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Preface to the Third Edition

This edition is enriched by new examples, problems, and solutions, in particular
concerned with simple shear. I have also added an example with the derivation
of constitutive relations and tangent moduli for hyperelastic materials with the
isochoric-volumetric split of the strain energy function. Besides, Chap. 2 has
some new figures illustrating spherical coordinates. These figures have again been
prepared by Uwe Navrath. I also gratefully acknowledge Khiêm Ngoc Vu for careful
proofreading of the manuscript. At this opportunity, I would also like to thank
the Springer-Verlag and in particular Jan-Philip Schmidt for the fast and friendly
support in getting this edition published.

Aachen, Germany Mikhail Itskov
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Preface to the Second Edition

This second edition has a number of additional examples and exercises. In response
to comments and questions of students using this book, solutions of many exercises
have been improved for a better understanding. Some changes and enhancements
are concerned with the treatment of skew-symmetric and rotation tensors in the
first chapter. Besides, the text and formulae have been thoroughly reexamined and
improved where necessary.

Aachen, Germany Mikhail Itskov
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Preface to the First Edition

Like many other textbooks, the present one is based on a lecture course given by the
author for master’s students of the RWTH Aachen University. In spite of a somewhat
difficult matter those students were able to endure and, as far as I know, are still fine.
I wish the same for the reader of this book.

Although this book can be referred to as a textbook, one finds only little plain
text inside. I have tried to explain the matter in a brief way, nevertheless going
into detail where necessary. I have also avoided tedious introductions and lengthy
remarks about the significance of one topic or another. A reader interested in tensor
algebra and tensor analysis but preferring, however, words instead of equations can
close this book immediately after having read the preface.

The reader is assumed to be familiar with the basics of matrix algebra and con-
tinuum mechanics and is encouraged to solve at least some of numerous exercises
accompanying every chapter. Having read many other texts on mathematics and
mechanics, I was always upset vainly looking for solutions to the exercises which
seemed to be most interesting for me. For this reason, all the exercises here are
supplied with solutions, amounting to a substantial part of the book. Without doubt,
this part facilitates a deeper understanding of the subject.

As a research work, this book is open for discussion which will certainly
contribute to improving the text for further editions. In this sense, I am very grateful
for comments, suggestions, and constructive criticism from the reader. I already
expect such criticism, for example, with respect to the list of references which might
be far from being complete. Indeed, throughout the book I only quote the sources
indispensable to follow the exposition and notation. For this reason, I apologize to
colleagues whose valuable contributions to the matter are not cited.

Finally, a word of acknowledgment is appropriate. I would like to thank Uwe
Navrath for having prepared most of the figures for the book. Further, I am grateful
to Alexander Ehret who taught me first steps as well as some “dirty” tricks in
LATEX, which were absolutely necessary to bring the manuscript to a printable
form. He and Tran Dinh Tuyen are also acknowledged for careful proofreading and
critical comments to an earlier version of the book. My special thanks go to the

xi
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Springer-Verlag and in particular to Eva Hestermann-Beyerle and Monika Lempe
for their friendly support in getting this book published.

Aachen, Germany Mikhail Itskov
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Chapter 1
Vectors and Tensors in a Finite-Dimensional
Space

1.1 Notion of the Vector Space

We start with the definition of the vector space over the field of real numbers R.

Definition 1.1. A vector space is a set V of elements called vectors satisfying the
following axioms.

A. To every pair, x and y of vectors in V there corresponds a vector x C y , called
the sum of x and y, such that

(A.1) x C y D y C x (addition is commutative),
(A.2) .x C y/ C z D x C .y C z/ (addition is associative),
(A.3) There exists in V a unique vector zero 0, such that 0 C x D x, 8x 2 V,
(A.4) To every vector x in V there corresponds a unique vector �x such that

x C .�x/ D 0.

B. To every pair ˛ and x, where ˛ is a scalar real number and x is a vector in V,
there corresponds a vector ˛x, called the product of ˛ and x, such that

(B.1) ˛ .ˇx/ D .˛ˇ/ x (multiplication by scalars is associative),
(B.2) 1x D x,
(B.3) ˛ .x C y/ D ˛x C ˛y (multiplication by scalars is distributive with

respect to vector addition),
(B.4) .˛ C ˇ/ x D ˛x C ˇx (multiplication by scalars is distributive with

respect to scalar addition), 8˛; ˇ 2 R, 8x; y 2 V.

Examples of Vector Spaces.

(1) The set of all real numbers R.
(2) The set of all directional arrows in two or three dimensions. Applying the usual

definitions for summation, multiplication by a scalar, the negative and zero
vector (Fig. 1.1) one can easily see that the above axioms hold for directional
arrows.

M. Itskov, Tensor Algebra and Tensor Analysis for Engineers, Mathematical Engineering,
DOI 10.1007/978-3-642-30879-6 1, © Springer-Verlag Berlin Heidelberg 2013
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2 1 Vectors and Tensors in a Finite-Dimensional Space

zero vector

vector addition

x

y

2.5x

2x

x

multiplication by a real scalar

−x
x

negative vector

x + y = y + x

Fig. 1.1 Geometric illustration of vector axioms in two dimensions

(3) The set of all n-tuples of real numbers R:

a D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

a1

a2

:

:

an

9
>>>>>=

>>>>>;

:

Indeed, the axioms (A) and (B) apply to the n-tuples if one defines addition,
multiplication by a scalar and finally the zero tuple, respectively, by

a C b D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

a1 C b1

a2 C b2

:

:

an C bn

9
>>>>>=

>>>>>;

; ˛a D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

˛a1

˛a2

:

:

˛an

9
>>>>>=

>>>>>;

; 0 D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

0

0

:

:

0

9
>>>>>=

>>>>>;

:

(4) The set of all real-valued functions defined on a real line.

1.2 Basis and Dimension of the Vector Space

Definition 1.2. A set of vectors x1; x2; : : : ; xn is called linearly dependent if there
exists a set of corresponding scalars ˛1; ˛2; : : : ; ˛n 2 R, not all zero, such that

nX

iD1

˛i xi D 0: (1.1)
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Otherwise, the vectors x1; x2; : : : ; xn are called linearly independent. In this case,
none of the vectors xi is the zero vector (Exercise 1.2).

Definition 1.3. The vector

x D
nX

iD1

˛i xi (1.2)

is called linear combination of the vectors x1; x2; : : : ; xn, where ˛i 2 R.i D 1,
2; : : : ; n/.

Theorem 1.1. The set of n non-zero vectors x1; x2; : : : ; xn is linearly dependent
if and only if some vector xk .2 � k � n/ is a linear combination of the preceding
ones xi .i D 1; : : : ; k � 1/.

Proof. If the vectors x1; x2; : : : ; xn are linearly dependent, then

nX

iD1

˛i xi D 0;

where not all ˛i are zero. Let ˛k .2 � k � n/ be the last non-zero number, so that
˛i D 0 .i D k C 1; : : : ; n/. Then,

kX

iD1

˛i xi D 0 ) xk D
k�1X

iD1

�˛i

˛k

xi :

Thereby, the case k D 1 is avoided because ˛1x1 D 0 implies that x1 D 0
(Exercise 1.1). Thus, the sufficiency is proved. The necessity is evident.

Definition 1.4. A basis in a vector space V is a set G � V of linearly independent
vectors such that every vector in V is a linear combination of elements of G. A vector
space V is finite-dimensional if it has a finite basis.

Within this book, we restrict our attention to finite-dimensional vector spaces.
Although one can find for a finite-dimensional vector space an infinite number of
bases, they all have the same number of vectors.

Theorem 1.2. All the bases of a finite-dimensional vector spaceV contain the same
number of vectors.

Proof. Let G D fg1; g2; : : : ; gng and F D ff 1; f 2; : : : ; f mg be two arbitrary
bases of V with different numbers of elements, say m > n. Then, every vector in V

is a linear combination of the following vectors:

f 1; g1; g2; : : : ; gn: (1.3)
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These vectors are non-zero and linearly dependent. Thus, according to Theorem 1.1
we can find such a vector gk , which is a linear combination of the preceding ones.
Excluding this vector we obtain the set G0 by

f 1; g1; g2; : : : ; gk�1; gkC1; : : : ; gn

again with the property that every vector in V is a linear combination of the elements
of G0. Now, we consider the following vectors

f 1; f 2; g1; g2; : : : ; gk�1; gkC1; : : : ; gn

and repeat the excluding procedure just as before. We see that none of the vectors
f i can be eliminated in this way because they are linearly independent. As soon as
all gi .i D 1; 2; : : : ; n/ are exhausted we conclude that the vectors

f 1; f 2; : : : ; f nC1

are linearly dependent. This contradicts, however, the previous assumption that they
belong to the basis F .

Definition 1.5. The dimension of a finite-dimensional vector space V is the number
of elements in a basis of V.

Theorem 1.3. Every set F D ff 1; f 2; : : : ; f ng of linearly independent vectors
in an n-dimensional vectors space V forms a basis of V. Every set of more than n

vectors is linearly dependent.

Proof. The proof of this theorem is similar to the preceding one. Let G D
fg1; g2; : : : ; gng be a basis of V. Then, the vectors (1.3) are linearly dependent and
non-zero. Excluding a vector gk we obtain a set of vectors, say G0, with the property
that every vector in V is a linear combination of the elements of G0. Repeating this
procedure we finally end up with the set F with the same property. Since the vectors
f i .i D 1; 2; : : : ; n/ are linearly independent they form a basis of V. Any further
vectors in V, say f nC1; f nC2; : : : are thus linear combinations of F . Hence, any set
of more than n vectors is linearly dependent.

Theorem 1.4. Every set F D ff 1; f 2; : : : ; f mg of linearly independent vectors
in an n-dimensional vector space V can be extended to a basis.

Proof. If m D n, then F is already a basis according to Theorem 1.3. If m < n,
then we try to find n�m vectors f mC1; f mC2; : : : ; f n, such that all the vectors f i ,
that is, f 1; f 2; : : : ; f m; f mC1; : : : ; f n are linearly independent and consequently
form a basis. Let us assume, on the contrary, that only k < n � m such vectors can
be found. In this case, for all x 2 V there exist scalars ˛; ˛1; ˛2; : : : ; ˛mCk , not all
zero, such that

˛x C ˛1f 1 C ˛2f 2 C : : : C ˛mCkf mCk D 0;
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where ˛ ¤ 0 since otherwise the vectors f i .i D 1; 2; : : : ; m C k/ would be
linearly dependent. Thus, all the vectors x of V are linear combinations of
f i .i D 1; 2; : : : ; m C k/. Then, the dimension of V is m C k < n, which
contradicts the assumption of this theorem.

1.3 Components of a Vector, Summation Convention

Let G D fg1; g2; : : : ; gng be a basis of an n-dimensional vector space V. Then,

x D
nX

iD1

xi gi ; 8x 2 V: (1.4)

Theorem 1.5. The representation (1.4) with respect to a given basis G is unique.

Proof. Let

x D
nX

iD1

xi g i and x D
nX

iD1

yi g i

be two different representations of a vector x, where not all scalar coefficients xi

and yi .i D 1; 2; : : : ; n/ are pairwise identical. Then,

0 D x C .�x/ D x C .�1/ x D
nX

iD1

xi gi C
nX

iD1

��yi
�
gi D

nX

iD1

�
xi � yi

�
g i ;

where we use the identity �x D .�1/ x (Exercise 1.1). Thus, either the numbers xi

and yi are pairwise equal xi D yi .i D 1; 2; : : : ; n/ or the vectors gi are linearly
dependent. The latter one is likewise impossible because these vectors form a basis
of V.

The scalar numbers xi .i D 1; 2; : : : ; n/ in the representation (1.4) are called
components of the vector x with respect to the basis G D fg1; g2; : : : ; gng.

The summation of the form (1.4) is often used in tensor algebra. For this reason
it is usually represented without the summation symbol in a short form by

x D
nX

iD1

xi g i D xi g i (1.5)

referred to as Einstein’s summation convention. Accordingly, the summation is
implied if an index appears twice in a multiplicative term, once as a superscript and
once as a subscript. Such a repeated index (called dummy index) takes the values
from 1 to n (the dimension of the vector space in consideration). The sense of the
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index changes (from superscript to subscript or vice versa) if it appears under the
fraction bar.

1.4 Scalar Product, Euclidean Space, Orthonormal Basis

The scalar product plays an important role in vector and tensor algebra. The
properties of the vector space essentially depend on whether and how the scalar
product is defined in this space.

Definition 1.6. The scalar (inner) product is a real-valued function x � y of two
vectors x and y in a vector space V, satisfying the following conditions.

C. (C.1) x � y D y � x (commutative rule),
(C.2) x � .y C z/ D x � y C x � z (distributive rule),
(C.3) ˛ .x � y/ D .˛x/ � y D x � .˛y/ (associative rule for the multiplication

by a scalar), 8˛ 2 R, 8x; y; z 2 V,
(C.4) x � x � 0 8x 2 V; x � x D 0 if and only if x D 0.

An n-dimensional vector space furnished by the scalar product with properties
(C.1)–(C.4) is called Euclidean space E

n. On the basis of this scalar product one
defines the Euclidean length (also called norm) of a vector x by

kxk D p
x � x: (1.6)

A vector whose length is equal to 1 is referred to as unit vector.

Definition 1.7. Two vectors x and y are called orthogonal (perpendicular), denoted
by x?y, if

x � y D 0: (1.7)

Of special interest is the so-called orthonormal basis of the Euclidean space.

Definition 1.8. A basis E D fe1; e2; : : : ; eng of an n-dimensional Euclidean space
E

n is called orthonormal if

ei � ej D ıij ; i; j D 1; 2; : : : ; n; (1.8)

where

ıij D ıij D ıi
j D

(
1 for i D j;

0 for i ¤ j
(1.9)

denotes the Kronecker delta.

Thus, the elements of an orthonormal basis represent pairwise orthogonal unit
vectors. Of particular interest is the question of the existence of an orthonor-
mal basis. Now, we are going to demonstrate that every set of m � n linearly
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independent vectors in E
n can be orthogonalized and normalized by means of

a linear transformation (Gram-Schmidt procedure). In other words, starting from
linearly independent vectors x1; x2; : : : ; xm one can always construct their linear
combinations e1; e2; : : : ; em such that ei � ej D ıij .i; j D 1; 2; : : : ; m/. Indeed,
since the vectors xi .i D 1; 2; : : : ; m/ are linearly independent they are all non-zero
(see Exercise 1.2). Thus, we can define the first unit vector by

e1 D x1

kx1k : (1.10)

Next, we consider the vector

e0
2 D x2 � .x2 � e1/ e1 (1.11)

orthogonal to e1. This holds for the unit vector e2 D e0
2=

�
�e0

2

�
� as well. It is also seen

that
�
�e0

2

�
� D p

e0
2 � e0

2 ¤ 0 because otherwise e0
2 D 0 and thus x2 D .x2 � e1/ e1 D

.x2 � e1/ kx1k�1
x1. However, the latter result contradicts the fact that the vectors

x1 and x2 are linearly independent.
Further, we proceed to construct the vectors

e0
3 D x3 � .x3 � e2/ e2 � .x3 � e1/ e1; e3 D e0

3�
�e0

3

�
�

(1.12)

orthogonal to e1 and e2. Repeating this procedure we finally obtain the set of
orthonormal vectors e1; e2; : : : ; em. Since these vectors are non-zero and mutually
orthogonal, they are linearly independent (see Exercise 1.6). In the case m D n, this
set represents, according to Theorem 1.3, the orthonormal basis (1.8) in E

n.
With respect to an orthonormal basis the scalar product of two vectors x D xi ei

and y D yi ei in E
n takes the form

x � y D x1y1 C x2y2 C : : : C xnyn: (1.13)

For the length of the vector x (1.6) we thus obtain the Pythagoras formula

kxk D
p

x1x1 C x2x2 C : : : C xnxn; x 2 E
n: (1.14)

1.5 Dual Bases

Definition 1.9. Let G D fg1; g2; : : : ; gng be a basis in the n-dimensional
Euclidean space E

n. Then, a basis G0 D ˚
g1; g2; : : : ; gn

�
of E

n is called dual
to G, if

gi � gj D ı
j
i ; i; j D 1; 2; : : : ; n: (1.15)
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In the following we show that a set of vectors G0 D ˚
g1; g2; : : : ; gn

�
satisfying the

conditions (1.15) always exists, is unique and forms a basis in E
n.

Let E D fe1; e2; : : : ; eng be an orthonormal basis in E
n. Since G also represents

a basis, we can write

ei D ˛
j
i gj ; gi D ˇ

j
i ej ; i D 1; 2; : : : ; n; (1.16)

where ˛
j
i and ˇ

j
i .i D 1; 2; : : : ; n/ denote the components of ei and gi , respec-

tively. Inserting the first relation (1.16) into the second one yields

gi D ˇ
j
i ˛k

j gk; ) 0 D
�
ˇ

j
i ˛k

j � ık
i

�
gk; i D 1; 2; : : : ; n: (1.17)

Since the vectors gi are linearly independent we obtain

ˇ
j
i ˛k

j D ık
i ; i; k D 1; 2; : : : ; n: (1.18)

Let further

gi D ˛i
j ej ; i D 1; 2; : : : ; n; (1.19)

where and henceforth we set ej D ej .j D 1; 2; : : : ; n/ in order to take the
advantage of Einstein’s summation convention. By virtue of (1.8), (1.16) and (1.18)
one finally finds

g i � gj D �
ˇk

i ek

� �
�
˛

j

l el
�

D ˇk
i ˛

j

l ıl
k D ˇk

i ˛
j

k D ı
j
i ; i; j D 1; 2; : : : ; n: (1.20)

Next, we show that the vectors gi .i D 1; 2; : : : ; n/ (1.19) are linearly independent
and for this reason form a basis of En. Assume on the contrary that

ai g
i D 0;

where not all scalars ai .i D 1; 2; : : : ; n/ are zero. Multiplying both sides of this
relation scalarly by the vectors gj .j D 1; 2; : : : ; n/ leads to a contradiction. Indeed,
using (1.167) (see Exercise 1.5) we obtain

0 D ai g
i � gj D ai ı

i
j D aj ; j D 1; 2; : : : ; n:

The next important question is whether the dual basis is unique. Let G0 D˚
g1; g2; : : : ; gn

�
and H0 D ˚

h1; h2; : : : ; hn
�

be two arbitrary non-coinciding bases
in E

n, both dual to G D fg1; g2; : : : ; gng. Then,

hi D hi
j gj ; i D 1; 2; : : : ; n:
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Forming the scalar product with the vectors gj .j D 1; 2; : : : ; n/ we can conclude
that the bases G0 and H0 coincide:

ıi
j D hi � gj D �

hi
kgk

� � gj D hi
kık

j D hi
j ) hi D gi ; i D 1; 2; : : : ; n:

Thus, we have proved the following theorem.

Theorem 1.6. To every basis in an Euclidean space E
n there exists a unique dual

basis.

Relation (1.19) enables to determine the dual basis. However, it can also be obtained
without any orthonormal basis. Indeed, let g i be a basis dual to g i .i D 1; 2; : : : ; n/.
Then

gi D gij gj ; gi D gij gj ; i D 1; 2; : : : ; n: (1.21)

Inserting the second relation (1.21) into the first one yields

gi D gij gjkgk; i D 1; 2; : : : ; n: (1.22)

Multiplying scalarly with the vectors gl we have by virtue of (1.15)

ıi
l D gij gjkık

l D gij gjl ; i; l D 1; 2; : : : ; n: (1.23)

Thus, we see that the matrices
�
gkj

	
and

�
gkj

	
are inverse to each other such that

�
gkj

	 D �
gkj

	�1
: (1.24)

Now, multiplying scalarly the first and second relation (1.21) by the vectors gj and
gj .j D 1; 2; : : : ; n/, respectively, we obtain with the aid of (1.15) the following
important identities:

gij D gj i D g i � gj ; gij D gj i D gi � gj ; i; j D 1; 2; : : : ; n: (1.25)

By definition (1.8) the orthonormal basis in E
n is self-dual, so that

ei D ei ; ei � ej D ı
j
i ; i; j D 1; 2; : : : ; n: (1.26)

With the aid of the dual bases one can represent an arbitrary vector in E
n by

x D xi g i D xi g
i ; 8x 2 E

n; (1.27)

where

xi D x � gi ; xi D x � gi ; i D 1; 2; : : : ; n: (1.28)
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Indeed, using (1.15) we can write

x � gi D �
xj gj

� � gi D xj ıi
j D xi ;

x � gi D �
xj gj

� � g i D xj ı
j
i D xi ; i D 1; 2; : : : ; n:

The components of a vector with respect to the dual bases are suitable for calculating
the scalar product. For example, for two arbitrary vectors x D xi gi D xi g

i and
y D yi gi D yi g

i we obtain

x � y D xi yj gij D xi yj gij D xi yi D xi y
i : (1.29)

The length of the vector x can thus be written by

kxk D
q

xi xj gij D
q

xi xj gij D
p

xi xi : (1.30)

Example 1.1. Dual basis in E
3. Let G D fg1; g2; g3g be a basis of the three-

dimensional Euclidean space and

g D Œg1g2g3� ; (1.31)

where Œ� � �� denotes the mixed product of vectors. It is defined by

Œabc� D .a � b/ � c D .b � c/ � a D .c � a/ � b; (1.32)

where “�” denotes the vector (also called cross or outer) product of vectors.
Consider the following set of vectors:

g1 D g�1g2 � g3; g2 D g�1g3 � g1; g3 D g�1g1 � g2: (1.33)

It is seen that the vectors (1.33) satisfy conditions (1.15), are linearly independent
(Exercise 1.11) and consequently form the basis dual to gi .i D 1; 2; 3/. Further, it
can be shown that

g2 D ˇ
ˇgij

ˇ
ˇ ; (1.34)

where j�j denotes the determinant of the matrix Œ��. Indeed, with the aid of (1.16)2

we obtain

g D Œg1g2g3� D
h
ˇi

1ei ˇ
j
2 ej ˇk

3 ek

i

D ˇi
1ˇ

j
2 ˇk

3

�
ei ej ek

	 D ˇi
1ˇ

j
2 ˇk

3 eijk D
ˇ
ˇ
ˇˇi

j

ˇ
ˇ
ˇ ; (1.35)
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where eijk denotes the permutation symbol (also called Levi-Civita symbol). It is
defined by

eijk D eijk D �
e iej ek

	

D

8
ˆ̂
<

ˆ̂
:

1 if ijk is an even permutation of 123,

�1 if ijk is an odd permutation of 123,

0 otherwise,

(1.36)

where the orthonormal vectors e1, e2 and e3 are numerated in such a way that they
form a right-handed system. In this case, Œe1e2e3� D 1.

On the other hand, we can write again using (1.16)2

gij D gi � gj D
3X

kD1

ˇk
i ˇk

j :

The latter sum can be represented as a product of two matrices so that

�
gij

	 D
h
ˇ

j
i

i h
ˇ

j
i

iT
: (1.37)

Since the determinant of the matrix product is equal to the product of the matrix
determinants we finally have

ˇ
ˇgij

ˇ
ˇ D

ˇ
ˇ
ˇˇ

j
i

ˇ
ˇ
ˇ
2 D g2: (1.38)

With the aid of the permutation symbol (1.36) one can write

�
gi gj gk

	 D eijk g; i; j; k D 1; 2; 3; (1.39)

which by (1.28)2 yields an alternative representation of the identities (1.33) as

gi � gj D eijk g gk; i; j D 1; 2; 3: (1.40)

Similarly to (1.35) one can also show that (see Exercise 1.12)

�
g1g2g3

	 D g�1 (1.41)

and

ˇ
ˇgij

ˇ
ˇ D g�2: (1.42)
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Thus,
�
gi gj gk

	 D eijk

g
; i; j; k D 1; 2; 3; (1.43)

which yields by analogy with (1.40)

gi � gj D eijk

g
gk; i; j D 1; 2; 3: (1.44)

Relations (1.40) and (1.44) permit a useful representation of the vector product.
Indeed, let a D ai gi D ai g

i and b D bj gj D bj gj be two arbitrary vectors
in E

3. Then, in view of (1.32)

a � b D �
ai gi

� � �
bj gj

� D ai bj eijkggk D g

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

a1 a2 a3

b1 b2 b3

g1 g2 g3

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
;

a � b D �
ai g

i
� � �

bj gj
� D ai bj eijkg�1gk D 1

g

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

a1 a2 a3

b1 b2 b3

g1 g2 g3

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
: (1.45)

For the orthonormal basis in E
3 relations (1.40) and (1.44) reduce to

ei � ej D eijkek D eijkek; i; j D 1; 2; 3; (1.46)

so that the vector product (1.45) can be written by

a � b D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

a1 a2 a3

b1 b2 b3

e1 e2 e3

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
; (1.47)

where a D ai e
i and b D bj ej .

1.6 Second-Order Tensor as a Linear Mapping

Let us consider a set Linn of all linear mappings of one vector into another one
within E

n. Such a mapping can be written as

y D Ax; y 2 E
n; 8x 2 E

n; 8A 2 Linn: (1.48)

Elements of the set Linn are called second-order tensors or simply tensors. Linearity
of the mapping (1.48) is expressed by the following relations:

A .x C y/ D Ax C Ay; 8x; y 2 E
n; 8A 2 Linn; (1.49)
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A .˛x/ D ˛ .Ax/ ; 8x 2 E
n; 8˛ 2 R; 8A 2 Linn: (1.50)

Further, we define the product of a tensor by a scalar number ˛ 2 R as

.˛A/ x D ˛ .Ax/ D A .˛x/ ; 8x 2 E
n (1.51)

and the sum of two tensors A and B as

.A C B/ x D Ax C Bx; 8x 2 E
n: (1.52)

Thus, properties (A.1), (A.2) and (B.1)–(B.4) apply to the set Linn. Setting in (1.51)
˛ D �1 we obtain the negative tensor by

� A D .�1/ A: (1.53)

Further, we define a zero tensor 0 in the following manner

0x D 0; 8x 2 E
n; (1.54)

so that the elements of the set Linn also fulfill conditions (A.3) and (A.4) and
accordingly form a vector space.

The properties of second-order tensors can thus be summarized by

A C B D B C A; (addition is commutative); (1.55)

A C .B C C/ D .A C B/ C C; (addition is associative); (1.56)

0 C A D A; (1.57)

A C .�A/ D 0; (1.58)

˛ .ˇA/ D .˛ˇ/ A; (multiplication by scalars is associative); (1.59)

1A D A; (1.60)

˛ .A C B/ D ˛A C ˛B; (multiplication by scalars is distributive

with respect to tensor addition); (1.61)

.˛ C ˇ/ A D ˛A C ˇA; (multiplication by scalars is distributive

with respect to scalar addition); 8A; B; C 2 Linn; 8˛; ˇ 2 R: (1.62)

Example 1.2. Vector product in E
3. The vector product of two vectors in E

3

represents again a vector in E
3

z D w � x; z 2 E
3; 8w; x 2 E

3: (1.63)
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According to (1.45) the mapping x ! z is linear (Exercise 1.16) so that

w � .˛x/ D ˛ .w � x/ ;

w � .x C y/ D w � x C w � y; 8w; x; y 2 E
3; 8˛ 2 R: (1.64)

Thus, it can be described by means of a tensor of the second order by

w � x D Wx; W 2 Lin3; 8x 2 E
3: (1.65)

The tensor which forms the vector product by a vector w according to (1.65) will be
denoted in the following by Ow. Thus, we write

w � x D Owx: (1.66)

Clearly

O0 D 0: (1.67)

Example 1.3. Representation of a rotation by a second-order tensor. A rotation of
a vector a in E

3 about an axis yields another vector r in E
3. It can be shown that the

mapping a ! r .a/ is linear such that

r .˛a/ D ˛r .a/ ; r .a C b/ D r .a/ C r .b/ ; 8˛ 2 R; 8a; b 2 E
3: (1.68)

Thus, it can again be described by a second-order tensor as

r .a/ D Ra; 8a 2 E
3; R 2 Lin3: (1.69)

This tensor R is referred to as rotation tensor.
Let us construct the rotation tensor which rotates an arbitrary vector a 2 E

3 about
an axis specified by a unit vector e 2 E

3 (see Fig. 1.2). Decomposing the vector a

by a D a� C x in two vectors along and perpendicular to the rotation axis we can
write

r .a/ D a� C x cos ! C y sin ! D a� C �
a � a��

cos ! C y sin !; (1.70)

where ! denotes the rotation angle. By virtue of the geometric identities

a� D .a � e/ e D .e ˝ e/ a; y D e � x D e � �
a � a�� D e � a D Oea; (1.71)

where “˝” denotes the so-called tensor product (1.80) (see Sect. 1.7), we obtain

r .a/ D cos !a C sin ! Oea C .1 � cos !/ .e ˝ e/ a: (1.72)
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Fig. 1.2 Finite rotation of a vector in E
3

Thus the rotation tensor can be given by

R D cos !I C sin ! Oe C .1 � cos !/ e ˝ e; (1.73)

where I denotes the so-called identity tensor (1.89) (see Sect. 1.7).
Another useful representation for the rotation tensor can be obtained utilizing the

fact that x D y � e D �e � y. Indeed, rewriting (1.70) by

r .a/ D a C x .cos ! � 1/ C y sin ! (1.74)

and keeping (1.71)2 in mind we receive

r .a/ D a C sin ! Oea C .1 � cos !/ . Oe/
2

a: (1.75)

This leads to the expression for the rotation tensor

R D I C sin ! Oe C .1 � cos !/ . Oe/
2 (1.76)

known as the Euler-Rodrigues formula (see, e.g., [9]).

Example 1.4. The Cauchy stress tensor as a linear mapping of the unit surface
normal into the Cauchy stress vector. Let us consider a body B in the current
configuration at a time t . In order to define the stress in some point P let us further
imagine a smooth surface going through P and separating B into two parts (Fig. 1.3).
Then, one can define a force �p and a couple �m resulting from the forces exerted
by the (hidden) material on one side of the surface �A and acting on the material
on the other side of this surface. Let the area �A tend to zero keeping P as inner
point. A basic postulate of continuum mechanics is that the limit

t D lim
�A!0

�p

�A
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Fig. 1.3 Cauchy stress vector

exists and is final. The so-defined vector t is called Cauchy stress vector. Cauchy’s
fundamental postulate states that the vector t depends on the surface only through
the outward unit normal n. In other words, the Cauchy stress vector is the same
for all surfaces through P which have n as the normal in P. Further, according to
Cauchy’s theorem the mapping n ! t is linear provided t is a continuous function
of the position vector x at P. Hence, this mapping can be described by a second-
order tensor � called the Cauchy stress tensor so that

t D � n: (1.77)

On the basis of the “right” mapping (1.48) we can also define the “left” one by
the following condition

.yA/ � x D y � .Ax/ ; 8x 2 E
n; A 2 Linn: (1.78)

First, it should be shown that for all y 2 E
n there exists a unique vector yA 2 E

n

satisfying the condition (1.78) for all x 2 E
n. Let G D fg1; g2; : : : ; gng and G0 D˚

g1; g2; : : : ; gn
�

be dual bases in E
n. Then, we can represent two arbitrary vectors

x; y 2 E
n, by x D xi g

i and y D yi g
i . Now, consider the vector

yA D yi

�
gi � �

Agj
�	

gj :

It holds: .yA/�x D yi xj

�
gi � �

Agj
�	

. On the other hand, we obtain the same result
also by

y � .Ax/ D y � �
xj Agj

� D yi xj

�
gi � �

Agj
�	

:

Further, we show that the vector yA, satisfying condition (1.78) for all x 2 E
n, is

unique. Conversely, let a; b 2 E
n be two such vectors. Then, we have

a � x D b � x ) .a � b/ � x D 0; 8x 2 E
n ) .a � b/ � .a � b/ D 0;

which by axiom (C.4) implies that a D b.
Since the order of mappings in (1.78) is irrelevant we can write them without

brackets and dots as follows

y � .Ax/ D .yA/ � x D yAx: (1.79)
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1.7 Tensor Product, Representation of a Tensor
with Respect to a Basis

The tensor product plays an important role since it enables to construct a second-
order tensor from two vectors. In order to define the tensor product we consider two
vectors a; b 2 E

n. An arbitrary vector x 2 E
n can be mapped into another vector

a .b � x/ 2 E
n. This mapping is denoted by symbol “˝” as a ˝ b. Thus,

.a ˝ b/ x D a .b � x/ ; a; b 2 E
n; 8x 2 E

n: (1.80)

It can be shown that the mapping (1.80) fulfills the conditions (1.49)–(1.51) and for
this reason is linear. Indeed, by virtue of (B.1), (B.4), (C.2) and (C.3) we can write

.a ˝ b/ .x C y/ D a Œb � .x C y/� D a .b � x C b � y/

D .a ˝ b/ x C .a ˝ b/ y ; (1.81)

.a ˝ b/ .˛x/ D a Œb � .˛x/� D ˛ .b � x/ a

D ˛ .a ˝ b/ x; a; b 2 E
n; 8x; y 2 E

n; 8˛ 2 R: (1.82)

Thus, the tensor product of two vectors represents a second-order tensor. Further, it
holds

c ˝ .a C b/ D c ˝ a C c ˝ b; .a C b/ ˝ c D a ˝ c C b ˝ c; (1.83)

.˛a/ ˝ .ˇb/ D ˛ˇ .a ˝ b/ ; a; b; c 2 E
n; 8˛; ˇ 2 R: (1.84)

Indeed, mapping an arbitrary vector x 2 E
n by both sides of these relations and

using (1.52) and (1.80) we obtain

c ˝ .a C b/ x D c .a � x C b � x/ D c .a � x/ C c .b � x/

D .c ˝ a/ x C .c ˝ b/ x D .c ˝ a C c ˝ b/ x;

Œ.a C b/ ˝ c� x D .a C b/ .c � x/ D a .c � x/ C b .c � x/

D .a ˝ c/ x C .b ˝ c/ x D .a ˝ c C b ˝ c/ x;

.˛a/ ˝ .ˇb/ x D .˛a/ .ˇb � x/

D ˛ˇa .b � x/ D ˛ˇ .a ˝ b/ x; 8x 2 E
n:
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For the “left” mapping by the tensor a˝b we obtain from (1.78) (see Exercise 1.21)

y .a ˝ b/ D .y � a/ b; 8y 2 E
n: (1.85)

We have already seen that the set of all second-order tensors Linn represents a
vector space. In the following, we show that a basis of Linn can be constructed with
the aid of the tensor product (1.80).

Theorem 1.7. Let F D ff 1; f 2; : : : ; f ng and G D fg1; g2; : : : ; gng be two
arbitrary bases of En. Then, the tensors f i ˝ gj .i; j D 1; 2; : : : ; n/ represent a
basis of Linn. The dimension of the vector space Linn is thus n2.

Proof. First, we prove that every tensor in Linn represents a linear combination
of the tensors f i ˝ gj .i; j D 1; 2; : : : ; n/. Indeed, let A 2 Linn be an arbitrary
second-order tensor. Consider the following linear combination

A0 D �
f i Agj

�
f i ˝ gj ;

where the vectors f i and gi .i D 1; 2; : : : ; n/ form the bases dual to F and G,
respectively. The tensors A and A0 coincide if and only if

A0x D Ax; 8x 2 E
n: (1.86)

Let x D xj gj . Then

A0x D �
f i Agj

�
f i ˝ gj

�
xkgk

� D �
f iAgj

�
f i xkık

j D xj

�
f i Agj

�
f i :

On the other hand, Ax D xj Agj . By virtue of (1.27) and (1.28) we can
represent the vectors Agj .j D 1; 2; : : : ; n/ with respect to the basis F by Agj D�
f i � �

Agj
�	

f i D �
f i Agj

�
f i .j D 1; 2; : : : ; n/. Hence,

Ax D xj

�
f i Agj

�
f i :

Thus, it is seen that condition (1.86) is satisfied for all x 2 E
n. Finally, we show

that the tensors f i ˝ gj .i; j D 1; 2; : : : ; n/ are linearly independent. Otherwise,
there would exist scalars ˛ij .i; j D 1; 2; : : : ; n/, not all zero, such that

˛ij f i ˝ gj D 0:

The right mapping of gk .k D 1; 2; : : : ; n/ by this tensor equality yields then:
˛ikf i D 0 .k D 1; 2; : : : ; n/. This contradicts, however, the fact that the vectors
f k .k D 1; 2; : : : ; n/ form a basis and are therefore linearly independent.

For the representation of second-order tensors we will in the following use primarily
the bases gi ˝ gj , gi ˝ gj , gi ˝ gj or g i ˝ gj .i; j D 1; 2; : : : ; n/. With respect
to these bases a tensor A 2 Linn is written as
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A D Aij gi ˝ gj D Aij g i ˝ gj D Ai�j gi ˝ gj D A j
i � g

i ˝ gj (1.87)

with the components (see Exercise 1.22)

Aij D gi Agj ; Aij D g iAgj ;

Ai�j D g iAgj ; A j
i � D gi Agj ; i; j D 1; 2; : : : ; n: (1.88)

Note, that the subscript dot indicates the position of the above index. For example,
for the components Ai�j , i is the first index while for the components A i

j �, i is the
second index.

Of special importance is the so-called identity tensor I. It is defined by

Ix D x; 8x 2 E
n: (1.89)

With the aid of (1.25), (1.87) and (1.88) the components of the identity tensor can
be expressed by

Iij D gi Igj D gi � gj D gij ; Iij D g i Igj D g i � gj D gij ;

Ii�j D I j
i � D Ii

j D gi Igj D g iIgj D gi � gj D gi � gj D ıi
j ; (1.90)

where i; j D 1; 2; : : : ; n. Thus,

I D gij gi ˝ gj D gij gi ˝ gj D g i ˝ gi D gi ˝ gi : (1.91)

It is seen that the components (1.90)1;2 of the identity tensor are given by
relation (1.25). In view of (1.30) they characterize metric properties of the Euclidean
space and are referred to as metric coefficients. For this reason, the identity tensor is
frequently called metric tensor. With respect to an orthonormal basis relation (1.91)
reduces to

I D
nX

iD1

ei ˝ ei : (1.92)

1.8 Change of the Basis, Transformation Rules

Now, we are going to clarify how the vector and tensor components transform with
the change of the basis. Let x be a vector and A a second-order tensor. According
to (1.27) and (1.87)

x D xi gi D xi g
i ; (1.93)

A D Aij gi ˝ gj D Aij g i ˝ gj D Ai�j g i ˝ gj D A j
i � g

i ˝ gj : (1.94)
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With the aid of (1.21) and (1.28) we can write

xi D x � gi D x � �gij gj

� D xj gj i ; xi D x � gi D x � �gij gj
� D xj gj i ; (1.95)

where i D 1; 2; : : : ; n. Similarly we obtain by virtue of (1.88)

Aij D gi Agj D gi A
�
gjkgk

�

D �
gilgl

�
A

�
gjkgk

� D Ai�kgkj D gilAlkgkj ; (1.96)

Aij D gi Agj D gi A
�
gjkgk

�

D �
gilg

l
�

A
�
gjkgk

� D A k
i � gkj D gil A

lkgkj ; (1.97)

where i; j D 1; 2; : : : ; n. The transformation rules (1.95)–(1.97) hold not only for
dual bases. Indeed, let gi and Ngi .i D 1; 2; : : : ; n/ be two arbitrary bases in E

n, so
that

x D xi gi D Nxi Ngi ; (1.98)

A D Aij g i ˝ gj D NAij Ngi ˝ Ngj : (1.99)

By means of the relations

gi D a
j
i Ngj ; i D 1; 2; : : : ; n (1.100)

one thus obtains

x D xi gi D xi a
j
i Ngj ) Nxj D xi a

j
i ; j D 1; 2; : : : ; n; (1.101)

A D Aij g i ˝ gj D Aij
�
ak

i Ngk

� ˝
�
al

j Ngl

�
D Aij ak

i al
j Ngk ˝ Ngl

) NAkl D Aij ak
i al

j ; k; l D 1; 2; : : : ; n: (1.102)

1.9 Special Operations with Second-Order Tensors

In Sect. 1.6 we have seen that the set Linn represents a finite-dimensional vector
space. Its elements are second-order tensors that can be treated as vectors in E

n2

with all the operations specific for vectors such as summation, multiplication by a
scalar or a scalar product (the latter one will be defined for second-order tensors
in Sect. 1.10). However, in contrast to conventional vectors in the Euclidean space,
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for second-order tensors one can additionally define some special operations as for
example composition, transposition or inversion.

Composition (simple contraction). Let A; B 2 Linn be two second-order tensors.
The tensor C D AB is called composition of A and B if

Cx D A .Bx/ ; 8x 2 E
n: (1.103)

For the left mapping (1.78) one can write

y .AB/ D .yA/ B; 8y 2 E
n: (1.104)

In order to prove the last relation we use again (1.78) and (1.103):

y .AB/ x D y � Œ.AB/ x� D y � ŒA .Bx/�

D .yA/ � .Bx/ D Œ.yA/ B� � x; 8x 2 E
n:

The composition of tensors (1.103) is generally not commutative so that AB ¤
BA. Two tensors A and B are called commutative if on the contrary AB D BA.
Besides, the composition of tensors is characterized by the following properties (see
Exercise 1.26):

A0 D 0A D 0; AI D IA D A; (1.105)

A .B C C/ D AB C AC; .B C C/ A D BA C CA; (1.106)

A .BC/ D .AB/ C: (1.107)

For example, the distributive rule (1.106)1 can be proved as follows

ŒA .B C C/� x D A Œ.B C C/ x� D A .Bx C Cx/ D A .Bx/ C A .Cx/

D .AB/ x C .AC/ x D .AB C AC/ x; 8x 2 E
n:

For the tensor product (1.80) the composition (1.103) yields

.a ˝ b/ .c ˝ d/ D .b � c/ a ˝ d ; a; b; c; d 2 E
n: (1.108)

Indeed, by virtue of (1.80), (1.82) and (1.103)

.a ˝ b/ .c ˝ d/ x D .a ˝ b/ Œ.c ˝ d/ x� D .d � x/ .a ˝ b/ c

D .d � x/ .b � c/ a D .b � c/ .a ˝ d/ x

D Œ.b � c/ a ˝ d � x; 8x 2 E
n:
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Thus, we can write

AB D AikB j

k� gi ˝ gj D AikBkj gi ˝ gj

D Ai�kBk�j gi ˝ gj D A k
i � Bkj gi ˝ gj ; (1.109)

where A and B are given in the form (1.87).

Powers, polynomials and functions of second-order tensors. On the basis of the
composition (1.103) one defines by

Am D AA : : : A„ ƒ‚ …
m times

; m D 1; 2; 3 : : : ; A0 D I (1.110)

powers (monomials) of second-order tensors characterized by the following evident
properties

AkAl D AkCl ;
�
Ak

�l D Akl ; (1.111)

.˛A/k D ˛kAk; k; l D 0; 1; 2 : : : (1.112)

With the aid of the tensor powers a polynomial of A can be defined by

g .A/ D a0I C a1A C a2A2 C : : : C amAm D
mX

kD0

akAk: (1.113)

g .A/: Linn 7!Linn represents a tensor function mapping one second-order tensor
into another one within Linn. By this means one can define various tensor functions.
Of special interest is the exponential one

exp .A/ D
1X

kD0

Ak

k!
(1.114)

given by the infinite power series.

Transposition. The transposed tensor AT is defined by:

ATx D xA; 8x 2 E
n; (1.115)

so that one can also write

Ay D yAT; xAy D yATx; 8x; y 2 E
n: (1.116)

Indeed,

x � .Ay/ D .xA/ � y D y � �
ATx

� D yATx D x � �
yAT�

; 8x; y 2 E
n:
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Consequently,
�
AT�T D A: (1.117)

Transposition represents a linear operation over a second-order tensor since

.A C B/T D AT C BT (1.118)

and
.˛A/T D ˛AT; 8˛ 2 R: (1.119)

The composition of second-order tensors is transposed by

.AB/T D BTAT: (1.120)

Indeed, in view of (1.104) and (1.115)

.AB/T x D x .AB/ D .xA/ B D BT .xA/ D BTATx; 8x 2 E
n:

For the tensor product of two vectors a; b 2 E
n we further obtain by use of (1.80)

and (1.85)
.a ˝ b/T D b ˝ a: (1.121)

This ensures the existence and uniqueness of the transposed tensor. Indeed, every
tensor A in Linn can be represented with respect to the tensor product of the basis
vectors in E

n in the form (1.87). Hence, considering (1.121) we have

AT D Aij gj ˝ gi D Aij gj ˝ gi D Ai�j gj ˝ gi D A j
i � gj ˝ gi ; (1.122)

or

AT D Aj igi ˝ gj D Aj ig
i ˝ gj D Aj

�ig
i ˝ gj D A i

j �g i ˝ gj : (1.123)

Comparing the latter result with the original representation (1.87) one observes that
the components of the transposed tensor can be expressed by

�
AT

�

ij
D Aj i ;

�
AT

�ij D Aj i ; (1.124)

�
AT

� j

i � D Aj
�i D gjkA l

k�gli ;
�
AT

�i

�j D A i
j � D gjkAk�lgli : (1.125)

For example, the last relation results from (1.88) and (1.116) within the following
steps

�
AT�i

�j D gi ATgj D gj Ag i D gj

�
Ak�lgk ˝ gl

�
gi D gjkAk�lgli :

According to (1.124) the homogeneous (covariant or contravariant) components
of the transposed tensor can simply be obtained by reflecting the matrix of the
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original components from the main diagonal. It does not, however, hold for the
mixed components (1.125).

The transposition operation (1.115) gives rise to the definition of symmetric
MT D M and skew-symmetric second-order tensors WT D �W.

Obviously, the identity tensor is symmetric

IT D I: (1.126)

Indeed,
xIy D x � y D y � x D yIx D xITy; 8x; y 2 E

n:

One can easily show that the tensor Ow (1.66) is skew-symmetric so that

OwT D � Ow: (1.127)

Indeed, by virtue of (1.32) and (1.116) on can write

x OwT
y D y Owx D y � .w � x/ D Œywx� D � Œxwy �

D �x � .w � y/ D x .� Ow/ y ; 8x; y 2 E
3:

Inversion. Let
y D Ax: (1.128)

A tensor A 2 Linn is referred to as invertible if there exists a tensor A�1 2 Linn

satisfying the condition
x D A�1y ; 8x 2 E

n: (1.129)

The tensor A�1 is called inverse of A. The set of all invertible tensors Invn D˚
A 2 Linn : 9A�1

�
forms a subset of all second-order tensors Linn.

Inserting (1.128) into (1.129) yields

x D A�1y D A�1 .Ax/ D �
A�1A

�
x; 8x 2 E

n

and consequently
A�1A D I: (1.130)

Theorem 1.8. A tensor A is invertible if and only if Ax D 0 implies that x D 0.

Proof. First we prove the sufficiency. To this end, we map the vector equation
Ax D 0 by A�1. According to (1.130) it yields: 0 D A�1Ax D Ix D x. To
prove the necessity we consider a basis G D fg1; g2; : : : ; gng in E

n. It can be
shown that the vectors hi D Agi .i D 1; 2; : : : ; n/ form likewise a basis of E

n.
Conversely, let these vectors be linearly dependent so that ai hi D 0, where not
all scalars ai .i D 1; 2; : : : ; n/ are zero. Then, 0 D ai hi D ai Ag i D Aa, where
a D ai g i ¤ 0, which contradicts the assumption of the theorem. Now, consider
the tensor A0 D gi ˝ hi , where the vectors hi are dual to hi .i D 1; 2; : : : ; n/. One



1.9 Special Operations with Second-Order Tensors 25

can show that this tensor is inverse to A, such that A0 D A�1. Indeed, let x D xi g i

be an arbitrary vector in E
n. Then, y D Ax D xi Ag i D xi hi and therefore

A0y D gi ˝ hi
�
xj hj

� D gi x
j ıi

j D xi gi D x.

Conversely, it can be shown that an invertible tensor A is inverse to A�1 and
consequently

AA�1 D I: (1.131)

For the proof we again consider the bases gi and Agi .i D 1; 2; : : : ; n/. Let y D
yi Agi be an arbitrary vector in E

n. Let further x D A�1y D yi g i in view
of (1.130). Then, Ax D yi Agi D y which implies that the tensor A is inverse
to A�1.

Relation (1.131) implies the uniqueness of the inverse. Indeed, if A�1 and eA�1

are two distinct tensors both inverse to A then there exists at least one vector y 2 E
n

such that A�1y ¤ eA�1y . Mapping both sides of this vector inequality by A and
taking (1.131) into account we immediately come to the contradiction.

By means of (1.120), (1.126) and (1.131) we can write (see Exercise 1.39)

�
A�1

�T D �
AT��1 D A�T: (1.132)

The composition of two arbitrary invertible tensors A and B is inverted by

.AB/�1 D B�1A�1: (1.133)

Indeed, let
y D ABx:

Mapping both sides of this vector identity by A�1 and then by B�1, we obtain with
the aid of (1.130)

x D B�1A�1y ; 8x 2 E
n:

On the basis of transposition and inversion one defines the so-called orthogonal
tensors. They do not change after consecutive transposition and inversion and form
the following subset of Linn:

Orthn D ˚
Q 2 Linn : Q D Q�T

�
: (1.134)

For orthogonal tensors we can write in view of (1.130) and (1.131)

QQT D QTQ D I; 8Q 2 Orthn: (1.135)

For example, one can show that the rotation tensor (1.73) is orthogonal. To this end,
we complete the vector e defining the rotation axis (Fig. 1.2) to an orthonormal basis
fe; q; pg such that e D q � p. Then, using the vector identity (see Exercise 1.15)

p .q � x/ � q .p � x/ D .q � p/ � x; 8x 2 E
3 (1.136)
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we can write
Oe D p ˝ q � q ˝ p: (1.137)

The rotation tensor (1.73) takes thus the form

R D cos !I C sin ! .p ˝ q � q ˝ p/ C .1 � cos !/ .e ˝ e/ : (1.138)

Hence,

RRT D Œcos !I C sin ! .p ˝ q � q ˝ p/ C .1 � cos !/ .e ˝ e/�

Œcos !I � sin ! .p ˝ q � q ˝ p/ C .1 � cos !/ .e ˝ e/�

D cos2 !I C sin2 ! .e ˝ e/ C sin2 ! .p ˝ p C q ˝ q/ D I:

Alternatively one can express the transposed rotation tensor (1.73) by

RT D cos !I C sin ! OeT C .1 � cos !/ e ˝ e

D cos .�!/ I C sin .�!/ Oe C Œ1 � cos .�!/� e ˝ e (1.139)

taking (1.121), (1.126) and (1.127) into account. Thus, RT (1.139) describes the
rotation about the same axis e by the angle �!, which likewise implies that
RTRx D x; 8x 2 E

3:

It is interesting that the exponential function (1.114) of a skew-symmetric tensors
represents an orthogonal tensor. Indeed, keeping in mind that a skew-symmetric
tensor W commutes with its transposed counterpart WT D �W and using the
identities exp .A C B/ D exp .A/ exp .B/ for commutative tensors (Exercise 1.29)

and
�
Ak

�T D �
AT

�k
for integer k (Exercise 1.37) we can write

I D exp .0/ D exp .W � W/ D exp
�
W C WT�

D exp .W/ exp
�
WT� D exp .W/ Œexp .W/�T ; (1.140)

where W denotes an arbitrary skew-symmetric tensor.

1.10 Scalar Product of Second-Order Tensors

Consider two second-order tensors a ˝ b and c ˝ d given in terms of the tensor
product (1.80). Their scalar product can be defined in the following manner:

.a ˝ b/ : .c ˝ d/ D .a � c/ .b � d/ ; a; b; c; d 2 E
n: (1.141)
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It leads to the following identity (Exercise 1.41):

c ˝ d : A D cAd D dATc: (1.142)

For two arbitrary tensors A and B given in the form (1.87) we thus obtain

A : B D Aij Bij D Aij Bij D Ai�j B j
i � D A j

i � Bi�j : (1.143)

Similar to vectors the scalar product of tensors is a real function characterized by
the following properties (see Exercise 1.42)

D. (D.1) A : B D B : A (commutative rule),
(D.2) A : .B C C/ D A : B C A : C (distributive rule),
(D.3) ˛ .A : B/ D .˛A/ : B D A : .˛B/ (associative rule for multiplication by

a scalar), 8A; B 2 Linn; 8˛ 2 R,
(D.4) A : A � 0 8A 2 Linn; A : A D 0 if and only if A D 0.

We prove for example the property (D.4). To this end, we represent an arbitrary
tensor A with respect to an orthonormal basis of Linn as: A D Aij ei ˝ ej D
Aij e i ˝ ej , where Aij D Aij ; .i; j D 1; 2; : : : ; n/, since ei D ei .i D 1; 2; : : : ; n/

form an orthonormal basis of En (1.8). Keeping (1.143) in mind we then obtain:

A : A D Aij Aij D
nX

i;j D1

Aij Aij D
nX

i;j D1

�
Aij

�2 � 0:

Using this important property one can define the norm of a second-order tensor by:

kAk D .A W A/1=2 ; A 2 Linn: (1.144)

For the scalar product of tensors one of which is given by a composition we can
write

A : .BC/ D �
BTA

�
: C D �

ACT�
: B: (1.145)

We prove this identity first for the tensor products:

.a ˝ b/ : Œ.c ˝ d/ .e ˝ f /� D .d � e/ Œ.a ˝ b/ : .c ˝ f /�

D .d � e/ .a � c/ .b � f / ;

�
.c ˝ d/T .a ˝ b/

	
: .e ˝ f / D Œ.d ˝ c/ .a ˝ b/� : .e ˝ f /

D .a � c/ Œ.d ˝ b/ : .e ˝ f /�

D .d � e/ .a � c/ .b � f / ;
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�
.a ˝ b/ .e ˝ f /T	

: .c ˝ d/ D Œ.a ˝ b/ .f ˝ e/� : .c ˝ d/

D .b � f / Œ.a ˝ e/ : .c ˝ d/�

D .d � e/ .a � c/ .b � f / :

For three arbitrary tensors A, B and C given in the form (1.87) we can write in view
of (1.109), (1.125) and (1.143)

Ai�j
�

B k
i � C

j

k�
�

D
�

B k
i � Ai�j

�
C j

k� D
h�

BT�k

�i Ai�j
i

C j

k� ;

Ai�j
�

B k
i � C

j

k�
�

D
�

Ai�j C j

k�
�

B k
i � D

h
Ai�j

�
CT

�j

�k
i

B k
i � : (1.146)

Similarly we can prove that

A : B D AT : BT: (1.147)

On the basis of the scalar product one defines the trace of second-order tensors by:

trA D A : I: (1.148)

For the tensor product (1.80) the trace (1.148) yields in view of (1.142)

tr .a ˝ b/ D a � b: (1.149)

With the aid of the relation (1.145) we further write

tr .AB/ D A : BT D AT : B: (1.150)

In view of (D.1) this also implies that

tr .AB/ D tr .BA/ : (1.151)

1.11 Decompositions of Second-Order Tensors

Additive decomposition into a symmetric and a skew-symmetric part. Every
second-order tensor can be decomposed additively into a symmetric and a skew-
symmetric part by

A D symA C skewA; (1.152)
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where

symA D 1

2

�
A C AT�

; skewA D 1

2

�
A � AT�

: (1.153)

Symmetric and skew-symmetric tensors form subsets of Linn defined respec-
tively by

Symn D ˚
M 2 Linn : M D MT�

; (1.154)

Skewn D ˚
W 2 Linn : W D �WT�

: (1.155)

One can easily show that these subsets represent vector spaces and can be referred
to as subspaces of Linn. Indeed, the axioms (A.1)–(A.4) and (B.1)–(B.4) including
operations with the zero tensor are valid both for symmetric and skew-symmetric
tensors. The zero tensor is the only linear mapping that is both symmetric and skew-
symmetric such that Symn\ Skewn = 0.

For every symmetric tensor M D Mij gi ˝gj it follows from (1.124) that Mij D
Mj i .i ¤ j; i; j D 1; 2; : : : ; n/. Thus, we can write

M D
nX

iD1

Mi i gi ˝ gi C
nX

i;j D1
i>j

Mij
�
gi ˝ gj C gj ˝ g i

�
; M 2 Symn: (1.156)

Similarly we can write for a skew-symmetric tensor

W D
nX

i;j D1
i>j

Wij
�
gi ˝ gj � gj ˝ gi

�
; W 2 Skewn (1.157)

taking into account that Wi i D 0 and Wij D �Wj i .i ¤ j; i; j D 1; 2; : : : ; n/.
Therefore, the basis of Symn is formed by n tensors g i ˝ g i and 1

2
n .n � 1/ tensors

gi ˝ gj C gj ˝ gi , while the basis of Skewn consists of 1
2
n .n � 1/ tensors gi ˝

gj �gj ˝g i , where i > j D 1; 2; : : : ; n: Thus, the dimensions of Symn and Skewn

are 1
2
n .n C 1/ and 1

2
n .n � 1/, respectively. It follows from (1.152) that any basis

of Skewn complements any basis of Symn to a basis of Linn.
Taking (1.40) and (1.169) into account a skew symmetric tensor (1.157) can be

represented in three-dimensional space by

W D
3X

i;j D1
i>j

Wij
�
gi ˝ gj � gj ˝ g i

�

D
3X

i;j D1
i>j

Wij
3gj � g i D Ow; W 2 Skew3; (1.158)
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where

w D
3X

i;j D1
i>j

Wij gj � gi D 1

2
Wij gj � gi D 1

2
gj � �

Wgj
�

D 1

2
Wij ej ik g gk D g

�
W32g1 C W13g2 C W21g3

�
: (1.159)

Thus, every skew-symmetric tensor in three-dimensional space describes a cross
product by a vector w (1.159) called axial vector. One immediately observes that

Ww D 0; W 2 Skew3: (1.160)

Obviously, symmetric and skew-symmetric tensors are mutually orthogonal such
that (see Exercise 1.46)

M W W D 0; 8M 2 Symn; 8W 2 Skewn: (1.161)

Spaces characterized by this property are called orthogonal.

Additive decomposition into a spherical and a deviatoric part. For every
second-order tensor A we can write

A D sphA C devA; (1.162)

where

sphA D 1

n
tr .A/ I; devA D A � 1

n
tr .A/ I (1.163)

denote its spherical and deviatoric part, respectively. Thus, every spherical tensor S
can be represented by S D ˛I, where ˛ is a scalar number. In turn, every deviatoric
tensor D is characterized by the condition trD D 0. Just like symmetric and skew-
symmetric tensors, spherical and deviatoric tensors form orthogonal subspaces of
Linn.

1.12 Tensors of Higher Orders

Similarly to second-order tensors we can define tensors of higher orders. For
example, a third-order tensor can be defined as a linear mapping from E

n to Linn.
Thus, we can write

Y D Ax; Y 2 Linn; 8x 2 E
n; 8A 2 Linn; (1.164)
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where Linn denotes the set of all linear mappings of vectors in E
n into second-order

tensors in Linn. The tensors of the third order can likewise be represented with
respect to a basis in Linn e.g. by

A D Aijkg i ˝ gj ˝ gk D Aijkgi ˝ gj ˝ gk

D Ai�jkgi ˝ gj ˝ gk D A j

i �kgi ˝ gj ˝ gk: (1.165)

For the components of the tensor A (1.165) we can thus write by analogy
with (1.146)

Aijk D Aij��sgsk D Ai�st g
sj gtk D Arst g

ri gsj gtk;

Aijk D Ar�jkgri D Ars��kgri gsj D Arst gri gsj gtk: (1.166)

Exercises

1.1. Prove that if x 2 V is a vector and ˛ 2 R is a scalar, then the following
identities hold.
(a) �0 D 0, (b) ˛0 D 0, (c) 0x D 0, (d) �x D .�1/ x, (e) if ˛x D 0, then
either ˛ D 0 or x D 0 or both.

1.2. Prove that xi ¤ 0 .i D 1; 2; : : : ; n/ for linearly independent vectors x1,
x2; : : : ; xn. In other words, linearly independent vectors are all non-zero.

1.3. Prove that any non-empty subset of linearly independent vectors x1,
x2; : : : ; xn is also linearly independent.

1.4. Write out in full the following expressions for n = 3: (a) ıi
j aj , (b) ıij xi xj ,

(c) ıi
i , (d)

@fi

@xj
dxj .

1.5. Prove that
0 � x D 0; 8x 2 E

n: (1.167)

1.6. Prove that a set of mutually orthogonal non-zero vectors is always linearly
independent.

1.7. Prove the so-called parallelogram law: kx C yk2 D kxk2 C 2x � y C kyk2.

1.8. Let G D fg1; g2; : : : ; gng be a basis in E
n and a 2 E

n be a vector. Prove that
a � gi D 0 .i D 1; 2; : : : ; n/ if and only if a D 0.

1.9. Prove that a D b if and only if a � x D b � x; 8x 2 E
n.

1.10. (a) Construct an orthonormal set of vectors orthogonalizing and normalizing
(with the aid of the procedure described in Sect. 1.4) the following linearly
independent vectors:
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g1 D
8
<

:

1

1

0

9
=

;
; g2 D

8
<

:

2

1

�2

9
=

;
; g3 D

8
<

:

4

2

1

9
=

;
;

where the components are given with respect to an orthonormal basis.
(b) Construct a basis in E

3 dual to the given above utilizing relations (1.16)2, (1.18)
and (1.19).

(c) As an alternative, construct a basis in E
3 dual to the given above by means

of (1.21)1, (1.24) and (1.25)2.
(d) Calculate again the vectors gi dual to gi .i D 1; 2; 3/ by using relations (1.33)

and (1.35). Compare the result with the solution of problem (b).

1.11. Verify that the vectors (1.33) are linearly independent.

1.12. Prove identities (1.41) and (1.42) by means of (1.18), (1.19) and (1.24),
respectively.

1.13. Prove relations (1.40) and (1.44) by using (1.39) and (1.43), respectively.

1.14. Verify the following identities involving the permutation symbol (1.36) for
n = 3: (a) ıij eijk D 0, (b) eikmejkm D 2ıi

j , (c) eijkeijk D 6, (d) eij meklm D
ıi

kı
j

l � ıi
l ı

j

k .

1.15. Prove the following identities

.a � b/ � c D .a � c/ b � .b � c/ a; (1.168)

1a � b D b ˝ a � a ˝ b; 8a; b; c 2 E
3: (1.169)

1.16. Prove relations (1.64) using (1.45).

1.17. Prove that A0 D 0A D 0; 8A 2 Linn.

1.18. Prove that 0A D 0; 8A 2 Linn.

1.19. Prove formula (1.58), where the negative tensor �A is defined by (1.53).

1.20. Prove that not every second order tensor in Linn can be represented as a tensor
product of two vectors a; b 2 E

n as a ˝ b.

1.21. Prove relation (1.85).

1.22. Prove (1.88) using (1.87) and (1.15).

1.23. Evaluate the tensor W D Ow D w�, where w D wi gi .

1.24. Evaluate components of the tensor describing a rotation about the axis e3 by
the angle ˛.
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1.25. Let A D Aij g i ˝ gj , where

�
Aij

	 D
2

4
0 �1 0

0 0 0

1 0 0

3

5

and the vectors g i .i D 1; 2; 3/ are given in Exercise 1.10. Evaluate the components
Aij , Ai�j and A j

i � .

1.26. Prove identities (1.105) and (1.107).

1.27. Let A D Ai�j gi ˝gj , B D Bi�j g i ˝gj , C D Ci�j gi ˝gj and D D Di�j gi ˝gj ,
where

h
Ai�j

i
D

2

4
0 2 0

0 0 0

0 0 0

3

5 ;
h
Bi�j

i
D

2

4
0 0 0

0 0 0

0 0 1

3

5 ;
h
Ci�j

i
D

2

4
1 2 3

0 0 0

0 1 0

3

5 ;

h
Di�j

i
D

2

4
1 0 0

0 1=2 0

0 0 10

3

5 :

Find commutative pairs of tensors.

1.28. Let A and B be two commutative tensors. Write out in full .A C B/k , where
k D 2; 3; : : :

1.29. Prove that
exp .A C B/ D exp .A/ exp .B/ ; (1.170)

where A and B commute.

1.30. Evaluate exp .0/ and exp .I/.

1.31. Prove that exp .�A/ exp .A/ D exp .A/ exp .�A/ D I.

1.32. Prove that exp .kA/ D Œexp .A/�k for all integer k.

1.33. Prove that exp .A C B/ D exp .A/ C exp .B/ � I if AB D BA D 0.

1.34. Prove that exp
�
QAQT

� D Q exp .A/QT; 8Q 2 Orthn.

1.35. Compute the exponential of the tensors D D Di�j gi ˝ gj , E D Ei�j gi ˝ gj

and F D Fi�j g i ˝ gj , where

h
Di�j

i
D

2

4
2 0 0

0 3 0

0 0 1

3

5 ;
h
Ei�j

i
D

2

4
0 1 0

0 0 0

0 0 0

3

5 ;
h
Fi�j

i
D

2

4
0 2 0

0 0 0

0 0 1

3

5 :
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1.36. Prove that .ABCD/T D DTCTBTAT.

1.37. Verify that
�
Ak

�T D �
AT

�k
, where k D 1; 2; 3; : : :

1.38. Evaluate the components Bij , Bij , Bi�j and B j
i � of the tensor B D AT, where

A is defined in Exercise 1.25.

1.39. Prove relation (1.132).

1.40. Verify that
�
A�1

�k D �
Ak

��1 D A�k , where k D 1; 2; 3; : : :

1.41. Prove identity (1.142) using (1.87) and (1.141).

1.42. Prove by means of (1.141)–(1.143) the properties of the scalar product (D.1)–
(D.3).

1.43. Verify that Œ.a ˝ b/ .c ˝ d/� : I D .a � d/ .b � c/.

1.44. Express trA in terms of the components Ai�j , Aij , Aij .

1.45. Let W D Wij gi ˝ gj , where

�
Wij

	 D
2

4
0 �1 �3

1 0 1

3 �1 0

3

5

and the vectors gi .i D 1; 2; 3/ are given in Exercise 1.10. Calculate the axial vector
of W.

1.46. Prove that M : W D 0, where M is a symmetric tensor and W a skew-
symmetric tensor.

1.47. Evaluate trWk , where W is a skew-symmetric tensor and k D 1; 3; 5; : : :

1.48. Verify that sym .skewA/ D skew .symA/ D 0; 8A 2 Linn.

1.49. Prove that sph .devA/ D dev .sphA/ D 0; 8A 2 Linn.



Chapter 2
Vector and Tensor Analysis in Euclidean Space

2.1 Vector- and Tensor-Valued Functions, Differential
Calculus

In the following we consider a vector-valued function x .t/ and a tensor-valued
function A .t/ of a real variable t . Henceforth, we assume that these functions are
continuous such that

lim
t!t0

Œx .t/ � x .t0/� D 0; lim
t!t0

ŒA .t/ � A .t0/� D 0 (2.1)

for all t0 within the definition domain. The functions x .t/ and A .t/ are called
differentiable if the following limits

dx

dt
D lim

s!0

x .t C s/ � x .t/

s
;

dA
dt

D lim
s!0

A .t C s/ � A .t/

s
(2.2)

exist and are finite. They are referred to as the derivatives of the vector- and tensor-
valued functions x .t/ and A .t/, respectively.

For differentiable vector- and tensor-valued functions the usual rules of differen-
tiation hold.

1. Product of a scalar function with a vector- or tensor-valued function:

d

dt
Œu .t/ x .t/� D du

dt
x .t/ C u .t/

dx

dt
; (2.3)

d

dt
Œu .t/ A .t/� D du

dt
A .t/ C u .t/

dA
dt

: (2.4)

2. Mapping of a vector-valued function by a tensor-valued function:

d

dt
ŒA .t/ x .t/� D dA

dt
x .t/ C A .t/

dx

dt
: (2.5)
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3. Scalar product of two vector- or tensor-valued functions:

d

dt
Œx .t/ � y .t/� D dx

dt
� y .t/ C x .t/ � dy

dt
; (2.6)

d

dt
ŒA .t/ W B .t/� D dA

dt
W B .t/ C A .t/ W dB

dt
: (2.7)

4. Tensor product of two vector-valued functions:

d

dt
Œx .t/ ˝ y .t/� D dx

dt
˝ y .t/ C x .t/ ˝ dy

dt
: (2.8)

5. Composition of two tensor-valued functions:

d

dt
ŒA .t/ B .t/� D dA

dt
B .t/ C A .t/

dB
dt

: (2.9)

6. Chain rule:
d

dt
x Œu .t/� D dx

du

du

dt
;

d

dt
A Œu .t/� D dA

du

du

dt
: (2.10)

7. Chain rule for functions of several arguments:

d

dt
x Œu .t/ ,v .t/� D @x

@u

du

dt
C @x

@v

dv

dt
; (2.11)

d

dt
A Œu .t/ ,v .t/� D @A

@u

du

dt
C @A

@v

dv

dt
; (2.12)

where @=@u denotes the partial derivative. It is defined for vector and tensor
valued functions in the standard manner by

@x .u,v/

@u
D lim

s!0

x .u C s,v/ � x .u,v/

s
; (2.13)

@A .u,v/

@u
D lim

s!0

A .u C s,v/ � A .u,v/

s
: (2.14)

The above differentiation rules can be verified with the aid of elementary differential
calculus. For example, for the derivative of the composition of two second-order
tensors (2.9) we proceed as follows. Let us define two tensor-valued functions by

O1 .s/ D A .t C s/ � A .t/

s
� dA

dt
; O2 .s/ D B .t C s/ � B .t/

s
� dB

dt
: (2.15)

Bearing the definition of the derivative (2.2) in mind we have

lim
s!0

O1 .s/ D 0; lim
s!0

O2 .s/ D 0:
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Then,

d

dt
ŒA .t/ B .t/� D lim

s!0

A .t C s/ B .t C s/ � A .t/ B .t/

s

D lim
s!0

1

s

��
A .t/ C s

dA
dt

C sO1 .s/

� �
B .t/ C s

dB
dt

C sO2 .s/

�

� A .t/ B .t/

�

D lim
s!0

��
dA
dt

C O1 .s/

�
B .t/ C A .t/

�
dB
dt

C O2 .s/

��

C lim
s!0

s

�
dA
dt

C O1 .s/

� �
dB
dt

C O2 .s/

�
D dA

dt
B .t/ C A .t/

dB
dt

:

2.2 Coordinates in Euclidean Space, Tangent Vectors

Definition 2.1. A coordinate system is a one to one correspondence between
vectors in the n-dimensional Euclidean space E

n and a set of n real num-
bers .x1; x2; : : : ; xn/. These numbers are called coordinates of the corresponding
vectors.

Thus, we can write

xi D xi .r/ , r D r
�
x1; x2; : : : ; xn

�
; (2.16)

where r 2 E
n and xi 2 R .i D 1; 2; : : : ; n/. Henceforth, we assume that the

functions xi D xi .r/ and r D r
�
x1; x2; : : : ; xn

�
are sufficiently differentiable.

Example 2.1. Cylindrical coordinates in E
3. The cylindrical coordinates (Fig. 2.1)

are defined by

r D r .'; z; r/ D r cos 'e1 C r sin 'e2 C ze3 (2.17)

and

r D
q

.r � e1/
2 C .r � e2/2; z D r � e3;

' D
8<
:

arccos
r � e1

r
if r � e2 � 0;

2� � arccos
r � e1

r
if r � e2 < 0;

(2.18)

where e i .i D 1; 2; 3/ form an orthonormal basis in E
3.
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ϕ

e1

r

x1

e2 x2

x3 = z

e3

r

g3

g1

g2

Fig. 2.1 Cylindrical coordinates in three-dimensional space

The vector components with respect to a fixed basis, say H D fh1; h2; : : : ;

hng, obviously represent its coordinates. Indeed, according to Theorem 1.5 of the
previous chapter the following correspondence is one to one

r D xi hi , xi D r � hi ; i D 1; 2; : : : ; n; (2.19)

where r 2 E
n and H0 D ˚

h1; h2; : : : ; hn
�

is the basis dual to H. The components
xi (2.19)2 are referred to as the linear coordinates of the vector r .

The Cartesian coordinates result as a special case of the linear coordinates (2.19)
where hi D ei .i D 1; 2; : : : ; n/ so that

r D xi e i , xi D r � ei ; i D 1; 2; : : : ; n: (2.20)

Let xi D xi .r/ and yi D yi .r/ .i D 1; 2; : : : ; n/ be two arbitrary coordinate
systems in E

n. Since their correspondences are one to one, the functions

xi D Oxi
�
y1; y2; : : : ; yn

� , yi D Oyi
�
x1; x2; : : : ; xn

�
; i D 1; 2; : : : ; n (2.21)

are invertible. These functions describe the transformation of the coordinate sys-
tems. Inserting one relation (2.21) into another one yields

yi D Oyi
� Ox1

�
y1; y2; : : : ; yn

�
;

Ox2
�
y1; y2; : : : ; yn

�
; : : : ; Oxn

�
y1; y2; : : : ; yn

��
: (2.22)
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The further differentiation with respect to yj delivers with the aid of the chain rule

@yi

@yj
D ıij D @yi

@xk

@xk

@yj
; i; j D 1; 2; : : : ; n: (2.23)

The determinant of the matrix (2.23) takes the form

ˇ̌
ıij

ˇ̌ D 1 D
ˇ̌
ˇ̌ @yi

@xk

@xk

@yj

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ @yi

@xk

ˇ̌
ˇ̌
ˇ̌
ˇ̌@xk

@yj

ˇ̌
ˇ̌ : (2.24)

The determinant
ˇ̌
@yi =@xk

ˇ̌
on the right hand side of (2.24) is referred to as Jacobian

determinant of the coordinate transformation yi D Oyi
�
x1; x2; : : : ; xn

�
.i D 1; 2;

: : : ; n/. Thus, we have proved the following theorem.

Theorem 2.1. If the transformation of the coordinates yi D Oyi
�
x1; x2; : : : ; xn

�
admits an inverse form xi D Oxi

�
y1; y2; : : : ; yn

�
.i D 1; 2; : : : ; n/ and if J and K

are the Jacobians of these transformations then JK D 1.

One of the important consequences of this theorem is that

J D
ˇ̌
ˇ̌ @yi

@xk

ˇ̌
ˇ̌ ¤ 0: (2.25)

Now, we consider an arbitrary curvilinear coordinate system

�i D �i .r/ , r D r
�
�1; �2; : : : ; �n

�
; (2.26)

where r 2 E
n and �i 2 R .i D 1; 2; : : : ; n/. The equations

�i D const ; i D 1; 2; : : : ; k � 1; k C 1; : : : ; n (2.27)

define a curve in E
n called �k-coordinate line. The vectors (see Fig. 2.2)

gk D @r

@�k
; k D 1; 2; : : : ; n (2.28)

are called the tangent vectors to the corresponding �k-coordinate lines (2.27).
One can verify that the tangent vectors are linearly independent and form thus

a basis of En. Conversely, let the vectors (2.28) be linearly dependent. Then, there
are scalars ˛i 2 R .i D 1; 2; : : : ; n/, not all zero, such that ˛i gi D 0. Let further
xi D xi .r/ .i D 1; 2; : : : ; n/ be linear coordinates in E

n with respect to a basis
H D fh1; h2; : : : ; hng. Then,

0 D ˛i gi D ˛i @r

@�i
D ˛i @r

@xj

@xj

@�i
D ˛i @xj

@�i
hj :
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gk

r(θk
 + s)

r(θk)

θkΔr

Fig. 2.2 Illustration of the tangent vectors

Since the basis vectors hj .j D 1; 2; : : : ; n/ are linearly independent

˛i @xj

@�i
D 0; j D 1; 2; : : : ; n:

This is a homogeneous linear equation system with a non-trivial solution
˛i .i D 1; 2; : : : ; n/. Hence,

ˇ̌
@xj =@�i

ˇ̌ D 0, which obviously contradicts rela-
tion (2.25).

Example 2.2. Tangent vectors and metric coefficients of cylindrical coordinates
in E

3. By means of (2.17) and (2.28) we obtain

g1 D @r

@'
D �r sin 'e1 C r cos 'e2;

g2 D @r

@z
D e3;

g3 D @r

@r
D cos 'e1 C sin 'e2: (2.29)

The metric coefficients take by virtue of (1.24) and (1.25)2 the form

	
gij


 D 	
gi � gj


 D
2
4 r2 0 0

0 1 0

0 0 1

3
5 ;

	
gij

 D 	

gij


�1 D
2
4 r�2 0 0

0 1 0

0 0 1

3
5 : (2.30)

The dual basis results from (1.21)1 by

g1 D 1

r2
g1 D �1

r
sin 'e1 C 1

r
cos 'e2;

g2 D g2 D e3;

g3 D g3 D cos 'e1 C sin 'e2: (2.31)
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2.3 Coordinate Transformation. Co-, Contra- and Mixed
Variant Components

Let �i D �i .r/ and N�i D N�i .r/ .i D 1; 2; : : : ; n/ be two arbitrary coordinate
systems in E

n. It holds

Ngi D @r

@ N�i
D @r

@�j

@�j

@ N�i
D gj

@�j

@ N�i
; i D 1; 2; : : : ; n: (2.32)

If gi is the dual basis to gi .i D 1; 2; : : : ; n/, then we can write

Ngi D gj @ N�i

@�j
; i D 1; 2; : : : ; n: (2.33)

Indeed,

Ng i � Ngj D
 

gk @ N�i

@�k

!
�
�

gl

@� l

@ N�j

�
D gk � gl

 
@ N�i

@�k

@�l

@ N�j

!

D ık
l

 
@ N�i

@�k

@�l

@ N�j

!
D @ N�i

@�k

@�k

@ N�j
D @ N�i

@ N�j
D ıi

j ; i; j D 1; 2; : : : ; n: (2.34)

One can observe the difference in the transformation of the dual vectors (2.32)
and (2.33) which results from the change of the coordinate system. The transforma-
tion rules of the form (2.32) and (2.33) and the corresponding variables are referred
to as covariant and contravariant, respectively. Covariant and contravariant variables
are denoted by lower and upper indices, respectively.

The co- and contravariant rules can also be recognized in the transformation
of the components of vectors and tensors if they are related to tangent vectors.
Indeed, let

x D xi g
i D xi gi D Nxi Ngi D Nxi Ngi ; (2.35)

A D Aij gi ˝ gj D Aij g i ˝ gj D Ai�j gi ˝ gj

D NAij Ngi ˝ Ngj D NAij Ng i ˝ Ngj D NAi

�j Ngi ˝ Ngj : (2.36)

Then, by means of (1.28), (1.88), (2.32) and (2.33) we obtain

Nxi D x � Ngi D x �
�

gj

@�j

@ N�i

�
D xj

@�j

@ N�i
; (2.37)

Nxi D x � Ngi D x �
 

gj @ N�i

@�j

!
D xj @ N�i

@�j
; (2.38)
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NAij D Ngi A Ngj D
�

gk

@�k

@ N�i

�
A
�

gl

@� l

@ N�j

�
D @�k

@ N�i

@�l

@ N�j
Akl ; (2.39)

NAij D Ngi A Ngj D
 

gk @ N�i

@�k

!
A

 
g l @ N�j

@�l

!
D @ N�i

@�k

@ N�j

@�l
Akl ; (2.40)

NAi

�j D Ng iA Ngj D
 

gk @ N�i

@�k

!
A
�

gl

@� l

@ N�j

�
D @ N�i

@�k

@�l

@ N�j
Ak�l : (2.41)

Accordingly, the vector and tensor components xi , Aij and xi , Aij are called
covariant and contravariant, respectively. The tensor components Ai�j are referred
to as mixed variant. The transformation rules (2.37)–(2.41) can similarly be written
for tensors of higher orders as well. For example, one obtains for third-order tensors

NAijk D @�r

@ N�i

@�s

@ N�j

@�t

@ N�k
Arst ; NAijk D @ N�i

@�r

@ N�j

@�s

@ N�k

@�t
Arst ; : : : (2.42)

From the very beginning we have supplied coordinates with upper indices which
imply the contravariant transformation rule. Indeed, let us consider the transforma-
tion of a coordinate system N�i D N�i

�
�1; �2; : : : ; �n

�
.i D 1; 2; : : : ; n/. It holds:

d N�i D @ N�i

@�k
d�k; i D 1; 2; : : : ; n: (2.43)

Thus, the differentials of the coordinates really transform according to the con-
travariant law (2.33).

Example 2.3. Transformation of linear coordinates into cylindrical ones (2.17).
Let xi D xi .r/ be linear coordinates with respect to an orthonormal basis
ei .i D 1; 2; 3/ in E

3:

xi D r � ei , r D xi ei : (2.44)

By means of (2.17) one can write

x1 D r cos '; x2 D r sin '; x3 D z (2.45)

and consequently

@x1

@'
D �r sin ' D �x2;

@x1

@z
D 0;

@x1

@r
D cos ' D x1

r
;

@x2

@'
D r cos ' D x1;

@x2

@z
D 0;

@x2

@r
D sin ' D x2

r
;

@x3

@'
D 0;

@x3

@z
D 1;

@x3

@r
D 0:

(2.46)
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The reciprocal derivatives can easily be obtained from (2.23) by inverting the matrixh
@xi

@'
@xi

@z
@xi

@r

i
. This yields:

@'

@x1
D �1

r
sin ' D �x2

r2
;

@'

@x2
D 1

r
cos ' D x1

r2
;

@'

@x3
D 0;

@z

@x1
D 0;

@z

@x2
D 0;

@z

@x3
D 1;

@r

@x1
D cos ' D x1

r
;

@r

@x2
D sin ' D x2

r
;

@r

@x3
D 0:

(2.47)

2.4 Gradient, Covariant and Contravariant Derivatives

Let ˚ D ˚
�
�1; �2; : : : ; �n

�
, x D x

�
�1; �2; : : : ; �n

�
and A D A

�
�1; �2; : : : ; �n

�
be, respectively, a scalar-, a vector- and a tensor-valued differentiable function of the
coordinates �i 2 R .i D 1; 2; : : : ; n/. Such functions of coordinates are generally
referred to as fields, as for example, the scalar field, the vector field or the tensor
field. Due to the one to one correspondence (2.26) these fields can alternatively be
represented by

˚ D ˚ .r/ ; x D x .r/ ; A D A .r/ : (2.48)

In the following we assume that the so-called directional derivatives of the func-
tions (2.48)

d

ds
˚ .r C sa/

ˇ̌
ˇ̌
sD0

D lim
s!0

˚ .r C sa/ � ˚ .r/

s
;

d

ds
x .r C sa/

ˇ̌
ˇ̌
sD0

D lim
s!0

x .r C sa/ � x .r/

s
;

d

ds
A .r C sa/

ˇ̌
ˇ̌
sD0

D lim
s!0

A .r C sa/ � A .r/

s
(2.49)

exist for all a 2E
n. Further, one can show that the mappings a ! d

ds
˚ .r C sa/

ˇ̌
sD0

,
a ! d

ds
x .r C sa/

ˇ̌
sD0

and a ! d
ds

A .r C sa/
ˇ̌
sD0

are linear with respect to the
vector a. For example, we can write for the directional derivative of the scalar
function ˚ D ˚ .r/

d

ds
˚ Œr C s .a C b/�

ˇ̌
ˇ̌
sD0

D d

ds
˚ Œr C s1a C s2b�

ˇ̌
ˇ̌
sD0

; (2.50)
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where s1 and s2 are assumed to be functions of s such that s1 D s and s2 D s. With
the aid of the chain rule this delivers

d

ds
˚ Œr C s1a C s2b�

ˇ̌
ˇ̌
sD0

D
�

@

@s1

˚ Œr C s1a C s2b�
ds1

ds
C @

@s2

˚ Œr C s1a C s2b�
ds2

ds

� ˇ̌ˇ̌
sD0

D @

@s1

˚ .r C s1a C s2b/

ˇ̌̌
ˇ
s1D0;s2D0

C @

@s2

˚ .r C s1a C s2b/

ˇ̌̌
ˇ
s1D0;s2D0

D d

ds
˚ .r C sa/

ˇ̌̌
ˇ
sD0

C d

ds
˚ .r C sb/

ˇ̌̌
ˇ
sD0

and finally

d

ds
˚ Œr C s .a C b/�

ˇ̌̌
ˇ
sD0

D d

ds
˚ .r C sa/

ˇ̌̌
ˇ
sD0

C d

ds
˚ .r C sb/

ˇ̌̌
ˇ
sD0

(2.51)

for all a; b 2 E
n. In a similar fashion we can write

d

ds
˚ .r C s˛a/

ˇ̌̌
ˇ
sD0

D d

d .˛s/
˚ .r C s˛a/

d .˛s/

ds

ˇ̌̌
ˇ
sD0

D ˛
d

ds
˚ .r C sa/

ˇ̌
ˇ̌
sD0

; 8a 2 E
n; 8˛ 2 R: (2.52)

Representing a with respect to a basis as a D ai g i we thus obtain

d

ds
˚ .r C sa/

ˇ̌̌
ˇ
sD0

D d

ds
˚
�
r C sai gi

�ˇ̌̌ˇ
sD0

D ai d

ds
˚ .r C sgi /

ˇ̌̌
ˇ
sD0

D d

ds
˚ .r C sg i /

ˇ̌
ˇ̌
sD0

g i � �aj gj

�
; (2.53)

where g i form the basis dual to gi .i D 1; 2; : : : ; n/. This result can finally be
expressed by

d

ds
˚ .r C sa/

ˇ̌
ˇ̌
sD0

D grad˚ � a; 8a 2 E
n; (2.54)

where the vector denoted by grad˚ 2 E
n is referred to as gradient of the function

˚ D ˚ .r/. According to (2.53) and (2.54) it can be represented by

grad˚ D d

ds
˚ .r C sgi /

ˇ̌̌
ˇ
sD0

gi : (2.55)
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Example 2.4. Gradient of the scalar function krk. Using the definition of the
directional derivative (2.49) we can write

d

ds
kr C sak

ˇ̌̌
ˇ
sD0

D d

ds

p
.r C sa/ � .r C sa/

ˇ̌̌
ˇ
sD0

D d

ds

p
r � r C 2s .r � a/ C s2 .a � a/

ˇ̌
ˇ̌
sD0

D 1

2

2 .r � a/ C 2s .a � a/p
r � r C 2s .r � a/ C s2 .a � a/

ˇ̌̌
ˇ̌
sD0

D r � a

krk :

Comparing this result with (2.54) delivers

grad krk D r

krk : (2.56)

Similarly to (2.54) one defines the gradient of the vector function x D x .r/ and the
gradient of the tensor function A D A .r/:

d

ds
x .r C sa/

ˇ̌̌
ˇ
sD0

D .gradx/ a; 8a 2 E
n; (2.57)

d

ds
A .r C sa/

ˇ̌̌
ˇ
sD0

D .gradA/ a; 8a 2 E
n: (2.58)

Herein, gradx and gradA represent tensors of second and third order, respectively.

In order to evaluate the above gradients (2.54), (2.57) and (2.58) we represent the
vectors r and a with respect to the linear coordinates (2.19) as

r D xi hi ; a D ai hi : (2.59)

With the aid of the chain rule we can further write for the directional derivative of
the function ˚ D ˚ .r/:

d

ds
˚ .r C sa/

ˇ̌
ˇ̌
sD0

D d

ds
˚
	�

xi C sai
�

hi


ˇ̌ˇ̌
sD0

D @˚

@ .xi C sai /

d
�
xi C sai

�
ds

ˇ̌̌
ˇ̌
sD0

D @˚

@xi
ai

D
�

@˚

@xi
hi

�
� �aj hj

� D
�

@˚

@xi
hi

�
� a; 8a 2 E

n:



46 2 Vector and Tensor Analysis in Euclidean Space

Comparing this result with (2.54) and bearing in mind that it holds for all vectors a

we obtain

grad˚ D @˚

@xi
hi : (2.60)

The representation (2.60) can be rewritten in terms of arbitrary curvilinear coordi-
nates r D r

�
�1; �2; : : : ; �n

�
and the corresponding tangent vectors (2.28). Indeed,

in view of (2.33) and (2.60)

grad˚ D @˚

@xi
hi D @˚

@�k

@�k

@xi
hi D @˚

@�i
gi : (2.61)

Comparison of the last result with (2.55) yields

d

ds
˚ .r C sgi /

ˇ̌
ˇ̌
sD0

D @˚

@�i
; i D 1; 2; : : : ; n: (2.62)

According to the definition (2.54) the gradient is independent of the choice
of the coordinate system. This can also be seen from relation (2.61). Indeed,
taking (2.33) into account we can write for an arbitrary coordinate system N�i D
N�i
�
�1; �2; : : : ; �n

�
.i D 1; 2; : : : ; n/:

grad˚ D @˚

@�i
gi D @˚

@ N�j

@ N�j

@�i
g i D @˚

@ N�j
Ngj : (2.63)

Similarly to relation (2.61) one can express the gradients of the vector-valued
function x D x .r/ and the tensor-valued function A D A .r/ by

gradx D @x

@�i
˝ g i ; gradA D @A

@�i
˝ gi : (2.64)

Example 2.5. Deformation gradient and its representation in the case of simple
shear. Let x and X be the position vectors of a material point in the current and
reference configuration, respectively. The deformation gradient F 2 Lin3 is defined
as the gradient of the function x .X/ as

F D gradx: (2.65)

For the Cartesian coordinates in E
3 where x D xi ei and X D Xie i we can write

by using (2.64)1

F D @x

@Xj
˝ ej D @xi

@Xj
ei ˝ ej D Fi�j ei ˝ ej ; (2.66)
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X2
X

X2, x2

X1, x 1

X1

X1

x
ϕ

e2

e1

γX2

Fig. 2.3 Simple shear of a rectangular sheet

where the matrix
h
Fi�j
i

is given by

h
Fi�j
i

D

2
666664

@x1

@X1

@x1

@X2

@x1

@X3

@x2

@X1

@x2

@X2

@x2

@X3

@x3

@X1

@x3

@X2

@x3

@X3

3
777775

: (2.67)

In the case of simple shear it holds (see Fig. 2.3)

x1 D X1 C �X2; x2 D X2; x3 D X3; (2.68)

where � denotes the amount of shear. Insertion into (2.67) yields

h
Fi�j
i

D
2
4 1 � 0

0 1 0

0 0 1

3
5 : (2.69)

Henceforth, the derivatives of the functions ˚ D ˚
�
�1; �2; : : : ; �n

�
, x D

x
�
�1; �2; : : : ; �n

�
and A D A

�
�1; �2; : : : ; �n

�
with respect to curvilinear coordi-

nates �i will be denoted shortly by

˚;i D @˚

@�i
; x;i D @x

@�i
; A;i D @A

@�i
: (2.70)

They obey the covariant transformation rule (2.32) with respect to the index i since

@˚

@�i
D @˚

@ N�k

@ N�k

@�i
;

@x

@�i
D @x

@ N�k

@ N�k

@�i
;

@A
@�i

D @A

@ N�k

@ N�k

@�i
(2.71)
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and represent again a scalar, a vector and a second-order tensor, respectively. The
latter ones can be represented with respect to a basis as

x;i D xj ji gj D xj ji gj ;

A;i D Akl ji gk ˝ gl D Akl ji gk ˝ gl D Ak� l ji gk ˝ gl ; (2.72)

where .�/ ji denotes some differential operator on the components of the vector x

or the tensor A. In view of (2.71) and (2.72) this operator transforms with respect
to the index i according to the covariant rule and is called covariant derivative. The
covariant type of the derivative is accentuated by the lower position of the coordinate
index.

On the basis of the covariant derivative we can also define the contravariant one.
To this end, we formally apply the rule of component transformation (1.95)1 as
.�/jiD gij .�/jj . Accordingly,

xj ji D gikxj jk; xj ji D gikxj jk;

Akl ji D gimAkl jm; Akl ji D gimAkl jm; Ak� l ji D gimAk� l jm : (2.73)

For scalar functions the covariant and the contravariant derivative are defined to be
equal to the partial one so that:

˚ ji D ˚ ji D ˚;i : (2.74)

In view of (2.63)–(2.70), (2.72) and (2.74) the gradients of the functions ˚ D
˚
�
�1; �2; : : : ; �n

�
, x D x

�
�1; �2; : : : ; �n

�
and A D A

�
�1; �2; : : : ; �n

�
take the

form
grad˚ D ˚ ji gi D ˚ ji gi ;

gradx D xj ji gj ˝ gi D xj ji gj ˝ gi D xj ji gj ˝ gi D xj ji gj ˝ g i ;

gradA D Akl ji gk ˝ gl ˝ gi D Akl ji gk ˝ g l ˝ g i D Ak� l ji gk ˝ g l ˝ g i

D Akl ji gk ˝ gl ˝ gi D Akl ji gk ˝ g l ˝ g i D Ak� l ji gk ˝ g l ˝ g i :

(2.75)

2.5 Christoffel Symbols, Representation of the Covariant
Derivative

In the previous section we have introduced the notion of the covariant derivative but
have not so far discussed how it can be taken. Now, we are going to formulate a
procedure constructing the differential operator of the covariant derivative. In other
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words, we would like to express the covariant derivative in terms of the vector or
tensor components. To this end, the partial derivatives of the tangent vectors (2.28)
with respect to the coordinates are first needed. Since these derivatives again
represent vectors in E

n, they can be expressed in terms of the tangent vectors g i

or dual vectors gi .i D 1; 2; : : : ; n/ both forming bases of En. Thus, one can write

gi ;j D �ijkgk D �k
ij gk; i; j D 1; 2; : : : ; n; (2.76)

where the components �ijk and �k
ij .i; j; k D 1; 2; : : : ; n/ are referred to as the

Christoffel symbols of the first and second kind, respectively. In view of the
relation gk D gkl gl .k D 1; 2; : : : ; n/ (1.21) these symbols are connected with
each other by

�k
ij D gkl �ijl ; i; j; k D 1; 2; : : : ; n: (2.77)

Keeping the definition of tangent vectors (2.28) in mind we further obtain

gi ;j D r;ij D r;j i D gj ;i ; i; j D 1; 2; : : : ; n: (2.78)

With the aid of (1.28) the Christoffel symbols can thus be expressed by

�ijk D �j ik D gi ;j �gk D gj ;i �gk; (2.79)

�k
ij D �k

j i D gi ;j �gk D gj ;i �gk; i; j; k D 1; 2; : : : ; n: (2.80)

For the dual basis gi .i D 1; 2; : : : ; n/ one further gets by differentiating the
identities gi � gj D ıi

j (1.15):

0 D


ıi

j

�
;k D �

g i � gj

�
;k D g i ;k �gj C gi � gj ;k

D gi ;k �gj C gi �


�l

jkg l

�
D gi ;k �gj C �i

jk; i; j; k D 1; 2; : : : ; n:

Hence,

�i
jk D �i

kj D �g i ;k �gj D �g i ;j �gk; i; j; k D 1; 2; : : : ; n (2.81)

and consequently

gi ;k D ��i
jkgj D ��i

kj gj ; i; k D 1; 2; : : : ; n: (2.82)

By means of the identities following from (2.79)

gij ;k D �
gi � gj

�
;k D gi ;k �gj C gi � gj ;k D �ikj C �jki ; (2.83)

where i; j; k D 1; 2; : : : ; n and in view of (2.77) we finally obtain
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�ijk D 1

2

�
gki ;j C gkj ;i � gij ;k

�
; (2.84)

�k
ij D 1

2
gkl

�
gli ;j Cglj ;i �gij ;l

�
; i; j; k D 1; 2; : : : ; n: (2.85)

It is seen from (2.84) and (2.85) that all Christoffel symbols identically vanish in the
Cartesian coordinates (2.20). Indeed, in this case

gij D ei � ej D ıij ; i; j D 1; 2; : : : ; n (2.86)

and hence

�ijk D �k
ij D 0; i; j; k D 1; 2; : : : ; n: (2.87)

Example 2.6. Christoffel symbols for cylindrical coordinates in E
3 (2.17). By

virtue of relation (2.30)1 we realize that g11;3 D 2r , while all other derivatives
gik;j .i; j; k D 1; 2; 3/ (2.83) are zero. Thus, Eq. (2.84) delivers

�131 D �311 D r; �113 D �r; (2.88)

while all other Christoffel symbols of the first kind �ijk .i; j; k D 1; 2; 3/ are
likewise zero. With the aid of (2.77) and (2.30)2 we further obtain

�1
ij D g11�ij1 D r�2�ij1; �2

ij D g22�ij 2 D �ij 2;

�3
ij D g33�ij 3 D �ij 3; i; j D 1; 2; 3: (2.89)

By virtue of (2.88) we can further write

�1
13 D �1

31 D 1

r
; �3

11 D �r; (2.90)

while all remaining Christoffel symbols of the second kind �k
ij .i; j; k D 1; 2; 3/

(2.85) vanish.

Now, we are in a position to express the covariant derivative in terms of the vector
or tensor components by means of the Christoffel symbols. For the vector-valued
function x D x

�
�1; �2; : : : ; �n

�
we can write using (2.76)

x;j D �
xi g i

�
;j D xi ;j gi C xi g i ;j

D xi ;j gi C xi �k
ij gk D



xi ;j Cxk�i

kj

�
gi ; (2.91)

or alternatively using (2.82)
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x;j D �
xi g

i
�

;j D xi ;j g i C xi g
i ;j

D xi ;j g i � xi �
i
kj gk D



xi ;j �xk�k

ij

�
gi : (2.92)

Comparing these results with (2.72) yields

xi jj D xi ;j Cxk�i
kj ; xi jj D xi ;j �xk�k

ij ; i; j D 1; 2; : : : ; n: (2.93)

Similarly, we treat the tensor-valued function A D A
�
�1; �2; : : : ; �n

�
:

A;k D �
Aij gi ˝ gj

�
;k

D Aij ;k gi ˝ gj C Aij gi ;k ˝gj C Aij g i ˝ gj ;k

D Aij ;k gi ˝ gj C Aij
�
�l

ikgl

�˝ gj C Aij g i ˝


�l

jkgl

�

D



Aij ;k CAlj �i
lk C Ai l�

j

lk

�
gi ˝ gj : (2.94)

Thus,

Aij jkD Aij ;k CAlj �i
lk C Ai l�

j

lk; i; j; k D 1; 2; : : : ; n: (2.95)

By analogy, we further obtain

Aij jkD Aij ;k �Alj �l
ik � Ai l�

l
jk;

Ai�j jkD Ai�j ;k CAl�j �i
lk � Ai�l�l

jk ; i; j; k D 1; 2; : : : ; n: (2.96)

Similar expressions for the covariant derivative can also be formulated for tensors
of higher orders.

From (2.87), (2.93), (2.95) and (2.96) it is seen that the covariant derivative taken
in Cartesian coordinates (2.20) coincides with the partial derivative:

xi jj D xi ;j ; xi jj D xi ;j ;

Aij jkD Aij ;k ; Aij jkD Aij ;k ; Ai�j jkD Ai�j ;k ; i; j; k D 1; 2; : : : ; n: (2.97)

Formal application of the covariant derivative (2.93), (2.95) and (2.96) to
the tangent vectors (2.28) and metric coefficients (1.90)1;2 yields by virtue
of (2.76), (2.77), (2.82) and (2.84) the following identities referred to as Ricci’s
Theorem:

gi jj D gi ;j �gl �
l
ij D 0; gi jj D gi ;j Cgl �i

lj D 0; (2.98)
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gij jkD gij ;k �glj �l
ik � gil �

l
jk D gij ;k ��ikj � �jki D 0; (2.99)

gij jkD gij ;k Cglj �i
lk C gil�

j

lk D gil gj m .�glm;k C�mkl C �lkm/ D 0; (2.100)

where i; j; k D 1; 2; : : : ; n. The latter two identities can alternatively be proved
by taking (1.25) into account and using the product rules of differentiation for the
covariant derivative which can be written as (Exercise 2.7)

Aij jkD ai jk bj C ai bj jk for Aij D ai bj ; (2.101)

Aij jkD ai jk bj C ai bj jk for Aij D ai bj ; (2.102)

Ai
j jk D ai jk bj C ai bj jk for Ai

j D ai bj ; i; j; k D 1; 2; : : : ; n: (2.103)

2.6 Applications in Three-Dimensional Space:
Divergence and Curl

Divergence of a tensor field. One defines the divergence of a tensor field S .r/ by

divS D lim
V !0

1

V

Z
A

SndA; (2.104)

where the integration is carried out over a closed surface area A with the volume V

and the outer unit normal vector n illustrated in Fig. 2.4.
For the integration we consider a curvilinear parallelepiped with the edges

formed by the coordinate lines �1; �2; �3 and �1 C ��1; �2 C ��2; �3 C ��3

(Fig. 2.5). The infinitesimal surface elements of the parallelepiped can be defined
in a vector form by

dA.i/ D ˙ �
d�j gj

� � �d�kgk

� D ˙gg i d�j d�k; i D 1; 2; 3; (2.105)

where g D Œg1g2g3� (1.31) and i; j; k is an even permutation of 1,2,3. The corre-
sponding infinitesimal volume element can thus be given by (no summation over
i )

dV D dA.i/ � �d�i gi

� D 	
d�1g1 d�2g2 d�3g3




D Œg1g2g3� d�1d�2d�3 D gd�1d�2d�3: (2.106)

We also need the identities
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dA

n

V

Fig. 2.4 Definition of the divergence: closed surface with the area A, volume V and the outer unit
normal vector n

Fig. 2.5 Derivation of the divergence in three-dimensional space

g;k D Œg1g2g3� ;k D �l
1k Œglg2g3� C �l

2k Œg1gl g3� C �l
3k Œg1g2g l �

D �l
lk Œg1g2g3� D �l

lkg; (2.107)

�
gg i

�
;i D g;i gi C gg i ;i D �l

li ggi � �i
li gg l D 0; (2.108)

following from (1.39), (2.76) and (2.82). With these results in hand, one can express
the divergence (2.104) as follows

divS D lim
V !0

1

V

Z
A

SndA

D lim
V !0

1

V

3X
iD1

Z

A.i/

h
S
�
�i C ��i

�
dA.i/

�
�i C ��i

�C S
�
�i
�

dA.i/
�
�i
�i

:

Keeping (2.105) and (2.106) in mind and using the abbreviation
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si
�
�i
� D S

�
�i
�

g
�
�i
�

gi
�
�i
�

; i D 1; 2; 3 (2.109)

we can thus write

divS D lim
V !0

1

V

3X
iD1

�kC��kZ
�k

�j C��jZ
�j

	
si
�
�i C ��i

� � si
�
�i
�


d�j d�k

D lim
V !0

1

V

3X
iD1

�kC��kZ
�k

�j C��jZ
�j

� i C��iZ
�i

@si

@� i
d�id�j d�k

D lim
V !0

1

V

3X
iD1

Z
V

si ;i

g
dV; (2.110)

where i; j; k is again an even permutation of 1,2,3. Assuming continuity of the
integrand in (2.110) and applying (2.108) and (2.109) we obtain

divS D 1

g
si ;i D 1

g

	
Sgg i



;i D 1

g

	
S;i ggi C S

�
gg i

�
;i

 D S;i g i ; (2.111)

which finally yields by virtue of (2.72)2

divS D S;i gi D S i
j �ji gj D Sj i ji gj : (2.112)

Example 2.7. The momentum balance in Cartesian and cylindrical coordinates. Let
us consider a material body or a part of it with a mass m, volume V and outer surface
A. According to the Euler law of motion the vector sum of external volume forces
f dV and surface tractions tdA results in the vector sum of inertia forces Rxdm,
where x stands for the position vector of a material element dm and the superposed
dot denotes the material time derivative. Hence,

Z
m

Rxdm D
Z
A

tdA C
Z
V

f dV: (2.113)

Applying the Cauchy theorem (1.77) to the first integral on the right hand side and
using the identity dm D �dV it further delivers

Z
V

� RxdV D
Z
A

� ndA C
Z
V

f dV; (2.114)

where � denotes the density of the material. Dividing this equation by V and
considering the limit case V ! 0 we obtain by virtue of (2.104)
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� Rx D div� C f : (2.115)

This vector equation is referred to as the momentum balance.

Representing vector and tensor variables with respect to the tangent vectors
gi .i D 1; 2; 3/ of an arbitrary curvilinear coordinate system as

Rx D ai gi ; � D 	ij gi ˝ gj ; f D f i gi

and expressing the divergence of the Cauchy stress tensor by (2.112) we obtain the
component form of the momentum balance (2.115) by

�ai D 	ij jj Cf i ; i D 1; 2; 3: (2.116)

With the aid of (2.95) the covariant derivative of the Cauchy stress tensor can further
be written by

	ij jkD 	ij ;k C	lj �i
lk C 	il �

j

lk; i; j; k D 1; 2; 3 (2.117)

and thus,
	ij jj D 	ij ;j C	lj �i

lj C 	il �
j

lj ; i D 1; 2; 3: (2.118)

By virtue of the expressions for the Christoffel symbols (2.90) and keeping in mind
the symmetry of the Cauchy stress tensors 	ij D 	j i .i ¤ j D 1; 2; 3/ we thus
obtain for cylindrical coordinates:

	1j jj D 	11;' C	12;z C	13;r C3	31

r
;

	2j jj D 	21;' C	22;z C	23;r C	32

r
;

	3j jj D 	31;' C	32;z C	33;r �r	11 C 	33

r
: (2.119)

The balance equations finally take the form

�a1 D 	11;' C	12;z C	13;r C3	31

r
C f 1;

�a2 D 	21;' C	22;z C	23;r C	32

r
C f 2;

�a3 D 	31;' C	32;z C	33;r �r	11 C 	33

r
C f 3: (2.120)

In Cartesian coordinates, where gi D e i .i D 1; 2; 3/, the covariant derivative
coincides with the partial one, so that
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	ij jj D 	ij ;j D 	ij ;j : (2.121)

Thus, the balance equations reduce to

� Rx1 D 	11;1 C	12;2 C	13;3 Cf1;

� Rx2 D 	21;1 C	22;2 C	23;3 Cf2;

� Rx3 D 	31;1 C	32;2 C	33;3 Cf3; (2.122)

where Rxi D ai .i D 1; 2; 3/.

Divergence and curl of a vector field. Now, we consider a differentiable vector
field t

�
�1; �2; �3

�
. One defines the divergence and curl of t

�
�1; �2; �3

�
respec-

tively by

divt D lim
V !0

1

V

Z
A

.t � n/ dA; (2.123)

curlt D lim
V !0

1

V

Z
A

.n � t/ dA D � lim
V !0

1

V

Z
A

.t � n/ dA; (2.124)

where the integration is again carried out over a closed surface area A with the
volume V and the outer unit normal vector n (see Fig. 2.4). Considering (1.66)
and (2.104), the curl can also be represented by

curlt D � lim
V !0

1

V

Z
A

OtndA D �divOt: (2.125)

Treating the vector field in the same manner as the tensor field we can write

divt D t;i �gi D t i ji (2.126)

and in view of (2.75)2 (see also Exercise 1.44)

divt D tr .gradt/ : (2.127)

The same procedure applied to the curl (2.124) leads to

curlt D gi � t;i : (2.128)

By virtue of (2.72)1 and (1.44) we further obtain (see also Exercise 2.8)

curlt D ti jj gj � gi D ej ik 1

g
ti jj gk: (2.129)

With respect to the Cartesian coordinates (2.20) with g i D e i .i D 1; 2; 3/ the
divergence (2.126) and curl (2.129) simplify to
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divt D t i ;i D t1;1 Ct2;2 Ct3;3 D t1;1 Ct2;2 Ct3;3 ; (2.130)

curlt D ej ikti ;j ek

D .t3;2 �t2;3 / e1 C .t1;3 �t3;1 / e2 C .t2;1 �t1;2 / e3: (2.131)

Now, we are going to discuss some combined operations with a gradient, divergence,
curl, tensor mapping and products of various types (see also Exercise 2.12).

1. Curl of a gradient:
curl grad˚ D 0: (2.132)

2. Divergence of a curl:
div curlt D 0: (2.133)

3. Divergence of a vector product:

div .u � v/ D v � curlu � u � curlv: (2.134)

4. Gradient of a divergence:

grad divt D div .gradt/T ; (2.135)

grad divt D curl curlt C div gradt D curl curlt C �t; (2.136)

where the combined operator �t D div gradt is known as the Laplacian.

5. Skew-symmetric part of a gradient

skew .gradt/ D 1

2
dcurlt: (2.137)

6. Divergence of a (left) mapping

div .tA/ D A W gradt C t � divA: (2.138)

7. Divergence of a product of a scalar-valued function and a vector-valued function

div .˚t/ D t � grad˚ C ˚divt: (2.139)

8. Divergence of a product of a scalar-valued function and a tensor-valued function

div .˚A/ D Agrad˚ C ˚divA: (2.140)

We prove, for example, identity (2.132). To this end, we apply (2.75)1, (2.82)
and (2.128). Thus, we write
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curl grad˚ D gj � �˚ ji gi
�

;j D ˚;ij gj � gi C ˚;i gj � gi ;j

D ˚;ij gj � g i � ˚;i �i
kj gj � gk D 0 (2.141)

taking into account that ˚;ij D ˚;j i , �l
ij D �l

j i and gi � gj D �gj � g i

.i ¤ j; i; j D 1; 2; 3/.

Example 2.8. Balance of mechanical energy as an integral form of the momentum
balance. Using the above identities we are now able to formulate the balance of
mechanical energy on the basis of the momentum balance (2.115). To this end, we
multiply this vector relation scalarly by the velocity vector v D Px

v � .� Rx/ D v � div� C v � f :

Using (2.138) we can further write

v � .� Rx/ C � W gradv D div .v� / C v � f :

Integrating this relation over the volume of the body V yields

d

dt

Z
m

�
1

2
v � v

�
dm C

Z
V

� W gradvdV D
Z
V

div .v� / dV C
Z
V

v � f dV;

where again dm D �dV and m denotes the mass of the body. Keeping in mind
the definition of the divergence (2.104) and applying the Cauchy theorem (1.77)
according to which the Cauchy stress vector is given by t D � n, we finally obtain
the relation

d

dt

Z
m

�
1

2
v � v

�
dm C

Z
V

� W gradvdV D
Z
A

v � tdA C
Z
V

v � f dV (2.142)

expressing the balance of mechanical energy. Indeed, the first and the second
integrals on the left hand side of (2.142) represent the time rate of the kinetic energy
and the stress power, respectively. The right hand side of (2.142) expresses the power
of external forces i.e. external tractions t on the boundary of the body A and external
volume forces f inside of it.

Example 2.9. Axial vector of the spin tensor. The spin tensor is defined as a skew-
symmetric part of the velocity gradient by

w D skew .gradv/ : (2.143)

By virtue of (1.158) we can represent it in terms of the axial vector
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w D Ow; (2.144)

which in view of (2.137) takes the form:

w D 1

2
curlv: (2.145)

Example 2.10. Navier-Stokes equations for a linear-viscous fluid in Cartesian and
cylindrical coordinates. A linear-viscous fluid (also called Newton fluid or Navier-
Poisson fluid) is defined by a constitutive equation

� D �pI C 2
d C � .trd/ I; (2.146)

where

d D sym .gradv/ D 1

2

	
gradv C .gradv/T
 (2.147)

denotes the rate of deformation tensor, p is the hydrostatic pressure while 
 and
� represent material constants referred to as shear viscosity and second viscosity
coefficient, respectively. Inserting (2.147) into (2.146) and taking (2.127) into
account delivers

� D �pI C 

	
gradv C .gradv/T
C � .divv/ I: (2.148)

Substituting this expression into the momentum balance (2.115) and using (2.135)
and (2.140) we obtain the relation

�Pv D �gradp C 
div gradv C .
 C �/ grad divv C f (2.149)

referred to as the Navier-Stokes equation. By means of (2.136) it can be rewritten as

�Pv D �gradp C .2
 C �/ grad divv � 
curl curlv C f : (2.150)

For an incompressible fluid characterized by the kinematic condition trd D divv D
0, the latter two equations simplify to

�Pv D �gradp C 
�v C f ; (2.151)

�Pv D �gradp � 
curl curlv C f : (2.152)

With the aid of the identity �v D v;iji (see Exercise 2.14) we thus can write

�Pv D �gradp C 
v;iji Cf : (2.153)
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In Cartesian coordinates this relation is thus written out as

�Pvi D �p;i C
 .vi ;11 Cvi ;22 Cvi ;33 / C fi ; i D 1; 2; 3: (2.154)

For arbitrary curvilinear coordinates we use the following representation for the
vector Laplacian (see Exercise 2.16)

�v D gij



vk;ij C2�k
li v

l ;j ��m
ij vk;m C�k

li ;j vl C �k
mj �m

li vl � �m
ij �k

lmvl
�

gk:

(2.155)
For the cylindrical coordinates it takes by virtue of (2.30) and (2.90) the following
form

�v D �
r�2v1;11 Cv1;22 Cv1;33 C3r�1v1;3 C2r�3v3;1

�
g1

C �
r�2v2;11 Cv2;22 Cv2;33 Cr�1v2;3

�
g2

C �
r�2v3;11 Cv3;22 Cv3;33 �2r�1v1;1 Cr�1v3;3 �r�2v3

�
g3:

Inserting this result into (2.151) and using the representations Pv D Pvi gi and f D
f i gi we finally obtain

�Pv1 D f 1 � @p

@'
C 


�
1

r2

@2v1

@'2
C @2v1

@z2
C @2v1

@r2
C 3

r

@v1

@r
C 2

r3

@v3

@'

�
;

�Pv2 D f 2 � @p

@z
C 


�
1

r2

@2v2

@'2
C @2v2

@z2
C @2v2

@r2
C 1

r

@v2

@r

�
;

�Pv3 D f 3 � @p

@r
C 


�
1

r2

@2v3

@'2
C @2v3

@z2
C @2v3

@r2
� 2

r

@v1

@'
C 1

r

@v3

@r
� v3

r2

�
: (2.156)

Exercises

2.1. Evaluate tangent vectors, metric coefficients and the dual basis of spherical
coordinates in E

3 defined by (Fig. 2.6)

r .'; �; r/ D r sin ' sin �e1 C r cos �e2 C r cos ' sin �e3: (2.157)

2.2. Evaluate the coefficients
@ N�i

@�k
(2.43) for the transformation of linear coordi-

nates in the spherical ones and vice versa.
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x2

g3

g1

e2

r

e1

x3

g2

e3

x

φ
x1

ϕ

Fig. 2.6 Spherical coordinates in three-dimensional space

2.3. Evaluate gradients of the following functions of r:

(a)
1

krk , (b) r � w, (c) rAr, (d) Ar, (e) w � r,

where w and A are some vector and tensor, respectively.

2.4. Evaluate the Christoffel symbols of the first and second kind for spherical
coordinates (2.157).

2.5. Verify relations (2.96).

2.6. Prove identities (2.99) and (2.100) by using (1.91).

2.7. Prove the product rules of differentiation for the covariant derivative (2.101)–
(2.103).

2.8. Verify relation (2.129) applying (2.112), (2.125) and using the results of
Exercise 1.23.

2.9. Write out the balance equations (2.116) in spherical coordinates (2.157).

2.10. Evaluate tangent vectors, metric coefficients, the dual basis and Christoffel
symbols for cylindrical surface coordinates defined by

r .r; s; z/ D r cos
s

r
e1 C r sin

s

r
e2 C ze3: (2.158)

2.11. Write out the balance equations (2.116) in cylindrical surface coordi-
nates (2.158).

2.12. Prove identities (2.133)–(2.140).
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2.13. Write out the gradient, divergence and curl of a vector field t .r/ in cylindrical
and spherical coordinates (2.17) and (2.157), respectively.

2.14. Prove that the Laplacian of a vector-valued function t .r/ can be given by
�t D t;iji . Specify this identity for Cartesian coordinates.

2.15. Write out the Laplacian �˚ of a scalar field ˚ .r/ in cylindrical and spherical
coordinates (2.17) and (2.157), respectively.

2.16. Write out the Laplacian of a vector field t .r/ in component form in an
arbitrary curvilinear coordinate system. Specify the result for spherical coordi-
nates (2.157).



Chapter 3
Curves and Surfaces in Three-Dimensional
Euclidean Space

3.1 Curves in Three-Dimensional Euclidean Space

A curve in three-dimensional space is defined by a vector function

r D r .t/ ; r 2 E
3; (3.1)

where the real variable t belongs to some interval: t1 � t � t2. Henceforth, we
assume that the function r .t/ is sufficiently differentiable and

dr

dt
¤ 0 (3.2)

over the whole definition domain. Specifying an arbitrary coordinate system
(2.16) as

�i D �i .r/ ; i D 1; 2; 3; (3.3)

the curve (3.1) can alternatively be defined by

�i D �i .t/ ; i D 1; 2; 3: (3.4)

Example 3.1. Straight line. A straight line can be defined by

r .t/ D a C bt; a; b 2 E
3: (3.5)

With respect to linear coordinates related to a basis H D fh1; h2; h3g it is equivalent
to

ri .t/ D ai C bi t; i D 1; 2; 3; (3.6)

where r D rihi , a D ai hi and b D bi hi .
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2πc
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e2 x2

x1

r

t

e3

R

Fig. 3.1 Circular helix

Example 3.2. Circular helix. The circular helix (Fig. 3.1) is defined by

r .t/ D R cos .t/ e1 C R sin .t/ e2 C cte3; c ¤ 0; (3.7)

where ei .i D 1; 2; 3/ form an orthonormal basis in E
3. For the definition of the

circular helix the cylindrical coordinates (2.17) appear to be very suitable. Indeed,
alternatively to (3.7) we can write

r D R; ' D t; z D ct: (3.8)

In the previous chapter we defined tangent vectors to the coordinate lines. By
analogy one can also define a vector tangent to the curve (3.1) as

gt D dr

dt
: (3.9)

It is advantageous to parametrize the curve (3.1) in terms of the so-called arc length.
To this end, we first calculate the length of a curve segment between the points
corresponding to parameters t1 and t as

s .t/ D
r.t/Z

r.t1/

p
dr � dr: (3.10)

With the aid of (3.9) we can write dr D gt dt and consequently

s .t/ D
tZ

t1

p
g t � gt dt D

tZ

t1

kgt k dt D
tZ

t1

p
gtt .t/dt: (3.11)
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Using this equation and keeping in mind assumption (3.2) we have

ds

dt
D p

gtt .t/ ¤ 0: (3.12)

This implies that the function s D s .t/ is invertible and

t .s/ D
sZ

s.t1/

kg t k�1 ds D
sZ

s.t1/

dsp
gtt .t/

: (3.13)

Thus, the curve (3.1) can be redefined in terms of the arc length s as

r D r .t .s// D _
r .s/ : (3.14)

In analogy with (3.9) one defines the vector tangent to the curve
_
r .s/ (3.14) as

a1 D d
_
r

ds
D dr

dt

dt

ds
D g t

kg tk (3.15)

being a unit vector: ka1k D 1. Differentiation of this vector with respect to s further
yields

a1;s D da1

ds
D d2 _

r

ds2
: (3.16)

It can be shown that the tangent vector a1 is orthogonal to a1;s provided the latter
one is not zero. Indeed, differentiating the identity a1 � a1 D 1 with respect to s we
have

a1 � a1;s D 0: (3.17)

The length of the vector a1;s
~ .s/ D ka1;s k (3.18)

plays an important role in the theory of curves and is called curvature. The inverse
value

� .s/ D 1

~ .s/
(3.19)

is referred to as the radius of curvature of the curve at the point
_
r .s/. Henceforth,

we focus on curves with non-zero curvature. The case of zero curvature corresponds
to a straight line (see Exercise 3.1) and is trivial.

Next, we define the unit vector in the direction of a1;s

a2 D a1;s

ka1;s k D a1;s

~ .s/
(3.20)
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called the principal normal vector to the curve. The orthogonal vectors a1 and a2

can further be completed to an orthonormal basis in E
3 by the vector

a3 D a1 � a2 (3.21)

called the unit binormal vector. The triplet of vectors a1, a2 and a3 is referred to as
the moving trihedron of the curve.

In order to study the rotation of the trihedron along the curve we again consider
the arc length s as a coordinate. In this case, we can write similarly to (2.76)

ai ;s D �k
isak; i D 1; 2; 3; (3.22)

where �k
is D ai ;s �ak .i; k D 1; 2; 3/. From (3.17), (3.20) and (3.21) we immedi-

ately observe that �2
1s D ~ and �1

1s D �3
1s D 0. Further, differentiating the identities

a3 � a3 D 1; a1 � a3 D 0 (3.23)

with respect to s yields

a3 � a3;s D 0; a1;s �a3 C a1 � a3;s D 0: (3.24)

Taking into account (3.20) this results in the following identity

a1 � a3;s D �a1;s �a3 D �~a2 � a3 D 0: (3.25)

Relations (3.24) and (3.25) suggest that

a3;s D �� .s/ a2; (3.26)

where the function
� .s/ D �a3;s �a2 (3.27)

is called torsion of the curve at the point
_
r.s/. Thus, �2

3s D �� and �1
3s D �3

3s D 0.
The sign of the torsion (3.27) has a geometric meaning and remains unaffected by
the change of the positive sense of the curve, i.e. by the transformation s D �s0 (see
Exercise 3.2). Accordingly, one distinguishes right-handed curves with a positive
torsion and left-handed curves with a negative torsion. In the case of zero torsion
the curve is referred to as a plane curve.

Finally, differentiating the identities

a2 � a1 D 0; a2 � a2 D 1; a2 � a3 D 0

with respect to s and using (3.20) and (3.27) we get

a2;s �a1 D �a2 � a1;s D �~a2 � a2 D �~; (3.28)

a2 � a2;s D 0; a2;s �a3 D �a2 � a3;s D �; (3.29)
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Fig. 3.2 Rotation of the moving trihedron

so that �1
2s D �~, �2

2s D 0 and �3
2s D � . Summarizing the above results we can

write
h
�

j
is

i
D

2
4 0 ~ 0

�~ 0 �

0 �� 0

3
5 (3.30)

and
a1;s D
a2;s D
a3;s D

~a2;

�~a1 C�a3;

��a2:

(3.31)

Relations (3.31) are known as the Frenet formulas.
A useful illustration of the Frenet formulas can be gained with the aid of a skew-

symmetric tensor. To this end, we consider the rotation of the trihedron from some
initial position at s0 to the actual state at s. This rotation can be described by an
orthogonal tensor Q .s/ as (Fig. 3.2)

ai .s/ D Q .s/ ai .s0/ ; i D 1; 2; 3: (3.32)

Differentiating this relation with respect to s yields

ai ;s .s/ D Q;s .s/ ai .s0/ ; i D 1; 2; 3: (3.33)

Mapping both sides of (3.32) by QT .s/ and inserting the result into (3.33) we further
obtain

ai ;s .s/ D Q;s .s/ QT .s/ ai .s/ ; i D 1; 2; 3: (3.34)

Differentiating the identity (1.135) Q .s/ QT .s/ D I with respect to s we have
Q;s .s/ QT .s/ C Q .s/ QT;s .s/ D 0, which implies that the tensor W .s/ D
Q;s .s/ QT .s/ is skew-symmetric. Hence, Eq. (3.34) can be rewritten as (see
also [3])

ai ;s .s/ D W .s/ ai .s/ ; W 2 Skew3; i D 1; 2; 3; (3.35)
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where according to (3.31)

W .s/ D � .s/ .a3 ˝ a2 � a2 ˝ a3/ C ~ .s/ .a2 ˝ a1 � a1 ˝ a2/ : (3.36)

By virtue of (1.136) and (1.137) we further obtain

W D � Oa1 C ~ Oa3 (3.37)

and consequently

ai ;s D d � ai D Odai ; i D 1; 2; 3; (3.38)

where
d D �a1 C ~a3 (3.39)

is referred to as the Darboux vector.

Example 3.3. Curvature, torsion, moving trihedron and Darboux vector for a
circular helix. Inserting (3.7) into (3.9) delivers

g t D dr

dt
D �R sin .t/ e1 C R cos .t/ e2 C ce3; (3.40)

so that
gtt D gt � g t D R2 C c2 D const: (3.41)

Thus, using (3.13) we may set

t .s/ D sp
R2 C c2

: (3.42)

Using this result, the circular helix (3.7) can be parametrized in terms of the arc
length s by

_
r.s/ D R cos

�
sp

R2 C c2

�
e1 C R sin

�
sp

R2 C c2

�
e2 C csp

R2 C c2
e3: (3.43)

With the aid of (3.15) we further write

a1 D d
_
r

ds
D 1p

R2 C c2

�
�R sin

�
sp

R2 C c2

�
e1

C R cos

�
sp

R2 C c2

�
e2 C ce3

�
; (3.44)

a1;s D � R

R2 C c2

�
cos

�
sp

R2 C c2

�
e1 C sin

�
sp

R2 C c2

�
e2

�
: (3.45)
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According to (3.18) the curvature of the helix is thus

~ D R

R2 C c2
: (3.46)

By virtue of (3.20), (3.21) and (3.27) we have

a2 D a1;s

~
D � cos

�
sp

R2 C c2

�
e1 � sin

�
sp

R2 C c2

�
e2; (3.47)

a3 D a1 � a2 D 1p
R2 C c2

�
c sin

�
sp

R2 C c2

�
e1

�c cos

�
sp

R2 C c2

�
e2 C Re3

�
: (3.48)

a3;s D c

R2 C c2

�
cos

�
sp

R2 C c2

�
e1 C sin

�
sp

R2 C c2

�
e2

�
; (3.49)

� D c

R2 C c2
: (3.50)

It is seen that the circular helix is right-handed for c > 0, left-handed for c < 0 and
becomes a circle for c D 0. For the Darboux vector (3.39) we finally obtain

d D �a1 C ~a3 D 1p
R2 C c2

e3: (3.51)

3.2 Surfaces in Three-Dimensional Euclidean Space

A surface in three-dimensional Euclidean space is defined by a vector function

r D r
�
t1; t2

�
; r 2 E

3; (3.52)

of two real variables t1 and t2 referred to as Gauss coordinates. With the aid of the
coordinate system (3.3) one can alternatively write

�i D �i
�
t1; t2

�
; i D 1; 2; 3: (3.53)

In the following, we assume that the function r
�
t1; t2

�
is sufficiently differentiable

with respect to both arguments and

dr

dt˛
¤ 0; ˛ D 1; 2 (3.54)

over the whole definition domain.
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Fig. 3.3 Coordinate lines on the surface, normal section and tangent vectors

Example 3.4. Plane. Let us consider three linearly independent vectors xi .i D 0,
1; 2/ specifying three points in three-dimensional space. The plane going through
these points can be defined by

r
�
t1; t2

� D x0 C t1 .x1 � x0/ C t2 .x2 � x0/ : (3.55)

Example 3.5. Cylinder. A cylinder of radius R with the axis parallel to e3 is defined
by

r
�
t1; t2

� D R cos t1e1 C R sin t1e2 C t2e3; (3.56)

where ei .i D 1; 2; 3/ again form an orthonormal basis in E
3. With the aid of the

cylindrical coordinates (2.17) we can alternatively write

' D t1; z D t2; r D R: (3.57)

Example 3.6. Sphere. A sphere of radius R with the center at r D 0 is defined by

r
�
t1; t2

� D R sin t1 sin t2e1 C R cos t2e2 C R cos t1 sin t2e3; (3.58)

or by means of spherical coordinates (2.157) as

' D t1; � D t2; r D R: (3.59)

Using a parametric representation (see, e.g., [26])

t1 D t1 .t/ ; t2 D t2 .t/ (3.60)

one defines a curve on the surface (3.52). In particular, the curves t1 D const and
t2 D const are called t2 and t1 coordinate lines, respectively (Fig. 3.3). The vector
tangent to the curve (3.60) can be expressed by

gt D dr

dt
D @r

@t1

dt1

dt
C @r

@t2

dt2

dt
D g1

dt1

dt
C g2

dt2

dt
; (3.61)
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where

g˛ D @r

@t˛
D r;˛ ; ˛ D 1; 2 (3.62)

represent tangent vectors to the coordinate lines. For the length of an infinitesimal
element of the curve (3.60) we thus write

.ds/2 D dr � dr D .g tdt/ � .g t dt/ D �
g1dt1 C g2dt2

� � �
g1dt1 C g2dt2

�
: (3.63)

With the aid of the abbreviation

g˛ˇ D gˇ˛ D g˛ � gˇ; ˛; ˇ D 1; 2; (3.64)

it delivers the quadratic form

.ds/2 D g11

�
dt1

�2 C 2g12dt1dt2 C g22

�
dt2

�2
(3.65)

referred to as the first fundamental form of the surface. The latter result can briefly
be written as

.ds/2 D g˛ˇdt˛dtˇ; (3.66)

where and henceforth within this chapter the summation convention is implied
for repeated Greek indices taking the values from 1 to 2. Similar to the metric
coefficients (1.90)1;2 in n-dimensional Euclidean space g˛ˇ (3.64) describe the
metric on a surface. Generally, the metric described by a differential quadratic form
like (3.66) is referred to as Riemannian metric.

The tangent vectors (3.62) can be completed to a basis in E
3 by the unit vector

g3 D g1 � g2

kg1 � g2k (3.67)

called principal normal vector to the surface.
In the following, we focus on a special class of surface curves called normal

sections. These are curves passing through a point of the surface r
�
t1; t2

�
and

obtained by intersection of this surface with a plane involving the principal normal
vector. Such a plane is referred to as the normal plane.

In order to study curvature properties of normal sections we first express
the derivatives of the basis vectors gi .i D 1; 2; 3/ with respect to the surface
coordinates. Using the formalism of Christoffel symbols we can write

gi ;˛ D @g i

@t˛
D �i˛kgk D �k

i˛gk; i D 1; 2; 3; (3.68)

where

�i˛k D gi ;˛ �gk; �k
i˛ D gi ;˛ �gk; i D 1; 2; 3; ˛ D 1; 2: (3.69)
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Taking into account the identity g3 D g3 resulting from (3.67) we immediately
observe that

�i˛3 D �3
i˛; i D 1; 2; 3; ˛ D 1; 2: (3.70)

Differentiating the relations

g˛ � g3 D 0; g3 � g3 D 1 (3.71)

with respect to the Gauss coordinates we further obtain

g˛;ˇ �g3 D �g˛ � g3;ˇ ; g3;˛ �g3 D 0; ˛; ˇ D 1; 2 (3.72)

and consequently

�3
˛ˇ D ��3ˇ˛; �3

3˛ D 0; ˛; ˇ D 1; 2: (3.73)

Using in (3.68) the abbreviation

b˛ˇ D bˇ˛ D �3
˛ˇ D ��3˛ˇ D g˛;ˇ �g3; ˛; ˇ D 1; 2; (3.74)

we arrive at the relations

g˛;ˇ D �
�

˛ˇg� C b˛ˇg3; ˛; ˇ D 1; 2 (3.75)

called the Gauss formulas.
Similarly to a coordinate system one can notionally define the covariant deriva-

tive also on the surface. To this end, relations (2.93), (2.95) and (2.96) are specified
to the two-dimensional space in a straight forward manner as

f ˛jˇD f ˛;ˇ Cf ��˛
�ˇ; f˛jˇD f˛;ˇ �f��

�

˛ˇ; (3.76)

F˛ˇj�D F˛ˇ;� CF�ˇ�˛
�� C F˛��ˇ

�� ; F˛ˇj�D F˛ˇ;� �F�ˇ��
˛� � F˛��

�

ˇ� ;

F˛�ˇj�D F˛�ˇ;� CF�

�ˇ�˛
�� � F˛���

�

ˇ� ; ˛; ˇ; � D 1; 2: (3.77)

Thereby, with the aid of (3.76)2 the Gauss formulas (3.75) can alternatively be given
by (cf. (2.98))

g˛jˇD b˛ˇg3; ˛; ˇ D 1; 2: (3.78)

Further, we can write

bˇ
˛ D b˛�g�ˇ D ��3˛�g�ˇ D ��

ˇ
3˛; ˛; ˇ D 1; 2: (3.79)
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Inserting the latter relation into (3.68) and considering (3.73)2, this yields the
identities

g3;˛ D g3j˛D �b�
˛g�; ˛ D 1; 2 (3.80)

referred to as the Weingarten formulas.
Now, we are in a position to express the curvature of a normal section. It is called

normal curvature and denoted in the following by ~n. At first, we observe that the
principal normals of the surface and of the normal section coincide in the sense that
a2 D ˙g3. Using (3.13), (3.28), (3.61), (3.72)1 and (3.74) and assuming for the
moment that a2 D g3 we get

~n D �a2;s �a1 D �g3;s � g t

kg tk D �
�

g3;t
dt

ds

�
� gt

kgt k D �g3;t � gt

kg t k2

D �
�

g3;˛
dt˛

dt

�
�
�

gˇ

dtˇ

dt

�
kg tk�2 D b˛ˇ

dt˛

dt

dtˇ

dt
kgt k�2 :

By virtue of (3.63) and (3.66) this leads to the following result

~n D b˛ˇdt˛dtˇ

g˛ˇdt˛dtˇ
; (3.81)

where the quadratic form

b˛ˇdt˛dtˇ D �dr � dg3 (3.82)

is referred to as the second fundamental form of the surface. In the case a2 D �g3

the sign of the expression for ~n (3.81) must be changed. Instead of that, we assume
that the normal curvature can, in contrast to the curvature of space curves (3.18),
be negative. However, the sign of ~n (3.81) has no geometrical meaning. Indeed,
it depends on the orientation of g3 with respect to a2 which is immaterial. For
example, g3 changes the sign in coordinate transformations like Nt1 D t2, Nt2 D t1.

Of special interest is the dependence of the normal curvature ~n on the direction
of the normal section. For example, for the normal sections passing through the
coordinate lines we have

~njt 2Dconst D b11

g11

; ~njt 1Dconst D b22

g22

: (3.83)

In the following, we are going to find the directions of the maximal and minimal
curvature. Necessary conditions for the extremum of the normal curvature (3.81)
are given by

@~n

@t˛
D 0; ˛ D 1; 2: (3.84)

Rewriting (3.81) as �
b˛ˇ � ~ng˛ˇ

�
dt˛dtˇ D 0 (3.85)
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and differentiating with respect to t˛ we obtain

�
b˛ˇ � ~ng˛ˇ

�
dtˇ D 0; ˛ D 1; 2: (3.86)

Multiplying both sides of this equation system by g˛� and summing up over ˛ we
have with the aid of (3.79)

�
b

�

ˇ � ~nı
�

ˇ

	
dtˇ D 0; � D 1; 2: (3.87)

A nontrivial solution of this homogeneous equation system exists if and only if

ˇ̌
ˇ̌ b1

1 � ~n b1
2

b2
1 b2

2 � ~n

ˇ̌
ˇ̌ D 0: (3.88)

Writing out the above determinant we can also write

~2
n � b˛

˛~n C
ˇ̌
ˇb˛

ˇ

ˇ̌
ˇ D 0: (3.89)

The maximal and minimal curvatures ~1 and ~2 resulting from this quadratic
equation are called the principal curvatures. One can show that directions of
principal curvatures are mutually orthogonal (see Theorem 4.5, Sect. 4). These
directions are called principal directions of normal curvature or curvature directions
(see also [26]).

According to the Vieta theorem the product of principal curvatures can be
expressed by

K D ~1~2 D
ˇ̌
ˇb˛

ˇ

ˇ̌
ˇ D b

g2
; (3.90)

where

b D ˇ̌
b˛ˇ

ˇ̌ D
ˇ̌
ˇ̌ b11 b12

b21 b22

ˇ̌
ˇ̌ D b11b22 � .b12/

2 ; (3.91)

g2 D Œg1g2g3�
2 D

ˇ̌
ˇ̌
ˇ̌
g11 g12 0

g21 g22 0

0 0 1

ˇ̌
ˇ̌
ˇ̌ D g11g22 � .g12/

2 : (3.92)

For the arithmetic mean of the principal curvatures we further obtain

H D 1

2
.~1 C ~2/ D 1

2
b˛

˛ : (3.93)

The values K (3.90) and H (3.93) do not depend on the direction of the normal
section and are called the Gaussian and mean curvatures, respectively. In terms of
K and H the solutions of the quadratic equation (3.89) can simply be given by

~1;2 D H ˙
p

H 2 � K: (3.94)
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Fig. 3.4 Torus

One recognizes that the sign of the Gaussian curvature K (3.90) is defined by the
sign of b (3.91). For positive b both ~1 and ~2 are positive or negative so that ~n has
the same sign for all directions of the normal sections at r

�
t1; t2

�
. In other words,

the orientation of a2 with respect to g3 remains constant. Such a point of the surface
is called elliptic.

For b < 0, principal curvatures are of different signs so that different normal
sections are characterized by different orientations of a2 with respect to g3. There
are two directions of the normal sections with zero curvature. Such normal sections
are referred to as asymptotic directions. The corresponding point of the surface is
called hyperbolic or saddle point.

In the intermediate case b D 0, ~n does not change sign. There is only one
asymptotic direction which coincides with one of the principal directions (of ~1 or
~2). The corresponding point of the surface is called parabolic point.

Example 3.7. Torus. A torus is a surface obtained by rotating a circle about a
coplanar axis (see Fig. 3.4). Additionally we assume that the rotation axis lies
outside of the circle. Accordingly, the torus can be defined by

r
�
t1; t2

� D �
R0 C R cos t2

�
cos t1e1

C �
R0 C R cos t2

�
sin t1e2 C R sin t2e3; (3.95)

where R is the radius of the circle and R0 > R is the distance between its center
and the rotation axis. By means of (3.62) and (3.67) we obtain

g1 D � �
R0 C R cos t2

�
sin t1e1 C �

R0 C R cos t2
�

cos t1e2;

g2 D �R cos t1 sin t2e1 � R sin t1 sin t2e2 C R cos t2e3;

g3 D cos t1 cos t2e1 C sin t1 cos t2e2 C sin t2e3: (3.96)
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Thus, the coefficients (3.64) of the first fundamental form (3.65) are given by

g11 D �
R0 C R cos t2

�2
; g12 D 0; g22 D R2: (3.97)

In order to express coefficients (3.74) of the second fundamental form (3.82) we
first calculate derivatives of the tangent vectors (3.96)1;2

g1;1 D � �
R0 C R cos t2

�
cos t1e1 � �

R0 C R cos t2
�

sin t1e2;

g1;2 D g2;1 D R sin t1 sin t2e1 � R cos t1 sin t2e2;

g2;2 D �R cos t1 cos t2e1 � R sin t1 cos t2e2 � R sin t2e3: (3.98)

Inserting these expressions as well as (3.96)3 into (3.74) we obtain

b11 D � �
R0 C R cos t2

�
cos t2; b12 D b21 D 0; b22 D �R: (3.99)

In view of (3.79) and (3.97) b2
1 D b1

2 D 0. Thus, the solution of the equation system
(3.88) delivers

~1 D b1
1 D b11

g11

D � cos t2

R0 C R cos t2
; ~2 D b2

2 D b22

g22

D �R�1: (3.100)

Comparing this result with (3.83) we see that the coordinate lines of the torus (3.95)
coincide with the principal directions of the normal curvature. Hence, by (3.90)

K D ~1~2 D cos t2

R .R0 C R cos t2/
: (3.101)

Thus, points of the torus for which �	=2 < t2 < 	=2 are elliptic while points for
which 	=2 < t2 < 3	=2 are hyperbolic. Points of the coordinates lines t2 D �	=2

and t2 D 	=2 are parabolic.

3.3 Application to Shell Theory

Geometry of the shell continuum. Let us consider a surface in the three-
dimensional Euclidean space defined by (3.52) as

r D r
�
t1; t2

�
; r 2 E

3 (3.102)

and bounded by a closed curve C (Fig. 3.5). The shell continuum can then be
described by a vector function

r� D r� �
t1; t2; t3

� D r
�
t1; t2

� C g3t
3; (3.103)
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Fig. 3.5 Geometry of the shell continuum

where the unit vector g3 is defined by (3.62) and (3.67) while �h=2 � t3 � h=2.
The surface (3.102) is referred to as the middle surface of the shell. The thickness
of the shell h is assumed to be small in comparison to its other dimensions as for
example the minimal curvature radius of the middle surface.

Every fixed value of the thickness coordinate t3 defines a surface r� �
t1; t2

�
whose geometrical variables are obtained according to (1.39), (3.62), (3.64), (3.79),
(3.80), (3.90), (3.93) and (3.103) as follows.

g�̨ D r�;˛ D g˛ C t3g3;˛ D �
ı�

˛ � t3b�
˛

�
g�; ˛ D 1; 2; (3.104)

g�
3 D g�

1 � g�
2

g�

1 � g�
2



 D r�;3 D g3; (3.105)

g�̨̌ D g�̨ � g �̌ D g˛ˇ � 2t3b˛ˇ C �
t3

�2
b˛�b

�

ˇ; ˛; ˇ D 1; 2; (3.106)

g� D �
g�

1 g�
2 g�

3

� D ��
ı

�
1 � t3b

�
1

�
g�

�
ı

�
2 � t3b

�
2

�
g�g3

�

D �
ı

�
1 � t3b

�
1

� �
ı

�
2 � t3b

�
2

�
ge��3 D g

ˇ̌
ˇı˛

ˇ � t3b˛
ˇ

ˇ̌
ˇ

D g
h
1 � 2t3H C �

t3
�2

K
i

: (3.107)
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Fig. 3.6 Force variables related to the middle surface of the shell

The factor in brackets in the latter expression


 D g�

g
D 1 � 2t3H C �

t3
�2

K (3.108)

is called the shell shifter.

Internal force variables. Let us consider an element of the shell continuum (see
Fig. 3.6) bounded by the coordinate lines t˛ and t˛ C �t˛ .˛ D 1; 2/. One defines
the force vector f ˛ and the couple vector m˛ relative to the middle surface of the
shell, respectively, by

f ˛ D
h=2Z

�h=2


� g�˛dt3; m˛ D
h=2Z

�h=2


r� � �
�g�˛

�
dt3; ˛ D 1; 2; (3.109)

where � denotes the Cauchy stress tensor on the boundary surface A.˛/ spanned on
the coordinate lines t3 and tˇ .ˇ ¤ ˛/. The unit normal to this boundary surface is
given by

n.˛/ D g�˛

kg�˛k D g�˛

p
g�˛˛

D g�q
g�̌̌ g�˛; ˇ ¤ ˛ D 1; 2; (3.110)

where we keep in mind that g�˛ � g�̌ D g�˛ � g3 D 0 and (see Exercise 3.8)

g�˛˛ D g�̌̌

g�2
; ˇ ¤ ˛ D 1; 2: (3.111)
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Applying the Cauchy theorem (1.77) and bearing (3.108) in mind we obtain

f ˛ D 1

g

h=2Z

�h=2

q
g�̌̌ tdt3; m˛ D 1

g

h=2Z

�h=2

q
g�̌̌ �

r� � t
�

dt3; (3.112)

where again ˇ ¤ ˛ D 1; 2 and t denotes the Cauchy stress vector. The
force and couple resulting on the whole boundary surface can thus be expressed
respectively by

Z

A.˛/

tdA.˛/ D
tˇC�tˇZ

tˇ

h=2Z

�h=2

t
q

g�̌̌ dt3dtˇ D
tˇC�tˇZ

tˇ

gf ˛dtˇ; (3.113)

Z

A.˛/

�
r� � t

�
dA.˛/ D

tˇC�tˇZ

tˇ

h=2Z

�h=2

�
r� � t

� q
g�̌̌ dt3dtˇ

D
tˇC�tˇZ

tˇ

gm˛dtˇ; ˇ ¤ ˛ D 1; 2; (3.114)

where we make use of the relation

dA.˛/ D g�p
g�˛˛dtˇdt3 D

q
g�̌̌ dtˇdt3; ˇ ¤ ˛ D 1; 2 (3.115)

following immediately from (2.105) and (3.111).
The force and couple vectors (3.109) are usually represented with respect to the

basis related to the middle surface as (see also [1])

f ˛ D f ˛ˇgˇ C q˛g3; m˛ D m˛ˇg3 � gˇ D g e3ˇ�m˛ˇg�: (3.116)

In shell theory, their components are denoted as follows.
f ˛ˇ Components of the stress resultant tensor,

q˛ Components of the transverse shear stress vector,

m˛ˇ Components of the moment tensor.

External force variables. One defines the load force vector and the load moment
vector related to a unit area of the middle surface, respectively by

p D pi gi ; c D c�g3 � g�: (3.117)
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The load moment vector c is thus assumed to be tangential to the middle surface.
The resulting force and couple can be expressed respectively by

t 2C�t2Z

t 2

t1C�t1Z

t 1

pgdt1dt2;

t2C�t2Z

t 2

t1C�t1Z

t 1

cgdt1dt2: (3.118)

Equilibrium conditions. Taking (3.113) and (3.118)1 into account the force
equilibrium condition of the shell element can be expressed as

2X
˛;ˇD1
˛¤ˇ

tˇC�tˇZ

tˇ

Œg .t˛ C �t˛/ f ˛ .t˛ C �t˛/ � g .t˛/ f ˛ .t˛/� dtˇ

C
t 2C�t2Z

t 2

t1C�t1Z

t 1

pgdt1dt2 D 0: (3.119)

Rewriting the first integral in (3.119) we further obtain

t 2C�t2Z

t 2

t1C�t1Z

t 1

Œ.gf ˛/ ;˛ Cgp� dt1dt2 D 0: (3.120)

Since the latter condition holds for all shell elements we infer that

.gf ˛/ ;˛ Cgp D 0; (3.121)

which leads by virtue of (2.107) and (3.73)2 to

f ˛j˛ Cp D 0; (3.122)

where the covariant derivative is formally applied to the vectors f ˛ according to
(3.76)1.

In a similar fashion we can treat the moment equilibrium. In this case, we obtain
instead of (3.121) the following condition

Œg .m˛ C r � f ˛/� ;˛ Cgr � p C gc D 0: (3.123)

With the aid of (3.62) and keeping (3.122) in mind, it finally delivers

m˛j˛ Cg˛ � f ˛ C c D 0: (3.124)
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In order to rewrite the equilibrium conditions (3.122) and (3.124) in component
form we further utilize representations (3.116), (3.117) and apply the product rule
of differentiation for the covariant derivative (see, e.g., (2.101)–(2.103)). By virtue
of (3.78) and (3.80) it delivers

�
f ˛�j˛ �b�

˛q˛ C p�
�

g� C �
f ˛ˇb˛ˇ C q˛j˛ Cp3

�
g3 D 0; (3.125)

.m˛�j˛ �q� C c�/ g3 � g� C g e˛ˇ3
Qf ˛ˇg3 D 0 (3.126)

with a new variable

Qf ˛ˇ D f ˛ˇ C bˇ
� m�˛; ˛; ˇ D 1; 2 (3.127)

called pseudo-stress resultant. Keeping in mind that the vectors g i .i D 1; 2; 3/

are linearly independent we thus obtain the following scalar force equilibrium
conditions

f ˛�j˛ �b�
˛q˛ C p� D 0; � D 1; 2; (3.128)

b˛ˇf ˛ˇ C q˛j˛ Cp3 D 0 (3.129)

and moment equilibrium conditions

m˛�j˛ �q� C c� D 0; � D 1; 2; (3.130)

Qf ˛ˇ D Qf ˇ˛; ˛; ˇ D 1; 2; ˛ ¤ ˇ: (3.131)

With the aid of (3.127) one can finally eliminate the components of the stress
resultant tensor f ˛ˇ from (3.128) and (3.129). This leads to the following equation
system

Qf ˛�j˛ �
�
b�

�m�˛
	
j˛ �b�

˛q˛ C p� D 0; � D 1; 2; (3.132)

b˛ˇ
Qf ˛ˇ � b˛ˇbˇ

� m�˛ C q˛j˛ Cp3 D 0; (3.133)

m˛�j˛ �q� C c� D 0; � D 1; 2; (3.134)

where the latter relation is repeated from (3.130) for completeness.

Example 3.8. Equilibrium equations of plate theory. In this case, the middle surface
of the shell is a plane (3.55) for which

b˛ˇ D b˛
ˇ D 0; ˛; ˇ D 1; 2: (3.135)

Thus, the equilibrium equations (3.132)–(3.134) simplify to

f ˛�;˛ Cp� D 0; � D 1; 2; (3.136)
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q˛;˛ Cp3 D 0; (3.137)

m˛�;˛ �q� C c� D 0; � D 1; 2; (3.138)

where in view of (3.127) and (3.131) f ˛ˇ D f ˇ˛ .˛ ¤ ˇ D 1; 2/.

Example 3.9. Equilibrium equations of membrane theory. The membrane theory
assumes that the shell is moment free so that

m˛ˇ D 0; cˇ D 0; ˛; ˇ D 1; 2: (3.139)

In this case, the equilibrium equations (3.132)–(3.134) reduce to

f ˛�j˛ Cp� D 0; � D 1; 2; (3.140)

b˛ˇf ˛ˇ C p3 D 0; (3.141)

q� D 0; � D 1; 2; (3.142)

where again f ˛ˇ D f ˇ˛ .˛ ¤ ˇ D 1; 2/.

Exercises

3.1. Show that a curve r .s/ is a straight line if ~ .s/ � 0 for any s.

3.2. Show that the curves r .s/ and r 0 .s/ D r .�s/ have the same curvature and
torsion.

3.3. Show that a curve r .s/ characterized by zero torsion � .s/ � 0 for any s lies
in a plane.

3.4. Evaluate the Christoffel symbols of the second kind, the coefficients of the first
and second fundamental forms, the Gaussian and mean curvatures for the cylinder
(3.56).

3.5. Evaluate the Christoffel symbols of the second kind, the coefficients of the first
and second fundamental forms, the Gaussian and mean curvatures for the sphere
(3.58).

3.6. For the so-called hyperbolic paraboloidal surface defined by

r
�
t1; t2

� D t1e1 C t2e2 C t1t2

c
e3; c > 0; (3.143)

evaluate the tangent vectors to the coordinate lines, the coefficients of the first and
second fundamental forms, the Gaussian and mean curvatures.
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3.7. For a cone of revolution defined by

r
�
t1; t2

� D ct2 cos t1e1 C ct2 sin t1e2 C t2e3; c ¤ 0; (3.144)

evaluate the vectors tangent to the coordinate lines, the coefficients of the first and
second fundamental forms, the Gaussian and mean curvatures.

3.8. Verify relation (3.111).

3.9. Write out equilibrium equations (3.140) and (3.141) of the membrane theory
for a cylindrical shell and a spherical shell.



Chapter 4
Eigenvalue Problem and Spectral Decomposition
of Second-Order Tensors

4.1 Complexification

So far we have considered solely real vectors and real vector spaces. For the
purposes of this chapter an introduction of complex vectors is, however, necessary.
Indeed, in the following we will see that the existence of a solution of an eigenvalue
problem even for real second-order tensors can be guaranteed only within a complex
vector space. In order to define the complex vector space let us consider ordered
pairs hx; yi of real vectors x and y 2 E

n. The sum of two such pairs is defined
by [15]

hx1; y1i C hx2; y2i D hx1 C x2; y1 C y2i : (4.1)

Further, we define the product of a pair hx; yi by a complex number ˛ C iˇ by

.˛ C iˇ/ hx; yi D h˛x � ˇy ; ˇx C ˛yi ; (4.2)

where ˛; ˇ 2 R and i D p�1. These formulas can easily be recovered assuming
that

hx; yi D x C iy : (4.3)

The definitions (4.1) and (4.2) enriched by the zero pair h0; 0i are sufficient to
ensure that the axioms (A.1–A.4) and (B.1–B.4) of Chap. 1 are valid. Thus, the
set of all pairs z D hx; yi characterized by the above properties forms a vector
space referred to as complex vector space. Every basis G D fg1; g2; : : : ; gng
of the underlying Euclidean space E

n represents simultaneously a basis of the
corresponding complexified space. Indeed, for every complex vector within this
space

z D x C iy ; (4.4)

M. Itskov, Tensor Algebra and Tensor Analysis for Engineers, Mathematical Engineering,
DOI 10.1007/978-3-642-30879-6 4, © Springer-Verlag Berlin Heidelberg 2013
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where x; y 2 E
n and consequently

x D xi gi ; y D yi g i ; (4.5)

we can write

z D �
xi C iyi

�
gi : (4.6)

Thus, the dimension of the complexified space coincides with the dimension of the
original real vector space. Using this fact we will denote the complex vector space
based on E

n by C
n. Clearly, En represents a subspace of Cn.

For every vector z 2 C
n given by (4.4) one defines a complex conjugate

counterpart by

z D x � iy : (4.7)

Of special interest is the scalar product of two complex vectors, say z1 D x1 C iy1

and z2 D x2 C iy2, which we define by (see also [4])

.x1 C iy1/ � .x2 C iy2/ D x1 � x2 � y1 � y2 C i .x1 � y2 C y1 � x2/ : (4.8)

This scalar product is commutative (C.1), distributive (C.2) and linear in each factor
(C.3). Thus, it differs from the classical scalar product of complex vectors given in
terms of the complex conjugate (see, e.g., [15]). As a result, the axiom (C.4) does
not generally hold. For instance, one can easily imagine a non-zero complex vector
(for example e1 C ie2) whose scalar product with itself is zero. For complex vectors
with the scalar product (4.8) the notions of length, orthogonality or parallelity can
hardly be interpreted geometrically.

However, for complex vectors the axiom (C.4) can be reformulated by

z � z � 0; z � z D 0 if and only if z D 0: (4.9)

Indeed, using (4.4), (4.7) and (4.8) we obtain z � z D x � x C y � y. Bearing in mind
that the vectors x and y belong to the Euclidean space this immediately implies
(4.9).

As we learned in Chap. 1, the Euclidean space E
n is characterized by the

existence of an orthonormal basis (1.8). This can now be postulated for the complex
vector space C

n as well, because C
n includes E

n by the very definition. Also
Theorem 1.6 remains valid since it has been proved without making use of the
property (C.4). Thus, we may state that for every basis in C

n there exists a unique
dual basis.

The last step of the complexification is a generalization of a linear mapping on
complex vectors. This can be achieved by setting for every tensor A 2 Linn

A .x C iy/ D Ax C i .Ay/ : (4.10)
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4.2 Eigenvalue Problem, Eigenvalues and Eigenvectors

Let A 2 Linn be a second-order tensor. The equation

Aa D �a; a ¤ 0 (4.11)

is referred to as the eigenvalue problem of the tensor A. The non-zero vector a 2 C
n

satisfying this equation is called an eigenvector of A; � 2 C is called an eigenvalue
of A. It is clear that any product of an eigenvector with any (real or complex) scalar
is again an eigenvector.

The eigenvalue problem (4.11) and the corresponding eigenvector a can be
regarded as the right eigenvalue problem and the right eigenvector, respectively.
In contrast, one can define the left eigenvalue problem by

bA D �b; b ¤ 0; (4.12)

where b 2 C
n is the left eigenvector. In view of (1.115), every right eigenvector

of A represents the left eigenvector of AT and vice versa. In the following, unless
indicated otherwise, we will mean the right eigenvalue problem and the right
eigenvector.

Mapping (4.11) by A several times we obtain

Aka D �ka; k D 1; 2; : : : (4.13)

This leads to the following (spectral mapping) theorem.

Theorem 4.1. Let � be an eigenvalue of the tensor A and let g .A/ D Pm
kD0 akAk

be a polynomial of A. Then g .�/ D Pm
kD0 ak�k is the eigenvalue of g .A/.

Proof. Let a be an eigenvector of A associated with �. Then, in view of (4.13)

g .A/ a D
mX

kD0

akAka D
mX

kD0

ak�ka D
 

mX

kD0

ak�k

!

a D g .�/ a:

In order to find the eigenvalues of the tensor A we consider the following
representations:

A D Ai�j g i ˝ gj ; a D ai gi ; b D big
i ; (4.14)

where G D fg1; g2; : : : ; gng and G0 D ˚
g1; g2; : : : ; gn

�
are two arbitrary mutually

dual bases in E
n and consequently also in C

n. Note that we prefer here the mixed
variant representation of the tensor A. Inserting (4.14) into (4.11) and (4.12) further
yields

Ai�j aj g i D �ai g i ; Ai�j bi g
j D �bj gj ;
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and therefore
�

Ai�j aj � �ai
�

gi D 0;
�

Ai�j bi � �bj

�
gj D 0: (4.15)

Since both the vectors gi and g i .i D 1; 2; : : : ; n/ are linearly independent the
associated scalar coefficients in (4.15) must be zero. This results in the following
two linear homogeneous equation systems

�
Ai�j � �ıi

j

�
aj D 0;

�
Aj

�i � �ı
j
i

�
bj D 0; i D 1; 2; : : : ; n (4.16)

with respect to the components of the right eigenvector a and the left eigenvector b,
respectively. A non-trivial solution of these equation systems exists if and only if

ˇ
ˇ
ˇAi�j � �ıi

j

ˇ
ˇ
ˇ D 0; (4.17)

or equivalently

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌

A1�1 � � A1�2 : : : A1�n
A2�1 A2�2 � � : : : A2�n
:::

:::
: : :

:::

An�1 An�2 : : : An�n � �

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌

D 0; (4.18)

where j�j denotes the determinant of a matrix. Equation (4.17) is called the
characteristic equation of the tensor A. Writing out the determinant on the left hand
side of this equation one obtains a polynomial of degree n with respect to the powers
of �

pA .�/ D .�1/n �n C .�1/n�1 �n�1I.1/

A C : : :

C .�1/n�k �n�kI.k/

A C : : : C I.n/

A ; (4.19)

referred to as the characteristic polynomial of the tensor A. Thereby, it can easily be
seen that

I.1/

A D Ai�i D trA; I.n/

A D
ˇ
ˇ̌Ai�j

ˇ
ˇ̌
: (4.20)

The characteristic equation (4.17) can briefly be written as

pA .�/ D 0: (4.21)

According to the fundamental theorem of algebra, a polynomial of degree n

has n complex roots which may be multiple. These roots are the eigenvalues
�i .i D 1; 2; : : : ; n/ of the tensor A.
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Factorizing the characteristic polynomial (4.19) yields

pA .�/ D
nY

iD1

.�i � �/ : (4.22)

Collecting multiple eigenvalues the polynomial (4.22) can further be rewritten as

pA .�/ D
sY

iD1

.�i � �/ri ; (4.23)

where s .1 � s � n/ denotes the number of distinct eigenvalues, while ri is referred
to as an algebraic multiplicity of the eigenvalue �i .i D 1; 2; : : : ; s/. It should
formally be distinguished from the so-called geometric multiplicity ti , which
represents the number of linearly independent eigenvectors associated with this
eigenvalue.

Example 4.1. Eigenvalues and eigenvectors of the deformation gradient in the
case of simple shear. In simple shear, the deformation gradient can be given by

F D Fi�j ei ˝ ej , where the matrix
h
Fi�j
i

is represented by (2.69). The characteristic

equation (4.17) for the tensor F takes thus the form

ˇ̌
ˇ
ˇ
ˇ
ˇ

1 � � � 0

0 1 � � 0

0 0 1 � �

ˇ̌
ˇ
ˇ
ˇ
ˇ

D 0:

Writing out this determinant we obtain

.1 � �/3 D 0;

which yields one triple eigenvalue

�1 D �2 D �3 D 1:

The associated (right) eigenvectors a D ai ei can be obtained from the equation
system (4.16)1 i.e. �

Fi�j � �ıi
j

�
aj D 0; i D 1; 2; 3:

In view of (2.69) it reduces to the only non-trivial equation

a2� D 0:

Hence, all eigenvectors of F can be given by a D a1e1 C a3e3. They are
linear combinations of the only two linearly independent eigenvectors e1 and e3.
Accordingly, the geometric and algebraic multiplicities of the eigenvalue 1 are
t1 D 2 and r1 D 3, respectively.
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4.3 Characteristic Polynomial

By the very definition of the eigenvalue problem (4.11) the eigenvalues are
independent of the choice of the basis. This is also the case for the coefficients
I.i/

A .i D 1; 2; : : : ; n/ of the characteristic polynomial (4.19) because they uniquely
define the eigenvalues and vice versa. These coefficients are called principal
invariants of A. Writing out (4.22) and comparing with (4.19) one obtains the
following relations between the principal invariants and eigenvalues

I.1/

A D �1 C �2 C : : : C �n;

I.2/

A D �1�2 C �1�3 C : : : C �n�1�n;

:::

I.k/

A D
nX

o1<o2<:::<ok

�o1�o2 : : : �ok
;

:::

I.n/

A D �1�2 : : : �n; (4.24)

referred to as the Vieta theorem. The principal invariants can also be expressed
in terms of the so-called principal traces trAk .k D 1; 2; : : : ; n/. Indeed, by use of
(4.13), (4.20)1 and (4.24)1 we first write

trAk D �k
1 C �k

2 C : : : C �k
n; k D 1; 2; : : : ; n: (4.25)

Then, we apply Newton’s identities (also referred to as the Newton-Girard formulas)
relating coefficients of a polynomial to its roots represented by the sum of the powers
(see e.g. [10]) in the form of the right hand side of (4.25). Taking (4.25) into account,
Newton’s identities can thus be written as

I.1/

A D trA;

I.2/

A D 1

2

�
I.1/

A trA � trA2
�

;

I.3/

A D 1

3

�
I.2/

A trA � I.1/

A trA2 C trA3
�

;

:::
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I.k/
A D 1

k

�
I.k�1/
A trA � I.k�2/

A trA2 C : : : C .�1/k�1 trAk
�

D 1

k

kX

iD1

.�1/i�1 I.k�i /

A trAi ;

:::

I.n/

A D detA; (4.26)

where we set I.0/

A D 1 and

detA D
ˇ
ˇ̌Ai�j

ˇ
ˇ̌ D

ˇ
ˇ̌A i

j �
ˇ
ˇ̌ (4.27)

is called the determinant of the tensor A.

Example 4.2. Three-dimensional space. For illustration, we consider a second-
order tensor A in three-dimensional space. In this case, the characteristic polynomial
(4.19) takes the form

pA .�/ D ��3 C IA�2 � IIA� C IIIA; (4.28)

where

IA D I.1/

A D trA;

IIA D I.2/
A D 1

2

h
.trA/2 � trA2

i
;

IIIA D I.3/

A D 1

3

�
trA3 � 3

2
trA2trA C 1

2
.trA/3

�
D detA (4.29)

are the principal invariants (4.26) of the tensor A. They can alternatively be
expressed by the Vieta theorem (4.24) in terms of the eigenvalues as follows

IA D �1 C �2 C �3; IIA D �1�2 C �2�3 C �3�1; IIIA D �1�2�3: (4.30)

The roots of the cubic polynomial (4.28) can be obtained in a closed form by means
of the Cardano formula (see, e.g. [5]) as

�k D 1

3

	
IA C 2

q
I2
A � 3IIA cos

1

3
Œ# C 2� .k � 1/�



; k D 1; 2; 3; (4.31)

where

# D arccos

"
2I3

A � 9IAIIA C 27IIIA

2
�
I2
A � 3IIA

�3=2

#

; I2
A � 3IIA ¤ 0: (4.32)
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In the case I2
A � 3IIA D 0, the eigenvalues of A take another form

�k D 1

3
IA C 1

3

�
27IIIA � I3

A

�1=3 �
cos

�
2
3
�k
�C i sin

�
2
3
�k
��

; (4.33)

where k D 1; 2; 3.

4.4 Spectral Decomposition and Eigenprojections

The spectral decomposition is a powerful tool for the tensor analysis and tensor
algebra. It enables to gain a deeper insight into the properties of second-order
tensors and to represent various useful tensor operations in a relatively simple form.
In the spectral decomposition, eigenvectors represent one of the most important
ingredients.

Theorem 4.2. The eigenvectors of a second-order tensor corresponding to pair-
wise distinct eigenvalues are linearly independent.

Proof. Suppose that these eigenvectors are linearly dependent. Among all possible
nontrivial linear relations connecting them we can choose one involving the minimal
number, say r , of eigenvectors ai ¤ 0 .i D 1; 2; : : : ; r/. Obviously, 1 < r � n.
Thus,

rX

iD1

˛i ai D 0; (4.34)

where all ˛i .i D 1; 2; : : : ; r/ are non-zero. We can also write

Aai D �i ai ; i D 1; 2; : : : ; r; (4.35)

where �i ¤ �j ; .i ¤ j D 1; 2; : : : ; r/. Mapping both sides of (4.34) by A and
taking (4.35) into account we obtain

rX

iD1

˛i Aai D
rX

iD1

˛i �i ai D 0: (4.36)

Multiplying (4.34) by �r and subtracting from (4.36) yield

0 D
rX

iD1

˛i .�i � �r/ ai D
r�1X

iD1

˛i .�i � �r/ ai :

In the latter linear combination none of the coefficients is zero. Thus, we have a
linear relation involving only r � 1 eigenvectors. This contradicts, however, the
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earlier assumption that r is the smallest number of eigenvectors satisfying such a
relation.

Theorem 4.3. Let bi be a left and aj a right eigenvector associated with distinct
eigenvalues �i ¤ �j of a tensor A. Then,

bi � aj D 0: (4.37)

Proof. With the aid of (1.78) and taking (4.11) into account we can write

bi Aaj D bi � �Aaj

� D bi � ��j aj

� D �j bi � aj :

On the other hand, in view of (4.12)

bi Aaj D .bi A/ � aj D .bi �i / � aj D �i bi � aj :

Subtracting one equation from another one we obtain

�
�i � �j

�
bi � aj D 0:

Since �i ¤ �j this immediately implies (4.37).

Now, we proceed with the spectral decomposition of a second-order tensor A.
First, we consider the case of n simple eigenvalues. Solving the equation systems
(4.16) one obtains for every simple eigenvalue �i the components of the right
eigenvector ai and the components of the left eigenvector bi .i D 1; 2; : : : ; n/. n

right eigenvectors on the one hand and n left eigenvectors on the other hand are
linearly independent and form bases of Cn. Obviously, bi � ai ¤ 0 .i D 1; 2; : : : ; n/

because otherwise it would contradict (4.37) (see Exercise 4.5). Normalizing the
eigenvectors we can thus write

bi � aj D ıij ; i; j D 1; 2; : : : ; n: (4.38)

Accordingly, the bases ai and bi are dual to each other such that ai D bi and
bi D ai .i D 1; 2; : : : ; n/. Now, representing A with respect to the basis ai ˝
bj .i; j D 1; 2; : : : ; n/ as A D Aij ai ˝ bj we obtain with the aid of (1.88), (4.11)
and (4.38)

Aij D ai Abj D bi Aaj D bi � �Aaj

� D bi � ��j aj

� D �j ıij ;

where i; j D 1; 2; : : : ; n. Thus,

A D
nX

iD1

�iai ˝ bi : (4.39)
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Next, we consider second-order tensors with multiple eigenvalues. We assume,
however, that the algebraic multiplicity ri of every eigenvalue �i coincides with
its geometric multiplicity ti . In this case we again have n linearly independent right
eigenvectors forming a basis of Cn (Exercise 4.4). We will denote these eigenvectors
by a

.k/
i .i D 1; 2; : : : ; sI k D 1; 2; : : : ; ri / where s is the number of pairwise distinct

eigenvalues. Constructing the basis b
.l/
j dual to a

.k/
i such that

a
.k/
i � b

.l/
j D ıij ıkl ; i; j D 1; 2; : : : ; sI k D 1; 2; : : : ; ri I l D 1; 2; : : : ; rj (4.40)

we can write similarly to (4.39)

A D
sX

iD1

�i

riX

kD1

a
.k/
i ˝ b

.k/
i : (4.41)

The representations of the form (4.39) or (4.41) are called spectral decomposition in
diagonal form or, briefly, spectral decomposition. Note that not every second-order
tensor A 2 Linn permits the spectral decomposition. The tensors which can be rep-
resented by (4.39) or (4.41) are referred to as diagonalizable tensors. For instance,
we will show in the next sections that symmetric, skew-symmetric and orthogonal
tensors are always diagonalizable. If, however, the algebraic multiplicity of at least
one eigenvalue exceeds its geometric multiplicity, the spectral representation is not
possible. Such eigenvalues (for which ri > ti ) are called defective eigenvalues.
A tensor that has one or more defective eigenvalues is called defective tensor.
In Sect. 4.2 we have seen, for example, that the deformation gradient F represents in
the case of simple shear a defective tensor since its triple eigenvalue 1 is defective.
Clearly, a simple eigenvalue (ri D 1) cannot be defective. For this reason, a tensor
whose all eigenvalues are simple is diagonalizable.

Now, we look again at the spectral decompositions (4.39) and (4.41). With the
aid of the abbreviation

Pi D
riX

kD1

a
.k/
i ˝ b

.k/
i ; i D 1; 2; : : : ; s (4.42)

they can be given in a unified form by

A D
sX

iD1

�i Pi : (4.43)

The generally complex tensors Pi .i D 1; 2; : : : ; s/ defined by (4.42) are called
eigenprojections. It follows from (4.40) and (4.42) that (Exercise 4.6)

Pi Pj D ıij Pi ; i; j D 1; 2; : : : ; s (4.44)
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and consequently

PiA D APi D �i Pi ; i D 1; 2; : : : ; s: (4.45)

Bearing in mind that the eigenvectors a
.k/
i .i D 1; 2; : : : ; sI k D 1; 2; : : : ; ri / form

a basis of Cn and taking (4.40) into account we also obtain (Exercise 4.7)

sX

iD1

Pi D I: (4.46)

Due to these properties of eigenprojections (4.42) the spectral representation
(4.43) is very suitable for calculating tensor powers, polynomials and other tensor
functions defined in terms of power series. Indeed, in view of (4.44) powers of A
can be expressed by

Ak D
sX

iD1

�k
i Pi ; k D 0; 1; 2; : : : (4.47)

For a tensor polynomial it further yields

g .A/ D
sX

iD1

g .�i / Pi : (4.48)

For example, the exponential tensor function (1.114) can thus be represented by

exp .A/ D
sX

iD1

exp .�i / Pi : (4.49)

For an invertible second-order tensor we can also write

A�1 D
sX

iD1

��1
i Pi ; A 2 Invn; (4.50)

which implies that �i ¤ 0 .i D 1; 2; : : : ; s/. The latter property generally char-
acterizes all (not necessarily diagonalizable) invertible tensors (see Exercise 4.9).

With the aid of (4.44) and (4.46) the eigenprojections can be obtained without
solving the eigenvalue problem in the general form (4.11). To this end, we first
consider s polynomial functions pi .�/ .i D 1; 2; : : : ; s/ satisfying the following
conditions

pi

�
�j

� D ıij ; i; j D 1; 2; : : : ; s: (4.51)
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Thus, by use of (4.48) we obtain

pi .A/ D
sX

j D1

pi

�
�j

�
Pj D

sX

j D1

ıij Pj D Pi ; i D 1; 2; : : : ; s: (4.52)

Using Lagrange’s interpolation formula (see, e.g., [5]) and assuming that s ¤ 1 one
can represent the functions pi .�/ (4.51) by the following polynomials of degree
s � 1:

pi .�/ D
sY

j D1
j ¤i

� � �j

�i � �j

; i D 1; 2; : : : ; s > 1: (4.53)

Considering these expressions in (4.52) we obtain the so-called Sylvester formula
as

Pi D
sY

j D1
j ¤i

A � �j I
�i � �j

; i D 1; 2; : : : ; s > 1: (4.54)

Note that according to (4.46), P1 D I in the the case of s D 1. With this result in
hand the above representation can be generalized by

Pi D ı1sI C
sY

j D1
j ¤i

A � �j I
�i � �j

; i D 1; 2; : : : ; s: (4.55)

Writing out the product on the right hand side of (4.55) also delivers (see, e.g., [48])

Pi D 1

Di

s�1X

pD0

�i s�p�1Ap; i D 1; 2; : : : ; s; (4.56)

where �i0 D 1,

�ip D .�1/p
X

1�o1�����op�s

�o1 � � � �op .1 � ıio1/ � � � �1 � ıiop

�
;

Di D ı1s C
sY

j D1
j ¤i

�
�i � �j

�
; p D 1; 2; : : : ; s � 1; i D 1; 2; : : : ; s: (4.57)



4.5 Spectral Decomposition of Symmetric Second-Order Tensors 97

4.5 Spectral Decomposition of Symmetric Second-Order
Tensors

We begin with some useful theorems concerning eigenvalues and eigenvectors of
symmetric tensors.

Theorem 4.4. The eigenvalues of a symmetric second-order tensor M 2 Symn are
real, the eigenvectors belong to E

n.

Proof. Let � be an eigenvalue of M and a a corresponding eigenvector such that
according to (4.11)

Ma D �a:

The complex conjugate counterpart of this equation is

M a D � a:

Taking into account that M is real and symmetric such that M D M and MT D M
we obtain in view of (1.115)

a M D � a:

Hence, one can write

0 D aMa � aMa D a � .Ma/ � .aM/ � a

D � .a � a/ � � .a � a/ D
�
� � �

�
.a � a/ :

Bearing in mind that a ¤ 0 and taking (4.9) into account we conclude that a �a > 0.
Hence, � D �. The components of a with respect to a basis G D fg1; g2; : : : ; gng
in E

n are real since they represent a solution of the linear equation system (4.16)1

with real coefficients. Therefore, a 2 E
n.

Theorem 4.5. Eigenvectors of a symmetric second-order tensor corresponding to
distinct eigenvalues are mutually orthogonal.

Proof. According to Theorem 4.3 scalar product of a right and a left eigenvector
associated with distinct eigenvalues is zero. However, for a symmetric tensor
every right eigenvector represents the left eigenvector associated with the same
eigenvalue and vice versa. Taking also into account that the eigenvectors are real we
infer that right (left) eigenvectors associated with distinct eigenvalues are mutually
orthogonal.

Theorem 4.6. Let �i be an eigenvalue of a symmetric second order tensor M. Then,
the algebraic and geometric multiplicity of �i coincide.

Proof. Let ak 2 E
n .k D 1; 2; : : : ; ti / be all linearly independent eigenvectors

associated with �i , while ti and ri denote its geometric and algebraic multiplicity,
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respectively. Every linear combination of ak with not all zero coefficients is again
an eigenvector associated with �i . Indeed,

M
tiX

kD1

˛kak D
tiX

kD1

˛k .Mak/ D
tiX

kD1

˛k�i ak D �i

tiX

kD1

˛kak: (4.58)

According to Theorem 1.4 the set of vectors ak .k D 1; 2; : : : ; ti / can be
completed to a basis of E

n. With the aid of the Gram-Schmidt procedure
described in Chap. 1 (Sect. 1.4) this basis can be transformed to an orthonormal
basis el .l D 1; 2; : : : ; n/. Since the vectors ej .j D 1; 2; : : : ; ti / are linear
combinations of ak .k D 1; 2; : : : ; ti / they likewise represent eigenvectors of
M associated with �i . Further, we represent the tensor M with respect to the
basis el ˝ em .l; m D 1; 2; : : : ; n/. In view of the identities Mek D ekM D
�i ek .k D 1; 2; : : : ; ti / and keeping in mind the symmetry of M we can write using
(1.88)

M D �i

tiX

kD1

ek ˝ ek C
nX

l;mDti C1

M0
lmel ˝ em: (4.59)

Thus, the characteristic polynomial of M can be given as

pM .�/ D ˇ
ˇM0

lm � �ılm

ˇ
ˇ .�i � �/ti ; (4.60)

which implies that ri � ti .
Now, we consider the vector space En�ti of all linear combinations of the vectors

el .l D ti C 1; : : : ; n/. The tensor

M0 D
nX

l;mDti C1

M0
lme l ˝ em

represents a linear mapping of this space into itself. The eigenvectors of M0 are
linear combinations of el .l D ti C 1; : : : ; n/ and therefore are linearly independent
of ek .k D 1; 2; : : : ; ti /. Consequently, �i is not an eigenvalue of M0. Otherwise,
the eigenvector corresponding to this eigenvalue �i would be linearly independent
of ek .k D 1; 2; : : : ; ti / which contradicts the previous assumption. Thus, all the
roots of the characteristic polynomial of this tensor

pM0 .�/ D ˇ
ˇM0

lm � �ılm

ˇ
ˇ

differ from �i . In view of (4.60) this implies that ri D ti .

As a result of this theorem and in view of (4.41) and (4.43), the spectral decompo-
sition of a symmetric second-order tensor can be given by

M D
sX

iD1

�i

riX

kD1

a
.k/
i ˝ a

.k/
i D

sX

iD1

�iPi ; M 2 Symn; (4.61)
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in terms of the real symmetric eigenprojections

Pi D
riX

kD1

a
.k/
i ˝ a

.k/
i ; (4.62)

where the eigenvectors a
.k/
i form an orthonormal basis in E

n so that

a
.k/
i � a

.l/
j D ıij ıkl ; (4.63)

where i; j D 1; 2; : : : ; sI k D 1; 2; : : : ; ri I l D 1; 2; : : : ; rj .
Of particular interest in continuum mechanics are the so-called positive-definite

second-order tensors. They are defined by the following condition

xAx > 0; 8x 2 E
n; x ¤ 0: (4.64)

For a symmetric tensor M the above condition implies that all its eigenvalues are
positive. Indeed, let ai be a unit eigenvector associated with the eigenvalue �i .i D
1; 2; : : : ; n/. In view of (4.64) one can thus write

�i D ai Mai > 0; i D 1; 2; : : : ; n: (4.65)

This allows to define powers of a symmetric positive-definite tensor with a real
exponent as follows

M˛ D
sX

iD1

�˛
i Pi ; ˛ 2 R: (4.66)

4.6 Spectral Decomposition of Orthogonal and
Skew-Symmetric Second-Order Tensors

We begin with the orthogonal tensors Q 2 Orthn defined by the condition (1.135).
For every eigenvector a and the corresponding eigenvalue � we can write

Qa D �a; Qa D � a; (4.67)

because Q is by definition a real tensor such that Q D Q. Mapping both sides of
these vector equations by QT and taking (1.115) into account we have

aQ D ��1a; aQ D �
�1

a: (4.68)

Thus, every right eigenvector of an orthogonal tensor represents its left eigenvector
associated with the inverse eigenvalue.
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Now, we consider the product aQa. With the aid of (4.67)1 and (4.68)2 we obtain

aQa D � .a � a/ D �
�1

.a � a/ : (4.69)

Since, however, a � a D a � a > 0 according to (4.8) and (4.9) we infer that

�� D 1: (4.70)

Thus, all eigenvalues of an orthogonal tensor have absolute value 1 so that we can
write

� D e!i D cos ! C i sin !: (4.71)

By virtue of (4.70) one can further rewrite (4.68) as

aQ D �a; aQ D �a: (4.72)

If further � ¤ ��1 D � or, in other words, � is neither C1 nor �1, Theorem 4.3
immediately implies the relations

a � a D 0; a � a D 0; � ¤ ��1 (4.73)

indicating that a and consequently a are complex (definitely not real) vectors. Using
the representation

a D 1p
2

.p C iq/ ; p; q 2 E
n (4.74)

and applying (4.8) one can write

kpk D kqk D 1; p � q D 0; (4.75)

so that a � a D 1=2 .p � p C q � q/ D 1.
Summarizing these results we conclude that every complex (definitely not real)

eigenvalue � of an orthogonal tensor comes in pair with its complex conjugate
counterpart � D ��1. If a is a right eigenvector associated with �, then a is its
left eigenvector. For �, a is, vice versa, the left eigenvector and a the right one.

Next, we show that the algebraic and geometric multiplicities of every eigenvalue
of an orthogonal tensor Q coincide. Let Qak .k D 1; 2; : : : ; ti / be all linearly
independent right eigenvectors associated with an eigenvalue �i . According to
Theorem 1.4 these vectors can be completed to a basis of Cn. With the aid of the
Gram-Schmidt procedure (see Exercise 4.17) a linear combination of this basis can
be constructed in such a way that ak �al D ıkl .k; l D 1; 2; : : : ; n/. Since the vectors
ak .k D 1; 2; : : : ; ti / are linear combinations of Qak .k D 1; 2; : : : ; ti / they likewise
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represent eigenvectors of Q associated with �i . Thus, representing Q with respect
to the basis ak ˝ al .k; l D 1; 2; : : : ; n/ we can write

Q D �i

tiX

kD1

ak ˝ ak C
nX

l;mDti C1

Q0
lmal ˝ am:

Comparing this representation with (4.59) and using the same reasoning as applied
for the proof of Theorem 4.6 we infer that �i cannot be an eigenvalue of Q0 DPn

l;mDti C1 Q0
lmal ˝am. This means that the algebraic multiplicity ri of �i coincides

with its geometric multiplicity ti . Thus, every orthogonal tensor Q 2 Orthn is
characterized by exactly n linearly independent eigenvectors forming a basis of Cn.
Using this fact the spectral decomposition of Q can be given by

Q D
rC1X

kD1

a
.k/
C1 ˝ a

.k/
C1 �

r�1X

lD1

a
.l/
�1 ˝ a

.l/
�1

C
sX

iD1

(

�i

riX

kD1

a
.k/
i ˝ a

.k/
i C �i

riX

kD1

a
.k/
i ˝ a

.k/
i

)

; (4.76)

where rC1 and r�1 denote the algebraic multiplicities of real eigenvalues C1 and
�1, respectively, while a

.k/
C1 .k D 1; 2; : : : ; rC1/ and a

.l/
�1 .l D 1; 2; : : : ; r�1/ are the

corresponding orthonormal real eigenvectors. s is the number of complex conjugate
pairs of eigenvalues �i D cos !i ˙ i sin !i with distinct arguments !i and the
multiplicities ri . The associated eigenvectors a

.k/
i and a

.k/
i obey the following

relations (see also Exercise 4.18)

a
.k/
i � a

.o/
C1 D 0; a

.k/
i � a

.p/

�1 D 0; a
.k/
i � a

.l/
j D ıij ıkl ; a

.k/
i � a

.m/
i D 0; (4.77)

where i; j D 1; 2; : : : ; sI k; m D 1; 2; : : : ; ri I l D 1; 2; : : : ; rj I o D 1; 2; : : : ;

rC1I p D 1; 2; : : : ; r�1. Using the representations (4.74) and (4.71) the spectral
decomposition (4.76) can alternatively be written as

Q D
rC1X

kD1

a
.k/
C1 ˝ a

.k/
C1 C

sX

iD1

cos !i

riX

kD1

�
p

.k/
i ˝ p

.k/
i C q

.k/
i ˝ q

.k/
i

�

�
r�1X

lD1

a
.l/
�1 ˝ a

.l/
�1 C

sX

iD1

sin !i

riX

kD1

�
p

.k/
i ˝ q

.k/
i � q

.k/
i ˝ p

.k/
i

�
: (4.78)

Now, we turn our attention to skew-symmetric tensors W 2 Skewn as defined in
(1.155). Instead of (4.68) and (4.69) we have in this case

aW D ��a; a W D �� a; (4.79)

aWa D � .a � a/ D �� .a � a/ (4.80)
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and consequently

� D ��: (4.81)

Thus, the eigenvalues of W are either zero or imaginary. The latter ones come in
pairs with the complex conjugate like in the case of orthogonal tensors. Similarly to
(4.76) and (4.78) we thus obtain

W D
sX

iD1

!i i
riX

kD1

�
a

.k/
i ˝ a

.k/
i � a

.k/
i ˝ a

.k/
i

�

D
sX

iD1

!i

riX

kD1

�
p

.k/
i ˝ q

.k/
i � q

.k/
i ˝ p

.k/
i

�
; (4.82)

where s denotes the number of pairwise distinct imaginary eigenvalues !i i while
the associated eigenvectors a

.k/
i and a

.k/
i are subject to the restrictions (4.77)3;4.

Orthogonal tensors in three-dimensional space. In the three-dimen-sional case
Q 2 Orth3, at least one of the eigenvalues is real, since complex eigenvalues of
orthogonal tensors appear in pairs with the complex conjugate. Hence, we can write

�1 D ˙1; �2 D ei! D cos ! C i sin !; �3 D e�i! D cos ! � i sin !: (4.83)

In the case sin ! D 0 all three eigenvalues become real. The principal invariants
(4.30) take thus the form

IQ D �1 C 2 cos ! D ˙1 C 2 cos !;

IIQ D 2�1 cos ! C 1 D �1IQ D ˙IQ;

IIIQ D �1 D ˙1: (4.84)

The spectral representation (4.76) takes the form

Q D ˙a1 ˝ a1 C .cos ! C i sin !/ a ˝ a C .cos ! � i sin !/ a ˝ a; (4.85)

where a1 2 E
3 and a 2 C

3 is given by (4.74) and (4.75). Taking into account that
by (4.77)

a1 � a D a1 � p D a1 � q D 0 (4.86)

we can set
a1 D q � p: (4.87)

Substituting (4.74) into (4.85) we also obtain

Q D ˙a1 ˝ a1 C cos ! .p ˝ p C q ˝ q/ C sin ! .p ˝ q � q ˝ p/ : (4.88)
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By means of the vector identity (1.136) and considering (1.66), (1.92) and (4.87) it
finally leads to

Q D cos !I C sin ! Oa1 C .˙1 � cos !/ a1 ˝ a1: (4.89)

Comparing this representation with (1.73) we observe that any orthogonal tensor
Q 2 Orth3 describes a rotation in three-dimensional space if IIIQ D �1 D 1. The
eigenvector a1 corresponding to the eigenvalue 1 specifies the rotation axis. In this
case, Q is referred to as a proper orthogonal tensor.

Skew-symmetric tensors in three-dimensional space. For a skew-symmetric
tensor W 2 Skew3 we can write in view of (4.81)

�1 D 0; �2 D !i; �3 D �!i: (4.90)

Similarly to (4.84) we further obtain (see Exercise 4.19)

IW D 0; IIW D 1

2
kWk2 D !2; IIIW D 0: (4.91)

The spectral representation (4.82) takes the form

W D !i .a ˝ a � a ˝ a/ D ! .p ˝ q � q ˝ p/ ; (4.92)

where a, p and q are again related by (4.74) and (4.75). With the aid of the
abbreviation

w D !a1 D !q � p (4.93)

and bearing (1.169) in mind we finally arrive at the representation (1.158)

W D Ow: (4.94)

Thus, the axial vector w (4.93) of the skew-symmetric tensor W (4.92) in three-
dimensional space represents its eigenvector corresponding to the zero eigenvalue
in accordance with (1.160).

4.7 Cayley-Hamilton Theorem

Theorem 4.7. Let pA .�/ be the characteristic polynomial of a second-order tensor
A 2 Linn. Then,

pA .A/ D
nX

kD0

.�1/n�k I.k/

A An�k D 0: (4.95)
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Proof. As a proof (see, e.g., [12]) we show that

pA .A/ x D 0; 8x 2 E
n: (4.96)

For x D 0 it is trivial, so we suppose that x ¤ 0. Consider the vectors

y i D Ai�1x; i D 1; 2; : : : : (4.97)

Obviously, there is an integer number k such that the vectors y1; y2; : : : ; yk are
linearly independent, but

a1y1 C a2y2 C : : : C akyk C Akx D 0: (4.98)

Note that 1 � k � n. If k ¤ n we can complete the vectors y i .i D 1; 2; : : : ; k/ to
a basis y i .i D 1; 2; : : : ; n/ of En. Let A D Ai�j y i ˝ yj , where the vectors y i form
the basis dual to y i .i D 1; 2; : : : ; n/. By virtue of (4.97) and (4.98) we can write

Ay i D

8
<̂

:̂

y iC1 if i < k;

Akx D �
kP

j D1

aj yj if i D k:
(4.99)

The components of A can thus be given by

h
Ai�j
i

D �
y i Ayj

� D

2

6
66
6
6
6
4

0 0 : : : 0 �a1

1 0 : : : 0 �a2

:::
:::

: : :
:::

::: A0
0 0 : : : 1 �ak

0 A00

3

7
77
7
7
7
5

; (4.100)

where A0 and A00 denote some submatrices. Therefore, the characteristic polynomial
of A takes the form

pA .�/ D pA00 .�/

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

�� 0 : : : 0 �a1

1 �� : : : 0 �a2

:::
:::

: : :
:::

:::

0 0 : : : 1 �ak � �

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

; (4.101)

where pA00 .�/ D det .A00 � �I/. By means of the Laplace expansion rule (see,
e.g., [5]) we expand the determinant in (4.101) along the last column, which yields

pA .�/ D pA00 .�/ .�1/k
�
a1 C a2� C : : : C ak�k�1 C �k

�
: (4.102)
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Bearing (4.97) and (4.98) in mind we finally prove (4.96) by

pA .A/ x D .�1/k pA00 .A/
�
a1I C a2A C : : : C akAk�1 C Ak

�
x

D .�1/k pA00 .A/
�
a1x C a2Ax C : : : C akAk�1x C Akx

�

D .�1/k pA00 .A/
�
a1y1 C a2y2 C : : : C akyk C Akx

� D 0:

Exercises

4.1. Evaluate eigenvalues and eigenvectors of the right Cauchy-Green tensor C D
FTF in the case of simple shear, where F is defined by (2.69).

4.2. Let gi .i D 1; 2; 3/ be linearly independent vectors in E
3. Prove that for any

second order tensor A 2 Lin3

detA D ŒAg1 Ag2 Ag3�

Œg1g2g3�
: (4.103)

4.3. Prove identity (4.29)3 using Newton’s identities (4.26).

4.4. Prove that eigenvectors a
.k/
i .i D 1; 2; : : : ; sI k D 1; 2; : : : ; ti / of a second

order tensor A 2 Linn are linearly independent and form a basis of C
n if for

every eigenvalue the algebraic and geometric multiplicities coincide so that ri D
ti .i D 1; 2; : : : ; s/.

4.5. Generalize the proof of Exercise 1.8 for complex vectors in C
n.

4.6. Prove identity (4.44) using (4.40) and (4.42).

4.7. Prove identity (4.46) taking (4.40) and (4.42) into account and using the results
of Exercise 4.4.

4.8. Prove the identity det Œexp .A/� D exp .trA/.

4.9. Prove that a second-order tensor is invertible if and only if all its eigenvalues
are non-zero.

4.10. Let �i be an eigenvalue of a tensor A 2 Invn. Show that ��1
i represents then

the eigenvalue of A�1.

4.11. Show that the tensor MN is diagonalizable if M; N 2 Symn and at least one
of the tensors M or N is positive-definite.

4.12. Verify the Sylvester formula for s D 3 by inserting (4.43) and (4.46) into
(4.55).
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4.13. Represent eigenprojections of the right Cauchy-Green tensor in the case of
simple shear using the results of Exercise 4.1 by (4.42) and alternatively by the
Sylvester formula (4.55). Compare both representations.

4.14. Calculate eigenvalues and eigenprojections of the tensor A D Ai
j ei ˝ ej ,

where
h
Ai

j

i
D
2

4
�2 2 2

2 1 4

2 4 1

3

5 :

Apply the Cardano formula (4.31) and Sylvester formula (4.55).

4.15. Calculate the exponential of the tensor A given in Exercise 4.14 using the
spectral representation in terms of eigenprojections (4.43).

4.16. Calculate eigenvectors of the tensor A defined in Exercise 4.14. Express
eigenprojections by (4.42) and compare the results with those obtained by the
Sylvester formula (Exercise 4.14).

4.17. Let ci .i D 1; 2; : : : ; m/ 2 C
n be a set of linearly independent complex

vectors. Using the (Gram-Schmidt) procedure described in Chap. 1 (Sect. 1.4),
construct linear combinations of these vectors, say ai .i D 1; 2; : : : ; m/, again
linearly independent, in such a way that ai � aj D ıij .i; j D 1; 2; : : : ; m/.

4.18. Let a
.k/
i .k D 1; 2; : : : ; ti / be all linearly independent right eigenvectors of

an orthogonal tensor associated with a complex (definitely not real) eigenvalue �i .
Show that a

.k/
i � a

.l/
i D 0 .k; l D 1; 2; : : : ; ti /.

4.19. Evaluate principal invariants of a skew-symmetric tensor in three-
dimensional space using (4.29).

4.20. Evaluate eigenvalues, eigenvectors and eigenprojections of the tensor describ-
ing the rotation by the angle ˛ about the axis e3 (see Exercise 1.24).

4.21. Verify the Cayley-Hamilton theorem for the tensor A defined in Exer-
cise 4.14.

4.22. Verify the Cayley-Hamilton theorem for the deformation gradient in the case
of simple shear (2.69).



Chapter 5
Fourth-Order Tensors

5.1 Fourth-Order Tensors as a Linear Mapping

Fourth-order tensors play an important role in continuum mechanics where they
appear as elasticity and compliance tensors. In this section we define fourth-order
tensors and learn some basic operations with them. To this end, we consider a set
Linn of all linear mappings of one second-order tensor into another one within Linn.
Such mappings are denoted by a colon as

Y D A W X; A 2 Linn; Y 2 Linn; 8X 2 Linn: (5.1)

The elements of Linn are called fourth-order tensors.

Example 5.1. Elasticity and compliance tensors. A constitutive law of a linearly
elastic material establishes a linear relationship between the Cauchy stress tensor
� and Cauchy strain tensor �. Since these tensors are of the second-order a linear
relation between them can be expressed by fourth-order tensors like

� D C W � or � D H W � : (5.2)

The fourth-order tensors C and H describe properties of the elastic material and are
called the elasticity and compliance tensor, respectively.

Linearity of the mapping (5.1) implies that

A W .X C Y/ D A W X C A W Y; (5.3)

A W .˛X/ D ˛ .A W X/ ; 8X; Y 2 Linn; 8˛ 2 R; A 2 Linn: (5.4)

Similarly to second-order tensors one defines the product of a fourth-order tensor
with a scalar

.˛A/ W X D ˛ .A W X/ D A W .˛X/ (5.5)

M. Itskov, Tensor Algebra and Tensor Analysis for Engineers, Mathematical Engineering,
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and the sum of two fourth-order tensors by

.A C B/ W X D A W X C B W X; 8X 2 Linn: (5.6)

Further, we define the zero-tensor O of the fourth-order by

O W X D 0; 8X 2 Linn: (5.7)

Thus, summarizing the properties of fourth-order tensors one can write similarly to
second-order tensors

A C B D B C A; (addition is commutative); (5.8)

A C .B C C/ D .A C B/ C C; (addition is associative); (5.9)

O C A D A; (5.10)

A C .�A/ D O; (5.11)

˛ .ˇA/ D .˛ˇ/A; (multiplication by scalars is associative); (5.12)

1A D A; (5.13)

˛ .A C B/ D ˛A C ˛B; (multiplication by scalars is distributive

with respect to tensor addition); (5.14)

.˛ C ˇ/A D ˛A C ˇA; (multiplication by scalars is distributive

with respect to scalar addition); 8A;B;C 2 Linn; 8˛; ˇ 2 R: (5.15)

Thus, the set of fourth-order tensors Linn forms a vector space.
On the basis of the “right” mapping (5.1) and the scalar product of two second-

order tensors (1.143) we can also define the “left” mapping by

.Y W A/ W X D Y W .A W X/ ; Y 2 Linn; 8X 2 Linn: (5.16)

5.2 Tensor Products, Representation of Fourth-Order
Tensors with Respect to a Basis

For the construction of fourth-order tensors from second-order ones we introduce
two tensor products as follows

A ˝ B W X D AXB; A ˇ B W X D A .B W X/ ; 8X 2 Linn; (5.17)

where A; B 2 Linn. Note, that the tensor product “˝” (5.17)1 applied to second-
order tensors differs from the tensor product of vectors (1.80). One can easily show
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that the mappings described by (5.17) are linear and therefore represent fourth-order
tensors. Indeed, we have, for example, for the tensor product “˝” (5.17)1

A ˝ B W .X C Y/ D A .X C Y/ B

D AXB C AYB D A ˝ B W X C A ˝ B W Y; (5.18)

A ˝ B W .˛X/ D A .˛X/ B D ˛ .AXB/

D ˛ .A ˝ B W X/ ; 8X; Y 2 Linn; 8˛ 2 R: (5.19)

With definitions (5.17) in hand one can easily prove the following identities

A ˝ .B C C/ D A ˝ B C A ˝ C; .B C C/ ˝ A D B ˝ A C C ˝ A; (5.20)

A ˇ .B C C/ D A ˇ B C A ˇ C; .B C C/ ˇ A D B ˇ A C C ˇ A: (5.21)

For the left mapping (5.16) the tensor products (5.17) yield

Y W A ˝ B D ATYBT; Y W A ˇ B D .Y W A/ B: (5.22)

As fourth-order tensors represent vectors they can be given with respect to a basis
in Linn.

Theorem 5.1. Let F D fF1; F2; : : : ; Fn2g and G D fG1; G2; : : : ; Gn2g be two
arbitrary (not necessarily distinct) bases of Linn. Then, fourth-order tensors Fi ˇ
Gj

�
i; j D 1; 2; : : : ; n2

�
form a basis of Linn. The dimension of Linn is thus n4.

Proof. See the proof of Theorem 1.7.

A basis in Linn can be represented in another way as by the tensors Fi ˇ
Gj

�
i; j D 1; 2; : : : ; n2

�
. To this end, we prove the following identity

.a ˝ d/ ˇ .b ˝ c/ D a ˝ b ˝ c ˝ d ; (5.23)

where we set

.a ˝ b/ ˝ .c ˝ d/ D a ˝ b ˝ c ˝ d : (5.24)

Indeed, let X 2 Linn be an arbitrary second-order tensor. Then, in view of (1.142)
and (5.17)2

.a ˝ d/ ˇ .b ˝ c/ W X D .bXc/ .a ˝ d/ : (5.25)

For the right hand side of (5.23) we obtain the same result using (5.17)1 and (5.24)

a ˝ b ˝ c ˝ d W X D .a ˝ b/ ˝ .c ˝ d/ W X D .bXc/ .a ˝ d/ : (5.26)

For the left mapping (5.16) it thus holds



110 5 Fourth-Order Tensors

Y W a ˝ b ˝ c ˝ d D .aYd/ .b ˝ c/ : (5.27)

Now, we are in a position to prove the following theorem.

Theorem 5.2. Let E D fe1; e2; : : : ; eng, F D ff 1; f 2; : : : ; f ng, G D fg1; g2;

: : : ; gng and finally H D fh1; h2; : : : ; hng be four arbitrary (not necessarily
distinct) bases of En. Then, fourth-order tensors ei ˝ f j ˝ gk ˝ hl .i; j; k; l D
1; 2; : : : ; n/ represent a basis of Linn.

Proof. In view of (5.23)

ei ˝ f j ˝ gk ˝ hl D .ei ˝ hl / ˇ �
f j ˝ gk

�
:

According to Theorem 1.7 the second-order tensors ei ˝ hl .i; l D 1; 2; : : : ; n/ on
the one hand and f j ˝ gk .j; k D 1; 2; : : : ; n/ on the other hand form bases of
Linn. According to Theorem 5.1 the fourth-order tensors .e i ˝ hl / ˇ �

f j ˝ gk

�

and consequently ei ˝f j ˝gk ˝hl .i; j; k; l D 1; 2; : : : ; n/ represent thus a basis
of Linn.

As a result of this Theorem any fourth-order tensor can be represented by

A D Aijklgi ˝ gj ˝ gk ˝ gl D Aijklg
i ˝ gj ˝ gk ˝ g l

D A
ij
� �klgi ˝ gj ˝ gk ˝ gl D : : : (5.28)

The components of A appearing in (5.28) can be expressed by

Aijkl D gi ˝ g l W A W gj ˝ gk; Aijkl D gi ˝ gl W A W gj ˝ gk;

A
ij
� �kl D gi ˝ gl W A W gj ˝ gk; i; j; k; l D 1; 2; : : : ; n: (5.29)

By virtue of (1.109), (5.17)1 and (5.22)1 the right and left mappings with a second-
order tensor (5.1) and (5.16) can thus be represented by

A W X D �
Aijklg i ˝ gj ˝ gk ˝ g l

� W �
Xqpgq ˝ gp

� D AijklXjkgi ˝ gl ;

X W A D �
Xqpgq ˝ gp

� W �
Aijklgi ˝ gj ˝ gk ˝ gl

� D AijklXi lgj ˝ gk:

(5.30)

We observe that the basis vectors of the second-order tensor are scalarly multiplied
either by the “inner” (right mapping) or “outer” (left mapping) basis vectors of the
fourth-order tensor.
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5.3 Special Operations with Fourth-Order Tensors

Similarly to second-order tensors one defines also for fourth-order tensors some
specific operations which are not generally applicable to conventional vectors in the
Euclidean space.

Composition. In analogy with second-order tensors we define the composition of
two fourth-order tensors A and B denoted by A W B as

.A W B/ W X D A W .B W X/ ; 8X 2 Linn: (5.31)

For the left mapping (5.16) one can thus write

Y W .A W B/ D .Y W A/ W B; 8Y 2 Linn: (5.32)

For the tensor products (5.17) the composition (5.31) further yields

.A ˝ B/ W .C ˝ D/ D .AC/ ˝ .DB/ ; (5.33)

.A ˝ B/ W .C ˇ D/ D .ACB/ ˇ D; (5.34)

.A ˇ B/ W .C ˝ D/ D A ˇ �
CTBDT�

; (5.35)

.A ˇ B/ W .C ˇ D/ D .B W C/ A ˇ D; A; B; C; D 2 Linn: (5.36)

For example, the identity (5.33) can be proved within the following steps

.A ˝ B/ W .C ˝ D/ W X D .A ˝ B/ W .CXD/

D ACXDB D .AC/ ˝ .DB/ W X; 8X 2 Linn;

where we again take into account the definition of the tensor product (5.17).
For the component representation (5.28) we further obtain

A W B D �
Aijklgi ˝ gj ˝ gk ˝ gl

� W �
Bpqrtg

p ˝ gq ˝ gr ˝ gt
�

D AijklBjqrkg i ˝ gq ˝ gr ˝ g l : (5.37)

Note that the “inner” basis vectors of the left tensor A are scalarly multiplied with
the “outer” basis vectors of the right tensor B.

The composition of fourth-order tensors also gives rise to the definition of
powers as

Ak D A W A W : : : W A„ ƒ‚ …
k times

; k D 1; 2; : : : ; A0 D I; (5.38)

where I stands for the fourth-order identity tensor to be defined in the next section.
By means of (5.33) and (5.36) powers of tensor products (5.17) take the following
form
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.A ˝ B/k D Ak ˝ Bk; .A ˇ B/k D .A W B/k�1 A ˇ B; k D 1; 2; : : : (5.39)

Simple composition with second-order tensors. Let D be a fourth-order tensor
and A, B two second-order tensors. One defines a fourth-order tensor ADB by

.ADB/ W X D A .D W X/ B; 8X 2 Linn: (5.40)

Thus, we can also write

ADB D .A ˝ B/ W D: (5.41)

This operation is very useful for the formulation of tensor differentiation rules to be
discussed in the next chapter.

For the tensor products (5.17) we further obtain

A .B ˝ C/ D D .AB/ ˝ .CD/ D .A ˝ D/ W .B ˝ C/ ; (5.42)

A .B ˇ C/ D D .ABD/ ˇ C D .A ˝ D/ W .B ˇ C/ : (5.43)

With respect to a basis the simple composition can be given by

ADB D �
Apqgp ˝ gq

� �
Dijklg i ˝ gj ˝ gk ˝ g l

�
.Brsg

r ˝ gs/

D ApiD
ijklBlsg

p ˝ gj ˝ gk ˝ gs : (5.44)

It is seen that expressed in component form the simple composition of second-order
tensors with a fourth-order tensor represents the so-called simple contraction of the
classical tensor algebra (see, e.g., [42]).

Transposition. In contrast to second-order tensors allowing for the unique trans-
position operation one can define for fourth-order tensors various transpositions. We
confine our attention here to the following two operations .�/T and .�/t defined by

AT W X D X W A; At W X D A W XT; 8X 2 Linn: (5.45)

Thus we can also write
Y W At D .Y W A/T : (5.46)

Indeed, a scalar product with an arbitrary second order tensor X yields in view of
(1.147) and (5.16)

�
Y W At� W X D Y W �

At W X
� D Y W �

A W XT
�

D .Y W A/ W XT D .Y W A/T W X; 8X 2 Linn:

Of special importance is also the following symmetrization operation resulting from
the transposition .�/t:
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Fs D 1

2

�
F C Ft� : (5.47)

In view of (1.153)1, (5.45)2 and (5.46) we thus write

Fs W X D F W symX; Y W Fs D sym .Y W F/ : (5.48)

Applying the transposition operations to the tensor products (5.17) we have

.A ˝ B/T D AT ˝ BT; .A ˇ B/T D B ˇ A; (5.49)

.A ˇ B/t D A ˇ BT; A; B 2 Linn: (5.50)

With the aid of (5.26) and (5.27) we further obtain

.a ˝ b ˝ c ˝ d/T D b ˝ a ˝ d ˝ c; (5.51)

.a ˝ b ˝ c ˝ d/t D a ˝ c ˝ b ˝ d : (5.52)

It can also easily be proved that

ATT D A; Att D A; 8A 2 Linn: (5.53)

Note, however, that the transposition operations (5.45) are not commutative with
each other so that generally DTt ¤ DtT.

Applied to the composition of fourth-order tensors these transposition operations
yield (Exercise 5.6):

.A W B/T D BT W AT; .A W B/t D A W Bt: (5.54)

For the tensor products (5.17) we also obtain the following relations (see
Exercise 5.7)

.A ˝ B/t W .C ˝ D/ D ��
ADT� ˝ �

CTB
��t

; (5.55)

.A ˝ B/t W .C ˇ D/ D �
ACTB

� ˇ D: (5.56)

Scalar product. Similarly to second-order tensors the scalar product of fourth-
order tensors can be defined in terms of the basis vectors or tensors. To this end, let
us consider two fourth-order tensors A ˇ B and C ˇ D, where A; B; C; D 2 Linn.
Then, we set

.A ˇ B/ WW .C ˇ D/ D .A W C/ .B W D/ : (5.57)

As a result of this definition we also obtain in view of (1.141) and (5.23)

.a ˝ b ˝ c ˝ d/ WW .e ˝ f ˝ g ˝ h/ D .a � e/ .b � f / .c � g/ .d � h/ : (5.58)
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For the component representation of fourth-order tensors it finally yields

A WW B D �
Aijklgi ˝ gj ˝ gk ˝ gl

�

WW �
Bpqrtg

p ˝ gq ˝ gr ˝ g t
� D AijklBijkl: (5.59)

Using the latter relation one can easily prove that the properties of the scalar product
(D.1)–(D.4) hold for fourth-order tensors as well.

5.4 Super-Symmetric Fourth-Order Tensors

On the basis of the transposition operations one defines symmetric and super-
symmetric fourth-order tensors. Accordingly, a fourth-order tensor C is said to be
symmetric if (major symmetry)

CT D C (5.60)

and super-symmetric if additionally (minor symmetry)

Ct D C: (5.61)

In this section we focus on the properties of super-symmetric fourth-order tensors.
They constitute a subspace of Linn denoted in the following by Ssymn. First,
we prove that every super-symmetric fourth-order tensor maps an arbitrary (not
necessarily symmetric) second-order tensor into a symmetric one so that

.C W X/T D C W X; 8C 2 Ssymn; 8X 2 Linn: (5.62)

Indeed, in view of (5.45), (5.46), (5.60) and (5.61) we have

.C W X/T D �
X W CT�T D .X W C/T D X W Ct D X W C D X W CT D C W X:

Next, we deal with representations of super-symmetric fourth-order tensors and
study the properties of their components. Let F D fF1; F2; : : : ; Fn2g be an arbitrary

basis of Linn and F 0 D
n
F1; F2; : : : ; Fn2

o
the corresponding dual basis such that

Fp W Fq D ıq
p; p; q D 1; 2; : : : ; n2: (5.63)

According to Theorem 5.1 we first write

C D CpqFp ˇ Fq: (5.64)
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Taking (5.60) into account and in view of (5.49)2 we infer that

Cpq D Cqp; p ¤ qI p; q D 1; 2; : : : ; n2: (5.65)

Let now Fp D Mp .p D 1; 2; : : : ; m/ and Fq D Wq�m

�
q D m C 1; : : : ; n2

�
be

bases of Symn and Skewn (Sect. 1.9), respectively, where m D 1
2
n .n C 1/. In view

of (5.45)2 and (5.61)

C W Wt D C W �
Wt

�T D �C W Wt D 0; t D 1; 2; : : : ;
1

2
n .n � 1/ (5.66)

so that

Cpr D Crp D Fp W C W Fr D 0; p D 1; 2; : : : ; n2I r D m C 1; : : : ; n2 (5.67)

and consequently

C D
mX

p;qD1

CpqMp ˇ Mq; m D 1

2
n .n C 1/ : (5.68)

Keeping (5.65) in mind we can also write by analogy with (1.156)

C D
mX

pD1

CppMp ˇ Mp C
mX

p;qD1
p>q

Cpq
�
Mp ˇ Mq C Mq ˇ Mp

�
: (5.69)

Therefore, every super-symmetric fourth-order tensor can be represented with
respect to the basis 1

2

�
Mp ˇ Mq C Mq ˇ Mp

�
, where Mq 2 Symn and p � q D

1; 2; : : : ; 1
2
n .n C 1/. Thus, we infer that the dimension of Ssymn is 1

2
m .m C 1/ D

1
8
n2 .n C 1/2 C 1

4
n .n C 1/. We also observe that Ssymn can be considered as the

set of all linear mappings within Symn.
Applying Theorem 5.2 we can also represent a super-symmetric tensor by C D

Cijklg i ˝ gj ˝ gk ˝ g l . In this case, (5.51) and (5.52) require that (Exercise 5.8)

Cijkl D Cjilk D Cikjl D Cljki D Cklij: (5.70)

Thus, we can also write

C D Cijkl .gi ˝ gl / ˇ �
gj ˝ gk

�

D 1

4
Cijkl .gi ˝ g l C g l ˝ g i / ˇ �

gj ˝ gk C gk ˝ gj

�

D 1

4
Cijkl

�
gj ˝ gk C gk ˝ gj

� ˇ .gi ˝ gl C gl ˝ g i / : (5.71)
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Finally, we briefly consider the eigenvalue problem for super-symmetric fourth-
order tensors. It is defined as

C W M D ƒM; C 2 Ssymn; M ¤ 0; (5.72)

where ƒ and M 2 Symn denote the eigenvalue and the corresponding eigentensor,
respectively. The spectral decomposition of C can be given similarly to symmetric
second-order tensors (4.61) by

C D
mX

pD1

ƒpMp ˇ Mp; (5.73)

where again m D 1
2
n .n C 1/ and

Mp W Mq D ıpq; p; q D 1; 2; : : : ; m: (5.74)

5.5 Special Fourth-Order Tensors

Identity tensor. The fourth-order identity tensor I is defined by

I W X D X; 8X 2 Linn: (5.75)

It is seen that I is a symmetric (but not super-symmetric) fourth-order tensor such
that IT D I. Indeed,

X W I D X; 8X 2 Linn: (5.76)

With the aid of (5.17)1 the fourth-order identity tensor can be represented by

I D I ˝ I: (5.77)

Thus, with the aid of (1.91) or alternatively by using (5.29) one obtains

I D g i ˝ gi ˝ gj ˝ gj : (5.78)

An alternative representation for I in terms of eigenprojections Pi .i D 1; 2; : : : ; s/

of an arbitrary second-order tensor results from (5.77) and (4.46) as

I D
sX

i;j D1

Pi ˝ Pj : (5.79)

For the composition with other fourth-order tensors we can also write

I W A D A W I D A; 8A 2 Linn: (5.80)
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Transposition tensor. The transposition of second-order tensors represents a linear
mapping and can therefore be expressed in terms of a fourth-order tensor. This
tensor denoted by T is referred to as the transposition tensor. Thus,

T W X D XT; 8X 2 Linn: (5.81)

One can easily show that (Exercise 5.9)

Y W T D YT; 8Y 2 Linn: (5.82)

Hence, the transposition tensor is symmetric such that T D TT. By virtue of (5.45)2

and (5.75), T can further be expressed in terms of the identity tensor by

T D It: (5.83)

Indeed,
It W X D I W XT D XT D T W X; 8X 2 Linn:

Considering (5.52) and (5.77)–(5.79) in (5.83) we thus obtain

T D .I ˝ I/t D
sX

i;j D1

�
Pi ˝ Pj

�t D gi ˝ gj ˝ gi ˝ gj : (5.84)

The transposition tensor can further be characterized by the following identities (see
Exercise 5.10)

A W T D At; T W A D ATtT; T W T D I; 8A 2 Linn: (5.85)

Super-symmetric identity tensor. The identity tensor (5.77) is symmetric but not
super-symmetric. For this reason, it is useful to define a special identity tensor
within Ssymn. This super-symmetric tensor maps every symmetric second-order
tensor into itself like the identity tensor (5.77). It can be expressed by

Is D 1

2
.I C T/ D .I ˝ I/s : (5.86)

However, in contrast to the identity tensor I (5.77), the super-symmetric identity
tensor Is (5.86) maps any arbitrary (not necessarily symmetric) second-order tensor
into its symmetric part so that in view of (5.48)

Is W X D X W Is D symX; 8X 2 Linn: (5.87)

Spherical, deviatoric and trace projection tensors. The spherical and deviatoric
part of a second-order tensor are defined as a linear mapping (1.163) and can thus
be expressed by
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sphA D Psph W A; devA D Pdev W A; (5.88)

where the fourth-order tensors Psph and Pdev are called the spherical and deviatoric
projection tensors, respectively. In view of (1.163) they are given by

Psph D 1

n
I ˇ I; Pdev D I � 1

n
I ˇ I; (5.89)

where I ˇ I represents the so-called trace projection tensor. Indeed,

I ˇ I W X D ItrX; 8X 2 Linn: (5.90)

According to (5.49)2 and (5.50), the spherical and trace projection tensors are
super-symmetric. The spherical and deviatoric projection tensors are furthermore
characterized by the properties:

Pdev W Pdev D Pdev; Psph W Psph D Psph;

Pdev W Psph D Psph W Pdev D O: (5.91)

Example 5.2. Elasticity tensor for the generalized Hooke’s law. The generalized
Hooke’s law is written as

� D 2G� C �tr .�/ I D 2Gdev� C
�

� C 2

3
G

�
tr .�/ I; (5.92)

where G and � denote the so-called Lamé constants. The corresponding super-
symmetric elasticity tensor takes the form

C D 2GIs C �I ˇ I D 2GPs
dev C .3� C 2G/Psph: (5.93)

Exercises

5.1. Prove relations (5.20) and (5.21).

5.2. Prove relations (5.22).

5.3. Prove relations (5.42) and (5.43).

5.4. Prove relations (5.49)–(5.52).

5.5. Prove that ATt ¤ AtT for A D a ˝ b ˝ c ˝ d .

5.6. Prove identities (5.54).

5.7. Verify relations (5.55) and (5.56).
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5.8. Prove relations (5.70) for the components of a super-symmetric fourth-order
tensor using (5.51) and (5.52).

5.9. Prove relation (5.82) using (5.16) and (5.81).

5.10. Verify the properties of the transposition tensor (5.85).

5.11. Prove that the fourth-order tensor of the form

C D .M1 ˝ M2 C M2 ˝ M1/s

is super-symmetric if M1; M2 2 Symn.

5.12. Calculate eigenvalues and eigentensors of the following super-symmetric
fourth-order tensors for n D 3: (a) Is (5.86), (b) Psph (5.89)1, (c) Ps

dev (5.89)2,
(d) C (5.93).



Chapter 6
Analysis of Tensor Functions

6.1 Scalar-Valued Isotropic Tensor Functions

Let us consider a real scalar-valued function f .A1;A2; : : : ;Al / of second-order
tensors Ak 2 Linn .k D 1; 2; : : : ; l/. The function f is said to be isotropic if

f
�
QA1QT;QA2QT; : : : ;QAlQT�

D f .A1;A2; : : : ;Al / ; 8Q 2 Orthn: (6.1)

Example 6.1. Consider the function f .A;B/ D tr .AB/. Since in view of (1.135)
and (1.151)

f
�
QAQT;QBQT� D tr

�
QAQTQBQT�

D tr
�
QABQT� D tr

�
ABQTQ

�

D tr .AB/ D f .A;B/ ; 8Q 2 Orthn;

this function is isotropic according to the definition (6.1). In contrast, the function
f .A/ D tr .AL/, where L denotes a second-order tensor, is not isotropic. Indeed,

f
�
QAQT� D tr

�
QAQTL

� ¤ tr .AL/ :

Scalar-valued isotropic tensor functions are also called isotropic invariants of
the tensors Ak .k D 1; 2; : : : ; l/. For such a tensor system one can construct, in
principle, an unlimited number of isotropic invariants. However, for every finite
system of tensors one can find a finite number of isotropic invariants in terms
of which all other isotropic invariants can be expressed (Hilbert’s theorem). This
system of invariants is called functional basis of the tensors Ak .k D 1; 2; : : : ; l/.
For one and the same system of tensors there exist many functional bases.
A functional basis is called irreducible if none of its elements can be expressed
in a unique form in terms of the remaining invariants.

M. Itskov, Tensor Algebra and Tensor Analysis for Engineers, Mathematical Engineering,
DOI 10.1007/978-3-642-30879-6 6, © Springer-Verlag Berlin Heidelberg 2013
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First, we focus on isotropic functions of one second-order tensor

f
�
QAQT� D f .A/ ; 8Q 2 Orthn; A 2 Linn: (6.2)

One can show that the principal traces trAk, principal invariants I.k/A and eigenvalues
�k; .k D 1; 2; : : : ; n/ of the tensor A represent its isotropic tensor functions. Indeed,
for the principal traces we can write by virtue of (1.151)

tr
�
QAQT�k D tr

0

@QAQTQAQT : : :QAQT

„ ƒ‚ …
k times

1

A D tr
�

QAkQT
�

D tr
�
AkQTQ

� D trAk; 8Q 2 Orthn: (6.3)

The principal invariants are uniquely expressed in terms of the principal traces by
means of Newton’s identities (4.26), while the eigenvalues are, in turn, defined by
the principal invariants as solutions of the characteristic equation (4.21) with the
characteristic polynomial given by (4.19).

Further, we prove that both the eigenvalues �k, principal invariants I.k/M and
principal traces trMk .k D 1; 2; : : : ; n/ of one symmetric tensor M 2 Symn form
its functional bases (see also [46]). To this end, we consider two arbitrary symmetric
second-order tensors M1;M2 2 Symn with the same eigenvalues. Then, the spectral
representation (4.61) takes the form

M1 D
nX

iD1
�ini ˝ ni ; M2 D

nX

iD1
�imi ˝ mi ; (6.4)

where according to (4.63) both the eigenvectors ni and mi form orthonormal bases
such that ni � nj D ıij and mi � mj D ıij .i; j D 1; 2; : : : ; n/. Now, we consider
the orthogonal tensor

Q D
nX

iD1
mi ˝ ni : (6.5)

Indeed,

QQT D
 

nX

iD1
mi ˝ ni

!0

@
nX

jD1
nj ˝ mj

1

A

D
nX

i;jD1
ıijmi ˝ mj D

nX

iD1
mi ˝ mi D I:



6.1 Scalar-Valued Isotropic Tensor Functions 123

By use of (1.121), (6.4) and (6.5) we further obtain

QM1Q
T D

 
nX

iD1
mi ˝ ni

!0

@
nX

jD1
�jnj ˝ nj

1

A
 

nX

kD1
nk ˝ mk

!

D
nX

i;j;kD1
ıij ıjk�jmi ˝ mk D

nX

iD1
�imi ˝ mi D M2: (6.6)

Hence,
f .M1/ D f

�
QM1Q

T� D f .M2/ : (6.7)

Thus, f takes the same value for all symmetric tensors with pairwise equal
eigenvalues. This means that an isotropic tensor function of a symmetric tensor is
uniquely defined in terms of its eigenvalues, principal invariants or principal traces
because the latter ones are, in turn, uniquely defined by the eigenvalues according
to (4.24) and (4.25). This implies the following representations

f .M/ D _

f
�

I.1/M ; I
.2/
M ; : : : ; I.n/M

�
D Of .�1; �2; : : : ; �n/

D Qf �trM; trM2; : : : ; trMn
�
; M 2 Symn: (6.8)

Example 6.2. Strain energy function of an isotropic hyperelastic material. A mate-
rial is said to be hyperelastic if it is characterized by the existence of a strain energy
 defined as a function, for example, of the right Cauchy-Green tensor C. For
isotropic materials this strain energy function obeys the condition

 
�
QCQT� D  .C/ ; 8Q 2 Orth3: (6.9)

By means of (6.8) this function can be expressed by

 .C/ D_

 .IC; IIC; IIIC/ D O .�1; �2; �3/ D Q �trC; trC2; trC3
�
; (6.10)

where �i denote the so-called principal stretches. They are expressed in terms of the
eigenvalues ƒi .i D 1; 2; 3/ of the right Cauchy-Green tensor C D P3

iD1 ƒiPi as
�i D p

ƒi . For example, the strain energy function of the so-called Mooney-Rivlin
material is given in terms of the first and second principal invariants by

 .C/ D c1 .IC � 3/C c2 .IIC � 3/ ; (6.11)

where c1 and c2 represent material constants. In contrast, the strain energy function
of the Ogden material [30] is defined in terms of the principal stretches by

 .C/ D
mX

rD1

�r

˛r

�
�
˛r
1 C �

˛r
2 C �

˛r
3 � 3

�
; (6.12)

where �r ; ˛r .r D 1; 2; : : : ; m/ denote material constants.
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For isotropic functions (6.1) of a finite number l of arbitrary second-order
tensors the functional basis is obtained only for three-dimensional space. In order
to represent this basis, the tensor arguments are split according to (1.152) into a
symmetric and a skew-symmetric part respectively as follows:

Mi D symAi D 1

2

�
Ai C AT

i

�
; Wi D skewAi D 1

2

�
Ai � AT

i

�
: (6.13)

In this manner, every isotropic tensor function can be given in terms of a finite
number of symmetric tensors Mi 2 Sym3 .i D 1; 2; : : : ; m/ and skew-symmetric
tensors Wi 2 Skew3 .i D 1; 2; : : : ;w/ as

f D Of .M1;M2; : : : ;Mm;W1;W2; : : : ;Ww/ : (6.14)

An irreducible functional basis of such a system of tensors is proved to be given by
(see [2, 33, 41])

trMi ; trM2
i ; trM3

i ;

tr
�
MiMj

�
; tr

�
M2
iMj

�
; tr

�
MiM2

j

�
; tr

�
M2
iM

2
j

�
; tr

�
MiMjMk

�
;

trW2
p; tr

�
WpWq

�
; tr

�
WpWqWr

�
;

tr
�

MiW2
p

�
; tr

�
M2
iW

2
p

�
; tr

�
M2
iW

2
pMiWp

�
; tr

�
MiWpWq

�
;

tr
�

MiW2
pWq

�
; tr

�
MiWpW2

q

�
; tr

�
MiMjWp

�
;

tr
�

MiW2
pMjWp

�
; tr

�
M2
i MjWp

�
; tr

�
MiM2

jWp

�
;

i < j < k D 1; 2; : : : ; m; p < q < r D 1; 2; : : : ;w: (6.15)

For illustration of this result we consider some examples.

Example 6.3. Functional basis of one skew-symmetric second-order tensor W 2
Skew3. With the aid of (6.15) and (4.91) we obtain the basis consisting of only one
invariant

trW2 D �2IIW D � kWk2 : (6.16)

Example 6.4. Functional basis of an arbitrary second-order tensor A 2 Lin3. By
means of (6.15) one can write the following functional basis of A

trM; trM2; trM3;

trW2; tr
�
MW2

�
; tr

�
M2W2

�
; tr

�
M2W2MW

�
; (6.17)

where M D symA and W D skewA. Inserting representations (6.13) into (6.17) the
functional basis of A can be rewritten as (see Exercise 6.2)
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trA; trA2; trA3; tr
�
AAT

�
; tr

�
AAT

�2
; tr

�
A2AT

�
;

tr
h�

AT
�2

A2ATA � A2
�
AT
�2

AAT
i
: (6.18)

Example 6.5. Functional basis of two symmetric second-order tensors M1;M2 2
Sym3. According to (6.15) the functional basis includes in this case the following
ten invariants

trM1; trM2
1; trM3

1; trM2; trM2
2; trM3

2;

tr .M1M2/ ; tr
�
M2
1M2

�
; tr

�
M1M2

2

�
; tr

�
M2
1M

2
2

�
: (6.19)

6.2 Scalar-Valued Anisotropic Tensor Functions

A real scalar-valued function f .A1;A2; : : : ;Al / of second-order tensors Ak 2
Linn .k D 1; 2; : : : ; l/ is said to be anisotropic if it is invariant only with respect
to a subset of all orthogonal transformations:

f
�
QA1QT;QA2QT; : : : ;QAlQT

�

D f .A1;A2; : : : ;Al / ; 8Q 2 Sorthn � Orthn: (6.20)

The subset Sorthn represents a group called symmetry group. In continuum
mechanics, anisotropic properties of materials are characterized by their symmetry
group. The largest symmetry group Orth3 (in three-dimensional space) includes all
orthogonal transformations and is referred to as isotropic. In contrast, the smallest
symmetry group consists of only two elements I and �I and is called triclinic.

Example 6.6. Transversely isotropic material symmetry. In this case the material
is characterized by symmetry with respect to one selected direction referred to as
principal material direction. Properties of a transversely isotropic material remain
unchanged by rotations about, and reflections from the planes orthogonal or parallel
to, this direction. Introducing a unit vector l in the principal direction we can write

Ql D ˙l ; 8Q 2 gt ; (6.21)

where gt � Orth3 denotes the transversely isotropic symmetry group. With the aid
of a special tensor

L D l ˝ l ; (6.22)

called structural tensor, condition (6.21) can be represented as

QLQT D L; 8Q 2 gt : (6.23)
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Hence, the transversely isotropic symmetry group can be defined by

gt D ˚
Q 2 Orth3 W QLQT D L

�
: (6.24)

A strain energy function  of a transversely isotropic material is invariant with
respect to all orthogonal transformations within gt . Using a representation in terms
of the right Cauchy-Green tensor C this leads to the following condition:

 
�
QCQT� D  .C/ ; 8Q 2 gt : (6.25)

It can be shown that this condition is a priori satisfied if the strain energy function
can be represented as an isotropic function of both C and L so that

O �QCQT;QLQT� D O .C;L/ ; 8Q 2 Orth3: (6.26)

Indeed,

O .C;L/ D O �QCQT;QLQT� D O �QCQT;L
�
; 8Q 2 gt : (6.27)

With the aid of the functional basis (6.19) and taking into account the identities

Lk D L; trLk D 1; k D 1; 2; : : : (6.28)

resulting from (6.22) we can thus represent the transversely isotropic function in
terms of the five invariants by (see also [43])

 D O .C;L/ D Q �trC; trC2; trC3; tr .CL/ ; tr
�
C2L

��
: (6.29)

The above procedure can be generalized for an arbitrary anisotropic symmetry
group g. Let Li .i D 1; 2; : : : ; m/ be a set of second-order tensors which uniquely
define g by

g D ˚
Q 2 Orthn W QLiQT D Li ; i D 1; 2; : : : ; m

�
: (6.30)

In continuum mechanics the tensors Li are called structural tensors since they lay
down the material or structural symmetry.

It is seen that the isotropic tensor function

f
�
QAiQ

T;QLjQT
� D f

�
Ai ;Lj

�
; 8Q 2 Orthn; (6.31)

where we use the abbreviated notation

f
�
Ai ;Lj

� D f .A1;A2; : : : ;Al ;L1;L2; : : : ;Lm/ ; (6.32)
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is anisotropic with respect to the arguments Ai .i D 1; 2; : : : ; l/ so that

f
�
QAiQ

T
� D f .Ai / ; 8Q 2 g: (6.33)

Indeed, by virtue of (6.30) and (6.31) we have

f
�
Ai ;Lj

� D f
�
QAiQ

T;QLjQT
� D f

�
QAiQ

T;Lj
�
; 8Q 2 g: (6.34)

Thus, every isotropic invariant of the tensor system Ai .i D 1; 2; : : : ; l/, Lj .j D
1; 2; : : : ; m/ represents an anisotropic invariant of the tensors Ai .i D 1; 2; : : : ; l/

in the sense of definition (6.20). Conversely, one can show that for every anisotropic
function (6.33) there exists an equivalent isotropic function of the tensor system
Ai .i D 1; 2; : : : ; l/ ; Lj .j D 1; 2; : : : ; m/. In order to prove this statement we
consider a new tensor function defined by

Of �Ai ;Xj

� D f
�

Q0AiQ
0T
�
; (6.35)

where the tensor Q0 2 Orthn results from the condition:

Q0XjQ0T D Lj ; j D 1; 2; : : : ; m: (6.36)

Thus, the function Of is defined only over such tensors Xj that can be obtained from
the structural tensors Lj .j D 1; 2; : : : ; m/ by the transformation

Xj D Q0TLjQ0; j D 1; 2; : : : ; m; (6.37)

where Q0 is an arbitrary orthogonal tensor.
Further, one can show that the so-defined function (6.35) is isotropic. Indeed,

Of �QAiQ
T;QXjQT� D f

�
Q00QAiQ

TQ00T� ; 8Q 2 Orthn; (6.38)

where according to (6.36)

Q00QXjQTQ00T D Lj ; Q00 2 Orthn: (6.39)

Inserting (6.37) into (6.39) yields

Q00QQ0TLjQ0QTQ00T D Lj ; (6.40)

so that
Q� D Q00QQ0T 2 g: (6.41)

Hence, we can write
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f
�
Q00QAiQ

TQ00T� D f
�
Q�Q0AiQ0TQ�T

�

D f
�
Q0AiQ0T� D Of �Ai ;Xj

�

and consequently in view of (6.38)

Of �QAiQ
T;QXjQT

� D Of �Ai ;Xj

�
; 8Q 2 Orthn: (6.42)

Thus, we have proved the following theorem [50].

Theorem 6.1. A scalar-valued function f .Ai / is invariant within the symmetry
group g defined by (6.30) if and only if there exists an isotropic function Of �Ai ;Lj

�

such that

f .Ai / D Of �Ai ;Lj
�
: (6.43)

6.3 Derivatives of Scalar-Valued Tensor Functions

Let us again consider a scalar-valued tensor function f .A/ W Linn 7! R. This
function is said to be differentiable in a neighborhood of A if there exists a tensor
f .A/ ;A 2 Linn, such that

d

dt
f .A C tX/

ˇ
ˇ
ˇ
ˇ
tD0

D f .A/ ;A W X; 8X 2 Linn: (6.44)

This definition implies that the directional derivative (also called Gateaux derivative)
d

dt
f .A C tX/

ˇ̌
ˇ
ˇ
tD0

exists and is continuous at A. The tensor f .A/ ;A is referred to

as the derivative or the gradient of the tensor function f .A/.
In order to obtain a direct expression for f .A/ ;A we represent the tensors A

and X in (6.44) with respect to an arbitrary basis, say g i ˝ gj .i; j D 1; 2; : : : ; n/.
Then, using the chain rule one can write

d

dt
f .A C tX/

ˇ̌
ˇ
ˇ
tD0

D d

dt
f
h�

Ai�j C tXi�j
�

gi ˝ gj
iˇ̌
ˇ
ˇ
tD0

D @f

@Ai�j
Xi�j :

Comparing this result with (6.44) yields

f .A/ ;A D @f

@Ai�j
g i˝gj D @f

@Aij

gi˝gj D @f

@Aij
gi˝gj D @f

@A j
i �

gi˝gj : (6.45)

If the function f .A/ is defined not on all linear transformations but only
on a subset Slinn � Linn, the directional derivative (6.44) does not, however,
yield a unique result for f .A/ ;A. In this context, let us consider for example
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scalar-valued functions of symmetric tensors: f .M/ W Symn 7! R. In this case,
the directional derivative (6.44) defines f .M/ ;M only up to an arbitrary skew-
symmetric component W. Indeed,

f .M/ ;M W X D Œf .M/ ;M CW� W X; 8W 2 Skewn; 8X 2 Symn: (6.46)

In this relation, X is restricted to symmetric tensors because the tensor M C tX
appearing in the directional derivative (6.44) must belong to the definition domain
of the function f for all real values of t .

To avoid this non-uniqueness we will assume that the derivative f .A/ ;A belongs
to the same subset Slinn � Linn as its argument A 2 Slinn. In particular, for
symmetric tensor functions it implies that

f .M/ ;M 2 Symn for M 2 Symn: (6.47)

In order to calculate the derivative of a symmetric tensor function satisfying the
condition (6.47) one can apply the following procedure. First, the definition domain
of the function f is notionally extended to all linear transformations Linn. Applying
then the directional derivative (6.44) one obtains a unique result for the tensor
f;M which is finally symmetrized. For the derivative with respect to a symmetric
part (1.153) of a tensor argument this procedure can be written by

f .symA/ ;symA D sym Œf .A/ ;A � ; A 2 Linn: (6.48)

The problem with the non-uniqueness appears likewise by using the component
representation (6.45) for the gradient of symmetric tensor functions. Indeed, in this
case Mij D Mj i .i ¤ j D 1; 2; : : : ; n/, so that only n .nC 1/ =2 among all n2

components of the tensor argument M 2 Symn are independent. Thus, according
to (1.156)

M D
nX

iD1
Mi igi ˝ g i C

nX

i;jD1
j<i

Mij
�
g i ˝ gj C gj ˝ gi

�
; M 2 Symn: (6.49)

Hence, instead of (6.45) we obtain

f .M/ ;M D 1

2

nX

i;jD1
j�i

@f

@Mij

�
g i ˝ gj C gj ˝ gi

�

D 1

2

nX

i;jD1
j�i

@f

@Mij

�
g i ˝ gj C gj ˝ gi

�
; M 2 Symn: (6.50)

It is seen that the derivative is taken here only with respect to the independent com-
ponents of the symmetric tensor argument; the resulting tensor is then symmetrized.
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Example 6.7. Derivative of the quadratic norm kAk D p
A W A:

d

dt
Œ.A C tX/ W .A C tX/�1=2

ˇ̌
ˇ
ˇ
tD0

D d

dt

�
A W A C 2tA W X C t2X W X

�1=2
ˇ̌
ˇ
ˇ
tD0

D 2A W X C 2tX W X

2 ŒA W A C 2tA W X C t2X W X�1=2

ˇ
ˇ
ˇ
ˇ
ˇ
tD0

D A
kAk W X:

Thus,

kAk ;A D A
kAk : (6.51)

The same result can also be obtained using (6.45). Indeed, let A D Aijgi ˝ gj .
Then,

kAk D p
A W A D

q�
Aijg i ˝ gj

� W �Aklgk ˝ gl
� D

q
AijAklgikgjl :

Utilizing the identity

@Aij

@Apq

D ı
p
i ı

q
j ; i; j; p; q D 1; 2; : : : ; n

we further write

kAk ;A D @
p

AijAklgikgjl

@Apq

gp ˝ gq

D 1

2 kAk
�
Aklg

ikgjlgi ˝ gj C Aij g
ikgjlgk ˝ gl

�

D 1

2 kAk2Aklg
ikgjlgi ˝ gj D 1

kAkAklg
k ˝ gl D A

kAk :

Example 6.8. Derivatives of the principal traces trAk .k D 1; 2; : : :/:

d

dt

h
tr .A C tX/k

iˇˇ̌
ˇ
tD0

D d

dt

h
.A C tX/k W I

iˇˇ̌
ˇ
tD0

D d

dt

h
.A C tX/k

iˇˇ̌
ˇ
tD0

W I

D d

dt

2

4.A C tX/ .A C tX/ : : : .A C tX/
„ ƒ‚ …

k times

3

5

ˇ̌
ˇ
ˇ
ˇ
ˇ
tD0

W I
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D d

dt

"

Ak C t

k�1X

iD0
AiXAk�1�i C t2 : : :

#ˇˇ
ˇ
ˇ̌
tD0

W I

D
k�1X

iD0
AiXAk�1�i W I D k

�
Ak�1�T W X:

Thus, �
trAk

�
;A D k

�
Ak�1�T

: (6.52)

In the special case k D 1 we obtain

.trA/ ;A D I: (6.53)

Example 6.9. Derivatives of tr
�
AkL

�
.k D 1; 2; : : :/ with respect to A, where L is

independent of A:

d

dt

h
.A C tX/k W LT

iˇˇ
ˇ
ˇ
tD0

D d

dt

h
.A C tX/k

iˇˇ
ˇ
ˇ
tD0

W LT

D
k�1X

iD0
AiXAk�1�i W LT D

k�1X

iD0

�
AT
�i

LT
�
AT
�k�1�i W X:

Hence,

tr
�
AkL

�
;A D

k�1X

iD0

�
AiLAk�1�i�T

: (6.54)

In the special case k D 1 we have

tr .AL/ ;A D LT: (6.55)

It is seen that the derivative of tr
�
AkL

�
is not in general symmetric even if the tensor

argument A is. Applying (6.48) we can write in this case

tr
�
MkL

�
;M D sym

"
k�1X

iD0

�
MiLMk�1�i �T

#

D
k�1X

iD0
Mi .symL/Mk�1�i ; (6.56)

where M 2 Symn.
Of special importance are the following, respectively, chain and product rule of

differentiation

u Œv .A/� ;A D du

dv
v;A ; (6.57)

Œf .A/ g .A/� ;A D g .A/ f .A/ ;A Cf .A/ g .A/ ;A ; (6.58)



132 6 Analysis of Tensor Functions

which can easily be proved by using the formalism of the directional derivative
(6.44). Indeed, we can write for example for (6.57)

d

dt
u Œv .A C tX/�

ˇ
ˇ
ˇ̌
tD0

D du

dv

d

dt
v .A C tX/

ˇ
ˇ
ˇ̌
tD0

D du

dv
v;A W X:

Example 6.10. Derivatives of the principal invariants I.k/A .k D 1; 2; : : : ; n/ of
a second-order tensor A 2 Linn. By virtue of the representations (4.26) and
using (6.52), (6.58) we obtain

I.1/A ;A D .trA/ ;A D I;

I.2/A ;A D 1

2

�
I.1/A trA � trA2

�
;A D I.1/A I � AT;

I.3/A ;A D 1

3

�
I.2/A trA � I.1/A trA2 C trA3

�
;A

D 1

3

h
trA

�
I.1/A I � AT

�
C I.2/A I � �

trA2
�

I � 2I.1/A AT C 3
�
AT�2

i

D
h
A2 � I.1/A A C I.2/A I

iT
; : : : (6.59)

Herein, one can observe the following regularity [46]

I.k/A ;A D
k�1X

iD0
.�1/i I.k�1�i /

A

�
AT
�i D �I.k�1/

A ;A AT C I.k�1/
A I; k D 1; 2; : : : ; (6.60)

where we again set I.0/A D 1. The above identity can be proved by mathematical
induction (see also [7]). To this end, we first assume that it holds for all natural
numbers smaller than some k C 1 as

I.l/A ;A D Yl ; l D 0; 1; : : : ; k; (6.61)

where the abbreviation

Yk D
k�1X

iD0
.�1/i I.k�1�i /

A

�
AT
�i

(6.62)

is used. Then,

YkC1 D
kX

iD0
.�1/i I.k�i /

A

�
AT
�i D �YkAT C I.k/A I D �I.k/A ;A AT C I.k/A I: (6.63)
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Further, according to (4.26), (6.52) and (6.58)

I.k/A ;A D 1

k

"
kX

iD1
.�1/i�1 I.k�i /

A trAi

#

;A

D 1

k

kX

iD1
.�1/i�1 i I.k�i/

A

�
AT
�i�1C 1

k

k�1X

iD1
.�1/i�1 I.k�i /

A ;A trAi : (6.64)

Inserting this result as well as (4.26) into the last expression (6.63) we obtain

YkC1 D � 1
k

kX

iD1
.�1/i�1 i I.k�i /

A

�
AT�i �

"
k�1X

iD1
.�1/i�1 I.k�i /

A ;A trAi

#
AT

k

C I
k

"
kX

iD1
.�1/i�1 I.k�i /

A trAi

#

:

Adding YkC1=k to both sides of this equality and using for YkC1 the first expression
in (6.63) we further obtain keeping in mind that I0A;A D 0

k C 1

k
YkC1 D 1

k

kX

iD0
.�1/i i I.k�i /

A

�
AT�i C 1

k

kX

iD0
.�1/i I.k�i /

A

�
AT�i

C 1

k

"
kX

iD1
.�1/i�1

�
�I.k�i /

A ;A AT C I.k�i /
A I

�
trAi

#

:

Taking again (6.60) and (6.64) into account we can write

k C 1

k
YkC1 D 1

k

kX

iD0
.�1/i .i C 1/ I.k�i /

A

�
AT�i

C 1

k

"
kX

iD1
.�1/i�1 I.kC1�i /

A ;A trAi

#

D 1

k

kC1X

iD1
.�1/i�1 i I.k�i /

A

�
AT�i�1

C 1

k

"
kX

iD1
.�1/i�1 I.kC1�i /

A ;A trAi

#

D k C 1

k
I.kC1/
A ;A :

Hence,
I.kC1/
A ;A D YkC1;
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which immediately implies that (6.60) holds for kC 1 as well. Thereby, representa-
tion (6.60) is proved.

For invertible tensors one can get a simpler representation for the derivative
of the last invariant I.n/A . This representation results from the Cayley-Hamilton
theorem (4.95) as follows

I.n/A ;A AT D
"
n�1X

iD0
.�1/i I.n�1�i /

A

�
AT
�i
#

AT D
nX

iD1
.�1/i�1 I.n�i/

A

�
AT
�i

D
nX

iD0
.�1/i�1 I.n�i /

A

�
AT�i C I.n/A I D I.n/A I:

Thus,
I.n/A ;A D I.n/A A�T; A 2 Invn: (6.65)

Example 6.11. Derivatives of the eigenvalues �i . First, we show that simple
eigenvalues of a second-order tensor A are differentiable. To this end, we consider
the directional derivative (6.44) of an eigenvalue �:

d

dt
� .A C tX/

ˇ̌
ˇ
ˇ
tD0

: (6.66)

Herein, � .t/ represents an implicit function defined through the characteristic
equation

det .A C tX � �I/ D p .�; t/ D 0: (6.67)

This equation can be written out in the polynomial form (4.19) with respect to
powers of �. The coefficients of this polynomial are principal invariants of the
tensor A C tX. According to the results of the previous example these invariants
are differentiable with respect to A C tX and therefore also with respect to t . For
this reason, the function p .�; t/ is differentiable both with respect to � and t . For a
simple eigenvalue �0 D � .0/ we can further write (see also [27])

p .�0; 0/ D 0;
@p .�; 0/

@�

ˇ
ˇ
ˇ̌
�D�0

¤ 0: (6.68)

According to the implicit function theorem (see, e.g., [5]), the above condition
ensures differentiability of the function � .t/ at t D 0. Thus, the directional
derivative (6.66) exists and is continuous at A. It can be expressed by

d

dt
� .A C tX/

ˇ̌
ˇ
ˇ
tD0

D � @p=@t

@p=@�

ˇ̌
ˇ
ˇ
tD0;�D�0

: (6.69)
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In order to represent the derivative �i ;A we first consider the spectral representa-
tion (4.43) of the tensor A with pairwise distinct eigenvalues

A D
nX

iD1
�iPi ; (6.70)

where Pi .i D 1; 2; : : : ; n/ denote the eigenprojections. They can uniquely be
determined from the equation system

Ak D
nX

iD1
�ki Pi ; k D 0; 1; : : : ; n � 1 (6.71)

resulting from (4.47). Applying the Vieta theorem to the tensor Al .l D 1; 2; : : : ; n/

we further obtain relation (4.25) written as

trAl D
nX

iD1
�li ; l D 1; 2; : : : ; n: (6.72)

Differentiation of (6.72) with respect to A further yields by virtue of (6.52) and
(6.57)

l
�
AT�l�1 D l

nX

iD1
�l�1i �i ;A ; l D 1; 2; : : : ; n

and consequently

Ak D
nX

iD1
�ki .�i ;A /

T ; k D 0; 1; : : : ; n � 1: (6.73)

Comparing the linear equation systems (6.71) and (6.73) we notice that

�i ;A D PT
i : (6.74)

Finally, the Sylvester formula (4.55) results in the expression

�i ;A D ı1nI C
nY

jD1
j¤i

AT � �j I
�i � �j

: (6.75)

It is seen that the solution (6.75) holds even if the remainder eigenvalues
�j .j D 1; 2; : : : ; i � 1; i C 1; : : : ; n/ of the tensor A are not simple. In this
case (6.75) transforms to
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�i ;A D ı1nI C
sY

jD1
j¤i

AT � �j I
�i � �j

; (6.76)

where s denotes the number of pairwise distinct eigenvalues �i .i D 1; 2; : : : ; s/.
Let us further consider a scalar-valued tensor function f .A/ W Linn 7! R, where

A D A .t/ itself is a differentiable tensor-valued function of a real variable t (see
Sect. 2.1). Of special interest is the derivative of the composite function f .A .t//.
Using (2.15)1 we write

df

dt
D df .A .t C s//

ds

ˇ
ˇ
ˇ̌
sD0

D df
�
A .t/C s dA

dt C sO .s/
�

ds

ˇ
ˇ
ˇ̌
ˇ
sD0

Introducing auxiliary functions s1.s/ D s and s2.s/ D s and applying the formalism
of the directional derivative (6.44) we further obtain

df

dt
D df

�
A .t/C s1

dA
dt C s1O .s2/

�

ds

ˇ
ˇ
ˇ
ˇ̌
sD0

D @f
�
A .t/C s1

dA
dt C s1O .s2/

�

@s1

ds1
ds

ˇ
ˇ̌
ˇ
ˇ
sD0

C @f
�
A .t/C s1

dA
dt C s1O .s2/

�

@s2

ds2
ds

ˇ̌
ˇ
ˇ
ˇ
sD0

D f;A W
	

dA
dt

C O .s2/


ˇˇ
ˇ
ˇ
s2D0

C @f
�
A .t/C s1

dA
dt C s1O .s2/

�

@s2

ˇ
ˇ
ˇ
ˇ̌
s1Ds2D0

D f;A W dA
dt

C @f .A .t//
@s2

ˇ̌
ˇ
ˇ
s2D0

:

This finally leads to the result

df .A .t//
dt

D f;A W dA
dt
: (6.77)

Example 6.12. Constitutive relations for hyperelastic materials with isochoric-
volumetric split of the strain energy function. For such materials the strain energy
function is represented in terms of the right Cauchy-Green tensor C by

 .C/ D N � NC�C U .J / ; (6.78)

where



6.3 Derivatives of Scalar-Valued Tensor Functions 137

J D p
IIIC; NC D J�2=3C (6.79)

describe the volumetric and isochoric parts of deformation, respectively. Consti-
tutive relations for hyperelastic materials can be expressed in terms of the strain
energy function by (see e.g. [46])

S D 2
@ 

@C
; (6.80)

where S denotes the second Piola-Kirchhoff stress tensor. Insertion of (6.78) yields

S D Siso C Svol; (6.81)

where
Siso D 2 N � NC� ;C ; Svol D 2U .J / ;C: (6.82)

In order to express these derivatives we first obtain

J ˛;C D III˛=2C ;C D ˛

2
III˛=2�1C IIICC�1 D ˛

2
J ˛C�1 (6.83)

using (6.65), (6.57) and (6.79)1 and taking symmetry of C into account. As the next
step, we calculate the directional derivative of NC by virtue of (2.4)

d

dt
NC .C C tX/

ˇ
ˇ
ˇ̌
tD0

D d

dt
.C C tX/ Œdet .C C tX/��1=3

ˇ
ˇ
ˇ̌
tD0

D d

dt
.C C tX/

ˇ
ˇ
ˇ̌
tD0

J�2=3 C C
d

dt
ŒJ .C C tX/��2=3

ˇ
ˇ
ˇ̌
tD0

D J�2=3X � 1

3
J�2=3C

�
C�1 W X

� D Piso W X; (6.84)

where

Piso D J�2=3
	
Is � 1

3
C ˇ C�1



(6.85)

denotes the isochoric projection tensor. To the directional derivative of N � NC� we
further apply (6.77) as follows

d

dt
N � NC .C C tX/

�
ˇ̌
ˇ
ˇ
tD0

D N ; NC W d

dt
NC .C C tX/

ˇ̌
ˇ
ˇ
tD0

D N ; NC W Piso W X: (6.86)

Inserting these results in (6.82) we finally obtain

Siso D NS W Piso D J�2=3
	

NS � 1

3

� NS W C
�

C�1


; (6.87)
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Svol D U 0JC�1; (6.88)

where
NS D 2 N ; NC : (6.89)

6.4 Tensor-Valued Isotropic and Anisotropic Tensor
Functions

A tensor-valued function g .A1;A2; : : : ;Al / 2 Linn of a tensor system Ak 2
Linn .k D 1; 2; : : : ; l/ is called anisotropic if

g
�
QA1Q

T;QA2Q
T; : : : ;QAlQ

T�

D Qg .A1;A2; : : : ;Al /QT; 8Q 2 Sorthn � Orthn: (6.90)

For isotropic tensor-valued tensor functions the above identity holds for all orthog-
onal transformations so that Sorthn D Orthn.

As a starting point for the discussion of tensor-valued tensor functions we again
consider isotropic functions of one argument. In this case,

g
�
QAQT� D Qg .A/QT; 8Q 2 Orthn: (6.91)

For example, one can easily show that the polynomial function (1.113) and the
exponential function (1.114) introduced in Chap. 1 are isotropic. Indeed, for a tensor
polynomial g .A/ D Pm

kD0 akAk we have (see also Exercise 1.34)

g
�
QAQT� D

mX

kD0
ak
�
QAQT�k D

mX

kD0
ak

0

@QAQTQAQT : : :QAQT

„ ƒ‚ …
k times

1

A

D
mX

kD0
ak

�
QAkQT

�
D Q

 
mX

kD0
akAk

!

QT

D Qg .A/QT; 8Q 2 Orthn: (6.92)

Of special interest are isotropic functions of a symmetric tensor. First, we prove that
the tensors g .M/ and M 2 Symn are coaxial i.e. have the eigenvectors in common.
To this end, we represent M in the spectral form (4.61) by

M D
nX

iD1
�ibi ˝ bi ; (6.93)

where bi �bj D ıij .i; j D 1; 2; : : : ; n/. Further, we choose an arbitrary eigenvector,
say bk , and show that it simultaneously represents an eigenvector of g .M/.
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Indeed, let

Q D 2bk ˝ bk � I D bk ˝ bk C
nX

iD1
i¤k

.�1/bi ˝ bi (6.94)

bearing in mind that I D Pn
iD1 bi ˝ bi in accordance with (1.92). The tensor

Q (6.94) is orthogonal since

QQT D .2bk ˝ bk � I/ .2bk ˝ bk � I/ D 4bk ˝bk �2bk ˝bk �2bk ˝bk CI D I

and symmetric as well. One of its eigenvalues is equal to 1 while all the other ones
are �1. Thus, we can write

QM D .2bk ˝ bk � I/M D 2�kbk ˝ bk � M D M .2bk ˝ bk � I/ D MQ

and consequently

QMQT D M: (6.95)

Since the function g .M/ is isotropic

g .M/ D g
�
QMQT� D Qg .M/QT

and therefore

Qg .M/ D g .M/Q: (6.96)

Mapping the vector bk by both sides of this identity yields in view of (6.94)

Qg .M/bk D g .M/bk: (6.97)

It is seen that the vector g .M/bk is an eigenvector of Q (6.94) associated with the
eigenvalue 1. Since it is the simple eigenvalue

g .M/bk D �kbk; (6.98)

where �k is some real number. Hence, bk represents the right eigenvector of g .M/.
Forming the left mapping of bk by (6.96) one can similarly show that bk is also the
left eigenvector of g .M/, which implies the symmetry of the tensor g .M/.

Now, we are in a position to prove the following representation theorem [36,46].

Theorem 6.2. A tensor-valued tensor function g .M/, M 2 Symn is isotropic if and
only if it allows the following representation

g .M/ D '0I C '1M C '2M2 C : : :C 'n�1Mn�1 D
n�1X

iD0
'iMi ; (6.99)
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where 'i are isotropic invariants (isotropic scalar functions) of M and can therefore
be expressed as functions of its principal invariants by

'i D _
'i

�
I.1/M ; I

.2/
M ; : : : ; I

.n/
M

�
; i D 0; 1; : : : ; n � 1: (6.100)

Proof. We have already proved that the tensors g .M/ and M have eigenvectors in
common. Thus, according to (6.93)

g .M/ D
nX

iD1
�ibi ˝ bi ; (6.101)

where �i D �i .M/. Hence (see Exercise 6.1(e)),

g
�
QMQT� D

nX

iD1
�i
�
QMQT�Q .bi ˝ bi /QT: (6.102)

Since the function g .M/ is isotropic we have

g
�
QMQT� D Qg .M/QT

D
nX

iD1
�i .M/Q .bi ˝ bi /QT; 8Q 2 Orthn: (6.103)

Comparing (6.102) with (6.103) we conclude that

�i
�
QMQT� D �i .M/ ; i D 1; : : : ; n; 8Q 2 Orthn: (6.104)

Thus, the eigenvalues of the tensor g .M/ represent isotropic (scalar-valued) func-
tions of M. Collecting repeated eigenvalues of g .M/ we can further rewrite (6.101)
in terms of the eigenprojections Pi .i D 1; 2; : : : ; s/ by

g .M/ D
sX

iD1
�iPi ; (6.105)

where s .1 � s � n/ denotes the number of pairwise distinct eigenvalues of g .M/.
Using the representation of the eigenprojections (4.56) based on the Sylvester
formula (4.55) we can write

Pi D
s�1X

rD0
˛
.r/
i .�1; �2; : : : ; �s/Mr ; i D 1; 2; : : : ; s: (6.106)
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Inserting this result into (6.105) yields the representation (sufficiency):

g .M/ D
s�1X

iD0
'iMi ; (6.107)

where the functions 'i .i D 0; 1; 2; : : : ; s � 1/ are given according to (6.8)
and (6.104) by (6.100). The necessity is evident. Indeed, the function (6.99) is
isotropic since in view of (6.92)

g
�
QMQT� D

n�1X

iD0
'i
�
QMQT�QMiQT

D Q

"
n�1X

iD0
'i .M/Mi

#

QT D Qg .M/QT; 8Q 2 Orthn:

(6.108)

Example 6.13. Constitutive relations for isotropic materials. For isotropic materials
the second Piola-Kirchhoff stress tensor S represents an isotropic function of the
right Cauchy-Green tensor C so that

S
�
QCQT� D QS .C/QT; 8Q 2 Orth3: (6.109)

Thus, according to the representation theorem

S .C/ D ˛0I C ˛1C C ˛2C2; (6.110)

where ˛i D ˛i .C/ .i D 0; 1; 2/ are some scalar-valued isotropic functions of C.
The same result can be obtained for isotropic hyperelastic materials by considering
the representation of the strain energy function (6.10) in the relation (6.80). Indeed,
using the chain rule of differentiation and keeping in mind that the tensor C is
symmetric we obtain by means of (6.52)

S D 2

3X

kD1

@ Q 
@trCk

@trCk

@C
D 2

3X

kD1
k
@ Q 
@trCk

Ck�1; (6.111)

so that ˛i .C/ D 2 .i C 1/ @ Q =@trCiC1 .i D 0; 1; 2/.

Let us further consider a linearly elastic material characterized by a linear stress-
strain response. In this case, the relation (6.110) reduces to

S .C/ D ' .C/ I C cC; (6.112)

where c is a material constant and ' .C/ represents an isotropic scalar-valued
function linear in C. In view of (6.15) this function can be expressed by

' .C/ D a C btrC; (6.113)
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where a and b are again material constants. Assuming that the reference configura-
tion, in which C D I, is stress free, yields aC 3b C c D 0 and consequently

S .C/ D .�c � 3b C btrC/ I C cC D b .trC � 3/ I C c .C � I/ :

Introducing further the so-called Green-Lagrange strain tensor defined by

QE D 1

2
.C � I/ (6.114)

we finally obtain
S
� QE� D 2b

�
tr QE� I C 2c QE: (6.115)

The material described by the linear constitutive relation (6.115) is referred to
as St.Venant-Kirchhoff material. The corresponding material constants 2b and 2c
are called Lamé constants. The strain energy function resulting in the constitutive
law (6.115) by (6.80) or equivalently by S D @ =@ QE is of the form

 
� QE� D btr2 QE C ctr QE2: (6.116)

For isotropic functions of an arbitrary tensor system Ak 2 Linn .k D
1; 2; : : : ; l/ the representations are obtained only for the three-dimensional space.
One again splits tensor arguments into symmetric Mi 2 Sym3 .i D 1; 2; : : : ; m/

and skew-symmetric tensors Wj 2 Skew3 .j D 1; 2; : : : ;w/ according to (6.13).
Then, all isotropic tensor-valued functions of these tensors can be represented as
linear combinations of the following terms (see [33, 41]), where the coefficients
represent scalar-valued isotropic functions of the same tensor arguments.

Symmetric generators:

I;

Mi ; M2
i ; MiMj C MjMi ; M2

iMj C MjM2
i ; MiM2

j C M2
jMi ;

W2
p; WpWq C WqWp; W2

pWq � WqW2
p; WpW2

q � W2
qWp;

MiWp � WpMi ; WpMiWp; M2
iWp � WpM2

i ;

WpMiW2
p � W2

pMiWp: (6.117)

Skew-symmetric generators:

Wp; WpWq � WqWp;

MiMj � MjMi ; M2
i Mj � MjM2

i ; MiM2
j � M2

jMi ;

MiMjM2
i � M2

i MjMi ; MjMiM2
j � M2

jMiMj ;
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MiMjMk C MjMkMi C MkMiMj � MjMiMk � MkMjMi � MiMkMj ;

MiWp C WpMi ; MiW2
p � W2

pMi ;

i < j < k D 1; 2; : : : ; m; p < q D 1; 2; : : : ;w: (6.118)

For anisotropic tensor-valued tensor functions one utilizes the procedure applied
for scalar-valued functions. It is based on the following theorem [50] (cf. Theo-
rem 6.1).

Theorem 6.3 (Rychlewski’s theorem). A tensor-valued function g .Ai / is
anisotropic with the symmetry group Sorthn D g defined by (6.30) if and only
if there exists an isotropic tensor-valued function Og �Ai ;Lj

�
such that

g .Ai / D Og �Ai ;Lj
�
: (6.119)

Proof. Let us define a new tensor-valued function by

Og �Ai ;Xj

� D Q0Tg
�

Q0AiQ
0T
�

Q0; (6.120)

where the tensor Q0 2 Orthn results from the condition (6.36). The further proof is
similar to Theorem 6.1 (Exercise 6.13).

Example 6.14. Constitutive relations for a transversely isotropic elastic material.
For illustration of the above results we construct a general constitutive equation
for an elastic transversely isotropic material. The transversely isotropic material
symmetry is defined by one structural tensor L (6.22) according to (6.24). The
second Piola-Kirchhoff stress tensor S is a transversely isotropic function of
the right Cauchy-Green tensor C. According to Rychlewski’s theorem S can be
represented as an isotropic tensor function of C and L by

S D S .C;L/ ; (6.121)

such that

S
�
QCQT;QLQT� D QS .C;L/QT; 8Q 2 Orth3: (6.122)

This ensures that the condition of the material symmetry is fulfilled a priori since

S
�
QCQT;L

� D S
�
QCQT;QLQT� D QS .C;L/QT; 8Q 2 gt : (6.123)

Keeping in mind that S, C and L are symmetric tensors we can write by virtue
of (6.28)1 and (6.117)

S .C;L/ D ˛0I C ˛1L C ˛2C

C˛3C2 C ˛4 .CL C LC/C ˛5
�
C2L C LC2

�
: (6.124)
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The coefficients ˛i .i D 0; 1; : : : ; 5/ represent scalar-valued isotropic tensor func-
tions of C and L so that similar to (6.29)

˛i .C;L/ D Ǫi
�
trC; trC2; trC3; tr .CL/ ; tr

�
C2L

��
: (6.125)

For comparison we derive the constitutive equations for a hyperelastic transversely
isotropic material. To this end, we utilize the general representation for the trans-
versely isotropic strain energy function (6.29). By the chain rule of differentiation
and with the aid of (6.52) and (6.54) we obtain

S D 2
@ Q 
@trC

I C 4
@ Q 
@trC2

C C 6
@ Q 
@trC3

C2

C 2
@ Q 

@tr .CL/
L C 2

@ Q 
@tr .C2L/

.CL C LC/ (6.126)

and finally

S D ˛0I C ˛1L C ˛2C C ˛3C2 C ˛4 .CL C LC/: (6.127)

Comparing (6.124) and (6.127) we observe that the representation for the hypere-
lastic transversely isotropic material does not include the last term in (6.124) with
C2L C LC2. Thus, the constitutive equations containing this term correspond to an
elastic but not hyperelastic transversely isotropic material. The latter material cannot
be described by a strain energy function.

6.5 Derivatives of Tensor-Valued Tensor Functions

The derivative of a tensor-valued tensor function can be defined in a similar fashion
to (6.44). A function g .A/ W Linn 7! Linn is said to be differentiable in a
neighborhood of A if there exists a fourth-order tensor g .A/ ;A 2 Linn (called the
derivative), such that

d

dt
g .A C tX/

ˇ
ˇ̌
ˇ
tD0

D g .A/ ;A W X; 8X 2 Linn: (6.128)

The above definition implies that the directional derivative
d

dt
g .A C tX/

ˇ
ˇ̌
ˇ
tD0

exists

and is continuous at A.
Similarly to (6.45) we can obtain a direct relation for the fourth-order tensor

g .A/ ;A. To this end, we represent the tensors A, X and G D g .A/ with respect to
an arbitrary basis in Linn, say gi ˝gj .i; j D 1; 2; : : : ; n/. Applying the chain rule
of differentiation we can write
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d

dt
g .A C tX/

ˇ
ˇ
ˇ̌
tD0

D d

dt

n
Gi�j

��
Ak�l C tXk�l

�
gk ˝ gl

�
g i ˝ gj

oˇˇ
ˇ̌
tD0

D @Gi�j
@Ak�l

Xk�lg i ˝ gj : (6.129)

In view of (5.30)1 and (6.128) this results in the following representations

g;A D @Gi�j
@Ak�l

g i ˝ gk ˝ g l ˝ gj D @Gi�j
@A l

k�
g i ˝ gk ˝ g l ˝ gj

D @Gi�j
@Akl

gi ˝ gk ˝ gl ˝ gj D @Gi�j
@Akl

gi ˝ gk ˝ gl ˝ gj : (6.130)

For functions defined only on a subset Slinn � Linn the directional deriva-
tive (6.128) again does not deliver a unique result. Similarly to scalar-valued
functions this problem can be avoided defining the fourth-order tensor g .A/ ;A as
a linear mapping on Slinn. Of special interest in this context are symmetric tensor
functions. In this case, using (5.47) and applying the procedure described in Sect. 6.3
we can write

g .symA/ ;symA D Œg .A/ ;A �
s ; A 2 Linn: (6.131)

The component representation (6.130) can be given for symmetric tensor func-
tions by

g .M/ ;M D 1

2

nX

k;lD1
l�k

@Gi�j
@Mkl

gi ˝ �
gk ˝ gl C g l ˝ gk

�˝ gj

D 1

2

nX

k;lD1
l�k

@Gi�j
@Mkl

gi ˝ .gk ˝ gl C gl ˝ gk/˝ gj ; (6.132)

where M 2 Symn.

Example 6.15. Derivative of the power function Ak .k D 1; 2; : : :/. The directional
derivative (6.128) of the power function yields

d

dt
.A C tX/k

ˇ
ˇ
ˇ
ˇ
tD0

D d

dt

 

Ak C t

k�1X

iD0
AiXAk�1�i C t2 : : :

!ˇˇ
ˇ
ˇ
ˇ
tD0

D
k�1X

iD0
AiXAk�1�i : (6.133)
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Bearing (5.17)1 and (6.128) in mind we finally obtain

Ak;A D
k�1X

iD0
Ai ˝ Ak�1�i ; A 2 Linn: (6.134)

In the special case k D 1 it leads to the identity

A;A D I; A 2 Linn: (6.135)

For power functions of symmetric tensors application of (6.131) yields

Mk;M D
k�1X

iD0

�
Mi ˝ Mk�1�i �s

; M 2 Symn (6.136)

and consequently
M;M D Is; M 2 Symn: (6.137)

Example 6.16. Derivative of the transposed tensor AT. In this case, we can write

d

dt
.A C tX/T

ˇ
ˇ
ˇ
ˇ
tD0

D d

dt

�
AT C tXT�

ˇ
ˇ
ˇ
ˇ
tD0

D XT:

On use of (5.81) this yields
AT;A D T: (6.138)

Example 6.17. Derivative of the inverse tensor A�1, where A 2 Invn. Consider the
directional derivative of the identity A�1A D I. It delivers:

d

dt
.A C tX/�1 .A C tX/

ˇ
ˇ
ˇ̌
tD0

D 0:

Applying the product rule of differentiation (2.9) and using (6.133) we further write

d

dt
.A C tX/�1

ˇ
ˇ̌
ˇ
tD0

A C A�1X D 0

and finally
d

dt
.A C tX/�1

ˇ
ˇ
ˇ
ˇ
tD0

D �A�1XA�1:

Hence, in view of (5.17)1

A�1;A D �A�1 ˝ A�1: (6.139)

The calculation of the derivative of tensor functions can be simplified by
means of differentiation rules. One of them is the following composition rule. Let
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G D g .A/ and H D h .A/ be two arbitrary differentiable tensor-valued functions
of A. Then,

.GH/ ;A D G;A H C GH;A : (6.140)

For the proof we again apply the directional derivative (6.128) taking (2.9)
and (5.40) into account

.GH/ ;A W X D d

dt
Œg .A C tX/ h .A C tX/�

ˇ
ˇ
ˇ
ˇ
tD0

D d

dt
g .A C tX/

ˇ
ˇ
ˇ
ˇ
tD0

H C G
d

dt
h .A C tX/

ˇ
ˇ
ˇ
ˇ
tD0

D .G;A W X/H C G .H;A W X/

D .G;A H C GH;A / W X; 8X 2 Linn:

Example 6.18. The right and left Cauchy-Green tensors are given in terms of the
deformation gradient F respectively by

C D FTF; b D FFT: (6.141)

Of special interest in continuum mechanics is the derivative of these tensors with
respect to F. With the aid of the product rule (6.140) and using (5.42), (5.77), (5.84),
(5.85)1, (6.135) and (6.138) we obtain

C;F D FT;F F C FTF;F D TF C FTI D .I ˝ F/t C FT ˝ I; (6.142)

b;F D F;F FT C FFT;F D IFT C FT D I ˝ FT C .F ˝ I/t : (6.143)

Further product rules of differentiation of tensor functions can be written as

.f G/ ;A D G ˇ f;A Cf G;A ; (6.144)

.G W H/ ;A D H W G;A CG W H;A ; (6.145)

where f D Of .A/, G D g .A/ and H D h .A/ are again a scalar-valued and
two tensor-valued differentiable tensor functions, respectively. The proof is similar
to (6.140) (see Exercise 6.15).

Example 6.19. With the aid of the above differentiation rules we can easily express
the derivatives of the spherical and deviatoric parts (1.163) of a second-order tensor
by (compare with (5.89))

sphA;A D
	
1

n
tr .A/ I



;A D 1

n
I ˇ I D Psph; (6.146)
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devA;A D
	

A � 1

n
tr .A/ I



;A D I � 1

n
I ˇ I D Pdev: (6.147)

In a similar way we can also express the derivative of the isochoric part of the
deformation (6.79)2 as

NC;C D �
J�2=3C

�
;C D J�2=3C;C CC ˇ �

J�2=3� ;C

D J�2=3
�
Is � 1

3
C ˇ C�1

�
D Piso; (6.148)

where relation (6.83) is utilized.

Example 6.20. Tangent moduli of hyperelastic isotropic and transversely isotropic
materials. The tangent moduli are defined by (see, e.g., [30])

C D @S

@ QE D 2
@S
@C
; (6.149)

where QE denotes the Green-Lagrange strain tensor defined in (6.114). For hypere-
lastic materials this definition implies in view of (6.80) the representation

C D @2 

@ QE@ QE D 4
@2 

@C@C
: (6.150)

For a hyperelastic isotropic material we thus obtain by virtue of (6.136), (6.144),
(6.10) or (6.111)

C D 4

3X

k;lD1
kl

@2 Q 
@trCk@trCl

Ck�1 ˇ Cl�1

C 8
@ Q 
@trC2

Is C 12
@ Q 
@trC3

.C ˝ I C I ˝ C/s : (6.151)

For a hyperelastic transversely isotropic material the above procedure yields with
the aid of (6.126)

C D 4

3X

k;lD1
kl

@2 Q 
@trCk@trCl

Ck�1 ˇ Cl�1 C 4
@2 Q 

@tr .CL/ @tr .CL/
L ˇ L

C 4
@2 Q 

@tr .C2L/ @tr .C2L/
.CL C LC/ˇ .CL C LC/

C 4

3X

k

k
@2 Q 

@trCk@tr .CL/

�
Ck�1 ˇ L C L ˇ Ck�1�
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C 4

3X

k

k
@2 Q 

@trCk@tr .C2L/

�
Ck�1 ˇ .CL C LC/C .CL C LC/ˇ Ck�1�

C 4
@2 Q 

@tr .CL/ @tr .C2L/
ŒL ˇ .CL C LC/C .CL C LC/ˇ L�C 8

@ Q 
@trC2

Is

C 12
@ Q 
@trC3

.C ˝ I C I ˝ C/s C 4
@ Q 

@tr .C2L/
.L ˝ I C I ˝ L/s : (6.152)

Example 6.21. Tangent moduli of hyperelastic materials with isochoric-volumetric
split of the strain energy function can be obtained by inserting (6.87) and (6.88) into
(6.81) and (6.149). Thus, applying product rules of differentiation (6.140), (6.144)
and (6.145) and using (6.83) we can write

C D 2S;C D Ciso C Cvol; (6.153)

where

Cvol D 2Svol;C D �
U 00J 2 C U 0J

�
C�1 ˇ C�1 � 2U 0J.C�1 ˝ C�1/s; (6.154)

Ciso D 2Siso;C D �2
3
J�2=3

	
NS � 1

3

� NS W C
�

C�1



ˇ C�1

C 2J�2=3
	

NS; NC W Piso C 1

3

� NS W C
� �

C�1 ˝ C�1�s

� 1

3
C�1 ˇ �

C W NS; NC W Piso C NS�


:

Using the abbreviation
NC D 2 NS; NC D 4 N ; NC NC (6.155)

the last expression can finally be simplified as follows

Ciso D PT
iso W NC W Piso � 2

3
J�2=3 � NS ˇ C�1 C C�1 ˇ NS�

C 2

3

� NS W NC�
	�

C�1 ˝ C�1�s C 1

3
C�1 ˇ C�1



: (6.156)

6.6 Generalized Rivlin’s Identities

The Cayley-Hamilton equation (4.95)

An � I.1/A An�1 C I.2/A An�2 C : : :C .�1/n I.n/A I D 0 (6.157)
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represents a universal relation connecting powers of a second-order tensor A with
its principal invariants. Similar universal relations connecting several second-order
tensors might also be useful for example for the representation of isotropic tensor
functions or for the solution of tensor equations. Such relations are generally called
Rivlin’s identities.

In order to formulate the Rivlin identities we first differentiate the Cayley-
Hamilton equation (6.157) with respect to A. With the aid of (6.60), (6.134)
and (6.144) we can write

O D
"

nX

kD0
.�1/k I.k/A An�k

#

;A

D
nX

kD1
.�1/k An�k ˇ

"
kX

iD1
.�1/i�1 I.k�i /

A

�
AT�i�1

#

C
n�1X

kD0
.�1/k I.k/A

"
n�kX

iD1
An�k�i ˝ Ai�1

#

:

Substituting in the last row the summation index k C i by k and using (5.42)
and (5.43) we further obtain

nX

kD1
An�k

kX

iD1
.�1/k�i I.k�i /

A

h
I ˇ �

AT�i�1 � I ˝ Ai�1i D O: (6.158)

Mapping an arbitrary second-order tensor B by both sides of this equation yields an
identity written in terms of second-order tensors [11]

nX

kD1
An�k

kX

iD1
.�1/k�i I.k�i /

A

�
tr
�
Ai�1B

�
I � BAi�1� D 0: (6.159)

This relation is referred to as the generalized Rivlin’s identity. Indeed, in the special
case of three-dimensional space .n D 3/ it takes the form

ABA C A2B C BA2 � tr .A/ .AB C BA/� tr .B/A2

� Œtr .AB/� trAtrB�A C 1

2

�
tr2A � trA2

�
B

�



tr
�
A2B

� � trAtr .AB/C 1

2
trB

�
tr2A � trA2

��
I D 0; (6.160)

originally obtained by Rivlin [35] by means of matrix calculations.
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Differentiating (6.159) again with respect to A delivers

O D
n�1X

kD1

n�kX

jD1

�
An�k�j ˝ Aj�1�

kX

iD1
.�1/k�i I.k�i /

A

�
tr
�
Ai�1B

�
I � BAi�1�

C
nX

kD2

k�1X

iD1
.�1/k�i An�k �tr

�
Ai�1B

�
I � BAi�1�

ˇ
2

4
k�iX

jD1
.�1/j�1 I.k�i�j /

A

�
AT
�j�1

3

5

C
nX

kD2

kX

iD2
.�1/k�i I.k�i /

A An�k ˇ
2

4
i�1X

jD1

�
Aj�1BAi�1�j �T

3

5

�
nX

kD2

kX

iD2
.�1/k�i I.k�i /

A An�kB

2

4
i�1X

jD1

�
Ai�j�1 ˝ Aj�1�

3

5 :

Changing the summation indices and summation order we obtain

n�1X

iD1

nX

kDiC1

k�iX

jD1
.�1/k�i�j I.k�i�j /

A An�k nI ˝ �
tr
�
Aj�1B

�
Ai�1

� Ai�1BAj�1� � �
tr
�
Ai�1B

�
I � BAi�1�ˇ �

AT
�j�1

C I ˇ �
Ai�1BAj�1�T � BAj�1 ˝ Ai�1o D O: (6.161)

The second-order counterpart of this relation can be obtained by mapping another
arbitrary second-order tensor C 2 Linn as [11]

n�1X

iD1

nX

kDiC1

k�iX

jD1
.�1/k�i�j I.k�i�j /

A An�k ˚tr
�
Aj�1B

�
CAi�1

� CAi�1BAj�1 � �
tr
�
Ai�1B

�
I � BAi�1� tr

�
Aj�1C

�

C tr
�
Ai�1BAj�1C

�
I � BAj�1CAi�1� D 0: (6.162)

In the special case of three-dimensional space .n D 3/ Eq. (6.162) leads to the well-
known identity (see [28, 35, 37])
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ABC C ACB C BCA C BAC C CAB C CBA � tr .A/ .BC C CB/

�tr .B/ .CA C AC/� tr .C/ .AB C BA/C Œtr .B/ tr .C/ � tr .BC/�A

C Œtr .C/ tr .A/ � tr .CA/�B C Œtr .A/ tr .B/ � tr .AB/�C

� Œtr .A/ tr .B/ tr .C/� tr .A/ tr .BC/� tr .B/ tr .CA/

�tr .C/ tr .AB/C tr .ABC/C tr .ACB/� I D 0: (6.163)

Exercises

6.1. Check isotropy of the following tensor functions:

(a) f .A/ D aAb, where a;b 2 E
n,

(b) f .A/ D A11 C A22 C A33,
(c) f .A/ D A11 C A12 C A13, where Aij represent the components of A 2 Lin3

with respect to an orthonormal basis ei .i D 1; 2; 3/, so that A D Aij ei ˝ ej ,
(d) f .A/ D detA,

(e) f .A/ D �max, where �max denotes the maximal (in the sense of the norm
p
��)

eigenvalue of A 2 Linn.

6.2. Prove the alternative representation (6.18) for the functional basis of an
arbitrary second-order tensor A.

6.3. Prove the product rule of differentiation (6.58) by applying the formalism of
the directional derivative (6.44).

6.4. An orthotropic symmetry group go is described in terms of three structural
tensors defined by Li D l i ˝ l i , where l i � l j D ıij .i; j D 1; 2; 3/ are unit vectors
along mutually orthogonal principal material directions. Represent the general
orthotropic strain energy function

 
�
QCQT� D  .C/ ; 8Q 2 go (6.164)

in terms of the orthotropic invariants.

6.5. Using the results of Exercise 6.4, derive the constitutive relation for the second
Piola-Kirchhoff stress tensor S (6.80) and the tangent moduli C (6.149) for the
general hyperelastic orthotropic material.

6.6. Represent the general constitutive relation for an orthotropic elastic material
as a function S .C/.

6.7. A symmetry group gf of a fiber reinforced material with an isotropic matrix
is described in terms of structural tensors defined by Li D l i ˝ l i , where the
unit vectors l i .i D 1; 2; : : : ; k/ define the directions of fiber families and are not
necessarily orthogonal to each other. Represent the strain energy function
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�
QCQT� D  .C/ ; 8Q 2 gf (6.165)

of a fiber reinforced material with two families of fibers .k D 2/.

6.8. Derive the constitutive relation S D 2@ =@C C pC�1 and the tangent moduli
C D 2@S=@C for the Mooney-Rivlin material represented by the strain energy
function (6.11).

6.9. Derive the constitutive relation for the Ogden material (6.12) in terms of the
second Piola-Kirchhoff stress tensor using expression (6.80).

6.10. Show that tr
�
CLiCLj

�
, where Li .i D 1; 2; 3/ are structural tensors defined

in Exercise 6.4, represents an orthotropic tensor function (orthotropic invariant) of
C. Express this function in terms of the orthotropic functional basis obtained in
Exercise 6.4.

6.11. The strain energy function of the orthotropic St.Venant-Kirchhoff material is
given by

 
� QE� D 1

2

3X

i;jD1
aij tr

� QELi
�

tr
� QELj

�C
3X

i;jD1
i¤j

Gij tr
� QELi QELj

�
; (6.166)

where QE denotes the Green-Lagrange strain tensor (6.114) and Li .i D 1; 2; 3/

are the structural tensors defined in Exercise 6.4. aij D aj i .i; j D 1; 2; 3/ and
Gij D Gji .i ¤ j D 1; 2; 3/ represent material constants. Derive the constitutive
relation for the second Piola-Kirchhoff stress tensor S (6.80) and the tangent moduli
C (6.149).

6.12. Show that the function  . QE/ (6.166) becomes transversely isotropic if

a22 D a33; a12 D a13; G12 D G13; G23 D 1

2
.a22 � a23/ (6.167)

and isotropic of the form (6.116) if

a12 D a13 D a23 D �; G12 D G13 D G23 D G;

a11 D a22 D a33 D �C 2G: (6.168)

6.13. Complete the proof of Theorem 6.3.

6.14. Express A�k;A, where k D 1; 2; : : :.

6.15. Prove the product rules of differentiation (6.144) and (6.145).

6.16. Write out Rivlin’s identity (6.159) for n D 2.



Chapter 7
Analytic Tensor Functions

7.1 Introduction

In the previous chapter we discussed isotropic and anisotropic tensor functions
and their general representations. Of particular interest in continuum mechanics
are isotropic tensor-valued functions of one arbitrary (not necessarily symmetric)
tensor. For example, the exponential function of the velocity gradient or other non-
symmetric strain rates is very suitable for the formulation of evolution equations
in large strain anisotropic plasticity. In this section we focus on a special class of
isotropic tensor-valued functions referred here to as analytic tensor functions. In
order to specify this class of functions we first deal with the general question how
an isotropic tensor-valued function can be defined.

For isotropic functions of diagonalizable tensors the most natural way is the
spectral decomposition (4.43)

A D
sX

iD1

�i Pi ; (7.1)

so that we may write similarly to (4.48)

g .A/ D
sX

iD1

g .�i / Pi ; (7.2)

where g .�i / is an arbitrary (not necessarily polynomial) scalar function defined on
the spectrum �i .i D 1; 2; : : : ; s/ of the tensor A. Obviously, the so-defined function
g .A/ is isotropic in the sense of the condition (6.91). Indeed,

g
�
QAQT� D

sX

iD1

g .�i / QPiQT D Qg .A/ QT; 8Q 2 Orthn; (7.3)
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where we take into account that the spectral decomposition of the tensor QAQT is
given by

QAQT D
sX

iD1

�i QPiQT: (7.4)

Example 7.1. Generalized strain measures. The so-called generalized strain mea-
sures E and e (also known as Hill’s strains, [16, 17]) play an important role in
kinematics of continuum. They are defined by (7.2) as isotropic tensor-valued
functions of the symmetric right and left stretch tensor U and v and are referred to
as Lagrangian (material) and Eulerian (spatial) strains, respectively. The definition
of the generalized strains is based on the spectral representations by

U D
sX

iD1

�i Pi ; v D
sX

iD1

�i pi ; (7.5)

where �i > 0 are the eigenvalues (referred to as principal stretches) while Pi and
pi .i D 1; 2; : : : ; s/ denote the corresponding eigenprojections. Accordingly,

E D
sX

iD1

f .�i / Pi ; e D
sX

iD1

f .�i / pi ; (7.6)

where f is a strictly-increasing scalar function satisfying the conditions f .1/ D 0

and f 0 .1/ D 1. A special class of generalized strain measures specified by

E.a/ D

8
ˆ̂<

ˆ̂:

sP
iD1

1

a

�
�a

i � 1
�

Pi for a ¤ 0;

sP
iD1

ln .�i / Pi for a D 0;

(7.7)

e.a/ D

8
ˆ̂<

ˆ̂:

sP
iD1

1

a

�
�a

i � 1
�

pi for a ¤ 0;

sP
iD1

ln .�i / pi for a D 0

(7.8)

are referred to as Seth’s strains [40], where a is a real number. For example, the
Green-Lagrange strain tensor (6.114) introduced in Chap. 6 belongs to Seth’s strains
as E.2/.

Since non-symmetric tensors do not generally admit the spectral decomposition
in the diagonal form (7.1), it is necessary to search for other approaches for the
definition of the isotropic tensor function g .A/ W Linn 7! Linn. One of these
approaches is the tensor power series of the form

g .A/ D a0I C a1A C a2A2 C : : : D
1X

rD0

ar Ar : (7.9)
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Indeed, in view of (6.92)

g
�
QAQT� D

1X

rD0

ar

�
QAQT�r

D
1X

rD0

ar QArQT D Qg .A/ QT; 8Q 2 Orthn: (7.10)

For example, the exponential tensor function can be defined in terms of the infinite
power series (7.9) by (1.114).

One can show that the power series (7.9), provided it converges, represents a
generalization of (7.2) to arbitrary (and not necessarily diagonalizable) second-
order tensors. Conversely, the isotropic tensor function (7.2) with g .�/ analytic on
the spectrum of A can be considered as an extension of infinite power series (7.9)
to its non-convergent domain if the latter exists. Indeed, for diagonalizable tensor
arguments within the convergence domain of the tensor power series (7.9) both
definitions coincide. For example, inserting (7.1) into (7.9) and taking (4.47) into
account we have

g .A/ D
1X

rD0

ar

 
sX

iD1

�i Pi

!r

D
1X

rD0

ar

sX

iD1

�r
i Pi D

sX

iD1

g .�i/ Pi (7.11)

with the abbreviation

g .�/ D
1X

rD0

ar�
r ; (7.12)

so that

ar D 1

rŠ

@rg .�/

@�r

ˇ̌
ˇ̌
�D0

: (7.13)

The above mentioned convergence requirement vastly restricts the definition
domain of many isotropic tensor functions defined in terms of infinite series (7.9).
For example, one can show that the power series for the logarithmic tensor function

ln .A C I/ D
1X

rD1

.�1/rC1 Ar

r
(7.14)

converges for j�i j < 1 .i D 1; 2; : : : ; s/ and diverges if j�kj > 1 at least for some
k .1 � k � s/ (see, e.g., [13]).

In order to avoid this convergence problem we consider a tensor function defined
by the so-called Dunford-Taylor integral as (see, for example, [25])

g .A/ D 1

2�i

I

�

g .�/ .�I � A/�1 d� (7.15)
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taken on the complex plane over � , where � represents a closed curve or consists
of simple closed curves, the union interior of which includes all the eigenvalues
�i 2 C .i D 1; 2; : : : ; s/ of the tensor argument A. g .�/ W C 7! C is an arbitrary
scalar function analytic within and on � .

One can easily prove that the tensor function (7.15) is isotropic in the sense of
the definition (6.91). Indeed, with the aid of (1.133) and (1.134) we obtain (cf. [34])

g
�
QAQT� D 1

2�i

I

�

g .�/
�
�I � QAQT

��1
d�

D 1

2�i

I

�

g .�/
�
Q .�I � A/ QT��1

d�

D 1

2�i

I

�

g .�/ Q .�I � A/�1 QTd�

D Qg .A/ QT; 8Q 2 Orthn: (7.16)

It can be verified that for diagonalizable tensors the Dunford-Taylor integral (7.15)
reduces to the spectral decomposition (7.2) and represents therefore its generaliza-
tion. Indeed, inserting (7.1) into (7.15) delivers

g .A/ D 1

2�i

I

�

g .�/

 
�I �

sX

iD1

�i Pi

!�1

d�

D 1

2�i

I

�

g .�/

"
sX

iD1

.� � �i / Pi

#�1

d�

D 1

2�i

I

�

g .�/

sX

iD1

.� � �i /
�1 Pi d�

D
sX

iD1

�
1

2�i

I

�

g .�/ .� � �i/
�1 d�

�
Pi D

sX

iD1

g .�i/ Pi ; (7.17)

where we keep (4.46) in mind and apply the Cauchy integral formula (see,
e.g. [5]). Using this result we can represent, for example, the generalized strain
measures (7.6) by

E D f .U/ ; e D f .v/ ; (7.18)

where the tensor functions f .U/ and f .v/ are defined by (7.15).
Further, one can show that the Dunford-Taylor integral (7.15) also represents a

generalization of tensor power series (7.9). For this purpose, it suffices to verify
that (7.15) based on a scalar function g .�/ D �k .k D 0; 1; 2; : : :/ results into the
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monomial g .A/ D Ak . To this end, we consider in (7.15) the following identity [25]

g .�/ I D .�I/k D .�I � A C A/k D .�I � A/k C : : : C Ak: (7.19)

Thereby, all terms except of the last one have no pole within � and vanish according
to the Cauchy theorem (see, e.g., [5]), so that

g .A/ D 1

2�i

I

�

h
.�I � A/k�1 C : : : C Ak .�I � A/�1

i
d� D Ak: (7.20)

Isotropic tensor functions defined by (7.15) will henceforth be referred to
as analytic tensor functions. The above discussed properties of analytic tensor
functions can be completed by the following relations (Exercise 7.3)

g .A/ D f̨ .A/ C ˇh .A/ ; if g .�/ D f̨ .�/ C ˇh .�/ ;

g .A/ D f .A/ h .A/ ; if g .�/ D f .�/ h .�/ ;

g .A/ D f .h .A// ; if g .�/ D f .h .�// :

(7.21)

In the following we will deal with representations for analytic tensor functions and
their derivatives.

7.2 Closed-Form Representation for Analytic Tensor
Functions and Their Derivatives

Our aim is to obtain the so-called closed form representation for analytic tensor
functions and their derivatives. This representation should be given only in terms of
finite powers of the tensor argument and its eigenvalues and avoid any reference to
the integral over the complex plane or to power series.

We start with the Cayley-Hamilton theorem (4.95) for the tensor �I � A

nX

kD0

.�1/k I.k/

�I�A .�I � A/n�k D 0: (7.22)

With the aid of the Vieta theorem (4.24) we can write

I.0/

�I�A D 1; I.k/

�I�A D
nX

i1<i2<:::<ik

.� � �i1/ .� � �i2/ : : :
�
� � �ik

�
; (7.23)

where k D 1; 2; : : : ; n and the eigenvalues �i .i D 1; 2; : : : ; n/ of the tensor A are
counted with their multiplicity.
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Composing (7.22) with the so-called resolvent of A

R .�/ D .�I � A/�1 (7.24)

yields

R .�/ D 1

I.n/

�I�A

n�1X

kD0

.�1/n�k�1 I.k/

�I�A .�I � A/n�k�1

D 1

I.n/

�I�A

n�1X

kD0

I.k/

�I�A .A � �I/n�k�1 : (7.25)

Applying the binomial theorem (see, e.g., [5])

.A � �I/l D
lX

pD0

.�1/l�p

 
l

p

!
�l�pAp; l D 1; 2; : : : ; (7.26)

where  
l

p

!
D lŠ

pŠ .l � p/Š
; (7.27)

we obtain

R .�/ D 1

I.n/

�I�A

n�1X

kD0

I.k/

�I�A

n�k�1X

pD0

.�1/n�k�1�p

 
n � k � 1

p

!
�n�k�1�pAp: (7.28)

Rearranging this expression with respect to the powers of the tensor A delivers

R .�/ D
n�1X

pD0

˛pAp (7.29)

with

˛p D 1

I.n/

�I�A

n�p�1X

kD0

.�1/n�k�p�1

 
n � k � 1

p

!
I.k/

�I�A�n�k�p�1; (7.30)

where p D 0; 1; : : : ; n � 1. Inserting this result into (7.15) we obtain the following
closed-form representation for the tensor function g .A/ [21]

g .A/ D
n�1X

pD0

'pAp; (7.31)
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where

'p D 1

2�i

I

�

g .�/ ˛pd�; p D 0; 1; : : : ; n � 1: (7.32)

The Cauchy integrals in (7.32) can be calculated with the aid of the residue theorem
(see, e.g., [5]). To this end, we first represent the determinant of the tensor �I � A in
the form

I.n/

�I�A D det .�I � A/ D
sY

iD1

.� � �i/
ri ; (7.33)

where �i denote pairwise distinct eigenvalues with the algebraic multiplicities
ri .i D 1; 2; : : : ; s/ such that

sX

iD1

ri D n: (7.34)

Thus, inserting (7.30) and (7.33) into (7.32) we obtain

'p D
sX

iD1

1

.ri � 1/Š
lim

�!�i

�
dri �1

d�ri �1

�
g .�/ ˛p .�/ .� � �i /

ri
�	

; (7.35)

where p D 1; 2; : : : ; n � 1.
The derivative of the tensor function g .A/ can be obtained by direct differentia-

tion of the Dunfod-Taylor integral (7.15). Thus, by use of (6.139) we can write

g .A/ ;A D 1

2�i

I

�

g .�/ .�I � A/�1 ˝ .�I � A/�1 d� (7.36)

and consequently

g .A/ ;A D 1

2�i

I

�

g .�/ R .�/ ˝ R .�/ d�: (7.37)

Taking (7.29) into account further yields

g .A/ ;A D
n�1X

p;qD0

�pqAp ˝ Aq; (7.38)

where

�pq D �qp D 1

2�i

I

�

g .�/ ˛p .�/ ˛q .�/ d�; p; q D 0; 1; : : : ; n � 1: (7.39)

The residue theorem finally delivers

�pq D
sX

iD1

1

.2ri � 1/Š
lim

�!�i

�
d2ri �1

d�2ri�1

h
g .�/ ˛p .�/ ˛q .�/ .� � �i /

2ri

i	
; (7.40)

where p; q D 0; 1; : : : ; n � 1.
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7.3 Special Case: Diagonalizable Tensor Functions

For analytic functions of diagonalizable tensors the definitions in terms of the
Dunford-Taylor integral (7.15) on the one side and eigenprojections (7.2) on the
other side become equivalent. In this special case, one can obtain alternative closed-
form representations for analytic tensor functions and their derivatives. To this end,
we first derive an alternative representation of the Sylvester formula (4.55). In
Sect. 4.4 we have shown that the eigenprojections can be given by (4.52)

Pi D pi .A/ ; i D 1; 2; : : : ; s; (7.41)

where pi .i D 1; 2; : : : ; s/ are polynomials satisfying the requirements (4.51). Thus,
the eigenprojections of a second-order tensor can be considered as its analytic
(isotropic) tensor functions. Applying the Dunford-Taylor integral (7.15) we can
thus write

Pi D 1

2�i

I

�

pi .�/ .�I � A/�1 d�; i D 1; 2; : : : ; s: (7.42)

Similarly to (7.31) and (7.35) we further obtain

Pi D
n�1X

pD0

�ipAp; i D 1; 2; : : : ; s; (7.43)

where

�ip D
sX

kD1

1

.rk � 1/Š
lim

�!�k

�
drk�1

d�rk�1

�
pi .�/ ˛p .�/ .� � �k/rk

�	
(7.44)

and ˛p .p D 0; 1; : : : ; n � 1/ are given by (7.30). With the aid of polynomial
functions pi .�/ satisfying in addition to (4.51) the following conditions

dr

d�r
pi .�/

ˇ̌
ˇ̌
�D�j

D 0 i; j D 1; 2; : : : ; sI r D 1; 2; : : : ; ri � 1 (7.45)

we can simplify (7.44) by

�ip D 1

.ri � 1/Š
lim

�!�i

�
dri �1

d�ri�1

�
˛p .�/ .� � �i /

ri
�	

: (7.46)

Now, inserting (7.43) into (7.2) delivers

g .A/ D
sX

iD1

g .�i /

n�1X

pD0

�ipAp: (7.47)
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In order to obtain an alternative representation for g .A/ ;A we again consider the
tensor power series (7.9). Direct differentiation of (7.9) with respect to A delivers
with the aid of (6.134)

g .A/ ;A D
1X

rD1

ar

r�1X

kD0

Ar�1�k ˝ Ak: (7.48)

Applying the spectral representation (7.1) and taking (4.47) and (7.12) into account
we further obtain (see also [19, 49])

g .A/ ;A D
1X

rD1

ar

r�1X

kD0

sX

i;j D1

�r�1�k
i �k

j Pi ˝ Pj

D
sX

iD1

1X

rD1

rar�
r�1
i Pi ˝ Pi C

sX

i;j D1
j ¤i

1X

rD1

ar

�r
i � �r

j

�i � �j

Pi ˝ Pj

D
sX

iD1

g0 .�i / Pi ˝ Pi C
sX

i;j D1
j ¤i

g .�i / � g
�
�j

�

�i � �j

Pi ˝ Pj

D
sX

i;j D1

Gij Pi ˝ Pj ; (7.49)

where

Gij D

8
ˆ̂<

ˆ̂:

g0 .�i / if i D j;

g .�i / � g
�
�j

�

�i � �j

if i ¤ j:
(7.50)

Inserting into (7.49) the alternative representation for the eigenprojections (7.43)
yields

g .A/ ;A D
sX

i;j D1

Gij

n�1X

p;qD0

�ip�jqAp ˝ Aq: (7.51)

Thus, we again end up with the representation (7.38)

g .A/ ;A D
n�1X

p;qD0

�pqAp ˝ Aq; (7.52)

where

�pq D �qp D
sX

i;j D1

Gij �ip�jq; p; q D 0; 1; : : : ; n � 1: (7.53)
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Finally, let us focus on the differentiability of eigenprojections. To this end, we
represent them by [25] (Exercise 7.5)

Pi D 1

2�i

I

�i

.�I � A/�1 d�; i D 1; 2; : : : s; (7.54)

where the integral is taken on the complex plane over a closed curve �i the interior
of which includes only the eigenvalue �i . All other eigenvalues of A lie outside
�i . �i does not depend on �i as far as this eigenvalue is simple and does not lie
directly on �i . Indeed, if �i is multiple, a perturbation of A by A C tX can lead to a
split of eigenvalues within �i . In this case, (7.54) yields a sum of eigenprojections
corresponding to these split eigenvalues which coalesce in �i for t D 0. Thus,
the eigenprojection Pi corresponding to a simple eigenvalue �i is differentiable
according to (7.54). Direct differentiation of (7.54) delivers in this case

Pi ;A D 1

2�i

I

�i

.�I � A/�1 ˝ .�I � A/�1 d�; ri D 1: (7.55)

By analogy with (7.38) we thus obtain

Pi ;A D
n�1X

p;qD0

�ipqAp ˝ Aq; (7.56)

where

�ipq D �iqp D 1

2�i

I

�i

˛p .�/ ˛q .�/ d�; p; q D 0; 1; : : : ; n � 1: (7.57)

By the residue theorem we further write

�ipq D lim
�!�i

�
d

d�

h
˛p .�/ ˛q .�/ .� � �i /

2
i	

; p; q D 0; 1; : : : ; n � 1: (7.58)

With the aid of (7.49) one can obtain an alternative representation for the deriva-
tive of the eigenprojections in terms of the eigenprojections themselves. Indeed,
substituting the function g in (7.49) by pi and taking the properties of the latter
function (4.51) and (7.45) into account we have

Pi ;A D
sX

j D1
j ¤i

Pi ˝ Pj C Pj ˝ Pi

�i � �j

: (7.59)
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7.4 Special Case: Three-Dimensional Space

First, we specify the closed-form solutions (7.31) and (7.38) for three-dimensional
space .n D 3/. In this case, the functions ˛k .�/ .k D 0; 1; 2/ (7.30) take the form

˛0 .�/ D �2 � �I�I�A C II�I�A

III�I�A

D �2 � � .�1 C �2 C �3/ C �1�2 C �2�3 C �3�1

.� � �1/ .� � �2/ .� � �3/
;

˛1 .�/ D I�I�A � 2�

III�I�A
D � � �1 � �2 � �3

.� � �1/ .� � �2/ .� � �3/
;

˛2 .�/ D 1

III�I�A
D 1

.� � �1/ .� � �2/ .� � �3/
: (7.60)

Inserting these expressions into (7.35) and (7.40) and considering separately cases
of distinct and repeated eigenvalues, we obtain the following result [23].

Distinct eigenvalues: �1 ¤ �2 ¤ �3 ¤ �1,

'0 D
3X

iD1

g .�i / �j �k

Di

;

'1 D �
3X

iD1

g .�i /
�
�j C �k

�

Di

;

'2 D
3X

iD1

g .�i /

Di

; (7.61)

�00 D
3X

iD1

�2
j �2

kg0 .�i /

D2
i

�
3X

i;j D1
i¤j

�i �j �2
k

�
g .�i / � g

�
�j

��
�
�i � �j

�3
Dk

;

�01 D �10 D �
3X

iD1

�
�j C �k

�
�j �kg0 .�i /

D2
i

C
3X

i;j D1
i¤j

�
�j C �k

�
�i �k

�
g .�i / � g

�
�j

��
�
�i � �j

�3
Dk

;
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�02 D �20 D
3X

iD1

�j �kg0 .�i /

D2
i

�
3X

i;j D1
i¤j

�i �k

�
g .�i/ � g

�
�j

��
�
�i � �j

�3
Dk

;

�11 D
3X

iD1

�
�j C �k

�2
g0 .�i /

D2
i

�
3X

i;j D1
i¤j

�
�j C �k

�
.�i C �k/

�
g .�i / � g

�
�j

��
�
�i � �j

�3
Dk

;

�12 D �21 D �
3X

iD1

�
�j C �k

�
g0 .�i /

D2
i

C
3X

i;j D1
i¤j

.�i C �k/
�
g .�i / � g

�
�j

��
�
�i � �j

�3
Dk

;

�22 D
3X

iD1

g0 .�i /

D2
i

�
3X

i;j D1
i¤j

g .�i / � g
�
�j

�
�
�i � �j

�3
Dk

; i ¤ j ¤ k ¤ i; (7.62)

where

Di D �
�i � �j

�
.�i � �k/ ; i ¤ j ¤ k ¤ i D 1; 2; 3: (7.63)

Double coalescence of eigenvalues: �i ¤ �j D �k D �, j ¤ k,

'0 D �
�g .�i / � �i g .�/

.�i � �/2
C �i g .�/

.�i � �/
� ��ig

0 .�/

.�i � �/
;

'1 D �2�
g .�i/ � g .�/

.�i � �/2
C g0 .�/ .�i C �/

.�i � �/
;

'2 D g .�i / � g .�/

.�i � �/2
� g0 .�/

.�i � �/
; (7.64)

�00 D
�
2�2�2

i � 6�3�i

�
Œg .�i / � g .�/	

.�i � �/5

C �4g0 .�i / C �
2�3�i C 4�2�2

i � 4��3
i C �4

i

�
g0 .�/

.�i � �/4

C
�
2�2�2

i � �3
i �
�

g00 .�/

.�i � �/3
C �2�2

i g
000 .�/

6 .�i � �/2
;
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�01 D �10 D
�
3�3 C 7�i �

2 � 2�2
i �
�

Œg .�i / � g .�/	

.�i � �/5

� 2�3g0 .�i / C �
�3 C 7�i�

2 � 2�2
i �
�

g0 .�/

.�i � �/4

�
�
4�2�i C �2

i � � �3
i

�
g00 .�/

2 .�i � �/3
� �i � .�i C �/ g000 .�/

6 .�i � �/2
;

�02 D �20 D
�
�2

i � 3�i � � 2�2
�

Œg .�i / � g .�/	

.�i � �/5

C �2g0 .�i / C �
�2 C 3�i � � �2

i

�
g0 .�/

.�i � �/4

C
�
3��i � �2

i

�
g00 .�/

2 .�i � �/3
C �i �g000 .�/

6 .�i � �/2
;

�11 D �4
� .�i C 3�/ Œg .�i / � g .�/	

.�i � �/5
C 4

�2g0 .�i / C � .�i C 2�/ g0 .�/

.�i � �/4

C 2� .�i C �/ g00 .�/

.�i � �/3
C .�i C �/2 g000 .�/

6 .�i � �/2
;

�12 D �21 D .�i C 7�/ Œg .�i / � g .�/	

.�i � �/5
� 2�g0 .�i / C .�i C 5�/ g0 .�/

.�i � �/4

� .�i C 3�/ g00 .�/

2 .�i � �/3
� .�i C �/ g000 .�/

6 .�i � �/2
;

�22 D �4
g .�i/ � g .�/

.�i � �/5
C g0 .�i / C 3g0 .�/

.�i � �/4
C g00 .�/

.�i � �/3
C g000 .�/

6 .�i � �/2
: (7.65)

Triple coalescence of eigenvalues: �1 D �2 D �3 D �,

'0 D g .�/ � �g0 .�/ C 1

2
�2g00 .�/ ;
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'1 D g0 .�/ � �g00 .�/ ;

'2 D 1

2
g00 .�/ ; (7.66)

�00 D g0 .�/ � �g00 .�/ C �2g000 .�/

2
� �3gIV .�/

12
C �4gV .�/

120
;

�01 D �10 D g00 .�/

2
� �g000 .�/

2
C �2gIV .�/

8
� �3gV .�/

60
;

�02 D �20 D g000 .�/

6
� �gIV .�/

24
C �2gV .�/

120
;

�11 D g000 .�/

6
� �gIV .�/

6
C �2gV .�/

30
;

�12 D �21 D gIV .�/

24
� �gV .�/

60
;

�22 D gV .�/

120
; (7.67)

where superposed Roman numerals denote the order of the derivative.

Example 7.2. To illustrate the application of the above closed-form solution we
consider the exponential function of the velocity gradient under simple shear. The
velocity gradient is defined as the material time derivative of the deformation
gradient by L D PF. Using the representation of F in the case of simple shear (2.69)
we can write

L D Li�j e i ˝ ej ; where
h
Li�j
i

D
2

4
0 P
 0

0 0 0

0 0 0

3

5: (7.68)

We observe that L has a triple .r1 D 3/ zero eigenvalue

�1 D �2 D �3 D � D 0: (7.69)

This eigenvalue is, however, defect since it is associated with only two .t1 D 2/

linearly independent (right) eigenvectors

a1 D e1; a2 D e3: (7.70)

Therefore, L (7.68) is not diagonalizable and admits no spectral decomposition in
the form (7.1). For this reason, isotropic functions of L as well as their derivative
cannot be obtained on the basis of eigenprojections. Instead, we exploit the closed-
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form solution (7.31) and (7.38) with the coefficients calculated for the case of triple
coalescence of eigenvalues by (7.66) and (7.67). Thus, we can write

exp .L/ D exp .�/

�

1

2
�2 � � C 1

�
I C .1 � �/ L C 1

2
L2

�
; (7.71)

exp .L/ ;L D exp .�/

�

1 � � C �2

2
� �3

12
C �4

120

�
I

C



1

2
� �

2
C �2

8
� �3

60

�
.L ˝ I C I ˝ L/

C



1

6
� �

6
C �2

30

�
L ˝ L

C



1

6
� �

24
C �2

120

��
L2 ˝ I C I ˝ L2

�

C



1

24
� �

60

� �
L2 ˝ L C L ˝ L2

�C 1

120
L2 ˝ L2

�
: (7.72)

On use of (7.69) this finally leads to the following expressions

exp .L/ D I C L C 1

2
L2; (7.73)

exp .L/ ;L D I C 1

2
.L ˝ I C I ˝ L/ C 1

6
L ˝ L C 1

6

�
L2 ˝ I C I ˝ L2

�

C 1

24

�
L2 ˝ L C L ˝ L2

�C 1

120
L2 ˝ L2: (7.74)

Taking into account a special property of L (7.68):

Lk D 0; k D 2; 3; : : : (7.75)

the same results can also be obtained directly from the power series (1.114) and its
derivative. By virtue of (6.134) the latter one can be given by

exp .L/ ;L D
1X

rD1

1

rŠ

r�1X

kD0

Lr�1�k ˝ Lk: (7.76)

For diagonalizable tensor functions the representations (7.31) and (7.38) can be
simplified in the cases of repeated eigenvalues where the coefficients 'p and �pq are
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given by (7.64)–(7.67). To this end, we use the identities A2 D .�i C �/ A��i �I for
the case of double coalescence of eigenvalues

�
�i ¤ �j D �k D �

�
and A D �I,

A2 D �2I for the case of triple coalescence of eigenvalues .�1 D �2 D �3 D �/.
Thus, we obtain the following result well-known for symmetric isotropic tensor
functions [7].

Double coalescence of eigenvalues: �i ¤ �j D �k D �, A2 D .�i C �/ A � �i �I,

'0 D �ig .�/ � �g .�i /

�i � �
; '1 D g .�i / � g .�/

�i � �
; '2 D 0; (7.77)

�00 D �2�i �
g .�i/ � g .�/

.�i � �/3
C �2g0 .�i / C �2

i g
0 .�/

.�i � �/2
;

�01 D �10 D .�i C �/
g .�i / � g .�/

.�i � �/3
� �g0 .�i / C �i g

0 .�/

.�i � �/2
;

�11 D �2
g .�i / � g .�/

.�i � �/3
C g0 .�i / C g0 .�/

.�i � �/2
;

�02 D �20 D �12 D �21 D �22 D 0: (7.78)

Triple coalescence of eigenvalues: �1 D �2 D �3 D �, A D �I, A2 D �2I,

'0 D g .�/ ; '1 D '2 D 0; (7.79)

�00 D g0 .�/ ; �01 D �10 D �11 D �02 D �20 D �12 D �21 D �22 D 0: (7.80)

Finally, we specify the representations for eigenprojections (7.43) and their
derivative (7.56) for three-dimensional space. The expressions for the func-
tions �ip (7.46) and �ipq (7.58) can be obtained from the representations for 'p

(7.61), (7.77), (7.79) and �pq (7.62), (7.78), respectively. To this end, we set there
g .�i / D 1, g

�
�j

� D g .�k/ D g0 .�i / D g0 ��j

� D g0 .�k/ D 0. Accordingly, we
obtain the following representations.

Distinct eigenvalues: �1 ¤ �2 ¤ �3 ¤ �1,

�i0 D �j �k

Di

; �i1 D ��j C �k

Di

; �i2 D 1

Di

; (7.81)

�i00 D �2�i�j �k

"
�k

�
�i � �j

�3
Dk

C �j

.�i � �k/3 Dj

#
;

�i01 D �i10 D �k

�i

�
�j C �k

�C �j .�i C �k/
�
�i � �j

�3
Dk

C �j

�i

�
�j C�k

� C �k

�
�i C �j

�

.�i � �k/3 Dj

;
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�i02 D �i20 D ��k

�i C �j
�
�i � �j

�3
Dk

� �j

�i C �k

.�i � �k/3 Dj

;

�i11 D �2
�
�j C �k

�
"

�i C �k
�
�i � �j

�3
Dk

C �i C �j

.�i � �k/3 Dj

#
;

�i12 D �i21 D �i C �j C 2�k
�
�i � �j

�3
Dk

C �i C 2�j C �k

.�i � �k/3 Dj

;

�i22 D � 2
�
�i � �j

�3
Dk

� 2

.�i � �k/3 Dj

; i ¤ j ¤ k ¤ i D 1; 2; 3: (7.82)

Double coalescence of eigenvalues: �i ¤ �j D �k D �, j ¤ k,

�i0 D � �

�i � �
; �i1 D 1

�i � �
; �i2 D 0; (7.83)

�i00 D � 2��i

.�i � �/3
; �i01 D �i10 D �i C �

.�i � �/3
; �i11 D � 2

.�i � �/3
;

�i02 D �i20 D �i12 D �i21 D �i22 D 0: (7.84)

Triple coalescence of eigenvalues: �1 D �2 D �3 D �,

�10 D 1; �11 D �12 D 0: (7.85)

The functions �1pq .p; q D 0; 1; 2/ are in this case undefined since the only
eigenprojection P1 is not differentiable.

7.5 Recurrent Calculation of Tensor Power
Series and Their Derivatives

In numerical calculations with a limited number of digits the above presented
closed-form solutions especially those ones for the derivative of analytic tensor
functions can lead to inexact results if at least two eigenvalues of the tensor argument
are close to each other but do not coincide (see [20]). In this case, a numerical
calculation of the derivative of an analytic tensor function on the basis of the
corresponding power series expansion might be advantageous provided this series
converges very fast so that only a relatively small number of terms are sufficient in
order to ensure a desired precision. This numerical calculation can be carried out by
means of a recurrent procedure presented below.
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The recurrent procedure is based on the sequential application of the Cayley-
Hamilton equation (4.95). Accordingly, we can write for an arbitrary second-order
tensor A 2 Linn

An D
n�1X

kD0

.�1/n�kC1 I.n�k/

A Ak: (7.86)

With the aid of this relation any non-negative integer power of A can be repre-
sented by

Ar D
n�1X

kD0

!
.r/

k Ak; r D 0; 1; 2; : : : (7.87)

Indeed, for r � n one obtains directly from (7.86)

!
.r/

k D ırk; !
.n/

k D .�1/n�kC1 I.n�k/

A ; r; k D 0; 1; : : : ; n � 1: (7.88)

Further powers of A can be expressed by composing (7.87) with A and representing
An by (7.86) as

ArC1 D
n�1X

kD0

!
.r/

k AkC1 D
n�1X

kD1

!
.r/

k�1Ak C !
.r/
n�1An

D
n�1X

kD1

!
.r/

k�1Ak C !
.r/
n�1

n�1X

kD0

.�1/n�k�1 I.n�k/

A Ak:

Comparing with (7.87) we obtain the following recurrent relations (see also [39])

!
.rC1/
0 D !

.r/
n�1 .�1/n�1 I.n/

A ;

!
.rC1/

k D !
.r/

k�1 C !
.r/
n�1 .�1/n�k�1 I.n�k/

A ; k D 1; 2; : : : ; n � 1: (7.89)

With the aid of representation (7.87) the infinite power series (7.9) can thus be
expressed by (7.31)

g .A/ D
n�1X

pD0

'pAp; (7.90)

where

'p D
1X

rD0

ar !.r/
p : (7.91)

Thus, the infinite power series (7.9) with the coefficients (7.13) results in the same
representation as the corresponding analytic tensor function (7.15) provided the
infinite series (7.91) converges.
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Further, inserting (7.87) into (7.48) we obtain again the representation (7.38)

g .A/ ;A D
n�1X

p;qD0

�pqAp ˝ Aq; (7.92)

where

�pq D �qp D
1X

rD1

ar

r�1X

kD0

!.r�1�k/
p !.k/

q ; p; q D 0; 1; : : : ; n � 1: (7.93)

The procedure computing the coefficients �pq (7.93) can be simplified by means of
the following recurrent identity (see also [31])

rX

kD0

Ar�k ˝ Ak D Ar ˝ I C
"

r�1X

kD0

Ar�1�k ˝ Ak

#
A

D A

"
r�1X

kD0

Ar�1�k ˝ Ak

#
C I ˝ Ar ; r D 1; 2 : : : ; (7.94)

where
r�1X

kD0

Ar�1�k ˝ Ak D
n�1X

p;qD0

�.r/
pq Ap ˝ Aq; r D 1; 2 : : : (7.95)

Thus, we obtain

�pq D
1X

rD1

ar�
.r/
pq ; (7.96)

where [20]

�.1/
pq D �.1/

qp D !.0/
p !.0/

q D ı0pı0q; p � qI p; q D 0; 1; : : : ; n � 1;

�
.r/
00 D �

.r�1/
0 n�1 !

.n/
0 C !

.r�1/
0 ;

�
.r/
0q D �

.r/
q0 D �

.r�1/
0 q�1 C �

.r�1/
0 n�1 !.n/

q D �
.r�1/
n�1 q !

.n/
0 C !.r�1/

q ;

�.r/
pq D �.r/

qp D �
.r�1/
p q�1 C �

.r�1/
p n�1!

.n/
q D �

.r�1/
p�1 q C �

.r�1/
n�1 q !.n/

p ;

p � qI p; q D 1; 2; : : : ; n � 1; r D 2; 3; : : : (7.97)

The calculation of coefficient series (7.89) and (7.97) can be finished as soon as for
some r
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Table 7.1 Recurrent calculation of the coefficients !.r/
p and �.r/

pq

r !
.r/
0 !

.r/
1 !

.r/
2 �

.r/
00 �

.r/
01 �

.r/
02 �

.r/
11 �

.r/
12 �

.r/
22 ar

0 1 0 0 1
1 0 1 0 1 0 0 0 0 0 1
2 0 0 1 0 1 0 0 0 0 1/2
3 0 0 0 0 0 1 1 0 0 1/6
4 0 0 0 0 0 0 0 1 0 1/24
5 0 0 0 0 0 0 0 0 1 1/120
6 0 0 0 0 0 0 0 0 0 1/720
P

rD0

ar!
.r/
p 1 1

1

2
P

rD1

ar�
.r/
pq 1

1

2

1

6

1

6

1

24

1

120

ˇ̌
ˇar!

.r/
p

ˇ̌
ˇ � "

ˇ̌
ˇ̌
ˇ

rX

tD0

at !
.t/
p

ˇ̌
ˇ̌
ˇ ;

ˇ̌
ˇar�

.r/
pq

ˇ̌
ˇ � "

ˇ̌
ˇ̌
ˇ

rX

tD1

at �
.t/
pq

ˇ̌
ˇ̌
ˇ ; p; q D 0; 1; : : : ; n � 1; (7.98)

where " > 0 denotes a precision parameter.

Example 7.3. To illustrate the application of the above recurrent procedure we
consider again the exponential function of the velocity gradient under simple
shear (7.68). In view of (7.69) we can write

I.1/
L D I.2/

L D I.3/
L D 0: (7.99)

With this result in hand the coefficients !.r/
p and �.r/

pq .p; q D 0; 1; 2/ appearing
in the representation of the analytic tensor function (7.90), (7.91) and its deriva-
tive (7.92) and (7.96) can easily be calculated by means of the above recurrent
formulas (7.88), (7.89) and (7.97). The results of the calculation are summarized
in Table 7.1.

Considering these results in (7.90)–(7.92) and (7.96) we obtain the representa-
tions (7.73) and (7.74). Note that the recurrent procedure delivers an exact result
only in some special cases like this where the argument tensor is characterized by
the property (7.75).

Exercises

7.1. Let R .!/ be a proper orthogonal tensor describing a rotation about some axis
e 2 E

3 by the angle !. Prove that Ra .!/ D R .a!/ for any real number a.
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7.2. Specify the right stretch tensor U (7.5)1 for simple shear utilizing the results of
Exercise 4.1.

7.3. Prove the properties of analytic tensor functions (7.21).

7.4. Represent the tangen moduli for the Ogden material (6.12) in the case of simple
shear by means of (7.49)–(7.50) and by using the result of Exercises 4.13 and 6.9.

7.5. Prove representation (7.54) for eigenprojections of diagonalizable second-
order tensors.

7.6. Calculate eigenprojections and their derivatives for the tensor A (Exer-
cise 4.14) using representations (7.81)–(7.85).

7.7. Calculate by means of the closed-form solution exp .A/ and exp .A/ ;A, where
the tensor A is defined in Exercise 4.14. Compare the results for exp .A/ with those
of Exercise 4.15.

7.8. Compute exp .A/ and exp .A/ ;A by means of the recurrent procedure with the
precision parameter " D 1 � 10�6, where the tensor A is defined in Exercise 4.14.
Compare the results with those of Exercise 7.7.



Chapter 8
Applications to Continuum Mechanics

8.1 Polar Decomposition of the Deformation Gradient

The deformation gradient F represents an invertible second-order tensor generally
permitting a unique polar decomposition by

F D RU D vR; (8.1)

where R is an orthogonal tensor while U and v are symmetric tensors. In continuum
mechanics, R is called rotation tensor while U and v are referred to as the right
and left stretch tensor, respectively. The latter ones have already been introduced in
Sect. 7.1 in the context of generalized strain measures.

In order to show that the polar decomposition (8.1) always exists and is unique
we first consider the so-called right and left Cauchy-Green tensors respectively by

C D FTF; b D FFT: (8.2)

These tensors are symmetric and have principal traces in common. Indeed, in view
of (1.151)

tr.Ck/ D tr .FTF : : :FTF/
„ ƒ‚ …

k times

D tr .FFT : : :FFT/
„ ƒ‚ …

k times

D tr.bk/: (8.3)

For this reason, all scalar-valued isotropic functions of C and b such as principal
invariants or eigenvalues coincide. Thus, we can write

C D
s
X

iD1
ƒiPi ; b D

s
X

iD1
ƒipi ; (8.4)

where eigenvalues ƒi are positive. Indeed, let ai be a unit eigenvector associated
with the eigenvalue ƒi . Then, in view of (1.78), (1.104) and (1.115) and by
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Theorem 1.8 one can write

ƒi D ai � .ƒiai / D ai � .Cai / D ai � .FTFai /

D .aiFT/ � .Fai / D .Fai / � .Fai / > 0:

Thus, square roots of C and b are unique tensors defined by

U D p
C D

s
X

iD1

p

ƒiPi ; v D p
b D

s
X

iD1

p

ƒipi : (8.5)

Further, one can show that
R D FU�1 (8.6)

represents an orthogonal tensor. Indeed,

RRT D FU�1U�1FT D FU�2FT D FC�1FT

D F.FTF/�1FT D FF�1F�TFT D I:

Thus, we can write taking (8.6) into account

F D RU D �

RURT
�

R: (8.7)

The tensor
RURT D FRT (8.8)

in (8.7) is symmetric due to symmetry of U (8.5)1. Thus, one can write

.RURT/2 D .RURT/.RURT/T D .FRT/.FRT/T

D FRTRFT D FFT D b: (8.9)

In view of (8.5)2 there exists only one real symmetric tensor whose square is b.
Hence,

RURT D v; (8.10)

which by virtue of (8.7) results in the polar decomposition (8.1).

8.2 Basis-Free Representations for the Stretch
and Rotation Tensor

With the aid of the closed-form representations for analytic tensor functions
discussed in Chap. 7 the stretch and rotation tensors can be expressed directly in
terms of the deformation gradient and Cauchy-Green tensors without any reference
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to their eigenprojections. First, we deal with the stretch tensors (8.5). Inserting in
(7.61) g.ƒi / D p

ƒi D �i and keeping in mind (7.31) we write

U D '0I C '1C C '2C2; v D '0I C '1b C '2b2; (8.11)

where [45]

'0 D �1�2�3.�1 C �2 C �3/

.�1 C �2/.�2 C �3/.�3 C �1/
;

'1 D �21 C �22 C �23 C �1�2 C �2�3 C �3�1

.�1 C �2/.�2 C �3/.�3 C �1/
;

'2 D � 1

.�1 C �2/.�2 C �3/.�3 C �1/
: (8.12)

These representations for 'i are free of singularities and are therefore generally
valid for the case of simple as well as repeated eigenvalues of C and b.

The rotation tensor results from (8.6) where we can again write

U�1 D &0I C &1C C &2C2: (8.13)

The representations for &p .p D 0; 1; 2/ can be obtained either again by (7.61)

where g.ƒi / D ƒ
�1=2
i D ��1

i or by applying the Cayley-Hamilton equation (4.95)
leading to

U�1 D III�1
U .U2 � IUU C IIUI/

D III�1
U Œ.IIU � '0IU/I C .1 � '1IU/C � '2IUC2�; (8.14)

where

IU D �1 C �2 C �3; IIU D �1�2 C �2�3 C �3�1; IIIU D �1�2�3: (8.15)

Both procedures yield the same representation (8.13) where

&0 D �1�2 C �2�3 C �3�1

�1�2�3
� .�1 C �2 C �3/

2

.�1 C �2/.�2 C �3/.�3 C �1/
;

&1 D 1

�1�2�3
�
�

�21 C �22 C �23 C �1�2 C �2�3 C �3�1
�

.�1 C �2 C �3/

�1�2�3.�1 C �2/.�2 C �3/.�3 C �1/
;

&2 D �1 C �2 C �3

�1�2�3.�1 C �2/.�2 C �3/.�3 C �1/
: (8.16)

Thus, the rotation tensor (8.6) can be given by

R D F
�

&0I C &1C C &2C2
�

; (8.17)
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where the functions &i .i D 0; 1; 2/ are given by (8.16) in terms of the principal
stretches �i D p

ƒi , while ƒi .i D 1; 2; 3/ denote the eigenvalues of the right
Cauchy-Green tensor C (8.2).

Example 8.1. Stretch and rotation tensor in the case of simple shear. In this loading
case the right and left Cauchy-Green tensors take the form (see Exercise 4.1)

C D Cij ei ˝ ej ;
h

Cij
i

D
2

4

1 � 0

� 1C �2 0

0 0 1

3

5 ; (8.18)

b D bij ei ˝ ej ;
h

bij
i

D
2

4

1C �2 � 0

� 1 0

0 0 1

3

5 (8.19)

with the eigenvalues

ƒ1=2 D 1C �2 ˙p

4�2 C �4

2
D
 p

4C �2 ˙ �

2

!2

; ƒ3 D 1: (8.20)

For the principal stretches we thus obtain

�1=2 D p

ƒ1=2 D
p

4C �2 ˙ �

2
; �3 D

p

ƒ3 D 1: (8.21)

The stretch tensors result from (8.11) where

'0 D 1Cp

�2 C 4

2
p

�2 C 4C �2 C 4
;

'1 D 1Cp

�2 C 4

2Cp

�2 C 4
;

'2 D � 1

2
p

�2 C 4C �2 C 4
: (8.22)

This yields the following result (cf. Exercise 7.2)

U D Ui
j ei ˝ ej ;

h

Ui
j

i

D

2

6

6

6

6

6

6

6

4

2
p

�2 C 4

�
p

�2 C 4
0

�
p

�2 C 4

�2 C 2
p

�2 C 4
0

0 0 1

3

7

7

7

7

7

7

7

5

; (8.23)
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v D vij e i ˝ ej ;
h

vij
i

D

2

6

6

6

6

6

6

6

4

�2 C 2
p

�2 C 4

�
p

�2 C 4
0

�
p

�2 C 4

2
p

�2 C 4
0

0 0 1

3

7

7

7

7

7

7

7

5

: (8.24)

The rotation tensor can be calculated by (8.17) where

&0 D
p

�2 C 4 � 1

2
p

�2 C 4C �2 C 4
;

&1 D �3Cp

�2 C 4C �2

2Cp

�2 C 4
;

&2 D 1Cp

�2 C 4

2
p

�2 C 4C �2 C 4
: (8.25)

By this means we obtain

R D Ri�j ei ˝ ej ;
h

Ri�j
i

D

2

6

6

6

6

6

6

4

2
p

�2 C 4

�
p

�2 C 4
0

� �
p

�2 C 4

2
p

�2 C 4
0

0 0 1

3

7

7

7

7

7

7

5

: (8.26)

8.3 The Derivative of the Stretch and Rotation Tensor
with Respect to the Deformation Gradient

In continuum mechanics these derivatives are used for the evaluation of the rate of
the stretch and rotation tensor. We begin with a very simple representation in terms
of eigenprojections of the right and left Cauchy-Green tensors (8.2). Applying the
chain rule of differentiation and using (6.142) we first write

U;F D C1=2;C W C;F D C1=2;C W �.I ˝ F/t C FT ˝ I
�

: (8.27)

Further, taking into account the spectral representation of C (8.4)1 and keeping its
symmetry in mind we obtain by virtue of (7.49) and (7.50)

C1=2;C D
s
X

i;jD1
.�i C �j /

�1.Pi ˝ Pj /s: (8.28)
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Inserting this result into (8.27) delivers by means of (5.33), (5.47), (5.54)2 and (5.55)

U;F D
s
X

i;jD1
.�i C �j /

�1Œ.Pi ˝ FPj /t C PiFT ˝ Pj �: (8.29)

The same procedure applied to the left stretch tensor yields by virtue of (6.143)

v;F D
s
X

i;jD1

�

�i C �j
��1 h

pi ˝ FTpj C �

piF ˝ pj
�t
i

: (8.30)

Now, applying the product rule of differentiation (6.140) to (8.6) and taking (6.139)
into account we write

R;F D .FU�1/;F D I ˝ U�1 C FU�1;U W U;F

D I ˝ U�1 � F.U�1 ˝ U�1/s W U;F : (8.31)

With the aid of (7.2) and (8.29) this finally leads to

R;F D I ˝
 

s
X

iD1
��1
i Pi

!

� F
s
X

i;jD1
Œ.�i C �j /�i�j �

�1Œ.Pi ˝ FPj /t C PiFT ˝ Pj �: (8.32)

Note that the eigenprojections Pi and pi .i D 1; 2; : : : ; s/ are uniquely defined by
the Sylvester formula (4.55) or its alternative form (7.43) in terms of C and b,
respectively. The functions �ip appearing in (7.43) are, in turn, expressed in the
unique form by (7.81), (7.83) and (7.85) in terms of the eigenvalues ƒi D
�2i .i D 1; 2; : : : ; s/.

In order to avoid the direct reference to the eigenprojections one can obtain the
so-called basis-free solutions for U;F, v;F and R;F (see, e.g., [8, 14, 18, 38, 47, 49]).
As a rule, they are given in terms of the stretch and rotation tensors themselves
and require therefore either the explicit polar decomposition of the deformation
gradient or a closed-form representation for U, v and R like (8.11) and (8.17). In
the following we present the basis-free solutions for U;F, v;F and R;F in terms
of the Cauchy-Green tensors C and b (8.2) and the principal stretches �i Dp
ƒi .i D 1; 2; : : : ; s/. To this end, we apply the representation (7.38) for the

derivative of the square root. Thus, we obtain instead of (8.28)

C1=2;C D
2
X

p;qD0
�pq.Cp ˝ Cq/s; b1=2;b D

2
X

p;qD0
�pq.bp ˝ bq/s; (8.33)
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where the functions �pq result from (7.62) by setting again g .ƒi/ D p
ƒi D �i .

This leads to the following expressions (cf. [18])

�00 D ��1 �I5UIII2U � I4UII2UIIIU C I3UII4U

� I2UIIIU
�

3II3U � 2III2U
�C 3IUII2UIII2U � IIUIII3U

�

;

�01 D �10 D ��1 �I6UIIIU � I5UII2U � I4UIIUIIIU

C 2I3U
�

II3U C III2U
�� 4I2UII2UIIIU C 2IUIIUIII2U � III3U

�

;

�02 D �20 D ��1 ��I4UIIIU C I3UII2U � I2UIIUIIIU � IUIII2U
�

;

�11 D ��1 �I7U � 4I5UIIU C 3I4UIIIU

C 4I3UII2U � 6I2UIIUIIIU C IUIII2U C II2UIIIU
�

;

�12 D �21 D ��1 ��I5U C 2I3UIIU � 2I2UIIIU C IIUIIIU
�

;

�22 D ��1 �I3U C IIIU
�

; (8.34)

where
� D 2 .IUIIU � IIIU/

3 IIIU (8.35)

and the principal invariants IU, IIU and IIIU are given by (8.15).
Finally, substitution of (8.33) into (8.27) yields

U;F D
2
X

p;qD0
�pq

�

.Cp ˝ FCq/t C CpFT ˝ Cq
�

: (8.36)

Similar we can also write

v;F D
2
X

p;qD0
�pq

�

bp ˝ FTbq C .bpF ˝ bq/t
�

: (8.37)

Inserting further (8.13) and (8.36) into (8.31) we get

R;F D I ˝
2
X

pD0
&pCp

� F
2
X

p;q;r;tD0
&r&t�pq

h
�

CpCr ˝ FCqCt�t C CpCrFT ˝ CqCt
i

; (8.38)
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where &p and �pq .p; q D 0; 1; 2/ are given by (8.16) and (8.34), respectively. The
third and fourth powers of C in (8.38) can be expressed by means of the Cayley-
Hamilton equation (4.95):

C3 � ICC2 C IICC � IIICI D 0: (8.39)

Composing both sides with C we can also write

C4 � ICC3 C IICC2 � IIICC D 0: (8.40)

Thus,

C3 D ICC2 � IICC C IIICI;

C4 D �

I2C � IIC
�

C2 C .IIIC � ICIIC/C C ICIIICI: (8.41)

Considering these expressions in (8.38) and taking into account that (see, e.g., [44])

IC D I2U � 2IIU; IIC D II2U � 2IUIIIU; IIIC D III2U (8.42)

we finally obtain

R;F D I ˝
2
X

pD0
&pCp C F

2
X

p;qD0
�pq

�

.Cp ˝ FCq/
t C CpFT ˝ Cq

�

; (8.43)

where

�00 D 	 �1 �I6UIII3U C 2I5UII2UIII2U � 3I4UII4UIIIU � 7I4UIIUIII3U

C I3UII6U C 8I3UII3UIII2U C 6I3UIII4U � 3I2UII5UIIIU

� 6I2UII2UIII3U C 3IUII4UIII2U � II3UIII3U C III5U
�

;

�01 D �10 D 	 �1 �I7UIII2U C I6UII2UIIIU � I5UII4U � 6I5UIIUIII2U C I4UII3UIIIU

C 5I4UIII3U C 2I3UII5U C 4I3UII2UIII2U � 6I2UII4UIIIU

� 6I2UIIUIII3U C 6IUII3UIII2U C IUIII4U � 2II2UIII3U
�

;

�02 D �20 D �	 �1 �I5UIII2U C I4UII2UIIIU � I3UII4U � 4I3UIIUIII2U

C 3I2UII3UIIIU C 4I2UIII3U � 3IUII2UIII2U C IIUIII3U
�

;

�11 D 	 �1 �I8UIIIU C I7UII2U � 7I6UIIUIIIU � 4I5UII3U

C 5I5UIII2U C 16I4UII2UIIIU C 4I3UII4U � 16I3UIIUIII2U

� 12I2UII3UIIIU C 3I2UIII3U C 12IUII2UIII2U � 3IIUIII3U
�

;
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�12 D �21 D �	 �1 �I6UIIIU C I5UII2U � 5I4UIIUIIIU � 2I3UII3U

C 4I3UIII2U C 6I2UII2UIIIU � 6IUIIUIII2U C III3U
�

;

�22 D 	 �1IU
�

I3UIIIU C I2UII2U � 3IUIIUIIIU C 3III2U
�

(8.44)

and
	 D �2 .IUIIU � IIIU/

3 III3U; (8.45)

while the principal invariants IU, IIU and IIIU are given by (8.15).
The same result for R;F also follows from

R;F D .FU�1/;F D I ˝ U�1 C FU�1;C W C;F (8.46)

by applying for U�1;C (7.38) and (7.62) where we set g.ƒi / D .ƒi /
�1=2 D ��1

i .
Indeed, this yields

C�1=2;C D U�1;C D
2
X

p;qD0
�pq.Cp ˝ Cq/s; (8.47)

where �pq .p; q D 0; 1; 2/ are given by (8.44).

8.4 Time Rate of Generalized Strains

Applying the chain rule of differentiation we first write

PE D E;C W PC; (8.48)

where the superposed dot denotes the so-called material time derivative. The
derivative E;C can be expressed in a simple form in terms of the eigenprojections of
E and C. To this end, we apply (7.49) and (7.50) taking (7.18) and (8.5) into account
which yields

E;C D
s
X

i;jD1
fij .Pi ˝ Pj /s; (8.49)

where

fij D

8

ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
:

f 0.�i /
2�i

if i D j;

f .�i /� f .�j /

�2i � �2j
if i ¤ j:

(8.50)

A basis-free representation for E;C can be obtained either from (8.49) by expressing
the eigenprojections by (7.43) with (7.81), (7.83) and (7.85) or directly by using the
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closed-form solution (7.38) with (7.62), (7.78) and (7.80). Both procedures lead to
the same result as follows (cf. [22, 48]).

E;C D
2
X

p;qD0
�pq.Cp ˝ Cq/s: (8.51)

Distinct eigenvalues: �1 ¤ �2 ¤ �3 ¤ �1,

�00 D
3
X

iD1

�4j �
4
kf

0.�i /
2�i�

2
i

�
3
X

i;jD1
i¤j

�2i �
2
j �

4
k

�

f .�i / � f .�j /
�

�

�2i � �2j

�3

�k

;

�01 D �10 D �
3
X

iD1

�

�2j C �2k

�

�2j �
2
kf

0.�i /

2�i�
2
i

C
3
X

i;jD1
i¤j

�

�2j C �2k

�

�2i �
2
k

�

f .�i /� f .�j /
�

�

�2i � �2j

�3

�k

;

�02 D �20 D
3
X

iD1

�2j �
2
kf

0.�i /
2�i�

2
i

�
3
X

i;jD1
i¤j

�2i �
2
k

�

f .�i /� f .�j /
�

�

�2i � �2j
�3

�k

;

�11 D
3
X

iD1

�

�2j C �2k

�2

f 0.�i /

2�i�
2
i

�
3
X

i;jD1
i¤j

�

�2j C �2k

�
�

�2i C �2k
� �

f .�i /� f .�j /
�

�

�2i � �2j
�3

�k

;

�12 D �21 D �
3
X

iD1

�

�2j C �2k

�

f 0.�i /

2�i�
2
i

C
3
X

i;jD1
i¤j

�

�2i C �2k
� �

f .�i /� f .�j /
�

�

�2i � �2j

�3

�k

;

�22 D
3
X

iD1

f 0.�i /
2�i�

2
i

�
3
X

i;jD1
i¤j

f .�i / � f .�j /
.�2i � �2j /

3�k

; i ¤ j ¤ k ¤ i; (8.52)

with
�i D

�

�2i � �2j

�
�

�2i � �2k
�

; i ¤ j ¤ k ¤ i D 1; 2; 3: (8.53)

Double coalescence of eigenvalues: �i ¤ �j D �k D �,

�00 D �2�2i �2
f .�i /� f .�/
�

�2i � �2�3
C �5f 0.�i /C �5i f

0.�/
2�i�

�

�2i � �2�2
;
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�01 D �10 D �

�2i C �2
� f .�i / � f .�/
.�2i � �2/3

� �3f 0.�i /C �3i f
0.�/

2�i�.�
2
i � �2/2 ;

�11 D �2f .�i /� f .�/
�

�2i � �2
�3

C �f 0.�i /C �if
0.�/

2�i�
�

�2i � �2
�2

;

�02 D �20 D �12 D �21 D �22 D 0: (8.54)

Triple coalescence of eigenvalues: �1 D �2 D �3 D �,

�00 D f 0.�/
2�

; �01 D �10 D �11 D �02 D �20 D �12 D �21 D �22 D 0: (8.55)

Insertion of (8.49) or alternatively (8.51) into (8.48) finally yields by (5.17)1 and
(5.48)1

PE D
s
X

i;jD1
fijPi PCPj D

2
X

p;qD0
�pqCp PCCq: (8.56)

Example 8.2. Material time derivative of the Biot strain tensor E.1/ D U � I.
Insertion of f .�/ D � � 1 into (8.50) and (8.56)1 yields

PE.1/ D
s
X

i;jD1

1

�i C �j
Pi PCPj : (8.57)

Keeping (8.33) in mind and applying the chain rule of differentiation we can also
write

PE.1/ D PU D C1=2;C W PC D
2
X

p;qD0
�pqCp PCCq; (8.58)

where the coefficients �pq .p; q D 0; 1; 2/ are given by (8.34) in terms of the
principal invariants of U (8.15).

8.5 Stress Conjugate to a Generalized Strain

Let E be an arbitrary Lagrangian strain (7.6)1. Assume existence of the so-called
strain energy function  .E/ differentiable with respect to E. The symmetric tensor

T D  .E/;E (8.59)

is referred to as stress conjugate to E. With the aid of the chain rule it can be
represented by

T D  .E/;C W C;E D 1

2
S W C;E ; (8.60)
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where S D 2 .E/;C denotes the second Piola-Kirchhoff stress tensor. The latter
one is defined in terms of the Cauchy stress � by (see, e.g., [46])

S D det.F/F�1� F�T: (8.61)

Using (8.59) and (7.7) one can also write

P D T W PE D S W 1
2

PC D S W PE.2/: (8.62)

The fourth-order tensor C;E appearing in (8.60) can be expressed in terms of the
right Cauchy-Green tensor C by means of the relation

Is D E;E D E;C W C;E ; (8.63)

where the derivative E;C is given by (8.49) and (8.50). The basis tensors of the latter
representation are

Pij D
(

.Pi ˝ Pi /s if i D j;
�

Pi ˝ Pj C Pj ˝ Pi
�s

if i ¤ j:
(8.64)

In view of (4.44), (5.33) and (5.55) they are pairwise orthogonal (see Exercise 8.2)
such that (cf. [48])

Pij W Pkl D
(

Pij if i D k and j D l or i D l and j D k;

O otherwise:
(8.65)

By means of (4.46) and (5.86) we can also write

s
X

i;jD1
j�i

Pij D
2

4

 

s
X

iD1
Pi

!

˝
0

@

s
X

jD1
Pj

1

A

3

5

s

D .I ˝ I/s D Is: (8.66)

Using these properties we thus obtain

C;E D
s
X

i;jD1
f �1
ij .Pi ˝ Pj /s; (8.67)

where fij .i; j D 1; 2; : : : ; s/ are given by (8.50). Substituting this result into (8.60)
and taking (5.22)1, (5.46) and (5.47) into account yields [19]

T D 1

2

s
X

i;jD1
f �1
ij PiSPj : (8.68)
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In order to avoid any reference to eigenprojections we can again express them by
(7.43) with (7.81), (7.83) and (7.85) or alternatively use the closed-form solution
(7.38) with (7.62), (7.78) and (7.80). Both procedures lead to the following result
(cf. [48]).

T D
2
X

p;qD0
�pqCpSCq: (8.69)

Distinct eigenvalues: �1 ¤ �2 ¤ �3 ¤ �1,

�00 D
3
X

iD1

�4j �
4
k�i

f 0.�i /�2
i

�
3
X

i;jD1
i¤j

�2i �
2
j �

4
k

2
�

�2i � �2j
�

Œf .�i / � f .�j /��k

;

�01 D �10 D �
3
X

iD1

�

�2j C �2k

�

�2j �
2
k�i

f 0.�i /�2
i

C
3
X

i;jD1
i¤j

�

�2j C �2k

�

�2i �
2
k

2
�

�2i � �2j
�

Œf .�i / � f .�j /��k

;

�02 D �20 D
3
X

iD1

�2j �
2
k�i

f 0.�i /�2
i

�
3
X

i;jD1
i¤j

�2i �
2
k

2
�

�2i � �2j
�

Œf .�i / � f .�j /��k

;

�11 D
3
X

iD1

�

�2j C �2k

�2

�i

f 0.�i /�2
i

�
3
X

i;jD1
i¤j

�

�2j C �2k

�
�

�2i C �2k
�

2
�

�2i � �2j

�

Œf .�i /� f .�j /��k

;

�12 D �21 D �
3
X

iD1

�

�2j C �2k

�

�i

f 0.�i /�2
i

C
3
X

i;jD1
i¤j

�2i C �2k

2
�

�2i � �2j

�

Œf .�i /� f .�j /��k

;

�22 D
3
X

iD1

�i

f 0.�i /�2
i

�
3
X

i;jD1
i¤j

1

2
�

�2i � �2j
�

Œf .�i / � f .�j /��k

; (8.70)

where i ¤ j ¤ k ¤ i and�i are given by (8.53).

Double coalescence of eigenvalues: �i ¤ �j D �k D �,

�00 D � �2i �
2

�

�2i � �2� Œf .�i / � f .�/� C �i�
�

�2i � �2
�2

�

�3

f 0.�i /
C �3i
f 0.�/

	

;
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�01 D �10 D �2i C �2

2
�

�2i � �2
�

Œf .�i /� f .�/�
� �i�
�

�2i � �2
�2

�

�

f 0.�i /
C �i

f 0.�/

	

;

�11 D � 1
�

�2i � �2� Œf .�i / � f .�/� C 1
�

�2i � �2
�2

�

�i

f 0.�i /
C �

f 0.�/

	

;

�02 D �20 D �12 D �21 D �22 D 0: (8.71)

Triple coalescence of eigenvalues: �1 D �2 D �3 D �,

�00 D �

f 0.�/
; �01 D �10 D �11 D �02 D �20 D �12 D �21 D �22 D 0: (8.72)

8.6 Finite Plasticity Based on the Additive Decomposition
of Generalized Strains

Keeping in mind the above results regarding generalized strains we are concerned in
this section with a thermodynamically based plasticity theory. The basic kinematic
assumption of this theory is the additive decomposition of generalized strains (7.6)
into an elastic part Ee and a plastic part Ep as

E D Ee C Ep: (8.73)

The derivation of evolution equations for the plastic strain is based on the second law
of thermodynamics and the principle of maximum plastic dissipation. The second
law of thermodynamics can be written in the Clausius-Planck form as (see, e.g. [46])

D D T W PE � P � 0; (8.74)

where D denotes the dissipation and T is again the stress tensor work conjugate to
E. Inserting (8.73) into (8.74) we further write

D D



T � @ 

@Ee

�

W PEe C T W PEp � 0; (8.75)

where the strain energy is assumed to be a function of the elastic strain as  D
O .Ee/. The first term in the expression of the dissipation (8.75) depends solely

on the elastic strain rate PEe , while the second one on the plastic strain rate PEp .
Since the elastic and plastic strain rates are independent of each other the dissipation
inequality (8.75) requires that

T D @ 

@Ee
: (8.76)
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This leads to the so-called reduced dissipation inequality

D D T W PEp � 0: (8.77)

Among all admissible processes the real one maximizes the dissipation (8.77).
This statement is based on the postulate of maximum plastic dissipation (see,
e.g., [29]). According to the converse Kuhn-Tucker theorem (see, e.g., [6]) the
sufficient conditions of this maximum are written as

PEp D P
 @˚
@T
; P
 � 0; P
˚ D 0; ˚ � 0; (8.78)

where ˚ represents a convex yield function and P
 denotes a consistency parameter.
In the following, we will deal with an ideal-plastic isotropic material described by a
von Mises-type yield criterion. Written in terms of the stress tensor T the von Mises
yield function takes the form [32]

˚ D kdevTk �
r

2

3
�Y ; (8.79)

where �Y denotes the normal yield stress. With the aid of (6.51) and (6.147) the
evolution equation (8.78)1 can thus be given by

PEp D P
kdevTk;T
D P
kdevTk;devT W devT;T D P
 devT

kdevTk W Pdev D P
 devT
kdevTk : (8.80)

Taking the quadratic norm on both the right and left hand side of this identity
delivers the consistency parameter as P
 D jj PEpjj. In view of the yield condition
˚ D 0 we thus obtain

devT D
r

2

3
�Y

PEp
k PEpk ; (8.81)

which immediately requires that (see Exercise 1.49)

tr PEp D 0: (8.82)

In the following, we assume small elastic but large plastic strains and specify the
above plasticity model for finite simple shear. In this case all three principal stretches
(8.21) are distinct so that we can write by virtue of (7.6)

PEp D PE D
3
X

iD1
f 0.�i / P�iPi C

3
X

iD1
f .�i / PPi : (8.83)
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By means of the identities trPi D 1 and tr PPi D 0 following from (4.62) and (4.63)
where ri D 1 .i D 1; 2; 3/ the condition (8.82) requires that

3
X

iD1
f 0.�i / P�i D 0: (8.84)

In view of (8.21) it leads to the equation

f 0.�/ � f 0.��1/��2 D 0; 8� > 0; (8.85)

where we set �1 D � and consequently �2 D ��1. Solutions of this equations can
be given by [22]

fa.�/ D
8

<

:

1

2a
.�a � ��a/ for a ¤ 0;

ln� for a D 0:

(8.86)

By means of (7.6)1 or (7.18)1 the functions fa (8.86) yield a set of new generalized
strain measures

Ehai D

8

ˆ
ˆ
<

ˆ
ˆ
:

1

2a
.Ua � U�a/ D 1

2a
.Ca=2 � C�a=2/ for a ¤ 0;

ln U D 1

2
ln C for a D 0;

(8.87)

among which only the logarithmic one .a D 0/ belongs to Seth’s family (7.7).
Henceforth, we will deal only with the generalized strains (8.87) as able to provide
the traceless deformation rate (8.82). For these strains Eq. (8.81) takes the form

devThai D
r

2

3
�Y

PEhai

k PEhaik ; (8.88)

where Thai denotes the stress tensor work conjugate to Ehai. Thai itself has no
physical meaning and should be transformed to the Cauchy stresses. With the aid of
(8.60), (8.61) and (8.63) we can write

� D 1

detF
FSFT D 1

detF
F.Thai W Pa/FT; (8.89)

where
Pa D 2Ehai;C (8.90)

can be expressed either by (8.49) and (8.50) or by (8.51)–(8.55). It is seen that this
fourth-order tensor is super-symmetric (see Exercise 5.11), so that Thai W Pa D Pa W
Thai. Thus, by virtue of (1.162) and (1.163) representation (8.89) can be rewritten as
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� D 1

detF
F.Pa W Thai/FT

D 1

detF
F
�

Pa W devThai C 1

3
trThai.Pa W I/

	

FT: (8.91)

With the aid of the relation

Pa W I D 2
d

dt
Ehai.C C tI/

ˇ

ˇ

ˇ

ˇ

tD0

D 2
d

dt

3
X

iD1
fa



q

�2i C t

�

Pi

ˇ

ˇ

ˇ

ˇ

ˇ

tD0
D

3
X

iD1
f 0
a .�i /�

�1
i Pi (8.92)

following from (6.128) and taking (8.86) into account one obtains

F.Pa W I/FT D 1

2
F
�

Ca=2�1 C C�a=2�1�FT D 1

2
.ba=2 C b�a=2/:

Inserting this result into (8.91) yields

� D 1

detF
F
�

Pa W devThai
�

FT C O� (8.93)

with the abbreviation

O� D trThai

6 detF
.ba=2 C b�a=2/: (8.94)

Using the spectral decomposition of b by (8.4) and taking into account that in the
case of simple shear detF D 1 we can further write

O� D 1

6
trThai Œ.�a C ��a/ .p1 C p2/C 2p3� ; (8.95)

where � is given by (8.21). Thus, in the 1–2 shear plane the stress tensor O� has the
double eigenvalue 1

6
trThai.�aC��a/ and causes equibiaxial tension or compression.

Hence, in this plane the component O� (8.94) is shear free and does not influence the
shear stress response. Inserting (8.88) into (8.93) and taking (8.18) and (8.48) into
account we finally obtain

� D
r

2

3
�Y F

�

Pa W Pa W A
kPa W Ak

	

FT C O� ; (8.96)
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Fig. 8.1 Simple shear of an ideal-plastic material: shear stress responses based on the additive
decomposition of generalized strains

where

A D 1

2 P�
PC D

2

4

0 1=2 0

1=2 � 0

0 0 0

3

5 ei ˝ ej : (8.97)

Of particular interest is the shear stress �12 as a function of the amount of shear � .
Inserting (8.51), (8.52) and (8.90) into (8.96) we obtain after some algebraic
manipulations

�12

�Y
D
2

q

.4C �2/ 
 2f 0
a
2 .
 /C 4f 2

a .
 /

4C �2
; (8.98)

where


 D �

2
C
p

4C �2

2
(8.99)

and �Y D �Y =
p
3 denotes the shear yield stress. Equation (8.98) is illustrated

graphically in Fig. 8.1 for several values of the parameter a. Since the presented
plasticity model considers neither softening nor hardening and is restricted to small
elastic strains a constant shear stress response even at large plastic deformations
is expected. It is also predicted by a plasticity model based on the multiplicative
decomposition of the deformation gradient (see, e.g., [22] for more details). The
plasticity model based on the additive decomposition of generalized strains exhibits,
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however, a non-constant shear stress for all examined values of a. This restricts the
applicability of this model to moderate plastic shears. Indeed, in the vicinity of the
point � D 0 the power series expansion of (8.98) takes the form

�12

�Y
D 1C 1

4
a2�2 C




1

16
a4 � 3

4
a2 � 1

�

�4 CO.�6/: (8.100)

Thus, in the case of simple shear the amount of shear is limited for the logarithmic
strain .a D 0/ by �4 � 1 and for other generalized strain measures by �2 � 1.

Exercises

8.1. The deformation gradient is given by F D Fi�j ei ˝ ej , where

h

Fi�j
i

D
2

4

1 2 0

�2 2 0
0 0 1

3

5 :

Evaluate the stretch tensors U and v and the rotation tensor R using (8.11), (8.12)
and (8.16), (8.17).

8.2. Prove the orthogonality (8.65) of the basis tensors (8.64) using (4.44), (5.33)
and (5.55).

8.3. Express the time derivative of the logarithmic strain E.0/ by means of the
relations (8.48)–(8.50).



Chapter 9
Solutions

9.1 Exercises of Chap. 1

1.1

(a) (A.4) and (A.3):
0 D 0 C .�0/ D �0:

(b) (A.1)–(A.4) and (B.3):

˛0 D 0 C ˛0 D ˛x C .�˛x/C ˛0

D ˛.0 C x/C .�˛x/ D ˛x C .�˛x/ D 0:

(c) (A.2)–(A.4) and (B.4):

0x D 0x C 0 D 0x C 0x C .�0x/ D 0x C .�0x/ D 0; 8x 2 V:

(d) (A.2)–(A.4), (B.2), (B.4) and (c):

.�1/x D .�1/x C 0 D .�1/x C x C .�x/

D .�1C 1/x C .�x/ D 0x C .�x/ D 0 C .�x/ D �x; 8x 2 V:

(e) If, on the contrary, ˛ ¤ 0 and x ¤ 0, then according to (b), (B.1) and (B.2):

0 D ˛�10 D ˛�1.˛x/ D x:

1.2 Let, on the contrary, xk D 0 for some k. Then,
Pn

iD1 ˛ixi D 0; where ˛k D 1,
˛i D 0; i D 1; : : : ; k � 1; k C 1; : : : ; n.

1.3 If, on the contrary, for some k < n:
Pk

iD1 ˛ixi D 0, where not all ˛i ; .i D
1; 2; : : : ; k/ are zero, then we can also write:

Pn
iD1 ˛ixi D 0, where ˛i D 0, for

i D k C 1; : : : ; n.

M. Itskov, Tensor Algebra and Tensor Analysis for Engineers, Mathematical Engineering,
DOI 10.1007/978-3-642-30879-6 9, © Springer-Verlag Berlin Heidelberg 2013
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1.4

(a) ıij a
j D ıi1a

1 C ıi2a
2 C ıi3a

3 D ai ;

(b) ıij xixj D ı11x
1x1 C ı12x

1x2 C : : :C ı33x
3x3 D x1x1 C x2x2 C x3x3,

(c) ıii D ı11 C ı22 C ı33 D 3,

(d)
@fi

@xj
dxj D @fi

@x1
dx1 C @fi

@x2
dx2 C @fi

@x3
dx3.

1.5 (A.4), (C.2), (C.3) and Exercises 1.1(d):

0 � x D Œx C .�x/� � x D Œx C .�1/x� � x D x � x � x � x D 0:

1.6 Let on the contrary
Pm

iD1 ˛igi D 0, where not all ˛i .i D 1; 2; : : : ; m/ are zero.
Multiplying scalarly by gj we obtain: 0 D gj � �Pm

iD1 ˛igi
�
. Since gi � gj D 0 for

i ¤ j , we can write: ˛jgj � gj D 0 .j D 1; 2; : : : ; m/. The fact that the vectors gj
are non-zero leads in view of (C.4) to the conclusion that ˛j D 0 .j D 1; 2; : : : ; m/

which contradicts the earlier assumption.

1.7 Equation (1.6), (C.1) and (C.2):

kx C yk2 D .x C y/ � .x C y/

D x � x C x � y C y � x C y � y D kxk2 C 2x � y C kyk2:

1.8 Since G D fg1;g2; : : : ;gng is a basis we can write a D aig i . Then, a � a D
ai .gi � a/. Thus, if a � g i D 0 .i D 1; 2; : : : ; n/, then a � a D 0 and according to
(C.4) a D 0 (sufficiency). Conversely, if a D 0, then (see Exercise 1.5) a � gi D
0 .i D 1; 2; : : : ; n/ (necessity).

1.9 Necessity. (C.2): a � x D b � x ) a � x � b � x D .a � b/ � x D 0; 8x 2 E
n.

Let x D a � b, then .a � b/ � .a � b/ D 0 and according to (C.4) a � b D 0. This
implies that a D b. The sufficiency is evident.

1.10

(a) Orthonormal vectors e1, e2 and e3 can be calculated by means of the Gram-
Schmidt procedure (1.10)–(1.12) as follows

e1 D g1

kg1k D
8
<

:

p
2=2p
2=2

0

9
=

;
;

e0
2 D g2 � .g2 � e1/e1 D

8
<

:

1=2

�1=2
�2

9
=

;
; e2 D e0

2

ke 0
2k

D
8
<

:

p
2=6

�p
2=6

�2p2=3

9
=

;
;

e0
3 D g3 � .g3 � e2/e2 � .g3 � e1/e1 D

8
<

:

10=9

�10=9
5=9

9
=

;
; e3 D e0

3

ke 0
3k

D
8
<

:

2=3

�2=3
1=3

9
=

;
:
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(b) According to (1.16)2 the matrix Œˇji � is composed from the components of the
vectors gi .i D 1; 2; 3/ as follows:

Œˇ
j
i � D

2

4
1 1 0

2 1 �2
4 2 1

3

5 :

In view of (1.18)

Œ˛
j
i � D Œˇ

j
i �

�1 D

2

6
6
6
6
6
6
4

�1 1

5

2

5

2 �1
5

�2
5

0 �2
5

1

5

3

7
7
7
7
7
7
5

:

By (1.19) the columns of this matrix represent components of the dual vectors
so that

g1 D
8
<

:

�1
2

0

9
=

;
; g2 D

8
<

:

1=5

�1=5
�2=5

9
=

;
; g3 D

8
<

:

2=5

�2=5
1=5

9
=

;
:

(c) First, we calculate the matrices Œgij � and
�
gij
�

by (1.25)2 and (1.24)

Œgij � D Œg i � gj � D
2

4
2 3 6

3 9 8

6 8 21

3

5 ; Œgij � D Œgij �
�1 D

2

6
6
6
6
6
6
4

5 �3
5

�6
5

�3
5

6

25

2

25

�6
5

2

25

9

25

3

7
7
7
7
7
7
5

;

With the aid of (1.21) we thus obtain

g1 D g11g1 C g12g2 C g13g3 D
8
<

:

�1
2

0

9
=

;
;

g2 D g21g1 C g22g2 C g23g3 D
8
<

:

1=5

�1=5
�2=5

9
=

;
;

g3 D g31g1 C g32g2 C g33g3 D
8
<

:

2=5

�2=5
1=5

9
=

;
:
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(d) By virtue of (1.35) we write

g D
ˇ
ˇ
ˇˇij

ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1 1 0

2 1 �2
4 2 1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D �5:

Applying (1.33) we further obtain with the aid of (1.47)

g1 D g�1g2 � g3 D �1
5

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2 1 �2
4 2 1

a1 a2 a3

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D �a1 C 2a2;

g2 D g�1g3 � g1 D �1
5

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

4 2 1

1 1 0

a1 a2 a3

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D 1

5
.a1 � a2 � 2a3/ ;

g3 D g�1g1 � g2 D �1
5

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1 1 0

2 1 �2
a1 a2 a3

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D 1

5
.2a1 � 2a2 C a3/;

where ai denote the orthonormal basis the components of the original vectors
gi .i D 1; 2; 3/ are related to.

1.11 Let on the contrary ˛ig i D 0, where not all ˛i are zero. Multiplying scalarly
by gj we obtain by virtue of (1.15): 0 D gj � .˛igi / D ˛iı

i
j D ˛j .j D 1; 2; 3/.

1.12 Similarly to (1.35) we write using also (1.18), (1.19) and (1.36)

�
g1g2g3

� D
h
˛1i e

i ˛2j ej ˛3ke
k
i

D ˛1i ˛
2
j ˛

3
k

�
eiej ek

�

D ˛1i ˛
2
j ˛

3
ke
ijk D j˛ij j D jˇij j�1 D g�1:

Equation (1.42) immediately follows from (1.24) and (1.34).

1.13 The components of the vector gi�gj with respect to the basis gk .k D 1; 2; 3/

result from (1.28)2 and (1.39) as

.gi � gj / � gk D Œg igjgk� D eijk g; i; j; k D 1; 2; 3;

which immediately implies (1.40). In the same manner one also proves (1.44) using
(1.43).

1.14

(a) ıij eijk D ı11e11k C ı12e12k C : : :C ı33e33k D 0.
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(b) Writing out the term eikmejkm we first obtain

eikmejkm D ei11ej11 C ei12ej12 C : : :C ei33ej 33

D ei12ej12 C ei21ej 21 C ei13ej13 C ei31ej 31 C ei32ej 32 C ei23ej 23:

For i ¤ j each term in this sum is equal to zero. Let further i D j D 1. Then
we obtain ei12ej12 C ei21ej 21 C ei13ej13 C ei31ej 31 C ei32ej 32 C ei23ej 23 D
e132e132 C e123e123 D .�1/.�1/C 1 � 1 D 2. The same result also holds for the
cases i D j D 2 and i D j D 3. Thus, we can write eikmejkm D 2ıij .

(c) By means of the previous result (b) we can write: eijkeijk D 2ıii D 2.ı11 C ı22 C
ı33/ D 6. This can also be shown directly by

eijkeijk D e123e123 C e132e132 C e213e213 C e231e231 C e312e312 C e321e321

D 1 � 1C .�1/ � .�1/C .�1/ � .�1/C 1 � 1C 1 � 1C .�1/ � .�1/ D 6:

(d) eijmeklm D eij1ekl1 C eij 2ekl2 C eij 3ekl3. It is seen that in the case i D j or
k D l this sum as well as the right hand side ıikı

j

l � ıil ı
j

k are both zero. Let
further i ¤ j . Then, only one term in the above sum is non-zero if k D i and
l D j or vice versa l D i and k D j . In the first case the left hand side is
1 and in the last case �1. The same holds also for the right side ıikı

j

l � ıil ı
j

k .

Indeed, we obtain for k D i ¤ l D j : ıikı
j

l � ıil ı
j

k D 1 � 1 � 0 D 1 and for

l D i ¤ k D j : ıikı
j

l � ıil ıjk D 0 � 1 � 1 D �1.

1.15 Using the representations a D aig i , b D bjgj and c D clg
l we can write by

virtue of (1.40) and (1.44)

.a � b/ � c D Œ.aig i / � .bjgj /� � c D .aibj eijkggk/ � �clgl
�

D aibj cleijke
klmgm D aibj cl eijke

lmkgm:

With the aid of the identity eijmeklm D ıikı
j

l �ıil ıjk (Exercise 1.14) we finally obtain

.a � b/ � c D aibj cl

�
ıli ı

m
j � ımi ı

l
j

�
gm D aibj cl ı

l
i ı
m
j gm � aibj clı

m
i ı

l
jgm

D aibj cigj � aibj cjg i D .a � c/b � .b � c/a:

Relation (1.169) immediately follows from (1.168) taking into account the definition
of the operator O.�/ (1.66) and the tensor product (1.80).

1.16 Equation (1.64)1 results immediately from (1.32) and (C.3). Equation (1.64)2
can further be proved by using the representations w D wigi , x D xig

i and y D
yig

i and by means of (1.45) as follows:
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w � .x C y/ D �
wig

i
� � �xj C yj

�
gj D wi

�
xj C yj

�
eijkg�1gk

D wi xj e
ijkg�1gk C wi yj e

ijkg�1gk D w � x C w � y:

1.17 (A.2)–(A.4) and (1.49):

0 D Ax C .�Ax/ D A .x C 0/C .�Ax/ D Ax C A0 C .�Ax/ D A0:

1.18 Equation (1.50), Exercises 1.1(c) and 1.17: .0A/x D A.0x/ D A0 D 0;
8x 2 E

n.

1.19 Equation (1.62) and Exercise 1.18: A C .�A/ D A C .�1/A D .1 � 1/A D
0A D 0.

1.20 We show that this is not possible, for example, for the identity tensor. Let, on
the contrary, I D a ˝ b. Clearly, a ¤ 0, since otherwise .a ˝ b/x D 0 8x 2 E

n.
Let further x be a vector linearly independent of a. Such a vector can be obtained
for example by completing a to a basis of En. Then, mapping of x by I leads to the
contradiction: x D .b � x/ a.

1.21 Indeed, a scalar product of the right-hand side of (1.85) with an arbitrary
vector x yields Œ.y � a/b� � x D .y � a/ .b � x/. The same result follows also from
y � Œ.a ˝ b/x� D .y � a/ .b � x/ ; 8x;y 2 E

n for the left-hand side. This implies
that the identity (1.85) is true (see Exercise 1.9).

1.22 For (1.88)1 we have for example

g iAgj D gi
�
Aklgk ˝ gl

�
gj D Akl

�
gi � gk

� �
gl � gj

� D Akl ıikı
j

l D Aij :

1.23 For an arbitrary vector x D xigi 2 E
3 we can write using (1.28), (1.40) and

(1.80)

Wx D w � x D �
wigi

� � �xjgj
�

D eijkgwi xjgk D eijkgwi
�
x � gj

�
gk D eijkgwi

�
gk ˝ gj

�
x:

Comparing the left and right hand side of this equality we obtain

W D eijkgwigk ˝ gj ; (9.1)

so that the components of W D Wkjgk ˝ gj can be given by Wkj D eijkgwi or in
the matrix form as

�
Wkj

� D g
�
eijkwi

� D g

2

4
0 �w3 w2

w3 0 �w1

�w2 w1 0

3

5 :
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This yields also an alternative representation for Wx as follows

Wx D g
��

w2x3 � w3x2
�

g1 C �
w3x1 � w1x3

�
g2 C �

w1x2 � w2x1
�

g3
�
:

It is seen that the tensor W is skew-symmetric because WT D �W.

1.24 According to (1.73) we can write

R D cos˛I C sin ˛ Oe3 C .1 � cos˛/ .e3 ˝ e3/ :

Thus, an arbitrary vector a D aiei in E
3 is rotated to Ra D cos˛

�
aiei

�Csin ˛e3��
aiei

�C .1 � cos˛/ a3e3. By virtue of (1.46) we can further write

Ra D cos˛
�
aie i

�C sin ˛
�
a1e2 � a2e1

�C .1 � cos˛/ a3e3

D �
a1 cos˛ � a2 sin ˛

�
e1 C �

a1 sin ˛ C a2 cos˛
�

e2 C a3e3:

Thus, the rotation tensor can be given by R D Rij ei ˝ ej , where

�
Rij
� D

2

4
cos˛ � sin˛ 0
sin ˛ cos˛ 0

0 0 1

3

5 :

1.25 With the aid of (1.88) and (1.97) we obtain

h
Ai�j
i

D �
Aikgkj

� D �
Aik

� �
gkj
� D

2

4
0 �1 0
0 0 0

1 0 0

3

5

2

4
2 3 6

3 9 8

6 8 21

3

5 D
2

4
�3 �9 �8
0 0 0

2 3 6

3

5 ;

h
A j
i �
i

D �
gikAkj

� D Œgik�
�
Akj

� D
2

4
2 3 6

3 9 8

6 8 21

3

5

2

4
0 �1 0
0 0 0

1 0 0

3

5 D
2

4
6 �2 0

8 �3 0

21 �6 0

3

5 ;

�
Aij

� D
h
gikAk�j

i
D Œgik�

h
Ak�j

i
D �

Ak
i �gkj

� D �
A k
i �
� �
gkj
�

D
2

4
2 3 6

3 9 8

6 8 21

3

5

2

4
�3 �9 �8
0 0 0

2 3 6

3

5 D
2

4
6 �2 0

8 �3 0

21 �6 0

3

5

2

4
2 3 6

3 9 8

6 8 21

3

5 D
2

4
6 0 20

7 �3 24
24 9 78

3

5 :

1.26 By means of (1.54), (1.89), (1.103) and Exercise 1.17 we can write

.A0/x D A .0x/ D A0 D 0; .0A/x D 0 .Ax/ D 0;

.AI/x D A .Ix/ D Ax; .IA/x D I .Ax/ D Ax;

A .BC/x D A ŒB .Cx/� D .AB/ .Cx/ D Œ.AB/C�x; 8x 2 E
n:
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1.27 To check the commutativeness of the tensors A and B we compute the
components of the tensor AB � BA:

h
.AB � BA/i�j

i
D
h
Ai�kBk�j � Bi�kAk�j

i
D �

Ai�k
� h

Bk�j
i

� �
Bi�k
� h

Ak�j
i

D
2

4
0 2 0

0 0 0

0 0 0

3

5

2

4
0 0 0

0 0 0

0 0 1

3

5 �
2

4
0 0 0

0 0 0

0 0 1

3

5

2

4
0 2 0

0 0 0

0 0 0

3

5 D
2

4
0 0 0

0 0 0

0 0 0

3

5 :

Similar we also obtain

h
.AC � CA/i�j

i
D
2

4
0 �2 0
0 0 0

0 0 0

3

5 ;
h
.AD � DA/i�j

i
D
2

4
0 �1 0
0 0 0

0 0 0

3

5 ;

h
.BC � CB/i�j

i
D
2

4
0 0 �3
0 0 0

0 1 0

3

5 ;
h
.BD � DB/i�j

i
D
2

4
0 0 0

0 0 0

0 0 0

3

5 ;

h
.CD � DC/i�j

i
D
2

4
0 �1 27
0 0 0

0 �19=2 0

3

5 :

Thus, A commutes with B while B also commutes with D.

1.28 Taking into account commutativeness of A and B we obtain for example for
k D 2

.A C B/2 D .A C B/ .A C B/ D A2 C AB C BA C B2 D A2 C 2AB C B2:

Generalizing this result for k D 2; 3; : : : we obtain using the Newton formula

.A C B/k D
kX

iD0

 
k

i

!

Ak�iBi ; where

 
k

i

!

D kŠ

i Š .k � i/Š
: (9.2)

1.29 Using the result of the previous Exercise we first write out the left hand side
of (1.170) by

exp .A C B/ D
1X

kD0

.A C B/k

k!
D

1X

kD0

1

k!

kX

iD0

 
k

i

!

Ak�iBi

D
1X

kD0

1

k!

kX

iD0

k!

i ! .k � i/ !
Ak�iBi D

1X

kD0

kX

iD0

Ak�iBi

i !.k � i/! :
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0

1

2
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· · · ∞

i = k

k

2

1

3

0

3210

i = k

· · · ∞

∞

k

ii

· · ·

∞ ∞
...

...
summation

area

summation
area

Fig. 9.1 Geometric illustration of the summation area and the summation order

Changing the summation order as shown in Fig. 9.1 we further obtain

exp .A C B/ D
1X

iD0

1X

kDi

Ak�iBi

i ! .k � i/ !
:

By means of the abbreviation l D k � i it yields

exp .A C B/ D
1X

iD0

1X

lD0

AlBi

i !l!
:

The same expression can alternatively be obtained by applying formally the Cauchy
product of infinite series (see e.g. [? ]). For the right hand side of (1.170) we finally
get the same result as above:

exp .A/ exp .B/ D
 1X

lD0

Al

l!

! 1X

iD0

Bi

i !

!

D
1X

lD0

1X

iD0

AlBi

l!i !
:

1.30 Using the definition of the exponential tensor function (1.114) we get

exp .0/ D
1X

kD0

0k

k!
D I C 0 C 0 C : : : D I;

exp .I/ D
1X

kD0

Ik

k!
D

1X

kD0

I
k!

D I
1X

kD0

1

k!
D exp .1/ I D eI:

1.31 Since the tensors A and �A commute we can write

exp .A/ exp .�A/ D exp .�A/ exp .A/ D exp ŒA C .�A/� D exp .0/ D I:
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Accordingly

exp .�A/ D exp .A/�1 : (9.3)

1.32 This identity can be proved by mathematical induction. Indeed, according to
the results of Exercise 1.30 it holds for k D 0. Then, assuming that it is valid for
some positive integer k we can write applying (1.170) (Exercise 1.29)

exp Œ.k C 1/A� D exp .kA C A/ D exp .kA/ exp .A/

D Œexp .A/�k exp .A/ D Œexp .A/�kC1 :

For negative integer k we proceed in a similar way using (9.3):

exp Œ.k � 1/A� D exp .kA � A/ D exp .kA/ exp .�A/

D Œexp .A/�k exp .A/�1 D Œexp .A/�k�1 :

1.33 Equations (1.114) and (9.2):

exp .A C B/ D
1X

kD0

.A C B/k

k!
D I C

1X

kD1

.A C B/k

k!

D I C
1X

kD1

Ak C Bk

k!
D exp .A/C exp .B/� I:

1.34 Equations (1.114) and (1.135):

exp
�
QAQT� D

1X

kD0

1

k!

�
QAQT�k D

1X

kD0

1

k!
QAQTQAQT : : :QAQT

„ ƒ‚ …
k times

D
1X

kD0

1

k!
QAkQT D Q

 1X

kD0

1

k!
Ak

!

QT D Q exp .A/QT:

1.35 We begin with the power of the tensor D.

D2 D DD D
�

Di�jg i ˝ gj
� �

Dk�lgk ˝ gl
�

D Di�jDk�l ı
j

kgi ˝ g l D Di�jDj

�lgi ˝ g l D �
D2
�i

�j gi ˝ gj ;

where
h�

D2
�i

�j
i

D
h
Di�j
i h

Di�j
i
. Generalizing this results for an arbitrary integer

exponent yields
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h
.Dm/i�j

i
D
h
Di�j
i
: : :
h
Di�j
i

„ ƒ‚ …
m times

D
2

4
2m 0 0

0 3m 0

0 0 1m

3

5 :

We observe that the composition of tensors represented by mixed components
related to the same mixed basis can be expressed in terms of the product of the
component matrices. With this result in hand we thus obtain

exp .D/ D
1X

mD0

Dm

m!
D exp .D/i�j g i ˝ gj ;

where

h
exp .D/i�j

i
D

2

6
6
6
6
6
6
4

1P
mD0

2m

m! 0 0

0
1P
mD0

3m

m! 0

0 0
1P
mD0

1m

m!

3

7
7
7
7
7
7
5

D
2

4
e2 0 0
0 e3 0
0 0 e

3

5 :

For the powers of the tensor E we further obtain

Ek D 0; k D 2; 3 : : :

Hence,

exp .E/ D
1X

mD0

Em

m!
D I C E C 0 C 0 C : : : D I C E;

so that
h
exp .E/i�j

i
D
2

4
1 1 0

0 1 0

0 0 1

3

5 :

To express the exponential of the tensor F we first decompose it by F D X C Y,
where

h
Xi�j

i
D
2

4
0 0 0

0 0 0

0 0 1

3

5 ;
h
Yi�j

i
D
2

4
0 2 0

0 0 0

0 0 0

3

5 :

X and Y are commutative since XY D YX D 0. Hence,

exp .F/ D exp .X C Y/ D exp .X/ exp .Y/ :
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Noticing that X has the form of D and Y that of E we can write

h
exp .X/i�j

i
D
2

4
1 0 0

0 1 0

0 0 e

3

5 ;
h
exp .Y/i�j

i
D
2

4
1 2 0

0 1 0

0 0 1

3

5 :

Finally, we obtain

h
exp .F/i�j

i
D
h
exp .X/i�j

i h
exp .Y/i�j

i
D
2

4
1 0 0

0 1 0

0 0 e

3

5

2

4
1 2 0

0 1 0

0 0 1

3

5 D
2

4
1 2 0

0 1 0

0 0 e

3

5 :

1.36 Equation (1.120): .ABCD/T D .CD/T .AB/T D DTCTBTAT.

1.37 Using the result of the previous Exercise we can write

.AA : : :A„ ƒ‚ …
k times

/T D ATAT : : :AT
„ ƒ‚ …

k times

D �
AT
�k
:

1.38 According to (1.124) and (1.125) Bij D Aj i , Bij D Aj i , B j
i � D Aj

�i and
Bi�j D A i

j � so that (see Exercise 1.25)

�
Bij
� D �

Aij
�T D

2

4
0 0 1

�1 0 0
0 0 0

3

5 ;
�
Bij
� D �

Aij

�T D
2

4
6 7 24

0 �3 9

20 24 78

3

5 ;

h
B j
i �
i

D
h
Ai�j
iT D

2

4
�3 0 2
�9 0 3
�8 0 6

3

5 ;
h
Bi�j
i

D
h
A j
i �
iT D

2

4
6 8 21

�2 �3 �6
0 0 0

3

5 :

1.39 Equations (1.120), (1.126) and (1.131):

I D IT D �
AA�1�T D �

A�1�T
AT:

1.40
�
Ak
��1

is the tensor satisfying the identity
�
Ak
��1

Ak D I. On the other hand,
�
A�1�k Ak D A�1A�1 : : :A�1

„ ƒ‚ …
k times

AA : : :A„ ƒ‚ …
k times

D I. Thus,
�
A�1�k D �

Ak
��1

.

1.41 An arbitrary tensor A 2 Linn can be represented with respect to a basis for
example by A D Aijgi ˝ gj . Thus, by virtue of (1.141) we obtain:

c ˝ d : A D c ˝ d :
�
Aijg i ˝ gj

� D Aij .c � gi /
�
gj � d

�

D c
�
Aijgi ˝ gj

�
d D cAd D dATc:
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1.42 The properties (D.1) and (D.3) directly follow from (1.141) and (1.143).
Further, for three arbitrary tensors A, B D Bijgi ˝ gj and C D Cijg i ˝ gj
we have with the aid of (1.142)

A : .B C C/ D A :
��

Bij C Cij
� �

gi ˝ gj
�� D �

Bij C Cij
� �

g iAgj

�

D Bij
�
giAgj

�C Cij
�
giAgj

�

D A :
�
Bijgi ˝ gj

�C A :
�
Cijgi ˝ gj

� D A : B C A : C;

which implies (D.2).

1.43 By virtue of (1.108), (1.89) and (1.142) we obtain

Œ.a ˝ b/ .c ˝ d/� : I D Œ.b � c/ .a ˝ d/� : I

D .b � c/ .aId/ D .a � d/ .b � c/ :

1.44 By virtue of (1.15), (1.25) and (1.149) we can write

trA D tr
�
Aijg i ˝ gj

� D Aij
�
gi � gj

� D Aij gij

D tr
�
Aijg i ˝ gj

� D Aij

�
gi � gj

� D Aij g
ij

D tr
�

Ai�jgi ˝ gj
�

D Ai�j
�
gi � gj

� D Ai�j ı
j
i D Ai�i :

1.45 Using the results of Exercise 1.10 (c) and by means of (1.159) we obtain

w D g
�
W32g1 C W13g2 C W21g3

�

D �5
�

� .�a1 C 2a2/ � 31
5
.a1 � a2 � 2a3/C 1

5
.2a1 � 2a2 C a3/

	

D �4a1 C 9a2 � 7a3:

1.46 Equation (1.147): M : W D MT : WT D M : .�W/ D � .M : W/ D 0.

1.47 Wk is skew-symmetric for odd k. Indeed,
�
Wk

�T D �
WT

�k D .�W/k D
.�1/k Wk D �Wk . Thus, using the result of the previous Exercise we can write:
trWk D Wk : I D 0.

1.48 By means of the definition (1.153) we obtain

sym .skewA/ D 1

2

�
skewA C .skewA/T

�

D 1

2

�
1

2

�
A � AT�C 1

2

�
A � AT�T
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D 1

2

�
1

2
A � 1

2
AT C 1

2
AT � 1

2
A
	

D 0:

The same procedure leads to the identity skew .symA/ D 0.

1.49 On use of (1.163) we can write

sph .devA/ D sph

�

A � 1

n
tr .A/ I

	

D 1

n
tr

�

A � 1

n
tr .A/ I

	

I D 0;

where we take into account that trI D n. In the same way, one proves that
dev .sphA/ D 0.

9.2 Exercises of Chap. 2

2.1 The tangent vectors take the form:

g1 D @r

@'
D r cos' sin �e1 � r sin ' sin �e3;

g2 D @r

@�
D r sin ' cos�e1 � r sin �e2 C r cos' cos�e3;

g3 D @r

@r
D sin ' sin�e1 C cos�e2 C cos' sin �e3: (9.4)

For the metrics coefficients we can further write:

g1 � g1 D .r cos' sin�e1 � r sin' sin �e3/

� .r cos' sin�e1 � r sin' sin �e3/ D r2 sin2 �;

g1 � g2 D .r cos' sin �e1 � r sin ' sin �e3/

� .r sin ' cos�e1 � r sin �e2 C r cos' cos�e3/

D r2 .sin ' cos' sin � cos� � sin ' cos' sin � cos�/ D 0;

g1 � g3 D .r cos' sin �e1 � r sin ' sin �e3/

� .sin ' sin �e1 C cos�e2 C cos' sin �e3/

D r
�
sin ' cos' sin2 � � sin ' cos' sin2 �

� D 0;

g2 � g2 D .r sin ' cos�e1 � r sin �e2 C r cos' cos�e3/

� .r sin ' cos�e1 � r sin �e2 C r cos' cos�e3/

D r2
�
sin2 ' cos2 � C sin2 � C cos2 ' cos2 �

� D r2;
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g2 � g3 D .r sin' cos�e1 � r sin �e2 C r cos' cos�e3/

� .sin' sin �e1 C cos�e2 C cos' sin �e3/

D r
�
sin2 ' sin � cos� � sin � cos� C cos2 ' sin � cos�

� D 0;

g3 � g3 D .sin' sin�e1 C cos�e2 C cos' sin �e3/

� .sin' sin�e1 C cos�e2 C cos' sin �e3/

D sin2 ' sin2 � C cos2 � C cos2 ' sin2 � D 1:

Thus,

�
gij
� D �

gi � gj
� D

2

4
r2 sin2 � 0 0

0 r2 0

0 0 1

3

5

and consequently

�
gij
� D �

gij
��1 D

2

6
6
6
6
4

1

r2 sin2 �
0 0

0
1

r2
0

0 0 1

3

7
7
7
7
5
: (9.5)

Finally, we calculate the dual basis by (1.21)1:

g1 D 1

r2 sin2 �
g1 D r�1 cos'

sin �
e1 � r�1 sin '

sin �
e3;

g2 D 1

r2
g2 D r�1 sin ' cos�e1 � r�1 sin �e2 C r�1 cos' cos�e3;

g3 D g3 D sin' sin �e1 C cos�e2 C cos' sin �e3:

2.2 The connection between the linear and spherical coordinates (2.157) can be
expressed by

x1 D r sin ' sin�; x2 D r cos�; x3 D r cos' sin �:

Thus, we obtain

@x1

@'
D r cos' sin �;

@x1

@�
D r sin' cos�;

@x1

@r
D sin' sin �;

@x2

@'
D 0;

@x2

@�
D �r sin�;

@x2

@r
D cos�;

@x3

@'
D �r sin ' sin �;

@x3

@�
D r cos' cos�;

@x3

@r
D cos' sin�:
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Inverting the so-constructed matrix

�
@xi

@'

@xi

@�

@xi

@r

	

further yields according to

(2.23)

@'

@x1
D cos'

r sin �
;

@'

@x2
D 0;

@'

@x3
D � sin'

r sin�
;

@�

@x1
D sin ' cos�

r
;

@�

@x2
D � sin �

r
;

@�

@x3
D cos' cos�

r
;

@r

@x1
D sin ' sin �;

@r

@x2
D cos�;

@r

@x3
D cos' sin�:

2.3 Applying the directional derivative we have

(a) :
d

ds
kr C sak�1

ˇ
ˇ
ˇ
ˇ
sD0

D d

ds
Œ.r C sa/ � .r C sa/��1=2

ˇ
ˇ
ˇ
ˇ
sD0

D d

ds

�
r � r C 2sr � a C s2a � a

��1=2
ˇ
ˇ
ˇ
ˇ
sD0

D �1
2

2r � a C 2sa � a

Œ.r C sa/ � .r C sa/�3=2

ˇ
ˇ
ˇ
ˇ
sD0

D � r � a

krk3 :

Comparing with (2.54) finally yields

grad krk�1 D � r

krk3 :

(b) :
d

ds
.r C sa/ � w

ˇ
ˇ
ˇ
ˇ
sD0

D d

ds
.r � w C sa � w/

ˇ
ˇ
ˇ
ˇ
sD0

D a � w:

Hence, grad .r � w/ D w:

(c) :
d

ds
.r C sa/A .r C sa/

ˇ
ˇ
ˇ
ˇ
sD0

D d

ds

�
rAr C saAr C srAa C s2aAa

�
ˇ
ˇ
ˇ
ˇ
sD0

D aAr C rAa D .Ar/ � a C .rA/ � a D .Ar C rA/ � a;

Thus, applying (1.115) and (1.153)1 we can write

grad .rAr/ D Ar C rA D �
A C AT� r D 2 .symA/ r :

(d) :
d

ds
A .r C sa/

ˇ
ˇ
ˇ
ˇ
sD0

D d

ds
.Ar C sAa/

ˇ
ˇ
ˇ
ˇ
sD0

D Aa:
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Comparing with (2.57) we then have

grad .Ar/ D A:

(e) : In view of (1.65) and using the results of (d) we obtain

grad .w � r/ D grad .Wr/ D W:

With the aid of the representation w D wig i we can further write (see
Exercise 1.23)

W D Wijgi ˝ gj ;
�
Wij

� D g

2

4
0 �w3 w2

w3 0 �w1

�w2 w1 0

3

5 :

2.4 We begin with the derivative of the metrics coefficients obtained in Exercise 2.1:

�
gij ;1

� D
�
@gij

@'

	

D
2

4
0 0 0

0 0 0

0 0 0

3

5 ;
�
gij ;2

� D
�
@gij

@�

	

D
2

4
2r2 sin � cos� 0 0

0 0 0

0 0 0

3

5 ;

�
gij ;3

� D
�
@gij

@r

	

D
2

4
2r sin2 � 0 0

0 2r 0

0 0 0

3

5 :

Thus, according to (2.84)

�
�ij1

� D
�
1

2

�
g1i ;j Cg1j ;i �gij ;1

�
	

D
2

4
0 r2 sin � cos� r sin2 �

r2 sin � cos� 0 0

r sin2 � 0 0

3

5 ;

�
�ij 2

� D
�
1

2

�
g2i ;j Cg2j ;i �gij ;2

�
	

D
2

4
�r2 sin � cos� 0 0

0 0 r

0 r 0

3

5 ;

�
�ij 3

� D
�
1

2

�
g3i ;j Cg3j ;i �gij ;3

�
	

D
2

4
�r sin2 � 0 0

0 �r 0
0 0 0

3

5 :
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With the aid of (2.77) we further obtain

�1ij D g1l�ijl D g11�ij1 C g12�ij 2 C g13�ij 3 D �ij1

r2 sin2 �
; i; j D 1; 2; 3;

h
�1ij

i
D
2

4
0 cot� r�1

cot� 0 0

r�1 0 0

3

5 ; (9.6)

�2ij D g2l�ijl D g21�ij1 C g22�ij 2 C g23�ij 3 D �ij 2

r2
; i; j D 1; 2; 3;

h
�2ij

i
D
2

4
� sin � cos� 0 0

0 0 r�1
0 r�1 0

3

5 ; (9.7)

�3ij D g3l�ijl D g31�ij1 C g32�ij 2 C g33�ij 3 D �ij 3; i; j D 1; 2; 3;

h
�3ij

i
D
2

4
�r sin2 � 0 0

0 �r 0
0 0 0

3

5 : (9.8)

2.5 Relations (2.96) can be obtained in the same manner as (2.94). Indeed, using
the representation A D Aijgi ˝ gj and by virtue of (2.82) we have for example for
(2.96)1:

A;k D �
Aijg i ˝ gj

�
;k

D Aij ;k gi ˝ gj C Aijgi ;k ˝gj C Aijg i ˝ gj ;k

D Aij ;k gi ˝ gj C Aij

���ilkg l
�˝ gj C Aijg i ˝

�
��jlkgl

�

D
�

Aij ;k �Alj �
l
ik � Ai l�

l
jk

�
gi ˝ gj :

2.6 Equations (1.91) and (2.72)2:

0 D I;k D �
gijgi ˝ gj

�
;k D gij jk gi ˝ gj D �

gijg i ˝ gj
�
;k D gij jk gi ˝ gj :

2.7 Using (2.96)1 we write for example for the left hand side of (2.101)

Aij jkD Aij ;k �Alj �
l
ik � Ai l�

l
jk:
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In view of (2.93)2 the same result holds for the right hand side of (2.101) as well.
Indeed,

ai jk bj C aibj jk D �
ai ;k �al�lik

�
bj C ai

�
bj ;k �bl�ljk

�

D ai ;k bj C aibj ;k �albj�lik � aibl�
l
jk

D Aij ;k �Alj �
l
ik � Ai l�

l
jk:

2.8 By analogy with (9.1)

Ot D eijkg�1tigk ˝ gj :

Inserting this expression into (2.125) and taking (2.112) into account we further
write

curlt D �divOt D � �eijkg�1tigk ˝ gj
�
;l gl :

With the aid of the identities
�
g�1gj

�
;l �gl D 0 .j D 1; 2; 3/ following from (2.76)

and (2.107) and applying the product rule of differentiation we finally obtain

curlt D �eijkg�1ti ;j gk � eijkg�1tigk;j

D �eijkg�1ti ;j gk D �eijkg�1ti jj gk D ej ikg�1ti jj gk

keeping (1.36), (2.78) and (2.93)2 in mind.

2.9 We begin with the covariant derivative of the Cauchy stress components
(2.118). Using the results of Exercise 2.4 concerning the Christoffel symbols for
the spherical coordinates we get

�1j jjD �1j ;j C�lj �1lj C �1l�
j

lj D �11;1 C�12;2 C�13;3 C3�12 cot� C 4
�13

r
;

�2j jj D �2j ;j C�lj �2lj C �2l�
j

lj

D �21;1 C�22;2 C�23;3 ��11 sin� cos� C �22 cot� C 4
�23

r
;

�3j jj D �3j ;j C�lj �3lj C �3l�
j

lj

D �31;1 C�32;2 C�33;3 ��11r sin2 � � �22r C �32 cot� C 2
�33

r
:
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The balance equations (2.116) take thus the form

�a1 D �11;1 C�12;2 C�13;3 C3�12 cot� C 4
�13

r
C f 1;

�a2 D �21;1 C�22;2 C�23;3 ��11 sin � cos� C �22 cot� C 4
�23

r
C f 2;

�a3 D �31;1 C�32;2 C�33;3 ��11r sin2 � � �22r C �32 cot� C 2
�33

r
C f 3:

2.10 The tangent vectors take the form:

g1 D @r

@r
D
�

cos
s

r
C s

r
sin

s

r

�
e1 C

�
sin

s

r
� s

r
cos

s

r

�
e2;

g2 D @r

@s
D � sin

s

r
e1 C cos

s

r
e2; g3 D @r

@z
D e3:

The metrics coefficients can further be written by

�
gij
� D �

gi � gj

� D

2

6
6
6
6
4

1C s2

r2
� s
r
0

� s
r

1 0

0 0 1

3

7
7
7
7
5
;
�
gij
� D �

gij
��1 D

2

6
6
6
6
4

1
s

r
0

s

r
1C s2

r2
0

0 0 1

3

7
7
7
7
5
:

For the dual basis we use (1.21)1:

g1 D g1 C s

r
g2 D cos

s

r
e1 C sin

s

r
e2;

g2 D s

r
g1 C




1C s2

r2

�

g2

D
�
� sin

s

r
C s

r
cos

s

r

�
e1 C

�
cos

s

r
C s

r
sin

s

r

�
e2;

g3 D g3 D e3:

The derivatives of the metrics coefficients become

�
gij ;1

� D

2

6
6
6
6
4

�2 s
2

r3
s

r2
0

s

r2
0 0

0 0 0

3

7
7
7
7
5
;
�
gij ;2

� D

2

6
6
6
6
4

2s

r2
�1
r
0

�1
r

0 0

0 0 0

3

7
7
7
7
5
;
�
gij ;3

� D
2

4
0 0 0

0 0 0

0 0 0

3

5 :
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For the Christoffel symbols we thus obtain by means of (2.84) and (2.77):

�
�ij1

� D

2

6
6
6
6
6
4

� s
2

r3
s

r2
0

s

r2
�1
r
0

0 0 0

3

7
7
7
7
7
5

;
�
�ij 2

� D
2

4
0 0 0

0 0 0

0 0 0

3

5 ;
�
�ij 3

� D
2

4
0 0 0

0 0 0

0 0 0

3

5 ;

h
�1ij

i
D

2

6
6
6
6
6
4

� s
2

r3
s

r2
0

s

r2
�1
r
0

0 0 0

3

7
7
7
7
7
5

;
h
�2ij

i
D

2

6
6
6
6
6
4

� s
3

r4
s2

r3
0

s2

r3
� s

r2
0

0 0 0

3

7
7
7
7
7
5

;
h
�3ij

i
D
2

4
0 0 0

0 0 0

0 0 0

3

5 :

2.11 First, we express the covariant derivative of the Cauchy stress components by
(2.118) using the results of the previous exercise:

�1j jj D �11;r C�12;s C�13;z ��11 s
2

r3
� �22

r
C 2�12

s

r2
;

˙2j jj D �21;r C�22;s C�23;z ��11 s
3

r4
� �22

s

r2
C 2�12

s2

r3
;

�3j jj D �31;r C�32;s C�33;z :

The balance equations (2.116) become

�a1 D �11;r C�12;s C�13;z ��11 s
2

r3
� �22

r
C 2�12

s

r2
C f 1;

�a2 D �21;r C�22;s C�23;z ��11 s
3

r4
� �22

s

r2
C 2�12

s2

r3
C f 2;

�a3 D �31;r C�32;s C�33;z Cf 3:

2.12 Equations (2.126), (2.128), (1.32) and (2.82):

div curlt D �
gi � t;i

�
;j �gj D

�
��ikjgk � t;i Cg i � t;ij

�
� gj

D �
�
�ikjgj � gk

�
� t;i C �

gj � gi
� � t;ij D 0;

where we take into consideration that t;ij D t;j i , �lij D �lj i and gi � gj D �gj �
gi .i ¤ j; i; j D 1; 2; 3/.
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Equations (2.126), (2.128) and (1.32):

div .u � v/ D .u � v/ ;i �gi D .u;i �v C u � v;i / � gi

D �
gi � u;i

� � v C �
v;i �gi

� � u D v � curlu � u � curlv:

Equations (2.6), (2.75)1 and (2.126):

grad divt D �
t;i �gi� ;j gj D �

t;ij �gi�gj C �
t;i �gi ;j

�
gj :

Using the relation

�
t;i �gi ;j

�
gj D

h
t;i �

�
��ijkgk

�i
gj

D �
t;i �gk�

�
��ijkgj

�
D �

t;i �gk�g i ;k D �
t;i �gj �gi ;j (9.9)

following from (2.82) we thus write

grad divt D �
t;ij �gi �gj C �

t;i �gj �g i ;j :

Equations (2.128) and (1.168):

curl curlt D gj � �gi � t;i
�
;j D gj � �gi ;j �t;i

�C gj � �gi � t;ij
�

D �
gj � t;i

�
g i ;j � �gj � gi ;j

�
t;i C �

gj � t;ij
�

g i � gij t;ij :

Equations (2.8), (2.64)1, (2.126), (1.121) and (??):

div gradt D �
t;i ˝g i

�
;j gj D �

t;ij ˝g i
�

gj C �
t;i ˝g i ;j

�
gj

D gij t;ij C �
g i ;j �gj � t;i : (9.10)

div .gradt/T D �
t;i ˝gi

�T
;j gj D �

g i ˝ t;ij
�

gj C �
g i ;j ˝t;i

�
gj

D �
t;ij �gj �gi C �

t;i �gj �g i ;j :

The latter four relations immediately imply (2.135) and (2.136).

Equations (1.153)2, (1.169), (2.64)1 and (2.128):

skew .gradt/ D 1

2

�
t;i ˝gi � gi ˝ t;i

� D 1

2
dgi � t;i D 1

2
dcurlt:
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Equations (2.5), (1.142), (2.112), (2.126) and (2.64)1:

div .tA/ D .tA/ ;i �gi D .t;i A/ � gi C .tA;i / � gi

D A W t;i ˝g i C t � �A;i gi
� D A W gradt C t � divA:

Equations (2.3), (2.63) and (2.126):

div .˚t/ D .˚t/ ;i �gi D .˚;i t/ � gi C .˚t;i / � gi

D t � �˚;i gi
�C ˚

�
t;i �gi� D t � grad˚ C ˚divt :

Equations (2.4), (2.63) and (2.112):

div .˚A/ D .˚A/ ;i g i D .˚;i A/gi C .˚A;i /gi

D A
�
˚;i gi

�C ˚
�
A;i g i

� D Agrad˚ C ˚divA:

2.13 Cylindrical coordinates, (2.75)2, (2.93) and (2.90):

gradt D ti jj gi ˝ gj D
�
ti ;j �tk�kij

�
g i ˝ gj

D ti ;j g i ˝ gj C rt3g
1 ˝ g1 � r�1t1

�
g1 ˝ g3 C g3 ˝ g1

�
;

or alternatively

gradt D t i jj gi ˝ gj D
�
t i ;j Ctk�ikj

�
gi ˝ gj

D t i ;j g i ˝ gj C r�1t3g1 ˝ g1 C t1
�
r�1g1 ˝ g3 � rg3 ˝ g1

�
:

Equations (2.30) and (2.127):

divt D tr gradt D ti ;j g
ij C rt3g

11 � 2r�1t1g13

D r�2t1;1 Ct2;2 Ct3;3 Cr�1t3;

or alternatively

divt D tr gradt D t i ;i Cr�1t3 D t i ;i Cr�1t3 D t1;1 Ct2;2 Ct3;3 Cr�1t3:

Equations (2.93) and (2.129):

curlt D ej ik
1

g
ti jj gk
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D g�1 Œ.t3j2 �t2j3/g1 C .t1j3 �t3j1/g2 C .t2j1 �t1j2/g3�

D r�1 Œ.t3;2 �t2;3 /g1 C .t1;3 �t3;1 /g2 C .t2;1 �t1;2 /g3� :

Spherical coordinates, (9.6)–(9.8):

gradt D
�
ti ;j �tk�kij

�
gi ˝ gj

D �
t1;1 Ct2 sin � cos� C t3r sin2 �

�
g1 ˝ g1 C .t2;2 Ct3r/g2 ˝ g2

C t3;3 g3 ˝ g3 C .t1;2 �t1 cot�/g1 ˝ g2 C .t2;1 �t1 cot�/g2 ˝ g1

C �
t1;3 �t1r�1�g1 ˝ g3 C �

t3;1 �t1r�1�g3 ˝ g1

C �
t2;3 �t2r�1�g2 ˝ g3 C �

t3;2 �t2r�1�g3 ˝ g2;

or alternatively

gradt D
�
t i ;j Ctk�ikj

�
gi ˝ gj D �

t1;1 Ct2 cot� C t3r�1�g1 ˝ g1

C �
t2;2 Ct3r�1�g2 ˝ g2 C t3;3 g3 ˝ g3

C �
t1;2 Ct1 cot�

�
g1 ˝ g2 C �

t2;1 �t1 sin � cos�
�

g2 ˝ g1

C �
t1;3 Ct1r�1�g1 ˝ g3 C �

t3;1 �t1r sin2 �
�

g3 ˝ g1

C �
t2;3 Ct2r�1�g2 ˝ g3 C �

t3;2 �t2r�g3 ˝ g2;

(2.93), (2.127), (2.129), (9.4)–(9.8):

divt D
�
ti ;j �tk�kij

�
gij D t1;1

r2 sin2 �
C r�2t2;2 Ct3;3 Cr�2 cot�t2 C 2r�1t3

D t i ;i Ctk�iki D t1;1 Ct2;2 Ct3;3 C cot�t2 C 2r�1t3;

curlt D g�1 Œ.t3j2 �t2j3/g1 C .t1j3 �t3j1/g2 C .t2j1 �t1j2/g3�

D � 1

r2 sin �
Œ.t3;2 �t2;3 /g1 C .t1;3 �t3;1 /g2 C .t2;1 �t1;2 /g3� :

2.14 According to the result (??) of Exercise 2.12

�t D div gradt D gij t;ij C �
g i ;j �gj � t;i :
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By virtue of (2.73), (2.82) and (2.93)2 we further obtain

�t D gij t;ij ��kij gij t;k D gij
�
t;ij ��kij t;k

�
D gij t;ijjD t;iji :

In Cartesian coordinates it leads to the well-known relation

div gradt D t;11 Ct;22 Ct;33 :

2.15 Specifying the result of Exercise 2.14 to scalar functions we can write

�˚ D gij
�
˚;ij ��kij˚;k

�
D ˚;iji :

For the cylindrical coordinates it takes in view of (2.30) and (2.90) the following
form

�˚ D r�2˚;11 C˚;22 C˚;33 Cr�1˚;3 D 1

r2
@2˚

@'2
C @2˚

@z2
C @2˚

@r2
C 1

r

@˚

@r
:

For the spherical coordinates we use (9.5)–(9.8). Thus,

�˚ D 1

r2 sin2 �
˚;11 Cr�2˚;22 C˚;33 C cos�

r2 sin �
˚;2 C2r�1˚;3

D 1

r2 sin2 �

@2˚

@'2
C r�2 @2˚

@�2
C @2˚

@r2
C r�2 cot�

@˚

@�
C 2r�1 @˚

@r
:

2.16 According to the solution of Exercise 2.14

�t D gij
�
t;ij ��mij t;m

�
; (9.11)

where in view of (2.72)1

t;i D tkji gk; t;ij D tkjij gk:

By virtue of (2.93)1 we further write tkjiD tk;i C�kli t l and consequently

tkjijD tkji ;j C�kmj tmjiD tk;ij C�kli ;j t l C �kli t
l ;j C�kmj tm;i C�kmj �mli t l :

Substituting these results into the expression of the Laplacian (??) finally yields

�t D gij
�
tk;ij C2�kli t l ;j ��mij tk;m C�kli ;j t l C �kmj�

m
li t

l � �mij �
k
lmt

l
�

gk:
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Taking (9.5)–(9.8) into account we thus obtain for the spherical coordinates (2.157)

�t D



t1;''

r2 sin2 �
C t1;��

r2
C t1;rr

C3 cot�

r2
t1;� C 2 cos�

r2 sin3 �
t2;' C4t1;r

r
C 2t3;'

r3 sin2 �

�

g1

C



t2;''

r2 sin2 �
C t2;��

r2
C t2;rr

�2 cot�

r2
t1;' Ccot�

r2
t2;� C4t2;r

r
C 2t3;�

r3
C 1 � cot2 �

r2
t2
�

g2

C



t3;''

r2 sin2 �
C t3;��

r2
C t3;rr

�2t
1;'

r
� 2t2;�

r
C cot�

r2
t3;� C2t3;r

r
� 2 cot�

r
t2 � 2t3

r2

�

g3:

9.3 Exercises of Chap. 3

3.1 (C.4) and (3.18): a1 D dr=ds D const . Hence, r .s/ D b C sa1.

3.2 Using the fact that d=d .�s/ D �d=ds we can write by means of (3.15), (3.18),
(3.20), (3.21) and (3.27): a0

1 .s/ D �a1 .s/, a0
2 .s/ D a2 .s/, a0

3 .s/ D �a3 .s/,
~0 .s/ D ~ .s/ and � 0 .s/ D � .s/.

3.3 Let us show that the curve r .s/ with the zero torsion � .s/ � 0 belongs to
the plane p

�
t1; t2

� D r .s0/C t1a1 .s0/C t2a2 .s0/, where a1 .s0/ and a2 .s0/ are,
respectively, the unit tangent vector and the principal normal vector at a point s0.
For any arbitrary point we can write using (3.15)

r .s/ D r .s0/C
r.s/Z

r.s0/

dr D r .s0/C
sZ

s0

a1 .s/ ds: (9.12)

The vector a1 .s/ can further be represented with respect to the trihedron at s0 as
a1 .s/ D ˛i .s/ ai .s0/. Taking (3.26) into account we observe that a3;s D 0 and
consequently a3 .s/ � a3 .s0/. In view of (3.23)2 it yields a1 .s/ � a3 .s0/ D 0,
so that a1 .s/ D ˛1 .s/ a1 .s0/ C ˛2 .s/ a2 .s0/. Inserting this result into (??)
we have
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r .s/ D r .s0/C a1 .s0/

sZ

s0

˛1 .s/ ds C a2 .s0/

sZ

s0

˛2 .s/ ds

D r .s0/C t1a1 .s0/C t2a2 .s0/ ;

where we set t i D R s
s0
˛i .s/ ds .i D 1; 2/.

3.4 Setting in (2.30) r D R yields

�
g˛ˇ

� D
�
R2 0

0 1

	

:

By means of (2.90), (3.74), (3.79), (3.90) and (3.93) we further obtain

�
b˛ˇ
� D

��R 0

0 0

	

;
�
bˇ˛
� D

��R�1 0
0 0

	

; �1˛ˇ D �2˛ˇ D 0; ˛; ˇ D 1; 2;

K D ˇ
ˇbˇ˛
ˇ
ˇ D 0; H D 1

2
b˛˛ D �1

2
R�1: (9.13)

3.5 Keeping in mind the results of Exercise 2.1 and using (9.6)–(9.8), (3.58), (3.62),
(3.67), (3.74), (3.79), (3.90) and (3.93) we write

g1 D R cos t1 sin t2e1 �R sin t1 sin t2e3;

g2 D R sin t1 cos t2e1 �R sin t2e2 CR cos t1 cos t2e3;

g3 D � sin t1 sin t2e1 � cos t2e2 � cos t1 sin t2e3;

�
g˛ˇ

� D
�
R2 sin2 t2 0

0 R2

	

;
�
b˛ˇ
� D

�
R sin2 t2 0

0 R

	

;
�
bˇ˛
� D

�
R�1 0

0 R�1
	

;

h
�1˛ˇ

i
D
�

0 cot t2

cot t2 0

	

;
h
�2˛ˇ

i
D
� � sin t2 cos t2 0

0 0

	

;

K D ˇ
ˇbˇ˛
ˇ
ˇ D R�2; H D 1

2
b˛˛ D R�1: (9.14)

3.6 Equations (3.62), (3.67) and (3.143):

g1 D @r

@t1
D e1 C Nt2e3; g2 D @r

@t2
D e2 C Nt1e3;

g3 D g1 � g2

kg1 � g2k D 1
q

1C .Nt1/2 C .Nt2/2
��Nt2e1 � Nt1e2 C e3

�
;
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where Nt i D t i

c
.i D 1; 2/. Thus, the coefficients of the first fundamental form are

g11 D g1 �g1 D 1C�Nt2�2 ; g12 D g21 D g1 �g2 D Nt1 Nt2; g22 D g2 �g2 D 1C�Nt1�2 :

For the coefficients of the inversed matrix
�
g˛ˇ

�
we have

�
g˛ˇ

� D 1

1C .Nt1/2 C .Nt2/2
"
1C �Nt1�2 �Nt1 Nt2

�Nt1 Nt2 1C �Nt2�2
#

:

The derivatives of the tangent vectors result in

g1;1 D 0; g1;2 D g2;1 D 1

c
e3; g2;2 D 0:

By (3.74), (3.79), (3.90) and (3.93) we further obtain

b11 D g1;1 �g3 D 0; b12 D b21 D g1;2 �g3 D 1

c

q

1C .Nt1/2 C .Nt2/2
;

b22 D g2;2 �g3 D 0;

�
b ˇ
˛�
� D 1

c
h
1C .Nt1/2 C .Nt2/2

i3=2

"
�Nt1 Nt2 1C �Nt2�2

1C �Nt1�2 �Nt1 Nt2
#

;

K D ˇ
ˇbˇ˛
ˇ
ˇ D � 1

c2
h
1C .Nt1/2 C .Nt2/2

i2 D �
h
c2 C �

t1
�2 C �

t2
�2i�2

;

H D 1

2
b˛˛ D � Nt1 Nt2

c
h
1C .Nt1/2 C .Nt2/2

i3=2 :

3.7 Equations (3.62), (3.67) and (3.144):

g1 D @r

@t1
D �ct2 sin t1e1 C ct2 cos t1e2;

g2 D @r

@t2
D c cos t1e1 C c sin t1e2 C e3;

g3 D g1 � g2

kg1 � g2k D 1p
1C c2

�
cos t1e1 C sin t1e2 � ce3

�
:
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Thus, the coefficients of the first fundamental form are calculated as

g11 D g1 � g1 D c2
�
t2
�2
; g12 D g21 D g1 � g2 D 0; g22 D g2 � g2 D 1C c2;

so that

�
g˛ˇ

� D
"�
ct2
��2

0

0
�
1C c2

��1

#

:

The derivatives of the tangent vectors take the form

g1;1 D �ct2 cos t1e1 � ct2 sin t1e2; g1;2 D g2;1 D �c sin t1e1 C c cos t1e2;

g2;2 D 0:

By means of (3.74), (3.79), (3.90) and (3.93) this leads to

b11 D g1;1 �g3 D � ct2p
1C c2

; b12 D b21 D g1;2 �g3 D 0; b22 D g2;2 �g3 D 0;

�
bˇ˛
� D

2

4� 1

ct2
p
1C c2

0

0 0

3

5 ; K D ˇ
ˇbˇ˛
ˇ
ˇ D 0; H D 1

2
b˛˛ D � 1

2ct2
p
1C c2

:

3.8 Taking (3.105) into account we can write

h
g�
ij

i
D
2

4
g�
11 g

�
12 0

g�
21 g

�
22 0

0 0 1

3

5 ;
�
g�ij � D

h
g�
ij

i�1 D 1
ˇ
ˇ
ˇg�
ij

ˇ
ˇ
ˇ

2

4
g�
22 �g�

21 0

�g�
12 g�

11 0

0 0 1

3

5 ;

which immediately implies (3.111).

3.9 For a cylindrical shell equilibrium equations (3.140) and (3.141) take by means
of (3.77)1 and (??) the form

f 11;1 Cf 12;2 Cp1 D 0; f 12;1 Cf 22;2 Cp2 D 0; �Rf 11 C p3 D 0:

For a spherical shell we further obtain by virtue of (??)

f 11;1 Cf 12;2 C3 cot t2f 12 C p1 D 0;

f 12;1 Cf 22;2 � sin t2 cos t2f 11 C cot t2f 22 C p2 D 0;

R sin2 t2f 11 CRf 22 C p3 D 0:



226 9 Solutions

9.4 Exercises of Chap. 4

4.1 In the case of simple shear the right Cauchy-Green tensor C has the form:

C D Cij ei ˝ ej ;
h
Cij
i

D �
Cij
� D

2

4
1 	 0

	 1C 	2 0

0 0 1

3

5 :

The characteristic equation can then be written by

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1 �ƒ 	 0

	 1C 	2 �ƒ 0

0 0 1 �ƒ

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D 0 ) .1 �ƒ/ ˚ƒ2 �ƒ
�
2C 	2

�C 1
� D 0:

Solving the latter equation with respect to ƒ we obtain the eigenvalues of C as

ƒ1=2 D 1C 	2 ˙p
4	2 C 	4

2
D
 p

4C 	2 ˙ 	

2

!2

; ƒ3 D 1: (9.15)

The eigenvectors a D aiei corresponding to the first two eigenvalues result from
the equation system (4.16)1

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

�	2 �p
4	2 C 	4

2
a1 C	a2 D 0;

	a1 C	2 �p
4	2 C 	4

2
a2 D 0;

�	2 �p
4	2 C 	4

2
a3 D 0:

Since the first and second equation are equivalent we only obtain

a2 D 	 ˙p
4C 	2

2
a1; a3 D 0;

so that a2 D p
ƒ1a

1 or a2 D �p
ƒ2a

1. In order to ensure the unit length of the
eigenvectors we also require that

�
a1
�2 C �

a2
�2 C �

a3
�2 D 1:

This yields

a1 D 1p
1Cƒ1

e1 C
s

ƒ1

1Cƒ1

e2; a2 D 1p
1Cƒ2

e1 �
s

ƒ2

1Cƒ2

e2: (9.16)
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Applying the above procedure for the third eigenvector corresponding to the
eigenvalueƒ3 D 1 we easily obtain: a3 D e3.

4.2 Since the vectors g i .i D 1; 2; 3/ are linearly independent, they form a basis in
E
3. Thus, by means of the representation A D Ai�jgi ˝ gj we obtain using (1.39)

ŒAg1 Ag2 Ag3� D
h
Ai�1gi Aj

�2gj Ak�3gk

i
D Ai�1A

j
�2A

k�3
�
gi gj gk

�

D Ai�1A
j
�2A

k�3eijk g D
ˇ
ˇ
ˇAi�j

ˇ
ˇ
ˇ g D detA g:

4.3 Using (4.26)1�3 we write
IA D trA;

IIA D 1

2

h
.trA/2 � trA2

i
;

IIIA D 1

3

�
IIAtrA � IAtrA2 C trA3

�
:

Inserting the first and second expression into the third one we obtain

IIIA D 1

3



1

2

h
.trA/2 � trA2

i
trA � trAtrA2 C trA3

�

D 1

3

�

trA3 � 3

2
trA2trA C 1

2
.trA/3

	

:

4.4 Since ri D ti for every eigenvalue 
i we have exactly n D Ps
iD1 ri

eigenvectors, say a
.k/
i .i D 1; 2; : : : ; sI k D 1; 2; : : : ; ri /. Let us assume, on the

contrary, that they are linearly dependent so that

sX

iD1

riX

kD1
˛
.k/
i a

.k/
i D 0;

where not all ˛.k/i are zero. Linear combinations ai D Pri
kD1 ˛

.k/
i a

.k/
i of the

eigenvectors a
.k/
i associated with the same eigenvalue 
i are again eigenvectors or

zero vectors. Thus, we arrive at

sX

iD1
"iai D 0;

where "i are either one or zero (but not all). This relation establishes the linear
dependence between eigenvectors corresponding to distinct eigenvalues, which
contradicts the statement of Theorem 4.2. Applying then Theorem 1.3 for the space
C
n instead of V we infer that the eigenvectors a

.k/
i form a basis of Cn.
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4.5 Let a D aigi . Then, a � a D ai .a � gi /. Thus, if a � gi D 0 .i D 1; 2; : : : ; n/,
then a � a D 0 and according to (4.9) a D 0 (sufficiency). Conversely, if a D 0,
then according to the results of Exercise 1.5 (also valid for complex vectors in C

n)
a � gi D 0 .i D 1; 2; : : : ; n/ (necessity).

4.6 Equations (4.40) and (4.42):

PiPj D
 

riX

kD1
a
.k/
i ˝ b

.k/
i

! rjX

lD1
a
.l/
j ˝ b

.l/
j

!

D
riX

kD1

rjX

lD1
ıij ı

kla
.k/
i ˝ b

.l/
j

D ıij

riX

kD1
a
.k/
i ˝ b

.k/
j D

(
Pi if i D j;

0 if i ¤ j:

4.7 By means of (4.40) and (4.42) we infer that Pia
.l/
j D ıija

.l/
j . Every

vector x in C
n can be represented with respect the basis of this space

a
.k/
i .i D 1; 2; : : : ; sI k D 1; 2; : : : ; ri / by x D Ps

jD1
Prj

kD1 x
.k/
j a

.k/
j . Hence,

 
sX

iD1
Pi

!

x D
sX

iD1

sX

jD1

rjX

kD1
x
.k/
j Pia

.k/
j

D
sX

iD1

sX

jD1

rjX

kD1
x
.k/
j ıija

.k/
j D

sX

jD1

rjX

kD1
x
.k/
j a

.k/
j D x; 8x 2 C

n;

which immediately implies (4.46).

4.8 Let 
1; 
2; : : : ; 
n be eigenvalues of A 2 Linn. By the spectral mapping
theorem (Theorem 4.1) we infer that exp .
i / .i D 1; 2; : : : ; n/ are eigenvalues of

exp A. On use of (4.24) and (4.26) we can thus write: det Œexp .A/� D
nQ

iD1
exp
i D

exp



nP

iD1

i

�

D exp .trA/.

4.9 By Theorem 1.8 it suffices to prove that all eigenvalues of a second-order tensor
A are non-zero (statement A) if and only if Ax D 0 implies that x D 0 (statement
B). Indeed, if Ax D 0 then either x D 0 or x is an eigenvector corresponding to a
zero eigenvalue. Thus, if A is true then B is also true. Conversely, if A is not true, the
eigenvector corresponding to a zero eigenvalues does not satisfies the statement B.

4.10 Let ai be a (right) eigenvector corresponding to an eigenvalue 
i . Then,
Aai D 
iai . According to (1.129) A�1 .
iai / D ai , which implies that 
�1

i is
the eigenvalue of A�1.

4.11 Let for example M be positive-definite. Setting in (4.66) ˛ D 1=2 and
˛ D �1=2 we can define M1=2 and its inverse M�1=2, respectively. Now, consider
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a symmetric tensor S D M1=2NM1=2 D ST with the spectral representation
S D Pn

iD1 
id i ˝d i , where d i �dj D ıij .i; j D 1; 2; : : : ; n/. Then, ai D M1=2d i

is the right eigenvector of MN associated with its eigenvalue 
i .i D 1; 2; : : : ; n/.
Indeed,

MNai D MN
�
M1=2d i

� D M1=2Sd i D 
iM1=2d i D 
iai :

In the same manner, one verifies that bi D M�1=2d i .i D 1; 2; : : : ; n/ is the
corresponding left eigenvector of MN, such that ai � bj D ıij .i; j D 1; 2; : : : ; n/.
The eigenvectors d i .i D 1; 2; : : : ; n/ of S 2 Symn form a basis of En. This is also
the case both for the vectors ai and bi .i D 1; 2; : : : ; n/ since the tensor M1=2 is
invertible (see proof of Theorem 1.8). This implies the spectral decomposition of
MN by (4.39) as

MN D
nX

iD1

iai ˝ bi :

4.12 Let us consider the right hand side of (4.55) for example for i D 1. In this case
we have

3Y

jD1
j¤1

A � 
j I

1 � 
j D A � 
2I


1 � 
2
A � 
3I

1 � 
3

:

On use of (4.43), (4.44) and (4.46) we further obtain

A � 
2I

1 � 
2

A � 
3I

1 � 
3 D

3P

iD1
.
i � 
2/Pi


1 � 
2

3P

jD1
�

j � 
3

�
Pj


1 � 
3

D

3P

i;jD1
.
i � 
2/

�

j � 
3

�
ıijPi

.
1 � 
2/ .
1 � 
3/
D

3P

iD1
.
i � 
2/ .
i � 
3/Pi

.
1 � 
2/ .
1 � 
3/

D .
1 � 
2/ .
1 � 
3/P1
.
1 � 
2/ .
1 � 
3/ D P1:

In a similar way, one verifies the Sylvester formula also for i D 2 and i D 3.

4.13 By (4.42), (??) and (??) we first obtain

P1 D a1 ˝ a1

D
 

1p
1Cƒ1

e1 C
s

ƒ1

1Cƒ1

e2

!

˝
 

1p
1Cƒ1

e1 C
s

ƒ1

1Cƒ1

e2

!
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D 1

1Cƒ1

e1 ˝ e1 C ƒ1

1Cƒ1

e2 ˝ e2 C
p
ƒ1

1Cƒ1

.e1 ˝ e2 C e2 ˝ e1/

D

2

6
6
6
6
4

2

	2 C 4C 	
p
	2 C 4

1
p
	2 C 4

0

1
p
	2 C 4

2

	2 C 4 � 	
p
	2 C 4

0

0 0 0

3

7
7
7
7
5

ei ˝ ej ;

P2 D a2 ˝ a2

D
 

1p
1Cƒ2

e1 �
s

ƒ2

1Cƒ2

e2

!

˝
 

1p
1Cƒ2

e1 �
s

ƒ2

1Cƒ2

e2

!

D 1

1Cƒ2

e1 ˝ e1 C ƒ2

1Cƒ2

e2 ˝ e2 �
p
ƒ2

1Cƒ2

.e1 ˝ e2 C e2 ˝ e1/

D

2

6
6
6
6
4

2

	2 C 4 � 	p	2 C 4
� 1
p
	2 C 4

0

� 1
p
	2 C 4

2

	2 C 4C 	
p
	2 C 4

0

0 0 0

3

7
7
7
7
5

e i ˝ ej ;

P3 D a3 ˝ a3 D e3 ˝ e3 D

2

6
6
4

0 0 0

0 0 0

0 0 1

3

7
7
5 ei ˝ ej :

The same expressions result also from the Sylvester formula (4.55) as follows

P1 D .C �ƒ2I/ .C �ƒ3I/
.ƒ1 �ƒ2/ .ƒ1 �ƒ3/

D

2

6
6
6
6
4

2

	2 C 4C 	
p
	2 C 4

1
p
	2 C 4

0

1
p
	2 C 4

2

	2 C 4 � 	p	2 C 4
0

0 0 0

3

7
7
7
7
5

ei ˝ ej ;
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P2 D .C �ƒ3I/ .C �ƒ1I/
.ƒ2 �ƒ3/ .ƒ2 �ƒ1/

D

2

6
6
6
6
4

2

	2 C 4 � 	p	2 C 4
� 1
p
	2 C 4

0

� 1
p
	2 C 4

2

	2 C 4C 	
p
	2 C 4

0

0 0 0

3

7
7
7
7
5

ei ˝ ej ;

P3 D .C �ƒ1I/ .C �ƒ2I/
.ƒ3 �ƒ1/ .ƒ3 �ƒ2/

D

2

6
6
4

0 0 0

0 0 0

0 0 1

3

7
7
5 ei ˝ ej : (9.17)

4.14 The characteristic equation of the tensor A takes the form:

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

�2 � 
 2 2

2 1 � 
 4

2 4 1 � 


ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D 0:

Writing out this determinant we get after some algebraic manipulations


3 � 27
� 54 D 0:

Comparing this equation with (4.28) we see that

IA D 0; IIA D �27; IIIA D 54: (9.18)

Inserting this result into the Cardano formula (4.31) and (4.32) we obtain

# D arccos

"
2I3A � 9IAIIA C 27IIIA

2
�
I2A � 3IIA

�3=2

#

D arccos

�
27 � 54

2 .3 � 27/3=2
	

D arccos .1/ D 0;


k D 1

3




IA C 2

q

I2A � 3IIA cos
1

3
Œ# C 2� .k � 1/�

�

D 2

3

p
3 � 27 cos



2

3
� .k � 1/

�

D 6 cos



2

3
� .k � 1/

�

; k D 1; 2; 3:
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Thus, we obtain two pairwise distinct eigenvalues (s D 2):


1 D 6; 
2 D 
3 D �3: (9.19)

The Sylvester formula (4.55) further yields

P1 D
2Y

jD1
j¤1

A � 
j I

i � 
j

D A � 
2I

1 � 
2

D A C 3I
9

D 1

9

2

4
1 2 2

2 4 4

2 4 4

3

5 ei ˝ ej ;

P2 D
2Y

jD1
j¤2

A � 
j I

i � 
j

D A � 
1I

2 � 
1

D A � 6I
�9 D 1

9

2

4
8 �2 �2

�2 5 �4
�2 �4 5

3

5 ei ˝ ej :

4.15 The spectral representation of A takes the form

A D
sX

iD1

iPi D 
1P1 C 
2P2 D 6P1 � 3P2:

Thus,

exp A D
sX

iD1
exp .
i /Pi

D exp .
1/P1 C exp .
2/P2 D exp .6/P1 C exp .�3/P2

D e6

9

2

4
1 2 2

2 4 4

2 4 4

3

5 ei ˝ ej C e�3

9

2

4
8 �2 �2

�2 5 �4
�2 �4 5

3

5 ei ˝ ej

D 1

9

2

4
e6 C 8e�3 2e6 � 2e�3 2e6 � 2e�3
2e6 � 2e�3 4e6 C 5e�3 4e6 � 4e�3
2e6 � 2e�3 4e6 � 4e�3 4e6 C 5e�3

3

5 ei ˝ ej :

4.16 Components of the eigenvectors a D aiei result from the equation system
(4.16) �

Ai
j � ıij 


�
aj D 0; i D 1; 2; 3: (9.20)

Setting 
 D 6 we obtain only two independent equations

( �8a1 C2a2 C2a3 D 0;

2a1 �5a2 C4a3 D 0:
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Multiplying the first equation by two and subtracting from the second one we get
a2 D 2a1 and consequently a3 D 2a1. Additionally we require that the eigenvectors
have unit length so that

�
a1
�2 C �

a2
�2 C �

a3
�2 D 1; (9.21)

which leads to

a1 D 1

3
e1 C 2

3
e2 C 2

3
e3:

Further, setting in the equation system (??) 
 D �3 we obtain only one independent
linear equation

a1 C 2a2 C 2a3 D 0 (9.22)

with respect to the components of the eigenvectors corresponding to this double
eigenvalue. One of these eigenvectors can be obtained by setting for example a1 D
0. In this case, a2 D �a3 and in view of (??)

a
.1/
2 D 1p

2
e2 � 1p

2
e3:

Requiring that the eigenvectors a
.1/
2 and a

.2/
2 corresponding to the double eigenvalue


 D �3 are orthogonal we get an additional condition a2 D a3 for the components
of a

.2/
2 . Taking into account (??) and (??) this yields

a
.2/
2 D � 4

3
p
2

e1 C 1

3
p
2

e2 C 1

3
p
2

e3:

With the aid of the eigenvectors we can construct eigenprojections without the
Sylvester formula by (4.42):

P1 D a1 ˝ a1

D


1

3
e1 C 2

3
e2 C 2

3
e3

�

˝


1

3
e1 C 2

3
e2 C 2

3
e3

�

D 1

9

2

4
1 2 2

2 4 4

2 4 4

3

5 ei ˝ ej ;

P2 D a
.1/
2 ˝ a

.1/
2 C a

.2/
2 ˝ a

.2/
2 D



1p
2

e2 � 1p
2

e3

�

˝


1p
2

e2 � 1p
2

e3

�

C



� 4

3
p
2

e1 C 1

3
p
2

e2 C 1

3
p
2

e3

�

˝



� 4

3
p
2

e1 C 1

3
p
2

e2 C 1

3
p
2

e3

�
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D 1

9

2

4
8 �2 �2

�2 5 �4
�2 �4 5

3

5 ei ˝ ej :

4.17 Since linearly independent vectors are non-zero it follows from (4.9) that c i �
ci ¤ 0 .i D 1; 2; : : : ; m/. Thus, the first vector can be given by

a1 D c1p
c1 � c1

;

such that a1 � a1 D 1. Next, we set

a0
2 D c2 � .c2 � a1/ a1;

so that a0
2 � a1 D 0. Further, a0

2 ¤ 0 because otherwise c2 D .c2 � a1/a1 D
.c2 � a1/ .c1 � c1/

�1=2 c1 which implies a linear dependence between c1 and c2.
Thus, we can set a2 D a0

2=
p

a0
2 � a0

2: The third vector can be given by

a3 D a0
3p

a0
3 � a0

3

; where a0
3 D c3 � .c3 � a2/ a2 � .c3 � a1/ a1;

so that a3 � a1 D a3 � a2 D 0. Repeating this procedure we finally obtain the
set of vectors ai satisfying the condition ai � aj D ıij ; .i; j D 1; 2; : : : ; m/. One
can easily show that these vectors are linearly independent. Indeed, otherwisePm

iD1 ˛iai D 0, where not all ˛i are zero. Multiplying this vector equation scalarly
by aj .j D 1; 2; : : : ; m/ yields, however, ˛j D 0 .j D 1; 2; : : : ; m/.

4.18 Comparing (4.67)1 with (4.72)1 we infer that the right eigenvectors
a
.k/
i .k D 1; 2; : : : ; ti / associated with a complex eigenvalue 
i are simultaneously

the left eigenvalues associated with 
i . Since 
i ¤ 
i Theorem 4.3 implies that
a
.k/
i � a

.l/
i D 0 .k; l D 1; 2; : : : ; ti /.

4.19 Taking into account the identities trWk D 0, where k D 1; 3; 5; : : : (see
Exercise 1.49) we obtain from (4.29)

IW D trW D 0;

IIW D 1

2

h
.trW/2 � trW2

i

D �1
2

trW2 D �1
2

�
W : WT� D 1

2
.W : W/ D 1

2
kWk2 ;

IIIW D 1

3

�

trW3 � 3

2
trW2trW C 1

2
.trW/3

	

D 0;
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or in another way

IIIW D detW D detWT D det .�W/ D .�1/3detW D �IIIW D 0:

4.20 Eigenvalues of the rotation tensor (Exercise 1.24)

R D Ri�j e i ˝ ej ; where
h
Ri�j
i

D �
Rij
� D

2

4
cos˛ � sin ˛ 0
sin ˛ cos˛ 0

0 0 1

3

5

result from the characteristic equation

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

cos˛ � 
 � sin ˛ 0

sin ˛ cos˛ � 
 0

0 0 1 � 


ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D 0:

Writing out this determinant we have

.1 � 
/ �
2 � 2
 cos˛ C 1
� D 0

and consequently

1 D 1; 
2=3 D cos˛ ˙ i sin˛:

Components of the right eigenvectors a D aiei result from the equation system
(4.16) �

Ri�j � ıij 

�
aj D 0; i D 1; 2; 3: (9.23)

Setting first 
 D 1 we obtain a homogeneous equation system

a1 .cos˛ � 1/� a2 sin ˛ D 0;

a1 sin ˛ C a2 .cos˛ � 1/ D 0;

leading to a1 D a2 D 0. Thus, a1 D a3e3, where a3 can be an arbitrary real number.
The unit length condition requires further that

a1 D e3:

Next, inserting 
 D cos˛ ˙ i sin˛ into (??) yields

a2 D �ia1; a3 D 0:

Thus, the right eigenvectors associated with the complex conjugate eigenvalues 
2=3
are of the form a2=3 D a1 .e1 � ie2/. Bearing in mind that any rotation tensor is
orthogonal we infer that a2=3 D a3=2 D a1 .e1 ˙ ie2/ are the left eigenvectors
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associated with 
2=3. Imposing the additional condition a2 � a2 D a2 � a3 D 1 (4.38)
we finally obtain

a2 D
p
2

2
.e1 � ie2/ ; a3 D

p
2

2
.e1 C ie2/ :

The eigenprojections can further be expressed by (4.42) as

P1 D a1 ˝ a1 D e3 ˝ e3;

P2 D a2 ˝ a2 D
p
2

2
.e1 � ie2/˝

p
2

2
.e1 C ie2/

D 1

2
.e1 ˝ e1 C e2 ˝ e2/C 1

2
i .e1 ˝ e2 � e2 ˝ e1/ ;

P3 D a3 ˝ a3 D
p
2

2
.e1 C ie2/˝

p
2

2
.e1 � ie2/

D 1

2
.e1 ˝ e1 C e2 ˝ e2/� 1

2
i .e1 ˝ e2 � e2 ˝ e1/ :

4.21 First, we write

h�
A2
�i
j

i
D
2

4
�2 2 2
2 1 4

2 4 1

3

5

2

4
�2 2 2
2 1 4

2 4 1

3

5 D
2

4
12 6 6

6 21 12

6 12 21

3

5 ;

h�
A3
�i
j

i
D
2

4
12 6 6

6 21 12

6 12 21

3

5

2

4
�2 2 2
2 1 4

2 4 1

3

5 D
2

4
0 54 54

54 81 108

54 108 81

3

5 :

Then,

pA .A/ D A3 � 27A � 54I D
2

4
0 54 54

54 81 108

54 108 81

3

5 ei ˝ ej

�27
2

4
�2 2 2
2 1 4

2 4 1

3

5 ei ˝ ej � 54

2

4
1 0 0

0 1 0

0 0 1

3

5 ei ˝ ej D
2

4
0 0 0

0 0 0

0 0 0

3

5 e i ˝ ej :

4.22 The characteristic polynomial of F (2.69) can be represented by pA .
/ D
.1 � 
/3. Hence,

pF .F/ D .I � F/3 D
2

4
0 �	 0
0 0 0

0 0 0

3

5

3

ei ˝ ej D
2

4
0 0 0

0 0 0

0 0 0

3

5 ei ˝ ej D 0:
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9.5 Exercises of Chap. 5

5.1 By using (1.106)1, (D.2) and (5.17) one can verify for example (5.20)1 and
(5.21)1 within the following steps

A ˝ .B C C/ W X D AX .B C C/ D AXB C AXC D .A ˝ B C A ˝ C/ W X;

A ˇ .B C C/ W X D A Œ.B C C/ W X� D A .B W X C C W X/

D A .B W X/C A .C W X/

D .A ˇ B C A ˇ C/ W X; 8X 2 Linn:

The proof of (5.20)2 and (5.21)2 is similar.

5.2 With the aid of (5.16), (5.17) and (1.145) we can write

.Y W A ˝ B/ W X D Y W .A ˝ B W X/ D Y W AXB D ATYBT W X;

.Y W A ˇ B/ W X D Y W .A ˇ B W X/ D Y W ŒA .B W X/�

D .Y W A/ .B W X/ D Œ.Y W A/B� W X; 8X;Y 2 Linn:

5.3 Using the definition of the simple composition (5.40) and taking (5.17) into
account we obtain

A .B ˝ C/D W X D A .B ˝ C W X/D D A .BXC/D

D .AB/X .CD/ D .AB/˝ .CD/ W X;

A .B ˇ C/D W X D A .B ˇ C W X/D D A ŒB .C W X/�D

D ABD .C W X/ D .ABD/ˇ C W X; 8X 2 Linn:

5.4 By means of (1.147), (5.17), (5.22) and (5.45) we can write

.A ˝ B/T W X D X W .A ˝ B/ D ATXBT D �
AT ˝ BT

� W X;

.A ˇ B/T W X D X W .A ˇ B/ D .X W A/B D .B ˇ A/ W X;

.A ˇ B/t W X D .A ˇ B/ W XT D A
�
B W XT�

D A
�
BT W X

� D �
A ˇ BT

� W X; 8X 2 Linn:

Identities (5.51) and (5.52) follow immediately from (1.121) (5.23), (5.24) (5.49)1
and (5.50) by setting A D a˝b, B D c ˝d or A D a˝d , B D b˝c, respectively.



238 9 Solutions

5.5 Using (5.51) and (5.52) we obtain for the left and right hand sides different
results:

.a ˝ b ˝ c ˝ d/tT D .a ˝ c ˝ b ˝ d/T D c ˝ a ˝ d ˝ b;

.a ˝ b ˝ c ˝ d/tT D .b ˝ a ˝ d ˝ c/t D b ˝ d ˝ a ˝ c:

5.6 Equations (5.31), (5.32) and (5.45):

.A W B/T W X D X W .A W B/ D .X W A/ W B
D BT W .X W A/ D BT W �AT W X

� D �
BT W AT� W X;

.A W B/t W X D .A W B/ W XT D A W �B W XT�

D A W �Bt W X
� D �

A W Bt� W X; 8X 2 Linn:

5.7 In view of (1.120), (5.17) and (5.45) we write for an arbitrary tensor X 2 Linn

.A ˝ B/t W .C ˝ D/ W X D .A ˝ B/t W .CXD/ D .A ˝ B/ W .CXD/T

D .A ˝ B/ W �DTXTCT
� D ADTXTCTB

D ��
ADT

�˝ �
CTB

�� W XT D ��
ADT

�˝ �
CTB

��t W X;

.A ˝ B/t W .C ˇ D/ W X D .A ˝ B/t W Œ.D W X/C�

D .A ˝ B/ W �.D W X/CT
� D .D W X/ACTB D �

ACTB
�ˇ D W X:

5.8 By virtue of (5.51) and (5.52) we can write

CT D �
Cijklgi ˝ gj ˝ gk ˝ gl

�T D Cijklgj ˝ gi ˝ g l ˝ gk

D Cj ilkgi ˝ gj ˝ gk ˝ gl ;

Ct D �
Cijklg i ˝ gj ˝ gk ˝ gl

�t D Cijklgi ˝ gk ˝ gj ˝ gl

D Cikjlg i ˝ gj ˝ gk ˝ g l :

According to (5.60) and (5.61) CT D Ct D C. Taking also into account that the
tensors gi ˝ gj ˝ gk ˝ gl .i; j; k; l D 1; 2; : : : ; n/ are linearly independent we
thus write

Cijkl D Cj ilk D Cikjl :

The remaining relations (5.70) are obtained in the same manner by applying the
identities C D CTtT and C D CTtT.
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5.9 With the aid of (1.147), (5.16) and (5.81) we get

.Y W T/ W X D Y W .T W X/ D Y W XT D YT W X; 8X;Y 2 Linn:

5.10 On use of (5.31), (5.45)2 and (5.81) we obtain

.A W T/ W X D A W .T W X/ D A W XT D At W X; 8X 2 Linn:

The second identity (5.85) can be derived by means of (5.54), (5.80) and (5.83) as
follows

ATtT D .I W A/TtT D �
AT W I�tT D �

AT W It�T D �
AT W T�T D T W A:

The last identity (5.85) can finally be proved by

.T W T/ W X D T W .T W X/ D T W XT D X D I W X; 8X 2 Linn:

5.11 C possesses the minor symmetry (5.61) by the very definition. In order to
prove the major symmetry (5.60) we show that C W X D X W C; 8X 2 Linn. Indeed,
in view of (5.17)1, (5.22)1 and (5.48)

C W X D .M1 ˝ M2 C M2 ˝ M1/
s W X D .M1 ˝ M2 C M2 ˝ M1/ W symX

D M1 .symX/M2 C M2 .symX/M1;

X W C D X W .M1 ˝ M2 C M2 ˝ M1/
s

D sym ŒX W .M1 ˝ M2 C M2 ˝ M1/�

D sym .M1XM2 C M2XM1/ D M1 .symX/M2 C M2 .symX/M1:

5.12

(a) Let ei .i D 1; 2; 3/ be an orthonormal basis in E
3. By virtue of (5.77), (5.84)

and (5.86) we can write

Is D
3X

i;jD1

1

2
ei ˝ �

ei ˝ ej C ej ˝ ei
�˝ ej :
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Using the notation

Mi D ei ˝ ei ; i D 1; 2; 3; M4 D e1 ˝ e2 C e2 ˝ e1p
2

;

M5 D e1 ˝ e3 C e3 ˝ e1p
2

; M6 D e3 ˝ e2 C e2 ˝ e3p
2

(9.24)

and taking (5.23) into account one thus obtains the spectral decomposition of Is

as

Is D
6X

pD1
Mp ˇ Mp:

The only eigenvalue 1 is of multiplicity 6. Note that the corresponding
eigentensors Mp .p D 1; 2; : : : ; 6/ form an orthonormal basis of Lin3.

(b) Using the orthonormal basis (??) we can write keeping (1.92) and (5.89)1 in
mind

Psph D 1

3
.M1 C M2 C M3/ˇ .M1 C M2 C M3/

D
6X

p;qD1
P
pq
sphMp ˇ Mq; where ŒP

pq
sph� D 1

3

2

6
6
6
6
6
6
6
4

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3

7
7
7
7
7
7
7
5

:

Due to the structure of this matrix the eigenvalue problem can be solved sepa-
rately for the upper left and lower right 3 � 3 submatrices. For the latter (zero)
matrix all three eigenvalues are zero and every set of three linearly independent
vectors forms eigenvectors (eigentensors). The characteristic equation of the
upper left submatrix is written by

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

3
�ƒ 1

3

1

3
1

3

1

3
�ƒ

1

3
1

3

1

3

1

3
�ƒ

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D 0 ) �ƒ3 Cƒ2 D 0

and yields the following eigenvalues

ƒ1 D 1; ƒ2=3 D 0:
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The eigenvector (eigentensor) bM1 D AiMi corresponding to the first eigenvalue
results from the equation system (4.16)1

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

�2
3
A1 C1

3
A2 C1

3
A3 D 0;

1

3
A1 �2

3
A2 C1

3
A3 D 0;

1

3
A1 C1

3
A2 �2

3
A3 D 0;

which leads to A1 D A2 D A3. Thus, the unit eigenvector (eigentensor)
corresponding to the eigenvalue ƒ1 D 1 is bM1 D 1p

3
.M1 C M2 C M3/.

Components of the eigenvectors (eigentensors) corresponding to the double
eigenvalueƒ2=3 D 0 satisfy the single equation

1

3
A1 C 1

3
A2 C 1

3
A3 D 0: (9.25)

One of the eigenvectors (eigentensors) can be obtained by setting for example
A3 D 0. Thus, A1 D �A2 which results in a unit eigenvector (eigentensor)
bM2 D �

p
2
2

M1 C
p
2
2

M2. For the spectral representation the third eigenvector
(eigentensor) should be orthogonal to the second one so that

�
p
2

2
A1 C

p
2

2
A2 D 0 ) A1 D A2:

Solving this equation together with (??) we obtain the third unit eigenvector

(eigentensor) of the form bM3 D �
p
6
6

M1 �
p
6
6

M2 C
p
6
3

M3. Summarizing
these results the solution of the eigenvalue problem for the tensor Psph can be
represented in the following form.

ƒ1 D 1; bM1 D 1p
3
.M1 C M2 C M3/ ;

ƒ2 D ƒ3 D ƒ4 D ƒ5 D ƒ6 D 0; bM2 D �
p
2

2
M1 C

p
2

2
M2;

bM3 D �
p
6

6
M1 �

p
6

6
M2 C

p
6

3
M3; bMp D Mp; p D 4; 5; 6; (9.26)

where the tensors Mq; .q D 1; 2; : : : ; 6/ are defined by (??).

(c) For the super-symmetric counterpart of the deviatoric projection tensor (5.89)2
.n D 3/ we can write
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Ps
dev D

6X

p;qD1
P
pq

devMp ˇ Mq; where ŒP
pq

dev� D

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

2

3
�1
3

�1
3
0 0 0

�1
3

2

3
�1
3
0 0 0

�1
3

�1
3

2

3
0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

The eigenvalues of Ps
dev can be obtained as linear combinations of those ones

of Psph and Is as ƒ1 D 0; ƒq D 1 .q D 2; 3; : : : ; 6/. The corresponding
eigentensors are again given by (??).

(d) With respect to the orthonormal basis (??) the elasticity tensor (5.93) can be
represented by

C D
6X

p;qD1
CpqMp ˇ Mq;

where

ŒCpq� D

2

6
6
6
6
6
6
6
4

2G C 
 
 
 0 0 0


 2G C 
 
 0 0 0


 
 2G C 
 0 0 0

0 0 0 2G 0 0

0 0 0 0 2G 0

0 0 0 0 0 2G

3

7
7
7
7
7
7
7
5

:

The eigentensors of C are the same as of Psph and Ps
dev and are given by (??).

The eigenvalues are as follows:ƒ1 D 2GC3
,ƒq D 2G .qD 2, 3; : : : ; 6/. They
can be obtained as linear combinations of those ones of Psph and Ps

dev.

9.6 Exercises of Chap. 6

6.1

(a) f
�
QAQT� D aQAQTb ¤ aAb.

(b) Since the components of A are related to an orthonormal basis we can write

f .A/ D A11 C A22 C A33 D A1�1 C A2�2 C A3�3 D Ai�i D trA:

Trace of a tensor represents its isotropic function.
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(c) For an isotropic tensor function the condition (6.1) f .QAQT/ D f .A/ must
hold on the whole definition domain of the arguments A and 8Q 2 Orth3. Let
us consider a special case where

A D
2

4
1 0 0

0 0 0

0 0 0

3

5 ei ˝ ej ; Q D
2

4
0 1 0

�1 0 0
0 0 1

3

5 e i ˝ ej :

Thus,

A0 D QAQT D
2

4
0 0 0

0 1 0

0 0 0

3

5 ei ˝ ej

and consequently

f .A/ D A11 C A12 C A13 D 1 ¤ 0 D A011 C A012 C A013 D f
�
QAQT� ;

which means that the function f .A/ is not isotropic.

(d) detA is the last principal invariant of A and represents thus its isotropic tensor
function. Isotropy of the determinant can, however, be shown directly using the
relation det .BC/ D detBdetC. Indeed,

det
�
QAQT� D detQ detA detQT D detQ detQTdetA

D det
�
QQT

�
detA D detI detA D detA; 8Q 2 Orthn:

(e) Eigenvalues of a second-order tensor are uniquely defined by its principal
invariants and represent thus its isotropic functions. This can also be shown
in a direct way considering the eigenvalue problem for the tensor QAQT as

�
QAQT�a D 
a:

Mapping both sides of this vector equation by QT yields

�
QTQAQT�a D 
QTa:

Using the abbreviation a0 D QTa we finally obtain

Aa0 D 
a0:

Thus, every eigenvalue of QAQT is the eigenvalue of A and vice versa. In other
words, the eigenvalues of these tensors are pairwise equal which immediately
implies that they are characterized by the same value of 
max. The tensors
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obtained by the operation QAQT from the original one A are called similar
tensors.

6.2 Inserting

M D 1

2

�
A C AT

�
; W D 1

2

�
A � AT

�

into (6.17) we obtain

trM D 1

2

�
trA C trAT

� D trA;

trM2 D 1

4
tr
�
A C AT�2

D 1

4

h
trA2 C tr

�
AAT

�C tr
�
ATA

�C tr
�
AT
�2
i

D 1

2

�
trA2 C tr

�
AAT

��
;

trM3 D 1

8
tr
�
A C AT

�3

D 1

8

n
trA3 C tr

�
A2AT�C tr

�
AATA

�C tr
h
A
�
AT�2

i

C tr
�
ATA2

�C tr
�
ATAAT�C tr

h�
AT�2 A

i
C tr

�
AT�3

o

D 1

4

�
trA3 C 3tr

�
A2AT

��
;

trW2 D 1

4
tr
�
A � AT

�2

D 1

4

h
trA2 � tr

�
AAT� � tr

�
ATA

�C tr
�
AT�2

i

D 1

2

�
trA2 � tr

�
AAT

��
;

tr
�
MW2

� D 1

8
tr
h�

A C AT
� �

A � AT
�2
i

D 1

8

n
trA3 � tr

�
A2AT� � tr

�
AATA

�C tr
h
A
�
AT�2

i

C tr
�
ATA2

� � tr
�
ATAAT� � tr

h�
AT�2 A

i
C tr

�
AT�3

o

D 1

4

�
trA3 � tr

�
A2AT

��
;
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tr
�
M2W2

� D 1

16
tr
h�

A C AT
�2 �

A � AT
�2
i

D 1

16
tr
nh

A2 C AAT C ATA C �
AT�2

i h
A2 � AAT � ATA C �

AT�2
io

D 1

16
tr
h
A4 � A3AT � A2ATA C A2

�
AT
�2 C AATA2 � AATAAT

� A
�
AT
�2

A C A
�
AT
�3 C ATA3 � ATA2AT � ATAATA

C ATA
�
AT
�2 C �

AT
�2

A2 � �
AT
�2

AAT � �
AT
�3

A C �
AT
�4
i

D 1

8

h
trA4 � tr

�
AAT

�2
i
;

tr
�
M2W2MW

�

D 1

64
tr
h
A4 � A3AT � A2ATA C A2

�
AT
�2 C AATA2 � AATAAT

� A
�
AT
�2

A C A
�
AT
�3 C ATA3 � ATA2AT � ATAATA

C ATA
�
AT
�2 C �

AT
�2

A2 � �
AT
�2

AAT � �
AT
�3

A C �
AT
�4
i

h
A2 � AAT C ATA � �

AT�2
io

D 1

16
tr
h�

AT
�2

A2ATA � A2
�
AT
�2

AAT
i
:

Finally, trA4 should be expressed in terms of the principal traces trAi .i D 1; 2; 3/

presented in the functional basis (6.18). To this end, we apply the Cayley-Hamilton
equation (4.95). Its composition with A yields

A4 � IAA3 C IIAA2 � IIIAA D 0;

so that

trA4 D IAtrA3 � IIAtrA2 C IIIAtrA;

where IA, IIA and IIIA are given by (4.29). Thus, all the invariants of the functional
basis (6.17) are expressed in a unique form in terms of (6.18).
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6.3 Equation (6.44):

d

dt
f .A C tX/ g .A C tX/

ˇ
ˇ
ˇ
ˇ
tD0

D d

dt
f .A C tX/

ˇ
ˇ
ˇ
ˇ
tD0

g .A/C f .A/
d

dt
g .A C tX/

ˇ
ˇ
ˇ
ˇ
tD0

D Œf .A/ ;A W X� g .A/C f .A/ Œg .A/ ;A W X�

D Œg .A/ f .A/ ;A Cf .A/ g .A/ ;A � W X:

6.4 By Theorem 6.1  is an isotropic function of C and Li .i D 1; 2; 3/. Applying
further (6.15) and taking into account the identities

LiLj D 0; Lki D Li ; trLki D 1; i ¤ j; i; j D 1; 2; 3I k D 1; 2; : : : (9.27)

we obtain the following orthotropic invariants

trC; trC2; trC3;

tr .CL1/ D tr
�
CL21

�
; tr .CL2/ D tr

�
CL22

�
; tr .CL3/ D tr

�
CL23

�
;

tr
�
C2L1

� D tr
�
C2L21

�
; tr

�
C2L2

� D tr
�
C2L22

�
; tr

�
C2L3

� D tr
�
C2L23

�
;

tr
�
LiCLj

� D tr
�
CLjLi

� D tr
�
LjLiC

� D 0; i ¤ j D 1; 2; 3: (9.28)

Using the relation
3X

iD1
Li D I (9.29)

one can further write

tr .C/ D C W I D C W .L1 C L2 C L3/

D C W L1 C C W L2 C C W L3 D tr .CL1/C tr .CL2/C tr .CL3/ :

In the same manner we also obtain

tr
�
C2
� D tr

�
C2L1

�C tr
�
C2L2

�C tr
�
C2L3

�
:

Thus, the invariants trC and trC2 are redundant and can be excluded from the func-
tional basis (??). Finally, the orthotropic strain energy function can be represented
by

 D Q Œtr .CL1/ ; tr .CL2/ ; tr .CL3/ ;

tr
�
C2L1

�
; tr
�
C2L2

�
; tr
�
C2L3

�
; trC3

�
: (9.30)
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Alternatively, a functional basis for the orthotropic material symmetry can be
obtained in the component form. To this end, we represent the right Cauchy-Green
tensor by C D Cij l i ˝ l j . Then,

tr .CLi / D �
Ckl l k ˝ l l

� W l i ˝ l i D Ci i ; i D 1; 2; 3;

tr
�
C2Li

� D �
Ci1
�2 C �

Ci2
�2 C �

Ci3
�2
; i D 1; 2; 3;

tr
�
C3
� D �

C11
�3 C �

C22
�3 C �

C33�3 C 3
�
C12

�2 �
C11 C C22

�

C 3
�
C13

�2 �
C11 C C33

�C 3
�
C23

�2 �
C22 C C33

�C 6C12C13C23:

Thus, the orthotropic strain energy function (??) can be given in another form as

 D O 
h
C11;C22;C33;

�
C12

�2
;
�
C13

�2
;
�
C23

�2
;C12C13C23

i
:

6.5 Equations (6.52), (6.54), (6.80), (6.136), (6.140), (6.144) (6.149) and (??):

S D 6
@ Q 
@trC3

C2 C 2

3X

iD1

@ Q 
@tr .CLi /

Li C 2

3X

iD1

@ Q 
@tr .C2Li /

.CLi C LiC/ ;

C D 36
@2 Q 

@trC3@trC3
C2 ˇ C2 C 4

3X

i;jD1

@2 Q 
@tr .CLi / @tr

�
CLj

�Li ˇ Lj

C 4

3X

i;jD1

@2 Q 
@tr .C2Li / @tr

�
C2Lj

� .CLi C LiC/ˇ �
CLj C LjC

�

C 12

3X

iD1

@2 Q 
@tr .CLi / @trC3

�
Li ˇ C2 C C2 ˇ Li

�

C 12

3X

iD1

@2 Q 
@tr .C2Li / @trC3

�
C2 ˇ .CLi C LiC/C .CLi C LiC/ˇ C2

�

C 4

3X

i;jD1

@2 Q 
@tr .CLi / @tr

�
C2Lj

�
�
Li ˇ �

CLj C LjC
�C �

CLj C LjC
�ˇ Li

�

C 12
@ Q 
@trC3

.C ˝ I C I ˝ C/s C 4

3X

iD1

@ Q 
@tr .C2Li /

.Li ˝ I C I ˝ Li /
s :
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6.6 Any orthotropic function S .C/ is an isotropic function of C and
Li .i D 1; 2; 3/. The latter function can be represented by (6.117). Taking (??)
and (??) into account we thus obtain

S D
3X

iD1

�
˛iLi C ˇi .CLi C LiC/C 	i

�
C2Li C LiC2

��
;

where ˛i , ˇi and 	i .i D 1; 2; 3/ are some scalar-valued orthotropic functions of C
(isotropic functions of C and Li .i D 1; 2; 3/).

6.7 Applying (6.15) and taking into account the identities Lmi D Li , trLmi D
1 .i D 1; 2I m D 1; 2; : : :/ we obtain similarly to (??)

trC; trC2; trC3;

tr .CL1/ D tr
�
CL21

�
; tr .CL2/ D tr

�
CL22

�
;

tr .L1L2/ D tr
�
L1L22

� D tr
�
L21L2

�

D .l1 ˝ l 1/ W .l 2 ˝ l2/ D .l1 � l 2/
2 D cos2 �;

tr
�
C2L1

� D tr
�
C2L21

�
; tr

�
C2L2

� D tr
�
C2L22

�
; tr .L1CL2/ ;

where � denotes the angle between the fiber directions l 1 and l 2. Thus, we can write

 D Q �trC; trC2; trC3; tr .CL1/ ; tr .CL2/ ;

tr
�
C2L1

�
; tr
�
C2L2

�
; tr .L1L2/ ; tr .L1CL2/

�
:

6.8 Using (6.59), (6.137), (6.139) and (6.144) we obtain

S D 2
@ 

@C
C pC�1 D 2c1IC;C C2c2IIC;C CpC�1

D 2c1I C 2c2 .ICI � C/C pC�1 D 2 .c1 C c2IC/ I � 2c2C C pC�1;

C D 2
@S
@C

D 4c2 .I ˇ I � Is/� 2p
�
C�1 ˝ C�1�s

:

6.9 Using the abbreviation ƒi D 
2i .i D 1; 2; 3/ for the eigenvalues of C we can
write

 .C/ D
mX

rD1

�r

˛r

�
ƒ
˛r=2
1 Cƒ

˛r=2
2 Cƒ

˛r=2
3 � 3

�
:
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Assuming further that ƒ1 ¤ ƒ2 ¤ ƒ3 ¤ ƒ1 and applying (6.74) we obtain

S D 2
@ 

@C
D

mX

rD1
�r

�
ƒ
˛r=2�1
1 ƒ1;C Cƒ˛r =2�1

2 ƒ2;C Cƒ˛r=2�1
3 ƒ3;C

�

D
mX

rD1
�r

�
ƒ
˛r =2�1
1 P1 Cƒ

˛r=2�1
2 P2 Cƒ

˛r=2�1
3 P3

�
D

mX

rD1
�rC˛r=2�1: (9.31)

Note that the latter expression is obtained by means of (7.2).

6.10 Using the identities

QTLiQ D QLiQ
T D Li ; 8Q 2 go

and taking (1.151) into account we can write

tr
�
QCQTLiQCQTLj

� D tr
�
CQTLiQCQTLjQ

�

D tr
�
CLiCLj

�
; 8Q 2 go:

Further, one can show that

tr .CLiCLi / D tr2 .CLi / ; i D 1; 2; 3; (9.32)

where we use the abbreviation tr2 .�/ D Œtr .�/�2. Indeed, in view of the relation
tr .CLi / D C W .l i ˝ l i / D l iCl i we have

tr .CLiCLi / D tr .Cl i ˝ l iCl i ˝ l i / D l iCl i tr .Cl i ˝ l i /

D l iCl i tr .CLi / D tr2 .CLi / ; i D 1; 2; 3:

Next, we obtain

tr
�
C2Li

� D tr .CICLi / D tr ŒC .L1 C L2 C L3/CLi �

D
3X

jD1
tr
�
CLjCLi

�
; i D 1; 2; 3

and consequently

tr .CL2CL1/C tr .CL3CL1/ D tr
�
C2L1

� � tr2 .CL1/ ;

tr .CL3CL2/C tr .CL1CL2/ D tr
�
C2L2

� � tr2 .CL2/ ;

tr .CL1CL3/C tr .CL2CL3/ D tr
�
C2L3

�� tr2 .CL3/ :
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The latter relations can be given briefly by

tr
�
CLjCLi

� C tr .CLkCLi /

D tr
�
C2Li

� � tr2 .CLi / ; i ¤ j ¤ k ¤ i I i; j; k D 1; 2; 3:

Their linear combinations finally yield:

tr
�
CLiCLj

� D 1

2

�
tr
�
C2Li

�C tr
�
C2Lj

� � tr
�
C2Lk

��

� 1

2

�
tr2 .CLi /C tr2

�
CLj

� � tr2 .CLk/
�
;

where i ¤ j ¤ k ¤ i I i; j; k D 1; 2; 3:

6.11 We begin with the directional derivative of tr
� QELi QELj

�
:

d

dt
tr
�� QE C tX

�
Li
� QE C tX

�
Lj
�
ˇ
ˇ
ˇ
ˇ
tD0

D d

dt

� QELi QELj C t
�
XLi QELj C QELiXLj

�C t2XLiXLj
�
ˇ
ˇ
ˇ
ˇ
tD0

W I

D �
XLi QELj C QELiXLj

� W I D �
XLi QELj C Lj QELiX

� W I

D �
Li QELj C Lj QELi

� W XT D �
Li QELj C Lj QELi

�T W X:

Hence,

tr
� QELi QELj

�
;QE D Li QELj C Lj QELi :

For the second Piola-Kirchhoff stress tensor S we thus obtain

S D @ 

@ QE D 1

2

3X

i;jD1
aijLi tr

� QELj
�C 1

2

3X

i;jD1
aij tr

� QELi
�

Lj

C
3X

i;jD1
j¤i

Gij
�
Li QELj C Lj QELi

�

D
3X

i;jD1
aijLi tr

� QELj
�C 2

3X

i;jD1
j¤i

GijLi QELj :
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By virtue of (5.42), (6.137), (6.140) and (6.144) the tangent moduli finally take the
form

C D @S

@ QE D
3X

i;jD1
aijLi ˇ Lj C 2

3X

i;jD1
j¤i

Gij
�
Li ˝ Lj

�s
:

6.12 Setting (6.167) in (6.166) yields

 
� QE� D 1

2
a11tr2

� QEL1
�C 1

2
a22

�
tr2
� QEL2

�C tr2
� QEL3

��

Ca12
�
tr
� QEL1

�
tr
� QEL2

�C tr
� QEL1

�
tr
� QEL3

��

Ca23tr
� QEL2

�
tr
� QEL3

�C .a22 � a23/ tr
� QEL2 QEL3

�

C2G12
�
tr
� QEL1 QEL2

�C tr
� QEL1 QEL3

��
:

Thus, we can write keeping in mind (??)

 
� QE� D 1

2
a11tr

2
� QEL1

�C 1

2
a23

�
tr
� QEL2

�C tr
� QEL3

��2

Ca12tr
� QEL1

� �
tr
� QEL2

�C tr
� QEL3

��

C1

2
.a22 � a23/ tr

� QEL2 C QEL3
�2 C 2G12tr

� QEL1 QE .L2 C L3/
�
:

Using the abbreviation L D L1 and taking (??) into account one thus obtains

 
� QE� D 1

2
a11tr2

� QEL
�C 1

2
a23

�
tr QE � tr

� QEL
��2

Ca12tr
� QEL

� �
tr QE � tr

� QEL
��C 2G12

�
tr
� QE2L� � tr2

� QEL
��

C1

2
.a22 � a23/

�
tr QE2 � 2tr

� QE2L�C tr2
� QEL

��
:

Collecting the terms with the transversely isotropic invariants delivers

 
� QE� D 1

2
a23tr2 QE C 1

2
.a22 � a23/ tr QE2 C .a23 � a22 C 2G12/ tr

� QE2L�

C


1

2
a11 C 1

2
a22 � a12 � 2G12

�

tr2
� QEL

�C .a12 � a23/ tr QEtr
� QEL

�
:
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It is seen that the function  . QE/ is transversely isotropic in the sense of the
representation (6.29). Finally, considering (6.168) in the latter relation we obtain
the isotropic strain energy function of the form (6.116) as

 
� QE� D 1

2

tr2 QE CGtr QE2:

6.13 The tensor-valued function (6.120) can be shown to be isotropic. Indeed,

Og �QAiQ
T;QXjQT

� D Q00Tg
�
Q00QAiQ

TQ00T�Q00; 8Q 2 Orthn;

where Q00 is defined by (6.39). Further, we can write taking (6.41) into account

Q00Tg
�
Q00QAiQ

TQ00T�Q00 D Q00Tg
�
Q�Q0AiQ0TQ�T�Q00

D Q00TQ�g
�
Q0AiQ0T�Q�TQ00 D QQ0Tg

�
Q0AiQ0T�Q0QT

D Q Og �Ai ;Xj

�
QT;

which finally yields

Og �QAiQ
T;QXjQT

� D Q Og �Ai ;Xj

�
QT; 8Q 2 Orthn:

Thus, the sufficiency is proved. The necessity is evident.

6.14 Consider the directional derivative of the identity A�kAk D I. Taking into
account (2.9) and using (6.133) we can write

d

dt
.A C tX/�k

ˇ
ˇ
ˇ
ˇ
tD0

Ak C A�k
 
k�1X

iD0
AiXAk�1�i

!

D 0

and consequently

d

dt
.A C tX/�k

ˇ
ˇ
ˇ
ˇ
tD0

D �A�k
 
k�1X

iD0
AiXAk�1�i

!

A�k

D �
k�1X

iD0
Ai�kXA�1�i :

Hence, in view of (5.17)1

A�k;A D �
kX

jD1
Aj�k�1 ˝ A�j : (9.33)
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6.15 Equations (2.4), (2.7), (5.16), (5.17)2 and (6.128):

.f G/ ;A W X D d

dt

h Of .A C tX/ g .A C tX/
iˇˇ
ˇ
ˇ
tD0

D d

dt
Of .A C tX/

ˇ
ˇ
ˇ
ˇ
tD0

G C f
d

dt
g .A C tX/

ˇ
ˇ
ˇ
ˇ
tD0

D .f;A W X/G C f .G;A W X/

D .G ˇ f;A Cf G;A / W X;

.G W H/ ;A W X D d

dt
Œg .A C tX/ W h .A C tX/�

ˇ
ˇ
ˇ
ˇ
tD0

D d

dt
g .A C tX/

ˇ
ˇ
ˇ
ˇ
tD0

W H C G W d

dt
h .A C tX/

ˇ
ˇ
ˇ
ˇ
tD0

D .G;A W X/ W H C G W .H;A W X/

D .H W G;A CG W H;A / W X; 8X 2 Linn;

where f D Of .A/, G D g .A/ and H D h .A/.

6.16 In the case n D 2 (6.159) takes the form

0 D
2X

kD1
A2�k

kX

iD1
.�1/k�i I.k�i /

A

�
tr
�
Ai�1B

�
I � BAi�1�

D A Œtr .B/ I � B� � I.1/A Œtr .B/ I � B�C tr .AB/ I � BA

and finally

AB C BA � tr .B/A � tr .A/B C Œtr .A/ tr .B/ � tr .AB/� I D 0: (9.34)

9.7 Exercises of Chap. 7

7.1 By using (4.83) and (4.85) we can write

R .!/ D P1 C ei!P2 C e�i!P3:
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Applying further (7.2) we get

Ra .!/ D 1aP1 C �
ei!�a P2 C �

e�i!�a P3

D P1 C eia!P2 C e�ia!P3 D R .a!/ :

7.2 Equations (7.5)1, (??) and (??):

U D
sX

iD1

iPi D

sX

iD1

p
ƒiai ˝ ai D e3 ˝ e3

C
p
ƒ1

 
1p

1Cƒ1

e1 C
s

ƒ1

1Cƒ1

e2

!

˝
 

1p
1Cƒ1

e1 C
s

ƒ1

1Cƒ1

e2

!

C
p
ƒ2

 
1p

1Cƒ2

e1 �
s

ƒ2

1Cƒ2

e2

!

˝
 

1p
1Cƒ2

e1 �
s

ƒ2

1Cƒ2

e2

!

D 2
p
	2 C 4

e1 ˝ e1 C 	
p
	2 C 4

.e1 ˝ e2 C e2 ˝ e1/C 	2 C 2
p
	2 C 4

e2 ˝ e2

Ce3 ˝ e3:

7.3 The proof of the first relation (7.21) directly results from the definition of the
analytic tensor function (7.15) and is obvious. In order to prove (7.21)2 we first write

f .A/ D 1

2�i

I




f .�/ .�I � A/�1 d�; h .A/ D 1

2�i

I


 0

h
�
� 0� �� 0I � A

��1
d� 0;

where the closed curve 
 0 of the second integral lies outside 
 which, in turn,
includes all eigenvalues of A. Using the identity

.�I � A/�1
�
� 0I � A

��1 D �
� 0 � �

��1 h
.�I � A/�1 � �

� 0I � A
��1i

valid both on 
 and 
 0 we thus obtain

f .A/ h .A/ D 1

.2�i/2

I


 0

I




f .�/ h
�
� 0� .�I � A/�1

�
� 0I � A

��1
d�d� 0

D 1

2�i

I




f .�/
1

2�i

I


 0

h .� 0/
� 0 � � d� 0 .�I � A/�1 d�

C 1

2�i

I


 0

h
�
� 0� 1

2�i

I




f .�/

� � � 0 d�
�
� 0I � A

��1
d� 0:
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Since the function f .�/ .� � � 0/�1 is analytic in � inside 
 the Cauchy theorem
(see, e.g. [? ]) implies that

1

2�i

I




f .�/

� � � 0 d� D 0:

Noticing further that
1

2�i

I


 0

h .� 0/
� 0 � � d� 0 D h .�/

we obtain

f .A/ h .A/ D 1

2�i

I




f .�/
1

2�i

I


 0

h .� 0/
� 0 � �

d� 0 .�I � A/�1 d�

D 1

2�i

I




f .�/ h .�/ .�I � A/�1 d�

D 1

2�i

I




g .�/ .�I � A/�1 d� D g .A/ :

Finally, we focus on the third relation (7.21). It implies that the functions h
and f are analytic on domains containing all the eigenvalues 
i of A and
h .
i/ .i D 1; 2; : : : ; n/ of B D h .A/, respectively. Hence (cf. [? ]),

f .h .A// D f .B/ D 1

2�i

I




f .�/ .�I � B/�1 d�; (9.35)

where 
 encloses all the eigenvalues of B. Further, we write

.�I � B/�1 D .�I � h .A//�1 D 1

2�i

I


 0

�
� � h �� 0���1 �� 0I � A

��1
d� 0; (9.36)

where 
 0 includes all the eigenvalues 
i of A so that the image of 
 0 under h lies
within 
 . Thus, inserting (??) into (??) delivers

f .h .A// D 1

.2�i/2

I




I


 0

f .�/
�
� � h �� 0���1 �� 0I � A

��1
d� 0d�

D 1

.2�i/2

I


 0

I




f .�/
�
� � h �� 0���1 d�

�
� 0I � A

��1
d� 0

D 1

2�i

I


 0

f
�
h
�
� 0�� �� 0I � A

��1
d� 0

D 1

2�i

I


 0

g
�
� 0� �� 0I � A

��1
d� 0 D g .A/ :



256 9 Solutions

7.4 In view of (??) we can first write

S .C/ D g .C/ D
mX

rD1
�rC˛r =2�1:

Equations (6.149) and (7.49) further yield

C D 2S;C D 2g .C/ ;C D 2

sX

i;jD1
GijPi ˝ Pj ;

where Pi ; .i D 1; 2; 3/ are given by (??) while according to (7.50) and (??)

2Gii D 2g0 .ƒi / D
mX

rD1
�r .˛r � 2/ƒ

˛r=2�2
i

D
mX

rD1
�r .˛r � 2/

 p
4C 	2 ˙ 	

2

!˛r�4
; i D 1; 2;

2G33 D 2g0 .ƒ3/ D
mX

rD1
�r .˛r � 2/ƒ

˛r=2�2
3 D

mX

rD1
�r .˛r � 2/ ;

2G12 D 2G21 D 2
g .ƒ1/ � g .ƒ2/

ƒ1 �ƒ2

D 2

ƒ1 �ƒ2

mX

rD1
�r

�
ƒ
˛r=2�1
1 �ƒ

˛r=2�1
2

�

D 2

	
p
	2 C 4

mX

rD1
�r

2

4

 p
4C 	2 C 	

2

!˛r�2
�
 p

4C 	2 � 	

2

!˛r�23

5 ;

2Gi3 D 2G3i D 2
g .ƒi/ � g .ƒ3/

ƒi �ƒ3

D 2

ƒi �ƒ3

mX

rD1
�r

�
ƒ
˛r=2�1
i �ƒ

˛r=2�1
3

�

D 4

	2 ˙ 	
p
	2 C 4

mX

rD1
�r

2

4

 p
4C 	2 ˙ 	

2

!˛r�2
� 1

3

5 ; i D 1; 2:

7.5 Inserting into the right hand side of (7.54) the spectral decomposition in terms
of eigenprojections (7.1) and taking (4.46) into account we can write similarly to
(7.17)
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1

2�i

I


i

.�I � A/�1 d� D 1

2�i

I


i

0

@�I �
sX

jD1

jPj

1

A

�1

d�

D 1

2�i

I


i

2

4
sX

jD1

�
� � 
j

�
Pj

3

5

�1

d� D 1

2�i

I


i

sX

jD1

�
� � 
j

��1
Pj d�

D
sX

jD1

�
1

2�i

I


i

�
� � 
j

��1
d�

	

Pj :

In the case i ¤ j the closed curve 
i does not include any pole so that

1

2�i

I


i

�
� � 
j

��1
d� D ıij ; i; j D 1; 2; : : : s:

This immediately leads to (7.54).

7.6 By means of (7.43) and (7.83) and using the result for the eigenvalues of A by
(??), 
i D 6; 
 D �3 we write

P1 D
2X

pD0
�1pAp D � 


.
i � 
/
I C 1

.
i � 
/
A D 1

3
I C 1

9
A;

P2 D I � P1 D 2

3
I � 1

9
A:

Taking symmetry of A into account we further obtain by virtue of (7.56) and (7.84)

P1;A D
2X

p;qD0
�1pq .Ap ˝ Aq/

s

D � 2

i

.
i � 
/3I
s C 
i C 


.
i � 
/3 .I ˝ A C A ˝ I/s � 2

.
i � 
/3
.A ˝ A/s

D 4

81
Is C 1

243
.I ˝ A C A ˝ I/s � 2

729
.A ˝ A/s :

The eigenprojection P2 corresponds to the double eigenvalue 
 D �3 and for this
reason is not differentiable.

7.7 Since A is a symmetric tensor and it is diagonalizable. Thus, taking double
coalescence of eigenvalues (??) into account we can apply the representations (7.77)
and (7.78). Setting there 
a D 6; 
 D �3 delivers
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exp .A/ D e6 C 2e�3

3
I C e6 � e�3

9
A;

exp .A/ ;A D 13e6 C 32e�3

81
Is C 10e6 � 19e�3

243
.A ˝ I C I ˝ A/s

C7e6 C 11e�3

729
.A ˝ A/s :

Inserting

A D
2

4
�2 2 2
2 1 4

2 4 1

3

5 ei ˝ ej

into the expression for exp .A/ we obtain

exp .A/ D 1

9

2

4
e6 C 8e�3 2e6 � 2e�3 2e6 � 2e�3
2e6 � 2e�3 4e6 C 5e�3 4e6 � 4e�3
2e6 � 2e�3 4e6 � 4e�3 4e6 C 5e�3

3

5 ei ˝ ej ;

which coincides with the result obtained in Exercise 4.15.

7.8 The computation of the coefficients series (7.89), (7.91) and (7.96), (7.97)
with the precision parameter " D 1 � 10�6 has required 23 iteration steps and has
been carried out by using MAPLE-program. The results of the computation are
summarized in Tables ?? and ??. On use of (7.90) and (7.92) we thus obtain

exp .A/ D 44:96925I C 29:89652A C 4:974456A2;

exp .A/ ;A D 16:20582Is C 6:829754 .I ˝ A C A ˝ I/s C 1:967368 .A ˝ A/s

C1:039719 �I ˝ A2 C A2 ˝ I
�s C 0:266328

�
A ˝ A2 C A2 ˝ A

�s

C0:034357 �A2 ˝ A2
�s
:

Taking into account double coalescence of eigenvalues of A we can further write

A2 D .
a C 
/A � 
a
I D 3A C 18I:

Inserting this relation into the above representations for exp .A/ and exp .A/ ;A
finally yields

exp .A/ D 134:50946I C 44:81989A;

exp .A/ ;A D 64:76737Is C 16:59809 .I ˝ A C A ˝ I/s C 3:87638 .A ˝ A/s :

Note that the relative error of this result in comparison to the closed-form solution
used in Exercise 7.7 lies within 0.044%.
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Table 9.1 Recurrent calculation of the coefficients !.r/p
r ar!

.r/
0 ar!

.r/
1 ar!

.r/
2

0 1 0 0
1 0 1 0
2 0 0 0.5
3 9.0 4.5 0
4 0 2.25 1.125
5 12.15 6.075 0.45
6 4.05 4.05 1.0125
. . . . . . . . . . . .
23
��10�6

�
3:394287 2:262832 0:377134

'p 44.96925 29.89652 4.974456

Table 9.2 Recurrent calculation of the coefficients �.r/pq
r ar�

.r/
00 ar�

.r/
01 ar �

.r/
02 ar �

.r/
11 ar�

.r/
12 ar �

.r/
22

1 1 0 0 0 0 0
2 0 0.5 0 0 0 0
3 0 0 0.166666 0.166666 0 0
4 4.5 1.125 0 0 0.041666 0
5 0 0.9 0.225 0.45 0 0.008333
6 4.05 1.0125 0.15 0.15 0.075 0
. . . . . . . . . . . .
23
��10�6

�
2:284387 1:229329 0:197840 0:623937 0:099319 0:015781

�pq 16.20582 6.829754 1.039719 1.967368 0.266328 0.034357

9.8 Exercises of Chap. 8

8.1 By (8.2) we first calculate the right and left Cauchy-Green tensors as

C D FTF D
2

4
5 �2 0

�2 8 0

0 0 1

3

5 ei ˝ ej ; b D FFT D
2

4
5 2 0

2 8 0

0 0 1

3

5 ei ˝ ej ;

with the following eigenvalues ƒ1 D 1; ƒ2 D 4; ƒ3 D 9. Thus, 
1 D p
ƒ1 D 1,


2 D p
ƒ2 D 2, 
3 D p

ƒ3 D 3. By means of (8.11) and (8.12) we further obtain
'0 D 3

5
, '1 D 5

12
, '2 D � 1

60
and

U D 3

5
I C 5

12
C � 1

60
C2 D 1

5

2

4
11 �2 0
�2 14 0
0 0 5

3

5 ei ˝ ej ;

v D 3

5
I C 5

12
b � 1

60
b2 D 1

5

2

4
11 2 0

2 14 0

0 0 5

3

5 ei ˝ ej :
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Equations (8.16) and (8.17) further yield &0 D 37
30

, &1 D � 1
4
, &2 D 1

60
and

R D F


37

30
I � 1

4
C C 1

60
C2

�

D 1

5

2

4
3 4 0

�4 3 0
0 0 5

3

5 ei ˝ ej :

8.2 Equations (4.44), (5.33), (5.47), (5.55) and (5.85)1:

Pij W Pkl D �
Pi ˝ Pj C Pj ˝ Pi

�s W .Pk ˝ Pl C Pl ˝ Pk/
s

D ��
Pi ˝ Pj C Pj ˝ Pi

�s W .Pk ˝ Pl C Pl ˝ Pk/
�s

D 1

2

nh
Pi ˝ Pj C Pj ˝ Pi C �

Pi ˝ Pj
�t C �

Pj ˝ Pi
�t
i

W .Pk ˝ Pl C Pl ˝ Pk/gs

D �
ıikıjl C ıilıjk

� �
Pi ˝ Pj C Pj ˝ Pi

�s
; i ¤ j; k ¤ l:

In the case i D j or k D l the previous result should be divided by 2, whereas for
i D j and k D l by 4, which immediately leads to (8.65).

8.3 Setting f .
/ D ln
 in (8.50) and (8.56)1 one obtains

PE.0/ D .ln U/PD
sX

iD1

1

2
2i
Pi PCPi C

sX

i;jD1
i¤j

ln
i � ln
j

2i � 
2j

Pi PCPj :
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Index

Algebraic multiplicity of an eigenvalue, 89, 94,
97, 101

Analytic tensor function, 159
Anisotropic tensor function, 125
Arc length, 64
Asymptotic direction, 75
Axial vector, 30, 58, 103

Basis of a vector space, 2, 3
Binomial theorem, 160
Binormal vector, 66
Biot strain tensor, 187

Cardano formula, 91
Cartesian coordinates, 38, 46, 50, 51, 55, 56,

60
Cauchy

integral, 161
integral formula, 158
strain tensor, 107
stress tensor, 15, 78, 107, 192
stress vector, 16, 58, 79
theorem, 16, 58

Cayley-Hamilton equation, 172, 179, 184
Cayley-Hamilton theorem, 103, 159
Characteristic

equation, 88
polynomial, 88, 90, 91, 98, 103

Christoffel symbols, 49, 50, 55, 61, 71, 82
Coaxial tensors, 138
Commutative tensors, 21
Complex

conjugate vector, 86
number, 85
vector space, 85

Complexification, 85
Compliance tensor, 107
Components

contravariant, 42
covariant, 42
mixed variant, 42
of a vector, 5

Composition of tensors, 21
Cone, 83
Contravariant

components, 42
derivative, 48

Coordinate
line, 39, 70
system, 37
transformation, 39

Coordinates
Cartesian, 38, 46, 50, 51, 55, 56,

60
cylindrical, 37, 40, 42, 50, 55, 60
linear, 38, 42, 45, 60
spherical, 60

Covariant
components, 42
derivative, 48

on a surface, 72
Curl of a vector field, 56
Curvature

directions, 74
Gaussian, 74
mean, 74
normal, 73
of the curve, 65
radius of, 65

Curve, 63
left-handed, 66
on a surface, 70
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plane, 66
right-handed, 66
torsion of, 66

Cylinder, 70
Cylindrical coordinates, 37, 40, 42, 50, 55,

60

Darboux vector, 68
Defective

eigenvalue, 94
tensor, 94

Deformation gradient, 46, 89, 147, 168, 177,
181

Derivative
contravariant, 48
covariant, 48
directional, 128, 144
Gateaux, 128, 144

Determinant
Jacobian, 39
of a matrix, 39, 88
of a tensor, 91

Deviatoric
projection tensor, 118, 147
tensor, 30

Diagonalizable tensor, 94, 158, 162
Dimension of a vector space, 2, 4
Directional derivative, 128, 144
Divergence, 52
Dual basis, 7
Dummy index, 6
Dunford-Taylor integral, 157, 162

Eigenprojection, 94
Eigentensor, 116
Eigenvalue, 87

defective, 94
problem, 87, 116

left, 87
right, 87

Eigenvector, 87
left, 87
right, 87

Einstein’s summation convention, 6
Elasticity tensor, 107
Elliptic point, 75
Euclidean space, 6, 85, 86
Euler-Rodrigues formula, 15
Eulerian strains, 156
Exponential tensor function, 22, 95, 138, 168,

174

Formulas
Frenet, 67
Newton-Girard, 90

Fourth-order tensor, 107
deviatoric projection, 118, 147
isochoric projection, 137, 148
spherical projection, 118, 147
super-symmetric, 114
trace projection, 118
transposition, 117

Frenet formulas, 67
Functional basis, 121
Fundamental form of the surface

first, 71
second, 73

Gateaux derivative, 128, 144
Gauss

coordinates, 69, 72
formulas, 72

Gaussian curvature, 74
Generalized

Hooke’s law, 118
Rivlin’s identity, 150
strain measures, 156

Geometric multiplicity of an eigenvalue, 89,
94, 97, 101

Gradient, 44
Gram-Schmidt procedure, 7, 98, 100, 106
Green-Lagrange strain tensor, 142, 148,

156

Hill’s strains, 156
Hooke’s law, 118
Hydrostatic pressure, 59
Hyperbolic

paraboloidal surface, 82
point, 75

Hyperelastic material, 123, 136, 141, 148

Identity tensor, 19
Invariant

isotropic, 121
principal, 90

Inverse of the tensor, 24
Inversion, 24
Invertible tensor, 24, 95
Irreducible functional basis, 121
Isochoric

projection tensor, 137, 148
Isochoric-volumetric split, 136
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Isotropic
invariant, 121
material, 123, 141, 148
symmetry, 125
tensor function, 121

Jacobian determinant, 39

Kronecker delta, 6

Lagrangian strains, 156
Lamé constants, 118, 142
Laplace expansion rule, 104
Laplacian, 57
Left

Cauchy-Green tensor, 147, 177, 181
eigenvalue problem, 87
eigenvector, 87
mapping, 16, 18, 21, 57, 108–111
stretch tensor, 156, 177, 180

Left-handed curve, 66
Length of a vector, 6
Levi-Civita symbol, 11
Linear

combination, 3
coordinates, 38, 42, 45, 60
mapping, 12, 29–31, 107, 117

Linear-viscous fluid, 59
Linearly elastic material, 107, 141
Logarithmic tensor function, 157

Major symmetry, 114
Mapping

left, 16, 18, 21, 57, 108–111
right, 16, 108, 110

Material
hyperelastic, 123, 136, 141, 148
isotropic, 123, 141, 148
linearly elastic, 107, 141
Mooney-Rivlin, 123
Ogden, 123, 153, 175
orthotropic, 152
St.Venant-Kirchhoff, 142
time derivative, 185, 187
transversely isotropic, 125, 143, 148

Mean curvature, 74
Mechanical energy, 58
Membrane theory, 82
Metric coefficients, 19, 71

Middle surface of the shell, 77
Minor symmetry, 114
Mixed product of vectors, 10
Mixed variant components, 42
Moment tensor, 79
Momentum balance, 55
Mooney-Rivlin material, 123
Moving trihedron of the curve, 66
Multiplicity of an eigenvalue

algebraic, 89, 94, 97, 101
geometric, 89, 94, 97, 101

Navier-Stokes equation, 59
Newton’s identities, 90, 122
Newton-Girard formulas, 90
Normal

curvature, 73
plane, 71
section of the surface, 71
yield stress, 191

Ogden material, 123, 153, 175
Orthogonal

spaces, 30
tensor, 25, 99, 102
vectors, 6

Orthonormal basis, 6
Orthotropic material, 152

Parabolic point, 75
Permutation symbol, 11
Plane, 70
Plane curve, 66
Plate theory, 81
Point

elliptic, 75
hyperbolic, 75
parabolic, 75
saddle, 75

Polar decomposition, 177
Positive-definite tensor, 99, 105
Principal

curvature, 74
invariants, 90
material direction, 125, 152
normal vector, 66, 71
stretches, 156, 180, 182
traces, 90

Proper orthogonal tensor, 103
Pythagoras formula, 7
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Radius of curvature, 65
Rate of deformation tensor, 59
Representation theorem, 139, 141
Residue theorem, 161
Ricci’s Theorem, 51
Riemannian metric, 71
Right

Cauchy-Green tensor, 105, 123, 126, 136,
141, 147, 177, 181

eigenvalue problem, 87
eigenvector, 87
mapping, 16, 108, 110
stretch tensor, 156, 175, 177, 180

Right-handed curve, 66
Rivlin’s identities, 150
Rotation, 14

tensor, 14, 177, 180, 181
Rychlewski’s theorem, 143

Saddle point, 75
Scalar

field, 43
product, 6

of tensors, 26
Second

Piola-Kirchhoff stress tensor, 137, 141,
152, 188

viscosity coefficient, 59
Second-order tensor, 12
Seth’s strains, 156
Shear

viscosity, 59
yield stress, 194

Shell
continuum, 76
shifter, 78

Similar tensors, 244
Simple shear, 46, 47, 89, 168, 174, 180
Skew-symmetric

generator, 142
tensor, 24, 101, 103

Spectral
decomposition, 94, 116
mapping theorem, 87

Sphere, 70
Spherical

coordinates, 60
projection tensor, 118
tensor, 30

Spin tensor, 58
St.Venant-Kirchhoff material, 142
Straight line, 63

Strain energy function, 123
Strain tensor

Biot, 187
Cauchy, 107
Green-Lagrange, 142, 148, 156

Strains
Eulerian, 156
Hill’s, 156
Lagrangian, 156
Seth’s, 156

Stress resultant tensor, 79
Stress tensor

Cauchy, 15, 78, 107
second Piola-Kirchhoff, 137, 141

Stretch tensors, 156, 177, 181
Structural tensor, 125
Summation convention, 6
Super-symmetric fourth-order tensor, 114
Surface, 69

hyperbolic paraboloidal, 82
Sylvester formula, 96, 162
Symmetric

generator, 142
tensor, 24, 97, 98

Symmetry
major, 114
minor, 114

Symmetry group, 125
anisotropic, 126
isotropic, 125
of fiber reinforced material, 152
orthotropic, 152
transversely isotropic, 125, 143
triclinic, 125

Tangent
moduli, 148
vectors, 39

Tensor
defective, 94
deviatoric, 30
diagonalizable, 94, 158, 162
field, 43
function, 35

analytic, 159
anisotropic, 125
exponential, 22, 95, 138, 168, 174
isotropic, 121
logarithmic, 157

identity, 19
invertible, 24, 95
left Cauchy-Green, 147, 177
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left Cauchy-Green tensor, 181
left stretch, 156, 177, 180
monomial, 22, 159
of the fourth order, 107
of the second order, 12
of the third order, 30
orthogonal, 25, 99, 102
polynomial, 22, 95, 138
positive-definite, 99, 105
power series, 22, 156
product, 17
proper orthogonal, 103
right Cauchy-Green, 105, 123, 126, 136,

141, 147, 177
right Cauchy-Green tensor, 181
right stretch, 156, 177, 180
rotation, 14, 177, 180, 181
skew-symmetric, 24, 101, 103
spherical, 30
structural, 125
symmetric, 24, 97, 98

Tensors
coaxial, 138
commutative, 21
composition of, 21
scalar product of, 26

Third-order tensor, 30
Torsion of the curve, 66
Torus, 75
Trace, 28
Trace projection tensor, 118
Transposition, 22
Transposition tensor, 117
Transverse shear stress vector, 79
Transversely isotropic material, 125, 143, 148
Triclinic symmetry, 125

Unit vector, 6

Vector
axial, 30, 103
binormal, 66
complex conjugate, 86
components, 5
Darboux, 68
field, 43
function, 35
length, 6
product of vectors, 10, 13
space, 1

basis of, 2, 3
complex, 85
dimension of, 2, 4
Euclidean, 6

zero, 1
Vectors

mixed product of, 10
orthogonal, 6
tangent, 39

Velocity gradient, 155, 168, 174
Vieta theorem, 74, 90, 91, 159
Von Mises yield function, 191

Weingarten formulas, 73

Yield stress
normal, 191
shear, 194

Zero tensor, 13
Zero vector, 1
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