ < w2,

where w∗ is any value from the interval (w1,w2).

Remark. Point out also other ways of defining generalized solutions (using conservation laws and viscosity
solutions).

13.1.4-3. Method for constructing stable generalized solutions.

Consider the Cauchy problem for the quasilinear equation

∂w

∂x
+
∂

∂y
F (x, y,w) = 0 (13.1.4.8)

subject to the initial condition

w = ϕ(y) at x = 0. (13.1.4.9)

It is assumed that the function F (x, y,w) is continuously differentiable with respect to all
its arguments for x ≥ 0, –∞ < y < ∞ and any bounded w. We also assume that the second
derivative Fww is positive. Let the functions ϕ(y) and ϕ′(y) be piecewise-continuous for
any finite y.

The characteristic system for equation (13.1.4.8) has the form

y′x = Fw(x, y,w), w′
x = –Fy(x, y,w), (13.1.4.10)

where Fw and Fy are the partial derivatives of the function F with respect to w and y.
Suppose the functions

y(x) = Y (x, τ , ξ, η), w(x) = W (x, τ , ξ, η) (13.1.4.11)

are solutions of system (13.1.4.10) satisfying the boundary conditions

y(0) = η, y(τ ) = ξ. (13.1.4.12)



570 FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS

Here, η and ξ are arbitrary numbers and τ > 0. We assume that problem (13.1.4.10),
(13.1.4.12) has a unique bounded solution.

The stable generalized solution of the Cauchy problem (13.1.4.8), (13.1.4.9) is given by

w(x, y – 0) = W
(
x,x, y, ξ–(x, y)

)
,

w(x, y + 0) = W
(
x,x, y, ξ+(x, y)

)
,

(13.1.4.13)

where ξ–(x, y) and ξ+(x, y) denote, respectively, the greatest lower bound and the least upper
bound of the set of values {ξ = ξn} for which the function

I(x, y, ξ) =
∫ ξ

0

[
ϕ(η) – W (0,x, y, η)

]
dη (13.1.4.14)

takes the minimum value for fixedx and y (x> 0). If function (13.1.4.14) takes the minimum
value for a single ξ = ξ1, then ξ– = ξ+ and relation (13.1.4.14) describes the classical smooth
solution.

13.2. Nonlinear Equations
13.2.1. Solution Methods

13.2.1-1. Complete, general, and singular integrals.

A nonlinear first-order partial differential equation with two independent variables has the
general form

F (x, y,w, p, q) = 0, where p =
∂w

∂x
, q =

∂w

∂y
. (13.2.1.1)

Such equations are encountered in analytical mechanics, calculus of variations, optimal
control, differential games, dynamic programming, geometric optics, differential geometry,
and other fields.

In this subsection, we consider only smooth solutionsw =w(x, y) of equation (13.2.1.1),
which are continuously differentiable with respect to both arguments (Subsection 13.2.3
deals with nonsmooth solutions).

1◦. Let a particular solution of equation (13.2.1.1),

w = Ξ(x, y,C1,C2), (13.2.1.2)

depending on two parameters C1 and C2, be known. The two-parameter family of so-
lutions (13.2.1.2) is called a complete integral of equation (13.2.1.1) if the rank of the
matrix

M =

(
Ξ1 Ξx1 Ξy1

Ξ2 Ξx2 Ξy2

)
(13.2.1.3)

is equal to two in the domain being considered (for example, this is valid if Ξx1Ξy2 –
Ξx2Ξy1 ≠ 0). In equation (13.2.1.3), Ξn denotes the partial derivative of Ξ with respect
to Cn (n = 1, 2), Ξxn is the second partial derivative with respect to x and Cn, and Ξyn is
the second partial derivative with respect to y and Cn.

In some cases, a complete integral can be found using the method of undetermined
coefficients by presetting an appropriate structure of the particular solution sought. (The
complete integral is determined by the differential equation nonuniquely.)
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Example 1. Consider the equation

∂w

∂x
= a

(
∂w

∂y

)n

+ b.

We seek a particular solution as the sum w = C1y + C2 + C3x. Substituting this expression into the equation
yields the relation C3 = aCn

1 + b for the coefficients C1 and C3. With this relation, we find a complete integral
in the form w = C1y +

(
aCn

1 + b
)
x + C2.

A complete integral of equation (13.2.1.1) is often written in implicit form:*

Ξ(x, y,w,C1,C2) = 0. (13.2.1.4)

2◦. The general integral of equation (13.2.1.1) can be represented in parametric form by
using the complete integral (13.2.1.2) [or (13.2.1.4)] and the two equations

C2 = f (C1),
∂Ξ
∂C1

+
∂Ξ
∂C2

f ′(C1) = 0,
(13.2.1.5)

where f is an arbitrary function and the prime stands for the derivative. In a sense, the
general integral plays the role of the general solution depending on an arbitrary function
(the questions whether it describes all solutions calls for further analysis).

Example 2. For the equation considered in the first example, the general integral can be written in
parametric form by using the relations

w = C1y +
(
aCn

1 + b
)
x + C2, C2 = f (C1), y + anCn–1

1 x + f ′(C1) = 0.

Eliminating C2 from these relations and renaming C1 by C, one can represent the general integral in a more
graphic manner in the form

w = Cy +
(
aCn + b

)
x + f (C),

y = –anCn–1x + f ′(C).

3◦. Singular integrals of equation (13.2.1.1) can be found without invoking a complete inte-
gral by eliminating p and q from the following system of three algebraic (or transcendental)
equations:

F = 0, Fp = 0, Fq = 0,

where the first equation coincides with equation (13.2.1.1).

13.2.1-2. Method of separation of variables. Equations of special form.

The method of separation of variables implies searching for a complete integral as the sum or
product of functions of various arguments. Such solutions are called additive separable and
multiplicative separable, respectively. Presented below are structures of complete integrals
for some classes of nonlinear equations admitting separation of variables.

1◦. If the equation does not depend explicitly on y and w, i.e.,

F (x,wx,wy) = 0,

then one can seek a complete integral in the form of the sum of two functions with different
arguments

w = C1y + C2 + u(x).

The new unknown function u is determined by solving the following ordinary differential
equation:

F (x,u′x,C1) = 0.

Expressing u′x from this equation in terms of x, one arrives at a separable differential
equation for u = u(x).

* In equations (13.2.1.2) and (13.2.1.4), the symbol Ξ denotes different functions.
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2◦. Consider an equation with separated variables

F1(x,wx) = F2(y,wy).

Then one can seek a complete integral as the sum of two functions with different arguments,

w = u(x) + v(y) + C1,

which are determined by the following two ordinary differential equations:

F1(x,u′x) = C2,

F2(y, v′y) = C2.

3◦. Let the equation have the form (generalizes the equation of Item 2◦)

F1(x,wx) + F2(y,wy) = aw.

Then one can seek a complete integral as the sum of two functions with different arguments,

w = u(x) + v(y) + C1,

which are determined by the following two ordinary differential equations:

F1(x,u′x) – au = aC1 + C2,

F2(y, v′y) – av = –C2,

where C1 is an arbitrary constant.

4◦. Suppose the equation can be rewritten in the form

F
(
ϕ(x,wx), y,wy

)
= 0.

Then one can seek a complete integral as the sum of two functions with different arguments,

w(x, y) = u(x) + v(y) + C1,

which are determined by the following two ordinary differential equations:

ϕ(x,u′x) = C2,

F (C2, y, v′y) = 0,

where C2 is an arbitrary constant.

5◦. Let the equation have the form

F1(x,wx/w) = wkF2(y,wy/w).

Then one can seek a complete integral in the form of the product of two functions with
different arguments,

w = u(x)v(y),

which are determined by the following two ordinary differential equations:

F1(x,u′x/u) = C1u
k,

F2(y, v′y/v) = C1v
–k,

where C1 is an arbitrary constant.

6◦. Table 13.2 lists complete integrals of the above and some other nonlinear equations of
general form involving arbitrary functions with several arguments.

� Section T7.3 presents complete integrals for many more nonlinear first-order partial
differential equations with two independent variables than in Table 13.2.
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TABLE 13.2
Complete integrals for some special types of nonlinear first-order
partial differential equations; C1 and C2 are arbitrary constants

No. Equations and comments Complete integrals Auxiliary equations

1
F (wx,wy) = 0,

does not depend on x, y, and w implicitly w = C1 + C2x + C3y F (C2,C3) = 0

2
F (x,wx,wy) = 0,

does not depend on y and w implicitly w = C1y + C2 + u(x) F (x,u′
x,C1) = 0

3
F (w,wx,wy) = 0,

does not depend on x and y implicitly w = u(z), z = C1x + C2y F (u,C1u
′
z ,C2u

′
z) = 0

4
F1(x,wx) = F2(y,wy),

separated equation w = u(x) + v(y) + C1
F1(x,u′

x) = C2,
F2(y, v′y) = C2

5
F1(x,wx) + F2(y,wy) = aw,

generalizes equation 4 w = u(x) + v(y) F1(x,u′
x) – au = C1,

F2(y, v′y) – av = –C1

6
F1(x,wx) = eawF2(y,wy),

generalizes equation 4
w = u(x) + v(y) F1(x,u′

x) = C1e
au,

F2(y, v′y) = C1e
–av

7
F1(x,wx/w) = wkF2(y,wy/w),

can be reduced to equation 6
by the change of variable w = ez

w = u(x)v(y)
F1(x,u′

x/u) = C1u
k,

F2(y, v′y/v) = C1v
–k

8
w = xwx + ywy + F (wx,wy),

Clairaut equation w = C1x + C2y + F (C1,C2) —

9
F (x,wx,wy ,w – ywy) = 0,

generalizes equation 2 w = C1y + u(x) F
(
x,u′

x,C1, u
)

= 0

10
F (w,wx,wy ,xwx + ywy) = 0,
generalizes equations 3 and 8 w = u(z), z = C1x + C2y F (u,C1u

′
z ,C2u

′
z , zu′

z) = 0

11
F
(
ϕ(x,wx), y,wy

)
= 0,

generalizes equation 4
w = u(x) + v(y) + C1

ϕ(x,u′
x) = C2,

F (C2, y, v′y) = 0

13.2.1-3. Lagrange–Charpit method.

Suppose that a first integral,
Φ(x, y,w, p, q) = C1, (13.2.1.6)

of the characteristic system of ordinary differential equations

dx

Fp
=
dy

Fq
=

dw

pFp + qFq
= –

dp

Fx + pFw
= –

dq

Fy + qFw
(13.2.1.7)

is known. Here,

p =
∂w

∂x
, q =

∂w

∂y
, Fx =

∂F

∂x
, Fy =

∂F

∂y
, Fw =

∂F

∂w
, Fp =

∂F

∂p
, Fq =

∂F

∂q
.

We assume that solution (13.2.1.6) and equation (13.2.1.1) can be solved for the deriva-
tives p and q, i.e.,

p = ϕ1(x, y,w,C1), q = ϕ2(x, y,w,C1). (13.2.1.8)
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The first equation of this system can be treated as an ordinary differential equation with
independent variable x and parameter y. On finding the solution of this equation depending
on an arbitrary function ψ(y), one substitutes this solution into the second equation to arrive
at an ordinary differential equation for ψ. On determining ψ(y) and on substituting it into
the general solution of the first equation of (13.2.1.8), one finds a complete integral of
equation (13.2.1.1). In a similar manner, one can start solving system (13.2.1.8) with the
second equation, treating it as an ordinary differential equation with independent variable y
and parameter x.

Example 3. Consider the equation

ywp2 – q = 0, where p =
∂w

∂x
, q =

∂w

∂y
.

In this case, the characteristic system (13.2.1.7) has the form
dx

2ywp
= –

dy

1
=

dw

2ywp2 – q
= –

dp

yp3 = –
dq

wp2 + yp2q
.

By making use of the original equation, we simplify the denominator of the third ratio to obtain an integrable
combination: dw/(ywp2) = –dp/(yp3). This yields the first integral p = C1/w. Solving the original equation
for q, we obtain the system

p =
C1

w
, q =

C2
1y

w
.

The general solution of the first equation has the form w2 = 2C1x + ψ(y), where ψ(y) is an arbitrary function.
With this solution, it follows from the second equation of the system thatψ′(y) = 2C2

1y. Thus, ψ(y) =C2
1y

2 +C2.
Finally, we arrive at a complete integral of the form

w2 = 2C1x + C2
1y

2 + C2.

Note that the general solution of the completely integrable Pfaff equation (see Subsec-
tion 15.14.2)

dw = ϕ1(x, y,w,C1) dx + ϕ2(x, y,w,C1) dy (13.2.1.9)

is a complete integral of equation (13.2.1.1). Here, the functions ϕ1 and ϕ2 are the same as
in system (13.2.1.8).

Remark. The relationF (x, y,w, p, q) =C is an obviousfirst integral of the characteristic system (13.2.1.7).
Hence, the function Φ determining the integral (13.2.1.6) must differ from F . However, the use of rela-
tion (13.2.1.1) makes it possible to reduce the order of system (13.2.1.7) by one.

13.2.1-4. Construction of a complete integral with the aid of two first integrals.

Suppose two independent first integrals,

Φ(x, y,w, p, q) = C1, Ψ(x, y,w, p, q) = C2, (13.2.1.10)

of the characteristic system of ordinary differential equations (13.2.1.7) are known. Assume
that the functions F , Φ, and Ψ determining equation (13.2.1.1) and the integrals (13.2.1.10)
satisfy the two conditions

(a) J ≡
∂(F , Φ, Ψ)
∂(w, p, q)

� 0,

(b) [Φ, Ψ] ≡
∣∣
∣∣
Φp Φx + pΦw

Ψp Ψx + pΨw

∣∣
∣∣ +

∣∣
∣∣
Φq Φy + qΦw

Ψq Ψy + qΨw

∣∣
∣∣ ≡ 0,

(13.2.1.11)

where J is the Jacobian of F , Φ, and Ψ with respect to w, p, and q, and [Φ, Ψ] is the
Jacobi–Mayer bracket. In this case, relations (13.2.1.1) and (13.2.1.10) form a parametric
representation of the complete integral of equation (13.2.1.1) (p and q are considered to
be parameters). Eliminating p and q from equations (13.2.1.1) and (13.2.1.10) followed
by solving the obtained relation for w yields a complete integral in an explicit form w =
w(x, y,C1,C2).
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Example 4. Consider the equation

pq – aw = 0, where p =
∂w

∂x
, q =

∂w

∂y
.

The characteristic system (13.2.1.7) has the form

dx

q
=
dy

p
=
dw

2pq
=
dp

ap
=
dq

aq
.

Equating the first ratio with the fifth one and the second ratio with the fourth one, we obtain the first integrals

q – ax = C1, p – ay = C2.

Thus, F = pq – aw, Φ = q – ax, and Ψ = p – ax. These functions satisfy conditions (13.2.1.11). Solving the
equation and the first integrals for w yields a complete integral of the form

w =
1
a

(ax + C1)(ay + C2).

13.2.1-5. Case where the equation does not depend on w explicitly.

Suppose the original equation does not contain the unknown first explicitly, i.e., it has the
form

F (x, y, p, q) = 0. (13.2.1.12)

1◦. Given a one-parameter family of solutions w = Ξ(x, y,C1) such that Ξ′
1 � const, a

complete integral is given by w = Ξ(x, y,C1) + C2.

2◦. The first integral may be sought in the form

Φ(x, y, p, q) = C1

similar to that of equation (13.2.1.12). In this case, the characteristic system (13.2.1.7) is
represented as

dx

Fp
=
dy

Fq
= –

dp

Fx
= –

dq

Fy
.

The corresponding Pfaff equation (13.2.1.9) becomes

dw = ϕ1(x, y,C1) dx + ϕ2(x, y,C1) dy.

One may integrate this equation in quadrature, thus arriving at the following expression for
the complete integral:

w =
∫ x

x0

ϕ1(t, y,C1) dt +
∫ y

y0

ϕ2(x0, s,C1) ds + C2, (13.2.1.13)

where x0 and y0 are arbitrary numbers.

3◦. Suppose that equation (13.2.1.12) can be solved for p or q, for example,

p = –H(x, y, q).

Then, by differentiating this relation with respect to y, we obtain a quasilinear equation for
the derivative q in the form

∂q

∂x
+
∂

∂y
H(x, y, q) = 0, q =

∂w

∂y
.

This equation is simpler than the original one; qualitative features of it and solution methods
can be found in Section 13.1.1.
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13.2.1-6. Hamilton–Jacobi equation.

Equation (13.2.1.1) solved for one of the derivatives, e.g.,

p + H(x, y,w, q) = 0, where p =
∂w

∂x
, q =

∂w

∂y
, (13.2.1.14)

is commonly referred to as the Hamilton–Jacobi equation* and the function H as the
Hamiltonian. Equations of the form (13.2.1.14) are frequently encountered in various fields
of mechanics, control theory, and differential games, where the variable x usually plays the
role of time and the variable y the role of the spatial coordinate. To the Hamilton–Jacobi
equation (13.2.1.14) there corresponds the function F (x, y,w, p, q) = p + H(x, y,w, q) in
equation (13.2.1.1).

The characteristic system (13.2.1.7) for equation (13.2.1.14) can be reduced, by taking
into account the relation p = –H, to a simpler system consisting of three differential
equations,

y′x = Hq, w′
x = qHq – H, q′x = –qHw – Hy, (13.2.1.15)

which are independent of p; the left-hand sides of these equations are derivatives with
respect to x.

13.2.2. Cauchy Problem. Existence and Uniqueness Theorem

13.2.2-1. Statement of the problem. Solution procedure.

Consider the Cauchy problem for equation (13.2.1.1) subject to the initial conditions

x = h1(ξ), y = h2(ξ), w = h3(ξ), (13.2.2.1)

where ξ is a parameter (α ≤ ξ ≤ β) and the hk(ξ) are given functions.
The solution of this problem is carried out in several steps:

1◦. First, one determines additional initial conditions for the derivatives,

p = p0(ξ), q = q0(ξ). (13.2.2.2)

To this end, one must solve the algebraic (or transcendental) system of equations

F
(
h1(ξ),h2(ξ),h3(ξ), p0, q0

)
= 0, (13.2.2.3)

p0h
′
1(ξ) + q0h

′
2(ξ) – h′3(ξ) = 0 (13.2.2.4)

for p0 and q0. Equation (13.2.2.3) results from substituting the initial data (13.2.2.1) into
the original equation (13.2.1.1). Equation (13.2.2.4) is a consequence of the dependence
of w on x and y and the relation dw = p dx + q dy, where dx, dy, and dw are calculated in
accordance with the initial data (13.2.2.1).

2◦. One solves the autonomous system

dx

Fp
=
dy

Fq
=

dw

pFp + qFq
= –

dp

Fx + pFw
= –

dq

Fy + qFw
= dτ , (13.2.2.5)

which is obtained from (13.2.1.7) by introducing the additional variable τ (playing the role
of time).

* The Hamilton–Jacobi equation often means equation (13.2.1.14) that does not depend on w explicitly,
i.e., the equation p + H(x, y, q) = 0.
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3◦. Finally, one determines the constant of integration from the initial conditions

x = h1(ξ), y = h2(ξ), w = h3(ξ), p = p0(ξ), q = q0(ξ) at τ = 0, (13.2.2.6)

which are the combination of conditions (13.2.2.1) and (13.2.2.2). This results in the three
functions

x = x(τ , ξ), y = y(τ , ξ), w = w(τ , ξ), (13.2.2.7)

which give the solution of the stated Cauchy problem in parametric form (τ and ξ are
parameters).

13.2.2-2. Existence and uniqueness theorem.

Let the function F = F (x, y,w, p, q), determining equation (13.2.1.1), be twice continu-
ously differentiable with respect to all five arguments (in the domain being considered),
with F 2

p + F 2
q ≠ 0. Let the functions h1(ξ), h2(ξ), and h3(ξ), determining the initial condi-

tions (13.2.2.1), be twice differentiable with respect to ξ, with (h′1)2 + (h′2)2 ≠ 0. Assume
that the function p0(ξ) and q0(ξ), determining the additional initial condition (13.2.2.2),
satisfy the system (13.2.2.3), (13.2.2.4). Moreover, we adopt the transversality condition

Δ ≡ Fph′2 – Fqh
′
1 ≠ 0,

where the functions h1, h2, p, and q are defined by equations (13.2.2.1) and (13.2.2.2), and
the prime denotes the derivative with respect to ξ. Under the adopted assumptions, there
exists a unique, twice continuously differentiable solution of equation (13.2.1.1) satisfying
the initial conditions (13.2.2.1) and (13.2.2.2).

Remark 1. This theorem has a local character, i.e., the existence of a unique solution of the Cauchy
problem is merely guaranteed in some neighborhood of the line defined by the initial data (13.2.2.1) together
with the additional conditions (13.2.2.2).

Remark 2. The algebraic (or transcendental) system (13.2.2.3), (13.2.2.4) can have several solutions
(see Example 2 at the end of this subsection) that result in distinct additional conditions (13.2.2.2) for the
derivatives p and q. Each pair of these additional conditions will generate a solution of the Cauchy problem
(13.2.1.1), (13.2.2.1).

Remark 3. For nonlinear equations, the global solution of the Cauchy problem (13.2.1.1), (13.2.2.1) may
be nonunique for another reason—because the characteristics in the xy-plane may intersect (see Example 1 in
Subsection 13.2.3). Such a situation is discussed in Subsections 13.1.3 and 13.1.4, where quasilinear equations
are considered.

13.2.2-3. Cauchy problem for the Hamilton–Jacobi equation.

The initial condition for the Hamilton–Jacobi equation (13.2.1.14) is usually stated in the
form

w = ϕ(y) at x = L. (13.2.2.8)

In this case, the solution of the Cauchy problem is reduced to the solution of the characteristic
system (13.2.1.15) subject to the initial conditions

y = ξ, w = ϕ(ξ), q = ϕ′(ξ) at x = L, (13.2.2.9)

where the prime stands for the derivative with respect to the parameter ξ.
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13.2.2-4. Examples of solving the Cauchy problem.

Consider a few specific examples.

Example 1. Find a solution of the equation

aw = pq, where p =
∂w

∂x
, q =

∂w

∂y
, (13.2.2.10)

satisfying the initial condition
w = f (y) at x = 0. (13.2.2.11)

Rewrite the initial condition (13.2.2.11) in parametric form:

x = 0, y = ξ, w = f (ξ). (13.2.2.12)

The system of equations (13.2.2.3), (13.2.2.4) for p0(ξ) and q0(ξ) is written as

af (ξ) = p0q0, q0 – f ′(ξ) = 0.

It follows that

p0 = a
f (ξ)
f ′(ξ)

, q0 = f ′(ξ). (13.2.2.13)

If F = pq – aw, the characteristic system (13.2.2.5) is written as

dx

q
=
dy

p
=
dw

2pq
=
dp

ap
=
dq

aq
= dτ . (13.2.2.14)

Its solution is given by the relations

p = C1e
aτ , q = C2e

aτ , x =
C2

a
eaτ + C3, y =

C1

a
eaτ + C4, w =

C1C2

a
e2aτ + C5; (13.2.2.15)

it is easy to integrate the last two equations first.
By using the initial conditions (13.2.2.12), (13.2.2.13), which must be satisfied at τ = 0, we find the

constants of integration in the form

C1 = a
f (ξ)
f ′(ξ)

, C2 = f ′(ξ), C3 = –
f ′(ξ)
a

, C4 = ξ –
f (ξ)
f ′(ξ)

, C5 = 0.

Substituting theses values into (13.2.2.15) yields a solution of the Cauchy problem (13.2.2.10), (13.2.2.11) in
the parametric form

x =
1
a
f ′(ξ)

(
eaτ – 1

)
, y =

f (ξ)
f ′(ξ)

(
eaτ – 1

)
+ ξ, w = f (ξ)e2aτ .

Example 2. Find a solution of the equation
(
∂w

∂x

)2

+

(
∂w

∂y

)2

= a2, (13.2.2.16)

passing through the circle
x2 + y2 = b2, w = 0. (13.2.2.17)

By introducing a parameter ξ, we rewrite the equation of the circle in the form

x = b sin ξ, y = b cos ξ, w = 0. (13.2.2.18)

In this case, the equations (13.2.2.3), (13.2.2.4) for determining additional initial conditions are

p2
0 + q2

0 = a2, p0 cos ξ – sin ξq0 = 0.

Whence,
p0 = εa sin ξ, q0 = εa cos ξ, where ε = �1. (13.2.2.19)

For F = p2 + q2 – a2, system (13.2.2.5) is represented as

dx

2p
=
dy

2q
=

dw

2(p2 + q2)
= –

dp

0
= –

dq

0
= dτ . (13.2.2.20)
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The general solution is given by (the last two equations are integrated first)

p = C1, q = C2, x = 2C1τ + C3, y = 2C2τ + C4, w = 2(C2
1 + C2

2 )τ + C5. (13.2.2.21)

Using the initial conditions (13.2.2.18), (13.2.2.19), which must be satisfied at τ = 0, we find the constants of
integration

C1 = εa sin ξ, C2 = εa cos ξ, C3 = b sin ξ, C4 = b cos ξ, C5 = 0, where ε = �1.

Substituting these values into (13.2.2.21) yields a solution of the Cauchy problem (13.2.2.16), (13.2.2.17) in
the parametric form

x = (2εaτ + b) sin ξ, y = (2εaτ + b) cos ξ, w = 2a2τ .

On eliminating the parameters ξ and τ , we can rewrite this solution in a more graphic form,

a2(x2 + y2) = (ab � w)2. (13.2.2.22)

Relation (13.2.2.22) describes two circular coaxial cones in the space (x, y,w). The circle (13.2.2.17) is a base
of the cones. The common axis coincides with the w-axis. The vertices of the cones have the coordinates
w = �ab.

It is significant that solution (13.2.2.22) is a many-valued function.

13.2.3. Generalized Viscosity Solutions and Their Applications

13.2.3-1. Preliminary remarks.

Subsections 13.2.1 and 13.2.2 dealt with classical smooth solutions w = w(x, y), hav-
ing continuous derivatives with respect to both arguments. However, in optimal control,
differential games, and some other applications, problems arise whose solutions are con-
tinuous but nonsmooth functions. To describe and construct generalized solutions of this
sort, approaches other than those outlined above are required. It should be noted that for
determining generalized solutions to nonlinear equations of the general forms (13.2.1.1)
and (13.2.1.14), it turns out to be ineffective to use graphic constructs such as integral rela-
tions and conservation laws, which are frequently encountered in the theory of quasilinear
equations (see Subsections 13.1.3 and 13.1.4).

Note that nonsmoothness of a solution can be caused by (i) the intersection of charac-
teristics in the xy-plane (see Example 1 below), (ii) nonsmoothness of initial conditions,
and/or (iii) nonsmoothness of the functions F and H determining equations (13.2.1.1)
and (13.2.1.14).

13.2.3-2. Viscosity solutions based on the use of a parabolic equation.

The solution of the Cauchy problem for equation (13.2.1.14) subject to the initial condition

w = ϕ(y) at x = 0 (13.2.3.1)

may be approximated by the solution of the following second-order partial differential
equation of the parabolic type:

∂u

∂x
+ H
(
x, y,u,

∂u

∂y

)
= ε

∂2u

∂y2 (ε > 0). (13.2.3.2)

This equation is subject to the same initial condition (13.2.3.1). For a fairly wide class of
functions H and ϕ, the Cauchy problem for equation (13.2.3.2) is known to have a unique
solution. In the theory of Hamilton–Jacobi equations, this fact is used to determine the
solution of the Cauchy problem (13.2.1.14), (13.2.3.1) as a limit of the solution of problem
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(13.2.3.2), (13.2.3.1): w(x, y) = lim
ε→0

u(x, y). Just as in the theory of quasilinear equations

(see Subsection 13.1.3), this structure, based on proceeding to the limit as ε→ 0, is referred
to as the method of vanishing viscosity, and the limit function as the viscosity solution of
the Hamilton–Jacobi equation.

The vanishing viscosity method can be implemented, for example, by a numerical
solution of problem (13.2.3.2), (13.2.3.1) for sufficiently small ε (in this case, one need not
search for singular points, at which the smoothness of the solution is violated). However,
this method is difficult to use for constructing analytical solutions, since one has to treat a
more complex, second-order partial differential equation.

13.2.3-3. Viscosity solutions based on test functions and differential inequalities.

A continuous functionw =w(x, y) is called the viscosity solution of the initial value problem
(13.2.1.1), (13.2.3.1) in a layer 0 ≤ x ≤ L if the following two conditions are satisfied:

1◦. The function w = w(x, y) satisfies the initial condition (13.2.3.1).

2◦. Let ψ(x, y) be any continuously differentiable test function. If (x◦, y◦) is a local
extremum point of the difference

w(x, y) – ψ(x, y), (13.2.3.3)

then the following relations hold at this point:

F
(
x◦, y◦,w◦,ψ◦

x,ψ◦
y

)
≥ 0 if (x◦, y◦) is a local minimum point,

F
(
x◦, y◦,w◦,ψ◦

x,ψ◦
y

)
≤ 0 if (x◦, y◦) is a local maximum point.

(13.2.3.4)

Only those local extremum points that lie within the layer in question (0 < x◦ < L) are to
be examined.

Note that it is not necessary that a test function ψ(x, y) exists for which the differ-
ence (13.2.3.3) has a local extremum. But if such a function does exist, then condi-
tion (13.2.3.4) must hold.

If the Cauchy problem has a smooth classical solution, then it coincides with the viscosity
generalized solution.

In optimal control and differential games, terminal value problems are encountered
apart from initial value problems. In terminal value problems, the solution of equations
(13.2.1.1) and (13.2.1.14) is sought in the layer 0 ≤ x ≤ L and the “initial” condition is set at
the right endpoint x = L. For these problems, the inequalities in (13.2.3.4) must be changed
for the opposites. The terminal value problems can be reduced to initial value problems by
introducing a new independent variable z = L – x instead of x.

13.2.3-4. Local structure of generalized viscosity solutions.

A generalized solution, w(x, y), consists of regular and singular points. In a neighborhood
of a regular point, the function w(x, y) is a solution in the classical sense (such twice
continuously differentiable solutions are discussed in the existence and uniqueness theorem
in Subsection 13.2.2). All points that are not regular are called singular points.

Let D be a sufficiently small neighborhood of a singular point (x∗, y∗). Usually, it
happens that the singular points form a smooth curve Γ, which passes through (x∗, y∗) and
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Figure 13.11. Generalized viscosity solution undergoes a discontinuity along the singular curve Γ; the solution
is smooth in the subdomains D1 and D2.

divides the domain D into two subdomains D1 and D2 (see Fig. 13.11). On both sides of Γ,
the generalized solution w is defined by different classical solutions u1 and u2, i.e.,

w(x, y) =
{
u1(x, y) if (x, y) � D1,
u2(x, y) if (x, y) � D2. (13.2.3.5)

The solutions u1 and u2 join together along the interface Γ in a continuous but nonsmooth
manner. When crossing Γ, the derivatives of the generalized solution, ∂w/∂x and ∂w/∂y,
undergo a discontinuity. We assume that the smooth components u1 and u2 of the gener-
alized solution are smoothly expended to the entire domain D. Then the equation of the
curve Γ, formed by the singular points, can be represented as

g(x, y) = 0, where g(x, y) = u2(x, y) – u1(x, y). (13.2.3.6)

The gradient of g, directed along the normal to Γ, is given by

∇g = (p2 – p1)ex + (q2 – q1)ey , pn =
∂un
∂x

, qn =
∂un
∂y

,

where ex and ey are the direction cosines along the x- and y-axes, respectively. Two
situations are possible.

1◦. The vector ∇g is directed from D2 toward D1. In this case, the following statements
are valid:

(A) The generalized solution inD can be represented asw = min[u1,u2]; see Fig. 13.12.
(B) There is no smooth test function ψ(x, y) such that a local minimum of the differ-

ence (13.2.3.3) is attained at singular points comprising Γ.
(C) For the one-parameter family of test functions

ψ(x, y) = λu1(x, y) + (1 – λ)u2(x, y), 0 ≤ λ ≤ 1, (13.2.3.7)

the maximum
max

(x,y)�D

[
w(x, y) – ψ(x, y)

]
(13.2.3.8)

is attained at (x, y) � Γ.
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Figure 13.12. Graphic construction of a generalized viscosity solution by joining together smooth solutions.

Remark. For the generalized solution of the form w = min[u1, u2], one need not check the first inequality
of (13.2.3.4); as far as the second inequality of (13.2.3.4) is concerned, it suffices to check this inequality
against the one-parameter family of test functions defined by equation (13.2.3.7).

2◦. The vector ∇g is directed fromD1 towardD2. In this case, the generalized solution can
be represented in the form w = max[u1,u2] and one need to check only the first inequality
of (13.2.3.4) against the one-parameter family of test functions of equation (13.2.3.7).

13.2.3-5. Generalized classical method of characteristics.

Consider the Cauchy problem for the Hamilton–Jacobi equation of the form

∂w

∂x
+ H
(
x, y,

∂w

∂y

)
= 0,

w = ϕ(y) at x = L.
(13.2.3.9)

It is assumed here that (i) the function H(x, y, q) is convex with respect to q for all x � (0,L],
y � R; (ii) the function H(x, y, q) is continuously differentiable with respect to x, y, and q;
and (iii) the second derivatives Hxy and Hxq exist.

By
y = Y (x, ξ), w = W (x, ξ), q = Q(x, ξ) (13.2.3.10)

we denote a solution of the characteristic system (13.2.1.15) satisfying condition (13.2.2.9).
Let {ξn = ξn(x, y)} be the set of functions obtained by solving the first equation of

(13.2.3.10) for the parameter ξ. The subscript n indicates the number of such functions.
The classical method of characteristics can be used to construct a generalized viscosity

solution with the help of the relation

w(x, y) = max
ξ�{ξn}

W (x, ξ) (13.2.3.11)

for all x � (0,L], y � R. To the value n = 1 there corresponds the classical smooth solution.
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13.2.3-6. Examples of viscosity (nonsmooth) solutions.

Below we solve two problems that are encountered in the theory of differential games.

Example 1. Consider the terminal value problem for the Hamilton–Jacobi equation

∂w

∂x
+

√
1 +
( ∂w
∂y

)2
= 0 (13.2.3.12)

with the initial condition
w = 1

2 y
2 at x = L. (13.2.3.13)

The solution is sought in the domain 0 ≤ x ≤ L.
The characteristic system (13.2.1.15) for equation (13.2.3.12) with the HamiltonianH(x, y,w, q) =

√
1 + q2

has the form

y′x =
q

√
1 + q2

, w′
x = –

1
√

1 + q2
, q′x = 0. (13.2.3.14)

The initial conditions are obtained from (13.2.2.9) for ϕ(ξ) = 1
2 ξ

2:

y = ξ, w = 1
2 ξ

2, q = ξ at x = L. (13.2.3.15)

Integrating equation (13.2.3.14) and applying conditions (13.2.3.15), we obtain a solution of the Cauchy
problem (13.2.3.12), (13.2.3.13) of the form

y =
ξ(x – L)
√

1 + ξ2
+ ξ, w =

L – x
√

1 + ξ2
+ 1

2 ξ
2. (13.2.3.16)

Figure 13.13 displays the characteristics y(x, ξ) in the xy-plane for L = 2 and ξ = 0,�0.2, �0.4, . . . ,�1.0.
It is apparent that characteristics intersect. In this example, it is possible to construct a local classical solution
of problem (13.2.3.12), (13.2.3.13). But this solution cannot be extended to the entire layer 0 ≤ x ≤ L,
that is, there is no global classical solution. Pay attention to the fact that the Hamiltonian H =

√
1 + q2 of

equation (13.2.3.12) and the function determining the initial condition (13.2.3.13) are infinitely differentiable
functions.

The viscosity solution of the Cauchy problem (13.2.3.12), (13.2.3.13) has the form

w(x, y) = max
q�R

[
qy + (L – x)

√
1 + q2 – 1

2 q
2], (13.2.3.17)

where 0 ≤ x ≤ L and y is any number. Level curves of this function are depicted in Fig. 13.14. The heavy line
indicates the set of singular points, at which the solution is nondifferentiable.
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Figure 13.13. Characteristics of the terminal
value problem (13.2.3.12)–(13.2.3.13) for the
Hamilton–Jacobi equation.
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Figure 13.14. Level lines of the terminal value prob-
lem (13.2.3.12)–(13.2.3.13) for the Hamilton–Jacobi
equation.
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Example 2. Consider the terminal value problems for the more general Hamilton–Jacobi equation
∂w

∂x
+ H
(
∂w

∂y

)
= 0 (0 ≤ x ≤ L) (13.2.3.18)

with an arbitrary initial condition
w = ϕ(y) at x = L. (13.2.3.19)

The following two statements hold:

1◦. Let the Hamiltonian satisfy the Lipschitz condition
|H(q2) – H(q1)| ≤ β|q2 – q1 | for any q1, q2 � R, (13.2.3.20)

and let the function ϕ(y) be convex. Then the function
w(x,y) = sup

q�R

[
qy + (L – x)H(q) – ϕ∗(q)

]

is the viscosity solution of problem (13.2.3.18), (13.2.3.19). The function ϕ∗ is the conjugate of ϕ, i.e.,
ϕ∗(q) = sup

x�R

[
qx – ϕ(x)

]
.

2◦. Let the Hamiltonian H be convex and satisfy the Lipschitz condition (13.2.3.20). Let the function ϕ(y) be
continuous. Then the function

w(x, y) = sup
t�R

[
ϕ(y + (L – x)t) – (L – x)H∗(t)

]

is the viscosity solution of problem (13.2.3.18), (13.2.3.19). The function
H∗(t) = sup

q�R

[
qt – H(q)

]

is the conjugate of the Hamiltonian.
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Chapter 14

Linear Partial Differential Equations

14.1. Classification of Second-Order Partial Differential
Equations

14.1.1. Equations with Two Independent Variables

14.1.1-1. Examples of equations encountered in applications.

Three basic types of partial differential equations are distinguished—parabolic, hyperbolic,
and elliptic. The solutions of the equations pertaining to each of the types have their own
characteristic qualitative differences.

The simplest example of a parabolic equation is the heat equation

∂w

∂t
–
∂2w

∂x2 = 0, (14.1.1.1)

where the variables t andx play the role of time and the spatial coordinate, respectively. Note
that equation (14.1.1.1) contains only one highest derivative term. Frequently encountered
particular solutions of equation (14.1.1.1) can be found in Paragraph T8.1.1-1.

The simplest example of a hyperbolic equation is the wave equation

∂2w

∂t2 –
∂2w

∂x2 = 0, (14.1.1.2)

where the variables t and x play the role of time and the spatial coordinate, respectively.
Note that the highest derivative terms in equation (14.1.1.2) differ in sign.

The simplest example of an elliptic equation is the Laplace equation

∂2w

∂x2 +
∂2w

∂y2 = 0, (14.1.1.3)

where x and y play the role of the spatial coordinates. Note that the highest derivative
terms in equation (14.1.1.3) have like signs. Frequently encountered particular solutions of
equation (14.1.1.3) can be found in Paragraph T8.3.1-1.

Any linear partial differential equation of the second-order with two independent vari-
ables can be reduced, by appropriate manipulations, to a simpler equation that has one of
the three highest derivative combinations specified above in examples (14.1.1.1), (14.1.1.2),
and (14.1.1.3).

14.1.1-2. Types of equations. Characteristic equations.

Consider a second-order partial differential equation with two independent variables that
has the general form

a(x, y)
∂2w

∂x2 + 2b(x, y)
∂2w

∂x∂y
+ c(x, y)

∂2w

∂y2 = F

(
x, y,w,

∂w

∂x
,
∂w

∂y

)
, (14.1.1.4)

585
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where a, b, c are some functions of x and y that have continuous derivatives up to the
second-order inclusive.*

Given a point (x, y), equation (14.1.1.4) is said to be

parabolic if b2 – ac = 0,

hyperbolic if b2 – ac > 0,

elliptic if b2 – ac < 0

at this point.
In order to reduce equation (14.1.1.4) to a canonical form, one should first write out the

characteristic equation
a (dy)2 – 2b dx dy + c (dx)2 = 0,

which splits into two equations

a dy –
(
b +

√
b2 – ac

)
dx = 0 (14.1.1.5)

and
a dy –

(
b –

√
b2 – ac

)
dx = 0, (14.1.1.6)

and then find their general integrals.

Remark. The characteristic equations (14.1.1.5)–(14.1.1.5) may be used if a � 0. If a ≡ 0, the simpler
equations

dx = 0,

2b dy – c dx = 0

should be used; the first equation has the obvious general solution x = C.

14.1.1-3. Canonical form of parabolic equations (case b2 – ac = 0).

In this case, equations (14.1.1.5) and (14.1.1.6) coincide and have a common general
integral,

ϕ(x, y) = C .

By passing from x, y to new independent variables ξ, η in accordance with the relations

ξ = ϕ(x, y), η = η(x, y),

where η = η(x, y) is any twice differentiable function that satisfies the condition of nonde-
generacy of the Jacobian D(ξ,η)

D(x,y) in the given domain, we reduce equation (14.1.1.4) to the
canonical form

∂2w

∂η2 = F1

(
ξ, η,w,

∂w

∂ξ
,
∂w

∂η

)
. (14.1.1.7)

As η, one can take η = x or η = y.
It is apparent that the transformed equation (14.1.1.7) has only one highest-derivative

term, just as the heat equation (14.1.1.1).

Remark. In the degenerate case where the function F1 does not depend on the derivative ∂ξw, equa-
tion (14.1.1.7) is an ordinary differential equation for the variable η, in which ξ serves as a parameter.

* The right-hand side of equation (14.1.1.4) may be nonlinear. The classification and the procedure of
reducing such equations to a canonical form are only determined by the left-hand side of the equation.
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14.1.1-4. Canonical forms of hyperbolic equations (case b2 – ac > 0).

The general integrals
ϕ(x, y) = C1, ψ(x, y) = C2

of equations (14.1.1.5) and (14.1.1.6) are real and different. These integrals determine two
different families of real characteristics.

By passing from x, y to new independent variables ξ, η in accordance with the relations

ξ = ϕ(x, y), η = ψ(x, y),

we reduce equation (14.1.1.4) to

∂2w

∂ξ∂η
= F2

(
ξ, η,w,

∂w

∂ξ
,
∂w

∂η

)
.

This is the so-called first canonical form of a hyperbolic equation.
The transformation

ξ = t + z, η = t – z

brings the above equation to another canonical form,

∂2w

∂t2 –
∂2w

∂z2 = F3

(
t, z,w,

∂w

∂t
,
∂w

∂z

)
,

where F3 = 4F2. This is the so-called second canonical form of a hyperbolic equation.
Apart from notation, the left-hand side of the last equation coincides with that of the wave
equation (14.1.1.2).

In some cases, reduction of an equation to a canonical form allows finding its general
solution.

Example. The equation

kx
∂2w

∂x2 +
∂2w

∂x∂y
= 0

is a special case of equation (14.1.1.4) with a = kx, b = 1
2 , c = 0, and F = 0. The characteristic equations

kx dy – dx = 0,

dy = 0

have the general integrals ky – ln |x| = C1 and y = C2. Switching to the new independent variables

ξ = ky – ln |x|, η = y

reduces the original equation to the canonical form

∂2w

∂ξ∂η
= k

∂w

∂ξ
.

Integrating with respect to ξ yields the linear first-order equation

∂w

∂η
= kw + f (η)

where f (η) is an arbitrary function. Its general solution is expressed as

w = ekηg(ξ) + ekη

∫
e–kηf (η) dη,

where g(ξ) is an arbitrary function.
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14.1.1-5. Canonical form of elliptic equations (case b2 – ac < 0).

In this case the general integrals of equations (14.1.1.5) and (14.1.1.6) are complex conju-
gate; these determine two families of complex characteristics.

Let the general integral of equation (14.1.1.5) have the form

ϕ(x, y) + iψ(x, y) = C , i2 = –1,

where ϕ(x, y) and ψ(x, y) are real-valued functions.
By passing from x, y to new independent variables ξ, η in accordance with the relations

ξ = ϕ(x, y), η = ψ(x, y),

we reduce equation (14.1.1.4) to the canonical form

∂2w

∂ξ2 +
∂2w

∂η2 = F4

(
ξ, η,w,

∂w

∂ξ
,
∂w

∂η

)
.

Apart from notation, the left-hand side of the last equation coincides with that of the Laplace
equation (14.1.1.3).

14.1.1-6. Linear constant-coefficient partial differential equations.

1◦. When reduced to a canonical form, linear homogeneous constant-coefficient partial
differential equations

a
∂2w

∂x2 + 2b
∂2w

∂x∂y
+ c

∂2w

∂y2 + p
∂w

∂x
+ q

∂w

∂y
+ sw = 0 (14.1.1.8)

admit further simplifications. In general, the substitution

w(x, y) = exp(β1ξ + β2η)u(ξ, η) (14.1.1.9)

can be used. Here, ξ and η are new variables used to reduce equation (14.1.1.8) to a
canonical form (see Paragraphs 14.1.1-3 to 14.1.1-5); the coefficients β1 and β2 in (14.1.1.9)
are chosen so that there is only one first derivative remaining in a parabolic equation or
both first derivatives vanish in a hyperbolic or an elliptic equation. For final results, see
Table 14.1.

2◦. The coefficients k and k1 in the reduced hyperbolic and elliptic equations (see the third,
fourth, and fifth rows in Table 14.1) are expressed as

k =
2bpq – aq2 – cp2

16a(b2 – ac)2 –
s

4a(b2 – ac)
, k1 =

s

4b2 +
cp2 – 2bpq

16b4 . (14.1.1.10)

If the coefficients in equation (14.1.1.8) satisfy the relation

2bpq – aq2 – cp2 – 4s(b2 – ac) = 0,

then k = 0; in this case with a ≠ 0, the general solution of the corresponding hyperbolic
equation has the form

w(x, y) = exp(β1ξ + β2η)
[
f (ξ) + g(η)

]
, D = b2 – ac > 0,

ξ = ay –
(
b +

√
D
)
x, η = ay –

(
b –

√
D
)
x,

β1 =
aq – bp

4aD
+

p

4a
√
D

, β2 =
aq – bp

4aD
–

p

4a
√
D

,

where f (ξ) and g(ξ) are arbitrary functions.
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TABLE 14.1
Reduction of linear homogeneous constant-coefficient partial differential equations (14.1.1.8) using

transformation (14.1.1.9); the constants k and k1 are given by formulas (14.1.1.10)

Type of equation,
conditions on coefficients

Variables ξ and η in
transformation (14.1.1.9)

Coefficients β1 and β2 in
transformation (14.1.1.9)

Reduced
equation

Parabolic equation,
a= b = 0, c ≠ 0, p ≠ 0

ξ = –
c

p
x, η = y β1 =

4cs–q2

4c2 , β2 = –
q

2c
uξ –uηη = 0

Parabolic equation, b2 –ac = 0
(aq–bp ≠ 0, |a| + |b| ≠ 0)

ξ =
a(ay –bx)
bp–aq

, η =x β1 =
4as–p2

4a2 , β2 = –
p

2a
uξ –uηη = 0

Hyperbolic equation,
a ≠ 0, D = b2 –ac> 0

ξ = ay –
(
b+

√
D
)
x,

η = ay –
(
b–

√
D
)
x

β1,2 =
aq–bp

4aD
�

p

4a
√
D

uξη +ku = 0

Hyperbolic equation,
a = 0, b≠ 0

ξ =x,
η = 2by –cx β1 =

cp– 2bq
4b2 , β2 = –

p

4b2
uξη +k1u = 0

Elliptic equation,
D = b2 –ac< 0

ξ = ay –bx,
η =

√
|D|x β1=

aq–bp
2aD

, β2= –
p

2a
√

|D|
uξξ +uηη + 4ku = 0

Ordinary differential equation,
b2 –ac = 0, aq–bp = 0

ξ = ay –bx,
η =x β1 =β2 = 0 awηη +pwη +sw = 0

3◦. In the degenerate case b2 – ac = 0, aq – bp = 0 (where the original equation is reduced
to an ordinary differential equation; see the last row in Table 14.1), the general solution of
equation (14.1.1.8) is expressed as

w = exp

(
–
px

2a

)[
f (ay – bx) exp

(
x
√
λ

2a

)
+ g(ay – bx) exp

(
–
x
√
λ

2a

)]
if λ = p2 – 4as > 0,

w = exp

(
–
px

2a

)[
f (ay – bx) sin

(
x
√

|λ|
2a

)
+ g(ay – bx) cos

(
x
√

|λ|
2a

)]
if λ = p2 – 4as < 0,

w = exp

(
–
px

2a

)
[
f (ay – bx) + xg(ay – bx)

]
if 4as – p2 = 0,

where f (z) and g(z) are arbitrary functions.

14.1.2. Equations with Many Independent Variables
Let us consider a second-order partial differential equation with n independent variables
x1, . . . , xn that has the form

n∑

i,j=1

aij(x)
∂2w

∂xi∂xj
= F

(
x,w,

∂w

∂x1
, . . . ,

∂w

∂xn

)
, (14.1.2.1)

where the aij are some functions that have continuous derivatives with respect to all
variables to the second-order inclusive, and x = {x1, . . . ,xn}. [The right-hand side of equa-
tion (14.1.2.1) may be nonlinear. The left-hand side only is required for the classification
of this equation.]

At a point x = x0, the following quadratic form is assigned to equation (14.1.2.1):

Q =
n∑

i,j=1

aij(x0)ξiξj . (14.1.2.2)
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TABLE 14.2
Classification of equations with many independent variables

Type of equation (14.1.2.1) at a point x = x0 Coefficients of the canonical form (14.1.2.4)

Parabolic (in the broad sense) At least one coefficient of the ci is zero

Hyperbolic (in the broad sense) All ci are nonzero and some ci differ in sign

Elliptic All ci are nonzero and have like signs

By an appropriate linear nondegenerate transformation

ξi =
n∑

k=1

βikηk (i = 1, . . . ,n) (14.1.2.3)

the quadratic form (14.1.2.2) can be reduced to the canonical form

Q =
n∑

i=1

ciη
2
i , (14.1.2.4)

where the coefficients ci assume the values 1, –1, and 0. The number of negative and zero
coefficients in (14.1.2.4) does not depend on the way in which the quadratic form is reduced
to the canonical form.

Table 14.2 presents the basic criteria according to which the equations with many
independent variables are classified.

Suppose all coefficients of the highest derivatives in (14.1.2.1) are constant, aij = const.
By introducing the new independent variables y1, . . . , yn in accordance with the formulas

yi =
n∑

k=1
βikxk , where the βik are the coefficients of the linear transformation (14.1.2.3), we

reduce equation (14.1.2.1) to the canonical form
n∑

i=1

ci
∂2w

∂y2
i

= F1

(
y,w,

∂w

∂y1
, . . . ,

∂w

∂yn

)
. (14.1.2.5)

Here, the coefficients ci are the same as in the quadratic form (14.1.2.4), and y= {y1, . . . , yn}.
Remark 1. Among the parabolic equations, it is conventional to distinguish the parabolic equations in

the narrow sense, i.e., the equations for which only one of the coefficients, ck, is zero, while the other ci is the
same, and in this case the right-hand side of equation (14.1.2.5) must contain the first-order partial derivative
with respect to yk.

Remark 2. In turn, the hyperbolic equations are divided into normal hyperbolic equations—for which
all ci but one have like signs—and ultrahyperbolic equations—for which there are two or more positive ci and
two or more negative ci.

Specific equations of parabolic, elliptic, and hyperbolic types will be discussed further
in Section 14.2.

14.2. Basic Problems of Mathematical Physics
14.2.1. Initial and Boundary Conditions. Cauchy Problem.

Boundary Value Problems
Every equation of mathematical physics governs infinitely many qualitatively similar phe-
nomena or processes. This follows from the fact that differential equations have infinitely
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many particular solutions. The specific solution that describes the physical phenomenon
under study is separated from the set of particular solutions of the given differential equation
by means of the initial and boundary conditions.

Throughout this section, we consider linear equations in the n-dimensional Euclidean
space R

n or in an open domain V � R
n (exclusive of the boundary) with a sufficiently

smooth boundary S = ∂V .

14.2.1-1. Parabolic equations. Initial and boundary conditions.

In general, a linear second-order partial differential equation of the parabolic type with
n independent variables can be written as

∂w

∂t
– Lx,t[w] = Φ(x, t), (14.2.1.1)

where

Lx,t[w] ≡
n∑

i,j=1

aij(x, t)
∂2w

∂xi∂xj
+

n∑

i=1

bi(x, t)
∂w

∂xi
+ c(x, t)w, (14.2.1.2)

x = {x1, . . . ,xn},
n∑

i,j=1

aij(x, t)ξiξj ≥ σ
n∑

i=1

ξ2
i , σ > 0.

Parabolic equations govern unsteady thermal, diffusion, and other phenomena dependent
on time t.

Equation (14.2.1.1) is called homogeneous if Φ(x, t) ≡ 0.
Cauchy problem (t ≥ 0, x � R

n). Find a function w that satisfies equation (14.2.1.1) for
t > 0 and the initial condition

w = f (x) at t = 0. (14.2.1.3)

Boundary value problem* (t ≥ 0, x � V ). Find a function w that satisfies equa-
tion (14.2.1.1) for t > 0, the initial condition (14.2.1.3), and the boundary condition

Γx,t[w] = g(x, t) at x � S (t > 0). (14.2.1.4)

In general, Γx,t is a first-order linear differential operator in the space variables x with
coefficient dependent on x and t. The basic types of boundary conditions are described in
Subsection 14.2.2.

The initial condition (14.2.1.3) is called homogeneous if f (x) ≡ 0. The boundary
condition (14.2.1.4) is called homogeneous if g(x, t) ≡ 0.

14.2.1-2. Hyperbolic equations. Initial and boundary conditions.

Consider a second-order linear partial differential equation of the hyperbolic type with n
independent variables of the general form

∂2w

∂t2 + ϕ(x, t)
∂w

∂t
– Lx,t[w] = Φ(x, t), (14.2.1.5)

* Boundary value problems for parabolic and hyperbolic equations are sometimes called mixed or initial-
boundary value problems.
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where the linear differential operator Lx,t is defined by (14.2.1.2). Hyperbolic equations
govern unsteady wave processes, which depend on time t.

Equation (14.2.1.5) is said to be homogeneous if Φ(x, t) ≡ 0.
Cauchy problem (t ≥ 0, x � R

n). Find a function w that satisfies equation (14.2.1.5) for
t > 0 and the initial conditions

w = f0(x) at t = 0,
∂tw = f1(x) at t = 0.

(14.2.1.6)

Boundary value problem (t≥ 0, x�V ). Find a functionw that satisfies equation (14.2.1.5)
for t > 0, the initial conditions (14.2.1.6), and boundary condition (14.2.1.4).

The initial conditions (14.2.1.6) are called homogeneous if f0(x) ≡ 0 and f1(x) ≡ 0.
Generalized Cauchy problem. In the generalized Cauchy problem for a hyperbolic

equation with two independent variables, values of the unknown function and its first
derivatives are prescribed on a curve in the (x, t) plane. Alternatively, values of the
unknown function and its derivative along the normal to this curve may be prescribed. For
more details, see Paragraph 14.8.4-4.

Goursat problem. On the characteristics of a hyperbolic equation with two independent
variables, the values of the unknown function w are prescribed; for details, see Para-
graph 14.8.4-5).

14.2.1-3. Elliptic equations. Boundary conditions.

In general, a second-order linear partial differential equation of elliptic type with n inde-
pendent variables can be written as

–Lx[w] = Φ(x), (14.2.1.7)

where

Lx[w] ≡
n∑

i,j=1

aij(x)
∂2w

∂xi∂xj
+

n∑

i=1

bi(x)
∂w

∂xi
+ c(x)w, (14.2.1.8)

n∑

i,j=1

aij(x)ξiξj ≥ σ
n∑

i=1

ξ2
i , σ > 0.

Elliptic equations govern steady-state thermal, diffusion, and other phenomena independent
of time t.

Equation (14.2.1.7) is said to be homogeneous if Φ(x) ≡ 0.
Boundary value problem. Find a function w that satisfies equation (14.2.1.7) and the

boundary condition
Γx[w] = g(x) at x � S. (14.2.1.9)

In general, Γx is a first-order linear differential operator in the space variables x. The basic
types of boundary conditions are described below in Subsection 14.2.2.

The boundary condition (14.2.1.9) is called homogeneous if g(x) ≡ 0. The boundary
value problem (14.2.1.7)–(14.2.1.9) is said to be homogeneous if Φ ≡ 0 and g ≡ 0.
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TABLE 14.3
Boundary conditions for various boundary value problems specified by

parabolic and hyperbolic equations in two independent variables (x1 ≤ x ≤ x2)

Type of problem Boundary condition at x = x1 Boundary condition at x = x2

First boundary value problem w = g1(t) w = g2(t)

Second boundary value problem ∂xw = g1(t) ∂xw = g2(t)

Third boundary value problem ∂xw +β1w = g1(t) (β1 < 0) ∂xw+β2w = g2(t) (β2 > 0)

Mixed boundary value problem w = g1(t) ∂xw = g2(t)

Mixed boundary value problem ∂xw = g1(t) w = g2(t)

14.2.2. First, Second, Third, and Mixed Boundary Value Problems
For any (parabolic, hyperbolic, and elliptic) second-order partial differential equations, it is
conventional to distinguish four basic types of boundary value problems, depending on the
form of the boundary conditions (14.2.1.4) [see also the analogous condition (14.2.1.9)].
For simplicity, here we confine ourselves to the case where the coefficients aij of equations
(14.2.1.1) and (14.2.1.5) have the special form

aij(x, t) = a(x, t)δij , δij =
{ 1 if i = j,

0 if i ≠ j.
This situation is rather frequent in applications; such coefficients are used to describe various
phenomena (processes) in isotropic media.

The function w(x, t) takes prescribed values at the boundary S of the domain:

w(x, t) = g1(x, t) for x � S. (14.2.2.1)

Second boundary value problem. The derivative along the (outward) normal is pre-
scribed at the boundary S of the domain:

∂w

∂N
= g2(x, t) for x � S. (14.2.2.2)

In heat transfer problems, where w is temperature, the left-hand side of the boundary
condition (14.2.2.2) is proportional to the heat flux per unit area of the surface S.

Third boundary value problem. A linear relationship between the unknown function
and its normal derivative is prescribed at the boundary S of the domain:

∂w

∂N
+ k(x, t)w = g3(x, t) for x � S. (14.2.2.3)

Usually, it is assumed that k(x, t) = const. In mass transfer problems, where w is concen-
tration, the boundary condition (14.2.2.3) with g3 ≡ 0 describes a surface chemical reaction
of the first order.

Mixed boundary value problems. Conditions of various types, listed above, are set at
different portions of the boundary S.

If g1 ≡ 0, g2 ≡ 0, or g3 ≡ 0, the respective boundary conditions (14.2.2.1), (14.2.2.2),
(14.2.2.3) are said to be homogeneous.

Boundary conditions for various boundary value problems for parabolic and hyperbolic
equations in two independent variables x and t are displayed in Table 14.3. The equation
coefficients are assumed to be continuous, with the coefficients of the highest derivatives
being nonzero in the range x1 ≤ x ≤ x2 considered.

Remark. For elliptic equations, the first boundary value problem is often called the Dirichlet problem,
and the second boundary value problem is called the Neumann problem.
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14.3. Properties and Exact Solutions of Linear Equations
14.3.1. Homogeneous Linear Equations and Their Particular

Solutions

14.3.1-1. Preliminary remarks.

For brevity, in this paragraph a homogeneous linear partial differential equation will be
written as

L[w] = 0. (14.3.1.1)

For second-order linear parabolic and hyperbolic equations, the linear differential opera-
tor L[w] is defined by the left-hand side of equations (14.2.1.1) and (14.2.1.5), respectively.
It is assumed that equation (14.3.1.1) is an arbitrary homogeneous linear partial differential
equation of any order in the variables t, x1, . . . , xn with sufficiently smooth coefficients.

A linear operator L possesses the properties

L[w1 + w2] = L[w1] + L[w2],
L[Aw] = AL[w], A = const.

An arbitrary homogeneous linear equation (14.3.1.1) has a trivial solution, w ≡ 0.
A function w is called a classical solution of equation (14.3.1.1) if w, when substituted

into (14.3.1.1), turns the equation into an identity and if all partial derivatives of w that
occur in (14.3.1.1) are continuous; the notion of a classical solution is directly linked to the
range of the independent variables. In what follows, we usually write “solution” instead of
“classical solution” for brevity.

14.3.1-2. Usage of particular solutions for the construction of other solutions.

Below are some properties of particular solutions of homogeneous linear equations.

1◦. Let w1 = w1(x, t), w2 = w2(x, t), . . . , wk = wk(x, t) be any particular solutions of the
homogeneous equation (14.3.1.1). Then the linear combination

w = A1w1 +A2w2 + · · · + Akwk (14.3.1.2)

with arbitrary constants A1,A2, . . . ,Ak is also a solution of equation (14.3.1.1); in physics,
this property is known as the principle of linear superposition.

Suppose {wk} is an infinite sequence of solutions of equation (14.3.1.1). Then the

series
∞∑

k=1
wk, irrespective of its convergence, is called a formal solution of (14.3.1.1). If the

solutions wk are classical, the series is uniformly convergent, and the sum of the series has
all the necessary particular derivatives, then the sum of the series is a classical solution of
equation (14.3.1.1).

2◦. Let the coefficients of the linear differential operator L be independent of time t. If
equation (14.3.1.1) has a particular solution w̃ = w̃(x, t), then the partial derivatives of w̃
with respect to time,*

∂w̃

∂t
,

∂2w̃

∂t2 , . . . ,
∂kw̃

∂tk
, . . . ,

are also solutions of equation (14.3.1.1).

* Here and in what follows, it is assumed that the particular solution w̃ is differentiable sufficiently many
times with respect to t and x1, . . . ,xn (or the parameters).
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3◦. Let the coefficients of the linear differential operator L be independent of the space
variables x1, . . . ,xn. If equation (14.3.1.1) has a particular solution w̃ = w̃(x, t), then the
partial derivatives of w̃ with respect to the space coordinates

∂w̃

∂x1
,

∂w̃

∂x2
,

∂w̃

∂x3
, . . . ,

∂2w̃

∂x2
1

,
∂2w̃

∂x1∂x2
, . . . ,

∂k+mw̃

∂xk2∂x
m
3

, . . .

are also solutions of equation (14.3.1.1).
If the coefficients of L are independent of only one space coordinate, say x1, and

equation (14.3.1.1) has a particular solution w̃ = w̃(x, t), then the partial derivatives

∂w̃

∂x1
,

∂2w̃

∂x2
1

, . . . ,
∂kw̃

∂xk1
, . . .

are also solutions of equation (14.3.1.1).

4◦. Let the coefficients of the linear differential operator L be constant and let equa-
tion (14.3.1.1) have a particular solution w̃ = w̃(x, t). Then any particular derivatives of w̃
with respect to time and the space coordinates (inclusive mixed derivatives)

∂w̃

∂t
,

∂w̃

∂x1
, . . . ,

∂2w̃

∂x2
2

,
∂2w̃

∂t∂x1
, . . . ,

∂kw̃

∂xk3
, . . .

are solutions of equation (14.3.1.1).

5◦. Suppose equation (14.3.1.1) has a particular solution dependent on a parameter μ,
w̃ = w̃(x, t;μ), and the coefficients of the linear differential operator L are independent of μ
(but can depend on time and the space coordinates). Then, by differentiating w̃ with respect
to μ, one obtains other solutions of equation (14.3.1.1),

∂w̃

∂μ
,

∂2w̃

∂μ2 , . . . ,
∂kw̃

∂μk
, . . .

Example 1. The linear equation
∂w

∂t
= a

∂2w

∂x2 + bw

has a particular solution
w(x, t) = exp[μx + (aμ2 + b)t],

where μ is an arbitrary constant. Differentiating this equation with respect to μ yields another solution

w(x, t) = (x + 2aμt) exp[μx + (aμ2 + b)t].

Let some constants μ1, . . . , μk belong to the range of the parameter μ. Then the sum

w = A1w̃(x, t;μ1) + · · · +Akw̃(x, t;μk), (14.3.1.3)

where A1, . . . , Ak are arbitrary constants, is also a solution of the homogeneous linear
equation (14.3.1.1). The number of terms in sum (14.3.1.3) can be both finite and infinite.

6◦. Another effective way of constructing solutions involves the following. The particular
solution w̃(x, t;μ), which depends on the parameter μ (as before, it is assumed that the
coefficients of the linear differential operator L are independent of μ), is first multiplied by
an arbitrary function ϕ(μ). Then the resulting expression is integrated with respect to μ
over some interval [α,β]. Thus, one obtains a new function,

∫ β

α
w̃(x, t;μ)ϕ(μ) dμ,

which is also a solution of the original homogeneous linear equation.

The properties listed in Items 1◦– 6◦ enable one to use known particular solutions
to construct other particular solutions of homogeneous linear equations of mathematical
physics.
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TABLE 14.4
Homogeneous linear partial differential equations that admit multiplicative separable solutions

No. Form of equation (14.3.1.1) Form of particular solutions

1 Equation coefficients are
constant

w(x, t) = A exp(λt + β1x1 + · · · + βnxn),
λ,β1, . . . ,βn are related by an algebraic equation

2
Equation coefficients are

independent of time t
w(x, t) = eλtψ(x),

λ is an arbitrary constant, x = {x1, . . . , xn}

3
Equation coefficients are independent

of the coordinates x1, . . . ,xn

w(x, t) = exp(β1x1 + · · · + βnxn)ψ(t),
β1, . . . ,βn are arbitrary constants

4
Equation coefficients are independent

of the coordinates x1, . . . ,xk

w(x, t) = exp(β1x1 + · · ·+βkxk)ψ(t,xk+1, . . . ,xn),
β1, . . . ,βk are arbitrary constants

5
Lt[w] + Lx[w] = 0,

operator Lt depends on only t,
operator Lx depends on only x

w(x, t) = ϕ(t)ψ(x),
ϕ(t) satisfies the equation Lt[ϕ] + λϕ = 0,
ψ(x) satisfies the equation Lx[ψ] – λψ = 0

6
Lt[w] + L1[w] + · · · + Ln[w] = 0,

operator Lt depends on only t,
operator Lk depends on only xk

w(x, t) = ϕ(t)ψ1(x1) . . . ψn(xn),
ϕ(t) satisfies the equation Lt[ϕ] + λϕ = 0,

ψk(xk) satisfies the equation Lk[ψk] + βkψk = 0,
λ + β1 + · · · + βn = 0

7
f0(x1)Lt[w] +

n∑

k=1
fk(x1)Lk[w] = 0,

operator Lt depends on only t,
operator Lk depends on only xk

w(x, t) = ϕ(t)ψ1(x1) . . . ψn(xn),
Lt[ϕ] + λϕ = 0,

Lk[ψk] + βkψk = 0, k = 2, . . . ,n,

f1(x1)L1[ψ1] –
[
λf0(x1) +

n∑

k=2
βkfk(x1)

]
ψ1 = 0

8

∂w

∂t
+ L1,t[w] + · · · + Ln,t[w] = 0,

where Lk,t[w] =
mk∑

s=0
fks(xk, t)

∂sw

∂xs
k

w(x, t) = ψ1(x1, t)ψ2(x2, t) . . . ψn(xn, t),
∂ψk

∂t
+ Lk,t[ψk] = λk(t)ψk, k = 1, . . . , n,

λ1(t) + λ2(t) + · · · + λn(t) = 0

14.3.1-3. Multiplicative and additive separable solutions.

1◦. Many homogeneous linear partial differential equations have solutions that can be
represented as the product of functions depending on different arguments. Such solutions
are referred to as multiplicative separable solutions; very commonly these solutions are
briefly, but less accurately, called just separable solutions.

Table 14.4 presents the most commonly encountered types of homogeneous linear dif-
ferential equations with many independent variables that admit exact separable solutions.
Linear combinations of particular solutions that correspond to different values of the separa-
tion parameters, λ, β1, . . . , βn, are also solutions of the equations in question. For brevity,
the word “operator” is used to denote “linear differential operator.”

For a constant coefficient equation (see the first row in Table 14.4), the separation
parameters must satisfy the algebraic equation

D(λ, β1, . . . ,βn) = 0, (14.3.1.4)

which results from substituting the solution into equation (14.3.1.1). In physical applica-
tions, equation (14.3.1.4) is usually referred to as a dispersion equation. Any n of the n + 1
separation parameters in (14.3.1.4) can be treated as arbitrary.
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Example 2. Consider the linear equation

∂2w

∂t2 + k
∂w

∂t
= a2 ∂

2w

∂x2 + b
∂w

∂x
+ cw.

A particular solution is sought in the form

w = A exp(βx + λt).

This results in the dispersion equation λ2 + kλ = a2β2 + bβ + c, where one of the two parameters β or λ can
be treated as arbitrary.

For more complex multiplicative separable solutions to this equation, see Subsection 14.4.1.

Note that constant coefficient equations also admit more sophisticated solutions; see the
second and third rows, the last column.

The eighth row of Table 14.4 presents the case of incomplete separation of variables
where the solution is separated with respect to the space variables x1, . . . , xn, but is not
separated with respect to time t.

Remark 1. For stationary equations that do not depend on t, one should set λ = 0, Lt[w] ≡ 0, and ϕ(t) ≡ 1
in rows 1, 6, and 7 of Table 14.4.

Remark 2. Multiplicative separable solutions play an important role in the theory of linear partial differ-
ential equations; they are used for finding solutions to stationary and nonstationary boundary value problems;
see Sections 14.4 and 14.7–14.9.

2◦. Linear partial differential equations of the form

Lt[w] + Lx[w] = f (x) + g(t),

where Lt is a linear differential operator that depends on only t andLx is a linear differential
operator that depends on only x, have solutions that can be represented as the sum of
functions depending on different arguments

w = u(x) + v(t).

Such solutions are referred to as additive separable solutions.

Example 3. The equation from Example 2 admits an exact additive separable solution w = u(x) + v(t)
with u(x) and v(t) described by the linear constant-coefficient ordinary differential equations

a2u′′
xx + bu′

x + cu = C,

v′′tt + kv′t – cv = C,

where C is an arbitrary constant, which are easy to integrate. A more general partial differential equation with
variable coefficients a = a(x), b = b(x), k = k(t), and c = const also admits an additive separable solution.

14.3.1-4. Solutions in the form of infinite series in t.

1◦. The equation
∂w

∂t
= M [w],

where M is an arbitrary linear differential operator of the second (or any) order that only
depends on the space variables, has the formal series solution

w(x, t) = f (x) +
∞∑

k=1

tk

k!
Mk[f (x)], Mk[f ] = M

[
Mk–1[f ]

]
,

where f (x) is an arbitrary infinitely differentiable function. This solution satisfies the initial
condition w(x, 0) = f (x).
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Example 4. Consider the heat equation

∂w

∂t
= a

∂2w

∂x2 .

In this case we have M = a ∂2

∂x2 . Therefore the formal series solution has the form

w(x, t) = f (x) +
∞∑

k=1

(at)k

k!
f (2n)

x (x), f (m)
x =

dm

dxm
f (x).

If the function f (x) is taken as a polynomial of degree n, the solution will also be a polynomial of degree n.
For example, setting f (x) = Ax2 + Bx + C, we obtain the particular solution

w(x, t) = A(x2 + 2at) +Bx + C.

2◦. The equation
∂2w

∂t2 = M [w],

whereM is a linear differential operator, just as in Item 1◦, has a formal solution represented
by the sum of two series as

w(x, t) =
∞∑

k=0

t2k

(2k)!
Mk[f (x)] +

∞∑

k=0

t2k+1

(2k + 1)!
Mk[g(x)],

where f (x) and g(x) are arbitrary infinitely differentiable functions. This solution satisfies
the initial conditions w(x, 0) = f (x) and ∂tw(x, 0) = g(x).

14.3.2. Nonhomogeneous Linear Equations and Their Particular
Solutions

14.3.2-1. Simplest properties of nonhomogeneous linear equations.

For brevity, we write a nonhomogeneous linear partial differential equation in the form

L[w] = Φ(x, t), (14.3.2.1)

where the linear differential operator L is defined above (see the beginning of Paragraph
14.3.1-1).

Below are the simplest properties of particular solutions of the nonhomogeneous equa-
tion (14.3.2.1).

1◦. If w̃Φ(x, t) is a particular solution of the nonhomogeneous equation (14.3.2.1) and
w̃0(x, t) is a particular solution of the corresponding homogeneous equation (14.3.1.1), then
the sum

Aw̃0(x, t) + w̃Φ(x, t),

where A is an arbitrary constant, is also a solution of the nonhomogeneous equation
(14.3.2.1). The following, more general statement holds: The general solution of the
nonhomogeneous equation (14.3.2.1) is the sum of the general solution of the correspond-
ing homogeneous equation (14.3.1.1) and any particular solution of the nonhomogeneous
equation (14.3.2.1).

2◦. Suppose w1 and w2 are solutions of nonhomogeneous linear equations with the same
left-hand side and different right-hand sides, i.e.,

L[w1] = Φ1(x, t), L[w2] = Φ2(x, t).

Then the function w = w1 + w2 is a solution of the equation

L[w] = Φ1(x, t) + Φ2(x, t).
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14.3.2-2. Fundamental and particular solutions of stationary equations.

Consider the second-order linear stationary (time-independent) nonhomogeneous equation

Lx[w] = –Φ(x). (14.3.2.2)

Here, Lx is a linear differential operator of the second (or any) order of general form whose
coefficients are dependent on x, where x � R

n.
A distribution �� = �� (x, y) that satisfies the equation with a special right-hand side

Lx[�� ] = –δ(x – y) (14.3.2.3)

is called a fundamental solution corresponding to the operator Lx. In (14.3.2.3), δ(x) is
an n-dimensional Dirac delta function and the vector quantity y = {y1, . . . , yn} appears in
equation (14.3.2.3) as an n-dimensional free parameter. It is assumed that y � R

n.
The n-dimensional Dirac delta function possesses the following basic properties:

1. δ(x) = δ(x1)δ(x2) . . . δ(xn),

2.
∫

Rn

Φ(y)δ(x – y) dy = Φ(x),

where δ(xk) is the one-dimensional Dirac delta function, Φ(x) is an arbitrary continuous
function, and dy = dy1 . . . dyn.

For constant coefficient equations, a fundamental solution always exists; it can be found
by means of the n-dimensional Fourier transform (see Paragraph 11.4.1-4).

The fundamental solution �� = �� (x, y) can be used to construct a particular solution of
the linear stationary nonhomogeneous equation (14.3.2.2) for arbitrary continuous Φ(x);
this particular solution is expressed as follows:

w(x) =
∫

Rn

Φ(y)�� (x, y) dy. (14.3.2.4)

Remark 1. The fundamental solution �� is not unique; it is defined up to an additive term w0 = w0(x),
which is an arbitrary solution of the homogeneous equation Lx[w0] = 0.

Remark 2. For constant coefficient differential equations, the fundamental solution possesses the property
�� (x, y) = �� (x – y).

Remark 3. The right-hand sides of equations (14.3.2.2) and (14.3.2.3) are often prefixed with the plus
sign. In this case, formula (14.3.2.4) remains valid.

Remark 4. Particular solutions of linear nonstationary nonhomogeneous equations can be expressed in
terms of the fundamental solution of the Cauchy problem; see Section 14.6.

Example 1. For the two- and three-dimensional Poisson equations, the fundamental solutions have the
forms

Equations Fundamental solutions

∂2w

∂x2
1

+
∂2w

∂x2
2

= –Φ(x1,x2) =⇒ �� (x1,x2, y1, y2) =
1

2π
ln

1
ρ

,

∂2w

∂x2
1

+
∂2w

∂x2
2

+
∂2w

∂x2
3

= –Φ(x1,x2,x3) =⇒ �� (x1,x2, x3, y1, y2, y3) =
1

4πr
,

where ρ =
√

(x1 – y1)2 + (x2 – y2)2 and r =
√

(x1 – y1)2 + (x2 – y2)2 + (x3 – y3)2.

Example 2. The two-dimensional Helmholtz equation

∂2w

∂x2
1

+
∂2w

∂x2
2

+ λw = –Φ(x1, x2)
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has the following fundamental solutions:

�� (x1, x2, y1, y2) =
1

2π
K0(kρ) if λ = –k2 < 0,

�� (x1, x2, y1, y2) = –
i

4
H (2)

0 (kρ) if λ = k2 > 0,

where ρ =
√

(x1 – y1)2 + (x2 – y2)2 , K0(z) is the modified Bessel function of the second kind, H (2)
0 (z) is the

Hankel functions of the second kind of order 0, k > 0, and i2 = –1.

Example 3. The three-dimensional Helmholtz equation

∂2w

∂x2
1

+
∂2w

∂x2
2

+
∂2w

∂x2
3

+ λw = –Φ(x1, x2, x3)

has the following fundamental solutions:

�� (x1,x2,x3, y1, y2, y3) =
1

4πr
exp(–kr) if λ = –k2 < 0,

�� (x1,x2,x3, y1, y2, y3) =
1

4πr
exp(–ikr) if λ = k2 > 0,

where r =
√

(x1 – y1)2 + (x2 – y2)2 + (x3 – y3)2 , k > 0, and i2 = –1.

14.3.3. General Solutions of Some Hyperbolic Equations

14.3.3-1. D’Alembert’s solution for the wave equation.

The wave equation
∂2w

∂t2 – a2 ∂
2w

∂x2 = 0 (14.3.3.1)

has the general solution
w = ϕ(x + at) + ψ(x – at), (14.3.3.2)

where ϕ(x) and ψ(x) are arbitrary twice continuously differentiable functions. Solution
(14.3.3.2) has the physical interpretation of two traveling waves of arbitrary shape that
propagate to the right and to the left along the x-axis with a constant speed a.

14.3.3-2. Laplace cascade method for hyperbolic equation in two variables.

A general linear hyperbolic equation with two independent variables can be reduced to an
equation of the form (see Subsection 14.1.1):

∂2w

∂x∂y
+ a(x, y)

∂w

∂x
+ b(x, y)

∂w

∂y
+ c(x, y)w = f (x, y). (14.3.3.3)

Sometimes it is possible to obtain formulas determining all solutions to equation
(14.3.3.3). First consider two special cases.

1◦. First special case. Suppose the identity

g ≡
∂a

∂x
+ ab – c ≡ 0 (14.3.3.4)

is valid; for brevity, the arguments of the functions are omitted. Then equation (14.3.3.3)
can be rewritten in the form

∂u

∂x
+ bu = f , (14.3.3.5)
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where

u =
∂w

∂y
+ aw. (14.3.3.6)

Equation (14.3.3.5) is a linear first-order ordinary differential equation in x for u (the vari-
able y appears in the equation as a parameter) and is easy to integrate. Further substituting u
into (14.3.3.6) yields a linear first-order ordinary differential equation in y for w (now x
appears in the equation as a parameter). On solving this equation, one obtains the general
solution of the original equation (14.3.3.3) subject to condition (14.3.3.4):

w = exp
(

–
∫
a dy
){
ϕ(x) +

∫ [
ψ(y) +

∫
f exp

(∫
b dx
)
dx
]

exp
(∫

a dy –
∫
b dx
)
dy
}

,

where ϕ(x) and ψ(y) are arbitrary functions.

2◦. Second special case. Suppose the identity

h ≡
∂b

∂y
+ ab – c ≡ 0 (14.3.3.7)

holds true. Proceeding in the same ways as in the first special case, one obtains the general
solution to (14.3.3.3):

w = exp
(

–
∫
b dx
){
ψ(y) +

∫ [
ϕ(x) +

∫
f exp

(∫
a dy
)
dy
]

exp
(∫

b dx –
∫
a dy
)
dx
}

.

3◦. Laplace cascade method. In the case g ≠ 0, consider the new equation of the form
(14.3.3.3),

L1[w1] ≡
∂2w1

∂x∂y
+ a1(x, y)

∂w1

∂x
+ b1(x, y)

∂w1

∂y
+ c1(x, y)w1 = f1(x, y), (14.3.3.8)

where

a1 = a –
∂ ln g
∂y

, b1 = b, c1 = c –
∂a

∂x
+
∂b

∂y
– b

∂ ln g
∂y

, f1 =

(
a –

∂ ln g
∂y

)
f .

If one manages to find w1, the corresponding solution to the original equation (14.3.3.3)
can be obtained by the formula

w =
1
g

(
∂w1

∂x
+ bw1 – f

)
.

For equation (14.3.3.8), the functions similar to (14.3.3.4) and (14.3.3.7) are expressed as

g1 = 2g – h –
∂2 ln g
∂x∂y

, h1 = h.

If g1 ≡ 0, the function w1 can be found using the technique described above. If g1 � 0, one
proceeds to the construction, in the same way as above, of the equation L2[w2] = f2, and
so on. In the case h � 0, a similar chain of equations may be constructed: L∗

1[w∗
1 ] = f∗1 ,

L∗
2[w∗

2 ] = f∗2 , etc.
If at some step, gk or hk vanishes, it is possible to obtain the general solution of equation

(14.3.3.3).
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Example. Consider the Euler–Darboux equation

∂2w

∂x∂y
–

α

x – y
∂w

∂x
+

β

x – y
∂w

∂y
= 0.

We will show that its general solution can be obtained if at least one of the numbers α or β is integer.
With the notation adopted for equation (14.3.3.3) and function (14.3.3.4), we have

a(x,y) = –
α

x – y
, b(x, y) =

β

x – y
, c(x, y) = f (x, y) = 0, g =

α(1 – β)
(x – y)2 ,

which means that g ≡ 0 if α = 0 or β = 1. If g � 0, we construct equation (14.3.3.8), where

a1 = –
2 + α
x – y

, b1 =
β

x – y
, c1 = –

α + β
(x – y)2 .

If follows that

g1 =
(1 + α)(2 – β)

(x – y)2 ,

and hence g1 ≡ 0 atα = –1 or β = 2. Similarly, it can be shown that gk ≡ 0 atα = –k or β = k+1 (k = 0, 1, 2, . . . ).
If we use the other sequence of auxiliary equations, L∗

k[w∗
k] = f∗

k , it can be shown that the above holds for
α = 1, 2, . . . and β = 0, –1, –2, . . .

14.4. Method of Separation of Variables (Fourier Method)
14.4.1. Description of the Method of Separation of Variables.

General Stage of Solution

14.4.1-1. Scheme of solving boundary value problems by separation of variables.

Many linear problems of mathematical physics can be solved by separation of variables.
Figure 14.1 depicts the scheme of application of this method to solve boundary value
problems for second-order homogeneous linear equations of the parabolic and hyperbolic
type with homogeneous boundary conditions and nonhomogeneous initial conditions. For
simplicity, problems with two independent variables x and t are considered, with x1 ≤ x ≤x2
and t ≥ 0.

The scheme presented in Fig. 14.1 applies to boundary value problems for second-order
linear homogeneous partial differential equations of the form

α(t)
∂2w

∂t2 + β(t)
∂w

∂t
= a(x)

∂2w

∂x2 + b(x)
∂w

∂x
+
[
c(x) + γ(t)

]
w (14.4.1.1)

with homogeneous linear boundary conditions,

s1∂xw + k1w = 0 at x = x1,
s2∂xw + k2w = 0 at x = x2,

(14.4.1.2)

and arbitrary initial conditions,

w = f0(x) at t = 0, (14.4.1.3)
∂tw = f1(x) at t = 0. (14.4.1.4)

For parabolic equations, which correspond to α(t) ≡ 0 in (14.4.1.1), only the initial
condition (14.4.1.3) is set.
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Figure 14.1. Scheme of solving linear boundary value problems by separation of variables (for parabolic
equations, the function F2 does not depend on ψ′′

tt, and all Bn = 0).
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Below we consider the basic stages of the method of separation of variables in more
detail. We assume that the coefficients of equation (14.4.1.1) and boundary conditions
(14.4.1.2) meet the following requirements:

α(t), β(t), γ(t), a(x), b(x), c(x) are continuous functions,
α(t) ≥ 0, a(x) > 0, |s1| + |k1| > 0, |s2| + |k2| > 0.

Remark 1. The method of separation of variables is also used to solve linear boundary value problems
for elliptic equations of the form (14.4.1.1), provided that α(t) < 0, a(x) > 0 and with the boundary conditions
(14.4.1.2) in x and similar boundary conditions in t. In this case, all results obtained for the general stage of
solution, described in Paragraphs 14.4.1-2 and 14.4.1-3, remain valid; for details, see Subsection 14.4.4.

Remark 2. In various applications, equations of the form (14.4.1.1) may arise with the coefficient b(x)
going to infinity at the boundary, b(x) → ∞ as x → x1, with the other coefficients being continuous. In
this case, the first boundary condition in (14.4.1.2) should be replaced with a condition of boundedness of the
solution as x → x1. This may occur in spatial problems with central or axial symmetry where the solution
depends only on the radial coordinate.

14.4.1-2. Derivation of equations and boundary conditions for particular solutions.

The approach is based on searching for particular solutions of equation (14.4.1.1) in the
product form

w(x, t) = ϕ(x)ψ(t). (14.4.1.5)

After separation of the variables and elementary manipulations, one arrives at the following
linear ordinary differential equations for the functions ϕ = ϕ(x) and ψ = ψ(t):

a(x)ϕ′′
xx + b(x)ϕ′

x + [λ + c(x)]ϕ = 0, (14.4.1.6)
α(t)ψ′′

tt + β(t)ψ′
t + [λ – γ(t)]ψ = 0. (14.4.1.7)

These equations contain a free parameter λ called the separation constant. With the nota-
tion adopted in Fig. 14.1, equations (14.4.1.6) and (14.4.1.7) can be rewritten as follows:
ϕF1(x,ϕ,ϕ′

x,ϕ′′
xx) + λϕ = 0 and ψF2(t,ψ,ψ′

t,ψ
′′
tt) + λψ = 0.

Substituting (14.4.1.5) into (14.4.1.2) yields the boundary conditions for ϕ = ϕ(x):

s1ϕ
′
x + k1ϕ = 0 at x = x1,

s2ϕ
′
x + k2ϕ = 0 at x = x2.

(14.4.1.8)

The homogeneous linear ordinary differential equation (14.4.1.6) in conjunction with the
homogeneous linear boundary conditions (14.4.1.8) makes up an eigenvalue problem.

14.4.1-3. Solution of eigenvalue problems. Orthogonality of eigenfunctions.

Suppose ϕ̃1 = ϕ̃1(x,λ) and ϕ̃2 = ϕ̃2(x,λ) are linearly independent particular solutions of
equation (14.4.1.6). Then the general solution of this equation can be represented as the
linear combination

ϕ = C1ϕ̃1(x,λ) + C2ϕ̃2(x,λ), (14.4.1.9)

where C1 and C2 are arbitrary constants.
Substituting solution (14.4.1.9) into the boundary conditions (14.4.1.8) yields the fol-

lowing homogeneous linear algebraic system of equations for C1 and C2:

ε11(λ)C1 + ε12(λ)C2 = 0,
ε21(λ)C1 + ε22(λ)C2 = 0,

(14.4.1.10)
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where εij(λ) =
[
si(ϕ̃j)′x + kiϕ̃j

]
x=xi

. For system (14.4.1.10) to have nontrivial solutions,
its determinant must be zero; we have

ε11(λ)ε22(λ) – ε12(λ)ε21(λ) = 0. (14.4.1.11)

Solving the transcendental equation (14.4.1.11) for λ, one obtains the eigenvalues λ = λn,
where n = 1, 2, . . . For these values of λ, equation (14.4.1.6) has nontrivial solutions,

ϕn(x) = ε12(λn)ϕ̃1(x,λn) – ε11(λn)ϕ̃2(x,λn), (14.4.1.12)

which are called eigenfunctions (these functions are defined up to a constant multiplier).
To facilitate the further analysis, we represent equation (14.4.1.6) in the form

[p(x)ϕ′
x]′x + [λρ(x) – q(x)]ϕ = 0, (14.4.1.13)

where

p(x) = exp

[∫
b(x)
a(x)

dx

]
, q(x) = –

c(x)
a(x)

exp

[∫
b(x)
a(x)

dx

]
, ρ(x) =

1
a(x)

exp

[∫
b(x)
a(x)

dx

]
.

(14.4.1.14)
It follows from the adopted assumptions (see the end of Paragraph 14.4.1-1) that p(x),
p′x(x), q(x), and ρ(x) are continuous functions, with p(x) > 0 and ρ(x) > 0.

The eigenvalue problem (14.4.1.13), (14.4.1.8) is known to possess the following prop-
erties:

1. All eigenvalues λ1, λ2, . . . are real, and λn → ∞ as n → ∞; consequently, the
number of negative eigenvalues is finite.

2. The system of eigenfunctions ϕ1(x), ϕ2(x), . . . is orthogonal on the interval
x1 ≤ x ≤ x2 with weight ρ(x), i.e.,

∫ x2

x1

ρ(x)ϕn(x)ϕm(x) dx = 0 for n ≠ m. (14.4.1.15)

3. If
q(x) ≥ 0, s1k1 ≤ 0, s2k2 ≥ 0, (14.4.1.16)

there are no negative eigenvalues. If q ≡ 0 and k1 = k2 = 0, the least eigenvalue is
λ1 = 0 and the corresponding eigenfunction is ϕ1 = const. Otherwise, all eigenvalues are
positive, provided that conditions (14.4.1.16) are satisfied; the first inequality in (14.4.1.16)
is satisfied if c(x) ≤ 0.

Subsection 12.2.5 presents some estimates for the eigenvalues λn and eigenfunc-
tions ϕn(x).

� The procedure of constructing solutions to nonstationary boundary value problems is
further different for parabolic and hyperbolic equations; see Subsections 14.4.2 and 14.4.3
below for results (elliptic equations are treated in Subsection 14.4.4).

14.4.2. Problems for Parabolic Equations: Final Stage of Solution

14.4.2-1. Series solutions of boundary value problems for parabolic equations.

Consider the problem for the parabolic equation

∂w

∂t
= a(x)

∂2w

∂x2 + b(x)
∂w

∂x
+
[
c(x) + γ(t)

]
w (14.4.2.1)
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(this equation is obtained from (14.4.1.1) in the caseα(t) ≡ 0 andβ(t) = 1) with homogeneous
linear boundary conditions (14.4.1.2) and initial condition (14.4.1.3).

First, one searches for particular solutions to equation (14.4.2.1) in the product form
(14.4.1.5), where the function ϕ(x) is obtained by solving an eigenvalue problem for the
ordinary differential equation (14.4.1.6) with the boundary conditions (14.4.1.8). The
solution of equation (14.4.1.7) with α(t) ≡ 0 and β(t) = 1 corresponding to the eigenvalues
λ = λn and satisfying the normalizing conditions ψn(0) = 1 has the form

ψn(t) = exp

[
–λnt +

∫ t

0
γ(ξ) dξ

]
. (14.4.2.2)

Then the solution of the nonstationary boundary value problem (14.4.2.1), (14.4.1.2),
(14.4.1.3) is sought in the series form

w(x, t) =
∞∑

n=1

Anϕn(x)ψn(t), (14.4.2.3)

where theAn are arbitrary constants and the functions wn(x, t) = ϕn(x)ψn(t) are particular
solutions (14.4.2.1) satisfying the boundary conditions (14.4.1.2). By the principle of linear
superposition, series (14.4.2.3) is also a solution of the original partial differential equation
that satisfies the boundary conditions.

To determine the coefficients An, we substitute series (14.4.2.3) into the initial condi-
tion (14.4.1.3), thus obtaining

∞∑

n=1

Anϕn(x) = f0(x).

Multiplying this equation by ρ(x)ϕn(x), where the weight function ρ(x) is defined in
(14.4.1.14), then integrating the resulting relation with respect to x over the interval
x1 ≤ x ≤ x2, and taking into account the properties (14.4.1.15), we find

An =
1

‖ϕn‖2

∫ x2

x1

ρ(x)ϕn(x)f0(x) dx, ‖ϕn‖2 =
∫ x2

x1

ρ(x)ϕ2
n(x) dx. (14.4.2.4)

Relations (14.4.2.3), (14.4.2.2), (14.4.2.4), and (14.4.1.12) give a formal solution of the
nonstationary boundary value problem (14.4.2.1), (14.4.1.2), (14.4.1.3).

Example. Consider the first (Dirichlet) boundary value problem on the interval 0 ≤ x ≤ l for the heat
equation

∂w

∂t
=
∂2w

∂x2 (14.4.2.5)

with the general initial condition (14.4.1.3) and the homogeneous boundary conditions

w = 0 at x = 0, w = 0 at x = l. (14.4.2.6)

The function ψ(t) in the particular solution (14.4.1.5) is found from (14.4.2.2), where γ(t) = 0:

ψn(t) = exp(–λnt). (14.4.2.7)

The functions ϕn(x) are determined by solving the eigenvalue problem (14.4.1.6), (14.4.1.8) with a(x) = 1,
b(x) = c(x) = 0, s1 = s2 = 0, k1 = k2 = 1, x1 = 0, and x2 = l:

ϕ′′
xx + λϕ = 0; ϕ = 0 at x = 0, ϕ = 0 at x = l.
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So we obtain the eigenfunctions and eigenvalues:

ϕn(x) = sin

(
nπx

l

)
, λn =

(
nπ

l

)2

, n = 1, 2, . . . (14.4.2.8)

The solution to problem (14.4.2.5)–(14.4.2.6), (14.4.1.3) is given by formulas (14.4.2.3), (14.4.2.4). Taking
into account that ‖ϕn‖2 = l/2, we obtain

w(x, t) =
∞∑

n=1

An sin

(
nπx

l

)
exp

(
–
n2π2t

l2

)
, An =

2
l

∫ l

0
f0(ξ) sin

(
nπξ

l

)
dξ. (14.4.2.9)

If the function f0(x) is twice continuously differentiable and the compatibility conditions (see Para-
graph 14.4.2-2) are satisfied, then series (14.4.2.9) is convergent and admits termwise differentiation, once with
respect to t and twice with respect to x. In this case, formula (14.4.2.9) gives the classical smooth solution
of problem (14.4.2.5)–(14.4.2.6), (14.4.1.3). [If f0(x) is not as smooth as indicated or if the compatibility
conditions are not met, then series (14.4.2.9) may converge to a discontinuous function, thus giving only a
generalized solution.]

Remark. For the solution of linear nonhomogeneous parabolic equations with nonhomogeneous boundary
conditions, see Section 14.7.

14.4.2-2. Conditions of compatibility of initial and boundary conditions.

Suppose the function w has a continuous derivative with respect to t and two continuous
derivatives with respect to x and is a solution of problem (14.4.2.1), (14.4.1.2), (14.4.1.3).
Then the boundary conditions (14.4.1.2) and the initial condition (14.4.1.3) must be con-
sistent; namely, the following compatibility conditions must hold:

[s1f
′

0 + k1f0]x=x1 = 0, [s2f
′

0 + k2f0]x=x2 = 0. (14.4.2.10)

If s1 = 0 or s2 = 0, then the additional compatibility conditions

[a(x)f ′′0 + b(x)f ′0]x=x1 = 0 if s1 = 0,

[a(x)f ′′0 + b(x)f ′0]x=x2 = 0 if s2 = 0
(14.4.2.11)

must also hold; the primes denote the derivatives with respect to x.

14.4.3. Problems for Hyperbolic Equations: Final Stage of Solution

14.4.3-1. Series solution of boundary value problems for hyperbolic equations.

For hyperbolic equations, the solution of the boundary value problem (14.4.1.1)–(14.4.1.4)
is sought in the series form

w(x, t) =
∞∑

n=1

ϕn(x)
[
Anψn1(t) +Bnψn2(t)

]
. (14.4.3.1)

Here, An and Bn are arbitrary constants. The functions ψn1(t) and ψn2(t) are particular
solutions of the linear equation (14.4.1.7) for ψ (with λ = λn) that satisfy the conditions

ψn1(0) = 1, ψ′
n1(0) = 0; ψn2(0) = 0, ψ′

n2(0) = 1. (14.4.3.2)

The functions ϕn(x) and λn are determined by solving the eigenvalue problem (14.4.1.6),
(14.4.1.8).
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Substituting solution (14.4.3.1) into the initial conditions (14.4.1.3)–(14.4.1.4) yields

∞∑

n=1

Anϕn(x) = f0(x),
∞∑

n=1

Bnϕn(x) = f1(x).

Multiplying these equations by ρ(x)ϕn(x), where the weight function ρ(x) is defined
in (14.4.1.14), then integrating the resulting relations with respect to x on the interval
x1 ≤ x ≤ x2, and taking into account the properties (14.4.1.15), we obtain the coefficients
of series (14.4.3.1) in the form

An =
1

‖ϕn‖2

∫ x2

x1

ρ(x)ϕn(x)f0(x) dx, Bn =
1

‖ϕn‖2

∫ x2

x1

ρ(x)ϕn(x)f1(x) dx. (14.4.3.3)

The quantity ‖ϕn‖ is defined in (14.4.2.4).
Relations (14.4.3.1), (14.4.1.12), and (14.4.3.3) give a formal solution of the nonsta-

tionary boundary value problem (14.4.1.1)–(14.4.1.4) for α(t) > 0.

Example. Consider a mixed boundary value problem on the interval 0 ≤ x ≤ l for the wave equation

∂2w

∂t2 =
∂2w

∂x2 (14.4.3.4)

with the general initial conditions (14.4.1.3)–(14.4.1.4) and the homogeneous boundary conditions

w = 0 at x = 0, ∂xw = 0 at x = l. (14.4.3.5)

The functions ψn1(t) and ψn2(t) are determined by the linear equation [see (14.4.1.7) with α(t) = 1,
β(t) = γ(t) = 0, and λ = λn]

ψ′′
tt + λψ = 0

with the initial conditions (14.4.3.2). We find

ψn1(t) = cos
(√
λn t
)
, ψn2(t) =

1√
λn

sin
(√
λn t
)
. (14.4.3.6)

The functions ϕn(x) are determined by solving the eigenvalue problem (14.4.1.6), (14.4.1.8) with a(x) = 1,
b(x) = c(x) = 0, s1 = k2 = 0, s2 = k1 = 1, x1 = 0, and x2 = l:

ϕ′′
xx + λϕ = 0; ϕ = 0 at x = 0, ϕ′

x = 0 at x = l.

So we obtain the eigenfunctions and eigenvalues:

ϕn(x) = sin(μnx), μn =
√
λn =

π(2n – 1)
2l

, n = 1, 2, . . . (14.4.3.7)

The solution to problem (14.4.3.4)–(14.4.3.5), (14.4.1.3)–(14.4.1.4) is given by formulas (14.4.3.1) and
(14.4.3.3). Taking into account that ‖ϕn‖2 = l/2, we have

w(x, t) =
∞∑

n=1

[
An cos(μnt) +Bn sin(μnt)

]
sin(μnx), μn =

π(2n – 1)
2l

,

An =
2
l

∫ l

0
f0(x) sin(μnx) dx, Bn =

2
lμn

∫ l

0
f1(x) sin(μnx) dx.

(14.4.3.8)

If f0(x) and f1(x) have three and two continuous derivatives, respectively, and the compatibility conditions
are met (see Paragraph 14.4.3-2), then series (14.4.3.8) is convergent and admits double termwise differentiation.
In this case, formula (14.4.3.8) gives the classical smooth solution of problem (14.4.3.4)–(14.4.3.5), (14.4.1.3)–
(14.4.1.4).

Remark. For the solution of linear nonhomogeneous hyperbolic equations with nonhomogeneous bound-
ary conditions, see Section 14.8.
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14.4.3-2. Conditions of compatibility of initial and boundary conditions.

Suppose w is a twice continuously differentiable solution of problem (14.4.1.1)–(14.4.1.4).
Then conditions (14.4.2.10) and (14.4.2.11) must hold. In addition, the following conditions
of compatibility of the boundary conditions (14.4.1.2) and initial condition (14.4.1.4) must
be satisfied:

[s1f
′

1 + k1f1]x=x1 = 0, [s2f
′

1 + k2f1]x=x2 = 0.

14.4.4. Solution of Boundary Value Problems for Elliptic Equations

14.4.4-1. Solution of special problem for elliptic equations.

Now consider a boundary value problem for the elliptic equation

a(x)
∂2w

∂x2 + α(y)
∂2w

∂y2 + b(x)
∂w

∂x
+ β(y)

∂w

∂y
+
[
c(x) + γ(y)

]
w = 0 (14.4.4.1)

with homogeneous boundary conditions (14.4.1.2) in x and the following mixed (homoge-
neous and nonhomogeneous) boundary conditions in y:

σ1∂yw + ν1w = 0 at y = y1,
σ2∂yw + ν2w = f (x) at y = y2.

(14.4.4.2)

We assume that the coefficients of equation (14.4.4.1) and boundary conditions (14.4.1.2)
and (14.4.4.2) meet the following requirements:

a(x), b(x), c(x) α(y), β(y), and γ(t) are continuous functions,
a(x) > 0, α(y) > 0, |s1| + |k1| > 0, |s2| + |k2| > 0, |σ1| + |ν1| > 0, |σ2| + |ν2| > 0.

The approach is based on searching for particular solutions of equation (14.4.4.1) in the
product form

w(x, y) = ϕ(x)ψ(y). (14.4.4.3)

As before, we first arrive at the eigenvalue problem (14.4.1.6), (14.4.1.8) for the function
ϕ = ϕ(x); the solution procedure is detailed in Paragraph 14.4.1-3. Further on, we assume
the λn and ϕn(x) have been found. The functions ψn = ψn(y) are determined by solving
the linear ordinary differential equation

α(y)ψ′′
yy + β(y)ψ′

y + [γ(y) – λn]ψ = 0 (14.4.4.4)

subject to the homogeneous boundary condition

σ1∂yψ + ν1ψ = 0 at y = y1, (14.4.4.5)

which is a consequence of the first condition (14.4.4.2). The functions ψn are determined
up to a constant factor.

Taking advantage of the principle of linear superposition, we seek the solution to the
boundary value problem (14.4.4.1), (14.4.4.2), (14.4.1.2) in the series form

w(x, y) =
∞∑

n=1

Anϕn(x)ψn(y), (14.4.4.6)
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where An are arbitrary constants. By construction, series (14.4.4.6) will satisfy equa-
tion (14.4.4.1) with the boundary conditions (14.4.1.2) and the first boundary condition
(14.4.4.2). In order to find the series coefficients An, substitute (14.4.4.6) into the second
boundary condition (14.4.4.2) to obtain

∞∑

n=1

AnBnϕn(x) = f (x), Bn = σ2
dψn
dy

∣
∣∣
∣
y=y2

+ ν2ψn(y2). (14.4.4.7)

Further, we follow the same procedure as in Paragraph 14.4.2-1. Specifically, multiplying
(14.4.4.7) by ρ(x)ϕn(x), then integrating the resulting relation with respect to x over the
interval x1 ≤ x ≤ x2, and taking into account the properties (14.4.1.15), we obtain

An =
1

Bn‖ϕn‖2

∫ x2

x1

ρ(x)ϕn(x)f (x) dx, ‖ϕn‖2 =
∫ x2

x1

ρ(x)ϕ2
n(x) dx, (14.4.4.8)

where the weight function ρ(x) is defined in (14.4.1.14).

Example. Consider the first (Dirichlet) boundary value problem for the Laplace equation

∂2w

∂x2 +
∂2w

∂y2 = 0 (14.4.4.9)

subject to the boundary conditions

w = 0 at x = 0, w = 0 at x = l1;

w = 0 at y = 0, w = f (x) at y = l2
(14.4.4.10)

in a rectangular domain 0 ≤ x ≤ l1, 0 ≤ y ≤ l2.
Particular solutions to equation (14.4.4.9) are sought in the form (14.4.4.3). We have the following

eigenvalue problem for ϕ(x):

ϕ′′
xx + λϕ = 0; ϕ = 0 at x = 0, ϕ = 0 at x = l1.

On solving this problem, we find the eigenfunctions with respective eigenvalues

ϕn(x) = sin(μnx), μn =
√
λn =

πn

l1
, n = 1, 2, . . . (14.4.4.11)

The functionsψn =ψn(y) are determined by solving the following problem for a linear ordinary differential
equation with homogeneous boundary conditions:

ψ′′
yy – λnψ = 0; ψ = 0 at y = 0. (14.4.4.12)

It is a special case of problem (14.4.4.4)–(14.4.4.5) with α(y) = 1, β(y) = γ(y) = 0, σ1 = 0, and ν1 = 1. The
nontrivial solutions of problem (14.4.4.12) are expressed as

ψn(y) = sinh(μny), μn =
√
λn =

πn

l1
, n = 1, 2, . . . (14.4.4.13)

Using formulas (14.4.4.6), (14.4.4.8), (14.4.4.11), (14.4.4.13) and taking into account the relations Bn =
ψn(l2) = sinh(μnl2), ρ(x) = 1, and ‖ϕn‖2 = l/2, we find the solution of the original problem (14.4.4.9)–
(14.4.4.10) in the form

w(x, y) =
∞∑

n=1

An sin(μnx) sinh(μny), An =
2

l1 sinh(μnl2)

∫ l1

0
f (x) sin(μnx) dx, μn =

πn

l1
.
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TABLE 14.5
Description of auxiliary problems for equation (14.4.4.1) and problems for associated

functions ϕ(x) and ψ(y) that determine particular solutions of the form (14.4.4.3).
The abbreviation HBC below stands for a “homogeneous boundary condition”

Auxiliary
problem

Functions vanishing
in the boundary

conditions (14.4.4.14)

Eigenvalue problem
with homogeneous

boundary conditions

Another problem with one
homogeneous boundary
condition (for λn found)

Problem 1
f2(y) = f3(x) = f4(x) = 0,
function f1(y) prescribed

functions ψn(y) and values λn

to be determined
functions ϕn(x)

satisfy an HBC at x = x2

Problem 2
f1(y) = f3(x) = f4(x) = 0,
function f2(y) prescribed

functions ψn(y) and values λn

to be determined
functions ϕ(x)

satisfy an HBC at x = x1

Problem 3
f1(y) = f2(y) = f4(x) = 0,
function f3(x) prescribed

functions ϕn(x) and values λn

to be determined
functions ψ(y)

satisfy an HBC at y = y2

Problem 4
f1(y) = f2(y) = f3(x) = 0,
function f4(x) prescribed

functions ϕn(x) and values λn

to be determined
functions ψ(y)

satisfy an HBC at y = y1

14.4.4-2. Generalization to the case of nonhomogeneous boundary conditions.

Now consider the linear boundary value problem for the elliptic equation (14.4.4.1) with
general nonhomogeneous boundary conditions

s1∂xw + k1w = f1(y) at x = x1, s2∂xw + k2w = f2(y) at x = x2,
σ1∂yw + ν1w = f3(x) at y = y1, σ2∂yw + ν2w = f4(x) at y = y2.

(14.4.4.14)

The solution to this problem is the sum of solutions to four simpler auxiliary problems for
equation (14.4.4.1), each corresponding to three homogeneous and one nonhomogeneous
boundary conditions in (14.4.4.14); see Table 14.5. Each auxiliary problem is solved
using the procedure given in Paragraph 14.4.4-1, beginning with the search for solutions
in the form of the product of functions with different arguments (14.4.4.3), determined
by equations (14.4.1.6) and (14.4.4.4). The separation parameter λ is determined by the
solution of a eigenvalue problem with homogeneous boundary conditions; see Table 14.5.
The solution to each of the auxiliary problems is sought in the series form (14.4.4.6).

Remark. For the solution of linear nonhomogeneous elliptic equations subject to nonhomogeneous bound-
ary conditions, see Section 14.9.

14.5. Integral Transforms Method
Various integral transforms are widely used to solve linear problems of mathematical
physics. The Laplace transform and the Fourier transform are in most common use (its and
other integral transforms are considered in Chapter 11 in detail).

14.5.1. Laplace Transform and Its Application in Mathematical
Physics

14.5.1-1. Laplace and inverse Laplace transforms. Laplace transforms for derivatives.

The Laplace transform of an arbitrary (complex-valued) function f (t) of a real variable t
(t ≥ 0) is defined by

f̃ (p) = L
{
f (t)
}

, where L
{
f (t)
}

≡
∫ ∞

0
e–ptf (t) dt, (14.5.1.1)

where p = s + iσ is a complex variable, i2 = –1.
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Given the transform f̃ (p), the function f (t) can be found by means of the inverse Laplace
transform

f (t) = L–1{f̃ (p)
}

, where L–1{f̃ (p)
}

≡
1

2πi

∫ c+i∞

c–i∞
f̃ (p)ept dp, (14.5.1.2)

where the integration path is parallel to the imaginary axis and lies to the right of all
singularities of f̃ (p), which corresponds to c > σ0.

In order to solve nonstationary boundary value problems, the following Laplace trans-
form formulas for derivatives will be required:

L
{
f ′(t)

}
= pf̃ (p) – f (0),

L
{
f ′′(t)

}
= p2f̃ (p) – pf (0) – f ′(0),

(14.5.1.3)

where f (0) and f ′(0) are the initial conditions.
More details on the properties of the Laplace transform and the inverse Laplace transform

can be found in Section 11.2. The Laplace transforms of some functions are listed in
Section T3.1. Tables of inverse Laplace transforms are listed in Section T3.2. Such tables
are convenient to use in solving linear problems for partial differential equations.

14.5.1-2. Solution procedure for linear problems using the Laplace transform.

Figure 14.2 shows schematically how one can utilize the Laplace transforms to solve
boundary value problems for linear parabolic or hyperbolic equations with two independent
variables in the case where the equation coefficients are independent of t (the same procedure
can be applied for solving linear problems characterized by higher-order equations). Here
and henceforth, the short notation w̃(x, p) = L{w(x, t)} will be used; the arguments of w̃
may be omitted.

It is significant that with the Laplace transform, the original problem for a partial
differential equation is reduced to a simpler problem for an ordinary differential equation
with parameter p; the derivatives with respect to t are replaced by appropriate algebraic
expressions taking into account the initial conditions; see formulas (14.5.1.3).

14.5.1-3. Solving linear problems for parabolic equations with the Laplace transform.

Consider a linear nonstationary boundary value problem for the parabolic equation

∂w

∂t
= a(x)

∂2w

∂x2 + b(x)
∂w

∂x
+ c(x)w + Φ(x, t) (14.5.1.4)

with the initial condition (14.4.1.3) and the general nonhomogeneous boundary conditions

s1∂xw + k1w = g1(t) at x = x1,
s2∂xw + k2w = g2(t) at x = x2.

(14.5.1.5)

The application of the Laplace transform results in the problem defined by the ordinary
differential equation for x (p is treated as a parameter)

a(x)
∂2w̃

∂x2 + b(x)
∂w̃

∂x
+ [c(x) – p]w̃ + f0(x) + Φ̃(x, p) = 0 (14.5.1.6)
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Original problem �
partial differential equation for
initial conditions and boundary conditions,

w w x t� � � ��{

Application of the Laplace transform PL.5.1.
with respect to

( 1)
t

Solution of the ordinary differential equation
with the boundary conditions

Application of the inverse
Laplace transform PL.5.1.( 2)

{Problem for transform �
ordinary differential equation
for boundary conditionsw w x p� � � ��~~

~~Finding the transform w w x t� � � �

Obtaining solution to the original problem: w w x t� � � �

Figure 14.2. Solution procedure for linear boundary value problems using the Laplace transform.

with the boundary conditions

s1∂xw̃ + k1w̃ = g̃1(p) at x = x1,
s2∂xw̃ + k2w̃ = g̃2(p) at x = x2.

(14.5.1.7)

Notation employed: Φ̃(x, p) = L
{
Φ(x, t)

}
and g̃n(p) = L

{
gn(t)

}
(n = 1, 2). On solving

problem (14.5.1.6)–(14.5.1.7), one should apply to the resulting solution w̃ = w̃(x, p) the
inverse Laplace transform (14.5.1.2) to obtain the solution, w = w(x, t), of the original
problem.

Example 1. Consider the first boundary value problem for the heat equation:

∂w

∂t
=
∂2w

∂x2 (x > 0, t > 0),

w = 0 at t = 0 (initial condition),

w = w0 at x = 0 (boundary condition),

w → 0 at x→ ∞ (boundary condition).

We apply the Laplace transform with respect to t. Let us multiply the equation, the initial condition, and
the boundary conditions by e–pt and then integrate with respect to t from zero to infinity. Taking into account
the relations

L{∂tw} = pw̃ – w|t=0 = pw̃ (used are first property (14.5.1.3) and the initial condition),

L{w0} = w0L{1} = w0/p (used are property 1 of Subsection T3.1.1 and the relation L{1} = 1/p,

see Property 1 of Subsection T3.1.2)

we arrive at the following problem for a second-order linear ordinary differential equation with parameter p:

w̃′′
xx – pw̃ = 0,

w̃ = w0/p at x = 0 (boundary condition),

w̃ → 0 at x→ ∞ (boundary condition).
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Integrating the equation yields the general solution w̃ = A1(p)e–x
√

p + A2(p)ex
√

p. Using the boundary
conditions, we determine the constants, A1(p) = w0/p and A2(p) = 0. Thus, we have

w̃ =
w0

p
e–x

√
p.

Let us apply the inverse Laplace transform to both sides of this relation. We refer to the table in Subsec-
tion T3.2.5, row 20 (where x must be replaced by t and then a by x2), to find the inverse transform of the
right-hand side. Finally, we obtain the solution of the original problem in the form

w = w0 erfc

(
x

2
√
t

)
.

14.5.1-4. Solving linear problems for hyperbolic equations by the Laplace transform.

Consider a linear nonstationary boundary value problem defined by the hyperbolic equation

∂2w

∂t2 + ϕ(x)
∂w

∂t
= a(x)

∂2w

∂x2 + b(x)
∂w

∂x
+ c(x)w + Φ(x, t) (14.5.1.8)

with the initial conditions (14.4.1.3), (14.4.1.4) and the general boundary conditions
(14.5.1.5). The application of the Laplace transform results in the problem defined by
the ordinary differential equation for x (p is treated as a parameter)

a(x)
∂2w̃

∂x2 +b(x)
∂w̃

∂x
+[c(x)–p2 –pϕ(x)]w̃+f0(x)[p+ϕ(x)]+f1 (x)+Φ̃(x, p) = 0 (14.5.1.9)

with the boundary conditions (14.5.1.7). On solving this problem, one should apply the
inverse Laplace transform to the resulting solution, w̃ = w̃(x, p).

14.5.2. Fourier Transform and Its Application in Mathematical
Physics

14.5.2-1. Fourier transform and its properties.

The Fourier transform is defined as follows:

f̃ (u) = F
{
f (x)

}
, where F

{
f (x)

}
≡

1√
2π

∫ ∞

–∞
f (x)e–iux dx, i2 = –1. (14.5.2.1)

This relation is meaningful for any function f (x) absolutely integrable on the interval
(–∞,∞).

Given f̃ (u), the function f (x) can be found by means of the inverse Fourier transform

f (x) = F–1 {f̃ (u)
}

, where F–1 {f̃ (u)
}

≡
1√
2π

∫ ∞

–∞
f̃ (u)eiux du, (14.5.2.2)

where the integral is understood in the sense of the Cauchy principal value.
The main properties of the correspondence between functions and their Fourier trans-

forms are gathered in Table 11.4.
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14.5.2-2. Solving linear problems of mathematical physics by the Fourier transform.

The Fourier transform is usually employed to solve boundary value problems for linear
partial differential equations whose coefficients are independent of the space variable x,
–∞ < x < ∞.

The scheme for solving linear boundary value problems with the help of the Fourier
transform is similar to that used in solving problems with help of the Laplace transform.
With the Fourier transform, the derivatives with respect to x in the equation are replaced
by appropriate algebraic expressions; see Property 4 or 5 in Table 11.4. In the case of
two independent variables, the problem for a partial differential equation is reduced to a
simpler problem for an ordinary differential equation with parameter u. On solving the
latter problem, one determines the transform. After that, by applying the inverse Fourier
transform, one obtains the solution of the original boundary value problem.

Example 2. Consider the following Cauchy problem for the heat equation:

∂w

∂t
=
∂2w

∂x2 (–∞ < x < ∞),

w = f (x) at t = 0 (initial condition).

We apply the Fourier transform with respect to the space variable x. Setting w̃ = F{w(x, t)} and taking into
account the relation F{∂xxw} = –u2w̃ (see Property 4 in Table 11.4), we arrive at the following problem for a
linear first-order ordinary differential equation in t with parameter u:

w̃′
t + u2w̃ = 0,

w̃ = f̃ (u) at t = 0,

where f̃ (u) is defined by (14.5.2.1). On solving this problem for the transform w̃, we find

w̃ = f̃ (u)e–u2t.

Let us apply the inversion formula to both sides of this equation. After some calculations, we obtain the solution
of the original problem in the form

w =
1√
2π

∫ ∞

–∞
f̃ (u)e–u2teiux du =

1
2π

∫ ∞

–∞

[∫ ∞

–∞
f (ξ)e–iuξdξ

]
e–u2t+iuxdu

=
1

2π

∫ ∞

–∞
f (ξ) dξ

∫ ∞

–∞
e–u2t+iu(x–ξ)du =

1√
2πt

∫ ∞

–∞
f (ξ) exp

[
–

(x – ξ)2

4t

]
dξ.

At the last stage we used the relation
∫ ∞

–∞
exp
(
–a2u2 + bu

)
du =

√
π

|a|
exp

(
b2

4a2

)
.

14.6. Representation of the Solution of the Cauchy
Problem via the Fundamental Solution

14.6.1. Cauchy Problem for Parabolic Equations

14.6.1-1. General formula for the solution of the Cauchy problem.

Let x = {x1, . . . ,xn} and y = {y1, . . . , yn}, where x � R
n and y � R

n.
Consider a nonhomogeneous linear equation of the parabolic type with an arbitrary

right-hand side,
∂w

∂t
– Lx,t[w] = Φ(x, t), (14.6.1.1)

where the second-order linear differential operator Lx,t is defined by relation (14.2.1.2).
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The solution of the Cauchy problem for equation (14.6.1.1) with an arbitrary initial
condition,

w = f (x) at t = 0,

can be represented as the sum of two integrals,

w(x, t) =
∫ t

0

∫

Rn

Φ(y, τ )�� (x, y, t, τ ) dy dτ +
∫

Rn

f (y)�� (x, y, t, 0) dy, dy = dy1 . . . dyn.

Here, �� = �� (x, y, t, τ ) is the fundamental solution of the Cauchy problem that satisfies, for
t > τ ≥ 0, the homogeneous linear equation

∂��

∂t
– Lx,t[�� ] = 0 (14.6.1.2)

with the nonhomogeneous initial condition of special form

�� = δ(x – y) at t = τ . (14.6.1.3)

The quantities τ and y appear in problem (14.6.1.2)–(14.6.1.3) as free parameters, and
δ(x) = δ(x1) . . . δ(xn) is the n-dimensional Dirac delta function.

Remark 1. If the coefficients of the differential operator Lx,t in (14.6.1.2) are independent of time t, then
the fundamental solution of the Cauchy problem depends on only three arguments, �� (x, y, t, τ ) = �� (x, y, t – τ ).

Remark 2. If the differential operator Lx,t has constant coefficients, then the fundamental solution of the
Cauchy problem depends on only two arguments, �� (x, y, t, τ ) = �� (x – y, t – τ ).

14.6.1-2. Fundamental solution allowing incomplete separation of variables.

Consider the special case where the differential operator Lx,t in equation (14.6.1.1) can be
represented as the sum

Lx,t[w] = L1,t[w] + · · · + Ln,t[w], (14.6.1.4)

where each term depends on a single space coordinate and time,

Lk,t[w] ≡ ak(xk, t)
∂2w

∂x2
k

+ bk(xk, t)
∂w

∂xk
+ ck(xk, t)w, k = 1, . . . , n.

Equations of this form are often encountered in applications. The fundamental solution of
the Cauchy problem for the n-dimensional equation (14.6.1.1) with operator (14.6.1.4) can
be represented in the product form

�� (x, y, t, τ ) =
n∏

k=1

�� k(xk, yk, t, τ ), (14.6.1.5)

where �� k = �� k(xk, yk, t, τ ) are the fundamental solutions satisfying the one-dimensional
equations

∂�� k
∂t

– Lk,t[�� k] = 0 (k = 1, . . . , n)

with the initial conditions
�� k = δ(xk – yk) at t = τ .

In this case, the fundamental solution of the Cauchy problem (14.6.1.5) admits incom-
plete separation of variables; the fundamental solution is separated in the space variables
x1, . . . , xn but not in time t.
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Example 1. Consider the two-dimensional heat equation

∂w

∂t
=
∂2w

∂x2
1

+
∂2w

∂x2
2

.

The fundamental solutions of the corresponding one-dimensional heat equations are expressed as

Equations Fundamental solutions

∂w

∂t
=
∂2w

∂x2
1

=⇒ �� 1(x1, y1, t, τ ) =
1

2
√
π(t – τ )

exp

[
–

(x1 – y1)2

4(t – τ )

]
,

∂w

∂t
=
∂2w

∂x2
2

=⇒ �� 2(x2, y2, t, τ ) =
1

2
√
π(t – τ )

exp

[
–

(x2 – y2)2

4(t – τ )

]
.

Multiplying �� 1 and �� 2 together gives the fundamental solution of the two-dimensional heat equation:

�� (x1,x2, y1, y2, t, τ ) =
1

4π(t – τ )
exp

[
–

(x1 – y1)2 + (x2 – y2)2

4(t – τ )

]
.

Example 2. The fundamental solution of the equation

∂w

∂t
=

n∑

k=1

ak(t)
∂2w

∂x2
k

, 0 < ak(t) < ∞,

is given by formula (14.6.1.5) with

�� k(xk, yk, t, τ ) =
1

2
√
πTk

exp

[
–

(xk – yk)2

4Tk

]
, Tk =

∫ t

τ

ak(η) dη.

In the derivation of this formula it was taken into account that the corresponding one-dimensional equations
could be reduced to the ordinary constant-coefficient heat equation by passing from xk, t to the new variables
xk, Tk.

14.6.2. Cauchy Problem for Hyperbolic Equations
Consider a nonhomogeneous linear equation of the hyperbolic type with an arbitrary right-
hand side,

∂2w

∂t2 + ϕ(x, t)
∂w

∂t
– Lx,t[w] = Φ(x, t), (14.6.2.1)

where the second-order linear differential operator Lx,t is defined by relation (14.2.1.2) with
x � R

n.
The solution of the Cauchy problem for equation (14.6.2.1) with general initial condi-

tions,
w = f0(x) at t = 0,

∂tw = f1(x) at t = 0,
can be represented as the sum

w(x, t) =
∫ t

0

∫

Rn

Φ(y, τ )�� (x, y, t, τ ) dy dτ –
∫

Rn

f0(y)

[
∂

∂τ
�� (x, y, t, τ )

]

τ=0
dy

+
∫

Rn

[
f1(y) + f0(y)ϕ(y, 0)

]
�� (x, y, t, 0) dy, dy = dy1 . . . dyn.

Here, �� = �� (x, y, t, τ ) is the fundamental solution of the Cauchy problem that satisfies, for
t > τ ≥ 0, the homogeneous linear equation

∂2��

∂t2 + ϕ(x, t)
∂��

∂t
– Lx,t[�� ] = 0 (14.6.2.2)

with the semihomogeneous initial conditions of special form

�� = 0 at t = τ ,
∂t�� = δ(x – y) at t = τ .

(14.6.2.3)

The quantities τ and y appear in problem (14.6.2.2)–(14.6.2.3) as free parameters (y � R
n).
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Remark 1. If the coefficients of the differential operator Lx,t in (14.6.2.2) are independent of time t, then
the fundamental solution of the Cauchy problem depends on only three arguments, �� (x, y, t, τ ) = �� (x, y, t – τ ).
Here, ∂

∂τ
�� (x, y, t, τ )

∣
∣
τ=0 = – ∂

∂t
�� (x, y, t).

Remark 2. If the differential operator Lx,t has constant coefficients, then the fundamental solution of the
Cauchy problem depends on only two arguments, �� (x, y, t, τ ) = �� (x – y, t – τ ).

Example 1. For the one-, two-, and three-dimensional wave equations, the fundamental solutions have
the forms

Equations Fundamental solutions

∂2w

∂t2 –
∂2w

∂x2 = 0 =⇒ �� (x, t, y, τ ) =
1
2
ϑ(t – τ – |x – y|), ϑ(z) =

{ 1 if z ≥ 0,
0 if z < 0;

∂2w

∂t2 –
∂2w

∂x2
1

–
∂2w

∂x2
2

= 0 =⇒ �� (x1, x2, t, y1, y2, τ ) =
ϑ(t – τ – ρ)

2π
√

(t – τ )2 – ρ2
;

∂2w

∂t2 –
∂2w

∂x2
1

–
∂2w

∂x2
2

–
∂2w

∂x2
3

= 0 =⇒ �� (x1, x2, x3, t, y1, y2, y3, τ ) =
1

2π
δ
(
(t – τ )2 – r2),

where ϑ(z) is the Heaviside unit step function (ϑ = 0 for z < 0 and ϑ = 1 for z ≥ 0), ρ =
√

(x1 –y1)2 +(x2 –y2)2 ,
r =
√

(x1 –y1)2 +(x2 –y2)2 +(x3 –y3)2 , and δ(z) is the Dirac delta function.

Example 2. The one-dimensional Klein-Gordon equation

∂2w

∂t2 =
∂2w

∂x2 – bw

has the fundamental solutions

�� (x, t, y, τ ) = 1
2ϑ
(
t – τ – |x – y|

)
J0
(
k
√

(t – τ )2 – (x – y)2
)

for b = k2 > 0,

�� (x, t, y, τ ) = 1
2ϑ
(
t – τ – |x – y|

)
I0
(
k
√

(t – τ )2 – (x – y)2
)

for b = –k2 < 0,

where ϑ(z) is the Heaviside unit step function, J0(z) is the Bessel function, I0(z) is the modified Bessel function,
and k > 0.

Example 3. The two-dimensional Klein-Gordon equation

∂2w

∂t2 =
∂2w

∂x2
1

+
∂2w

∂x2
2

– bw

has the fundamental solutions

�� (x1,x2, t, y1, y2, τ ) = ϑ(t – τ – ρ)
cos
(
k
√

(t – τ )2 – ρ2
)

2π
√

(t – τ )2 – ρ2
for b = k2 > 0,

�� (x1,x2, t, y1, y2, τ ) = ϑ(t – τ – ρ)
cosh

(
k
√

(t – τ )2 – ρ2
)

2π
√

(t – τ )2 – ρ2
for b = –k2 < 0,

where ϑ(z) is the Heaviside unit step function and ρ =
√

(x1 – y1)2 + (x2 – y2)2 .

14.7. Boundary Value Problems for Parabolic Equations
with One Space Variable. Green’s Function

14.7.1. Representation of Solutions via the Green’s Function

14.7.1-1. Statement of the problem (t ≥ 0, x1 ≤ x ≤ x2).

In general, a nonhomogeneous linear differential equation of the parabolic type with variable
coefficients in one dimension can be written as

∂w

∂t
– Lx,t[w] = Φ(x, t), (14.7.1.1)
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where

Lx,t[w] ≡ a(x, t)
∂2w

∂x2 + b(x, t)
∂w

∂x
+ c(x, t)w, a(x, t) > 0. (14.7.1.2)

Consider the nonstationary boundary value problem for equation (14.7.1.1) with an
initial condition of general form

w = f (x) at t = 0, (14.7.1.3)

and arbitrary nonhomogeneous linear boundary conditions

α1
∂w

∂x
+ β1w = g1(t) at x = x1, (14.7.1.4)

α2
∂w

∂x
+ β2w = g2(t) at x = x2. (14.7.1.5)

By appropriately choosing the coefficients α1,α2, β1, and β2 in (14.7.1.4) and (14.7.1.5), we
obtain the first, second, third, and mixed boundary value problems for equation (14.7.1.1).

14.7.1-2. Representation of the problem solution in terms of the Green’s function.

The solution of the nonhomogeneous linear boundary value problem (14.7.1.1)–(14.7.1.5)
can be represented as

w(x, t) =
∫ t

0

∫ x2

x1

Φ(y, τ )G(x, y, t, τ ) dy dτ +
∫ x2

x1

f (y)G(x, y, t, 0) dy

+
∫ t

0
g1(τ )a(x1, τ )Λ1(x, t, τ ) dτ +

∫ t

0
g2(τ )a(x2, τ )Λ2(x, t, τ ) dτ . (14.7.1.6)

Here, G(x, y, t, τ ) is the Green’s function that satisfies, for t > τ ≥ 0, the homogeneous
equation

∂G

∂t
– Lx,t[G] = 0 (14.7.1.7)

with the nonhomogeneous initial condition of special form

G = δ(x – y) at t = τ (14.7.1.8)

and the homogeneous boundary conditions

α1
∂G

∂x
+ β1G = 0 at x = x1, (14.7.1.9)

α2
∂G

∂x
+ β2G = 0 at x = x2. (14.7.1.10)

The quantities y and τ appear in problem (14.7.1.7)–(14.7.1.10) as free parameters, with
x1 ≤ y ≤ x2, and δ(x) is the Dirac delta function.

The initial condition (14.7.1.8) implies the limit relation

f (x) = lim
t→τ

∫ x2

x1

f (y)G(x, y, t, τ ) dy

for any continuous function f = f (x).
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TABLE 14.6
Expressions of the functions Λ1(x, t, τ ) and Λ2(x, t, τ ) involved

in the integrands of the last two terms in solution (14.7.1.6)

Type of problem Form of boundary conditions Functions Λm(x, t, τ )

First boundary value problem
(α1 = α2 = 0, β1 = β2 = 1)

w = g1(t) at x = x1

w = g2(t) at x = x2

Λ1(x, t, τ ) = ∂yG(x, y, t, τ )
∣∣
y=x1

Λ2(x, t, τ ) = –∂yG(x, y, t, τ )
∣
∣
y=x2

Second boundary value problem
(α1 = α2 = 1, β1 = β2 = 0)

∂xw = g1(t) at x = x1

∂xw = g2(t) at x = x2

Λ1(x, t, τ ) = –G(x,x1, t, τ )

Λ2(x, t, τ ) = G(x,x2, t, τ )

Third boundary value problem
(α1 = α2 = 1, β1 < 0, β2 > 0)

∂xw + β1w = g1(t) at x = x1

∂xw + β2w = g2(t) at x = x2

Λ1(x, t, τ ) = –G(x,x1, t, τ )

Λ2(x, t, τ ) = G(x,x2, t, τ )

Mixed boundary value problem
(α1 = β2 = 0, α2 = β1 = 1)

w = g1(t) at x = x1

∂xw = g2(t) at x = x2

Λ1(x, t, τ ) = ∂yG(x, y, t, τ )
∣
∣
y=x1

Λ2(x, t, τ ) = G(x,x2, t, τ )

Mixed boundary value problem
(α1 = β2 = 1, α2 = β1 = 0)

∂xw = g1(t) at x = x1

w = g2(t) at x = x2

Λ1(x, t, τ ) = –G(x, x1, t, τ )

Λ2(x, t, τ ) = –∂yG(x, y, t, τ )
∣∣
y=x2

The functions Λ1(x, t, τ ) and Λ2(x, t, τ ) involved in the integrands of the last two
terms in solution (14.7.1.6) can be expressed in terms of the Green’s function G(x, y, t, τ ).
The corresponding formulas for Λm(x, t, τ ) are given in Table 14.6 for the basic types of
boundary value problems.

It is significant that the Green’s function G and the functions Λ1, Λ2 are independent of
the functions Φ, f , g1, and g2 that characterize various nonhomogeneities of the boundary
value problem.

If the coefficients of equation (14.7.1.1)–(14.7.1.2) are independent of time t, i.e., the
conditions

a = a(x), b = b(x), c = c(x) (14.7.1.11)

hold, then the Green’s function depends on only three arguments,

G(x, y, t, τ ) = G(x, y, t – τ ).

In this case, the functions Λm depend on only two arguments, Λm = Λm(x, t – τ ), m = 1, 2.
Formula (14.7.1.6) also remains valid for the problem with boundary conditions of the

third kind if β1 = β1(t) and β2 = β2(t). Here, the relation between Λm (m = 1, 2) and
the Green’s function G is the same as that in the case of constants β1 and β2; the Green’s
function itself is now different.

The condition that the solution must vanish at infinity, w → 0 as x → ∞, is often set
for the first, second, and third boundary value problems that are considered on the interval
x1 ≤ x < ∞. In this case, the solution is calculated by formula (14.7.1.6) with Λ2 = 0 and
Λ1 specified in Table 14.6.

14.7.2. Problems for Equation

s(x)∂w
∂t

= ∂
∂x

[
p(x)∂w

∂x

]
– q(x)w + Φ(x, t)

14.7.2-1. General formulas for solving nonhomogeneous boundary value problems.

Consider linear equations of the special form

s(x)
∂w

∂t
=
∂

∂x

[
p(x)

∂w

∂x

]
– q(x)w + Φ(x, t). (14.7.2.1)
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TABLE 14.7
Expressions of the functions Λ1(x, t) and Λ2(x, t) involved in the integrands of the
last two terms in solutions (14.7.2.2) and (14.8.2.2); the modified Green’s function

G(x, ξ, t) for parabolic equations of the form (14.7.2.1) are found by formula (14.7.2.3),
and that for hyperbolic equations of the form (14.8.2.1), by formula (14.8.2.3)

Type of problem Form of boundary conditions Functions Λm(x, t)

First boundary value problem
(α1 = α2 = 0, β1 = β2 = 1)

w = g1(t) at x = x1

w = g2(t) at x = x2

Λ1(x, t) = ∂ξG(x, ξ, t)
∣
∣
ξ=x1

Λ2(x, t) = –∂ξG(x, ξ, t)
∣
∣
ξ=x2

Second boundary value problem
(α1 = α2 = 1, β1 = β2 = 0)

∂xw = g1(t) at x = x1

∂xw = g2(t) at x = x2

Λ1(x, t) = –G(x,x1, t)

Λ2(x, t) = G(x,x2, t)

Third boundary value problem
(α1 = α2 = 1, β1 < 0, β2 > 0)

∂xw + β1w = g1(t) at x = x1

∂xw + β2w = g2(t) at x = x2

Λ1(x, t) = –G(x,x1, t)

Λ2(x, t) = G(x,x2, t)

Mixed boundary value problem
(α1 = β2 = 0, α2 = β1 = 1)

w = g1(t) at x = x1

∂xw = g2(t) at x = x2

Λ1(x, t) = ∂ξG(x, ξ, t)
∣
∣
ξ=x1

Λ2(x, t) = G(x,x2, t)

Mixed boundary value problem
(α1 = β2 = 1, α2 = β1 = 0)

∂xw = g1(t) at x = x1

w = g2(t) at x = x2

Λ1(x, t) = –G(x,x1, t)

Λ2(x, t) = –∂ξG(x, ξ, t)
∣∣
ξ=x2

They are often encountered in heat and mass transfer theory and chemical engineering
sciences. Throughout this subsection, we assume that the functions s, p, p′x, and q are
continuous and s > 0, p > 0, and x1 ≤ x ≤ x2.

The solution of equation (14.7.2.1) under the initial condition (14.7.1.3) and the arbitrary
linear nonhomogeneous boundary conditions (14.7.1.4)–(14.7.1.5) can be represented as
the sum

w(x, t) =
∫ t

0

∫ x2

x1

Φ(ξ, τ )G(x, ξ, t – τ ) dξ dτ +
∫ x2

x1

s(ξ)f (ξ)G(x, ξ, t) dξ

+ p(x1)
∫ t

0
g1(τ )Λ1(x, t – τ ) dτ + p(x2)

∫ t

0
g2(τ )Λ2(x, t – τ ) dτ .

(14.7.2.2)

Here, the modified Green’s function is given by

G(x, ξ, t) =
∞∑

n=1

yn(x)yn(ξ)
‖yn‖2 exp(–λnt), ‖yn‖2 =

∫ x2

x1

s(x)y2
n(x) dx, (14.7.2.3)

where the λn and yn(x) are the eigenvalues and corresponding eigenfunctions of the fol-
lowing Sturm–Liouville problem for a second-order linear ordinary differential equation:

[p(x)y′x]′x + [λs(x) – q(x)]y = 0,

α1y
′
x + β1y = 0 at x = x1,

α2y
′
x + β2y = 0 at x = x2.

(14.7.2.4)

The functions Λ1(x, t) and Λ2(x, t) that occur in the integrands of the last two terms in
solution (14.7.2.2) are expressed via the Green’s function (14.7.2.3). The corresponding
formulas for Λm(x, t) are given in Table 14.7 for the basic types of boundary value problems.
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14.7.2-2. Properties of Sturm–Liouville problem (14.7.2.4). Heat equation example.

1◦. There are infinitely many eigenvalues. All eigenvalues are real and different and can
be ordered so that λ1 < λ2 < λ3 < · · · , with λn → ∞ as n→ ∞ (therefore, there can exist
only finitely many negative eigenvalues). Each eigenvalue is of multiplicity 1.

2◦. The different eigenfunctions yn(x) and ym(x) are orthogonal with weight s(x) on the
interval x1 ≤ x ≤ x2:

∫ x2

x1

s(x)yn(x)ym(x) dx = 0 for n ≠ m.

3◦. If the conditions
q(x) ≥ 0, α1β1 ≤ 0, α2β2 ≥ 0 (14.7.2.5)

are satisfied, there are no negative eigenvalues. If q ≡ 0 and β1 = β2 = 0, then λ1 = 0 is the
least eigenvalue, to which there corresponds the eigenfunction ϕ1 = const. Otherwise, all
eigenvalues are positive, provided that conditions (14.7.2.5) are satisfied.

Other general and special properties of the Sturm–Liouville problem (14.7.2.4) are
given in Subsection 12.2.5; various asymptotic and approximate formulas for eigenvalues
and eigenfunctions can also be found there.

Example. Consider the first boundary value problem in the domain 0 ≤ x ≤ l for the heat equation with a
source

∂w

∂t
= a

∂2w

∂x2 – bw

under the initial condition (14.7.1.3) and boundary conditions

w = g1(t) at x = 0,

w = g2(t) at x = l.
(14.7.2.6)

The above equation is a special case of equation (14.7.2.1) with s(x) = 1, p(x) = a, q(x) = b, and Φ(x, t) = 0.
The corresponding Sturm–Liouville problem (14.7.2.4) has the form

ay′′xx + (λ – b)y = 0, y = 0 at x = 0, y = 0 at x = l.

The eigenfunctions and eigenvalues are found to be

yn(x) = sin

(
πnx

l

)
, λn = b +

aπ2n2

l2 , n = 1, 2, . . .

Using formula (14.7.2.3) and taking into account that ‖yn‖2 = l/2, we obtain the Green’s function

G(x, ξ, t) =
2
l
e–bt

∞∑

n=1

sin

(
πnx

l

)
sin

(
πnξ

l

)
exp

(
–
aπ2n2

l2 t

)
.

Substituting this expression into (14.7.2.2) with p(x1) = p(x2) = s(ξ) = 1, x1 = 0, and x2 = l and taking into
account the formulas

Λ1(x, t) = ∂ξG(x, ξ, t)
∣
∣
ξ=x1

, Λ2(x, t) = –∂ξG(x, ξ, t)
∣
∣
ξ=x2

(see the first row in Table 14.7), one obtains the solution to the problem in question.

� Solutions to various boundary value problems for parabolic equations can be found in
Section T8.1.
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14.8. Boundary Value Problems for Hyperbolic
Equations with One Space Variable. Green’s
Function. Goursat Problem

14.8.1. Representation of Solutions via the Green’s Function

14.8.1-1. Statement of the problem (t ≥ 0, x1 ≤ x ≤ x2).

In general, a one-dimensional nonhomogeneous linear differential equation of hyperbolic
type with variable coefficients is written as

∂2w

∂t2 + ϕ(x, t)
∂w

∂t
– Lx,t[w] = Φ(x, t), (14.8.1.1)

where the operator Lx,t[w] is defined by (14.7.1.2).
Consider the nonstationary boundary value problem for equation (14.8.1.1) with the

initial conditions
w = f0(x) at t = 0,

∂tw = f1(x) at t = 0
(14.8.1.2)

and arbitrary nonhomogeneous linear boundary conditions

α1
∂w

∂x
+ β1w = g1(t) at x = x1, (14.8.1.3)

α2
∂w

∂x
+ β2w = g2(t) at x = x2. (14.8.1.4)

14.8.1-2. Representation of the problem solution in terms of the Green’s function.

The solution of problem (14.8.1.1), (14.8.1.2), (14.8.1.3), (14.8.1.4) can be represented as
the sum

w(x, t) =
∫ t

0

∫ x2

x1

Φ(y, τ )G(x, y, t, τ ) dy dτ

–
∫ x2

x1

f0(y)

[
∂

∂τ
G(x, y, t, τ )

]

τ=0
dy +

∫ x2

x1

[
f1(y) + f0(y)ϕ(y, 0)

]
G(x, y, t, 0) dy

+
∫ t

0
g1(τ )a(x1, τ )Λ1(x, t, τ ) dτ +

∫ t

0
g2(τ )a(x2, τ )Λ2(x, t, τ ) dτ . (14.8.1.5)

Here, the Green’s function G(x, y, t, τ ) is determined by solving the homogeneous equation

∂2G

∂t2 + ϕ(x, t)
∂G

∂t
– Lx,t[G] = 0 (14.8.1.6)

with the semihomogeneous initial conditions

G = 0 at t = τ ,
∂tG = δ(x – y) at t = τ ,

(14.8.1.7)
(14.8.1.8)
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and the homogeneous boundary conditions

α1
∂G

∂x
+ β1G = 0 at x = x1, (14.8.1.9)

α2
∂G

∂x
+ β2G = 0 at x = x2. (14.8.1.10)

The quantities y and τ appear in problem (14.8.1.6)–(14.8.1.8), (14.8.1.9), (14.8.1.10) as
free parameters (x1 ≤ y ≤ x2), and δ(x) is the Dirac delta function.

The functions Λ1(x, t, τ ) and Λ2(x, t, τ ) involved in the integrands of the last two
terms in solution (14.8.1.5) can be expressed via the Green’s function G(x, y, t, τ ). The
corresponding formulas for Λm(x, t, τ ) are given in Table 14.6 for the basic types of
boundary value problems.

It is significant that the Green’s function G and Λ1, Λ2 are independent of the functions
Φ, f0, f1, g1, and g2 that characterize various nonhomogeneities of the boundary value
problem.

If the coefficients of equation (14.8.1.1) are independent of time t, then the Green’s
function depends on only three arguments, G(x, y, t, τ ) = G(x, y, t – τ ). In this case, one
can set ∂

∂τ G(x, y, t, τ )
∣
∣
τ=0 = – ∂

∂tG(x, y, t) in solution (14.8.1.5).

14.8.2. Problems for Equation

s(x)∂
2w
∂t2 = ∂

∂x

[
p(x)∂w

∂x

]
– q(x)w + Φ(x, t)

14.8.2-1. General relations for solving nonhomogeneous boundary value problems.

Consider linear equations of the special form

s(x)
∂2w

∂t2 =
∂

∂x

[
p(x)

∂w

∂x

]
– q(x)w + Φ(x, t). (14.8.2.1)

It is assumed that the functions s, p, p′x, and q are continuous and the inequalities s > 0,
p > 0 hold for x1 ≤ x ≤ x2.

The solution of equation (14.8.2.1) under the general initial conditions (14.8.1.2) and
the arbitrary linear nonhomogeneous boundary conditions (14.8.1.3)–(14.8.1.4) can be
represented as the sum

w(x, t) =
∫ t

0

∫ x2

x1

Φ(ξ, τ )G(x, ξ, t – τ ) dξ dτ

+
∂

∂t

∫ x2

x1

s(ξ)f0(ξ)G(x, ξ, t) dξ +
∫ x2

x1

s(ξ)f1(ξ)G(x, ξ, t) dξ

+ p(x1)
∫ t

0
g1(τ )Λ1(x, t – τ ) dτ + p(x2)

∫ t

0
g2(τ )Λ2(x, t – τ ) dτ . (14.8.2.2)

Here, the modified Green’s function is determined by

G(x, ξ, t) =
∞∑

n=1

yn(x)yn(ξ) sin
(
t
√
λn
)

‖yn‖2
√
λn

, ‖yn‖2 =
∫ x2

x1

s(x)y2
n(x) dx, (14.8.2.3)
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where the λn and yn(x) are the eigenvalues and corresponding eigenfunctions of the Sturm–
Liouville problem for the second-order linear ordinary differential equation

[p(x)y′x]′x + [λs(x) – q(x)]y = 0,

α1y
′
x + β1y = 0 at x = x1,

α2y
′
x + β2y = 0 at x = x2.

(14.8.2.4)

The functions Λ1(x, t) and Λ2(x, t) that occur in the integrands of the last two terms
in solution (14.8.2.2) are expressed in terms of the Green’s function of (14.8.2.3). The
corresponding formulas for Λm(x, t) are given in Table 14.7 for the basic types of boundary
value problems.

14.8.2-2. Properties of the Sturm–Liouville problem. The Klein–Gordon equation.

The general and special properties of the Sturm–Liouville problem (14.8.2.4) are given
in Subsection 12.2.5; various asymptotic and approximate formulas for eigenvalues and
eigenfunctions can also be found there.

Example. Consider the second boundary value problem in the domain 0 ≤ x ≤ l for the Klein–Gordon
equation

∂2w

∂t2 = a2 ∂
2w

∂x2 – bw,

under the initial conditions (14.8.1.2) and boundary conditions

∂xw = g1(t) at x = 0,

∂xw = g2(t) at x = l.

The Klein–Gordon equation is a special case of equation (14.8.2.1) with s(x) = 1, p(x) = a2, q(x) = b, and
Φ(x, t) = 0. The corresponding Sturm–Liouville problem (14.8.2.4) has the form

a2y′′xx + (λ – b)y = 0, y′x = 0 at x = 0, y′x = 0 at x = l.

The eigenfunctions and eigenvalues are found to be

yn+1(x) = cos

(
πnx

l

)
, λn+1 = b +

aπ2n2

l2 , n = 0, 1, . . .

Using formula (14.8.2.4) and taking into account that ‖y1‖2 = l and ‖yn‖2 = l/2 (n = 1, 2, . . .), we find the
Green’s function:

G(x, ξ, t) =
1
l
√
b

sin
(
t
√
b
)

+
2
l

∞∑

n=1

cos

(
πnx

l

)
cos

(
πnξ

l

)
sin
(
t
√

(aπn/l)2 + b
)

√
(aπn/l)2 + b

.

Substituting this expression into (14.8.2.3) with p(x1) = p(x2) = s(ξ) = 1, x1 = 0, and x2 = l and taking into
account the formulas

Λ1(x, t) = –G(x,x1, t), Λ2(x, t) = G(x,x2, t)

(see the second row in Table 14.7), one obtains the solution to the problem in question.

� Solutions to various boundary value problems for hyperbolic equations can be found in
Section T8.2.
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14.8.3. Problems for Equation
∂2w
∂t2 + a(t)∂w

∂t
= b(t)

{
∂
∂x

[
p(x)∂w

∂x

]
– q(x)w

}
+ Φ(x, t)

14.8.3-1. General relations to solve nonhomogeneous boundary value problems.

Consider the generalized telegraph equation of the form

∂2w

∂t2 + a(t)
∂w

∂t
= b(t)

{ ∂

∂x

[
p(x)

∂w

∂x

]
– q(x)w

}
+ Φ(x, t). (14.8.3.1)

It is assumed that the functions p, p′x, and q are continuous and p > 0 for x1 ≤ x ≤ x2.
The solution of equation (14.8.3.1) under the general initial conditions (14.8.1.2) and

the arbitrary linear nonhomogeneous boundary conditions (14.8.1.3)–(14.8.1.4) can be
represented as the sum

w(x, t) =
∫ t

0

∫ x2

x1

Φ(ξ, τ )G(x, ξ, t, τ ) dξ dτ

–
∫ x2

x1

f0(ξ)

[
∂

∂τ
G(x, ξ, t, τ )

]

τ=0
dξ +

∫ x2

x1

[
f1(ξ) + a(0)f0(ξ)

]
G(x, ξ, t, 0) dξ

+ p(x1)
∫ t

0
g1(τ )b(τ )Λ1(x, t, τ ) dτ + p(x2)

∫ t

0
g2(τ )b(τ )Λ2(x, t, τ ) dτ . (14.8.3.2)

Here, the modified Green’s function is determined by

G(x, ξ, t, τ ) =
∞∑

n=1

yn(x)yn(ξ)
‖yn‖2 Un(t, τ ), ‖yn‖2 =

∫ x2

x1

y2
n(x) dx, (14.8.3.3)

where the λn and yn(x) are the eigenvalues and corresponding eigenfunctions of the Sturm–
Liouville problem for the following second-order linear ordinary differential equation with
homogeneous boundary conditions:

[p(x)y′x]′x + [λ – q(x)]y = 0,

α1y
′
x + β1y = 0 at x = x1,

α2y
′
x + β2y = 0 at x = x2.

(14.8.3.4)

The functions Un = Un(t, τ ) are determined by solving the Cauchy problem for the linear
ordinary differential equation

U ′′
n + a(t)U ′

n + λnb(t)Un = 0,

Un
∣∣
t=τ = 0, U ′

n

∣∣
t=τ = 1.

(14.8.3.5)

The prime denotes the derivative with respect to t, and τ is a free parameter occurring in
the initial conditions.

The functions Λ1(x, t) and Λ2(x, t) that occur in the integrands of the last two terms
in solution (14.8.3.2) are expressed in terms of the Green’s function of (14.8.3.3). The
corresponding formulas will be specified below when studying specific boundary value
problems.

The general and special properties of the Sturm–Liouville problem (14.8.3.4) are de-
tailed in Subsection 12.2.5. Asymptotic and approximate formulas for eigenvalues and
eigenfunctions are also presented there.
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14.8.3-2. First, second, third, and mixed boundary value problems.

1◦. First boundary value problem. The solution of equation (14.8.3.1) with the initial
conditions (14.8.1.2) and boundary conditions (14.8.1.3)–(14.8.1.4) for α1 = α2 = 0 and
β1 = β2 = 1 is given by relations (14.8.3.2) and (14.8.3.3), where

Λ1(x, t, τ ) =
∂

∂ξ
G(x, ξ, t, τ )

∣∣
∣
ξ=x1

, Λ2(x, t, τ ) = –
∂

∂ξ
G(x, ξ, t, τ )

∣∣
∣
ξ=x2

.

2◦. Second boundary value problem. The solution of equation (14.8.3.1) with the initial
conditions (14.8.1.2) and boundary conditions (14.8.1.3)–(14.8.1.4) for α1 = α2 = 1 and
β1 = β2 = 0 is given by relations (14.8.3.2) and (14.8.3.3) with

Λ1(x, t, τ ) = –G(x,x1, t, τ ), Λ2(x, t, τ ) = G(x,x2, t, τ ).

3◦. Third boundary value problem. The solution of equation (14.8.3.1) with the initial
conditions (14.8.1.2) and boundary conditions (14.8.1.3)–(14.8.1.4) for α1 = α2 = 1 and
β1β2 ≠ 0 is given by relations (14.8.3.2) and (14.8.3.3) in which

Λ1(x, t, τ ) = –G(x,x1, t, τ ), Λ2(x, t, τ ) = G(x,x2, t, τ ).

4◦. Mixed boundary value problem. The solution of equation (14.8.3.1) with the initial
conditions (14.8.1.2) and boundary conditions (14.8.1.3)–(14.8.1.4) for α1 = β2 = 0 and
α2 = β1 = 1 is given by relations (14.8.3.2) and (14.8.3.3) with

Λ1(x, t, τ ) =
∂

∂ξ
G(x, ξ, t, τ )

∣∣
∣
ξ=x1

, Λ2(x, t, τ ) = G(x,x2, t, τ ).

5◦. Mixed boundary value problem. The solution of equation (14.8.3.1) with the initial
conditions (14.8.1.2) and boundary conditions (14.8.1.3)–(14.8.1.4) for α1 = β2 = 1 and
α2 = β1 = 0 is given by relations (14.8.3.2) and (14.8.3.3) with

Λ1(x, t, τ ) = –G(x,x1, t, τ ), Λ2(x, t, τ ) = –
∂

∂ξ
G(x, ξ, t, τ )

∣
∣∣
ξ=x2

.

14.8.4. Generalized Cauchy Problem with Initial Conditions Set
Along a Curve

14.8.4-1. Statement of the generalized Cauchy problem. Basic property of a solution.

Consider the general linear hyperbolic equation in two independent variables which is
reduced to the first canonical form (see Paragraph 14.1.1-4):

∂2w

∂x∂y
+ a(x, y)

∂w

∂x
+ b(x, y)

∂w

∂y
+ c(x, y)w = f (x, y), (14.8.4.1)

where a(x, y), b(x, y), c(x, y), and f (x, y) are continuous functions.
Let a segment of a curve in the xy-plane be defined by

y = ϕ(x) (α ≤ x ≤ β), (14.8.4.2)

where ϕ(x) is continuously differentiable, with ϕ′(x) ≠ 0 and ϕ′(x) ≠ ∞.
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The generalized Cauchy problem for equation (14.8.4.1) with initial conditions defined
along a curve (14.8.4.2) is stated as follows: find a solution to equation (14.8.4.1) that
satisfies the conditions

w(x, y)|y=ϕ(x) = g(x),
∂w

∂x

∣∣
∣
y=ϕ(x)

= h1(x),
∂w

∂y

∣∣
∣
y=ϕ(x)

= h2(x), (14.8.4.3)

where g(x), h1(x), and h2(x) are given continuous functions, related by the compatibility
condition

g′x(x) = h1(x) + h2(x)ϕ′
x(x). (14.8.4.4)

Basic property of the generalized Cauchy problem: the value of the solution at any point
M (x0, y0) depends only on the values of the functions g(x), h1(x), and h2(x) on the arc
AB, cut off on the given curve (14.8.4.2) by the characteristics x = x0 and y = y0, and
on the values of a(x, y), b(x, y), c(x, y), and f (x, y) in the curvilinear triangle AMB; see
Fig. 14.3. The domain of influence on the solution at M (x0, y0) is shaded for clarity.

characteristics

B

A

y = xφ( )
y

x

x

y

0

0

O

M x y( , )0 0

Figure 14.3. Domain of influence of the solution to the generalized Cauchy problem at a point M .

Remark 1. Rather than setting two derivatives in the boundary conditions (14.8.4.3), it suffices to set
either of them, with the other being uniquely determined from the compatibility condition (14.8.4.4).

Remark 2. Instead of the last two boundary conditions in (14.8.4.3), the value of the derivative along the
normal to the curve (14.8.4.2) can be used:

∂w

∂n

∣
∣
∣
y=ϕ(x)

≡ 1
√

1 + [ϕ′
x(x)]2

[
∂w

∂y
– ϕ′

x(x)
∂w

∂x

]

y=ϕ(x)

= h3(x). (14.8.4.5)

Denoting wx|y=ϕ(x) = h1(x) and wy|y=ϕ(x) = h2(x), we have

h2(x) – ϕ′
x(x)h1(x) = h3(x)

√
1 + [ϕ′

x(x)]2. (14.8.4.6)

The functions h1(x) and h2(x) can be found from (14.8.4.4) and (14.8.4.6). Further substituting their expres-
sions into (14.8.4.3), one arrives at the standard formulation of the generalized Cauchy problem, where the
compatibility condition for initial data (14.8.4.4) will be satisfied automatically.

14.8.4-2. Riemann function.

A Riemann function, R = R(x, y;x0, y0), corresponding to equation (14.8.4.1) is defined
as a solution to the equation

∂2R
∂x∂y

–
∂

∂x

[
a(x, y)R

]
–
∂

∂y

[
b(x, y)R

]
+ c(x, y)R = 0 (14.8.4.7)
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that satisfies the conditions

R = exp

[∫ y

y0

a(x0, ξ) dξ

]
at x = x0, R = exp

[∫ x

x0

b(ξ, y0) dξ

]
at y = y0

(14.8.4.8)
at the characteristics x = x0 and y = y0. Here, (x0, y0) is an arbitrary point from the domain
of equation (14.8.4.1). The x0 and y0 appear in problem (14.8.4.7)–(14.8.4.8) as parameters
in the boundary conditions only.

THEOREM. If the functions a, b, c and the partial derivatives ax, by are all continuous,
then the Riemann function R(x, y;x0, y0) exists. Moreover, the function R(x0, y0,x, y),
obtained by swapping the parameters and the arguments, is a solution to the homogeneous
equation (14.8.4.1), with f = 0.

Remark. It is significant that the Riemann function depends on neither the shape of the curve (14.8.4.2)
nor the initial data set on it (14.8.4.3).

Example 1. The Riemann function for the equation wxy = 0 is just R ≡ 1.

Example 2. The Riemann function for the equation

wxy + cw = 0 (c = const) (14.8.4.9)

is expressed via the Bessel function J0(z) as

R = J0
(√

4c(x0 – x)(y0 – y)
)
.

Remark. Any linear constant-coefficient partial differential equation of the parabolic type in two inde-
pendent variables can be reduced to an equation of the form (14.8.4.9); see Paragraph 14.1.1-6.

14.8.4-3. Solution of the generalized Cauchy problem via the Riemann function.

Given a Riemann function, the solution to the generalized Cauchy problem (14.8.4.1)–
(14.8.4.3) at any point (x0, y0) can written as

w(x0, y0) =
1
2

(wR)A +
1
2

(wR)B +
1
2

∫

AB

(
R ∂w

∂x
– w

∂R
∂x

+ 2bwR
)
dx

–
1
2

∫

AB

(
R ∂w

∂y
– w

∂R
∂y

+ 2awR
)
dy +

∫∫

ΔAMB
fR dx dy.

The first two terms on the right-hand side are evaluated as the points A and B. The third
and fourth terms are curvilinear integrals over the arc AB; the arc is defined by equation
(14.8.4.2), and the integrands involve quantities defined by the initial conditions (14.8.4.3).
The last integral is taken over the curvilinear triangular domain AMB.

14.8.5. Goursat Problem (a Problem with Initial Data of
Characteristics)

14.8.5-1. Statement of the Goursat problem. Basic property of the solution.

The Goursat problem for equation (14.8.4.1) is stated as follows: find a solution to equation
(14.8.4.1) that satisfies the conditions at characteristics

w(x, y)|x=x1 = g(y), w(x, y)|y=y1 = h(x), (14.8.5.1)
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where g(y) and h(x) are given continuous functions that match each other at the point of
intersection of the characteristics, so that

g(y1) = h(x1).

Basic properties of the Goursat problem: the value of the solution at any pointM (x0, y0)
depends only on the values of g(y) at the segment AN (which is part of the characteristic
x = x1), the values of h(x) at the segment BN (which is part of the characteristic y = y1),
and the values of the functions a(x, y), b(x, y), c(x, y), and f (x, y) in the rectangle NAMB;
see Fig. 14.4. The domain of influence on the solution at the point M (x0, y0) is shaded for
clarity.

N x y( , )

characteristics

B

A

y

x

xx

y

y = y

x = x

y

01

1

M x y( , )0 0

1

0

1

1

1

O

Figure 14.4. Domain of influence of the solution to the Goursat problem at a point M .

14.8.5-2. Solution representation for the Goursat problem via the Riemann function.

Given a Riemann function (see Paragraph 14.8.4-2), the solution to the Goursat problem
(14.8.4.1), (14.8.5.1) at any point (x0, y0) can be written as

w(x0, y0) = (wR)N +
∫ A

N
R(g′y + bg

)
dy +

∫ B

N
R(h′x + ah

)
dx +

∫∫

NAMB
fR dx dy.

The first term on the right-hand side is evaluated at the point of intersection of the charac-
teristics (x1, y1). The second and third terms are integrals along the characteristics y = y1
(x1 ≤ x ≤ x0) and x = x1 (y1 ≤ y ≤ y0); these involve the initial data of (14.8.5.1). The last in-
tegral is taken over the rectangular domainNAMB defined by the inequalities x1 ≤ x ≤ x0,
y1 ≤ y ≤ y0.

The Goursat problem for hyperbolic equations reduced to the second canonical form
(see Paragraph 14.1.1-4) is treated similarly.

Example. Consider the Goursat problem for the wave equation

∂2w

∂t2 – a2 ∂
2w

∂x2 = 0

with the boundary conditions prescribed on its characteristics

w = f (x) for x – at = 0 (0 ≤ x ≤ b),
w = g(x) for x + at = 0 (0 ≤ x ≤ c),

(14.8.5.2)

where f (0) = g(0).
Substituting the values set on the characteristics (14.8.5.2) into the general solution of the wave equation,

w = ϕ(x – at) + ψ(x + at), we arrive to a system of linear algebraic equations for ϕ(x) and ψ(x). As a result,
the solution to the Goursat problem is obtained in the form

w(x, t) = f

(
x + at

2

)
+ g

(
x – at

2

)
– f (0).

The solution propagation domain is the parallelogram bounded by the four lines

x – at = 0, x + at = 0, x – at = 2c, x + at = 2b.
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14.9. Boundary Value Problems for Elliptic Equations
with Two Space Variables

14.9.1. Problems and the Green’s Functions for Equation

a(x)∂
2w
∂x2 + ∂

2w
∂y2 + b(x)∂w

∂x
+ c(x)w = –Φ(x, y)

14.9.1-1. Statements of boundary value problems.

Consider two-dimensional boundary value problems for the equation

a(x)
∂2w

∂x2 +
∂2w

∂y2 + b(x)
∂w

∂x
+ c(x)w = –Φ(x, y) (14.9.1.1)

with general boundary conditions in x,

α1
∂w

∂x
– β1w = f1(y) at x = x1,

α2
∂w

∂x
+ β2w = f2(y) at x = x2,

(14.9.1.2)

and different boundary conditions in y. It is assumed that the coefficients of equation
(14.9.1.1) and the boundary conditions (14.9.1.2) meet the requirements

a(x), b(x), c(x) are continuous (x1 ≤ x ≤ x2); a > 0, |α1| + |β1| > 0, |α2| + |β2| > 0.

14.9.1-2. Relations for the Green’s function.

In the general case, the Green’s function can be represented as

G(x, y, ξ, η) = ρ(ξ)
∞∑

n=1

un(x)un(ξ)
‖un‖2 Ψn(y, η;λn). (14.9.1.3)

Here,

ρ(x) =
1
a(x)

exp

[∫
b(x)
a(x)

dx

]
, ‖un‖2 =

∫ x2

x1

ρ(x)u2
n(x) dx, (14.9.1.4)

and the λn and un(x) are the eigenvalues and eigenfunctions of the homogeneous boundary
value problem for the ordinary differential equation

a(x)u′′xx + b(x)u′x + [λ + c(x)]u = 0, (14.9.1.5)
α1u

′
x – β1u = 0 at x = x1, (14.9.1.6)

α2u
′
x + β2u = 0 at x = x2. (14.9.1.7)

The functions Ψn for various boundary conditions in y are specified in Table 14.8.

Equation (14.9.1.5) can be rewritten in self-adjoint form as

[p(x)u′x]′x + [λρ(x) – q(x)]u = 0, (14.9.1.8)
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TABLE 14.8
The functions Ψn in (14.9.1.3) for various boundary conditions.* Notation: σn =

√
λn

Domain Boundary conditions Function Ψn(y, η;λn)

–∞ < y < ∞ |w| < ∞ for y → �∞ 1
2σn

e–σn |y–η|

0 ≤ y < ∞ w = 0 for y = 0 1
σn

{
e–σny sinh(σnη) for y > η,
e–σnη sinh(σny) for η > y

0 ≤ y < ∞ ∂yw = 0 for y = 0 1
σn

{
e–σny cosh(σnη) for y > η,
e–σnη cosh(σny) for η > y

0 ≤ y < ∞ ∂yw –β3w = 0 for y = 0 1
σn(σn +β3)

{
e–σny[σn cosh(σnη) +β3 sinh(σnη)] for y > η,
e–σnη[σn cosh(σny) +β3 sinh(σny)] for η > y

0 ≤ y ≤ h
w = 0 at y = 0,

w = 0 at y = h
1

σn sinh(σnh)

{
sinh(σnη) sinh[σn(h – y)] for y > η,
sinh(σny) sinh[σn(h – η)] for η > y

0 ≤ y ≤ h
∂yw = 0 at y = 0,

∂yw = 0 at y = h
1

σn sinh(σnh)

{
cosh(σnη) cosh[σn(h – y)] for y > η,
cosh(σny) cosh[σn(h – η)] for η > y

0 ≤ y ≤ h
w = 0 at y = 0,

∂yw = 0 at y = h
1

σn cosh(σnh)

{
sinh(σnη) cosh[σn(h – y)] for y > η,
sinh(σny) cosh[σn(h – η)] for η > y

where the functions p(x) and q(x) are given by

p(x) = exp

[∫
b(x)
a(x)

dx

]
, q(x) = –

c(x)
a(x)

exp

[∫
b(x)
a(x)

dx

]
,

and ρ(x) is defined in (14.9.1.4).
The eigenvalue problem (14.9.1.8), (14.9.1.6), (14.9.1.7) possesses the following prop-

erties:

1◦. All eigenvalues λ1, λ2, . . . are real and λn → ∞ as n→ ∞.

2◦. The system of eigenfunctions {u1 (x),u2(x), . . . } is orthogonal on the intervalx1 ≤x≤x2
with weight ρ(x), that is,

∫ x2

x1

ρ(x)un(x)um(x) dx = 0 for n ≠ m.

3◦. If the conditions
q(x) ≥ 0, α1β1 ≥ 0, α2β2 ≥ 0 (14.9.1.9)

are satisfied, there are no negative eigenvalues. If q ≡ 0 and β1 = β2 = 0, then the least
eigenvalue is λ0 = 0 and the corresponding eigenfunction is u0 = const; in this case, the
summation in (14.9.1.3) must start with n = 0. In the other cases, if conditions (14.9.1.9)
are satisfied, all eigenvalues are positive; for example, the first inequality in (14.9.1.9) holds
if c(x) ≤ 0.

Subsection 12.2.5 presents some relations for estimating the eigenvalues λn and eigen-
functions un(x).

* For unbounded domains, the condition of boundedness of the solution as y → �∞ is set; in Table 14.8,
this condition is omitted.
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Example. Consider a boundary value problem for the Laplace equation

∂2w

∂x2 +
∂2w

∂y2 = 0

in a strip 0 ≤ x ≤ l, –∞ < y < ∞ with mixed boundary conditions

w = f1(y) at x = 0,
∂w

∂x
= f2(y) at x = l.

This equation is a special case of equation (14.9.1.1) with a(x) = 1 and b(x) = c(x) = Φ(x, t) = 0. The
corresponding Sturm–Liouville problem (14.9.1.5)–(14.9.1.7) is written as

u′′
xx + λy = 0, u = 0 at x = 0, u′

x = 0 at x = l.

The eigenfunctions and eigenvalues are found as

un(x) = sin

[
π(2n – 1)x

l

]
, λn =

π2(2n – 1)2

l2 , n = 1, 2, . . .

Using formulas (14.9.1.3) and (14.9.1.4) and taking into account the identities ρ(ξ) = 1 and ‖yn‖2 = l/2
(n = 1, 2, . . .) and the expression for Ψn from the first row in Table 14.8, we obtain the Green’s function in
the form

G(x, y, ξ, η) =
1
l

∞∑

n=1

1
σn

sin(σnx) sin(σnξ)e–σn |y–η|, σn =
√
λn =

π(2n – 1)
l

.

14.9.2. Representation of Solutions to Boundary Value Problems via
the Green’s Functions

14.9.2-1. First boundary value problem.

The solution of the first boundary value problem for equation (14.9.1.1) with the boundary
conditions

w = f1(y) at x = x1, w = f2(y) at x = x2,
w = f3(x) at y = 0, w = f4(x) at y = h

is expressed in terms of the Green’s function as

w(x, y) = a(x1)
∫ h

0
f1(η)

[
∂

∂ξ
G(x, y, ξ, η)

]

ξ=x1

dη – a(x2)
∫ h

0
f2(η)

[
∂

∂ξ
G(x, y, ξ, η)

]

ξ=x2

dη

+
∫ x2

x1

f3(ξ)

[
∂

∂η
G(x, y, ξ, η)

]

η=0
dξ –

∫ x2

x1

f4(ξ)

[
∂

∂η
G(x, y, ξ, η)

]

η=h

dξ

+
∫ x2

x1

∫ h

0
Φ(ξ, η)G(x, y, ξ, η) dη dξ.

14.9.2-2. Second boundary value problem.

The solution of the second boundary value problem for equation (14.9.1.1) with boundary
conditions

∂xw = f1(y) at x = x1, ∂xw = f2(y) at x = x2,
∂yw = f3(x) at y = 0, ∂yw = f4(x) at y = h
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is expressed in terms of the Green’s function as

w(x, y) = – a(x1)
∫ h

0
f1(η)G(x, y,x1, η) dη + a(x2)

∫ h

0
f2(η)G(x, y,x2, η) dη

–
∫ x2

x1

f3(ξ)G(x, y, ξ, 0) dξ +
∫ x2

x1

f4(ξ)G(x, y, ξ,h) dξ

+
∫ x2

x1

∫ h

0
Φ(ξ, η)G(x, y, ξ, η) dη dξ.

14.9.2-3. Third boundary value problem.

The solution of the third boundary value problem for equation (14.9.1.1) in terms of the
Green’s function is represented in the same way as the solution of the second boundary
value problem (the Green’s function is now different).

� Solutions of various boundary value problems for elliptic equations can be found in
Section T8.3.

14.10. Boundary Value Problems with Many Space
Variables. Representation of Solutions via the
Green’s Function

14.10.1. Problems for Parabolic Equations

14.10.1-1. Statement of the problem.

In general, a nonhomogeneous linear differential equation of the parabolic type in n space
variables has the form

∂w

∂t
– Lx,t[w] = Φ(x, t), (14.10.1.1)

where

Lx,t[w] ≡
n∑

i,j=1

aij(x, t)
∂2w

∂xi∂xj
+

n∑

i=1

bi(x, t)
∂w

∂xi
+ c(x, t)w,

x = {x1, . . . ,xn},
n∑

i,j=1

aij(x, t)ξiξj ≥ σ
n∑

i=1

ξ2
i , σ > 0.

(14.10.1.2)

Let V be some simply connected domain in R
n with a sufficiently smooth boundary

S = ∂V . We consider the nonstationary boundary value problem for equation (14.10.1.1)
in the domain V with an arbitrary initial condition,

w = f (x) at t = 0, (14.10.1.3)

and nonhomogeneous linear boundary conditions,

Γx,t[w] = g(x, t) for x � S. (14.10.1.4)

In the general case, Γx,t is a first-order linear differential operator in the space coordinates
with coefficients dependent on x and t.
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14.10.1-2. Representation of the problem solution in terms of the Green’s function.

The solution of the nonhomogeneous linear boundary value problem defined by (14.10.1.1)–
(14.10.1.4) can be represented as the sum

w(x, t) =
∫ t

0

∫

V
Φ(y, τ )G(x, y, t, τ ) dVy dτ +

∫

V
f (y)G(x, y, t, 0) dVy

+
∫ t

0

∫

S
g(y, τ )H(x, y, t, τ ) dSy dτ , (14.10.1.5)

where G(x, y, t, τ ) is the Green’s function; for t > τ ≥ 0, it satisfies the homogeneous
equation

∂G

∂t
– Lx,t[G] = 0 (14.10.1.6)

with the nonhomogeneous initial condition of special form

G = δ(x – y) at t = τ (14.10.1.7)

and the homogeneous boundary condition

Γx,t[G] = 0 for x � S. (14.10.1.8)

The vector y = {y1, . . . , yn} appears in problem (14.10.1.6)–(14.10.1.8) as an n-dimensional
free parameter (y � V ), and δ(x – y) = δ(x1 – y1) . . . δ(xn – yn) is the n-dimensional Dirac
delta function. The Green’s function G is independent of the functions Φ, f , and g that
characterize various nonhomogeneities of the boundary value problem. In (14.10.1.5), the
integration is performed everywhere with respect to y, with dVy = dy1 . . . dyn.

The functionH(x, y, t, τ ) involved in the integrand of the last term in solution (14.10.1.5)
can be expressed via the Green’s function G(x, y, t, τ ). The corresponding formulas for
H(x, y, t, τ ) are given in Table 14.9 for the three basic types of boundary value problems;
in the third boundary value problem, the coefficient k can depend on x and t. The boundary
conditions of the second and third kind, as well as the solution of the first boundary value
problem, involve operators of differentiation along the conormal of operator (14.10.1.2);
these operators act as follows:

∂G

∂Mx
≡

n∑

i,j=1

aij(x, t)Nj
∂G

∂xi
,

∂G

∂My
≡

n∑

i,j=1

aij(y, τ )Nj
∂G

∂yi
, (14.10.1.9)

where N = {N1, . . . ,Nn} is the unit outward normal to the surface S. In the special case
where aii(x, t) = 1 and aij(x, t) = 0 for i ≠ j, operator (14.10.1.9) coincides with the ordinary
operator of differentiation along the outward normal to S.

TABLE 14.9
The form of the function H(x, y, t, τ ) for the basic types of nonstationary boundary value problems

Type of problem Form of boundary condition (14.10.1.4) Function H(x, y, t, τ )

First boundary value problem w = g(x, t) for x � S H(x, y, t, τ ) = –
∂G

∂My
(x, y, t, τ )

Second boundary value problem
∂w

∂Mx
= g(x, t) for x � S H(x, y, t, τ ) = G(x, y, t, τ )

Third boundary value problem
∂w

∂Mx
+ kw = g(x, t) for x � S H(x, y, t, τ ) = G(x, y, t, τ )
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If the coefficient of equation (14.10.1.6) and the boundary condition (14.10.1.8) are
independent of t, then the Green’s function depends on only three arguments, G(x, y, t, τ ) =
G(x, y, t – τ ).

Remark. Let Si (i = 1, . . . , p) be different portions of the surface S such that S =
p∑

i=1
Si and let boundary

conditions of various types be set on the Si,

Γ(i)
x,t[w] = gi(x, t) for x � Si, i = 1, . . . , p. (14.10.1.10)

Then formula (14.10.1.5) remains valid but the last term in (14.10.1.5) must be replaced by the sum
p∑

i=1

∫ t

0

∫

Si

gi(y, τ )Hi(x, y, t, τ ) dSy dτ . (14.10.1.11)

14.10.2. Problems for Hyperbolic Equations

14.10.2-1. Statement of the problem.

The general nonhomogeneous linear differential hyperbolic equation in n space variables
can be written as

∂2w

∂t2 + ϕ(x, t)
∂w

∂t
– Lx,t[w] = Φ(x, t), (14.10.2.1)

where the operator Lx,t[w] is explicitly defined in (14.10.1.2).
We consider the nonstationary boundary value problem for equation (14.10.2.1) in the

domain V with arbitrary initial conditions,

w = f0(x) at t = 0,
∂tw = f1(x) at t = 0,

(14.10.2.2)
(14.10.2.3)

and the nonhomogeneous linear boundary condition (14.10.1.4).

14.10.2-2. Representation of the problem solution in terms of the Green’s function.

The solution of the nonhomogeneous linear boundary value problem defined by (14.10.2.1)–
(14.10.2.3), (14.10.1.4) can be represented as the sum

w(x, t) =
∫ t

0

∫

V
Φ(y, τ )G(x, y, t, τ ) dVy dτ –

∫

V
f0(y)

[
∂

∂τ
G(x, y, t, τ )

]

τ=0
dVy

+
∫

V

[
f1(y) + f0(y)ϕ(y, 0)

]
G(x, y, t, 0) dVy

+
∫ t

0

∫

S
g(y, τ )H(x, y, t, τ ) dSy dτ . (14.10.2.4)

Here,G(x, y, t, τ ) is the Green’s function; for t > τ ≥ 0 it satisfies the homogeneous equation

∂2G

∂t2 + ϕ(x, t)
∂G

∂t
– Lx,t[G] = 0 (14.10.2.5)

with the semihomogeneous initial conditions

G = 0 at t = τ ,
∂tG = δ(x – y) at t = τ ,

and the homogeneous boundary condition (14.10.1.8).
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If the coefficients of equation (14.10.2.5) and the boundary condition (14.10.1.8)
are independent of time t, then the Green’s function depends on only three arguments,
G(x, y, t, τ ) = G(x, y, t – τ ). In this case, one can set ∂

∂τ G(x, y, t, τ )
∣
∣
τ=0 = – ∂

∂tG(x, y, t) in
solution (14.10.2.4).

The functionH(x, y, t, τ ) involved in the integrand of the last term in solution (14.10.2.4)
can be expressed via the Green’s function G(x, y, t, τ ). The corresponding formulas for H
are given in Table 14.9 for the three basic types of boundary value problems; in the third
boundary value problem, the coefficient k can depend on x and t.

Remark. Let Si (i = 1, . . . , p) be different portions of the surface S such that S =
p∑

i=1
Si and let boundary

conditions of various types (14.10.1.10) be set on the Si. Then formula (14.10.2.4) remains valid but the last
term in (14.10.2.4) must be replaced by the sum (14.10.1.11).

14.10.3. Problems for Elliptic Equations

14.10.3-1. Statement of the problem.

In general, a nonhomogeneous linear elliptic equation can be written as

–Lx[w] = Φ(x), (14.10.3.1)

where

Lx[w] ≡
n∑

i,j=1

aij(x)
∂2w

∂xi∂xj
+

n∑

i=1

bi(x)
∂w

∂xi
+ c(x)w. (14.10.3.2)

Two-dimensional problems correspond to n = 2 and three-dimensional problems to n = 3.
We consider equation (14.10.3.1)–(14.10.3.2) in a domain V and assume that the equa-

tion is subject to the general linear boundary condition

Γx[w] = g(x) for x � S. (14.10.3.3)

The solution of the stationary problem (14.10.3.1)–(14.10.3.3) can be obtained by
passing in (14.10.1.5) to the limit as t → ∞. To this end, one should start with equa-
tion (14.10.1.1), whose coefficients are independent of t, and take the homogeneous initial
condition (14.10.1.3), with f (x) = 0, and the stationary boundary condition (14.10.1.4).

14.10.3-2. Representation of the problem solution in terms of the Green’s function.

The solution of the linear boundary value problem (14.10.3.1)–(14.10.3.3) can be repre-
sented as the sum

w(x) =
∫

V
Φ(y)G(x, y) dVy +

∫

S
g(y)H(x, y) dSy . (14.10.3.4)

Here, the Green’s function G(x, y) satisfies the nonhomogeneous equation of special form

–Lx[G] = δ(x – y) (14.10.3.5)

with the homogeneous boundary condition

Γx[G] = 0 for x � S. (14.10.3.6)
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The vector y = {y1, . . . , yn} appears in problem (14.10.3.5), (14.10.3.6) as an n-dimensional
free parameter (y � V ). Note that G is independent of the functions Φ and g characterizing
various nonhomogeneities of the original boundary value problem.

The function H(x, y) involved in the integrand of the second term in solution (14.10.3.4)
can be expressed via the Green’s function G(x, y). The corresponding formulas for H are
given in Table 14.10 for the three basic types of boundary value problems. The boundary
conditions of the second and third kind, as well as the solution of the first boundary value
problem, involve operators of differentiation along the conormal of operator (14.10.3.2);
these operators are defined by (14.10.1.9); in this case, the coefficients aij depend on x
only.

TABLE 14.10
The form of the function H(x, y) involved in the integrand of the last term in
solution (14.10.3.4) for the basic types of stationary boundary value problems

Type of problem Form of boundary condition (14.10.3.3) Function H(x, y)

First boundary value problem w = g(x) for x � S H(x, y) = –
∂G

∂My
(x, y)

Second boundary value problem
∂w

∂Mx
= g(x) for x � S H(x, y) = G(x, y)

Third boundary value problem
∂w

∂Mx
+ kw = g(x) for x � S H(x, y) = G(x, y)

Remark. For the second boundary value problem with c(x) ≡ 0, the thus defined Green’s function must
not necessarily exist; see Polyanin (2002).

14.10.4. Comparison of the Solution Structures for Boundary Value
Problems for Equations of Various Types

Table 14.11 lists brief formulations of boundary value problems for second-order equations
of elliptic, parabolic, and hyperbolic types. The coefficients of the differential operators
Lx and Γx in the space variables x1, . . . ,xn are assumed to be independent of time t; these
operators are the same for the problems under consideration.

TABLE 14.11
Formulations of boundary value problems for equations of various types

Type of equation Form of equation Initial conditions Boundary conditions

Elliptic –Lx[w] = Φ(x) not set Γx[w] = g(x) for x � S

Parabolic ∂tw – Lx[w] = Φ(x, t) w = f (x) at t = 0 Γx[w] = g(x, t) for x � S

Hyperbolic ∂ttw – Lx[w] = Φ(x, t)
w = f0(x) at t = 0,

∂tw = f1(x) at t = 0
Γx[w] = g(x, t) for x � S

Below are the respective general formulas defining the solutions of these problems with
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zero initial conditions (f = f0 = f1 = 0):

w0(x) =
∫

V
Φ(y)G0(x, y) dVy +

∫

S
g(y)H[G0(x, y)

]
dSy,

w1(x, t) =
∫ t

0

∫

V
Φ(y, τ )G1(x, y, t – τ ) dVy dτ +

∫ t

0

∫

S
g(y, τ )H[G1(x, y, t – τ )

]
dSy dτ ,

w2(x, t) =
∫ t

0

∫

V
Φ(y, τ )G2(x, y, t – τ ) dVy dτ +

∫ t

0

∫

S
g(y, τ )H[G2(x, y, t – τ )

]
dSy dτ ,

where the Gn are the Green’s functions, and the subscripts 0, 1, and 2 refer to the elliptic,
parabolic, and hyperbolic problem, respectively. All solutions involve the same opera-
tor H[G]; it is explicitly defined in Subsections 14.10.1–14.10.3 (see also Section 14.7) for
different boundary conditions.

It is apparent that the solutions of the parabolic and hyperbolic problems with zero
initial conditions have the same structure. The structure of the solution to the problem for
a parabolic equation differs from that for an elliptic equation by the additional integration
with respect to t.

14.11. Construction of the Green’s Functions. General
Formulas and Relations

14.11.1. Green’s Functions of Boundary Value Problems for
Equations of Various Types in Bounded Domains

14.11.1-1. Expressions of the Green’s function in terms of infinite series.

Table 14.12 lists the Green’s functions of boundary value problems for second-order equa-
tions of various types in a bounded domain V. It is assumed that Lx is a second-order
linear self-adjoint differential operator (e.g., see Zwillinger, 1997) in the space variables
x1, . . . ,xn, and Γx is a zeroth- or first-order linear boundary operator that can define a
boundary condition of the first, second, or third kind; the coefficients of the operators Lx
and Γx can depend on the space variables but are independent of time t. The coefficients λk
and the functions uk(x) are determined by solving the homogeneous eigenvalue problem

Lx[u] + λu = 0, (14.11.1.1)

Γx[u] = 0 for x � S. (14.11.1.2)

It is apparent from Table 14.12 that, given the Green’s function in the problem for a
parabolic (or hyperbolic) equation, one can easily construct the Green’s functions of the
corresponding problems for elliptic and hyperbolic (or parabolic) equations. In particular,
the Green’s function of the problem for an elliptic equation can be expressed via the Green’s
function of the problem for a parabolic equation as follows:

G0(x, y) =
∫ ∞

0
G1(x, y, t) dt. (14.11.1.3)

Here, the fact that all λk are positive is taken into account; for the second boundary value
problem, it is assumed that λ = 0 is not an eigenvalue of problem (14.11.1.1)–(14.11.1.2).
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TABLE 14.12
The Green’s functions of boundary value problems for equations of various types in bounded

domains. In all problems, the operators Lx and Γx are the same; x = {x1, . . . ,xn}

Equation
Initial and

boundary conditions Green’s function

Elliptic equation
–Lx[w] = Φ(x)

Γx[w] = g(x) for x � S
(no initial condition required)

G(x, y) =
∞∑

k=1

uk(x)uk(y)
‖uk‖2λk

, λk ≠ 0

Parabolic equation
∂tw – Lx[w] = Φ(x, t)

w = f (x) at t = 0
Γx[w] = g(x, t) for x � S

G(x, y, t) =
∞∑

k=1

uk(x)uk(y)
‖uk‖2 exp

(
–λkt

)

Hyperbolic equation
∂ttw – Lx[w] = Φ(x, t)

w = f0(x) at t = 0
w = f1(x) at t = 0

Γx[w] = g(x, t) for x � S

G(x, y, t) =
∞∑

k=1

uk(x)uk(y)

‖uk‖2
√
λk

sin
(
t
√
λk

)

14.11.1-2. Some remarks and generalizations.

Remark 1. Formula (14.11.1.3) can also be used if the domain V is infinite. In this case, one should
make sure that the integral on the right-hand side is convergent.

Remark 2. Suppose the equations given in the first column of Table 14.12 contain –Lx[w] – βw instead
of –Lx[w], with β being a free parameter. Then the λk in the expressions of the Green’s function in the third
column of Table 14.12 must be replaced by λk – β; just as previously, the λk and uk(x) were determined by
solving the eigenvalue problem (14.11.1.1)–(14.11.1.2).

Remark 3. The formulas for the Green’s functions presented in Table 14.12 will also hold for boundary
value problems described by equations of the fourth or higher order in the space variables; provided that the
eigenvalue problem for equation (14.11.1.1) subject to appropriate boundary conditions is self-adjoint.

14.11.2. Green’s Functions Admitting Incomplete Separation
of Variables

14.11.2-1. Boundary value problems for rectangular domains.

1◦. Consider the parabolic equation

∂w

∂t
= L1,t[w] + · · · + Ln,t[w] + Φ(x, t), (14.11.2.1)

where each term Lm,t[w] depends on only one space variable, xm, and time t:

Lm,t[w] ≡ am(xm, t)
∂2w

∂x2
m

+ bm(xm, t)
∂w

∂xm
+ cm(xm, t)w, m = 1, . . . , n.

For equation (14.11.2.1) we set the initial condition of general form

w = f (x) at t = 0. (14.11.2.2)

Consider the domain V = {αm ≤ xm ≤ βm, m = 1, . . . , n}, which is an n-dimensional
parallelepiped. We set the following boundary conditions at the faces of the parallelepiped:

s(1)
m

∂w

∂xm
+ k(1)

m (t)w = g(1)
m (x, t) at xm = αm,

s(2)
m

∂w

∂xm
+ k(2)

m (t)w = g(2)
m (x, t) at xm = βm.

(14.11.2.3)
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By appropriately choosing the coefficients s(1)
m , s(2)

m and functions k(1)
m = k(1)

m (t), k(2)
m = k(2)

m (t),
we can obtain the boundary conditions of the first, second, or third kind. For infinite
domains, the boundary conditions corresponding to αm = –∞ or βm = ∞ are omitted.

2◦. The Green’s function of the nonstationary n-dimensional boundary value problem
(14.11.2.1)–(14.11.2.3) can be represented in the product form

G(x, y, t, τ ) =
n∏

m=1

Gm(xm, ym, t, τ ), (14.11.2.4)

where the Green’s functions Gm = Gm(xm, ym, t, τ ) satisfy the one-dimensional equations

∂Gm
∂t

– Lm,t[Gm] = 0 (m = 1, . . . , n)

with the initial conditions

Gm = δ(xm – ym) at t = τ

and the homogeneous boundary conditions

s(1)
m

∂Gm
∂xm

+ k(1)
m (t)Gm = 0 at xm = αm,

s(2)
m

∂Gm
∂xm

+ k(2)
m (t)Gm = 0 at xm = βm.

Here, ym and τ are free parameters (αm ≤ ym ≤ βm and t ≥ τ ≥ 0), and δ(x) is the Dirac
delta function.

It can be seen that the Green’s function (14.11.2.4) admits incomplete separation of
variables; it separates in the space variables x1, . . . , xn but not in time t.

Example. Consider the boundary value problem for the two-dimensional nonhomogeneous heat equation

∂w

∂t
=
∂2w

∂x2
1

+
∂2w

∂x2
2

+ Φ(x1, x2, t)

with initial condition (14.11.2.2) and the nonhomogeneous mixed boundary conditions

w = g1(x2, t) at x1 = 0, w = h1(x2, t) at x1 = l1;

∂w

∂x2
= g2(x1, t) at x2 = 0,

∂w

∂x2
= h2(x1, t) at x2 = l2.

The Green’s functions of the corresponding homogeneous one-dimensional heat equations with homogeneous
boundary conditions are expressed as

Equations and boundary conditions Green’s functions

∂w

∂t
=
∂2w

∂x2
1

, w = 0 at x1 = 0, l1 =⇒ G1 =
2
l1

∞∑

m=1

sin(λmx1) sin(λmy1)e–λ2
m(t–τ ), λm =

mπ

l1
;

∂w

∂t
=
∂2w

∂x2
2

,
∂w

∂x2
= 0 at x2 = 0, l2 =⇒ G2 =

1
l2

+
2
l2

∞∑

n=1

sin(σnx2) sin(σny2)e–σ2
n(t–τ ), σn =

nπ

l2
.

Multiplying G1 and G2 together gives the Green’s function for the original two-dimensional problem:

G(x1,x2, y1, y2, t, τ ) =
4
l1l2

[ ∞∑

m=1

sin(λmx1) sin(λmy1)e–λ2
m(t–τ )

][
1
2

+
∞∑

n=1

sin(σnx2) sin(σny2)e–σ2
n(t–τ )

]
.
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14.11.2-2. Boundary value problems for a arbitrary cylindrical domain.

1◦. Consider the parabolic equation

∂w

∂t
= Lx,t[w] +Mz,t[w] + Φ(x, z, t), (14.11.2.5)

where Lx,t is an arbitrary second-order linear differential operator in x1, . . . ,xn with co-
efficients dependent on x and t, and Mz,t is an arbitrary second-order linear differential
operator in z with coefficients dependent on z and t.

For equation (14.11.2.5) we set the general initial condition (14.11.2.2), where f (x)
must be replaced by f (x, z).

We assume that the space variables belong to a cylindrical domain V = {x � D,
z1 ≤ z ≤ z2} with arbitrary cross-section D. We set the boundary conditions*

Γ1[w] = g1(x, t) at z = z1 (x � D),
Γ2[w] = g2(x, t) at z = z2 (x � D),
Γ3[w] = g3(x, z, t) for x � ∂D (z1 ≤ z ≤ z2),

(14.11.2.6)

where the linear boundary operators Γk (k = 1, 2, 3) can define boundary conditions of the
first, second, or third kind; in the last case, the coefficients of the differential operators Γk
can be dependent on t.

2◦. The Green’s function of problem (14.11.2.5)–(14.11.2.6), (14.11.2.2) can be represented
in the product form

G(x, y, z, ζ , t, τ ) = GL(x, y, t, τ )GM (z, ζ , t, τ ), (14.11.2.7)

whereGL =GL(x, y, t, τ ) andGM =GM (z, ζ , t, τ ) are auxiliary Green’s functions; these can
be determined from the following two simpler problems with fewer independent variables:

Problem on the cross-section D: Problem on the interval z1 ≤ z ≤ z2:
⎧
⎪⎪⎨

⎪⎪⎩

∂GL
∂t

= Lx,t[GL] for x � D,

GL = δ(x – y) at t = τ ,
Γ3[GL] = 0 for x � ∂D,

⎧
⎪⎪⎨

⎪⎪⎩

∂GM
∂t

= Mz,t[GM ] for z1 < z < z2,

GM = δ(z – ζ) at t = τ ,
Γk[GM ] = 0 at z = zk (k = 1, 2).

Here, y, ζ , and τ are free parameters (y � D, z1 ≤ ζ ≤ z2, t ≥ τ ≥ 0).
It can be seen that the Green’s function (14.11.2.7) admits incomplete separation of

variables; it separates in the space variables x and z but not in time t.

14.11.3. Construction of Green’s Functions via Fundamental
Solutions

14.11.3-1. Elliptic equations. Fundamental solution.

Consider the elliptic equation

Lx[w] +
∂2w

∂z2 = Φ(x, z), (14.11.3.1)

* If z1 = –∞ or z2 = ∞, the corresponding boundary condition is to be omitted.
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where x = {x1, . . . ,xn} � R
n, z � R

1, and Lx[w] is a linear differential operator that
depends on x1, . . . ,xn but is independent of z. For subsequent analysis it is significant that
the homogeneous equation (with Φ ≡ 0) does not change under the replacement of z by –z
and z by z + const.

Let �� = �� (x, y, z – ζ) be a fundamental solution of equation (14.11.3.1), which means
that

Lx[�� ] +
∂2��

∂z2 = δ(x – y)δ(z – ζ).

Here, y = {y1, . . . , yn} � R
n and ζ � R

1 are free parameters.
The fundamental solution of equation (14.11.3.1) is an even function in the last argument,

i.e.,
�� (x, y, z) = �� (x, y, –z).

Below, Paragraphs 14.11.3-2 and 14.11.3-3 present relations that permit one to express
the Green’s functions of some boundary value problems for equation (14.11.3.1) via its
fundamental solution.

14.11.3-2. Domain: x � R
n, 0 ≤ z < ∞. Problems for elliptic equations.

1◦. First boundary value problem. The boundary condition:

w = f (x) at z = 0.

Green’s function:

G(x, y, z, ζ) = �� (x, y, z – ζ) – �� (x, y, z + ζ). (14.11.3.2)

Domain of the free parameters: y � R
n and 0 ≤ ζ < ∞.

Example 1. Consider the first boundary value problem in the half-space –∞ < x1,x2 < ∞, 0 ≤ x3 < ∞
for the three-dimensional Laplace equation

∂2w

∂x2
1

+
∂2w

∂x2
2

+
∂2w

∂x2
3

= 0

under boundary condition
w = f (x1, x2) at x3 = 0.

The fundamental solution for the Laplace equation has the form

�� =
1

4π
√

(x1 – y1)2 + (x2 – y2)2 + (x3 – y3)2
.

In terms of the notation adopted for equation (14.11.3.1) and its fundamental solution, we have x3 = z, y3 = ζ,
and �� = �� (x1, y1,x2, y2, z –ζ). Using formula (14.11.3.2), we obtain the Green’s function for the first boundary
value problem in the half-space:

G(x1, y1,x2, y2, z, ζ) = �� (x1, y1,x2, y2, z – ζ) – �� (x1, y1,x2, y2, z + ζ)

=
1

4π
√

(x1 – y1)2 + (x2 – y2)2 + (x3 – y3)2
–

1
4π
√

(x1 – y1)2 + (x2 – y2)2 + (x3 + y3)2
.

2◦. Second boundary value problem. The boundary condition:

∂zw = f (x) at z = 0.
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Green’s function:
G(x, y, z, ζ) = �� (x, y, z – ζ) + �� (x, y, z + ζ).

Example 2. The Green’s function of the second boundary value problem for the three-dimensional Laplace
equation in the half-space –∞ < x1,x2 < ∞, 0 ≤ x3 < ∞ is expressed as

G(x1, y1, x2, y2, z, ζ) =
1

4π
√

(x1 – y1)2 + (x2 – y2)2 + (x3 – y3)2
+

1
4π
√

(x1 – y1)2 + (x2 – y2)2 + (x3 + y3)2
.

It is obtained using the same reasoning as in Example 1.

3◦. Third boundary value problem. The boundary condition:
∂zw – kw = f (x) at z = 0.

Green’s function:

G(x, y, z, ζ) = �� (x, y, z – ζ) + �� (x, y, z + ζ) – 2k
∫ ∞

0
e–ks�� (x, y, z + ζ + s) ds

= �� (x, y, z – ζ) + �� (x, y, z + ζ) – 2k
∫ ∞

z+ζ
e–k(σ–z–ζ)�� (x, y,σ) dσ.

14.11.3-3. Domain: x � R
n, 0 ≤ z ≤ l. Problems for elliptic equations.

1◦. First boundary value problem. Boundary conditions:
w = f1(x) at z = 0, w = f2(x) at z = l.

Green’s function:

G(x, y, z, ζ) =
∞∑

n=–∞

[
�� (x, y, z – ζ + 2nl) – �� (x, y, z + ζ + 2nl)

]
. (14.11.3.3)

Domain of the free parameters: y � R
n and 0 ≤ ζ ≤ l.

2◦. Second boundary value problem. Boundary conditions:
∂zw = f1(x) at z = 0, ∂zw = f2(x) at z = l.

Green’s function:

G(x, y, z, ζ) =
∞∑

n=–∞

[
�� (x, y, z – ζ + 2nl) + �� (x, y, z + ζ + 2nl)

]
. (14.11.3.4)

3◦. Mixed boundary value problem. The unknown function and its derivative are prescribed
at the left and right end, respectively:

w = f1(x) at z = 0, ∂zw = f2(x) at z = l.
Green’s function:

G(x, y, z, ζ) =
∞∑

n=–∞
(–1)n

[
�� (x, y, z – ζ + 2nl) – �� (x, y, z + ζ + 2nl)

]
. (14.11.3.5)

4◦. Mixed boundary value problem. The derivative and the unknown function itself are
prescribed at the left and right end, respectively:

∂zw = f1(x) at z = 0, w = f2(x) at z = l.
Green’s function:

G(x, y, z, ζ) =
∞∑

n=–∞
(–1)n

[
�� (x, y, z – ζ + 2nl) + �� (x, y, z + ζ + 2nl)

]
. (14.11.3.6)

Remark. One should make sure that series (14.11.3.3)–(14.11.3.6) are convergent; in particular, for
the three-dimensional Laplace equation, series (14.11.3.3), (14.11.3.5), and (14.11.3.6) are convergent and
series (14.11.3.4) is divergent.
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14.11.3-4. Boundary value problems for parabolic equations.

Let x � R
n, z � R

1, and t ≥ 0. Consider the parabolic equation

∂w

∂t
= Lx,t[w] +

∂2w

∂z2 + Φ(x, z, t), (14.11.3.7)

where Lx,t[w] is a linear differential operator that depends on x1, . . . ,xn and t but is
independent of z.

Let �� = �� (x, y, z – ζ , t, τ ) be a fundamental solution of the Cauchy problem for equa-
tion (14.11.3.7), i.e.,

∂��

∂t
= Lx,t[�� ] +

∂2��

∂z2 for t > τ ,

�� = δ(x – y) δ(z – ζ) at t = τ .

Here, y � R
n, ζ � R

1, and τ ≥ 0 are free parameters.
The fundamental solution of the Cauchy problem possesses the property

�� (x, y, z, t, τ ) = �� (x, y, –z, t, τ ).

Table 14.13 presents formulas that permit one to express the Green’s functions of
some nonstationary boundary value problems for equation (14.11.3.7) via the fundamental
solution of the Cauchy problem.

TABLE 14.13
Representation of the Green’s functions of some nonstationary boundary

value problems in terms of the fundamental solution of the Cauchy problem

Boundary value
problems Boundary conditions Green’s functions

First problem
x � R

n, z � R
1 G = 0 at z = 0 G(x, y, z, ζ, t, τ ) = �� (x, y, z –ζ, t, τ )–�� (x, y, z+ζ, t, τ )

Second problem
x � R

n, z � R
1 ∂zG = 0 at z = 0 G(x, y, z, ζ, t, τ ) = �� (x, y, z –ζ, t, τ )+�� (x, y, z+ζ, t, τ )

Third problem
x � R

n, z � R
1 ∂zG–kG = 0 at z = 0

G(x, y, z, ζ, t, τ ) = �� (x, y, z –ζ, t, τ )+�� (x, y, z+ζ, t, τ )

– 2k
∫ ∞

0
e–ks

�� (x, y, z+ζ +s, t, τ ) ds

First problem
x � R

n, 0 ≤ z ≤ l
G = 0 at z = 0,

G = 0 at z = l

G(x, y, z, ζ, t, τ ) =
∞∑

n=–∞

[
�� (x, y, z –ζ + 2nl, t, τ )

–�� (x, y, z+ζ + 2nl, t, τ )
]

Second problem
x � R

n, 0 ≤ z ≤ l
∂zG = 0 at z = 0,

∂zG = 0 at z = l

G(x, y, z, ζ, t, τ ) =
∞∑

n=–∞

[
�� (x, y, z –ζ + 2nl, t, τ )

+�� (x, y, z+ζ + 2nl, t, τ )
]

Mixed problem
x � R

n, 0 ≤ z ≤ l
G = 0 at z = 0,

∂zG = 0 at z = l

G(x, y, z, ζ, t, τ ) =
∞∑

n=–∞
(–1)n

[
�� (x, y, z –ζ + 2nl, t, τ )

–�� (x, y, z+ζ+ 2nl, t, τ )
]

Mixed problem
x � R

n, 0 ≤ z ≤ l
∂zG = 0 at z = 0,

G = 0 at z = l

G(x, y, z, ζ, t, τ ) =
∞∑

n=–∞
(–1)n

[
�� (x, y, z –ζ + 2nl, t, τ )

+�� (x, y, z+ζ+ 2nl, t, τ )
]
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14.12. Duhamel’s Principles in Nonstationary Problems
14.12.1. Problems for Homogeneous Linear Equations

14.12.1-1. Parabolic equations with two independent variables.

Consider the problem for the homogeneous linear equation of parabolic type

∂w

∂t
= a(x)

∂2w

∂x2 + b(x)
∂w

∂x
+ c(x)w (14.12.1.1)

with the homogeneous initial condition

w = 0 at t = 0 (14.12.1.2)

and the boundary conditions

s1∂xw + k1w = g(t) at x = x1, (14.12.1.3)
s2∂xw + k2w = 0 at x = x2. (14.12.1.4)

By appropriately choosing the values of the coefficients s1, s2, k1, and k2 in (14.12.1.3)
and (14.12.1.4), one can obtain the first, second, third, and mixed boundary value problems
for equation (14.12.1.1).

The solution of problem (14.12.1.1)–(14.12.1.4) with the nonstationary boundary con-
dition (14.12.1.3) at x = x1 can be expressed by the formula (Duhamel’s first principle)

w(x, t) =
∂

∂t

∫ t

0
u(x, t – τ ) g(τ ) dτ =

∫ t

0

∂u

∂t
(x, t – τ ) g(τ ) dτ (14.12.1.5)

in terms of the solution u(x, t) of the auxiliary problem for equation (14.12.1.1) with the
initial and boundary conditions (14.12.1.2) and (14.12.1.4), for u instead of w, and the
following simpler stationary boundary condition at x = x1:

s1∂xu + k1u = 1 at x = x1. (14.12.1.6)
Remark. A similar formula also holds for the homogeneous boundary condition at x = x1 and a nonho-

mogeneous nonstationary boundary condition at x = x2.

Example. Consider the first boundary value problem for the heat equation

∂w

∂t
=
∂2w

∂x2 (14.12.1.7)

with the homogeneous initial condition (14.12.1.2) and the boundary condition
w = g(t) at x = 0. (14.12.1.8)

(The second boundary condition is not required in this case; 0 ≤ x < ∞.)
First consider the following auxiliary problem for the heat equation with the homogeneous initial condition

and a simpler boundary condition:

∂u

∂t
=
∂2u

∂x2 , u = 0 at t = 0, u = 1 at x = 0.

This problem has a self-similar solution of the form

w = w(z), z = xt–1/2,
where the functionw(z) is determined by the following ordinary differential equation and boundary conditions:

u′′
zz + 1

2 zu
′
z = 0, u = 1 at z = 0, u = 0 at z = ∞.

Its solution is expressed as

u(z) = erfc

(
z

2

)
=⇒ u(x, t) = erfc

(
x

2
√
t

)
,

where erfc z =
2√
π

∫ ∞

z
exp(–ξ2) dξ is the complementary error function. Substituting the obtained expression

of u(x, t) into (14.12.1.5), we obtain the solution to the first boundary value problem for the heat equation
(14.12.1.7) with the initial condition (14.12.1.2) and an arbitrary boundary condition (14.12.1.8) in the form

w(x, t) =
x

2
√
π

∫ t

0
exp

[
–

x2

4(t – τ )

]
g(τ )dτ

(t – τ )3/2 .
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14.12.1-2. Hyperbolic equations with two independent variables.

Consider the problem for the homogeneous linear hyperbolic equation

∂2w

∂t2 + ϕ(x)
∂w

∂t
= a(x)

∂2w

∂x2 + b(x)
∂w

∂x
+ c(x)w (14.12.1.9)

with the homogeneous initial conditions

w = 0 at t = 0,
∂tw = 0 at t = 0,

(14.12.1.10)

and the boundary conditions (14.12.1.3) and (14.12.1.4).
The solution of problem (14.12.1.9), (14.12.1.10), (14.12.1.3), (14.12.1.4) with the non-

stationary boundary condition (14.12.1.3) at x = x1 can be expressed by formula (14.12.1.5)
in terms of the solution u(x, t) of the auxiliary problem for equation (14.12.1.9) with the
initial conditions (14.12.1.10) and boundary condition (14.12.1.4), for u instead of w, and
the simpler stationary boundary condition (14.12.1.6) at x = x1.

In this case, the remark made in Paragraph 14.12.1-1 remains valid.

14.12.1-3. Second-order equations with several independent variables.

Duhamel’s first principle can also be used to solve homogeneous linear equations of the
parabolic or hyperbolic type with many space variables,

∂kw

∂tk
=

n∑

i,j=1

aij(x)
∂2w

∂xi∂xj
+

n∑

i=1

bi(x)
∂w

∂xi
+ c(x)w, (14.12.1.11)

where k = 1, 2 and x = {x1, . . . ,xn}.
Let V be some bounded domain in R

n with a sufficiently smooth surface S = ∂V . The
solution of the boundary value problem for equation (14.12.1.11) inV with the homogeneous
initial conditions (14.12.1.2) if k = 1 or (14.12.1.10) if k = 2, and the nonhomogeneous
linear boundary condition

Γx[w] = g(t) for x � S, (14.12.1.12)

is given by

w(x, t) =
∂

∂t

∫ t

0
u(x, t – τ ) g(τ ) dτ =

∫ t

0

∂u

∂t
(x, t – τ ) g(τ ) dτ .

Here, u(x, t) is the solution of the auxiliary problem for equation (14.12.1.11) with the same
initial conditions, (14.12.1.2) or (14.12.1.10), for u instead of w, and the simpler stationary
boundary condition

Γx[u] = 1 for x � S.

Note that (14.12.1.12) can represent a boundary condition of the first, second, or third
kind; the coefficients of the operator Γx are assumed to be independent of t.
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14.12.2. Problems for Nonhomogeneous Linear Equations

14.12.2-1. Parabolic equations.

The solution of the nonhomogeneous linear equation

∂w

∂t
=

n∑

i,j=1

aij(x)
∂2w

∂xi∂xj
+

n∑

i=1

bi(x)
∂w

∂xi
+ c(x)w + Φ(x, t)

with the homogeneous initial condition (14.12.1.2) and the homogeneous boundary condi-
tion

Γx[w] = 0 for x � S (14.12.2.1)

can be represented in the form (Duhamel’s second principle)

w(x, t) =
∫ t

0
U (x, t – τ , τ ) dτ . (14.12.2.2)

Here, U (x, t, τ ) is the solution of the auxiliary problem for the homogeneous equation

∂U

∂t
=

n∑

i,j=1

aij(x)
∂2U

∂xi∂xj
+

n∑

i=1

bi(x)
∂U

∂xi
+ c(x)U

with the boundary condition (14.12.2.1), in which w must be substituted by U , and the
nonhomogeneous initial condition

U = Φ(x, τ ) at t = 0,

where τ is a parameter.
Note that (14.12.2.1) can represent a boundary condition of the first, second, or third

kind; the coefficients of the operator Γx are assumed to be independent of t.

14.12.2-2. Hyperbolic equations.

The solution of the nonhomogeneous linear equation

∂2w

∂t2 + ϕ(x)
∂w

∂t
=

n∑

i,j=1

aij(x)
∂2w

∂xi∂xj
+

n∑

i=1

bi(x)
∂w

∂xi
+ c(x)w + Φ(x, t)

with the homogeneous initial conditions (14.12.1.10) and homogeneous boundary con-
dition (14.12.2.1) can be expressed by formula (14.12.2.2) in terms of the solution U =
U (x, t, τ ) of the auxiliary problem for the homogeneous equation

∂2U

∂t2 + ϕ(x)
∂U

∂t
=

n∑

i,j=1

aij(x)
∂2U

∂xi∂xj
+

n∑

i=1

bi(x)
∂U

∂xi
+ c(x)U

with the homogeneous initial and boundary conditions, (14.12.1.2) and (14.12.2.1), where
w must be replaced by U , and the nonhomogeneous initial condition

∂tU = Φ(x, τ ) at t = 0,

where τ is a parameter.
Note that (14.12.2.1) can represent a boundary condition of the first, second, or third

kind.
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14.13. Transformations Simplifying Initial and Boundary
Conditions

14.13.1. Transformations That Lead to Homogeneous Boundary
Conditions

A linear problem with arbitrary nonhomogeneous boundary conditions,

Γ(k)
x,t [w] = gk(x, t) for x � Sk, (14.13.1.1)

can be reduced to a linear problem with homogeneous boundary conditions. To this end,
one should perform the change of variable

w(x, t) = ψ(x, t) + u(x, t), (14.13.1.2)

where u is a new unknown function andψ is any function that satisfies the nonhomogeneous
boundary conditions (14.13.1.1),

Γ(k)
x,t [ψ] = gk(x, t) for x � Sk. (14.13.1.3)

Table 14.14 gives examples of such transformations for linear boundary value problems
with one space variable for parabolic and hyperbolic equations. In the third boundary value
problem, it is assumed that k1 < 0 and k2 > 0.

TABLE 14.14
Simple transformations of the form w(x, t) = ψ(x, t) + u(x, t) that lead to

homogeneous boundary conditions in problems with one space variables (0 ≤ x ≤ l)

No. Problems Boundary conditions Function ψ(x, t)

1
First boundary
value problem

w = g1(t) at x = 0
w = g2(t) at x = l

ψ(x, t) = g1(t) +
x

l

[
g2(t) – g1(t)

]

2
Second boundary

value problem
∂xw = g1(t) at x = 0
∂xw = g2(t) at x = l ψ(x, t) = xg1(t) +

x2

2l
[
g2(t) – g1(t)

]

3
Third boundary
value problem

∂xw + k1w = g1(t) at x = 0
∂xw + k2w = g2(t) at x = l

ψ(x, t) =
(k2x – 1 – k2l)g1(t) + (1 – k1x)g2(t)

k2 – k1 – k1k2l

4
Mixed boundary
value problem

w = g1(t) at x = 0
∂xw = g2(t) at x = l

ψ(x, t) = g1(t) + xg2(t)

5
Mixed boundary
value problem

∂xw = g1(t) at x = 0
w = g2(t) at x = l

ψ(x, t) = (x – l)g1(t) + g2(t)

Note that the selection of the function ψ is of a purely algebraic nature and is not
connected with the equation in question; there are infinitely many suitable functions ψ that
satisfy condition (14.13.1.3). Transformations of the form (14.13.1.2) can often be used at
the first stage of solving boundary value problems.
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14.13.2. Transformations That Lead to Homogeneous Initial and
Boundary Conditions

A linear problem with nonhomogeneous initial and boundary conditions can be reduced
to a linear problem with homogeneous initial and boundary conditions. To this end, one
should introduce a new dependent variable u by formula (14.13.1.2), where the function ψ
must satisfy nonhomogeneous initial and boundary conditions.

Below we specify some simple functionsψ that can be used in transformation (14.13.1.2)
to obtain boundary value problems with homogeneous initial and boundary conditions. To
be specific, we consider a parabolic equation with one space variable and the general initial
condition

w = f (x) at t = 0. (14.13.2.1)

1. First boundary value problem: the initial condition is (14.13.2.1) and the boundary
conditions are given in row 1 of Table 14.14. Suppose that the initial and boundary condi-
tions are compatible, i.e., f (0) = g1(0) and f (l) = g2(0). Then, in transformation (14.13.1.2),
one can take

ψ(x, t) = f (x) + g1(t) – g1(0) +
x

l

[
g2(t) – g1(t) + g1(0) – g2(0)

]
.

2. Second boundary value problem: the initial condition is (14.13.2.1) and the boundary
conditions are given in row 2 of Table 14.14. Suppose that the initial and boundary condi-
tions are compatible, i.e., f ′(0) =g1(0) and f ′(l) =g2(0). Then, in transformation (14.13.1.2),
one can set

ψ(x, t) = f (x) + x
[
g1(t) – g1(0)

]
+
x2

2l
[
g2(t) – g1(t) + g1(0) – g2(0)

]
.

3. Third boundary value problem: the initial condition is (14.13.2.1) and the boundary
conditions are given in row 3 of Table 14.14. If the initial and boundary conditions are
compatible, then, in transformation (14.13.1.2), one can take

ψ(x, t) = f (x)+
(k2x – 1 – k2l)[g1(t) – g1(0)] + (1 – k1x)[g2(t) – g2(0)]

k2 – k1 – k1k2l
(k1 < 0, k2 > 0).

4. Mixed boundary value problem: the initial condition is (14.13.2.1) and the boundary
conditions are given in row 4 of Table 14.14. Suppose that the initial and boundary condi-
tions are compatible, i.e., f (0) = g1(0) and f ′(l) = g2(0). Then, in transformation (14.13.1.2),
one can set

ψ(x, t) = f (x) + g1(t) – g1(0) + x
[
g2(t) – g2(0)

]
.

5. Mixed boundary value problem: the initial condition is (14.13.2.1) and the boundary
conditions are given in row 5 of Table 14.14. Suppose that the initial and boundary condi-
tions are compatible, i.e., f ′(0) = g1(0) and f (l) = g2(0). Then, in transformation (14.13.1.2),
one can take

ψ(x, t) = f (x) + (x – l)
[
g1(t) – g1(0)

]
+ g2(t) – g2(0).
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Chapter 15

Nonlinear Partial Differential Equations

15.1. Classification of Second-Order Nonlinear
Equations

15.1.1. Classification of Semilinear Equations in Two Independent
Variables

A second-order semilinear partial differential equation in two independent variables has
the form

a(x, y)
∂2w

∂x2 + 2b(x, y)
∂2w

∂x∂y
+ c(x, y)

∂2w

∂y2 = f

(
x, y,w,

∂w

∂x
,
∂w

∂y

)
. (15.1.1.1)

This equation is classified according to the sign of the discriminant

δ = b2 – ac, (15.1.1.2)

where the arguments of the equation coefficients are omitted for brevity. Given a point
(x, y), equation (15.1.1.1) is

parabolic if δ = 0,
hyperbolic if δ > 0,
elliptic if δ < 0.

(15.1.1.3)

The reduction of equation (15.1.1.1) to a canonical form on the basis of the solution
of the characteristic equations entirely coincides with that used for linear equations (see
Subsection 14.1.1).

The classification of semilinear equations of the form (15.1.1.1) does not depend on
their solutions—it is determined solely by the coefficients of the highest derivatives on the
left-hand side.

15.1.2. Classification of Nonlinear Equations in Two Independent
Variables

15.1.2-1. Nonlinear equations of general form.

In general, a second-order nonlinear partial differential equation in two independent vari-
ables has the form

F

(
x, y,w,

∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y
,
∂2w

∂y2

)
= 0. (15.1.2.1)
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Denote

a =
∂F

∂p
, b =

1
2
∂F

∂q
, c =

∂F

∂r
, where p =

∂2w

∂x2 , q =
∂2w

∂x∂y
, r =

∂2w

∂y2 . (15.1.2.2)

Let us select a specific solution w = w(x, y) of equation (15.1.2.1) and calculate a, b,
and c by formulas (15.1.2.2) at some point (x, y), and substitute the resulting expressions
into (15.1.1.2). Depending on the sign of the discriminant δ, the type of nonlinear equation
(15.1.2.1) at the point (x, y) is determined according to (15.1.1.3): if δ = 0, the equation is
parabolic, if δ > 0, it is hyperbolic, and if δ < 0, it is elliptic. In general, the coefficients
a, b, and c of the nonlinear equation (15.1.2.1) depend not only on the selection of the
point (x, y), but also on the selection of the specific solution. Therefore, it is impossible to
determine the sign of δ without knowing the solution w(x, y). To put it differently, the type
of a nonlinear equation can be different for different solutions at the same point (x, y).

A line ϕ(x, y) = C is called a characteristic of the nonlinear equation (15.1.2.1) if it is
an integral curve of the characteristic equation

a (dy)2 – 2b dx dy + c (dx)2 = 0. (15.1.2.3)

The form of characteristics depends on the selection of a specific solution.
In individual special cases, the type of a nonlinear equation [other than the semilinear

equation (15.1.1.1)] may be independent of the selection of solutions.

Example. Consider the nonhomogeneous Monge–Ampère equation
(
∂2w

∂x∂y

)2

–
∂2w

∂x2
∂2w

∂y2 = f (x, y).

It is a special case of equation (15.1.2.1) with

F (x, y, p, q, r) ≡ q2 – pr – f (x, y) = 0, p =
∂2w

∂x2 , q =
∂2w

∂x∂y
, r =

∂2w

∂y2 . (15.1.2.4)

Using formulas (15.1.2.2) and (15.1.2.4), we find the discriminant (15.1.1.2):

δ = q2 – pr = f (x, y). (15.1.2.5)

Here, the relation between the highest derivatives and f (x, y) defined by equation (15.1.2.4) has been taken
into account.

From (15.1.2.5) and (15.1.1.3) it follows that the type of the nonhomogeneous equation Monge–Ampère at
a point (x, y) depends solely on the sign of f (x, y) and is independent of the selection of a particular solution.
At the points where f (x, y) = 0, the equation is of parabolic type; at the points where f (x, y) > 0, the equation
is of hyperbolic type; and at the points where f (x, y) < 0, it is elliptic.

15.1.2-2. Quasilinear equations.

A second-order quasilinear partial differential equation in two independent variables has
the form

a(x, y,w, ξ, η)p + 2b(x, y,w, ξ, η)q + c(x, y,w, ξ, η)r = f (x, y,w, ξ, η), (15.1.2.6)

with the short notation

ξ =
∂w

∂x
, η =

∂w

∂y
, p =

∂2w

∂x2 , q =
∂2w

∂x∂y
, r =

∂2w

∂y2 .
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Consider a curve C0 defined in the x, y plane parametrically as

x = x(τ ), y = y(τ ). (15.1.2.7)

Let us fix a set of boundary conditions on this curve, thus defining the initial values of the
unknown function and its first derivatives:

w = w(τ ), ξ = ξ(τ ), η = η(τ ) (w′
τ = ξx′τ + ηy′τ ). (15.1.2.8)

The derivative with respect to τ is obtained by the chain rule, since w = w(x, y). It can be
shown that the given set of functions (15.1.2.8) uniquely determines the values of the second
derivatives p, q, and r (and also higher derivatives) at each point of the curve (15.1.2.7),
satisfying the condition

a(y′x)2 – 2by′x + c ≠ 0 (y′x = y′τ/x
′
τ ). (15.1.2.9)

Here and henceforth, the arguments of the functions a, b, and c are omitted.
Indeed, bearing in mind that ξ = ξ(x, y) and η = η(x, y), let us differentiate the second

and the third equation in (15.1.2.8) with respect to the parameter τ :

ξ′τ = px′τ + qy′τ , η′τ = qx′τ + ry′τ . (15.1.2.10)

On solving relations (15.1.2.6) and (15.1.2.10) for p, q, and r, we obtain formulas for the
second derivatives at the points of the curve (15.1.2.7):

p =
c(x′τξ′τ – y′τη′τ ) – 2by′τξ′τ + f (y′τ )2

a(y′τ )2 – 2bx′τy′τ + c(x′τ )2 ,

q =
ay′τξ′τ + cx′τη′τ – fx′τy′τ
a(y′τ )2 – 2bx′τy′τ + c(x′τ )2 ,

r =
a(y′τη′τ – x′τξ′τ ) – 2bx′τη′τ + f (x′τ )2

a(y′τ )2 – 2bx′τy′τ + c(x′τ )2 .

(15.1.2.11)

The third derivatives at the points of the curve (15.1.2.7) can be calculated in a similar
way. To this end, one differentiates (15.1.2.6) and (15.1.2.11) with respect to τ and then
expresses the third derivatives from the resulting relations. This procedure can also be
extended to higher derivatives. Consequently, the solution to equation (15.1.2.6) can be
represented as a Taylor series about the points of the curve (15.1.2.7) that satisfy condition
(15.1.2.9).

The singular points at which the denominators in the formulas for the second derivatives
(15.1.2.11) vanish satisfy the characteristic equation (15.1.2.3). Conditions of the form
(15.1.2.8) cannot be arbitrarily set on the characteristic curves, which are described by
equation (15.1.2.3). The additional conditions of vanishing of the numerators in formulas
(15.1.2.11) must be used; in this case, the second derivatives will be finite.

15.2. Transformations of Equations of Mathematical
Physics

15.2.1. Point Transformations: Overview and Examples

15.2.1-1. General form of point transformations.

Let w = w(x, y) be a function of independent variables x and y. In general, a point
transformation is defined by the formulas

x = X(ξ, η,u), y = Y (ξ, η,u), w = W (ξ, η,u), (15.2.1.1)
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where ξ and η are new independent variables, u = u(ξ, η) is a new dependent variable, and
the functions X, Y , W may be either given or unknown (have to be found).

A point transformation not only preserves the order or the equation to which it is applied,
but also mostly preserves the structure of the equation, since the highest-order derivatives
of the new variables are linearly dependent on the highest-order derivatives of the original
variables.

Transformation (15.2.1.1) is invertible if

∣∣
∣∣
∣∣
∣∣

∂X
∂x

∂X
∂y

∂X
∂w

∂Y
∂x

∂Y
∂y

∂Y
∂w

∂W
∂x

∂W
∂y

∂W
∂w

∣∣
∣∣
∣∣
∣∣

≠ 0.

In the general case, a point transformation (15.2.1.1) reduces a second-order equation
with two independent variables

F

(
x, y,w,

∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y
,
∂2w

∂y2

)
= 0 (15.2.1.2)

to an equation

G

(
ξ, η,u,

∂u

∂ξ
,
∂u

∂η
,
∂2u

∂ξ2 ,
∂2u

∂ξ∂η
,
∂2u

∂η2

)
= 0. (15.2.1.3)

If u = u(ξ, η) is a solution of equation (15.2.1.3), then formulas (15.2.1.1) define the
corresponding solution of equation (15.2.1.2) in parametric form.

Point transformations are employed to simplify equations and their reduction to known
equations.

15.2.1-2. Linear transformations.

Linear point transformations (or simply linear transformations),

x = X(ξ, η), y = Y (ξ, η), w = f (ξ, η)u + g(ξ, η), (15.2.1.4)

are most commonly used.
The simplest linear transformations of the independent variables are

x = ξ + x0, y = η + y0 (translation transformation),
x = k1ξ, y = k2η (scaling transformation),
x = ξ cosα – η sinα, y = ξ sinα + η cosα (rotation transformation).

These transformations correspond to the translation of the origin of coordinates to the point
(x0, y0), scaling (extension or contraction) along the x- and y-axes, and the rotation of the
coordinate system through the angle α, respectively. These transformations do not affect
the dependent variable (w = u).

Linear transformations (15.2.1.4) are employed to simplify linear and nonlinear equa-
tions and to reduce equations to the canonical forms (see Subsections 14.1.1 and 15.1.1).
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Example 1. The nonlinear equation

∂w

∂t
= a

∂

∂x

(
wm ∂w

∂x

)
+
[
xf (t) + g(t)

] ∂w
∂x

+ h(t)w

can be simplified to obtain
∂u

∂τ
=
∂

∂z

(
um ∂u

∂z

)

with the help of the transformation

w(x, t) = u(z, τ )H(t), z = xF (t) +
∫
g(t)F (t)dt, τ =

∫
F 2(t)Hm(t) dt,

where

F (t) = exp

[∫
f (t) dt

]
, H(t) = exp

[∫
h(t) dt

]
.

15.2.1-3. Simple nonlinear point transformations.

Point transformations can be used for the reduction of nonlinear equations to linear ones.
The simplest nonlinear transformations have the form

w = W (u) (15.2.1.5)

and do not affect the independent variables (x = ξ and y = η). Combinations of transforma-
tions (15.2.1.4) and (15.2.1.5) are also used quite often.

Example 2. The nonlinear equation

∂w

∂t
=
∂2w

∂x2 + a

(
∂w

∂x

)2

+ f (x, t)

can be reduced to the linear equation
∂u

∂t
=
∂2u

∂x2 + af (x, t)u

for the function u = u(x, t) by means of the transformation u = exp(aw).

15.2.2. Hodograph Transformations (Special Point Transformations)

In some cases, nonlinear equations and systems of partial differential equations can be
simplified by means of the hodograph transformations, which are special cases of point
transformations.

15.2.2-1. One of the independent variables is taken to be the dependent one.

For an equation with two independent variables x, y and an unknown function w = w(x, y),
the hodograph transformation consists of representing the solution in implicit form

x = x(y,w) (15.2.2.1)

[or y = y(x,w)]. Thus, y and w are treated as independent variables, while x is taken to
be the dependent variable. The hodograph transformation (15.2.2.1) does not change the
order of the equation and belongs to the class of point transformations (equivalently, it can
be represented as x = w̃, y = ỹ, w = x̃).
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Example 1. Consider the nonlinear second-order equation

∂w

∂y

(
∂w

∂x

)2

= a
∂2w

∂x2 . (15.2.2.2)

Let us seek its solution in implicit form. Differentiating relation (15.2.2.1) with respect to both variables as an
implicit function and taking into account that w = w(x, y), we get

1 = xwwx (differentiation in x),

0 = xwwy + xy (differentiation in y),

0 = xwww
2
x + xwwxx (double differentiation in x),

where the subscripts indicate the corresponding partial derivatives. We solve these relations to express the
“old” derivatives through the “new” ones,

wx =
1
xw

, wy = –
xy

xw
, wxx = –

w2
xxww

xw
= –

xww

x3
w

.

Substituting these expressions into (15.2.2.2), we obtain the linear heat equation:

∂x

∂y
= a

∂2x

∂w2 .

15.2.2-2. Method of conversion to an equivalent system of equations.

In order to investigate equations with the unknown function w = w(x, y), it may be useful to
convert the original equation to an equivalent system of equations forw(x, y) and v = v(x, y)
(the elimination of v from the system results in the original equation) and then apply the
hodograph transformation

x = x(w, v), y = y(w, v), (15.2.2.3)

where w, v are treated as the independent variables and x, y as the dependent variables.
Let us illustrate this by examples of specific equations of mathematical physics.
Example 2. Rewrite the stationary Khokhlov–Zabolotskaya equation (it arises in acoustics and nonlinear

mechanics)
∂2w

∂x2 + a
∂

∂y

(
w
∂w

∂y

)
= 0 (15.2.2.4)

as the system of equations
∂w

∂x
=
∂v

∂y
, –aw

∂w

∂y
=
∂v

∂x
. (15.2.2.5)

We now take advantage of the hodograph transformation (15.2.2.3), which amounts to taking w, v as the
independent variables and x, y as the dependent variables. Differentiating each relation in (15.2.2.3) with
respect to x and y (as composite functions) and eliminating the partial derivatives xw, xv, yw, yv from the
resulting relations, we obtain
∂x

∂w
=

1
J

∂v

∂y
,
∂x

∂v
= –

1
J

∂w

∂y
,
∂y

∂w
= –

1
J

∂v

∂x
,
∂y

∂v
=

1
J

∂w

∂x
, where J =

∂w

∂x

∂v

∂y
–
∂w

∂y

∂v

∂x
. (15.2.2.6)

Using (15.2.2.6) to eliminate the derivatives wx, wy , vx, vy from (15.2.2.5), we arrive at the system

∂y

∂v
=
∂x

∂w
, –aw

∂x

∂v
=
∂y

∂w
. (15.2.2.7)

Let us differentiate the first equation in w and the second in v, and then eliminate the mixed derivative ywv . As
a result, we obtain the following linear equation for the function x = x(w, v):

∂2x

∂w2 + aw
∂2x

∂v2 = 0. (15.2.2.8)

Similarly, from system (15.2.2.7), we obtain another linear equation for the function y = y(w, v),

∂2y

∂v2 +
∂

∂w

(
1
aw

∂y

∂w

)
= 0. (15.2.2.9)

Given a particular solution x = x(w, v) of equation (15.2.2.8), we substitute this solution into sys-
tem (15.2.2.7) and find y = y(w, v) by straightforward integration. Eliminating v from (15.2.2.3), we obtain an
exact solution w = w(x, y) of the nonlinear equation (15.2.2.4).



15.2. TRANSFORMATIONS OF EQUATIONS OF MATHEMATICAL PHYSICS 659

Remark. Equation (15.2.2.8) with an arbitrary a admits a simple particular solution, namely,

x = C1wv + C2w + C3v + C4, (15.2.2.10)

where C1, . . . , C4 are arbitrary constants. Substituting this solution into system (15.2.2.7), we obtain

∂y

∂v
= C1v + C2,

∂y

∂w
= –a(C1w + C3)w. (15.2.2.11)

Integrating the first equation in (15.2.2.11) yields y = 1
2C1v

2 + C2v + ϕ(w). Substituting this solution into the
second equation in (15.2.2.11), we find the function ϕ(w), and consequently

y = 1
2C1v

2 + C2v – 1
3 aC1w

3 – 1
2 aC3w

2 + C5. (15.2.2.12)

Formulas (15.2.2.10) and (15.2.2.12) define an exact solution of equation (15.2.2.4) in parametric form (v is
the parameter).

In a similar way, one can construct more complex solutions of equation (15.2.2.4) in parametric form.

Example 3. Consider the Born–Infeld equation
[

1 –
( ∂w
∂t

)2] ∂2w

∂x2 + 2 ∂w
∂x

∂w

∂t

∂2w

∂x∂t
–
[

1 +
( ∂w
∂x

)2] ∂2w

∂t2 = 0, (15.2.2.13)

which is used in nonlinear electrodynamics (field theory).
By introducing the new variables

ξ = x – t, η = x + t, u =
∂w

∂ξ
, v =

∂w

∂η
,

equation (15.2.2.13) can be rewritten as the equivalent system

∂u

∂η
–
∂v

∂ξ
= 0,

v2 ∂u

∂ξ
– (1 + 2uv)

∂u

∂η
+ u2 ∂v

∂η
= 0.

The hodograph transformation, where u, v are taken to be the independent variables and ξ, η the dependent
ones, leads to the linear system

∂ξ

∂v
–
∂η

∂u
= 0,

v2 ∂η

∂v
+ (1 + 2uv)

∂ξ

∂v
+ u2 ∂ξ

∂u
= 0.

(15.2.2.14)

Eliminating η yields the linear second-order equation

u2 ∂
2ξ

∂u2 + (1 + 2uv)
∂2ξ

∂u∂v
+ v2 ∂

2ξ

∂v2 + 2u ∂ξ
∂u

+ 2v ∂ξ
∂v

= 0.

Assuming that the solution of interest is in the domain of hyperbolicity, we write out the equation of
characteristics (see Subsection 14.1.1):

u2 dv2 – (1 + 2uv) du dv + v2 du2 = 0.

This equation has the integrals r = C1 and s = C2, where

r =

√
1 + 4uv – 1

2v
, s =

√
1 + 4uv – 1

2u
. (15.2.2.15)

Passing in (15.2.2.14) to the new variables (15.2.2.15), we obtain

r2 ∂ξ

∂r
+
∂η

∂r
= 0,

∂ξ

∂s
+ s2 ∂η

∂s
= 0.

(15.2.2.16)

Eliminating η yields the simple equation
∂2ξ

∂r∂s
= 0,

whose general solution is the sum of two arbitrary functions with different arguments: ξ = f (r) + g(s). The
function η is determined from system (15.2.2.16).

� In Paragraph 15.14.4-4, the hodograph transformation is used for the linearization of
gas-dynamic systems of equations.
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15.2.3. Contact Transformations.∗ Legendre and Euler
Transformations

15.2.3-1. General form of contact transformations.

Consider functions of two variables w = w(x, y). A common property of contact trans-
formations is the dependence of the original variables on the new variables and their first
derivatives:

x = X

(
ξ, η,u,

∂u

∂ξ
,
∂u

∂η

)
, y = Y

(
ξ, η,u,

∂u

∂ξ
,
∂u

∂η

)
, w = W

(
ξ, η,u,

∂u

∂ξ
,
∂u

∂η

)
,

(15.2.3.1)
where u = u(ξ, η). The functions X, Y , and W in (15.2.3.1) cannot be arbitrary and are
selected so as to ensure that the first derivatives of the original variables depend only on the
transformed variables and, possibly, their first derivatives,

∂w

∂x
= U

(
ξ, η,u,

∂u

∂ξ
,
∂u

∂η

)
,

∂w

∂y
= V

(
ξ, η,u,

∂u

∂ξ
,
∂u

∂η

)
. (15.2.3.2)

Contact transformations (15.2.3.1)–(15.2.3.2) do not increase the order of the equations to
which they are applied.

In general, a contact transformation (15.2.3.1)–(15.2.3.2) reduces a second-order equa-
tion in two independent variables

F

(
x, y,w,

∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y
,
∂2w

∂y2

)
= 0 (15.2.3.3)

to an equation of the form

G

(
ξ, η,u,

∂u

∂ξ
,
∂u

∂η
,
∂2u

∂ξ2 ,
∂2u

∂ξ∂η
,
∂2u

∂η2

)
= 0. (15.2.3.4)

In some cases, equation (15.2.3.4) turns out to be more simple than (15.2.3.3). If u = u(ξ, η)
is a solution of equation (15.2.3.4), then formulas (15.2.3.1) define the corresponding
solution of equation (15.2.3.3) in parametric form.

Remark. It is significant that the contact transformations are defined regardless of the specific equations.

15.2.3-2. Legendre transformation.

An important special case of contact transformations is the Legendre transformation defined
by the relations

x =
∂u

∂ξ
, y =

∂u

∂η
, w = xξ + yη – u, (15.2.3.5)

where ξ and η are the new independent variables, and u = u(ξ, η) is the new dependent
variable.

Differentiating the last relation in (15.2.3.5) with respect to x and y and taking into
account the other two relations, we obtain the first derivatives:

∂w

∂x
= ξ,

∂w

∂y
= η. (15.2.3.6)

* Prior to reading this section, it is recommended that Subsection 12.1.8 be read first.
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With (15.2.3.5)–(15.2.3.6), we find the second derivatives

∂2w

∂x2 = J
∂2u

∂η2 ,
∂2w

∂x∂y
= –J

∂2u

∂ξ∂η
,

∂2w

∂y2 = J
∂2u

∂ξ2 ,

where

J =
∂2w

∂x2
∂2w

∂y2 –

(
∂2w

∂x∂y

)2
,

1
J

=
∂2u

∂ξ2
∂2u

∂η2 –

(
∂2u

∂ξ∂η

)2
.

The Legendre transformation (15.2.3.5), with J ≠ 0, allows us to rewrite a general
second-order equation with two independent variables

F

(
x, y,w,

∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y
,
∂2w

∂y2

)
= 0 (15.2.3.7)

in the form

F

(
∂u

∂ξ
,
∂u

∂η
, ξ
∂u

∂ξ
+ η

∂u

∂η
– u, ξ, η, J

∂2u

∂η2 , –J
∂2u

∂ξ∂η
, J
∂2u

∂ξ2

)
= 0. (15.2.3.8)

Sometimes equation (15.2.3.8) may be simpler than (15.2.3.7).
Let u = u(ξ, η) be a solution of equation (15.2.3.8). Then the formulas (15.2.3.5) define

the corresponding solution of equation (15.2.3.7) in parametric form.

Remark. The Legendre transformation may result in the loss of solutions for which J = 0.

Example 1. The equation of steady-state transonic gas flow

a
∂w

∂x

∂2w

∂x2 +
∂2w

∂y2 = 0

is reduced by the Legendre transformation (15.2.3.5) to the linear equation with variable coefficients

aξ
∂2u

∂η2 +
∂2u

∂ξ2 = 0.

Example 2. The Legendre transformation (15.2.3.5) reduces the nonlinear equation

f

(
∂w

∂x
,
∂w

∂y

)
∂2w

∂x2 + g

(
∂w

∂x
,
∂w

∂y

)
∂2w

∂x∂y
+ h

(
∂w

∂x
,
∂w

∂y

)
∂2w

∂y2 = 0

to the following linear equation with variable coefficients:

f (ξ, η)
∂2u

∂η2 – g(ξ, η)
∂2u

∂ξ∂η
+ h(ξ, η)

∂2u

∂ξ2 = 0.

15.2.3-3. Euler transformation.

The Euler transformation belongs to the class of contact transformations and is defined by
the relations

x =
∂u

∂ξ
, y = η, w = xξ – u. (15.2.3.9)

Differentiating the last relation in (15.2.3.9) with respect to x and y and taking into account
the other two relations, we find that

∂w

∂x
= ξ,

∂w

∂y
= –

∂u

∂η
. (15.2.3.10)
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Differentiating these expressions in x and y, we find the second derivatives:

wxx =
1
uξξ

, wxy = –
uξη
uξξ

, wyy =
u2
ξη – uξξuηη

uξξ
. (15.2.3.11)

The subscripts indicate the corresponding partial derivatives.
The Euler transformation (15.2.3.9) is employed in finding solutions and linearization

of certain nonlinear partial differential equations.
The Euler transformation (15.2.3.9) allows us to reduce a general second-order equation

with two independent variables

F

(
x, y,w,

∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y
,
∂2w

∂y2

)
= 0 (15.2.3.12)

to the equation

F

(
uξ , η, ξuξ – u, ξ, –uη ,

1
uξξ

, –
uξη
uξξ

,
u2
ξη – uξξuηη

uξξ

)
= 0. (15.2.3.13)

In some cases, equation (15.2.3.13) may become simpler than equation (15.2.3.12).
Let u = u(ξ, η) be a solution of equation (15.2.3.13). Then formulas (15.2.3.9) define

the corresponding solution of equation (15.2.3.12) in parametric form.

Remark. The Euler transformation may result in the loss of solutions for which wxx = 0.

Example 3. The nonlinear equation
∂w

∂y

∂2w

∂x2 + a = 0

is reduced by the Euler transformation (15.2.3.9)–(15.2.3.11) to the linear heat equation

∂u

∂η
= a

∂2u

∂ξ2 .

Example 4. The nonlinear equation

∂2w

∂x∂y
= a

∂w

∂y

∂2w

∂x2 (15.2.3.14)

can be linearized with the help of the Euler transformation (15.2.3.9)–(15.2.3.11) to obtain

∂2u

∂ξ∂η
= a

∂u

∂η
.

Integrating this equation yields the general solution

u = f (ξ) + g(η)eaξ, (15.2.3.15)

where f (ξ) and g(η) are arbitrary functions.
Using (15.2.3.9) and (15.2.3.15), we obtain the general solution of the original equation (15.2.3.14) in

parametric form:
w = xξ – f (ξ) – g(y)eaξ,

x = f ′
ξ(ξ) + ag(y)eaξ.

Remark. In the degenerate case a = 0, the solution w = ϕ(y)x + ψ(y) is lost, where ϕ(y) and ψ(y) are
arbitrary functions; see also the previous remark.
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15.2.3-4. Legendre transformation with many variables.

For a function of many variables w = w(x1, . . . ,xn), the Legendre transformation and its
inverse are defined as

Legendre transformation Inverse Legendre transformation
x1 = X1, . . . , xk–1 = Xk–1, X1 = x1, . . . , Xk–1 = xk–1,

xk =
∂W

∂Xk
, . . . , xn =

∂W

∂Xn
, Xk =

∂w

∂xk
, . . . , Xn =

∂w

∂xn
,

w(x) =
n∑

i=k

Xi
∂W

∂Xi
– W (X), W (X) =

n∑

i=k

xi
∂w

∂xi
– w(x),

where x = {x1, . . . ,xn}, X = {X1, . . . ,Xn}, and the derivatives are related by

∂w

∂x1
= –

∂W

∂X1
, . . . ,

∂w

∂xk–1
= –

∂W

∂Xk–1
.

15.2.4. Bäcklund Transformations. Differential Substitutions

15.2.4-1. Bäcklund transformations for second-order equations.

Let w = w(x, y) be a solution of the equation

F1

(
x, y,w,

∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y
,
∂2w

∂y2

)
= 0, (15.2.4.1)

and let u = u(x, y) be a solution of another equation

F2

(
x, y,u,

∂u

∂x
,
∂u

∂y
,
∂2u

∂x2 ,
∂2u

∂x∂y
,
∂2u

∂y2

)
= 0. (15.2.4.2)

Equations (15.2.4.1) and (15.2.4.2) are said to be related by the Bäcklund transformation

Φ1

(
x, y,w,

∂w

∂x
,
∂w

∂y
,u,

∂u

∂x
,
∂u

∂y

)
= 0,

Φ2

(
x, y,w,

∂w

∂x
,
∂w

∂y
,u,

∂u

∂x
,
∂u

∂y

)
= 0

(15.2.4.3)

if the compatibility of the pair (15.2.4.1), (15.2.4.3) implies equation (15.2.4.2), and the
compatibility of the pair (15.2.4.2), (15.2.4.3) implies (15.2.4.1). If, for some specific
solution u = u(x, y) of equation (15.2.4.2), one succeeds in solving equations (15.2.4.3) for
w = w(x, y), then this function w = w(x, y) will be a solution of equation (15.2.4.1).

Bäcklund transformations may preserve the form of equations* (such transformations
are used for obtaining new solutions) or establish relations between solutions of different
equations (such transformations are used for obtaining solutions of one equation from
solutions of another equation).

* In such cases, these are referred to as auto-Bäcklund transformations.
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Example 1. The Burgers equation

∂w

∂t
= w

∂w

∂x
+
∂2w

∂x2 (15.2.4.4)

is related to the linear heat equation
∂u

∂t
=
∂2u

∂x2 (15.2.4.5)

by the Bäcklund transformation
∂u

∂x
–

1
2
uw = 0,

∂u

∂t
–

1
2
∂(uw)
∂x

= 0.
(15.2.4.6)

Eliminating w from (15.2.4.6), we obtain equation (15.2.4.5).
Conversely, let u(x, t) be a nonzero solution of the heat equation (15.2.4.5). Dividing (15.2.4.5) by u,

differentiating the resulting equation with respect to x, and taking into account that (ut/u)x = (ux/u)t, we
obtain (

ux

u

)

t

=

(
uxx

u

)

x

. (15.2.4.7)

From the first equation in (15.2.4.6) we have

ux

u
=
w

2
=⇒ uxx

u
–

(
ux

u

)2

=
wx

2
=⇒ uxx

u
=
wx

2
+

1
4
w2. (15.2.4.8)

Replacing the expressions in parentheses in (15.2.4.7) with the right-hand sides of the first and the last relation
(15.2.4.8), we obtain the Burgers equation (15.2.4.4).

Example 2. Let us demonstrate that Liouville’s equation

∂2w

∂x∂y
= eλw (15.2.4.9)

is connected with the linear wave equation
∂2u

∂x∂y
= 0 (15.2.4.10)

by the Bäcklund transformation
∂u

∂x
–
∂w

∂x
=

2k
λ

exp
[ 1

2
λ(w + u)

]
,

∂u

∂y
+
∂w

∂y
= –

1
k

exp
[ 1

2
λ(w – u)

]
,

(15.2.4.11)

where k ≠ 0 is an arbitrary constant.
Indeed, let us differentiate the first relation of (15.2.4.11) with respect to y and the second equation with

respect to x. Then, taking into account that uyx = uxy and wyx = wxy and eliminating the combinations of the
first derivatives using (15.2.4.11), we obtain

∂2u

∂x∂y
–
∂2w

∂x∂y
= k exp

[ 1
2
λ(w + u)

]( ∂u
∂y

+
∂w

∂y

)
= – exp(λw),

∂2u

∂x∂y
+
∂2w

∂x∂y
=
λ

2k
exp
[ 1

2
λ(w – u)

]( ∂u
∂x

–
∂w

∂x

)
= exp(λw).

(15.2.4.12)

Adding relations (15.2.4.12) together, we get the linear equation (15.2.4.10). Subtracting the latter equation
from the former gives the nonlinear equation (15.2.4.9).

Example 3. The nonlinear heat equation with a exponential source

wxx + wyy = aeβw

is connected with the Laplace equation
uxx + uyy = 0
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by the Bäcklund transformation

ux + 1
2 βwy =

( 1
2 aβ
)1/2

exp
( 1

2 βw
)

sinu,

uy – 1
2 βwx =

( 1
2 aβ
)1/2

exp
( 1

2 βw
)

cos u.

This fact can be proved in a similar way as in Example 2.

Remark 1. It is significant that unlike the contact transformations, the Bäcklund transformations are
determined by the specific equations (a Bäcklund transformation that relates given equations does not always
exist).

Remark 2. For two nth-order evolution equations of the forms

∂w

∂t
= F1

(
x,w,

∂w

∂x
, . . . ,

∂nw

∂xn

)
,

∂u

∂t
= F2

(
x,u,

∂u

∂x
, . . . ,

∂nu

∂xn

)
,

a Bäcklund transformation is sometimes sought in the form

Φ

(
x,w,

∂w

∂x
, . . . ,

∂mw

∂xm
,u,

∂u

∂x
, . . . ,

∂ku

∂xk

)
= 0

containing derivatives in only one variable x (the second variable, t, is present implicitly through the functions
w,u). This transformation can be regarded as an ordinary differential equation in one of the dependent variables.

15.2.4-2. Nonlocal transformations based on conservation laws.

Consider a differential equation written as a conservation law,

∂

∂x

[
F

(
w,

∂w

∂x
,
∂w

∂y
, . . .

)]
+
∂

∂y

[
G

(
w,

∂w

∂x
,
∂w

∂y
, . . .

)]
= 0. (15.2.4.13)

The transformation

dz = F (w,wx,wy, . . .) dy –G(w,wx,wy , . . .) dx, dη = dy (15.2.4.14)
(
dz =

∂z

∂x
dx +

∂z

∂y
dy =⇒ ∂z

∂x
= –G,

∂z

∂y
= F

)

determines the passage from the variables x and y to the new independent variables z and
η according to the rule

∂

∂x
= –G

∂

∂z
,

∂

∂y
=
∂

∂η
+ F

∂

∂z
.

Here, F and G are the same as in (15.2.4.13). The transformation (15.2.4.14) preserves the
order of the equation under consideration.

Remark. Often one may encounter transformations (15.2.4.14) that are supplemented with a transforma-
tion of the unknown function in the form u = ϕ(w).

Example 4. Consider the nonlinear heat equation

∂w

∂t
=

∂

∂x

[
f (w)

∂w

∂x

]
, (15.2.4.15)

which represents a special case of equation (15.2.4.13) for y = t, F = f (w)wx, and G = –w.
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In this case, transformation (15.2.4.14) has the form

dz = wdx + [f (w)wx] dt, dη = dt (15.2.4.16)

and determines a transformation from the variables x and y to the new independent variables z and η according
to the rule

∂

∂x
= w

∂

∂z
,

∂

∂t
=
∂

∂η
+ [f (w)wx]

∂

∂z
.

Applying transformation (15.2.4.16) to equation (15.2.4.15), we obtain

∂w

∂η
= w2 ∂

∂z

[
f (w)

∂w

∂z

]
. (15.2.4.17)

The substitution w = 1/u reduces (15.2.4.17) to an equation of the form (15.2.4.15),

∂u

∂η
=
∂

∂z

[
1
u2 f

( 1
u

) ∂u
∂z

]
.

In the special case of f (w) = aw–2, the nonlinear equation (15.2.4.15) is reduced to the linear equation
uη = auzz by the transformation (15.2.4.16).

15.2.5. Differential Substitutions
In mathematical physics, apart from the Bäcklund transformations, one sometimes resorts to
the so-called differential substitutions. For second-order differential equations, differential
substitutions have the form

w = Ψ
(
x, y,u,

∂u

∂x
,
∂u

∂y

)
.

A differential substitution increases the order of an equation (if it is inserted into an
equation for w) and allows us to obtain solutions of one equation from those of another.
The relationship between the solutions of the two equations is generally not invertible and
is, in a sense, unilateral. A differential substitution may decrease the order of an equation
(if it is inserted into an equation for u). A differential substitution may be obtained as
a consequence of a Bäcklund transformation (although this is not always the case). A
differential substitution may decrease the order of an equation (when the equation for u is
regarded as the original one).

In general, differential substitutions are defined by formulas (15.2.3.1), where the func-
tion X, Y , and W can be defined arbitrarily.

Example 1. Consider once again the Burgers equation (15.2.4.4). The first relation in (15.2.4.6) can be
rewritten as the differential substitution (the Hopf–Cole transformation)

w =
2ux

u
. (15.2.5.1)

Substituting (15.2.5.1) into (15.2.4.4), we obtain the equation

2utx

u
–

2utux

u2 =
2uxxx

u
–

2uxuxx

u2 ,

which can be converted to
∂

∂x

[
1
u

(
∂u

∂t
–
∂2u

∂x2

)]
= 0. (15.2.5.2)

Thus, using formula (15.2.5.1), one can transform each solution of the linear heat equation (15.2.4.5) into
a solution of the Burgers equation (15.2.4.4). The converse is not generally true. Indeed, it follows from
(15.2.5.2) that a solution of equation (15.2.4.4) generates a solution of the more general equation

∂u

∂t
–
∂2u

∂x2 = f (t)u,

where f (t) is a function of t.
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Example 2. The equation of a steady-state laminar hydrodynamic boundary layer at a flat plate has the
form (see Schlichting, 1981)

∂w

∂y

∂2w

∂x∂y
–
∂w

∂x

∂2w

∂y2 = a
∂3w

∂y3 , (15.2.5.3)

where w is the stream function, x and y are the coordinates along and across the flow, and a is the kinematic
viscosity of the fluid.

The von Mises transformation (a differential substitution)

ξ = x, η = w, u(ξ, η) =
∂w

∂y
, where w = w(x, y), (15.2.5.4)

decreases the order of equation (15.2.5.3) and brings it to the simpler nonlinear heat equation

∂u

∂ξ
= a

∂

∂η

(
u
∂u

∂η

)
. (15.2.5.5)

When deriving equation (15.2.5.5), the following formulas for the computation of the derivatives have been
used:

∂

∂y
= u

∂

∂η
,

∂

∂x
=
∂

∂ξ
+
∂w

∂x

∂

∂η
,
∂w

∂y
= u,

∂2w

∂y2 = u
∂u

∂η
,

∂w

∂y

∂2w

∂x∂y
–
∂w

∂x

∂2w

∂y2 = u
∂u

∂ξ
,
∂3w

∂y3 = u
∂

∂η

(
u
∂u

∂η

)
.

15.3. Traveling-Wave Solutions, Self-Similar Solutions,
and Some Other Simple Solutions. Similarity
Method

15.3.1. Preliminary Remarks
There are a number of methods for the construction of exact solutions to equations of

mathematical physics that are based on the reduction of the original equations to equations
in fewer dependent and/or independent variables. The main idea is to find such variables
and, by passing to them, to obtain simpler equations. In particular, in this way, finding
exact solutions of some partial differential equations in two independent variables may be
reduced to finding solutions of appropriate ordinary differential equations (or systems of
ordinary differential equations). Naturally, the ordinary differential equations thus obtained
do not give all solutions of the original partial differential equation, but provide only a class
of solutions with some specific properties.

The simplest classes of exact solutions described by ordinary differential equations
involve traveling-wave solutions and self-similar solutions. The existence of such solutions
is usually due to the invariance of the equations in question under translations and scaling
transformations.

Traveling-wave solutions and self-similar solutions often occur in various applications.
Below we consider some characteristic features of such solutions.

It is assumed that the unknown w depends on two variables, x and t, where t plays the
role of time and x is a spatial coordinate.

15.3.2. Traveling-Wave Solutions. Invariance of Equations Under
Translations

15.3.2-1. General form of traveling-wave solutions.

Traveling-wave solutions, by definition, are of the form

w(x, t) = W (z), z = kx – λt, (15.3.2.1)
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where λ/k plays the role of the wave propagation velocity (the sign of λ can be arbitrary,
the value λ = 0 corresponds to a stationary solution, and the value k = 0 corresponds to
a space-homogeneous solution). Traveling-wave solutions are characterized by the fact
that the profiles of these solutions at different time* instants are obtained from one another
by appropriate shifts (translations) along the x-axis. Consequently, a Cartesian coordinate
system moving with a constant speed can be introduced in which the profile of the desired
quantity is stationary. For k > 0 and λ > 0, the wave (15.3.2.1) travels along the x-axis to
the right (in the direction of increasing x).

A traveling-wave solution is found by directly substituting the representation (15.3.2.1)
into the original equation and taking into account the relations wx = kW ′, wt = –λW ′, etc.
(the prime denotes a derivative with respect to z).

Traveling-wave solutions occur for equations that do not explicitly involve independent
variables,

F

(
w,

∂w

∂x
,
∂w

∂t
,
∂2w

∂x2 ,
∂2w

∂x∂t
,
∂2w

∂t2 , . . .

)
= 0. (15.3.2.2)

Substituting (15.3.2.1) into (15.3.2.2), we obtain an autonomous ordinary differential equa-
tion for the function W (z):

F (W , kW ′, –λW ′, k2W ′′, –kλW ′′,λ2W ′′, . . .) = 0,

where k and λ are arbitrary constants.

Example 1. The nonlinear heat equation

∂w

∂t
=
∂

∂x

[
f (w)

∂w

∂x

]
(15.3.2.3)

admits a traveling-wave solution. Substituting (15.3.2.1) into (15.3.2.3), we arrive at the ordinary differential
equation

k2[f (W )W ′]′ + λW ′ = 0.

Integrating this equation twice yields its solution in implicit form:

k2
∫

f (W ) dW
λW + C1

= –z + C2,

where C1 and C2 are arbitrary constants.

Example 2. Consider the homogeneous Monge–Ampère equation
(
∂2w

∂x∂t

)2

–
∂2w

∂x2
∂2w

∂t2 = 0. (15.3.2.4)

Inserting (15.3.2.1) into this equation, we obtain an identity. Therefore, equation (15.3.2.4) admits solutions of
the form

w = W (kx – λt),

where W (z) is an arbitrary function and k and λ are arbitrary constants.

15.3.2-2. Invariance of solutions and equations under translation transformations.

Traveling-wave solutions (15.3.2.1) are invariant under the translation transformations

x = x̄ + Cλ, t = t̄ + Ck, (15.3.2.5)

where C is an arbitrary constant.

* We also use the term traveling-wave solution in the cases where the variable t plays the role of a spatial
coordinate.
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It should be observed that equations of the form (15.3.2.2) are invariant (i.e., preserve
their form) under transformation (15.3.2.5); furthermore, these equations are also invariant
under general translations in both independent variables:

x = x̄ + C1, t = t̄ + C2, (15.3.2.6)

whereC1 andC2 are arbitrary constants. The property of the invariance of specific equations
under translation transformations (15.3.2.5) or (15.3.2.6) is inseparably linked with the
existence of traveling-wave solutions to such equations (the former implies the latter).

Remark 1. Traveling-wave solutions, which stem from the invariance of equations under translations, are
simplest invariant solutions.

Remark 2. The condition of invariance of equations under translations is not a necessary condition for
the existence of traveling-wave solutions. It can be verified directly that the second-order equation

F
(
w,wx,wt, xwx + twt,wxx,wxt,wtt

)
= 0

does not admit transformations of the form (15.3.2.5) and (15.3.2.6) but has an exact traveling-wave solution
(15.3.2.1) described by the ordinary differential equation

F (W ,kW ′, –λW ′, zW ′, k2W ′′, –kλW ′′,λ2W ′′) = 0.

15.3.2-3. Functional equation describing traveling-wave solutions.

Let us demonstrate that traveling-wave solutions can be defined as solutions of the functional
equation

w(x, t) = w(x + Cλ, t + Ck), (15.3.2.7)

where k and λ are some constants and C is an arbitrary constant. Equation (15.3.2.7) states
that the unknown function does not change under increasing both arguments by proportional
quantities, with C being the coefficient of proportionality.

For C = 0, equation (15.3.2.7) turns into an identity. Let us expand (15.3.2.7) into a
series in powers of C about C = 0, then divide the resulting expression by C , and proceed
to the limit as C → 0 to obtain the linear first-order partial differential equation

λ
∂w

∂x
+ k

∂w

∂t
= 0.

The general solution to this equation is constructed by the method of characteristics (see
Paragraph 13.1.1-1) and has the form (15.3.2.1), which was to be proved.

15.3.3. Self-Similar Solutions. Invariance of Equations Under
Scaling Transformations

15.3.3-1. General form of self-similar solutions. Similarity method.

By definition, a self-similar solution is a solution of the form

w(x, t) = tαU (ζ), ζ = xtβ . (15.3.3.1)

The profiles of these solutions at different time instants are obtained from one another by a
similarity transformation (like scaling).
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Self-similar solutions exist if the scaling of the independent and dependent variables,

t = Ct̄, x = Ckx̄, w = Cmw̄, where C ≠ 0 is an arbitrary constant, (15.3.3.2)

for some k and m (|k| + |m| ≠ 0), is equivalent to the identical transformation. This means
that the original equation

F (x, t,w,wx,wt,wxx,wxt,wtt, . . .) = 0, (15.3.3.3)

when subjected to transformation (15.3.3.2), turns into the same equation in the new vari-
ables,

F (x̄, t̄, w̄, w̄x̄, w̄t̄, w̄x̄x̄, w̄x̄t̄, w̄t̄t̄, . . .) = 0. (15.3.3.4)

Here, the function F is the same as in the original equation (15.3.3.3); it is assumed that
equation (15.3.3.3) is independent of the parameter C .

Let us find the connection between the parameters α, β in solution (15.3.3.1) and the
parameters k, m in the scaling transformation (15.3.3.2). Suppose

w = Φ(x, t) (15.3.3.5)

is a solution of equation (15.3.3.3). Then the function

w̄ = Φ(x̄, t̄) (15.3.3.6)

is a solution of equation (15.3.3.4).
In view of the explicit form of solution (15.3.3.1), if follows from (15.3.3.6) that

w̄ = t̄αU (x̄t̄β). (15.3.3.7)

Using (15.3.3.2) to return to the new variables in (15.3.3.7), we get

w = Cm–αtαU
(
C–k–βxtβ

)
. (15.3.3.8)

By construction, this function satisfies equation (15.3.3.3) and hence is its solution. Let
us require that solution (15.3.3.8) coincide with (15.3.3.1), so that the condition for the
uniqueness of the solution holds for any C ≠ 0. To this end, we must set

α = m, β = –k. (15.3.3.9)

In practice, the above existence criterion is checked: if a pair of k and m in (15.3.3.2)
has been found, then a self-similar solution is defined by formulas (15.3.3.1) with parame-
ters (15.3.3.9).

The method for constructing self-similar solutions on the basis of scaling transformations
(15.3.3.2) is called the similarity method. It is significant that these transformations involve
the arbitrary constant C as a parameter.

To make easier to understand, Fig. 15.1 depicts the basic stages for constructing self-
similar solutions.
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Here is a free parameter
and , are some numbers

C
k m

Look for a self-similar solution

Substitute into the original equation

Figure 15.1. A simple scheme that is often used in practice for constructing self-similar solutions.

15.3.3-2. Examples of self-similar solutions to mathematical physics equations.

Example 1. Consider the heat equation with a nonlinear power-law source term

∂w

∂t
= a

∂2w

∂x2 + bwn. (15.3.3.10)

The scaling transformation (15.3.3.2) converts equation (15.3.3.10) into

Cm–1 ∂w̄

∂t̄
= aCm–2k ∂

2w̄

∂x̄2 + bCmnw̄n.

Equating the powers of C yields the following system of linear algebraic equations for the constants k and m:

m – 1 = m – 2k = mn.

This system admits a unique solution: k = 1
2 , m = 1

1–n
. Using this solution together with relations (15.3.3.1)

and (15.3.3.9), we obtain self-similar variables in the form

w = t1/(1–n)U (ζ), ζ = xt–1/2.

Inserting these into (15.3.3.10), we arrive at the following ordinary differential equation for the function U (ζ):

aU ′′
ζζ +

1
2
ζU ′

ζ +
1

n – 1
U + bUn = 0.
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Example 2. Consider the nonlinear equation

∂2w

∂t2 = a
∂

∂x

(
wn ∂w

∂x

)
, (15.3.3.11)

which occurs in problems of wave and gas dynamics. Inserting (15.3.3.2) into (15.3.3.11) yields

Cm–2 ∂
2w̄

∂t̄2 = aCmn+m–2k ∂

∂x̄

(
w̄n ∂w̄

∂x̄

)
.

Equating the powers of C results in a single linear equation, m – 2 = mn + m – 2k. Hence, we obtain
k = 1

2mn + 1, where m is arbitrary. Further, using (15.3.3.1) and (15.3.3.9), we find self-similar variables:

w = tmU (ζ), ζ = xt–
1
2 mn–1 (m is arbitrary).

Substituting these into (15.3.3.11), one obtains an ordinary differential equation for the function U (ζ).

Table 15.1 gives examples of self-similar solutions to some other nonlinear equations
of mathematical physics.

TABLE 15.1
Some nonlinear equations of mathematical physics that admit self-similar solutions

Equation Equation name Form of solutions Determining equation

∂w
∂t

= ∂
∂x

[
f (w) ∂w

∂x

] Unsteady
heat equation w =w(z), z =xt–1/2 [f (w)w′]′ + 1

2 zw
′ = 0

∂w
∂t

= a ∂
∂x

(
wn ∂w

∂x

)
+bwk Heat equation

with source
w = tpu(z), z =xtq,
p= 1

1–k
, q = k–n–1

2(1–k)

a(unu′)′ –qzu′

+buk –pu = 0

∂w
∂t

= a ∂2w
∂x2 +bw ∂w

∂x

Burgers
equation w = t–1/2u(z), z =xt–1/2 au′′+buu′ + 1

2 zu
′ + 1

2u = 0

∂w
∂t

= a ∂2w
∂x2 +b

(
∂w
∂x

)2 Potential Burgers
equation w =w(z), z =xt–1/2 aw′′ +b(w′)2 + 1

2 zw
′ = 0

∂w
∂t

= a
(

∂w
∂x

)k ∂2w
∂x2

Filtration
equation

w = tpu(z), z =xtq,
p= – (k+2)q+1

k
, q is any a(u′)ku′′ = qzu′ +pu

∂w
∂t

= f
(

∂w
∂x

)
∂2w
∂x2

Filtration
equation w = t1/2u(z), z =xt–1/2 2f (u′)u′′ +zu′ –u = 0

∂2w
∂t2 = ∂

∂x

[
f (w) ∂w

∂x

]
Wave equation w =w(z), z =x/t (z2w′)′ = [f (w)w′]′

∂2w
∂t2 = a ∂

∂x

(
wn ∂w

∂x

)
Wave equation w = t2ku(z), z =xt–nk–1,

k is any

2k(2k–1)
(nk+1)2 u+ nk–4k+2

nk+1 zu′

+z2u′′ = a
(nk+1)2 (unu′)′

∂2w
∂x2 + ∂2w

∂y2 = awn Heat equation
with source w =x

2
1–n u(z), z = y/x

(1 +z2)u′′ – 2(1+n)
1–n

zu′

+ 2(1+n)
(1–n)2 u–aun = 0

∂2w
∂x2 +a ∂w

∂y
∂2w
∂y2 = 0 Equation of steady

transonic gas flow
w =x–3k–2u(z), z =xky,

k is any

a
k+1u

′u′′ + k2

k+1 z
2u′′

– 5kzu′ + 3(3k+ 2)u = 0

∂w
∂t

= a ∂3w
∂x3 +bw ∂w

∂x

Korteweg–de Vries
equation w = t–2/3u(z), z =xt–1/3 au′′′+buu′ + 1

3 zu
′ + 2

3u = 0

∂w
∂y

∂2w
∂x∂y

– ∂w
∂x

∂2w
∂y2 = a ∂3w

∂y3
Boundary-layer

equation
w =xλ+1u(z), z =xλy,

λ is any
(2λ+ 1)(u′)2 –(λ+ 1)uu′′

= au′′′

The above method for constructing self-similar solutions is also applicable to systems
of partial differential equations. Let us illustrate this by a specific example.
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Example 3. Consider the system of equations of a steady-state laminar boundary hydrodynamic boundary
layer at a flat plate (see Schlichting, 1981)

u
∂u

∂x
+ v

∂u

∂y
= a

∂2u

∂y2 ,

∂u

∂x
+
∂v

∂y
= 0.

(15.3.3.12)

Let us scale the independent and dependent variables in (15.3.3.12) according to

x = Cx̄, y = Ckȳ, u = Cmū, v = Cnv̄. (15.3.3.13)

Multiplying these relations by appropriate constant factors, we have

ū
∂ū

∂x̄
+ Cn–m–k+1v̄

∂ū

∂ȳ
= C–m–2k+1a

∂2ū

∂ȳ2 ,

∂ū

∂x̄
+ Cn–m–k+1 ∂v̄

∂ȳ
= 0.

(15.3.3.14)

Let us require that the form of the equations of the transformed system (15.3.3.14) coincide with that of the
original system (15.3.3.12). This condition results in two linear algebraic equations, n – m – k + 1 = 0 and
–2k –m + 1 = 0. On solving them for m and n, we obtain

m = 1 – 2k, n = –k, (15.3.3.15)

where the exponent k can be chosen arbitrarily. To find a self-similar solution, let us use the procedure outlined
in Fig. 15.1. The following renaming should be done: x → y, t → x, w → u (for u) and x → y, t → x,
w → v, m→ n (for v). This results in

u(x, y) = x1–2kU (ζ), v(x, y) = x–kV (ζ), ζ = yx–k, (15.3.3.16)

where k is an arbitrary constant. Inserting (15.3.3.16) into the original system (15.3.3.12), we arrive at a system
of ordinary differential equations for U = U (ζ) and V = V (ζ):

U
[
(1 – 2k)U – kζU ′

ζ

]
+ V U ′

ζ = aU ′′
ζζ ,

(1 – 2k)U – kζU ′
ζ + V ′

ζ = 0.

15.3.3-3. More general approach based on solving a functional equation.

The algorithm for the construction of a self-similar solution, presented in Paragraph 15.3.3-1,
relies on representing this solution in the form (15.3.3.1) explicitly. However, there is a
more general approach that allows the derivation of relation (15.3.3.1) directly from the
condition of the invariance of equation (15.3.3.3) under transformations (15.3.3.2).

Indeed, let us assume that transformations (15.3.3.2) convert equation (15.3.3.3) into
the same equation (15.3.3.4). Let (15.3.3.5) be a solution of equation (15.3.3.3). Then
(15.3.3.6) will be a solution of equation (15.3.3.4). Switching back to the original variables
(15.3.3.2) in (15.3.3.6),we obtain

w = CmΦ
(
C–kx,C–1t

)
. (15.3.3.17)

By construction, this function satisfies equation (15.3.3.3) and hence is its solution. Let us
require that solution (15.3.3.17) coincide with (15.3.3.5), so that the uniqueness condition
for the solution is met for any C ≠ 0. This results in the functional equation

Φ(x, t) = CmΦ
(
C–kx,C–1t

)
. (15.3.3.18)

For C = 1, equation (15.3.3.18) is satisfied identically. Let us expand (15.3.3.18) in a
power series in C about C = 1, then divide the resulting expression by (C – 1), and proceed
to the limit as C → 1. This results in a linear first-order partial differential equation for Φ:

kx
∂Φ
∂x

+ t
∂Φ
∂t

–mΦ = 0. (15.3.3.19)
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The associated characteristic system of ordinary differential equations (see Paragraph
13.1.1-1) has the form

dx

kx
=
dt

t
=
dΦ
mΦ

.

Its first integrals are
xt–k = A1, t–mΦ = A2,

where A1 and A2 are arbitrary constants. The general solution of the partial differential
equation (15.3.3.19) is sought in the form A2 = U (A1), where U (A) is an arbitrary function
(see Paragraph 13.1.1-1). As a result, one obtains a solution of the functional equation
(15.3.3.18) in the form

Φ(x, t) = tmU (ζ), ζ = xt–k. (15.3.3.20)

Substituting (15.3.3.20) into (15.3.3.5) yields the self-similar solution (15.3.3.1) with
parameters (15.3.3.9).

15.3.3-4. Some remarks.

Remark 1. Self-similar solutions (15.3.3.1) withα = 0 arise in problems with simple initial and boundary
conditions of the form

w = w1 at t = 0 (x > 0), w = w2 at x = 0 (t > 0),

where w1 and w2 are some constants.

Remark 2. Self-similar solutions, which stem from the invariance of equations under scaling transforma-
tions, are considered among the simplest invariant solutions.

The condition for the existence of a transformation (15.3.3.2) preserving the form of the given equation
is sufficient for the existence of a self-similar solution. However, this condition is not necessary: there are
equations that do not admit transformations of the form (15.3.3.2) but have self-similar solutions.

For example, the equation

a
∂2w

∂x2 + b
∂2w

∂t2 = (bx2 + at2)f (w)

has a self-similar solution
w = w(z), z = xt =⇒ w′′ – f (w) = 0,

but does not admit transformations of the form (15.3.3.2). In this equation, a and b can be arbitrary functions
of the arguments x, t, w, wx, wt, wxx, . . .

Remark 3. Traveling-wave solutions are closely related to self-similar solutions. Indeed, setting

t = ln τ , x = ln y

in (15.3.2.1), we obtain a self-similar representation of a traveling wave:

w = W
(
k ln(yτ –λ/k)

)
= U (yτ –λ/k),

where U (z) = W (k ln z).

15.3.4. Equations Invariant Under Combinations of Translation and
Scaling Transformations, and Their Solutions

15.3.4-1. Exponential self-similar (limiting self-similar) solutions.

Exponential self-similar solutions are solutions of the form

w(x, t) = eαtV (ξ), ξ = xeβt. (15.3.4.1)
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Exponential self-similar solutions exist if equation (15.3.3.3) is invariant under trans-
formations of the form

t = t̄ + lnC , x = Ckx̄, w = Cmw̄, (15.3.4.2)

where C > 0 is an arbitrary constant, for some k and m. Transformation (15.3.4.2) is a
combination of a translation transformation in t and scaling transformations in x and w.
It should be emphasized that these transformations contain an arbitrary parameter C while
the equation concerned is independent of C .

Let us find the relation between the parameters α, β in solution (15.3.4.1) and the
parameters k, m in the scaling transformation (15.3.4.2). Let w = Φ(x, t) be a solution of
equation (15.3.3.3). Then the function w̄ = Φ(x̄, t̄) is a solution of equation (15.3.3.4). In
view of the explicit form of solution (15.3.4.1), we have

w̄ = eαt̄V (x̄eβt̄).

Going back to the original variables, using (15.3.4.2), we obtain

w = Cm–αeαtV
(
C–k–βxeβt

)
.

Let us require that this solution coincide with (15.3.4.1), which means that the uniqueness
condition for the solution must be satisfied for any C ≠ 0. To this end, we set

α = m, β = –k. (15.3.4.3)

In practice, exponential self-similar solutions are sought using the above existence
criterion: if k and m in (15.3.4.2) are known, then the new variables have the form
(15.3.4.1) with parameters (15.3.4.3).

Remark. Sometimes solutions of the form (15.3.4.1) are also called limiting self-similar solutions.

Example 1. Let us show that the nonlinear heat equation

∂w

∂t
= a

∂

∂x

(
wn ∂w

∂x

)
(15.3.4.4)

admits an exponential self-similar solution. Inserting (15.3.4.2) into (15.3.4.4) yields

Cm ∂w̄

∂t̄
= aCmn+m–2k ∂

∂x̄

(
w̄n ∂w̄

∂x̄

)
.

Equating the powers of C gives one linear equation: m = mn + m – 2k. It follows that k = 1
2mn, where m

is any number. Further using formulas (15.3.4.1) and (15.3.4.3) and setting, without loss of generality, m = 2
(this is equivalent to scaling in t), we find the new variables

w = e2tV (ξ), ξ = xe–nt. (15.3.4.5)

Substituting these expressions into (15.3.4.4), we arrive at an ordinary differential equation for V (ξ):

a(V nV ′
ξ )′ξ + nξV ′

ξ – 2V = 0.

Example 2. With the above approach, it can be shown that the nonlinear wave equation (15.3.3.11) also
has an exponential self-similar solution of the form (15.3.4.5).
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TABLE 15.2
Invariant solutions that may be obtained using combinations of translation and scaling
transformations preserving the form of equations (C is an arbitrary constant, C > 0)

No. Invariant transformations Form of invariant solutions Example of an equation

1 t = t̄ + Ck, x = x̄ + Cλ w = U (z), z = kx – λt ∂w
∂t

= ∂
∂x

[
f (w) ∂w

∂x

]

2 t = Ct̄, x = Ckx̄, w = Cmw̄ w = tmU (z), z = xt–k see Table 15.1

3 t = t̄ + lnC, x = Ckx̄, w = Cmw̄ w = emtU (z), z = xe–kt
equation (15.3.4.4)

(k = 1
2mn, m is any)

4 t = Ct̄, x = x̄ + k lnC, w = Cmw̄ w = tmU (z), z = x – k ln t
equation (15.3.4.4)

(m = –1/n, k is any)

5 t = Ct̄, x = Cβx̄, w = w̄ + α lnC w = U (z) + α ln t, z = xt–β
∂w
∂t

= ∂
∂x

(
ew ∂w

∂x

)

(α = 2β – 1, β is any)

6 t = Ct̄, x = x̄ + β lnC, w = w̄ + α lnC w = U (z) + α ln t, z = x – β ln t
(

∂2w
∂x∂t

)2
– ∂2w

∂x2
∂2w
∂t2 = 0

(α and β are any)

7 t = t̄ + C, x = x̄ + Cλ, w = w̄ + Ck w = U (z) + kt, z = x – λt
∂w
∂t

= f
(

∂w
∂x

)
∂2w
∂x2

(k and λ are any)

8 t = t̄ + lnC, x = x̄ + k lnC, w = Cmw̄ w = emtU (z), z = x – kt

(
∂2w
∂x∂t

)2
– ∂2w

∂x2
∂2w
∂t2 = 0

(k and m are any)

15.3.4-2. Other solutions obtainable using translation and scaling transformations.

Table 15.2 lists invariant solutions that may be obtained using combinations of translation
and scaling transformations in the independent and dependent variables. The transfor-
mations are assumed to preserve the form of equations (the given equation is converted
into the same equation). Apart from traveling-wave solutions, self-similar solutions, and
exponential self-similar solutions, considered above, another five invariant solutions are
presented. The right column of Table 15.2 gives examples of equations that admit the
solutions specified.

Example 3. Let us show that the nonlinear heat equation (15.3.4.4) admits the solution given in the fourth
row of Table 15.2. Perform the transformation

t = Ct̄, x = x̄ + k lnC, w = Cmw̄.

This gives

Cm–1 ∂w̄

∂t̄
= aCmn+m ∂

∂x̄

(
w̄n ∂w̄

∂x̄

)
.

Equating the powers of C results in one linear equation: m – 1 = mn +m. It follows that m = –1/n, and k is
any number. Therefore (see the fourth row in Table 15.2), equation (15.3.4.4) has an invariant solution of the
form

w = t–1/nU (z), z = x + k ln t, where k is any number. (15.3.4.6)

Substituting (15.3.4.6) into (15.3.4.4) yields the autonomous ordinary differential equation

a(UnU ′
z)′z – kU ′

z +
1
n
U = 0.

To the special case of k = 0 there corresponds a separable equation that results in a solution in the form of the
product of functions with different arguments.

The examples considered in Subsections 15.3.2–15.3.4 demonstrate that the existence
of exact solutions is due to the fact the partial differential equations concerned are invariant
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under some transformations (involving one or several parameters) or, what is the same,
possess some symmetries. In Section 15.8 below, a general method for the investigation
of symmetries of differential equations (the group-theoretic method) will be described that
allows finding similar and more complicated invariant solutions on a routine basis.

15.3.5. Generalized Self-Similar Solutions

A generalized self-similar solution has the form

w(x, t) = ϕ(t)u(z), z = ψ(t)x. (15.3.5.1)

Formula (15.3.5.1) comprises the above self-similar and exponential self-similar solutions
(15.3.3.1) and (15.3.4.1) as special cases.

The procedure of finding generalized self-similar solutions is briefly as follows: after
substituting (15.3.5.1) into the given equation, one chooses the functions ϕ(t) and ψ(t) so
that u(z) satisfies a single ordinary differential equation.

Example. A solution of the nonlinear heat equation (15.3.4.4) will be sought in the form (15.3.5.1). Taking
into account that x = z/ψ(t), we find the derivatives

wt = ϕ′
tu + ϕψ′

txu
′
z = ϕ′

tu +
ϕψ′

t

ψ
zu′

z , wx = ϕψu′
z , (wnwx)x = ψ2ϕn+1(unu′

z)′z .

Substituting them into (15.3.4.4) and dividing by ϕ′
t, we have

u +
ϕψ′

t

ϕ′
tψ
zu′

z =
ψ2ϕn+1

ϕ′
t

(unu′
z)′z. (15.3.5.2)

For this relation to be an ordinary differential equation for u(z), the functional coefficients of zu′
z and (unu′

z)′z
must be constant:

ϕψ′
t

ϕ′
tψ

= a,
ψ2ϕn+1

ϕ′
t

= b. (15.3.5.3)

The function u(z) will satisfy the equation

u + azu′
z = b(unu′

z)′z.

From the first equation in (15.3.5.3) it follows that

ψ = C1ϕ
a, (15.3.5.4)

where C1 is an arbitrary constant. Substituting the resulting expression into the second equation in (15.3.5.3)
and integrating, we obtain

C2
1

b
t + C2 = –

1
2a + n

ϕ–2a–n for a ≠ –
n

2
,

C2
1

b
t + C2 = ln |ϕ|, for a = –

n

2
,

(15.3.5.5)

where C2 is an arbitrary constant. From (15.3.5.4)–(15.3.5.5) we have, in particular,

ϕ(t) = t
1

2a+n , ψ(t) = t
a

2a+n at C1 = 1, C2 = 0, b = –
1

2a + n
;

ϕ(t) = e2t, ψ(t) = e–nt at C1 = 1, C2 = 0, b =
1
2

.

The first pair of functions ϕ(t) and ψ(t) corresponds to a self-similar solution (with any a ≠ –n/2), and the
second pair, to an exponential self-similar solution.
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15.4. Exact Solutions with Simple Separation of
Variables

15.4.1. Multiplicative and Additive Separable Solutions

Separation of variables is the most common approach to solve linear equations of mathe-
matical physics (see Section 14.4). For equations in two independent variables x, t and a
dependent variable w, this approach involves searching for exact solutions in the form of
the product of functions depending on different arguments:

w(x, t) = ϕ(x)ψ(t). (15.4.1.1)

The integration of a few classes of first-order nonlinear partial differential equations is
based on searching for exact solutions in the form of the sum of functions depending on
different arguments (see Paragraph 13.2.1-2):

w(x, t) = ϕ(x) + ψ(t). (15.4.1.2)

Some second- and higher-order nonlinear equations of mathematical physics also have
exact solutions of the form (15.4.1.1) or (15.4.1.2). Such solutions are called multiplicative
separable and additive separable, respectively.

15.4.2. Simple Separation of Variables in Nonlinear Partial
Differential Equations

In isolated cases, the separation of variables in nonlinear equations is carried out following
the same technique as in linear equations. Specifically, an exact solution is sought in the form
of the product or sum of functions depending on different arguments. On substituting it into
the equation and performing elementary algebraic manipulations, one obtains an equation
with the two sides dependent on different variables (for equations with two variables). Then
one concludes that the expressions on each side must be equal to the same constant quantity,
called a separation constant.

Example 1. The heat equation with a power nonlinearity

∂w

∂t
= a

∂

∂x

(
wk ∂w

∂x

)
(15.4.2.1)

has a multiplicative separable solution. Substituting (15.4.1.1) into (15.4.2.1) yields

ϕψ′
t = aψk+1(ϕkϕ′

x)′x.

Separating the variables by dividing both sides by ϕψk+1, we obtain

ψ′
t

ψk+1 =
a(ϕkϕ′

x)′x
ϕ

.

The left-hand side depends on t alone and the right-hand side on x alone. This is possible only if

ψ′
t

ψk+1 = C,
a(ϕkϕ′

x)′x
ϕ

= C, (15.4.2.2)

whereC is an arbitrary constant (separation constant). On solving the ordinary differential equations (15.4.2.2),
we obtain a solution of equation (15.4.2.1) with the form (15.4.1.1).

The procedure for constructing a separable solution (15.4.1.1) of the nonlinear equation (15.4.2.1) is
identical to that used in solving linear equations [in particular, equation (15.4.2.1) with k = 0]. We refer to
similar cases as simple separation of variables.
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Example 2. The wave equation with an exponential nonlinearity

∂2w

∂t2 = a
∂

∂x

(
eλw ∂w

∂x

)
(15.4.2.3)

has an additive separable solution. On substituting (15.4.1.2) into (15.4.2.3) and dividing by eλψ, we arrive at
the equation

e–λψψ′′
tt = a(eλϕϕ′

x)′x,

whose left-hand side depends on t alone and the right-hand side on x alone. This is possible only if

e–λψψ′′
tt = C, a(eλϕϕ′

x)′x = C, (15.4.2.4)

where C is an arbitrary constant. Solving the ordinary differential equations (15.4.2.4) yields a solution of
equation (15.4.2.3) with the form (15.4.1.2).

Example 3. The steady-state heat equation in an anisotropic medium with a logarithmic source

∂

∂x

[
f (x)

∂w

∂x

]
+
∂

∂y

[
g(y)

∂w

∂y

]
= aw lnw (15.4.2.5)

has a multiplicative separable solution
w = ϕ(x)ψ(y). (15.4.2.6)

On substituting (15.4.2.6) into (15.4.2.5), dividing by ϕψ, and rearranging individual terms of the resulting
equation, we obtain

1
ϕ

[f (x)ϕ′
x]′x – a lnϕ = –

1
ψ

[g(y)ψ′
y]′y + a lnψ.

The left-hand side of this equation depends only on x and the right-hand only on y. By equating both sides to
a constant quantity, one obtains ordinary differential equations for ϕ(x) and ψ(y).

Table 15.3 gives other examples of simple, additive or multiplicative, separable solutions
for some nonlinear equations.

15.4.3. Complex Separation of Variables in Nonlinear Partial
Differential Equations

The variables in nonlinear equations often separate more complexly than in linear equations.
We exemplify this below.

Example 1. Consider the equation with a cubic nonlinearity

∂w

∂t
= a

∂2w

∂x2 + w

(
∂w

∂x

)2

– bw3, (15.4.3.1)

where b > 0. We look for exact solutions in the product form. We substitute (15.4.1.1) into (15.4.3.1) and
divide the resulting equation by ϕ(x)ψ(t) to obtain

ψ′
t

ψ
= a

ϕ′′
xx

ϕ
+ ψ2[(ϕ′

x)2 – bϕ2]. (15.4.3.2)

In the general case, this expression cannot be represented as the sum of two functions depending on different
arguments. This, however, does not mean that equation (15.4.3.1) has no solutions of the form (15.4.1.1).

1◦. One can make sure by direct check that the functional differential equation (15.4.3.2) has solutions

ϕ(x) = Ce�x
√

b, ψ(t) = eabt, (15.4.3.3)

whereC is an arbitrary constant. Solutions (15.4.3.3) forϕmake the expression in square brackets in (15.4.3.2)
vanish, which allows the separation of variables.
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TABLE 15.3
Some nonlinear equations of mathematical physics that admit additive or
multiplicative separable solutions (C, C1, and C2 are arbitrary constants)

Equation Equation name Form of solutions Determining equations

∂w
∂t

= a ∂2w
∂x2 + bw lnw

Heat equation
with source

w = ϕ(x)ψ(t)
aϕ′′

xx/ϕ – b lnϕ =

–ψ′
t/ψ + b lnψ = C

∂w
∂t

= a ∂
∂x

(
wk ∂w

∂x

)
+ bw Heat equation

with source
w = ϕ(x)ψ(t)

(ψ′
t – bψ)/ψk+1 =

a(ϕkϕ′
x)′x/ϕ = C

∂w
∂t

= a ∂
∂x

(
wk ∂w

∂x

)
+ bwk+1 Heat equation

with source
w = ϕ(x)ψ(t)

ψ′
t/ψ

k+1 =

a(ϕkϕ′
x)′x/ϕ + bϕk = C

∂w
∂t

= a ∂
∂x

(
eλw ∂w

∂x

)
+ b Heat equation

with source
w = ϕ(x) + ψ(t) e–λψ(ψ′

t – b) = a(eλϕϕ′
x)′x = C

∂w
∂t

= a ∂
∂x

(
ew ∂w

∂x

)
+ bew Heat equation

with source
w = ϕ(x) + ψ(t) e–ψψ′

t = a(eϕϕ′
x)′x + beϕ = C

∂w
∂t

= a ∂2w
∂x2 + b

(
∂w
∂x

)2 Potential Burgers
equation w = ϕ(x) + ψ(t) ψ′

t = aϕ′′
xx + b(ϕ′

x)2 = C

∂w
∂t

= a
(

∂w
∂x

)k ∂2w
∂x2

Filtration
equation

w = ϕ(x) + ψ(t),

w = f (x)g(t)

ψ′
t = a(ϕ′

x)kϕ′′
xx = C1,

g′t/g
k+1 = a(f ′

x)kf ′′
xx/f = C2

∂w
∂t

= F
(

∂w
∂x

)
∂2w
∂x2

Filtration
equation w = ϕ(x) + ψ(t) ψ′

t = F (ϕ′
x)ϕ′′

xx = C

∂2w
∂t2 = a ∂

∂x

(
wk ∂w

∂x

)
Wave equation w = ϕ(x)ψ(t) ψ′′

tt/ψ
k+1 = a(ϕkϕ′

x)′x/ϕ = C

∂2w
∂t2 = a ∂

∂x

(
eλw ∂w

∂x

)
Wave equation w = ϕ(x) + ψ(t) e–λψψ′′

tt = a(eλϕϕ′
x)′x = C

∂2w
∂t2 = a ∂2w

∂x2 + bw lnw
Wave equation

with source
w = ϕ(x)ψ(t)

ψ′′
tt/ψ – b lnψ =

aϕ′′
xx/ϕ + b lnϕ = C

∂2w
∂x2 + a ∂

∂y

(
wk ∂w

∂y

)
= 0 Anisotropic steady

heat equation w = ϕ(x)ψ(y) ϕ′′
xx/ϕ

k+1 = –a(ψkψ′
y)′y/ψ = C

∂2w
∂x2 + a ∂w

∂y
∂2w
∂y2 = 0 Equation of steady

transonic gas flow
w = ϕ(x) + ψ(y),

w = f (x)g(y)

ϕ′′
xx = –aψ′

yψ
′′
yy = C1,

f ′′
xx/f = –ag′yg

′′
yy/g = C2

(
∂2w
∂x∂y

)2
= ∂2w

∂x2
∂2w
∂y2

Monge–Ampère
equation w = ϕ(x)ψ(y) (ϕ′

x)2

ϕϕ′′
xx

=
ψψ′′

yy

(ψ′
y)2 = C

∂w
∂t

= a ∂3w
∂x3 + b

(
∂w
∂x

)2 Potential Korteweg-
de Vries equation w = ϕ(x) + ψ(t) ψ′

t = aϕ′′′
xxx + b(ϕ′

x)2 = C

∂w
∂y

∂2w
∂x∂y

– ∂w
∂x

∂2w
∂y2 = a ∂3w

∂y3
Boundary-layer

equation
w = ϕ(x) + ψ(y),

w = f (x)g(y)

– ϕ′
x = aψ′′′

yyy/ψ
′′
yy = C1,

f ′
x = ag′′′yyy[(g′y)2 – gg′′yy]–1 = C2

2◦. There is a more general solution of the functional differential equation (15.4.3.2):

ϕ(x) = C1e
x
√

b + C2e
–x

√
b, ψ(t) = eabt

(
C3 + 4C1C2e

2abt
)–1/2

,

where C1,C2, and C3 are arbitrary constants. The function ϕ = ϕ(x) is such that both x-dependent expressions
in (15.4.3.2) are constant simultaneously:

ϕ′′
xx/ϕ = const, (ϕ′

x)2 – bϕ2 = const.

It is this circumstance that makes it possible to separate the variables.

Example 2. Consider the second-order equation with a quadratic nonlinearity

∂w

∂y

∂2w

∂x2 + a
∂w

∂x

∂2w

∂y2 = b
∂3w

∂x3 + c
∂3w

∂y3 . (15.4.3.4)
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We look for additive separable solutions
w = f (x) + g(y). (15.4.3.5)

Substituting (15.4.3.5) into (15.4.3.4) yields

g′yf
′′
xx + af ′

xg
′′
yy = bf ′′′

xxx + cg′′′yyy. (15.4.3.6)

This expression cannot be rewritten as the equality of two functions depending on different arguments.
It can be shown that equation (15.4.3.4) has a solution of the form (15.4.3.5):

w = C1e
–aλx +

cλ

a
x + C2e

λy – abλy + C3,

where C1, C2, C3, and λ are arbitrary constants. The mechanism of separation of variables is different here:
both nonlinear terms on the left-hand side in (15.4.3.6) contain terms that cannot be rewritten in additive form
but are equal in magnitude and have unlike signs. In adding, the two terms cancel out, thus resulting in
separation of variables:

g′yf
′′
xx = C1C2a

2λ3eλy–aλx – C1b(aλ)3e–aλx

+
af ′

xg
′′
yy = –C1C2a

2λ3eλy–aλx + C2cλ
3eλy

g′yf
′′
xx + af ′

xg
′′
yy = –C1b(aλ)3e–aλx + C2cλ

3eλy = bf ′′′
xxx + cg′′′yyy

.

Example 3. Consider the second-order equation with a cubic nonlinearity

(1 + w2)

(
∂2w

∂x2 +
∂2w

∂y2

)
– 2w

(
∂w

∂x

)2

– 2w
(
∂w

∂y

)2

= aw(1 – w2). (15.4.3.7)

We seek an exact solution of this equation in the product form

w = f (x)g(y). (15.4.3.8)

Substituting (15.4.3.8) into (15.4.3.7) yields

(1 + f 2g2)(gf ′′
xx + fg′′yy) – 2fg[g2(f ′

x)2 + f 2(g′y)2] = afg(1 – f 2g2). (15.4.3.9)

This expression cannot be rewritten as the equality of two functions with different arguments. Nevertheless,
equation (15.4.3.7) has solutions of the form (15.4.3.8). One can make sure by direct check that the functions
f = f (x) and g = g(y) satisfying the nonlinear ordinary differential equations

(f ′
x)2 = Af 4 +Bf 2 + C,

(g′y)2 = Cg4 + (a – B)g2 +A,
(15.4.3.10)

where A, B, and C are arbitrary constants, reduce equation (15.4.3.9) to an identity; to verify this, one should
use the relations f ′′

xx = 2Af 3 + Bf and g′′yy = 2Cg3 + (a –B)g that follow from (15.4.3.10).

Remark. By the change of variable u = 4 arctanw equation (15.4.3.7) can be reduced to a nonlinear heat
equation with a sinusoidal source, Δu = a sinu.

The examples considered above illustrate some specific features of separable solutions
to nonlinear equations. Section 15.5 outlines fairly general methods for constructing similar
and more complicated solutions to nonlinear partial differential equations.

15.5. Method of Generalized Separation of Variables
15.5.1. Structure of Generalized Separable Solutions

15.5.1-1. General form of solutions. The classes of nonlinear equations considered.

To simplify the presentation, we confine ourselves to the case of mathematical physics equa-
tions in two independent variables x, y and a dependent variable w (one of the independent
variables can play the role of time).
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Linear separable equations of mathematical physics admit exact solutions in the form

w(x, y) = ϕ1(x)ψ1(y) + ϕ2(x)ψ2(y) + · · · + ϕn(x)ψn(y), (15.5.1.1)

where wi = ϕi(x)ψi(y) are particular solutions; the functions ϕi(x), as well as the functions
ψi(y), with different numbers i, are not related to one another.

Many nonlinear partial differential equations with quadratic or power nonlinearities,

f1(x)g1(y)Π1[w] + f2(x)g2(y)Π2[w] + · · · + fm(x)gm(y)Πm[w] = 0, (15.5.1.2)

also have exact solutions of the form (15.5.1.1). In (15.5.1.2), the Πi[w] are differential
forms that are the products of nonnegative integer powers of the function w and its partial
derivatives∂xw,∂yw, ∂xxw, ∂xyw, ∂yyw, ∂xxxw, etc. We will refer to solutions (15.5.1.1) of
nonlinear equations (15.5.1.2) as generalized separable solutions. Unlike linear equations,
in nonlinear equations the functions ϕi(x) with different subscripts i are usually related to
one another [and to functions ψj(y)]. In general, the functions ϕi(x) and ψj(y) in (15.5.1.1)
are not known in advance and are to be identified. Subsection 15.4.2 gives simple examples
of exact solutions of the form (15.5.1.1) with n = 1 and n = 2 (for ψ1 = ϕ2 = 1) to some
nonlinear equations.

Note that most common of the generalized separable solutions are solutions of the
special form

w(x, y) = ϕ(x)ψ(y) + χ(x);

the independent variables on the right-hand side can be swapped. In the special case of
χ(x) = 0, this is a multiplicative separable solution, and if ϕ(x) = 1, this is an additive
separable solution.

Remark. Expressions of the form (15.5.1.1) are often used in applied and computational mathematics for
constructing approximate solutions to differential equations by the Galerkin method (and its modifications).

15.5.1-2. General form of functional differential equations.

In general, on substituting expression (15.5.1.1) into the differential equation (15.5.1.2),
one arrives at a functional differential equation

Φ1(X)Ψ1(Y ) + Φ2(X)Ψ2(Y ) + · · · + Φk(X)Ψk(Y ) = 0 (15.5.1.3)

for the ϕi(x) and ψi(y). The functionals Φj(X) and Ψj(Y ) depend only on x and y,
respectively,

Φj(X) ≡ Φj

(
x,ϕ1,ϕ′

1,ϕ′′
1 , . . . ,ϕn,ϕ′

n,ϕ′′
n

)
,

Ψj(Y ) ≡ Ψj

(
y,ψ1,ψ′

1,ψ′′
1 , . . . ,ψn,ψ′

n,ψ′′
n

)
.

(15.5.1.4)

Here, for simplicity, the formulas are written out for the case of a second-order equa-
tion (15.5.1.2); for higher-order equations, the right-hand sides of relations (15.5.1.4) will
contain higher-order derivatives of ϕi and ψj .

Subsections 15.5.3 and 15.5.4 outline two different methods for solving functional
differential equations of the form (15.5.1.3)–(15.5.1.4).

Remark. Unlike ordinary differential equations, equation (15.5.1.3)–(15.5.1.4) involves several functions
(and their derivatives) with different arguments.
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15.5.2. Simplified Scheme for Constructing Solutions Based on
Presetting One System of Coordinate Functions

15.5.2-1. Description of the simplified scheme.

To construct exact solutions of equations (15.5.1.2) with quadratic or power nonlinearities
that do not depend explicitly on x (all fi constant), it is reasonable to use the following
simplified approach. As before, we seek solutions in the form of finite sums (15.5.1.1). We
assume that the system of coordinate functions {ϕi(x)} is governed by linear differential
equations with constant coefficients. The most common solutions of such equations are of
the forms

ϕi(x) = xi, ϕi(x) = eλix, ϕi(x) = sin(αix), ϕi(x) = cos(βix). (15.5.2.1)

Finite chains of these functions (in various combinations) can be used to search for separable
solutions (15.5.1.1), where the quantities λi, αi, and βi are regarded as free parameters.
The other system of functions {ψi(y)} is determined by solving the nonlinear equations
resulting from substituting (15.5.1.1) into the equation under consideration [or into equation
(15.5.1.3)–(15.5.1.4)].

This simplified approach lacks the generality of the methods outlined in Subsections
15.5.3–15.5.4. However, specifying one of the systems of coordinate functions, {ϕi(x)},
simplifies the procedure of finding exact solutions substantially. The drawback of this
approach is that some solutions of the form (15.5.1.1) can be overlooked. It is significant
that the overwhelming majority of generalized separable solutions known to date, for
partial differential equations with quadratic nonlinearities, are determined by coordinate
functions (15.5.2.1) (usually with n = 2).

15.5.2-2. Examples of finding exact solutions of second- and third-order equations.

Below we consider specific examples that illustrate the application of the above simplified
scheme to the construction of generalized separable solutions of second- and third-order
nonlinear equations.

Example 1. Consider a nonhomogeneous Monge–Ampère equation of the form
(
∂2w

∂x∂y

)2

–
∂2w

∂x2
∂2w

∂y2 = f (x). (15.5.2.2)

We look for generalized separable solutions with the form

w(x,y) = ϕ(x)yk + ψ(x), k ≠ 0. (15.5.2.3)

On substituting (15.5.2.3) into (15.5.2.2) and collecting terms, we obtain

[k2(ϕ′
x)2 – k(k – 1)ϕϕ′′

xx]y2k–2 – k(k – 1)ϕψ′′
xxy

k–2 – f (x) = 0. (15.5.2.4)

This equation can be satisfied only if k = 1 or k = 2.
First case. If k = 1, (15.5.2.4) reduces one equation

(ϕ′
x)2 – f (x) = 0.

It has two solutions: ϕ(x) = �
∫ √

f (x) dx. They generate two solutions of equation (15.5.2.2) in the form
(15.5.2.3):

w(x, y) = �y

∫ √
f (x) dx + ψ(x),

where ψ(x) is an arbitrary function.
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Second case. If k = 2, equating the functional coefficients of the different powers of y to zero, we obtain
two equations:

2(ϕ′
x)2 – ϕϕ′′

xx = 0,

2ϕψ′′
xx – f (x) = 0.

Their general solutions are given by

ϕ(x) =
1

C1x + C2
, ψ(x) =

1
2

∫ x

0
(x – t)(C1t + C2)f (t) dt + C3x + C4.

Here, C1, C2, C3, and C4 are arbitrary constants.

Table 15.4 lists generalized separable solutions of various nonhomogeneous Monge–
Ampère equations of the form

(
∂2w

∂x∂y

)2
–
∂2w

∂x2
∂2w

∂y2 = F (x, y). (15.5.2.5)

Equations of this form are encountered in differential geometry, gas dynamics, and mete-
orology.

Example 2. Consider the third-order nonlinear equation

∂2w

∂x∂t
+

(
∂w

∂x

)2

– w
∂2w

∂x2 = a
∂3w

∂x3 , (15.5.2.6)

which is encountered in hydrodynamics.
We look for exact solutions of the form

w = ϕ(t)eλx + ψ(t), λ ≠ 0. (15.5.2.7)

On substituting (15.5.2.7) into (15.5.2.6), we have

ϕ′
t – λϕψ = aλ2ϕ.

We now solve this equation for ψ and substitute the resulting expression into (15.5.2.7) to obtain a solution of
equation (15.5.2.6) in the form

w = ϕ(t)eλx +
1
λ

ϕ′
t(t)
ϕ(t)

– aλ,

where ϕ(t) is an arbitrary function and λ is an arbitrary constant.

15.5.3. Solution of Functional Differential Equations
by Differentiation

15.5.3-1. Description of the method.

Below we describe a procedure for constructing solutions to functional differential equations
of the form (15.5.1.3)–(15.5.1.4). It involves three successive stages.

1◦. Assume that Ψk � 0. We divide equation (15.5.1.3) by Ψk and differentiate with respect
to y. This results in a similar equation but with fewer terms:

Φ̃1(X)Ψ̃1(Y ) + Φ̃2(X)Ψ̃2(Y ) + · · · + Φ̃k–1(X)Ψ̃k–1(Y ) = 0,

Φ̃j(X) = Φj(X), Ψ̃j(Y ) = [Ψj(Y )/Ψk(Y )]′y .

We repeat the above procedure (k – 3) times more to obtain the separable two-term
equation

Φ̂1(X)Ψ̂1(Y ) + Φ̂2(X)Ψ̂2(Y ) = 0. (15.5.3.1)
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TABLE 15.4
Exact solutions of a nonhomogeneous Monge–Ampère equation of the form (15.5.2.5); f (x), g(x), and h(x)

are arbitrary functions; C1, C2, C3, and β are arbitrary constants; a, b, k, and λ are some numbers (k ≠ –1, –2)

No. Function F (x, y) Solution w(x, y)

1 f (x) C1y
2 + C2xy +

C2
2

4C1
x2 –

1
2C1

∫ x

a
(x – t)f (t) dt

2 f (x)
1

x + C1

(
C2y

2 + C3y +
C2

3

4C2

)
–

1
2C2

∫ x

a
(x – t)(t + C1)f (t) dt

3 f (x)y C1y
2 + ϕ(x)y + ψ(x) (ϕ and ψ are expressed as quadratures)

4 f (x)y
1

x + C1
y2 + ϕ(x)y + ψ(x) (ϕ and ψ are expressed as quadratures)

5 f (x)y C1y
3 –

1
6C1

∫ x

a
(x – t)f (t) dt

6 f (x)y y3

(x + C1)2 –
1
6

∫ x

a
(x – t)(t + C1)2f (t) dt

7 f (x)y2 ϕ(x)y2 + ψ(x)y + χ(x) (ϕ, ψ, and χ are determined by ODEs)

8 f (x)y2 C1y
4 –

1
12C1

∫ x

a
(x – t)f (t) dt

9 f (x)y2 y4

(x + C1)3 –
1

12

∫ x

a
(x – t)(t + C1)3f (t) dt

10 f (x)y2 + g(x)y + h(x) ϕ(x)y2 + ψ(x)y + χ(x) (ϕ, ψ, and χ are determined by ODEs)

11 f (x)yk C1y
k+2

(k + 1)(k + 2)
–

1
C1

∫ x

a
(x – t)f (t) dt

12 f (x)yk yk+2

(x + C1)k+1 –
1

(k + 1)(k + 2)

∫ x

a
(x – t)(t + C1)k+1f (t) dt

13 f (x)y2k+2 + g(x)yk
ϕ(x)yk+2 –

1
(k + 1)(k + 2)

∫ x

a
(x – t)

g(t)
ϕ(t)

dt

(ϕ is determined by an ODE)

14 f (x)eλy C1e
βx+λy –

1
C1λ2

∫ x

a
(x – t)e–βtf (t) dt

15 f (x)e2λy + g(x)eλy
ϕ(x)eλy –

1
λ2

∫ x

a
(x – t)

g(t)
ϕ(t)

dt

(ϕ is determined by an ODE)

16 f (x)g(y) + λ2 C1

∫ x

a
(x – t)f (t) dt –

1
C1

∫ y

b
(y – ξ)g(ξ)dξ � λxy

Three cases must be considered.
Nondegenerate case: |Φ̂1(X)| + |Φ̂2(X)| � 0 and |Ψ̂1(Y )| + |Ψ̂2(Y )| � 0. Then the

solutions of equation (15.5.3.1) are determined by the ordinary differential equations

Φ̂1(X) + CΦ̂2(X) = 0, CΨ̂1(Y ) – Ψ̂2(Y ) = 0,

where C is an arbitrary constant. The equations Φ̂2 = 0 and Ψ̂1 = 0 correspond to the limit
case C = ∞.
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Two degenerate cases:

Φ̂1(X) ≡ 0, Φ̂2(X) ≡ 0 =⇒ Ψ̂1,2(Y ) are any functions;

Ψ̂1(Y ) ≡ 0, Ψ̂2(Y ) ≡ 0 =⇒ Φ̂1,2(X) are any functions.

2◦. The solutions of the two-term equation (15.5.3.1) should be substituted into the original
functional differential equation (15.5.1.3) to “remove” redundant constants of integration
[these arise because equation (15.5.3.1) is obtained from (15.5.1.3) by differentiation].

3◦. The case Ψk ≡ 0 should be treated separately (since we divided the equation by Ψk at
the first stage). Likewise, we have to study all other cases where the functionals by which
the intermediate functional differential equations were divided vanish.

Remark 1. The functional differential equation (15.5.1.3) happens to have no solutions.

Remark 2. At each subsequent stage, the number of terms in the functional differential equation can be
reduced by differentiation with respect to either y or x. For example, we can assume at the first stage that
Φk � 0. On dividing equation (15.5.1.3) by Φk and differentiating with respect to x, we again obtain a similar
equation that has fewer terms.

15.5.3-2. Examples of constructing exact generalized separable solutions.

Below we consider specific examples illustrating the application of the above method of
constructing exact generalized separable solutions of nonlinear equations.

Example 1. The equations of a laminar boundary layer on a flat plate are reduced to a single third-order
nonlinear equation for the stream function (see Schlichting, 1981, and Loitsyanskiy, 1996):

∂w

∂y

∂2w

∂x∂y
–
∂w

∂x

∂2w

∂y2 = a
∂3w

∂y3 . (15.5.3.2)

We look for generalized separable solutions to equation (15.5.3.2) in the form

w(x, y) = ϕ(x)ψ(y) + χ(x). (15.5.3.3)

On substituting (15.5.3.3) into (15.5.3.2) and canceling by ϕ, we arrive at the functional differential equation

ϕ′
x[(ψ′

y)2 – ψψ′′
yy] – χ′

xψ
′′
yy = aψ′′′

yyy. (15.5.3.4)

We differentiate (15.5.3.4) with respect to x to obtain

ϕ′′
xx[(ψ′

y)2 – ψψ′′
yy] = χ′′

xxψ
′′
yy. (15.5.3.5)

Nondegenerate case. On separating the variables in (15.5.3.5), we get

χ′′
xx = C1ϕ

′′
xx,

(ψ′
y)2 – ψψ′′

yy – C1ψ
′′
yy = 0.

Integrating yields

ψ(y) = C4e
λy – C1, ϕ(x) is any function, χ(x) = C1ϕ(x) + C2x + C3, (15.5.3.6)

whereC1, . . . ,C4, and λ are constants of integration. On substituting (15.5.3.6) into (15.5.3.4), we establish the
relationship between constants to obtain C2 = –aλ. Ultimately, taking into account the aforesaid and formulas
(15.5.3.3) and (15.5.3.6), we arrive at a solution of equation (15.5.3.2) of the form (15.5.3.3):

w(x, y) = ϕ(x)eλy – aλx + C,

where ϕ(x) is an arbitrary function and C and λ are arbitrary constants (C = C3, C4 = 1).
Degenerate case. It follows from (15.5.3.5) that

ϕ′′
xx = 0, χ′′

xx = 0, ψ(y) is any function. (15.5.3.7)
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Integrating the first two equations in (15.5.3.7) twice yields

ϕ(x) = C1x + C2, χ(x) = C3x + C4, (15.5.3.8)

where C1, . . . , C4 are arbitrary constants.
Substituting (15.5.3.8) into (15.5.3.4), we arrive at an ordinary differential equation for ψ = ψ(y):

C1(ψ′
y)2 – (C1ψ + C3)ψ′′

yy = aψ′′′
yyy. (15.5.3.9)

Formulas (15.5.3.3) and (15.5.3.8) together with equation (15.5.3.9) determine an exact solution of equa-
tion (15.5.3.2).

Example 2. The two-dimensional stationary equations of motion of a viscous incompressible fluid are
reduced to a single fourth-order nonlinear equation for the stream function (see Loitsyanskiy, 1996):

∂w

∂y

∂

∂x
(Δw) –

∂w

∂x

∂

∂y
(Δw) = aΔΔw, Δw =

∂2w

∂x2 +
∂2w

∂y2 . (15.5.3.10)

Here, a is the kinematic viscosity of the fluid and x, y are Cartesian coordinates.
We seek exact separable solutions of equation (15.5.3.10) in the form

w = f (x) + g(y). (15.5.3.11)

Substituting (15.5.3.11) into (15.5.3.10) yields

g′yf
′′′
xxx – f ′

xg
′′′
yyy = af ′′′′

xxxx + ag′′′′yyyy. (15.5.3.12)

Differentiating (15.5.3.12) with respect to x and y, we obtain

g′′yyf
′′′′
xxxx – f ′′

xxg
′′′′
yyyy = 0. (15.5.3.13)

Nondegenerate case. If f ′′
xx � 0 and g′′yy � 0, we separate the variables in (15.5.3.13) to obtain the ordinary

differential equations

f ′′′′
xxxx = Cf ′′

xx, (15.5.3.14)

g′′′′yyyy = Cg′′yy, (15.5.3.15)

which have different solutions depending on the value of the integration constant C.

1◦. Solutions of equations (15.5.3.14) and (15.5.3.15) for C = 0:

f (x) = A1 +A2x +A3x
2 +A4x

3,

g(y) = B1 + B2y +B3y
2 +B4y

3,
(15.5.3.16)

where Ak and Bk are arbitrary constants (k = 1, 2, 3, 4). On substituting (15.5.3.16) into (15.5.3.12), we
evaluate the integration constants. Three cases are possible:

A4 = B4 = 0, An,Bn are any numbers (n = 1, 2, 3);

Ak = 0, Bk are any numbers (k = 1, 2, 3, 4);

Bk = 0, Ak are any numbers (k = 1, 2, 3, 4).

The first two sets of constants determine two simple solutions (15.5.3.11) of equation (15.5.3.10):

w = C1x
2 + C2x + C3y

2 + C4y + C5,

w = C1y
3 + C2y

2 + C3y + C4,

where C1, . . . , C5 are arbitrary constants.

2◦. Solutions of equations (15.5.3.14) and (15.5.3.15) for C = λ2 > 0:

f (x) = A1 +A2x +A3e
λx +A4e

–λx,

g(y) = B1 +B2y +B3e
λy + B4e

–λy.
(15.5.3.17)

Substituting (15.5.3.17) into (15.5.3.12), dividing by λ3, and collecting terms, we obtain

A3(aλ –B2)eλx +A4(aλ +B2)e–λx +B3(aλ + A2)eλy +B4(aλ –A2)e–λy = 0.
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Equating the coefficients of the exponentials to zero, we find

A3 = A4 = B3 = 0, A2 = aλ (case 1),

A3 = B3 = 0, A2 = aλ, B2 = –aλ (case 2),

A3 = B4 = 0, A2 = –aλ, B2 = –aλ (case 3).

(The other constants are arbitrary.) These sets of constants determine three solutions of the form (15.5.3.11)
for equation (15.5.3.10):

w = C1e
–λy + C2y + C3 + aλx,

w = C1e
–λx + aλx + C2e

–λy – aλy + C3,

w = C1e
–λx – aλx + C2e

λy – aλy + C3,

where C1, C2, C3, and λ are arbitrary constants.

3◦. Solution of equations (15.5.3.14) and (15.5.3.15) for C = –λ2 < 0:

f (x) = A1 +A2x +A3 cos(λx) +A4 sin(λx),

g(y) = B1 +B2y +B3 cos(λy) + B4 sin(λy).
(15.5.3.18)

Substituting (15.5.3.18) into (15.5.3.12) does not yield new real solutions.

Degenerate cases. If f ′′
xx ≡ 0 or g′′yy ≡ 0, equation (15.5.3.13) becomes an identity for any g = g(y) or

f = f (x), respectively. These cases should be treated separately from the nondegenerate case. For example, if
f ′′

xx ≡ 0, we have f (x) =Ax+B, whereA andB are arbitrary numbers. Substituting this f into (15.5.3.12), we
arrive at the equation –Ag′′′yyy =ag′′′′yyyy. Its general solution is given by g(y) =C1 exp(–Ay/a)+C2y

2 +C3y+C4.
Thus, we obtain another solution of the form (15.5.3.11) for equation (15.5.3.10):

w = C1e
–λy + C2y

2 + C3y + C4 + aλx (A = aλ, B = 0).

15.5.4. Solution of Functional-Differential Equations by Splitting

15.5.4-1. Preliminary remarks. Description of the method.

As one reduces the number of terms in the functional differential equation (15.5.1.3)–
(15.5.1.4) by differentiation, redundant constants of integration arise. These constants must
be “removed” at the final stage. Furthermore, the resulting equation can be of a higher order
than the original equation. To avoid these difficulties, it is convenient to reduce the solution
of the functional differential equation to the solution of a bilinear functional equation of a
standard form and solution of a system of ordinary differential equations. Thus, the original
problem splits into two simpler problems. Below we outline the basic stages of the splitting
method.

1◦. At the first stage, we treat equation (15.5.1.3) as a purely functional equation that
depends on two variables X and Y , where Φn = Φn(X) and Ψn = Ψn(Y ) are unknown
quantities (n = 1, . . . , k).

It can be shown* that the bilinear functional equation (15.5.1.3) has k – 1 different
solutions:

Φi(X) = Ci,1Φm+1(X) + Ci,2Φm+2(X) + · · · + Ci,k–mΦk(X), i = 1, . . . ,m;
Ψm+j(Y ) = –C1,jΨ1(Y ) – C2,jΨ2(Y ) – · · · – Cm,jΨm(Y ), j = 1, . . . , k – m;

m = 1, 2, . . . , k – 1;
(15.5.4.1)

where Ci,j are arbitrary constants. The functions Φm+1(X), . . . , Φk(X), Ψ1(Y ), . . . ,
Ψm(Y ) on the right-hand sides of formulas (15.5.4.1) are defined arbitrarily. It is apparent
that for fixed m, solution (15.5.4.1) contains m(k –m) arbitrary constants.

* These solutions can be obtained by differentiation following the procedure outlined in Subsection 15.5.3,
and by induction. Another simple method for finding solutions is described in Paragraph 15.5.4-2, Item 3◦.
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2◦. At the second stage, we successively substitute the Φi(X) and Ψj(Y ) of (15.5.1.4)
into all solutions (15.5.4.1) to obtain systems of ordinary differential equations* for the
unknown functions ϕp(x) and ψq(y). Solving these systems, we get generalized separable
solutions of the form (15.5.1.1).

Remark 1. It is important that, for fixed k, the bilinear functional equation (15.5.1.3) used in the splitting
method is the same for different classes of original nonlinear mathematical physics equations.

Remark 2. For fixed m, solution (15.5.4.1) contains m(k – m) arbitrary constants Ci,j . Given k, the
solutions having the maximum number of arbitrary constants are defined by

Solution number Number of arbitrary constants Conditions on k

m = 1
2 k

1
4 k

2 if k is even,

m = 1
2 (k � 1) 1

4 (k2 – 1) if k is odd.

It is these solutions of the bilinear functional equation that most frequently result in nontrivial generalized
separable solution in nonlinear partial differential equations.

Remark 3. The bilinear functional equation (15.5.1.3) and its solutions (15.5.4.1) play an important role
in the method of functional separation of variables.

For visualization, the main stages of constructing generalized separable solutions by the
splitting method are displayed in Fig. 15.2.

15.5.4-2. Solutions of simple functional equations and their application.

Below we give solutions to two simple bilinear functional equations of the form (15.5.1.3)
that will be used subsequently for solving specific nonlinear partial differential equations.

1◦. The functional equation

Φ1Ψ1 + Φ2Ψ2 + Φ3Ψ3 = 0, (15.5.4.2)

where Φi are all functions of the same argument and Ψi are all functions of another argument,
has two solutions:

Φ1 = A1Φ3, Φ2 = A2Φ3, Ψ3 = –A1Ψ1 – A2Ψ2;
Ψ1 = A1Ψ3, Ψ2 = A2Ψ3, Φ3 = –A1Φ1 – A2Φ2.

(15.5.4.3)

The arbitrary constants are renamed as follows: A1 =C1,1 andA2 =C2,1 in the first solution,
andA1 = –1/C1,2 andA2 =C1,1/C1,2 in the second solution. The functions on the right-hand
sides of the formulas in (15.5.4.3) are assumed to be arbitrary.

2◦. The functional equation

Φ1Ψ1 + Φ2Ψ2 + Φ3Ψ3 + Φ4Ψ4 = 0, (15.5.4.4)

where Φi are all functions of the same argument and Ψi are all functions of another argument,
has a solution

Φ1 = A1Φ3 + A2Φ4, Φ2 = A3Φ3 + A4Φ4,
Ψ3 = –A1Ψ1 –A3Ψ2, Ψ4 = –A2Ψ1 –A4Ψ2

(15.5.4.5)

dependent on four arbitrary constants A1, . . . ,A4; see solution (15.5.4.1) with k = 4,m = 2,
C1,1 = A1, C1,2 = A2, C2,1 = A3, and C2,2 = A4. The functions on the right-hand sides of
the solutions in (15.5.4.3) are assumed to be arbitrary.

* Such systems are usually overdetermined.
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Write out the functional differential equation

Obtain: (i) functional equation, (ii) determining system of ODEs

Solve the determining system of ordinary differential equations

Write out generalized separable solution of original equation

Search for generalized separable solutions

Substitute into original equation

Apply splitting procedure

Treat functional equation (i)

Figure 15.2. General scheme for constructing generalized separable solutions by the splitting method. Abbre-
viation: ODE stands for ordinary differential equation.

Equation (15.5.4.4) also has two other solutions:

Φ1 = A1Φ4, Φ2 = A2Φ4, Φ3 = A3Φ4, Ψ4 = –A1Ψ1 – A2Ψ2 – A3Ψ3;
Ψ1 = A1Ψ4, Ψ2 = A2Ψ4, Ψ3 = A3Ψ4, Φ4 = –A1Φ1 –A2Φ2 – A3Φ3

(15.5.4.6)

involving three arbitrary constants. In the first solution, A1 =C1,1,A2 =C2,1, andA3 =C3,1,
and in the second solution, A1 = –1/C1,3, A2 = C1,1/C1,3, and A3 = C1,2/C1,3.

Solutions (15.5.4.6) will sometimes be called degenerate, to emphasize the fact that
they contain fewer arbitrary constants than solution (15.5.4.5).

3◦. Solutions of the functional equation

Φ1Ψ1 + Φ2Ψ2 + Φ3Ψ3 + Φ4Ψ4 + Φ5Ψ5 = 0 (15.5.4.7)

can be found by formulas (15.5.4.1) with k = 5. Below is a simple technique for finding
solutions, which is quite useful in practice, based on equation (15.5.4.7) itself. Let us
assume that Φ1, Φ2, and Φ3 are linear combinations of Φ4 and Φ5:

Φ1 = A1Φ4 +B1Φ5, Φ2 = A2Φ4 +B2Φ5, Φ3 = A3Φ4 +B3Φ5, (15.5.4.8)
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whereAn,Bn are arbitrary constants. Let us substitute (15.5.4.8) into (15.5.4.7) and collect
the terms proportional to Φ4 and Φ5 to obtain

(A1Ψ1 + A2Ψ2 +A3Ψ3 + Ψ4)Φ4 + (B1Ψ1 + B2Ψ2 + B3Ψ3 + Ψ5)Φ5 = 0.

Equating the expressions in parentheses to zero, we have

Ψ4 = –A1Ψ1 – A2Ψ2 – A3Ψ3,
Ψ5 = –B1Ψ1 – B2Ψ2 – B3Ψ3.

(15.5.4.9)

Formulas (15.5.4.8) and (15.5.4.9) give solutions to equation (15.5.4.7). Other solutions
are found likewise.

Example 1. Consider the nonlinear hyperbolic equation

∂2w

∂t2 = a
∂

∂x

(
w
∂w

∂x

)
+ f (t)w + g(t), (15.5.4.10)

where f (t) and g(t) are arbitrary functions. We look for generalized separable solutions of the form

w(x, t) = ϕ(x)ψ(t) + χ(t). (15.5.4.11)

Substituting (15.5.4.11) into (15.5.4.10) and collecting terms yield

aψ2(ϕϕ′
x)′x + aψχϕ′′

xx + (fψ – ψ′′
tt)ϕ + fχ + g – χ′′

tt = 0.

This equation can be represented as a functional equation (15.5.4.4) in which

Φ1 = (ϕϕ′
x)′x, Φ2 = ϕ′′

xx, Φ3 = ϕ, Φ4 = 1,

Ψ1 = aψ2, Ψ2 = aψχ, Ψ3 = fψ – ψ′′
tt, Ψ4 = fχ + g – χ′′

tt.
(15.5.4.12)

On substituting (15.5.4.12) into (15.5.4.5), we obtain the following overdetermined system of ordinary differ-
ential equations for the functions ϕ = ϕ(x), ψ = ψ(t), and χ = χ(t):

(ϕϕ′
x)′x = A1ϕ + A2, ϕ′′

xx = A3ϕ + A4,

fψ – ψ′′
tt = –A1aψ

2 –A3aψχ, fχ + g – χ′′
tt = –A2aψ

2 – A4aψχ.
(15.5.4.13)

The first two equations in (15.5.4.13) are compatible only if

A1 = 6B2, A2 = B2
1 – 4B0B2, A3 = 0, A4 = 2B2, (15.5.4.14)

where B0, B1, and B2 are arbitrary constants, and the solution is given by

ϕ(x) = B2x
2 +B1x +B0. (15.5.4.15)

On substituting the expressions (15.5.4.14) into the last two equations in (15.5.4.13), we obtain the following
system of equations for ψ(t) and χ(t):

ψ′′
tt = 6aB2ψ

2 + f (t)ψ,

χ′′
tt = [2aB2ψ + f (t)]χ + a(B2

1 – 4B0B2)ψ2 + g(t).
(15.5.4.16)

Relations (15.5.4.11), (15.5.4.15) and system (15.5.4.16) determine a generalized separable solution of
equation (15.5.4.10). The first equation in (15.5.4.16) can be solved independently; it is linear if B2 = 0 and is
integrable by quadrature for f (t) = const. The second equation in (15.5.4.16) is linear in χ (for ψ known).

Equation (15.5.4.10) does not have other solutions with the form (15.5.4.11) if f and g are arbitrary
functions and ϕ � 0, ψ � 0, and χ � 0.
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Remark. It can be shown that equation (15.5.4.10) has a more general solution with the form

w(x, y) = ϕ1(x)ψ1(t) + ϕ2(x)ψ2(t) + ψ3(t), ϕ1(x) = x2, ϕ2(x) = x, (15.5.4.17)

where the functions ψi = ψi(t) are determined by the ordinary differential equations

ψ′′
1 = 6aψ2

1 + f (t)ψ1,

ψ′′
2 = [6aψ1 + f (t)]ψ2,

ψ′′
3 = [2aψ1 + f (t)]ψ3 + aψ2

2 + g(t).

(15.5.4.18)

(The prime denotes a derivative with respect to t.) The second equation in (15.5.4.18) has a particular solution
ψ2 = ψ1. Hence, its general solution can be represented as (see Polyanin and Zaitsev, 2003)

ψ2 = C1ψ1 + C2ψ1

∫
dt

ψ2
1

.

The solution obtained in Example 1 corresponds to the special case C2 = 0.

Example 2. Consider the nonlinear equation

∂2w

∂x∂t
+

(
∂w

∂x

)2

– w
∂2w

∂x2 = a
∂3w

∂x3 , (15.5.4.19)

which arises in hydrodynamics (see Polyanin and Zaitsev, 2004).
We look for exact solutions of the form

w = ϕ(t)θ(x) + ψ(t). (15.5.4.20)

Substituting (15.5.4.20) into (15.5.4.19) yields

ϕ′
tθ

′
x – ϕψθ′′xx + ϕ2[(θ′x)2 – θθ′′xx

]
– aϕθ′′′xxx = 0.

This functional differential equation can be reduced to the functional equation (15.5.4.4) by setting

Φ1 = ϕ′
t, Φ2 = ϕψ, Φ3 = ϕ2, Φ4 = aϕ,

Ψ1 = θ′x, Ψ2 = –θ′′xx, Ψ3 = (θ′x)2 – θθ′′xx, Ψ4 = –θ′′′xxx.
(15.5.4.21)

On substituting these expressions into (15.5.4.5), we obtain the system of ordinary differential equations

ϕ′
t = A1ϕ

2 +A2aϕ, ϕψ = A3ϕ
2 +A4aϕ,

(θ′x)2 – θθ′′xx = –A1θ
′
x +A3θ

′′
xx, θ′′′xxx = A2θ

′
x – A4θ

′′
xx.

(15.5.4.22)

It can be shown that the last two equations in (15.5.4.22) are compatible only if the function θ and its
derivative are linearly dependent,

θ′x = B1θ +B2. (15.5.4.23)

The six constants B1, B2, A1, A2, A3, and A4 must satisfy the three conditions

B1(A1 +B2 – A3B1) = 0,

B2(A1 +B2 – A3B1) = 0,

B2
1 + A4B1 – A2 = 0.

(15.5.4.24)

Integrating (15.5.4.23) yields

θ =

{
B3 exp(B1x) –

B2

B1
if B1 ≠ 0,

B2x +B3 if B1 = 0,
(15.5.4.25)

where B3 is an arbitrary constant.
The first two equations in (15.5.4.22) lead to the following expressions for ϕ and ψ:

ϕ =

⎧
⎪⎨

⎪⎩

A2a

C exp(–A2at) –A1
if A2 ≠ 0,

–
1

A1t + C
if A2 = 0,

ψ = A3ϕ +A4a, (15.5.4.26)

where C is an arbitrary constant.
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Formulas (15.5.4.25), (15.5.4.26) and relations (15.5.4.24) allow us to find the following solutions of
equation (15.5.4.19) with the form (15.5.4.20):

w =
x + C1

t + C2
+ C3 if A2 = B1 = 0, B2 = –A1;

w =
C1e

–λx + 1
λt + C2

+ aλ if A2 = 0, B1 = –A4, B2 = –A1 – A3A4;

w = C1e
–λ(x+aβt) + a(λ + β) if A1 = A3 = B2 = 0, A2 = B2

1 +A4B1;

w =
aβ + C1e

–λx

1 + C2e–aλβt
+ a(λ – β) if A1 = A3B1 –B2, A2 = B2

1 +A4B1,

where C1, C2, C3, β, and λ are arbitrary constants (these can be expressed in terms of the Ak and Bk).
The analysis of the second solution (15.5.4.6) of the functional equation (15.5.4.4) in view of (15.5.4.21)

leads to the following two more general solutions of the differential equation (15.5.4.19):

w =
x

t + C1
+ ψ(t),

w = ϕ(t)e–λx –
ϕ′

t(t)
λϕ(t)

+ aλ,

where ϕ(t) and ψ(t) are arbitrary functions, and C1 and λ are arbitrary constants.

15.5.5. Titov–Galaktionov Method
15.5.5-1. Method description. Linear subspaces invariant under a nonlinear operator.

Consider the nonlinear evolution equation

∂w

∂t
= F [w], (15.5.5.1)

where F [w] is a nonlinear differential operator with respect to x,

F [w] ≡ F
(
x,w,

∂w

∂x
, . . . ,

∂mw

∂xm

)
. (15.5.5.2)

Definition. A finite-dimensional linear subspace

�� n =
{
ϕ1(x), . . . ,ϕn(x)

}
(15.5.5.3)

formed by linear combinations of linearly independent functions ϕ1(x), . . . ,ϕn(x) is called
invariant under the operator F if F [�� n] ⊆ �� n. This means that there exist functions
f1, . . . , fn such that

F

[ n∑

i=1

Ciϕi(x)

]
=

n∑

i=1

fi(C1, . . . ,Cn)ϕi(x) (15.5.5.4)

for arbitrary constants C1, . . . ,Cn.

Let the linear subspace (15.5.5.3) be invariant under the operator F . Then equation
(15.5.5.1) possesses generalized separable solutions of the form

w(x, t) =
n∑

i=1

ψi(t)ϕi(x). (15.5.5.5)

Here, the functions ψ1(t), . . . ,ψn(t) are described by the autonomous system of ordinary
differential equations

ψ′
i = fi(ψ1, . . . ,ψn), i = 1, . . . ,n, (15.5.5.6)

where the prime denotes a derivative with respect to t.
The following example illustrates the scheme for constructing generalized separable

solutions.
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Example 1. Consider the nonlinear second-order parabolic equation

∂w

∂t
= a

∂2w

∂x2 +

(
∂w

∂x

)2

+ kw2 + bw + c. (15.5.5.7)

Obviously, the nonlinear differential operator

F [w] = awxx + (wx)2 + kw2 + bw + c (15.5.5.8)

for k > 0 has a two-dimensional invariant subspace �� 2 =
{

1, cos(x
√
k )
}

. Indeed, for arbitrary C1 and C2 we
have

F
[
C1 + C2 cos(x

√
k )
]

= k(C2
1 + C2

2 ) + bC1 + c + C2(2kC1 – ak + b) cos(x
√
k ).

Therefore, there is a generalized separable solution of the form

w(x, t) = ψ1(t) + ψ2(t) cos(x
√
k ), (15.5.5.9)

where the functionsψ1(t) andψ2(t) are determined by the autonomous system of ordinary differential equations

ψ′
1 = k(ψ2

1 + ψ2
2) + bψ1 + c,

ψ′
2 = ψ2(2kψ1 – ak + b).

(15.5.5.10)

Remark 1. Example 3 below shows how one can find all two-dimensional linear subspaces invariant
under the nonlinear differential operator (15.5.5.8).

Remark 2. For k > 0, the nonlinear differential operator (15.5.5.8) has a three-dimensional invariant
subspace �� 3 =

{
1, sin(x

√
k ), cos(x

√
k )
}

; see Example 3.

Remark 3. For k < 0, the nonlinear differential operator (15.5.5.8) has a three-dimensional invariant
subspace �� 3 =

{
1, sinh(x

√
–k ), cosh(x

√
–k )
}

; see Example 3.

Remark 4. A more general equation (15.5.5.7), with a = a(t), b = b(t), and c = c(t) being arbitrary
functions, and k = const < 0, also admits a generalized separable solution of the form (15.5.5.9), where the
functions ψ1(t) and ψ2(t) are determined by the system of ordinary differential equations (15.5.5.10).

15.5.5-2. Some generalizations.

Likewise, one can consider a more general equation of the form

L1[w] = L2[U ], U = F [w], (15.5.5.11)

where L1[w] and L2[U ] are linear differential operators with respect to t,

L1[w] ≡
s1∑

i=0

ai(t)
∂iw

∂ti
, L2[U ] ≡

s2∑

j=0

bj(t)
∂jU

∂tj
, (15.5.5.12)

and F [w] is a nonlinear differential operator with respect to x,

F [w] ≡ F
(
t,x,w,

∂w

∂x
, . . . ,

∂mw

∂xm

)
, (15.5.5.13)

and may depend on t as a parameter.
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Let the linear subspace (15.5.5.3) be invariant under the operator F , i.e., for arbitrary
constants C1, . . . ,Cn the following relation holds:

F

[ n∑

i=1

Ciϕi(x)

]
=

n∑

i=1

fi(t,C1, . . . ,Cn)ϕi(x). (15.5.5.14)

Then equation (15.5.5.11) possesses generalized separable solutions of the form (15.5.5.5),
where the functions ψ1(t), . . . ,ψn(t) are described by the system of ordinary differential
equations

L1
[
ψi(t)

]
= L2

[
fi(t,ψ1, . . . ,ψn)

]
, i = 1, . . . ,n. (15.5.5.15)

Example 2. Consider the equation

a2(t)
∂2w

∂t2 + a1(t)
∂w

∂t
=
∂w

∂x

∂2w

∂x2 , (15.5.5.16)

which, in the special case of a2(t) = k2 and a1(t) = k1/t, is used for describing transonic gas flows (where t
plays the role of a spatial variable).

Equation (15.5.5.16) is a special case of equation (15.5.5.11), whereL1[w] =a2(t)wtt+a1(t)wt,L2[U ] =U ,
and F [w] = wxwxx. It can be shown that the nonlinear differential operator F [w] = wxwxx admits the three-
dimensional invariant subspace �� 3 =

{
1, x3/2, x3}. Therefore, equation (15.5.5.16) possesses generalized

separable solutions of the form
w(x, t) = ψ1(t) + ψ2(t)x3/2 + ψ3(t)x3,

where the functions ψ1(t), ψ2(t), and ψ3(t) are described by the system of ordinary differential equations

a2(t)ψ′′
1 + a1(t)ψ′

1 = 9
8ψ

2
2 ,

a2(t)ψ′′
2 + a1(t)ψ′

2 = 45
4 ψ2ψ3,

a2(t)ψ′′
3 + a1(t)ψ′

3 = 18ψ2
3 .

Remark. The operatorF [w] =wxwxx also has a four-dimensional invariant subspace �� 4 =
{

1,x,x2,x3}.
Therefore, equation (15.5.5.16) has a generalized separable solution of the form

w(x, t) = ψ1(t) + ψ2(t)x + ψ3(t)x2 + ψ4(t)x3.

15.5.5-3. How to find linear subspaces invariant under a given nonlinear operator.

The most difficult part in using the Titov–Galaktionov method for the construction of exact
solutions to specific equations is to find linear subspaces invariant under a given nonlinear
operator.

In order to determine basis functions ϕi = ϕi(x), let us substitute the linear combination
n∑

i=1
Ciϕi(x) into the differential operator (15.5.5.2). This is assumed to result in an expression

like

F

[ n∑

i=1

Ciϕi(x)

]
= A1(C)Φ1(X) +A2(C)Φ2(X) + · · · +Ak(C)Φk(X)

+B1(C)ϕ1(x) + B2(C)ϕ2(x) + · · · + Bn(C)ϕn(x), (15.5.5.17)

where Aj(C) and Bi(C) depend on C1, . . . ,Cn only, and the functionals Φj(X) depend
on x and are independent of C1, . . . ,Cn:

Aj(C) ≡ Aj(C1, . . . ,Cn), j = 1, . . . , k,
Bi(C) ≡ Bi(C1, . . . ,Cn), i = 1, . . . ,n,

Φj(X) ≡ Φj

(
x,ϕ1,ϕ′

1,ϕ′′
1 , . . . ,ϕn,ϕ′

n,ϕ′′
n

)
.

(15.5.5.18)
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Here, for simplicity, the formulas are written out for the case of a second-order differential
operator. For higher-order operators, the right-hand sides of relations (15.5.5.18) will
contain higher-order derivatives of ϕi. The functionals and functions Φ1(X), . . . , Φk(X),
ϕ1(x), . . . , ϕn(x) together are assumed to be linearly independent, and the Aj(C) are
linearly independent functions of C1, . . . ,Cn.

The basis functions are determined by solving the (usually overdetermined) system of
ordinary differential equations

Φj

(
x,ϕ1,ϕ′

1,ϕ′′
1 , . . . ,ϕn,ϕ′

n,ϕ′′
n

)
= pj,1ϕ1 + pj,2ϕ2 + · · · + pj,nϕn, j = 1, . . . , k,

(15.5.5.19)
where pj,i are some constants independent of the parameters C1, . . . ,Cn. If for some
collection of the constants pi,j , system (15.5.5.19) is solvable (in practice, it suffices to find
a particular solution), then the functions ϕi = ϕi(x) define a linear subspace invariant under
the nonlinear differential operator (15.5.5.2). In this case, the functions appearing on the
right-hand side of (15.5.5.4) are given by

fi(C1, . . . ,Cn) = p1,iA1(C1, . . . ,Cn) + p2,iA2(C1, . . . ,Cn) + · · ·
+ pk,iAk(C1, . . . ,Cn) +Bi(C1, . . . ,Cn).

Remark. The analysis of nonlinear differential operators is useful to begin with looking for two-
dimensional invariant subspaces of the form �� 2 = {1,ϕ(x)}.

Proposition 1. Let a nonlinear differential operator F [w] admit a two-dimensional
invariant subspace of the form �� 2 = {1,ϕ(x)}, where ϕ(x) = pϕ1(x) + qϕ2(x), p and q are
arbitrary constants, and the functions 1, ϕ1(x), ϕ2(x) are linearly independent. Then the
operator F [w] also admits a three-dimensional invariant subspace �� 2 = {1,ϕ1(x),ϕ2(x)}.

Proposition 2. Let two nonlinear differential operators F1[w] and F2[w] admit one
and the same invariant subspace �� n = {ϕ1(x), . . . ,ϕn(x)}. Then the nonlinear operator
pF1[w] + qF2[w], where p and q are arbitrary constants, also admits the same invariant
subspace.

Example 3. Consider the nonlinear differential operator (15.5.5.8). We look for its invariant subspaces of
the form �� 2 = {1,ϕ(x)}. We have

F [C1 + C2ϕ(x)] = C2
2 [(ϕ′

x)2 + kϕ2] + C2aϕ
′′
xx + kC2

1 + bC1 + c + (bC2 + 2kC1C2)ϕ.
Here, Φ1(X) = (ϕ′

x)2 + kϕ2 and Φ2(X) = aϕ′′
xx. Hence, the basis function ϕ(x) is determined by the

overdetermined system of ordinary differential equations

(ϕ′
x)2 + kϕ2 = p1 + p2ϕ,

ϕ′′
xx = p3 + p4ϕ,

(15.5.5.20)

where p1 = p1,1, p2 = p1,2, p3 = p2,1/a, and p4 = p2,2/a. Let us investigate system (15.5.5.20) for consistency.
To this end, we differentiate the first equation with respect to x and then divide by ϕ′

x to obtain ϕ′′
xx =

–kϕ + p2/2. Using this relation to eliminate the second derivative from the second equation in (15.5.5.20), we
get (p4 + k)ϕ + p3 – 1

2 p2 = 0. For this equation to be satisfied, the following identities must hold:

p4 = –k, p3 = 1
2 p2. (15.5.5.21)

The simultaneous solution of system (15.5.5.20) under condition (15.5.5.21) is given by

ϕ(x) = px2 + qx if k = 0 (p1 = q2, p2 = 4p),

ϕ(x) = p sin
(
x
√
k
)

+ q cos
(
x
√
k
)

if k > 0 (p1 = kp2 + kq2, p2 = 0),

ϕ(x) = p sinh
(
x
√

–k
)

+ q cosh
(
x
√

–k
)

if k < 0 (p1 = –kp2 + kq2, p2 = 0),

(15.5.5.22)

where p and q are arbitrary constants.
Since formulas (15.5.5.22) involve two arbitrary parameters p and q, it follows from Proposition 1 that the

nonlinear differential operator (15.5.5.8) admits the following invariant subspaces:

�� 3 =
{

1, x,x2} if k = 0,

�� 3 =
{

1, sin(x
√
k ), cos(x

√
k )
}

if k > 0,

�� 3 =
{

1, sinh(x
√

–k ), cosh(x
√

–k )
}

if k < 0.
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15.6. Method of Functional Separation of Variables
15.6.1. Structure of Functional Separable Solutions. Solution by

Reduction to Equations with Quadratic Nonlinearities

15.6.1-1. Structure of functional separable solutions.

Suppose a nonlinear equation forw =w(x, y) is obtained from a linear mathematical physics
equation for z = z(x, y) by a nonlinear change of variable w = F (z). Then, if the linear
equation for z admits separable solutions, the transformed nonlinear equation for w will
have exact solutions of the form

w(x, y) = F (z), where z =
n∑

m=1

ϕm(x)ψm(y). (15.6.1.1)

It is noteworthy that many nonlinear partial differential equations that are not reducible
to linear equations have exact solutions of the form (15.6.1.1) as well. We will call such
solutions functional separable solutions. In general, the functions ϕm(x), ψm(y), and F (z)
in (15.6.1.1) are not known in advance and are to be identified.

Main idea: The functional differential equation resulting from the substitution of
(15.6.1.1) in the original partial differential equation should be reduced to the standard
bilinear functional equation (15.5.1.3) or to a functional differential equation of the form
(15.5.1.3)–(15.5.1.4), and then the results of Subsections 15.5.3–15.5.5 should be used.

Remark. The function F (z) can be determined by a single ordinary differential equation or by an overde-
termined system of equations; both possibilities must be taken into account.

15.6.1-2. Solution by reduction to equations with quadratic (or power) nonlinearities.

In some cases, solutions of the form (15.6.1.1) can be searched for in two stages. First, one
looks for a transformation that would reduce the original equation to an equation with a
quadratic (or power) nonlinearity. Then the methods outlined in Subsections 15.5.3–15.5.5
are used for finding solutions of the resulting equation.

Table 15.5 gives examples of nonlinear heat equations with power, exponential, and
logarithmic nonlinearities reducible, by simple substitutions of the form w = F (z), to
quadratically nonlinear equations. For these equations, it can be assumed that the form of
the function F (z) in solution (15.6.1.1) is given a priori.

15.6.2. Special Functional Separable Solutions. Generalized
Traveling-Wave Solutions

15.6.2-1. Special functional separable and generalized traveling-wave solutions.

To simplify the analysis, some of the functions in (15.6.1.1) can be specified a priori and
the other functions will be defined in the analysis. We call such solutions special functional
separable solutions.

A generalized separable solution (see Section 15.5) is a functional separable solution of
the special form corresponding to F (z) = z.

Below we consider two simplest functional separable solutions of special forms:

w = F (z), z = ϕ1(x)y + ϕ2(x);
w = F (z), z = ϕ(x) + ψ(y).

(15.6.2.1)
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TABLE 15.5
Some nonlinear heat equations reducible to quadratically nonlinear equations by a transformation of the form

w = F (z); the constant σ is expressed in terms of the coefficients of the transformed equation

Original equation Transformation Transformed equation Form of solutions

∂w
∂t

= a ∂
∂x

(
wn ∂w

∂x

)

+ bw + cw1–n w = z1/n
∂z
∂t

= az ∂2z
∂x2 + a

n

(
∂z
∂x

)2

+ bnz + cn
z = ϕ(t)x2 + ψ(t)x + χ(t)

∂w
∂t

= a ∂
∂x

(
wn ∂w

∂x

)

+ bwn+1 + cw
w = z1/n

∂z
∂t

= az ∂2z
∂x2 + a

n

(
∂z
∂x

)2

+ bnz2 + cnz

z = ϕ(t)eσx + ψ(t)e–σx + χ(t)
z = ϕ(t) sin(σx) + ψ(t) cos(σx) + χ(t)

∂w
∂t

= a ∂
∂x

(
eλw ∂w

∂x

)

+ b + ce–λw
w = 1

λ
ln z ∂z

∂t
= az ∂2z

∂x2 + bλz + cλ z = ϕ(t)x2 + ψ(t)x + χ(t)

∂w
∂t

= a ∂
∂x

(
eλw ∂w

∂x

)

+ beλw + c
w = 1

λ
ln z ∂z

∂t
= az ∂2z

∂x2 + bz2 + cλz
z = ϕ(t)eσx + ψ(t)e–σx + χ(t)

z = ϕ(t) sin(σx) + ψ(t) cos(σx) + χ(t)

∂w
∂t

= a ∂2w
∂x2

+ bw lnw + cw
w = ez

∂z
∂t

= a ∂2z
∂x2 + a

(
∂z
∂x

)2

+ bz + c
z = ϕ(t)x2 + ψ(t)x + χ(t)

∂w
∂t

= a ∂2w
∂x2

+ bw ln2 w + cw
w = ez

∂z
∂t

= a ∂2z
∂x2 + a

(
∂z
∂x

)2

+ bz2 + c

z = ϕ(t)eσx + ψ(t)e–σx + χ(t)
z = ϕ(t) sin(σx) + ψ(t) cos(σx) + χ(t)

The first solution (15.6.2.1) will be called a generalized traveling-wave solution (x and y
can be swapped). After substituting this solution into the original equation, one should
eliminate y with the help of the expression for z. This will result in a functional differential
equation with two arguments, x and z. Its solution may be obtained with the methods
outlined in Subsections 15.5.3–15.5.5.

Remark 1. In functional separation of variables, searching for solutions in the formsw = F
(
ϕ(x) +ψ(y)

)

[it is the second solution in (15.6.2.1)] and w = F
(
ϕ(x)ψ(y)

)
leads to equivalent results because the two

forms are functionally equivalent. Indeed, we have F
(
ϕ(x)ψ(y)

)
= F1

(
ϕ1(x) + ψ1(y)

)
, where F1(z) = F (ez),

ϕ1(x) = lnϕ(x), and ψ1(y) = lnψ(y).

Remark 2. In constructing functional separable solutions with the form w = F
(
ϕ(x) + ψ(y)

)
[it is the

second solution in (15.6.2.1)], it is assumed that ϕ � const and ψ � const.

Example 1. Consider the third-order nonlinear equation

∂w

∂y

∂2w

∂x∂y
–
∂w

∂x

∂2w

∂y2 = a

(
∂2w

∂y2

)n–1
∂3w

∂y3 ,

which describes a boundary layer of a power-law fluid on a flat plate; w is the stream function, x and y are
coordinates along and normal to the plate, and n is a rheological parameter (the value n = 1 corresponds to a
Newtonian fluid). Searching for solutions in the form

w = w(z), z = ϕ(x)y + ψ(x)

leads to the equation ϕ′
x(w′

z)2 = aϕ2n(w′′
zz)n–1w′′′

zzz, which is independent of ψ. Separating the variables and
integrating yields

ϕ(x) = (ax + C)1/(1–2n), ψ(x) is arbitrary,

and w = w(z) is determined by solving the ordinary differential equation (w′
z)2 = (1 – 2n)(w′′

zz)n–1w′′′
zzz.

15.6.2-2. General scheme for constructing generalized traveling-wave solutions.

For visualization, the general scheme for constructing generalized traveling-wave solutions
for evolution equations is displayed in Fig. 15.3.
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Write out the functional differential equation in two arguments

Obtain (i) functional equation, (ii) determining system of ODEs

Solve the determining system of ordinary differential equations

Write out generalized solution of original equationtraveling-wave

Search for generalized solutionstraveling-wave

Apply splitting procedure

Treat functional equation (i)

Figure 15.3. Algorithm for constructing generalized traveling-wave solutions for evolution equations. Abbre-
viation: ODE stands for ordinary differential equation.

Example 2. Consider the nonstationary heat equation with a nonlinear source

∂w

∂t
=
∂2w

∂x2 + F(w). (15.6.2.2)

We look for functional separable solutions of the special form

w = w(z), z = ϕ(t)x + ψ(t). (15.6.2.3)

The functions w(z), ϕ(t), ψ(t), and F(w) are to be determined.
On substituting (15.6.2.3) into (15.6.2.2) and on dividing by w′

z , we have

ϕ′
tx + ψ′

t = ϕ2 w
′′
zz

w′
z

+
F(w)
w′

z

. (15.6.2.4)

We express x from (15.6.2.3) in terms of z and substitute into (15.6.2.4) to obtain a functional differential
equation with two variables, t and z:

–ψ′
t +

ψ

ϕ
ϕ′

t –
ϕ′

t

ϕ
z + ϕ2 w

′′
zz

w′
z

+
F(w)
w′

z

= 0,

which can be treated as the functional equation (15.5.4.4), where

Φ1 = –ψ′
t +

ψ

ϕ
ϕ′

t, Φ2 = –
ϕ′

t

ϕ
, Φ3 = ϕ2, Φ4 = 1,

Ψ1 = 1, Ψ2 = z, Ψ3 =
w′′

zz

w′
z

, Ψ4 =
F(w)
w′

z

.
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Substituting these expressions into relations (15.5.4.5) yields the system of ordinary differential equations

–ψ′
t +

ψ

ϕ
ϕ′

t = A1ϕ
2 +A2, –

ϕ′
t

ϕ
= A3ϕ

2 +A4,

w′′
zz

w′
z

= –A1 – A3z,
F(w)
w′

z

= –A2 – A4z,

(15.6.2.5)

where A1, . . . , A4 are arbitrary constants.
Case 1. For A4 ≠ 0, the solution of system (15.6.2.5) is given by

ϕ(t) = �

(
C1e

2A4t –
A3

A4

)–1/2

,

ψ(t) = –ϕ(t)

[
A1

∫
ϕ(t) dt +A2

∫
dt

ϕ(t)
+ C2

]
,

w(z) = C3

∫
exp
(
– 1

2A3z
2 – A1z

)
dz + C4,

F(w) = –C3(A4z +A2) exp
(
– 1

2A3z
2 – A1z

)
,

(15.6.2.6)

where C1, . . . , C4 are arbitrary constants. The dependence F = F(w) is defined by the last two relations in
parametric form (z is considered the parameter). If A3 ≠ 0 in (15.6.2.6), the source function is expressed in
terms of elementary functions and the inverse of the error function.

In the special case A3 = C4 = 0, A1 = –1, and C3 = 1, the source function can be represented in explicit
form as

F(w) = –w(A4 lnw +A2).

Case 2. For A4 = 0, the solution to the first two equations in (15.6.2.5) is given by

ϕ(t) = �
1√

2A3t + C1
, ψ(t) =

C2√
2A3t + C1

–
A1

A3
–
A2

3A3
(2A3t + C1),

and the solutions to the other equations are determined by the last two formulas in (15.6.2.6) where A4 = 0.

Remark. The algorithm presented in Fig. 15.3 can also be used for finding exact solutions of the more
general form w = σ(t)F (z) +ϕ1(t)x +ψ2(t), where z = ϕ1(t)x +ψ2(t). For an example of this sort of solution,
see Subsection 15.7.2 (Example 1).

15.6.3. Differentiation Method

15.6.3-1. Basic ideas of the method. Reduction to a standard equation.

In general, the substitution of expression (15.6.1.1) into the nonlinear partial differential
equation under study leads to a functional differential equation with three arguments—two
arguments are usual, x and y, and the third is composite, z. In some cases, the resulting
equation can be reduced by differentiation to a standard functional differential equation
with two arguments (either x or y is eliminated). To solve the two-argument equation, one
can use the methods outlined in Subsections 15.5.3–15.5.5.

15.6.3-2. Examples of constructing functional separable solutions.

Below we consider specific examples illustrating the application of the differentiation
method for constructing functional separable solutions of nonlinear equations.

Example 1. Consider the nonlinear heat equation

∂w

∂t
=
∂

∂x

[
F(w)

∂w

∂x

]
. (15.6.3.1)

We look for exact solutions with the form

w = w(z), z = ϕ(x) + ψ(t). (15.6.3.2)
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On substituting (15.6.3.2) into (15.6.3.1) and dividing by w′
z , we obtain the functional differential equation

with three variables
ψ′

t = ϕ′′
xxF(w) + (ϕ′

x)2H(z), (15.6.3.3)
where

H(z) = F(w)
w′′

zz

w′
z

+ F ′
z(w), w = w(z). (15.6.3.4)

Differentiating (15.6.3.3) with respect to x yields

ϕ′′′
xxxF(w) + ϕ′

xϕ
′′
xx[F ′

z(w) + 2H(z)] + (ϕ′
x)3H ′

z = 0. (15.6.3.5)

This functional differential equation with two variables can be treated as the functional equation (15.5.4.2).
This three-term functional equation has two different solutions. Accordingly, we consider two cases.

Case 1. The solutions of the functional differential equation (15.6.3.5) are determined from the system of
ordinary differential equations

F ′
z + 2H = 2A1F , H ′

z = A2F ,

ϕ′′′
xxx + 2A1ϕ

′
xϕ

′′
xx +A2(ϕ′

x)3 = 0,
(15.6.3.6)

where A1 and A2 are arbitrary constants.
The first two equations (15.6.3.6) are linear and independent of the third equation. Their general solution

is given by

F =

⎧
⎨

⎩

eA1z(B1e
kz +B2e

–kz) if A2
1 > 2A2,

eA1z(B1 +B2z) if A2
1 = 2A2,

eA1z[B1 sin(kz) +B2 cos(kz)] if A2
1 < 2A2,

H =A1F– 1
2 F ′

z , k=
√

|A2
1 – 2A2 |. (15.6.3.7)

Substituting H of (15.6.3.7) into (15.6.3.4) yields an ordinary differential equation for w = w(z). On
integrating this equation, we obtain

w = C1

∫
eA1z |F(z)|–3/2dz + C2, (15.6.3.8)

where C1 and C2 are arbitrary constants. The expression of F in (15.6.3.7) together with expression (15.6.3.8)
defines the function F = F(w) in parametric form.

Without full analysis, we will study the case A2 = 0 (k = A1) and A1 ≠ 0 in more detail. It follows from
(15.6.3.7) and (15.6.3.8) that

F(z) = B1e
2A1z +B2, H = A1B2, w(z) = C3(B1 + B2e

–2A1z)–1/2 + C2 (C1 = A1B2C3). (15.6.3.9)

Eliminating z yields

F(w) =
B2C

2
3

C2
3 –B1w2 . (15.6.3.10)

The last equation in (15.6.3.6) with A2 = 0 has the first integral ϕ′′
xx + A1(ϕ′

x)2 = const. The corresponding
general solution is given by

ϕ(x) = –
1

2A1
ln

[
D2

D1

1
sinh2(A1

√
D2 x +D3

)
]

for D1 > 0 and D2 > 0,

ϕ(x) = –
1

2A1
ln

[
–
D2

D1

1
cos2
(
A1

√
–D2 x +D3

)
]

for D1 > 0 and D2 < 0,

ϕ(x) = –
1

2A1
ln

[
–
D2

D1

1
cosh2(A1

√
D2 x +D3

)
]

for D1 < 0 and D2 > 0,

(15.6.3.11)

where D1, D2, and D3 are constants of integration. In all three cases, the following relations hold:

(ϕ′
x)2 = D1e

–2A1ϕ +D2, ϕ′′
xx = –A1D1e

–2A1ϕ. (15.6.3.12)

We substitute (15.6.3.9) and (15.6.3.12) into the original functional differential equation (15.6.3.3). With
reference to the expression of z in (15.6.3.2), we obtain the following equation for ψ = ψ(t):

ψ′
t = –A1B1D1e

2A1ψ +A1B2D2.

Its general solution is given by

ψ(t) =
1

2A1
ln

B2D2

D4 exp(–2A2
1B2D2t) + B1D1

, (15.6.3.13)

where D4 is an arbitrary constant.
Formulas (15.6.3.2), (15.6.3.9) for w, (15.6.3.11), and (15.6.3.13) define three solutions of the nonlinear

equation (15.6.3.1) with F(w) of the form (15.6.3.10) [recall that these solutions correspond to the special case
A2 = 0 in (15.6.3.7) and (15.6.3.8)].



702 NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

Case 2. The solutions of the functional differential equation (15.6.3.5) are determined from the system of
ordinary differential equations

ϕ′′′
xxx = A1(ϕ′

x)3, ϕ′
xϕ

′′
xx = A2(ϕ′

x)3,

A1F +A2(F ′
z + 2H) +H ′

z = 0.
(15.6.3.14)

The first two equations in (15.6.3.14) are compatible in the two cases

A1 = A2 = 0 =⇒ ϕ(x) = B1x +B2,

A1 = 2A2
2 =⇒ ϕ(x) = –

1
A2

ln |B1x +B2 |.
(15.6.3.15)

The first solution in (15.6.3.15) eventually leads to the traveling-wave solution w = w(B1x + B2t) of equa-
tion (15.6.3.1) and the second solution to the self-similar solution of the form w = w̃(x2/t). In both cases, the
function F(w) in (15.6.3.1) is arbitrary.

Example 2. Consider the nonlinear Klein–Gordon equation

∂2w

∂t2 –
∂2w

∂x2 = F(w). (15.6.3.16)

We look for functional separable solutions in additive form:

w = w(z), z = ϕ(x) + ψ(t). (15.6.3.17)

Substituting (15.6.3.17) into (15.6.3.16) yields

ψ′′
tt – ϕ′′

xx +
[
(ψ′

t)2 – (ϕ′
x)2] g(z) = h(z), (15.6.3.18)

where
g(z) = w′′

zz/w
′
z , h(z) = F(w(z)

)
/w′

z . (15.6.3.19)

On differentiating (15.6.3.18) first with respect to t and then with respect to x and on dividing by ψ′
tϕ

′
x, we

have
2(ψ′′

tt – ϕ′′
xx) g′z +

[
(ψ′

t)2 – (ϕ′
x)2] g′′zz = h′′

zz .

Eliminating ψ′′
tt – ϕ′′

xx from this equation with the aid of (15.6.3.18), we obtain
[
(ψ′

t)2 – (ϕ′
x)2](g′′zz – 2gg′z) = h′′

zz – 2g′zh. (15.6.3.20)

This relation holds in the following cases:

g′′zz – 2gg′z = 0, h′′
zz – 2g′zh = 0 (case 1),

(ψ′
t)2 = Aψ +B, (ϕ′

x)2 = –Aϕ +B – C, h′′
zz – 2g′zh = (Az + C)(g′′zz – 2gg′z) (case 2),

(15.6.3.21)

where A, B, and C are arbitrary constants. We consider both cases.

Case 1. The first two equations in (15.6.3.21) enable one to determine g(z) and h(z). Integrating the first
equation once yields g′z = g2 + const. Further, the following cases are possible:

g = k, (15.6.3.22a)

g = –1/(z + C1), (15.6.3.22b)

g = –k tanh(kz + C1), (15.6.3.22c)

g = –k coth(kz + C1), (15.6.3.22d)

g = k tan(kz + C1), (15.6.3.22e)

where C1 and k are arbitrary constants.
The second equation in (15.6.3.21) has a particular solution h = g(z). Hence, its general solution is

expressed by [e.g., see Polyanin and Zaitsev (2003)]:

h = C2g(z) + C3g(z)
∫

dz

g2(z)
, (15.6.3.23)

where C2 and C3 are arbitrary constants.
The functions w(z) and F(w) are found from (15.6.3.19) as

w(z) = B1

∫
G(z) dz + B2, F(w) = B1h(z)G(z), where G(z) = exp

[∫
g(z) dz

]
, (15.6.3.24)

and B1 and B2 are arbitrary constants (F is defined parametrically).
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Let us dwell on the case (15.6.3.22b). According to (15.6.3.23),

h = A1(z + C1)2 +
A2

z + C1
, (15.6.3.25)

where A1 = –C3/3 and A2 = –C2 are any numbers. Substituting (15.6.3.22b) and (15.6.3.25) into (15.6.3.24)
yields

w = B1 ln |z + C1 | +B2, F = A1B1(z + C1) +
A2B1

(z + C1)2 .

Eliminating z, we arrive at the explicit form of the right-hand side of equation (15.6.3.16):

F(w) = A1B1e
u +A2B1e

–2u, where u =
w – B2

B1
. (15.6.3.26)

For simplicity, we set C1 = 0, B1 = 1, and B2 = 0 and denote A1 = a and A2 = b. Thus, we have

w(z) = ln |z|, F(w) = aew + be–2w, g(z) = –1/z, h(z) = az2 + b/z. (15.6.3.27)

It remains to determine ψ(t) and ϕ(x). We substitute (15.6.3.27) into the functional differential equa-
tion (15.6.3.18). Taking into account (15.6.3.17), we find

[ψ′′
ttψ – (ψ′

t)2 – aψ3 – b] – [ϕ′′
xxϕ – (ϕ′

x)2 + aϕ3] + (ψ′′
tt – 3aψ2)ϕ – ψ(ϕ′′

xx + 3aϕ2) = 0. (15.6.3.28)

Differentiating (15.6.3.28) with respect to t and x yields the separable equation*

(ψ′′′
ttt – 6aψψ′

t)ϕ′
x – (ϕ′′′

xxx + 6aϕϕ′
x)ψ′

t = 0,

whose solution is determined by the ordinary differential equations

ψ′′′
ttt – 6aψψ′

t = Aψ′
t,

ϕ′′′
xxx + 6aϕϕ′

x = Aϕ′
x,

where A is the separation constant. Each equation can be integrated twice, thus resulting in

(ψ′
t)2 = 2aψ3 +Aψ2 + C1ψ + C2,

(ϕ′
x)2 = –2aϕ3 + Aϕ2 + C3ϕ + C4,

(15.6.3.29)

where C1, . . . , C4 are arbitrary constants. Eliminating the derivatives from (15.6.3.28) using (15.6.3.29), we
find that the arbitrary constants are related by C3 = –C1 and C4 = C2 + b. So, the functions ψ(t) and ϕ(x) are
determined by the first-order nonlinear autonomous equations

(ψ′
t)2 = 2aψ3 + Aψ2 + C1ψ + C2,

(ϕ′
x)2 = –2aϕ3 +Aϕ2 – C1ϕ + C2 + b.

The solutions of these equations are expressed in terms of elliptic functions.
For the other cases in (15.6.3.22), the analysis is performed in a similar way. Table 15.6 presents the final

results for the cases (15.6.3.22a)–(15.6.3.22e).

Case 2. Integrating the third and fourth equations in (15.6.3.21) yields

ψ = �
√
B t + D1, ϕ = �

√
B – C t + D2 if A = 0;

ψ =
1

4A
(At + D1)2 –

B

A
, ϕ = –

1
4A

(Ax +D2)2 +
B – C
A

if A ≠ 0;
(15.6.3.30)

where D1 and D2 are arbitrary constants. In both cases, the function F(w) in equation (15.6.3.16) is arbitrary.
The first row in (15.6.3.30) corresponds to the traveling-wave solution w = w(kx + λt). The second row leads
to a solution of the form w = w(x2 – t2).

* To solve equation (15.6.3.28), one can use the solution of functional equation (15.5.4.4) [see (15.5.4.5)].
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TABLE 15.6
Nonlinear Klein–Gordon equations ∂ttw – ∂xxw = F(w) admitting functional separable solutions of the form
w =w(z), z = ϕ(x) +ψ(t). Notation: A,C1, andC2 are arbitrary constants; σ = 1 for z > 0 and σ = –1 for z < 0

No. Right-hand side F(w) Solution w(z) Equations for ψ(t) and ϕ(x)

1 aw lnw + bw ez
(ψ′

t)
2 = C1e

–2ψ + aψ – 1
2 a + b +A,

(ϕ′
x)2 = C2e

–2ϕ – aϕ + 1
2 a+A

2 aew + be–2w ln |z|
(ψ′

t)
2 = 2aψ3 +Aψ2 +C1ψ +C2,

(ϕ′
x)2 = –2aϕ3 +Aϕ2 –C1ϕ +C2 + b

3 a sinw + b
(

sinw ln tan
w

4
+ 2 sin

w

4

)
4 arctan ez

(ψ′
t)

2 = C1e
2ψ +C2e

–2ψ + bψ + a +A,

(ϕ′
x)2 = –C2e

2ϕ –C1e
–2ϕ – bϕ +A

4 a sinhw + b
(
sinhw ln tanh

w

4
+ 2 sinh

w

2

)
2 ln
∣
∣
∣coth

z

2

∣
∣
∣

(ψ′
t)

2 = C1e
2ψ +C2e

–2ψ –σbψ + a+A,

(ϕ′
x)2 = C2e

2ϕ +C1e
–2ϕ +σbϕ +A

5 a sinhw + 2b
(
sinhw arctan ew/2+ cosh

w

2

)
2 ln
∣
∣∣tan

z

2

∣
∣∣

(ψ′
t)

2= C1 sin 2ψ +C2 cos 2ψ +σbψ + a+A,

(ϕ′
x)2= –C1 sin 2ϕ +C2 cos 2ϕ –σbϕ +A

15.6.4. Splitting Method. Solutions of Some Nonlinear Functional
Equations and Their Applications

15.6.4-1. Three-argument functional equations of special form. Splitting method.

The substitution of the expression

w = F (z), z = ϕ(x) + ψ(t) (15.6.4.1)

into a nonlinear partial differential equation sometimes leads to functional differential
equations of the form

f (t) + Φ1(x)Ψ1(z) + · · · + Φk(x)Ψk(z) = 0, (15.6.4.2)

where Φj(x) and Ψj(z) are functionals dependent on the variables x and z, respectively,

Φj(x) ≡ Φj

(
x,ϕ,ϕ′

x, . . . ,ϕ(n)
x

)
,

Ψj(z) ≡ Ψj

(
F ,F ′

z , . . . ,F (n)
z

)
.

(15.6.4.3)

It is reasonable to solve equation (15.6.4.2) by the splitting method. At the first stage,
we treat (15.6.4.2) as a purely functional equation, thus disregarding (15.6.4.3). Differenti-
ating (15.6.4.2) with respect to x yields the standard bilinear functional differential equation
in two independent variables x and z:

Φ′
1(x)Ψ1(z)+ · · ·+Φ′

k(x)Ψk(z)+Φ1(x)ϕ′(x)Ψ′
1(z)+ · · ·+ϕ′(x)Φk(x)Ψ′

k(z) = 0, (15.6.4.4)

which can be solved using the results of Subsections 15.5.3–15.5.5. Then, substituting the
solutions Φm(x) and Ψm(z) into (15.6.4.2) and taking into account the second relation in
(15.6.4.1), we find the function f (t). Further, substituting the functionals (15.6.4.3) into the
solutions of the functional equation (15.6.4.2), we obtain determining systems of ordinary
differential equations for F (z), ϕ(x), and ψ(t).
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Below, we discuss several types of three-argument functional equations of the form
(15.6.4.2) that arise most frequently in the functional separation of variables in nonlinear
equations of mathematical physics. The results are used for constructing exact solutions
for some classes of nonlinear heat and wave equations.

15.6.4-2. Functional equation f (t) + g(x) = Q(z), with z = ϕ(x) + ψ(t).

Here, one of the two functions f (t) andψ(t) is prescribed and the other is assumed unknown,
also one of the functions g(x) and ψ(x) is prescribed and the other is unknown, and the
function Q(z) is assumed unknown.*

Differentiating the equation with respect to x and t yields Q′′
zz = 0. Consequently, the

solution is given by

f (t) = Aψ(x) +B, g(x) = Aϕ(x) –B + C , Q(z) = Az + C , (15.6.4.5)

where A, B, and C are arbitrary constants.

15.6.4-3. Functional equation f (t) + g(x) + h(x)Q(z) +R(z) = 0, with z = ϕ(x) + ψ(t).

Differentiating the equation with respect to x yields the two-argument equation

g′x + h′xQ + hϕ′
xQ

′
z + ϕ′

xR
′
z = 0. (15.6.4.6)

Such equations were discussed in Subsections 15.5.3 and 15.5.4. Hence, the following
relations hold [see formulas (15.5.4.4) and (15.5.4.5)]:

g′x = A1hϕ
′
x +A2ϕ

′
x,

h′x = A3hϕ
′
x +A4ϕ

′
x,

Q′
z = –A1 – A3Q,

R′
z = –A2 – A4Q,

(15.6.4.7)

whereA1, . . . ,A4 are arbitrary constants. By integrating system (15.6.4.7) and substituting
the resulting solutions into the original functional equation, one obtains the results given
below.

Case 1. If A3 = 0 in (15.6.4.7), the corresponding solution of the functional equation is
given by

f = – 1
2A1A4ψ

2 + (A1B1 +A2 +A4B3)ψ – B2 – B1B3 – B4,

g = 1
2A1A4ϕ

2 + (A1B1 + A2)ϕ + B2,

h = A4ϕ +B1,
Q = –A1z +B3,

R = 1
2A1A4z

2 – (A2 +A4B3)z + B4,

(15.6.4.8)

where Ak and Bk are arbitrary constants and ϕ = ϕ(x) and ψ = ψ(t) are arbitrary functions.

* In similar equations with a composite argument, it is assumed that ϕ(x) � const and ψ(t) � const.
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Case 2. If A3 ≠ 0 in (15.6.4.7), the corresponding solution of the functional equation is

f = –B1B3e
–A3ψ +

(
A2 –

A1A4

A3

)
ψ – B2 – B4 –

A1A4

A2
3

,

g =
A1B1

A3
eA3ϕ +

(
A2 –

A1A4

A3

)
ϕ + B2,

h = B1e
A3ϕ –

A4

A3
,

Q = B3e
–A3z –

A1

A3
,

R =
A4B3

A3
e–A3z +

(
A1A4

A3
– A2

)
z +B4,

(15.6.4.9)

where Ak and Bk are arbitrary constants and ϕ = ϕ(x) and ψ = ψ(t) are arbitrary functions.
Case 3. In addition, the functional equation has two degenerate solutions:

f = A1ψ +B1, g = A1ϕ +B2, h = A2, R = –A1z – A2Q – B1 – B2, (15.6.4.10a)

where ϕ = ϕ(x), ψ = ψ(t), and Q = Q(z) are arbitrary functions; A1, A2, B1, and B2 are
arbitrary constants; and

f = A1ψ +B1, g = A1ϕ +A2h +B2, Q = –A2, R = –A1z –B1 –B2, (15.6.4.10b)

where ϕ = ϕ(x), ψ = ψ(t), and h = h(x) are arbitrary functions; andA1,A2,B1, and B2 are
arbitrary constants. The degenerate solutions (15.6.4.10a) and (15.6.4.10b) can be obtained
directly from the original equation or its consequence (15.6.4.6) using formulas (15.5.4.6).

Example 1. Consider the nonstationary heat equation with a nonlinear source

∂w

∂t
=
∂2w

∂x2 + F(w). (15.6.4.11)

We look for exact solutions of the form

w = w(z), z = ϕ(x) + ψ(t). (15.6.4.12)

Substituting (15.6.4.12) into (15.6.4.11) and dividing by w′
z yields the functional differential equation

ψ′
t = ϕ′′

xx + (ϕ′
x)2 w

′′
zz

w′
z

+
F(w(z))
w′

z

.

Let us solve it by the splitting method. To this end, we represent this equation as the functional equation
f (t) + g(x) + h(x)Q(z) +R(z) = 0, where

f (t) = –ψ′
t, g(x) = ϕ′′

xx, h(x) = (ϕ′
x)2, Q(z) = w′′

zz/w
′
z , R(z) = f (w(z))/w′

z . (15.6.4.13)

On substituting the expressions of g and h of (15.6.4.13) into (15.6.4.8)–(15.6.4.10), we arrive at overde-
termined systems of equations for ϕ = ϕ(x).

Case 1. The system
ϕ′′

xx = 1
2A1A4ϕ

2 + (A1B1 +A2)ϕ +B2,

(ϕ′
x)2 = A4ϕ +B1

following from (15.6.4.8) and corresponding to A3 = 0 in (15.6.4.7) is consistent in the cases

ϕ = C1x + C2 for A2 = –A1C
2
1 , A4 = B2 = 0, B1 = C2

1 ,

ϕ = 1
4A4x

2 + C1x + C2 for A1 = A2 = 0, B1 = C2
1 – A4C2, B2 = 1

2A4,
(15.6.4.14)

where C1 and C2 are arbitrary constants.
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The first solution in (15.6.4.14) withA1 ≠ 0 leads to a right-hand side of equation (15.6.4.11) containing the
inverse of the error function [the form of the right-hand side is identified from the last two relations in (15.6.4.8)
and (15.6.4.13)]. The second solution in (15.6.4.14) corresponds to the right-hand side ofF(w) =k1w lnw+k2w
in (15.6.4.11). In both cases, the first relation in (15.6.4.8) is, taking into account that f = –ψ′

t, a first-order
linear solution with constant coefficients, whose solution is an exponential plus a constant.

Case 2. The system

ϕ′′
xx =

A1B1

A3
eA3ϕ +

(
A2 –

A1A4

A3

)
ϕ + B2,

(ϕ′
x)2 = B1e

A3ϕ –
A4

A3
,

following from (15.6.4.9) and corresponding to A3 ≠ 0 in (15.6.4.7), is consistent in the following cases:

ϕ = �

√
–A4/A3 x + C1 for A2 = A1A4/A3, B1 = B2 = 0,

ϕ = –
2
A3

ln |x| + C1 for A1 = 1
2A

2
3, A2 = A4 = B2 = 0, B1 = 4A–2

3 e
–A3C1 ,

ϕ = –
2
A3

ln
∣
∣cos
( 1

2

√
A3A4 x + C1

)∣∣ + C2 for A1 = 1
2A

2
3, A2 = 1

2A3A4, B2 = 0, A3A4 > 0,

ϕ = –
2
A3

ln
∣
∣sinh

( 1
2

√
–A3A4 x + C1

)∣∣ + C2 for A1 = 1
2A

2
3, A2 = 1

2A3A4, B2 = 0, A3A4 < 0,

ϕ = –
2
A3

ln
∣
∣cosh

( 1
2

√
–A3A4 x + C1

)∣∣ + C2 for A1 = 1
2A

2
3, A2 = 1

2A3A4, B2 = 0, A3A4 < 0,

where C1 and C2 are arbitrary constants. The right-hand sides of equation (15.6.4.11) corresponding to these
solutions are represented in parametric form.

Case 3. Traveling-wave solutions of the nonlinear heat equation (15.6.4.11) and solutions of the linear equa-
tion (15.6.4.11) with F ′

w = const correspond to the degenerate solutions of the functional equation (15.6.4.10).

15.6.4-4. Functional equation f (t) + g(x)Q(z) + h(x)R(z) = 0, with z = ϕ(x) + ψ(t).

Differentiating with respect to x yields the two-argument functional differential equation

g′xQ + gϕ′
xQ

′
z + h′xR + hϕ′

xR
′
z = 0, (15.6.4.15)

which coincides with equation (15.5.4.4), up to notation.
Nondegenerate case. Equation (15.6.4.15) can be solved using formulas (15.5.4.5). In

this way, we arrive at the system of ordinary differential equations

g′x = (A1g +A2h)ϕ′
x,

h′x = (A3g +A4h)ϕ′
x,

Q′
z = –A1Q – A3R,

R′
z = –A2Q – A4R,

(15.6.4.16)

where A1, . . . , A4 are arbitrary constants.
The solution of equation (15.6.4.16) is given by

g(x) = A2B1e
k1ϕ +A2B2e

k2ϕ,

h(x) = (k1 –A1)B1e
k1ϕ + (k2 –A1)B2e

k2ϕ,

Q(z) = A3B3e
–k1z +A3B4e

–k2z,

R(z) = (k1 –A1)B3e
–k1z + (k2 –A1)B4e

–k2z,

(15.6.4.17)

where B1, . . . , B4 are arbitrary constants and k1 and k2 are roots of the quadratic equation

(k –A1)(k – A4) –A2A3 = 0. (15.6.4.18)



708 NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

In the degenerate case k1 = k2, the terms ek2ϕ and e–k2z in (15.6.4.17) must be replaced
by ϕek1ϕ and ze–k1z , respectively. In the case of purely imaginary or complex roots, one
should extract the real (or imaginary) part of the roots in solution (15.6.4.17).

On substituting (15.6.4.17) into the original functional equation, one obtains conditions
that must be met by the free coefficients and identifies the function f (t), specifically,

B2 = B4 = 0 =⇒ f (t) = [A2A3 + (k1 –A1)2]B1B3e
–k1ψ,

B1 = B3 = 0 =⇒ f (t) = [A2A3 + (k2 –A1)2]B2B4e
–k2ψ,

A1 = 0 =⇒ f (t) = (A2A3 + k2
1 )B1B3e

–k1ψ + (A2A3 + k2
2)B2B4e

–k2ψ .
(15.6.4.19)

Solution (15.6.4.17), (15.6.4.19) involves arbitrary functions ϕ = ϕ(x) and ψ = ψ(t).
Degenerate case. In addition, the functional equation has two degenerate solutions,

f = B1B2e
A1ψ , g = A2B1e

–A1ϕ, h = B1e
–A1ϕ, R = –B2e

A1z –A2Q,

where ϕ = ϕ(x), ψ = ψ(t), and Q = Q(z) are arbitrary functions; A1, A2, B1, and B2 are
arbitrary constants; and

f = B1B2e
A1ψ , h = –B1e

–A1ϕ – A2g, Q = A2B2e
A1z , R = B2e

A1z ,

where ϕ = ϕ(x), ψ = ψ(t), and g = g(x) are arbitrary functions; and A1, A2, B1, and B2
are arbitrary constants. The degenerate solutions can be obtained immediately from the
original equation or its consequence (15.6.4.15) using formulas (15.5.4.6).

Example 2. For the nonlinear heat equation (15.6.3.1), searching for exact solutions in the formw = w(z),
with z = ϕ(x) + ψ(t), leads to the functional equation (15.6.3.3), which coincides with the equation
f (t) + g(x)Q(z) + h(x)R(z) = 0 if

f (t) = –ψ′
t, g(x) = ϕ′′

xx, h(x) = (ϕ′
x)2, Q(z) = F(w), R(z) =

[F(w)w′
z]′z

w′
z

, w = w(z).

15.7. Direct Method of Symmetry Reductions of
Nonlinear Equations

15.7.1. Clarkson–Kruskal Direct Method

15.7.1-1. Simplified scheme. Examples of constructing exact solutions.

The basic idea of the simplified scheme is as follows: for an equation with the unknown
function w = w(x, t), an exact solution is sought in the form

w = f (t)u(z) + g(x, t), z = ϕ(t)x + ψ(t). (15.7.1.1)

The functions f (t), g(x, t), ϕ(t), and ψ(t) are found in the subsequent analysis and are
chosen in such a way that, ultimately, the function u(z) would satisfy a single ordinary
differential equation.

Below we consider some cases in which it is possible to construct exact solutions of
nonlinear equations of the form (15.7.1.1).
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Example 1. Consider the generalized Burgers–Korteweg–de Vries equation

∂w

∂t
= a

∂nw

∂xn
+ bw

∂w

∂x
. (15.7.1.2)

We seek its exact solution in the form (15.7.1.1). Inserting (15.7.1.1) into (15.7.1.2), we obtain

afϕnu(n)
z + bf 2ϕuu′

z + f (bgϕ – ϕ′
tx – ψ′

t)u′
z + (bfgx – f ′

t)u + ag(n)
x + bggx – gt = 0. (15.7.1.3)

Equating the functional coefficients of u(n)
z and uu′

z in (15.7.1.3), we get

f = ϕn–1. (15.7.1.4)

Further, equating the coefficient of u′
z to zero, we obtain

g =
1
bϕ

(ϕ′
tx + ψ′

t). (15.7.1.5)

Inserting the expressions (15.7.1.4) and (15.7.1.5) into (15.7.1.3), we arrive at the relation

ϕ2n–1(au(n)
z + buu′

z) + (2 – n)ϕn–2ϕ′
tu +

1
bϕ2

[
(2ϕ2

t – ϕϕtt)x + 2ϕtψt – ϕψtt

]
= 0.

Dividing each term by ϕ2n–1 and then eliminating x with the help of the relation x = (z – ψ)/ϕ, we obtain

au(n)
z + buu′

z + (2 – n)ϕ–n–1ϕ′
tu +

1
b
ϕ–2n–2(2ϕ2

t – ϕϕtt)z +
1
b
ϕ–2n–2(ϕψϕtt – ϕ2ψtt + 2ϕϕtψt – 2ψϕ2

t) = 0.

(15.7.1.6)
Let us require that the functional coefficient of u and the last term be constant,

ϕ–n–1ϕ′
t = –A, ϕ–2n–2(ϕψϕtt – ϕ2ψtt + 2ϕϕtψt – 2ψϕ2

t) = B,

where A and B are arbitrary. As a result, we arrive at the following system of ordinary differential equations
for ϕ and ψ:

ϕt = –Aϕn+1,

ψtt + 2Aϕnψt + A2(1 – n)ϕ2nψ = –Bϕ2n.
(15.7.1.7)

Using (15.7.1.6) and (15.7.1.7), we obtain an equation for u(z),

au(n)
z + buu′

z +A(n – 2)u +
A2

b
(1 – n)z +

B

b
= 0. (15.7.1.8)

For A ≠ 0, the general solution of equations (15.7.1.7) has the form

ϕ(t) = (Ant + C1)–
1
n ,

ψ(t) = C2(Ant + C1)
n–1
n + C3(Ant + C1)–

1
n +

B

A2(n – 1)
,

(15.7.1.9)

where C1, C2, and C3 are arbitrary constants.
Formulas (15.7.1.1), (15.7.1.4), (15.7.1.5), and (15.7.1.9), together with equation (15.7.1.8), describe an

exact solution of the generalized Burgers–Korteweg–de Vries equation (15.7.1.2).

Example 2. Consider the Boussinesq equation

∂2w

∂t2 +
∂

∂x

(
w
∂w

∂x

)
+ a

∂4w

∂x4 = 0. (15.7.1.10)

Just as in Example 1, we seek its solutions in the form (15.7.1.1), where the functions f (t), g(x, t), ϕ(t), and
ψ(t) are found in the subsequent analysis. Substituting (15.7.1.1) into (15.7.1.10) yields

afϕ4u′′′′ + f 2ϕ2uu′′ + f (z2
t + gϕ2)u′′ + f 2ϕ2(u′)2 + (fztt + 2fgxϕ + 2ftzt)u

′

+ (fgxx + ftt)u + gtt + ggxx + g2
x + ag(4)

x = 0.
(15.7.1.11)

Equating the functional coefficients of u′′′′ and uu′′, we get

f = ϕ2. (15.7.1.12)
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Equating the functional coefficient of u′′ to zero and taking into account (15.7.1.12), we obtain

g = –
1
ϕ2 (ϕ′

tx + ψ′
t)2. (15.7.1.13)

Substituting the expressions (15.7.1.12) and (15.7.1.13) into (15.7.1.11), we arrive at the relation

ϕ6(au′′′′ + uu′′ + u′2) + ϕ2(xϕtt + ψtt)u′ + 2ϕϕttu –
[
ϕ–2(ϕtx + ψt)2]

tt
+ 6ϕ–4ϕ2

t(ϕtx + ψt)2 = 0.

Let us perform the double differentiation of the expression in square brackets and then divide all terms by ϕ6.
Excluding x with the help of the relation x = (z – ψ)/ϕ, we get

au′′′′ + uu′′ + (u′)2 + ϕ–5(ϕttz + ϕψtt – ψϕtt)u
′ + 2ϕ–5ϕttu + · · · = 0. (15.7.1.14)

Let us require that the functional coefficient of u′ be a function of only one variable, z, i.e.,

ϕ–5(ϕttz + ϕψtt – ψϕtt) = ϕ–5ϕttz + ϕ–5(ϕψtt – ψϕtt) ≡ Az +B,

whereA andB are arbitrary constants. Hence, we obtain the following system of ordinary differential equations
for the functions ϕ and ψ:

ϕtt = Aϕ5,

ψtt = (Aψ +B)ϕ4.
(15.7.1.15)

Let us eliminate the second and the third derivatives of the functions ϕ and ψ from (15.7.1.14). As a result, we
arrive at the following ordinary differential equation for the function u(z):

au′′′′ + uu′′ + (u′)2 + (Az +B)u′ + 2Au – 2(Az +B)2 = 0. (15.7.1.16)

Formulas (15.7.1.1), (15.7.1.12), and (15.7.1.13), together with equations (15.7.1.15)–(15.7.1.16), describe
an exact solution of the Boussinesq equation (15.7.1.10).

15.7.1-2. Description of the Clarkson–Kruskal direct method.

1◦. The basic idea of the method is the following: for an equation with the unknown
function w = w(x, t), an exact solution is sought in the form

w(x, t) = f (x, t)u(z) + g(x, t), z = z(x, t). (15.7.1.17)

The functions f (x, t), g(x, t), and z(x, t) are determined in the subsequent analysis, so that
ultimately one obtains a single ordinary differential equation for the function u(z).

2◦. Inserting (15.7.1.17) into a nonlinear partial differential equation with a quadratic or a
power nonlinearity, we obtain

Φ1(x, t)Π1[u] + Φ2(x, t)Π2[u] + · · · + Φm(x, t)Πm[u] = 0. (15.7.1.18)

Here, Πk[u] are differential forms that are the products of nonnegative integer powers of
the function u and its derivatives u′z , u′′zz , etc., and Φk(x, t) depend on the functions f (x, t),
g(x, t), and z(x, t) and their partial derivatives with respect to x and t. Suppose that the
differential form Π1[u] contains the highest-order derivative with respect to z. Then the
function Φ1(x, t) is used as a normalizing factor. This means that the following relations
should hold:

Φk(x, t) = Γk(z)Φ1(x, t), k = 1, . . . ,m, (15.7.1.19)

where Γk(z) are functions to be determined.
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3◦. The representation of a solution in the form (15.7.1.17) has “redundant” generality and
the functions f , g, u, and z are ambiguously determined. In order to remove the ambiguity,
we use the following three degrees of freedom in the determination of the above functions:

(a) if f = f (x, t) has the form f = f0(x, t)Ω(z), then we can take Ω ≡ 1, which corresponds
to the replacement u(z) → u(z)/Ω(z);

(b) if g = g(x, t) has the form g = g0(x, t) + f (x, t)Ω(z), then we can take Ω ≡ 0, which
corresponds to the replacement u(z) → u(z) – Ω(z);

(c) if z = z(x, t) is determined by an equation of the form Ω(z) = h(x, y), where Ω(z) is
any invertible function, then we can take Ω(z) = z, which corresponds to the replacement
z → Ω–1(z).

4◦. Having determined the functions Γk(z), we substitute (15.7.1.19) into (15.7.1.18) to
obtain an ordinary differential equation for u(z),

Π1[u] + Γ2(z)Π2[u] + · · · + Γm(z)Πm[u] = 0. (15.7.1.20)

Below we illustrate the main points of the Clarkson–Kruskal direct method by an
example.

Example 3. We seek a solution of the Boussinesq equation (15.7.1.10) in the form (15.7.1.17). We have

afz4
xu

′′′′ + a(6fz2
xzxx + 4fxz

3
x)u′′′ + f 2z2

xuu
′′ + · · · = 0. (15.7.1.21)

Here, we have written out only the first three terms and have omitted the arguments of the functions f and z.
The functional coefficients of u′′′′ and uu′′ should satisfy the condition [see (15.7.1.19)]:

f 2z2
x = afz4

xΓ3(z),

where Γ3(z) is a function to be determined. Hence, using the degree of freedom mentioned in Item 3◦(a), we
choose

f = z2
x, Γ3(z) = 1/a. (15.7.1.22)

Similarly, the functional coefficients of u′′′′ and u′′′ must satisfy the condition

6fz2
xzxx + 4fxz

3
x = fz4

xΓ2(z), (15.7.1.23)

where Γ2(z) is another function to be determined. Hence, with (15.7.1.22), we find

14 zxx/zx = Γ2(z)zx.

Integrating with respect to x yields

ln zx = I(z) + ln ϕ̃(t), I(z) =
1

14

∫
Γ2(z) dz,

where ϕ̃(t) is an arbitrary function. Integrate again to obtain
∫
e–I(z) dz = ϕ̃(t)x + ψ̃(t),

where ψ̃(t) is another arbitrary function. We have a function of z on the left and, therefore, using the degree of
freedom mentioned in Item 3◦(c), we obtain

z = xϕ(t) + ψ(t), (15.7.1.24)

where ϕ(t) and ψ(t) are to be determined.
From formulas (15.7.1.22)–(15.7.1.24) it follows that

f = ϕ2(t), Γ2(z) = 0. (15.7.1.25)

Substituting (15.7.1.24) and (15.7.1.25) into (15.7.1.17), we obtain a solution of the form (15.7.1.1) with
the function f defined by (15.7.1.12). Thus, the general approach based on the representation of a solution
in the form (15.7.1.17) ultimately leads us to the same result as the approach based on the more simple
formula (15.7.1.1).
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Remark 1. In a similar way, it can be shown that formulas (15.7.1.1) and (15.7.1.17) used for the
construction of an exact solution of the generalized Burgers–Korteweg–de Vries equation (15.7.1.2) lead us to
the same result.

Remark 2. The above examples clearly show that it is more reasonable to perform the initial analysis of
specific equations on the basis of the simpler formula (15.7.1.1) rather than the general formula (15.7.1.17).

Remark 3. A more general scheme of the Clarkson–Kruskal direct method is as follows: for an equation
with the unknown function w = w(x, t), an exact solution is sought in the form

w(x, t) = F
(
x, t,u(z)

)
, z = z(x, t). (15.7.1.26)

The functions F (x, t, u) and z(x, t) should be chosen so as to obtain ultimately a single ordinary differential
equation for u(z). Unlike formulas (15.7.1.1) and (15.7.1.17), the relationship between the functions w and u
in (15.7.1.26) can be nonlinear.

15.7.2. Some Modifications and Generalizations

15.7.2-1. Symmetry reductions based on the generalized separation of variables.

1◦. The Clarkson–Kruskal direct method based on the representation of solutions in the
forms (15.7.1.17) and (15.7.1.26) attaches particular significance to the function u = u(z),
because the choice of the other functions is meant to ensure a single ordinary differential
equation for u(z). However, in some cases it is reasonable to combine these methods with
the ideas of the generalized and functional separation of variables, with all determining
functions being regarded as equally important. Then the function u(z) is described by an
overdetermined system of equations.

2◦. Exact solutions of nonlinear partial differential equations with quadratic or power
nonlinearities may be sought in the form (15.7.1.1) with g(x, t) = g1(t)x+g0(t). Substituting
(15.7.1.1) into an equation under consideration, we replace x by x = [z – ψ(t)]/ϕ(t). As
a result, we obtain a functional differential equation with two arguments, t and z. Its
solution can sometimes be obtained by the differentiation and splitting methods outlined in
Subsections 15.5.3 and 15.5.4.

Example 1. Consider the equation of an axisymmetric steady hydrodynamic boundary layer

∂w

∂y

∂2w

∂x∂y
–
∂w

∂x

∂2w

∂y2 =
∂

∂y

(
y
∂2w

∂y2

)
+ F(x), (15.7.2.1)

where w is the stream function, y = 1
4 r

2, and x and r are axial and radial coordinates.
Its solution is sought in the form

w(x, y) = f (x)u(z) + g(x), z = ϕ(x)y + ψ(x). (15.7.2.2)

Let us substitute this expression into equation (15.7.2.1) and eliminate y using the relation y = [z –ψ(x)]/ϕ(x).
After the division by ϕ2f , we arrive at the functional differential equation

(zu′′
zz)′z – ψu′′′

zzz + f ′
xuu

′′
zz + g′xu

′′
zz –

(fϕ)′x
ϕ

(u′
z)2 +

F
fϕ2 = 0. (15.7.2.3)

General methods for solving such equations are outlined in Section 15.5. Here we use a simplified scheme
for the construction of exact solutions. Assume that the functional coefficients of uu′′

zz , u′′
zz , (u′

z)2, and 1 are
linear combinations of the coefficients 1 and ψ of the highest-order terms (zu′′

zz)′z and u′′′
zzz, respectively. We

have
f ′

x = A1 +B1ψ,

g′x = A2 +B2ψ,

–(fϕ)′x/ϕ = A3 +B3ψ,

F/(fϕ2) = A4 +B4ψ,

(15.7.2.4)
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where Ak and Bk are arbitrary constants. Let us substitute the expressions of (15.7.2.4) into (15.7.2.3) and
sum up the terms proportional to ψ (it is assumed that ψ ≠ const). Equating the functional coefficient of ψ to
zero, we obtain the following overdetermined system:

(zu′′
zz)′z + A1uu

′′
zz +A2u

′′
zz +A3(u′

z)2 +A4 = 0, (15.7.2.5)

–u′′′
zzz + B1uu

′′
zz +B2u

′′
zz +B3(u′

z)2 +B4 = 0. (15.7.2.6)

Case 1. Let
A1 = A3 = A4 = 0, A2 = –n. (15.7.2.7)

Then the solution of equation (15.7.2.5) has the form

u(z) =
C1

n(n + 1)
zn+1 + C2z + C3, (15.7.2.8)

where C1,C2, and C3 are integration constants. The solution (15.7.2.8) of equation (15.7.2.5) can be a solution
of equation (15.7.2.6) only if the following conditions are satisfied:

n = –2, B1 = B3, C1 = –4/B1 , C2
2 = –B4/B1, C3 = –B2/B1. (15.7.2.9)

Let us insert the coefficients (15.7.2.7), (15.7.2.9) into system (15.7.2.4). Integrating yields

g(x) = 2x – C3f , ϕ =
C4

f 2 , ψ = –
C1

4
f ′

x, F = –(C2C4)2 f
′
x

f 3 , (15.7.2.10)

where f = f (x) is an arbitrary function.
Formulas (15.7.2.2), (15.7.2.8), (15.7.2.10) define an exact solution of the axisymmetric boundary layer

equation (15.7.2.1).

Case 2. For

B1 = B3 = B4 = 0, B2 = –λ, A2 = 0, A3 = –A1, A4 = λ2/A1 (15.7.2.11)

a common solution of system (15.7.2.5), (15.7.2.6) can be written in the form

u(z) =
1
A1

(C1e
–λz + λz – 3). (15.7.2.12)

A solution of system (15.7.2.4) with coefficients (15.7.2.11) is described by the formulas

f = A1x + C2, ϕ = C3, ψ = –
1
λ
g′x, F =

(C3λ)2

A1
(A1x + C2), (15.7.2.13)

where C1, C2, and C3 are arbitrary constants and g = g(x) is an arbitrary function.
Formulas (15.7.2.2), (15.7.2.12), (15.7.2.13) define an exact solution of the axisymmetric boundary layer

equation (15.7.2.1).

Case 3. System (15.7.2.5)–(15.7.2.6) also admits solutions of the form

u(z) = C1z
2 + C2z + C3,

with constants C1, C2, and C3 related to An and Bn. The corresponding solution is easier to obtain directly
from the original equation (15.7.2.1) by substituting w = ϕ2(x)y2 + ϕ1(x)y + ϕ0(x) into it, which corresponds
to the method of generalized separation of variables. This results in the solution

w(x, y) = C1y
2 + ϕ(x)y +

1
4C1

ϕ2(x) –
1

2C1

∫
F(x) dx – x + C3,

where ϕ(x) is an arbitrary function and C1 and C3 are arbitrary constants.

Example 2. Consider the equation with a cubic nonlinearity

∂w

∂t
+ σw

∂w

∂x
= a

∂2w

∂x2 + b3w
3 + b2w

2 + b1w + b0. (15.7.2.14)

Let us seek its solution in the form

w(x, t) = f (x, t)u(z) + λ, z = z(x, t), (15.7.2.15)
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where the functions f = f (x, t), z = z(x, t), and u = u(z), as well as the constant λ, are to be determined.
Substituting (15.7.2.15) into equation (15.7.2.14), we obtain

afz2
xu

′′ – σf 2zxuu
′ + (afzxx + 2afxzx – σλfzx – fzt)u′ + b3f

3u3

+ (3b3λf
2 + b2f

2 – σffx)u2 + (3b3λ
2f + 2b2λf + b1f + afxx – σλfx – ft)u

+ b3λ
3 + b2λ

2 + b1λ + b0 = 0.

(15.7.2.16)

From the overdetermined system of ordinary differential equations resulting from the condition of proportion-
ality of the three functions u′′, uu′, and u3 and that of the two functions u′ and u2, it follows that

u(z) = 1/z, (15.7.2.17)

where the constant factor is taken equal to unity [this factor can be included in f , since formula (15.7.2.15)
contains the product of u and f ]. Let us substitute (15.7.2.17) into (15.7.2.16) and represent the resulting
expression as a finite expansion in negative powers of z. Equating the functional coefficient of z–3 to zero, we
obtain

f = βzx, (15.7.2.18)

where β is a root of the quadratic equation

b3β
2 + σβ + 2a = 0. (15.7.2.19)

Equating the functional coefficients of the other powers of z to zero and taking into account (15.7.2.18), we
find that

zt – (3a + βσ)zxx + (σλ + βb2 + 3βb3λ)zx = 0 (coefficient of z–2),

zxt – azxxx + σλzxx – (b1 + 2λb2 + 3b3λ
2)zx = 0 (coefficient of z–1),

b3λ
3 + b2λ

2 + b1λ + b0 = 0 (coefficient of z0).

(15.7.2.20)

Here, the first two linear partial differential equations form an overdetermined system for the function z(x, t),
while the last cubic equation serves for the determination of the constant λ.

Using (15.7.2.15), (15.7.2.17), and (15.7.2.18), we can write out a solution of equation (15.7.2.14) in the
form

w(x, t) =
β

z

∂z

∂x
+ λ. (15.7.2.21)

Let β be a root of the quadratic equation (15.7.2.19), and λ be a root of the last (cubic) equation in
(15.7.2.20). According to the value of the constant b3, one should consider two cases.

1◦. Case b3 ≠ 0. From the first two equations in (15.7.2.20), one obtains

zt + p1zxx + p2zx = 0,

zxxx + q1zxx + q2zx = 0,

where

p1 = –βσ – 3a, p2 = λσ + βb2 + 3βλb3, q1 = –
βb2 + 3βλb3

βσ + 2a
, q2 = –

3b3λ
2 + 2b2λ + b1

βσ + 2a
.

Four situations are possible.
1.1. For q2 ≠ 0 and q2

1 ≠ 4q2, we have

z(x, t) = C1 exp(k1x + s1t) + C2 exp(k2x + s2t) + C3,

kn = – 1
2 q1 �

1
2

√
q2

1 – 4q2, sn = –k2
np1 – knp2,

where C1, C2, and C3 are arbitrary constants; n = 1, 2.
1.2. For q2 ≠ 0 and q2

1 = 4q2,

z(x, t) = C1 exp(kx + s1t) + C2(kx + s2t) exp(kx + s1t) + C3,

k = – 1
2 q1, s1 = – 1

4 p1q
2
1 + 1

2 p2q1, s2 = – 1
2 p1q

2
1 + 1

2 p2q1.

1.3. For q2 = 0 and q1 ≠ 0,

z(x, t) = C1(x – p2t) + C2 exp[–q1x + q1(p2 – p1q1)t] + C3.

1.4. For q2 = q1 = 0,

z(x, t) = C1(x – p2t)
2 + C2(x – p2t) – 2C1p1t + C3.

2◦. Case b3 = 0, b2 ≠ 0. The solutions are determined by (15.7.2.21), where

β = –
2a
σ

, z(x, t) = C1 + C2 exp

[
Ax +A

(
b1σ

2b2
+

2ab2

σ

)
t

]
, A =

σ(b1 + 2b2λ)
2ab2

,

and λ = λ1,2 are roots of the quadratic equation b2λ
2 + b1λ + b0 = 0.
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15.7.2-2. Similarity reductions in equations with three or more independent variables.

The procedure of the construction of exact solutions to nonlinear equations with three or
more independent variables sometimes involves (at intermediate stages) the solution of
functional differential equations considered in Subsections 15.5.3 and 15.5.4.

Example 3. Consider the nonlinear nonstationary wave equation anisotropic in one of the directions

∂2w

∂t2 = a
∂2w

∂x2 +
∂

∂y

[
(bw + c)

∂w

∂y

]
. (15.7.2.22)

Let us seek its solution in the form

w = U (z) + f (x, t), z = y + g(x, t). (15.7.2.23)

Substituting (15.7.2.23) into equation (15.7.2.22), we get

[(bU + ag2
x – g2

t + bf + c)U ′
z]′z + (agxx – gtt)U

′
z + afxx – ftt = 0.

Suppose that the functions f and g satisfy the following overdetermined system of equations:

afxx – ftt = C1, (15.7.2.24)

agxx – gtt = C2, (15.7.2.25)

ag2
x – g2

t + bf = C3, (15.7.2.26)

whereC1,C2, andC3 are arbitrary constants. Then the functionU (z) is determined by the autonomous ordinary
differential equation

[(bU + c + C3)U ′
z]′z + C2U

′
z + C1 = 0. (15.7.2.27)

The general solutions of equations (15.7.2.24)–(15.7.2.25) are expressed as

f = ϕ1(ξ) + ψ1(η) – 1
2C1t

2,

g = ϕ2(ξ) + ψ2(η) – 1
2C2t

2,

ξ = x + t
√
a, η = x – t

√
a.

Let us insert these expressions into equation (15.7.2.26) and then eliminate t with the help of the formula

t =
ξ – η
2
√
a

. After simple transformations, we obtain a functional differential equation with two arguments,

bϕ1(ξ)+C2ξϕ
′
2(ξ)–kξ2–C3+bψ1(η)+C2ηψ

′
2(η)–kη2+ψ′

2(η)[4aϕ′
2(ξ)–C2ξ]+η[2kξ–C2ϕ

′
2(ξ)] = 0, (15.7.2.28)

where

k =
1

8a
(bC1 + 2C2

2 ).

Equation (15.7.2.28) can be solved by the splitting method described in Section 15.5. According to the
simplified scheme, set

bϕ1(ξ) + C2ξϕ
′
2(ξ) – kξ2 – C3 = A1,

4aϕ′
2(ξ) – C2ξ = A2,

2kξ – C2ϕ
′
2(ξ) = A3,

(15.7.2.29)

where A1, A2, and A3 are constants. The common solution of system (15.7.2.29) has the form

ϕ1(ξ) = –
C2

2

8ab
ξ2 –

BC2

b
ξ +

A1 + C3

b
, ϕ2(ξ) =

C2

8a
ξ2 +Bξ (15.7.2.30)

and corresponds to the following values of the constants:

A1 is arbitrary, A2 = 4aB, A3 = –BC2, B is arbitrary, C1 = –
C2

2

b
, C2 and C3 are arbitrary, k =

C2
2

8a
.

(15.7.2.31)
From (15.7.2.28) and (15.7.2.29) we obtain an equation that establishes a relation between the functions ψ1
and ψ2,

A1 + bψ1(η) + C2ηψ
′
2(η) – kη2 +A2ψ

′
2(η) +A3η = 0. (15.7.2.32)
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Hence, taking into account (15.7.2.31), we get

ψ1(η) = –
1
b

(C2η + 4aB)ψ′
2(η) +

1
b

(
C2

2

8a
η2 + BC2η – A1

)
, ψ2(η) is an arbitrary function.

Ultimately, we find the functions that determine solution (15.7.2.23):

f (x, t) = –
C2

2

2
√
a b

xt +
C2

2

2b
t2 –

2
√
aBC2

b
t +

C3

b
–

1
b

(C2η + 4aB)ψ′
2(η),

g(x, t) =
C2

8a
(
x2 + 2

√
a xt – 3at2) +B(x +

√
a t) + ψ2(η), η = x – t

√
a.

Remark. In the special case of a = 1, b < 0, and c > 0, equation (15.7.2.22) describes spatial transonic
flows of an ideal polytropic gas.

15.8. Classical Method of Studying Symmetries of
Differential Equations

Preliminary remarks. The classical method of studying symmetries of differential equa-
tions* presents a routine procedure that allows to obtain the following:

(i) transformations under which equations are invariant (such transformations bring the
given equation to itself);

(ii) new variables (dependent and independent) in which equations become considerably
simpler.

The transformations of (i) convert a solution of an equation to the same or another
solution of this equation. In the former case, we have an invariant solution, which can be
found by symmetry reduction, rewriting the equation in new, fewer variables. In the latter
case, we have noninvariant solutions, which may be “multiplied” to a family of solutions.

Remark 1. In a sense, the classical method of symmetry analysis of differential equations may be treated
as significant extension of the similarity method, outlined in Subsection 15.3.3.

Remark 2. Subsections 15.8.1–15.8.3 give a description of the classical method in a nontraditional way,
with minimal use of the special (group) terminology, for the reader’s easier understanding. Subsection 15.8.4
will explain the origin of the term “Lie group analysis.”

15.8.1. One-Parameter Transformations and Their Local Properties

15.8.1-1. One-parameter transformations. Infinitesimal operator.

We will consider invertible transformations of the form

x̄ = ϕ1(x, y,w, ε), x̄|ε=0 = x,
ȳ = ϕ2(x, y,w, ε), ȳ|ε=0 = y,
w̄ = ψ(x, y,w, ε), w̄|ε=0 = w,

(15.8.1.1)

where ϕ1, ϕ2, and ψ are sufficiently smooth functions of their arguments, and ε is a real pa-
rameter. It is assumes that the successive application (composition) of two transformations
of the form (15.8.1.1) with parameters ε and ε̄ is equivalent to a single transformation of the
form with parameter ε + ε̄ (this means that such transformations have the group property).

* It is also known as the Lie group analysis of differential equations or the classical method of symmetry
reductions.
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Remark. In the special case of transformations in the plane, the functions ϕ1 and ϕ2 in (15.8.1.1) are
independent of w, and ψ = w (i.e., w̄ = w).

The expansion of (15.8.1.1) into truncated Taylor series in ε about ε = 0 to linear terms
gives

x̄ � x + εξ(x, y,w), ȳ � y + εη(x, y,w), w̄ � w + εζ(x, y,w), (15.8.1.2)

where

ξ(x, y,w) =
∂ϕ1

∂ε

∣∣
∣
ε=0

, η(x, y,w) =
∂ϕ2

∂ε

∣∣
∣
ε=0

, ζ(x, y,w) =
∂ψ

∂ε

∣∣
∣
ε=0

.

The linear first-order differential operator

X = ξ(x, y,w)
∂

∂x
+ η(x, y,w)

∂

∂y
+ ζ(x, y,w)

∂

∂w
, (15.8.1.3)

which corresponds to the infinitesimal transformation (15.8.1.2), is called an infinitesimal
operator.*

THEOREM (LIE). Suppose the coordinates ξ(x, y,w), η(x, y,w), ζ(x, y, z) of the in-
finitesimal operator (15.8.1.3) are known. Then the transformation (15.8.1.1), having the
group property, can be completely recovered by solving the Lie equations

dϕ1

dε
= ξ(ϕ1,ϕ2,ψ),

dϕ2

dε
= η(ϕ1,ϕ2,ψ),

dψ

dε
= ζ(ϕ1,ϕ2,ψ)

with the initial conditions

ϕ1|ε=0 = x, ϕ2|ε=0 = y, ψ|ε=0 = w.

15.8.1-2. Invariant of an infinitesimal operator. Transformations in the plane.

An invariant of the operator (15.8.1.3) is a function I(x, y,w) that satisfies the condition

I(x̄, ȳ, w̄) = I(x, y,w).

Let us expand this equation in Taylor series in the small parameter ε, divide the resulting
relation by ε, and the proceed to the limit as ε → 0 to obtain a linear partial differential
equation for I:

XI = ξ(x, y,w)
∂I

∂x
+ η(x, y,w)

∂I

∂y
+ ζ(x, y,w)

∂I

∂w
= 0. (15.8.1.4)

Let the associated characteristic system of ordinary differential equations (see Paragraph
13.1.1-3)

dx

ξ(x, y,w)
=

dy

η(x, y,w)
=

dw

ζ(x, y,w)
(15.8.1.5)

* In the literature, it is also known as an infinitesimal generator or a group generator. In this book, we call
an operator (15.8.1.3) an infinitesimal operator, a group generator, or, for short, an operator.
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TABLE 15.7
One-parameter transformations in the plane

Name Transformation Transformation Invariant

Translation in the x-axis x̄ = x + ε, ȳ = y X = ∂
∂x

I1 = y

Translation along the straight line
ax + by = 0 x̄ = x + bε, ȳ = y – aε X = b ∂

∂x – a ∂
∂y I1 = ax + by

Rotation
x̄ = x cos ε + y sin ε,
ȳ = y cos ε – x sin ε

X = y ∂
∂x – x ∂

∂y I1 = x2 + y2

Galileo transformation x̄ = x + εy, ȳ = y X = y ∂
∂x

I1 = y

Lorentz transformation
x̄ = x cosh ε + y sinh ε,
ȳ = y cosh ε + x sinh ε

X = y ∂
∂x + x ∂

∂y I1 = y2 – x2

Uniform extension x̄ = xeε, ȳ = yeε X = x ∂
∂x + y ∂

∂y I1 = y/x

Nonuniform extension x̄ = xeaε, ȳ = yebε X = ax ∂
∂x + by ∂

∂y I1 = |y|a|x|–b

have the functionally independent integrals

I1(x, y,w) = C1, I2(x, y,w) = C2, (15.8.1.6)

where C1 and C2 are arbitrary constants. Then the general solution of equation (15.8.1.4)
has the from

I = Ψ(I1, I2), (15.8.1.7)

where Ψ(I1, I2) is an arbitrary function of two arguments, I1 =I1(x, y,w) and I2 =I2(x, y,w).
This means that the operator (15.8.1.3) has two functionally independent invariants,

I1 and I2, and any function Φ(x, y,w) invariant under the operator (15.8.1.3) can be repre-
sented as a function of the two invariants.

Table 15.7 lists the most common transformations in the plane and the corresponding
operator (15.8.1.3) and invariants; only one invariant is specified, with the other being the
same: I2 = w.

15.8.1-3. Formulas for derivatives. Coordinates of the first and second prolongations.

In the new variables (15.8.1.1), the first derivatives become

∂w̄

∂x̄
� ∂w

∂x
+ εζ1,

∂w̄

∂ȳ
� ∂w

∂y
+ εζ2. (15.8.1.8)

Here, ζ1 and ζ2 are the coordinates of the first prolongation, which are found as

ζ1 = Dx(ζ) – wxDx(ξ) – wyDx(η) = ζx + (ζw – ξx)wx – ηxwy – ξww
2
x – ηwwxwy,

ζ2 = Dy(ζ) – wxDy(ξ) – wyDy(η) = ζy – ξywx + (ζw – ηy)wy – ξwwxwy – ηww
2
y,

(15.8.1.9)
where Dx and Dy are the total differential operators with respect to x and y:

Dx =
∂

∂x
+ wx

∂

∂w
+ wxx

∂

∂wx
+ wxy

∂

∂wy
+ · · · ,

Dy =
∂

∂y
+ wy

∂

∂w
+ wxy

∂

∂wy
+ wyy

∂

∂wy
+ · · · .

(15.8.1.10)
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Let us verify that the first formula in (15.8.1.8) holds. Obviously,

w̄x = w̄x̄x̄x + w̄ȳȳx, w̄y = w̄x̄x̄y + w̄ȳ ȳy . (15.8.1.11)

Differentiating (15.8.1.2) with respect to x and y and retaining terms to the first order of ε, we have

x̄x = 1 + εDxξ, x̄y = εDyξ,

ȳx = εDxη, ȳy = 1 + εDyη,

w̄x = wx + εDxζ, w̄y = wy + εDyζ.

(15.8.1.12)

In order to calculate w̄x̄, let us eliminate w̄ȳ from (15.8.1.11) and then substitute the derivatives x̄x, x̄y, ȳx,
ȳy , w̄x, w̄y for their respective expression from (15.8.1.12) to obtain

w̄x̄ =
wx + ε(Dxζ + wxDyη – wyDxη) + ε2(DxζDyη –DxηDyζ)

1 + ε(Dxξ +Dyη) + ε2(DxξDyη –DxηDyξ)
.

Expanding into a series in ε, we have

w̄x̄ 	 wx + εζ1, ζ1 = Dxζ – wxDxξ – wyDxη,

which was to be proved. The coordinate ζ2 is calculated likewise.

The second derivatives in the new variables (15.8.1.1) are calculated as

∂2w̄

∂x̄2 � ∂2w

∂x2 + εζ11,
∂2w̄

∂x̄∂ȳ
� ∂2w

∂x∂y
+ εζ12,

∂2w̄

∂ȳ2 � ∂2w

∂y2 + εζ22. (15.8.1.13)

Here, the ζij are the coordinates of the second prolongation and are found as

ζ11 = Dx(ζ1) – wxxDx(ξ) – wxyDx(η),
ζ12 = Dy(ζ1) – wxxDy(ξ) – wxyDy(η),
ζ22 = Dy(ζ2) – wxyDy(ξ) – wyyDy(η),

or, in detailed form,

ζ11 = ζxx + (2ζwx – ξxx)wx – ηxxwy + (ζww – 2ξwx)w2
x – 2ηwxwxwy –

– ξwww
3
x – ηwww

2
xwy + (ζw – 2ξx – 3ξwwx – ηwwy)wxx – 2(ηx + ηwwx)wxy,

ζ12 = ζxy + (ζwy – ξxy)wx + (ζwx – ηxy)wy – ξwyw
2
x –

– (ζww – ξwx – ηwy)wxwy – ηwxw
2
y – ξwww

2
xwy – ηwwwxw

2
y–

– (ξy + ξwwy)wxx + (ζw – ξx – ηy – 2ξwwx – 2ηwwy)wxy – (ηx + ηwwx)wyy ,

ζ22 = ζyy – ξyywx + (2ζwy – ηyy)wy – 2ξwywxwy + (ζww – 2ηwy)w2
y –

– ξwwwxw
2
y – ηwww

3
y – 2(ξy + ξwwy)wxy + (ζw – 2ηy – ξwwx – 3ηwwy)wyy .

(15.8.1.14)
The above formulas for the coordinates of the first and second prolongation, (15.8.1.9)

and (15.8.1.14), will be required later for the analysis of differential equations.

15.8.2. Symmetries of Nonlinear Second-Order Equations.
Invariance Condition

15.8.2-1. Invariance condition. Splitting in derivatives.

We will consider second-order partial differential equations in two independent variables

F

(
x, y,w,

∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y
,
∂2w

∂y2

)
= 0. (15.8.2.1)
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The procedure for finding symmetries* of equation (15.8.2.1) consists of several stages.
At the first stage, one requires that equation (15.8.2.1) must be invariant (preserve its form)
under transformations (15.8.1.1), so that

F

(
x̄, ȳ, w̄,

∂w̄

∂x̄
,
∂w̄

∂ȳ
,
∂2w̄

∂x̄2 ,
∂2w̄

∂x̄∂ȳ
,
∂2w̄

∂ȳ2

)
= 0. (15.8.2.2)

Let us expand this equation into a series in ε about ε = 0, taking into account that the leading
term vanishes, according to (15.8.2.1). Using formulas (15.8.1.2), (15.8.1.8), (15.8.1.13)
and retaining the terms to the first-order of ε, we obtain

X
2
F

(
x, y,w,

∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y
,
∂2w

∂y2

) ∣∣
∣∣
F=0

= 0, (15.8.2.3)

where

X
2
F = ξ

∂F

∂x
+η

∂F

∂y
+ζ

∂F

∂w
+ζ1

∂F

∂wx
+ζ2

∂F

∂wy
+ζ11

∂F

∂wxx
+ζ12

∂F

∂wxy
+ζ22

∂F

∂wyy
. (15.8.2.4)

The coordinates of the first, ζi, and the second, ζij , prolongation are defined by formulas
(15.8.1.9) and (15.8.1.14). Relation (15.8.2.3) is called the invariance condition, and the
operator X

2
is called the second prolongation of the operator (15.8.1.3).

At the second stage, either the derivative ∂2w
∂y2 or ∂2w

∂x2 is eliminated from (15.8.2.3) using
equation (15.8.2.1). The resulting relation is then written as a polynomial in the “inde-
pendent variables,” the various combinations of the products of the derivatives (involving
various powers of wx, wy, wxx, and wxy):

∑
Ak1k2k3k4 (wx)k1 (wy)k2 (wxx)k3 (wxy)k4 = 0, (15.8.2.5)

where the functional coefficients Ak1k2k3k4 are dependent on x, y, w, ξ, η, ζ and the deriva-
tives of ξ, η, ζ only and are independent of the derivatives of w. Equation (15.8.2.5) is
satisfied if all Ak1k2k3k4 are zero. Thus, the invariance condition is split to an overdeter-
mined determining system, resulting from equating all functional coefficients of the various
products of the remaining derivatives to zero (recall that the unknowns ξ, η, and ζ are
independent of wx, wy, wxx, and wxy).

At the third stage, one solves the determining system and finds admissible coordinates
ξ, η, and ζ of the infinitesimal operator (15.8.1.3).

Remark 1. It should be noted that the functional coefficients Ak1k2k3k4 and the determining system are
linear in the unknowns ξ, η, and ζ.

Remark 2. An invariant I that is a solution of equation (15.8.1.4) is also a solution of the equation X
2
I = 0.

The procedure for finding symmetries of differential equations is illustrated below by
specific examples.

15.8.2-2. Examples of finding symmetries of nonlinear equations.

Example 1. Consider the two-dimensional stationary heat equation with a nonlinear source

∂2w

∂x2 +
∂2w

∂y2 = f (w). (15.8.2.6)

The corresponding left-hand side of equation (15.8.2.1) is F = wxx + wyy – f (w).

* A symmetry of an equation is a transformation that preserves its form.
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Infinitesimal operators X admitted by the equations are sought in the form (15.8.1.4), where the coordinates
ξ = ξ(x, y,w), η = η(x, y,w), ζ = ζ(x, y,w) are yet unknown and are to be determined in the subsequent analysis.
In view of identity F = wxx + wyy – f (w), the invariance condition (15.8.2.3)–(15.8.2.4) is written as

ζ22 + ζ11 – ζf ′(w) = 0.

Substituting here the expressions of the coordinates of the second prolongation (15.8.1.14) and then replacing
wyy by f (w) – wxx, which follows from equation (15.8.2.6), we obtain

– 2ξwwxwxx + 2ηwwywxx – 2ηwwxwxy – 2ξwwywxy – 2(ξx – ηy)wxx – 2(ξy + ηx)wxy–

– ξwww
3
x – ηwww

2
xwy – ξwwwxw

2
y – ηwww

3
y + (ζww – 2ξxw)w2

x – 2(ξyw + ηxw)wxwy+

+ (ζww – 2ηyw)w2
y + (2ζxw – ξxx – ξyy – fξw)wx + (2ζyw – ηxx – ηyy – 3fηw)wy+

+ ζxx + ζyy + f (ζw – 2ηy) – ζf ′ = 0,

where f = f (w) and f ′ = df/dw. Equating the coefficients of all combinations of the derivatives to zero, we
have the system

wxwxx: ξw = 0,

wywxx: ηw = 0,

wxx: ξx – ηy = 0,

wxy: ξy + ηx = 0,

w2
x: ζww – 2ξwx = 0,

wxwy: ηwx + ξwy = 0,

wx: 2ζwx – ξxx – ξyy – ξwf (w) = 0,

w2
y: ζww – 2ηwy = 0,

wy: 2ζwy – ηxx – ηyy – 3ηwf (w) = 0,

1: ζxx + ζyy – f ′(w)ζ + f (w)(ζw – 2ηy) = 0.

(15.8.2.7)

Here, the left column indicates a combination of the derivatives and the right column gives the associated
coefficient. The coefficients of wywxy , wxwxy, w3

x, w2
xwy, wxw

2
y, w3

y either are among those already listed
or are their differential consequences, and therefore they are omitted. It follows from the first, second, and fifth
equations and their consequences that

ξ = ξ(x,y), η = η(x, y), ζ = a(x, y)w + b(x,y). (15.8.2.8)

The third and fourth equations of system (15.8.2.7) give

ξxx + ξyy = 0, ηxx + ηyy = 0. (15.8.2.9)

Substituting (15.8.2.8) into the seventh and ninth equations of (15.8.2.7) and using (15.8.2.9), we find that
ax = ay = 0, whence

a(x, y) = a = const. (15.8.2.10)

In view of (15.8.2.8) and (15.8.2.10), system (15.8.2.7) becomes

ξx – ηy = 0,

ξy + ηx = 0,

bxx + byy – awf ′(w) – bf ′(w) + f (w)(a – 2ηy) = 0.

(15.8.2.11)

For arbitrary f , it follows that a = b = ηy = 0, and then ξ = C1y +C2, η = –C1x +C3, and ζ = 0. By setting one
of the constants to unity and the others to zero, we establish that the original equation admits three different
operators:

X1 = ∂x (C2 = 1, C1 = C3 = 0);

X2 = ∂y (C3 = 1, C1 = C2 = 0);

X3 = y∂x – x∂y (C1 = 1, C2 = C3 = 0).

(15.8.2.12)

The first two operators define a translation along the x- and y-axis. The third operator represents a rotational
symmetry.

Let us dwell on the third equation of system (15.8.2.11). If the relation

(aw + b)f ′(w) – f (w)(a – 2ηy) = 0 (15.8.2.13)
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holds, there may exist other solutions of system (15.8.2.11) that will result in operators other than (15.8.2.12).
Let us study two cases: a ≠ 0 and a = 0.

Case 1. If a ≠ 0, the solution of equation (15.8.2.13) gives

f (w) = C(aw + b)1 2γ
a ,

where γ = ηy = const and b = const. Therefore, for f (w) = wk , equation (15.8.2.6) admits another operator,

X4 = x∂x + y∂y +
2

1 – k
w∂w,

that defines a nonuniform extension.

Case 2. If a = 0, we have
f (w) = Ceλw,

where λ = const. Then b = –2ηy/λ, and the functions ξ and η satisfy the first two equations (15.8.2.11), which
coincide with the Cauchy–Riemann conditions for analytic functions. The real and the imaginary part of any
analytic function, Φ(z) = ξ(x, y) + iη(x, y), of the complex variable z = x + iy satisfies the Cauchy–Riemann
conditions. In particular, if b = const and f (w) = ew, the equation admits another operator,

X4 = x∂x + y∂y – 2∂w,

which corresponds to extension in x and y with simultaneous translation in w.

Example 2. Consider the nonlinear nonstationary heat equation

∂w

∂t
=

∂

∂x

[
f (w)

∂w

∂x

]
. (15.8.2.14)

In the invariance condition (15.8.2.3)–(15.8.2.4), one should set

y = t, F = wt – f (w)wxx – f ′(w)w2
x, ζ12 = ζ22 = 0.

The coordinates of the first and second prolongations, ζ1, ζ2, and ζ11, are expressed by (15.8.1.9) and (15.8.1.14)
with y = t. In the resulting equation, one should replace wt with the right-hand side of equation (15.8.2.14)
and equate the coefficients of the various combinations of the remaining derivatives to zero, thus arriving at the
system of equations

wxwxx: 2f (w)[ηwxf (w) + ξw] + f ′(w)ηx = 0,

wxx: ζf ′(w) – f 2(w)ηxx – f (w)(2ξx – ηt) = 0,

wxwxt: f (w)ηw = 0,

wxt: f (w)ηx = 0,

w4
x: f ′(w)ηw + f (w)ηww = 0,

w3
x: 2[f ′(w)]2ηx + f (w)ξww + f ′(w)ξw + 2f (w)f ′(w)ηwx = 0,

w2
x: f (w)ζww + f ′′(w)ζ – 2f (w)ξwx – f ′(w)(2ξx – ηt) + f ′(w)ζw – f (w)f ′(w)ηww = 0,

wx: 2f (w)ζwx + 2f ′(w)ζx – f (w)ξxx + ξt = 0,

1: ζt – f (w)ζxx = 0.

Here, the left column indicates a combination of the derivatives, and the right column gives the associated
equation (to a constant factor); identities and differential consequences are omitted. Since f (w) � 0, it follows
from the third and fourth equations of the system that η = η(t). Then from the first and second equations, we
have

ξ = ξ(x, t), ζ =
f (w)(2ξx – ηt)

f ′(w)
.

With these relations, the remaining equations of the system become

[ff ′f ′′′ – f (f ′′)2 + (f ′)2f ′′](2ξx – ηt) = 0,

f [4ff ′′ – 7(f ′)2]ξxx – (f ′)2ξt = 0,

2fξxxx – 2ξxt + ηtt = 0;
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the equations have been canceled by nonzero factors. In the general case, for arbitrary function f , from the
first equation it follows that 2ξx – ηt = 0 and from the second it follows that ξt = 0. The third equation gives
ξ = C1 + C2x, and then η = 2C2t + C3. Therefore, for arbitrary f , equation (15.8.2.14) admits three operators

X1 = ∂x (C1 = 1, C2 = C3 = 0);

X2 = ∂t (C3 = 1, C1 = C2 = 0);

X3 = 2t∂t + x∂x (C2 = 1, C1 = C3 = 0).

Similarly, it can be shown that the following special forms of f result in additional operators:

1. f = ew: X4 = x∂x + 2∂w;

2. f = wk, k ≠ 0, –4/3: X4 = kx∂x + 2w∂w;

3. f = w–4/3: X4 = 2x∂x – 3w∂w, X5 = x2∂x – 3xw∂w.

Example 3. Consider now the nonlinear wave equation

∂2w

∂t2 =
∂

∂x

[
f (w)

∂w

∂x

]
. (15.8.2.15)

In the invariance condition (15.8.2.3)–(15.8.2.4), one should set

y = t, F = wtt – f (w)wxx – f ′(w)w2
x, ζ2 = ζ12 = 0,

and use the coordinates of the first and second prolongations, ζ1, ζ11, and ζ22, expressed by (15.8.1.9) and
(15.8.1.14) with y = t. In the resulting equation, one should replace wtt with the right-hand side of equation
(15.8.2.15) and equate the coefficients of the various combinations of the remaining derivatives to zero, thus
arriving at the system of equations

wxwxx: f (w)ξw = 0,

wtwxx: f (w)ηw = 0,

wxx: f ′(w)ζ + 2f (w)(ηt – ξx) = 0,

wxt: f (w)ηx – ξt = 0,

w3
x: f ′(w)ξw + f (w)ξww = 0,

w2
xwt: f (w)ηww – f ′(w)ηw = 0,

w2
x: f (w)ζww + f ′(w)ζw + f ′′(w)ζ – 2f (w)ξwx – 2f ′(w)(ξx – ηt) = 0,

wxwt: 2f ′(w)ηx + 2f (w)ηwx – 2ξwt = 0,

wx: 2f ′(w)ζx – f (w)ξxx + 2f (w)ζwx + ξtt = 0,

w2
t : ζww – 2ηwt = 0,

wt: f (w)ηxx + 2ζwt – ηtt = 0,

1: ζtt – f (w)ζxx = 0.

Identities and differential consequences have been omitted. Since f (w) ≠ const, it follows from the first two
equations that ξ = ξ(x, t) and η = η(x, t). The tenth equation of the system becomes ζww = 0, thus giving
ζ = a(x, t)w + b(x, t). As a result, the system becomes

wf ′(w)a(x, y) + f ′(w)b(x, y) + 2f (w)(ηt – ξx) = 0,

f ′(w)a(x, y) + wf ′′(w)a(x, y) + f ′′(w)b(x, y) – 2f ′(w)(ξx – ηt) = 0,

2f ′(w)(axw + bx) – f (w)ξxx + 2f (w)ax = 0,

2at – ηtt = 0,

attw + btt – f (w)(axxw + bxx) = 0.

For arbitrary function f (w), we have a = b = 0, ξxx = 0, ηtt = 0, and ξx – ηt = 0. Integrating yields three
operators:

X1 = ∂x, X2 = ∂t, X3 = x∂x + t∂t.
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Similarly, it can be established that the following special forms of f result in additional operators:

1. f = ew: X4 = x∂x + 2∂w;

2. f = wk, k ≠ 0, –4/3, –4: X4 = kx∂x + 2w∂w;

3. f = w–4/3: X4 = 2x∂x – 3w∂w, X5 = x2∂x – 3xw∂w;

4. f = w–4: X4 = 2x∂x – w∂w, X5 = t2∂t + tw∂w.

The symmetries obtained with the procedure presented can be used tofind exact solutions
of the differential equations considered (see below).

15.8.3. Using Symmetries of Equations for Finding Exact Solutions.
Invariant Solutions

15.8.3-1. Using symmetries of equations for constructing one-parameter solutions.

Suppose a particular solution,
w = g(x, y), (15.8.3.1)

of a given equation is known. Let us show that any symmetry of the equation defined
by a transformation of the form (15.8.1.1) generates a one-parameter family of solutions
(except for the cases where the solution is not mapped into itself by the transformations;
see Paragraph 15.8.3-2).

Indeed, since equation (15.8.2.1) converted to the new variables (15.8.1.1) acquires the
same form (15.8.2.2), then the transformed equation (15.8.2.2) has a solution

w̄ = g(x̄, ȳ). (15.8.3.2)

In (15.8.3.2), going back to the old variables by formulas (15.8.1.1), we obtain a one-
parameter solution of the original equation (15.8.2.1).

Example 1. The two-dimensional heat equation with an exponential source

∂2w

∂x2 +
∂2w

∂y2 = ew (15.8.3.3)

has a one-dimensional solution

w = ln
2
x2 . (15.8.3.4)

Equation (15.8.3.3) admits the operatorX3 = y∂x–x∂y (see Example 1 in Subsection 15.8.2), which defines
rotation in the plane. The corresponding transformation is given in Table 15.7. Replacing x in (15.8.3.4) by x̄
(from Table 15.7), we obtain a one-parameter solution of equation (15.8.3.3):

w = ln
2

(x cos ε + y sin ε)2 ,

where ε is a free parameter.

15.8.3-2. Procedure for constructing invariant solutions.

Solution (15.8.3.1) of equation (15.8.2.1) is called invariant under transformations (15.8.1.1)
if it coincides with solution (15.8.3.2), which must be rewritten in terms of the old variables
using formulas (15.8.1.1). This means that an invariant solution is converted to itself under
the given transformation. The basic stages of constructing invariant solutions are outlined
below.
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Invariant solutions of equation (15.8.2.1) are sought in the implicit form

I(x, y,w) = 0.

Then I(x̄, ȳ, w̄) = 0. Let us find a one-parameter transformation with operator (15.8.1.3)
whose coordinates are determined from the invariance condition (15.8.2.3) following the
procedure described in Subsection 15.8.2. Find two functionally independent integrals
(15.8.1.6) of the characteristic system of ordinary differential equations (15.8.1.5). The
general solution of the partial differential equation (15.8.1.4) is determined by formula
(15.8.1.7). Setting in this formula I = 0 and solving for the invariant I2, we obtain

I2 = Φ(I1), (15.8.3.5)

where the functions I1 = I1(x, y,w) and I2 = I2(x, y,w) are known,* and the function Φ is
to be determined. Relation (15.8.3.5) is the basis for the construction of invariant solutions:
solving (15.8.3.5) for w and substituting the resulting expression into (15.8.2.1), we arrive
at an ordinary differential equation for Φ.

Example 2. A well-known and very important special case of invariant solutions is the self-similar solu-
tions (see Subsection 15.3.3); they are based on invariants of scaling groups. The corresponding infinitesimal
operator and its invariants are

X = ax
∂

∂x
+ by

∂

∂y
+ cw

∂

∂w
; I1 = |y|a|x|–b, I2 = |w|a|x|–c.

Substituting the invariants into (15.8.3.5) gives |w|a|x|–c = Φ
(

|y|a|x|–b
)
. On solving this equation for w, we

obtain the form of the desired solution, w = |x|c/aΨ
(
y|x|–b/a

)
, where Ψ(z) is an unknown function.

To make it clearer, the general scheme for constructing invariant solutions for evolution
second-order equations is depicted in Fig. 15.4. The first-order partial differential equation
(15.8.1.4) for finding group invariants is omitted, since the corresponding characteristic
system of ordinary differential equations (15.8.1.5) can be immediately used.

15.8.3-3. Examples of constructing invariant solutions to nonlinear equations.

Example 3. Consider once again the stationary heat equation with nonlinear source

∂2w

∂x2 +
∂2w

∂y2 = f (w).

1◦. Let us dwell on the case f (w) = wk, where the equation admits an additional operator (see Example 1 from
Subsection 15.8.2):

X4 = x∂x + y∂y +
2

1 – k
w∂w.

In order to find invariants of this operator, we have to consider the linear first-order partial differential equation
X4I = 0, or, in detailed form,

x
∂I

∂x
+ y

∂I

∂y
+

2
1 – k

w
∂I

∂w
= 0.

The corresponding characteristic system of ordinary differential equations,

dx

x
=
dy

y
=

1 – k
2

dw

w
,

has the first integrals
y/x = C1, x2/(k–1)w = C2,

* Usually, the invariant that is independent of w is taken to be I1.
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Calculate the coordinates of the prolonged operator

Derive the determining system of PDEs

Solve the characteristic system

Figure 15.4. An algorithm for constructing invariant solutions for evolution second-order equations. Notation:
ODE stands for ordinary differential equation and PDE stands for partial differential equation; ξ = ξ(x, t,w),
η = η(x, t,w), ζ = ζ(x, t,w); ζ1, ζ2, and ζ11 are the coordinates of the prolonged operator, which are defined by
formulas (15.8.1.9) and (15.8.1.14) with y = t.

where C1, C2 are arbitrary constants. Therefore, the functions I1 = y/x and I2 = x2/(k–1)w are invariants of the
operator X4.

Assuming that I2 = Φ(I1) and expressing w, we find the form of the invariant (self-similar) solution:

w = x–2/(k–1)Φ(y/x). (15.8.3.6)

Substituting (15.8.3.6) into the original equation (15.8.2.6) yields a second-order ordinary differential equation
for Φ(z):

(k – 1)2(z2 + 1)Φ′′
zz + 2(k2 – 1)zΦ′

z + 2(k + 1)Φ – (k – 1)2Φk = 0,

where z = y/x.

2◦. The functions u = x2 +y2 andw are invariants of the operator X3 for the nonlinear heat equation concerned.
The substitutions w = w(u) and u = x2 + y2 lead to an ordinary differential equation describing solutions of the
original equation which are invariant under rotation:

uw′′
uu + w′

u = 1
4 f (w).

Remark. In applications, the polar radius r =
√
x2 + y2 is normally used as an invariant instead of

u = x2 + y2.



15.8. CLASSICAL METHOD OF STUDYING SYMMETRIES OF DIFFERENTIAL EQUATIONS 727

Example 4. Consider the nonlinear nonstationary heat equation (15.8.2.14).

1◦. For arbitrary f (w), the equation admits the operator (see Example 2 from Subsection 15.8.2)

X3 = 2t∂t + x∂x.

Invariants of X3 are found for the linear first-order partial differential equation X3I = 0, or

2t ∂I
∂t

+ x
∂I

∂x
+ 0 ∂I

∂w
= 0.

The associated characteristic system of ordinary differential equations,

dx

x
=
dt

2t
=
dw

0
,

has the first integrals

xt–1/2 = C1, w = C2,

where C1 and C2 are arbitrary constants. Therefore, the functions I1 = xt–1/2 and I2 = w are invariants of the
operator X3.

Assuming I2 = Φ(I1), we get

w = Φ(z), z = xt–1/2, (15.8.3.7)

where Φ(z) is to be determined in the subsequent analysis. Substituting (15.8.3.7) in the original equation
(15.8.2.14) yields the second-order ordinary differential equation

2[f (Φ)Φ′
z]′z + zΦ′

z = 0,

which describes an invariant (self-similar) solution.

2◦. Let us dwell on the case f (w) = wk , where the equation admits the operator

X4 = kx∂x + 2w∂w.

The invariants are described by the first-order partial differential equation X4I = 0, or

0 ∂I
∂t

+ kx
∂I

∂x
+ 2w ∂I

∂w
= 0.

The associated characteristic system of ordinary differential equations,

dt

0
=
dx

kx
=
dw

2w
,

has the first integrals

t = C1, x–2/kw = C2,

where C1, C2 are arbitrary constants. Therefore, I1 = t and I2 = x–2/kw are invariants of the operator X4.
Assuming I2 = θ(I1) and expressing w, we get

w = x2/kθ(t), (15.8.3.8)

where θ(t) is to be determined in the subsequent analysis. Substituting (15.8.3.8) in the original equation
(15.8.2.14) with f (w) = wk gives the first-order ordinary differential equation

2kθ′t = 2(k + 2)θk+1.

Integrating yields

θ(t) =

[
A –

2(k + 2)
k

t

]–1/k

,

whereA is an arbitrary constant. Hence, the solution of equation (15.8.2.14) with f (w) =wk, which is invariant
under scaling, has the from

w(x, t) = x2/k

[
A –

2(k + 2)
k

t

]–1/k

.
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TABLE 15.8
Operators, invariants, and solution structures admitted by the nonlinear nonstationary heat equation (15.8.2.14)

Function f (w) Operators Invariants Solution structure

Arbitrary
X1 = ∂x,
X2 = ∂t,
X3 = 2t∂t + x∂x

I1 = t, I2 = w,
I1 = x, I2 = w,
I1 = x2/t, I2 = w

w = w(t) = const,
w = w(x),
w = w(z), z = x2/t

ew X4 = x∂x + 2∂w I1 = t, I2 = w – 2 ln |x| w = 2 ln |x| + θ(t)

wk (k ≠ 0, – 4
3 ) X4 = kx∂x + 2w∂w I1 = t, I2 = w|x|–k/2 w = |x|k/2θ(t)

w–4/3 X4 = 2x∂x – 3w∂w,
X5 = x2∂x – 3xw∂w

I1 = t, I2 = wx2/3,
I1 = t, I2 = wx3

w = x–2/3θ(t),
w = x–3θ(t)

Table 15.8 summarizes the symmetries of equation (15.8.2.14) (see Example 2 from Subsection 15.8.2 and
Example 4 from Subsection 15.8.3).

Example 5. Consider the nonlinear wave equation (15.8.2.15). For arbitrary f (w), this equation admits
the following operator (see Example 3 from Subsection 15.8.2):

X3 = t∂t + x∂x.

The invariants are found from the linear first-order partial differential equation X3I1 = 0, or

t
∂I

∂t
+ x

∂I

∂x
+ 0

∂I

∂w
= 0.

The associated characteristic system of ordinary differential equations

dx

x
=
dt

t
=
dw

0

admits the first integrals

xt–1 = C1, w = C2,

where C1, C2 are arbitrary constants. Therefore, I1 = xt–1 and I2 = w are invariants of the operator X3.
Taking I2 = Φ(I1), we get

w = Φ(y), y = xt–1. (15.8.3.9)

The function Φ(y) is found by substituting (15.8.3.9) in the original equation (15.8.2.15). This results in the
ordinary differential equation

[f (Φ)Φ′
y]′y = (y2Φ′

y)′y,

which defines an invariant (self-similar) solution. This equation has the obviousfirst integral f (Φ)Φ′
y =y2Φ′

y+C.
Table 15.9 summarizes the symmetries of equation (15.8.2.15) (see Example 3 from Subsection 15.8.2 and

Example 5 from Subsection 15.8.3).

15.8.3-4. Solutions induced by linear combinations of admissible operators.

If a given equation admits N operators, then we have N associated different invariant
solutions. However, when dealing with operators individually, one may overlook solutions
that are invariant under a linear superposition of the operators; such solutions may have
a significantly different form. In order to find all types of invariant solutions, one should
study all possible linear combinations of the admissible operators.

Example 6. Consider once again the nonlinear nonstationary heat equation (15.8.2.14).
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TABLE 15.9
Operators, invariants, and solution structures admitted by the nonlinear wave equation (15.8.2.15)

Functions f (w) Operators Invariants Solution structure

Arbitrary
X1 = ∂x,
X2 = ∂t,
X3 = t∂t + x∂x

I1 = t, I2 = w,
I1 = x, I2 = w,
I1 = x/t, I2 = w

w = w(t),
w = w(x),
w = w(z), z = x/t

ew X4 = x∂x + 2∂w I1 = t, I2 = w – 2 ln |x| w = 2 ln |x| + θ(t)

wk (k ≠ 0, – 4
3 , –4) X4 = kx∂x + 2w∂w I1 = t, I2 = w|x|–k/2 w = |x|k/2θ(t)

w–4/3 X4 = 2x∂x – 3w∂w,
X5 = x2∂x – 3xw∂w

I1 = t, I2 = wx2/3,
I1 = t, I2 = wx3

w = x–2/3θ(t),
w = x–3θ(t)

w–4 X4 = 2x∂x – w∂w ,
X5 = t2∂t + tw∂w

I1 = t, I2 = w|x|1/2,
I1 = x, I2 = w/t

w = |x|–1/2θ(t),
w = tθ(x)

1◦. For arbitrary f (w), this equation admits three operators (see Table 15.8):

X1 = ∂t, X2 = ∂x, X3 = 2t∂t + x∂x.

The respective invariant solutions are

w = Φ(x), w = Φ(t), w = Φ(x2/t).

However, various linear combinations give another operator,

X1,2 = X1 + aX2 = ∂t + a∂x,

where a ≠ 0 is an arbitrary constant. The solution invariant under this operator is written as

w = Φ(x – at).

It is apparent that solutions of this type (traveling waves) are not contained in the invariant solutions associated
with the individual operators X1, X2, and X3.

2◦. If f (w) = ew, apart from the above three operators, there is another one, X4 = x∂x + 2∂w (see Table 15.8).
In this case, the linear combination

X3,4 = X3 + aX4 = 2t∂t + (a + 1)x∂x + 2a∂w

gives another invariant solution,

w = Φ(ξ) + a ln t, ξ = xt
a+1

2 ,

where the function Φ = Φ(ξ) satisfies the ordinary differential equation

(eΦΦ′
ξ)′ξ + 1

2 (a + 1)ξΦ′
ξ = a.

3◦. If f (w) =wk (k ≠ 0, –4/3), apart from the three operators from 1◦, there is another oneX4 = kx∂x + 2w∂w.
The linear combination

X3,4 = X3 + aX4 = 2t∂t + (ak + 1)x∂x + 2aw∂w

generates the invariant (self-similar) solution

w = taΦ(ζ), ζ = xt
ak+1

2 ,

where the function Φ = Φ(ζ) satisfies the ordinary differential equation

(ΦkΦ′
ζ )′ζ + 1

2 (ak + 1)ζΦ′
ζ = aΦ.

The invariant solutions presented in Items 1◦–3◦ are not listed in Table 15.8. It is clearly important to
consider solutions induced by linear combinations of admissible operators.
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15.8.4. Some Generalizations. Higher-Order Equations

15.8.4-1. One-parameter Lie groups of point transformations. Group generator.

Here we will be considering functions dependent on n + 1 variables, x1, . . . ,xn,w. The
brief notation x = (x1, . . . ,xn) will be used.

The set of invertible transformations of the form

Tε =

{
x̄i = ϕi(x,w, ε), x̄i|ε=0 = xi,
w̄ = ψ(x,w, ε), w̄|ε=0 = w,

(15.8.4.1)

where ϕi and ψ are sufficiently smooth functions of their arguments (i = 1, . . . ,n) and ε is
a real parameter, is called a one-parameter continuous point group of transformations G if
for any ε1 and ε2 the relation Tε1 ◦ Tε2 = Tε1+ε2 holds, that is, the successive application
(composition) of two transformations of the form (15.8.4.1) with parameters ε1 and ε2 is
equivalent to a single transformation of the same form with parameter ε1 + ε2.

Further on, we consider local one-parameter continuous Lie groups of point transfor-
mations (or, for short, point groups), corresponding to the infinitesimal transformation
(15.8.4.1) as ε→ 0. The expansion of (15.8.4.1) into Taylor series in the parameter ε about
ε = 0 to the first order gives

x̄i � xi + εξi(x,w), w̄ � w + εζ(x,w), (15.8.4.2)

where

ξi(x,w) =
∂ϕi(x,w, ε)

∂ε

∣
∣∣
ε=0

, ζ(x,w) =
∂ψ(x,w, ε)

∂ε

∣
∣∣
ε=0

.

The linear first-order differential operator

X = ξi(x,w)
∂

∂xi
+ ζ(x,w)

∂

∂w
(15.8.4.3)

corresponding to the infinitesimal transformation (15.8.4.2) is called a group generator (or
an infinitesimal operator). In formula (15.8.4.3), summation is assumed over the repeated
index i.

THEOREM (LIE). Suppose the coordinates ξi(x,w) and ζ(x,w) of the group generator
(15.8.4.3) are known. Then the one-parameter group of transformations (15.8.4.1) can be
completely recovered by solving the Lie equations

dϕi
dε

= ξi(ϕ,ψ),
dψ

dε
= ζ(ϕ,ψ) (i = 1, . . . ,n)

with the initial conditions
ϕi|ε=0 = xi, ψ|ε=0 = w.

Here, the short notation ϕ = (ϕ1, . . . ,ϕn) has been used.

Remark. The widely known terms “Lie group analysis of differential equations,” “group-theoretic meth-
ods,” and others are due to the prevailing concept of a local one-parameter Lie group of point transformations.
However, in this book, we prefer to use the term “method of symmetry analysis of differential equations.”
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15.8.4-2. Group invariants. Local transformations of derivatives.

A universal invariant (or, for short, an invariant) of a group (15.8.4.1) and a operator
(15.8.4.3) is a function I(x,w) that satisfies the condition I(x̄, w̄) = I(x,w). The expansion
in a series in powers of the small parameter ε gives rise to the linear partial differential
equation for I:

XI = ξi(x,w)
∂I

∂xi
+ ζ(x,w)

∂I

∂w
= 0. (15.8.4.4)

From the theory offirst-order partial differential equations it follows that the group (15.8.4.1)
and the operator (15.8.4.3) have n functionally independent universal invariants. On the
other side, this means that any function F (x,w) that is invariant under the group (15.8.4.1)
can be written as a function of n invariants.

In the new variable (15.8.4.1), the derivatives are transformed as follows:

∂w̄

∂x̄i
� ∂w

∂xi
+ εζi,

∂2w̄

∂x̄i∂x̄j
� ∂2w

∂xi∂xj
+ εζij ,

∂3w̄

∂x̄i∂x̄j∂x̄k
� ∂3w

∂xi∂xj∂xk
+ εζijk, . . .

(15.8.4.5)
The coordinates ζi, ζij , and ζijk of the first three prolongations are expressed as

ζi = Di(ζ) – psDi(ξs),
ζij = Dj(ζi) – qisDj(ξs),
ζijk = Dk(ζij) – rijsDk(ξs),

(15.8.4.6)

where summation is assumed over the repeated index s and the following short notation
partial derivatives are used:

pi =
∂w

∂xi
, qij =

∂2w

∂xi∂xj
, rijk =

∂3w

∂xi∂xj∂xk
,

Di =
∂

∂xi
+ pi

∂

∂w
+ qij

∂

∂pj
+ rijk

∂

∂qjk
+ · · · ,

with Di being the total differential operator with respect to xi.

15.8.4-3. Invariant condition. Splitting procedure. Invariant solutions.

We will consider partial differential equations of order m in n independent variables

F

(
x,w,

∂w

∂xi
,
∂2w

∂xi∂xj
,

∂3w

∂xi∂xj∂xk
, . . .

)
= 0, (15.8.4.7)

where i, j, k = 1, . . . ,n.
The group analysis of equation (15.8.4.7) consists of several stages. At the first stage,

let us require that equation (15.8.4.7) be invariant (must preserve its form) under transfor-
mations (15.8.4.1), so that

F

(
x̄, w̄,

∂w̄

∂x̄i
,
∂2w̄

∂xi∂x̄j
,

∂3w̄

∂xi∂x̄j∂x̄k
, . . .

)
= 0. (15.8.4.8)
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Let us expand this expression into a series in powers of ε about ε = 0 taking into account that
the leading term (15.8.4.7) vanishes. Using formulas (15.8.4.1) and (15.8.4.5) and retaining
terms to the first order of ε, we get

X
m
F
(
x,w,

∂w

∂xi
,
∂2w

∂xi∂xj
,

∂3w

∂xi∂xj∂xk
, . . .

)∣∣
∣∣
F=0

= 0, (15.8.4.9)

where

X
m
F = ξi

∂F

∂xi
+ ζ

∂F

∂w
+ ζi

∂F

∂wxi

+ ζij
∂F

∂wxixj

+ ζijk
∂F

∂wxixjxk

+ · · · (15.8.4.10)

The coordinates ζi, ζij , and ζijk of the first three prolongations are defined by formulas
(15.8.4.5)–(15.8.4.6). Summation is assumed over repeated indices. Relation (15.8.4.9) is
called the invariance condition and the operator X

m
is called the mth prolongation of the

group generator; the partial derivatives of F with respect to all m derivatives of w appear
last in (15.8.4.10).

At the second stage, one of the highest mth-order derivatives is eliminated from
(15.8.4.9) using equation (15.8.4.7). The resulting relation is then represented as a poly-
nomial in “independent variables,” the various combinations of the remaining derivatives,
which are the products of different powers of wx, wy , wxx, wxy, . . . All the coefficients of
this polynomial—they depend on x,w, ξi, and ζ only and are independent of the derivatives
of w—are further equated to zero. As a result, the invariance condition is split into an
overdetermined linear determining system.

The third stage involves solving the determining system and finding admissible coordi-
nates ξi and ζ of the group generator (15.8.4.3).

Formth-order equations in two independent variables, the invariant solutions are defined
in a similar way as for second-order equations. In this case, the procedure of constructing
invariant solutions (for known coordinates of the group generator) is identical to that
described in Subsection 15.8.3.

15.9. Nonclassical Method of Symmetry Reductions∗

15.9.1. Description of the Method. Invariant Surface Condition
Consider a second-order equation in two independent variables of the form

F

(
x, y,w,

∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y
,
∂2w

∂y2

)
= 0. (15.9.1.1)

The results of the classical group analysis (see Section 15.8) can be substantially ex-
tended if, instead of finding invariants of an admissible infinitesimal operator X by means
of solving the characteristic system of equations

dx

ξ(x, y,w)
=

dy

η(x, y,w)
=

dw

ζ(x, y,w)
,

one imposes the corresponding invariant surface condition (Bluman and Cole, 1969)

ξ(x, y,w)
∂w

∂x
+ η(x, y,w)

∂w

∂y
= ζ(x, y,w). (15.9.1.2)

* Prior to reading this section, the reader may find it useful to get acquainted with Section 15.8.
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Equation (15.9.1.1) and condition (15.9.1.2) are supplemented by the invariance condition

X
2
F

(
x, y,w,

∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y
,
∂2w

∂y2

)∣∣
∣∣
F=0

= 0, (15.9.1.3)

which coincides with equation (15.8.2.3).
All three equations (15.9.1.1)–(15.9.1.3) are used for the construction of exact solutions

of the original equation (15.9.1.1). It should be observed that in this case, the determin-
ing equations obtained for the unknown functions ξ(x, y,w), η(x, y,w), and ζ(x, y,w) by
the splitting procedure are nonlinear. The symmetries determined by the invariant sur-
face (15.9.1.2) are called nonclassical.

Figure 15.5 is intended to clarify the general scheme for constructing of exact solutions
of a second-order evolution equation by the nonclassical method on the basis of the invariant
surface condition (15.9.1.2).

Remark. Apart from the algorithm shown in Fig. 15.5, its modification can also be used. Instead of solving
the characteristic system of ordinary differential equations, the derivative wt is eliminated from (15.9.1.1)–
(15.9.1.2) after finding the coordinates ξ, η, and ζ. Then the resulting equation is solved, which can be treated
as an ordinary differential equation for x with parameter t.

15.9.2. Examples: The Newell–Whitehead Equation and a Nonlinear
Wave Equation

Example 1. Consider the Newell–Whitehead equation

wt = wxx + w – w3, (15.9.2.1)

which corresponds to the left-hand side F = –wt + wxx + w – w3 of equation (15.9.1.1) with y = t.
Without loss of generality, we set η = 1 in the invariant surface condition (15.9.1.2) with y = t, thus

assuming that η ≠ 0. We have
∂w

∂t
+ ξ(x, t,w)

∂w

∂x
= ζ(x, t,w). (15.9.2.2)

The invariance condition is obtained by a procedure similar to the classical algorithm (see Subsec-
tion 15.8.2). Namely, we apply the operator

X
2

= ξ∂x + η∂t + ζ∂w + ζ1∂wx + ζ2∂wt + ζ11∂wxx + ζ12∂wxt + ζ22∂wtt (15.9.2.3)

to equation (15.9.2.1). Taking into account that ∂x = ∂t = ∂wx = ∂wxt = ∂wtt = 0, since the equation is explicitly
independent of x, t, wx, wxt, wtt, we get the invariance condition in the form

ζ2 = ζ(3w2 – 1) + ζ11.

Substituting here the expressions (15.8.1.9) and (15.8.1.14) for the coordinates ζ2 and ζ11 of the first and second
prolongations, with y = t and η = 1, we obtain

ζt – ξtwx + ζwwt – ξwwxwt = ζ(–3w2 + 1) + ζxx

+ (2ζwx – ξxx)wx + (ζww – 2ξwx)w2
x – ξwww

3
x + (ζw – 2ξx – 3ξwwx)wxx. (15.9.2.4)

Let us express the derivatives wt and wxx with the help of (15.9.2.1)–(15.9.2.2) via the other quantities:

wt = ζ – ξwx, wxx = ζ – ξwx + w(w2 – 1). (15.9.2.5)

Inserting these expressions into the invariance condition (15.9.2.4), we arrive at cubic polynomial in the
remaining “independent” derivative wx. Equating all functional coefficients of the various powers of this
polynomial to zero, we get the determining system

w3
x: ξww = 0,

w2
x: ζww – 2(ξwx – ξξw) = 0,

wx: 2ζwx – 2ξwζ – 3w(w2 – 1)ξw – ξxx + 2ξξx + ξt = 0,

1: ζt – ζxx + 2ξxζ + (2ξx – ζw)w(w2 – 1) + (3w2 – 1)ζ = 0,

(15.9.2.6)
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Calculate the coordinates of the prolonged operator

Derive the determining system of PDEs

Solve the characteristic system

Impose the invariant surface condition

(3)

(2)

(1)

Figure 15.5. Algorithm for the construction of exact solutions by a nonclassical method for second-order
evolution equations. Here, ODE stands for ordinary differential equation and PDE for partial differential
equation.

which consists of only four equations.
The analysis of the system (15.9.2.6) allows us to conclude that

ξ = ξ(x, t), ζ = –ξxw,

where the function ξ(x, t) satisfies the system

ξt – 3ξxx + 2ξξx = 0,

ξxt – ξxxx + 2ξ2
x + 2ξx = 0.

(15.9.2.7)

The associated invariant surface condition has the form (15.9.2.2):

wt + ξwx = –ξxw. (15.9.2.8)

We look for a stationary particular solution to equation (15.9.2.7) in the form ξ = ξ(x). Let us differentiate
the first equation of (15.9.2.7) with respect to x and then eliminate the third derivative, using the second equation
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of (15.9.2.7), from the resulting expression. This will give a second-order equation. Eliminating from it the
second derivative, using the first equation of (15.9.2.7), after simple rearrangements we obtain

(6ξ′x – 2ξ2 + 9)ξ′x = 0. (15.9.2.9)

Equating the expression in parentheses in (15.9.2.9) to zero, we get a separable first-order equation. Its general
solution can be written as

ξ = –
3√

2
A exp

(√
2x
)

+B

A exp
(√

2x
)

– B
= –

3√
2
A exp

(√
2

2 x
)

+B exp
(
–

√
2

2 x
)

A exp
(√

2
2 x
)

– B exp
(
–

√
2

2 x
) , (15.9.2.10)

where A and B are arbitrary constants.
The characteristic system corresponding to (15.9.2.8),

dt

1
=
dx

ξ
= –

dw

ξ′xw
, (15.9.2.11)

admits the first integrals

t + 2
3 ln
∣
∣A exp

(√
2

2 x
)

+B exp
(
–

√
2

2 x
)∣∣ = C1, ξw = C2, (15.9.2.12)

where C1 and C2 are arbitrary constants. For convenience, we introduce the new constant C1 = exp
( 3

2C1
)

and look for a solution in the form C2 = – 3√
2
C1F (C1). Inserting (15.9.2.12) here and taking into account

(15.9.2.10), we obtain the solution structure

w(x, t) =
{
A exp

[ 1
2 (
√

2x + 3t)
]

–B exp
[ 1

2 (–
√

2x + 3t)
]}
F (z),

z = A exp
[ 1

2 (
√

2x + 3t)
]

+B exp
[ 1

2 (–
√

2x + 3t)
]
.

(15.9.2.13)

Substituting (15.9.2.13) in the original equation, we find the equation for F = F (z):

F ′′
zz = 2F 3. (15.9.2.14)

The general solution of equation (15.9.2.14) is expressed in terms of elliptic functions. This equation admits

the following particular solutions: F = �
1

z + C
, where C is an arbitrary constant.

Remark 1. To the degenerate case ξ′x = 0 in (15.9.2.9) there corresponds a traveling-wave solution.

Remark 2. It is apparent from this example that using the invariant surface condition (15.9.1.2) gives
much more freedom in determining the coordinates ξ, η, ζ as compared with the classical scheme presented in
Section 15.8. This stems from the fact that in the classical scheme, the invariance condition is split with respect
to two derivatives, wx and wxx, which are considered to be independent (see Example 2 in Subsection 15.8.2).
In the nonclassical scheme, the derivatives wx and wxx are related by the second equation of (15.9.2.5) and the
invariance conditions are split in only one derivative, wx. This is why in the classical scheme the determining
system consists of a larger number of equations, which impose additional constraints on the unknown quantities,
as compared with the nonclassical scheme. In particular, the classical scheme fails to find exact solutions to
equation Newell–Whitehead (15.9.2.1) in the form (15.9.2.13).

Example 2. Consider the nonlinear wave equation

∂2w

∂t2 = w
∂2w

∂x2 , (15.9.2.15)

which corresponds to the left-hand side F = wtt – wwxx of equation (15.9.1.1) with y = t.
Let us add the invariant surface condition (15.9.2.2). Applying the prolonged operator (15.9.2.3) to

equation (15.9.2.15) gives the invariance condition. Taking into account that ∂x = ∂t = ∂wx = ∂wt = ∂wxt = 0
(since the equation is independent of x, t, wx, wt, wxt explicitly) and η = 1, we get the invariance condition

ζ22 = ζwxx + wζ11.

Substituting here the expressions (15.8.1.14) for the coordinates ζ11 and ζ22 of the second prolongation with
y = t and η = 1, we have

ζtt – ξttwx + 2ζwtwt – 2ξwtwxwt + ζwww
2
t – ξwwwxw

2
t – 2(ξt + ξwwt)wxt + (ζw – ξwwx)wtt

= ζwxx +w
[
ζxx + (2ζwx – ξxx)wx + (ζww – 2ξwx)w2

x – ξwww
3
x + (ζw – 2ξx – 3ξwwx)wxx

]
. (15.9.2.16)
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From the invariant surface condition (15.9.2.2) and equation (15.9.2.15) it follows that

wt = ζ – ξwx, wtt = wwxx, wxt = ζx – ξxwx – ξwxx. (15.9.2.17)

The last formula has been obtained by differentiating the first one with respect to x. Substituting wt, wtt, wxt

from (15.9.2.17) into (15.9.2.16) yields a polynomial in two “independent” derivatives, wx and wxx. Equating
the functional coefficients of this polynomial to zero, we arrive at the determining system:

wxwxx: (ξ2 – w)ξw = 0,

wxx: 2ξξt + 2wξx + 2ξξwζ – ζ = 0,

w3
x: (ξ2 – w)ξww = 0,

w2
x: (ξ2 – w)ζww + 2ξξwt + 2ξξwwζ – 2ξξxξw + 2wξwx = 0,

wx: ξtt + 2ξζwt + 2ξwtζ + 2ξζζww + ξwwζ
2 – 2ξtξx – 2ξxξwζ – 2ξξwζx + 2wζwx – wξxx = 0,

1: ζtt + 2ζζwt + ζ2ζww – 2ξtζx – 2ξwζζx – wζxx = 0.

From the first equation it follows that

1) ξ = ξ(x, t); (15.9.2.18)

2) ξ =
√
w. (15.9.2.19)

Consider both cases.

1◦. For ξ = ξ(x, t), the third equation of the determining system (15.9.2.18) is satisfied identically. From the
second equation it follows that

ζ = 2wξx + 2ξξt. (15.9.2.20)

The fourth equation is also satisfied identically in view of (15.9.2.18) and (15.9.2.20). Substituting (15.9.2.18)
and (15.9.2.20) into the fifth and sixth equations of the determining system yields two solutions:

ξ = αt + β, ζ = 2α(αt + β) (first solution);

ξ = αx + β, ζ = 2αw (second solution);
(15.9.2.21)

where α and β are arbitrary constants.
First solution. The characteristic system of ordinary differential equations associated with the first solution

(15.9.2.21), with α = 2 and β = 0, has the form

dt

1
=
dx

2t
=
dw

8t
.

Find the first integrals: C1 = x – t2, C2 = w – 4t2. Following the scheme shown in Fig. 15.5, we look for a
solution in the form w – 4t2 = Φ(x – t2). Substituting

w = Φ(z) + 4t2, z = x – t2 (15.9.2.22)

into (15.9.2.15) yields the following autonomous ordinary differential equation for Φ = Φ(z):

ΦΦ′′
zz + 2Φ′

z = 8.

It is easy to integrate. Reducing its order gives a separable equation. As a result, one can obtain an exact
solution to equation (15.9.2.15) of the form (15.9.2.22).

Second solution. The characteristic system of ordinary differential equations associated with the second
solution of (15.9.2.21), with α = 1 and β = 0, has the form

dt

1
=
dx

x
=
dw

2w
.

Find the first integrals: C1 = ln |x| – t, C2 = w/x2. Following the scheme shown in Fig. 15.5, we look for a
solution in the form w/x2 = Φ(ln |x| – t). Substituting

w = x2Φ(z), z = ln |x| – t

into (15.9.2.15) yields the autonomous ordinary differential equation

(Φ – 1)Φ′′
zz + 3ΦΦ′

z + 2Φ2 = 0,

which admits order reduction via the substitution U (Φ) = Φ′
z .

2◦. The second case of (15.9.2.19) gives rise to the trivial solution ζ = 0 (as follows from the fourth equation
of the determining system), which generates the obvious solution w = const.
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15.10. Differential Constraints Method
15.10.1. Description of the Method

15.10.1-1. Preliminary remarks. A simple example.

Basic idea: Try tofind an exact solution to a complex equation by analyzing it in conjunction
with a simpler, auxiliary equation, called a differential constraint.

In Subsections 15.4.1 and 15.4.3, we have considered examples of additive separable
solutions of nonlinear equations in the form

w(x, y) = ϕ(x) + ψ(y). (15.10.1.1)

At the initial stage, the functions ϕ(x) and ψ(y) are assumed arbitrary and are to be
determined in the subsequent analysis.

Differentiating the expression (15.10.1.1) with respect to y, we obtain

∂w

∂y
= f (y) (f = ψ′

y). (15.10.1.2)

Conversely, relation (15.10.1.2) implies a representation of the solution in the form
(15.10.1.1).

Further, differentiating (15.10.1.2) with respect to x gives

∂2w

∂x∂y
= 0. (15.10.1.3)

Conversely, from (15.10.1.3) we obtain a representation of the solution in the form
(15.10.1.1).

Thus, the problem of finding exact solutions of the form (15.10.1.1) for a specific partial
differential equation may be replaced by an equivalent problem of finding exact solutions
of the given equation supplemented with the condition (15.10.1.2) or (15.10.1.3). Such
supplementary conditions in the form of one or several differential equations will be called
differential constraints.

Prior to giving a general description of the differential constraints method, we demon-
strate its features by a simple example.

Example. Consider the third-order nonlinear equation

∂w

∂y

∂2w

∂x∂y
–
∂w

∂x

∂2w

∂y2 = a
∂3w

∂y3 , (15.10.1.4)

which occurs in the theory of the hydrodynamic boundary layer. Let us seek a solution of equation (15.10.1.4)
satisfying the linear first-order differential constraint

∂w

∂x
= ϕ(y). (15.10.1.5)

Here, the function ϕ(y) cannot be arbitrary, in general, but must satisfy the condition of compatibility of
equations (15.10.1.4) and (15.10.1.5). The compatibility condition is a differential equation for ϕ(y) and is a
consequence of equations (15.10.1.4), (15.10.1.5), and those obtained by their differentiation.

Successively differentiating (15.10.1.5) with respect to different variables, we calculate the derivatives

wxx = 0, wxy = ϕ′
y , wxxy = 0, wxyy = ϕ′′

yy, wxyyy = ϕ′′′
yyy. (15.10.1.6)

Differentiating (15.10.1.4) with respect to x yields

w2
xy + wywxxy – wxxwyy – wxwxyy = awxyyy. (15.10.1.7)
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Substituting the derivatives of the function w from (15.10.1.5) and (15.10.1.6) into (15.10.1.7), we obtain the
following third-order ordinary differential equation for ϕ:

(ϕ′
y)2 – ϕϕ′′

yy = aϕ′′′
yyy, (15.10.1.8)

which represents the compatibility condition for equations (15.10.1.4) and (15.10.1.5).
In order to construct an exact solution, we integrate equation (15.10.1.5) to obtain

w = ϕ(y)x + ψ(y). (15.10.1.9)

The function ψ(y) is found by substituting (15.10.1.9) into (15.10.1.4) and taking into account the condi-
tion (15.10.1.8). As a result, we arrive at the ordinary differential equation

ϕ′
yψ

′
y – ϕψ′′

yy = aψ′′′
yyy. (15.10.1.10)

Finally, we obtain an exact solution of the form (15.10.1.9), with the functions ϕ and ψ described by equations
(15.10.1.8) and (15.10.1.10).

Remark. It is easier to obtain the above solution by directly substituting expression (15.10.1.9) into the
original equation (15.10.1.4).

15.10.1-2. General description of the differential constraints method.

The procedure of the construction of exact solutions to nonlinear equations of mathematical
physics by the differential constraints method consists of several steps described below.

1◦. In the general case, the identification of particular solutions of the equation

F

(
x, y,w,

∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y
,
∂2w

∂y2 , . . .

)
= 0 (15.10.1.11)

is performed by supplementing this equation with an additional differential constraint

G

(
x, y,w,

∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y
,
∂2w

∂y2 , . . .

)
= 0. (15.10.1.12)

The form of the differential constraint (15.10.1.12) may be prescribed on the basis
of (i) a priori considerations (for instance, it may be required that the constraint should
represent a solvable equation); (ii) certain properties of the equation under consideration
(for instance, it may be required that the constraint should follow from symmetries of the
equation or the corresponding conservation laws).

2◦. In general, the thus obtained overdetermined system (15.10.1.11)–(15.10.1.12) requires
a compatibility analysis. If the differential constraint (15.10.1.12) is specified on the ba-
sis of a priori considerations, it should allow for sufficient freedom in choosing func-
tions (i.e., involve arbitrary determining functions). The compatibility analysis of system
(15.10.1.11)–(15.10.1.12) should provide conditions that specify the structure of the deter-
mining functions. These conditions (compatibility conditions) are written as a system of
ordinary differential equations (or a system of partial differential equations).

Usually, the compatibility analysis is performed by means of differentiating (possibly,
several times) equations (15.10.1.11) and (15.10.1.12) with respect to x and y and elimi-
nating the highest-order derivatives from the resulting differential relations and equations
(15.10.1.11) and (15.10.1.12). As a result, one arrives at an equation involving powers of
lower-order derivatives. Equating the coefficients of all powers of the derivatives to zero,
one obtains compatibility conditions connecting the functional coefficients of equations
(15.10.1.11) and (15.10.1.12).
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3◦. One solves the system of differential equations obtained in Item 2◦ for the determining
functions. Then these functions are substituted into the differential constraint (15.10.1.12)
to obtain an equation of the form

g

(
x, y,w,

∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y
,
∂2w

∂y2 , . . .

)
= 0. (15.10.1.13)

A differential constraint (15.10.1.13) that is compatible with equation (15.10.1.11) under
consideration is called an invariant manifold of equation (15.10.1.11).

4◦. One should find the general solution of (i) equation (15.10.1.13) or (ii) some equation
that follows from equations (15.10.1.11) and (15.10.1.13). The solution thus obtained will
involve some arbitrary functions {ϕm} (these may depend on x and y, as well as w). Note
that in some cases, one can use, instead of the general solution, some particular solutions
of equation (15.10.1.13) or equations that follow from (15.10.1.13).

5◦. The solution obtained in Item 4◦ should be substituted into the original equation
(15.10.1.11). As a result, one arrives at a functional differential equation from which
the functions {ϕm} should be found. Having found the {ϕm}, one should insert these
functions into the solution from Item 4◦. Thus, one obtains an exact solution of the original
equation (15.10.1.11).

Remark 1. Should the choice of a differential constraint be inadequate, equations (15.10.1.11) and
(15.10.1.12) may happen to be incompatible (having no common solutions).

Remark 2. There may be several differential constraints of the form (15.10.1.12).

Remark 3. At the last three steps of the differential constraints method, one has to solve various equations
(systems of equations). If no solution can be constructed at one of those steps, one fails to construct an exact
solution of the original equation.

For the sake of clarity, the general scheme of the differential constraints method is
represented in Figure 15.6.

15.10.2. First-Order Differential Constraints

15.10.2-1. Second-order evolution equations.

Consider a general second-order evolution equation solved for the highest-order derivative:

∂2w

∂x2 = F
(
x, t,w,

∂w

∂x
,
∂w

∂t

)
. (15.10.2.1)

Let us supplement this equation with a first-order differential constraint

∂w

∂t
= G
(
x, t,w,

∂w

∂x

)
. (15.10.2.2)

The condition of compatibility of these equations is obtained by differentiating (15.10.2.1)
with respect to t once and differentiating (15.10.2.2) with respect to x twice, and then
equating the two resulting expressions for the third derivatives wxxt and wtxx:

DtF = D2
xG. (15.10.2.3)
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Introduce a supplementary equation

Perform compatibility analysis of the two equations

Obtain equations for the determining functions

Insert the solution into the differential constraint

Determine the unknown functions and constants

Solve the equations for the determining functions

Insert resulting solution (with arbitrariness) into original equationthe

Obtain an exact solution of the original equation

Figure 15.6. Algorithm for the construction of exact solutions by the differential constraints method.

Here, Dt and Dx are the total differentiation operators with respect to t and x:

Dt =
∂

∂t
+ wt

∂

∂w
+ wxt

∂

∂wx
+ wtt

∂

∂wt
, Dx =

∂

∂x
+ wx

∂

∂w
+ wxx

∂

∂wx
+ wxt

∂

∂wt
.

(15.10.2.4)
The partial derivatives wt, wxx, wxt, and wtt in (15.10.2.4) should be expressed in terms
of x, t, w, and wx by means of the relations (15.10.2.1), (15.10.2.2) and those obtained by
differentiation of (15.10.2.1), (15.10.2.2). As a result, we get

wt = G, wxx = F , wxt = DxG =
∂G
∂x

+ wx
∂G
∂w

+ F ∂G
∂wx

,

wtt = DtG =
∂G
∂t

+ G ∂G
∂w

+ wxt
∂G
∂wx

=
∂G
∂t

+ G ∂G
∂w

+

(
∂G
∂x

+ wx
∂G
∂w

+ F ∂G
∂wx

)
∂G
∂wx

.

(15.10.2.5)
In the expression for F , the derivative wt should be replaced by G by virtue of (15.10.2.2).

Example 1. From the class of nonlinear heat equations with a source

∂w

∂t
=

∂

∂x

[
f (w)

∂w

∂x

]
+ g(w), (15.10.2.6)
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let us single out equations possessing invariant manifolds of the simplest form

∂w

∂t
= ϕ(w). (15.10.2.7)

Equations (15.10.2.6) and (15.10.2.7) are special cases of (15.10.2.1) and (15.10.2.2) with

F =
wt – f ′(w)w2

x – g(w)
f (w)

=
ϕ(w) – g(w) – f ′(w)w2

x

f (w)
, G = ϕ(w).

The functions f (w), g(w), and ϕ(w) are unknown in advance and are to be determined in the subsequent
analysis.

Using (15.10.2.5) and (15.10.2.4), we find partial derivatives and the total differentiation operators:

wt = ϕ, wxx = F , wxt = ϕ′wx, wtt = ϕϕ′,

Dt =
∂

∂t
+ ϕ

∂

∂w
+ ϕ′wx

∂

∂wx
+ ϕϕ′ ∂

∂wt
, Dx =

∂

∂x
+ wx

∂

∂w
+ F ∂

∂wx
+ ϕ′wx

∂

∂wt
.

We insert the expressions of Dx and Dt into the compatibility conditions (15.10.2.3) and rearrange terms to
obtain [

(fϕ)′

f

]′
w2

x +
ϕ – g
f

ϕ′ – ϕ

(
ϕ – g
f

)′
= 0.

In order to ensure that this equality holds true for any wx, one should take
[

(fϕ)′

f

]′
= 0,

ϕ – g
f

ϕ′ – ϕ

(
ϕ – g
f

)′
= 0. (15.10.2.8)

Nondegenerate case. Assuming that the function f = f (w) is given, we obtain a three-parameter solution
of equations (15.10.2.8) for the functions g(w) and ϕ(w):

g(w) =
a + cf
f

(∫
f dw + b

)
, ϕ(w) =

a

f

(∫
f dw + b

)
, (15.10.2.9)

where a, b, and c are arbitrary constants.
We substitute ϕ(w) of (15.10.2.9) into equation (15.10.2.7) and integrate to obtain

∫
f dw = θ(x)eat – b. (15.10.2.10)

Differentiating (15.10.2.10) with respect to x and t, we get wt = aeatθ/f and wx = eatθ′x/f . Substituting
these expressions into (15.10.2.6) and taking into account (15.10.2.9), we arrive at the equation θ′′xx + cθ = 0,
whose general solution is given by

θ =

⎧
⎨

⎩

C1 sin
(
x
√
c
)

+ C2 cos
(
x
√
c
)

if c > 0,

C1 sinh
(
x
√

–c
)

+ C2 cosh
(
x
√

–c
)

if c < 0,
C1x + C2 if c = 0,

(15.10.2.11)

where C1 and C2 are arbitrary constants. Formulas (15.10.2.10)–(15.10.2.11) describe exact solutions (in
implicit form) of equation (15.10.2.6) with f (w) arbitrary and g(w) given by (15.10.2.9).

Degenerate case. There also exists a two-parameter solution of equations (15.10.2.8) for the functions
g(w) and ϕ(w) (as above, f is assumed arbitrary):

g(w) =
b

f
+ c, ϕ(w) =

b

f
,

where b and c are arbitrary constants. This solution can be obtained from (15.10.2.9) by renaming variables,
b→ b/a and c→ ac/b, and letting a→ 0. After simple calculations, we obtain the corresponding solution of
equation (15.10.2.6) in implicit form:

∫
f dw = bt –

1
2
cx2 + C1x + C2.

The example given below shows that calculations may be performed without the use of the general formulas
(15.10.2.3)–(15.10.2.5).

Remark 1. In the general case, for a given function F , the compatibility condition (15.10.2.3) is a non-
linear partial differential equation for the function G. This equation admits infinitely many solutions (by
the theorem about the local existence of solutions). Therefore, the second-order partial differential equa-
tion (15.10.2.1) admits infinitely many compatible first-order differential constraints (15.10.2.2).

Remark 2. In the general case, the solution of the first-order partial differential equation (15.10.2.2)
reduces to the solution of a system of ordinary differential equations; see Chapter 13.
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15.10.2-2. Second-order hyperbolic equations.

In a similar way, one can consider second-order hyperbolic equations of the form

∂2w

∂x∂t
= F
(
x, t,w,

∂w

∂x
,
∂w

∂t

)
, (15.10.2.12)

supplemented by a first-order differential constraint (15.10.2.2). Assume that Gwx ≠ 0.
A compatibility condition for these equations is obtained by differentiating (15.10.2.12)

with respect to t and (15.10.2.2) with respect to t and x, and then equating the resulting
expressions of the third derivatives wxtt and wttx to one another:

DtF = Dx[DtG]. (15.10.2.13)

Here, Dt and Dx are the total differential operators of (15.10.2.4) in which the partial
derivatives wt, wxx, wxt, and wtt must be expressed in terms of x, t, w, and wx with
the help of relations (15.10.2.12) and (15.10.2.2) and those obtained by differentiating
(15.10.2.12) and (15.10.2.2).

Let us show how the second derivatives can be calculated. We differentiate (15.10.2.2)
with respect to x and replace the mixed derivative by the right-hand side of (15.10.2.12) to
obtain the following expression for the second derivative with respect to x:

∂G
∂x

+ wx
∂G
∂w

+ wxx
∂G
∂wx

= F
(
x, t,w,

∂w

∂x
,
∂w

∂t

)
=⇒ ∂2w

∂x2 = H1

(
x, t,w,

∂w

∂x

)
.

(15.10.2.14)
Here and in what follows, we have taken into account that (15.10.2.2) allows us to ex-
press the derivative with respect to t through the derivative with respect to x. Further,
differentiating (15.10.2.2) with respect to t yields

∂2w

∂t2 =
∂G
∂t

+wt
∂G
∂w

+wxt
∂G
∂wx

=
∂G
∂t

+G ∂G
∂w

+F ∂G
∂wx

=⇒ ∂2w

∂t2 =H2

(
x, t,w,

∂w

∂x

)
.

(15.10.2.15)
Replacing the derivatives wt, wxt, wxx, and wtt in (15.10.2.4) by their expressions

from (15.10.2.2), (15.10.2.12), (15.10.2.14), and (15.10.2.15), we find the total differential
operators Dt and Dx, which are required for the compatibility condition (15.10.2.13).

Example 2. Consider the nonlinear equation

∂2w

∂x∂t
= f (w). (15.10.2.16)

Let us supplement (15.10.2.16) with quasilinear differential constraint of the form

∂w

∂x
= ϕ(t)g(w). (15.10.2.17)

Differentiating (15.10.2.16) with respect to x and then replacing the first derivative with respect to x by
the right-hand side of (15.10.2.17), we get

wxxt = ϕgf ′
w. (15.10.2.18)

Differentiating further (15.10.2.17) with respect to x and t, we obtain two relations

wxx = ϕg′wwx = ϕ2gg′w, (15.10.2.19)

wxt = ϕ′
tg + ϕg′wwt. (15.10.2.20)

Eliminating the mixed derivative from (15.10.2.20) using equation (15.10.2.16), we find the first derivative with
respect to t:

wt =
f – ϕ′

tg

ϕg′w
. (15.10.2.21)
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Differentiating (15.10.2.19) with respect to t and replacing wt by the right-hand side of (15.10.2.21), we have

wxxt = 2ϕϕ′
tgg

′
w + ϕ2(gg′w)′wwt = 2ϕϕ′

tgg
′
w + ϕ(gg′w)′w

f – ϕ′
tg

g′w
. (15.10.2.22)

Equating now the third derivatives (15.10.2.18) and (15.10.2.22), canceling them by ϕ, and performing simple
rearrangements, we get the determining equation

ϕ′
tg[(g′w)2 – gg′′ww] = gg′wf

′
w – f (gg′w)′w, (15.10.2.23)

which has two different solutions.
Solution 1. Equation (15.10.2.23) is satisfied identically for any ϕ = ϕ(t) if

(g′w)2 – gg′′ww = 0,

gg′wf
′
w – f (gg′w)′w = 0.

The general solution of this system has the form

f (w) = aeλw, g(w) = beλw/2, (15.10.2.24)

where a, b, and λ are arbitrary constants. For simplicity, we set

a = b = 1, λ = –2. (15.10.2.25)

Substitute g(w) defined by (15.10.2.24)–(15.10.2.25) into the differential constraint (15.10.2.17) and
integrate the resulting equation to obtain

w = ln[ϕ(t)x + ψ(t)], (15.10.2.26)

where ψ(t) is an arbitrary function. Substituting (15.10.2.26) into the original equation (15.10.2.16) with the
right-hand side (15.10.2.24)–(15.10.2.25), we arrive at a linear ordinary differential equation for ψ(t):

ψϕ′
t – ϕψ′

t = 1.

The general solution of this equation is expressed as

ψ(t) = Cϕ(t) – ϕ(t)
∫

dt

ϕ2(t)
, (15.10.2.27)

where C is an arbitrary constant.
Thus, formulas (15.10.2.26)–(15.10.2.27), where ϕ(t) is an arbitrary function, define an exact solution to

the nonlinear equation wxt = e–2w.
Solution 2. The second solution is determined by the linear relation

ϕ(t) = at + b, (15.10.2.28)

where a and b are arbitrary constants. In this case, the functions f (w) and g(w) are related by (15.10.2.23),
with ϕ′

t = a. Integrating (15.10.2.17) with constraint (15.10.2.28) yields the solution structure

w = w(z), z = (at + b)x + ψ(t), (15.10.2.29)

where ψ(t) is an arbitrary function. Inserting it into the original equation (15.10.2.16) and changing x to z with
the help of (15.10.2.29), we obtain

[az + (at + b)ψ′
t – aψ]w′′

zz + aw′
z = f (w). (15.10.2.30)

In order for this relation to be an ordinary differential equation for w = w(z), one should set

(at + b)ψ′
t – aψ = const.

Integrating yields ψ(t) in the form
ψ(t) = ct + d, (15.10.2.31)

where c and d are arbitrary constants.
Formulas (15.10.2.29) and (15.10.2.31) define a solution to equation (15.10.2.16) for arbitrary f (w). The

function w(z) is described by equation (15.10.2.30) with constraint (15.10.2.31). To the special case a = d = 0
there corresponds a traveling-wave solution and to the case b = c = d = 0, a self-similar solution.
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15.10.2-3. Second-order equations of general form.

Consider a second-order equation of the general form

F(x, t,w,wx,wt,wxx,wxt,wtt) = 0 (15.10.2.32)

with a first-order differential constraint

G(x, t,w,wx,wt) = 0. (15.10.2.33)

Let us successively differentiate equations (15.10.2.32) and (15.10.2.33) with respect to
both variables so as to obtain differential relations involving second and third derivatives.
We get

DxF = 0, DtF = 0, DxG = 0, DtG = 0, Dx[DxG] = 0, Dx[DtG] = 0, Dt[DtG] = 0.
(15.10.2.34)

The compatibility condition for (15.10.2.32) and (15.10.2.33) can be found by eliminating
the derivatives wt, wxx, wxt, wtt, wxxx, wxxt, wxtt, and wttt from the nine equations of
(15.10.2.32)–(15.10.2.34). In doing so, we obtain an expression of the form

H(x, t,w,wx) = 0. (15.10.2.35)

If the left-hand side of (15.10.2.35) is a polynomial inwx, then the compatibility conditions
result from equating the functional coefficients of the polynomial to zero.

15.10.3. Second- and Higher-Order Differential Constraints

Constructing exact solutions of nonlinear partial differential equations with the help of
second- and higher-order differential constraints requires finding exact solutions of these
differential constraints. The latter is generally rather difficult or even impossible. For
this reason, one employs some special differential constraints that involve derivatives with
respect to only one variable. In practice, one considers second-order ordinary differential
equations in, say, x and the other variable, t, is involved implicitly or is regarded as a
parameter, so that integration constants depend on t.

The problem of compatibility of a second-order evolution equation

∂w

∂t
= F1

(
x, t,w,

∂w

∂x
,
∂2w

∂x2

)

with a similar differential constraint

∂w

∂t
= F2

(
x, t,w,

∂w

∂x
,
∂2w

∂x2

)

may be reduced to a problem with the first-order differential constraint considered in
Paragraph 15.10.2-1. To that end, one should first eliminate the second derivative wxx from
the equations. Then the resulting first-order equation is examined together with the original
equation (or the original differential constraint).
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Example. From the class of nonlinear heat equations with a source

∂w

∂t
=

∂

∂x

[
f1(w)

∂w

∂x

]
+ f2(w) (15.10.3.1)

one singles out equations that admit invariant manifolds of the form

∂2w

∂x2 = g1(w)

(
∂w

∂x

)2

+ g2(w). (15.10.3.2)

The functions f2(w), f1(w), g2(w), and g1(w) are to be determined in the further analysis.
Eliminating the second derivative from (15.10.3.1) and (15.10.3.2), we obtain

∂w

∂t
= ϕ(w)

(
∂w

∂x

)2

+ ψ(w), (15.10.3.3)

where
ϕ(w) = f1(w)g1(w) + f ′

1(w), ψ(w) = f1(w)g2(w) + f2(w). (15.10.3.4)
The condition of invariance of the manifold (15.10.3.2) under equation (15.10.3.1) is obtained by differen-

tiating (15.10.3.2) with respect to t:

wxxt = 2g1wxwxt + g′1w
2
xwt + g′2wt.

The derivativeswxxt,wxt, andwt should be eliminated from this relation with the help of equations (15.10.3.2)
and (15.10.3.3) and those obtained by their differentiation. As a result, we get

(2ϕg2
1 + 3ϕ′g1 + ϕg′1 + ϕ′′)w4

x + (4ϕg1g2 + 5ϕ′g2 + ϕg′2 – g1ψ
′ – ψg′1 + ψ′′)w2

x + 2ϕg2
2 + ψ′g2 – ψg′2 = 0.

Equating the coefficients of like powers of wx to zero, one obtains three equations, which, for convenience,
may be written in the form

(ϕ′ + ϕg1)′ + 2g1(ϕ′ + ϕg1) = 0,

4g2(ϕ′ + ϕg1) + (ϕg2 – ψg1)′ + ψ′′ = 0,

ϕ = – 1
2 (ψ/g2)′.

(15.10.3.5)

The first equation can be satisfied by taking ϕ′ + ϕg1 = 0. The corresponding particular solution of sys-
tem (15.10.3.5) has the form

ϕ = –
1
2
μ′, ψ = μg2, g1 = –

μ′′

μ′ , g2 =

(
2C1 +

C2√
|μ|

)
1
μ′ , (15.10.3.6)

where μ = μ(w) is an arbitrary function.
Taking into account (15.10.3.4), we find the functional coefficients of the original equation (15.10.3.1) and

the invariant set (15.10.3.2):

f1 =

(
C3 –

1
2
w

)
μ′, f2 = (μ – f1)g2, g1 = –

μ′′

μ′ , g2 =

(
2C1 +

C2√
|μ|

)
1
μ′ . (15.10.3.7)

Equation (15.10.3.2), together with (15.10.3.7), admits the first integral

w2
x =
[

4C1μ + 4C2
√

|μ| + 2σ′
t(t)
] 1

(μ′)2 , (15.10.3.8)

where σ(t) is an arbitrary function. Let us eliminatew2
x from (15.10.3.3) by means of (15.10.3.8) and substitute

the functions ϕ and ψ from (15.10.3.6) to obtain the equation

μ′wt = –C2
√

|μ| – σ′
t(t). (15.10.3.9)

Let us dwell on the special case C2 = C3 = 0. Integrating equation (15.10.3.9) and taking into account that
μt = μ′wt yield

μ = –σ(t) + θ(x), (15.10.3.10)
where θ(x) is an arbitrary function. Substituting (15.10.3.10) into (15.10.3.8) and taking into account the
relation μx = μ′wx, we obtain

θ2
x – 4C1θ = 2σt – 4C1σ.

Equating both sides of this equation to zero and integrating the resulting ordinary differential equations, we
find the functions on the right-hand side of (15.10.3.10):

σ(t) = A exp(2C1t), θ(x) = C1(x + B)2, (15.10.3.11)

where A and B are arbitrary constants. Thus, an exact solution of equation (15.10.3.1) with the functions f1
and f2 from (15.10.3.7) can be represented in implicit form for C2 = C3 = 0 as follows:

μ(w) = –A exp(2C1t) + C1(x +B)2.

In the solution and the determining relations (15.10.3.7), the function μ(w) can be chosen arbitrarily.
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TABLE 15.10
Second-order differential constraints corresponding to some

classes of exact solutions representable in explicit form

No. Type of solution Structure of solution Differential constraints

1 Additive separable solution w = ϕ(x) + ψ(y) wxy = 0

2 Multiplicative separable solution w = ϕ(x)ψ(y) wwxy – wxwy = 0

3 Generalized separable solution w = ϕ(x)y2 + ψ(x)y + χ(x) wyy – f (x) = 0

4 Generalized separable solution w = ϕ(x)ψ(y) + χ(x)
wyy – f (y)wy = 0
wxy – g(x)wy = 0

5 Functional separable solution w = f (z), z = ϕ(x)y + ψ(x) wyy – g(w)w2
y = 0

6 Functional separable solution w = f (z), z = ϕ(x) + ψ(y) wwxy – g(w)wxwy = 0

15.10.4. Connection Between the Differential Constraints Method
and Other Methods

The differential constraints method is one of the most general methods for the construction
of exact solutions to nonlinear partial differential equations. Many other methods can be
treated as its particular cases.*

15.10.4-1. Generalized/functional separation of variables vs. differential constraints.

Table 15.10 lists examples of second-order differential constraints that are essentially equiv-
alent to most common forms of separable solutions. For functional separable solutions (rows
5 and 6), the function g can be expressed through f .

Searching for a generalized separable solution of the form w(x, y) = ϕ1(x)ψ1(y) + · · · +
ϕn(x)ψn(y), with 2n unknown functions, is equivalent to prescribing a differential constraint
of order 2n; in general, the number of unknown functions ϕi(x), ψi(y) corresponds to the
order of the differential equation representing the differential constraint.

For the types of solutions listed in Table 15.10, it is preferable to use the methods of
generalized and functional separation of variables, since these methods require less steps
where it is necessary to solve intermediate differential equations. Furthermore, the method
of differential constraints is ill-suited for the construction of exact solutions of third- and
higher-order equations since they lead to cumbersome computations and rather complex
equations (often, the original equations are simpler).

Remark. The direct specification of a solution structure, on which the methods of generalized and
functional separation of variables are based, may be treated as the use of a zeroth-order differential constraint.

15.10.4-2. Generalized similarity reductions and differential constraints.

Consider a generalized similarity reduction based on a prescribed form of the desired
solution,

w(x, t) = F
(
x, t,u(z)

)
, z = z(x, t), (15.10.4.1)

* The basic difficulty in applying the differential constraints method is due to the great generality of its
statements and the necessity of selecting differential constraints suitable for specific classes of equations. This
is why for the construction of exact solutions of nonlinear equations, it is often preferable to use simpler (but
less general) methods.
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where F (x, t,u) and z(x, t) should be selected so as to obtain ultimately a single ordinary
differential equation for u(z); see Remark 3 in Subsection 15.7.1-2.

Let us show that employing the solution structure (15.10.4.1) is equivalent to searching
for a solution with the help of a first-order quasilinear differential constraint

ξ(x, t)
∂w

∂t
+ η(x, t)

∂w

∂x
= ζ(x, t,w). (15.10.4.2)

Indeed, first integrals of the characteristic system of ordinary differential equations

dt

ξ(x, t)
=

dx

η(x, t)
=

dw

ζ(x, t,w)

have the form
z(x, t) = C1, ϕ(x, t,w) = C2, (15.10.4.3)

where C1 and C2 are arbitrary constants. Therefore, the general solution of equation
(15.10.4.2) can be written as follows:

ϕ(x, t,w) = u
(
z(x, t)

)
, (15.10.4.4)

where u(z) is an arbitrary function. On solving (15.10.4.4) forw, we obtain a representation
of the solution in the form (15.10.4.1).

15.10.4-3. Nonclassical method of symmetry reductions and differential constraints.

The nonclassical method of symmetry reductions can be restated in terms of the differential
constraints method. This can be demonstrated by the following example with a general
second-order equation

F

(
x, y,w,

∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y
,
∂2w

∂y2

)
= 0. (15.10.4.5)

Let us supplement equation (15.10.4.5) with two differential constraints

ξ
∂w

∂x
+ η

∂w

∂y
= ζ , (15.10.4.6)

ξ
∂F

∂x
+η

∂F

∂y
+ζ

∂F

∂w
+ζ1

∂F

∂wx
+ζ2

∂F

∂wy
+ζ11

∂F

∂wxx
+ζ12

∂F

∂wxy
+ζ22

∂F

∂wyy
= 0, (15.10.4.7)

where ξ = ξ(x, y,w), η = η(x, y,w), and ζ = ζ(x, y,w) are unknown functions, and the
coordinates of the first and the second prolongations ζi and ζij are defined by formu-
las (15.8.1.9) and (15.8.1.14). The differential constraint (15.10.4.7) coincides with the
invariance condition for equation (15.10.4.5); see (15.8.2.3)–(15.8.2.4).

The method for the construction of exact solutions to equation (15.10.4.5) based on
using the first-order partial differential equation (15.10.4.6) and the invariance condi-
tion (15.10.4.7) corresponds to the nonclassical method of symmetry reductions (see Sub-
section 15.9.1).
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15.11. Painlevé Test for Nonlinear Equations of
Mathematical Physics

15.11.1. Solutions of Partial Differential Equations with a Movable
Pole. Method Description

Basic idea: Solutions of partial differential equations are sought in the form of series
expansions containing a movable pole singularity. The position of the pole is defined by an
arbitrary function.

15.11.1-1. Simple scheme for studying nonlinear partial differential equations.

For a clearer exposition, we will be considering equations of mathematical physics in two
independent variables, x and t, and one dependent variable, w, explicitly independent of x
and t.

A solution sought in a small neighborhood of a manifold x –x0(t) = 0 is the form of the
following series expansion (Jimbo, Kruskal, and Miwa, 1982):

w(x, t) =
1
ξp

∞∑

m=0

wm(t)ξm, ξ = x – x0(t). (15.11.1.1)

Here, the exponent p is a positive integer, so that the movable singularity is of the pole type.
The function x0(t) is assumed arbitrary, and the wm are assumed to depend on derivatives
of x0(t).

The representation (15.11.1.1) is substituted into the given equation. The exponent p
and the leading term u0(t) are first determined from the balance of powers in the expansion.
Terms with like powers of ξ are further collected. In the resulting polynomial, the coef-
ficients of the different powers of ξ are all equated to zero to obtain a system of ordinary
differential equations for the functions wm(t).

The solution obtained is general if the expansion (15.11.1.1) involves arbitrary functions,
with the number of them equal to the order of the equation in question.

15.11.1-2. General scheme for analysis of nonlinear partial differential equations.

A solution of a partial differential equation is sought in a neighborhood of a singular manifold
ξ(x, t) = 0 in the form of a generalized series expansion symmetric in the independent
variables (Weiss, Tabor, and Carnevalle, 1983):

w(x, t) =
1
ξp

∞∑

m=0

wm(x, t)ξm, ξ = ξ(x, t), (15.11.1.2)

where ξtξx ≠ 0. Here and henceforth, the subscripts x and t denote partial derivatives; the
function ξ(x, t) is assumed arbitrary and the wm are assumed to be dependent on derivatives
of ξ(x, t).

Expansion (15.11.1.1) is a special case of expansion (15.11.1.2), when the equation of
the singular manifold has been resolved for x.

The requirement that there are no movable singularities implies that p is a positive
integer. The solution will be general if the number of arbitrary functions appearing in
the coefficients wm(x, t) and the expansion variable ξ(x, t) coincides with the order of the
equation.
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Substituting (15.11.1.2) into the equation, collect terms with like powers of ξ, and
equating the coefficients to zero, one arrives at the following recurrence relations for the
expansion coefficients:

kmwm = Φm(w0,w1, . . . ,wm–1, ξt, ξx, . . .). (15.11.1.3)
Here, km are polynomials of degree n with integer argument m of the form

km = (m + 1)(m – m1)(m –m2) . . . (m – mn–1), (15.11.1.4)
where n is the order of the equation concerned.

If the roots of the polynomial, m1,m2, . . . ,mn–1, called Fuchs indices (resonances),
are all nonnegative integers and the consistency conditions

Φm=mj = 0 (j = 1, 2, . . . ,n – 1) (15.11.1.5)
hold, the equation is said to pass the Painlevé test. Equations that pass the Painlevé test
are often classified as integrable, which is supported by the fact that such equations are
reducible to linear equations in many known cases.

15.11.1-3. Basic steps of the Painlevé test for nonlinear equations.

For nonlinear equations of mathematical physics, the Painlevé test is convenient to carry
out in several steps. At the first and second steps, one determines the leading term in the
expansion (15.11.1.1) and the Fuchs indices; this allows to verify the necessary conditions
for the Painlevé test without making full computations. For the sake of clarity, the basic steps
in performing the Painlevé test for nonlinear equations, using the expansion (15.11.1.1), are
shown in Figure 15.7.

Remark. An equation fails to pass the Painlevé test if any of the following conditions holds: p < 0, p is
noninteger, p is complex,mj < 0,mj is noninteger, ormj is complex (at least for one j, where j = 1, . . . ,n– 1).

15.11.1-4. Some remarks. Truncated expansions.

The numerous researchers have established that many known integrable nonlinear equations
of mathematical physics pass the Painlevé test. New equations possessing this property
have also been found.

As a simple check whether a specific equation passes the Painlevé test, one may use
the simple scheme based on the expansion (15.11.1.1). The associated important technical
simplifications as compared with the expansion (15.11.1.2) are due to the fact that (wm)x = 0
and ξx = 1.

The general expansion (15.11.1.2), involving more cumbersome but yet more informa-
tive computations, can prove useful after the Painlevé property has been established at the
simple check. It may help reveal many important properties of equations and their solutions.

In some cases, a truncated expansion,

w =
w0

ξp
+
w1

ξp–1 + · · · + wp, (15.11.1.6)

can be useful for constructing exact solutions and finding a Bäcklund transformation lin-
earizing the original equation. This expansion corresponds to zero values of the expansion
coefficients wm with m > p in (15.11.1.2); see Examples 1 and 2 in Subsection 15.11.2.

The Painlevé test for a nonlinear partial differential equation can be performed for special
classes of its exact solutions, usually traveling-wave solutions and self-similar solutions,
which are determined by ordinary differential equations. If the ordinary differential equation
obtained fails the Painlevé test, then the original partial differential equation also fails the
test. If the ordinary differential equation passes the Painlevé test, then the original partial
differential equation normally also passes the test.
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First step: look for the leading term of expansion (15.11.1.2)

Look for Fuchs indices (resonances)

Substitute expansion (15.11.1.2) into the equation

Check the consistency conditions (15.11.1.5)

Figure 15.7. Basic steps of the Painlevé test for nonlinear equations of mathematical physics. It is assumed
that ξ = x – x0(t) for the simple scheme and ξ = ξ(x, t) for the general scheme.

15.11.2. Examples of Performing the Painlevé Test and Truncated
Expansions for Studying Nonlinear Equations

This Subsection treats some common nonlinear equations of mathematical physics. For their
analysis, the simple scheme of the Painlevé test will be used first; this scheme is based on
the expansion (15.11.1.1) [see also the scheme in Fig. 15.7 with ξ = x–x0(t)]. The truncated
expansion (15.11.1.6) will then be used for constructing Bäcklund transformations.
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Example 1. Consider the Burgers equation

∂w

∂t
+ w

∂w

∂x
= ν

∂2w

∂x2 . (15.11.2.1)

First step. Substitute the leading term of expansion (15.11.1.1) in equation (15.11.2.1) and multiply the
resulting relation by ξp+2 (the product ξp+2wxx is equal to unity by order of magnitude). This results in

w′
0ξ

2 + pw0x
′
0ξ – pw2

0ξ
1–p = νp(p + 1)w0,

where ξ = x – x0, x0 = x0(t), w0 = w0(t), and the prime denotes a derivative with respect to t. We find from
the balance of the leading terms, which corresponds to dropping two leftmost terms, that

p = 1, w0 = –2ν (m = 0). (15.11.2.2)

Since p is a positive integer, the first necessary condition of the Painlevé test is satisfied.
Second step. In order to find the Fuchs indices (resonances), we substitute the binomial

w = –2νξ–1 + wmξ
m–1

into the leading terms wwx and νwxx of equation (15.11.2.1). Collecting coefficients of like powers of wm,
we get

ν(m + 1)(m – 2)wmξ
m–3 + · · · = 0.

Equating (m + 1)(m – 2) to zero yields the Fuchs index

m1 = 2.

Since it is a positive integer, the second necessary condition of the Painlevé test is satisfied.
Third step. We substitute the expansion (15.11.1.1) (according to the second step, we have to consider

terms up to number m = 2 inclusive),

w = –2νξ–1 + w1 + w2ξ + · · · ,

into the Burgers equation (15.11.2.1), collect terms of like powers of ξ = x – x0(t), and then equate the
coefficients of the different powers to zero to obtain a system of equations for the wm:

ξ–2: 2ν(w1 – x′
0) = 0,

ξ–1: 0 × w2 = 0.
(15.11.2.3)

From the second relation in (15.11.2.3) it follows that the function w2 = w2(t) can be chosen arbitrarily.
Therefore the Burgers equation (15.11.2.1) passes the Painlevé test and its solution has two arbitrary functions,
x0 = x0(t) and w2 = w2(t), as required.

It follows from the first relation in (15.11.2.3) that w1 = x′
0(t). The solution to equation (15.11.2.1) can be

written as

w(x, t) = –
2ν

x – x0(t)
+ x′

0(t) + w2(t)[x – x0(t)]2 + · · · ,

where x0(t) and w2(t) are arbitrary functions.
Cole–Hopf transformation. For further analysis of the Burgers equation (15.11.2.1), we use a truncated

expansion of the general form (15.11.1.6) with p = 1:

w =
w0

ξ
+ w1, (15.11.2.4)

where w0 = w0(x, t), w1 = w1(x, t), and ξ = ξ(x, t). Substitute (15.11.2.4) in (15.11.2.1) and collect the terms
of equal powers in ξ to obtain

ξ–3w0ξx

(
w0 + 2νξx

)
+ ξ–2[w0ξt – w0(w0)x + w0w1ξx – 2ν(w0)xξx – νw0ξxx

]

+ ξ–1[–(w0)t – w0(w1)x – w1(w0)x + ν(w0)xx

]
– (w1)t – w1(w1)x + ν(w1)xx = 0,

where the subscripts x and t denote partial derivatives. Equating the coefficients of like powers of ξ to zero,
we get the system of equations

w0 + 2νξx = 0,

w0ξt – w0(w0)x + w0w1ξx – 2ν(w0)xξx – νw0ξxx = 0,

(w0)t + w0(w1)x + w1(w0)x – ν(w0)xx = 0,

(w1)t + w1(w1)x – ν(w1)xx = 0,

(15.11.2.5)
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where it has been taken into account that ξx � 0.
If follows from the first equation of (15.11.2.5) that

w0 = –2νξx. (15.11.2.6)

Substituting this into the second and third equations of (15.11.2.5), after some rearrangements we obtain

ξt + w1ξx – νξxx = 0,

(ξt + w1ξx – νξxx)x = 0.
(15.11.2.7)

It is obvious that if the first equation of (15.11.2.7) is valid, then the second is satisfied identically. The last
equation in (15.11.2.5) is the Burgers equation.

Hence, formula (15.11.2.4) in view of (15.11.2.6) can be rewritten as

w = –2ν
∂

∂x
ln ξ + w1, (15.11.2.8)

where the functions w and w1 satisfy the Burgers equation and the function ξ is described by the first equation
of (15.11.2.7). Given a solutionw1 of the Burgers equation, formula (15.11.2.8) allows obtaining other solutions
of it by solving the first equation in (15.11.2.7), which is linear in ξ.

Taking into account that w1 = 0 is a particular solution of the Burgers equation, let us substitute it into
(15.11.2.7) and (15.11.2.8). This results in the Cole–Hopf transformation

w = –2ν ξx

ξ
.

This transformation allows constructing solutions of the nonlinear Burgers equation (15.11.2.1) via solutions
of the linear heat equation

ξt = νξxx.

Example 2. Consider the Korteweg–de Vries equation

∂w

∂t
+ w

∂w

∂x
+
∂3w

∂x3 = 0. (15.11.2.9)

First step. Let us substitute the leading term of the expansion (15.11.1.1) into equation (15.11.2.9) and
then multiply the resulting relation by ξp+3 (the product ξp+3wxxx gives a zeroth order quantity) to obtain

w′
0ξ

3 + pw0x
′
0ξ

2 – pw2
0ξ

2–p – p(p + 1)(p + 2)w0 = 0,

where ξ = x – x0, x0 = x0(t), and w0 = w0(t). From the balance of the highest-order terms (only the last two
terms are taken into account) it follows that

p = 2, w0 = –12 (m = 0).

Since p is a positive integer, the first necessary condition of the Painlevé test is satisfied.
Second step. To fine the Fuchs indices (resonances), we substitute the binomial

w = –12ξ–2 + wmξ
m–2

into the leading terms of equation (15.11.2.9), where the second and the third term are taken into account.
Isolating the term proportional to wm, we have

(m + 1)(m – 4)(m – 6)wmξ
m–5 + · · · = 0.

Equating (m + 1)(m – 4)(m – 6) to zero gives the Fuchs indices

m1 = 4, m2 = 6.

Since they are both positive integers, the second necessary condition of the Painlevé test is satisfied.
Third step. We substitute the expansion (15.11.1.1), while considering, according to the second step, the

terms up to number m = 6 inclusive,

w = –12ξ–2 + w1ξ
–1 + w2 + w3ξ + w4ξ

2 + w5ξ
3 + w6ξ

4 + · · · , ξ = x – x0(t) (15.11.2.10)
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into equation (15.11.2.9). Then we collect the terms of equal powers in ξ and equate the coefficients of the
different powers of ξ to zero to arrive at a system of equations for the wm:

ξ–4: 2w1 = 0,

ξ–3: 24w2 – 24x′
0 – w2

1 = 0,

ξ–2: 12w3 + w1x
′
0 – w1w2 = 0,

ξ–1: 0 × w4 + w′
1 = 0,

1: –6w5 + w′
2 – w3x

′
0 + w1w4 + w2w3 = 0,

ξ: 0 × w6 + w′
3 – 2w4x

′
0 + w2

3 + 2w1w5 + 2w2w4 = 0.

(15.11.2.11)

Simple computations show that the equations with resonances corresponding to the powers ξ–1 and ξ are
satisfied identically. Hence, the Korteweg–de Vries equation (15.11.2.9) passes the Painlevé test.

The solution of equation (15.11.2.11) results in the following expansion coefficients in (15.11.2.10):

w1 = 0, w2 = x′
0(t), w3 = 0, w4 = w4(t), w5 = 1

6 x
′′
0 (t), w6 = w6(t),

where x0(t), w4(t), and w6(t) are arbitrary functions.
Truncated series expansion and the Bäcklund transformation. For further analysis, let us use a truncated

expansion of the general form (15.11.1.6) with p = 2:

w =
w0

ξ2 +
w1

ξ
+ w2. (15.11.2.12)

Substituting (15.11.2.12) into (15.11.2.9) and equating the functional coefficients of the different powers of ξ
to zero, in the same way as in Example 2, we arrive at the Bäcklund transformation

w = 12(ln ξ)xx + w2,

ξtξx + w2ξ
2
x + 4ξxξxxx – 3ξ2

xx = 0,

ξxt + w2ξxx + ξxxx = 0,

(w2)t + w2(w2)x + (w2)xxx = 0.

(15.11.2.13)

It relates the solutions w and w2 of the Korteweg–de Vries equations. Eliminating w2 from the second and
third equations in (15.11.2.13), one can derive an equation for ξ, which can further be reduced, via suitable
transformations, to a system of linear equations.

15.11.3. Construction of Solutions of Nonlinear Equations That Fail
the Painlevé Test, Using Truncated Expansions

In some cases truncated expansions of the form (15.11.1.6) may be effective in finding
exact solutions to nonlinear equations of mathematical physics that fail the Painlevé test.
In such cases, the expansion parameter p must be a positive integer; it is determined in the
same way as at the first step of performing the Painlevé test. We illustrate this by a specific
example below.

Example. Consider the nonlinear diffusion equation with a cubic source

wt = wxx – 2w3. (15.11.3.1)

First step. Let us substitute the leading term of the expansion (15.11.1.1) into equation (15.11.3.1) and
then multiply the resulting relation by ξp+2 to obtain

w′
0ξ

2 + pw0x
′
0ξ = p(p + 1)w0 – 2w3

0ξ
2–2p,

where ξ = x – x0, x0 = x0(t), and w0 = w0(t). From the balance of the highest-order terms (both terms on the
right-hand side are taken into account) it follows that

p = 1, w0 = �1 (m = 0). (15.11.3.2)

Since p is a positive integer, the first necessary condition of the Painlevé test is satisfied.
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Second step. The equation is invariant under the substitution of –w for w. Hence, it suffices to consider
only the positive value of w0 in (15.11.3.2). Therefore, in order to find resonances, we substitute the binomial

w = ξ–1 + wmξ
m–1

in the leading terms wxx and bw3 of equation (15.11.3.1). Collecting the terms proportional to wm, we get

(m + 1)(m – 4)wmξ
m–3 + · · · = 0.

Equating (m + 1)(m – 4) to zero gives the Fuchs index m1 = 4. Since it is integer and positive, the second
necessary condition of the Painlevé test is satisfied.

Third step. We substitute the expansion (15.11.1.1) into equation (15.11.3.1); according to the second
step, the terms up to number m = 4 inclusive must be taken into account. It can be shown that the consistency
condition (15.11.1.5) is not satisfied, and therefore the equation in question fails the Painlevé test.

Using a truncated expansion for finding exact solutions. For further analysis, we use a truncated expansion
of the general form (15.11.1.6) with p = 1, which from the first step. This results in formula (15.11.2.4).
Substituting (15.11.2.4) into the diffusion equation (15.11.3.1) and collecting the terms of equal powers in ξ,
we obtain

ξ–3(2w0ξ
2
x – 2w3

0
)

+ ξ–2[w0ξt – 2(w0)xξx – w0ξxx – 6w2
0w1
]

+ ξ–1[–(w0)t + (w0)xx – 6w0w
2
1
]

– (w1)t + (w1)xx – 2w3
1 = 0.

Equating the coefficients of like powers of ξ to zero, we arrive at the system of equations

w0(ξ2
x – w2

0) = 0,

w0ξt – 2(w0)xξx – w0ξxx – 6w2
0w1 = 0,

–(w0)t + (w0)xx – 6w0w
2
1 = 0,

(w1)t – (w1)xx + 2w3
1 = 0.

(15.11.3.3)

From the first equation in (15.11.3.3) we have

w0 = ξx. (15.11.3.4)

The other solution differs in sign only and gives rise to the same result, and therefore is not considered.
Substituting (15.11.3.4) into the second and third equations of (15.11.3.3) and canceling by nonzero factors,
we obtain

ξt – 3ξxx – 6w1ξx = 0,

–ξxt + ξxxx – 6w2
1ξx = 0.

(15.11.3.5)

The latter equation in (15.11.3.3), which coincides with the original equation (15.11.3.1), is satisfied if

w1 = 0. (15.11.3.6)

On inserting (15.11.3.4) and (15.11.3.6) in (15.11.2.4), we get the following representation for solutions:

w =
ξx

ξ
, (15.11.3.7)

where the function ξ is determined by an overdetermined linear system of equations resulting from the substi-
tution of (15.11.3.6) into (15.11.3.5):

ξt – 3ξxx = 0,

–ξxt + ξxxx = 0.
(15.11.3.8)

Differentiate the first equation with respect to x and then eliminate the mixed derivative wxt using the second
equation to obtain ξxxx = 0. It follows that

ξ = ϕ2(t)x2 + ϕ1(t)x + ϕ0(t). (15.11.3.9)

In order to determine the functions ϕk(t), let us substitute (15.11.3.9) into equations (15.11.3.8) to obtain

ϕ′
2x

2 + ϕ′
1x + ϕ′

0 – 6ϕ2 = 0,

–ϕ′
2x – ϕ′

1 = 0.

Equating the functional coefficients of the different powers of x to zero and integrating the resulting equations,
we get

ϕ2 = C2, ϕ1 = C1, ϕ0 = 6C2t + C0, (15.11.3.10)

where C0, C1, and C2 are arbitrary constants. Substituting (15.11.3.9) into (15.11.3.7) and taking into account
(15.11.3.10), we find an exact solution of equation (15.11.3.1) in the form

w =
2C2x + C1

C2x2 + C1x + 6C2t + C0
.
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15.12. Methods of the Inverse Scattering Problem
(Soliton Theory)

Preliminary remarks. The methods of the inverse scattering problem rely on “implicit”
linearization of equations. Main idea: Instead of the original nonlinear equation in the
unknown w, one considers an auxiliary overdetermined linear system of equation for a
(vector) function ϕ, with the coefficients of this system generally dependent on w and
the derivatives of w with respect to the independent variables. The linear system for ϕ
is chosen so that the compatibility condition for its equations gives rise to the original
nonlinear equation for w.

15.12.1. Method Based on Using Lax Pairs

15.12.1-1. Method description. Consistency condition. Lax pairs.

We will be studying a nonlinear evolution equation of the form

∂w

∂t
= F(w), (15.12.1.1)

where the right-hand side F(w) depends on w and its derivatives with respect to x.
Consider two auxiliary linear differential equations, one corresponding to an eigenvalue

problem and involving derivatives with respect to the space variable x only,

Lϕ = λϕ, (15.12.1.2)

and the other describing the evolution of the eigenfunction in time,

∂ϕ

∂t
= –Mϕ. (15.12.1.3)

The coefficients of the linear differential operators L and M in equations (15.12.1.2)
and (15.12.1.3) depend on w and its derivatives with respect to x.

Since system (15.12.1.2)–(15.12.1.3) is overdetermined (there are two equations for ϕ),
the operators L and M cannot be arbitrary—they must satisfy a compatibility condition. In
order to find this condition, let us first differentiate (15.12.1.2) with respect to t. Assuming
that the eigenvalues λ are independent of time t, we have

Ltϕ + Lϕt = λϕt.

Replacing ϕt here by the right-hand side (15.12.1.3), we get

Ltϕ – LMϕ = –λMϕ.

Taking into account the relations λMϕ = M(λϕ) and λϕ = Lϕ, we arrive at the compatibility
condition

Ltϕ = LMϕ – MLϕ,

which can be rewritten in the form of an operator equation:

∂L
∂t

= LM – ML. (15.12.1.4)

The linear operators L and M [or the linear equations (15.12.1.2) and (15.12.1.3)] are
said to form a Lax pair for the nonlinear equation (15.12.1.1) if the compatibility condition
(15.12.1.4) coincides with equation (15.12.1.1). The right-hand side of equation (15.12.1.4)
represents the commutator of the operators L and M, which is denoted by [L, M] = LM–ML
for short.

Thus, if a suitable Lax pair is found, the analysis of the nonlinear equation (15.12.1.1)
can be reduced to that of two simpler, linear equations, (15.12.1.2) and (15.12.1.3).
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Remark. The operator M in equations (15.12.1.3) and (15.12.1.3) is defined to an additive function of
time; it can be changed according to the rule

M =⇒ M + p(t),

where p(t) is an arbitrary function. This function is found in solving a Cauchy problem for equation (15.12.1.1);
see Paragraph 15.12.3-2.

15.12.1-2. Examples of Lax pairs for nonlinear equations of mathematical physics.

Example 1. Let us show that a Lax pair for the Korteweg–de Vries equation

∂w

∂t
+
∂3w

∂x3 – 6w ∂w
∂x

= 0 (15.12.1.5)

is formed by the operators

L = w –
∂2

∂x2 , M = 4 ∂3

∂x3 – 6w ∂

∂x
– 3 ∂w

∂x
+ p(t), (15.12.1.6)

which generate the linear equations

ϕxx + (λ – w)ϕ = 0,

ϕt + 4ϕxxx – 6wϕx – 3wxϕ + p(t)ϕ = 0.
(15.12.1.7)

Here, p(t) is an arbitrary function.
It is not difficult to verify that the following formulas hold:

LM(ϕ) = – 4ϕxxxxx + 10wϕxxx + [15wx – p(t)]ϕxx + (12wxx – 6w2)ϕx

+ [3wxxx – 3wwx + wp(t)]ϕ,

ML(ϕ) = – 4ϕxxxxx + 10wϕxxx + [15wx – p(t)]ϕxx + (12wxx – 6w2)ϕx

+ [4wxxx – 9wwx + wp(t)]ϕ,

where ϕ(x, t) is an arbitrary function. It follows that

LM(ϕ) – ML(ϕ) = (–wxxx + 6wwx)ϕ. (15.12.1.8)

From (15.12.1.6) and (15.12.1.8) we obtain

Lt = wt, LM – ML = –wxxx + 6wwx.

On inserting these expressions into (15.12.1.4), we arrive at the Korteweg–de Vries equation (15.12.1.5).

Remark. A procedure for solving the Cauchy problem for equation (15.12.1.5) is outlined in Subsec-
tion 15.12.3.

The linear equations (15.12.1.2) and (15.12.1.3) for the auxiliary function ϕ, which
form a Lax pair, can be vector; in this case, the linear operators L and M are represented
by matrices. In other words, the individual equations (15.12.1.2) and (15.12.1.3) may be
replaced by appropriate systems of linear equations.

Example 2. The sinh-Gordon equation

wxt = 4a sinhw

can be represented as a vector Lax pair
Lϕ = λϕ,

ϕt = –Mϕ,

where

ϕ =
(ϕ1

ϕ2

)
, L =

( 0 ∂x + 1
2wx

∂x – 1
2wx 0

)
, M =

a

λ

(
0 ew

e–w 0

)
.

The determination of a Lax pair for a given nonlinear equation is a very complex problem
that is basically solvable for isolated equations only. Therefore, the “implicit” linearization
of equations is usually realized using a simpler method, described in Subsection 15.12.2.
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15.12.2. Method Based on a Compatibility Condition for Systems of
Linear Equations

15.12.2-1. General scheme. Compatibility condition. Systems of two equations.

Consider two systems of linear equations

ϕx = Aϕ, (15.12.2.1)
ϕt = Bϕ, (15.12.2.2)

whereϕ is an n-dimensional vector and A and B are n×nmatrices. The right-hand sides of
systems (15.12.2.1) and (15.12.2.2) cannot be arbitrary—they must satisfy a compatibility
condition. To find this condition, let us differentiate systems (15.12.2.1) and (15.12.2.2)
with respect to t and x, respectively, and eliminate the mixed derivative ϕxt from the
resulting equations. Then replacing the derivatives ϕx and ϕt by the right-hand sides of
(15.12.2.1) and (15.12.2.2), we obtain

At – Bx + [A, B] = 0, (15.12.2.3)

where [A, B] = AB – BA. It turns out that, given a matrix A, there is a simple deductive
procedure for finding B as a result of which the compatibility condition (15.12.2.3) becomes
a nonlinear evolution equation.

Let us dwell on the special case where the vector functionϕ two components, ϕ =
(
ϕ1
ϕ2

)
.

We choose a linear system of equations (15.12.2.1) in the form

(ϕ1)x = –iλϕ1 + fϕ2,
(ϕ2)x = gϕ1 + iλϕ2,

(15.12.2.4)

where λ is the spectral parameter, f and g are some (generally complex valued) functions
of two variables x and t, and i2 = –1. As system (15.12.2.2) we take the most general linear
system involving the derivatives with respect to t:

(ϕ1)t = Aϕ1 + Bϕ2,
(ϕ2)t = Cϕ1 +Dϕ2,

(15.12.2.5)

where A, B, C , and D are some functions (dependent on the variables x, t and the parame-
terλ) to be determined in the subsequent analysis. Differentiating equations (15.12.2.4) with
respect to t and equations (15.12.2.5) with respect to x and assuming that (ϕ1,2)xt = (ϕ1,2)tx,
we obtain compatibility conditions in the form

Ax = Cf –Bg,
Bx + 2iλB = ft – (A – D)f ,
Cx – 2iλC = gt + (A – D)g,

–Dx = Cf –Bg.

(15.12.2.6)

For simplicity, we set
D = –A.

In this case, the first and last equations in (15.12.2.6) coincide, so that (15.12.2.6) turns into
a system of three determining equations:

Ax = Cf – Bg,
Bx + 2iλB = ft – 2Af ,
Cx – 2iλC = gt + 2Ag.

(15.12.2.7)

The functions A, B, and C must be expressed in terms of f and g. The general solution
of system (15.12.2.7) for arbitrary functions f and g cannot be found. So let us look for
particular solutions in the form finite expansions in positive and negative powers of the
parameter λ.
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15.12.2-2. Solution of the determining equations in the form of polynomials in λ.

The simplest polynomial representations of the unknown functions that give rise to nontrivial
results are quadratic in the spectral parameter λ:

A = A2λ
2 + A1λ +A0,

B = B2λ
2 + B1λ + B0,

C = C2λ
2 + C1λ + C0.

(15.12.2.8)

Let us substitute (15.12.2.8) into (15.12.2.7) and collect the terms with equal powers in λ
to obtain

λ2(A2x – C2f +B2g) + λ(A1x – C1f + B1g) + A0x – C0f +B0g = 0, (15.12.2.9)

2iλ3B2 + λ2(B2x + 2iB1 + 2A2f )
+ λ(B1x + 2iB0 + 2A1f ) + B0x + 2A0f – ft = 0, (15.12.2.10)

–2iλ3C2 + λ2(C2x – 2iC1 – 2A2g)
+ λ(C1x – 2iC0 – 2A1g) + C0x – 2A0g – gt = 0. (15.12.2.11)

Let us equate the coefficients of like powers of λ to zero starting from the highest power.
Setting the coefficients of λ3 to zero gives

B2 = C2 = 0. (15.12.2.12)

Equating the coefficients of λ2 to zero and taking into account (15.12.2.12), we find that

A2 = a = const, B1 = iaf , C1 = iag. (15.12.2.13)

Setting the coefficient of λ in (15.12.2.9) to zero and then replacingB1 andC1 in accordance
with (15.12.2.13), we have A1x = 0, whence A1 = a1 = const. For simplicity, we dwell on
the special case a1 = 0 (arbitrary a1 gives rise to more general results), so that

A1 = 0. (15.12.2.14)

By equating to zero the coefficients of λ in the equations obtained from (15.12.2.10)
and (15.12.2.11) and taking into account (15.12.2.13) and (15.12.2.14), we get

B0 = – 1
2afx, C0 = 1

2agx. (15.12.2.15)

Setting the coefficient of λ0 in (15.12.2.9) to zero and then integrating, we find that A0 =
1
2afg + a0, where a0 is an arbitrary constant. As before, we set a0 = 0 for simplicity, which
results in

A0 = 1
2afg. (15.12.2.16)

Then equations (15.12.2.10) and (15.12.2.11) in view of (15.12.2.15) and (15.12.2.16)
become

ft = – 1
2afxx + af 2g,

gt = 1
2agxx – afg2.

(15.12.2.17)

Substituting (15.12.2.8) and (15.12.2.12)–(15.12.2.17) into (15.12.2.5) yields

(ϕ1)t = a(λ2 + 1
2 fg)ϕ1 + a(iλf – 1

2 fx)ϕ2,

(ϕ2)t = a(iλg + 1
2 gx)ϕ1 – a(λ2 + 1

2 fg)ϕ2.
(15.12.2.18)
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Thus, two linear systems (15.12.2.4) and (15.12.2.18) are compatible if the functions f
and g satisfy the cubically nonlinear system (15.12.2.17). For

g = –kf̄ , a = 2i, (15.12.2.19)

where k is a real constant and the bar over a symbol stands for its complex conjugate, both
equations (15.12.2.18) turn into one and the same nonlinear Schrödinger equation

ift = fxx + 2k|f 2|f (f f̄ = |f |2). (15.12.2.20)

Likewise, one can use other polynomials inλ and determine the associated linear systems
generating nonlinear evolution equations.

Example 1. Searching for solutions of the determining system (15.12.2.7) in the form third-order poly-
nomials in λ results in

A = a3λ
3 + a2λ

2 + 1
2 (a3fg + a1)λ + 1

2 a2fg – 1
4 ia3(fgx – gfx) + a0,

B = ia3fλ
2 + (ia2f – 1

2 a3fx)λ + ia1f + 1
2 ia3f

2g – 1
2 a2fx – 1

4 a3fxx,

C = ia3gλ
2 + (ia2g + 1

2 a3gx)λ + ia1g + 1
2 ia3fg

2 + 1
2 a2gx – 1

4 ia3gxx,

(15.12.2.21)

where a0, a1, a2, and a3 are arbitrary constants. The evolution equations for f and g corresponding to
(15.12.2.21) are

ft + 1
4 ia3(fxxx – 6fgfx) + 1

2 a2(fxx – 2f 2g) – ia1fx – 2a0f = 0,

gt + 1
4 ia3(gxxx – 6fggx) – 1

2 a2(gxx – 2fg2) – ia1gx + 2a0g = 0.
(15.12.2.22)

Consider two important special cases leading to interesting nonlinear equations of mathematical physics.

1◦. If
a0 = a1 = a2 = 0, a3 = –4i, g = 1

the second equation of (15.12.2.22) is satisfied identically, and the first equation of (15.12.2.22) translates into
the Korteweg–de Vries equation

ft + fxxx – 6ffx = 0.

2◦. If
a0 = a1 = a2 = 0, a3 = –4i, g = �f ,

both equations (15.12.2.22) translate into one and the same modified Korteweg–de Vries equation

ft + fxxx � 6f 2fx = 0.

Example 2. Now we will look for a solution of the determining system (15.12.2.7) in the form of the
simple one-term expansion in negative powers of λ:

A = a(x, t)λ–1, B = b(x, t)λ–1, C = c(x, t)λ–1. (15.12.2.23)

This results in the relations
ax = 1

2 i(fg)t, b = – 1
2 ift, c = 1

2 igt. (15.12.2.24)

The evolution equations for functions f and g corresponding to (15.12.2.24) are written as

fxt = –4iaf ,

gxt = –4iag.
(15.12.2.25)

If we set
a = 1

4 i cosw, b = c = 1
4 i sinw, f = –g = – 1

2wx, (15.12.2.26)

then the three relations (15.12.2.24) are reduced to one and the same equation, the sine-Gordon equation

wxt = sinw, (15.12.2.27)

and the two equations (15.12.2.25) coincide and give a differential consequence of equation (15.12.2.27):

wxxt = wx cosw.

Thus, the linear system of equations (15.12.2.4) and (15.12.2.5), whose coefficients are defined by formu-
las (15.12.2.23) and (15.12.2.26) with D = –A, is compatible if the function w satisfies the sine-Gordon
equation (15.12.2.27).

Remark. Sometimes the determining equations (15.12.2.1)–(15.12.2.2) are also called a Lax pair, by
analogy with (15.12.1.2)–(15.12.1.3).
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15.12.3. Solution of the Cauchy Problem by the Inverse Scattering
Problem Method

15.12.3-1. Preliminary remarks. The direct and inverse scattering problems.

The solution of the Cauchy problem for nonlinear equations admitting a Lax pair or another
“implicit” linearization (see Subsection 15.12.2) falls into several successive steps. Two of
them involve the solution of the direct and the inverse scattering problem for auxiliary linear
equations. Summarized below are relevant results for the linear stationary Schrödinger
equation

ϕ′′
xx + [λ – f (x)]ϕ = 0 (–∞ < x < ∞). (15.12.3.1)

It is assumed that the function f (x), called the potential, vanishes as x → �∞ and the
condition

∫ ∞
–∞(1 + |x|) |f (x)| dx < ∞ holds.

Direct scattering problem. Consider the linear eigenvalue problem for the ordinary
differential equation (15.12.3.1).

Eigenvalues can be of two types:

λn = –κ
2
n, n = 1, 2, . . . , N (discrete spectrum),

λ = k2 – ∞ < k < ∞ (continuous spectrum).
(15.12.3.2)

It is known that if min f (x) < λ < 0, equation (15.12.3.1) has a discrete spectrum of
eigenvalues, and if f (x) < 0 and λ > 0, it has a continuous spectrum.

Let λn = –κ
2
n be discrete eigenvalues numbered so that

λ1 < λ2 < · · · < λN < 0,

and let ϕn = ϕn(x) be the associated eigenfunctions, which vanish as x → �∞ and are
square summable. Eigenfunctions are defined up to a constant factor. If an eigenfunction
is fixed by its asymptotic behavior for negative x,

ϕn → exp(κnx) as x→ –∞,

then the leading asymptotic term in the expansion of ϕn for large positive x is expressed as

ϕn → cn exp(–κnx) as x→ ∞. (15.12.3.3)

The eigenfunction ϕn has n – 1 zero and moreover

cn = (–1)n–1|cn|.

For continuous spectrum, λ = k2, the behavior of the wave function ϕ at infinity is
specified by a linear combination of the exponentials exp(�ikx), since f → 0 as |x| → ∞.
The conditions at infinity are

ϕ→ e–ikx as x→ –∞,

ϕ→ a(k)e–ikx + b(k)eikx as x→ ∞,
(15.12.3.4)

and equation (15.12.3.1) uniquely determines the functions a(k) and b(k); note that they
are related by the simple constraint |a|2 – |b|2 = 1. The first term in the second condition
of (15.12.3.4) corresponds to a refracted wave, and the second term to a reflected wave.
Therefore, the quotient

r(k) =
b(k)
a(k)

(15.12.3.5)

is called the coefficient of reflection (also reflection factor or reflectance).
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The set of quantities

S = {κn, cn, r(k); n = 1, . . . ,N} (15.12.3.6)

appearing in relations (15.12.3.3)–(15.12.3.5) is called the scattering data. It is the deter-
mination of these data for a given potential f (x) that is the purpose of the direct scattering
problem. The scattering data completely determine the eigenvalue spectrum of the station-
ary Schrödinger equation (15.12.3.1).

Note the useful formulas

|a(k)| =
(

1 – |r(k)|2)–1
,

arg a(k) =
1
i

N∑

n=1

k – iκn
k + iκn

–
1
π

∫ ∞

–∞

ln |a(s)|
s – k

ds,
(15.12.3.7)

which can be used to restore the function a(k) for a given reflection factor r(k). The integral
in the second formula of (15.12.3.7) is understood as a Cauchy principal value integral, and
iκn are zeros of the function a(k) analytic in the upper half-plane [the κn appear in the
asymptotic formulas (15.12.3.3)].

Inverse scattering problem. The mapping of the potentials of equation (15.12.3.1) into
the scattering data (15.12.3.6) is unique and invertible. The procedure of restoring f (x) for
given S is the subject matter of the inverse scattering problem. Summarized below are the
most important results of studying this problem.

To determine the potential, one has to solve first the Gel’fand–Levitan–Marchenko
integral equation

K(x, y) + Φ(x, y) +
∫ ∞

x
K(x, z)Φ(z, y) dz = 0, (15.12.3.8)

where the function Φ(x, y) = Φ(x + y) is determined via the scattering data (15.12.3.6) as
follows:

Φ(x, y) =
N∑

n=1

cn
ia′(iκn)

e–κn(x+y) +
1

2π

∫ ∞

–∞
r(k)eik(x+y) dk, a′(k) =

da

dk
. (15.12.3.9)

The potential is expressed in terms of the solution to the linear integral equation (15.12.3.8)
as

f (x) = –2
d

dx
K(x,x). (15.12.3.10)

Note that the direct and inverse scattering problems are usually taught in courses on
quantum mechanics. For more details about these problems, see, for example, the book by
Novikov, Manakov, Pitaevskii, and Zakharov (1984).

15.12.3-2. Solution of the Cauchy problem by the inverse scattering problem method.

Figure 15.8 depicts the general scheme of solving the Cauchy problem for nonlinear equa-
tions using the method of the inverse scattering problem. It is assumed that either a Lax
pair (15.12.1.2)–(15.12.1.3) for the given equation has been obtained at an earlier stage or a
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First step: solve the direct scattering problem

Cauchy problem = nonlinear equation + initial condition

Use the stationary equation from the Lax pair

Second step: look for the dependence
of the scattering data on time

Treat the nonstationary equation from the Lax pair

Third step: solve the inverse scattering problem

Write out the Gel'fand–Levitan–Marchenko integral equation

With the solution obtained, find the solution of the Cauchy problem

Solve the integral equation

Figure 15.8. Main stages of solving the Cauchy problem for nonlinear equations using the method of the
inverse scattering problem.

representation of the equation as the compatibility condition for the overdetermined system
of linear equations (15.12.2.1)–(15.12.2.2) is known.

Let us employ this scheme for the solution of the Cauchy problem for the Korteweg–de
Vries equation

∂w

∂t
+
∂3w

∂x3 – 6w
∂w

∂x
= 0 (15.12.3.11)

with the initial condition

w = f (x) at t = 0 (–∞ < x < ∞). (15.12.3.12)

The function f (x) < 0 is assumed to satisfy the same conditions as the potential in equa-
tion (15.12.3.1).

The solution of the Cauchy problem (15.12.3.11), (15.12.3.12) falls into several succes-
sive steps (see Figure 15.8). The Korteweg–de Vries equation is represented in the form
of a Lax pair (15.12.1.7) and the results for the solution of the direct and inverse scattering
problems are used.
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First step. One considers the linear eigenvalue problem—the direct scattering prob-
lem—for the auxiliary ordinary differential equation (15.12.3.1) that results from the sub-
stitution of the initial profile (15.12.3.12) into the first equation of the Lax pair (15.12.1.7)
for the Korteweg–de Vries equation (15.12.3.11). On solving this problem, one determines
the scattering data (15.12.3.6).

Second step. For t > 0, the function w = w(x, t) must appear in the first equation
(15.12.1.7) instead of the initial profile f (x). In the associated nonstationary problem,
the eigenvalues (15.12.3.2) are preserved, since they are independent of t (see Paragraph
15.12.1-1), but the eigenfunctions ϕ = ϕ(x, t) are changed.

For continuous eigenvalues λ > 0, the asymptotic behavior of the eigenfunctions, ac-
cording to (15.12.3.4), is as follows:

ϕ→ e–ikx as x→ –∞,

ϕ→ a(k, t)e–ikx + b(k, t)eikx as x→ ∞.
(15.12.3.13)

Substitute the first asymptotic relation of (15.12.3.13) into the second equation of the
Lax pair (15.12.1.7) and take into account that w → 0 as x → –∞ to obtain the function
p(t):

p(t) = –4ik3 = const. (15.12.3.14)

In order to determine the time dependences, a = a(k, t) and b = b(k, t), let us consider the
second equation of the Lax pair (15.12.1.7), where p(t) is given by (15.12.3.14). Taking
into account that w → 0 as x→ ∞, we get the linearized equation

ϕt + 4ϕxxx – 4ik3ϕ = 0. (15.12.3.15)

Substituting the second asymptotic relation of (15.12.3.13) into (15.12.3.15) and equating
the coefficients of the exponentials e–ikx and eikx, we arrive at the linear ordinary differential
equations

a′t = 0, b′t – 8ik3b = 0.

Integrating them gives the coefficient of reflection

r(k, t) =
b(t, k)
a(t, k)

= r(k, 0)e8ik3t. (15.12.3.16)

The asymptotic behavior the eigenfunctions for discrete eigenvalues, with k = iκn, is
determined in a similar way using the linearized equation (15.12.3.15).

Consequently, we obtain the time dependences of the scattering data:

S(t) = {κn, cn(t) = cn(0)e8κ
3
nt, r(k, t) = r(k, 0)e8ik3t; n = 1, . . . ,N}. (15.12.3.17)

Third step. Using the scattering data (15.12.3.17), we introduce the following function
by analogy with (15.12.3.9):

Φ(x, y; t) =
1

2π

∫ ∞

–∞
r(k, 0)ei[8k3t+k(x+y)] dk +

N∑

n=1

cn(0)
ia′(iκn)

e8κ
3
nt–κn(x+y). (15.12.3.18)

In this case, Φ depends on time parametrically. This function plays the same role for the
first equation of the Lax pair (15.12.1.7) for t > 0 as the function (15.12.3.9) for equa-
tion (15.12.3.1); recall that equation (15.12.3.1) coincides with the first equation of the Lax
pair (15.12.1.7), where w is substituted for by its value in the initial condition (15.12.3.12).
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In order to recover the function w(x, t) from the scattering data (15.12.3.17), one has
first to solve the linear integral equation

K(x, y; t) + Φ(x, y; t) +
∫ ∞

x
K(x, z; t)Φ(z, y; t) dz = 0, (15.12.3.19)

obtained from (15.12.3.8) by simple renaming. This equation contains the function Φ of
(15.12.3.18). Then, one should use the formula

w(x, t) = –2
d

dx
K(x,x; t), (15.12.3.20)

obtained by renaming from (15.12.3.10), to determine the solution of the Cauchy problem
for the Korteweg–de Vries equation (15.12.3.11)–(15.12.3.12).

15.12.3-3. N -soliton solution of the Korteweg–de Vries equation.

Let us find an exact solution of the Korteweg–de Vries equation (15.12.3.11) for the case
of nonreflecting potentials, with zero coefficient of reflection (15.12.3.5). We proceed from
the linear integral equation (15.12.3.19).

Setting r(k, 0) = 0 in (15.12.3.18), we have

Φ(x, y; t) =
N∑

n=1

γne
–κn(x+y)+8κ

3
nt, γn =

cn(0)
ia′(iκn)

> 0.

Substituting this function into (15.12.3.19), after simple rearrangements we obtain the
equation

K(x, y; t) +
N∑

n=1

Γn(t)e–κn(x+y) +
N∑

n=1

Γn(t)e–κny

∫ ∞

x
e–κnzK(x, z; t) dz = 0, (15.12.3.21)

where
Γn(t) = γne

8κ
3
nt. (15.12.3.22)

The solution of the integral equation (15.12.3.21) is sought in the form of a finite sum:

K(x, y; t) =
N∑

n=1

e–κnyKn(x, t). (15.12.3.23)

Inserting (15.12.3.23) in (15.12.3.21) and integrating, we have

N∑

n=1

e–κnyKn(x, t) +
N∑

n=1

Γn(t)e–κn(x+y) +
N∑

n=1

Γn(t)e–κny
N∑

m=1

Km(x, t)
e–(κn+κm)x

κn + κm
= 0.

Rewriting this equation in the form
N∑

n=1
ψn(x, t)e–κny = 0 and then setting ψn(x, t) = 0, we

arrive at a nonhomogeneous system of linear algebraic equations for Kn(x, t):

Kn(x, t) + Γn(t)
N∑

m=1

1
κn + κm

e–(κn+κm)xKm(x, t) = –Γn(t)e–κnx, n = 1, . . . ,N .

(15.12.3.24)



15.12. METHODS OF THE INVERSE SCATTERING PROBLEM (SOLITON THEORY) 765

Using Cramer’s rule, we rewrite the solution to system (15.12.3.24) as the ratio of determi-
nants

Kn(x, t) =
det A

(n)(x, t)
det A(x, t)

, (15.12.3.25)

where A is the matrix with entries

An,m(x, t) = δnm +
Γn(t)

κn + κm
e–(κn+κm)x

= δnm +
γn

κn + κm
e–(κn+κm)x+8κ

3
nt,

δnm =
{ 1 if n = m,

0 if n ≠ m,

(15.12.3.26)

and A
(n)(x, t) is the matrix obtained from A by substituting the right-hand sides of equa-

tions (15.12.3.24) for the nth column. Substituting (15.12.3.25) in (15.12.3.23) yields

K(x, y; t) =
N∑

n=1

e–κny det A
(n)(x, t)

det A(x, t)
.

Further, by setting y = x, we get

K(x,x; t) =
1

det A(x, t)

N∑

n=1

e–κnx det A
(n)(x, t) =

∂

∂x
ln det A(x, t).

In view of (15.12.3.20), we now find a solution to the Korteweg–de Vries equation
(15.12.3.11) for the case of nonreflecting potentials in the form

w(x, t) = –2
∂2

∂x2 ln det A(x, t). (15.12.3.27)

This solution contains 2N free parameters κn, γn (n = 1, . . . ,N ) and is called anN -soliton
solution.

Example. In the special case N = 1, the matrix A(x, t) is characterized by a single element, defined by
n = m = 1 in (15.12.3.26):

A1,1(x, t) = 1 +
γ

2κ
e–2κx+8κ

3t.

Substituting this expression into (15.12.3.27), we get the one-soliton solution of the Korteweg–de Vries equation

w(x, t) = –
2κ

2

cosh2[κ(x – 4κ2t) + ξ0]
, ξ0 =

1
2κ

ln
γ

2κ
. (15.12.3.28)

This solution represents a solitary wave traveling to the right with a constant v = 4κ
2 and rapidly decaying at

infinity.
For the N -soliton solution (15.12.3.27), the following asymptotic relations hold:

w(x, t) ≈ –2
N∑

n=1

κ
2
n

cosh2[
κn(x – vnt) + ξ�n

] as t→ �∞, (15.12.3.29)

where vn = 4κ
2
n is the speed of the nth component. From the comparison of formulas (15.12.3.28)

and (15.12.3.29) it follows that for large times, the N -soliton solution gets broken into N independent one-
soliton solutions, and solitons with a higher amplitude travel with a higher speed.



766 NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

15.13. Conservation Laws and Integrals of Motion
15.13.1. Basic Definitions and Examples

15.13.1-1. General form of conservation laws.

Consider a partial differential equation with two independent variables

F

(
x, t,w,

∂w

∂x
,
∂w

∂t
,
∂2w

∂x2 ,
∂2w

∂x∂t
,
∂2w

∂x2 , . . .

)
= 0. (15.13.1.1)

A conservation law for this equation has the form

∂T

∂t
+
∂X

∂x
= 0, (15.13.1.2)

where

T = T

(
x, t,w,

∂w

∂x
,
∂w

∂t
, . . .

)
, X = X

(
x, t,w,

∂w

∂x
,
∂w

∂t
, . . .

)
. (15.13.1.3)

The left-hand side of the conservation law (15.13.1.2) must vanish for all (sufficiently
smooth) solutions of equation (15.13.1.1). In simplest cases, the substitution of rela-
tions (15.13.1.3) into the conservation law (15.13.1.2) followed by differentiation and ele-
mentary transformations leads to a relation that coincides with (15.13.1.1) up to a functional
factor. The quantities T and X in (15.13.1.2) are called a density and a flow, respectively.

The density and theflow in the conservation law (15.13.1.2) are not uniquely determined;
they can be changed according to the rules T =⇒ T + ϕ(x), X =⇒ X + ψ(t), where ϕ(x)
and ψ(t) are arbitrary functions, or, in general, by the rules

T =⇒ aT +
∂Φ
∂x

, X =⇒ aX –
∂Φ
∂t

,

where Φ = Φ(x, t) is an arbitrary function of two variables and a ≠ 0 is any number.
For nonstationary equations with n spatial variables x1, . . . ,xn, conservation laws have

the form
∂T

∂t
+

n∑

k=1

∂Xk

∂xk
= 0.

Partial differential equations can have several (sometimes infinitely many) conservation
laws or none at all.

15.13.1-2. Integrals of motion.

If the total variation of the quantity X on the interval a ≤ x ≤ b is equal to zero, which
means that the relation

X(a) = X(b)

holds, then the following “integral of motion” takes place:
∫ b

a
T dx = const (for all t). (15.13.1.4)

For many specific equations, relations of the form (15.13.1.4) have a clear physical
meaning and are used for approximate analytical solution of the corresponding problems,
as well as for the verification of results obtained by numerical methods.
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15.13.1-3. Conservation laws for some nonlinear equations of mathematical physics.

Example 1. The Korteweg–de Vries equation

∂w

∂t
+
∂3w

∂x3 – 6w
∂w

∂x
= 0

admits infinitely many conservation laws of the form (15.13.1.2). The first three are determined by

T1 = w, X1 = wxx – 3w2;

T2 = w2, X2 = 2wwxx – w2
x – 4w3;

T3 = w2
x + 2w3, X3 = 2wxwxxx – w2

xx + 6w2wxx – 12ww2
x – 9w4,

where the subscripts denote partial derivatives with respect to x.

Example 2. The sine-Gordon equation

∂2w

∂x∂t
– sinw = 0

also has infinitely many conservation laws. The first three are described by the formulas

T1 = w2
x, X1 = 2 cosw;

T2 = w4
x – 4w2

xx, X2 = 4w2
x cosw;

T3 = 3w6
x – 12w2

xw
2
xx + 16w3

xwxxx + 24w2
xxx, X3 = (2w4

x – 24w2
xx) cosw.

Example 3. The nonhomogeneous Monge–Ampère equation
(
∂2w

∂x∂y

)2

–
∂2w

∂x2
∂2w

∂y2 = F (x,y),

where F (x, y) is an arbitrary function, admits the conservation law

∂

∂x

(
∂w

∂x

∂2w

∂y2

)
+
∂

∂y

(
–
∂w

∂x

∂2w

∂x∂y
+
∫ y

a

F (x, z) dz

)
= 0.

15.13.2. Equations Admitting Variational Formulation. Noetherian
Symmetries

15.13.2-1. Lagrangian. Euler–Lagrange equation. Noetherian symmetries.

Here we consider second-order equations in two independent variables

F
(
x, y,w,

∂w

∂x
,
∂w

∂y
,
∂2w

∂x2 ,
∂2w

∂x∂y
,
∂2w

∂x2

)
= 0 (15.13.2.1)

that admit the variational formulation of minimizing a functional of the form

Z[w] =
∫

S
L(x, y,w,wx,wy) dx dy. (15.13.2.2)

The function L = L(x, y,w,wx,wy) is called a Lagrangian.
It is well known that a minimum of the functional (15.13.2.2) corresponds to the Euler–

Lagrange equation
∂L

∂w
–Dx

(
∂L

∂wx

)
–Dy

(
∂L

∂wy

)
= 0, (15.13.2.3)
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where Dx and Dy are the total differential operators in x and y:

Dx =
∂

∂x
+ wx

∂

∂w
+ wxx

∂

∂wx
+ wxy

∂

∂wy
,

Dy =
∂

∂y
+ wy

∂

∂w
+ wxy

∂

∂wx
+ wyy

∂

∂wy
.

The original equation (15.13.2.1) must be a consequence of equation (15.13.2.3).
A symmetry that preserves the differential form

Ω = L(x, y,w,wx,wy) dx dy

is called a Noetherian symmetry of the Lagrangian L. In order to obtain Noetherian
symmetries, one should find point transformations

x̄ = f1(x, y,w, ε), ȳ = f2(x, y,w, ε), w̄ = g(x, y,w, ε) (15.13.2.4)

such that preserve the differential form, Ω̄ = Ω, i.e.,

L̄ dx̄ dȳ = Ldx dy. (15.13.2.5)

Calculating the differentials dx̄, dȳ and taking into account (15.13.2.4), we obtain

dx̄ = Dxf1 dx, dȳ = Dyf2 dy,

and therefore, relation (15.13.2.5) can be rewritten as

(L – L̄Dxf1Dyf2) dx dy = 0,

which is equivalent to
L – L̄Dxf1Dyf2 = 0. (15.13.2.6)

Let us associate the point transformation (15.13.2.4) with the prolongation operator

X = ξ∂x + η∂y + ζ∂w + ζ1∂wx + ζ2∂wy , (15.13.2.7)

where the coordinates of the first prolongation, ζ1 and ζ2, are defined by formulas (15.8.1.9).
Then, by the usual procedure, from (15.13.2.6) one obtains the invariance condition in the
form

X(L) + L(Dxξ + Dyη) = 0. (15.13.2.8)

Noetherian symmetries are determined by (15.13.2.8).
Each Noetherian symmetry operator X generates a conservation law,

Dx

(
ξL + (ζ – ξwx – ηwy)

∂L

∂wx

)
+Dy

(
ηL + (ζ – ξwx – ηwy)

∂L

∂wy

)
= 0. (15.13.2.9)
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15.13.2-2. Examples of constructing conservation laws using Noetherian symmetries.

Example 1. Consider the stationary heat equation with nonlinear source

∂2w

∂x2 +
∂2w

∂y2 – f (w) = 0. (15.13.2.10)

This equation admits the variational formulation of minimizing the functional (15.13.2.2) with the La-
grangian

L = w2
x + w2

y + 2F (w), F (w) =
∫
f (w) dw. (15.13.2.11)

This can be verified by substituting (15.13.2.11) into the Euler–Lagrange equation (15.13.2.3). In (15.13.2.11),
it is assumed that F (w) ≥ 0.

Substituting (15.13.2.11) into the invariance condition (15.13.2.8) and taking into account (15.13.2.7) and
(15.8.1.9), after some rearrangements we obtain a polynomial in the derivatives wx and wy :

–ξww
3
x – ηww

2
xwy – ξwwxw

2
y – ηww

3
y + (2ζw – ξx + ηy)w2

x – 2(ηx + ξy)wxwy

+ (2ζw – ηy + ξx)w2
y + 2(ζx + Fξw)wx + 2(ζy + Fηw)wy + 2fζ + 2F (ξx + ηy) = 0. (15.13.2.12)

Equating the functional coefficients of w3
x, w2

xwy, wx, and wy to zero, we find that ξw = 0, ηw = 0, ζx = 0, and
ζy = 0. Consequently,

ξ = ξ(x, y), η = η(x, y), ζ = ζ(w). (15.13.2.13)

In (15.13.2.12), equating the coefficients of the remaining powers of the derivatives to zero, we obtain

w2
x: 2ζw – ξx + ηy = 0,

w2
y: 2ζw – ηy + ξx = 0,

wxwy: ηx + ξy = 0,

1: fζ + F (ξx + ηy) = 0.

(15.13.2.14)

For arbitrary f = f (w), it follows from the last equation in (15.13.2.14) that

ζ = 0, ξx + ηy = 0. (15.13.2.15)

From the first equation in (15.13.2.14) and the second equation in (15.13.2.15), with ζ = 0, it follows that ξx = 0,
ηy = 0 or ξ = ξ(y), η = η(x). Substituting these expressions into the third equation of (15.13.2.14), we get

ξ = C1y + C2, η = –C1x + C3,

where C1, C2, and C3 are arbitrary constants. Therefore, for arbitrary f (w), Noetherian symmetries of the
Lagrangian (15.13.2.11) are defined by the three operators

X1 = ∂x (C2 = 1, C1 = C3 = 0);

X2 = ∂y (C3 = 1, C1 = C2 = 0);

X3 = y∂x – x∂y (C1 = 1, C2 = C3 = 0).

(15.13.2.16)

In accordance with (15.13.2.9), these operators determine three conservation laws:

Dx(–w2
x + w2

y + 2F
)

+Dy

(
–2wxwy

)
= 0 (ξ = 1, η = ζ = 0);

Dx

(
–2wxwy

)
+Dy

(
w2

x – w2
y + 2F

)
= 0 (η = 1, ξ = ζ = 0);

Dx

(
–yw2

x + yw2
y + 2xwxwy + 2yF

)

+ Dy

(
–xw2

x + xw2
y – 2ywxwy – 2xF

)
= 0 (ξ = y, η = –x, ζ = 0),

(15.13.2.17)

with the function F = F (w) defined by (15.13.2.11).

Remark 1. The operators (15.13.2.16) could be found by a symmetry analysis of the original differential
equation (15.13.2.10), as in Example 1 in Subsection 15.8.2.

Remark 2. In the variational formulation of equation (15.13.2.11), it is assumed that F (w) ≥ 0. However,
the conservation laws (15.13.2.17) are valid for any F (w). This situation is also typical of other equations; to
obtain conservation laws, it usually suffices that the equation in question is representable as the Euler–Lagrange
equation (15.13.2.3) (the variational formulation may be unnecessary).
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Example 2. The equation of minimal surfaces

(1 + w2
y)wxx – 2wxwywxy + (1 + w2

x)wyy = 0
corresponds to the functional (15.13.2.2) with Lagrangian

L =
√

1 + w2
x + w2

y.

The admissible point operators

X1 = ∂x, X2 = ∂y, X3 = x∂x + y∂y + w∂w, X4 = y∂x – x∂y, X5 = ∂w

are found from the invariance condition (15.13.2.8), as was the case in Example 1 (the procedure is also described
in Subsection 15.13.2). These operators determine Noetherian symmetries and correspond to conservation laws:

X1: Dx

(
L – wx

∂L

∂wx

)
+Dy

(
–wx

∂L

∂wy

)
= 0,

X2: Dx

(
–wy

∂L

∂wx

)
+ Dy

(
L – wy

∂L

∂wy

)
= 0,

X3: Dx

(
Lx + (w – xwx – ywy)

∂L

∂wx

)
+Dy

(
Ly + (w – xwx – ywy)

∂L

∂wy

)
= 0,

X4: Dx

(
Ly + (ywx – xwy)

∂L

∂wx

)
+Dx

(
–Ly + (ywx – xwy)

∂L

∂wy

)
= 0,

X5: Dx

(
wx√

1 + w2
x + w2

y

)
+Dy

(
wy√

1 + w2
x + w2

y

)
= 0.

15.14. Nonlinear Systems of Partial Differential
Equations

15.14.1. Overdetermined Systems of Two Equations

15.14.1-1. Overdetermined systems of first-order equations in one unknown.

Consider an overdetermined system of two quasilinear first-order equations

zx = F (x, y, z),
zy = G(x, y, z),

(15.14.1.1)

in one unknown function z = z(x, y).
In the general case, the system is unsolvable. To derive a necessary consistency condition

for system (15.14.1.1), let us differentiate the first equation with respect to y and the second
with respect to x. Eliminate the first derivatives from the resulting relations using the initial
equations of the system to obtain

zxy = Fy + Fzzy = Fy + GFz ,
zyx = Gx +Gzzx = Gx + FGz .

Equating the expressions of the second derivatives zxy and zyx to each other, we obtain a
necessary condition for consistency of system (15.14.1.1):

Fy + GFz = Gx + FGz . (15.14.1.2)

Consider two possible situations.
First case. Suppose the substitution of the right-hand sides of equations (15.14.1.1) into

the necessary condition (15.14.1.2) results in an equation with x, y, and z. Treating it as
an algebraic (transcendental) equation for z, we find z = z(x, y). The direct substitution of
the expression z = z(x, y) into both equations (15.14.1.1) gives an answer to the question
whether it is a solution of the system in question or not.
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Example 1. Consider the quadratically nonlinear system

zx = yz,

zy = z2 + axz.
(15.14.1.3)

In this case, the consistency condition (15.14.1.2) can be written, after simple rearrangements, in the form

z(a – 1 + yz) = 0.

This equations is not satisfied identically and gives rise to two possible expressions for z:

z = 0 or z =
1 – a
y

.

Substituting them into (15.14.1.3), we see that the former is a solution of the system and the latter is not.

Second case. Suppose the substitution of the right-hand sides of equations (15.14.1.1)
into the necessary condition (15.14.1.2) turns it into an identity. In this case, the system has
a family of solutions that depends at least on one arbitrary constant. If the partial derivatives
Fy , Fz ,Gx,Gz are continuous and condition (15.14.1.2) is satisfied identically, then system
(15.14.1.1) has a unique solution z = z(x, y) that takes a given value, z = z0, at x = x0 and
y = y0.

A simple way to find solutions in this case is as follows. The first equation of system
(15.14.1.1) is treated as an ordinary differential equation in x with parameter y. One finds
its solution, where the role of the arbitrary constant is played by an arbitrary function ϕ(y).
Substituting this solution into the second equation of system (15.14.1.1), one determines
the function ϕ(y).

Example 2. Consider the nonlinear system

zx = aey–z,

zy = bey–z + 1.
(15.14.1.4)

In this case, the consistency condition (15.14.1.2) is satisfied identically.
To solve the first equation, let us make the change of variablew = ez to obtain the linear equationwx = aey.

Its general solution has the form w = aeyx + ϕ(y), where ϕ(y) is an arbitrary function. Going back to the
original variable, we find the general solution of the first equation of system (15.14.1.4):

z = ln[aeyx + ϕ(y)]. (15.14.1.5)

Substituting this solution into the second equation of system (15.14.1.4), we obtain a linear first-order equation
for ϕ = ϕ(y):

ϕ′
y = ϕ + bey.

Its general solution is ϕ = (by + C)ey, where C is an arbitrary constant. Substituting this solution into
(15.14.1.5), we obtain the following solution of system (15.14.1.4):

z = ln[aeyx + (by + C)ey] = y + ln(ax + by + C).

15.14.1-2. Other overdetermined systems of equations in one unknown.

Section 15.10 describes a consistency analysis for overdetermined systems of partial differ-
ential equations in the context of the differential constraints method; one of the equations
there is called a differential constraint. Detailed consideration is given to systems consisting
of one second-order equation and one first-order equation (see Subsection 15.10.2), and
also to some systems consisting of two second-order equations (see Subsection 15.10.3).
Examples of solving such systems are also given.

Table 15.11 presents some overdetermined systems of equations with consistency con-
ditions; the derivation of the consistency conditions for these systems can be found in
Section 15.10.
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TABLE 15.11
Some overdetermined systems of equations

No. First equation of system Second equation of system Consistency conditions

1 ∂w
∂t = ∂

∂x

[
f (w) ∂w

∂x

]
+ g(w) ∂w

∂t
= ϕ(w) (15.10.2.8)

2 ∂2w
∂x∂t = f (w) ∂w

∂x = ϕ(t)g(w) (15.10.2.23)

3 ∂w
∂t = ∂

∂x

[
f1(w) ∂w

∂x

]
+ f2(w) ∂2w

∂x2 = g1(w)
(

∂w
∂x

)2
+ g2(w) (15.10.3.5)

4 ∂w
∂y

∂2w
∂x∂y – ∂w

∂x
∂2w
∂y2 = a ∂3w

∂y3
∂w
∂x

= ϕ(y) (15.10.1.8)

15.14.2. Pfaffian Equations and Their Solutions. Connection with
Overdetermined Systems

15.14.2-1. Pfaffian equations.

A Pfaffian equation is an equation of the form

P (x, y, z) dx +Q(x, y, z) dy +R(x, y, z) dz = 0. (15.14.2.1)

Equation (15.14.2.1) always has a solution x = x0, y = y0, z = z0, where x0, y0, and z0
are arbitrary constants. Such simple solutions are not considered below.

We will distinguish between the following two cases:
1. Find a two-dimensional solution to the Pfaffian equation, when the three variables

x, y, z are connected by a single relation (a certain condition must hold for such a solution
to exist).

2. Find a one-dimensional solution to the Pfaffian equation, when the three variables
x, y, z are connected by two relations.

15.14.2-2. Condition for integrability of the Pfaffian equation by a single relation.

Let a solution of the Pfaffian equation be representable in the form z = z(x, y), where z is
the unknown function and x, y are independent variables. From equation (15.14.2.1) we
find the expression for the differential:

dz = –
P

R
dx –

Q

R
dy. (15.14.2.2)

On the other hand, since z = z(x, y), we have

dz =
∂z

∂x
dx +

∂z

∂y
dy. (15.14.2.3)

Equating the right-hand sides of (15.14.2.2) and (15.14.2.3) to each other and taking into
account the independence of the differentials dx and dy, we obtain an overdetermined
system of equations of the form (15.14.1.1):

zx = –P/R, zy = –Q/R. (15.14.2.4)
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A consistency condition for the system can be found by setting F = –P/R and G = –Q/R
in (15.14.1.2). After some rearrangements we obtain the equation

R

(
∂P

∂y
–
∂Q

∂x

)
+ P

(
∂Q

∂z
–
∂R

∂y

)
+Q

(
∂R

∂x
–
∂P

∂z

)
= 0. (15.14.2.5)

If condition (15.14.2.5) is satisfied identically, the Pfaffian equation (15.14.2.1) is inte-
grable by one relation of the form

U (x, y, z) = C , (15.14.2.6)

where C is an arbitrary constant. In this case, the Pfaffian equation is said to be completely
integrable. The left-hand side of a completely integrable Pfaffian equation (15.14.2.1) can
be represented in the form

P (x, y, z) dx +Q(x, y, z) dy + R(x, y, z) dz ≡ μ(x, y, z) dU (x, y, z),

where μ(x, y, z) is an integrating factor.
A solution of a completely integrable Pfaffian equation can be found by solving the

overdetermined system (15.14.2.4) employing the method presented in Subsection 15.14.1.
Alternatively, the following equivalent technique can be used: it is first assumed that
x = const in equation (15.14.2.1), which corresponds to dx = 0. Then the resulting ordinary
differential equation is solved for z = z(y), where x is treated as a parameter, and the constant
of integration is regarded as an arbitrary function of x: C = ϕ(x). Finally, by substituting
the resulting solution into the original equation (15.14.2.1), one finds the function ϕ(x).

Example 1. Consider the Pfaffian equation

y(xz + a) dx + x(y + b) dy + x2y dz = 0. (15.14.2.7)

The integrability condition (15.14.2.5) is satisfied identically. Let us set dx = 0 in equation (15.14.2.7) to obtain
the ordinary differential equation

(y + b) dy + xy dz = 0. (15.14.2.8)

Treating x as a parameter, we find the general solution of the separable equation (15.14.2.8):

z = –
1
x

(y + b ln |y|) + ϕ(x), (15.14.2.9)

where ϕ(x) is the constant of integration, dependent on x. On substituting (15.14.2.9) into the original equation
(15.14.2.7), we arrive at a linear ordinary differential equation for ϕ(x):

x2ϕ′
x + xϕ + a = 0.

Its general solution is expressed as

ϕ(x) = –
a

x
ln |x| +

C

x
,

where C is an arbitrary constant. Substituting this ϕ(x) into (15.14.2.9) yields the solution of the Pfaffian
equation (15.14.2.7):

z = –
1
x

(y + a ln |x| + b ln |y| – C).

This solutions can be equivalently represented in the form of an integral (15.14.2.6) as xz+y+a ln |x|+b ln |y| =C.

Geometric interpretation. Let us introduce the vector F = {P ,Q,R}. Then the condition
of complete integrability (15.14.2.5) of the Pfaffian equation (15.14.2.1) can be written in
the dot product form: F ⋅ curl F = 0. Solution (15.14.2.6) represents a one-parameter family
of surfaces orthogonal to F.
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15.14.2-3. Pfaffian equations not satisfying the integrability condition.

Consider now Pfaffian equations that do not satisfy the condition of integrability by one
relation. In this case, relation (15.14.2.5) is not satisfied identically and there are two
different methods for the investigation of such equations.

First method. Relation (15.14.2.5) is treated as an algebraic (transcendental) equation
for one of the variables. For example, solving it for z, we get a relation z = z(x, y).* The
direct substitution of this solution into (15.14.2.1), with x and y regarded as independent
variables, answers the question whether its a solution of the Pfaffian equation. The thus
obtained solutions (if any) do not contain a free parameter.

Second method. One-dimensional solutions are sought in the form of two relations.
One relation is prescribed, for example, in the form

z = f (x), (15.14.2.10)

where f (x) is an arbitrary function. Using it, one eliminates z from the Pfaffian equation
(15.14.2.1) to obtain an ordinary differential equation for y = y(x):

Q(x, y, f (x))y′x + P (x, y, f (x)) +R(x, y, f (x))f ′x(x) = 0.

Suppose the general solution of this equation has the form

Φ(x, y,C) = 0, (15.14.2.11)

where C is an arbitrary constant. Then formulas (15.14.2.10), (15.14.2.11) define a one-
dimensional solution of the Pfaffian equation in the form of two relations involving one
arbitrary function and one free parameter.

Example 2. Consider the Pfaffian equation

y dx + dy + x dz = 0. (15.14.2.12)

Substituting P = y, Q = 1, and R = x into the left-hand side of condition (15.14.2.5), we find that x + 1 � 0.
Therefore, equation (15.14.2.12) is not integrable by one relation.

Let us look for one-dimensional solutions by choosing one relation in the form (15.14.2.10). Consequently,
we arrive at the ordinary differential equation

y′x + y + xf ′
x(x) = 0.

Its general solution has the form

y = Ce–x – e–x

∫
exxf ′

x(x) dx, (15.14.2.13)

where C is an arbitrary constant. Formulas (15.14.2.10) and (15.14.2.13) represent a one-dimensional solution
of the Pfaffian equation (15.14.2.12) involving and arbitrary function f (x) and an arbitrary constant C.

Remark. For equations that are not completely integrable, the first relation can be chosen in a more
general form than (15.14.2.10):

z = f (x, y),

where f (x, y) is an arbitrary function of two arguments. Using it to eliminate z from the Pfaffian equation, we
obtain an ordinary differential equation for y = y(x). However, it is impossible to find the general solution of
this equation in closed form even for very simple equations, including equation (15.14.2.12).

* There may be several such relations, and even infinitely many.
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TABLE 15.12
Systems equations of the form (15.14.3.1) admitting invariant solutions that are found using

combinations of translation and scaling transformations (C is an arbitrary constant)

Systems equations Invariant transformations Form of invariant solutions

∂u
∂x =eauf (au–bw),
∂w
∂t =ebwg(au–bw)

t=Cabt̄, x=Cabx̄,
u= ū–b lnC, w= w̄–a lnC

u=y(ξ)– 1
a ln t, w=z(ξ)– 1

b ln t, ξ= x
t

∂u
∂x =ukf (unwm),
∂w
∂t =wsg(unwm)

t=Cn(s–1)t̄, x=Cm(1–k)x̄,
u=Cmū, w=C–nw̄ u= t

m
n(s–1) y(ξ), w= t

1
1–s z(ξ), ξ=xt

m(k–1)
n(s–1)

∂u
∂x =ukf (unwm),
∂w
∂t =wg(unwm)

t= t̄+lnC, x=Cm(1–k)x̄,
u=Cmū, w=C–nw̄

u=emty(ξ), w=e–ntz(ξ), ξ=em(k–1)tx

15.14.3. Systems of First-Order Equations Describing Convective
Mass Transfer with Volume Reaction∗

15.14.3-1. Traveling-wave solutions and some other invariant solutions.

This subsection presents exact solutions to some classes of nonlinear systems of first-order
equations of the form

∂u

∂x
= F1(u,w),

∂w

∂t
= F2(u,w). (15.14.3.1)

Remark. Equations of convective mass transfer in two-component systems with volume chemical reaction
without diffusion,

∂u

∂τ
+ a1

∂u

∂ξ
= F1(u,w),

∂w

∂τ
+ a2

∂w

∂ξ
= F2(u,w),

are reduced to such systems of equations. This is achieved by using the characteristic variables

x =
ξ – a2τ

a1 – a2
, t =

ξ – a1τ

a2 – a1
(a1 ≠ a2).

It is apparent that system (15.14.3.1) admits exact traveling-wave solutions

u = u(z), w = w(z), z = kx – λt,

where k and λ are arbitrary constants, and the functions u(z) and w(z) are determined by
the autonomous system of ordinary differential equations

ku′z – F1(u,w) = 0, λw′
z + F2(u,w) = 0.

Further on, f (. . .) and g(. . .) are arbitrary functions of their arguments.
Table 15.12 lists some systems of the form (15.14.3.1) admitting other invariant solu-

tions that are found using combinations of translation and scaling transformations in the
independent and dependent variables; these transformations preserve the form of the equa-
tions (i.e., a given system of equations is converted into an identical one). The procedure
for constructing such solutions for a single equation is detailed in Section 15.3.

* Paragraphs 15.14.3-3 and 15.14.3-4 were written by P. G. Bedrikovetsky.
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15.14.3-2. Systems reducible to an ordinary differential equation.

Consider the system of equations of the special form

∂u

∂x
= f (w)u,

∂w

∂t
= g(w)uk . (15.14.3.2)

In two special cases, k = 0 and f (w) = const, one of the two equations can be solved
independently from the other, and consequently system (15.14.3.2) is easy to integrate.
Further on, it is assumed that k ≠ 0 and f (w) ≠ const.

Let us first simplify system (15.14.3.2) via the change of variables

U = uk, W =
∫

dw

g(w)
. (15.14.3.3)

We obtain
∂U

∂x
= Φ(W )U ,

∂W

∂t
= U , (15.14.3.4)

where the function Φ(W ) is defined parametrically by the formulas

Φ = kf (w), W =
∫

dw

g(w)
, (15.14.3.5)

with w treated as a parameter. Substituting U in the first equation of system (15.14.3.4)
by the left-hand side of the second equation of that system, we arrive at a second-order
equation for W :

∂2W

∂x∂t
= Φ(W )

∂W

∂t
. (15.14.3.6)

Integrating with respect to t gives

∂W

∂x
=
∫

Φ(W ) dW + θ(x), (15.14.3.7)

where θ(x) is an arbitrary function.
Going back in (15.14.3.7) to the original variable w by formulas (15.14.3.3), we get

∂w

∂x
= kg(w)

∫
f (w)
g(w)

dw + θ(x)g(w). (15.14.3.8)

Equation (15.14.3.8) may be treated as a first-order ordinary differential equation in x.
On finding its general solution, one should replace the constant of integration C in it by an
arbitrary function of time ψ(t), since w is dependent on x and t.

Example 1. Consider the quadratically nonlinear system

∂u

∂x
= awu,

∂w

∂t
= bwu, (15.14.3.9)

which is a special case of system (15.14.3.2) with k = 1, f (w) = aw, and g(w) = bw. Substituting these
functions into (15.14.3.8), we obtain the Bernoulli equation

∂w

∂x
= aw2 + bθ(x)w.
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Its general solution is given by

w =
ξ

ψ(t) – a
∫
ξ dx

, ξ = exp

(
b

∫
θ(x) dx

)
, (15.14.3.10)

where ψ(t) is an arbitrary function; it has been taken into account thatw is dependent on x and t. Since formula
(15.14.3.10) involves an arbitrary function θ(x), it is convenient to introduce the notation ϕ(x) = –

∫
ξ dx.

Consequently, we have the general solution of system (15.14.3.9) in the form

u = –
ψ′

t(t)
aϕ(x) + bψ(t)

, w = –
ϕ′

x(x)
aϕ(x) + bψ(t)

,

where ϕ(x) and ψ(t) are arbitrary functions; here, ψ has been renamed bψ as compared with (15.14.3.10).

Example 2. To the special case θ(x) = const in (15.14.3.8) there correspond special solutions of system
(15.14.3.2) of the form

w = w(z), u = [ψ′(t)]1/kv(z), z = x + ψ(t),

involving an arbitrary functionψ(t); the prime denotes a derivative. The functionsw(z) and v(z) are determined
by the autonomous system of ordinary differential equations

v′z = f (w)v, w′
z = g(w)vk.

Its general solution can be written out in implicit form:
∫

dw

g(w)[kF (w) + C1]
= z + C2, v = [kF (w) + C1]1/k, F (w) =

∫
f (w)
g(w)

dw.

� Exact solutions to a number of other first-order nonlinear systems of the form (15.14.3.1)
can be found in Section T10.1.

15.14.3-3. Some nonlinear problems of suspension transport in porous media.

1◦. Deep bed filtration of particle suspensions in porous media occurs during sea/produced
water injection in oil reservoirs, drilling fluid invasion into reservoir productive zones, sand
filtration in gravel packs, fines migration in oilfields, bacteria, virus or contaminant transport
in groundwater, industrial filtering, etc. The basic features of the process are the particle
capture by the porous medium and the consequent permeability reduction. The particles are
captured due to size exclusion, surface sorption, electrical forces, sedimentation, diffusion,
etc.

For a single component system, the governing equations consist of the mass balance for
retained and suspended particles, and of capture kinetics:

∂

∂t
(u + w) +

∂u

∂x
= 0,

∂w

∂t
= f (w)u,

(15.14.3.11)

where u is the suspended concentration and w is a retained (deposited) concentration, and
f (w) is the filtration coefficient.

Let us transform the first equation of system (15.14.3.11) in the following way. Re-
place wt in the first equation by the right-hand side of the second equation and then pass
from x, t to the new characteristic variables ξ = –x, η = x – t. Consequently, we obtain a
system of equations of the form (15.14.3.2):

∂u

∂ξ
= f (w)u,

∂w

∂η
= –f (w)u.

Its solution is reduced to integrating an ordinary differential equation.
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2◦. The problem of particle suspension injection into a particle-free porous reservoir is
described by system (15.14.3.11) with the following initial and boundary conditions:

u = w = 0 at t = 0, u = 1 at x = 0. (15.14.3.12)

The problem (15.14.3.11)–(15.14.3.12) has exact analytical solution. The introduction
of the potential

Φ(w) =
∫ w

0

dz

f (z)
(15.14.3.13)

allows transforming the second equation (15.14.3.11) to the form

u =
∂Φ
∂t

. (15.14.3.14)

The substitution of (15.14.3.14) into the first equation (15.14.3.11) and its integration with
respect to t from 0 to t taking into account the initial conditions (15.14.3.12) results in the
following first-order quasilinear partial differential equation:

∂w

∂t
+
∂w

∂x
= –f (w)w. (15.14.3.15)

Fixing u = 1 in the second equation of (15.14.3.11) for the inlet x = 0 provides a boundary
condition for equation (15.14.3.15):

Φ(w) = t at x = 0. (15.14.3.16)

The solution of problem (15.14.3.15)–(15.14.3.16) is obtained by the method of char-
acteristics (see Subsections 13.1.1–13.1.2) and can be represented in the implicit form

∫ Φ–1(t–x)

w

dz

zf (z)
= x. (15.14.3.17)

Here, Φ–1(w) is the inverse of the integral (15.14.3.13).
Now let us obtain the expression for the suspended concentration u(x, t). Taking the

time derivative of both sides of (15.14.3.17), we obtain
(

1
wf (w)

∂w

∂t

)

x,t
–

(
1

wf (w)
∂w

∂t

)

0,t–x
= 0.

Replacing here the partial derivative by the left-hand side of the second equation in
(15.14.3.11), we have

u(x, t)
w(x, t)

=
u(0, t – x)
w(0, t – x)

, (15.14.3.18)

so the ratio u/w does not change along the characteristics. Taking into account the boundary
conditions (15.14.3.12) and (15.14.3.16) in (15.14.3.18), we obtain the expression for the
suspended concentration

u(x, t) =
w(x, t)

Φ–1(t – x)
. (15.14.3.19)

Finally, formulas (15.14.3.17), (15.14.3.19), and (15.14.3.13) form an exact solution for
problem (15.14.3.11)–(15.14.3.12) for x < t. For x > t, we have u = w = 0.
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Example 3. Consider system (15.14.3.11) with the linear filtration coefficient

f (w) = 1 – w. (15.14.3.20)

In this case the potential (15.14.3.13) is
Φ(w) = – ln(1 – w).

From (15.14.3.16) it is possible to calculate the value on the boundary

w(0, t) = Φ–1(t) = 1 – e–t

and the left-hand side of (15.14.3.17) can be determined explicitly. Finally, in view of (15.14.3.19), we find the
solution to problem (15.14.3.11)–(15.14.3.12) with condition (15.14.3.20) in the form

u =
et–x

ex + et–x – 1
, w =

et–x – 1
ex + et–x – 1

.

15.14.3-4. Some generalizations.

1◦. Consider a more general system than (15.14.3.11),

∂

∂t
g(u,w) + a

∂u

∂x
= f1(w)u,

∂w

∂t
= f2(w)u.

On eliminating u from the first equation using the second equation and on integrating
with respect to t, we obtain a nonlinear first-order partial differential equation for w(x, t):

g

(
1

f2(w)
∂w

∂t
,w

)
+

a

f2(w)
∂w

∂x
=
∫

f1(w)
f2(w)

dw + θ(x), (15.14.3.21)

where θ(x) is an arbitrary function. If θ = const, a complete integral of equation (15.14.3.21)
is sought in the formw =w(C1x+C2t+C3). In this case, one can obtain the general integral
(containing an arbitrary function) of equation (15.14.3.21) in parametric form by the method
described in Subsection 13.2.1, after solving the associated ordinary differential equation.

2◦. System (15.14.3.11) admits the following generalization:

∂

∂t

[
u + G(w1, . . . ,wn)

]
+
∂u

∂x
= 0, (15.14.3.22)

∂wk
∂t

= Fk(w1, . . . ,wn)u, k = 1, . . . ,n. (15.14.3.23)

From equations (15.14.3.23) we have

1
F1(w1, . . . ,wn)

∂w1

∂t
= · · · =

1
Fn(w1, . . . ,wn)

∂wn
∂t

= u. (15.14.3.24)

We look for solutions of system (15.14.3.22)–(15.14.3.23) of the special form

w1 = w1(wn), . . . , wn–1 = wn–1(wn). (15.14.3.25)
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The functions w1, . . . ,wn–1 are thus assumed to be expressible in terms of wn. From
(15.14.3.24), in view of (15.14.3.25), we find the following system of n – 1 ordinary
differential equations:

dwk
dwn

=
Fk(w1, . . . ,wn)
Fn(w1, . . . ,wn)

, k = 1, . . . ,n – 1. (15.14.3.26)

Further, assuming that a solution of system (15.14.3.26) has been obtained and the functions
(15.14.3.25) are known, we substitute them into (15.14.3.22)–(15.14.3.23) to arrive at the
system of two equations

∂

∂t

[
u + g(wn)

]
+
∂u

∂x
= 0,

∂wn
∂t

= fn(wn)u,
(15.14.3.27)

where

g(wn) = G
(
w1(wn), . . . ,wn–1(wn),wn

)
, fn(wn) = Fn

(
w1(wn), . . . ,wn–1(wn),wn

)
.

Introducing the new dependent variable

w = g(wn) ≡ G
(
w1(wn), . . . ,wn–1(wn),wn

)

in (15.14.3.27), we obtain system (15.14.3.11) in which the function f = f (w) is defined
parametrically,

f = g′(wn)fn(wn), w = g(wn),

with wn being the parameter.
Remark 1. Solutions of the above special form arise, for example, in problems with initial and boundary

conditions,
w1 = · · · = wn = u = 0 at t = 0,

u = 1 at x = 0.

(The initial conditions correspond to the absence of particle in the reservoir at the initial time and the boundary
condition corresponds to a given suspended concentration in the injected fluid.) In this case, the system ordinary
differential equations (15.14.3.26) is solved under the following initial conditions:

w1 = · · · = wn–1 = 0 at wn = 0.

Remark 2. In problems on flows of n-component fluids through porous media, the mass balance for
retained and suspended particles is governed by equation (15.14.3.22) in which the function G is the sum of
individual components:

G(w1, . . . ,wn) =
n∑

k=1

wk;

equations (15.14.3.23) define the capture kinetics.

15.14.4. First-Order Hyperbolic Systems of Quasilinear Equations.
Systems of Conservation Laws of Gas Dynamic Type∗

15.14.4-1. Systems of two equations. Systems in the form of conservation laws.

1◦. Consider the system of two quasilinear equations of the form

f1(u,w)
∂u

∂t
+ g1(u,w)

∂w

∂t
+ h1(u,w)

∂u

∂x
+ k1(u,w)

∂w

∂x
= 0,

f2(u,w)
∂u

∂t
+ g2(u,w)

∂w

∂t
+ h2(u,w)

∂u

∂x
+ k2(u,w)

∂w

∂x
= 0,

(15.14.4.1)

* Subsection 15.14.4 was written by A. P. Pires and P. G. Bedrikovetsky.
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where x and t are independent variables, u = u(x, t) and w = w(x, t) are two unknown
functions, and fk(u,w) and gk(u,w) are prescribed functions (k = 1, 2, 3, 4).

For any fk(u,w) and gk(u,w), system (15.14.4.1) admits the following simplest solu-
tions:

u = C1, w = C2, (15.14.4.2)

where C1 and C2 are arbitrary constants.

2◦. The main mathematical models in continuum mechanics and theoretical physics have
the form of systems of conservation laws. Usually mass, momentum, and energy for phases
and/or components are conserved.

A quasilinear system of two conservation laws in two independent variables has the
form

∂F1(u,w)
∂t

+
∂G1(u,w)

∂x
= 0,

∂F2(u,w)
∂t

+
∂G2(u,w)

∂x
= 0.

(15.14.4.3)

It is a special case of system (15.14.4.1). It admits simple solutions of the form (15.14.4.2).

15.14.4-2. Self-similar continuous solutions. Hyperbolic systems.

System (15.14.4.1) is invariant under the transformation (x, t) → (ax, at), where a is any
number (a ≠ 0). Therefore, it admits a self-similar solution of the form

u = u(ξ), w = w(ξ), ξ =
x

t
. (15.14.4.4)

The substitution of (15.14.4.4) into (15.14.4.1) results in the following system of ordi-
nary differential equations:

(h1 – ξf1)u′ξ + (k1 – ξg1)w′
ξ = 0,

(h2 – ξf2)u′ξ + (k2 – ξg2)w′
ξ = 0,

(15.14.4.5)

where the arguments of the functions fm, gm, hm, and km (m = 1, 2) are omitted for brevity.
System (15.14.4.5) may be treated as an algebraic system for the derivatives u′ξ and w′

ξ;
for it to have a nonzero solution, its determinant must be equal to zero:

(f1g2 – f2g1)ξ2 – (f1k2 + g2h1 – f2k1 – g1h2)ξ + h1k2 – h2k1 = 0. (15.14.4.6)

System (15.14.4.1) is called strictly hyperbolic (or, for short, hyperbolic) if the discrim-
inant of the quadratic equation (15.14.4.6), with respect to ξ, is positive:

(f1k2 + g2h1 – f2k1 – g1h2)2 – 4(f1g2 – f2g1)(h1k2 – h2k1) > 0. (15.14.4.7)

In this case, equation (15.14.4.6) has two different roots:

ξ1,2 = ξ1,2(u,w). (15.14.4.8)

Substituting either root (15.14.4.8) into (15.14.4.5) and taking u to be a parameter along
the integral curve, we obtain

(k1 – ξ1,2g1)
dw

du
+ h1 – ξ1,2f1 = 0. (15.14.4.9)
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The ordinary differential equation (15.14.4.9) provides two sets of continuous solutions
for system (15.14.4.1). The procedure for constructing these solutions consists of two steps:
(i) the dependence w = w(u), different for each set, is found from (15.14.4.9); and (ii) this
dependence is then substituted into formula (15.14.4.8), in the left-hand side of which ξ1,2
is replaced by x/t. This results in a solution defined in implicit form:

ξ1,2(u,w) = x/t, w = w(u).

Example 1. The system of equations describing one-dimensional longitudinal oscillations of an elastic
bar consists of the equations of balance of mass and momentum:

∂u

∂t
–
∂w

∂x
= 0,

∂w

∂t
–
∂σ(u)
∂x

= 0.
(15.14.4.10)

Here, u is the deformation gradient (strain), v is the strain rate, and σ(u) is the stress.
Self-similar solutions are sought in the form (15.14.4.4). This results in the system of ordinary differential

equations
ξu′

ξ + w′
ξ = 0,

σ′
u(u)u′

ξ + ξw′
ξ = 0.

(15.14.4.11)

Equating the determinant of this system to zero, we obtain the quadratic equation ξ2 = σ′
u(u), whose roots are

ξ1,2 = �
√
σ′

u(u). (15.14.4.12)

The system is assumed to be hyperbolic, which implies that σ′
u(u) > 0. Substituting (15.14.4.12) into

(15.14.4.11) yields a separable first-order ordinary differential equation:

w′
u �
√
σ′

u(u) = 0.

Integrating gives its general solution

w = C �

∫ √
σ′

u(u) du, (15.14.4.13)

where C is an arbitrary constant (two different constants, corresponding to the plus and minus sign). Formula
(15.14.4.13) together with

�
√
σ′

u(u) = x/t (15.14.4.14)

defines two one-parameter self-similar solutions of system (15.14.4.10) of the form (15.14.4.4) in implicit form.

15.14.4-3. Simple Riemann waves.

In the case of self-similar solutions of the form (15.14.4.4), one of the unknowns can be
expressed in terms of the other by eliminating the independent variable ξ to obtain, for
example,

w = w(u). (15.14.4.15)

Assuming initially that the unknowns are functionally related via (15.14.4.15), one can
obtain a wider class of exact solutions to system (15.14.4.1) than the class of self-similar
solutions. Indeed, substituting (15.14.4.15) into (15.14.4.1) gives two equations for one
function u = u(x, t):

(f1 + g1w
′
u)
∂u

∂t
+ (h1 + k1w

′
u)
∂u

∂x
= 0,

(f2 + g2w
′
u)
∂u

∂t
+ (h2 + k2w

′
u)
∂u

∂x
= 0.

(15.14.4.16)
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The dependence (15.14.4.15) is chosen so that the two equations of (15.14.4.16) coincide.
This condition results in the following first-order ordinary differential equation forw =w(u)
quadratically nonlinear in the derivative:

(g1k2 – g2k1)(w′
u)2 + (f1k2 + g1h2 – f2k1 – g2h1)w′

u + f1h2 – f2h1 = 0. (15.14.4.17)

Treating (15.14.4.17) as a quadratic equation in w′
u, we assume its discriminant to be

positive:
(f1k2 + g1h2 – f2k1 – g2h1)2 – 4(f1h2 – f2h1)(g1k2 – g2k1) > 0.

This condition is equivalent to condition (15.14.4.7) and implies hat the system in question,
(15.14.4.1), is strictly hyperbolic. In this case, equation (15.14.4.17) has two different real
roots and is reducible to first-order ordinary differential equations of the standard form

w′
u = Λm(u,w), m = 1, 2. (15.14.4.18)

Having found a solution w = w(u) of this equation for any m, we substitute it into the first
(or the second) equation (15.14.4.16). As a result, we obtain a quasilinear first-order partial
differential equation for u(x, t):

(f1 + g1Λm)
∂u

∂t
+ (h1 + k1Λm)

∂u

∂x
= 0, w = w(u). (15.14.4.19)

The general solution of this equation can be obtained by the method of characteristics (see
Subsection 13.1.1). This solution depends on one arbitrary function and is called a simple
Riemann wave. To each of the two equations (15.14.4.18) there corresponds an equation
(15.14.4.19) and a Riemann wave.

Suppose equations (15.14.4.18) have the integrals

Rm(u,w) = Cm, m = 1, 2,

where C1 and C2 are arbitrary constants. The functions Rm(u,w) are called Riemann
invariants. Another definition of Riemann functions is given in Paragraph 15.14.4-6.

Example 2. We look for exact solutions of system (15.14.4.10) of the special form (15.14.4.15), implying
that one of the unknown functions can be expressed via the other. Substituting (15.14.4.15) into (15.14.4.10)
gives

∂u

∂t
– w′

u
∂u

∂x
= 0, w′

u
∂u

∂t
– σ′

u(u)
∂u

∂x
= 0. (15.14.4.20)

Requiring that the two equations coincide, we get the condition

(w′
u)2 = σ′

u(u).

It follows that there are two possible relations between the unknowns:

w �

∫ √
σ′

u(u) du = Cm, m = 1, 2. (15.14.4.21)

The left-hand sides of these relations represent Riemann functions. On eliminating w from (15.14.4.20), using
(15.14.4.21), we arrive at the quasilinear first-order partial differential equation

∂u

∂t
�
√
σ′

u(u)
∂u

∂x
= 0. (15.14.4.22)

A detailed analysis of this equation is given in Subsection 13.1.3; the general solution is found by the method
of characteristics and can be represented in implicit form:

x � t
√
σ′

u(u) = Φ(u), (15.14.4.23)

where Φ(u) is an arbitrary function.
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Formulas (15.14.4.21) and (15.14.4.23) define two exact solutions of system (15.14.4.10), each containing
one arbitrary function and one arbitrary constant. In the special case Φ(u) ≡ 0, this solution turns into the
self-similar solution considered above. In the case of a linear system, with σ(u) = a2u, formulas (15.14.4.23)
give two traveling-wave solutions

u = Ψ1,2(x � at),

which represent waves propagating in opposite directions and having an arbitrary undistorted profile.
The evolution of a Riemann wave with the initial profile

u = ϕ(x) at t = 0 (–∞ < x < ∞) (15.14.4.24)

for the lower sign in equation (15.14.4.22) is described parametrically by the formulas

x = ξ + F(ξ)t, u = ϕ(ξ), (15.14.4.25)

where F(ξ) =
√
σ′

u(u)
∣∣
u=ϕ(ξ)

. The second unknown, w, is expressed in terms of u by formula (15.14.4.21).

Example 3. A one-dimensional ideal adiabatic (isentropic) gas flow is governed by the system of two
equations

∂ρ

∂t
+
∂(ρv)
∂x

= 0,

∂(ρv)
∂t

+
∂[ρv2 + p(ρ)]

∂x
= 0.

(15.14.4.26)

Here, ρ = ρ(x, t) is the density, v = v(x, t) is the velocity, and p is the pressure. The first equation (15.14.4.26)
represents the law of conservation of mass in fluid mechanics and is referred to as a continuity equation. The
second equation (15.14.4.26) represents the law of conservation of momentum. The equation of state is given
in the form p = p(ρ). For an ideal polytropic gas, p = Aργ , where the constant γ is the adiabatic exponent.

Exact solutions of system (15.14.4.26) of the form v = v(ρ) are given by the formulas

v = �

∫ √
p′ρ(ρ)

dρ

ρ
+ Cm,

x � t

[∫ √
p′ρ(ρ)

dρ

ρ
+
√
p′ρ(ρ) + Cm

]
= Φ(ρ),

where Φ(ρ) is an arbitrary function and the Cm are arbitrary constants (different solutions have the different
constants, m = 1, 2). The Riemann functions are obtained from the first relation by expressing Cm via ρ and v.

For an ideal polytropic gas, which corresponds to p = Aργ , the exact solution of system (15.14.4.26) with
γ ≠ 1 becomes

v = �
2

γ – 1
√
Aγ ρ

γ–1
2 + Cm,

x � t

(
γ + 1
γ – 1

√
Aγ ρ

γ–1
2 + Cm

)
= Φ(ρ).

Remark. System (15.14.4.26) with ρ = h and p(ρ) = 1
2 gh

2, where v is the horizontal velocity averaged
over the height h of the water level and g is the acceleration due to gravity, governs the dynamics of shallow
water.

15.14.4-4. Linearization of gas dynamic systems by the hodograph transformation.

The hodograph transformation is used in gas dynamics and the theory of jets for the
linearization of equations and finding solutions of certain boundary value problems.

For a quasilinear system of two equations (15.14.4.1), the hodograph transformation
has the form

x = x(u,w), t = t(u,w); (15.14.4.27)

this means that u, w are now treated as the independent variables and x, t as the dependent
variables.
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Differentiating each relation in (15.14.4.27) with respect to x and t (as composite
functions) and eliminating the partial derivatives ut, wt, ux,wx from the resulting relations,
we obtain

∂u

∂t
= –J

∂x

∂w
,

∂w

∂t
= J

∂x

∂u
,

∂u

∂x
= J

∂t

∂w
,

∂w

∂x
= –J

∂t

∂u
, (15.14.4.28)

where J =
∂u

∂x

∂w

∂t
–
∂u

∂t

∂w

∂x
is the Jacobian of the functions u = u(x, t) and w = w(x, t).

Replacing the derivatives in (15.14.4.1) with the help of relations (15.14.4.28) and dividing
by J , we arrive at the linear system

g1(u,w)
∂x

∂u
– k1(u,w)

∂t

∂u
– f1(u,w)

∂x

∂w
+ h1(u,w)

∂t

∂w
= 0,

g2(u,w)
∂x

∂u
– k2(u,w)

∂t

∂u
– f2(u,w)

∂x

∂w
+ h2(u,w)

∂t

∂w
= 0.

(15.14.4.29)

Remark. The hodograph transformation (15.14.4.27) is unusable if J ≡ 0. In this degenerate case, the
quantities u and w are functionally related, and hence they cannot be taken as independent variables. In this
case, relation (15.14.4.15) holds; it determines simple Riemann waves. This is why in using the hodograph
transformation (15.14.4.27), one loses solutions corresponding to simple Riemann waves.

15.14.4-5. Cauchy and Riemann problems. Qualitative features of solutions.

Cauchy problem (t ≥ 0, –∞ < x < ∞). Find functions u = u(x, t), w = w(x, t) that solve
system (15.14.4.1) for t > 0 and satisfy the initial conditions

u(x, 0) = ϕ1(x), w(x, 0) = ϕ2(x), (15.14.4.30)

where ϕ1(x) and ϕ2(x) are prescribed functions. The Cauchy problem is also often referred
to as an initial value problem.

Riemann problem (t ≥ 0, –∞ < x < ∞). Find functions u = u(x, t), w = w(x, t) that
solve system (15.14.4.1) for t > 0 and satisfy piecewise-smooth initial conditions of the
special form

u(x, 0) =
{
uL if x < 0,
uR if x > 0,

w(x, 0) =
{
wL if x < 0,
wR if x > 0.

(15.14.4.31)

Here, uL, uR, wL, and wR are prescribed constant quantities.
Since equations (15.14.4.1) and the boundary conditions (15.14.4.31) do not change

under the transformation (x, t) → (ax, at), where a is any positive number, the solution of
the Riemann problem (15.14.4.1), (15.14.4.31) is self-similar. The unknown functions are
sought in the form (15.14.4.4) and satisfy the ordinary differential equations (15.14.4.5).
When passing to the self-similar variable ξ = x/t, the initial conditions (15.14.4.31) are
transformed into boundary conditions of the form

u→ uL, w → wL as ξ → –∞; u→ uR, w → wR as ξ → ∞.

Solutions of the Riemann problem (15.14.4.1), (15.14.4.31) can be either continuous
(such solutions are called rarefaction waves) or discontinuous (in this case, they describe
shock waves). In both cases, the solution for each of the unknowns (e.g., for u) consists of
two types of segments: those where the solution is constant, u = const, and those where
it smoothly changes according to the law u = u(x/t). The endpoints of these segments
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lie on straight lines x = ant in the plane (x, t). At these points, individual segments of
solutions either join together (for continuous solutions) or agree with one another based on
conservation laws (for discontinuous solutions); for details see Paragraphs 15.14.4-8 and
15.14.4-10.

Let us explain why shock waves, corresponding to discontinuous solutions, arise by an
example. Consider the system of equations for one-dimensional longitudinal oscillations
of an elastic bar (15.14.4.10). It was shown above that this system admits simple Rie-
mann waves, which are described by the quasilinear first-order partial differential equation
(15.14.4.22). This equation coincides, up to notation, with the model equation of gas dy-
namics (13.1.3.1), which was studied in detail in Subsection 13.1.3. If the function F(ξ)
in solution (15.14.4.25) is nonmonotonic (this function is determined by the initial profile
of the wave), then the characteristic lines defined by the first formula in (15.14.4.25) will
intersect in the (x, t) plane for various ξ. This results in nonuniqueness in determining
the function u = u(x, t), which contradicts physical laws. Therefore, in order to avoid
nonuniqueness of physical quantities, discontinuous solutions have to be considered.

15.14.4-6. Reduction of systems to the canonical form. Riemann invariants.

1◦. Eliminating the derivative wt and then the derivative ut from (15.14.4.1), we arrive
after simple rearrangements to the canonical form of a gas dynamics system:

∂u

∂t
+ p1(u,w)

∂u

∂x
+ q1(u,w)

∂w

∂x
= 0,

∂w

∂t
+ p2(u,w)

∂u

∂x
+ q2(u,w)

∂w

∂x
= 0,

(15.14.4.32)

where

p1 =
h1g2 – g1h2

f1g2 – g1f2
, q1 =

k1g2 – g1k2

f1g2 – g1f2
, p2 =

f1h2 – h1f2

f1g2 – g1f2
, q2 =

f1k2 – k1f2

f1g2 – g1f2
.

The functions fm, gm, hm, km, pm, and qm (m = 1, 2) depend on u and w; it is assumed
that f1g2 – g1f2 � 0.

2◦. For further simplifications of system (15.14.4.32), we proceed as follows. Multiply the
first equation by b1 = b1(u,w) and the second by b2 = b2(u,w) and add up to obtain

b1
∂u

∂t
+ b2

∂w

∂t
+ (b1p1 + b2p2)

∂u

∂x
+ (b1q1 + b2q2)

∂w

∂x
= 0. (15.14.4.33)

Impose the following constraints of the functions b1 and b2:

b1p1 + b2p2 = λb1,
b1q1 + b2q2 = λb2.

(15.14.4.34)

These constraints represent a linear homogeneous algebraic system of equations for bm.
For this system to have nontrivial solutions, its determinant must be zero. This results in a
quadratic equation for the eigenvalues λ = λ(u,w):

λ2 – (p1 + q2)λ + p1q2 – p2q1 = 0. (15.14.4.35)
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For hyperbolic systems (15.14.4.32), equation (15.14.4.35) has two different real roots:

λ1,2 = 1
2 (p1 + q2) � 1

2

√
(p1 – q2)2 + 4p2q1. (15.14.4.36)

For each eigenvalue λm of (15.14.4.36), from (15.14.4.34) we find the associated eigen-
function

b(m)
1 = ϕm(λm – q2), b(m)

2 = ϕmq1, (15.14.4.37)

where ϕm = ϕm(u,w) is an arbitrary function (it will be defined later); m = 1, 2.
From (15.14.4.33), in view of (15.14.4.34), we obtain two equations for the two roots

(15.14.4.36):

b(m)
1

(
∂u

∂t
+ λm

∂u

∂x

)
+ b(m)

2

(
∂w

∂t
+ λm

∂w

∂x

)
= 0, m = 1, 2. (15.14.4.38)

The function ϕm in (15.14.4.37) can be determined from the conditions

b(m)
1 =

∂Rm

∂u
, b(m)

2 =
∂Rm

∂w
. (15.14.4.39)

On differentiating thefirst relation (15.14.4.39) with respect tow and the second with respect
to u, we equate the mixed derivatives (Rm)uw and (Rm)wu. In view of (15.14.4.37), we
obtain the following linear first-order partial differential equation for ϕm:

∂

∂w
[ϕm(λm – q2)] =

∂

∂u
(ϕmq1). (15.14.4.40)

This equation can be solved by the method of characteristics; see Subsection 13.1.1. Assum-
ing that a solution of equation (15.14.4.40) has been obtained (any nontrivial solution can be
taken) and taking into account formulas (15.14.4.37), we find the functions Rm = Rm(u,w)
from system (15.14.4.39). Replacing b(m)

1 and b(m)
2 in (15.14.4.38) by the right-hand sides

of (15.14.4.39), we get two equations:

∂R1

∂t
+ λ̃1(R1,R2)

∂R1

∂x
= 0,

∂R2

∂t
+ λ̃2(R1,R2)

∂R2

∂x
= 0,

(15.14.4.41)

where λ̃m(R1,R2) = λm(u,w), m = 1, 2. The functions R1 and R2 appearing in system
(15.14.4.41) are called Riemann invariants.

System (15.14.4.41) admits two exact solutions:

R1 = C1, x – λ̃2(C1,R2)t = Φ1(R2),

R2 = C2, x – λ̃1(R1,C2)t = Φ2(R1),

where Cm are arbitrary constants and Φm(R3–m) are arbitrary functions (m = 1, 2).
If the function λ̃1 in (15.14.4.41) is independent of R2, then the solution of system

(15.14.4.41) is reduced to successive integration of two quasilinear first-order partial dif-
ferential equations.
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Remark 1. Sometimes it is more convenient to use the formulas

b(m)
1 = ϕmp2, b(m)

2 = ϕm(λm – p1) (15.14.4.37a)

rather than (15.14.4.37). In this case, equation (15.14.4.40) is replaced by

∂

∂w
(ϕmp2) =

∂

∂u
[ϕm(λm – p1)]. (15.14.4.40a)

Remark 2. The Riemann functions are not uniquely defined. Transformations of the dependent variables

R1 = Ψ1(z1), R2 = Ψ2(z2),

where Ψ1(z1) and Ψ2(z2) are arbitrary functions, preserve the general form of system (15.14.4.41); what
changes are the functions λ̃m only. This is due to the functional arbitrariness in determining the functions ϕm

from equations (15.14.4.40) or (15.14.4.40a). This arbitrariness can be used for the selection of most simple
Riemann functions.

Example 4. Consider the system of equation of longitudinal oscillations of an elastic bar (15.14.4.10),
which is a special case of system (15.14.4.32) with

p1 = 0, q1 = –1, p2 = –σ′(u), q2 = 0. (15.14.4.42)

To determine the eigenvalues and the corresponding eigenfunctions, we use formulas (15.14.4.36),
(15.14.4.37), (15.14.4.42) and equation (15.14.4.40). As a result, we obtain

λ1,2 = �
√
σ′(u) ; b(m)

1 =
√
σ′(u), b(m)

2 = �1, ϕm = �1 (m = 1, 2).

The Riemann functions are found from equations (15.14.4.39):

R1 = –w +
∫ √

σ′(u) du, R2 = w +
∫ √

σ′(u) du.

Note that the Riemann functions coincide, up to notation, with the integrals (15.14.4.21) obtained earlier from
other considerations.

Example 5. Consider the system of equations (15.14.4.26) describing one-dimensional flow of an ideal
adiabatic gas. First, reduce the system to the canonical form

∂ρ

∂t
+ v

∂ρ

∂x
+ ρ

∂v

∂x
= 0,

∂v

∂t
+
p′(ρ)
ρ

∂ρ

∂x
+ v

∂v

∂x
= 0.

This is a special case of system (15.14.4.32) with

u = ρ, w = v, p1 = v, q1 = ρ, p2 = p′(ρ)/ρ, q2 = v. (15.14.4.43)

To determine the eigenvalues and the corresponding eigenfunctions, we use formulas (15.14.4.36),
(15.14.4.37), (15.14.4.43) and equation (15.14.4.40). As a result, we obtain

λ1,2 = v �
√
p′(ρ) ; b(m)

1 =
√
p′(ρ)
ρ

, b(m)
2 = �1, ϕm = �

1
ρ

(m = 1, 2).

The Riemann functions are found from equations (15.14.4.39):

R1 = v +
∫ √

p′(ρ)
ρ

dρ, R2 = –v +
∫ √

p′(ρ)
ρ

dρ.

3◦. Let us show that the Riemann invariants are constant along the rarefaction waves for
hyperbolic systems. The substitution of the self-similar solution forms Rm = Rm(ξ), where
ξ = x/t, into system (15.14.4.41) results in the following system of two ordinary differential
equations:

[
ξ – λm(R1,R2)

] dRm

dξ
= 0 (m = 1, 2). (15.14.4.44)

The equality ξ = λ1(R1,R2) takes place along the first rarefaction wave. Hence, the
first factor in the second equation of (15.14.4.44) is nonzero. Therefore, the second factor
in the second equation of (15.14.4.44) is zero. It follows that R2 = const along the first
rarefaction wave. Along the second rarefaction wave, R1 is constant.
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15.14.4-7. Hyperbolic n × n systems of conservation laws. Exact solutions.

Here we consider systems of conservation laws of the form

∂F(u)
∂t

+
∂G(u)
∂x

= 0, (15.14.4.45)

where u = u(x, t) is a vector function of two scalar variables, and F = F(u) and G = G(u)
are vector functions,

u = (u1, . . . ,un)T, ui = ui(x, t);

F = (F1, . . . ,Fn)T, Fi = Fi(u);

G = (G1, . . . ,Gn)T, Gi = Gi(u).

Here and henceforth, (u1, . . . ,un)T stands for a column vector with components u1, . . . ,un.
Note three important types of exact solutions to system (15.14.4.45):
1. For any F and G, system (15.14.4.45) admits the following simplest solutions:

u = C, (15.14.4.46)

where C is an arbitrary constant vector.
2. System (15.14.4.45) admits self-similar solutions of the form

u = u(ξ), ξ = x/t. (15.14.4.47)

The procedure for finding them is analogous to that used in Paragraph 15.14.4-2 (see also
Paragraph 15.14.4-10).

3. System (15.14.4.45) also admits more general exact solutions of the form

u1 = u1(un), . . . , un–1 = un–1(un), (15.14.4.48)

where all the components are functionally related and can be expressed in terms of one of
them. After substituting (15.14.4.48) into the original system (15.14.4.45), we require that
all the resulting equations coincide. As a result, we obtain a system of (n – 1) ordinary
differential equations for determining the dependences (15.14.4.48) and one first-order
partial differential equation for un = un(x, t). The mentioned procedure is described in
detail in Paragraph 15.14.4-3 for the case of a two-equation system.

Let us show that some systems of conservation laws can be represented as systems of
ordinary differential equations along curves x = x(t) called characteristic curves.

Differentiating both sides of system (15.14.4.45) yields

∂u
∂t

+ A
∂u
∂x

= 0, (15.14.4.49)

where A = F̃–1(u)G̃(u), F̃(u) is the matrix with entries ∂Fi
∂uj

, G̃(u) is the matrix with entries
∂Gi
∂uj

, and F̃–1 is the inverse of the matrix F̃.
Let us multiply each scalar equation in (15.14.4.49) by bi = bi(u) and take the sum. On

rearranging terms under the summation sign, we obtain

n∑

i=1

bi
∂ui
∂t

+
n∑

i,j=1

bjaji
∂ui
∂x

= 0, (15.14.4.50)

where aij = aij(u) are the entries of the matrix A.
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If b = (b1, . . . , bn) is a left eigenvector of the matrix A(u) that corresponds to an
eigenvalue λ = λ(u), so that

n∑

j=1

bjaji = λbi,

then equation (15.14.4.50) can be rewritten in the form

n∑

i=1

bi

(
∂ui
∂t

+ λ
∂ui
∂x

)
= 0. (15.14.4.51)

Thus, system (15.14.4.49) is transformed to a linear combination of total derivatives of the
unknowns ui with respect to t along the direction (λ, 1) on the plane (x, t), i.e., the total
time derivatives are taken along the trajectories having the velocity λ:

n∑

i=1

bi
dui
dt

= 0,
dx

dt
= λ, (15.14.4.52)

where

bi = bi(u), λ = λ(u), x = x(t),
dui
dt

=
∂ui
∂t

+
dx

dt

∂ui
∂x

.

Equations (15.14.4.52) are called differential relations on characteristics. The second
equation in (15.14.4.52) explains why an eigenvalue λ is called a characteristic velocity.

System (15.14.4.49) is called hyperbolic if the matrix A has n real eigenvalues and n
linearly independent left eigenvectors. If all eigenvalues are distinct for any u, then system
(15.14.4.49) is said to be strictly hyperbolic.

Remark 1. If the hyperbolic system (15.14.4.49) is linear and the coefficients of the matrix A are constant,
then the eigenvalues λk are constant and the characteristic lines in the (x, t) plane become straight lines:

x = λkt + const.

Since all eigenvalues λk are different, the general solution of system (15.14.4.49) can be represented as the
sum of particular solutions as follows:

u = φ1(x – λ1t)r
1 + · · · + φn(x – λnt)r

n,

where the φk(ξk) are arbitrary functions, ξk = x –λkt, and rk is the right eigenvector of A corresponding to the
eigenvalue λk, k = 1, . . . ,n. The particular solutions uk = φk(x – λkt)rk are called traveling-wave solutions.
Each of these solutions represents a wave that travels in the rk-direction with velocity λk.

Remark 2. The characteristic form (15.14.4.51) of the hyperbolic system (15.14.4.49) forms the basis
for the numerical characteristics method which allows the solution of system (15.14.4.49) in its domain of
continuity. Suppose that we already have a solution u(x, t) for all values of x and a fixed time t. To construct
a solution at a point (x, t + Δt), we find the points (x – λkΔt, t) from which the characteristics arrive at the
point (x, t + Δt). Since the u(x – λkΔt, t) are known, relations (15.14.4.52) can be regarded as a system of
n linear equations in the n unknowns u(x, t + Δt). Thus, a solution for the time t + Δt can be found.

15.14.4-8. Shock waves. Rankine–Hugoniot jump conditions.

Let us consider a discontinuity along a trajectory xf (t) and obtain the mass balance condition
along a discontinuity (shock wave). The region x > xf(t) is conventionally assumed to lie
ahead of the shock, and the region x < xf(t) is assumed to lie behind the shock. The shock
speed D is determined by the relation

D =
dxf

dt
. (15.14.4.53)
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To refer to the value of a quantity, A, behind the shock, the minus superscript will
be used, A–, since this value corresponds to negative x in the initial value formulation.
Likewise, the value of A ahead of the shock will be denoted A+.

For an arbitrary quasilinear system in the form of conservation laws (15.14.4.45), the
balance equations for a shock can be represented as

[Fi(u)]D = [Gi(u)], i = 1, . . . ,n, (15.14.4.54)

where [A] =A+ –A– stands for the jump of a quantityA at the shock. Formulas (15.14.4.54)
are called the Rankine–Hugoniot jump conditions; they are derived from integral conse-
quences of the equations in question in much the same ways as for a single equation (see
Paragraph 13.1.3-4).

Example 6. The Rankine–Hugoniot conditions for an isentropic gas flow (15.14.4.26) follow from
(15.14.4.54). We have

[ρ]D = [ρv],

[ρv]D = [ρv2 + p(ρ)].
(15.14.4.55)

Here, the density and the velocity ahead of the shock are denoted ρ+ and v+, while those behind the shock are
ρ– and v–.

Eliminating the shock speed D from (15.14.4.55), we obtain the relation

v+ – v– = �

√
(ρ+ – ρ–)

[
p(ρ+) – p(ρ–)

]

ρ–ρ+
. (15.14.4.56)

Each of the signs before the square root in (15.14.4.56) corresponds to a branch of the locus of points that can
be connected with a given point (v–, ρ–) by a shock (see Fig. 15.9a). For an ideal polytropic gas, one should set
p = Aργ in formulas (15.14.4.55) and (15.14.4.56).

Let us determine the set of states (v+, ρ+) reachable by a shock from a given point (v–, ρ–). Express the
point (v+, ρ+) ahead of the shock via the solution of the transcendental system (15.14.4.55) to obtain

v+ = v+(v–, ρ–,D), ρ+ = ρ+(v–, ρ–,D).

The graphs of the solution determined by (15.14.4.56) are shown in Figs. 15.9a and 15.9b. The solid lines
correspond to the minus sign before the radical and represent stable (evolutionary) shocks, while the dashed
lines correspond to the plus sign and represent unstable (nonevolutionary) shocks; see below.

( )a ( )b

�
�

�
�

��

��

�
�

�
�

��

��

Figure 15.9. Loci of points that can be connected by a shock wave: (a) with a given state (v–, ρ–) and (b) with a
given state (v+, ρ+). The solid lines correspond, respectively, to the minus and plus signs in formula (15.14.4.56)
(for p = Aργ) before the radical for cases (a) and (b).
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15.14.4-9. Shock waves. Evolutionary conditions. Lax condition.

In general, discontinuities of solutions are surfaces where conditions are imposed that relate
the quantities on both sides of the surfaces. For hyperbolic systems in the conservation-law
form (15.14.4.45), these relations have the form (15.14.4.54) and involve the discontinuity
velocity D.

The evolutionary conditions are necessary conditions for unique solvability of the prob-
lem of the discontinuity interaction with small perturbations depending on the x-coordinate
normal to the discontinuity surface. For hyperbolic systems, a one-dimensional small per-
turbation can be represented as a superposition of n waves, each being a traveling wave
propagating at a characteristic velocity λ�i . This allows us to classify all these waves into in-
coming and outgoing ones, depending on the sign of the difference λ�i –D. Incoming waves
are fully determined by the initial conditions, while outgoing ones must be determined from
the linearized boundary conditions at the shock.

We consider below the stability of a shock with respect to a small perturbation. This
kind of stability is determined by incoming waves. For this reason, we focus below on
incoming waves.

Let m+ and m– be the numbers of incoming waves from the right and left of the shock,
respectively. It can be shown that if the relation

m+ + m– – 1 = n (15.14.4.57)

holds, the problem of the discontinuity interaction with small perturbations is uniquely
solvable. Relation (15.14.4.57) is called the Lax condition. If (15.14.4.57) holds, the
corresponding discontinuity is called evolutionary; otherwise, it is called nonevolutionary.
For evolutionary discontinuities, small incoming perturbations generate small outgoing
perturbations and small changes in the discontinuity velocity.

If
m+ +m– – 1 > n,

then either such discontinuities do not exist or the perturbed quantities cannot be uniquely
determined (the given conditions are underdetermined).

If
m+ +m– – 1 < n,

then the problem of the discontinuity interaction with small perturbations has no solution
in the linear approximation. Previous studies of various physical problems have shown that
the interaction of nonevolutionary discontinuities with small perturbations results in their
disintegration into two or more evolutionary discontinuities.

The evolutionary condition (15.14.4.57) can be rewritten in the form of inequalities
relating the shock speed D and the velocities λ�i of small disturbances. Let us enumerate
the characteristic velocities on both sides of the discontinuity so that

λ1(u) ≤ λ2(u) ≤ · · · ≤ λn(u).

A shock is called a k-shock if both kth characteristics are incoming:

if i > k, then D < λ�i ;

if i < k, then D > λ�i ;
if i = k, then λ+

i < D < λ–
i .

(15.14.4.58)
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Below is another, equivalent statement of the Lax condition: n + 1 inequalities out of
the 2n inequalities

λ+
k ≤ D ≤ λ–

k (k = 1, . . . ,n) (15.14.4.59)

must hold.
For two-equation systems, the shock evolutionarity requires that three out of four in-

equalities
λ+

1 ≤ D ≤ λ–
1, λ+

2 ≤ D ≤ λ–
2, (15.14.4.60)

must hold.

Example 7. The Lax condition for the adiabatic gas flow equations (15.14.4.26) are obtained by sub-
stituting the eigenvalue expressions λ1,2 = v �

√
p′(ρ) (see Example 5) into inequalities (15.14.4.60). We

have
v+

�
√
p′(ρ+) < D < v–

�
√
p′(ρ–). (15.14.4.61)

The shock evolutionarity requires that three of the four inequalities in (15.14.4.61) hold. Substituting the
equation of state for a polytropic ideal gas, p = Arγ , into (15.14.4.61), we obtain the following evolutionarity
criterion:

v+
�

√
Aγ(ρ+)γ–1 < D < v–

�

√
Aγ(ρ–)γ–1. (15.14.4.62)

For the adiabatic gas flow system (15.14.4.26), the solution vector is u = (ρ, v)T. Figure 15.9a shows
the locus of points u+ that can be connected by a shock to the point u–; it is divided into the evolutionary
part (solid line) and nonevolutionary part (dashed line). It can be shown that a shock issuing from the point
(v–, ρ–) and passing through any point (v+, ρ+) of the solid part of the locus of first-family shocks obeys the Lax
conditions (15.14.4.62). The shock speed D of the first family decreases from λ1(u–), for points u+ tending to
point u–, to v– as ρ+ → 0 and v+ → –∞. Along the locus of the second-family shocks, the speed decreases
from λ2(u–), for points u+ tending to u–, to –∞ as ρ+ → ∞ and v+ → –∞.

Figure 15.9b depicts the locus of points u– that can be connected by a shock to the point u+ . The evolutionary
part of the locus is shown by a solid line; the dashed line shows the nonevolutionary part. The shock speed D
of the first family increases from λ1(u+), for points u– tending to u+, to ∞ as ρ– → ∞ and v– → ∞. Along
the locus of the second family shocks, the speed increases from λ2(u+), for points u– tending to u+, to v+ as
ρ– → 0 and v– → ∞.

15.14.4-10. Solutions for the Riemann problem. Solutions describing shock waves.

1◦. Self-similar solutions (15.14.4.47) together with the simplest solutions (15.14.4.46)
enable the solution of the Riemann problem. This problem is formulated as follows: find
a function u = u(x, t) that solves system (15.14.4.45) for t > 0 and satisfies the following
initial condition of a special form:

u =
{

uL if x < 0
uR if x > 0 at t = 0. (15.14.4.63)

Here, uL and uR are two prescribed constant vectors.
With the self-similar variable ξ = x/t, the initial condition (15.14.4.63) is transformed

into the boundary conditions

u → uL as ξ → –∞, u → uR as ξ → ∞. (15.14.4.64)

2◦. Without loss of generality, we will be considering the case F(u) = u. The substitution
of the self-similar form u(x, t) = u(ξ) into (15.14.4.45) with F(u) = u yields

(
G̃ – ξI

)
u′
ξ = 0, (15.14.4.65)

where G̃ = G̃(u) is the matrix with entries Gij = ∂Gi
∂uj

and I is the identity matrix.
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Hence, the velocity vector for the continuous solution u(ξ) is a right eigenvector of
the matrix G̃ for any point u, and the corresponding eigenvalue equals the self-similar
coordinate:

ξ = λk, u′
ξ = αrk . (15.14.4.66)

Here, λk = λk(u) is a root of the algebraic equation det |G̃ – λI| = 0, rk = rk(u) is a solution
of the corresponding degenerate linear system of equations

(
G̃ – λI

)
r = 0, and α = α(u) is

a positive function that will be defined below.
Differentiating both sides of the first equation (15.14.4.66) with respect to ξ yields

α =
1

〈∇λk, rk〉
, 〈∇λk, rk〉 =

∂λk
∂u1

rk1 + · · · +
∂λk
∂un

rkn.

Any n×n hyperbolic system allows for n continuous solutions [of system (15.14.4.65)]
corresponding to n characteristic velocities λ = λk. The continuous solutions are deter-
mined by n systems of ordinary differential equations. Each system is represented by a
phase portrait in the n-dimensional u-space. A solution/trajectory that corresponds to a
characteristic velocity λk is called a kth rarefaction wave.

3◦. A trajectory of solution (15.14.4.47) in the space u = (u1, . . . ,un)T is called a solution
path. The path is parametrized by the self-similar coordinate ξ. The path connects the
point u = uL with the point u = uR. The self-similar coordinate ξ monotonically increases
along the path varying from –∞ at u = uL to +∞ at u = uR. The path consists of con-
tinuous segments representing solutions of the ordinary differential equations (15.14.4.65)
(rarefaction waves), line segments that connect two points u– and u+ satisfying the Rankine–
Hugoniot conditions (15.14.4.54) and evolutionary conditions (15.14.4.59), and rest points
u(ξ) = const.

Example 8. Consider a solution consisting of two shocks and one rarefaction. The structural formula*
for the solution path is uL → 1 — 2 → uR; specifically,

u(x, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

uL if –∞ < x/t < D1,
u1 if D1 < x/t < λ2(u1),
u(2)(ξ) if λ2(u1) < x/t < λ2(u2),
u2 if λ2(u2) < x/t < D2,
uR if D2 < x/t < ∞.

The shock speed D1 (resp., D2) can be found from the Hugoniot condition by setting u– = uL and u+ = u1
(resp., u– = u2 and u+ = uR). Points 1 and 2 are located on the same rarefaction curve. The vector u(2)(ξ) is a
second-family rarefaction wave that is described by the system of ordinary differential equations (15.14.4.65)
with ξ = λ2(u).

Figure 15.10a depicts a sequence of rarefactions and shocks in the plane (x, t). Figure 15.10b shows the
profile of the solution component ui along the x-axis. The self-similar curves u = u(ξ) coincide with the
profiles u(x, t = 1). For t > 1, the graphs of u(x, t) are obtained from the self-similar curves by extending them
along the axis x by a factor of t.

Example 9. Let us discuss an adiabatic gas flow in a tube in front of an impermeable piston moving with a
velocity vL (see Fig. 15.11). The initial state is defined by prescribing initial values of the velocity and density:

v = 0, ρ = ρR at ξ = ∞ (ξ = x/t). (15.14.4.67)

The piston is impermeable; therefore, the gas velocity in front of the shock is equal to the piston velocity
(Fig. 15.12a):

v = vL at ξ = vL. (15.14.4.68)

The gas density in front of the piston is unknown in this problem.

* In structural formulas like uL → 1 — 2 → uR, the symbol “→” stands for a shock wave and “—” stands
for a rarefaction.
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Figure 15.10. Solution for the Riemann problem: (a) centered waves in the (x, t) plane; (b) the ui profile.
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Figure 15.11. Constant velocity piston motion in a tube.
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Figure 15.12. Solution of the piston problem: (a) shock wave in the (x, t) plane; (b) shock locus in the phase
plane.

Figure 15.12b shows the locus of points that can be connected by a shock to the point (vR = 0, ρR). This
locus is a first-family shock. The intersection of the locus with the line v = vL defines the value ρL. Hence, ρL

can be found from the equation

v2
L =

[p(ρL) – p(ρR)](ρL – ρR)
ρLρR

, (15.14.4.69)

which has been obtained by taking the square of equation (15.14.4.56). There exists a root ρL of (15.14.4.69)
such that ρL > ρR. Hence, the gas is compressed ahead of the piston (Fig. 15.12a). The expression for the
shock speed can be found from the first Hugoniot condition (15.14.4.55):

D =
ρLvL

ρL – ρR
> vL. (15.14.4.70)

The shock speed exceeds the piston velocity of (15.14.4.70) for ρL > ρR. Both characteristics of the first family
as well as the characteristic ahead of the shock from the second family arrive at the shock, so that the Lax
condition is satisfied. It can be proved that there are no other configurations that satisfy the initial-boundary
conditions (15.14.4.67), (15.14.4.68).
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15.14.5. Systems of Second-Order Equations of Reaction-Diffusion
Type

15.14.5-1. Traveling-wave solutions and some other invariant solutions.

In this subsection, we consider systems of nonlinear second-order equations

∂u

∂t
= a1

∂2u

∂x2 + F1(u,w),

∂w

∂t
= a2

∂2w

∂x2 + F2(u,w),

(15.14.5.1)

which often arise in the theory of mass exchange of reactive media, combustion theory,
mathematical biology, and biophysics.

It is apparent that systems (15.14.5.1) admit exact traveling-wave solutions

u = u(z), w = w(z), z = kx – λt,

where k and λ are arbitrary constants, and the functions u(z) and w(z) are determined by
the autonomous system of ordinary differential equations

a1k
2u′′zz + λu′z + F1(u,w) = 0,

a2k
2w′′

zz + λw′
z + F2(u,w) = 0.

Table 15.13 lists some systems of the form (15.14.5.1) admitting other invariant solu-
tions that are found using combinations of translation and scaling transformations in the
independent and dependent variables; these transformations preserve the form of the equa-
tions (i.e., a given system of equations is converted into an identical one). The procedure
for constructing such solutions for a single equation is detailed in Section 15.3.

TABLE 15.13
Systems of equations of the form (15.14.5.1) admitting invariant solutions that are found using

combinations of translation and scaling transformations (C is an arbitrary constant)

Systems of equations Invariant transformations Form of invariant solutions

∂u
∂t =a ∂2u

∂x2 +eλuf (λu–σw),
∂w
∂t =b ∂2w

∂x2 +eσwg(λu–σw)

t=C2λσt̄, x=Cλσx̄,
u= ū–2σ lnC,
w= w̄–2λ lnC

u=y(ξ)– 1
λ ln t, w=z(ξ)– 1

σ ln t, ξ= x√
t

∂u
∂t =a ∂2u

∂x2 +u1+knf
(
unwm

)
,

∂w
∂t =b ∂2w

∂x2 +w1–kmg
(
unwm

)
t=C–kmnt̄,
x=C– 1

2 kmnx̄,
u=Cmū, w=C–nw̄

u= t–
1

kn y(ξ), w= t
1

km z(ξ), ξ= x√
t

∂u
∂t =a ∂2u

∂x2 +uf
(
unwm

)
,

∂w
∂t =b ∂2w

∂x2 +wg
(
unwm

)
t= t̄+lnC,
x= x̄+λ lnC,

u=Cmū, w=C–nw̄
u=emty(ξ), w=e–ntz(ξ), ξ=x–λt

15.14.5-2. Generalized separable solutions.

In some cases, nonlinear systems admit generalized separable solutions of the form

u = ϕ1(t)θ(x, t) + ψ1(t),
w = ϕ2(t)θ(x, t) + ψ2(t),

(15.14.5.2)

where the functions ϕ1(t), ϕ2(t), ψ1(t), and ψ2(t) are selected so that both equations of
system (15.14.5.1) are reduced to one and the same equation for θ(x, t).
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Example 1. Consider the system

∂u

∂t
= a

∂2u

∂x2 + uf (bu – cw) + g1(bu – cw),

∂w

∂t
= a

∂2w

∂x2 + wf (bu – cw) + g2(bu – cw),

(15.14.5.3)

where f (z), g(z), and h(z) are arbitrary functions.
Exact solutions are sought in the form (15.14.5.2). Let us require that the arguments of the functions

appearing in the system must depend on time t only, so that

∂

∂x
(bu – cw) = [bϕ1(t) – cϕ2(t)]

∂

∂x
θ(x, t) = 0.

It follows that
ϕ1(t) = cϕ(t), ϕ2(t) = bϕ(t). (15.14.5.4)

Substituting (15.14.5.2), in view of (15.14.5.4), into (15.14.5.3) after elementary rearrangements, we obtain

∂θ

∂t
= a

∂2θ

∂x2 +

[
f (bψ1 – cψ2) –

ϕ′

ϕ

]
θ +

1
cϕ

[
ψ1f (bψ1 – cψ2) + g1(bψ1 – cψ2) – ψ′

1
]
,

∂θ

∂t
= a

∂2θ

∂x2 +

[
f (bψ1 – cψ2) –

ϕ′

ϕ

]
θ +

1
bϕ

[
ψ2f (bψ1 – cψ2) + g2(bψ1 – cψ2) – ψ′

2
]
.

(15.14.5.5)

For the equations of (15.14.5.5) to coincide, let us equate the expressions in square brackets to zero. As a result,
we obtain an autonomous system of ordinary differential equations for ϕ = ϕ(t), ψ1 = ψ1(t), and ψ2 = ψ2(t):

ϕ′ = ϕf (bψ1 – cψ2),

ψ′
1 = ψ1f (bψ1 – cψ2) + g1(bψ1 – cψ2),

ψ′
2 = ψ2f (bψ1 – cψ2) + g2(bψ1 – cψ2).

(15.14.5.6)

From (15.14.5.5)–(15.14.5.6) it follows that θ = θ(x, t) satisfies the linear heat equation

∂θ

∂t
= a

∂2θ

∂x2 . (15.14.5.7)

From the first equation in (15.14.5.6) we can express the function ϕ via the other two:

ϕ = C1 exp

(∫
f (bψ1 – cψ2) dt

)
. (15.14.5.8)

(The constant of integration C1 can be set equal to 1, since ϕ and θ appear in the solution in the form of a
product.) As a result, we obtain an exact solution of system (15.14.5.2) in the form

u = ψ1(t) + c exp

[∫
f (bψ1 – cψ2) dt

]
θ(x, t),

w = ψ2(t) + b exp

[∫
f (bψ1 – cψ2) dt

]
θ(x, t),

(15.14.5.9)

where the functions ψ1 = ψ1(t) and ψ2 = ψ2(t) are described by the last two equations of system (15.14.5.6),
and the function θ(x, t) is a solution of the linear heat equation (15.14.5.7).

Remark. Now we show how the functions ϕ(t) and ψ(t), appearing in (15.14.5.9), can be found. Multiply
the second equation (15.14.5.6) by b and the third by –c and add up to obtain a separable first-order ordinary
differential equation for the linear combination of the unknowns:

z′t = zf (z) + bg1(z) – cg2(z), z = bψ1 – cψ2. (15.14.5.10)

Its general solution is expressed in implicit form as
∫

dz

zf (z) + bg1(z) – cg2(z)
= t + C2. (15.14.5.11)

For given functions f (z), g(z), and h(z), from (15.14.5.11) we find z = z(t). Substituting it into the second
equation (15.14.5.6), we get a linear equation for ψ1. Solving this equation and taking into account the relation
for z, ψ1, and ψ2 in (15.14.5.10), we obtain

ψ1 = C3F (t) + F (t)
∫

g1(z)
F (t)

dt, ψ2 =
b

c
ψ1 –

1
c
z, F (t) = exp

[∫
f (z) dt

]
, z = z(t).
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Example 2. Consider now the system

∂u

∂t
= a

∂2u

∂x2 + uf

(
u

w

)
,

∂w

∂t
= a

∂2w

∂x2 + wg

(
u

w

)
.

An exact solution is sought in the form (15.14.5.2) with ϕ2(t) = 1 and ψ1(t) = ψ2(t) = 0. After simple
rearrangements we get

u = ϕ(t) exp

[∫
g(ϕ(t))dt

]
θ(x, t), w = exp

[∫
g(ϕ(t)) dt

]
θ(x, t),

where the function ϕ = ϕ(t) is described by the separable first-order nonlinear ordinary differential equation

ϕ′
t = [f (ϕ) – g(ϕ)]ϕ, (15.14.5.12)

and the function θ = θ(x, t) satisfies the linear heat equation (15.14.5.7).
The general solution of equation (15.14.5.12) is written out in implicit form as

∫
dϕ

[f (ϕ) – g(ϕ)]ϕ
= t + C.

� Exact solutions to some other second-order nonlinear systems of the form (15.14.5.1)
can be found in Subsection T10.3.1.
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Chapter 16

Integral Equations

16.1. Linear Integral Equations of the First Kind with
Variable Integration Limit

16.1.1. Volterra Equations of the First Kind

16.1.1-1. Some definitions. Function and kernel classes.

A Volterra linear integral equation of the first kind has the general form

∫ x

a
K(x, t)y(t) dt = f (x), (16.1.1.1)

where y(x) is the unknown function (a ≤ x ≤ b), K(x, t) is the kernel of the integral
equation, and f (x) is a given function, the right-hand side of equation (16.1.1.1). The
functions y(x) and f (x) are usually assumed to be continuous or square integrable on [a, b].
The kernel K(x, t) is usually assumed either to be continuous on the square S = {a ≤ x ≤ b,
a ≤ t ≤ b} or to satisfy the condition

∫ b

a

∫ b

a
K2(x, t) dx dt = B2 < ∞, (16.1.1.2)

where B is a constant, that is, to be square integrable on this square. It is assumed
in (16.1.1.2) that K(x, t) ≡ 0 for t > x.

The kernel K(x, t) is said to be degenerate if it can be represented in the form K(x, t) =
g1(x)h1(t) + · · · +gn(x)hn(t). The kernel K(x, t) of an integral equation is called difference
kernel if it depends only on the difference of the arguments, K(x, t) = K(x – t).

Polar kernels

K(x, t) = L(x, t)(x – t)–β +M (x, t), 0 < β < 1, (16.1.1.3)

and logarithmic kernels (kernels with logarithmic singularity)

K(x, t) = L(x, t) ln(x – t) + M (x, t), (16.1.1.4)

where the functions L(x, t) and M (x, t) are continuous on S and L(x,x) � 0, are often
considered as well.

Polar and logarithmic kernels form a class of kernels with weak singularity. Equations
containing such kernels are called equations with weak singularity.

In case the functions K(x, t) and f (x) are continuous, the right-hand side of equa-
tion (16.1.1.1) must satisfy the following conditions:

1◦. If K(a, a) ≠ 0, then f (x) must be constrained by f (a) = 0.

801



802 INTEGRAL EQUATIONS

2◦. If K(a, a) =K ′
x(a, a) = · · · =K (n–1)

x (a, a) = 0, 0 <
∣
∣K (n)

x (a, a)
∣
∣ <∞, then the right-hand

side of the equation must satisfy the conditions f (a) = f ′x(a) = · · · = f (n)
x (a) = 0.

3◦. If K(a, a) = K ′
x(a, a) = · · · = K (n–1)

x (a, a) = 0, K (n)
x (a, a) = ∞, then the right-hand

side of the equation must satisfy the conditions f (a) = f ′x(a) = · · · = f (n–1)
x (a) = 0.

For polar kernels of the form (16.1.1.4) and continuous f (x), no additional conditions
are imposed on the right-hand side of the integral equation.

16.1.1-2. Existence and uniqueness of a solution.

Assume that in equation (16.1.1.1) the functions f (x) and K(x, t) are continuous together
with their first derivatives on [a, b] and on S, respectively. If K(x,x) ≠ 0 (x � [a, b]) and
f (a) = 0, then there exists a unique continuous solution y(x) of equation (16.1.1.1).

Remark. A Volterra equation of the first kind can be treated as a Fredholm equation of the first kind whose
kernel K(x, t) vanishes for t > x (see Section 16.3).

16.1.2. Equations with Degenerate Kernel:
K(x, t) = g1(x)h1(t) + · · · + gn(x)hn(t)

16.1.2-1. Equations with kernel of the form K(x, t) = g1(x)h1(t) + g2(x)h2(t).

Any equation of this type can be rewritten in the form

g1(x)
∫ x

a
h1(t)y(t) dt + g2(x)

∫ x

a
h2(t)y(t) dt = f (x). (16.1.2.1)

It is assumed that g1(x)/g2(x) ≠ const , h1(t)/h2(t) ≠ const , 0 < g2
1 (a) + g2

2 (a) < ∞, and
f (a) = 0.

The change of variables

u(x) =
∫ x

a
h1(t)y(t) dt, (16.1.2.2)

followed by the integration by parts in the second integral in (16.1.2.1) with regard to the
relation u(a) = 0, yields the following Volterra equation of the second kind:

[g1(x)h1(x) + g2(x)h2(x)]u(x) – g2(x)h1(x)
∫ x

a

[
h2(t)
h1(t)

]′

t

u(t) dt = h1(x)f (x). (16.1.2.3)

The substitution

w(x) =
∫ x

a

[
h2(t)
h1(t)

]′

t

u(t) dt (16.1.2.4)

reduces equation (16.1.2.3) to the first-order linear ordinary differential equation

[g1(x)h1(x) + g2(x)h2(x)]w′
x – g2(x)h1(x)

[
h2(x)
h1(x)

]′

x

w = f (x)h1(x)

[
h2(x)
h1(x)

]′

x

. (16.1.2.5)

1◦. In the case g1(x)h1(x) + g2(x)h2(x) � 0, the solution of equation (16.1.2.5) satisfying
the condition w(a) = 0 [this condition is a consequence of the substitution (16.1.2.4)] has
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the form

w(x) = Φ(x)
∫ x

a

[
h2(t)
h1(t)

]′

t

f (t)h1(t) dt
Φ(t)[g1(t)h1(t) + g2(t)h2(t)]

, (16.1.2.6)

Φ(x) = exp

{∫ x

a

[
h2(t)
h1(t)

]′

t

g2(t)h1(t) dt
g1(t)h1(t) + g2(t)h2(t)

}
. (16.1.2.7)

Let us differentiate relation (16.1.2.4) and substitute the function (16.1.2.6) into the
resulting expression. After integrating by parts with regard to the relations f (a) = 0 and
w(a) = 0, for f � const g2 we obtain

u(x) =
g2(x)h1(x)Φ(x)

g1(x)h1(x) + g2(x)h2(x)

∫ x

a

[
f (t)
g2(t)

]′

t

dt

Φ(t)
.

Using formula (16.1.2.2), we find a solution of the original equation in the form

y(x) =
1

h1(x)
d

dx

{
g2(x)h1(x)Φ(x)

g1(x)h1(x) + g2(x)h2(x)

∫ x

a

[
f (t)
g2(t)

]′

t

dt

Φ(t)

}
, (16.1.2.8)

where the function Φ(x) is given by (16.1.2.7).
If f (x) ≡ const g2(x), the solution is given by formulas (16.1.2.8) and (16.1.2.7), in

which the subscript 1 must be changed by 2 and vice versa.

2◦. In the case g1(x)h1(x) + g2(x)h2(x) ≡ 0, the solution has the form

y(x) =
1
h1

d

dx

[
(f/g2)′x
(g1/g2)′x

]
= –

1
h1

d

dx

[
(f/g2)′x
(h2/h1)′x

]
.

16.1.2-2. Equations with general degenerate kernel.

A Volterra equation of the first kind with general degenerate kernel has the form

n∑

m=1

gm(x)
∫ x

a
hm(t)y(t) dt = f (x). (16.1.2.9)

Using the notation

wm(x) =
∫ x

a
hm(t)y(t) dt, m = 1, . . . ,n, (16.1.2.10)

we can rewrite equation (16.1.2.9) as follows:

n∑

m=1

gm(x)wm(x) = f (x). (16.1.2.11)

On differentiating formulas (16.1.2.10) and eliminating y(x) from the resulting equations,
we arrive at the following linear differential equations for the functions wm = wm(x):

h1(x)w′
m = hm(x)w′

1, m = 2, . . . ,n (16.1.2.12)
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(the prime stands for the derivative with respect to x) with the initial conditions

wm(a) = 0, m = 1, . . . ,n.

Any solution of system (16.1.2.11), (16.1.2.12) determines a solution of the original integral
equation (16.1.2.9) by each of the expressions

y(x) =
w′
m(x)
hm(x)

, m = 1, . . . ,n,

which can be obtained by differentiating formula (16.1.2.10).
System (16.1.2.11), (16.1.2.12) can be reduced to a linear (n – 1)st-order differen-

tial equation for any function wm(x) (m = 1, . . . ,n) by multiple differentiation of equa-
tion (16.1.2.11) with regard to (16.1.2.12).

16.1.3. Equations with Difference Kernel: K(x, t) = K(x – t)

16.1.3-1. Solution method based on the Laplace transform.

Volterra equations of the first kind with kernel depending on the difference of the arguments
have the form ∫ x

0
K(x – t)y(t) dt = f (x). (16.1.3.1)

To solve these equations, the Laplace transform can be used (see Section 11.2). In what
follows we need the transforms of the kernel and the right-hand side; they are given by the
formulas

K̃(p) =
∫ ∞

0
K(x)e–px dx, f̃ (p) =

∫ ∞

0
f (x)e–px dx. (16.1.3.2)

Applying the Laplace transform L to equation (16.1.3.1) and taking into account the
fact that an integral with kernel depending on the difference of the arguments is transformed
to the product by the rule (see Paragraph 11.2.2-1)

L

{∫ x

0
K(x – t)y(t) dt

}
= K̃(p)ỹ(p),

we obtain the following equation for the transform ỹ(p):

K̃(p)ỹ(p) = f̃ (p). (16.1.3.3)

The solution of equation (16.1.3.3) is given by the formula

ỹ(p) =
f̃ (p)

K̃(p)
. (16.1.3.4)

On applying the Laplace inversion formula (if it is applicable) to (16.1.3.4), we obtain a
solution of equation (16.1.3.1) in the form

y(x) =
1

2πi

∫ c+i∞

c–i∞

f̃ (p)

K̃(p)
epx dp. (16.1.3.5)

To evaluate the corresponding integrals, tables of direct and inverse Laplace transforms
can be applied (see Sections T3.1 and T3.2), and, in many cases, tofind the inverse transform,
methods of the theory of functions of a complex variable are applied, including formulas
for the calculation of residues and the Jordan lemma (see Subsection 11.1.2).
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16.1.3-2. Case in which the transform of the solution is a rational function.

Consider the important special case in which the transform (16.1.3.4) of the solution is a
rational function of the form

ỹ(p) =
f̃ (p)

K̃(p)
≡
R(p)
Q(p)

,

where Q(p) and R(p) are polynomials in the variable p and the degree of Q(p) exceeds that
of R(p).

If the zeros of the denominator Q(p) are simple, i.e.,

Q(p) ≡ const (p – λ1)(p – λ2) . . . (p – λn),

and λi ≠ λj for i ≠ j, then the solution has the form

y(x) =
n∑

k=1

R(λk)
Q′(λk)

exp(λkx),

where the prime stands for the derivatives.

Example 1. Consider the Volterra integral equation of the first kind
∫ x

0
e–a(x–t)y(t) dt = A sinh(bx).

We apply the Laplace transform to this equation and obtain (see Subsections T3.1.1 and T3.1.4)

1
p + a

ỹ(p) =
Ab

p2 – b2 .

This implies

ỹ(p) =
Ab(p + a)
p2 – b2 =

Ab(p + a)
(p – b)(p + b)

.

We have Q(p) = (p – b)(p + b), R(p) = Ab(p + a), λ1 = b, and λ2 = –b. Therefore, the solution of the integral
equation has the form

y(x) = 1
2A(b + a)ebx + 1

2A(b – a)e–bx = Aa sinh(bx) +Ab cosh(bx).

16.1.3-3. Convolution representation of a solution.

In solving Volterra integral equations of the first kind with difference kernel K(x – t) by
means of the Laplace transform, it is sometimes useful to apply the following approach.

Let us represent the transform (16.1.3.4) of a solution in the form

ỹ(p) = Ñ (p)M̃ (p)f̃ (p), Ñ (p) ≡
1

K̃(p)M̃ (p)
. (16.1.3.6)

If we can find a function M̃ (p) for which the inverse transforms

L–1{M̃ (p)
}

= M (x), L–1{Ñ (p)
}

= N (x) (16.1.3.7)

exist and can be found in a closed form, then the solution can be written as the convolution

y(x) =
∫ x

0
N (x – t)F (t) dt, F (t) =

∫ t

0
M (t – s)f (s) ds. (16.1.3.8)
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Example 2. Consider the equation
∫ x

0
sin
(
k
√
x – t

)
y(t)dt = f (x), f (0) = 0. (16.1.3.9)

Applying the Laplace transform, we obtain (see Subsections T3.1.1 and T3.1.6)

ỹ(p) =
2√
π k

p3/2 exp(α/p)f̃ (p), α = 1
4 k

2. (16.1.3.10)

Let us rewrite the right-hand side of (16.1.3.10) in the equivalent form

ỹ(p) =
2√
π k

p2[p–1/2 exp(α/p)
]
f̃ (p), α = 1

4 k
2, (16.1.3.11)

where the factor in the square brackets corresponds to M̃ (p) in formula (16.1.3.6) and Ñ (p) = const p2.
By applying the Laplace inversion formula according to the above scheme to formula (16.1.3.11) with

regard to the relation (see Subsections T3.2.1 and T3.2.5)

L–1{p2ϕ̃(p)
}

=
d2

dx2 ϕ(x), L–1{p–1/2 exp(α/p)
}

=
1√
πx

cosh
(
k
√
x
)
,

we find the solution

y(x) =
2
πk

d2

dx2

∫ x

0

cosh
(
k
√
x – t

)

√
x – t

f (t) dt.

16.1.3-4. Application of an auxiliary equation.

Consider the equation ∫ x

a
K(x – t)y(t) dt = f (x), (16.1.3.12)

where the kernel K(x) has an integrable singularity at x = 0.
Let w = w(x) be the solution of the simpler auxiliary equation with f (x) ≡ 1 and a = 0,

∫ x

0
K(x – t)w(t) dt = 1. (16.1.3.13)

Then the solution of the original equation (16.1.3.12) with arbitrary right-hand side can be
expressed as follows via the solution of the auxiliary equation (16.1.3.13):

y(x) =
d

dx

∫ x

a
w(x – t)f (t) dt = f (a)w(x – a) +

∫ x

a
w(x – t)f ′t(t) dt. (16.1.3.14)

Example 3. Consider the generalized Abel equation
∫ x

a

y(t) dt
(x – t)μ

= f (x), 0 < μ < 1. (16.1.3.15)

We seek a solution of the corresponding auxiliary equation
∫ x

0

w(t) dt
(x – t)μ

= 1, 0 < μ < 1, (16.1.3.16)

by the method of indeterminate coefficients in the form

w(x) = Axβ. (16.1.3.17)

Let us substitute (16.1.3.17) into (16.1.3.16) and then perform the change of variable t = xξ in the integral.
Taking into account the relationship

B(p, q) =
∫ 1

0
ξp–1(1 – ξ)1–q dξ =

Γ(p)Γ(q)
Γ(p + q)
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between the beta and gamma functions, we obtain

A
Γ(β + 1)Γ(1 – μ)

Γ(2 + β – μ)
xβ+1–μ = 1.

From this relation we find the coefficients A and β:

β = μ – 1, A =
1

Γ(μ)Γ(1 – μ)
=

sin(πμ)
π

. (16.1.3.18)

Formulas (16.1.3.17) and (16.1.3.18) define the solution of the auxiliary equation (16.1.3.16) and make it
possible to find the solution of the generalized Abel equation (16.1.3.15) by means of formula (16.1.3.14) as
follows:

y(x) =
sin(πμ)
π

d

dx

∫ x

a

f (t) dt
(x – t)1–μ

=
sin(πμ)
π

[
f (a)

(x – a)1–μ
+
∫ x

a

f ′
t(t) dt

(x – t)1–μ

]
.

16.1.4. Reduction of Volterra Equations of the First Kind to Volterra
Equations of the Second Kind

16.1.4-1. First method.

Suppose that the kernel and the right-hand side of the equation
∫ x

a
K(x, t)y(t) dt = f (x) (16.1.4.1)

have continuous derivatives with respect to x and that the condition K(x,x) � 0 holds.
In this case, after differentiating relation (16.1.4.1) and dividing the resulting expression
by K(x,x), we arrive at the following Volterra equation of the second kind:

y(x) +
∫ x

a

K ′
x(x, t)

K(x,x)
y(t) dt =

f ′x(x)
K(x,x)

. (16.1.4.2)

Equations of this type are considered in Section 16.2.
If K(x,x) ≡ 0, then, on differentiating equation (16.1.4.1) with respect to x twice and

assuming that K ′
x(x, t)|t=x � 0, we obtain the Volterra equation of the second kind

y(x) +
∫ x

a

K ′′
xx(x, t)

K ′
x(x, t)|t=x

y(t) dt =
f ′′xx(x)

K ′
x(x, t)|t=x

.

If K ′
x(x,x) ≡ 0, we can again apply differentiation, and so on.

16.1.4-2. Second method.

Let us introduce the new variable

Y (x) =
∫ x

a
y(t) dt

and integrate the right-hand side of equation (16.1.4.1) by parts taking into account the
relation f (a) = 0. After dividing the resulting expression by K(x,x), we arrive at the
Volterra equation of the second kind

Y (x) –
∫ x

a

K ′
t(x, t)

K(x,x)
Y (t) dt =

f (x)
K(x,x)

,

for which the condition K(x,x) � 0 must hold.
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16.1.5. Method of Quadratures

16.1.5-1. Quadrature formulas.

The method of quadratures is a method for constructing an approximate solution of an
integral equation based on the replacement of integrals by finite sums according to some
formula. Such formulas are called quadrature formulas and, in general, have the form

∫ b

a
ψ(x) dx =

n∑

i=1

Aiψ(xi) + εn[ψ], (16.1.5.1)

where xi (i = 1, . . . ,n) are the abscissas of the partition points of the integration interval
[a, b], or quadrature (interpolation) nodes, Ai (i = 1, . . . ,n) are numerical coefficients
independent of the choice of the function ψ(x), and εn[ψ] is the remainder (the truncation

error) of formula (16.1.5.1). As a rule, Ai ≥ 0 and
n∑

i=1
Ai = b – a.

There are quite a few quadrature formulas of the form (16.1.5.1). The following formulas
are the simplest and most frequently used in practice.

Rectangle rule:

A1 = A2 = · · · = An–1 = h, An = 0,

h =
b – a
n – 1

, xi = a + h(i – 1) (i = 1, 2, . . . , n).
(16.1.5.2)

Trapezoidal rule:

A1 = An = 1
2h, A2 = A3 = · · · = An–1 = h,

h =
b – a
n – 1

, xi = a + h(i – 1) (i = 1, 2, . . . , n).
(16.1.5.3)

Simpson’s rule (or prismoidal formula):

A1 = A2m+1 = 1
3h, A2 = · · · = A2m = 4

3h, A3 = · · · = A2m–1 = 2
3h,

h =
b – a
n – 1

, xi = a + h(i – 1) (n = 2m + 1, i = 1, . . . ,n),
(16.1.5.4)

where m is a positive integer.
In formulas (16.1.5.2)–(16.1.5.4), h is a constant integration step.
The quadrature formulas due to Chebyshev and Gauss with various numbers of inter-

polation nodes are also widely applied. Let us illustrate these formulas by an example.
Example. For the interval [–1, 1], the parameters in formula (16.1.5.1) acquire the following values:
Chebyshev’s formula (n = 6):

A1 = A2 = · · · =
2
n

=
1
3

,

x2 = –x5 = –0.4225186538,

x1 = –x6 = –0.8662468181,

x3 = –x4 = –0.2666354015.
(16.1.5.5)

Gauss’ formula (n = 7):

A1 = A7 = 0.1294849662,

A3 = A5 = 0.3818300505,

x1 = –x7 = –0.9491079123,

x3 = –x5 = –0.4058451514,

A2 = A6 = 0.2797053915,

A4 = 0.4179591837,

x2 = –x6 = –0.7415311856,

x4 = 0.

(16.1.5.6)

Note that a vast literature is devoted to quadrature formulas, and the reader can find
books of interest [e.g., see Bakhvalov (1973), Korn and Korn (2000)].
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16.1.5-2. General scheme of the method.

Let us solve the Volterra integral equation of the first kind
∫ x

a
K(x, t)y(t) dt = f (x), f (a) = 0, (16.1.5.7)

on an interval a ≤ x ≤ b by the method of quadratures. The procedure of constructing the
solution involves two stages:

1◦. First, we determine the initial value y(a). To this end, we differentiate equation
(16.1.5.7) with respect to x, thus obtaining

K(x,x)y(x) +
∫ x

a
K ′
x(x, t)y(t) dt = f ′x(x).

By setting x = a, we find that

y1 = y(a) =
f ′x(a)
K(a, a)

=
f ′x(a)
K11

.

2◦. Let us choose a constant integration step h and consider the discrete set of points
xi = a + h(i – 1), i = 1, . . . ,n. For x = xi, equation (16.1.5.7) acquires the form

∫ xi

a
K(xi, t)y(t) dt = f (xi), i = 2, . . . ,n. (16.1.5.8)

Applying the quadrature formula (16.1.5.1) to the integral in (16.1.5.8) and choosing xj
(j = 1, . . . , i) to be the nodes in t, we arrive at the system of equations

i∑

j=1

AijK(xi,xj)y(xj) = f (xi) + εi[y], i = 2, . . . ,n, (16.1.5.9)

where Aij are the coefficients of the quadrature formula on the interval [a,xi] and εi[y] is
the truncation error. Assume that εi[y] are small and neglect them; then we obtain a system
of linear algebraic equations in the form

i∑

j=1

AijKijyj = fi, i = 2, . . . ,n, (16.1.5.10)

where Kij = K(xi,xj) (j = 1, . . . , i), fi = f (xi), and yj are approximate values of the
unknown function at the nodes xi.

Now system (16.1.5.10) permits one, provided that AiiKii ≠ 0 (i = 2, . . . ,n), to succes-
sively find the desired approximate values by the formulas

y1 =
f ′x(a)
K11

, y2 =
f2 – A21K21y1

A22K22
, . . . , yn =

fn –
n–1∑

j=1
AnjKnjyj

AnnKnn
,

whose specific form depends on the choice of the quadrature formula.
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16.1.5-3. Algorithm based on the trapezoidal rule.

According to the trapezoidal rule (16.1.5.3), we have

Ai1 = Aii = 1
2h, Ai2 = · · · = Ai,i–1 = h, i = 2, . . . ,n.

The application of the trapezoidal rule in the general scheme leads to the following step
algorithm:

y1 =
f ′x(a)
K11

, f ′x(a) =
–3f1 + 4f2 – f3

2h
,

yi =
2
Kii

(
fi
h

–
i–1∑

j=1

βjKijyj

)
, βj =

{ 1
2 for j = 1,

1 for j > 1,
i = 2, . . . ,n,

where the notation coincides with that introduced in Paragraph 16.1.5-2. The trapezoidal
rule is quite simple and effective and frequently used in practice for solving integral equa-
tions with variable limit of integration.

16.2. Linear Integral Equations of the Second Kind with
Variable Integration Limit

16.2.1. Volterra Equations of the Second Kind

16.2.1-1. Some definitions. Equations for the resolvent.

A Volterra linear integral equation of the second kind has the general form

y(x) –
∫ x

a
K(x, t)y(t) dt = f (x), (16.2.1.1)

where y(x) is the unknown function (a ≤ x ≤ b),K(x, t) is the kernel of the integral equation,
and f (x) is the right-hand side of the integral equation. The function classes to which y(x),
f (x), and K(x, t) can belong are defined in Paragraph 16.1.1-1. In these function classes,
there exists a unique solution of the Volterra integral equation of the second kind.

Equation (16.2.1.1) is said to be homogeneous if f (x) ≡ 0 and nonhomogeneous other-
wise.

The kernel K(x, t) is said to be degenerate if it can be represented in the form K(x, t) =
g1(x)h1(t) + · · · +gn(x)hn(t). The kernel K(x, t) of an integral equation is called difference
kernel if it depends only on the difference of the arguments, K(x, t) = K(x – t).

Remark 1. A homogeneous Volterra integral equation of the second kind has only the trivial solution.

Remark 2. A Volterra equation of the second kind can be regarded as a Fredholm equation of the second
kind whose kernel K(x, t) vanishes for t > x (see Section 16.4).

16.2.1-2. Structure of the solution. The resolvent.

The solution of equation (16.2.1.1) can be presented in the form

y(x) = f (x) +
∫ x

a
R(x, t)f (t) dt, (16.2.1.2)

where the resolvent R(x, t) is independent of f (x) and the lower limit of integration a; it is
determined by the kernel of the integral equation alone.
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16.2.1-3. Relationship between solutions of some integral equations.

Let us present two useful formulas that express the solution of one integral equation via the
solutions of other integral equations.

1◦. Assume that the Volterra equation of the second kind with kernel K(x, t) has a resol-
vent R(x, t). Then the Volterra equation of the second kind with kernel K∗(x, t) = –K(t,x)
has the resolvent R∗(x, t) = –R(t,x).

2◦. Assume that two Volterra equations of the second kind with kernelsK1 (x, t) andK2(x, t)
are given and that resolvents R1(x, t) and R2(x, t) correspond to these equations. In this
case the Volterra equation with kernel

K(x, t) = K1(x, t) +K2(x, t) –
∫ x

t
K1(x, s)K2(s, t) ds (16.2.1.3)

has the resolvent

R(x, t) = R1(x, t) +R2(x, t) +
∫ x

t
R1(s, t)R2(x, s) ds. (16.2.1.4)

Note that in formulas (16.2.1.3) and (16.2.1.4), the integration is performed with respect to
different pairs of variables.

16.2.2. Equations with Degenerate Kernel:
K(x, t) = g1(x)h1(t) + · · · + gn(x)hn(t)

16.2.2-1. Equations with kernel of the form K(x, t) = ϕ(x) + ψ(x)(x – t).

1◦. The solution of a Volterra equation (see Paragraph 16.2.1-1) with kernel of this type
can be expressed by the formula

y = w′′
xx,

where w = w(x) is the solution of the second-order linear nonhomogeneous ordinary
differential equation

w′′
xx – ϕ(x)w′

x – ψ(x)w = f (x),

with the initial conditions w(a) = w′
x(a) = 0.

2◦. For a degenerate kernel of the above form, the resolvent can be defined by the formula

R(x, t) = u′′xx, (16.2.2.1)

where the auxiliary function u is the solution of the homogeneous linear second-order
ordinary differential equation

u′′xx – ϕ(x)u′x – ψ(x)u = 0 (16.2.2.2)

with the following initial conditions at x = t:

u
∣∣
x=t = 0, u′x

∣∣
x=t = 1. (16.2.2.3)

The parameter t occurs only in the initial conditions (16.2.2.3), and equation (16.2.2.2)
itself is independent of t.
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16.2.2-2. Equations with kernel of the form K(x, t) = ϕ(t) + ψ(t)(t – x).

For a degenerate kernel of the above form, the resolvent is determined by the expression

R(x, t) = –v′′tt, (16.2.2.4)

where the auxiliary function v is the solution of the homogeneous linear second-order
ordinary differential equation

v′′tt + ϕ(t)v′t + ψ(t)v = 0 (16.2.2.5)

with the following initial conditions at t = x:

v
∣∣
t=x = 0, v′t

∣∣
t=x = 1. (16.2.2.6)

The point x occurs only in the initial data (16.2.2.6) as a parameter, and equation (16.2.2.5)
itself is independent of x.

16.2.2-3. Equations with degenerate kernel of the general form.

In this case, the Volterra equation of the second kind can be represented in the form

y(x) –
n∑

m=1

gm(x)
∫ x

a
hm(t)y(t) dt = f (x). (16.2.2.7)

Let us introduce the notation

wj(x) =
∫ x

a
hj(t)y(t) dt, j = 1, . . . ,n, (16.2.2.8)

and rewrite equation (16.2.2.7) as follows:

y(x) =
n∑

m=1

gm(x)wm(x) + f (x). (16.2.2.9)

On differentiating the expressions (16.2.2.8) with regard to formula (16.2.2.9), we arrive at
the following system of linear differential equations for the functions wj = wj(x):

w′
j = hj(x)

[ n∑

m=1

gm(x)wm + f (x)
]
, j = 1, . . . ,n,

with the initial conditions
wj(a) = 0, j = 1, . . . ,n.

Once the solution of this system is found, the solution of the original integral equa-
tion (16.2.2.7) is defined by formula (16.2.2.9) or any of the expressions

y(x) =
w′
j(x)

hj(x)
, j = 1, . . . ,n,

which can be obtained from formula (16.2.2.8) by differentiation.
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16.2.3. Equations with Difference Kernel: K(x, t) = K(x – t)

16.2.3-1. Solution method based on the Laplace transform.

Volterra equations of the second kind with kernel depending on the difference of the
arguments have the form

y(x) –
∫ x

0
K(x – t)y(t) dt = f (x). (16.2.3.1)

Applying the Laplace transform L to equation (16.2.3.1) and taking into account the fact
that by the convolution theorem (see Subsection 11.2.2) the integral with kernel depending
on the difference of the arguments is transformed into the product K̃(p)ỹ(p), we arrive at
the following equation for the transform of the unknown function:

ỹ(p) – K̃(p)ỹ(p) = f̃ (p). (16.2.3.2)

The solution of equation (16.2.3.2) is given by the formula

ỹ(p) =
f̃ (p)

1 – K̃(p)
, (16.2.3.3)

which can be written equivalently in the form

ỹ(p) = f̃ (p) + R̃(p)f̃ (p), R̃(p) =
K̃(p)

1 – K̃(p)
. (16.2.3.4)

On applying the Laplace inversion formula to (16.2.3.4), we obtain the solution of equation
(16.2.3.1) in the form

y(x) = f (x) +
∫ x

0
R(x – t)f (t) dt,

R(x) =
1

2πi

∫ c+i∞

c–i∞
R̃(p)epx dp.

(16.2.3.5)

To calculate the corresponding integrals, tables of direct and inverse Laplace transforms
can be applied (see Sections T3.1 and T3.2), and, in many cases, tofind the inverse transform,
methods of the theory of functions of a complex variable are applied, including formulas
for the calculation of residues and the Jordan lemma (see Subsection 11.1.2).

Remark. If the lower limit of the integral in the Volterra equation with kernel depending on the difference
of the arguments is equal to a, then this equation can be reduced to equation (16.2.3.1) by the change of
variables x = x̄ – a, t = t̄ – a.

Figure 16.1 depicts the principal scheme of solving Volterra integral equations of the
second kind with difference kernel by means of the Laplace integral transform.

Example. Consider the equation

y(x) +A
∫ x

0
sin
[
λ(x – t)

]
y(t) dt = f (x), (16.2.3.6)

which is a special case of equation (16.2.3.1) for K(x) = –A sin(λx).
We first apply the table of Laplace transforms (see Subsection T3.1.6) and obtain the transform of the

kernel of the integral equation in the form

K̃(p) = –
Aλ

p2 + λ2 .
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Solution of the equation for the transform

Figure 16.1. Scheme of solving Volterra integral equations of the second kind with difference kernel by means
of the Laplace integral transform; R(x) is the inverse transform of the function R̃(p) = K̃(p)/[1 – K̃(p)].

Next, by formula (16.2.3.4) we find the transform of the resolvent:

R̃(p) = –
Aλ

p2 + λ(A + λ)
.

Furthermore, applying the table of inverse Laplace transforms (see Subsection T3.2.2) we obtain the
resolvent

R(x) =

⎧
⎪⎨

⎪⎩

–
Aλ

k
sin(kx) for λ(A + λ) > 0,

–
Aλ

k
sinh(kx) for λ(A + λ) < 0,

where k = |λ(A + λ)|1/2.

Moreover, in the special case λ = –A, we have R(x) = A2x. On substituting the expressions for the resolvent
into formula (16.2.3.5), we find the solution of the integral equation (16.2.3.6). In particular, for λ(A + λ) > 0,
this solution has the form

y(x) = f (x) –
Aλ

k

∫ x

0
sin
[
k(x – t)

]
f (t) dt, k =

√
λ(A + λ). (16.2.3.7)

Remark. The Laplace transform can be applied to solve systems of Volterra integral equations of the form

ym(x) –
n∑

k=1

∫ x

0
Kmk(x – t)yk(t) dt = fm(x), m = 1, . . . ,n.

16.2.3-2. Method based on the solution of an auxiliary equation.

Consider the integral equation

Ay(x) +B
∫ x

a
K(x – t)y(t) dt = f (x). (16.2.3.8)
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Let w = w(x) be a solution of the simpler auxiliary equation with f (x) ≡ 1 and a = 0,

Aw(x) + B
∫ x

0
K(x – t)w(t) dt = 1. (16.2.3.9)

In this case, the solution of the original equation (16.2.3.8) with an arbitrary right-hand side
can be expressed via the solution of the auxiliary equation (16.2.3.9) by the formula

y(x) =
d

dx

∫ x

a
w(x – t)f (t) dt = f (a)w(x – a) +

∫ x

a
w(x – t)f ′t(t) dt.

16.2.4. Construction of Solutions of Integral Equations with Special
Right-Hand Side

In this section we describe some approaches to the construction of solutions of integral
equations with special right-hand sides. These approaches are based on the application of
auxiliary solutions that depend on a free parameter.

16.2.4-1. General scheme.

Consider a linear equation, which we shall write in the following brief form:

L [y] = fg(x,λ), (16.2.4.1)

where L is a linear operator (integral, differential, etc.) that acts with respect to the variablex
and is independent of the parameter λ, and fg(x,λ) is a given function that depends on the
variable x and the parameter λ.

Suppose that the solution of equation (16.2.4.1) is known:

y = y(x,λ). (16.2.4.2)

Let M be a linear operator (integral, differential, etc.) that acts with respect to the
parameter λ and is independent of the variable x. Consider the (usual) case in which M
commutes with L. We apply the operator M to equation (16.2.4.1) and find that the equation

L [w] = fM (x), fM (x) = M
[
fg(x,λ)

]
(16.2.4.3)

has the solution
w = M

[
y(x,λ)

]
. (16.2.4.4)

By choosing the operator M in a different way, we can obtain solutions for other right-
hand sides of equation (16.2.4.1). The original function fg(x,λ) is called the generating
function for the operator L.

16.2.4-2. Generating function of exponential form.

Consider a linear equation with exponential right-hand side

L [y] = eλx. (16.2.4.5)

Suppose that the solution is known and is given by formula (16.2.4.2). In Table 16.1 we
present solutions of the equation L [y] = f (x) with various right-hand sides; these solutions
are expressed via the solution of equation (16.2.4.5).



816 INTEGRAL EQUATIONS

Remark 1. When applying the formulas indicated in the table, we need not know the left-hand side of
the linear equation (16.2.4.5) (the equation can be integral, differential, etc.) provided that a particular solution
of this equation for the exponential right-hand side is known. It is only of importance that the left-hand side of
the equation is independent of the parameter λ.

Remark 2. When applying formulas indicated in the table, the convergence of the integrals occurring in
the resulting solution must be verified.

Example 1. We seek a solution of the equation with exponential right-hand side

y(x) +
∫ ∞

x

K(x – t)y(t)dt = eλx (16.2.4.6)

in the form y(x,λ) = keλx by the method of indeterminate coefficients. Then we obtain

y(x,λ) =
1

B(λ)
eλx, B(λ) = 1 +

∫ ∞

0
K(–z)eλz dz. (16.2.4.7)

It follows from row 3 of Table 16.1 that the solution of the equation

y(x) +
∫ ∞

x

K(x – t)y(t)dt = Ax (16.2.4.8)

has the form

y(x) =
A

D
x –

AC

D2 , where D = 1 +
∫ ∞

0
K(–z) dz, C =

∫ ∞

0
zK(–z) dz.

For such a solution to exist, it is necessary that the improper integrals of the functions K(–z) and zK(–z)
exist. This holds if the function K(–z) decreases more rapidly than z–2 as z → ∞. Otherwise a solution
can be nonexistent. It is of interest that for functions K(–z) with power-law growth as z → ∞ in the case
λ < 0, the solution of equation (16.2.4.6) exists and is given by formula (16.2.4.7), whereas equation (16.2.4.8)
does not have a solution. Therefore, we must be careful when using formulas from Table 16.1 and verify the
convergence of the integrals occurring in the solution.

It follows from row 15 of Table 16.1 that the solution of the equation

y(x) +
∫ ∞

x

K(x – t)y(t) dt = A sin(λx) (16.2.4.9)

is given by the formula

y(x) =
A

B2
c +B2

s

[
Bc sin(λx) – Bs cos(λx)

]
,

where

Bc = 1 +
∫ ∞

0
K(–z) cos(λz) dz, Bs =

∫ ∞

0
K(–z) sin(λz) dz.

16.2.4-3. Power-law generating function.

Consider the linear equation with power-law right-hand side

L [y] = xλ. (16.2.4.10)

Suppose that the solution is known and is given by formula (16.2.4.2). In Table 16.2,
solutions of the equation L [y] = f (x) with various right-hand sides are presented, which
can be expressed via the solution of equation (16.2.4.10).
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TABLE 16.1
Solutions of the equation L [y] = f (x) with generating function of the exponential form

No. Right-hand side f (x) Solution y Solution method

1 eλx y(x,λ) Original equation

2 A1e
λ1x + · · · +Ane

λnx A1y(x,λ1) + · · · +Any(x,λn) Follows from linearity

3 Ax +B A
∂

∂λ

[
y(x,λ)

]

λ=0
+ By(x, 0) Follows from linearity

and the results of row 4

4 Axn,
n = 0, 1, 2, . . .

A

{
∂n

∂λn

[
y(x,λ)

]}

λ=0

Follows from the results
of row 6 for λ = 0

5
A

x + a
, a > 0 A

∫ ∞

0
e–aλy(x, –λ) dλ Integration with respect

to the parameter λ

6 Axneλx,
n = 0, 1, 2, . . .

A
∂n

∂λn

[
y(x,λ)

] Differentiation with respect
to the parameter λ

7 ax y(x, lna) Follows from row 1

8 A cosh(λx) 1
2A[y(x, λ) + y(x, –λ)

] Linearity and relations
to the exponential

9 A sinh(λx) 1
2A[y(x, λ) – y(x, –λ)

] Linearity and relations
to the exponential

10 Axm cosh(λx),
m = 1, 3, 5, . . .

1
2A

∂m

∂λm
[y(x, λ) – y(x, –λ)

] Differentiation with respect
to λ and relation

to the exponential

11 Axm cosh(λx),
m = 2, 4, 6, . . .

1
2A

∂m

∂λm
[y(x, λ) + y(x, –λ)

] Differentiation with respect
to λ and relation

to the exponential

12 Axm sinh(λx),
m = 1, 3, 5, . . .

1
2A

∂m

∂λm
[y(x, λ) + y(x, –λ)

] Differentiation with respect
to λ and relation
to the exponential

13 Axm sinh(λx),
m = 2, 4, 6, . . .

1
2A

∂m

∂λm
[y(x, λ) – y(x, –λ)

] Differentiation with respect
to λ and relation
to the exponential

14 A cos(βx) ARe
[
y(x, iβ)

] Selection of the real
part for λ = iβ

15 A sin(βx) A Im
[
y(x, iβ)

] Selection of the imaginary
part for λ = iβ

16 Axn cos(βx),
n = 1, 2, 3, . . .

ARe

{
∂n

∂λn

[
y(x,λ)

]}

λ=iβ

Differentiation with respect
to λ and selection of the real

part for λ = iβ

17 Axn sin(βx),
n = 1, 2, 3, . . .

A Im

{
∂n

∂λn

[
y(x,λ)

]}

λ=iβ

Differentiation with respect
to λ and selection of the

imaginary part for λ = iβ

18 Aeμx cos(βx) ARe
[
y(x, μ + iβ)

] Selection of the real
part for λ = μ + iβ

19 Aeμx sin(βx) A Im
[
y(x, μ + iβ)

] Selection of the imaginary
part for λ = μ + iβ

20 Axneμx cos(βx),
n = 1, 2, 3, . . .

ARe

{
∂n

∂λn

[
y(x,λ)

]}

λ=μ+iβ

Differentiation with respect
to λ and selection of the real

part for λ = μ + iβ

21 Axneμx sin(βx),
n = 1, 2, 3, . . .

A Im

{
∂n

∂λn

[
y(x,λ)

]}

λ=μ+iβ

Differentiation with respect
to λ and selection of the

imaginary part for λ = μ + iβ



818 INTEGRAL EQUATIONS

TABLE 16.2
Solutions of the equation L [y] = f (x) with generating function of power-law form

No. Right-hand side f (x) Solution y Solution method

1 xλ y(x,λ) Original equation

2
n∑

k=0
Akx

k
n∑

k=0
Aky(x,k) Follows from linearity

3 A lnx +B A
∂

∂λ

[
y(x,λ)

]

λ=0
+ By(x, 0) Follows from linearity and

from the results of row 4

4 A lnn x,
n = 0, 1, 2, . . .

A

{
∂n

∂λn

[
y(x,λ)

]}

λ=0

Follows from the results
of row 5 for λ = 0

5 Axλ lnn x,
n = 0, 1, 2, . . .

A
∂n

∂λn

[
y(x,λ)

] Differentiation
with respect to the parameter λ

6 A cos(β lnx) ARe
[
y(x, iβ)

] Selection of the real
part for λ = iβ

7 A sin(β lnx) A Im
[
y(x, iβ)

] Selection of the imaginary
part for λ = iβ

8 Axμ cos(β lnx) ARe
[
y(x, μ + iβ)

] Selection of the real
part for λ = μ + iβ

9 Axμ sin(β lnx) A Im
[
y(x, μ + iβ)

] Selection of the imaginary
part for λ = μ + iβ

Example 2. We seek a solution of the equation with power-law right-hand side

y(x) +
∫ x

0

1
x
K
( t
x

)
y(t) dt = xλ

in the form y(x,λ) = kxλ by the method of indeterminate coefficients. We finally obtain

y(x,λ) =
1

1 + B(λ)
xλ, B(λ) =

∫ 1

0
K(t)tλ dt.

It follows from row 3 of Table 16.2 that the solution of the equation with logarithmic right-hand side

y(x) +
∫ x

0

1
x
K
( t
x

)
y(t) dt = A lnx

has the form

y(x) =
A

1 + I0
lnx –

AI1

(1 + I0)2 , where I0 =
∫ 1

0
K(t) dt, I1 =

∫ 1

0
K(t) ln t dt.

Remark. The cases where the generating function is defined sine or cosine are treated likewise.

16.2.5. Method of Model Solutions

16.2.5-1. Preliminary remarks.∗

Consider a linear equation that we briefly write out in the form

L [y(x)] = f (x), (16.2.5.1)

where L is a linear (integral) operator, y(x) is an unknown function, and f (x) is a known
function.

* Before reading this section, it is useful to look over Subsection 16.2.4.
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We first define arbitrarily a test solution

y0 = y0(x,λ), (16.2.5.2)

which depends on an auxiliary parameter λ (it is assumed that the operator L is independent
of λ and y0 � const). By means of equation (16.2.5.1) we define the right-hand side that
corresponds to the test solution (16.2.5.2):

f0(x,λ) = L [y0(x,λ)].

Let us multiply equation (16.2.5.1), for y = y0 and f = f0, by some function ϕ(λ) and
integrate the resulting relation with respect to λ over an interval [a, b]. We finally obtain

L [yϕ(x)] = fϕ(x), (16.2.5.3)

where

yϕ(x) =
∫ b

a
y0(x,λ)ϕ(λ) dλ, fϕ(x) =

∫ b

a
f0(x,λ)ϕ(λ) dλ. (16.2.5.4)

It follows from formulas (16.2.5.3) and (16.2.5.4) that, for the right-hand side f = fϕ(x),
the function y = yϕ(x) is a solution of the original equation (16.2.5.1). Since the choice
of the function ϕ(λ) (as well as of the integration interval) is arbitrary, the function fϕ(x)
can be arbitrary in principle. Here the main problem is how to choose a function ϕ(λ) to
obtain a given function fϕ(x). This problem can be solved if we can find a test solution
such that the right-hand side of equation (16.2.5.1) is the kernel of a known inverse integral
transform (we denote such a test solution by Y (x,λ) and call it a model solution).

16.2.5-2. Description of the method.

Indeed, let P be an invertible integral transform that takes each function f (x) to the
corresponding transform F (λ) by the rule

F (λ) = P{f (x)}. (16.2.5.5)

Assume that the inverse transform P–1 has the kernel ψ(x,λ) and acts as follows:

P–1{F (λ)} = f (x), P–1{F (λ)} ≡
∫ b

a
F (λ)ψ(x,λ) dλ. (16.2.5.6)

The limits of integration a and b and the integration path in (16.2.5.6) may well lie in the
complex plane.

Suppose that we succeeded in finding a model solution Y (x,λ) of the auxiliary problem
for equation (16.2.5.1) whose right-hand side is the kernel of the inverse transform P–1:

L [Y (x,λ)] = ψ(x,λ). (16.2.5.7)

Let us multiply equation (16.2.5.7) by F (λ) and integrate with respect to λ within the same
limits that stand in the inverse transform (16.2.5.6). Taking into account the fact that the
operator L is independent of λ and applying the relation P–1 {F (λ)} = f (x), we obtain

L
[∫ b

a
Y (x,λ)F (λ) dλ

]
= f (x).
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Therefore, the solution of equation (16.2.5.1) for an arbitrary function f (x) on the right-
hand side is expressed via a solution of the simpler auxiliary equation (16.2.5.7) by the
formula

y(x) =
∫ b

a
Y (x,λ)F (λ) dλ, (16.2.5.8)

where F (λ) is the transform (16.2.5.5) of the function f (x).
For the right-hand side of the auxiliary equation (16.2.5.7) we can take, for instance,

exponential, power-law, and trigonometric functions, which are the kernels of the Laplace,
Mellin, and sine and cosine Fourier transforms (up to a constant factor). Sometimes it is
rather easy to find a model solution by means of the method of indeterminate coefficients (by
prescribing its structure). Afterward, to construct a solution of the equation with an arbitrary
right-hand side, we can apply formulas written out below in Paragraphs 16.2.5-3–16.2.5-6.

16.2.5-3. Model solution in the case of an exponential right-hand side.

Assume that we have found a model solution Y =Y (x,λ) that corresponds to the exponential
right-hand side:

L [Y (x,λ)] = eλx. (16.2.5.9)

Consider two cases:

1◦. Equations on the semiaxis, 0 ≤ x < ∞. Let f̃ (p) be the Laplace transform of the
function f (x):

f̃ (p) = L{f (x)}, L{f (x)} ≡
∫ ∞

0
f (x)e–px dx. (16.2.5.10)

The solution of equation (16.2.5.1) for an arbitrary right-hand side f (x) can be expressed
via the solution of the simpler auxiliary equation with exponential right-hand side (16.2.5.9)
for λ = p by the formula

y(x) =
1

2πi

∫ c+i∞

c–i∞
Y (x, p)f̃ (p) dp. (16.2.5.11)

2◦. Equations on the entire axis, –∞ < x < ∞. Let f̃ (u) the Fourier transform of the
function f (x):

f̃ (u) = F{f (x)}, F{f (x)} ≡
1√
2π

∫ ∞

–∞
f (x)e–iux dx. (16.2.5.12)

The solution of equation (16.2.5.1) for an arbitrary right-hand side f (x) can be expressed
via the solution of the simpler auxiliary equation with exponential right-hand side (16.2.5.9)
for λ = iu by the formula

y(x) =
1√
2π

∫ ∞

–∞
Y (x, iu)f̃ (u) du. (16.2.5.13)

In the calculation of the integrals on the right-hand sides in (16.2.5.11) and (16.2.5.13),
methods of the theory of functions of a complex variable are applied, including formulas
for the calculation of residues and the Jordan lemma (see Subsection 11.1.2).



16.2. LINEAR INTEGRAL EQUATIONS OF THE SECOND KIND WITH VARIABLE INTEGRATION LIMIT 821

Remark 1. The structure of a model solution Y (x,λ) can differ from that of the kernel of the Laplace or
Fourier inversion formula.

Remark 2. When applying the method under consideration, the left-hand side of equation (16.2.5.1) need
not be known (the equation can be integral, differential, functional, etc.) if a particular solution of this equation
is known for the exponential right-hand side. Here only the most general information is important, namely, that
the equation is linear, and its left-hand side is independent of the parameter λ.

Example 1. Consider the following Volterra equation of the second kind with difference kernel:

y(x) +
∫ ∞

x

K(x – t)y(t)dt = f (x). (16.2.5.14)

This equation cannot be solved by direct application of the Laplace transform because the convolution theorem
cannot be used here.

In accordance with the method of model solutions, we consider the auxiliary equation with exponential
right-hand side

y(x) +
∫ ∞

x

K(x – t)y(t)dt = epx. (16.2.5.15)

Its solution has the form (see Example 1 of Section 16.2.4)

Y (x, p) =
1

1 + K̃(–p)
epx, K̃(–p) =

∫ ∞

0
K(–z)epz dz. (16.2.5.16)

This, by means of formula (16.2.5.11), yields a solution of equation (16.2.5.14) for an arbitrary right-hand side,

y(x) =
1

2πi

∫ c+i∞

c–i∞

f̃ (p)

1 + K̃(–p)
epx dp, (16.2.5.17)

where f̃ (p) is the Laplace transform (16.2.5.10) of the function f (x).

16.2.5-4. Model solution in the case of a power-law right-hand side.

Suppose that we have succeeded in finding a model solution Y = Y (x, s) that corresponds
to a power-law right-hand side of the equation:

L [Y (x, s)] = x–s, λ = –s. (16.2.5.18)

Let f̂ (s) be the Mellin transform of the function f (x):

f̂ (s) = M{f (x)}, M{f (x)} ≡
∫ ∞

0
f (x)xs–1 dx. (16.2.5.19)

The solution of equation (16.2.5.1) for an arbitrary right-hand side f (x) can be expressed
via the solution of the simpler auxiliary equation with power-law right-hand side (16.2.5.18)
by the formula

y(x) =
1

2πi

∫ c+i∞

c–i∞
Y (x, s)f̂ (s) ds. (16.2.5.20)

In the calculation of the corresponding integrals on the right-hand side of formula
(16.2.5.20), one can use tables of inverse Mellin transforms (e.g., see Section T3.6, as well
as methods of the theory of functions of a complex variable, including formulas for the
calculation of residues and the Jordan lemma (see Subsection 11.1.2).
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Example 2. Consider the equation

y(x) +
∫ x

0

1
x
K
( t
x

)
y(t) dt = f (x). (16.2.5.21)

In accordance with the method of model solutions, we consider the following auxiliary equation with power-law
right-hand side:

y(x) +
∫ x

0

1
x
K
( t
x

)
y(t) dt = x–s.

Its solution has the form (see Example 2 for λ = –s in Section 16.2.4)

Y (x, s) =
1

1 +B(s)
x–s, B(s) =

∫ 1

0
K(t)t–s dt.

This, by means of formula (16.2.5.20), yields the solution of equation (16.2.5.21) for an arbitrary right-hand
side:

y(x) =
1

2πi

∫ c+i∞

c–i∞

f̂ (s)
1 +B(s)

x–s ds,

where f̂ (s) is the Mellin transform (16.2.5.19) of the function f (x).

16.2.6. Successive Approximation Method

16.2.6-1. General scheme.

1◦. Consider a Volterra integral equation of the second kind

y(x) –
∫ x

a
K(x, t)y(t) dt = f (x). (16.2.6.1)

Assume that f (x) is continuous on the interval [a, b] and the kernel K(x, t) is continuous
for a ≤ x ≤ b and a ≤ t ≤ x.

Let us seek the solution by the successive approximation method. To this end, we set

y(x) = f (x) +
∞∑

n=1

ϕn(x), (16.2.6.2)

where the ϕn(x) are determined by the formulas

ϕ1(x) =
∫ x

a
K(x, t)f (t) dt,

ϕ2(x) =
∫ x

a
K(x, t)ϕ1(t) dt =

∫ x

a
K2(x, t)f (t) dt,

ϕ3(x) =
∫ x

a
K(x, t)ϕ2(t) dt =

∫ x

a
K3(x, t)f (t) dt, etc.

Here

Kn(x, t) =
∫ x

a
K(x, z)Kn–1(z, t) dz, (16.2.6.3)

where n = 2, 3, . . . , and we have the relations K1(x, t) ≡ K(x, t) and Kn(x, t) = 0 for
t > x. The functions Kn(x, t) given by formulas (16.2.6.3) are called iterated kernels.
These kernels satisfy the relation

Kn(x, t) =
∫ x

a
Km(x, s)Kn–m(s, t) ds, (16.2.6.4)

where m is an arbitrary positive integer less than n.
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2◦. The successive approximations can be implemented in a more general scheme:

yn(x) = f (x) +
∫ x

a
K(x, t)yn–1(t) dt, n = 1, 2, . . . , (16.2.6.5)

where the function y0(x) is continuous on the interval [a, b]. The functions y1(x), y2(x), . . .
which are obtained from (16.2.6.5) are also continuous on [a, b].

Under the assumptions adopted in Item 1◦ for f (x) and K(x, t), the sequence {yn(x)}
converges, as n → ∞, to the continuous solution y(x) of the integral equation. A suc-
cessful choice of the “zeroth” approximation y0(x) can result in a rapid convergence of the
procedure.

Remark 1. In the special case y0(x) = f (x), this method becomes that described in Item 1◦.

Remark 2. If the kernel K(x, t) is square integrable on the square S = {a ≤ x ≤ b, a ≤ t ≤ b} and
f (x) � L2(a, b), then the successive approximations are mean-square convergent to the solution y(x) � L2(a, b)
of the integral equation (16.2.6.1) for any initial approximation y0(x) � L2(a, b).

16.2.6-2. Formula for the resolvent.

The resolvent of the integral equation (16.2.6.1) is determined via the iterated kernels by
the formula

R(x, t) =
∞∑

n=1

Kn(x, t),

where the convergent series on the right-hand side is called the Neumann series of the
kernel K(x, t). Now the solution of the Volterra equation of the second kind (16.2.6.1) can
be rewritten in the traditional form

y(x) = f (x) +
∫ x

a
R(x, t)f (t) dt.

Remark. In the case of a kernel with weak singularity (see Paragraph 16.1.1-1), the solution of equa-
tion (16.2.6.1) can be obtained by the successive approximation method. In this case the kernels Kn(x, t) are
continuous starting from some n. For β < 1

2 , even the kernel K2(x, t) is continuous.

16.2.7. Method of Quadratures

16.2.7-1. General scheme of the method.

Let us consider the linear Volterra integral equation of the second kind

y(x) –
∫ x

a
K(x, t)y(t) dt = f (x), (16.2.7.1)

on an interval a ≤ x ≤ b. Assume that the kernel and the right-hand side of the equation are
continuous functions.

From equation (16.2.7.1) we find that y(a) = f (a). Let us choose a constant integration
step h and consider the discrete set of points xi = a + h(i – 1), i = 1, . . . ,n. For x = xi,
equation (16.2.7.1) acquires the form

y(xi) –
∫ xi

a
K(xi, t)y(t) dt = f (xi), i = 1, . . . ,n. (16.2.7.2)
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Applying the quadrature formula (see Subsection 16.1.5) to the integral in (16.2.7.2) and
choosing xj (j = 1, . . . , i) to be the nodes in t, we arrive at the system of equations

y(xi) –
i∑

j=1

AijK(xi,xj)y(xj) = f (xi) + εi[y], i = 2, . . . ,n, (16.2.7.3)

where εi[y] is the truncation error and Aij are the coefficients of the quadrature formula on
the interval [a,xi] (see Subsection 16.1.5). Suppose that εi[y] are small and neglect them;
then we obtain a system of linear algebraic equations in the form

y1 = f1, yi –
i∑

j=1

AijKijyj = fi, i = 2, . . . ,n, (16.2.7.4)

where Kij = K(xi,xj), fi = f (xi), and yi are approximate values of the unknown func-
tion y(x) at the nodes xi.

From (16.2.7.4) we obtain the recurrent formula

y1 = f1, yi =

fi +
i–1∑

j=1
AijKijyj

1 – AiiKii
, i = 2, . . . ,n, (16.2.7.5)

valid under the condition 1 – AiiKii ≠ 0, which can always be ensured by an appropriate
choice of the nodes and by guaranteeing that the coefficients Aii are sufficiently small.

16.2.7-2. Application of the trapezoidal rule.

According to the trapezoidal rule (see Section 16.1.5), we have

Ai1 = Aii = 1
2h, Ai2 = · · · = Ai,i–1 = h, i = 2, . . . ,n.

The application of the trapezoidal rule in the general scheme leads to the following step
algorithm:

y1 = f1, yi =

fi + h
i–1∑

j=1
βjKijyj

1 – 1
2hKii

, i = 2, . . . ,n,

xi = a + (i – 1)h, n =
b – a
h

+ 1, βj =

{ 1
2 for j = 1,
1 for j > 1,

where the notation coincides with that introduced in Paragraph 16.2.7-1. The trapezoidal
rule is quite simple and effective, and frequently used in practice.

16.3. Linear Integral Equations of the First Kind with
Constant Limits of Integration

16.3.1. Fredholm Integral Equations of the First Kind

16.3.1-1. Some definitions. Function and kernel classes.

A linear integral equation of the first kind with constant limits of integration have the general
form ∫ b

a
K(x, t)y(t) dt = f (x), (16.3.1.1)
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where y(x) is the unknown function (a ≤ x ≤ b),K(x, t) is the kernel of the integral equation,
and f (x) is a given function, which is called the right-hand side of equation (16.3.1.1).
The functions y(x) and f (x) are usually assumed to be continuous or square integrable
on [a, b]. If the kernel of the integral equation (16.3.1.1) is continuous on the square
S = {a ≤ x ≤ b, a ≤ t ≤ b} or at least square integrable on this square, i.e.,

∫ b

a

∫ b

a
K2(x, t) dx dt = B2 < ∞, (16.3.1.2)

where B is a constant, then this kernel is called a Fredholm kernel. Equations of the
form (16.3.1.1) with constant integration limits and Fredholm kernel are called Fredholm
equations of the first kind.

The kernelK(x, t) of an integral equation is said to be degenerate if it can be represented
in the form K(x, t) = g1(x)h1(t) + · · · + gn(x)hn(t). The kernel K(x, t) of an integral
equation is called a difference kernel if it depends only on the difference of the arguments:
K(x, t) = K(x – t). The kernel K(x, t) of an integral equation is said to be symmetric if it
satisfies the condition K(x, t) = K(t,x).

The integral equation obtained from (16.3.1.1) by replacing the kernel K(x, t) with
K(t,x) is said to be transposed to (16.3.1.1).

The integral equation of the first kind with difference kernel on the entire axis (a = –∞,
b = ∞) and semiaxis (a = 0, b = ∞) is referred to as an equation of convolution type of the
first kind and a Wiener–Hopf integral equation of the first kind, respectively.

16.3.1-2. Integral equations of the first kind with weak singularity.

If the kernel of the integral equation (16.3.1.1) is polar, i.e., if

K(x, t) = L(x, t)|x – t|–β + M (x, t), 0 < β < 1, (16.3.1.3)

or logarithmic, i.e.,
K(x, t) = L(x, t) ln |x – t| +M (x, t), (16.3.1.4)

where the functions L(x, t) and M (x, t) are continuous on S and L(x,x) � 0, then K(x, t)
is called a kernel with weak singularity, and the equation itself is called an equation with
weak singularity.

Kernels with logarithmic singularity and polar kernels with 0 < α < 1
2 are Fredholm

kernels.

16.3.2. Method of Integral Transforms
The method of integral transforms enables one to reduce some integral equations on the
entire axis and on the semiaxis to algebraic equations for transforms. These algebraic
equations can readily be solved for the transform of the desired function. The solution of
the original integral equation is then obtained by applying the inverse integral transform.

16.3.2-1. Equation with difference kernel on the entire axis.

Consider an integral equation of the form
∫ ∞

–∞
K(x – t)y(t) dt = f (x), –∞ < x < ∞. (16.3.2.1)
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Let us apply the Fourier transform (see Subsection 11.4.1) to equation (16.3.2.1). In
this case, taking into account the convolution theorem (see Paragraph 11.4.1-3), we obtain

√
2π K̃(u)ỹ(u) = f̃ (u). (16.3.2.2)

Thus, by means of the Fourier transform we have reduced the solution of the original
integral equation (16.3.2.1) to the solution of the algebraic equation (16.3.2.2) for the Fourier
transform of the desired solution. The solution of the latter equation has the form

ỹ(u) =
1√
2π

f̃ (u)

K̃(u)
, (16.3.2.3)

where the function f̃ (u)/K̃(u) must belong to the space L2(–∞,∞).
Thus, the Fourier transform of the solution of the original integral equation is expressed

via the Fourier transforms of known functions, namely, the kernel and the right-hand side
of the equation. The solution itself can be expressed via its Fourier transform by means of
the Fourier inversion formula:

y(x) =
1√
2π

∫ ∞

–∞
ỹ(u)eiux du =

1
2π

∫ ∞

–∞

f̃ (u)

K̃(u)
eiux du. (16.3.2.4)

16.3.2-2. Equations with kernel K(x, t) = K(x/t) on the semiaxis.

The integral equation of the first kind
∫ ∞

0
K(x/t)y(t) dt = f (x), 0 ≤ x < ∞, (16.3.2.5)

can be reduced to the form (16.3.2.1) by the change of variables x = eξ , t = eτ ,w(τ ) = ty(t).
The solution to this equation can also be obtained by straightforward application of the
Mellin transform, and this method is applied in a similar situation in the next section.

16.3.2-3. Equations with kernel K(x, t) = K(xt) on the semiaxis.

Consider the equation
∫ ∞

0
K(xt)y(t) dt = f (x), 0 ≤ x < ∞. (16.3.2.6)

By changing variables x = eξ and t = e–τ this equation can be reduced to the form (16.3.2.1),
but it is more convenient here to apply the Mellin transform (see Section 11.3). On
multiplying equation (16.3.2.6) by xs–1 and integrating with respect to x from 0 to ∞, we
obtain ∫ ∞

0
y(t) dt

∫ ∞

0
K(xt)xs–1 dx =

∫ ∞

0
f (x)xs–1 dx.

We make the change of variables z = xt in the inner integral of the double integral. This
implies the relation

K̂(s)
∫ ∞

0
y(t)t–s dt = f̂ (s). (16.3.2.7)
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Taking into account the formula

∫ ∞

0
y(t)t–s dt = ŷ(1 – s),

we can rewrite equation (16.3.2.7) in the form

K̂(s)ŷ(1 – s) = f̂ (s). (16.3.2.8)

Replacing 1 – s by s in (16.3.2.8) and solving the resulting relation for ŷ(s), we obtain the
transform

ŷ(s) =
f̂ (1 – s)

K̂(1 – s)

of the desired solution.
Applying the Mellin inversion formula (if it is applicable), we obtain the solution of the

integral equation (16.3.2.6) in the form

y(x) =
1

2πi

∫ c+i∞

c–i∞

f̂ (1 – s)

K̂(1 – s)
x–s ds.

16.3.3. Regularization Methods

16.3.3-1. Lavrentiev regularization method.

Consider the Fredholm equation of the first kind

∫ b

a
K(x, t)y(t) dt = f (x), a ≤ x ≤ b, (16.3.3.1)

where f (x)�L2(a, b) and y(x)�L2(a, b). The kernelK(x, t) is square integrable, symmetric,
and positive definite, that is, for all ϕ(x) � L2(a, b), we have

∫ b

a

∫ b

a
K(x, t)ϕ(x)ϕ(t) dx dt ≥ 0,

where the equality is attained only for ϕ(x) ≡ 0.
In the above classes of functions and kernels, the problem of finding a solution of

equation (16.3.3.1) is ill-posed, i.e., unstable with respect to small variations in the right-
hand side of the integral equation.

Following the Lavrentiev regularization method, along with equation (16.3.3.1) we
consider the regularized equation

εyε(x) +
∫ b

a
K(x, t)yε(t) dt = f (x), a ≤ x ≤ b, (16.3.3.2)

where ε > 0 is the regularization parameter. This equation is a Fredholm equation of the
second kind, so it can be solved by the methods presented in Section 16.4, whence the
solution exists and is unique.
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On taking a sufficiently small ε in equation (16.3.3.2), we find a solution yε(x) of the
equation and substitute this solution into equation (16.3.3.1), thus obtaining

∫ b

a
K(x, t)yε(t) dt = fε(x), a ≤ x ≤ b. (16.3.3.3)

If the function fε(x) thus obtained differs only slightly from f (x), that is,

‖f (x) – fε(x)‖ ≤ δ, (16.3.3.4)

where δ is a prescribed small positive number, then the solution yε(x) is regarded as a
sufficiently good approximate solution of equation (16.3.3.1).

The parameter δ usually defines the error of the initial data provided that the right-hand
side of equation (16.3.3.1) is defined or determined by an experiment with some accuracy.

For the case in which, for a given ε, condition (16.3.3.4) fails, we must choose another
value of the regularization parameter and repeat the above procedure.

16.3.3-2. Tikhonov regularization method.

Consider the Fredholm integral equation of the first kind

∫ b

a
K(x, t)y(t) dt = f (x), c ≤ x ≤ d. (16.3.3.5)

Assume that K(x, t) is any function square-integrable in the domain {a ≤ t ≤ b, c ≤
x ≤ d}, f (x) � L2(c, d), and y(x) � L2(a, b). The problem of finding the solution of
equation (16.3.3.5) is also ill-posed in the above sense.

Following the Tikhonov (zero-order) regularization method, along with (16.3.3.5) we
consider the following Fredholm integral equation of the second kind (see Section 16.4):

εyε(x) +
∫ b

a
K∗(x, t)yε(t) dt = f∗(x), a ≤ x ≤ b, (16.3.3.6)

where

K∗(x, t) = K∗(t,x) =
∫ d

c
K(s,x)K(s, t) ds, f∗(x) =

∫ d

c
K(s,x)f (s) ds,

and the positive number ε is the regularization parameter. Equation (16.3.3.6) is said to be
a regularized integral equation, and its solution exists and is unique.

Taking a sufficiently small ε in equation (16.3.3.6), we find a solution yε(x) of the
equation and substitute this solution into equation (16.3.3.5), thus obtaining

∫ b

a
K(x, t)yε(t) dt = fε(x), c ≤ x ≤ d.

By comparing the right-hand side with the given f (x) using formula (16.3.3.4), we
either regard fε(x) as a satisfactory approximate solution obtained in accordance with the
above simple algorithm, or continue the procedure for a new value of the regularization
parameter.
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16.4. Linear Integral Equations of the Second Kind with
Constant Limits of Integration

16.4.1. Fredholm Integral Equations of the Second Kind. Resolvent

16.4.1-1. Some definitions. The eigenfunctions of a Fredholm integral equation.

Linear integral equations of the second kind with constant limits of integration have the
general form

y(x) – λ
∫ b

a
K(x, t)y(t) dt = f (x), (16.4.1.1)

where y(x) is the unknown function (a ≤ x ≤ b),K(x, t) is the kernel of the integral equation,
and f (x) is a given function, which is called the right-hand side of equation (16.4.1.1). For
convenience of analysis, a number λ is traditionally singled out in equation (16.4.1.1),
which is called the parameter of integral equation. The classes of functions and kernels
under consideration were defined above in Paragraphs 16.3.1-1 and 16.3.1-2. Note that
equations of the form (16.4.1.1) with constant limits of integration and with Fredholm
kernels or kernels with weak singularity are called Fredholm equations of the second kind
and equations with weak singularity of the second kind, respectively.

Equation (16.4.1.1) is said to be homogeneous if f (x) ≡ 0 and nonhomogeneous other-
wise.

A number λ is called a characteristic value of the integral equation (16.4.1.1) if there
exist nontrivial solutions of the corresponding homogeneous equation. The nontrivial
solutions themselves are called the eigenfunctions of the integral equation corresponding
to the characteristic value λ. If λ is a characteristic value, the number 1/λ is called an
eigenvalue of the integral equation (16.4.1.1). A value of the parameter λ is said to be
regular if for this value the above homogeneous equation has only the trivial solution.
Sometimes the characteristic values and the eigenfunctions of a Fredholm integral equation
are called the characteristic values and the eigenfunctions of the kernel K(x, t).

The kernel K(x, t) of the integral equation (16.4.1.1) is called a degenerate kernel if it
has the form K(x, t) = g1(x)h1(t) + · · · + gn(x)hn(t), a difference kernel if it depends on the
difference of the arguments (K(x, t) = K(x – t)), and a symmetric kernel if it satisfies the
condition K(x, t) = K(t,x).

The transposed integral equation is obtained from (16.4.1.1) by replacing the kernel
K(x, t) by K(t,x).

The integral equation of the second kind with difference kernel on the entire axis
(a = –∞, b = ∞) and semiaxis (a = 0, b = ∞) are referred to as an equation of convolution
type of the second kind and a Wiener–Hopf integral equation of the second kind, respectively.

16.4.1-2. Structure of the solution. The resolvent.

The solution of equation (16.4.1.1) can be presented in the form

y(x) = f (x) + λ
∫ b

a
R(x, t;λ)f (t) dt,

where the resolvent R(x, t;λ) is independent of f (x) and is determined by the kernel of the
integral equation.



830 INTEGRAL EQUATIONS

16.4.2. Fredholm Equations of the Second Kind with Degenerate
Kernel

16.4.2-1. Simplest degenerate kernel.

Consider Fredholm integral equations of the second kind with the simplest degenerate
kernel:

y(x) – λ
∫ b

a
g(x)h(t)y(t) dt = f (x), a ≤ x ≤ b. (16.4.2.1)

We seek a solution of equation (16.4.2.1) in the form

y(x) = f (x) + λAg(x). (16.4.2.2)

On substituting the expressions (16.4.2.2) into equation (16.4.2.1), after simple algebraic
manipulations we obtain

A

[
1 – λ

∫ b

a
h(t)g(t) dt

]
=
∫ b

a
f (t)h(t) dt. (16.4.2.3)

Both integrals occurring in equation (16.4.2.3) are supposed to exist. On the basis of
(16.4.2.1) and (16.4.2.3) and taking into account the fact that the unique characteristic
value λ1 of equation (16.4.2.1) is given by the expression

λ1 =

[∫ b

a
h(t)g(t) dt

]–1
, (16.4.2.4)

we obtain the following results:

1◦. If λ ≠ λ1, then for an arbitrary right-hand side there exists a unique solution of equa-
tion (16.4.2.1), which can be written in the form

y(x) = f (x) +
λλ1f1

λ1 – λ
g(x), f1 =

∫ b

a
f (t)h(t) dt. (16.4.2.5)

2◦. If λ = λ1 and f1 = 0, then any solution of equation (16.4.2.1) can be represented in the
form

y = f (x) + Cy1(x), y1(x) = g(x), (16.4.2.6)

where C is an arbitrary constant and y1(x) is an eigenfunction that corresponds to the
characteristic value λ1.

3◦. If λ = λ1 and f1 ≠ 0, then there are no solutions.

16.4.2-2. Degenerate kernel in the general case.

In the general case, a Fredholm integral equation of the second kind with degenerate kernel
has the form

y(x) – λ
∫ b

a

[
n∑

k=1

gk(x)hk(t)

]

y(t) dt = f (x), n = 2, 3, . . . (16.4.2.7)
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Let us rewrite equation (16.4.2.7) in the form

y(x) = f (x) + λ
n∑

k=1

gk(x)
∫ b

a
hk(t)y(t) dt, n = 2, 3, . . . (16.4.2.8)

We assume that equation (16.4.2.8) has a solution and introduce the notation

Ak =
∫ b

a
hk(t)y(t) dt. (16.4.2.9)

In this case we have

y(x) = f (x) + λ
n∑

k=1

Akgk(x), (16.4.2.10)

and hence the solution of the integral equation with degenerate kernel is reduced to the
definition of the constants Ak.

Let us multiply equation (16.4.2.10) by hm(x) and integrate with respect to x from a to
b. We obtain the following system of linear algebraic equations for the coefficients Ak:

Am – λ
n∑

k=1

smkAk = fm, m = 1, . . . ,n, (16.4.2.11)

where

smk =
∫ b

a
hm(x)gk(x) dx, fm =

∫ b

a
f (x)hm(x) dx; m, k = 1, . . . ,n. (16.4.2.12)

Once we construct a solution of system (16.4.2.11), we obtain a solution of the integral
equation with degenerate kernel (16.4.2.7) as well. The values of the parameter λ at which
the determinant of system (16.4.2.11) vanishes are characteristic values of the integral
equation (16.4.2.7), and it is clear that there are just n such values counted according to
their multiplicities.

Example. Let us solve the integral equation

y(x) – λ
∫ π

–π

(x cos t + t2 sinx + cosx sin t)y(t) dt = x, –π ≤ x ≤ π. (16.4.2.13)

Let us denote

A1 =
∫ π

–π

y(t) cos t dt, A2 =
∫ π

–π

t2y(t) dt, A3 =
∫ π

–π

y(t) sin t dt, (16.4.2.14)

where A1, A2, and A3 are unknown constants. Then equation (16.4.2.13) can be rewritten in the form

y(x) = A1λx +A2λ sinx +A3λ cosx + x. (16.4.2.15)

On substituting the expression (16.4.2.15) into relations (16.4.2.14), we obtain

A1 =
∫ π

–π

(A1λt +A2λ sin t + A3λ cos t + t) cos t dt,

A2 =
∫ π

–π

(A1λt +A2λ sin t + A3λ cos t + t)t2 dt,

A3 =
∫ π

–π

(A1λt +A2λ sin t + A3λ cos t + t) sin t dt.
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On calculating the integrals occurring in these equations, we obtain the following system of algebraic equations
for the unknowns A1, A2, and A3:

A1 – λπA3 = 0,

A2 + 4λπA3 = 0,

–2λπA1 – λπA2 +A3 = 2π.

(16.4.2.16)

System (16.4.2.16) has the unique solution

A1 =
2λπ2

1 + 2λ2π2 , A2 = –
8λπ2

1 + 2λ2π2 , A3 =
2π

1 + 2λ2π2 .

On substituting the above values of A1, A2, and A3 into (16.4.2.15), we obtain the solution of the original
integral equation:

y(x) =
2λπ

1 + 2λ2π2 (λπx – 4λπ sinx + cos x) + x.

16.4.3. Solution as a Power Series in the Parameter. Method of
Successive Approximations

16.4.3-1. Iterated kernels.

Consider the Fredholm integral equation of the second kind:

y(x) – λ
∫ b

a
K(x, t)y(t) dt = f (x), a ≤ x ≤ b. (16.4.3.1)

We seek the solution in the form of a series in powers of the parameter λ:

y(x) = f (x) +
∞∑

n=1

λnψn(x). (16.4.3.2)

Substitute series (16.4.3.2) into equation (16.4.3.1). On matching the coefficients of like
powers of λ, we obtain a recurrent system of equations for the functions ψn(x). The solution
of this system yields

ψ1(x) =
∫ b

a
K(x, t)f (t) dt,

ψ2(x) =
∫ b

a
K(x, t)ψ1(t) dt =

∫ b

a
K2(x, t)f (t) dt,

ψ3(x) =
∫ b

a
K(x, t)ψ2(t) dt =

∫ b

a
K3(x, t)f (t) dt, etc.

Here

Kn(x, t) =
∫ b

a
K(x, z)Kn–1(z, t) dz, (16.4.3.3)

where n = 2, 3, . . . , and we have K1(x, t) ≡ K(x, t). The functions Kn(x, t) defined by
formulas (16.4.3.3) are called iterated kernels. These kernels satisfy the relation

Kn(x, t) =
∫ b

a
Km(x, s)Kn–m(s, t) ds, (16.4.3.4)

where m is an arbitrary positive integer less than n.
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The iterated kernels Kn(x, t) can be directly expressed via K(x, t) by the formula

Kn(x, t) =
∫ b

a

∫ b

a
· · ·
∫ b

a︸ ︷︷ ︸
n–1

K(x, s1)K(s1, s2) . . . K(sn–1, t) ds1 ds2 . . . dsn–1.

All iterated kernels Kn(x, t), beginning with K2(x, t), are continuous functions on the
square S = {a ≤ x ≤ b, a ≤ t ≤ b} if the original kernel K(x, t) is square integrable on S.

If K(x, t) is symmetric, then all iterated kernels Kn(x, t) are also symmetric.

16.4.3-2. Method of successive approximations.

The results of Subsection 16.4.3-1 can also be obtained by means of the method of successive
approximations. To this end, one should use the recurrent formula

yn(x) = f (x) + λ
∫ b

a
K(x, t)yn–1(t) dt, n = 1, 2, . . . ,

with the zeroth approximation y0(x) = f (x).

16.4.3-3. Construction of the resolvent.

The resolvent of the integral equation (16.4.3.1) is defined via the iterated kernels by the
formula

R(x, t;λ) =
∞∑

n=1

λn–1Kn(x, t), (16.4.3.5)

where the series on the right-hand side is called the Neumann series of the kernel K(x, t).
It converges to a unique square integrable solution of equation (16.4.3.1) provided that

|λ| <
1
B

, B =

√∫ b

a

∫ b

a
K2(x, t) dx dt. (16.4.3.6)

If, in addition, we have

∫ b

a
K2(x, t) dt ≤ A, a ≤ x ≤ b,

where A is a constant, then the Neumann series converges absolutely and uniformly on
[a, b].

A solution of a Fredholm equation of the second kind of the form (16.4.3.1) is expressed
by the formula

y(x) = f (x) + λ
∫ b

a
R(x, t;λ)f (t) dt, a ≤ x ≤ b. (16.4.3.7)

Inequality (16.4.3.6) is essential for the convergence of the series (16.4.3.5). However,
a solution of equation (16.4.3.1) can exist for values |λ| > 1/B as well.
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Example. Let us solve the integral equation

y(x) – λ
∫ 1

0
xty(t)dt = f (x), 0 ≤ x ≤ 1,

by the method of successive approximations. Here we have K(x, t) = xt, a = 0, and b = 1. We successively
define

K1(x, t) = xt, K2(x, t) =
∫ 1

0
(xz)(zt)dz =

xt

3
, K3(x, t) =

1
3

∫ 1

0
(xz)(zt)dz =

xt

32 , . . . , Kn(x, t) =
xt

3n–1 .

According to formula (16.4.3.5) for the resolvent, we obtain

R(x, t;λ) =
∞∑

n=1

λn–1Kn(x, t) = xt
∞∑

n=1

(
λ

3

)n–1

=
3xt

3 – λ
,

where |λ| < 3, and it follows from formula (16.4.3.7) that the solution of the integral equation can be rewritten
in the form

y(x) = f (x) + λ
∫ 1

0

3xt
3 – λ

f (t) dt, 0 ≤ x ≤ 1, λ ≠ 3.

16.4.4. Fredholm Theorems and the Fredholm Alternative

16.4.4-1. Fredholm theorems.

THEOREM 1. If λ is a regular value, then both the Fredholm integral equation of the
second kind and the transposed equation are solvable for any right-hand side, and both the
equations have unique solutions. The corresponding homogeneous equations have only the
trivial solutions.

THEOREM 2. For the nonhomogeneous integral equation to be solvable, it is necessary
and sufficient that the right-hand side f (x) satisfies the conditions

∫ b

a
f (x)ψk(x) dx = 0, k = 1, . . . ,n,

where ψk(x) is a complete set of linearly independent solutions of the corresponding
transposed homogeneous equation.

THEOREM 3. If λ is a characteristic value, then both the homogeneous integral equation
and the transposed homogeneous equation have nontrivial solutions. The number of linearly
independent solutions of the homogeneous integral equation is finite and is equal to the
number of linearly independent solutions of the transposed homogeneous equation.

THEOREM 4. A Fredholm equation of the second kind has at most countably many
characteristic values, whose only possible accumulation point is the point at infinity.

16.4.4-2. Fredholm alternative.

The Fredholm theorems imply the so-called Fredholm alternative, which is most frequently
used in the investigation of integral equations.

THE FREDHOLM ALTERNATIVE. Either the nonhomogeneous equation is solvable for any
right-hand side or the corresponding homogeneous equation has nontrivial solutions.

The first part of the alternative holds if the given value of the parameter is regular and
the second if it is characteristic.

Remark. The Fredholm theory is also valid for integral equations of the second kind with weak singularity.
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16.4.5. Fredholm Integral Equations of the Second Kind with
Symmetric Kernel

16.4.5-1. Characteristic values and eigenfunctions.

Integral equations whose kernels are symmetric, that is, satisfy the condition K(x, t) =
K(t,x), are called symmetric integral equations.

Each symmetric kernel that is not identically zero has at least one characteristic value.
For any n, the set of characteristic values of the nth iterated kernel coincides with the

set of nth powers of the characteristic values of the first kernel.
The eigenfunctions of a symmetric kernel corresponding to distinct characteristic values

are orthogonal, i.e., if

ϕ1(x) = λ1

∫ b

a
K(x, t)ϕ1(t) dt, ϕ2(x) = λ2

∫ b

a
K(x, t)ϕ2(t) dt, λ1 ≠ λ2,

then

(ϕ1,ϕ2) = 0, (ϕ,ψ) ≡
∫ b

a
ϕ(x)ψ(x) dx.

The characteristic values of a symmetric kernel are real.
The eigenfunctions can be normalized; namely, we can divide each characteristic func-

tion by its norm. If several linearly independent eigenfunctions correspond to the same
characteristic value, say, ϕ1(x), . . . , ϕn(x), then each linear combination of these func-
tions is an eigenfunction as well, and these linear combinations can be chosen so that the
corresponding eigenfunctions are orthonormal.

Indeed, the function

ψ1(x) =
ϕ1(x)
‖ϕ1‖ , ‖ϕ1‖ =

√
(ϕ1,ϕ1),

has the norm equal to one, i.e., ‖ψ1‖ = 1. Let us form a linear combination αψ1 + ϕ2 and
choose α so that

(αψ1 + ϕ2, ψ1) = 0,

i.e.,

α = –
(ϕ2,ψ1)
(ψ1,ψ1)

= –(ϕ2,ψ1).

The function

ψ2(x) =
αψ1 + ϕ2

‖αψ1 + ϕ2‖
is orthogonal to ψ1(x) and has the unit norm. Next, we choose a linear combination
αψ1 +βψ2 +ϕ3, where the constants α and β can be found from the orthogonality relations

(αψ1 + βϕ2 + ϕ3, ψ1) = 0, (αψ1 + βψ2 + ϕ3, ψ2) = 0.

For the coefficients α and β thus defined, the function

ψ3 =
αψ1 + βψ2 + ϕ2

‖αψ1 + βϕ2 + ϕ3‖
is orthogonal to ψ1 and ψ2 and has the unit norm, and so on.
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As was noted above, the eigenfunctions corresponding to distinct characteristic values
are orthogonal. Hence, the sequence of eigenfunctions of a symmetric kernel can be made
orthonormal.

In what follows we assume that the sequence of eigenfunctions of a symmetric kernel
is orthonormal.

We also assume that the characteristic values are always numbered in the increasing
order of their absolute values. Thus, if

λ1, λ2, . . . , λn, . . . (16.4.5.1)

is the sequence of characteristic values of a symmetric kernel, and if a sequence of eigen-
functions

ϕ1, ϕ2, . . . , ϕn, . . . (16.4.5.2)

corresponds to the sequence (16.4.5.1) so that

ϕn(x) – λn

∫ b

a
K(x, t)ϕn(t) dt = 0, (16.4.5.3)

then ∫ b

a
ϕi(x)ϕj (x) dx =

{ 1 for i = j,
0 for i ≠ j, (16.4.5.4)

and
|λ1| ≤ |λ2| ≤ · · · ≤ |λn| ≤ · · · . (16.4.5.5)

If there are infinitely many characteristic values, then it follows from the fourth Fredholm
theorem that their only accumulation point is the point at infinity, and hence λn → ∞ as
n→ ∞.

The set of all characteristic values and the corresponding normalized eigenfunctions
of a symmetric kernel is called the system of characteristic values and eigenfunctions of
the kernel. The system of eigenfunctions is said to be incomplete if there exists a nonzero
square integrable function that is orthogonal to all functions of the system. Otherwise, the
system of eigenfunctions is said to be complete.

16.4.5-2. Bilinear series.

Assume that a kernel K(x, t) admits an expansion in a uniformly convergent series with
respect to the orthonormal system of its eigenfunctions:

K(x, t) =
∞∑

k=1

ak(x)ϕk(t) (16.4.5.6)

for all x in the case of a continuous kernel or for almost all x in the case of a square
integrable kernel.

We have

ak(x) =
∫ b

a
K(x, t)ϕk(t) dt =

ϕk(x)
λk

, (16.4.5.7)

and hence

K(x, t) =
∞∑

k=1

ϕk(x)ϕk(t)
λk

. (16.4.5.8)
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Conversely, if the series
∞∑

k=1

ϕk(x)ϕk(t)
λk

(16.4.5.9)

is uniformly convergent, then formula (16.4.5.8) holds.
The following assertion holds: the bilinear series (16.4.5.9) converges in mean-square

to the kernel K(x, t).
If a symmetric kernel K(x, t) has finitely many characteristic values λ1, . . . ,λn, then it

is degenerate, because in this case, there are only n terms remaining in the sum (16.4.5.8).
A kernel K(x, t) is said to be positive definite if for all functions ϕ(x) that are not

identically zero we have

∫ b

a

∫ b

a
K(x, t)ϕ(x)ϕ(t) dx dt > 0,

and the above quadratic functional vanishes for ϕ(x) = 0 only. Such a kernel has positive
characteristic values only.

Each symmetric positive definite continuous kernel can be decomposed in a bilinear
series in eigenfunctions that is absolutely and uniformly convergent with respect to the
variables x, t. The assertion remains valid if we assume that the kernel has finitely many
negative characteristic values.

If a kernel K(x, t) is symmetric, continuous on the square S = {a ≤ x ≤ b, a ≤ t ≤ b}, and
has uniformly bounded partial derivatives on this square, then this kernel can be expanded
in a uniformly convergent bilinear series in eigenfunctions.

16.4.5-3. Hilbert–Schmidt theorem.

If a function f (x) can be represented in the form

f (x) =
∫ b

a
K(x, t)g(t) dt, (16.4.5.10)

where the symmetric kernel K(x, t) is square integrable and g(t) is a square integrable
function, then f (x) can be represented by its Fourier series with respect to the orthonormal
system of eigenfunctions of the kernel K(x, t):

f (x) =
∞∑

k=1

akϕk(x), (16.4.5.11)

where

ak =
∫ b

a
f (x)ϕk(x) dx, k = 1, 2, . . .

Moreover, if ∫ b

a
K2(x, t) dt ≤ A < ∞, (16.4.5.12)

then the series (16.4.5.11) is absolutely and uniformly convergent for any function f (x) of
the form (16.4.5.10).

Remark. In the Hilbert–Schmidt theorem, the completeness of the system of eigenfunctions is not as-
sumed.
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16.4.5-4. Bilinear series of iterated kernels.

By the definition of the iterated kernels, we have

Km(x, t) =
∫ b

a
K(x, z)Km–1(z, t) dz, m = 2, 3, . . . (16.4.5.13)

The Fourier coefficients ak(t) of the kernelKm(x, t), regarded as a function of the variable x,
with respect to the orthonormal system of eigenfunctions of the kernel K(x, t) are equal to

ak(t) =
∫ b

a
Km(x, t)ϕk(x) dx =

ϕk(t)
λmk

. (16.4.5.14)

On applying the Hilbert–Schmidt theorem to (16.4.5.13), we obtain

Km(x, t) =
∞∑

k=1

ϕk(x)ϕk(t)
λmk

, m = 2, 3, . . . (16.4.5.15)

In formula (16.4.5.15), the sum of the series is understood as the limit in mean-square.
If, in addition to the above assumptions, inequality (16.4.5.12) is satisfied, then the series
in (16.4.5.15) is uniformly convergent.

16.4.5-5. Solution of the nonhomogeneous equation.

Let us represent an integral equation

y(x) – λ
∫ b

a
K(x, t)y(t) dt = f (x), a ≤ x ≤ b, (16.4.5.16)

where the parameter λ is not a characteristic value, in the form

y(x) – f (x) = λ
∫ b

a
K(x, t)y(t) dt (16.4.5.17)

and apply the Hilbert–Schmidt theorem to the function y(x) – f (x):

y(x) – f (x) =
∞∑

k=1

Akϕk(x),

Ak =
∫ b

a
[y(x) – f (x)]ϕk(x) dx =

∫ b

a
y(x)ϕk(x) dx –

∫ b

a
f (x)ϕk(x) dx = yk – fk.

Taking into account the expansion (16.4.5.8), we obtain

λ

∫ b

a
K(x, t)y(t) dt = λ

∞∑

k=1

yk
λk
ϕk(x),

and thus

λ
yk
λk

= yk – fk, yk =
λkfk
λk – λ

, Ak =
λfk
λk – λ

. (16.4.5.18)
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Hence,

y(x) = f (x) + λ
∞∑

k=1

fk
λk – λ

ϕk(x). (16.4.5.19)

However, if λ is a characteristic value, i.e.,

λ = λp = λp+1 = · · · = λq, (16.4.5.20)

then for k ≠ p, p+ 1, . . . , q, the terms (16.4.5.19) preserve their form. For k = p, p+ 1, . . . , q,
formula (16.4.5.18) implies the relation fk = Ak(λ – λk)/λ, and by (16.4.5.20) we obtain
fp = fp+1 = · · · = fq = 0. The last relation means that

∫ b

a
f (x)ϕk(x) dx = 0

for k = p, p + 1, . . . , q, i.e., the right-hand side of the equation must be orthogonal to the
eigenfunctions that correspond to the characteristic value λ.

In this case, the solutions of equations (16.4.5.16) have the form

y(x) = f (x) + λ
∞∑

k=1

fk
λk – λ

ϕk(x) +
q∑

k=p

Ckϕk(x), (16.4.5.21)

where the terms in the first of the sums (16.4.5.21) with indices k = p, p + 1, . . . , q must
be omitted (for these indices, fk and λ – λk vanish in this sum simultaneously). The
coefficients Ck in the second sum are arbitrary constants.

16.4.5-6. Fredholm alternative for symmetric equations.

The above results can be unified in the following alternative form.
A symmetric integral equation

y(x) – λ
∫ b

a
K(x, t)y(t) dt = f (x), a ≤ x ≤ b, (16.4.5.22)

for a given λ, either has a unique square integrable solution for an arbitrarily given function
f (x) � L2(a, b), in particular, y = 0 for f = 0, or the corresponding homogeneous equation
has finitely many linearly independent solutions Y1(x), . . . , Yr(x), r > 0.

For the second case, the nonhomogeneous equation has a solution if and only if the
right-hand side f (x) is orthogonal to all the functions Y1(x), . . . , Yr(x) on the interval
[a, b]. Here the solution is defined only up to an arbitrary additive linear combination
A1Y1(x) + · · · +ArYr(x).

16.4.5-7. Resolvent of a symmetric kernel.

The solution of a Fredholm equation of the second kind (16.4.5.22) can be written in the
form

y(x) = f (x) + λ
∫ b

a
R(x, t;λ)f (t) dt, (16.4.5.23)
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where the resolvent R(x, t;λ) is given by the series

R(x, t;λ) =
∞∑

k=1

ϕk(x)ϕk(t)
λk – λ

. (16.4.5.24)

Here the collections ϕk(x) and λk form the system of eigenfunctions and characteristic
values of (16.4.5.22). It follows from formula (16.4.5.24) that the resolvent of a symmetric
kernel has only simple poles.

16.4.5-8. Extremal properties of characteristic values and eigenfunctions.

Let us introduce the notation

(u,w) =
∫ b

a
u(x)w(x) dx, ‖u‖2 = (u,u),

(Ku,u) =
∫ b

a

∫ b

a
K(x, t)u(x)u(t) dx dt,

where (u,w) is the inner product of functions u(x) and w(x), ‖u‖ is the norm of a func-
tion u(x), and (Ku,u) is the quadratic form generated by the kernel K(x, t).

Letλ1 be the characteristic value of the symmetric kernelK(x, t) with minimum absolute
value and let y1(x) be the eigenfunction corresponding to this value. Then

1
|λ1|

= max
y�0

|(Ky, y)|
‖y‖2 ; (16.4.5.25)

in particular, the maximum is attained, and y = y1 is a maximum point.
Let λ1, . . . , λn be the first n characteristic values of a symmetric kernel K(x, t) (in

the ascending order of their absolute values) and let y1(x), . . . , yn(x) be orthonormal
eigenfunctions corresponding to λ1, . . . , λn, respectively. Then the formula

1
|λn+1|

= max
|(Ky, y)|
‖y‖2 (16.4.5.26)

is valid for the characteristic value λn+1 following λn. The maximum is taken over the set
of functions y which are orthogonal to all y1, . . . , yn and are not identically zero, that is,
y ≠ 0,

(y, yj) = 0, j = 1, . . . ,n; (16.4.5.27)

in particular, the maximum in (16.4.5.26) is attained, and y = yn+1 is a maximum point,
where yn+1 is any eigenfunction corresponding to the characteristic value λn+1 which is
orthogonal to y1, . . . , yn.

Remark. For a positive definite kernel K(x, t), the symbol of modulus on the right-hand sides of
(16.4.5.26) and (16.4.5.27) can be omitted.

16.4.5-9. Skew-symmetric integral equations.

By a skew-symmetric integral equation we mean an equation whose kernel is skew-
symmetric, i.e., an equation of the form

y(x) – λ
∫ b

a
K(x, t)y(t) dt = f (x) (16.4.5.28)

whose kernel K(x, t) has the property K(t,x) = –K(x, t).
Equation (16.4.5.28) with the skew-symmetric kernel has at least one characteristic

value, and all its characteristic values are purely imaginary.
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16.4.6. Methods of Integral Transforms

16.4.6-1. Equation with difference kernel on the entire axis.

Consider an integral equation of convolution type of the second kind with one kernel

y(x) +
1√
2π

∫ ∞

–∞
K(x – t)y(t) dt = f (x), –∞ < x < ∞. (16.4.6.1)

Let us apply the (alternative) Fourier transform to equation (16.4.6.1). In this case, taking
into account the convolution theorem (see Paragraph 11.4.1-3), we obtain

Y(u)[1 + K(u)] = F(u). (16.4.6.2)

Thus, on applying the Fourier transform we reduce the solution of the original integral
equation (16.4.6.1) to the solution of the algebraic equation (16.4.6.2) for the transform of
the unknown function. The solution of equation (16.4.6.2) has the form

Y(u) =
F(u)

1 + K(u)
. (16.4.6.3)

Formula (16.4.6.3) gives the transform of the solution of the original integral equation in
terms of the transforms of the known functions, namely, the kernel and the right-hand side of
the equation. The solution itself can be obtained by applying the Fourier inversion formula:

y(x) =
1√
2π

∫ ∞

–∞
Y(u)e–iux du =

1√
2π

∫ ∞

–∞

F(u)
1 + K(u)

e–iux du. (16.4.6.4)

In fact, formula (16.4.6.4) solves the problem; however, sometimes it is not convenient
because it requires the calculation of the transform F (u) for each right-hand side f (x).
In many cases, the representation of the solution of the nonhomogeneous integral equa-
tion via the resolvent of the original equation is more convenient. To obtain the desired
representation, we note that formula (16.4.6.3) can be transformed to the expression

Y(u) = [1 – R(u)]F(u), R(u) =
K(u)

1 + K(u)
. (16.4.6.5)

On the basis of (16.4.6.5), by applying the Fourier inversion formula and the convolution
theorem (for transforms) we obtain

y(x) = f (x) –
1√
2π

∫ ∞

–∞
R(x – t)f (t) dt, (16.4.6.6)

where the resolvent R(x – t) of the integral equation (16.4.6.1) is given by the relation

R(x) =
1√
2π

∫ ∞

–∞

K(u)
1 + K(u)

e–iux du. (16.4.6.7)

Thus, to determine the solution of the original integral equation (16.4.6.1), it suffices to find
the function R(x) by formula (16.4.6.7). To calculate direct and inverse Fourier transforms,
one can use the corresponding tables from Sections T3.3 and T3.4, and the books by
Bateman and Erdélyi (1954) and by Ditkin and Prudnikov (1965).
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Example. Let us solve the integral equation

y(x) – λ
∫ ∞

–∞
exp
(
α|x – t|

)
y(t) dt = f (x), –∞ < x < ∞, (16.4.6.8)

which is a special case of equation (16.4.6.1) with kernel K(x – t) given by the expression

K(x) = –
√

2π λe–α|x|, α > 0. (16.4.6.9)

Let us find the function R(x). To this end, we calculate the integral

K(u) = –
∫ ∞

–∞
λe–α|x|eiux dx = –

2αλ
u2 + α2 . (16.4.6.10)

In this case, formula (16.4.6.5) implies

R(u) =
K(u)

1 + K(u)
= –

2αλ
u2 + α2 – 2αλ

, (16.4.6.11)

and hence

R(x) =
1√
2π

∫ ∞

–∞
R(u)e–iux du = –

√
2
π

∫ ∞

–∞

αλ

u2 + α2 – 2αλ
e–iux du. (16.4.6.12)

Assume that λ < 1
2α. In this case the integral (16.4.6.12) makes sense and can be calculated by means of the

theory of residues on applying the Jordan lemma (see Subsection 11.1.2). After some algebraic manipulations,
we obtain

R(x) = –
√

2π αλ√
α2 – 2αλ

exp
(
–|x|

√
α2 – 2αλ

)
(16.4.6.13)

and finally, in accordance with (16.4.6.6), we obtain

y(x) = f (x) +
αλ√

α2 – 2αλ

∫ ∞

–∞
exp
(
–|x – t|

√
α2 – 2αλ

)
f (t) dt, –∞ < x < ∞. (16.4.6.14)

16.4.6-2. Equation with the kernel K(x, t) = t–1Q(x/t) on the semiaxis.

Here we consider the following equation on the semiaxis:

y(x) –
∫ ∞

0

1
t
Q
(x
t

)
y(t) dt = f (x). (16.4.6.15)

To solve this equation we apply the Mellin transform which is defined as follows (see also
Section 11.3):

f̂ (s) = M{f (x), s} ≡
∫ ∞

0
f (x)xs–1 dx, (16.4.6.16)

where s = σ+ iτ is a complex variable (σ1 < σ < σ2) and f̂ (s) is the transform of the function
f (x). In what follows, we briefly denote the Mellin transform by M{f (x)} ≡ M{f (x), s}.

For known f̂ (s), the original function can be found by means of the Mellin inversion
formula

f (x) = M–1{f̂(s)} ≡
1

2πi

∫ c+i∞

c–i∞
f̂ (s)x–s ds, σ1 < c < σ2, (16.4.6.17)

where the integration path is parallel to the imaginary axis of the complex plane s and the
integral is understood in the sense of the Cauchy principal value.
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On applying the Mellin transform to equation (16.4.6.15) and taking into account the
fact that the integral with such a kernel is transformed into the product by the rule (see
Subsection 11.3.2)

M

{∫ ∞

0

1
t
Q
(x
t

)
y(t) dt

}
= Q̂(s)ŷ(s),

we obtain the following equation for the transform ŷ(s):

ŷ(s) – Q̂(s)ŷ(s) = f̂ (s).

The solution of this equation is given by the formula

ŷ(s) =
f̂ (s)

1 – Q̂(s)
. (16.4.6.18)

On applying the Mellin inversion formula to equation (16.4.6.18) we obtain the solution of
the original integral equation

y(x) =
1

2πi

∫ c+i∞

c–i∞

f̂ (s)

1 – Q̂(s)
x–s ds. (16.4.6.19)

This solution can also be represented via the resolvent in the form

y(x) = f (x) +
∫ ∞

0

1
t
N
(x
t

)
f (t) dt, (16.4.6.20)

where we have used the notation

N (x) = M–1{N̂ (s)}, N̂ (s) =
Q̂(s)

1 – Q̂(s)
. (16.4.6.21)

Under the application of this analytical method of solution, the following technical
difficulties can occur: (a) in the calculation of the transform for a given kernel K(x) and
(b) in the calculation of the solution for the known transform ŷ(s). To find the corresponding
integrals, tables of direct and inverse Mellin transforms are applied (e.g., see Sections T3.5
and T3.6). In many cases, the relationship between the Mellin transform and the Fourier
and Laplace transforms is first used:

M{f (x), s} = F{f (ex), is} = L{f (ex), –s} + L{f (e–x), s}, (16.4.6.22)

and then tables of direct and inverse Fourier transforms and Laplace transforms are applied
(see Sections T3.1–T3.4).

16.4.6-3. Equation with the kernel K(x, t) = tβQ(xt) on the semiaxis.

Consider the following equation on the semiaxis:

y(x) –
∫ ∞

0
tβQ(xt)y(t) dt = f (x). (16.4.6.23)
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To solve this equation, we apply the Mellin transform. On multiplying equation (16.4.6.23)
by xs–1 and integrating with respect to x from zero to infinity, we obtain
∫ ∞

0
y(x)xs–1 dx –

∫ ∞

0
y(t)tβ dt

∫ ∞

0
Q(xt)xs–1 dx =

∫ ∞

0
f (x)xs–1 dx. (16.4.6.24)

Let us make the change of variables z = xt. We finally obtain

ŷ(s) – Q̂(s)
∫ ∞

0
y(t)tβ–s dt = f̂ (s). (16.4.6.25)

Taking into account the relation
∫ ∞

0
y(t)tβ–s dt = ŷ(1 + β – s),

we rewrite equation (16.4.6.25) in the form

ŷ(s) – Q̂(s)ŷ(1 + β – s) = f̂ (s). (16.4.6.26)

On replacing s by 1 + β – s in equation (16.4.6.26), we obtain

ŷ(1 + β – s) – Q̂(1 + β – s)ŷ(s) = f̂ (1 + β – s). (16.4.6.27)

Let us eliminate ŷ(1 + β – s) from (16.4.6.26) and (16.4.6.27), and then solve the resulting
equation for ŷ(s). We thus find the transform of the solution:

ŷ(s) =
f̂ (s) + Q̂(s)f̂ (1 + β – s)

1 – Q̂(s)Q̂(1 + β – s)
.

On applying the Mellin inversion formula, we obtain the solution of the integral equa-
tion (16.4.6.23) in the form

y(x) =
1

2πi

∫ c+i∞

c–i∞

f̂ (s) + Q̂(s)f̂ (1 + β – s)

1 – Q̂(s)Q̂(1 + β – s)
x–s ds.

16.4.7. Method of Approximating a Kernel by a Degenerate One

16.4.7-1. Approximation of the kernel.

For the approximate solution of the Fredholm integral equation of the second kind

y(x) –
∫ b

a
K(x, t)y(t) dt = f (x), a ≤ x ≤ b, (16.4.7.1)

where, for simplicity, the functions f (x) and K(x, t) are assumed to be continuous, it is
useful to replace the kernel K(x, t) by a close degenerate kernel

K(n)(x, t) =
n∑

k=0

gk(x)hk(t). (16.4.7.2)



16.4. LINEAR INTEGRAL EQUATIONS OF THE SECOND KIND WITH CONSTANT LIMITS OF INTEGRATION 845

Let us indicate several ways to perform such a change. If the kernel K(x, t) is dif-
ferentiable with respect to x on [a, b] sufficiently many times, then, for a degenerate
kernel K(n)(x, t), we can take a finite segment of the Taylor series:

K(n)(x, t) =
n∑

m=0

(x – x0)m

m!
K (m)
x (x0, t), (16.4.7.3)

where x0 � [a, b]. A similar trick can be applied for the case in whichK(x, t) is differentiable
with respect to t on [a, b] sufficiently many times.

To construct a degenerate kernel, a finite segment of the double Fourier series can be
used:

K(n)(x, t) =
n∑

p=0

n∑

q=0

apq(x – x0)p(t – t0)q , (16.4.7.4)

where

apq =
1

p! q!
∂p+q

∂xp∂tq
K(x, t)

∣
∣∣
∣ x=x0
t=t0

, a ≤ x0 ≤ b, a ≤ t0 ≤ b.

A continuous kernel K(x, t) admits an approximation by a trigonometric polynomial of
period 2l, where l = b – a.

For instance, we can set

K(n)(x, t) =
1
2
a0(t) +

n∑

k=1

ak(t) cos

(
kπx

l

)
, (16.4.7.5)

where the ak(t) (k = 0, 1, 2, . . . ) are the Fourier coefficients

ak(t) =
2
l

∫ b

a
K(x, t) cos

(
pπx

l

)
dx. (16.4.7.6)

A similar decomposition can be obtained by interchanging the roles of the variables
x and t. A finite segment of the double Fourier series can also be applied by setting, for
instance,

ak(t) ≈
1
2
ak0 +

n∑

m=1

akm cos

(
mπt

l

)
, k = 0, 1, . . . ,n, (16.4.7.7)

and it follows from formulas (16.4.7.5)–(16.4.7.7) that

K(n)(x, t) =
1
4
a00 +

1
2

n∑

k=1

ak0 cos

(
kπx

l

)
+

1
2

n∑

m=1

a0m cos

(
mπt

l

)

+
n∑

k=1

n∑

m=1

akm cos

(
kπx

l

)
cos

(
mπt

l

)
,

where

akm =
4
l2

∫ b

a

∫ b

a
K(x, t) cos

(
kπx

l

)
cos

(
mπt

l

)
dx dt. (16.4.7.8)

One can also use other methods of interpolating and approximating the kernel K(x, t).
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16.4.7-2. Approximate solution.

If K(n)(x, t) is an approximate degenerate kernel for a given exact kernel K(x, t) and if a
function fn(x) is close to f (x), then the solution yn(x) of the integral equation

yn(x) –
∫ b

a
K(n)(x, t)yn(t) dt = fn(x) (16.4.7.9)

can be regarded as an approximation to the solution y(x) of equation (16.4.7.1).
Assume that the following error estimates hold:

∫ b

a
|K(x, t) – K(n)(x, t)| dt ≤ ε, |f (x) – fn(x)| ≤ δ.

Next, let the resolvent Rn(x, t) of equation (16.4.7.9) satisfy the relation

∫ b

a
|Rn(x, t)| dt ≤ Mn

for a ≤ x ≤ b. Finally, assume that the following inequality holds:

q = ε(1 + Mn) < 1.

In this case, equation (16.4.7.1) has a unique solution y(x) and

|y(x) – yn(x)| ≤ ε
N (1 + Mn)2

1 – q
+ δ, N = max

a≤x≤b
|f (x)|. (16.4.7.10)

Example. Let us find an approximate solution of the equation

y(x) –
∫ 1/2

0
e–x2t2

y(t) dt = 1. (16.4.7.11)

Applying the expansion in a double Taylor series, we replace the kernel K(x, t) = e–x2t2
with the degenerate

kernel
K(2)(x, t) = 1 – x2t2 + 1

2 x
4t4.

Hence, instead of equation (16.4.7.11) we obtain

y2(x) = 1 +
∫ 1/2

0

(
1 – x2t2 + 1

2 x
4t4)y2(t) dt. (16.4.7.12)

Therefore,
y2(x) = 1 +A1 +A2x

2 +A3x
4, (16.4.7.13)

where

A1 =
∫ 1/2

0
y2(x) dx, A2 = –

∫ 1/2

0
x2y2(x) dx, A3 =

1
2

∫ 1/2

0
x4y2(x) dx. (16.4.7.14)

From (16.4.7.13) and (16.4.7.14) we obtain a system of three equations with three unknowns; to the fourth
decimal place, the solution is

A1 = 0.9930, A2 = – 0.0833, A3 = 0.0007.

Hence,
y(x) ≈ y2(x) = 1.9930 – 0.0833 x2 + 0.0007 x4, 0 ≤ x ≤ 1

2 . (16.4.7.15)

An error estimate for the approximate solution (16.4.7.15) can be performed by formula (16.4.7.10).
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16.4.8. Collocation Method

16.4.8-1. General remarks.

Let us rewrite the Fredholm integral equation of the second kind in the form

ε[y(x)] ≡ y(x) – λ
∫ b

a
K(x, t)y(t) dt – f (x) = 0. (16.4.8.1)

Let us seek an approximate solution of equation (16.4.8.1) in the special form

Yn(x) = Φ(x,A1, . . . ,An) (16.4.8.2)

with free parameters A1, . . . , An (undetermined coefficients). On substituting the expres-
sion (16.4.8.2) into equation (16.4.8.1), we obtain the residual

ε[Yn(x)] = Yn(x) – λ
∫ b

a
K(x, t)Yn(t) dt – f (x). (16.4.8.3)

If y(x) is an exact solution, then, clearly, the residual ε[y(x)] is zero. Therefore, one tries
to choose the parameters A1, . . . ,An so that, in a sense, the residual ε[Yn(x)] is as small as
possible. The residual ε[Yn(x)] can be minimized in several ways. Usually, to simplify the
calculations, a function Yn(x) linearly depending on the parameters A1, . . . , An is taken.
On finding the parameters A1, . . . , An, we obtain an approximate solution (16.4.8.2). If

lim
n→∞Yn(x) = y(x), (16.4.8.4)

then, by taking a sufficiently large number of parameters A1, . . . , An, we find that the
solution y(x) can be found with an arbitrary prescribed precision.

Now let us go to the description of a concrete method of construction of an approximate
solution Yn(x).

16.4.8-2. Approximate solution.

We set

Yn(x) = ϕ0(x) +
n∑

i=1

Aiϕi(x), (16.4.8.5)

where ϕ0(x), ϕ1(x), . . . , ϕn(x) are given functions (coordinate functions) and A1, . . . , An
are indeterminate coefficients, and assume that the functions ϕi(x) (i = 1, . . . ,n) are linearly
independent. Note that, in particular, we can takeϕ0(x) = f (x) orϕ0(x) ≡ 0. On substituting
the expression (16.4.8.5) into the left-hand side of equation (16.4.8.1), we obtain the residual

ε[Yn(x)] = ϕ0(x) +
n∑

i=1

Aiϕi(x) – f (x) – λ
∫ b

a
K(x, t)

[
ϕ0(t) +

n∑

i=1

Aiϕi(t)

]
dt,

or

ε[Yn(x)] = ψ0(x,λ) +
n∑

i=1

Aiψi(x,λ), (16.4.8.6)
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where

ψ0(x,λ) = ϕ0(x) – f (x) – λ
∫ b

a
K(x, t)ϕ0(t) dt,

ψi(x,λ) = ϕi(x) – λ
∫ b

a
K(x, t)ϕi(t) dt, i = 1, . . . ,n.

(16.4.8.7)

According to the collocation method, we require that the residual ε[Yn(x)] be zero at
the given system of the collocation points x1, . . . , xn on the interval [a, b], i.e., we set

ε[Yn(xj)] = 0, j = 1, . . . ,n,

where
a ≤ x1 < x2 < · · · < xn–1 < xn ≤ b.

It is common practice to set x1 = a and xn = b.
This, together with formula (16.4.8.6), implies the linear algebraic system

n∑

i=1

Aiψi(xj ,λ) = –ψ0(xj ,λ), j = 1, . . . ,n, (16.4.8.8)

for the coefficients A1, . . . , An. If the determinant of system (16.4.8.8) is nonzero,
det[ψi(xj ,λ)] ≠ 0, then system (16.4.8.8) uniquely determines the numbers A1, . . . , An,
and hence makes it possible to find the approximate solution Yn(x) by formula (16.4.8.5).

16.4.8-3. Eigenfunctions of the equation.

On equating the determinant with zero, we obtain the relation

det[ψi(xj ,λ)] = 0,

which enables us to find approximate values λ̃k (k = 1, . . . ,n) for the characteristic values
of the kernel K(x, t).

If we set
f (x) ≡ 0, ϕ0(x) ≡ 0, λ = λ̃k,

then, instead of system (16.4.8.8), we obtain the homogeneous system

n∑

i=1

Ã(k)
i ψi(xj , λ̃k) = 0, j = 1, . . . ,n. (16.4.8.9)

On finding nonzero solutions Ã(k)
i (i = 1, . . . ,n) of system (16.4.8.9), we obtain approx-

imate eigenfunctions for the kernel K(x, t):

Ỹ (k)
n (x) =

n∑

i=1

Ã(k)
i ϕi(x),

that correspond to its characteristic value λk ≈ λ̃k.



16.4. LINEAR INTEGRAL EQUATIONS OF THE SECOND KIND WITH CONSTANT LIMITS OF INTEGRATION 849

Example. Let us solve the equation

y(x) –
∫ 1

0

t2y(t)
x2 + t2 dt = x arctan

1
x

(16.4.8.10)

by the collocation method.
We set

Y2(x) = A1 + A2x.

On substituting this expression into equation (16.4.8.10), we obtain the residual

ε[Y2(x)] = –A1x arctan
1
x

+A2

[
x –

1
2

+
x2

2
ln

(
1 +

1
x2

)]
– x arctan

1
x

.

On choosing the collocation points x1 = 0 and x2 = 1 and taking into account the relations

lim
x→0

x arctan
1
x

= 0, lim
x→0

x2 ln

(
1 +

1
x2

)
= 0,

we obtain the following system for the coefficients A1 and A2:

0 × A1 – 1
2A2 = 0,

– π
4 A1 + 1

2 (1 + ln 2)A2 = π
4 .

This implies A2 = 0 and A1 = –1. Thus,

Y2(x) = –1. (16.4.8.11)

We can readily verify that the approximate solution (16.4.8.11) thus obtained is exact.

16.4.9. Method of Least Squares

16.4.9-1. Description of the method.

By analogy with the collocation method, for the equation

ε[y(x)] ≡ y(x) – λ
∫ b

a
K(x, t)y(t) dt – f (x) = 0 (16.4.9.1)

we set

Yn(x) = ϕ0(x) +
n∑

i=1

Aiϕi(x), (16.4.9.2)

where ϕ0(x), ϕ1(x), . . . , ϕn(x) are given functions, A1, . . . , An are indeterminate coeffi-
cients, and ϕi(x) (i = 1, . . . ,n) are linearly independent.

On substituting (16.4.9.2) into the left-hand side of equation (16.4.9.1), we obtain the
residual

ε[Yn(x)] = ψ0(x,λ) +
n∑

i=1

Aiψi(x,λ), (16.4.9.3)

where ψ0(x,λ) and ψi(x,λ) (i = 1, . . . ,n) are defined by formulas (16.4.8.7).
According to the method of least squares, the coefficients Ai (i = 1, . . . ,n) can be found

from the condition for the minimum of the integral

I =
∫ b

a
{ε[Yn(x)]}2 dx =

∫ b

a

[
ψ0(x,λ) +

n∑

i=1

Aiψi(x,λ)

]2
dx. (16.4.9.4)
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This requirement leads to the algebraic system of equations

∂I

∂Aj
= 0, j = 1, . . . ,n, (16.4.9.5)

and hence, on the basis of (16.4.9.4), by differentiating with respect to the parameters
A1, . . . , An under the integral sign, we obtain

1
2
∂I

∂Aj
=
∫ b

a
ψj(x,λ)

[
ψ0(x,λ) +

n∑

i=1

Aiψi(x,λ)

]
dx = 0, j = 1, . . . ,n. (16.4.9.6)

Using the notation

cij(λ) =
∫ b

a
ψi(x,λ)ψj (x,λ) dx, (16.4.9.7)

we can rewrite system (16.4.9.6) in the form of the normal system of the method of least
squares:

c11(λ)A1 + c12(λ)A2 + · · · + c1n(λ)An = –c10(λ),
c21(λ)A1 + c22(λ)A2 + · · · + c2n(λ)An = –c20(λ),
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
cn1(λ)A1 + cn2(λ)A2 + · · · + cnn(λ)An = –cn0(λ).

(16.4.9.8)

Note that if ϕ0(x) ≡ 0, then ψ0(x) = –f (x). Moreover, since cij(λ) = cji(λ), the matrix of
system (16.4.9.8) is symmetric.

16.4.9-2. Construction of eigenfunctions.

The method of least squares can also be applied for the approximate construction of char-
acteristic values and eigenfunctions of the kernel K(x, s), similarly to the way in which it
can be done in the collocation method. Namely, by setting f (x) ≡ 0 and ϕ0(x) ≡ 0, which
implies ψ0(x) ≡ 0, we determine approximate values of the characteristic values from the
algebraic equation

det[cij(λ)] = 0.

After this, approximate eigenfunctions can be found from the homogeneous system of the
form (16.4.9.8), where, instead of λ, the corresponding approximate value is substituted.

16.4.10. Bubnov–Galerkin Method

16.4.10-1. Description of the method.

Let

ε[y(x)] ≡ y(x) – λ
∫ b

a
K(x, t)y(t) dt – f (x) = 0. (16.4.10.1)

Similarly to the above reasoning, we seek an approximate solution of equation (16.4.10.1)
in the form of a finite sum

Yn(x) = f (x) +
n∑

i=1

Aiϕi(x), i = 1, . . . ,n, (16.4.10.2)
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where the ϕi(x) (i = 1, . . . ,n) are some given linearly independent functions (coordinate
functions) and A1, . . . , An are indeterminate coefficients. On substituting the expres-
sion (16.4.10.2) into the left-hand side of equation (16.4.10.1), we obtain the residual

ε[Yn(x)] =
n∑

j=1

Aj

[
ϕj(x) – λ

∫ b

a
K(x, t)ϕj(t) dt

]
– λ
∫ b

a
K(x, t)f (t) dt. (16.4.10.3)

According to the Bubnov–Galerkin method, the coefficients Ai (i = 1, . . . ,n) are
defined from the condition that the residual is orthogonal to all coordinate functions
ϕ1(x), . . . , ϕn(x). This gives the system of equations

∫ b

a
ε[Yn(x)]ϕi(x) dx = 0, i = 1, . . . ,n,

or, by virtue of (16.4.10.3),

n∑

j=1

(αij – λβij)Aj = λγi, i = 1, . . . ,n, (16.4.10.4)

where

αij =
∫ b

a
ϕi(x)ϕj (x) dx, βij =

∫ b

a

∫ b

a
K(x, t)ϕi(x)ϕj (t) dt dx,

γi =
∫ b

a

∫ b

a
K(x, t)ϕi(x)f (t) dt dx, i, j = 1, . . . ,n.

If the determinant of system (16.4.10.4)

D(λ) = det[αij – λβij]

is nonzero, then this system uniquely determines the coefficients A1, . . . , An. In this case,
formula (16.4.10.2) gives an approximate solution of the integral equation (16.4.10.1).

16.4.10-2. Characteristic values.

The equation D(λ) = 0 gives approximate characteristic values λ̃1, . . . , λ̃n of the integral
equation. On finding nonzero solutions of the homogeneous linear system

n∑

j=1

(αij – λ̃kβij)Ã
(k)
j = 0, i = 1, . . . ,n,

we can construct approximate eigenfunctions Ỹ (k)
n (x) corresponding to characteristic val-

ues λ̃k:

Ỹ (k)
n (x) =

n∑

i=1

Ã(k)
i ϕ(x).

It can be shown that the Bubnov–Galerkin method is equivalent to the replacement of
the kernel K(x, t) by some degenerate kernel K(n)(x, t). Therefore, for the approximate
solution Yn(x) we have an error estimate similar to that presented in Subsection 16.4.7-2.
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Example. Let us find the first two characteristic values of the integral equation

ε[y(x)] ≡ y(x) – λ
∫ 1

0
K(x, t)y(t) dt = 0,

where
K(x, t) =

{
t for t ≤ x,
x for t > x.

(16.4.10.5)

On the basis of (16.4.10.5), we have

ε[y(x)] = y(x) – λ

{∫ x

0
ty(t) dt +

∫ 1

x

xy(t) dt

}
.

We set
Y2(x) = A1x +A2x

2.

In this case

ε[Y2(x)] = A1x +A2x
2 – λ

[ 1
3A1x

3 + 1
4A2x

4 + x
( 1

2A1 + 1
3A2
)

–
( 1

2A1x
3 + 1

3A2x
4)] =

= A1
[(

1 – 1
2λ
)
x + 1

6λx
3] +A2

(
– 1

3λx + x2 + 1
12λx

4).

On orthogonalizing the residual ε[Y2(x)], we obtain the system
∫ 1

0
ε[Y2(x)]xdx = 0,

∫ 1

0
ε[Y2(x)]x2 dx = 0,

or the following homogeneous system of two algebraic equations with two unknowns:

A1(120 – 48λ) +A2(90 – 35λ) = 0,

A1(630 – 245λ) +A2(504 – 180λ) = 0.
(16.4.10.6)

On equating the determinant of system (16.4.10.6) with zero, we obtain the following equation for the
characteristic values:

D(λ) ≡
∣
∣
∣

120 – 48λ 90 – 35λ
630 – 245λ 504 – 180λ

∣
∣
∣ = 0.

Hence,
λ2 – 26.03λ + 58.15 = 0. (16.4.10.7)

Equations (16.4.10.7) imply

λ̃1 = 2.462 . . . and λ̃2 = 23.568 . . .

For comparison we present the exact characteristic values:

λ1 = 1
4π

2 = 2.467 . . . and λ2 = 9
4π

2 = 22.206 . . . ,

which can be obtained from the solution of the following boundary value problem equivalent to the original
equation:

y′′xx(x) + λy(x) = 0; y(0) = 0, y′x(1) = 0.

Thus, the error of λ̃1 is approximately equal to 0.2% and that of λ̃2, to 6%.

16.4.11. Quadrature Method

16.4.11-1. General scheme for Fredholm equations of the second kind.

In the solution of an integral equation, the reduction to the solution of systems of algebraic
equations obtained by replacing the integrals with finite sums is one of the most effective
tools. The method of quadratures is related to the approximation methods. It is widespread
in practice because it is rather universal with respect to the principle of constructing algo-
rithms for solving both linear and nonlinear equations.
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Just as in the case of Volterra equations, the method is based on a quadrature formula
(see Subsection 16.1.5):

∫ b

a
ϕ(x) dx =

n∑

j=1

Ajϕ(xj ) + εn[ϕ], (16.4.11.1)

where the xj are the nodes of the quadrature formula, Aj are given coefficients that do not
depend on the function ϕ(x), and εn[ϕ] is the error of replacement of the integral by the
sum (the truncation error).

If in the Fredholm integral equation of the second kind

y(x) – λ
∫ b

a
K(x, t)y(t) dt = f (x), a ≤ x ≤ b, (16.4.11.2)

we set x = xi (i = 1, . . . ,n), then we obtain the following relation that is the basic formula
for the method under consideration:

y(xi) – λ
∫ b

a
K(xi, t)y(t) dt = f (xi), i = 1, . . . ,n. (16.4.11.3)

Applying the quadrature formula (16.4.11.1) to the integral in (16.4.11.3), we arrive at the
following system of equations:

y(xi) – λ
n∑

j=1

AjK(xi,xj)y(xj) = f (xi) + λεn[y]. (16.4.11.4)

By neglecting the small term λεn[y] in this formula, we obtain the system of linear algebraic
equations for approximate values yi of the solution y(x) at the nodes x1, . . . , xn:

yi – λ
n∑

j=1

AjKijyj = fi, i = 1, . . . ,n, (16.4.11.5)

where Kij = K(xi,xj), fi = f (xi).
The solution of system (16.4.11.5) gives the values y1, . . . , yn, which determine an

approximate solution of the integral equation (16.4.11.2) on the entire interval [a, b] by
interpolation. Here for the approximate solution we can take the function obtained by linear
interpolation, i.e., the function that coincides with yi at the points xi and is linear on each
of the intervals [xi,xi+1]. Moreover, for an analytic expression of the approximate solution
to the equation, a function

ỹ(x) = f (x) + λ
n∑

j=1

AjK(x,xj)yj (16.4.11.6)

can be chosen, which also takes the values y1, . . . , yn at the points x1, . . . , xn.

Example. Consider the equation

y(x) – 1
2

∫ 1

0
xty(t)dt = 5

6 x.
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Let us choose the nodes x1 = 0, x2 = 1
2 , x3 = 1 and calculate the values of the right-hand side f (x) = 5

6 x
and of the kernel K(x, t) = xt at these nodes:

f (0) = 0, f
( 1

2

)
= 5

12 , f (1) = 5
6 ,

K(0, 0) = 0, K
(

0, 1
2

)
= 0, K(0, 1) = 0, K

( 1
2 , 0
)

= 0, K
( 1

2 , 1
2

)
= 1

4 ,

K
( 1

2 , 1
)

= 1
2 , K(1, 0) = 0, K

(
1, 1

2

)
= 1

2 , K(1, 1) = 1.

On applying Simpson’s rule (see Subsection 16.1.5)
∫ 1

0
F (x) dx ≈ 1

6

[
F (0) + 4F

( 1
2

)
+ F (1)

]

to determine the approximate values yi (i = 1, 2, 3) of the solution y(x) at the nodes xi we obtain the system

y1 = 0,
11
12 y2 – 1

24 y3 = 5
12 ,

– 2
12 y2 + 11

12 y3 = 5
6 ,

whose solution is y1 = 0, y2 = 1
2 , y3 = 1. In accordance with the expression (16.4.11.6), the approximate

solution can be presented in the form

ỹ(x) = 5
6 x + 1

2 × 1
6

(
0 + 4 × 1

2 × 1
2 x + 1 × 1 × x

)
= x.

We can readily verify that it coincides with the exact solution.

16.4.11-2. Construction of the eigenfunctions.

The method of quadratures can also be applied for solutions of homogeneous Fredholm
equations of the second kind. In this case, system (16.4.11.5) becomes homogeneous
(fi = 0) and has a nontrivial solution only if its determinant D(λ) is equal to zero. The
algebraic equation D(λ) = 0 of degree n for λmakes it possible to find the roots λ̃1, . . . , λ̃n,
which are approximate values of n characteristic values of the equation. The substitution
of each value λ̃k (k = 1, . . . ,n) into (16.4.11.5) for fi ≡ 0 leads to the system of equations

y(k)
i – λ̃k

n∑

j=1

AjKijy
(k)
j = 0, i = 1, . . . ,n,

whose nonzero solutions y(k)
i make it possible to obtain approximate expressions for the

eigenfunctions of the integral equation:

ỹk(x) = λ̃k

n∑

j=1

AjK(x,xj)y
(k)
j .

If λ differs from each of the roots λ̃k, then the nonhomogeneous system of linear
algebraic equations (16.4.11.5) has a unique solution. In the same case, the homogeneous
system of equations (16.4.11.5) has only the trivial solution.

16.4.12. Systems of Fredholm Integral Equations of the Second
Kind

16.4.12-1. Some remarks.

A system of Fredholm integral equations of the second kind has the form

yi(x) – λ
n∑

j=1

∫ b

a
Kij(x, t)yj(t) dt = fi(x), a ≤ x ≤ b, i = 1, . . . ,n. (16.4.12.1)
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Assume that the kernels Kij(x, t) are continuous or square integrable on the square S =
{a ≤ x ≤ b, a ≤ t ≤ b} and the right-hand sides fi(x) are continuous or square integrable
on [a, b]. We also assume that the functions yi(x) to be defined are continuous or square
integrable on [a, b] as well. The theory developed above for Fredholm equations of the
second kind can be completely extended to such systems. In particular, it can be shown
that for systems (16.4.12.1), the successive approximations converge in mean-square to the
solution of the system if λ satisfies the inequality

|λ| <
1
B∗

, (16.4.12.2)

where
n∑

i=1

n∑

j=1

∫ b

a

∫ b

a
|Kij(x, t)|2 dx dt = B2

∗ < ∞. (16.4.12.3)

If the kernel Kij(x, t) satisfies the additional condition
∫ b

a
K2
ij(x, t) dt ≤ Aij , a ≤ x ≤ b, (16.4.12.4)

where Aij are some constants, then the successive approximations converge absolutely and
uniformly.

If all kernels Kij(x, t) are degenerate, then system (16.4.12.1) can be reduced to a linear
algebraic system. It can be established that for a system of Fredholm integral equations, all
Fredholm theorems are satisfied.

16.4.12-2. Method of reducing a system of equations to a single equation.

System (16.4.12.1) can be transformed into a single Fredholm integral equation of the
second kind. Indeed, let us introduce the functions Y (x) and F (x) on [a, nb – (n – 1)a] by
setting

Y (x) = yi
(
x – (i – 1)(b – a)

)
, F (x) = fi

(
x – (i – 1)(b – a)

)
,

for
(i – 1)b – (i – 2)a ≤ x ≤ ib – (i – 1)a.

Let us define a kernel K(x, t) on the square {a ≤ x ≤ nb– (n– 1)a, a ≤ t ≤ nb– (n– 1)a}
as follows:

K(x, t) = Kij

(
x – (i – 1)(b – a), t – (j – 1)(b – a)

)

for

(i – 1)b – (i – 2)a ≤ x ≤ ib – (i – 1)a, (j – 1)b – (j – 2)a ≤ t ≤ jb – (j – 1)a.

Now system (16.4.12.1) can be rewritten as the single Fredholm equation

Y (x) – λ
∫ nb–(n–1)a

a
K(x, t)Y (t) dt = F (x), a ≤ x ≤ nb – (n – 1)a.

If the kernels Kij(x, t) are square integrable on the square S = {a ≤ x ≤ b, a ≤ t ≤ b} and
the right-hand sides fi(x) are square integrable on [a, b], then the kernel K(x, t) is square
integrable on the new square

Sn = {a < x < nb – (n – 1)a, a < t < nb – (n – 1)a},

and the right-hand side F (x) is square integrable on [a, nb – (n – 1)a].
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If condition (16.4.12.4) is satisfied, then the kernel K(x, t) satisfies the inequality
∫ b

a
K2(x, t) dt ≤ A∗, a < x < nb – (n – 1)a,

where A∗ is a constant.

16.5. Nonlinear Integral Equations
16.5.1. Nonlinear Volterra and Urysohn Integral Equations

16.5.1-1. Nonlinear integral equations with variable integration limit.

Nonlinear Volterra integral equations have the form
∫ x

a
K
(
x, t, y(t)

)
dt = F

(
x, y(x)

)
, (16.5.1.1)

where K
(
x, t, y(t)

)
is the kernel of the integral equation and y(x) is the unknown function

(a ≤ x ≤ b). All functions in (16.5.1.1) are usually assumed to be continuous.

16.5.1-2. Nonlinear integral equations with constant integration limits.

Nonlinear Urysohn integral equations have the form
∫ b

a
K
(
x, t, y(t)

)
dt = F (x, y(x)), α ≤ x ≤ β, (16.5.1.2)

where K
(
x, t, y(t)

)
is the kernel of the integral equation and y(x) is the unknown function.

Usually, all functions in (16.5.1.2) are assumed to be continuous and the case of α = a and
β = b is considered.

Conditions for existence and uniqueness of the solution of an Urysohn equation are
discussed below in Paragraphs 16.5.3-4 and 16.5.3-5.

Remark. A feature of nonlinear equations is that it frequently has several solutions.

16.5.2. Nonlinear Volterra Integral Equations

16.5.2-1. Method of integral transforms.

Consider a Volterra integral equation with quadratic nonlinearity

μy(x) – λ
∫ x

0
y(x – t)y(t) dt = f (x). (16.5.2.1)

To solve this equation, the Laplace transform can be applied, which, with regard to the
convolution theorem (see Section 11.2), leads to a quadratic equation for the transform
ỹ(p) = L{y(x)}:

μỹ(p) – λỹ2(p) = f̃ (p).

This implies

ỹ(p) =
μ �

√
μ2 – 4λf̃ (p)

2λ
. (16.5.2.2)

The inverse Laplace transform y(x) = L–1{ỹ(p)} (if it exists) is a solution to equa-
tion (16.5.2.1). Note that for the two different signs in formula (16.5.2.2), there are
two corresponding solutions of the original equation.
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Example 1. Consider the integral equation
∫ x

0
y(x – t)y(t)dt = Axm, m > –1.

Applying the Laplace transform to the equation under consideration with regard to the relation L{xm} =
Γ(m + 1)p–m–1, we obtain

ỹ2(p) = AΓ(m + 1)p–m–1,

where Γ(m) is the gamma function. On extracting the square root of both sides of the equation, we obtain

ỹ(p) = �
√
AΓ(m + 1)p– m+1

2 .

Applying the Laplace inversion formula, we obtain two solutions to the original integral equation:

y1(x) = –

√
AΓ(m + 1)

Γ
(m + 1

2

) x
m–1

2 , y2(x) =

√
AΓ(m + 1)

Γ
(m + 1

2

) x
m–1

2 .

16.5.2-2. Method of differentiation for integral equations.

Sometimes, differentiation (possibly multiple) of a nonlinear integral equation with subse-
quent elimination of the integral terms by means of the original equation makes it possible
to reduce this equation to a nonlinear ordinary differential equation. Below we briefly list
some equations of this type.

1◦. The equation

y(x) +
∫ x

a
f
(
t, y(t)

)
dt = g(x) (16.5.2.3)

can be reduced by differentiation to the nonlinear first-order equation

y′x + f (x, y) – g′x(x) = 0

with the initial condition y(a) = g(a).

2◦. The equation

y(x) +
∫ x

a
(x – t)f

(
t, y(t)

)
dt = g(x) (16.5.2.4)

can be reduced by double differentiation (with the subsequent elimination of the integral
term by using the original equation) to the nonlinear second-order equation:

y′′xx + f (x, y) – g′′xx(x) = 0. (16.5.2.5)

The initial conditions for the function y = y(x) have the form

y(a) = g(a), y′x(a) = g′x(a). (16.5.2.6)

3◦. The equation

y(x) +
∫ x

a
eλ(x–t)f

(
t, y(t)

)
dt = g(x) (16.5.2.7)

can be reduced by differentiation to the nonlinear first-order equation

y′x + f (x, y) – λy + λg(x) – g′x(x) = 0. (16.5.2.8)

The desired function y = y(x) must satisfy the initial condition y(a) = g(a).
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4◦. Equations of the form

y(x) +
∫ x

a
cosh

[
λ(x – t)

]
f
(
t, y(t)

)
dt = g(x), (16.5.2.9)

y(x) +
∫ x

a
sinh
[
λ(x – t)

]
f
(
t, y(t)

)
dt = g(x), (16.5.2.10)

y(x) +
∫ x

a
cos
[
λ(x – t)

]
f
(
t, y(t)

)
dt = g(x), (16.5.2.11)

y(x) +
∫ x

a
sin
[
λ(x – t)

]
f
(
t, y(t)

)
dt = g(x) (16.5.2.12)

can also be reduced to second-order ordinary differential equations by double differentiation.
For these equations, see the book by Polyanin and Manzhirov (1998).

16.5.2-3. Successive approximation method.

In many cases, the successive approximation method can be applied successfully to solve
various types of integral equations. The principles of constructing the iteration process are
the same as in the case of linear equations. For Volterra equations of the form

y(x) –
∫ x

a
K
(
x, t, y(t)

)
dt = f (x), a ≤ x ≤ b, (16.5.2.13)

the corresponding recurrent expression has the form

yk+1(x) = f (x) +
∫ x

a
K
(
x, t, yk(t)

)
dt, k = 0, 1, 2, . . . (16.5.2.14)

It is customary to take the initial approximation either in the form y0(x) ≡ 0 or in the form
y0(x) = f (x).

In contrast to the case of linear equations, the successive approximation method has
a smaller domain of convergence. Let us present the convergence conditions for the
iteration process (16.5.2.14) that are simultaneously the existence conditions for a solution
of equation (16.5.2.13). To be definite, we assume that y0(x) = f (x).

If for any z1 and z2 we have the relation

|K(x, t, z1) –K(x, t, z2)| ≤ ϕ(x, t)|z1 – z2|

and the relation ∣∣
∣∣

∫ x

a
K
(
x, t, f (t)

)
dt

∣∣
∣∣ ≤ ψ(x)

holds, where ∫ x

a
ψ2(t) dt ≤ N 2,

∫ b

a

∫ x

a
ϕ2(x, t) dt dx ≤ M2,

for some constants N and M , then the successive approximations converge to a unique
solution of equation (16.5.2.13) almost everywhere absolutely and uniformly.
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Example 2. Let us apply the successive approximation method to solve the equation

y(x) =
∫ x

0

1 + y2(t)
1 + t2 dt.

If y0(x) ≡ 0, then

y1(x) =
∫ x

0

dt

1 + t2 = arctanx,

y2(x) =
∫ x

0

1 + arctan2 t

1 + t2 dt = arctanx + 1
3 arctan3 x,

y3(x) =
∫ x

0

1 + arctan t + 1
3 arctan3 t

1 + t2 dt = arctanx + 1
3 arctan3 x + 2

3⋅5 arctan5 x + 1
7⋅9 arctan7 x.

On continuing this process, we can observe that yk(x) → tan(arctanx) = x as k → ∞, i.e., y(x) = x. The
substitution of this result into the original equation shows the validity of the result.

16.5.2-4. Newton–Kantorovich method.

A merit of the iteration methods when applied to Volterra linear equations of the second kind
is their unconditional convergence under weak restrictions on the kernel and the right-hand
side. When solving nonlinear equations, the applicability domain of the method of simple
iterations is smaller, and if the process is still convergent, then, in many cases, the rate of
convergence can be very low. An effective method that makes it possible to overcome the
indicated complications is the Newton–Kantorovich method.

Let us apply the Newton–Kantorovich method to solve a nonlinear Volterra equation of
the form

y(x) = f (x) +
∫ x

a
K
(
x, t, y(t)

)
dt. (16.5.2.15)

We obtain the following iteration process:

yk(x) = yk–1(x) + ϕk–1(x), k = 1, 2, . . . , (16.5.2.16)

ϕk–1(x) = εk–1(x) +
∫ x

a
K ′
y

(
x, t, yk–1(t)

)
ϕk–1(t) dt, (16.5.2.17)

εk–1(x) = f (x) +
∫ x

a
K
(
x, t, yk–1(t)

)
dt – yk–1(x). (16.5.2.18)

The algorithm is based on the solution of the linear integral equation (16.5.2.17) for
the correction ϕk–1(x) with the kernel and right-hand side that vary from step to step.
This process has a high rate of convergence, but it is rather complicated because we must
solve a new equation at each step of iteration. To simplify the problem, we can replace
equation (16.5.2.17) with the equation

ϕk–1(x) = εk–1(x) +
∫ x

a
K ′
y

(
x, t, y0(t)

)
ϕk–1(t) dt (16.5.2.19)

or with the equation

ϕk–1(x) = εk–1(x) +
∫ x

a
K ′
y

(
x, t, ym(t)

)
ϕk–1(t) dt, (16.5.2.20)

whose kernels do not vary. In equation (16.5.2.20), m is fixed and satisfies the condition
m < k – 1.
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It is reasonable to apply equation (16.5.2.19) with an appropriately chosen initial ap-
proximation. Otherwise we can stop at some mth approximation and, beginning with this
approximation, apply the simplified equation (16.5.2.20). The iteration process thus ob-
tained is the modified Newton–Kantorovich method. In principle, it converges somewhat
slower than the original process (16.5.2.16)–(16.5.2.18); however, it is not so cumbersome
in the calculations.

Example 3. Let us apply the Newton–Kantorovich method to solve the equation

y(x) =
∫ x

0
[ty2(t) – 1] dt.

The derivative of the integrand with respect to y has the form

K′
y

(
t, y(t)

)
= 2ty(t).

For the zero approximation we take y0(x) ≡ 0. According to (16.5.2.17) and (16.5.2.18) we obtain ϕ0(x) = –x
and y1(x) = –x. Furthermore, y2(x) = y1(x) + ϕ1(x). By (16.5.2.18) we have

ε1(x) =
∫ x

0
[t(–t)2 – 1] dt + x = 1

4 x
4.

The equation for the correction has the form

ϕ1(x) = –2
∫ x

0
t2ϕ1(t) dt +

1
4
x4

and can be solved by any of the known methods for Volterra linear equations of the second kind. In the case
under consideration, we apply the successive approximation method, which leads to the following results (the
number of the step is indicated in the superscript):

ϕ(0)
1 = 1

4 x
4,

ϕ(1)
1 = 1

4 x
4 – 2

∫ x

0

1
4 t

6 dt = 1
4 x

4 – 1
14 x

7,

ϕ(2)
1 = 1

4 x
4 – 2

∫ x

0
t2( 1

4 t
4 – 1

14x
7) dt = 1

4 x
4 – 1

14 x
7 + 1

70 x
10.

We restrict ourselves to the second approximation and obtain

y2(x) = –x + 1
4 x

4 – 1
14 x

7 + 1
70 x

10

and then pass to the third iteration step of the Newton–Kantorovich method:

y3(x) = y2(x) + ϕ2(x),

ε2(x) = 1
160 x

10 – 1
1820 x

13 – 1
7840x

16 + 1
9340 x

19 + 1
107800 x

22,

ϕ2(x) = ε2(x) + 2
∫ x

0
t
(
–t + 1

4 t
4 – 1

14 t
7 + 1

70 t
10)ϕ2(t) dt.

When solving the last equation, we restrict ourselves to the zero approximation and obtain

y3(x) = –x + 1
4 x

4 – 1
14 x

7 + 23
112x

10 – 1
1820 x

13 – 1
7840 x

16 + 1
9340 x

19 + 1
107800x

22.

The application of the successive approximation method to the original equation leads to the same result at the
fourth step.

As usual, in the numerical solution the integral is replaced by a quadrature formula.
The main difficulty of the implementation of the method in this case is in evaluating the
derivative of the kernel. The problem can be simplified if the kernel is given as an analytic
expression that can be differentiated in the analytic form. However, if the kernel is given
by a table, then the evaluation must be performed numerically.
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16.5.2-5. Collocation method.

When applied to the solution of a nonlinear Volterra equation

∫ x

a
K
(
x, t, y(t)

)
dt = f (x), a ≤ x ≤ b, (16.5.2.21)

the collocation method is as follows. The interval [a, b] is divided into N parts on each of
which the desired solution can be presented by a function of a certain form

ỹ(x) = Φ(x,A1, . . . ,Am), (16.5.2.22)

involving free parameters Ai, i = 1, . . . ,m.
On the (k+ 1)st part xk ≤ x ≤ xk+1, where k = 0, 1, . . . ,N – 1, the solution can be written

in the form ∫ x

xk

K
(
x, t, ỹ(t)

)
dt = f (x) – Ψk(x), (16.5.2.23)

where the integral

Ψk(x) =
∫ xk

a
K
(
x, t, ỹ(t)

)
dt (16.5.2.24)

can always be calculated for the approximate solution ỹ(x), which is known on the interval
a ≤ x ≤ xk and was previously obtained for k – 1 parts. The initial value y(a) of the desired
solution can be found by an auxiliary method or is assumed to be given.

To solve equation (16.5.2.23), representation (16.5.2.22) is applied, and the free param-
eters Ai (i = 1, . . . ,m) can be defined from the condition that the residuals vanish:

ε(Ai,xk,j) =
∫ xk,j

xk

K
(
xk,j, t, Φ(t,A1, . . . ,Am)

)
dt – f (xk,j) – Ψk(xk,j), (16.5.2.25)

where xk,j (j = 1, . . . ,m) are the nodes that correspond to the partition of the interval
[xk,xk+1] into m parts (subintervals). System (16.5.2.25) is a system of m equations for
A1, . . . , Am.

For convenience of the calculations, it is reasonable to present the desired solution on
any part as a polynomial

ỹ(x) =
m∑

i=1

Aiϕi(x), (16.5.2.26)

where ϕi(x) are linearly independent coordinate functions. For the functions ϕi(x), power
and trigonometric polynomials are frequently used; for instance, ϕi(x) = xi–1.

In applications, the concrete form of the functions ϕi(x) in formula (16.5.2.26), as well
as the form of the functions Φ in (16.5.2.20), can sometimes be given on the basis of physical
reasoning or defined by the structure of the solution of a simpler model equation.

16.5.2-6. Quadrature method.

To solve a nonlinear Volterra equation, we can apply the method based on the use of
quadrature formulas. The procedure of constructing the approximate system of equations
is the same as in the linear case (see Subsection 16.2.7).
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1◦. We consider the nonlinear Volterra equation of the form

y(x) –
∫ x

a
K
(
x, t, y(t)

)
dt = f (x) (16.5.2.27)

on an interval a ≤ x ≤ b. Assume that K
(
x, t, y(t)

)
and f (x) are continuous functions.

From equation (16.5.2.27) we find that y(a) = f (a). Let us choose a constant integration
step h and consider the discrete set of points xi = a + h(i – 1), where i = 1, . . . ,n. For
x = xi, equation (16.5.2.27) becomes

y(xi) –
∫ xi

a
K
(
xi, t, y(t)

)
dt = f (xi). (16.5.2.28)

Applying the quadrature formula (see Subsection 16.1.5) to the integral in (16.5.2.28),
choosing xj (j = 1, . . . , i) to be the nodes in t, and neglecting the truncation error, we arrive
at the following system of nonlinear algebraic (or transcendental) equations:

y1 = f1, yi –
i∑

j=1

AijKij(yj) = fi, i = 2, . . . ,n, (16.5.2.29)

where Aij are the coefficients of the quadrature formula on the interval [a,xi]; yi are
the approximate values of the solution y(x) at the nodes xi; fi = f (xi); and Kij(yj) =
K(xi, tj , yj).

Relations (16.5.2.29) can be rewritten as a sequence of recurrent nonlinear equations,

y1 = f1, yi –AiiKii(yi) = fi +
i–1∑

j=1

AijKij(yj), i = 2, . . . ,n, (16.5.2.30)

for the approximate values of the desired solution at the nodes.

2◦. When applied to the Volterra equation of the second kind in the Hammerstein form

y(x) –
∫ x

a
Q(x, t)Φ

(
t, y(t)

)
dt = f (x), (16.5.2.31)

the main relations of the quadrature method have the form (x1 = a)

y1 = f1, yi –
i∑

j=1

AijQijΦj(yj) = fi, i = 2, . . . ,n, (16.5.2.32)

where Qij = Q(xi, tj) and Φj(yj) = Φ(tj , yj). These relations lead to the sequence of
nonlinear recurrent equations

y1 = f1, yi – AiiQiiΦi(yi) = fi +
i–1∑

j=1

AijQijΦj(yj), i = 2, . . . ,n, (16.5.2.33)

whose solutions give approximate values of the desired function.
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Example 4. In the solution of the equation

y(x) –
∫ x

0
e–(x–t)y2(t) dt = e–x, 0 ≤ x ≤ 0.1,

where Q(x, t) = e–(x–t), Φ
(
t, y(t)

)
= y2(t), and f (x) = e–x, the approximate expression has the form

y(xi) –
∫ xi

0
e–(xi–t)y2(t) dt = e–xi .

On applying the trapezoidal rule to evaluate the integral (with step h = 0.02) and finding the solution at the nodes
xi = 0, 0.02, 0.04, 0.06, 0.08, 0.1, we obtain, according to (16.5.2.33), the following system of computational
relations:

y1 = f1, yi – 0.01Qiiy
2
i = fi +

i–1∑

j=1

0.02Qijy
2
j , i = 2, . . . , 6.

Thus, to find an approximate solution, we must solve a quadratic equation for each value yi, which makes it
possible to write out the answer

yi = 50 � 50
[

1 – 0.04
(
fi +

i–1∑

j=1

0.02Qijy
2
j

)]1/2

, i = 2, . . . , 6.

16.5.3. Equations with Constant Integration Limits

16.5.3-1. Nonlinear equations with degenerate kernels.

1◦. Consider a Urysohn equation of the form

y(x) =
∫ b

a
Q(x, t)Φ

(
t, y(t)

)
dt, (16.5.3.1)

where Q(x, t) and Φ(t, y) are given functions and y(x) is the unknown function.
Let the kernel Q(x, t) be degenerate, i.e.,

Q(x, t) =
m∑

k=1

gk(x)hk(t). (16.5.3.2)

In this case equation (16.5.3.1) becomes

y(x) =
m∑

k=1

gk(x)
∫ b

a
hk(t)Φ

(
t, y(t)

)
dt. (16.5.3.3)

We write

Ak =
∫ b

a
hk(t)Φ

(
t, y(t)

)
dt, k = 1, . . . ,m, (16.5.3.4)

where the constants Ak are yet unknown. Then it follows from (16.5.3.3) that

y(x) =
m∑

k=1

Akgk(x). (16.5.3.5)

On substituting the expression (16.5.3.5) for y(x) into relations (16.5.3.4), we obtain (in the
general case) m transcendental equations of the form

Ak = Ψk(A1, . . . ,Am), k = 1, . . . ,m, (16.5.3.6)

which contain m unknown numbers A1, . . . , Am.
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For the case in which Φ(t, y) is a polynomial in y, i.e.,

Φ(t, y) = p0(t) + p1(t)y + · · · + pn(t)yn, (16.5.3.7)

where p0(t), . . . , pn(t) are, for instance, continuous functions of t on the interval [a, b],
system (16.5.3.6) becomes a system of nonlinear algebraic equations for A1, . . . , Am.

The number of solutions of the integral equation (16.5.3.3) is equal to the number of solu-
tions of system (16.5.3.6). Each solution of system (16.5.3.6) generates a solution (16.5.3.5)
of the integral equation.

2◦. Consider the Urysohn equation with a degenerate kernel of the special form

y(x) +
∫ b

a

{ n∑

k=1

gk(x)fk
(
t, y(t)

)}
dt = h(x). (16.5.3.8)

Its solution has the form

y(x) = h(x) +
n∑

k=1

λkgk(x), (16.5.3.9)

where the constants λk can be defined by solving the algebraic (or transcendental) system
of equations

λm +
∫ b

a
fm

(
t,h(t) +

n∑

k=1

λkgk(t)
)
dt = 0, m = 1, . . . ,n. (16.5.3.10)

To different roots of this system, there are different corresponding solutions of the nonlinear
integral equation. It may happen that (real) solutions are absent.

A solution of the Urysohn equation with a degenerate kernel in the general form

f
(
x, y(x)

)
+
∫ b

a

{ n∑

k=1

gk
(
x, y(x)

)
hk
(
t, y(t)

)}
dt = 0 (16.5.3.11)

can be represented in the implicit form

f
(
x, y(x)

)
+

n∑

k=1

λkgk
(
x, y(x)

)
= 0, (16.5.3.12)

where the parameters λk are determined from the system of algebraic (or transcendental)
equations:

λk – Hk(�λ) = 0, k = 1, . . . ,n,

Hk(�λ) =
∫ b

a
hk
(
t, y(t)

)
dt, �λ = {λ1, . . . ,λn}.

(16.5.3.13)

Into system (16.5.3.13), we must substitute the function y(x) = y(x,�λ), which can be
obtained by solving equation (16.5.3.12).

The number of solutions of the integral equation is defined by the number of solutions
obtained from (16.5.3.12) and (16.5.3.13). It can happen that there is no solution.
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Example 1. Let us solve the integral equation

y(x) = λ
∫ 1

0
xty3(t) dt (16.5.3.14)

with parameter λ. We write

A =
∫ 1

0
ty3(t) dt. (16.5.3.15)

In this case, it follows from (16.5.3.14) that
y(x) = λAx. (16.5.3.16)

On substituting y(x) in the form (16.5.3.16) into relation (16.5.3.15), we obtain

A =
∫ 1

0
tλ3A3t3 dt.

Hence,
A = 1

5λ
3A3. (16.5.3.17)

For λ > 0, equation (16.5.3.17) has three solutions:

A1 = 0, A2 =
( 5
λ3

)1/2
, A3 = –

( 5
λ3

)1/2
.

Hence, the integral equation (16.5.3.14) also has three solutions for any λ > 0:

y1(x) ≡ 0, y2(x) =
( 5
λ3

)1/2
x, y3(x) = –

( 5
λ3

)1/2
x.

For λ ≤ 0, equation (16.5.3.17) has only the trivial solution y(x) ≡ 0.

16.5.3-2. Method of integral transforms.

1◦. Consider the following nonlinear integral equation with quadratic nonlinearity on a
semiaxis:

μy(x) – λ
∫ ∞

0

1
t
y
(x
t

)
y(t) dt = f (x). (16.5.3.18)

To solve this equation, the Mellin transform can be applied, which, with regard to the
convolution theorem (see Section 11.3), leads to a quadratic equation for the transform
ŷ(s) = M{y(x)}:

μŷ(s) – λŷ2(s) = f̂ (s).

This implies

ŷ(s) =
μ �
√
μ2 – 4λf̂ (s)

2λ
. (16.5.3.19)

The inverse transform y(x) = M–1{ŷ(s)} obtained by means of the Mellin inversion formula
(if it exists) is a solution of equation (16.5.3.18). To different signs in the formula for the
images (16.5.3.19), there are two corresponding solutions of the original equation.

2◦. By applying the Mellin transform, one can solve nonlinear integral equations of the
form

y(x) – λ
∫ ∞

0
tβy(xt)y(t) dt = f (x). (16.5.3.20)

The Mellin transform (see Table 11.3 in Section 11.3) reduces (16.5.3.20) to the following
functional equation for the transform ŷ(s) = M{y(x)}:

ŷ(s) – λŷ(s)ŷ(1 – s + β) = f̂ (s). (16.5.3.21)
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On replacing s by 1 – s + β in (16.5.3.21), we obtain the relationship

ŷ(1 – s + β) – λŷ(s)ŷ(1 – s + β) = f̂ (1 – s + β). (16.5.3.22)

On eliminating the quadratic term from (16.5.3.21) and (16.5.3.22), we obtain

ŷ(s) – f̂ (s) = ŷ(1 – s + β) – f̂ (1 – s + β). (16.5.3.23)

We express ŷ(1 – s+ β) from this relation and substitute it into (16.5.3.21). We arrive at the
quadratic equation

λŷ2(s) –
[

1 + f̂ (s) – f̂ (1 – s + β)
]
ŷ(s) + f̂ (s) = 0. (16.5.3.24)

On solving (16.5.3.24) for ŷ(s), by means of the Mellin inversion formula we can find a
solution of the original integral equation (16.5.3.20).

16.5.3-3. Method of differentiating for integral equations.

1◦. Consider the equation

y(x) +
∫ b

a
|x – t|f

(
t, y(t)

)
dt = g(x). (16.5.3.25)

Let us remove the modulus in the integrand:

y(x) +
∫ x

a
(x – t)f

(
t, y(t)

)
dt +

∫ b

x
(t – x)f

(
t, y(t)

)
dt = g(x). (16.5.3.26)

Differentiating (16.5.3.26) with respect to x yields

y′x(x) +
∫ x

a
f
(
t, y(t)

)
dt –

∫ b

x
f
(
t, y(t)

)
dt = g′x(x). (16.5.3.27)

Differentiating (16.5.3.27), we arrive at a second-order ordinary differential equation for
y = y(x):

y′′xx + 2f (x, y) = g′′xx(x). (16.5.3.28)

Let us derive the boundary conditions for equation (16.5.3.28). We assume that
–∞ < a < b < ∞. By setting x = a and x = b in (16.5.3.26), we obtain the relations

y(a) +
∫ b

a
(t – a)f

(
t, y(t)

)
dt = g(a),

y(b) +
∫ b

a
(b – t)f

(
t, y(t)

)
dt = g(b).

(16.5.3.29)

Let us solve equation (16.5.3.28) for f (x, y) and substitute the result into (16.5.3.29).
Integrating by parts yields the desired boundary conditions for y(x):

y(a) + y(b) + (b – a)
[
g′x(b) – y′x(b)

]
= g(a) + g(b),

y(a) + y(b) + (a – b)
[
g′x(a) – y′x(a)

]
= g(a) + g(b).

(16.5.3.30)

Let us point out a useful consequence of (16.5.3.30):

y′x(a) + y′x(b) = g′x(a) + g′x(b),

which can be used together with one of conditions (16.5.3.30).
Equation (16.5.3.28) under the boundary conditions (16.5.3.30) determines the solution

of the original integral equation (there may be several solutions).
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2◦. The equations

y(x) +
∫ b

a
eλ|x–t|f

(
t, y(t)

)
dt = g(x),

y(x) +
∫ b

a
sinh
(
λ|x – t|

)
f
(
t, y(t)

)
dt = g(x),

y(x) +
∫ b

a
sin
(
λ|x – t|

)
f
(
t, y(t)

)
dt = g(x),

can also be reduced to second-order ordinary differential equations by means of the differ-
entiation. For these equations, see the book by Polyanin and Manzhirov (1998).

16.5.3-4. Successive approximation method.

Consider the nonlinear Urysohn integral equation in the canonical form

y(x) =
∫ b

a
K(x, t, y(t)

)
dt, a ≤ x ≤ b. (16.5.3.31)

The iteration process for this equation is constructed by the formula

yk(x) =
∫ b

a
K(x, t, yk–1(t)

)
dt, k = 1, 2, . . . (16.5.3.32)

If the function K(x, t, y) is jointly continuous together with the derivative K′
y(x, t, y) (with

respect to the variables x, t, and ρ, a ≤ x ≤ b, a ≤ t ≤ b, and |y| ≤ ρ) and if

∫ b

a
sup
y

|K(x, t, y)| dt ≤ ρ,
∫ b

a
sup
y

|K′
y(x, t, y)| dt ≤ β < 1, (16.5.3.33)

then for any continuous function y0(x) of the initial approximation from the domain
{|y| ≤ ρ, a ≤ x ≤ b}, the successive approximations (16.5.3.32) converge to a continu-
ous solution y∗(x), which lies in the same domain and is unique in this domain. The rate of
convergence is defined by the inequality

|y∗(x) – yk(x)| ≤
βk

1 – β
sup
x

|y1(x) – y0(x)|, a ≤ x ≤ b, (16.5.3.34)

which gives an a priori estimate for the error of the kth approximation. The a posteriori
estimate (which is, in general, more precise) has the form

|y∗(x) – yk(x)| ≤
β

1 – β
sup
x

|yk(x) – yk–1(x)|, a ≤ x ≤ b. (16.5.3.35)

A solution of an equation of the form (16.5.3.31) with an additional term f (x) on the
right-hand side can be constructed in a similar manner.
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Example 2. Let us apply the successive approximation method to solve the equation

y(x) =
∫ 1

0
xty2(t) dt – 5

12 x + 1.

The recurrent formula has the form

yk(x) =
∫ 1

0
xty2

k–1(t) dt – 5
12x + 1, k = 1, 2, . . .

For the initial approximation we take y0(x) = 1. The calculation yields

y1(x) = 1 + 0.083 x,

y8(x) = 1 + 0.27 x,

y16(x) = 1 + 0.318 x,

y2(x) = 1 + 0.14 x,

y9(x) = 1 + 0.26 x,

y17(x) = 1 + 0.321 x,

y3(x) = 1 + 0.18x,

y10(x) = 1 + 0.29x,

y18(x) = 1 + 0.323 x,

. . .

. . .

. . .

Thus, the approximations tend to the exact solution y(x) = 1 + 1
3 x. We see that the rate of convergence

of the iteration process is fairly small. Note that in Paragraph 16.5.3-5, the equation in question is solved by a
more efficient method.

16.5.3-5. Newton–Kantorovich method.

We consider the Newton–Kantorovich method in connection with the Urysohn equation in
the canonical form (16.5.3.31). The iteration process is constructed as follows:

yk(x) = yk–1(x) + ϕk–1(x), k = 1, 2, . . . , (16.5.3.36)

ϕk–1(x) = εk–1(x) +
∫ b

a
K′
y

(
x, t, yk–1(t)

)
ϕk–1(t) dt, (16.5.3.37)

εk–1(x) =
∫ b

a
K(x, t, yk–1(t)

)
dt – yk–1(x). (16.5.3.38)

At each step of the algorithm, a linear integral equation for the correction ϕk–1(x) is solved.
Under some conditions, the process (16.5.3.36) has a high rate of convergence; however, it is
rather complicated because at each iteration we must obtain the new kernel K′

y

(
x, t, yk–1(t)

)

for equations (16.5.3.37).
The algorithm can be simplified by using the equation

ϕk–1(x) = εk–1(x) +
∫ b

a
K′
y

(
x, t, y0(t)

)
ϕk–1(t) dt (16.5.3.39)

instead of (16.5.3.37). If the initial approximation is chosen successfully, then the differ-
ence between the integral operators in (16.5.3.37) and (16.5.3.39) is small, and the kernel
in (16.5.3.39) remains the same in the course of the solution.

The successive approximation method that consists of the application of formulas
(16.5.3.36), (16.5.3.38), and (16.5.3.39) is called the modified Newton–Kantorovich method.
In principle, its rate of convergence is less than that of the original (unmodified) method;
however, this version of the method is less complicated in calculations, and therefore it is
frequently preferable.

Let the function K(x, t, y) be jointly continuous together with the derivatives K′
y(x, t, y)

and K′′
yy(x, t, y) with respect to the variables x, t, y, where a ≤ x ≤ b and a ≤ t ≤ b, and let

the following conditions hold:
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1◦. For the initial approximation y0(x), the resolvent R(x, t) of the linear integral equa-
tion (16.5.3.37) with the kernel K′

y

(
x, t, y0(t)

)
satisfies the condition

∫ b

a
|R(x, t)| dt ≤ A < ∞, a ≤ x ≤ b.

2◦. The residual ε0(x) of equation (16.5.3.38) for the approximation y0(x) satisfies the
inequality

|ε0(x)| =

∣
∣∣
∣

∫ b

a
K(x, t, y0(t)

)
dt – y0(x)

∣
∣∣
∣≤ B < ∞.

3◦. In the domain |y(x) – y0(x)| ≤ 2(1 + A)B, the following relation holds:

∫ b

a
sup
y

∣
∣K′′

yy(x, t, y)
∣
∣ dt ≤ D < ∞.

4◦. The constants A, B, and D satisfy the condition

H = (1 +A)2BD ≤ 1
2 .

In this case, under assumptions 1◦– 4◦, the process (16.5.3.36) converges to a solution y∗(x)
of equation (16.5.3.31) in the domain

|y(x) – y0(x)| ≤ (1 –
√

1 – 2H)H–1(1 – A)B, a ≤ x ≤ b.

This solution is unique in the domain

|y(x) – y0(x)| ≤ 2(1 + A)B, a ≤ x ≤ b.

The rate of convergence is determined by the estimate

|y∗(x) – yk(x)| ≤ 21–k(2H)2k–1(1 – A)B, a ≤ x ≤ b.

Thus, the above conditions establish the convergence of the algorithm and the existence,
the position, and the uniqueness domain of a solution of the nonlinear equation (16.5.3.31).
These conditions impose certain restrictions on the initial approximation y0(x) whose choice
is an important independent problem that has no unified approach. As usual, the initial
approximation is determined either by more detailed a priori analysis of the equation under
consideration or by physical reasoning implied by the essence of the problem described
by this equation. Under a successful choice of the initial approximation, the Newton–
Kantorovich method provides a high rate of convergence of the iteration process to obtain
an approximate solution with given accuracy.

Remark. Let the right-hand side of equation (16.5.3.31) contain an additional term f (x). Then such an
equation can be represented in the form (16.5.3.31), where the integrand is K

(
x, t, y(t)

)
+ (b – a)–1f (x).

Example 3. Let us apply the Newton–Kantorovich method to solve the equation

y(x) =
∫ 1

0
xty2(t) dt – 5

12 x + 1. (16.5.3.40)

For the initial approximation we take y0(x) = 1. According to (16.5.3.38), we find the residual

ε0(x) =
∫ 1

0
xty2

0(t) dt – 5
12 x + 1 – y0(x) = x

∫ 1

0
t dt – 5

12x + 1 – 1 = 1
12 x.
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The y-derivative of the kernel K(x, t, y) =xty2(t), which is needed in the calculations, has the formK′
y(x, t, y) =

2xty(t). According to (16.5.3.37), we form the following equation for ϕ0(x):

ϕ0(x) = 1
12 x + 2x

∫ 1

0
ty0(t)ϕ0(t) dt,

where the kernel turns out to be degenerate, which makes it possible to obtain the solution ϕ0(x) = 1
4 x directly.

Now we define the first approximation to the desired function:

y1(x) = y0(x) + ϕ0(x) = 1 + 1
4 x.

We continue the iteration process and obtain

ε1(x) =
∫ 1

0
xt
(

1 + 1
4 t
)
dt +

(
1 – 5

12 x
)

–
(

1 + 1
4 x
)

= 1
64 x.

The equation for ϕ1(x) has the form

ϕ1(x) = 1
64 x + 2x

∫ 1

0
t
(

1 + 1
4 t
)
dt +

(
1 – 5

12 x
)

–
(

1 + 1
4 x
)
,

and the solution is ϕ1(x) = 3
40x. Hence, y2(x) = 1 + 1

4 x + 3
40 x = 1 + 0.325 x. The maximal difference between

the exact solution y(x) = 1 + 1
3 x and the approximate solution y2(x) is observed at x = 1 and is less than 0.5%.

This solution is not unique. The other solution can be obtained by taking the function y0(x) = 1 + 0.8x
for the initial approximation. In this case we can repeat the above sequence of approximations and obtain the
following results (the numerical coefficient of x is rounded):

y1(x) = 1 + 0.82x, y2(x) = 1 + 1.13 x, y3(x) = 1 + 0.98 x, . . . ,

and the subsequent approximations tend to the exact solution y(x) = 1 + x.
We see that the rate of convergence of the iteration process performed by the Newton–Kantorovich method

is significantly higher than that performed by the method of successive approximations (see Example 2 in
Paragraph 16.5.3-4).

To estimate the rate of convergence of the performed iteration process, we can compare the above results
with the realization of the modified Newton–Kantorovich method. In connection with the latter, for the above
versions of the approximations we can obtain

yn(x) = 1 + knx;
k0 k1 k2 k3 k4 k5 k6 k7 k8 . . .

0 0.25 0.69 0.60 0.51 0.44 0.38 0.36 0.345 . . .
.

The iteration process converges to the exact solution y(x) = 1 + 1
3 x.

We see that the modified Newton–Kantorovich method is less efficient than the Newton–Kantorovich
method, but more efficient than the method of successive approximations (see Example 2).

16.5.3-6. Quadrature method.

To solve an arbitrary nonlinear equation, we can apply the method based on the application
of quadrature formulas. The procedure of composing the approximating system of equations
is the same as in the linear case (see Subsection 16.4.11). We consider this procedure for
an example of the Urysohn equation

y(x) –
∫ b

a
K
(
x, t, y(t)

)
dt = f (x), a ≤ x ≤ b. (16.5.3.41)

We set x = xi (i = 1, . . . ,n). Then we obtain

y(xi) –
∫ b

a
K
(
xi, t, y(t)

)
dt = f (xi). i = 1, . . . ,n. (16.5.3.42)
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On applying the quadrature formula from Subsection 16.4.11 and neglecting the approxi-
mation error, we transform relations (16.5.3.42) into the nonlinear system of algebraic (or
transcendental) equations

yi –
n∑

j=1

AjKij(yj) = fi, i = 1, . . . ,n, (16.5.3.43)

for the approximate values yi of the solution y(x) at the nodes x1, . . . , xn, where fi = f (xi)
and Kij(yj) = K(xi, tj , yj), and Aj are the coefficients of the quadrature formula.

The solution of the nonlinear system (16.5.3.43) gives values y1, . . . , yn for which by
interpolation we find an approximate solution of the integral equation (16.5.3.41) on the
entire interval [a, b]. For the analytic expression of an approximate solution, we can take
the function

ỹ(x) = f (x) +
n∑

j=1

AjK(x,xj , yj).
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2002.

Ladopoulos, E. G., Singular Integral Equations: Linear and Non-Linear Theory and Its Applications in Science
and Engineering, Springer-Verlag, Berlin, 2000.

Lavrentiev, M. M., Some Improperly Posed Problems of Mathematical Physics, Springer-Verlag, New York,
1967.

Lovitt, W. V., Linear Integral Equations, Dover Publications, New York, 1950.
Mikhlin, S. G., Linear Integral Equations, Hindustan Publishing, Delhi, 1960.
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Chapter 17

Difference Equations and
Other Functional Equations

17.1. Difference Equations of Integer Argument
17.1.1. First-Order Linear Difference Equations of Integer Argument

17.1.1-1. First-order homogeneous linear difference equations. General solution.

Let yn = y(n) be a function of integer argument n = 0, 1, 2, . . . A first-order homogeneous
linear difference equation has the form

yn+1 + anyn = 0. (17.1.1.1)

Its general solution can be written in the form

yn = Cun, un = (–1)na0a1 . . . an–1, n = 1, 2, . . . , (17.1.1.2)

where C = y0 is an arbitrary constant and un is a particular solution.

17.1.1-2. First-order nonhomogeneous linear difference equations. General solution.

A first-order nonhomogeneous linear difference equation has the form

yn+1 + anyn = fn. (17.1.1.3)

The general solution of the nonhomogeneous linear equation (17.1.1.3) can be rep-
resented as the sum of the general solution (17.1.1.2) of the corresponding homogeneous
equation (17.1.1.1) and a particular solution ỹn of the nonhomogeneous equation (17.1.1.3):

yn = Cun + ỹn, n = 1, 2, . . . , (17.1.1.4)

where C = y0 is an arbitrary constant, un is defined by (17.1.1.2), and

ỹn =
n–1∑

j=0

un
uj+1

fj = fn–1 –an–1fn–2 +an–2an–1fn–3 – · · ·+(–1)n–1a1a2 . . . an–1f0. (17.1.1.5)

17.1.1-3. First-order linear difference equations with constant coefficients.

A first-order linear difference equation with constant coefficients has the form

yn+1 – ayn = fn.

Using (17.1.1.2), (17.1.1.4), and (17.1.1.5) for an = –a, we obtain its general solution

yn = Can +
n–1∑

j=0

an–j–1fj .

873
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17.1.2. First-Order Nonlinear Difference Equations of Integer
Argument

17.1.2-1. First-order nonlinear equations. General and particular solutions.

Let yn = y(n) be a function of integer argument n = 0, �1, �2, . . . A first-order nonlinear
difference equation, in the general case, has the form

F (n, yn, yn+1) = 0. (17.1.2.1)

A solution of the difference equation (17.1.2.1) is defined as a discrete function yn that,
being substituted into the equation, turns it into identity. The general solution of a difference
equation is the set of all its solutions. The general solution of equation (17.1.2.1) depends
on an arbitrary constant C . The general solution can be written either in explicit form

yn = ϕ(n,C) (17.1.2.2)

or in implicit form Φ(n, yn,C) = 0. Specific values of C define specific solutions of the
equation (particular solutions).

Any constant solution yn = ξ of equation (17.1.2.1), with ξ independent of n, is called
an equilibrium solution.

17.1.2-2. Cauchy’s problem and its solution.

A difference equation resolved with respect to the leading term yn+1 has the form

yn+1 = f (n, yn). (17.1.2.3)

The Cauchy problem consists of finding a solution of this equation with a given initial value
of y0.

The next value y1 is calculated by substituting the initial value into the right-hand side
of equation (17.1.2.3) for n = 0:

y1 = f (0, y0). (17.1.2.4)

Then, taking n = 1 in (17.1.2.3), we get

y2 = f (1, y1). (17.1.2.5)

Substituting the previous value (17.1.2.4) into this relation, we find y2 = f
(

1, f (0, y0)
)
.

Taking n = 2 in (17.1.2.3) and using the calculated value y2, we find y3, etc. In a similar
way, one finds subsequent values y4, y5, . . .

Example. Consider the Cauchy problem for the nonlinear difference equation

yn+1 = ayβ
n; y0 = 1.

Consecutive calculations yield

y1 = a, y2 = aβ+1, y3 = aβ2+β+1, . . . , yn = aβn–1+βn–2+···+β+1 = a
βn–1
β–1 .

Remark. As a rule, solutions of nonlinear difference equations cannot be found in closed form (i.e., in
terms of a single, not a recurrent, formula).
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17.1.2-3. Riccati difference equation.

The Riccati difference equation has the general form

ynyn+1 = anyn+1 + bnyn + cn, n = 0, 1, . . . , (17.1.2.6)

with the constants an, bn, cn satisfying the condition anbn + cn ≠ 0.

1◦. The substitution
yn =

un+1

un
+ an, u0 = 1,

leads us to the linear second-order difference equation

un+2 + (an+1 – bn)un+1 – (anbn + cn)un = 0

with the initial conditions
u0 = 1, u1 = y0 – a0.

2◦. Let y∗n be a particular solution of equation (17.1.2.6). Then the substitution

zn =
1

yn – y∗n
, n = 0, 1, . . . ,

reduces equation (17.1.2.6) to the first-order linear nonhomogeneous difference equation

zn+1 +
(y∗n – an)2

anbn + cn
zn +

y∗n – an
anbn + cn

= 0.

With regard to the solution of this equation see Paragraph 17.1.1-2.

3◦. Let y(1)
n and y(2)

n be two particular solutions of equation (17.1.2.6) with y(1)
n ≠ y(2)

n . Then
the substitution

wn =
1

yn – y(1)
n

+
1

y(1)
n – y(2)

n

, n = 0, 1, . . . ,

reduces equation (17.1.2.6) to the first-order linear homogeneous difference equation

wn+1 +
(y(1)
n – an)2

anbn + cn
wn = 0, n = 0, 1, . . .

With regard to the solution of this equation see Paragraph 17.1.1-1.

17.1.2-4. Logistic difference equation.

Consider the initial-value problem for the logistic difference equation

yn+1 = ayn
(

1 –
yn
b

)
, n = 0, 1, . . . ,

y0 = λ,
(17.1.2.7)

where 0 < a ≤ 4, b > 0, and 0 ≤ λ ≤ b.
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1◦. Let
a = b = 4, λ = 4 sin2 θ (0 ≤ θ ≤ π

2 ).

Then problem (17.1.2.7) has the closed-form solution

yn = 4 sin2(2nθ), n = 0, 1, . . .

2◦. Let
a = 4, b = 1, λ = sin2 θ (0 ≤ θ ≤ π

2 ).

Then problem (17.1.2.7) has the closed-form solution

yn = sin2(2nθ), n = 0, 1, . . .

3◦. Let 0 ≤ a ≤ 4 and b = 1. In this case, the solutions of the logistic equation have the
following properties:

(a) There are equilibrium solutions yn = 0 and yn = (a – 1)/a.
(b) If 0 ≤ y0 ≤ 1, then 0 ≤ yn ≤ 1.
(c) If a = 0, then yn = 0.
(d) If 0 < a ≤ 1, then yn → 0 as n→ ∞.
(e) If 1 < a ≤ 3, then yn → (a – 1)/a as n→ ∞.
(f) If 3 < a < 3.449 . . . , then yn oscillates between the two points:

y� =
1

2a
(a + 1 �

√
a2 – 2a – 3 ).

17.1.2-5. Graphical construction of solutions to nonlinear difference equations.

Consider nonlinear difference equations of special form

yn+1 = f (yn), n = 0, 1, . . . (17.1.2.8)

The points y0, y1, y2, . . . are constructed on the plane (y, z) on the basis of the graph
z = f (y) and the straight line z = y, called the iteration axis.

Figure 17.1 shows the result of constructing the points P0, P1, P2, . . . on the graph of
the function z = f (y) with the abscissas y0, y1, y2, . . . determined by equation (17.1.2.8).

O

y

ξ

z z y�

z f y� ( )
y
2

y
1

y
2

y
0

y
1

Q1

Q0

P*P2

P1

P0

Figure 17.1. Construction, using the graph of the function z = f (y), of the points with abscissas y0, y1, y2, . . .
that satisfy the difference equations (17.1.2.8).
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This construction consists of the following steps:
1. Through the point P0 = (y0, y1) with y1 = f (y0), we draw a horizontal line. This line

crosses the iteration axis at the point Q0 = (y1, y1).
2. Through the point Q0, we draw a vertical line. This line crosses the graph of the

function f (y) at the point P1 = (y1, y2) with y2 = f (y1).
3. Repeating the operations of steps 1 and 2, we obtain the following sequence on the

graph of f (y):

P0 = (y0, f (y0)), P1 = (y1, f (y1)), P2 = (y2, f (y2)), . . .

In the case under consideration, for n → ∞, the points yn converge to a fixed ξ,
which determines an equilibrium solution satisfying the algebraic (transcendental) equation
ξ = f (ξ).

17.1.2-6. Convergence to a fixed point. Qualitative behavior of solutions.

A fixed point of a mapping f of a set I is a point ξ � I such that f (ξ) = ξ.

BRAUER FIXED POINT THEOREM. If f (y) is a continuous function on the interval I =
{a ≤ y ≤ b} and f (I) ⊂ I , then f (y) has a fixed point in I .

A set E is called the domain of attraction of a fixed point ξ of a function f (y) if the
sequence yn+1 = f (yn) converges to ξ for any y0 � E.

If ξ = f (ξ) and |f ′(ξ)| < 1, then ξ is an attracting fixed point: there is a neighborhood of
ξ belonging to its domain of attraction.

Figure 17.2 illustrates the qualitative behavior of sequences (17.1.2.8) starting from
points sufficiently close to a fixed point ξ such that f ′(ξ) ≠ 0 and |f ′(ξ)| ≠ 1.

According to the behavior of the iteration process in a neighborhood of the fixed point,
the cases represented in Fig. 17.2 may be called one-dimensional analogues of a “stable
node” (for 0 < f ′(ξ) < 1; see Fig. 17.2 a), “stable focus” (for –1 < f ′(ξ) < 0; see Fig. 17.2 b),
“unstable node” (for 1 < f ′(ξ); see Fig. 17.2 c), or “unstable focus” (for f ′(ξ) < –1; see
Fig. 17.2 d).

17.1.3. Second-Order Linear Difference Equations with Constant
Coefficients

17.1.3-1. Homogeneous linear equations.

A second-order homogeneous linear difference equation with constant coefficients has the
form

ayn+2 + byn+1 + cyn = 0. (17.1.3.1)

The general solution of this equation is determined by the roots of the quadratic equation

aλ2 + bλ + c = 0. (17.1.3.2)

1◦. Let b2 – 4ac > 0. Then the quadratic equation (17.1.3.2) has two different real roots

λ1 =
–b +

√
b2 – 4ac

2a
, λ2 =

–b –
√
b2 – 4ac

2a
,

and the general solution of the difference equation (17.1.3.1) is given by the formula

yn = C1
λ1λ

n
2 – λn1λ2

λ1 – λ2
+ C2

λn1 – λn2
λ1 – λ2

, (17.1.3.3)

where C1 and C2 are arbitrary constants. Solution (17.1.3.3) satisfies the initial conditions
y0 = C1, y1 = C2.
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Figure 17.2. Iterative sequences yn+1 = f (yn) in a neighborhood of a fixed point ξ = f (ξ). Qualitative analysis
of different cases using the graphs of the function z = f (y).

2◦. Let b2 – 4ac = 0. Then the quadratic equation (17.1.3.2) has one double real root

λ = –
b

2a
,

and the general solution of the difference equation (17.1.3.1) has the form

yn = C1(1 – n)λn + C2nλ
n–1.

This formula can be obtained from (17.1.3.3) by taking λ1 = λ, λ2 = λ(1 – ε) and passing
to the limit as ε→ 0.

3◦. Let b2 – 4ac < 0. Then the quadratic equation (17.1.3.2) has two complex conjugate
roots

λ1 = ρ(cosϕ + i sinϕ), λ2 = ρ(cosϕ – i sinϕ),

ρ =

√
c

a
, tanϕ = –

1
b

√
4ac – b2,

and the general solution of the difference equation (17.1.3.1) has the form

yn = C1ρ
n sin[(n – 1)ϕ]

sinϕ
+ C2ρ

n–1 sin(nϕ)
sinϕ

.

This formula can also be obtained from (17.1.3.3) by expressing λ1 and λ2 in terms of ρ
and ϕ.
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17.1.3-2. Nonhomogeneous linear equations.

A second-order nonhomogeneous linear difference equation with constant coefficients has
the form

ayn+2 + byn+1 + cyn = fn. (17.1.3.4)

The general solution of this equation is given by

yn = C1
λ1λ

n
2 – λn1λ2

λ1 – λ2
+ C2

λn1 – λn2
λ1 – λ2

+ ỹn,

where

ỹ0 = ỹ1 = 0, ỹn =
1
a

n–2∑

k=0

λn–k–1
1 – λn–k–1

2
λ1 – λ2

fk,

C1 and C2 are arbitrary constants, and λ1, λ2 are the roots of the quadratic equation
(17.1.3.2).

17.1.3-3. Boundary value problem.

The solution of the boundary value problem for equation*

ayn+1 + byn + cyn–1 = fn, n = 1, 2, . . . , N – 1,

with the boundary conditions

y0 = μ1, yN–1 = μ2

is given by the formula

yn =
(λ1λ2)n(λN–n

1 – λN–n
2 )

λN1 – λN2
μ1 +

λn1 – λn2
λN1 – λN2

μ2

–
1
a

n–1∑

k=1

(λ1λ2)n–k(λN–n
1 – λN–n

2 )(λk1 – λk2 )

(λ1 – λ2)(λN1 – λN2 )
fk –

1
a

N–1∑

k=n

(λN–k
1 – λN–k

2 )(λn1 – λn2 )

(λ1 – λ2)(λN1 – λN2 )
fk.

17.1.4. Second-Order Linear Difference Equations with Variable
Coefficients

17.1.4-1. Second-order homogeneous linear difference equations. General solution.

1◦. A second-order homogeneous linear difference equation with variable coefficients has
the form

anyn+2 + bnyn+1 + cnyn = 0. (17.1.4.1)

The trivial solution yn = 0 is a particular solution of the homogeneous linear equation.
Let y(1)

n , y(2)
n be particular solutions of equation (17.1.4.1) satisfying the condition

y(1)
0 y(2)

1 – y(2)
0 y(1)

1 ≠ 0. (17.1.4.2)

Then the general solution of equation (17.1.4.1) is given by

yn = C1y
(1)
n + C2y

(2)
n , (17.1.4.3)

where C1 and C2 are arbitrary constants.

* This equation is obtained from (17.1.3.4) by shifting the subscript of the sought function by unity.
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Remark. If condition (17.1.4.2) holds, then the solutions y(1)
n , y(2)

n are linearly independent and for all
n the following inequality holds: Δn = y(1)

n y
(2)
n+1 – y(2)

n y
(1)
n+1 ≠ 0. It is convenient to single out two linearly

independent solutions y(1)
n , y(2)

n with the help of the initial conditions

y(1)
0 = 1, y(1)

1 = 0; y(2)
0 = 0, y(2)

1 = 1.

2◦. Let y∗n be a nontrivial particular solution of equation (17.1.4.1). Then the replacement

yn = y∗nun (17.1.4.4)

yields the equation
any

∗
n+2un+2 + bny

∗
n+1un+1 + cny

∗
nun = 0. (17.1.4.5)

Taking into account that equation (17.1.4.1) holds for y∗n, and substituting

bny
∗
n+1 = –any

∗
n+2 – cny

∗
n

into (17.1.4.5), we find, after simple transformations, that

any
∗
n+2(un+2 – un+1) – cny

∗
n(un+1 – un) = 0.

Introducing a new variable by
wn = un+1 – un, (17.1.4.6)

we come to the homogeneous first-order difference equation

any
∗
n+2wn+1 – cny

∗
nwn = 0.

Solving this equation (see Paragraph 17.1.1-1), one finds a solution of the nonhomogeneous
first-order equation with constant coefficients (17.1.4.6) (see Paragraph 17.1.1-3), and then,
using (17.1.4.4), one finds a solution of the original equation.

17.1.4-2. Second-order nonhomogeneous linear equations. General solution.

1◦. A second-order nonhomogeneous linear difference equation with variable coefficients
has the form

anyn+2 + bnyn+1 + cnyn = fn. (17.1.4.7)
The general solution of the nonhomogeneous linear equation (17.1.4.7) can be rep-

resented as a sum of the general solution (17.1.4.3) of the corresponding homogeneous
equation (17.1.4.1) and a particular solution ỹn of the nonhomogeneous equation (17.1.4.7):

yn = C1y
(1)
n + C2y

(2)
n + ỹn,

where

ỹ0 = ỹ1 = 0, ỹn =
n–2∑

j=0

y(1)
j+1y

(2)
n – y(1)

n y
(2)
j+1

y(1)
j+1y

(2)
j+2 – y(1)

j+2y
(2)
j+1

fj
aj

, n = 2, 3, . . .

2◦. Let y∗n be a nontrivial particular solution of the homogeneous equation (17.1.4.1). Then
the substitutions (17.1.4.4) and (17.1.4.6) yield a nonhomogeneous first-order difference
equation

any
∗
n+2wn+1 – cny

∗
nwn = fn.

With regard to the solution of this equation see Paragraph 17.1.1-2.

3◦. Superposition principle. Let y(1)
n and y(2)

n be solutions of two nonhomogeneous linear
difference equations with the same left-hand sides and different right-hand sides:

anyn+2 + bnyn+1 + cnyn = fn,
anyn+2 + bnyn+1 + cnyn = gn.

Then αy(1)
n + βy(2)

n is a solution of the equation

anyn+2 + bnyn+1 + cnyn = αfn + βgn,

where α and β are arbitrary constants.



17.1. DIFFERENCE EQUATIONS OF INTEGER ARGUMENT 881

17.1.5. Linear Difference Equations of Arbitrary Order with Constant
Coefficients

17.1.5-1. Homogeneous linear equations.

An mth-order homogeneous linear difference equation with constant coefficients has the
general form

amyn+m + am–1yn+m–1 + · · · + a1yn+1 + a0yn = 0. (17.1.5.1)

The general solution of this equation is determined by the roots of the characteristic
equation

amλ
m + am–1λ

m–1 + · · · + a1λ + a0 = 0. (17.1.5.2)

The following cases are possible:

1◦. All roots λ1, λ2, . . . , λm of the characteristic equation (17.1.5.2) are real and distinct.
Then the general solution of the homogeneous linear differential equation (17.1.5.1) has the
form

yn = C1λ
n
1 + C2λ

n
2 + · · · + Cmλ

n
m,

where C1, C2, . . . , Cm are arbitrary constants.

2◦. There are k equal real roots λ1 = λ2 = · · · = λk (k ≤ m), and the other roots are real
and distinct. In this case, the general solution is given by

yn = (C1 + C2n + · · · + Ckn
k–1)λn1 + Ck+1λ

n
k+1 + · · · + Cmλ

n
m.

3◦. There are k pairs of distinct complex conjugate roots λj = ρj(cosϕj � i sinϕj)
(j = 1, . . . , k; 2k ≤ m), and the other roots are real and distinct. In this case, the general
solution is

yn = ρn1 [A1 cos(nϕ1) +B1 sin(nϕ1)] + · · · + ρnk [Ak cos(nϕk) + Bk sin(nϕk)]
+ C2k+1λ

n
2k+1 + · · · + Cmλ

n
m,

where A1, . . . , Ak, B1, . . . , Bk, C2k+1, . . . , Cm are arbitrary constants.

4◦. In the general case, if there are r different roots λ1, λ2, . . . , λr of multiplicities
k1, k2, . . . , kr, respectively, the left-hand side of the characteristic equation (17.1.5.2) can
be represented as the product

P (λ) = am(λ – λ1)k1 (λ – λ2)k2 . . . (λ – λr)
kr ,

where k1 + k2 + · · · + kr = m. The general solution of the original equation is given by the
formula

yn =
r∑

s=1

(Cs,1 + Cs,2n + · · · + Cs,ksn
ks–1)λns ,

where Cs,k are arbitrary constants.
If the characteristic equation (17.1.5.2) has complex conjugate roots of the form

λ = ρe�iϕ = ρ(cosϕ � i sinϕ) , then in the above solution, one should extract the real part
on the basis of the relation λn = ρne�inϕ = ρn[cos(nϕ) � i sin(nϕ)].
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17.1.5-2. Nonhomogeneous linear equations.

1◦. An mth-order nonhomogeneous linear difference equation with constant coefficients
has the general form

amyn+m + am–1yn+m–1 + · · · + a1yn+1 + a0yn = fn. (17.1.5.3)

The general solution of this equation can be represented as the sum yn = Yn + ỹn, where
Yn is the general solution of the corresponding homogeneous equation (for fn ≡ 0) and ỹn
is any particular solution of the nonhomogeneous equation (17.1.5.3). The general solution
of the corresponding homogeneous equation is constructed with the help of the formulas
from Paragraph 17.1.5-1, and a particular solution of the nonhomogeneous equation for an
arbitrary function fn is constructed with the help of the formulas from Paragraph 17.1.6-2.

2◦. If the roots λ1, λ2, . . . , λm of the characteristic equation (17.1.5.2) are mutually dis-
tinct, the particular solution of the nonhomogeneous difference equation (17.1.5.3) has the
form

ỹn =
n∑

ν=m

fn–ν

m∑

k=1

λν–1
k

P ′(λk)
, (17.1.5.4)

where P (λ) is the characteristic polynomial [coinciding with the left-hand side of equation
(17.1.5.2)], and the prime indicates its derivative

P ′(λ) ≡ ammλm–1 + am–1(m – 1)λm–2 + · · · + 2a2λ + a1.

In the case of complex conjugate roots, solution (17.1.5.4) should be split into the real
and the imaginary parts.

17.1.6. Linear Difference Equations of Arbitrary Order with Variable
Coefficients

17.1.6-1. Homogeneous linear difference equations.

An mth-order homogeneous linear difference equation with variable coefficients has the
form

am(n)yn+m + am–1(n)yn+m–1 + · · · + a1(n)yn+1 + a0(n)yn = 0. (17.1.6.1)

Functions u(1)
n , u(2)

n , . . . , u(m)
n are called linearly independent solutions of equation

(17.1.6.1) if
1) they take finite values and satisfy equation (17.1.6.1),
2) the relation

C1u
(1)
n + C2u

(2)
n + · · · + Cmu

(m)
n = 0, for all n = 1, 2, . . . ,

with constants C1, C2, . . . , Cm implies that C1 = · · · = Cm = 0.
If u(1)

n , u(2)
n , . . . , u(m)

n are linearly independent solutions of equation (17.1.6.1), then the
determinant

Δn =

∣∣
∣∣
∣∣
∣

u(1)
n u(1)

n+1 · · · u(1)
n+m–1

u(2)
n u(2)

n+1 · · · u(2)
n+m–1· · · · · · · · · · · ·

u(m)
n u(m)

n+1 · · · u(m)
n+m–1

∣∣
∣∣
∣∣
∣

(17.1.6.2)
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differs from zero for all admissible n. Conversely, if the determinant (17.1.6.2) for solutions
u(1)
n , u(2)

n , . . . , u(m)
n of equation (17.1.6.1) differs from zero for some n, then the solutions

are linearly independent.
If u(1)

n , u(2)
n , . . . , u(m)

n are linearly independent solutions of equation (17.1.6.1), then the
general solution of this equation has the form

yn = C1u
(1)
n + C2u

(2)
n + · · · + Cmu

(m)
n , (17.1.6.3)

where C1, C2, . . . , Cm are arbitrary constants.
A solution is determined by prescribing the initial values of the sought function at m

points.

17.1.6-2. Nonhomogeneous linear difference equations.

1◦. An mth-order nonhomogeneous linear difference equation with variable coefficients
has the form

am(n)yn+m + am–1(n)yn+m–1 + · · · + a1(n)yn+1 + a0(n)yn = fn. (17.1.6.4)

The general solution of this equation can be represented as a sum of the general solution
of the corresponding homogeneous equation (17.1.6.1) and a particular solution ỹn of the
nonhomogeneous equation (17.1.6.4):

yn = C1u
(1)
n + C2u

(2)
n + · · · + Cmu

(m)
n + ỹn.

A particular solution can be determined by the formula

ỹ0 = ỹ1 = · · · = ỹm–1 = 0, ỹn =
n–m∑

j=0

Am,n,j

Bm,j

fj
am(j)

, n = m, m + 1, . . . ,

where

Am,n,j =

∣
∣∣
∣∣
∣∣

u(1)
j+1 u(2)

j+1 · · · u(m)
j+1· · · · · · · · · · · ·

u(1)
j+m–1 u(2)

j+m–1 · · · u(m)
j+m–1

u(1)
n u(2)

n · · · u(m)
n

∣
∣∣
∣∣
∣∣
, Bm,j =

∣∣
∣
∣∣
∣∣
∣

u(1)
j+1 u(1)

j+2 · · · u(1)
j+m· · · · · · · · · · · ·

u(m–1)
j+1 u(m–1)

j+2 · · · u(m–1)
j+m

u(m)
j+1 u(m)

j+2 · · · u(m)
j+m

∣∣
∣
∣∣
∣∣
∣

.

2◦. Superposition principle. Let y(1)
n and y(2)

n be solutions of two nonhomogeneous linear
difference equations with the same left-hand side and different right-hand sides:

am(n)yn+m + am–1(n)yn+m–1 + · · · + a1(n)yn+1 + a0(n)yn = fn,
am(n)yn+m + am–1(n)yn+m–1 + · · · + a1(n)yn+1 + a0(n)yn = gn.

Then αy(1)
n + βy(2)

n is a solution of the equation

am(n)yn+m + am–1(n)yn+m–1 + · · · + a1(n)yn+1 + a0(n)yn = αfn + βgn,

where α and β are arbitrary constants.
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17.1.7. Nonlinear Difference Equations of Arbitrary Order

17.1.7-1. Difference equations of mth order. General solution.

Let yn = y(n) be a function of integer argument n = 0, �1, �2, . . . Anmth-order difference
equation, in the general case, has the form

F (n, yn, yn+1, . . . , yn+m) = 0. (17.1.7.1)

A solution of the difference equation (17.1.7.1) is a discrete function yn that, being
substituted into the equation, turns it into identity. The general solution of a difference
equation is the set of all its solutions. The general solution of equation (17.1.7.1) depends
on m arbitrary constants C1, . . . ,Cm. The general solution can be written in explicit form
as

yn = ϕ(n,C1, . . . ,Cm), (17.1.7.2)

or in implicit form as Φ(n, yn,C1, . . . ,Cm) = 0. Specific values of C1, . . . , Cm define
specific solutions of the equation (particular solutions).

Any constant solution yn = ξ of equation (17.1.7.1), where ξ is independent of n, is
called an equilibrium solution.

Remark. The term difference equation was introduced in numerical mathematics in connection with the
investigation of equations of the form

G(n, yn, Δyn, . . . , Δmyn) = 0 (17.1.7.3)

with finite differences*

Δyn = yn+1 – yn, Δ2yn = yn+2 – 2yn+1 + yn, Δmyn = Δm–1Δyn. (17.1.7.4)

The replacement of the finite differences in (17.1.7.3), by their explicit expressions in terms of the values of
the sought function according to (17.1.7.4), brings us to equations of the form (17.1.7.1).

17.1.7-2. Construction of a difference equation by a given general solution.

Suppose that the general solution of a difference equation is given in the form (17.1.7.2).
Then the corresponding mth-order difference equation with this solution can be constructed
by eliminating the arbitrary constants C1, . . . , Cm from the relations

yn = ϕ(n,C1, . . . ,Cm),
yn+1 = ϕ(n + 1,C1, . . . ,Cm),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
yn+m = ϕ(n + m,C1, . . . ,Cm).

17.1.7-3. Cauchy’s problem and its solution. The step method.

A difference equation resolved with respect to the leading term yn+m has the form

yn+m = f (n, yn, yn+1, . . . , yn+m–1). (17.1.7.5)

The Cauchy problem consists of finding a solution of this equation with given initial values
of y0, y1, . . . , ym–1.

* Finite differences are used for the approximation of derivatives in differential equations.
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The next value, ym, is calculated by substituting the initial values into the right-hand
side of equation (17.1.7.5) with n = 0. We have ym = f (0, y0, y1, . . . , ym–1). Then one takes
n = 1 in (17.1.7.5). We get

ym+1 = f (1, y1, y2, . . . , ym). (17.1.7.6)

Substituting the initial values y1, . . . , ym–1 and the calculated value ym into this relation,
we find ym+1. Further, taking n = 2 in (17.1.7.6) and using the initial values y2, . . . , ym–1
and the calculated values ym, ym+1, we find ym+2. In a similar way, we consecutively find
all subsequent values ym+3, ym+4, . . .

The above method of solving difference equations is called the step method.

17.2. Linear Difference Equations with a Single
Continuous Variable

17.2.1. First-Order Linear Difference Equations

17.2.1-1. Homogeneous linear difference equations. General properties of solutions.

1◦. A first-order homogeneous linear difference equation has the form

y(x + 1) – f (x)y(x) = 0, (17.2.1.1)

where f (x) is a given continuous real-valued function of real argument and y(x) is an
unknown real-valued function, 0 ≤ x < ∞.

Let y1 = y1(x) be a nontrivial particular solution of equation (17.2.1.1), y1(x) � 0. Then
the general solution of equation (17.2.1.1) is given by

y(x) = Θ(x)y1(x), (17.2.1.2)

where Θ(x) = Θ(x + 1) is an arbitrary 1-periodic function.

Example 1. The equation with constant coefficients

y(x + 1) – ay(x) = 0, (17.2.1.3)

with a > 0, admits a particular solution y0(x) = ax. Therefore, the general solution of equation (17.2.1.3) has
the form

y(x) = Θ(x)ax, (17.2.1.4)

where Θ(x) is an arbitrary periodic function with unit period. In the special case of a = 1, the general solution
of equation (17.2.1.3) is an arbitrary 1-periodic function.

Remark 1. When using formula (17.2.1.2) for obtaining continuous particular solutions from a given
continuous particular solution, one should consider not only continuous but also discontinuous or unbounded
periodic functions Θ(x). For instance, the equation

y(x + 1) + y(x) = 0, (17.2.1.5)

which determines antiperiodic functions of unit period, has continuous particular solutions

y1(x) = cos(πx), y2(x) = sin(πx).

In order to pass from the first of these particular solutions to the second with the help of (17.2.1.2), one
should take the unbounded periodic function Θ(x) = tan(πx), which is undefined at the points x = 1

2 + n,
n = 0, �1, �2, . . .

See also Remark 2.
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Remark 2. The general solution of a difference equation may be represented by quite different formulas.
Thus, the general solution of equation (17.2.1.5) can be represented by the following formulas:

y(x) = (–1)[x]Θ(x), (17.2.1.6a)

y(x) = Θ1(x) cos(πx) + Θ2(x) sin(πx), (17.2.1.6b)

y(x) = Θ3

( x + 1
2

)
– Θ3

( x
2

)
, (17.2.1.6c)

where Θ(x), Θ1(x), Θ2(x), and Θ3(x) are arbitrary periodic functions of period 1, [x] is the integer part of x.
Let us show that formulas (17.2.1.6a), (17.2.1.6b), and (17.2.1.6c) are equivalent.
First, we note that (17.2.1.6b) contains one redundant arbitrary function and can be written as

y(x) = Θ1(x) cos(πx) = Θ2(x) sin(πx),

Θ1(x) = Θ1(x) + tan(πx)Θ2(x), Θ2(x) = cot(πx)Θ1(x) + Θ2(x).

Here, Θ1(x) and Θ2(x) are arbitrary 1-periodic functions, since tan(πx) and cot(πx) have period 1. Therefore,
without the loss of generality, we can take Θ1(x) ≡ 0 in (17.2.1.6b) (or Θ2(x) ≡ 0). And we should consider
bounded, as well as unbounded, periodic functions Θ2(x) (or Θ1(x)).

Formula (17.2.1.6a) with a continuous Θ(x) yields discontinuous solutions, in general (for Θ(x) different
from zero at integer points). This formula can be represented in the form (17.2.1.6b):

y(x) = sin(πx)Θ2(x), Θ2(x) =
(–1)[x]

sin(πx)
Θ(x).

Here, Θ2(x) is an arbitrary periodic function of period 1, since the function (–1)[x]/ sin(πx) has period 1.
Formula (17.2.1.6c) can be written in the form (17.2.1.6a):

y(x) = (–1)[x]Θ(x), Θ(x) = (–1)[x]

[
Θ3

( x + 1
2

)
– Θ3

( x
2

)]
.

For the investigation of continuous (smooth) solutions it is more convenient to use formulas (17.2.1.6b)
and (17.2.1.6c), where Θ1(x), Θ2(x), and Θ3(x) are arbitrary continuous (smooth) 1-periodic functions.

2◦. Consider the equation
y(x + 1) – af (x)y(x) = 0 (17.2.1.7)

with a parameter a. Let y1 = y1(x) be a nontrivial particular solution of equation (17.2.1.7)
with a = 1. Then the following results hold:

For a > 0, the general solution of equation (17.2.1.7) has the form

y(x) = axΘ(x)y1(x), (17.2.1.8)

where Θ(x) is an arbitrary periodic function with period 1.
For a < 0, the general solution of equation (17.2.1.7) can be represented by any of the

formulas
y(x) = (–1)[x] |a|xΘ(x)y1(x),

y(x) = |a|x
[
Θ1(x) cos(πx) + Θ2(x) sin(πx)

]
y1(x),

y(x) = |a|x
[
Θ3

(x + 1
2

)
– Θ3

( x
2

)]
y1(x),

(17.2.1.9)

which generalize formulas (17.2.1.6).

3◦. Let y1 = y1(x) be a solution of equation (17.2.1.1). Then the equation

y(x + 1) – f (x + a)y(x) = 0

admits the solution
y(x) = y1(x + a).
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4◦. Let y1 = y1(x) be a positive solution of equation (17.2.1.1). Then the equation

y(x + 1) – [f (x)]ky(x) = 0,

for any k, admits the solution
y(x) = [y1(x)]k.

5◦. Let y1 = y1(x) be a solution of equation (17.2.1.1). Then the equation

y(x + 1) – ϕ(x)f (x)y(x) = 0,

where ϕ(x) = ϕ(x + 1) is an arbitrary positive 1-periodic function, admits the solution

y(x) = y1(x)[ϕ(x)]x+1.

6◦. A solution of the linear homogeneous difference equation

y(x + 1) + f1(x)f2(x) . . . fn(x)y(x) = 0

can be represented as the product

y(x) = y1(x)y2(x) . . . yn(x),

where yk(x) are solutions of the linear homogeneous difference equations

yk(x + 1) + fk(x)yk(x) = 0, k = 1, . . . , n.

7◦. The equation
y(x + a) – f (x)y(x) = 0

can be reduced to an equation of the form (17.2.1.1) with the help of the transformation
z = x/a, y(x) = w(z). And we obtain

w(z + 1) – f (az)w(z) = 0.

17.2.1-2. Linear difference equations with rational and exponential functions.

Below we give some particular solutions of some homogeneous linear difference equations
with rational and exponential functions. Their general solutions can be obtained as a product
of a particular solution and an arbitrary 1-periodic function; see (17.2.1.2).

1◦. The general solution of the first-order homogeneous linear difference equation with
constant coefficients (17.2.1.3) is determined by (17.2.1.8) and (17.2.1.9) with y1(x) ≡ 1.

2◦. The equation
y(x + 1) – xy(x) = 0

admits a particular solution

y(x) = Γ(x), Γ(x) =
∫ ∞

0
tx–1e–t dt,

where Γ(x) is the gamma-function.
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3◦. Consider the first-order equation with rational coefficients

Pn(x)y(x + 1) – Qm(x)y(x) = 0,

where Pn(x) and Qm(x) are given polynomials of degrees n and m, respectively. Suppose
that these polynomials are represented in the form

Pn(x) = a(x – ν1)(x – ν2) . . . (x – νn),
Qm(x) = b(x – μ1)(x – μ2) . . . (x – μm), ab > 0.

Direct verification shows that the function

y(x) =
( b
a

)x Γ(x – μ1)Γ(x – μ2) . . .Γ(x – μm)
Γ(x – ν1)Γ(x – ν2) . . .Γ(x – νn)

is a particular solution of the equation under consideration, where Γ(x) is the gamma-
function. This solution can have polar singularities at the points x = μk – s (k = 1, 2, . . . ;
s = 0, 1, . . . ).

4◦. The equation
y(x + 1) – eλxy(x) = 0

with the parameter λ admits the solution

y(x) = exp
( 1

2λx
2 – 1

2λx
)
.

5◦. The equation
y(x + 1) – eμx

2+λxy(x) = 0
with the parameters μ and λ admits the solution

y(x) = exp
[ 1

3μx
3 + 1

2 (λ – μ)x2 + 1
6 (μ – 3λ)x

]
.

6◦. The equation

y(x + 1) – exp[Pn(x)]y(x) = 0, Pn(x) =
n∑

k=1

bkx
k,

has a particular solution of the form

y(x) = exp[Qn+1(x)], Qn+1(x) =
n+1∑

k=1

ckx
k,

where ck can be found by the method of indefinite coefficients.

7◦. The particular solutions from Items 1◦– 6◦ allow us to obtain solutions of more intricate
linear difference equations with the help of formulas from Paragraph 17.2.1-1.

Example 2. Consider the equation

y(x + 1) – (x + a)ky(x) = 0
with the parameters a and k. As a starting point, we take the solution from Item 1◦ corresponding to the
special case of the equation with a = 0, k = 1. Consecutive utilization of the formulas from Items 3◦ and 4◦ of
Paragraph 17.2.1-1 yields the following solution of the equation under consideration:

y(x) = [Γ(x + a)]k,

where Γ(x) is the gamma-function.

8◦. The general solution of equation (17.2.1.1) with arbitrary f (x) can be constructed with
the help of formulas from Paragraph 17.2.1-3.
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17.2.1-3. Homogeneous linear difference equations. Cauchy’s problem.

1◦. Cauchy’s problem: Find a solution of equation (17.2.1.1) with the initial condition

y(x) = ϕ(x) for 0 ≤ x < 1, (17.2.1.10)

where ϕ(x) is a given continuous function defined on the interval 0 ≤ x ≤ 1.
A solution of problem (17.2.1.1), (17.2.1.10) is obtained by the step method: on the

interval 1 ≤ x < 2, the solution is constructed from equation (17.2.1.1) with the initial
condition (17.2.1.10) taken into account; on the interval 2 ≤ x < 3, one utilizes equation
(17.2.1.1) and the solution obtained for 1 ≤ x < 2; on the interval 3 ≤ x < 4, one uses
equation (17.2.1.1) and the solution obtained for 2 ≤ x < 3; etc. As a result, we get

y(x) = ϕ(x) for 0 ≤ x < 1,
y(x) = f (x – 1)ϕ(x – 1) for 1 ≤ x < 2,
y(x) = f (x – 1)f (x – 2)ϕ(x – 2) for 2 ≤ x < 3,
y(x) = f (x – 1)f (x – 2) . . . f (x – n)ϕ(x – n) for n ≤ x < n + 1,

(17.2.1.11)

where n = 3, 4, . . .
The sequence of formulas (17.2.1.11) that determine a solution of the Cauchy problem

(17.2.1.1), (17.2.1.10) can be written as a single formula

y(x) = ϕ({x})
[x]∏

k=1

f (x – k), (17.2.1.12)

where [x] and {x} denote, respectively, the integer and the fractional parts of x (x =
[x] + {x}), and the product over the empty set of indexes (for [x] = 0) is assumed equal to
unity.

Solution (17.2.1.12) is continuous if it is continuous at the integer points x = 1, 2, . . . ,
and this brings us to the condition

ϕ(1) = f (0)ϕ(0). (17.2.1.13)

Example 3. Consider the Cauchy problem for equation (17.2.1.1), where f (x) = f (x + 1) is an arbitrary
(nonnegative) 1-periodic function. In the initial condition (17.2.1.10), take

ϕ(x) = Θ(x)[f (x)]x+1,

where Θ(x) = Θ(x + 1) is an arbitrary 1-periodic function. It is easy to check that the continuity condition
(17.2.1.13) is satisfied. Using (17.2.1.11), we obtain the solution of the problem in closed form

y(x) = Θ(x)[f (x)]x+1 (0 ≤ x < ∞). (17.2.1.14)

Remark. The general solution (17.2.1.4) of the equation with constant coefficients (17.2.1.3) can be
obtained by substituting f (x) = a > 0 into (17.2.1.14) and making the transformation aΘ(x) → Θ(x).

2◦. The general solution of the homogeneous linear difference equation (17.2.1.1) is ob-
tained by replacing ϕ({x}) with Θ(x) in (17.2.1.12), where Θ(x) is an arbitrary 1-periodic
function.
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17.2.1-4. Nonhomogeneous linear difference equations. General solution.

1◦. Consider a first-order nonhomogeneous linear difference equation

y(x + 1) – f (x)y(x) = g(x), (17.2.1.15)

where f (x) and g(x) are given continuous functions, y(x) is the sought function, 0 ≤ x < ∞.
The general solution of the nonhomogeneous equation (17.2.1.15) can be represented

as the sum
y(x) = u(x) + ỹ(x),

where the first term u(x) is the general solution of the corresponding homogeneous equation
(with g ≡ 0), and the second term ỹ(x) is a particular solution of equation (17.2.1.15).

A formula for the general solution of equation (17.2.1.15) is given in Paragraph 17.2.1-7,
Item 2◦.

2◦. Let g(x) = g(x + 1) be a 1-periodic function and let y1(x) be a solution of equation
(17.2.1.15) in the special case of g(x) ≡ 1. Then the function

y(x) = g(x)y1(x) (17.2.1.16)

is a solution of equation (17.2.1.15).

Example 4. Consider the difference equation, which is a special case of equation (17.2.1.15) with
f (x) ≡ a > 0:

y(x + 1) – ay(x) = g(x), (17.2.1.17)

where g(x) = g(x + 1) is a given 1-periodic function. Equation (17.2.1.17) with g(x) ≡ 1 admits the particular
solution

y1(x) =

{
x if a = 1,

1
1 – a

if a ≠ 1.

The corresponding particular solution of equation (17.2.1.17) is found with the help of (17.2.1.16), and the
general solution has the form

y(x) =

{
Θ(x) + xg(x) if a = 1,

Θ(x)ax +
1

1 – a
g(x) if a ≠ 1,

where Θ(x) is an arbitrary 1-periodic function.

3◦. Consider the difference equation which is a special case of (17.2.1.15) with f (x) ≡ 1:

y(x + 1) – y(x) = g(x). (17.2.1.18)

Let x � (a,∞) with an arbitrary a. Suppose that the function g(x) is monotone, strictly
convex (or strictly concave), and satisfies the condition

lim
x→∞

[
g(x + 1) – g(x)

]
= 0,

and let x0 � (a,∞) be an arbitrary fixed point. Then for every y0, there exists exactly
one function y(x) (monotone and strictly convex/concave) satisfying equation (17.2.1.18),
together with the condition

y(x0) = y0.

This solution is given by the formulas

y(x) = y0 + (x – x0)g(x0) –
∞∑

n=0

{
g(x + n) – g(x0 + n) – (x – x0)

[
g(x0 + n + 1) – g(x0 + n)

]}
.
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4◦. The functional equation
y(x + 1) + y(x) = g(x),

after the transformation

y(x) = u
(x + 1

2

)
– u
( x

2

)
, ξ =

x

2
,

is reduced to an equation of the form (17.2.1.18):

u(ξ + 1) – u(ξ) = g(2ξ).

17.2.1-5. Nonhomogeneous linear equations with right-hand sides of special form.

1◦. The equation

y(x + 1) – y(x) =
n∑

k=0

akx
k

with a polynomial right-hand side admits the particular solution

ỹ(x) =
n∑

k=0

ak
k + 1

Bk+1(x),

where Bk(x) are Bernoulli polynomials.
The Bernoulli polynomials are defined with the help of the generating function

text

et – 1
≡

∞∑

n=0

Bn(x)
tn

n!
(|t| < 2π).

The first six Bernoulli polynomials have the form

B0(x) = 1, B1(x) = x – 1
2 , B2(x) = x2 – x + 1

6 , B3(x) = x3 – 3
2x

2 + 1
2x,

B4(x) = x4 – 2x3 + x2 – 1
30 , B5(x) = x5 – 5

2x
4 + 5

3x
3 – 1

6x.

See also Subsection 18.18.1.

2◦. For the equation with polynomial right-hand side

y(x + 1) – ay(x) =
n∑

k=0

bkx
k, a ≠ 1, (17.2.1.19)

a particular solution is sought by the method of indefinite coefficients in the form of a
polynomial of degree n.

A particular solution of equation (17.2.1.19) may also be defined by the formula

ỹ(x) =
n∑

k=0

bk

[
dk

dλk

( eλx

eλ – a

)]

λ=0
.
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3◦. For equations with rational right-hand side

y(x + 1) – ay(x) =
b

x + c
,

where c ≥ 0 and a � [0, 1], a particular solution is written in the form of the integral

ỹ(x) = b
∫ 1

0

λx+c–1

λ – a
dλ.

4◦. For the equation with exponential right-hand side

y(x + 1) – ay(x) =
n∑

k=0

bke
λkx,

there is a particular solution of the form

ỹ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

k=0

bk
eλk – a

eλkx if a ≠ eλm ,

bmxe
λm(x–1) +

n∑

k=0, k≠m

bk
eλk – a

eλkx if a = eλm ,

where m = 0, 1, . . . , n.

5◦. For the equation with sinusoidal right-hand side

y(x + 1) – ay(x) = b sin(βx),

there is a particular solution of the form

y(x) =
b

a2 + 1 – 2a cos β

[
(cos β – a) sin(βx) – sin β cos(βx)

]
.

6◦. For the equation with cosine in the right-hand side

y(x + 1) – ay(x) = b cos(βx),

there is a particular solution of the form

ỹ(x) =
b

a2 + 1 – 2a cos β

[
(cos β – a) cos(βx) + sin β sin(βx)

]
.

17.2.1-6. Nonhomogeneous linear equations with the right-hand side of general form.

1◦. Consider equation (17.2.1.18) whose right-hand side is an analytic function that admits
the expansion in power series:

g(x) =
∞∑

k=0
akx

k, (17.2.1.20)

which converges on the entire complex plane (it follows that lim
k→∞

|ak |1/k = 0). If

lim
k→∞

(
k! |ak |

)1/k
< 2π, (17.2.1.21)

then the solution of equation (17.2.1.18) can be represented as a convergent series

ỹ(x) =
∞∑

k=0

ak
k + 1

Bk+1(x),

where Bk(x) are Bernoulli polynomials (see Paragraph 17.2.1-5, Item 1◦).
Below we state a more general result that requires no conditions of the type (17.2.1.21).
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2◦. Suppose that the right-hand side of equation (17.2.1.18) is an analytic function admit-
ting expansion by power series (17.2.1.20) convergent on the entire complex plane (such
functions are called entire functions). In this case, the solution of equation (17.2.1.18) can
be represented in the form

ỹ(x) =
∞∑

k=0

akβk(x),

where βk(x) are Hurwitz functions, defined by

βk(x) =
k!

2πi

∫

|t|=1

(etx – 1) dt
(et – 1)tk+1 + k!

k∑

s=–k, s≠0

e2isπx – 1
(2isπ)s+1 = Pk+1(x) + Θk(x),

Pn+1(x) is a polynomial of degree n + 1, Θk(x) is an entire 1-periodic function, |t| = 1 is the
unit circle, and i2 = –1.

17.2.1-7. Nonhomogeneous linear difference equations. Cauchy’s problem.

1◦. Consider the Cauchy problem for a nonhomogeneous linear difference equation of
special form (17.2.1.18) with the initial condition (17.2.1.10), where g(x) is a continuous
function defined for x ≥ 0, and ϕ(x) is a given continuous function defined on the segment
0 ≤ x ≤ 1.

In order to find a solution of this Cauchy problem, the step method can be used: on the
interval 1 ≤ x < 2 one constructs a solution from equation (17.2.1.18) and the boundary
condition (17.2.1.10); on the interval 2 ≤ x < 3, one uses equation (17.2.1.18) and the
solution obtained for 1 ≤ x < 2; on the interval 3 ≤ x < 4, one uses equation (17.2.1.18) and
the solution obtained for 2 ≤ x < 3, etc. As a result, we have

y(x) = ϕ(x – n) + g(x – n) + g(x – n + 1) + · · · + g(x – 1), n ≤ x < n + 1, (17.2.1.22)

where n = 1, 2, . . .
Solution (17.2.1.22) is continuous if it is continuous at integer points x = 1, 2, . . . , and

this leads us to the condition
ϕ(1) = ϕ(0) + g(0). (17.2.1.23)

The solution is continuously differentiable if the functions g(x) and ϕ(x) are continuously
differentiable and, together with (17.2.1.23), the additional condition

ϕ′(1) = ϕ′(0) + g′(0)

for the corresponding one-sided derivatives is satisfied.

2◦. In a similar way, one considers the Cauchy problem for a nonhomogeneous linear
difference equation of general form (17.2.1.15) with the initial condition (17.2.1.10). As a
result, we obtain a solution of the form

y(x) = ϕ({x})
[x]∏

j=1

f (x – j) +
[x]∑

i=1

g(x – i)
i–1∏

j=1

f (x – j),

where [x] and {x} denote, respectively, the integer and the fractional parts of x (x =
[x] + {x}); the product and the sum over the empty index set (for [x] = 0) are assumed equal
to 1 and 0, respectively.
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If a nontrivial particular solution y1 (x) of the homogeneous equation (17.2.1.1) is known,
then the solution of the Cauchy problem for the nonhomogeneous equation (17.2.1.15) with
the initial condition (17.2.1.10) is given by

y(x) = y1(x)

[
ϕ({x})
y1(0)

+
[x]∑

i=1

g(x – i)
y1(x – i + 1)

]
.

17.2.2. Second-Order Linear Difference Equations with Integer
Differences

17.2.2-1. Linear homogeneous difference equations with constant coefficients.

A second-order homogeneous linear integer-difference equation with constant coefficients
has the form

ay(x + 2) + by(x + 1) + cy(x) = 0, ac ≠ 0. (17.2.2.1)

This equation has the trivial solution y(x) ≡ 0.
The general solution of the difference equation (17.2.2.1) is determined by the roots of

the characteristic equation
aλ2 + bλ + c = 0. (17.2.2.2)

1◦. For b2 – 4ac > 0, the quadratic equation (17.2.2.2) has two distinct roots:

λ1 =
–b +

√
b2 – 4ac

2a
, λ2 =

–b –
√
b2 – 4ac

2a
.

The general solution of the difference equation (17.2.2.1) is given by

y(x) = Θ1(x)λx1 + Θ2(x)λx2 if ab < 0, ac > 0;
y(x) = Θ1(x)λx1 + Θ2(x)|λ2|x cos(πx) if ac < 0;
y(x) = Θ1(x)|λ1|x cos(πx) + Θ2(x)|λ2|x cos(πx) if ab > 0, ac > 0,

(17.2.2.3)

where Θ1(x) and Θ2(x) are arbitrary 1-periodic functions, Θk(x) = Θk(x + 1), k = 1, 2.

2◦. For b2 – 4ac = 0, the quadratic equation (17.2.2.2) has one double real root

λ = –
b

2a
,

and the general solution of the difference equation (17.2.2.1) is given by

y =
[
Θ1(x) + xΘ2(x)

]
λx if ab < 0,

y =
[
Θ1(x) + xΘ2(x)

]
|λ|x cos(πx) if ab > 0.

(17.2.2.4)

3◦. For b2 – 4ac < 0, the quadratic equation (17.2.2.2) has two complex conjugate roots

λ1,2 = ρ(cos β � i sin β), ρ =
c

a
, β = arccos

(
–

b

2
√
ac

)
,

and the general solution of the difference equation (17.2.2.1) has the form

y = Θ1(x)ρx cos(βx) + Θ2(x)ρx sin(βx), (17.2.2.5)

where Θ1(x) and Θ2(x) are arbitrary 1-periodic functions.
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17.2.2-2. Linear nonhomogeneous difference equations with constant coefficients.

1◦. A second-order nonhomogeneous linear integer-difference equation with constant co-
efficients has the form

ay(x + 2) + by(x + 1) + cy(x) = f (x), ac ≠ 0. (17.2.2.6)

Let y1(x) and y2(x) be two particular solutions of the homogeneous equation (17.2.2.1).
According to the roots of the characteristic equation (17.2.2.2), these solutions are defined
by (17.2.2.3)–(17.2.2.5), respectively, with Θ1(x) ≡ 1, Θ2(x) ≡ 0 and Θ1(x) ≡ 0, Θ2(x) ≡ 1.

A particular solution of the nonhomogeneous equation (17.2.2.6) satisfying zero initial
conditions

y(x) = 0, y(x + 1) = 0 for 0 ≤ x < 1

has the form

ỹ(x) =
1
a

[x]–1∑

j=1

Δ(x – j,x)
Δ(x – j,x – j + 1)

f (x – j), Δ(x, z) =

∣
∣∣
∣
y1(x) y2(x)
y1(z) y2(z)

∣
∣∣
∣ . (17.2.2.7)

2◦. The solution of the Cauchy problem for the nonhomogeneous equation (17.2.2.6) with
arbitrary initial conditions

y(x) = ϕ(x), y(x + 1) = ψ(x) for 0 ≤ x < 1 (17.2.2.8)

is the sum of the particular solution (17.2.2.7) and the function

u(x) = –
1

Δ({x}, {x} + 1)

∣
∣
∣∣
∣∣

0 y1(x) y2(x)
ϕ({x}) y1({x}) y2({x})
ψ({x}) y1({x} + 1) y2({x} + 1)

∣
∣
∣∣
∣∣

,

which is a solution of the homogeneous equation (17.2.2.1) with the initial conditions
(17.2.2.8).

17.2.2-3. Linear homogeneous difference equations with variable coefficients.

1◦. A second-order linear homogeneous integer-difference equation has the form

a(x)y(x + 2) + b(x)y(x + 1) + c(x)y(x) = 0, a(x)c(x) � 0. (17.2.2.9)

The trivial solution, y(x) = 0, is a particular solution of the homogeneous linear equation.
Let y1(x), y2(x) be two particular solutions of equation (17.2.2.9) with the condition*

D(x) ≡ y1(x)y2(x + 1) – y2(x)y1(x + 1) ≠ 0. (17.2.2.10)

Then the general solution of equation (17.2.2.9) is given by

y(x) = Θ1(x)y1(x) + Θ2(x)y2(x), (17.2.2.11)

where Θ1(x) and Θ2(x) are arbitrary 1-periodic functions, Θ1,2(x) = Θ1,2(x + 1).

* Condition (17.2.2.10) may be violated at singular points of equation (17.2.2.9); for details see Para-
graph 17.2.3-3.
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2◦. Let y0(x) be a nontrivial particular solution of equation (17.2.2.9). Then the substitution

y(x) = y0(x)u(x) (17.2.2.12)

results in the equation

a(x)y0(x + 2)u(x + 2) + b(x)y0(x + 1)u(x + 1) + c(x)y0(x)u(x) = 0. (17.2.2.13)

Taking into account that y0(x) satisfies equation (17.2.2.9), let us substitute the expression

b(x)y0(x + 1) = –a(x)y0(x + 2) – c(x)y0(x)

into (17.2.2.13). Then, after simple transformations, we obtain

a(x)y0(x + 2)[u(x + 2) – u(x + 1)] – c(x)y0(x)[u(x + 1) – u(x)] = 0.

Introducing a new variable by

w(x) = u(x + 1) – u(x) (17.2.2.14)

we come to the first-order difference equation

a(x)y0(x + 2)w(x + 1) – c(x)y0(x)w(x) = 0.

After solving this equation, one solves the nonhomogeneous first-order equation with
constant coefficients (17.2.2.14), and then, using (17.2.2.12), one finds a solution of the
original equation.

17.2.2-4. Linear nonhomogeneous difference equations with variable coefficients.

1◦. A second-order linear nonhomogeneous difference equation with integer differences
has the form

a(x)y(x + 2) + b(x)y(x + 1) + c(x)y(x) = f (x), a(x)c(x) � 0. (17.2.2.15)

The general solution of the nonhomogeneous equation (17.2.2.15) is given by the sum

y(x) = u(x) + ỹ(x),

where u(x) is the general solution of the corresponding homogeneous equation (with f ≡ 0),
and ỹ(x) is a particular solution of equation (17.2.2.15). The general solution of the
homogeneous equation is defined by the right-hand side of (17.2.2.11).

Every solution of equation (17.2.2.15) is uniquely determined by given values of the
sought function on the interval [0, 2).

2◦. A particular solution ỹ(x) of the linear nonhomogeneous difference equation

a(x)y(x + 2) + b(x)y(x + 1) + c(x)y(x) =
n∑

k=1

fk(x)

can be represented by the sum

ỹ(x) =
n∑

k=1

ỹk(x),
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where ỹk(x) are particular solutions of the linear nonhomogeneous difference equations

a(x)yk(x + 2) + b(x)yk(x + 1) + c(x)yk(x) = fk(x).

3◦. Let y1(x) and y2(x) be particular solutions of the corresponding linear homogeneous
equation (17.2.2.9) that satisfy the condition (17.2.2.10). A particular solution of the linear
nonhomogeneous equation (17.2.2.15) can be sought in the form

ỹ(x) = ϕ1(x)y1(x) + ϕ2(x)y2(x), (17.2.2.16)

where ϕ1(x) and ϕ2(x) are functions to be determined.
For what follows, we need the identity

Δ[ϕ(x)ψ(x)] ≡ ψ(x + 1)Δϕ(x) + ϕ(x)Δψ(x), (17.2.2.17)

where Δϕ(x) is the standard notation for the difference,

Δϕ(x) ≡ ϕ(x + 1) – ϕ(x).

From (17.2.2.16), using the identity (17.2.2.17), we obtain

Δỹ(x) = y1(x + 1)Δϕ1(x) + y2(x + 1)Δϕ2(x) +ϕ1(x)Δy1(x) +ϕ2(x)Δy2(x). (17.2.2.18)

As one of the equations to determine the functions ϕ1(x) and ϕ2(x) we take

y1(x + 1)Δϕ1(x) + y2(x + 1)Δϕ2(x) = 0. (17.2.2.19)

In view of the above considerations, from (17.2.2.16) and (17.2.2.18) we find that

ỹ(x + 1) = ϕ1(x)y1(x + 1) + ϕ2(x)y2(x + 1),
ỹ(x + 2) = ϕ1(x + 1)y1(x + 2) + ϕ2(x + 1)y2(x + 2)

= ϕ1(x)y1(x + 2) + ϕ2(x)y2(x + 2) + y1(x + 2)Δϕ1(x) + y2(x + 2)Δϕ2(x),
(17.2.2.20)

where the second relation is obtained from the first one by replacing x with x + 1.
Substituting (17.2.2.16) and (17.2.2.20) into equation (17.2.2.15) and taking into account

that y1(x) and y2(x) are particular solutions of the linear homogeneous equation (17.2.2.9),
we obtain

y1(x + 2)Δϕ1(x) + y2(x + 2)Δϕ2(x) = f (x)/a(x). (17.2.2.21)

Relations (17.2.2.19) and (17.2.2.21) form a system of linear algebraic equations for the
differences Δϕ1(x) and Δϕ2(x). The solution of this system has the form

Δϕ1(x) = –
f (x)y2(x + 1)
a(x)D(x + 1)

, Δϕ2(x) = –
f (x)y1(x + 1)
a(x)D(x + 1)

, (17.2.2.22)

where D(x) is the determinant introduced in (17.2.2.10).
Thus, the construction of a particular solution of the second-order nonhomogeneous

equation (17.2.2.15) amounts to finding a solution of two independent nonhomogeneous
first-order equations (17.2.2.22) considered in detail in Paragraphs 17.2.1-4–17.2.1-7.

4◦. The structure of particular solutions of second-order difference equations with spe-
cific (polynomial, exponential, sinusoidal, etc.) right-hand sides is described in Para-
graph 17.2.3-2.
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17.2.3. Linear mth-Order Difference Equations with Integer
Differences

17.2.3-1. Linear homogeneous difference equations with constant coefficients.

An mth-order linear integer-difference homogeneous equation with constant coefficients
has the form

amy(x +m) + am–1y(x + m – 1) + · · · + a1y(x + 1) + a0y(x) = 0, (17.2.3.1)

where a0am � 0.
Let us write out its characteristic equation,

amλ
m + am–1λ

m–1 + · · · + a1λ + a0 = 0. (17.2.3.2)

Consider the following cases:

1◦. All roots λ1, λ2, . . . , λn of equation (17.2.3.2) are real and mutually distinct. Then the
general solution of the original equation (17.2.3.1) has the form

y(x) = Θ1(x)λx1 + Θ2(x)λx2 + · · · + Θn(x)λxn, (17.2.3.3)

where Θ1(x), Θ2(x), . . . , Θn(x) are arbitrary 1-periodic functions, Θk(x) = Θk(x + 1),
k = 1, 2, . . . , n.

For Θk(x) ≡ Ck, formula (17.2.3.3) yields the particular solution

y(x) = C1λ
x
1 + C2λ

x
2 + · · · + Cnλ

x
n,

where C1, C2, . . . , Cn are arbitrary constants.

2◦. There are k equal real roots: λ1 = λ2 = · · · = λk (k ≤m), and the other roots are real and
mutually distinct. In this case, the solution of the difference equation (17.2.3.1) is defined
by

y =
[
Θ1(x) + xΘ2(x) + · · · + xk–1Θk(x)

]
λx1

+ Θk+1(x)λxk+1 + Θk+2(x)λxk+2 + · · · + Θm(x)λxm.
(17.2.3.4)

3◦. There are k equal complex conjugate roots: λ = ρ(cos β � i sin β) (2k ≤ m), and the
other roots are real and mutually distinct. In this case, for Θn(x) ≡ constn the solution of
the functional equation has the form

y = ρx cos(βx)(A1 + A2x + · · · + Akx
k–1) +

+ ρx sin(βx)(B1 + B2x + · · · +Bkx
k–1) +

+ C2k+1λ
x
2k+1 + C2k+2λ

x
2k+2 + · · · + Cmλ

x
m,

whereA1, . . . ,Ak,B1, . . . ,Bk,C2k+1, . . . ,Cm are arbitrary constants. In the general case,
the arbitrary constants involved in this solution should be replaced by arbitrary 1-periodic
functions.

4◦. In a similar way, one can consider the general situation.
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17.2.3-2. Linear nonhomogeneous difference equations with constant coefficients.

An mth-order linear nonhomogeneous integer-difference equation with constant coeffi-
cients has the form

amy(x +m) + am–1y(x + m – 1) + · · · + a1y(x + 1) + a0y(x) = f (x), (17.2.3.5)

where a0am � 0.
The general solution of the nonhomogeneous equation (17.2.3.5) is given by the sum

y(x) = u(x) + ỹ(x),

where u(x) is the general solution of the corresponding homogeneous equation (with f ≡ 0),
and ỹ(x) is a particular solution of the nonhomogeneous equation (17.2.3.5). Regarding the
solution of the homogeneous equation see Paragraph 17.2.3-1.

Below, we consider some methods for the construction of a particular solution of the
nonhomogeneous equation (17.2.3.5).

1◦. Table 17.1 lists the forms of particular solutions corresponding to some special cases
of the function on the right-hand side of the linear nonhomogeneous difference equation
(17.2.3.5).

2◦. Let
P (λ) = amλ

m + am–1λ
m–1 + · · · + a1λ + a0

be the characteristic polynomial of equation (17.2.3.5). Consider the function

g(λ) =
1

P (λ)
=

∞∑

k=0

gkλ
k, |λ| < |λ1|, (17.2.3.6)

where λ1 is the root of the equation P (λ) = 0 with the smallest absolute value. Then
lim
k→∞

|gk |1/k = |λ1|–1.

From (17.2.3.6), it follows that

a0g0 = 1, a1g0 + a0g1 = 0, . . . ,
s–1∑

k=0

as–k–1gk = 0, s ≥ 2, aν = 0 if ν > m.

If
lim
k→∞

|f (x + k)|1/k = σf < |λ1|,

then the series
y(x) = g0f (x) + g1f (x + 1) + · · · + gkf (x + k) + · · ·

is convergent and its sum gives a solution of equation (17.2.3.5).

3◦. Let the right-hand side of equation (17.2.3.5) can be represented by the integral

f (x) =
∫

L
F (λ)λx–1 dλ, (17.2.3.7)

where the line of integration L does not cross the roots of the characteristic polynomial
P (λ). Direct verification shows that the integral

y(x) =
∫

L

F (λ)
P (λ)

λx–1 dλ (17.2.3.8)

represents a particular solution of equation (17.2.3.5).
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TABLE 17.1
Forms of particular solutions of the linear nonhomogeneous difference equation with constant

coefficients amy(x + m) + am–1y(x + m – 1) + · · · + a1y(x + 1) + a0y(x) = f (x)
in some special cases of the function f (x); a0am � 0

Form of the
function f (x)

Roots of the characteristic equation
amλ

m + am–1λ
m–1 + · · · + a1λ + a0 = 0

Form of a particular
solution y = ỹ(x)

λ = 1 is not a root of the characteristic equation
(i.e., am + am–1 + · · · + a1 + a0 ≠ 0)

n∑

k=0
bkx

k

xn

λ = 1 is a root of the
characteristic equation (multiplicity r)

n+r∑

k=0
bkx

k

λ = eβ is not a root of the
characteristic equation beβx

eβx

(β is a real constant) λ = eβ is a root of the
characteristic equation (multiplicity r)

eβx
r∑

k=0
bkx

k

β is not a root of the
characteristic equation

eβx
n∑

k=0
bkx

k

xneβx

(β is a real constant) β is a root of the
characteristic equation (multiplicity r)

eβx
n+r∑

k=0
bkx

k

iβ is not a root of the
characteristic equation

P̃ν(x) cos βx
+ Q̃ν(x) sinβxPm(x) cos βx

+Qn(x) sinβx
iβ is a root of the

characteristic equation (multiplicity r)
P̃ν+r(x) cosβx

+ Q̃ν+r(x) sinβx

α + iβ is not a root of the
characteristic equation

[P̃ν (x) cosβx
+ Q̃ν(x) sinβx]eαx

[Pm(x) cosβx
+Qn(x) sinβx]eαx

α + iβ is a root of the
characteristic equation (multiplicity r)

[P̃ν+r(x) cosβx
+ Q̃ν+r(x) sinβx]eαx

Notation: Pm(x) and Qn(x) are polynomials of degrees m and n with given coefficients; P̃m(x), P̃ν(x),
and Q̃ν(x) are polynomials of degrees m and ν whose coefficients are determined by substituting the
particular solution into the basic equation; ν = max(m, n); and α and β are real numbers, i2 = –1.

Example 1. Taking F (λ) = aλb, b ≥ 0, and L = {0 ≤ x ≤ 1} in (17.2.3.7), we have

f (x) =
∫ 1

0
aλbλx–1 dλ =

a

x + b
.

Therefore, if the characteristic polynomial P (λ) has no roots on the segment [0, 1], then a particular solution
of equation (17.2.3.5) with the right-hand side

f (x) =
a

x + b
(17.2.3.9)

can be obtained in the form

y(x) = a
∫ 1

0

λb

P (λ)
λx–1 dλ. (17.2.3.10)

Remark. ForL = {0 ≤ x < ∞}, the representation (17.2.3.7) may be regarded as the Mellin transformation
that maps F (λ) into f (x).

4◦. Let y(x) be a solution of equation (17.2.3.5). Then u(x) = βy′x(x) is a solution of the
nonhomogeneous equation

amu(x +m) + am–1u(x + m – 1) + · · · + a1u(x + 1) + a0u(x) = βf ′x(x).
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Example 2. In order to find a solution of equation (17.2.3.5) with the right-hand side

f (x) =
a

(x + b)2 = –
d

dx

a

x + b
, (17.2.3.11)

let us multiply (17.2.3.9)–(17.2.3.10) by β = –1 and then differentiate the resulting expressions. Thus, we
obtain the following particular solution of the nonhomogeneous equation (17.2.3.5) with the right-hand side
(17.2.3.11):

y(x) = –a
∫ 1

0

lnλ
P (λ)

λx+b–1 dλ. (17.2.3.12)

Consecutively differentiating expressions (17.2.3.11) and (17.2.3.12), we obtain a solution of equation
(17.2.3.5) with the right-hand side

f (x) =
a

(x + b)n
=

(–1)n–1

(n – 1)!
dn–1

dxn–1

(
a

x + b

)
.

This solution has the form

y(x) = a
(–1)n–1

(n – 1)!

∫ 1

0

(lnλ)n–1

P (λ)
λx+b–1 dλ.

5◦. In Paragraph 17.2.3-4, Item 3◦, there is a formula that allows us to obtain a particular
solution of the nonhomogeneous equation (17.2.3.5) with an arbitrary right-hand side.

17.2.3-3. Linear homogeneous difference equations with variable coefficients.

1◦. An mth-order linear homogeneous integer-difference equation with variable coeffi-
cients has the form

am(x)y(x +m) + am–1(x)y(x +m – 1) + · · · + a1(x)y(x + 1) + a0(x)y(x) = 0, (17.2.3.13)

where a0(x)am(x) � 0.
This equation admits the trivial solution y(x) ≡ 0.
The setE of all singular points of equation (17.2.3.13) consists of points of three classes:

1) zeroes of the function a0(x), denoted by μ1, μ2, . . . ;
2) zeroes of the function am(x – m), denoted by ν1, ν2, . . . ;
3) singular points of the coefficients of the equation, denoted by η1, η2, . . .

The points of the set

S(E) = {μs – n, νs + n, ηs – n, ηs +m + n; n = 0, 1, 2, . . . , s = 1, 2, 3, . . .}

are called comparable with singular points of equation (17.2.3.13).
Let

y1 = y1(x), y2 = y2(x), . . . , ym = ym(x) (17.2.3.14)

be particular solutions of equation (17.2.3.13). Then the function

y = Θ1(x)y1(x) + Θ2(x)y2(x) + · · · + Θm(x)ym(x) (17.2.3.15)

with arbitrary 1-periodic functions Θ1(x), Θ2(x), . . . , Θm(x) is also a solution of equation
(17.2.3.13).

The Casoratti determinant is the function defined as

D(x) =

∣
∣∣
∣
∣∣
∣

y1(x) y2(x) · · · ym(x)
y1(x + 1) y2(x + 1) · · · ym(x + 1)

· · · · · · · · · · · ·
y1(x +m – 1) y2(x +m – 1) · · · ym(x + m – 1)

∣
∣∣
∣
∣∣
∣

. (17.2.3.16)
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THEOREM (CASORATTI). Formula (17.2.3.15) gives the general solution of the linear
homogeneous difference equation (17.2.3.13) if and only if for any point x � S(E) such
that x + k � S(E) for k = 0, 1, . . . , m, the condition D(x) ≠ 0 holds.

The Casoratti determinant (17.2.3.16) satisfies the first-order difference equation

D(x + 1) = (–1)m
a0(x)
am(x)

D(x). (17.2.3.17)

2◦. Let y0 = y0(x) be a nontrivial particular solution of equation (17.2.3.13). Then the order
of equation (17.2.3.13) can be reduced by unity. Indeed, making the replacement

y(x) = y0(x)u(x) (17.2.3.18)

in equation (17.2.3.13), we get
m∑

k=0

ak(x)y0(x + k)u(x + k) = 0. (17.2.3.19)

Let us transform this relation with the help of the Abel identity
m∑

k=0

FkGk = –
m–1∑

k=0

(Gk+1 – Gk)
k∑

s=0

Fs + Gm

m∑

k=0

Fk,

in which we take Fk = ak(x)y0(x + k) and Gk = u(x + k). As a result, we get

–
m–1∑

k=0

rk(x)[u(x + k + 1) – u(x + k)] + u(x +m)
m∑

k=0

ak(x)y0(x + k) = 0, (17.2.3.20)

where

rk(x) =
k∑

s=0

as(x)y0(x + s), k = 0, 1, . . . , m – 1.

Taking into account that the second sum in (17.2.3.20) is equal to zero (since y0 is a
particular solution of the equation under consideration) and setting

w(x) = u(x + 1) – u(x) (17.2.3.21)

in (17.2.3.20), we come to an (m – 1)th-order difference equation
m–1∑

k=0

rk(x)w(x + k) = 0.

17.2.3-4. Linear nonhomogeneous difference equations with variable coefficients.

1◦. An mth-order linear nonhomogeneous integer-difference equation with variable coef-
ficients has the form

am(x)y(x+m) +am–1(x)y(x+m– 1) + · · · +a1(x)y(x+ 1) +a0(x)y(x) = f (x), (17.2.3.22)

where a0(x)am(x) � 0.
The general solution of the nonhomogeneous equation (17.2.3.22) is given by the sum

y(x) = u(x) + ỹ(x), (17.2.3.23)

where u(x) is the general solution of the corresponding homogeneous equation (with f ≡ 0)
and ỹ(x) is a particular solution of the nonhomogeneous equation (17.2.3.22). The general
solution of the homogeneous equation is defined by the right-hand side of (17.2.3.15).

Every solution of equation (17.2.3.22) is uniquely determined by prescribing the values
of the sought function on the interval [0,m).
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2◦. A particular solution ỹ(x) of the linear nonhomogeneous difference equation

am(x)y(x + m) + am–1(x)y(x + m – 1) + · · · + a1(x)y(x + 1) + a0(x)y(x) =
n∑

k=1

fk(x)

can be represented by the sum

ỹ(x) =
n∑

k=1

ỹk(x),

where ỹk(x) are particular solutions of the linear nonhomogeneous difference equations

am(x)y(x +m) + am–1(x)y(x + m – 1) + · · · + a1(x)y(x + 1) + a0(x)y(x) = fk(x).

3◦. The solution of the Cauchy problem for the nonhomogeneous equation (17.2.3.22) with
arbitrary initial conditions

y(x + j) = ϕj(x) for 0 ≤ x < 1, j = 0, 1, . . . , m – 1, (17.2.3.24)

is given by the sum (17.2.3.23), where

u(x) = –
1

D({x})

∣
∣∣
∣∣
∣∣

0 y1(x) · · · ym(x)
ϕ0({x}) y1({x}) · · · ym({x})

· · · · · · · · · · · ·
ϕm–1({x}) y1({x} + m – 1) · · · ym({x} +m – 1)

∣
∣∣
∣∣
∣∣

is a solution of the homogeneous equation (17.2.3.13) with the boundary conditions
(17.2.3.24), and

ỹ(x) =
[x]∑

j=m

D∗(x – j + 1)
D(x – j + 1)

f (x – j)
am(x – j)

(17.2.3.25)

is a particular evolution of the nonhomogeneous equation (17.2.3.22) with zero initial
conditions ỹ(x) = 0 for 0 ≤ x < m. Formula (17.2.3.25) contains the determinant

D∗(t + 1) =

∣
∣∣
∣∣
∣
∣

y1(t + 1) · · · ym(t + 1)
· · · · · · · · ·

y1(t +m – 1) · · · ym(t + m – 1)
y1(x) · · · ym(x)

∣
∣∣
∣∣
∣
∣

,

which is obtained from the determinant D(t + 1) by replacing the last row [y1(t + m),
. . . , ym(t+m)] with the row [y1(x), . . . , ym(x)]. Note thatD∗(t+1)= 0 forx–m+1 ≤ t≤x–1.

17.2.3-5. Equations reducible to equations with constant coefficients.

1◦. The difference equation with variable coefficients

amf (x + m)y(x + m) + am–1f (x + m – 1)y(x + m – 1) + · · ·
+ a1f (x + 1)y(x + 1) + a0f (x)y(x) = g(x)

can be reduced, with the help of the replacement

y(x) = f (x)u(x),
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to the equation with constant coefficients

amu(x +m) + am–1u(x + m – 1) + · · · + a1u(x + 1) + a0u(x) = g(x).

2◦. The difference equation with variable coefficients

amy(x +m) + am–1f (x)y(x + m – 1) + am–2f (x)f (x – 1)y(x +m – 2) + · · ·
+ a0f (x)f (x – 1) . . . f (x – m + 1)y(x) = g(x)

can be reduced to a nonhomogeneous equation with constant coefficients with the help of
the replacement

y(x) = u(x) exp
[
ϕ(x – m)

]
,

with ϕ(x) satisfying the auxiliary first-order difference equation

ϕ(x + 1) – ϕ(x) = ln f (x).

The resulting equation with constant coefficients has the form

amu(x +m) + am–1u(x –m – 1) + · · · + a1u(x + 1) + a0u(x) = g(x) exp[–ϕ(x)].

3◦. The difference equation with variable coefficients

amf (x)f (x+ 1) . . . f (x+m– 1)y(x+m)+am–1f (x)f (x+ 1) . . . f (x+m– 2)y(x+m– 1)+ · · ·
+ a1f (x)y(x + 1) + a0y(x) = g(x)

can be reduced to a nonhomogeneous equation with constant coefficients with the help of
the replacement

y(x) = u(x) exp
[
–ψ(x)

]
,

where ϕ(x) is a function satisfying the auxiliary first-order difference equation

ψ(x + 1) – ψ(x) = ln f (x).

The resulting equation with constant coefficients has the form

amu(x + m) + am–1u(x – m – 1) + · · · + a1u(x + 1) + a0u(x) = g(x) exp[ψ(x)].

17.2.4. Linear mth-Order Difference Equations with Arbitrary
Differences

17.2.4-1. Linear homogeneous difference equations.

1◦. A linear homogeneous difference equation with constant coefficients, in the case of
arbitrary differences, has the form

amy(x + hm) + am–1y(x + hm–1) + · · · + a1y(x + h1) + a0y(x + h0) = 0, (17.2.4.1)

where a0am ≠ 0, m ≥ 1, hi ≠ hj for i ≠ j; the coefficients ak and the differences hk are
complex numbers and x is a complex variable.

Equation (17.2.4.1) can be reduced to an equation with integer differences if the quan-
tities hk – h0 are commensurable in the sense that there is a common constant q such that
hk – h0 = qNk with integer Nk. Indeed, we have

y(x + hk) = y(x + h0 + qNk) = y

(
q
(x + h0

q
+ Nk

))
= w(z +Nk),

where the new variables have the form z = (x + h0)/q and w(z) = y(qz). As a result, we
obtain an equation with integer differences Nk for the function w(z). In particular, this
situation takes place if hk – h0 are rational numbers: hk – h0 = pk/rk, where pk and rk
are positive integers (k = 1, 2, . . . , m). In this case, one can take q = 1/r, where r is the
common denominator of the fractions pk/rk.
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2◦. In what follows, we assume that the numbers hk – h0 are not commensurable
(k = 1, . . . , m). We seek particular solutions of equation (17.2.4.1) in the form y = etx.
Substituting this expression into (17.2.4.1) and dividing the result by etx, we obtain the
transcendental equation

A(t) ≡ amehmt + am–1e
hm–1t + · · · + a1e

h1t + a0e
h0t = 0, (17.2.4.2)

where A(t) is the characteristic function.
It is known that equation (17.2.4.2) has infinitely many roots.

3◦. Let hk be real ordered numbers, h0 < h1 < · · · < hm, and t = t1 + it2, where t1 = Re t
and t2 = Im t. Then the following statements hold:

(a) There exist constants γ1 and γ2 such that the following estimates are valid:

|A(t)| > 1
2 |a0|eh0t1 if t1 ≤ γ1,

|A(t)| > 1
2 |am|ehmt1 if t1 ≥ γ2.

(b) All roots of equation (17.2.4.2) belong to the vertical strip γ1 < t1 < γ2.
(c) Let β1, β2, . . . , βn, . . . be roots of equation (17.2.4.2), and |β1| ≤ |β2 | ≤ · · ·≤ |βn| ≤ · · ·

Then the following limit relation holds:

lim
n→∞

βn
n

=
2π

hm – h0
.

4◦. A root βk of multiplicity nk of the characteristic equation (17.2.4.2) corresponds to
exactly nk linearly independent solutions of equation (17.2.4.1):

eβkx, xeβkx, . . . , xnk–1eβkx (k = 1, 2, . . .). (17.2.4.3)

Equation (17.2.4.1) admits infinitely many solutions of the form (17.2.4.3), since the
characteristic function (17.2.4.2) has infinitely many roots. In order to single out different
classes of solutions, it is convenient to use a condition that characterizes the order of their
growth for large values of the argument.

The class of functions of exponential growth of finite degree σ is denoted by [1,σ] and
is defined as the set of all entire functions* f (x) satisfying the condition

e(σ–ε)|x| < |f (x)| < e(σ+ε)|x| (17.2.4.4)

for any ε > 0, where the right inequality in (17.2.4.4) should hold for all sufficiently
large x: |x| > R(ε), while the left inequality in (17.2.4.4) should hold for some sequence
x = xn = xn(ε) → ∞.

The parameter σ can be found from the relations

σ = lim
r→∞

M (r)
r

= lim
k→∞

(
k! |bk |

)1/k
, M (r) = max

|x|=r
|f (x)| (0 ≤ σ < ∞),

where bk are the coefficients in the power series expansion of the function f (x) (see the
footnote).

* An entire function is a function that is analytic on the entire complex plane (except, possibly, the infinite

point). Any such function can be expanded in power series, f (x) =
∞∑

k=0
bkx

k , convergent on the entire complex

plane, i.e., lim
k→∞

|bk |1/k = 0.
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THEOREM. Any solution of equation (17.2.4.1) in the class of exponentially growing
functions of a finite degree σ can be represented in the form

y(x) =
∑

|βk |≤σ

hk–1∑

s=0

Cksx
seβkx ≡

∑

|βk |≤σ

Pk(x)eβkx, (17.2.4.5)

where the sum is over all zeroes of the characteristic function (17.2.4.2) in the circle |t| ≤ σ;
Cks are arbitrary constants, and Pk(x) are arbitrary polynomials of degrees ≤ nk – 1.

Corollary 1. A necessary and sufficient condition for the existence of polynomial
solutions of equation (17.2.4.1) is that the characteristic function (17.2.4.2) has zero root
β1 = 0. In this case, the coefficients of equation (17.2.4.1) should satisfy the condition
am + am–1 + · · · + a1 + a0 = 0.

Corollary 2. There is only one solution y(x) ≡ 0 in the class [1,σ] only if σ <
min{|β1|, |β2|, . . .}.

17.2.4-2. Linear nonhomogeneous difference equations.

1◦. A linear nonhomogeneous difference equation with constant coefficients, in the case of
arbitrary differences, has the form

amy(x + hm) + am–1y(x + hm–1) + · · · + a1y(x + h1) + a0y(x + h0) = f (x), (17.2.4.6)

where a0am ≠ 0, m ≥ 1, and hi ≠ hj for i ≠ j.
Let f (x) be a function of exponential growth of degree σ. Then equation (17.2.4.6)

always has a solution ỹ(x) in the class [1,σ]. The general solution of equation (17.2.4.6)
in the class [1,σ] can be represented as the sum of the general solution (17.2.4.5) of the
homogeneous equation (17.2.4.1) and a particular solution ỹ(x) of the nonhomogeneous
equation (17.2.4.6).

2◦. Suppose that the right-hand side of the equation is the polynomial

f (x) =
n∑

s=0
bsx

s, bn ≠ 0, n ≥ 0. (17.2.4.7)

Then equation (17.2.4.6) has a particular solution of the form

ỹ(x) = xμ
n∑

s=0
csx

s, cn ≠ 0, (17.2.4.8)

where t = 0 is a root of the characteristic function (17.2.4.2), the multiplicity of this root
being equal to μ. The coefficients cn in (17.2.4.8) can be found by the method of indefinite
coefficients.

3◦. Suppose that the right-hand side of the equation has the form

f (x) = epx
n∑

s=0
bsx

s, bn ≠ 0, n ≥ 0. (17.2.4.9)

Then equation (17.2.4.6) has a particular solution of the form

ỹ(x) = epxxμ
n∑

s=0
csx

s, cn ≠ 0, (17.2.4.10)

where t = p is a root of the characteristic function (17.2.4.2), its multiplicity being equal to
μ. The coefficients cn in (17.2.4.10) can be found by the method of indefinite coefficients.
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17.2.4-3. Equations reducible to equations with constant coefficients.

1◦. The difference equation with variable coefficients

amf (x + hm)y(x + hm) + am–1f (x + hm–1)y(x + hm–1) + · · ·
+ a1f (x + h1)y(x + h1) + a0f (x + h0)y(x + h0) = g(x)

can be reduced, with the help of the replacement

y(x) = f (x)u(x),

to a difference equation with constant coefficients

amu(x + hm) + am–1u(x + hm–1) + · · · + a1u(x + h1) + a0u(x + h0) = g(x).

2◦. Two other difference equations with variable coefficients can be obtained from equa-
tions considered in Paragraph 17.2.3-5 (Items 2◦ and 3◦), where the quantities x + m,
x + m – 1, . . . , x + 1, x should be replaced, respectively, by x + hm, x + hm–1, . . . ,
x + h1, x + h0.

17.3. Linear Functional Equations

17.3.1. Iterations of Functions and Their Properties

17.3.1-1. Definition of iterations.

Consider a function f (x) defined on a set I and suppose that

f (I) ⊂ I . (17.3.1.1)

A set I for which (17.3.1.1) holds is called a submodulus set for the function f (x). If
we have f (I) = I , then I is called a modulus set for the function f (x).

For a function f (x) defined on a set I and satisfying the condition (17.3.1.1), by f [n](x)
we denote the nth iteration defined by the relations

f [0](x) = x, f [n+1](x) = f (f [n](x)), x � I , n = 0, 1, 2, . . . (17.3.1.2)

For an invertible function f (x), one can define its iterations also for negative values of
the iteration index n:

f [n–1](x) = f –1(f [n](x)), x � I , n = 0, –1, –2, . . . , (17.3.1.3)

where f –1 denotes the function inverse to f . In view of the relations (17.3.1.2) and (17.3.1.3),
we also have

f [1](x) = f (x), f [n](f [m](x)) = f [n+m](x). (17.3.1.4)
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17.3.1-2. Fixed points of a function. Some classes of functions.

A point ξ is called a fixed point of the function f (x) if f (ξ) = ξ. A point ξ is called an
attractive fixed point of the function f (x) if there exists a neighborhood U of ξ such that
lim
n→∞ f [n](x) = ξ for any x � U . If, in addition, we have

|f (x) – ξ| ≤ ε|x – ξ|, 0 < ε < 1,

for x � U , then ξ is called a strongly attractive fixed point.
If f (x) is differentiable at a fixed point x = ξ and

|f ′(ξ)| < 1,

then ξ is a strongly attractive fixed point.
For a < b, let I be any of the sets

a < x < b, a ≤ x < b, a < x ≤ b, a ≤ x ≤ b.
One or both endpoints a and b may be infinite. The closure of I is denoted by I .

Denote by Smξ [I] (briefly Smξ ) the class of functions f (x) satisfying the following
conditions:

1◦. f (x) has continuous derivatives up to the order m in I .

2◦. f (x) satisfies the inequalities

(f (x) – x)(ξ – x) > 0 for x � I , x ≠ ξ; (17.3.1.5)
(f (x) – ξ)(ξ – x) < 0 for x � I , x ≠ ξ, (17.3.1.6)

where ξ � I .
Denote by Rmξ [I] (briefly Rmξ ) the class of functions f (x) belonging to Smξ and strictly

increasing on I . Fig. 17.3 represents a function in Smξ and Fig. 17.4 represents a function
in Rmξ .

O

x

ξ

ξ

y
y x�

y f x� ( )

Figure 17.3. A function belonging to Sm
ξ .

O

x

ξ

ξ

y y x�

y f x� ( )

Figure 17.4. A function belonging to Rm
ξ .

Remark. If ξ = +∞, then in the definition of the classesSm
∞ andRm

∞ , the condition (17.3.1.6) is superfluous
and (17.3.1.5) is replaced by f (x) > x for x � I . Analogously, if ξ = –∞, then (17.3.1.5) is replaced by f (x) < x
for x � I .

The following statements hold:
(i) If f (x) � Smξ , then ξ is a fixed point of f (x).
(ii) If f (x) � Smξ , then for any x0 � I the sequence f [n](x0) is monotonic (and strictly

monotonic whenever x0 ≠ ξ) and

lim
n→∞ f [n](x0) = ξ.
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17.3.1-3. Asymptotic properties of iterations in a neighborhood of a fixed point.

1◦. Let f (0) = 0, 0 < f (x) < x for 0 < x < x0, and suppose that in a neighborhood of the
fixed point the function f (x) can be represented in the form

f (x) = x – axk + bxm + o(xm),

where 1 < k < m and a, b > 0. Then the following limit relation holds:

lim
n→∞n

1
k–1 f [n](x) = [a(k – 1)]

1
k–1 , 0 < x < x0. (17.3.1.7)

Example. Consider the function f (x) = sinx. We have 0 < sinx < x for 0 < x < ∞ and sinx =
x – 1

6 x
3 + 1

120 x
5 + o(x5), which corresponds to the values a = 1

6 and k = 3. Substituting these values into
(17.3.1.7), we obtain

lim
n→∞

√
n sin[n] x =

√
3, 0 < x < ∞.

2◦. Let f (0) = 0, 0 < f (x) < x for 0 < x < x0, and suppose that in a neighborhood of the
fixed point the function f (x) can be represented in the form

f (x) = λx + axk + bxm + o(xm),

where 0 < λ < 1 and 1 < k < m. Then the following limit relation holds:

lim
n→∞

f [n](x) – λnx
λn

=
axk

λ – λk
, 0 < x < x0.

17.3.1-4. Representation of iterations by power series.

Let f (x) be a function with a fixed point ξ = f (ξ) and suppose that in a neighborhood of
that point f (x) can be represented by the series

f (x) = ξ +
∞∑

j=1

aj(x – ξ)j (17.3.1.8)

with a nonzero radius of convergence. For any integer N > 0, there is a neighborhood U of
the point ξ in which all iterations f [n](x) for integer 0 ≤ n ≤ N are defined and also admit
the representation

f [n](x) = ξ +
∞∑

j=1

Anj(x – ξ)j . (17.3.1.9)

The coefficients Anj can be uniquely expressed through the coefficients aj with the help of
formal power series and the relations f (f [n](x)) = f [n](f (x)).

For a1 ≠ 0 and |a1| ≠ 1, the first three coefficients of the series (17.3.1.9) have the form

An1 = an1 , An2 =
a2n

1 – an1
a2

1 – a1
a2,

An3 =
a3n

1 – an1
a3

1 – a1
a3 + 2

(a2n
1 – an1 )(an1 – a1)

(a3
1 – a1)(a2

1 – a1)
a2, n = 2, 3, . . .



910 DIFFERENCE EQUATIONS AND OTHER FUNCTIONAL EQUATIONS

For a1 = 1, we have

An1 = 1, An2 = na2, An3 = na3 + n(n – 1)a2
2, n = 2, 3, . . .

The series (17.3.1.8) has a nonzero radius of convergence if and only if there exist
constants A > 0 and B > 0 such that |aj | ≤ ABj–1, j = 1, 2, . . . Under these conditions, the
series (17.3.1.8) is convergent for |x – ξ| < 1/B, and the series (17.3.1.9) is convergent for
|x – ξ| < Rn, where

Rn =

⎧
⎪⎨

⎪⎩

A – 1
B(An – 1)

if A ≠ 1,

1
nB

if A = 1.

17.3.2. Linear Homogeneous Functional Equations

17.3.2-1. Equations of general form. Possible cases.

A linear homogeneous functional equation has the form

y
(
f (x)

)
= g(x)y(x), (17.3.2.1)

where f (x) and g(x) ≠ 0 are known functions and the function y(x) is to be found.
Let f (x) � R0

ξ , where x � I and ξ � I , and let g(x) be continuous on I , g(x) ≠ 0 for
x � I , x ≠ ξ.

Consider the sequence of functions

Gn(x) =
n–1∏

k=0

g
(
f [k](x)

)
, n = 1, 2, . . . (17.3.2.2)

Three cases may occur.
(i) The limit

G(x) = lim
n→∞Gn(x) (17.3.2.3)

exists on I . Moreover, G(x) is continuous and G(x) ≠ 0.
(ii) There exists an interval I0 ⊂ I such that

lim
n→∞Gn(x) = 0

uniformly on I0.
(iii) Neither of the cases (i) or (ii) occurs.

THEOREM. In case (i), the homogeneous functional equation (17.3.2.1) has a one-
parameter family of continuous solutions on I . For anya, there exists exactly one continuous
function y(x) satisfying equation (17.3.2.1) and the condition

y(ξ) = a.

This solution has the form
y(x) =

a

G(x)
. (17.3.2.4)
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In case (ii), equation (17.3.2.1) has a continuous solution depending on an arbitrary
function, and every continuous solution y(x) on I satisfies the condition lim

x→ξ
y(x) = 0.

In case (iii), equation (17.3.2.1) has a single continuous solution, y(x) ≡ 0.

In order to decide which of the cases (i), (ii), or (iii) takes place, the following simple
criteria can be used.

(i) This case takes place if ξ is a strongly attractive fixed point of f (x) and there exist
positive constants δ, μ, and M such that

|g(x) – 1| ≤ M |x – ξ|μ for x � I ∩ (ξ – δ, ξ + δ).

(ii) This case takes place if |g(ξ)| < 1.
(iii) This case takes place if |g(ξ)| > 1.

Remark. For g(ξ) = 1, any of the three cases (i), (ii), or (iii) may take place.

17.3.2-2. Schröder–Koenigs functional equation.

Consider the Schröder–Koenigs equation

y(f (x)) = sy(x), s ≠ 0, (17.3.2.5)

which is a special case of the linear homogeneous functional equation (17.3.2.1) for
g(x) = s = const.

1◦. Let s > 0, s ≠ 1 and let ȳ(x) be a solution of equation (17.3.2.5) satisfying the condition
ȳ(x) ≠ 0. Then the function

y(x) = ȳ(x)Θ
(

ln |ȳ(x)|
ln s

)
,

where Θ(z) is an arbitrary 1-periodic function, is also a solution of equation (17.3.2.5).

2◦. Let f (x) be defined on a submodulus set I and let h(x) be a one-to-one mapping of I
onto a set I1. Let

p(x) = h(f (h–1(x))),

where h–1 is the inverse function of h. If ψ(x) is a solution of the equation

ψ(p(x)) = sψ(x)

on I1, then the function
y(x) = ψ(h(x))

satisfies equation (17.3.2.5) on I .
On the basis of this statement, a fixed point ξ can be moved to the origin. Indeed, if ξ is

finite, we can take h(x) = x – ξ. If ξ = ∞, we take h(x) = 1/x. Thus, we can assume that 0
is a fixed point of f (x).
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3◦. Suppose that f (x) � R2
0[I], 0 � I , and

f ′(0) = s, 0 < s < 1.

Then for each σ � (–∞,∞), there exists a unique continuously differentiable solution of
equation (17.3.2.5) on I satisfying the condition

y′(0) = σ. (17.3.2.6)

This solution is given by the formula

y(x) = σ lim
n→∞ s–nf [n](x), (17.3.2.7)

and for σ ≠ 0 it is strictly monotone on I (it is an increasing function for σ > 0, and it is a
decreasing function for σ < 0).

4◦. For an invertible function f , (17.3.2.5) can be reduced to a similar equation with the
help of the transformation z = f (x):

y(f –1(z)) = s–1y(z).

5◦. For s > 0, s ≠ 0, the replacement y(x) = su(x)/c reduces the Schröder–Koenigs equation
(17.3.2.5) to the Abel equation for the function u(x) (see equation (17.3.3.5), in which
y should be replaced by u). In Subsection 17.3.3, Item 4◦, there is a description of the
method for constructing continuous monotone solutions of the Abel equation to within
certain arbitrary functions.

17.3.2-3. Automorphic functions.

Consider the special case of equation (17.3.2.5) for s = 1:

y(f (x)) = y(x). (17.3.2.8)

Solutions of this equation are called automorphic functions. If f (x) is invertible on a
modulus set I , then the general solution of equation (17.3.2.8) may be written in the form

y(x) =
∞∑

n=–∞
ϕ(f [n](x)), (17.3.2.9)

where ϕ(x) is an arbitrary function on I such that the series (17.3.2.9) is convergent.

17.3.3. Linear Nonhomogeneous Functional Equations

17.3.3-1. Equations of general form. Possible cases.

1◦. Consider a linear nonhomogeneous functional equation of the general form

y(f (x)) = g(x)y(x) + F (x). (17.3.3.1)

Let x � I and ξ � I , f (x) �R0
ξ . Suppose that g(x) and F (x) are continuous functions on

I and g(x) ≠ 0 for x � I , x ≠ ξ. In accordance with the investigation of the corresponding
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homogeneous equation with F (x) ≡ 0, the following three cases are possible (the notation
used here is in agreement with that of Paragraph 17.3.2-1):

(i) Equation (17.3.3.1) on I either has a one-parameter family of continuous solutions
or no solutions at all. If (17.3.3.1) has a continuous solution y0(x) on I , then the general
continuous solution on I is given by

y(x) = y0(x) +
a

G(x)
,

where a is an arbitrary constant and G(x) is given by (17.3.2.3).
(ii) Equation (17.3.3.1) on I has a continuous solution depending on an arbitrary func-

tion, or has no continuous solutions on I .
(iii) Equation (17.3.3.1) on I either has a continuous solution or no solutions at all.

2◦. Let x � I , ξ � I , and f (x) �R0
ξ[I]. Suppose that g(x) andF (x) are continuous functions,

g(x) ≠ 0 for x ≠ ξ, and g(ξ) > 1. Then equation (17.3.3.1) has a unique continuous solution
that can be represented by the series

y(x) = –
∞∑

n=0

F (f [n](x))
Gn+1(x)

, (17.3.3.2)

where the function Gn(x) is defined by (17.3.2.2).

17.3.3-2. Equations of special form with g(x) = const.

1◦. Consider the equation
y(f (x)) + y(x) = F (x), (17.3.3.3)

which is a special case of equation (17.3.3.1) with g(x) = –1.
(A) Let ξ � I , f (x) � R0

ξ[I], and suppose that F (x) is a continuous function. If there
exists a continuous solution of equation (17.3.3.3), it can be represented by the power series

y(x) =
1
2
F (ξ) +

∞∑

n=0

(–1)n
[
F (f [n](x)) – F (ξ)

]
.

(B) Suppose that the assumptions of Item (A) hold and, moreover, there exist positive
constants δ, κ, and C such that

|F (x) – F (ξ)| ≤ C |x – ξ)|κ, x � (ξ – δ, ξ + δ) ∩ I ,

and ξ is a strongly attractive fixed point of f (x). Then equation (17.3.3.3) has a continuous
solution on I .

2◦. Consider the functional equation

y(f (x)) – λy(x) = F (x), λ ≠ 0. (17.3.3.4)

Let x � I = (a, b]. Assume that on the interval I the function f (x) is continuous, strongly
increasing, and satisfies the condition a < f (x) < x, and F (x) is a function of bounded
variation.

Depending on the value of the parameter λ, the following cases are possible.
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Case |λ| > 1. There is a unique solution

y(x) = –
∞∑

n=0

F
(
f [n](x)

)

λn+1 ,

which coincides with (17.3.3.2) for g(x) = λ and Gn+1(x) = λn.
Case 0 < |λ| < 1. For any x0 � I and any test function ϕ(z) that has bounded variation

on [f (x0),x0] and satisfies the condition

ϕ(f (x0)) – λϕ(x0) = F (x0),

there is a single function of bounded variation for which equation (17.3.3.4) holds. This
solution has the same variation on the interval [f (x0),x0] as the test function ϕ(x).

Case λ = 1. If lim
x→a+0

F (x) = 0 and there is a point x0 � I such that the series
∞∑

n=0
F
(
f [n](x0)

)
is convergent, then equation (17.3.3.4) has a one-parameter family of

solutions

y(x) = C –
∞∑

n=0

F
(
f [n](x)

)

(here, C is an arbitrary constant), for which there exists a finite limit lim
x→a+0

y(x).

Case λ = –1. See Item 1◦.

17.3.3-3. Abel functional equation.

The Abel functional equation has the form

y(f (x)) = y(x) + c, c ≠ 0. (17.3.3.5)

Remark. Without the loss of generality, we can take c = 1 (this can be achieved by passing to the
normalized unknown function ȳ = y/c).

1◦. Let ȳ(x) be a solution of equation (17.3.3.5). Then the function

y(x) = ȳ(x) + Θ
(
ȳ(x)
c

)
,

where Θ(z) is an arbitrary 1-periodic function, is also a solution of equation (17.3.3.5).

2◦. Suppose that the following conditions hold:
(i) f (x) is strictly increasing and continuous for 0 ≤ x ≤ a;
(ii) f (0) = 0 and f (x) < x for 0 < x < a;
(iii) the derivative f ′(x) exists, has bounded variation on the interval 0 < x < a, and

lim
x→+0

f ′(x) = 1. Then, for any x,x0 � (0, a], there exists the limit

y(x) = lim
n→∞

f [n](x) – f [n](x0)
f [n–1](x0) – f [n](x0)

, (17.3.3.6)

which defines a monotonically increasing function satisfying the Abel equation (17.3.3.5)
with c = –1 (this is the Lévy solution).
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3◦. Let f (x) be defined on a submodulus interval I and suppose that there is a sequence dn
for which

lim
n→∞

f [n+1](x) – f [n](x)
dn

= c, x � I .

If for all x � I there exists the limit

y(x) = lim
n→∞

f [n](x) – f [n](x0)
dn

, (17.3.3.7)

where x0 is an arbitrary fixed point from the interval I , then the function y(x) satisfies
equation (17.3.3.5).

4◦. Let us describe a procedure for the construction of monotone solutions of the Abel
equation (17.3.3.5). Assume that the function f (x) is continuous, strictly increasing on the
segment [0, a], and the following conditions hold: f (0) = 0 and f (x) < x ≤ a for x ≠ 0.

We define a function ϕ(y) on the semiaxis [0,∞) by

ϕ(y) = f [n](ϕ0({y})
)
, n = [y], (17.3.3.8)

where [y] and {y} are, respectively, the integer and the fractional parts of y, and ϕ0(y) is
any continuous strictly decreasing function on [0, 1) such that ϕ0(0) = a, ϕ0(1 – 0) = f (a).

On the intervals [n,n + 1) (n = 0, 1, . . . ), the function (17.3.3.8) takes the values

ϕ(y) = f [n](ϕ0(y – n)
)
, n ≤ y < n + 1, (17.3.3.9)

and therefore is continuous and strictly decreasing, being a superposition of continuous
strictly increasing functions and a continuous strictly decreasing function. At integer
points, too, the function ϕ(y) is continuous, since (17.3.3.8) and (17.3.3.9) imply that

ϕ(n – 0) = f [n–1](ϕ0(1 – 0)
)

= f [n–1](f (a)
)

= f [n](a),

ϕ(n) = f [n](ϕ0(0)
)

= f [n](a).

Therefore, the function ϕ(y) is also continuous and strictly decreasing on the entire semiaxis
[0,∞). By continuity, we can define the value ϕ(∞) = 0.

It follows that there exists the inverse function ϕ–1 defined by the relations

x = ϕ(y), y = ϕ–1(x) (0 ≤ x ≤ a, 0 ≤ y ≤ ∞), (17.3.3.10)

and ϕ–1(0) = ∞, ϕ–1(a) = 0.
From (17.3.3.8), it follows that the function ϕ(y) satisfies the functional equation

ϕ(y + 1) = f
(
ϕ(y)

)
, 0 ≤ y < ∞. (17.3.3.11)

Applying ϕ–1 to both sides of (17.3.3.11) and then passing from y to a new variable x
with the help of (17.3.3.10), we come to the Abel equation (17.3.3.5) with c = 1, where
y(x) = ϕ–1(x). Thus, finding a solution of the Abel equation is reduced to the inversion of
the known function (17.3.3.8).

5◦. The Abel equation (17.3.3.5) can be reduced to the Schrödinger–Koenig equation

u(f (x)) = su(x),

with the help of the replacement u(x) = sy(x)/c; see equation (17.3.2.5).
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17.3.4. Linear Functional Equations Reducible to Linear Difference
Equations with Constant Coefficients

17.3.4-1. Functional equations with arguments proportional to x.

Consider the linear equation

amy(bmx) + am–1y(bm–1x) + · · · + a1y(b1x) + a0y(b0x) = f (x). (17.3.4.1)

The transformation
y(x) = w(z), z = lnx

reduces (17.3.4.1) to a linear difference equation with constant coefficients

amw(z +hm) + am–1w(z +hm–1) + · · · + a1w(z +h1) + a0w(z +h0) = f (ez), hk = ln bk.

Note that the homogeneous functional equation (17.3.4.1) with f (x)≡ 0 admits particular
solutions of power type, y(x) = Cxβ, where C is an arbitrary constant and β is a root of the
transcendental equation

amb
β
m + am–1b

β
m–1 + · · · + a1b

β
1 + a0b

β
0 = 0.

17.3.4-2. Functional equations with powers of x as arguments.

Consider the linear equation

amy
(
xnm
)

+ am–1y
(
xnm–1

)
+ · · · + a1y

(
xn1
)

+ a0y(xn0 ) = f (x). (17.3.4.2)

The transformation
y(x) = w(z), z = ln lnx

reduces (17.3.4.2) to a linear difference equation with constant coefficients

amw(z +hm)+am–1w(z +hm–1)+ · · ·+a1w(z +h1)+a0w(z +h0) = f (ee
z
), hk = ln lnnk.

Note that the homogeneous functional equation (17.3.4.2) admits particular solutions of
the form y(x) =C | ln x|p, whereC is an arbitrary constant and p is a root of the transcendental
equation

am|nm|p + am–1|nm–1|p + · · · + a1|n1|p + a0|n0|p = 0.

17.3.4-3. Functional equations with exponential functions of x as arguments.

Consider the linear equation

amy
(
eλmx

)
+ am–1y

(
eλm–1x

)
+ · · · + a1y

(
eλ1x
)

+ a0y(eλ0x) = f (x).

The transformation
y(x) = w(ln z), z = lnx

reduces this equation to a linear difference equation with constant coefficients

amw(z +hm) +am–1w(z +hm–1) + · · ·+a1w(z +h1) +a0w(z +h0) = f (ez), hk = lnλk.
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17.3.4-4. Equations containing iterations of the unknown function.

Consider the linear homogeneous equation

amy
[m](x) + am–1y

[m–1](x) + · · · + a1y(x) + a0x = 0

with successive iterations of the unknown function, y[2](x) = y
(
y(x)
)
, . . . , y[n](x) =

y
(
y[n–1](x)

)
.

A solution of this equation is sought in the parametric form

x = w(t), y = w(t + 1). (17.3.4.3)

Then the original equation is reduced to the following mth-order linear equation with
constant coefficients (equation of the type (17.2.3.1) with integer differences):

amw(t + m) + am–1w(t + m – 1) + · · · + a1w(t + 1) + a0w(t) = 0.

Example. Consider the functional equation

y
(
y(x)

)
+ ay(x) + bx = 0. (17.3.4.4)

The transformation (17.3.4.3) reduces this equation to a difference equation of the form (17.2.2.1). Let λ1 and
λ2 be distinct real roots of the characteristic equation

λ2 + aλ + b = 0, (17.3.4.5)

λ1 ≠ λ2. Then the general solution of the functional equation (17.3.4.4) in parametric form can be written as

x = Θ1(t)λt
1 + Θ2(t)λt

2,

y = Θ1(t)λt+1
1 + Θ2(t)λt+1

2 ,
(17.3.4.6)

where Θ1(t) and Θ2(t) are arbitrary 1-periodic functions, Θk(t) = Θk(t + 1).
Taking Θ1(t) = C1 and Θ2(t) = C2 in (17.3.4.6), where C1 and C2 are arbitrary constants, and eliminating

the parameter t, we obtain a particular solution of equation (17.3.4.4) in implicit form:

λ2x – y
λ2 – λ1

= C1

[
λ1x – y

C2(λ1 – λ2)

]γ

, γ =
lnλ1

lnλ2
.

17.3.4-5. Babbage equation and involutory functions.

1◦. Functions satisfying the Babbage equation

y(y(x)) = x (17.3.4.7)

are called involutory functions.
Equation (17.3.4.7) is a special case of (17.3.4.4) with a = 0, b = –1. The corresponding

characteristic equation (17.3.3.5) has the roots λ1,2 = �1. The parametric representation of
solution (17.3.4.6) contains the complex quantity (–1)t = eiπt = cos(πt) + i sin(πt) and is,
therefore, not very convenient.

2◦. The following statements hold:
(i) On the interval x � (a, b), there is a continuous decreasing solution of equation

(17.3.4.7) depending on an arbitrary function. This solution has the form

y(x) =
{
ϕ(x) for x � (a, c],
ϕ–1(x) for x � (c, b),

where c � (a, b) is an arbitrary point, and ϕ(x) is an arbitrary continuous decreasing function
on (a, c] such that

lim
x→a+0

ϕ(x) = b, ϕ(c) = c.

(ii) The only increasing solution of equation (17.3.4.7) has the form y(x) ≡ x.
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3◦. Solution in parametric form:

x = Θ
( t

2

)
, y = Θ

( t + 1
2

)
,

where Θ(t) = Θ(t + 1) is an arbitrary periodic function with period 1.

4◦. Solution in parametric form (an alternative representation):

x = Θ1(t) + Θ2(t) sin(πt),
y = Θ1(t) – Θ2(t) sin(πt),

where Θ1(t) and Θ2(t) are arbitrary 1-periodic functions, Θk(t) = Θk(t + 1), k = 1, 2. In
this solution, the functions sin(πt) can be replaced by cos(πt).

17.4. Nonlinear Difference and Functional Equations
with a Single Variable

17.4.1. Nonlinear Difference Equations with a Single Variable

17.4.1-1. Riccati difference equation.

The Riccati difference equation has the general form

y(x)y(x + 1) = a(x)y(x + 1) + b(x)y(x) + c(x), (17.4.1.1)

where the functions a(x), b(x), c(x) satisfy the condition a(x)b(x) + c(x) � 0.

1◦. The substitution

y(x) =
u(x + 1)
u(x)

+ a(x)

reduces the Riccati equation to the linear second-order difference equation

u(x + 2) + [a(x + 1) – b(x)]u(x + 1) – [a(x)b(x) + c(x)]u(x) = 0.

2◦. Let y0(x) be a particular solution of equation (17.4.1.1). Then the substitution

z(x) =
1

y(x) – y0(x)

reduces equation (17.4.1.1) to the first-order linear nonhomogeneous difference equation

z(x + 1) +
[y0(x) – a(x)]2

a(x)b(x) + c(x)
z(x) +

y0(x) – a(x)
a(x)b(x) + c(x)

= 0.

17.4.1-2. First-order nonlinear difference equations with no explicit dependence on x.

Consider the nonlinear functional equation

y(x + 1) = f
(
y(x)
)
, 0 ≤ x < ∞, (17.4.1.2)

where f (y) is a continuous function.
Let y(x) be a function defined on the semiaxis [0,∞) by

y(x) = f [n](ϕ({x})
)
, n = [x], (17.4.1.3)

where [x] and {x} are, respectively, the integer and the fractional parts of x, and ϕ(x) is any
continuous function on [0, 1) such that ϕ(0) = a, ϕ(1 – 0) = f (a), a is an arbitrary constant.

Direct verification shows that the function (17.4.1.3) satisfies equation (17.4.1.2) and is
continuous on the semiaxis [0,∞).
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17.4.1-3. Nonlinear mth-order difference equations.

1◦. In the general case, a nonlinear difference equation has the form

F
(
x, y(x + h0), y(x + h1), . . . , y(x + hm)

)
= 0. (17.4.1.4)

This equation contains the unknown function with different values of its argument differing
from one another by constants. The constants h0, h1, . . . , hm are called differences or
deviations of the argument. If all hk are integers, then (17.4.1.4) is called an equation with
integer differences. If hk = k (k = 0, 1, . . . , m) and the equation explicitly involves y(x)
and y(x + m), then it is called a difference equation of order m.

2◦. An mth-order difference equation resolved with respect to the leading term y(x + m)
has the form

y(x +m) = f
(
x, y(x), y(x + 1), . . . , y(x +m – 1)

)
. (17.4.1.5)

The Cauchy problem for this equation consists of finding its solution with a given initial
distribution of the unknown function on the interval 0 ≤ x ≤ m:

y = ϕ(x) at 0 ≤ x ≤ m. (17.4.1.6)

The values of y(x) for m ≤ x ≤ m + 1 are calculated by substituting the initial values
(17.4.1.6) into the right-hand side of equation (17.4.1.5) for 0 ≤ x ≤ 1. We have

y(x + m) = f
(
x, ϕ(x), ϕ(x + 1), . . . , ϕ(x +m – 1)

)
. (17.4.1.7)

Then, replacing x by x + 1 in equation (17.4.1.5), we obtain

y(x +m + 1) = f
(
x + 1, y(x + 1), y(x + 2), . . . , y(x +m)

)
. (17.4.1.8)

The values of y(x) for m+ 1 ≤ x ≤m+ 2 are determined by the right-hand side of (17.4.1.8)
for 0 ≤ x ≤ 1, the quantities y(x+ 1), . . . , y(x+m– 1) are determined by the initial condition
(17.4.1.6), and y(x +m) is taken from (17.4.1.7).

In order to find y(x) for m + 2 ≤ x ≤ m + 3, we replace x by x + 1 in equation (17.4.1.8)
and consider this equation on the interval 0 ≤ x ≤ 1. Using the initial conditions for y(x+ 2),
. . . , y(x +m – 1) and the quantities y(x +m), y(x +m + 1) found on the previous steps, we
find y(x + m + 2).

In a similar way, one can find y(x) for m + 3 ≤ x ≤ m + 4, etc. This method for solving
difference equations is called the step method.

17.4.2. Reciprocal (Cyclic) Functional Equations

17.4.2-1. Reciprocal functional equations depending on y(x) and y(a – x).

1◦. Consider a reciprocal equation of the form

F
(
x, y(x), y(a – x)

)
= 0.

Replacing x by a – x, we obtain a similar equation containing the unknown function
with the same arguments:

F
(
a – x, y(a – x), y(x)

)
= 0.

Eliminating y(a – x) from this equation and the original equation, we come to the usual
algebraic (or transcendental) equation of the form Ψ

(
x, y(x)

)
= 0.

In other words, solutions of the original functional equation y = y(x) are defined in a
parametric manner by means of two algebraic (or transcendental) equations:

F (x, y, t) = 0, F (a – x, t, y) = 0, (17.4.2.1)

where t is a parameter.
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Remark. System (17.4.2.1), and therefore the original functional equation, may have several (even in-
finitely many) solutions or no solutions at all.

Example. Consider the nonlinear equation

y2(x) = f (x)y(a – x). (17.4.2.2)

Replacing x by a – x in (17.4.2.2), we get

y2(a – x) = f (a – x)y(x). (17.4.2.3)

Eliminating y(a – x) from (17.4.2.2)–(17.4.2.3), we obtain two solutions of the original equation:

y(x) = [f 2(x)f (a – x)]1/3 and y(x) ≡ 0.

2◦. Consider a reciprocal equation of the form

F
(
x, y(x), y(a/x)

)
= 0.

Replacing x by a/x, we obtain a similar equation with the unknown function having
the same arguments:

F
(
a/x, y(a/x), y(x)

)
= 0.

Eliminating y(a/x) from this and the original equation, we come to the usual algebraic (or
transcendental) equation of the form Ψ

(
x, y(x)

)
= 0.

In other words, solutions of the original functional equation y = y(x) are defined in a
parametric manner by means of a system of two algebraic (or transcendental) equations:

F (x, y, t) = 0, F (a/x, t, y) = 0,

where t is a parameter.

17.4.2-2. Reciprocal (cyclic) functional equations of general form.

Reciprocal functional equations have the form

F
(
x, y(x), y(ϕ(x)), y(ϕ[2](x)), . . . , y(ϕ[n–1](x))

)
= 0. (17.4.2.4)

Here we use the notation ϕ[n](x) = ϕ(ϕ[n–1](x)) and ϕ(x) is a cyclic function satisfying the
condition

ϕ[n](x) = x. (17.4.2.5)

The value n is called the order of a cyclic (reciprocal) equation.
Successively replacing n times the argument x by ϕ(x) in the functional equation

(17.4.2.4), we obtain the following system (the original equation coincides with the first
equation of this system):

F
(
x, y0, y1, . . . , yn–1

)
= 0,

F
(
ϕ(x), y1, y2, . . . , y0

)
= 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,
F
(
ϕ[n–1](x), yn–1, y0, . . . , yn–2

)
= 0,

(17.4.2.6)

where we have set y0 = y(x), y1 = y(ϕ(x)), . . . , yn–1 = y(ϕ[n–1](x)); condition (17.4.2.5)
implies that yn = y0.

Eliminating y1, y2, . . . , yn–1 from the system of nonlinear algebraic (or transcendental)
equations (17.4.2.6), we obtain a solution of the functional equation (17.4.2.4) in implicit
form Ψ(x, y0) = 0, where y0 = y(x).
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17.4.3. Nonlinear Functional Equations Reducible to Difference
Equations

17.4.3-1. Functional equations with arguments proportional to x.

Consider the equation

F
(
x, y(a1x), y(a2x), . . . , y(anx)

)
= 0. (17.4.3.1)

The transformation
y(x) = w(z), z = lnx

reduces (17.4.3.1) to the difference equation

F
(
ez , w(z + h1), w(z + h2), . . . , w(z + hn)

)
= 0, hk = ln ak.

17.4.3-2. Functional equations with powers of x as arguments.

Consider the equation

F
(
x, y(xn1 ), y(xn2 ), . . . , y(xnm)

)
= 0. (17.4.3.2)

The transformation
y(x) = w(z), z = ln lnx

reduces (17.4.3.2) to the difference equation

F
(
ee

z
, w(z + h1), w(z + h2), . . . , w(z + hn)

)
= 0, hk = ln lnnk.

17.4.3-3. Functional equations with exponential functions of x as arguments.

Consider the equation

F
(
x, y(eλ1x), y(eλ2x), . . . , y(eλnx)

)
= 0.

The transformation
y(x) = w(ln z), z = lnx

reduces this equation to the difference equation

F
(
ez , w(z + h1), w(z + h2), . . . , w(z + hn)

)
= 0, hk = lnλk.

17.4.3-4. Equations containing iterations of the unknown function.

Consider the equation

F
(
x, y(x), y[2](x), . . . , y[n](x)

)
= 0,

where y[2](x) = y
(
y(x)
)
, . . . , y[n](x) = y

(
y[n–1](x)

)
.

We seek its solution in parametric form

x = w(t), y = w(t + 1).

Then the original equation is reduced to the following nth-order difference equation:

F
(
w(t), w(t + 1), w(t + 2), . . . , w(t + n)

)
= 0.
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17.4.4. Power Series Solution of Nonlinear Functional Equations

In some situations, a solution of a functional equation can be found in the form of power
series expansion.

Consider the nonlinear functional equation

y(x) – F
(
x, y(ϕ(x)

)
= 0. (17.4.4.1)

Suppose that the following conditions hold:

1) there exist a and b such that ϕ(a) = a, F (a, b) = b;
2) the function ϕ(x) is analytic in a neighborhood of a and |ϕ′(a)| < 1;
3) the function F is analytic in a neighborhood of the point (a, b) and | ∂F∂b (a, b)| < 1.

Then the formal power series solution of equation (17.4.4.1),

y(x) = b +
∞∑

k=1

ck(x – a)k, (17.4.4.2)

has a positive radius of convergence.
The formal solution is obtained by substituting the expansions

ϕ(x) = a +
∞∑

k=1

ak(x – a)k,

F (x, y) = b +
∞∑

i,j=1

bij(x – a)i(y – b)j ,

and (17.4.4.2) into equation (17.4.4.1). Gathering the terms with the same powers of the
difference ξ = (x – a) and then equating to zero the coefficients of different powers of ξ, we
obtain a triangular system of algebraic equations for the coefficients ck.

� See also Section T12.2, which gives exact solutions of some nonlinear difference and
functional equations with one independent variable.

17.5. Functional Equations with Several Variables
17.5.1. Method of Differentiation in a Parameter

17.5.1-1. Classes of equations. Description of the method.

Consider linear functional equations of the form

w(x, t) = θ(x, t, a)w
(
ϕ(x, t, a), ψ(x, t, a)

)
, (17.5.1.1)

where x and t are independent variables, w =w(x, t) is the function to be found, θ = θ(x, t, a),
ϕ = ϕ(x, t, a), ψ = ψ(x, t, a) are given functions, and a is a free parameter that can take any
value (on some interval). Assume that for a particular a = a0, we have

θ(x, t, a0) = 1, ϕ(x, t, a0) = x, ψ(x, t, a0) = t, (17.5.1.2)

i.e., for a = a0 the functional equation (17.5.1.1) turns into identity.
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Let us expand (17.5.1.1) in powers of the small parameter a in a neighborhood of a0,
taking into account (17.5.1.2), and then divide the resulting equation by a – a0 and pass to
the limit for a→ a0. As a result, we obtain a first-order linear partial differential equation
for the function w:

ϕ◦
a(x, t)

∂w

∂x
+ ψ◦

a(x, t)
∂w

∂t
+ θ◦a(x, t)w = 0, (17.5.1.3)

where we have used the following notation:

ϕ◦
a(x, t) =

∂ϕ

∂a

∣
∣∣
a=a0

, ψ◦
a(x, t) =

∂ψ

∂a

∣
∣∣
a=a0

, θ◦a(x, t) =
∂θ

∂a

∣
∣∣
a=a0

.

In order to solve equation (17.5.1.3), one should consider the corresponding system of
equations for characteristics (see Subsection 13.1.1):

dx

ϕ◦
a(x, t)

=
dt

ψ◦
a(x, t)

= –
dw

θ◦a(x, t)w
. (17.5.1.4)

Let
u1(x, t) = C1, u2(x, t,w) = C2 (17.5.1.5)

be independent integrals of the characteristic system (17.5.1.4). Then the general solution
of equation (17.5.1.3) has the form

u2(x, t,w) = F
(
u1(x, t)

)
, (17.5.1.6)

where F (z) is an arbitrary function. The function w should be expressed from (17.5.1.6)
and substituted into the original equation (17.5.1.1) for verification [there is a possibility
of redundant solutions; it is also possible that a solution of the partial differential equation
(17.5.1.3) is not a solution of the functional equation (17.5.1.1); see Example 3 below].

Remark 1. Equation (17.5.1.3) can be obtained from (17.5.1.1) by differentiation in the parameter a, after
which one should take a = a0.

Remark 2. It is convenient to choose the second integral in (17.5.1.5) to be a linear function of w, i.e.,
u2(x, t,w) = ξ(x, t)w, and rewrite (17.5.1.6) as a relation resolved with respect to w.

17.5.1-2. Examples of solutions of some specific functional equations.

Example 1. Self-similar solutions, which often occur in mathematical physics, may be defined as solutions
invariant with respect to the scaling transformation, i.e., solutions satisfying the functional equation

w(x, t) = akw(amx, ant), (17.5.1.7)

where k, m, n are given constants, and a > 0 is an arbitrary constant.
Equation (17.5.1.7) turns into identity for a = 1. Differentiating (17.5.1.7) in a and taking a = 1, we come

to the first-order partial differential equation

mx
∂w

∂x
+ nt

∂w

∂t
+ kw = 0. (17.5.1.8)

The first integrals of the corresponding characteristic system of ordinary differential equations

dx

mx
=
dt

nt
= –

dw

kw

can be written in the form
xt–m/n = C1, tk/nw = C2 (n ≠ 0).
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Therefore, the general solution of the partial differential equation (17.5.1.8) has the form

w(x, t) = t–k/nF (z), z = xt–m/n, (17.5.1.9)

where F (z) is an arbitrary function. Direct verification shows that expression (17.5.1.9) is a solution of the
functional equation (17.5.1.7).

Example 2. Consider the functional equation

w(x, t) = akw(amx, t + β ln a), (17.5.1.10)

where k, m, β are given constants, a > 0 is an arbitrary constant.
Equation (17.5.1.10) turns into identity for a = 1. Differentiating (17.5.1.10) in a and taking a = 1, we

come to the first-order partial differential equation

mx
∂w

∂x
+ β

∂w

∂t
+ kw = 0. (17.5.1.11)

The corresponding characteristic system of ordinary differential equations

dx

mx
=
dt

β
= –

dw

kw

admits the first integrals
x exp(–mt/β) = C1, w exp(kt/β) = C2.

Therefore, the general solution of the partial differential equation (17.5.1.11) has the form

w(x, t) = exp(–kt/β)F (z), z = x exp(–mt/β), (17.5.1.12)

where F (z) is an arbitrary function. Direct verification shows that (17.5.1.12) is a solution of the functional
equation (17.5.1.10).

Example 3. Now consider the functional equation

w(x, t) = akw
(
x + (1 – a)t, ant

)
, (17.5.1.13)

where a > 0 is arbitrary and n is a constant.
Equation (17.5.1.13) turns into identity for a = 1. Differentiating (17.5.1.13) in a and taking a = 1, we

come to the first-order partial differential equation

–t
∂w

∂x
+ nt

∂w

∂t
+ kw = 0. (17.5.1.14)

The corresponding characteristic system

–
dx

t
=
dt

nt
= –

dw

kw

has the first integrals
t + nx = C1, wtk/n = C2.

Therefore, the general solution of the partial differential equation (17.5.1.14) has the form

w(x, t) = t–k/nF (nx + t), (17.5.1.15)

where F (z) is an arbitrary function.
Substituting (17.5.1.15) into the original equation (17.5.1.13) and dividing the result by t–k/n, we obtain

F (nx + t) = F (nx + σt), σ = (1 – a)n + an. (17.5.1.16)

Hence, for F (z) ≠ const we have σ = 1 or

(1 – a)n + an = 1. (17.5.1.17)

Since (17.5.1.16) must hold for all a > 0, it follows that (17.5.1.17), too, must hold for all a > 0. This can take
place only if

n = 1.

In this case, the solution of equation (17.5.1.13) is given by the following formula [see (17.5.1.15) for n = 1]:

w(x, t) = t–kF (x + t), (17.5.1.18)

where F (z) is an arbitrary function.
If n ≠ 1, then equation (17.5.1.13) admits only a degenerate solution w(x, t) = Ct–k/n, where C is an

arbitrary constant [the degenerate solution corresponds to F = const in (17.5.1.16)].
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17.5.2. Method of Differentiation in Independent Variables

17.5.2-1. Preliminary remarks.

1◦. In some situations, differentiation in independent variables can be used to eliminate
some arguments of the functional equation under consideration and reduce it to an ordinary
differential equation (see Example 1 below). The solution obtained in this way should be
then inserted into the original equation in order to get rid of redundant integration constants,
which may appear due to the differentiation.

2◦. In some situations, differentiation in independent variables should be combined with
the multiplication (division) of the equation and the results of its differentiation by suitable
functions. Sometimes it is useful to take logarithm of the equation or the results of its
transformation (see Example 2 below).

3◦. In some situations, differentiation of a functional equation in independent variables
allows us to eliminate some arguments and reduce the equation to a simpler functional
equation whose solution is known (see Subsection 17.5.5).

17.5.2-2. Examples of solutions of some specific functional equations.

Example 1. Consider the Pexider equation
f (x) + g(y) = h(x + y), (17.5.2.1)

where f (x), g(y), h(z) are the functions to be found.
Differentiating the functional equation (17.5.2.1) in x and y, we come to the ordinary differential equation

h′′
zz(z) = 0, where z = x + y. Its solution is the linear function

h(z) = az + b. (17.5.2.2)
Substituting this expression into (17.5.2.1), we obtain

f (x) + g(y) = ax + ay + b.
Separating the variables, we find the functions f and g:

f (x) = ax + b + c,

g(y) = ay – c.
(17.5.2.3)

Thus, the solution of the Pexider equation (17.5.2.1) is given by the formulas (17.5.2.2), (17.5.2.3), where a, b,
c are arbitrary constants.

Example 2. Consider the nonlinear functional equation
f (x + y) = f (x) + f (y) + af (x)f (y), a ≠ 0, (17.5.2.4)

which occurs in the theory of probability with a = –1.
Differentiating both sides of this equation in x and y, we get

f ′′
zz(z) = af ′

x(x)f ′
y(y), (17.5.2.5)

where z = x + y. Taking the logarithm of both sides of equation (17.5.2.5) and differentiating the resulting
relation in x and y, we come to the ordinary differential equation

[ln f ′′
zz(z)]′′zz = 0. (17.5.2.6)

Integrating (17.5.2.6) in z twice, we get
f ′′

zz(z) = C1 exp(C2z), (17.5.2.7)
where C1 and C2 are arbitrary constants. Substituting (17.5.2.7) into (17.5.2.5), we obtain the equation

C1 exp[C2(x + y)] = af ′
x(x)f ′

y(y),
which admits separation of variables. Integration yields

f (x) = A exp(C2x) +B, A = �
1
C2

√
C1

a
. (17.5.2.8)

Substituting (17.5.2.8) into the original equation (17.5.2.4), we find the values of the constants: A = –B = 1/a
and C2 = β is an arbitrary constant. As a result, we obtain the desired solution

f (x) =
1
a

(
eβx – 1

)
.
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17.5.3. Method of Substituting Particular Values of Independent
Arguments

In order to solve functional equations with several independent variables, one often uses
the method of substituting particular values of independent arguments. This procedure is
aimed at reducing the problem for a functional equation with several independent variables
to a problem for a system of algebraic (transcendental) equations with a single independent
variable.

Basic ideas of this method can be demonstrated by the example of a fairly general
functional equation of the form

Φ
(
f (x), f (x + y), f (x – y),x, y

)
= 0. (17.5.3.1)

1◦. Taking y = 0 in this equation, we get

Φ
(
f (x), f (x), f (x),x, 0

)
= 0. (17.5.3.2)

If the left-hand side of this relation does not vanish identically for all f (x), then this equation
can be resolved with respect to f (x). Then the function f (x) obtained in this way should
be inserted into the original equation (17.5.3.1) and one should find conditions under which
this function is its solution.

Now, assume that the left-hand side of (17.5.3.2) is identically equal to zero for all f (x).

2◦. In equation (17.5.3.1), we consecutively take

x = 0, y = t; x = t, y = 2t; x = t, y = –2t.
We obtain a system of algebraic (transcendental) equations

Φ
(
a, f (t), f (–t), 0, t

)
= 0,

Φ
(
f (t), f (3t), f (–t), t, 2t

)
= 0,

Φ
(
f (t), f (–t), f (3t), t, –2t

)
= 0

(17.5.3.3)

for the unknown quantities f (t), f (–t), f (3t), where a = f (0). Resolving system (17.5.3.3)
with respect to f (t) [or with respect to f (–t) or f (3x)], we obtain an admissible solution
that should be inserted into the original equation for verification.

3◦. In some cases the following trick can be used. In equation (17.5.3.1), one consecutively
takes

x = 0, y = t; x = t + a, y = a; x = a, y = t + a, (17.5.3.4)

where a is a free parameter. We obtain the system of equations

Φ
(
f (0), f (t), f (–t), 0, t

)
= 0,

Φ
(
f (t + a), f (t + 2a), f (t), t + a, a

)
= 0,

Φ
(
f (a), f (t + 2a), f (–t), a, t + a

)
= 0.

(17.5.3.5)

Letting f (0) = C1 and f (a) = C2, where C1 and C2 are arbitrary constants, we eliminate
f (t) and f (t + 2a) from system (17.5.3.5) (it is assumed that this is possible). As a result,
we come to the reciprocal equation

Ψ
(
f (t + a), f (–t), t, a,C1,C2

)
= 0. (17.5.3.6)

In order to find a solution of equation (17.5.3.6), we replace t with –t – a. We get

Ψ
(
f (–t), f (t + a), –t – a, a,C1,C2

)
= 0. (17.5.3.7)

Further, eliminating f (t+a) from equations (17.5.3.6)–(17.5.3.7), we come to the algebraic
(transcendental) equation for f (–t).
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Remark. For the sake of analysis, it is sometimes convenient to choose suitable values of the parameter
a in order to simplify system (17.5.3.5).

Example. Consider the equation

f (x + y) + f (x – y) = 2f (x) cos y. (17.5.3.8)

This equation holds as identity for y = 0 and any f (x).
Substituting (17.5.3.4) into (17.5.3.8), we get

f (t) + f (–t) = 2C1 cos t,

f (t + 2a) + f (t) = 2f (t + a) cos a,

f (t + 2a) + f (–t) = 2C2 cos(t + a),

(17.5.3.9)

where C1 = f (0), C2 = f (a).
System (17.5.3.9) becomes much simpler for a = π/2. In this case, cos a = 0 and the function f (t + a)

is “dropped” from the equations; summing up the first two equations term by term and subtracting the third
equation from the resulting relation, we immediately find a solution of the functional equation (17.5.3.8) in the
form

f (t) = C1 cos t + C2 sin t. (17.5.3.10)

Verification shows that the function (17.5.3.10) is indeed a solution of the functional equation (17.5.3.8).

4◦. Now consider a functional equation more general than (17.5.3.1),

Φ
(
f (x), f (y), f (x + y), f (x – y),x, y

)
= 0. (17.5.3.11)

Letting y = 0, we get

Φ
(
f (x), a, f (x), f (x),x, 0

)
= 0, (17.5.3.12)

where a = f (0). If the left-hand side of this relation does not vanish identically for all f (x),
then it can be resolved with respect to f (x). Then, inserting an admissible solution f (x)
into the original equation (17.5.3.11), we find possible values of the parameter a (there are
cases in which the equation has no solutions).

5◦. If the left-hand side of (17.5.3.11) identically vanishes for all f (x) and a, the following
approach can be used. In (17.5.3.11), we consecutively take

x = 0, y = t; x = t, y = 2t; x = 2t, y = t; x = t, y = t.

We get

Φ
(
a, f (t), f (t), f (–t), 0, t

)
= 0,

Φ
(
f (t), f (2t), f (3t), f (–t), t, 2t

)
= 0,

Φ
(
f (2t), f (t), f (3t), f (t), 2t, t

)
= 0,

Φ
(
f (t), f (t), f (2t), a, t, t

)
= 0,

(17.5.3.13)

where a = f (0). Eliminating f (–t), f (2t), and f (3t) from system (17.5.3.13), we come
to an equation for f (t). The solution obtained in this manner should be inserted into the
original equation (17.5.3.11).
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17.5.4. Method of Argument Elimination by Test Functions

17.5.4-1. Classes of equations. Description of the method.

Consider linear functional equations of the form

w(x, t) = θ(x, t, a)w
(
ϕ(x, t, a), ψ(x, t, a)

)
, (17.5.4.1)

where x and t are independent variables, w =w(x, t) is the function to be found, θ = θ(x, t, a),
ϕ = ϕ(x, t, a), ψ = ψ(x, t, a) are given functions, and a is a free parameter, which can take
any value (on some interval).

Instead of equation (17.5.4.1), consider an auxiliary more general functional equation

w(x, t) = θ(x, t, ξ)w
(
ϕ(x, t, ξ), ψ(x, t, ξ)

)
, (17.5.4.2)

where ξ = ξ(x, t) is an arbitrary function.
Basic idea: If an exact solution of equation (17.5.4.2) can somehow be obtained, this

function will also be a solution of the original equation (17.5.4.1) [since (17.5.4.1) is a
special case of equation (17.5.4.2) with ξ = a].

In view that the function ξ = ξ(x, t) can be arbitrary, let us first take a test function so
that it satisfies the condition

ψ(x, t, ξ) = b, (17.5.4.3)
where b is a constant (usually, it is convenient to take b = 1 or b = 0). Resolving (17.5.4.3)
with respect to ξ and substituting the test function ξ = ξ(x, t) thus obtained into (17.5.4.2),
we have

w(x, t) = θ(x, t, ξ(x, t)) Φ
(
ϕ(x, t, ξ(x, t))

)
, (17.5.4.4)

where Φ(ϕ) ≡ w(ϕ, b).
Expression (17.5.4.4) is crucial for the construction of an exact solution of the original

functional equation: this expression should be substituted into (17.5.4.2) and one shouldfind
out for which functions Φ(ϕ) it is indeed a solution of the equation for arbitrary ξ = ξ(x, t)
(in this connection, some constraints on the structure of the determining functions θ, ϕ, ψ
may appear).

Remark 1. Expression (17.5.4.4) may be substituted directly into the original equation (17.5.4.1).

Remark 2. Condition (17.5.4.3) corresponds to the elimination of the second argument (it is replaced by
a constant) in the right-hand side of equation (17.5.4.2).

Remark 3. Instead of (17.5.4.3), a similar condition ϕ(x, t, ξ) = b can be used for choosing the test
function ξ = ξ(x, t).

17.5.4-2. Examples of solutions of specific functional equations.

Example 1. Consider the functional equation

w(x, t) = akw(amx, ant), (17.5.4.5)
(k, m, n are given constants, a > 0 is an arbitrary constant), which is a special case of equation (17.5.4.1) for
θ(x, t, a) = ak, ϕ(x, t, a) = amx, ψ(x, t, a) = ant.

Following the scheme described in Paragraph 17.5.4-1, let us use the auxiliary equation

w(x, t) = ξkw(ξmx, ξnt) (17.5.4.6)
and the test function ξ defined, according to (17.5.4.3), from the condition

ξnt = 1 (b = 1). (17.5.4.7)

Hence, we find that ξ = t–1/n. Substituting this expression into (17.5.4.6), we get

w(x, t) = t–k/nΦ(t–m/nx), (17.5.4.8)
where Φ(ϕ) ≡ w(ϕ, 1).

It is easy to show by direct verification that (17.5.4.8) is a solution of the functional equation (17.5.4.5) for
an arbitrary function Φ and coincides (to within notation) with solution (17.5.1.9) obtained by the method of
differentiation in a parameter.
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Remark. Instead of 1 on the right-hand side of (17.5.4.7) we can take any constant b ≠ 0 and obtain the
same result (to within notation of the arbitrary function Φ).

Example 2. Consider the functional equation

w(x, t) = akw(amx, t + β ln a), (17.5.4.9)

(k, m, β are given constants, a > 0 is an arbitrary constant), which is a special case of equation (17.5.4.1) for
θ(x, t, a) = ak, ϕ(x, t, a) = amx, ψ(x, t, a) = t + β ln a.

Following the above scheme, consider a more general auxiliary equation

w(x, t) = ξkw(ξmx, t + β ln ξ). (17.5.4.10)

The test function ξ is found from the condition

t + β ln ξ = 0 (b = 0).

We have ξ = exp(–t/β). Substituting this expression into (17.5.4.10), we get

w(x, t) = e–kt/βΦ(xe–mt/β), (17.5.4.11)

where Φ(ϕ) ≡ w(ϕ, 0). Direct verification shows that (17.5.4.11) is a solution of the functional equation
(17.5.4.9) for an arbitrary function Φ and coincides with solution (17.5.1.12) obtained by the method of
differentiation in a parameter.

Example 3. Now consider the functional equation

w(x, t) = akw
(
x + (1 – a)t, ant

)
, (17.5.4.12)

(a > 0 is arbitrary, n is a constant), which is a special case of equation (17.5.4.1) for θ(x, t, a) = ak, ϕ(x, t, a) =
x + (1 – a)t, ψ(x, t, a) = ant.

Following the scheme described above, consider the auxiliary equation

w(x, t) = ξkw
(
x + (1 – ξ)t, ξnt

)
(17.5.4.13)

and define the test function ξ from the condition (17.5.4.7), according to (17.5.4.3). We have ξ = t–1/n.
Substituting this expression into (17.5.4.13), we get

w(x, t) = t–k/nΦ(z), z = x + t – t(n–1)/n, (17.5.4.14)

where Φ(ϕ) ≡ w(ϕ, 1).
Substituting (17.5.4.14) into the original equation (17.5.4.12) and dividing the result by t–k/n, we find that

Φ
(
x + t – t(n–1)/n

)
= Φ
(
x + (1 – a + an)t – an–1t(n–1)/n

)
. (17.5.4.15)

Since this relation must hold for all a > 0, there are two possibilities:

1) n is arbitrary, Φ = C = const;

2) n = 1, Φ is arbitrary.
(17.5.4.16)

In the second case, which corresponds to n = 1 in the functional equation (17.5.4.12), its solution can be written
in the form

w(x, t) = t–kF (x + t), (17.5.4.17)

where F (z) is an arbitrary function, F (z) = Φ(z – 1). We see that expression (17.5.4.17) coincides with solution
(17.5.1.18) obtained by the method of differentiation in a parameter.

Remark 1. The results of solving specific functional equations obtained in Subsection 17.5.4 by the
elimination of an argument coincide with those obtained for the same equations in Subsection 17.5.1 by the
method of differentiation in a parameter. However, it should be observed that the intermediate results, when
solving equation (17.5.4.12) by these methods, may not coincide [cf. (17.5.4.15) and (17.5.1.16)].

Remark 2. The method of elimination of an argument is much simpler than that of differentiation in a
parameter, since the former only requires to solve algebraic (transcendental) equations of the form (17.5.4.3)
with respect to ξ and does not require solutions of the corresponding first-order partial differential equations
(see Subsection 17.5.1).
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17.5.5. Bilinear Functional Equations and Nonlinear Functional
Equations Reducible to Bilinear Equations

17.5.5-1. Bilinear functional equations.

1◦. A binomial bilinear functional equation has the form

f1(x)g1(y) + f2(x)g2(y) = 0, (17.5.5.1)

where fn = fn(x) and gn = gn(y) (n = 1, 2) are unknown functions of different arguments.
In this section, it is assumed that fn � 0, gn � 0.

Separating the variables in (17.5.5.1), we find the solution:

f1 = Af2, g2 = –Ag1, (17.5.5.2)

where A is an arbitrary constant. The functions on the right-hand sides in (17.5.5.2) are
assumed arbitrary.

2◦. The trinomial bilinear functional equation

f1(x)g1(y) + f2(x)g2(y) + f3(x)g3(y) = 0, (17.5.5.3)

where fn = fn(x) and gn = gn(y) (n = 1, 2, 3) are unknown functions, has two solutions:

f1 = A1f3, f2 = A2f3, g3 = –A1g1 –A2g2;
g1 = A1g3, g2 = A2g3, f3 = –A1f1 – A2f2,

(17.5.5.4)

where A1, and A2 are arbitrary constants. The functions on the right-hand sides of the
equations in (17.5.5.4) are assumed arbitrary.

3◦. The quadrinomial functional equation

f1(x)g1(y) + f2(x)g2(y) + f3(x)g3(y) + f4(x)g4(y) = 0, (17.5.5.5)

where all fi are functions of the same argument and all gi are functions of another argument,
has a solution

f1 = A1f3 + A2f4, f2 = A3f3 + A4f4,
g3 = –A1g1 –A3g2, g4 = –A2g1 –A4g2

(17.5.5.6)

depending on four arbitrary constants A1, . . . , A4. The functions on the right-hand sides
of the solutions in (17.5.5.6) are assumed arbitrary.

Equation (17.5.5.5) has two other solutions:

f1 = A1f4, f2 = A2f4, f3 = A3f4, g4 = –A1g1 – A2g2 – A3g3;
g1 = A1g4, g2 = A2g4, g3 = A3g4, f4 = –A1f1 –A2f2 – A3f3

(17.5.5.7)

involving three arbitrary constants.

4◦. Consider a bilinear functional equation of the general form

f1(x)g1(y) + f2(x)g2(y) + · · · + fk(x)gk(y) = 0, (17.5.5.8)

where fn = fn(x) and gn = gn(y) are unknown functions (n = 1, . . . , k).
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It can be shown that the bilinear functional equation (17.5.5.8) has k – 1 different
solutions:

fi(x) = Ai,1fm+1(x) +Ai,2fm+2(x) + · · · +Ai,k–mfk(x), i = 1, . . . ,m;
gm+j (y) = –A1,jg1(y) – A2,jg2(y) – · · · –Am,jgm(y), j = 1, . . . , k – m;

m = 1, 2, . . . , k – 1,
(17.5.5.9)

where the Ai,j are arbitrary constants. The functions fm+1(x), . . . , fk(x), g1(y), . . . , gm(y)
on the right-hand sides of solutions (17.5.5.9) can be chosen arbitrarily. It is obvious that
for a fixed m, solution (17.5.5.9) contains m(k –m) arbitrary constants.

For a fixed m, solution (17.5.5.9) contains m(k – m) arbitrary constants Ai,j . Given k,
the solutions having the maximum number of arbitrary constants are defined by

Solution number Number of arbitrary constants Conditions on k

m = 1
2k

1
4k

2 if k is even,

m = 1
2 (k � 1) 1

4 (k2 – 1) if k is odd.

Remark 1. Formulas (17.5.5.9) imply that equation (17.5.5.8) may hold only if the functions fn (and gn)
are linearly dependent.

Remark 2. The bilinear functional equation (17.5.5.8) and its solutions (17.5.5.9) play an important role
in the methods of generalized and functional separation of variables for nonlinear PDEs (see Section 15.5).

17.5.5-2. Functional-differential equations reducible to a bilinear equation.

Consider a nonlinear functional-differential equation of the form

f1(x)g1(y) + f2(x)g2(y) + · · · + fk(x)gk(y) = 0, (17.5.5.10)

where fi(x) and gi(x) are given function of the form

fi(x) ≡ Fi
(
x,ϕ1,ϕ′

1,ϕ′′
1 , . . . ,ϕn,ϕ′

n,ϕ′′
n

)
, ϕp = ϕp(x);

gi(y) ≡ Gi
(
y,ψ1,ψ′

1,ψ′′
1 , . . . ,ψm,ψ′

m,ψ′′
m

)
, ψq = ψq(y).

(17.5.5.11)

The problem is to find the functions ϕp = ϕp(x) and ψq = ψq(y) depending on different
variables. Here, for simplicity, we consider an equation that contains only second-order
derivatives; in the general case, the right-hand sides of (17.5.5.11) may contain higher-order
derivatives of ϕp = ϕp(x) and ψq = ψq(y).

The functional-differential equation (17.5.5.10)–(17.5.5.11) is solved by the method of
splitting. On the first stage, we treat (17.5.5.10) as a purely functional equation that depends
on two variables x and y, where fi = fi(x) and gi = gi(y) are unknown quantities. The
solutions of this equation are described by (17.5.5.9). On the second stage, we successively
substitute the functions fi(x) and gi(y) from (17.5.5.11) into all solutions (17.5.5.9) to obtain
systems of ordinary differential equations for the unknown functions ϕp(x) and ψq(y).
Solving these systems, we get solutions of the functional-differential equation (17.5.5.10)–
(17.5.5.11).

Remark. The method of splitting will be used in Paragraph 17.5.5-3 for the construction of solutions of
some nonlinear functional equations.
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17.5.5-3. Nonlinear equations containing the complex argument z = ϕ(x) + ψ(t).

Here, we discuss some nonlinear functional equations with two variables. Such equations
often arise when the method of functional separation of variables is used forfinding solutions
of nonlinear equations of mathematical physics.

1◦. Consider a functional equation of the form

f (t) + g(x) + h(x)Q(z) +R(z) = 0, where z = ϕ(x) + ψ(t). (17.5.5.12)

Here, one of the two functions f (t) andψ(t) is prescribed and the other is assumed unknown;
also one of the functions g(x) and ϕ(x) is prescribed and the other is unknown, and the
functions h(x), Q(z), and R(z) are assumed unknown.*

Differentiating equation (17.5.5.12) with respect to x, we obtain the two-argument
equation

g′x + h′xQ + hϕ′
xQ

′
z + ϕ′

xR
′
z = 0. (17.5.5.13)

Such equations were discussed in Paragraph 17.5.5-2; their solutions are found with the help
of (17.5.5.6) and (17.5.5.7). Hence, we obtain the following system of ordinary differential
equations [see formulas (17.5.5.6)]:

g′x = A1hϕ
′
x +A2ϕ

′
x,

h′x = A3hϕ
′
x +A4ϕ

′
x,

Q′
z = –A1 – A3Q,

R′
z = –A2 – A4Q,

(17.5.5.14)

where A1, . . . , A4 are arbitrary constants. Integrating the system of ODEs (17.5.5.14) and
substituting the resulting solutions into the original functional equation, one obtains the
following results.

Case 1. If A3 = 0 in (17.5.5.14), then the corresponding solution of the functional
equation is given by

f = – 1
2A1A4ψ

2 + (A1B1 + A2 + A4B3)ψ –B2 –B1B3 – B4,

g = 1
2A1A4ϕ

2 + (A1B1 +A2)ϕ +B2,

h = A4ϕ +B1,

Q = –A1z + B3,

R = 1
2A1A4z

2 – (A2 + A4B3)z + B4,

(17.5.5.15)

where Ak and Bk are arbitrary constants and ϕ = ϕ(x) and ψ = ψ(t) are arbitrary functions.
Case 2. If A3 ≠ 0 in (17.5.5.14), then the corresponding solution of the functional

* In similar equations with a composite argument, it is assumed that ϕ(x) � const and ψ(y) � const.
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equation is

f = –B1B3e
–A3ψ +

(
A2 –

A1A4

A3

)
ψ – B2 –B4 –

A1A4

A2
3

,

g =
A1B1

A3
eA3ϕ +

(
A2 –

A1A4

A3

)
ϕ + B2,

h = B1e
A3ϕ –

A4

A3
,

Q = B3e
–A3z –

A1

A3
,

R =
A4B3

A3
e–A3z +

(
A1A4

A3
– A2

)
z + B4,

(17.5.5.16)

where Ak and Bk are arbitrary constants and ϕ = ϕ(x) and ψ = ψ(t) are arbitrary functions.
Case 3. In addition, the functional equation has two degenerate solutions [formulas

(17.5.5.7) are used]:

f = A1ψ +B1, g = A1ϕ + B2, h = A2, R = –A1z – A2Q – B1 –B2, (17.5.5.17)

where ϕ = ϕ(x), ψ = ψ(t), and Q = Q(z) are arbitrary functions, A1, A2, B1, and B2 are
arbitrary constants, and

f = A1ψ + B1, g = A1ϕ +A2h + B2, Q = –A2, R = –A1z – B1 – B2, (17.5.5.18)

where ϕ = ϕ(x), ψ = ψ(t), and h = h(x) are arbitrary functions, A1, A2, B1, and B2 are
arbitrary constants.

2◦. Consider a functional equation of the form

f (t) + g(x)Q(z) + h(x)R(z) = 0, where z = ϕ(x) + ψ(t). (17.5.5.19)

Differentiating (17.5.5.19) in x, we get the two-argument functional-differential equa-
tion

g′xQ + gϕ′
xQ

′
z + h′xR + hϕ′

xR
′
z = 0, (17.5.5.20)

which coincides with equation (17.5.5.5), up to notation.
Nondegenerate case. Equation (17.5.5.20) can be solved with the help of formu-

las (17.5.5.6)–(17.5.5.7). In this way, we arrive at the system of ordinary differential
equations

g′x = (A1g +A2h)ϕ′
x,

h′x = (A3g +A4h)ϕ′
x,

Q′
z = –A1Q – A3R,

R′
z = –A2Q – A4R,

(17.5.5.21)

where A1, . . . , A4 are arbitrary constants.
The solution of equation (17.5.5.21) is given by

g(x) = A2B1e
k1ϕ +A2B2e

k2ϕ,

h(x) = (k1 –A1)B1e
k1ϕ + (k2 –A1)B2e

k2ϕ,

Q(z) = A3B3e
–k1z +A3B4e

–k2z,

R(z) = (k1 –A1)B3e
–k1z + (k2 –A1)B4e

–k2z,

(17.5.5.22)
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where B1, . . . , B4 are arbitrary constants and k1 and k2 are the roots of the quadratic
equation

(k –A1)(k – A4) –A2A3 = 0. (17.5.5.23)

In the degenerate case k1 = k2, the terms ek2ϕ and e–k2z in (17.5.5.22) should be replaced
with ϕek1ϕ and ze–k1z , respectively. In the case of purely imaginary or complex roots, one
should separate the real (or imaginary) part of the roots in solution (17.5.5.22).

On substituting (17.5.5.22) into the original functional equation, one obtains conditions
for the free coefficients and identifies the function f (t), namely,

B2 =B4 = 0 =⇒ f (t) = [A2A3 +(k1 –A1)2]B1B3e
–k1ψ ,

B1 =B3 = 0 =⇒ f (t) = [A2A3 +(k2 –A1)2]B2B4e
–k2ψ ,

A1 = 0 =⇒ f (t) = (A2A3 +k2
1 )B1B3e

–k1ψ +(A2A3 +k2
2 )B2B4e

–k2ψ.

(17.5.5.24)

Solution (17.5.5.22), (17.5.5.24) involves arbitrary functions ϕ = ϕ(x) and ψ = ψ(t).
Degenerate case. In addition, the functional equation has two degenerate solutions

[formulas (17.5.5.7) are used],

f = B1B2e
A1ψ , g = A2B1e

–A1ϕ, h = B1e
–A1ϕ, R = –B2e

A1z –A2Q,

where ϕ = ϕ(x), ψ = ψ(t), and Q = Q(z) are arbitrary functions; A1, A2, B1, and B2 are
arbitrary constants; and

f = B1B2e
A1ψ , h = –B1e

–A1ϕ – A2g, Q = A2B2e
A1z , R = B2e

A1z ,

where ϕ = ϕ(x), ψ = ψ(t), and g = g(x) are arbitrary functions; and A1, A2, B1, and B2 are
arbitrary constants.

3◦. Consider a more general functional equation of the form

f (t) + g1(x)Q1(z) + · · · + gn(x)Qn(z) = 0, where z = ϕ(x) + ψ(t). (17.5.5.25)

By differentiation in x, this equation can be reduced to a functional differential equation,
which may be regarded as a bilinear functional equation of the form (17.5.5.8). Using
formulas (17.5.5.9) for the construction of its solution, one can first obtain a system of
ODEs and then find solutions of the original equation (17.5.5.25).

4◦. Consider a functional equation of the form

f1(t)g1(x) + · · · + fm(t)gm(x) + h1(x)Q1(z) + · · · + hn(x)Qn(z) = 0, z = ϕ(x) + ψ(t).
(17.5.5.26)

Assume that gm(x) � 0. Dividing equation (17.5.5.26) by gm(x) and differentiating the
result in x, we come to an equation of the form

f1(t)ḡ1(x) + · · · + fm–1(t)ḡm–1(x) +
2n∑

i=1

si(x)Ri(z) = 0

with a smaller number of functions fi(t). Proceeding in this way, we can eliminate all
functions fi(t) and obtain a functional-differential equation with two variables of the form
(17.5.5.10)–(17.5.5.11), which can be reduced to the standard bilinear functional equation
by the method of splitting.
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17.5.5-4. Nonlinear equations containing the complex argument z = ϕ(t)θ(x) + ψ(t).

Consider a functional equation of the form

[α1(t)θ(x) + β1(t)]R1(z) + · · · + [αn(t)θ(x) + βn(t)]Rn(z) = 0, z = ϕ(t)θ(x) + ψ(t).
(17.5.5.27)

Passing in (17.5.5.27) from the variables x and t to new variables z and t [the function θ
is replaced by (z – ψ)/ϕ], we come to the bilinear equation of the form (17.5.5.8):

n∑

i=1

αi(t)zRi(z) +
n∑

i=1

[ϕ(t)βi(t) – ψ(t)αi(t)]Ri(z) = 0.

Remark. Instead of the expressions αi(t)θ(x) + βi(t) in (17.5.5.27) linearly depending on the function
θ(x), one can consider polynomials of θ(x) with coefficients depending on t.

� See also Section T12.3 for exact solutions of some linear and nonlinear difference and
functional equations with several independent variables.
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Chapter 18

Special Functions and Their Properties

� Throughout Chapter 18 it is assumed that n is a positive integer unless otherwise
specified.

18.1. Some Coefficients, Symbols, and Numbers
18.1.1. Binomial Coefficients

18.1.1-1. Definitions.

Ckn =
(n
k

)
=

n!
k! (n – k)!

, where k = 1, . . . ,n;

C0
a = 1, Cka =

(a
k

)
= (–1)k

(–a)k
k!

=
a(a – 1) . . . (a – k + 1)

k!
, where k = 1, 2, . . .

Here a is an arbitrary real number.

18.1.1-2. Generalization. Some properties.

General case:

Cba =
Γ(a + 1)

Γ(b + 1)Γ(a – b + 1)
, where Γ(x) is the gamma function.

Properties:

C0
a = 1, Ckn = 0 for k = –1, –2, . . . or k > n,

Cb+1
a =

a

b + 1
Cba–1 =

a – b
b + 1

Cba, Cba + Cb+1
a = Cb+1

a+1,

Cn–1/2 =
(–1)n

22n Cn2n = (–1)n
(2n – 1)!!

(2n)!!
,

Cn1/2 =
(–1)n–1

n22n–1 C
n–1
2n–2 =

(–1)n–1

n

(2n – 3)!!
(2n – 2)!!

,

C2n+1
n+1/2 = (–1)n2–4n–1Cn2n, Cn2n+1/2 = 2–2nC2n

4n+1,

C1/2
n =

22n+1

πCn2n
, Cn/2

n =
22n

π
C (n–1)/2
n .

937
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18.1.2. Pochhammer Symbol

18.1.2-1. Definition.

(a)n = a(a + 1) . . . (a + n – 1) =
Γ(a + n)

Γ(a)
= (–1)n

Γ(1 – a)
Γ(1 – a – n)

.

18.1.2-2. Some properties (k = 1, 2, . . . ).

(a)0 = 1, (a)n+k = (a)n(a + n)k, (n)k =
(n + k – 1)!

(n – 1)!
,

(a)–n =
Γ(a – n)

Γ(a)
=

(–1)n

(1 – a)n
, where a ≠ 1, . . . ,n;

(1)n = n!, (1/2)n = 2–2n (2n)!
n!

, (3/2)n = 2–2n (2n + 1)!
n!

,

(a +mk)nk =
(a)mk+nk

(a)mk
, (a + n)n =

(a)2n

(a)n
, (a + n)k =

(a)k(a + k)n
(a)n

.

18.1.3. Bernoulli Numbers

18.1.3-1. Definition.

The Bernoulli numbers are defined by the recurrence relation

B0 = 1,
n–1∑

k=0

CknBk = 0, n = 2, 3, . . .

Numerical values:

B0 = 1, B1 = – 1
2 , B2 = 1

6 , B4 = – 1
30 , B6 = 1

42 , B8 = – 1
30 , B10 = 5

66 , . . . ,

B2m+1 = 0 for m = 1, 2, . . .

All odd-numbered Bernoulli numbers butB1 are zero; all even-numbered Bernoulli numbers
have alternating signs.

The Bernoulli numbers are the values of Bernoulli polynomials at x = 0: Bn = Bn(0).

18.1.3-2. Generating function.

Generating function:
x

ex – 1
=

∞∑

n=0

Bn
xn

n!
, |x| < 2π.

This relation may be regarded as a definition of the Bernoulli numbers.
The following expansions may be used to calculate the Bernoulli numbers:

tanx =
∞∑

n=1

|B2n|
22n(22n – 1)

(2n)!
x2n, |x| <

π

2
;

cot x =
∞∑

n=0

(–1)nB2n
22n

(2n)!
x2n–1, |x| < π.
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18.1.4. Euler Numbers

18.1.4-1. Definition.

The Euler numbers En are defined by the recurrence relation

n∑

k=0

C2k
2nE2k = 0 (even numbered),

E2n+1 = 0 (odd numbered),

where n = 0, 1, . . .
Numerical values:

E0 = 1, E2 = –1, E4 = 5, E6 = –61, E8 = 1385, E10 = –50251, . . . ,
E2n+1 = 0 for n = 0, 1, . . .

All Euler numbers are integer, the odd-numbered Euler numbers are zero, and the even-
numbered Euler numbers have alternating signs.

The Euler numbers are expressed via the values of Euler polynomials at x = 1/2:
En = 2nEn(1/2), where n = 0, 1, . . .

18.1.4-2. Generating function. Integral representation.

Generating function:
ex

e2x + 1
=

∞∑

n=0

En
xn

n!
, |x| < 2π.

This relation may be regarded as a definition of the Euler numbers.
Representation via a definite integral:

E2n = (–1)n22n+1
∫ ∞

0

t2ndt

cosh(πt)
.

18.2. Error Functions. Exponential and Logarithmic
Integrals

18.2.1. Error Function and Complementary Error Function

18.2.1-1. Integral representations.

Definitions:

erf x =
2√
π

∫ x

0
exp(–t2) dt (error function, also called probability integral),

erfc x = 1 – erf x =
2√
π

∫ ∞

x
exp(–t2) dt (complementary error function).

Properties:

erf(–x) = – erf x; erf(0) = 0, erf(∞) = 1; erfc(0) = 1, erfc(∞) = 0.
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18.2.1-2. Expansions as x→ 0 and x→ ∞. Definite integral.

Expansion of erf x into series in powers of x as x→ 0:

erf x =
2√
π

∞∑

k=0

(–1)k
x2k+1

k! (2k + 1)
=

2√
π

exp
(
–x2)

∞∑

k=0

2kx2k+1

(2k + 1)!!
.

Asymptotic expansion of erfc x as x→ ∞:

erfcx =
1√
π

exp
(
–x2)

[M–1∑

m=0

(–1)m
( 1

2
)
m

x2m+1 +O
(

|x|–2M–1)
]

, M = 1, 2, . . .

Integral: ∫ x

0
erf t dt = x erf x –

1
2

+
1
2

exp(–x2).

18.2.2. Exponential Integral

18.2.2-1. Integral representations.

Definition:

Ei(x) =
∫ x

–∞

et

t
dt = –

∫ ∞

–x

e–t

t
dt for x < 0,

Ei(x) = lim
ε→+0

(∫ –ε

–∞

et

t
dt +

∫ x

ε

et

t
dt

)
for x > 0.

Other integral representations:

Ei(–x) = –e–x
∫ ∞

0

x sin t + t cos t
x2 + t2 dt for x > 0,

Ei(–x) = e–x
∫ ∞

0

x sin t – t cos t
x2 + t2 dt for x < 0,

Ei(–x) = –x
∫ ∞

1
e–xt ln t dt for x > 0,

Ei(x) = C + lnx +
∫ x

0

et – 1
t

dt for x > 0,

where C = 0.5772 . . . is the Euler constant.

18.2.2-2. Expansions as x→ 0 and x→ ∞.

Expansion into series in powers of x as x→ 0:

Ei(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C + ln(–x) +
∞∑

k=1

xk

k! k
if x < 0,

C + lnx +
∞∑

k=1

xk

k! k
if x > 0.

Asymptotic expansion as x→ ∞:

Ei(–x) = e–x
n∑

k=1

(–1)k
(k – 1)!
xk

+Rn, Rn <
n!
xn

.
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18.2.3. Logarithmic Integral

18.2.3-1. Integral representations.

Definition:

li(x) =

⎧
⎪⎪⎨

⎪⎪⎩

∫ x

0

dt

ln t
if 0 < x < 1,

lim
ε→+0

(∫ 1–ε

0

dt

ln t
+
∫ x

1+ε

dt

ln t

)
if x > 1.

18.2.3-2. Limiting properties. Relation to the exponential integral.

For small x,

li(x) ≈
x

ln(1/x)
.

For large x,

li(x) ≈
x

lnx
.

Asymptotic expansion as x→ 1:

li(x) = C + ln |lnx| +
∞∑

k=1

lnk x
k! k

.

Relation to the exponential integral:

li x = Ei(lnx), x < 1;
li(ex) = Ei(x), x < 0.

18.3. Sine Integral and Cosine Integral. Fresnel Integrals
18.3.1. Sine Integral

18.3.1-1. Integral representations. Properties.

Definition:

Si(x) =
∫ x

0

sin t
t

dt, si(x) = –
∫ ∞

x

sin t
t

dt = Si(x) –
π

2
.

Specific values:

Si(0) = 0, Si(∞) =
π

2
, si(∞) = 0.

Properties:

Si(–x) = – Si(x), si(x) + si(–x) = –π, lim
x→–∞ si(x) = –π.
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18.3.1-2. Expansions as x→ 0 and x→ ∞.

Expansion into series in powers of x as x→ 0:

Si(x) =
∞∑

k=1

(–1)k+1x2k–1

(2k – 1) (2k – 1)!
.

Asymptotic expansion as x→ ∞:

si(x) = – cosx

[M–1∑

m=0

(–1)m(2m)!
x2m+1 +O

(
|x|–2M–1)

]
+ sin x

[ N–1∑

m=1

(–1)m(2m – 1)!
x2m

+O
(

|x|–2N
)]

,

where M ,N = 1, 2, . . .

18.3.2. Cosine Integral

18.3.2-1. Integral representations.

Definition:

Ci(x) = –
∫ ∞

x

cos t
t

dt = C + lnx +
∫ x

0

cos t – 1
t

dt,

where C = 0.5772 . . . is the Euler constant.

18.3.2-2. Expansions as x→ 0 and x→ ∞.

Expansion into series in powers of x as x→ 0:

Ci(x) = C + lnx +
∞∑

k=1

(–1)kx2k

2k (2k)!
.

Asymptotic expansion as x→ ∞:

Ci(x) = cos x

[M–1∑

m=1

(–1)m(2m – 1)!
x2m +O

(
|x|–2M)

]
+sinx

[ N–1∑

m=0

(–1)m(2m)!
x2m+1 +O

(
|x|–2N–1)

]
,

where M ,N = 1, 2, . . .

18.3.3. Fresnel Integrals

18.3.3-1. Integral representations.

Definitions:

S(x) =
1√
2π

∫ x

0

sin t√
t
dt =

√
2
π

∫ √
x

0
sin t2 dt,

C(x) =
1√
2π

∫ x

0

cos t√
t
dt =

√
2
π

∫ √
x

0
cos t2 dt.
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18.3.3-2. Expansions as x→ 0 and x→ ∞.

Expansion into series in powers of x as x→ 0:

S(x) =

√
2
π
x

∞∑

k=0

(–1)kx2k+1

(4k + 3) (2k + 1)!
,

C(x) =

√
2
π
x

∞∑

k=0

(–1)kx2k

(4k + 1) (2k)!
.

Asymptotic expansion as x→ ∞:

S(x) =
1
2

–
cos x√

2πx
P (x) –

sin x√
2πx

Q(x),

C(x) =
1
2

+
sinx√

2πx
P (x) –

cos x√
2πx

Q(x),

P (x) = 1 –
1 × 3
(2x)2 +

1 × 3 × 5 × 7
(2x)4 – · · · , Q(x) =

1
2x

–
1 × 3 × 5

(2x)3 + · · · .

18.4. Gamma Function, Psi Function, and Beta Function
18.4.1. Gamma Function

18.4.1-1. Integral representations. Simplest properties.

The gamma function, Γ(z), is an analytic function of the complex argument z everywhere
except for the points z = 0, –1, –2, . . .

For Re z > 0,

Γ(z) =
∫ ∞

0
tz–1e–t dt.

For –(n + 1) < Re z < –n, where n = 0, 1, 2, . . . ,

Γ(z) =
∫ ∞

0

[
e–t –

n∑

m=0

(–1)m

m!

]
tz–1 dt.

Simplest properties:

Γ(z + 1) = zΓ(z), Γ(n + 1) = n!, Γ(1) = Γ(2) = 1.

Fractional values of the argument:

Γ
( 1

2

)
=
√
π,

Γ
(

–
1
2

)
= –2

√
π,

Γ
(
n +

1
2

)
=

√
π

2n
(2n – 1)!!,

Γ
( 1

2
– n
)

= (–1)n
2n

√
π

(2n – 1)!!
.
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18.4.1-2. Euler, Stirling, and other formulas.

Euler formula

Γ(z) = lim
n→∞

n!nz

z(z + 1) . . . (z + n)
(z ≠ 0, –1, –2, . . . ).

Symmetry formulas:

Γ(z)Γ(–z) = –
π

z sin(πz)
, Γ(z)Γ(1 – z) =

π

sin(πz)
,

Γ
( 1

2
+ z
)
Γ
( 1

2
– z
)

=
π

cos(πz)
.

Multiple argument formulas:

Γ(2z) =
22z–1
√
π

Γ(z)Γ
(
z +

1
2

)
,

Γ(3z) =
33z–1/2

2π
Γ(z)Γ

(
z +

1
3

)
Γ
(
z +

2
3

)
,

Γ(nz) = (2π)(1–n)/2nnz–1/2
n–1∏

k=0

Γ
(
z +

k

n

)
.

Asymptotic expansion (Stirling formula):

Γ(z) =
√

2π e–zzz–1/2[1 + 1
12 z

–1 + 1
288 z

–2 +O(z–3)
]

(|arg z| < π).

18.4.2. Psi Function (Digamma Function)

18.4.2-1. Definition. Integral representations.

Definition:

ψ(z) =
d ln Γ(z)
dz

=
Γ′
z(z)

Γ(z)
.

The psi function is the logarithmic derivative of the gamma function and is also called the
digamma function.

Integral representations (Re z > 0):

ψ(z) =
∫ ∞

0

[
e–t – (1 + t)–z]t–1 dt,

ψ(z) = ln z +
∫ ∞

0

[
t–1 – (1 – e–t)–1]e–tz dt,

ψ(z) = –C +
∫ 1

0

1 – tz–1

1 – t
dt,

where C = –ψ(1) = 0.5772 . . . is the Euler constant.
Values for integer argument:

ψ(1) = –C, ψ(n) = –C +
n–1∑

k=1

k–1 (n = 2, 3, . . . ).
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18.4.2-2. Properties. Asymptotic expansion as z → ∞.

Functional relations:

ψ(z) – ψ(1 + z) = –
1
z

,

ψ(z) – ψ(1 – z) = –π cot(πz),

ψ(z) – ψ(–z) = –π cot(πz) –
1
z

,

ψ
( 1

2 + z
)

– ψ
( 1

2 – z
)

= π tan(πz),

ψ(mz) = lnm +
1
m

m–1∑

k=0

ψ
(
z +

k

m

)
.

Asymptotic expansion as z → ∞ (|arg z| < π):

ψ(z) = ln z –
1

2z
–

1
12z2 +

1
120z4 –

1
252z6 + · · · = ln z –

1
2z

–
∞∑

n=1

B2n

2nz2n ,

where the B2n are Bernoulli numbers.

18.4.3. Beta Function

18.4.3-1. Integral representation. Relationship with the gamma function.

Definition:

B(x, y) =
∫ 1

0
tx–1(1 – t)y–1 dt,

where Rex > 0 and Re y > 0.
Relationship with the gamma function:

B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

.

18.4.3-2. Some properties.

B(x, y) = B(y,x);

B(x, y + 1) =
y

x
B(x + 1, y) =

y

x + y
B(x, y);

B(x, 1 – x) =
π

sin(πx)
, 0 < x < 1;

1
B(n,m)

= mCn–1
n+m–1 = nCm–1

n+m–1,

where n and m are positive integers.
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18.5. Incomplete Gamma and Beta Functions
18.5.1. Incomplete Gamma Function

18.5.1-1. Integral representations. Recurrence formulas.

Definitions:

γ(α,x) =
∫ x

0
e–ttα–1 dt, Reα > 0,

Γ(α,x) =
∫ ∞

x
e–ttα–1 dt = Γ(α) – γ(α,x).

Recurrence formulas:

γ(α + 1,x) = αγ(α,x) – xαe–x,
γ(α + 1,x) = (x + α)γ(α,x) + (1 – α)xγ(α – 1,x),
Γ(α + 1,x) = αΓ(α,x) + xαe–x.

Special cases:

γ(n + 1,x) = n!

[
1 – e–x

( n∑

k=0

xk

k!

)]
, n = 0, 1, . . . ;

Γ(n + 1,x) = n! e–x
n∑

k=0

xk

k!
, n = 0, 1, . . . ;

Γ(–n,x) =
(–1)n

n!

[
Γ(0,x) – e–x

n–1∑

k=0

(–1)k
k!
xk+1

]
, n = 1, 2, . . .

18.5.1-2. Expansions as x→ 0 and x→ ∞. Relation to other functions.

Asymptotic expansions as x→ 0:

γ(α,x) =
∞∑

n=0

(–1)nxα+n

n! (α + n)
,

Γ(α,x) = Γ(α) –
∞∑

n=0

(–1)nxα+n

n! (α + n)
.

Asymptotic expansions as x→ ∞:

γ(α,x) = Γ(α) – xα–1e–x
[M–1∑

m=0

(1 – α)m
(–x)m

+O
(

|x|–M
)
]

,

Γ(α,x) = xα–1e–x
[M–1∑

m=0

(1 – α)m
(–x)m

+O
(

|x|–M
)
]
(
– 3

2π < arg x < 3
2π
)
.
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Asymptotic formulas as α→ ∞:

γ(x,α) = Γ(α)
[
Φ
(

2
√
x –

√
α – 1

)
+ O
( 1√

α

)]
, Φ(x) =

1√
2π

∫ x

–∞
exp
(

–
1
2
t2
)
dt;

γ(x,α) = Γ(α)
[
Φ
(

3
√
αz
)

+ O
( 1
α

)]
, z =

( x
α

)1/3
– 1 +

1
9α

.

Representation of the error function, complementary error function, and exponential
integral in terms of the gamma functions:

erf x =
1√
π
γ
( 1

2
, x2
)

, erfc x =
1√
π

Γ
( 1

2
, x2
)

, Ei(–x) = –Γ(0,x).

18.5.2. Incomplete Beta Function

18.5.2-1. Integral representation.

Definitions:

Bx(a, b) =
∫ x

0
ta–1(1 – t)b–1 dt, Ix(a, b) =

Bx(a, b)
B(a, b)

,

where Re a > 0 and Re b > 0, and B(a, b) = B1(a, b) is the beta function.

18.5.2-2. Some properties.

Symmetry:
Ix(a, b) + I1–x(b, a) = 1.

recurrence formulas:

Ix(a, b) = xIx(a – 1, b) + (1 – x)Ix(a, b – 1),
(a + b)Ix(a, b) = aIx(a + 1, b) + bIx(a, b + 1),
(a + b – ax)Ix(a, b) = a(1 – x)Ix(a + 1, b – 1) + bIx(a, b + 1).

18.6. Bessel Functions (Cylindrical Functions)
18.6.1. Definitions and Basic Formulas

18.6.1-1. Bessel functions of the first and the second kind.

The Bessel function of the first kind, Jν(x), and the Bessel function of the second kind,
Yν(x) (also called the Neumann function), are solutions of the Bessel equation

x2y′′xx + xy′x + (x2 – ν2)y = 0

and are defined by the formulas

Jν (x) =
∞∑

k=0

(–1)k(x/2)ν+2k

k! Γ(ν + k + 1)
, Yν(x) =

Jν(x) cos πν – J–ν (x)
sin πν

. (18.6.1.1)

The formula for Yν(x) is valid for ν ≠ 0, �1, �2, . . . (the cases ν ≠ 0, �1, �2, . . . are
discussed in what follows).

The general solution of the Bessel equation has the form Zν (x) = C1Jν(x) + C2Yν(x)
and is called the cylinder function.
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18.6.1-2. Some formulas.

2νZν (x) = x[Zν–1(x) + Zν+1(x)],
d

dx
Zν (x) =

1
2

[Zν–1(x) – Zν+1(x)] = �

[ ν
x
Zν (x) – Zν�1(x)

]
,

d

dx
[xνZν (x)] = xνZν–1(x),

d

dx
[x–νZν(x)] = –x–νZν+1(x),

(
1
x

d

dx

)n
[xνJν(x)] = xν–nJν–n(x),

(
1
x

d

dx

)n
[x–νJν (x)] = (–1)nx–ν–nJν+n(x),

J–n(x) = (–1)nJn(x), Y–n(x) = (–1)nYn(x), n = 0, 1, 2, . . .

18.6.1-3. Bessel functions for ν = �n � 1
2 , where n = 0, 1, 2, . . .

J1/2(x) =

√
2
πx

sin x,

J3/2(x) =

√
2
πx

(
1
x

sin x – cos x

)
,

J–1/2(x) =

√
2
πx

cos x,

J–3/2(x) =

√
2
πx

(
–

1
x

cos x – sinx

)
,

Jn+1/2(x) =

√
2
πx

[
sin
(
x –

nπ

2

) [n/2]∑

k=0

(–1)k(n + 2k)!
(2k)! (n – 2k)! (2x)2k

+ cos
(
x –

nπ

2

) [(n–1)/2]∑

k=0

(–1)k(n + 2k + 1)!
(2k + 1)! (n – 2k – 1)! (2x)2k+1

]
,

J–n–1/2(x) =

√
2
πx

[
cos
(
x +

nπ

2

) [n/2]∑

k=0

(–1)k(n + 2k)!
(2k)! (n – 2k)! (2x)2k

– sin
(
x +

nπ

2

) [(n–1)/2]∑

k=0

(–1)k(n + 2k + 1)!
(2k + 1)! (n – 2k – 1)! (2x)2k+1

]
,

Y1/2(x) = –

√
2
πx

cos x,

Yn+1/2(x) = (–1)n+1J–n–1/2(x),

Y–1/2(x) =

√
2
πx

sin x,

Y–n–1/2(x) = (–1)nJn+1/2(x),

where [A] is the integer part of the number A.

18.6.1-4. Bessel functions for ν = �n, where n = 0, 1, 2, . . .

Let ν = n be an arbitrary integer. The relations

J–n(x) = (–1)nJn(x), Y–n(x) = (–1)nYn(x)

are valid. The function Jn(x) is given by the first formula in (18.6.1.1) with ν = n, and
Yn(x) can be obtained from the second formula in (18.6.1.1) by proceeding to the limit



18.6. BESSEL FUNCTIONS (CYLINDRICAL FUNCTIONS) 949

ν → n. For nonnegative n, Yn(x) can be represented in the form

Yn(x) =
2
π
Jn(x) ln

x

2
–

1
π

n–1∑

k=0

(n – k – 1)!
k!

( 2
x

)n–2k

–
1
π

∞∑

k=0

(–1)k
( x

2

)n+2k ψ(k + 1) + ψ(n + k + 1)
k! (n + k)!

,

where ψ(1) = –C, ψ(n) = –C +
n–1∑

k=1
k–1, C = 0.5772 . . . is the Euler constant, and ψ(x) =

[ln Γ(x)]′x is the logarithmic derivative of the gamma function, also known as the digamma
function.

18.6.1-5. Wronskians and similar formulas.

W (Jν , J–ν) = –
2
πx

sin(πν), W (Jν ,Yν) =
2
πx

,

Jν (x)J–ν+1(x) + J–ν (x)Jν–1(x) =
2 sin(πν)
πx

, Jν (x)Yν+1(x) – Jν+1(x)Yν (x) = –
2
πx

.

Here, the notation W (f , g) = fg′x – f ′xg is used.

18.6.2. Integral Representations and Asymptotic Expansions

18.6.2-1. Integral representations.

The functions Jν(x) and Yν(x) can be represented in the form of definite integrals (for
x > 0):

πJν(x) =
∫ π

0
cos(x sin θ – νθ) dθ – sin πν

∫ ∞

0
exp(–x sinh t – νt) dt,

πYν(x) =
∫ π

0
sin(x sin θ – νθ) dθ –

∫ ∞

0
(eνt + e–νt cos πν) e–x sinh t dt.

For |ν | < 1
2 , x > 0,

Jν (x) =
21+νx–ν

π1/2Γ( 1
2 – ν)

∫ ∞

1

sin(xt) dt
(t2 – 1)ν+1/2 ,

Yν(x) = –
21+νx–ν

π1/2Γ( 1
2 – ν)

∫ ∞

1

cos(xt) dt
(t2 – 1)ν+1/2 .

For ν > – 1
2 ,

Jν (x) =
2(x/2)ν

π1/2Γ( 1
2 + ν)

∫ π/2

0
cos(x cos t) sin2ν t dt (Poisson’s formula).

For ν = 0, x > 0,

J0(x) =
2
π

∫ ∞

0
sin(x cosh t) dt, Y0(x) = –

2
π

∫ ∞

0
cos(x cosh t) dt.
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For integer ν = n = 0, 1, 2, . . . ,

Jn(x) =
1
π

∫ π

0
cos(nt – x sin t) dt (Bessel’s formula),

J2n(x) =
2
π

∫ π/2

0
cos(x sin t) cos(2nt) dt,

J2n+1(x) =
2
π

∫ π/2

0
sin(x sin t) sin[(2n + 1)t] dt.

18.6.2-2. Asymptotic expansions as |x| → ∞.

Jν(x) =

√
2
πx

{
cos
( 4x – 2νπ – π

4

)[M–1∑

m=0

(–1)m(ν, 2m)(2x)–2m + O(|x|–2M )

]

– sin
( 4x – 2νπ – π

4

)[M–1∑

m=0

(–1)m(ν, 2m + 1)(2x)–2m–1 +O(|x|–2M–1)

]}
,

Yν(x) =

√
2
πx

{
sin
( 4x – 2νπ – π

4

)[M–1∑

m=0

(–1)m(ν, 2m)(2x)–2m + O(|x|–2M )

]

+ cos
( 4x – 2νπ – π

4

)[M–1∑

m=0

(–1)m(ν, 2m + 1)(2x)–2m–1 +O(|x|–2M–1)

]}
,

where (ν,m) =
1

22mm!
(4ν2 – 1)(4ν2 – 32) . . . [4ν2 – (2m – 1)2] =

Γ( 1
2 + ν +m)

m! Γ( 1
2 + ν – m)

.

For nonnegative integer n and large x,
√
πxJ2n(x) = (–1)n(cos x + sinx) +O(x–2),√

πxJ2n+1(x) = (–1)n+1(cos x – sinx) + O(x–2).

18.6.2-3. Asymptotic for large ν (ν → ∞).

Jν (x) � 1√
2πν

( ex
2ν

)ν
, Yν(x) � –

√
2
πν

( ex
2ν

)–ν
,

where x is fixed,

Jν (ν) � 21/3

32/3Γ(2/3)
1
ν1/3 , Yν(ν) � –

21/3

31/6Γ(2/3)
1
ν1/3 .

18.6.2-4. Integrals with Bessel functions.

∫ x

0
xλJν(x) dx=

xλ+ν+1

2ν(λ + ν + 1) Γ(ν + 1)
F

(
λ + ν + 1

2
,
λ + ν + 3

2
, ν+1; –

x2

4

)
, Re(λ+ν) > –1,
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where F (a, b, c;x) is the hypergeometric series (see Section 18.10.1),

∫ x

0
xλYν(x) dx = –

cos(νπ)Γ(–ν)
2νπ(λ + ν + 1)

xλ+ν+1 F

(
λ + ν + 1

2
, ν + 1,

λ + ν + 3
2

; –
x2

4

)

–
2νΓ(ν)
λ – ν + 1

xλ–ν+1 F

(
λ – ν + 1

2
, 1 – ν,

λ – ν + 3
2

; –
x2

4

)
, Reλ > |Re ν | – 1.

18.6.3. Zeros and Orthogonality Properties of Bessel Functions

18.6.3-1. Zeros of Bessel functions.

Each of the functions Jν (x) and Yν(x) has infinitely many real zeros (for real ν). All zeros
are simple, except possibly for the point x = 0.

The zeros γm of J0(x), i.e., the roots of the equation J0(γm) = 0, are approximately
given by

γm = 2.4 + 3.13 (m – 1) (m = 1, 2, . . . ),

with a maximum error of 0.2%.

18.6.3-2. Orthogonality properties of Bessel functions.

1◦. Let μ = μm be positive roots of the Bessel function Jν(μ), where ν > –1 and m =
1, 2, 3, . . . Then the set of functions Jν (μmr/a) is orthogonal on the interval 0 ≤ r ≤ a
with weight r:

∫ a

0
Jν

(μmr
a

)
Jν

(μkr
a

)
r dr =

{
0 if m ≠ k,
1
2a

2[J ′
ν (μm)

]2
= 1

2a
2J2
ν+1(μm) if m = k.

2◦. Let μ = μm be positive zeros of the Bessel function derivative J ′
ν (μ), where ν > –1 and

m = 1, 2, 3, . . . Then the set of functions Jν (μmr/a) is orthogonal on the interval 0 ≤ r ≤ a
with weight r:

∫ a

0
Jν

(μmr
a

)
Jν

(μkr
a

)
r dr =

⎧
⎨

⎩

0 if m ≠ k,
1
2
a2
(

1 –
ν2

μ2
m

)
J2
ν (μm) if m = k.

3◦. Let μ = μm be positive roots of the transcendental equation μJ ′
ν(μ)+sJν (μ) = 0, where

ν > –1 and m = 1, 2, 3, . . . Then the set of functions Jν(μmr/a) is orthogonal on the
interval 0 ≤ r ≤ a with weight r:

∫ a

0
Jν

(μmr
a

)
Jν

(μkr
a

)
r dr =

⎧
⎨

⎩

0 if m ≠ k,
1
2
a2
(

1 +
s2 – ν2

μ2
m

)
J2
ν (μm) if m = k.

4◦. Let μ = μm be positive roots of the transcendental equation

Jν (λmb)Yν(λma) – Jν (λma)Yν (λmb) = 0 (ν > –1, m = 1, 2, 3, . . .).

Then the set of functions

Zν(λmr) = Jν(λmr)Yν(λma) – Jν(λma)Yν (λmr), m = 1, 2, 3, . . . ;
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satisfying the conditions Zν(λma) = Zν (λmb) = 0 is orthogonal on the interval a ≤ r ≤ b
with weight r:

∫ b

a
Zν(λmr)Zν(λkr)r dr =

⎧
⎨

⎩

0 if m ≠ k,
2

π2λ2
m

J2
ν (λma) – J2

ν (λmb)
J2
ν (λmb)

if m = k.

5◦. Let μ = μm be positive roots of the transcendental equation

J ′
ν(λmb)Y

′
ν (λma) – J ′

ν (λma)Y ′
ν (λmb) = 0 (ν > –1, m = 1, 2, 3, . . .).

Then the set of functions

Zν(λmr) = Jν (λmr)Y ′
ν(λma) – J ′

ν (λma)Yν (λmr), m = 1, 2, 3, . . . ;

satisfying the conditions Z ′
ν(λma) = Z ′

ν (λmb) = 0 is orthogonal on the interval a ≤ r ≤ b
with weight r:

∫ b

a

Zν(λmr)Zν (λkr)r dr =

⎧
⎪⎨

⎪⎩

0 if m ≠ k,
2

π2λ2
m

[(
1 –

ν2

b2λ2
m

) [
J ′

ν(λma)
]2

[
J ′

ν (λmb)
]2 –

(
1 –

ν2

a2λ2
m

)]
if m = k.

18.6.4. Hankel Functions (Bessel Functions of the Third Kind)

18.6.4-1. Definition.

The Hankel functions of the first kind and the second kind are related to Bessel functions by

H (1)
ν (z) = Jν(z) + iYν(z),

H (2)
ν (z) = Jν(z) – iYν(z),

where i2 = –1.

18.6.4-2. Expansions as z → 0 and z → ∞.

Asymptotics for z → 0:

H (1)
0 (z) � 2i

π
ln z, H (1)

ν (z) � –
i

π

Γ(ν)
(z/2)ν

(Re ν > 0),

H (2)
0 (z) � –

2i
π

ln z, H (2)
ν (z) � i

π

Γ(ν)
(z/2)ν

(Re ν > 0).

Asymptotics for |z| → ∞:

H (1)
ν (z) �

√
2
πz

exp
[
i
(
z – 1

2πν – 1
4π
)]

(–π < arg z < 2π),

H (2)
ν (z) �

√
2
πz

exp
[
–i
(
z – 1

2πν – 1
4π
)]

(–2π < arg z < π).
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18.7. Modified Bessel Functions

18.7.1. Definitions. Basic Formulas

18.7.1-1. Modified Bessel functions of the first and the second kind.

The modified Bessel functions of the first kind, Iν(x), and the modified Bessel functions of
the second kind, Kν(x) (also called the Macdonald function), of order ν are solutions of the
modified Bessel equation

x2y′′xx + xy′x – (x2 + ν2)y = 0

and are defined by the formulas

Iν(x) =
∞∑

k=0

(x/2)2k+ν

k! Γ(ν + k + 1)
, Kν (x) =

π

2
I–ν (x) – Iν(x)

sin(πν)
,

(see below for Kν (x) with ν = 0, 1, 2, . . . ).

18.7.1-2. Some formulas.

The modified Bessel functions possess the properties

K–ν (x) = Kν (x); I–n(x) = (–1)nIn(x), n = 0, 1, 2, . . .
2νIν(x) = x[Iν–1(x) – Iν+1(x)], 2νKν(x) = –x[Kν–1(x) –Kν+1(x)],
d

dx
Iν (x) =

1
2

[Iν–1(x) + Iν+1(x)],
d

dx
Kν(x) = –

1
2

[Kν–1(x) + Kν+1(x)].

18.7.1-3. Modified Bessel functions for ν = �n � 1
2 , where n = 0, 1, 2, . . .

I1/2(x) =

√
2
πx

sinh x, I–1/2(x) =

√
2
πx

cosh x,

I3/2(x) =

√
2
πx

(
–

1
x

sinh x + coshx

)
, I–3/2(x) =

√
2
πx

(
–

1
x

cosh x + sinh x

)
,

In+1/2(x) =
1√

2πx

[
ex

n∑

k=0

(–1)k(n + k)!
k! (n – k)! (2x)k

– (–1)ne–x
n∑

k=0

(n + k)!
k! (n – k)! (2x)k

]
,

I–n–1/2(x) =
1√

2πx

[
ex

n∑

k=0

(–1)k(n + k)!
k! (n – k)! (2x)k

+ (–1)ne–x
n∑

k=0

(n + k)!
k! (n – k)! (2x)k

]
,

K�1/2(x) =

√
π

2x
e–x, K�3/2(x) =

√
π

2x

(
1 +

1
x

)
e–x,

Kn+1/2(x) = K–n–1/2(x) =

√
π

2x
e–x

n∑

k=0

(n + k)!
k! (n – k)! (2x)k

.
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18.7.1-4. Modified Bessel functions for ν = n, where n = 0, 1, 2, . . .

If ν = n is a nonnegative integer, then

Kn(x) = (–1)n+1In(x) ln
x

2
+

1
2

n–1∑

m=0

(–1)m
( x

2

)2m–n (n –m – 1)!
m!

+
1
2

(–1)n
∞∑

m=0

( x
2

)n+2m ψ(n +m + 1) + ψ(m + 1)
m! (n + m)!

; n = 0, 1, 2, . . . ,

where ψ(z) is the logarithmic derivative of the gamma function; for n = 0, the first sum is
dropped.

18.7.1-5. Wronskians and similar formulas.

W (Iν , I–ν) = –
2
πx

sin(πν), W (Iν ,Kν) = –
1
x

,

Iν(x)I–ν+1(x) – I–ν(x)Iν–1(x) = –
2 sin(πν)
πx

, Iν(x)Kν+1(x) + Iν+1(x)Kν (x) =
1
x

,

where W (f , g) = fg′x – f ′xg.

18.7.2. Integral Representations and Asymptotic Expansions

18.7.2-1. Integral representations.

The functions Iν(x) and Kν (x) can be represented in terms of definite integrals:

Iν (x) =
xν

π1/22νΓ(ν + 1
2 )

∫ 1

–1
exp(–xt)(1 – t2)ν–1/2 dt (x > 0, ν > – 1

2 ),

Kν (x) =
∫ ∞

0
exp(–x cosh t) cosh(νt) dt (x > 0),

Kν (x) =
1

cos
( 1

2πν
)
∫ ∞

0
cos(x sinh t) cosh(νt) dt (x > 0, –1 < ν < 1),

Kν (x) =
1

sin
( 1

2πν
)
∫ ∞

0
sin(x sinh t) sinh(νt) dt (x > 0, –1 < ν < 1).

For integer ν = n,

In(x) =
1
π

∫ π

0
exp(x cos t) cos(nt) dt (n = 0, 1, 2, . . . ),

K0(x) =
∫ ∞

0
cos(x sinh t) dt =

∫ ∞

0

cos(xt)√
t2 + 1

dt (x > 0).
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18.7.2-2. Asymptotic expansions as x→ ∞.

Iν(x) =
ex√
2πx

{
1 +

M∑

m=1

(–1)m
(4ν2 – 1)(4ν2 – 32) . . . [4ν2 – (2m – 1)2]

m! (8x)m

}
,

Kν(x) =

√
π

2x
e–x
{

1 +
M∑

m=1

(4ν2 – 1)(4ν2 – 32) . . . [4ν2 – (2m – 1)2]
m! (8x)m

}
.

The terms of the order of O(x–M–1) are omitted in the braces.

18.7.2-3. Integrals with modified Bessel functions.
∫ x

0
xλIν(x) dx=

xλ+ν+1

2ν(λ + ν + 1)Γ(ν + 1)
F

(
λ + ν + 1

2
,
λ + ν + 3

2
, ν+1;

x2

4

)
, Re(λ+ν) > –1,

where F (a, b, c;x) is the hypergeometric series (see Subsection 18.10.1),
∫ x

0
xλKν(x) dx =

2ν–1Γ(ν)
λ – ν + 1

xλ–ν+1F

(
λ – ν + 1

2
, 1 – ν,

λ – ν + 3
2

;
x2

4

)

+
2–ν–1Γ(–ν)
λ + ν + 1

xλ+ν+1F

(
λ + ν + 1

2
, 1 + ν,

λ + ν + 3
2

;
x2

4

)
, Reλ > |Re ν | – 1.

18.8. Airy Functions
18.8.1. Definition and Basic Formulas

18.8.1-1. Airy functions of the first and the second kinds.

The Airy function of the first kind, Ai(x), and the Airy function of the second kind, Bi(x),
are solutions of the Airy equation

y′′xx – xy = 0
and are defined by the formulas

Ai(x) =
1
π

∫ ∞

0
cos
( 1

3 t
3 + xt

)
dt,

Bi(x) =
1
π

∫ ∞

0

[
exp
(
– 1

3 t
3 + xt

)
+ sin

( 1
3 t

3 + xt
)]
dt.

Wronskian: W {Ai(x), Bi(x)} = 1/π.

18.8.1-2. Relation to the Bessel functions and the modified Bessel functions.

Ai(x) = 1
3
√
x
[
I–1/3(z) – I1/3(z)

]
= π–1

√
1
3xK1/3(z), z = 2

3x
3/2,

Ai(–x) = 1
3
√
x
[
J–1/3(z) + J1/3(z)

]
,

Bi(x) =
√

1
3x
[
I–1/3(z) + I1/3(z)

]
,

Bi(–x) =
√

1
3x
[
J–1/3(z) – J1/3(z)

]
.
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18.8.2. Power Series and Asymptotic Expansions

18.8.2-1. Power series expansions as x→ 0.

Ai(x) = c1f (x) – c2g(x),

Bi(x) =
√

3 [c1f (x) + c2g(x)],

f (x) = 1 +
1

3!
x3 +

1 × 4
6!

x6 +
1 × 4 × 7

9!
x9 + · · · =

∞∑

k=0

3k
( 1

3
)
k

x3k

(3k)!
,

g(x) = x +
2

4!
x4 +

2 × 5
7!

x7 +
2 × 5 × 8

10!
x10 + · · · =

∞∑

k=0

3k
( 2

3
)
k

x3k+1

(3k + 1)!
,

where c1 = 3–2/3/Γ(2/3) ≈ 0.3550 and c2 = 3–1/3/Γ(1/3) ≈ 0.2588.

18.8.2-2. Asymptotic expansions as x→ ∞.

For large values of x, the leading terms of asymptotic expansions of the Airy functions are

Ai(x) � 1
2π

–1/2x–1/4 exp(–z), z = 2
3x

3/2,

Ai(–x) � π–1/2x–1/4 sin
(
z + π

4
)
,

Bi(x) � π–1/2x–1/4 exp(z),

Bi(–x) � π–1/2x–1/4 cos
(
z + π

4
)
.

18.9. Degenerate Hypergeometric Functions (Kummer
Functions)

18.9.1. Definitions and Basic Formulas

18.9.1-1. Degenerate hypergeometric functions Φ(a, b;x) and Ψ(a, b;x).

The degenerate hypergeometric functions (Kummer functions) Φ(a, b;x) and Ψ(a, b;x) are
solutions of the degenerate hypergeometric equation

xy′′xx + (b – x)y′x – ay = 0.

In the case b ≠ 0, –1, –2, –3, . . . , the function Φ(a, b;x) can be represented as Kummer’s
series:

Φ(a, b;x) = 1 +
∞∑

k=1

(a)k
(b)k

xk

k!
,

where (a)k = a(a + 1) . . . (a + k – 1), (a)0 = 1.
Table 18.1 presents some special cases where Φ can be expressed in terms of simpler

functions.
The function Ψ(a, b;x) is defined as follows:

Ψ(a, b;x) =
Γ(1 – b)

Γ(a – b + 1)
Φ(a, b;x) +

Γ(b – 1)
Γ(a)

x1–bΦ(a – b + 1, 2 – b; x).

Table 18.2 presents some special cases where Ψ can be expressed in terms of simpler
functions.
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TABLE 18.1
Special cases of the Kummer function Φ(a, b; z)

a b z Φ Conventional notation

a a x ex

1 2 2x
1
x
ex sinh x

a a+1 –x ax–aγ(a,x)

Incomplete gamma function

γ(a,x) =
∫ x

0
e–tta–1 dt

1
2

3
2 –x2

√
π

2
erf x

Error function

erf x=
2√
π

∫ x

0
exp(–t2) dt

–n 1
2

x2

2
n!

(2n)!

(
–

1
2

)–n

H2n(x) Hermite polynomials

Hn(x) = (–1)nex2 dn

dxn

(
e–x2)

,

n = 0, 1, 2, . . .–n 3
2

x2

2
n!

(2n+1)!

(
–

1
2

)–n

H2n+1(x)

–n b x
n!

(b)n
L(b–1)

n (x)

Laguerre polynomials

L(α)
n (x) =

exx–α

n!
dn

dxn

(
e–xxn+α),

α = b–1,
(b)n = b(b+1) . . . (b+n–1)

ν+
1
2

2ν+1 2x Γ(1+ν)ex
( x

2

)–ν

Iν (x)
Modified Bessel functions

Iν(x)
n+1 2n+2 2x Γ

(
n+

3
2

)
ex
( x

2

)–n– 1
2
In+ 1

2
(x)

18.9.1-2. Kummer transformation and linear relations.

Kummer transformation:

Φ(a, b;x) = exΦ(b – a, b; –x), Ψ(a, b;x) = x1–bΨ(1 + a – b, 2 – b;x).

Linear relations for Φ:
(b – a)Φ(a – 1, b;x) + (2a – b + x)Φ(a, b;x) – aΦ(a + 1, b;x) = 0,
b(b – 1)Φ(a, b – 1;x) – b(b – 1 + x)Φ(a, b;x) + (b – a)xΦ(a, b + 1;x) = 0,
(a – b + 1)Φ(a, b;x) – aΦ(a + 1, b;x) + (b – 1)Φ(a, b – 1;x) = 0,
bΦ(a, b;x) – bΦ(a – 1, b;x) – xΦ(a, b + 1;x) = 0,
b(a + x)Φ(a, b;x) – (b – a)xΦ(a, b + 1;x) – abΦ(a + 1, b;x) = 0,
(a – 1 + x)Φ(a, b;x) + (b – a)Φ(a – 1, b;x) – (b – 1)Φ(a, b – 1;x) = 0.

Linear relations for Ψ:
Ψ(a – 1, b;x) – (2a – b + x)Ψ(a, b;x) + a(a – b + 1)Ψ(a + 1, b;x) = 0,
(b – a – 1)Ψ(a, b – 1;x) – (b – 1 + x)Ψ(a, b;x) + xΨ(a, b + 1;x) = 0,
Ψ(a, b;x) – aΨ(a + 1, b;x) – Ψ(a, b – 1;x) = 0,
(b – a)Ψ(a, b;x) – xΨ(a, b + 1;x) + Ψ(a – 1, b;x) = 0,
(a + x)Ψ(a, b;x) + a(b – a – 1)Ψ(a + 1, b;x) – xΨ(a, b + 1;x) = 0,
(a – 1 + x)Ψ(a, b;x) – Ψ(a – 1, b;x) + (a – c + 1)Ψ(a, b – 1;x) = 0.
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TABLE 18.2
Special cases of the Kummer function Ψ(a, b; z)

a b z Ψ Conventional notation

1–a 1–a x exΓ(a,x)

Incomplete gamma function

Γ(a,x) =
∫ ∞

x

e–tta–1 dt

1
2

1
2 x2 √

π exp(x2) erfcx

Complementary error function

erfcx =
2√
π

∫ ∞

x

exp(–t2) dt

1 1 –x –e–x Ei(x)

Exponential integral

Ei(x) =
∫ x

–∞

et

t
dt

1 1 – lnx –x–1 lix

Logarithmic integral

li x=
∫ x

0

dt

t

1
2

–
n

2
3
2 x2 2–nx–1Hn(x)

Hermite polynomials

Hn(x) = (–1)nex2 dn

dxn

(
e–x2)

,

n = 0, 1, 2, . . .

ν+
1
2

2ν+1 2x π–1/2(2x)–νexKν (x)
Modified Bessel functions

Kν (x)

18.9.1-3. Differentiation formulas and Wronskian.

Differentiation formulas:
d

dx
Φ(a, b;x) =

a

b
Φ(a + 1, b + 1;x),

d

dx
Ψ(a, b;x) = –aΨ(a + 1, b + 1;x),

dn

dxn
Φ(a, b;x) =

(a)n
(b)n

Φ(a + n, b + n;x),

dn

dxn
Ψ(a, b;x) = (–1)n(a)nΨ(a + n, b + n;x).

Wronskian:

W (Φ, Ψ) = ΦΨ′
x – Φ′

xΨ = –
Γ(b)
Γ(a)

x–bex.

18.9.1-4. Degenerate hypergeometric functions for n = 0, 1, 2, . . .

Ψ(a,n + 1;x) =
(–1)n–1

n! Γ(a – n)

{
Φ(a,n+1;x) ln x

+
∞∑

r=0

(a)r
(n + 1)r

[
ψ(a + r) – ψ(1 + r) – ψ(1 + n + r)

]xr

r!

}
+

(n – 1)!
Γ(a)

n–1∑

r=0

(a – n)r
(1 – n)r

xr–n

r!
,

where n = 0, 1, 2, . . . (the last sum is dropped for n = 0), ψ(z) = [ln Γ(z)]′z is the logarithmic
derivative of the gamma function,

ψ(1) = –C, ψ(n) = –C +
n–1∑

k=1

k–1,

where C = 0.5772 . . . is the Euler constant.
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If b < 0, then the formula

Ψ(a, b;x) = x1–bΨ(a – b + 1, 2 – b; x)

is valid for any x.
For b ≠ 0, –1, –2, –3, . . . , the general solution of the degenerate hypergeometric equation

can be represented in the form

y = C1Φ(a, b;x) + C2Ψ(a, b;x),

and for b = 0, –1, –2, –3, . . . , in the form

y = x1–b[C1Φ(a – b + 1, 2 – b; x) + C2Ψ(a – b + 1, 2 – b; x)
]
.

18.9.2. Integral Representations and Asymptotic Expansions

18.9.2-1. Integral representations.

Φ(a, b;x) =
Γ(b)

Γ(a) Γ(b – a)

∫ 1

0
extta–1(1 – t)b–a–1 dt (for b > a > 0),

Ψ(a, b;x) =
1

Γ(a)

∫ ∞

0
e–xtta–1(1 + t)b–a–1 dt (for a > 0, x > 0),

where Γ(a) is the gamma function.

18.9.2-2. Asymptotic expansion as |x| → ∞.

Φ(a, b;x) =
Γ(b)
Γ(a)

exxa–b
[ N∑

n=0

(b – a)n(1 – a)n
n!

x–n + ε

]
, x > 0,

Φ(a, b;x) =
Γ(b)

Γ(b – a)
(–x)–a

[ N∑

n=0

(a)n(a – b + 1)n
n!

(–x)–n + ε

]
, x < 0,

Ψ(a, b;x) = x–a
[ N∑

n=0

(–1)n
(a)n(a – b + 1)n

n!
x–n + ε

]
, –∞ < x < ∞,

where ε = O(x–N–1).

18.9.2-3. Integrals with degenerate hypergeometric functions.
∫

Φ(a, b;x) dx =
b – 1
a – 1

Ψ(a – 1, b – 1;x) + C ,
∫

Ψ(a, b;x) dx =
1

1 – a
Ψ(a – 1, b – 1;x) + C ,

∫
xnΦ(a, b;x) dx = n!

n+1∑

k=1

(–1)k+1(1 – b)kxn–k+1

(1 – a)k(n – k + 1)!
Φ(a – k, b – k;x) + C ,

∫
xnΨ(a, b;x) dx = n!

n+1∑

k=1

(–1)k+1xn–k+1

(1 – a)k(n – k + 1)!
Ψ(a – k, b – k;x) + C .
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18.9.3. Whittaker Functions
The Whittaker functions Mk,μ(x) and Wk,μ(x) are linearly independent solutions of the
Whittaker equation:

y′′xx +
[
– 1

4 + 1
2k +

( 1
4 – μ2)x–2]y = 0.

The Whittaker functions are expressed in terms of degenerate hypergeometric functions as

Mk,μ(x) = xμ+1/2e–x/2Φ
( 1

2 + μ – k, 1 + 2μ; x
)
,

Wk,μ(x) = xμ+1/2e–x/2Ψ
( 1

2 + μ – k, 1 + 2μ; x
)
.

18.10. Hypergeometric Functions
18.10.1. Various Representations of the Hypergeometric Function

18.10.1-1. Representations of the hypergeometric function via hypergeometric series.

The hypergeometric function F (α,β, γ;x) is a solution of the Gaussian hypergeometric
equation

x(x – 1)y′′xx + [(α + β + 1)x – γ]y′x + αβy = 0.

For γ ≠ 0, –1, –2, –3, . . . , the function F (α,β, γ;x) can be expressed in terms of the
hypergeometric series:

F (α,β, γ;x) = 1 +
∞∑

k=1

(α)k(β)k
(γ)k

xk

k!
, (α)k = α(α + 1) . . . (α + k – 1),

which certainly converges for |x| < 1.
If γ is not an integer, then the general solution of the hypergeometric equation can be

written in the form

y = C1F (α,β, γ;x) + C2x
1–γF (α – γ + 1, β – γ + 1, 2 – γ; x).

Table 18.3 shows some special cases where F can be expressed in term of elementary
functions.

18.10.1-2. Integral representation.

For γ > β > 0, the hypergeometric function can be expressed in terms of a definite integral:

F (α,β, γ;x) =
Γ(γ)

Γ(β) Γ(γ – β)

∫ 1

0
tβ–1(1 – t)γ–β–1(1 – tx)–α dt,

where Γ(β) is the gamma function.

18.10.2. Basic Properties

18.10.2-1. Linear transformation formulas.

F (α,β, γ;x) = F (β,α, γ;x),

F (α,β, γ;x) = (1 – x)γ–α–βF (γ – α, γ – β, γ; x),

F (α,β, γ;x) = (1 – x)–αF
(
α, γ – β, γ;

x

x – 1

)
,

F (α,β, γ;x) = (1 – x)–βF
(
β, γ – α, γ;

x

x – 1

)
.
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TABLE 18.3
Some special cases where the hypergeometric function F (α, β, γ; z)

can be expressed in terms of elementary functions.

α β γ z F

–n β γ x

n∑

k=0

(–n)k(β)k
(γ)k

xk

k!
, where n = 1, 2, . . .

–n β –n –m x

n∑

k=0

(–n)k(β)k
(–n –m)k

xk

k!
, where n = 1, 2, . . .

α β β x (1 –x)–α

α α + 1 1
2α x (1 +x)(1 – x)–α–1

α α + 1
2 2α + 1 x

(
1 +

√
1 –x

2

)–2α

α α + 1
2 2α x

1√
1 –x

(
1 +

√
1 –x

2

)1–2α

α α + 1
2

3
2 x2 (1 +x)1–2α – (1 – x)1–2α

2x(1 – 2α)

α α + 1
2

1
2 – tan2 x cos2α x cos(2αx)

α α + 1
2

1
2 x2 1

2

[
(1 +x)–2α + (1 –x)–2α]

α α – 1
2 2α – 1 x 22α–2(1 +

√
1 –x

)2–2α

α 2 –α 3
2 sin2 x

sin[(2α – 2)x]
(α – 1) sin(2x)

α 1 –α 1
2 –x2

(√
1 +x2 +x

)2α–1
+
(√

1 +x2 – x
)2α–1

2
√

1 +x2

α 1 –α 3
2 sin2 x

sin[(2α – 1)x]
(α – 1) sin(2x)

α 1 –α 1
2 sin2 x

cos[(2α – 1)x]
cosx

α –α 1
2 –x2 1

2

[(√
1 +x2 +x

)2α
+
(√

1 +x2 – x
)2α]

α –α 1
2 sin2 x cos(2αx)

1 1 2 –x 1
x

ln(x+ 1)

1
2 1 3

2 x2 1
2x

ln
1 +x
1 –x

1
2 1 3

2 –x2 1
x

arctan x

1
2

1
2

3
2 x2 1

x
arcsinx

1
2

1
2

3
2 –x2 1

x
arcsinhx

n + 1 n +m+ 1 n +m+ l + 2 x

(–1)m(n +m+ l + 1)!
n! l! (n +m)! (m + l)!

dn+m

dxn+m

{
(1 –x)m+l d

lF

dxl

}
,

F = –
ln(1 –x)

x
, n,m, l = 0, 1, 2, . . .
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18.10.2-2. Gauss’s linear relations for contiguous functions.

(β – α)F (α,β, γ;x) + αF (α + 1,β, γ;x) – βF (α,β + 1, γ;x) = 0,
(γ – α – 1)F (α,β, γ;x) + αF (α + 1,β, γ;x) – (γ – 1)F (α,β, γ – 1;x) = 0,
(γ – β – 1)F (α,β, γ;x) + βF (α,β + 1, γ;x) – (γ – 1)F (α,β, γ – 1;x) = 0,
(γ – α – β)F (α,β, γ;x) + α(1 – x)F (α + 1,β, γ;x) – (γ – β)F (α,β – 1, γ;x) = 0,
(γ – α – β)F (α,β, γ;x) – (γ – α)F (α – 1,β, γ;x) + β(1 – x)F (α,β + 1, γ;x) = 0.

18.10.2-3. Differentiation formulas.

d

dx
F (α,β, γ;x) =

αβ

γ
F (α + 1, β + 1, γ + 1; x),

dn

dxn
F (α,β, γ;x) =

(α)n(β)n
(γ)n

F (α + n, β + n, γ + n; x),

dn

dxn
[
xγ–1F (α,β, γ;x)

]
= (γ – n)nx

γ–n–1F (α, β, γ – n; x),

dn

dxn
[
xα+n–1F (α,β, γ;x)

]
= (α)nx

α–1F (α + n, β, γ; x),

where (α)n = α(α + 1) . . . (α + n – 1).
See Abramowitz and Stegun (1964) and Bateman and Erdélyi (1953, Vol. 1) for more

detailed information about hypergeometric functions.

18.11. Legendre Polynomials, Legendre Functions, and
Associated Legendre Functions

18.11.1. Legendre Polynomials and Legendre Functions

18.11.1-1. Implicit and recurrence formulas for Legendre polynomials and functions.

The Legendre polynomials Pn(x) and the Legendre functions Qn(x) are solutions of the
second-order linear ordinary differential equation

(1 – x2)y′′xx – 2xy′x + n(n + 1)y = 0.

The Legendre polynomials Pn(x) and the Legendre functions Qn(x) are defined by the
formulas

Pn(x) =
1

n! 2n
dn

dxn
(x2 – 1)n,

Qn(x) =
1
2
Pn(x) ln

1 + x
1 – x

–
n∑

m=1

1
m
Pm–1(x)Pn–m(x).

The polynomials Pn = Pn(x) can be calculated using the formulas

P0(x) = 1, P1(x) = x, P2(x) =
1
2

(3x2 – 1),

P3(x) =
1
2

(5x3 – 3x), P4(x) =
1
8

(35x4 – 30x2 + 3),

Pn+1(x) =
2n + 1
n + 1

xPn(x) –
n

n + 1
Pn–1(x).
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The first five functions Qn = Qn(x) have the form

Q0(x) =
1
2

ln
1 + x
1 – x

, Q1(x) =
x

2
ln

1 + x
1 – x

– 1,

Q2(x) =
1
4

(3x2 – 1) ln
1 + x
1 – x

–
3
2
x, Q3(x) =

1
4

(5x3 – 3x) ln
1 + x
1 – x

–
5
2
x2 +

2
3

,

Q4(x) =
1

16
(35x4 – 30x2 + 3) ln

1 + x
1 – x

–
35

8
x3 +

55
24
x.

The polynomials Pn(x) have the explicit representation

Pn(x) = 2–n
[n/2]∑

m=0

(–1)mCmn C
n
2n–2mx

n–2m,

where [A] stands for the integer part of a number A.

18.11.1-2. Integral representation. Useful formulas.

Integral representation of the Legendre polynomials (Laplace integral):

Pn(x) =
1
π

∫ π

0

(
x �

√
x2 – 1 cos t

)n
dt, x > 1.

Integral representation of the Legendre polynomials (Dirichlet–Mehler integral):

Pn(cos θ) =

√
2
π

∫ θ

0

cos
[
(n + 1

2
)
ψ
]
dψ√

cosψ – cos θ
, 0 < θ < π, n = 0, 1, . . .

Integral representation of the Legendre functions:

Qn(x) = 2n
∫ ∞

x

(t – x)n

(t2 – 1)n+1 dt, x > 1.

Properties:
Pn(–x) = (–1)nPn(x), Qn(–x) = (–1)n+1Qn(x).

Recurrence relations:

(n + 1)Pn+1(x) – (2n + 1)xPn(x) + nPn–1(x) = 0,

(x2 – 1)
d

dx
Pn(x) = n

[
xPn(x) – Pn–1(x)

]
=
n(n + 1)

2n + 1
[
Pn+1(x) – Pn–1(x)

]
.

Values of the Legendre polynomials and their derivatives at x = 0:

P2m(0) = (–1)m
(2m – 1)!!

2mm!
, P2m+1(0) = 0, P ′

2m(0) = 0, P ′
2m+1(0) = (–1)m

(2m + 1)!!
2mm!

.

Asymptotic formula as n→ ∞:

Pn(cos θ) ≈
(

2
πn sin θ

)1/2
sin

[(
n +

1
2

)
θ +

π

4

]
, 0 < θ < π.
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18.11.1-3. Zeros and orthogonality of the Legendre polynomials.

The polynomials Pn(x) (with natural n) have exactly n real distinct zeros; all zeros lie on
the interval –1 < x < 1. The zeros of Pn(x) and Pn+1(x) alternate with each other. The
function Qn(x) has exactly n + 1 zeros, which lie on the interval –1 < x < 1.

The functions Pn(x) form an orthogonal system on the interval –1 ≤ x ≤ 1, with

∫ 1

–1
Pn(x)Pm(x) dx =

{ 0 if n ≠ m,
2

2n + 1
if n = m.

18.11.1-4. Generating functions.

The generating function for Legendre polynomials is

1√
1 – 2sx + s2

=
∞∑

n=0

Pn(x)sn (|s| < 1).

The generating function for Legendre functions is

1√
1 – 2sx + s2

ln

[
x – s +

√
1 – 2sx + s2

√
1 – x2

]
=

∞∑

n=0

Qn(x)sn (|s| < 1, x > 1).

18.11.2. Associated Legendre Functions with Integer Indices and
Real Argument

18.11.2-1. Formulas for associated Legendre functions. Differential equation.

The associated Legendre functions Pmn (x) of order m are defined by the formulas

Pmn (x) = (1 – x2)m/2 dm

dxm
Pn(x), n = 1, 2, 3, . . . , m = 0, 1, 2, . . .

It is assumed by definition that P 0
n(x) = Pn(x).

Properties:

Pmn (x) = 0 if m > n, Pmn (–x) = (–1)n–mPmn (x).

The associated Legendre functions Pmn (x) have exactly n –m real zeros, which and lie
on the interval –1 < x < 1.

The associated Legendre functions Pmn (x) with low indices:

P 1
1 (x) = (1 – x2)1/2, P 1

2 (x) = 3x(1 – x2)1/2, P 2
2 (x) = 3(1 – x2),

P 1
3 (x) = 3

2 (5x2 – 1)(1 – x2)1/2, P 2
3 (x) = 15x(1 – x2), P 3

3 (x) = 15(1 – x2)3/2.

The associated Legendre functions Pmn (x) with n>m are solutions of the linear ordinary
differential equation

(1 – x2)y′′xx – 2xy′x +

[
n(n + 1) –

m2

1 – x2

]
y = 0.
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18.11.2-2. Orthogonality of the associated Legendre functions.

The functions Pmn (x) form an orthogonal system on the interval –1 ≤ x ≤ 1, with

∫ 1

–1
Pmn (x)Pmk (x) dx =

⎧
⎨

⎩

0 if n ≠ k,
2

2n + 1
(n + m)!
(n – m)!

if n = k.

The functions Pmn (x) (with m ≠ 0) are orthogonal on the interval –1 ≤ x ≤ 1 with weight
(1 – x2)–1, that is,

∫ 1

–1

Pmn (x)P kn (x)
1 – x2 dx =

⎧
⎨

⎩

0 if m ≠ k,
(n + m)!
m(n – m)!

if m = k.

18.11.3. Associated Legendre Functions. General Case

18.11.3-1. Definitions. Basic formulas.

In the general case, the associated Legendre functions of the first and the second kind,
Pμν (z) and Qμν (z), are linearly independent solutions of the Legendre equation

(1 – z2)y′′zz – 2zy′z +

[
ν(ν + 1) –

μ2

1 – z2

]
y = 0,

where the parameters ν and μ and the variable z can assume arbitrary real or complex
values.

For |1 – z| < 2, the formulas

Pμν (z) =
1

Γ(1 – μ)

( z + 1
z – 1

)μ/2
F
(

–ν, 1 + ν, 1 – μ;
1 – z

2

)
,

Qμν (z) =A
( z – 1
z + 1

) μ
2
F
(

–ν, 1+ν, 1+μ;
1 – z

2

)
+B
( z + 1
z – 1

) μ
2
F
(

–ν, 1+ν, 1–μ;
1 – z

2

)
,

A = eiμπ
Γ(–μ) Γ(1 + ν + μ)

2 Γ(1 + ν – μ)
, B = eiμπ

Γ(μ)
2

, i2 = –1,

are valid, where F (a, b, c; z) is the hypergeometric series (see Section 18.10).
For |z| > 1,

Pμν (z) =
2–ν–1Γ(– 1

2 – ν)√
π Γ(–ν – μ)

z–ν+μ–1(z2 – 1)–μ/2F
( 1 + ν – μ

2
,

2 + ν – μ
2

,
2ν + 3

2
;

1
z2

)

+
2νΓ( 1

2 + ν)

Γ(1 + ν – μ)
zν+μ(z2 – 1)–μ/2F

(
–
ν + μ

2
,

1 – ν – μ
2

,
1 – 2ν

2
;

1
z2

)
,

Qμν (z) = eiπμ
√
π Γ(ν + μ + 1)

2ν+1Γ(ν + 3
2 )

z–ν–μ–1(z2 – 1)μ/2F
( 2 + ν + μ

2
,

1 + ν + μ
2

,
2ν + 3

2
;

1
z2

)
.

The functions Pν(z) ≡ P 0
ν (z) and Qν(z) ≡ Q0

ν(z) are called the Legendre functions.
For n = 1, 2, . . . ,

Pnν (z) = (z2 – 1)n/2 dn

dzn
Pν (z), Qnν (z) = (z2 – 1)n/2 d

n

dzn
Qν(z).
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18.11.3-2. Relations between associated Legendre functions.

Pμν (z) = Pμ–ν–1(z), Pnν (z) =
Γ(ν + n + 1)
Γ(ν – n + 1)

P –n
ν (z), n = 0, 1, 2, . . . ,

Pμν+1(z) =
2ν + 1
ν – μ + 1

zPμν (z) –
ν + μ

ν – μ + 1
Pμν–1(z),

Pμν+1(z) = Pμν–1(z) + (2ν + 1)(z2 – 1)1/2Pμ–1
ν (z),

(z2 – 1)
d

dz
Pμν (z) = νzPμν (z) – (ν +m)Pμν–1(z),

Qμν (z) =
π

2 sin(μπ)
eiπμ
[
Pμν (z) –

Γ(1 + ν + μ
Γ(1 + ν – μ)

P –μ
ν (z)

]
,

Qμν (z) = eiπμ
(π

2

)1/2
Γ(ν + μ + 1)(z2 – 1)–1/4P

–ν–1/2
–μ–1/2

(
z√
z2 – 1

)
, Re z > 0.

18.11.3-3. Integral representations.

For Re(–μ) > Re ν > –1,

Pμν (z) =
2–ν (z2 – 1)–μ/2

Γ(ν + 1)Γ(–μ – ν)

∫ ∞

0
(z + cosh t)μ–ν–1(sinh t)2ν+1 dt,

where z does not lie on the real axis between –1 and ∞.
For μ < 1/2,

Pμν (z) =
2μ(z2 – 1)–μ/2
√
π Γ( 1

2 – μ)

∫ π

0

(
z +

√
z2 – 1 cos t

)ν+μ
(sin t)–2μ dt,

where z does not lie on the real axis between –1 and 1.
For Re ν > –1 and Re(ν + μ + 1) > 0,

Qμν (z) = eπμi
Γ(ν + μ + 1)(z2 – 1)–μ/2

2ν+1Γ(ν + 1)

∫ π

0

(
z + cos t

)μ–ν–1
(sin t)2ν+1 dt,

where z does not lie on the real axis between –1 and 1.
For n = 0, 1, 2, . . . ,

Pnν (z) =
Γ(ν + n + 1)
πΓ(ν + 1)

∫ π

0

(
z +

√
z2 – 1 cos t

)ν
cos(nt) dt, Re z > 0;

Qnν (z) = (–1)n
Γ(ν + n + 1)
2ν+1Γ(ν + 1)

(z2 – 1)–n/2
∫ π

0
(z + cos t)n–ν–1(sin t)2ν+1 dt, Re ν > –1.

Note that z ≠ x, –1 < x < 1, in the latter formula.

18.11.3-4. Modified associated Legendre functions.

The modified associated Legendre functions, on the cut z = x, –1 < x < 1, of the real axis
are defined by the formulas

Pμν (x) = 1
2
[
e

1
2 iμπPμν (x + i0) + e– 1

2 iμπPμν (x – i0)
]
,

Qμ
ν (x) = 1

2 e
–iμπ[e– 1

2 iμπQμν (x + i0) + e
1
2 iμπQμν (x – i0)

]
.

Notation:
Pν(x) = P0

ν(x), Qν(x) = Q0
ν(x).
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18.11.3-5. Trigonometric expansions.

For –1 < x < 1, the modified associated Legendre functions can be represented in the form
of the trigonometric series:

Pμν (cos θ) =
2μ+1
√
π

Γ(ν + μ + 1)

Γ(ν + 3
2 )

(sin θ)μ
∞∑

k=0

( 1
2 + μ)k(1 + ν + μ)k

k! (ν + 3
2 )k

sin[(2k + ν + μ + 1)θ],

Qμ
ν (cos θ) =

√
π 2μ

Γ(ν + μ + 1)

Γ(ν + 3
2 )

(sin θ)μ
∞∑

k=0

( 1
2 + μ)k(1 + ν + μ)k

k! (ν + 3
2 )k

cos[(2k + ν + μ + 1)θ],

where 0 < θ < π.

18.11.3-6. Some relations for the modified associated Legendre functions.

For 0 < x < 1,

Pμν (–x) = Pμν (x) cos[π(ν + μ)] – 2π–1 Qμ
ν (x) sin[π(ν + μ)],

Qμ
ν (–x) = – Qμ

ν (x) cos[π(ν + μ)] – 1
2πPμν (x) sin[π(ν + μ)].

For –1 < x < 1,

Pμν+1(x) =
2ν + 1
ν – μ + 1

xPμν (x) –
ν + μ

ν – μ + 1
Pμν–1(x),

Pμν+1(x) = Pμν–1(x) – (2ν + 1)(1 – x2)1/2 Pμ–1
ν (x),

Pμν+1(x) = xPμν (x) – (ν + μ)(1 – x2)1/2 Pμ–1
ν (x),

d

dx
Pμν (x) =

νx

x2 – 1
Pμν (x) –

ν + μ
x2 – 1

Pμν–1(x).

Wronskian:

Pμν (x)
d

dx
Qμ
ν (x) – Qμ

ν (x)
d

dx
Pμν (x) =

k

1 – x2 , k = 22μ Γ
( ν+μ+1

2
)
Γ
( ν+μ+2

2
)

Γ
( ν–μ+1

2
)
Γ
( ν–μ+2

2
) .

For n = 1, 2, . . . ,

Pnν (x) = (–1)n(1 – x2)n/2 dn

dxn
Pν(x), Qn

ν (x) = (–1)n(1 – x2)n/2 dn

dxn
Qν(x).

18.12. Parabolic Cylinder Functions
18.12.1. Definitions. Basic Formulas
18.12.1-1. Differential equation. Formulas for the parabolic cylinder functions.

The Weber parabolic cylinder function Dν (z) is a solution of the linear ordinary differential
equation:

y′′zz +
(
– 1

4 z
2 + ν + 1

2
)
y = 0,

where the parameter ν and the variable z can assume arbitrary real or complex values.
Another linearly independent solution of this equation is the function D–ν–1(iz); if ν is
noninteger, then Dν (–z) can also be taken as a linearly independent solution.

The parabolic cylinder functions can be expressed in terms of degenerate hypergeometric
functions as

Dν(z) = 21/2 exp
(
– 1

4 z
2)
[

Γ
( 1

2
)

Γ
( 1

2 – ν
2
)Φ
(
– ν2 , 1

2 ; 1
2 z

2) + 2–1/2 Γ
(
– 1

2
)

Γ
(
– ν2
) zΦ

( 1
2 – ν

2 , 3
2 ; 1

2 z
2)
]

.
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18.12.1-2. Special cases.

For nonnegative integer ν = n, we have

Dn(z) =
1

2n/2 exp

(
–
z2

4

)
Hn

(
z√

2

)
, n = 0, 1, 2, . . . ;

Hn(z) = (–1)n exp
(
z2) d

n

dzn
exp
(
–z2),

where Hn(z) is the Hermitian polynomial of order n.
Connection with the error function:

D–1(z) =

√
π

2
exp

(
z2

4

)
erfc

(
z√

2

)
,

D–2(z) =

√
π

2
z exp

(
z2

4

)
erfc

(
z√

2

)
– exp

(
–
z2

4

)
.

18.12.2. Integral Representations, Asymptotic Expansions, and
Linear Relations

18.12.2-1. Integral representations and the asymptotic expansion.

Integral representations:

Dν (z) =
√

2/π exp
( 1

4 z
2)
∫ ∞

0
tν exp

(
– 1

2 t
2) cos

(
zt – 1

2πν
)
dt for Re ν > –1,

Dν (z) =
1

Γ(–ν)
exp
(
– 1

4 z
2)
∫ ∞

0
t–ν–1 exp

(
–zt – 1

2 t
2) dt for Re ν < 0.

Asymptotic expansion as |z| → ∞:

Dν(z) = zν exp
(
– 1

4 z
2)
[ N∑

n=0

(–2)n
(
– ν2
)
n

( 1
2 – ν

2
)
n

n!
1
z2n +O

(
|z|–2N–2)

]
for |arg z| <

3π
4

,

where (a)0 = 1, (a)n = a(a + 1) . . . (a + n – 1) for n = 1, 2, 3, . . .

18.12.2-2. Recurrence relations.

Dν+1(z) – zDν(z) + νDν–1(z) = 0,
d

dz
Dν (z) +

1
2
zDν (z) – νDν–1(z) = 0,

d

dz
Dν (z) –

1
2
zDν (z) +Dν+1(z) = 0.
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18.13. Elliptic Integrals
18.13.1. Complete Elliptic Integrals

18.13.1-1. Definitions. Properties. Conversion formulas.

Complete elliptic integral of the first kind:

K(k) =
∫ π/2

0

dα√
1 – k2 sin2 α

=
∫ 1

0

dx
√

(1 – x2)(1 – k2x2)
.

Complete elliptic integral of the second kind:

E(k) =
∫ π/2

0

√
1 – k2 sin2 α dα =

∫ 1

0

√
1 – k2x2
√

1 – x2
dx.

The argument k is called the elliptic modulus (k2 < 1).
Notation:

k′ =
√

1 – k2, K′(k) = K(k′), E′(k) = E(k′),

where k′ is the complementary modulus.
Properties:

K(–k) = K(k), E(–k) = E(k);

K(k) = K′(k′), E(k) = E′(k′);

E(k) K′(k) + E′(k) K(k) – K(k) K′(k) =
π

2
.

Conversion formulas for complete elliptic integrals:

K
(

1 – k′

1 + k′

)
=

1 + k′

2
K(k),

E
(

1 – k′

1 + k′

)
=

1
1 + k′

[
E(k) + k′ K(k)

]
,

K
(

2
√
k

1 + k

)
= (1 + k) K(k),

E
(

2
√
k

1 + k

)
=

1
1 + k

[
2 E(k) – (k′)2 K(k)

]
.

18.13.1-2. Representation of complete elliptic integrals in series form.

Representation of complete elliptic integrals in the form of series in powers of the modulus k:

K(k) =
π

2

{
1 +

(
1
2

)2
k2 +

(
1 × 3
2 × 4

)2
k4 + · · · +

[
(2n – 1)!!

(2n)!!

]2
k2n + · · ·

}
,

E(k) =
π

2

{
1 –

(
1
2

)2 k2

1
–

(
1 × 3
2 × 4

)2 k4

3
– · · · –

[
(2n – 1)!!

(2n)!!

]2 k2n

2n – 1
– · · ·

}
.
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Representation of complete elliptic integrals in the form of series in powers of the comple-
mentary modulus k′ =

√
1 – k2:

K(k) =
π

1 +k′

{
1 +

(
1
2

)2( 1 –k′

1 +k′

)2

+

(
1 × 3
2 × 4

)2( 1 –k′

1 +k′

)4

+ · · ·+
[

(2n– 1)!!
(2n)!!

]2( 1 –k′

1 +k′

)2n

+ · · ·
}

,

K(k) = ln
4
k′

+

(
1
2

)2(
ln

4
k′

–
2

1 × 2

)
(k′)2 +

(
1 × 3
2 × 4

)2(
ln

4
k′

–
2

1 × 2
–

2
3 × 4

)
(k′)4

+

(
1 × 3 × 5
2 × 4 × 6

)2(
ln

4
k′

–
2

1 × 2
–

2
3 × 4

–
2

5 × 6

)
(k′)6 + · · · ;

E(k) =
π(1 +k′)

4

{
1 +

1
22 –

(
1 –k′

1 +k′

)2

+
12

(2 × 4)2

(
1 –k′

1 +k′

)4

+ · · ·+
[

(2n– 3)!!
(2n)!!

]2( 1 –k′

1 +k′

)2n

+ · · ·
}

,

E(k) = 1 +
1
2

(
ln

4
k′

–
1

1 × 2

)
(k′)2 +

12 × 3
22 × 4

(
ln

4
k′

–
2

1 × 2
–

1
3 × 4

)
(k′)4

+
12 × 32 × 5
22 × 42 × 6

(
ln

4
k′

–
2

1 × 2
–

2
3 × 4

–
1

5 × 6

)
(k′)6 + · · · .

18.13.1-3. Differentiation formulas. Differential equations.

Differentiation formulas:

dK(k)
dk

=
E(k)
k(k′)2 –

K(k)
k

,
dE(k)
dk

=
E(k) – K(k)

k
.

The functions K(k) and K′(k) satisfy the second-order linear ordinary differential equa-
tion

d

dk

[
k(1 – k2)

dK
dk

]
– kK = 0.

The functions E(k) and E′(k) – K′(k) satisfy the second-order linear ordinary differential
equation

(1 – k2)
d

dk

(
k
dE
dk

)
+ kE = 0.

18.13.2. Incomplete Elliptic Integrals (Elliptic Integrals)

18.13.2-1. Definitions. Properties.

Elliptic integral of the first kind:

F (ϕ, k) =
∫ ϕ

0

dα√
1 – k2 sin2 α

=
∫ sinϕ

0

dx
√

(1 – x2)(1 – k2x2)
.

Elliptic integral of the second kind:

E(ϕ, k) =
∫ ϕ

0

√
1 – k2 sin2 α dα =

∫ sinϕ

0

√
1 – k2x2
√

1 – x2
dx.
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Elliptic integral of the third kind:

Π(ϕ,n, k) =
∫ ϕ

0

dα

(1 – n sin2 α)
√

1 – k2 sin2 α
=
∫ sinϕ

0

dx

(1 – nx2)
√

(1 – x2)(1 – k2x2)
.

The quantity k is called the elliptic modulus (k2 < 1), k′ =
√

1 – k2 is the complementary
modulus, and n is the characteristic parameter.

Complete elliptic integrals:

K(k) = F
( π

2
, k
)

, E(k) = E
(π

2
, k
)

,

K′(k) = F
(π

2
, k′
)

, E′(k) = E
( π

2
, k′
)

.

Properties of elliptic integrals:

F (–ϕ, k) = –F (ϕ, k), F (nπ � ϕ, k) = 2nK(k) � F (ϕ, k);
E(–ϕ, k) = –E(ϕ, k), E(nπ � ϕ, k) = 2nE(k) �E(ϕ, k).

18.13.2-2. Conversion formulas.

Conversion formulas for elliptic integrals (first set):

F

(
ψ,

1
k

)
= kF (ϕ, k),

E

(
ψ,

1
k

)
=

1
k

[
E(ϕ, k) – (k′)2F (ϕ, k)

]
,

where the angles ϕ and ψ are related by sinψ = k sinϕ, cosψ =
√

1 – k2 sin2 ϕ.
Conversion formulas for elliptic integrals (second set):

F

(
ψ,

1 – k′

1 + k′

)
= (1 + k′)F (ϕ, k),

E

(
ψ,

1 – k′

1 + k′

)
=

2
1 + k′

[
E(ϕ, k) + k′F (ϕ, k)

]
–

1 – k′

1 + k′
sinψ,

where the angles ϕ and ψ are related by tan(ψ – ϕ) = k′ tanϕ.
Transformation formulas for elliptic integrals (third set):

F

(
ψ,

2
√
k

1 + k

)
= (1 + k)F (ϕ, k),

E

(
ψ,

2
√
k

1 + k

)
=

1
1 + k

[
2E(ϕ, k) – (k′)2F (ϕ, k) + 2k

sinϕ cosϕ
1 + k sin2 ϕ

√
1 – k2 sin2 ϕ

]
,

where the angles ϕ and ψ are related by sinψ =
(1 + k) sinϕ
1 + k sin2 ϕ

.
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18.13.2-3. Trigonometric expansions.

Trigonometric expansions for small k and ϕ:

F (ϕ, k) =
2
π

K(k)ϕ – sinϕ cosϕ

(
a0 +

2
3
a1 sin2 ϕ +

2 × 4
3 × 5

a2 sin4 ϕ + · · ·
)

,

a0 =
2
π

K(k) – 1, an = an–1 –

[
(2n – 1)!!

(2n)!!

]2
k2n;

E(ϕ, k) =
2
π

E(k)ϕ – sinϕ cosϕ

(
b0 +

2
3
b1 sin2 ϕ +

2 × 4
3 × 5

b2 sin4 ϕ + · · ·
)

,

b0 = 1 –
2
π

E(k), bn = bn–1 –

[
(2n – 1)!!

(2n)!!

]2 k2n

2n – 1
.

Trigonometric expansions for k → 1:

F (ϕ, k) =
2
π

K′(k) ln tan

(
ϕ

2
+
π

4

)
–

tanϕ
cosϕ

(
a′0 –

2
3
a′1 tan2 ϕ +

2 × 4
3 × 5

a′2 tan4 ϕ – · · ·
)

,

a′0 =
2
π

K′(k) – 1, a′n = a′n–1 –

[
(2n – 1)!!

(2n)!!

]2
(k′)2n;

E(ϕ, k) =
2
π

E′(k) ln tan

(
ϕ

2
+
π

4

)
+

tanϕ
cosϕ

(
b′0 –

2
3
b′1 tan2 ϕ +

2 × 4
3 × 5

b′2 tan4 ϕ – · · ·
)

,

b′0 =
2
π

E′(k) – 1, b′n = b′n–1 –

[
(2n – 1)!!

(2n)!!

]2 (k′)2n

2n – 1
.

18.14. Elliptic Functions
An elliptic function is a function that is the inverse of an elliptic integral. An elliptic function
is a doubly periodic meromorphic function of a complex variable. All its periods can be
written in the form 2mω1 + 2nω2 with integer m and n, where ω1 and ω2 are a pair of
(primitive) half-periods. The ratio τ = ω2/ω1 is a complex quantity that may be considered
to have a positive imaginary part, Im τ > 0.

Throughout the rest of this section, the following brief notation will be used: K = K(k)
and K′ = K(k′) are complete elliptic integrals with k′ =

√
1 – k2.

18.14.1. Jacobi Elliptic Functions

18.14.1-1. Definitions. Simple properties. Special cases.

When the upper limit ϕ of the incomplete elliptic integral of the first kind

u =
∫ ϕ

0

dα√
1 – k2 sin2 α

= F (ϕ, k)

is treated as a function of u, the following notation is used:

u = amϕ.
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Naming: ϕ is the amplitude and u is the argument.
Jacobi elliptic functions:

snu = sinϕ = sin amu (sine amplitude),
cnu = cosϕ = cos amu (cosine amplitude),

dnu =
√

1 – k2 sin2 ϕ =
dϕ

du
(delta amlplitude).

Along with the brief notations snu, cnu, dnu, the respective full notations are also used:
sn(u, k), cn(u, k), dn(u, k).

Simple properties:

sn(–u) = – snu, cn(–u) = cnu, dn(–u) = dnu;

sn2 u + cn2 u = 1, k2 sn2 u + dn2 u = 1, dn2 u – k2 cn2 u = 1 – k2,

where i2 = –1.
Jacobi functions for special values of the modulus (k = 0 and k = 1):

sn(u, 0) = sinu, cn(u, 0) = cos u, dn(u, 0) = 1;

sn(u, 1) = tanh u, cn(u, 1) =
1

coshu
, dn(u, 1) =

1
coshu

.

Jacobi functions for special values of the argument:

sn( 1
2 K, k) =

1√
1 + k′

, cn( 1
2 K, k) =

√
k′

1 + k′
, dn( 1

2 K, k) =
√
k′;

sn(K, k) = 1, cn(K, k) = 0, dn(K, k) = k′.

18.14.1-2. Reduction formulas.

sn(u � K) = �
cnu
dnu

, cn(u � K) = �k′
snu
dnu

, dn(u � K) =
k′

dnu
;

sn(u � 2 K) = – sn u, cn(u � 2 K) = – cnu, dn(u � 2 K) = dnu;

sn(u + iK′) =
1

k snu
, cn(u + iK′) = –

i

k

dnu
sn u

, dn(u + iK′) = –i
cn u
snu

;

sn(u + 2iK′) = snu, cn(u + 2iK′) = – cn u, dn(u + 2iK′) = – dn u;

sn(u + K +iK′) =
dnu
k cnu

, cn(u + K +iK′) = –i
k′

k cnu
, dn(u + K +iK′) = ik′

snu
cnu

;

sn(u + 2 K +2iK′) = – sn u, cn(u + 2 K +2iK′) = cnu, dn(u + 2 K +2iK′) = – dn u.

18.14.1-3. Periods, zeros, poses, and residues.

TABLE 18.4
Periods, zeros, poles, and residues of the Jacobian elliptic functions

(m, n = 0, �1, �2, . . . ; i2 = –1)

Functions Periods Zeros Poles Residues

snu 4mK +2nK′ i 2mK +2nK′ i 2mK +(2n+ 1) K′ i (–1)m 1
k

cn u (4m+ 2n) K +2nK′ i (2m+ 1) K +2nK′ i 2mK +(2n+ 1) K′ i (–1)m–1 i
k

dn u 2mK +4nK′ i (2m+ 1) K +(2n+ 1) K′ i 2mK +(2n+ 1) K′ i (–1)n–1i
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18.14.1-4. Double-argument formulas.

sn(2u) =
2 snu cn u dnu

1 – k2 sn4 u
=

2 snu cnu dn u

cn2 u + sn2 u dn2 u
,

cn(2u) =
cn2 u – sn2 u dn2 u

1 – k2 sn4 u
=

cn2 u – sn2 u dn2 u

cn2 u + sn2 u dn2 u
,

dn(2u) =
dn2 u – k2 sn2 u cn2 u

1 – k2 sn4 u
=

dn2 u + cn2 u (dn2 u – 1)

dn2 u – cn2 u (dn2 u – 1)
.

18.14.1-5. Half-argument formulas.

sn2 u

2
=

1
k2

1 – dnu
1 + cnu

=
1 – cnu
1 + dnu

,

cn2 u

2
=

cnu + dnu
1 + dnu

=
1 – k2

k2
1 – dnu

dn u – cnu
,

dn2 u

2
=

cnu + dnu
1 + cnu

= (1 – k2)
1 – cnu

dnu – cnu
.

18.14.1-6. Argument addition formulas.

sn(u � v) =
snu cn v dn v � sn v cnu dnu

1 – k2 sn2 u sn2 v
,

cn(u � v) =
cnu cn v � snu sn v dnu dn v

1 – k2 sn2 u sn2 v
,

dn(u � v) =
dnu dn v � k2 snu sn v cnu cn v

1 – k2 sn2 u sn2 v
.

18.14.1-7. Conversion formulas.

Table 18.5 presents conversion formulas for Jacobi elliptic functions. If k > 1, then
k1 = 1/k < 1. Elliptic functions with real modulus can be reduced, using the first set of
conversion formulas, to elliptic functions with a modulus lying between 0 and 1.

18.14.1-8. Descending Landen transformation (Gauss’s transformation).

Notation:

μ =

∣∣
∣∣

1 – k′

1 + k′

∣∣
∣∣, v =

u

1 + μ
.

Descending transformations:

sn(u, k) =
(1 + μ) sn(v,μ2)
1 + μ sn2(v,μ2)

, cn(u, k) =
cn(v,μ2) dn(v,μ2)

1 + μ sn2(v,μ2)
, dn(u, k) =

dn2(v,μ2) + μ – 1
1 + μ – dn2(v,μ2)

.
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TABLE 18.5
Conversion formulas for Jacobi elliptic functions. Full notation is used: sn(u, k), cn(u, k), dn(u, k)

u1 k1 sn(u1, k1) cn(u1, k1) dn(u1, k1)

ku
1
k

k sn(u, k) dn(u, k) cn(u, k)

iu k′ i
sn(u, k)
cn(u, k)

1
cn(u, k)

dn(u, k)
cn(u, k)

k′u i
k

k′
k′

sn(u, k)
dn(u, k)

cn(u, k)
dn(u, k)

1
dn(u, k)

iku i
k′

k
ik

sn(u, k)
dn(u, k)

1
dn(u, k)

cn(u, k)
dn(u, k)

ik′u
1
k′

ik′
sn(u, k)
cn(u, k)

dn(u, k)
cn(u, k)

1
cn(u, k)

(1 +k)u 2
√
k

1 +k

(1 +k) sn(u, k)
1 +k sn2(u, k)

cn(u, k) dn(u, k)
1 +k sn2(u, k)

1 –k sn2(u, k)
1 +k sn2(u, k)

(1 +k′)u
1 –k′

1 +k′
(1 +k′) sn(u, k) cn(u, k)

dn(u, k)
1 –(1 +k′) sn2(u, k)

dn(u, k)
1 –(1 –k′) sn2(u, k)

dn(u, k)

18.14.1-9. Ascending Landen transformation.

Notation:

μ =
4k

(1 + k)2 , σ =
∣
∣∣

1 – k
1 + k

∣
∣∣, v =

u

1 + σ
.

Ascending transformations:

sn(u, k) = (1 +σ)
sn(v,μ) cn(v,μ)

dn(v,μ)
, cn(u, k) =

1 +σ
μ

dn2(v,μ)–σ
dn(v,μ)

, dn(u, k) =
1 –σ
μ

dn2(v,μ)+σ
dn(v,μ)

.

18.14.1-10. Series representation.

Representation Jacobi functions in the form of power series in u:

snu = u –
1

3!
(1 + k2)u3 +

1
5!

(1 + 14k2 + k4)u5 –
1

7!
(1 + 135k2 + 135k4 + k6)u7 + · · · ,

cnu = 1 –
1

2!
u2 +

1
4!

(1 + 4k2)u4 –
1

6!
(1 + 44k2 + 16k4)u6 + · · · ,

dnu = 1 –
1

2!
k2u2 +

1
4!
k2(4 + k2)u4 –

1
6!
k2(16 + 44k2 + k4)u6 + · · · ,

amu = u –
1

3!
k2u3 +

1
5!
k2(4 + k2)u5 –

1
7!
k2(16 + 44k2 + k4)u7 + · · · .

These functions converge for |u| < |K(k′)|.
Representation Jacobi functions in the form of trigonometric series:

snu =
2π

kK
√
q

∞∑

n=1

qn

1 – q2n–1 sin

[
(2n – 1)

πu

2 K

]
,
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cnu =
2π

kK
√
q

∞∑

n=1

qn

1 + q2n–1 cos

[
(2n – 1)

πu

2 K

]
,

dnu =
π

2 K
+

2π
K

∞∑

n=1

qn

1 + q2n cos

(
nπu

K

)
,

amu =
πu

2 K
+ 2

∞∑

n=1

1
n

qn

1 + q2n sin

(
nπu

K

)
,

where q = exp(–π K′/K), K = K(k), K′ = K(k′), and k′ =
√

1 – k2.

18.14.1-11. Derivatives and integrals.

Derivatives:

d

du
snu = cnu dnu,

d

du
cnu = – sn u dnu,

d

du
dnu = –k2 snu cnu.

Integrals: ∫
snu du =

1
k

ln(dnu – k cnu) = –
1
k

ln(dnu + k cnu),
∫

cnu du =
1
k

arccos(dn u) =
1
k

arcsin(k snu),
∫

dnu du = arcsin(snu) = amu.

The arbitrary additive constant C in the integrals is omitted.

18.14.2. Weierstrass Elliptic Function

18.14.2-1. Infinite series representation. Some properties.

The Weierstrass elliptic function (or Weierstrass ℘-function) is defined as

℘(z) = ℘(z|ω1,ω2) =
1
z2 +

∑

m,n

[
1

(z – 2mω1 – 2nω2)2 –
1

(2mω1 + 2nω2)2

]
,

where the summation is assumed over all integer m and n, except for m = n = 0. This
function is a complex, double periodic function of a complex variable z with periods 2ω1
and 2ω1:

℘(–z) = ℘(z),
℘(z + 2mω1 + 2nω2) = ℘(z),

where m, n = 0, �1, �2, . . . and Im(ω2/ω1) ≠ 0. The series defining the Weierstrass ℘-
function converges everywhere except for second-order poles located at zmn = 2mω1 +2nω2.

Argument addition formula:

℘(z1 + z2) = –℘(z1) – ℘(z2) +
1
4

[
℘′(z1) – ℘′(z2)
℘(z1) – ℘(z2)

]2
.
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18.14.2-2. Representation in the form of a definite integral.

The Weierstrass function ℘ = ℘(z, g2, g3) = ℘(z|ω1,ω2) is defined implicitly by the elliptic
integral:

z =
∫ ∞

℘

dt
√

4t3 – g2t – g3
=
∫ ∞

℘

dt

2
√

(t – e1)(t – e2)(t – e3)
.

The parameters g2 and g3 are known as the invariants.
The parameters e1, e2, e3, which are the roots of the cubic equation 4z3 – g2z – g3 = 0,

are related to the half-periods ω1, ω2 and invariants g2, g3 by

e1 = ℘(ω1), e2 = ℘(ω1 + ω2), e1 = ℘(ω2),
e1 + e2 + e3 = 0, e1e2 + e1e3 + e2e3 = – 1

4 g2, e1e2e3 = 1
4 g3.

Homogeneity property:

℘(z, g2, g3) = λ2℘(λz,λ–4g2,λ–6g3).

18.14.2-3. Representation as a Laurent series. Differential equations.

The Weierstrass ℘-function can be expanded into a Laurent series:

℘(z) =
1
z2 +

g2

20
z2 +

g3

28
z4 +

g2
2

1200
z6 +

3g2g3

6160
z8 + · · · =

1
z2 +

∞∑

k=2

akz
2k–2,

ak =
3

(k – 3)(2k + 1)

k–2∑

m=2

amak–m for k ≥ 4, 0 < |z| < min(|ω1|, |ω2|).

The Weierstrass ℘-function satisfies the first-order and second-order nonlinear differen-
tial equations:

(℘′
z)2 = 4℘3 – g2℘ – g3,

℘′′
zz = 6℘2 – 1

2 g2.

18.14.2-4. Connection with Jacobi elliptic functions.

Direct and inverse representations of the Weierstrass elliptic function via Jacobi elliptic
functions:

℘(z) = e1 + (e1 – e3)
cn2 w

sn2 w
= e2 + (e1 – e3)

dn2 w

sn2 w
= e3 +

e1 – e3

sn2 w
;

snw =
√

e1 – e3

℘(z) – e3
, cnw =

√
℘(z) – e1

℘(z) – e3
, dnw =

√
℘(z) – e2

℘(z) – e3
;

w = z
√
e1 – e3 = K z/ω1.

The parameters are related by

k =
√
e2 – e3

e1 – e3
, k′ =

√
e1 – e2

e1 – e3
, K = ω1

√
e1 – e3, iK′ = ω2

√
e1 – e3.
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18.15. Jacobi Theta Functions
18.15.1. Series Representation of the Jacobi Theta Functions.

Simplest Properties

18.15.1-1. Definition of the Jacobi theta functions.

The Jacobi theta functions are defined by the following series:

ϑ1(v) = ϑ1(v, q) = ϑ1(v|τ ) = 2
∞∑

n=0

(–1)nq(n+1/2)2
sin[(2n + 1)πv] = i

∞∑

n=–∞
(–1)nq(n–1/2)2

eiπ(2n–1)v ,

ϑ2(v) = ϑ2(v, q) = ϑ2(v|τ ) = 2
∞∑

n=0

q(n+1/2)2
cos[(2n + 1)πv] =

∞∑

n=–∞
q(n–1/2)2

eiπ(2n–1)v ,

ϑ3(v) = ϑ3(v, q) = ϑ3(v|τ ) = 1 + 2
∞∑

n=0

qn2
cos(2nπv) =

∞∑

n=–∞
qn2

e2iπnv ,

ϑ4(v) = ϑ4(v, q) = ϑ4(v|τ ) = 1 + 2
∞∑

n=0

(–1)nqn2
cos(2nπv) =

∞∑

n=–∞
(–1)nqn2

e2iπnv ,

where v is a complex variable and q = eiπτ is a complex parameter (τ has a positive
imaginary part).

18.15.1-2. Simplest properties.

The Jacobi theta functions are periodic entire functions that possess the following properties:

ϑ1(v) odd, has period 2, vanishes at v = m + nτ ;

ϑ2(v) even, has period 2, vanishes at v = m + nτ + 1
2 ;

ϑ3(v) even, has period 1, vanishes at v = m + (n + 1
2 )τ + 1

2 ;

ϑ4(v) even, has period 1, vanishes at v = m + (n + 1
2 )τ .

Here, m, n = 0, �1, �2, . . .
Remark. The theta functions are not elliptic functions. The very good convergence of their series

allows the computation of various elliptic integrals and elliptic functions using the relations given above in
Paragraph 18.15.1-1.

18.15.2. Various Relations and Formulas. Connection with Jacobi
Elliptic Functions

18.15.2-1. Linear and quadratic relations.

Linear relations (first set):

ϑ1

(
v +

1
2

)
= ϑ2(v), ϑ2

(
v +

1
2

)
= –ϑ1(v),

ϑ3

(
v +

1
2

)
= ϑ4(v), ϑ4

(
v +

1
2

)
= ϑ3(v),

ϑ1

(
v +

τ

2

)
= ie–iπ

(
v+ τ

4

)
ϑ4(v), ϑ2

(
v +

τ

2

)
= e–iπ

(
v+ τ

4

)
ϑ3(v),

ϑ3

(
v +

τ

2

)
= e–iπ

(
v+ τ

4

)
ϑ2(v), ϑ4

(
v +

τ

2

)
= ie–iπ

(
v+ τ

4

)
ϑ1(v).
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Linear relations (second set):

ϑ1(v|τ + 1) = eiπ/4ϑ1(v|τ ), ϑ2(v|τ + 1) = eiπ/4ϑ2(v|τ ),
ϑ3(v|τ + 1) = ϑ4(v|τ ), ϑ4(v|τ + 1) = ϑ3(v|τ ),

ϑ1

( v
τ

∣∣
∣–

1
τ

)
=

1
i

√
τ

i
eiπv

2/τϑ1(v|τ ), ϑ2

( v
τ

∣∣
∣–

1
τ

)
=

√
τ

i
eiπv

2/τϑ4(v|τ ),

ϑ3

( v
τ

∣∣
∣–

1
τ

)
=

√
τ

i
eiπv

2/τϑ3(v|τ ), ϑ4

( v
τ

∣∣
∣–

1
τ

)
=

√
τ

i
eiπv

2/τϑ2(v|τ ).

Quadratic relations:
ϑ2

1(v)ϑ2
2(0) = ϑ2

4(v)ϑ2
3(0) – ϑ2

3(v)ϑ2
4(0),

ϑ2
1(v)ϑ2

3(0) = ϑ2
4(v)ϑ2

2(0) – ϑ2
2(v)ϑ2

4(0),

ϑ2
1(v)ϑ2

4(0) = ϑ2
3(v)ϑ2

2(0) – ϑ2
2(v)ϑ2

3(0),

ϑ2
4(v)ϑ2

4(0) = ϑ2
3(v)ϑ2

3(0) – ϑ2
2(v)ϑ2

2(0).

18.15.2-2. Representation of the theta functions in the form of infinite products.

ϑ1(v) = 2q0q
1/4 sin(πv)

∞∏

n=1

[
1 – 2q2n cos(2πv) + q4n],

ϑ2(v) = 2q0q
1/4 cos(πv)

∞∏

n=1

[
1 + 2q2n cos(2πv) + q4n],

ϑ3(v) = q0

∞∏

n=1

[
1 + 2q2n–1 cos(2πv) + q4n–2],

ϑ4(v) = q0

∞∏

n=1

[
1 – 2q2n–1 cos(2πv) + q4n–2],

where q0 =
∞∏

n=1
(1 – q2n).

18.15.2-3. Connection with Jacobi elliptic functions.

Representations of Jacobi elliptic functions in terms of the theta functions:

snw =
ϑ3(0)
ϑ2(0)

ϑ1(v)
ϑ4(v)

, cnw =
ϑ4(0)
ϑ2(0)

ϑ2(v)
ϑ4(v)

, dnw =
ϑ4(0)
ϑ3(0)

ϑ3(v)
ϑ4(v)

, w = 2 K v.

The parameters are related by

k =
ϑ2

2(0)

ϑ2
3(0)

, k′ =
ϑ2

4(0)

ϑ2
3(0)

, K =
π

2
ϑ2

3(0), K′ = –iτ K .
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TABLE 18.6
The Mathieu functions cen = cen(x, q) and sen = sen(x, q) (for odd n, functions

cen and sen are 2π-periodic, and for even n, they are π-periodic); definite
eigenvalues a = an(q) and a = bn(q) correspond to each value of parameter q

Mathieu functions Recurrence relations
for coefficients

Normalization
conditions

ce2n =
∞∑

m=0

A2n
2m cos 2mx

qA2n
2 = a2nA

2n
0 ;

qA2n
4 = (a2n–4)A2n

2 –2qA2n
0 ;

qA2n
2m+2 = (a2n–4m2)A2n

2m

–qA2n
2m–2, m ≥ 2

(A2n
0 )2 +

∞∑

m=0

(A2n
2m)2

=
{ 2 if n = 0

1 if n ≥ 1

ce2n+1 =
∞∑

m=0

A2n+1
2m+1 cos(2m+1)x

qA2n+1
3 = (a2n+1 –1–q)A2n+1

1 ;

qA2n+1
2m+3 = [a2n+1 –(2m+1)2]A2n+1

2m+1
–qA2n+1

2m–1, m ≥ 1

∞∑

m=0

(A2n+1
2m+1)2 = 1

se2n =
∞∑

m=0

B2n
2m sin 2mx,

se0 = 0

qB2n
4 = (b2n–4)B2n

2 ;

qB2n
2m+2 = (b2n–4m2)B2n

2m

–qB2n
2m–2, m ≥ 2

∞∑

m=0

(B2n
2m)2 = 1

se2n+1 =
∞∑

m=0

B2n+1
2m+1 sin(2m+1)x

qB2n+1
3 = (b2n+1 –1–q)B2n+1

1 ;

qB2n+1
2m+3 = [b2n+1 –(2m+1)2]B2n+1

2m+1
–qB2n+1

2m–1, m ≥ 1

∞∑

m=0

(B2n+1
2m+1)2 = 1

18.16. Mathieu Functions and Modified Mathieu
Functions

18.16.1. Mathieu Functions

18.16.1-1. Mathieu equation and Mathieu functions.

The Mathieu functions cen(x, q) and sen(x, q) are periodical solutions of the Mathieu
equation

y′′xx + (a – 2q cos 2x)y = 0.

Such solutions exist for definite values of parameters a and q (those values of a are referred
to as eigenvalues). The Mathieu functions are listed in Table 18.6.

18.16.1-2. Properties of the Mathieu functions.

The Mathieu functions possess the following properties:

ce2n(x, –q) = (–1)n ce2n

( π
2

–x, q
)

, ce2n+1(x, –q) = (–1)n se2n+1

( π
2

–x, q
)

,

se2n(x, –q) = (–1)n–1 se2n

(π
2

–x, q
)

, se2n+1(x, –q) = (–1)n ce2n+1

( π
2

–x, q
)

.

Selecting sufficiently large number m and omitting the term with the maximum number
in the recurrence relations (indicated in Table 18.6), we can obtain approximate relations
for eigenvalues an (or bn) with respect to parameter q. Then, equating the determinant of
the corresponding homogeneous linear system of equations for coefficients Anm (or Bn

m) to
zero, we obtain an algebraic equation for finding an(q) (or bn(q)).
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For fixed real q ≠ 0, eigenvalues an and bn are all real and different, while

if q > 0 then a0 < b1 < a1 < b2 < a2 < · · · ;
if q < 0 then a0 < a1 < b1 < b2 < a2 < a3 < b3 < b4 < · · · .

The eigenvalues possess the properties

a2n(–q) = a2n(q), b2n(–q) = b2n(q), a2n+1(–q) = b2n+1(q).

Tables of the eigenvalues an = an(q) and bn = bn(q) can be found in Abramowitz and
Stegun (1964, chap. 20).

The solution of the Mathieu equation corresponding to eigenvalue an (or bn) has n zeros
on the interval 0 ≤ x < π (q is a real number).

18.16.1-3. Asymptotic expansions as q → 0 and q → ∞.

Listed below are two leading terms of asymptotic expansions of the Mathieu functions
cen(x, q) and sen(x, q), as well as of the corresponding eigenvalues an(q) and bn(q), as
q → 0:

ce0(x, q) =
1√

2

(
1 –

q

2
cos 2x

)
, a0(q) = –

q2

2
+

7q4

128
;

ce1(x, q) = cos x –
q

8
cos 3x, a1(q) = 1 + q;

ce2(x, q) = cos 2x +
q

4

(
1 –

cos 4x
3

)
, a2(q) = 4 +

5q2

12
;

cen(x, q) = cosnx +
q

4

[
cos(n + 2)x
n + 1

–
cos(n – 2)x
n – 1

]
, an(q) = n2 +

q2

2(n2 – 1)
(n ≥ 3);

se1(x, q) = sinx –
q

8
sin 3x, b1(q) = 1 – q;

se2(x, q) = sin 2x – q
sin 4x

12
, b2(q) = 4 –

q2

12
;

sen(x, q) = sinnx –
q

4

[
sin(n + 2)x
n + 1

–
sin(n – 2)x
n – 1

]
, bn(q) = n2 +

q2

2(n2 – 1)
(n ≥ 3).

Asymptotic results as q → ∞ (–π/2 < x < π/2):

an(q) ≈ –2q + 2(2n + 1)
√
q + 1

4 (2n2 + 2n + 1),

bn+1(q) ≈ –2q + 2(2n + 1)
√
q + 1

4 (2n2 + 2n + 1),

cen(x, q) ≈ λnq–1/4cos–n–1x
[
cos2n+1ξ exp(2

√
q sin x) + sin2n+1ξ exp(–2

√
q sin x)

]
,

sen+1(x, q) ≈ μn+1q
–1/4cos–n–1 x

[
cos2n+1ξ exp(2

√
q sinx) – sin2n+1ξ exp(–2

√
q sinx)

]
,

where λn and μn are some constants independent of the parameter q, and ξ = 1
2x + π

4 .
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18.16.2. Modified Mathieu Functions
The modified Mathieu functions Cen(x, q) and Sen(x, q) are solutions of the modified
Mathieu equation

y′′xx – (a – 2q cosh 2x)y = 0,

with a = an(q) and a = bn(q) being the eigenvalues of the Mathieu equation (see Subsection
18.16.1).

The modified Mathieu functions are defined as

Ce2n+p(x, q) = ce2n+p(ix, q) =
∞∑

k=0

A2n+p
2k+p cosh[(2k + p)x],

Se2n+p(x, q) = –i se2n+p(ix, q) =
∞∑

k=0

B2n+p
2k+p sinh[(2k + p)x],

where p may be equal to 0 and 1, and coefficients A2n+p
2k+p and B2n+p

2k+p are indicated in
Subsection 18.16.1.

18.17. Orthogonal Polynomials
All zeros of each of the orthogonal polynomials Pn(x) considered in this section are real
and simple. The zeros of the polynomials Pn(x) and Pn+1(x) are alternating.

For Legendre polynomials see Subsection 18.11.1.

18.17.1. Laguerre Polynomials and Generalized Laguerre
Polynomials

18.17.1-1. Laguerre polynomials.

The Laguerre polynomials Ln = Ln(x) satisfy the second-order linear ordinary differential
equation

xy′′xx + (1 – x)y′x + ny = 0
and are defined by the formulas

Ln(x) =
1
n!
ex

dn

dxn
(
xne–x) =

(–1)n

n!

[
xn – n2xn–1 +

n2(n – 1)2

2!
xn–2 + · · ·

]
.

The first four polynomials have the form

L0(x) = 1, L1(x) = –x + 1, L2(x) = 1
2 (x2 – 4x + 2), L3(x) = 1

6 (–x3 + 9x2 – 18x + 6).

To calculate Ln(x) for n ≥ 2, one can use the recurrence formulas

Ln+1(x) =
1

n + 1
[
(2n + 1 – x)Ln(x) – nLn–1(x)

]
.

The functions Ln(x) form an orthonormal system on the interval 0 < x < ∞ with
weight e–x: ∫ ∞

0
e–xLn(x)Lm(x) dx =

{ 0 if n ≠ m,
1 if n = m.

The generating function is

1
1 – s

exp
(

–
sx

1 – s

)
=

∞∑

n=0

Ln(x)sn, |s| < 1.
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18.17.1-2. Generalized Laguerre polynomials.

The generalized Laguerre polynomials Lαn = Lαn(x) (α > –1) satisfy the equation

xy′′xx + (α + 1 – x)y′x + ny = 0

and are defined by the formulas

Lαn(x) =
1
n!
x–αex

dn

dxn
(
xn+αe–x) =

n∑

m=0

Cn–m
n+α

(–x)m

m!
=

n∑

m=0

Γ(n + α + 1)
Γ(m + α + 1)

(–x)m

m! (n – m)!
.

Notation: L0
n(x) = Ln(x).

Special cases:

Lα0 (x) = 1, Lα1 (x) = α + 1 – x, L–n
n (x) = (–1)n

xn

n!
.

To calculate Lαn(x) for n ≥ 2, one can use the recurrence formulas

Lαn+1(x) =
1

n + 1
[
(2n + α + 1 – x)Lαn(x) – (n + α)Lαn–1(x)

]
.

Other recurrence formulas:

Lαn(x) =Lαn–1(x)+Lα–1
n (x),

d

dx
Lαn(x) = –Lα+1

n–1 (x), x
d

dx
Lαn(x) =nLαn(x)–(n+α)Lαn–1(x).

The functions Lαn(x) form an orthogonal system on the interval 0 < x < ∞ with weight
xαe–x: ∫ ∞

0
xαe–xLαn(x)Lαm(x) dx =

{ 0 if n ≠ m,
Γ(α+n+1)

n! if n = m.

The generating function is

(1 – s)–α–1 exp
(

–
sx

1 – s

)
=

∞∑

n=0

Lαn(x)sn, |s| < 1.

18.17.2. Chebyshev Polynomials and Functions

18.17.2-1. Chebyshev polynomials of the first kind.

The Chebyshev polynomials of the first kind Tn = Tn(x) satisfy the second-order linear
ordinary differential equation

(1 – x2)y′′xx – xy′x + n2y = 0 (18.17.2.1)

and are defined by the formulas

Tn(x) = cos(n arccos x) =
(–2)nn!

(2n)!

√
1 – x2 dn

dxn
[
(1 – x2)n– 1

2
]

=
n

2

[n/2]∑

m=0

(–1)m
(n – m – 1)!
m! (n – 2m)!

(2x)n–2m (n = 0, 1, 2, . . . ),

where [A] stands for the integer part of a number A.
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An alternative representation of the Chebyshev polynomials:

Tn(x) =
(–1)n

(2n – 1)!!
(1 – x2)1/2 dn

dxn
(1 – x2)n–1/2.

The first five Chebyshev polynomials of the first kind are

T0(x) = 1, T1(x) = x, T2(x) = 2x2 – 1, T3(x) = 4x3 – 3x, T4(x) = 8x4 – 8x2 + 1.

The recurrence formulas:

Tn+1(x) = 2xTn(x) – Tn–1(x), n ≥ 2.

The functions Tn(x) form an orthogonal system on the interval –1 < x < 1, with
∫ 1

–1

Tn(x)Tm(x)√
1 – x2

dx =

{
0 if n ≠ m,
1
2π if n = m ≠ 0,
π if n = m = 0.

The generating function is

1 – sx
1 – 2sx + s2 =

∞∑

n=0

Tn(x)sn (|s| < 1).

The functions Tn(x) have only real simple zeros, all lying on the interval –1 < x < 1.
The normalized Chebyshev polynomials of the first kind, 21–nTn(x), deviate from zero

least of all. This means that among all polynomials of degreenwith the leading coefficient 1,
it is the maximum of the modulus max

–1≤x≤1
|21–nTn(x)| that has the least value, the maximum

being equal to 21–n.

18.17.2-2. Chebyshev polynomials of the second kind.

The Chebyshev polynomials of the second kind Un = Un(x) satisfy the second-order linear
ordinary differential equation

(1 – x2)y′′xx – 3xy′x + n(n + 2)y = 0
and are defined by the formulas

Un(x) =
sin[(n + 1) arccos x]√

1 – x2
=

2n(n + 1)!
(2n + 1)!

1√
1 – x2

dn

dxn
(1 – x2)n+1/2

=
[n/2]∑

m=0

(–1)m
(n – m)!

m! (n – 2m)!
(2x)n–2m (n = 0, 1, 2, . . . ).

The first five Chebyshev polynomials of the second kind are

U0(x) = 1, U1(x) = 2x, U2(x) = 4x2 – 1, U3(x) = 8x3 – 4x, U4(x) = 16x4 – 12x2 + 1.

The recurrence formulas:

Un+1(x) = 2xUn(x) – Un–1(x), n ≥ 2.

The generating function is

1
1 – 2sx + s2 =

∞∑

n=0

Un(x)sn (|s| < 1).

The Chebyshev polynomials of the first and second kind are related by

Un(x) =
1

n + 1
d

dx
Tn+1(x).



18.17. ORTHOGONAL POLYNOMIALS 985

18.17.2-3. Chebyshev functions of the second kind.

The Chebyshev functions of the second kind,

U0(x) = arcsin x,

Un(x) = sin(n arccos x) =

√
1 – x2

n

dTn(x)
dx

(n = 1, 2, . . . ),

just as the Chebyshev polynomials, also satisfy the differential equation (18.17.2.1).
The first five the Chebyshev functions are

U0(x) = 0, U1(x) =
√

1 – x2, U2(x) = 2x
√

1 – x2,

U3(x) = (4x2 – 1)
√

1 – x2, U5(x) = (8x3 – 4x)
√

1 – x2.

The recurrence formulas:

Un+1(x) = 2xUn(x) – Un–1(x), n ≥ 2.

The functions Un(x) form an orthogonal system on the interval –1 < x < 1, with
∫ 1

–1

Un(x) Um(x)√
1 – x2

dx =

{ 0 if n ≠ m or n = m = 0,
1
2π if n = m ≠ 0.

The generating function is√
1 – x2

1 – 2sx + s2 =
∞∑

n=0

Un+1(x)sn (|s| < 1).

18.17.3. Hermite Polynomials

18.17.3-1. Various representations of the Hermite polynomials.

The Hermite polynomials Hn = Hn(x) satisfy the second-order linear ordinary differential
equation

y′′xx – 2xy′x + 2ny = 0
and is defined by the formulas

Hn(x) = (–1)n exp
(
x2) d

n

dxn
exp
(
–x2) =

[n/2]∑

m=0

(–1)m
n!

m! (n – 2m)!
(2x)n–2m.

The first five polynomials are

H0(x)= 1, H1(x)= 2x, H2(x)= 4x2 –2, H3(x)= 8x3 –12x, H4(x)= 16x4 –48x2+12.

Recurrence formulas:
Hn+1(x) = 2xHn(x) – 2nHn–1(x), n ≥ 2;
d

dx
Hn(x) = 2nHn–1(x).

Integral representation:

H2n(x) =
(–1)n22n+1

√
π

exp
(
x2)
∫ ∞

0
exp
(
–t2)t2n cos(2xt) dt,

H2n+1(x) =
(–1)n22n+2

√
π

exp
(
x2)
∫ ∞

0
exp
(
–t2)t2n+1 sin(2xt) dt,

where n = 0, 1, 2, . . .
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18.17.3-2. Orthogonality. The generating function. An asymptotic formula.

The functionsHn(x) form an orthogonal system on the interval –∞<x<∞with weight e–x2
:

∫ ∞

–∞
exp
(
–x2)Hn(x)Hm(x) dx =

{
0 if n ≠ m,√
π 2nn! if n = m.

Generating function:

exp
(
–s2 + 2sx

)
=

∞∑

n=0

Hn(x)
sn

n!
.

Asymptotic formula as n→ ∞:

Hn(x) ≈ 2
n+1

2 n
n
2 e

– n2 exp
(
x2) cos

(√
2n + 1x – 1

2πn
)

.

18.17.3-3. Hermite functions.

The Hermite functions hn(x) are introduced by the formula

hn(x) = exp
(

–
1
2
x2
)
Hn(x) = (–1)n exp

( 1
2
x2
) dn

dxn
exp
(
–x2), n = 0, 1, 2, . . .

The Hermite functions satisfy the second-order linear ordinary differential equation

h′′xx + (2n + 1 – x2)h = 0.

The functions hn(x) form an orthogonal system on the interval –∞ < x < ∞ with
weight 1: ∫ ∞

–∞
hn(x)hm(x) dx =

{
0 if n ≠ m,√
π 2nn! if n = m.

18.17.4. Jacobi Polynomials and Gegenbauer Polynomials

18.17.4-1. Jacobi polynomials.

The Jacobi polynomials, Pα,β
n (x), are solutions of the second-order linear ordinary differ-

ential equation

(1 – x2)y′′xx +
[
β – α – (α + β + 2)x

]
y′x + n(n + α + β + 1)y = 0

and are defined by the formulas

Pα,β
n (x) =

(–1)n

2nn!
(1 – x)–α(1 + x)–β dn

dxn

[
(1 – x)α+n(1 + x)β+n

]

= 2–n
n∑

m=0

Cmn+αC
n–m
n+β (x – 1)n–m(x + 1)m,

where the Cab are binomial coefficients.
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The generating function:

2α+βR–1(1 – s + R)–α(1 + s +R)–β =
∞∑

n=0

Pα,β
n (x)sn, R =

√
1 – 2xs + s2, |s| < 1.

The Jacobi polynomials are orthogonal on the interval –1 ≤x≤ 1 with weight (1–x)α(1+x)β :

∫ 1

–1
(1 – x)α(1 + x)βPα,β

n (x)Pα,β
m (x) dx =

⎧
⎨

⎩

0 if n ≠ m,
2α+β+1

α + β + 2n + 1
Γ(α + n + 1)Γ(β + n + 1)
n! Γ(α + β + n + 1)

if n = m.

For α > –1 and β > –1, all zeros of the polynomial Pα,β
n (x) are simple and lie on the

interval –1 < x < 1.

18.17.4-2. Gegenbauer polynomials.

The Gegenbauer polynomials (also called ultraspherical polynomials), C (λ)
n (x), are solu-

tions of the second-order linear ordinary differential equation

(1 – x2)y′′xx – (2λ + 1)xy′x + n(n + 2λ)y = 0

and are defined by the formulas

C (λ)
n (x) =

(–2)n

n!
Γ(n + λ) Γ(n + 2λ)
Γ(λ) Γ(2n + 2λ)

(1 – x2)–λ+1/2 dn

dxn
(1 – x2)n+λ–1/2

=
[n/2]∑

m=0

(–1)m
Γ(n –m + λ)

Γ(λ)m! (n – 2m)!
(2x)n–2m.

Recurrence formulas:

C (λ)
n+1(x) =

2(n + λ)
n + 1

xC (λ)
n (x) –

n + 2λ – 1
n + 1

C (λ)
n–1(x);

C (λ)
n (–x) = (–1)nC (λ)

n (x),
d

dx
C (λ)
n (x) = 2λC (λ+1)

n–1 (x).

The generating function:

1
(1 – 2xs + s2)λ

=
∞∑

n=0

C (λ)
n (x)sn.

The Gegenbauer polynomials are orthogonal on the interval –1 ≤ x ≤ 1 with weight
(1 – x2)λ–1/2:

∫ 1

–1
(1 – x2)λ–1/2C (λ)

n (x)C (λ)
m (x) dx =

⎧
⎨

⎩

0 if n ≠ m,
πΓ(2λ + n)

22λ–1(λ + n)n! Γ2(λ)
if n = m.
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18.18. Nonorthogonal Polynomials
18.18.1. Bernoulli Polynomials

18.18.1-1. Definition. Basic properties.

The Bernoulli polynomials Bn(x) are introduced by the formula

Bn(x) =
n∑

k=0

CknBkx
n–k (n = 0, 1, 2, . . . ),

where Ckn are the binomial coefficients and Bn are Bernoulli numbers (see Subsec-
tion 18.1.3).

The Bernoulli polynomials can be defined using the recurrence relation

B0(x) = 1,
n–1∑

k=0

CknBk(x) = nxn–1, n = 2, 3, . . .

The first six Bernoulli polynomials are given by

B0(x) = 1, B1(x) = x – 1
2 , B2(x) = x2 – x + 1

6 , B3(x) = x3 – 3
2x

2 + 1
2x,

B4(x) = x4 – 2x3 + x2 – 1
30 , B5(x) = x5 – 5

2x
4 + 5

3x
3 – 1

6x.

Basic properties:

Bn(x + 1) – Bn(x) = nxn–1, B′
n+1(x) = (n + 1)Bn(x),

Bn(1 – x) = (–1)nBn(x), (–1)nEn(–x) = En(x) + nxn–1,

where the prime denotes a derivative with respect to x, and n = 0, 1, . . .
Multiplication and addition formulas:

Bn(mx) = mn–1
m–1∑

k=0

Bn

(
x +

k

m

)
,

Bn(x + y) =
n∑

k=0

CknBk(x)yn–k,

where n = 0, 1, . . . and m = 1, 2, . . .

18.18.1-2. Generating function. Fourier series expansions. Integrals.

The generating function is expressed as

text

et – 1
≡

∞∑

n=0

Bn(x)
tn

n!
(|t| < 2π).

This relation may be used as a definition of the Bernoulli polynomials.
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Fourier series expansions:

Bn(x) = –2
n!

(2π)n

∞∑

k=1

cos(2πkx – 1
2πn)

kn
, (n = 1, 0 < x < 1; n > 1, 0 ≤ x ≤ 1);

B2n–1(x) = 2(–1)n
(2n – 1)!
(2π)2n–1

∞∑

k=1

sin(2kπx)
k2n–1 (n = 1, 0 < x < 1; n > 1, 0 ≤ x ≤ 1);

B2n(x) = 2(–1)n
(2n)!

(2π)2n

∞∑

k=1

cos(2kπx)
k2n (n = 1, 2, . . . , 0 ≤ x ≤ 1).

Integrals: ∫ x

a
Bn(t) dt =

Bn+1(x) – Bn+1(a)
n + 1

,

∫ 1

0
Bm(t)Bn(t) dt = (–1)n–1 m!n!

(m + n)!
Bm+n,

where m and n are positive integers and Bn are Bernoulli numbers.

18.18.2. Euler Polynomials

18.18.2-1. Definition. Basic properties.

Definition:

En(x) =
n∑

k=0

Ckn
Ek
2n
(
x –

1
2

)n–k
(n = 0, 1, 2, . . . ),

where Ckn are the binomial coefficients and En are Euler numbers.
The first six Euler polynomials are given by

E0(x) = 1, E1(x) = x – 1
2 , E2(x) = x2 – x, E3(x) = x3 – 3

2x
2 + 1

4 ,

E4(x) = x4 – 2x3 + x, E5(x) = x5 – 5
2x

4 + 5
2x

2 – 1
2 .

Basic properties:

En(x + 1) +En(x) = 2xn, E′
n+1 = (n + 1)En(x),

En(1 – x) = (–1)nEn(x), (–1)n+1En(–x) = En(x) – 2xn,

where the prime denotes a derivative with respect to x, and n = 0, 1, . . .
Multiplication and addition formulas:

En(mx) = mn
m–1∑

k=0

(–1)kEn
(
x +

k

m

)
, n = 0, 1, . . . , m = 1, 3, . . . ;

En(mx) = –
2

n + 1
mn

m–1∑

k=0

(–1)kEn+1

(
x +

k

m

)
, n = 0, 1, . . . , m = 2, 4, . . . ;

En(x + y) =
n∑

k=0

CknEk(x)yn–k, n = 0, 1, . . .
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18.18.2-2. Generating function. Fourier series expansions. Integrals.

The generating function is expressed as

2ext

et + 1
≡

∞∑

n=0

En(x)
tn

n!
(|t| < π).

This relation may be used as a definition of the Euler polynomials.
Fourier series expansions:

En(x) = 4
n!
πn+1

∞∑

k=0

sin
(
(2k + 1)πx – 1

2πn
)

(2k + 1)n+1 (n = 0, 0 < x < 1; n > 0, 0 ≤ x ≤ 1);

E2n(x) = 4(–1)n
(2n)!
π2n+1

∞∑

k=0

sin
(
(2k + 1)πx

)

(2k + 1)2n+1 (n = 0, 0 < x < 1; n > 0, 0 ≤ x ≤ 1);

E2n–1(x) = 4(–1)n
(2n – 1)!
π2n

∞∑

k=0

cos
(
(2k + 1)πx

)

(2k + 1)2n (n = 1, 2, . . . , 0 ≤ x ≤ 1).

Integrals:
∫ x

a
En(t) dt =

En+1(x) –En+1(a)
n + 1

,

∫ 1

0
Em(t)En(t) dt = 4(–1)n(2m+n+2 – 1)

m!n!
(m + n + 2)!

Bm+n+2,

where m, n = 0, 1, . . . and Bn are Bernoulli numbers. The Euler polynomials are orthog-
onal for even n + m.

Connection with the Bernoulli polynomials:

En–1(x) =
2n

n

[
Bn

(x + 1
2

)
– Bn

(x
2

)]
=

2
n

[
Bn(x) – 2nBn

(x
2

)]
,

where n = 1, 2, . . .
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Chapter 19

Calculus of Variations and Optimization

19.1. Calculus of Variations and Optimal Control
19.1.1. Some Definitions and Formulas

19.1.1-1. Notion of functional.

Let a class M of functions x(t) be given. If for each function x(t) � M there is a certain
number J assigned to x(t) according to some law, then one says that a functional J = J [x]
is defined on M .

Example 1. LetM =C1[t0, t1] be the class of functionsx(t) defined on the interval [t0 , t1] and continuously
differentiable on this interval. Then

J [x] =
∫ t1

t0

√
1 + [x′

t(t)]2 dt

is a functional defined on this class of functions. Geometrically, this functional expresses the length of the
curve x = x(t) with endpoints A(t0, x(t0)) and B(t1,x(t1)).

Calculus of variations established conditions under which functionals attain their ex-
trema.

Suppose that a functional J = J [x] attains its minimum or maximum at a function x̂.
A strong (zero-order) neighborhood of x̂ is the set of continuous comparison functions (or
trial functions) x such that

|x(t) – x̂(t)| < ε (t1 ≤ t ≤ t2)

for a given ε > 0. A weak (first-order) neighborhood of x̂ is the set of piecewise continuous
comparison functions x such that

|x(t) – x̂(t)| + |x′t(t) – x̂′t(t)| < ε (t1 ≤ t ≤ t2)

for a given ε > 0. If x̂(t) minimizes the functional J [x] in a strong (resp., weak) neigh-
borhood of itself, then it is called a point of strong (resp., weak) minimum of the functional
J [x]. If x̂ maximizes the functional J [x] in a strong (resp., weak) neighborhood of itself,
then it is called a point of strong (resp., weak) maximum of the functional J [x]. Any strong
extremum is also a weak extremum. Strong and weak extrema are relative extrema. The
extremum of the functional J [x] over the entire domain where it is defined is called an
absolute extremum. An absolute extremum is also a relative extremum.

The function classes conventionally used in calculus of variations:
1. The class C[t0, t1] of continuous functions on the interval [t0, t1] with the norm

‖x(t)‖0 = max
t1≤t≤t2

|x(t)|.

2. The class C1[t0, t1] of functions with continuous first derivative on the interval [t0, t1]
with the norm ‖x(t)‖1 = max

t1≤t≤t2
|x(t)| + max

t1≤t≤t2
|x′t(t)|.

991
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3. The class Cn[t0, t1] of functions with continuous nth derivative on the interval [t0, t1]

with the norm ‖x(t)‖n =
n∑

k=1
max
t1≤t≤t2

|x(k)
t (t)|.

When stating variational problems, one should indicate which kind of extremum is to
be found and specify the function class in which it is sought.

Remark 1. The class PC1[t0, t1] of continuous functions with piecewise continuous derivative on the
interval [t0, t1] is equipped with the norm indicated in item 1. The class PCn[t0, t1] of continuous functions
with piecewise continuous nth derivative on the interval [t0, t1] is equipped with the norm indicated in item 2.

Remark 2. We do not specify function classes whenever the results are valid for an arbitrary normed
space.

19.1.1-2. First variation of functional.

The difference
δx = x – x0 (19.1.1.1)

of two functions x(t) and x0(t) in a given function class M is called the variation (or
increment) of the argument x(t) of the functional J [x].

The difference
ΔJ ≡ ΔJ [x] = J [x + δx] – J [x] (19.1.1.2)

is called the increment of the functional J [x] corresponding to the increment δx of the
argument.

First definition of the variation of a functional. If the increment (19.1.1.2) can be
represented as

ΔJ = L[x, δx] + β[x, δx]‖δx‖, (19.1.1.3)

where L[x, δx] is a functional linear in δx and β[x, δx] → 0 as ‖δx‖ → 0, then the linear
part L[x, δx] of the increment of the functional is called the variation of the functional and
is denoted by δJ . In this case, the functional ΔJ [x] is said to be differentiable at the
point x(t).

Second definition of the variation of a functional. Consider the functional F(α) =
J [x + αδx]. The value

δJ = F ′
α(0) (19.1.1.4)

of its derivative with respect to the parameter α at α = 0 is called the variation of the
functional J [x] at the point x(t).

If the variation of a functional exists as the principal linear part of its increment, i.e., in
the sense of the first definition, then the variation understood as the value of the derivative
with respect to the parameter α at α = 0 also exists and these definitions coincide.

Remark. The second definition of the variation of a functional is somewhat wider than the first: there
exist functionals whose increments do not have principal linear parts, but their variations in the sense of the
second definition still exist.

19.1.1-3. Second variation of functional.

A functional J [x, y] depending on two arguments (that belong to some linear space) is
said to be bilinear if it is a linear functional of each of the arguments. If we set y ≡ x in a
bilinear functional, then the resulting functional J [x,x] is said to be quadratic. A bilinear
functional in a finite-dimensional space is called a bilinear form.
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A quadratic functional J [x,x] is said to be positive definite if J [x,x] > 0 for all x ≠ 0.
A quadratic functional J [x,x] is said to be strongly positive if there is a constant C > 0

such that J [x,x] ≥ C‖x‖2 for all x.
Example 2. The integral ∫ t1

t0

∫ t1

t0

K(s, t)x(s)y(t)ds dt,

where K(s, t) is a fixed function of two variables, is a bilinear functional on C[t0, t1].

First definition of the second variation of a functional. If the increment (19.1.1.2) of a
functional can be represented as

ΔJ = L1[δx] +
1
2
L2[δx] + β‖δx‖2, (19.1.1.5)

whereL1[δx] is a linear functional, L2[δx] is a quadratic functional, and β→ 0 as ‖δx‖→ 0,
then the quadratic functional L2[δx] is called the second variation (second differential) of
the functional J [x] and is denoted by δ2J .

Second definition of the second variation of a functional. Consider the functional
F(α) = J [x + αδx]. The value

δ2J = F ′′
αα(0) (19.1.1.6)

of its second derivative with respect to the parameter α at α = 0 is called the second-order
variation of the functional J [x] at the point x(t).

The first and second variations of a functional permit stating necessary conditions for
the minimum or maximum of a functional.

Necessary conditions for the minimum or maximum of a functional:
1. The first variation must be zero, δJ = 0.
2. The second-order variation must be nonnegative, δ2J ≥ 0, in the case of minimum; and

nonpositive, δ2J ≤ 0, in the case of maximum.

19.1.2. Simplest Problem of Calculus of Variations

19.1.2-1. Statement of problem.

The extremal problem

J [x] ≡
∫ t1

t0

L(t,x,x′t) dt→ extremum, x=x(t), x(t0) =x0, x(t1) =x1 (19.1.2.1)

is called the simplest problem of calculus of variations. The function L(t,x,x′t) is called
the Lagrangian, and the functional J is referred to as a classical integral functional.
One usually assumes that the Lagrangian is jointly continuous in the arguments and has
continuous partial derivatives of order ≤ 3. The extremum in the problem is sought in the set
of continuously differentiable functions x(t) � C1[t0, t1] on the interval [t0, t1] satisfying
the boundary (or endpoint) conditions x(t0) = x0 and x(t1) = x1. Such functions are said to
be admissible.

An admissible function x̂(t) provides a weak local minimum (resp., maximum) in prob-
lem (19.1.2.1) if it provides a local minimum (resp., maximum) in the space C1[t0, t1], i.e.,
if there exists a δ > 0 such that the inequality

J [x] ≥ J [x̂] (resp., J [x] ≤ J [x̂]) (19.1.2.2)

holds for any admissible function x(t) � C1[t0, t1] such that ‖x(t) – x̂(t)‖1 < δ.
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The classical calculus of variations deals not only with weak extrema, but also with
strong extrema. In the latter case, one considers functions x(t) in the class PC1[t0, t1];
i.e., the extremum is sought in the class of piecewise continuously differentiable functions
satisfying the endpoint conditions.

An admissible function x̂(t) � PC1[t0, t1] provides a strong local minimum (resp.,
maximum) in problem (19.1.2.1) if there exists a δ > 0 such that the inequality

J [x] ≥ J [x̂] (resp., J [x] ≤ J [x̂]) (19.1.2.3)

holds for any admissible function x(t) � PC1[t0, t1] such that ‖x – x̂‖0 < δ.
Since the set of admissible functions is wider for a strong extremum than for a weak

extremum, the following assertion is true: if x̂(t) � C1[t0, t1] provides a strong extremum,
then it also provides a weak extremum. It follows that, for such functions, a necessary
condition for weak extremum is a necessary condition for strong extremum, and a sufficient
condition for strong extremum is a sufficient condition for weak extremum.

19.1.2-2. First-order necessary condition for extremum. Euler equation.

For the simplest problem of calculus of variations, the variation δJ of the classical func-
tional J [x] has the form

δJ [x,h] =
∫ t1

t0

( ∂L
∂x

–
d

dt

∂L

∂x′t

)
hdt, (19.1.2.4)

where h(t) is an arbitrary smooth function satisfying the conditions h(t0) = h(t1) = 0 and

d

dt
=
∂

∂t
+ x′t

∂

∂x
+ x′′tt

∂

∂x′t
.

A necessary condition for admissible function x(t) to provide a weak extremum in
problem (19.1.2.1) is that δJ = 0, i.e., that the function x(t) satisfies the Euler equation

∂L

∂x
–
d

dt

∂L

∂x′t
= 0. (19.1.2.5)

Here we assume that the functions L, ∂L/∂x, ∂L/∂x′t are continuous as functions of
three variables (t, x, and x′t), and ∂L/∂x′t � C1[t0, t1]. The solutions of the Euler equa-
tion (19.1.2.5) are called extremals. Admissible functions satisfying the Euler equation are
called admissible extremals.

The Euler equation (19.1.2.5) in expanded form reads

Lx – Ltx′t – x′tLxx′t – x′′ttLx′tx′t = 0. (19.1.2.6)

From now on, the subscripts t, x, and x′t indicate the corresponding partial derivatives. If
Lx′tx′t ≠ 0, then equation (19.1.2.6) is a second-order differential equation, so that its general
solution depends on two arbitrary constants. The values of these constants are in general
determined by the boundary conditions x(t0) = x0 and x(t1) = x1. The boundary value
problem

Lx –
d

dt
Lx′t = 0, x = x(t), x(t0) = x0, x(t1) = x1

does not always have a solution; if a solution exists, it may be nonunique.
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The Euler equation (19.1.2.5) for a classical functional is a second-order differential
equation, and so every solution x(t) of this equation must have the second derivative x′′tt(t).
But sometimes a function on which a classical functional J [x] attains an extremum is not
twice differentiable.

An extremal also satisfies the equation

d

dt

(
L – x′tLx′t

)
– Lx = 0. (19.1.2.7)

The points of an extremal x(t) at which Lx′tx′t ≠ 0 are said to be regular. If all points of
an extremal are regular, then the extremal itself is said to be regular (or nonsingular). For
regular extremals, the Euler equation can be reduced to the form

x′′tt = f (t,x,x′t).

Remark 1. An extremal x(t) can have a break point only if Lx′
tx′

t
= 0.

Remark 2. Extremals, i.e., functions “suspected for extremum,” should not be confused with functions
that actually provide an extremum.

19.1.2-3. Integration of Euler equation.

1◦. The Lagrangian L is independent of x′t; i.e., L(t,x,x′t) ≡ L(t,x).
The Euler equation (19.1.2.5) becomes

Lx = 0. (19.1.2.8)

In general, the solution of this finite equation does not satisfy the boundary conditions
x(t0) = x0 and x(t1) = x1. There exists an extremal only in the exceptional cases in which
the curve (19.1.2.8) passes through the boundary points (t0,x0) and (t1,x1).

2◦. The Lagrangian L depends on x′t linearly; i.e., L(t,x,x′t) ≡ M (t,x) +N (t,x)x′t.
The Euler equation (19.1.2.5) becomes

Mx –Nt = 0, (19.1.2.9)

where derivative Mx and function N are evaluated at x = x(t). In general, the curve
determined by equation (19.1.2.9) does not satisfy the boundary conditions, and hence, as
a rule, the variational problem does not have a solution in the class of continuous functions.

If equation (19.1.2.9) is satisfied identically in a domain D on the plane OXY , then
L(t,x,x′t) dt = M (t,x) dt +N (t,x) dx is an exact differential; consequently, J [x] is inde-
pendent of the integration path and has a constant value for all x. In this case, the variational
problem becomes meaningless.

3◦. The Lagrangian L is independent of x; i.e., L(t,x,x′t) ≡ L(t,x′t).
The Euler equation (19.1.2.5) becomes

d

dt
Lx′t = 0, (19.1.2.10)

whence it follows that
Lx′t = const. (19.1.2.11)

Equation (19.1.2.11) is a first-order differential equation. By integrating this equation, we
obtain the extremals of the problem.
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Remark. Relation (19.1.2.11) is called the momentum conservation law.

4◦. The Lagrangian L is independent of t; i.e., L(t,x,x′t) ≡ L(x,x′t).
The Euler equation (19.1.2.6) becomes

Lx – x′tLxx′t – x′′ttLx′tx′t = 0, (19.1.2.12)

whence we readily obtain a first integral of the Euler equation:

L – x′tLx′t = const. (19.1.2.13)

Remark. Relation (19.1.2.13) is called the energy conservation law.

5◦. The Lagrangian L depends only on x′t; i.e., L(t,x,x′t) ≡ L(x′t).
The Euler equation (19.1.2.6) becomes

x′′ttLx′tx′t = 0. (19.1.2.14)

In this case, the extremals are given by the equations

x(t) = C1t + C2, (19.1.2.15)

where C1 and C2 are arbitrary constants.
Example 1. Let us give an example in which there exists a unique admissible extremal that provides a

global extremum.
Let

J [x] =
∫ 1

0
(x′

t)
2 dt→ min, x = x(t), x(0) = 0, x(1) = 1.

The Euler equation becomes 2x′′
tt = 0. The extremals are given by the equation x(t) = C1t + C2. The unique

admissible extremal is the function x̂(t) = t, which provides the global minimum. Suppose that x′
t(t) �C

1[0, 1],
x(0) = 0, x(1) = 1. Then

J [x] = J [x̂ + h] =
∫ 1

0
(1 + h′

t)2 dt = J [x̂] +
∫ 1

0
(h′

t)2 dt ≥ J [x̂]

for an arbitrary function h(t) such that h(0) = 0 and h(1) = 0.

Example 2. Let us give an example in which there exists a unique admissible extremal that provides a
weak extremum but does not provide a strong extremum.

Let

J [x] =
∫ 1

0
(x′

t)
3 dt→ min; x = x(t), x(0) = 0, x(1) = 1.

The Euler equation becomes 6x′
tx

′′
tt = 0. The extremals are given by the equation x(t) = C1t +C2. The unique

admissible extremal is the function x̂(t) = t, which provides a weak local minimum. Indeed,

J [x] = J [x̂ + h] =
∫ 1

0
(1 + h′

t)3 dt = J [x̂] +
∫ 1

0
(h′

t)2(3 + h′
t) dt

for an arbitrary function h(t) such that h(0) = h(1) = 0. Thus, if ‖h‖1 ≤ 3, then 3+h′
t > 0 and hence J [x] ≥J [x̂].

Consider the sequence of functions

gn(t) =

{
–
√
n, t � [0, 1/n),

0, t � [1/n, 1/2],
2/

√
n, t � (1/2, 1].

hn(t) =
∫ t

0
gn(τ )dτ (n = 2, 3, . . .).

Obviously, hn(0) = hn(1) = 0 and ‖h(t)‖0 → 0 as n→∞. We set xn(t) = h′
t(t) +hn(t) and obtain a sequence

of functions xn(t) such that xn(0) = 0, xn(1) = 1, xn(t) → x̂(t) in C[0, 1], and

J [xn] = J [x̂ + hn] =
∫ 1

0
(1 + h′

t)3 dt = 1 + 3
∫ 1

0
g2

n dt +
∫ 1

0
g3

n dt

= 1 +
∫ 1/n

0

(
3n – n3/2) dt +

∫ 1

1/2

( 12
n

–
8

n
√
n

)
dt = –

√
n +O(1).

In this case J [xn] → –∞ as n→ ∞.
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Example 3 (Hilbert’s example). In this example, a unique admissible extremal exists that provides a
global extremum but is not a differentiable function.

Let

J [x] =
∫ 1

0
t2/3(x′

t)
2 dt→ min; x = x(t), x(0) = 0, x(1) = 1.

The Euler equation becomes d
dt

(
2t2/3x′

t

)
= 0. The extremals are given by the equation x(t) = C1t

1/3 + C2.
The unique extremal satisfying the endpoint conditions is the function x̂(t) = t1/3, which does not belong to
the class C1[0, 1]. Nevertheless, it provides the global minimum in this problem on the set of all absolutely
continuous functions x(t) that satisfy the boundary conditions and for which the integral J is finite. Indeed,

J [x] = J [x̂ + h] =
∫ 1

0
t2/3
( 1

3t2/3 + h′
t

)2
dt = J [x̂] +

2
3

∫ 1

0
h′

t dt +
∫ 1

0
t2/3(h′

t)2 dt ≥ J [x̂].

Example 4 (Weierstrass’s example). In this example, the problem has no solutions and no admissible
extremals even in the class of absolutely continuous functions.

Let

J [x] =
∫ 1

0
t2(x′

t)
2 dt→ min; x = x(t), x(0) = 0, x(1) = 1.

The Euler equation becomes d
dt

(2t2x′
t) = 0. The extremals are given by the equation x(t) = C1t

–1 + C2; none
of them satisfies the boundary condition x(0) = 0. Furthermore, J [x] ≥ 0, and J [x] > 0 for any absolutely
continuous function x(t). Obviously, the lower bound in this problem is zero. To prove this, it suffices to
consider the sequence of admissible functions xn(t) = arctan(nt)/ arctann. One has

J [x] =
∫ 1

0
t2 n2

(1 + n2t2)2 arctan2 n
dt ≤

∫ 1/n

0

dt

arctan2 n
+
∫ 1

1/n

dt

n2t2 arctan2 n
→ 0.

Example 5. In this example, there exists a unique admissible extremal that does not provide an extremum.
Let

J [x] =
∫ 3π/2

0

[
(x′

t)
2 – x2] dt→ min; x = x(t), x(0) = x(3π/2) = 0.

The Euler equation becomes x′′
tt + x = 0. The extremals are given by the equation x(t) = C1 sin t + C2 cos t.

The only extremal satisfying the endpoint conditions is x̂(t) = 0.
The admissible extremal x̂(t) = 0 does not provide a local minimum. Consider the sequence of admissible

functions xn(t) = n–1 sin(2t/3). Obviously, xn(t) → 0 in C1[0, 3π/2], but

J [xn] = –
5π

12n2 < 0 = J [x̂].

This example shows that the Euler equation is a necessary but not sufficient condition for extremum.

19.1.2-4. Broken extremals. Weierstrass–Erdmann conditions.

If the Euler equation has a piecewise smooth solution, i.e., if x(t) has corner points (the
function x′t(t) has a discontinuity), then the Weierstrass–Erdmann conditions

Lx′t[c,x(c),x′t(c – 0)] = Lx′t[c,x(c),x′t(c + 0)], (19.1.2.16)

L[c,x(c),x′t(c – 0)] – x′t(c – 0)Lx′t[c,x(c),x′t(c – 0)]

= L[c,x(c),x′t(c + 0)] – x′t(c + 0)Lx′t[c,x(c),x′t(c + 0)] (19.1.2.17)

hold at each point c that is the abscissa of a corner point.
If x′tLx′t ≠ 0 (t0 ≤ t ≤ t1), then the Euler equation has only smooth solutions.
Curves consisting of pieces of extremals and satisfying the Weierstrass–Erdmann con-

ditions at the corner points are called broken extremals.
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19.1.2-5. Second-order necessary conditions.

Legendre condition: If an extremal provides a minimum (resp., maximum) of the
functional, then the following inequality holds:

Lx′tx′t ≥ 0 (resp., Lx′tx′t ≤ 0) (t0 ≤ t ≤ t1). (19.1.2.18)

Weierstrass condition: If a curve x(t) provides a strong minimum (resp., maximum) of
the classical functional, then the Weierstrass function

E(t,x,x′t, k) ≡ L(t,x, k) – L(t,x,x′t) – (k – x′t)Lx′t(t,x,x′t) (19.1.2.19)

is nonnegative (resp., nonpositive) for arbitrary finite values k at all points (t,x) of the
extremal.

The equation

Lxxh + Lxx′th
′
t –

d

dt

(
Lxx′th + Lx′tx′th

′
t

)
= 0 (19.1.2.20)

is called the Jacobi equation. Here h(t) is an arbitrary smooth function satisfying the
conditions h(t0) = h(t1) = 0.

If the Legendre condition Lx′tx′t ≠ 0 (t0 ≤ t ≤ t1) is satisfied, then the Jacobi equation is
a second-order linear equation that can be solved for the second derivative. It follows from
the conditions h(t0) = h(t1) = 0 that h(t) ≡ 0. A point τ is said to be conjugate to the point
t0 if there exists a nontrivial solution of the Jacobi equation such that h(t0) = h(τ ) = 0.

Jacobi condition: If the extremal x(t) (t0 ≤ t ≤ t1) provides an extremum of the
functional (19.1.2.1), then it does not contain points conjugate to t0.

19.1.2-6. Multidimensional case.

The vector problem is posed and necessary conditions for an extremum are stated by
analogy with the one-dimensional simplest problem of calculus of variations. Let x(t) =
(x1(t), . . . ,xn(t)) be an n-dimensional vector function, and let the Lagrangian L be a
function of 2n + 1 variables: L = L(t, x, x′t).

The vector problem has the form

J [x] ≡
∫ t1

t0

L(t, x, x′t) dt→ extremum; x = x(t), xi(tj) = xij (i = 1, 2, . . . ,n, j = 0, 1).

(19.1.2.21)
A necessary condition for admissible vector function x(t) to provide weak extremum

in problem (19.1.2.21) is that the function x(t) satisfies the system of n Euler differential
equations

Lxi –
d

dt
L(xi)′t = 0 (i = 1, 2, . . . ,n), (19.1.2.22)

where we assume that the functionsL, Lx,Lx′t are continuous as functions of 2n+1 variables

(t, xi, and (xi)′t, i = 1, 2, . . . ,n), and L(xi)′t �C
1[t0, t1]. The solutions of the system of Euler

differential equations (19.1.2.22) are called extremals. Admissible functions satisfying the
system of Euler differential equations are called admissible extremals.

The derivation of conditions (19.1.2.5) and (19.1.2.22) from the relation δJ = 0 is based
on the fundamental lemmas of calculus of variations.
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LEMMA 1 (FUNDAMENTAL LEMMA OR LAGRANGE’S LEMMA). Let f (t) � C[t0, t1] and
assume that ∫ t1

t0

f (t)g(t) dt = 0

for each function g(t) � C1[t0, t1] such that g(t0) = g(t1) = 0. Then f (t) ≡ 0 on [t0, t1].

LEMMA 2. Let f (t) � C[t0, t1] and assume that
∫ t1

t0

f (t)g(t) dt = 0

for each function g(t) � C1[t0, t1] such that
∫ t1
t0
g(t) dt = 0. Then f (t) = const on [t0, t1].

19.1.2-7. Weierstrass–Erdmann conditions in multidimensional case.

If the system of Euler differential equations has a piecewise smooth solution, i.e., if x(t)
has corner points (the function x′t(t) has discontinuities), then the Weierstrass–Erdmann
conditions

L(xi)′t[c, x(c), x′t(c – 0)] = L(xi)′t[c, x(c), x′t(c + 0)] (i = 1, 2, . . . ,n),

L[c, x(c), x′t(c – 0)] –
n∑

i=1

(xi)
′
t

∣∣
∣
t=c–0

L(xi)′t[c, x(c), x′t(c – 0)]

= L[c, x(c), x′t(c + 0)] –
n∑

i=1

(xi)
′
t

∣∣
∣
t=c+0

L(xi)′t [c, x(c), x′t(c + 0)]

hold at each point c that is the abscissa of a corner point.
If (xi)′tL(xi)′t ≠ 0 (t0 ≤ t ≤ t1, i = 1, 2, . . . ,n), then the system of Euler differential

equations has only smooth solutions.
Curves consisting of pieces of extremals and satisfying the Weierstrass–Erdmann con-

ditions at the corner points are called broken extremals.

19.1.2-8. Higher-order necessary conditions in multidimensional case.

We consider the simplest problem

J [x] ≡
∫ t1

t0

L(t, x, x′t) dt → min (or max), x = x(t), x(t0) = x0, x(t1) = x1.

(19.1.2.23)
Legendre condition: If an extremal provides a minimum (resp., maximum) of the

functional, then the following inequality holds:

Lx′tx′t ≡
[
L(xi)′t(xj )′t

]
≥ 0 (resp., Lx′tx′t ≤ 0) (t0 ≤ t ≤ t1; i, j = 1, 2, . . . ,n). (19.1.2.24)

Strengthened Legendre condition: If an extremal provides a minimum (resp., maximum)
of the functional, then the following inequality holds:

Lx′tx′t > 0 (resp., Lx′tx′t < 0) (t0 ≤ t ≤ t1; i, j = 1, 2, . . . ,n). (19.1.2.25)
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Remark. In the vector case, Lx′
t

x′
t

is an n × n matrix. The condition Lx′
t

x′
t

≥ 0 means that the matrix is
positive semidefinite, and the condition Lx′

t
x′
t

> 0 means that the matrix is positive definite.

The Jacobi equation for the vector problem has a form similar to that in the one-
dimensional case, i.e.,

Lxxh + Lxx′th′
t – (Lxx′th + Lx′tx′th′

t)
′
t = 0, (19.1.2.26)

whereLxx ≡
[
L(xi)(xj )

]
,Lxx′t ≡

[
L(xi)(xj )′t

]
, and h = h(t) is an column-vector with components

hi(t), which are arbitrary smooth functions satisfying the conditions hi(t0) = hi(t1) = 0
(i = 1, 2, . . . ,n).

Suppose that the strengthened Legendre condition is satisfied on an extremal x(t). A
point τ is said to be conjugate to the point t0 if there exists a nontrivial solution h(t) of the
Jacobi equation such that h(t0) = h(τ ) = 0. The Jacobi condition (resp., the strengthened
Jacobi condition) is said to be satisfied on an extremal x(t) if the interval (t0, t1) (resp., the
half-open interval (t0, t1]) does not contain points conjugate to t0.

We find the fundamental system of solutions of the Jacobi equation for the functions
x(t) in the matrix form

H(t, t0) ≡ (h1(t), . . . , hn(t)), hi(t) ≡

⎛

⎝
hi1(t)

...
hin(t)

⎞

⎠ ,

where H(t0, t0) = 0 and H ′
t(t0, t0) ≠ 0 or H ′

t(t0, t0) = I . Column-vectors hi(t) are the
solutions of the Jacobi system of equations. A point τ is conjugate to the point t0 if and
only if the matrix H(τ , t0) is degenerate.

Necessary conditions for weak minimum (resp., maximum):
1. If x(t) provides a weak minimum (resp., maximum), then the function x(t) is an admis-

sible extremal on which the Legendre and Jacobi conditions are satisfied.
2. If x(t) provides a strong local minimum (resp., maximum), then the Weierstrass function

E(t, x, x′t, k) = L(t, x, k) – L(t, x, x′t) –
n∑

i=1

[ki – (xi)
′
t]L(xi)′t(t, x, x′t) (19.1.2.27)

is nonnegative (resp., nonpositive) for arbitrary finite values k = (k1, . . . , kn) at all points
(t, x) of the extremal.
Sufficient condition for the weak minimum or maximum: If the strengthened Legendre

and Jacobi conditions are satisfied on an admissible extremal, then this extremal provides a
weak local minimum (or maximum).

Example 6.

J [x] =
∫ 1

0

{
[(x1)′t]2 + [(x2)′t]2 + 2x1x2

}
dt→ min;

x1(0) = x2(0) = 0, x1(1) = sin 1, x2(1) = – sin 1 (i = 1, 2).

The Lagrangian is L = [(x1)′t]2 + [(x2)′t]2 + 2x1x2.
A necessary condition is given by the system (19.1.2.22) of Euler equations

–(x1)′′tt + x2 = 0, –(x2)′′tt + x1 = 0 =⇒ (x1)′′′′tttt = x1, (x2)′′′′tttt = x2.

The general solution of the Euler equations is

x1(t) = C1 sinh t + C2 cosh t + C3 sin t + C4 cos t,

x2(t) = C1 sinh t + C2 cosh t – C3 sin t – C4 cos t.
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It follows from the initial conditions that C1 = C2 = C4 = 0 and C3 = 1. The only admissible extremal is
x̂1(t) = sin t, x̂2(t) = – sin t.

Let us apply sufficient conditions. The strengthened Legendre condition (19.1.2.25) is satisfied. The
system of Jacobi equations (19.1.2.26) coincides with the system of Euler equations, i.e.,

–(h1)′′tt + h2 = 0, –(h2)′′tt + h1 = 0.

For H(t, 0), such that H(0, 0) = 0 and H ′
t(0, 0) = I , we take the matrix

( 1
2 (sinh t + sin t) 1

2 (sinh t – sin t)
1
2 (sinh t – sin t) 1

2 (sinh t + sin t)

)
.

Then
detH(t, 0) = sinh t sin t.

The conjugate points are τ = kπ, k = 1, 2, 3, . . .
The half-open interval (0, 1] does not contain conjugate points, and so the strengthened Jacobi condition is

satisfied. Thus the vector x̂(t) = (x̂1(t), x̂2(t)) provides a local minimum of the functional J .

19.1.2-9. Bolza problem.

1◦. The Bolza problem is the following extremal problem without constraints in the
space C1[t0, t1]:

B[x] ≡
∫ t1

t0

L(t,x,x′t) dt + l(x(t0),x(t1)) → extremum. (19.1.2.28)

The function L(t,x,x′t) is called the Lagrangian, the function l = l(x(t0),x(t1)) is called
the terminal cost function, and the functional B is called the Bolza functional. The Bolza
problem is an elementary problem of classical calculus of variations. Any functions of
class C1[t0, t1] are admissible.

An admissible function x̂(t) � C1[t0, t1] provides a weak local minimum (maximum) in
problem (19.1.2.28) if there exists a δ > 0 such that

B[x] ≥ B[x̂] (B[x] ≤ B[x̂]) (19.1.2.29)

for any admissible function x(t) satisfying ‖x – x̂‖1 < δ (see Paragraph 19.1.2-1).
A necessary condition for a weak extremum of the Bolza functional has the same

character as the necessary condition in the classical problem; i.e., the function providing an
extremum of the Bolza functional must be a solution of a boundary value problem for the
Euler equation (19.1.2.5). The boundary conditions are given by the relations

Lx′t(t0,x(t0),x′t(t0)) =
∂l

∂[x(t0)]
, Lx′t(t1,x(t1),x′t(t1)) = –

∂l

∂[x(t1)]
(19.1.2.30)

and are called the transversality conditions. If the function part of the Bolza functional
is lacking, i.e., l ≡ 0, then conditions (19.1.2.30) acquire the form Lx′t(t0,x(t0),x′t(t0)) =
Lx′t(t1,x(t1),x′t(t1)) = 0, which means in many applied problems that the extremal trajec-
tories are orthogonal to the boundary vertical lines t = t0 and t = t1. If a fixing condition
is given at one endpoint of the interval, then the fixing condition at this endpoint and the
transversality condition at the other endpoint serve as the boundary conditions for the Euler
equation.
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2◦. The n-dimensional problem is posed and necessary conditions for extremum are stated
by analogy with the one-dimensional Bolza problem. Let x(t) = (x1(t), . . . ,xn(t)) be an
n-dimensional vector function, and let the Lagrangian L be a function of 2n + 1 variables:
L = L(t, x, x′t).

Then the vector problem reads

∫ t1

t0

L(t, x, x′t) dt + l(x(t0), x(t1)) → extremum. (19.1.2.31)

Example 7. Consider the problem

B[x] =
∫ 1

0

[
(x′

t)
2 – x

]
dt + x2(1) → min .

The Euler equation (19.1.2.5) has the form
–1 – 2x′′

tt = 0,

and the transversality conditions (19.1.2.30) are as follows:

2x′
t(0) = 0, 2x′

t(1) = –2x(1).

The extremals are given by the equation x(t) = – 1
4 t

2 +C1t+C2. The unique extremal satisfying the transversality
conditions is x̂(t) = 1

4 (3 –t2). This admissible extremal provides the absolute minimum in the problem. Indeed,

B[x̂ + h] – B[x̂] =
∫ 1

0
2x̂′

th
′
t dt +

∫ 1

0
(h′

t)2 dt –
∫ 1

0
h dt + 2x̂(1)h(1) + [h′

t(1)]2 =
∫ 1

0
(h′

t)2 dt + [h′
t(1)]2 ≥ 0

for an arbitrary function h(t) � C1[t0, t1]. Thus x̂(t) = 1
4 (3 – t2) provides the absolute minimum in the problem.

Furthermore, B[x̂] = – 1
3 .

19.1.3. Isoperimetric Problem

19.1.3-1. Statement of problem. Necessary condition for extremum.

The isoperimetric problem (with fixed endpoints) in calculus of variations is the following
extremal problem in the space C1[t0, t1] (or PC1[t0, t1]):

J0[x] ≡
∫ t1

t0

f0(t,x,x′t) dt → extremum; (19.1.3.1)

Ji[x] ≡
∫ t1

t0

fi(t,x,x′t) dt = αi (i = 1, 2, . . . ,m); (19.1.3.2)

x(t0) = x0, x(t1) = x1, (19.1.3.3)

where α1, . . . , αm � R are given numbers. Constraints of the form (19.1.3.2) are said to be
isoperimetric. The functions fi(t,x,x′t) (i = 1, 2, . . . ,m) are called the Lagrangians of the
problem. Functions x(t) � C1[t0, t1] satisfying the isoperimetric conditions (19.1.3.2) and
conditions (19.1.3.3) at the endpoints are said to be admissible.

An admissible function x̂(t) provides a weak local minimum (resp., maximum) in prob-
lem (19.1.3.1) if there exists a δ > 0 such that the inequality

J0[x] ≥ J0[x̂] (resp., J0[x] ≤ J0[x̂])

holds for any admissible function x(t) � C1[t0, t1] satisfying ‖x – x̂‖1 < δ.
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Necessary condition for extremum (the Lagrange multiplier rule):
Let fi(t,x,x′t) (i = 1, 2, . . . ,m) be functions continuous together with their partial

derivatives (fi)x and (fi)x′t , and let x(t) �C1[t0, t1]. If x(t) provides a weak local extremum
in the isometric problem (19.1.3.1), then there exist Lagrange multipliers λ0, λ1, . . . , λm,
not all zero simultaneously, such that for the Lagrangian

L(t,x,x′t) =
m∑

i=0

λifi(t,x,x′t) (19.1.3.4)

the Euler equation

Lx –
d

dt
Lx′t = 0 (19.1.3.5)

is satisfied. If the regularity condition is satisfied [the functions – d
dt (fi)x′t + (fi)x (i =

1, 2, . . . ,m), are linearly independent], then λ0 ≠ 0.

One of the best-known isoperimetric problems, after which the entire class of problems
was named, is the Dido problem.

Example 1. Find a smooth curve of given length fixed at two points of a straight line and, together with
the segment of the straight line, bounding the largest area.

The formalized problem is
∫ T0

–T0

xdt→ max;
∫ T0

–T0

√
1 + (x′

t)2 dt = l, x = x(t), x(–T0) = x(T0) = 0,

where T0 is given.
The Lagrangian (19.1.3.4) has the form L = λ0x + λ

√
1 + (x′

t)2.
A necessary condition is given by the Euler equation (19.1.3.5)

λ0 –
d

dt

λx′
t√

1 + (x′
t)2

= 0.

Elementary calculations result in the first-order equation

(C + x)
√

1 + (x′
t)2 = –λ.

We integrate this equation and obtain

(C + x)2 + (C1 + t)2 = λ2,

which is the equation of a circle. It follows from the endpoint conditions x(–T0) = x(T0) that C1 = 0, i.e.,
(C + x)2 + t2 = λ2.

The unknown constants C and λ are uniquely determined by the condition x(T0) = 0 and the isoperimetric
condition

∫ T0
–T0

√
1 + (x′

t)2 dt = l.
For 2T0 < l < πT0, there is a unique (up to the sign) extremal that is an arc of length l of the circle passing

through the points (�T0, 0) and centered on the OX-axis. Since this is a maximization problem, we must take
the extremal lying in the upper half-plane. For l < 2T0, there are no admissible functions in the problem, and
for l > πT0, there are no extremals.

19.1.3-2. Higher-order necessary conditions. Sufficient conditions.

Consider the isoperimetric problem

J0[x] → min (or max);
Ji[x] = αi (i = 1, 2, . . . ,m);
x(t0) = x0, x(t1) = x1.

(19.1.3.6)
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Let x(t) �C2[t0, t1] be an extremal of problem (19.1.3.6) with λ0 = 1; i.e., the Euler equation
(19.1.3.4) is satisfied on this extremal for the Lagrangian

L(t,x,x′t) = f0(t,x,x′t) +
m∑

i=1

λifi(t,x,x′t)

with some Lagrange multipliers λi.

Legendre condition: If an extremal provides a minimum (resp., maximum) of the
functional, then the following inequality holds:

Lx′tx′t ≥ 0 (resp., Lx′tx′t ≤ 0) (t0 ≤ t ≤ t1). (19.1.3.7)

Strengthened Legendre condition: If an extremal provides a minimum (resp., maximum)
of the functional, then the following inequality holds:

Lx′tx′t > 0 (resp., Lx′tx′t < 0) (t0 ≤ t ≤ t1). (19.1.3.8)

The equation

xLxx+x′tLx′tx–
d

dt

(
xLx′tx+x′tLx′tx′t

)
+

m∑

i=1

μigi = 0, gi = –
d

dt
(fi)x′t +(fi)x (19.1.3.9)

is called the (inhomogeneous) Jacobi equation for isoperimetric problem (19.1.3.6) on the
extremal x(t); μi are Lagrange multipliers (i = 1, 2, . . . ,n).

Suppose that the strengthened Legendre condition (19.1.3.8) is satisfied on the ex-
tremal x(t). A point τ is said to be conjugate to the point t0 if there exists a nontrivial
solution of the Jacobi equation such that

∫ τ

0
gi(t)h(t) dt = 0 (i = 1, 2, . . . ,m),

where h(t) is an arbitrary smooth function satisfying the conditions h(0) = h(τ ) = 0.
We say that the Jacobi condition (resp., strengthened Jacobi condition) is satisfied on

the extremal x(t) if the interval (t0, t1) (resp., the half-interval (t0, t1]) does not contain
points conjugate to t0.

A point τ is conjugate to t0 if and only if the matrix

H(τ ) =

⎛

⎜
⎜
⎝

h0(τ ) · · · hm(τ )∫ τ
t0
g1(t)h0(t) dt · · · ∫ τ

t0
g1(t)hm(t) dt

...
. . .

...∫ τ
t0
gm(t)h0(t) dt · · · ∫ τ

t0
gm(t)hm(t) dt

⎞

⎟
⎟
⎠

is degenerate.
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Necessary conditions for weak minimum (maximum):
Suppose that the Lagrangians fi(t,x,x′t) (i = 0, 1, . . . ,m) in problem (19.1.3.6) are

sufficiently smooth. If x(t) � C2[t0, t1] provides a weak minimum (resp., maximum) in
problem (19.1.3.6) and the regularity condition is satisfied (i.e., the functions gi(t) are
linearly independent on any of the intervals [t0, τ ] and [τ , t1] for any τ ), then x(t) is an
extremal of problem (19.1.3.6) and the Legendre and Jacobi conditions are satisfied on x(t).

Sufficient conditions for a strong minimum (resp., maximum):
Suppose that the Lagrangian

L = f0 +
m∑

i=1

μifi

is sufficiently smooth and the strengthened Legendre and Jacobi conditions, as well as the
regularity condition, are satisfied on an admissible extremal x(t). Then x(t) provides a
strong minimum (resp., maximum).

THEOREM. Suppose that the functional J0 in problem (19.1.3.6) is quadratic, i.e.,

J0[x] =
∫ t1

t0

[
A0(x′t)

2 + B0x
2] dt,

and the functionals Ji are linear,

Ji[x] =
∫ t1

t0

[
ai(x

′
t)

2 + bix
2] dt (i = 1, 2, . . . ,m).

Moreover, assume that the functions A0, a1, . . . , am are continuously differentiable, the
functions B0, b1, . . . , bm are continuous, and the strengthened Legendre condition and
the regularity condition are satisfied. If the Jacobi condition does not hold, then the lower
bound in the problem is –∞ (resp., the upper bound is +∞). If the Jacobi condition holds,
then there exists a unique admissible extremal that provides the absolute minimum (resp.,
maximum).

Example 2. Consider the problem

J =
∫ 2π

0

[
(x′

t)
2 – x2] dt→ min;

∫ 2π

0
x dt, x(0) = x(2π) = 0.

A necessary condition is given by the Lagrange multiplier rule (19.1.3.5): x′′
tt + x – λ = 0. The general

solution of the resulting equation with the condition x(0) = 0 taken into account is x(t) = A sin t +B(cos t – 1).
The set of admissible extremals always contains the admissible extremal x̂(t) ≡ 0.

The Legendre condition (19.1.3.8) is satisfied: Lx′
tx′

t
(t, x̂, x̂′

t) = 2 > 0. The Jacobi equation (19.1.3.9)
coincides with the Euler equation (19.1.3.5). The solution h0(t) of the homogeneous equation with the
conditions h0(0) = 0 and (h0)′t(0) = 1 is the function sin t. The solution h1(t) of the homogeneous equation
x′′

tt +x+ 1 = 0 with the conditions h1(0) = 0 and (h1)′t(0) = 0 is the function cos t – 1. The matrixH(τ ) acquires
the form

H(τ ) =
(

h0(τ ) h0(τ )∫ τ

0 h0g1 dt
∫ τ

0 hmg1 dt

)
=
( sin τ cos τ – 1

1 – cos τ sin τ – τ

)
.

Thus the conjugate points are the solutions of the equation

detH(τ ) = 2 – 2 cos τ – τ sin τ = 0 ⇔ sin
τ

2
= 0,

τ

2
= tan

τ

2
.

The conjugate point nearest to zero is τ = 2π.
Thus the admissible extremals have the form x̂(t) = C sin t and provide the absolute minimum J [x̂] = 0.
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19.1.4. Problems with Higher Derivatives

19.1.4-1. Statement of problem. Necessary condition for extremum.

A problem with higher derivatives (with fixed endpoints) in classical calculus of variations
is the following extremal problem in the space Cn[t0, t1]:

J [x] =
∫ t1

t0

f0(t,x,x′t, . . . ,x
(n)
t ) dt → extremum; (19.1.4.1)

x(k)
t (tj) = xkj (k = 0, 1, . . . ,n – 1, j = 0, 1). (19.1.4.2)

Here L is a function of n + 2 variables, which is called the Lagrangian. Functions x(t) �
Cn[t0, t1] satisfying conditions (19.1.4.2) at the endpoints are said to be admissible.

An admissible function x̂(t) is said to provide a weak local minimum (or maximum) in
problem (19.1.4.1) if there exists a δ > 0 such that the inequality

J [x] ≥ J [x̂] (resp., J [x] ≤ J [x̂])

holds for any admissible function x(t) � Cn[t0, t1] satisfying ‖x – x̂‖n < δ.
An admissible function x̂(t) � PCn[t0, t1] is said to provide a strong minimum (resp.,

maximum) in problem (19.1.4.1) if there exists an ε > 0 such that the inequality

J [x] ≥ J [x̂] (resp., J [x] ≤ J [x̂])

holds for any admissible function x(t) � PCn[t0, t1] satisfying ‖x(t) – x̂(t)‖n–1 < ε.

Necessary condition for extremum:
Suppose that the Lagrangian L is continuous together with its derivatives with respect

to x, x′t, . . . , x
(n)
t (the smoothness condition) for all t � [t0, t1]. If the function x(t) provides

a local extremum in problem (19.1.4.1), then L
x(k)

t
� Ck[t0, t1] (k = 1, 2, . . . ,n) and the

Euler–Poisson equation holds:

n∑

k=0

(–1)k
dk

dtk
L
x(k)

t
= 0 (t0 ≤ t ≤ t1). (19.1.4.3)

For n = 1, the Euler–Poisson equation coincides with the Euler equation (19.1.2.5). For
n = 2, the Euler–Poisson equation has the form

d2

dt2 Lx′′tt –
d

dt
Lx′t + Lx = 0.

The general solution of equation (19.1.4.3) contains 2n arbitrary constants. These
constants can be determined from the boundary conditions (19.1.4.2).

19.1.4-2. Higher-order necessary and sufficient conditions.

Consider the problem

J [x] =
∫ t1

t0

f0(t,x,x′t, . . . ,x
(n)
t ) dt → min (or max);

x(k)
t (tj) = xkj (k = 0, 1, . . . ,n – 1, j = 0, 1)

(19.1.4.4)
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with higher derivatives, where L is the function of n + 1 variables. Suppose that x(t) �
C2n[t0, t1] is an extremal of problem (19.1.4.4), i.e., the Euler-Poisson equation is satisfied
on this extremal.

Legendre condition: If an extremal provides a minimum (resp., maximum) of the
functional, then the following inequality holds:

L
x(n)

t x(n)
t

≥ 0 (resp., L
x(n)

t x(n)
t

≤ 0) (t0 ≤ t ≤ t1). (19.1.4.5)

Strengthened Legendre condition: If an extremal provides a minimum (resp., maximum)
of the functional, then the following inequality holds:

L
x(n)

t x(n)
t

> 0 (resp., L
x(n)

t x(n)
t

< 0) (t0 ≤ t ≤ t1). (19.1.4.6)

The functional J has the second derivative at the point x(t): J ′′
tt[x,x] = K[x], where

K[x] =
∫ t1

t0

n∑

i,j=0

L
x(i)

t x
(j)
t

(t,x,x′t, . . . ,x
(n)
t )x(i)

t x
(j)
t dt. (19.1.4.7)

The Euler–Poisson equation (19.1.4.3) for the functional K is called the Jacobi equation
for problem (19.1.4.4) on the extremal x̂(t).

For a quadratic functional K of the form

K[x] =
∫ t1

t0

n∑

i=0

L
x(i)

t x
(i)
t

(t,x,x′t, . . . ,x
(n)
t )
(
x(i)
t

)2
dt, (19.1.4.8)

the Jacobi equation reads
n∑

i=0

(–1)i
di

dti
[
L
x(i)

t x
(i)
t
x(i)
t

]
= 0.

Suppose that the strengthened Legendre condition (19.1.4.6) is satisfied on an extremal
x(t). A point τ is said to be conjugate to the point t0 if there exists a nontrivial solution
h(t) of the Jacobi equation such that h(i)

t (t0) = h(i)
t (τ ) = 0 (i = 0, 1, . . . ,n – 1). One says that

the Jacobi condition (resp., the strengthened Jacobi condition) is satisfied on the extremal
x(t) if the interval (t0, t1) (resp., the half-interval (t0, t1]) does not contain points conjugate
to t0.

The Jacobi equation is a 2nth-order linear equation that can be solved for the higher
derivative. Suppose that h1(t), . . . , hn(t) are solutions of the Jacobi equation such that
H(t0) = 0 and H (n)

t (t0) is a nondegenerate matrix, where

H(τ ) =

⎛

⎝
h1(τ ) · · · hn(τ )

...
. . .

...
[h1(τ )](n–1)

t · · · [hn(τ )](n–1)
t

⎞

⎠, H (n)
t (τ ) =

⎛

⎝
[h1(τ )](n)

t · · · [hn(τ )](n)
t

...
. . .

...
[h1(τ )](2n–1)

t · · · [hn(τ )](2n–1)
t

⎞

⎠.

A point τ is conjugate to t0 if and only if the matrix H(τ ) is degenerate.
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Necessary conditions for weak minimum (resp., maximum):

Suppose that the Lagrangian L of problem (19.1.4.4) satisfies the smoothness condition.
If a function x(t) � C2n[t0, t1] provides a weak minimum (resp., maximum), then x(t) is an
extremal and the Legendre and Jacobi conditions hold on x(t).

Sufficient conditions for strong minimum (resp., maximum):

Suppose that the Lagrangian L is sufficiently smooth. If x(t) � C2n[t0, t1] is an
admissible extremal and the strengthened Legendre condition and the strengthened Jacobi
condition are satisfied on x(t), then x(t) provides a strong minimum (resp., maximum) in
problem (19.1.4.4).

For quadratic functionals of the form (19.1.4.8), the problem can be examined com-
pletely.

THEOREM. Suppose that the functional has the form (19.1.4.8), L
x(i)

t x
(i)
t
� Ci[t0, t1], and

the strengthened Legendre condition is satisfied. If the Jacobi condition does not hold, then
the lower bound in the problem is –∞ (the upper bound is +∞). If the Jacobi condition is
satisfied, then there exists a unique admissible extremal that provides the absolute minimum
(maximum).

Example 3. Consider the problem

J [x] =
∫ 2π

0

[
(x′′

tt)
2 – (x′

t)
2] dt→ extremum; x = x(t), x(0) = x(2π) = x′

t(0) = x′
t(2π) = 0.

A necessary condition is given by the Euler–Poisson equation (19.1.4.3): x′′′′
tttt + x′′

tt = 0. The general
solution of this equation is x(t) =C1 sin t+C2 cos t+C3t+C4. The set of admissible extremals always contains
the admissible extremal x̂(t) ≡ 0.

The Legendre condition Lx′
tx′

t
(t, x̂, x̂′

t, x̂′′
tt) = 2 > 0 is satisfied. The Jacobi equation coincides with the

Euler-Poisson equation. If we set h1(t) = 1 – cos t and h2(t) = sin t – t, then the matrix H(t) acquires the form

H(t) =
(
h1(t) h2(t)

[h1(t)]′t [h2(t)]′t

)
=
( 1 – cos t sin t – t

sin t cos t – 1

)
.

Then H(0) = 0 and

detH ′′
tt(0) =

( [h1(t)]′′tt [h2(t)]′′tt
[h1(t)]′′′ttt [h2(t)]′′′ttt

)
=
( 1 0

0 –1

)
≠ 0.

Thus the conjugate points are the solutions of the equation

detH(t) = 2(cos t – 1) – t sin t = 0 ⇔ sin
t

2
= 0,

t

2
= tan

t

2
.

The conjugate point nearest to zero is t1 = 2π.
Thus the admissible extremals have the form x̂(t) =C(1–cos t) and provide the absolute minimumJ [x̂] = 0.

19.1.5. Lagrange Problem

19.1.5-1. Lagrange principle.

The Lagrange problem is the following problem:

B0(γ) → min;

Bi(γ) ≤ 0 (i = 1, 2, . . . ,m′),

Bi(γ) = 0 (i = m′ + 1,m′ + 2, . . . ,m),

(19.1.5.1)

(xα)′t – ϕ(t, x) = 0 for all t � T , (19.1.5.2)
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where x ≡ x(t) ≡ (xα, xβ) ≡ (x1(t), . . . ,xn(t)) � PC1(Γ, Rn), xα ≡ (x1(t), . . . ,xk(t)) �
PC1(Γ, Rk), xβ ≡ (xk+1(t), . . . ,xn(t)) � PC1(Γ, Rn–k), γ = (x, t0, t1), ϕ � PC(Γ, Rn),
t0, t1 � Γ, t0 < t1, Γ is a given finite interval, and

Bi(x, t0, t1) =
∫ t1

t0

fi(t, x, (xβ)′t) dt + ψi(t0, x(t0), t1, x(t1)) (i = 0, 1, . . . ,m).

Here PC(Γ, Rn) is the space of piecewise continuous vector functions on the closed interval
Γ, and PC1(Γ, Rn) is the space of continuous vector functions with piecewise continuous
derivative on Γ.

The constraint (19.1.5.2) is the differential equation that is called the differential con-
straint. The differential constraint can be imposed on all coordinates x (i.e., k = n
in (19.1.5.2)) or be lacking altogether (k = 0). The element γ is called an admissible
element.

An admissible element γ̂ = (x̂, t̂0, t̂1) provides a weak local minimum in the Lagrange
problem if there exists a δ > 0 such that the inequality B0(γ) ≥ B0(γ̂) holds for any
admissible element γ satisfying the condition ‖γ – γ̂‖C1 < δ, |t – t̂0| < δ, and |t – t̂1| < δ,
where ‖x‖C1 = max

t�T
|x| + max

t�T
|x′t|.

19.1.5-2. Necessary conditions for extremum. Euler–Lagrange theorem.

Suppose that γ̂ provides a weak local minimum in the Lagrange problem (19.1.5.1), and,
moreover, the functionsϕ= (ϕ1, . . . ,ϕn) and fi (i= 0, 1, . . . ,m) and their partial derivatives
are continuous inx in a neighborhood of {(t, x̂ |t�Γ} and the functionsψi (i= 0, 1, . . . ,m) are
continuously differentiable in a neighborhood of the point (t̂0, x̂(t̂0), t̂1, x̂(t̂1)) (the smooth-
ness condition).

Then there exist Lagrange multipliers λi (i = 0, . . . ,m) and pj ≡ pj(t) � PC1(T )
(j = 1, . . . , k) that are not zero simultaneously, such that the Lagrange function

Λ =
∫ t1

t0

{ m∑

i=0

λifi(t, x, (xβ)′t) +
k∑

i=1

pi

[
(xi)

′
t – ϕi(t, x)

]}
dt +

m∑

i=0

λiψi(t0, x(t0), t1, x(t1))

satisfies the following conditions:
1. The conditions of stationarity with respect to x, i.e., the Euler equations

dpi
dt

+
k∑

j=1

pj
∂ϕj
∂xi

=
m∑

j=0

λj
∂fj
∂xi

(i = 1, 2, . . . , k) for all t � T ,

where all derivatives with respect to xk are evaluated at (t, x̂).
2. The conditions of transversality with respect to x,

pi(t̂j) = (–1)j
k∑

j=0

λj
∂ψj
∂xi(tj)

(j = 0, 1; i = 1, 2, . . . , k),

where all derivatives with respect to xi(tk) (k = 0, 1) are evaluated at (t̂0, x̂(t̂0), t̂1, x̂(t̂1)).
3. The conditions of stationarity with respect to tk (only for movable endpoints of the

integration interval),
Λtk(t̂k) = 0 (k = 0, 1).
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4. The complementary slackness conditions

λiBi(γ̂) = 0 (i = 1, 2, . . . ,m′).

5. The nonnegativity conditions

λi ≥ 0 (i = 1, 2, . . . ,m′).

19.1.6. Pontryagin Maximum Principle

19.1.6-1. Statement of problem.

The optimal control problem (in Pontryagin’s form) is the problem

B0(ω) → min;

Bi(ω) ≤ 0 (i = 1, 2, . . . ,m′),

Bi(ω) = 0 (i = m′ + 1,m′ + 2, . . . ,m),

(19.1.6.1)

x′t – ϕ(t, x, u) = 0 for all t � T , (19.1.6.2)
u � U for all t � Γ, (19.1.6.3)

where x ≡ x(t) � PC1(Γ, Rn), u ≡ u(t) � PC(Γ, Rr), ω = (x, u, t0, t1), ϕ � PC(Γ, Rn),
t0, t1 � Γ, t0 < t1, Γ is a given finite interval, U ⊂ R

r is an arbitrary set, T ⊂ Γ is the set of
continuity points of u, and

Bi(x, u, t0, t1) =
∫ t1

t0

fi(t, x, u) dt + ψi(t0, x(t0), t1, x(t1)) (i = 0, 1, . . . ,m).

Here PC(Γ, Rn) is the space of piecewise continuous vector functions on the closed interval
Γ, and PC1(Γ, Rn) is the space of continuous vector functions with piecewise continuous
derivative on Γ.

The vector function x = (x1(t), . . . ,xn(t)) is called the phase variable, and the vector
function u = (u1(t), . . . ,ur(t)) is called the control. The constraint (19.1.6.2) is a differential
equation that is called a differential constraint. In contrast with the Lagrange problem, this
problem contains the inclusion-type constraint (19.1.6.3), which should be satisfied at all
points t � Γ, and, moreover, the phase variable x can be less smooth.

An element ω = (x, u, t0, t1) for which all conditions and constraints of the problem
are satisfied is called an admissible controlled process. An admissible controlled process
ω̂ = (x̂, û, t̂0, t̂1) is called a (locally) optimal process (or a process optimal in the strong
sense) if there exists a δ > 0 such that B0(ω) ≥ B0(ω̂) for any admissible controlled process
ω = (x, u, t0, t1) such that

‖ω – ω̂‖C < δ, |t – t̂0| < δ, |t – t̂1| < δ,

where ‖x‖C = max
t�Γ

|x|.
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19.1.6-2. Necessary conditions for extremum. Pontryagin maximum principle.

Suppose that ω̂ = (x̂, û, t̂0, t̂1) is an optimal (in the strong sense) process in the optimal control
problem (19.1.6.1) and, moreover, the functions ϕ = (ϕ1, . . . ,ϕn) and fi (i = 0, 1, . . . ,m)
and their partial derivatives are continuous in x in a neighborhood of the Cartesian product
of {(t, x̂|t � Γ} by U and the functions ψi (i = 0, 1, . . . ,m) are continuously differentiable
in a neighborhood of the point (t̂0, x̂(t̂0), t̂1, x̂(t̂1)) (the smoothness condition).

Then there exist Lagrange multipliers λi (i = 0, . . . ,m) and pk ≡ pk(t) � PC1(Γ)
(k = 1, . . . ,n), which are not zero simultaneously, such that the Lagrange function

Λ =
∫ t1

t0

{ m∑

i=0

λifi(t, x, u) +
n∑

i=0

pi
[
(xi)

′
t – ϕi(t, x, u)

]}
dt +

m∑

i=0

λiψi(t0, x(t0), t1, x(t1))

satisfies the following conditions:
1. The conditions of stationarity with respect to x, i.e., the Euler equations

dpi
dt

+
n∑

k=1

pk
∂ϕk
∂xi

=
m∑

k=0

λk
∂fk
∂xi

(i = 1, 2, . . . ,n) for all t � T ,

where all derivatives with respect to xk are evaluated at (t, x̂, û).
2. The conditions of transversality with respect to x,

pi(t̂k) = (–1)k
m∑

k=0

λk
∂ψk
∂xi(tk)

(k = 0, 1; i = 1, 2, . . . ,n),

where all derivatives with respect to xi(tk) (k = 0, 1) are evaluated at (t̂0, x̂(t̂0), t̂1, x̂(t̂1)).
3. The condition of optimality with respect to u,

max
u�U

H(t, x̂, u, p) = H(t, x̂, û, p),

where H(t, x, u, p) =
n∑

i=1
piϕi(t, x, u) –

m∑

i=0
λifi(t, x, u) is the Pontryagin function.

4. The conditions of stationarity with respect to tk (only for movable endpoints of the
integration interval),

Λtk(t̂k) = 0 (k = 0, 1).

5. The complementary slackness conditions

λiBi(ω̂) = 0 (i = 1, 2, . . . ,m′).

6. The nonnegativity conditions

λi ≥ 0 (i = 1, 2, . . . ,m′).

The Pontryagin maximum principle permits one to obtain all necessary conditions
in calculus of variations: the Euler equations, the Legendre condition, the Weierstrass
condition, and the Lagrange multiplier rule.



1012 CALCULUS OF VARIATIONS AND OPTIMIZATION

19.2. Mathematical Programming
19.2.1. Linear Programming

19.2.1-1. Statement of linear programming problem.

The general mathematical programming problem is the problem of finding the values of n
variables x = (x1, . . . ,xn) that provide an extremum of the objective function

Z(x) → extremum (19.2.1.1)

and satisfy the system of constraints

ϕi(x) = 0 for i = 1, 2, . . . , k,
ϕi(x) ≤ 0 for i = k + 1, k + 2, . . . , l
ϕi(x) ≥ 0 for i = l + 1, l + 2, . . . ,m.

(19.2.1.2)

Any n-dimensional vector x satisfying the system of constraints is called a feasible
solution of the mathematical programming problem. The set of feasible solutions of the
problem is called the feasible region. A feasible solution minimizing (maximizing) the
objective function is called an optimal solution.

If the objective function (19.2.1.1) and the constraints (19.2.1.2) are linear, then the
mathematical programming problem is called a linear programming problem.

Example 1 (the product mix problem).
Suppose that n types of products are manufactured from m types of resources, whose respective supplies

are b1, . . . , bm. Let aij (i = 1, 2, . . . ,m; j = 1, 2, . . . ,n) be the withdrawal of resource i per unit output of
product j, and let cj (j = 1, 2, . . . ,n) be the profit per unit output of product j. The objective is to find a product
mix maximizing the profit.

If the vector of the variables is denoted by x = (x1, . . . , xn), where xj (j = 1, 2, . . . ,n) is the output of
product j, then the mathematical model of the problem has the form

Z(x) =
n∑

j=1

cjxj → max

under the constraints
a11x1 + a12x2 + · · · + a1nxn ≤ b1,

a21x1 + a22x2 + · · · + a2nxn ≤ b2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + am2x2 + · · · + amnxn ≤ bm,

xj ≥ 0 (j = 1, 2, · · · ,n).

Example 2 (the diet problem).
The animal diet includes feeds of n types. Animals must receive nutrients of m types daily; the amount

of nutrient j must be at least bi (i = 1, 2, . . . ,m). Let aij (i = 1, 2, . . . ,m; j = 1, 2, . . . ,n) be the content of
nutrient i per unit of feed j, and let cj (j = 1, 2, . . . ,n) be the cost per unit of feed j. The objective is to find a
diet minimizing the daily cost.

If the vector of variables is denoted by x = (x1, . . . , xn), where xj (j = 1, 2, . . . ,n) is the amount of feed j
in the daily diet, then the mathematical model of the problem has the form

Z(x) =
n∑

j=1

cjxj → min

under the constraints
a11x1 + a12x2 + · · · + a1nxn ≥ b1,

a21x1 + a22x2 + · · · + a2nxn ≥ b2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + am2x2 + · · · + amnxn ≥ bm,

xj ≥ 0 (j = 1, 2, . . . ,n).
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To develop a general method for solving linear programming problems, one reduces
various forms of linear programming problems to the standard form

Z(x) =
n∑

j=1

cjxj → extremum,

a11x1 + a12x2 + · · · + a1nxn = b1,
a21x1 + a22x2 + · · · + a2nxn = b2,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
am1x1 + am2x2 + · · · + amnxn = bm,
xj ≥ 0 (j = 1, 2, . . . ,n);
bi ≥ 0 (i = 1, 2, . . . ,m).

(19.2.1.3)

This form of the linear programming problem differs from other forms in that the system
of constraints is a system of equations and all variables are nonnegative.

Any linear programming problem can be reduced to the standard problem by the fol-
lowing rules:
1. By introducing additional variables, one can reduce inequality constraints to equality

constraints. The inequality ai1x1 + ai2x2 + · · · + ainxn ≥ bi is replaced by the equation
ai1x1 +ai2x2 + · · ·+ainxn –xn+1 = bi and the nonnegativity condition for the additional
surplus variable xn+1 ≥ 0. The inequality ai1x1 + ai2x2 + · · · + ainxn ≤ bi is replaced
by the equation ai1x1 + ai2x2 + · · · + ainxn + xn+1 = bi and the nonnegativity condition
for the additional slack variable xn+1 ≥ 0. The additional variables occur with zero
coefficients in the objective function.

2. If some variable xj can take arbitrary values, it can be represented as the difference
xj = x̃j – ˜̃xj of nonnegative variables x̃j ≥ 0 and ˜̃xj ≥ 0.

Remark. In the standard linear programming problem, the objective function can be either minimized
or maximized. To pass from the minimization problem to the maximization problem or vice versa, it suffices
to change the signs of the coefficients of the objective function, i.e., pass from the function Z(x) to the
function –Z(x). The resulting problem and the original problem have the same optimal solution, and the values
of the objective functions on this solution differ only in sign.

In some cases, it may be necessary to pass from the standard problem to the symmetric
problem, which has no equality constraints and in matrix form reads

Z(x) = CX → max(min),
AX ≤ B (AX ≥ B), X ≥ O,

(19.2.1.4)

where the following notation is used:

C = (c1, . . . , cn), A =

⎛

⎜⎜
⎝

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎞

⎟⎟
⎠ , X =

⎛

⎜⎜
⎝

x1
x2
...
xn

⎞

⎟⎟
⎠ , B =

⎛

⎜⎜
⎝

b1
b2
...
bm

⎞

⎟⎟
⎠ ,

and O is the zero column matrix.
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19.2.1-2. Graphical method for solving linear programming problems.

Consider the linear programming problem

Z(x) =
n∑

j=1

cjxj → extremum,

ai1x1 + ai2x2 + · · · + ainxn ≤ bi for i = 1, 2, . . . , k,

ai1x1 + ai2x2 + · · · + ainxn ≥ bi for i = k + 1, k + 2, . . . ,m,

xj ≥ 0 (j = 1, 2, . . . ,n)

bi ≥ 0 (i = 1, 2, . . . ,m).

(19.2.1.5)

It is expedient to use the graphical method when solving problems with two variables
of the form

Z(x) = c1x1 + c2x2 → extremum,

ai1x1 + ai2x2 ≤ bi for i = 1, 2, . . . , k,

ai1x1 + ai2x2 ≥ bi for i = k + 1, k + 2, . . . ,m,

xj ≥ 0 (j = 1, 2),

bi ≥ 0 (i = 1, 2, . . . ,m).

(19.2.1.6)

This method is based on the possibility of graphically representing the feasible region of
problem (19.2.1.6) and finding the optimal solution in the feasible region. Geometrically,
each inequality in the system of constraints determines a half-plane bounded by the line
ai1x1 + ai2x2 = bi (i = 1, 2, . . . ,m). The nonnegativity conditions determine half-planes
with boundary lines x1 = 0 and x2 = 0.

The feasible region of the problem is the common part of the half-planes of solutions to
all inequalities in the system of constraints. If the system of constraints is consistent, then
the feasible region is a convex polygon.

A line on which the objective function of the problem takes a constant value is called a
level line. In the general case, a level line is determined by the equation c1x1 + c2x2 = l,
where l = const. All level lines are parallel to one another. Their common normal is
N = gradZ(x1,x2) = (c1, c2). The values of the objective function on the level lines increase
in the direction of the normal N and decrease in the opposite direction.

A level line that meets the feasible region is called a support line if the feasible region
lies in one of the half-planes into which the line divides the plane.

If n = 3 in the system of constraints (19.2.1.5), then each inequality geometrically
determines a half-space with boundary plane ai1x1 + ai2x2 + ai3x3 = bi (i = 1, 2, . . . ,m) in
three-dimensional space. The nonnegativity conditions determine half-spaces with bound-
ary planes x1 = 0, x2 = 0, and x3 = 0. If the system of constraints is consistent, then the
feasible region is a convex polyhedron.

If n > 3 in the system of constraints (19.2.1.5), then each inequality geometrically
determines a half-space with boundary hyperplane ai1x1 + ai2x2 + · · · + ainxn = bi (i =
1, 2, . . . ,m) in the n-dimensional space. The nonnegativity conditions determine half-
spaces with boundary hyperplanes x1 = 0, . . . , xn = 0.
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19.2.1-3. Simplex method.

Foundations of the simplex method:
1. The feasible region in a linear programming problem is a convex set with finitely many

corners (vertices).
2. One of the vertices of the feasible region is an optimal solution of the linear programming

problem.
3. Algebraically, the vertices of the feasible region represent several basic solutions of the

system of constraints.

The simplex method solves the linear programming problem by purposefully progressing
from one feasible solution to another.

Main stages of the simplex method:
1. Search of the initial basic solution.
2. Verification of the optimality criterion for the basic solution or verification of the

condition that the function is unbounded.
3. Passage from one basic solution to another at which the value of the objective function

is closer to the optimal value.

Suppose that a linear programming problem (19.2.1.3) is given and the matrix of the
system of equations contains an identity m × m submatrix. The variables corresponding to
the columns of the identity submatrix are usually called the basic variables, and the other
variables are said to be nonbasic. The quantity

Δj =
m∑

i=1

aijci – cj

is called the reduced cost of the variable xj .

THEOREM 1. If the condition

Δj < 0 (resp., Δj > 0) (j = 1, 2, . . . ,n) (19.2.1.7)

holds for some nonbasic variable, then one can obtain a new feasible solution for which
the value of the objective function is greater (resp., less) than the original value. Here the
following two cases are possible:
1. If all entries in the column corresponding to the variable to be entered in the basic set

are nonpositive, then the linear programming problem does not have any solutions.
2. If the column corresponding to the variable to be entered in the basic set contains at

least one positive element, then a new feasible solution can be obtained.
THEOREM 2. If the condition

Δj ≥ 0 (resp., Δj ≤ 0) (j = 1, 2, . . . ,n) (19.2.1.8)

is satisfied, then the current feasible solution is optimal.
Remark 1. The reduced costs of basic variables are always zero.

Remark 2. A linear programming problem has infinitely many optimal solutions if the reduced cost of at
least one of the nonbasic variables is zero for an optimal solution.

The variable xk to be entered into the basic set is chosen, on the basis of the optimality
criterion, from the condition
1. minj{Δj} in the maximization problem;
2. maxj{Δj} in the minimization problem.
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The variable xr to be deleted from the basic set is chosen from the condition

θ = min
i

bi
aik

=
br
ark

; aik > 0 (i = 1, 2, . . . ,m). (19.2.1.9)

The entry ark is called the pivot entry, the row containing the pivot entry is called the pivot
row, and the column containing the pivot entry is called the pivot column.

To pass to a new feasible solution, one should perform the following actions:
1. The entries of the row to be entered, corresponding to the pivot row, are computed by

the formulas

ãrj =
arj
ark

(j = 1, 2, . . . ,n).

2. The elements of any other ith row are recomputed by the formulas

ãij =
aijark – arjaik

ark
(i = 1, 2, . . . ,m; j = 1, 2, . . . ,n).

3. The values of the basic variables of the new feasible solution are determined by the
formulas

b̃i =

{
bi/aik for i = r,
(biark – braik)/ark for i ≠ r (i = 1, 2, . . . ,m).

Example 3. Let us solve the linear programming problem

Z(x) = 5x1 + 2x2 + x3 → max,

x1 + 0x2 + 0x3 – x4 + 0x5 = 1,

0x1 + x2 + x3 + x4 + 0x5 = 2,

0x1 + 4x2 + 0x3 + 5x4 + x5 = 13,

xj ≥ 0 (j = 1, 2, . . . , 5).

Since the system of constraints in this problem contains an identity submatrix in the first, third, and fifth
columns, it follows that the variables x1, x3, x5 are basic and the variables x2 and x4 are nonbasic. The reduced
costs of the nonbasic variables are x2 = –1 < 0 and x4 = –4 < 0; hence the variable x4 should be entered into the
basic set. Since θ = min

{
2/1, 15/5

}
= 2, which corresponds to the variable x3, this variable should be deleted

from the basic set. The new basic set consists of the variables x1, x4, and x5, and the system of constraints
becomes

{
x1 + x2 + x3 + 0x4 + 0x5 = 3,
0x1 + x2 + x3 + x4 + 0x5 = 2,
0x1 – x2 – 5x3 + 0x4 + x5 = 3.

The reduced costs of the nonbasic variables are x2 = 3 > 0 and x3 = 4 > 0; hence the solution x = (3, 0, 0, 2, 3)
is optimal, and Zmin = 15 in this case.

If it is difficult to find a feasible initial solution of problem (19.2.1.3), then it is expedient
to use the method of artificial basic variables. For the original problem, one constructs
an extended problem by introducing artificial variables. These are nonnegative variables
introduced in the equality constraints so as to obtain a feasible initial solution. Each
artificial variable is introduced in the left-hand side of one of the equations in the system
of constraints with coefficient +1 and in the objective function with coefficient –M (in a
maximization problem) or +M (in a minimization problem), where M � 1. In the general
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case, the extended minimization problem has the form

Z(x, y) =
n∑

j=1

cjxj + M
m∑

k=1

yk → min,

a11x1 + a12x2 + · · · + a1nxn + y1 = b1,
a21x1 + a22x2 + · · · + a2nxn + y2 = b2,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
am1x1 + am2x2 + · · · + amnxn + ym = bm,
xj ≥ 0 (j = 1, 2, . . . ,n);
yi ≥ 0, bi ≥ 0 (i = 1, 2, . . . ,m).

(19.2.1.10)

THEOREM 1 (A SOLUTION OPTIMALITY TEST). If the extended linear programming
problem has an optimal solution (x∗1, . . . ,x∗n, 0, . . . , 0) in which all artificial variables are
zero, then the original problem has the optimal solution (x∗1, . . . ,x∗n) obtained from the
optimal solution of the extended problem by omitting the artificial variables.

THEOREM 2 (A TEST FOR THE INFEASIBILITY OF THE PROBLEM). If the extended linear
programming problem has an optimal solution in which at least one artificial variable is
nonzero, then the original problem is infeasible (i.e., has no solutions, since the system of
constraints is inconsistent).

THEOREM 3 (A TEST FOR THE UNBOUNDEDNESS OF THE PROBLEM). If the extended linear
programming problem is unbounded (i.e., has no solutions, since the objective function is
unbounded), then so is the original problem.

19.2.1-4. Duality in linear programming.

To each linear programming problem, called the primal, one can assign another problem,
called the dual. The primal and dual problems are related in such a way that the solution of
either of them can be directly obtained from the solution of the other.

Suppose that the primal has the form

Z(x) =
n∑

j=1

cjxj → max, (19.2.1.11)

n∑

j=1

aijxj ≤ bi (i = 1, 2, . . . ,m), (19.2.1.12)

xj ≥ 0 (j = 1, 2, . . . ,n). (19.2.1.13)

Then the dual has the form

W (y) =
m∑

i=1

biyi → min, (19.2.1.14)

m∑

i=1

aijyi ≥ cj (j = 1, 2, . . . ,n), (19.2.1.15)

yi ≥ 0 (j = 1, 2, . . . ,m). (19.2.1.16)
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The rules for constructing the dual problem are as follows:
1. In all constraints of the primal problem, the constant terms must be on the right-hand

side, and the terms with the unknowns must be on the left-hand side.
2. All inequality constraints must have the same inequality signs.
3. The matrix

A =

⎛

⎜⎜
⎝

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎞

⎟⎟
⎠

of coefficients of the unknowns in the system of constraints (19.2.1.12) of the primal
problem and the similar matrix

AT =

⎛

⎜
⎜
⎝

a11 a21 · · · am1
a12 a22 · · · am2

...
...

. . .
...

a1n a2n · · · amn

⎞

⎟
⎟
⎠

for the dual problem are obtained from each other by transposition.
4. If the inequality constraints of the primal problem have the ≤ signs, then the objective

function Z(x) must be maximized; if the signs are ≥, then the objective function Z(x)
must be minimized.

5. To each constraint in the primal problem, there corresponds an unknown in the dual
problem. The unknown corresponding to an inequality constraint must be nonnegative,
and the unknown corresponding to an equality constraint may have any sign.

6. The number of variables in the dual problem is equal to the number of functional
constraints (19.2.1.12) in the primal problem, and the number of constraints in sys-
tem (19.2.1.15) of the dual problem is equal to the number of variables in the primal
problem.

7. The coefficients of the unknowns in the objective function (19.2.1.14) of the dual
problem are equal to the constant terms in system (19.2.1.12) of constraints in the
primal problem. The right-hand sides of constraints (19.2.1.15) in the dual problem are
equal to the coefficients of the unknowns in the objective function (19.2.1.11) of the
primal problem.

8. The objective function W (y) of the dual problem is to be minimized if Z(x) is to be
maximized (i.e., if Z(x) → max, then W (y) → min), and vice versa.
Duality theorems establish a relationship between the optimal solutions of a pair of dual

problems.

FIRST DUALITY THEOREM. For a pair of mutually dual linear programming problems,
one of the following alternative cases holds:
1. If one of the problems has an optimal solution, then so does the other, and the objective

values on the optimal solutions are the same for both problems.
2. If one of the problems is unbounded, then the other is infeasible.

SECOND DUALITY THEOREM. Let x = (x1, . . . ,xn) be a feasible solution of the primal
problem (19.2.1.11)–(19.2.1.13), and let y = (y1, . . . , ym) be a feasible solution of the dual
problem (19.2.1.14)–(19.2.1.16). These solutions are optimal in the respective problems if
and only if

xj

( m∑

i=1

aijyi – cj
)

= 0 (j = 1, 2, . . . ,n); (19.2.1.17)
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yi

( n∑

j=1

aijxj – bi
)

= 0 (i = 1, 2, . . . ,m). (19.2.1.18)

In other words, if the ith constraint in the primal problem is inactive (holds with strict
inequality) for an optimal solution of the primal problem, then the ith coordinate of the
optimal solution of the dual problem is zero, and, conversely, if the ith coordinate of the
optimal solution of the dual problem is nonzero, then the ith constraint in the primal problem
is active (holds with equality) for the optimal solution of the primal problem.

Example 4. Suppose that the primal problem has the form

Z(x) = –2x1 + 4x2 + 14x3 + 2x4 → min,

– 2x1 – x2 + x3 + 2x4 = 6,

– x1 + 2x2 + 4x3 – 5x4 = 30,

xj ≥ 0 (j = 1, 2, 3, 4).

Then the dual problem is
W (y) = 6y1 + 30y2 → max,

– 2y1 – y2 ≤ –2,

– y1 + 2y2 ≤ 4,

y1 + 4y2 ≤ 14,

2y1 – 5y2 ≤ 2.

The optimal solution of the dual problem is yopt = (2, 3). After the substitution of the optimal solution into
the system of constraints in the dual problem, we see that the first and last constraints are satisfied with strict
inequality,

– 2 × 2 – 3 < –2 ⇒ x∗
1 = 0,

– 2 + 2 × 3 = 4 ⇒ x∗
2 > 0,

2 + 4 × 3 = 14 ⇒ x∗
3 > 0,

2 × 2 – 5 × 3 < 2 ⇒ x∗
4 = 0.

By the second duality theorem, the corresponding coordinates of the optimal solution of the primal problem
are zero, x∗

1 = x∗
4 = 0. The system of constraints of the primal problem acquires the form

– x2 + x3 = 6,

2x2 + 4x3 = 30,

which implies that x∗
2 = 1, x∗

3 = 7.
Thus xopt = (0, 1, 7, 0) is the optimal solution of the primal problem.

19.2.1-5. Transportation problem. General statement of problem.

Suppose that m supply sources A1, . . . , Am have amounts a1, . . . , am of identical goods
that must be shipped to n consumers B1, . . . , Bn with respective demands b1, . . . , bn for
these goods. Let cij (i = 1, 2, . . . ,m; j = 1, 2, . . . ,n) be the unit transportation cost from
supply source i to consumer destination j. The problem is to find a flow of least cost that
ships from supply sources to consumer destinations.

The input data of the transportation problem are usually presented in the form of the
table shown in Fig. 19.1.

Let xij (i = 1, 2, . . . ,m; j = 1, . . . ,n) be the flow from supply source i to consumer
destination j. The mathematical model of the transportation problem in the general case
has the form

Z(x) =
m∑

i=1

n∑

j=1

cijxij → min, (19.2.1.19)
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Figure 19.1. The input data of the transportation problem.

n∑

j=1

xij = ai (i = 1, 2, . . . ,m), (19.2.1.20)

m∑

i=1

xij = bj (j = 1, 2, . . . ,n), (19.2.1.21)

xij > 0, ai ≥ 0, bj ≥ 0 (i = 1, 2, . . . ,m; j = 1, 2, . . . ,n). (19.2.1.22)

The objective function (19.2.1.19) is the total transportation cost to be minimized. Equa-
tions (19.2.1.20) mean that each supply source must ship all goods present at that source.
Equations (19.2.1.21) mean that the demands of all consumers must be completely satisfied.
Inequalities (19.2.1.22) are the conditions that all variables in the problem are nonnegative.

A necessary and sufficient condition for the solvability of (19.2.1.19)–(19.2.1.22) is the
balance condition

m∑

i=1

ai =
n∑

j=1

bj . (19.2.1.23)

A transportation problem satisfying relation (19.2.1.23) is said to be balanced, and the
corresponding model is said to be closed. If this relation does not hold, then the problem is
said to be unbalanced and the corresponding model is said to be open.

Under the balance condition (19.2.1.23), the rank of the system of equations (19.2.1.20),
(19.2.1.20) is equal to n + m – 1; therefore, n + m – 1 out of the mn unknown variables
must be basic variables. It follows that for any feasible basic flow the number of occupied
cells in the transportation tableau shown in Fig. 19. 1 is equal to n + m – 1; these cells are
usually said to be basic and the other cells are said to be nonbasic.

There are various methods for obtaining a feasible initial solution (a feasible shipment)
in the transportation problem, including the cross-out method, the northwest corner rule, the
minimal cost method, Vogel’s approximation method, etc. Of these methods, the minimal
cost method is simplest and most convenient.

Minimal cost method. The method consists of several steps of the same type. At each
step, one fills only one cell in the tableau corresponding to the minimal cost mini,j{cij} and
excludes only one row (supply source) or column (consumer destination) from subsequent
considerations. A supply source is excluded if its supply of goods is completely exhausted.
A consumer is eliminated if his demand is completely satisfied. At each step, either a supply
source or a consumer is excluded. If a supply source is yet to be excluded but its supply of
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goods is already zero, then, at the step where it should (but cannot) supply goods, a basic
zero is written in the corresponding cell and only after this the supply source is excluded.
Consumers are treated similarly.

Reduction of an unbalanced transportation problem to a balanced transportation prob-
lem.
1. If the total supply exceeds the total demand, i.e.,

m∑

i=1

ai >
n∑

j=1

bj ,

then one introduces fictitious consumer n + 1 with demand

bn+1 =
m∑

i=1

ai –
n∑

j=1

bj

equal to the difference between the total supply and total demand and with zero unit
transportation costs ci(n+1) = 0 (i = 1, 2, . . . ,m).

2. If the total demand exceeds the total supply, i.e.,
m∑

i=1

ai <
n∑

j=1

bj ,

then one introduces fictitious supply source m + 1 with supply

am+1 =
n∑

j=1

bj –
m∑

i=1

ai

equal to the difference between the total demand and the total supply and with zero unit
transportation costs c(m+1)j = 0 (j = 1, 2, . . . ,n).
Remark. When constructing the initial basic solution, the supply of the fictitious source and the demands

of the fictitious consumer are the last to be assigned, even though they correspond to minimum (zero) unit
transportation costs.

19.2.1-6. Method of potentials.

A balanced transportation problem can be solved as a linear programming problem. But
there are less cumbersome methods for solving the transportation problem. The most widely
used method is the method of potentials.

If a feasible solution X ≡ [xij] (i = 1, 2, . . . ,m; j = 1, 2, . . . ,n) of the transportation
problem is optimal, then there exist supplier potentials ui (i = 1, 2, . . . ,m) and consumer
potentials vj (j = 1, 2, . . . ,n) satisfying the following conditions:

ui + vj = cij for basic cells, (19.2.1.24)
ui + vj ≤ cij for nonbasic cells. (19.2.1.25)

Relations (19.2.1.24) are used as a system of equations for the potentials. This system has
n + m unknowns and n + m – 1 equations. Since the number of unknowns exceeds the
number of equations by one, one of the variables can be taken arbitrarily, and the others are
then found from the system.

Inequalities (19.2.1.25) are used to verify the optimality of a basic solution. To this end,
the reduced costs

Δij = ui + vj – cij (19.2.1.26)

of nonbasic cells are used.
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Remark 1. For basic cells, the quantities Δij are zero, Δij = 0.

Remark 2. The variables ui (i = 1, 2, . . . ,m) are dual to the respective constraints in (19.2.1.20), and the
variables vj (j = 1, 2, . . . ,n) are dual to the respective constraints in (19.2.1.21). The dual problem has the
form

m∑

i=1

aiui +
n∑

j=1

bjvj → min,

ui + vj ≤ cij (i = 1, 2, . . . ,m, j = 1, 2, . . . ,n).

THEOREM (AN OPTIMALITY CRITERION). An admissible solution is optimal if the reduced
costs are nonpositive for all cells in the tableau.

A cycle is a sequence (i1, j1), (i1, j2), (i2, j2), . . . , (ik, j1) of cells in the transportation
problem tableau in which exactly two neighboring cells lie in the same row or column and,
moreover, the first and last cells also lie in the same row or column.

If the current basic solution is not optimal, then one needs to pass to a new solution with
smaller value of the objective function. To this end, in the tableau one takes the cell with
the largest positive reduced cost

max{Δij} = Δlk.

Next, one constructs a cycle including this cell and some basic cells. The cells in the cycle
are alternately marked by “+” and “–” signs starting from the cell with the largest positive
reduced cost. For the “–” cells, one finds the quantity θ = min{xij}. Next, one performs a
shift (redistribution of goods) over the cycle by θ. The “–” cell at which min{xij} is attained
becomes empty. If the minimum is attained at several cells, then one of them becomes empty
and the other cells are filled with basic zeros, so that the number of occupied cells remains
equal to n +m – 1.

Example 5. Let us solve the transportation problem with the following input data (see Fig. 19.2):

Figure 19.2. Input data for Example 5.

The total demand
4∑

j=1
bj = 200+200+300+400 = 1100 exceeds the total supply

3∑

i=1
ai = 200+300+500 = 1000

by 100 units; hence the transportation problem is unbalanced. One should introduce the fictitious fourth supply
source with supply a4 = 100 and with zero unit transportation costs (see Fig. 19.3).

The initial basic solution x1 is found by the minimal cost method (Fig. 19.3). On this solution, the objective
function takes the value

Z(x1) = 1 × 200 + 2 × 200 + 3 × 100 + 7 × 100 + 9 × 300 + 12 × 100 + 0 × 100 = 5300.
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Figure 19.3. Introduction of the fictitious fourth supply source. The initial basis solution.

To verify whether the basic solution is optimal, we find the potentials. To this end, we use system (19.2.1.24),
which acquires the form

u1 + v4 = 1,

u2 + v1 = 2,

u2 + v2 = 3,

u3 + v2 = 7,

u3 + v3 = 9,

u3 + v4 = 12,

u4 + v4 = 0.

Let u3 = 0. Then the other potentials are determined uniquely: v2 = 7, v3 = 9, v4 = 12, u1 = –11, u4 = –12,
u2 = –4, and v1 = 6. The values of the potentials are written down in the tableau for the solution of the
transportation problem (see Fig. 19.4).

Figure 19.4. Determination of potentials. Construction of the cycle.

Next, we verify whether the solution x1 is optimal. To this end, using (19.2.1.26), we find the reduced
costs Δij for all empty (nonbasic) cells of the tableau. The solution x1 is not optimal since there is a positive
reduced cost Δ24 = u2 + v4 – c24 = –4 + 12 – 6 = 2.

For cell (2, 4) with positive reduced cost, we construct the cycle (2, 4), (3, 4), (3, 2), (2, 2), (2, 4). The cycle
is shown in Fig. 19.4. At the corners of the cycle, we alternately write the “+” and “–” signs, starting from cell
(2, 4). For the cells with the “–” sign, we have θ = min{100, 100}. Then we perform a shift (redistribution of
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Figure 19.5. The second basis solution.

goods) over the cycle by θ = 100 and obtain the second basic solution x2 (see Fig. 19.5). Once the system of
potentials has been found (Fig. 19.5), we see that the solution x2 is optimal. The objective function takes the
value

Z(x2) = 1 × 200 + 2 × 200 + 6 × 100 + 7 × 200 + 9 × 300 + 0 × 100 = 5200

on this solution. Thus, Zmin(X) = 5200 for

X∗ =

( 0 0 0 200
200 0 0 100

0 200 300 0

)

.

19.2.1-7. Game theory.

Mathematical models of conflict situations are called games, and their participants are
called players. Mathematical models of conflict situations and various methods for solving
problems that arise in these situations are constructed in game theory.

According to the number of players, the games are divided into two-person and n-
person games. In n-person games, the players’ interests may coincide. In this case, they
can cooperate and form coalitions. Such games are called coalition games.

A player’s strategy is a set of rules uniquely determining the player’s behavior in each
specific situation arising in the game. A strategy ensuring the maximum possible mean
payoff for a player in repeated games is said to be optimal. The number of possible strategies
of each player can be either finite or infinite. Depending on this, the games are divided into
finite and infinite games.

Games in which one of the players is indifferent to the results are usually called “games
with nature.”

A two-person game in which the payoff of one player is equal to the loss of the other
player is called an antagonistic two-person zero-sum game. Suppose that two players A
and B have finitely many pure strategies: player A can choose any of m strategies A1, . . . ,
Am, and player B can choose any of n strategies B1, . . . , Bn. These strategies determine
the payoff matrix ⎛

⎜
⎜
⎝

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎞

⎟
⎟
⎠ , (19.2.1.27)
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where aij is the payoff (positive or negative) of player A against player B if player A uses
the pure strategy Ai and player B used the pure strategy Bj .

Remark. The sum of payoffs of both players is zero for each move. (That is why the game is called a
zero-sum game.)

Let αi = minj{aij} be the minimum possible payoff of player A if he uses the pure
strategy Ai. If player A acts reasonably, he must choose a strategy Ai for which αi is
maximal,

α = max
i

{αi} = max
i

min
j

{aij}. (19.2.1.28)

The number α is called the lower price of the game. Let βj = max
i

{
aij
}

be the maximum

possible loss of player B if he uses the pure strategy Bj . If player B acts reasonably, he
must choose a strategy Bj for which βj is minimal,

β = min
j
βj = min

j
max
i

{aij}. (19.2.1.29)

The number β is called the upper price of the game.

Remark. The principle for constructing the strategies of player A (the first player) based on the maxi-
mization of minimal payoffs is called the maximin principle. The principle for constructing the strategies of
player B (the second player) based on the minimization of maximal losses is called the minimax principle.

The lower price of the game is the guaranteed minimal payoff of player A if he follows
the maximin principle. The upper price of the game is the guaranteed maximal loss of
player B if he follows the minimax principle.

THEOREM. In a two-person zero-sum game, the lower price α and the upper price β
satisfy the inequality

α ≤ β. (19.2.1.30)

Ifα=β, then such a game is called the game with a saddle point, and a pair (Ai,opt,Bj,opt)
of optimal strategies is called a saddle point of the payoff matrix. The entry v = aij
corresponding to a saddle point (Ai,opt,Bj,opt) is called the game value. If a game has a
saddle point, then one says that the game can be solved in pure strategies.

Remark. There can be several saddle points, but they all have the same value.

If the payoff matrix has no saddle points, i.e., the strict inequality α < β holds, then the
search of a solution of the game leads to a complex strategy in which a player randomly
uses two or more strategies with certain frequencies. Such complex strategies are said to
be mixed.

The strategies of player A are determined by the set x = (x1, . . . ,xm) of probabilities
that the player uses the respective pure strategies A1, . . . , Am. For player B, the strategies
are determined by the set y = (y1, . . . , yn) of probabilities that the player uses the respective
pure strategies B1, . . . , Bn. These sets of probabilities must satisfy the identity

m∑

i=1

xi =
n∑

j=1

yj = 1.

The expectation of the payoff of player A is given by the function

H(x, y) =
m∑

i=1

n∑

j=1

aijxiyj . (19.2.1.31)



1026 CALCULUS OF VARIATIONS AND OPTIMIZATION

THE VON NEUMANN MINIMAX THEOREM. There exist optimal mixed strategies x∗ and y∗,
i.e., strategies such that

H(x, y∗) ≤ H(x∗, y∗) ≤ H(x∗, y) (19.2.1.32)

for any probabilities x and y.

The number v = H(x∗, y∗) is called the game price in mixed strategies.

MINIMAX THEOREM FOR ANTAGONISTIC TWO-PERSON ZERO-SUM GAMES.
For any payoff matrix (19.2.1.27),

v = max
x1,...,xm

(
min
y1,...,yn

m∑

i=1

n∑

j=1

aijxiyj

)
= min
y1,...,yn

(
max

x1,...,xm

m∑

i=1

n∑

j=1

aijxiyj

)
. (19.2.1.33)

19.2.1-8. Relationship between game theory and linear programming.

Without loss of generality, we can assume that v > 0. This can be ensured if we add the
same positive constant a > 0 to all entries aij of the payoff matrix (19.2.1.27); in this case,
only the game price varies (increases by a > 0), while the optimal solution remains the
same.

An antagonistic two-person zero-sum game can be reduced to a linear programming
problem by the change of variables

v =
1

Zmin
=

1
Wmax

,

xi = vXi (i = 1, 2, . . . ,m);
yj = vYj (j = 1, 2, . . . ,n).

(19.2.1.34)

The quantitiesZmin,Wmax,Xi, andYj form a solution of the following pair of dual problems:

Z = X1 +X2 + · · · +Xm → min,

a11X1 + a21X2 + · · · + am1Xm ≥ 1,

a12X1 + a22X2 + · · · + am2Xm ≥ 1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a1nX1 + a2nX2 + · · · + amnXm ≥ 1,

Xi ≥ 0 (i = 1, 2, . . . ,m);

(19.2.1.35)

W = Y1 + Y2 + · · · + Yn → max,

a11Y1 + a12Y2 + · · · + a1nYn ≤ 1,

a21Y1 + a22Y2 + · · · + a2nYn ≤ 1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1Y1 + am2Y2 + · · · + amnYn ≤ 1,

Yj ≥ 0 (j = 1, 2, . . . ,n).

(19.2.1.36)
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19.2.2. Nonlinear Programming

19.2.2-1. General statement of nonlinear programming problem.

The nonlinear programming problem is the problem of finding n variables x = (x1, . . . ,xn)
that provide an extremum of the objective function

Z(x) = f (x) → extremum (19.2.2.1)

and satisfy the system of constraints

ϕi(x) = 0 for i = 1, 2, . . . , k,
ϕi(x) ≤ 0 for i = k + 1, k + 2, . . . , l,
ϕi(x) ≥ 0 for i = l + 1, l + 2, . . . ,m.

(19.2.2.2)

Here the objective function (19.2.2.1) and/or at least one of the functions ϕi(x) (i =
1, 2, . . . ,m) is nonlinear.

Depending on the properties of the functions f (x) and ϕi(x), the following types of
problems are distinguished:
1. Convex programming.
2. Quadratic programming.
3. Geometric programming.

A necessary condition for the maximum of the function

Z(x) = f (x) (19.2.2.3)

under the inequality constraints

ϕi(x) ≤ 0 (i = 1, 2, . . . ,m)

is that there exist m + 1 nonnegative Lagrange multipliers λ0, λ1, . . . , λm that are not
simultaneously zero and satisfy the conditions

λi ≥ 0 (i = 0, 1, . . . ,m),
λiϕi(x) = 0 (i = 1, 2, . . . ,m),

λ0fxj +
m∑

i=1

λi(ϕi)xj = 0,
(19.2.2.4)

where derivatives fxj and (ϕi)xj are evaluated at x.
One of the most widely used methods of nonlinear programming is the penalty function

method. This method approximates a problem with constraints by a problem without
constraints and with objective function that penalizes infeasibility. The higher the penalties,
the closer the problem of maximizing the penalty function is to the original problem.

19.2.2-2. Dynamic programming.

Dynamic programming is the branch of mathematical programming dealing with multistage
optimal decision-making problems.

The general outline of a multistage optimal decision-making process is as follows.
Consider a controlled system S taken by the control from an initial state s0 to a state s̃. Let
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xk (k = 1, 2, . . . ,n) be the control at the kth stage, let x = (x1, . . . ,xn) be the control taking
the system S from the state s0 to the state s̃, and let sk be the state of the system after the
kth control step. The efficiency of the control is characterized by an objective function that
depends on the initial state and the control,

Z = F (s0, x). (19.2.2.5)

We assume that
1. The state sk depends only on the preceding state sk–1 and the control xk at the kth step,

sk = ϕk(sk–1,xk) (k = 1, 2, . . . ,n). (19.2.2.6)

2. The objective function (19.2.2.5) is an additive function of the performance factor at
each step.
If the performance factor at the kth step is

Zk = fk(sk–1,xk) (k = 1, 2, . . . ,n), (19.2.2.7)

then the objective function (19.2.2.5) can be written as

Z =
n∑

k=1

fk(sk–1,xk). (19.2.2.8)

The dynamic programming problem. Find an admissible control x taking the sys-
tem S from the state s0 to the state s̃ and maximizing (or minimizing) the objective
function (19.2.2.8).

THEOREM (BELLMAN’S OPTIMALITY PRINCIPLE). For any state s of the system after any
number of steps, one should choose the control at the current step so as to ensure that this
control, together with the optimal control at all subsequent steps, leads to the optimal payoff
at all remaining steps, including the current step.

Let Z∗
k (sk–1) be the conditional maximum of the objective function obtained under the

optimal control at n–k–1 steps starting from the kth step until the end under the assumption
that the system was in the state sk–1 by the beginning of the kth step. The equations

Z∗
n(sn–1) = max

xn

{fn(sn–1,xn)},

Z∗
k (sk–1) = max

xk

{fk(sk–1,xk) + Z∗
k+1(sk)} (k = n – 1,n – 2, . . . , 1)

are called the Bellman equations. The Bellman equations for the dynamic programming
problem and for any n and s0 permit finding a solution, which is given by

Zmax = Z∗
1 (s0).
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Chapter 20

Probability Theory

20.1. Simplest Probabilistic Models
20.1.1. Probabilities of Random Events

20.1.1-1. Random events. Basic definitions.

The simplest indivisible mutually exclusive outcomes of an experiment are called elementary
events ω. The set of all elementary outcomes, which we denote by the symbol Ω, is called
the space of elementary events or the sample space. Any subset of Ω is called a random
event A (or simply an event A). Elementary events that belong to A are said to favor A. In
any probabilistic model, a certain condition set Σ is assumed to be fixed.

An eventA implies an eventB (A⊆B) ifB occurs in each realization of Σ for whichA
occurs. Events A and B are said to be equivalent (A = B) if A implies B and B implies A,
i.e., if, for each realization of Σ, both events A and B occur or do not occur simultaneously.

The intersection C = A ∩ B = AB of events A and B is the event that both A and B
occur. The elementary outcomes of the intersection AB are the elementary outcomes that
simultaneously belong to A and B.

The union C = A ∪ B = A + B of events A and B is the event that at least one of the
events A or B occurs. The elementary outcomes of the union A + B are the elementary
outcomes that belong to at least one of the events A and B.

The difference C =A\B =A–B of eventsA andB is the event thatA occurs andB does
not occur. The elementary outcomes of the difference A\B are the elementary outcomes
of A that do not belong to B.

The event that A does not occur is called the complement of A, or the complementary
event, and is denoted by A. The elementary outcomes of A are the elementary outcomes
that do not belong to the event A.

An event is said to be sure if it necessarily occurs for each realization of the condition
set Σ. Obviously, the sure event is equivalent to the space of elementary events, and hence
the sure event should be denoted by the symbol Ω.

An event is said to be impossible if it cannot occur for any realization of the condition
set Σ. Obviously, the impossible event does not contain any elementary outcome and hence
should be denoted by the symbol ∅.

Two events A and A are said to be opposite if they simultaneously satisfy the following
two conditions:

A ∪A = Ω, A ∩A = ∅.

EventsA and B are said to be incompatible, or mutually exclusive, if their simultaneous
realization is impossible, i.e., if A ∩B = ∅.

Events H1, . . . , Hn are said to form a complete group of events, or to be collectively
exhaustive, if at least one of them necessarily occurs for each realization of the condition
set Σ, i.e., if

H1 ∪ · · · ∪Hn = Ω.
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Events H1, . . . , Hn form a complete group of pairwise incompatible events (are hy-
potheses) if exactly one of the events necessarily occurs for each realization of the condition
set Σ, i.e., if

H1 ∪ · · · ∪Hn = Ω and Hi ∩Hj = ∅ (i ≠ j).

Main properties of random events:

1. A ∪B = B ∪A and A ∩B = B ∩A (commutativity).
2. (A∪B)∩C = (A∩C)∪ (B ∩C) and (A∩B)∪C = (A∪C)∩ (B ∪C) (distributivity).
3. (A ∪B) ∪ C = A ∪ (B ∪ C) and (A ∩B) ∩ C = A ∩ (B ∩ C) (associativity).
4. A ∪A = A and A ∩A = A.
5. A ∪ Ω = Ω and A ∩ Ω = A.
6. A ∪A = Ω and A ∩A = ∅.
7. ∅ = Ω, Ω = ∅, and A = A;
8. A\B = A ∩B.
9. A ∪B = A ∩B and A ∩B = A ∪B (de Morgan’s laws).

20.1.1-2. Axiomatic definition of probability.

In the case of an uncountable sample space Ω, not all subsets of Ω but only subsets belonging
to certain classes, called algebras of sets and σ-algebras, are viewed as events.

A class F of subsets of the space Ω is called an algebra of sets (events) if ∅ �F , Ω �F ,
and the following conditions are satisfied:
1. If A � F , then A � F .
2. If A � F and B � F , then A ∪B � F and A ∩B � F .

The simplest example of an algebra of events is the systemF = {∅, Ω}. Indeed, applying
any of the operations listed above to any elements of the class F , we obtain an element of
this class: ∅ ∪ Ω = Ω, ∅ ∩ Ω = ∅, ∅ = Ω, and ∅ = Ω.

An algebra of sets F of subsets of the space Ω is called a σ-algebra if the following
condition is satisfied: if An � F , n = 1, 2, . . . , then ∪

n
An � F and ∩

n
An � F .

The elements of F are called random events.

The probability of an event is defined to be a single-valued real function P (A) defined
on the σ-algebra of events F and satisfying the following three axioms:
1. Nonnegativity: P (A) ≥ 0 for any A � F .
2. Normalization: P (Ω) = 1.
3. Additivity: P

(∪
n
An
)

=
∑

n
P (An), provided that Ai ∩Aj = ∅ whenever i ≠ j.

A probability space is a triple (Ω,F ,P ), where Ω = Ω(ω) is a space of elementary
events, F is a σ-algebra of subsets of Ω, called random events, and P (A) is a probability
defined on the σ-algebra F .

Properties of probability:

1. The probability of an impossible event is zero; i.e., P (∅) = 0.
2. The probability of the event A opposite to an event A is equal to P (A) = 1 – P (A).
3. Probability is a bounded function; i.e., 0 ≤ P (A) ≤ 1.
4. If an event A implies an event B (A ⊆ B), then P (A) ≤ P (B).
5. If events H1, . . . ,Hn form a complete group of pairwise incompatible events, then

n∑

i=1
P (Hi) = 1.
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20.1.1-3. Discrete probability space. Classical definition of probability.

Suppose that Ω = {ω1, . . . ,ωn} is a finite space. The σ-algebra F of events includes all 2n
subsets of Ω. To each elementary event ωi � Ω (i = 1, 2, . . . ,n) there corresponds a number
p(ωi), called the probability of the elementary event ωi. Thus a real function satisfying the
following two conditions is defined on the set Ω:
1. Nonnegativity condition: p(ωi) ≥ 0 for any ωi � Ω.

2. Normalization condition:
n∑

i=1
p(ωi) = 1.

The probability P (A) of an event A for any subset A ⊂ Ω is defined to be the sum of
probabilities of the elementary events that form A; i.e.,

P (A) =
∑

ωi�A

p(ωi). (20.1.1.1)

The triple (Ω,F ,P ) thus defined is a finite discrete probability space.
A special case of the definition of probability (20.1.1.1) is the classical definition of

probability, in which all elementary events are equiprobable: p(ω1) = · · · = p(ωn) = 1/n.
Then the probability P (A) of an eventA = {ωi1 , . . . ,ωim } is equal to the ratio of the number
of elementary events ωi contained in A (the number of outcomes that favor A) to the total
number of elementary events in Ω (the number of all possible outcomes),

P (A) =
|A|
|Ω|

=
m

n
. (20.1.1.2)

Example 1. Let two dice be thrown. Under the assumption that the elementary events are equiprobable,
find the probability of the event A that the sum of numbers shown is greater than 10. Obviously, the sample
space can be represented as Ω = {(i, j) : i, j = 1, 2, 3, 4, 5, 6}, where i is the number shown by the first die
and j is the number shown by the second die. The total number of elementary events is |Ω| = 36. The
event A corresponds to the subset A = {(5, 6), (6, 5), (6, 6)} of Ω. Since |A| = 3, formula (20.1.1.2) gives
P (A) = |A|/|Ω| = 3/36 = 1/12.

20.1.1-4. Sampling without replacement.

Let Δ = {1, . . . ,n} be the set of n numbers, and let ω = (i1, . . . , im) be an ordered sequence
of m elements of Δ. Random sampling without replacement is the sampling scheme in
which

Ω = {ω = (i1, . . . , im) : ik � Δ, k = 1, . . . ,m, and all i1, . . . , im are distinct} (20.1.1.3)

and all elementary events ω are equiprobable.
When calculating probabilities by formula (20.1.1.2), the following combinatorial for-

mulas are often useful. Suppose that a set Δ = {a1, . . . , an} of n elements is given. Subsets
of Δ are called combinations. The number of distinct combinations of n elements of Δ
taken m at a time is denoted by Cmn or

(
n
m

)
. The following formula holds:

Cmn ≡
(
n
m

)
=

n!
(n –m)!m!

. (20.1.1.4)

Ordered sequences ai1 , . . . , aim of distinct elements of Δ are called arrangements, or
permutations of n elements taken m at a time. The number of arrangements of m out of n
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elements, i.e., the number of ordered sequences of m distinct elements selected from n
elements, is denoted by Amn . One has

Amn = n(n – 1) . . . (n – m + 1) =
n!

(n –m)!
. (20.1.1.5)

Arrangements withm = n are called permutations. The number of distinct permutations
Pn on n elements is given by the formula

Pn = n!. (20.1.1.6)

20.1.1-5. Sampling with replacement.

The sampling scheme in which

Ω = {ω = (i1, . . . , im) : ik � Δ, k = 1, 2, . . . ,n} (20.1.1.7)

and all elementary events ω are equiprobable is called random sampling with replacement.
If, for random sampling of m out of n elements with replacement, no subsequent

ordering is performed (i.e., each of the n elements can occur 0, 1, . . . , or m times in
any combination), then one speaks of combinations with repetitions. The numberCmn of
all distinct combinations with repetitions of n elements taken m at a time is given by the
formula

Cmn = Cmn+m–1. (20.1.1.8)

If, for random sampling of m out of n elements with replacement, the chosen elements
are ordered in some way, then one speaks of arrangements with repetitions. The number
A
m
n of distinct arrangements with repetitions of n elements taken m at a time is given by

the formula
A
m
n = nm. (20.1.1.9)

Suppose that a set of n elements contains k distinct elements, of which the first occurs
n1 times, the second occurs n2 times, . . . , and the kth occurs nk times, n1 + · · · + nk = n.
Permutations ofn elements of this set are called permutations with repetitions onn elements.
The number Pn(n1, . . . ,nk) of permutations with repetitions on n elements is given by the
formula

Pn(n1, . . . ,nk) =
n!

n1! . . . nk!
. (20.1.1.10)

Example 2. Consider the set {1, 2, 3} of n = 3 elements. The elements of this set give P3 = 3! = 6
permutations: (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1). For m = 2, there are

1. C2
3 ≡
( 3

2

)
= 3 combinations without repetitions [(1, 2), (1, 3), (2, 3)].

2. C2
3 = C2

3+2–1 = C2
4 = 6 combinations with repetitions [(1, 2), (1, 3), (2, 3), (1, 1), (2, 2), (3, 3)].

3. A2
3 = 3 arrangements without repetitions [(1, 2), (1, 3), (2, 3), (2, 1), (3, 2), (3, 1)].

4. A
2
3 = 32 = 9 arrangements with repetitions [(1, 2), (1, 3), (2, 3), (2, 1), (3, 2), (3, 1), (1, 1), (2, 2), (3, 3)].

20.1.1-6. Geometric definition of probability.

Let Ω be a set of positive finite measure μ(Ω) in the n-dimensional Euclidean space, and
let the σ-algebra F consist of all measurable (i.e., having a measure) subsets A ⊆ Ω. The
geometric probability of an event A is defined to be the ratio of the measure of A to that
of Ω,

P (A) =
μ(A)
μ(Ω)

(A � F). (20.1.1.11)

The notion of geometric probability is not invariant under transformations of the domain
Ω and depends on how the measure μ(A) is introduced.
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Example 3. A point is randomly thrown into a disk of radius R = 1. Find the probability of the event that
the point lands in the disk of radius r = 1

2 centered at the same point.
First method. Let A be the event that the point lands in the smaller disk. We find the probability P (A) as

the ratio of the area of the smaller disk to that of the larger disk:

P (A) =
πr2

πR2 =
1
4

.

Second method. Consider the polar coordinate system in which the position of a point is determined by
the angle ϕ between the position vector of the point and the axis OX and by the distance ρ from the point
to the origin. Since all points equidistant from the center either belong or do not belong to the smaller disk
simultaneously, it follows that the probability of landing in this disk is equal to the ratio of the radii:

P (A) =
r

R
=

1
2

.

Thus we have obtained two different answers in the same problem. The cause is that the notion of geometric
probability is not invariant under transformations of the domain Ω and depends on how the measure μ(A) is
introduced.

20.1.2. Conditional Probability and Simplest Formulas

20.1.2-1. Probability of the union of events.

The probability of realization of at least one of two eventsH1 andH2 is given by the formula

P (H1 ∪H2) = P (H1) + P (H2) – P (H1 ∩H2). (20.1.2.1)

In particular, for H1 ∩H2 = ∅, we have

P (H1 ∪H2) = P (H1) + P (H2). (20.1.2.2)

The probability of realization of at least one of n events is given by the formula

P (H1 ∪ · · · ∪Hn) =
n∑

k=1

P (Hk) –
∑

1≤k1<k2≤n

P (Hk1 ∩Hk2)

+
∑

1≤k1<k2<k3≤n

P (Hk1 ∩Hk2 ∩Hk3) – · · · + (–1)n–1P (H1 ∩ · · · ∩Hn). (20.1.2.3)

20.1.2-2. Conditional probability.

The conditional probability P (A|H), or PH(A), of an eventA given the occurrence of some
other event H is defined by the formula

P (A|H) =
P (A ∩H)
P (H)

, P (H) > 0. (20.1.2.4)

The conditional probability P (A|H) can be treated as the probability of the event A under
the condition that the event H occurs.

Relation (20.1.2.4) can be written as the “probability multiplication theorem”

P (A ∩H) = P (H)P (A|H). (20.1.2.5)

The formula

P (A1 ∩ · · · ∩An) = P (A1)P (A2|A1)P (A3|A1 ∩A2) . . . P (An|A1 ∩ · · · ∩An–1)

is a generalization of (20.1.2.5).
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20.1.2-3. Independence of events.

Two random events A and B are said to be statistically independent if the conditional
probability of A, given B, coincides with the unconditional probability of A,

P (A|B) = P (A). (20.1.2.6)

Random events A1, . . . , An are jointly statistically independent if the relation

P
( m⋂

k=1

Aik

)
=

m∏

k=1

P (Aik ) (20.1.2.7)

holds whenever 1 ≤ i1 < · · · < im ≤ n and m ≤ n.
The pairwise independence of the events Ai and Aj for all i ≠ j (i, j = 1, 2, . . . ,n) does

not imply that the events A1, . . . , An are jointly independent.

Example 1. Suppose that the experiment is to draw one of four balls. Let three of them be labeled by the
numbers 1, 2, and 3, and let the fourth ball bear all these numbers. By Ai (i = 1, 2, 3) we denote the event that
the chosen ball bears the number i. Are the events A1, A2, and A3 dependent?

Since each number is encountered twice, P (A1) = P (A2) = P (A3) = 1/2. Since any two distinct numbers
are present only on one of the balls, we have P (A1A2) = P (A2A3) = P (A1A3) = 1/4, and hence the events
A1, A2, and A3 are pairwise independent. All three distinct numbers are present only on one of the balls, and
P (A1A2A3) = 1/4 ≠ P (A1)P (A2)P (A3) = 1/8.

Thus we see that the eventsA1,A2, andA3 are jointly dependent, even though they are pairwise independent.

20.1.2-4. Total probability formula. Bayes’ formula.

Suppose that a complete group of pairwise incompatible events H1, . . . , Hn is given and
the unconditional probabilities P (H1), . . . , P (Hn), as well as the conditional probabilities
P (A|H1), . . . , P (A|Hn) of an event A, are known. Then the probability of A can be
determined by the total probability formula

P (A) =
n∑

k=1

P (Hk)P (A|Hk). (20.1.2.8)

Example 2. There are two urns; the first urn contains awhite and b black balls, and the second urn contains
c white and d black balls. We take one ball from the first urn and put it into the second urn. After this, we draw
one ball from the second urn. Find the probability of the event that this ball is white.

Let A be the event of drawing a white ball. Consider the following complete group of events:
H1, a white ball is taken from the first urn and put into the second urn.
H2, a black ball is taken from the first urn and put into the second urn. Obviously,

P (H1) =
a

a + b
, P (H2) =

b

a + b
; P (A|H1) =

c + 1
c + d + 1

, P (A|H2) =
c

c + d + 1
.

Now by the total probability formula (20.1.2.8) we obtain

P (A) = P (H1)P (A|H1) + P (H2)P (A|H2) =
a

a + b
c + 1

c + d + 1
+

b

a + b
c

c + d + 1
.

If it is known that the event A has occurred but it is unknown which of the events
H1, . . . ,Hn has occurred, then Bayes’ formula is used:

P (Hk|A) =
P (Hk)P (A|Hk)

P (A)
(k = 1, 2, . . . ,n). (20.1.2.9)
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Example 3. The urn contains one ball. It is known that this ball is either white or black. We put a black
ball into the urn, then thoroughly shuffle the balls and draw one of the balls, which turns out to be black. Find
the probability of the event that the ball remaining in the urn is black.

We consider the following random events that form a complete group of pairwise incompatible events:
H1, the urn initially contained a white ball.
H2, the urn initially contained a black ball.
We haveP (H1) =P (H2) = 1/2. Suppose that the eventA is that a black ball is drawn. ThenP (A|H1) = 1/2

and P (A|H2) = 1. The desired probability of the event H2 |A is determined by Bayes’ formula:

P (H2|A) =
P (H2)P (A|H2)

P (A)
=

1 × 1
2

1 × 1
2 + 1

2 × 1
2

=
2
3

.

20.1.3. Sequences of Trials

20.1.3-1. Mathematical model of a sequence of n independent trials.

Trials in which events occurring in distinct trials are independent are said to be independent.
Each trial Sk can be viewed as a probability space (Ωk,Fk,Pk). Independent trials are
described by the probability space (Ω,F ,P ) that is the direct product of the probability
spaces (Ωk,Fk,Pk). Here the probability of each event A of the form A = A1 × · · · × An is
defined as P (A) = P (A1) . . . P (An).

A sequence of n independent trials is also called a Bernoulli scheme. Let pk = P (Ak).
Then the probability of the event that n1 events A1, n2 events A2, . . . , and nk events Ak
occur in n independent trials is equal to

Pn(n1, . . . ,nk) =
n!

n1! . . . nk!
pn1

1 . . . pnk
k . (20.1.3.1)

The probability (20.1.3.1) is the coefficient of xn1
1 . . . xnk

k in the expansion of the poly-
nomial (p1x1 + · · · + pkxk)n in powers of x1, . . . , xk.

The probability Pn(n1, . . . ,nk) can be found by the technique of generating functions,
since this probability is the coefficient of zn1

1 . . . znk
k in the generating function

ϕX (z1, . . . , zk) = (p1z1 + · · · + pkzk)n.

20.1.3-2. Bernoulli process.

The special case of the Bernoulli scheme with N = 2 is called the Bernoulli process. In
this case, some event A occurs with probability p = P (A) (the probability of “success”) and
does not occur with probability q = P (A) = 1 –P (A) = 1 –p (the probability of “failure”) in
each trial. If μn is the number of occurrences of the event A (the number of “successes”) in
n independent Bernoulli trials, then the probability that A occurs exactly k times is given
by the formula

P (μn = k) = pn(k) = Cknp
k(1 – p)n–k (k = 0, 1, . . . ,n). (20.1.3.2)

Relation (20.1.3.2) is called the Bernoulli formula (binomial distribution).
The probability that the event occurs at leastm times in n independent trials is calculated

by the formula

pn(k ≥ m) =
n∑

k=m

pn(k) = 1 –
m–1∑

k=0

pn(k).
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The probability that the event occurs at least once in n independent trials is calculated
by the formula

pn(k ≥ 1) = 1 – (1 – p)n.
The number n of independent trials necessary for the event to occur at least once with

probability at least P is given by the formula

n ≥
ln(1 – P )
ln(1 – p)

.

Example (Banach’s problem). A smoker mathematician has two matchboxes on him, each of which
initially contains exactly n matches. Each time he needs to light a cigarette, he selects a matchbox at random.
Find the probability of the event that as the mathematician takes out an empty box for the first time, precisely k
matches will be left in the other box (k ≤ n).

The mathematician has taken matches 2n – k times, n out of them from the box that is eventually empty.
This scheme corresponds to the scheme of 2n – k independent Bernoulli trials with n “successes.” The
probability of a “success” in a single trial is equal to 0.5. The desired probability can be found by the formula

P (μ2n–k = n) = p2n–k(n) = C2n–k
n pn(1 – p)n–k = C2n–k

n

( 1
2

)2n–k

.

20.1.3-3. Limit theorems for Bernoulli process.

It is very difficult to use Bernoulli’s formula (20.1.3.2) for large n and m. In this case, one
has to use approximate formulas for calculating pn(k) with desired accuracy.

Poisson formula. If the number of independent trials increases unboundedly (n → ∞)
and the probability p simultaneously decays (p → 0) so that their product np is a constant
(np = λ = const), then the probability P (μn = k) = pn(k) satisfies the limit relation

lim
n→∞P (μn = k) =

λk

k!
e–λ. (20.1.3.3)

Local theorem of de Moivre–Laplace. Suppose that n → ∞, p = const, 0 < p < 1, and
0 < c1 ≤ xn,k = (k – np)[np(1 – p)]–1/2 ≤ c2 < ∞; then

P (μn = k) =
1√

2πnp(1 – p)
e–x2

n,k/2[1 +O(1/
√
n)] (20.1.3.4)

uniformly with respect to xn,k � [c1, c2].
Integral theorem of de Moivre–Laplace. Suppose that n→ ∞ and p = const, 0 < p < 1;

then

P
[
x1 <

μn – np√
np(1 – p)

< x2

]
→ 1√

2π

∫ x2

x1

e–t2/2 dt (20.1.3.5)

uniformly with respect to x1 and x2.
The approximate formula (20.1.3.3) is normally used for n ≥ 50 and np ≤ 10. The

approximate formulas (20.1.3.4) and (20.1.3.5) are used for np (1 – p) > 9. The error in
formulas (20.1.3.4) and (20.1.3.5) can increase owing to the fact that the prelimit distribution
is discrete. This error is of the order of O([np(1 – p)]–1/2).

The limit expression in (20.1.3.4) can readily be expressed via the probability density

ϕ(x) =
1√
2π
e–x2/2

of the standard normal distribution, and the limit expression in (20.1.3.5) can be expressed
in terms of the cumulative distribution function

Φ(x) =
1√
2π

∫ x

–∞
e–t2/2 dt

of the standard normal distribution.
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20.2. Random Variables and Their Characteristics
20.2.1. One-Dimensional Random Variables

20.2.1-1. Notion of random variable. Distribution function of random variable.

A random variable X is a real function X = X(ω), ω � Ω, on a probability space Ω such
that the set {ω : X(ω) ≤ x} belongs to the σ-algebra F of events for each real x.

Any rule (table, function, graph, or otherwise) that permits one to find the probabilities
of events A ⊆ F is usually called the distribution law of a random variable. In general,
random variables can be discrete or continuous.

The cumulative distribution function of a random variable X is the function FX (x)
whose value at each point x is equal to the probability of the event {X < x}:

FX (x) = F (x) = P (X < x). (20.2.1.1)

Properties of the cumulative distribution function:
1. F (x) is bounded, i.e., 0 ≤ F (x) ≤ 1.
2. F (x) is a nondecreasing function for x � (–∞,∞); i.e., if x2 > x1, then F (x2) ≥ F (x1).
3. lim

x→–∞F (x) = F (–∞) = 0.

4. lim
x→+∞F (x) = F (+∞) = 1.

5. The probability that a random variable X lies in the interval [x1,x2) is equal to the
increment of its cumulative distribution function on this interval; i.e.,

P (x1 ≤ X < x2) = F (x2) – F (x1).

6. F (x) is left continuous; i.e., lim
x→x0–0

F (x) = F (x0).

20.2.1-2. Discrete random variables.

A random variable X is said to be discrete if the set of its possible values (the spectrum of
the discrete random variable) is at most countable. A discrete distribution is determined by
a finite or countable set of probabilities P (X = xi) such that

∑

i

P (X = xi) = 1.

To define a discrete random variable, it is necessary to specify the values x1, x2, . . .
and the corresponding probabilities p1, p2, . . . , where pi = P (X = xi).

Remark. In what follows, we assume that the values of a discrete random variable X are arranged in
ascending order.

In this case, the cumulative distribution function of a discrete random variable X is the
step function defined as the sum

F (x) =
∑

xi<x

P (X = xi). (20.2.1.2)

It is often convenient to write out the cumulative distribution function using the function
θ(x) such that θ(x) = 1 for x > 0 and θ(x) = 0 for x ≤ 0:

F (x) =
∑

i

P (X = xi)θ(x – xi).
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For discrete random variables, one can introduce the notion of probability density
function p(x) by setting

p(x) =
∑

i

P (X = xi)δ(x – xi),

where δ(x) is the delta function.

20.2.1-3. Continuous random variables. Probability density function.

A random variable X is said to be continuous if its cumulative distribution function FX (x)
can be represented in the form

F (x) =
∫ x

–∞
p(y) dy. (20.2.1.3)

The function p(x) is called the probability density function of the random variable X.
Obviously, relation (20.2.1.3) is equivalent to the relation

p(x) = lim
Δx→0

P (x ≤ X ≤ x + Δx)
Δx

=
dF (x)
dx

. (20.2.1.4)

The differential dF (x) = p(x) dx ≈ P (x ≤ X < x + dx) is called a probability element.

Properties of the probability density function:
1. p(x) ≥ 0.
2. P (x1 ≤ X < x2) =

∫ x2
x1
p(y) dy.

3.
∫ +∞

–∞ p(x) dx = 1.
4. P (x ≤ ξ < x + Δx) ≈ p(x)Δx.
5. For continuous random variables, one always has P (X = x) = 0, but the event {X = x}

is not necessarily impossible.
6. For continuous random variables,

P (x1 ≤ X < x2) = P (x1 < X < x2) = P (x1 < X ≤ x2) = P (x1 ≤ X ≤ x2).

20.2.1-4. Unified description of probability distribution.

Discrete and continuous probability distributions can be studied simultaneously if the prob-
ability of each event {a ≤ X < b} is represented in terms of the integral

P (a ≤ X < b) =
∫ b

a
dF (x), (20.2.1.5)

where F (x) = P (X < x) is the cumulative distribution function of the random variable X.
For a continuous distribution, the integral (20.2.1.5) becomes the Riemann integral. For a
discrete distribution, the integral can be reduced to the form

P (a ≤ X < b) =
∑

a≤xi<b

P (X = xi).

In particular, the integral can also be used in the case of mixed distributions, i.e.,
distributions that are partially continuous and partially discrete.
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20.2.1-5. Symmetric random variables.

A random variable X is said to be symmetric if the condition

P (X < –x) = P (X > x) (20.2.1.6)

holds for all x.

Properties of symmetric random variables:
1. P (|X | < x) = F (x) – F (–x) = 2F (x) – 1.
2. F (0) = 0.5.
3. If a moment α2k+1 of odd order about the origin (see Paragraph 20.2.2-3) exists, then it

is zero.
4. If tγ is the quantile of level γ (see Paragraph 20.2.2-5), then tγ = –t1–γ .

A random variable Y is said to be symmetric about its expected value if the random
variable X = Y – E{Y } is symmetric, where E{Y } is the expected value of a random
variable Y (see Paragraph 20.2.2-1).

Properties of random variables symmetric about the expected value:
1. P (|Y – E{Y }| < x) = 2FY (x +E{Y }) – 1.
2. FY (E{Y }) = 0.5.
3. If a central moment μ2k+1 of odd order (see Paragraph 20.2.2-3) exists, then it is equal

to zero.

20.2.1-6. Functions of random variables.

Suppose that a random variable Y is related to a random variable X by a functional
dependence Y = f (X). If X is discrete, then, obviously, Y is also discrete. To find the
distribution law of the random variable Y , it suffices to calculate the values f (xi). If there
are repeated values among yi = f (xi), then these repeated values are taken into account
only once, the corresponding probabilities being added.

If X is a continuous random variable with probability density function pX (x), then, in
general, the random variable Y is also continuous. The cumulative distribution function
of Y is given by the formula

FY (y) = P (η < y) = P [f (x) < y] =
∫

f (x)<y
pX(x) dx. (20.2.1.7)

If the function y = f (x) is differentiable and monotone on the entire range of the
argument x, then the probability density function pY (y) of the random variable Y is given
by the formula

pY (y) = pX[ψ(y)]|ψ′
y(y)|, (20.2.1.8)

where ψ is the inverse function of f (x).
If f (x) is a nonmonotonic function, then the inverse function is nonunique and the

probability density function of the random variable y is the sum of as many terms as there
are values (for a given y) of the inverse function:

pY (y) =
k∑

i=1

pX[ψi(y)]
∣∣[ψi(y)]′y

∣∣, (20.2.1.9)

where ψ1(y), . . . , ψk(y) are the values of the inverse function for a given y.
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Example 1. Suppose that a random variable X has the probability density

pX(x) =
1√
2π
e–x2/2.

Find the distribution of the random variable Y = X2.
In this case, y = f (x) = x2. According to (20.2.1.7), we obtain

FY (y) =
∫

x2<y

1√
2π
e–x2/2 dx =

1√
2π

∫ √
y

–
√

y

e–x2/2 dx =
2√
2π

∫ √
y

0
e–x2/2 dx =

1√
2π

∫ y

0

e–t/2
√
t
dt.

Example 2. Suppose that a random variable X has the probability density

pX (x) =
1√

2πσ
exp
[
–

(x – a)2

2σ2

]
.

Find the probability density of the random variable Y = eX .
For y > 0, the cumulative distribution function of the random variable Y = eX is determined by the relations

FY (y) = P (Y < y) = P (eX < y) = P (X < ln y) = FX (ln y).

We differentiate this relation and obtain

pY (y) =
dFY (y)
dy

=
dFX (ln y)

dy
= pX(ln y)

1
y

=
1√

2πσy
exp
[
–

(ln y – a)2

2σ2

]
for y > 0.

The distribution of Y is called the log-normal distribution.

Example 3. Suppose that a random variable X has the probability density pX (x) for x � (–∞,∞). Then
the probability density of the random variable Y = |X | is given by the formula pY (y) = pX(x) +pX(–x) (y ≥ 0).
In particular, if X is symmetric, then pY (y) = 2pX (y) (y ≥ 0).

20.2.2. Characteristics of One-Dimensional Random Variables

20.2.2-1. Expectation.

The expectation (expected value) E{X} of a discrete or continuous random variable X is
the expression given by the formula

E{X} =
∫ +∞

–∞
x dF (x) =

⎧
⎪⎪⎨

⎪⎪⎩

∑

i

xipi in the discrete case,

∫ +∞

–∞
xp(x) dx in the continuous case.

(20.2.2.1)

For the existence of the expectation (20.2.2.1), it is necessary that the corresponding
series or integral converge absolutely.

The expectation is the main characteristic defining the “position” of a random variable,
i.e., the number near which its possible values are concentrated.

We note that the expectation is not a function of the variable x but a functional describing
the properties of the distribution of the random variableX. There are distributions for which
the expectation does not exist.

Example 1. For the Cauchy distribution given by the probability density function

p(x) =
1

π(1 + x2)
, x � (–∞, +∞),

the expectation does not exist because the integral
∫ +∞

–∞ |x|/π(1 + x2) dx diverges.
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20.2.2-2. Expectation of function of random variable.

If a random variable Y is related to a random variable X by a functional dependence
Y = f (X), then the expectation of the random variable Y = f (X) can be determined by
two methods. The first method is to construct the distribution of the random variable Y and
then use already known formulas to find E{Y }. The second method is to use the formulas

E{Y } = E{f (X)} =

⎧
⎪⎪⎨

⎪⎪⎩

∑

i

f (xi)pi in the discrete case,

∫ +∞

–∞
f (x)p(x) dx in the continuous case

(20.2.2.2)

if these expressions exist in the sense of absolute convergence.

Example 2. Suppose that a random variable X is uniformly distributed in the interval (–π/2, π/2), i.e.,
p(x) = 1/π for x � (–π/2, π/2). Then the expectation of the random variable Y = sin(X) is equal to

E{Y } =
∫ +∞

–∞
f (x)p(x) dx =

∫ π/2

–π/2

1
π

sinx dx = 0.

Properties of the expectation:
1. E{C} = C for any real C .
2. E{αX + βY } = αE{X} + βE{Y } for any real α and β.
3. E{X} ≤ E{Y } if X(ω) ≤ Y (ω), ω � Ω.

4. E
{∞∑

k=1
Xk

}
=

∞∑

k=1
E{Xk} if the series

∞∑

k=1
E{|Xk |} converges.

5. g(E{X}) ≤ E{g(X)} for convex functions g(X).
6. Any bounded random variable has a finite expectation.
7. |E{X}| ≤ E{|X |}.
8. The Cauchy–Schwarz inequality (E{|XY |})2 ≤ (E{X})2(E{Y })2 holds.
9. E

{∏n
k=1 Xk

}
=
∏n
k=1 E{Xk} for mutually independent random variables X1, . . . ,Xn.

20.2.2-3. Moments.

The expectation E{(X –a)k} is called the kth moment of a random variable X about a. The
moments about zero are usually referred to simply as the moments of a random variable.
(Sometimes they are called initial moments.) The kth moment satisfies the relation

αk = E{Xk} =
∫ +∞

–∞
xk dF (x) =

⎧
⎪⎪⎨

⎪⎪⎩

∑

i

xki pi in the discrete case,

∫ +∞

–∞
xkp(x) dx in the continuous case.

(20.2.2.3)

If a = E{X}, then the kth moment of the random variable X about a is called the kth
central moment. The kth central moment satisfies the relation

μk =E{(X –E{X})k}=

⎧
⎪⎪⎨

⎪⎪⎩

∑

i

(xi –E{X})kpi in the discrete case,

∫ +∞

–∞
(x – E{X})kp(x) dx in the continuous case.

(20.2.2.4)
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In particular, μ0 = 1 for any random variable.
The number mk = E{|X – a|k} is called the kth absolute moment of X about a.
The existence of a kth moment αk or μk implies the existence of the moments αm and

μm of ordersm ≤ k; if the integral (or series) for αk or μk diverges, then all integrals (series)
for αm and μm of orders m ≥ k also diverge.

There is a simple relationship between the central and initial moments:

μk =
k∑

m=0

Cmk αm(α1)k–m, α0 = 1; αk =
k∑

m=0

Cmk μm(α1)k–m. (20.2.2.5)

Relations (20.2.2.5) can be represented in the following easy-to-memorize symbolic form:
μk = (α –α1)k, αk = (μ+α1)k, where it is assumed that after the right-hand sides have been
multiplied out according to the binomial formula, the expressions αm and μm are replaced
by αm and μm, respectively.

If the probability distribution is symmetric about its expectation, then all existing central
moments μk of even order k are zero.

The probability distribution is uniquely determined by the momentsα0,α1, . . . provided

that they all exist and the series
∞∑

m=0
|αm|tm/m! converges for some t > 0.

20.2.2-4. Variance.

The variance of a random variable is the measure Var{X} of the deviation of a random
variable X from its expectation E{X}, determined by the relation

Var{X} = E{(X – E{X})2}. (20.2.2.6)

The variance Var{X} is the second central moment of the random variable X. The
variance can be determined by the formulas

Var{X} =
∫ +∞

–∞
(x – E{X})2 dF (x)

=

⎧
⎪⎪⎨

⎪⎪⎩

∑

i

(xi – E{X})2pi in the discrete case,

∫ +∞

–∞
(x – E{X})2p(x) dx in the continuous case.

(20.2.2.7)

The variance characterizes the spread in values of the random variable X about its
expectation.

Properties of the variance:
1. Var{C} = 0 for any real C .
2. The variance is nonnegative: Var{X} ≥ 0.
3. Var{αX + β} = α2Var{X} for any real numbers α and β.
4. Var{X} = E{X2} – (E{X})2.
5. min

m
E{(X – m)2} = Var{X} and is attained for m = E{X}.

6. Var{X1 + · · · + Xn} = Var{X1} + · · · + Var{Xn} for pairwise independent random
variables X1, . . . , Xn.

7. If X and Y are independent random variables, then

Var{XY } = Var{X}Var{Y } + Var{X}(E{Y })2 + Var{Y }(E{X})2.
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20.2.2-5. Numerical characteristics of random variables.

A quantile of level γ of a one-dimensional distribution is a number tγ for which the value
of the corresponding distribution function is equal to γ; i.e.,

P (X < tγ) = F (tγ) = γ (0 < γ < 1). (20.2.2.8)
Quantiles exist for each probability distribution, but they are not necessarily uniquely

determined. Quantiles are widely used in statistics. The quantile t1/2 is called the me-
dian Med{X}. For n = 4, the quantiles tm/n are called quartiles, for n = 10, they are called
deciles, and for n = 100, they are called percentiles.

A mode Mode{X} of a continuous probability distribution is a point of maximum of
the probability density function p(x). A mode of a discrete probability distribution is a
value Mode{X} preceded and followed by values associated with probabilities smaller
than p(Mode{X}).

Distributions with one, two, or more modes are said to be unimodal, bimodal, or
multimodal, respectively.

The standard deviation (root-mean-square deviation) of a random variable X is the
square root of its variance,

σ =
√

Var{X}.
The standard deviation has the same dimension as the random variable itself.

The coefficient of variation is the ratio of the standard deviation to the expected value,

v =
σ

E{X}
.

The asymmetry coefficient, or skewness, is defined by the formula

γ1 =
μ3

(μ2)3/2 . (20.2.2.9)

If γ1 > 0, then the distribution curve is more flattened to the right of the mode Mode{X};
if γ1 < 0, then the distribution curve is more flattened to the left of the mode Mode{X}
(see Fig. 20.1). (As a rule, this applies to continuous random variables.)

Mode{ }X x

p x( ) p x( )

Mode{ }X

γ > 0 γ < 01 1

Figure 20.1. Relationship of the distribution curve and the asymmetry coefficient.

The excess coefficient, or excess, or kurtosis, is defined by the formula

γ2 =
μ4

μ2
2

– 3. (20.2.2.10)

One says that for γ2 = 0 the distribution has a normal excess, for γ2 > 0 the distribution has
a positive excess, and for γ2 < 0 the distribution has a negative excess.

Remark. The coefficients γ2
1 and γ2 + 3 or (γ2 + 3)/2 are often used instead of γ1 and γ2.

Pearson’s first skewness coefficient for a unimodal distribution is defined by the formula

s =
E{X} – Mode{X}

σ
.
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20.2.2-6. Characteristic functions. Semi-invariants.

1◦. The characteristic function of a random variable X is the expectation of the random
variable eitX , i.e.,

f (t) = E{eitX} =
∫ +∞

–∞
eitx dF (x)

=

⎧
⎪⎪⎨

⎪⎪⎩

∑

j

eitxjpj in the discrete case,

∫ +∞

–∞
eitxp(x) dx in the continuous case,

(20.2.2.11)

where t is a real variable ranging from –∞ to +∞ and i is the imaginary unit, i2 = –1.

Properties of characteristic functions:
1. The cumulative distribution function is uniquely determined by the characteristic func-

tion.
2. The characteristic function is uniformly continuous on the entire real line.
3. |f (t)| ≤ f (0) = 1.

4. f (–t) = f (t).

5. f (t) is a real function if and only if the random variable X is symmetric.
6. The characteristic function of the sum of two independent random variables is equal to

the product of their characteristic functions.
7. If a random variable X has a kth absolute moment, then the characteristic function of
X is k times differentiable and the relation f (m)(0) = imE{Xm} holds for m ≤ k.

8. If x1 and x2 are points of continuity of the cumulative distribution function F (x), then

F (x2) – F (x1) =
1

2π
lim
T→∞

∫ T

–T

e–itx1 – e–itx2

it
f (t) dt. (20.2.2.12)

9. If
∫ +∞

–∞ |f (t)| dt < ∞, then the cumulative distribution function F (x) has a probability
density function p(x), which is given by the formula

p(x) =
1

2π

∫ +∞

–∞
e–itxf (t) dt. (20.2.2.13)

If the probability distribution has a kth moment αk, then there exist semi-invariants
(cumulants) τ1, . . . , τk determined by the relation

ln f (t) =
k∑

l=1

τl
(it)l

l!
+ o(tk). (20.2.2.14)

The semi-invariants τ1, . . . , τk can be calculated by the formulas

τl = i–l
∂l ln f (t)
∂tl

∣
∣∣
t=0

.
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20.2.2-7. Generating functions.

The generating function of a numerical sequence a0, a1, . . . is defined as the power series

ϕX (z) =
∞∑

n=0

anz
n, (20.2.2.15)

where z is either a formal variable or a complex or real number. If X is a random variable
whose absolute moments of any order are finite, then the series

∞∑

n=0

E{Xn}
zn

n!
(20.2.2.16)

is called the moment-generating function of the random variable X.
If X is a nonnegative random variable taking integer values, then the formulas

ϕX (z) = E{zX} =
∞∑

n=0

P (X = n)zn (20.2.2.17)

define the probability-generating function, or simply the generating function of the random
variable X. The generating function of a random variable X is related to its characteristic
function f (t) by the formula

f (t) = ϕX (eit). (20.2.2.18)

20.2.3. Main Discrete Distributions

20.2.3-1. Binomial distribution.

A random variable X has the binomial distribution with parameters (n, p) (see Fig. 20.2) if

P (X = k) = Cknp
k(1 – p)n–k, k = 0, 1, . . . ,n, (20.2.3.1)

where 0 < p < 1, n ≥ 1.

0
0

0.1

0.2

0.3

1 2 3 4 5 6 k

P

Figure 20.2. Binomial distribution for p = 0.55, n = 6.
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The cumulative distribution function, the probability-generating function, and the char-
acteristic function have the form

F (x) =

⎧
⎪⎨

⎪⎩

1 for x > n,
m∑

k=1
Cknp

k(1 – p)n–k for m ≤ x < m + 1 (m = 1, 2, . . . ,n – 1),

0 for x < 0,
ϕX(z) = (1 – p + pz)n,

f (t) = (1 – p + peit)n,

(20.2.3.2)

and the numerical characteristics are given by the formulas

E{X} = np, Var{X} = np(1 – p), γ1 =
1 – 2p√
np(1 – p)

, γ2 =
1 – 6p(1 – p)
np(1 – p)

.

The binomial distribution is a model of random experiments consisting of n independent
identical Bernoulli trials. If X1, . . . , Xn are independent random variables, each of which
can take only two values 1 or 0 with probabilities p and q = 1 – p, respectively, then the

random variable X =
n∑

k=1
Xk has the binomial distribution with parameters (n, p).

The binomial distribution is asymptotically normal with parameters (np,np(1 – p)) as
n → ∞ (the de Moivre–Laplace limit theorem, which is a special case of the central limit
theorem, see Paragraph 20.3.2-2); specifically,

P (X = k) = Cknp
k(1 – p)n–k ≈

1√
np(1 – p)

ϕ
[ k – np√

np(1 – p)

]
as

(k – np)3

[np(1 – p)]4 → 0,

P (k1 ≤ X ≤ k2) ≈ Φ
[ k2 – np√

np(1 – p)

]
– Φ
[ k1 – np√

np(1 – p)

]
as

(k1,2 – np)3

[np(1 – p)]4 → 0,

where ϕ(x) and Φ(x) are the probability density function and the cumulative distribution
function of the standard normal distribution (see Paragraph 20.2.4-3).

20.2.3-2. Geometric distribution.

A random variableX has a geometric distribution with parameter p (0 < p< 1) (see Fig. 20.3)
if

P (X = k) = p(1 – p)k, k = 0, 1, 2, . . . (20.2.3.3)

0
0

0.2

0.4

0.6

1 2 3 4 5 6 k

P

Figure 20.3. Geometric distribution for p = 0.55.



20.2. RANDOM VARIABLES AND THEIR CHARACTERISTICS 1049

The probability-generating function and the characteristic function have the form

ϕX(z) = p[1 – (1 – p)z]–1,

f (t) = p[1 – (1 – p)eit]–1,

and the numerical characteristics can be calculated by the formulas

E{X} =
1 – p
p

, α2 =
(1 – p)(2 – p)

p2 , Var{X} =
1 – p
p2 , γ1 =

2 – p√
1 – p

, γ2 = 6 +
p2

1 – p
.

The geometric distribution describes a random variableX equal to the number of failures
before the first success in a sequence of Bernoulli trials with probability p of success in
each trial.

The geometric distribution is the only discrete distribution that is memoryless, i.e.,
satisfies the relation

P (X > s + t|X > t) = P (X > s)

for all s, t > 0. This property permits one to view the geometric distribution as the discrete
analog of the exponential distribution.

20.2.3-3. Hypergeometric distribution.

A random variable X has the hypergeometric distribution with parameters (N , p,n) (see
Fig. 20.4) if

P (X = k) =
CkNpC

n–k
N (1–p)

CnN
, k = 0, 1, . . . ,n, (20.2.3.4)

where 0 < p < 1, 0 ≤ n ≤ N , N > 0.

0
0

0.2

0.4

1 2 3 4 k

P

Figure 20.4. Hypergeometric distribution for p = 0.5, N = 10, n = 4.

The numerical characteristics are given by the formulas

E{X} = np, Var{X} =
N – n
N – 1

np(1 – p).

A typical scheme in which the hypergeometric distribution arises is as follows: n ele-
ments are randomly drawn without replacement from a population ofN elements containing
exactly Np elements of type I and N (1 – p) elements of type II . The number of elements
of type I in the sample is described by the hypergeometric distribution.

If n� N (in practice, n < 0.1N ), then

CkNpC
n–k
N (1–p)

CnN
≈ Cknp

k(1 – p)n–k;

i.e., the hypergeometric distribution tends to the binomial distribution.
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0
0

0.1

0.2

0.3

1 2 3 4 5 6 k

P

Figure 20.5. Poisson distribution for λ = 2.

20.2.3-4. Poisson distribution.

A random variable X has the Poisson distribution with parameter λ (λ > 0) (see Fig. 20.5) if

P (X = k) =
λk

k!
e–λ, k = 0, 1, 2, . . . (20.2.3.5)

The cumulative distribution function of the Poisson distribution at the points k =
0, 1, 2, . . . is given by the formula

F (k) =
1
k!

∫ ∞

λ
yke–y dy = 1 – Sk+1(λ),

where Sk+1(λ) is the value at the point λ of the cumulative distribution function of the
gamma distribution with parameter k + 1. In particular, P (X = k) = Sk(λ) – Sk+1(λ). The
sum of independent random variables X1, . . . , Xn, obeying the Poisson distributions with
parametersλ1, . . . , λn, respectively, has the Poisson distribution with parameterλ1 +· · ·+λn.

The probability-generating function and the characteristic function have the form

ϕX (z) = eλ(z–1),

f (t) = eλ(eit–1),

and the numerical characteristics are given by the expressions

E{X} = λ, Var{X} = λ, α2 = λ2 + λ, α3 = λ(λ2 + 3λ + 1),

α4 = λ(λ3 + 6λ2 + 7λ + 1), μ3 = λ, μ4 = 3λ2 + λ, γ1 = λ–1/2, γ2 = λ–1.

The Poisson distribution is the limit distribution for many discrete distributions such as
the hypergeometric distribution, the binomial distribution, the negative binomial distribu-
tion, distributions arising in problems of arrangement of particles in cells, etc. The Poisson
distribution is an acceptable model for describing the random number of occurrences of
certain events on a given time interval in a given domain in space.

20.2.3-5. Negative binomial distribution.

A random variable X has the negative binomial distribution with parameters (r, p) (see
Fig. 20.6) if

P (X = k) = Cr–1
r+k–1p

r(1 – p)k, k = 0, 1, . . . , r, (20.2.3.6)

where 0 < p < 1, r > 0.
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0
0

0.1

0.2

0.3

1 2 3 4 5 6 k

P

Figure 20.6. Negative binomial distribution for p = 0.8, n = 6.

The probability-generating function and the characteristic function have the form

ϕX (z) =

[
p

1 – (1 – p)z

]r
,

f (t) =

[
p

1 – (1 – p)eit

]r
,

and the numerical characteristics can be calculated by the formulas

E{X} =
r(1 – p)
p

, Var{X} =
r(1 – p)
p2 , γ1 =

2 – p√
r(1 – p)

, γ2 =
6
r

+
p2

r(1 – p)
.

The negative binomial distribution describes the number X of failures before the rth
success in a Bernoulli process with probability p of success on each trial. For r = 1, the
negative binomial distribution coincides with the geometric distribution.

20.2.4. Continuous Distributions

20.2.4-1 Uniform distribution.

A random variable X is uniformly distributed on the interval [a, b] (Fig. 20.7a) if

p(x) =
1

b – a
for x � [a, b]. (20.2.4.1)

a

( )a ( )b

ab x

p x( ) F x( )

xb

1

Figure 20.7. Probability density (a) and cumulate distribution (b) functions of uniform distribution.
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The cumulative distribution function (see Fig. 20.7b) and the characteristic function
have the form

F (x) =

⎧
⎨

⎩

0 for x ≤ a,
x – a
b – a

for a < x ≤ b,
1 for x > b,

f (t) =
1

t(b – a)
(eitb – eita),

(20.2.4.2)

and the numerical characteristics are given by the expressions

E{X} =
a + b

2
, Var{X} =

(b – a)2

12
, γ1 = 0, γ2 = –1.2, Med{X} =

a + b
2

(a + b).

The uniform distribution does not have a mode.

20.2.4-2. Exponential distribution.

A random variable X has the exponential distribution with parameter λ > 0 (Fig. 20.8a) if

p(x) = λe–λx, x > 0. (20.2.4.3)

1 1O O

1 1

2 2

2 23 x

p x( ) F x( )

x3

( )a ( )b

Figure 20.8. Probability density (a) and cumulate distribution (b) functions of exponential distribution
for λ = 2.

The cumulative distribution function (see Fig. 20.8b) and the characteristic function
have the form

F (x) =

{
1 – e–λx for x > 0,
0 for x ≤ 0,

f (t) =
(

1 –
it

λ

)–1
,

(20.2.4.4)

and the numerical characteristics are given by the formulas

E{X} =
1
λ

, α2 =
2
λ2 , Med{X} =

ln 2
λ

, Var{X} =
1
λ2 , γ1 = 2, γ2 = 6.

The exponential distribution is the continuous analog of the geometric distribution and
is memoryless:

P (X > t + s|X > s) = P (X > s).

The exponential distribution is closely related to Poisson processes: if a flow of events
is described by a Poisson process, then the time intervals between successive events are
independent random variables obeying the exponential distribution. The exponential distri-
bution is used in queuing theory and theory of reliability.
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11 1 1O O

1 1

2 2

2 23 x x

p x( ) F x( )

3

( )a ( )b

Figure 20.9. Probability density (a) and cumulate distribution (b) functions of normal distribution for a = 1,
σ = 1/4.

20.2.4-3. Normal distribution.

A random variable X has the normal distribution with parameters (a,σ2) (see Fig. 20.9a)
if its probability density function has the form

p(x) =
1√

2πσ
exp
[
–

(x – a)2

2σ2

]
, x � (–∞,∞). (20.2.4.5)

The cumulative distribution function (see Fig. 20.9b) and the characteristic function
have the form

F (x) =
1√

2πσ

∫ x

–∞
exp
[
–

(t – a)2

2σ2

]
dt,

f (t) = exp
[
iat –

σ2t2

2

]
,

(20.2.4.6)

and the numerical characteristics are given by the formulas

E{X} = a, Var{X} = σ2, Mode{X} = Med{X} = a, γ1 = 0, γ2 = 0,

μk =
{ 0, k = 2m – 1, m = 1, 2, . . .

(2k – 1)!!σ2k , k = 2m, m = 1, 2, . . .

The linear transformation Y = X–a
σ reduces the normal distribution with parameters

(a,σ2) and cumulative distribution function F (x) to the standard normal distribution with
parameters (0, 1) and cumulative distribution function

Φ(x) =
1√
2π

∫ x

–∞
e–t2/2 dt; (20.2.4.7)

moreover, Φ(–x) = 1 – Φ(x).

Remark 1. The values of the cumulative distribution function Φ(x) of the standard normal distribution
are computed by the function NORMSDIST(z) in EXCEL software; for example, for Φ(2), the function call
NORMSDIST(2) returns the value 0.9972.

Remark 2. The values of the cumulative distribution function F (x) of the normal distribution are
computed by the function pnorm(x,mu,sigma) in MATHCAD software; to compute Φ(x), one should use
pnorm(x,0,1). For example, Φ(2) = pnorm(2,0,1) = 0.9972.

The probability that a random variable X normally distributed with parameters (m,σ2)
lies in the interval (a, b) is given by the formula

P (a < ξ < b) = P
( a – m

σ
<
ξ – m
σ

<
b – m
σ

)
= Φ
( b –m

σ

)
– Φ
( a – m

σ

)
. (20.2.4.8)
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A normally distributed random variable takes values close to its expectation with large
probability; this is expressed by the sigma rule

P (|X – m| ≥ kσ) = 2[1 – Φ(k)] =

{
0.3173 for k = 1,
0.0456 for k = 2,
0.0027 for k = 3.

The three-sigma rule is most frequently used.
The fundamental role of the normal distribution is due to the fact that, under mild

assumptions, the distribution of a sum of random variables is asymptotically normal as the
number of terms increases. The corresponding conditions are given in the central limit
theorem.

20.2.4-4. Cauchy distribution.

A random variable X obeys the Cauchy distribution with parameters (a,λ) (λ > 0) (see
Fig. 20.10a) if

p(x) =
λ

π[λ2 + (x – a)2]
, x � (–∞,∞). (20.2.4.9)

11 1 1O O

1 1

2 2

2 23 x

p x( ) F x( )

x3

( )a ( )b

Figure 20.10. Probability density (a) and cumulate distribution (b) functions of Cauchy distribution for a = 1,
λ = 4.

The cumulative distribution function has the form (see Fig. 20.10b)

F (x) =
1
π

arctan
x – a
λ

+
1
2

. (20.2.4.10)

The numerical characteristics of a random variable that has a Cauchy distribution do not
exist in the usual sense. The expectation exists only in the sense of the Cauchy principal
value (see Paragraph 10.2.2-3) and is given by the formula

E{X} = lim
T→∞

λ

π

∫ T

–T

x dx

λ2 + (x – a)2 = a.

20.2.4-5. Chi-square distribution.

A random variable X = χ2(n) has the chi-square distribution with n degrees of freedom if
its probability density function has the form (see Fig. 20.11a)

p(x) =

{ 1
2n/2Γ(α/2)

xn/2–1e–x/2 for x > 0,

0 for x ≤ 0.
(20.2.4.11)
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1

1
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Figure 20.11. Probability density (a) and cumulate distribution (b) functions of chi-square distribution for
n = 1 (curve 1), n = 2 (curve 2), and n = 3 (curve 3).

The cumulative distribution function can be written as (see Fig. 20.11b)

F (x) =
1

2n/2Γ(α/2)

∫ x

0
ξn/2–1e–ξ/2 dξ, (20.2.4.12)

where Γ(x) is a Gamma function.

Remark. The values χ2(x,n) of the cumulative distribution function of the chi-square distribution with n
degrees of freedom can be obtained using the expression 1 – CHIDIST(x; deg freedom) in EXCEL software.
For example, for the chi-square distribution with 10 degrees of freedom at the point x = 2, one gets χ2(2, 10) =
1 – CHIDIST(2; 10) = 0.0037. A similar result is obtained if we use the function pchisq(x,n) in MATHCAD
software: χ2(2, 10) = pchisq(2, 10) = 0.0037.

Main property of the chi-square distribution. For an arbitrary n, the sum

X =
n∑

k=1

X2
k ,

of squares of independent random variables obeying the standard normal distribution has
the chi-square distribution with n degrees of freedom.

THEOREM ON DECOMPOSITION. Suppose that the sum
n∑

k=1
X2
k of squares of independent

standard normally distributed random variables is expressed as the sum of L quadratic
forms yj(X1, . . . ,Xn) of ranks nj , respectively. The variables y1, . . . , yL are independent
and obey the chi-square distributions with n1, . . . , nL degrees of freedom if and only if
n1 + · · · + nL = n.

THEOREM ON ADDITION, OR STABILITY PROPERTY. The sum of L independent random
variables y1, . . . , yL obeying the chi-square distributions with n1, . . . , nL degrees of
freedom, respectively, has the chi-square distribution with n = n1 + · · · + nL degrees of
freedom.

The characteristic function has the form

f (t) = (1 – 2it)–n/2,

and the numerical characteristics are given by the formulas

E{χ2(n)} = n, Var{χ2(n)} = 2n, αk = n(n + 2) ⋅ . . . ⋅ [n + 2(k – 1)],

γ1 = 2
√

2
n

, γ2 =
12
n

, Mode{χ2(n)} = n – 2 (n ≥ 2).
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Relationship with other distributions:
1. For n = 1, formula (20.2.4.11) gives the probability density function of the square X2

of a random variable with the standard normal distribution.
2. For n = 2, formula (20.2.4.11) gives the exponential distribution with parameter λ = 1

2 .
3. As n → ∞, the random variable X = χ2(n) has an asymptotically normal distribution

with parameters (n, 2n).
4. As n → ∞, the random variable

√
2χ2(n) has an asymptotically normal distribution

with parameters (
√

2n – 1, 1).

For the quantiles (denoted by χ2
γ or χ2

γ(n)), one has the approximation formula

χ2
γ(n) ≈

1
2

(
√

2n – 1 + tγ)2 (n ≥ 30),

where tγ is the quantile of the standard normal distribution.
For γ close to 0 or 1, it is more expedient to use the approximation given by the formula

χ2
γ(n) ≈ n

(
1 –

2
9n

+ tγ

√
2

9n

)3
.

The quantiles χ2
γ(n) are tabulated; they can also be computed in EXCEL, MATHCAD,

and other software.

Remark. Tables often list χ2
1–γ(n) rather than χ2

γ (n).

20.2.4-6. Student’s t-distribution.

A random variable X = t(n) has Student’s distribution (t-distribution) with n degrees of
freedom (n > 0) if its probability density function has the form (see Fig. 20.12a)

p(x) =
Γ( n+1

2 )√
nπ Γ( n2 )

(
1 +

x2

n

)– n+1
2

, x � (–∞,∞). (20.2.4.13)

where Γ(x) is Gamma function.

11 1 1O O

0.2 0.5

0.4 1

2 x x

p x( ) F x( )

2 2 2

( )a ( )b

Figure 20.12. Probability density (a) and cumulate distribution (b) functions of Student’s t-distribution for
n = 3.

The cumulative distribution function has the form (see Fig. 20.12b)

F (x) =
Γ( n+1

2 )√
nπ Γ( n2 )

∫ x

–∞

(
1 +

ξ2

n

)– n+1
2
dξ. (20.2.4.14)

Remark. The values of Student’s distribution function t(n) with n degrees of freedom can be computed,
for example, by using the function pt(x,n) in MATHCAD software.
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Main property of Student’s distribution. If η andχ2(n) are independent random variables
and η has the standard normal distribution, then the random variable

t(n) = η
√

n

χ2(n)

has Student’s distribution with n degrees of freedom.
The numerical characteristics are given by the formulas

E{t(n)} = 0 (n > 1), Var{t(n)} =

{
n

n – 2
for n > 2,

0 for n ≤ 2,

Mode{t(n)} = Med{t(n)} = 0 (n > 1),

α2k–1 = 0, α2k =
nkΓ(n/2 – k)Γ(k + 1/2)√

π Γ(n/2)
(2k < n),

γ1 = 0, γ2 =
3(n – 2)
n – 4

(n > 4).

Relationship with other distributions:
1. For n = 1, Student’s distribution coincides with the Cauchy distribution.
2. As n→ ∞, Student’s distribution is asymptotically normal with parameters (0, 1).

The quantiles of Student’s distribution are denoted by tγ(n) and satisfy

tγ(n) = –t1–γ(n), |t1–γ(n)| = t1–γ/2(n).

The quantiles tγ(n) are tabulated; they can also be computed in EXCEL, MATHCAD,
and other software.

Student’s distribution is used when testing the hypothesis about the mean of a normally
distributed population with unknown variance.

20.2.5. Multivariate Random Variables

20.2.5-1. Distribution of bivariate random variable.

Suppose that random variables X1, . . . , Xn are defined on a probability space (Ω,F ,P );
then one says that an n-dimensional random vector X = (X1, . . . ,Xn) or a system of random
variables is given. The random variables X1, . . . , Xn can be viewed as the coordinates of
points in an n-dimensional space.

The distribution functionF (x1 ,x2)=FX1,X2 (x1,x2) of a two-dimensional random vector
(X1,X2), or the joint distribution function of the random variables X1 and X2, is defined
as the probability of the simultaneous occurrence (intersection) of the events (X1 < x1) and
(X2 < x2); i.e.,

F (x1,x2) = FX1,X2 (x1,x2) = P (X1 < x1,X2 < x2). (20.2.5.1)

Geometrically, F (x1,x2) can be interpreted as the probability that the random point (X1 ,X2)
lies in the lower left infinite quadrant with vertex (x1,x2) (see Fig. 20.13).

Given the joint distribution of random variablesX1 andX2, one can find the distributions
of each of the random variables X1 and X2, known as the marginal distributions:

FX1 (x1) = P (X1 < x1) = P (X1 < x1,X2 < +∞) = FX1,X2 (x1, +∞),
FX2 (x2) = P (X2 < x2) = P (X1 < +∞,X2 < x2) = FX1,X2 (+∞,x2).

(20.2.5.2)
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Figure 20.13. Geometrically interpretation of the distribution function FX1 ,X2 (x1,x2).

The marginal distributions do not completely characterize the two-dimensional random
variable (X1,X2); i.e., the joint distribution of the random variables X1 and X2 cannot in
general be reconstructed from the marginal distributions.

Properties of the joint distribution function of random variables X1 and X2:

1. The function F (x1,x2) is a nondecreasing function of each of the arguments.
2. F (x1, –∞) = F (–∞,x2) = F (–∞, –∞) = 0.
3. F (+∞, +∞) = 1.
4. The probability that the random vector lies in a rectangle with sides parallel to the

coordinate axes is

P (a1 ≤ X1 < b1, a2 ≤ X2 < b2) = F (b1, b2) – F (b1, a2) – F (a1, b2) + F (a1, a2).

5. The function F (x1,x2) is left continuous in each of the arguments.

20.2.5-2. Discrete bivariate random variables.

A bivariate random variable (X1,X2) is said to be discrete if each of the random variables
X1 and X2 is discrete.

If the random variable X1 takes the values x11, . . . , x1m and the random variable X2
takes the values x21, . . . , x2n, then the random vector (X1,X2) can take only the pairs of
values (x1i,x2j) (i = 1, . . . ,m, j = 1, . . . ,n). It is convenient to describe the distribution of
a bivariate discrete random variable using the distribution matrix shown in Fig. 20.14.

Figure 20.14. Distribution matrix.

The entries pij = P (X1 = x1i,X2 = x2j) of the distribution matrix are the probabilities of
the simultaneous occurrence of the events (X1 = x1i) and (X2 = x2j); PX1,i = pi1 + · · · + pin
is the probability that the random variable X1 takes the value x1i; PX2 ,j = p1j + · · · + pmj
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is the probability that the random variable X2 takes the value x2j; the last column (resp.,
row) shows the distribution of the random variable X1 (resp., X2).

The distribution function of a discrete bivariate random variable can be determined by
the formula

F (x1,x2) =
∑

x1i<x1
x2j<x2

pij . (20.2.5.3)

20.2.5-3. Continuous bivariate random variables.

A bivariate random variable (X1,X2) is said to be continuous if its joint distribution function
F (x1,x2) can be represented as

F (x1,x2) =
∫ x2

–∞

∫ x1

–∞
p(y1, y2) dy1 dy2, (20.2.5.4)

where the joint probability function p(x1,x2) = pX1,X2 (x1,x2) is piecewise continuous.
The joint probability function can be expressed via the joint distribution function as

follows:
pX1,X2(x1,x2) = p(x1,x2) = Fx1x2 (x1,x2). (20.2.5.5)

Formulas (20.2.5.4) and (20.2.5.5) establish a one-to-one correspondence (up to sets of
probability zero) between the joint probability functions and the joint distribution functions
of continuous bivariate random variables. The differential p(x1,x2) dx1 dx2 is called a
probability element. Up to higher-order infinitesimals, the probability element is equal
to the probability for the random variable (X1,X2) to lie in the infinitesimal rectangle
(x1,x1 + Δx1) × (x2,x2 + Δx2).

The probability density function of the two-dimensional random variable (X1,X2),
which is also called the joint probability function of the random variables X1 and X2,
determines the probability density functions of the random variables X1 and X2, which are
called the marginal probability functions of the two-dimensional random variable (X1,X2),
by the formulas

pX1 (x1) =
∫ +∞

–∞
pX1,X2 (x1,x2) dx2, pX2 (x2) =

∫ +∞

–∞
pX1,X2 (x1,x2) dx1. (20.2.5.6)

In the general case, the joint probability function cannot be reconstructed from the
marginal probability functions, and hence the latter do not completely characterize the
bivariate random variable (X1,X2).

Properties of the joint probability function of random variables X1 and X2:
1. The function p(x1,x2) is nonnegative; i.e., p(x1,x2) ≥ 0.

2.
∫ +∞

–∞

∫ +∞

–∞
p(x1,x2) dx1 dx2 = 1.

3. P (a1 <X1 < b1, a2 <X2 < b2) =
∫ b1

a1

dx1

∫ b2

a2

p(x1,x2) dx2 =
∫ b2

a2

dx2

∫ b1

a1

p(x1,x2) dx1.

4. The probability for a two-dimensional random variable (X1,X2) to lie in a domain
D ⊂ R2 is numerically equal to the volume of the curvilinear cylinder with base D
bounded above by the surface of the joint probability function:

P [(X1,X2) � D] =
∫∫

(x1,x2)�D
pX1,X2(x1,x2) dx1 dx2.



1060 PROBABILITY THEORY

Random variables X1 and X2 are said to be independent if the relation

P (X1 � S1,X2 � S2) = P (X1 � S1)P (X2 � S2) (20.2.5.7)

holds for any measurable sets S1 and S2.

THEOREM 1. Random variables X1 and X2 are independent if and only if

FX1,X2 (x1,x2) = FX1 (x1)FX2 (x2).

THEOREM 2. Random variables X1 and X2 are independent if and only if the charac-
teristic function of the bivariate random variable (X1,X2) is equal to the product of the
characteristic functions of X1 and X2,

fX1,X2 (x1,x2) = fX1 (x1)fX2 (x2).

20.2.5-4. Numerical characteristics of bivariate random variables.

The expectation of a function g(X1,X2) of a bivariate random variable (X1,X2) is defined
as the expression computed by the formula

E{g(X1,X2)} =

⎧
⎪⎪⎨

⎪⎪⎩

∑

i

∑

j

g(x1i,x2j)pij in the discrete case,

∫ +∞

–∞

∫ +∞

–∞
g(x1,x2)p(x1,x2) dx1 dx2 in the continuous case,

(20.2.5.8)

if these expressions exist in the sense of absolute convergence; otherwise, one says that
E{g(X1,X2)} does not exist.

The moment of order r1 + r2 of a two-dimensional random variable (X1,X2) about a
point (a1, a2) is defined as the expectation E{(X1 – a1)r1 (X2 – a2)r2 }.

If a1 = a2 = 0, then the moment of order r1 + r2 of a two-dimensional random variable
(X1,X2) is called simply the moment, or the initial moment. The initial moment of order
r1 + r2 is usually denoted by αr1,r2 ; i.e., αr1,r2 = E{Xr1

1 X
r2
2 }.

The first initial moments are the expectations of the random variables X1 and X2; i.e.,
α1,0 = E{X1

1X
0
2 } = E{X1} and α0,1 = E{X0

1X
1
2 } = E{X2}. The point (E{X1},E{X2})

on the OXY -plane characterizes the position of the random point (X1,X2); this position
spreads about the point (E{X1},E{X2}). Obviously, the first central moments are zero.

The second initial moments are given by the formulas

α2,0 = α2(X1), α0,2 = α2(X2), α1,1 = E{X1X2}.

If a1 = E{X1} and a2 = E{X2}, then the moment of order r1 + r2 of the bivariate
random variable (X1,X2) is called the central moment. The central moment of order r1 +r2
is usually denoted by μr1,r2 ; i.e., μr1,r2 = E{(X1 – E{X1})r1 (X2 – E{X2})r2 }.

The second central moments are of special interest and have special names and notation:

λ11 = μ2,0 = Var{X1}, λ22 = μ0,2 = Var{X2},

λ12 = λ21 = μ1,1 = E{(X1 –E{X1})(X2 – E{X2})}.

The first two of these moments are the variances of the respective random variables, and
the third moment is called the covariance and will be considered below.
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20.2.5-5. Covariance and correlation of two random variables.

The covariance (correlation moment, or mixed second moment) Cov(X1,X2) of random
variables X1 and X2 is defined as the central moment of order (1 + 1):

Cov(X1,X2) = α1,1 = E{(X1 –E{X1})(X2 – E{X2})}. (20.2.5.9)

Properties of the covariance:
1. Cov(X1,X2) = Cov(X2,X1).
2. Cov(X,X) = Var{X}.
3. If the random variables X1 and X2 are independent, then Cov(X1,X2) = 0. If

Cov(X1,X2) ≠ 0, then the random variables X1 and X2 are dependent.
4. If Y1 = a1X1 + b1 and Y2 = a2X2 + b2, then Cov(Y1,Y2) = a1a2Cov(X1,X2).
5. Cov(X1,X2) = E{X1X2} –E{X1}E{X2}.
6. |Cov(X1,X2)| ≤

√
Var{X1}Var{X2}. Moreover, Cov(X1,X2) = �

√
Var{X1}Var{X2}

if and only if the random variables X1 and X2 are linearly dependent.
7. Var{X1 +X2} = Var{X1} + Var{X2} + 2Cov(X1,X2).

If Cov(X1,X2) = 0, then the random variables X1 and X2 are said to be uncorrelated;
if Cov(X1,X2) ≠ 0, then they are correlated. Independent random variables are always
uncorrelated, but correlated random variables are not necessarily independent in general.

Example 1. Suppose that we throw two dice. Let X1 be the number of spots on top of the first die, and
let X2 be the number of spots on top of the second die. We consider the random variables Y1 = X1 + X2 and
Y2 = X1 –X2 (the sum and difference of points obtained). Then

Cov(Y1,Y2) = E{(X1 +X2 – E{X1 +X2 })(X1 –X2 –E{X1 –X2 })} =

= E{(X1 –E{X1 })2 – (X2 –E{X2 })2} = Var{X1 } – Var{X2 } = 0,

since X1 and X2 are identically distributed and hence Var{X1 } = Var{X2 }. But Y1 and Y2 are obviously
dependent; for example, if Y1 = 2 then one necessarily has Y2 = 0.

The covariance of random variables X1 and X2 characterizes both the degree of their
dependence on each other and their spread around the point (E{X1},E{X2}). The covari-
ance of X1 and X2 has the dimension equal to the product of dimensions of X1 and X2.
Along with the covariance of random variables X1 and X2, one often uses the correlation
ρ(X1,X2), which is a dimensionless normalized variable. The correlation (or correlation
coefficient) of random variables X1 and X2 is the ratio of the covariance of X1 and X2 to
the product of their standard deviations,

ρ(X1,X2) =
Cov(X1,X2)
σX1σX2

. (20.2.5.10)

The correlation of random variables X1 and X2 indicates the degree of linear dependence
between the variables. If ρ(X1,X2) = 0, then there is no linear relation between the random
variables, but there may well be some different relation between them.

Properties of the correlation:
1. ρ(X1,X2) = ρ(X2,X1).
2. ρ(X,X) = 1.
3. If random variables X1 and X2 are independent, then ρ(X1,X2) = 0. If ρ(X1,X2) ≠ 0,

then the random variables X1 and X2 are dependent.
4. If Y1 = a1X1 + b1 and Y2 = a2X2 + b2, then ρ(X1,X2) = �ρ(X1,X2).
5. |ρ(X1,X2)| ≤ 1. Moreover, ρ(X1,X2) = �1 if and only if the random variables X1 and
X2 are linearly dependent.
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20.2.5-6. Conditional distributions.

The joint distribution of random variablesX1 andX2 determines the conditional distribution
of one of the random variables given that the other random variable takes a certain value
(or lies in a certain interval). If the joint distribution is discrete, then the conditional
distributions of X1 and X2 are also discrete. The conditional distributions are described by
the formulas

P1|2(x1i|x2j) = P (X1 = x1i|X2 = x2j) =
P (X1 = x1i,X2 = x2j)

P (X2 = x2j)
=

pij
PX2 ,j

,

P2|1(x2j |x1i) = P (X2 = x2j |X1 = x1i) =
P (X1 = x1i,X2 = x2j)

P (X1 = x1i)
=

pij
PX1 ,i

,

i = 1, . . . ,m; j = 1, . . . ,n.

(20.2.5.11)

The probabilities P1|2(x1i|x2j), j = 1, . . . ,n, define the conditional probability mass
function of the random variable X2 given X1 = x1i; and the probabilities P2|1(x2j |x1i),
i = 1, . . . ,m, define the conditional probability mass function of the random variable X1
given X2 = x2j . These conditional probability mass functions have the properties of usual
probability mass functions; for example, the sum of probabilities in each of them is equal
to 1, ∑

i

P1|2(x1i|x2j) =
∑

j

P2|1(x2j |x1i) = 1.

If the joint distribution is continuous, then the conditional distributions of the random
variables X1 and X2 are also continuous and are described by the conditional probability
density functions

p1|2(x1|x2) =
pX1,X2 (x1,x2)
pX2 (x2)

, p2|1(x2|x1) =
pX1,X2(x1,x2)
pX1 (x1)

. (20.2.5.12)

The conditional distributions of the random variables X1 and X2 can also be described
by the conditional cumulative distribution functions

FX2 (x2|X1 = x1) = P (X2 < x2|X1 = x1),
FX1 (x1|X2 = x2) = P (X1 < x1|X2 = x2).

(20.2.5.13)

The total probability formulas for the cumulative distribution functions of continuous
random variables have the form

FX2 (x2) =
∫ +∞

–∞
FX2 (x2|X1 = x1)pX1 (x1)dx1,

FX1 (x1) =
∫ +∞

–∞
FX1 (x1|X2 = x2)pX2 (x2)dx2.

(20.2.5.14)

THEOREM ON MULTIPLICATION OF DENSITIES. The joint probability function for two
random variables is equal to the product of the probability density function of one random
variable by the conditional probability density function of the other random variable, given
the value of the first random variable:

pX1,X2 (x1,x2) = pX2 (x2)p1|2(x1x2) = pX1 (x1)p2|1(x2|x1). (20.2.5.15)
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Bayes’ formulas:

P1|2(x1i|x2j) =
pX1 (x1i)p2|1(x2j |x1i)∑

i P (X1 = x1i)P2|1(x2jx1i)
,

P2|1(x2j |x1i) =
pX2 (x2j)p1|2(x1i|x2j)∑

j P (X2 = x2j)p1|2(x1i|x2j)
;

(20.2.5.16)

p1|2(x1|x2) =
pX1 (x1)p2|1(x2|x1)

∫ +∞
–∞ pX1 (x1)p2|1(x2|x1) dx1

,

p2|1(x2|x1) =
pX2 (x2)p1|2(x1|x2)

∫ +∞
–∞ pX2 (x2)p1|2(x1|x2) dx2

.

(20.2.5.17)

20.2.5-7. Conditional expectation. Regression.

The conditional expectation of a discrete random variable X2, given X1 = x1 (where x1 is a
possible value of the random variable X1), is defined to be the sum of products of possible
values of X2 by their conditional probabilities,

E{X2|X1 = x1} =
∑

j

x2jp2|1(x2j |x1). (20.2.5.18)

For continuous random variables,

E{(X2|X1 = x1} =
∫ +∞

–∞
x2p2|1(x2|x1) dx2. (20.2.5.19)

Properties of the conditional expectation:
1. If random variables X and Y are independent, then their conditional expectations

coincide with the unconditional expectations; i.e., E{Y |X = x} = E{Y } and E{X |Y =
y} = E{X}.

2. E{f (X)h(Y )|X = x} = f (x)E{h(Y )|X = x}.
3. Additivity of the conditional expectation:

E{Y1 + Y2|X} = E{Y1|X = x} + E{Y2|X = x}.

A function g2(X1) is called the best mean-square approximation to a random variableX2
if the expectation E{[X2 – g2(X1)]2} takes the least possible value; the function g2(x1) is
called the mean-square regression of X2 on X1.

The conditional expectation E{X2|X1} is a function of X1,

E{X2|X1} = g2(X1). (20.2.5.20)

It is called the regression function of X2 on X1 and is the mean-square regression of X2
on X1.

In a majority of cases, it suffices to approximate the regression (20.2.5.20) by the linear
function

g̃2(X1) = α + β21X1 = E{X2} + β21(X1 – E{X1}).

Here the coefficient β21 = ρ12σX2/σX1 is called the regression coefficient of X2 on X1
(ρ12 = ρ(X1,X2)). The number σ2

X2
(1 – ρ2

12) is called the residual standard deviation of the
random variable X2 with respect to the random variable X1; this number characterizes the
error arising if X2 is replaced by the linear function g2(X1) = α + β21X1.
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Remark 1. The regression (20.2.5.20) can be approximated more precisely by a polynomial of degree
k > 1 (parabolic regression of order k) or some other nonlinear functions (exponential regression, logarithmic
regression, etc.).

Remark 2. If X2 is taken for the independent variable, then we obtain the mean-square regression

E{X1 |X2 } = g1(X2)

of X1 on X2 and the linear regression

g̃1(X2) = E{X1 } + β12(X2 –E{X2 }), β12 = ρ12
σX1

σX2

of X1 on X2.

Remark 3. All regression lines pass through the point (E{X1 },E{X2 }).

20.2.5-8. Distribution function of multivariate random variable.

The probability P (X1 < x1, . . . ,Xn < xn) treated as a function of a point x = (x1, . . . ,xn)
of the n-dimensional space and denoted by

FX(x) = F (x) = P (X1 < x1, . . . ,Xn < xn) (20.2.5.21)

is called the multiple (or joint) distribution function of the n-dimensional random vector
X = (X1, . . . ,Xn).

Properties of the joint distribution function of a random vector X:
1. F (x) is a nondecreasing function in each of the arguments.
2. If at least one of the arguments x1, . . . , xn is equal to –∞, then the joint distribution

function is equal to zero.
3. The m-dimensional distribution function of the subsystem of m < n random variables
X1, . . . ,Xm can be determined if the arguments corresponding to the remaining random
variables Xm+1, . . . , Xn are set to +∞,

FX1 ,...,Xm(x1, . . . ,xm) = FX(x1, . . . ,xm, –∞, . . . , +∞).

(The m-dimensional distribution function FX1,...,Xm(x1, . . . ,xm) is usually called the
marginal distribution function.)

4. The function FX(x) is left continuous in each of the arguments.

An n-dimensional random variable X is said to be discrete if each of the random
variables X1, X2, . . . , Xn is discrete. The distribution of a subsystem X1, . . . , Xm of
random variables and the conditional distributions are defined as in Paragraphs 20.2.5-6
and 20.2.5-7.

An n-dimensional random variable X is said to be continuous if its distribution function
F (x) can be written in the form

F (x) =
∫

–∞<y1<x1

. . .

∫

–∞<yn<xn

p(y) dy, (20.2.5.22)

where dy = dy1 . . . dyn and the function p(x), called the multiple (or joint) probability
function of the random variablesX1, . . . ,Xn, is piecewise continuous. The joint probability
function can be expressed via the joint distribution function by the formula

p(x) =
∂nFX(x)
∂x1 . . . ∂xn

; (20.2.5.23)
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i.e., the joint probability function is the nth mixed partial derivative (one differentiation in
each of the arguments) of the joint distribution function.

Formulas (20.2.5.22) and (20.2.5.23) establish a one-to-one correspondence (up to
sets of probability zero) between the joint probability functions and the joint distribution
functions of continuous multivariate random variables. The differential p(x) dx is called a
probability element. The joint probability function of n random variables X1, X2, . . . , Xn

has the same properties as the joint probability function of two random variables X1 andX2
(see Paragraph 20.2.1-4.). The marginal probability functions and conditional probability
functions obtained from a continuous n-dimensional probability distribution are defined
precisely as in Paragraphs 20.2.1-4 and 20.2.1-8.

Remark 1. The distribution of a system of two or more multivariate random variables X1 = (X11,X12, . . .)
and X2 = (X21,X22, . . .) is the joint distribution of all variables X11, X12, . . . ; X21, X22, . . . ; . . .

Remark 2. A joint distribution can be discrete in some random variables and continuous in the other
random variables.

20.2.5-9. Numerical characteristics of multivariate random variables.

The expectation of a function g(X) of a multivariate random variable X is defined by the
formula

E{g(X)} =

⎧
⎪⎪⎨

⎪⎪⎩

∑

i1

. . .
∑

in

g(x1i1 , . . . ,x2in)pi1i2...in in the discrete case,

∫ +∞

–∞
. . .

∫ +∞

–∞
g(x)p(x) dx in the continuous case

(20.2.5.24)

if these expressions exist in the sense of absolute convergence; otherwise, one says that
E{g(X)} does not exist.

The moment of order r1 + · · · + rn of a random variable X about a point (a1, . . . , an) is
defined as the expectation E{(X1 – a1)r1 . . . (Xn – an)rn }.

For a1 = · · · = an = 0, the moment of order r1 + · · · + rn of an n-dimensional random
variable X is called the initial moment and is denoted by

αr1...rn = E{Xr1
1 . . . Xrn

n }.

The first initial moments are the expectations of the coordinates X1, . . . , Xn. The point
(E{X1}, . . . ,E{Xn}) in the space R

n characterizes the position of the random point
(X1, . . . ,Xn), which spreads about the point (E{X1}, . . . ,E{Xn}). The first central
moments are naturally zero.

If a1 = E{X1}, . . . , an = E{Xn}, then the moment of order r1 + · · · + rn of the
n-dimensional random variable X is called the central moment and is denoted by

μr1...rn = E
{

(X1 – E{X1})r1 . . . (Xn –E{Xn})rn
}

.

The second central moments have the following notation:

λij = λji = E
{

(Xi –E{Xi})(Xj – E{Xj})
}

=

{
Var{Xi} = σ2

i for i = j,
Cov(Xi,Xj) for i ≠ j. (20.2.5.25)

The moments λij given by relation (20.2.5.25) determine the covariance matrix (matrix
of moments) [λij]. Obviously, the covariance matrix is real and symmetric; its determi-
nant det[λij] is called the generalized variance of the n-dimensional distribution. The
correlations

ρij = ρ(Xi,Xj) =
Cov(Xi,Xj)
σXiσXj

=
λij√
λiiλjj

(i, j = 1, 2, . . . ,n) (20.2.5.26)
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determine the correlation matrix [ρij] of the n-dimensional distribution provided that all
variances Var{Xi} are nonzero. Obviously, the correlation matrix is real and symmetric.
The quantity

√
det[ρij] is called the spread coefficient.

20.2.5-10. Regression.

A function g1(X2, . . . ,Xn) is called the best mean-square approximation to a random
variable X1 if the expectation E{[X1 – g1(X2, . . . ,Xn)]2} takes the least possible value.
The function g1(x2, . . . ,xn) is called the mean-square regression of X1 on X2, . . . , Xn.

The conditional expectation E{X1|X2, . . . ,Xn} is a function of X2, . . . , Xn,

E{X1|X2, . . . ,Xn} = g1(X2, . . . ,Xn). (20.2.5.27)

It is called the regression function of X1 on X2, . . . , Xn and is the mean-square regression
of X1 on X2, . . . , Xn.

In a majority of cases, it suffices to approximate the regression (20.2.5.27) by the linear
function

g̃i = E{Xi} +
∑

j≠i

βij(Xj – E{Xj}). (20.2.5.28)

Relation (20.2.5.28) determines the linear regression of Xi on the other n – 1 variables.
The regression coefficients βij are determined by the relation

βij = –
Λij
Λii

,

where Λij are the entries of the inverse of the covariance matrix. The measure of correlation
between Xi and the other n – 1 variables is the multiple correlation coefficient

ρ(Xi, g̃i) =

√

1 –
1

λiiΛii
.

The residual of Xi with respect to the other n – 1 variables is defined as the random
variable Δi = Xi – g̃i. It satisfies the relations

Cov(Δi,Xj) =
{ 0 for i ≠ j,

Var{Δi} for i = j (residual variance).

20.2.5-11. Characteristic functions.

The characteristic function of a random variable X is defined as the expectation of the

random variable exp
(
i
n∑

j=1
tjXj

)
:

fX(t) = f (t) = E
{

exp
(
i
n∑

j=1
tjXj

)}
, (20.2.5.29)

where t = (t1, . . . , tn), i is the imaginary unit, i2 = –1.
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For continuous random variables,

f (t) =
∫ +∞

–∞
. . .

∫ +∞

–∞
exp
(
i
n∑

j=1
tjxj

)
p(x) dx.

The inversion formula for a continuous distribution has the form

p(x) =
1

(2π)n

∫ +∞

–∞
. . .

∫ +∞

–∞
exp
(

–i
n∑

j=1
tjxj

)
f (t) dt,

where dt = dt1 . . . dtn.
If the initial moments of a random variable X exist, then

E{Xr1
1 . . . Xrn

n } = i
–
∑n

j=1
rj ∂

r1+···+rnf (t)
∂tr1

1 . . . ∂trnn

∣∣
∣∣
t1=···=tn=0

.

The characteristic function corresponding to the m-dimensional marginal distribution
of m out of n variables X1, . . . , Xn can be obtained from the characteristic function
(20.2.5.29) if the variables tj corresponding to the random variables that are not contained
in the m-dimensional marginal distribution are replaced by zeros.

CONTINUITY THEOREM FOR CHARACTERISTIC FUNCTIONS. The weak convergence
FXn → F of a sequence of distribution functions F1(x), F2(x), . . . is equivalent to the
uniform convergence fn(t) → f (t) of characteristic functions on each finite interval.

20.2.5-12. Independency of random variables.

Random variables X1, . . . , Xn are said to be independent if the events {X1 � S1}, . . . ,
{Xn � Sn} are independent for any measurable sets S1, . . . , Sn. For this, it is necessary
and sufficient that

P (X1 � S1, . . . ,Xn � Sn) =
n∏

k=1

P (Xk � Sk). (20.2.5.30)

Relation (20.2.5.30) is equivalent to one of the following three:
1. In the general case: for any x � R

n,

FX(x) =
n∏

k=1

FXk
(xk).

2. For absolutely continuous distributions: for any x � R
n (except possibly for a set of

measure zero),

pX(x) =
n∏

k=1

pXk
(xk).

3. For discrete distributions: for any x � R
n,

P (X1 = x1, . . . ,Xn = xn) =
n∏

k=1

P (Xk = xk).

The joint distribution of independent random variables is uniquely determined by their
individual distributions. Independent random variables are uncorrelated, but the converse
is not true in general.

Random variables X1, . . . ,Xn are independent if and only if the characteristic function
of the multivariate random variable X is equal to the product of the characteristic functions
of the random variables X1, . . . , Xn.
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20.3. Limit Theorems

20.3.1. Convergence of Random Variables

20.3.1-1. Convergence in probability.

A sequence of random variables X1, X2, . . . is said to converge in probability to a random

variable X(Xn
P−→ X) if

lim
n→∞P (|Xn – X | ≥ ε) = 0 (20.3.1.1)

for each ε > 0, i.e., if for any ε > 0 and δ > 0 there exists a number N , depending on ε and
δ, such that the inequality

P (|Xn –X | > ε) < δ

holds for n > N . A sequence of k-dimensional random variables Xn is said to converge in
probability to a random variable X if each coordinate of the random variable Xn converges
in probability to the respective coordinate of the random variable X.

20.3.1-2. Almost sure convergence (convergence with probability 1).

A sequence of random variables X1, X2, . . . is said to converge almost surely (or with
probability 1) to a random variable X (Xn

a.s.−→ X) if

P [ω � Ω : lim
n→∞Xn(ω) = X(ω)] = 1. (20.3.1.2)

A sequence Xn → X converges almost surely if and only if

P
( ∞⋃

m=1

{|Xn+m –X | ≥ ε}
) −→
n→∞ 0

for each ε > 0.
Convergence almost surely implies convergence in probability. The converse statement

is not true in general.

20.3.1-3. Convergence in mean.

A sequence of random variables X1, X2, . . . with finite pth initial moments (p = 1, 2, . . .)
is said to converge in pth mean to a random variable X (E{Xp} < ∞) if

lim
n→∞E{|Xn –X |p} = 0. (20.3.1.3)

Convergence in pth mean, for p = 2 is called convergence in mean square. If Xn → X
in pth mean then Xn → X in p1th mean for all p1 ≤ p.

Convergence in pth mean implies convergence in probability. The converse statement
is not true in general.
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20.3.1-4. Convergence in distribution.

Suppose that a sequence F1(x), F2(x), . . . of cumulative distribution functions converges
to a distribution function F (x),

lim
n→∞Fn(x) = F (x), (20.3.1.4)

for every point x at which F (x). In this case, we say that the sequence X1, X2, . . . of the
corresponding random variables converges to the random variable X in distribution. The
random variables X1, X2, . . . can be defined on different probability spaces.

A sequence F1(x), F2(x), . . . of distribution functions weakly converges to a distribution
function F (x) (Fn → F ) if

lim
n→∞E{h(Xn)} = E{h(X)} (20.3.1.5)

for any bounded continuous function h as n→ ∞.

Convergence in distribution and weak convergence of distribution functions are equiv-
alent.

The weak convergence FXn → F for random variables having a probability density
function means the convergence

∫ +∞

–∞
g(x)pXn(x) dx →

∫ +∞

–∞
g(x)p(x) dx (20.3.1.6)

for any bounded continuous function g(x).

20.3.2. Limit Theorems

20.3.2-1. Law of large numbers.

The law of large numbers consists of several theorems establishing the stability of average
results and revealing conditions for this stability to occur.

The notion of convergence in probability is most often used for the case in which the limit
random variable X has the degenerate distribution concentrated at a point a (P (ξ = a) = 1)
and

Xn =
1
n

n∑

k=1

Yk, (20.3.2.1)

where Y1, Y2, . . . are arbitrary random variables.
A sequence Y1, Y2, . . . satisfies the weak law of large numbers if the limit relation

lim
n→∞P

(∣∣
∣

1
n

n∑

k=1

Yk – a
∣∣
∣ ≥ ε

)
≡ lim
n→∞P (|Xn – a| ≥ ε) = 0 (20.3.2.2)

holds for any ε > 0.
If the relation

P
(
ω � Ω : lim

n→∞
1
n

n∑

k=1

Yk = a
)

≡ P
(
ω � Ω : lim

n→∞Xn = a
)

= 1 (20.3.2.3)
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is satisfied instead of (20.3.2.2), i.e., the sequence Xn converges to the number a with
probability 1, then the sequence Y1, Y2, . . . satisfies the strong law of large numbers.

Markov inequality. For any nonnegative random variable X that has an expectation
E{X}, the inequality

P (X ≥ ε) ≤
E{X}
ε2 (20.3.2.4)

holds for each ε > 0.
Chebyshev inequality. For any random variable X with finite variance, the inequality

P (|X – E{X}| ≥ ε) ≤
Var{X}
ε2 (20.3.2.5)

holds for each ε > 0.

CHEBYSHEV THEOREM. If X1, X2, . . . is a sequence of independent random variables
with uniformly bounded finite variances, Var{X1} ≤ C , Var{X2} ≤ C , . . . , then the limit
relation

lim
n→∞P

(∣∣∣
1
n

n∑

k=1

Xk –
1
n

n∑

k=1

E{Xk}
∣
∣∣ < ε

)
= 1 (20.3.2.6)

holds for each ε > 0.

BERNOULLI THEOREM. Let μn be the number of occurrences of an event A (the number
of successes) in n independent trials, and let p=P (A) be the probability of the occurrence of
the event A (the probability of success) in each of the trials. Then the sequence of relative
frequencies μn/n of the occurrence of the event A in n independent trials converges in
probability to p = P (A) as n→ ∞; i.e., the limit relation

lim
n→∞P

(∣∣
∣
μn
n

– p
∣∣
∣ < ε

)
= 1 (20.3.2.7)

holds for each ε > 0.

POISSON THEOREM. If in a sequence of independent trials the probability that an event
A occurs in the kth trial is equal to pk, then

lim
n→∞P

(∣∣
∣
μn
n

–
p1 + · · · + pn

n

∣∣
∣ < ε

)
= 1. (20.3.2.8)

KOLMOGOROV THEOREM. If a sequence of independent random variables X1, X2, . . .
satisfies the condition

∞∑

k=1

Var{Xk}
k2 < +∞, (20.3.2.9)

then it obeys the strong law of large numbers.

The existence of the expectation is a necessary and sufficient condition for the strong
law of large numbers to apply to a sequence of independent identically distributed random
variables.
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20.3.2-2. Central limit theorem.

A random variableXn with distribution functionFXn is asymptotically normally distributed
if there exists a sequence of pairs of real numbers mn, σ2

n such that the random variables
(Xn – mn/σn) converge in probability to a standard normal variable. This occurs if and
only if the limit relation

lim
n→∞P (Xn + aσn < Xn < Xn + bσn) = Φ(b) – Φ(a), (20.3.2.10)

where Φ(x) is the distribution function of the standard normal law, holds for any a and b
(b > a).

LYAPUNOV CENTRAL LIMIT THEOREM. If X1, . . . , Xn is a sequence of independent
random variables satisfying the Lyapunov condition

lim
n→∞

∑n
k=1 α3(Xk)

√∑n
k=1 Var{Xk}

= 0,

where α3(Xk) is the third initial moment of the random variable Xk, then the sequence of
random variables

Yn =

∑n
k=1(Xk –E{Xk})
√∑n

k=1 Var{Xk}

converges in distribution to the normal law, i.e., the following limit exists:

lim
n→∞P

(∑n
k=1(Xk –E{Xk})
√∑n

k=1 Var{Xk}
< t

)
=

1√
2π

∫ t

–∞
e–t2/2 dt = Φ(t). (20.3.2.11)

LINDEBERG CENTRAL LIMIT THEOREM. Let X1, X2, . . . be a sequence of independent
identically distributed random variables with finite expectation E{Xk} = m and finite

variance σ2. Then, as n→ ∞, the random variable 1
n

n∑

k=1
Xk has an asymptotically normal

probability distribution with parameters (m,σ2/n).
Let μn be the number of occurrences of an event A (the number of successes) in n

independent trials, and let p = P (A) be the probability of the occurrence of the event A (the
probability of success) in each of the trials. Then the sequence of relative frequencies μn/n
has an asymptotically normal probability distribution with parameters (p, p(1 – p)/n).

20.4. Stochastic Processes
20.4.1. Theory of Stochastic Processes

20.4.1-1. Notion of stochastic process.

Let a family
ξ(t) = ξ(ω, t), ω � Ω, (20.4.1.1)

of random variables depending on a parameter t � T be given on a probability space
(Ω,F ,P ). The variable ξ(t), t � T , can be treated as a random function of the variable
t � T . The values of this function are the values of the random variable (20.4.1.1). The
random function ξ(t) of the independent variable t is called a stochastic process. If a random
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outcome ω � Ω occurs, then the actual process is described by the corresponding trajectory,
which is called a realization of the process, or a sample function.

A stochastic process can be simply a numerical function ξ(t) of time admitting different
realizations ξ(ω, t) (one-dimensional stochastic process) or a vector function Ξ(t) (multi-
dimensional, or vector, stochastic process). The study of a multidimensional stochastic
process can be reduced to the study of one-dimensional stochastic processes by a transfor-
mation taking Ξ(t) = (ξ1(t), . . . , ξn(t)) to the auxiliary process

ξa(t) = Ξ(t) ⋅ a =
n∑

i=1

aiξi(t), (20.4.1.2)

where a = (a1, . . . , an) is an arbitrary k-dimensional vector. Therefore, the study of one-
dimensional stochastic processes ξ(t) is the main point in the theory of stochastic processes.
If the parameter t ranges in some interval of the real line R, then the stochastic process is
called a stochastic process with continuous time, and if the parameter t takes integer values,
then the process is called a stochastic process with discrete time (a random sequence).

To describe a stochastic process, one should specify an infinite set of compatible finite-
dimensional probability distributions of the random vectors Ξ(t) corresponding to all pos-
sible finite subsets t = (t1, . . . , tn) of values of the argument.

Remark. Specifying compatible finite-dimensional probability distributions of random vectors may be
insufficient for specifying the probabilities of events depending on the values of ξ(t) on an infinite set of values
of the parameter t; i.e., this does not uniquely determine the stochastic process ξ(t).

Example. Suppose that ξ(t) = cos(ωt + Φ), 0 ≤ t ≤ 1, is a harmonic oscillation with random phase Φ, Z
is a random variable uniformly distributed on the interval [0, 1], and the stochastic process ζ(t), 0 ≤ t ≤ 1, is
given by the relation

ζ(t) =

{
ξ(t) for t ≠ Z,
ξ(t) + 3 for t = Z.

Since P [(Z = t1) ∪ · · · ∪ (Z = tn)
]

= 0 for any finite set t = (t1, . . . , tn), we see that all finite-dimensional
distributions of the stochastic processes ξ(t) and ζ(t) are the same. At the same time, these processes differ
from each other.

Specifying the set of finite-dimensional probability distributions often permits one to
clarify whether there exists at least one stochastic process ξ(t) with finite-dimensional
distributions whose realizations satisfy a certain property (for example, are continuous or
differentiable).

20.4.1-2. Correlation function.

Let ξ(t) and ζ(t) be real stochastic processes.
The autocorrelation function of a stochastic process is defined as the function

Bξξ(t, s) = E
{[
ξ(t) – E{ξ(t)}

][
ξ(s) – E{ξ(s)}

]}
, (20.4.1.3)

which is the second central moment function.

Remark. The autocorrelation function of a stochastic process is also called the covariance function.

The mixed second moment, i.e., the function

Bξζ(t, s) = E{ξ(t)ζ(s)}, (20.4.1.4)

of values of ξ(t) and ζ(t) at two points is called the cross-correlation function (cross-
covariance function).
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The mixed central moment (covariance), i.e., the function

bξζ(t, s) = E
{[
ξ(t) –E{ξ(t)}

][
ζ(s) – E{ζ(s)}

]}
, (20.4.1.5)

is called the central cross-correlation function.
The correlation coefficient, i.e., the function

ρξζ(t, s) =
bξζ(t, s)√

Var{ξ(t)}Var{ζ(s)}
, (20.4.1.6)

is called the normalized cross-correlation function.
The following relations hold:

E{ξ2(t)} = Bξξ(t, t) ≥ 0,

|Bξξ(t, s)|2 ≤ Bξξ(t, t)Bξξ(s, s),
Var{ξ(t)} = Bξξ(t, t) – [E{ξ(t)}]2,

Cov[ξ(t), ζ(s)] = Bξζ(t, s) – ξ(t)ζ(s).

Suppose that ξ(t) and ζ(t) are complex stochastic processes (essentially, two-dimensional
stochastic processes). The autocorrelation function and the cross-correlation function are
determined by the relations

Bξξ(t, s) = E
{
ξ(t)ξ(s)

}
= Bξξ(s, t), Bξζ(t, s) = E

{
ξ(t)ζ(s)

}
= Bζξ(s, t), (20.4.1.7)

where ξ(t), Bξξ(s, t), and Bζξ(s, t) are the function conjugate to a function ξ(t), Bξξ(s, t),
and Bζξ(s, t), respectively.

20.4.1-3. Differentiation and integration of stochastic process.

To differentiate a stochastic process is to calculate the limit

lim
h→0

ξ(t + h) – ξ(t)
h

= ξ′t(t). (20.4.1.8)

If the limit is understood in the sense of convergence in mean square (resp., with probabil-
ity 1), then the differentiation is also understood in mean square (resp., with probability 1).

The following formulas hold:

E{ξ′t(t)} =
dE{ξ(t)}

dt
, Bξ′tξ′t(t, s) =

∂2Bξξ(t, s)
∂t∂s

, Bξ′tξ(t, s) =
∂Bξξ(t, s)

∂t
. (20.4.1.9)

The integral ∫ b

a
ξ(t) dt (20.4.1.10)

of a stochastic process ξ(t) defined on an interval [a, b] with autocorrelation function
Bξξ(t, s) is the limit in mean square of the integral sums

n∑

k=1

ξ(sk)(tk – tk–1)

as the diameter of the partition a = t0 < t1 < · · · < tn = b, where sk � [tk, tk–1] tends to zero.
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For the integral (20.4.1.10) to exist, it is necessary and sufficient that the following limit
exist:

lim
λ→0

n∑

k=1

n∑

l=1

Bξξ(sk, sl)(tk – tk–1)(tl – tl–1),

where λ = max
k

(tk – tk–1).

In particular, the integral (20.4.1.10) exists if the following repeated integral exists:

∫ b

a

∫ b

a
Bξξ(s, t) dt ds.

20.4.2. Models of Stochastic Processes

20.4.2-1. Stationary stochastic process.

A stochastic process ξ(t) is said to be stationary if its probability characteristics remain the
same in the course of time, i.e., are invariant under time shifts t → t + a, ξ(t) → ξ(t + a)
for any given a (real or integer for a stochastic process with continuous or discrete time,
respectively).

For a stationary process, the mean value (the expectation)

E{ξ(t)} = E{ξ(0)} = m

is a constant, and the correlation function is determined by the relation

E{ξ(t)ξ(t + τ )} = Bξξ(τ ), (20.4.2.1)

where ξ(t) is the function conjugate to a function ξ(t). The correlation function is positive
definite:

n∑

k=1

n∑

j=1

ckcjBξξ(tk – tj) = E
{∣∣
∣
n∑

k=1

ckξ(tk)
∣∣
∣
}

≥ 0.

In this case, the following relations hold:

Bξξ(τ ) = Bξξ(–τ ), Bξζ(τ ) = Bζξ(–τ )

|Bξξ(τ )| ≤ Bξξ(0), |Bξζ(τ )|2 ≤ Bξξ(0)Bζζ(0),
(20.4.2.2)

whereBξξ(s, t) andBζξ(s, t) are the function conjugate to a functionBξξ(s, t) andBζξ(s, t),
respectively.

Stochastic processes for which E{ξ(t)} and E{ξ(t)ξ(t + τ )} are independent of t are
called stationary stochastic processes in the wide sense. Stochastic processes, all of whose
characteristics remain the same in the course of time, are called stationary stochastic
processes in the narrow sense.

KHINCHIN’S THEOREM. The correlation function Bξξ(τ ) of a stationary stochastic
process with continuous time can always be represented in the form

Bξξ(τ ) =
∫ ∞

–∞
eiτλ dF (λ), (20.4.2.3)

where F (λ) is a monotone nondecreasing function, i is the imaginary unit, and i2 = –1.
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IfBξξ(τ ) decreases sufficiently rapidly as |τ |→∞ (as happens most often in applications
provided that ξ(t) is understood as the difference ξ(t) – E{ξ(t)}, i.e., it is assumed that
E{ξ(t)} = 0), then the integral on the right-hand side in (20.4.2.3) becomes the Fourier
integral

Bξξ(τ ) =
∫ ∞

–∞
eiτλf (λ) dλ, (20.4.2.4)

where f (λ) = F ′
λ(λ) is a monotone nondecreasing function. The function F (λ) is called

the spectral function of the stationary stochastic process, and the function f (λ) is called its
spectral density. The process ξ(t) itself admits the spectral resolution

ξ(t) =
∫ ∞

–∞
eitλdZ(λ), (20.4.2.5)

where Z(λ) is a random function with uncorrelated increments (i.e., a function such that
E
{
dZ(λ1) dZ(λ2)

}
= 0 for λ1 ≠ λ2) satisfying the condition |E{dZ(λ)}|2 = dF (λ) and the

integral is understood as the mean-square limit of the corresponding sequence of integral
sums.

20.4.2-2. Markov processes.

A stochastic process ξ(t) is called a Markov process if for two arbitrary times t0 and t1,
t0 < t1, the conditional distribution of ξ(t1) given all values of ξ(t) for t ≤ t0 depends only
on ξ(t0). This property is called the Markov property or the absence of aftereffect.

The probability of a transition from state i to state j in time t is called the transition
probability pij(t) (t ≥ 0). The transition probability satisfies the relation

pij(t) = P [ξ(t) = j|ξ(0) = i]. (20.4.2.6)

Suppose that the initial probability distribution

p0
i = P

[
ξ(0) = i

]
, i = 0, �1, �2, . . .

is given. In this case, the joint probability distribution of the random variables ξ(t1), . . . ,
ξ(tn) for any 0 = t0 < t1 < · · · < tn is given by

P
[
ξ(t1) = j1, . . . , ξ(tn) = jn

]
=
∑

i

p0
ipij1(t1 –t0)pij2 (t2 –t1) . . . pjn–1jn(tn–tn–1); (20.4.2.7)

and, in particular, the probability that the system at time t > 0 is in state j is

pj(t) =
∑

i

p0
ipij(t), j = 0, �1, �2, . . .

The dependence of the transition probabilities pij(t) on time t ≥ 0 is given by the formula

pij(s + t) =
∑

k

pik(s)pkj(t), i, j = 0, �1, �2, . . . (20.4.2.8)

Suppose that λij = [pij(t)]′t
∣
∣
t=0, j = 0, �1, �2, . . . The parameters λij satisfy the

condition

λii = lim
h→0

pii(h) – 1
h

= –
∑

i≠j

λij , λij = lim
h→0

pij(h)
h

≥ 0 (i ≠ j). (20.4.2.9)
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THEOREM. Under condition (20.4.2.9), the transition probabilities satisfy the system of
differential equations

[pij(t)]
′
t =
∑

k

λikpkj(t), i, j = 0, �1, �2, . . . (20.4.2.10)

The system of differential equations (20.4.2.10) is called the system of backward Kol-
mogorov equations.

THEOREM. The transition probabilities pij(t) satisfy the system of differential equations

[pij(t)]
′
t =
∑

k

λkjpik(t), i, j = 0, �1, �2, . . . (20.4.2.11)

The system of differential equations (20.4.2.11) is called the system of forward Kol-
mogorov equations.

20.4.2-3. Poisson processes.

For a flow of events, let Λ(t) be the expectation of the number of events on the interval
[0, t). The number of events in the half-open interval [a, b) is a Poisson random variable
with parameter

Λ(b) – Λ(a).

The probability structure of a Poisson process is completely determined by the function
Λ(t).

The Poisson process is a stochastic process ξ(t), t ≥ 0, with independent increments
having the Poisson distribution; i.e.,

P [ξ(t) – ξ(s) = k] =
[Λ(t) – Λ(s)]k

k!
eΛ(t)–Λ(s)

for all 0 ≤ s ≤ t, k = 0, 1, 2, . . . , and t ≥ 0.
A Poisson point process is a stochastic process for which the numbers of points (counting

multiplicities) in any disjoint measurable sets of the phase space are independent random
variables with the Poisson distribution.

In queueing theory, it is often assumed that the incoming traffic is a Poisson point
process. The simplest point process is defined as the Poisson point process characterized
by the following three properties:
1. Stationarity.
2. Memorylessness.
3. Orderliness.

Stationarity means that, for any finite group of disjoint time intervals, the probability
that a given number of events occurs on each of these time intervals depends only on these
numbers and on the duration of the time intervals, but is independent of any shift of all time
intervals by the same value. In particular, the probability that k event occurs on the time
interval from τ to τ + t is independent of τ and is a function only of the variables k and t.

Memorylessness means that the probability of the occurrence of k events on the time
interval from τ to τ+t is independent of how many times and how the events occurred earlier.
This means that the conditional probability of the occurrence of events on the time interval
from τ to τ+t under any possible assumptions concerning the occurrence of the events before
time τ coincides with the unconditional probability. In particular, memorylessness means
that the occurrences of any number of events on disjoint time intervals are independent.

Orderliness expresses the requirement that the occurrence of two or more events on a
small time interval is practically impossible.
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20.4.2-4. Birth–death processes.

Suppose that a system can be in one of the states

E0, E1, E2, . . . ,

and the set of these states is finite or countable. In the course of time, the states of the
system vary; on a time interval of length h, the system passes from the state En to the state
En+1 with probability

λnh + o(h)

and to the state En–1 with probability

υnh + o(h).

The probability to stay at the same state En on a time interval of length h is equal to

1 – λnh – υnh + o(h).

It is assumed that the constants λn and υn depend only on n and are independent of t and
of how the system arrived at this state.

The stochastic process described above is called a birth–death process. If the relation

υn = 0

holds for any n ≥ 1, then the process is called a pure birth process. If the relation

λn = 0

holds for any n ≥ 1, then the process is called the death process.
Let pk(t) be the probability that the system is in the state Ek at time t. Then the

birth–death process is described by the system of differential equations

[p0(t)]′t = –λ0p0(t) + υ1p1(t),

[pk(t)]′t = –(λk + υk)pk(t) + λk–1pk–1(t) + υk+1pk+1(t), k ≥ 1.
(20.4.2.12)

Example 1. Consider the system consisting of the states E0 and E1. The system of differential equations
for the probabilities p0(t) and p1(t) has the form

[p0(t)]′t = –λp0(t) + υp1(t),

[p1(t)]′t = λp0(t) – υp1(t).

The solution of the system of equations with the initial conditions p0(0) = 1, p1(0) = 0 has the form

[p0(t)]′t =
υ

υ + λ

[
1 +

υ

λ
e–(υ+λ)t

]
,

[p1(t)]′t =
λ

υ + λ

[
1 –

υ

λ
e–(υ+λ)t

]
.

FELLER THEOREM. For the solution pk(t) of the pure birth equations to satisfy the
relation ∞∑

k=0

pk(t) = 1, (20.4.2.13)

for all t, it is necessary and sufficient that the following series diverge:

∞∑

k=0

1
λk

. (20.4.2.14)
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In the case of a pure birth process, the system of equations (20.4.2.11) can be solved by
simple successive integration, because the differential equations have the form of simple
recursive relations. In the general case, it is already impossible to find the function pk(t)
successively.

The relation ∞∑

k=0

pk(t) = 1

holds for all t if the series
∞∑

k=1

k∏

i=1

υi
λi

(20.4.2.15)

diverges. If, in addition, the series

∞∑

k=1

k∏

i=1

λi – 1
υi

(20.4.2.16)

converges, then there exist limits

pk = lim
t→∞ pk(t) (20.4.2.17)

for all t.
If relation (20.4.2.17) holds, then system (20.4.2.12) becomes

– λ0p0 + υ1p1 = 0,
– (λk + υk)pk + λk–1pk–1 + υk+1pk+1 = 0, k ≥ 1.

(20.4.2.18)

The solutions of system (20.4.2.18) have the form

pk =
λk–1

υk
pk–1 =

k∏

i=1

λi – 1
υi

p0. (20.4.2.19)

The constant p0 is determined by the normalization condition
∞∑

k=0
pk(t) = 1:

p0 =
(

1 +
∞∑

k=1

k∏

i=1

λi – 1
υi

)
. (20.4.2.20)

Example 2. Servicing with queue.
A Poisson flow of jobs with parameter λ arrives at n identical servers. A server serves a job in random

time with the probability distribution
H(x) = 1 – e–υx.

If there is at least one free server when a job arrives, then servicing starts immediately. But if all servers
are occupied, then the new jobs enter a queue. The conditions of the problem satisfy the assumptions of the
theory of birth–death processes. In this problem, λk = λ for any k, υk = kυ for k ≤ n, and υk = nυ for k ≥ n.

By formulas (20.4.2.19) and (20.4.2.20), we have

pk =

⎧
⎪⎨

⎪⎩

ρk

k!
p0 for k ≤ n,

ρk

n! nk–n
p0 for k ≥ n,

where ρ = λ/υ.
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The constant p0 is determined by the relation

p0 =

[ n∑

k=0

ρk

k!
+
ρn

n!

∞∑

k=n+1

( ρ
n

)k–n
]–1

.

If ρ < n, then

p0 =

[
1 +

n∑

k=1

ρk

k!
+

ρn+1

n! (n – ρ)!

]–1

.

But if ρ ≥ n, the series in the parentheses is divergent and pk = 0 for all k; i.e., in this case the queue to be
served increases in time without bound.

Example 3. Maintenance of machines by a team of workers.
A team of l workers maintains n identical machines. The machines fail independently; the probability of

a failure in the time interval (t, t + h) is equal to λh + o(h). The probability that a machine will be repaired
on the interval (t, t + h) is equal to υh + o(h). Each worker can repair only one machine; each machine can
be repaired only by one worker. Find the probability of the event that a given number of machines is out of
operation at a given time.

Let Ek be the event that exactly k machines are out of operation at a given time. Obviously, the system
can be only in the states E0, . . . , En. We deal with a birth–death process such that

λk =
{

(n – k)λ for 0 ≤ k < n,
0 for k = n,

υk =
{
kυ for 1 ≤ k < l,
lυ for l ≤ k ≤ n.

By formulas (20.4.2.19) and (20.4.2.20), we have

pk =

⎧
⎪⎨

⎪⎩

n!
k! (n – k)!

ρkp0 for 1 ≤ k ≤ l,

n!
ln–kl! (n – k)!

ρkp0 for l ≤ k ≤ n,

where ρ = λ/υ. The constant p0 is determined by the relation

p0 =

[ l∑

k=0

n!
k! (n – k)!

ρk +
n∑

k=l+1

n!
ln–kl! (n – k)!

ρk

]–1

.
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Chapter 21

Mathematical Statistics

21.1. Introduction to Mathematical Statistics
21.1.1. Basic Notions and Problems of Mathematical Statistics

21.1.1-1. Basic problems of mathematical statistics.

The term “statistics” derives from the Latin word “status,” meaning “state.” Statistics
comprises three major divisions: collection of statistical data, their statistical analysis, and
development of mathematical methods for processing and using the statistical data to draw
scientific and practical conclusions. It is the last division that is commonly known as
mathematical statistics.
The original material for a statistical study is a set of results specially gathered for this study
or a set of results of specially performed experiments. The following problems arise in this
connection.
1. Estimating the unknown probability of a random event
2. Finding the unknown theoretical distribution function

The problem is stated as follows. Given the values x1, . . . , xn of a random variable X
obtained in n independent trials, find, at least approximately, the unknown distribution
function F (x) of the random variable X.
3. Determining the unknown parameters of the theoretical distribution function

The problem is stated as follows. A random variable X has the distribution function
F (x; θ1, . . . , θk) depending on k parameters θ1, . . . , θk, whose values are unknown. The
main goal is to estimate the unknown parameters θ1, . . . , θk using only the results X1, . . . ,
Xn of observations of the random variable X.

Instead of seeking approximate values of the unknown parameters θ1, . . . , θk in the
form of functions θ∗1 , . . . , θ∗k, in a number of problems it is preferable to seek functions θ∗i,L
and θ∗i,R (i = 1, 2, . . . , k) depending on the results of observations and known variables and
such that with sufficient reliability one can claim that θ∗i,L < θ∗i < θ∗i,R (i = 1, 2, . . . , k). The
functions θ∗i,L and θ∗i,R (i = 1, 2, . . . , k) are called the confidence boundaries for θ∗1 , . . . , θ∗k.
4. Testing statistical hypotheses

The problem is stated as follows. Some reasoning suggests that the distribution function
of a random variable X is F (x); the question is whether the observed values are compatible
with the hypothesis to be tested that the random variable X has the distribution F (x).
5. Estimation of dependence

A sequence of observations is performed simultaneously for two random variables X
and Y . The results of observations are given by pairs of values x1, y1, x2, y2, . . . , xn, yn.
It is required to find a functional or correlation relationship between X and Y .

21.1.1-2. Population and sample.

The set of all possible results of observations that can be made under a given set of conditions
is called the population. In some problems, the population is treated as a random variableX.

1081
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An example of population is the entire population of a country. In this population, we
are, for example, interested in the age of people. Another example of population is the set
of parts produced by a given machine. These parts can be either accepted or rejected.

The number of entities in a population is called its size and is usually denoted by the
symbol N .

A set of entities randomly selected from a population is called a sample. A sample must
be representative of the population; i.e., it must show the right proportions characteristic of
the population. This is achieved by the randomness of the selection when all entities in the
population can be selected with the same probability.

The number of elements in a sample is called its size and is usually denoted by the
symbol n. The elements of a sample will be denoted by X1, . . . , Xn.

Note that sampling itself can be performed by various methods. Having selected an
element and measured its value, one can delete this element from the population so that
it cannot be selected in subsequent trials (sampling without replacement). Alternatively,
after measuring the value of an element, one can return it to the population (samples with
replacement). Obviously, for a sufficiently large population size the difference between
sampling with and without replacement disappears.

21.1.1-3. Theoretical distribution function.

Each element Xi in a sample has the distribution function F (x), and the elements X1, . . . ,
Xn are assumed to be independent for sampling with replacement or as n→ ∞. A sample
X1, . . . ,Xn is interpreted as a set of n independent identically distributed random variables
with distribution function F (x) or as n independent realizations of an observable random
variable X with distribution function F (x). The distribution function F (x) is called the
theoretical distribution function.

The joint distribution function FX1,...,Xn(x1, . . . ,xn) of the sample X1, . . . ,Xn is given
by the formula

FX1,...,Xn(x1, . . . ,xn) = P (X1 < x1, . . . ,Xn < xn) = F (x1)F (x2) . . . F (xn). (21.1.1.1)

21.1.2. Simplest Statistical Transformations

21.1.2-1. Series of order statistics.

By arranging the elements of a sample X1, . . . , Xn in ascending order, X(1) ≤ · · · ≤ X(n),
we obtain the series of order statistics X(1), . . . , X(n). Obviously, this transformation does
not lead to a loss of information about the theoretical distribution function. The variables
X(1) and X(n) are called the extreme order statistics.

The difference
R = X∗

(n) –X∗
(1) (21.1.2.1)

of the extreme order statistics is called the range statistic, or the sample range R.
The series of order statistics is used to construct the empirical distribution function (see

Paragraph 21.1.2-6).

21.1.2-2. Statistical series.

If a sample X1, . . . , Xn contains coinciding elements, which may happen in observations
of a discrete random variable, then it is expedient to group the elements. For a common
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value of several variates in the sample X1, . . . , Xn, the size of the corresponding group of
coinciding elements is called the frequency or the weight of this variate value. By ni we
denote the number of occurrences of the ith variate value.

The set Z1, . . . , ZL of distinct variate values arranged in ascending order with the
corresponding frequencies n1, . . . , nL represents the sample X1, . . . , Xn and is called a
statistical series (see Example 1 in Paragraph 21.1.2-7).

21.1.2-3. Interval series.

Interval series are used in observations of continuous random variables. In this case, the
entire sample range is divided into finitely many bins, or class intervals, and then the number
of variates in each bin is calculated.

The ordered sequence of class intervals with the corresponding frequencies or relative
frequencies of occurrences of variates in each of these intervals is called an interval series.
It is convenient to represent an interval series as a table with two rows (e.g., see Example 2 in
Paragraph 21.1.2-7). The first row of the table contains the class intervals [x0,x1), [x1,x2),
. . . , [xL–1,xL), which are usually chosen to have the same length. The interval length h is
usually determined by the Sturges formula

h =
X∗

(n) –X∗
(1)

1 + log2 n
, (21.1.2.2)

where 1 + log2 n = L is the number of intervals (log2 n ≈ 3.322 lg n). The second row of the
interval series contains the frequencies or relative frequencies of occurrences of the sample
elements in each of these intervals.

Remark. It is recommended to take X(1) – 1
2h for the left boundary of the first interval.

21.1.2-4. Relative frequencies.

Let H be the event that the value of a random variable X belongs to a set SH . Suppose
also that a random sample X1, . . . , Xn is given. The number nH of sample elements lying
in SH is called the frequency of the event H . The ratio of the frequency nH to the sample
size is called the relative frequency and is denoted by

p∗H =
nH
n

. (21.1.2.3)

Since a random sample can be treated as the result of a sequence of n Bernoulli trials
(Paragraph 20.1.3-2), it follows that the random variable nH has the binomial distribution
with parameter p = P (H), where P (H) is the probability of the event H . One has

E{p∗H} = P (H), Var{p∗H} =
P (H)[1 – P (H)]

n
. (21.1.2.4)

The relative frequency p∗H is an unbiased consistent estimator for the corresponding
probability P (H). As n → ∞, the estimator p∗H is asymptotically normal with the param-
eters (21.1.2.4).

LetHi (i = 1, 2, . . . ,L) be the random events that the random variable takes the value Zi
(in the discrete case) or lies in the ith interval of the interval series (in the continuous case),
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and let ni and p∗i be their frequencies and relative frequencies, respectively. The cumulative
frequencies Nl are determined by the formula

Nl =
l∑

i=1

ni. (21.1.2.5)

The cumulative relative frequencies Wl are given by the expression

Wl =
l∑

i=1

p∗i =
Nl

n
. (21.1.2.6)

21.1.2-5. Notion of statistic.

To make justified statistical conclusions, one needs a sample of sufficiently large size n.
Obviously, it is rather difficult to use and store such samples. The notion of statistic allows
one to avoid these problems.

A statistic S = (S1, . . . ,Sk) is an arbitrary k-dimensional function of the sample
X1, . . . , Xn:

Si = Si(X1, . . . ,Xn) (i = 1, 2, . . . , k). (21.1.2.7)

Being a function of the random vector (X1, . . . ,Xn), the statistic S = (S1, . . . ,Sk) is also a
random vector, and its distribution function

FS1 ,...,Sk
(x1, . . . ,xn) = P (S1 < x1, . . . ,Sk < xk)

is given by the formula

FS1 ,...,Sk
(x1, . . . ,xn) =

∑
P (y1) . . . P (yn)

for a discrete random variable X and by the formula

FS1,...,Sk
(x1, . . . ,xn) =

∫
. . .

∫
p(y1) . . . p(yn) dy1 . . . dyn

for a continuous random variable, where the summation or integration extends over all
possible values y1, . . . , yn (in the discrete case, each yi belongs to the set Z1, . . . , ZL)
satisfying the inequalities

S1(y1, . . . , yn) < x1, S2(y1, . . . , yn) < x2, . . . , Sk(y1, . . . , yn) < xk.

21.1.2-6. Empirical distribution function.

The empirical (sample) distribution function corresponding to a random sampleX1, . . . ,Xn

is defined for each real x by the formula

F ∗
n (x) =

μn(X1, . . . ,Xn;x)
n

, (21.1.2.8)
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where μn(X1, . . . ,Xn;x) is the number of sample elements whose values are less than x.
It is a nondecreasing step function such that F ∗

n (–∞) = 0 and F ∗
n (+∞) = 1. Since each

Xi is less than x with probability px = F ∗
n (x), while Xi themselves are independent, it

follows that μn(X1, . . . ,Xn;x) is an integer random variable distributed according to the
binomial law

P (μn(X1, . . . ,Xn;x) = k) = Ckn[F (x)]k[1 – F (x)]n–k

with E{F ∗
n (x)} = F (x) and Var{F ∗

n (x)} = F (x)[1 – F (x)]. By the Glivenko–Cantelli
theorem,

Dn = sup
x

∣∣F ∗
n (x) – F (x)

∣∣ a.s.−→ 0 (21.1.2.9)

as n → ∞; i.e., the variable Dn converges to 0 with probability 1 or almost surely (see
Paragraph 20.3.1-2). The random variableDn measures how close F ∗

n (x) andF (x) are. The
empirical distribution function F ∗

n (x) is an unbiased consistent estimator of the theoretical
distribution function.

If a sample is given by a statistical series, then the following formula can be used:

F ∗(x) =
∑

Zi<x

p∗i . (21.1.2.10)

It is convenient to construct the empirical distribution function F ∗
n (x) using the series

of order statistics X(1) ≤ . . . ≤ X(n). In this case,

F ∗
n (x) =

{ 0 if x ≤ X(1),
k/n if X(k) < x ≤ X(k+1),
1 if x > X(n);

(21.1.2.11)

i.e., the function F ∗
n (x) is constant on each interval (X(k),X(k+1)] and increases by 1/n at

the point X(k).

21.1.2-7. Graphical representation of statistical distribution.

1◦. A broken line passing through the points with coordinates (Zi,ni) (i = 1, 2, . . . ,L),
whereZi are the variate values in a statistical series andni are the corresponding frequencies,
is called the frequency polygon or a distribution polygon.

If the relative frequencies p∗1 = n1/n, . . . , p∗L = nL/n are used instead of the frequen-
cies ni (n1 + · · · + nL = n), then the polygon is called the relative frequency polygon.

Example 1. For the statistical series

Zj 0 1 2 3 4 5
p∗j 0.1 0.15 0.3 0.25 0.15 0.05

the relative frequency polygon has the form shown in Fig. 21.1.
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Figure 21.1. Example of a relative frequency polygon.
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2◦. The bar graph consisting of rectangles whose bases are class intervals of length Δi =
xi+1 –xi and whose heights are equal to the frequency densities ni/Δi is called the frequency
histogram. The area of a frequency histogram is equal to the size of the corresponding
random sample.

The bar graph consisting of rectangles whose bases are class intervals of length Δi =
xi+1 –xi and whose heights are equal to the relative frequency densities p∗i (x)/Δi =ni/(nΔi)
is called the relative frequency histogram. The area of the relative frequency histogram is
equal to 1. The relative frequency histogram is an estimator of the probability density.

Example 2. For the interval series

[xi, xi+1) [0, 5) [5, 10) [10, 15) [15, 20) [20, 25)

ni 4 6 12 10 8
the relative frequency histogram has the form shown in Fig. 21.2.

xO 5

0.02

0.04

0.06

10 15 20 25

p x( )
Δ
*

Fig. 21.2. Example of a relative frequency histogram.

21.1.2-8. Main distributions of mathematical statistics.

The normal distribution, the chi-square distribution, and the Student distribution were
considered in Paragraphs 20.2.4-3, 20.2.4-5, and 20.2.4-6, respectively.

1◦. A random variable Ψ has a Fisher–Snedecor distribution, or an F -distribution, with n1
and n2 degrees of freedom if

Ψ =
n2χ

2
1

n1χ
2
2

, (21.1.2.12)

where χ2
1 and χ2

2 are independent random variables obeying the chi-square distribution
with n1 and n2 degrees of freedom. The F -distribution is characterized by the probability
density function

Ψ(x) =
Γ
(
n1+n2

2
)

Γ
(
n1

2
)
Γ
(
n2

2
)n

n1
2

1 n
n2

2
2 x

n1
2 –1

(n2 + n1x)
–
n1+n2

2 (x > 0). (21.1.2.13)

where Γ(x) is Gamma function. The quantiles of the F -distribution are usually denoted
by φα.

2◦. The Kolmogorov distribution function has the form

K(x) =
∞∑

k=–∞
(–1)ke–2k2x2

(x > 0). (21.1.2.14)

The Kolmogorov distribution is the distribution of the random variable η = max
0≤t≤1

|ξ(t)|, where

ξ(t) is a Wiener process on the interval 0 ≤ t ≤ 1 with fixed endpoints ξ(0) = 0 and ξ(1) = 0.
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21.1.3. Numerical Characteristics of Statistical Distribution
21.1.3-1. Sample moments.

The kth sample moment of a random sample X1, . . . , Xn is defined as

α∗
k =

1
n

n∑

i=1

Xk
i . (21.1.3.1)

The kth sample central moment of a random sample X1, . . . , Xn is defined as

μ∗k =
1
n

n∑

i=1

(Xi – α∗
1)k. (21.1.3.2)

The sample moments satisfy the following formulas:

E{α∗
k} = αk, Var{α∗

k} =
α2k – α2

k

n
, (21.1.3.3)

E{μ∗k} = μk +O(1/n),

Var{μ∗k} =
μ2k – 2kμk–1μk+1 – μ2

k + k2μ2μ
2
k–1

n
+O(1/n2).

(21.1.3.4)

The sample moment α∗
k is an unbiased consistent estimator of the corresponding popu-

lation moment αk. The sample central moment μ∗k is a biased consistent estimator of the
corresponding population central moment μk.

If there exists a moment μ2k, then the sample moment μ∗k is asymptotically normally
distributed with parameters (αk, (α2k – α2

k)/n) as n→ ∞.
Unbiased consistent estimators for μ3 and μ4 are given by

μ∗3 =
n2α∗

3
(n – 1)(n – 2)

, μ∗4 =
n(n2 – 2n + 3)α∗

4 – 3n(2n – 3)(α∗
4 )2

(n – 1)(n – 2)(n – 3)
. (21.1.3.5)

21.1.3-2. Sample mean.

The sample mean of a random sample X1, . . . , Xn is defined as the first-order sample
moment, i.e.,

m∗ = α∗
1 =

1
n

n∑

i=1

Xi. (21.1.3.6)

The sample mean of a random sample X1, . . . ,Xn is also denoted by X. It satisfies the
following formulas:

E{m∗} = m (m = α1), Var{m∗} =
σ2

n
, (21.1.3.7)

E{(m∗ – m)3} =
μ3

n2 , E{(m∗ – m)4} =
3(n – 1)σ2 + μ4

n3 . (21.1.3.8)

The sample mean m∗ is an unbiased consistent estimator of the population expectation
E{X} =m. If the population variance σ2 exists, then the sample meanm∗ is asymptotically
normally distributed with parameters (m,σ2/n).

The sample mean for the function Y = f (X) of a random variable X is

Y =
1
n

n∑

i=1

f (Xi).
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21.1.3-3. Sample variances.

The statistic

σ2∗ = α∗
2 – (m∗)2 =

1
n

n∑

i=1

(Xi – m∗)2 (21.1.3.9)

is called the sample variance (variance of the empirical distribution) of the sampleX1, . . . ,
Xn. Suppose that αk = E{Xk

1 } and μk = E{(X1 – α1)k}. If α4 < ∞, then the sample
variance (21.1.3.9) has the properties of asymptotic unbiasness and consistency.

The statistic

s2∗ =
n

n – 1
[
α∗

2 – (m∗)2] =
1

n – 1

n∑

i=1

(Xi –m∗)2 = (s∗)2 (21.1.3.10)

is called the adjusted sample variance and s∗ is called the sample mean-square deviation
of the sample X1, . . . , Xn. They satisfy the formulas

E{σ2∗} =
n – 1
n

σ2, E{s2∗} = σ2, Var{s2∗} =
1
n

(
μ4 –

n – 3
n – 4

σ4
)

. (21.1.3.11)

The statistic s2∗ is an unbiased estimator of the variance μ2.

21.1.3-4. Characteristics of asymmetry and excessî

The number

γ∗1 =
μ∗3

(μ∗2)3/2 =
1

nσ3∗

n∑

i=1

(Xi – m∗)3 (21.1.3.12)

is called the sample asymmetry coefficient of a random sample X1, . . . , Xn.
The number

γ∗2 =
μ∗4
μ∗2

2 – 3 =
1

nσ4∗

n∑

i=1

(Xi –m∗)4 – 3 (21.1.3.13)

is called the sample excess coefficient of a random sample X1, . . . , Xn.
The sample excess coefficient is used in criteria for testing the hypothesis H0 : γ2 ≠ 0,

which implies that the distribution of the random variable Xi differs from the normal
distribution.

The statistics γ∗1 and γ∗2 are consistent estimators of asymmetry and excess.

21.2. Statistical Estimation
21.2.1. Estimators and Their Properties

21.2.1-1. Notion of estimator.

A statistical estimator θ∗ (or simply an estimator) of an unknown parameter θ for a sample
X1, . . . , Xn is a function θ∗ = θ∗(X1, . . . ,Xn) depending only on the sample X1, . . . , Xn.

An estimator is a random variable and varies depending on the sample. Just as any
random variable, it has a distribution function Fθ∗(x). The distribution law of the statistic
θ∗ = θ∗(X1, . . . ,Xn) can be found by well-known methods of probability theory.

Estimators producing separate points in the space of parameters or parametric functions
to be estimated are called point estimators.

Estimators producing sets of points in the space of parameters or parametric functions
to be estimated are called interval estimators.
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21.2.1-2. Unbiased estimators.

The difference E{θ∗} – θ is called the bias of the estimator θ∗ of the parameter θ. The
estimator θ∗ is said to be unbiased if its expectation is equal to the parameter to be estimated,
i.e., if E{θ∗} = θ; otherwise, the estimator θ∗ is said to be biased.

Example 1. The sample moments α∗
k are unbiased estimators of the moments αk.

Example 2. The sample variance σ2∗ is a biased estimator of the variance σ2, because

E{σ2∗} =
n – 1
n

σ2 ≠ σ2.

If an estimator is not unbiased, then it either overestimates or underestimates θ. In both
cases, this results in systematic errors of the same sign in the estimate of the parameter θ.

If E{θ∗n} → θ as n→ ∞, then the estimator θ∗ is said to be asymptotically unbiased.

21.2.1-3. Efficiency of estimators.

An unbiased estimator θ∗n is said to be efficient if it has the least variance among all possible
unbiased estimators of the parameter θ for random samples of the same size.

Cramér–Rao inequality. Let θ∗ be an unbiased estimator of a parameter θ. Then (under
additional regularity conditions imposed on the family F (x; θ)) the variance of θ∗ satisfies
the inequality

Var{θ∗} ≥
1

nI(θ)
, (21.2.1.1)

where I(θ) is the Fisher information, determined in the continuous case by the formula

I(θ) = E
{[ ∂

∂θ
ln p(x; θ)

]2}

and in the discrete case by the formula

I(θ) = E
{[ ∂

∂θ
lnP (X; θ)

]2}
.

The Cramér–Rao inequality determines a lower bound for the variance of an unbiased
estimator. The variable

ε(θ) =
1

nI(θ)Var{θ∗}
(21.2.1.2)

is called the efficiency ε(θ) of an unbiased estimator θ∗. An unbiased estimator θ∗ is said to
be (Cramér–Rao) efficient if ε(θ) = 1 for any θ.

Remark. The Cramér–Rao inequality for biased estimators has the form

Var{θ∗n} ≥ 1
nI(θ)

[
1 +

∂

∂θ
(E{θ∗n} – θ)

]
. (21.2.1.3)

21.2.1-4. Consistency of estimators.

An estimator θ∗ is said to be consistent if it converges to the estimated parameter as the
sample size increases. The convergence in question can be of different types: in probability,
with probability 1, in mean-square, etc. As a rule, convergence in probability is used; i.e.,
an estimator θ∗ is said to be consistent if for each ε > 0 and for all possible values of the
unknown parameter θ this estimator satisfies the relation

P{|θ∗ – θ| > ε} → 0 as n→ ∞. (21.2.1.4)

The consistency of an estimator justifies an increase in the size of a random sample,
since in this case the probability of a large error in the estimate of the parameter θ decreases.
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21.2.1-5. Sufficient estimators.

1◦. A statistic S = (S1(X1, . . . ,Xn), . . . ,Sk(X1, . . . ,Xn)) is said to be sufficient for θ if
the conditional distribution FX1,...,Xn(x1, . . . ,xn|S = s) is independent of the parameter θ.

NEYMAN–FISHER THEOREM. A statistic S is sufficient for a parameter θ if and only if
the likelihood function (see Paragraph 21.2.2-2) has the form

L(X1, . . . ,Xn; θ) = A(X1, . . . ,Xn)B(S; θ), (21.2.1.5)

where A(X1, . . . ,Xn) depends only on the sample X1, . . . , Xn and the function B(S, θ)
depends only on S and θ.

THEOREM. If S is a sufficient statistic and θ∗ is an estimator of a parameter θ, then the
conditional expectation θ∗S = E{θ∗|S} is an unbiased estimator of the parameter θ, depends
only on the sufficient statistic S, and satisfies the inequality

Var{θ∗S} ≤ Var{θ∗} (21.2.1.6)

for all θ.

2◦. A statistic S =S(X1, . . . ,Xn) is said to be complete for a family of distributions F (x; θ)
if the fact that the relation

E{h(s)} = E{h(S(X1, . . . ,Xn))}

=
∫ +∞

–∞
. . .

∫ +∞

–∞
h(S(x1, . . . ,xn))p(x1; θ) . . . p(xn; θ) dx1 . . . dxn (21.2.1.7)

is satisfied for all θ implies that h(s) ≡ 0.

THEOREM (MINIMALITY OF VARIANCE OF AN ESTIMATOR DEPENDING ON A COMPLETE
SUFFICIENT STATISTIC). Let S be a complete sufficient statistic, and let θ∗ be an unbiased
estimator of an unknown parameter θ. Then

θ∗S = E{θ∗|S} (21.2.1.8)

is the unique unbiased estimator with minimal variance.

21.2.1-6. Main statistical estimators.

Let X1, . . . , Xn be a random sample of a normal population with parameters (a,σ2). Then

a) the statistic
Xi – a
σ

has the standard normal distribution;

b) the statistic
(m∗ – a)

√
n

σ
has the standard normal distribution;

c) the statistic
(m∗ – a)

√
n√

s2∗ =
(m∗ – a)

√
n – 1√

σ2∗ , which is called Student’s ratio, has the

t-distribution with n – 1 degrees of freedom;

d) the statistic
Xi – a√
s2∗ =

Xi – a√
σ2∗

√
n – 1
n

has the t-distribution withn–1 degrees of freedom;

e) the statistic
(n – 1)s2∗

σ2 =
nσ2∗

σ2 =
1
σ2

n∑

k=1

(Xk –m∗)2 has the chi-square distribution with

n – 1 degrees of freedom;

f) the statistic
1
σ2

n∑

k=1

(Xk – a)2 has the chi-square distribution with n degrees of freedom.
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Remark. The quantiles uα, χ2
α, tα, and φα of the normal distribution, the chi-square distribution, the

t-distribution, and the F -distribution can be found in the corresponding tables or calculated in EXCEL,
MATHCAD, and other software.

Example 3. For a normal distribution, the γ-quantile uγ can be determined using NORMINV(γ;m;σ) in
EXCEL software, where, in the examples illustrating the use of software, γ is the confidence level, α = 1 – γ
is the significance level, m is the expectation, and σ is the standard deviation. The function qnorm(γ,m,σ) in
MATHCAD software can also be used.

Example 4. For the chi-square distribution with n degrees of freedom, the γ-quantile χ2
γ(n) can be found

using the function CHIINV(α,n) in EXCEL software. The function qchisq(γ,n) in MATHCAD software can
also be used.

Example 5. For the t-distribution with n degrees of freedom, the γ-quantile tγ can be found using the
function TINV(2α,n) in EXCEL software. The function qt(γ,n) in MATHCAD software can also be used.

Example 6. For the F -distribution with n1 and n2 degrees of freedom, the γ-quantile φγ can be found
using the function FINV(α,n1,n2) in EXCEL software. The function qF(γ,n1,n2) in MATHCAD software
can also be used.

21.2.2. Estimation Methods for Unknown Parameters

21.2.2-1. Method of moments.

If the theoretical distribution function F (x) of a population belongs to a k-parameter family
F (x; θ1, . . . , θk) with unknown parameters θ1, . . . , θk, then any numerical characteristic is
a function of the parameters θ1, . . . , θk. For the known distribution function, one can find
the first k theoretical moments

αi = αi(θ1, . . . , θk) (i = 1, 2, . . . , k) (21.2.2.1)

if these moments exist. The method of moments works as follows: for a large sample size
k, the theoretical moments α1, . . . , αk in system (21.2.2.1) are replaced by the sample
moments α∗

1, . . . , α∗
k; then this system is solved for θ1, . . . , θk and the estimates of

the unknown parameters are obtained. Thus the estimators θ∗1 , . . . , θ∗k of the unknown
parameters θ1, . . . , θk in the method of moments are obtained from the system of equations

α∗
i = α1(θ∗1 , . . . , θ∗k) (i = 1, 2, . . . , k). (21.2.2.2)

The estimators obtained by the method of moments are, as a rule, consistent.

Example 1. A sample X1, . . . , Xn is selected from a population with theoretical distribution function
having the exponential density p(x) = p(x, θ) = θe–θx(x ≥ 0). Since α1 = 1/θ for the exponential law, we see
that the method of moments gives α∗

1 = 1/θ∗, which implies that θ∗ = 1/α∗
1 = 1/X.

It should be noted that the efficiency of estimators obtained by the method of moments
is, as a rule, less than 1, and these estimators are even biased. Since the estimators obtained
by the method of moments are rather simple, they are often used as initial approximations
for finding more efficient estimators.

21.2.2-2. Maximum likelihood estimation.

Maximum likelihood estimation is the most popular estimation method. It is based on
conditions for the extremum of a function of one or several random variables. The likelihood
function is usually taken for such a function.
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The likelihood function is defined as the function

L(X1, . . . ,Xn) = L(X1, . . . ,Xn; θ)

=
{
P (X1; θ)P (X2; θ) . . . P (Xn; θ) in the discrete case,
p(x1; θ)p(x2; θ) . . . p(xn; θ) in the continuous case. (21.2.2.3)

In the likelihood function L(X1, . . . ,Xn; θ), the sample elements X1, . . . , Xn are fixed
parameters and θ is an argument.

The maximum likelihood estimator is a value θ∗ such that

L(X1, . . . ,Xn; θ∗) = max
θ
L(X1, . . . ,Xn; θ). (21.2.2.4)

Since L and lnL attain maximum values for the same values of the argument θ, it is
convenient to use the logarithm of the likelihood function rather than the function itself in
practical implementations of the maximum likelihood method.

The equation
∂

∂θ
ln[L(X1, . . . ,Xn; θ)] = 0 (21.2.2.5)

is called the likelihood equation.
If the theoretical distribution function F (X1, . . . ,Xn; θ1, . . . , θk) depends on several pa-

rameters θ1, . . . , θk, then equation (21.2.2.5) should be replaced in the maximum likelihood
method by the system of likelihood equations

∂

∂θ1
ln[L(X1, . . . ,Xn; θ1, . . . , θk)] = 0,

∂

∂θ2
ln[L(X1, . . . ,Xn; θ1, . . . , θk)] = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∂

∂θk
ln[L(X1, . . . ,Xn; θ1, . . . , θk)] = 0.

(21.2.2.6)

Properties of estimators obtained by the maximum likelihood method:
1. Coincidence of the efficient estimator with the estimator obtained by the maximum

likelihood method. If there exists an efficient estimator (or a set of jointly efficient
estimators), then it is the unique solution of the likelihood equation (or system of
equations).

2. Asymptotic efficiency of the maximum likelihood estimator. Under certain conditions on
the family F (x; θ) that guarantee the possibility of differentiating in the integrand and
expanding ∂/∂θ ln p(x, θ) in a Taylor series up to the first term, the likelihood equation
has a solution that is asymptotically normal with parameters (θ, 1/(nI)) as n → ∞,
where I is the Fisher information.

21.2.2-3. Least-squares method.

The least-squares method for obtaining an estimator θ∗ of the parameter θ is based on
the minimization of the sum of squares of deviations of the sample data from the desired
estimator of θ; i.e., it is required to find a value θ∗ minimizing the sum

S(θ) =
n∑

i=1

(Xi – θ)2 → min . (21.2.2.7)

The least-squares method is the simplest method for finding estimators of the parame-
ter θ.
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Example 2. Let us estimate the parameter θ of the Poisson distribution

P (X = k) =
λk

k!
e–λ.

The function S(θ) =
n∑

i=1
(Xi – θ)2 has a minimum at the point θ̂ = 1

n

n∑

i=1
Xi. Thus, then least-squares

estimator of the parameter θ in the Poisson distribution is θ∗ = 1
n

n∑

i=1
Xi.

Remark. Estimators of unknown parameters can also be found by the following methods: the minimal
distance method, the method of nomograms, the minimal risk method, the maximum a posteriori (conditional)
probability method, etc.

21.2.3. Interval Estimators (Confidence Intervals)

21.2.3-1. Confidence interval.

An estimator θ∗ of a parameter θ of the distribution of an observable random variable X
(the estimator is a statistic, i.e., function of a random sample) is itself a random variable
with its own distribution law and numerical characteristics (parameters) of the distribution.
For a small number of observations, the following problems may arise:
1. What error can arise from the replacement of the parameter θ by its point estimator θ∗?
2. What is the probability that the errors obtained are not beyond any prescribed limits?

An interval estimator (confidence interval) is an interval (θ∗L, θ∗R), determined by the
sample, such that with some probability close to unity this interval contains the value of the
population parameter to be estimated; i.e.,

P (θ∗L ≤ θ ≤ θ∗R) = γ, (21.2.3.1)

where θ∗L and θ∗R are the lower and upper (left and right) boundaries of the confidence
interval of the parameter θ and γ is the confidence level.

The confidence level and the significance level satisfy the relation

γ + α = 1. (21.2.3.2)

The confidence intervals can be constructed from a given estimator θ∗ and a given confidence
level γ by various methods. In practice, the following two types of confidence intervals are
used: two-sided and one-sided.

21.2.3-2. Confidence interval in the case of normal samples.

1◦. Confidence interval for estimating the expectation given variance. Suppose that a
random sample X1, . . . , Xn is selected from a population X with a normal distribution
law with unknown expectation a and known variance σ2. To estimate the expectation, we
use the statistic m∗ (the sample mean), which has the normal distribution with parameters
(a,σ2/n). Then the statistic (m∗ – a)

√
n/σ has the normal distribution with parameters

(0, 1).
The confidence interval for the expectation m given variance σ2 has the form

(
m∗ – u 1+γ

2

σ√
n

; m∗ + u 1+γ
2

σ√
n

)
, (21.2.3.3)

where u 1+γ
2

is the 1+γ
2 -quantile of the normal distribution with parameters (0, 1).
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2◦. Confidence interval for the expectation if the variance is unknown. Suppose that a
random sample X1, . . . , Xn is selected from a population X normally distributed with
unknown variance σ2 and unknown expectation a. To estimate the expectation, we use the
statistic

T =

√
n

s2∗ (m∗– a)

having the t-distribution (Student’s distribution) with L = n – 1 degrees of freedom.
The confidence interval for the expectation for the case in which the variance is unknown

has the form (
m∗ –

√
s2∗

n
t 1+γ

2
; m∗ +

√
s2∗

n
t 1+γ

2

)
. (21.2.3.4)

Remark. For a sufficiently large sample size n, the difference between the confidence intervals obtained
by (21.2.3.3) and (21.2.3.4) is small, since Student’s distribution tends to the normal distribution as n→ ∞.

3◦. Confidence interval for the variance of a population with a normal distribution and
known expectation.

Suppose that a sample X1, . . . , Xn is selected from a normal population with unknown
variance and known expectation equal to a. For the estimator of the unknown variance σ2

the statistic σ2
0 = 1

n

n∑

k=1
(Xk – a)2 is used. In this case, the statistic χ2 = nσ2

0/σ
2 has the

chi-square distribution with n degrees of freedom.
The confidence interval for the variance, given expectation, has the form

(
nσ2

0
χ2

1+γ
2

(n)
;

nσ2
0

χ2
1–γ

2
(n)

)
. (21.2.3.5)

4◦. Confidence interval for the variance of a population with normal distribution and
unknown expectation. For the estimator of the unknown variance σ2 the sample variance s2∗
is used. In this case, the statistic χ2 = (n – 1)s2∗/σ2 has the chi-square distribution with
n– 1 degrees of freedom. The confidence interval for the variance given that the expectation
is unknown has the form

(
(n – 1)s2∗

χ2
1+γ

2
(n – 1)

;
(n – 1)s2∗

χ2
1–γ

2
(n – 1)

)
. (21.2.3.6)

21.3. Statistical Hypothesis Testing
21.3.1. Statistical Hypothesis. Test

21.3.1-1. Statistical hypothesis.

Any assumption concerning the form of the population distribution law or numerical values
of the parameters of the distribution law is called a statistical hypothesis. Any statistical
hypothesis uniquely determining the distribution law is said to be simple; otherwise, it is
said to be composite.

A statistical hypothesis is said to be parametric if it contains an assumption concerning
the range of the unknown parameters. If a hypothesis does not contain any assumption
concerning the range of the unknown parameters, then such a hypothesis is said to be
nonparametric.

The hypothesis H0 to be tested is called the null hypothesis, and the opposite hypothesis
H1 is called the alternative hypothesis.
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Example 1. The hypothesis that the theoretical distribution function is normal with zero expectation is a
parametric hypothesis.

Example 2. The hypothesis that the theoretical distribution function is normal is a nonparametric hypoth-
esis.

Example 3. The hypothesisH0 that the variance of a random variableX is equal to σ2
0 , i.e.,H0 : Var{X} =

σ2
0 , is simple. For an alternative hypothesis one can take one of the following hypotheses: H1 : Var{X} > σ2

0
(composite hypothesis), H1 : Var{X} < σ2

0 (composite hypothesis), H1 : Var{X} ≠ σ2
0 (composite hypothesis),

or H1 : Var{X} = σ2
1 (simple hypothesis).

21.3.1-2. Statistical test. Type I and Type II errors.

1◦. A statistical test (or simply a test) is a rule that permits one, on the basis of a sample
X1, . . . , Xn alone, to accept or reject the null hypothesis H0 (respectively, reject or accept
the alternative hypothesis H1). Any test is characterized by two disjoint regions:

1. The critical region W is the region in the n-dimensional space R
n such that if the

sample X1, . . . , Xn lies in this region, then the null hypothesis H0 is rejected (and the
alternative hypothesis H1 is accepted).

2. The acceptance region W (W = R
n\W ) is the region in the n-dimensional space R

n

such that if the sample X1, . . . , Xn lies in this region, then the null hypothesis H0 is
accepted (and the alternative hypothesis H1 is rejected).

2◦. Suppose that there are two hypotheses H0 and H1, i.e., two disjoint subsets Γ0 and Γ1
are singled out from the set of all distribution functions. We consider the null hypothesis
H0 that the sample X1, . . . , Xn is drawn from a population with theoretical distribution
function F (x) belonging to the subset Γ0 and the alternative hypothesis that the sample is
drawn from a population with theoretical distribution function F (x) belonging to the subset
Γ1. Suppose, also, that a test for verifying these hypotheses is given; i.e., the critical region
W and the admissible regionW are given. Since the sample is random, there may be errors
of two types:

i) Type I error is the error of accepting the hypothesis H1 (the hypothesis H0 is rejected),
while the null hypothesis H0 is true.

ii) Type II error is the error of accepting the hypothesis H0 (the hypothesis H1 is rejected),
while the alternative hypothesis H1 is true.

The probability α of Type I error is called the false positive rate, or size of the test, and
is determined by the formula

α = P [(X1, . . . ,Xn) �W ]

=

⎧
⎨

⎩

∑
P (X1)P (X2) . . . P (Xn) in the discrete case,

∫
. . .

∫
p(X1)p(X2) . . . p(Xn) dx1 . . . dxn in the continuous case;

here P (x) or p(x) is the distribution series or the distribution density of the random vari-
able X under the assumption that the null hypothesis H0 is true, and the summation or
integration is performed over all points (x1, . . . ,xn) � W . The number 1 – α is called the
specificity of the test. If the hypothesis H0 is composite, then the size α = α[F (x)] depends
on the actual theoretical distribution function F (x) � Γ0. If, moreover, H0 is a parametric
hypothesis, i.e., Γ0 is a parametric family of distribution functions F (x; θ) depending on
the parameter θ with range Θ0 � Θ, where Θ is the region of all possible values θ, then,
instead of notation α[F (x)], the notation α(θ) is used under the assumption that θ � Θ0.
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The probability β̃ of Type II error is called the false negative rate. The power β = 1 – β̃
of the test is the probability that Type II error does not occur, i.e., the probability of rejecting
the false hypothesis H0 and accepting the hypothesis H1. The test power is determined by
the same formula as the test specificity, but in this case, the distribution series P (x) or the
density function p(x) are taken under the assumption that the alternative hypothesis H1 is
true. If the hypothesis H1 is composite, then the power β = β[F (x)] depends on the actual
theoretical distribution function F (x) � Γ1. If, moreover, H1 is a parametric hypothesis,
then, instead of the notation β[F (x)], the notation β(θ) is used under the assumption θ �Θ1,
where Θ1 is the range of the unknown parameter θ under the assumption that the hypothesis
H1 is true.

The difference between the test specificity and the test power is that the specificity
1 – α[F (x)] is determined for the theoretical distribution functions F (x) � Γ0, and the
power β(θ) is determined for the theoretical distribution functions F (x) � Γ1.

3◦. Depending on the form of the alternative hypothesis H1, the critical regions are classi-
fied as one-sided (right-sided and left-sided) and two-sided:
1. The right-sided critical region (Fig. 21.3a) consisting of the interval (tRcr;∞), where the

boundary tRcr is determined by the condition

P [S(X1, . . . ,Xn) > tRcr] = α; (21.3.1.1)

x

( )a ( )b ( )c

x xt t t tcr cr cr cr
R L L R

p x( ) p x( ) p x( )

Figure 21.3. Right-sided (a), left-sided (b), and two-sided (c) critical region.

2. The left-sided critical region (Fig. 21.3b) consisting of the interval (–∞; tLcr), where the
boundary tLcr is determined by the condition

P [S(X1, . . . ,Xn) < tLcr] = α; (21.3.1.2)

3. The two-sided critical region (Fig. 21.3c) consisting of the intervals (–∞; tLcr) and
(tRcr;∞), where the points tLcr and tRcr are determined by the conditions

P [S(X1, . . . ,Xn) < tLcr] =
α

2
and P [S(X1, . . . ,Xn) > tRcr] =

α

2
. (21.3.1.3)

21.3.1-3. Simple hypotheses.

Suppose that a sampleX1, . . . ,Xn is selected from a population with theoretical distribution
function F (x) about which there are two simple hypotheses, the null hypothesisH0 : F (x) =
F0(x) and the alternative hypothesis H1 : F (x) = F1(x), where F0(x) and F1(x) are known
distribution functions. In this case, there is a test that is most powerful for a given size α;
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this is called the likelihood ratio test. The likelihood ratio test is based on the statistic called
the likelihood ratio,

Λ = Λ(X1, . . . ,Xn) =
L1(X1, . . . ,Xn)
L0(X1, . . . ,Xn)

, (21.3.1.4)

where L0(X1, . . . ,Xn) is the likelihood function under the assumption that the null hypoth-
esis H0 is true, and L1(X1, . . . ,Xn) is the likelihood function under the assumption that
the alternative hypothesis H1 is true.

The critical region W of the likelihood ratio test consists of all points (x1, . . . ,xn) for
which Λ(X1, . . . ,Xn) is larger than a critical value C .

NEYMAN–PEARSON LEMMA. Of all tests of given size α testing two simple hypotheses
H0 and H1, the likelihood ratio test is most powerful.

21.3.1-4. Sequential analysis. Wald test.

Sequential analysis is the method of statistical analysis in which the sample size is not
fixed in advance but is determined in the course of experiment. The ideas of sequential
analysis are most often used for testing statistical hypotheses. Suppose that observations
X1, X2, . . . are performed successively; after each trial, one can stop the trials and accept
one of the hypotheses H0 and H1. The hypothesis H0 is that the random variables Xi

have the probability distribution with density p0(x) in the continuous case or the probability
distribution determined by probabilities P0(Xi) in the discrete case. The hypothesis H1
is that the random variables Xi have the probability distribution with density p1(x) in the
continuous case or the probability distribution determined by probabilities P1(Xi) in the
discrete case.

WALD TEST. Of all tests with given size α, power β, finite mean number N0 of
observations under the assumption that the hypothesesH0 is true, andfinite mean numberN1
of observations under the assumption that the hypothesisH1 is true, the sequential likelihood
ratio test minimizes both N0 and N1.

The decision in the Wald test is made as follows. One specifies critical values A and B,
0 <A < B. The result X1 of the first observation determines the logarithm of the likelihood
ratio

λ(X1) =

⎧
⎪⎨

⎪⎩

ln
P1(X1)
P0(X1)

in the discrete case,

ln
p1(X1)
p0(X1)

in the continuous case.

If λ(X1) ≥ B, then the hypothesis H1 is accepted; if λ(X1) ≤ A, then the hypothesis H1 is
accepted; and if A < λ(X1) < B, then the second trial is performed. The logarithm of the
likelihood ratio

λ(X1,X2) = λ(X1) + λ(X2)

is again determined. Ifλ(X1,X2) ≥B, then the hypothesisH1 is accepted; ifλ(X1,X2) ≤A,
then the hypothesisH1 is accepted; and ifA<λ(X1,X2)<B, then the third trial is performed.
The logarithm of the likelihood ratio

λ(X1,X2,X3) = λ(X1) + λ(X2) + λ(X3)

is again determined, and so on. The graphical scheme of trials is shown in Fig. 21.4.
For the size α and the power β of the Wald test, the following approximate estimates

hold:

α ≈
1 – eA

eB – eA
, β ≈

eB(1 – eA)
eB – eA

.



1098 MATHEMATICAL STATISTICS

A

B
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(2, ( , ))λ X X
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Figure 21.4. The graphical scheme of the Wald test.

For given α and β, these estimates result in the following approximate expressions for the
critical values A and B:

A ≈ ln
β

1 – α
, B ≈ ln

β

α
.

For the mean numbers N0 and N1 of observations, the following approximate estimates
hold under the assumptions that the hypothesis H0 or H1 is true:

N0 ≈
αB + (1 – α)A
M[λ(X)|H0]

, N1 ≈
βB + (1 – β)A
M[λ(X)|H1]

,

where

E{λ(X)|H0 } =
L∑

i=1

ln
P1(bi)
P0(bi)

P0(bi), E{λ(X)|H1} =
L∑

i=1

ln
P1(bi)
P0(bi)

P1(bi)

in the discrete case and

E{λ(X)|H0 } =
∫ ∞

–∞
ln
p1(x)
p0(x)

p0(x) dx, E{λ(X)|H1} =
∫ ∞

–∞
ln
p1(x)
p0(x)

p1(x) dx

in the continuous case.

21.3.2. Goodness-of-Fit Tests

21.3.2-1. Statement of problem.

Suppose that there is a random sample X1, . . . , Xn drawn from a population X with
unknown theoretical distribution function. It is required to test the simple nonparametric
hypothesisH0 :F (x) =F0(x) against the composite alternative hypothesisH1 :F (x)≠F0(x),
where F0(x) is a given theoretical distribution function. There are several methods for
solving this problem that differ in the form of the measure of discrepancy between the
empirical and hypothetical distribution laws. For example, in the Kolmogorov test (see
Paragraph 21.3.2-2) and the Smirnov test (see Paragraph 21.3.2-3), this measure is a function
of the difference between the empirical distribution function F ∗(x) and the theoretical
distribution function F (x), i.e.,

ρ = ρ[F ∗(x) – F (x)];

and in the χ2-test, this measure is a function of the difference between the theoretical
probabilities pTi = P (Hi) of the random events H1, . . . , HL and their relative frequencies
p∗i = ni/n, i.e.,

ρ = ρ(pTi – p∗i ).
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21.3.2-2. Kolmogorov test.

To test a hypothesis concerning the distribution law, the statistic

ρ = ρ(X1, . . . ,Xn) =
√
n sup
–∞<x<∞

|F ∗(x) – F (x)| (21.3.2.1)

is used to measure the compatibility (goodness of fit) of the hypothesis in the Kolmogorov
test. A right-sided region is chosen to be the critical region in the Kolmogorov test. For
a given size α, the boundary tRcr of the right-sided critical region can be found from the
relation

tRcr = F –1(1 – α).

Table 21.1 presents values depending on the size and calculated by formula (21.3.2.1).

TABLE 21.1
Boundary of right-sided critical region

α 0.5 0.1 0.05 0.01 0.001

tRcr 0.828 1.224 1.385 1.627 1.950

As n → ∞, the distribution of the statistic ρ converges to the Kolmogorov distribution
and the boundary tRcr of the right-sided critical region coincides with the (1 – α)-quantile
k1–α of the Kolmogorov distribution.

The advantages of the Kolmogorov test are its simplicity and the absence of complicated
calculations. But this test has several essential drawbacks:
1. The use of the test requires considerable a priori information about the theoretical law

of distribution; i.e., in addition to the form of the distribution law, one must know the
values of all parameters of the distribution.

2. The test deals only with the maximal deviation of the empirical distribution function
from the theoretical one and does not take into account the variations of this deviation
on the entire range of the random sample.

21.3.2-3. Smirnov test (ω2-test).

In contrast to the Kolmogorov test, the Smirnov test takes the mean value of a function
of the difference between the empirical and theoretical distribution functions on the entire
domain of the distribution function to be the measure of discrepancy between the empirical
distribution function and the theoretical one; this eliminates the drawback of the Kolmogorov
test.

In the general case, the statistic

ω2 = ω2(X1, . . . ,Xn) =
∫ ∞

–∞
[F ∗(x) – F (x)]2 dF (x) (21.3.2.2)

is used. Using the series X∗
1 , . . . , X∗

n of order statistics, one can rewrite the statistic ω2 in
the form

ω2 =
1
n

n∑

i=1

[
F ∗(X∗

i ) –
2i – 1

2n

]2
+

1
12n2 . (21.3.2.3)
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A right-sided region is chosen to be the critical region in the Smirnov test. For a given
size α, the boundary tRcr of the right-sided critical region can be found from the relation

tRcr = F –1(1 – α). (21.3.2.4)

Table 21.2 presents the values of tRcr depending on the size and calculated by formula
(21.3.2.4).

TABLE 21.2
Boundary of right-sided critical region

α 0.5 0.1 0.05 0.01 0.001

tRcr 0.118 0.347 0.461 0.620 0.744

As n → ∞, the distribution of the statistic ω2 converges to the ω2-distribution and
the boundary tRcr of the right-sided critical region coincides with the (1 – α)-quantile of an
ω2-distribution.

21.3.2-4. Pearson test (χ2-test).

1◦. The χ2-test is used to measure the compatibility (goodness of fit) of the theoretical
probabilities pk = P (Hk) of random events H1, . . . , HL with their relative frequencies
p∗k = nk/n in a sample of n independent observations. The χ2-test permits comparing the
theoretical distribution of the population with its empirical distribution.

The goodness of fit is measured by the statistic

χ2 =
L∑

k=1

(nk – npk)2

npk
=

L∑

k=1

n2
k

npk
– n, (21.3.2.5)

whose distribution as n→ ∞ tends to the chi-square distribution with v = L – 1 degrees of
freedom. According to theχ2-test, there are no grounds to reject the theoretical probabilities
for a given confidence level γ if the inequality χ2 < χ2

γ(v) holds, where χ2
γ(v) is the γ-

quantile of a χ2-distribution with v degrees of freedom. For v > 30, instead of the chi-
square distribution, one can use the normal distribution of the random variable

√
2χ2 with

expectation
√

2v – 1 and variance 1.

Remark. The condition nk > 5 is a necessary condition for the χ2-test to be used.

2◦. χ2-test with estimated parameters.
Suppose that X1, . . . , Xn is a sample drawn from a population X with unknown

distribution function F (x). We test the null hypothesis H0 stating that the population is
distributed according to the law with the distribution function F (x) equal to the function
F0(x), i.e., the null hypothesis H0 : F (x) = F0(x) is tested. Then the alternative hypothesis
is H1 : F (x) ≠ F0(x).

In this case, the statistic (21.3.2.5) as n → ∞ tends to the chi-square distribution with
v = L – q – 1 degrees of freedom, where q is the number of estimated parameters. Thus, for
example, q = 2 for the normal distribution and q = 1 for the Poisson distribution. The null
hypothesis H0 for a given confidence level α is accepted if χ2 < χ2

α(L – q – 1).
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21.3.3. Problems Related to Normal Samples

21.3.3-1. Testing hypotheses about numerical values of parameters of normal
distribution.

Suppose that a random sample X1, . . . , Xn is drawn from a population X with normal
distribution. Table 21.3 presents several tests for hypotheses about numerical values of the
parameters of the normal distribution.

TABLE 21.3
Several tests related to normal populations with parameters (a,σ2)

No. Hypothesis
to be tested

Test statistic Statistic distribution
Critical region
for a given size

1 H0 : a = a0,
H1 : a ≠ a0

U =
m∗ – a
σ

√
n standard normal |U | > u1–α/2

2 H0 : a ≤ a0,
H1 : a > a0

U =
m∗ – a
σ

√
n standard normal U > u1–α

3 H0 : a ≥ a0,
H1 : a < a0

U =
m∗ – a
σ

√
n standard normal U > –u1–α

4 H0 : a = a0,
H1 : a ≠ a0

T =

√
n

s2∗ (m∗ – a)
t-distribution with

n – 1 degrees of freedom
|T | > t1–α/2

5 H0 : a ≤ a0,
H1 : a > a0

T =

√
n

s2∗ (m∗ – a)
t-distribution with

n – 1 degrees of freedom T > t1–α

6 H0 : a ≥ a0,
H1 : a < a0

T =

√
n

s2∗ (m∗ – a)
t-distribution with

n – 1 degrees of freedom T > –t1–α

7 H0 : σ2 = σ2
0 ,

H1 : σ2 ≠ σ2
0

χ2 =
s2∗

σ2
0

(n – 1) χ2-distribution with
n – 1 degrees of freedom

χ2
α/2 > χ2

1–α/2,
χ2 > χ2

1–α/2

8 H0 : σ2 ≤ σ2
0 ,

H1 : σ2 > σ2
0

χ2 =
s2∗

σ2
0

(n – 1) χ2-distribution with
n – 1 degrees of freedom χ2 > χ2

1–α

9 H0 : σ2 ≥ σ2
0 ,

H1 : σ2 < σ2
0

χ2 =
s2∗

σ2
0

(n – 1) χ2-distribution with
n – 1 degrees of freedom χ2 < χ2

α

Remark 1. In items 1–6 σ2 is known.
Remark 2. In items 1–3 uα is α-quantile of standard normal distribution.

21.3.3-2. Goodness-of-fit tests.

Suppose that a sample X1, . . . , Xn is drawn from a population X with theoretical distribu-
tion function F (x). It is required to test the composite null hypothesis, H0 : F (x) is normal
with unknown parameters (a,σ2), against the composite alternative hypothesis, H1 : F (x)
is not normal. Since the parameters a and σ2 are decisive for the normal law, the sample
meanm∗ (orX) and the adjusted sample variance s2∗ are used to estimate these parameters.

1◦. Romanovskii test. To test the null hypothesis, the following statistic (Romanovskii
ratio) is used:

ρrom = ρrom(X1, . . . ,Xn) =
χ2(m) – m√

2m
, (21.3.3.1)
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where m is the number of degrees of freedom. If |ρrom| ≤ 3, then the null hypothesis should
be accepted; if |ρrom| > 3, then the null hypothesis should be rejected. This test has a fixed
size α = 0.0027.

2◦. Test for excluding outliers. To test the null hypothesis, the following statistic is used:

x∗ =
1
s∗

max
1≤i≤n

|Xi – m∗|, (21.3.3.2)

where s∗ is the sample mean-square deviation. The null hypothesis H0 for a given size α
is accepted if x∗ < x1–α, where xα is the quantile of the statistic x∗ under the assumption
that the sample is normal. The values of xα for various n and α can be found in statistical
tables.

3◦. Test based on the sample first absolute central moment. The test is based on the statistic

μ∗ = μ∗(X1, . . . ,Xn) =
1
ns∗

n∑

i=1

|Xi – m∗|. (21.3.3.3)

Under the assumption that the null hypothesis H0 is true, the distribution of the statistic μ∗
depends only on the sample size n and is independent of the parameters a and σ2. The
null hypothesis H0 for a given size α is accepted if μα/2 < μ∗ < μ1–α/2, where μα is the
α-quantile of the statistic μ∗. The values of μα for various n and α can be found in statistical
tables.

4◦. Test based on the sample asymmetry coefficient. The test is based on the statistic

γ∗1 = γ∗1 (X1, . . . ,Xn) =
1

n(s∗)3

n∑

i=1

(Xi – m∗)3. (21.3.3.4)

The null hypothesis H0 for a given size α is accepted if |γ∗1 | < γ1,1–α/2, where γ1,α is the
α-quantile of the statistic γ∗1 . The values of γ1,α for various n and α can be found in
statistical tables.

5◦. Test based on sample excess coefficient. The test verifies the closeness of the sample
excess (the test statistic)

γ∗2 = γ∗2 (X1, . . . ,Xn) =
1

n(s∗)4

n∑

i=1

(Xi – m∗)4 (21.3.3.5)

and the theoretical excess γ2 + 3 = E{(X – E{X})4}/(Var{X})2, equal to 3 for the
normal law. The null hypothesis H0 for a given size α is accepted if the inequality
γ2,α/2 < γ∗2 < γ2,1–α/2 holds, where γ2,α is the α-quantile of the statistic γ∗2 . The values of
γ2,α for various n and α can be found in statistical tables.

21.3.3-3. Comparison of expectations of two normal populations.

Suppose that X and Y are two populations with known variances σ2
1 and σ2

2 and unknown
expectations a1 and a2. Two independent samples X1, . . . , Xn and Y1, . . . , Yk are drawn
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from the populations and the sample expectations (means) m∗
1 and m∗

2 are calculated. The
hypothesis that the expectations are equal to each other is tested using the statistic

U =
m∗

1 –m∗
2√

σ2
1/n + σ2

2/k
, (21.3.3.6)

which has a normal distribution with parameters (0, 1) under the assumption that the null
hypothesis H0 : aX = aY is true.

If the variances of the populations are unknown, then either the sample size should be
sufficiently large for obtaining a reliable accurate estimator or the variances should coincide;
otherwise, the known tests are inefficient. If the variances of the populations are equal to
each other, σ2

1 = σ2
2 , then one can test the null hypothesis H0 : aX = aY using the statistic

T = (m∗
1 – m∗

2)
[( 1
n

+
1
k

) s2∗
1 (n – 1) + s2∗

2 (k – 1)
n + k – 2

]– 1
2 , (21.3.3.7)

which has the t-distribution (Student’s distribution) with v = n + k – 2 degrees of freedom.
The choice of the critical region depends on the form of the alternative hypothesis:

1. For the alternative hypothesis H1 : a1 > a2, one should choose a right-sided critical
region.

2. For the alternative hypothesisH1 : a1 < a2, one should choose a left-sided critical region.
3. For the alternative hypothesis H1 : a1 ≠ a2, one should choose a two-sided critical

region.

21.3.3-4. Tests for variances to be equal.

Suppose that there are L independent samples

X11, . . . ,X1n1 ; X21, . . . ,X2n2 ; . . . ; XL1, . . . ,XLnL

of sizes n1, . . . , nL drawn from distinct normal populations with unknown expectation a1,
. . . , aL and unknown variances σ2

1 , . . . , σ2
L. It is required to test the simple hypothesis

H0 : σ2
1 = · · · = σ2

L (the variances of all populations are the same) against the alternative
hypothesis H1 that some variances are different.

1◦. Bartlett’s test. The statistic in this test has the form

b = N ln

[
1
N

L∑

i=1

(ni – 1)s2∗
i

]
–

L∑

i=1

(ni – 1) ln s2∗
i , (21.3.3.8)

where

N =
L∑

i=1

(ni – 1), s2∗
j =

1
nj – 1

nj∑

j=1

(Xij – L∗
j )

2, L∗
j =

1
nj

nj∑

j=1

Xij .

The statistic b permits reducing the problem of testing the hypothesis that the variances of
normal samples are equal to each other to the problem of testing the hypothesis that the
expectations of approximately normal samples are equal to each other. If the null hypothesis
H0 is true and all n > 5, then the ratio

B = b

[
1 +

1
3(L – 1)

+

( L∑

i=1

1
ni – 1

–
1
N

)]–1

is distributed approximately according to the chi-square law with L – 1 degrees of freedom.
The null hypothesis H0 for a given size α is accepted if B < χ2

1–α(L – 1), where χ2
α is the

α-quantile of the chi-square distribution with L – 1 degrees of freedom.
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2◦. Cochran’s test. If all samples have the same volume (n1 = · · · = nL = n), then the null
hypothesis H0 is tested against the alternative hypothesis H1 using the Cochran statistic

G =
s2∗

max

s2∗
1 + · · · + s2∗

L

, (21.3.3.9)

where s2∗
max = max

1 ≤ i ≤L
s2∗
i .

Cochran’s test is, in general, less powerful than the Bartlett test, but it is simpler. The
null hypothesis H0 for a given size α is accepted if G < Gα, where Gα is the α-quantile of
the statistic G. The values of Gα for various α, L, and v = n – 1 can be found in statistical
tables.

3◦. Fisher’s test. For L = 2, to test the null hypothesis H0 that the variances of two samples
coincide, it is most expedient to use Fisher’s test based on the statistic

Ψ =
s2∗

2
s2∗

1
, (21.3.3.10)

where s2∗
1 and s2∗

2 are the adjusted sample variances of the two samples. The statistic Ψ has
the F -distribution (Fisher–Snedecor distribution) with n2 – 1 and n1 – 1 degrees of freedom.

The one-sided Fisher test verifies the null hypothesis H0 : σ2
1 = σ2

2 against the alternative
hypothesis H1 : σ2

1 < σ2
2; the critical region of the one-sided Fisher test for a given size α

is determined by the inequality Ψ > Ψ1–α(n2 – 1,n1 – 1).
The two-sided Fisher test verifies the null hypothesis H0 : σ2

1 = σ2
2 against the alternative

hypothesis H1 : σ2
1 ≠ σ2

2; the critical region of the two-sided Fisher test for a given size α is
determined by the two inequalities Ψα/2 < Ψ < Ψ1–α/2, where Ψα is the α-quantile of the
F -distribution with parameters n2 – 1 and n1 – 1.

21.3.3-5. Sample correlation.

Suppose that a sample X1, . . . , Xn is two-dimensional and its elements Xi = (Xi1,Xi2)
are two-dimensional random variables with joint normal distribution with means a1 and
a2, variances σ2

1 and σ2
2 , and correlation r. It is required to test the hypothesis that the

components X(1) and X(2) of the vector X are independent, i.e., test the hypothesis that the
correlation is zero.

Estimation of the correlation r is based on the sample correlation

r∗ =

∑n
i=1(Xi1 – m∗

1)(Xi2 – m∗
2)

√∑n
i=1(Xi1 – m∗

1)2∑n
j=1(Xi2 – m∗

2)2
, (21.3.3.11)

where

m∗
1 =

1
n

n∑

i=1

Xi1, m∗
2 =

1
n

n∑

i=1

Xi2.

The distribution of the statistic r∗ depends only on the sample size n, and the statistic r∗
itself is a consistent asymptotically efficient estimator of the correlation r.

The null hypothesis H0 : r = 0 that X(1) and X(2) are independent against the alternative
hypothesis H1 : r ≠ 0 (X(1) and X(2) are dependent) is accepted if the inequality rα/2 < r∗
<r1–α/2 is satisfied. Here rα is theα-quantile of the sample correlation under the assumption
that the null hypothesis H0 is true; the relation rα = –r1–α holds because of symmetry.



21.3. STATISTICAL HYPOTHESIS TESTING 1105

To construct the confidence intervals, one should use the Fisher transformation

y = arctanh r∗ =
1
2

ln
1 + r∗

1 – r∗
, (21.3.3.12)

which, for n > 10, is approximately normal with parameters

E{y} ≈
1
2

ln
1 + r
1 – r

+
r

2(n – 3)
, Var{y} ≈

1
n – 3

.

21.3.3-6. Regression analysis.

Let X1, . . . , Xn be the results of n independent observations

Xi =
L∑

j=1

θjfj(ti) + εi,

where f1(t), . . . , fL(t) are known functions, θ1, . . . , θL are unknown parameters, and ε1,
. . . , εn are random errors known to be independent and normally distributed with zero mean
and with the same unknown variance σ2.

The regression parameters are subject to the following constraints:
1. The number of observations n is greater than the number L of unknown parameters.
2. The vectors

fi = (fi(t1), . . . , fi(tn)) (i = 1, 2, . . . ,L) (21.3.3.13)

must be linearly independent.

1◦. Estimation of unknown parameters θ1, . . . , θL and construction of (one-dimensional)
confidence intervals for them.

To solve this problem, we consider the sum of squares

S2 = S2(θ1, . . . , θL) =
n∑

i=1

[Xi – θ1f1(ti) – · · · – θLfL(ti)]
2. (21.3.3.14)

The estimators θ∗1 , . . . , θ∗L form a solution of the system of equations

θ∗1
n∑

j=1

fi(tj) + · · · + θ∗L
n∑

j=1

fi(tj) =
n∑

j=1

Xjfi(tj). (21.3.3.15)

The estimators θ∗1 , . . . , θ∗L are linear and efficient; in particular, they are unbiased and
have the minimal variance among all possible estimators.

Remark. If we omit the requirement that the errors ε1, . . . , εn are normally distributed and only assume
that they are uncorrelated and have zero expectation and the same variance σ2, then the estimators θ∗1 , . . . , θ∗L
are linear, unbiased, and have the minimal variance in the class of all linear estimators.

The confidence intervals for a given confidence level γ for the unknown parameters θ1,
. . . , θL have the form

|θi – θ∗i | < t(1+γ)/2

√
c2
i s

2∗
0 , (21.3.3.16)

where tγ is the γ-quantile of the t-distribution with n – L degrees of freedom,

s2∗
0 =

1
n – L

min
θ1,...,θL

S2(θ1, . . . , θL) =
S2(θ∗1 , . . . , θ∗L)

n – L
, c2

i =
n∑

i=1

c2
ij ,

and cij are the coefficients in the representation θ∗i =
n∑

j=1
cijXj .
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System (21.3.3.15) can be solved in the simplest way if the vectors (21.3.3.13) are
orthogonal. In this case, system (21.3.3.15) splits into separate equations

θ∗i
n∑

j=1

f 2
i (tj) =

n∑

j=1

Xjfi(tj).

Then the estimators θ∗1 , . . . , θ∗L are independent, linear, and efficient.
Remark. If we omit the requirement that the errors ε1, . . . , εn are normally distributed, then the estimators

θ∗1 , . . . , θ∗L are uncorrelated, linear, and unbiased and have the minimal variance in the class of all linear
estimators.

2◦. Testing the hypothesis that some θi are zero. Suppose that it is required to test the null
hypothesis H0 : θk+1 = · · · = θL = 0 (0 ≤ k < L). This problem can be solved using the
statistic

Ψ =
s2∗

1
s2∗

0
,

where

s2∗
0 =

1
n – L

min
θ1,...,θL

S2(θ1, . . . , θL), s2∗
1 =

S2
2 – (n – L)s2∗

0
L – k

,

S2
2 = min

θ1,...,θk

S2(θ1, . . . , θk, 0, . . . , 0).

The hypothesis H0 for a given size γ is accepted if Ψ < Ψ1–γ , where Ψγ is the γ-quantile
of the F -distribution with parameters L – k and n – L.

3◦. Finding the estimator x∗(t) of the regression x(t) =
L∑

i=1
θifi(t) at an arbitrary time and

the construction of confidence intervals.
The estimator x∗(t) of the regression x(t) is obtained if θi in x(t) are replaced by their

estimators:

x∗(t) =
L∑

i=1

θ∗i fi(t).

The estimator x∗(t) is a linear, efficient, normally distributed, and unbiased estimator of the
regression x(t).

The confidence interval of confidence level γ is given by the inequality

|x(t) – x∗(t)| < t(1+γ)/2

√
c(t)s2∗

0 , (21.3.3.17)

where c(t) =
L∑

i=1
cij(t)fi(t) and tγ is the α-quantile of the t-distribution with n – L degrees

of freedom.
Example 1. Consider a linear regression x(t) = θ1 + θ2t.

1◦. The estimators θ∗1 and θ∗2 of the unknown parameters θ1 and θ2 are given by the formulas

θ∗1 =
n∑

j=1

c1jXj , θ∗2 =
n∑

j=1

c2jXj ,

where

c1j =

n∑

k=1
t2
k – tj

n∑

k=1
tk

n
n∑

k=1
t2
k –
( n∑

k=1
tk
)2

, c2j =
ntj –

n∑

k=1
tk

n
n∑

k=1
t2
k –
( n∑

k=1
tk
)2

.
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The statistic s2∗
0 , up to the factor (n – 2)/σ2, has the χ2-distribution with n – 2 degrees of freedom and is

determined by the formula

s2∗
0 =

1
n – 2

n∑

j=1

(Xj – θ∗1 – θ∗2 tj)2.

The confidence intervals of confidence level γ for the parameters θi are given by the formula

|θi – θ∗i | < t(1+γ)/2

√
c2
is

2∗
0 , i = 1, 2,

where tγ is the γ-quantile of the t-distribution with n – 2 degrees of freedom.

2◦. We test the null hypothesis H0 : θ2 = 0, i.e., the hypothesis that x(t) is independent of time. The value of
S2

2 is given by the formula

S2
2 =

n∑

i=1

(Xi – m∗)2, m∗ =
1
n

n∑

i=1

Xi,

and the value of s2∗
1 is given by the formula

s2∗
1 = S2

2 – (n – 2)s2∗
0 .

Thus, the hypothesis H0 for a given confidence level γ is accepted if φ < φγ , where φγ is the γ-quantile of an
F -distribution with parameters 1 and n – 2.

3◦. The estimator x∗(t) of the regression x(t) has the form

x∗(t) = θ∗1 + θ∗2 t.

The coefficient c(t) is determined by the formula

c(t) =
n∑

j=1

(c1j + c2jt)
2 =

n∑

j=1

c2
1j + 2t

n∑

j=1

c1jc2j + t2
n∑

j=2

c2
1j = b0 + b1t + b2t

2.

Thus the boundaries of the confidence interval for a given confidence level γ are given by the formulas

x∗
L(t) = θ∗1 + θ∗2 t – t(1+γ)/2

√
s2∗

0 (b0 + b1t + b2t2),

x∗
R(t) = θ∗1 + θ∗2 t + t(1+γ)/2

√
s2∗

0 (b0 + b1t + b2t2),

where tγ is the γ-quantile of the t-distribution with n – 2 degrees of freedom.

21.3.3-7. Analysis of variance.

Analysis of variance is a statistical method for clarifying the influence of several factors on
experimental results and for planning subsequent experiments.

1◦. The simplest problem of analysis of variance. Suppose that there are L independent
samples

X11, . . . ,X1n1 ; X21, . . . ,X2n1 ; . . . ; XL1,XL2, . . . ,XLn1 , (21.3.3.18)

drawn from normal populations with unknown expectations a1, . . . , aL and unknown but
equal variances σ2. It is necessary to test the null hypothesis H0 : a1 = · · · = aL that all
theoretical expectations ai are the same against the alternative hypothesis H1 that some
theoretical expectations are different.

The intragroup variances are determined by the formulas

s2∗
(i) =

1
ni – 1

nj∑

j=1

(Xij – m∗
i )

2 (i = 1, 2, . . . ,n), (21.3.3.19)
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where m∗
i = 1

nj

nj∑

j=1
Xij is the sample mean of the corresponding sample. The random

variable (ni – 1)s2∗
(i)/σ

2 has the chi-square distribution with ni – 1 degrees of freedom. An
unbiased estimator of the unknown variance σ2 is given by the statistic

s2∗
0 =

L∑

i=1
(ni – 1)s2∗

(i)

L∑

i=1
(ni – 1)

, (21.3.3.20)

called the residual variance.
The intergroup sample variance is defined to be the statistic

s2∗
1 =

1
L – 1

L∑

i=1

(m∗
i – m∗)2ni, (21.3.3.21)

where m∗ is the common sample mean of the generalized sample. The statistic s2∗
1 is

independent of s2∗
0 and is an unbiased estimator of the unknown variance σ2. The random

variable s2∗
0

L∑

i=1
(ni – 1)/σ2 is distributed by the chi-square law with

L∑

i=1
(ni – 1) degrees of

freedom, and the random variable s2∗
1 (L – 1)/σ2 is distributed by the chi-square law with

L – 1 degrees of freedom.
According to the one-sided Fisher test, the null hypothesis H0 must be accepted for a

given confidence level γ if Ψ=s2∗
1 /s

2∗
0 <Ψγ , where Ψγ is the γ-quantile of theF -distribution

with parameters L – 1 and
L∑

i=1
(ni – 1).

2◦. Multifactor analysis of variance. We consider two-factor analysis of variance. Suppose
that the first factor acts at L1 levels and the second factor acts at L2 levels (the two-factor
(L1,L2)-level model of analysis of variance). Suppose that we have nij observations in
which the first factor acted at the ith level and the second factor acted at the jth level. The
observation results Xijk are independent normally distributed random variables with the
same (unknown) variance σ2 and unknown expectations aij . It is required to test the null
hypothesis H0 that the first and second factors do not affect the results of observations, i.e.,
all aij are the same.

The action of two factors at levels L1 and L2 is identified with the action of a single
factor at L1L2 levels; then to test the hypothesis H0, it is expedient to use the one-factor
L1L2-level model. The statistics s2∗

0 and s2∗
1 are determined by the formulas

s2∗
0 =

L1∑

i=1

L2∑

j=1

nij∑

k=1
(Xijk – m∗

ij)
2

L1∑

i=1

L2∑

j=1
(nij – 1)

,

s2∗
1 =

1
L1L2 – 1

L1∑

i=1

L2∑

j=1

nij(m
∗
ij –m∗)2,

(21.3.3.22)
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where m∗
ij = 1

nij

nij∑

k=1
Xijk is the mean over the observations in which the first and second

factors acted at levels i and j and m∗ is the common mean of all observations

m∗ =
L1∑

i=1

L2∑

j=1

nij∑

k=1
Xijk

/
L1∑

i=1

L2∑

j=1
nij .

The hypothesisH0 that there is no influence of both factors at all levels must be accepted
for a given confidence level γ if φ = s2∗

1 /s
2∗
0 < φγ , where φγ is the γ-quantile of the F -

distribution with parameters
L1∑

i=1

L2∑

j=1
(nij – 1) and L1L2 – 1.

Analysis of variance also permits testing the hypothesis that the theoretical expectation
can be represented in the form aij = a(1)

i +a(2)
i , where a(1)

i and a(2)
i are unknown expectations

introduced by the first and second factors under the action at levels i and j.
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Chapter T1

Finite Sums and Infinite Series

T1.1. Finite Sums
T1.1.1. Numerical Sum

T1.1.1-1. Progressions.

Arithmetic progression:

1.
n–1∑

k=0

(a + bk) = an +
bn(n – 1)

2
.

Geometric progression:

2.
n∑

k=1

aqk–1 = a
qn – 1
q – 1

.

Arithmetic-geometric progression:

3.
n–1∑

k=0

(a + bk)qk =
a(1 – qn) – b(n – 1)qn

1 – q
+
bq(1 – qn–1)

(1 – q)2 .

T1.1.1-2. Sums of powers of natural numbers having the form
∑
km.

1.
n∑

k=1

k =
n(n + 1)

2
.

2.
n∑

k=1

k2 =
1
6
n(n + 1)(2n + 1).

3.
n∑

k=1

k3 =
1
4
n2(n + 1)2.

4.
n∑

k=1

k4 =
1

30
n(n + 1)(2n + 1)(3n2 + 3n – 1).

5.
n∑

k=1

k5 =
1

12
n2(n + 1)2(2n2 + 2n – 1).

6.
n∑

k=1

km =
nm+1

m + 1
+
nm

2
+

1
2
C1
mB2n

m–1 +
1
4
C3
mB4n

m–3 +
1
6
C5
mB6n

m–5 + · · · .

Here the Ckm are binomial coefficients and the B2k are Bernoulli numbers; the last term in
the sum contains n or n2.
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T1.1.1-3. Alternating sums of powers of natural numbers,
∑

(–1)kkm.

1.
n∑

k=1

(–1)kk = (–1)n
[n – 1

2

]
; [m] stands for the integer part of m.

2.
n∑

k=1

(–1)kk2 = (–1)n
n(n + 1)

2
.

3.
n∑

k=1

(–1)kk3 =
1
8
[

1 + (–1)n(4n3 + 6n2 – 1)
]
.

4.
n∑

k=1

(–1)kk4 = (–1)n
1
2

(n4 + 2n3 – n).

5.
n∑

k=1

(–1)kk5 =
1
4
[
–1 + (–1)n(2n5 + 5n4 – 5n2 + 1)

]
.

T1.1.1-4. Other sums containing integers.

1.
n∑

k=0

(2k + 1) = (n + 1)2.

2.
n∑

k=0

(2k + 1)2 =
1
3

(n + 1)(2n + 1)(2n + 3).

3.
n∑

k=1

k(k + 1) =
1
3
n(n + 1)(n + 2).

4.
n∑

k=1

(k + a)(k + b) =
1
6
n(n + 1)(2n + 1 + 3a + 3b) + nab.

5.
n∑

k=1

k k! = (n + 1)! – 1.

6.
n∑

k=0

(–1)k(2k + 1) = (–1)n(n + 1).

7.
n∑

k=0

(–1)k(2k + 1)2 = 2(–1)n(n + 1)2 –
1
2
[

1 + (–1)n
]
.

T1.1.1-5. Sums containing binomial coefficients.

� Throughout Paragraph T1.1.1-5, it is assumed that m = 1, 2, 3, . . .

1.
n∑

k=0

Ckn = 2n.
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2.
n∑

k=0

Cmm+k = Cm+1
n+m+1.

3.
n∑

k=0

(–1)kCkm = (–1)nCnm–1.

4.
n∑

k=0

(k + 1)Ckn = 2n–1(n + 2).

5.
n∑

k=1

(–1)k+1kCkn = 0.

6.
n∑

k=1

(–1)k+1

k
Ckn =

n∑

m=1

1
m

.

7.
n∑

k=1

(–1)k+1

k + 1
Ckn =

n

n + 1
.

8.
n∑

k=0

1
k + 1

Ckn =
2n+1 – 1
n + 1

.

9.
n∑

k=0

ak+1

k + 1
Ckn =

(a + 1)n+1 – 1
n + 1

.

10.
p∑

k=0

CknC
p–k
m = Cpn+m; m and p are natural numbers.

11.
n–p∑

k=0

CknC
p+k
n =

(2n)!
(n – p)! (n + p)!

.

12.
n∑

k=0

(Ckn)2 = Cn2n.

13.
2n∑

k=0

(–1)k(Ck2n)2 = (–1)nCn2n.

14.
2n+1∑

k=0

(–1)k(Ck2n+1)2 = 0.

15.
n∑

k=1

k(Ckn)2 =
(2n – 1)!

[(n – 1)!]2 .

T1.1.1-6. Other numerical sums.

1.
n–1∑

k=1

sin
πk

n
= cot

π

2n
.
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2.
n∑

k=1

sin2m πk

2n
=

n

22m C
m
2m +

1
2

, m < 2n.

3.
n–1∑

k=0

(–1)k cosm
πk

n
=

1
2
[

1 – (–1)m+n], m = 0, 1, . . . ,n – 1.

4.
n–1∑

k=0

(–1)k cosn
πk

n
=

n

2n–1 .

T1.1.2. Functional Sums

T1.1.2-1. Sums involving hyperbolic functions.

1.
n–1∑

k=0

sinh(kx + a) = sinh

(
n – 1

2
x + a

)
sinh(nx/2)
sinh(x/2)

.

2.
n–1∑

k=0

cosh(kx + a) = cosh

(
n – 1

2
x + a

)
sinh(nx/2)
sinh(x/2)

.

3.
n–1∑

k=0

(–1)k sinh(kx + a) =
1

2 cosh(x/2)

[
sinh

(
a –

x

2

)
+ (–1)n sinh

(
2n – 1

2
x + a

)]
.

4.
n–1∑

k=0

(–1)k cosh(kx + a) =
1

2 cosh(x/2)

[
cosh

(
a –

x

2

)
+ (–1)n cosh

(
2n – 1

2
x + a

)]
.

5.
n–1∑

k=1

k sinh(kx + a) = –
1

sinh2(x/2)

{
n sinh[(n – 1)x + a] – (n – 1) sinh(nx+ a) – sinh a

}
.

6.
n–1∑

k=1

k cosh(kx+a) = –
1

sinh2(x/2)

{
n cosh[(n– 1)x+a]– (n– 1) cosh(nx+a)–cosh a

}
.

7.
n–1∑

k=1

(–1)kk sinh(kx + a) =
1

cosh2(x/2)

{
(–1)n–1n sinh[(n – 1)x + a]

+ (–1)n–1(n – 1) sinh(nx + a) – sinh a
}

.

8.
n–1∑

k=1

(–1)kk cosh(kx + a) =
1

cosh2(x/2)

{
(–1)n–1n cosh[(n – 1)x + a]

+ (–1)n–1(n – 1) cosh(nx + a) – cosh a
}

.

9.
n∑

k=0

Ckn sinh(kx + a) = 2n coshn
x

2
sinh

(
nx

2
+ a

)
.

10.
n∑

k=0

Ckn cosh(kx + a) = 2n coshn
x

2
cosh

(
nx

2
+ a

)
.
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11.
n–1∑

k=1

ak sinh(kx) =
a sinh x – an sinh(nx) + an+1 sinh[(n – 1)x]

1 – 2a cosh x + a2 .

12.
n–1∑

k=0

ak cosh(kx) =
1 – a cosh x – an cosh(nx) + an+1 cosh[(n – 1)x]

1 – 2a cosh x + a2 .

13.
n∑

k=1

1
2k

tanh
x

2k
= coth x –

1
2n

coth
x

2n
.

14.
n–1∑

k=0

2k tanh(2kx) = 2n coth(2nx) – coth x.

T1.1.2-2. Sums involving trigonometric functions.

1.
n∑

k=1

sin(2kx) = sin[(n + 1)x] sin(nx) cosec x.

2.
n∑

k=0

cos(2kx) = sin[(n + 1)x] cos(nx) cosec x.

3.
n∑

k=1

sin[(2k – 1)x] = sin2(nx) cosec x.

4.
n∑

k=1

cos[(2k – 1)x] = sin(nx) cos(nx) cosec x.

5.
n–1∑

k=0

sin(kx + a) = sin

(
n – 1

2
x + a

)
sin

nx

2
cosec

x

2
.

6.
n–1∑

k=0

cos(kx + a) = cos

(
n – 1

2
x + a

)
sin

nx

2
cosec

x

2
.

7.
2n–1∑

k=0

(–1)k cos(kx + a) = sin

(
2n – 1

2
x + a

)
sin(nx) sec

x

2
.

8.
n∑

k=1

(–1)k+1 sin[(2k – 1)x] = (–1)n+1 sin(2nx)
2 cos x

.

9.
n∑

k=1

(–1)k cos(2kx) = –
1
2

+ (–1)n
cos[(2n + 1)x]

2 cos x
.

10.
n∑

k=1

sin2(kx) =
n

2
–

cos[(n + 1)x] sin(nx)
2 sin x

.
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11.
n∑

k=1

cos2(kx) =
n

2
+

cos[(n + 1)x] sin(nx)
2 sin x

.

12.
n–1∑

k=1

k sin(2kx) =
sin(2nx)

4 sin2 x
–
n cos[(2n – 1)x]

2 sin x
.

13.
n–1∑

k=1

k cos(2kx) =
n sin[(2n – 1)x]

2 sinx
–

1 – cos(2nx)
4 sin2 x

.

14.
n–1∑

k=1

ak sin(kx) =
a sin x – an sin(nx) + an+1 sin[(n – 1)x]

1 – 2a cos x + a2 .

15.
n–1∑

k=0

ak cos(kx) =
1 – a cos x – an cos(nx) + an+1 cos[(n – 1)x]

1 – 2a cos x + a2 .

16.
n∑

k=0

Ckn sin(kx + a) = 2n cosn
x

2
sin

(
nx

2
+ a

)
.

17.
n∑

k=0

Ckn cos(kx + a) = 2n cosn
x

2
cos

(
nx

2
+ a

)
.

18.
n∑

k=0

(–1)kCkn sin(kx + a) = (–2)n sinn
x

2
sin

(
nx

2
+
πn

2
+ a

)
.

19.
n∑

k=0

(–1)kCkn cos(kx + a) = (–2)n sinn
x

2
cos

(
nx

2
+
πn

2
+ a

)
.

20.
n∑

k=1

(
2k sin2 x

2k

)2
=

(
2n sin2 x

2n

)2
– sin2 x.

21.
n∑

k=0

1
2k

tan
x

2k
=

1
2n

cot
x

2n
– 2 cot(2x).

T1.2. Infinite Series
T1.2.1. Numerical Series

T1.2.1-1. Progressions.

1.
∞∑

k=0

aqk =
a

1 – q
, |q| < 1.

2.
∞∑

k=0

(a + bk)qk =
a

1 – q
+

bq

(1 – q)2 , |q| < 1.
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T1.2.1-2. Other numerical series.

1.
∞∑

n=0

(–1)n

n + 1
= ln 2.

2.
∞∑

n=0

(–1)n

2n + 1
=
π

4
.

3.
∞∑

n=1

1
n(n + 1)

= 1.

4.
∞∑

n=1

(–1)n

n(n + 1)
= 1 – 2 ln 2.

5.
∞∑

n=1

1
n(n + 2)

=
3
4

.

6.
∞∑

n=1

(–1)n

n(n + 2)
= –

1
4

.

7.
∞∑

n=1

1
(2n – 1)(2n + 1)

=
1
2

.

8.
∞∑

n=1

1
n2 =

π2

6
.

9.
∞∑

n=1

(–1)n+1

n2 =
π2

12
.

10.
∞∑

n=1

1
(2n – 1)2 =

π2

8
.

11.
∞∑

n=1

1
n2 + a2 =

π

2a
coth(πa) –

1
2a2 .

12.
∞∑

n=1

1
n2 – a2 = –

π

2a
cot(πa) +

1
2a2 .

13.
∞∑

k=1

1
k2n =

22n–1π2n

(2n)!
|B2n|; the B2n are Bernoulli numbers.

14.
∞∑

k=1

(–1)k+1

k2n =
(22n–1 – 1)π2n

(2n)!
|B2n|; the B2n are Bernoulli numbers.

15.
∞∑

k=1

1
(2k – 1)2n =

(22n–1 – 1)π2n

2(2n)!
|B2n|; the B2n are Bernoulli numbers.
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16.
∞∑

k=1

1
k2k

= ln 2.

17.
∞∑

k=0

(–1)k

n2k =
n2

n2 + 1
.

18.
∞∑

k=0

1
k!

= e = 2.71828 . . .

19.
∞∑

k=0

(–1)k

k!
=

1
e

= 0.36787 . . .

20.
∞∑

k=1

k

(k + 1)!
= 1.

T1.2.2. Functional Series

T1.2.2-1. Power series.

1.
∞∑

k=0

xk =
1

1 – x
, |x| < 1.

2.
∞∑

k=1

kxk =
x

(1 – x)2 , |x| < 1.

3.
∞∑

k=1

k2xk =
x(x + 1)
(1 – x)3 , |x| < 1.

4.
∞∑

k=1

k3xk =
x(1 + 4x + x2)

(1 – x)4 , |x| < 1.

5.
∞∑

k=0

(�1)kknxk =

(
x
d

dx

)n 1
1 � x

, |x| < 1.

6.
∞∑

k=1

xk

k
= – ln(1 – x), –1 ≤ x < 1.

7.
∞∑

k=1

(–1)k–1 x
k

k
= ln(1 + x), |x| < 1.

8.
∞∑

k=1

x2k–1

2k – 1
=

1
2

ln
1 + x
1 – x

, |x| < 1.

9.
∞∑

k=1

(–1)k–1 x
2k–1

2k – 1
= arctan x, |x| ≤ 1.
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10.
∞∑

k=1

xk

k2 = –
∫ x

0

ln(1 – t)
t

dt, |x| ≤ 1.

11.
∞∑

k=1

xk+1

k(k + 1)
= x + (1 – x) ln(1 – x), |x| ≤ 1.

12.
∞∑

k=1

xk+2

k(k + 2)
=
x

2
+
x2

4
+

1
2

(1 – x2) ln(1 – x), |x| ≤ 1.

13.
∞∑

k=0

xk

k!
= ex, x is any number.

14.
∞∑

k=0

x2k

(2k)!
= cosh x, x is any number.

15.
∞∑

k=0

(–1)k
x2k

(2k)!
= cos x, x is any number.

16.
∞∑

k=0

x2k+1

(2k + 1)!
= sinh x, x is any number.

17.
∞∑

k=0

(–1)k
x2k+1

(2k + 1)!
= sinx, x is any number.

18.
∞∑

k=0

xk+1

k! (k + 1)
= ex – 1, x is any number.

19.
∞∑

k=0

xk+2

k! (k + 2)
= (x – 1)ex + 1, x is any number.

20.
∞∑

k=0

(–1)k
x2k+1

k! (2k + 1)
=

√
π

2
erf x, x is any number.

21.
∞∑

k=0

(k + a)n

k!
xk =

[
dn

dtn
exp(at + xet)

]

t=0
, x is any number.

22.
∞∑

k=1

22k(22k – 1)|B2k |
(2k)!

x2k–1 = tanx; the B2k are Bernoulli numbers, |x| < π/2.

23.
∞∑

k=1

(–1)k–1 22k(22k – 1)|B2k |
(2k)!

x2k–1 = tanhx; theB2k are Bernoulli numbers, |x| <π/2.

24.
∞∑

k=1

22k |B2k |
(2k)!

x2k–1 =
1
x

– cot x; the B2k are Bernoulli numbers, 0 < |x| < π.

25.
∞∑

k=1

(–1)k–1 22k |B2k |
(2k)!

x2k–1 = coth x –
1
x

; the B2k are Bernoulli numbers, |x| < π.
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T1.2.2-2. Trigonometric series in one variable involving sine.

1.
∞∑

k=1

1
k

sin(kx) =
1
2

(π – x), 0 < x < 2π.

2.
∞∑

k=1

(–1)k–1

k
sin(kx) =

1
2
x, –π < x < π.

3.
∞∑

k=1

ak

k
sin(kx) = arctan

a sin x
1 – a cos x

, 0 < x < 2π, |a| ≤ 1.

4.
∞∑

k=0

1
2k + 1

sin(kx) =
π

4
cos

x

2
– sin

x

2
ln

(
cot2 x

4

)
, 0 < x < 2π.

5.
∞∑

k=0

(–1)k

2k + 1
sin(kx) = –

1
4

cos
x

2
ln

(
cot2 x + π

4

)
–
π

4
sin

x

2
, –π < x < π.

6.
∞∑

k=1

1
k2 sin(kx) = –

∫ x

0
ln

(
2 sin

t

2

)
dt, 0 ≤ x < π.

7.
∞∑

k=1

(–1)k

k2 sin(kx) = –
∫ x

0
ln

(
2 cos

t

2

)
dt, –π < x < π.

8.
∞∑

k=1

1
k(k + 1)

sin(kx) = (π – x) sin2 x

2
+ sinx ln

(
2 sin

x

2

)
, 0 ≤ x ≤ 2π.

9.
∞∑

k=1

(–1)k

k(k + 1)
sin(kx) = –x cos2 x

2
+ sinx ln

(
2 cos

x

2

)
, –π ≤ x ≤ π.

10.
∞∑

k=1

k

k2 + a2 sin(kx) =
π

2 sinh(πa)
sinh[a(π – x)], 0 < x < 2π.

11.
∞∑

k=1

(–1)k+1 k

k2 + a2 sin(kx) =
π

2 sinh(πa)
sinh(ax), –π < x < π.

12.
∞∑

k=1

k

k2 – a2 sin(kx) =
π

2 sin(πa)
sin[a(π – x)], 0 < x < 2π.

13.
∞∑

k=1

(–1)k+1 k

k2 – a2 sin(kx) =
π

2 sin(πa)
sin(ax), –π < x < π.

14.
∞∑

k=2

(–1)k
k

k2 – 1
sin(kx) =

1
4

sinx +
1
2
x cos x, –π < x < π.

15.
∞∑

k=1

1
k2n+1 sin(kx) =

(–1)n–1(2π)2n+1

2(2n + 1)!
B2n+1

(
x

2π

)
,

where 0 ≤ x ≤ 2π for n = 1, 2, . . . ; 0 < x < 2π for n = 0; and the Bn(x) are Bernoulli
polynomials.
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16.
∞∑

k=1

(–1)k

k2n+1 sin(kx) =
(–1)n–1(2π)2n+1

2(2n + 1)!
B2n+1

(
x + π

2π

)
,

where –π < x ≤ π for n = 0, 1, . . . ; the Bn(x) are Bernoulli polynomials.

17.
∞∑

k=1

1
k!

sin(kx) = exp(cos x) sin(sin x), x is any number.

18.
∞∑

k=1

(–1)k

k!
sin(kx) = – exp(– cos x) sin(sinx), x is any number.

19.
∞∑

k=0

1
(2k)!

sin(kx) = sin

(
sin

x

2

)
sinh

(
cos

x

2

)
, x is any number.

20.
∞∑

k=0

(–1)k

(2k)!
sin(kx) = – sin

(
cos

x

2

)
sinh

(
sin

x

2

)
, x is any number.

21.
∞∑

k=0

ak

k!
sin(kx) = exp(k cos x) sin(k sin x), |a| ≤ 1, x is any number.

22.
∞∑

k=0

ak sin(kx) =
a sinx

1 – 2a cos x + a2 , |a| < 1, x is any number.

23.
∞∑

k=1

kak sin(kx) =
a(1 – a2) sin x

(1 – 2a cos x + a2)2 , |a| < 1, x is any number.

24.
∞∑

k=1

1
k

sin(kx + a) =
1
2

(π – x) cos a – ln

(
2 sin

x

2

)
sin a, 0 < x < 2π.

25.
∞∑

k=1

(–1)k–1

k
sin(kx + a) =

1
2
x cos a + ln

(
2 cos

x

2

)
sin a, –π < x < π.

26.
∞∑

k=1

sin[(2k – 1)x]
2k – 1

=
π

4
, 0 < x < π.

27.
∞∑

k=1

(–1)k–1 sin[(2k – 1)x]
2k – 1

=
1
2

ln tan

(
x

2
+
π

4

)
, –

π

2
< x <

π

2
.

28.
∞∑

k=1

a2k–1 sin[(2k – 1)x]
2k – 1

=
1
2

arctan
2a sin x

1 – a2 , 0 < x < 2π, |a| ≤ 1.

29.
∞∑

k=1

(–1)k–1a2k–1 sin[(2k – 1)x]
2k – 1

=
1
4

ln
1 + 2a sin x + a2

1 – 2a sin x + a2 , 0 < x < π, |a| ≤ 1.

30.
∞∑

k=1

(–1)k
sin[(k + 1)x]
k(k + 1)

= sinx –
1
2
x(1 + cos x) – sin x ln

∣∣
∣∣2 cos

x

2

∣∣
∣∣.
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31.
∞∑

k=0

a2k+1 sin[(2k + 1)x] =
a(1 + a2) sin x

(1 + a2)2 – 4a2 cos2 x
, |a| < 1, x is any number.

32.
∞∑

k=0

(–1)ka2k+1 sin[(2k + 1)x] =
a(1 – a2) sin x

(1 + a2)2 – 4a2 sin2 x
, |a| < 1, x is any number.

33.
∞∑

k=1

sin[2(k + 1)x]
k(k + 1)

= sin(2x) – (π – 2x) sin2 x – sinx cos x ln(4 sin2 x), 0 ≤ x ≤ π.

34.
∞∑

k=1

(–1)k
sin[(2k + 1)x]

(2k + 1)2 =

{ 1
4πx if – 1

2π ≤ x ≤ 1
2π,

1
4π(π – x) if 1

2π ≤ x ≤ 3
2π.

T1.2.2-3. Trigonometric series in one variable involving cosine.

1.
∞∑

k=1

1
k

cos(kx) = – ln

(
2 sin

x

2

)
, 0 < x < 2π.

2.
∞∑

k=1

(–1)k–1

k
cos(kx) = ln

(
2 cos

x

2

)
, –π < x < π.

3.
∞∑

k=1

ak

k
cos(kx) = ln

1√
1 – 2a cos x + a2

, 0 < x < 2π, |a| ≤ 1.

4.
∞∑

k=0

1
2k + 1

cos(kx) =
π

4
sin

x

2
+ cos

x

2
ln

(
cot2 x

4

)
, 0 < x < 2π.

5.
∞∑

k=0

(–1)k

2k + 1
cos(kx) = –

1
4

sin
x

2
ln

(
cot2 x + π

4

)
+
π

4
cos

x

2
, –π < x < π.

6.
∞∑

k=1

1
k2 cos(kx) =

1
12

(3x2 – 6πx + 2π2), 0 ≤ x ≤ 2π.

7.
∞∑

k=1

(–1)k

k2 cos(kx) =
1

12
(3x2 – π2), –π ≤ x ≤ π.

8.
∞∑

k=1

1
k(k + 1)

cos(kx) =
1
2

(x – π) sin x – 2 sin2 x

2
ln

(
2 sin

x

2

)
+ 1, 0 ≤ x ≤ 2π.

9.
∞∑

k=1

(–1)k

k(k + 1)
cos(kx) = –

1
2
x sin x – 2 cos2 x

2
ln

(
2 cos

x

2

)
+ 1, –π ≤ x ≤ π.

10.
∞∑

k=1

1
k2 + a2 cos(kx) =

π

2a sinh(πa)
cosh[a(π – x)] –

1
2a2 , 0 ≤ x ≤ 2π.

11.
∞∑

k=1

1
k2 – a2 cos(kx) = –

π

2a sin(πa)
cos[a(π – x)] +

1
2a2 , 0 ≤ x ≤ 2π.
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12.
∞∑

k=2

(–1)k

k2 – 1
cos(kx) =

1
2

–
1
4

cos x –
1
2
x sin x, –π ≤ x ≤ π.

13.
∞∑

k=2

k

k2 – 1
cos(kx) = –

1
2

–
1
4

cos x – cos x ln

(
2 sin

x

2

)
, 0 < x < 2π.

14.
∞∑

k=1

1
k2n cos(kx) =

(–1)n–1(2π)2n

2(2n)!
B2n

(
x

2π

)
,

where 0 ≤ x ≤ 2π for n = 1, 2, . . . ; the Bn(x) are Bernoulli polynomials.

15.
∞∑

k=1

(–1)k

k2n cos(kx) =
(–1)n–1(2π)2n

2(2n)!
B2n

(
x + π

2π

)
,

where –π ≤ x ≤ π for n = 1, 2, . . . ; the Bn(x) are Bernoulli polynomials.

16.
∞∑

k=0

1
k!

cos(kx) = exp(cos x) cos(sin x), x is any number.

17.
∞∑

k=0

(–1)k

k!
cos(kx) = exp(– cos x) cos(sinx), x is any number.

18.
∞∑

k=0

1
(2k)!

cos(kx) = cos

(
sin

x

2

)
cosh

(
cos

x

2

)
, x is any number.

19.
∞∑

k=0

(–1)k

(2k)!
cos(kx) = cos

(
cos

x

2

)
cosh

(
sin

x

2

)
, x is any number.

20.
∞∑

k=0

ak

k!
cos(kx) = exp(a cos x) cos(a sinx), |a| ≤ 1, x is any number.

21.
∞∑

k=0

ak cos(kx) =
1 – a cos x

1 – 2a cos x + a2 , |a| < 1, x is any number.

22.
∞∑

k=1

kak cos(kx) =
a(1 + a2) cos x – 2a2

(1 – 2a cos x + a2)2 , |a| < 1, x is any number.

23.
∞∑

k=1

1
k

cos(kx + a) =
1
2

(x – π) sin a – ln

(
2 sin

x

2

)
cos a, 0 < x < 2π.

24.
∞∑

k=1

(–1)k–1

k
cos(kx + a) = –

1
2
x sin a + ln

(
2 cos

x

2

)
cos a, –π < x < π.

25.
∞∑

k=1

cos[(2k – 1)x]
2k – 1

=
1
2

ln cot
x

2
, 0 < x < π.

26.
∞∑

k=1

(–1)k–1 cos[(2k – 1)x]
2k – 1

=
π

4
, 0 < x < π.
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27.
∞∑

k=1

a2k–1 cos[(2k – 1)x]
2k – 1

=
1
4

ln
1 + 2a cos x + a2

1 – 2a cos x + a2 , 0 < x < 2π, |a| ≤ 1.

28.
∞∑

k=1

(–1)k–1a2k–1 cos[(2k – 1)x]
2k – 1

=
1
2

arctan
2a cos x

1 – a2 , 0 < x < π, |a| ≤ 1.

29.
∞∑

k=1

cos[(2k – 1)x]
(2k – 1)2 =

π

4

(
π

2
– |x|
)

, –π ≤ x ≤ π.

30.
∞∑

k=1

(–1)k
cos[(k + 1)x]
k(k + 1)

= cos x –
1
2
x sinx – (1 + cos x) ln

∣∣
∣∣2 cos

x

2

∣∣
∣∣.

31.
∞∑

k=0

a2k+1 cos[(2k + 1)x] =
a(1 – a2) cos x

(1 + a2)2 – 4a2 cos2 x
, |a| < 1, x is any number.

32.
∞∑

k=0

(–1)ka2k+1 cos[(2k + 1)x] =
a(1 + a2) cos x

(1 + a2)2 – 4a2 sin2 x
, |a| < 1, x is any number.

33.
∞∑

k=1

cos[2(k + 1)x]
k(k + 1)

= cos(2x) –

(
π

2
– x

)
sin(2x) + sin2 x ln(4 sin2 x), 0 ≤ x ≤ π.

T1.2.2-4. Trigonometric series in two variables.

1.
∞∑

k=1

1
k

sin(kx) sin(ky) =
1
2

ln

∣∣
∣∣sin

x + y
2

cosec
x – y

2

∣∣
∣∣, x � y ≠ 0, 2π, 4π, . . .

2.
∞∑

k=1

(–1)k

k
sin(kx) sin(ky) =

1
2

ln

∣∣
∣∣cos

x + y
2

sec
x – y

2

∣∣
∣∣, x � y ≠ π, 3π, 5π, . . .

3.
∞∑

k=1

1
k2 sin(kx) sin(ky) =

{
1
2x(π – y) if –y ≤ x ≤ y,
1
2 y(π – x) if y ≤ x ≤ 2π – y.

Here, 0 < y < π.

4.
∞∑

k=1

(–1)k+1

k2 sin(kx) sin(ky) =
1
2
xy, |x � y| ≤ π.

5.
∞∑

k=1

ak

k
sin(kx) sin(ky) =

1
4

ln
4a sin2[(x + y)/2] + (a – 1)2

4a sin2[(x – y)/2] + (a – 1)2 , 0 < a < 1.

6.
∞∑

k=1

1
k2 sin2(kx) sin2(ky) =

1
2
πx, 0 ≤ x ≤ y ≤

π

2
.

7.
∞∑

k=1

1
k

cos(kx) cos(ky) = –
1
2

ln
∣∣2(cos x – cos y)

∣∣, x � y ≠ 0, 2π, 4π, . . .

8.
∞∑

k=1

(–1)k

k
cos(kx) cos(ky) = –

1
2

ln
∣∣2(cos x + cos y)

∣∣, x � y ≠ π, 3π, 5π, . . .
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9.
∞∑

k=1

1
k

sin(kx) cos(ky) =

⎧
⎪⎨

⎪⎩

– 1
2 if 0 < x < y,

1
4 (π – 2y) if x = y,
1
2 (π – x) if y < x < π.

Here, 0 < y < π.

10.
∞∑

k=1

1
k2 cos(kx) cos(ky) =

{
1

12
[

3x2 + 3(y – π)2 – π2] if 0 ≤ x ≤ y,
1

12
[

3y2 + 3(x – π)2 – π2] if y ≤ x ≤ π.

Here, 0 < y < π.

11.
∞∑

k=1

(–1)k

k2 cos(kx) cos(ky) =

{
1

12
[

3(x2 +y2)–π2] if –(π–y) ≤ x ≤ π–y,
1

12
[

3(x–π)2 + 3(y–π)2 –π2] if π–y ≤ x ≤ π+y.

Here, 0 < y < π.
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Chapter T2

Integrals

T2.1. Indefinite Integrals
� Throughout Section T2.1, the integration constant C is omitted for brevity.

T2.1.1. Integrals Involving Rational Functions

T2.1.1-1. Integrals involving a + bx.

1.
∫

dx

a + bx
=

1
b

ln |a + bx|.

2.
∫

(a + bx)ndx =
(a + bx)n+1

b(n + 1)
, n ≠ –1.

3.
∫

x dx

a + bx
=

1
b2

(
a + bx – a ln |a + bx|

)
.

4.
∫

x2 dx

a + bx
=

1
b3

[ 1
2

(a + bx)2 – 2a(a + bx) + a2 ln |a + bx|
]
.

5.
∫

dx

x(a + bx)
= –

1
a

ln
∣
∣∣
a + bx
x

∣
∣∣.

6.
∫

dx

x2(a + bx)
= –

1
ax

+
b

a2 ln
∣
∣∣
a + bx
x

∣
∣∣.

7.
∫

x dx

(a + bx)2 =
1
b2

(
ln |a + bx| +

a

a + bx

)
.

8.
∫

x2 dx

(a + bx)2 =
1
b3

(
a + bx – 2a ln |a + bx| –

a2

a + bx

)
.

9.
∫

dx

x(a + bx)2 =
1

a(a + bx)
–

1
a2 ln

∣∣
∣
a + bx
x

∣∣
∣.

10.
∫

x dx

(a + bx)3 =
1
b2

[
–

1
a + bx

+
a

2(a + bx)2

]
.

T2.1.1-2. Integrals involving a + x and b + x.

1.
∫

a + x
b + x

dx = x + (a – b) ln |b + x|.

1129
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2.
∫

dx

(a + x)(b + x)
=

1
a – b

ln
∣
∣∣
b + x
a + x

∣
∣∣, a ≠ b. For a = b, see Integral 2 with n = –2 in

Paragraph T2.1.1-1.

3.
∫

x dx

(a + x)(b + x)
=

1
a – b

(
a ln |a + x| – b ln |b + x|

)
.

4.
∫

dx

(a + x)(b + x)2 =
1

(b – a)(b + x)
+

1
(a – b)2 ln

∣∣
∣
a + x
b + x

∣∣
∣.

5.
∫

x dx

(a + x)(b + x)2 =
b

(a – b)(b + x)
–

a

(a – b)2 ln
∣
∣∣
a + x
b + x

∣
∣∣.

6.
∫

x2 dx

(a + x)(b + x)2 =
b2

(b – a)(b + x)
+

a2

(a – b)2 ln |a + x| +
b2 – 2ab
(b – a)2 ln |b + x|.

7.
∫

dx

(a + x)2(b + x)2 = –
1

(a – b)2

( 1
a + x

+
1

b + x

)
+

2
(a – b)3 ln

∣
∣∣
a + x
b + x

∣
∣∣.

8.
∫

x dx

(a + x)2(b + x)2 =
1

(a – b)2

( a

a + x
+

b

b + x

)
+

a + b
(a – b)3 ln

∣
∣∣
a + x
b + x

∣
∣∣.

9.
∫

x2 dx

(a + x)2(b + x)2 = –
1

(a – b)2

( a2

a + x
+

b2

b + x

)
+

2ab
(a – b)3 ln

∣
∣∣
a + x
b + x

∣
∣∣.

T2.1.1-3. Integrals involving a2 + x2.

1.
∫

dx

a2 + x2 =
1
a

arctan
x

a
.

2.
∫

dx

(a2 + x2)2 =
x

2a2(a2 + x2)
+

1
2a3 arctan

x

a
.

3.
∫

dx

(a2 + x2)3 =
x

4a2(a2 + x2)2 +
3x

8a4(a2 + x2)
+

3
8a5 arctan

x

a
.

4.
∫

dx

(a2 + x2)n+1 =
x

2na2(a2 + x2)n
+

2n – 1
2na2

∫
dx

(a2 + x2)n
; n = 1, 2, . . .

5.
∫

x dx

a2 + x2 =
1
2

ln(a2 + x2).

6.
∫

x dx

(a2 + x2)2 = –
1

2(a2 + x2)
.

7.
∫

x dx

(a2 + x2)3 = –
1

4(a2 + x2)2 .

8.
∫

x dx

(a2 + x2)n+1 = –
1

2n(a2 + x2)n
; n = 1, 2, . . .

9.
∫

x2 dx

a2 + x2 = x – a arctan
x

a
.

10.
∫

x2 dx

(a2 + x2)2 = –
x

2(a2 + x2)
+

1
2a

arctan
x

a
.
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11.
∫

x2 dx

(a2 + x2)3 = –
x

4(a2 + x2)2 +
x

8a2(a2 + x2)
+

1
8a3 arctan

x

a
.

12.
∫

x2 dx

(a2 + x2)n+1 = –
x

2n(a2 + x2)n
+

1
2n

∫
dx

(a2 + x2)n
; n = 1, 2, . . .

13.
∫

x3 dx

a2 + x2 =
x2

2
–
a2

2
ln(a2 + x2).

14.
∫

x3 dx

(a2 + x2)2 =
a2

2(a2 + x2)
+

1
2

ln(a2 + x2).

15.
∫

x3 dx

(a2 + x2)n+1 = –
1

2(n – 1)(a2 + x2)n–1 +
a2

2n(a2 + x2)n
; n = 2, 3, . . .

16.
∫

dx

x(a2 + x2)
=

1
2a2 ln

x2

a2 + x2 .

17.
∫

dx

x(a2 + x2)2 =
1

2a2(a2 + x2)
+

1
2a4 ln

x2

a2 + x2 .

18.
∫

dx

x(a2 + x2)3 =
1

4a2(a2 + x2)2 +
1

2a4(a2 + x2)
+

1
2a6 ln

x2

a2 + x2 .

19.
∫

dx

x2(a2 + x2)
= –

1
a2x

–
1
a3 arctan

x

a
.

20.
∫

dx

x2(a2 + x2)2 = –
1
a4x

–
x

2a4(a2 + x2)
–

3
2a5 arctan

x

a
.

21.
∫

dx

x3(a2 + x2)2 = –
1

2a4x2 –
1

2a4(a2 + x2)
–

1
a6 ln

x2

a2 + x2 .

22.
∫

dx

x2(a2 + x2)3 = –
1
a6x

–
x

4a4(a2 + x2)2 –
7x

8a6(a2 + x2)
–

15
8a7 arctan

x

a
.

23.
∫

dx

x3(a2 + x2)3 = –
1

2a6x2 –
1

a6(a2 + x2)
–

1
4a4(a2 + x2)2 –

3
2a8 ln

x2

a2 + x2 .

T2.1.1-4. Integrals involving a2 – x2.

1.
∫

dx

a2 – x2 =
1

2a
ln
∣∣
∣
a + x
a – x

∣∣
∣.

2.
∫

dx

(a2 – x2)2 =
x

2a2(a2 – x2)
+

1
4a3 ln

∣∣
∣
a + x
a – x

∣∣
∣.

3.
∫

dx

(a2 – x2)3 =
x

4a2(a2 – x2)2 +
3x

8a4(a2 – x2)
+

3
16a5 ln

∣
∣∣
a + x
a – x

∣
∣∣.

4.
∫

dx

(a2 – x2)n+1 =
x

2na2(a2 – x2)n
+

2n – 1
2na2

∫
dx

(a2 – x2)n
; n = 1, 2, . . .

5.
∫

x dx

a2 – x2 = –
1
2

ln |a2 – x2|.
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6.
∫

x dx

(a2 – x2)2 =
1

2(a2 – x2)
.

7.
∫

x dx

(a2 – x2)3 =
1

4(a2 – x2)2 .

8.
∫

x dx

(a2 – x2)n+1 =
1

2n(a2 – x2)n
; n = 1, 2, . . .

9.
∫

x2 dx

a2 – x2 = –x +
a

2
ln
∣
∣∣
a + x
a – x

∣
∣∣.

10.
∫

x2 dx

(a2 – x2)2 =
x

2(a2 – x2)
–

1
4a

ln
∣∣
∣
a + x
a – x

∣∣
∣.

11.
∫

x2 dx

(a2 – x2)3 =
x

4(a2 – x2)2 –
x

8a2(a2 – x2)
–

1
16a3 ln

∣
∣∣
a + x
a – x

∣
∣∣.

12.
∫

x2 dx

(a2 – x2)n+1 =
x

2n(a2 – x2)n
–

1
2n

∫
dx

(a2 – x2)n
; n = 1, 2, . . .

13.
∫

x3 dx

a2 – x2 = –
x2

2
–
a2

2
ln |a2 – x2|.

14.
∫

x3 dx

(a2 – x2)2 =
a2

2(a2 – x2)
+

1
2

ln |a2 – x2|.

15.
∫

x3 dx

(a2 – x2)n+1 = –
1

2(n – 1)(a2 – x2)n–1 +
a2

2n(a2 – x2)n
; n = 2, 3, . . .

16.
∫

dx

x(a2 – x2)
=

1
2a2 ln

∣∣
∣

x2

a2 – x2

∣∣
∣.

17.
∫

dx

x(a2 – x2)2 =
1

2a2(a2 – x2)
+

1
2a4 ln

∣∣
∣

x2

a2 – x2

∣∣
∣.

18.
∫

dx

x(a2 – x2)3 =
1

4a2(a2 – x2)2 +
1

2a4(a2 – x2)
+

1
2a6 ln

∣∣
∣

x2

a2 – x2

∣∣
∣.

T2.1.1-5. Integrals involving a3 + x3.

1.
∫

dx

a3 + x3 =
1

6a2 ln
(a + x)2

a2 – ax + x2 +
1

a2
√

3
arctan

2x – a

a
√

3
.

2.
∫

dx

(a3 + x3)2 =
x

3a3(a3 + x3)
+

2
3a3

∫
dx

a3 + x3 .

3.
∫

x dx

a3 + x3 =
1

6a
ln
a2 – ax + x2

(a + x)2 +
1

a
√

3
arctan

2x – a

a
√

3
.

4.
∫

x dx

(a3 + x3)2 =
x2

3a3(a3 + x3)
+

1
3a3

∫
x dx

a3 + x3 .

5.
∫

x2 dx

a3 + x3 =
1
3

ln |a3 + x3|.
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6.
∫

dx

x(a3 + x3)
=

1
3a3 ln

∣∣
∣

x3

a3 + x3

∣∣
∣.

7.
∫

dx

x(a3 + x3)2 =
1

3a3(a3 + x3)
+

1
3a6 ln

∣
∣∣

x3

a3 + x3

∣
∣∣.

8.
∫

dx

x2(a3 + x3)
= –

1
a3x

–
1
a3

∫
x dx

a3 + x3 .

9.
∫

dx

x2(a3 + x3)2 = –
1
a6x

–
x2

3a6(a3 + x3)
–

4
3a6

∫
x dx

a3 + x3 .

T2.1.1-6. Integrals involving a3 – x3.

1.
∫

dx

a3 – x3 =
1

6a2 ln
a2 + ax + x2

(a – x)2 +
1

a2
√

3
arctan

2x + a

a
√

3
.

2.
∫

dx

(a3 – x3)2 =
x

3a3(a3 – x3)
+

2
3a3

∫
dx

a3 – x3 .

3.
∫

x dx

a3 – x3 =
1

6a
ln
a2 + ax + x2

(a – x)2 –
1

a
√

3
arctan

2x + a

a
√

3
.

4.
∫

x dx

(a3 – x3)2 =
x2

3a3(a3 – x3)
+

1
3a3

∫
x dx

a3 – x3 .

5.
∫

x2 dx

a3 – x3 = –
1
3

ln |a3 – x3|.

6.
∫

dx

x(a3 – x3)
=

1
3a3 ln

∣
∣∣

x3

a3 – x3

∣
∣∣.

7.
∫

dx

x(a3 – x3)2 =
1

3a3(a3 – x3)
+

1
3a6 ln

∣∣
∣

x3

a3 – x3

∣∣
∣.

8.
∫

dx

x2(a3 – x3)
= –

1
a3x

+
1
a3

∫
x dx

a3 – x3 .

9.
∫

dx

x2(a3 – x3)2 = –
1
a6x

–
x2

3a6(a3 – x3)
+

4
3a6

∫
x dx

a3 – x3 .

T2.1.1-7. Integrals involving a4 � x4.

1.
∫

dx

a4 + x4 =
1

4a3
√

2
ln
a2 + ax

√
2 + x2

a2 – ax
√

2 + x2
+

1
2a3

√
2

arctan
ax

√
2

a2 – x2 .

2.
∫

x dx

a4 + x4 =
1

2a2 arctan
x2

a2 .

3.
∫

x2 dx

a4 + x4 = –
1

4a
√

2
ln
a2 + ax

√
2 + x2

a2 – ax
√

2 + x2
+

1
2a

√
2

arctan
ax

√
2

a2 – x2 .
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4.
∫

dx

a4 – x4 =
1

4a3 ln
∣
∣∣
a + x
a – x

∣
∣∣ +

1
2a3 arctan

x

a
.

5.
∫

x dx

a4 – x4 =
1

4a2 ln
∣
∣
∣
a2 + x2

a2 – x2

∣
∣
∣.

6.
∫

x2 dx

a4 – x4 =
1

4a
ln
∣∣
∣
a + x
a – x

∣∣
∣ –

1
2a

arctan
x

a
.

T2.1.2. Integrals Involving Irrational Functions

T2.1.2-1. Integrals involving x1/2.

1.
∫

x1/2 dx

a2 + b2x
=

2
b2 x

1/2 –
2a
b3 arctan

bx1/2

a
.

2.
∫

x3/2 dx

a2 + b2x
=

2x3/2

3b2 –
2a2x1/2

b4 +
2a3

b5 arctan
bx1/2

a
.

3.
∫

x1/2 dx

(a2 + b2x)2 = –
x1/2

b2(a2 + b2x)
+

1
ab3 arctan

bx1/2

a
.

4.
∫

x3/2 dx

(a2 + b2x)2 =
2x3/2

b2(a2 + b2x)
+

3a2x1/2

b4(a2 + b2x)
–

3a
b5 arctan

bx1/2

a
.

5.
∫

dx

(a2 + b2x)x1/2 =
2
ab

arctan
bx1/2

a
.

6.
∫

dx

(a2 + b2x)x3/2 = –
2

a2x1/2 –
2b
a3 arctan

bx1/2

a
.

7.
∫

dx

(a2 + b2x)2x1/2 =
x1/2

a2(a2 + b2x)
+

1
a3b

arctan
bx1/2

a
.

8.
∫

x1/2 dx

a2 – b2x
= –

2
b2 x

1/2 +
2a
b3 ln

∣∣
∣
a + bx1/2

a – bx1/2

∣∣
∣.

9.
∫

x3/2 dx

a2 – b2x
= –

2x3/2

3b2 –
2a2x1/2

b4 +
a3

b5 ln
∣
∣∣
a + bx1/2

a – bx1/2

∣
∣∣.

10.
∫

x1/2 dx

(a2 – b2x)2 =
x1/2

b2(a2 – b2x)
–

1
2ab3 ln

∣
∣
∣
a + bx1/2

a – bx1/2

∣
∣
∣.

11.
∫

x3/2 dx

(a2 – b2x)2 =
3a2x1/2 – 2b2x3/2

b4(a2 – b2x)
–

3a
2b5 ln

∣
∣∣
a + bx1/2

a – bx1/2

∣
∣∣.

12.
∫

dx

(a2 – b2x)x1/2 =
1
ab

ln
∣
∣∣
a + bx1/2

a – bx1/2

∣
∣∣.

13.
∫

dx

(a2 – b2x)x3/2 = –
2

a2x1/2 +
b

a3 ln
∣∣
∣
a + bx1/2

a – bx1/2

∣∣
∣.

14.
∫

dx

(a2 – b2x)2x1/2 =
x1/2

a2(a2 – b2x)
+

1
2a3b

ln
∣
∣∣
a + bx1/2

a – bx1/2

∣
∣∣.
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T2.1.2-2. Integrals involving (a + bx)p/2.

1.
∫

(a + bx)p/2 dx =
2

b(p + 2)
(a + bx)(p+2)/2.

2.
∫
x(a + bx)p/2 dx =

2
b2

[
(a + bx)(p+4)/2

p + 4
–
a(a + bx)(p+2)/2

p + 2

]
.

3.
∫
x2(a + bx)p/2 dx =

2
b3

[
(a + bx)(p+6)/2

p + 6
–

2a(a + bx)(p+4)/2

p + 4
+
a2(a + bx)(p+2)/2

p + 2

]
.

T2.1.2-3. Integrals involving (x2 + a2)1/2.

1.
∫

(x2 + a2)1/2 dx =
1
2
x(a2 + x2)1/2 +

a2

2
ln
[
x + (x2 + a2)1/2].

2.
∫
x(x2 + a2)1/2 dx =

1
3

(a2 + x2)3/2.

3.
∫

(x2 + a2)3/2 dx =
1
4
x(a2 + x2)3/2 +

3
8
a2x(a2 + x2)1/2 +

3
8
a4 ln

∣
∣x + (x2 + a2)1/2∣∣.

4.
∫

1
x

(x2 + a2)1/2 dx = (a2 + x2)1/2 – a ln
∣
∣∣
a + (x2 + a2)1/2

x

∣
∣∣.

5.
∫

dx√
x2 + a2

= ln
[
x + (x2 + a2)1/2].

6.
∫

x dx√
x2 + a2

= (x2 + a2)1/2.

7.
∫

(x2 + a2)–3/2 dx = a–2x(x2 + a2)–1/2.

T2.1.2-4. Integrals involving (x2 – a2)1/2.

1.
∫

(x2 – a2)1/2 dx =
1
2
x(x2 – a2)1/2 –

a2

2
ln
∣
∣x + (x2 – a2)1/2∣∣.

2.
∫
x(x2 – a2)1/2 dx =

1
3

(x2 – a2)3/2.

3.
∫

(x2 – a2)3/2 dx =
1
4
x(x2 – a2)3/2 –

3
8
a2x(x2 – a2)1/2 +

3
8
a4 ln

∣
∣x + (x2 – a2)1/2∣∣.

4.
∫

1
x

(x2 – a2)1/2 dx = (x2 – a2)1/2 – a arccos
∣
∣
∣
a

x

∣
∣
∣.

5.
∫

dx√
x2 – a2

= ln
∣
∣x + (x2 – a2)1/2∣∣.

6.
∫

x dx√
x2 – a2

= (x2 – a2)1/2.

7.
∫

(x2 – a2)–3/2 dx = –a–2x(x2 – a2)–1/2.
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T2.1.2-5. Integrals involving (a2 – x2)1/2.

1.
∫

(a2 – x2)1/2 dx =
1
2
x(a2 – x2)1/2 +

a2

2
arcsin

x

a
.

2.
∫
x(a2 – x2)1/2 dx = –

1
3

(a2 – x2)3/2.

3.
∫

(a2 – x2)3/2 dx =
1
4
x(a2 – x2)3/2 +

3
8
a2x(a2 – x2)1/2 +

3
8
a4 arcsin

x

a
.

4.
∫

1
x

(a2 – x2)1/2 dx = (a2 – x2)1/2 – a ln
∣
∣∣
a + (a2 – x2)1/2

x

∣
∣∣.

5.
∫

dx√
a2 – x2

= arcsin
x

a
.

6.
∫

x dx√
a2 – x2

= –(a2 – x2)1/2.

7.
∫

(a2 – x2)–3/2 dx = a–2x(a2 – x2)–1/2.

T2.1.2-6. Integrals involving arbitrary powers. Reduction formulas.

1.
∫

dx

x(axn + b)
=

1
bn

ln
∣∣
∣

xn

axn + b

∣∣
∣.

2.
∫

dx

x
√
xn + a2

=
2
an

ln
∣∣
∣

xn/2
√
xn + a2 + a

∣∣
∣.

3.
∫

dx

x
√
xn – a2

=
2
an

arccos
∣∣
∣
a

xn/2

∣∣
∣.

4.
∫

dx

x
√
ax2n + bxn

= –
2
√
ax2n + bxn

bnxn
.

� The parameters a, b, p, m, and n below in Integrals 5–8 can assume arbitrary values,
except for those at which denominators vanish in successive applications of a formula.
Notation: w = axn + b.

5.
∫
xm(axn + b)p dx =

1
m + np + 1

(
xm+1wp + npb

∫
xmwp–1 dx

)
.

6.
∫
xm(axn + b)p dx =

1
bn(p + 1)

[
–xm+1wp+1 + (m + n + np + 1)

∫
xmwp+1 dx

]
.

7.
∫
xm(axn + b)p dx =

1
b(m + 1)

[
xm+1wp+1 – a(m + n + np + 1)

∫
xm+nwp dx

]
.

8.
∫
xm(axn + b)p dx =

1
a(m + np + 1)

[
xm–n+1wp+1 –b(m – n + 1)

∫
xm–nwp dx

]
.
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T2.1.3. Integrals Involving Exponential Functions

1.
∫
eax dx =

1
a
eax.

2.
∫
ax dx =

ax

ln a
.

3.
∫
xeax dx = eax

(x
a

–
1
a2

)
.

4.
∫
x2eax dx = eax

(x2

a
–

2x
a2 +

2
a3

)
.

5.
∫
xneax dx = eax

[ 1
a
xn –

n

a2 x
n–1 +

n(n – 1)
a3 xn–2 – · · · + (–1)n–1 n!

an
x + (–1)n

n!
an+1

]
,

n = 1, 2, . . .

6.
∫
Pn(x)eax dx = eax

n∑

k=0

(–1)k

ak+1
dk

dxk
Pn(x), where Pn(x) is an arbitrary polynomial of

degree n.

7.
∫

dx

a + bepx
=
x

a
–

1
ap

ln |a + bepx|.

8.
∫

dx

aepx + be–px =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
p
√
ab

arctan

(
epx
√
a

b

)
if ab > 0,

1
2p

√
–ab

ln

(
b + epx

√
–ab

b – epx
√

–ab

)
if ab < 0.

9.
∫

dx√
a + bepx

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
p
√
a

ln

√
a + bepx –

√
a√

a + bepx +
√
a

if a > 0,

2
p
√

–a
arctan

√
a + bepx√

–a
if a < 0.

T2.1.4. Integrals Involving Hyperbolic Functions

T2.1.4-1. Integrals involving cosh x.

1.
∫

cosh(a + bx) dx =
1
b

sinh(a + bx).

2.
∫
x cosh x dx = x sinh x – coshx.

3.
∫
x2 cosh x dx = (x2 + 2) sinh x – 2x cosh x.

4.
∫
x2n cosh x dx = (2n)!

n∑

k=1

[
x2k

(2k)!
sinh x –

x2k–1

(2k – 1)!
coshx

]
.
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5.
∫
x2n+1 cosh x dx = (2n + 1)!

n∑

k=0

[
x2k+1

(2k + 1)!
sinh x –

x2k

(2k)!
cosh x

]
.

6.
∫
xp cosh x dx = xp sinh x – pxp–1 cosh x + p(p – 1)

∫
xp–2 cosh x dx.

7.
∫

cosh2 x dx = 1
2x + 1

4 sinh 2x.

8.
∫

cosh3 x dx = sinh x + 1
3 sinh3 x.

9.
∫

cosh2n x dx = Cn2n
x

22n +
1

22n–1

n–1∑

k=0

Ck2n
sinh[2(n – k)x]

2(n – k)
, n = 1, 2, . . .

10.
∫

cosh2n+1 x dx =
1

22n

n∑

k=0

Ck2n+1
sinh[(2n – 2k + 1)x]

2n – 2k + 1
=

n∑

k=0

Ckn
sinh2k+1 x

2k + 1
,

n = 1, 2, . . .

11.
∫

coshp x dx =
1
p

sinh x coshp–1 x +
p – 1
p

∫
coshp–2 x dx.

12.
∫

cosh ax cosh bx dx =
1

a2 – b2 (a cosh bx sinh ax – b cosh ax sinh bx).

13.
∫

dx

cosh ax
=

2
a

arctan
(
eax
)
.

14.
∫

dx

cosh2n x
=

sinh x
2n – 1

[
1

cosh2n–1 x

+
n–1∑

k=1

2k(n – 1)(n – 2) . . . (n – k)
(2n – 3)(2n – 5) . . . (2n – 2k – 1)

1
cosh2n–2k–1 x

]
, n = 1, 2, . . .

15.
∫

dx

cosh2n+1 x
=

sinh x
2n

[
1

cosh2n x

+
n–1∑

k=1

(2n – 1)(2n – 3) . . . (2n – 2k + 1)
2k(n – 1)(n – 2) . . . (n – k)

1
cosh2n–2k x

]
+

(2n – 1)!!
(2n)!!

arctan sinh x,

n = 1, 2, . . .

16.
∫

dx

a + b cosh x
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–
sign x√
b2 – a2

arcsin
b + a cosh x
a + b cosh x

if a2 < b2,

1√
a2 – b2

ln
a + b +

√
a2 – b2 tanh(x/2)

a + b –
√
a2 – b2 tanh(x/2)

if a2 > b2.

T2.1.4-2. Integrals involving sinh x.

1.
∫

sinh(a + bx) dx =
1
b

cosh(a + bx).
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2.
∫
x sinh x dx = x cosh x – sinhx.

3.
∫
x2 sinh x dx = (x2 + 2) cosh x – 2x sinh x.

4.
∫
x2n sinh x dx = (2n)!

[ n∑

k=0

x2k

(2k)!
cosh x –

n∑

k=1

x2k–1

(2k – 1)!
sinh x

]
.

5.
∫
x2n+1 sinh x dx = (2n + 1)!

n∑

k=0

[
x2k+1

(2k + 1)!
cosh x –

x2k

(2k)!
sinh x

]
.

6.
∫
xp sinh x dx = xp cosh x – pxp–1 sinh x + p(p – 1)

∫
xp–2 sinh x dx.

7.
∫

sinh2 x dx = – 1
2x + 1

4 sinh 2x.

8.
∫

sinh3 x dx = – cosh x + 1
3 cosh3 x.

9.
∫

sinh2n x dx = (–1)nCn2n
x

22n +
1

22n–1

n–1∑

k=0

(–1)kCk2n
sinh[2(n – k)x]

2(n – k)
, n = 1, 2, . . .

10.
∫

sinh2n+1 x dx =
1

22n

n∑

k=0

(–1)kCk2n+1
cosh[(2n – 2k + 1)x]

2n – 2k + 1

=
n∑

k=0

(–1)n+kCkn
cosh2k+1 x

2k + 1
, n = 1, 2, . . .

11.
∫

sinhp x dx =
1
p

sinhp–1 x cosh x –
p – 1
p

∫
sinhp–2 x dx.

12.
∫

sinh ax sinh bx dx =
1

a2 – b2

(
a cosh ax sinh bx – b cosh bx sinh ax

)
.

13.
∫

dx

sinh ax
=

1
a

ln
∣
∣∣tanh

ax

2

∣
∣∣.

14.
∫

dx

sinh2n x
=

cosh x
2n – 1

[
–

1
sinh2n–1 x

+
n–1∑

k=1

(–1)k–1 2k(n – 1)(n – 2) . . . (n – k)
(2n – 3)(2n – 5) . . . (2n – 2k – 1)

1
sinh2n–2k–1 x

]
, n = 1, 2, . . .

15.
∫

dx

sinh2n+1 x
=

cosh x
2n

[
–

1
sinh2n x

+
n–1∑

k=1

(–1)k–1 (2n–1)(2n–3) . . . (2n–2k+1)
2k(n–1)(n–2) . . . (n–k)

1
sinh2n–2k x

]
+(–1)n

(2n–1)!!
(2n)!!

ln tanh
x

2
,

n = 1, 2, . . .

16.
∫

dx

a + b sinh x
=

1√
a2 + b2

ln
a tanh(x/2) – b +

√
a2 + b2

a tanh(x/2) – b –
√
a2 + b2

.

17.
∫

Ax +B sinh x
a + b sinh x

dx =
B

b
x +

Ab – Ba

b
√
a2 + b2

ln
a tanh(x/2) – b +

√
a2 + b2

a tanh(x/2) – b –
√
a2 + b2

.
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T2.1.4-3. Integrals involving tanh x or coth x.

1.
∫

tanh x dx = ln cosh x.

2.
∫

tanh2 x dx = x – tanh x.

3.
∫

tanh3 x dx = – 1
2 tanh2 x + ln cosh x.

4.
∫

tanh2n x dx = x –
n∑

k=1

tanh2n–2k+1 x

2n – 2k + 1
, n = 1, 2, . . .

5.
∫

tanh2n+1 x dx = ln coshx –
n∑

k=1

(–1)kCkn
2k cosh2k x

= ln cosh x –
n∑

k=1

tanh2n–2k+2 x

2n – 2k + 2
,

n = 1, 2, . . .

6.
∫

tanhp x dx = –
1

p – 1
tanhp–1 x +

∫
tanhp–2 x dx.

7.
∫

coth x dx = ln |sinh x|.

8.
∫

coth2 x dx = x – coth x.

9.
∫

coth3 x dx = – 1
2 coth2 x + ln |sinh x|.

10.
∫

coth2n x dx = x –
n∑

k=1

coth2n–2k+1 x

2n – 2k + 1
, n = 1, 2, . . .

11.
∫

coth2n+1 x dx = ln |sinh x| –
n∑

k=1

Ckn
2k sinh2k x

= ln |sinh x| –
n∑

k=1

coth2n–2k+2 x

2n – 2k + 2
,

n = 1, 2, . . .

12.
∫

cothp x dx = –
1

p – 1
cothp–1 x +

∫
cothp–2 x dx.

T2.1.5. Integrals Involving Logarithmic Functions

1.
∫

ln ax dx = x ln ax – x.

2.
∫
x lnx dx = 1

2x
2 lnx – 1

4x
2.

3.
∫
xp ln ax dx =

⎧
⎨

⎩

1
p + 1

xp+1 ln ax –
1

(p + 1)2 x
p+1 if p ≠ –1,

1
2 ln2 ax if p = –1.
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4.
∫

(lnx)2 dx = x(lnx)2 – 2x ln x + 2x.

5.
∫
x(lnx)2 dx = 1

2x
2(lnx)2 – 1

2x
2 lnx + 1

4x
2.

6.
∫
xp(lnx)2 dx =

⎧
⎪⎨

⎪⎩

xp+1

p + 1
(ln x)2 –

2xp+1

(p + 1)2 lnx +
2xp+1

(p + 1)3 if p ≠ –1,

1
3 ln3 x if p = –1.

7.
∫

(lnx)n dx =
x

n + 1

n∑

k=0

(–1)k(n + 1)n . . . (n – k + 1)(ln x)n–k, n = 1, 2, . . .

8.
∫

(lnx)q dx = x(lnx)q – q
∫

(lnx)q–1 dx, q ≠ –1.

9.
∫
xn(lnx)m dx =

xn+1

m + 1

m∑

k=0

(–1)k

(n + 1)k+1 (m + 1)m. . . (m – k + 1)(ln x)m–k ,

n,m = 1, 2, . . .

10.
∫
xp(lnx)q dx =

1
p + 1

xp+1(lnx)q –
q

p + 1

∫
xp(lnx)q–1 dx, p, q ≠ –1.

11.
∫

ln(a + bx) dx =
1
b

(ax + b) ln(ax + b) – x.

12.
∫
x ln(a + bx) dx =

1
2

(
x2 –

a2

b2

)
ln(a + bx) –

1
2

(
x2

2
–
a

b
x

)
.

13.
∫
x2 ln(a + bx) dx =

1
3

(
x3 –

a3

b3

)
ln(a + bx) –

1
3

(
x3

3
–
ax2

2b
+
a2x

b2

)
.

14.
∫

lnx dx
(a + bx)2 = –

lnx
b(a + bx)

+
1
ab

ln
x

a + bx
.

15.
∫

lnx dx
(a + bx)3 = –

lnx
2b(a + bx)2 +

1
2ab(a + bx)

+
1

2a2b
ln

x

a + bx
.

16.
∫

lnx dx√
a + bx

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
b

[
(lnx – 2)

√
a + bx +

√
a ln

√
a + bx +

√
a√

a + bx –
√
a

]
if a > 0,

2
b

[
(lnx – 2)

√
a + bx + 2

√
–a arctan

√
a + bx√

–a

]
if a < 0.

17.
∫

ln(x2 + a2) dx = x ln(x2 + a2) – 2x + 2a arctan(x/a).

18.
∫
x ln(x2 + a2) dx = 1

2
[
(x2 + a2) ln(x2 + a2) – x2].

19.
∫
x2 ln(x2 + a2) dx = 1

3
[
x3 ln(x2 + a2) – 2

3x
3 + 2a2x – 2a3 arctan(x/a)

]
.
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T2.1.6. Integrals Involving Trigonometric Functions

T2.1.6-1. Integrals involving cosx (n = 1, 2, . . .).

1.
∫

cos(a + bx) dx =
1
b

sin(a + bx).

2.
∫
x cos x dx = cos x + x sinx.

3.
∫
x2 cos x dx = 2x cos x + (x2 – 2) sin x.

4.
∫
x2n cos x dx = (2n)!

[ n∑

k=0

(–1)k
x2n–2k

(2n – 2k)!
sinx +

n–1∑

k=0

(–1)k
x2n–2k–1

(2n – 2k – 1)!
cos x

]
.

5.
∫
x2n+1 cos x dx = (2n + 1)!

n∑

k=0

[
(–1)k

x2n–2k+1

(2n – 2k + 1)!
sinx +

x2n–2k

(2n – 2k)!
cos x

]
.

6.
∫
xp cos x dx = xp sinx + pxp–1 cos x – p(p – 1)

∫
xp–2 cos x dx.

7.
∫

cos2 x dx = 1
2x + 1

4 sin 2x.

8.
∫

cos3 x dx = sinx – 1
3 sin3 x.

9.
∫

cos2n x dx =
1

22nC
n
2nx +

1
22n–1

n–1∑

k=0

Ck2n
sin[(2n – 2k)x]

2n – 2k
.

10.
∫

cos2n+1 x dx =
1

22n

n∑

k=0

Ck2n+1
sin[(2n – 2k + 1)x]

2n – 2k + 1
.

11.
∫

dx

cos x
= ln
∣∣
∣tan
(x

2
+
π

4

)∣∣
∣.

12.
∫

dx

cos2 x
= tanx.

13.
∫

dx

cos3 x
=

sin x
2 cos2 x

+
1
2

ln
∣
∣∣tan
(x

2
+
π

4

)∣∣∣.

14.
∫

dx

cosn x
=

sinx
(n – 1) cosn–1 x

+
n – 2
n – 1

∫
dx

cosn–2 x
, n > 1.

15.
∫

x dx

cos2n x
=
n–1∑

k=0

(2n– 2)(2n– 4) . . . (2n– 2k+ 2)
(2n– 1)(2n– 3) . . . (2n– 2k+ 3)

(2n– 2k)x sin x–cos x
(2n– 2k+ 1)(2n– 2k) cos2n–2k+1 x

+
2n–1(n– 1)!
(2n– 1)!!

(
x tanx+ln |cos x|

)
.

16.
∫

cos ax cos bx dx =
sin
[
(b – a)x

]

2(b – a)
+

sin
[
(b + a)x

]

2(b + a)
, a ≠ �b.
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17.
∫

dx

a + b cos x
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2√
a2 – b2

arctan
(a – b) tan(x/2)√

a2 – b2
if a2 > b2,

1√
b2 – a2

ln

∣
∣∣
∣

√
b2 – a2 + (b – a) tan(x/2)√
b2 – a2 – (b – a) tan(x/2)

∣
∣∣
∣ if b2 > a2.

18.
∫

dx

(a + b cos x)2 =
b sin x

(b2 – a2)(a + b cos x)
–

a

b2 – a2

∫
dx

a + b cos x
.

19.
∫

dx

a2 + b2 cos2 x
=

1
a
√
a2 + b2

arctan
a tan x√
a2 + b2

.

20.
∫

dx

a2 – b2 cos2 x
=

⎧
⎪⎪⎨

⎪⎪⎩

1
a
√
a2 – b2

arctan
a tanx√
a2 – b2

if a2 > b2,

1
2a

√
b2 – a2

ln

∣
∣∣
∣

√
b2 – a2 – a tanx√
b2 – a2 + a tanx

∣
∣∣
∣ if b2 > a2.

21.
∫
eax cos bx dx = eax

(
b

a2 + b2 sin bx +
a

a2 + b2 cos bx

)
.

22.
∫
eax cos2 x dx =

eax

a2 + 4

(
a cos2 x + 2 sin x cos x +

2
a

)
.

23.
∫
eax cosn x dx =

eax cosn–1 x

a2 + n2 (a cos x + n sinx) +
n(n – 1)
a2 + n2

∫
eax cosn–2 x dx.

T2.1.6-2. Integrals involving sinx (n = 1, 2, . . .).

1.
∫

sin(a + bx) dx = –
1
b

cos(a + bx).

2.
∫
x sinx dx = sinx – x cos x.

3.
∫
x2 sin x dx = 2x sin x – (x2 – 2) cos x.

4.
∫
x3 sin x dx = (3x2 – 6) sin x – (x3 – 6x) cos x.

5.
∫
x2n sin x dx = (2n)!

[ n∑

k=0

(–1)k+1 x2n–2k

(2n – 2k)!
cos x +

n–1∑

k=0

(–1)k
x2n–2k–1

(2n – 2k – 1)!
sin x

]
.

6.
∫
x2n+1 sinx dx = (2n+ 1)!

n∑

k=0

[
(–1)k+1 x2n–2k+1

(2n – 2k + 1)!
cos x+(–1)k

x2n–2k

(2n – 2k)!
sinx

]
.

7.
∫
xp sinx dx = –xp cos x + pxp–1 sin x – p(p – 1)

∫
xp–2 sinx dx.

8.
∫

sin2 x dx = 1
2x – 1

4 sin 2x.
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9.
∫
x sin2 x dx = 1

4x
2 – 1

4x sin 2x – 1
8 cos 2x.

10.
∫

sin3 x dx = – cos x + 1
3 cos3 x.

11.
∫

sin2n x dx =
1

22n C
n
2nx +

(–1)n

22n–1

n–1∑

k=0

(–1)kCk2n
sin[(2n – 2k)x]

2n – 2k
,

where Ckm =
m!

k! (m – k)!
are binomial coefficients (0! = 1).

12.
∫

sin2n+1 x dx =
1

22n

n∑

k=0

(–1)n+k+1Ck2n+1
cos[(2n – 2k + 1)x]

2n – 2k + 1
.

13.
∫

dx

sin x
= ln
∣
∣∣tan

x

2

∣
∣∣.

14.
∫

dx

sin2 x
= – cot x.

15.
∫

dx

sin3 x
= –

cos x
2 sin2 x

+
1
2

ln
∣
∣∣tan

x

2

∣
∣∣.

16.
∫

dx

sinn x
= –

cos x
(n – 1) sinn–1 x

+
n – 2
n – 1

∫
dx

sinn–2 x
, n > 1.

17.
∫

x dx

sin2n x
= –

n–1∑

k=0

(2n– 2)(2n– 4) . . . (2n– 2k+ 2)
(2n– 1)(2n– 3) . . . (2n– 2k+ 3)

sinx+(2n– 2k)x cos x
(2n– 2k+ 1)(2n– 2k) sin2n–2k+1 x

+
2n–1(n– 1)!
(2n– 1)!!

(
ln |sinx| –x cot x

)
.

18.
∫

sin ax sin bx dx =
sin[(b – a)x]

2(b – a)
–

sin[(b + a)x]
2(b + a)

, a ≠ �b.

19.
∫

dx

a + b sin x
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2√
a2 – b2

arctan
b + a tanx/2√

a2 – b2
if a2 > b2,

1√
b2 – a2

ln

∣
∣∣
∣
b –

√
b2 – a2 + a tanx/2

b +
√
b2 – a2 + a tanx/2

∣
∣∣
∣ if b2 > a2.

20.
∫

dx

(a + b sinx)2 =
b cos x

(a2 – b2)(a + b sin x)
+

a

a2 – b2

∫
dx

a + b sin x
.

21.
∫

dx

a2 + b2 sin2 x
=

1
a
√
a2 + b2

arctan

√
a2 + b2 tanx

a
.

22.
∫

dx

a2 – b2 sin2 x
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
a
√
a2 – b2

arctan

√
a2 – b2 tanx

a
if a2 > b2,

1
2a

√
b2 – a2

ln

∣∣
∣∣

√
b2 – a2 tan x + a√
b2 – a2 tan x – a

∣∣
∣∣ if b2 > a2.

23.
∫

sinx dx√
1 + k2 sin2 x

= –
1
k

arcsin
k cos x√

1 + k2
.
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24.
∫

sinx dx√
1 – k2 sin2 x

= –
1
k

ln
∣
∣k cos x +

√
1 – k2 sin2 x

∣
∣.

25.
∫

sin x
√

1 + k2 sin2 x dx = –
cos x

2
√

1 + k2 sin2 x –
1 + k2

2k
arcsin

k cos x√
1 + k2

.

26.
∫

sin x
√

1 – k2 sin2 x dx

= –
cos x

2
√

1 – k2 sin2 x –
1 – k2

2k
ln
∣∣k cos x +

√
1 – k2 sin2 x

∣∣.

27.
∫
eax sin bx dx = eax

( a

a2 + b2 sin bx –
b

a2 + b2 cos bx
)

.

28.
∫
eax sin2 x dx =

eax

a2 + 4

(
a sin2 x – 2 sinx cos x +

2
a

)
.

29.
∫
eax sinn x dx =

eax sinn–1 x

a2 + n2 (a sin x – n cos x) +
n(n – 1)
a2 + n2

∫
eax sinn–2 x dx.

T2.1.6-3. Integrals involving sinx and cos x.

1.
∫

sin ax cos bx dx = –
cos[(a + b)x]

2(a + b)
–

cos
[
(a – b)x

]

2(a – b)
, a ≠ �b.

2.
∫

dx

b2 cos2 ax + c2 sin2 ax
=

1
abc

arctan
( c
b

tan ax
)

.

3.
∫

dx

b2 cos2 ax – c2 sin2 ax
=

1
2abc

ln
∣
∣∣
c tan ax + b
c tan ax – b

∣
∣∣.

4.
∫

dx

cos2n x sin2m x
=
n+m–1∑

k=0

Ckn+m–1
tan2k–2m+1 x

2k – 2m + 1
, n,m = 1, 2, . . .

5.
∫

dx

cos2n+1 x sin2m+1 x
= Cmn+m ln |tanx| +

n+m∑

k=0

Ckn+m
tan2k–2m x

2k – 2m
, n,m = 1, 2, . . .

T2.1.6-4. Reduction formulas.

� The parameters p and q below can assume any values, except for those at which the
denominators on the right-hand side vanish.

1.
∫

sinp x cosq x dx = –
sinp–1 x cosq+1 x

p + q
+
p – 1
p + q

∫
sinp–2 x cosq x dx.

2.
∫

sinp x cosq x dx =
sinp+1 x cosq–1 x

p + q
+
q – 1
p + q

∫
sinp x cosq–2 x dx.

3.
∫

sinp x cosq x dx =
sinp–1 x cosq–1 x

p + q

(
sin2 x –

q – 1
p + q – 2

)

+
(p – 1)(q – 1)

(p + q)(p + q – 2)

∫
sinp–2 x cosq–2 x dx.
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4.
∫

sinp x cosq x dx =
sinp+1 x cosq+1 x

p + 1
+
p + q + 2
p + 1

∫
sinp+2 x cosq x dx.

5.
∫

sinp x cosq x dx = –
sinp+1 x cosq+1 x

q + 1
+
p + q + 2
q + 1

∫
sinp x cosq+2 x dx.

6.
∫

sinp x cosq x dx = –
sinp–1 x cosq+1 x

q + 1
+
p – 1
q + 1

∫
sinp–2 x cosq+2 x dx.

7.
∫

sinp x cosq x dx =
sinp+1 x cosq–1 x

p + 1
+
q – 1
p + 1

∫
sinp+2 x cosq–2 x dx.

T2.1.6-5. Integrals involving tanx and cot x.

1.
∫

tanx dx = – ln |cos x|.

2.
∫

tan2 x dx = tanx – x.

3.
∫

tan3 x dx = 1
2 tan2 x + ln |cos x|.

4.
∫

tan2n x dx = (–1)nx –
n∑

k=1

(–1)k(tan x)2n–2k+1

2n – 2k + 1
, n = 1, 2, . . .

5.
∫

tan2n+1 x dx = (–1)n+1 ln |cos x| –
n∑

k=1

(–1)k(tanx)2n–2k+2

2n – 2k + 2
, n = 1, 2, . . .

6.
∫

dx

a + b tanx
=

1
a2 + b2

(
ax + b ln |a cos x + b sin x|

)
.

7.
∫

tan x dx√
a + b tan2 x

=
1√
b – a

arccos

(√
1 –

a

b
cos x

)
, b > a, b > 0.

8.
∫

cot x dx = ln |sin x|.

9.
∫

cot2 x dx = – cot x – x.

10.
∫

cot3 x dx = – 1
2 cot2 x – ln |sin x|.

11.
∫

cot2n x dx = (–1)nx +
n∑

k=1

(–1)k(cot x)2n–2k+1

2n – 2k + 1
, n = 1, 2, . . .

12.
∫

cot2n+1 x dx = (–1)n ln |sin x| +
n∑

k=1

(–1)k(cot x)2n–2k+2

2n – 2k + 2
, n = 1, 2, . . .

13.
∫

dx

a + b cot x
=

1
a2 + b2

(
ax – b ln |a sinx + b cos x|

)
.
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T2.1.7. Integrals Involving Inverse Trigonometric Functions

1.
∫

arcsin
x

a
dx = x arcsin

x

a
+
√
a2 – x2.

2.
∫ (

arcsin
x

a

)2
dx = x

(
arcsin

x

a

)2
– 2x + 2

√
a2 – x2 arcsin

x

a
.

3.
∫
x arcsin

x

a
dx =

1
4

(2x2 – a2) arcsin
x

a
+
x

4

√
a2 – x2.

4.
∫
x2 arcsin

x

a
dx =

x3

3
arcsin

x

a
+

1
9

(x2 + 2a2)
√
a2 – x2.

5.
∫

arccos
x

a
dx = x arccos

x

a
–
√
a2 – x2.

6.
∫ (

arccos
x

a

)2
dx = x

(
arccos

x

a

)2
– 2x – 2

√
a2 – x2 arccos

x

a
.

7.
∫
x arccos

x

a
dx =

1
4

(2x2 – a2) arccos
x

a
–
x

4

√
a2 – x2.

8.
∫
x2 arccos

x

a
dx =

x3

3
arccos

x

a
–

1
9

(x2 + 2a2)
√
a2 – x2.

9.
∫

arctan
x

a
dx = x arctan

x

a
–
a

2
ln(a2 + x2).

10.
∫
x arctan

x

a
dx =

1
2

(x2 + a2) arctan
x

a
–
ax

2
.

11.
∫
x2 arctan

x

a
dx =

x3

3
arctan

x

a
–
ax2

6
+
a3

6
ln(a2 + x2).

12.
∫

arccot
x

a
dx = x arccot

x

a
+
a

2
ln(a2 + x2).

13.
∫
x arccot

x

a
dx =

1
2

(x2 + a2) arccot
x

a
+
ax

2
.

14.
∫
x2 arccot

x

a
dx =

x3

3
arccot

x

a
+
ax2

6
–
a3

6
ln(a2 + x2).

T2.2. Tables of Definite Integrals
� Throughout Section T2.2 it is assumed that n is a positive integer, unless otherwise
specified.

T2.2.1. Integrals Involving Power-Law Functions

T2.2.1-1. Integrals over a finite interval.

1.
∫ 1

0

xn dx

x + 1
= (–1)n

[
ln 2 +

n∑

k=1

(–1)k

k

]
.
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2.
∫ 1

0

dx

x2 + 2x cos β + 1
=

β

2 sin β
.

3.
∫ 1

0

(
xa + x–a

)
dx

x2 + 2x cos β + 1
=

π sin(aβ)
sin(πa) sin β

, |a| < 1, β ≠ (2n + 1)π.

4.
∫ 1

0
xa(1 – x)1–a dx =

πa(1 – a)
2 sin(πa)

, –1 < a < 1.

5.
∫ 1

0

dx

xa(1 – x)1–a =
π

sin(πa)
, 0 < a < 1.

6.
∫ 1

0

xa dx

(1 – x)a
=

πa

sin(πa)
, –1 < a < 1.

7.
∫ 1

0
xp–1(1 – x)q–1 dx ≡ B(p, q) =

Γ(p)Γ(q)
Γ(p + q)

, p, q > 0.

8.
∫ 1

0
xp–1(1 – xq)–p/q dx =

π

q sin(πp/q)
, q > p > 0.

9.
∫ 1

0
xp+q–1(1 – xq)–p/q dx =

πp

q2 sin(πp/q)
, q > p.

10.
∫ 1

0
xq/p–1(1 – xq)–1/p dx =

π

q sin(π/p)
, p > 1, q > 0.

11.
∫ 1

0

xp–1 – x–p

1 – x
dx = π cot(πp), |p| < 1.

12.
∫ 1

0

xp–1 – x–p

1 + x
dx =

π

sin(πp)
, |p| < 1.

13.
∫ 1

0

xp – x–p

x – 1
dx =

1
p

– π cot(πp), |p| < 1.

14.
∫ 1

0

xp – x–p

1 + x
dx =

1
p

–
π

sin(πp)
, |p| < 1.

15.
∫ 1

0

x1+p – x1–p

1 – x2 dx =
π

2
cot
(πp

2

)
–

1
p

, |p| < 1.

16.
∫ 1

0

x1+p – x1–p

1 + x2 dx =
1
p

–
π

2 sin(πp/2)
, |p| < 1.

17.
∫ 1

0

dx
√

(1 + a2x)(1 – x)
=

2
a

arctan a.

18.
∫ 1

0

dx
√

(1 – a2x)(1 – x)
=

1
a

ln
1 + a
1 – a

.

19.
∫ 1

–1

dx

(a – x)
√

1 – x2
=

π√
a2 – 1

, 1 < a.
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20.
∫ 1

0

xn dx√
1 – x

=
2 (2n)!!

(2n + 1)!!
, n = 1, 2, . . .

21.
∫ 1

0

xn–1/2 dx√
1 – x

=
π (2n – 1)!!

(2n)!!
, n = 1, 2, . . .

22.
∫ 1

0

x2n dx√
1 – x2

=
π

2
1 × 3 × . . . × (2n – 1)

2 × 4 × . . . × (2n)
, n = 1, 2, . . .

23.
∫ 1

0

x2n+1 dx√
1 – x2

=
2 × 4 × . . . × (2n)

1 × 3 × . . . × (2n + 1)
, n = 1, 2, . . .

24.
∫ 1

0

xλ–1 dx

(1 + ax)(1 – x)λ
=

π

(1 + a)λ sin(πλ)
, 0 < λ < 1, a > –1.

25.
∫ 1

0

xλ–1/2 dx

(1 + ax)λ(1 – x)λ
= 2π–1/2Γ

(
λ + 1

2
)
Γ
(

1 – λ
)

cos2λ k
sin[(2λ – 1)k]
(2λ – 1) sin k

,

k = arctan
√
a, – 1

2 < λ < 1, a > 0.

T2.2.1-2. Integrals over an infinite interval.

1.
∫ ∞

0

dx

ax2 + b
=

π

2
√
ab

.

2.
∫ ∞

0

dx

x4 + 1
=
π
√

2
4

.

3.
∫ ∞

0

xa–1 dx

x + 1
=

π

sin(πa)
, 0 < a < 1.

4.
∫ ∞

0

xλ–1 dx

(1 + ax)2 =
π(1 – λ)
aλ sin(πλ)

, 0 < λ < 2.

5.
∫ ∞

0

xλ–1 dx

(x + a)(x + b)
=
π(aλ–1 – bλ–1)
(b – a) sin(πλ)

, 0 < λ < 2.

6.
∫ ∞

0

xλ–1(x + c) dx
(x + a)(x + b)

=
π

sin(πλ)

(
a – c
a – b

aλ–1 +
b – c
b – a

bλ–1
)

, 0 < λ < 1.

7.
∫ ∞

0

xλ dx

(x + 1)3 =
πλ(1 – λ)
2 sin(πλ)

, –1 < λ < 2.

8.
∫ ∞

0

xλ–1 dx

(x2 + a2)(x2 + b2)
=

π
(
bλ–2 – aλ–2)

2
(
a2 – b2

)
sin(πλ/2)

, 0 < λ < 4.

9.
∫ ∞

0

xp–1 – xq–1

1 – x
dx = π[cot(πp) – cot(πq)], p, q > 0.

10.
∫ ∞

0

xλ–1 dx

(1 + ax)n+1 =(–1)n
πCnλ–1

aλ sin(πλ)
, 0 <λ<n+1, Cnλ–1 =

(λ – 1)(λ – 2) . . . (λ – n)
n!

.
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11.
∫ ∞

0

xm dx

(a + bx)n+1/2 = 2m+1m!
(2n – 2m – 3)!!

(2n – 1)!!
am–n+1/2

bm+1 ,

a, b > 0, n,m = 1, 2, . . . , m < b – 1
2 .

12.
∫ ∞

0

dx

(x2 + a2)n
=
π

2
(2n – 3)!!
(2n – 2)!!

1
a2n–1 , n = 1, 2, . . .

13.
∫ ∞

0

(x + 1)λ–1

(x + a)λ+1 dx =
1 – a–λ

λ(a – 1)
, a > 0.

14.
∫ ∞

0

xa–1 dx

xb + 1
=

π

b sin(πa/b)
, 0 < a ≤ b.

15.
∫ ∞

0

xa–1 dx

(xb + 1)2 =
π(a – b)

b2 sin[π(a – b)/b]
, a < 2b.

16.
∫ ∞

0

xλ–1/2 dx

(x + a)λ(x + b)λ
=
√
π
(√
a +

√
b
)1–2λ Γ(λ – 1/2)

Γ(λ)
, λ > 0.

17.
∫ ∞

0

1 – xa

1 – xb
xc–1 dx =

π sinA
b sinC sin(A + C)

, A =
πa

b
, C =

πc

b
; a+c < b, c > 0.

18.
∫ ∞

0

xa–1 dx

(1 + x2)1–b = 1
2B
( 1

2a, 1 – b – 1
2a
)
, 1

2a + b < 1, a > 0.

19.
∫ ∞

0

x2m dx

(ax2 + b)n
=
π(2m – 1)!! (2n – 2m – 3)!!

2 (2n – 2)!! ambn–m–1
√
ab

, a, b > 0, n > m + 1.

20.
∫ ∞

0

x2m+1 dx

(ax2 + b)n
=

m! (n –m – 2)!
2(n – 1)!am+1bn–m–1 , ab > 0, n > m + 1 ≥ 1.

21.
∫ ∞

0

xμ–1 dx

(1 + axp)ν
=

1
paμ/p

B
(μ
p

, ν –
μ

p

)
, p > 0, 0 < μ < pν.

22.
∫ ∞

0

(√
x2 + a2 – x

)n
dx =

nan+1

n2 – 1
, n = 2, 3, . . .

23.
∫ ∞

0

dx
(
x +

√
x2 + a2

)n =
n

an–1(n2 – 1)
, n = 2, 3, . . .

24.
∫ ∞

0
xm
(√
x2 + a2 – x

)n
dx =

m!nan+m+1

(n – m – 1)(n – m + 1) . . . (n +m + 1)
,

n,m = 1, 2, . . . , 0 ≤ m ≤ n – 2.

25.
∫ ∞

0

xm dx
(
x+

√
x2 + a2

)n =
m!n

(n –m – 1)(n –m+ 1) . . . (n +m+ 1)an–m–1 , n= 2, 3, . . .

T2.2.2. Integrals Involving Exponential Functions

1.
∫ ∞

0
e–ax dx =

1
a

, a > 0.
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2.
∫ 1

0
xne–ax dx =

n!
an+1 – e–a

n∑

k=0

n!
k!

1
an–k+1 , a > 0, n = 1, 2, . . .

3.
∫ ∞

0
xne–ax dx =

n!
an+1 , a > 0, n = 1, 2, . . .

4.
∫ ∞

0

e–ax
√
x
dx =

√
π

a
, a > 0.

5.
∫ ∞

0
xν–1e–μx dx =

Γ(ν)
μν

, μ, ν > 0.

6.
∫ ∞

0

dx

1 + eax
=

ln 2
a

.

7.
∫ ∞

0

x2n–1 dx

epx – 1
= (–1)n–1

( 2π
p

)2nB2n

4n
, n = 1, 2, . . . ;

the Bm are Bernoulli numbers.

8.
∫ ∞

0

x2n–1 dx

epx + 1
= (1 – 21–2n)

( 2π
p

)2n |B2n|
4n

, n = 1, 2, . . .

9.
∫ ∞

–∞

e–px dx

1 + e–qx =
π

q sin(πp/q)
, q > p > 0 or 0 > p > q.

10.
∫ ∞

0

eax + e–ax

ebx + e–bx dx =
π

2b cos
(πa

2b

) , b > a.

11.
∫ ∞

0

e–px – e–qx

1 – e–(p+q)x dx =
π

p + q
cot

πp

p + q
, p, q > 0.

12.
∫ ∞

0

(
1 – e–βx)νe–μx dx =

1
β
B
(μ
β

, ν + 1
)

.

13.
∫ ∞

0
exp
(
–ax2) dx =

1
2

√
π

a
, a > 0.

14.
∫ ∞

0
x2n+1 exp

(
–ax2) dx =

n!
2an+1 , a > 0, n = 1, 2, . . .

15.
∫ ∞

0
x2n exp

(
–ax2) dx =

1 × 3 × . . . × (2n – 1)
√
π

2n+1an+1/2 , a > 0, n = 1, 2, . . .

16.
∫ ∞

–∞
exp
(
–a2x2

� bx
)
dx =

√
π

|a|
exp
( b2

4a2

)
.

17.
∫ ∞

0
exp
(

–ax2 –
b

x2

)
dx =

1
2

√
π

a
exp
(
–2
√
ab
)
, a, b > 0.

18.
∫ ∞

0
exp
(
–xa
)
dx =

1
a

Γ
( 1
a

)
, a > 0.
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T2.2.3. Integrals Involving Hyperbolic Functions

1.
∫ ∞

0

dx

cosh ax
=

π

2|a|
.

2.
∫ ∞

0

dx

a + b cosh x
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2√
b2 – a2

arctan

√
b2 – a2

a + b
if |b| > |a|,

1√
a2 – b2

ln
a + b +

√
a2 – b2

a + b –
√
a2 + b2

if |b| < |a|.

3.
∫ ∞

0

x2n dx

cosh ax
=
( π

2a

)2n+1
|E2n|, a > 0; the Bm are Bernoulli numbers.

4.
∫ ∞

0

x2n

cosh2 ax
dx =

π2n(22n – 2)
a(2a)2n |B2n|, a > 0.

5.
∫ ∞

0

cosh ax
cosh bx

dx =
π

2b cos
(πa

2b

) , b > |a|.

6.
∫ ∞

0
x2n cosh ax

cosh bx
dx =

π

2b
d2n

da2n
1

cos
( 1

2πa/b
) , b > |a|, n = 1, 2, . . .

7.
∫ ∞

0

cosh ax cosh bx
cosh(cx)

dx =
π

c

cos
( πa

2c

)
cos
( πb

2c

)

cos
(πa
c

)
+ cos

(πb
c

) , c > |a| + |b|.

8.
∫ ∞

0

x dx

sinh ax
=
π2

2a2 , a > 0.

9.
∫ ∞

0

dx

a + b sinh x
=

1√
a2 + b2

ln
a + b +

√
a2 + b2

a + b –
√
a2 + b2

, ab ≠ 0.

10.
∫ ∞

0

sinh ax
sinh bx

dx =
π

2b
tan
(πa

2b

)
, b > |a|.

11.
∫ ∞

0
x2n sinh ax

sinh bx
dx =

π

2b
d2n

dx2n tan
( πa

2b

)
, b > |a|, n = 1, 2, . . .

12.
∫ ∞

0

x2n

sinh2 ax
dx =

π2n

a2n+1 |B2n|, a > 0.

T2.2.4. Integrals Involving Logarithmic Functions

1.
∫ 1

0
xa–1 lnn x dx = (–1)nn! a–n–1, a > 0, n = 1, 2, . . .

2.
∫ 1

0

lnx
x + 1

dx = –
π2

12
.

3.
∫ 1

0

xn lnx
x + 1

dx = (–1)n+1
[
π2

12
+

n∑

k=1

(–1)k

k2

]
, n = 1, 2, . . .
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4.
∫ 1

0

xμ–1 lnx
x + a

dx =
πaμ–1

sin(πμ)

[
ln a – π cot(πμ)

]
, 0 < μ < 1.

5.
∫ 1

0
|lnx|μ dx = Γ(μ + 1), μ > –1.

6.
∫ ∞

0
xμ–1 ln(1 + ax) dx =

π

μaμ sin(πμ)
, –1 < μ < 0.

7.
∫ 1

0
x2n–1 ln(1 + x) dx =

1
2n

2n∑

k=1

(–1)k–1

k
, n = 1, 2, . . .

8.
∫ 1

0
x2n ln(1 + x) dx =

1
2n + 1

[
ln 4 +

2n+1∑

k=1

(–1)k

k

]
, n = 0, 1, . . .

9.
∫ 1

0
xn–1/2 ln(1 + x) dx =

2 ln 2
2n + 1

+
4(–1)n

2n + 1

[
π –

n∑

k=0

(–1)k

2k + 1

]
, n = 1, 2, . . .

10.
∫ ∞

0
ln
a2 + x2

b2 + x2 dx = π(a – b), a, b > 0.

11.
∫ ∞

0

xp–1 lnx
1 + xq

dx = –
π2 cos(πp/q)
q2 sin2(πp/q)

, 0 < p < q.

12.
∫ ∞

0
e–μx lnx dx = –

1
μ

(C + lnμ), μ > 0, C = 0.5772 . . .

T2.2.5. Integrals Involving Trigonometric Functions

T2.2.5-1. Integrals over a finite interval.

1.
∫ π/2

0
cos2n x dx =

π

2
1 × 3 × . . . × (2n – 1)

2 × 4 × . . . × (2n)
, n = 1, 2, . . .

2.
∫ π/2

0
cos2n+1 x dx =

2 × 4 × . . . × (2n)
1 × 3 × . . . × (2n + 1)

, n = 1, 2, . . .

3.
∫ π/2

0
x cosn x dx = –

m–1∑

k=0

(n – 2k + 1)(n – 2k + 3) . . . (n – 1)
(n – 2k)(n – 2k + 2) . . . n

1
n – 2k

+

⎧
⎪⎪⎨

⎪⎪⎩

π

2
(2m – 2)!!
(2m – 1)!!

if n = 2m – 1,

π2

8
(2m – 1)!!

(2m)!!
if n = 2m,

m = 1, 2, . . .

4.
∫ π

0

dx

(a+b cos x)n+1 =
π

2n(a+b)n
√
a2 –b2

n∑

k=0

(2n–2k–1)!! (2k–1)!!
(n–k)! k!

( a+b
a–b

)k
, a> |b|.

5.
∫ π/2

0
sin2n x dx =

π

2
1 × 3 × . . . × (2n – 1)

2 × 4 × . . . × (2n)
, n = 1, 2, . . .
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6.
∫ π/2

0
sin2n+1 x dx =

2 × 4 × . . . × (2n)
1 × 3 × . . . × (2n + 1)

, n = 1, 2, . . .

7.
∫ π

0
x sinμ x dx =

π2

2μ+1
Γ(μ + 1)
[
Γ
(
μ + 1

2
)]2 , μ > –1.

8.
∫ π/2

0

sinx dx√
1 – k2 sin2 x

=
1

2k
ln

1 + k
1 – k

.

9.
∫ π/2

0
sin2n+1 x cos2m+1 x dx =

n!m!
2(n + m + 1)!

, n,m = 1, 2, . . .

10.
∫ π/2

0
sinp–1 x cosq–1 x dx = 1

2B
( 1

2 p, 1
2 q
)
.

11.
∫ 2π

0
(a sinx + b cos x)2n dx = 2π

(2n – 1)!!
(2n)!!

(
a2 + b2)n, n = 1, 2, . . .

12.
∫ π

0

sin x dx√
a2 + 1 – 2a cos x

=

{
2 if 0 ≤ a ≤ 1,
2/a if 1 < a.

13.
∫ π/2

0
(tanx)�λ dx =

π

2 cos
( 1

2πλ
) , |λ| < 1.

T2.2.5-2. Integrals over an infinite interval.

1.
∫ ∞

0

cos ax√
x

dx =

√
π

2a
, a > 0.

2.
∫ ∞

0

cos ax – cos bx
x

dx = ln
∣∣
∣
b

a

∣∣
∣, ab ≠ 0.

3.
∫ ∞

0

cos ax – cos bx
x2 dx = 1

2π(b – a), a, b ≥ 0.

4.
∫ ∞

0
xμ–1 cos ax dx = a–μΓ(μ) cos

( 1
2πμ
)
, a > 0, 0 < μ < 1.

5.
∫ ∞

0

cos ax
b2 + x2 dx =

π

2b
e–ab, a, b > 0.

6.
∫ ∞

0

cos ax
b4 + x4 dx =

π
√

2
4b3 exp

(
–
ab√

2

)[
cos

(
ab√

2

)
+ sin

( ab√
2

)]
, a, b > 0.

7.
∫ ∞

0

cos ax
(b2 + x2)2 dx =

π

4b3 (1 + ab)e–ab, a, b > 0.

8.
∫ ∞

0

cos ax dx
(b2 + x2)(c2 + x2)

=
π
(
be–ac – ce–ab

)

2bc
(
b2 – c2

) , a, b, c > 0.

9.
∫ ∞

0
cos
(
ax2) dx =

1
2

√
π

2a
, a > 0.
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10.
∫ ∞

0
cos
(
axp
)
dx =

Γ(1/p)

pa1/p cos
π

2p
, a > 0, p > 1.

11.
∫ ∞

0

sin ax
x

dx =
π

2
sign a.

12.
∫ ∞

0

sin2 ax

x2 dx =
π

2
|a|.

13.
∫ ∞

0

sin ax√
x

dx =

√
π

2a
, a > 0.

14.
∫ ∞

0
xμ–1 sin ax dx = a–μΓ(μ) sin

( 1
2πμ
)
, a > 0, 0 < μ < 1.

15.
∫ ∞

0
sin
(
ax2) dx =

1
2

√
π

2a
, a > 0.

16.
∫ ∞

0
sin
(
axp
)
dx =

Γ(1/p)
pa1/p sin

π

2p
, a > 0, p > 1.

17.
∫ ∞

0

sinx cos ax
x

dx =

⎧
⎨

⎩

π
2 if |a| < 1,
π
4 if |a| = 1,

0 if 1 < |a|.

18.
∫ ∞

0

tan ax
x

dx =
π

2
sign a.

19.
∫ ∞

0
e–ax sin bx dx =

b

a2 + b2 , a > 0.

20.
∫ ∞

0
e–ax cos bx dx =

a

a2 + b2 , a > 0.

21.
∫ ∞

0
exp
(
–ax2) cos bx dx =

1
2

√
π

a
exp
(

–
b2

4a

)
.

22.
∫ ∞

0
cos(ax2) cos bx dx =

√
π

8a

[
cos

(
b2

4a

)
+ sin

(
b2

4a

)]
, a, b > 0.

23.
∫ ∞

0
(cos ax + sin ax) cos(b2x2) dx =

1
b

√
π

8
exp

(
–
a2

2b

)
, a, b > 0.

24.
∫ ∞

0

[
cos ax + sin ax

]
sin(b2x2) dx =

1
b

√
π

8
exp
(

–
a2

2b

)
, a, b > 0.
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Chapter T3

Integral Transforms

T3.1. Tables of Laplace Transforms
T3.1.1. General Formulas

No. Original function, f (x) Laplace transform, f̃ (p) =
∫ ∞

0
e–pxf (x) dx

1 af1(x) + bf2(x) af̃ 1(p) + bf̃ 2(p)

2 f (x/a), a > 0 af̃ (ap)

3
{ 0 if 0 < x < a,
f (x – a) if a < x e–apf̃ (p)

4 xnf (x); n = 1, 2, . . . (–1)n
dn

dpn
f̃ (p)

5
1
x
f (x)

∫ ∞

p

f̃ (q) dq

6 eaxf (x) f̃ (p – a)

7 sinh(ax)f (x) 1
2

[
f̃ (p – a) – f̃ (p + a)

]

8 cosh(ax)f (x) 1
2

[
f̃ (p – a) + f̃ (p + a)

]

9 sin(ωx)f (x) – i
2

[
f̃ (p – iω) – f̃ (p + iω)

]
, i2 = –1

10 cos(ωx)f (x) 1
2

[
f̃ (p – iω) + f̃ (p + iω)

]
, i2 = –1

11 f (x2)
1√
π

∫ ∞

0
exp
(

–
p2

4t2

)
f̃ (t2) dt

12 xa–1f
( 1
x

)
, a > –1

∫ ∞

0
(t/p)a/2Ja

(
2
√
pt
)
f̃ (t) dt

13 f (a sinhx), a > 0
∫ ∞

0
Jp(at)f̃ (t) dt

14 f (x + a) = f (x) (periodic function)
1

1 – eap

∫ a

0
f (x)e–px dx

15 f (x + a) = –f (x)
(antiperiodic function)

1
1 + e–ap

∫ a

0
f (x)e–px dx

16 f ′
x(x) pf̃ (p) – f (+0)

17 f (n)
x (x) pnf̃ (p) –

n∑

k=1

pn–kf (k–1)
x (+0)

1157
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No. Original function, f (x) Laplace transform, f̃ (p) =
∫ ∞

0
e–pxf (x) dx

18 xmf (n)
x (x), m ≥ n

(
–
d

dp

)m[
pnf̃ (p)

]

19
dn

dxn

[
xmf (x)

]
, m ≥ n (–1)mpn dm

dpm
f̃ (p)

20
∫ x

0
f (t) dt f̃ (p)

p

21
∫ x

0
(x – t)f (t) dt

1
p2 f̃ (p)

22
∫ x

0
(x – t)νf (t) dt, ν > –1 Γ(ν + 1)p–ν–1f̃ (p)

23
∫ x

0
e–a(x–t)f (t) dt

1
p + a

f̃ (p)

24
∫ x

0
sinh
[
a(x – t)

]
f (t) dt af̃ (p)

p2 – a2

25
∫ x

0
sin
[
a(x – t)

]
f (t) dt af̃ (p)

p2 + a2

26
∫ x

0
f1(t)f2(x – t) dt f̃ 1(p)f̃ 2(p)

27
∫ x

0

1
t
f (t) dt

1
p

∫ ∞

p

f̃ (q) dq

28
∫ ∞

x

1
t
f (t) dt

1
p

∫ p

0
f̃ (q) dq

29
∫ ∞

0

1√
t

sin
(

2
√
xt
)
f (t) dt

√
π

p
√
p
f̃
( 1
p

)

30
1√
x

∫ ∞

0
cos
(

2
√
xt
)
f (t) dt

√
π√
p
f̃
( 1
p

)

31
∫ ∞

0

1√
πx

exp
(

–
t2

4x

)
f (t) dt

1√
p
f̃
(√
p
)

32
∫ ∞

0

t

2
√
πx3

exp
(

–
t2

4x

)
f (t) dt f̃

(√
p
)

33 f (x) – a
∫ x

0
f
(√

x2 – t2
)
J1(at) dt f̃

(√
p2 + a2

)

34 f (x) + a
∫ x

0
f
(√

x2 – t2
)
I1(at) dt f̃

(√
p2 – a2

)
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T3.1.2. Expressions with Power-Law Functions

No. Original function, f (x) Laplace transform, f̃ (p) =
∫ ∞

0
e–pxf (x) dx

1 1
1
p

2

{
0 if 0 < x < a,
1 if a < x < b,
0 if b < x

1
p

(
e–ap – e–bp

)

3 x
1
p2

4
1

x + a
– eap Ei(–ap)

5 xn, n = 1, 2, . . .
n!
pn+1

6 xn–1/2, n = 1, 2, . . .
1 × 3 × . . . × (2n – 1)

√
π

2npn+1/2

7
1√
x + a

√
π

p
eap erfc

(√
ap
)

8
√
x

x + a

√
π

p
– π

√
aeap erfc

(√
ap
)

9 (x + a)–3/2 2a–1/2 – 2(πp)1/2eap erfc
(√
ap
)

10 x1/2(x + a)–1 (π/p)1/2 – πa1/2eap erfc
(√

ap
)

11 x–1/2(x + a)–1 πa–1/2eap erfc
(√
ap
)

12 xν , ν > –1 Γ(ν + 1)p–ν–1

13 (x + a)ν , ν > –1 p–ν–1e–apΓ(ν + 1, ap)

14 xν(x + a)–1, ν > –1 keapΓ(–ν, ap), k = aνΓ(ν + 1)

15 (x2 + 2ax)–1/2(x + a) aeapK1(ap)

T3.1.3. Expressions with Exponential Functions

No. Original function, f (x) Laplace transform, f̃ (p) =
∫ ∞

0
e–pxf (x) dx

1 e–ax (p + a)–1

2 xe–ax (p + a)–2

3 xν–1e–ax, ν > 0 Γ(ν)(p + a)–ν

4
1
x

(
e–ax – e–bx) ln(p + b) – ln(p + a)

5
1
x2

(
1 – e–ax

)2 (p + 2a) ln(p + 2a) + p ln p – 2(p + a) ln(p + a)

6 exp
(
–ax2), a > 0 (πb)1/2 exp

(
bp2) erfc(p

√
b), a =

1
4b

7 x exp
(
–ax2) 2b – 2π1/2b3/2p erfc(p

√
b), a =

1
4b
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No. Original function, f (x) Laplace transform, f̃ (p) =
∫ ∞

0
e–pxf (x) dx

8 exp(–a/x), a ≥ 0 2
√
a/pK1

(
2
√
ap
)

9
√
x exp(–a/x), a ≥ 0 1

2

√
π/p3

(
1 + 2

√
ap
)

exp
(
–2
√
ap
)

10
1√
x

exp(–a/x), a ≥ 0
√
π/p exp

(
–2
√
ap
)

11
1

x
√
x

exp(–a/x), a > 0
√
π/a exp

(
–2
√
ap
)

12 xν–1 exp(–a/x), a > 0 2(a/p)ν/2Kν

(
2
√
ap
)

13 exp
(
–2
√
ax
)

p–1 – (πa)1/2p–3/2ea/p erfc
(√

a/p
)

14
1√
x

exp
(
–2
√
ax
)

(π/p)1/2ea/p erfc
(√

a/p
)

T3.1.4. Expressions with Hyperbolic Functions

No. Original function, f (x) Laplace transform, f̃ (p) =
∫ ∞

0
e–pxf (x) dx

1 sinh(ax)
a

p2 – a2

2 sinh2(ax)
2a2

p3 – 4a2p

3
1
x

sinh(ax)
1
2

ln
p + a
p – a

4 xν–1 sinh(ax), ν > –1 1
2 Γ(ν)

[
(p – a)–ν – (p + a)–ν]

5 sinh
(

2
√
ax
) √

πa

p
√
p
ea/p

6
√
x sinh

(
2
√
ax
)

π1/2p–5/2( 1
2 p + a

)
ea/p erf

(√
a/p
)

– a1/2p–2

7
1√
x

sinh
(

2
√
ax
)

π1/2p–1/2ea/p erf
(√

a/p
)

8
1√
x

sinh2(√ax ) 1
2π

1/2p–1/2(ea/p – 1
)

9 cosh(ax)
p

p2 – a2

10 cosh2(ax)
p2 – 2a2

p3 – 4a2p

11 xν–1 cosh(ax), ν > 0 1
2 Γ(ν)

[
(p – a)–ν + (p + a)–ν

]

12 cosh
(

2
√
ax
) 1

p
+
√
πa

p
√
p
ea/p erf

(√
a/p
)

13
√
x cosh

(
2
√
ax
)

π1/2p–5/2( 1
2 p + a

)
ea/p

14
1√
x

cosh
(

2
√
ax
)

π1/2p–1/2ea/p

15
1√
x

cosh2(√ax ) 1
2π

1/2p–1/2(ea/p + 1
)
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T3.1.5. Expressions with Logarithmic Functions

No. Original function, f (x) Laplace transform, f̃ (p) =
∫ ∞

0
e–pxf (x) dx

1 lnx –
1
p

(ln p + C),

C = 0.5772 . . . is the Euler constant

2 ln(1 + ax) –
1
p
ep/a Ei(–p/a)

3 ln(x + a)
1
p

[
ln a – eap Ei(–ap)

]

4 xn lnx, n = 1, 2, . . .
n!
pn+1

(
1 + 1

2 + 1
3 + · · · + 1

n
– ln p – C),

C = 0.5772 . . . is the Euler constant

5
1√
x

lnx –
√
π/p

[
ln(4p) + C]

6 xn–1/2 lnx, n = 1, 2, . . .

kn

pn+1/2

[
2 + 2

3 + 2
5 + · · · + 2

2n–1 – ln(4p) – C],

kn = 1 × 3 × 5 × . . . × (2n – 1)
√
π

2n
, C = 0.5772 . . .

7 xν–1 lnx, ν > 0 Γ(ν)p–ν
[
ψ(ν) – ln p

]
, ψ(ν) is the logarithmic

derivative of the gamma function

8 (lnx)2 1
p

[
(lnx + C)2 + 1

6π
2], C = 0.5772 . . .

9 e–ax lnx –
ln(p + a) + C

p + a
, C = 0.5772 . . .

T3.1.6. Expressions with Trigonometric Functions

No. Original function, f (x) Laplace transform, f̃ (p) =
∫ ∞

0
e–pxf (x) dx

1 sin(ax)
a

p2 + a2

2 |sin(ax)|, a > 0
a

p2 + a2 coth
( πp

2a

)

3 sin2n(ax), n = 1, 2, . . .
a2n(2n)!

p
[
p2 + (2a)2

][
p2 + (4a)2

]
. . .
[
p2 + (2na)2

]

4 sin2n+1(ax), n = 1, 2, . . .
a2n+1(2n + 1)![

p2 + a2
][
p2 + 32a2

]
. . .
[
p2 + (2n + 1)2a2

]

5 xn sin(ax), n = 1, 2, . . .
n! pn+1

(
p2 + a2

)n+1

∑

0≤2k≤n

(–1)kC2k+1
n+1

( a
p

)2k+1

6
1
x

sin(ax) arctan
( a
p

)

7
1
x

sin2(ax) 1
4 ln
(

1 + 4a2p–2)
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No. Original function, f (x) Laplace transform, f̃ (p) =
∫ ∞

0
e–pxf (x) dx

8
1
x2 sin2(ax) a arctan(2a/p) – 1

4 p ln
(

1 + 4a2p–2)

9 sin
(

2
√
ax
) √

πa

p
√
p
e–a/p

10
1
x

sin
(

2
√
ax
)

π erf
(√

a/p
)

11 cos(ax)
p

p2 + a2

12 cos2(ax)
p2 + 2a2

p
(
p2 + 4a2

)

13 xn cos(ax), n = 1, 2, . . .
n! pn+1

(
p2 + a2

)n+1

∑

0≤2k≤n+1

(–1)kC2k
n+1

( a
p

)2k

14
1
x

[
1 – cos(ax)

] 1
2 ln
(

1 + a2p–2)

15
1
x

[
cos(ax) – cos(bx)

] 1
2

ln
p2 + b2

p2 + a2

16
√
x cos

(
2
√
ax
)

1
2π

1/2p–5/2(p – 2a)e–a/p

17
1√
x

cos
(

2
√
ax
) √

π/p e–a/p

18 sin(ax) sin(bx)
2abp[

p2 + (a + b)2
][
p2 + (a – b)2

]

19 cos(ax) sin(bx)
b
(
p2 – a2 + b2)

[
p2 + (a + b)2

][
p2 + (a – b)2

]

20 cos(ax) cos(bx)
p
(
p2 + a2 + b2)

[
p2 + (a + b)2

][
p2 + (a – b)2

]

21
ax cos(ax) – sin(ax)

x2
p arctan

a

x
– a

22 ebx sin(ax)
a

(p – b)2 + a2

23 ebx cos(ax)
p – b

(p – b)2 + a2

24 sin(ax) sinh(ax)
2a2p

p4 + 4a4

25 sin(ax) cosh(ax)
a
(
p2 + 2a2)

p4 + 4a4

26 cos(ax) sinh(ax)
a
(
p2 – 2a2)

p4 + 4a4

27 cos(ax) cosh(ax)
p3

p4 + 4a4
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T3.1.7. Expressions with Special Functions

No. Original function, f (x) Laplace transform, f̃ (p) =
∫ ∞

0
e–pxf (x) dx

1 erf(ax)
1
p

exp
(
b2p2) erfc(bp), b =

1
2a

2 erf
(√
ax
) √

a

p
√
p + a

3 eax erf
(√
ax
) √

a√
p (p – a)

4 erf
( 1

2

√
a/x

) 1
p

[
1 – exp

(
–
√
ap
)]

5 erfc
(√
ax
) √

p + a –
√
a

p
√
p + a

6 eax erfc
(√
ax
) 1

p +
√
ap

7 erfc
( 1

2

√
a/x

) 1
p

exp
(
–
√
ap
)

8 Ci(x)
1

2p
ln(p2 + 1)

9 Si(x)
1
p

arccot p

10 Ei(–x) –
1
p

ln(p + 1)

11 J0(ax)
1

√
p2 + a2

12 Jν (ax), ν > –1
aν

√
p2 + a2

(
p +
√
p2 + a2

)ν

13 xnJn(ax), n = 1, 2, . . . 1 × 3 × 5 × . . . × (2n – 1)an(p2 + a2)–n–1/2

14 xνJν (ax), ν > – 1
2 2νπ–1/2Γ

(
ν + 1

2

)
aν(p2 + a2)–ν–1/2

15 xν+1Jν (ax), ν > –1 2ν+1π–1/2Γ
(
ν + 3

2

)
aνp
(
p2 + a2)–ν–3/2

16 J0
(

2
√
ax
) 1

p
e–a/p

17
√
xJ1
(

2
√
ax
) √

a

p2 e
–a/p

18 xν/2Jν

(
2
√
ax
)
, ν > –1 aν/2p–ν–1e–a/p

19 J0
(
a
√
x2 + bx

) 1
√
p2 + a2

exp
(
bp – b

√
p2 + a2

)

20 I0(ax)
1

√
p2 – a2

21 Iν(ax), ν > –1
aν

√
p2 – a2

(
p +
√
p2 – a2

)ν
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No. Original function, f (x) Laplace transform, f̃ (p) =
∫ ∞

0
e–pxf (x) dx

22 xνIν(ax), ν > – 1
2 2νπ–1/2Γ

(
ν + 1

2

)
aν
(
p2 – a2)–ν–1/2

23 xν+1Iν(ax), ν > –1 2ν+1π–1/2Γ
(
ν + 3

2

)
aνp
(
p2 – a2)–ν–3/2

24 I0
(

2
√
ax
) 1

p
ea/p

25
1√
x
I1
(

2
√
ax
) 1√

a

(
ea/p – 1

)

26 xν/2Iν

(
2
√
ax
)
, ν > –1 aν/2p–ν–1ea/p

27 Y0(ax) –
2
π

arcsinh(p/a)
√
p2 + a2

28 K0(ax)
ln
(
p +
√
p2 – a2

)
– ln a

√
p2 – a2

T3.2. Tables of Inverse Laplace Transforms
T3.2.1. General Formulas

No. Laplace transform, f̃ (p) Inverse transform, f (x) =
1

2πi

∫ c+i∞

c–i∞
epxf̃ (p) dp

1 f̃ (p + a) e–axf (x)

2 f̃ (ap), a > 0
1
a
f
( x
a

)

3 f̃ (ap + b), a > 0
1
a

exp
(

–
b

a
x
)
f
( x
a

)

4 f̃ (p – a) + f̃ (p + a) 2f (x) cosh(ax)

5 f̃ (p – a) – f̃ (p + a) 2f (x) sinh(ax)

6 e–apf̃ (p), a ≥ 0
{ 0 if 0 ≤ x < a,
f (x – a) if a < x

7 pf̃ (p)
df (x)
dx

, if f (+0) = 0

8
1
p
f̃ (p)

∫ x

0
f (t) dt

9
1

p + a
f̃ (p) e–ax

∫ x

0
eatf (t) dt

10
1
p2 f̃ (p)

∫ x

0
(x – t)f (t) dt

11 f̃ (p)
p(p + a)

1
a

∫ x

0

[
1 – ea(x–t)]f (t) dt

12 f̃ (p)
(p + a)2

∫ x

0
(x – t)e–a(x–t)f (t) dt

13 f̃ (p)
(p + a)(p + b)

1
b – a

∫ x

0

[
e–a(x–t) – e–b(x–t)]f (t) dt
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No. Laplace transform, f̃ (p) Inverse transform, f (x) =
1

2πi

∫ c+i∞

c–i∞
epxf̃ (p) dp

14 f̃ (p)
(p + a)2 + b2

1
b

∫ x

0
e–a(x–t) sin

[
b(x – t)

]
f (t) dt

15
1
pn
f̃ (p), n = 1, 2, . . .

1
(n – 1)!

∫ x

0
(x – t)n–1f (t) dt

16 f̃ 1(p)f̃2(p)

∫ x

0
f1(t)f2(x – t) dt

17
1√
p
f̃
( 1
p

) ∫ ∞

0

cos
(

2
√
xt
)

√
πx

f (t) dt

18
1

p
√
p
f̃
( 1
p

) ∫ ∞

0

sin
(

2
√
xt
)

√
πt

f (t) dt

19
1

p2ν+1 f̃
( 1
p

) ∫ ∞

0
(x/t)νJ2ν

(
2
√
xt
)
f (t) dt

20
1
p
f̃
( 1
p

) ∫ ∞

0
J0
(

2
√
xt
)
f (t) dt

21
1
p
f̃
(
p +

1
p

) ∫ x

0
J0
(

2
√
xt – t2

)
f (t) dt

22
1

p2ν+1 f̃
(
p +

a

p

)
, –

1
2

< ν ≤ 0
∫ x

0

( x – t
at

)ν

J2ν

(
2
√
axt – at2

)
f (t) dt

23 f̃
(√

p
) ∫ ∞

0

t

2
√
πx3

exp
(

–
t2

4x

)
f (t) dt

24
1√
p
f̃
(√
p
) 1√

πx

∫ ∞

0
exp
(

–
t2

4x

)
f (t) dt

25 f̃
(
p +

√
p
) 1

2
√
π

∫ x

0

t

(x – t)3/2 exp
[
–

t2

4(x – t)

]
f (t) dt

26 f̃
(√

p2 + a2
)

f (x) – a
∫ x

0
f
(√
x2 – t2

)
J1(at) dt

27 f̃
(√

p2 – a2
)

f (x) + a
∫ x

0
f
(√

x2 – t2
)
I1(at) dt

28
f̃
(√

p2 + a2
)

√
p2 + a2

∫ x

0
J0
(
a
√
x2 – t2

)
f (t) dt

29
f̃
(√

p2 – a2
)

√
p2 – a2

∫ x

0
I0
(
a
√
x2 – t2

)
f (t) dt

30 f̃
(√

(p + a)2 – b2
)

e–axf (x) + be–ax

∫ x

0
f
(√
x2 – t2

)
I1(bt) dt

31 f̃ (ln p)

∫ ∞

0

xt–1

Γ(t)
f (t) dt

32
1
p
f̃ (ln p)

∫ ∞

0

xt

Γ(t + 1)
f (t) dt

33 f̃ (p – ia) + f̃ (p + ia), i2 = –1 2f (x) cos(ax)

34 i
[
f̃ (p – ia) – f̃ (p + ia)

]
, i2 = –1 2f (x) sin(ax)
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No. Laplace transform, f̃ (p) Inverse transform, f (x) =
1

2πi

∫ c+i∞

c–i∞
epxf̃ (p) dp

35 df̃ (p)
dp

– xf (x)

36 dnf̃ (p)
dpn

(–x)nf (x)

37 pn d
mf̃ (p)
dpm

, m ≥ n (–1)m
dn

dxn

[
xmf (x)

]

38

∫ ∞

p

f̃ (q) dq 1
x
f (x)

39
1
p

∫ p

0
f̃ (q) dq

∫ ∞

x

f (t)
t

dt

40
1
p

∫ ∞

p

f̃ (q) dq
∫ x

0

f (t)
t

dt

T3.2.2. Expressions with Rational Functions

No. Laplace transform, f̃ (p) Inverse transform, f (x) =
1

2πi

∫ c+i∞

c–i∞
epxf̃ (p) dp

1
1
p

1

2
1

p + a
e–ax

3
1
p2 x

4
1

p(p + a)
1
a

(
1 – e–ax)

5
1

(p + a)2 xe–ax

6
p

(p + a)2 (1 – ax)e–ax

7
1

p2 – a2
1
a

sinh(ax)

8
p

p2 – a2 cosh(ax)

9
1

(p + a)(p + b)
1

a – b

(
e–bx – e–ax

)

10
p

(p + a)(p + b)
1

a – b

(
ae–ax – be–bx)

11
1

p2 + a2
1
a

sin(ax)

12
p

p2 + a2 cos(ax)

13
1

(p + b)2 + a2
1
a
e–bx sin(ax)

14
p

(p + b)2 + a2 e–bx
[
cos(ax) –

b

a
sin(ax)

]
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No. Laplace transform, f̃ (p) Inverse transform, f (x) =
1

2πi

∫ c+i∞

c–i∞
epxf̃ (p) dp

15
1
p3

1
2 x

2

16
1

p2(p + a)
1
a2

(
e–ax + ax – 1

)

17
1

p(p + a)(p + b)
1

ab(a – b)

(
a – b + be–ax – ae–bx

)

18
1

p(p + a)2
1
a2

(
1 – e–ax – axe–ax

)

19
1

(p + a)(p + b)(p + c)
(c – b)e–ax + (a – c)e–bx + (b – a)e–cx

(a – b)(b – c)(c – a)

20
p

(p + a)(p + b)(p + c)
a(b – c)e–ax + b(c – a)e–bx + c(a – b)e–cx

(a – b)(b – c)(c – a)

21
p2

(p + a)(p + b)(p + c)
a2(c – b)e–ax + b2(a – c)e–bx + c2(b – a)e–cx

(a – b)(b – c)(c – a)

22
1

(p + a)(p + b)2
1

(a – b)2

[
e–ax – e–bx + (a – b)xe–bx]

23
p

(p + a)(p + b)2
1

(a – b)2

{
–ae–ax + [a + b(b – a)x

]
e–bx
}

24
p2

(p + a)(p + b)2

1
(a – b)2

[
a2e–ax + b(b – 2a – b2x + abx)e–bx

]

25
1

(p + a)3
1
2 x

2e–ax

26
p

(p + a)3 x
(

1 – 1
2 ax
)
e–ax

27
p2

(p + a)3

(
1 – 2ax + 1

2 a
2x2)e–ax

28
1

p(p2 + a2)
1
a2

[
1 – cos(ax)

]

29
1

p
[
(p + b)2 + a2

] 1
a2 + b2

{
1 – e–bx

[
cos(ax) +

b

a
sin(ax)

]}

30
1

(p + a)(p2 + b2)
1

a2 + b2

[
e–ax +

a

b
sin(bx) – cos(bx)

]

31
p

(p + a)(p2 + b2)
1

a2 + b2

[
–ae–ax + a cos(bx) + b sin(bx)

]

32
p2

(p + a)(p2 + b2)
1

a2 + b2

[
a2e–ax – ab sin(bx) + b2 cos(bx)

]

33
1

p3 + a3

1
3a2 e

–ax –
1

3a2 e
ax/2[cos(kx) –

√
3 sin(kx)

]
,

k = 1
2 a

√
3

34
p

p3 + a3
–

1
3a
e–ax +

1
3a
eax/2[cos(kx) +

√
3 sin(kx)

]
,

k = 1
2 a

√
3
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No. Laplace transform, f̃ (p) Inverse transform, f (x) =
1

2πi

∫ c+i∞

c–i∞
epxf̃ (p) dp

35
p2

p3 + a3
1
3 e

–ax + 2
3 e

ax/2 cos(kx), k = 1
2a

√
3

36
1(

p + a)
[
(p + b)2 + c2]

e–ax – e–bx cos(cx) + ke–bx sin(cx)
(a – b)2 + c2 , k =

a – b
c

37
p(

p + a)
[
(p + b)2 + c2]

–ae–ax + ae–bx cos(cx) + ke–bx sin(cx)
(a – b)2 + c2 ,

k =
b2 + c2 – ab

c

38
p2

(
p + a)

[
(p + b)2 + c2]

a2e–ax +(b2 +c2 – 2ab)e–bx cos(cx)+ke–bx sin(cx)
(a–b)2 +c2 ,

k = –ac – bc +
ab2 – b3

c

39
1
p4

1
6 x

3

40
1

p3(p + a)
1
a3 –

1
a2 x +

1
2a
x2 –

1
a3 e

–ax

41
1

p2(p + a)2
1
a2 x
(

1 + e–ax
)

+
2
a3

(
e–ax – 1

)

42
1

p2(p + a)(p + b)
–
a + b
a2b2 +

1
ab
x +

1
a2(b – a)

e–ax +
1

b2(a – b)
e–bx

43
1

(p + a)2(p + b)2
1

(a – b)2

[
e–ax

(
x +

2
a – b

)
+ e–bx

(
x –

2
a – b

)]

44
1

(p + a)4
1
6 x

3e–ax

45
p

(p + a)4
1
2 x

2e–ax – 1
6 ax

3e–ax

46
1

p2(p2 + a2)
1
a3

[
ax – sin(ax)

]

47
1

p4 – a4
1

2a3

[
sinh(ax) – sin(ax)

]

48
p

p4 – a4
1

2a2

[
cosh(ax) – cos(ax)

]

49
p2

p4 – a4
1

2a
[
sinh(ax) + sin(ax)

]

50
p3

p4 – a4
1
2
[
cosh(ax) + cos(ax)

]

51
1

p4 + a4
1

a3
√

2
(
cosh ξ sin ξ – sinh ξ cos ξ

)
, ξ =

ax√
2

52
p

p4 + a4
1
a2 sin

( ax√
2

)
sinh
( ax√

2

)

53
p2

p4 + a4

1
a
√

2
(
cos ξ sinh ξ + sin ξ cosh ξ

)
, ξ =

ax√
2
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No. Laplace transform, f̃ (p) Inverse transform, f (x) =
1

2πi

∫ c+i∞

c–i∞
epxf̃ (p) dp

54
1

(p2 + a2)2
1

2a3

[
sin(ax) – ax cos(ax)

]

55
p

(p2 + a2)2
1

2a
x sin(ax)

56
p2

(p2 + a2)2
1

2a
[
sin(ax) + ax cos(ax)

]

57
p3

(p2 + a2)2
cos(ax) – 1

2 ax sin(ax)

58
1

[
(p + b)2 + a2

]2
1

2a3 e
–bx
[
sin(ax) – ax cos(ax)

]

59
1

(p2 – a2)(p2 – b2)
1

a2 – b2

[ 1
a

sinh(ax) –
1
b

sinh(bx)
]

60
p

(p2 – a2)(p2 – b2)
cosh(ax) – cosh(bx)

a2 – b2

61
p2

(p2 – a2)(p2 – b2)
a sinh(ax) – b sinh(bx)

a2 – b2

62
p3

(p2 – a2)(p2 – b2)
a2 cosh(ax) – b2 cosh(bx)

a2 – b2

63
1

(p2 + a2)(p2 + b2)
1

b2 – a2

[ 1
a

sin(ax) –
1
b

sin(bx)
]

64
p

(p2 + a2)(p2 + b2)
cos(ax) – cos(bx)

b2 – a2

65
p2

(p2 + a2)(p2 + b2)
–a sin(ax) + b sin(bx)

b2 – a2

66
p3

(p2 + a2)(p2 + b2)
–a2 cos(ax) + b2 cos(bx)

b2 – a2

67
1
pn

, n = 1, 2, . . .
1

(n – 1)!
xn–1

68
1

(p + a)n
, n = 1, 2, . . .

1
(n – 1)!

xn–1e–ax

69
1

p(p + a)n
, n = 1, 2, . . . a–n

[
1 – e–axen(ax)

]
, en(z) = 1 +

z

1!
+ · · · +

zn

n!

70
1

p2n + a2n
, n = 1, 2, . . .

–
1

na2n

n∑

k=1

exp(akx)
[
ak cos(bkx) – bk sin(bkx)

]
,

ak = a cosϕk, bk = a sinϕk, ϕk =
π(2k – 1)

2n

71
1

p2n – a2n
, n = 1, 2, . . .

1
na2n–1 sinh(ax) +

1
na2n

n∑

k=2

exp(akx)

×
[
ak cos(bkx) – bk sin(bkx)

]
,

ak = a cosϕk, bk = a sinϕk, ϕk =
π(k – 1)

n
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No. Laplace transform, f̃ (p) Inverse transform, f (x) =
1

2πi

∫ c+i∞

c–i∞
epxf̃ (p) dp

72
1

p2n+1 + a2n+1 , n = 0, 1, . . .

e–ax

(2n + 1)a2n
–

2
(2n + 1)a2n+1

n∑

k=1

exp(akx)

×
[
ak cos(bkx) – bk sin(bkx)

]
,

ak = a cosϕk, bk = a sinϕk, ϕk =
π(2k – 1)

2n + 1

73
1

p2n+1 – a2n+1 , n = 0, 1, . . .

eax

(2n + 1)a2n
+

2
(2n + 1)a2n+1

n∑

k=1

exp(akx)

×
[
ak cos(bkx) – bk sin(bkx)

]
,

ak = a cosϕk, bk = a sinϕk, ϕk =
2πk

2n + 1

74

Q(p)
P (p)

,

P (p) = (p – a1) . . . (p – an);
Q(p) is a polynomial of degree
≤ n – 1; ai ≠ aj if i ≠ j

n∑

k=1

Q(ak)
P ′(ak)

exp
(
akx
)
,

(the prime stand for the differentiation)

75

Q(p)
P (p)

,

P (p) = (p – a1)m1 . . . (p – an)mn ;
Q(p) is a polynomial of degree
< m1 +m2 + · · · +mn – 1;
ai ≠ aj if i ≠ j

n∑

k=1

mk∑

l=1

Φkl(ak)
(mk – l)! (l – 1)!

xmk–l exp
(
akx
)
,

Φkl(p) =
dl–1

dpl–1

[
Q(p)
Pk(p)

]
, Pk(p) =

P (p)
(p – ak)mk

76

Q(p) + pR(p)
P (p)

,

P (p) = (p2 + a2
1) . . . (p2 + a2

n);
Q(p) and R(p) are polynomials
of degree ≤ 2n – 2; al ≠ aj , l ≠ j

n∑

k=1

Q(iak) sin(akx) + akR(iak) cos(akx)
akPk(iak)

,

Pm(p) =
P (p)
p2 + a2

m

, i2 = –1

T3.2.3. Expressions with Square Roots

No. Laplace transform, f̃ (p) Inverse transform, f (x) =
1

2πi

∫ c+i∞

c–i∞
epxf̃ (p) dp

1
1√
p

1√
πx

2
√
p – a –

√
p – b

ebx – eax

2
√
πx3

3
1√
p + a

1√
πx

e–ax

4
√
p + a
p

– 1 1
2 ae

–ax/2[I1
( 1

2 ax
)

+ I0
( 1

2 ax
)]

5
√
p + a
p + b

e–ax

√
πx

+ (a – b)1/2e–bx erf
[
(a – b)1/2x1/2]

6
1

p
√
p

2
√
x

π

7
1

(p + a)
√
p + b

(b – a)–1/2e–ax erf
[
(b – a)1/2x1/2]
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No. Laplace transform, f̃ (p) Inverse transform, f (x) =
1

2πi

∫ c+i∞

c–i∞
epxf̃ (p) dp

8
1√

p (p – a)
1√
a
eax erf

(√
ax
)

9
1

p3/2(p – a)
a–3/2eax erf

(√
ax
)

– 2a–1π–1/2x1/2

10
1√
p + a π–1/2x–1/2 – aea2x erfc

(
a
√
x
)

11
a

p
(√
p + a

) 1 – ea2x erfc
(
a
√
x
)

12
1

p + a
√
p ea2x erfc

(
a
√
x
)

13
1

(√
p +

√
a
)2 1 –

2√
π

(ax)1/2 + (1 – 2ax)eax[erf
(√

ax
)

– 1
]

14
1

p
(√
p +

√
a
)2

1
a

+
(

2x –
1
a

)
eax erfc

(√
ax
)

–
2√
πa

√
x

15
1

√
p
(√
p + a

)2 2π–1/2x1/2 – 2axea2x erfc
(
a
√
x
)

16
1

(√
p + a

)3
2√
π

(a2x + 1)
√
x – ax(2a2x + 3)ea2x erfc

(
a
√
x
)

17 p–n–1/2, n = 1, 2, . . .
2n

1 × 3 × . . . × (2n – 1)
√
π
xn–1/2

18 (p + a)–n–1/2 2n

1 × 3 × . . . × (2n – 1)
√
π
xn–1/2e–ax

19
1

√
p2 + a2 J0(ax)

20
1

√
p2 – a2 I0(ax)

21
1

√
p2 + ap + b

exp
(
– 1

2 ax
)
J0
[
(b – 1

4 a
2)1/2

x
]

22
(√

p2 + a2 – p
)1/2 1√

2πx3
sin(ax)

23
1

√
p2 + a2

(√
p2 + a2 + p

)1/2
√

2√
πx

cos(ax)

24
1

√
p2 – a2

(√
p2 – a2 + p

)1/2
√

2√
πx

cosh(ax)

25
(√

p2 + a2 + p
)–n

na–nx–1Jn(ax)

26
(√

p2 – a2 + p
)–n

na–nx–1In(ax)

27
(
p2 + a2)–n–1/2 (x/a)nJn(ax)

1 × 3 × 5 × . . . × (2n – 1)

28
(
p2 – a2)–n–1/2 (x/a)nIn(ax)

1 × 3 × 5 × . . . × (2n – 1)
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T3.2.4. Expressions with Arbitrary Powers

No. Laplace transform, f̃ (p) Inverse transform, f (x) =
1

2πi

∫ c+i∞

c–i∞
epxf̃ (p) dp

1 (p + a)–ν , ν > 0
1

Γ(ν)
xν–1e–ax

2
[
(p + a)1/2 + (p + b)1/2]–2ν

, ν > 0
ν

(a – b)ν
x–1 exp

[
– 1

2 (a + b)x
]
Iν

[ 1
2 (a – b)x

]

3
[
(p + a)(p + b)

]–ν
, ν > 0

√
π

Γ(ν)

( x

a – b

)ν–1/2
exp
(

–
a + b

2
x
)
Iν–1/2

( a – b
2

x
)

4
(
p2 + a2)–ν–1/2

, ν > – 1
2

√
π

(2a)νΓ(ν + 1
2 )
xνJν (ax)

5
(
p2 – a2)–ν–1/2

, ν > – 1
2

√
π

(2a)νΓ(ν + 1
2 )
xνIν(ax)

6 p
(
p2 + a2)–ν–1/2

, ν > 0
a
√
π

(2a)νΓ
(
ν + 1

2

) xνJν–1(ax)

7 p
(
p2 – a2)–ν–1/2

, ν > 0
a
√
π

(2a)νΓ
(
ν + 1

2

) xνIν–1(ax)

8

[
(p2 + a2)1/2 + p

]–ν
=

a–2ν[(p2 + a2)1/2 – p
]ν

, ν > 0
νa–νx–1Jν(ax)

9

[
(p2 – a2)1/2 + p

]–ν
=

a–2ν[p – (p2 – a2)1/2]ν , ν > 0
νa–νx–1Iν(ax)

10 p
[
(p2 + a2)1/2 + p

]–ν
, ν > 1 νa1–νx–1Jν–1(ax) – ν(ν + 1)a–νx–2Jν (ax)

11 p
[
(p2 – a2)1/2 + p

]–ν
, ν > 1 νa1–νx–1Iν–1(ax) – ν(ν + 1)a–νx–2Iν(ax)

12

(√
p2 + a2 + p

)–ν

√
p2 + a2

, ν > –1 a–νJν (ax)

13

(√
p2 – a2 + p

)–ν

√
p2 – a2

, ν > –1 a–νIν (ax)

T3.2.5. Expressions with Exponential Functions

No. Laplace transform, f̃ (p) Inverse transform, f (x) =
1

2πi

∫ c+i∞

c–i∞
epxf̃ (p) dp

1 p–1e–ap, a > 0
{ 0 if 0 < x < a,

1 if a < x

2 p–1(1 – e–ap), a > 0
{ 1 if 0 < x < a,

0 if a < x

3 p–1(e–ap – e–bp), 0 ≤ a < b

{
0 if 0 < x < a,
1 if a < x < b,
0 if b < x

4 p–2(e–ap – e–bp
)
, 0 ≤ a < b

{
0 if 0 < x < a,
x – a if a < x < b,
b – a if b < x

5 (p + b)–1e–ap, a > 0
{ 0 if 0 < x < a,
e–b(x–a) if a < x
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No. Laplace transform, f̃ (p) Inverse transform, f (x) =
1

2πi

∫ c+i∞

c–i∞
epxf̃ (p) dp

6 p–νe–ap, ν > 0

{ 0 if 0 < x < a,
(x – a)ν–1

Γ(ν)
if a < x

7 p–1(eap – 1
)–1

, a > 0 f (x) = n if na < x < (n + 1)a; n = 0, 1, 2, . . .

8 ea/p – 1
√
a

x
I1
(

2
√
ax
)

9 p–1/2ea/p 1√
πx

cosh
(

2
√
ax
)

10 p–3/2ea/p 1√
πa

sinh
(

2
√
ax
)

11 p–5/2ea/p

√
x

πa
cosh

(
2
√
ax
)

–
1

2
√
πa3

sinh
(

2
√
ax
)

12 p–ν–1ea/p, ν > –1 (x/a)ν/2Iν(2
√
ax
)

13 1 – e–a/p

√
a

x
J1
(

2
√
ax
)

14 p–1/2e–a/p 1√
πx

cos
(

2
√
ax
)

15 p–3/2e–a/p 1√
πa

sin
(

2
√
ax
)

16 p–5/2e–a/p 1
2
√
πa3

sin
(

2
√
ax
)

–

√
x

πa
cos
(

2
√
ax
)

17 p–ν–1e–a/p, ν > –1 (x/a)ν/2Jν (2
√
ax
)

18 exp
(
–
√
ap
)
, a > 0

√
a

2
√
π
x–3/2 exp

(
–
a

4x

)

19 p exp
(
–
√
ap
)
, a > 0

√
a

8
√
π

(a – 6x)x–7/2 exp
(

–
a

4x

)

20
1
p

exp
(
–
√
ap
)
, a ≥ 0 erfc

( √
a

2
√
x

)

21
√
p exp

(
–
√
ap
)
, a > 0

1
4
√
π

(a – 2x)x–5/2 exp
(

–
a

4x

)

22
1√
p

exp
(
–
√
ap
)
, a ≥ 0 1√

πx
exp
(

–
a

4x

)

23
1

p
√
p

exp
(
–
√
ap
)
, a ≥ 0 2

√
x√
π

exp
(

–
a

4x

)
–
√
a erfc

( √
a

2
√
x

)

24
exp
(
–k
√
p2 + a2

)

√
p2 + a2

, k > 0
{

0 if 0 < x < k,
J0
(
a
√
x2 – k2

)
if k < x

25
exp
(
–k
√
p2 – a2

)

√
p2 – a2

, k > 0
{

0 if 0 < x < k,
I0
(
a
√
x2 – k2

)
if k < x
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T3.2.6. Expressions with Hyperbolic Functions

No. Laplace transform, f̃ (p) Inverse transform, f (x) =
1

2πi

∫ c+i∞

c–i∞
epxf̃ (p) dp

1
1

p sinh(ap)
, a > 0 f (x) = 2n if a(2n – 1) < x < a(2n + 1);

n = 0, 1, 2, . . . (x > 0)

2
1

p2 sinh(ap)
, a > 0 f (x) = 2n(x – an) if a(2n – 1) < x < a(2n + 1);

n = 0, 1, 2, . . . (x > 0)

3
sinh(a/p)√

p

1
2
√
πx

[
cosh

(
2
√
ax
)

– cos
(

2
√
ax
)]

4
sinh(a/p)
p
√
p

1
2
√
πa

[
sinh
(

2
√
ax
)

– sin
(

2
√
ax
)]

5 p–ν–1 sinh(a/p), ν > –2 1
2 (x/a)ν/2[Iν

(
2
√
ax
)

– Jν

(
2
√
ax
)]

6
1

p cosh(ap)
, a > 0 f (x) =

{ 0 if a(4n – 1) < x < a(4n + 1),
2 if a(4n + 1) < x < a(4n + 3),

n = 0, 1, 2, . . . (x > 0)

7
1

p2 cosh(ap)
, a > 0 x – (–1)n(x – 2an) if 2n – 1 < x/a < 2n + 1;

n = 0, 1, 2, . . . (x > 0)

8
cosh(a/p)√

p

1
2
√
πx

[
cosh

(
2
√
ax
)

+ cos
(

2
√
ax
)]

9
cosh(a/p)
p
√
p

1
2
√
πa

[
sinh
(

2
√
ax
)

+ sin
(

2
√
ax
)]

10 p–ν–1 cosh(a/p), ν > –1 1
2 (x/a)ν/2[Iν

(
2
√
ax
)

+ Jν

(
2
√
ax
)]

11
1
p

tanh(ap), a > 0 f (x) = (–1)n–1 if 2a(n – 1) < x < 2an;
n = 1, 2, . . .

12
1
p

coth(ap), a > 0 f (x) = (2n – 1) if 2a(n – 1) < x < 2an;
n = 1, 2, . . .

13 arccoth(p/a)
1
x

sinh(ax)

T3.2.7. Expressions with Logarithmic Functions

No. Laplace transform, f̃ (p) Inverse transform, f (x) =
1

2πi

∫ c+i∞

c–i∞
epxf̃ (p) dp

1
1
p

ln p – lnx – C,
C = 0.5772 . . . is the Euler constant

2 p–n–1 ln p
(

1 + 1
2 + 1

3 + · · · + 1
n

– lnx – C) x
n

n!
,

C = 0.5772 . . . is the Euler constant

3 p–n–1/2 ln p
kn

[
2 + 2

3 + 2
5 + · · · + 2

2n–1 – ln(4x) – C]xn–1/2,

kn =
2n

1 × 3 × 5 × . . . × (2n – 1)
√
π

, C = 0.5772 . . .

4 p–ν ln p, ν > 0
1

Γ(ν)
xν–1[ψ(ν) – lnx

]
, ψ(ν) is the logarithmic

derivative of the gamma function

5
1
p

(ln p)2 (lnx + C)2 – 1
6π

2, C = 0.5772 . . .
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No. Laplace transform, f̃ (p) Inverse transform, f (x) =
1

2πi

∫ c+i∞

c–i∞
epxf̃ (p) dp

6
1
p2 (ln p)2

x
[
(lnx + C – 1)2 + 1 – 1

6π
2]

7
ln(p + b)
p + a

e–ax
{

ln(b – a) – Ei
[
(a – b)x

]
}

8
ln p

p2 + a2
1
a

cos(ax) Si(ax) +
1
a

sin(ax)
[
ln a – Ci(ax)

]

9
p ln p
p2 + a2 cos(ax)

[
ln a – Ci(ax)

]
– sin(ax) Si(ax)

]

10 ln
p + b
p + a

1
x

(
e–ax – e–bx

)

11 ln
p2 + b2

p2 + a2
2
x

[
cos(ax) – cos(bx)

]

12 p ln
p2 + b2

p2 + a2
2
x

[
cos(bx) + bx sin(bx) – cos(ax) – ax sin(ax)

]

13 ln
(p + a)2 + k2

(p + b)2 + k2
2
x

cos(kx)(e–bx – e–ax)

14 p ln
( 1
p

√
p2 + a2

) 1
x2

[
cos(ax) – 1

]
+
a

x
sin(ax)

15 p ln
( 1
p

√
p2 – a2

) 1
x2

[
cosh(ax) – 1

]
–
a

x
sinh(ax)

T3.2.8. Expressions with Trigonometric Functions

No. Laplace transform, f̃ (p) Inverse transform, f (x) =
1

2πi

∫ c+i∞

c–i∞
epxf̃ (p) dp

1
sin(a/p)√

p

1√
πx

sinh
(√

2ax
)

sin
(√

2ax
)

2
sin(a/p)
p
√
p

1√
πa

cosh
(√

2ax
)

sin
(√

2ax
)

3
cos(a/p)√

p

1√
πx

cosh
(√

2ax
)

cos
(√

2ax
)

4
cos(a/p)
p
√
p

1√
πa

sinh
(√

2ax
)

cos
(√

2ax
)

5
1√
p

exp
(
–
√
ap
)

sin
(√

ap
) 1√

πx
sin
( a

2x

)

6
1√
p

exp
(
–
√
ap
)

cos
(√
ap
) 1√

πx
cos
( a

2x

)

7 arctan
a

p
1
x

sin(ax)

8
1
p

arctan
a

p
Si(ax)

9 p arctan
a

p
– a 1

x2

[
ax cos(ax) – sin(ax)

]

10 arctan
2ap
p2 + b2

2
x

sin(ax) cos
(
x
√
a2 + b2

)
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T3.2.9. Expressions with Special Functions

No. Laplace transform, f̃ (p) Inverse transform, f (x) =
1

2πi

∫ c+i∞

c–i∞
epxf̃ (p) dp

1 exp
(
ap2) erfc

(
p
√
a
) 1√

πa
exp
(

–
x2

4a

)

2
1
p

exp
(
ap2) erfc

(
p
√
a
)

erf
( x

2
√
a

)

3 erfc
(√
ap
)
, a > 0

{ 0 if 0 < x < a,√
a

πx
√
x – a

if a < x

4
1√
p

erfc
(√
ap
)
, a > 0

{ 0 if 0 < x < a,
1√
πx

if x > a

5 eap erfc
(√

ap
) √

a

π
√
x (x + a)

6
1√
p
eap erfc

(√
ap
) 1√

π(x + a)

7
1√
p

erf
(√
ap
)
, a > 0

{ 1√
πx

if 0 < x < a,

0 if x > a

8 erf
(√

a/p
) 1

πx
sin
(

2
√
ax
)

9
1√
p

exp(a/p) erf
(√

a/p
) 1√

πx
sinh
(

2
√
ax
)

10
1√
p

exp(a/p) erfc
(√

a/p
) 1√

πx
exp
(
–2
√
ax
)

11 p–aγ(a, bp), a, b > 0
{
xa–1 if 0 < x < b,
0 if b < x

12 γ(a, b/p), a > 0 ba/2xa/2–1Ja

(
2
√
bx
)

13 a–pγ(p, a) exp
(
–ae–x)

14 K0(ap), a > 0
{ 0 if 0 < x < a,

(x2 – a2)–1/2 if a < x

15 Kν (ap), a > 0

⎧
⎨

⎩

0 if 0 < x < a,
cosh

[
ν arccosh(x/a)

]

√
x2 – a2

if a < x

16 K0
(
a
√
p
) 1

2x
exp
(

–
a2

4x

)

17
1√
p
K1
(
a
√
p
) 1

a
exp
(

–
a2

4x

)
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T3.3. Tables of Fourier Cosine Transforms
T3.3.1. General Formulas

No. Original function, f (x) Cosine transform, f̌ c(u) =
∫ ∞

0
f (x) cos(ux) dx

1 af1(x) + bf2(x) af̌ 1c(u) + bf̌ 2c(u)

2 f (ax), a > 0 1
a
f̌ c

( u
a

)

3 x2nf (x), n = 1, 2, . . . (–1)n
d2n

du2n
f̌ c(u)

4 x2n+1f (ax), n = 0, 1, . . . (–1)n
d2n+1

du2n+1 f̌ s(u), f̌ s(u) =
∫ ∞

0
f (x) sin(xu) dx

5 f (ax) cos(bx), a, b > 0 1
2a

[
f̌ c

( u + b
a

)
+ f̌ c

( u – b
a

)]

T3.3.2. Expressions with Power-Law Functions

No. Original function, f (x) Cosine transform, f̌ c(u) =
∫ ∞

0
f (x) cos(ux) dx

1
{ 1 if 0 < x < a,

0 if a < x
1
u

sin(au)

2

{
x if 0 < x < 1,
2 – x if 1 < x < 2,
0 if 2 < x

4
u2 cosu sin2 u

2

3
1

a + x
, a > 0 – sin(au) si(au) – cos(au) Ci(au)

4
1

a2 + x2 , a > 0
π

2a
e–au

5
1

a2 – x2 , a > 0
π sin(au)

2u
(the integral is understood

in the sense of Cauchy principal value)

6
a

a2 + (b + x)2 +
a

a2 + (b – x)2 πe–au cos(bu)

7
b + x

a2 + (b + x)2 +
b – x

a2 + (b – x)2 πe–au sin(bu)

8
1

a4 + x4 , a > 0 1
2πa

–3 exp
(

–
au√

2

)
sin
( π

4
+
au√

2

)

9
1

(a2 + x2)(b2 + x2)
, a, b > 0 π

2
ae–bu – be–au

ab(a2 – b2)

10
x2m

(x2 + a)n+1 ,

n,m = 1, 2, . . . ; n + 1 > m ≥ 0
(–1)n+m π

2n!
∂n

∂an

(
a1/

√
me–u

√
a )

11
1√
x

√
π

2u

12

{ 1√
x

if 0 < x < a,

0 if a < x
2
√

π

2u
C(au), C(u) is the Fresnel integral
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No. Original function, f (x) Cosine transform, f̌ c(u) =
∫ ∞

0
f (x) cos(ux) dx

13

{ 0 if 0 < x < a,
1√
x

if a < x

√
π

2u
[

1 – 2C(au)
]
, C(u) is the Fresnel integral

14

{ 0 if 0 < x < a,
1√
x – a

if a < x

√
π

2u
[
cos(au) – sin(au)

]

15
1√

a2 + x2
K0(au)

16

{ 1√
a2 – x2

if 0 < x < a,

0 if a < x

π

2
J0(au)

17 (a2 + x2)–1/2[(a2 + x2)1/2 + a
]1/2 (2u/π)–1/2e–au, a > 0

18 x–ν , 0 < ν < 1 sin
( 1

2πν
)
Γ(1 – ν)uν–1

T3.3.3. Expressions with Exponential Functions

No. Original function, f (x) Cosine transform, f̌ c(u) =
∫ ∞

0
f (x) cos(ux) dx

1 e–ax a

a2 + u2

2
1
x

(
e–ax – e–bx

) 1
2

ln
b2 + u2

a2 + u2

3
√
xe–ax 1

2

√
π (a2 + u2)–3/4 cos

(
3
2 arctan

u

a

)

4
1√
x
e–ax

√
π

2

[ a + (a2 + u2)1/2

a2 + u2

]1/2

5 xne–ax, n = 1, 2, . . .
an+1n!

(a2 + u2)n+1

∑

0≤2k≤n+1

(–1)kC2k
n+1

( u
a

)2k

6 xn–1/2e–ax, n = 1, 2, . . .
knu

∂n

∂an

1
r
√
r – a

,

where r =
√
a2 + u2, kn = (–1)n

√
π/2

7 xν–1e–ax Γ(ν)(a2 + u2)–ν/2 cos
(
ν arctan

u

a

)

8
x

eax – 1
1

2u2 –
π2

2a2 sinh2(πa–1u
)

9
1
x

( 1
2

–
1
x

+
1

ex – 1

)
–

1
2

ln
(

1 – e–2πu
)

10 exp
(
–ax2) 1

2

√
π

a
exp
(

–
u2

4a

)

11
1√
x

exp
(

–
a

x

) √
π

2u
e–

√
2au
[
cos
(√

2au
)

– sin
(√

2au
)]

12
1

x
√
x

exp
(

–
a

x

) √
π

a
e–

√
2au cos

(√
2au

)
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T3.3.4. Expressions with Hyperbolic Functions

No. Original function, f (x) Cosine transform, f̌ c(u) =
∫ ∞

0
f (x) cos(ux) dx

1
1

cosh(ax)
, a > 0

π

2a cosh
( 1

2πa
–1u
)

2
1

cosh2(ax)
, a > 0

πu

2a2 sinh
( 1

2πa
–1u
)

3
cosh(ax)
cosh(bx)

, |a| < b
π

b

[
cos
( 1

2πab
–1) cosh

( 1
2πb

–1u
)

cos
(
πab–1

)
+ cosh

(
πb–1u

)
]

4
1

cosh(ax) + cos b
π sinh

(
a–1bu

)

a sin b sinh
(
πa–1u

)

5 exp
(
–ax2) cosh(bx), a > 0 1

2

√
π

a
exp
( b2 – u2

4a

)
cos
( abu

2

)

6
x

sinh(ax)
π2

4a2 cosh2( 1
2πa

–1u
)

7
sinh(ax)
sinh(bx)

, |a| < b
π

2b
sin
(
πab–1)

cos
(
πab–1

)
+ cosh

(
πb–1u

)

8
1
x

tanh(ax), a > 0 ln
[
coth
( 1

4πa
–1u
)]

T3.3.5. Expressions with Logarithmic Functions

No. Original function, f (x) Cosine transform, f̌ c(u) =
∫ ∞

0
f (x) cos(ux) dx

1
{

lnx if 0 < x < 1,
0 if 1 < x

–
1
u

Si(u)

2
lnx√
x

–

√
π

2u
[
ln(4u) + C +

π

2
]
,

C = 0.5772 . . . is the Euler constant

3 xν–1 lnx, 0 < ν < 1 Γ(ν) cos
( πν

2
)
u–ν
[
ψ(ν) –

π

2
tan
( πν

2

)
– lnu

]

4 ln
∣
∣
∣
a + x
a – x

∣
∣
∣, a > 0 2

u

[
cos(au) Si(au) – sin(au) Ci(au)

]

5 ln
(

1 + a2/x2), a > 0
π

u

(
1 – e–au

)

6 ln
a2 + x2

b2 + x2 , a, b > 0
π

u

(
e–bu – e–au)

7 e–ax lnx, a > 0 –
aC + 1

2 a ln(u2 + a2) + u arctan(u/a)

u2 + a2

8 ln
(

1 + e–ax), a > 0
a

2u2 –
π

2u sinh
(
πa–1u

)

9 ln
(

1 – e–ax), a > 0
a

2u2 –
π

2u
coth
(
πa–1u

)
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T3.3.6. Expressions with Trigonometric Functions

No. Original function, f (x) Cosine transform, f̌ c(u) =
∫ ∞

0
f (x) cos(ux) dx

1
sin(ax)
x

, a > 0

{ 1
2π if u < a,
1
4π if u = a,

0 if u > a

2 xν–1 sin(ax), a > 0, |ν | < 1 π
(u + a)–ν – |u + a|–ν sign(u – a)

4Γ(1 – ν) cos
( 1

2πν
)

3
x sin(ax)
x2 + b2 , a, b > 0

{ 1
2πe

–ab cosh(bu) if u < a,
– 1

2πe
–bu sinh(ab) if u > a

4
sin(ax)
x(x2 + b2)

, a, b > 0
{ 1

2πb
–2[1 – e–ab cosh(bu)

]
if u < a,

1
2πb

–2e–bu sinh(ab) if u > a

5 e–bx sin(ax), a, b > 0
1
2

[ a + u
(a + u)2 + b2 +

a – u
(a – u)2 + b2

]

6
1
x

sin2(ax), a > 0 1
4

ln
∣
∣
∣1 – 4 a

2

u2

∣
∣
∣

7
1
x2 sin2(ax), a > 0

{ 1
4π(2a – u) if u < 2a,

0 if u > 2a

8
1
x

sin
( a
x

)
, a > 0

π

2
J0
(

2
√
au
)

9
1√
x

sin
(
a
√
x
)

sin
(
b
√
x
)
, a, b > 0

√
π

u
sin
( ab

2u

)
sin
( a2 + b2

4u
–
π

4

)

10 sin
(
ax2), a > 0

√
π

8a

[
cos
( u2

4a

)
– sin

( u2

4a

)]

11 exp
(
–ax2) sin

(
bx2), a > 0

√
π

(A2 +B2)1/4 exp
(

–
Au2

A2 +B2

)
sin
(
ϕ–

Bu2

A2 +B2

)
,

A = 4a, B = 4b, ϕ = 1
2 arctan(b/a)

12
1 – cos(ax)

x
, a > 0 1

2
ln
∣
∣∣1 –

a2

u2

∣
∣∣

13
1 – cos(ax)

x2 , a > 0
{ 1

2π(a – u) if u < a,
0 if u > a

14 xν–1 cos(ax), a > 0, 0 < ν < 1 1
2 Γ(ν) cos

( 1
2πν
)[

|u – a|–ν + (u + a)–ν]

15
cos(ax)
x2 + b2 , a, b > 0

{ 1
2πb

–1e–ab cosh(bu) if u < a,
1
2πb

–1e–bu cosh(ab) if u > a

16 e–bx cos(ax), a, b > 0
b

2

[ 1
(a + u)2 + b2 +

1
(a – u)2 + b2

]

17
1√
x

cos
(
a
√
x
) √

π

u
sin
( a2

4u
+
π

4

)

18
1√
x

cos
(
a
√
x
)

cos
(
b
√
x
) √

π

u
cos
( ab

2u

)
sin
( a2 + b2

4u
+
π

4

)

19 exp
(
–bx2) cos(ax), b > 0 1

2

√
π

b
exp
(

–
a2 + u2

4b

)
cosh

( au
2b

)

20 cos
(
ax2), a > 0

√
π

8a
[
cos
( 1

4 a
–1u2) + sin

( 1
4 a

–1u2)]

21 exp
(
–ax2) cos

(
bx2), a > 0

√
π

(A2 +B2)1/4 exp
(

–
Au2

A2 +B2

)
cos
(
ϕ–

Bu2

A2 +B2

)
,

A = 4a, B = 4b, ϕ = 1
2 arctan(b/a)
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T3.3.7. Expressions with Special Functions

No. Original function, f (x) Cosine transform, f̌ c(u) =
∫ ∞

0
f (x) cos(ux) dx

1 Ei(–ax) –
1
u

arctan
( u
a

)

2 Ci(ax)

{
0 if 0 < u < a,
– π

2u
if a < u

3 si(ax) –
1

2u
ln
∣
∣
∣
u + a
u – a

∣
∣
∣, u ≠ a

4 J0(ax), a > 0
{

(a2 – u2)–1/2 if 0 < u < a,
0 if a < u

5 Jν (ax), a > 0, ν > –1

⎧
⎪⎪⎨

⎪⎪⎩

cos
[
ν arcsin(u/a)

]

√
a2 – u2

if 0 < u < a,

–
aν sin(πν/2)
ξ(u + ξ)ν

if a < u,

where ξ =
√
u2 – a2

6
1
x
Jν (ax), a > 0, ν > 0

⎧
⎨

⎩

ν–1 cos
[
ν arcsin(u/a)

]
if 0 < u < a,

aν cos(πν/2)

ν
(
u +

√
u2 – a2

)ν if a < u

7 x–νJν (ax), a > 0, ν > – 1
2

⎧
⎨

⎩

√
π
(
a2 – u2)ν–1/2

(2a)νΓ
(
ν + 1

2

) if 0 < u < a,

0 if a < u

8
xν+1Jν (ax),
a > 0, –1 < ν < – 1

2

⎧
⎨

⎩

0 if 0 < u < a,
2ν+1√π aνu

Γ
(
–ν – 1

2

)
(u2 – a2

)ν+3/2 if a < u

9 J0
(
a
√
x
)
, a > 0 1

u
sin
( a2

4u

)

10
1√
x
J1
(
a
√
x
)
, a > 0 4

a
sin2
( a2

8u

)

11 xν/2Jν

(
a
√
x
)
, a > 0, –1 < ν < 1

2

( a
2

)ν

u–ν–1 sin
( a2

4u
–
πν

2

)

12 J0
(
a
√
x2 + b2

)
⎧
⎨

⎩

cos
(
b
√
a2 – u2

)

√
a2 – u2

if 0 < u < a,

0 if a < u

13 Y0(ax), a > 0
{

0 if 0 < u < a,
–(u2 – a2)–1/2 if a < u

14 xνYν(ax), a > 0, |ν | < 1
2

⎧
⎨

⎩

0 if 0 < u < a,

–
(2a)ν

√
π

Γ
( 1

2 – ν
)
(u2 – a2

)ν+1/2 if a < u

15 K0
(
a
√
x2 + b2

)
, a, b > 0

π

2
√
u2 + a2

exp
(
–b
√
u2 + a2

)
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T3.4. Tables of Fourier Sine Transforms
T3.4.1. General Formulas

No. Original function, f (x) Sine transform, f̌ s(u) =
∫ ∞

0
f (x) sin(ux) dx

1 af1(x) + bf2(x) af̌ 1s(u) + bf̌ 2s(u)

2 f (ax), a > 0 1
a
f̌ s

( u
a

)

3 x2nf (x), n = 1, 2, . . . (–1)n
d2n

du2n
f̌ s(u)

4 x2n+1f (ax), n = 0, 1, . . . (–1)n+1 d2n+1

du2n+1 f̌ c(u), f̌ c(u) =
∫ ∞

0
f (x) cos(xu) dx

5 f (ax) cos(bx), a, b > 0 1
2a

[
f̌ s

( u + b
a

)
+ f̌ s

( u – b
a

)]

T3.4.2. Expressions with Power-Law Functions

No. Original function, f (x) Sine transform, f̌ s(u) =
∫ ∞

0
f (x) sin(ux) dx

1
{ 1 if 0 < x < a,

0 if a < x
1
u

[
1 – cos(au)

]

2

{
x if 0 < x < 1,
2 – x if 1 < x < 2,
0 if 2 < x

4
u2 sinu sin2 u

2

3
1
x

π

2

4
1

a + x
, a > 0 sin(au) Ci(au) – cos(au) si(au)

5
x

a2 + x2 , a > 0 π

2
e–au

6
1

x(a2 + x2)
, a > 0

π

2a2

(
1 – e–au)

7
a

a2 + (x – b)2 –
a

a2 + (x + b)2 πe–au sin(bu)

8
x + b

a2 + (x + b)2 –
x – b

a2 + (x – b)2 πe–au cos(bu)

9
x

(x2 + a2)n
, a > 0, n = 1, 2, . . . πue–au

22n–2(n – 1)! a2n–3

n–2∑

k=0

(2n – k – 4)!
k! (n – k – 2)!

(2au)k

10
x2m+1

(x2 + a)n+1 ,

n,m = 0, 1, . . . ; 0 ≤ m ≤ n
(–1)n+m π

2n!
∂n

∂an

(
ame–u

√
a )

11
1√
x

√
π

2u

12
1

x
√
x

√
2πu
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No. Original function, f (x) Sine transform, f̌ s(u) =
∫ ∞

0
f (x) sin(ux) dx

13 x(a2 + x2)–3/2 uK0(au)

14
(√

a2 + x2 – a
)1/2

√
a2 + x2

√
π

2u
e–au

15 x–ν , 0 < ν < 2 cos
( 1

2πν
)
Γ(1 – ν)uν–1

T3.4.3. Expressions with Exponential Functions

No. Original function, f (x) Sine transform, f̌ s(u) =
∫ ∞

0
f (x) sin(ux) dx

1 e–ax, a > 0
u

a2 + u2

2 xne–ax, a > 0, n = 1, 2, . . . n!
( a

a2 + u2

)n+1
[n/2]∑

k=0

(–1)kC2k+1
n+1

( u
a

)2k+1

3
1
x
e–ax, a > 0 arctan

u

a

4
√
xe–ax, a > 0

√
π

2
(a2 + u2)–3/4 sin

( 3
2

arctan
u

a

)

5
1√
x
e–ax, a > 0

√
π

2

(√
a2 + u2 – a)1/2

√
a2 + u2

6
1

x
√
x
e–ax, a > 0

√
2π
(√
a2 + u2 – a)1/2

7 xn–1/2e–ax, a > 0, n = 1, 2, . . . (–1)n
√
π

2
∂n

∂an

[ (√
a2 + u2 – a

)1/2

√
a2 + u2

]

8 xν–1e–ax, a > 0, ν > –1 Γ(ν)(a2 + u2)–ν/2 sin
(
ν arctan

u

a

)

9 x–2(e–ax – e–bx), a, b > 0 u

2
ln
( u2 + b2

u2 + a2

)
+ b arctan

( u
b

)
– a arctan

( u
a

)

10
1

eax + 1
, a > 0

1
2u

–
π

2a sinh(πu/a)

11
1

eax – 1
, a > 0

π

2a
coth
( πu
a

)
–

1
2u

12 ex/2

ex – 1
– 1

2 tanh(πu)

13 x exp
(
–ax2)

√
π

4a3/2 u exp
(

–
u2

4a

)

14
1
x

exp
(
–ax2) π

2
erf
( u

2
√
a

)

15
1√
x

exp
(

–
a

x

) √
π

2u
e–

√
2au[cos

(√
2au

)
+ sin

(√
2au

)]

16
1

x
√
x

exp
(

–
a

x

) √
π

a
e–

√
2au sin

(√
2au

)
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T3.4.4. Expressions with Hyperbolic Functions

No. Original function, f (x) Sine transform, f̌ s(u) =
∫ ∞

0
f (x) sin(ux) dx

1
1

sinh(ax)
, a > 0

π

2a
tanh
( 1

2πa
–1u
)

2
x

sinh(ax)
, a > 0 π2 sinh

( 1
2πa

–1u
)

4a2 cosh2( 1
2πa

–1u
)

3
1
x
e–bx sinh(ax), b > |a| 1

2 arctan
( 2au
u2 + b2 – a2

)

4
1

x cosh(ax)
, a > 0 arctan

[
sinh
( 1

2πa
–1u
)]

5 1 – tanh
( 1

2 ax
)
, a > 0

1
u

–
π

a sinh
(
πa–1u

)

6 coth
( 1

2 ax
)

– 1, a > 0 π

a
coth
(
πa–1u

)
–

1
u

7
cosh(ax)
sinh(bx)

, |a| < b
π

2b
sinh
(
πb–1u

)

cos
(
πab–1

)
+ cosh

(
πb–1u

)

8
sinh(ax)
cosh(bx)

, |a| < b
π

b

sin
( 1

2πab
–1) sinh

( 1
2πb

–1u
)

cos
(
πab–1

)
+ cosh

(
πb–1u

)

T3.4.5. Expressions with Logarithmic Functions

No. Original function, f (x) Sine transform, f̌ s(u) =
∫ ∞

0
f (x) sin(ux) dx

1
{

lnx if 0 < x < 1,
0 if 1 < x

1
u

[
Ci(u) – lnu – C],

C = 0.5772 . . . is the Euler constant

2
lnx
x

– 1
2π(lnu + C)

3
lnx√
x

–

√
π

2u
[
ln(4u) + C –

π

2
]

4 xν–1 lnx, |ν | < 1
πu–ν

[
ψ(ν) + π

2 cot
(

πν
2

)
– lnu

]

2Γ(1 – ν) cos
(

πν
2

)

5 ln
∣
∣
∣
a + x
a – x

∣
∣
∣, a > 0

π

u
sin(au)

6 ln
(x + b)2 + a2

(x – b)2 + a2 , a, b > 0
2π
u
e–au sin(bu)

7 e–ax lnx, a > 0 a arctan(u/a) – 1
2u ln(u2 + a2) – eCu

u2 + a2

8
1
x

ln
(

1 + a2x2), a > 0 – π Ei
(

–
u

a

)
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T3.4.6. Expressions with Trigonometric Functions

No. Original function, f (x) Sine transform, f̌ s(u) =
∫ ∞

0
f (x) sin(ux) dx

1
sin(ax)
x

, a > 0 1
2

ln
∣
∣
∣
u + a
u – a

∣
∣
∣

2
sin(ax)
x2 , a > 0

{ 1
2πu if 0 < u < a,
1
2πa if u > a

3 xν–1 sin(ax), a > 0, –2 < ν < 1 π
|u – a|–ν – |u + a|–ν

4Γ(1 – ν) sin
( 1

2πν
) , ν ≠ 0

4
sin(ax)
x2 + b2 , a, b > 0

{ 1
2πb

–1e–ab sinh(bu) if 0 < u < a,
1
2πb

–1e–bu sinh(ab) if u > a

5
sin(πx)

1 – x2

{
sinu if 0 < u < π,
0 if u > π

6 e–ax sin(bx), a > 0
a

2

[
1

a2 + (b – u)2 –
1

a2 + (b + u)2

]

7 x–1e–ax sin(bx), a > 0 1
4

ln
(u + b)2 + a2

(u – b)2 + a2

8
1
x

sin2(ax), a > 0

{ 1
4π if 0 < u < 2a,
1
8π if u = 2a,

0 if u > 2a

9
1
x2 sin2(ax), a > 0 1

4 (u + 2a) ln |u + 2a| + 1
4 (u – 2a) ln |u – 2a| – 1

2u lnu

10 exp
(
–ax2) sin(bx), a > 0 1

2

√
π

a
exp
(

–
u2 + b2

4a

)
sinh
( bu

2a

)

11
1
x

sin(ax) sin(bx), a ≥ b > 0

{
0 if 0 < u < a – b,
π
4 if a – b < u < a + b,

0 if a + b < u

12 sin
( a
x

)
, a > 0 π

√
a

2
√
u
J1
(

2
√
au
)

13
1√
x

sin
( a
x

)
, a > 0

√
π

8u
[
sin
(

2
√
au
)
– cos

(
2
√
au
)
+ exp

(
–2
√
au
)]

14 exp
(
–a

√
x
)

sin
(
a
√
x
)
, a > 0 a

√
π

8
u–3/2 exp

(
–
a2

2u

)

15
cos(ax)
x

, a > 0

⎧
⎨

⎩

0 if 0 < u < a,
1
4π if u = a,
1
2π if a < u

16 xν–1 cos(ax), a > 0, |ν | < 1
π(u + a)–ν – sign(u – a)|u – a|–ν

4Γ(1 – ν) cos
( 1

2πν
)

17
x cos(ax)
x2 + b2 , a, b > 0

{
– 1

2πe
–ab sinh(bu) if u < a,

1
2πe

–bu cosh(ab) if u > a

18
1 – cos(ax)

x2 , a > 0 u

2
ln
∣
∣
∣
u2 – a2

u2

∣
∣
∣ +

a

2
ln
∣
∣
∣
u + a
u – a

∣
∣
∣

19
1√
x

cos
(
a
√
x
) √

π

u
cos
( a2

4u
+
π

4

)

20
1√
x

cos
(
a
√
x
)

cos
(
b
√
x
)
, a, b > 0

√
π

u
cos
( ab

2u

)
cos
( a2 + b2

4u
+
π

4

)
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T3.4.7. Expressions with Special Functions

No. Original function, f (x) Sine transform, f̌ s(u) =
∫ ∞

0
f (x) sin(ux) dx

1 erfc(ax), a > 0 1
u

[
1 – exp

(
–
u2

4a2

)]

2 ci(ax), a > 0 –
1

2u
ln
∣
∣∣1 –

u2

a2

∣
∣∣

3 si(ax), a > 0
{

0 if 0 < u < a,
– 1

2πu
–1 if a < u

4 J0(ax), a > 0

{ 0 if 0 < u < a,
1√

u2 – a2
if a < u

5 Jν (ax), a > 0, ν > –2

⎧
⎪⎪⎨

⎪⎪⎩

sin
[
ν arcsin(u/a)

]

√
a2 – u2

if 0 < u < a,

aν cos(πν/2)
ξ(u + ξ)ν

if a < u,

where ξ =
√
u2 – a2

6
1
x
J0(ax), a > 0, ν > 0

{
arcsin(u/a) if 0 < u < a,
π/2 if a < u

7
1
x
Jν (ax), a > 0, ν > –1

⎧
⎪⎨

⎪⎩

ν–1 sin
[
ν arcsin(u/a)

]
if 0 < u < a,

aν sin(πν/2)

ν
(
u +

√
u2 – a2

)ν if a < u

8 xνJν (ax), a > 0, –1 < ν < 1
2

⎧
⎨

⎩

0 if 0 < u < a,√
π(2a)ν

Γ
( 1

2 – ν
)(
u2 – a2

)ν+1/2 if a < u

9 x–1e–axJ0(bx), a > 0 arcsin

(
2u

√
(u + b)2 + a2 +

√
(u – b)2 + a2

)

10
J0(ax)
x2 + b2 , a, b > 0

{
b–1 sinh(bu)K0(ab) if 0 < u < a,
0 if a < u

11
xJ0(ax)
x2 + b2 , a, b > 0

{
0 if 0 < u < a,

1
2πe

–buI0(ab) if a < u

12

√
xJ2n+1/2(ax)
x2 + b2 ,

a, b > 0, n = 0, 1, 2, . . .

{
(–1)n sinh(bu)K2n+1/2(ab) if 0 < u < a,
0 if a < u

13
xνJν (ax)
x2 + b2 ,

a, b > 0, –1 < ν < 5
2

{
bν–1 sinh(bu)Kν (ab) if 0 < u < a,
0 if a < u

14
x1–νJν (ax)
x2 + b2 ,

a, b > 0, ν > – 3
2

{
0 if 0 < u < a,

1
2πb

–νe–buIν(ab) if a < u

15 J0
(
a
√
x
)
, a > 0 1

u
cos
( a2

4u

)

16
1√
x
J1
(
a
√
x
)
, a > 0 2

a
sin
( a2

4u

)

17
xν/2Jν

(
a
√
x
)
,

a > 0, –2 < ν < 1
2

aν

2νuν+1 cos
( a2

4u
–
πν

2

)
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No. Original function, f (x) Sine transform, f̌ s(u) =
∫ ∞

0
f (x) sin(ux) dx

18 Y0(ax), a > 0

⎧
⎪⎪⎨

⎪⎪⎩

2 arcsin(u/a)

π
√
a2 – u2

if 0 < u < a,

2
[
ln
(
u –

√
u2 – a2

)
– ln a

]

π
√
u2 – a2

if a < u

19 Y1(ax), a > 0

{
0 if 0 < u < a,
–

u

a
√
u2 – a2

if a < u

20 K0(ax), a > 0 ln
(
u +

√
u2 + a2

)
– ln a√

u2 + a2

21 xK0(ax), a > 0
πu

2(u2 + a2)3/2

22 xν+1Kν (ax), a > 0, ν > – 3
2

√
π (2a)νΓ

(
ν + 3

2

)
u(u2 + a2)–ν–3/2

T3.5. Tables of Mellin Transforms
T3.5.1. General Formulas

No. Original function, f (x) Mellin transform, f̂ (s) =
∫ ∞

0
f (x)xs–1 dx

1 af1(x) + bf2(x) af̂ 1(s) + bf̂ 2(s)

2 f (ax), a > 0 a–sf̂ (s)

3 xaf (x) f̂ (s + a)

4 f (1/x) f̂ (–s)

5 f
(
xβ), β > 0

1
β
f̂
( s
β

)

6 f
(
x–β), β > 0

1
β
f̂
(

–
s

β

)

7 xλf
(
axβ
)
, a,β > 0 1

β
a

– s+λ
β f̂
( s + λ

β

)

8 xλf
(
ax–β), a,β > 0

1
β
a

s+λ
β f̂
(

–
s + λ
β

)

9 f ′
x(x) – (s – 1)f̂ (s – 1)

10 xf ′
x(x) – sf̂ (s)

11 f (n)
x (x) (–1)n

Γ(s)
Γ(s – n)

f̂ (s – n)

12
(
x
d

dx

)n

f (x) (–1)nsnf̂ (s)

13
( d

dx
x
)n

f (x) (–1)n(s – 1)nf̂ (s)

14 xα

∫ ∞

0
tβf1(xt)f2(t) dt f̂ 1(s + α)f̂ 2(1 – s – α + β)

15 xα

∫ ∞

0
tβf1

( x
t

)
f2(t) dt f̂ 1(s + α)f̂ 2(s + α + β + 1)
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T3.5.2. Expressions with Power-Law Functions

No. Original function, f (x) Mellin transform, f̂ (s) =
∫ ∞

0
f (x)xs–1 dx

1

{
x if 0 < x < 1,
2 – x if 1 < x < 2,
0 if 2 < x

{ 2(2s – 1)
s(s + 1)

if s ≠ 0,

2 ln 2 if s = 0,
Re s > –1

2
1

x + a
, a > 0 πas–1

sin(πs)
, 0 < Re s < 1

3
1

(x + a)(x + b)
, a, b > 0 π

(
as–1 – bs–1)

(b – a) sin(πs)
, 0 < Re s < 2

4
x + a

(x + b)(x + c)
, b, c > 0

π

sin(πs)

[( b – a
b – c

)
bs–1 +

( c – a
c – b

)
cs–1
]
,

0 < Re s < 1

5
1

x2 + a2 , a > 0
πas–2

2 sin
( 1

2πs
) , 0 < Re s < 2

6
1

x2 + 2ax cos β+a2 , a > 0, |β| < π –
πas–2 sin

[
β(s – 1)

]

sinβ sin(πs)
, 0 < Re s < 2

7
1

(x2 + a2)(x2 + b2)
, a, b > 0

π
(
as–2 – bs–2)

2(b2 – a2) sin
( 1

2πs
) , 0 < Re s < 4

8
1

(1 + ax)n+1 , a > 0, n = 1, 2, . . .
(–1)nπ
as sin(πs)

Cn
s–1, 0 < Re s < n + 1

9
1

xn + an
, a > 0, n = 1, 2, . . .

πas–n

n sin(πs/n)
, 0 < Re s < n

10
1 – x

1 – xn
, n = 2, 3, . . .

π sin(π/n)
n sin(πs/n) sin

[
π(s + 1)/n

] , 0 < Re s < n – 1

11
{
xν if 0 < x < 1,
0 if 1 < x

1
s + ν

, Re s > –ν

12
1 – xν

1 – xnν
, n = 2, 3, . . .

π sin(π/n)

nν sin
(

πs
nν

)
sin
[

π(s+ν)
nν

] , 0 < Re s < (n – 1)ν

T3.5.3. Expressions with Exponential Functions

No. Original function, f (x) Mellin transform, f̂ (s) =
∫ ∞

0
f (x)xs–1 dx

1 e–ax, a > 0 a–sΓ(s), Re s > 0

2

{
e–bx if 0 < x < a,
0 if a < x,

b > 0 b–sγ(s, ab), Re s > 0

3
{ 0 if 0 < x < a,
e–bx if a < x,

b > 0 b–sΓ(s, ab)

4
e–ax

x + b
, a, b > 0 eabbs–1Γ(s)Γ(1 – s, ab), Re s > 0

5 exp
(
–axβ

)
, a,β > 0 β–1a–s/βΓ(s/β), Re s > 0

6 exp
(
–ax–β), a,β > 0 β–1as/βΓ(–s/β), Re s < 0

7 1 – exp
(
–axβ), a, β > 0 – β–1a–s/βΓ(s/β), –β < Re s < 0

8 1 – exp
(
–ax–β), a,β > 0 – β–1as/βΓ(–s/β), 0 < Re s < β
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T3.5.4. Expressions with Logarithmic Functions

No. Original function, f (x) Mellin transform, f̂ (s) =
∫ ∞

0
f (x)xs–1 dx

1
{

lnx if 0 < x < a,
0 if a < x

s ln a – 1
s2as

, Re s > 0

2 ln(1 + ax), a > 0
π

sas sin(πs)
, –1 < Re s < 0

3 ln |1 – x|
π

s
cot(πs), –1 < Re s < 0

4
lnx
x + a

, a > 0
πas–1[ln a – π cot(πs)

]

sin(πs)
, 0 < Re s < 1

5
lnx

(x + a)(x + b)
, a, b > 0

π
[
as–1 ln a – bs–1 ln b – π cot(πs)(as–1 – bs–1)

]

(b – a) sin(πs)
,

0 < Re s < 1

6
{
xν lnx if 0 < x < 1,
0 if 1 < x

–
1

(s + ν)2 , Re s > –ν

7 ln2 x

x + 1
π3[2 – sin2(πs)

]

sin3(πs)
, 0 < Re s < 1

8

{
lnν–1 x if 0 < x < 1,
0 if 1 < x

Γ(ν)(–s)–ν , Re s < 0, ν > 0

9 ln
(
x2 + 2x cosβ + 1

)
, |β| < π

2π cos(βs)
s sin(πs)

, –1 < Re s < 0

10 ln
∣
∣
∣

1 + x
1 – x

∣
∣
∣

π

s
tan
( 1

2πs
)
, –1 < Re s < 1

11 e–x lnn x, n = 1, 2, . . . dn

dsn
Γ(s), Re s > 0

T3.5.5. Expressions with Trigonometric Functions

No. Original function, f (x) Mellin transform, f̂ (s) =
∫ ∞

0
f (x)xs–1 dx

1 sin(ax), a > 0 a–sΓ(s) sin
( 1

2πs
)
, –1 < Re s < 1

2 sin2(ax), a > 0 – 2–s–1a–sΓ(s) cos
( 1

2πs
)
, –2 < Re s < 0

3 sin(ax) sin(bx), a, b > 0, a ≠ b
1
2 Γ(s) cos

( 1
2πs
)[

|b – a|–s – (b + a)–s],
–2 < Re s < 1

4 cos(ax), a > 0 a–sΓ(s) cos
( 1

2πs
)
, 0 < Re s < 1

5 sin(ax) cos(bx), a, b > 0
Γ(s)

2
sin
( πs

2

)[
(a + b)–s + |a – b|–s sign(a – b)

]
,

–1 < Re s < 1

6 e–ax sin(bx), a > 0 Γ(s) sin
[
s arctan(b/a)

]

(a2 + b2)s/2 , –1 < Re s

7 e–ax cos(bx), a > 0 Γ(s) cos
[
s arctan(b/a)

]

(a2 + b2)s/2 , 0 < Re s

8
{

sin(a lnx) if 0 < x < 1,
0 if 1 < x

–
a

s2 + a2 , Re s > 0

9
{

cos(a lnx) if 0 < x < 1,
0 if 1 < x

s

s2 + a2 , Re s > 0
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No. Original function, f (x) Mellin transform, f̂ (s) =
∫ ∞

0
f (x)xs–1 dx

10 arctanx –
π

2s cos
( 1

2πs
) , –1 < Re s < 0

11 arccot x
π

2s cos
( 1

2πs
) , 0 < Re s < 1

T3.5.6. Expressions with Special Functions

No. Original function, f (x) Mellin transform, f̂ (s) =
∫ ∞

0
f (x)xs–1 dx

1 erfcx
Γ
( 1

2 s + 1
2

)

√
π s

, Re s > 0

2 Ei(–x) – s–1Γ(s), Re s > 0

3 Si(x) – s–1 sin
( 1

2πs
)
Γ(s), –1 < Re s < 0

4 si(x) – 4s–1 sin
( 1

2πs
)
Γ(s), –1 < Re s < 0

5 Ci(x) – s–1 cos
( 1

2πs
)
Γ(s), 0 < Re s < 1

6 Jν (ax), a > 0
2s–1Γ

( 1
2 ν + 1

2 s
)

asΓ
( 1

2 ν – 1
2 s + 1

) , –ν < Re s < 3
2

7 Yν(ax), a > 0 –
2s–1

πas
Γ
( s

2
+
ν

2

)
Γ
( s

2
–
ν

2

)
cos
[ π(s – ν)

2

]
,

|ν | < Re s < 3
2

8 e–axIν(ax), a > 0
Γ(1/2 – s)Γ(s + ν)√
π (2a)sΓ(1 + ν – s)

, –ν < Re s < 1
2

9 Kν (ax), a > 0 2s–2

as
Γ
( s

2
+
ν

2

)
Γ
( s

2
–
ν

2

)
, |ν | < Re s

10 e–axKν (ax), a > 0
√
π Γ(s – ν)Γ(s + ν)
(2a)sΓ(s + 1/2)

, |ν | < Re s

T3.6. Tables of Inverse Mellin Transforms

� See Section T3.5.1 for general formulas.

T3.6.1. Expressions with Power-Law Functions

No. Direct transform, f̂ (s) Inverse transform, f (x) =
1

2πi

∫ σ+i∞

σ–i∞
f̂ (s)x–s ds

1
1
s

, Re s > 0
{ 1 if 0 < x < 1,

0 if 1 < x

2
1
s

, Re s < 0
{ 0 if 0 < x < 1,

–1 if 1 < x

3
1

s + a
, Re s > –a

{
xa if 0 < x < 1,
0 if 1 < x

4
1

s + a
, Re s < –a

{ 0 if 0 < x < 1,
–xa if 1 < x

5
1

(s + a)2 , Re s > –a
{

–xa lnx if 0 < x < 1,
0 if 1 < x
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No. Direct transform, f̂ (s) Inverse transform, f (x) =
1

2πi

∫ σ+i∞

σ–i∞
f̂ (s)x–s ds

6
1

(s + a)2 , Re s < –a
{ 0 if 0 < x < 1,
xa lnx if 1 < x

7
1

(s + a)(s + b)
, Re s > –a, –b

{
xa – xb

b – a
if 0 < x < 1,

0 if 1 < x

8
1

(s + a)(s + b)
, –a < Re s < –b

⎧
⎪⎨

⎪⎩

xa

b – a
if 0 < x < 1,

xb

b – a
if 1 < x

9
1

(s + a)(s + b)
, Re s < –a, –b

{ 0 if 0 < x < 1,
xb – xa

b – a
if 1 < x

10
1

(s + a)2 + b2 , Re s > –a

{
1
b
xa sin

(
b ln

1
x

)
if 0 < x < 1,

0 if 1 < x

11
s + a

(s + a)2 + b2 , Re s > –a
{
xa cos(b lnx) if 0 < x < 1,
0 if 1 < x

12
√
s2 – a2 – s, Re s > |a|

{
–
a

lnx
I1(–a lnx) if 0 < x < 1,

0 if 1 < x

13
√
s + a
s – a

– 1, Re s > |a|
{
aI0(–a lnx) + aI1(–a lnx) if 0 < x < 1,
0 if 1 < x

14 (s + a)–ν , Re s > –a, ν > 0

{ 1
Γ(ν)

xa(– lnx)ν–1 if 0 < x < 1,

0 if 1 < x

15 s–1(s + a)–ν ,
Re s > 0, Re s > –a, ν > 0

{
a–ν
[
Γ(ν)

]–1
γ(ν, –a lnx) if 0 < x < 1,

0 if 1 < x

16 s–1(s + a)–ν ,
–a < Re s < 0, ν > 0

{
–a–ν

[
Γ(ν)

]–1
Γ(ν, –a lnx) if 0 < x < 1,

–a–ν if 1 < x

17 (s2 – a2)–ν , Re s > |a|, ν > 0

{ √
π (– lnx)ν–1/2Iν–1/2(–a lnx)

Γ(ν)(2a)ν–1/2 if 0 < x < 1,

0 if 1 < x

18 (a2 – s2)–ν , Re s < |a|, ν > 0

⎧
⎪⎪⎨

⎪⎪⎩

(– lnx)ν–1/2Kν–1/2(–a lnx)√
π Γ(ν)(2a)ν–1/2 if 0 < x < 1,

(lnx)ν–1/2Kν–1/2(a lnx)√
π Γ(ν)(2a)ν–1/2 if 1 < x

T3.6.2. Expressions with Exponential and Logarithmic Functions

No. Direct transform, f̂ (s) Inverse transform, f (x) =
1

2πi

∫ σ+i∞

σ–i∞
f̂ (s)x–s ds

1 exp(as2), a > 0
1

2
√
πa

exp
(

–
ln2 x

4a

)

2 s–νe–a/s, Re s > 0; a, ν > 0

⎧
⎨

⎩

∣∣
∣
a

lnx

∣∣
∣

1–ν
2
Jν–1
(

2
√
a|lnx|

)
if 0 < x < 1,

0 if 1 < x

3 exp
(
–
√
as
)
, Re s > 0, a > 0

⎧
⎨

⎩

(a/π)1/2

2|ln x|3/2 exp
(

–
a

4|lnx|

)
if 0 < x < 1,

0 if 1 < x
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No. Direct transform, f̂ (s) Inverse transform, f (x) =
1

2πi

∫ σ+i∞

σ–i∞
f̂ (s)x–s ds

4
1
s

exp
(
–a

√
s
)
, Re s > 0

{
erfc
( a

2
√

|lnx|

)
if 0 < x < 1,

0 if 1 < x

5
1
s

[
exp
(
–a

√
s
)

– 1
]
, Re s > 0

{
– erf

( a

2
√

|lnx|

)
if 0 < x < 1,

0 if 1 < x

6
√
s exp

(
–
√
as
)
, Re s > 0

⎧
⎨

⎩

a – 2|lnx|
4
√
π|lnx|5

exp
(

–
a

4|ln x|

)
if 0 < x < 1,

0 if 1 < x

7
1√
s

exp
(
–
√
as
)
, Re s > 0

⎧
⎨

⎩

1√
π|lnx|

exp
(

–
a

4|ln x|

)
if 0 < x < 1,

0 if 1 < x

8 ln
s + a
s + b

, Re s > –a, –b

{
xa – xb

lnx
if 0 < x < 1,

0 if 1 < x

9 s–ν ln s, Re s > 0, ν > 0

{
|lnx|ν–1 ψ(ν) – ln |lnx|

Γ(ν)
if 0 < x < 1,

0 if 1 < x

T3.6.3. Expressions with Trigonometric Functions

No. Direct transform, f̂ (s) Inverse transform, f (x) =
1

2πi

∫ σ+i∞

σ–i∞
f̂ (s)x–s ds

1
π

sin(πs)
, 0 < Re s < 1 1

x + 1

2
π

sin(πs)
, –n < Re s < 1 – n,

n = . . . , –1, 0, 1, 2, . . .
(–1)n

xn

x + 1

3
π2

sin2(πs)
, 0 < Re s < 1

lnx
x – 1

4
π2

sin2(πs)
, n < Re s < n + 1,

n = . . . , –1, 0, 1, 2, . . .

lnx
xn(x – 1)

5
2π3

sin3(πs)
, 0 < Re s < 1 π2 + ln2 x

x + 1

6
2π3

sin3(πs)
, n < Re s < n + 1,

n = . . . , –1, 0, 1, 2, . . .

π2 + ln2 x

(–x)n(x + 1)

7 sin
(
s2/a
)
, a > 0 1

2

√
a

π
sin
( 1

4 a|lnx|2 – 1
4π
)

8
π

cos(πs)
, – 1

2 < Re s < 1
2

√
x

x + 1

9
π

cos(πs)
, n – 1

2 < Re s < n + 1
2

n = . . . , –1, 0, 1, 2, . . .
(–1)n

x1/2–n

x + 1

10
cos(βs)
s cos(πs)

, –1 < Re s < 0, |β| < π 1
2π

ln(x2 + 2x cos β + 1)
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No. Direct transform, f̂ (s) Inverse transform, f (x) =
1

2πi

∫ σ+i∞

σ–i∞
f̂ (s)x–s ds

11 cos
(
s2/a
)
, a > 0 1

2

√
a

π
cos
( 1

4 a|lnx|2 – 1
4π
)

12 arctan
( a

s + b

)
, Re s > –b

⎧
⎨

⎩

xb

|lnx|
sin
(
a|lnx|

)
if 0 < x < 1,

0 if 1 < x

T3.6.4. Expressions with Special Functions

No. Direct transform, f̂ (s) Inverse transform, f (x) =
1

2πi

∫ σ+i∞

σ–i∞
f̂ (s)x–s ds

1 Γ(s), Re s > 0 e–x

2 Γ(s), –1 < Re s < 0 e–x – 1

3 sin
( 1

2πs
)
Γ(s), –1 < Re s < 1 sinx

4
sin(as)Γ(s),

Re s > –1, |a| <
π

2
exp(–x cos a) sin(x sin a)

5 cos
( 1

2πs
)
Γ(s), 0 < Re s < 1 cos x

6 cos
( 1

2πs
)
Γ(s), –2 < Re s < 0 – 2 sin2(x/2)

7 cos(as)Γ(s), Re s > 0, |a| <
π

2 exp(–x cos a) cos(x sin a)

8
Γ(s)

cos(πs)
, 0 < Re s <

1
2

ex erfc
(√
x
)

9 Γ(a + s)Γ(b – s),
–a < Re s < b, a + b > 0 Γ(a + b)xa(x + 1)–a–b

10 Γ(a + s)Γ(b + s),
Re s > –a, –b

2x(a+b)/2Ka–b

(
2
√
x
)

11
Γ(s)

Γ(s + ν)
, Re s > 0, ν > 0

{
(1 – x)ν–1

Γ(ν)
if 0 < x < 1,

0 if 1 < x

12
Γ(1 – ν – s)

Γ(1 – s)
,

Re s < 1 – ν, ν > 0

{ 0 if 0 < x < 1,
(x – 1)ν–1

Γ(ν)
if 1 < x

13

Γ(s)
Γ(ν – s + 1)

,

0 < Re s <
ν

2
+

3
4

x–ν/2Jν

(
2
√
x
)

14
Γ(s + ν)Γ(s – ν)

Γ(s + 1/2)
, Re s > |ν | π–1/2e–x/2Kν(x/2)

15
Γ(s + ν)Γ(1/2 – s)

Γ(1 + ν – s)
,

–ν < Re s < 1
2

π1/2e–x/2Iν(x/2)

16 ψ(s + a) – ψ(s + b),
Re s > –a, –b

{
xb – xa

1 – x
if 0 < x < 1,

0 if 1 < x
17 Γ(s)ψ(s), Re s > 0 e–x lnx

18 Γ(s, a), a > 0
{ 0 if 0 < x < a,
e–x if a < x

19 Γ(s)Γ(1 – s, a), Re s > 0, a > 0 (x + 1)–1e–a(x+1)
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No. Direct transform, f̂ (s) Inverse transform, f (x) =
1

2πi

∫ σ+i∞

σ–i∞
f̂ (s)x–s ds

20 γ(s, a), Re s > 0, a > 0
{
e–x if 0 < x < a,
0 if a < x

21 J0
(
a
√
b2 – s2

)
, a > 0

⎧
⎪⎨

⎪⎩

0 if 0 < x < e–a,
cos
(
b
√
a2 – ln2 x

)

π
√
a2 – ln2 x

if e–a < x < ea,

0 if ea < x

22 s–1I0(s), Re s > 0

{
1 if 0 < x < e–1,
π–1 arccos(lnx) if e–1 < x < e,
0 if e < x

23 Iν(s), Re s > 0

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

–
2ν sin(πν)

πF (x)
√

ln2 x – 1
if 0 < x < e–1,

cos
[
ν arccos(lnx)

]

π
√

1 – ln2 x
if e–1 < x < e,

0 if e < x,
where F (x) =

(√
–1 – lnx +

√
1 – lnx

)2ν

24 s–1Iν(s), Re s > 0

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2ν sin(πν)
πνF (x)

if 0 < x < e–1,

sin
[
ν arccos(lnx)

]

πν
if e–1 < x < e,

0 if e < x,
where F (x) =

(√
–1 – lnx +

√
1 – lnx

)2ν

25 s–νIν(s), Re s > – 1
2

⎧
⎪⎨

⎪⎩

0 if 0 < x < e–1,
(1 – ln2 x)ν–1/2

√
π 2νΓ(ν + 1/2)

if e–1 < x < e,

0 if e < x

26 s–1K0(s), Re s > 0
{

arccosh(– lnx) if 0 < x < e–1,
0 if e–1 < x

27 s–1K1(s), Re s > 0
{√

ln2 x – 1 if 0 < x < e–1,
0 if e–1 < x

28 Kν (s), Re s > 0

⎧
⎨

⎩

cosh
[
ν arccosh(– lnx)

]

√
ln2 x – 1

if 0 < x < e–1,

0 if e–1 < x

29 s–1Kν(s), Re s > 0

{ 1
ν

sinh
[
ν arccosh(– lnx)

]
if 0 < x < e–1,

0 if e–1 < x

30 s–νKν (s), Re s > 0, ν > – 1
2

⎧
⎨

⎩

√
π (ln2 x – 1)ν–1/2

2νΓ(ν + 1/2)
if 0 < x < e–1,

0 if e–1 < x
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Chapter T4

Orthogonal Curvilinear
Systems of Coordinate

T4.1. Arbitrary Curvilinear Coordinate Systems
T4.1.1. General Nonorthogonal Curvilinear Coordinates

T4.1.1-1. Metric tensor. Arc length and volume elements in curvilinear coordinates.

The curvilinear coordinates x1, x2, x3 are defined as functions of the rectangular Cartesian
coordinates x, y, z:

x1 = x1(x, y, z), x2 = x2(x, y, z), x3 = x3(x, y, z).

Using these formulas, one can express x, y, z in terms of the curvilinear coordinates
x1, x2, x3 as follows:

x = x(x1,x2,x3), y = y(x1,x2,x3), z = z(x1,x2,x3).

The metric tensor components gij are determined by the formulas

gij(x
1,x2,x3) =

∂x

∂xi
∂x

∂xj
+
∂y

∂xi
∂y

∂xj
+
∂z

∂xi
∂z

∂xj
;

gij(x
1,x2,x3) = gji(x

1,x2,x3); i, j = 1, 2, 3.

The arc length dl between close points (x, y, z) ≡ (x1,x2,x3) and (x + dx, y + dy, z + dz) ≡
(x1 + dx1, x2 + dx2, x3 + dx3) is expressed as

(dl)2 = (dx)2 + (dy)2 + (dz)2 =
3∑

i=1

3∑

j=1

gij(x
1,x2,x3) dxi dxj .

The volume of the elementary parallelepiped with vertices at the eight points (x1,x2,x3),
(x1 +dx1, x2, x3), (x1, x2 +dx2, x3), (x1, x2, x3 +dx3), (x1 +dx1, x2 +dx2, x3), (x1 +dx1,
x2, x3 + dx3), (x1, x2 + dx2, x3 + dx3), (x1 + dx1, x2 + dx2, x3 + dx3) is given by

dV =
∂(x, y, z)

∂(x1,x2,x3)
dx1 dx2 dx3 = �

√
det |gij | dx1 dx2 dx3.

Here, the plus sign corresponds to the standard situation where the tangent vectors to
the coordinate lines x1,x2,x3, pointing toward the direction of growth of the respective
coordinate, form a right-handed triple, just as unit vectors�i,�j,�k of a right-handed rectangular
Cartesian coordinate system.
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T4.1.1-2. Vector components in Cartesian and curvilinear coordinate systems.

The unit vectors�i, �j, �k of a rectangular Cartesian coordinate system* x, y, z and the unit
vectors�i1, �i2, �i3 of a curvilinear coordinate system x1,x2,x3 are connected by the linear
relations

�in =
1√
gnn

(
∂x

∂xn
�i +

∂y

∂xn
�j +

∂z

∂xn
�k

)
, n = 1, 2, 3;

�i =
√
g11

∂x1

∂x
�i1 +

√
g22

∂x2

∂x
�i2 +

√
g33

∂x3

∂x
�i3;

�j =
√
g11

∂x1

∂y
�i1 +

√
g22

∂x2

∂y
�i2 +

√
g33

∂x3

∂y
�i3;

�k =
√
g11

∂x1

∂z
�i1 +

√
g22

∂x2

∂z
�i2 +

√
g33

∂x3

∂z
�i3.

In the general case, the vectors�i1,�i2,�i3 are not orthogonal and change their direction from
point to point.

The components vx, vy, vz of a vector �v in a rectangular Cartesian coordinate system
x, y, z and the components v1, v2, v3 of the same vector in a curvilinear coordinate system
x1,x2,x3 are related by

�v = vx�i + vy�j + vz�k = v1�i1 + v2�i2 + v3�i3,

vn =
√
gnn

(
∂xn

∂x
vx +

∂xn

∂y
vy +

∂xn

∂z
vz

)
, n = 1, 2, 3;

vx =
∂x

∂x1
v1√
g11

+
∂x

∂x2
v2√
g22

+
∂x

∂x3
v3√
g33

;

vy =
∂y

∂x1
v1√
g11

+
∂y

∂x2
v2√
g22

+
∂y

∂x3
v3√
g33

;

vz =
∂z

∂x1
v1√
g11

+
∂z

∂x2
v2√
g22

+
∂z

∂x3
v3√
g33

.

T4.1.2. General Orthogonal Curvilinear Coordinates

T4.1.2-1. Orthogonal coordinates. Length, area, and volume elements.

A system of coordinates is orthogonal if

gij(x
1,x2,x3) = 0 for i ≠ j.

In this case the third invariant of the metric tensor is given by

g = det |gij | = g11g22g33.

The Lamé coefficients Lk of orthogonal curvilinear coordinates are expressed in terms
of the components of the metric tensor as

Li =
√
gii =

√( ∂x
∂xi

)2
+
( ∂y
∂xi

)2
+
( ∂z
∂xi

)2
, i = 1, 2, 3.

* Here and henceforth the coordinate axes and the respective coordinates of points in space are denoted by
the same letters.
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Arc length element:

dl =
√

(L1 dx1)2 + (L2 dx2)2 + (L3 dx3)2 =
√
g11(dx1)2 + g22(dx2)2 + g33(dx3)2.

The area elements dsi of the respective coordinate surfaces xi = const are given by

ds1 = dl2 dl3 = L2L3 dx
2 dx3 =

√
g22g33 dx

2 dx3,

ds2 = dl1 dl3 = L1L3 dx
1 dx3 =

√
g11g33 dx

1 dx3,

ds3 = dl1 dl2 = L1L2 dx
1 dx2 =

√
g11g22 dx

1 dx2.

Volume element:

dV = L1L2L3 dx
1 dx2 dx3 =

√
g11g22g33 dx

1 dx2 dx3.

T4.1.2-2. Basic differential relations in orthogonal curvilinear coordinates.

In what follows, we present the basic differential operators in the orthogonal curvilinear
coordinates x1, x2, x3. The corresponding unit vectors are denoted by�i1,�i2,�i3.

The gradient of a scalar f is expressed as

grad f ≡ ∇f =
1√
g11

∂f

∂x1
�i1 +

1√
g22

∂f

∂x2
�i2 +

1√
g33

∂f

∂x3
�i3.

Divergence of a vector �v =�i1v1 +�i2v2 +�i3v3:

div�v ≡ ∇ ⋅ �v =
1√
g

[
∂

∂x1

(
v1

√
g

g11

)
+

∂

∂x2

(
v2

√
g

g22

)
+

∂

∂x3

(
v3

√
g

g33

)]
.

Gradient of a scalar f along a vector �v:

(�v ⋅ ∇)f =
v1√
g11

∂f

∂x1 +
v2√
g22

∂f

∂x2 +
v3√
g33

∂f

∂x3 .

Gradient of a vector �w along a vector �v:

(�v ⋅ ∇)�w =�i1(�v ⋅ ∇)w1 +�i2(�v ⋅ ∇)w2 +�i3(�v ⋅ ∇)w3.

Curl of a vector �v:

curl�v ≡ ∇ × �v =�i1

√
g11√
g

[
∂

∂x2

(
v3
√
g33
)

–
∂

∂x3

(
v2
√
g22
)
]

+�i2

√
g22√
g

[
∂

∂x3

(
v1
√
g11
)

–
∂

∂x1

(
v3
√
g33
)
]

+�i3

√
g33√
g

[
∂

∂x1

(
v2
√
g22
)

–
∂

∂x2

(
v1
√
g11
)]

.

Remark. Sometimes curl�v is denoted by rot�v.

Laplace operator of a scalar f :

Δf ≡ ∇2f =
1√
g

[
∂

∂x1

(√
g

g11

∂f

∂x1

)
+

∂

∂x2

(√
g

g22

∂f

∂x2

)
+

∂

∂x3

(√
g

g33

∂f

∂x3

)]
.
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T4.2. Special Curvilinear Coordinate Systems
T4.2.1. Cylindrical Coordinates

T4.2.1-1. Transformations of coordinates and vectors. The metric tensor components.

The Cartesian coordinates are expressed in terms of the cylindrical ones as

x = ρ cosϕ, y = ρ sinϕ, z = z
(0 ≤ ρ < ∞, 0 ≤ ϕ < 2π, –∞ < z < ∞).

The cylindrical coordinates are expressed in terms of the cylindrical ones as

ρ =
√
x2 + y2, tanϕ = y/x, z = z (sinϕ = y/ρ).

Coordinate surfaces:
x2 + y2 = ρ2 (right circular cylinders with their axis coincident with the z-axis),
y = x tanϕ (half-planes through the z-axis),
z = z (planes perpendicular to the z-axis).

Direct and inverse transformations of the components of a vector �v = vx�i + vy�j + vz�k =
vρ�iρ + vϕ�iϕ + vz�iz:

vρ = vx cosϕ + vy sinϕ,
vϕ = –vx sinϕ + vy cosϕ,
vz = vz;

vx = vρ cosϕ – vϕ sinϕ,
vy = vρ sinϕ + vϕ cosϕ,
vz = vz.

Metric tensor components:

gρρ = 1, gϕϕ = ρ2, gzz = 1,
√
g = ρ.

T4.2.1-2. Basic differential relations.

Gradient of a scalar f :

∇f =
∂f

∂ρ
�iρ +

1
ρ

∂f

∂ϕ
�iϕ +

∂f

∂z
�iz .

Divergence of a vector �v:

∇ ⋅ �v =
1
ρ

∂(ρvρ)
∂ρ

+
1
ρ

∂vϕ
∂ϕ

+
∂vz
∂z

.

Gradient of a scalar f along a vector �v:

(�v ⋅ ∇)f = vρ
∂f

∂ρ
+
vϕ
ρ

∂f

∂ϕ
+ vz

∂f

∂z
.

Gradient of a vector �w along a vector �v:

(�v ⋅ ∇)�w = (�v ⋅ ∇)wρ�iρ + (�v ⋅ ∇)wϕ�iϕ + (�v ⋅ ∇)wz�iz .

Curl of a vector �v:

∇ × �v =

(
1
ρ

∂vz
∂ϕ

–
∂vϕ
∂z

)
�iρ +

(
∂vρ
∂z

–
∂vz
∂ρ

)
�iϕ +

1
ρ

[
∂(ρvϕ)
∂ρ

–
∂vρ
∂ϕ

]
�iz .

Laplacian of a scalar f :

Δf =
1
ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+

1
ρ2
∂2f

∂ϕ2 +
∂2f

∂z2 .

Remark. The cylindrical coordinates ρ, ϕ are also used as polar coordinates on the plane xy.
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T4.2.2. Spherical Coordinates

T4.2.2-1. Transformations of coordinates and vectors. The metric tensor components.

Cartesian coordinates via spherical ones:

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ
(0 ≤ r < ∞, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π).

Spherical coordinates via Cartesian ones:

r =
√
x2 + y2 + z2, θ = arccos

z

r
, tanϕ =

y

x

(
sinϕ =

y
√
x2 + y2

)
.

Coordinate surfaces:

x2 + y2 + z2 = r2 (spheres),

x2 + y2 – z2 tan2 θ = 0 (circular cones),
y = x tanϕ (half-planes trough the z-axis).

Direct and inverse transformations of the components of a vector �v = vx�i + vy�j + vz�k =
vr�ir + vθ�iθ + vϕ�iϕ:

vr = vx sin θ cosϕ + vy sin θ sinϕ + vz cos θ,

vθ = vx cos θ cosϕ + vy cos θ sinϕ – vz sin θ,

vϕ = –vx sinϕ + vy cosϕ;

vx = vr sin θ cosϕ + vθ cos θ cosϕ – vϕ sinϕ,

vy = vr sin θ sinϕ + vθ cos θ sinϕ + vϕ cosϕ,

vz = vr cos θ – vθ sin θ.

The metric tensor components are

grr = 1, gθθ = r2, gϕϕ = r2 sin2 θ,
√
g = r2 sin θ.

T4.2.2-2. Basic differential relations.

Gradient of a scalar f :

∇f =
∂f

∂r
�ir +

1
r

∂f

∂ϑ
�iθ +

1
r sin θ

∂f

∂ϕ
�iϕ.

Divergence of a vector �v:

∇ ⋅ �v =
1
r2

∂

∂r

(
r2vr

)
+

1
r sin θ

∂

∂θ

(
sin θ vθ

)
+

1
r sinϕ

∂vϕ
∂ϕ

.

Gradient of a scalar f along a vector �v:

(�v ⋅ ∇)f = vr
∂f

∂r
+
vθ
r

∂f

∂θ
+

vϕ
r sin θ

∂f

∂ϕ
.

Gradient of a vector �w along a vector �v:

(�v ⋅ ∇)�w = (�v ⋅ ∇)wr�ir + (�v ⋅ ∇)wθ�iθ + (�v ⋅ ∇)wϕ�iϕ.

Curl of a vector �v:

∇×�v=
1

r sin θ

[
∂(sin θ vϕ)

∂θ
–
∂vθ
∂ϕ

]
�ir+

1
r

[
1

sin θ
∂vr
∂ϕ

–
∂(rvϕ)
∂r

]
�iθ+

1
r

[
∂(rvθ)
∂r

–
∂vr
∂θ

]
�iϕ.

Laplacian of a scalar f :

Δf =
1
r2

∂

∂r

(
r2 ∂f

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1
r2 sin2 θ

∂2f

∂ϕ2 .



1200 ORTHOGONAL CURVILINEAR SYSTEMS OF COORDINATE

T4.2.3. Coordinates of a Prolate Ellipsoid of Revolution

T4.2.3-1. Transformations of coordinates. The metric tensor components.

1◦. Transformations of coordinates:

x2 = a2(σ2 – 1)(1 – τ 2) cos2 ϕ, y2 = a2(σ2 – 1)(1 – τ 2) sin2 ϕ, z = aστ
(σ ≥ 1 ≥ τ ≥ –1, 0 ≤ ϕ < 2π).

Coordinate surfaces (the z-axis is the axis revolution):

x2 + y2

a2(σ2 – 1)
+

z2

a2σ2 = 1 (prolate ellipsoids of revolution),

x2 + y2

a2(τ 2 – 1)
+

z2

a2τ 2 = 1 (hyperboloid of revolution of two sheets),

y = x tanϕ (half-planes through the z-axis).

Metric tensor components:

gσσ = a2 σ
2 – τ 2

σ2 – 1
, gττ = a2 σ

2 – τ 2

1 – τ 2 , gϕϕ = a2(σ2 – 1)(1 – τ 2),
√
g = a3(σ2 – τ 2).

2◦. Special coordinate system u, v, ϕ:

σ = coshu, τ = cos v, ϕ = ϕ (0 ≤ u < ∞, 0 ≤ v ≤ π, 0 ≤ ϕ < 2π);
x = a sinh u sin v cosϕ, y = a sinh u sin v sinϕ, z = a cosh u cos v.

Metric tensor components:

guu = gvv = a2(sinh2 u + sin2 v), gϕϕ = a2 sinh2 u sin2 v.

T4.2.3-2. Basic differential relations.

Gradient of a scalar f :

∇f =
1
a

√
σ2 – 1
σ2 – τ 2

∂f

∂σ
�iσ +

1
a

√
1 – τ 2

σ2 – τ 2
∂f

∂τ
�iτ +

1
a
√

(1 – τ 2)(σ2 – 1)

∂f

∂ϕ
�iϕ.

Divergence of a vector �v:

∇ ⋅ �v =
1

a(σ2 – τ 2)

{
∂

∂σ

[
vσ
√

(σ2 – τ 2)(σ2 – 1)
]

+
∂

∂τ

[
vτ
√

(σ2 – τ 2)(1 – τ 2)
]

+
∂

∂ϕ

[
vϕ

σ2 – τ 2
√

(σ2 – 1)(1 – τ 2)

]}
.

Gradient of a scalar f along a vector �v:

(�v ⋅ ∇)f =
vσ
a

√
σ2 – 1
σ2 – τ 2

∂f

∂σ
+
vτ
a

√
1 – τ 2

σ2 – τ 2
∂f

∂τ
+

vϕ

a
√

(σ2 – 1)(1 – τ 2)

∂f

∂ϕ
.

Gradient of a vector �w along a vector �v:

(�v ⋅ ∇)�w = (�v ⋅ ∇)wσ�iσ + (�v ⋅ ∇)wτ�iτ + (�v ⋅ ∇)wϕ�iϕ.

Laplacian of a scalar f :

Δf =
1

a2(σ2 – τ 2)

{
∂

∂σ

[
(σ2 – 1)

∂f

∂σ

]
+
∂

∂τ

[
(1 – τ 2)

∂f

∂τ

]
+

σ2 – τ 2

(σ2 – 1)(1 – τ 2)
∂2f

∂ϕ2

}
.
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T4.2.4. Coordinates of an Oblate Ellipsoid of Revolution

T4.2.4-1. Transformations of coordinates. The metric tensor components.

1◦. Transformations of coordinates:

x2 = a2(1 + σ2)(1 – τ 2) cos2 ϕ, y2 = a2(1 + σ2)(1 – τ 2) sin2 ϕ, z = aστ
(σ ≥ 0, –1 ≤ τ ≤ 1, 0 ≤ ϕ < 2π).

Coordinate surfaces (the z-axis is the axis of revolution):

x2 + y2

a2(1 – σ2)
+

z2

a2σ2 = 1 (oblate ellipsoids of revolution),

x2 + y2

a2(1 – τ 2)
–

z2

a2τ 2 = 1 (hyperboloid of revolution of one sheet),

y = x tanϕ (half-planes through the z-axis).

Components of the metric tensor:

gσσ = a2 σ
2 + τ 2

1 + σ2 , gττ = a2 σ
2 + τ 2

1 – τ 2 , gϕϕ = a2(1 + σ2)(1 – τ 2),
√
g = a3(σ2 + τ 2).

2◦. Special coordinates system u, v, ϕ:

σ = sinhu, τ = cos v, ϕ = ϕ (0 ≤ u < ∞, 0 ≤ v ≤ π, 0 ≤ ϕ < 2π),
x = a cosh u sin v cosϕ, y = a cosh u sin v sinϕ, z = a sinh u cos v.

Components of the metric tensor:

guu = gvv = a2(sinh2 u + cos2 v), gϕϕ = a2 cosh2 u sin2 v.

T4.2.4-2. Basic differential relations.

Gradient of a scalar f :

∇f =
1
a

√
σ2 + 1
σ2 + τ 2

∂f

∂σ
�iσ +

1
a

√
1 – τ 2

σ2 + τ 2
∂f

∂τ
�iτ +

1
a
√

(1 – τ 2)(σ2 + 1)

∂f

∂ϕ
�iϕ.

Divergence of a vector �v:

∇ ⋅ �v =
1

a(σ2 + τ 2)

{
∂

∂σ

[
vσ
√

(σ2 + τ 2)(σ2 + 1)

]

+
∂

∂τ

[
vτ
√

(σ2 + τ 2)(1 – τ 2)

]
+
∂

∂ϕ

[
vϕ

σ2 + τ 2
√

(σ2 + 1)(1 – τ 2)

]}
.

Gradient of a scalar f along a vector �v:

(�v ⋅ ∇)f =
vσ
a

√
σ2 + 1
σ2 + τ 2

∂f

∂σ
+
vτ
a

√
1 – τ 2

σ2 + τ 2
∂f

∂τ
+

vϕ

a
√

(σ2 + 1)(1 – τ 2)

∂f

∂ϕ
.

Gradient of a vector �w along a vector �v:

(�v ⋅ ∇)�w = (�v ⋅ ∇)wσ�iσ + (�v ⋅ ∇)wτ�iτ + (�v ⋅ ∇)wϕ�iϕ.

Laplacian of a scalar f :

Δf =
1

a2(σ2 + τ 2)

{
∂

∂σ

[
(1 + σ2)

∂f

∂σ

]
+
∂

∂τ

[
(1 – τ 2)

∂f

∂τ

]
+

σ2 + τ 2

(1 + σ2)(1 – τ 2)
∂2f

∂ϕ2

}
.
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T4.2.5. Coordinates of an Elliptic Cylinder
1◦. Transformations of coordinates:

x = aστ , y2 = a2(σ2 – 1)(1 – τ 2), z = z
(σ ≥ 1, –1 ≤ τ ≤ 1, –∞ < z < ∞).

Coordinate surfaces:
x2

a2σ2 +
y2

a2(σ2 – 1)
= 1 (elliptic cylinders),

x2

a2τ 2 +
y2

a2(τ 2 – 1)
= 1 (hyperbolic cylinders),

z = z (planes parallel to the xy-plane).

Components of the metric tensor:

gσσ = a2 σ
2 – τ 2

σ2 – 1
, gττ = a2 σ

2 – τ 2

1 – τ 2 , gzz = 1.

2◦. Special coordinate system u, v, z:

σ = cosh u, τ = cos v, z = z;
x = a cosh u cos v, y = a sinh u sin v, z = z
(0 ≤ u < ∞, 0 ≤ v ≤ π, –∞ < z < ∞).

Components of the metric tensor:

guu = gvv = a2(sinh2 u + sin2 v), gzz = 1.

3◦. Laplacian:

Δf =
1

a2(sinh2 u + sin2 v)

(
∂2f

∂u2 +
∂2f

∂v2

)
+
∂2f

∂z2

=

√
σ2 – 1

a2(σ2 – τ 2)
∂

∂σ

(√
σ2 – 1

∂f

∂σ

)
+

√
1 – τ 2

a2(σ2 – τ 2)
∂

∂τ

(√
1 – τ 2 ∂f

∂τ

)
+
∂2f

∂z2 .

Remark. The elliptic cylinder coordinates σ, τ are also used as elliptic coordinates on the plane xy.

T4.2.6. Conical Coordinates
Transformations of coordinates:

x = �
uvw

ab
, y2 =

u2(v2 – a2)(w2 – a2)
a2(a2 – b2)

, z2 =
u2(v2 – b2)(w2 – b2)

b2(b2 – a2)

(b2 > v2 > a2 > w2).

Coordinate surfaces:

x2 + y2 + z2 = u2 (spheres),

x2

v2 +
y2

v2 – a2 –
z2

b2 – v2 = 0 (cones with their axes coincident with the z-axis),

x2

w2 –
y2

a2 – w2 –
z2

b2 – w2 = 0 (cones with their axes coincident with the x-axis).

Components of the metric tensor:

guu = 1, gvv =
u2(v2 – w2)

(v2 – a2)(b2 – v2)
, gww =

u2(v2 – w2)
(a2 – w2)(b2 – w2)

.
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T4.2.7. Parabolic Cylinder Coordinates

Transformations of coordinates:

x = στ , y =
1
2

(τ 2 – σ2), z = z.

Coordinate surfaces:

x2

σ2 = 2y + σ2 (right parabolic cylinders with element parallel to the z-axis),

x2

τ 2 = –2y + τ 2 (right parabolic cylinders with element parallel to the z-axis),

z = z (planes parallel to the xy-plane).

Components of the metric tensor:

gσσ = gττ = σ2 + τ 2, gzz = 1.

Laplacian of a scalar f :

Δf =
1

(σ2 + τ 2)

(
∂2f

∂σ2 +
∂2f

∂τ 2

)
+
∂2f

∂z2 .

Remark. The parabolic cylinder coordinates σ, τ are also used as parabolic coordinates on the plane xy.

T4.2.8. Parabolic Coordinates

Transformations of coordinates:

x = στ cosϕ, y = στ sinϕ, z =
1
2

(τ 2 – σ2).

Coordinate surfaces (the z-axis is the axis of revolution):

x2 + y2

σ2 = 2z + σ2 (paraboloids of revolution),

x2 + y2

τ 2 = –2z + τ 2 (paraboloids of revolution),

y = x tanϕ (half-planes through the z-axis).

Components of the metric tensor:

gσσ = gττ = σ2 + τ 2, gϕϕ = σ2τ 2.

Laplacian of a scalar f :

Δf =
1

(σ2 + τ 2)

[
1
σ

∂

∂σ

(
σ
∂f

∂σ

)
+

1
τ

∂

∂τ

(
τ
∂f

∂τ

)
+

(
1
σ2 +

1
τ 2

)
∂2f

∂ϕ2

]
.
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T4.2.9. Bicylindrical Coordinates
Transformations of coordinates:

x =
a sinh τ

cosh τ – cos σ
, y =

a sinσ
cosh τ – cos σ

, z = z.

Coordinate surfaces:

x2 + (y – a cotσ)2 = a2(cot2 σ + 1) (right circular cylinders with element parallel to the z-axis),

(x – a coth τ )2 + y2 = a2(coth2 τ – 1) (right circular cylinders with element parallel to the z-axis),

z = z (planes parallel to the xy-plane).

Components of the metric tensor:

gσσ = gττ =
a2

(cosh τ – cos σ)2 , gzz = 1.

Laplacian of a scalar f :

Δf =
1
a2 (cosh τ – cos σ)2

(
∂2f

∂σ2 +
∂2f

∂τ 2

)
+
∂2f

∂z2 .

Remark. The bicylindrical coordinates σ, τ are also used as bipolar coordinates on the plane xy.

T4.2.10. Bipolar Coordinates (in Space)
Transformations of coordinates:

x =
a sinσ cosϕ

cosh τ – cos σ
, y =

a sinσ sinϕ
cosh τ – cos σ

, z =
a sinh τ

cosh τ – cos σ
(–∞ < τ < ∞, 0 ≤ σ < π, 0 ≤ ϕ < 2π).

Coordinate surfaces (the z-axis is the axis of revolution):

x2 + y2 + (z – a coth τ )2 =
a2

sinh2 τ
(spheres with centers on the z-axis),

(
√
x2 + y2 – a cot σ)2 + z2 =

a2

sin2 σ

(surfaces obtained by revolution of circular arches
(y – a cot σ)2 + z2 = a2/ sin2 σ about the z-axis),

y = x tanϕ (half-planes through the z-axis).

Components of the metric tensor:

gσσ = gττ =
a2

(cosh τ – cos σ)2 , gϕϕ =
a2 sin2 σ

(cosh τ – cos σ)2 .

Laplacian of a scalar f :

Δf =
(cosh τ – cos σ)2

a2 sin σ

[
∂

∂τ

(
sinσ

cosh τ – cos σ
∂f

∂τ

)

+
∂

∂σ

(
sin σ

cosh τ – cos σ
∂f

∂σ

)
+

1
sin σ(cosh τ – cos σ)

∂2f

∂ϕ2

]
.
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T4.2.11. Toroidal Coordinates

Transformations of coordinates:

x =
a sinh τ cosϕ
cosh τ – cos σ

, y =
a sinh τ sinϕ
cosh τ – cos σ

, z =
a sin σ

cosh τ – cos σ
(–π ≤ σ ≤ π, 0 ≤ τ < ∞, 0 ≤ ϕ < 2π).

Coordinate surfaces (the z-axis is the axis of revolution):

x2 + y2 + (z – a cot σ)2 =
a2

sin2 σ
(spheres with centers on the z-axis),

(
√
x2 + y2 – a coth τ )2 + z2 =

a2

sinh2 τ
(tori with centers on the z-axis),

y = x tanϕ (half-planes through the z-axis).

Components of the metric tensor:

gσσ = gττ =
a2

(cosh τ – cos σ)2 , gϕϕ =
a2 sinh2 τ

(cosh τ – cos σ)2 .

Laplacian of a scalar f :

Δf =
(cosh τ – cos σ)2

a2 sinh τ

[
∂

∂σ

(
sinh τ

cosh τ – cos σ
∂f

∂σ

)

+
∂

∂τ

(
sinh τ

cosh τ – cos σ
∂f

∂τ

)
+

1
sinh τ (cosh τ – cos σ)

∂2f

∂ϕ2

]
.
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Chapter T5

Ordinary Differential Equations

T5.1. First-Order Equations
� In this Section we shall often use the term “solution” to mean “general solution.”

1. y′
x = f(y).

Autonomous equation.

Solution: x =
∫

dy

f (y)
+ C .

Particular solutions: y = Ak, where the Ak are roots of the algebraic (transcendental)
equation f (Ak) = 0.

2. y′
x = f(x)g(y).

Separable equation.

Solution:
∫

dy

g(y)
=
∫
f (x) dx + C .

Particular solutions: y = Ak, where the Ak are roots of the algebraic (transcendental)
equation g(Ak) = 0.

3. g(x)y′
x = f1(x)y + f0(x).

Linear equation.
Solution:

y = CeF + eF
∫
e–F f0(x)

g(x)
dx, where F (x) =

∫
f1(x)
g(x)

dx.

4. g(x)y′
x = f1(x)y + f0(x)yk.

Bernoulli equation. Here, k is an arbitrary number. For k ≠ 1, the substitution w(x) = y1–k

leads to a linear equation: g(x)w′
x = (1 – k)f1(x)w + (1 – k)f0(x).

Solution:

y1–k = CeF + (1 – k)eF
∫
e–F f0(x)

g(x)
dx, where F (x) = (1 – k)

∫
f1(x)
g(x)

dx.

5. y′
x = f(y/x).

Homogeneous equation. The substitution u(x) = y/x leads to a separable equation: xu′x =
f (u) – u.

1207
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6. y′
x = ay2 + bxn.

Special Riccati equation, n is an arbitrary number.

1◦. Solution for n ≠ –2:

y = –
1
a

w′
x

w
, w(x) =

√
x
[
C1J 1

2k

( 1
k

√
ab xk

)
+ C2Y 1

2k

( 1
k

√
ab xk

)]
,

where k = 1
2 (n + 2); Jm(z) and Ym(z) are Bessel functions (see Subsection 18.6).

2◦. Solution for n = –2:

y =
λ

x
– x2aλ

( ax

2aλ + 1
x2aλ + C

)–1
,

where λ is a root of the quadratic equation aλ2 + λ + b = 0.

7. y′
x = y2 + f(x)y – a2 – af(x).

Particular solution: y0 = a. The general solution can be obtained by formulas given in
Item 1◦ of equation T5.1.23.

8. y′
x = f(x)y2 + ay – ab – b2f(x).

Particular solution: y0 = b. The general solution can be obtained by formulas given in
Item 1◦ of equation T5.1.23.

9. y′
x = y2 + xf(x)y + f(x).

Particular solution: y0 = –1/x. The general solution can be obtained by formulas given in
Item 1◦ of equation T5.1.23.

10. y′
x = f(x)y2 – axnf(x)y + anxn–1.

Particular solution: y0 = axn. The general solution can be obtained by formulas given in
Item 1◦ of equation T5.1.23.

11. y′
x = f(x)y2 + anxn–1 – a2x2nf(x).

Particular solution: y0 = axn. The general solution can be obtained by formulas given in
Item 1◦ of equation T5.1.23.

12. y′
x = –(n + 1)xny2 + xn+1f(x)y – f(x).

Particular solution: y0 = x–n–1. The general solution can be obtained by formulas given in
Item 1◦ of equation T5.1.23.

13. xy′
x = f(x)y2 + ny + ax2nf(x).

Solution: y =

⎧
⎪⎨

⎪⎩

√
a xn tan

[√
a

∫
xn–1f (x) dx + C

]
if a > 0,

√
|a|xn tanh

[
–
√

|a|
∫
xn–1f (x) dx + C

]
if a < 0.
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14. xy′
x = x2nf(x)y2 + [axnf(x) – n]y + bf(x).

The substitution z = xny leads to a separable equation: z′x = xn–1f (x)(z2 + az + b).

15. y′
x = f(x)y2 + g(x)y – a2f(x) – ag(x).

Particular solution: y0 = a. The general solution can be obtained by formulas given in
Item 1◦ of equation T5.1.23.

16. y′
x = f(x)y2 + g(x)y + anxn–1 – a2x2nf(x) – axng(x).

Particular solution: y0 = axn. The general solution can be obtained by formulas given in
Item 1◦ of equation T5.1.23.

17. y′
x = aeλxy2 + aeλxf(x)y + λf(x).

Particular solution: y0 = –
λ

a
e–λx. The general solution can be obtained by formulas given

in Item 1◦ of equation T5.1.23.

18. y′
x = f(x)y2 – aeλxf(x)y + aλeλx.

Particular solution: y0 = aeλx. The general solution can be obtained by formulas given in
Item 1◦ of equation T5.1.23.

19. y′
x = f(x)y2 + aλeλx – a2e2λxf(x).

Particular solution: y0 = aeλx. The general solution can be obtained by formulas given in
Item 1◦ of equation T5.1.23.

20. y′
x = f(x)y2 + λy + ae2λxf(x).

Solution: y =

⎧
⎪⎨

⎪⎩

√
a eλx tan

[√
a

∫
eλxf (x) dx + C

]
if a > 0,

√
|a| eλx tanh

[
–
√

|a|
∫
eλxf (x) dx + C

]
if a < 0.

21. y′
x = y2 – f 2(x) + f ′

x(x).

Particular solution: y0 = f (x). The general solution can be obtained by formulas given in
Item 1◦ of equation T5.1.23.

22. y′
x = f(x)y2 – f(x)g(x)y + g′

x(x).

Particular solution: y0 = g(x). The general solution can be obtained by formulas given in
Item 1◦ of equation T5.1.23.

23. y′
x = f(x)y2 + g(x)y + h(x).

General Riccati equation.
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1◦. Given a particular solution y0 = y0(x) of the Riccati equation, the general solution can
be written as:

y = y0(x) + Φ(x)
[
C –

∫
Φ(x)f2(x) dx

]–1
,

where
Φ(x) = exp

{∫ [
2f2(x)y0(x) + f1(x)

]
dx
}

.

To the particular solution y0(x) there corresponds C = ∞.

2◦. The substitution
u(x) = exp

(
–
∫
f2y dx

)

reduces the general Riccati equation to a second-order linear equation:

f2u
′′
xx –

[
(f2)′x + f1f2

]
u′x + f0f

2
2u = 0,

which often may be easier to solve than the original Riccati equation.

3◦. For more details about the Riccati equation, see Subsection 12.1.4. Many solvable
equations of this form can be found in the books by Kamke (1977) and Polyanin and
Zaitsev (2003).

24. yy′
x = y + f(x).

Abel equation of the second kind in the canonical form. Many solvable equations of this
form can be found in the books by Zaitsev and Polyanin (1994) and Polyanin and Zaitsev
(2003).

25. yy′
x = f(x)y + g(x).

Abel equation of the second kind. Many solvable equations of this form can be found in the
books by Zaitsev and Polyanin (1994) and Polyanin and Zaitsev (2003).

26. yy′
x = f(x)y2 + g(x)y + h(x).

Abel equation of the second kind. Many solvable equations of this form can be found in the
books by Zaitsev and Polyanin (1994) and Polyanin and Zaitsev (2003).

� In equations T5.1.27–T5.1.48, the functions f , g, and h are arbitrary composite functions
whose arguments can depend on both x and y.

27. y′
x = f(ax + by + c).

If b ≠ 0, the substitution u(x) = ax + by + c leads to a separable equation: u′x = bf (u) + a.

28. y′
x = f(y + axn + b) – anxn–1.

The substitution u = y + axn + b leads to a separable equation: u′x = f (u).

29. y′
x =

y

x
f(xnym).

Generalized homogeneous equation. The substitution z = xnym leads to a separable
equation: xz′x = nz +mzf (z).
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30. y′
x = –

n

m

y

x
+ ykf(x)g(xnym).

The substitution z = xnym leads to a separable equation: z′x = mx
n–nk
m f (x)z

k+m–1
m g(z).

31. y′
x = f

(( ax + by + c

αx + βy + γ

))
.

See Paragraph 12.1.2-3, Item 2◦.

32. y′
x = xn–1y1–mf(axn + bym).

The substitution w = axn + bym leads to a separable equation: w′
x = xn–1[an + bmf (w)].

33. [xnf(y) + xg(y)]y′
x = h(y).

This is a Bernoulli equation with respect to x = x(y) (see equation T5.1.4).

34. x[f(xnym) + mxkg(xnym)]y′
x = y[h(xnym) – nxkg(xnym)].

The transformation t = xnym, z = x–k leads to a linear equation with respect to z = z(t):
t[nf (t) + mh(t)]z′t = –kf (t)z – kmg(t).

35. x[f(xnym) + mykg(xnym)]y′
x = y[h(xnym) – nykg(xnym)].

The transformation t = xnym, z = y–k leads to a linear equation with respect to z = z(t):
t[nf (t) + mh(t)]z′t = –kh(t)z + kng(t).

36. x[sf(xnym) –mg(xkys)]y′
x = y[ng(xkys) – kf(xnym)].

The transformation t = xnym, w = xkys leads to a separable equation: tf (t)w′
t = wg(w).

37. [f(y) + amxnym–1]y′
x + g(x) + anxn–1ym = 0.

Solution:
∫
f (y) dy +

∫
g(x) dx + axnym = C .

38. y′
x = e–λxf(eλxy).

The substitution u = eλxy leads to a separable equation: u′x = f (u) + λu.

39. y′
x = eλyf(eλyx).

The substitution u = eλyx leads to a separable equation: xu′x = λu2f (u) + u.

40. y′
x = yf(eαxym).

The substitution z = eαxym leads to a separable equation: z′x = αz +mzf (z).

41. y′
x =

1

x
f(xneαy).

The substitution z = xneαy leads to a separable equation: xz′x = nz + αzf (z).
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42. y′
x = f(x)eλy + g(x).

The substitution u=e–λy leads to a linear equation: u′x = –λg(x)u–λf (x).

43. y′
x = –

n

x
+ f(x)g(xney).

The substitution z = xney leads to a separable equation: z′x = f (x)zg(z).

44. y′
x = –

α

m
y + ykf(x)g(eαxym).

The substitution z = eαxym leads to a separable equation:

z′x = m exp
[ α
m

(1 – k)x
]
f (x)z

k+m–1
m g(z).

45. y′
x = eαx–βyf(aeαx + beβy).

The substitution w = aeαx + beβy leads to a separable equation: w′
x = eαx[aα + bβf (w)].

46. [eαxf(y) + aβ]y′
x + eβyg(x) + aα = 0.

Solution:
∫
e–βyf (y) dy +

∫
e–αxg(x) dx – ae–αx–βy = C .

47. x[f(xneαy) + αyg(xneαy)]y′
x = h(xneαy) – nyg(xneαy).

The substitution t = xneαy leads to a linear equation with respect to y = y(t):
t[nf (t) + αh(t)]y′t = –ng(t)y + h(t).

48. [f(eαxym) + mxg(eαxym)]y′
x = y[h(eαxym) – αxg(eαxym)].

The substitution t = eαxym leads to a linear equation with respect to x = x(t):
t[αf (t) + mh(t)]x′t = mg(t)x + f (t).

T5.2. Second-Order Linear Equations
Preliminary remarks. A homogeneous linear equation of the second order has the general
form

f2(x)y′′xx + f1(x)y′x + f0(x)y = 0. (1)

Let y0 = y0(x) be a nontrivial particular solution (y0 � 0) of this equation. Then the
general solution of equation (1) can be found from the formula

y = y0

(
C1 + C2

∫ e–F

y2
0
dx
)

, where F =
∫ f1

f2
dx. (2)

For specific equations described below, often only particular solutions are given, while
the general solutions can be obtained with formula (2).
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T5.2.1. Equations Involving Power Functions
1. y′′

xx + ay = 0.

Equation of free oscillations.

Solution: y =

{
C1 sinh(x

√
|a| ) + C2 cosh(x

√
|a| ) if a < 0,

C1 + C2x if a = 0,
C1 sin(x

√
a ) + C2 cos(x

√
a ) if a > 0.

2. y′′
xx – axny = 0.

1◦. For n = –2, this is the Euler equation T5.2.1.12 (the solution is expressed in terms of
elementary function).

2◦. Assume 2/(n + 2) = 2m + 1, where m is an integer. Then the solution is

y =

⎧
⎪⎪⎨

⎪⎪⎩

x(x1–2qD)m+1
[
C1 exp

(√
a

q
xq
)

+ C2 exp

(
–

√
a

q
xq
)]

if m ≥ 0,

(x1–2qD)–m
[
C1 exp

(√
a

q
xq
)

+ C2 exp

(
–

√
a

q
xq
)]

if m < 0,

where D =
d

dx
, q =

n + 2
2

=
1

2m + 1
.

3◦. For any n, the solution is expressed in terms of Bessel functions and modified Bessel
functions:

y =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C1
√
xJ 1

2q

(√
–a
q

xq
)

+ C2
√
xY 1

2q

(√
–a
q

xq
)

if a < 0,

C1
√
x I 1

2q

(√
a

q
xq
)

+ C2
√
xK 1

2q

(√
a

q
xq
)

if a > 0,

where q = 1
2 (n + 2). The functions Jν (z), Yν(z) and Iν(z), Kν(z) are described in Sec-

tions 18.6 and 18.7 in detail; see also equations T5.2.1.13 and T5.2.1.14.

3. y′′
xx + ay′

x + by = 0.

Second-order constant coefficient linear equation. In physics this equation is called an
equation of damped vibrations.

Solution: y =

⎧
⎪⎨

⎪⎩

exp
(
– 1

2ax
)[
C1 exp

( 1
2λx
)

+ C2 exp
(
– 1

2λx
)]

if λ2 = a2 – 4b > 0,

exp
(
– 1

2ax
)[
C1 sin

( 1
2λx
)

+ C2 cos
( 1

2λx
)]

if λ2 = 4b – a2 > 0,

exp
(
– 1

2ax
)(
C1x + C2

)
if a2 = 4b.

4. y′′
xx + ay′

x + (bx + c)y = 0.

1◦. Solution with b ≠ 0:

y = exp
(
– 1

2ax
)√

ξ
[
C1J1/3

( 2
3

√
b ξ3/2) + C2Y1/3

( 2
3

√
b ξ3/2)], ξ = x +

4c – a2

4b
,

where J1/3(z) and Y1/3(z) are Bessel functions.

2◦. For b = 0, see equation T5.2.1.3.
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5. y′′
xx + (ax + b)y′

x + (αx2 + βx + γ)y = 0.

The substitution y =u exp(sx2), where s is a root of the quadratic equation 4s2 +2as+α= 0,
leads to an equation of the form T5.2.1.11: u′′xx+[(a+4s)x+b]u′x+[(β+2bs)x+γ+2s]u= 0.

6. xy′′
xx + ay′

x + by = 0.

1◦. The solution is expressed in terms of Bessel functions and modified Bessel functions:

y =

⎧
⎨

⎩
x

1–a
2
[
C1Jν

(
2
√
bx
)

+ C2Yν
(

2
√
bx
)]

if bx > 0,

x
1–a

2
[
C1Iν

(
2
√

|bx|
)

+ C2Kν

(
2
√

|bx|
)]

if bx < 0,

where ν = |1 – a|.
2◦. For a = 1

2 (2n + 1), where n = 0, 1, . . . , the solution is

y =

⎧
⎪⎨

⎪⎩

C1
dn

dxn
cos

√
4bx + C2

dn

dxn
sin

√
4bx if bx > 0,

C1
dn

dxn
cosh

√
4|bx| + C2

dn

dxn
sinh

√
4|bx| if bx < 0.

7. xy′′
xx + ay′

x + bxy = 0.

1◦. The solution is expressed in terms of Bessel functions and modified Bessel functions:

y =

⎧
⎨

⎩
x

1–a
2
[
C1Jν

(√
b x
)

+ C2Yν
(√
b x
)]

if b > 0,

x
1–a

2
[
C1Iν

(√
|b| x
)

+ C2Kν

(√
|b| x
)]

if b < 0,

where ν = 1
2 |1 – a|.

2◦. For a = 2n, where n = 1, 2, . . . , the solution is

y =

⎧
⎪⎨

⎪⎩

C1

( 1
x

d

dx

)n
cos
(
x
√
b
)

+ C2

( 1
x

d

dx

)n
sin
(
x
√
b
)

if b > 0,

C1

( 1
x

d

dx

)n
cosh

(
x
√

–b
)

+ C2

( 1
x

d

dx

)n
sinh
(
x
√

–b
)

if b < 0.

8. xy′′
xx + ny′

x + bx1–2ny = 0.

For n = 1, this is the Euler equation T5.2.1.12. For n ≠ 1, the solution is

y =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C1 sin

( √
b

n – 1
x1–n

)
+ C2 cos

( √
b

n – 1
x1–n

)
if b > 0,

C1 exp

( √
–b

n – 1
x1–n

)
+ C2 exp

(
–
√

–b
n – 1

x1–n
)

if b < 0.

9. xy′′
xx + ay′

x + bxny = 0.

If n = –1 and b = 0, we have the Euler equation T5.2.1.12. If n ≠ –1 and b ≠ 0, the solution
is expressed in terms of Bessel functions:

y = x
1–a

2

[
C1Jν

( 2
√
b

n + 1
x
n+1

2
)

+ C2Yν

( 2
√
b

n + 1
x
n+1

2
)]

, where ν =
|1 – a|
n + 1

.
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10. xy′′
xx + (b – x)y′

x – ay = 0.

Degenerate hypergeometric equation.

1◦. If b ≠ 0, –1, –2, –3, . . . , Kummer’s series is a particular solution:

Φ(a, b;x) = 1 +
∞∑

k=1

(a)k
(b)k

xk

k!
,

where (a)k = a(a + 1) . . . (a + k – 1), (a)0 = 1. If b > a > 0, this solution can be written in
terms of a definite integral:

Φ(a, b;x) =
Γ(b)

Γ(a) Γ(b – a)

∫ 1

0
extta–1(1 – t)b–a–1 dt,

where Γ(z) =
∫ ∞

0
e–ttz–1 dt is the gamma function.

If b is not an integer, then the general solution has the form:

y = C1Φ(a, b;x) + C2x
1–bΦ(a – b + 1, 2 – b; x).

2◦. For b≠ 0, –1, –2, –3, . . . , the general solution of the degenerate hypergeometric equation
can be written in the form

y = C1Φ(a, b;x) + C2Ψ(a, b;x),

while for b = 0, –1, –2, –3, . . . , it can be represented as

y = x1–b[C1Φ(a – b + 1, 2 – b; x) + C2Ψ(a – b + 1, 2 – b; x)
]
.

The functions Φ(a, b;x) and Ψ(a, b;x) are described in Subsection 18.9 in detail.

11. (a2x + b2)y′′
xx + (a1x + b1)y′

x + (a0x + b0)y = 0.

Let the function J (a, b;x) be an arbitrary solution of the degenerate hypergeometric equa-
tion xy′′xx + (b – x)y′x – ay = 0 (see T5.2.1.10), and let the function Zν(x) be an arbitrary
solution of the Bessel equation x2y′′xx + xy′x + (x2 – ν2)y = 0 (see T5.2.1.13). The results
of solving the original equation are presented in Table T5.1.

TABLE T5.1
Solutions of equation T5.2.1.11 for different values of the determining parameters

Solution: y = ekxw(z), where z =
x–μ
λ

Constraints k λ μ w Parameters

a2 ≠ 0,
a2

1 ≠ 4a0a2

√
D–a1

2a2
–

a2

2a2k+a1
–
b2

a2
J (a, b; z)

a = B(k)/(2a2k+a1),

b = (a2b1 –a1b2)a–2
2

a2 = 0,
a1 ≠ 0

–
a0

a1
1 –

2b2k+b1

a1
J (a, 1

2 ; βz2) a =B(k)/(2a1),
β = –a1/(2b2)

a2 ≠ 0,
a2

1 = 4a0a2
–
a1

2a2
a2 –

b2

a2
zν/2Zν

(
β
√
z
) ν = 1 –(2b2k+b1)a–1

2 ,

β = 2
√
B(k)

a2 = a1 = 0,
a0 ≠ 0

–
b1

2b2
1 b2

1 – 4b0b2

4a0b2

z1/2Z1/3
(
βz3/2);

see also 2.1.2.12
β =

2
3

( a0

b2

)1/2

Notation: D = a2
1 – 4a0a2, B(k) = b2k

2 +b1k+b0
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12. x2y′′
xx + axy′

x + by = 0.

Euler equation. Solution:

y =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|x|
1–a

2
(
C1|x|μ + C2|x|–μ

)
if (1 – a)2 > 4b,

|x|
1–a

2 (C1 + C2 ln |x|) if (1 – a)2 = 4b,

|x|
1–a

2
[
C1 sin(μ ln |x|) + C2 cos(μ ln |x|)

]
if (1 – a)2 < 4b,

where μ = 1
2 |(1 – a)2 – 4b|1/2.

13. x2y′′
xx + xy′

x + (x2 – ν2)y = 0.

Bessel equation.

1◦. Let ν be an arbitrary noninteger. Then the general solution is given by

y = C1Jν (x) + C2Yν(x), (1)

where Jν(x) and Yν(x) are the Bessel functions of the first and second kind:

Jν (x) =
∞∑

k=0

(–1)k(x/2)ν+2k

k! Γ(ν + k + 1)
, Yν(x) =

Jν(x) cos πν – J–ν (x)
sin πν

. (2)

Solution (1) is denoted by y = Zν(x), which is referred to as the cylindrical function.
The functions Jν (x) and Yν(x) can be expressed in terms of definite integrals (with

x > 0):

πJν (x) =
∫ π

0
cos(x sin θ – νθ) dθ – sinπν

∫ ∞
0

exp(–x sinh t – νt) dt,

πYν(x) =
∫ π

0
sin(x sin θ – νθ) dθ –

∫ ∞
0

(eνt + e–νt cos πν)e–x sinh t dt.

2◦. In the case ν = n+ 1
2 , where n = 0, 1, 2, . . . , the Bessel functions are expressed in terms

of elementary functions:

Jn+ 1
2
(x) =

√
2
π
xn+ 1

2

(
–

1
x

d

dx

)n sin x
x

, J–n– 1
2
(x) =

√
2
π
xn+ 1

2

( 1
x

d

dx

)n cos x
x

,

Yn+ 1
2
(x) = (–1)n+1J–n– 1

2
(x).

The Bessel functions are described in Section 18.6 in detail.

14. x2y′′
xx + xy′

x – (x2 + ν2)y = 0.

Modified Bessel equation. It can be reduced to equation T5.2.1.13 by means of the substi-
tution x = ix̄ (i2 = –1).

Solution:
y = C1Iν(x) + C2Kν(x),

where Iν(x) and Kν(x) are modified Bessel functions of the first and second kind:

Iν(x) =
∞∑

k=0

(x/2)2k+ν

k! Γ(ν + k + 1)
, Kν (x) =

π

2
I–ν (x) – Iν(x)

sin πν
.

The modified Bessel functions are described in Subsection 18.7 in detail.
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15. x2y′′
xx + axy′

x + (bxn + c)y = 0, n ≠ 0.

The case b = 0 corresponds to the Euler equation T5.2.1.12.
For b ≠ 0, the solution is

y = x
1–a

2
[
C1Jν

( 2
n

√
b x

n
2
)

+ C2Yν

( 2
n

√
b x

n
2
)]

,

where ν = 1
n

√
(1 – a)2 – 4c; Jν (z) and Yν(z) are the Bessel functions of the first and

second kind.

16. x2y′′
xx + axy′

x + xn(bxn + c)y = 0.

The substitution ξ = xn leads to an equation of the form T5.2.1.11:

n2ξy′′ξξ + n(n – 1 + a)y′ξ + (bξ + c)y = 0.

17. x2y′′
xx + (ax + b)y′

x + cy = 0.

The transformation x = z–1, y = zkezw, where k is a root of the quadratic equation
k2 + (1 – a)k + c = 0, leads to an equation of the form T5.2.1.11:

zw′′
zz + [(2 – b)z + 2k + 2 – a]w′

z + [(1 – b)z + 2k + 2 – a – bk]w = 0.

18. (1 – x2)y′′
xx – 2xy′

x + n(n + 1)y = 0, n = 0, 1, 2, . . .

Legendre equation.
The solution is given by

y = C1Pn(x) + C2Qn(x),

where the Legendre polynomials Pn(x) and the Legendre functions of the second kind
Qn(x) are given by the formulas

Pn(x) =
1

n! 2n
dn

dxn
(x2 – 1)n, Qn(x) =

1
2
Pn(x) ln

1 + x
1 – x

–
n∑

m=1

1
m
Pm–1(x)Pn–m(x).

The functions Pn = Pn(x) can be conveniently calculated using the recurrence relations

P0(x)= 1, P1(x)=x, P2(x)=
1
2

(3x2–1), . . . , Pn+1(x)=
2n+1
n+1

xPn(x)–
n

n+1
Pn–1(x).

Three leading functions Qn = Qn(x) are

Q0(x) =
1
2

ln
1 + x
1 – x

, Q1(x) =
x

2
ln

1 + x
1 – x

– 1, Q2(x) =
3x2 – 1

4
ln

1 + x
1 – x

–
3
2
x.

The Legendre polynomials and the Legendre functions are described in Subsection
18.11.1 in more detail.



1218 ORDINARY DIFFERENTIAL EQUATIONS

19. (1 – x2)y′′
xx – 2xy′

x + ν(ν + 1)y = 0.

Legendre equation; ν is an arbitrary number. The case ν = n where n is a nonnegative
integer is considered in T5.2.1.18.

The substitution z = x2 leads to the hypergeometric equation. Therefore, with |x| < 1
the solution can be written as

y = C1F
(

–
ν

2
,

1 + ν
2

,
1
2

; x
)

+ C2xF
( 1 – ν

2
, 1 +

ν

2
,

3
2

; x
)

,

where F (α,β, γ;x) is the hypergeometric series (see T5.2.1.22).
The Legendre equation is discussed in Subsection 18.11.3 in more detail.

20. (ax2 + b)y′′
xx + axy′

x + cy = 0.

The substitution z =
∫ dx√

ax2 + b
leads to a constant coefficient linear equation: y′′zz+cy = 0.

21. (1 – x2)y′′
xx + (ax + b)y′

x + cy = 0.

1◦. The substitution 2z = 1 + x leads to the hypergeometric equation T5.2.1.22:

z(1 – z)y′′zz + [az + 1
2 (b – a)]y′z + cy = 0.

2◦. For a = –2m–3, b = 0, and c =λ, the Gegenbauer functions are solutions of the equation.

22. x(x – 1)y′′
xx + [(α + β + 1)x – γ]y′

x + αβy = 0.

Gaussian hypergeometric equation. For γ ≠ 0, –1, –2, –3, . . . , a solution can be expressed
in terms of the hypergeometric series:

F (α,β, γ;x) = 1 +
∞∑

k=1

(α)k(β)k
(γ)k

xk

k!
, (α)k = α(α + 1) . . . (α + k – 1),

which, a fortiori, is convergent for |x| < 1.
For γ > β > 0, this solution can be expressed in terms of a definite integral:

F (α,β, γ;x) =
Γ(γ)

Γ(β) Γ(γ – β)

∫ 1

0
tβ–1(1 – t)γ–β–1(1 – tx)–α dt,

where Γ(β) is the gamma function.

If γ is not an integer, the general solution of the hypergeometric equation has the form:

y = C1F (α,β, γ;x) + C2x
1–γF (α – γ + 1, β – γ + 1, 2 – γ; x).

In the degenerate cases γ = 0, –1, –2, –3, . . . , a particular solution of the hypergeometric
equation corresponds to C1 = 0 and C2 = 1. If γ is a positive integer, another particular
solution corresponds to C1 = 1 and C2 = 0. In both these cases, the general solution can be
constructed by means of formula (2) given in the preliminary remarks at the beginning of
Section T5.2.

Table T5.2 gives the general solutions of the hypergeometric equation for some values
of the determining parameters.

The hypergeometric functions F (α,β, γ;x) are discussed in Section 18.10 in detail.



T5.2. SECOND-ORDER LINEAR EQUATIONS 1219

TABLE T5.2
General solutions of the hypergeometric equation for some values of the determining parameters

α β γ Solution: y = y(x)

0 β γ C1 +C2

∫
|x|–γ |x– 1|γ–β–1 dx

α α+ 1
2 2α+ 1 C1

(
1 +

√
1 –x

)–2α
+C2x

–2α(1 +
√

1 –x
)2α

α α– 1
2

1
2 C1

(
1 +

√
x
)1–2α

+C2
(

1 –
√
x
)1–2α

α α+ 1
2

3
2

1√
x

[
C1
(

1 +
√
x
)1–2α

+C2
(

1 –
√
x
)1–2α

]

1 β γ |x|1–γ |x– 1|γ–β–1
(
C1 +C2

∫
|x|γ–2 |x– 1|β–γ dx

)

α β α |x– 1|–β
(
C1 +C2

∫
|x|–α|x– 1|β–1 dx

)

α β α+ 1 |x|–α
(
C1 +C2

∫
|x|α–1|x– 1|–β dx

)

23. (1 – x2)2y′′
xx – 2x(1 – x2)y′

x + [ν(ν + 1)(1 – x2) – μ2]y = 0.

Legendre equation, ν and μ are arbitrary parameters.
The transformation x = 1 – 2ξ, y = |x2 – 1|μ/2w leads to the hypergeometric equation

T5.2.1.22:
ξ(ξ – 1)w′′

ξξ + (μ + 1)(1 – 2ξ)w′
ξ + (ν – μ)(ν + μ + 1)w = 0

with parameters α = μ – ν, β = μ + ν + 1, γ = μ + 1.
In particular, the original equation is integrable by quadrature if ν = μ or ν = –μ – 1.

24. (x – a)2(x – b)2y′′
xx – cy = 0, a ≠ b.

The transformation ξ = ln
∣∣
∣
x – a
x – b

∣∣
∣, y = (x–b)η leads to a constant coefficient linear equation:

(a – b)2(η′′ξξ – η′ξ) – cη = 0. Therefore, the solution is as follows:

y = C1|x – a|(1+λ)/2 |x – b|(1–λ)/2 + C2|x – a|(1–λ)/2 |x – b|(1+λ)/2,

where λ2 = 4c(a – b)–2 + 1 ≠ 0.

25. (ax2 + bx + c)2y′′
xx + Ay = 0.

The transformation ξ =
∫ dx

ax2 + bx + c
, w=

y
√

|ax2 + bx + c|
leads to a constant coefficient

linear equation of the form T5.2.1.1: w′′
ξξ + (A + ac – 1

4 b
2)w = 0.

26. x2(axn – 1)y′′
xx + x(apxn + q)y′

x + (arxn + s)y = 0.

Find the roots A1, A2 and B1, B2 of the quadratic equations

A2 – (q + 1)A – s = 0, B2 – (p – 1)B + r = 0
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and define parameters c, α, β, and γ by the relations

c = A1, α = (A1 + B1)n–1, β = (A1 + B2)n–1, γ = 1 + (A1 – A2)n–1.

Then the solution of the original equation has the form y = xcu(axn), where u = u(z) is the
general solution of the hypergeometric equation T5.2.1.22: z(z–1)u′′zz+[(α+β+1)z–γ]u′z+
αβu = 0.

T5.2.2. Equations Involving Exponential and Other Functions
1. y′′

xx + aeλxy = 0, λ ≠ 0.

Solution: y = C1J0(z) + C2Y0(z), where z = 2λ–1√a eλx/2; J0(z) and Y0(z) are Bessel
functions.

2. y′′
xx + (aex – b)y = 0.

Solution: y = C1J2
√
b

(
2
√
a ex/2) +C2Y2

√
b

(
2
√
a ex/2), where Jν (z) and Yν(z) are Bessel

functions.

3. y′′
xx – (ae2λx + beλx + c)y = 0.

The transformation z = eλx, w = z–ky, where k =
√
c/λ, leads to an equation of the form

T5.2.1.11: λ2zw′′
zz + λ2(2k + 1)w′

z – (az + b)w = 0.

4. y′′
xx + ay′

x + be2axy = 0.

The transformation ξ = eax, u = yeax leads to a constant coefficient linear equation of the
form T5.2.1.1: u′′ξξ + ba–2u = 0.

5. y′′
xx – ay′

x + be2axy = 0.

The substitution ξ = eax leads to a constant coefficient linear equation of the form T5.2.1.1:
y′′ξξ + ba–2y = 0.

6. y′′
xx + ay′

x + (beλx + c)y = 0.

Solution: y = e–ax/2[C1Jν
(

2λ–1
√
b eλx/2)+C2Yν

(
2λ–1

√
b eλx/2)], where ν = 1

λ

√
a2 – 4c;

Jν(z) and Yν(z) are Bessel functions.

7. y′′
xx – (a – 2q cosh 2x)y = 0.

Modified Mathieu equation. The substitution x = iξ leads to the Mathieu equation T5.2.2.8:

y′′ξξ + (a – 2q cos 2ξ)y = 0.

For eigenvalues a=an(q) and a= bn(q), the corresponding solutions of the modified Mathieu
equation are

Ce2n+p(x, q) = ce2n+p(ix, q) =
∞∑

k=0

A2n+p
2k+p cosh[(2k + p)x],

Se2n+p(x, q) = –i se2n+p(ix, q) =
∞∑

k=0

B2n+p
2k+p sinh[(2k + p)x],

where p can be either 0 or 1, and the coefficients A2n+p
2k+p and B2n+p

2k+p are specified in T5.2.2.8.
The functions Ce2n+p(x, q) and Se2n+p(x, q) are discussed in Section 18.16 in more

detail.
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8. y′′
xx + (a – 2q cos 2x)y = 0.

Mathieu equation.

1◦. Given numbers a and q, there exists a general solution y(x) and a characteristic index μ
such that

y(x + π) = e2πμy(x).

For small values of q, an approximate value of μ can be found from the equation

cosh(πμ) = 1 + 2 sin2( 1
2π

√
a
)

+
πq2

(1 – a)
√
a

sin
(
π
√
a
)

+ O(q4).

If y1(x) is the solution of the Mathieu equation satisfying the initial conditions y1(0) = 1
and y′1(0) = 0, the characteristic index can be determined from the relation

cosh(2πμ) = y1(π).

The solution y1(x), and hence μ, can be determined with any degree of accuracy by means
of numerical or approximate methods.

The general solution differs depending on the value of y1(π) and can be expressed in
terms of two auxiliary periodical functions ϕ1(x) and ϕ2(x) (see Table T5.3).

TABLE T5.3
The general solution of the Mathieu equation T5.2.2.8 expressed

in terms of auxiliary periodical functions ϕ1(x) and ϕ2(x)

Constraint General solution y = y(x)
Period of
ϕ1 and ϕ2

Index

y1(π) > 1 C1e
2μxϕ1(x)+C2e

–2μxϕ2(x) π μ is a real number

y1(π) < –1 C1e
2ρxϕ1(x)+C2e

–2ρxϕ2(x) 2π μ = ρ+ 1
2 i, i2 = –1,

ρ is the real part of μ

|y1(π)| < 1 (C1 cos νx+C2 sin νx)ϕ1(x)
+ (C1 cos νx–C2 sin νx)ϕ2(x)

π
μ = iν is a pure imaginary number,

cos(2πν) = y1(π)

y1(π) = �1 C1ϕ1(x)+C2xϕ2(x) π μ = 0

2◦. In applications, of major interest are periodical solutions of the Mathieu equation that
exist for certain values of the parameters a and q (those values of a are referred to as
eigenvalues). The most important periodical solutions of the Mathieu equation have the
form

ce2n(x, q) =
∞∑

m=0
A2n

2m cos(2mx), ce2n+1(x, q) =
∞∑

m=0
A2n+1

2m+1 cos
[
(2m + 1)x

]
;

se2n(x, q) =
∞∑

m=0
B2n

2m sin(2mx), se2n+1(x, q) =
∞∑

m=0
B2n+1

2m+1 sin
[
(2m + 1)x

]
;

where Aij and Bi
j are constants determined by recurrence relations.

The Mathieu functions ce2n(x, q) and se2n(x, q) are discussed in Section 18.16 in more
detail.
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9. y′′
xx + a tanx y′

x + by = 0.

1◦. The substitution ξ = sin x leads to a linear equation of the form T5.2.1.21: (ξ2 – 1)y′′ξξ +
(1 – a)ξy′ξ – by = 0.

2◦. Solution for a = –2:

y cos x =

{
C1 sin(kx) + C2 cos(kx) if b + 1 = k2 > 0,
C1 sinh(kx) + C2 cosh(kx) if b + 1 = –k2 < 0.

3◦. Solution for a = 2 and b = 3: y = C1 cos3 x + C2 sinx (1 + 2 cos2 x).

T5.2.3. Equations Involving Arbitrary Functions

� Notation: f = f (x) and g = g(x) are arbitrary functions; a, b, and λ are arbitrary
parameters.

1. y′′
xx + fy′

x + a(f – a)y = 0.

Particular solution: y0 = e–ax.

2. y′′
xx + xfy′

x – fy = 0.

Particular solution: y0 = x.

3. xy′′
xx + (xf + a)y′

x + (a – 1)fy = 0.

Particular solution: y0 = x1–a.

4. xy′′
xx + [(ax + 1)f + ax – 1]y′

x + a2xfy = 0.

Particular solution: y0 = (ax + 1)e–ax.

5. xy′′
xx + [(ax2 + bx)f + 2]y′

x + bfy = 0.

Particular solution: y0 = a + b/x.

6. x2y′′
xx + xfy′

x + a(f – a – 1)y = 0.

Particular solution: y0 = x–a.

7. y′′
xx + (f + aeλx)y′

x + aeλx(f + λ)y = 0.

Particular solution: y0 = exp
(

–
a

λ
eλx
)

.

8. y′′
xx – (f 2 + f ′

x)y = 0.

Particular solution: y0 = exp
(∫

f dx
)

.

9. y′′
xx + 2fy′

x + (f 2 + f ′
x)y = 0.

Solution: y = (C2x + C1) exp
(

–
∫
f dx

)
.
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10. y′′
xx + (1 – a)fy′

x – a(f 2 + f ′
x)y = 0.

Particular solution: y0 = exp
(
a
∫
f dx

)
.

11. y′′
xx + fy′

x + (fg – g2 + g′
x)y = 0.

Particular solution: y0 = exp
(

–
∫
g dx
)

.

12. fy′′
xx – af ′

xy
′
x – bf 2a+1y = 0.

Solution: y = C1e
u + C2e

–u, where u =
√
b
∫
fa dx.

13. f 2y′′
xx + f(f ′

x + a)y′
x + by = 0.

The substitution ξ=
∫
f –1dx leads to a constant coefficient linear equation: y′′ξξ+ay

′
ξ+by= 0.

14. y′′
xx – f ′

xy
′
x + a2e2fy = 0.

Solution: y = C1 sin
(
a
∫
ef dx

)
+ C2 cos

(
a
∫
ef dx

)
.

15. y′′
xx – f ′

xy
′
x – a2e2fy = 0.

Solution: y = C1 exp
(
a
∫
ef dx

)
+ C2 exp

(
–a
∫
ef dx

)
.

T5.3. Second-Order Nonlinear Equations
T5.3.1. Equations of the Form y′′

xx = f(x, y)
1. y′′

xx = f(y).

Autonomous equation.

Solution:
∫ [
C1 + 2

∫
f (y) dy

]–1/2
dy = C2 � x.

Particular solutions: y = Ak, where Ak are roots of the algebraic (transcendental)
equation f (Ak) = 0.

2. y′′
xx = Axnym.

Emden–Fowler equation.

1◦. With m ≠ 1, the Emden–Fowler equation has a particular solution:

y = λx
n+2
1–m , where λ =

[ (n + 2)(n +m + 1)

A(m – 1)2

] 1
m–1 .

2◦. The transformation z = xn+2ym–1, w = xy′x/y leads to a first-order (Abel) equation:
z[(m – 1)w + n + 2]w′

z = –w2 + w +Az.

3◦. The transformation y = w/t, x = 1/t leads to the Emden–Fowler equation with the
independent variable raised to a different power: w′′

tt = At–n–m–3wm.

4◦. The books by Zaitsev and Polyanin (1994) and Polyanin and Zaitsev (2003) present
28 solvable cases of the Emden–Fowler equation (corresponding to some pairs of n andm).
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3. y′′
xx + f(x)y = ay–3.

Ermakov’s equation. Let w = w(x) be a nontrivial solution of the second-order linear

equation w′′
xx + f (x)w = 0. The transformation ξ =

∫ dx

w2 , z =
y

w
leads to an autonomous

equation of the form T5.3.1: z′′ξξ = az–3.

Solution: C1y
2 = aw2 + w2

(
C2 + C1

∫ dx

w2

)2
.

� Further on, f , g, h, and ψ are arbitrary composite functions of their arguments indicated
in parentheses after the function name (the arguments can depend on x, y, y′x).

4. y′′
xx = f(ay + bx + c).

The substitution w = ay + bx + c leads to an equation of the form T5.3.1.1: w′′
xx = af (w).

5. y′′
xx = f(y + ax2 + bx + c).

The substitutionw=y+ax2 +bx+c leads to an equation of the form T5.3.1.1: w′′
xx=f (w)+2a.

6. y′′
xx = x–1f(yx–1).

Homogeneous equation. The transformation t = – ln |x|, z = y/x leads to an autonomous
equation: z′′tt – z′t = f (z).

7. y′′
xx = x–3f(yx–1).

The transformation ξ= 1/x, w=y/x leads to the equation of the form T5.3.1.1: w′′
ξξ =f (w).

8. y′′
xx = x–3/2f(yx–1/2).

Having set w = yx–1/2, we obtain d
dx (xw′

x)2 = 1
2ww

′
x + 2f (w)w′

x. Integrating the latter
equation, we arrive at a separable equation.

Solution:
∫ [
C1 + 1

4w
2 + 2

∫
f (w) dw

]–1/2
dw = C2 � lnx.

9. y′′
xx = xk–2f(x–ky).

Generalized homogeneous equation. The transformation z = x–ky, w = xy′x/y leads to a
first-order equation: z(w – k)w′

z = z–1f (z) + w – w2.

10. y′′
xx = yx–2f(xnym).

Generalized homogeneous equation. The transformation z = xnym, w = xy′x/y leads to a
first-order equation: z(mw + n)w′

z = f (z) + w – w2.

11. y′′
xx = y–3f

((
y√

ax2 + bx + c

))
.

Setting u(x) = y(ax2 + bx + c)–1/2 and integrating the equation, we obtain a first-order
separable equation:

(ax2 + bx + c)2(u′x)2 = ( 1
4 b

2 – ac)u2 + 2
∫
u–3f (u) du + C1.
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12. y′′
xx = e–axf(eaxy).

The transformation z = eaxy, w = y′x/y leads to a first-order equation: z(w + a)w′
z =

z–1f (z) – w2.

13. y′′
xx = yf(eaxym).

The transformation z = eaxym, w = y′x/y leads to a first-order equation: z(mw + a)w′
z =

f (z) – w2.

14. y′′
xx = x–2f(xneay).

The transformation z = xneay , w = xy′x leads to a first-order equation: z(aw + n)w′
z =

f (z) + w.

15. y′′
xx =

ψ′′
xx

ψ
y + ψ–3f

(( y

ψ

))
, ψ = ψ(x).

The transformation ξ =
∫ dx

ψ2 , w=
y

ψ
leads to an equation of the form T5.3.1.1: w′′

ξξ =f (w).

Solution:
∫ [
C1 + 2

∫
f (w) dw

]–1/2
dw = C2 �

∫ dx

ψ2(x)
.

T5.3.2. Equations of the Form f(x, y)y′′
xx = g(x, y, y′

x)

1. y′′
xx – y′

x = f(y).

Autonomous equation. The substitution w(y) = y′x leads to a first-order equation. For
solvable equations of the form in question, see the book by Polyanin and Zaitsev (2003).

2. y′′
xx + f(y)y′

x + g(y) = 0.

Lienard equation. The substitution w(y) = y′x leads to a first-order equation. For solvable
equations of the form in question, see the book by Polyanin and Zaitsev (2003).

3. y′′
xx + [ay + f(x)]y′

x + f ′
x(x)y = 0.

Integrating yields a Riccati equation: y′x + f (x)y + 1
2ay

2 = C .

4. y′′
xx + [2ay + f(x)]y′

x + af(x)y2 = g(x).

On setting u = y′x + ay2, we obtain a first-order linear equation: u′x + f (x)u = g(x).

5. y′′
xx = ay′

x + e2axf(y).

Solution:
∫ [
C1 + 2

∫
f (y) dy

]–1/2
dy = C2 �

1
a
eax.

6. y′′
xx = f(y)y′

x.

Solution:
∫ dy

F (y) + C1
= C2 + x, where F (y) =

∫
f (y) dy.
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7. y′′
xx =

[[
eαxf(y) + α

]]
y′

x.

The substitution w(y) = e–αxy′x leads to a first-order separable equation: w′
y = f (y).

Solution:
∫ dy

F (y) + C1
= C2 +

1
α
eαx, where F (y) =

∫
f (y) dy.

8. xy′′
xx = ny′

x + x2n+1f(y).

1◦. Solution for n ≠ –1:

∫ [
C1 + 2

∫
f (y) dy

]–1/2
dy = �

xn+1

n + 1
+ C2.

2◦. Solution for n = –1:
∫ [
C1 + 2

∫
f (y) dy

]–1/2
dy = � ln |x| + C2.

9. xy′′
xx = f(y)y′

x.

The substitution w(y) = xy′x/y leads to a first-order linear equation: yw′
y = –w + 1 + f (y).

10. xy′′
xx =

[[
xkf(y) + k – 1

]]
y′

x.

Solution:
∫ dy

F (y) + C1
= C2 +

1
k
xk, where F (y) =

∫
f (y) dy.

11. x2y′′
xx + xy′

x = f(y).

The substitution x = �et leads to an autonomous equation of the form T5.3.1.1: y′′tt = f (y).

12. (ax2 + b)y′′
xx + axy′

x + f(y) = 0.

The substitution ξ =
∫ dx√

ax2 + b
leads to an autonomous equation of the form T5.3.1.1:

y′′ξξ + f (y) = 0.

13. y′′
xx = f(y)y′

x + g(x).

Integrating yields a first-order equation: y′x =
∫
f (y) dy +

∫
g(x) dx + C .

14. xy′′
xx + (n + 1)y′

x = xn–1f(yxn).

The transformation ξ = xn, w = yxn leads to an autonomous equation of the form T5.3.1.1:
n2w′′

ξξ = f (w).

15. gy′′
xx + 1

2g
′
xy

′
x = f(y), g = g(x).

Integrating yields a first-order separable equation: g(x)(y′x)2 = 2
∫
f (y) dy + C1.

Solution for g(x) ≥ 0:

∫ [
C1 + 2

∫
f (y) dy

]–1/2
dy = C2 �

∫ dx√
g(x)

.
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16. y′′
xx = –ay′

x + eaxf(yeax).

The transformation ξ = eax, w = yeax leads to the equation w′′
ξξ = a–2f (w), which is of the

form of T5.3.1.1.

17. xy′′
xx = f(xneay)y′

x.

The transformation z =xneay , w=xy′x leads to the followingfirst-order separable equation:
z(aw + n)w′

z = [f (z) + 1]w.

18. x2y′′
xx + xy′

x = f(xneay).

The transformation z =xneay , w=xy′x leads to the followingfirst-order separable equation:
z(aw + n)w′

z = f (z).

19. yy′′
xx + (y′

x)2 + f(x)yy′
x + g(x) = 0.

The substitution u = y2 leads to a linear equation, u′′xx + f (x)u′x + 2g(x) = 0, which can be
reduced by the change of variable w(x) = u′x to a first-order linear equation.

20. yy′′
xx – (y′

x)2 + f(x)yy′
x + g(x)y2 = 0.

The substitution u = y′x/y leads to a first-order linear equation: u′x + f (x)u + g(x) = 0.

21. yy′′
xx – n(y′

x)2 + f(x)y2 + ay4n–2 = 0.

1◦. For n = 1, this is an equation of the form T5.3.2.22.

2◦. For n ≠ 1, the substitution w = y1–n leads to Ermakov’s equation T5.3.1.5: w′′
xx +

(1 – n)f (x)w + a(1 – n)w–3 = 0.

22. yy′′
xx – n(y′

x)2 + f(x)y2 + g(x)yn+1 = 0.

The substitution w = y1–n leads to a nonhomogeneous linear equation: w′′
xx+(1–n)f (x)w+

(1 – n)g(x) = 0.

23. yy′′
xx + a(y′

x)2 + f(x)yy′
x + g(x)y2 = 0.

The substitution w = ya+1 leads to a linear equation: w′′
xx + f (x)w′

x + (a + 1)g(x)w = 0.

24. yy′′
xx = f(x)(y′

x)2.

The substitution w(x) =xy′x/y leads to a Bernoulli equation T5.1.4: xw′
x =w+[f (x)–1]w2.

25. y′′
xx – a(y′

x)2 + f(x)eay + g(x) = 0.

The substitution w = e–ay leads to a nonhomogeneous linear equation: w′′
xx – ag(x)w =

af (x).

26. y′′
xx – a(y′

x)2 + be4ay + f(x) = 0.

The substitution w = e–ay leads to Ermakov’s equation T5.3.1.5: w′′
xx – af (x)w = abw–3.

27. y′′
xx + a(y′

x)2 – 1
2y

′
x = exf(y).

The substitution w(y) = e–x(y′x)2 leads to a first-order linear equation: w′
y + 2aw = 2f (y).
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28. y′′
xx + α(y′

x)2 =
[[
eβxf(y) + β

]]
y′

x.

Solution:
∫

eαy dy

F (y) + C1
= C2 +

1
β
eβx, where F (y) =

∫
eαyf (y) dy.

29. y′′
xx + f(y)(y′

x)2 + g(y) = 0.

The substitution w(y) = (y′x)2 leads to a first-order linear equation: w′
y+2f (y)w+2g(y) = 0.

30. y′′
xx + f(y)(y′

x)2 – 1
2y

′
x = exg(y).

The substitution w(y) = e–x(y′x)2 leads to a first-order linear equation: w′
y+2f (y)w = 2g(y).

31. y′′
xx = xf(y)(y′

x)3.

Taking y to be the independent variable, we obtain a linear equation with respect to x = x(y):
x′′yy = –f (y)x.

32. y′′
xx = f(y)(y′

x)2 + g(x)y′
x.

Dividing by y′x, we obtain an exact differential equation. Its solution follows from the
equation:

ln |y′x| =
∫
f (y) dy +

∫
g(x) dx + C .

Solving the latter for y′x, we arrive at a separable equation. In addition, y = C1 is a singular
solution, with C1 being an arbitrary constant.

33. y′′
xx = f(x)g(xy′

x – y).

The substitution w = xy′x – y leads to a first-order separable equation: w′
x = xf (x)g(w).

34. y′′
xx =

y

x2
f
((xy′

x

y

))
.

The substitution w(x)=xy′x/y leads to afirst-order separable equation: xw′
x=f (w)+w–w2.

35. gy′′
xx + 1

2g
′
xy

′
x = f(y)h

((
y′

x

√
g
))
, g = g(x).

The substitution w(y) = y′x
√
g leads to a first-order separable equation: ww′

y = f (y)h(w).

36. y′′
xx = f

((
y′2

x + ay
))
.

The substitution w(y) = (y′x)2 +ay leads to a first-order separable equation: w′
y = 2f (w)+a.
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Chapter T6

Systems of Ordinary
Differential Equations

T6.1. Linear Systems of Two Equations
T6.1.1. Systems of First-Order Equations
1. x′

t = ax + by, y′
t = cx + dy.

System of two constant-coefficient first-order linear homogeneous differential equations.
Let us write out the characteristic equation

λ2 – (a + d)λ + ad – bc = 0 (1)

and find its discriminant
D = (a – d)2 + 4bc. (2)

1◦. Case ad – bc ≠ 0. The origin of coordinates x = y = 0 is the only one stationary point;
it is

a node if D = 0;
a node if D > 0 and ad – bc > 0;

a saddle if D > 0 and ad – bc < 0;
a focus if D < 0 and a + d ≠ 0;

a center if D < 0 and a + d = 0.

1.1. Suppose D > 0. The characteristic equation (1) has two distinct real roots, λ1
and λ2. The general solution of the original system of differential equations is expressed as

x = C1be
λ1t + C2be

λ2t,

y = C1(λ1 – a)eλ1t + C2(λ2 – a)eλ2t,

where C1 and C2 are arbitrary constants.
1.2. Suppose D < 0. The characteristic equation (1) has two complex conjugate roots,

λ1,2 = σ � iβ. The general solution of the original system of differential equations is given
by

x = beσt
[
C1 sin(βt) + C2 cos(βt)

]
,

y = eσt
{

[(σ – a)C1 – βC2] sin(βt) + [βC1 + (σ – a)C2 cos(βt)
]
,

where C1 and C2 are arbitrary constants.
1.3. Suppose D = 0 and a ≠ d. The characteristic equation (1) has two equal real roots,

λ1 = λ2. The general solution of the original system of differential equations is

x = 2b
(
C1 +

C2

a – d
+ C2t

)
exp

(
a + d

2
t

)
,

y = [(d – a)C1 + C2 + (d – a)C2t] exp

(
a + d

2
t

)
,

1229
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where C1 and C2 are arbitrary constants.
1.4. Suppose a = d ≠ 0 and b = 0. Solution:

x = C1e
at, y = (cC1t + C2)eat.

1.5. Suppose a = d ≠ 0 and c = 0. Solution:

x = (bC1t + C2)eat, y = C1e
at.

2◦. Case ad – bc = 0 and a2 + b2 > 0. The whole of the line ax + by = 0 consists of singular
points. The system in question may be rewritten in the form

x′t = ax + by, y′t = k(ax + by).

2.1. Suppose a + bk ≠ 0. Solution:

x = bC1 + C2e
(a+bk)t, y = –aC1 + kC2e

(a+bk)t.

2.2. Suppose a + bk = 0. Solution:

x = C1(bkt – 1) + bC2t, y = k2bC1t + (bk2t + 1)C2.

2. x′
t = a1x + b1y + c1, y′

t = a2x + b2y + c2.

The general solution of this system is given by the sum of its any particular solution and the
general solution of the corresponding homogeneous system (see system T6.1.1.1).

1◦. Suppose a1b2 – a2b1 ≠ 0. A particular solution:

x = x0, y = y0,

where the constants x0 and y0 are determined by solving the linear algebraic system of
equations

a1x0 + b1y0 + c1 = 0, a2x0 + b2y0 + c2 = 0.

2◦. Suppose a1b2 – a2b1 = 0 and a2
1 + b2

1 > 0. Then the original system can be rewritten as

x′t = ax + by + c1, y′t = k(ax + by) + c2.

2.1. If σ = a + bk ≠ 0, the original system has a particular solution of the form

x = bσ–1(c1k – c2)t – σ–2(ac1 + bc2), y = kx + (c2 – c1k)t.

2.2. If σ = a + bk = 0, the original system has a particular solution of the form

x = 1
2 b(c2 – c1k)t2 + c1t, y = kx + (c2 – c1k)t.

3. x′
t = f(t)x + g(t)y, y′

t = g(t)x + f(t)y.

Solution:
x = eF (C1e

G + C2e
–G), y = eF (C1e

G – C2e
–G),

where C1 and C2 are arbitrary constants, and

F =
∫
f (t) dt, G =

∫
g(t) dt.



T6.1. LINEAR SYSTEMS OF TWO EQUATIONS 1231

4. x′
t = f(t)x + g(t)y, y′

t = –g(t)x + f(t)y.

Solution:
x = F (C1 cosG + C2 sinG), y = F (–C1 sinG + C2 cosG),

where C1 and C2 are arbitrary constants, and

F = exp

[∫
f (t) dt

]
, G =

∫
g(t) dt.

5. x′
t = f(t)x + g(t)y, y′

t = ag(t)x + [f(t) + bg(t)]y.

The transformation

x = exp

[∫
f (t) dt

]
u, y = exp

[∫
f (t) dt

]
v, τ =

∫
g(t) dt

leads to a system of constant coefficient linear differential equations of the form T6.1.1.1:

u′τ = v, v′τ = au + bv.

6. x′
t = f(t)x + g(t)y, y′

t = a[f(t) + ah(t)]x + a[g(t) – h(t)]y.

Let us multiply the first equation by –a and add it to the second equation to obtain

y′t – ax′t = –ah(t)(y – ax).

By setting U = y – ax and then integrating, one obtains

y – ax = C1 exp

[
–a
∫
h(t) dt

]
, (∗)

where C1 is an arbitrary constant. On solving (∗) for y and on substituting the resulting
expression into the first equation of the system, one arrives at a first-order linear differential
equation for x.

7. x′
t = f(t)x + g(t)y, y′

t = h(t)x + p(t)y.

1◦. Let us express y from the first equation and substitute into the second one to obtain a
second-order linear equation:

gx′′tt – (fg + gp + g′t)x
′
t + (fgp – g2h + fg′t – f ′tg)x = 0. (1)

This equation is easy to integrate if, for example, the following conditions are met:

1) fgp – g2h + fg′t – f ′tg = 0;

2) fgp – g2h + fg′t – f ′tg = ag, fg + gp + g′t = bg.

In the first case, equation (1) has a particular solution u = C = const. In the second case, it
is a constant-coefficient equation.

A considerable number of other solvable cases of equation (1) can be found in the
handbooks by Kamke (1977) and Polyanin and Zaitsev (2003).
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2◦. Suppose a particular solution of the system in question is known,

x = x0(t), y = y0(t).

Then the general solution can be written out in the form

x(t) = C1x0(t) + C2x0(t)
∫

g(t)F (t)P (t)

x2
0(t)

dt,

y(t) = C1y0(t) + C2

[
F (t)P (t)
x0(t)

+ y0(t)
∫

g(t)F (t)P (t)

x2
0(t)

dt

]
,

where C1 and C2 are arbitrary constants, and

F (t) = exp

[∫
f (t) dt

]
, P (t) = exp

[∫
p(t) dt

]
.

T6.1.2. Systems of Second-Order Equations
1. x′′

tt = ax + by, y′′
tt = cx + dy.

System of two constant-coefficient second-order linear homogeneous differential equations.
The characteristic equation has the form

λ4 – (a + d)λ2 + ad – bc = 0.

1◦. Case ad – bc ≠ 0.
1.1. Suppose (a – d)2 + 4bc ≠ 0. The characteristic equation has four distinct roots

λ1, . . . ,λ4. The general solution of the system in question is written as

x = C1be
λ1t + C2be

λ2t + C3be
λ3t + C4be

λ4t,

y = C1(λ2
1 – a)eλ1t + C2(λ2

2 – a)eλ2t + C3(λ2
3 – a)eλ3t + C4(λ2

4 – a)eλ4t,

where C1, . . . ,C4 are arbitrary constants.
1.2. Solution with (a – d)2 + 4bc = 0 and a ≠ d:

x = 2C1

(
bt +

2bk
a – d

)
ekt/2 + 2C2

(
bt –

2bk
a – d

)
e–kt/2 + 2bC3te

kt/2 + 2bC4te
–kt/2,

y = C1(d – a)tekt/2 + C2(d – a)te–kt/2 + C3[(d – a)t + 2k]ekt/2 + C4[(d – a)t – 2k]e–kt/2,

where C1, . . . ,C4 are arbitrary constants and k =
√

2(a + d).
1.3. Solution with a = d ≠ 0 and b = 0:

x = 2
√
aC1e

√
a t + 2

√
aC2e

–
√
a t,

y = cC1te
√
a t – cC2te

–
√
a t + C3e

√
a t + C4e

–
√
a t.

1.4. Solution with a = d ≠ 0 and c = 0:

x = bC1te
√
a t – bC2te

–
√
a t + C3e

√
a t + C4e

–
√
a t,

y = 2
√
aC1e

√
a t + 2

√
aC2e

–
√
a t.
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2◦. Case ad – bc = 0 and a2 + b2 > 0. The original system can be rewritten in the form

x′′tt = ax + by, y′′tt = k(ax + by).

2.1. Solution with a + bk ≠ 0:

x = C1 exp
(
t
√
a + bk

)
+ C2 exp

(
–t
√
a + bk

)
+ C3bt + C4b,

y = C1k exp
(
t
√
a + bk

)
+ C2k exp

(
–t
√
a + bk

)
– C3at – C4a.

2.2. Solution with a + bk = 0:

x = C1bt
3 + C2bt

2 + C3t + C4,
y = kx + 6C1t + 2C2.

2. x′′
tt = a1x + b1y + c1, y′′

tt = a2x + b2y + c2.

The general solution of this system is expressed as the sum of its any particular solution
and the general solution of the corresponding homogeneous system (see system T6.1.2.1).

1◦. Suppose a1b2 – a2b1 ≠ 0. A particular solution:

x = x0, y = y0,

where the constants x0 and y0 are determined by solving the linear algebraic system of
equations

a1x0 + b1y0 + c1 = 0, a2x0 + b2y0 + c2 = 0.

2◦. Suppose a1b2 – a2b1 = 0 and a2
1 + b2

1 > 0. Then the system can be rewritten as

x′′tt = ax + by + c1, y′′tt = k(ax + by) + c2.

2.1. If σ = a + bk ≠ 0, the original system has a particular solution

x = 1
2 bσ

–1(c1k – c2)t2 – σ–2(ac1 + bc2), y = kx + 1
2 (c2 – c1k)t2.

2.2. If σ = a + bk = 0, the system has a particular solution

x = 1
24 b(c2 – c1k)t4 + 1

2 c1t
2, y = kx + 1

2 (c2 – c1k)t2.

3. x′′
tt – ay′

t + bx = 0, y′′
tt + ax′

t + by = 0.

This system is used to describe the horizontal motion of a pendulum taking into account the
rotation of the earth.

Solution with a2 + 4b > 0:

x = C1 cos(αt) + C2 sin(αt) + C3 cos(βt) + C4 sin(βt),
y = –C1 sin(αt) + C2 cos(αt) – C3 sin(βt) + C4 cos(βt),

where C1, . . . ,C4 are arbitrary constants and

α = 1
2a + 1

2

√
a2 + 4b, β = 1

2a – 1
2

√
a2 + 4b.
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4. x′′
tt +a1x

′
t + b1y

′
t + c1x +d1y = k1e

iωt, y′′
tt +a2x

′
t + b2y

′
t + c2x + d2y = k2e

iωt.

Systems of this type often arise in oscillation theory (e.g., oscillations of a ship and a
ship gyroscope). The general solution of this constant-coefficient linear nonhomogeneous
system of differential equations is expressed as the sum of its any particular solution and
the general solution of the corresponding homogeneous system (with k1 = k2 = 0).

1◦. A particular solution is sought by the method of undetermined coefficients in the form

x = A∗eiωt, y = B∗eiωt.

On substituting these expressions into the system of differential equations in question, one
arrives at a linear nonhomogeneous system of algebraic equations for the coefficients A∗
and B∗.

2◦. The general solution of a homogeneous system of differential equations is determined
by a linear combination of its linearly independent particular solutions, which are sought
using the method of undetermined coefficients in the form of exponential functions,

x = Aeλt, y = Beλt.

On substituting these expressions into the system and on collecting the coefficients of the
unknowns A and B, one obtains

(λ2 + a1λ + c1)A + (b1λ + d1)B = 0,

(a2λ + c2)A + (λ2 + b2λ + d2)B = 0.

For a nontrivial solution to exist, the determinant of this system must vanish. This require-
ment results in the characteristic equation

(λ2 + a1λ + c1)(λ2 + b2λ + d2) – (b1λ + d1)(a2λ + c2) = 0,

which is used to determine λ. If the roots of this equation, k1, . . . , k4, are all distinct, then
the general solution of the original system of differential equations has the form

x = –C1(b1λ1 + d1)eλ1t – C2(b1λ2 + d1)eλ2t – C3(b1λ1 + d1)eλ3t – C4(b1λ4 + d1)eλ4t,

y = C1(λ2
1 + a1λ1 + c1)eλ1t + C2(λ2

2 + a1λ2 + c1)eλ2t

+ C3(λ2
3 + a1λ3 + c1)eλ3t + C4(λ2

4 + a1λ4 + c1)eλ4t,

where C1, . . . ,C4 are arbitrary constants.

5. x′′
tt = a(ty′

t – y), y′′
tt = b(tx′

t – x).

The transformation
u = txt – x, v = ty′t – y (1)

leads to a first-order system:
u′t = atv, v′t = btu.

The general solution of this system is expressed as

with ab > 0:

{
u(t) = C1a exp

( 1
2

√
ab t2) + C2a exp

(
– 1

2

√
ab t2),

v(t) = C1
√
ab exp

( 1
2

√
ab t2) – C2

√
ab exp

(
– 1

2

√
ab t2);

with ab < 0:

{
u(t) = C1a cos

( 1
2
√

|ab| t2) + C2a sin
( 1

2
√

|ab| t2),
v(t) = –C1

√
|ab| sin

( 1
2
√

|ab| t2) + C2
√

|ab| cos
( 1

2
√

|ab| t2),

(2)
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where C1 and C2 are arbitrary constants. On substituting (2) into (1) and integrating, one
arrives at the general solution of the original system in the form

x = C3t + t
∫

u(t)

t2 dt, y = C4t + t
∫

v(t)

t2 dt,

where C3 and C4 are arbitrary constants.

6. x′′
tt = f(t)(a1x + b1y), y′′

tt = f(t)(a2x + b2y).

Let k1 and k2 be roots of the quadratic equation

k2 – (a1 + b2)k + a1b2 – a2b1 = 0.

Then, on multiplying the equations of the system by appropriate constants and on adding
them together, one can rewrite the system in the form of two independent equations:

z′′1 = k1f (t)z1, z1 = a2x + (k1 – a1)y;

z′′2 = k2f (t)z2, z2 = a2x + (k2 – a1)y.

Here, a prime stands for a derivative with respect to t.

7. x′′
tt = f(t)(a1x

′
t + b1y

′
t), y′′

tt = f(t)(a2x
′
t + b2y

′
t).

Let k1 and k2 be roots of the quadratic equation

k2 – (a1 + b2)k + a1b2 – a2b1 = 0.

Then, on multiplying the equations of the system by appropriate constants and on adding
them together, one can reduce the system to two independent equations:

z′′1 = k1f (t)z′1, z1 = a2x + (k1 – a1)y;

z′′2 = k2f (t)z′2, z2 = a2x + (k2 – a1)y.

Integrating these equations and returning to the original variables, one arrives at a linear
algebraic system for the unknowns x and y:

a2x + (k1 – a1)y = C1

∫
exp
[
k1F (t)

]
dt + C2,

a2x + (k2 – a1)y = C3

∫
exp
[
k2F (t)

]
dt + C4,

where C1, . . . ,C4 are arbitrary constants and F (t) =
∫
f (t) dt.

8. x′′
tt = af(t)(ty′

t – y), y′′
tt = bf(t)(tx′

t – x).

The transformation
u = txt – x, v = ty′t – y (1)

leads to a system of first-order equations:

u′t = atf (t)v, v′t = btf (t)u.
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The general solution of this system is expressed as

if ab > 0,

⎧
⎪⎪⎨

⎪⎪⎩

u(t) = C1a exp

(√
ab

∫
tf (t) dt

)
+ C2a exp

(
–
√
ab

∫
tf (t) dt

)
,

v(t) = C1
√
ab exp

(√
ab

∫
tf (t) dt

)
– C2

√
ab exp

(
–
√
ab

∫
tf (t) dt

)
;

if ab < 0,

⎧
⎪⎪⎨

⎪⎪⎩

u(t) = C1a cos

(√
|ab|
∫
tf (t) dt

)
+ C2a sin

(√
|ab|
∫
tf (t) dt

)
,

v(t) = –C1
√

|ab| sin

(√
|ab|
∫
tf (t) dt

)
+ C2

√
|ab| cos

(√
|ab|
∫
tf (t) dt

)
,

(2)

where C1 and C2 are arbitrary constants. On substituting (2) into (1) and integrating, one
obtains the general solution of the original system

x = C3t + t
∫

u(t)
t2 dt, y = C4t + t

∫
v(t)
t2 dt,

where C3 and C4 are arbitrary constants.

9. t2x′′
tt + a1tx

′
t + b1ty

′
t + c1x + d1y = 0, t2y′′

tt + a2tx
′
t + b2ty

′
t + c2x + d2y = 0.

Linear system homogeneous in the independent variable (an Euler type system).

1◦. The general solution is determined by a linear combination of linearly independent
particular solutions that are sought by the method of undetermined coefficients in the form
of power-law functions

x = A|t|k, y = B|t|k.

On substituting these expressions into the system and on collecting the coefficients of the
unknowns A and B, one obtains

[k2 + (a1 – 1)k + c1]A + (b1k + d1)B = 0,

(a2k + c2)A + [k2 + (b2 – 1)k + d2]B = 0.

For a nontrivial solution to exist, the determinant of this system must vanish. This require-
ment results in the characteristic equation

[k2 + (a1 – 1)k + c1][k2 + (b2 – 1)k + d2] – (b1k + d1)(a2k + c2) = 0,

which is used to determine k. If the roots of this equation, k1, . . . , k4, are all distinct, then
the general solution of the system of differential equations in question has the form

x = –C1(b1k1 + d1)|t|k1 – C2(b1k2 + d1)|t|k2 – C3(b1k1 + d1)|t|k3 – C4(b1k4 + d1)|t|k4 ,

y = C1[k2
1 + (a1 – 1)k1 + c1]|t|k1 + C2[k2

2 + (a1 – 1)k2 + c1]|t|k2

+ C3[k2
3 + (a1 – 1)k3 + c1]|t|k3 + C4[k2

4 + (a1 – 1)k4 + c1]|t|k4 ,

where C1, . . . ,C4 are arbitrary constants.

2◦. The substitution t = σeτ (σ ≠ 0) leads to a system of constant-coefficient linear
differential equations:

x′′ττ + (a1 – 1)x′τ + b1y
′
τ + c1x + d1y = 0,

y′′ττ + a2x
′
τ + (b2 – 1)y′τ + c2x + d2y = 0.
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10. (αt2 + βt + γ)2x′′
tt = ax + by, (αt2 + βt + γ)2y′′

tt = cx + dy.

The transformation

τ =
∫

dt

αt2 + βt + γ
, u =

x
√

|αt2 + βt + γ|
, v =

y
√

|αt2 + βt + γ|

leads to a constant-coefficient linear system of equations of the form T6.1.2.1:

u′′ττ = (a – αγ + 1
4β

2)u + bv,

v′′ττ = cu + (d – αγ + 1
4β

2)v.

11. x′′
tt = f(t)(tx′

t – x) + g(t)(ty′
t – y), y′′

tt = h(t)(tx′
t – x) + p(t)(ty′

t – y).

The transformation
u = txt – x, v = ty′t – y (1)

leads to a linear system of first-order equations

u′t = tf (t)u + tg(t)v, v′t = th(t)u + tp(t)v. (2)

In order to find the general solution of this system, it suffices to know its any particular
solution (see system T6.1.1.7).

For solutions of some systems of the form (2), see systems T6.1.1.3–T6.1.1.6.
If all functions in (2) are proportional, that is,

f (t) = aϕ(t), g(t) = bϕ(t), h(t) = cϕ(t), p(t) = dϕ(t),

then the introduction of the new independent variable τ =
∫
tϕ(t) dt leads to a constant-

coefficient system of the form T6.1.1.1.

2◦. Suppose a solution of system (2) has been found in the form

u = u(t,C1,C2), v = v(t,C1,C2), (3)

where C1 and C2 are arbitrary constants. Then, on substituting (3) into (1) and integrating,
one obtains a solution of the original system:

x = C3t + t
∫

u(t,C1,C2)

t2 dt, y = C4t + t
∫

v(t,C1,C2)

t2 dt,

where C3 and C4 are arbitrary constants.

T6.2. Linear Systems of Three and More Equations
1. x′

t = ax, y′
t = bx + cy, z′

t = dx + ky + pz.

Solution:

x = C1e
at,

y =
bC1

a – c
eat + C2e

ct,

z =
C1

a – p

(
d +

bk

a – c

)
eat +

kC2

c – p
ect + C3e

pt,

where C1, C2, and C3 are arbitrary constants.
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2. x′
t = cy – bz, y′

t = az – cx, z′
t = bx – ay.

1◦. First integrals:

ax + by + cz = A, (1)

x2 + y2 + z2 = B2, (2)

where A and B are arbitrary constants. It follows that the integral curves are circles formed
by the intersection of planes (1) and spheres (2).

2◦. Solution:
x = aC0 + kC1 cos(kt) + (cC2 – bC3) sin(kt),
y = bC0 + kC2 cos(kt) + (aC3 – cC1) sin(kt),
z = cC0 + kC3 cos(kt) + (bC1 – aC2) sin(kt),

where k =
√
a2 + b2 + c2 and the three of four constants of integration C0, . . . ,C3 are related

by the constraint
aC1 + bC2 + cC3 = 0.

3. ax′
t = bc(y – z), by′

t = ac(z – x), cz′
t = ab(x – y).

1◦. First integral:
a2x + b2y + c2z = A,

where A is an arbitrary constant. It follows that the integral curves are plane ones.

2◦. Solution:
x = C0 + kC1 cos(kt) + a–1bc(C2 – C3) sin(kt),

y = C0 + kC2 cos(kt) + ab–1c(C3 – C1) sin(kt),

z = C0 + kC3 cos(kt) + abc–1(C1 – C2) sin(kt),

where k =
√
a2 + b2 + c2 and the three of four constants of integration C0, . . . ,C3 are related

by the constraint
a2C1 + b2C2 + c2C3 = 0.

4. x′
t = (a1f + g)x + a2fy + a3fz,

y′
t = b1fx + (b2f + g)y + b3fz, z′

t = c1fx + c2fy + (c3f + g)z.

Here, f = f (t) and g = g(t).
The transformation

x = exp

[∫
g(t) dt

]
u, y = exp

[∫
g(t) dt

]
v, z = exp

[∫
g(t) dt

]
w, τ =

∫
f (t) dt

leads to the system of constant coefficient linear differential equations

u′τ = a1u + a2v + a3w, v′τ = b1u + b2v + b3w, w′
τ = c1u + c2v + c3w.

5. x′
t = h(t)y – g(t)z, y′

t = f(t)z – h(t)x, z′
t = g(t)x – f(t)y.

1◦. First integral:
x2 + y2 + z2 = C2,

where C is an arbitrary constant.

2◦. The system concerned can be reduced to a Riccati equation (see Kamke, 1977).
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6. x′
k = ak1x1 + ak2x2 + · · · + aknxn; k = 1, 2, . . . ,n.

System of n constant-coefficient first-order linear homogeneous differential equations.
The general solution of a homogeneous system of differential equations is determined

by a linear combination of linearly independent particular solutions, which are sought by
the method of undetermined coefficients in the form of exponential functions,

xk = Ake
λt; k = 1, 2, . . . ,n.

On substituting these expressions into the system and on collecting the coefficients of the
unknowns Ak, one obtains a linear homogeneous system of algebraic equations:

ak1A1 + ak2A2 + · · · + (akk – λ)Ak + · · · + aknAn = 0; k = 1, 2, . . . ,n.

For a nontrivial solution to exist, the determinant of this system must vanish. This require-
ment results in a characteristic equation that serves to determine λ.

T6.3. Nonlinear Systems of Two Equations

T6.3.1. Systems of First-Order Equations

1. x′
t = xnF (x,y), y′

t = g(y)F (x,y).

Solution:

x = ϕ(y),
∫

dy

g(y)F (ϕ(y), y)
= t + C2,

where

ϕ(y) =

⎧
⎪⎪⎨

⎪⎪⎩

[
C1 + (1 – n)

∫
dy

g(y)

] 1
1–n if n ≠ 1,

C1 exp
[∫ dy

g(y)

]
if n = 1,

C1 and C2 are arbitrary constants.

2. x′
t = eλxF (x,y), y′

t = g(y)F (x,y).

Solution:

x = ϕ(y),
∫

dy

g(y)F (ϕ(y), y)
= t + C2,

where

ϕ(y) =

⎧
⎪⎨

⎪⎩

–
1
λ

ln
[
C1 – λ

∫
dy

g(y)

]
if λ ≠ 0,

C1 +
∫

dy

g(y)
if λ = 0,

C1 and C2 are arbitrary constants.
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3. x′
t = F (x,y), y′

t = G(x, y).

Autonomous system of general form.
Suppose

y = y(x,C1),

where C1 is an arbitrary constant, is the general solution of the first-order equation

F (x, y)y′x = G(x, y).

Then the general solution of the system in question results in the following dependence for
the variable x: ∫

dx

F (x, y(x,C1))
= t + C2.

4. x′
t = f1(x)g1(y)Φ(x,y, t), y′

t = f2(x)g2(y)Φ(x,y, t).

First integral: ∫
f2(x)
f1(x)

dx –
∫

g1(y)
g2(y)

dy = C , (∗)

where C is an arbitrary constant.
On solving (∗) for x (or y) and on substituting the resulting expression into one of the

equations of the system concerned, one arrives at a first-order equation for y (or x).

5. x = tx′
t + F (x′

t, y
′
t), y = ty′

t + G(x′
t, y

′
t).

Clairaut system.
The following are solutions of the system:
(i) straight lines

x = C1t + F (C1,C2), y = C2t +G(C1,C2),

where C1 and C2 are arbitrary constants;
(ii) envelopes of these lines;
(iii) continuously differentiable curves that are formed by segments of curves (i) and (ii).

T6.3.2. Systems of Second-Order Equations

1. x′′
tt = xf(ax – by) + g(ax – by), y′′

tt = yf(ax – by) + h(ax – by).

Let us multiply the first equation by a and the second one by –b and add them together to
obtain the autonomous equation

z′′tt = zf (z) + ag(z) – bh(z), z = ax – by. (1)

We will consider this equation in conjunction with the first equation of the system,

x′′tt = xf (z) + g(z). (2)

Equation (1) can be treated separately; its general solution can be written out in implicit
form (see Polyanin and Zaitsev, 2003). The function x = x(t) can be determined by solving
the linear equation (2), and the function y = y(t) is found as y = (ax – z)/b.
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2. x′′
tt = xf(y/x), y′′

tt = yg(y/x).

A periodic particular solution:

x = C1 sin(kt) + C2 cos(kt), k =
√

–f (λ),
y = λ[C1 sin(kt) + C2 cos(kt)],

where C1 and C2 are arbitrary constants and λ is a root of the transcendental (algebraic)
equation

f (λ) = g(λ). (1)

2◦. Particular solution:

x = C1 exp(kt) + C2 exp(–kt), k =
√
f (λ),

y = λ[C1 exp(kt) + C2 exp(–kt)],

where C1 and C2 are arbitrary constants and λ is a root of the transcendental (algebraic)
equation (1).

3. x′′
tt = kxr–3, y′′

tt = kyr–3, where r =
√
x2 + y2.

Equation of motion of a point mass in the xy-plane under gravity.
Passing to polar coordinates by the formulas

x = r cosϕ, y = r sinϕ, r = r(t), ϕ = ϕ(t),

one may obtain the first integrals

r2ϕ′
t = C1, (r′t)

2 + r2(ϕ′
t)

2 = –2kr–1 + C2, (1)

where C1 and C2 are arbitrary constants. Assuming that C1 ≠ 0 and integrating further, one
finds that

r[C cos(ϕ – ϕ0) – k] = C2
1 , C2 = C2

1C2 + k2.

This is an equation of a conic section. The dependence ϕ(t) may be found from the first
equation in (1).

4. x′′
tt = xf(r), y′′

tt = yf(r), where r =
√
x2 + y2.

Equation of motion of a point mass in the xy-plane under a central force.
Passing to polar coordinates by the formulas

x = r cosϕ, y = r sinϕ, r = r(t), ϕ = ϕ(t),

one may obtain the first integrals

r2ϕ′
t = C1, (r′t)

2 + r2(ϕ′
t)

2 = 2
∫
rf (r) dr + C2,

where C1 and C2 are arbitrary constants. Integrating further, one finds that

t + C3 = �

∫
r dr

√
2r2F (r) + r2C2 – C2

1

, ϕ = C1

∫
dt

r
+ C4, (∗)

where C3 and C4 are arbitrary constants and

F (r) =
∫
rf (r) dr.

It is assumed in the second relation in (∗) that the dependence r = r(t) is obtained by solving
the first equation in (∗) for r(t).
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5. x′′
tt + a(t)x = x–3f(y/x), y′′

tt + a(t)y = y–3g(y/x).

Generalized Ermakov system.

1◦. First integral:

1
2

(xy′t – yx′t)
2 +
∫ y/x[

uf (u) – u–3g(u)
]
du = C ,

where C is an arbitrary constant.

2◦. Suppose ϕ =ϕ(t) is a nontrivial solution of the second-order linear differential equation

ϕ′′
tt + a(t)ϕ = 0. (1)

Then the transformation

τ =
∫

dt

ϕ2(t)
, u =

x

ϕ(t)
, v =

y

ϕ(t)
(2)

leads to the autonomous system of equations

u′′ττ = u–3f (v/u), v′′ττ = v–3g(v/u). (3)

3◦. Particular solution of system (3) is

u = A
√
C2τ 2 + C1τ + C0, v = Ak

√
C2τ 2 + C1τ + C0, A =

[
f (k)

C0C2 – 1
4C

2
1

]1/4
,

whereC0,C1, andC2 are arbitrary constants, and k is a root of the algebraic (transcendental)
equation

k4f (k) = g(k).

6. x′′
tt = f(y′

t/x
′
t), y′′

tt = g(y′
t/x

′
t).

1◦. The transformation
u = x′t, w = y′t (1)

leads to a system of the first-order equations

u′t = f (w/u), w′
t = g(w/u). (2)

Eliminating t yields a homogeneous first-order equation, whose solution is given by

∫
f (ξ) dξ

g(ξ) – ξf (ξ)
= ln |u| + C , ξ =

w

u
, (3)

where C is an arbitrary constant. On solving (3) for w, one obtains w = w(u,C). On
substituting this expression into the first equation of (2), one can find u = u(t) and then
w = w(t). Finally, one can determine x = x(t) and y = y(t) from (1) by simple integration.
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2◦. The Suslov problem. The problem of a point particle sliding down an inclined rough
plane is described by the equations

x′′tt = 1 –
kx′t√

(x′t)2 + (y′t)2
, y′′tt = –

ky′t√
(x′t)2 + (y′t)2

,

which correspond to a special case of the system in question with

f (z) = 1 –
k√

1 + z2
, g(z) = –

kz√
1 + z2

.

The solution of the corresponding Cauchy problem under the initial conditions

x(0) = y(0) = x′t(0) = 0, y′t(0) = 1
leads, for the case k = 1, to the following dependences x(t) and y(t) written in parametric
form:

x = – 1
16 + 1

16 ξ
4 – 1

4 ln ξ, y = 2
3 – 1

2 ξ – 1
6 ξ

3, t = 1
4 – 1

4 ξ
2 – 1

2 ln ξ (0 ≤ ξ ≤ 1).

7. x′′
tt = xΦ(x, y, t, x′

t, y
′
t), y′′

tt = yΦ(x, y, t,x′
t, y

′
t).

1◦. First integral:
xy′t – yx′t = C ,

where C is an arbitrary constant.
Remark. The function Φ can also be dependent on the second and higher derivatives with respect to t.

2◦. Particular solution: y =C1x, whereC1 is an arbitrary constant and the function x = x(t)
is determined by the ordinary differential equation

x′′tt = xΦ(x,C1x, t,x′t,C1x
′
t).

8. x′′
tt + x–3f(y/x) = xΦ(x,y, t,x′

t, y
′
t), y′′

tt + y–3g(y/x) = yΦ(x, y, t,x′
t, y

′
t).

First integral:
1
2

(xy′t – yx′t)
2 +
∫ y/x[

u–3g(u) – uf (u)
]
du = C ,

where C is an arbitrary constant.
Remark. The function Φ can also be dependent on the second and higher derivatives with respect to t.

9. x′′
tt = F (t, tx′

t – x, ty′
t – y), y′′

tt = G(t, tx′
t – x, ty′

t – y).

1◦. The transformation
u = txt – x, v = ty′t – y (1)

leads to a system of first-order equations

u′t = tF (t,u, v), v′t = tG(t,u, v). (2)

2◦. Suppose a solution of system (2) has been found in the form

u = u(t,C1,C2), v = v(t,C1,C2), (3)

where C1 and C2 are arbitrary constants. Then, substituting (3) into (1) and integrating,
one obtains a solution of the original system,

x = C3t + t
∫

u(t,C1,C2)

t2 dt, y = C4t + t
∫

v(t,C1,C2)

t2 dt.

3◦. If the functions F and G are independent of t, then, on eliminating t from system (2),
one arrives at a first-order equation

g(u, v)u′v = F (u, v).
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T6.4. Nonlinear Systems of Three or More Equations
1. ax′

t = (b – c)yz, by′
t = (c – a)zx, cz′

t = (a – b)xy.

First integrals:
ax2 + by2 + cz2 = C1,

a2x2 + b2y2 + c2z2 = C2,

where C1 and C2 are arbitrary constants. On solving the first integrals for y and z and on
substituting the resulting expressions into the first equation of the system, one arrives at a
separable first-order equation.

2. ax′
t = (b – c)yzF (x,y, z, t),

by′
t = (c – a)zxF (x,y, z, t), cz′

t = (a – b)xyF (x,y, z, t).

First integrals:
ax2 + by2 + cz2 = C1,

a2x2 + b2y2 + c2z2 = C2,

where C1 and C2 are arbitrary constants. On solving the first integrals for y and z and on
substituting the resulting expressions into the first equation of the system, one arrives at a
separable first-order equation; if F is independent of t, this equation will be separable.

3. x′
t = cF2 – bF3, y′

t = aF3 – cF1, z′
t = bF1 –aF2, where Fn = Fn(x, y, z).

First integral:
ax + by + cz = C1,

where C1 is an arbitrary constant. On eliminating t and z from the first two equations of
the system (using the above first integral), one arrives at the first-order equation

dy

dx
=
aF3(x, y, z) – cF1(x, y, z)
cF2(x, y, z) – bF3(x, y, z)

, where z =
1
c

(C1 – ax – by).

4. x′
t = czF2 – byF3, y′

t = axF3 – czF1, z′
t = byF1 – axF2.

Here, Fn = Fn(x, y, z) are arbitrary functions (n = 1, 2, 3).
First integral:

ax2 + by2 + cz2 = C1,

where C1 is an arbitrary constant. On eliminating t and z from the first two equations of
the system (using the above first integral), one arrives at the first-order equation

dy

dx
=
axF3(x, y, z) – czF1(x, y, z)
czF2(x, y, z) – byF3(x, y, z)

, where z = �

√
1
c

(C1 – ax2 – by2).

5. x′
t = x(cF2 – bF3), y′

t = y(aF3 – cF1), z′
t = z(bF1 – aF2).

Here, Fn = Fn(x, y, z) are arbitrary functions (n = 1, 2, 3).
First integral:

|x|a|y|b|z|c = C1,

where C1 is an arbitrary constant. On eliminating t and z from the first two equations of
the system (using the above first integral), one may obtain a first-order equation.
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6. x′
t = h(z)F2 – g(y)F3, y′

t = f(x)F3 – h(z)F1, z′
t = g(y)F1 – f(x)F2.

Here, Fn = Fn(x, y, z) are arbitrary functions (n = 1, 2, 3).
First integral: ∫

f (x) dx +
∫
g(y) dy +

∫
h(z) dz = C1,

where C1 is an arbitrary constant. On eliminating t and z from the first two equations of
the system (using the above first integral), one may obtain a first-order equation.

7. x′′
tt =

∂F

∂x
, y′′

tt =
∂F

∂y
, z′′

tt =
∂F

∂z
, where F = F (r), r =

√
x2 + y2 + z2.

Equations of motion of a point particle under gravity.
The system can be rewritten as a single vector equation:

r′′tt = gradF or r′′tt =
F ′(r)
r

r,

where r = (x, y, z).

1◦. First integrals:

(r′t)
2 = 2F (r) + C1 (law of conservation of energy),

[r × r′t] = C (law of conservation of areas),
(r ⋅ C) = 0 (all trajectories are plane curves).

2◦. Solution:
r = a r cosϕ + b r sinϕ.

Here, the constant vectors a and b must satisfy the conditions

|a| = |b| = 1, (a ⋅ b) = 0,

and the functions r = r(t) and ϕ = ϕ(t) are given by

t =
∫

r dr
√

2r2F (r) + C1r
2 – C2

3

+ C2, ϕ = C3

∫
dr

r
√

2r2F (r) + C1r
2 – C2

3

, C3 = |C|.

8. x′′
tt = xF , y′′

tt = yF , z′′
tt = zF , where F = F (x,y, z, t, x′

t, y
′
t, z

′
t).

First integrals (laws of conservation of areas):

zy′t – yz′t = C1,

xz′t – zx′t = C2,

yx′t – xy′t = C3,

where C1, C2, and C3 are arbitrary constants.
Corollary of the conservation laws:

C1x + C2y + C3z = 0.

This implies that all integral curves are plane ones.

Remark. The function Φ can also be dependent on the second and higher derivatives with respect to t.
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9. x′′
tt = F1, y′′

tt = F2, z′′
tt = F3, where Fn = Fn(t, tx′

t – x, ty′
t – y, tz′

t – z).

1◦. The transformation

u = txt – x, v = ty′t – y, w = tz′t – z (1)

leads to the system of first-order equations

u′t = tF1(t,u, v,w), v′t = tF2(t,u, v,w), w′
t = tF3(t,u, v,w). (2)

2◦. Suppose a solution of system (2) has been found in the form

u(t) = u(t,C1,C2,C3), v(t) = v(t,C1,C2,C3), w(t) = w(t,C1,C2,C3), (3)

whereC1,C2, andC3 are arbitrary constants. Then, substituting (3) into (1) and integrating,
one obtains a solution of the original system:

x = C4t + t
∫

u(t)

t2 dt, y = C5t + t
∫

v(t)

t2 dt, z = C6t + t
∫

w(t)

t2 dt,

where C4, C5, and C6 are arbitrary constants.
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Chapter T7

First-Order Partial
Differential Equations

T7.1. Linear Equations

T7.1.1. Equations of the Form f(x, y)∂w
∂x

+ g(x, y)∂w
∂y

= 0

� In equations T7.1.1.1–T7.1.1.11, the general solution is expressed in terms of the prin-
cipal integral Ξ as w = Φ(Ξ), where Φ(Ξ) is an arbitrary function.

1.
∂w

∂x
+
[[
f(x)y + g(x)

]]∂w

∂y
= 0.

Principal integral: Ξ = e–F y –
∫
e–F g(x) dx, where F =

∫
f (x) dx.

2.
∂w

∂x
+
[[
f(x)y + g(x)yk

]]∂w

∂y
= 0.

Principal integral: Ξ = e–F y1–k – (1 – k)
∫
e–F g(x) dx, where F = (1 – k)

∫
f (x) dx.

3.
∂w

∂x
+
[[
f(x)eλy + g(x)

]]∂w

∂y
= 0.

Principal integral: Ξ = e–λyE + λ
∫
f (x)E dx, where E = exp

[
λ

∫
g(x) dx

]
.

4. f(x)
∂w

∂x
+ g(y)

∂w

∂y
= 0.

Principal integral: Ξ =
∫

dx

f (x)
–
∫

dy

g(y)
.

5.
[[
f(y) + amxnym–1]]∂w

∂x
–
[[
g(x) + anxn–1ym

]]∂w

∂y
= 0.

Principal integral: Ξ =
∫
f (y) dy +

∫
g(x) dx + axnym.

6.
[[
eαxf(y) + cβ

]]∂w

∂x
–
[[
eβyg(x) + cα

]]∂w

∂y
= 0.

Principal integral: Ξ =
∫
e–βyf (y) dy +

∫
e–αxg(x) dx – ce–αx–βy .

1247
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7.
∂w

∂x
+ f(ax + by + c)

∂w

∂y
= 0, b ≠ 0.

Principal integral: Ξ =
∫

dv

a + bf (v)
– x, where v = ax + by + c.

8.
∂w

∂x
+ f
((
y

x

))
∂w

∂y
= 0.

Principal integral: Ξ =
∫

dv

f (v) – v
– ln |x|, where v =

y

x
.

9. x
∂w

∂x
+ yf(xnym)

∂w

∂y
= 0.

Principal integral: Ξ =
∫

dv

v
[
mf (v) + n

] – ln |x|, where v = xnym.

10.
∂w

∂x
+ yf(eαxym)

∂w

∂y
= 0.

Principal integral: Ξ =
∫

dv

v
[
α +mf (v)

] – x, where v = eαxym.

11. x
∂w

∂x
+ f(xneαy)

∂w

∂y
= 0.

Principal integral: Ξ =
∫

dv

v
[
n + αf (v)

] – ln |x|, where v = xneαy .

T7.1.2. Equations of the Form f(x, y)∂w
∂x

+ g(x, y)∂w
∂y

= h(x, y)

� In the solutions of equations T7.1.2.1–T7.1.2.12, Φ(z) is an arbitrary composite function
whose argument z can depend on both x and y.

1. a
∂w

∂x
+ b

∂w

∂y
= f(x).

General solution: w =
1
a

∫
f (x) dx + Φ(bx – ay).

2.
∂w

∂x
+ a

∂w

∂y
= f(x)yk.

General solution: w =
∫ x

x0

(y–ax+at)kf (t) dt+Φ(y–ax), where x0 can be taken arbitrarily.

3.
∂w

∂x
+ a

∂w

∂y
= f(x)eλy.

General solution: w = eλ(y–ax)
∫
f (x)eaλx dx + Φ(y – ax).
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4. a
∂w

∂x
+ b

∂w

∂y
= f(x) + g(y).

General solution: w =
1
a

∫
f (x) dx +

1
b

∫
g(y) dy + Φ(bx – ay).

5.
∂w

∂x
+ a

∂w

∂y
= f(x)g(y).

General solution: w =
∫ x

x0

f (t)g(y – ax + at) dt + Φ(y – ax), where x0 can be taken

arbitrarily.

6.
∂w

∂x
+ a

∂w

∂y
= f(x, y).

General solution: w =
∫ x

x0

f (t, y –ax+at) dt+Φ(y –ax), where x0 can be taken arbitrarily.

7.
∂w

∂x
+ [ay + f(x)]

∂w

∂y
= g(x).

General solution: w =
∫
g(x) dx + Φ(u), where u = e–axy –

∫
f (x)e–ax dx.

8.
∂w

∂x
+
[[
ay + f(x)

]]∂w
∂y

= g(x)h(y).

General solution:

w =
∫
g(x)h

(
eaxu + eax

∫
f (x)e–ax dx

)
dx + Φ(u), where u = e–axy –

∫
f (x)e–ax dx.

In the integration, u is treated as a parameter.

9.
∂w

∂x
+
[[
f(x)y + g(x)yk

]]∂w
∂y

= h(x).

General solution: w =
∫
h(x) dx + Φ(u), where

u = e–F y1–k – (1 – k)
∫
e–F g(x) dx, F = (1 – k)

∫
f (x) dx.

10.
∂w

∂x
+
[[
f(x) + g(x)eλy

]]∂w

∂y
= h(x).

General solution: w =
∫
h(x) dx + Φ(u), where

u = e–λyF (x) + λ
∫
g(x)F (x) dx, F (x) = exp

[
λ

∫
f (x) dx

]
.
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11. ax
∂w

∂x
+ by

∂w

∂y
= f(x,y).

General solution:

w =
1
a

∫
1
x
f
(
x, u1/axb/a

)
dx + Φ(u), where u = yax–b.

In the integration, u is treated as a parameter.

12. f(x)
∂w

∂x
+ g(y)

∂w

∂y
= h1(x) + h2(y).

General solution: w =
∫

h1(x)
f (x)

dx +
∫

h2(y)
g(y)

dy + Φ
(∫

dx

f (x)
–
∫

dy

g(y)

)
.

13. f(x)
∂w

∂x
+ g(y)

∂w

∂y
= h(x, y).

The transformation ξ =
∫

dx

f (x)
, η =

∫
dy

g(y)
leads to an equation of the form T7.1.2.6 for

w = w(ξ, η).

14. f(y)
∂w

∂x
+ g(x)

∂w

∂y
= h(x, y).

The transformation ξ =
∫
g(x) dx, η =

∫
f (y) dy leads to an equation of the form T7.1.2.6

for w = w(ξ, η).

T7.1.3. Equations of the Form

f(x, y)∂w
∂x

+ g(x, y)∂w
∂y

= h(x, y)w + r(x, y)

� In the solutions of equations T7.1.3.1–T7.1.3.10, Φ(z) is an arbitrary composite function
whose argument z can depend on both x and y.

1. a
∂w

∂x
+ b

∂w

∂y
= f(x)w.

General solution: w = exp

[
1
a

∫
f (x) dx

]
Φ(bx – ay).

2. a
∂w

∂x
+ b

∂w

∂y
= f(x)w + g(x).

General solution: w = exp

[
1
a

∫
f (x) dx

]{
Φ(bx–ay)+

1
a

∫
g(x) exp

[
–

1
a

∫
f (x) dx

]
dx

}
.

3. a
∂w

∂x
+ b

∂w

∂y
=
[[
f(x) + g(y)

]]
w.

General solution: w = exp

[
1
a

∫
f (x) dx +

1
b

∫
g(y) dy

]
Φ(bx – ay).
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4.
∂w

∂x
+ a

∂w

∂y
= f(x, y)w.

General solution: w = exp

[∫ x

x0

f (t, y – ax + at) dt

]
Φ(y – ax), where x0 can be taken

arbitrarily.

5.
∂w

∂x
+ a

∂w

∂y
= f(x, y)w + g(x, y).

General solution:

w = F (x,u)

[
Φ(u) +

∫
g(x, u + ax)
F (x,u)

dx

]
, F (x,u) = exp

[∫
f (x, u + ax) dx

]
,

where u = y – ax. In the integration, u is treated as a parameter.

6. ax
∂w

∂x
+ by

∂w

∂y
= f(x)w + g(x).

General solution: w = exp

[
1
a

∫
f (x) dx
x

]{
Φ
(
x–b/ay

)
+

1
a

∫
g(x)
x

exp

[
–

1
a

∫
f (x) dx
x

]
dx

}
.

7. ax
∂w

∂x
+ by

∂w

∂y
= f(x, y)w.

General solution:

w = exp

[
1
a

∫
1
x
f
(
x, u1/axb/a

)
dx

]
Φ(u), where u = yax–b.

In the integration, u is treated as a parameter.

8. x
∂w

∂x
+ ay

∂w

∂y
= f(x, y)w + g(x, y).

General solution:

w = F (x,u)

[
Φ(u) +

∫
g(x, uxa)
xF (x,u)

dx

]
, F (x,u) = exp

[∫
1
x
f (x, uxa) dx

]
,

where u = yx–a. In the integration, u is treated as a parameter.

9. f(x)
∂w

∂x
+ g(y)

∂w

∂y
=
[[
h1(x) + h2(y)

]]
w.

General solution: w = exp

[∫
h1(x)
f (x)

dx +
∫

h2(y)
g(y)

dy

]
Φ
(∫

dx

f (x)
dx –

∫
dy

g(y)
dy

)
.
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10. f1(x)
∂w

∂x
+ f2(y)

∂w

∂y
= aw + g1(x) + g2(y).

General solution:

w = E1(x)Φ(u) +E1(x)
∫

g1(x) dx
f1(x)E1(x)

+E2(y)
∫

g2(y) dy
f2(y)E2(y)

,

where

E1(x) = exp

[
a

∫
dx

f1(x)

]
, E2(y) = exp

[
a

∫
dy

f2(y)

]
, u =

∫
dx

f1(x)
–
∫

dy

f2(y)
.

11. f(x)
∂w

∂x
+ g(y)

∂w

∂y
= h(x, y)w + r(x, y).

The transformation ξ =
∫

dx

f (x)
, η =

∫
dy

g(y)
leads to an equation of the form T7.1.3.5 for

w = w(ξ, η).

12. f(y)
∂w

∂x
+ g(x)

∂w

∂y
= h(x, y)w + r(x, y).

The transformation ξ =
∫
g(x) dx, η =

∫
f (y) dy leads to an equation of the form T7.1.3.5

for w = w(ξ, η).

T7.2. Quasilinear Equations

T7.2.1. Equations of the Form f(x, y)∂w
∂x

+ g(x, y)∂w
∂y

= h(x, y,w)

� In the solutions of equations T7.2.1.1–T7.2.1.12, Φ(z) is an arbitrary composite function
whose argument z can depend on both x and y.

1.
∂w

∂x
+ a

∂w

∂y
= f(x)w + g(x)wk.

General solution:

w1–k = F (x)Φ(y – ax) + (1 – k)F (x)
∫

g(x)
F (x)

dx, where F (x) = exp

[
(1 – k)

∫
f (x) dx

]
.

2.
∂w

∂x
+ a

∂w

∂y
= f(x) + g(x)eλw.

General solution:

e–λw = F (x)Φ(y – ax) – λF (x)
∫

g(x)
F (x)

dx, where F (x) = exp

[
–λ
∫
f (x) dx

]
.
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3. a
∂w

∂x
+ b

∂w

∂y
= f(w).

General solution:
∫

dw

f (w)
=
x

a
+ Φ(bx – ay).

4. a
∂w

∂x
+ b

∂w

∂y
= f(x)g(w).

General solution:
∫

dw

g(w)
=

1
a

∫
f (x) dx + Φ(bx – ay).

5.
∂w

∂x
+ a

∂w

∂y
= f(x)g(y)h(w).

General solution:
∫

dw

h(w)
=
∫ x

x0

f (t)g(y – ax + at) dt + Φ(y – ax), where x0 can be taken

arbitrarily.

6. ax
∂w

∂x
+ by

∂w

∂y
= f(w).

General solution:
∫

dw

f (w)
=

1
a

ln |x| + Φ
(

|x|b|y|–a
)
.

7. ay
∂w

∂x
+ bx

∂w

∂y
= f(w).

General solution:
∫

dw

f (w)
=

1√
ab

ln
∣∣
√
ab x + ay

∣∣ + Φ
(
ay2 – bx2), ab > 0.

8. axn∂w

∂x
+ byk ∂w

∂y
= f(w).

General solution:
∫

dw

f (w)
=

1
a(1 – n)

x1–n+Φ(u), where u=
1

a(1 – n)
x1–n–

1
b(1 – k)

y1–k.

9. ayn∂w

∂x
+ bxk ∂w

∂y
= f(w).

General solution:

a

∫
dw

f (w)
=
∫ (

b

a

n + 1
k + 1

xk+1 – u

)– n
n+1

dx, where u =
b

a

n + 1
k + 1

xk+1 – yn+1.

In the integration, u is treated as a parameter.

10. aeλx ∂w

∂x
+ beβy ∂w

∂y
= f(w).

General solution:
∫

dw

f (w)
= –

1
aλ
e–λx + Φ(u), where u = aλe–βy – bβe–λx.
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11. aeλy ∂w

∂x
+ beβx ∂w

∂y
= f(w).

General solution:
∫

dw

f (w)
=
c(βx – λy)

u
+ Φ(u), where u = aβeλy – bλeβx.

12. f(x)
∂w

∂x
+ g(y)

∂w

∂y
= h(w).

General solution:
∫

dw

h(w)
=
∫

dx

f (x)
+ Φ(u), where u =

∫
dx

f (x)
–
∫

dy

g(y)
.

13. f(y)
∂w

∂x
+ g(x)

∂w

∂y
= h(w).

The transformation ξ =
∫
g(x) dx, η =

∫
f (y) dy leads to an equation of the form T7.2.1.5:

∂w

∂ξ
+
∂w

∂η
= F (ξ)G(η)h(w), where F (ξ) =

1
g(x)

, G(η) =
1
f (y)

.

T7.2.2. Equations of the Form ∂w
∂x

+ f(x, y,w)∂w
∂y

= 0

� In the solutions of equations T7.2.2.1–T7.2.2.10, Φ(w) is an arbitrary function.

1.
∂w

∂x
+
[[
aw + yf(x)

]]∂w

∂y
= 0.

General solution: yF (x) – aw
∫
F (x) dx = Φ(w), where F (x) = exp

[
–
∫
f (x) dx

]
.

2.
∂w

∂x
+
[[
aw + f(y)

]]∂w

∂y
= 0.

General solution: x =
∫ y

y0

dt

f (t) + aw
+ Φ(w).

3.
∂w

∂x
+ f(w)

∂w

∂y
= 0.

A model equation of gas dynamics. This equation is also encountered in hydrodynamics,
multiphase flows, wave theory, acoustics, chemical engineering, and other applications.

1◦. General solution:
y = xf (w) + Φ(w),

where Φ is an arbitrary function.

2◦. The solution of the Cauchy problem with the initial condition

w = ϕ(y) at x = 0
can be represented in the parametric form

y = ξ + F(ξ)x, w = ϕ(ξ),

where F(ξ) = f
(
ϕ(ξ)

)
.
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3◦. Consider the Cauchy problem with the discontinuous initial condition

w(0, y) =
{
w1 for y < 0,
w2 for y > 0.

It is assumed that x ≥ 0, f > 0, and f ′ > 0 for w > 0, w1 > 0, and w2 > 0.
Generalized solution for w1 < w2:

w(x, y) =

{
w1 for y/x < V1,
f –1(y/x) for V1 ≤ y/x ≤ V2,
w2 for y/x > V2,

where V1 = f (w1), V2 = f (w2).

Here f –1 is the inverse of the function f , i.e., f –1(f (w)
)

≡ w. This solution is continuous
in the half-plane x > 0 and describes a “rarefaction wave.”

Generalized solution for w1 > w2:

w(x, y) =

{
w1 for y/x < V ,
w2 for y/x > V , where V =

1
w2 – w1

∫ w2

w1

f (w) dw.

This solution undergoes a discontinuity along the line y = V x and describes a “shock wave.”

4◦. In Subsection 13.1.3, qualitative features of solutions to this equation are considered,
including the wave-breaking effect and shock waves. This subsection also presents general
formulas that permit one to construct generalized (discontinuous) solutions for arbitrary
initial conditions.

4.
∂w

∂x
+
[[
f(w) + ax

]]∂w

∂y
= 0.

General solution: y = xf (w) + 1
2ax

2 + Φ(w).

5.
∂w

∂x
+
[[
f(w) + ay

]]∂w
∂y

= 0.

General solution: x =
1
a

ln
∣
∣ay + f (w)

∣
∣ + Φ(w).

6.
∂w

∂x
+
[[
f(w) + g(x)

]]∂w
∂y

= 0.

General solution: y = xf (w) +
∫
g(x) dx + Φ(w).

7.
∂w

∂x
+
[[
f(w) + g(y)

]]∂w
∂y

= 0.

General solution: x =
∫ y

y0

dt

g(t) + f (w)
+ Φ(w).

8.
∂w

∂x
+
[[
yf(w) + g(x)

]]∂w

∂y
= 0.

General solution: y exp
[
–xf (w)

]
–
∫ x

x0

g(t) exp
[
–tf (w)

]
dt = Φ(w), where x0 can be taken

arbitrarily.
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9.
∂w

∂x
+
[[
xf(w) + yg(w) + h(w)

]]∂w

∂y
= 0.

General solution: y +
xf (w) + h(w)

g(w)
+
f (w)

g2(w)
= exp

[
g(w)x

]
Φ(w).

10.
∂w

∂x
+ f(x)g(y)h(w)

∂w

∂y
= 0.

General solution:
∫

dy

g(y)
– h(w)

∫
f (x) dx = Φ(w).

T7.2.3. Equations of the Form ∂w
∂x

+ f(x, y,w)∂w
∂y

= g(x, y,w)

� In the solutions of equations T7.2.3.1–T7.2.3.11, Φ(z) is an arbitrary composite function
whose argument z can depend on x, y, and w.

1.
∂w

∂x
+ aw

∂w

∂y
= f(x).

General solution:

y = ax
[
w – F (x)

]
+ a
∫
F (x) dx + Φ

(
w – F (x)

)
, where F (x) =

∫
f (x) dx.

2.
∂w

∂x
+ aw

∂w

∂y
= f(y).

General solution:

x = �

∫ y

y0

dz√
2aF (z) – 2au

+ Φ(u), where F (y) =
∫
f (y) dy, u = F (y) –

1
2
aw2.

3.
∂w

∂x
+
[[
aw + f(x)

]]∂w

∂y
= g(x).

General solution:

y = ax
[
w – G(x)

]
+ a
∫
G(x) dx + F (x) + Φ

(
w –G(x)

)
,

where

F (x) =
∫
f (x) dx, G(x) =

∫
g(x) dx.

4.
∂w

∂x
+ f(w)

∂w

∂y
= g(x).

General solution: y =
∫ x

x0

f
(
G(t) –G(x) +w

)
dt+Φ

(
w –G(x)

)
, whereG(x) =

∫
g(x) dx.
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5.
∂w

∂x
+ f(w)

∂w

∂y
= g(y).

General solution:

x =
∫ y

y0

ψ
(
G(t) – G(y) + F (w)

)
dt + Φ

(
F (w) –G(y)

)
,

where G(y) =
∫
g(y) dy and F (w) =

∫
f (w) dw. The function ψ = ψ(z) is defined

parametrically by ψ =
1

f (w)
, z = F (w).

6.
∂w

∂x
+ f(w)

∂w

∂y
= g(w).

General solution: y =
∫

f (w)
g(w)

dw + Φ
(
x –
∫

dw

g(w)

)
.

7.
∂w

∂x
+
[[
f(w) + g(x)

]]∂w

∂y
= h(x).

General solution:

y =
∫ x

x0

f
(
H(t) – H(x) + w

)
dt +G(x) + Φ

(
w –H(x)

)
,

where

G(x) =
∫
g(x) dx, H(x) =

∫
h(x) dx.

8.
∂w

∂x
+
[[
f(w) + g(x)

]]∂w
∂y

= h(w).

General solution:

y =
∫

f (w)
h(w)

dw +
∫ w

w0

g
(
H(t) –H(w) + x

)

h(t)
dt + Φ

(
x –H(w)

)
, where H(x) =

∫
dw

h(w)
.

9.
∂w

∂x
+
[[
f(w) + yg(x)

]]∂w

∂y
= h(x).

General solution:

yG(x) –
∫
G(x)f

(
H(t) – H(x) + w

)
dx = Φ

(
w –H(x)

)
,

where G(x) = exp

[
–
∫
g(x) dx

]
and H(x) =

∫
h(x) dx.

10.
∂w

∂x
+ f(x,w)

∂w

∂y
= g(x).

General solution: y =
∫ x

x0

f
(
t, G(t)–G(x)+w

)
dt+Φ

(
w–G(x)

)
, where G(x) =

∫
g(x) dx.
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11.
∂w

∂x
+ f(x,w)

∂w

∂y
= g(w).

General solution: y =
∫ w

w0

f
(
G(t)–G(w)+x, t

)

g(t)
dt+Φ

(
x–G(w)

)
, where G(w) =

∫
dw

g(w)
.

T7.3. Nonlinear Equations
T7.3.1. Equations Quadratic in One Derivative
� In this subsection, only complete integrals are presented. In order to construct the
corresponding general solution, one should use the formulas of Subsection 13.2.1.

1.
∂w

∂x
+ a
((
∂w

∂y

))2

= by.

This equation governs the free vertical drop of a point body near the Earth’s surface (y is the
vertical coordinate measured downward, x time, m = 1

2a the mass of the body, and g = 2ab
the gravitational acceleration).

Complete integral: w = –C1x �
2a
3b

(
by + C1

a

)3/2
+ C2.

2.
∂w

∂x
+ a
((
∂w

∂y

))2

+ by2 = 0.

This equation governs free oscillations of a point body of massm = 1/(2a) in an elastic field
with elastic coefficient k = 2b (x is time and y is the displacement from the equilibrium).

Complete integral: w = –C1x + C2 �

∫ √
C1 – by2

a
dx + C2.

3.
∂w

∂x
+ a
((
∂w

∂y

))2

= f(x) + g(y).

Complete integral: w = –C1x +
∫
f (x) dx +

∫ √
g(y) + C1

a
dy + C2.

4.
∂w

∂x
+ a
((
∂w

∂y

))2

= f(x)y + g(x).

Complete integral:

w = ϕ(x)y +
∫ [

g(x) – aϕ2(x)
]
dx + C1, where ϕ(x) =

∫
f (x) dx + C2.

5.
∂w

∂x
+ a
((
∂w

∂y

))2

= f(x)w + g(x).

Complete integral:

w = F (x)(C1 + C2y) + F (x)
∫ [

g(x) – aC2
2F

2(x)
] dx

F (x)
, where F (x) = exp

[∫
f (x) dx

]
.
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6.
∂w

∂x
– f(w)

((
∂w

∂y

))2

= 0.

Complete integral in implicit form:
∫
f (w) dw = C2

1x + C1y + C2.

7. f1(x)
∂w

∂x
+ f2(y)

((
∂w

∂y

))2

= g1(x) + g2(y).

Complete integral: w =
∫

g1(x) – C1

f1(x)
dx +

∫ √
g2(y) + C1

f2(y)
dy + C2.

8.
∂w

∂x
+ a
((
∂w

∂y

))2

+ b
∂w

∂y
= f(x) + g(y).

Complete integral: w = –C1x + C2 +
∫
f (x) dx –

b

2a
y �

1
2a

∫ √
4ag(y) + b2 + 4aC1 dy.

9.
∂w

∂x
+ a
((
∂w

∂y

))2

+ b
∂w

∂y
= f(x)y + g(x).

Complete integral:

w = ϕ(x)y +
∫ [

g(x) – aϕ2(x) – bϕ(x)
]
dx + C1, where ϕ(x) =

∫
f (x) dx + C2.

10.
∂w

∂x
+ a
((
∂w

∂y

))2

+ b
∂w

∂y
= f(x)w + g(x).

Complete integral:

w = (C1y+C2)F (x)+F (x)
∫ [

g(x)–aC2
1F

2(x)–bC1F (x)
] dx

F (x)
, F (x) = exp

[∫
f (x) dx

]
.

T7.3.2. Equations Quadratic in Two Derivatives

1. a

((
∂w

∂x

))2

+ b
((
∂w

∂y

))2

= c.

For a = b, this is a differential equation of light rays.
Complete integral: w = C1x + C2y + C3, where aC2

1 + bC2
2 = c.

An alternative form of the complete integral:
w2

c
=

(x – C1)2

a
+

(y – C2)2

b
.

2.
((
∂w

∂x

))2

+
((
∂w

∂y

))2

= a – 2by.

This equation governs parabolic motion of a point mass in vacuum (the coordinate x is
measured along the Earth’s surface, the coordinate y is measured vertically upward from
the Earth’s surface, and a is the gravitational acceleration).

Complete integral: w = C1x �
1

3b (a – C2
1 – 2by)3/2 + C2.
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3.
((
∂w

∂x

))2

+
((
∂w

∂y

))2

=
a

√
x2 + y2

+ b.

This equation arises from the solution of the two-body problem in celestial mechanics.
Complete integral:

w = �

∫
√

b +
a

r
–
C2

1
r2 dr + C1 arctan

y

x
+ C2, where r =

√
x2 + y2.

4.
((
∂w

∂x

))2

+
((
∂w

∂y

))2

= f(x).

Complete integral: w = C1y + C2 �

∫ √
f (x) – C2

1 dx.

5.
((
∂w

∂x

))2

+
((
∂w

∂y

))2

= f(x) + g(y).

Complete integral: w = �

∫ √
f (x) + C1 dx �

∫ √
g2(y) – C1 dy + C2. The signs before

each of the integrals can be chosen independently of each other.

6.
((
∂w

∂x

))2

+
((
∂w

∂y

))2

= f(x2 + y2).

Hamilton’s equation for the plane motion of a point mass under the action of a central force.
Complete integral:

w = C1 arctan
x

y
+ C2 �

1
2

∫ √
zf (z) – C2

1
dz

z
, z = x2 + y2.

7.
((
∂w

∂x

))2

+
((
∂w

∂y

))2

= f(w).

Complete integral in implicit form:
∫

dw
√
f (w)

= �

√
(x + C1)2 + (y + C2)2.

8.
((
∂w

∂x

))2

+
1

x2

((
∂w

∂y

))2

= f(x).

This equation governs the plane motion of a point mass in a central force field, with x and y
being polar coordinates.

Complete integral: w = C1y �

∫
√

f (x) –
C2

1
x2 dx + C2.

9.
((
∂w

∂x

))2

+ f(x)
((
∂w

∂y

))2

= g(x).

Complete integral: w = C1y + C2 +
∫ √

g(x) – C2
1f (x) dx.
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10.
((
∂w

∂x

))2

+ f(y)
((
∂w

∂y

))2

= g(y).

Complete integral: w = C1x + C2 +
∫ √

g(y) – C2
1

f (y)
dy.

11.
((
∂w

∂x

))2

+ f(w)
((
∂w

∂y

))2

= g(w).

Complete integral in implicit form:
∫ √

C2
1 + C2

2f (w)

g(w)
dw = C1x + C2y + C3.

One of the constants C1 or C2 can be set equal to �1.

12. f1(x)
((
∂w

∂x

))2

+ f2(y)
((
∂w

∂y

))2

= g1(x) + g2(y).

A separable equation. This equation is encountered in differential geometry in studying
geodesic lines of Liouville surfaces. Complete integral:

w = �

∫ √
g1(x) + C1

f1(x)
dx �

∫ √
g2(y) – C1

f2(y)
dy + C2.

The signs before each of the integrals can be chosen independently of each other.

T7.3.3. Equations with Arbitrary Nonlinearities in Derivatives

1.
∂w

∂x
+ f
((
∂w

∂y

))
= 0.

This equation is encountered in optimal control and differential games.

1◦. Complete integral: w = C1y – f (C1)x + C2.

2◦. On differentiating the equation with respect to y, we arrive at a quasilinear equation of
the form T7.2.2.3:

∂u

∂x
+ f ′(u)

∂u

∂y
= 0, u =

∂w

∂y
,

which is discussed in detail in Subsection 13.1.3.

3◦. The solution of the Cauchy problem with the initial condition w(0, y) = ϕ(y) can be
written in parametric form as

y = f ′(ζ)x + ξ, w =
[
ζf ′(ζ) – f (ζ)

]
x + ϕ(ξ), where ζ = ϕ′(ξ).

See also Examples 1 and 2 in Subsection 13.2.3.

2.
∂w

∂x
+ f
((
∂w

∂y

))
= g(x).

Complete integral: w = C1y – f (C1)x +
∫
g(x) dx + C2.
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3.
∂w

∂x
+ f
((
∂w

∂y

))
= g(x)y + h(x).

Complete integral:

w = ϕ(x)y +
∫ [

h(x) – f
(
ϕ(x)

)]
dx + C1, where ϕ(x) =

∫
g(x) dx + C2.

4.
∂w

∂x
+ f
((
∂w

∂y

))
= g(x)w + h(x).

Complete integral:

w = (C1y + C2)ϕ(x) + ϕ(x)
∫ [

h(x) – f (C1ϕ(x))
] dx

ϕ(x)
, where ϕ(x) = exp

[∫
g(x) dx

]
.

5.
∂w

∂x
– F
((
x,
∂w

∂y

))
= 0.

Complete integral: w =
∫
F (x,C1) dx + C1y + C2.

6.
∂w

∂x
+ F
((
x,
∂w

∂y

))
= aw.

Complete integral: w = eax(C1y + C2) – eax
∫
e–axF (x,C1e

ax) dx.

7.
∂w

∂x
+ F
((
x,
∂w

∂y

))
= g(x)w.

Complete integral:

w = ϕ(x)(C1y + C2) – ϕ(x)
∫
F
(
x,C1ϕ(x)

) dx

ϕ(x)
, where ϕ(x) = exp

[∫
g(x) dx

]
.

8. F

((
∂w

∂x
,
∂w

∂y

))
= 0.

Complete integral:
w = C1x + C2y + C3,

whereC1 andC3 are arbitrary constants and the constantC2 is related toC1 byF (C1,C2)= 0.

9. w = x
∂w

∂x
+ y

∂w

∂y
+ F
((
∂w

∂x
,
∂w

∂y

))
.

Clairaut’s equation. Complete integral: w = C1x + C2y + F (C1,C2).
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10. F1

((
x,
∂w

∂x

))
= F2

((
y,
∂w

∂y

))
.

A separable equation. Complete integral:

w = ϕ(x) + ψ(y) + C1,

where the functions ϕ = ϕ(x) and ψ = ψ(y) are determined from the ordinary differential
equations

F1
(
x,ϕ′

x

)
= C2, F2

(
y,ψ′

y

)
= C2.

11. F1

((
x,
∂w

∂x

))
+ F2

((
y,
∂w

∂y

))
+ aw = 0.

A separable equation. Complete integral:

w = ϕ(x) + ψ(y),

where the functions ϕ = ϕ(x) and ψ = ψ(y) are determined from the ordinary differential
equations

F1
(
x,ϕ′

x

)
+ aϕ = C1, F2

(
y,ψ′

y

)
+ aψ = –C1,

where C1 is an arbitrary constant. If a ≠ 0, one can set C1 = 0 in these equations.

12. F1

((
x,

1

w

∂w

∂x

))
+ wkF2

((
y,

1

w

∂w

∂y

))
= 0.

A separable equation. Complete integral:

w(x, y) = ϕ(x)ψ(y).

The functions ϕ = ϕ(x) and ψ = ψ(y) are determined by solving the ordinary differential
equations

ϕ–kF1
(
x,ϕ′

x/ϕ
)

= C , ψkF2
(
y,ψ′

y/ψ
)

= –C ,

where C is an arbitrary constant.

13. F1

((
x,
∂w

∂x

))
+ eλwF2

((
y,
∂w

∂y

))
= 0.

A separable equation. Complete integral:

w(x, y) = ϕ(x) + ψ(y).

The functions ϕ = ϕ(x) and ψ = ψ(y) are determined by solving the ordinary differential
equations

e–λϕF1
(
x,ϕ′

x

)
= C , eλψF2

(
y,ψ′

y

)
= –C ,

where C is an arbitrary constant.
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14. F1

((
x,

1

w

∂w

∂x

))
+ F2

((
y,

1

w

∂w

∂y

))
= k lnw.

A separable equation. Complete integral:

w(x, y) = ϕ(x)ψ(y).

The functions ϕ = ϕ(x) and ψ = ψ(y) are determined by solving the ordinary differential
equations

F1
(
x,ϕ′

x/ϕ
)

– k lnϕ = C , F2
(
y,ψ′

y/ψ
)

– k lnψ = –C ,

where C is an arbitrary constant.

15.
∂w

∂x
+ yF1

((
x,
∂w

∂y

))
+ F2

((
x,
∂w

∂y

))
= 0.

Complete integral:

w = ϕ(x)y –
∫
F2
(
x,ϕ(x)

)
dx + C1,

where the function ϕ(x) is determined by solving the ordinary differential equation ϕ′
x +

F1(x,ϕ) = 0.

16. F

((
∂w

∂x
+ ay,

∂w

∂y
+ ax

))
= 0.

Complete integral: w = –axy + C1x + C2y + C3, where F (C1,C2) = 0.

17.
((
∂w

∂x

))2

+
((
∂w

∂y

))2

= F
((
x2 + y2, y

∂w

∂x
– x

∂w

∂y

))
.

Complete integral: w = –C1 arctan
y

x
+

1
2

∫ √
ξF (ξ,C1) – C2

1
dξ

ξ
+C2, where ξ = x2 +y2.

18. F

((
x,
∂w

∂x
,
∂w

∂y

))
= 0.

Complete integral: w =C1y+ϕ(x,C1)+C2, where the function ϕ =ϕ(x,C1) is determined
from the ordinary differential equation F

(
x,ϕ′

x,C1
)

= 0.

19. F

((
ax + by,

∂w

∂x
,
∂w

∂y

))
= 0.

For b = 0, see equation T7.3.3.18. Complete integral for b ≠ 0:

w = C1x + ϕ(z,C1) + C2, z = ax + by,

where the function ϕ = ϕ(z) is determined from the nonlinear ordinary differential equation
F
(
z, aϕ′

z + C1, bϕ′
z

)
= 0.

20. F

((
w,

∂w

∂x
,
∂w

∂y

))
= 0.

Complete integral:
w = w(z), z = C1x + C2y,

where C1 and C2 are arbitrary constants and w = w(z) is determined by the autonomous
ordinary differential equation F

(
w,C1w

′
z ,C2w

′
z

)
= 0.
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21. F

((
ax + by + cw,

∂w

∂x
,
∂w

∂y

))
= 0.

For c = 0, see equation T7.3.3.19. If c ≠ 0, then the substitution cu = ax + by + cw leads to

an equation of the form T7.3.3.20: F
(
cu,

∂u

∂x
–
a

c
,
∂u

∂y
–
b

c

)
= 0.

22. F

((
x,
∂w

∂x
,
∂w

∂y
,w – y

∂w

∂y

))
= 0.

Complete integral: w = C1y + ϕ(x), where the function ϕ(x) is determined from the
ordinary differential equation F

(
x,ϕ′

x,C1,ϕ
)

= 0.

23. F

((
w,

∂w

∂x
,
∂w

∂y
, x

∂w

∂x
+ y

∂w

∂y

))
= 0.

Complete integral:
w = ϕ(ξ), ξ = C1x + C2y,

where the function ϕ(ξ) is determined by solving the nonlinear ordinary differential equation
F
(
ϕ, C1ϕ

′
ξ , C2ϕ

′
ξ , ξϕ

′
ξ

)
= 0.

24. F

((
ax + by,

∂w

∂x
,
∂w

∂y
, w – x

∂w

∂x
– y

∂w

∂y

))
= 0.

Complete integral:
w = C1x + C2y + ϕ(ξ), ξ = ax + by,

where the function ϕ(ξ) is determined by solving the nonlinear ordinary differential equation
F
(
ξ, aϕ′

ξ + C1, bϕ′
ξ + C2, ϕ – ξϕ′

ξ

)
= 0.

25. F

((
x,
∂w

∂x
,G
((
y,
∂w

∂y

))))
= 0.

Complete integral:
w = ϕ(x,C1) + ψ(y,C1) + C2,

where the functions ϕ and ψ are determined by the ordinary differential equations

F (x,ϕ′
x,C1) = 0, G(y,ψ′

y) = C1.

On solving these equations for the derivatives, we obtain linear separable equations, which
are easy to integrate.
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Chapter T8

Linear Equations and Problems
of Mathematical Physics

T8.1. Parabolic Equations

T8.1.1. Heat Equation ∂w
∂t

= a∂
2w
∂x2

T8.1.1-1. Particular solutions.

w(x) = Ax +B,

w(x, t) = A(x2 + 2at) + B,

w(x, t) = A(x3 + 6atx) +B,

w(x, t) = A(x4 + 12atx2 + 12a2t2) +B,

w(x, t) = x2n +
n∑

k=1

(2n)(2n – 1) . . . (2n – 2k + 1)
k!

(at)kx2n–2k ,

w(x, t) = x2n+1 +
n∑

k=1

(2n + 1)(2n) . . . (2n – 2k + 2)
k!

(at)kx2n–2k+1,

w(x, t) = A exp(aμ2t � μx) +B,

w(x, t) = A
1√
t

exp

(
–
x2

4at

)
+ B,

w(x, t) = A
x

t3/2 exp

(
–
x2

4at

)
+B,

w(x, t) = A exp(–aμ2t) cos(μx + B) + C,

w(x, t) = A exp(–μx) cos(μx – 2aμ2t +B) + C,

w(x, t) = A erf

(
x

2
√
at

)
+B,

where A, B, C , and μ are arbitrary constants, n is a positive integer, and erf z ≡
2√
π

∫ z

0
exp(–ξ2) dξ is the error function (probability integral).

T8.1.1-2. Formulas allowing the construction of particular solutions.

Suppose w = w(x, t) is a solution of the heat equation. Then the functions

w1 = Aw(�λx + C1, λ2t + C2) +B,

w2 = A exp(λx + aλ2t)w(x + 2aλt + C1, t + C2),

w3 =
A√

|δ + βt|
exp

[
–

βx2

4a(δ + βt)

]
w

(
�

x

δ + βt
,
γ + λt
δ + βt

)
, λδ – βγ = 1,

1267
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where A, B, C1, C2, β, δ, and λ are arbitrary constants, are also solutions of this equation.
The last formula with β = 1, γ = –1, δ = λ = 0 was obtained with the Appell transformation.

T8.1.1-3. Cauchy problem and boundary value problems.

For solutions of the Cauchy problem and various boundary value problems, see Subsec-
tion T8.1.2 with Φ(x, t) ≡ 0.

T8.1.2. Nonhomogeneous Heat Equation ∂w
∂t

= a∂
2w
∂x2 + Φ(x, t)

T8.1.2-1. Domain: –∞ < x < ∞. Cauchy problem.

An initial condition is prescribed:

w = f (x) at t = 0.

Solution:

w(x, t) =
∫ ∞

–∞
f (ξ)G(x, ξ, t) dξ +

∫ t

0

∫ ∞

–∞
Φ(ξ, τ )G(x, ξ, t – τ ) dξ dτ ,

where

G(x, ξ, t) =
1

2
√
πat

exp

[
–

(x – ξ)2

4at

]
.

T8.1.2-2. Solutions of boundary value problems in terms of the Green’s function.

We consider boundary value problems on an interval 0 ≤ x ≤ l with the general initial
condition

w = f (x) at t = 0
and various homogeneous boundary conditions. The solution can be represented in terms
of the Green’s function as

w(x, t) =
∫ l

0
f (ξ)G(x, ξ, t) dξ +

∫ t

0

∫ l

0
Φ(ξ, τ )G(x, ξ, t – τ ) dξ dτ .

Here, the upper limit l can be finite or infinite; if l = ∞, there is no boundary condition
corresponding to it.

Paragraphs T8.1.2-3 through T8.1.2-8 present the Green’s functions for various types
of homogeneous boundary conditions.

Remark. Formulas from Section 14.7 should be used to obtain solutions to corresponding nonhomoge-
neous boundary value problems.

T8.1.2-3. Domain: 0 ≤ x < ∞. First boundary value problem.

A boundary condition is prescribed:

w = 0 at x = 0.

Green’s function:

G(x, ξ, t) =
1

2
√
πat

{
exp

[
–

(x – ξ)2

4at

]
– exp

[
–

(x + ξ)2

4at

]}
.
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T8.1.2-4. Domain: 0 ≤ x < ∞. Second boundary value problem.

A boundary condition is prescribed:

∂xw = 0 at x = 0.

Green’s function:

G(x, ξ, t) =
1

2
√
πat

{
exp

[
–

(x – ξ)2

4at

]
+ exp

[
–

(x + ξ)2

4at

]}
.

T8.1.2-5. Domain: 0 ≤ x < ∞. Third boundary value problem.

A boundary condition is prescribed:

∂xw – kw = 0 at x = 0.

Green’s function:

G(x, ξ, t) =
1

2
√
πat

{
exp

[
–

(x – ξ)2

4at

]
+ exp

[
–

(x + ξ)2

4at

]
– 2k

∫ ∞

0
exp

[
–

(x + ξ + η)2

4at
– kη

]
dη

}
.

T8.1.2-6. Domain: 0 ≤ x ≤ l. First boundary value problem.

Boundary conditions are prescribed:

w = 0 at x = 0, w = 0 at x = l.

Two forms of representation of the Green’s function:

G(x, ξ, t) =
2
l

∞∑

n=1

sin

(
nπx

l

)
sin

(
nπξ

l

)
exp

(
–
an2π2t

l2

)

=
1

2
√
πat

∞∑

n=–∞

{
exp

[
–

(x – ξ + 2nl)2

4at

]
– exp

[
–

(x + ξ + 2nl)2

4at

]}
.

The first series converges rapidly at large t and the second series at small t.

T8.1.2-7. Domain: 0 ≤ x ≤ l. Second boundary value problem.

Boundary conditions are prescribed:

∂xw = 0 at x = 0, ∂xw = 0 at x = l.

Two forms of representation of the Green’s function:

G(x, ξ, t) =
1
l

+
2
l

∞∑

n=1

cos

(
nπx

l

)
cos

(
nπξ

l

)
exp

(
–
an2π2t

l2

)

=
1

2
√
πat

∞∑

n=–∞

{
exp

[
–

(x – ξ + 2nl)2

4at

]
+ exp

[
–

(x + ξ + 2nl)2

4at

]}
.

The first series converges rapidly at large t and the second series at small t.
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T8.1.2-8. Domain: 0 ≤ x ≤ l. Third boundary value problem (k1 > 0, k2 > 0).

Boundary conditions are prescribed:

∂xw – k1w = 0 at x = 0, ∂xw + k2w = 0 at x = l.

Green’s function:

G(x, ξ, t) =
∞∑

n=1

1
‖yn‖2 yn(x)yn(ξ) exp(–aμ2

nt),

yn(x) = cos(μnx) +
k1

μn
sin(μnx), ‖yn‖2 =

k2

2μ2
n

μ2
n + k2

1
μ2
n + k2

2
+
k1

2μ2
n

+
l

2

(
1 +

k2
1
μ2
n

)
,

where μn are positive roots of the transcendental equation
tan(μl)
μ

=
k1 + k2

μ2 – k1k2
.

T8.1.3. Equation of the Form ∂w
∂t

= a∂
2w
∂x2 + b∂w

∂x
+ cw + Φ(x, t)

The substitution

w(x, t) = exp(βt + μx)u(x, t), β = c –
b2

4a
, μ = –

b

2a

leads to the nonhomogeneous heat equation

∂u

∂t
= a

∂2u

∂x2 + exp(–βt – μx)Φ(x, t),

which is considered in Subsections T8.1.1 and T8.1.2.

T8.1.4. Heat Equation with Axial Symmetry ∂w
∂t

= a
(
∂2w
∂r2 + 1

r
∂w
∂r

)

This is a heat (diffusion) equation with axial symmetry, where r =
√
x2 + y2 is the radial

coordinate.

T8.1.4-1. Particular solutions.

w(r) = A + B ln r,
w(r, t) = A + B(r2 + 4at),
w(r, t) = A + B(r4 + 16atr2 + 32a2t2),

w(r, t) = A + B

(
r2n +

n∑

k=1

4k[n(n – 1) . . . (n – k + 1)]2

k!
(at)kr2n–2k

)
,

w(r, t) = A + B
(

4at ln r + r2 ln r – r2),

w(r, t) = A +
B

t
exp

(
–
r2

4at

)
,
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w(r, t) = A + B exp(–aμ2t)J0(μr),

w(r, t) = A + B exp(–aμ2t)Y0(μr),

w(r, t) = A +
B

t
exp

(
–
r2 + μ2

4t

)
I0

(
μr

2t

)
,

w(r, t) = A +
B

t
exp

(
–
r2 + μ2

4t

)
K0

(
μr

2t

)
,

where A,B, and μ are arbitrary constants, n is an arbitrary positive integer, J0(z) and Y0(z)
are Bessel functions, and I0(z) and K0(z) are modified Bessel functions.

T8.1.4-2. Formulas allowing the construction of particular solutions.

Suppose w = w(r, t) is a solution of the original equation. Then the functions

w1 = Aw(�λr, λ2t + C) + B,

w2 =
A

δ + βt
exp

[
–

βr2

4a(δ + βt)

]
w

(
�

r

δ + βt
,
γ + λt
δ + βt

)
, λδ – βγ = 1,

where A, B, C , β, δ, and λ are arbitrary constants, are also solutions of this equation. The
second formula usually may be encountered with β = 1, γ = –1, and δ = λ = 0.

T8.1.4-3. Boundary value problems.

For solutions of various boundary value problems, see Subsection T8.1.5 with Φ(r, t) ≡ 0.

T8.1.5. Equation of the Form ∂w
∂t

= a
(
∂2w
∂r2 + 1

r
∂w
∂r

)
+ Φ(r, t)

T8.1.5-1. Solutions of boundary value problems in terms of the Green’s function.

We consider boundary value problems in domain 0 ≤ r ≤Rwith the general initial condition

w = f (r) at t = 0 (T8.1.5.1)

and various homogeneous boundary conditions (the solutions bounded at r = 0 are sought).
The solution can be represented in terms of the Green’s function as

w(x, t) =
∫ R

0
f (ξ)G(r, ξ, t) dξ +

∫ t

0

∫ R

0
Φ(ξ, τ )G(r, ξ, t – τ ) dξ dτ . (T8.1.5.2)

T8.1.5-2. Domain: 0 ≤ r ≤ R. First boundary value problem.

A boundary condition is prescribed:

w = 0 at r = R.
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Green’s function:

G(r, ξ, t) =
∞∑

n=1

2ξ
R2J2

1 (μn)
J0

(
μn

r

R

)
J0

(
μn

ξ

R

)
exp

(
–
aμ2

nt

R2

)
,

where μn are positive zeros of the Bessel function, J0(μ) = 0. Below are the numerical
values of the first ten roots:

μ1 = 2.4048, μ2 = 5.5201, μ3 = 8.6537, μ4 = 11.7915, μ5 = 14.9309,
μ6 = 18.0711, μ7 = 21.2116, μ8 = 24.3525, μ9 = 27.4935, μ10 = 30.6346.

The zeros of the Bessel function J0(μ) may be approximated by the formula

μn = 2.4 + 3.13(n – 1) (n = 1, 2, 3, . . .),

which is accurate within 0.3%. As n→ ∞, we have μn+1 – μn → π.

T8.1.5-3. Domain: 0 ≤ r ≤ R. Second boundary value problem.

A boundary condition is prescribed:

∂rw = 0 at r = R.

Green’s function:

G(r, ξ, t) =
2
R2 ξ +

2
R2

∞∑

n=1

ξ

J2
0 (μn)

J0

(
μnr

R

)
J0

(
μnξ

R

)
exp

(
–
aμ2

nt

R2

)
,

where μn are positive zeros of the first-order Bessel function, J1(μ) = 0. Below are the
numerical values of the first ten roots:

μ1 = 3.8317, μ2 = 7.0156, μ3 = 10.1735, μ4 = 13.3237, μ5 = 16.4706,
μ6 = 19.6159, μ7 = 22.7601, μ8 = 25.9037, μ9 = 29.0468, μ10 = 32.1897.

As n→ ∞, we have μn+1 – μn → π.

T8.1.6. Heat Equation with Central Symmetry
∂w
∂t

= a
(
∂2w
∂r2 + 2

r
∂w
∂r

)

This is the heat (diffusion) equation with central symmetry; r =
√
x2 + y2 + z2 is the radial

coordinate.

T8.1.6-1. Particular solutions.

w(r) = A +Br–1,
w(r, t) = A +B(r2 + 6at),
w(r, t) = A +B(r4 + 20atr2 + 60a2t2),
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w(r, t) = A +B

[
r2n +

n∑

k=1

(2n + 1)(2n) . . . (2n – 2k + 2)
k!

(at)kr2n–2k
]

,

w(r, t) = A + 2aBtr–1 +Br,
w(r, t) = Ar–1 exp(aμ2t � μr) +B,

w(r, t) = A +
B

t3/2 exp

(
–
r2

4at

)
,

w(r, t) = A +
B

r
√
t

exp

(
–
r2

4at

)
,

w(r, t) = Ar–1 exp(–aμ2t) cos(μr +B) + C ,

w(r, t) = Ar–1 exp(–μr) cos(μr – 2aμ2t +B) + C ,

w(r, t) =
A

r
erf

(
r

2
√
at

)
+ B,

where A, B, C , and μ are arbitrary constants, and n is an arbitrary positive integer.

T8.1.6-2. Reduction to a constant coefficient equation. Some formulas.

1◦. The substitution u(r, t) = rw(r, t) brings the original equation with variable coefficients
to the constant coefficient equation ∂tu = a∂ww, which is discussed in Subsection T8.1.1.

2◦. Suppose w = w(r, t) is a solution of the original equation. Then the functions

w1 = Aw(�λr, λ2t + C) + B,

w2 =
A

|δ + βt|3/2 exp

[
–

βr2

4a(δ + βt)

]
w

(
�

r

δ + βt
,
γ + λt
δ + βt

)
, λδ – βγ = 1,

where A, B, C , β, δ, and λ are arbitrary constants, are also solutions of this equation. The
second formula may usually be encountered with β = 1, γ = –1, and δ = λ = 0.

T8.1.6-3. Boundary value problems.

For solutions of various boundary value problems, see Subsection T8.1.7 with Φ(r, t) ≡ 0.

T8.1.7. Equation of the Form ∂w
∂t

= a
(
∂2w
∂r2 + 2

r
∂w
∂r

)
+ Φ(r, t)

T8.1.7-1. Solutions of boundary value problems in terms of the Green’s function.

Solutions to boundary value problems on an interval 0 ≤ x ≤ R with the general initial
condition (T8.1.5.1) and various homogeneous boundary conditions are expressed via the
Green’s function by formula (T8.1.5.2).

T8.1.7-2. Domain: 0 ≤ r ≤ R. First boundary value problem.

A boundary condition is prescribed:

w = 0 at r = R.
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Green’s function:

G(r, ξ, t) =
2ξ
Rr

∞∑

n=1

sin

(
nπr

R

)
sin

(
nπξ

R

)
exp

(
–
an2π2t

R2

)
.

T8.1.7-3. Domain: 0 ≤ r ≤ R. Second boundary value problem.

A boundary condition is prescribed:

∂rw = 0 at r = R.

Green’s function:

G(r, ξ, t) =
3ξ2

R3 +
2ξ
Rr

∞∑

n=1

μ2
n + 1
μ2
n

sin

(
μnr

R

)
sin

(
μnξ

R

)
exp

(
–
aμ2

nt

R2

)
,

where μn are positive roots of the transcendental equation tanμ –μ = 0. The first five roots
are

μ1 = 4.4934, μ2 = 7.7253, μ3 = 10.9041, μ4 = 14.0662, μ5 = 17.2208.

T8.1.8. Equation of the Form ∂w
∂t

= ∂
2w
∂x2 +

1 – 2β
x

∂w
∂x

This dimensionless equation is encountered in problems of the diffusion boundary layer.
For β = 0, β = 1

2 , or β = – 1
2 , see the equations in Subsections T8.1.4, T8.1.1, or T8.1.6,

respectively.

T8.1.8-1. Particular solutions.

w(x) = A +Bx2β ,
w(x, t) = A + 4(1 – β)Bt + Bx2,

w(x, t) = A + 16(2 – β)(1 – β)Bt2 + 8(2 – β)Btx2 +Bx4,

w(x, t) = x2n +
n∑

p=1

4p

p!
sn,psn–β,pt

px2(n–p), sq,p = q(q – 1) . . . (q – p + 1),

w(x, t) = A + 4(1 + β)Btx2β + Bx2β+2,

w(x, t) = A +Btβ–1 exp

(
–
x2

4t

)
,

w(x, t) = A +B
x2β

tβ+1 exp

(
–
x2

4t

)
,

w(x, t) = A +Bγ

(
β,
x2

4t

)
,

w(x, t) = A +B exp(–μ2t)xβJβ(μx),

w(x, t) = A +B exp(–μ2t)xβYβ(μx),

w(x, t) = A +B
xβ

t
exp

(
–
x2 + μ2

4t

)
I�β

(
μx

2t

)
,

w(x, t) = A +B
xβ

t
exp

(
–
x2 + μ2

4t

)
Kβ

(
μx

2t

)
,
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where A, B, and μ are arbitrary constants, n is an arbitrary positive number, γ(β, z) is the
incomplete gamma function, Jβ(z) and Yβ(z) are Bessel functions, and Iβ(z) and Kβ(z)
are modified Bessel functions.

T8.1.8-2. Formulas and transformations for constructing particular solutions.

1◦. Suppose w = w(x, t) is a solution of the original equation. Then the functions

w1 = Aw(�λx, λ2t + C),

w2 = A|a + bt|β–1 exp

[
–

bx2

4(a + bt)

]
w

(
�

x

a + bt
,
c + kt
a + bt

)
, ak – bc = 1,

where A, C , a, b, and c are arbitrary constants, are also solutions of this equation. The
second formula usually may be encountered with a = k = 0, b = 1, and c = –1.

2◦. The substitution w = x2βu(x, t) brings the equation with parameter β to an equation
of the same type with parameter –β:

∂u

∂t
=
∂2u

∂x2 +
1 + 2β
x

∂u

∂x
.

T8.1.8-3. Domain: 0 ≤ x < ∞. First boundary value problem.

The following initial and boundary conditions are prescribed:

w = f (x) at t = 0, w = g(t) at x = 0.

Solution for 0 < β < 1:

w(x, t) =
xβ

2t

∫ ∞

0
f (ξ)ξ1–β exp

(
–
x2 + ξ2

4t

)
Iβ

(
ξx

2t

)
dξ

+
x2β

22β+1Γ(β + 1)

∫ t

0
g(τ ) exp

[
–

x2

4(t – τ )

]
dτ

(t – τ )1+β .

T8.1.8-4. Domain: 0 ≤ x < ∞. Second boundary value problem.

The following initial and boundary conditions are prescribed:

w = f (x) at t = 0, (x1–2β∂xw) = g(t) at x = 0.

Solution for 0 < β < 1:

w(x, t) =
xβ

2t

∫ ∞

0
f (ξ)ξ1–β exp

(
–
x2 + ξ2

4t

)
I–β

(
ξx

2t

)
dξ

–
22β–1

Γ(1 – β)

∫ t

0
g(τ ) exp

[
–

x2

4(t – τ )

]
dτ

(t – τ )1–β .
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T8.1.9. Equations of the Diffusion (Thermal) Boundary Layer

1. f(x)
∂w

∂x
+ g(x)y

∂w

∂y
=
∂2w

∂y2
.

This equation is encountered in diffusion boundary layer problems (mass exchange of drops
and bubbles with flow).

The transformation (A and B are any numbers)

t =
∫

h2(x)
f (x)

dx +A, z = yh(x), where h(x) = B exp

[
–
∫

g(x)
f (x)

dx

]
,

leads to a constant coefficient equation, ∂tw = ∂zzw, which is considered in Subsection
T8.1.1.

2. f(x)yn–1 ∂w

∂x
+ g(x)yn∂w

∂y
=
∂2w

∂y2
.

This equation is encountered in diffusion boundary layer problems (mass exchange of solid
particles, drops, and bubbles with flow).

The transformation (A and B are any numbers)

t =
1
4

(n+ 1)2
∫

h2(x)
f (x)

dx+A, z = h(x)y
n+1

2 , where h(x) =B exp

[
–
n + 1

2

∫
g(x)
f (x)

dx

]
,

leads to the simpler equation

∂w

∂t
=
∂2w

∂z2 +
1 – 2k
z

∂w

∂z
, k =

1
n + 1

,

which is considered in Subsection T8.1.8.

T8.1.10. Schrödinger Equation ih∂w
∂t

= – h
2

2m
∂2w
∂x2 + U(x)w

T8.1.10-1. Eigenvalue problem. Cauchy problem.

Schrödinger’s equation is the basic equation of quantum mechanics; w is the wave function,
i2 = –1, � is Planck’s constant, m is the mass of the particle, andU (x) is the potential energy
of the particle in the force field.

1◦. In discrete spectrum problems, the particular solutions are sought in the form

w(x, t) = exp

(
–
iEn
�
t

)
ψn(x),

where the eigenfunctions ψn and the respective energies En have to be determined by
solving the eigenvalue problem

d2ψn
dx2 +

2m
�2

[
En – U (x)

]
ψn = 0,

ψn → 0 at x→ �∞,
∫ ∞

–∞
|ψn|2 dx = 1.

(T8.1.10.1)

The last relation is the normalizing condition for ψn.
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2◦. In the cases where the eigenfunctions ψn(x) form an orthonormal basis in L2(R), the
solution of the Cauchy problem for Schrödinger’s equation with the initial condition

w = f (x) at t = 0 (T8.1.10.2)

is given by

w(x, t) =
∫ ∞

–∞
G(x, ξ, t)f (ξ) dξ, G(x, ξ, t) =

∞∑

n=0

ψn(x)ψn(ξ) exp

(
–
iEn
�
t

)
.

Various potentials U (x) are considered below and particular solutions of the boundary
value problem (T8.1.10.1) or the Cauchy problem for Schrödinger’s equation are presented.

T8.1.10-2. Free particle: U (x) = 0.

The solution of the Cauchy problem with the initial condition (T8.1.10.2) is given by

w(x, t) =
1

2
√
iπτ

∫ ∞

–∞
exp

[
–

(x – ξ)2

4iτ

]
f (ξ) dξ, τ =

�t

2m
,

√
ia =

{
eπi/4√|a| if a > 0,

e–πi/4√|a| if a < 0.

T8.1.10-3. Linear potential (motion in a uniform external field): U (x) = ax.

Solution of the Cauchy problem with the initial condition (T8.1.10.2):

w(x, t) =
1

2
√
iπτ

exp
(
–ibτx– 1

3 ib
2τ 3)

∫ ∞

–∞
exp

[
–

(x + bτ 2 – ξ)2

4iτ

]
f (ξ) dξ, τ =

�t

2m
, b =

2am
�2 .

T8.1.10-4. Linear harmonic oscillator: U (x) = 1
2mω

2x2.

Eigenvalues:
En = �ω

(
n + 1

2
)
, n = 0, 1, . . .

Normalized eigenfunctions:

ψn(x) =
1

π1/4√2nn!x0
exp
(
– 1

2 ξ
2)Hn(ξ), ξ =

x

x0
, x0 =

√
�

mω
,

where Hn(ξ) are the Hermite polynomials. The functions ψn(x) form an orthonormal basis
in L2(R).

T8.1.10-5. Isotropic free particle: U (x) = a/x2.

Here, the variable x ≥ 0 plays the role of the radial coordinate, and a > 0. The equation with
U (x) = a/x2 results from Schrödinger’s equation for a free particle withn space coordinates
if one passes to spherical (cylindrical) coordinates and separates the angular variables.

The solution of Schrödinger’s equation satisfying the initial condition (T8.1.10.2) has
the form

w(x, t) =
exp
[
– 1

2 iπ(μ + 1) sign t
]

2|τ |

∫ ∞

0

√
xy exp

(
i
x2 + y2

4τ

)
Jμ

(
xy

2|τ |

)
f (y) dy,

τ =
�t

2m
, μ =

√
2am
�2 +

1
4

≥ 1,

where Jμ(ξ) is the Bessel function.
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T8.1.10-6. Morse potential: U (x) = U0(e–2x/a – 2e–x/a).

Eigenvalues:

En = –U0

[
1 –

1
β

(n + 1
2 )

]2
, β =

a
√

2mU0

�
, 0 ≤ n < β – 2.

Eigenfunctions:

ψn(x) = ξse–ξ/2Φ(–n, 2s + 1, ξ), ξ = 2βe–x/a, s =
a
√

–2mEn
�

,

where Φ(a, b, ξ) is the degenerate hypergeometric function.
In this case the number of eigenvalues (energy levels) En and eigenfunctions ψn is

finite: n = 0, 1, . . . , nmax.

T8.2. Hyperbolic Equations

T8.2.1. Wave Equation ∂
2w
∂t2 = a2∂2w

∂x2

This equation is also known as the equation of vibration of a string. It is often encountered
in elasticity, aerodynamics, acoustics, and electrodynamics.

T8.2.1-1. General solution. Some formulas.

1◦. General solution:
w(x, t) = ϕ(x + at) + ψ(x – at),

where ϕ(x) and ψ(x) are arbitrary functions.

2◦. If w(x, t) is a solution of the wave equation, then the functions

w1 = Aw(�λx + C1,�λt + C2) +B,

w2 = Aw

(
x – vt

√
1 – (v/a)2

,
t – va–2x
√

1 – (v/a)2

)
,

w3 = Aw

(
x

x2 – a2t2 ,
t

x2 – a2t2

)

are also solutions of the equation everywhere these functions are defined (A, B, C1,
C2, v, and λ are arbitrary constants). The signs at λ’s in the formula for w1 are taken
arbitrarily. The function w2 results from the invariance of the wave equation under the
Lorentz transformations.

T8.2.1-2. Domain: –∞ < x < ∞. Cauchy problem.

Initial conditions are prescribed:

w = f (x) at t = 0, ∂tw = g(x) at t = 0.

Solution (D’Alembert’s formula):

w(x, t) =
1
2

[f (x + at) + f (x – at)] +
1

2a

∫ x+at

x–at
g(ξ) dξ.
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T8.2.1-3. Domain: 0 ≤ x < ∞. First boundary value problem.

The following two initial and one boundary conditions are prescribed:

w = f (x) at t = 0, ∂tw = g(x) at t = 0, w = h(t) at x = 0.

Solution:

w(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2

[f (x + at) + f (x – at)] +
1

2a

∫ x+at

x–at
g(ξ) dξ for t <

x

a
,

1
2

[f (x + at) – f (at – x)] +
1

2a

∫ x+at

at–x
g(ξ) dξ + h

(
t –

x

a

)
for t >

x

a
.

In the domain t < x/a the boundary conditions have no effect on the solution and the
expression of w(x, t) coincides with D’Alembert’s solution for an infinite line (see Para-
graph T8.2.1-2).

T8.2.1-4. Domain: 0 ≤ x < ∞. Second boundary value problem.

The following two initial and one boundary conditions are prescribed:

w = f (x) at t = 0, ∂tw = g(x) at t = 0, ∂xw = h(t) at x = 0.

Solution:

w(x, t) =

⎧
⎪⎨

⎪⎩

1
2

[f (x+at)+f (x–at)]+
1

2a
[G(x+at)–G(x–at)] for t <

x

a
,

1
2

[f (x+at)+f (at–x)]+
1

2a
[G(x+at)+G(at–x)]–aH

(
t–
x

a

)
for t >

x

a
,

where G(z) =
∫ z

0
g(ξ) dξ and H(z) =

∫ z

0
h(ξ) dξ.

T8.2.1-5. Domain: 0 ≤ x ≤ l. Boundary value problems.

For solutions of various boundary value problems, see Subsection T8.2.2 for Φ(x, t) ≡ 0.

T8.2.2. Equation of the Form ∂2w
∂t2 = a2∂2w

∂x2 + Φ(x, t)

T8.2.2-1. Solutions of boundary value problems in terms of the Green’s function.

We consider boundary value problems on an interval 0 ≤ x ≤ l with the general initial
conditions

w = f (x) at t = 0, ∂tw = g(x) at t = 0 (T8.2.2.1)

and various homogeneous boundary conditions. The solution can be represented in terms
of the Green’s function as

w(x, t) =
∂

∂t

∫ l

0
f (ξ)G(x, ξ, t) dξ+

∫ l

0
g(ξ)G(x, ξ, t) dξ+

∫ t

0

∫ l

0
Φ(ξ, τ )G(x, ξ, t–τ ) dξ dτ .

(T8.2.2.2)
Here, the upper limit l can assume any finite values.

Paragraphs T8.2.2-2 through T8.2.2-4 present the Green’s functions for various types
of homogeneous boundary conditions.

Remark. Formulas from Subsections 14.8.1–14.8.2 should be used to obtain solutions to corresponding
nonhomogeneous boundary value problems.
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T8.2.2-2. Domain: 0 ≤ x ≤ l. First boundary value problem.

Boundary conditions are prescribed:

w = 0 at x = 0, w = 0 at x = l.

Green’s function:

G(x, ξ, t) =
2
aπ

∞∑

n=1

1
n

sin
(nπx

l

)
sin
(nπξ

l

)
sin
(nπat

l

)
.

T8.2.2-3. Domain: 0 ≤ x ≤ l. Second boundary value problem.

Boundary conditions are prescribed:

∂xw = 0 at x = 0, ∂xw = 0 at x = l.

Green’s function:

G(x, ξ, t) =
t

l
+

2
aπ

∞∑

n=1

1
n

cos
(nπx

l

)
cos
(nπξ

l

)
sin
(nπat

l

)
.

T8.2.2-4. Domain: 0 ≤ x ≤ l. Third boundary value problem (k1 > 0, k2 > 0).

Boundary conditions are prescribed:

∂xw – k1w = 0 at x = 0, ∂xw + k2w = 0 at x = l.

Green’s function:

G(x, ξ, t) =
1
a

∞∑

n=1

1
λn‖un‖2 sin(λnx + ϕn) sin(λnξ + ϕn) sin(λnat),

ϕn = arctan
λn
k1

, ‖un‖2 =
l

2
+

(λ2
n + k1k2)(k1 + k2)

2(λ2
n + k2

1 )(λ2
n + k2

2 )
;

the λn are positive roots of the transcendental equation cot(λl) =
λ2 – k1k2

λ(k1 + k2)
.

T8.2.3. Klein–Gordon Equation ∂
2w
∂t2 = a2∂2w

∂x2 – bw

This equation is encountered in quantum field theory and a number of applications.
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T8.2.3-1. Particular solutions.

w(x, t) = cos(λx)[A cos(μt) +B sin(μt)], b = –a2λ2 + μ2,

w(x, t) = sin(λx)[A cos(μt) +B sin(μt)], b = –a2λ2 + μ2,

w(x, t) = exp(�μt)[A cos(λx) +B sin(λx)], b = –a2λ2 – μ2,

w(x, t) = exp(�λx)[A cos(μt) +B sin(μt)], b = a2λ2 + μ2,

w(x, t) = exp(�λx)[A exp(μt) + B exp(–μt)], b = a2λ2 – μ2,

w(x, t) = AJ0(ξ) + BY0(ξ), ξ =

√
b

a

√
a2(t + C1)2 – (x + C2)2, b > 0,

w(x, t) = AI0(ξ) +BK0(ξ), ξ =

√
–b
a

√
a2(t + C1)2 – (x + C2)2, b < 0,

where A, B, C1, and C2 are arbitrary constants, J0(ξ) and Y0(ξ) are Bessel functions, and
I0(ξ) and K0(ξ) are modified Bessel functions.

T8.2.3-2. Formulas allowing the construction of particular solutions.

Suppose w = w(x, t) is a solution of the Klein–Gordon equation. Then the functions

w1 = Aw(�x + C1,�t + C2) +B,

w2 = Aw

(
x – vt

√
1 – (v/a)2

,
t – va–2x
√

1 – (v/a)2

)
,

where A, B, C1, C2, and v are arbitrary constants, are also solutions of this equation. The
signs in the formula for w1 are taken arbitrarily.

T8.2.3-3. Domain: 0 ≤ x ≤ l. Boundary value problems.

For solutions of the first and second boundary value problems, see Subsection T8.2.4 for
Φ(x, t) ≡ 0.

T8.2.4. Equation of the Form ∂2w
∂t2 = a2∂2w

∂x2 – bw + Φ(x, t)

T8.2.4-1. Solutions of boundary value problems in terms of the Green’s function.

Solutions to boundary value problems on an interval 0 ≤ x ≤ l with the general initial
conditions (T8.2.2.1) and various homogeneous boundary conditions are expressed via the
Green’s function by formula (T8.2.2.2).

T8.2.4-2. Domain: 0 ≤ x ≤ l. First boundary value problem.

Boundary conditions are prescribed:

w = 0 at x = 0, w = 0 at x = l.

Green’s function for b > 0:

G(x, ξ, t) =
2
l

∞∑

n=1

sin(λnx) sin(λnξ)
sin
(
t
√
a2λ2

n + b
)

√
a2λ2

n + b
, λn =

πn

l
.
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T8.2.4-3. Domain: 0 ≤ x ≤ l. Second boundary value problem.

Boundary conditions are prescribed:

∂xw = 0 at x = 0, ∂xw = 0 at x = l.

Green’s function for b > 0:

G(x, ξ, t) =
1
l
√
b

sin
(
t
√
b
)

+
2
l

∞∑

n=1

cos(λnx) cos(λnξ)
sin
(
t
√
a2λ2

n + b
)

√
a2λ2

n + b
, λn =

πn

l
.

T8.2.5. Equation of the Form ∂2w
∂t2 = a2

(
∂2w
∂r2 + 1

r
∂w
∂r

)
+ Φ(r, t)

This is the wave equation with axial symmetry, where r =
√
x2 + y2 is the radial coordinate.

T8.2.5-1. Solutions of boundary value problems in terms of the Green’s function.

We consider boundary value problems in domain 0 ≤ r ≤Rwith the general initial conditions

w = f (r) at t = 0, ∂tw = g(r) at t = 0, (T8.2.5.1)

and various homogeneous boundary conditions at r = R (the solutions bounded at r = 0 are
sought). The solution can be represented in terms of the Green’s function as

w(r, t) =
∂

∂t

∫ R

0
f (ξ)G(r, ξ, t) dξ

+
∫ R

0
g(ξ)G(r, ξ, t) dξ +

∫ t

0

∫ R

0
Φ(ξ, τ )G(r, ξ, t – τ ) dξ dτ . (T8.2.5.2)

T8.2.5-2. Domain: 0 ≤ r ≤ R. First boundary value problem.

A boundary condition is prescribed:

w = 0 at r = R.

Green’s function:

G(r, ξ, t) =
2ξ
aR

∞∑

n=1

1
λnJ

2
1 (λn)

J0

(
λnr

R

)
J0

(
λnξ

R

)
sin

(
λnat

R

)
,

where λn are positive zeros of the Bessel function, J0(λ) = 0. The numerical values of the
first ten λn are specified in Paragraph T8.1.5-2.

T8.2.5-3. Domain: 0 ≤ r ≤ R. Second boundary value problem.

A boundary condition is prescribed:

∂rw = 0 at r = R.

Green’s function:

G(r, ξ, t) =
2tξ
R2 +

2ξ
aR

∞∑

n=1

1
λnJ2

0 (λn)
J0

(
λnr

R

)
J0

(
λnξ

R

)
sin

(
λnat

R

)
,

where λn are positive zeros of the first-order Bessel function, J1(λ) = 0. The numerical
values of the first ten roots λn are specified in Paragraph T8.1.5-3.
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T8.2.6. Equation of the Form ∂2w
∂t2 = a2

(
∂2w
∂r2 + 2

r
∂w
∂r

)
+ Φ(r, t)

This is the equation of vibration of a gas with central symmetry, where r =
√
x2 + y2 + z2

is the radial coordinate.

T8.2.6-1. General solution for Φ(r, t) ≡ 0.

w(t, r) =
ϕ(r + at) + ψ(r – at)

r
,

where ϕ(r1) and ψ(r2) are arbitrary functions.

T8.2.6-2. Reduction to a constant coefficient equation.

The substitution u(r, t) = rw(r, t) leads to the nonhomogeneous constant coefficient equa-
tion

∂2u

∂t2 = a2 ∂
2u

∂r2 + rΦ(r, t),

which is discussed in Subsection T8.2.1.

T8.2.6-3. Solutions of boundary value problems in terms of the Green’s function.

Solutions to boundary value problems on an interval 0 ≤ x ≤ R with the general initial
conditions (T8.2.5.1) and various homogeneous boundary conditions are expressed via the
Green’s function by formula (T8.2.5.2).

T8.2.6-4. Domain: 0 ≤ r ≤ R. First boundary value problem.

A boundary condition is prescribed:

w = 0 at r = R.

Green’s function:

G(r, ξ, t) =
2ξ
πar

∞∑

n=1

1
n

sin

(
nπr

R

)
sin

(
nπξ

R

)
sin

(
anπt

R

)
.

T8.2.6-5. Domain: 0 ≤ r ≤ R. Second boundary value problem.

A boundary condition is prescribed:

∂rw = 0 at r = R.

Green’s function:

G(r, ξ, t) =
3tξ2

R3 +
2ξ
ar

∞∑

n=1

μ2
n + 1
μ3
n

sin

(
μnr

R

)
sin

(
μnξ

R

)
sin

(
μnat

R

)
,

where μn are positive roots of the transcendental equation tanμ – μ = 0. The numerical
values of the first five roots μn are specified in Paragraph T8.1.7-3.



1284 LINEAR EQUATIONS AND PROBLEMS OF MATHEMATICAL PHYSICS

T8.2.7. Equations of the Form
∂2w
∂t2 + k∂w

∂t
= a2∂2w

∂x2 + b∂w
∂x

+ cw + Φ(x, t)

1.
∂2w

∂t2
+ k

∂w

∂t
= a2 ∂

2w

∂x2
+ bw.

For k > 0 and b < 0, it is the telegraph equation.
The substitution w(x, t) = exp

(
– 1

2 kt
)
u(x, t) leads to the equation

∂2u

∂t2 = a2 ∂
2u

∂x2 +
(
b + 1

4k
2)u,

which is discussed in Subsection T8.2.4.

2.
∂2w

∂t2
+ k

∂w

∂t
= a2 ∂

2w

∂x2
+ b

∂w

∂x
+ cw + Φ(x, t).

The substitution w(x, t) = exp
(
– 1

2 a
–2bx – 1

2kt
)
u(x, t) leads to the equation

∂2u

∂t2 = a2 ∂
2u

∂x2 +
(
c + 1

4k
2 – 1

4a
–2b2)u + exp

( 1
2a

–2bx + 1
2kt
)
Φ(x, t),

which is discussed in Subsection T8.2.5.

T8.3. Elliptic Equations
T8.3.1. Laplace Equation Δw = 0

The Laplace equation is often encountered in heat and mass transfer theory, fluid mechanics,
elasticity, electrostatics, and other areas of mechanics and physics.

The two-dimensional Laplace equation has the following form:

∂2w

∂x2 +
∂2w

∂y2 = 0 in the Cartesian coordinate system,

1
r

∂

∂r

(
r
∂w

∂r

)
+

1
r2
∂2w

∂ϕ2 = 0 in the polar coordinate system,

where x = r cosϕ, y = r sinϕ, and r =
√
x2 + y2.

T8.3.1-1. Particular solutions and methods for their construction.

1◦. Particular solutions in the Cartesian coordinate system:

w(x, y) = Ax + By + C ,

w(x, y) = A(x2 – y2) + Bxy,

w(x, y) = A(x3 – 3xy2) + B(3x2y – y3),

w(x, y) =
Ax + By
x2 + y2 + C ,

w(x, y) = exp(�μx)(A cos μy + B sinμy),
w(x, y) = (A cos μx +B sinμx) exp(�μy),
w(x, y) = (A sinh μx +B cosh μx)(C cosμy +D sin μy),
w(x, y) = (A cos μx +B sinμx)(C sinh μy + D cosh μy),

where A, B, C , D, and μ are arbitrary constants.
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2◦. Particular solutions in the polar coordinate system:

w(r) = A ln r +B,

w(r,ϕ) =

(
Arm +

B

rm

)
(C cosmϕ + D sinmϕ),

where A, B, C , and D are arbitrary constants, and m = 1, 2, . . .

3◦. If w(x, y) is a solution of the Laplace equation, then the functions

w1 = Aw(�λx + C1,�λy + C2) + B,
w2 = Aw(x cos β + y sin β, –x sin β + y cos β),

w3 = Aw

(
x

x2 + y2 ,
y

x2 + y2

)

are also solutions everywhere they are defined; A, B, C1, C2, β, and λ are arbitrary
constants. The signs at λ’s in the formula for w1 are taken arbitrarily.

4◦. A fairly general method for constructing particular solutions involves the following.
Let f (z) = u(x, y) + iv(x, y) be any analytic function of the complex variable z = x + iy
(u and v are real functions of the real variables x and y; i2 = –1). Then the real and
imaginary parts of f both satisfy the two-dimensional Laplace equation,

Δ2u = 0, Δ2v = 0.

Thus, by specifying analytic functions f (z) and taking their real and imaginary parts, one
obtains various solutions of the two-dimensional Laplace equation.

T8.3.1-2. Domain: –∞ < x < ∞, 0 ≤ y < ∞. First boundary value problem.∗

A half-plane is considered. A boundary condition is prescribed:

w = f (x) at y = 0.

Solution:

w(x, y) =
1
π

∫ ∞

–∞

yf (ξ) dξ
(x – ξ)2 + y2 =

1
π

∫ π/2

–π/2
f (x + y tan θ) dθ.

T8.3.1-3. Domain: –∞ < x < ∞, 0 ≤ y < ∞. Second boundary value problem.∗

A half-plane is considered. A boundary condition is prescribed:

∂yw = f (x) at y = 0.

Solution:

w(x, y) =
1
π

∫ ∞

–∞
f (ξ) ln

√
(x – ξ)2 + y2 dξ + C ,

where C is an arbitrary constant.

* For the Laplace equation and other elliptic equations, the first boundary value problem is often called the
Dirichlet problem, and the second boundary value problem is called the Neumann problem.
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T8.3.1-4. Domain: 0 ≤ x < ∞, 0 ≤ y < ∞. First boundary value problem.

A quadrant of the plane is considered. Boundary conditions are prescribed:

w = f1(y) at x = 0, w = f2(x) at y = 0.

Solution:

w(x, y) =
4
π
xy

∫ ∞

0

f1(η)η dη
[x2 + (y – η)2][x2 + (y + η)2]

+
4
π
xy

∫ ∞

0

f2(ξ)ξ dξ
[(x – ξ)2 + y2][(x+ ξ)2 + y2]

.

T8.3.1-5. Domain: –∞ < x < ∞, 0 ≤ y ≤ a. First boundary value problem.

An infinite strip is considered. Boundary conditions are prescribed:

w = f1(x) at y = 0, w = f2(x) at y = a.

Solution:

w(x, y) =
1

2a
sin

(
πy

a

)∫ ∞

–∞

f1(ξ) dξ
cosh[π(x – ξ)/a] – cos(πy/a)

+
1

2a
sin

(
πy

a

)∫ ∞

–∞

f2(ξ) dξ
cosh[π(x – ξ)/a] + cos(πy/a)

.

T8.3.1-6. Domain: –∞ < x < ∞, 0 ≤ y ≤ a. Second boundary value problem.

An infinite strip is considered. Boundary conditions are prescribed:

∂yw = f1(x) at y = 0, ∂yw = f2(x) at y = a.

Solution:

w(x, y) =
1

2π

∫ ∞

–∞
f1(ξ) ln

{
cosh[π(x – ξ)/a] – cos(πy/a)

}
dξ

–
1

2π

∫ ∞

–∞
f2(ξ) ln

{
cosh[π(x – ξ)/a] + cos(πy/a)

}
dξ + C ,

where C is an arbitrary constant.

T8.3.1-7. Domain: 0 ≤ x ≤ a, 0 ≤ y ≤ b. First boundary value problem.

A rectangle is considered. Boundary conditions are prescribed:

w = f1(y) at x = 0, w = f2(y) at x = a,
w = f3(x) at y = 0, w = f4(x) at y = b.

Solution:

w(x, y) =
∞∑

n=1

An sinh

[
nπ

b
(a – x)

]
sin

(
nπ

b
y

)
+

∞∑

n=1

Bn sinh

(
nπ

b
x

)
sin

(
nπ

b
y

)

+
∞∑

n=1

Cn sin

(
nπ

a
x

)
sinh

[
nπ

a
(b – y)

]
+

∞∑

n=1

Dn sin

(
nπ

a
x

)
sinh

(
nπ

a
y

)
,
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where the coefficients An, Bn, Cn, and Dn are expressed as

An =
2
λn

∫ b

0
f1(ξ) sin

(
nπξ

b

)
dξ, Bn =

2
λn

∫ b

0
f2(ξ) sin

(
nπξ

b

)
dξ, λn = b sinh

(
nπa

b

)
,

Cn =
2
μn

∫ a

0
f3(ξ) sin

(
nπξ

a

)
dξ, Dn =

2
μn

∫ a

0
f4(ξ) sin

(
nπξ

a

)
dξ, μn = a sinh

(
nπb

a

)
.

T8.3.1-8. Domain: 0 ≤ r ≤ R. First boundary value problem.

A circle is considered. A boundary condition is prescribed:

w = f (ϕ) at r = R.

Solution in the polar coordinates:

w(r,ϕ) =
1

2π

∫ 2π

0
f (ψ)

R2 – r2

r2 – 2Rr cos(ϕ – ψ) +R2 dψ.

This formula is conventionally referred to as the Poisson integral.

T8.3.1-9. Domain: 0 ≤ r ≤ R. Second boundary value problem.

A circle is considered. A boundary condition is prescribed:

∂rw = f (ϕ) at r = R.

Solution in the polar coordinates:

w(r,ϕ) =
R

2π

∫ 2π

0
f (ψ) ln

r2 – 2Rr cos(ϕ – ψ) +R2

R2 dψ + C ,

where C is an arbitrary constant; this formula is known as the Dini integral.

Remark. The function f (ϕ) must satisfy the solvability condition
∫ 2π

0
f (ϕ) dϕ = 0.

T8.3.2. Poisson Equation Δw + Φ(x) = 0

The two-dimensional Poisson equation has the following form:

∂2w

∂x2 +
∂2w

∂y2 + Φ(x, y) = 0 in the Cartesian coordinate system,

1
r

∂

∂r

(
r
∂w

∂r

)
+

1
r2
∂2w

∂ϕ2 + Φ(r,ϕ) = 0 in the polar coordinate system.

T8.3.2-1. Domain: –∞ < x < ∞, –∞ < y < ∞.

Solution:

w(x, y) =
1

2π

∫ ∞

–∞

∫ ∞

–∞
Φ(ξ, η) ln

1
√

(x – ξ)2 + (y – η)2
dξ dη.
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T8.3.2-2. Domain: –∞ < x < ∞, 0 ≤ y < ∞. First boundary value problem.

A half-plane is considered. A boundary condition is prescribed:

w = f (x) at y = 0.

Solution:

w(x, y) =
1
π

∫ ∞

–∞

yf (ξ) dξ
(x – ξ)2 + y2 +

1
2π

∫ ∞

0

∫ ∞

–∞
Φ(ξ, η) ln

√
(x – ξ)2 + (y + η)2

√
(x – ξ)2 + (y – η)2

dξ dη.

T8.3.2-3. Domain: 0 ≤ x < ∞, 0 ≤ y < ∞. First boundary value problem.

A quadrant of the plane is considered. Boundary conditions are prescribed:

w = f1(y) at x = 0, w = f2(x) at y = 0.

Solution:

w(x, y) =
4
π
xy

∫ ∞

0

f1(η)η dη
[x2 + (y –η)2][x2 + (y +η)2]

+
4
π
xy

∫ ∞

0

f2(ξ)ξ dξ
[(x– ξ)2 +y2][(x+ ξ)2 +y2]

+
1

2π

∫ ∞

0

∫ ∞

0
Φ(ξ, η) ln

√
(x– ξ)2 + (y +η)2

√
(x+ ξ)2 + (y –η)2

√
(x– ξ)2 + (y –η)2

√
(x+ ξ)2 + (y +η)2

dξ dη.

T8.3.2-4. Domain: 0 ≤ x ≤ a, 0 ≤ y ≤ b. First boundary value problem.

A rectangle is considered. Boundary conditions are prescribed:

w = f1(y) at x = 0, w = f2(y) at x = a,
w = f3(x) at y = 0, w = f4(x) at y = b.

Solution:

w(x, y) =
∫ a

0

∫ b

0
Φ(ξ, η)G(x, y, ξ, η) dη dξ

+
∫ b

0
f1(η)

[
∂

∂ξ
G(x, y, ξ, η)

]

ξ=0
dη –

∫ b

0
f2(η)

[
∂

∂ξ
G(x, y, ξ, η)

]

ξ=a
dη

+
∫ a

0
f3(ξ)

[
∂

∂η
G(x, y, ξ, η)

]

η=0
dξ –

∫ a

0
f4(ξ)

[
∂

∂η
G(x, y, ξ, η)

]

η=b
dξ.

Two forms of representation of the Green’s function:

G(x, y, ξ, η) =
2
a

∞∑

n=1

sin(pnx) sin(pnξ)
pn sinh(pnb)

Hn(y, η) =
2
b

∞∑

m=1

sin(qmy) sin(qmη)
qm sinh(qma)

Qm(x, ξ),

where

pn =
πn

a
, Hn(y, η) =

{
sinh(pnη) sinh[pn(b – y)] for b ≥ y > η ≥ 0,
sinh(pny) sinh[pn(b – η)] for b ≥ η > y ≥ 0;

qm =
πm

b
, Qm(x, ξ) =

{
sinh(qmξ) sinh[qm(a – x)] for a ≥ x > ξ ≥ 0,
sinh(qmx) sinh[qm(a – ξ)] for a ≥ ξ > x ≥ 0.
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T8.3.2-5. Domain: 0 ≤ r ≤ R. First boundary value problem.

A circle is considered. A boundary condition is prescribed:

w = f (ϕ) at r = R.

Solution in the polar coordinates:

w(r,ϕ) =
1

2π

∫ 2π

0
f (η)

R2 – r2

r2 – 2Rr cos(ϕ – η) +R2 dη +
∫ 2π

0

∫ R

0
Φ(ξ, η)G(r,ϕ, ξ, η)ξ dξ dη,

where

G(r,ϕ, ξ, η) =
1

4π
ln
r2ξ2 – 2R2rξ cos(ϕ – η) +R4

R2[r2 – 2rξ cos(ϕ – η) + ξ2]
.

T8.3.3. Helmholtz Equation Δw + λw = –Φ(x)
Many problems related to steady-state oscillations (mechanical, acoustical, thermal, elec-
tromagnetic) lead to the two-dimensional Helmholtz equation. For λ < 0, this equation
describes mass transfer processes with volume chemical reactions of the first order.

The two-dimensional Helmholtz equation has the following form:

∂2w

∂x2 +
∂2w

∂y2 + λw = –Φ(x, y) in the Cartesian coordinate system,

1
r

∂

∂r

(
r
∂w

∂r

)
+

1
r2
∂2w

∂ϕ2 + λw = –Φ(r,ϕ) in the polar coordinate system.

T8.3.3-1. Particular solutions of the homogeneous Helmholtz equation with Φ ≡ 0.

1◦. Particular solutions of the homogeneous equation in the Cartesian coordinate system:

w = (Ax + B)(C cos μy + D sinμy), λ = μ2,

w = (Ax + B)(C cosh μy +D sinh μy), λ = –μ2,

w = (A cosμx + B sinμx)(Cy +D), λ = μ2,

w = (A cosh μx +B sinh μx)(Cy + D), λ = –μ2,

w = (A cosμ1x +B sinμ1x)(C cos μ2y +D sin μ2y), λ = μ2
1 + μ2

2,

w = (A cosμ1x +B sinμ1x)(C cosh μ2y + D sinhμ2y), λ = μ2
1 – μ2

2,

w = (A cosh μ1x + B sinh μ1x)(C cos μ2y +D sinμ2y), λ = –μ2
1 + μ2

2,

w = (A cosh μ1x + B sinh μ1x)(C cosh μ2y + D sinhμ2y), λ = –μ2
1 – μ2

2,

where A, B, C , and D are arbitrary constants.

2◦. Particular solutions of the homogeneous equation in the polar coordinate system:

w = [AJ0(μr) +BY0(μr)](Cϕ + D), λ = μ2,

w = [AI0(μr) + BK0(μr)](Cϕ + D), λ = –μ2,

w = [AJm(μr) +BYm(μr)](C cosmϕ + D sinmϕ), λ = μ2,

w = [AIm(μr) +BKm(μr)](C cosmϕ + D sinmϕ), λ = –μ2,

where m = 1, 2, . . . ; A, B, C , D are arbitrary constants; Jm(μ) and Ym(μ) are Bessel
functions; and Im(μ) and Km(μ) are modified Bessel functions.
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3◦. Suppose w = w(x, y) is a solution of the homogeneous Helmholtz equation. Then the
functions

w1 = w(�x + C1,�y + C2),
w2 = w(x cos θ + y sin θ + C1, –x sin θ + y cos θ + C2),

where C1, C2, and θ are arbitrary constants, are also solutions of the equation. The signs in
the formula for w1 are taken arbitrarily.

T8.3.3-2. Domain: –∞ < x < ∞, –∞ < y < ∞.

1◦. Solution for λ = –s2 < 0:

w(x, y) =
1

2π

∫ ∞

–∞

∫ ∞

–∞
Φ(ξ, η)K0(s�) dξ dη, � =

√
(x – ξ)2 + (y – η)2.

2◦. Solution for λ = k2 > 0:

w(x, y) = –
i

4

∫ ∞

–∞

∫ ∞

–∞
Φ(ξ, η)H (2)

0 (k�) dξ dη, � =
√

(x – ξ)2 + (y – η)2.

Remark. The radiation Sommerfeld conditions at infinity were used to obtain the solution with λ > 0; see
Tikhonov and Samarskii (1990) and Polyanin (2002).

T8.3.3-3. Domain: –∞ < x < ∞, 0 ≤ y < ∞. First boundary value problem.

A half-plane is considered. A boundary condition is prescribed:

w = f (x) at y = 0.

Solution:

w(x, y) =
∫ ∞

–∞
f (ξ)

[
∂

∂η
G(x, y, ξ, η)

]

η=0
dξ +

∫ ∞

0

∫ ∞

–∞
Φ(ξ, η)G(x, y, ξ, η) dξ dη.

1◦. The Green’s function for λ = –s2 < 0:

G(x, y, ξ, η) =
1

2π
[
K0(s�1) –K0(s�2)

]
,

�1 =
√

(x – ξ)2 + (y – η)2, �2 =
√

(x – ξ)2 + (y + η)2.

2◦. The Green’s function for λ = k2 > 0:

G(x, y, ξ, η) = –
i

4
[
H (2)

0 (k�1) – H (2)
0 (k�2)

]
.

Remark. The radiation Sommerfeld conditions at infinity were used to obtain the solution with λ > 0; see
Tikhonov and Samarskii (1990) and Polyanin (2002).
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T8.3.3-4. Domain: –∞ < x < ∞, 0 ≤ y < ∞. Second boundary value problem.

A half-plane is considered. A boundary condition is prescribed:

∂yw = f (x) at y = 0.

Solution:

w(x, y) = –
∫ ∞

–∞
f (ξ)G(x, y, ξ, 0) dξ +

∫ ∞

0

∫ ∞

–∞
Φ(ξ, η)G(x, y, ξ, η) dξ dη.

1◦. The Green’s function for λ = –s2 < 0:

G(x, y, ξ, η) =
1

2π
[
K0(s�1) +K0(s�2)

]
,

�1 =
√

(x – ξ)2 + (y – η)2, �2 =
√

(x – ξ)2 + (y + η)2.

2◦. The Green’s function for λ = k2 > 0:

G(x, y, ξ, η) = –
i

4
[
H (2)

0 (k�1) +H (2)
0 (k�2)

]
.

Remark. The radiation Sommerfeld conditions at infinity were used to obtain the solution with λ > 0; see
Tikhonov and Samarskii (1990) and Polyanin (2002).

T8.3.3-5. Domain: 0 ≤ x < ∞, 0 ≤ y < ∞. First boundary value problem.

A quadrant of the plane is considered. Boundary conditions are prescribed:

w = f1(y) at x = 0, w = f2(x) at y = 0.

Solution:

w(x, y) =
∫ ∞

0
f1(η)

[
∂

∂ξ
G(x, y, ξ, η)

]

ξ=0
dη +

∫ ∞

0
f2(ξ)

[
∂

∂η
G(x, y, ξ, η)

]

η=0
dξ

+
∫ ∞

0

∫ ∞

0
Φ(ξ, η)G(x, y, ξ, η) dξ dη.

1◦. The Green’s function for λ = –s2 < 0:

G(x, y, ξ, η) =
1

2π
[
K0(s�1) –K0(s�2) –K0(s�3) +K0(s�4)

]
,

�1 =
√

(x – ξ)2 + (y – η)2, �2 =
√

(x – ξ)2 + (y + η)2,

�3 =
√

(x + ξ)2 + (y – η)2, �4 =
√

(x + ξ)2 + (y + η)2.

2◦. The Green’s function for λ = k2 > 0:

G(x, y, ξ, η) = –
i

4
[
H (2)

0 (k�1) – H (2)
0 (k�2) – H (2)

0 (k�3) + H (2)
0 (k�4)

]
.
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T8.3.3-6. Domain: 0 ≤ x < ∞, 0 ≤ y < ∞. Second boundary value problem.

A quadrant of the plane is considered. Boundary conditions are prescribed:

∂xw = f1(y) at x = 0, ∂yw = f2(x) at y = 0.

Solution:

w(x, y) = –
∫ ∞

0
f1(η)G(x, y, 0, η) dη –

∫ ∞

0
f2(ξ)G(x, y, ξ, 0) dξ

+
∫ ∞

0

∫ ∞

0
Φ(ξ, η)G(x, y, ξ, η) dξ dη.

1◦. The Green’s function for λ = –s2 < 0:

G(x, y, ξ, η) =
1

2π
[
K0(s�1) +K0(s�2) +K0(s�3) +K0(s�4)

]
,

�1 =
√

(x – ξ)2 + (y – η)2, �2 =
√

(x – ξ)2 + (y + η)2,

�3 =
√

(x + ξ)2 + (y – η)2, �4 =
√

(x + ξ)2 + (y + η)2.

2◦. The Green’s function for λ = k2 > 0:

G(x, y, ξ, η) = –
i

4
[
H (2)

0 (k�1) +H (2)
0 (k�2) +H (2)

0 (k�3) + H (2)
0 (k�4)

]
.

T8.3.3-7. Domain: 0 ≤ x ≤ a, 0 ≤ y ≤ b. First boundary value problem.

A rectangle is considered. Boundary conditions are prescribed:

w = f1(y) at x = 0, w = f2(y) at x = a,
w = f3(x) at y = 0, w = f4(x) at y = b.

1◦. Eigenvalues of the homogeneous problem with Φ ≡ 0 (it is convenient to label them
with a double subscript):

λnm = π2
(
n2

a2 +
m2

b2

)
; n = 1, 2, . . . ; m = 1, 2, . . .

Eigenfunctions and the norm squared:

wnm = sin

(
nπx

a

)
sin

(
mπy

b

)
, ‖wnm‖2 =

ab

4
.

2◦. Solution for λ ≠ λnm:

w(x, y) =
∫ a

0

∫ b

0
Φ(ξ, η)G(x, y, ξ, η) dη dξ

+
∫ b

0
f1(η)

[
∂

∂ξ
G(x, y, ξ, η)

]

ξ=0
dη –

∫ b

0
f2(η)

[
∂

∂ξ
G(x, y, ξ, η)

]

ξ=a
dη

+
∫ a

0
f3(ξ)

[
∂

∂η
G(x, y, ξ, η)

]

η=0
dξ –

∫ a

0
f4(ξ)

[
∂

∂η
G(x, y, ξ, η)

]

η=b
dξ.
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Two forms of representation of the Green’s function:

G(x, y, ξ, η) =
2
a

∞∑

n=1

sin(pnx) sin(pnξ)
βn sinh(βnb)

Hn(y, η) =
2
b

∞∑

m=1

sin(qmy) sin(qmη)
μm sinh(μma)

Qm(x, ξ),

where

pn =
πn

a
, βn =

√
p2
n –λ, Hn(y, η) =

{
sinh(βnη) sinh[βn(b–y)] for b ≥ y > η ≥ 0,
sinh(βny) sinh[βn(b–η)] for b ≥ η > y ≥ 0;

qm =
πm

b
, μm =

√
q2
m –λ, Qm(x, ξ) =

{
sinh(μmξ) sinh[μm(a–x)] for a≥x> ξ ≥ 0,
sinh(μmx) sinh[μm(a–ξ)] for a≥ ξ >x ≥ 0.

T8.3.3-8. Domain: 0 ≤ r ≤ R. First boundary value problem.

A circle is considered. A boundary condition is prescribed:

w = 0 at r = R.

Eigenvalues of the homogeneous boundary value problem with Φ ≡ 0:

λnm =
μ2
nm

R2 ; n = 0, 1, 2, . . . ; m = 1, 2, 3, . . .

Here, μnm are positive zeros of the Bessel functions, Jn(μ) = 0.
Eigenfunctions:

w(1)
nm = Jn

(
r
√
λnm

)
cosnϕ, w(2)

nm = Jn
(
r
√
λnm

)
sin nϕ.

Eigenfunctions possessing the axial symmetry property: w(1)
0m = J0

(
r
√
λ0m

)
.

T8.3.3-9. Domain: 0 ≤ r ≤ R. Second boundary value problem.

A circle is considered. A boundary condition is prescribed:

∂rw = 0 at r = R.

Eigenvalues of the homogeneous boundary value problem with Φ ≡ 0:

λnm =
μ2
nm

R2 ,

where μnm are roots of the quadratic equation J ′
n(μ) = 0.

Eigenfunctions:

w(1)
nm = Jn(r

√
λnm ) cosnϕ, w(2)

nm = Jn(r
√
λnm ) sin nϕ.

Here, n = 0, 1, 2, . . . ; for n ≠ 0, the parameter m assumes the values m = 1, 2, 3, . . . ; for
n = 0, a root μ00 = 0 (the corresponding eigenfunction is w00 = 1).

Eigenfunctions possessing the axial symmetry property: w(1)
0m = J0

(
r
√
λ0m

)
.
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T8.4. Fourth-Order Linear Equations

T8.4.1. Equation of the Form ∂2w
∂t2 + a2∂4w

∂x4 = 0

This equation is encountered in studying transverse vibration of elastic rods.

T8.4.1-1. Particular solutions.

w(x, t) = (Ax3 + Bx2 + Cx +D)t + A1x
3 +B1x

2 + C1x + D1,

w(x, t) =
[
A sin(λx) + B cos(λx) + C sinh(λx) +D cos(λx)

]
sin(λ2at),

w(x, t) =
[
A sin(λx) + B cos(λx) + C sinh(λx) +D cos(λx)

]
cos(λ2at),

where A, B, C , D, A1, B1, C1, D1, and λ are arbitrary constants.

T8.4.1-2. Domain: –∞ < x < ∞. Cauchy problem.

Initial conditions are prescribed:

w = f (x) at t = 0, ∂tw = ag′′(x) at t = 0.

Boussinesq solution:

w(x, t) =
1√
2π

∫ ∞

–∞
f
(
x – 2ξ

√
at
)(

cos ξ2 + sin ξ2) dξ

+
1

a
√

2π

∫ ∞

–∞
g
(
x – 2ξ

√
at
)(

cos ξ2 – sin ξ2) dξ.

T8.4.1-3. Domain: 0 ≤ x < ∞. Free vibration of a semi-infinite rod.

The following conditions are prescribed:

w = 0 at t = 0, ∂tw = 0 at t = 0 (initial conditions),
w = f (t) at x = 0, ∂xxw = 0 at x = 0 (boundary conditions).

Boussinesq solution:

w(x, t) =
1√
π

∫ ∞

x/
√

2at
f

(
t –

x2

2aξ2

)(
sin

ξ2

2
+ cos

ξ2

2

)
dξ.

T8.4.1-4. Domain: 0 ≤ x ≤ l. Boundary value problems.

For solutions of various boundary value problems, see Subsection T8.4.2 for Φ ≡ 0.
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T8.4.2. Equation of the Form ∂2w
∂t2 + a2∂4w

∂x4 = Φ(x, t)

T8.4.2-1. Domain: 0 ≤ x ≤ l. Solution in terms of the Green’s function.

We consider boundary value problems on an interval 0 ≤ x ≤ l with the general initial
condition

w = f (x) at t = 0, ∂tw = g(x) at t = 0

and various homogeneous boundary conditions. The solution can be represented in terms
of the Green’s function as

w(x, t) =
∂

∂t

∫ l

0
f (ξ)G(x, ξ, t) dξ +

∫ l

0
g(ξ)G(x, ξ, t) dξ +

∫ t

0

∫ l

0
Φ(ξ, τ )G(x, ξ, t–τ ) dξ dτ .

Paragraphs T8.4.2-2 through T8.4.2-6 present the Green’s functions for various types
of homogeneous boundary conditions.

T8.4.2-2. Both ends of the rod are clamped.

Boundary conditions are prescribed:

w = ∂xw = 0 at x = 0, w = ∂xw = 0 at x = l.

Green’s function:

G(x, ξ, t) =
4
al

∞∑

n=1

λ2
n[

ϕ′′
n(l)
]2 ϕn(x)ϕn(ξ) sin(λ2

nat),

where
ϕn(x) =

[
sinh(λnl) – sin(λnl)

][
cosh(λnx) – cos(λnx)

]

–
[
cosh(λnl) – cos(λnl)

][
sinh(λnx) – sin(λnx)

]
;

λn are positive roots of the transcendental equation cosh(λl) cos(λl) = 1. The numerical
values of the roots can be calculated from the formulas

λn =
μn
l

, where μ1 = 1.875, μ2 = 4.694, μn =
π

2
(2n – 1) for n ≥ 3.

T8.4.2-3. Both ends of the rod are hinged.

Boundary conditions are prescribed:

w = ∂xxw = 0 at x = 0, w = ∂xxw = 0 at x = l.

Green’s function:

G(x, ξ, t) =
2l
aπ2

∞∑

n=1

1
n2 sin(λnx) sin(λnξ) sin(λ2

nat), λn =
πn

l
.
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T8.4.2-4. One end of the rod is clamped and the other is hinged.

Boundary conditions are prescribed:

w = ∂xw = 0 at x = 0, w = ∂xxw = 0 at x = l.

Green’s function:

G(x, ξ, t) =
2
al

∞∑

n=1

λ2
n

ϕn(x)ϕn(ξ)
|ϕ′
n(l)ϕ′′′

n (l)|
sin(λ2

nat),

where
ϕn(x) =

[
sinh(λnl) – sin(λnl)

][
cosh(λnx) – cos(λnx)

]

–
[
cosh(λnl) – cos(λnl)

][
sinh(λnx) – sin(λnx)

]
;

λn are positive roots of the transcendental equation tan(λl) – tanh(λl) = 0.

T8.4.2-5. One end of the rod is clamped and the other is free.

Boundary conditions are prescribed:

w = ∂xw = 0 at x = 0, ∂xxw = ∂xxxw = 0 at x = l.

Green’s function:

G(x, ξ, t) =
4
al

∞∑

n=1

ϕn(x)ϕn(ξ)
λ2
nϕ

2
n(l)

sin(λ2
nat),

where
ϕn(x) =

[
sinh(λnl) + sin(λnl)

][
cosh(λnx) – cos(λnx)

]

–
[
cosh(λnl) + cos(λnl)

][
sinh(λnx) – sin(λnx)

]
;

λn are positive roots of the transcendental equation cosh(λl) cos(λl) = –1.

T8.4.2-6. One end of the rod is hinged and the other is free.

Boundary conditions are prescribed:

w = ∂xxw = 0 at x = 0, ∂xxw = ∂xxxw = 0 at x = l.

Green’s function:

G(x, ξ, t) =
4
al

∞∑

n=1

ϕn(x)ϕn(ξ)
λ2
nϕ

2
n(l)

sin(λ2
nat),

where
ϕn(x) = sin(λnl) sinh(λnx) + sinh(λnl) sin(λnx);

λn are positive roots of the transcendental equation tan(λl) – tanh(λl) = 0.
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T8.4.3. Biharmonic Equation ΔΔw = 0

The biharmonic equation is encountered in plane problems of elasticity (w is the Airy stress
function). It is also used to describe slow flows of viscous incompressible fluids (w is the
stream function).

In the rectangular Cartesian system of coordinates, the biharmonic operator has the form

ΔΔ ≡ Δ2 =
∂4

∂x4 + 2
∂4

∂x2∂y2 +
∂4

∂y4 .

T8.4.3-1. Particular solutions.

w(x, y) = (A cosh βx +B sinh βx + Cx cosh βx + Dx sinh βx)(a cos βy + b sin βy),
w(x, y) = (A cos βx + B sin βx + Cx cos βx +Dx sin βx)(a cosh βy + b sinh βy),

w(x, y) = Ar2 ln r +Br2 + C ln r +D, r =
√

(x – a)2 + (y – b)2,

where A, B, C , D, E, a, b, c, and β are arbitrary constants.

T8.4.3-2. Various representations of the general solution.

1◦. Various representations of the general solution in terms of harmonic functions:

w(x, y) = xu1(x, y) + u2(x, y),
w(x, y) = yu1(x, y) + u2(x, y),

w(x, y) = (x2 + y2)u1(x, y) + u2(x, y),

where u1 and u2 are arbitrary functions satisfying the Laplace equation Δuk = 0 (k = 1, 2).

2◦. Complex form of representation of the general solution:

w(x, y) = Re
[
zf (z) + g(z)

]
,

where f (z) and g(z) are arbitrary analytic functions of the complex variable z = x + iy;
z = x – iy, i2 = –1. The symbol Re[A] stands for the real part of the complex quantity A.

T8.4.3-3. Boundary value problems for the upper half-plane.

1◦. Domain: –∞ < x < ∞, 0 ≤ y < ∞. The desired function and its derivative along the
normal are prescribed at the boundary:

w = 0 at y = 0, ∂yw = f (x) at y = 0.

Solution:

w(x, y) =
∫ ∞

–∞
f (ξ)G(x – ξ, y) dξ, G(x, y) =

1
π

y2

x2 + y2 .

2◦. Domain: –∞ < x <∞, 0 ≤ y <∞. The derivatives of the desired function are prescribed
at the boundary:

∂xw = f (x) at y = 0, ∂yw = g(x) at y = 0.

Solution:

w(x, y) =
1
π

∫ ∞

–∞
f (ξ)

[
arctan

(
x – ξ
y

)
+

y(x – ξ)
(x – ξ)2 + y2

]
dξ +

y2

π

∫ ∞

–∞

g(ξ) dξ
(x – ξ)2 + y2 + C ,

where C is an arbitrary constant.
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T8.4.3-4. Boundary value problem for a circle.

Domain: 0 ≤ r ≤ a. Boundary conditions in the polar coordinate system:

w = f (ϕ) at r = a, ∂rw = g(ϕ) at r = a.

Solution:

w(r,ϕ)=
1

2πa
(r2 –a2)2

[∫ 2π

0

[a– r cos(η –ϕ)]f (η) dη
[r2 +a2 – 2ar cos(η –ϕ)]2 –

1
2

∫ 2π

0

g(η) dη
r2 +a2 – 2ar cos(η –ϕ)

]
.

T8.4.4. Nonhomogeneous Biharmonic Equation ΔΔw = Φ(x, y)

T8.4.4-1. Domain: –∞ < x < ∞, –∞ < y < ∞.

Solution:

w(x, y) =
∫ ∞

–∞

∫ ∞

–∞
Φ(ξ, η)�� (x – ξ, y – η) dξ dη, �� (x, y) =

1
8π

(x2 + y2) ln
√
x2 + y2.

T8.4.4-2. Domain: –∞ < x < ∞, 0 ≤ y < ∞. Boundary value problem.

The upper half-plane is considered. The derivatives are prescribed at the boundary:

∂xw = f (x) at y = 0, ∂yw = g(x) at y = 0.

Solution:

w(x, y) =
1
π

∫ ∞

–∞
f (ξ)

[
arctan

(
x – ξ
y

)
+

y(x – ξ)
(x – ξ)2 + y2

]
dξ +

y2

π

∫ ∞

–∞

g(ξ) dξ
(x – ξ)2 + y2

+
1

8π

∫ ∞

–∞
dξ

∫ ∞

0

[
1
2

(R2
+ – R2

–) – R2
– ln

R+

R–

]
Φ(ξ, η) dη + C ,

where C is an arbitrary constant,

R2
+ = (x – ξ)2 + (y + η)2, R2

– = (x – ξ)2 + (y – η)2.

T8.4.4-3. Domain: 0 ≤ x ≤ l1, 0 ≤ y ≤ l2. The sides of the plate are hinged.

A rectangle is considered. Boundary conditions are prescribed:

w = ∂xxw = 0 at x = 0, w = ∂xxw = 0 at x = l1,
w = ∂yyw = 0 at y = 0, w = ∂yyw = 0 at y = l2.

Solution:

w(x, y) =
∫ l1

0

∫ l2

0
Φ(ξ, η)G(x, y, ξ, η) dη dξ,

where

G(x, y, ξ, η) =
4
l1l2

∞∑

n=1

∞∑

m=1

1
(p2

n + q2
m)2 sin(pnx) sin(qmy) sin(pnξ) sin(qmη), pn =

πn

l1
, qm =

πm

l2
.
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Chapter T9

Nonlinear Mathematical
Physics Equations

T9.1. Parabolic Equations

T9.1.1. Nonlinear Heat Equations of the Form ∂w
∂t

= ∂
2w
∂x2 + f(w)

� Equations of this form admit traveling-wave solutions w = w(z), z = kx + λt, where
k and λ are arbitrary constants, and the function w(z) is determined by the second-order
autonomous ordinary differential equation ak2w′′

zz – λw′
z + f (w) = 0.

1.
∂w

∂t
=
∂2w

∂x2
+ aw(1 –w).

Fisher’s equation. This equation arises in heat and mass transfer, biology, and ecology.
Traveling-wave solutions (C is an arbitrary constant):

w(x, t) =
[

1 + C exp
(
– 5

6at �
1
6

√
6ax
)]–2

,

w(x, t) =
1 + 2C exp

(
– 5

6 at �
1
6

√
–6a x

)

[
1 + C exp

(
– 5

6at �
1
6
√

–6a x
)]2 .

2.
∂w

∂t
=
∂2w

∂x2
+ aw – bw3.

1◦. Solutions with a > 0 and b > 0:

w(x, t) = �

√
a

b

C1 exp
( 1

2

√
2a x
)

– C2 exp
(
– 1

2

√
2a x
)

C1 exp
( 1

2

√
2ax
)

+ C2 exp
(
– 1

2

√
2a x
)

+ C3 exp
(
– 3

2at
) ,

w(x, t) = �

√
a

b

[ 2C1 exp
(√

2a x
)

+ C2 exp
( 1

2

√
2a x – 3

2at
)

C1 exp
(√

2ax
)

+ C2 exp
( 1

2

√
2a x – 3

2at
)

+ C3
– 1
]

,

where C1, C2, and C3 are arbitrary constants.

2◦. Solutions with a < 0 and b > 0:

w(x, t) = �

√
|a|
b

sin
( 1

2
√

2|a| x + C1
)

cos
( 1

2
√

2|a| x + C1
)

+ C2 exp
(
– 3

2at
) .

3◦. Solutions with a = 0 and b > 0:

w(x, t) = �

√
2
b

2C1x + C2

C1x2 + C2x + 6C1t + C3
.

1301
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4◦. Solution with a = 0 (generalizes the solution of Item 3◦):

w(x, y) = xu(z), z = t + 1
6x

2,

where the function u(z) is determined by the autonomous ordinary differential equation
u′′zz – 9bu3 = 0.

5◦. For a = 0, there is a self-similar solution of the form

w(x, t) = t–1/2f (ξ), ξ = xt–1/2,

where the function f (ξ) is determined by the ordinary differential equation f ′′ξξ + 1
2 ξf

′
ξ +

1
2 f – bf 3 = 0.

3.
∂w

∂t
=
∂2w

∂x2
–w(1 –w)(a –w).

Fitzhugh–Nagumo equation. This equation arises in genetics, biology, and heat and mass
transfer.

Solutions:

w(x, t) =
A exp(z1) + aB exp(z2)
A exp(z1) +B exp(z2) + C

,

z1 = �

√
2

2 x +
( 1

2 – a
)
t, z2 = �

√
2

2 ax + a
( 1

2a – 1
)
t,

where A, B, and C are arbitrary constants.

4.
∂w

∂t
=
∂2w

∂x2
+ aw + bwm.

1◦. Traveling-wave solutions (the signs are chosen arbitrarily):

w(x, t) =
[
�β + C exp(λt � μx)

] 2
1–m ,

where C is an arbitrary constant and β =

√

–
b

a
, λ =

a(1 – m)(m + 3)
2(m + 1)

, μ =

√
a(1 –m)2

2(m + 1)
.

2◦. For a = 0, there is a self-similar solution of the form w(x, t) = t1/(1–m)U (z), where
z = xt–1/2.

5.
∂w

∂t
=
∂2w

∂x2
+ a + beλw.

Traveling-wave solutions (the signs are chosen arbitrarily):

w(x, t) = –
2
λ

ln
[
�β + C exp

(
�μx – 1

2aλt
)]

, β =

√

–
b

a
, μ =

√
aλ

2
,

where C is an arbitrary constant.
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6.
∂w

∂t
=
∂2w

∂x2
+ aw lnw.

Functional separable solutions:

w(x, t) = exp

(
Aeatx +

A2

a
e2at +Beat

)
,

w(x, t) = exp
[ 1

2 – 1
4a(x + A)2 +Beat

]
,

w(x, t) = exp

[
–
a(x +A)2

4(1 +Be–at)
+

1
2B

eat ln(1 +Be–at) + Ceat
]

,

where A, B, and C are arbitrary constants.

T9.1.2. Equations of the Form ∂w
∂t

= ∂
∂x

[
f(w)∂w

∂x

]
+ g(w)

� Equations of this form admit traveling-wave solutions w = w(z), z = kx + λt, where
k and λ are arbitrary constants and the function w(z) is determined by the second-order
autonomous ordinary differential equation k2[f (w)w′

z]′z – λw′
z + f (w) = 0.

1.
∂w

∂t
= a

∂

∂x

((
wm∂w

∂x

))
.

This equation occurs in nonlinear problems of heat and mass transfer and flows in porous
media.

1◦. Solutions:

w(x, t) = (�kx + kλt +A)1/m, k=λm/a,

w(x, t) =

[
m(x – A)2

2a(m + 2)(B – t)

] 1
m

,

w(x, t) =

[
A|t +B|–

m
m+2 –

m

2a(m + 2)
(x + C)2

t +B

] 1
m

,

w(x, t) =

[
m(x + A)2

ϕ(t)
+B|x + A|

m
m+1 |ϕ(t)|

–m(2m+3)
2(m+1)2

] 1
m

, ϕ(t) = C – 2a(m + 2)t,

where A, B, C , and λ are arbitrary constants. The second solution for B > 0 corresponds
to blow-up regime (the solution increases without bound on a finite time interval).

2◦. There are solutions of the following forms:

w(x, t) = (t + C)–1/mF (x) (multiplicative separable solution);

w(x, t) = tλG(ξ), ξ = xt–
mλ+1

2 (self-similar solution);

w(x, t) = e–2λtH(η), η = xeλmt (generalized self-similar solution);

w(x, t) = (t + C)–1/mU (ζ), ζ = x + λ ln(t + C),

where C and λ are arbitrary constants.
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2.
∂w

∂t
= a

∂

∂x

((
wm∂w

∂x

))
+ bw.

By the transformation w(x, t) = ebtv(x, τ ), τ =
1
bm

ebmt + C the original equation can be

reduced to an equation of the form T9.1.2.1:

∂v

∂τ
= a

∂

∂x

(
vm

∂v

∂x

)
.

3.
∂w

∂t
= a

∂

∂x

((
wm∂w

∂x

))
+ bwm+1.

1◦. Multiplicative separable solution (a = b = 1, m > 0):

w(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

[
2(m + 1)
m(m + 2)

cos2(πx/L)
(t0 – t)

]1/m
for |x| ≤

L

2
,

0 for |x| >
L

2
,

where L = 2π(m + 1)1/2/m. This solution describes a blow-up regime that exists on a
limited time interval t � [0, t0). The solution is localized in the interval |x| < L/2.

2◦. Multiplicative separable solution:

w(x, t) =

(
Aeμx + Be–μx + D

mλt + C

)1/m
,

B =
λ2(m + 1)2

4b2A(m + 2)2 , D = –
λ(m + 1)
b(m + 2)

, μ = m

√

–
b

a(m + 1)
,

where A, C , and λ are arbitrary constants, ab(m + 1) < 0.

3◦. Functional separable solutions [it is assumed that ab(m + 1) < 0]:

w(x, t) =
[
F (t) + C2|F (t)|

m+2
m+1 eλx

]1/m
, F (t) =

1
C1 – bmt

, λ = �m

√
–b

a(m + 1)
,

where C1 and C2 are arbitrary constants.

4◦. There are functional separable solutions of the following forms:

w(x, t) =
[
f (t) + g(t)(Aeλx + Be–λx)

]1/m
, λ = m

√
–b

a(m + 1)
;

w(x, t) =
[
f (t) + g(t) cos(λx + C)

]1/m
, λ = m

√
b

a(m + 1)
,

where A, B, and C are arbitrary constants.
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4.
∂w

∂t
= a

∂

∂x

((
wm∂w

∂x

))
+ bw1–m.

Functional separable solution:

w(x, t) =

[
(x + A)2

F (t)
+B|F (t)|–

m
m+2 –

bm2

4a(m + 1)
F (t)

]1/m
, F (t) = C –

2a(m + 2)
m

t,

where A, B, and C are arbitrary constants.

5.
∂w

∂t
= a

∂

∂x

((
w2n∂w

∂x

))
+ bw1–n.

Generalized traveling-wave solution:

w(x, t) =

[
�
x + C1√
C2 – kt

–
bn2

3a(n + 1)
(C2 – kt)

]1/n
, k =

2a(n + 1)
n

,

where C1 and C2 are arbitrary constants.

6.
∂w

∂t
= a

∂

∂x

((
eλw ∂w

∂x

))
.

1◦. Solutions:

w(x, t) =
2
λ

ln

(
�x + A√
B – 2at

)
,

w(x, t) =
1
λ

ln
A + Bx – Cx2

D + 2aCt
,

where A, B, C , and D are arbitrary constants.

2◦. There are solutions of the following forms:

w(x, t) = F (z), z = kx + βt (traveling-wave solution);

w(x, t) = G(ξ), ξ = xt–1/2 (self-similar solution);

w(x, t) = H(η) + 2kt, η = xe–kλt;

w(x, t) = U (ζ) – λ–1 ln t, ζ = x + k ln t,

where k and β are arbitrary constants.

7.
∂w

∂t
=
∂

∂x

[[
f(w)

∂w

∂x

]]
.

This equation occurs in nonlinear problems of heat and mass transfer and flows in porous
media.

1◦. Traveling-wave solution in implicit form:

k2
∫

f (w) dw
λw + C1

= kx + λt + C2,

where C1, C2, k, and λ are arbitrary constants. To λ = 0 there corresponds a stationary
solution.

2◦. Self-similar solution:
w = w(z), z = xt–1/2,

where the function w(z) is determined by the ordinary differential equation [f (w)w′
z]′z +

1
2 zw

′
z = 0.
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8.
∂w

∂t
=
∂

∂x

[[
f(w)

∂w

∂x

]]
+ g(w).

This equation occurs in nonlinear problems of heat and mass transfer with volume reaction.

1◦. Traveling-wave solutions:

w = w(z), z = �x + λt,

where the function w(z) is determined by the autonomous ordinary differential equation
[f (w)w′

z]′z – λw′
z + g(w) = 0.

2◦. Let the function f = f (w) be arbitrary and let g = g(w) be defined by

g(w) =
A

f (w)
+ B,

where A and B are some numbers. In this case, there is a functional separable solution that
is defined implicitly by

∫
f (w) dw = At –

1
2
Bx2 + C1x + C2,

where C1 and C2 are arbitrary constants.

3◦. Now let g = g(w) be arbitrary and let f = f (w) be defined by

f (w) =
A1A2w + B

g(w)
+
A2A3

g(w)

∫
Z dw, (1)

Z = –A2

∫
dw

g(w)
, (2)

where A1, A2, and A3 are some numbers. Then there are generalized traveling-wave
solutions of the form

w = w(Z), Z =
�x + C2√
2A3t + C1

–
A1

A3
–
A2

3A3
(2A3t + C1),

where the function w(Z) is determined by the inversion of (2), and C1 and C2 are arbitrary
constants.

4◦. Let g = g(w) be arbitrary and let f = f (w) be defined by

f (w) =
1

g(w)

(
A1w + A3

∫
Z dw

)
exp

[
–A4

∫
dw

g(w)

]
, (3)

Z =
1
A4

exp

[
–A4

∫
dw

g(w)

]
–
A2

A4
, (4)

where A1, A2, A3, and A4 are some numbers (A4 ≠ 0). In this case, there are generalized
traveling-wave solutions of the form

w = w(Z), Z = ϕ(t)x + ψ(t),

where the function w(Z) is determined by the inversion of (4),

ϕ(t) = �

(
C1e

2A4t –
A3

A4

)–1/2
, ψ(t) = –ϕ(t)

[
A1

∫
ϕ(t) dt + A2

∫
dt

ϕ(t)
+ C2

]
,

and C1 and C2 are arbitrary constants.
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5◦. Let the functions f (w) and g(w) be as follows:

f (w) = ϕ′(w), g(w) =
aϕ(w) + b
ϕ′(w)

+ c[aϕ(w) + b],

where ϕ(w) is an arbitrary function and a, b, and c are any numbers (the prime denotes
a derivative with respect to w). Then there are functional separable solutions defined
implicitly by

ϕ(w) = eat
[
C1 cos(x

√
ac ) + C2 sin(x

√
ac )
]

–
b

a
if ac > 0,

ϕ(w) = eat
[
C1 cosh(x

√
–ac ) + C2 sinh(x

√
–ac )

]
–
b

a
if ac < 0.

6◦. Let f (w) and g(w) be as follows:

f (w) = wϕ′
w(w), g(w) = a

[
w + 2

ϕ(w)
ϕ′
w(w)

]
,

whereϕ(w) is an arbitrary function and a is any number. Then there are functional separable
solutions defined implicitly by

ϕ(w) = C1e
2at – 1

2a(x + C2)2.

7◦. Let f (w) and g(w) be as follows:

f (w) = A
V (z)
V ′
z (z)

, g(w) = B
[

2z–1/2V ′
z (z) + z–3/2V (z)

]
,

where V (z) is an arbitrary function, A and B are arbitrary constants (AB ≠ 0), and the
function z = z(w) is defined implicitly by

w =
∫
z–1/2V ′

z (z) dz + C1; (5)

C1 is an arbitrary constant. Then there are functional separable solutions of the form (5),
where

z = –
(x + C3)2

4At + C2
+ 2Bt +

BC2

2A
,

and C2 and C3 are arbitrary constants.

T9.1.3. Burgers Equation and Nonlinear Heat Equation in Radial
Symmetric Cases

1.
∂w

∂t
=
∂2w

∂x2
+ w

∂w

∂x
.

Burgers equation. It is used for describing wave processes in acoustics and hydrodynamics.
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1◦. Solutions:

w(x, t) = λ +
2

x + λt + A
,

w(x, t) =
4x + 2A

x2 + Ax + 2t + B
,

w(x, t) =
6(x2 + 2t + A)

x3 + 6xt + 3Ax +B
,

w(x, t) =
2λ

1 + A exp(–λ2t – λx)
,

w(x, t) = –λ + A
exp
[
A(x – λt)] –B

exp
[
A(x – λt)

]
+ B

,

where A, B, and λ are arbitrary constants.

2◦. Other solutions can be obtained using the following formula (Hopf–Cole transforma-
tion):

w(x, t) =
2
u

∂u

∂x
,

where u = u(x, t) is a solution of the linear heat equation, ut = uxx (see Subsection T8.1.1).

3◦. The Cauchy problem with the initial condition:

w = f (x) at t = 0 (–∞ < x < ∞).

Solution:

w(x, t) = 2
∂

∂x
lnF (x, t), F (x, t) =

1√
4πt

∫ ∞

–∞
exp

[
–

(x – ξ)2

4t
–

1
2

∫ ξ

0
f (ξ′) dξ′

]
dξ.

2.
∂w

∂t
=

1

xn

∂

∂x

[[
xnf(w)

∂w

∂x

]]
+ g(w).

This is a nonlinear equation of heat and mass transfer in the radial symmetric case (n = 1
corresponds to a plane problem and n = 2 to a spatial one).

1◦. Let the function f = f (w) be arbitrary and let g = g(w) be defined by

g(w) =

(
a

f (w)
+ b

)(∫
f (w) dw + c

)
,

where a, b, and c are some numbers. In this case, there is a functional separable solution
that is defined implicitly by

∫
f (w) dw + c = eatz(x),

where the function z = z(x) is determined by the linear ordinary differential equation

z′′xx +
n

x
z′x + bz = 0.

Its general solution can be expressed in terms of Bessel functions of modified Bessel
functions.
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2◦. Let f (w) and g(w) be defined by

f (w) = wϕ′
w(w), g(w) = a(n + 1)w + 2a

ϕ(w)
ϕ′
w(w)

,

where ϕ(w) is an arbitrary function (the prime denotes a derivative with respect to w). In
this case, there is a functional separable solution defined implicitly by

ϕ(w) = Ce2at – 1
2ax

2,

where C is an arbitrary constant.

3◦. Let f (w) and g(w) be defined as follows:

f (w) = aϕ– n+1
2 ϕ′

∫
ϕ
n+1

2 dw, g(w) = b
ϕ

ϕ′ ,

where ϕ = ϕ(w) is an arbitrary function (the prime denotes a derivative with respect to w).
In this case, there is a functional separable solution defined implicitly by

ϕ(w) =
bx2

Ce–bt – 4a
.

4◦. Let f (w) and g(w) be as follows:

f (w) = A
V (z)
V ′
z (z)

, g(w) = B
[

2z– n+1
2 V ′

z (z) + (n + 1)z– n+3
2 V (z)

]
,

where V (z) is an arbitrary function, A and B are arbitrary constants (AB ≠ 0), and the
function z = z(w) is defined implicitly by

w =
∫
z– n+1

2 V ′
z (z) dz + C1; (∗)

C1 is an arbitrary constant. Then there are functional separable solutions of the form (∗)
where

z = –
x2

4At + C2
+ 2Bt +

BC2

2A
,

and C2 is an arbitrary constant.

T9.1.4. Nonlinear Schrödinger Equations

� In equations T9.1.4.1–T9.1.4.3,w is a complex function of real variables x and t; i2 = –1.

1. i
∂w

∂t
+
∂2w

∂x2
+ k|w|2w = 0.

Schrödinger equation with a cubic nonlinearity. Here, k is a real number. This equation
occurs in various chapters of physics, including nonlinear optics, superconductivity, and
plasma physics.
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1◦. Solutions:
w(x, t) = C1 exp

{
i [C2x + (kC2

1 – C2
2 )t + C3]

}
,

w(x, t) = �C1

√
2
k

exp[i(C2
1 t + C2)]

cosh(C1x + C3)
,

w(x, t) = �A

√
2
k

exp[iBx + i(A2 – B2)t + iC1]
cosh(Ax – 2ABt + C2)

,

w(x, t) =
C1√
t

exp

[
i

(x + C2)2

4t
+ i(kC2

1 ln t + C3)

]
,

where A, B, C1, C2, and C3 are arbitrary real constants. The second and third solutions are
valid for k > 0. The third solution describes the motion of a soliton in a rapidly decaying
case.

2◦. N -soliton solutions for k > 0:

w(x, t) =

√
2
k

det R(x, t)
det M(x, t)

.

Here, M(x, t) is an N × N matrix with entries

Mn,k(x, t) =
1 + gn(x, t)gn(x, t)

λn – λk
, gn(x, t) = γne

i(λnx–λ2
nt), n, k = 1, . . . , N ,

where λn and γn are arbitrary complex numbers that satisfy the constraints Imλn > 0
(λn ≠ λk if n ≠ k) and γn ≠ 0; the bar over a symbol denotes the complex conjugate. The
square matrix R(x, t) is of order N + 1; it is obtained by augmenting M(x, t) with a column
on the right and a row at the bottom. The entries of R are defined as

Rn,k(x, t) = Mn,k(x, t) for n, k = 1, . . . , N (bulk of the matrix),
Rn,N+1(x, t) = gn(x, t) for n = 1, . . . , N (rightmost column),
RN+1,n(x, t) = 1 for n = 1, . . . , N (bottom row),
RN+1,N+1(x, t) = 0 (lower right diagonal entry).

The above solution can be represented, for t → �∞, as the sum of N single-soliton
solutions.

3◦. For other exact solutions, see equation T9.1.4.18 with n = 1 and equation T9.1.4.19
with f (u) = ku2.

4◦. The Schrödinger equation with a cubic nonlinearity is integrable by the inverse scatter-
ing method; see Ablowitz and Segur (1981) and Novikov et al. (1984).

2. i
∂w

∂t
+
∂2w

∂x2
+ A|w|2nw = 0.

Schrödinger equation with a power-law nonlinearity. The numbers A and n are assumed
real.
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1◦. Solutions:

w(x, t) = C1 exp
{
i [C2x + (A|C1|2n – C2

2 )t + C3]
}

,

w(x, t) = �

[
(n + 1)C2

1

A cosh2(C1nx + C2)

] 1
2n

exp[i(C2
1 t + C3)],

w(x, t) =
C1√
t

exp

[
i

(x + C2)2

4t
+ i

(
AC2n

1
1 – n

t1–n + C3

)]
,

where C1, C2, and C3 are arbitrary real constants.

2◦. There is a self-similar solution of the form w = t–1/(2n)u(ξ), where ξ = xt–1/2.

3◦. For other exact solutions, see equation T9.1.4.19 with f (u) = Au2n.

3. i
∂w

∂t
+
∂2w

∂x2
+ f(|w|)w = 0.

Schrödinger equation of general form; f (u) is a real function of a real variable.

1◦. Supposew(x, t) is a solution of the Schrödinger equation in question. Then the function

w1 = e–i(λx+λ2t+C1 )w(x + 2λt + C2, t + C3),

where C1, C2, C3, and λ are arbitrary real constants, is also a solution of the equation.

2◦. Traveling-wave solution:

w(x, t) = C1 exp
[
iϕ(x, t)

]
, ϕ(x, t) = C2x – C2

2 t + f (|C1|)t + C3.

3◦. Multiplicative separable solution:

w(x, t) = u(x)ei(C1t+C2),

where the function u = u(x) is defined implicitly by

∫
du

√
C1u2 – 2F (u) + C3

= C4 � x, F (u) =
∫
uf (|u|) du.

Here, C1, . . . , C4 are arbitrary real constants.

4◦. Solution:
w(x, t) = U (ξ)ei(Ax+Bt+C) , ξ = x – 2At, (1)

where the function U =U (ξ) is determined by the autonomous ordinary differential equation
U ′′
ξξ + f (|U |)U – (A2 + B)U = 0. Integrating yields the general solution in implicit form:

∫
dU

√
(A2 +B)U2 – 2F (U ) + C1

= C2 � ξ, F (U ) =
∫
Uf (|U |) dU . (2)

Relations (1) and (2) involve arbitrary real constants A, B, C , C1, and C2.
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5◦. Solution (A, B, and C are arbitrary constants):

w(x, t) = ψ(z) exp
[
i(Axt – 2

3A
2t3 +Bt + C)

]
, z = x –At2,

where the function ψ = ψ(z) is determined by the ordinary differential equation ψ′′
zz +

f (|ψ|)ψ – (Az +B)ψ = 0.

6◦. Solutions:

w(x, t) = �
1√
C1t

exp
[
iϕ(x, t)

]
, ϕ(x, t) =

(x + C2)2

4t
+
∫
f
(

|C1t|–1/2) dt + C3,

where C1, C2, and C3 are arbitrary real constants.

7◦. Solution:

w(x, t) = u(x) exp
[
iϕ(x, t)

]
, ϕ(x, t) = C1t + C2

∫
dx

u2(x)
+ C3,

where C1, C2, and C3 are arbitrary real constants, and the function u = u(x) is determined
by the autonomous ordinary differential equation u′′xx – C1u – C2

2u
–3 + f (|u|)u = 0.

8◦. There is an exact solution of the form

w(x, t) = u(z) exp
[
iAt + iϕ(z)

]
, z = kx + λt,

where A, k, and λ are arbitrary real constants.

T9.2. Hyperbolic Equations

T9.2.1. Nonlinear Wave Equations of the Form ∂2w
∂t2 = a∂

2w
∂x2 + f(w)

1.
∂2w

∂t2
=
∂2w

∂x2
+ aw + bwn.

1◦. Traveling-wave solutions for a > 0:

w(x, t) =

[
2b sinh2 z

a(n + 1)

] 1
1–n

, z = 1
2
√
a (1 – n)(x sinhC1 � t coshC1) + C2 if b(n + 1) > 0,

w(x, t) =

[
–

2b cosh2 z

a(n + 1)

] 1
1–n

, z = 1
2
√
a (1 – n)(x sinhC1 � t coshC1) + C2 if b(n + 1) < 0,

where C1 and C2 are arbitrary constants.

2◦. Traveling-wave solutions for a < 0 and b(n + 1) > 0:

w(x, t) =

[
–

2b cos2 z

a(n + 1)

] 1
1–n

, z = 1
2

√
|a| (1 – n)(x sinhC1 � t coshC1) + C2.

3◦. For a = 0, there is a self-similar solution of the form w = t
2

1–n F (z), where z = x/t.

4◦. For other exact solutions of this equation, see equation T9.2.1.7 with f (w) = aw + bwn.
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2.
∂2w

∂t2
=
∂2w

∂x2
+ awn + bw2n–1.

Solutions:

w(x, t) =

[
a(1 – n)2

2(n + 1)
(x sinhC1 � t coshC1 + C2)2 –

b(n + 1)
2an

] 1
1–n

,

w(x, t) =

{
1
4
a(1 – n)2[(t + C1)2 – (x + C2)2] –

b

an

} 1
1–n

,

where C1 and C2 are arbitrary constants.

3.
∂2w

∂t2
= a2 ∂

2w

∂x2
+ beβw.

1◦. Traveling-wave solutions:

w(x, t) =
1
β

ln

[
2(B2 – a2A2)

bβ(Ax + Bt + C)2

]
,

w(x, t) =
1
β

ln

[
2(a2A2 –B2)

bβ cosh2(Ax +Bt + C)

]
,

w(x, t) =
1
β

ln

[
2(B2 – a2A2)

bβ sinh2(Ax + Bt + C)

]
,

w(x, t) =
1
β

ln

[
2(B2 – a2A2)

bβ cos2(Ax + Bt + C)

]
,

where A, B, and C are arbitrary constants.

2◦. Functional separable solutions:

w(x, t) =
1
β

ln

(
8a2C

bβ

)
–

2
β

ln
∣
∣(x + A)2 – a2(t +B)2 + C

∣
∣,

w(x, t) = –
2
β

ln

[
C1e

λx
�

√
2bβ

2aλ
sinh(aλt + C2)

]
,

w(x, t) = –
2
β

ln

[
C1e

λx
�

√
–2bβ

2aλ
cosh(aλt + C2)

]
,

w(x, t) = –
2
β

ln

[
C1e

aλt
�

√
–2bβ

2aλ
sinh(λx + C2)

]
,

w(x, t) = –
2
β

ln

[
C1e

aλt
�

√
2bβ

2aλ
cosh(λx + C2)

]
,

where A, B, C , C1, C2, and λ are arbitrary constants.

3◦. General solution:

w(x, t) =
1
β

[
f (z) + g(y)

]
–

2
β

ln

∣∣
∣
∣k
∫

exp
[
f (z)
]
dz –

bβ

8a2k

∫
exp
[
g(y)
]
dy

∣∣
∣
∣,

z = x – at, y = x + at,

where f = f (z) and g = g(y) are arbitrary functions and k is an arbitrary constant.
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4.
∂2w

∂t2
=
∂2w

∂x2
+ aeβw + be2βw.

1◦. Traveling-wave solutions:

w(x, t) = –
1
β

ln

[
aβ

C2
1 –C2

2
+C3 exp(C1x+C2t) +

a2β2 + bβ(C2
1 –C2

2 )

4C3(C2
1 –C2

2 )2
exp(–C1x –C2t)

]
,

w(x, t) = –
1
β

ln

[
aβ

C2
2 –C2

1
+

√
a2β2 + bβ(C2

2 –C2
1 )

C2
2 –C2

1
sin(C1x+C2t+C3)

]
,

where C1, C2, and C3 are arbitrary constants.

2◦. For other exact solutions of this equation, see equation T9.2.1.7 with f (w) = aeβw +
be2βw.

5.
∂2w

∂t2
= a

∂2w

∂x2
+ b sinh(λw).

Sinh-Gordon equation. It arises in some areas of physics.

1◦. Traveling-wave solutions:

w(x, t) = �
2
λ

ln

[
tan

bλ(kx + μt + θ0)

2
√
bλ(μ2 – ak2)

]
,

w(x, t) = �
4
λ

arctanh

[
exp

bλ(kx + μt + θ0)
√
bλ(μ2 – ak2)

]
,

where k, μ, and θ0 are arbitrary constants. It is assumed that bλ(μ2 – ak2) > 0 in both
formulas.

2◦. Functional separable solution:

w(x, t) =
4
λ

arctanh
[
f (t)g(x)

]
, arctanh z =

1
2

ln
1 + z
1 – z

,

where the functions f = f (t) and g = g(x) are determined by the first-order autonomous
ordinary differential equations

(f ′t)
2 = Af 4 + Bf 2 + C , a(g′x)2 = Cg4 + (B – bλ)g2 +A,

where A, B, and C are arbitrary constants.

3◦. For other exact solutions of this equation, see equation T9.2.1.7 with f (w) = b sinh(λw).

6.
∂2w

∂t2
= a

∂2w

∂x2
+ b sin(λw).

Sine-Gordon equation. It arises in differential geometry and various areas of physics.

1◦. Traveling-wave solutions:

w(x, t) =
4
λ

arctan

{
exp

[
�
bλ(kx + μt + θ0)
√
bλ(μ2 – ak2)

]}
if bλ(μ2 – ak2) > 0,

w(x, t) = –
π

λ
+

4
λ

arctan

{
exp

[
�
bλ(kx + μt + θ0)
√
bλ(ak2 – μ2)

]}
if bλ(μ2 – ak2) < 0,

where k, μ, and θ0 are arbitrary constants. The first expression corresponds to a single-
soliton solution.
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2◦. Functional separable solutions:

w(x, t) =
4
λ

arctan

[
μ sinh(kx + A)

k
√
a cosh(μt +B)

]
, μ2 = ak2 + bλ > 0;

w(x, t) =
4
λ

arctan

[
μ sin(kx +A)

k
√
a cosh(μt +B)

]
, μ2 = bλ – ak2 > 0;

w(x, t) =
4
λ

arctan

[
γ

μ

eμ(t+A) + ak2e–μ(t+A)

ekγ(x+B) + e–kγ(x+B)

]
, μ2 = ak2γ2 + bλ > 0,

where A, B, k, and γ are arbitrary constants.

3◦. An N -soliton solution is given by (a = 1, b = –1, and λ = 1)

w(x, t) = arccos

[
1 – 2

(
∂2

∂x2 –
∂2

∂t2

)
(lnF )

]
,

F = det
[
Mij

]
, Mij =

2
ai + aj

cosh

(
zi + zj

2

)
, zi = �

x – μit + Ci√
1 – μ2

i

, ai = �

√
1 – μi
1 + μi

,

where μi and Ci are arbitrary constants.

4◦. For other exact solutions of the original equation, see equation T9.2.1.7 with f (w) =
b sin(λw).

5◦. The sine-Gordon equation is integrated by the inverse scattering method; see the book
by Novikov et al. (1984).

7.
∂2w

∂t2
=
∂2w

∂x2
+ f(w).

Nonlinear Klein–Gordon equation.

1◦. Suppose w = w(x, t) is a solution of the equation in question. Then the functions

w1 = w(�x + C1,�t + C2),
w2 = w(x cosh β + t sinh β, t cosh β + x sinh β),

where C1, C2, and β are arbitrary constants, are also solutions of the equation (the plus or
minus signs in w1 are chosen arbitrarily).

2◦. Traveling-wave solution in implicit form:

∫ [
C1 +

2
λ2 – k2

∫
f (w) dw

]–1/2
dw = kx + λt + C2,

where C1, C2, k, and λ are arbitrary constants.

3◦. Functional separable solution:

w = w(ξ), ξ = 1
4 (t + C1)2 – 1

4 (x + C2)2,

where C1 and C2 are arbitrary constants, and the function w = w(ξ) is determined by the
ordinary differential equation ξw′′

ξξ + w′
ξ – f (w) = 0.
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T9.2.2. Other Nonlinear Wave Equations

1.
∂2w

∂t2
= a

∂

∂x

((
w
∂w

∂x

))
.

1◦. Solutions:

w(x, t) = 1
2aA

2t2 + Bt + Ax + C ,

w(x, t) = 1
12aA

–2(At +B)4 + Ct + D + x(At +B),

w(x, t) =
1
a

(
x + A
t + B

)2
,

w(x, t) = (At +B)
√
Cx + D,

w(x, t) = �

√
A(x + aλt) +B + aλ2,

where A, B, C , D, and λ are arbitrary constants.

2◦. Generalized separable solution quadratic in x:

w(x, t) =
1
at2 x

2 +
(C1

t2 + C2t
3
)
x +

aC2
1

4t2 +
C3

t
+ C4t

2 +
1
2
aC1C2t

3 +
1

54
aC2

2 t
8,

where C1, . . . , C4 are arbitrary constants.

3◦. Solution:

w = U (z) + 4aC2
1 t

2 + 4aC1C2t, z = x + aC1t
2 + aC2t,

where C1 and C2 are arbitrary constants and the function U (z) is determined by the first-
order ordinary differential equation (U – aC2

2 )U ′
z – 2C1U = 8C2

1z + C3.

4◦. See also equation T9.2.2.5 with f (w) = aw.

2.
∂2w

∂t2
= a

∂

∂x

((
wn∂w

∂x

))
+ bwk.

There are solutions of the following forms:

w(x, t) = U (z), z = λx + βt (traveling-wave solution);

w(x, t) = t
2

1–k V (ξ), ξ = xt
k–n–1

1–k (self-similar solution).

3.
∂2w

∂t2
=
∂

∂x

((
aeλw ∂w

∂x

))
, a > 0.

1◦. Additive separable solutions:

w(x, t) =
1
λ

ln |Ax + B| + Ct +D,

w(x, t) =
2
λ

ln |Ax + B| –
2
λ

ln | �A
√
a t + C |,

w(x, t) =
1
λ

ln(aA2x2 +Bx + C) –
2
λ

ln(aAt +D),
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w(x, t) =
1
λ

ln(Ax2 +Bx + C) +
1
λ

ln

[
p2

aA cos2(pt + q)

]
,

w(x, t) =
1
λ

ln(Ax2 +Bx + C) +
1
λ

ln

[
p2

aA sinh2(pt + q)

]
,

w(x, t) =
1
λ

ln(Ax2 +Bx + C) +
1
λ

ln

[
–p2

aA cosh2(pt + q)

]
,

where A, B, C , D, p, and q are arbitrary constants.

2◦. There are solutions of the following forms:

w(x, t) = F (z), z = kx + βt (traviling-wave solution);
w(x, t) = G(ξ), ξ = x/t (self-similar solution);

w(x, t) = H(η) + 2(k – 1)λ–1 ln t, η = xt–k;

w(x, t) = U (ζ) – 2λ–1 ln |t|, ζ = x + k ln |t|;
w(x, t) = V (ζ) – 2λ–1t, η = xet,

where k and β are arbitrary constants.

4.
∂2w

∂t2
=
a

xn

∂

∂x

((
xn∂w

∂x

))
+ f(w), a > 0.

To n = 1 and n = 2 there correspond nonlinear waves with axial and central symmetry,
respectively.

Functional separable solution:

w = w(ξ), ξ =
√
ak(t + C)2 – kx2,

where w(ξ) is determined by the ordinary differential equation w′′
ξξ + (1 + n)ξ–1w′

ξ =

(ak)–1f (w).

5.
∂2w

∂t2
=
∂

∂x

[[
f(w)

∂w

∂x

]]
.

This equation is encountered in wave and gas dynamics.

1◦. Traveling-wave solution in implicit form:

λ2w –
∫
f (w) dw = A(x + λt) + B,

where A, B, and λ are arbitrary constants.

2◦. Self-similar solution:

w = w(ξ), ξ =
x +A
t + B

,

where the function w(ξ) is determined by the ordinary differential equation
(
ξ2w′

ξ)
′
ξ =

[
f (w)w′

ξ

]′
ξ
, which admits the first integral

[
ξ2 – f (w)

]
w′
ξ = C .

To the special case C = 0 there corresponds the solution in implicit form: ξ2 = f (w).

3◦. The equation concerned can be reduced to a linear equation; see Item 3◦ of equa-
tion T9.3.3.3, where one should set g(w) = –1 and y = t.
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T9.3. Elliptic Equations

T9.3.1. Nonlinear Heat Equations of the Form ∂2w
∂x2 + ∂

2w
∂y2 = f(w)

1.
∂2w

∂x2
+
∂2w

∂y2
= aw + bwn.

1◦. Traveling-wave solutions for a > 0:

w(x, y) =

[
2b sinh2 z

a(n + 1)

] 1
1–n

, z = 1
2
√
a (1 – n)(x sinC1 + y cosC1) + C2 if b(n + 1) > 0,

w(x, y) =

[
–

2b cosh2 z

a(n + 1)

] 1
1–n

, z = 1
2
√
a (1 – n)(x sinC1 + y cosC1) + C2 if b(n + 1) < 0,

where C1 and C2 are arbitrary constants.

2◦. Traveling-wave solutions for a < 0 and b(n + 1) > 0:

w(x, y) =

[
–

2b cos2 z

a(n + 1)

] 1
1–n

, z = 1
2

√
|a| (1 – n)(x sinC1 + y cosC1) + C2.

3◦. For a = 0, there is a self-similar solution of the form w = x
2

1–n F (z), where z = y/x.

4◦. For other exact solutions of this equation, see equation T9.3.1.7 with f (w) = aw + bwn.

2.
∂2w

∂x2
+
∂2w

∂y2
= awn + bw2n–1.

Solutions:

w(x, y) =

[
a(1 – n)2

2(n + 1)
(x sinC1 + y cosC1 + C2)2 –

b(n + 1)
2an

] 1
1–n

,

w(x, y) =

{
1
4
a(1 – n)2[(x + C1)2 + (y + C2)2] –

b

an

} 1
1–n

,

where C1 and C2 are arbitrary constants.

3.
∂2w

∂x2
+
∂2w

∂y2
= aeβw.

This equation occurs in combustion theory and is a special case of equation T9.3.1.7 with
f (w) = aeβw.
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1◦. Solutions:

w(x, y) =
1
β

ln

[
2(A2 +B2)

aβ(Ax + By + C)2

]
if aβ > 0,

w(x, y) =
1
β

ln

[
2(A2 + B2)

aβ sinh2(Ax + By + C)

]
if aβ > 0,

w(x, y) =
1
β

ln

[
–2(A2 +B2)

aβ cosh2(Ax + By + C)

]
if aβ < 0,

w(x, y) =
1
β

ln

[
2(A2 + B2)

aβ cos2(Ax +By + C)

]
if aβ > 0,

w(x, y) =
1
β

ln

(
8C
aβ

)
–

2
β

ln
∣
∣(x +A)2 + (y + B)2 – C

∣
∣,

where A, B, and C are arbitrary constants. The first four solutions are of traveling-wave
type and the last one is a radial symmetric solution with center at the point (–A, –B).

2◦. Functional separable solutions:

w(x, y) = –
2
β

ln

[
C1e

ky
�

√
2aβ

2k
cos(kx + C2)

]
,

w(x, y) =
1
β

ln
2k2(B2 – A2)

aβ[A cosh(kx + C1) + B sin(ky + C2)]2 ,

w(x, y) =
1
β

ln
2k2(A2 +B2)

aβ[A sinh(kx + C1) + B cos(ky + C2)]2 ,

where A, B, C1, C2, and k are arbitrary constants (x and y can be swapped to give another
three solutions).

3◦. General solution:

w(x, y) = –
2
β

ln

∣∣1 – 2aβΦ(z)Φ(z)
∣∣

4|Φ′
z(z)|

,

where Φ = Φ(z) is an arbitrary analytic (holomorphic) function of the complex variable
z = x+iy with nonzero derivative, and the bar over a symbol denotes the complex conjugate.

4.
∂2w

∂x2
+
∂2w

∂y2
= aeβw + be2βw.

1◦. Traveling-wave solutions:

w(x, y) = –
1
β

ln

[
–

aβ

C2
1 +C2

2
+C3 exp(C1x+C2y)+

a2β2 –bβ(C2
1 +C2

2 )

4C3(C2
1 +C2

2 )2
exp(–C1x–C2y)

]
,

w(x, y) = –
1
β

ln

[
aβ

C2
1 +C2

2
+

√
a2β2 +bβ(C2

1 +C2
2 )

C2
1 +C2

2
sin(C1x+C2y+C3)

]
,

where C1, C2, and C3 are arbitrary constants.

2◦. For other exact solutions of this equation, see equation T9.3.1.7 with f (w) = aeβw +
be2βw.
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5.
∂2w

∂x2
+
∂2w

∂y2
= αw ln(βw).

1◦. Solutions:

w(x, y) =
1
β

exp
[

1
4α(x + A)2 + 1

4α(y +B)2 + 1
]
,

w(x, y) =
1
β

exp
[
A(x +B)2

�

√
Aα – 4A2 (x + B)(y + C) + ( 1

4α –A)(y + C)2 + 1
2

]
,

where A, B, and C are arbitrary constants.

2◦. There are exact solutions of the following forms:

w(x, y) = F (z), z = Ax + By,

w(x, y) = G(r), r =
√

(x + C1)2 + (y + C2)2,

w(x, y) = f (x)g(y).

6.
∂2w

∂x2
+
∂2w

∂y2
= α sin(βw).

1◦. Functional separable solution for α = β = 1:

w(x, y) = 4 arctan

(
cotA

coshF
coshG

)
, F =

cosA√
1 + B2

(x – By), G =
sinA√
1 +B2

(y + Bx),

where A and B are arbitrary constants.

2◦. Functional separable solution (generalizes the solution of Item 1◦):

w(x, y) =
4
β

arctan
[
f (x)g(y)

]
,

where the functions f = f (x) and g = g(y) are determined by the first-order autonomous
ordinary differential equations

(f ′x)2 = Af 4 +Bf 2 + C , (g′y)2 = Cg4 + (αβ –B)g2 + A,

and A, B, and C are arbitrary constants.

3◦. For other exact solutions of this equation, see equation T9.3.1.7 with f (w) = α sin(βw).

7.
∂2w

∂x2
+
∂2w

∂y2
= f(w).

This is a stationary heat equation with a nonlinear source.

1◦. Suppose w = w(x, y) is a solution of the equation in question. Then the functions

w1 = w(�x + C1,�y + C2),
w2 = w(x cos β – y sin β, x sin β + y cos β),

where C1, C2, and β are arbitrary constants, are also solutions of the equation (the plus or
minus signs in w1 are chosen arbitrarily).
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2◦. Traveling-wave solution in implicit form:
∫ [

C +
2

A2 +B2 F (w)

]–1/2
dw = Ax + By + D, F (w) =

∫
f (w) dw,

where A, B, C , and D are arbitrary constants.

3◦. Solution with central symmetry about the point (–C1, –C2):

w = w(ζ), ζ =
√

(x + C1)2 + (y + C2)2,

where C1 and C2 are arbitrary constants and the function w = w(ζ) is determined by the
ordinary differential equation w′′

ζζ + ζ–1w′
ζ = f (w).

T9.3.2. Equations of the Form
∂
∂x

[
f(x)∂w

∂x

]
+ ∂
∂y

[
g(y)∂w

∂y

]
= f(w)

1.
∂

∂x

((
axn∂w

∂x

))
+
∂

∂y

((
bym∂w

∂y

))
= f(w).

Functional separable solution for n ≠ 2 and m ≠ 2:

w = w(r), r =
[
b(2 – m)2x2–n + a(2 – n)2y2–m]1/2

.

Here, the function w(r) is determined by the ordinary differential equation

w′′
rr +Ar–1w′

r = Bf (w),

where A =
4 – nm

(2 – n)(2 – m)
, B =

4
ab(2 – n)2(2 –m)2 .

2. a
∂2w

∂x2
+
∂

∂y

((
beμy ∂w

∂y

))
= f(w), ab > 0.

Functional separable solution for μ ≠ 0:

w = w(ξ), ξ =
[
bμ2(x + C1)2 + 4ae–μy]1/2

,

where C1 is an arbitrary constant and the function w(ξ) is defined implicitly by
∫ [

C2 +
2

abμ2 F (w)

]–1/2
dw = C3 � ξ, F (w) =

∫
f (w) dw,

with C2 and C3 being arbitrary constants.

3.
∂

∂x

((
aeβx ∂w

∂x

))
+
∂

∂y

((
beμy ∂w

∂y

))
= f(w), ab > 0.

Functional separable solution for βμ ≠ 0:

w = w(ξ), ξ =
(
bμ2e–βx + aβ2e–μy)1/2

,

where the function w(ξ) is determined by the ordinary differential equation

w′′
ξξ – ξ–1w′

ξ = Af (w), A = 4/(abβ2μ2).
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4.
∂

∂x

[[
f(x)

∂w

∂x

]]
+
∂

∂y

[[
g(y)

∂w

∂y

]]
= kw lnw.

Multiplicative separable solution:

w(x, y) = ϕ(x)ψ(y),

where the functions ϕ(x) and ψ(y) are determined by the ordinary differential equations

[f (x)ϕ′
x]′x = kϕ lnϕ + Cϕ, [g(y)ψ′

y]′y = kψ lnψ – Cψ,

and C is an arbitrary constant.

T9.3.3. Equations of the Form
∂
∂x

[
f(w)∂w

∂x

]
+ ∂
∂y

[
g(w)∂w

∂y

]
= h(w)

1.
∂2w

∂x2
+
∂

∂y

[[
(αw + β)

∂w

∂y

]]
= 0.

Stationary Khokhlov–Zabolotskaya equation. It arises in acoustics and nonlinear mechan-
ics.

1◦. Solutions:

w(x, y) = Ay – 1
2A

2αx2 + C1x + C2,

w(x, y) = (Ax + B)y –
α

12A2 (Ax + B)4 + C1x + C2,

w(x, y) = –
1
α

(
y + A
x +B

)2
+

C1

x + B
+ C2(x +B)2 –

β

α
,

w(x, y) = –
1
α

[
β + λ2

�
√
A(y + λx) +B

]
,

w(x, y) = (Ax + B)
√
C1y + C2 –

β

α
,

where A, B, C1, C2, and λ are arbitrary constants.

2◦. Generalized separable solution quadratic in y (generalizes the third solution of Item 1◦):

w(x, y) = –
1

α(x +A)2 y
2 +
[ B1

(x +A)2 + B2(x + A)3
]
y

+
C1

x +A
+ C2(x +A)2 –

β

α
–

αB2
1

4(x + A)2 –
1
2
αB1B2(x + A)3 –

1
54
αB2

2 (x + A)8,

where A, B1, B2, C1, and C2 are arbitrary constants.

3◦. See also equation T9.3.3.3 with f (w) = 1 and g(w) = αw + β.
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2.
∂2w

∂x2
+
∂

∂y

((
aeβw ∂w

∂y

))
= 0, a > 0.

1◦. Additive separable solutions:

w(x, y) =
1
β

ln(Ay +B) + Cx +D,

w(x, y) =
1
β

ln(–aA2y2 + By + C) –
2
β

ln(–aAx +D),

w(x, y) =
1
β

ln(Ay2 + By + C) +
1
β

ln

[
p2

aA cosh2(px + q)

]
,

w(x, y) =
1
β

ln(Ay2 + By + C) +
1
β

ln

[
p2

–aA cos2(px + q)

]
,

w(x, y) =
1
β

ln(Ay2 + By + C) +
1
β

ln

[
p2

–aA sinh2(px + q)

]
,

where A, B, C , D, p, and q are arbitrary constants.

2◦. There are exact solutions of the following forms:

w(x, y) = F (r), r = k1x + k2y;
w(x, y) = G(z), z = y/x;

w(x, y) = H(ξ) – 2(k + 1)β–1 ln |x|, ξ = y|x|k;

w(x, y) = U (η) – 2β–1 ln |x|, η = y + k ln |x|;
w(x, y) = V (ζ) – 2β–1x, ζ = yex,

where k, k1, and k2 are arbitrary constants.

3◦. For other solutions, see equation T9.3.3.3 with f (w) = 1 and g(w) = aeβw.

3.
∂

∂x

[[
f(w)

∂w

∂x

]]
+
∂

∂y

[[
g(w)

∂w

∂y

]]
= 0.

This is a stationary anisotropic heat (diffusion) equation.

1◦. Traveling-wave solution in implicit form:
∫ [

A2f (w) + B2g(w)
]
dw = C1(Ax + By) + C2,

where A, B, C1, and C2 are arbitrary constants.

2◦. Self-similar solution:

w = w(ζ), ζ =
x + A
y + B

,

where the function w(ζ) is determined by the ordinary differential equation

[f (w)w′
ζ ]′ζ + [ζ2g(w)w′

ζ ]′ζ = 0. (1)

Integrating (1) and takingw to be the independent variable, one obtains the Riccati equation
Cζ ′w = g(w)ζ2 + f (w), where C is an arbitrary constant.
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3◦. The original equation can be represented as the system of the equations

f (w)
∂w

∂x
=
∂v

∂y
, –g(w)

∂w

∂y
=
∂v

∂x
. (2)

The hodograph transformation

x = x(w, v), y = y(w, v),

wherew, v are treated as the independent variables and x, y as the dependent ones, brings (2)
to the linear system

f (w)
∂y

∂v
=
∂x

∂w
, –g(w)

∂x

∂v
=
∂y

∂w
. (3)

Eliminating y yields the following linear equation for x = x(w, v):

∂

∂w

[
1

f (w)
∂x

∂w

]
+ g(w)

∂2x

∂v2 = 0.

Likewise, we can obtain another linear equation for y = y(w, v) from system (3).

T9.4. Other Second-Order Equations
T9.4.1. Equations of Transonic Gas Flow

1. a
∂w

∂x

∂2w

∂x2
+
∂2w

∂y2
= 0.

This is an equation of steady transonic gas flow.

1◦. Suppose w(x, y) is a solution of the equation in question. Then the function

w1 = C–3
1 C2

2w(C1x + C3,C2y + C4) + C5y + C6,

where C1, . . . , C6 are arbitrary constants, is also a solution of the equation.

2◦. Solutions:

w(x, y) = C1xy + C2x + C3y + C4,

w(x, y) = –
(x + C1)3

3a(y + C2)2 + C3y + C4,

w(x, y) =
a2C3

1
39

(y +A)13 +
2
3
aC2

1 (y +A)8(x +B) + 3C1(y +A)3(x + B)2 –
(x + B)3

3a(y +A)2 ,

w(x, y) = –aC1y
2 + C2y + C3 �

4
3C1

(C1x + C4)3/2,

w(x, y) = –aA3y2 –
B2

aA2 x + C1y + C2 �
4
3

(Ax +By + C3)3/2,

w(x, y) =
1
3

(Ay + B)(2C1x + C2)3/2 –
aC3

1
12A2 (Ay +B)4 + C3y + C4,

w(x, y) = –
9aA2

y + C1
+ 4A

(
x + C2

y + C1

)3/2
–

(x + C2)3

3a(y + C1)2 + C3y + C4,

w(x, y) = –
3
7
aA2(y + C1)7 + 4A(x + C2)3/2(y + C1)5/2 –

(x + C2)3

3a(y + C1)2 + C3y + C4,

where A, B, C1, . . . , C4 are arbitrary constants (the first solution is degenerate).
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3◦. There are solutions of the following forms:

w(x, y) = y–3k–2U (z), z = xyk (self-similar solution, k is any number);

w(x, y) = ϕ1(y) + ϕ2(y)x3/2 + ϕ3(y)x3 (generalized separable solution);

w(x, y) = ψ1(y) + ψ2(y)x + ψ3(y)x2 + ψ4(y)x3 (generalized separable solution);
w(x, y) = ψ1(y)ϕ(x) + ψ2(y) (generalized separable solution).

2.
∂2w

∂y2
+
a

y

∂w

∂y
+ b

∂w

∂x

∂2w

∂x2
= 0.

1◦. Suppose w(x, y) is a solution of the equation in question. Then the function

w1 = C–3
1 C2

2w(C1x + C3,C2y) + C4y
1–a + C5,

where C1, . . . , C5 are arbitrary constants, is also a solution of the equation.

2◦. Additive separable solution:

w(x, y) = –
bC1

4(a + 1)
y2 + C2y

1–a + C3 �
2

3C1
(C1x + C4)3/2,

where C1, . . . , C4 are arbitrary constants.

3◦. Generalized separable solutions:

w(x, y) = –
9A2b

16(n + 1)(2n + 1 + a)
y2n+2 +Ayn(x + C)3/2 +

a – 3
9b

(x + C)3

y2 ,

where A and C are arbitrary constants, and n = n1,2 are roots of the quadratic equation
n2 + (a – 1)n + 5

4 (a – 3) = 0.

4◦. Generalized separable solution:

w(x, y) = (Ay1–a + B)(2C1x + C2)3/2 + 9bC3
1θ(y),

θ(y) = –
B2

2(a + 1)
y2 –

AB

3 – a
y3–a –

A2

2(2 – a)(3 – a)
y4–2a + C3y

1–a + C4,

where A, B, C1, C2, C3, and C4 are arbitrary constants.

5◦. There are solutions of the following forms:

w(x, y) = y–3k–2U (z), z = xyk (self-similar solution, k is any number);

w(x, y) = ϕ1(y) + ϕ2(y)x3/2 + ϕ3(y)x3 (generalized separable solution);

w(x, y) = ψ1(y) + ψ2(y)x + ψ3(y)x2 + ψ4(y)x3 (generalized separable solution);
w(x, y) = ψ1(y)ϕ(x) + ψ2(y) (generalized separable solution).
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T9.4.2. Monge–Ampère Equations

1.
((
∂2w

∂x∂y

))2

–
∂2w

∂x2

∂2w

∂y2
= 0.

Homogeneous Monge–Ampère equation.

1◦. General solution in parametric form:

w = tx + ϕ(t)y + ψ(t),

x + ϕ′(t)y + ψ′(t) = 0,

where t is the parameter, and ϕ = ϕ(t) and ψ = ψ(t) are arbitrary functions.

2◦. Solutions involving one arbitrary function:

w(x, y) = ϕ(C1x + C2y) + C3x + C4y + C5,

w(x, y) = (C1x + C2y)ϕ

(
y

x

)
+ C3x + C4y + C5,

w(x, y) = (C1x + C2y + C3)ϕ

(
C4x + C5y + C6

C1x + C2y + C3

)
+ C7x + C8y + C9,

where C1, . . . , C9 are arbitrary constants and ϕ = ϕ(z) is an arbitrary function.

2.
((
∂2w

∂x∂y

))2

–
∂2w

∂x2

∂2w

∂y2
= A.

Nonhomogeneous Monge–Ampère equation.

1◦. General solution in parametric form for A = a2 > 0:

x =
β – λ

2a
, y =

ψ′(λ) – ϕ′(β)
2a

, w =
(β + λ)[ψ′(λ) – ϕ′(β)] + 2ϕ(β) – 2ψ(λ)

4a
,

where β and λ are the parameters, ϕ = ϕ(β) and ψ = ψ(λ) are arbitrary functions.

2◦. Solutions:

w(x, y) = �

√
A

C2
x(C1x + C2y) + ϕ(C1x + C2y) + C3x + C4y,

w(x, y) = C1y
2 + C2xy +

1
4C1

(C2
2 – A)x2 + C3y + C4x + C5,

w(x, y) =
1

x + C1

(
C2y

2 + C3y +
C2

3
4C2

)
–

A

12C2
(x3 + 3C1x

2) + C4y + C5x + C6,

w(x, y) = �
2
√
A

3C1C2
(C1x – C2

2y
2 + C3)3/2 + C4x + C5y + C6,

where C1, . . . , C6 are arbitrary constants and ϕ = ϕ(z) is an arbitrary function.
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T9.5. Higher-Order Equations
T9.5.1. Third-Order Equations

1.
∂w

∂t
+
∂3w

∂x3
– 6w

∂w

∂x
= 0.

Korteweg–de Vries equation. It is used in many sections of nonlinear mechanics and
physics.

1◦. Suppose w(x, t) is a solution of the Korteweg–de Vries equation. Then the function

w1 = C2
1w(C1x + 6C1C2t + C3,C3

1 t + C4) + C2,

where C1, . . . , C4 are arbitrary constants, is also a solution of the equation.

2◦. One-soliton solution:

w(x, t) = –
a

2 cosh2[ 1
2
√
a (x – at – b)

] ,

where a and b are arbitrary constants.

3◦. Two-soliton solution:

w(x, t) = –2
∂2

∂x2 ln
(

1 +B1e
θ1 + B2e

θ2 +AB1B2e
θ1+θ2

)
,

θ1 = a1x – a3
1t, θ2 = a2x – a3

2t, A =

(
a1 – a2

a1 + a2

)2
,

where B1, B2, a1, and a2 are arbitrary constants.

4◦. N -soliton solution:

w(x, t) = –2
∂2

∂x2

{
ln det

[
I + C(x, t)

]}
.

Here, I is the N × N identity matrix and C(x, t) the N × N symmetric matrix with entries

Cmn(x, t) =

√
ρm(t)ρn(t)
pm + pn

exp
[
–(pm + pn)x

]
,

where the normalizing factors ρn(t) are given by

ρn(t) = ρn(0) exp
(

8p3
nt
)
, n = 1, 2, . . . ,N .

The solution involves 2N arbitrary constants pn and ρn(0).
The above solution can be represented, for t → �∞, as the sum of N single-soliton

solutions.

5◦. “One soliton + one pole” solution:

w(x, t) = –2p2[cosh–2(pz)–(1+px)–2 tanh2(pz)
][

1–(1+px)–1 tanh(pz)
]–2

, z =x–4p2t–c,

where p and c are arbitrary constants.
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6◦. Rational solutions (algebraic solitons):

w(x, t) =
6x(x3 – 24t)
(x3 + 12t)2 ,

w(x, t) = –2
∂2

∂x2 ln(x6 + 60x3t – 720t2).

7◦. There is a self-similar solution of the form w = t–2/3U (z), where z = t–1/3x.

8◦. Solution:
w(x, t) = 2ϕ(z) + 2C1t, z = x + 6C1t

2 + C2t,

whereC1 and C2 are arbitrary constants, and the function ϕ(z) is determined by the second-
order ordinary differential equation ϕ′′

zz = 6ϕ2 – C2ϕ – C1z + C3.

9◦. The Korteweg–de Vries equation is solved by the inverse scattering method. Any
rapidly decreasing function F = F (x, y; t) as x→ +∞ that simultaneously satisfies the two
linear equations

∂2F

∂x2 –
∂2F

∂y2 = 0,
∂F

∂t
+

(
∂

∂x
+
∂

∂y

)3
F = 0

generates a solution of the Korteweg–de Vries equation in the form

w = –2
d

dx
K(x,x; t),

where K(x, y; t) is a solution of the linear Gel’fand–Levitan–Marchenko integral equation

K(x, y; t) + F (x, y; t) +
∫ ∞

x
K(x, z; t)F (z, y; t) dz = 0.

Time t appears in this equation as a parameter.

2.
∂w

∂t
+
∂3w

∂x3
– 6w

∂w

∂x
+

1

2t
w = 0.

Cylindrical Korteweg–de Vries equation.
The transformation

w(x, t) = –
x

12t
–

1
2t
u(z, τ ), x =

z

τ
, t = –

1
2τ 2

leads to the Korteweg–de Vries equation T9.5.1.1:

∂u

∂τ
+
∂3u

∂z3 – 6u
∂u

∂z
= 0.

3.
∂w

∂t
+
∂3w

∂x3
+ 6σw2 ∂w

∂x
= 0.

Modified Korteweg–de Vries equation.



T9.5. HIGHER-ORDER EQUATIONS 1329

1◦. One-soliton solution for σ = 1:

w(x, t) = a +
k2

√
4a2 + k2 cosh z + 2a

, z = kx – (6a2k + k3)t + b,

where a, b, and k are arbitrary constants.

2◦. Two-soliton solution for σ = 1:

w(x, t) = 2
a1e

θ1 + a2e
θ2 + Aa2e

2θ1+θ2 +Aa1e
θ1+2θ2

1 + e2θ1 + e2θ2 + 2(1 – A)eθ1+θ2 + A2e2(θ1+θ2)
,

θ1 = a1x – a3
1t + b1, θ2 = a2x – a3

2t + b2, A =

(
a1 – a2

a1 + a2

)2
,

where a1, a2, b1, and b2 are arbitrary constants.

3◦. Rational solutions (algebraic solitons) for σ = 1:

w(x, t) = a –
4a

4a2z2 + 1
, z = x – 6a2t,

w(x, t) = a –
12a
(
z4 + 3

2a
–2z2 – 3

16a
–4 – 24tz

)

4a2
(
z3 + 12t – 3

4a
–2z
)2

+ 3
(
z2 + 1

4a
–2
)2 ,

where a is an arbitrary constant.

4◦. There is a self-similar solution of the form w = t–1/3U (z), where z = t–1/3x.

5◦. The modified Korteweg–de Vries equation is solved by the inverse scattering method.

4.
∂w

∂y

∂2w

∂x∂y
–
∂w

∂x

∂2w

∂y2
= ν

∂3w

∂y3
.

This is an equation of a steady laminar boundary layer on a flat plate (w is the stream
function).

1◦. Suppose w(x, y) is a solution of the equation in question. Then the function

w1 = C1w
(
C2x + C3,C1C2y + ϕ(x)

)
+ C4,

where ϕ(x) is an arbitrary function and C1, . . . ,C5 are arbitrary constants, is also a solution
of the equation.

2◦. Solutions involving arbitrary functions:

w(x, y) = C1y + ϕ(x),

w(x, y) = C1y
2 + ϕ(x)y +

1
4C1

ϕ2(x) + C2,

w(x, y) =
6νx + C1

y + ϕ(x)
+

C2

[y + ϕ(x)]2 + C3,

w(x, y) = ϕ(x) exp(–C1y) + νC1x + C2,
w(x, y) = C1 exp

[
–C2y – C2ϕ(x)

]
+ C3y + C3ϕ(x) + νC2x + C4,

w(x, y) = 6νC1x
1/3 tanh ξ + C2, ξ = C1

y

x2/3
+ ϕ(x),

w(x, y) = –6νC1x
1/3 tan ξ + C2, ξ = C1

y

x2/3
+ ϕ(x),

where C1, . . . , C4 are arbitrary constants and ϕ(x) is an arbitrary function. The first two
solutions are degenerate—they are independent of ν and correspond to inviscid fluid flows.



1330 NONLINEAR MATHEMATICAL PHYSICS EQUATIONS

TABLE T9.1
Invariant solutions to the hydrodynamic boundary layer equation (the additive constant is omitted)

No. Solution structure Function F or equation for F Remarks

1 w = F (y) + νλx F (y) =

{
C1 exp(–λy) + C2y if λ ≠ 0,
C1y

2 + C2y if λ = 0
λ is any number

2 w = F (x)y–1 F (x) = 6νx + C1

3 w = xλ+1F (z), z = xλy (2λ + 1)(F ′
z)2 – (λ + 1)FF ′′

zz = νF ′′′
zzz λ is any number

4 w = eλxF (z), z = eλxy 2λ(F ′
z)2 – λFF ′′

zz = νF ′′′
zzz λ is any number

5 w = F (z) + a ln |x|, z = y/x –(F ′
z)2 – aF ′′

zz = νF ′′′
zzz a is any number

3◦. Table T9.1 lists invariant solutions to the hydrodynamic boundary layer equation.
Solution 1 is expressed in additive separable form, solution 2 is in multiplicative separable
form, solution 3 is self-similar, and solution 4 is generalized self-similar. Solution 5
degenerates at a = 0 into a self-similar solution (see solution 3 with λ = –1). Equations 3–5
for F are autonomous and generalized homogeneous; hence, their order can be reduced by
two.

4◦. Generalized separable solution linear in x:

w(x, y) = xf (y) + g(y), (1)

where the functions f = f (y) and g = g(y) are determined by the autonomous system of
ordinary differential equations

(f ′y)2 – ff ′′yy = νf ′′′yyy, (2)

f ′yg
′
y – fg′′yy = νg′′′yyy . (3)

Equation (2) has the following particular solutions:

f = 6ν(y + C)–1,

f = Ceλy – λν,

where C and λ are arbitrary constants.
Let f = f (y) be a solution of equation (2) (f � const). Then the corresponding general

solution of equation (3) can be written in the form

g(y) = C1 + C2f + C3

(
f

∫
ψ dy –

∫
fψ dy

)
, where ψ =

1
(f ′y)2 exp

(
–

1
ν

∫
f dy

)
.

5.
∂w

∂y

∂2w

∂x∂y
–
∂w

∂x

∂2w

∂y2
= ν

∂3w

∂y3
+ f(x).

This is a hydrodynamic boundary layer equation with pressure gradient.

1◦. Suppose w(x, y) is a solution of the equation in question. Then the functions

w1 = �w(x,�y + ϕ(x)) + C ,

where ϕ(x) is an arbitrary function and C is an arbitrary constant, are also solutions of the
equation.
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TABLE T9.2
Invariant solutions to the hydrodynamic boundary layer equation
with pressure gradient (a, k, m, and β are arbitrary constants)

No. Function f (x) Form of solution w = w(x, y) Function u or equation for u

1 f (x) = 0 See equation 4 See equation 4

2 f (x) = axm
w=x

m+3
4 u(z), z=x

m–1
4 y

m+1
2 (u′

z)2 – m+3
4 uu′′

zz = νu′′′
zzz + a

3 f (x) = aeβx
w = e

1
4 βxu(z), z = e

1
4 βxy

1
2 β(u′

z)2 – 1
4 βuu

′′
zz = νu′′′

zzz + a

4 f (x) = a w = kx + u(y) u(y)=

{
C1 exp

(
– k

ν
y
)

– a
2k
y2 +C2y if k ≠ 0,

– a
6ν
y3 + C2y

2 + C1y if k = 0

5 f (x) = ax–3 w = k ln |x| + u(z), z = y/x –(u′
z)2 – ku′′

zz = νu′′′
zzz + a

2◦. Degenerate solutions (linear and quadratic in y) for arbitrary f (x):

w(x, y) = �y

[
2
∫
f (x) dx + C1

]1/2
+ ϕ(x),

w(x, y) = C1y
2 + ϕ(x)y +

1
4C1

[
ϕ2(x) – 2

∫
f (x) dx

]
+ C2,

where ϕ(x) is an arbitrary function and C1 and C2 are arbitrary constants. These solutions
are independent of ν and correspond to inviscid fluid flows.

3◦. Table T9.2 lists invariant solutions to the boundary layer equation with pressure gradient.

4◦. Generalized separable solution for f (x) = ax + b:

w(x, y) = xF (y) + G(y),

where the functions F = F (y) and G = G(y) are determined by the system of ordinary
differential equations

(F ′
y)2 – FF ′′

yy = νF ′′′
yyy + a, F ′

yG
′
y – FG′′

yy = νG′′′
yyy + b.

5◦. Solutions for f (x) = –ax–5/3:

w(x, y) =
6νx

y + ϕ(x)
�

√
3a

x1/3
[y + ϕ(x)],

where ϕ(x) is an arbitrary function.

6◦. Solutions for f (x) = ax–1/3 – bx–5/3:

w(x, y) = �
√

3b z + x2/3θ(z), z = yx–1/3,

where the function θ = θ(z) is determined by the ordinary differential equation 1
3 (θ′z)2 –

2
3 θθ

′′
zz = νθ′′′zzz + a.

7◦. Generalized separable solution for f (x) = aeβx:

w(x, y) = ϕ(x)eλy –
a

2βλ2ϕ(x)
eβx–λy – νλx +

2νλ2

β
y +

2νλ
β

ln |ϕ(x)|,

where ϕ(x) is an arbitrary function and λ is an arbitrary constant.
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T9.5.2. Fourth-Order Equations

1.
∂2w

∂t2
+
∂

∂x

((
w
∂w

∂x

))
+
∂4w

∂x4
= 0.

Boussinesq equation. This equation arises in hydrodynamics and some physical applica-
tions.

1◦. Suppose w(x, t) is a solution of the equation in question. Then the functions

w1 = C2
1w(C1x + C2,�C2

1 t + C3),

where C1, C2, and C3 are arbitrary constants, are also solutions of the equation.

2◦. Solutions:

w(x, t) = 2C1x – 2C2
1 t

2 + C2t + C3,

w(x, t) = (C1t + C2)x –
1

12C2
1

(C1t + C2)4 + C3t + C4,

w(x, t) = –
(x + C1)2

(t + C2)2 +
C3

t + C2
+ C4(t + C2)2,

w(x, t) = –
x2

t2 + C1t
3x –

C2
1

54
t8 + C2t

2 +
C4

t
,

w(x, t) = –
(x + C1)2

(t + C2)2 –
12

(x + C1)2 ,

w(x, t) = –3λ2 cos–2[ 1
2λ(x � λt) + C1

]
,

where C1, . . . , C4 and λ are arbitrary constants.

3◦. Traveling-wave solution (generalizes the last solution of Item 1◦):

w(x, t) = w(ζ), ζ = x + λt,

where the function w(ζ) is determined by the second-order ordinary differential equation
w′′
ζζ + w2 + 2λ2w + C1ζ + C2 = 0.

4◦. Self-similar solution:

w(x, t) = t–1u(z), z = xt–1/2,

where the function u = u(z) is determined by the ordinary differential equation u′′′′zzzz +
(uu′z)′z + 1

4 z
2u′′zz + 7

4 zu
′
z + 2u = 0.

5◦. There are exact solutions of the following forms:

w(x, t) = (x + C)2F (t) – 12(x + C)–2;

w(x, t) = G(ξ) – 4C2
1 t

2 – 4C1C2t, ξ = x – C1t
2 – C2t;

w(x, t) =
1
t
H(η) –

1
4

(
x

t
+ Ct

)2
, η =

x√
t

–
1
3
Ct3/2;

w(x, t) = (a1t + a0)2U (ζ) –

(
a1x + b1

a1t + a0

)2
, ζ = x(a1t + a0) + b1t + b0,

where C , C1, C2, a1, a0, b1, and b0 are arbitrary constants.
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6◦. The Boussinesq equation is solved by the inverse scattering method. Any rapidly
decaying function F = F (x, y; t) as x→ +∞ and satisfying simultaneously the two linear
equations

1√
3
∂F

∂t
+
∂2F

∂x2 –
∂2F

∂y2 = 0,
∂3F

∂x3 +
∂3F

∂y3 = 0

generates a solution of the Boussinesq equation in the form

w = 12
d

dx
K(x,x; t),

where K(x, y; t) is a solution of the linear Gel’fand–Levitan–Marchenko integral equation

K(x, y; t) + F (x, y; t) +
∫ ∞

x
K(x, s; t)F (s, y; t) ds = 0.

Time t appears here as a parameter.

2.
∂w

∂y

∂

∂x
(Δw) –

∂w

∂x

∂

∂y
(Δw) = νΔΔw, Δw =

∂2w

∂x2
+
∂2w

∂y2
.

There is a two-dimensional stationary equation of motion of a viscous incompressible
fluid—it is obtained from the Navier–Stokes equation by the introduction of the stream
function w.

1◦. Suppose w(x, y) is a solution of the equation in question. Then the functions

w1 = –w(y, x),
w2 = w(C1x + C2, C1y + C3) + C4,
w3 = w(x cosα + y sinα, –x sinα + y cosα),

where C1, . . . , C4 and α are arbitrary constants, are also solutions of the equation.

2◦. Any solution of the Poisson equation Δw = C is also a solution of the original equation
(these are “inviscid” solutions).

3◦. Solutions in the form of a one-variable function or the sum of functions with different
arguments:

w(y) = C1y
3 + C2y

2 + C3y + C4,

w(x, y) = C1x
2 + C2x + C3y

2 + C4y + C5,

w(x, y) = C1 exp(–λy) + C2y
2 + C3y + C4 + νλx,

w(x, y) = C1 exp(λx) – νλx + C2 exp(λy) + νλy + C3,
w(x, y) = C1 exp(λx) + νλx + C2 exp(–λy) + νλy + C3,

where C1, . . . , C5 and λ are arbitrary constants.

4◦. Generalized separable solutions:

w(x, y) = A(kx + λy)3 + B(kx + λy)2 + C(kx + λy) +D,

w(x, y) = Ae–λ(y+kx) +B(y + kx)2 + C(y + kx) + νλ(k2 + 1)x +D,

w(x, y) = 6νx(y + λ)–1 + A(y + λ)3 +B(y + λ)–1 + C(y + λ)–2 + D,
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w(x, y) = (Ax + B)e–λy + νλx + C ,

w(x, y) =
[
A sinh(βx) + B cosh(βx)

]
e–λy +

ν

λ
(β2 + λ2)x + C ,

w(x, y) =
[
A sin(βx) +B cos(βx)

]
e–λy +

ν

λ
(λ2 – β2)x + C ,

w(x, y) = Aeλy+βx +Beγx + νγy +
ν

λ
γ(β – γ)x + C , γ = �

√
λ2 + β2,

where A, B, C , D, k, β, and λ are arbitrary constants.

5◦. Generalized separable solution linear in x:

w(x, y) = F (y)x + G(y), (1)

where the functions F = F (y) and G = G(y) are determined by the autonomous system of
fourth-order ordinary differential equations

F ′
yF

′′
yy – FF ′′′

yyy = νF ′′′′
yyyy , (2)

G′
yF

′′
yy – FG′′′

yyy = νG′′′′
yyyy . (3)

Equation (2) has the following particular solutions:

F = ay + b,

F = 6ν(y + a)–1,

F = ae–λy + λν,

where a, b, and λ are arbitrary constants.
Let F = F (y) be a solution of equation (2) (F � const). Then the corresponding general

solution of equation (3) can be written in the form

G =
∫
U dy + C4, U = C1U1 + C2U2 + C3

(
U2

∫
U1

Φ
dy – U1

∫
U2

Φ
dy

)
,

where C1, C2, C3, and C4 are arbitrary constants, and

U1 =

{
F ′′
yy if F ′′

yy � 0,

F if F ′′
yy ≡ 0,

U2 = U1

∫
Φ dy
U2

1
, Φ = exp

(
–

1
ν

∫
F dy

)
.

6◦. There is an exact solution of the form (generalizes the solution of Item 5◦):

w(x, y) = F (z)x +G(z), z = y + kx, k is any number.

7◦. Self-similar solution:

w =
∫
F (z) dz + C1, z = arctan

(
x

y

)
,

where the function F is determined by the first-order autonomous ordinary differential
equation 3ν(F ′

z)2 – 2F 3 + 12νF 2 +C2F +C3 = 0 (C1, C2, and C3 are arbitrary constants).

8◦. There is an exact solution of the form (generalizes the solution of Item 7◦):

w = C1 ln |x| +
∫
V (z) dz + C2, z = arctan

(
x

y

)
.
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Chapter T10

Systems of Partial
Differential Equations

T10.1. Nonlinear Systems of Two First-Order Equations

1.
∂u

∂x
= auw,

∂w

∂t
= buw.

General solution:

u = –
ψ′
t(t)

aϕ(x) + bψ(t)
, w = –

ϕ′
x(x)

aϕ(x) + bψ(t)
,

where ϕ(x) and ψ(t) are arbitrary functions.

2.
∂u

∂x
= auw,

∂w

∂t
= buk.

General solution:

w = ϕ(x) +E(x)

[
ψ(t) –

1
2
ak

∫
E(x) dx

]–1
,

u =

(
1
b

∂w

∂t

)1/k
, E(x) = exp

[
ak

∫
ϕ(x) dx

]
,

where ϕ(x) and ψ(t) are arbitrary functions.

3.
∂u

∂x
= auwn,

∂w

∂t
= bukw.

General solution:

u =

(
–ψ′

t(t)

bnψ(t) – akϕ(x)

)1/k
, w =

(
ϕ′
x(x)

bnψ(t) – akϕ(x)

)1/n
,

where ϕ(x) and ψ(t) are arbitrary functions.

4.
∂u

∂x
= uf(w),

∂w

∂t
= ukg(w).

1◦. First integral:
∂w

∂x
= kg(w)

∫
f (w)
g(w)

dw + θ(x)g(w), (1)

where θ(x) is an arbitrary function. The first integral (1) may be treated as a first-order
ordinary differential equation in x. On finding its general solution, one should replace the
constant of integration C with an arbitrary function of time ψ(t), since w is dependent on
x and t.

1337
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2◦. To the special case θ(x) = const in (1) there correspond special solutions of the form

w = w(z), u = [ψ′(t)]1/kv(z), z = x + ψ(t) (2)

involving one arbitrary function ψ(t), with the prime denoting a derivative. The functions
w(z) and v(z) are described by the autonomous system of ordinary differential equations

v′z = f (w)v,

w′
z = g(w)vk ,

the general solution of which can be written in implicit form as
∫

dw

g(w)[kF (w) + C1]
= z + C2, v = [kF (w) + C1]1/k, F (w) =

∫
f (w)
g(w)

dw.

5.
∂u

∂x
= f(a1u + b1w),

∂w

∂t
= g(a2u + b2w).

Let Δ = a1b2 – a2b1 ≠ 0.
Additive separable solution:

u =
1
Δ

[b2ϕ(x) – b1ψ(t)], w =
1
Δ

[a1ψ(t) – a2ϕ(x)],

where the functions ϕ(x) and ψ(t) are determined by the autonomous ordinary differential
equations

b2

Δ
ϕ′
x = f (ϕ),

a1

Δ
ψ′
t = g(ψ).

Integrating yields

b2

Δ

∫
dϕ

f (ϕ)
= x + C1,

a1

Δ

∫
dψ

g(ψ)
= t + C2.

6.
∂u

∂x
= f(au + bw),

∂w

∂t
= g(au + bw).

Solution:

u = b(k1x – λ1t) + y(ξ), w = –a(k1x – λ1t) + z(ξ), ξ = k2x – λ2t,

where k1, k2, λ1, and λ2 are arbitrary constants, and the functions y(ξ) and z(ξ) are
determined by the autonomous system of ordinary differential equations

k2y
′
ξ + bk1 = f (ay + bz),

–λ2z
′
ξ + aλ1 = g(ay + bz).

7.
∂u

∂x
= f(au – bw),

∂w

∂t
= ug(au – bw) + wh(au – bw) + r(au – bw).

Here, f (z), g(z), h(z), and r(z) are arbitrary functions.
Generalized separable solution:

u = ϕ(t) + bθ(t)x, w = ψ(t) + aθ(t)x.

Here, the functions ϕ = ϕ(t), ψ = ψ(t), and θ = θ(t) are determined by a system involving
one algebraic (transcendental) and two ordinary differential equations:

bθ = f (aϕ – bψ),

aθ′t = bθg(aϕ – bψ) + aθh(aϕ – bψ),

ψ′
t = ϕg(aϕ – bψ) + ψh(aϕ – bψ) + r(aϕ – bψ).
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8.
∂u

∂x
= f(au – bw) + cw,

∂w

∂t
= ug(au – bw) +wh(au – bw) + r(au – bw).

Here, f (z), g(z), h(z), and r(z) are arbitrary functions.
Generalized separable solution:

u = ϕ(t) + bθ(t)eλx, w = ψ(t) + aθ(t)eλx, λ =
ac

b
.

Here, the functions ϕ = ϕ(t), ψ = ψ(t), and θ = θ(t) are determined by a system involving
one algebraic (transcendental) and two ordinary differential equations:

f (aϕ – bψ) + cψ = 0,

ψ′
t = ϕg(aϕ – bψ) + ψh(aϕ – bψ) + r(aϕ – bψ),

aθ′t = bθg(aϕ – bψ) + aθh(aϕ – bψ).

9.
∂u

∂x
= eλuf(λu – σw),

∂w

∂t
= eσwg(λu – σw).

Solutions:

u = y(ξ) –
1
λ

ln(C1t + C2), w = z(ξ) –
1
σ

ln(C1t + C2), ξ =
x + C3

C1t + C2
,

where the functions y(ξ) and z(ξ) are determined by the system of ordinary differential
equations

y′ξ = eλyf (λy – σz),

–C1ξz
′
ξ –

C1

σ
= eσzg(λy – σz).

10.
∂u

∂x
= ukf(unwm),

∂w

∂t
= wsg(unwm).

Self-similar solution with s ≠ 1 and n ≠ 0:

u = t
m

n(s–1) y(ξ), w = t–
1
s–1 z(ξ), ξ = xt

m(k–1)
n(s–1) ,

where the functions y(ξ) and z(ξ) are determined by the system of ordinary differential
equations

y′ξ = ykf (ynzm),

m(k – 1)ξz′ξ – nz = n(s – 1)zsg(ynzm).

11.
∂u

∂x
= ukf(unwm),

∂w

∂t
= wg(unwm).

1◦. Solution:
u = emty(ξ), w = e–ntz(ξ), ξ = em(k–1)tx,

where the functions y(ξ) and z(ξ) are determined by the system of ordinary differential
equations

y′ξ = ykf (ynzm),

m(k – 1)ξz′ξ – nz = zg(ynzm).
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2◦. If k ≠ 1, it is more beneficial to seek solutions in the form

u = x– 1
k–1 ϕ(ζ), w = x

n
m(k–1) ψ(ζ), ζ = t + a ln |x|,

where a is an arbitrary constant, and the functions ϕ(ζ) and ψ(ζ) are determined by the
autonomous system of ordinary differential equations

aϕ′
ζ +

1
1 – k

ϕ = ϕkf (ϕnψm),

ψ′
ζ = ψg(ϕnψm).

12.
∂u

∂x
= uf(unwm),

∂w

∂t
= wg(unwm).

Solution:
u = em(kx–λt)y(ξ), w = e–n(kx–λt)z(ξ), ξ = αx – βt,

where k, α, β, and λ are arbitrary constants, and the functions y(ξ) and z(ξ) are determined
by the autonomous system of ordinary differential equations

αy′ξ + kmy = yf (ynzm),

–βz′ξ + nλz = zg(ynzm).

13.
∂u

∂x
= uf(unwm),

∂w

∂t
= wg(ukws).

Let Δ = sn – km ≠ 0.
Multiplicative separable solutions:

u =
[
ϕ(x)

]s/Δ[
ψ(t)
]–m/Δ

, w =
[
ϕ(x)

]–k/Δ[
ψ(t)
]n/Δ

,

where the functions ϕ(x) and ψ(t) are determined by the autonomous ordinary differential
equations

s

Δ
ϕ′
x = ϕf (ϕ),

n

Δ
ψ′
t = ψg(ψ).

Integrating yields

s

Δ

∫
dϕ

ϕf (ϕ)
= x + C1,

n

Δ

∫
dψ

ψg(ψ)
= t + C2.

14.
∂u

∂x
= au lnu + uf(unwm),

∂w

∂t
= wg(unwm).

Solution:

u = exp
(
Cmeax

)
y(ξ), w = exp

(
–Cneax

)
z(ξ), ξ = kx – λt,

where C , k, and λ are arbitrary constants, and the functions y(ξ) and z(ξ) are determined
by the autonomous system of ordinary differential equations

ky′ξ = ay ln y + yf (ynzm),

–λz′ξ = zg(ynzm).
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15.
∂u

∂x
= uf(auk + bw),

∂w

∂t
= uk.

Solution:

w = ϕ(x) + C exp

[
–λt + k

∫
f (bϕ(x)) dx

]
, u =

(
∂w

∂t

)1/k
, λ =

b

a
,

where ϕ(x) is an arbitrary function and C is an arbitrary constant.

16.
∂u

∂x
= uf(aun + bw),

∂w

∂t
= ukg(aun + bw).

Solution:

u = (C1t + C2)
1
n–k θ(x), w = ϕ(x) –

a

b
(C1t + C2)

n
n–k [θ(x)]n,

where C1 and C2 are arbitrary constants, and the functions θ = θ(x) and ϕ = ϕ(x) are
determined by the system of differential-algebraic equations

θ′x = θf (bϕ),

θn–k =
b(k – n)
aC1n

g(bϕ).

17.
∂u

∂x
=

cwnu

a + bwn
,

∂w

∂t
= (aw + bwn+1)uk.

General solution with b ≠ 0:

w =

[
ψ(t)eF (x) – beF (x)

∫
e–F (x)ϕ(x) dx

]–1/n
,

u =

(
wt

aw + bwn+1

)1/k
, F (x) =

ck

b
x – a

∫
ϕ(x) dx,

where ϕ(x) and ψ(t) are arbitrary functions.

T10.2. Linear Systems of Two Second-Order Equations

1.
∂u

∂t
= a

∂2u

∂x2
+ b1u + c1w,

∂w

∂t
= a

∂2w

∂x2
+ b2u + c2w.

Constant-coefficient second-order linear system of parabolic type.
Solution:

u =
b1 – λ2

b2(λ1 – λ2)
eλ1tθ1 –

b1 – λ1

b2(λ1 – λ2)
eλ2tθ2,

w =
1

λ1 – λ2

(
eλ1tθ1 – eλ2tθ2

)
,

where λ1 and λ2 are roots of the quadratic equation

λ2 – (b1 + c2)λ + b1c2 – b2c1 = 0,

and the functions θn = θn(x, t) satisfy the independent linear heat equations

∂θ1

∂t
= a

∂2θ1

∂x2 ,
∂θ2

∂t
= a

∂2θ2

∂x2 .
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2.
∂u

∂t
= a

∂2u

∂x2
+ f1(t)u + g1(t)w,

∂w

∂t
= a

∂2w

∂x2
+ f2(t)u + g2(t)w.

Variable-coefficient second-order linear system of parabolic type.
Solution:

u = ϕ1(t)U (x, t) + ϕ2(t)W (x, t),
w = ψ1(t)U (x, t) + ψ2(t)W (x, t),

where the pairs of functions ϕ1 = ϕ1(t), ψ1 = ψ1(t) and ϕ2 = ϕ2(t), ψ2 = ψ2(t) are linearly
independent (fundamental) solutions to the system of linear ordinary differential equations

ϕ′
t = f1(t)ϕ + g1(t)ψ,

ψ′
t = f2(t)ϕ + g2(t)ψ,

and the functions U =U (x, t) andW =W (x, t) satisfy the independent linear heat equations

∂U

∂t
= a

∂2U

∂x2 ,
∂W

∂t
= a

∂2W

∂x2 .

3.
∂2u

∂t2
= k

∂2u

∂x2
+ a1u + b1w,

∂2w

∂t2
= k

∂2w

∂x2
+ a2u + b2w.

Constant-coefficient second-order linear system of hyperbolic type.
Solution:

u =
a1 – λ2

a2(λ1 – λ2)
θ1 –

a1 – λ1

a2(λ1 – λ2)
θ2, w =

1
λ1 – λ2

(
θ1 – θ2

)
,

where λ1 and λ2 are roots of the quadratic equation

λ2 – (a1 + b2)λ + a1b2 – a2b1 = 0,

and the functions θn = θn(x, t) satisfy the linear Klein–Gordon equations

∂2θ1

∂t2 = k
∂2θ1

∂x2 + λ1θ1,
∂2θ2

∂t2 = k
∂2θ2

∂x2 + λ2θ2.

4.
∂2u

∂x2
+
∂2u

∂y2
= a1u + b1w,

∂2w

∂x2
+
∂2w

∂y2
= a2u + b2w.

Constant-coefficient second-order linear system of elliptic type.
Solution:

u =
a1 – λ2

a2(λ1 – λ2)
θ1 –

a1 – λ1

a2(λ1 – λ2)
θ2, w =

1
λ1 – λ2

(
θ1 – θ2

)
,

where λ1 and λ2 are roots of the quadratic equation

λ2 – (a1 + b2)λ + a1b2 – a2b1 = 0,

and the functions θn = θn(x, y) satisfy the linear Helmholtz equations

∂2θ1

∂x2 +
∂2θ1

∂y2 = λ1θ1,
∂2θ2

∂x2 +
∂2θ2

∂y2 = λ2θ2.
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T10.3. Nonlinear Systems of Two Second-Order
Equations

T10.3.1. Systems of the Form
∂u
∂t

= a∂
2u
∂x2 + F (u,w), ∂w

∂t
= b∂

2w
∂x2 + G(u,w)

Preliminary remarks. Systems of this form often arise in the theory of heat and mass
transfer in chemically reactive media, theory of chemical reactors, combustion theory,
mathematical biology, and biophysics.

Such systems are invariant under translations in the independent variables (and under
the change of x to –x) and admit traveling-wave solutions u = u(kx – λt), w = w(kx – λt).
These solutions as well as those with one of the unknown functions being identically zero
are not considered further in this section.

The functions f (ϕ), g(ϕ), h(ϕ) appearing below are arbitrary functions of their argument,
ϕ = ϕ(u,w); the equations are arranged in order of complexity of this argument.

T10.3.1-1. Arbitrary functions depend on a linear combination of the unknowns.

1.
∂u

∂t
= a

∂2u

∂x2
+u exp

((
k
w

u

))
f(u),

∂w

∂t
= a

∂2w

∂x2
+exp

((
k
w

u

))
[wf(u)+g(u)].

Solution:

u = y(ξ), w = –
2
k

ln |bx| y(ξ) + z(ξ), ξ =
x + C3√
C1t + C2

,

where C1, C2, C3, and b are arbitrary constants, and the functions y = y(ξ) and z = z(ξ) are
determined by the system of ordinary differential equations

ay′′ξξ +
1
2
C1ξy

′
ξ +

1
b2ξ2 y exp

(
k
z

y

)
f (y) = 0,

az′′ξξ +
1
2
C1ξz

′
ξ –

4a
kξ
y′ξ +

2a
kξ2 y +

1
b2ξ2 exp

(
k
z

y

)
[zf (y) + g(y)] = 0.

2.
∂u

∂t
= a1

∂2u

∂x2
+ f(bu + cw),

∂w

∂t
= a2

∂2w

∂x2
+ g(bu + cw).

Solution:

u = c(αx2 + βx + γt) + y(ξ), w = –b(αx2 + βx + γt) + z(ξ), ξ = kx – λt,

wherek,α, β, γ, andλ are arbitrary constants, and the functions y(ξ) and z(ξ) are determined
by the autonomous system of ordinary differential equations

a1k
2y′′ξξ + λy′ξ + 2a1cα – cγ + f (by + cz) = 0,

a2k
2z′′ξξ + λz′ξ – 2a2bα + bγ + g(by + cz) = 0.
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3.
∂u

∂t
= a

∂2u

∂x2
+ f(bu + cw),

∂w

∂t
= a

∂2w

∂x2
+ g(bu + cw).

Solution:
u = cθ(x, t) + y(ξ), w = –bθ(x, t) + z(ξ), ξ = kx – λt,

where the functions y(ξ) and z(ξ) are determined by the autonomous system of ordinary
differential equations

ak2y′′ξξ + λy′ξ + f (by + cz) = 0,

ak2z′′ξξ + λz′ξ + g(by + cz) = 0,

and the function θ = θ(x, t) satisfies the linear heat equation

∂θ

∂t
= a

∂2θ

∂x2 .

4.
∂u

∂t
= a

∂2u

∂x2
+ uf(bu – cw) + g(bu – cw),

∂w

∂t
= a

∂2w

∂x2
+ wf(bu – cw) + h(bu – cw).

1◦. Solution:

u = ϕ(t) + c exp

[∫
f (bϕ – cψ) dt

]
θ(x, t), w = ψ(t) + b exp

[∫
f (bϕ – cψ) dt

]
θ(x, t),

where ϕ = ϕ(t) and ψ = ψ(t) are determined by the autonomous system of ordinary
differential equations

ϕ′
t = ϕf (bϕ – cψ) + g(bϕ – cψ),

ψ′
t = ψf (bϕ – cψ) + h(bϕ – cψ),

and the function θ = θ(x, t) satisfies the linear heat equation

∂θ

∂t
= a

∂2θ

∂x2 .

2◦. Let us multiply the first equation by b and the second one by –c and add the results
together to obtain

∂ζ

∂t
= a

∂2ζ

∂x2 + ζf (ζ) + bg(ζ) – ch(ζ), ζ = bu – cw. (1)

This equation will be considered in conjunction with the first equation of the original system

∂u

∂t
= a

∂2u

∂x2 + uf (ζ) + g(ζ). (2)

Equation (1) can be treated separately. An extensive list of exact solutions to equations of
this form for various kinetic functions F (ζ) = ζf (ζ) + bg(ζ) –ch(ζ) can be found in the book
by Polyanin and Zaitsev (2004). Given a solution ζ = ζ(x, t) to equation (1), the function
u = u(x, t) can be determined by solving the linear equation (2) and the function w =w(x, t)
is found as w = (bu – ζ)/c.
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Note two important solutions to equation (1):
(i) In the general case, equation (1) admits traveling-wave solutions ζ = ζ(z), where

z = kx – λt. Then the corresponding exact solutions to equation (2) are expressed as
u = u0(z) +

∑
eβntun(z).

(ii) If the condition ζf (ζ) + bg(ζ) – ch(ζ) = k1ζ + k0 holds, equation (1) is linear,

∂ζ

∂t
= a

∂2ζ

∂x2 + k1ζ + k0,

and, hence, can be reduced to the linear heat equation.

5.
∂u

∂t
= a

∂2u

∂x2
+ eλuf(λu – σw),

∂w

∂t
= b

∂2w

∂x2
+ eσwg(λu – σw).

1◦. Solution:

u = y(ξ) –
1
λ

ln(C1t + C2), w = z(ξ) –
1
σ

ln(C1t + C2), ξ =
x + C3√
C1t + C2

,

where C1, C2, and C3 are arbitrary constants, and the functions y = y(ξ) and z = z(ξ) are
determined by the system of ordinary differential equations

ay′′ξξ +
1
2
C1ξy

′
ξ +

C1

λ
+ eλyf (λy – σz) = 0,

bz′′ξξ +
1
2
C1ξz

′
ξ +

C1

σ
+ eσzg(λy – σz) = 0.

2◦. Solution with b = a:

u = θ(x, t), w =
λ

σ
θ(x, t) –

k

σ
,

where k is a root of the algebraic (transcendental) equation

λf (k) = σe–kg(k),

and the function θ = θ(x, t) is determined by the differential equation

∂θ

∂t
= a

∂2θ

∂x2 + f (k)eλθ.

For exact solutions to this equation, see Polyanin and Zaitsev (2004).

T10.3.1-2. Arbitrary functions depend on the ratio of the unknowns.

6.
∂u

∂t
= a

∂2u

∂x2
+ uf

((
u

w

))
,

∂w

∂t
= b

∂2w

∂x2
+ wg

((
u

w

))
.

1◦. Multiplicative separable solution:

u = [C1 sin(kx) + C2 cos(kx)]ϕ(t),
w = [C1 sin(kx) + C2 cos(kx)]ψ(t),
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where C1, C2, and k are arbitrary constants, and the functions ϕ = ϕ(t) and ψ = ψ(t) are
determined by the autonomous system of ordinary differential equations

ϕ′
t = –ak2ϕ + ϕf (ϕ/ψ),

ψ′
t = –bk2ψ + ψg(ϕ/ψ).

2◦. Multiplicative separable solution:

u = [C1 exp(kx) + C2 exp(–kx)]U (t),
w = [C1 exp(kx) + C2 exp(–kx)]W (t),

where C1, C2, and k are arbitrary constants, and the functions U = U (t) and W = W (t) are
determined by the autonomous system of ordinary differential equations

U ′
t = ak2U + Uf (U/W ),

W ′
t = bk2W +Wg(U/W ).

3◦. Degenerate solution:
u = (C1x + C2)U (t),
w = (C1x + C2)W (t),

where C1 and C2 are arbitrary constants, and the functions U = U (t) and W = W (t) are
determined by the autonomous system of ordinary differential equations

U ′
t = Uf (U/W ),

W ′
t = Wg(U/W ).

This autonomous system can be integrated since it is reduced, after eliminating t, to a
homogeneous first-order equation. The systems presented in Items 1◦ and 2◦ can be
integrated likewise.

4◦. Multiplicative separable solution:

u = e–λty(x), w = e–λtz(x),

where λ is an arbitrary constant and the functions y = y(x) and z = z(x) are determined by
the autonomous system of ordinary differential equations

ay′′xx + λy + yf (y/z) = 0,

bz′′xx + λz + zg(y/z) = 0.

5◦. Solution (generalizes the solution of Item 4◦):

u = ekx–λty(ξ), w = ekx–λtz(ξ), ξ = βx – γt,

where k, λ, β, and γ are arbitrary constants, and the functions y = y(ξ) and z = z(ξ) are
determined by the autonomous system of ordinary differential equations

aβ2y′′ξξ + (2akβ + γ)y′ξ + (ak2 + λ)y + yf (y/z) = 0,

bβ2z′′ξξ + (2bkβ + γ)z′ξ + (bk2 + λ)z + zg(y/z) = 0.

To the special case k = λ = 0 there corresponds a traveling-wave solution. If k = γ = 0 and
β = 1, we have the solution of Item 4◦.
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6a.
∂u

∂t
= a

∂2u

∂x2
+ uf

((
u

w

))
,

∂w

∂t
= a

∂2w

∂x2
+ wg

((
u

w

))
.

This system is a special case of system T10.3.1.6 with b = a and hence it admits the above
solutions given in Items 1◦–5◦. In addition, it has some interesting properties and other
solutions, which are given below.

Suppose u = u(x, t), w = w(x, t) is a solution of the system. Then the functions

u1 = Au(�x + C1, t + C2), w1 = Aw(�x + C1, t + C2);

u2 = exp(λx + aλ2t)u(x + 2aλt, t), w2 = exp(λx + aλ2t)w(x + 2aλt, t),

where A, C1, C2, and λ are arbitrary constants, are also solutions of these equations.

6◦. Point-source solution:

u = exp

(
–
x2

4at

)
ϕ(t), w = exp

(
–
x2

4at

)
ψ(t),

where the functions ϕ = ϕ(t) and ψ = ψ(t) are determined by the autonomous system of
ordinary differential equations

ϕ′
t = –

1
2t
ϕ + ϕf

(ϕ
ψ

)
,

ψ′
t = –

1
2t
ψ + ψg

(ϕ
ψ

)
.

7◦. Functional separable solution:

u = exp
(
kxt + 2

3ak
2t3 – λt

)
y(ξ),

w = exp
(
kxt + 2

3ak
2t3 – λt

)
z(ξ),

ξ = x + akt2,

where k and λ are arbitrary constants, and the functions y = y(ξ) and z = z(ξ) are determined
by the autonomous system of ordinary differential equations

ay′′ξξ + (λ – kξ)y + yf (y/z) = 0,

az′′ξξ + (λ – kξ)z + zg(y/z) = 0.

8◦. Let k be a root of the algebraic (transcendental) equation

f (k) = g(k). (1)

Solution:
u = keλtθ, w = eλtθ, λ = f (k),

where the function θ = θ(x, t) satisfies the linear heat equation

∂θ

∂t
= a

∂2θ

∂x2 .

9◦. Periodic solution:

u = Ak exp(–μx) sin(βx – 2aβμt + B),
w = A exp(–μx) sin(βx – 2aβμt + B),

β =

√

μ2 +
1
a
f (k),

where A, B, and μ are arbitrary constants, and k is a root of the algebraic (transcendental)
equation (1).
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10◦. Solution:

u = ϕ(t) exp

[∫
g(ϕ(t)) dt

]
θ(x, t), w = exp

[∫
g(ϕ(t)) dt

]
θ(x, t),

where the function ϕ = ϕ(t) is described by the separable first-order nonlinear ordinary
differential equation

ϕ′
t = [f (ϕ) – g(ϕ)]ϕ, (2)

and the function θ = θ(x, t) satisfies the linear heat equation

∂θ

∂t
= a

∂2θ

∂x2 .

To the particular solution ϕ = k = const of equation (2) there corresponds the solution
given in Item 8◦. The general solution of equation (2) is written out in implicit form as

∫
dϕ

[f (ϕ) – g(ϕ)]ϕ
= t + C .

11◦. The transformation

u = a1U + b1W , w = a2U + b2W ,

where an and bn are arbitrary constants (n = 1, 2), leads to an equation of similar form for
U and W .

7.
∂u

∂t
= a

∂2u

∂x2
+ uf

((
u

w

))
+ g
((
u

w

))
,

∂w

∂t
= a

∂2w

∂x2
+ wf

((
u

w

))
+ h
((
u

w

))
.

Let k be a root of the algebraic (transcendental) equation

g(k) = kh(k).

1◦. Solution with f (k) ≠ 0:

u(x, t) = k

(
exp[f (k)t]θ(x, t) –

h(k)
f (k)

)
, w(x, t) = exp[f (k)t]θ(x, t) –

h(k)
f (k)

,

where the function θ = θ(x, t) satisfies the linear heat equation

∂θ

∂t
= a

∂2θ

∂x2 . (1)

2◦. Solution with f (k) = 0:

u(x, t) = k[θ(x, t) + h(k)t], w(x, t) = θ(x, t) + h(k)t,

where the function θ = θ(x, t) satisfies the linear heat equation (1).
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8.
∂u

∂t
= a

∂2u

∂x2
+ uf

((
u

w

))
+
u

w
h

((
u

w

))
,

∂w

∂t
= a

∂2w

∂x2
+ wg

((
u

w

))
+ h
((
u

w

))
.

Solution:

u = ϕ(t)G(t)

[
θ(x, t) +

∫
h(ϕ)
G(t)

dt

]
, w = G(t)

[
θ(x, t) +

∫
h(ϕ)
G(t)

dt

]
, G(t) = exp

[∫
g(ϕ) dt

]
,

where the function ϕ = ϕ(t) is described by the separable first-order nonlinear ordinary
differential equation

ϕ′
t = [f (ϕ) – g(ϕ)]ϕ, (1)

and the function θ = θ(x, t) satisfies the linear heat equation

∂θ

∂t
= a

∂2θ

∂x2 .

The general solution of equation (1) is written out in implicit form as
∫

dϕ

[f (ϕ) – g(ϕ)]ϕ
= t + C .

9.
∂u

∂t
= a

∂2u

∂x2
+uf1

((
w

u

))
+wg1

((
w

u

))
,

∂w

∂t
= a

∂2w

∂x2
+uf2

((
w

u

))
+wg2

((
w

u

))
.

Solution:

u=exp

{∫
[f1(ϕ)+ϕg1(ϕ)] dt

}
θ(x, t), w(x, t)=ϕ(t) exp

{∫
[f1(ϕ)+ϕg1(ϕ)] dt

}
θ(x, t),

where the function ϕ = ϕ(t) is described by the separable first-order nonlinear ordinary
differential equation

ϕ′
t = f2(ϕ) + ϕg2(ϕ) – ϕ[f1(ϕ) + ϕg1(ϕ)],

and the function θ = θ(x, t) satisfies the linear heat equation

∂θ

∂t
= a

∂2θ

∂x2 .

10.
∂u

∂t
= a

∂2u

∂x2
+ u3f

((
u

w

))
,

∂w

∂t
= a

∂2w

∂x2
+ u3g

((
u

w

))
.

Solution:

u = (x +A)ϕ(z), w = (x + A)ψ(z), z = t +
1

6a
(x +A)2 + B,

where A and B are arbitrary constants, and the functions ϕ = ϕ(z) and ψ = ψ(z) are
determined by the autonomous system of ordinary differential equations

ϕ′′
zz + 9aϕ3f (ϕ/ψ) = 0,

ψ′′
zz + 9aϕ3g(ϕ/ψ) = 0.
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11.
∂u

∂t
=
∂2u

∂x2
+ au – u3f

((
u

w

))
,

∂w

∂t
=
∂2w

∂x2
+ aw – u3g

((
u

w

))
.

1◦. Solution with a > 0:

u =
[
C1 exp

( 1
2

√
2a x + 3

2at
)

– C2 exp
(
– 1

2

√
2ax + 3

2at
)]
ϕ(z),

w =
[
C1 exp

( 1
2

√
2a x + 3

2at
)

– C2 exp
(
– 1

2

√
2ax + 3

2at
)]
ψ(z),

z = C1 exp
( 1

2

√
2a x + 3

2at
)

+ C2 exp
(
– 1

2

√
2ax + 3

2at
)

+ C3,

where C1, C2, and C3 are arbitrary constants, and the functions ϕ = ϕ(z) and ψ = ψ(z) are
determined by the autonomous system of ordinary differential equations

aϕ′′
zz = 2ϕ3f (ϕ/ψ),

aψ′′
zz = 2ϕ3g(ϕ/ψ).

2◦. Solution with a < 0:

u = exp
( 3

2at
)

sin
( 1

2

√
2|a| x + C1

)
U (ξ),

w = exp
( 3

2at
)

sin
( 1

2

√
2|a| x + C1

)
W (ξ),

ξ = exp
( 3

2at
)

cos
( 1

2

√
2|a| x + C1

)
+ C2,

where C1 and C2 are arbitrary constants, and the functions U = U (ξ) and W = W (ξ) are
determined by the autonomous system of ordinary differential equations

aU ′′
ξξ = –2U3f (U/W ),

aW ′′
ξξ = –2U3g(U/W ).

12.
∂u

∂t
= a

∂2u

∂x2
+ unf

((
u

w

))
,

∂w

∂t
= b

∂2w

∂x2
+ wng

((
u

w

))
.

If f (z) = kz–m and g(z) = –kzn–m, the system describes an nth-order chemical reaction (of
order n – m in the component u and of order m in the component w).

1◦. Self-similar solution with n ≠ 1:

u = (C1t + C2)
1

1–n y(ξ), w = (C1t + C2)
1

1–n z(ξ), ξ =
x + C3√
C1t + C2

,

where C1, C2, and C3 are arbitrary constants, and the functions y = y(ξ) and z = z(ξ) are
determined by the system of ordinary differential equations

ay′′ξξ +
1
2
C1ξy

′
ξ +

C1

n – 1
y + ynf

( y
z

)
= 0,

bz′′ξξ +
1
2
C1ξz

′
ξ +

C1

n – 1
z + zng

( y
z

)
= 0.

2◦. Solution with b = a:

u(x, t) = kθ(x, t), w(x, t) = θ(x, t),

where k is a root of the algebraic (transcendental) equation

kn–1f (k) = g(k),

and the function θ = θ(x, t) satisfies the heat equation with a power-law nonlinearity

∂θ

∂t
= a

∂2θ

∂x2 + g(k)θn.
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13.
∂u

∂t
= a

∂2u

∂x2
+ uf

((
u

w

))
lnu + ug

((
u

w

))
,

∂w

∂t
= a

∂2w

∂x2
+ wf

((
u

w

))
lnw + wh

((
u

w

))
.

Solution:
u(x, t) = ϕ(t)ψ(t)θ(x, t), w(x, t) = ψ(t)θ(x, t),

where the functions ϕ = ϕ(t) and ψ = ψ(t) are determined by solving the first-order
autonomous ordinary differential equations

ϕ′
t = ϕ[g(ϕ) – h(ϕ) + f (ϕ) lnϕ], (1)
ψ′
t = ψ[h(ϕ) + f (ϕ) lnψ], (2)

and the function θ = θ(x, t) is determined by the differential equation

∂θ

∂t
= a

∂2θ

∂x2 + f (ϕ)θ ln θ. (3)

The separable equation (1) can be solved to obtain a solution in implicit form. Equa-
tion (2) is easy to integrate—with the change of variable ψ = eζ , it is reduced to a linear
equation. Equation (3) admits exact solutions of the form

θ = exp
[
σ2(t)x2 + σ1(t)x + σ0(t)

]
,

where the functions σn(t) are described by the equations

σ′2 = f (ϕ)σ2 + 4aσ2
2 ,

σ′1 = f (ϕ)σ1 + 4aσ1σ2,

σ′0 = f (ϕ)σ0 + aσ2
1 + 2aσ2.

This system can be integrated directly, since the first equation is a Bernoulli equation and
the second and third ones are linear in the unknown. Note that the first equation has a
particular solution σ2 = 0.

Remark. Equation (1) has a special solutionϕ=k=const, wherek is a root of the algebraic (transcendental)
equation g(k) – h(k) + f (k) ln k = 0.

14.
∂u

∂t
= a

∂2u

∂x2
+ uf

((w

u

))
– wg

((w

u

))
+

u√
u2 + w2

h
((w

u

))
,

∂w

∂t
= a

∂2w

∂x2
+ wf

((w

u

))
+ ug

((w

u

))
+

w√
u2 + w2

h
((w

u

))
.

Solution:
u = r(x, t) cosϕ(t), w = r(x, t) sinϕ(t),

where the function ϕ =ϕ(t) is determined from the separable first-order ordinary differential
equation

ϕ′
t = g(tanϕ),

and the function r = r(x, t) satisfies the linear equation

∂r

∂t
= a

∂2r

∂x2 + rf (tanϕ) + h(tanϕ). (1)
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The change of variable

r = F (t)
[
Z(x, t) +

∫
h(tanϕ) dt
F (t)

]
, F (t) = exp

[∫
f (tanϕ) dt

]

brings (1) to the linear heat equation

∂Z

∂t
= a

∂2Z

∂x2 .

15.
∂u

∂t
= a

∂2u

∂x2
+ uf

((w

u

))
+ wg

((w

u

))
+

u√
u2 – w2

h
((w

u

))
,

∂w

∂t
= a

∂2w

∂x2
+ wf

((w

u

))
+ ug

((w

u

))
+

w√
u2 –w2

h
((w

u

))
.

Solution:
u = r(x, t) coshϕ(t), w = r(x, t) sinhϕ(t),

where the function ϕ =ϕ(t) is determined from the separable first-order ordinary differential
equation

ϕ′
t = g(tanhϕ),

and the function r = r(x, t) satisfies the linear equation

∂r

∂t
= a

∂2r

∂x2 + rf (tanhϕ) + h(tanhϕ). (1)

The change of variable

r = F (t)
[
Z(x, t) +

∫
h(tanhϕ) dt

F (t)

]
, F (t) = exp

[∫
f (tanhϕ) dt

]

brings (1) to the linear heat equation

∂Z

∂t
= a

∂2Z

∂x2 .

T10.3.1-3. Arbitrary functions depend on the product of powers of the unknowns.

16.
∂u

∂t
= a

∂2u

∂x2
+ uf(unwm),

∂w

∂t
= b

∂2w

∂x2
+ wg(unwm).

Solution:
u = em(kx–λt)y(ξ), w = e–n(kx–λt)z(ξ), ξ = βx – γt,

where k, λ, β, and γ are arbitrary constants, and the functions y = y(ξ) and z = z(ξ) are
determined by the autonomous system of ordinary differential equations

aβ2y′′ξξ + (2akmβ + γ)y′ξ +m(ak2m + λ)y + yf (ynzm) = 0,

bβ2z′′ξξ + (–2bknβ + γ)z′ξ + n(bk2n – λ)z + zg(ynzm) = 0.

To the special case k = λ = 0 there corresponds a traveling-wave solution.
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17.
∂u

∂t
= a

∂2u

∂x2
+ u1+knf

((
unwm

))
,

∂w

∂t
= b

∂2w

∂x2
+ w1–kmg

((
unwm

))
.

Self-similar solution:

u = (C1t + C2)–
1
kn y(ξ), w = (C1t + C2)

1
km z(ξ), ξ =

x + C3√
C1t + C2

,

where C1, C2, and C3 are arbitrary constants, and the functions y = y(ξ) and z = z(ξ) are
determined by the system of ordinary differential equations

ay′′ξξ +
1
2
C1ξy

′
ξ +

C1

kn
y + y1+knf

(
ynzm

)
= 0,

bz′′ξξ +
1
2
C1ξz

′
ξ –

C1

km
z + z1–kmg

(
ynzm

)
= 0.

18.
∂u

∂t
= a

∂2u

∂x2
+cu lnu+uf(unwm),

∂w

∂t
= b
∂2w

∂x2
+cw lnw+wg(unwm).

Solution:
u = exp(Amect)y(ξ), w = exp(–Anect)z(ξ), ξ = kx – λt,

where A, k, and λ are arbitrary constants, and the functions y = y(ξ) and z = z(ξ) are
determined by the autonomous system of ordinary differential equations

ak2y′′ξξ + λy′ξ + cy ln y + yf (ynzm) = 0,

bk2z′′ξξ + λz′ξ + cz ln z + zg(ynzm) = 0.

To the special case A = 0 there corresponds a traveling-wave solution. For λ = 0, we
have a solution in the form of the product of two functions dependent on time t and the
coordinate x.

T10.3.1-4. Arbitrary functions depend on the sum of squares of the unknowns.

19.
∂u

∂t
= a

∂2u

∂x2
+ uf(u2 + w2) – wg(u2 + w2),

∂w

∂t
= a

∂2w

∂x2
+ ug(u2 + w2) + wf(u2 + w2).

1◦. A periodic solution in the spatial coordinate:

u = ψ(t) cosϕ(x, t), w = ψ(t) sinϕ(x, t), ϕ(x, t) = C1x +
∫
g(ψ2) dt + C2,

where C1 and C2 are arbitrary constants, and the function ψ = ψ(t) is described by the
separable first-order ordinary differential equation

ψ′
t = ψf (ψ2) – aC2

1ψ,

whose general solution can be represented in implicit form as
∫

dψ

ψf (ψ2) – aC2
1ψ

= t + C3.
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2◦. A periodic solution in time:

u = r(x) cos
[
θ(x) + C1t + C2

]
, w = r(x) sin

[
θ(x) + C1t + C2

]
,

where C1 and C2 are arbitrary constants, and the functions r = r(x) and θ = θ(x) are
determined by the autonomous system of ordinary differential equations

ar′′xx – ar(θ′x)2 + rf (r2) = 0,

arθ′′xx + 2ar′xθ
′
x – C1r + rg(r2) = 0.

3◦. Solution (generalizes the solution of Item 2◦):

u = r(z) cos
[
θ(z) + C1t + C2

]
, w = r(z) sin

[
θ(z) + C1t + C2

]
, z = x + λt,

where C1, C2, and λ are arbitrary constants, and the functions r = r(z) and θ = θ(z) are
determined by the system of ordinary differential equations

ar′′zz – ar(θ′z)
2 – λr′z + rf (r2) = 0,

arθ′′zz + 2ar′zθ
′
z – λrθ′z – C1r + rg(r2) = 0.

20.
∂u

∂t
= a

∂2u

∂x2
+ uf

((
u2 + w2)) – wg

((
u2 + w2)) – w arctan

((w
u

))
h
((
u2 + w2)),

∂w

∂t
= a

∂2w

∂x2
+ wf

((
u2 + w2)) + ug

((
u2 + w2)) + u arctan

((w

u

))
h
((
u2 + w2)).

Functional separable solution (for fixed t, it defines a structure periodic in x):

u = r(t) cos
[
ϕ(t)x + ψ(t)

]
, w = r(t) sin

[
ϕ(t)x + ψ(t)

]
,

where the functions r = r(t), ϕ = ϕ(t), and ψ = ψ(t) are determined by the autonomous
system of ordinary differential equations

r′t = –arϕ2 + rf (r2),

ϕ′
t = h(r2)ϕ,

ψ′
t = h(r2)ψ + g(r2).

T10.3.1-5. Arbitrary functions depend on the difference of squares of the unknowns.

21.
∂u

∂t
= a

∂2u

∂x2
+ uf(u2 – w2) + wg(u2 – w2),

∂w

∂t
= a

∂2w

∂x2
+ ug(u2 –w2) + wf(u2 –w2).

1◦. Solution:

u = ψ(t) coshϕ(x, t), w = ψ(t) sinhϕ(x, t), ϕ(x, t) = C1x +
∫
g(ψ2) dt + C2,

where C1 and C2 are arbitrary constants, and the function ψ = ψ(t) is described by the
separable first-order ordinary differential equation

ψ′
t = ψf (ψ2) + aC2

1ψ,
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whose general solution can be represented in implicit form as
∫

dψ

ψf (ψ2) + aC2
1ψ

= t + C3.

2◦. Solution:

u = r(x) cosh
[
θ(x) + C1t + C2

]
, w = r(x) sinh

[
θ(x) + C1t + C2

]
,

where C1 and C2 are arbitrary constants, and the functions r = r(x) and θ = θ(x) are
determined by the autonomous system of ordinary differential equations

ar′′xx + ar(θ′x)2 + rf (r2) = 0,

arθ′′xx + 2ar′xθ
′
x + rg(r2) – C1r = 0.

3◦. Solution (generalizes the solution of Item 2◦):

u = r(z) cosh
[
θ(z) + C1t + C2

]
, w = r(z) sinh

[
θ(z) + C1t + C2

]
, z = x + λt,

where C1, C2, and λ are arbitrary constants, and the functions r = r(z) and θ = θ(z) are
determined by the autonomous system of ordinary differential equations

ar′′zz + ar(θ′z)
2 – λr′z + rf (r2) = 0,

arθ′′zz + 2ar′zθ
′
z – λrθ′z – C1r + rg(r2) = 0.

22.
∂u

∂t
= a

∂2u

∂x2
+ uf

((
u2 – w2)) + wg

((
u2 – w2)) + w arctanh

((w

u

))
h
((
u2 –w2)),

∂w

∂t
= a

∂2w

∂x2
+ wf

((
u2 –w2)) + ug

((
u2 – w2)) + u arctanh

((w
u

))
h
((
u2 –w2)).

Functional separable solution:

u = r(t) cosh
[
ϕ(t)x + ψ(t)

]
, w = r(t) sinh

[
ϕ(t)x + ψ(t)

]
,

where the functions r = r(t), ϕ = ϕ(t), and ψ = ψ(t) are determined by the autonomous
system of ordinary differential equations

r′t = arϕ2 + rf (r2),

ϕ′
t = h(r2)ϕ,

ψ′
t = h(r2)ψ + g(r2).

T10.3.1-6. Arbitrary functions depend on the unknowns in a complex way.

23.
∂u

∂t
= a

∂2u

∂x2
+ uk+1f(ϕ), ϕ = u exp

((
–
w

u

))
,

∂w

∂t
= a

∂2w

∂x2
+ uk+1[f(ϕ) lnu + g(ϕ)].

Solution:

u = (C1t+C2)–
1
k y(ξ), w = (C1t+C2)–

1
k

[
z(ξ) –

1
k

ln(C1t+C2)y(ξ)

]
, ξ =

x + C3√
C1t + C2

,
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where C1, C2, and C3 are arbitrary constants, and the functions y = y(ξ) and z = z(ξ) are
determined by the system of ordinary differential equations

ay′′ξξ +
1
2
C1ξy

′
ξ +

C1

k
y + yk+1f (ϕ) = 0, ϕ = y exp

(
–
z

y

)
,

az′′ξξ +
1
2
C1ξz

′
ξ +

C1

k
z +

C1

k
y + yk+1[f (ϕ) ln y + g(ϕ)] = 0.

24.
∂u

∂t
=a

∂2u

∂x2
+uf(u2+w2)–wg

((w
u

))
,

∂w

∂t
=a

∂2w

∂x2
+ug

((w
u

))
+wf(u2+w2).

Solution:
u = r(x, t) cosϕ(t), w = r(x, t) sinϕ(t),

where the function ϕ = ϕ(t) is determined by the autonomous ordinary differential equation

ϕ′
t = g(tanϕ), (1)

and the function r = r(x, t) is determined by the differential equation

∂r

∂t
= a

∂2r

∂x2 + rf (r2). (2)

The general solution of equation (1) is expressed in implicit form as
∫

dϕ

g(tanϕ)
= t + C .

Equation (2) admits an exact, traveling-wave solution r = r(z), where z = kx – λt with
arbitrary constants k and λ, and the function r(z) is determined by the autonomous ordinary
differential equation

ak2r′′zz + λr′z + rf (r2) = 0.

For other exact solutions to equation (2) for various functions f , see Polyanin and Zaitsev
(2004).

25.
∂u

∂t
=a

∂2u

∂x2
+uf(u2–w2)+wg

((w

u

))
,

∂w

∂t
=a

∂2w

∂x2
+ug

((w

u

))
+wf(u2–w2).

Solution:
u = r(x, t) coshϕ(t), w = r(x, t) sinhϕ(t),

where the function ϕ = ϕ(t) is determined by the autonomous ordinary differential equation

ϕ′
t = g(tanhϕ), (1)

and the function r = r(x, t) is determined by the differential equation

∂r

∂t
= a

∂2r

∂x2 + rf (r2). (2)

The general solution of equation (1) is expressed in implicit form as
∫

dϕ

g(tanhϕ)
= t + C .

Equation (2) admits an exact, traveling-wave solution r = r(z), where z = kx – λt with
arbitrary constants k and λ, and the function r(z) is determined by the autonomous ordinary
differential equation

ak2r′′zz + λr′z + rf (r2) = 0.

For other exact solutions to equation (2) for various functions f , see Polyanin and Zaitsev
(2004).
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T10.3.2. Systems of the Form
∂u
∂t

= a
xn

∂
∂x

(
xn ∂u
∂x

)
+ F (u,w),

∂w
∂t

= b
xn

∂
∂x

(
xn ∂w
∂x

)
+ G(u,w)

T10.3.2-1. Arbitrary functions depend on a linear combination of the unknowns.

1.
∂u

∂t
=
a

xn

∂

∂x

((
xn∂u

∂x

))
+ uf(bu – cw) + g(bu – cw),

∂w

∂t
=
a

xn

∂

∂x

((
xn∂w

∂x

))
+ wf(bu – cw) + h(bu – cw).

1◦. Solution:

u = ϕ(t) + c exp

[∫
f (bϕ – cψ) dt

]
θ(x, t),

w = ψ(t) + b exp

[∫
f (bϕ – cψ) dt

]
θ(x, t),

where ϕ = ϕ(t) and ψ = ψ(t) are determined by the autonomous system of ordinary
differential equations

ϕ′
t = ϕf (bϕ – cψ) + g(bϕ – cψ),

ψ′
t = ψf (bϕ – cψ) + h(bϕ – cψ),

and the function θ = θ(x, t) satisfies linear heat equation

∂θ

∂t
=
a

xn
∂

∂x

(
xn
∂θ

∂x

)
. (1)

2◦. Let us multiply the first equation by b and the second one by –c and add the results
together to obtain

∂ζ

∂t
=
a

xn
∂

∂x

(
xn
∂ζ

∂x

)
+ ζf (ζ) + bg(ζ) – ch(ζ), ζ = bu – cw. (2)

This equation will be considered in conjunction with the first equation of the original system

∂u

∂t
=
a

xn
∂

∂x

(
xn
∂u

∂x

)
+ uf (ζ) + g(ζ). (3)

Equation (2) can be treated separately. Given a solution ζ = ζ(x, t) to equation (2), the
function u = u(x, t) can be determined by solving the linear equation (3) and the function
w = w(x, t) is found as w = (bu – ζ)/c.

Note two important solutions to equation (2):
(i) In the general case, equation (2) admits steady-state solutions ζ = ζ(x). The corre-

sponding exact solutions to equation (3) are expressed as u = u0(x) +
∑
eβntun(x).

(ii) If the condition ζf (ζ) + bg(ζ) – ch(ζ) = k1ζ + k0 holds, equation (2) is linear,

∂ζ

∂t
=
a

xn
∂

∂x

(
xn
∂ζ

∂x

)
+ k1ζ + k0,

and hence can be reduced to the linear heat equation (1) with the substitution ζ =ek1t ζ̄–k0k
–1
1 .
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2.
∂u

∂t
=
a

xn

∂

∂x

((
xn∂u

∂x

))
+ eλuf(λu – σw),

∂w

∂t
=
b

xn

∂

∂x

((
xn∂w

∂x

))
+ eσwg(λu – σw).

Solution:

u = y(ξ) –
1
λ

ln(C1t + C2), w = z(ξ) –
1
σ

ln(C1t + C2), ξ =
x√

C1t + C2
,

where C1 and C2 are arbitrary constants, and the functions y = y(ξ) and z = z(ξ) are
determined by the system of ordinary differential equations

aξ–n(ξny′ξ)
′
ξ +

1
2
C1ξy

′
ξ +

C1

λ
+ eλyf (λy – σz) = 0,

bξ–n(ξnz′ξ)
′
ξ +

1
2
C1ξz

′
ξ +

C1

σ
+ eσzg(λy – σz) = 0.

T10.3.2-2. Arbitrary functions depend on the ratio of the unknowns.

3.
∂u

∂t
=
a

xn

∂

∂x

((
xn∂u

∂x

))
+ uf

((
u

w

))
,

∂w

∂t
=
b

xn

∂

∂x

((
xn∂w

∂x

))
+ wg

((
u

w

))
.

1◦. Multiplicative separable solution:

u = x
1–n

2 [C1Jν(kx) + C2Yν(kx)]ϕ(t), ν = 1
2 |n – 1|,

w = x
1–n

2 [C1Jν(kx) + C2Yν(kx)]ψ(t),

where C1, C2, and k are arbitrary constants, Jν (z) and Yν(z) are Bessel functions, and the
functions ϕ = ϕ(t) and ψ = ψ(t) are determined by the autonomous system of ordinary
differential equations

ϕ′
t = –ak2ϕ + ϕf (ϕ/ψ),

ψ′
t = –bk2ψ + ψg(ϕ/ψ).

2◦. Multiplicative separable solution:

u = x
1–n

2 [C1Iν(kx) + C2Kν (kx)]ϕ(t), ν = 1
2 |n – 1|,

w = x
1–n

2 [C1Iν(kx) + C2Kν (kx)]ψ(t),

where C1, C2, and k are arbitrary constants, Iν(z) andKν(z) are modified Bessel functions,
and the functions ϕ = ϕ(t) and ψ = ψ(t) are determined by the autonomous system of
ordinary differential equations

ϕ′
t = ak2ϕ + ϕf (ϕ/ψ),

ψ′
t = bk2ψ + ψg(ϕ/ψ).

3◦. Multiplicative separable solution:

u = e–λty(x), w = e–λtz(x),
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where λ is an arbitrary constant and the functions y = y(x) and z = z(x) are determined by
the system of ordinary differential equations

ax–n(xny′x)′x + λy + yf (y/z) = 0,

bx–n(xnz′x)′x + λz + zg(y/z) = 0.

4◦. This is a special case of equation with b = a. Let k be a root of the algebraic (transcen-
dental) equation

f (k) = g(k).

Solution:
u = keλtθ, w = eλtθ, λ = f (k),

where the function θ = θ(x, t) satisfies the linear heat equation

∂θ

∂t
=
a

xn
∂

∂x

(
xn
∂θ

∂x

)
. (1)

5◦. This is a special case of equation with b = a. Solution:

u = ϕ(t) exp

[∫
g(ϕ(t)) dt

]
θ(x, t), w = exp

[∫
g(ϕ(t)) dt

]
θ(x, t),

where the function ϕ = ϕ(t) is described by the separable first-order nonlinear ordinary
differential equation

ϕ′
t = [f (ϕ) – g(ϕ)]ϕ, (2)

and the function θ = θ(x, t) satisfies the linear heat equation (1).
To the particular solution ϕ = k = const of equation (2), there corresponds the solution

presented in Item 4◦. The general solution of equation (2) is written out in implicit form as
∫

dϕ

[f (ϕ) – g(ϕ)]ϕ
= t + C .

4.
∂u

∂t
=
a

xn

∂

∂x

((
xn∂u

∂x

))
+ uf

((
u

w

))
+
u

w
h

((
u

w

))
,

∂w

∂t
=
a

xn

∂

∂x

((
xn∂w

∂x

))
+ wg

((
u

w

))
+ h
((
u

w

))
.

Solution:

u = ϕ(t)G(t)

[
θ(x, t) +

∫
h(ϕ)
G(t)

dt

]
, w = G(t)

[
θ(x, t) +

∫
h(ϕ)
G(t)

dt

]
, G(t) = exp

[∫
g(ϕ) dt

]
,

where the function ϕ = ϕ(t) is described by the separable first-order nonlinear ordinary
differential equation

ϕ′
t = [f (ϕ) – g(ϕ)]ϕ, (1)

and the function θ = θ(x, t) satisfies the linear heat equation

∂θ

∂t
=
a

xn
∂

∂x

(
xn
∂θ

∂x

)
.

The general solution of equation (1) is written out in implicit form as
∫

dϕ

[f (ϕ) – g(ϕ)]ϕ
= t + C .
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5.
∂u

∂t
=
a

xn

∂

∂x

((
xn∂u

∂x

))
+ uf1

((
w

u

))
+ wg1

((
w

u

))
,

∂w

∂t
=
a

xn

∂

∂x

((
xn∂w

∂x

))
+ uf2

((
w

u

))
+ wg2

((
w

u

))
.

Solution:

u=exp

{∫
[f1(ϕ)+ϕg1(ϕ)] dt

}
θ(x, t), w(x, t)=ϕ(t) exp

{∫
[f1(ϕ)+ϕg1(ϕ)] dt

}
θ(x, t),

where the function ϕ = ϕ(t) is described by the separable first-order nonlinear ordinary
differential equation

ϕ′
t = f2(ϕ) + ϕg2(ϕ) – ϕ[f1(ϕ) + ϕg1(ϕ)],

and the function θ = θ(x, t) satisfies the linear heat equation

∂θ

∂t
=
a

xn
∂

∂x

(
xn
∂θ

∂x

)
.

6.
∂u

∂t
=
a

xn

∂

∂x

((
xn∂u

∂x

))
+ukf

((
u

w

))
,

∂w

∂t
=
b

xn

∂

∂x

((
xn∂w

∂x

))
+wkg

((
u

w

))
.

Self-similar solution:

u = (C1t + C2)
1

1–k y(ξ), w = (C1t + C2)
1

1–k z(ξ), ξ =
x√

C1t + C2
,

where C1 and C2 are arbitrary constants, and the functions y = y(ξ) and z = z(ξ) are
determined by the system of ordinary differential equations

aξ–n(ξny′ξ)
′
ξ +

1
2
C1ξy

′
ξ +

C1

k – 1
y + ykf (y/z) = 0,

bξ–n(ξnz′ξ)
′
ξ +

1
2
C1ξz

′
ξ +

C1

k – 1
z + zkg(y/z) = 0.

7.
∂u

∂t
=
a

xn

∂

∂x

((
xn∂u

∂x

))
+ uf

(( u

w

))
lnu + ug

(( u

w

))
,

∂w

∂t
=
a

xn

∂

∂x

((
xn∂w

∂x

))
+ wf

(( u

w

))
lnw + wh

(( u

w

))
.

Solution:
u = ϕ(t)ψ(t)θ(x, t), w = ψ(t)θ(x, t),

where the functions ϕ = ϕ(t) and ψ = ψ(t) are determined by solving the autonomous
ordinary differential equations

ϕ′
t = ϕ[g(ϕ) – h(ϕ) + f (ϕ) lnϕ],

ψ′
t = ψ[h(ϕ) + f (ϕ) lnψ],

(1)

and the function θ = θ(x, t) is determined by the differential equation

∂θ

∂t
=
a

xn
∂

∂x

(
xn
∂θ

∂x

)
+ f (ϕ)θ ln θ. (2)
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The first equation in (1) is a separable equation; its solution can be written out in implicit
form. The second equation in (1) can be solved using the change of variable ψ = eζ (it is
reduced to a linear equation for ζ).

Equation (2) admits exact solutions of the form

θ = exp
[
σ2(t)x2 + σ0(t)

]
,

where the functions σn(t) are described by the equations

σ′2 = f (ϕ)σ2 + 4aσ2
2 ,

σ′0 = f (ϕ)σ0 + 2a(n + 1)σ2.

This system can be successively integrated, since the first equation is a Bernoulli equation
and the second one is linear in the unknown.

If f = const, equation (2) also has a traveling-wave solution θ = θ(kx – λt).

T10.3.2-3. Arbitrary functions depend on the product of powers of the unknowns.

8.
∂u

∂t
=
a

xn

∂

∂x

((
xn∂u

∂x

))
+ uf(x,ukwm),

∂w

∂t
=
b

xn

∂

∂x

((
xn∂w

∂x

))
+ wg(x,ukwm).

Multiplicative separable solution:

u = e–mλty(x), w = ekλtz(x),

where λ is an arbitrary constant and the functions y = y(x) and z = z(x) are determined by
the system of ordinary differential equations

ax–n(xny′x)′x +mλy + yf (x, ykzm) = 0,

bx–n(xnz′x)′x – kλz + zg(x, ykzm) = 0.

9.
∂u

∂t
=
a

xn

∂

∂x

((
xn∂u

∂x

))
+ u1+knf

((
unwm

))
,

∂w

∂t
=
b

xn

∂

∂x

((
xn∂w

∂x

))
+ w1–kmg

((
unwm

))
.

Self-similar solution:

u = (C1t + C2)–
1
kn y(ξ), w = (C1t + C2)

1
km z(ξ), ξ =

x√
C1t + C2

,

where C1 and C2 are arbitrary constants, and the functions y = y(ξ) and z = z(ξ) are
determined by the system of ordinary differential equations

aξ–n(ξny′ξ)
′
ξ +

1
2
C1ξy

′
ξ +

C1

kn
y + y1+knf

(
ynzm

)
= 0,

bξ–n(ξnz′ξ)
′
ξ +

1
2
C1ξz

′
ξ –

C1

km
z + z1–kmg

(
ynzm

)
= 0.
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10.
∂u

∂t
=
a

xn

∂

∂x

((
xn∂u

∂x

))
+ cu lnu + uf(x,ukwm),

∂w

∂t
=
b

xn

∂

∂x

((
xn∂w

∂x

))
+ cw lnw + wg(x,ukwm).

Multiplicative separable solution:

u = exp(Amect)y(x), w = exp(–Akect)z(x),

where A is an arbitrary constant, and the functions y = y(x) and z = z(x) are determined by
the system of ordinary differential equations

ax–n(xny′x)′x + cy ln y + yf (x, ykzm) = 0,

bx–n(xnz′x)′x + cz ln z + zg(x, ykzm) = 0.

T10.3.2-4. Arbitrary functions depend on u2 � w2.

11.
∂u

∂t
=
a

xn

∂

∂x

((
xn∂u

∂x

))
+ uf(u2 + w2) –wg(u2 + w2),

∂w

∂t
=
a

xn

∂

∂x

((
xn∂w

∂x

))
+ wf(u2 + w2) + ug(u2 + w2).

Time-periodic solution:

u = r(x) cos
[
θ(x) + C1t + C2

]
, w = r(x) sin

[
θ(x) + C1t + C2

]
,

where C1 and C2 are arbitrary constants, and the functions r = r(x) and θ = θ(x) are
determined by the system of ordinary differential equations

ar′′xx – ar(θ′x)2 +
an

x
r′x + rf (r2) = 0,

arθ′′xx + 2ar′xθ
′
x +

an

x
rθ′x + rg(r2) – C1r = 0.

12.
∂u

∂t
=
a

xn

∂

∂x

((
xn∂u

∂x

))
+ uf(u2 – w2) + wg(u2 – w2),

∂w

∂t
=
a

xn

∂

∂x

((
xn∂w

∂x

))
+ wf(u2 –w2) + ug(u2 – w2).

Solution:

u = r(x) cosh
[
θ(x) + C1t + C2

]
, w = r(x) sinh

[
θ(x) + C1t + C2

]
,

where C1 and C2 are arbitrary constants, and the functions r = r(x) and θ = θ(x) are
determined by the system of ordinary differential equations

ar′′xx + ar(θ′x)2 +
an

x
r′x + rf (r2) = 0,

arθ′′xx + 2ar′xθ
′
x +

an

x
rθ′x + rg(r2) – C1r = 0.
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T10.3.2-5. Arbitrary functions have different arguments.

13.
∂u

∂t
=
a

xn

∂

∂x

((
xn∂u

∂x

))
+ uf(u2 + w2) –wg

((w

u

))
,

∂w

∂t
=
a

xn

∂

∂x

((
xn∂w

∂x

))
+ wf(u2 + w2) + ug

((w

u

))
.

Solution:
u = r(x, t) cosϕ(t), w = r(x, t) sinϕ(t),

where the function ϕ = ϕ(t) is determined by the autonomous ordinary differential equation

ϕ′
t = g(tanϕ), (1)

and the function r = r(x, t) is determined by the differential equation

∂r

∂t
=
a

xn
∂

∂x

(
xn
∂r

∂x

)
+ rf (r2). (2)

The general solution of equation (1) is expressed in implicit form as

∫
dϕ

g(tanϕ)
= t + C .

Equation (2) admits a time-independent exact solution r = r(x).

14.
∂u

∂t
=
a

xn

∂

∂x

((
xn∂u

∂x

))
+ uf(u2 – w2) + wg

((w

u

))
,

∂w

∂t
=
a

xn

∂

∂x

((
xn∂w

∂x

))
+ wf(u2 –w2) + ug

((w

u

))
.

Solution:
u = r(x, t) coshϕ(t), w = r(x, t) sinhϕ(t),

where the function ϕ = ϕ(t) is determined by the autonomous ordinary differential equation

ϕ′
t = g(tanhϕ), (1)

and the function r = r(x, t) is determined by the differential equation

∂r

∂t
=
a

xn
∂

∂x

(
xn
∂r

∂x

)
+ rf (r2). (2)

The general solution of equation (1) is expressed in implicit form as

∫
dϕ

g(tanhϕ)
= t + C .

Equation (2) admits a time-independent exact solution r = r(x).
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T10.3.3. Systems of the Form Δu = F (u,w), Δw = G(u,w)

T10.3.3-1. Arbitrary functions depend on a linear combination of the unknowns.

1.
∂2u

∂x2
+
∂2u

∂y2
= uf(au – bw) + g(au – bw),

∂2w

∂x2
+
∂2w

∂y2
= wf(au – bw) + h(au – bw).

1◦. Solution:
u = ϕ(x) + bθ(x, y), w = ψ(x) + aθ(x, y),

where ϕ = ϕ(x) and ψ = ψ(x) are determined by the autonomous system of ordinary
differential equations

ϕ′′
xx = ϕf (aϕ – bψ) + g(aϕ – bψ),

ψ′′
xx = ψf (aϕ – bψ) + h(aϕ – bψ),

and the function θ = θ(x, y) satisfies the linear Schrödinger equation of the special form

∂2θ

∂x2 +
∂2θ

∂y2 = F (x)θ, F (x) = f (au – bw).

Its solutions are determined by separation of variables.

2◦. Let us multiply the first equation by a and the second one by –b and add the results
together to obtain

∂2ζ

∂x2 +
∂2ζ

∂y2 = ζf (ζ) + ag(ζ) – bh(ζ), ζ = au – bw. (1)

This equation will be considered in conjunction with the first equation of the original system

∂2u

∂x2 +
∂2u

∂y2 = uf (ζ) + g(ζ). (2)

Equation (1) can be treated separately. An extensive list of exact solutions to equations of
this form for various kinetic functions F (ζ) = ζf (ζ) + ag(ζ) – bh(ζ) can be found in the
book by Polyanin and Zaitsev (2004).

Note two important solutions to equation (1):
(i) In the general case, equation (1) admits an exact, traveling-wave solution ζ = ζ(z),

where z = k1x + k2y with arbitrary constants k1 and k2.
(ii) If the condition ζf (ζ) + ag(ζ) – bh(ζ) = c1ζ + c0 holds, equation (1) is a linear

Helmholtz equation.
Given a solution ζ = ζ(x, y) to equation (1), the function u = u(x, y) can be determined

by solving the linear equation (2) and the function w = w(x, y) is found as w = (bu – ζ)/c.

2.
∂2u

∂x2
+
∂2u

∂y2
= eλuf(λu – σw),

∂2w

∂x2
+
∂2w

∂y2
= eσwg(λu – σw).

1◦. Solution:

u = U (ξ) –
2
λ

ln |x + C1|, w = W (ξ) –
2
σ

ln |x + C1|, ξ =
y + C2

x + C1
,
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where C1 and C2 are arbitrary constants, and the functions U = U (ξ) and W = W (ξ) are
determined by the system of ordinary differential equations

(1 + ξ2)U ′′
ξξ + 2ξU ′

ξ +
2
λ

= eλUf (λU – σW ),

(1 + ξ2)W ′′
ξξ + 2ξW ′

ξ +
2
σ

= eσW g(λU – σW ).

2◦. Solution:

u = θ(x, y), w =
λ

σ
θ(x, y) –

k

σ
,

where k is a root of the algebraic (transcendental) equation

λf (k) = σe–kg(k),

and the function θ = θ(x, y) is described by the solvable equation

∂2θ

∂x2 +
∂2θ

∂y2 = f (k)eλθ.

This equation is encountered in combustion theory; for its exact solutions, see Polyanin and
Zaitsev (2004).

T10.3.3-2. Arbitrary functions depend on the ratio of the unknowns.

3.
∂2u

∂x2
+
∂2u

∂y2
= uf

((
u

w

))
,

∂2w

∂x2
+
∂2w

∂y2
= wg

((
u

w

))
.

1◦. A space-periodic solution in multiplicative form (another solution is obtained by inter-
changing x and y):

u = [C1 sin(kx) + C2 cos(kx)]ϕ(y),
w = [C1 sin(kx) + C2 cos(kx)]ψ(y),

where C1, C2, and k are arbitrary constants and the functions ϕ = ϕ(y) and ψ = ψ(y) are
determined by the autonomous system of ordinary differential equations

ϕ′′
yy = k2ϕ + ϕf (ϕ/ψ),

ψ′′
yy = k2ψ + ψg(ϕ/ψ).

2◦. Solution in multiplicative form:

u = [C1 exp(kx) + C2 exp(–kx)]U (y),
w = [C1 exp(kx) + C2 exp(–kx)]W (y),

where C1, C2, and k are arbitrary constants and the functions U = U (y) and W = W (y) are
determined by the autonomous system of ordinary differential equations

U ′′
yy = –k2U + Uf (U/W ),

W ′′
yy = –k2W + Wg(U/W ).
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3◦. Degenerate solution in multiplicative form:

u = (C1x + C2)U (y),
w = (C1x + C2)W (y),

where C1 and C2 are arbitrary constants and the functions U = U (y) and W = W (y) are
determined by the autonomous system of ordinary differential equations

U ′′
yy = Uf (U/W ),

W ′′
yy = Wg(U/W ).

Remark. The functions f and g in Items 1◦–3◦ can be dependent on y.

4◦. Solution in multiplicative form:

u = ea1x+b1yξ(z), w = ea1x+b1yη(z), z = a2x + b2y,

where a1, a2, b1, and b2 are arbitrary constants, and the functions ξ = ξ(z) and η = η(z) are
determined by the autonomous system of ordinary differential equations

(a2
2 + b2

2)ξ′′zz + 2(a1a2 + b1b2)ξ′z + (a2
1 + b2

1)ξ = ξf (ξ/η),

(a2
2 + b2

2)η′′zz + 2(a1a2 + b1b2)η′z + (a2
1 + b2

1)η = ηg(ξ/η).

5◦. Solution:
u = kθ(x, y), w = θ(x, y),

where k is a root of the algebraic (transcendental) equation f (k) = g(k), and the function
θ = θ(x, y) is described by the linear Helmholtz equation

∂2θ

∂x2 +
∂2θ

∂y2 = f (k)θ.

For its exact solutions, see Subsection T8.3.3.

4.
∂2u

∂x2
+
∂2u

∂y2
= uf

((
u

w

))
+
u

w
h

((
u

w

))
,

∂2w

∂x2
+
∂2w

∂y2
= wg

((
u

w

))
+ h
((
u

w

))
.

Solution:

u = kw, w = θ(x, y) –
h(k)
f (k)

,

where k is a root of the algebraic (transcendental) equation

f (k) = g(k),

and the function θ = θ(x, y) satisfies the linear Helmholtz equation

∂2θ

∂x2 +
∂2θ

∂y2 = f (k)w.
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5.
∂2u

∂x2
+
∂2u

∂y2
= unf

(( u

w

))
,

∂2w

∂x2
+
∂2w

∂y2
= wng

(( u

w

))
.

For f (z) = kz–m and g(z) = –kzn–m, the system describes an nth-order chemical reaction
(of order n–m in the component u and of order m in the component w); to n = 2 and m = 1
there corresponds a second-order reaction, which often occurs in applications.

1◦. Solution:

u = r
2

1–nU (θ), w = r
2

1–nW (θ), r =
√

(x + C1)2 + (y + C2)2, θ =
y + C2

x + C1
,

where C1 and C2 are arbitrary constants, and the functions y = y(ξ) and z = z(ξ) are
determined by the autonomous system of ordinary differential equations

U ′′
θθ +

4
(1 – n)2 U = Unf

(
U

W

)
,

W ′′
θθ +

4
(1 – n)2 W = W ng

(
U

W

)
.

2◦. Solution:
u = kζ(x, y), w = ζ(x, y),

where k is a root of the algebraic (transcendental) equation

kn–1f (k) = g(k),

and the function ζ = ζ(x, y) satisfies the equation with a power-law nonlinearity

∂2ζ

∂x2 +
∂2ζ

∂y2 = g(k)ζn.

T10.3.3-3. Other systems.

6.
∂2u

∂x2
+
∂2u

∂y2
= uf(unwm),

∂2w

∂x2
+
∂2w

∂y2
= wg(unwm).

Solution in multiplicative form:

u = em(a1x+b1y)ξ(z), w = e–n(a1x+b1y)η(z), z = a2x + b2y,

where a1, a2, b1, and b2 are arbitrary constants, and the functions ξ = ξ(z) and η = η(z) are
determined by the autonomous system of ordinary differential equations

(a2
2 + b2

2)ξ′′zz + 2m(a1a2 + b1b2)ξ′z +m2(a2
1 + b2

1)ξ = ξf (ξnηm),

(a2
2 + b2

2)η′′zz – 2n(a1a2 + b1b2)η′z + n2(a2
1 + b2

1)η = ηg(ξnηm).
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7.
∂2u

∂x2
+
∂2u

∂y2
= uf(u2 + w2) – wg(u2 + w2),

∂2w

∂x2
+
∂2w

∂y2
= wf(u2 + w2) + ug(u2 + w2).

1◦. A periodic solution in y:

u = r(x) cos
[
θ(x) + C1y + C2

]
, w = r(x) sin

[
θ(x) + C1y + C2

]
,

where C1 and C2 are arbitrary constants, and the functions r = r(x) and θ = θ(x) are
determined by the autonomous system of ordinary differential equations

r′′xx = r(θ′x)2 + C2
1r + rf (r2),

rθ′′xx = –2r′xθ
′
x + rg(r2).

2◦. Solution (generalizes the solution of Item 1◦):

u = r(z) cos
[
θ(z) + C1y + C2

]
, w = r(z) sin

[
θ(z) + C1y + C2

]
, z = k1x + k2y,

where C1, C2, k1, and k2 are arbitrary constants, and the functions r = r(z) and θ = θ(z)
are determined by the autonomous system of ordinary differential equations

(k2
1 + k2

2 )r′′zz = k2
1r(θ′z)

2 + r(k2θ
′
z + C1)2 + rf (r2),

(k2
1 + k2

2)rθ′′zz = –2
[
(k2

1 + k2
2 )θ′z + C1k2

]
r′z + rg(r2).

8.
∂2u

∂x2
+
∂2u

∂y2
= uf(u2 – w2) + wg(u2 –w2),

∂2w

∂x2
+
∂2w

∂y2
= wf(u2 – w2) + ug(u2 – w2).

Solution:

u = r(z) cosh
[
θ(z) + C1y + C2

]
, w = r(z) sinh

[
θ(z) + C1y + C2

]
, z = k1x + k2y,

where C1, C2, k1, and k2 are arbitrary constants, and the functions r = r(z) and θ = θ(z)
are determined by the autonomous system of ordinary differential equations

(k2
1 + k2

2)r′′zz + k2
1r(θ′z)

2 + r(k2θ
′
z + C1)2 = rf (r2),

(k2
1 + k2

2)rθ′′zz + 2
[
(k2

1 + k2
2)θ′z + C1k2

]
r′z = rg(r2).

T10.3.4. Systems of the Form
∂2u
∂t2 = a

xn
∂
∂x

(
xn ∂u
∂x

)
+ F (u,w),

∂2w
∂t2 = b

xn
∂
∂x

(
xn ∂w
∂x

)
+ G(u,w)

T10.3.4-1. Arbitrary functions depend on a linear combination of the unknowns.

1.
∂2u

∂t2
=
a

xn

∂

∂x

((
xn∂u

∂x

))
+ uf(bu – cw) + g(bu – cw),

∂2w

∂t2
=
a

xn

∂

∂x

((
xn∂w

∂x

))
+ wf(bu – cw) + h(bu – cw).

1◦. Solution:
u = ϕ(t) + cθ(x, t), w = ψ(t) + bθ(x, t),
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where ϕ = ϕ(t) and ψ = ψ(t) are determined by the autonomous system of ordinary
differential equations

ϕ′′
tt = ϕf (bϕ – cψ) + g(bϕ – cψ),

ψ′′
tt = ψf (bϕ – cψ) + h(bϕ – cψ),

and the function θ = θ(x, t) satisfies linear equation

∂2θ

∂t2 =
a

xn
∂

∂x

(
xn
∂θ

∂x

)
+ f (bϕ – cψ)θ.

For f = const, this equation can be solved by separation of variables.

2◦. Let us multiply the first equation by b and the second one by –c and add the results
together to obtain

∂2ζ

∂t2 =
a

xn
∂

∂x

(
xn
∂ζ

∂x

)
+ ζf (ζ) + bg(ζ) – ch(ζ), ζ = bu – cw. (1)

This equation will be considered in conjunction with the first equation of the original system

∂2u

∂t2 =
a

xn
∂

∂x

(
xn
∂u

∂x

)
+ uf (ζ) + g(ζ). (2)

Equation (1) can be treated separately. Given a solution ζ = ζ(x, t) to equation (1), the
function u = u(x, t) can be determined by solving equation (2) and the function w = w(x, t)
is found as w = (bu – ζ)/c.

Note three important solutions to equation (1):
(i) In the general case, equation (1) admits a spatially homogeneous solution ζ = ζ(t).

The corresponding solution to the original system is given in Item 1◦ in another form.
(ii) In the general case, equation (1) admits a steady-state solution ζ = ζ(x). The

corresponding exact solutions to equation (2) are expressed as u = u0(x) +
∑
e–βntun(x)

and u = u0(x) +
∑

cos(βnt)u
(1)
n (x) +

∑
sin(βnt)u

(2)
n (x).

(iii) If the condition ζf (ζ) + bg(ζ) – ch(ζ) = k1ζ + k0 holds, equation (1) is linear,

∂2ζ

∂t2 =
a

xn
∂

∂x

(
xn
∂ζ

∂x

)
+ k1ζ + k0,

and, hence, can be solved by separation of variables.

2.
∂2u

∂t2
=
a

xn

∂

∂x

((
xn∂u

∂x

))
+ eλuf(λu – σw),

∂2w

∂t2
=
b

xn

∂

∂x

((
xn∂w

∂x

))
+ eσwg(λu – σw).

1◦. Solution:

u = y(ξ) –
2
λ

ln(C1t + C2), w = z(ξ) –
2
σ

ln(C1t + C2), ξ =
x

C1t + C2
,

where C1 and C2 are arbitrary constants, and the functions y = y(ξ) and z = z(ξ) are
determined by the system of ordinary differential equations

C2
1 (ξ2y′ξ)

′
ξ + 2C2

1λ
–1 = aξ–n(ξny′ξ)

′
ξ + eλyf (λy – σz),

C2
1 (ξ2z′ξ)

′
ξ + 2C2

1σ
–1 = bξ–n(ξnz′ξ)

′
ξ + eσzg(λy – σz).
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2◦. Solution with b = a:

u = θ(x, t), w =
λ

σ
θ(x, t) –

k

σ
,

where k is a root of the algebraic (transcendental) equation

λf (k) = σe–kg(k),

and the function θ = θ(x, t) is described by the equation

∂2θ

∂t2 =
a

xn
∂

∂x

(
xn
∂θ

∂x

)
+ f (k)eλθ .

This equation is solvable for n = 0; for its exact solutions, see Polyanin and Zaitsev (2004).

T10.3.4-2. Arbitrary functions depend on the ratio of the unknowns.

3.
∂2u

∂t2
=
a

xn

∂

∂x

((
xn∂u

∂x

))
+uf

((
u

w

))
,

∂2w

∂t2
=
b

xn

∂

∂x

((
xn∂w

∂x

))
+wg

((
u

w

))
.

1◦. Periodic multiplicative separable solution:

u = [C1 cos(kt) + C2 sin(kt)]y(x), w = [C1 cos(kt) + C2 sin(kt)]z(x),

where C1, C2, and k are arbitrary constants and the functions y = y(x) and z = z(x) are
determined by the system of ordinary differential equations

ax–n(xny′x)′x + k2y + yf (y/z) = 0,

bx–n(xnz′x)′x + k2z + zg(y/z) = 0.

2◦. Multiplicative separable solution:

u = [C1 exp(kt) + C2 exp(–kt)]y(x), w = [C1 exp(kt) + C2 exp(–kt)]z(x),

where C1, C2, and k are arbitrary constants and the functions y = y(x) and z = z(x) are
determined by the system of ordinary differential equations

ax–n(xny′x)′x – k2y + yf (y/z) = 0,

bx–n(xnz′x)′x – k2z + zg(y/z) = 0.

3◦. Degenerate multiplicative separable solution:

u = (C1t + C2)y(x), w = (C1t + C2)z(x),

where the functions y = y(x) and z = z(x) are determined by the system of ordinary
differential equations

ax–n(xny′x)′x + yf (y/z) = 0,

bx–n(xnz′x)′x + zg(y/z) = 0.
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4◦. Multiplicative separable solution:

u = x
1–n

2 [C1Jν(kx) + C2Yν(kx)]ϕ(t), ν = 1
2 |n – 1|,

w = x
1–n

2 [C1Jν(kx) + C2Yν(kx)]ψ(t),

where C1, C2, and k are arbitrary constants, Jν (z) and Yν(z) are Bessel functions, and the
functions ϕ = ϕ(t) and ψ = ψ(t) are determined by the autonomous system of ordinary
differential equations

ϕ′′
tt = –ak2ϕ + ϕf (ϕ/ψ),

ψ′′
tt = –bk2ψ + ψg(ϕ/ψ).

5◦. Multiplicative separable solution:

u = x
1–n

2 [C1Iν(kx) + C2Kν (kx)]ϕ(t), ν = 1
2 |n – 1|,

w = x
1–n

2 [C1Iν(kx) + C2Kν (kx)]ψ(t),

where C1, C2, and k are arbitrary constants, Iν(z) andKν(z) are modified Bessel functions,
and the functions ϕ = ϕ(t) and ψ = ψ(t) are determined by the autonomous system of
ordinary differential equations

ϕ′′
tt = ak2ϕ + ϕf (ϕ/ψ),

ψ′′
tt = bk2ψ + ψg(ϕ/ψ).

6◦. Solution with b = a:
u = kθ(x, t), w = θ(x, t),

where k is a root of the algebraic (transcendental) equation f (k) = g(k), and the function
θ = θ(x, t) is described by the linear Klein–Gordon equation

∂2θ

∂t2 =
a

xn
∂

∂x

(
xn
∂θ

∂x

)
+ f (k)θ.

4.
∂2u

∂t2
=
a

xn

∂

∂x

((
xn∂u

∂x

))
+ uf

((
u

w

))
+
u

w
h

((
u

w

))
,

∂2w

∂t2
=
a

xn

∂

∂x

((
xn ∂u

∂w

))
+ wg

((
u

w

))
+ h
((
u

w

))
.

Solution:
u = kθ(x, t), w = θ(x, t),

where k is a root of the algebraic (transcendental) equation f (k) = g(k), and the function
θ = θ(x, t) is described by the linear equation

∂2θ

∂t2 =
a

xn
∂

∂x

(
xn
∂θ

∂x

)
+ f (k)θ + h(k).
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5.
∂2u

∂t2
=
a

xn

∂

∂x

((
xn∂u

∂x

))
+ukf

((
u

w

))
,
∂2w

∂t2
=
b

xn

∂

∂x

((
xn∂w

∂x

))
+wkg

((
u

w

))
.

Self-similar solution:

u = (C1t + C2)
2

1–k y(ξ), w = (C1t + C2)
2

1–k z(ξ), ξ =
x

C1t + C2
,

where C1 and C2 are arbitrary constants, and the functions y = y(ξ) and z = z(ξ) are
determined by the system of ordinary differential equations

C2
1ξ

2y′′ξξ +
2C2

1 (k + 1)

k – 1
ξy′ξ +

C2
1 (k + 1)

(k – 1)2 y =
a

ξn
(ξny′ξ)

′
ξ + ykf

( y
z

)
,

C2
1ξ

2z′′ξξ +
2C2

1 (k + 1)

k – 1
ξz′ξ +

C2
1 (k + 1)

(k – 1)2 z =
b

ξn
(ξnz′ξ)

′
ξ + zkg

( y
z

)
.

T10.3.4-3. Arbitrary functions depend on the product of powers of the unknowns.

6.
∂2u

∂t2
=
a

xn

∂

∂x

((
xn∂u

∂x

))
+ uf(x,ukwm),

∂2w

∂t2
=
b

xn

∂

∂x

((
xn∂w

∂x

))
+ wg(x,ukwm).

Multiplicative separable solution:

u = e–mλty(x), w = ekλtz(x),

where λ is an arbitrary constant and the functions y = y(x) and z = z(x) are determined by
the system of ordinary differential equations

ax–n(xny′x)′x –m2λ2y + yf (x, ykzm) = 0,

bx–n(xnz′x)′x – k2λ2z + zg(x, ykzm) = 0.

T10.3.4-4. Arbitrary functions depend on the u2 � w2.

7.
∂2u

∂t2
=
a

xn

∂

∂x

((
xn∂u

∂x

))
+ uf(u2 + w2) – wg(u2 + w2),

∂2w

∂t2
=
a

xn

∂

∂x

((
xn∂w

∂x

))
+ wf(u2 + w2) + ug(u2 + w2).

1◦. Periodic solution in t:

u = r(x) cos
[
θ(x) + C1t + C2

]
, w = r(x) sin

[
θ(x) + C1t + C2

]
,

where C1 and C2 are arbitrary constants, and the functions r = r(x) and θ(x) are determined
by the system of ordinary differential equations

ar′′xx – ar(θ′x)2 +
an

x
r′x + C2

1r + rf (r2) = 0,

arθ′′xx + 2ar′xθ
′
x +

an

x
rθ′x + rg(r2) = 0.

2◦. For n = 0, there is an exact solution of the form

u = r(z) cos
[
θ(z) + C1t + C2

]
, w = r(z) sin

[
θ(z) + C1t + C2

]
, z = kx – λt.
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8.
∂2u

∂t2
=
a

xn

∂

∂x

((
xn∂u

∂x

))
+ uf(u2 – w2) + wg(u2 – w2),

∂2w

∂t2
=
a

xn

∂

∂x

((
xn∂w

∂x

))
+ wf(u2 –w2) + ug(u2 –w2).

1◦. Solution:

u = r(x) cosh
[
θ(x) + C1t + C2

]
, w = r(x) sinh

[
θ(x) + C1t + C2

]
,

where C1 and C2 are arbitrary constants, and the functions r = r(x) and θ(x) are determined
by the system of ordinary differential equations

ar′′xx + ar(θ′x)2 +
an

x
r′x – C2

1r + rf (r2) = 0,

arθ′′xx + 2ar′xθ
′
x +

an

x
rθ′x + rg(r2) = 0.

2◦. For n = 0, there is an exact solution of the form

u = r(z) cosh
[
θ(z) + C1t + C2

]
, w = r(z) sinh

[
θ(z) + C1t + C2

]
, z = kx – λt.

T10.3.5. Other Systems

1. ax
∂u

∂x
+ ay

∂u

∂y
=
∂2u

∂x2
+
∂2u

∂y2
– f(u,w),

ax
∂w

∂x
+ ay

∂w

∂y
=
∂2w

∂x2
+
∂2w

∂y2
– g(u,w).

Solution:
u(x, y) = U (z), w(x, y) = W (z), z = k1x + k2y,

where k1 and k2 are arbitrary constants, and the functions U = U (z) and W = W (z) are
described by the system of ordinary differential equations

azU ′
z = (k2

1 + k2
2 )U ′′ – f (U ,W ), azW ′

z = (k2
1 + k2

2 )W ′′ – g(U ,W ).

2.
∂u

∂t
=
∂

∂x

[[
f
((
t,
u

w

))∂u

∂x

]]
+ ug

((
t,
u

w

))
,

∂w

∂t
=
∂

∂x

[[
f
((
t,
u

w

))∂w

∂x

]]
+ wh

((
t,
u

w

))
.

Solution:

u = ϕ(t) exp

[∫
h(t,ϕ(t)) dt

]
θ(x, τ ), w = exp

[∫
h(t,ϕ(t)) dt

]
θ(x, τ ), τ =

∫
f (t,ϕ(t)) dt,

where the function ϕ = ϕ(t) is described by the ordinary differential equation

ϕ′
t = [g(t,ϕ) – h(t,ϕ)]ϕ,

and the function θ = θ(x, τ ) satisfies the linear heat equation

∂θ

∂τ
=
∂2θ

∂x2 .
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T10.4. Systems of General Form
T10.4.1. Linear Systems

1.
∂u

∂t
= L[u] + f1(t)u + g1(t)w,

∂w

∂t
= L[w] + f2(t)u + g2(t)w.

Here, L is an arbitrary linear differential operator with respect to the coordinates x1, . . . ,xn
(of any order in derivatives), whose coefficients can be dependent on x1, . . . ,xn, t. It is
assumed that L[const] = 0.

Solution:
u = ϕ1(t)U (x1, . . . ,xn, t) + ϕ2(t)W (x1, . . . ,xn, t),
w = ψ1(t)U (x1, . . . ,xn, t) + ψ2(t)W (x1, . . . ,xn, t),

where the two pairs of functions ϕ1 = ϕ1(t), ψ1 = ψ1(t) and ϕ2 = ϕ2(t), ψ2 = ψ2(t) are
linearly independent (fundamental) solutions to the system of first-order linear ordinary
differential equations

ϕ′
t = f1(t)ϕ + g1(t)ψ,

ψ′
t = f2(t)ϕ + g2(t)ψ,

and the functions U = U (x1, . . . ,xn, t) and W = W (x1, . . . ,xn, t) satisfy the independent
linear equations

∂U

∂t
= L[U ],

∂W

∂t
= L[W ].

2.
∂2u

∂t2
= L[u] + a1u + b1w,

∂2w

∂t2
= L[w] + a2u + b2w.

Here, L is an arbitrary linear differential operator with respect to the coordinates x1, . . . ,xn
(of any order in derivatives).

Solution:

u =
a1 – λ2

a2(λ1 – λ2)
θ1 –

a1 – λ1

a2(λ1 – λ2)
θ2, w =

1
λ1 – λ2

(
θ1 – θ2

)
,

where λ1 and λ2 are roots of the quadratic equation

λ2 – (a1 + b2)λ + a1b2 – a2b1 = 0,

and the functions θn = θn(x1, . . . ,xn, t) satisfy the independent linear equations

∂2θ1

∂t2 = L[θ1] + λ1θ1,
∂2θ2

∂t2 = L[θ2] + λ2θ2.

T10.4.2. Nonlinear Systems of Two Equations Involving the First
Derivatives in t

1.
∂u

∂t
= L[u] + uf(t, bu – cw) + g(t, bu – cw),

∂w

∂t
= L[w] + wf(t, bu – cw) + h(t, bu – cw).

Here, L is an arbitrary linear differential operator (of any order) with respect to the spatial
variables x1, . . . ,xn.
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1◦. Solution:

u = ϕ(t) + c exp

[∫
f (t, bϕ – cψ) dt

]
θ(x, t), w = ψ(t) + b exp

[∫
f (t, bϕ – cψ) dt

]
θ(x, t),

where ϕ =ϕ(t) and ψ =ψ(t) are determined by the system of ordinary differential equations

ϕ′
t = ϕf (t, bϕ – cψ) + g(t, bϕ – cψ),

ψ′
t = ψf (t, bϕ – cψ) + h(t, bϕ – cψ),

and the function θ = θ(x1, . . . ,xn, t) satisfies linear equation

∂θ

∂t
= L[θ].

Remark 1. The coefficients of the linear differential operator L can be dependent on x1, . . . , xn, t.

2◦. Let us multiply the first equation by b and the second one by –c and add the results
together to obtain

∂ζ

∂t
= L[ζ] + ζf (t, ζ) + bg(t, ζ) – ch(t, ζ), ζ = bu – cw. (1)

This equation will be considered in conjunction with the first equation of the original system

∂u

∂t
= L[u] + uf (t, ζ) + g(t, ζ). (2)

Equation (1) can be treated separately. Given a solution of this equation, ζ = ζ(x1, . . . ,xn, t),
the function u = u(x1, . . . ,xn, t) can be determined by solving the linear equation (2) and
the function w = w(x1, . . . ,xn, t) is found as w = (bu – ζ)/c.

Remark 2. Let L be a constant-coefficient differential operator with respect to the independent variable
x = x1 and let the condition

∂

∂t

[
ζf (t, ζ) + bg(t, ζ) – ch(t, ζ)

]
= 0

hold true (for example, it is valid if the functions f , g, h are not implicitly dependent on t). Then equation (1)
admits an exact, traveling-wave solution ζ = ζ(z), where z = kx – λt with arbitrary constants k and λ.

2.
∂u

∂t
= L1[u] + uf

((
u

w

))
,

∂w

∂t
= L2[w] + wg

((
u

w

))
.

Here, L1 andL2 are arbitrary constant-coefficient linear differential operators (of any order)
with respect to x.

1◦. Solution:
u = ekx–λty(ξ), w = ekx–λtz(ξ), ξ = βx – γt,

where k, λ, β, and γ are arbitrary constants and the functions y = y(ξ) and z = z(ξ) are
determined by the system of ordinary differential equations

M1[y] + λy + yf (y/z) = 0, M2[z] + λz + zg(y/z) = 0,

M1[y] = e–kxL1[ekxy(ξ)], M2[z] = e–kxL2[ekxz(ξ)].

To the special case k = λ = 0 there corresponds a traveling-wave solution.

2◦. If the operators L1 and L2 contain only even derivatives, there are solutions of the form

u = [C1 sin(kx) + C2 cos(kx)]ϕ(t), w = [C1 sin(kx) + C2 cos(kx)]ψ(t);
u = [C1 exp(kx) + C2 exp(–kx)]ϕ(t), w = [C1 exp(kx) + C2 exp(–kx)]ψ(t);
u = (C1x + C2)ϕ(t), w = (C1x + C2)ψ(t),

where C1, C2, and k are arbitrary constants. Note that the third solution is degenerate.
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3.
∂u

∂t
= L[u] + uf

((
t,
u

w

))
,

∂w

∂t
= L[w] + wg

((
t,
u

w

))
.

Here, L is an arbitrary linear differential operator with respect to the coordinates x1,. . . , xn
(of any order in derivatives), whose coefficients can be dependent on x1,. . . , xn, t:

L[u] =
∑

Ak1...kn(x1, . . . ,xn, t)
∂k1+···+knu

∂xk1
1 . . . ∂xkn

n

. (1)

1◦. Solution:

u = ϕ(t) exp

[∫
g(t,ϕ(t)) dt

]
θ(x1, . . . ,xn, t),

w = exp

[∫
g(t,ϕ(t)) dt

]
θ(x1, . . . ,xn, t),

(2)

where the function ϕ = ϕ(t) is described by the first-order nonlinear ordinary differential
equation

ϕ′
t = [f (t,ϕ) – g(t,ϕ)]ϕ, (3)

and the function θ = θ(x1, . . . ,xn, t) satisfies the linear equation

∂θ

∂t
= L[θ].

2◦. The transformation

u = a1(t)U + b1(t)W , w = a2(t)U + b2(t)W ,

where an(t) and bn(t) are arbitrary functions (n = 1, 2), leads to an equation of the similar
form for U and W .

Remark. The coefficients of the operator (1) can also depend on the ratio of the unknowns u/w, Ak1...kn =
Ak1...kn (x1, . . . , xn, t,u/w) (in this case, L will be a quasilinear operator). Then there also exists a solution
of the form (2), where ϕ = ϕ(t) is described by the ordinary differential equation (3) and θ = θ(x1, . . . ,xn, t)
satisfies the linear equation

∂θ

∂t
= L◦[θ], L◦ = Lu/w=ϕ.

4.
∂u

∂t
= L[u] + uf

((
u

w

))
+ g
((
u

w

))
,

∂w

∂t
= L[w] + wf

((
u

w

))
+ h
((
u

w

))
.

Here, L is an arbitrary linear differential operator with respect to x1, . . . , xn (of any order
in derivatives), whose coefficients can be dependent on x1, . . . , xn, t:

L[u] =
∑

Ak1...kn(x1, . . . ,xn, t)
∂k1+···+knu

∂xk1
1 . . . ∂xkn

n

,

where k1 + · · · + kn ≥ 1.
Let k be a root of the algebraic (transcendental) equation

g(k) = kh(k). (1)

1◦. Solution if f (k) ≠ 0:

u(x, t) = k

(
exp[f (k)t]θ(x, t) –

h(k)
f (k)

)
, w(x, t) = exp[f (k)t]θ(x, t) –

h(k)
f (k)

,
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where the function θ = θ(x1, . . . ,xn, t) satisfies the linear equation

∂θ

∂t
= L[θ]. (2)

2◦. Solution if f (k) = 0:

u(x, t) = k[θ(x, t) + h(k)t], w(x, t) = θ(x, t) + h(k)t,

where the function θ = θ(x1, . . . ,xn, t) satisfies the linear equation (2).

5.
∂u

∂t
=L[u]+uf

((
t,
u

w

))
+
u

w
h

((
t,
u

w

))
,
∂w

∂t
=L[w]+wg

((
t,
u

w

))
+h
((
t,
u

w

))
.

Solution:

u = ϕ(t)G(t)

[
θ(x1, . . . ,xn, t) +

∫
h(t,ϕ)
G(t)

dt

]
, G(t) = exp

[∫
g(t,ϕ) dt

]
,

w = G(t)

[
θ(x1, . . . ,xn, t) +

∫
h(t,ϕ)
G(t)

dt

]
,

where the function ϕ = ϕ(t) is described by the first-order nonlinear ordinary differential
equation

ϕ′
t = [f (t,ϕ) – g(t,ϕ)]ϕ,

and the function θ = θ(x1, . . . ,xn, t) satisfies the linear equation

∂θ

∂t
= L[θ].

6.
∂u

∂t
= L[u] + uf

((
t,
u

w

))
lnu + ug

((
t,
u

w

))
,

∂w

∂t
= L[w] + wf

((
t,
u

w

))
lnw + wh

((
t,
u

w

))
.

Solution:

u(x, t) = ϕ(t)ψ(t)θ(x1, . . . ,xn, t), w(x, t) = ψ(t)θ(x1, . . . ,xn, t),

where the functions ϕ=ϕ(t) andψ =ψ(t) are determined by solving the ordinary differential
equations

ϕ′
t = ϕ[g(t,ϕ) – h(t,ϕ) + f (t,ϕ) lnϕ],

ψ′
t = ψ[h(t,ϕ) + f (t,ϕ) lnψ],

(1)

and the function θ = θ(x1, . . . ,xn, t) is determined by the differential equation

∂θ

∂t
= L[θ] + f (t,ϕ)θ ln θ. (2)

Given a solution to thefirst equation in (1), the second equation can be solved with the change
of variable ψ = eζ by reducing it to a linear equation for ζ . If L is a constant-coefficient
one-dimensional operator (n = 1) and f = const, then equation (2) has a traveling-wave
solution θ = θ(kx – λt).
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7. F1

((
w,

∂w

∂x
, . . . ,

∂mw

∂xm
,

1

uk

∂w

∂t
,

1

u

∂u

∂x
, . . . ,

1

u

∂nu

∂xn

))
= 0,

F2

((
w,

∂w

∂x
, . . . ,

∂mw

∂xm
,

1

uk

∂w

∂t
,

1

u

∂u

∂x
, . . . ,

1

u

∂nu

∂xn

))
= 0.

Solution:
w = W (z), u = [ϕ′(t)]1/kU (z), z = x + ϕ(t),

where ϕ(t) is an arbitrary function, and the functions W (z) and U (z) are determined by the
autonomous system of ordinary differential equations

F1
(
W ,W ′

z, . . . ,W
(m)
z ,W ′

z/U
k,U ′

z/U , . . . ,U (n)
z /U

)
= 0,

F2
(
W ,W ′

z, . . . ,W
(m)
z ,W ′

z/U
k,U ′

z/U , . . . ,U (n)
z /U

)
= 0.

T10.4.3. Nonlinear Systems of Two Equations Involving the Second
Derivatives in t

1.
∂2u

∂t2
= L[u] + uf(t,au – bw) + g(t,au – bw),

∂2w

∂t2
= L[w] + wf(t,au – bw) + h(t,au – bw).

Here, L is an arbitrary linear differential operator (of any order) with respect to the spatial
variables x1, . . . ,xn, whose coefficients can be dependent on x1, . . . ,xn, t. It is assumed
that L[const] = 0.

1◦. Solution:

u = ϕ(t) + aθ(x1, . . . ,xn, t), w = ψ(t) + bθ(x1, . . . ,xn, t),

where ϕ =ϕ(t) and ψ =ψ(t) are determined by the system of ordinary differential equations

ϕ′′
tt = ϕf (t, aϕ – bψ) + g(t, aϕ – bψ),

ψ′′
tt = ψf (t, aϕ – bψ) + h(t, aϕ – bψ),

and the function θ = θ(x1, . . . ,xn, t) satisfies linear equation

∂2θ

∂t2 = L[θ] + f (t, aϕ – bψ)θ.

2◦. Let us multiply the first equation by a and the second one by –b and add the results
together to obtain

∂2ζ

∂t2 = L[ζ] + ζf (t, ζ) + ag(t, ζ) – bh(t, ζ), ζ = au – bw. (1)

This equation will be considered in conjunction with the first equation of the original system

∂2u

∂t2 = L[u] + uf (t, ζ) + g(t, ζ). (2)
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Equation (1) can be treated separately. Given a solution ζ = ζ(x, t) to equation (1), the
function u = u(x1, . . . ,xn, t) can be determined by solving the linear equation (2) and the
function w = w(x1, . . . ,xn, t) is found as w = (au – ζ)/b.

Note three important cases where equation (1) admits exact solutions:
(i) Equation (1) admits a spatially homogeneous solution ζ = ζ(t).
(ii) Suppose the coefficients of L and the functions f , g, h are not implicitly dependent

on t. Then equation (1) admits a steady-state solution ζ = ζ(x1, . . . ,xn).
(iii) If the condition ζf (t, ζ) + bg(t, ζ) – ch(t, ζ) = k1ζ + k0 holds, equation (1) is linear.

If the operator L is constant-coefficient, the method of separation of variables can be used
to obtain solutions.

2.
∂2u

∂t2
= L1[u] + uf

((
u

w

))
,

∂2w

∂t2
= L2[w] + wg

((
u

w

))
.

Here, L1 andL2 are arbitrary constant-coefficient linear differential operators (of any order)
with respect to x. It is assumed that L1[const] = 0 and L2[const] = 0.

1◦. Solution in the form of the product of two waves traveling at different speeds:

u = ekx–λty(ξ), w = ekx–λtz(ξ), ξ = βx – γt,

where k, λ, β, and γ are arbitrary constants, and the functions y = y(ξ) and z = z(ξ) are
determined by the system of ordinary differential equations

γ2y′′ξξ + 2λγy′ξ + λ2y = M1[y] + yf (y/z), γ2z′′ξξ + 2λγz′ξ + λ2z = M2[z] + zg(y/z),

M1[y] = e–kxL1[ekxy(ξ)], M2[z] = e–kxL2[ekxz(ξ)].

To the special case k = λ = 0 there corresponds a traveling-wave solution.

2◦. Periodic multiplicative separable solution:

u = [C1 sin(kt) + C2 cos(kt)]ϕ(x), w = [C1 sin(kt) + C2 cos(kt)]ψ(x),

where C1, C2, and k are arbitrary constants and the functions ϕ = ϕ(x) and ψ = ψ(x) are
determined by the system of ordinary differential equations

L1[ϕ] + k2ϕ + ϕf (ϕ/ψ) = 0,

L2[ψ] + k2ψ + ψg(ϕ/ψ) = 0.

3◦. Multiplicative separable solution:

u = [C1 sinh(kt) + C2 cosh(kt)]ϕ(x), w = [C1 sinh(kt) + C2 cosh(kt)]ψ(x),

where C1, C2, and k are arbitrary constants and the functions ϕ = ϕ(x) and ψ = ψ(x) are
determined by the system of ordinary differential equations

L1[ϕ] – k2ϕ + ϕf (ϕ/ψ) = 0,

L2[ψ] – k2ψ + ψg(ϕ/ψ) = 0.

4◦. Degenerate multiplicative separable solution:

u = (C1t + C2)ϕ(x), w = (C1t + C2)ψ(x),
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where C1 and C2 are arbitrary constants and the functions ϕ = ϕ(x) and ψ = ψ(x) are
determined by the system of ordinary differential equations

L1[ϕ] + ϕf (ϕ/ψ) = 0, L2[ψ] + ψg(ϕ/ψ) = 0.

Remark 1. The coefficients of L1, L2 and the functions f and g in Items 2◦–4◦ can be dependent on x.

Remark 2. If L1 and L2 contain only even derivatives, there are solutions of the form

u = [C1 sin(kx) + C2 cos(kx)]U (t), w = [C1 sin(kx) + C2 cos(kx)]W (t);

u = [C1 exp(kx) + C2 exp(–kx)]U (t), w = [C1 exp(kx) + C2 exp(–kx)]W (t);

u = (C1x + C2)U (t), w = (C1x + C2)W (t),

where C1, C2, and k are arbitrary constants. Note that the third solution is degenerate.

3.
∂2u

∂t2
= L[u] + uf

((
t,
u

w

))
,

∂2w

∂t2
= L[w] + wg

((
t,
u

w

))
.

Here, L is an arbitrary linear differential operator with respect to the coordinates x1, . . . ,xn
(of any order in derivatives), whose coefficients can be dependent on the coordinates.

Solution:
u = ϕ(t)θ(x1, . . . ,xn),
w = ψ(t)θ(x1, . . . ,xn),

where the functions ϕ = ϕ(t) and ψ = ψ(t) are described by the nonlinear system of
second-order ordinary differential equations

ϕ′′
tt = aϕ + ϕf (t,ϕ/ψ),

ψ′′
tt = aψ + ψg(t,ϕ/ψ),

a is an arbitrary constant, and the function θ = θ(x1, . . . ,xn) satisfies the linear steady-state
equation

L[θ] = aθ.

4.
∂2u

∂t2
= L[u] + uf

((
u

w

))
+ g
((
u

w

))
,

∂2w

∂t2
= L[w] + wf

((
u

w

))
+ h
((
u

w

))
.

Here, L is an arbitrary linear differential operator with respect to the coordinates x1, . . . , xn
(of any order in derivatives), whose coefficients can be dependent on x1, . . . , xn, t.

Solution:
u = kθ(x1, . . . ,xn, t), w = θ(x1, . . . ,xn, t),

where k is a root of the algebraic (transcendental) equation g(k) = kh(k) and the function
θ = θ(x, t) satisfies the linear equation

∂2θ

∂t2 = L[θ] + f (k)w + h(k).

5.
∂2u

∂t2
= L[u] + au lnu + uf

((
t,
u

w

))
,

∂2w

∂t2
= L[w] + aw lnw +wg

((
t,
u

w

))
.

Here, L is an arbitrary linear differential operator with respect to the coordinates x1, . . . ,xn
(of any order in derivatives), whose coefficients can be dependent on the coordinates.
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Solution:
u = ϕ(t)θ(x1, . . . ,xn),
w = ψ(t)θ(x1, . . . ,xn),

where the functions ϕ = ϕ(t) and ψ = ψ(t) are described by the nonlinear system of
second-order ordinary differential equations

ϕ′′
tt = aϕ lnϕ + bϕ + ϕf (t,ϕ/ψ),

ψ′′
tt = aψ lnψ + bψ + ψg(t,ϕ/ψ),

b is an arbitrary constant, and the function θ = θ(x1, . . . ,xn) satisfies the steady-state
equation

L[θ] + aθ ln θ – bθ = 0.

T10.4.4. Nonlinear Systems of Many Equations Involving the First
Derivatives in t

1.
∂um

∂t
= L[um] + umf(t,u1 – b1un, . . . ,un–1 – bn–1un)

+ gm(t,u1 – b1un, . . . ,un–1 – bn–1un), m = 1, . . . ,n.

The system involves n + 1 arbitrary functions f , g1, . . . , gn that depend on n arguments;
L is an arbitrary linear differential operator with respect to the spatial variables x1, . . . ,xn
(of any order in derivatives), whose coefficients can be dependent on x1, . . . ,xn, t. It is
assumed that L[const] = 0.

Solution:

um = ϕm(t) + exp
[∫

f (t,ϕ1 – b1ϕn, . . . ,ϕn–1 – bn–1ϕn) dt
]
θ(x1, . . . ,xn, t).

Here, the functions ϕm = ϕm(t) are determined by the system of ordinary differential
equations

ϕ′
m = ϕmf (t,ϕ1 – b1ϕn, . . . ,ϕn–1 – bn–1ϕn) + gm(t,ϕ1 – b1ϕn, . . . ,ϕn–1 – bn–1ϕn),

where m = 1, . . . ,n, the prime denotes the derivative with respect to t, and the function
θ = θ(x1, . . . ,xn, t) satisfies the linear equation

∂θ

∂t
= L[θ].

2.
∂um

∂t
= L[um] + umfm

((
t,
u1

un
, . . . ,

un–1

un

))
+
um

un
g
((
t,
u1

un
, . . . ,

un–1

un

))
,

∂un

∂t
= L[un] + unfn

((
t,
u1

un
, . . . ,

un–1

un

))
+ g
((
t,
u1

un
, . . . ,

un–1

un

))
.

Here, m = 1, . . . ,n – 1 and the system involves n + 1 arbitrary functions f1, . . . , fn, g
that depend on n arguments; L is an arbitrary linear differential operator with respect to
the spatial variables x1, . . . ,xn (of any order in derivatives), whose coefficients can be
dependent on x1, . . . ,xn, t. It is assumed that L[const] = 0.
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Solution:

um = ϕm(t)Fn(t)
[
θ(x1, . . . ,xn, t) +

∫ g(t,ϕ1, . . . ,ϕn–1)
Fn(t)

dt
]
, m = 1, . . . ,n – 1,

un = Fn(t)
[
θ(x1, . . . ,xn, t) +

∫ g(t,ϕ1, . . . ,ϕn–1)
Fn(t)

dt
]
,

Fn(t) = exp
[∫

fn(t,ϕ1, . . . ,ϕn–1) dt
]
,

where the functions ϕm =ϕm(t) are described by the nonlinear system of first-order ordinary
differential equations

ϕ′
m = ϕm[fm(t,ϕ1, . . . ,ϕn–1) – fn(t,ϕ1, . . . ,ϕn–1)], m = 1, . . . ,n – 1,

and the function θ = θ(x1, . . . ,xn, t) satisfies the linear equation

∂θ

∂t
= L[θ].

3.
∂um

∂t
= L[um] +

n∑

k=1

ukfmk

((
t,
u1

un
, . . . ,

un–1

un

))
, m = 1, . . . ,n.

Here, the system involves n2 arbitrary functions fmk = fmk(t, z1, . . . , zn–1) that depend
on n arguments; L is an arbitrary linear differential operator with respect to the spatial
variables x1, . . . ,xn (of any order in derivatives), whose coefficients can be dependent on
x1, . . . ,xn, t. It is assumed that L[const] = 0.

Solution:

um(x1, . . . ,xn, t) = ϕm(t)F (t)θ(x1, . . . ,xn, t), m = 1, . . . ,n,

F (t) = exp

[∫ n∑

k=1

ϕk(t)fnk(t,ϕ1, . . . ,ϕn–1) dt

]
, ϕn(t) = 1,

where the functions ϕm =ϕm(t) are described by the nonlinear system of first-order ordinary
differential equations

ϕ′
m =

n∑

k=1

ϕkfmk(t,ϕ1, . . . ,ϕn–1) – ϕm

n∑

k=1

ϕkfnk(t,ϕ1, . . . ,ϕn–1), m = 1, . . . ,n – 1,

and the function θ = θ(x1, . . . ,xn, t) satisfies the linear equation

∂θ

∂t
= L[θ].
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Chapter T11

Integral Equations

T11.1. Linear Equations of the First Kind
with Variable Limit of Integration

1.
∫∫ x

a
(x – t)y(t)dt = f(x), f(a) = f ′

x(a) = 0.

Solution: y(x) = f ′′xx(x).

2.
∫∫ x

a
(Ax + Bt + C)y(t) dt = f(x), f(a) = 0.

1◦. Solution for B ≠ –A:

y(x) =
d

dx

{
[
(A + B)x + C

]– A
A+B

∫ x

a

[
(A +B)t + C

]– B
A+B f ′t(t) dt

}
.

2◦. Solution for B = –A:

y(x) =
1
C

d

dx

[
exp
(

–
A

C
x
) ∫ x

a
exp
(A
C
t
)
f ′t(t) dt

]
.

3.
∫∫ x

a
(x – t)ny(t) dt = f(x), n = 1, 2, . . .

It is assumed that the right-hand side of the equation satisfies the conditions f (a) = f ′x(a) =
· · · = f (n)

x (a) = 0.

Solution: y(x) =
1
n!
f (n+1)
x (x).

4.
∫∫ x

a

√
x – t y(t)dt = f(x), f(a) = 0.

Solution: y(x) =
2
π

d2

dx2

∫ x

a

f (t) dt√
x – t

.

5.
∫∫ x

a

y(t)dt√
x – t

= f(x).

Abel equation.
Solution:

y(x) =
1
π

d

dx

∫ x

a

f (t) dt√
x – t

=
f (a)

π
√
x – a

+
1
π

∫ x

a

f ′t(t) dt√
x – t

.

1385
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6.
∫∫ x

a
(x – t)λy(t)dt = f(x), f(a) = 0, 0 < λ < 1.

Solution: y(x) =
sin(πλ)
πλ

d2

dx2

∫ x

a

f (t) dt

(x – t)λ
.

7.
∫∫ x

a

y(t) dt

(x – t)λ
= f(x), 0 < λ < 1.

Generalized Abel equation.
Solution:

y(x) =
sin(πλ)
π

d

dx

∫ x

a

f (t) dt

(x – t)1–λ
=

sin(πλ)
π

[
f (a)

(x – a)1–λ
+
∫ x

a

f ′t(t) dt
(x – t)1–λ

]
.

8.
∫∫ x

a
eλ(x–t)y(t) dt = f(x), f(a) = 0.

Solution: y(x) = f ′x(x) – λf (x).

9.
∫∫ x

a
eλx+βty(t) dt = f(x), f(a) = 0.

Solution: y(x) = e–(λ+β)x
[
f ′x(x) – λf (x)

]
.

10.
∫∫ x

a

[[
eλ(x–t) – 1

]]
y(t) dt = f(x), f(a) = f ′

x(a) = 0.

Solution: y(x) = 1
λ f

′′
xx(x) – f ′x(x).

11.
∫∫ x

a

[[
eλ(x–t) + b

]]
y(t)dt = f(x), f(a) = 0.

For b = –1, see equation T11.1.10.
Solution for b ≠ –1:

y(x) =
f ′x(x)
b + 1

–
λ

(b + 1)2

∫ x

a
exp

[
λb

b + 1
(x – t)

]
f ′t(t) dt.

12.
∫∫ x

a

[[
eλ(x–t) – eμ(x–t)]]y(t)dt = f(x), f(a) = f ′

x(a) = 0.

Solution:

y(x) =
1

λ – μ

[
f ′′xx – (λ + μ)f ′x + λμf

]
, f = f (x).

13.
∫∫ x

a

y(t) dt√
eλx – eλt

= f(x), λ > 0.

Solution: y(x) =
λ

π

d

dx

∫ x

a

eλtf (t) dt√
eλx – eλt

.
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14.
∫∫ x

a
cosh[λ(x – t)]y(t)dt = f(x), f(a) = 0.

Solution: y(x) = f ′x(x) – λ2
∫ x

a
f (x) dx.

15.
∫∫ x

a

{{
cosh[λ(x – t)] – 1

}}
y(t) dt = f(x), f(a) = f ′

x(a) = f ′′
xx(x) = 0.

Solution: y(x) =
1
λ2 f

′′′
xxx(x) – f ′x(x).

16.
∫∫ x

a

{{
cosh[λ(x – t)] + b

}}
y(t) dt = f(x), f(a) = 0.

For b = 0, see equation T11.1.14. For b = –1, see equation T11.1.15.

1◦. Solution for b(b + 1) < 0:

y(x) =
f ′x(x)
b + 1

–
λ2

k(b + 1)2

∫ x

a
sin[k(x – t)]f ′t(t) dt, where k = λ

√
–b
b + 1

.

2◦. Solution for b(b + 1) > 0:

y(x) =
f ′x(x)
b + 1

–
λ2

k(b + 1)2

∫ x

a
sinh[k(x – t)]f ′t(t) dt, where k = λ

√
b

b + 1
.

17.
∫∫ x

a
cosh2[λ(x – t)]y(t)dt = f(x), f(a) = 0.

Solution:

y(x) = f ′x(x) –
2λ2

k

∫ x

a
sinh[k(x – t)]f ′t(t) dt, where k = λ

√
2.

18.
∫∫ x

a
sinh[λ(x – t)]y(t)dt = f(x), f(a) = f ′

x(a) = 0.

Solution: y(x) =
1
λ
f ′′xx(x) – λf (x).

19.
∫∫ x

a

{{
sinh[λ(x – t)] + b

}}
y(t)dt = f(x), f(a) = 0.

For b = 0, see equation T11.1.18.
Solution for b ≠ 0:

y(x) =
1
b
f ′x(x) +

∫ x

a
R(x – t)f ′t(t) dt,

R(x) =
λ

b2 exp

(
–
λx

2b

)[
λ

2bk
sinh(kx) – cosh(kx)

]
, k =

λ
√

1 + 4b2

2b
.
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20.
∫∫ x

a
sinh

((
λ

√
x – t

))
y(t)dt = f(x), f(a) = 0.

Solution: y(x) =
2
πλ

d2

dx2

∫ x

a

cos
(
λ
√
x – t

)

√
x – t

f (t) dt.

21.
∫∫ x

0
ln(x – t)y(t)dt = f(x).

Solution:

y(x) = –
∫ x

0
f ′′tt(t) dt

∫ ∞

0

(x – t)ze–Cz

Γ(z + 1)
dz – f ′x(0)

∫ ∞

0

xze–Cz

Γ(z + 1)
dz,

where C = lim
k→∞

(
1 +

1
2

+ · · · +
1

k + 1
– ln k

)
= 0.5772 . . . is the Euler constant and Γ(z) is

the gamma function.

22.
∫∫ x

a
[ln(x – t) + A]y(t) dt = f(x).

Solution:

y(x) = –
d

dx

∫ x

a
νA(x – t)f (t) dt, νA(x) =

d

dx

∫ ∞

0

xze(A–C)z

Γ(z + 1)
dz,

where C = 0.5772 . . . is the Euler constant and Γ(z) is the gamma function.
For a = 0, the solution can be written in the form

y(x) = –
∫ x

0
f ′′tt(t) dt

∫ ∞

0

(x – t)ze(A–C)z

Γ(z + 1)
dz – f ′x(0)

∫ ∞

0

xze(A–C)z

Γ(z + 1)
dz.

23.
∫∫ x

a
(x – t)

[[
ln(x – t) + A

]]
y(t)dt = f(x), f(a) = 0.

Solution:

y(x) = –
d2

dx2

∫ x

a
νA(x – t)f (t) dt, νA(x) =

d

dx

∫ ∞

0

xze(A–C)z

Γ(z + 1)
dz,

where C = 0.5772 . . . is the Euler constant and Γ(z) is the gamma function.

24.
∫∫ x

a
cos[λ(x – t)]y(t)dt = f(x), f(a) = 0.

Solution: y(x) = f ′x(x) + λ2
∫ x

a
f (x) dx.

25.
∫∫ x

a

{{
cos[λ(x – t)] – 1

}}
y(t) dt = f(x), f(a) = f ′

x(a) = f ′′
xx(a) = 0.

Solution: y(x) = –
1
λ2 f

′′′
xxx(x) – f ′x(x).
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26.
∫∫ x

a

{{
cos[λ(x – t)] + b

}}
y(t) dt = f(x), f(a) = 0.

For b = 0, see equation T11.1.24. For b = –1, see equation T11.1.25.

1◦. Solution for b(b + 1) > 0:

y(x) =
f ′x(x)
b + 1

+
λ2

k(b + 1)2

∫ x

a
sin[k(x – t)]f ′t(t) dt, where k = λ

√
b

b + 1
.

2◦. Solution for b(b + 1) < 0:

y(x) =
f ′x(x)
b + 1

+
λ2

k(b + 1)2

∫ x

a
sinh[k(x – t)]f ′t(t) dt, where k = λ

√
–b
b + 1

.

27.
∫∫ x

a
sin[λ(x – t)]y(t)dt = f(x), f(a) = f ′

x(a) = 0.

Solution: y(x) =
1
λ
f ′′xx(x) + λf (x).

28.
∫∫ x

a
sin
((
λ

√
x – t

))
y(t)dt = f(x), f(a) = 0.

Solution: y(x) =
2
πλ

d2

dx2

∫ x

a

cosh
(
λ
√
x – t

)

√
x – t

f (t) dt.

29.
∫∫ x

a
J0
((
λ(x – t)

))
y(t) dt = f(x).

Here, Jν (z) is the Bessel function of the first kind and f (a) = 0.
Solution:

y(x) =
1
λ

(
d2

dx2 + λ2
)2 ∫ x

a
(x – t)J1

(
λ(x – t)

)
f (t) dt.

30.
∫∫ x

a
J0
((
λ

√
x – t

))
y(t) dt = f(x).

Here, Jν (z) is the Bessel function of the first kind and f (a) = 0.
Solution:

y(x) =
d2

dx2

∫ x

a
I0
(
λ
√
x – t

)
f (t) dt.

31.
∫∫ x

a
I0
((
λ(x – t)

))
y(t) dt = f(x).

Here, Iν(z) is the modified Bessel function of the first kind and f (a) = 0.
Solution:

y(x) =
1
λ

(
d2

dx2 – λ2
)2 ∫ x

a
(x – t) I1

(
λ(x – t)

)
f (t) dt.
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32.
∫∫ x

a
I0
((
λ

√
x – t

))
y(t) dt = f(x).

Here, Iν(z) is the modified Bessel function of the first kind and f (a) = 0.

Solution: y(x) =
d2

dx2

∫ x

a
J0
(
λ
√
x – t

)
f (t) dt.

33.
∫∫ x

a
[g(x) – g(t)]y(t)dt = f(x).

It is assumed that f (a) = f ′x(a) = 0 and f ′x/g′x ≠ const.

Solution: y(x) =
d

dx

[
f ′x(x)
g′x(x)

]
.

34.
∫∫ x

a
[g(x) – g(t) + b]y(t) dt = f(x), f(a) = 0.

For b = 0, see equation T11.1.33.
Solution for b ≠ 0:

y(x) =
1
b
f ′x(x) –

1
b2 g

′
x(x)

∫ x

a
exp
[ g(t) – g(x)

b

]
f ′t(t) dt.

35.
∫∫ x

a
[g(x) + h(t)]y(t)dt = f(x), f(a) = 0.

For h(t) = –g(t), see equation T11.1.33.
Solution:

y(x) =
d

dx

[
Φ(x)

g(x) + h(x)

∫ x

a

f ′t(t) dt
Φ(t)

]
, Φ(x) = exp

[∫ x

a

h′t(t) dt
g(t) + h(t)

]
.

36.
∫∫ x

a
K(x – t)y(t)dt = f(x).

1◦. Let K(0) = 1 and f (a) = 0. Differentiating the equation with respect to x yields a
Volterra equation of the second kind:

y(x) +
∫ x

a
K ′
x(x – t)y(t) dt = f ′x(x).

The solution of this equation can be represented in the form

y(x) = f ′x(x) +
∫ x

a
R(x – t)f ′t(t) dt. (1)

Here the resolvent R(x) is related to the kernel K(x) of the original equation by

R(x) = L–1
[

1
pK̃(p)

– 1
]

, K̃(p) = L
[
K(x)

]
,
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where L and L–1 are the operators of the direct and inverse Laplace transforms, respectively.

K̃(p) = L
[
K(x)

]
=
∫ ∞

0
e–pxK(x) dx, R(x) = L–1[R̃(p)

]
=

1
2πi

∫ c+i∞

c–i∞
epxR̃(p) dp.

2◦. Let K(x) have an integrable power-law singularity at x = 0. Denote by w = w(x) the
solution of the simpler auxiliary equation (compared with the original equation) with a = 0
and constant right-hand side f ≡ 1,

∫ x

0
K(x – t)w(t) dt = 1. (2)

Then the solution of the original integral equation with arbitrary right-hand side is expressed
in terms of w as follows:

y(x) =
d

dx

∫ x

a
w(x – t)f (t) dt = f (a)w(x – a) +

∫ x

a
w(x – t)f ′t(t) dt.

37.
∫∫ x

a

√
g(x) – g(t) y(t)dt = f(x), f(a) = 0, g′

x(x) > 0.

Solution:

y(x) =
2
π
g′x(x)

(
1

g′x(x)
d

dx

)2 ∫ x

a

f (t)g′t(t) dt√
g(x) – g(t)

.

38.
∫∫ x

a

y(t) dt
√
g(x) – g(t)

= f(x), g′
x(x) > 0.

Solution: y(x) =
1
π

d

dx

∫ x

a

f (t)g′t(t) dt√
g(x) – g(t)

.

T11.2. Linear Equations of the Second Kind
with Variable Limit of Integration

1. y(x) – λ
∫∫ x

a
y(t)dt = f(x).

Solution: y(x) = f (x) + λ
∫ x

a
eλ(x–t)f (t) dt.

2. y(x) + λ
∫∫ x

a
(x – t)y(t)dt = f(x).

1◦. Solution for λ > 0:

y(x) = f (x) – k
∫ x

a
sin[k(x – t)]f (t) dt, k =

√
λ.

2◦. Solution for λ < 0:

y(x) = f (x) + k
∫ x

a
sinh[k(x – t)]f (t) dt, k =

√
–λ.
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3. y(x) + λ
∫∫ x

a
(x – t)2y(t) dt = f(x).

Solution:

y(x) = f (x) –
∫ x

a
R(x – t)f (t) dt,

R(x) = 2
3ke

–2kx – 2
3ke

kx
[
cos
(√

3 kx
)

–
√

3 sin
(√

3 kx
)]

, k =
( 1

4λ
)1/3

.

4. y(x) + λ
∫∫ x

a
(x – t)3y(t) dt = f(x).

Solution:

y(x) = f (x) –
∫ x

a
R(x – t)f (t) dt,

where

R(x) =

{
k
[
cosh(kx) sin(kx) – sinh(kx) cos(kx)

]
, k =

( 3
2λ
)1/4

for λ > 0,
1
2 s
[
sin(sx) – sinh(sx)

]
, s = (–6λ)1/4 for λ < 0.

5. y(x) + A
∫∫ x

a
(x – t)ny(t)dt = f(x), n = 1, 2, . . .

1◦. Differentiating the equation n+ 1 times with respect to x yields an (n+ 1)st-order linear
ordinary differential equation with constant coefficients for y = y(x):

y(n+1)
x + An! y = f (n+1)

x (x).

This equation under the initial conditions y(a) = f (a), y′x(a) = f ′x(a), . . . , y(n)
x (a) = f (n)

x (a)
determines the solution of the original integral equation.

2◦. Solution:

y(x) = f (x) +
∫ x

a
R(x – t)f (t) dt,

R(x) =
1

n + 1

n∑

k=0

exp(σkx)
[
σk cos(βkx) – βk sin(βkx)

]
,

where the coefficients σk and βk are given by

σk = |An!|
1
n+1 cos

( 2πk
n + 1

)
, βk = |An!|

1
n+1 sin

( 2πk
n + 1

)
for A < 0;

σk = |An!|
1
n+1 cos

( 2πk + π
n + 1

)
, βk = |An!|

1
n+1 sin

( 2πk + π
n + 1

)
for A > 0.

6. y(x) + λ
∫∫ x

a

y(t) dt√
x – t

= f(x).

Abel equation of the second kind. This equation is encountered in problems of heat and
mass transfer.

Solution:

y(x) = F (x) + πλ2
∫ x

a
exp[πλ2(x – t)]F (t) dt,

where

F (x) = f (x) – λ
∫ x

a

f (t) dt√
x – t

.
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7. y(x) – λ
∫∫ x

0

y(t)dt

(x – t)α
= f(x), 0 < α < 1.

Generalized Abel equation of the second kind.

1◦. Assume that the number α can be represented in the form

α = 1 –
m

n
, where m = 1, 2, . . . , n = 2, 3, . . . (m < n).

In this case, the solution of the generalized Abel equation of the second kind can be written
in closed form (in quadratures):

y(x) = f (x) +
∫ x

0
R(x – t)f (t) dt,

where

R(x) =
n–1∑

ν=1

λνΓν(m/n)
Γ(νm/n)

x(νm/n)–1 +
b

m

m–1∑

μ=0

εμ exp
(
εμbx

)

+
b

m

n–1∑

ν=1

λνΓν(m/n)
Γ(νm/n)

[m–1∑

μ=0

εμ exp
(
εμbx

) ∫ x

0
t(νm/n)–1 exp

(
–εμbt

)
dt

]
,

b = λn/mΓn/m(m/n), εμ = exp
( 2πμi

m

)
, i2 = –1, μ = 0, 1, . . . ,m – 1.

2◦. Solution for any α from 0 < α < 1:

y(x) = f (x) +
∫ x

0
R(x – t)f (t) dt, where R(x) =

∞∑

n=1

[
λΓ(1 – α)x1–α

]n

xΓ
[
n(1 – α)

] .

8. y(x) + A
∫∫ x

a
eλ(x–t)y(t)dt = f(x).

Solution: y(x) = f (x) – A
∫ x

a
e(λ–A)(x–t)f (t) dt.

9. y(x) + A
∫∫ x

a

[[
eλ(x–t) – 1

]]
y(t) dt = f(x).

1◦. Solution for D ≡ λ(λ – 4A) > 0:

y(x) = f (x) –
2Aλ√
D

∫ x

a
R(x – t)f (t) dt, R(x) = exp

( 1
2λx
)

sinh
( 1

2

√
Dx
)
.

2◦. Solution for D ≡ λ(λ – 4A) < 0:

y(x) = f (x) –
2Aλ√

|D|

∫ x

a
R(x – t)f (t) dt, R(x) = exp

( 1
2λx
)

sin
( 1

2

√
|D|x

)
.

3◦. Solution for λ = 4A:

y(x) = f (x) – 4A2
∫ x

a
(x – t) exp

[
2A(x – t)

]
f (t) dt.
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10. y(x) + A
∫∫ x

a
(x – t)eλ(x–t)y(t)dt = f(x).

1◦. Solution for A > 0:

y(x) = f (x) – k
∫ x

a
eλ(x–t) sin[k(x – t)]f (t) dt, k =

√
A.

2◦. Solution for A < 0:

y(x) = f (x) + k
∫ x

a
eλ(x–t) sinh[k(x – t)]f (t) dt, k =

√
–A.

11. y(x) + A
∫∫ x

a
cosh[λ(x – t)]y(t)dt = f(x).

Solution:

y(x) = f (x) +
∫ x

a
R(x – t)f (t) dt,

R(x) = exp
(
– 1

2Ax
)
[
A2

2k
sinh(kx) –A cosh(kx)

]
, k =

√
λ2 + 1

4A
2.

12. y(x) + A
∫∫ x

a
sinh[λ(x – t)]y(t)dt = f(x).

1◦. Solution for λ(A – λ) > 0:

y(x) = f (x) –
Aλ

k

∫ x

a
sin[k(x – t)]f (t) dt, where k =

√
λ(A – λ).

2◦. Solution for λ(A – λ) < 0:

y(x) = f (x) –
Aλ

k

∫ x

a
sinh[k(x – t)]f (t) dt, where k =

√
λ(λ – A).

3◦. Solution for A = λ:

y(x) = f (x) – λ2
∫ x

a
(x – t)f (t) dt.

13. y(x) – λ
∫∫ x

0
J0(x – t)y(t)dt = f(x).

Here, J0(z) is the Bessel function of the first kind.
Solution:

y(x) = f (x) +
∫ x

0
R(x – t)f (t) dt,

where

R(x) = λ cos
(√

1 – λ2 x
)

+
λ2

√
1 – λ2

sin
(√

1 – λ2 x
)

+
λ√

1 – λ2

∫ x

0
sin
[√

1 – λ2 (x – t)
] J1(t)

t
dt.
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14. y(x) –
∫∫ x

a
g(x)h(t)y(t)dt = f(x).

Solution:

y(x) = f (x) +
∫ x

a
R(x, t)f (t) dt, where R(x, t) = g(x)h(t) exp

[∫ x

t
g(s)h(s) ds

]
.

15. y(x) +
∫∫ x

a
(x – t)g(x)y(t)dt = f(x).

1◦. Solution:

y(x) = f (x) +
1
W

∫ x

a

[
Y1(x)Y2(t) – Y2(x)Y1(t)

]
g(x)f (t) dt, (1)

where Y1 = Y1(x) and Y2 = Y2(x) are two linearly independent solutions (Y1/Y2 � const) of
the second-order linear homogeneous differential equation Y ′′

xx + g(x)Y = 0. In this case,
the Wronskian is a constant: W = Y1(Y2)′x – Y2(Y1)′x ≡ const.

2◦. Given only one nontrivial solution Y1 = Y1(x) of the linear homogeneous differential
equation Y ′′

xx+g(x)Y = 0, one can obtain the solution of the integral equation by formula (1)
with

W = 1, Y2(x) = Y1(x)
∫ x

b

dξ

Y 2
1 (ξ)

,

where b is an arbitrary number.

16. y(x) +
∫∫ x

a
(x – t)g(t)y(t)dt = f(x).

1◦. Solution:

y(x) = f (x) +
1
W

∫ x

a

[
Y1(x)Y2(t) – Y2(x)Y1(t)

]
g(t)f (t) dt, (1)

where Y1 = Y1(x) and Y2 = Y2(x) are two linearly independent solutions (Y1/Y2 � const) of
the second-order linear homogeneous differential equation Y ′′

xx + g(x)Y = 0. In this case,
the Wronskian is a constant: W = Y1(Y2)′x – Y2(Y1)′x ≡ const.

2◦. Given only one nontrivial solution Y1 = Y1(x) of the linear homogeneous differential
equation Y ′′

xx+g(x)Y = 0, one can obtain the solution of the integral equation by formula (1)
with

W = 1, Y2(x) = Y1(x)
∫ x

b

dξ

Y 2
1 (ξ)

,

where b is an arbitrary number.

17. y(x) +
∫∫ x

a
K(x – t)y(t)dt = f(x).

Renewal equation.



1396 INTEGRAL EQUATIONS

1◦. To solve this integral equation, direct and inverse Laplace transforms are used. The
solution can be represented in the form

y(x) = f (x) –
∫ x

a
R(x – t)f (t) dt. (1)

Here the resolventR(x) is expressed via the kernelK(x) of the original equation as follows:

R(x) =
1

2πi

∫ c+i∞

c–i∞
R̃(p)epx dp, R̃(p) =

K̃(p)

1 + K̃(p)
, K̃(p) =

∫ ∞

0
K(x)e–px dx.

2◦. Let w = w(x) be the solution of the simpler auxiliary equation with a = 0 and f ≡ 1:

w(x) +
∫ x

0
K(x – t)w(t) dt = 1. (2)

Then the solution of the original integral equation with arbitrary f = f (x) is expressed via
the solution of the auxiliary equation (2) as

y(x) =
d

dx

∫ x

a
w(x – t)f (t) dt = f (a)w(x – a) +

∫ x

a
w(x – t)f ′t(t) dt.

T11.3. Linear Equations of the First Kind
with Constant Limits of Integration

1.
∫∫ b

a
|x – t| y(t) dt = f(x), 0 ≤ a < b < ∞.

Solution:
y(x) = 1

2 f
′′
xx(x).

The right-hand side f (x) of the integral equation must satisfy certain relations. The
general form of f (x) is as follows:

f (x) = F (x) + Ax +B,
A = – 1

2
[
F ′
x(a) + F ′

x(b)
]
, B = 1

2
[
aF ′

x(a) + bF ′
x(b) – F (a) – F (b)

]
,

where F (x) is an arbitrary bounded twice differentiable function (with bounded first deriva-
tive).

2.
∫∫ a

0

y(t)√
|x – t|

dt = f(x), 0 < a ≤ ∞.

Solution:

y(x) = –
A

x1/4
d

dx

[∫ a

x

dt

(t – x)1/4

∫ t

0

f (s) ds

s1/4(t – s)1/4

]
, A =

1√
8π Γ2(3/4)

.
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3.
∫∫ b

a

y(t)

|x – t|k
dt = f(x), 0 < k < 1.

It is assumed that |a| + |b| < ∞. Solution:

y(x) =
1

2π
cot( 1

2πk)
d

dx

∫ x

a

f (t) dt

(x – t)1–k
–

1
π2 cos2( 1

2πk)
∫ x

a

Z(t)F (t)

(x – t)1–k
dt,

where

Z(t) = (t – a)
1+k

2 (b – t)
1–k

2 , F (t) =
d

dt

[∫ t

a

dτ

(t – τ )k

∫ b

τ

f (s) ds

Z(s)(s – τ )1–k

]
.

4.
∫∫ b

0

y(t)

|xλ – tλ|k
dt = f(x), 0 < k < 1, λ > 0.

Solution:

y(x) = –Ax
λ(k–1)

2
d

dx

[∫ b

x

t
λ(3–2k)–2

2 dt

(tλ – xλ)
1–k

2

∫ t

0

s
λ(k+1)–2

2 f (s) ds

(tλ – sλ)
1–k

2

]

,

A =
λ2

2π
cos

(
πk

2

)
Γ(k)

[
Γ
(

1 + k
2

)]–2
,

where Γ(k) is the gamma function.

5.
∫∫ ∞

–∞

y(t)

|x – t|1–λ
dt = f(x), 0 < λ < 1.

Solution:

y(x) =
λ

2π
tan
(πλ

2

) ∫ ∞

–∞

f (x) – f (t)

|x – t|1+λ
dt.

It assumed that the condition
∫ ∞

–∞ |f (x)|pdx < ∞ is satisfied for some p, 1 < p < 1/λ.

6.
∫∫ ∞

–∞

sign(x – t)

|x – t|1–λ
y(t)dt = f(x), 0 < λ < 1.

Solution:

y(x) =
λ

2π
cot
(πλ

2

) ∫ ∞

–∞

f (x) – f (t)

|x – t|1+λ
sign(x – t) dt.

7.
∫∫ ∞

–∞

a + b sign(x – t)

|x – t|1–λ
y(t) dt = f(x), 0 < λ < 1.

Solution:

y(x) =
λ sin(πλ)

4π
[
a2 cos2

( 1
2πλ
)

+ b2 sin2
( 1

2πλ
)]
∫ ∞

–∞
a + b sign(x – t)

|x – t|1+λ

[
f (x) – f (t)

]
dt.
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8.
∫∫ ∞

0

y(x + t) – y(x – t)

t
dt = f(x).

Solution: y(x) = –
1
π2

∫ ∞

0

f (x + t) – f (x – t)
t

dt.

� In equations T11.3.9 and T11.3.10 and their solutions, all singular integrals are under-
stood in the sense of the Cauchy principal value.

9.
∫∫ ∞

–∞

y(t) dt

t – x
= f(x).

Solution: y(x) = –
1
π2

∫ ∞

–∞

f (t) dt
t – x

.

The integral equation and its solution form a Hilbert transform pair (in the asymmetric
form).

10.
∫∫ b

a

y(t) dt

t – x
= f(x).

This equation is encountered in hydrodynamics in solving the problem on the flow of an
ideal inviscid fluid around a thin profile (a ≤ x ≤ b). It is assumed that |a| + |b| < ∞.

1◦. The solution bounded at the endpoints is

y(x) = –
1
π2

√
(x – a)(b – x)

∫ b

a

f (t)√
(t – a)(b – t)

dt

t – x
,

provided that ∫ b

a

f (t) dt√
(t – a)(b – t)

= 0.

2◦. The solution bounded at the endpoint x = a and unbounded at the endpoint x = b is

y(x) = –
1
π2

√
x – a
b – x

∫ b

a

√
b – t
t – a

f (t)
t – x

dt.

3◦. The solution unbounded at the endpoints is

y(x) = –
1

π2√(x – a)(b – x)

[∫ b

a

√
(t – a)(b – t)
t – x

f (t) dt + C

]
,

where C is an arbitrary constant. The formula
∫ b

a
y(t) dt =

C

π
holds.

11.
∫∫ b

a
eλ|x–t|y(t) dt = f(x), –∞ < a < b < ∞.

Solution:

y(x) =
1

2λ
[
f ′′xx(x) – λ2f (x)

]
.

The right-hand side f (x) of the integral equation must satisfy certain relations. The
general form of the right-hand side is given by

f (x) = F (x) + Ax +B,

A =
1

bλ – aλ – 2
[
F ′
x(a) + F ′

x(b) + λF (a) – λF (b)
]
, B = –

1
λ

[
F ′
x(a) + λF (a) +Aaλ +A

]
,

where F (x) is an arbitrary bounded, twice differentiable function.
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12.
∫∫ b

a
ln |x – t| y(t) dt = f(x).

Carleman’s equation.

1◦. Solution for b – a ≠ 4:

y(x) =
1

π2
√

(x – a)(b – x)

[∫ b

a

√
(t – a)(b – t) f ′t(t) dt

t – x
+

1
ln
[ 1

4 (b – a)
]
∫ b

a

f (t) dt√
(t – a)(b – t)

]
.

2◦. If b – a = 4, then for the equation to be solvable, the condition

∫ b

a
f (t)(t – a)–1/2(b – t)–1/2 dt = 0

must be satisfied. In this case, the solution has the form

y(x) =
1

π2
√

(x – a)(b – x)

[∫ b

a

√
(t – a)(b – t) f ′t(t) dt

t – x
+ C

]
,

where C is an arbitrary constant.

13.
∫∫ b

a

((
ln |x – t| + β

))
y(t)dt = f(x).

By setting
x = e–βz, t = e–βτ , y(t) = Y (τ ), f (x) = e–βg(z),

we arrive at an equation of the form T11.3.12:

∫ B

A
ln |z – τ |Y (τ ) dτ = g(z), A = aeβ , B = beβ .

14.
∫∫ a

–a

((
ln

A

|x – t|

))
y(t)dt = f(x), –a ≤ x ≤ a.

Solution for 0 < a < 2A:

y(x) =
1

2M ′(a)

[
d

da

∫ a

–a
w(t, a)f (t) dt

]
w(x, a)

–
1
2

∫ a

|x|
w(x, ξ)

d

dξ

[
1

M ′(ξ)
d

dξ

∫ ξ

–ξ
w(t, ξ)f (t) dt

]
dξ

–
1
2
d

dx

∫ a

|x|

w(x, ξ)
M ′(ξ)

[∫ ξ

–ξ
w(t, ξ) df (t)

]
dξ,

where the prime stands for the derivative and

M (ξ) =

(
ln

2A
ξ

)–1
, w(x, ξ) =

M (ξ)

π
√
ξ2 – x2

.
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15.
∫∫ a

0
ln
∣
∣∣
∣

∣
∣∣
∣
x + t

x – t

∣
∣∣
∣

∣
∣∣
∣ y(t) dt = f(x).

Solution:

y(x) = –
2
π2

d

dx

∫ a

x

F (t) dt√
t2 – x2

, F (t) =
d

dt

∫ t

0

sf (s) ds√
t2 – s2

.

16.
∫∫ ∞

0
cos(xt)y(t)dt = f(x).

Solution: y(x) =
2
π

∫ ∞

0
cos(xt)f (t) dt.

Up to constant factors, the function f (x) and the solution y(t) are the Fourier cosine
transform pair.

17.
∫∫ ∞

0
sin(xt)y(t)dt = f(x).

Solution: y(x) =
2
π

∫ ∞

0
sin(xt)f (t) dt.

Up to constant factors, the function f (x) and the solution y(t) are the Fourier sine
transform pair.

18.
∫∫ π/2

0
y(ξ)dt = f(x), ξ = x sin t.

Schlömilch equation.
Solution:

y(x) =
2
π

[
f (0) + x

∫ π/2

0
f ′ξ(ξ) dt

]
, ξ = x sin t.

19.
∫∫ 2π

0
cot
(( t – x

2

))
y(t) dt = f(x), 0 ≤ x ≤ 2π.

Here the integral is understood in the sense of the Cauchy principal value and the right-hand

side is assumed to satisfy the condition
∫ 2π

0
f (t) dt = 0.

Solution:

y(x) = –
1

4π2

∫ 2π

0
cot
( t – x

2

)
f (t) dt + C ,

where C is an arbitrary constant.

It follows from the solution that
∫ 2π

0
y(t) dt = 2πC .

The equation and its solution form a Hilbert transform pair (in the asymmetric form).

20.
∫∫ ∞

0
tJν(xt)y(t)dt = f(x), ν > – 1

2 .

Here, Jν (z) is the Bessel function of the first kind.
Solution:

y(x) =
∫ ∞

0
tJν (xt)f (t) dt.

The function f (x) and the solution y(t) are the Hankel transform pair.
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21.
∫∫ ∞

–∞
K0
((

|x – t|
))
y(t) dt = f(x).

Here, K0(z) is the modified Bessel function of the second kind.
Solution:

y(x) = –
1
π2

(
d2

dx2 – 1
)∫ ∞

–∞
K0
(

|x – t|
)
f (t) dt.

22.
∫∫ ∞

–∞
K(x – t)y(t)dt = f(x).

The Fourier transform is used to solve this equation.

1◦. Solution:

y(x) =
1

2π

∫ ∞

–∞

f̃ (u)

K̃(u)
eiux du,

f̃ (u) =
1√
2π

∫ ∞

–∞
f (x)e–iux dx, K̃(u) =

1√
2π

∫ ∞

–∞
K(x)e–iux dx.

The following statement is valid. Let f (x) � L2(–∞,∞) and K(x) � L1(–∞,∞).
Then for a solution y(x) � L2(–∞,∞) of the integral equation to exist, it is necessary and
sufficient that f̃ (u)/K̃(u) � L2(–∞,∞).

2◦. Let the function P (s) defined by the formula

1
P (s)

=
∫ ∞

–∞
e–stK(t) dt

be a polynomial of degree n with real roots of the form

P (s) =
(

1 –
s

a1

)(
1 –

s

a2

)
. . .
(

1 –
s

an

)
.

Then the solution of the integral equation is given by

y(x) = P (D)f (x), D =
d

dx
.

23.
∫∫ ∞

0
K(x – t)y(t)dt = f(x).

Wiener–Hopf equation of the first kind. This equation is discussed in the books by Gakhov
and Cherskii (1978), Mikhlin and Prössdorf (1986), Muskhelishvili (1992), and Polyanin
and Manzhirov (1998) in detail.

T11.4. Linear Equations of the Second Kind
with Constant Limits of Integration

1. y(x) – λ
∫∫ b

a
(x – t)y(t)dt = f(x).

Solution:
y(x) = f (x) + λ(A1x +A2),
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where

A1 =
12f1 + 6λ (f1Δ2 – 2f2Δ1)

λ2Δ4
1 + 12

, A2 =
–12f2 + 2λ (3f2Δ2 – 2f1Δ3)

λ2Δ4
1 + 12

,

f1 =
∫ b

a
f (x) dx, f2 =

∫ b

a
xf (x) dx, Δn = bn – an.

2. y(x) + A
∫∫ b

a
|x – t| y(t)dt = f(x).

1◦. For A < 0, the solution is given by

y(x) = C1 cosh(kx) + C2 sinh(kx) + f (x) + k
∫ x

a
sinh[k(x – t)]f (t) dt, k =

√
–2A, (1)

where the constants C1 and C2 are determined by the conditions

y′x(a) + y′x(b) = f ′x(a) + f ′x(b),

y(a) + y(b) + (b – a)y′x(a) = f (a) + f (b) + (b – a)f ′x(a).
(2)

2◦. For A > 0, the solution is given by

y(x) = C1 cos(kx) + C2 sin(kx) + f (x) – k
∫ x

a
sin[k(x – t)]f (t) dt, k =

√
2A, (3)

where the constants C1 and C2 are determined by conditions (2).

3◦. In the special case a = 0 and A > 0, the solution of the integral equation is given by
formula (3) with

C1 = k
Is(1 + cosλ) – Ic(λ + sinλ)

2 + 2 cos λ + λ sinλ
, C2 = k

Is sinλ + Ic(1 + cosλ)
2 + 2 cos λ + λ sinλ

,

k =
√

2A, λ = bk, Is =
∫ b

0
sin[k(b – t)]f (t) dt, Ic =

∫ b

0
cos[k(b – t)]f (t) dt.

� In equations T11.4.3 and T11.4.4 and their solutions, all singular integrals are under-
stood in the sense of the Cauchy principal value.

3. Ay(x) +
B

π

∫∫ 1

–1

y(t)dt

t – x
= f(x), –1 < x < 1.

Without loss of generality we may assume that A2 + B2 = 1.

1◦. The solution bounded at the endpoints:

y(x) = Af (x) –
B

π

∫ 1

–1

g(x)
g(t)

f (t) dt
t – x

, g(x) = (1 + x)α(1 – x)1–α, (1)

where α is the solution of the trigonometric equation

A +B cot(πα) = 0 (2)

on the interval 0 < α < 1. This solution y(x) exists if and only if
∫ 1

–1

f (t)
g(t)

dt = 0.
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2◦. The solution bounded at the endpoint x = 1 and unbounded at the endpoint x = –1:

y(x) = Af (x) –
B

π

∫ 1

–1

g(x)
g(t)

f (t) dt
t – x

, g(x) = (1 + x)α(1 – x)–α, (3)

where α is the solution of the trigonometric equation (2) on the interval –1 < α < 0.

3◦. The solution unbounded at the endpoints:

y(x) = Af (x) –
B

π

∫ 1

–1

g(x)
g(t)

f (t) dt
t – x

+ Cg(x), g(x) = (1 + x)α(1 – x)–1–α,

where C is an arbitrary constant and α is the solution of the trigonometric equation (2) on
the interval –1 < α < 0.

4. y(x) – λ
∫∫ 1

0

((
1

t – x
–

1

x + t – 2xt

))
y(t)dt = f(x), 0 < x < 1.

Tricomi’s equation.
Solution:

y(x) =
1

1 + λ2π2

[
f (x) +

∫ 1

0

tα(1 – x)α

xα(1 – t)α

(
1

t – x
–

1
x + t – 2xt

)
f (t) dt

]
+
C(1 – x)β

x1+β
,

α =
2
π

arctan(λπ) (–1 < α < 1), tan
βπ

2
= λπ (–2 < β < 0),

where C is an arbitrary constant.

5. y(x) + λ
∫∫ ∞

0
e–|x–t|y(t)dt = f(x).

Solution for λ > – 1
2 :

y(x) = f (x) –
λ√

1 + 2λ

∫ ∞

0
exp
(
–
√

1 + 2λ |x – t|
)
f (t) dt

+

(
1 –

λ + 1√
1 + 2λ

)∫ ∞

0
exp
[
–
√

1 + 2λ (x + t)
]
f (t) dt.

6. y(x) – λ
∫∫ ∞

–∞
e–|x–t|y(t) dt = 0, λ > 0.

Lalesco–Picard equation.
Solution:

y(x) =

⎧
⎪⎨

⎪⎩

C1 exp
(
x
√

1 – 2λ
)

+ C2 exp
(
–x

√
1 – 2λ

)
for 0 < λ < 1

2 ,

C1 + C2x for λ = 1
2 ,

C1 cos
(
x
√

2λ – 1
)

+ C2 sin
(
x
√

2λ – 1
)

for λ > 1
2 ,

where C1 and C2 are arbitrary constants.
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7. y(x) + λ
∫∫ ∞

–∞
e–|x–t|y(t)dt = f(x).

1◦. Solution for λ > – 1
2 :

y(x) = f (x) –
λ√

1 + 2λ

∫ ∞

–∞
exp
(
–
√

1 + 2λ |x – t|
)
f (t) dt.

2◦. If λ ≤ – 1
2 , for the equation to be solvable the conditions

∫ ∞

–∞
f (x) cos(ax) dx = 0,

∫ ∞

–∞
f (x) sin(ax) dx = 0,

where a =
√

–1 – 2λ, must be satisfied. In this case, the solution has the form

y(x) = f (x) –
a2 + 1

2a

∫ ∞

0
sin(at)f (x + t) dt (–∞ < x < ∞).

In the class of solutions not belonging to L2(–∞,∞), the homogeneous equation (with
f (x) ≡ 0) has a nontrivial solution. In this case, the general solution of the corresponding
nonhomogeneous equation with λ ≤ – 1

2 has the form

y(x) = C1 sin(ax) + C2 cos(ax) + f (x) –
a2 + 1

4a

∫ ∞

–∞
sin(a|x – t|)f (t) dt.

8. y(x) + A
∫∫ b

a
eλ|x–t|y(t) dt = f(x).

1◦. The function y = y(x) obeys the following second-order linear nonhomogeneous ordi-
nary differential equation with constant coefficients:

y′′xx + λ(2A – λ)y = f ′′xx(x) – λ2f (x). (1)

The boundary conditions for (1) have the form

y′x(a) + λy(a) = f ′x(a) + λf (a),

y′x(b) – λy(b) = f ′x(b) – λf (b).
(2)

Equation (1) under the boundary conditions (2) determines the solution of the original
integral equation.

2◦. For λ(2A – λ) < 0, the general solution of equation (1) is given by

y(x) = C1 cosh(kx) + C2 sinh(kx) + f (x) –
2Aλ
k

∫ x

a
sinh[k(x – t)] f (t) dt,

k =
√
λ(λ – 2A),

(3)

where C1 and C2 are arbitrary constants.
For λ(2A – λ) > 0, the general solution of equation (1) is given by

y(x) = C1 cos(kx) + C2 sin(kx) + f (x) –
2Aλ
k

∫ x

a
sin[k(x – t)] f (t) dt,

k =
√
λ(2A – λ).

(4)

For λ = 2A, the general solution of equation (1) is given by

y(x) = C1 + C2x + f (x) – 4A2
∫ x

a
(x – t)f (t) dt. (5)

The constants C1 and C2 in solutions (3)–(5) are determined by conditions (2).
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3◦. In the special case a = 0 and λ(2A–λ) > 0, the solution of the integral equation is given
by formula (4) with

C1 =
A(kIc – λIs)

(λ – A) sin μ – k cosμ
, C2 = –

λ

k

A(kIc – λIs)
(λ –A) sin μ – k cosμ

,

k =
√
λ(2A – λ), μ = bk, Is =

∫ b

0
sin[k(b – t)]f (t) dt, Ic =

∫ b

0
cos[k(b – t)]f (t) dt.

9. y(x) + λ
∫∫ ∞

–∞

y(t)dt

cosh[b(x – t)]
= f(x).

Solution for b > π|λ|:

y(x) = f (x) –
2λb√

b2 – π2λ2

∫ ∞

–∞

sinh[2k(x – t)]
sinh[2b(x – t)]

f (t) dt, k =
b

π
arccos

(πλ
b

)
.

10. y(x) – λ
∫∫ ∞

0
cos(xt)y(t)dt = f(x).

Solution:

y(x) =
f (x)

1 – π
2 λ

2 +
λ

1 – π
2 λ

2

∫ ∞

0
cos(xt)f (t) dt, λ ≠ �

√
2/π.

11. y(x) – λ
∫∫ ∞

0
sin(xt)y(t)dt = f(x).

Solution:

y(x) =
f (x)

1 – π
2 λ

2 +
λ

1 – π
2 λ

2

∫ ∞

0
sin(xt)f (t) dt, λ ≠ �

√
2/π.

12. y(x) – λ
∫∫ ∞

–∞

sin(x – t)

x – t
y(t) dt = f(x).

Solution:

y(x) = f (x) +
λ√

2π – πλ

∫ ∞

–∞

sin(x – t)
x – t

f (t) dt, λ ≠
√

2/π.

13. Ay(x) –
B

2π

∫∫ 2π

0
cot
(( t – x

2

))
y(t)dt = f(x), 0 ≤ x ≤ 2π.

Here the integral is understood in the sense of the Cauchy principal value. Without loss of
generality we may assume that A2 + B2 = 1.

Solution:

y(x) = Af (x) +
B

2π

∫ 2π

0
cot
( t – x

2

)
f (t) dt +

B2

2πA

∫ 2π

0
f (t) dt.
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14. y(x) – λ
∫∫ ∞

0
eμ(x–t) cos(xt)y(t)dt = f(x).

Solution:

y(x) =
f (x)

1 – π
2 λ

2 +
λ

1 – π
2 λ

2

∫ ∞

0
eμ(x–t) cos(xt)f (t) dt, λ ≠ �

√
2/π.

15. y(x) – λ
∫∫ ∞

0
eμ(x–t) sin(xt)y(t)dt = f(x).

Solution:

y(x) =
f (x)

1 – π
2 λ

2 +
λ

1 – π
2 λ

2

∫ ∞

0
eμ(x–t) sin(xt)f (t) dt, λ ≠ �

√
2/π.

16. y(x) –
∫∫ ∞

–∞
K(x – t)y(t)dt = f(x).

The Fourier transform is used to solve this equation.
Solution:

y(x) = f (x) +
∫ ∞

–∞
R(x – t)f (t) dt,

where

R(x)=
1√
2π

∫ ∞

–∞
R̃(u)eiux du, R̃(u)=

K̃(u)

1 –
√

2π K̃(u)
, K̃(u)=

1√
2π

∫ ∞

–∞
K(x)e–iux dx.

17. y(x) –
∫∫ ∞

0
K(x – t)y(t)dt = f(x).

Wiener–Hopf equation of the second kind. This equation is discussed in the books by Noble
(1958), Gakhov and Cherskii (1978), and Polyanin and Manzhirov (1998) in detail.
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Chapter T12

Functional Equations

T12.1. Linear Functional Equations in One Independent
Variable

T12.1.1. Linear Difference and Functional Equations Involving
Unknown Function with Two Different Arguments

T12.1.1-1. First-order linear difference equations involving y(x) and y(x + a).

1. y(x + 1) – y(x) = 0.

This functional equation may be treated as a definition of periodic functions with unit
period.

1◦. Solution:
y(x) = Θ(x),

where Θ(x) = Θ(x + 1) is an arbitrary periodic function with unit period.

2◦. A periodic function Θ(x) with period 1 that satisfies the Dirichlet conditions can be
expanded into a Fourier series:

Θ(x) =
a0

2
+

∞∑

n=1

[
an cos(2πnx) + bn sin(2πnx)

]
,

where

an = 2
∫ 1

0
Θ(x) cos(2πnx) dx, bn = 2

∫ 1

0
Θ(x) sin(2πnx) dx.

2. y(x + 1) – y(x) = f(x).

Solution:
y(x) = Θ(x) + ȳ(x),

where Θ(x) = Θ(x + 1) is an arbitrary periodic function with period 1, and ȳ(x) is any par-
ticular solution of the nonhomogeneous equation. Table T12.1 presents particular solutions
of the nonhomogeneous equation for some specific f (x).

3. y(x + 1) – ay(x) = 0.

A homogeneous first-order constant-coefficient linear difference equation.

1◦. Solution for a > 0:
y(x) = Θ(x)ax,

where Θ(x) = Θ(x + 1) is an arbitrary periodic function with period 1.
For Θ(x) ≡ const, we have a particular solution y(x) = Cax, where C is an arbitrary

constant.

1409
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TABLE T12.1
Particular solutions of the nonhomogeneous functional equation y(x + 1) – y(x) = f (x)

No. Right-hand side of equation, f (x) Particular solution, ȳ(x)

1 1 x

2 x 1
2 x(x – 1)

3 x2 1
6 x(x – 1)(2x – 1)

4 xn, n = 0, 1, 2, . . .

1
n+1 Bn(x), where the Bn(x) are Bernoulli polynomials.

The generating function:
text

et – 1
=

∞∑

n=0

Bn(x)
tn

n!

5
1
x

ψ(x) = –C +
∫ 1

0

1 – tx–1

1 – t
dt is the logarithmic derivative of

the gamma function, C = 0.5772 . . . is the Euler constant

6
1

x(x + 1)
–

1
x

7 aλx, a ≠ 1, λ ≠ 0
1

aλ – 1
aλx

8 sinh(a + 2bx), b > 0 cosh(a – b + 2bx)
2 sinh b

9 cosh(a + 2bx), b > 0 sinh(a – b + 2bx)
2 sinh b

10 xax, a ≠ 1 1
a – 1

ax
(
x –

a

a – 1

)

11 lnx, x > 0 ln Γ(x), where Γ(x) =
∫ ∞

0
tx–1e–t dt is the gamma function

12 sin(2ax), a ≠ πn –
cos[a(2x – 1)]

2 sin a

13 sin(2πnx) x sin(2πnx)

14 cos(2ax), a ≠ πn sin[a(2x – 1)]
2 sin a

15 cos(2πnx) x cos(2πnx)

16 sin2(ax), a ≠ πn
x

2
–

sin[a(2x – 1)]
4 sin a

17 sin2(πnx) x sin2(πnx)

18 cos2(ax), a ≠ πn
x

2
+

sin[a(2x – 1)]
4 sin a

19 cos2(πnx) x cos2(πnx)

20 x sin(2ax), a ≠ πn sin(2ax)
4 sin2 a

– x
cos[a(2x – 1)]

2 sin a

21 x sin(2πnx) 1
2 x(x – 1) sin(2πnx)

22 x cos(2ax), a ≠ πn cos(2ax)
4 sin2 a

+ x
sin[a(2x – 1)]

2 sin a

23 x cos(2πnx) 1
2 x(x – 1) cos(2πnx)

24 ax sin(bx), a > 0, a ≠ 1 ax a sin[b(x – 1)] – sin(bx)
a2 – 2a cos b + 1

25 ax cos(bx), a > 0, a ≠ 1 ax a cos[b(x – 1)] – cos(bx)
a2 – 2a cos b + 1
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2◦. Solution for a < 0:

y(x) = Θ1(x)|a|x sin(πx) + Θ2(x)|a|x cos(πx),

where the Θk(x) = Θk(x + 1) are arbitrary periodic functions with period 1 (k = 1, 2).

Remark. See also Subsection 17.2.1, Example 1.

4. y(x + 1) – ay(x) = f(x).

A nonhomogeneous first-order constant-coefficient linear difference equation.

1◦. Solution:

y(x) =

{
Θ(x)ax + ȳ(x) if a > 0,
Θ1(x)|a|x sin(πx) + Θ2(x)|a|x cos(πx) + ȳ(x) if a < 0,

where Θ(x), Θ1(x), and Θ2(x) are arbitrary periodic functions with period 1, and ȳ(x) is
any particular solution of the nonhomogeneous equation.

2◦. For f (x) =
n∑

k=0
bkx

n and a ≠ 1, the nonhomogeneous equation has a particular solution

of the form ȳ(x) =
n∑

k=0
Akx

n; the constants Bk are found by the method of undetermined

coefficients.

3◦. For f (x) =
n∑

k=1
bke

λkx, the nonhomogeneous equation has a particular solution of the

form

ȳ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

k=1

bk
eλk – a

eλkx if a ≠ eλm ,

bmxe
λm(x–1) +

n∑

k=1, k≠m

bk
eλk – a

eλkx if a = eλm ,

where m = 1, . . . ,n.

4◦. For f (x) =
n∑

k=1
bk cos(βkx), the nonhomogeneous equation has a particular solution of

the form

ȳ(x) =
n∑

k=1

bk
a2 + 1 – 2a cos βk

[
(cos βk – a) cos(βkx) + sin βk sin(βkx)

]
.

5◦. For f (x) =
n∑

k=1
bk sin(βkx), the nonhomogeneous equation has a particular solution of

the form

ȳ(x) =
n∑

k=1

bk
a2 + 1 – 2a cos βk

[
(cos βk – a) sin(βkx) – sin βk cos(βkx)

]
.
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5. y(x + 1) – xy(x) = 0.

Solution:

y(x) = Θ(x)Γ(x), Γ(x) =
∫ ∞

0
tx–1e–t dt,

where Γ(x) is the gamma function, Θ(x) = Θ(x + 1) is an arbitrary periodic function with
period 1.

The simplest particular solution corresponds to Θ(x) ≡ 1.

6. y(x + 1) – a(x – b)(x – c)y(x) = 0.

Solution:
y(x) = Θ(x)axΓ(x – b)Γ(x – c),

where Γ(x) is the gamma function, Θ(x) is an arbitrary periodic function with period 1.

7. y(x + 1) – R(x)y(x) = 0, R(x) = a
(x – λ1)(x – λ2) . . . (x – λn)

(x – μ1)(x – μ2) . . . (x – μm)
.

Solution:

y(x) = Θ(x)ax
Γ(x – λ1)Γ(x – λ2) . . .Γ(x – λn)
Γ(x – μ1)Γ(x – μ2) . . .Γ(x – μm)

,

where Γ(x) is the gamma function, Θ(x) is an arbitrary periodic function with period 1.

8. y(x + 1) – aeλxy(x) = 0.

Solution:
y(x) = Θ(x)ax exp

( 1
2λx

2 – 1
2λx
)
,

where Θ(x) is an arbitrary periodic function with period 1.

9. y(x + 1) – aeμx2+λxy(x) = 0.

Solution:
y(x) = Θ(x)ax exp

[ 1
3μx

3 + 1
2 (λ – μ)x2 + 1

6 (μ – 3λ)x
]
,

where Θ(x) is an arbitrary periodic function with period 1.

10. y(x + 1) – f(x)y(x) = 0.

Here, f (x) = f (x + 1) is a given periodic function with period 1.
Solution:

y(x) = Θ(x)
[
f (x)

]x
,

where Θ(x) = Θ(x + 1) is an arbitrary periodic function with period 1.
For Θ(x) ≡ const, we have a particular solution y(x) =C

[
f (x)

]x
, whereC is an arbitrary

constant.

11. y(x + a) – by(x) = 0.

Solution:
y(x) = Θ(x)bx/a,

where Θ(x) = Θ(x + a) is an arbitrary periodic function with period a.
For Θ(x) ≡ const, we have particular solution y(x) = Cbx/a, where C is an arbitrary

constant.
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12. y(x + a) – by(x) = f(x).

1◦. Solution:

y(x) = Θ(x)bx/a + ȳ(x),

where Θ(x) = Θ(x + a) is an arbitrary periodic function with period a, and ȳ(x) is any
particular solution of the nonhomogeneous equation.

2◦. For f (x) =
n∑

k=0
Akx

n and b ≠ 1, the nonhomogeneous equation has a particular solution

of the form ȳ(x) =
n∑

k=0
Bkx

n; the constants Bk are found by the method of undetermined

coefficients.

3◦. For f (x) =
n∑

k=1
Ak exp(λkx), the nonhomogeneous equation has a particular solution of

the form ȳ(x) =
n∑

k=1
Bk exp(λkx); the constants Bk are found by the method of undetermined

coefficients.

4◦. For f (x) =
n∑

k=1
Ak cos(λkx), the nonhomogeneous equation has a particular solution of

the form ȳ(x) =
n∑

k=1
Bk cos(λkx) +

n∑

k=1
Dk sin(λkx); the constants Bk and Dk are found by

the method of undetermined coefficients.

5◦. For f (x) =
n∑

k=1
Ak sin(λkx), the nonhomogeneous equation has a particular solution of

the form ȳ(x) =
n∑

k=1
Bk cos(λkx) +

n∑

k=1
Dk sin(λkx); the constants Bk and Dk are found by

the method of undetermined coefficients.

13. y(x + a) – bxy(x) = 0, a, b > 0.

Solution:

y(x) = Θ(x)
∫ ∞

0
t(x/a)–1e–t/(ab) dt,

where Θ(x) = Θ(x + a) is an arbitrary periodic function with period a.

14. y(x + a) – f(x)y(x) = 0.

Here, f (x) = f (x + a) is a given periodic function with period a.
Solution:

y(x) = Θ(x)
[
f (x)

]x/a
,

where Θ(x) = Θ(x + a) is an arbitrary periodic function with period a.

For Θ(x) ≡ const, we have a particular solution y(x) = C
[
f (x)

]x/a
, where C is an

arbitrary constant.
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T12.1.1-2. Linear functional equations involving y(x) and y(ax).

15. y(ax) – by(x) = 0, a, b > 0.

Solution for x > 0:

y(x) = xλΘ
( lnx

ln a

)
, λ =

ln b
ln a

,

where Θ(z) = Θ(z + 1) is an arbitrary periodic function with period 1, a ≠ 1.
For Θ(z) ≡ const, we have a particular solution y(x) = Cxλ, where C is an arbitrary

constant.

16. y(ax) – by(x) = f(x).

1◦. Solution:
y(x) = Y (x) + ȳ(x),

where Y (x) is the general solution of the homogeneous equation Y (ax)–bY (x) = 0 (see the
previous equation), and ȳ(x) is any particular solution of the nonhomogeneous equation.

2◦. For f (x) =
n∑

k=0
Akx

n, the nonhomogeneous equation has a particular solution of the

form

ȳ(x) =
n∑

k=0

Ak

ak – b
xk, ak – b ≠ 0.

3◦. For f (x) = lnx
n∑

k=0
Akx

k, the nonhomogeneous equation has a particular solution of the

form

ȳ(x) =
n∑

k=1

xk
(
Bk lnx + Ck

)
, Bk =

Ak

ak – b
, Ck = –

Aka
k ln a

(ak – b)2 .

17. y(2x) – a cosx y(x) = 0.

Solution for a > 0 and x > 0:

y(x) = x
ln a
ln 2 – 1 sinx Θ

(
lnx
ln 2

)
,

where Θ(x) = Θ(x + 1) is an arbitrary periodic function with period 1.

T12.1.1-3. Linear functional equations involving y(x) and y(a – x).

18. y(x) = y(–x).

This functional equation may be treated as a definition of even functions.
Solution:

y(x) =
ϕ(x) + ϕ(–x)

2
,

where ϕ(x) is an arbitrary function.
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19. y(x) = –y(–x).

This functional equation may be treated as a definition of odd functions.
Solution:

y(x) =
ϕ(x) – ϕ(–x)

2
,

where ϕ(x) is an arbitrary function.

20. y(x) – y(a – x) = 0.

1◦. Solution:
y(x) = Φ(x, a – x),

where Φ(x, z) = Φ(z,x) is any symmetric function with two arguments.

2◦. Specific particular solutions may be obtained using the formula

y(x) = Ψ
(
ϕ(x) + ϕ(a – x)

)

by specifying the functions Ψ(z) and ϕ(x).

21. y(x) + y(a – x) = 0.

1◦. Solution:
y(x) = Φ(x, a – x),

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.

2◦. Specific particular solutions may be obtained using the formula

y(x) = (2x – a)Ψ
(
ϕ(x) + ϕ(a – x)

)

by specifying Ψ(z) and ϕ(x).

22. y(x) + y(a – x) = b.

Solution:
y(x) = 1

2 b + Φ(x, a – x),

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.

Particular solutions: y(x) = b sin2
( πx

2a

)
and y(x) = b cos2

(πx
2a

)
.

23. y(x) + y(a – x) = f(x).

Here, the function f (x) must satisfy the condition f (x) = f (a – x).
Solution:

y(x) = 1
2 f (x) + Φ(x, a – x),

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.

24. y(x) – y(a – x) = f(x).

Here, the function f (x) must satisfy the condition f (x) = –f (a – x).
Solution:

y(x) = 1
2 f (x) + Φ(x, a – x),

where Φ(x, z) = Φ(z,x) is any symmetric function with two arguments.

25. y(x) + g(x)y(a – x) = f(x).

Solution:

y(x) =
f (x) – g(x)f (a – x)

1 – g(x)g(a – x)
[if g(x)g(a – x) � 1].
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T12.1.1-4. Linear functional equations involving y(x) and y(a/x).

26. y(x) – y(a/x) = 0.

Babbage equation.
Solution:

y(x) = Φ(x, a/x),

where Φ(x, z) = Φ(z,x) is any symmetric function with two arguments.

27. y(x) + y(a/x) = 0.

Solution:
y(x) = Φ(x, a/x),

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.

28. y(x) + y(a/x) = b.

Solution:
y(x) = 1

2 b + Φ(x, a/x),

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.

29. y(x) + y(a/x) = f(x).

The right-hand side must satisfy the condition f (x) = f (a/x).
Solution:

y(x) = 1
2 f (x) + Φ(x, a/x),

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.

30. y(x) – y(a/x) = f(x).

Here, the function f (x) must satisfy the condition f (x) = –f (a/x).
Solution:

y(x) = 1
2 f (x) + Φ(x, a/x),

where Φ(x, z) = Φ(z,x) is any symmetric function with two arguments.

31. y(x) + xay(1/x) = 0.

Solution:
y(x) = (1 – xa)Φ(x, 1/x),

where Φ(x, z) = Φ(z,x) is any symmetric function with two arguments.

32. y(x) – xay(1/x) = 0.

Solution:
y(x) = (1 + xa)Φ(x, 1/x),

where Φ(x, z) = Φ(z,x) is any symmetric function with two arguments.

33. y(x) + g(x)y(a/x) = f(x).

Solution:

y(x) =
f (x) – g(x)f (a/x)

1 – g(x)g(a/x)
[if g(x)g(a/x) � 1].
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T12.1.1-5. Linear equations involving unknown function with rational argument.

34. y(x) – y
(( a – x

1 + bx

))
= 0.

Solution:
y(x) = Φ

(
x,

a – x
1 + bx

)
,

where Φ(x, z) = Φ(z,x) is any symmetric function with two arguments.

35. y(x) + y
(( a – x

1 + bx

))
= 0.

Solution:
y(x) = Φ

(
x,

a – x
1 + bx

)
,

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.

36. y(x) + y
(( a – x

1 + bx

))
= f(x).

The function f (x) must satisfy the condition f (x) = f
( a – x

1 + bx

)
.

Solution:
y(x) = 1

2 f (x) + Φ
(
x,

a – x
1 + bx

)
,

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.

37. y(x) – y
(( a – x

1 + bx

))
= f(x).

Here, the function f (x) must satisfy the condition f (x) = –f
( a – x

1 + bx

)
.

Solution:
y(x) = 1

2 f (x) + Φ
(
x,

a – x
1 + bx

)
,

where Φ(x, z) = Φ(z,x) is any symmetric function with two arguments.

38. y(x) – cy
(( a – x

1 + bx

))
= f(x), c ≠ �1.

Solution:

y(x) =
1

1 – c2 f (x) +
c

1 – c2 f
( a – x

1 + bx

)
.

39. y(x) + g(x)y
(( a – x

1 + bx

))
= f(x).

Solution:

y(x) =
f (x) – g(x)f (z)

1 – g(x)g(z)
, z =

a – x
1 + bx

.

40. y(x) + cy
((ax – β

x + b

))
= f(x), β = a2 + ab + b2.

A special case of equation T12.1.2.12.
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41. y(x) + cy
(( bx + β

a – x

))
= f(x), β = a2 + ab + b2.

A special case of equation T12.1.2.12.

42. y(x) + g(x)y
((ax – β

x + b

))
= f(x), β = a2 + ab + b2.

A special case of equation T12.1.2.13.

43. y(x) + g(x)y
(( bx + β

a – x

))
= f(x), β = a2 + ab + b2.

A special case of equation T12.1.2.13.

T12.1.1-6. Linear functional equations involving y(x) and y
(√
a2 – x2

)
.

44. y(x) – y
((√
a2 – x2

))
= 0, 0 ≤ x ≤ a.

Solution:
y(x) = Φ

(
x,
√
a2 – x2

)
,

where Φ(x, z) = Φ(z,x) is any symmetric function with two arguments.

45. y(x) + y
((√
a2 – x2

))
= 0, 0 ≤ x ≤ a.

Solution:
y(x) = Φ

(
x,
√
a2 – x2

)
,

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.

46. y(x) + y
((√
a2 – x2

))
= b, 0 ≤ x ≤ a.

Solution:
y(x) = 1

2 b + Φ
(
x,
√
a2 – x2

)
,

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.

47. y(x) + y
((√
a2 – x2

))
= f(x), 0 ≤ x ≤ a.

Here, the function f (x) must satisfy the condition f (x) = f
(√
a2 – x2

)
.

Solution:
y(x) = 1

2 f (x) + Φ
(
x,
√
a2 – x2

)
,

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.

48. y(x) – y
((√
a2 – x2

))
= f(x), 0 ≤ x ≤ a.

Here, the function f (x) must satisfy the condition f (x) = –f
(√
a2 – x2

)
.

Solution:
y(x) = 1

2 f (x) + Φ
(
x,
√
a2 – x2

)
,

where Φ(x, z) = Φ(z,x) is any symmetric function with two arguments.
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49. y(x) + g(x)y
((√
a2 – x2

))
= f(x), 0 ≤ x ≤ a.

Solution:

y(x) =
f (x) – g(x)f

(√
a2 – x2

)

1 – g(x)g
(√

a2 – x2
) .

T12.1.1-7. Linear functional equations involving y(sinx) and y(cos x).

50. y(sinx) – y(cosx) = 0.

Solution in implicit form:
y(sin x) = Φ(sinx, cos x),

where Φ(x, z) = Φ(z,x) is any symmetric function with two arguments.

51. y(sinx) + y(cosx) = 0.

Solution in implicit form:
y(sin x) = Φ(sinx, cos x),

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.

52. y(sinx) + y(cosx) = a.

Solution in implicit form:

y(sinx) = 1
2a + Φ(sinx, cos x),

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.

53. y(sinx) + y(cosx) = f(x).

Here, the function f (x) must satisfy the condition f (x) = f
(
π
2 – x

)
.

Solution in implicit form:

y(sinx) = 1
2 f (x) + Φ(sin x, cos x),

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.

54. y(sinx) – y(cosx) = f(x).

Here, the function f (x) must satisfy the condition f (x) = –f
(
π
2 – x

)
.

Solution in implicit form:

y(sinx) = 1
2 f (x) + Φ(sin x, cos x),

where Φ(x, z) = Φ(z,x) is any symmetric function with two arguments.

55. y(sinx) + g(x)y(cosx) = f(x).

Solution in implicit form:

y(sinx) =
f (x) – g(x)f

(
π
2 – x

)

1 – g(x)g
(
π
2 – x

) .
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T12.1.1-8. Other equations involving unknown function with two different arguments.

56. y(xa) – by(x) = 0, a, b > 0.

Solution:

y(x) = | lnx|pΘ
( ln | lnx|

ln a

)
, p =

ln b
ln a

,

where Θ(z) = Θ(z + 1) is an arbitrary periodic function with period 1.
For Θ(z) ≡ const, we have a particular solution y(x) = C | lnx|p, where C is an arbitrary

constant.

57. y(x) – y
((
ω(x)

))
= 0, where ω

((
ω(x)

))
= x.

Solution:
y(x) = Φ

(
x, ω(x)

)
,

where Φ(x, z) = Φ(z,x) is any symmetric function with two arguments.

58. y(x) + y
((
ω(x)

))
= 0, where ω

((
ω(x)

))
= x.

Solution:
y(x) = Φ

(
x, ω(x)

)
,

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.

59. y(x) + y
((
ω(x)

))
= b, where ω

((
ω(x)

))
= x.

Solution:
y(x) = 1

2 b + Φ
(
x, ω(x)

)
,

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.

60. y(x) + y
((
ω(x)

))
= f(x), where ω

((
ω(x)

))
= x.

Here, the function f (x) must satisfy the condition f (x) = f
(
ω(x)

)
.

Solution:
y(x) = 1

2 f (x) + Φ
(
x, ω(x)

)
,

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.

61. y(x) – y
((
ω(x)

))
= f(x), where ω

((
ω(x)

))
= x.

Here, the function f (x) must satisfy the condition f (x) = –f
(
ω(x)

)
.

Solution:
y(x) = 1

2 f (x) + Φ
(
x, ω(x)

)
,

where Φ(x, z) = Φ(z,x) is any symmetric function with two arguments.

62. y(x) + g(x)y
((
ω(x)

))
= f(x), where ω

((
ω(x)

))
= x.

Solution:

y(x) =
f (x) – g(x)f

(
ω(x)

)

1 – g(x)g
(
ω(x)

) .
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T12.1.2. Other Linear Functional Equations

T12.1.2-1. Second-order linear difference equations.

1. yn+2 + ayn+1 + byn = 0.

A homogeneous second-order linear difference equation defined on a discrete set of points
x = 0, 1, 2, . . . Notation adopted: yn = y(n).

Let λ1 and λ2 be roots of the characteristic equation

λ2 + aλ + b = 0.

1◦. If λ1 ≠ λ2, the general solution of the difference equation has the form

yn = y1
λn1 – λn2
λ1 – λ2

– y0b
λn–1

1 – λn–1
2

λ1 – λ2
,

where y1 and y0 are arbitrary constants, equal to the values of y at the first two points.
In the case of complex conjugate roots, one should separate the real and imaginary parts

in the above solution.

2◦. If λ1 = λ2, the general solution of the difference equation is given by

yn = y1nλ
n–1
1 – y0b(n – 1)λn–2

1 .

2. yn+2 + ayn+1 + byn = fn.

A nonhomogeneous second-order linear difference equation defined on a discrete set of
points x = 0, 1, 2, . . . Notation adopted: yn = y(n).

Let λ1 and λ2 be roots of the characteristic equation

λ2 + aλ + b = 0.

1◦. If λ1 ≠ λ2, the general solution of the difference equation has the form

yn = y1
λn1 – λn2
λ1 – λ2

– y0b
λn–1

1 – λn–1
2

λ1 – λ2
+

n∑

k=2

fn–k
λk–1

1 – λk–1
2

λ1 – λ2
,

where y1 and y0 are arbitrary constants, equal to the values of y at the first two points.
In the case of complex conjugate roots, one should separate the real and imaginary parts

in the above solution.

2◦. If λ1 = λ2, the general solution of the difference equation is given by

yn = y1nλ
n–1
1 – y0b(n – 1)λn–2

1 +
n∑

k=2

fn–k(k – 1)λk–2
1 .

3◦. In boundary value problems, a finite set of points x = 0, 1, . . . ,N is often taken and the
initial and final values of the unknown function, y0 and yN , are prescribed. It is required to
find the yn ≡ y(x)|x=n for 1 ≤ n ≤ N – 1.

If λ1 ≠ λ2, the solution is given by

yn = y0
λN1 λ

n
2 – λn1λ

N
2

λN1 – λN2
+ yN

λn1 – λn2
λN1 – λN2

+
n∑

k=2

fn–k
λk–1

1 – λk–1
2

λ1 – λ2
–
λn1 – λn2
λN1 – λN2

N∑

k=2

fN–k
λk–1

1 – λk–1
2

λ1 – λ2
.

For n = 1, the first sum is zero.
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3. y(x + 2) + ay(x + 1) + by(x) = 0.

A homogeneous second-order constant-coefficient linear difference equation.
Let us write out the characteristic equation:

λ2 + aλ + b = 0. (1)

Consider the following cases.

1◦. The roots λ1 and λ2 of the quadratic equation (1) are real and distinct. Then the general
solution of the original finite-difference equation has the form

y(x) = Θ1(x)λx1 + Θ2(x)λx2 , (2)

where Θ1(x) and Θ2(x) are arbitrary periodic functions with period 1, that is, Θk(x) =
Θk(x + 1), k = 1, 2.

For Θk ≡ const, formula (2) gives particular solutions

y(x) = C1λ
x
1 + C2λ

x
2 ,

where C1 and C2 are arbitrary constants.

2◦. The quadratic equation (1) has equal roots: λ = λ1 = λ2. In this case, the general
solution of the original functional equation is given by

y =
[
Θ1(x) + xΘ2(x)

]
λx.

3◦. In the case of complex conjugate roots, λ = ρ(cos β � i sin β), the general solution of
the original functional equation is expressed as

y = Θ1(x)ρx cos(βx) + Θ2(x)ρx sin(βx),

where Θ1(x) and Θ2(x) are arbitrary periodic functions with period 1.

4. y(x + 2) + ay(x + 1) + by(x) = f(x).

A nonhomogeneous second-order constant-coefficient linear difference equation.

1◦. Solution:
y(x) = Y (x) + ȳ(x),

where Y (x) is the general solution of the corresponding homogeneous equation Y (x + 2) +
aY (x+ 1) + bY (x) = 0 (see the previous equation), and ȳ(x) is any particular solution of the
nonhomogeneous equation.

2◦. For f (x) =
n∑

k=0
Akx

n and a + b + 1 ≠ 1, the nonhomogeneous equation has a partic-

ular solution of the form ȳ(x) =
n∑

k=0
Bkx

n; the constants Bk are found by the method of

undetermined coefficients.

3◦. For f (x) =
n∑

k=1
Ak exp(λkx), the nonhomogeneous equation has a particular solution of

the form ȳ(x) =
n∑

k=1
Bk exp(λkx); the constants Bk are found by the method of undetermined

coefficients.



T12.1. LINEAR FUNCTIONAL EQUATIONS IN ONE INDEPENDENT VARIABLE 1423

4◦. For f (x) =
n∑

k=1
Ak cos(λkx), the nonhomogeneous equation has a particular solution of

the form ȳ(x) =
n∑

k=1
Bk cos(λkx) +

n∑

k=1
Dk sin(λkx); the constants Bk and Dk are found by

the method of undetermined coefficients.

5◦. For f (x) =
n∑

k=1
Ak sin(λkx), the nonhomogeneous equation has a particular solution of

the form ȳ(x) =
n∑

k=1
Bk cos(λkx) +

n∑

k=1
Dk sin(λkx); the constants Bk and Dk are found by

the method of undetermined coefficients.

5. y(x + 2) + a(x + 1)y(x + 1) + bx(x + 1)y(x) = 0.

This functional equation has particular solutions of the form

y(x;λ) =
∫ ∞

0
tx–1e–t/λ dt, (1)

where λ is a root of the square equation

λ2 + aλ + b = 0. (2)

For the integral on the right-hand side of (1) to converge, the roots of equation (2) that satisfy
the condition Reλ > 0 should be selected. If both roots, λ1 and λ2, meet this condition, the
general solution of the original functional equation is expressed as

y(x) = Θ1(x)y(x,λ1) + Θ2(x)y(x,λ2),

where Θ1(x) and Θ2(x) are arbitrary periodic functions with period 1.

T12.1.2-2. Linear equations involving composite functions y
(
y(x)
)

or y
(
y(y(x))

)
.

6. y
((
y(x)

))
= 0.

Solution:

y(x) =

{
ϕ1(x) for x ≤ a,
0 for a ≤ x ≤ b,
ϕ2(x) for b ≤ x,

where a ≤ 0 and b ≥ 0 are arbitrary numbers; ϕ1(x) and ϕ2(x) are arbitrary continuous
functions satisfying the conditions

ϕ1(a) = 0, a ≤ ϕ1(x) ≤ b if x ≤ a;
ϕ2(b) = 0, a ≤ ϕ2(x) ≤ b if b ≤ x.

7. y
((
y(x)

))
– x = 0.

Babbage equation or the equation of involutory functions. It is a special case of equa-
tion T12.1.2.21.

1◦. Particular solutions:

y1(x) = x, y2(x) = C – x, y3(x) =
C

x
, y4(x) =

C1 – x
1 + C2x

,

where C , C1, C2 are arbitrary constants.
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2◦. On the interval x � (a, b), there exists a decreasing solution of the original equation
involving an arbitrary function:

y(x) =
{
ϕ(x) for x � (a, c],
ϕ–1(x) for x � (c, b),

where c is an arbitrary point belonging to the interval (a, b), and ϕ(x) is an arbitrary
continuous decreasing function on (a, c] such that

lim
x→a+0

ϕ(x) = b, ϕ(c) = c.

3◦. Solution in parametric form:

x = Θ
( t

2

)
, y = Θ

( t + 1
2

)
,

where Θ(t) = Θ(t + 1) is an arbitrary periodic function with period 1.

4◦. Solution in parametric form:

x = Θ1(t) + Θ2(t) sin(πt),
y = Θ1(t) – Θ2(t) sin(πt),

where Θ1(t) and Θ2(t) are arbitrary periodic functions with period 1.

5◦. The original functional equation has a single increasing solution: y(x) = x.

6◦. Particular solutions of the equation may be represented in implicit form using the
algebraic (or transcendental) equation

Φ(x, y) = 0,

where Φ(x, y) = Φ(y,x) is some symmetric function with two arguments.

8. y
((
y(x)

))
+ ay(x) + bx = 0.

1◦. General solution in parametric form:

x = Θ1(t)λt1 + Θ2(t)λt2,

y = Θ1(t)λt+1
1 + Θ2(t)λt+1

2 ,

where λ1 and λ2 are roots of the quadratic equation

λ2 + aλ + b = 0
and Θ1 = Θ1(t) and Θ2 = Θ2(t) are arbitrary periodic functions with period 1.

2◦. For Θ1(t) = C1 = const and Θ2(t) = C2 = const, we have a particular solution in implicit
form

λ2x – y(x)
λ2 – λ1

= C1

[
λ1x – y(x)
C2(λ1 – λ2)

]k
, k =

lnλ1

lnλ2
.

9. y
((
y(y(x))

))
– x = 0.

A special case of equation T12.1.2.21.

1◦. Particular solutions:

y1(x) = –
C2

C + x
, y2(x) = C –

C2

x
, y3(x) = C1 –

(C1 + C2)2

C2 + x
,

where C , C1, C2 are arbitrary constants.

2◦. Solution in parametric form:

x = Θ
( t

3

)
, y = Θ

( t + 1
3

)
,

where Θ(t) = Θ(t + 1) is an arbitrary periodic function with period 1.
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T12.1.2-3. Equations involving unknown function with three different arguments.

10. Ay(ax) + By(bx) + y(x) = 0.

This functional equation has particular solutions of the form y(x) = Cxβ , where C is an
arbitrary constant and β is a root of the transcendental equation Aaβ + Bbβ + 1 = 0.

11. Ay(xa) + By(xb) + y(x) = 0.

This functional equation has particular solutions of the form y(x) = C | lnx|p, where C is an
arbitrary constant and p is a root of the transcendental equation A|a|p +B|b|p + 1 = 0.

12. Ay(x) + By
((ax – β

x + b

))
+ Cy

(( bx + β

a – x

))
= f(x), β = a2 + ab + b2.

Let us substitute x in the equation first by
ax – β
x + b

and then by
bx + β
a – x

to obtain two more

equations. So we get the system (the original equation is given first)

Ay(x) + By(u) + Cy(w) = f (x),
Ay(u) + By(w) + Cy(x) = f (u),
Ay(w) +By(x) + Cy(u) = f (w),

(1)

where u =
ax – β
x + b

and w =
bx + β
a – x

.

Eliminating y(u) and y(w) from the system of linear algebraic equations (1) yields the
solution of the original functional equation.

13. f1(x)y(x) + f2(x)y
((ax – β

x + b

))
+ f3(x)y

(( bx + β

a – x

))
= g(x), β = a2 + ab + b2.

Let us substitute x in the equation first by
ax – β
x + b

and then by
bx + β
a – x

to obtain two more

equations. So we get the system (the original equation is given first)

f1(x)y(x) + f2(x)y(u) + f3(x)y(w) = g(x),
f1(u)y(u) + f2(u)y(w) + f3(u)y(x) = g(u),
f1(w)y(w) + f2(w)y(x) + f3(w)y(u) = g(w),

(1)

where

u =
ax – β
x + b

, w =
bx + β
a – x

.

Eliminating y(u) and y(w) from the system of linear algebraic equations (1) yields the
solution y = y(x) of the original functional equation.

T12.1.2-4. Higher-order linear difference equations.

14. yn+m + am–1yn+m–1 + · · · + a1yn+1 + a0yn = 0.

A homogeneous mth-order linear difference equation defined on a discrete set of points
x = 0, 1, 2, . . . Notation adopted: yn = y(n).
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Let λ1, λ2, . . . , λm be roots of the characteristic equation

P (λ) ≡ λm + am–1λ
m–1 + · · · + a1λ + a0 = 0. (1)

If all the roots of the characteristic equation (1) are distinct, then the general solution of
the original difference equation has the form

yn =
m–1∑

i=0

yi

m–i–1∑

j=0

ai+j+1

m∑

k=1

λn+1
k

P ′(λk)
, (2)

where the prime denotes a derivative.
Formula (2) involves the initial values y0, y1, . . . , ym. They can be set arbitrarily.
In the case of complex conjugate roots, one should separate the real and imaginary parts

in solution (2).

15. yn+m + am–1yn+m–1 + · · · + a1yn+1 + a0yn = fn.

A nonhomogeneous mth-order linear difference equation defined on a discrete set of points
x = 0, 1, 2, . . . Notation adopted: yn = y(n).

The general solution of the difference equation has the form y(x) = Y (x) + ȳ(x), where
Y (x) is the general solution of the corresponding homogeneous equation (with fn ≡ 0) and
ȳ(x) is any particular solution of the nonhomogeneous equation.

Let λ1, λ2, . . . , λm be roots of the characteristic equation

P (λ) ≡ λm + am–1λ
m–1 + · · · + a1λ + a0 = 0. (1)

If all the roots of the characteristic equation (1) are distinct, then the general solution of
the original difference equation has the form

yn =
m–1∑

i=0

yi

m–i–1∑

j=0

ai+j+1

m∑

k=1

λn+1
k

P ′(λk)
+

n∑

ν=m

fn–ν

m∑

k=1

λν–1
k

P ′(λk)
, (2)

where the prime denotes a derivative.
Formula (2) involves the initial values y0, y1, . . . , ym. They can be set arbitrarily.
In the case of complex conjugate roots, one should separate the real and imaginary parts

in solution (2).

16. y(x + n) + an–1y(x + n – 1) + · · · + a1y(x + 1) + a0y(x) = 0.

A homogeneous nth-order constant-coefficient linear difference equation.
Let us write out the characteristic equation:

λn + an–1λ
n–1 + · · · + a1λ + a0 = 0. (1)

Consider the following cases.

1◦. All roots λ1, λ2, . . . , λn of equation (1) are real and distinct. Then the general solution
of the original finite-difference equation has the form

y(x) = Θ1(x)λx1 + Θ2(x)λx2 + · · · + Θn(x)λxn, (2)

where Θ1(x), Θ2(x), . . . , Θn(x) are arbitrary periodic functions with period 1, which means
that Θk(x) = Θk(x + 1), k = 1, 2, . . . , n.

For Θk(x) ≡ Ck, formula (2) gives a particular solution

y(x) = C1λ
x
1 + C2λ

x
2 + · · · + Cnλ

x
n,

where C1, C2, . . . , Cn are arbitrary constants.
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2◦. There are m equal real roots, λ1 = λ2 = · · · = λm (m ≤ n), the other roots real and
distinct. In this case, the general solution of the functional equation is expressed as

y =
[
Θ1(x)+xΘ2(x)+ · · ·+xm–1Θm(x)

]
λx1 +Θm+1(x)λxm+1 +Θm+2(x)λxm+2 + · · ·+Θn(x)λxn.

3◦. There are m equal complex conjugate roots, λ = ρ(cos β � i sin β) (2m ≤ n), the other
roots real and distinct. Then the original functional equation has a solution corresponding
to Θn(x) ≡ constk:

y = ρx cos(βx)(A1 +A2x + · · · +Amx
m–1)

+ ρx sin(βx)(B1 + B2x + · · · +Bmx
m–1)

+ Cm+1λ
x
m+1 + Cm+2λ

x
m+2 + · · · + Cnλ

x
n,

where A1, . . . , Am, B1, . . . , Bm, C2m+1, . . . , Cn are arbitrary constants.

17. y(x + n) + an–1y(x + n – 1) + · · · + a1y(x + 1) + a0y(x) = f(x).

A nonhomogeneous nth-order constant-coefficient linear difference equation.

1◦. Solution:
y(x) = Y (x) + ȳ(x),

where Y (x) is the general solution of the corresponding homogeneous equation

Y (x + n) + an–1Y (x + n – 1) + · · · + a1Y (x + 1) + a0Y (x) = 0
(see the previous equation), and ȳ(x) is any particular solution of the nonhomogeneous
equation.

2◦. For f (x) =
n∑

k=0
Akx

n, the nonhomogeneous equation has a particular solution of the form

ȳ(x) =
n∑

k=0
Bkx

n; the constants Bk are found by the method of undetermined coefficients.

3◦. For f (x) =
n∑

k=1
Ak exp(λkx), the nonhomogeneous equation has a particular solution of

the form ȳ(x) =
n∑

k=1
Bk exp(λkx); the constants Bk are found by the method of undetermined

coefficients.

4◦. For f (x) =
n∑

k=1
Ak cos(λkx), the nonhomogeneous equation has a particular solution of

the form ȳ(x) =
n∑

k=1
Bk cos(λkx) +

n∑

k=1
Dk sin(λkx); the constants Bk and Dk are found by

the method of undetermined coefficients.

5◦. For f (x) =
n∑

k=1
Ak sin(λkx), the nonhomogeneous equation has a particular solution of

the form ȳ(x) =
n∑

k=1
Bk cos(λkx) +

n∑

k=1
Dk sin(λkx); the constants Bk and Dk are found by

the method of undetermined coefficients.

18. y(x + bn) + an–1y(x + bn–1) + · · · + a1y(x + b1) + a0y(x) = 0.

There are particular solutions of the form y(x) =λxk , where λk are roots of the transcendental
(or algebraic) equation

λbn + an–1λ
bn–1 + · · · + a1λ

b1 + a0 = 0.
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T12.1.2-5. Equations involving unknown function with many different arguments.

19. y(anx) + bn–1y(an–1x) + · · · + b1y(a1x) + b0y(x) = 0.

This functional equation has particular solutions of the form y = Cxβ , where C is an
arbitrary constant and β is a root of the transcendental equation

aβn + bn–1a
β
n–1 + · · · + b1a

β
1 + b0 = 0.

20. y
((
xan
))

+ bn–1y
((
xan–1

))
+ · · · + b1y

((
xa1
))

+ b0y(x) = 0.

This functional equation has particular solutions of the form y(x) = C | lnx|p, where C is an
arbitrary constant and p is a root of the transcendental equation

|an|p + bn–1|an–1|p + · · · + b1|a1|p + b0 = 0.

21. y[n](x) + an–1y
[n–1](x) + · · · + a1y(x) + a0x = 0.

Notation used: y[2](x) = y
(
y(x)
)
, . . . , y[n](x) = y

(
y[n–1](x)

)
.

1◦. Solutions are sought in the parametric form

x = w(t), y = w(t + 1).

With it, the original equation is reduced to an nth-order linear finite-difference equation
(see equation 16 above):

w(t + n) + an–1w(t + n – 1) + · · · + a1w(t + 1) + a0w(t) = 0.

2◦. In the special case an–1 = . . . = a1 = 0 and a0 = –1, we have the following solution in
parametric form:

x = Θ
( t
n

)
, y = Θ

( t + 1
n

)
,

where Θ(t) = Θ(t + 1) is an arbitrary periodic function with period 1.

T12.2. Nonlinear Functional Equations in One
Independent Variable

T12.2.1. Functional Equations with Quadratic Nonlinearity

T12.2.1-1. Difference equations.

1. ynyn+1 = anyn+1 + bnyn + cn.

Riccati difference equation. Here, n = 0, 1, . . . and the constants an, bn, cn satisfy the
condition anbn + cn ≠ 0.

1◦. The substitution
yn =

un+1

un
+ an

leads to the linear second-order difference equation of the form T12.1.2.1:

un+2 + (an+1 – bn)un+1 – (anbn + cn)un = 0.
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2◦. Let y∗n be a particular solution of the Riccati difference equation. Then the substitution

zn =
1

yn – y∗n
, n = 0, 1, . . .

reduces this equation to the nonhomogeneous first-order linear difference equation

zn+1 +
(y∗n – an)2

anbn + cn
zn +

y∗n – an
anbn + cn

= 0.

About this equation, see Paragraph 17.1.1-2.

2. y(x + 1) – ay2(x) = f(x).

A special case of equation T12.2.3.1.

3. y(x)y(x + 1) + a[y(x + 1) – y(x)] = 0.

Solution:
y(x) =

a

x + Θ(x)
,

where Θ(x) = Θ(x + 1) is an arbitrary periodic function with period 1.

4. y(x)y(x + 1) = a(x)y(x + 1) + b(x)y(x) + c(x).

Riccati difference equation. Here, the functions a(x), b(x), c(x) satisfy the condition
a(x)b(x) + c(x) � 0.

1◦. The substitution

y(x) =
u(x + 1)
u(x)

+ a(x)

leads to the linear second-order difference equation

u(x + 2) + [a(x + 1) – b(x)]u(x + 1) – [a(x)b(x) + c(x)]u(x) = 0.

2◦. Let y0(x) be a particular solution of Riccati difference equation. Then the substitution

z(x) =
1

y(x) – y0(x)

reduces this equation to the nonhomogeneous first-order linear difference equation

z(x + 1) +
[y0(x) – a(x)]2

a(x)b(x) + c(x)
z(x) +

y0(x) – a(x)
a(x)b(x) + c(x)

= 0.

T12.2.1-2. Functional equations involving y(x) and y(a – x).

5. y(x)y(a – x) = b2.

Solutions:
y(x) = �b exp

[
Φ(x, a – x)

]
,

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.
On setting Φ(x, z) = C(x – z), we arrive at particular solutions of the form

y(x) = �beC(2x–a),

where C is an arbitrary constant.
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6. y(x)y(a – x) = –b2.

Discontinuous solutions:

�y(x) =

⎧
⎨

⎩

bϕ(x) if x ≥ a/2,

–
b

ϕ(a – x)
if x < a/2,

where ϕ(x) is an arbitrary function. There are no continuous solutions.

7. y(x)y(a – x) = f 2(x).

The function f (x) must satisfy the condition f (x) = �f (a – x).

1◦. The change of variable y(x) = f (x)u(x) leads to one of the equations of the form
T12.2.1.5 or T12.2.1.6.

2◦. For f (x) = f (a – x), there are solutions of the form

y(x) = �f (x) exp
[
Φ(x, a – x)

]
,

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.
On setting Φ(x, z) = C(x – z), we arrive at particular solutions

y(x) = �eC(2x–a)f (x),

where C is an arbitrary constant.

8. y2(x) + y2(a – x) = b2.

1◦. Solutions:

y(x) = �

√
1
2 b

2 + Φ(x, a – x) ,

where Φ(x, z) = –Φ(z,x) is any antisymmetric function of two arguments.

2◦. Particular solutions:

y1,2(x) = �
b√

2
, y3,4(x) = �b sin

(πx
2a

)
, y5,6(x) = �b cos

( πx
2a

)
.

9. y2(x) + Ay(x)y(a – x) + By2(a – x) + Cy(x) + Dy(a – x) = f(x).

A special case of equation T12.2.3.2.
Solution in parametric form (w is a parameter):

y2 + Ayw + Bw2 + Cy +Dw = f (x),

w2 +Ayw + By2 + Cw + Dy = f (a – x).

Eliminating w gives the solutions in implicit form.
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T12.2.1-3. Functional equations involving y(x) and y(ax).

10. y(2x) – ay2(x) = 0.

A special case of equation T12.2.3.3.
Particular solution:

y(x) =
1
a
eCx,

where C is an arbitrary constant.

11. y(2x) – 2y2(x) + a = 0.

A special case of equation T12.2.3.3.
Particular solutions with a = 1:

y(x) = 0, y(x) = cos(Cx), y(x) = cosh(Cx),

where C is an arbitrary constant.

12. y(x)y(ax) = f(x).

A special case of equation T12.2.3.3.

T12.2.1-4. Functional equations involving y(x) and y(a/x).

13. y(x)y(a/x) = b2.

Solution:
y(x) = �b exp

[
Φ(x, a/x)

]
,

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.
On setting Φ(x, z) = C(lnx – ln z), one arrives at particular solutions of the form

y = �ba–Cx2C ,

where C is an arbitrary constant.

14. y(x)y(a/x) = f 2(x).

The function f (x) must satisfy the condition f (x) = �f (a/x). For definiteness, we take
f (x) = f (a/x).

Solution:
y(x) = �f (x) exp

[
Φ(x, a/x)

]
,

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.
On setting Φ(x, z) = C(lnx – ln z), one arrives at particular solutions of the form

y = �a–Cx2Cf (x),

where C is an arbitrary constant.

15. y2(x) + Ay(x)y(a/x) + By2(a/x) + Cy(x) + Dy(a/x) = f(x).

A special case of equation T12.2.3.4.
Solution in parametric form (w is a parameter):

y2 + Ayw +Bw2 + Cy +Dw = f (x),

w2 + Ayw + By2 + Cw + Dy = f (a/x).

Eliminating w gives the solutions in implicit form.
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T12.2.1-5. Other functional equations with quadratic nonlinearity.

16. y(x2) – ay2(x) = 0.

Solution:

y(x) =
1
a
xC ,

where C is an arbitrary constant. In addition, y(x) ≡ 0 is also a continuous solution.

17. y(x)y(xa) = f(x), a > 0.

A special case of equation T12.2.3.8.

18. y(x)y
(( a – x

1 + bx

))
= A2.

Solutions:

y(x) = �A exp

[
Φ
(
x,

a – x
1 + bx

)]
,

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.

19. y(x)y
(( a – x

1 + bx

))
= f 2(x).

The right-hand side function must satisfy the condition f (x) = �f
( a – x

1 + bx

)
. For definite-

ness, we take f (x) = f
( a – x

1 + bx

)
.

Solutions:

y(x) = �f (x) exp

[
Φ
(
x,

a – x
1 + bx

)]
,

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.

20. y2(x) + Ay(x)y
(( a – x

1 + bx

))
+ By(x) = f(x).

A special case of equation T12.2.3.5.

21. y(x)y
((√
a2 – x2

))
= b2, 0 ≤ x ≤ a.

Solutions:
y(x) = �b exp

[
Φ
(
x,
√
a2 – x2

)]
,

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.

22. y(x)y
((√
a2 – x2

))
= f 2(x), 0 ≤ x ≤ a.

The right-hand side function must satisfy the condition f (x) = �f
(√
a2 – x2

)
. For defi-

niteness, we take f (x) = f
(√
a2 – x2

)
.

Solutions:
y(x) = �f (x) exp

[
Φ
(
x,
√
a2 – x2

)]
,

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.
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23. y(sinx)y(cosx) = a2.

Solutions in implicit form:

y(sin x) = �a exp
[
Φ(sinx, cos x)

]
,

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.

24. y(sinx)y(cosx) = f 2(x).

The right-hand side function must satisfy the condition f (x) = �f
(
π
2 –x

)
. For definiteness,

we take f (x) = f
(
π
2 – x

)
.

Solutions in implicit form:

y(sinx) = �f (x) exp
[
Φ(sinx, cos x)

]
,

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.

25. y(x)y
((
ω(x)

))
= b2, where ω

((
ω(x)

))
= x.

Solutions:
y(x) = �b exp

[
Φ
(
x, ω(x)

)]
,

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.

26. y(x)y
((
ω(x)

))
= f 2(x), where ω

((
ω(x)

))
= x.

The right-hand side function must satisfy the condition f (x) = �f
(
ω(x)

)
. For definiteness,

we take f (x) = f
(
ω(x)

)
.

Solutions:
y(x) = �f (x) exp

[
Φ
(
x, ω(x)

)]
,

where Φ(x, z) = –Φ(z,x) is any antisymmetric function with two arguments.

T12.2.2. Functional Equations with Power Nonlinearity

1. y(x + a) – byλ(x) = f(x).

A special case of equation T12.2.3.1.

2. yλ(x)y(a – x) = f(x).

A special case of equation T12.2.3.2.
Solution:

y(x) =
[
f (x)

]– λ
1–λ2
[
f (a – x)

] 1
1–λ2 .

3. y2n+1(x) + y2n+1(a – x) = b, n = 1, 2, . . .

The change of variable w(x) = y2n+1(x) leads to a linear equation of the form T12.1.1.22:
w(x) + w(a – x) = b.
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4. y(ax) = byk(x).

Solution for x > 0, a > 0, b > 0, and k > 0 (a ≠ 1):

y(x) = b
1

1–k exp

[
x

ln k
ln aΘ

( lnx
ln a

)]
,

where Θ(x) = Θ(x + 1) is an arbitrary periodic function with period 1.

5. yλ(x)y(a/x) = f(x).

A special case of equation T12.2.3.4.
Solution:

y(x) =
[
f (x)

]– λ
1–λ2
[
f (a/x)

] 1
1–λ2 .

6. yλ(x)y
(( a – x

1 + bx

))
= f(x).

A special case of equation T12.2.3.5.

7. yλ(x)y
((ax – β

x + b

))
= f(x), β = a2 + ab + b2.

A special case of equation T12.2.3.13.

8. yλ(x)y
((bx + β

a – x

))
= f(x), β = a2 + ab + b2.

A special case of equation T12.2.3.13.

9. yλ(x)y(xa) = f(x).

A special case of equation T12.2.3.8.

10. yλ(x)y
((√
a2 – x2

))
= f(x).

A special case of equation T12.2.3.9.

11. yλ(sinx)y(cosx) = f(x).

A special case of equation T12.2.3.10.

T12.2.3. Nonlinear Functional Equation of General Form
1. F

((
x, y(x), y(x + a)

))
= 0.

We assume that a > 0. Let us solve the equation for y(x + a) to obtain

y(x + a) = f
(
x, y(x)

)
. (1)

1◦. First, let us assume that the equation is defined on a discrete set of points x = x0 + ak
with integer k. Given an initial value y(x0), one can make use of (1) to find sequentially
y(x0 + a), y(x0 + 2a), etc.

Solving the original equation for y(x) yields

y(x) = g
(
x, y(x + a)

)
. (2)

On setting x = x0 – a here, one can find y(x0 – a) and then likewise y(x0 – 2a) etc.
Thus, given initial data, one can use the equation to find y(x) at all points x0 +ak, where

k = 0,�1,�2, . . .
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2◦. Now assume that x in the equation can vary continuously. Also assume that y(x) is a
continuous function defined arbitrarily on the semi-interval [0, a). Setting x = 0 in (1), one
finds y(a). Then, given y(x) on [0, a], one can use (1) to find y(x) on x � [a, 2a], then on
x � [2a, 3a], and so on.

Remark. The case of a < 0 can be reduced, using the change of variable z = x + a, to an equation of the
form F

(
z + b, y(z + b), y(z)

)
= 0 with b = –a > 0, which was already considered above.

2. F
((
x, y(x), y(a – x)

))
= 0.

Substituting x with a – x, one obtains F
(
a – x, y(a – x), y(x)

)
= 0. Now, eliminating

y(a – x) from this equation and the original one, one arrives at an ordinary algebraic (or
transcendental) equation of the form Ψ

(
x, y(x)

)
= 0.

To put it differently, the solutiony =y(x) of the original functional equation is determined
parametrically with the system of two algebraic (or transcendental) equations

F (x, y, t) = 0, F (a – x, t, y) = 0,

where t is a parameter.

3. F
((
x, y(x), y(ax)

))
= 0, a > 0.

The transformation z = lnx, w(z) = y(x) leads to an equation of the form T12.2.3.1:

F
(
ez , w(z), w(z + b)

)
= 0, b = ln a.

4. F
((
x, y(x), y(a/x)

))
= 0.

Substituting x with a/x yields F
(
a/x, y(a/x), y(x)

)
= 0. Eliminating y(a/x) from this

equation and the original one, we arrive at an ordinary algebraic (or transcendental) equation
of the form Ψ

(
x, y(x)

)
= 0.

To put it differently, the solutiony =y(x) of the original functional equation is determined
parametrically with the system of two algebraic (or transcendental) equations

F (x, y, t) = 0, F (a/x, t, y) = 0,

where t is the parameter.

5. F

((
x, y(x), y

(( a – x

1 + bx

))))
= 0.

Substituting x with
a – x

1 + bx
yields

F

(
a – x

1 + bx
, y
( a – x

1 + bx

)
, y(x)

)
= 0.

Eliminating y
( a – x

1 + bx

)
from this equation and the original one, we arrive at an ordinary

algebraic (or transcendental) equation of the form Ψ
(
x, y(x)

)
= 0.

In other words, the solution y = y(x) of the original functional equation is determined
parametrically with the system of two algebraic (or transcendental) equations

F (x, y, t) = 0, F
( a – x

1 + bx
, t, y

)
= 0,

where t is the parameter.
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6. F

((
x, y(x), y

((ax – β

x + b

))))
= 0, β = a2 + ab + b2.

A special case of equation T12.2.3.13 below.

7. F

((
x, y(x), y

(( bx + β

a – x

))))
= 0, β = a2 + ab + b2.

A special case of equation T12.2.3.13 below.

8. F
((
x, y(x), y(xa)

))
= 0.

The transformation ξ = lnx, u(ξ) = y(x) leads to an equation of the form 3 above:

F
(
eξ , u(ξ), u(aξ)

)
= 0.

9. F
((
x, y(x), y

((√
a2 – x2

))))
= 0, 0 ≤ x ≤ a.

Substituting x with
√
a2 – x2 yields

F
(√

a2 – x2, y
(√

a2 – x2
)
, y(x)

)
= 0.

Eliminating y
(√
a2 – x2

)
from this equation and the original one, we arrive at an ordinary

algebraic (or transcendental) equation of the form Ψ
(
x, y(x)

)
= 0.

In other words, the solution y = y(x) of the original functional equation is determined
parametrically with the system of two algebraic (or transcendental) equations

F (x, y, t) = 0, F
(√

a2 – x2, t, y
)

= 0,

where t is the parameter.

10. F
((
x, y(sinx), y(cosx)

))
= 0.

Substituting xwith π
2 –x yields F

(
π
2 –x, y(cos x), y(sin x)

)
= 0. Eliminating y(cos x) from

this equation and the original one, we arrive at an ordinary algebraic (or transcendental)
equation of the form Ψ

(
x, y(sinx)

)
= 0 for y(sinx).

11. F
((
x, y(x),y

((
ω(x)

))))
= 0, where ω

((
ω(x)

))
= x.

Substituting x with ω(x) yields F
(
ω(x), y

(
ω(x)

)
, y(x)

)
= 0. Eliminating y

(
ω(x)

)
from

this equation and the original one, we arrive at an ordinary algebraic (or transcendental)
equation of the form Ψ

(
x, y(x)

)
= 0.

Thus, the solution y = y(x) of the original functional equation is determined parametri-
cally with the system of two algebraic (or transcendental) equations

F (x, y, t) = 0, F
(
ω(x), t, y

)
= 0,

where t is the parameter.

12. F
((
x, y(x), y(x + 1), y(x + 2)

))
= 0.

A second-order nonlinear difference equation of general form. A special case of equation
T12.2.3.14.
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13. F

((
x, y(x), y

((ax – β

x + b

))
, y
(( bx + β

a – x

))))
= 0, β = a2 + ab + b2.

Let us substitute x first with
ax – β
x + b

and then with
bx + β
a – x

to obtain two more equations.

As a result, we get the following system (the original equation is given first):

F
(
x, y(x), y(u), y(w)

)
= 0,

F
(
u, y(u), y(w), y(x)

)
= 0,

F
(
w, y(w), y(x), y(u)

)
= 0.

(1)

The arguments u and w are expressed in terms of x as

u =
ax – β
x + b

, w =
bx + β
a – x

.

Eliminating y(u) and y(w) from the system of algebraic (transcendental) equations (1),
we arrive at the solutions y = y(x) of the original functional equation.

14. F
((
x, y(x), y(x + 1), . . . , y(x + n)

))
= 0.

An nth-order nonlinear difference equation of general form.
Let us solve the equation for y(x + n) to obtain

y(x + n) = f
(
x, y(x), y(x + 1), . . . , y(x + n – 1)

)
. (1)

1◦. Let us assume that the equation is defined on a discrete set of points x = x0 + k with
integer k. Given initial values y(x0), y(x0 + 1), . . . , y(x0 + n – 1), one can make use of (1)
to find sequentially y(x0 + n), y(x0 + n + 1), etc.

Solving the original equation for y(x) gives

y(x) = g
(
x, y(x + 1), y(x + 2), . . . , y(x + n)

)
. (2)

On setting x = x0 – 1 here, one can find y(x0 – 1), then likewise y(x0 – 2) etc.
Thus, given initial data, one can use the equation to find y(x) at all points x0 + k, where

k = 0,�1,�2, . . .

2◦. Now assume that x in the equation can vary continuously. Also assume that y(x) is a
continuous function defined arbitrarily on the semi-interval [0, n). Setting x = 0 in (1), one
finds y(n). Then, given y(x) on [0, n], one can use (1) to find y(x) on x � [n, n + 1], then
on x � [n + 1, n + 2], and so on.

15. F
((
x, y(x), y[2](x), . . . , y[n](x)

))
= 0.

Notation: y[2](x) = y
(
y(x)
)
, . . . , y[n](x) = y

(
y[n–1](x)

)
.

Solutions are sought in the parametric form

x = w(t), y = w(t + 1). (1)

Then the original equation is reduced to an nth-order difference equation (see the previous
equation):

F
(
w(t), w(t + 1), w(t + 2), . . . , w(t + n)

)
= 0. (2)

The general solution of equation (2) has the structure

x = w(t) = ϕ(t; C1, . . . ,Cn),
y = w(t + 1) = ϕ(t + 1; C1, . . . ,Cn),

where C1 = C1(t), . . . , Cn = Cn(t) are arbitrary periodic functions with period 1, that is,
Ck(t) = Ck(t + 1), k = 1, 2, . . . ,n.
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16. F
((
x, y(θ0(x)), y(θ1(x)), . . . , y(θn–1(x))

))
= 0.

Notation: θk(x) ≡ θ
(
x + k

nT
)
, where k = 0, 1, . . . , n – 1. The functions θ(x) are assumed

to be periodic with period T , i.e., θ(x) = θ(x + T ). Furthermore, the left-hand side of the
equation is assumed to satisfy the condition F (x, . . .) = F (x + T , . . .).

In the original equation, let us substitute x sequentially byx+ k
nT with k = 0, 1, . . . , n–1

to obtain the following system (the original equation is given first):

F
(
x, y0, y1, . . . , yn–1

)
= 0,

F
(
x + 1

nT , y1, y2, . . . , y0
)

= 0,

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ,

F
(
x + n–1

n T , yn–1, y0, . . . , yn–2
)

= 0,

(1)

where the notation yk ≡ y
(
θk(x)

)
is used for brevity.

Eliminating y1, y2, . . . , yn–1 from the system of nonlinear algebraic (or transcendental)
equations (1), one finds the solutions of the original functional equation in implicit form:
Ψ
(
x, y0) = 0, where y0 = y

(
θ(x)
)
.

T12.3. Functional Equations in Several Independent
Variables

T12.3.1. Linear Functional Equations

T12.3.1-1. Equations involving functions with a single argument.

1. f(x + y) = f(x) + f(y).

Cauchy’s equation.
Solution:

f (x) = Cx,

where C is an arbitrary constant.

2. f

((
x + y

2

))
=
f(x) + f(y)

2
.

Jensen’s equation.
Solution:

f (x) = C1x + C2,

where C1 and C2 are arbitrary constants.

3. af(x) + bf(y) = f(ax + by) + c.

1◦. Solution:

f (x) =

{
Ax +

c

a + b – 1
if a + b – 1 ≠ 0,

Ax +B if a + b – 1 = 0 and c = 0,

where A and B are arbitrary constants.

2◦. If a + b – 1 = 0 and c ≠ 0, then there is no solution.



T12.3. FUNCTIONAL EQUATIONS IN SEVERAL INDEPENDENT VARIABLES 1439

4. Af(a1x + b1y + c1) + Bf(a2x + b2y + c2) = Cf(a3x + b3y + c3) + D.

All continuous solutions of this equation have the form

f (x) = αx + β,

where the constants α and β are determined by substituting this expression into the original
equation.

5. f(x + y) + f(x – y) = 2f(x) + 2f(y).

Solution:
f (x) = Cx2,

where C is an arbitrary constant.

6. f(x + y) = f(x)eay.

Solution:
f (x) = Ceax,

where C is an arbitrary constant.

7. f(x + y) + f(x – y) = 2f(x) cosh y.

Solution:
f (x) = C1e

x + C2e
–x,

where C1 and C2 are arbitrary constants.

8. f(x + y) + f(x – y) = 2f(x) cosh(ay) + 2f(y).

Solution:
f (x) = C[2 – cosh(ax)],

where C is an arbitrary constant.

9. f(x + y) + f(x – y) = 2f(x) cos y.

Solution:
f (x) = C1 cos x + C2 sinx,

where C1 and C2 are arbitrary constants.

10. f(x + y) + f(x – y) = 2f(x) cos(ay) + 2f(y).

Solution:
f (x) = C[2 – cos(ax)],

where C is an arbitrary constant.

11. f(xy) = f(x) + f(y).

Cauchy’s logarithmic equation.
Solution:

f (x) = C ln |x|,

where C is an arbitrary constant.
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12. f
((
(xn + yn)1/n

))
= f(x) + f(y).

Solution:
f (x) = Cxn,

where C is an arbitrary constant.

13. f(x) + f(y) = f
((
x + y

1 – xy

))
, xy < 1.

Solution:
f (x) = C arctan x,

where C is an arbitrary constant.

14. f(x) + (1 – x)f
((

y

1 – x

))
= f(y) + (1 – y)f

((
x

1 – y

))
.

A basic equation of information theory. The quantities x, y, and x + y can assume values
from 0 to 1.

Solution:
f (x) = C[x lnx + (1 – x) ln(1 – x)],

where C is an arbitrary constant.

15. f(x) + (1 – x)αf

((
y

1 – x

))
= f(y) + (1 – y)αf

((
x

1 – y

))
.

Here, the quantities x, y, and x + y can assume values from 0 to 1; α ≠ 0, 1, 2.
Solution:

f (x) = C[xα + (1 – x)α – 1],

where C is an arbitrary constant.

16. f
((
xy –

√
(1 – x2)(1 – y2)

))
= f(x) + f(y), |x| ≤ 1, |y| ≤ 1.

Solution:
f (x) = C arccos x,

where C is an arbitrary constant.

17. f
((
xy +

√
(x2 – 1)(y2 – 1)

))
= f(x) + f(y), |x| ≥ 1, |y| ≥ 1.

Solution:
f (x) = C arccosh x,

where C is an arbitrary constant.

18. f(x) + g(y) = h(x + y).

Pexider’s equation. Here, f (x), g(y), and h(z) are the unknown functions.
Solution:

f (x) = C1x + C2, g(y) = C1y + C3, h(z) = C1z + C2 + C3,

where C1, C2, and C3 are arbitrary constants.
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T12.3.1-2. Equations involving functions with two arguments.

19. f(x, y) = f(y,x).

This equation may be treated as a definition of functions symmetric with respect to permu-
tation of the arguments.

1◦. Solution:
f (x, y) = Φ(x, y) + Φ(y,x),

where Φ(x, y) is an arbitrary function with two arguments.

2◦. Particular solutions may be found using the formula

f (x, y) = Ψ(ϕ(x) + ϕ(y))

by specifying the functions Ψ(z), ϕ(x).

20. f(x, y) = –f(y,x).

This equation may be treated as a definition of functions antisymmetric with respect to
permutation of the arguments.

1◦. Solution:
f (x, y) = Φ(x, y) – Φ(y,x),

where Φ(x, y) is an arbitrary function with two arguments.

2◦. Particular solutions may be found using the formulas

f (x, y) = ϕ(x) – ϕ(y),
f (x, y) = (x – y)Ψ(ϕ(x) + ϕ(y)),

by specifying the functions ϕ(x) and Ψ(z).

21. f(x, y) = f(x + ak1, y + ak2).

Traveling-wave equation. Here, a is an arbitrary number and k1 and k2 are some constants.
Solution:

f (x, y) = Φ(k2x – k1y),

where Φ(z) is an arbitrary function.

22. f(ax,ay) = f(x,y).

Here, a is an arbitrary number (a ≠ 0).
Solution:

f (x, y) = Φ(y/x),

where Φ(z) is an arbitrary function.

23. f(ax,ay) = aβf(x, y).

Equation of a homogeneous function. Here, a is an arbitrary number (a ≠ 0) and β is a fixed
number called the order of homogeneity.

Solution:
f (x, y) = xβΦ(y/x),

where Φ(x) is an arbitrary function.
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24. f(ax,aβy) = f(x, y).

Here, a is an arbitrary number (a ≠ 0) and β is some constant.
Solution:

f (x, y) = Φ
(
yx–β),

where Φ(x) is an arbitrary function.

25. f(ax,aβy) = aγf(x, y).

Equation of self-similar solutions. Here, a is an arbitrary number (a ≠ 0) and β and γ are
some constants.

Solution:
f (x, y) = xγΦ

(
yx–β),

where Φ(x) is an arbitrary function.

26. f(x, y) = anf
((
x + (1 – a)y, ay

))
.

Here, a is an arbitrary number (a > 0) and n is some constant.
Solution:

f (x, y) = y–nΦ(x + y),

where Φ(x) is an arbitrary function.

27. f(x, y) = anf(amx, y + lna).

Here, a is an arbitrary number (a > 0) and n and m are some constants.
Solution:

f (x, y) = e–nyΦ
(
xe–my),

where Φ(x) is an arbitrary function.

28. f(x, y) + f(y, z) = f(x, z).

Cantor’s first equation.
Solution:

f (x, y) = Φ(x) – Φ(y),

where Φ(x) is an arbitrary function.

29. f(x + y, z) + f(y + z, x) + f(z + x, y) = 0.

Solution:
f (x, y) = (x – 2y)ϕ(x + y),

where ϕ(x) is an arbitrary function.

30. f(xy, z) + f(yz, x) + f(zx, y) = 0.

Solution:
f (x, y) = ϕ(xy) ln

x

y2 if x > 0, y ≠ 0;

f (x, y) = ϕ(xy) ln
–x

y2 if x < 0, y ≠ 0;

f (x, y) = A +B ln |x| if x ≠ 0, y = 0;
f (x, y) = A +B ln |y| if x = 0, y ≠ 0,

where ϕ(x) is an arbitrary function and A and B are arbitrary constants.
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T12.3.2. Nonlinear Functional Equations

T12.3.2-1. Equations involving one unknown function with a single argument.

1. f(x + y) = f(x)f(y).

Cauchy’s exponential equation.
Solution:

f (x) = eCx,

where C is an arbitrary constant. In addition, the function f (x) ≡ 0 is also a solution.

2. f(x + y) = af(x)f(y).

Solution:

f (x) =
1
a
eCx,

where C is an arbitrary constant. In addition, the function f (x) ≡ 0 is also a solution.

3. f
((x + y

2

))
=
√
f(x)f(y).

Solution:
f (x) = Cax,

where a and C are arbitrary positive constants.

4. f
((x + y

n

))
=
[[
f(x)f(y)

]]1/n.

Solution:
f (x) = ax,

where a is an arbitrary positive constant.

5. f(y + x) + f(y – x) = 2f(x)f(y).

D’Alembert’s equation.
Solutions:

f (x) = cos(Cx), f (x) = cosh(Cx), f (x) ≡ 0,

where C is an arbitrary constant.

6. f(y + x) + f(y – x) = af(x)f(y).

Solutions:

f (x) =
2
a

cos(Cx), f (x) =
2
a

cosh(Cx), f (x) ≡ 0,

where C is an arbitrary constant.

7. f(x + y) = axyf(x)f(y).

Solution:
f (x) = eCxax

2/2,

where C is an arbitrary constant. In addition, the function f (x) ≡ 0 is also a solution.
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8. f(x + y) = f(x) + f(y) – af(x)f(y), a ≠ 0.

For a = 1, it is an equation of probability theory.
Solution:

f (x) =
1
a

(
1 – e–βx),

where β is an arbitrary constant. In addition, the function f (x) ≡ 0 is also a solution.

9. f(x + y)f(x – y) = f 2(x).

Lobachevsky’s equation.
Solution:

f (x) = C1 exp(C2x),

where C1 and C2 are arbitrary constants.

10. f(x + y + a)f(x – y + a) = f 2(x) + f 2(y) – 1.

Solutions:
f (x) = �1, f (x) = � cos

nπx

a
,

where n = 1, 2, . . . For trigonometric solutions, a must be nonzero.

11. f(x + y + a)f(x – y + a) = f 2(x) – f 2(y).

Solutions:

f (x) = 0, f (x) = C sin
2πx
a

, f (x) = C sin
(2n + 1)πx

a
,

where C is an arbitrary constant and n = 0, 1, 2, . . . For trigonometric solutions, a must
be nonzero.

12. (x – y)f(x)f(y) = xf(x) – yf(y).

Solutions:

f (x) ≡ 1, f (x) =
C

x + C
,

where C is an arbitrary constant.

13. f(xy) = af(x)f(y).

Cauchy’s power equation (for a = 1).
Solution:

f (x) =
1
a

|x|C ,

where C is an arbitrary constant. In addition, the function f (x) ≡ 0 is also a solution.

14. f(xy) = [f(x)]y.

Solution:
f (x) = eCx,

where C is an arbitrary constant. In addition, the function f (x) ≡ 0 is also a solution for
y > 0.
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15. f
((√
x2 + y2

))
= f(x)f(y).

Gauss’s equation.
Solution:

f (x) = exp(Cx2),

where C is an arbitrary constant. In addition, the function f (x) ≡ 0 is also a solution.

16.
((
f 2(x) + f 2(y)

2

))1/2

= f
((((x2 + y2

2

))1/2
))

.

Solution:
f (x) = (ax2 + b)1/2,

where a and b are arbitrary positive constants.

17. f
((
(xn + yn)1/n

))
= af(x)f(y), n is any number.

Solution:

f (x) =
1
a

exp(Cxn),

where C is an arbitrary constant. In addition, the function f (x) ≡ 0 is also a solution.

18.
((
fn(x) + fn(y)

2

))1/n

= f
((((xn + yn

2

))1/n
))

, n is any number.

Solution:
f (x) = (axn + b)1/n,

where a and b are arbitrary positive constants.

19. f
((
x + y

√
f(x)

))
+ f
((
x – y

√
f(x)

))
= 2f(x)f(y).

Solutions:
f (x) ≡ 0, f (x) = 1 + Cx2,

where C is an arbitrary constant.

20. f
((
g–1((g(x) + g(y)

))))
= af(x)f(y).

Generalized Gauss equation. Here, g(x) is an arbitrary monotonic function and g–1(x) is
the inverse of g(x).

Solution:

f (x) =
1
a

exp
[
Cg(x)

]
,

where C is an arbitrary constant. The function f (x) ≡ 0 is also a solution.

21. M
((
f(x), f(y)

))
= f
((
M(x, y)

))
.

Here, M (x, y) = ϕ–1
(ϕ(x) + ϕ(y)

2

)
is a quasiarithmetic mean for a continuous strictly

monotonic function ϕ, with ϕ–1 being the inverse of ϕ.
Solution:

f (x) = ϕ–1(aϕ(x) + b
)
,

where a and b are arbitrary constants.
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T12.3.2-2. Equations involving several unknown functions of a single argument.

22. f(x)g(y) = h(x + y).

Here, f (x), g(y), and h(z) are unknown functions.
Solution:

f (x) = C1 exp(C3x), g(y) = C2 exp(C3y), h(z) = C1C2 exp(C3z),

where C1, C2, and C3 are arbitrary constants.

23. f(x)g(y) + h(y) = f(x + y).

Here, f (x), g(y), and h(z) are unknown functions.
Solutions:

f (x) = C1x + C2, g(x) = 1, h(x) = C1x (first solution);
f (x) = C1e

ax + C2, g(x) = eax, h(x) = C2(1 – eax) (second solution),

where a, C1, and C2 are arbitrary constants.

24. f1(x)g1(y) + f2(x)g2(y) + f3(x)g3(y) = 0.

Bilinear functional equation.
Two solutions:

f1(x) = C1f3(x), f2(x) = C2f3(x), g3(y) = –C1g1(y) – C2g2(y);
g1(y) = C1g3(y), g2(y) = C2g3(y), f3(x) = –C1f1(x) – C2f2(x),

where C1 and C2 are arbitrary constants, the functions on the right-hand sides of the
solutions are prescribed arbitrarily.

25. f1(x)g1(y) + f2(x)g2(y) + f3(x)g3(y) + f4(x)g4(y) = 0.

Bilinear functional equation.
Equations of this type often arise in the generalized separation of variables in partial

differential equations.

1◦. Solution:

f1(x) = C1f3(x) + C2f4(x), f2(x) = C3f3(x) + C4f4(x),
g3(y) = –C1g1(y) – C3g2(y), g4(y) = –C2g1(y) – C4g2(y).

It depends on four arbitrary constants C1, . . . , C4. The functions on the right-hand sides of
the solution are prescribed arbitrarily.

2◦. The equation also has two other solutions,

f1(x) = C1f4(x), f2(x) = C2f4(x), f3(x) = C3f4(x), g4(y) = –C1g1(y) – C2g2(y) – C3g3(y);

g1(y) = C1g4(y), g2(y) = C2g4(y), g3(y) = C3g4(y), f4(x) = –C1f1(x) – C2f2(x) – C3f3(x),

involving three arbitrary constants.
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26. f(x) + g(y) = Q(z), where z = ϕ(x) + ψ(y).

Here, one of the two functions f (x) andϕ(x) is prescribed and the other is assumed unknown,
also one of the functions g(y) and ψ(y) is prescribed and the other is unknown, and the
function Q(z) is assumed unknown. (In similar equations with a composite argument, it is
assumed that ϕ(x) � const and ψ(y) � const.)

Solution:

f (x) = Aϕ(x) + B, g(y) = Aψ(y) – B + C , Q(z) = Az + C ,

where A, B, and C are arbitrary constants.

27. f(x)g(y) = Q(z), where z = ϕ(x) + ψ(y).

Here, one of the two functions f (x) andϕ(x) is prescribed and the other is assumed unknown;
also one of the functions g(y) and ψ(y) is prescribed and the other is unknown, and the
function Q(z) is assumed unknown. (In similar equations with a composite argument, it is
assumed that ϕ(x) � const and ψ(y) � const.)

Solution:

f (x) = ABeλϕ(x), g(y) =
A

B
eλψ(y), Q(z) = Aeλz ,

where A, B, and λ are arbitrary constants.

28. f(x) + g(y) = Q(z), where z = ϕ(x)ψ(y).

Here, one of the two functions f (x) andϕ(x) is prescribed and the other is assumed unknown;
also one of the functions g(y) and ψ(y) is prescribed and the other is unknown, and the
function Q(z) is assumed unknown. (In similar equations with a composite argument, it is
assumed that ϕ(x) � const and ψ(y) � const.)

Solution:

f (x) = A lnϕ(x) +B, g(y) = A lnψ(y) –B + C , Q(z) = A ln z + C ,

where A, B, and C are arbitrary constants.

29. f(y) + g(x) + h(x)Q(z) + R(z) = 0, where z = ϕ(x) + ψ(y).

Equations of this type often arise in the functional separation of variables in partial differ-
ential equations.

1◦. Solution:

f = – 1
2A1A4ψ

2 + (A1B1 +A2 +A4B3)ψ – B2 – B1B3 – B4,

g = 1
2A1A4ϕ

2 + (A1B1 + A2)ϕ + B2,

h = A4ϕ +B1,
Q = –A1z +B3,

R = 1
2A1A4z

2 – (A2 +A4B3)z + B4,

where the Ak and Bk are arbitrary constants and ϕ = ϕ(x) and ψ = ψ(y) are arbitrary
functions.
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2◦. Solution:

f = –B1B3e
–A3ψ +

(
A2 –

A1A4

A3

)
ψ – B2 – B4 –

A1A4

A2
3

,

g =
A1B1

A3
eA3ϕ +

(
A2 –

A1A4

A3

)
ϕ + B2,

h = B1e
A3ϕ –

A4

A3
,

Q = B3e
–A3z –

A1

A3
,

R =
A4B3

A3
e–A3z +

(
A1A4

A3
– A2

)
z +B4,

where Ak and Bk are arbitrary constants and ϕ = ϕ(x) and ψ = ψ(y) are arbitrary functions.

3◦. In addition, the functional equation has two degenerate solutions:

f = A1ψ +B1, g = A1ϕ +B2, h = A2, R = –A1z – A2Q – B1 – B2,

where ϕ = ϕ(x), ψ = ψ(y), and Q = Q(z) are arbitrary functions; A1, A2, B1, and B2 are
arbitrary constants; and

f = A1ψ + B1, g = A1ϕ + A2h +B2, Q = –A2, R = –A1z –B1 – B2,

where ϕ = ϕ(x), ψ = ψ(y), and h = h(x) are arbitrary functions; A1, A2, B1, and B2 are
arbitrary constants.

30. f(y) + g(x)Q(z) + h(x)R(z) = 0, where z = ϕ(x) + ψ(y).

Equations of this type often arise in the functional separation of variables in partial differ-
ential equations.

1◦. Solution:
g(x) = A2B1e

k1ϕ +A2B2e
k2ϕ,

h(x) = (k1 –A1)B1e
k1ϕ + (k2 –A1)B2e

k2ϕ,

Q(z) = A3B3e
–k1z +A3B4e

–k2z,

R(z) = (k1 –A1)B3e
–k1z + (k2 –A1)B4e

–k2z,

(1)

where B1, . . . , B4 are arbitrary constants and k1 and k2 are roots of the quadratic equation

(k –A1)(k – A4) –A2A3 = 0.

In the degenerate case k1 = k2, the terms ek2ϕ and e–k2z in (1) must be replaced by ϕek1ϕ and
ze–k1z , respectively. In the case of purely imaginary or complex roots, one should extract
the real (or imaginary) part of the roots in solution (1).

The function f (y) is determined by the formulas

B2 = B4 = 0 =⇒ f (y) = [A2A3 + (k1 – A1)2]B1B3e
–k1ψ ,

B1 = B3 = 0 =⇒ f (y) = [A2A3 + (k2 – A1)2]B2B4e
–k2ψ ,

A1 = 0 =⇒ f (y) = (A2A3 + k2
1)B1B3e

–k1ψ + (A2A3 + k2
2 )B2B4e

–k2ψ.

(2)

Solutions defined by (1) and (2) involve arbitrary functions ϕ = ϕ(x) and ψ = ψ(y).
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2◦. In addition, the functional equation has two degenerate solutions,

f = B1B2e
A1ψ , g = A2B1e

–A1ϕ, h = B1e
–A1ϕ, R = –B2e

A1z –A2Q,

where ϕ = ϕ(x), ψ = ψ(y), and Q = Q(z) are arbitrary functions; A1, A2, B1, and B2 are
arbitrary constants; and

f = B1B2e
A1ψ , h = –B1e

–A1ϕ – A2g, Q = A2B2e
A1z , R = B2e

A1z ,

where ϕ = ϕ(x), ψ = ψ(y), and g = g(x) are arbitrary functions; and A1, A2, B1, and B2
are arbitrary constants.

T12.3.2-3. Equations involving functions of two arguments.

31. f(x, y)f(y, z) = f(x, z).

Cantor’s second equation.
Solution:

f (x, y) = Φ(y)/Φ(x),

where Φ(x) is an arbitrary function.

32. f(x, y)f(u, v) – f(x,u)f(y, v) + f(x, v)f(y,u) = 0.

Solution:
f (x, y) = ϕ(x)ψ(y) – ϕ(y)ψ(x),

where ϕ(x) and ψ(x) are arbitrary functions.

33. f
((
f(x,y), z)

))
= f
((
f(x, z), f(y, z)

))
.

Skew self-distributivity equation.
Solution:

f (x, y) = g–1(g(x) + g(y)
)
,

where g(x) is an arbitrary continuous strictly increasing function.

34. f

((
x + y

2

))
= G

((
f(x), f(y)

))
.

Generalized Jensen equation.

1◦. A necessary and sufficient condition for the existence of a continuous strictly increasing
solution is the existence of a continuous strictly monotonic function g(x) such that

G(x, y) = g–1
(
g(x) + g(y)

2

)
,

where g(x) is an arbitrary continuous strictly monotonic function and g–1(x) is the inverse
of g(x).

2◦. If condition 1◦ is satisfied, the general continuous strictly monotonic solution of the
original equation is given by

f (x) = ϕ(ax + b),

whereϕ(x) is any continuous strictly monotonic solution, anda and b are arbitrary constants.
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Supplement

Some Useful Electronic
Mathematical Resources

arXiv.org (http://arxiv.org). A service of automated e-print archives of articles in the fields of
mathematics, nonlinear science, computer science, and physics.

Catalog of Mathematics Resources on the WWW and the Internet (http://mthwww.uwc.edu/
wwwmahes/files/math01.htm).

CFD Codes List (http://www.fges.demon.co.uk/cfd/CFD codes p.html). Free software.
CFD Resources Online (http://www.cfd-online.com/Links). Software, modeling and numerics,

etc.
Computer Handbook of ODEs (http://www.scg.uwaterloo.ca/ ecterrab/handbook odes.html). An

online computer handbook of methods for solving ordinary differential equations.
Deal.II (http://www.dealii.org). Finite element differential equations analysis library.
Dictionary of Algorithms and Data Structures—NIST (http://www.nist.gov/dads/). The diction-

ary of algorithms, algorithmic techniques, data structures, archetypical problems, and related
definitions.

DOE ACTS Collection (http://acts.nersc.gov). The Advanced CompuTational Software (ACTS)
Collection is a set of software tools for computation sciences.

EEVL: Internet Guide to Engineering, Mathematics and Computing (http://www.eevl.ac.uk).
Cross-search 20 databases in engineering, mathematics, and computing.

EqWorld: World of Mathematical Equations (http://eqworld.ipmnet.ru). Extensive information
on algebraic, ordinary differential, partial differential, integral, functional, and other mathemat-
ical equations.

FOLDOC—Computing Dictionary (http://foldoc.doc.ic.ac.uk/foldoc/index.html). The free on-
line dictionary of computing is a searchable dictionary of terms from computing and related
fields.

Free Software (http://www.wseas.com/software). Download free software packages for scientific-
engineering purposes.

FSF/UNESCO Free Software Directory (http://directory.fsf.org).
GAMS: Guide to Available Mathematical Software (http://gams.nist.gov). A cross-index and

virtual repository of mathematical and statistical software components of use in computational
science and engineering.

Google—Mathematics Websites (http://directory.google.com/Top/Science/Math/). A directory
of more than 11,000 mathematics Websites ordered by type and mathematical subject.

Google — Software (http://directory.google.com/Top/Science/Math/Software). A directory of
software.

Mathcom—PDEs (http://www.mathcom.com/corpdir/techinfo.mdir/scifaq/q260.html). Partial
differential equations and finite element modeling.

Mathematical Atlas (http://www.math-atlas.org). A collection of short articles designed to provide
an introduction to the areas of modern mathematics.
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Mathematical Constants and Numbers (http://numbers.computation.free.fr/Constants/constants.
html). Mathematical, historical, and algorithmic aspects of some classical mathematical con-
stants; easy and fast programs are also included.

Mathematical WWW Virtual Library (http://www.math.fsu.edu/Virtual/index.php). A directory
of mathematics-related Websites ordered by type and mathematical subject.

Mathematics Archives (http://archives.math.utk.edu). Combined archive and directory of mathe-
matics Websites, mailing lists, and teaching materials.

Mathematics Genealogy Project (http://www.genealogy.ams.org). A large biographical database
of mathematicians.

Mathematics Websites (http://www.math.psu.edu/MathLists/Contents.html). A directory of math-
ematics Websites ordered by type and mathematical subject.

Math Forum: Internet Mathematics Library (http://mathforum.org). A directory of mathematics
Websites ordered by the mathematical subject.

MathGuide: SUB Gottingen (http://www.mathguide.de). An Internet-based subject gateway to
mathematics-related Websites.

MathWorld: World of Mathematics (http://www.mathworld.com). An online encyclopedia of
mathematics, focusing on classical mathematics. The Web’s most extensive mathematical
resource.

MGNet (http://www.mgnet.org/mgnet-codes.html). Free software.
Netlib (http://www.netlib.org). A collection of mathematical software, papers, and databases.
Numerical Solutions (http://www.numericalmathematics.com/numerical solutions.htm). A library

of mathematical programs.
PlanetMath.Org (http://planetmath.org). An online mathematics encyclopedia.
Probability Web (http://www.mathcs.carleton.edu/probweb/probweb.html). A collection of prob-

ability resources on the World Wide Web; the pages are designed to be especially helpful to
researchers and teachers.

Science Oxygen—Mathematics (http://www.scienceoxygen.com/math.html). Topics from vari-
ous sections of mathematics.

Scilab (http://scilabsoft.inria.fr). A free scientific software package.
Software — Differential Equations (http: / / www.scicomp.uni-erlangen.de / SW / diffequ.html).

General resources and methods for ODEs and PDEs.
S.O.S. Mathematics (http://www.sosmath.com). A free resource for math review material from

algebra to differential equations.
Statistics Online Computational Resources (http://socr.stat.ucla.edu). Interactive distributions,

statistical analysis, virtual probability-related experiments and demonstrations, computer games,
and others.

Stat/Math Center (http://www.indiana.edu/ statmath/bysubject/numerics.html). Numerical com-
puting resources on the Internet.

UW-L Math Calculator (http://www.compute.uwlax.edu/index.php). Calculus, differential equa-
tions, numerical methods, statistics, and others.

Wikipedia: Free Encyclopedia—List of Open Source Software Packages (http://en.wikipedia.
org/wiki/List of open-source software packages).

Wikipedia: Free Encyclopedia—Mathematics (http://en.wikipedia.org/wiki/Mathematics). A
collection of short articles from various sections of mathematics.

Wolfram Functions Site (http://functions.wolfram.com). More than 87,000 formulas used by
mathematicians, computer scientists, physicists, and engineers; more than 10,000 graphs and
animations of the functions.

Yahoo — Mathematics Websites (http://dir.yahoo.com/science/mathematics/). A directory of
mathematics Websites ordered by type and mathematical subject.

Yahoo—Software (http://dir.yahoo.com/Science/Mathematics/Software). A directory of software.
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A
Abel convergence criterion

functional series, 349
power series, 341

Abel differential equation
first kind, 462
first kind, canonical form, 463
second kind, 464
second kind, canonical form, 465

Abel differential equations, 462–465
Abel functional equation, 914
Abel identity, 902
Abel integral equation, 1385

generalized, 1386
second kind, 1392
second kind, generalized, 1393

Abel theorem, 343, 411
on convergence of power series, 351

Abel transformation, 345
Abel–Dini convergence criterion for series, 341
Abel–Ruffini theorem, 162
abelian group, 226
abscissa axis, 78
abscissa of point, 79, 115
absence of aftereffect, 1075
absolute convergence, 342
absolute convergence of infinite products, 348
absolute extremum, 991
absolute moment, 1044
absolute value of real number, xxx, 8
absolute value theorem, 296

double integral, 318
triple integral, 325

absolutely convergent functional series, 348
absolutely convergent infinite product, 348
absolutely convergent series, 342
acceleration of convergence of series, 345
acceleration vector, 381
acceptance region, 1095
acute triangle, 43
addition

asymptotic series, 364
hyperbolic functions, 37
inverse hyperbolic functions, 41
inverse trigonometric functions, 33
matrices, 168
real numbers, 6
trigonometric functions, 28

addition theorem, 1055
additive inverse of real number, 6
additive separable solution, 571, 596, 597, 678
additively inverse matrix, 169
additivity of conditional expectation, 1063
adjoint matrix, 170

adjoint operator, 206
adjugate matrix, 180
adjusted sample variance, 1088
admissible controlled process, 1010
admissible element, 1009
admissible extremal, 994, 998
admissible function, 993, 1002, 1006
affine coordinate system, 190
affine space, 189

axioms, 189
dimension, 190
point, 189

Airy equation, 955
Airy functions, 477, 955
first kind, 955
second kind, 955

Airy stress function, 1295
algebra, 155
algebra of sets, 1032
algebraic branch point, 415
algebraic curve, 87

on plane, 87
algebraic equation

arbitrary degree, 161
binomial, 161
bounds for roots, 163
complete cubic, 159
cubic, 158
discriminant, 163
fourth-degree, 159
incomplete cubic, 158
linear, 157
nth-degree, 162
quadratic, 158
reciprocal, 160, 161
reciprocal modified, 160
roots and coefficients, 163

algebraic equations, 157–167
algebraic multiplicity, 209

eigenvalue, 184
alternative Fourier transform, 444
alternative Fredholm, 834
alternative hypothesis, 1094
altitude

pyramid, 63
trapezoid, 54
triangle, 46

amplitude, 973
analogs Neper, 73
analysis

sequential, 1097
variance, 1107

analytic continuation, 418
analytic function, 413
analytic geometry, 77
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angle
between coordinate axes and segments, 82
between elements, 193
between lines in space, 135
between planes, 137
between straight line and plane, 139
between two straight lines, 94
between vectors, 120
central, 55, 56
dihedral, 60
edge, 60
external, 43
face, 60
inscribed, 56
interior, 43
interior of polygon, 51
polar, 80
polyhedral, 60, 61
solid, 61
trihedral, 60

angle bisector of triangle, 45, 46
angle trisectors, 49
angles

in space, 59
symmetric polyhedral, 61

angular point, 252
annihilating polynomial, 186
annulus, 58
antagonistic game, 1024
antagonistic two-person zero-sum game, 1024

minimax theorem, 1026
antiderivative, 273
antihermitian matrix, 168
antiperiodic functions, 885
antisymmetric matrix, 168
apex, 67
apex of pyramid, 63
apothem of regular pyramid, 64
Appell transformation, 1268
applicable surfaces, 395
applicate of point, 115
approximation, best mean-square, 1063, 1066
approximation function, 508
arbitrary curvilinear coordinate systems, 1195
arbitrary series, 341
arc

geodesic, 70
length, 390
length differential, 390
regular, 379

arccosine, xxx, 32
arccotangent, xxx, 32
arcsine, xxx, 31
arctangent, xxx, 32
area

polygon, 83
triangle, 83

argument, 236
complex number, 400
increment, 992
variation, 992

arithmetic, 3
arithmetic mean, 13

of functions, 297
arithmetic progression, 11
arithmetic root, 8
arithmetic sequence, 11
arithmetic series, 11
arm of hyperbola, 101
arrangement, 1033

with repetitions, 1034
artificial basic variables, 1016
ascending Landen transformation, 975
associated Legendre functions, 964, 965
first kind, 965
second kind, 965

associated linear space of affine space, 189
associated vector, 213
associative composition law, 225
asymmetric form of Fourier cosine transform,

445
asymmetric form of Fourier sine transform, 446
asymmetric form of Fourier transform, 444
asymmetry coefficient, 1045
asymptote, 241, 374

oblique, 242
vertical, 242

asymptotes, 241, 374
of hyperbola, 101

asymptotic cone, 144
asymptotic expansion, 363
asymptotic formulas

calculation of integrals, 290
improper integrals with parameter, 307
Laplace integrals of general form, 292
Laplace integrals of special form, 291
power Laplace integral, 294

asymptotic lines, 393
asymptotic point, 373
asymptotic properties of Fourier coefficients, 359
asymptotic series, 363

addition, 364
division, 364
integration, 365
multiplication, 364
Poincaré type, 363
subtraction, 364

asymptotic stability, 546, 549
asymptotic zero, 364
asymptotically stable solution, 546
asymptotically unbiased estimator, 1089
attractive fixed point, 908
augmented matrix, 198
auto-Bäcklund transformations, 663
autocorrelation function, 1072
automorphic function, 912
automorphism of group, 227
autonomous equation, 525, 1207, 1223, 1225
autonomous system

equilibrium point, 545
general form, 1240
ODEs, 545

averaging method, 503
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axioms of affine space, 189
axis, 77

coordinate of point, 77
coordinate system, 77
imaginary, 401
imaginary of hyperbola, 101
iteration, 876
ordinate, 78
polar, 80
principal, 152
principal of hyperbola, 101
principal of second-order curve, 109
real, 235
semiminor of ellipse, 98

axisymmetric steady hydrodynamic boundary
layer, 712

B
Babbage equation, 917, 1416, 1423
Bäcklund transformation, 497, 663–665
backward Kolmogorov equation, 1076
backward substitution in Gaussian elimination

method, 200
balanced transportation problem, 1020
ball, 68
Banach problem, 1038
Banach space, 196
Bartlett test, 1103
base

cylinder, 65
isosceles triangle, 50
natural (Napierian) logarithms, 9, 22, 23
pyramid, 63
spherical segment, 69
trapezoid, 54

base face of prism, 61
basic columns, 178
basic equation of information theory, 1440
basic inequalities for mean values, 13
basic integrals, 274
basic matrix of linear system of algebraic

equations, 197
basic minor, 177, 178
basic properties

equalities, 5
inequalities, 5

basic rows, 178
basic variable, 1015

artificial, 1016
basis

canonical, 217
linear space, 189
orthonormal, 194

Bayes formula, 1036, 1063
Bellman equations, 1028
Bellman optimality principle, 1028
bending, 395
Bernoulli equation, 458, 1207
Bernoulli formula, 1037
Bernoulli numbers, 938
Bernoulli polynomials, 891, 988

Bernoulli process, 1037
Bernoulli scheme, 1037
Bernoulli theorem, 1070
Bertrand convergence criterion for series, 340
Bessel equation, 1216

modified, 1216
Bessel formula, 950
Bessel function, 947, 1216
first kind, xxxi, 947, 1216
second kind, xxxii, 947, 1216
third kind, 952

best mean-square approximation, 1063, 1066
beta function, 945
biangles, spherical, 71
biased estimator, 1089
bicylindrical coordinates, 1204
biharmonic equation, 1297
bilinear form, 214, 992

degenerate, 215
Euclidean space, 219
finite-dimensional space, 215
matrix, 215
nondegenerate, 215
polar, 216
rank, 215
skew-symmetric, 214
symmetric, 214

bilinear functional, 992
bilinear functional equations, 930
bilinear series of iterated kernels, 838
bimodal distribution, 1045
binomial algebraic equation, 161
binomial coefficients, xxx, 10, 937
binomial distribution, 1047
binomial theorem, 10
binormal, 382
bipolar coordinates, 1204
biquadratic equation, 159
birth–death processes, 1077
bisection method, 261
bisector, perpendicular, 46
bivariate random variable, 1060

central moment, 1060
expectation, 1060

block matrix, 174
blow-up regime, 1303
Bochner transform, 449
body

coordinates of center of mass, 327
moments of inertia, 327

Bolza functional, 1001
Bolza Lagrangian, 1001
Bolza problem, 1001
Bolza terminal cost function, 1001
Bolzano–Cauchy theorem, 237
Born–Infeld equation, 659
bound

lower, 235
upper, 235

boundary
confidence, 1081
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boundary (continued)
domain, 401
positive sense, 402

boundary conditions, 484, 591, 592
first kind, 484
homogeneous, 481, 591, 649
mixed, 486
nonhomogeneous, 481, 649
second kind, 485
third kind, 486

boundary correspondence principle, 420
boundary correspondence theorem, 419
boundary function, 419
boundary point of domain, 401
boundary value problem, 427

arbitrary cylindrical domain, 642
difference equations, 879
elliptic equations, 631
first, 480, 593, 627
Hilbert–Privalov, 432
hyperbolic equations, 623
mixed, 480, 593, 627
nonhomogeneous, 620, 624
ordinary differential equations, 480
parabolic equations, 645
rectangular domains, 640
second, 480, 593, 627
third, 480, 593, 627
with many space variables, 634

bounded function, 236
bounded operator, 204
bounded sequence, 237
bounded set, 263
bounded variation, 247, 313
Boussinesq equation, 709, 1332
Boussinesq solution, 1294
bracket, Jacobi–Mayer, 574
branch of many-valued function, 404
branch point, 414

function, 404
infinite order, 415
logarithmic, 415
order, 414

Brauer theorem, 877
break point, 373
broken extremal, 997, 999
Bubnov–Galerkin method

for integral equations, 850
for ODEs, 509

Budan–Fourier method, 166
Bugaev convergence criterion for series, 341
Bunyakovsky inequality, 296
Burgers equation, 664, 666, 751, 1307

radial symmetric case, 1307
Bürman–Lagrange formula, 356

C
calculus of variations, 991

simplest problem, 993
canonical basis, 217
canonical coefficients, 217

canonical coordinates
ellipse, 98
hyperbola, 101
parabola, 104

canonical equation
circle, 97
ellipse, 98
hyperbola, 101
noncentral hypersurface, 224
parabola, 104
straight line in space, 132
straight line passing through given point on

plane, 90
straight line passing through two given points

on plane, 90
canonical form

Abel differential equation, of first kind, 463
Abel differential equation, of second kind, 465
central surfaces, 143
elliptic equation, 588
gas dynamics systems, 786
hyperbolic equation, 587
Jordan, of matrix, 182
linear operators, 213
matrix, 181
parabolic equation, 586
quadric, 148
Riccati differential equation, 460
second-order curve, 107

canonical representation of quadratic form, 217
canonical second-order curves, 107
canonical substitutions, 465
Cantor equation
first, 1442
second, 1449

cap, spherical, 69
Cardano solution, 158
Carleman equation, 1399
Cartesian coordinate system, 78, 114

in plane, 78
in space, 114
oblique, 79

Casoratti determinant, 901
Casoratti theorem, 902
Cauchy convergence criterion for series, 339
Cauchy criterion, 337
Cauchy distribution, 1054
Cauchy equation, 1438

exponential, 1443
logarithmic, 1439
power, 1444

Cauchy formula
for multiple integration, 289
for ODE, 519

Cauchy inequality, 14, 296, 343
for functions of complex variables, 410

Cauchy integral formula, 409
Cauchy principal value for singular integral, 311,

430
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Cauchy problem, 591, 592, 785, 1308
difference equations, 874, 889, 893
existence and uniqueness theorems for

ODEs, 454, 488, 524, 577
first-order ODEs, 454
first-order PDEs, 556, 576
fundamental solution, 616, 617
generalized, 627
Hamilton–Jacobi equation, 577
hyperbolic equations, 617
parabolic equations, 615
second-order ODEs, 488
system of PDEs, 785

Cauchy series multiplication formula, 343
Cauchy tests, 303
Cauchy theorem, 254, 343

multiply connected domain, 409
residue, 416
simply connected domain, 409

Cauchy-type singular integral, 310, 409, 430
Cauchy–Bunyakovski inequality, 14, 296, 343
Cauchy–Hadamard formula, 411
Cauchy–Riemann conditions, 402
Cauchy–Riemann sum, 286
Cauchy–Schwarz inequality, 121, 193, 1043
Cauchy–Schwarz–Bunyakovski inequality, 14,

314
Cayley–Hamilton theorem, 186, 212
center

curvature, 375
ellipse, 99
equilibrium point, for ODEs, 537
gravity of triangle, 45
hyperbola, 102
pencil, 92
regular polygon, 55
second-order curve, 109
second-order hypersurface, 222
surface, 143, 151

center of mass
of body, 327
of flat plate, 324

centered rarefaction wave, 558
central angle, 55, 56
central cross-correlation function, 1073
central cylinder, 225
central hypersurface, 222
central limit theorem, 1071
central moment, 1043
n-dimensional random variable, 1065
bivariate random variable, 1060

central second-order curve, 109
central surface, 143
centroid, 45
Ceva theorem, 48
character of group element, 231
characteristic, 654
characteristic equation, 514, 654, 1046, 1066

difference equation, 881
linear operator, 211
linear PDEs, 585

characteristic equation (continued)
matrix, 185
quadratic form, 150
second-order curves, 108
system of ODEs, 529

characteristic function, 1046, 1066
continuity theorem, 1067

characteristic index, 1221
characteristic matrix, 183
characteristic point, 377
characteristic polynomial

linear operator, 211
matrix, 185

characteristic quadratic form, 150
of quadric, 150

characteristic system for first-order PDEs, 553,
555, 573, 576

characteristic value
integral equation, 829, 834–836, 840
linear operator, 209

characteristic velocity, 790
Chebyshev formula, 808
Chebyshev functions of second kind, 985
Chebyshev inequalities, 14, 297, 1070

generalized, 15
Chebyshev nodes, 523
Chebyshev polynomials
first kind, 983
second kind, 984

Chebyshev theorem, 1070
Chetaev theorem of instability, 550
chi-square distribution, 1054
chord, 56, 143
Christoffel symbols
first kind, 396
second kind, 396

circle, 56, 97
canonical equation, 97
curvature, 375
diameter, 56
great of a sphere, 68, 70
nine-point, 49
osculating, 375
parametric equations, 98
small of a sphere, 71

circular point, 393
circular sector, 58
circulation, 331
circumcenter, 46
circumcircle, 46

of triangle, 46
circumscribed about circle, polygon, 51
cissoid of Diocles, 372
Clairaut equation, 467, 572, 1262
Clairaut system, 1240
Clarkson–Kruskal direct method, 708–710
classical definition of probability, 1033
classical integral functional, 993
classical method of symmetry reductions, 716
classical solution, 594
classification

central second-order hypersurfaces, 223
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classification (continued)
noncentral second-order hypersurfaces, 224
points on surface, 394
quadrics, 148
second-order linear PDEs, 585

closed domain, 402
closed model of transportation problem, 1020
closed path integral, 331
coalition game, 1024
Cochran statistic, 1104
Cochran test, 1104
coefficient

asymmetry, 1045
asymmetry, sample, 1088
correlation, multiple, 1066
excess, 1045
excess, sample, 1088
Pearson first skewness, 1045
reflection, 760
regression, 1063
variation, 1045

coefficients
binomial, xxx, 10, 28
canonical for quadratic form, 217
Fourier, 358
Lamé, 1196
system of linear equations, 197
undetermined, 847

cofactor
of matrix entry, 176
of minor, 177

Cole–Hopf transformation, 751
Cole–Kevorkian scheme (method), 504
collinear vectors, 113
collocation method, 509, 523, 847, 848, 860

convergence theorem, 524
integral equations, 847, 860

collocation points, 848
column, pivot, 1016
column expansion of determinant, 176
column vector, 167
column vectors

linear combination, 171
linearly dependent, 171
linearly independent, 171

columns, basic, 178
combinations, 1033
combinations, integrable, 545

with repetitions, 1034
common difference, 11
common logarithm, 9
common ratio, 11
commutative composition law, 225
commutative group, 226
commutator of operators, 755
commuting matrices, 169
compact subgroup, 229
compatibility conditions

for PDEs, 738, 740, 742, 744
for systems of linear equations, 757
of initial and boundary conditions, 607, 609

compatible size of matrices, 169
complementary error function, xxx, 939, 958
complementary event, 1031
complementary modulus, 971
complete cubic equation, 159
complete elliptic integral, 969
first kind, 969
second kind, 969

complete equation of plane, see general equation
of plane

complete group of events, 1031
complete group of incompatible events, 1032
complete integral, 570
complete space, 196
complete statistic, 1090
complete system of eigenfunctions, 836
completely integrable, 773
completely reducible representation of group,

231
complex conjugate matrix, 170
complex Euclidean space, 195
complex linear space, 188
complex number, 399

argument, 400
conjugate, 399
exponential form, 405
geometric interpretation, 399
modulus, 400
root, 399
trigonometric form, 400

complex numbers
difference, 399
equal, 399
product, 399
quotient, 399
sum, 399

complex plane, 401
domain, 401
extended, 402

complex separation of variables, 679
complex stochastic processes, 1073
components, metric tensor, 1195
composite function, 237, 265
composite hypothesis, 1094
composite number, 3
composition, 225
composition law, 225
compound percentage, 7
concave function, 245
condition

boundary, 484, 591, 592
boundary, of first kind, 484
boundary, of second kind, 485
boundary, of third kind, 486
first-order necessary for extremum, 994
Hölder, 310, 430
initial homogeneous, 591
invariance, 720, 732
invariant surface, 732
Jacobi, 998, 1000, 1004, 1007
Jacobi, strengthened, 1000, 1004, 1007
jump, 561
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condition (continued)
Lax, 792
Legendre, 998, 999, 1004, 1007
Legendre, strengthened, 999, 1004, 1007
line and plane to be parallel, 140
line and plane to be perpendicular, 140
line to be entirely contained in plane, 140
Lipschitz, 248, 310, 313, 543
necessary of extremum, 269
planes to be parallel, 138
planes to be perpendicular, 138
planes to coincide, 138
stability for generalized solution, 568
straight lines to be parallel on plane, 96
straight lines to be perpendicular on plane, 95
straight lines to coincide on plane, 96
three points to be collinear, 93
transversality, 577
two lines in space to meet, 143
two lines to be parallel in space, 135
two lines to be perpendicular in space, 136
two planes to be parallel, 138
two planes to be perpendicular, 138
unitarity, 206
vectors to be parallel, 122
vectors to be perpendicular, 122
Weierstrass, 998

conditional convergence, 342
conditional cumulative distribution function, 1062
conditional distribution, 1062
conditional expectation, 1063, 1066
conditional extremum of function, 271
conditional minimum, 270
conditional probability, 1035
conditionally convergent series, 342
conditions

Cauchy–Riemann, 402
compatibility for PDEs, 738, 740, 742, 744
compatibility for systems of linear equations,

757
compatibility of initial and boundary

conditions, 607, 609
d’Alembert–Euler, 402
Dirichlet, 357
evolutionary, 792
existence of extremum, 258
extremum of function of two variables, 269
radiation, 1290
Sommerfeld, 1290, 1291
sufficient of extremum, 269
transversality, 1001
Weierstrass–Erdmann, 997, 999

cone, 67, 68, 145
asymptotic, 144
frustum, 68
right circular, 68, 145

confidence boundary, 1081
confidence interval, 1093
confidence level, 1093
conformal mapping, 419
congruence transformation, 182

congruent matrices, 182
congruent polyhedral angles, 61
congruent transformation, 182
conic point, 391

of surface, 391
conical coordinates, 1202
conical surface, 67
conjugate complex number, 399
conjugate diameters, 151

of ellipse, 100
of hyperbola, 104

conjugate element of group, 231
conjugate matrix, 170
conjugate point, 998, 1000, 1004, 1007
conjunctive matrices, 183
conjunctive transformation, 183
conservation law, 564, 766, 996

at discontinuity, 561
for PDEs, 766

consistency condition for general linear
system, 198

consistency of estimator, 1089
consistent system of linear algebraic equations,

197
constant

Euler, xxx, 944, 949, 958
Hölder, 310
separation, 678

constrained maximum, 270
constrained minimum, 270
constraint, 270

differential, 737, 738, 1009, 1010
differential, first-order, 739
differential, secod-order, 744
isoperimetric, 1002

contact transformation
for ordinary differential equations, 468
for partial differential equations, 660

continuation, direct analytic, 418
continuity equation, 784
continuity theorem for characteristic functions,

1067
continuous bivariate random variable, 1059
continuous curve in space, 123
continuous distributions, 1051
continuous function, 243

of bounded variation, 249
continuous point group, 730
continuous probability distribution, mode, 1045
continuous random variable, 1040, 1064

expectation, 1042
continuous subgroups, 228
continuous surface in space, 123
contraction ratio, 403
control, 1010
controlled process, admissible, 1010
convergence

almost sure, 1068
in distribution, 1069
in mean, 1068
in probability, 1068
mean-square, 315
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convergence (continued)
nonuniform, 249
pointwise, 249
uniform, 249
weak, 1069

convergence criteria
arbitrary series, 341
infinite products, 347
series with positive terms, 338

convergence criterion
Abel, 341
Abel–Dini, 341
Bertrand, 340
Bugaev, 341
D’Alembert, 338
Dini, 341
Dirichlet, 342
Dirichlet–Jordan, 358, 361
Ermakov, 340
Gauss, 339
generalized Ermakov, 340
Kummer, 340
Lipschitz, 358
Lobachevsky, 341
Maclaurin–Cauchy, 339
Raabe, 339
Sapogov, 340
Weierstrass, 349

convergence domain of series, 348
convergence radius of power series, 350, 411
convergence theorem, collocation method, 524
convergence with probability 1, 1068
convergent infinite products, 346
convergent sequence, 237, 238
convergent series, 337, 338
convex function, 245
convex polygon, 51
convex polyhedron, 61
convex programming, 1027
convolution theorem, 437, 444

Fourier transform, 444
Laplace transform, 437

convolution-type equation, 825, 829
coordinate axes

in space, 114
on plane, 78

coordinate functions, 847, 851
coordinate net, 387
coordinate of point on axis, 77
coordinate space, 188
coordinate system

affine, 190
in space, 114
left rectangular Cartesian, 79
oblique Cartesian, 79
on axis, 77
on plane, 78
polar, 80
rectangular Cartesian, 78, 114
right rectangular Cartesian, 79

coordinate vectors, 388

coordinates
bicylindrical, 326, 1204
bipolar, 1204
Cartesian, in plane, 79
Cartesian, in space, 115
center of mass of body, 327
center of mass of flat plate, 324
conical, 1202
current, 84
curvilinear, 387
cylindrical, xxxi, 118, 326, 1198
element, 188, 189
ellipse canonical, 98
elliptic, 1202
elliptic cylinder, 1202
first prolongation, 718
Gaussian, 387
general orthogonal curvilinear, 1196
hyperbola canonical, 101
line, 77
oblate ellipsoid of revolution, 1200
orthogonal, 1196
parabola canonical, 104
parabolic, 1203
parabolic cylinder, 1203
plane, 78
point, 79, 115
polar, 80, 1198
second prolongation, 718
spherical, xxxi, 119, 326, 1199
toroidal, 326, 1205

coplanar vectors, 113
correlated random variables, 1061
correlation

function, 1072
matrix, 1066
random variables, 1061
sample, 1104
two random variables, 1061

correspondence, isometric, 395
cosecant, xxx, 24
coset, 227

left, 227
right, 227

cosine, 24, 25
cosine integral, 942
cost, reduced, 1015
cotangent, xxx, 24, 26
countable set, 3
counterexample, 17
covariance, 1060, 1061

matrix, 1065
of two random variables, 1061

Cramer rule, 199
Cramér–Rao efficient unbiased estimator, 1089
Cramér–Rao inequality, 1089
criterion

Cauchy convergence for series, 339
Dini convergence for series, 341
Dirichlet convergence, 342, 350
Dirichlet–Jordan convergence for Fourier

series, 358, 361



INDEX 1461

criterion (continued)
Ermakov convergence for series, 340
first comparison, 338
Gauss convergence for series, 339
Kummer convergence for series, 340
Leibnitz convergence for series, 341
Lipschitz convergence for series, 358, 361
Lobachevsky convergence for series, 341
Maclaurin–Cauchy convergence for series, 339
Routh–Hurwitz, 167
Sapogov convergence for series, 340
second convergence, 338
special Cauchy, 341
Sylvester, 219
Weierstrass convergence, 349

critical region, 1095
cross-correlation function, 1072
cross-covariance function, 1072
cross product

of vectors, 121
cube, 62
cubic equation, 158
cumulative distribution function, 1039

conditional, 1062
cumulative frequency, 1084
cumulative relative frequency, 1084
curl, 331

of vector field, 331
334

curvature, 376, 384
center, 375
circle, 375
extrinsic, 394
Gaussian, 394
geodesic, 392
lines, 393
mean, 394
normal, 392, 394
of curve on surface, 392
of plane curves, 376
of space curves, 384
radius, 376, 384
vector, 383

curve
discriminant, 378
in space, 120, 123
intrinsic equations, 388
on plane, 84
parabolic type of second-order, 108
second-order, 107
in space, 119, 123
on plane, 84
on plane algebraic, 87

curves, parametric, 387
curvilinear coordinates, 387

on surface, 387
curvilinear integral, 329
curvilinear lines, 387
cusp, first kind, 372
cusp, second kind, 372
cycle, 1022

cyclic functional equation, 920
cyclic groups, 229
cylinder, 65, 66

base, 65
central, 225
function, 947
paraboloidal, 225
right, 66
right circular, 66
round, 66
segment, 67
truncated, 66

cylindrical coordinates, xxxi, 118, 1198
cylindrical function, 947, 1214
cylindrical Korteweg–de Vries equation, 1328
cylindrical surface, 65
cylindrical tube, 67

D
D’Alembert convergence criterion for series, 338
D’Alembert equation, 1443
D’Alembert formula, 1278
D’Alembert (Gauss) formulas, 73
D’Alembert method, 533
D’Alembert solution for wave equation, 600
D’Alembert–Euler conditions, 402
damped vibrations, 1213
Darboux equation, 458
Darboux vector, 386
de Moivre formula, 30, 400
de Morgan laws, 1032
death process, 1077
decadic logarithm, 9
decile, 1045
decomposition

of matrices, 173, 201
theorems, 208, 1055
triangular, 180

decreasing function, 236
decreasing sequence, 238
defect of matrix, 178
definite integral, 286, 1147

geometric applications, 299
geometric meaning, 287
physical applications, 299
properties, 287

definite integrals
involving exponential functions, 1150
involving hyperbolic functions, 1152
involving logarithmic functions, 1152
involving trigonometric functions, 1153

degenerate bilinear form, 215
degenerate hypergeometric equation, 1215
degenerate hypergeometric function, xxxii, 956

Wronskian, 958
degenerate kernel, 801, 802, 810, 811, 825, 829
degenerate matrix, 178
degenerate quadratic form, 216
density, spectral, 1075
density multiplication theorem, 1062
dependent variable, 236
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derivation formulas, 396
derivative, 250

basic elementary functions, 252
directional, 267, 268
geometrical meaning, 251
higher-order, 255
of function, 402
of polynomial, 157
one-sided, 252
partial, 264
physical meaning, 251
total, 265

Descartes, Folium, 374
Descartes theorem, 165
Descartes–Euler solution, 160
descending Landen transformation, 974
determinant, 175

Casoratti, 901
column expansion, 176
Gram, 193
Jacobian, 321
linear operator, 209
order n, 176
order 2, 175
order 3, 176
product of matrices, 179
properties, 176
row expansion, 176
sum of matrices, 179
Vandermonde, 179
Wronskian, 473, 482, 518, 539

determined system of linear algebraic equations,
197

deviation
of point from line, 93
of point from plane, 141
residual standard, 1063
root-mean-square, 1045
sample, 1088
standard, 1045

diagonal
main, 168
secondary, 168

diagonal matrix, 168
diameter, 151

conjugate to chords, 108
conjugate to family of planes, 151
of circle, 56
of ellipse, 100
of hyperbola, 104
of parabola, 106
of second-order curve, 108
of set, 317
of sphere, 69
partition, 317
principal, of ellipse, 100
principal, of hyperbola, 104
principal, of parabola, 106

diameters
conjugate, 151
conjugate, of ellipse, 100
conjugate, of hyperbola, 104

Dido problem, 1003
diet problem, 1012
difference

common, 11
finite, 884
of complex numbers, 399
of events, 1031
of matrices, 169
of polynomials, 155
of vectors, 113, 188

difference equation, 889, 1409, 1422, 1425–1426
characteristic, 881
general solution, 874, 884
in integer argument, 873
linear, constant-coefficient, 873, 877
linear, higher-order, 1425
linear, second-order, 877, 1421
linear homogeneous, 881, 885, 889, 906, 904
linear homogeneous, first-order, 873
linear homogeneous, second-order, 877, 1421
linear nonhomogeneous, 883, 890–893
linear nonhomogeneous, constant-coefficient,
first-order, 1411

linear nonhomogeneous, constant-coefficient,
nth-order, 1427

linear nonhomogeneous, constant-coefficient,
second-order, 1422

linear nonhomogeneous, first-order, 873
linear nonhomogeneous, nth-order, 1426
linear nonhomogeneous, second-order, 879,

880, 1421
linearly independent solutions, 882
logistic, 875
nonlinear, 884
nonlinear, first-order, 873
Riccati, 875, 918

difference kernel, 801, 804, 810, 813, 825, 829,
841

differentiable function, 251
differential, 250, 251, 265

higher-order, 255
differential constraint, 737, 1009, 1010
first-order, 739
second-order, 744

differential constraints method, 737
differential equation

Abel, of first kind, 462
Abel, of first kind, canonical form, 463
Abel, of second kind, 464
Abel, of second kind, canonical form, 465
Airy, 955
autonomous, 1207, 1223, 1225
axisymmetric steady hydrodynamic boundary

layer, 712
Bernoulli, 458, 1207
Bessel, 1216
Bessel, modified, 1216
biharmonic, 1297
biharmonic, homogeneous, 1297
biharmonic, nonhomogeneous, 1298
Born–Infeld, 659
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differential equation (continued)
Boussinesq, 709, 1332
Burgers, 664, 666, 751, 1307
Burgers, radial symmetric case, 1307
Burgers–Korteweg–de Vries, generalized, 709
characteristic, for system of ODEs, 529
Clairaut, 467, 572, 1262
Darboux, 458
degenerate hypergeometric, 1215
diffusion, nonlinear, with cubic source, 753
diffusion boundary layer, 1276
Duffing, 501
elliptic, 585, 588, 590, 1284
Emden–Fowler, 1223
Ermakov, 1222
Euler, 473, 520, 994, 998, 1216
evolution, second-order, 739
exact, first-order, 458
exact, second-order, 491
Fisher, 1299
Fitzhugh–Nagumo, 1302
free oscillations, 1213
gas dynamics, 558
Gaussian hypergeometric, 960, 1218
generalized homogeneous, 526
Hamilton–Jacobi, 576
heat, linear, 585, 1267
heat, linear, nonhomogeneous, 1268
heat, nonlinear, 1318
heat, stationary anisotropic, 1323
heat, stationary, with nonlinear source, 1320
heat, with axial symmetry, 1270
heat, with central symmetry, 1272
Helmholtz, 1289
Helmholtz, three-dimensional, 600
Helmholtz, two-dimensional, 599
homogeneous, 526, 591, 592, 810, 829, 834,

1207, 1224
homogeneous, generalized, 1210, 1224
hyperbolic, 585, 587, 590
hyperbolic, first canonical form, 587
hyperbolic, normal, 590
hyperbolic, second canonical form, 587
hypergeometric, 960, 1218
hypergeometric, degenerate, 1215
Jacobi, 998, 1004, 1007
Khokhlov–Zabolotskaya, 658
Khokhlov–Zabolotskaya, stationary, 1322
Klein–Gordon, 618, 625, 1280
Klein–Gordon, linear, 625
Klein–Gordon, nonlinear, 702, 1315
Klein–Gordon, two-dimensional, 618
Korteweg–de Vries, 752, 756, 759, 1327
Korteweg–de Vries, cylindrical, 1328
Korteweg–de Vries, modified, 1328
Lagrange, 467
Laplace, ODE, 520
Laplace, three-dimensional, PDE, 643
Laplace, two-dimensional, PDE, 585, 633,

1284
Legendre, 1217–1219

differential equation (continued)
Lienard, 1225
light rays, 1259
linear, constant-coefficient, second-order, 473,

1213
linear homogeneous, second order, 1212
Liouville, 664
Mathieu, 980, 1221
Mathieu modified, 982, 1220
minimal surfaces, 770
model of gas dynamics, 1254
Monge–Ampère, 1326
Monge–Ampère, homogeneous, 668, 1326
Monge–Ampère, nonhomogeneous, 1326
Newell–Whitehead, 733
ordinary, 453–550, 1207–1228
Painlevé, 495
parabolic, 585, 586, 590
parabolic, in narrow sense, 590
partial, 553–798, 1247–1382
Pfaffian, 772, 773
Poisson, 1287
Poisson, three-dimensional, 599
Poisson, two-dimensional, 599
Riccati, 460
Riccati, general, 461, 462, 1209, 1210
Riccati, special, 1208
Schrödinger, linear, 1276
Schrödinger, nonlinear, 759, 1309
Schrödinger, of general form, 1311
Schrödinger, with cubic nonlinearity, 1309
Schrödinger, with power-law nonlinearity, 1310
separable, 456, 1207
separated, 456
sine-Gordon, 1314
sinh-Gordon, 1314
steady transonic gas flow, 1324
telegraph, 1284
telegraph, generalized, 626
thermal boundary layer, 1276
transonic gas flow, 1324
ultrahyperbolic, 590
vibration, with axial symmetry, 1282
vibration, with central symmetry, 1283
vibration of string, 1278
wave, 585, 1278
wave, nonlinear, 723, 1312–1317
wave, three-dimensional, 618
wave, two-dimensional, 618
Whittaker, 960

differential geometry, 367
differential operator

linear, 591, 592
total, 740, 742

differential operators, of field theory, 272
differential substitution, 666
differentiation, 266

of implicit function, 266
of stochastic process, 1073
rules, 253

differentiation method for PDEs, 700
digamma function, 944, 949
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dihedral angle, 60
edge, 60
face, 60

dilatation ratio, 403
dimension

of affine space, 190
of linear space, 189
of matrix, 167
of representation, 230

Dini convergence criterion for series, 341
Dini formula, 429
Dini integral, 1287
Diocles cissoid, 372
Dirac delta function, 599
direct analytic continuation, 418
direct method of symmetry reductions, 708
direct scattering problem, 760
direct sum

of subspaces, 191
of two matrices, 175

directed segment, 77
direction, principal of second-order curve, 109
direction coefficients of straight line, 131
direction cosine of segment, 116
directional derivative, 267, 268
directrix, 65, 67

of ellipse, 99
of hyperbola, 102
of parabola, 105

Dirichlet conditions, 357
Dirichlet convergence criteria, 341, 342
Dirichlet criterion of uniform convergence of

functional series, 350
Dirichlet problem, 427, 428

for elliptic equations, 593, 1330
Dirichlet theorem, 295, 358

representation of function by Fourier
series, 357

Dirichlet–Jordan convergence criterion for Fourier
series, 358, 361

Dirichlet–Mehler integral, 963
discontinuity, conservation law, 561
discontinuous solutions of quasilinear equations,

558
discrete bivariate random variable, 1058
discrete probability distribution, 1045
discrete probability space, 1033
discrete random variable, 1039, 1064

expectation, 1042, 1063
discrete subgroups, 228
discriminant

large, 108
of algebraic equation, 163
small, 108

discriminant curve, 378
disk, 56, 97
dispersion equation, 532, 596
distance

between elements, 193, 195
between lines in space, 142
between parallel lines, 96

distance (continued)
between points on axis, 78
between points on plane, 81
between two parallel planes, 142
from point to line in space, 142
from point to plane, 141
from point to straight line, 93
shortest, 70

distribution
bimodal, 1045
binomial, 1037, 1047
Cauchy, 1054
chi-square, 1054
conditional, 1062
continuous, 1051
convergence, 1069
exponential, 1052
Fisher–Snedecor, 1086
geometric, 1048
hypergeometric, 1049
Kolmogorov, 1086
log-normal, 1042
multimodal, 1045
negative binomial, 1050
normal, 1053
Poisson, 1050
Student, 1056
uniform, 1051
unimodal, 1045

distribution function
empirical, 1084
joint, 1064
marginal, 1064
multivariate random variable, 1064
two-dimensional random vector, 1057

distribution polygon, 1085
divergence, 334
divergence theorem, 334
divergent infinite products, 346
divergent integral, 301
divergent series, 337
divisibility tests, 3
division

of asymptotic series, 364
of polynomials, 155
of segment in given ratio, 82

divisor, greatest common, 4
domain

boundary, 401
closed, 402
formula for calculation of volume, 327
multiply connected, 409
of attraction of fixed point, 877
of function, 236
on complex plane, 401
simply connected, 409

double factorial, 10
double integral, 317

change of variables, 321
estimation theorem, 318
geometric applications, 321
geometric meaning, 317
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double integral (continued)
mean value theorem, 318
physical applications, 321
properties, 317

double point, 371
dual linear programming problem, 1017
duality theorem, second, 1018
Duffing equation, 501
Duhamel integral, 516
Duhamel principle, 646
first, 646
second, 648

dynamic programming, 1027

E
eccentricity

of ellipse, 98
of hyperbola, 102

edge
of dihedral angle, 60
of polygon, 51
of polyhedral angle, 61
of polyhedron, 61
of trihedral angle, 60

efficient unbiased estimator, 1089
eigenfunction, 482, 604, 605, 829

integral equation, 835
eigenfunctions

Fredholm integral equation, 829
incomplete system, 836
system, 836

eigenvalue, 183, 482, 605, 829
eigenvalue problem, 604

for linear ordinary differential equations, 482
eigenvalues

algebraic multiplicity, 209
geometric multiplicity, 209
linear operator, 211, 209
matrix, 183
operator, 209

eigenvector
linear operator, 209
matrix, 184

elastic rods, transverse vibration, 1294
electronic mathematical resources, 1451
element

admissible, 1009
conjugate, of group, 231
coordinates, 188, 189
inverse, 225
length, 193
neutral, 225
norm, 193
probability, 1040
surface linear, 390

elementary event, 1031
elementary events space, 1031
elementary functions, 19–41
elementary geometry, 43
elementary matrices, 181
elementary symmetric functions, 163

elementary transformation
of matrix, 180, 199
of system of linear equations, 199

elements
linearly dependent, 188
linearly independent, 188
of linear space, 187
orthogonal, 193

ellipse, 98
canonical equation, 98
center, 99
conjugate diameters, 100
diameter, 100
directrix, 99
eccentricity, 98
focal axis, 99
focal distance, 98
focal parameter, 98
focal property, 99
focus-directrix property, 100
gorge, 145
in polar coordinate system, 101
left directrix, 99
left focus, 99
linear eccentricity, 98
minor axis, 98
numerical eccentricity, 98
optical property, 100
parameter, 98
right directrix, 99
right focus, 99
semimajor axis, 98
semiminor axis, 98
throat, 145
vertex, 99

ellipsoid, 143, 224
imaginary, 224
right, 145
scalene, 144
semiaxis, 143
triaxial, 144

elliptic coordinates, 1202
elliptic equation, 585, 590, 642, 972, 1284

canonical form, 588
first boundary value problem, 633, 643, 644
fundamental solution, 642
mixed boundary value problem, 644
second boundary value problem, 633, 643, 644
third boundary value problem, 643, 644

elliptic equations
boundary value problems, 631, 643, 644
linear, 588, 609–611, 631–633, 637, 1284–

1298
nonlinear, 653, 654, 318–1334

elliptic integral, 969
complete, 969
first kind, 970
incomplete, 970
second kind, 970
third kind, 971

elliptic modulus, 971
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elliptic paraboloid, 145
elliptic point, 394
Emden–Fowler equation, 1223
empirical distribution

function, 1084
variance, 1088

energy conservation law, 996
entire axis, 825, 826, 841
entire function, 414
entry, pivot, 1016
envelope, 377

of family of curves, 377
equal complex numbers, 399
equal matrices, 168
equal polynomials, 155
equation

Abel differential, first kind, 462
Abel differential, first kind, canonical

form, 463
Abel differential, second kind, 464
Abel differential, second kind, canonical

form, 465
Abel functional, 914
Abel integral, 1385
Abel integral, generalized, 806, 1386
Abel integral, second kind, 1392
Abel integral, second kind, generalized, 1393
Airy, 955
algebraic, 162
algebraic, binomial, 161
algebraic, fourth-degree, 159
algebraic, linear, 157
algebraic, nth-degree, 162
algebraic, quadratic, 158
algebraic, reciprocal, 160, 161
algebraic, reciprocal, modified, 160
autonomous, 1207, 1223, 1225
axisymmetric steady hydrodynamic boundary

layer, 712
Babbage, 917, 1416, 1423
Bernoulli, 1207
Bessel, 1216
Bessel, modified, 1216
biharmonic, 1297
biharmonic, homogeneous, 1297
biharmonic, nonhomogeneous, 1298
bilinear functional, 930, 1446
binomial algebraic, 161
biquadratic, 159
Born–Infeld, 659
Boussinesq, 709, 1332
Burgers, 664, 666, 751, 1307
Burgers, radial symmetric case, 1307
Burgers–Korteweg–de Vries, generalized, 709
Cantor first, 1442
Cantor second, 1449
Carleman, 1399
Cauchy, 1438
Cauchy exponential, 1443
Cauchy logarithmic, 1439
Cauchy power, 1444

equation (continued)
characteristic, 514, 654
characteristic, for difference equation, 881
characteristic, for system of ODEs, 529
characteristic, of linear operator, 211
characteristic, of matrix, 185
characteristic, of quadratic form, 150
circle, canonical, 97
circle, parametric, 98
Clairaut, 572, 1262
complete, of plane, 124
continuity, 784
convolution-type, of first kind, 825
convolution-type, of second kind, 829
cubic, complete, 159
cubic, incomplete, 158
curve, on plane, 84
cyclic functional, 920
D’Alembert, 1441
damped vibrations, 1213
Darboux, 458
difference, see difference equation
differential, see differential equation
diffusion, linear, see heat equation
diffusion, nonlinear, with cubic source, 753
diffusion, stationary anisotropic, 1323
diffusion boundary layer, 1276
dispersion, 532, 596
Duffing, 501
ellipse, canonical, 98
elliptic, 585, 588, 590, 1284
Emden–Fowler, 1223
Ermakov, 1224
Euler, 473, 994, 1216
Euler–Darboux, 602
Euler–Lagrange, 767
Euler–Poisson, 1006
evolution, second-order, 739
exact, first-order ODE, 458
exact, second-order ODE, 491
family, 377
Fisher, 1301
Fitzhugh–Nagumo, 1302
Fredholm, of first kind, 825
Fredholm, of second kind, 829
free oscillations, 1213
functional, see functional equation
functional differential, 682, 684, 688
gas dynamics model, 558
Gauss, 1445
Gauss, generalized, 1445
Gaussian hypergeometric, 960, 1218
Gel’fand–Levitan–Marchenko integral, 1328,

1333
general, of plane, 124
general, of second-order hypersurface, 220
general, of straight line in space, 132
general, of straight line on plane, 90
Hamilton–Jacobi, 576
heat, 585, 672, 680, 698, 728, 1267
heat, nonhomogeneous, 1268
heat, stationary, with nonlinear source, 1320
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equation (continued)
heat, stationary anisotropic, 1323
Helmholtz, 1289
Helmholtz, three-dimensional, 600
Helmholtz, two-dimensional, 599
homogeneous, 591, 592, 810, 829, 834, 1207,

1224
homogeneous, generalized, 1210, 1224
homogeneous function, 1441
hyperbola, canonical, 101
hyperbolic, 585, 587, 590
hyperbolic, first canonical form, 587
hyperbolic, normal, 590
hyperbolic, second canonical form, 587
hypergeometric, 960, 1218
hypergeometric, degenerate, 1215
incomplete, of plane, 124
information theory, basic, 1440
integral, see integral equation
intercept, of plane, 125
intercept-intercept, of straight line, 91
involutory functions, 1423
Jacobi, 998, 1004, 1007
Jensen, 1438
Jensen, generalized, 1449
Khokhlov–Zabolotskaya, 658
Khokhlov–Zabolotskaya, stationary, 1322
Klein–Gordon, 618, 625, 1280
Klein–Gordon, linear, 625
Klein–Gordon, nonlinear, 702, 1315
Klein–Gordon, two-dimensional, 618
Kolmogorov, backward, 1076
Kolmogorov, forward, 1076
Korteweg–de Vries, 752, 756, 759, 1327
Korteweg–de Vries, cylindrical, 1328
Korteweg–de Vries, modified, 1328
L’Huiller, 74
Lalesco–Picard, 1403
Laplace, ODE, 520
Laplace, three-dimensional, PDE, 643
Laplace, two-dimensional, PDE, 585, 633,

1284
Legendre, 1217–1219
Lienard, 1225
light rays, 1259
likelihood, 1092
line, in projections, 133
linear, algebraic, 157
linear, constant-coefficient, ODE, 473, 514,

1213
linear, constant-coefficient, PDE, 588
linear, first-order, ODE, 457
linear, integral, 801, 810, 824, 829
linear, nonhomogeneous, ODE, 473
linear, ODE, 472, 518, 1213
linear, PDE, 585, 591, 592
Liouville, 664
Lobachevsky, 1444
logarithmic Cauchy, 1439
logistic, 875
Mathieu, 980, 1221

equation (continued)
Mathieu, modified, 982, 1220
minimal surfaces, 770
model, of gas dynamics, 1254
Monge–Ampère, 1326
Monge–Ampère, homogeneous, 668, 1326
Monge–Ampère, nonhomogeneous, 1326
Newell–Whitehead, 733
noncentral hypersurface, canonical, 224
normal, 252
normal to surface, 153
normalized, of plane, 126
normalized, of straight line, 91
on entire axis, 825, 826, 841
on semiaxis, 826, 842
one-dimensional vibration, with central

symmetry, 1281
ordinary differential, see ordinary differential

equation
Painlevé, 495
parabola, canonical, 104
parabolic, 585, 586, 590
parabolic, in narrow sense, 590
parametric, of curve on plane, 87
parametric, of line in space, 131
parametric, of plane, 125
partial differential, see partial differential

equation
pencil of planes, 131
pencil of straight lines, 92
Pexider, 925, 1440
Pfaffian, 772, 773
plane passing through line of intersection of

planes, 131
plane passing through point and parallel to

another plane, 127
plane passing through point and parallel to two

straight lines, 129
plane passing through three points, 127
plane passing through two points and parallel

to line, 128
Poisson, 1285
Poisson, three-dimensional, 599
Poisson, two-dimensional, 599
quadratic, 158
reciprocal, algebraic, 160, 161
reciprocal, algebraic, generalized, 160
reciprocal, algebraic, modified, 160
reciprocal, functional, 919
renewal, 1395
Riccati, 460
Riccati, general, differential, 461, 462, 1207,

1210
Riccati, special, differential, 1208
Riccati difference, 875, 918, 1428, 1429
right-hand side, 801, 825, 829
root, 162
Schlömilch, 1400
Schröder–Koenigs, 911
Schrödinger, linear, 1276
Schrödinger, nonlinear, 759, 1309
Schrödinger, of general form, 1311
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equation (continued)
Schrödinger, with cubic nonlinearity, 1309
Schrödinger, with power-law nonlinearity, 1310
self-similar solutions, 1442
separable, 456, 1207
separated, 456
sine-Gordon, 1314
sinh-Gordon, 1314
skew self-distributivity, 1449
slope-intercept, of straight line, 89
steady transonic gas flow, 1324
straight line in polar coordinates, 92
straight line in projections in space, 133
straight line in space, canonical, 132
straight line passing through given point on

plane, canonical, 90
straight line passing through point and

perpendicular to plane, 134
straight line passing through two given

points, 90, 134
straight line passing through two given points

on plane, canonical, 90
surface, 386
surface in space, 119
tangent line, 251
tangent plane, 268
tangent plane to surface, 152
telegraph, 1284
telegraph, generalized, 626
thermal boundary layer, 1276
transonic gas flow, 1324
transposed, 825, 829, 834
traveling wave, 1441
Tricomi integral, 1403
ultrahyperbolic, 590
Urysohn, with degenerate kernel, 863, 864
Urysohn integral, nonlinear, 856
vibration of string, 1278
vibration with axial symmetry, 1282
Volterra, with quadratic nonlinearity, 856
Volterra integral, nonlinear, 856, 858–861
Volterra integral, of first kind, 801, 807
Volterra integral, of second kind, 807, 810
wave, 585, 1278
wave, nonlinear, 723, 1312–1317
wave, three-dimensional, 618
wave, two-dimensional, 618
Whittaker, 960
Wiener–Hopf, of first kind, 825, 1401
Wiener–Hopf, of second kind, 829, 1406
with difference kernel, integral, 825, 829
with quadratic nonlinearity, 865
with weak singularity of second kind, 829

equations
admitting variational formulation, 767
autonomous, 525
Bellman, 1028
center of hypersurface, 222
difference, 871–907
elliptic, linear, 588, 609–611, 631–633, 637,

1284–1298

equations (continued)
elliptic, nonlinear, 653, 654, 318–1334
Fredholm integral, of second kind, 854
functional, linear, 907–917
hyperbolic, linear, 587, 617, 623–630, 636,

647, 648, 1278–1284
hyperbolic, nonlinear, 653, 654, 1312–1317
integral, 801–871, 1385–1406
integral, linear, 801–855, 1385–1406
integral, linear, of second kind, with constant

limits of integration, 824, 829
integral, nonlinear, 856–871
intrinsic, of curve, 388
motion of mass point, 87
ordinary differential, 453–550, 1207–1228
Painlevé, 495
parabolic, linear, 586, 615–616, 618–622, 634,

635, 646, 648, 1267–1278
parabolic, nonlinear, 653, 654, 1301–1311
partial differential, 553–798, 1247–1382
pencil, 92
reaction-diffusion type, 796
straight line on plane parametric, 91
straight lines on plane, 89

equilateral hyperbola, 101
equilateral triangle, 43, 50, 51
equilibrium point of autonomous system, 545
equilibrium points of two-dimensional linear

systems, 534
equilibrium solution, 874, 884
equivalence transformation, 180
equivalent events, 1031
equivalent infinitely small functions, 243
equivalent matrices, 180
equivalent representations of group, 230
Ermakov convergence criterion for series, 340
Ermakov equation, 1224
error function, xxxi, 939, 957, 1267
essential singularity, 413
estimation theorem

for double integral, 318
for triple integral, 325

estimator, 1088
asymptotically unbiased, 1089
consistent, 1089
interval, 1088, 1093
maximum likelihood, 1092
minimality of variance, 1090
statistical, 1088
unbiased, 1089

Euclidean space, 192
isomorphic, 194
normed, 193

Euler constant, xxx, 944, 949, 958
Euler differential equations, 998
Euler equation, calculus of variations, 994
Euler equation, ODE, 473, 520, 1216
Euler formula, 30, 405, 944
Euler line, 47
Euler numbers, 939
Euler polynomials, 989
Euler substitutions, 280
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Euler system of ODEs, 542
Euler theorem, 61, 393
Euler transform of first kind, 449
Euler transform of second kind, 450
Euler transformation, 661
Euler triangles, 71
Euler–Darboux equation, 602
Euler–Fourier formulas, 358
Euler–Lagrange equation, 767
Euler–Lagrange theorem, 1009
Euler–Poisson equation, 1006
even function, 236
even number, 3
even permutation, 178
event, 1031

complementary, 1031
elementary, 1031
favorable, 1031
frequency, 1083
impossible, 1031
random, 1031
relative frequency, 1083
sure, 1031

events
difference, 1031
equivalent, 1031
incompatible, 1031
intersection, 1031
statistically independent, 1036
union, 1031

evolute, 378
evolutionary conditions, 792
evolvent, 378, 379
exact differential equation, 458
exact solutions of linear PDEs, 594
example

Hilbert, 997
Weierstrass, 997

excenter, 47
excess, spherical, 72
excess coefficient, 1045
excircle of triangle, 47
excircles, 46
existence and uniqueness theorems

for ODEs, 454, 488, 524, 543
for PDEs, 557, 577

expansion
asymptotic, 363
asymptotic two-term, 478
of polynomial in powers of linear binomial,

156
expectation, 1042

conditional, 1066
of bivariate random variable, 1060
of continuous random variable, 1042
of discrete random variable, 1042
of function of multivariate random variable,

1065
population, 1087

expected value of random variable, 1042
exponent, Hölder, 310

exponential distribution, 1052
exponential form of complex number, 405
exponential function, 21

graphs, 21
properties, 22

exponential integral, 940, 958
exponential self-similar solution, 675
extended complex plane, 402
external angle, 43

of polygon, 51
extrema, relative, 991
extremal, 994, 998

admissible, 994, 998
broken, 997, 999
nonsingular, 995
regular, 995
regular point, 995

extremal points of function, 269
extremal properties of quadratic form, 220
extremum

absolute, 991
first-order necessary condition, 994
necessary condition, 269
point, 269
sufficient conditions, 269

extrinsic curvature, 394

F
face

of dihedral angle, 60
of polyhedral angle, 60
of polyhedron, 61
of trihedral angle, 60

factor, reflection, 760
factor group, 227
factorial, xxxi, 10

double, xxxi, 10
faithful representation of group, 230
false negative rate, 1096
false position method, 262
false positive rate, 1095
family

of curves, 377
of planes, 151

family equation, 377
favorable event, 1031
feasible region, 1012
feasible solution, 1012
Feller theorem, 1077
Ferrari solution, 161
Feuerbach points, 49
Feuerbach theorem, 49
fifth Painlevé transcendents, 499
finite differences, 884
finite games, 1024
finite matrix, 167
finite series, 12
finite subgroup, 228
finite sums, 1111
finite-dimensional Euclidean space, 193
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first boundary value problem
for elliptic equations, 633
for hyperbolic equations, 627

first boundary value problem, for ODEs, 480
for PDEs, 593

first comparison criterion, 338
first duality theorem, 1018
first group of derivation formulas, 396
first integral, 542, 544, 574

for system of ODEs, 544
first mean value theorem, 295
first noteworthy limit, 241
first Painlevé transcendent, 496
first quadratic form of surface, 390
first variation of functional, 992
first-order differential constraint, 739
first-order hyperbolic system of quasilinear

equations, 780
first-order linear difference equations, 1407
first-order necessary condition for extremum, 994
first-order neighborhood, 991
first-order ordinary differential equation

Bernoulli, 458
linear, 457

first-order ordinary differential equations, 453–
472, 1207–1211

Cauchy problem, 454
homogeneous, 456
homogeneous, generalized, 457
integrable by quadrature, 453
not solved for derivative, 454
singular solutions, 455
solved for derivative, 453
uniqueness and existence theorems, 454
with separated or separable variables, 456

first-order partial differential equations, 553,
1247

Cauchy problem, 556
general solution, 553
linear, 1247
method of separation of variables, 571
nonlinear, 1256
quasilinear, 553, 1252

Fisher equation, 1301
Fisher information, 1089
Fisher test, 1104
Fisher transformation, 1105
Fisher–Snedecor distribution, 1086
Fitzhugh–Nagumo equation, 1302
fixed point of function, 908
flat plate

coordinates of center of mass, 324
moments of inertia, 324

flux of vector field, 333
focal axis

of ellipse, 99
of hyperbola, 101

focal distance
of ellipse, 98
of hyperbola, 102
of parabola, 105

focal parameter
of ellipse, 98
of hyperbola, 102

focal properties
of hyperbola, 102
of parabola, 105

focal property of ellipse, 99
focal radius

of parabola, 105
right, 99, 102

focus
of hyperbola, 102
of parabola, 105
stable, for ODEs, 537
unstable, for ODEs, 537

focus-directrix property
of ellipse, 100
of hyperbola, 103
of parabola, 105

Folium of Descartes, 374
form

bilinear, 214, 992
bilinear degenerate, 215
bilinear nondegenerate, 215
bilinear skew-symmetric, 214
bilinear symmetric, 214
canonical, 462, 473
canonical for central surfaces, 143
canonical of gas dynamics systems, 786
canonical of matrix, 181
canonical of quadric, 148
canonical of second-order curve, 107
linear, 213
multilinear, 215
multilinear, skew-symmetric, 215
multilinear, symmetric, 215
normal, 473
quadratic, 216, 218, 840
quadratic, degenerate, 216
quadratic, negative definite, 216
quadratic, nondegenerate, 216
quadratic, nonnegative, 216
quadratic, nonpositive, 216
quadratic, positive definite, 216
quadratic, second of surface, 392
sesquilinear, 213

formal solution, 594
formula

Bayes, 1036
Bernoulli, 1037
Bessel, 950
Bürman–Lagrange, 356
Cauchy for ODE, 519
Cauchy integral, 409
Cauchy multiple integration, 289
Cauchy series multiplication, 343
Cauchy–Hadamard, 411
Chebyshev, 808
D’Alembert, 1278
de Moivre, 400
Dini, 429
Dirichlet, 295
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formula (continued)
Euler, 405, 944
for calculation of volume of domain, 327
Fourier cosine inversion, 445
Fourier inversion, 444
Frénet, 377
Gauss, 396, 808
Green, 428
Heron, 48
Hopf, 565
Kontorovich–Lebedev inversion, 448
Leibnitz, 256
Liouville, 473, 518
Liouville for system of ODEs, 540
Maclaurin, 257
Meijer inversion, 447
Newton–Leibniz, 288
Newton–Leibniz for function of complex

variable, 408
of finite increments, 254
of integration by parts, 275, 409
of repeated integration by parts, 275
Peterson–Codazzi, 396
Poisson, 949, 1038
Post–Widder, 441
quadrature, 808
Serret–Frénet, 386
Stirling, 944
Sturges, 1083
total probability, 1036
Watson, 292
Willier, 74

formulas
Bayes, 1063
D’Alembert (Gauss), 73
Euler–Fourier, 358
Frénet, 377
Frobenius, 174
Mollweide, 44
Peterson–Codazzi, 397
Serret–Frénet, 386
Weingarten, 396

forward Kolmogorov equation, 1076
Fourier coefficients, 358
Fourier cosine inversion formula, 445
Fourier cosine transform, 445, 449

asymmetric, 445
tables, 1177

Fourier expansion
of even functions, 360
of odd functions, 360

Fourier inversion formula, 444
Fourier method, 602
Fourier series, 357, 358

criteria of uniform convergence, 361
differentiation, 359
Dirichlet–Jordan convergence criteria, 358
in complex form, 360
integration, 359
Lipschitz convergence criteria, 358
of square-integrable functions, 361
Riemann localization principle, 358

Fourier sine transform, 445, 446, 449
asymmetric, 446
tables, 1182

Fourier transform, 443, 449, 614, 843
alternative, 444
asymmetric, 444
asymmetric form, 444
inverse, 443
n-dimensional, 445
solving linear problems of mathematical

physics, 615
standard form, 443

fourth Painlevé transcendent, 498
fourth-degree algebraic equation, 159
fourth-order linear PDEs, 1294
fourth-order nonlinear PDEs, 1332
fraction, 6
fractional integral, 449
fractional power series, 415
Fredholm alternative, 834

for symmetric integral equations, 839
Fredholm integral equation
first kind, 824, 825
second kind, 829, 852
second kind, with degenerate kernel, 830
second kind, with symmetric kernel, 835

Fredholm kernel, 825, 829
Fredholm theorems, 834
free oscillations, 1213
free terms of linear system of equations, 197
frequency

cumulative, 1084
of event, 1083
of variate value, 1083

frequency histogram, 1086
frequency polygon, 1085
Frénet formulas, 377
Fresnel integrals, 304, 942
Frobenius formulas, 174
Frullani integral, 307
frustum

of cone, 67, 68
of pyramid, 64

Fuchs index, 749
function

admissible, 993, 1002, 1006
Airy, 477, 955
analytic, 413
analytic at point, 403
analytic at point at infinity, 403
analytic in domain, 403
antiperiodic, 885
approximation, 508
arccosine, xxx, 32
arccotangent, xxx, 32
arcsine, xxx, 31
arctangent, xxx, 32
autocorrelation, 1072
automorphic, 912
Bessel, 947, 1216
Bessel, modified, 953
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function (continued)
Bessel, modified, of first kind, xxxi, 953, 1216
Bessel, modified, of second kind, xxxi, 953,

1216
Bessel, of first kind, xxxi
Bessel, of second kind, xxxii
beta, 945
boundary, 419
bounded, 236
bounded variation, 246, 247, 313
branch point, 404, 405
central cross-correlation, 1073
characteristic, 1046, 1066
Chebyshev, 985
complementary error, xxxi, 939, 958
complex variable, 401, 402, 407, 408
composite, 237, 265
concave, 245
continuous, 243
convex, 245
correlation, 1072
cosine, 24, 25
cosine, hyperbolic, xxx, 35
cotangent, xxx, 24, 26
cotangent, hyperbolic, xxx, 35
cross-correlation, central, 1073
cross-correlation, normalized, 1073
cross-covariance, 1072
cumulative distribution, 1039
cylindrical, 947, 1216
decreasing, 236
degenerate hypergeometric, xxxii, 956
differentiable, 251
differentiable at point, 402
digamma, 944, 949
Dirac delta, 599
distribution of two-dimensional random

vector, 1057
distribution sample, 1084
domain, 236
elliptic, 972
entire, 414
entire transcendental, 414
error, xxxi, 939, 957, 1267
even, 236
exponential, 21
gamma, xxxii, 943, 1215
gamma, incomplete, xxxii, 946, 957, 958
Gauss error, xxxi
Gegenbauer, 1218
generating, 815, 1047
generating, of numerical sequence, 1047
Green, 428, 631, 633–637
Hankel, 952
harmonic, 404
Heaviside unit step, 618
Hermite, 986
holomorphic at point, 403
homogeneous, 1441
Hurwitz, 893
hyperbolic arccosine, xxx

function (continued)
hyperbolic arccotangent, xxx
hyperbolic arcsine, xxx
hyperbolic arctangent, xxx
hyperbolic cosine, xxx, 35
hyperbolic cotangent, xxx, 35
hyperbolic sine, xxxi, 35
hyperbolic tangent, xxxi, 35
hypergeometric, 960
incomplete beta, 947
incomplete gamma, xxxii, 946
increasing, 236
infinitely large, 243
infinitely small, 242
integrable, 286, 312, 314
integrand, 273
inverse, 237
inverse hyperbolic cosine, 40
inverse hyperbolic cotangent, 40
inverse hyperbolic functions, 39
inverse hyperbolic sine, 39
inverse hyperbolic tangent, 40
involutory, 917, 1423
Jacobi theta, 978
joint distribution, 1057, 1064
joint probability, 1059, 1064
Kummer, 956
Lagrange, 270
Legendre, 962
Legendre, associated, 964, 965
Legendre, associated, modified, 966
Legendre, associated, of first kind, 965
Legendre, associated, of second kind, 965
Legendre, of second kind, 1217
limit, 264
logarithmic, 22
Lyapunov, 549
Macdonald, 953
marginal distribution, 1064
marginal probability, 1059
Mathieu, 980, 1219
Mathieu, modified, 982
mean value, 318, 325
meromorphic, 414
moment-generating, 1047
monotone (monotonic), 236
multi-valued, 236, 402
multivariate random variable, 1065
Neumann, 947
nonincreasing, 236
normalized cross-correlation, 1073
odd, 236
of exponential growth, 905
of several variables, 263
of two variables, 263
Painlevé transcendental, 495
parabolic cylinder, 967
penalty, 1027
periodic, 236
Pontryagin, 1011
power, 19
primitive, 273



INDEX 1473

function (continued)
probability density, 1040
probability-generating, of random variable,

1047
psi, 944
random variables, 1041
range, 236
rational, 276
real variable, 236
regression, 1063, 1066
regular at point, 403
Riemann, 628, 629, 783
sample, 1072
sign, xxxi
sine, 24, 25
sine, hyperbolic, xxxi, 35
single-valued, 236, 402
spectral of stationary process, 1075
square integrable, 314
stationary value, 220
stream, 1295
strictly concave, 245
strictly convex, 245
Struve, 448, 449
symmetric elementary, 163
tangent, xxxi, 24, 26, 56, 368, 380
tangent, hyperbolic, xxxi, 35
theoretical distribution, 1082
theta, 978
total variation, 247
Weber parabolic cylinder, 967
Weierstrass, 998, 1000
Weierstrass elliptic, 976
Whittaker, 960
zero, 413
Zhukovskii, 404, 424

functional, 991
bilinear, 992
Bolza, 1001
classical integral, 993
differentiable at point, 992
first variation, 992
increment, 992
linear, 213
quadratic, 992
quadratic definite positive, 993
second variation, 992, 993
strong minimum, 991
strongly positive, 993
variation, 992
weak minimum, 991

functional differential equations, 682, 684, 688,
931

functional equation
Abel, 914
Babbage, 917, 1416, 1423
bilinear, 930, 1446
Cantor first, 1442
Cantor second, 1449
Cauchy, 1438
Cauchy exponential, 1443

functional equation (continued)
Cauchy logarithmic, 1439
Cauchy power, 1444
cyclic, 920
D’Alembert, 1443
Darboux, 458
difference, 873
difference, logistic, 875
Gauss, 1445
Gauss, generalized, 1445
homogeneous function, 1441
information theory, basic, 1440
involutory functions, 917, 1423
Jensen, 1438
Jensen, generalized, 1449
linear homogeneous, 910
linear nonhomogeneous, 912
Lobachevsky, 1444
logarithmic, Cauchy, 1439
Pexider, 925, 1440
reciprocal, 919
Riccati, difference, 875, 918, 1428, 1429
Schröder–Koenigs, 911
self-similar solutions, 1442
traveling-wave, 1441

functional equations, 705–707, 1409, 1414–1421,
1446

containing iterations of unknown function, 917
in several independent variables, 922, 1438
linear, 1414–1421

functional mean, 13
functional separable solution, 697

special, 697
functional separation of variables, 697
functional series, 348, 1120

criteria of uniform convergence, 349
Dirichlet criterion, 350
pointwise convergence, 348
properties, 350
remainder, 349
uniform convergence, 349

functional sums, 1116
functions

coordinate, 847, 851
dependent, 267
elementary, 19–41
independent, 267
of same order, 243
small infinitely equivalent, 243
special, 939–990

fundamental solution, 599, 615
of Cauchy problem, 616, 617

fundamental solutions for system of ODEs, 539
fundamental system of solutions, 477, 478, 522,

523
of homogeneous system, 198

fundamental theorem of algebra, 162

G
Gakhov first theorem, 432
Gakhov second theorem, 433
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Galerkin method, 508
Galileo transformation, 718
game, 1024

antagonistic, 1024
coalition, 1024
finite, 1024
infinite, 1024
lower price, 1025
theory, 1024
two-person, 1024
upper price, 1025
with saddle point, 1025

game price in mixed strategies, 1026
game theory, 1024
game value, 1025
“games with nature”, 1024
gamma function, xxxii, 943, 1213

incomplete, xxxii, 946
logarithmic derivative, 949, 954

gas dynamics, model equation, 1254
Gauss derivation formulas, 396
Gauss equation, 1445
Gauss error function, xxxi
Gauss formula, 396, 808
Gauss theorem, 335
Gauss transform, 449
Gauss transformation, 974
Gauss–Jordan elimination, 201
Gaussian coordinates, 387
Gaussian curvature, 394
Gaussian elimination, 199
Gaussian elimination method, backward

substitution, 200
Gaussian hypergeometric equation, 960, 1216
Gegenbauer functions, 1218
Gegenbauer polynomials, 987
Gel’fand–Levitan–Marchenko integral equation,

1328, 1333
general equation

of plane, 124
of quadric, 148
of second-order curve, 107
of second-order hypersurface, 220
of straight line, 90
of straight line in space, 132
of straight line on plane, 90

general form
of Laplace integral, 292
of Schrödinger equation, 1311
of second-order finite-difference equation, 1436
of second-order nonlinear difference equation,

1436
general fourth-degree equation, 160
general integral, 570, 571
general linear group, 228
general mathematical programming problem,

1012
general orthogonal curvilinear coordinates, 1196
general Riccati equation, 461, 462, 1209, 1210
general solution

of difference equation, 874, 884

general solution (continued)
of first-order PDEs, 553
of linear algebraic system, 203
of linear hyperbolic equations, 600–602
of linear ODEs, 472, 514, 518
of ODEs, 453, 488

general square system of linear algebraic
equations, 199

general system of m linear algebraic equations
with n unknown quantities, 203

generalized Abel equation, 806
of second kind, 1393

generalized Burgers–Korteweg–de Vries
equation, 709

generalized Cauchy problem, 627
generalized Chebyshev inequalities, 15
generalized classical method of characteristics,

582
generalized Dirichlet problem, 428
generalized Ermakov criterion of convergence of

series, 340
generalized Ermakov system, 1242
generalized Gauss equation, 1445
generalized homogeneous equation, 490, 526,

1210, 1224
generalized Jensen equation, 1449
generalized Jensen inequalities, 246
generalized Laguerre polynomials, 983
generalized permutation matrix, 168
generalized reciprocal equation, 160
generalized self-similar solution, 677
generalized separable solution, 681, 682
generalized separation of variables, 681
generalized similarity reduction, 746
generalized solution, 563

Hopf formula, 565
of first-order PDE, 563, 568
regular point, 580
singular point, 580
stable, 569

generalized telegraph equation, 626
generalized traveling-wave solution, 697
generalized triangle inequality, 343
generalized variance of n-dimensional distribution,

1065
generalized viscosity solutions, 579, 580
generating function, 815, 1047

of numerical sequence, 1047
generator, 65, 67

group, 717, 730
infinitesimal, 717

generic term
of sequence, 237
of series, 337

geodesic arc, 70
geodesic curvature, 392
geodesic curvature vector, 392
geometric definition of nondegenerate second-

order curve, 111
geometric distribution, 1048
geometric mean, 13

of functions, 297
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geometric multiplicity of eigenvalue, 209
geometric probability, 1034
geometric programming, 1027
geometric progression, 11
geometric sequence, 11
geometric series, 11
geometry

analytic, 77
differential, 367
intrinsic, of surface, 391
spherical, 70

Gergonne point, 47
Goodness-of-fit tests, 1098, 1101
gorge ellipse, 145
Goursat problem, 592, 629
Gram determinant, 193
Gram–Schmidt orthogonalization, 194
graph of function, 84, 236
gravitational field potential, 328
great circle, 68, 70

spherical geometry, 70
greatest common divisor, 4
Green first identities, 335
Green formula, 428
Green function, 428, 623, 631, 633–637

admitting incomplete separation of variables,
640

for elliptic equations, 631–634, 637
for hyperbolic equations, 623–625, 636
for linear ordinary differential equation, 481
for parabolic equations, 618–622, 635
in terms of infinite series, 639

Green second identities, 335
Green theorem, 335
group

abelian, 226
automorphism, 227
commutative, 226
completely reducible representation, 231
conjugate element, 231
continuous point, 730
equivalent representations, 230
faithful representation, 230
invariant, 731
Lie, 730
linear representation, 230
of derivation formulas, second, 396
of events, complete, 1031
of incompatible events, complete, 1032
of leading terms of equation, 220
of linear transformations, 228
of mirror symmetry, 229
of modulo 2 residues, 226
of orthogonal transformations, 229
orthogonal, 229
quotient, 227
special linear, 228
special orthogonal, 229
trivial representation, 230

group analysis of differential equations, 716
group element, character, 231

group generator, 717, 730, 732
group invariant, 731
group theory, 225
groups

basic properties, 225
cyclic, 229
isomorphic, 227
permutation, 226
unitary, 229

growth exponent, 436

H
half-plane

left, 79
lower, 79
right, 79
upper, 79

half-side theorem, 73
Hamilton operator, 272
Hamilton–Jacobi equation, 576
Hamiltonian, 576
Hankel functions, 952
Hankel transform, 446, 449, 1400
Hardy transform, 449
harmonic function, 404
harmonic mean, 13

of functions, 297
harmonic series, 339
Hartley transform, 449
heat equation

linear, 585, 1267
linear, nonhomogeneous, 1268
nonlinear, 1318
stationary, anisotropic, 1323
stationary, with nonlinear source, 1320
with axial symmetry, 1270
with central symmetry, 1272

Heaviside unit step function, 618
Helmholtz equation, 1289
Hermite functions, 986
Hermite polynomials, xxxi, 957, 958, 985
Hermitian matrix, 168
Hermitian operator, 206

negative, 207
nonnegative, 207
nonpositive, 207
positive, 207

Heron formula, 48
higher-order derivatives of elementary functions,

255
higher-order linear difference equations, 1425
Hilbert boundary value problem, 432
Hilbert example, 997
Hilbert space, 196
Hilbert transform, 449, 1396, 1400
Hilbert–Privalov boundary value problem, 432
Hilbert–Schmidt theorem, 837
histogram, 1086

frequency, 1086
relative frequency, 1086
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hodograph transformation
for gas dynamic system, 784
for ODEs, 455
for PDEs, 657, 658

Hölder condition, 310, 430
Hölder constant, 310
Hölder exponent, 310
Hölder inequality, 14, 297, 343
Hölder–Jensen inequality, 15
homogeneity, order, 1441
homogeneous boundary condition, 591
homogeneous equations

linear difference, 881, 885, 889, 1421, 1425
linear difference, constant-coefficient, 1409,

1422, 1426
linear integral, 810, 829, 834
ordinary differential, 456, 490, 526, 1207, 1224
ordinary differential, generalized, 457, 490,

526, 1224
ordinary differential, linear, 472, 514
partial differential, elliptic, 592
partial differential, hyperbolic, 592
partial differential, parabolic, 591

homogeneous function, 1441
homogeneous initial condition, 591
homogeneous linear algebraic system, 203

general solution, 203
homogeneous linear integral equation, 810, 829
homogeneous linear ODEs, 472, 514

of higher-order ODEs, 532
homogeneous Monge–Ampère equation, 668,

1326
homogeneous system

of linear algebraic equations, 197
of linear ODEs, 539
of linear ODEs, superposition principle, 528,

539
homomorphic image, 226
homomorphisms, 226
“hoof”, 67
Hopf formula for generalized solution, 565
Hopf–Cole transformation, 666, 1308
Horner scheme, 156
Hurwitz functions, 893
hyperbola, 101

arm, 101
asymptotes, 101
canonical equation, 101
center, 102
conjugate diameters, 104
diameter, 104
directrix, 102
eccentricity, 102
equilateral, 101
focal axis, 101
focal distance, 102
focal parameter, 102
focal properties, 102
focus, 102
focus-directrix property, 103
imaginary axis, 101

hyperbola (continued)
imaginary semiaxis, 102
in polar coordinate system, 104
left arm, 101
left directrix, 102
left focus, 102
linear eccentricity, 102
numerical eccentricity, 102
optical property, 103
parameter, 102
real semiaxes, 102
right arm, 101
right directrix, 102
right focus, 102
vertex, 102

hyperbolic arccosine, xxx
hyperbolic arccotangent, xxx
hyperbolic arcsine, xxx
hyperbolic arctangent, xxx
hyperbolic cosine, xxx, 35
hyperbolic cotangent, xxx, 35
hyperbolic equation

boundary value problems, 623
canonical form, 587
first canonical form, 587
second canonical form, 587

hyperbolic equations, 585, 590, 647, 648, 742
Cauchy problem, 617
linear, 587, 617, 623–630, 636, 647, 648,

1278–1284
nonlinear, 653, 654, 1312–1317

hyperbolic functions, 34
addition formulas, 36
differentiation formulas, 38
expansion in power series, 39
integration formulas, 38
inverse, 39
of half argument, 38
of multiple argument, 38
properties, 36

hyperbolic paraboloid, 146
hyperbolic point, 394, 536
hyperbolic sine, xxxi, 35
hyperbolic spiral, 86, 368
hyperbolic system of PDEs, 781, 790
hyperbolic tangent, xxxi, 35
hyperbolic type of second-order curves, 108
hyperboloid, 144, 224

of revolution, 145
one-sheeted, 144
real semiaxes, 144
two-sheeted, 144

hypergeometric distribution, 1049
hypergeometric equation, 960, 1218

degenerate, 1215
hypergeometric functions, 960
hypergeometric series, 960, 1218
hypersurface, 220

center, 222
central, 222
noncentral, 224
semiaxis, 223
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hypotenuse, 50, 72
hypothesis, 1094

alternative, 1094
composite, 1094
nonparametric, 1094
null, 1094
parametric, 1094
simple, 1094
statistical, 1094

I
identity

Abel, 902
Parseval, 361

identity matrix, 168
identity operator, 204
image, homomorphic, 226
imaginary axis, 401

of hyperbola, 101
imaginary ellipsoid, 224
imaginary part, 399
imaginary semiaxis

of hyperbola, 102
of one-sheeted hyperboloid, 144
of two-sheeted hyperboloid, 144

imaginary unit, 399
impossible event, 1031
improper integral, 301
improper integrals

involving logarithmic functions, 305
involving power functions, 304
involving trigonometric functions, 305
of unbounded functions, 309
sufficient conditions for convergence, 302

improper orthogonal transformations, 229
improper subspace, 190
incenter, 47
incenter point, 46
incircle, 46

of triangle, 46, 47
incompatible events, 1031
incomplete beta function, 947
incomplete cubic equation, 158
incomplete elliptic integral, 970
incomplete equation of plane, 124
incomplete gamma function, xxxii, 946, 957, 958
incomplete separation of variables, 597, 616, 640
incomplete system of eigenfunctions, 836
inconsistent system of linear algebraic equations,

197
increasing function, 236, 238
increment

of argument, 992
of functional, 992
partial, 264

indefinite integrals, 273, 1129
involving exponential functions, 1137
involving hyperbolic functions, 1137
involving inverse trigonometric functions, 1147
involving irrational functions, 1134
involving logarithmic functions, 1140

indefinite integrals (continued)
involving rational functions, 1129
involving trigonometric functions, 1142
properties, 274

independent random variables, 1060, 1067
independent trials, 1037
independent variable, 236
index

characteristic, 1221
Fuchs, 749
of inertia, 218
of inertia, negative, 218
of inertia, positive, 218
of matrix, 182
of multiplication, 12
of summation, 12

inequality
Bunyakovsky, 296
Cauchy, 14, 296, 343, 410
Cauchy–Bunyakovski, 14, 296, 343
Cauchy–Schwarz, 121, 193, 1043
Cauchy–Schwarz–Bunyakovski, 14, 314
Chebyshev, 14, 297, 1070
Chebyshev, generalized, 15
Cramér–Rao, 1089
Hölder, 14, 297, 343
Hölder–Jensen, 15
Jensen, 245, 297
Markov, 1070
Minkowski, 14, 121, 193, 296, 343
Steklov, 297
Sylvester, 178
triangle, 44, 73, 193, 314
triangle, generalized, 14, 343

infimum, xxxi
infinite game, 1024
infinite matrix, 167
infinite product, 346, 348

absolute convergence, 346
convergent, 346
divergent, 346

infinite products
convergence criteria, 347
with positive factors, 347

infinite series, 1116
infinite-dimensional linear space, 189
infinitely large function, 243
infinitely large quantity, 239
infinitely large sequence, 239
infinitely small function, 242, 243
infinitely small quantity, 239
infinitesimal generator, 717
infinitesimal operator, 716, 717, 730
inflection point, 258
information, Fisher, 1089
information theory, basic equation, 1438
initial condition

for first-order ODEs, 454
for parabolic equations, 591
homogeneous, 591
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initial conditions
for hyperbolic equations, 592
for ODEs, 488, 524
for Riemann problem, 785, 793
homogeneous, 592

initial moment
of multivariate random variable, 1065
of two-dimensional random variable, 1060

initial value problem, 580, 785
injective linear operator, 205
inner product, 192, 314, 840
inscribed angle, 56
inscribed polygon, in circle, 51
integer number, 3
integer power

of complex number, 399
of linear operator, 205
of matrix, 172

integrable combinations, 545
integrable function, 286, 312, 314
integral

absolutely convergent, 303
Cauchy-type (singular), 310, 409, 430
closed path, 331
complete, 570
curvilinear, 329
definite, 286
Dini, 1287
Dirichlet–Mehler, 963
divergent, 301
Duhamel, 516
elliptic, complete, of first kind, 969
elliptic, complete, of second kind, 969
elliptic, of first kind, 970
elliptic, of second kind, 970
elliptic, of third kind, 971
exponential, 958
fractional, 449
Fresnel, 304
Frullani, 307
general, 571
improper, 301
indefinite, 273
involving power-law functions, 1147
Laplace, 418, 521, 963
Laplace, of general form, 292
Laplace, power, 294
Laplace, power, multiple, 328
Laplace, special form, 291
line, of first kind, 329
line, of second kind, 330, 331
logarithmic, 958
multiple Laplace-type, 328
of differential binomial, 281
of function of complex variable, 407
path, 329
Poisson, 428, 1287
Poisson, for half-plane, 429
potential-type, 291
iterated, 319
Riemann, 286

integral (continued)
Schwarz, 428
Schwarz, for half-plane, 429
singular (Cauchy-type), 310, 311, 430, 571
Stieltjes, 312
surface, of first kind, 332
surface, of second kind, 333
with infinite limits, 301

integral equation
Abel, 1385
Abel, generalized, 1386
Abel, of second kind, 1392
Abel, of second kind, generalized, 1393
existence and uniqueness of solution, 802
first kind, with constant integration limit, 824
first kind, with variable integration limit, 801
Fredholm, of first kind, 824, 825
Fredholm, of second kind, 829
Gel’fand–Levitan–Marchenko, 1328, 1333
homogeneous, 810, 829
kernel, 801, 825, 829
Lalesco–Picard, 1403
linear, 801, 810, 824, 829
nonhomogeneous, 810, 829
nonlinear, 856
nonlinear, with constant integration limits, 856,

863
nonlinear, with degenerate kernel, 863
nonlinear, with variable integration limit, 856
parameter, 829
regularization methods, 827
right-hand side, 810
Schlömilch, 1400
second kind, with constant integration

limits, 829
second kind, with variable integration

limit, 810
skew-symmetric, 840
symmetric, 835
Tricomi, 1403
Urysohn, nonlinear, 856
Urysohn, with degenerate kernel, 863, 864
Volterra, nonlinear, 856, 858–861
Volterra, of first kind, 801, 807
Volterra, of second kind, 807, 810
Volterra, with quadratic nonlinearity, 856
Wiener–Hopf, of first kind, 825, 1401
Wiener–Hopf, of second kind, 829, 1406
with degenerate kernel, 802, 803, 811, 812
with difference kernel, 804, 813, 825, 829, 841
with quadratic nonlinearity, 865
with weak singularity of second kind, 829

integral equations, 801–871, 1385–1406
first kind, with constant limits of integration,

824, 1396–1400
first kind, with variable limit of integration,

801, 1385–1390
first kind, with weak singularity, 825
linear, 801–855, 1385–1406
method of differentiating, 866
second kind, with constant limits of integra-

tion, 829, 1401–1408
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integral equations (continued)
second kind, with variable limit of integration,

810, 1391–1395
integral formulas of vector calculus, 334
integral sum, 286, 317

Stieltjes, 312
integral theorem of de Moivre–Laplace, 1038
integral transform

Bochner, 449
Euler, first kind, 449
Euler, second kind, 450
Fourier, 443, 449
Fourier, asymmetric form, 444
Fourier, inverse, 443
Fourier, n-dimensional, 445
Fourier, standard form, 443
Fourier cosine, 445, 449
Fourier sine, 446, 449
Gauss, 449
Hankel, 446, 449
Hardy, 449
Hartley, 449
Hilbert, 449
kernel, 435
Kontorovich–Lebedev, 448, 449
Laplace, 436, 449
Laplace, inverse, 437
Laplace, two-sided, 449
Meijer, 447, 449
Meler–Fock, 449
Mellin, 441, 449
Mellin, inverse, 442
Weber, 449
Weierstrass, 449

integral transforms, 435, 1155
general form, 435
inversion formulas, 435
method for linear PDEs, 611

integrals, tables, 1129
integrals of motion, 766
integrand (function), 273
integrating factor, 459

of Pfaffian equation, 773
integration

by parts, 275
by parts, repeated, 275
of asymptotic series, 365
of exponential functions, 281
of hyperbolic functions, 281
of improper fractions, 278
of irrational functions, 279
of proper fraction, 277
of rational functions, 276
of trigonometric functions, 282

intercept equation of plane, 125
intercept-intercept equation of straight line, 91
intergroup sample variance, 1108
interior angle, 43

of polygon, 51
interpolation nodes, 808
interpolation polynomial, 186

intersection
of events, 1031
of four planes, 139
of line and plane, 140
of subspaces, 190
of three planes, 139

interval, 235
closed, xxx, 235
confidence, 1093
estimator, 1088, 1093
half-open, xxx, 234
of convergence of power series, 351
open, xxx, 235
series, 1083

intrinsic equations of curve, 388
intrinsic geometry of surface, 391, 395
invariance condition, 719, 720, 732
invariant, 222, 731

of group, 731
of infinitesimal operator, 717
of linear operator, 211
of operator, 717, 731
of quadric, 148
of second-order curve, 107
universal, 731

invariant condition, 731
invariant representation, 230
invariant solution, 669, 674, 716, 724
invariant subspace, 205, 230
invariant surface condition, 732
inverse element, 225
inverse Fourier transform, 443, 614
inverse function, 237
inverse hyperbolic cosine, 40
inverse hyperbolic cotangent, 40
inverse hyperbolic functions, 39

differentiation formulas, 41
expansion in power series, 42
integration formulas, 41
properties, 41

inverse hyperbolic sine, 39
inverse hyperbolic tangent, 40
inverse Laplace transform, 437, 611

tables, 1162
inverse matrix, 171

left, 171
right, 171

inverse Mellin transform, 442
tables, 1190

inverse of mapping, 226
inverse operator, 205
inverse scattering problem, 760

method, 755
inverse transform, 435

Fourier, 443
Fourier cosine, 445
Fourier sine, 446
Hankel, 446
Kontorovich–Lebedev, 448
Laplace, 437
Meijer, 447
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inverse trigonometric functions, 30
arccosine, 32
arccotangent, 32
arcsine, 31
arctangent, 32
differentiation formulas, 34
expansion in power series, 34
integration formulas, 34

inversion, 178, 422
invertible linear operator, 205
invertible mapping, 226
invertible transformation, 267
involutive matrix, 172
involutory function, 917, 1423
irrational numbers, 4, 5
irreducible representation, 231
isolated point, 371
isolated singularity, 413
isometric correspondence, 395
isomorphic Euclidean spaces, 194
isomorphic groups, 227
isomorphic linear spaces, 189
isomorphic mapping of groups, 227
isomorphic unitary spaces, 196
isomorphism, 226, 227
isomorphisms of linear spaces, 188
isoperimetric constraints, 1002
isoperimetric problem, 1002
isosceles trapezoid, 54
isosceles triangle, 43, 50

base, 50
leg, 50

iterated integral, 319
iterated kernel, 822, 832, 838
iteration axis, 876
iteration of function, 907
iteration process, 858

J
Jacobi condition, 998, 1000, 1004, 1007

strengthened, 1000, 1004, 1007
Jacobi elliptic functions, 979
Jacobi equation, 998, 1004, 1007
Jacobi method, 217
Jacobi polynomials, 986
Jacobi theorem, 180
Jacobi theta functions, 978
Jacobi–Mayer bracket, 574
Jacobian, 267, 321
Jacobian determinant, 321
Jensen equation, 1436
Jensen inequality, 15, 245, 297
joining face of prism, 61
joint distribution function, 1064

of random variables, 1057
joint probability function, 1059, 1064
Jordan cell, 182
Jordan form, of matrix, canonical, 182
Jordan lemma, 417, 436
jump conditions, 561, 568, 791

K
K-transform, 449
kernel

degenerate, 801, 802, 810, 811, 825, 829
difference, 801, 804, 810, 813, 825, 829, 841
Fredholm, 825, 829
iterated, 822, 832
logarithmic, 801
of integral equation, 801, 825, 829
of integral transform, 435
of linear operator, 205
polar, 801, 825
positive definite, 837
symmetric, 825, 829
with weak singularity, 801, 825, 829

Khokhlov–Zabolotskaya equation, 658
Klein–Gordon equation, 625, 1280
Kolmogorov distribution, 1086
Kolmogorov test, 1099
Kolmogorov theorem, 1070
Kontorovich–Lebedev inversion formula, 448
Kontorovich–Lebedev transform, 448, 449
Korteweg–de Vries equation, 752, 756, 759, 764,

1327
cylindrical, 1328
modified, 1328

Kronecker delta, xxxii
Kronecker product of matrices, 175
Kronecker–Capelli theorem, 198
kth absolute moment, 1044
kth central moment, 1043
kth moment, 1043
kth sample central moment, 1087
kth sample moment, 1087
Kummer convergence criterion for series, 340
Kummer functions, 956
Kummer series, 956, 1215
Kummer transformation, 345, 957
Kummer–Liouville transformation, 475
kurtosis, 1045

L
L2-norm, 314
L’Hospital rules, 254
L’Huiller equation, 74
Lagrange equation, 467
Lagrange function, 270
Lagrange method, 217
Lagrange multiplier, 270
Lagrange multiplier rule, 1002
Lagrange principle, 1008
Lagrange problem, 1008
Lagrange theorem, 254
Lagrange–Charpit method, 573
Lagrangian, 767, 993, 1002, 1006

Bolza, 1001
Noetherian symmetry, 768

Laguerre polynomials, 957, 982
generalized, 983

Lalesco–Picard equation, 1403
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Lamé coefficients, 1196
Landen transformations, 974, 975
Laplace cascade method, 600
Laplace equation

ODE, 520
PDE, three-dimensional, 643
PDE, two-dimensional, 633, 1282

Laplace integral, 418, 521, 963
general form, 292
special form, 291

Laplace operator, 272
Laplace theorem, 177
Laplace transform, 436, 548, 611, 804, 813, 843,

856
convolution theorem, 437
for derivatives, 611
inverse, 437
limit theorems, 440
properties, 437
solving linear problems for hyperbolic

equations, 614
solving linear problems for parabolic

equations, 612
tables, 1157–1163

Laplace-type multiple integral, 328
large discriminant, 108
large numbers

strong law, 1070
weak law, 1069

largest value of function, 258
lateral face of pyramid, 63
latitude, 119
Laurent series, 410, 412
Lavrentiev regularization method, 827
law

commutative composition, 225
composition, 225
conservation, 766
conservation at discontinuity, 561
energy conservation, 996
of conservation of mass, 784
of cosines, 44
of cosines of angles, 73
of cosines of sides, 73
of large numbers, 1069, 1070
of sines, 44, 73
of tangents, 44
weak of large numbers, 1069

laws, de Morgan, 1032
Lax condition, 792
Lax pair, 755
least common multiple, 4
least-squared error method, 511
least-squares method, 509, 1092
left arm of hyperbola, 101
left coset, 227
left directrix

of ellipse, 99
of hyperbola, 102

left focal radius, 99, 102
left focus

of ellipse, 99

left focus (continued)
of hyperbola, 102

left half-plane, 79
left inverse matrix, 171
left rectangular Cartesian coordinate system, 79
left-hand limit, 240
leg

of isosceles triangle, 50
of right triangle, 50
of trapezoid, 54

Legendre condition, 998, 999, 1004, 1007
strengthened, 999, 1004, 1007

Legendre equation, 1217–1219
Legendre function, 962

associated, 964, 965
first kind, associated, 965
modified associated, 966
second kind, 1217
second kind, associated, 965

Legendre functions, Wronskians, 967
Legendre polynomial, xxxi, 962, 1217
Legendre theorem, 72
Legendre transformation, 469, 660

with many variables, 663
Leibnitz convergence criteria, 341
Leibnitz convergence criterion for series, 341
Leibnitz formula, 256
lemma

Jordan, 417
Neyman–Pearson, 1097

length
of element, 193
of segment, 77
of vector, 113

level, confidence, 1093
level line, 264, 1014
Levi-Civita symbol, 179
Lévy solution, 914
Lie group, 730

of point transformations, 730
Lienard equation, 1225
light rays, equation, 1259
likelihood equation, 1092
likelihood function, 1092
likelihood ratio, 1097
likelihood ratio test, 1097
limit
first noteworthy, 241
left-hand, 240
lower of sequence, 240
noteworthy second, 241
of function, 240, 264
of sequence, 237
partial of sequence, 240
right-hand, 240
upper of sequence, 240

limit theorems, 1068, 1069
for Bernoulli process, 1038
for Laplace transform, 440

limiting self-similar solution, 675
Lindeberg central limit theorem, 1071
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line
deviation of point from line, 93
Euler, 47
in space, 131
level, 264, 1014
Simpson, 47
support, 1014
tangent, 251
tangent to surface, 388

line integral
first kind, 329
second kind, 330, 331

linear algebraic equation, 157
linear combination

of column vectors, 171
of row vectors, 171
of vectors, 188

linear constant-coefficient partial differential
equation, 588

linear difference homogeneous equation with
constant coefficients, 906

linear eccentricity
of ellipse, 98
of hyperbola, 102

linear equation
algebraic, 157
difference, 881, 885, 889, 1421, 1425
difference, constant-coefficient, 1409, 1422,

1426
integral, 801, 810, 824, 829
ordinary differential, 472, 518, 1213
partial differential, elliptic, 592
partial differential, hyperbolic, 592
partial differential, parabolic, 591

linear equations of mathematical physics, 1267
linear first-order ODE, 457
linear form, 213
linear functional, 213
linear functional equations, 907, 1414–1421,

1438
in one independent variable, 1409

linear group, general, of dimension n, 228
linear harmonic oscillator, 1277
linear homogeneous difference equations, 904

with constant coefficients, 894, 904
with variable coefficients, 895, 901

linear homogeneous functional equations, 910
linear integral equations
first kind, with constant limits of integration,

824, 1396–1400
first kind, with variable limit of integration,

801, 1385–1390
second kind, with constant limits of integra-

tion, 829, 1401–1408
second kind, with variable limit of integration,

810, 1391–1395
linear nonhomogeneous difference equations, 906

with constant coefficients, 895, 899
with variable coefficients, 896, 902

linear nonhomogeneous functional equations, 912
linear operator, 204

canonical form, 213

linear operator (continued)
characteristic equation, 211
determinant, 209
in matrix form, 208
injective, 205
invariant, 211
inverse, 205
invertible, 205
kernel, 205
matrix, 208
nondegenerate, 205
norm, 204
range, 205
rank, 206
trace, 209

linear operators
product, 205
sum, 204

linear ordinary differential equations, 457,
472–488, 514–524, 1212–1222

canonical form, 473
linear partial differential equations, 553–650,

1267–1298
canonical form, 585–590

linear programming problem, 1012
standard form, 1013
symmetric, 1013

linear representation of group, 230
linear space, 187, 189

basis, 189
complex, 188
dimension, 189
elements, 187
infinite-dimensional, 189
linear transformation, 204
of affine space, associated, 189

linear spaces
isomorphic, 189
isomorphisms, 188

linear span, 190
linear subspace, 190

invariant under nonlinear operator, 693, 695
linear superposition principle, 594
linear surface element, 390
linear systems

of algebraic equations, 197
of ODEs, 528
of PDEs of general form, 1374
of two second-order PDEs, 1341

linear transformation, 656
of linear space, 204

linear transformations, product, 228
linear-fractional mappings, 422
linearly dependent column vectors, 171
linearly dependent elements, 188
linearly dependent row vectors, 171
linearly independent column vectors, 171
linearly independent elements, 188
linearly independent row vectors, 171
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linearly independent solutions of difference
equation, 882

lines
asymptotic, 393
condition for two lines in space to meet, 143
curvature, 393
curvilinear, 387
in space, theorem on arrangement, 136
parallel, 59, 96
perpendicular, 95
skew, 59

Liouville equation, 664
Liouville formula, 473, 518

for system of ODEs, 540
Liouville theorem, 403, 414
Lipschitz condition, 248, 310, 313, 454, 488, 543,

584
Lipschitz convergence criterion for Fourier

series, 358
Lipschitz criterion of uniform convergence of

Fourier series, 361
Lobachevsky convergence criterion for series,

341
Lobachevsky equation, 1444
local maximum, 257

point, 269
local minimum, 257

point, 269
local theorem of de Moivre–Laplace, 1038
log-normal distribution, 1042
logarithm, xxxi, 9

common, 9
decadic, 9
natural, xxxi

logarithmic branch point, 415
logarithmic derivative of gamma function, 949,

954
logarithmic function, 22

graphs, 22
properties, 23

logarithmic identity, 9
logarithmic integral, 941, 958
logarithmic kernel, 801
logarithmic residue, 416
logarithmic spiral, 86
logarithms, natural, 9, 22, 23, 238
logistic difference equation, 875
longitude, 119
Lorentz transformation, 718, 1278
lower bound, 235
lower half-plane, 79
lower limit of sequence, 240
lower price of game, 1025
lower triangular matrix, 168
Lyapunov central limit theorem, 1071
Lyapunov function, 549
Lyapunov stability, 546
Lyapunov stable, 546
Lyapunov theorem

of asymptotic stability, 549
of stability, 549

M
Macdonald function, 953
Maclaurin formula, 257
Maclaurin method, 164
Maclaurin power series, 352
Maclaurin series, 353
Maclaurin–Cauchy integral criterion of conver-

gence of series, 339
main diagonal, 168
major axis of ellipse, 98
majorant series, 349
many-valued function, branch, 404
mapping, 226

conformal, 419
groups, 227
groups, isomorphic, 227
invertible, 226
linear-fractional, 422
onto set, 226
range, 226
schlicht, 402

marginal distribution function, 1064
marginal probability functions, 1059
Markov inequality, 1070
Markov process, 1075
Markov property, 1075
mass of body of variable density, 327
mathematical induction, 16
mathematical model of transportation problem,

1019
mathematical physics equations, nonlinear, 1301
mathematical programming, 1012

general problem, 1012
mathematical statistics, 1081

problems, 1081
Mathieu equation, 980, 1221

modified, 982, 1220
Mathieu functions, 980, 1221

modified, 982
matrices, 167

commuting, 169
compatible size, 169
congruent, 182
conjunctive, 183
difference, 169
direct sum, 175
elementary, 181
elementary transformations, 180
equal, 168
equivalent, 180
Kronecker product, 175
multiplication, 169
similar, 181
subtraction, 169
sum, 168
unitary transformations, 183
169

matrix, 167
additively inverse, 169
adjoint, 170
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matrix (continued)
adjugate, 180
antihermitian, 168
antisymmetric, 168
block, 174
canonical form, 181
canonical Jordan form, 182
characteristic, 183
characteristic equation, 185
characteristic polynomial, 185
complex conjugate, 170
correlation, 1066
covariance, 1065
defect, 177, 178
determinant, of order n, 176
determinant, of order 2, 175
determinant, of order 3, 176
diagonal, 168
dimension, 167
eigenvalue, 183
elementary transformation, 199
finite, 167
generalized permutation, 168
Hermitian, 168
identity, 168
index, 182
infinite, 167
inverse, 171
inverse left, 171
inverse right, 171
involutive, 172
multiplication by scalar, 169
nilpotent, 172
nondegenerate, 171
nonsingular, 171
normal, 171
normal form, 181
null, 167
of bilinear form, 215
of linear operator, 208
of linear system of algebraic equations,

basic, 197
of moments, 1065
of sesquilinear form, 214
of simple structure, 182
opposite, 169
orthogonal, 170
payoff, 1024
payoff, saddle point, 1025
rank, 177, 178
real, 171
rectangular, 177
self-adjoint, 168
signature, 182
skew-Hermitian, 168
skew-symmetric, 168
spectrum, 183
square, 168, 176
subdiagonal, 168
superdiagonal, 168
symmetric, 168

matrix (continued)
trace, 171
transforming, 181
triangular, lower, 168
triangular, strictly lower, 168
triangular, strictly upper, 168
unitary, 171
upper triangular, 168
Vandermonde, 179
zero, 167

matrix decomposition, 201
matrix entry, 167

cofactor, 176
maximin principle, 1025
maximum

conditional, 270
constrained, 270
local, 257
local weak, 993, 1001, 1002, 1006
of function, xxxi, 257
strong, 1006
strong local, 994
strong of functional, 991
weak of functional, 991

maximum likelihood estimator, 1092
maximum modulus principle, 403
maximum principle, Pontryagin, 1011
mean

functional, 13
geometric, 13
harmonic, 13
sample, 1087

mean curvature, 394
mean value of function, 318, 325
mean value theorems, 295

for double integral, 318
for triple integral, 325

mean values, general approach, 13
mean-square convergence, 315
mean-square deviation, 1088
mean-square regression, 1063, 1066
median, 1045

of trapezoid, 54
of triangle, 45

Mehler–Fock transform, 449
Meijer inversion formula, 447
Meijer transform, 447
Meijer transform (K-transform), 449
Mellin transform, 441, 449, 826, 842, 844

inverse, 442
properties, 442
tables, 1187–1190

Menelaus theorem, 49
meromorphic function, 414
Mertens theorem, 343
method

averaging, 503
backward substitution in Gaussian elimination,

200
bisection, 261
Bubnov–Galerkin, for integral equations, 850
Bubnov–Galerkin, for ODEs, 509



INDEX 1485

method (continued)
Budan–Fourier, 166
characteristics, generalized classical, 582
Clarkson–Kruskal direct, 708–710
Cole–Kevorkian, 504
collocation, 509, 523, 847, 848, 860
collocation, convergence theorem, 524
collocation, for integral equations, 847, 848
collocation, for ODEs, 509, 523
D’Alembert, 533
D’Alembert, for nonhomogeneous higher-order

linear systems, 533
differential constraints, 737
estimation, 1091
false position, 262
Fourier, 602
Galerkin, 508
Gaussian elimination, backward substitution,

200
integral transforms, 611
Jacobi, 217
Lagrange, 217
Lagrange–Charpit, 573
Laplace cascade, 600
Lavrentiev regularization, 827
least-squared error, 511
least squares, 509, 1092
Lindstedt–Poincaré, 502
Maclaurin, 164
mathematical induction, 16
minimal cost, 1020
modified Newton–Kantorovich, 859, 868
moments, 509, 1091
Newton, 164
Newton–Kantorovich, 859, 868
Newton–Raphson, 262
of accelerated convergence in eigenvalue

problems, 513
of approximating kernel by degenerate

one, 844
of argument elimination, for functional

equations, 928
of differentiation for integral equations, 857,

866
of differentiation for ODEs, 857
of differentiation in independent variables, for

functional equations, 925
of differentiation in parameter, for functional

equations, 922
of Euler polygonal lines, 471
of functional separation of variables, 697
of generalized separation of variables, 681
of integral transforms, 825, 856, 865
of integral transforms, for linear PDEs, 611
of integral transforms, for nonlinear integral

equations, 856, 865
of integration by differentiation, 465
of inverse scattering problem, 755
of least-squared error, 511
of least squares, 509, 849, 1092
of least squares, for integral equations, 849

method (continued)
of least squares, normal system, 850
of matched asymptotic expansions, 506
of model solutions, 818
of partitioning domain, 511
of potentials, 1021
of quadratures, 808, 823
of quadratures, for integral equations, 808, 823,

852, 861, 870
of regular expansion in small parameter, for

ODEs, 470, 501
of replacing kernel by degenerate kernel, 844
of scaled parameters, 502
of separation of variables, 602
of separation of variables, for first-order

PDEs, 571
of separation of variables, for linear PDEs, 602
of substituting particular values of independent

arguments, for functional equations, 926
of successive approximations, 469, 511, 832,

858
of symmetry reductions, classical, 732
of symmetry reductions, direct, 708
of symmetry reductions, nonclassical, 732, 747
of Taylor series expansion in independent

variable, for ODEs, 470
of two-scale expansions, 504
of undetermined coefficients, 17, 277
of vanishing viscosity, 564, 580
parametric for defining curve, 123
parametric for defining surface, 123
penalty function, 1027
perturbation, 499
Picard, 469
projection, 508
quadrature, 861
quadrature, for integral equations, 870
quadric, 148
regula falsi, 262
regularization, for integral equations, 827
Runge–Kutta, 472, 512
shooting, 512
similarity, 669
simplex, 1014
single-step, of second-order approximation, 471
splitting, 704
step, 884, 885, 889, 893, 919
Sturm, 166
successive approximation, 822, 833, 858, 867
summation of series, 344
Tikhonov regularization, 828
Titov–Galaktionov, 693
Van der Pol–Krylov–Bogolyubov, 503

methods
numerical for ODEs, 511, 512
of defining function, 236
of integral transforms, 841
perturbation, 499–507
projection, 508

metric space, 196
metric tensor, 1193
metric tensor components, 1195
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Meusnier theorem, 392
midline, 44
minimal cost method, 1020
minimal polynomial, 186
minimal surface, 394, 770
minimality of variance of estimator, 1090
minimax principle, 1025
minimax property, 210
minimax theorem

for antagonistic two-person zero-sum
games, 1026

von Neumann, 1026
minimum

conditional, 270
constrained, 270
local, 257
local, strong, 994
local, weak, 993, 1001, 1002, 1006
of function, xxxi, 257
strong, 1006
strong, of functional, 991
weak, of functional, 991

Minkowski inequality
for finite sums, 14
for integrals, 296
for series, 343
for vectors, 121, 193

minor, 177
basic, 178
cofactor, 177
first kind, 177
of rectangular matrix, 177
of square matrix, 176
second kind, 177

minor axis of ellipse, 98
mixed boundary value problem, 480, 593

for hyperbolic equations, 627
for PDEs, 593

mixed strategy, 1025
game price, 1026

mode
of continuous probability distribution, 1045
of discrete probability distribution, 1045

model
of transportation problem, 1020
of transportation problem, closed, 1020

model equation of gas dynamics, 558, 1254
modified associated Legendre functions, 966
modified Bessel equation, 1216
modified Bessel functions, 953
first kind, xxxi, 953, 1216
second kind, xxxi, 953, 1216

modified Korteweg–de Vries equation, 759
modified Mathieu equation, 982, 1220
modified Mathieu functions, 982
modified Newton–Kantorovich method, 859, 868
modified reciprocal equation, 160
modulus

complementary, 971
elliptic, 971
of complex number, xxxii, 400

modulus (continued)
of real number, xxx, 8
of vector, xxx

modulus set, 907
Mollweide formulas, 44
moment, 1043

absolute, 1044
central, 1043
central, of n-dimensional random variable,

1065
initial, of multivariate random variable, 1065
initial, of two-dimensional random variable,

1060
kth absolute, 1044
kth central, 1043
kth sample, 1087
kth sample, central, 1087
of multivariate random variable, 1065
of two-dimensional random variable, 1060
sample, 1087
sample, central, 1087

moment method, 509
moment-generating function, 1047
moments of inertia

of body, 327
of flat plate, 324

momentum conservation law, 996
Monge–Ampère equation, 654, 1326

homogeneous, 668, 1326
monotone function, 236
monotone sequence, 238
Morera theorem, 410
Morley theorem, 49
Morse potential, 1278
motion of mass point, 87
movable critical points, 495
movable singularities of solutions of ordinary

differential equations, 494
moving trihedral, 382

of curve, 382
multidimensional stochastic process, 1072
multifactor analysis of variance, 1108
multilinear form, 215

skew-symmetric, 215
symmetric, 215

multimodal distribution, 1045
multiple, common least, 4
multiple correlation coefficient, 1066
multiple integral, 328

asymptotic formulas, 328
multiple integration, 289
multiplication

index, 12
of asymptotic series, 364
of matrices, 169
of matrix by scalar, 169
of polynomials, 155
of real numbers, 6
of series, 343

multiplicative inverse of real number, 6
multiplicative separable solution, 571, 596, 678
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multiplicity of eigenvalue
algebraic, 184, 209
geometric, 209

multiplier, Lagrange, 270
multiply connected domain, 409
multivalued function, 236, 402
multivariate random variable

initial moment, 1065
moment, 1065

N
n-dimensional coordinate space, 188
n-dimensional distribution, generalized variance,

1065
n-dimensional ellipsoid, 224
n-dimensional Fourier transform, 445
n-dimensional linear space, 189
n-dimensional random variable, 1065
n-dimensional random vector, 1057
n-fold singular point, 371
n-person game, 1024
n-sided pyramid, 63
N -soliton solution, 765

Korteweg–de Vries equation, 764
Nagel point, 47
Napierian base, 23
Napierian logatithm, see natural logarithm
natural logarithm, xxxi, 9, 22, 23, 238

base, 9, 23
natural number, 3
natural trihedral, 382
necessary condition

for extremum, 269, 1002, 1006, 1009
for solvability of Neumann problem, 429

negative binomial distribution, 1050
negative definite quadratic form, 216
negative Hermitian operator, 207
negative index of inertia of quadratic form, 218
negative symmetric operator, 207
neighborhood
first-order, 991
of point at infinity, 402
of point on complex plane, 402
strong, 991
weak, 991
zero-order, 991

Neper analogs, 73
Neper rules, 75
net, coordinate, 387
Neumann function, 947
Neumann problem, 429

for elliptic equations, 593, 1330
necessary condition for solvability, 429

Neumann series, 823, 833
neutral element, 225
Newell–Whitehead equation, 733
Newton method, 164
Newton–Kantorovich method, 859, 868
Newton–Leibniz formula, 288

for function of complex variable, 408
Newton–Raphson method, 262

Neyman–Fisher theorem, 1090
Neyman–Pearson lemma, 1097
nilpotent matrix, 172
nine-point circle, 49
node, 372

Chebyshev, 523
interpolation, 808
quadrature, 808
stable, 535, 538
unstable, 536

Noetherian symmetry, 767
of Lagrangian, 768

nonbasic variable, 1015
nonclassical method of symmetry reductions, 732,

747
nonclassical symmetries, 733
nondecreasing function, 236
nondegenerate bilinear form, 215
nondegenerate linear operator, 205
nondegenerate matrix, 171
nondegenerate quadratic form, 216
nonhomogeneous nth-order constant-coefficient

linear difference equation, 1427
nonhomogeneous nth-order linear difference

equation, 1426
nonhomogeneous biharmonic equation, 1298
nonhomogeneous first-order constant-coefficient

linear difference equation, 1411
nonhomogeneous higher-order linear systems,

D’Alembert method, 533
nonhomogeneous integral equation, 810, 829
nonhomogeneous linear boundary value

problems, 620, 624
nonhomogeneous linear difference equations, 882
nonhomogeneous linear ODEs, 474, 515
nonhomogeneous linear PDEs, 598
nonhomogeneous Monge–Ampère equation, 1326
nonhomogeneous second-order constant-coefficient

linear difference equation, 1422
nonhomogeneous second-order linear difference

equation, 1421
nonhomogeneous system

of linear algebraic equations, 197
of linear first-order ODEs, 531, 540
superposition principle, 541

nonincreasing function, 236
nonlinear nth-order difference equation, 919
nonlinear difference equation, 884, 918, 1428

of general form, 1437
nonlinear diffusion equation with cubic source,

753
nonlinear elliptic equations, 1318
nonlinear first-order partial differential equation

with two independent variables, 570
nonlinear functional equation, 1443

in one independent variable, 1428
power series solution, 922

nonlinear heat equation, 1301, 1318
in radial symmetric case, 1307

nonlinear integral equations, 856
with constant integration limits, 856, 863
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nonlinear integral equations (continued)
with degenerate kernels, 863
with variable integration limit, 856

nonlinear Klein–Gordon equation, 702, 1315
nonlinear mathematical physics equations, 1301
nonlinear operator, 693, 695
nonlinear ordinary differential equations, 453–472,

488–513, 524–527
systems, 542–550

nonlinear partial differential equations, 570–584,
653–779, 1301–1335

systems, 780–798, 1343–1382
nonlinear programming, 1027

problem, 1027
nonlinear Schrödinger equation, 759, 1307
nonlinear systems

of first-order ODEs, 1239
of ODEs, 542–550, 1239, 1244
of PDEs, 780–798, 1343–1382
of PDEs of general form, 1374–1384
of second-order ODEs, 1240
of two first-order PDEs, 1337
of two second-order PDEs, 1343

nonlinear Urysohn integral equation, 856
nonlinear Volterra integral equation, 856, 858,

860, 861
nonlinear wave equations, 723, 1312–1317
nonnegative Hermitian operator, 207
nonnegative quadratic form, 216
nonnegative symmetric operator, 207
nonorthogonal polynomials, 988
nonparametric hypothesis, 1094
nonpositive Hermitian operator, 207
nonpositive quadratic form, 216
nonpositive symmetric operator, 207
nonseparated by straight line points, 97
nonsingular extremal, 995
nonsingular matrix, 171
nonuniform convergence of functions, 249
norm, 314, 840

of element, 193
of linear operator, 204

normal, 91, 252, 368, 380, 389
positive sense, 369
principal, 381
to quadric, 152
to second-order curve, 111
to surface, 153

normal curvature, 392
normal curvature vector, 392
normal direction, 389
normal distribution, 1053
normal form, 473

of matrix, 181
normal fundamental system of solutions of

homogeneous system, 198
normal hyperbolic equation, 590
normal matrix, 171
normal operator, 207
normal plane, 380, 382
normal representation, of quadratic form, 218

normal section, 392
normal subgroup, 227
normal system of method of least squares, 850
normal vector, 124
normalized cross-correlation function, 1073
normalized equation

of plane, 126
of straight line, 91

normed Euclidean space, 193
normed unitary space, 195
noteworthy limit, second, 241
null hypothesis, 1094
null matrix, 167
null subspace, 190
number

absolute value, 8
Bernoulli, 938
complex, 399
complex conjugate, 399
composite, 3
e, base of natural logarithms, xxxi, 9, 22, 23
Euler, 939
even, 3
integer, 3
irrational, 4, 5
modulus, 8
natural, 3
odd, 3
of real roots of polynomial, 165
“pi” (π), xxxii
prime, 3
pure imaginary, 399
rational, 4, 5
real, 3, 4

number axis, 77
numerical eccentricity

of ellipse, 98
of hyperbola, 102

numerical integration of differential equations,
471

numerical sequence, 237
generating function, 1047

numerical series, 337, 1118
numerical sum, 1113

O
obelisk, 63, 65
oblate spheroid, 144
oblique asymptote, 242
oblique Cartesian coordinate system, 79
obtuse triangle, 43
octant, 114
odd function, 236
odd number, 3
odd permutation, 178
ODE, see ordinary differential equation
one-dimensional Klein–Gordon equation, 618
one-dimensional stochastic process, 1072
one-parameter family of curves, 377
one-parameter Lie group of point transformations,

730



INDEX 1489

one-parameter solution, 724
one-parameter transformation, 716
one-sheeted hyperboloid, 144

imaginary semiaxis, 144
one-sided derivative, 252
one-sided limits, 240
one-soliton solution, 765
one-to-one mapping, 226
open interval, 235
open model of transportation problem, 1020
operations with asymptotic series, 364
operator, 204

adjoint, 206
bounded, 204
characteristic value, 209
differential, linear, 591, 592
differential, total, 740, 742
eigenvalue, 209
eigenvector, 209
Hermitian, 206, 207
Hermitian negative, 207
Hermitian nonnegative, 207
Hermitian nonpositive, 207
Hermitian positive, 207
identity, 204
infinitesimal, 716, 717, 730
invariant, 717, 731
inverse, 205
Laplace, xxxii, 272
linear, 204
linear invertible, 205
normal, 207
opposite, 205
orthogonal, 207
reducible, 205
root, 207
second prolongation, 720
self-adjoint, 206
skew-Hermitian, 206
skew-symmetric, 207
symmetric, 207
symmetric negative, 207
symmetric nonnegative, 207
symmetric nonpositive, 207
symmetric positive, 207
transpose, 207
unitary, 206
zero, 204

operators
commutator, 755
differential, of field theory, 272
orthogonality condition, 207

opposite matrix, 169
opposite of real number, 6
optical property

of ellipse, 100
of hyperbola, 103
of parabola, 105, 106

optimal solution, 1012
optimal strategy, 1024
optimality principle, Bellman, 1028

order
of associated element, 213
of branch point, 414
of homogeneity, 1441
of pole, 413
of zero of function, 413

ordinary differential equation
Abel, of first kind, 462
Abel, of first kind, canonical form, 463
Abel, of second kind, 464
Abel, of second kind, canonical form, 465
Airy, 955
asymptotic solutions, 477
autonomous, 489, 525, 1207, 1223, 1225
Bernoulli, 458, 1207
Bessel, 1216
Bessel, modified, 1216
boundary value problems, 480
Clairaut, 467
Darboux, 458
degenerate hypergeometric, 1215
Duffing, 501
Emden–Fowler, 1223
Ermakov, 1224
Euler, 473, 520, 1216
exact, first-order, 458
exact, second-order, 491
first boundary value problem, 480
Gaussian hypergeometric, 960, 1218
Green function, 481
homogeneous, first-order, 456
homogeneous, first-order, generalized, 456
hypergeometric, 960, 1218
hypergeometric, degenerate, 1215
Lagrange, 467
Laplace, 520
Legendre, 1217–1219
Lienard, 1225
linear, 472, 518, 1213
linear, constant-coefficient, 473, 514, 1213
linear, first-order, 457, 1207
linear, homogeneous, 472, 1212
linear, nonhomogeneous, 473
linear, second-order, 472, 1212
Mathieu, 980, 1221
Mathieu, modified, 982, 1220
method of regular expansion in small

parameter, 470
method of Taylor series expansion in

independent variable, 470
mixed boundary value problem, 480
Riccati, 460
Riccati, general, 461, 462, 1209, 1210
Riccati, special, 1208
second boundary value problem, 480
second-order, linear, 467
second-order, nonlinear, 488
self-adjoint form, 481
separable, 456, 1207
separated, 456
third boundary value problem, 480
Whittaker, 960
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ordinary differential equations, 453–550,
1207–1228

admitting reduction of order, 489, 525
asymptotic solutions, 522
boundary value problems, 480, 481, 512
Cauchy problem, 488, 524
existence and uniqueness theorem, 488
first-order, 453–472, 1207–1212
homogeneous, 490, 526
homogeneous, generalized, 490, 526
linear, 457, 472–488, 514–524, 1212–1222
linear, homogeneous, 514, 518
linear, nonhomogeneous, 515, 519
linear, of arbitrary order, 514
linear, with constant coefficients, 514
nonlinear, 453–472, 488–513, 524–527,

1223–1228
not solved for derivative, 465
numerical methods, 511
Painlevé, 495
second-order, 472–514, 1212–1228
solved for derivative, 488
systems, nonlinear, 542–550

ordinate axis, 78
ordinate of point, 79, 115
oriented area, 83
oriented surface, 333
origin

in space, 114
of affine coordinate system, 190
on axis, 77
on plane, 78

orthocenter of triangle, 46
orthogonal complement of subspace, 194
orthogonal coordinates, 1194
orthogonal curvilinear systems of coordinate,

1195
orthogonal elements, 193

of unitary space, 195
orthogonal group, 229
orthogonal matrix, 170
orthogonal operator, 207
orthogonal polynomials, 982
orthogonal projection, 197
orthogonal trajectory, 379
orthogonal transformation of matrix, 182
orthogonality condition for operators, 207
orthogonalization, Gram–Schmidt, 194
orthonormal basis

in finite-dimensional Euclidean space, 193
in finite-dimensional unitary space, 195

osculating circle, 375
osculating plane, 381
osculation, point, 372
Ostrogradsky–Gauss theorem, 334
overdetermined systems of PDEs, 770, 771

P
Padé approximants, 493
Painlevé equations, 495
Painlevé test for nonlinear PDEs, 748

Painlevé transcendent, 495
fifth, 499
first, 496
fourth, 498
second, 496
sixth, 499
third, 497

Painlevé transcendental functions, 495
pair, Lax, 755
parabola, 104

canonical equation, 104
diameters, 106
directrix, 105
focal distance, 105
focal properties, 105
focal radius, 105
focus, 105
focus-directrix property, 105
in polar coordinates, 107
optical property, 105, 106
vertex, 105
with vertical axis, 106

parabolic coordinates, 1203
parabolic cylinder coordinates, 1203
parabolic cylinder function, 967
parabolic equation, 585, 590

boundary value problems, 645
canonical form, 586
Cauchy problem, 615
in narrow sense, 590
linear, 586, 615–616, 618–622, 634, 635, 646,

648, 1267–1278
nonlinear, 653, 654, 1301–1311

parabolic point, 394
parabolic type of second-order curves, 108
paraboloid, 145, 224

elliptic, 145
hyperbolic, 146
of revolution, 146

paraboloidal cylinder, 225
parallel lines, 59
parallel planes, 59
parallel translation, 220

of axes, 79
parallel vectors, 113
parallelepiped, 61, 62

rectangular, 62
parallelogram, 52
parallelogram rule, 113
parameter

of ellipse, 98
of hyperbola, 102
of integral equation, 829
of plane, polar, 127
variable, 87

parametric curves, 387
parametric equations

of circle, 98
of curve, 87
of curve on plane, 87
of plane, 125
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parametric equations (continued)
of straight line in space, 131
of straight line on plane, 91

parametric hypothesis, 1094
parametric method

for defining curve, 123
for defining surface, 123

parametrized surface, 387
Parseval identity, 361
part of Laurent series, 412
partial derivative, 264
partial differential equation

biharmonic, 1297
biharmonic, homogeneous, 1297
biharmonic, nonhomogeneous, 1298
Born–Infeld, 659
Boussinesq, 709, 1332
Burgers, 664, 666, 751, 1307
Burgers, radial symmetric case, 1307
Burgers–Korteweg–de Vries, generalized, 709
Clairaut, 1262
continuity, 784
diffusion, linear, see heat equation, linear
diffusion, nonlinear, with cubic source, 753
elliptic, 585, 588, 590, 1284
evolution, second-order, 739
first-order, quasilinear, 553
Fisher, 1301
Fitzhugh–Nagumo, 1302
Hamilton–Jacobi, 576
heat, linear, 585, 1267
heat, linear, nonhomogeneous, 1268
heat, nonlinear, 1318
heat, stationary anisotropic, 1323
heat, stationary, with nonlinear source, 1320
heat, with axial symmetry, 1270
heat, with central symmetry, 1272
Helmholtz, 1289
Helmholtz, three-dimensional, 600
Helmholtz, two-dimensional, 599
hyperbolic, 585, 587, 590
hyperbolic, first canonical form, 587
hyperbolic, normal, 590
hyperbolic, second canonical form, 587
Jacobi, 998, 1004, 1007
Khokhlov–Zabolotskaya, 658
Khokhlov–Zabolotskaya, stationary, 1322
Klein–Gordon, 618, 625, 1280
Klein–Gordon, linear, 625
Klein–Gordon, nonlinear, 702, 1315
Klein–Gordon, two-dimensional, 618
Korteweg–de Vries, 752, 756, 759, 1327
Korteweg–de Vries, cylindrical, 1328
Laplace, three-dimensional, 643
Laplace, two-dimensional, 585, 633, 1284
linear, constant-coefficient, 588
Liouville, 664
model, of gas dynamics, 1254
Monge–Ampère, 1326
Monge–Ampère, homogeneous, 668, 1326
Monge–Ampère, nonhomogeneous, 1326

partial differential equation (continued)
Newell–Whitehead, 733
nonlinear, first-order, 570
of diffusion boundary layer, 1276
of gas dynamics, model, 558
of minimal surfaces, 770
of steady transonic gas flow, 1324
of thermal boundary layer, 1276
of transonic gas flow, 1324
of vibration of string, 1278
parabolic, 585, 586, 590
parabolic, in narrow sense, 590
Poisson, 1287
Poisson, three-dimensional, 599
Poisson, two-dimensional, 599
Schrödinger, linear, 1276
Schrödinger, nonlinear, 759, 1309
Schrödinger, of general form, 1311
Schrödinger, with cubic nonlinearity, 1309
Schrödinger, with power-law nonlinearity, 1310
second-order, nonlinear, 653
second-order, quasilinear, 654
second-order, semilinear, 653
sine-Gordon, 1314
sinh-Gordon, 1314
telegraph, 1284
telegraph, generalized, 626
ultrahyperbolic, 590
vibration, with axial symmetry, 1282
wave, 585, 1278
wave, nonlinear, 723, 1312–1317
wave, three-dimensional, 618
wave, two-dimensional, 618

partial differential equations
first-order, 553, 1247
first-order, linear, 553, 1247
first-order, nonlinear, 570, 1258
first-order, quasilinear, 553, 1252
fourth-order, linear, 1294–1298
fourth-order, nonlinear, 1332–1334
nonlinear, 653–769, 1301–1335
nonlinear systems, 770–798, 1337–1341,

1343–1382
second-order, linear, 585–650, 1267–1299
second-order, linear, classification, 585
second-order, nonlinear, classification, 653, 654
third-order, nonlinear, 1327–1331

partial fraction decomposition of rational
function, 276

partial increments, 264
of function, 264

partial limit of sequence, 240
partial sum of series, 337
particular solution, 599
partition diameter, 317
path integral, 329
payoff matrix, 1024

saddle point, 1025
PDE, see partial differential equation
Peano existence theorem for system of ODEs,

543
Pearson first skewness coefficient, 1045
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Pearson test, 1100
penalty function, 1027
penalty function method, 1027
pencil, 92

center, 92
of planes, 131
of straight lines, 92

percentage, 7
simple, 7

percentile, 1045
periodic function, 236
permutation, 178

even, 178
odd, 178

permutation groups, 226
permutations, 1033, 1034

with repetitions, 1034
perpendicular bisector, 46
perturbation methods, 499
Peterson–Codazzi formulas, 396, 397
Pexider equation, 925, 1438
Pfaffian equation, 772

integrating factor, 773
phase plane, 546
phase variable, 546, 1010
physical meaning of line integral of second

kind, 331
Picard method, 469
pivot column, 1016
pivot entry, 1016
pivot row, 1016
plane, 124

complex, 401
condition for planes to be parallel, 138
condition for planes to be perpendicular, 138
condition for planes to coincide, 138
coordinate axes, 78
coordinate system, 78
curve, 84
deviation of point from plane, 141
general (complete) equation, 124
incomplete equation, 124
intercept equation, 125
normal, 380, 382
normalized equation, 126
osculating, 381
parametric equation, 125
phase, 546
principal, 151
rectifying, 382
tangent, 268, 381, 389
tangent to surface, 152

plane curves, 367
plane geometry, 43
plane in space, 124
plane polygon, 51
plane triangle, 43
planes

in space, 59
parallel, 59

player, 1024

Pochhammer symbol, 938
Poincaré type series, asymptotic, 363
point

applicate, 115
asymptotic, 373
at infinity, 402
at infinity, neighborhood, 402
boundary of domain, 401
characteristic, 377
circular, 393
conjugate, 998, 1000, 1004, 1007
coordinates, 79, 115
derivative of function, 402
deviation from line, 93
deviation from plane, 141
double, 371
elliptic, 394
Feuerbach, 49
fixed, 908
Gergonne, 47
hyperbolic, 394, 536
incenter, 46
isolated, 371
movable critical, 495
Nagel, 47
of affine space, 189
of extremum, 257, 269
of intersection of straight lines, 95
of local minimum, 269
of osculation, 372
of rectification, 382
of self-intersection, 372
of tangency, 56
on complex plane, 402
on plane, 89
parabolic, 394
ramification, 414
regular, 367, 379, 387
saddle, 394
saddle, of payoff matrix, 1025
singular, 371, 391
singular of generalized solution, 580
spiral stable, 537
spiral unstable, 537
stationary, 220, 269, 545
termination, 373
transcendental branch, 415
transition, 477
triple, 371
umbilical, 393

point estimators, 1088
point transformation, 455

for ODEs, 455
for PDEs, 655

point-slope equation of straight line, 89
points

collocation, 848
nonseparated by straight line, 97
separated by straight line, 97

pointwise convergence
of functional series, 348
of functions, 249
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Poisson distribution, 1050
Poisson equation, 1287
Poisson formula

for Bessel function, 949
in probability theory, 1038

Poisson integral, 428, 1287
for half-plane, 429

Poisson process, 1076
Poisson theorem, 428, 1070
polar, 112
polar angle, 80
polar axis, 80
polar bilinear form, 216
polar coordinate system, 80
polar coordinates, 80, 1198
polar decomposition

of linear operator, 208
of matrices, 173

polar kernel, 801, 825
polar parameter of plane, 127
polar radius, 80
pole, 80, 413

order, 413
simple, 413

polygon, 51
center, 55
circumscribed about circle, 51
convex, 51
distribution, 1085
edge, 51
external angle, 51
frequency, 1085
inscribed in circle, 51
interior angle, 51
plane, 51
relative frequency, 1085
side, 51
simple, 51
vertex, 51

polyhedra, 61
polyhedral angle, 60

edge, 61
face, 60
vertex, 60

polyhedral angles
congruent, 61
symmetric, 61

polyhedron, 61
convex, 61
edge, 61
face, 61
vertex, 61

polynomial, 155
annihilating, 186
Bernoulli, 891, 988
characteristic, of linear operator, 211
characteristic, of matrix, 185
Chebyshev of first kind, 983
Chebyshev of second kind, 984
derivative, 157
Euler, 989

polynomial (continued)
expansion in powers of linear binomial, 156
Gegenbauer, 987
Hermite, xxxi, 957, 958, 985
interpolation, 186
Jacobi, 986
Laguerre, 982, 957
Laguerre generalized, 983
Legendre, xxxi, 962, 1217
minimal, 186
number of real roots, 165
remainder theorem, 156
ultraspherical, 987
with matrix argument, 172
with matrix coefficients, 172

polynomials
difference, 155
division, 155
equal, 155
multiplication, 155
orthogonal, 982
nonorthogonal, 988
product, 155
sum, 155

Pontryagin function, 1011
Pontryagin maximum principle, 1011
population, 1081

expectation, 1087
variance, 1087

position vector of point, 115
positive definite kernel, 837
positive definite quadratic form, 216
positive definite quadratic functional, 993
positive Hermitian operator, 207
positive index of inertia of quadratic form, 218
positive integer power

of complex number, 399
of matrix, 172

positive normal direction, 389
positive operator, 207
positive sense, 367

of boundary, 402
of normal, 369
of tangent, 369

positive sequence, 238
positive symmetric operator, 207
Post–Widder formula, 441
potential, 331, 760, 1021

of gravitational field, 328
of vector field, 331

potential-type integrals, 291
power, test, 1096
power function, 19

graphs, 19
properties, 19

power Laplace integral, 294
multiple, 328

power series, 350, 1120
Abel theorem, 350
addition, 354
convergence radius, 350
division, 354
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power series (continued)
interval of convergence, 351
Maclaurin, 350
multiplication, 354
properties, 350
solution of nonlinear functional equations, 922
subtraction, 354
summation formulas, 357
Taylor, 350

powers, 8
of hyperbolic functions, 37
of linear operators, 205
of matrices, 172
of trigonometric functions, 28

price, upper of game, 1025
primal linear programming problem, 1017
prime number, 3
primitive function, 273
principal axis, 109, 151, 152

of hyperbola, 101
of second-order curve, 109

principal diameter
of ellipse, 100
of hyperbola, 104
of parabola, 106

principal directions of second-order curve, 109
principal normal, 381
principal normal sections, 393
principal part of Laurent series, 412
principal plane, 151
principal value, Cauchy, of singular integral, 311
principle

boundary correspondence, 420
Duhamel first, 646
Duhamel second, 648
maximin, 1025
maximum modulus, 403
minimax, 1025
of linear superposition, for PDEs, 594
Rayleigh–Ritz, 484, 513
Riemann localization, 358
Schwarz analytic continuation, 426
superposition, for homogeneous system of

linear ODEs, 528, 539
superposition, for linear functional equations,

880, 883
superposition, for linear PDEs, 594
superposition, for nonhomogeneous linear

ODE, 519
superposition, for nonhomogeneous system of

linear ODEs, 541
prism, 61

base face, 61
joining face, 61
right, 62
truncated, 62

Privalov boundary value problem, 432
probabilistic models, 1031
probability, 1032–1034

classical definition, 1033
conditional, 1035

probability (continued)
convergence, 1068
geometric, 1034
multiplication theorem, 1035
of event, 1032
transition, 1075

probability density function, 1040
probability element, 1040, 1059, 1065
probability function

joint, 1059, 1064
marginal, 1059

probability integral, 939, 1265
probability multiplication theorem, 1035
probability space, 1032

discrete, 1033
probability theory, 1031
probability-generating function of random

variable, 1047
problem

Banach, 1038
Bolza, 1001
boundary value, first, 480, 593, 627
boundary value, for difference equations, 879
boundary value, for elliptic equations, 631
boundary value, for hyperbolic equations, 623
boundary value, for ODEs, 480
boundary value, for parabolic equations, 645
boundary value, Hilbert–Privalov, 432
boundary value, mixed, 480, 593, 627
boundary value, nonhomogeneous, 620, 624
boundary value, second, 480, 593, 627
boundary value, third, 480, 593, 627
Cauchy, for difference equations, 889
Cauchy, for first-order ODEs, 454
Cauchy, for first-order PDEs, 556, 576
Cauchy, for Hamilton–Jacobi equation, 577
Cauchy, for hyperbolic equations, 617
Cauchy, for parabolic equations, 615
Cauchy, for PDEs, 591, 592, 785, 1308
Cauchy, for second-order ODEs, 488
Cauchy, for system of PDEs, 785
Cauchy, generalized, for PDEs, 627
Dido, 1003
diet, 1012
direct scattering, 760
Dirichlet, 427
Dirichlet, for elliptic equations, 593, 1330
Dirichlet, generalized, 428
dual linear programming, 1017
eigenvalue, 604
first boundary value, 593
general mathematical programming, 1012
Goursat, 592, 629
initial value, 580, 785
inverse scattering, 760
isoperimetric, 1002
Lagrange, 1008
linear programming, 1012
Neumann, 429
Neumann, for elliptic equations, 593, 1328
nonlinear programming, 1027
of propagation of signal, 566
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problem (continued)
primal linear programming, 1017
Privalov boundary value, 432
product mix, 1012
programming linear, 1012
Riemann, 785
simplest, of calculus of variations, 993
Sturm–Liouville, 482, 621, 622, 625, 626, 633
terminal value, 580, 583, 584
third boundary value, 593
transportation, 1019
transportation balanced, 1020
two-body, 1258
with higher derivatives, 1006

problems
for elliptic equations, 637, 643, 644
for hyperbolic equations, 607, 636
for parabolic equations, 605, 634
of mathematical physics, 590
of mathematical statistics, 1081

process
Bernoulli, 1037
birth-death, 1077
iteration, 858
Markov, 1075
optimal, in strong sense, 1010
point simplest, 1076
Poisson, 1076
pure birth, 1077
pure death, 1077
stationary, 1075
stochastic, 1071, 1073, 1074
stochastic multidimensional, 1072
stochastic one-dimensional, 1072
stochastic stationary in narrow sense, 1074
stochastic stationary in wide sense, 1074
stochastic vector, 1072
stochastic with continuous time, 1072
stochastic with discrete time, 1072
Wiener, 1086

product
inner, 192, 314, 840
Kronecker of matrices, 175
mix problem, 1012
of complex numbers, 399
of linear operators, 203
of linear transformations, 227
of matrices, 157
of matrix by scalar, 157
of polynomials, 155
of real numbers, 6
of scalar and linear operator, 203
of scalar and vector, 187
of subsets of group, 227
of vector by number, 113
scalar, 192
scalar of vectors, 120
scalar triple of vectors, 123
triple cross of vectors, 122

products
of hyperbolic functions, 37
of trigonometric functions, 28

programming
convex, 1027
dynamic, 1027
geometric, 1027
quadratic, 1027

progression, 1113, 1118
arithmetic, 11
geometric, 11

projection, 212
of vector onto axis, 114
on segment, 81
orthogonal, 197

projection methods, 508
projections, theorem, 44
prolate spheroid, 144
prolongation

of group generator, 732
of operator, second, 720

proof by contradiction, 15
proof by counterexample, 17
proper orthogonal transformations, 229
proper subspace, 190
properties of limits, 240
property

Markov, 1075
minimax, 210
optical of ellipse, 100
optical of hyperbola, 103
optical of parabola, 106
stability, 1055

proportions, 7
psi function, 944
Ptolemy theorem, 52
Puiseux power series, 415
pure birth process, 1077
pure imaginary complex number, 399
pyramid, 63

altitude, 63
apex, 63
apothem, 64
base, 63
frustum, 64
lateral face, 63
triangular, 63

Pythagorean theorem, 50, 193

Q
quadrant, 79
quadratic equation, 158
quadratic form, 216, 840

alternating, 216
canonical representation, 217
characteristic, 150
characteristic equation, 150
degenerate, 216
extremal properties, 220
in Euclidean space, 219
in finite-dimensional linear space, 216
index of inertia, 218
negative definite, 216
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quadratic form (continued)
negative index of inertia, 218
nondegenerate, 216
nonnegative, 216
nonpositive, 216
normal representation, 218
positive definite, 216
positive index of inertia, 218
rank, 216
second of surface, 392
signature, 218

quadratic functional, 992
positive definite, 993
strongly positive, 993

quadratic mean, 13
of functions, 297

quadratic nonlinearity, 865
quadratic programming, 1027
quadrature formula, 808, 860
quadrature method, for integral equations, 852,

861, 870
quadrature nodes, 808
quadric

canonical equations, 143
canonical form, 143, 148
classification, 148
general equation, 148
general theory, 148
invariant, 148
semi-invariant, 148

quadric surfaces, 143
quadrilaterals, 52
quartile, 1045
quasidiagonal canonical form of matrix, 182
quasilinear equations in conservative form, 567
quasilinear partial differential equations, 553
quotient, 155

of complex numbers, 399
quotient group, 227

R
Raabe convergence criterion for series, 339
radian, 24
radiation conditions, 1290, 1291
radical, 8
radius

focal left, 99, 102
of convergence, 351
of convergence, of power series, 411
of curvature, 376, 384
of torsion, 385
polar, 80

ramification point, 414
random event, 1031, 1032
random sampling

with replacement, 1034
without replacement, 1033

random sequence, 1072
random variable, 1039, 1057

bivariate, 1060
central moment, 1065

random variable (continued)
continuous, 1040, 1042, 1064
continuous bivariate, 1059
discrete, 1039, 1042, 1064
discrete bivariate, 1058
expected value, 1042
initial moment, 1060, 1065
symmetric, 1041
symmetric about expected value, 1041
variance, 1044

random variables
correlated, 1061
independent, 1060, 1067
joint distribution function, 1057
uncorrelated, 1061

random vector, 1057
range

of function, 236
of linear operator, 205
of mapping, 226
sample, 1082

rank
of bilinear form, 215
of linear operator, 206
of matrix, 178
of quadratic form, 216

Rankine–Hugoniot jump conditions, 561, 568,
790, 791

rarefaction wave, 559, 785, 1253
rate

false negative, 1096
false positive, 1095

ratio
common, 11
contraction, 403
dilatation, 403
likelihood, 1097
Romanovskii, 1101
Student, 1090

rational function, 276
rational numbers, 4, 5
rational polynomial function, 276
Rayleigh–Ritz principle, 484, 513
real axis, 235, 401

of hyperbola, 101
real Euclidean space, 192
real linear space, 188
real matrix, 171
real number, 3, 4

multiplicative inverse, 6
reciprocal, 6

real part, 399
real semiaxes

of hyperbola, 102
of one-sheeted hyperboloid, 144
of two-sheeted hyperboloid, 144

real-valued function of real variable, 236
reciprocal (algebraic) equation, 160, 161
reciprocal functional equation, 919
reciprocal of real number, 6
rectangle rule, 315, 808

for computation of integrals, 315



INDEX 1497

rectangular Cartesian coordinate system, 78, 114
rectangular Cartesian coordinates on plane, 78
rectangular matrix, minor, 177
rectangular parallelepiped, 62
rectangular spherical triangle, 72
rectification, point, 382
rectifying plane, 382
reduced cost, 1015
reducible operator, 205
reducible representation, 230
reduction

of central second-order curves to canonical
form, 110

of noncentral second-order curves to canonical
form, 110

of quadratic form to sum of squares, 219
of square matrix to diagonal form, 184
of square matrix to triangular form, 184

reduction formulas, 1145
for trigonometric functions, 27

reflectance, 760
reflection coefficient, 760
reflection factor, 760
regime

blow-up, 1303, 1304
critical, 1095
feasible, 1012

regression, 1063, 1066
mean-square, 1063, 1066

regression analysis, 1105
regression coefficient, 1063
regression function, 1063, 1066
regula falsi method, 262
regular arc, 379
regular extremal, 995
regular part of Laurent series, 412
regular point, 367, 379, 387

of extremal, 995
of generalized solution, 580
of plane curve, 367
of space curve, 379

regular polygon, 55
center, 55

regular polyhedron, 65
regular prism, 62
regular pyramid, 64
regular triangle, 43, 51
regular value, 829, 834
regularization methods for integral equations,

827
relation

Parseval for Fourier cosine transform, 445
Parseval for Fourier sine transform, 446
Parseval for Hankel transform, 447

relative extrema, 991
relative frequencies, 1083
relative frequency histogram, 1086
relative frequency of event, 1083
relative frequency polygon, 1085
remainder

in Taylor formula in form of Cauchy, 257

remainder (continued)
in Taylor formula in form of Lagrange, 257
in Taylor formula in form of Peano, 257
in Taylor formula in form of Schlömilch and

Roche, 257
in Taylor formula in integral form, 257
of functional series, 349
of series, 337

removable singularity, 413
renewal equation, 1395
representation

dimension, 230
invariant, 230
irreducible, 231
of group, completely reducible, 231
of quadratic form canonical, 217
of vector in terms of basis, 189
reducible, 230
triangular, 201

representation basis, 230
representation space, 230
residual, 847, 1066
residual standard deviation, 1063
residual variance, 1066, 1108
residue, 415, 435

logarithmic, 416
resolvent, 810, 823, 829, 833

of symmetric kernel, 839
resonance, Painlevé test, 749
rhombus, 53
Riccati difference equation, 875, 918, 1428,

1429
Riccati differential equation, 460

general, 461, 462, 1209, 1210
polynomial solutions, 460
reduction to canonical form, 460
reduction to second-order linear equation, 461
special, 1208

Riemann function, 628, 629, 783
Riemann integral, 286
Riemann invariant, 783, 786, 787
Riemann localization principle, 358
Riemann problem, 785

for system of PDEs, 785
Riemann property, 294
Riemann sum, 286
Riemann theorem, 419
Riemann wave, 782
Riemann–Schwarz theorem, 426
Riemannian space, 395
right arm of hyperbola, 101
right circular cone, 68, 145
right circular cylinder, 66
right coset, 227
right cylinder, 66
right directrix

of ellipse, 99
of hyperbola, 102

right ellipsoid, 145
right focal radius, 99, 102
right focus of ellipse, 99
right focus of hyperbola, 102
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right half-plane, 79
right inverse matrix, 171
right prism, 62
right rectangular Cartesian coordinate system, 79
right triangle, 43, 50

leg, 50
right-angled triangles, 43, 50
right-hand limit, 240
right-hand side of integral equation, 810
right-handed trihedral, 121
Rolle theorem, 254
Romanovskii ratio, 1101
Romanovskii statistic, 1101
Romanovskii test, 1101
root

of complex number, 399
of equation, 162
of multiplicity m, 162
of operator, 207

root mean square, 13
root-finding algorithms for continuous functions,

260
root-mean-square deviation, 1045
rotation of axes, 79
rotation transformation, 656
Rouché theorem, 413
round cylinder, 66

segment, 67
Routh–Hurwitz criterion, 167
row, pivot, 1016
row expansion of determinant, 176
row vectors, 167

linear combination, 171
linearly dependent, 171
linearly independent, 171

rows, basic, 165
rule

Cramer, 199
Lagrange multiplier, 1002
of closing chain of vectors, 113
parallelogram, 113
rectangle, 315, 808
sigma, 1054
Simpson, 315, 808
trapezoidal, 315, 808
triangle, 113, 176
Whitham, “equal areas”, 562

ruled surface, 146
rules, Neper, 75
rulings, 146

of ruled surfaces, 146
Runge–Kutta method, 472, 512

S
saddle, 536
saddle point, 394

of payoff matrix, 1025
sample, 1082

asymmetry coefficient, 1088
central moment, 1087
correlation, 1104

sample (continued)
distribution function, 1084
excess coefficient, 1088
function, 1072
mean, 1087
mean square deviation, 1088
moment, 1087
range, 1082
size, 1082
space, 1031
variance, 1088
variance adjusted, 1088

sampling
random with replacement, 1034
random without replacement, 1033

Sapogov convergence criterion for series, 340
Sarrus scheme, 176
scalar, 187
scalar product, 192

of vectors, 120
scalar square, 120
scalar triple product of vectors, 123
scale segment, 77
scalene ellipsoid, 144
scalene triangle, 43
scaling transformation, 656, 676, 923
scattering data, 761
scheme

Bernoulli, 1037
Cole–Kevorkian, 504
Horner, 156
Sarrus, 176
Van der Pol–Krylov–Bogolyubov, 503

schlicht mapping, 402
Schlömilch equation, 1400
Schröder–Koenigs functional equation, 911
Schrödinger equation

linear, 1276
nonlinear, of general form, 1311
with cubic nonlinearity, 1309
with power-law nonlinearity, 1310

Schwarz analytic continuation principle, 426
Schwarz integral, 428

for half-plane, 429
Schwarz–Christoffel theorem, 427
secant, xxxi, 24
second boundary value problem, 480, 593

for elliptic equations, 633
for hyperbolic equations, 627
for PDEs, 593

second convergence criterion, 338
second differential, 266
second duality theorem, 1018
second group of derivation formulas, 396
second mean value theorem, 295
second noteworthy limit, 241
second Painlevé transcendent, 496
second partial derivatives, 266
second prolongation of operator, 720
second quadratic form of surface, 392
second variation of functional, 992, 993
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second-order constant coefficient linear ODE, 473,
1213

second-order curve, 107
canonical form, 107
center, 109
central, 109
characteristic equation, 108
diameter, 108
elliptic type, 108
general equation, 107
hyperbolic type, 108
invariant, 107
on plane, 97
normal, 111
semi-invariant, 108
tangent, 111
vertex, 109

second-order difference equations
linear homogeneous, 877, 1421
linear nonhomogeneous, 879, 880, 1421, 1422
nonlinear, 1436

second-order differential constraint, 744
second-order evolution equation, 739
second-order hypersurface, 220

center, 222
centeral, 222
equation, 223
general equation, 220, 222
noncenteral, 224

second-order ordinary differential equations
linear, 472–488, 1212–1222
linear, general solution, 472
nonlinear, 488–514, 1223–1228

second-order partial differential equations
linear, 585–650, 1267–1298
nonlinear, 653, 1301–1334
quasilinear, 654
semilinear, 653

second-order variation of functional, 993
secondary diagonal, 168
section, normal, 392
sections, principal normal, 393
sector, 58

circular, 58
spherical, 69

secular terms, 502
segment, 58, 235

directed, 77
direction cosine, 116
length, 77
of round cylinder, 67
on axis, 77
scale, 77
spherical, 69
value, 77

self-adjoint matrix, 168
self-adjoint operator, 206
self-intersection, point, 372
self-similar solution, 669, 1442

continuous, 781
exponential, 675

self-similar solution (continued)
generalized, 677
limiting, 675

semi-invariant
for probability distribution, 1046
of quadric, 148
of second-order curve, 108

semiaxis, 826, 842
imaginary, of hyperbola, 102
imaginary, of one-sheeted hyperboloid, 144
imaginary, of two-sheeted hyperboloid, 144
of ellipsoid, 143
of hypersurface, 223

semilinear partial differential equations, 653
semimajor axis of ellipse, 98
semiminor axis of ellipse, 98
separable equation, 1207
separable solution, 596

additive, 596
multiplicative, 596

separated by straight line points, 97
separated equation, 456
separation constant, 678
separation of variables, 602

complex, 679
functional, 697
generalized, 681
incomplete, 597, 616, 640
simple, 678

sequence
arithmetic, 11
bounded, 237
convergent, 237, 238
decreasing, 238
generic term, 237
geometric, 11
increasing, 238
infinitely large, 239
limit, 237
lower limit, 240
monotone, 238
numerical, 237
random, 1072
upper limit, 240

sequential analysis, 1097
series, 337

Abel convergence criteria, 341
Abel theorem, 343
Abel transformation, 344
absolute convergence, 341
arbitrary, 341
arithmetic, 11
asymptotic, 363
Cauchy theorem, 343
conditional convergence, 341
convergence domain, 348
convergent, 337
Dirichlet convergence criteria, 341
divergent, 337
Fourier, 357, 358
fractional power, 415
functional, 348
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series (continued)
generic term, 337
geometric, 11
harmonic, 339
hypergeometric, 960, 1218
interval, 1083
interval of convergence, 351
Kummer, 956, 1215
Kummer transformation, 344
Laurent, 410, 412
Leibnitz convergence criterion, 341
Maclaurin, 353
majorant, 349
Mertens theorem, 343
Neumann, 823, 833
numerical, 337
of order statistics, 1082
of Poincaré type, asymptotic, 363
power, 350
Puiseux power, 415
remainder, 337
statistical, 1083
sum, 337
summation methods, 344
Taylor, 352, 410, 411
uniformly convergent, 349

series solutions
for hyperbolic equations, 607
for ODEs, 470, 475, 492
for parabolic equations, 605

series with positive terms
convergence criteria, 338
divergence criteria, 338

Serret–Frénet formulas, 386
sesquilinear form

in unitary space, 213
matrix, 214

set
bounded, 263
countable, 3
diameter, 317
modulus, 907
submodulus, 907
unbounded, 263

shock wave, 790–793, 1255
shooting method, 512
shortest distance, 70
side of polygon, 51
sigma rule, 1054
sign function, xxxi
signature

of matrix, 182
of quadratic form, 218

similar matrices, 181
similarity method, 669
similarity transformation, 181
simple hypothesis, 1094
simple percentage, 7
simple pole, 413
simple polygon, 51

simple Riemann wave, 782, 783
simple separation of variables, 678
simple zero, 413
simplest point process, 1076
simplest problem of calculus of variations, 993
simplex method, 1014
simply connected domain, 409
Simpson line, 47
Simpson rule, 315, 808

for computation of integrals, 315
sine, 24, 25
sine integral, 941
sine-Gordon equation, 1314
single-step methods of second-order approxima-

tion, 471
single-valued function, 236, 402
singular integral, 310, 311, 570, 571

in sense of Cauchy principal value, 430
principal value, 311

singular point, 371, 391
of generalized solution, 580
of plane curve, 371
of solutions, 494
of surface, 391

singular solutions, 455
singularity

essential, 413
isolated, 413
removable, 413

sinh-Gordon equation, 756, 1314
sink, 535, 538

spiral, 537
sinusoid, sine curve, 25
sixth Painlevé transcendents, 499
size

sample, 1082
test, 1095

skew lines, 59
skew self-distributivity equation, 1449
skew-Hermitian matrix, 168
skew-Hermitian operator, 206
skew-symmetric bilinear form, 214
skew-symmetric integral equation, 840
skew-symmetric matrix, 168
skew-symmetric multilinear form, 215
skew-symmetric operator, 207
skewness, 1045
slope of straight line, 89
slope of tangent, 368
slope-intercept equation of straight line, 89
small circle, of a sphere, 71
small discriminant, 108
smallest value of function, 258
Smirnov test, 1099
Sokhotskii theorem, 431
solid angle, 61
solid geometry, 59
soliton, 1325
soliton solution, 765

of Korteweg–de Vries equation, 764
soliton theory, 755
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solution
additive separable, 571, 596, 597, 678
asymptotic for ODEs, 477
asymptotically stable, 546
Boussinesq, 1294
Cardano, 158
Cauchy problem, fundamental, 616, 617
classical, 594
D’Alembert for wave equation, 600
Descartes–Euler, 160
discontinuous for quasilinear equations, 558
equilibrium, 874, 884
exponential self-similar, 675
feasible, 1012
Ferrari, 161
formal, 594
functional separable, 697
functional separable, special, 697
fundamental, 599, 615
fundamental for Cauchy problem, 616, 617
fundamental for elliptic equations, 642
fundamental for system of ODEs, 539
general for difference equation, 874, 884
general for first-order PDEs, 553
general for ODEs, 453, 472, 488
generalized, 563
generalized, for first-order PDEs, 563, 568
generalized, Hopf formula, 565
generalized self-similar, 677
generalized separable, 681, 682
generalized stable, 569
generalized traveling-wave, 698
generalized viscosity, 579, 580
in form of infinite series, 597
invariant, 669, 674, 716, 724
Lévy, 914
limiting self-similar, 675
multiplicative separable, 571, 596, 678
N -soliton, 764, 765
of eigenvalue problems, 604
of system of linear algebraic equations, 198
one-parameter, 724
one-soliton, 765
optimal, 1012
particular, 453, 472, 518, 594, 599, 604
self-similar, 669, 1440
self-similar, continuous, 781
self-similar, exponential, 675
self-similar, generalized, 677
self-similar, limiting, 675
separable, 596
separable, generalized, 681
separable, multiplicative, 571
singular for first-order ODEs, 455
special functional separable, 697
stable generalized, 569
traveling-wave, 554, 667, 775, 790, 796
trivial, 197
unstable, 546
viscosity, 564
weak, 563

solutions
fundamental system, 477, 478, 522, 523
linearly independent of difference equation,

882
of homogeneous system, fundamental

system, 198
Sommerfeld conditions, 1288, 1289
source, 536, 538

spiral, 537
space

affine, 189, 190
Banach, 196
complete, 196
continuous curve, 123
continuous surface, 123
coordinate axes, 114
coordinate system, 114
curve, 120
Euclidean, 192, 193
Euclidean, complex, 195
Euclidean, real, 192
Hilbert, 196
linear, 187–189
linear, complex, 188
linear, infinite-dimensional, 189
linear, real, 188
metric, 196
normed, 195
of elementary events, 1031
probability, 1032
probability, discrete, 1033
representation, 230
sample, 1031
surface, 119, 120
unitary, 195
vector, 187

space curves, 379
spaces

Euclidean isomorphic, 194
linear isomorphic, 189
unitary isomorphic, 196

span, linear, 190
special Cauchy criterion, 341
special form, Laplace integral, 291
special functional separable solution, 697
special functions, 939–990
special linear group, 228
special orthogonal group, 229
special Riccati equation, 1208
special right-hand side, 815
specific Euclidean space, 192
specificity test, 1095
spectra of square matrices, 183
spectral decomposition

of Hermitian operator, 212
of normal operator, 212

spectral density, 1075
spectral function of stationary process, 1075
spectrum of matrix, 183
sphere, 68, 224

diameter, 69
unit, 220
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spherical biangles, 71
spherical cap, 69
spherical coordinates, xxxi, 118, 119, 1199
spherical excess, 72
spherical geometry, 70
spherical sector, 69
spherical segment, 69

base, 69
spherical triangle, 71, 72

rectangular, 72
vertices, 71

spherical zone, 69
spheroid, 144

oblate, 144
prolate, 144

spiral
hyperbolic, 86, 368
logarithmic, 86
of Archimedes, 85

spiral point
stable, 537
unstable, 537

spiral sink, 537
spiral source, 537
splitting in derivatives, 719
splitting method, 704
square, scalar, 120
square integrable function, 314
square matrix, 168

minor, 176
trace, 171

square system of linear algebraic equations, 197
stability

asymptotic, 546
Lyapunov, 546

stability condition, 568
for generalized solution, 568

stability property, 1055
stability theory, 546
stable focus, 537
stable generalized solutions, 569
stable node, 535, 538
stable spiral point, 537
standard deviation, 1045
standard form of linear programming problem,

1013
stationary equation

heat (diffusion), anisotropic, 1323
heat (diffusion), with nonlinear source, 1320
Khokhlov–Zabolotskaya, 1322

stationary point, 220, 269, 545
stationary process, spectral function, 1075
stationary stochastic process, 1074

in narrow sense, 1074
in wide sense, 1074

stationary value of function, 220
statistic, 1084

Cochran, 1104
complete, 1090
Romanovskii, 1101
sufficient, 1090

statistical estimation, 1088
statistical estimator, 1088, 1090
statistical hypothesis, 1094

simple, 1096
statistical series, 1082, 1083
statistical test, 1095
statistical transformations, 1082
statistically independent events, 1036
steady transonic gas flow, 1324
Steklov inequality, 297
step method, 884, 885, 889, 893, 919
Stewart theorem, 48
Stieltjes integral, 312
Stieltjes integral sum, 312
Stirling formula, 944
stochastic process

differentiation, 1073
in narrow sense, 1074
in wide sense, 1074
multidimensional, 1072
stationary, 1074
vector, 1072
with continuous time, 1072
with discrete time, 1072

stochastic processes, 1071–1073
complex, 1073

Stokes theorem, 334
straight line

direction coefficients, 131
general equation, 90
in polar coordinates, 92
in projections in space, 133
in space, 59
in space, general equation, 132
intercept-intercept equation, 91
normalized equation, 91
on plane, 89
slope, 89
slope-intercept equation, 89

strategy, 1024
mixed, 1025
optimal, 1024

stream function, 1297
strengthened Jacobi condition, 1000, 1004, 1007
strengthened Legendre condition, 999, 1004,

1007
stress function, Airy, 1297
strictly concave function, 245
strictly convex function, 245
strictly hyperbolic system, 781, 790
strictly lower triangular matrix, 168
strictly upper triangular matrix, 168
strong law of large numbers, 1070
strong local minimum, 994
strong maximum, 1006

of functional, 991
strong minimum, 1006

of functional, 991
strong neighborhood, 991
Struve function, 448, 449
Student t-distribution, 1056
Student distribution, 1056
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Student ratio, 1090
Sturges formula, 1083
Sturm comparison theorem on zeros of solutions,

487
Sturm method, 166
Sturm–Liouville problem, 482, 621, 622, 625,

626, 633
subdiagonal matrix, 168
subgroup, 227

compact, 229
continuous, 228
discrete, 228
finite, 228
normal, 227

submodulus set, 907
subsequence, 238
subspace

improper, 190
invariant, 205
invariant of representation, 230
linear, 190
null, 190
of linear spaces, 190
orthogonal complement, 194
proper, 190

subspaces
direct sum, 189
intersection, 190
sum, 189

substitution
canonical, 465
Euler, 280
trigonometric, 280
trigonometric versatile, 282

subtraction
of asymptotic series, 364
of hyperbolic functions, 37
of inverse hyperbolic functions, 41
of inverse trigonometric functions, 33
of matrices, 169
of trigonometric functions, 28

successive approximation method
for integral equations, 822, 833, 858, 867
for ODEs, 469, 511

sufficient conditions of extremum, 269
sufficient estimators, 1090
sufficient statistic, 1090
sum

Cauchy–Riemann, 286
integral, 286, 317
of complex numbers, 399
of elements of linear space, 187
of linear operators, 204
of matrices, 168
of polynomials, 155
of series, 337
of subspaces, 190
of vectors, 113
partial of series, 337
Stieltjes integral, 312

summation, formulas for trigonometric series,
362

summation, index, 12
sums

functional, finite, 1116
involving hyperbolic functions, 1116
involving trigonometric functions, 1117
numerical, finite, 1113–1116

superdiagonal matrix, 168
superposition principle, 519, 880, 883

for homogeneous system, 528, 539
for nonhomogeneous system, 541

support line, 1014
supremum, xxxi
sure event, 1031
surface

center, 143, 151
central, 143
conical, 67
continuous in space, 123
cylindrical, 65
first quadratic form, 390
in Cartesian coordinate system, 119
in space, 119, 120, 123
intrinsic geometry, 391
minimal, 394, 770
normal, 153
of constant curvature, 394
oriented, 333
parametrized, 387
ruled, 146
second quadratic form, 392
tangent line, 388

Sylvester criterion, 219
Sylvester inequality, 178
Sylvester theorem, 187
symbol, Levi-Civita, 179
symbols

Christoffel, of first kind, 396
Christoffel, of second kind, 396
of order O and o, 243

symmetric bilinear form, 214
symmetric integral equation, 835
symmetric kernel, 825, 829
symmetric linear programming problem, 1013
symmetric matrix, 168
symmetric multilinear form, 215
symmetric operator, 207

nonnegative, 207
nonpositive, 207

symmetric polyhedral angles, 61
symmetric random variable, 1041
symmetries

differential equations, 716
nonclassical, 733
nonlinear second-order equations, 719

symmetry, 422
symmetry principle, 426
symmetry reductions

based on generalized separation of variables,
712

classical method, 732
direct method, 708
nonclassical method, 732, 747
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system
algebraic equations, linear, 197
characteristic, 553
Clairaut, 1238
Ermakov generalized, 1240
first-order linear homogeneous ODEs, 528, 529
first-order ordinary differential equations, 1227
hyperbolic, 781, 790
incomplete of eigenfunctions, 836
characteristic values, 836
conservation laws, 780
eigenfunctions, 836
eigenfunctions, complete, 836
Fredholm integral equations of second

kind, 854
general form, autonomous, 1238
linear algebraic equations, 197
linear algebraic equations, consistent, 197
linear algebraic equations, determined, 197
linear algebraic equations, homogeneous, 197
linear algebraic equations, inconsistent, 197
linear algebraic equations, nonhomogeneous,

197
linear algebraic equations, square, 197
linear algebraic equations, underdetermined,

197
linear constant-coefficient ODE, 528
linear constant-coefficient ODE, first-order,

1239
linear equations, elementary transformation,

199
ODEs, autonomous, 545
ODEs, characteristic equation, 529
ODEs, first integral, 544
ODEs, fundamental solutions, 539
ODEs, Liouville formula, 540
ODEs, Wronskian determinant, 539
random variables, 1057
second-order ODEs, 1232
solved for derivative (for ODEs), 542
strictly hyperbolic, 781, 790
two algebraic equations in two unknowns, 198
two constant-coefficient first-order linear

ODEs, 1229
two constant-coefficient second-order linear

ODEs, 1232
systems

linear ODEs, 1229–1237
linear PDEs, 1341, 1342
nonlinear ODEs, 1239–1246
nonlinear first-order PDEs, 1336–1341
nonlinear PDEs, of general form, 1374–1382
nonlinear second-order PDEs, 1343–1373

T
t-distribution, 1056
tangency, point, 56
tangent, xxxi, 24, 26, 56, 368, 380

positive sense, 369
slope, 368

tangent line, 251
to surface, 388

tangent plane, 268, 381, 389
to quadric, 152
to surface, 152

tangent to second-order curve, 111
tangential curvature vector, 392
Taylor formula, 257, 266

remainder, 257
Taylor power series, 352, 410, 411
telegraph equation, 1282
terminal cost function, Bolza, 1001
terminal value problem, 580, 583, 584
termination point, 373
terms, secular, 502
test, 1095

Bartlett, 1103
Cauchy, 303
Cochran, 1104
Fisher, 1104
Kolmogorov, 1099
likelihood ratio, 1097
Pearson, 1100
Romanovskii, 1101
Smirnov, 1099
statistical, 1095
Wald, 1097

test power, 1096
test size, 1095
test specificity, 1095
theorem

Abel, 343, 411
Abel, on convergence of power series, 351
Abel–Ruffini, 162
absolute value, 296
absolute value, for double integral, 318
absolute value, for triple integral, 325
addition, 1055
algebra, fundamental, 162
Bernoulli, 1070
binomial, 10
Bolzano–Cauchy, 237
boundary correspondence, 419
Brauer, 877
Casoratti, 902
Cauchy, 254
Cauchy, multiply connected domain, 409
Cauchy, residue, 416
Cauchy, series, 343
Cauchy, simply connected domain, 409
Cayley–Hamilton, 186, 212
central limit, 1071
Ceva, 48
Chebyshev, 1070
Chetaev, of instability, 550
continuity, for characteristic functions, 1067
convergence of collocation method, 524
convolution, for Fourier transform, 444
convolution, for Laplace transform, 437
curl, 334
de Moivre–Laplace, integral, 1038
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theorem (continued)
de Moivre–Laplace, limit, 1048
de Moivre–Laplace, local, 1038
decomposition, 208, 1055
density multiplication, 1062
Descartes, 165
Dirichlet, 295, 358
Dirichlet, representation of function by Fourier

series, 357
divergence, 334
double integral, mean value, 318
duality, second, 1018
estimation for double integral, 318
estimation for triple integral, 325
Euler, 61, 393
Euler–Lagrange, 1009
existence and uniqueness, Cauchy problem for

ODEs, 488, 524
existence and uniqueness, for first-order

ODEs, 454
existence and uniqueness, for first-order

PDEs, 557, 577
existence and uniqueness, for systems of

ODEs, 543
Feller, 1077
Feuerbach, 49
first duality, 1018
first mean value for integration, 295
Fredholm, 834
fundamental of algebra, 162
Gakhov first, 432
Gakhov second, 433
Gauss, 335
Green, 335
half-side, 73
Hilbert–Schmidt, 837
integral of de Moivre–Laplace, 1038
Jacobi, 180
Kolmogorov, 1070
Kronecker–Capelli, 198
Lagrange, 254
Laplace, 177
Laplace transform, convolution, 437
Laplace transform, limit, 440
Legendre, 72
limit, for Bernoulli process, 1038
limit, for Laplace transform, 440
Lindeberg central limit, 1071
Liouville, 403, 414
local of de Moivre–Laplace, 1038
Lyapunov, central limit, 1071
Lyapunov, of asymptotic stability, 549
Lyapunov, of stability, 549
mean value, 295
mean value for double integral, 318
mean value for triple integral, 325
Menelaus, 49
Mertens, series, 343
Meusnier, 392
minimax, for antagonistic two-person zero-sum

games, 1026

theorem (continued)
minimax, von Neumann, 1026
Morera, 410
Morley, 49
Neyman–Fisher, 1090
of arrangement of two lines in space, 136
of boundary correspondence, 419
of projections, 44
on basic minor, 178
Ostrogradsky–Gauss, 334
Peano existence for system of ODEs, 543
Poisson, 428, 1070
polynomial remainder, 156
probability multiplication, 1035
projections, 44
Ptolemy, 52
Pythagorean, 50, 193
Riemann, 419
Riemann–Schwarz, 426
Rolle, 254
Rouché, 413
Schwarz–Christoffel, 427
second duality, 1018
second mean value for integration, 295
Sokhotskii, 431
Stewart, 48
Stokes, 334
Sturm comparison, 487
Sylvester, 186, 187
triple integral, mean value, 325
uniqueness, 413
Viète, 158, 159, 163
von Neumann minimax, 1026

theorems
Fredholm, 834
of differentiable functions, 254
of instability, 549
of stability, 549

theoretical distribution function, 1082
theory

game, 1024
stability, 546

theta functions, 978
third boundary value problem

for elliptic equations, 634
for hyperbolic equations, 627
for ODEs, 481
for PDEs, 593

third Painlevé transcendent, 497
third-order nonlinear PDEs, 1327
three-dimensional Helmholtz equation, 600
three-dimensional Laplace equation, 643, 644
three-dimensional Poisson equation, 599
three-dimensional wave equation, 618
throat ellipse, 145
Tikhonov regularization method, 828
Titov–Galaktionov method, 693
toroidal coordinates, 1205
torsion, 385

of space curves, 385
torsion radius, 385
torus, 68, 70
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total derivative, 265
total increments of function, 264
total probability formula, 1036
total variation of function, 247
trace of linear operator, 209
trace of matrix, 171
trajectory, orthogonal, 379
transcendent, Painlevé, 495
transcendental branch point, 415
transform, 435

Bochner, 449
Euler, of first kind, 449
Euler, of second kind, 450
Fourier, 443, 449, 614, 843
Fourier, asymmetric form, 444
Fourier, n-dimensional, 445
Fourier, standard form, 443
Fourier cosine, 445, 449
Fourier inverse, 443, 614
Fourier sine, 445, 446, 449
Gauss, 449
Hankel, 446, 449, 1398
Hardy, 449
Hartley, 449
Hilbert, 449, 1396, 1398
integral, 435
inverse, 435
Kontorovich–Lebedev, 448, 449
Laplace, 436, 449, 611, 804, 813, 843, 856
Laplace, inverse, 437
Laplace, two-sided, 449
Meijer (K-transform), 447, 449
Mellin, 441, 449, 826, 842, 844
Mellin, inverse, 442
Weber, 449
Weierstrass, 449

transformation
Abel, 345
Appell, 1266
auto-Bäcklund, 663
Bäcklund, 497, 663–665
Cole–Hopf, 751
congruence, 182
congruent, 182
conjunctive, 183
contact, 660
equivalence, 180
Euler, 661
Fisher, 1105
Galileo, 718
Gauss, 974
graphs of functions, 259
hodograph, 455, 657, 658
Hopf–Cole, 666, 1308
in plane, 717
invertible, 267
Kummer, 345, 957
Kummer–Liouville, 475
Landen, 974, 975
Landen, ascending, 975
Landen, descending, 974

transformation (continued)
Legendre, 469, 660, 663
linear, 656
Lorentz, 718, 1278
of equation of quadric to canonical form, 152
of matrices, orthogonal, 182
one-parameter, 716
orthogonal, 182
orthogonal, improper, 229
point, 655
proper orthogonal, 229
scaling, 656, 676, 923
similarity, 181
simplifying boundary conditions, 649
simplifying initial conditions, 649
translation, 656, 668
unitary, 183
von Mises, 667

transformation group, 228
transforming matrix, 181
transition point, 477
transition probability, 1075
translation

parallel, 220
transformation, 656, 668

transportation, unbalanced, 1020
transportation problem, 1019, 1020

closed model, 1020
mathematical model, 1019
open model, 1020

transpose, 170
of matrix, 170
of operator, 207

transposed equation, 825, 829, 834
transposition, 178
transversality condition, 577, 1001
transverse vibration of elastic rods, 1294
trapezoid, 54

altitude, 54
base, 54
isosceles, 54
leg, 54
median, 54

trapezoidal rule, 315, 808, 810, 824
computation of integrals, 315

traveling-wave equation, 1439
traveling-wave solution, 554, 667, 775, 790, 796

generalized, 697
trefoil, 373
trials, independent, 1037
triangle, 43

altitude, 46
area, 48
center of gravity, 45
circumcircle, 46
equilateral, 43, 51
excircle, 47
incircle, 46, 47
isosceles, 43, 50
median, 45
obtuse, 43
orthocenter, 46
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triangle (continued)
plane, 43
right, 43, 50
right-angled, 43
scalene, 43
spherical, 71, 72

triangle inequality, 14, 44, 73, 193, 314
triangle rule, 113, 176
triangles

Euler, 71
plane, 43

triangular decomposition, 180
triangular pyramid, 63
triangular representation, 201
triaxial ellipsoid, 144
Tricomi equation, 1403
trigonometric circle, 24
trigonometric form of complex number, 400
trigonometric functions, 24

differentiation formulas, 29
expansion in power series, 30
integration formulas, 30
of half argument, 29
of multiple arguments, 29

trigonometric series, 1122–1128
trigonometric substitutions, 280
trihedral

moving, 382
natural, 382
right-handed, 121

trihedral angle, 60
edge, 60
face, 60
vertex, 60

triple cross product of vectors, 122
triple integral, 324

change of variables, 326
estimation theorem, 325
geometric applications, 327
mean value theorem, 325
physical applications, 327
properties, 324

triple point, 371
trivial representation of group, 230
trivial solution, 197
truncated cylinder, 66
truncated expansion, 749
truncated prism, 62
tube, cylindrical, 67
two-body problem, 1260
two-dimensional Helmholtz equation, 599
two-dimensional Klein–Gordon equation, 618
two-dimensional Poisson equation, 599
two-dimensional random variable

initial moment, 1060
moment, 1060

two-dimensional random vector, distribution
function, 1057

two-dimensional wave equation, 618
two-person game, 1024
two-sheeted hyperboloid, imaginary semiaxis,

144

two-sided Laplace transform, 449
two-term asymptotic expansions, 478
types of linear PDEs, 585
types of matrices, 167

U
ultrahyperbolic equation, 590
ultraspherical polynomials, 987
umbilical point, 393
unbalanced transportation, 1020
unbiased estimator, 1089
unbounded set, 263
uncomputable integrals, 276
uncorrelated random variables, 1061
underdetermined system of linear algebraic

equations, 197
undetermined coefficients method, 17, 277
uniform convergence

of functions, 249
Weierstrass criterion, 349

uniform distribution, 1051
uniformly convergent functional series, 349
uniformly convergent series, 349
unimodal distribution, 1045
union of events, 1031
uniqueness and existence theorems for first-order

ODEs, 454
uniqueness theorem, 171, 413
unit, imaginary, 399
unit normal vector, 389
unit sphere, 220
unit vector, 113
unitarity condition, 206
unitary group, 229
unitary matrix, 171
unitary operator, 206
unitary space, 195

isomorphic, 196
normed, 195
orthogonal elements, 195

unitary transformation, 183
of matrices, 183

universal invariant, 731
unknown quantities, 199, 201
unstable focus, 536, 537
unstable solution, 546
unstable spiral point, 537
upper bound, 235
upper half-plane, 79
upper limit of sequence, 240
upper price of game, 1025
upper triangular matrix, 168
Urysohn equation with degenerate kernel, 863,

864
Urysohn integral equation, 856

V
value

Cauchy principal, for singular integral, 311
characteristic, 829, 834
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value (continued)
characteristic of operator, 209
game, 1025
of segment, 77

Van der Pol–Krylov–Bogolyubov scheme
(method), 503

Vandermonde determinant, 179
Vandermonde matrix, 179
variable

artificial, 1016
basic, 1015
incomplete separation, 597
nonbasic, 1015
phase, 546, 1010
random, 1039
symmetric random, 1041

variable density, 327
variable parameter, 87
variables

dependent, 236
independent, 236
random independent, 1060, 1067

variance, 1044
multifactor analysis, 1108
of empirical distribution, 1088
of random variable, 1044
population, 1087
residual, 1066, 1108
sample, 1088

variate value, frequency, 1083
variation

coefficient, 1045
of argument, 992
of functional, 992
second of functional, 993
total of function, 247

vector, 113, 167, 187
associated, 213
curvature, 383
Darboux, 386
geodesic curvature, 392
issuing from point A with endpoint B, 189
length, 113
normal, 124
normal curvature, 392
normal unit, 389
position, 115
tangential curvature, 392
two-dimensional random, 1057
unit, 113
zero, 113

vector field
flux, 333
potential, 331

vector opposite to vector, 113
vector space, 187
vector stochastic process, 1072
vectors

collinear, 113
coordinate, 388
coplanar, 113

vectors (continued)
cross product, 121
difference, 113, 188
in space, 113
linear combination, 188
parallel, 113
scalar product, 120
scalar triple product, 123
sum, 113
triple cross product, 122

velocity, characteristic, 790
versatile trigonometric substitution, 282
vertex, 43

of ellipse, 99
of hyperbola, 102
of parabola, 105
of polygon, 51
of polyhedral angle, 60
of polyhedron, 61
of second-order curve, 109
of trihedral angle, 60

vertical asymptote, 242
vertices of spherical triangle, 71
vibration equation with axial symmetry, 1282
vibration of string, 1276
Viète theorem, 158, 159, 163
viscosity solution, 564
Volterra integral equation
first kind, 801, 807
nonlinear, 856
second kind, 807, 810, 858
with quadratic nonlinearity, 856

von Mises transformation, 667
von Neumann minimax theorem, 1026

W
Wald test, 1097
Watson formula, 292
wave

breaking, 559
centered rarefaction, 558
“overturn”, 559
rarefaction, 559, 785, 1255
Riemann, 782, 783
shock, 561, 790–793, 1255

wave equation
linear, 585, 1278
linear, three-dimensional, 618
linear, two-dimensional, 618
nonlinear, 723, 1312–1317

weak convergence, 1069
weak law of large numbers, 1069
weak local maximum, 993, 1001, 1002, 1006
weak maximum of functional, 991
weak neighborhood, 991
weak singularity, 801

of second kind, 829
weak solution, 563
Weber parabolic cylinder function, 967
Weber transform, 449
wedge, 63, 65
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Weierstrass condition, 998
Weierstrass criterion of uniform convergence,

349
Weierstrass example, 997
Weierstrass function, 998, 1000

elliptic, 976
Weierstrass transform, 449
Weierstrass–Erdmann conditions, 997, 999

in multidimensional case, 999
weight of variate value, 1083
Weingarten formulas, 396
Whitham rule of “equal areas”, 562
Whittaker equation, 960
Whittaker functions, 960
Wiener process, 1086
Wiener–Hopf equation
first kind, 825, 1401
second kind, 829, 1406

Willier formula, 74
Wronskian, 473, 482, 518

for system of ODEs, 539

Wronskian (continued)
of degenerate hypergeometric functions, 958
of Legendre functions, 967

Wronskian determinant, see Wronskian

Y
Y -transform, 448, 449

Z
zero

asymptotic, 364
of function, 413
simple, 413

zero matrix, 167
zero operator, 204
zero vector, 113
zero-order neighborhood, 991
zeros of Bessel functions, 951
Zhukovskii function, 404, 424
zone, spherical, 69
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