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Preface to the Third Edition

This edition is enriched by new examples, problems, and solutions, in particular
concerned with simple shear. I have also added an example with the derivation
of constitutive relations and tangent moduli for hyperelastic materials with the
isochoric-volumetric split of the strain energy function. Besides, Chap.2 has
some new figures illustrating spherical coordinates. These figures have again been
prepared by Uwe Navrath. I also gratefully acknowledge Khiém Ngoc Vu for careful
proofreading of the manuscript. At this opportunity, I would also like to thank
the Springer-Verlag and in particular Jan-Philip Schmidt for the fast and friendly
support in getting this edition published.

Aachen, Germany Mikhail Itskov
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Preface to the Second Edition

This second edition has a number of additional examples and exercises. In response
to comments and questions of students using this book, solutions of many exercises
have been improved for a better understanding. Some changes and enhancements
are concerned with the treatment of skew-symmetric and rotation tensors in the
first chapter. Besides, the text and formulae have been thoroughly reexamined and
improved where necessary.

Aachen, Germany Mikhail Itskov
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Preface to the First Edition

Like many other textbooks, the present one is based on a lecture course given by the
author for master’s students of the RWTH Aachen University. In spite of a somewhat
difficult matter those students were able to endure and, as far as I know, are still fine.
I wish the same for the reader of this book.

Although this book can be referred to as a textbook, one finds only little plain
text inside. I have tried to explain the matter in a brief way, nevertheless going
into detail where necessary. I have also avoided tedious introductions and lengthy
remarks about the significance of one topic or another. A reader interested in tensor
algebra and tensor analysis but preferring, however, words instead of equations can
close this book immediately after having read the preface.

The reader is assumed to be familiar with the basics of matrix algebra and con-
tinuum mechanics and is encouraged to solve at least some of numerous exercises
accompanying every chapter. Having read many other texts on mathematics and
mechanics, I was always upset vainly looking for solutions to the exercises which
seemed to be most interesting for me. For this reason, all the exercises here are
supplied with solutions, amounting to a substantial part of the book. Without doubt,
this part facilitates a deeper understanding of the subject.

As a research work, this book is open for discussion which will certainly
contribute to improving the text for further editions. In this sense, I am very grateful
for comments, suggestions, and constructive criticism from the reader. I already
expect such criticism, for example, with respect to the list of references which might
be far from being complete. Indeed, throughout the book I only quote the sources
indispensable to follow the exposition and notation. For this reason, I apologize to
colleagues whose valuable contributions to the matter are not cited.

Finally, a word of acknowledgment is appropriate. I would like to thank Uwe
Navrath for having prepared most of the figures for the book. Further, I am grateful
to Alexander Ehret who taught me first steps as well as some “dirty” tricks in
IXEX, which were absolutely necessary to bring the manuscript to a printable
form. He and Tran Dinh Tuyen are also acknowledged for careful proofreading and
critical comments to an earlier version of the book. My special thanks go to the
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Springer-Verlag and in particular to Eva Hestermann-Beyerle and Monika Lempe
for their friendly support in getting this book published.

Aachen, Germany Mikhail Itskov
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Chapter 1
Vectors and Tensors in a Finite-Dimensional
Space

1.1 Notion of the Vector Space

We start with the definition of the vector space over the field of real numbers R.

Definition 1.1. A vector space is a set V of elements called vectors satisfying the
following axioms.

A. To every pair, x and y of vectors in V there corresponds a vector x + y, called
the sum of x and y, such that

(A.1) x + y = y + x (addition is commutative),

(A2) (x +y)+z=x+ (y +2) (addition is associative),

(A.3) There exists in V a unique vector zero 0, such that0 + x = x, Vx € V,

(A.4) To every vector x in V there corresponds a unique vector —x such that
x+(—x)=0.

B. To every pair @ and x, where « is a scalar real number and x is a vector in V,
there corresponds a vector ax, called the product of @ and x, such that

(B.1) o (Bx) = (af) x (multiplication by scalars is associative),

B.2) Ix =x,

(B.3) a(x +y) = ax + oy (multiplication by scalars is distributive with
respect to vector addition),

(B4) (¢ + B)x = ax + PBx (multiplication by scalars is distributive with
respect to scalar addition), Vo, B € R, Vx,y € V.

Examples of Vector Spaces.

(1) The set of all real numbers R.

(2) The set of all directional arrows in two or three dimensions. Applying the usual
definitions for summation, multiplication by a scalar, the negative and zero
vector (Fig. 1.1) one can easily see that the above axioms hold for directional
arrows.

M. Itskov, Tensor Algebra and Tensor Analysis for Engineers, Mathematical Engineering, 1
DOI 10.1007/978-3-642-30879-6_1, © Springer-Verlag Berlin Heidelberg 2013
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vector addition negative vector

2.5

T
°
zero vector

multiplication by a real scalar

Fig. 1.1 Geometric illustration of vector axioms in two dimensions

(3) The set of all n-tuples of real numbers R:

ai

Indeed, the axioms (A) and (B) apply to the n-tuples if one defines addition,
multiplication by a scalar and finally the zero tuple, respectively, by

ay +b1 aaq 0

ar + by ody 0
a+b= . , aa = . , 0=

a, + b, oay, 0

(4) The set of all real-valued functions defined on a real line.

1.2 Basis and Dimension of the Vector Space

Definition 1.2. A set of vectors x|, x», ..., X, is called linearly dependent if there
exists a set of corresponding scalars oy, o2, . .., o0, € R, not all zero, such that

Xn:a,-x,- =0. (11)

i=1
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Otherwise, the vectors x|, x5, ..., x, are called linearly independent. In this case,
none of the vectors x; is the zero vector (Exercise 1.2).

Definition 1.3. The vector

X zzn:a,-x,- (12)

i=1

is called linear combination of the vectors x,x,,...,x,, where o; € R(i =1,
2,...,n).
Theorem 1.1. The set of n non-zero vectors x1,X2,...,X, is linearly dependent

if and only if some vector x (2 < k < n) is a linear combination of the preceding
onesx; (i =1,...,k—1).

Proof. If the vectors x1, x,, ..., X, are linearly dependent, then

n
E aix; =0,

i=1

where not all «; are zero. Let o (2 < k < n) be the last non-zero number, so that
o =00 =k+1,...,n). Then,

k k—1

Zaix; =0 = x; = Za—x,-.
k

i=1 i=1

Thereby, the case k = 1 is avoided because o;x; = 0 implies that x; = 0
(Exercise 1.1). Thus, the sufficiency is proved. The necessity is evident.

Definition 1.4. A basis in a vector space V is a set G C V of linearly independent
vectors such that every vectorin V is a linear combination of elements of G. A vector
space V is finite-dimensional if it has a finite basis.

Within this book, we restrict our attention to finite-dimensional vector spaces.
Although one can find for a finite-dimensional vector space an infinite number of
bases, they all have the same number of vectors.

Theorem 1.2. All the bases of a finite-dimensional vector space V contain the same
number of vectors.

Proof. LetG = {g1,82,....8n} and F = {f1, f2,..., fm} be two arbitrary
bases of V with different numbers of elements, say m > n. Then, every vector in V
is a linear combination of the following vectors:

f1.81.82,....8&n- (1.3)
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These vectors are non-zero and linearly dependent. Thus, according to Theorem 1.1
we can find such a vector g4, which is a linear combination of the preceding ones.
Excluding this vector we obtain the set G’ by

flsglsg27---7gk—lsgk+lv---vgn

again with the property that every vector in V is a linear combination of the elements
of G’. Now, we consider the following vectors

fi./2.81.82, ., 8k—1,8k+15---,8n

and repeat the excluding procedure just as before. We see that none of the vectors
f i can be eliminated in this way because they are linearly independent. As soon as
allg; (i =1,2,...,n) are exhausted we conclude that the vectors

flvfzs---sfn-i-l

are linearly dependent. This contradicts, however, the previous assumption that they
belong to the basis F.

Definition 1.5. The dimension of a finite-dimensional vector space V is the number
of elements in a basis of V.

Theorem 1.3. Every set F = {f1, f2,..., fa} of linearly independent vectors
in an n-dimensional vectors space V forms a basis of V. Every set of more than n
vectors is linearly dependent.

Proof. The proof of this theorem is similar to the preceding one. Let § =
{g1.82,...,8nx} beabasis of V. Then, the vectors (1.3) are linearly dependent and
non-zero. Excluding a vector g, we obtain a set of vectors, say G, with the property
that every vector in V is a linear combination of the elements of G’. Repeating this
procedure we finally end up with the set F with the same property. Since the vectors
fi (i =1,2,...,n) are linearly independent they form a basis of V. Any further
vectorsin V, say f,+1, f n+2, ... are thus linear combinations of F. Hence, any set
of more than n vectors is linearly dependent.

Theorem 1.4. Every set F = {f1, f2,..., fm} of linearly independent vectors
in an n-dimensional vector space V can be extended to a basis.

Proof. If m = n, then F is already a basis according to Theorem 1.3. If m < n,
then we try to find n —m vectors f 41, f m+2,- -, f n, such that all the vectors f;,
thatis, f1, f2,-.., fm» fm+1,--., fn are linearly independent and consequently
form a basis. Let us assume, on the contrary, that only k < n — m such vectors can
be found. In this case, for all x € V there exist scalars o, ay, s, . .., Q-+, DOt all
zero, such that

ax +arfi+ofr+ .. ok ok =0,
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where o # 0 since otherwise the vectors f; (i =1,2,...,m + k) would be
linearly dependent. Thus, all the vectors x of V are linear combinations of
fi(i=1,2,...,m+k). Then, the dimension of V is m + k < n, which
contradicts the assumption of this theorem.

1.3 Components of a Vector, Summation Convention

LetG ={g1,82,...,8n} be abasis of an n-dimensional vector space V. Then,

x=) x'gi, VxeV. (1.4)

i=1
Theorem 1.5. The representation (1.4) with respect to a given basis G is unique.

Proof. Let

n n
x:ingi and x:Zyigi
i=1 i=1
be two different representations of a vector x, where not all scalar coefficients x’
and y' (i = 1,2,...,n) are pairwise identical. Then,

n

O=x+(x)=x+(Dx=) x'gi+> (-y)ei=> (' —y)g:

i=1 i=1 i=1

where we use the identity —x = (—1) x (Exercise 1.1). Thus, either the numbers x’
and y' are pairwise equal x’ = y' (i = 1,2,...,n) or the vectors g; are linearly
dependent. The latter one is likewise impossible because these vectors form a basis
of V.

The scalar numbers x! (i = 1,2,...,n) in the representation (1.4) are called
components of the vector x with respect to the basis G = {g1,82,...,&n}

The summation of the form (1.4) is often used in tensor algebra. For this reason
it is usually represented without the summation symbol in a short form by

n
x:ingi :xigi (15)

i=1

referred to as Einstein’s summation convention. Accordingly, the summation is
implied if an index appears twice in a multiplicative term, once as a superscript and
once as a subscript. Such a repeated index (called dummy index) takes the values
from 1 to n (the dimension of the vector space in consideration). The sense of the
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index changes (from superscript to subscript or vice versa) if it appears under the
fraction bar.

1.4 Scalar Product, Euclidean Space, Orthonormal Basis

The scalar product plays an important role in vector and tensor algebra. The
properties of the vector space essentially depend on whether and how the scalar
product is defined in this space.

Definition 1.6. The scalar (inner) product is a real-valued function x - y of two
vectors x and y in a vector space V, satisfying the following conditions.

C. (C.1) x-y = y-x (commutative rule),
(C2) x-(y +z2) =x -y + x -z (distributive rule),
(C3) a(x-y)=(xx)-y =x-(ay) (associative rule for the multiplication
by a scalar), Vo e R, Vx,y,z €V,
(C4) x-x>0VxeV, x.-x=0ifandonlyif x =0.

An n-dimensional vector space furnished by the scalar product with properties
(C.1)—(C.4) is called Euclidean space E”. On the basis of this scalar product one
defines the Euclidean length (also called norm) of a vector x by

[x]| = vx-x. (1.6)

A vector whose length is equal to 1 is referred to as unit vector.
Definition 1.7. Two vectors x and y are called orthogonal (perpendicular), denoted

by x Ly, if
x-y=0. (L.7)

Of special interest is the so-called orthonormal basis of the Euclidean space.

Definition 1.8. A basis £ = {e}, e»,...,e,} of an n-dimensional Euclidean space
E" is called orthonormal if

ei-ej :(Sij, i,j:1,2,...,l’l, (18)

where
. ) 1 fori = j,
8y =81 =8 = (1.9
0 fori # j
denotes the Kronecker delta.

Thus, the elements of an orthonormal basis represent pairwise orthogonal unit
vectors. Of particular interest is the question of the existence of an orthonor-
mal basis. Now, we are going to demonstrate that every set of m < n linearly
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independent vectors in [E” can be orthogonalized and normalized by means of
a linear transformation (Gram-Schmidt procedure). In other words, starting from

linearly independent vectors x|, X2, ..., X, one can always construct their linear
combinations e, es,...,e, such thate; -e; = §; (i,j = 1,2,...,m). Indeed,
since the vectors x; (i = 1,2,...,m) are linearly independent they are all non-zero

(see Exercise 1.2). Thus, we can define the first unit vector by

X1

1= .
1]l

(1.10)

Next, we consider the vector
e, =x,—(x2-€1)e; (1.11)

orthogonal to e . This holds for the unit vector e, = e’/ He’z || as well. Itis also seen
that || e, | = \/e}, - €} # 0 because otherwise e, = 0 and thus x, = (x-e1) €| =
(x2-e1) ||x1]|”" x1. However, the latter result contradicts the fact that the vectors
x| and x, are linearly independent.

Further, we proceed to construct the vectors

!
ey =x3—(x3-e)er—(x3-e1)ey, e3=H§—,3” (1.12)
3

orthogonal to e; and e,. Repeating this procedure we finally obtain the set of
orthonormal vectors e, e, ..., e,. Since these vectors are non-zero and mutually
orthogonal, they are linearly independent (see Exercise 1.6). In the case m = n, this
set represents, according to Theorem 1.3, the orthonormal basis (1.8) in E”.

With respect to an orthonormal basis the scalar product of two vectors x = x'e;
and y = y'e; in E” takes the form

x-y =xyl +x22 4 4+ X"y (1.13)

For the length of the vector x (1.6) we thus obtain the Pythagoras formula

] = Valxl +x222 + ..+ xnxn, x € B (1.14)

1.5 Dual Bases

Definition 1.9. Let G = {gi.g2,...,g,} be a basis in the n-dimensional
Euclidean space E". Then, a basis G = {g'.g?,....g"} of E" is called dual
to G, if '

gi-g/ =8, i,j=12,...,n (1.15)
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In the following we show that a set of vectors G’ = { gl.g’ ..., g”} satisfying the
conditions (1.15) always exists, is unique and forms a basis in E".

Let £ = {e},es,...,e,} be an orthonormal basis in E". Since G also represents
a basis, we can write

ei=dlg;, gi=PBle;, i=12...n, (1.16)

where ozij and ,Bij (i =1,2,...,n) denote the components of e; and g;, respec-
tively. Inserting the first relation (1.16) into the second one yields

g = ,B,jo/;gk, = 0= (,B,ja’; —8,]-() gr, 1=12,...,n. (1.17)

Since the vectors g; are linearly independent we obtain

Blak =5 ik=1.2...n. (1.18)
Let further

g =ajel, i=12..n, (1.19)
where and henceforth we set e/ = e j(j = 1,2,...,n) in order to take the

advantage of Einstein’s summation convention. By virtue of (1.8), (1.16) and (1.18)
one finally finds

gi-gl = (ﬁﬁ‘ek).(a{e’) = pralsl = kol =8/, i.j=1.2.....n (120)

Next, we show that the vectors g’ (i = 1,2,...,n) (1.19) are linearly independent
and for this reason form a basis of E”. Assume on the contrary that

aig' =0,
where not all scalars a; (i = 1,2,...,n) are zero. Multiplying both sides of this
relation scalarly by the vectors g ; (j = 1,2, ...,n) leads to a contradiction. Indeed,
using (1.167) (see Exercise 1.5) we obtain
Oza,-g"'gj:aﬁ;:aj, j:1,2,...,l’l.

The next important question is whether the dual basis is unique. Let G/ =
{g1 S ,g”} and H' = {hl, K, ..., h”} be two arbitrary non-coinciding bases
in E”, both dualto G = {g, g2,...,gx} Then,

W =hgl, i=12...n.
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Forming the scalar product with the vectors g; (j = 1,2,...,n) we can conclude
that the bases G’ and H’ coincide:

5;=hi-gj=(h§(gk)-gj=h§(8/;=h} = k=g, i=12,...,n

Thus, we have proved the following theorem.

Theorem 1.6. To every basis in an Euclidean space I&" there exists a unique dual
basis.

Relation (1.19) enables to determine the dual basis. However, it can also be obtained
without any orthonormal basis. Indeed, let gi beabasisdualtog; (i =1,2,...,n).
Then

g =¢"g;, gi=gjg’, i=12,....n (1.21)
Inserting the second relation (1.21) into the first one yields
g =gVgngk, i=12,...n. (1.22)
Multiplying scalarly with the vectors g; we have by virtue of (1.15)
Si=gVgudf =gVgy, i,l=12,...,n. (1.23)
Thus, we see that the matrices [ gx; | and [g*/ ] are inverse to each other such that
[¢] =[] (1.24)
Now, multiplying scalarly the first and second relation (1.21) by the vectors g/ and

g;(j = 1,2,...,n), respectively, we obtain with the aid of (1.15) the following
important identities:

g/ =¢g"=¢g"¢'. gi=gi=g-g;. i.j=12,...n. (1.25)
By definition (1.8) the orthonormal basis in [E" is self-dual, so that
e;=e, e -el =68, i.j=12...n. (1.26)
With the aid of the dual bases one can represent an arbitrary vector in E” by
x=x'g;=xg", VxeE" (1.27)

where

x‘=x-g‘, xXi=x-g;, 1=12,...,n. (1.28)
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Indeed, using (1.15) we can write
x.gi :(xjgj).gi :ij; :xi,
x-gi=(x;87) g =xj8ij =x;, i=12,...,n.
The components of a vector with respect to the dual bases are suitable for calculating
the scalar product. For example, for two arbitrary vectors x = x'g; = x;g’ and
y =vyig, = y;g" weobtain
x-y=x'yg;=xyjg" =x'y =xy". (1.29)

The length of the vector x can thus be written by

x|l = \/xixjgif = \/xix/gij = Vxixt. (1.30)

Example 1.1. Dual basis in E*. Let G = {g1.g>.g3} be a basis of the three-
dimensional Euclidean space and

g =1[g18285]. (1.31)
where [e o o] denotes the mixed product of vectors. It is defined by
[abc] = (axb)-c=(bxc)-a=(cxa)-b, (1.32)

where “x” denotes the vector (also called cross or outer) product of vectors.
Consider the following set of vectors:

g' =g 'gaxgs g=g'gixg. g =g"'g1xg. (1.33)

It is seen that the vectors (1.33) satisfy conditions (1.15), are linearly independent
(Exercise 1.11) and consequently form the basis dual to g; (i = 1,2, 3). Further, it
can be shown that

g =gl (1.34)

where |o| denotes the determinant of the matrix [e]. Indeed, with the aid of (1.16),
we obtain

g =1[g818283] = [ﬁieiﬂgejﬁ];ek]

= BB [ere o] = BBl Bl = B (135)
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where e;;; denotes the permutation symbol (also called Levi-Civita symbol). It is
defined by

ijk
eiji = e’

fevee]

1 ifijk is an even permutation of 123,
= {—1 ifijk is an odd permutation of 123, (1.36)

0 otherwise,
where the orthonormal vectors e, e, and e3 are numerated in such a way that they

form a right-handed system. In this case, [e eze3] = 1.
On the other hand, we can write again using (1.16),

3
k gk
8ij =8i"8j = Zﬂiﬁj-
k=1
The latter sum can be represented as a product of two matrices so that

[gij] = [.3,]] [ﬁf]T (1.37)

Since the determinant of the matrix product is equal to the product of the matrix
determinants we finally have

Bl =g~ (1.38)

sl = |/ [

With the aid of the permutation symbol (1.36) one can write
[gigigk] =eijng i.jk=123, (1.39)
which by (1.28), yields an alternative representation of the identities (1.33) as
gixgi=ejggs, i,j=1223 (1.40)
Similarly to (1.35) one can also show that (see Exercise 1.12)
[¢'g’8’] =& (1.41)
and

g7 =g (1.42)
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Thus,
. elik
[g'g/g"]|=—. i jk=12.3, (1.43)
g
which yields by analogy with (1.40)
. o ek
g'xgl=—gr i,j=1273. (1.44)
g

Relations (1.40) and (1.44) permit a useful representation of the vector product.
Indeed, leta = a'g; = a;g" and b = b/g; = b;g’/ be two arbitrary vectors
in E. Then, in view of (1.32)

a' a®> a®

axb=(dag)x(b/g;)=dblejgg" =g|b' b b
g'g e’
. . .. a1 dz ds
axb=(ag)x(bjg’)=abje’ g g = —| by by b3 |. (1.45)
818283

For the orthonormal basis in E? relations (1.40) and (1.44) reduce to
e; xe; =e et =elker, i,j=12,3, (1.46)
so that the vector product (1.45) can be written by
ay a az
axb=|b by b |, (1.47)

e e ée3

wherea = a;e’ andb = b;e’.

1.6 Second-Order Tensor as a Linear Mapping

Let us consider a set Lin” of all linear mappings of one vector into another one
within [E”. Such a mapping can be written as

y=Ax, yeE' VxeE' VAelLin". (1.48)

Elements of the set Lin" are called second-order tensors or simply tensors. Linearity
of the mapping (1.48) is expressed by the following relations:

A(x+y)=Ax +Ay, Vx,yeE" VA e€Lin", (1.49)
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A(ax) =a(Ax), VxeE'S VaeR, VAelLin. (1.50)

Further, we define the product of a tensor by a scalar number o € R as
(xA)x = a(Ax) = A(ax), Vx ek (1.51)
and the sum of two tensors A and B as
(A+B)x =Ax +Bx, Vx eE". (1.52)

Thus, properties (A.1), (A.2) and (B.1)—(B.4) apply to the set Lin". Setting in (1.51)
o = —1 we obtain the negative tensor by

—A=(-DA. (1.53)

Further, we define a zero tensor 0 in the following manner
O0x =0, VxeE" (1.54)
so that the elements of the set Lin” also fulfill conditions (A.3) and (A.4) and

accordingly form a vector space.
The properties of second-order tensors can thus be summarized by

A+B =B+ A, (additionis commutative), (1.55)
A+ B+ C)=(A+B)+C, (addition is associative), (1.56)
0+A=A, (1.57)
A+(-A) =0, (1.58)
a (BA) = (¢f) A, (multiplication by scalars is associative), (1.59)
1A = A, (1.60)

a(A+B) =aA +oB, (multiplication by scalars is distributive
with respect to tensor addition), (1.61)
(¢ + B)A = ¢A + BA, (multiplication by scalars is distributive
with respect to scalar addition), VA,B,C € Lin", Va, § € R. (1.62)

Example 1.2. Vector product in E?. The vector product of two vectors in [E3
represents again a vector in [E3

z=wxx, ze€E, VwxelE. (1.63)
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According to (1.45) the mapping x — z is linear (Exercise 1.16) so that

wXx (ax)=a(wxx),

wx((x+y)=wxx+wxy, Vwx,yeE, VaeR. (1.64)
Thus, it can be described by means of a tensor of the second order by
wxx =Wx, WeLin’®, VxeE. (1.65)

The tensor which forms the vector product by a vector w according to (1.65) will be
denoted in the following by w. Thus, we write

WX X =WxX. (1.66)
Clearly
0=0. (1.67)
Example 1.3. Representation of a rotation by a second-order tensor. A rotation of
a vector a in E* about an axis yields another vector r in E*. It can be shown that the
mapping @ — r (a) is linear such that
r(ea)=ar(a), r(@a+b)=r(@)+r®). Ve eR, Va,becE>. (1.68)
Thus, it can again be described by a second-order tensor as
r(a) =Ra, VacF? RelLin’. (1.69)
This tensor R is referred to as rotation tensor.
Let us construct the rotation tensor which rotates an arbitrary vector a € E* about
an axis specified by a unit vector e € E? (see Fig. 1.2). Decomposing the vector a
by a = a* + x in two vectors along and perpendicular to the rotation axis we can
write
r(a)=a*+xcosw+ ysinw =a*+ (a —a*)cosw + ysinw,  (1.70)
where @ denotes the rotation angle. By virtue of the geometric identities
a*=(a-e)e=(e®e)a, y=exx=ex(a—a*)=exa=éa, (1.71)

where “®” denotes the so-called tensor product (1.80) (see Sect. 1.7), we obtain

r (a) = coswa + sinweéa + (1 —cosw) (e ® e) a. (1.72)
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Fig. 1.2 Finite rotation of a vector in E?

Thus the rotation tensor can be given by
R =coswl+sinwé + (1 —cosw)e Qe, (1.73)

where I denotes the so-called identity tensor (1.89) (see Sect. 1.7).
Another useful representation for the rotation tensor can be obtained utilizing the
factthatx = y x e = —e X y. Indeed, rewriting (1.70) by

r(a)=a+x(cosw—1)+ ysinw (1.74)
and keeping (1.71), in mind we receive
r(a) = a+sinwéa + (1 —cosw) (¢)*a. (1.75)
This leads to the expression for the rotation tensor
R =1+ sinwé + (1 — cosw) (é)* (1.76)

known as the Euler-Rodrigues formula (see, e.g., [9]).

Example 1.4. The Cauchy stress tensor as a linear mapping of the unit surface
normal into the Cauchy stress vector. Let us consider a body B in the current
configuration at a time 7. In order to define the stress in some point P let us further
imagine a smooth surface going through P and separating B into two parts (Fig. 1.3).
Then, one can define a force A p and a couple Am resulting from the forces exerted
by the (hidden) material on one side of the surface A A and acting on the material
on the other side of this surface. Let the area A A tend to zero keeping P as inner
point. A basic postulate of continuum mechanics is that the limit

. Ap
t = lim —
AA—>0 A A
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Fig. 1.3 Cauchy stress vector

exists and is final. The so-defined vector ¢ is called Cauchy stress vector. Cauchy’s
fundamental postulate states that the vector ¢ depends on the surface only through
the outward unit normal n. In other words, the Cauchy stress vector is the same
for all surfaces through P which have n as the normal in P. Further, according to
Cauchy’s theorem the mapping n — ¢ is linear provided ¢ is a continuous function
of the position vector x at P. Hence, this mapping can be described by a second-
order tensor ¢ called the Cauchy stress tensor so that

t =on. (1.77)

On the basis of the “right” mapping (1.48) we can also define the “left” one by
the following condition

(yA)-x =y-(Ax), VxeE' AeLin". (1.78)

First, it should be shown that for all y € E” there exists a unique vector yA € E”
satisfying the condition (1.78) forall x € E". Let G = {g1,g2,...,g,}and G’ =
{ gl.g% ..., g”} be dual bases in [E”. Then, we can represent two arbitrary vectors
x,y €cE" byx =x;g"and y = y; g'. Now, consider the vector

yA =y g -(Ag')]g;-

Itholds: (yA)-x = y;x; [g" - (Ag’)]. On the other hand, we obtain the same result
also by

y-(Ax) =y (x;Ag’) = yix; [g' - (Ag)].
Further, we show that the vector y A, satisfying condition (1.78) for all x € E”, is
unique. Conversely, let a, b € E" be two such vectors. Then, we have

a-x=b-x > (a—b)-x=0,VxeE" = (a—b)-(a—b)=0,

which by axiom (C.4) implies thata = b.
Since the order of mappings in (1.78) is irrelevant we can write them without
brackets and dots as follows

y-(Ax) = (yA) -x = yAx. (1.79)
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1.7 Tensor Product, Representation of a Tensor
with Respect to a Basis

The tensor product plays an important role since it enables to construct a second-
order tensor from two vectors. In order to define the tensor product we consider two
vectors a, b € E". An arbitrary vector x € E" can be mapped into another vector
a (b - x) € E". This mapping is denoted by symbol “®” as a ® b. Thus,

(@a®b)x =a(b-x), a,beckE' Vx ek (1.80)

It can be shown that the mapping (1.80) fulfills the conditions (1.49)—(1.51) and for
this reason is linear. Indeed, by virtue of (B.1), (B.4), (C.2) and (C.3) we can write

@®b)(x+y)=alb-(x+y)=ab-x+b-y)
—@®b)x+@®b)y, (181
(@®b)(ax) =alb-(ax)]=a(b- x)a
—a@®b)x, a.becE' Vx.ycE' VacR. (1.82)

Thus, the tensor product of two vectors represents a second-order tensor. Further, it
holds

cR®@+b)=c®a+c®b, (a+b)®c=a®Rc+bRc, (1.83)

(va) ® (Bb) =af(a®b), a,b,ceck" Va,p ek (1.84)

Indeed, mapping an arbitrary vector x € [E" by both sides of these relations and
using (1.52) and (1.80) we obtain

c®@+bx=cl@a-x+b-x)=c(@-x)+c(b-x)
=(c®a)x+(CcRb)x=(cR®a+c®b)x,
(@a+b)®c]x =(@a+b)(c-x)=a(c-x)+b(c-x)
—@Rc)x+b®c)x=(@Rc+bRc)x,
(aa) @ (Bb) x = (aa) (Bb - x)

=ofab-x)=af(a®b)x, VxecE"
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For the “left” mapping by the tensor @ ® b we obtain from (1.78) (see Exercise 1.21)

y@®b)=(y-a)b, VyeE". (1.85)

We have already seen that the set of all second-order tensors Lin" represents a
vector space. In the following, we show that a basis of Lin" can be constructed with
the aid of the tensor product (1.80).

Theorem 1.7. Let F = {f1,f2,-... fu}and G = {g1,82,.-.,8n} be two

arbitrary bases of E". Then, the tensors f; ® g; (i,j =1,2,...,n) represent a

basis of Lin". The dimension of the vector space Lin" is thus n’.

Proof. First, we prove that every tensor in Lin" represents a linear combination
of the tensors f; ® g; (i,j =1,2,...,n). Indeed, let A € Lin" be an arbitrary
second-order tensor. Consider the following linear combination

A= (fAg’)fi®g;.

where the vectors f' and g’ (i = 1,2,...,n) form the bases dual to F and G,
respectively. The tensors A and A’ coincide if and only if

A'x = Ax, Vx eE". (1.86)
Letx = x;g/. Then
Ax = (f'Ag’) fi®g;(xgh) = (f'Ag’) fixi8s =x; (f'Ag)) fi.

On the other hand, Ax = xjAg/. By virtue of (1.27) and (1.28) we can
represent the vectors Ag/ (j = 1,2,...,n) with respect to the basis F by Ag/ =

[f7-(Ag))] fi=(f'Ag’) fi (j =1.2,....n). Hence,
Ax =X (flAg])f,

Thus, it is seen that condition (1.86) is satisfied for all x € E”". Finally, we show
that the tensors f; ® g; (i,j = 1,2,...,n) are linearly independent. Otherwise,
there would exist scalars o/ (i,j =1,2,...,n), not all zero, such that

O{ijfi®gj=0.

The right mapping of g* (k =1,2,...,n) by this tensor equality yields then:
o'k fi =0 (k =1,2,...,n). This contradicts, however, the fact that the vectors
fr (k=1,2,...,n) form a basis and are therefore linearly independent.

For the representation of second-order tensors we will in the following use primarily
the bases g; ®g,~,gi ®gl, g ®gjorg; ®g’/ (i,j =1,2,...,n). With respect
to these bases a tensor A € Lin" is written as
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A=A"g, ®g;=Ajg' ®g = Afjgi ®g =A/g' ®g, (1.87)
with the components (see Exercise 1.22)
AV =g'Ag/, Ay =giAg;,
A =giAg;. Al =giAg/. i.j=12...n. (1.88)
Note, that the subscript dot indicates the position of the above index. Forlexample,
for the components A’ i i is the first index while for the components A/, i is the

second index.
Of special importance is the so-called identity tensor I. It is defined by

Ix =x, VxcFE". (1.89)

With the aid of (1.25), (1.87) and (1.88) the components of the identity tensor can
be expressed by

V=glg/=g"-g/=¢" 1;=glg;=gi-8 =gy

Ifj =Ii{ =I;» =g'lg;=glg' =¢g'-g;=gi-g’ :8;, (1.90)
wherei, j = 1,2,...,n. Thus,

I=g,g' Qg =¢'gRg, =¢g'®gi=g.¢g". (1.91)

It is seen that the components (1.90);, of the identity tensor are given by
relation (1.25). In view of (1.30) they characterize metric properties of the Euclidean
space and are referred to as metric coefficients. For this reason, the identity tensor is
frequently called metric tensor. With respect to an orthonormal basis relation (1.91)
reduces to

n
I=) e ®e;. (1.92)

i=1

1.8 Change of the Basis, Transformation Rules

Now, we are going to clarify how the vector and tensor components transform with
the change of the basis. Let x be a vector and A a second-order tensor. According
to (1.27) and (1.87)

X =xig; =xigi, (1.93)

A=Alg®g,=A;g ®g/ =N, gi®g =A/g'®g;. (199
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With the aid of (1.21) and (1.28) we can write
x'=x-g' =x-(gg;)=x;8". xi=x-gi=x-(g5;8') =x'g;i. (195
wherei = 1,2,...,n. Similarly we obtain by virtue of (1.88)
AT =g'Ag’ = g'A(g" g1)
= (¢"81) A (g7 gx) = ALg" = g"Ang”.  (1.96)
Aij = giAg; = giA (gx8")
= (g1g') A (gkg") = Afgy = quA gy, (1.97)

where i, j = 1,2,...,n. The transformation rules (1.95)—(1.97) hold not only for
dual bases. Indeed, let g; and g; (i = 1,2,...,n) be two arbitrary bases in E", so
that

x=x'g,i=x'g,, (1.98)
A=Algiwg, =A"g,0%,. (1.99)
By means of the relations
gi=dlg, i=12..n (1.100)
one thus obtains
x=xgi=xdg, = ¥ =xd, j=12,...n, (1.101)

= A =AYd5d., ki1=1,2,....n. (1.102)

1.9 Special Operations with Second-Order Tensors

In Sect. 1.6 we have seen that the set Lin" represents a finite-dimensional vector
space. Its elements are second-order tensors that can be treated as vectors in E"’
with all the operations specific for vectors such as summation, multiplication by a
scalar or a scalar product (the latter one will be defined for second-order tensors
in Sect. 1.10). However, in contrast to conventional vectors in the Euclidean space,
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for second-order tensors one can additionally define some special operations as for
example composition, transposition or inversion.

Composition (simple contraction). Let A, B € Lin" be two second-order tensors.
The tensor C = AB is called composition of A and B if

Cx =ABx), VxeE" (1.103)
For the left mapping (1.78) one can write
y(AB) = (yA)B, VyeE". (1.104)
In order to prove the last relation we use again (1.78) and (1.103):
y (AB)x =y -[(AB)x] = y - [A (Bx)]
= (yA)-(Bx) =[(yA)B]-x, Vx e[E".
The composition of tensors (1.103) is generally not commutative so that AB #
BA. Two tensors A and B are called commutative if on the contrary AB = BA.

Besides, the composition of tensors is characterized by the following properties (see
Exercise 1.26):

AO=0A =0 AI=IA=A, (1.105)
AB+C)=AB+AC, (B+C)A =BA + CA, (1.106)
A (BC) = (AB) C. (1.107)

For example, the distributive rule (1.106); can be proved as follows
AB+O)]x=AB+C)x]=ABx +Cx)=ABx)+ A(Cx)
= (AB)x + (AC)x = (AB+AC)x, Vx ec[E".
For the tensor product (1.80) the composition (1.103) yields
(a@a®b)(c®d)=((b-c)a®d, a,/b,c,decE". (1.108)
Indeed, by virtue of (1.80), (1.82) and (1.103)

@®b)(c®d)x =(@®b)[(c®d)x]=(d-x)@®b)c
=d-x)(b-c)a=b-c)(a®d)x
=[b-c)a®d]x, VxeFE"
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Thus, we can write
AB=A"B/g;,® g, =AuBg' ® g;
=ABgi®g/ =ABug ®g/. (1.109)

where A and B are given in the form (1.87).

Powers, polynomials and functions of second-order tensors. On the basis of the
composition (1.103) one defines by

A" =AA... A, m=1,23..., A'=1 (1.110)
———

m times

powers (monomials) of second-order tensors characterized by the following evident
properties
AFA! = AR (AF) = AR (1.111)
(@A) =o*A*, k1=0,1,2... (1.112)
With the aid of the tensor powers a polynomial of A can be defined by

g (A) = aol + a1A + a,A* + ...+ a, A" =ZakAk. (1.113)
k=0

g (A): Lin" —Lin" represents a tensor function mapping one second-order tensor
into another one within Lin”. By this means one can define various tensor functions.
Of special interest is the exponential one

exp(A) =) o (1.114)
k=0
given by the infinite power series.
Transposition. The transposed tensor AT is defined by:
ATx =xA, Vx eE", (1.115)
so that one can also write
Ay = yAT, xAy = yATx, Vx,y e E". (1.116)
Indeed,

x-(Ay)=(xA)-y =y -(A"x) = yATx =x - (yA"), Vx,y € E".
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Consequently,
(A7) = A, (1.117)

Transposition represents a linear operation over a second-order tensor since

(A+B)T =AT + BT (1.118)

and
(@A) =aA”, VaeR. (1.119)

The composition of second-order tensors is transposed by
(AB)" = BTAT. (1.120)
Indeed, in view of (1.104) and (1.115)
(AB)"x = x (AB) = (xA)B =BT (xA) = BTA"x, Vx cE".

For the tensor product of two vectors @, b € E" we further obtain by use of (1.80)
and (1.85)
@®b)"=b®a. (1.121)

This ensures the existence and uniqueness of the transposed tensor. Indeed, every
tensor A in Lin" can be represented with respect to the tensor product of the basis
vectors in [E” in the form (1.87). Hence, considering (1.121) we have

AT=AVg;®gi=Ajg’ ®g' =N g/ ®gi=Alg;®g".  (1122)
or
AT=AN'gi®gi=Aug' g/ =Ag'®g; =Algi®g/. (L2

Comparing the latter result with the original representation (1.87) one observes that
the components of the transposed tensor can be expressed by

(AT), = A (A7) = AT, (1.124)

(AT)) = AL =g Algn. (AT) = Al = guAbe" (1.125)
For example, the last relation results from (1.88) and (1.116) within the following
steps

(AT), =g'ATg; =gjAg' =g, (Aler ®2') ' = gpAle.

According to (1.124) the homogeneous (covariant or contravariant) components
of the transposed tensor can simply be obtained by reflecting the matrix of the
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original components from the main diagonal. It does not, however, hold for the
mixed components (1.125).

The transposition operation (1.115) gives rise to the definition of symmetric
MT = M and skew-symmetric second-order tensors WT = —W.

Obviously, the identity tensor is symmetric

I'=1 (1.126)

Indeed,
xIy=x-y=y-x=yIx =xI'y, Vx,ycE".

One can easily show that the tensor w (1.66) is skew-symmetric so that
wh = —w. (1.127)

Indeed, by virtue of (1.32) and (1.116) on can write

xWTy:yﬁ)x y-wxx)=[ywx] =—[xwy]

=—x-wWxy) =x(-w)y, Vx,yeFE

Inversion. Let
y = Ax. (1.128)

A tensor A € Lin” is referred to as invertible if there exists a tensor A~! € Lin”
satisfying the condition
x=A"y, VxeFE". (1.129)

The tensor A~! is called inverse of A. The set of all invertible tensors Inv? =
{A € Lin" : EIA“} forms a subset of all second-order tensors Lin".
Inserting (1.128) into (1.129) yields

x=A"y=A"Ax)=(AT"A)x, VxeE

and consequently
AT'A=1L (1.130)

Theorem 1.8. A tensor A is invertible if and only if Ax = 0 implies that x = 0.

Proof. First we prove the sufficiency. To this end, we map the vector equation
Ax = 0 by A™!. According to (1.130) it yields: 0 = A~'Ax = Ix = x. To
prove the necessity we consider a basis G = {g1,g2,...,8»} in E". It can be
shown that the vectors h; = Ag; (i =1,2,...,n) form likewise a basis of E”.
Conversely, let these vectors be linearly dependent so that a’h; = 0, where not
all scalars a’ (i = 1,2,...,n) are zero. Then, 0 = a'h; = a'Ag; = Aa, where
a = a'g; # 0, which contradicts the assumption of the theorem. Now, consider
the tensor A’ = g; ® h', where the vectors h' are dualto h; (i = 1,2,...,n). One
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can show that this tensor is inverse to A, such that A’ = A™'. Indeed, let x = x’ gi
be an arbitrary vector in E”. Then, y = Ax = x'Ag; = x'h; and therefore
Ay=gi ®h (x'h;)=gix/8 =x'g; = x.

Conversely, it can be shown that an invertible tensor A is inverse to A~ and
consequently
AAT =1 (1.131)

For the proof we again consider the bases g; and Ag; (i =1,2,...,n). Lety =
y'Ag; be an arbitrary vector in E". Let further x = A™'y = yig; in view
of (1.130). Then, Ax = y'Ag; = y which implies that the tensor A is inverse
to A™l.

Relation (1.131) implies the uniqueness of the inverse. Indeed, if A~! and A™!
are two distinct tensors both inverse to A then there exists at least one vector y € K"
such that A™'y # A~!y. Mapping both sides of this vector inequality by A and
taking (1.131) into account we immediately come to the contradiction.

By means of (1.120), (1.126) and (1.131) we can write (see Exercise 1.39)

(A7) = (AT =A"T. (1.132)
The composition of two arbitrary invertible tensors A and B is inverted by
(AB)"' =B'A7L (1.133)

Indeed, let
y = ABx.

Mapping both sides of this vector identity by A™! and then by B™!, we obtain with
the aid of (1.130)
x =B 'A7'y, Vx eE"

On the basis of transposition and inversion one defines the so-called orthogonal
tensors. They do not change after consecutive transposition and inversion and form
the following subset of Lin":

Orth” = {QeLin":Q=Q"}. (1.134)
For orthogonal tensors we can write in view of (1.130) and (1.131)

QQ'=Q'Q =1 VQ € Orth". (1.135)
For example, one can show that the rotation tensor (1.73) is orthogonal. To this end,

we complete the vector e defining the rotation axis (Fig. 1.2) to an orthonormal basis
{e,q, p} such thate = g x p. Then, using the vector identity (see Exercise 1.15)

plg-x)—q(p-x)=(¢gxp)xx, Vx e E3 (1.136)
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we can write
e=p®qg—q®p. (1.137)

The rotation tensor (1.73) takes thus the form
R=coswl+sino(p®qg—q®p)+(1—cosw)(e@e). (1.138)
Hence,
RR" = [coswI + sinw (p R g —q @ p) + (1 —cosw) (e ® e)]
[coswl —sinw (p®g—q @ p)+ (1 —cosw) (e R e)]
=cos’wl +sin*w(e@e)+sinw(pRp+q®q) =1L
Alternatively one can express the transposed rotation tensor (1.73) by
R" = coswl + sinwé’ + (1 —cosw)e @ e
=cos(—w) [+ sin(—w)é + [l —cos(—w)]e Qe (1.139)
taking (1.121), (1.126) and (1.127) into account. Thus, RT (1.139) describes the
rotation about the same axis e by the angle —w, which likewise implies that
R™Rx = x, Vx € E3.
It is interesting that the exponential function (1.114) of a skew-symmetric tensors
represents an orthogonal tensor. Indeed, keeping in mind that a skew-symmetric

tensor W commutes with its transposed counterpart W' = —W and using the
identities exp (A + B) = exp (A) exp (B) for commutative tensors (Exercise 1.29)

and (Ak )T = (AT)k for integer k (Exercise 1.37) we can write
I = exp(0) = exp(W—W) =exp (W + W'")
= exp (W) exp (WT) = exp (W) [exp (W)]", (1.140)

where W denotes an arbitrary skew-symmetric tensor.

1.10 Scalar Product of Second-Order Tensors

Consider two second-order tensors @ ® b and ¢ ® d given in terms of the tensor
product (1.80). Their scalar product can be defined in the following manner:

(a@a®b):(c®d)=(a-¢)(b-d), ab,c,d €E". (1.141)
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It leads to the following identity (Exercise 1.41):
c®d:A=cAd =dA'c. (1.142)
For two arbitrary tensors A and B given in the form (1.87) we thus obtain
A:B=A,BY = AB, = A{jBi{ = Ai{ij, (1.143)

Similar to vectors the scalar product of tensors is a real function characterized by
the following properties (see Exercise 1.42)

D. (D.1) A:B = B : A (commutative rule),
(D.2) A: B+ C)=A:B+ A: C (distributive rule),
D.3) «(A:B) = (¢A): B = A: («¢B) (associative rule for multiplication by
ascalar), VA,BecLin”, YVa € R,
(D4) A:A>0 YAeLin®, A:A=0 ifandonlyif A =0.

We prove for example the property (D.4). To this end, we represent an arbitrary
tensor A with respect to an orthonormal basis of Lin" as: A = AV¢; @ ¢; =
Ajjel ® e/, where AY = A, (i,j =1,2,...,n),sincee’ =e; (i =1,2,...,n)
form an orthonormal basis of E” (1.8). Keeping (1.143) in mind we then obtain:

n n
A:A=ATA; = Y ATAT = 3 (AV) 20,
ij=1 ij=1
Using this important property one can define the norm of a second-order tensor by:

Al = (A:A)"?, A eLin". (1.144)

For the scalar product of tensors one of which is given by a composition we can
write

A: (BC) = (B"A) : C = (AC") : B. (1.145)
We prove this identity first for the tensor products:
@®b):[(c®d)(e® f)l=U-e)[(@a®b): (c® f)]
=d-e)a-c)b-f).
[(c@d) @b)]:(e®f)=[dcc)a®b)]: (e® f)
=(@-c)[(d®b): (e® f)]
=d-e)a-c)b-f).
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[(a®b)(e® f)]: (c®d)=[a®b)(f ®e)]: (c®d)
=b-fla®e): (c®d)]
=(d-e)a-c)b-f).

For three arbitrary tensors A, B and C given in the form (1.87) we can write in view
of (1.109), (1.125) and (1.143)

Al (BEC)) = (BfaL) ¢l = [ (B A ] ¢/,
Ay (Bhe) = (acf) B =[A] (€] Bk (1.146)
Similarly we can prove that
A:B=AT:B. (1.147)
On the basis of the scalar product one defines the trace of second-order tensors by:
trA=A:L (1.148)
For the tensor product (1.80) the trace (1.148) yields in view of (1.142)
tr(@a®b)=a-b. (1.149)
With the aid of the relation (1.145) we further write
tr(AB) = A:BT = AT B. (1.150)
In view of (D.1) this also implies that

tr (AB) = tr (BA). (1.151)

1.11 Decompositions of Second-Order Tensors

Additive decomposition into a symmetric and a skew-symmetric part. Every
second-order tensor can be decomposed additively into a symmetric and a skew-
symmetric part by

A = symA + skewA, (1.152)
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where

symA = -~ (A+AT), skewA = - (A—A"). (1.153)

1 1
2 2
Symmetric and skew-symmetric tensors form subsets of Lin” defined respec-
tively by

Sym" = {M € Lin" :M =M"}, (1.154)

Skew” = {W € Lin" : W = —W'}. (1.155)

One can easily show that these subsets represent vector spaces and can be referred
to as subspaces of Lin". Indeed, the axioms (A.1)—(A.4) and (B.1)-(B.4) including
operations with the zero tensor are valid both for symmetric and skew-symmetric
tensors. The zero tensor is the only linear mapping that is both symmetric and skew-
symmetric such that Sym” N Skew” = 0.

For every symmetric tensorM = MY g, ® g ; it follows from (1.124) that MV =
M/ (i # j,i,j =1,2,...,n). Thus, we can write

M=) Mig®g+ ) M (s8g +g,®g). MeSym' (L156)
i=l1 i,j=1
i>j

Similarly we can write for a skew-symmetric tensor

n
W= Wi(g;i®g;—g;®g). W e Skew (1.157)
i,ij>71
taking into account that Wi = 0 and WV = —W/! i#j,i,j=12,...,n).

Therefore, the basis of Sym” is formed by 7 tensors g; ® g; and %n (n — 1) tensors
g8i ®g; + g; ® gi, while the basis of Skew" consists of %n (n —1) tensors g; ®
g;i—8,;®gi,wherei > j =1,2,...,n.Thus, the dimensions of Sym” and Skew"
are %n (n+1)and %n (n — 1), respectively. It follows from (1.152) that any basis
of Skew” complements any basis of Sym” to a basis of Lin".

Taking (1.40) and (1.169) into account a skew symmetric tensor (1.157) can be
represented in three-dimensional space by

3
W= Wi (gi®g —¢g ®g)

ij=l1
i>]
3
= > W/gixg =W W eSkew’, (1.158)
ij=1

i>j



30 1 Vectors and Tensors in a Finite-Dimensional Space

where

3

- 1. 1 i

w= E W’/gjxgi:EW’/gjxg,»zzgjx(Wg/)
1,i/>7l

1. ..
= S Wejinggt =g (Wi + Whg? + We?). (1.159)

Thus, every skew-symmetric tensor in three-dimensional space describes a cross
product by a vector w (1.159) called axial vector. One immediately observes that

Ww =0, W e Skew’. (1.160)

Obviously, symmetric and skew-symmetric tensors are mutually orthogonal such
that (see Exercise 1.46)

M:W =0, VM eSym”, YW € Skew". (1.161)

Spaces characterized by this property are called orthogonal.

Additive decomposition into a spherical and a deviatoric part. For every
second-order tensor A we can write

A = sphA + devA, (1.162)

where ! |
sphA = —tr (A)I, devA =A — —tr(A)I (1.163)
n n

denote its spherical and deviatoric part, respectively. Thus, every spherical tensor S
can be represented by S = «I, where « is a scalar number. In turn, every deviatoric
tensor D is characterized by the condition trD = 0. Just like symmetric and skew-
symmetric tensors, spherical and deviatoric tensors form orthogonal subspaces of
Lin".

1.12 Tensors of Higher Orders

Similarly to second-order tensors we can define tensors of higher orders. For
example, a third-order tensor can be defined as a linear mapping from E” to Lin".
Thus, we can write

Y=Ax, YeLin", VxcE' VAEelLin", (1.164)
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where Lin" denotes the set of all linear mappings of vectors in E” into second-order
tensors in Lin”. The tensors of the third order can likewise be represented with
respect to a basis in Lin" e.g. by

A=AVtg, ®g; DLk =Aijkgi g/ ®gk
=ALgi®g' ®g-=ALg ®g;®gk (1.165)

For the components of the tensor A (1.165) we can thus write by analogy
with (1.146) - - o o
AT = Ag" = A g7 e™ = Ang g g

Aji = Aligri = A3 grigsi = A gri&sj 8- (1.166)

Exercises

1.1. Prove that if x € V is a vector and ¢ € R is a scalar, then the following
identities hold.

@—-0=0, a0 =0, (c)0x =0, (d—x = (—1)x, (e)if ax = 0, then
either « = 0 or x = 0 or both.

1.2. Prove that x; # 0( = 1,2,...,n) for linearly independent vectors x1,
X3, ..., X,.In other words, linearly independent vectors are all non-zero.

1.3. Prove that any non-empty subset of linearly independent vectors xj,
X3, ..., X, is also linearly independent.

1.4. Write out in full the following expressions for n = 3: (a) Sj.af , (b) &;jx'x/,
o
8, (d) =——dx’.
(¢)6;, (d) s
1.5. Prove that
0-x =0, Vx € E". (1.167)

1.6. Prove that a set of mutually orthogonal non-zero vectors is always linearly
independent.

1.7. Prove the so-called parallelogram law: ||x + y||2 = ||x||2 +2x-y + ||y||2.

18. LetG = {g1,82,...,8n} beabasisin E" and a € E" be a vector. Prove that
a-g;=0(=1,2,...,n)ifand onlyifa = 0.

1.9. Prove thata = b ifandonlyifa-x =b-x, Vx € E".

1.10. (a) Construct an orthonormal set of vectors orthogonalizing and normalizing
(with the aid of the procedure described in Sect.1.4) the following linearly
independent vectors:
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1 2 4
g1=41,, g2=31,:, g3=12,,
0 -2 1

where the components are given with respect to an orthonormal basis.

(b) Construct a basis in E* dual to the given above utilizing relations (1.16),, (1.18)
and (1.19).

(c) As an alternative, construct a basis in E? dual to the given above by means
of (1.21), (1.24) and (1.25),.

(d) Calculate again the vectors g’ dualto g; (i = 1,2, 3) by using relations (1.33)
and (1.35). Compare the result with the solution of problem (b).

1.11. Verify that the vectors (1.33) are linearly independent.

1.12. Prove identities (1.41) and (1.42) by means of (1.18), (1.19) and (1.24),
respectively.

1.13. Prove relations (1.40) and (1.44) by using (1.39) and (1.43), respectively.

1.14. Verify the following identities involving the permutation symbol (1.36) for
n =3 (a) ey = 0, (b) efme i = 284, (c) elfeyr = 6, (d) eMMeryy =
58] — 8is).

1.15. Prove the following identities

(axb)yxc=(@-c)b—(b-¢)a, (1.168)
axb=b®a—a®b, Vab,cecB (1.169)

1.16. Prove relations (1.64) using (1.45).

1.17. Prove that AO = 0A = 0, YA € Lin".

1.18. Prove that 0A = 0, VA € Lin".

1.19. Prove formula (1.58), where the negative tensor —A is defined by (1.53).

1.20. Prove that not every second order tensor in Lin" can be represented as a tensor
product of two vectorsa, b € E" asa ® b.

1.21. Prove relation (1.85).
1.22. Prove (1.88) using (1.87) and (1.15).
1.23. Evaluate the tensor W = w = wx, where w = w! gi.

1.24. Evaluate components of the tensor describing a rotation about the axis e3 by
the angle «.
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1.25. LetA = AVg,; ® g, , where

0 -1
[A7]=10
1

S O O

0
0
and the vectors g; (i = 1,2, 3) are given in Exercise 1.10. Evaluate the components
Ay, Al and A/

1.26. Prove identities (1.105) and (1.107).

1.}217. LetA=Alg;®g/,B=B,g;,®g/,C=C,g;®g’/ andD =D/, 2, ®g’,
where

A ] = 000 By ] = 000 e = 000 .
000 001 010
100
D ]=1{01/20
00 10

Find commutative pairs of tensors.

1.28. Let A and B be two commutative tensors. Write out in full (A + B)k, where
k=2,3,...

1.29. Prove that
exp(A + B) =exp(A)exp(B), (1.170)

where A and B commute.

1.30. Evaluate exp (0) and exp (I).

1.31. Prove thatexp (—A)exp (A) = exp(A)exp(—A) =L

1.32. Prove that exp (kA) = [exp (A)]k for all integer k.

1.33. Prove thatexp (A + B) = exp (A) +exp(B) —Iif AB = BA = 0.
1.34. Prove that exp (QAQ") = Qexp (A)Q", VQ € Orth”.

1.35. Compute the exponential of the tensors D = D, g; ® g/, E = E; g; ® g/
andF =F g, ® g/, where

200 010 020

[D] =030 [E;]=]000| [F,]=|000

001 000 001
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1.36. Prove that (ABCD)" = DTCTBTAT.
1.37. Verify that (A¥)" = (AT)", where k = 1,2,3, ...

1.38. Evaluate the components B, B;;, B! ; and B,f of the tensor B = AT, where
A is defined in Exercise 1.25.

1.39. Prove relation (1.132).
1.40. Verify that (A™)" = (A¥) ™' = A~, where k = 1,2,3, ...
1.41. Prove identity (1.142) using (1.87) and (1.141).

1.42. Prove by means of (1.141)—(1.143) the properties of the scalar product (D.1)—
(D.3).

1.43. Verify that[(a ® b) (c ® d)] : 1= (a-d) (b-c).
1.44. Express trA in terms of the components Al i Ay, Al

145. LetW = W'g; ® g;, where

0-1-3
[W/l=|1 0
3-1 0

and the vectors g; (i = 1,2, 3) are given in Exercise 1.10. Calculate the axial vector
of W.

1.46. Prove that M: W = 0, where M is a symmetric tensor and W a skew-
symmetric tensor.

1.47. Evaluate ter, where W is a skew-symmetric tensor and k = 1,3, 5, ...
1.48. Verify that sym (skewA) = skew (symA) = 0, YA € Lin".
1.49. Prove that sph (devA) = dev (sphA) = 0, VA € Lin".



Chapter 2
Vector and Tensor Analysis in Euclidean Space

2.1 Vector- and Tensor-Valued Functions, Differential
Calculus

In the following we consider a vector-valued function x (¢) and a tensor-valued
function A (¢) of a real variable 7. Henceforth, we assume that these functions are
continuous such that

lim [x (1) = x (10)] = 0, lim [A(1) — A (10)] = 0 @.1)

for all 7y within the definition domain. The functions x (¢) and A (¢) are called
differentiable if the following limits

dx o x(t+s)—x() dA . A+s)—A@®)
—=lim—-, — =lm—m——"~

2.2)
dr =0 K} dt s—0 s

exist and are finite. They are referred to as the derivatives of the vector- and tensor-
valued functions x (¢) and A (), respectively.

For differentiable vector- and tensor-valued functions the usual rules of differen-
tiation hold.

1. Product of a scalar function with a vector- or tensor-valued function:

@ =Tx0 a0 S, @3

d du dA

2. Mapping of a vector-valued function by a tensor-valued function:
d dA dx
—[A@W)x ()] =—x)+A) —. 2.5
FAOXOl=Tx 0 +A0 @.5)

M. Itskov, Tensor Algebra and Tensor Analysis for Engineers, Mathematical Engineering, 35
DOI 10.1007/978-3-642-30879-6_2, © Springer-Verlag Berlin Heidelberg 2013
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3. Scalar product of two vector- or tensor-valued functions:

dx
[x ) y(t)]—a YO +x (1), (2.6)
d dA dB

4. Tensor product of two vector-valued functions:

d d d
SEOeyol=Ter0+xne T 8)

5. Composition of two tensor-valued functions:

d dA dB
m [A)B@)] = EB ) +AQ@) TR (2.9)
6. Chain rule: e d A d
X du u
—x[u@)]= i @ Afu(®)] = FPRTE (2.10)

7. Chain rule for functions of several arguments:

dx du dx dv

—x[u(@),v@®)]= wa T A (2.11)
JA d JA d

—A [u(6) v ()] = ——” + 5 dj (2.12)

where d/du denotes the partial derivative. It is defined for vector and tensor
valued functions in the standard manner by

ax (u,v) — lim x (u+s,v)—x (u,y)

o lim - (2.13)

0A (u,v) — lim Alu+sy)—A (u,v)‘ (2.14)
ou s—>0 N

The above differentiation rules can be verified with the aid of elementary differential
calculus. For example, for the derivative of the composition of two second-order
tensors (2.9) we proceed as follows. Let us define two tensor-valued functions by

A+ -A@0) _ % 0,(s) = Bt+s)-B@®) _ @ (2.15)

01 () = K dr K dr

Bearing the definition of the derivative (2.2) in mind we have

lim Oy (5) = 0. lim 05 (s) = 0.
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Then,

9 AOB(@) = lim ALFTHBUFH —AOB@)
dr s—0 s

= }gr(l)% { [A ) + s% + 50, (s):| [B (1) + sg + 50, (s):|

—A(t)B(t)}
= 313(1){[% + 0, (s):|B(t) +A@) [% +0, (s):|}

dA dB dA dB
lims | — i =B Al) —.
+S£%s[ o O (s):| [ o O (s):| STBO+AWD

2.2 Coordinates in Euclidean Space, Tangent Vectors

Definition 2.1. A coordinate system is a one to one correspondence between
vectors in the n-dimensional Euclidean space E" and a set of n real num-
bers (xl, x2, ... ,x"). These numbers are called coordinates of the corresponding
vectors.

Thus, we can write

xX=x'(r) & r=r@"xx"), (2.16)
where r € E" and x' € R (i =1,2,...,n). Henceforth, we assume that the
functions x' = x’ (r) and r = r (x',x2,..., x") are sufficiently differentiable.

Example 2.1. Cylindrical coordinates in E3. The cylindrical coordinates (Fig.2.1)
are defined by

r=r(p,z,r) =rcospe; + rsinge, + zes (2.17)

and

r= \/("'6’1)2-}-("'92)2, z=r-e;,

r-eg

arccos ifr-e, >0,
Y = r r-e . (218)
27 — arccos ifr-e, <0,

r

where e; (i = 1,2, 3) form an orthonormal basis in E3.
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A
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€

x 1

Fig. 2.1 Cylindrical coordinates in three-dimensional space

The vector components with respect to a fixed basis, say H = {hy,hs,...,
h,}, obviously represent its coordinates. Indeed, according to Theorem 1.5 of the
previous chapter the following correspondence is one to one

r=x'h; < x'=r-h', i=12...,n, (2.19)
where r € E" and H' = {hl, h?, ..., h"} is the basis dual to H. The components
x' (2.19), are referred to as the linear coordinates of the vector r.

The Cartesian coordinates result as a special case of the linear coordinates (2.19)
where h; =e; (i =1,2,...,n) sothat

r=xe; & x=r-e, i=12...,n. (2.20)

Let x' = x' (r)and y' = y' (r) (i = 1,2,...,n) be two arbitrary coordinate
systems in [E". Since their correspondences are one to one, the functions

xi =3 (yl,yz,...,y") & yi= (xl,xz,...,x”),i:1,2,...,n (2.21)

are invertible. These functions describe the transformation of the coordinate sys-
tems. Inserting one relation (2.21) into another one yields

yi — yAi ()fel (yl,yZ,'“,yn)7
32 (yl,yz,...,y”),...,)?” (yl,yz,...,y")). (2.22)
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The further differentiation with respect to y/ delivers with the aid of the chain rule

! ay’ axk ..
7=t =gy bi=l2n 22)

The determinant of the matrix (2.23) takes the form

dxk
ay/

dy! axk
dxk 9y/

oy
oxk

[yl =1=

. (2.24)

The determinant |3y’ /dxk | on the right hand side of (2.24) is referred to as Jacobian
determinant of the coordinate transformation y' = (x1 X2, x") (i=12,
...,n). Thus, we have proved the following theorem.

Theorem 2.1. If the transformation of the coordinates y' = ' (xl, X2, x")

admits an inverse form x' = &' (y',y*,...,y") ( = 1,2,...,n) and if J and K
are the Jacobians of these transformations then JK = 1.

One of the important consequences of this theorem is that

ay’

x| #0. (2.25)

-

Now, we consider an arbitrary curvilinear coordinate system
0'=0"(r) & r=r(0".0%....0"), (2.26)
wherer e E" and 9’ e R (i = 1,2,...,n). The equations
0 =const, i =1,2,....k—1,k+1,....n (2.27)
define a curve in E" called 0% -coordinate line. The vectors (see Fig.2.2)

or

305 k=12,....n (2.28)

8k =

are called the tangent vectors to the corresponding 8% -coordinate lines (2.27).

One can verify that the tangent vectors are linearly independent and form thus
a basis of E". Conversely, let the vectors (2.28) be linearly dependent. Then, there
are scalars @' € R (i = 1,2,...,n), not all zero, such that o’ g; = 0. Let further
x! = x'(r) (i = 1,2,...,n) be linear coordinates in E" with respect to a basis
H = {hl, hz, e ,hn}. Then,

a,.a_r ;or Ox/ L ox/
20!

0= i i = = — Y = —h;.
*E oxi 00t Y oei
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Fig. 2.2 Illustration of the tangent vectors

Since the basis vectors k; (j = 1,2,...,n) are linearly independent
;9 1.2
o — =0V, = 1,4, ,n
967 /

This is a homogeneous linear equation system with a non-trivial solution
o (i =1,2,...,n). Hence, axi/aef\ = 0, which obviously contradicts rela-
tion (2.25).

Example 2.2. Tangent vectors and metric coefficients of cylindrical coordinates
inE3. By means of (2.17) and (2.28) we obtain

0
g1 = o _ ., sinpe| + r cos ge,,
dg
ar
= — = @3,
&2 0z ?
ar .
83 = 5, T cosva + singes. (2:29)
r

The metric coefficients take by virtue of (1.24) and (1.25), the form

r200 ) 1 r200
[¢s]=[gi-g;]=|010]|. [¢"]=[gy] =| 0 10]. (230
001 001

The dual basis results from (1.21); by

1 1. 1
g = 5% = ——singe; + —cosgey,
r r r

g’ =gr=e

g’ = g3 =cosge, + singe,. (2.31)
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2.3 Coordinate Transformation. Co-, Contra- and Mixed
Variant Components

Let ' = 0/ (r)and & = 6 (r) (i =1,2,...,n) be two arbitrary coordinate
systems in [E”. It holds

__3r_3r391_ 907 P —12 532
gi_ﬁ_mﬁ_gjﬁ, i=1,2,...,n. (2.32)
If g’ is the dual basis to g; (i = 1,2,...,n), then we can write
: 06!
i -
g = 307" i=1,2,...,n. (2.33)

Indeed,

oo 00 0\ 30" 96!
g 8 = gw : glﬁ =8 -8 W&W

90" 96! 90" 90k 96! :
:8k — = :_T:ngl" .,.:1,2,..., . 234
! (aek 39/’) LY TR ) B A n. (2:34)

One can observe the difference in the transformation of the dual vectors (2.32)
and (2.33) which results from the change of the coordinate system. The transforma-
tion rules of the form (2.32) and (2.33) and the corresponding variables are referred
to as covariant and contravariant, respectively. Covariant and contravariant variables
are denoted by lower and upper indices, respectively.

The co- and contravariant rules can also be recognized in the transformation
of the components of vectors and tensors if they are related to tangent vectors.
Indeed, let

x=xg =x'gi=x8 =%g,. (2.35)

A=A’ g/ =AVgi0g, =A g, ®¢g
— A e =Az 08, =A g 08 (2.36)
Then, by means of (1.28), (1.88), (2.32) and (2.33) we obtain

- _ 00/ 06/
xi:x'gi:x'(gjﬁ)zxjﬁ’ (237)

, , 06! 96!
X! = . o' = . J— = S —
X xX-g X (g 86”) X 507 (2.38)
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i dok 90! a0k 90!

Ay = 2,Ag; = VA (g, Al 2.39
)= 808 (g" aet) (g’aef) 20 900 X (239)

o 90! 06/ 96" 96/
U _ GiAg) — k l = —

AT =gAg (g aek) A( ael) o 40

iy ‘ 90! 90! 96" 90!

Al. = _IA_- = k— A —_— :_TAk. 241
;=8 Ag; (g aek) (glaef) 80k a7 ™ (2.41)

Accordingly, the vector and tensor components x;, A;; and x', AV are called
covariant and contravariant, respectively. The tensor components A’ ; are referred
to as mixed variant. The transformation rules (2.37)—(2.41) can similarly be written
for tensors of higher orders as well. For example, one obtains for third-order tensors

A = %EB_GIA Aijk — 9" 96/ ﬂAm‘
EPY I Y T Y Ta = 907 060 a0t

(2.42)

From the very beginning we have supplied coordinates with upper indices which
imply the contravariant transformation rule. Indeed, let us consider the transforma-
tion of a coordinate system ' = 67 (6',62,...,60") (i =1,2,...,n). Itholds:

_ P
do’ 89"0]0 i=1,2,...,n. (2.43)

Thus, the differentials of the coordinates really transform according to the con-
travariant law (2.33).

Example 2.3. Transformation of linear coordinates into cylindrical ones (2.17).
Let x' = x'(r) be linear coordinates with respect to an orthonormal basis
e; (i =1,2,3)inE3:

X=r-ei & r=xe;. (2.44)

By means of (2.17) one can write

x!'=rcosgp, x*=rsing, x’=z (2.45)
and consequently
0’ = —rsing = —x? o’ =0 o’ =Ccosp = x!
b PETS e TR T T T
3 2 a 2 a 2 2
i:rcosgo:xl, i=0, i=sin<p=x—, (2.46)
dp 0z ar r
dx3 ax? ax?
_— = O, - = 1 - = 0.

g 0z T or
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The reciprocal derivatives can easily be obtained from (2.23) by inverting the matrix
[ oxl gxl gl ] This yields:

dp 0z Or
dp X2 dp ! g _0
R T A R Rl
0z 0z 0z
2, 9%y %y 2.47
ox! 0x2 0x3 ( )
ar ! I or
FTERA oz M= ox3

2.4 Gradient, Covariant and Contravariant Derivatives

Let® = @ (0',0%...,0"),x = x(0',0%...,0")and A = A(0',62,....6")
be, respectively, a scalar-, a vector- and a tensor-valued differentiable function of the
coordinates 8’ € R (i =1,2,...,n). Such functions of coordinates are generally
referred to as fields, as for example, the scalar field, the vector field or the tensor
field. Due to the one to one correspondence (2.26) these fields can alternatively be
represented by

P=D(r), x=x(r), A=A(r). (2.48)

In the following we assume that the so-called directional derivatives of the func-
tions (2.48)

d o - @
— @ (r + sa) = lim (r +sa) (r)7
ds =0 0 s
d _
94 +s5a) — lim x(r+sa)—x (r)’
ds s=0 0 s
d A —A
YAG +5a)| =limACFO-AD (2.49)
ds =0 ™0 s

. . d

exist for all @ € E". Further, one can show that the mappingsa — ;- @ (r + sa) is:O’
a - Sx(r+sa)|_, anda - SA(r+ sa)| _, are linear with respect to the
vector a. For example, we can write for the directional derivative of the scalar

function @ = @ (r)

d d
—@[r+s(a+b) = —@|[r + s1a + 52b] , (2.50)
ds s=0 ds s=0
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where s, and s, are assumed to be functions of s such that s; = s and s, = 5. With
the aid of the chain rule this delivers

d
— @ [r + s1a + s2b]
ds

s=0
ad ds a ds
= —®[r+s1a+ 55— + —[r +s1a + 5] —
951 ds 0s2 ds ) [5=0
a a
= —& (r +s1a + s52b) 4+ — @ (r + s1a + 52b)
3.5‘1 S1 =0,52 =0 as2 S1 =0,52 =0
d d
= —&(r + sa) + —@ (r + sb)
ds s=0 ds s=0
and finally
d d d
—@[r +s(a+b) = —&(r +sa) + — @ (r + sb) (2.51)
ds s=0 ds s=0 ds s=0

forall a,b € E". In a similar fashion we can write

= Lq§ (r + saa) d(@s)

d
—@
(r + saa) =0 d(as) ds

ds

s=0

,YacE" VaeR. (2.52)

d
=0 —P(r +sa)
ds s=0

Representing a with respect to a basis as @ = a' g; we thus obtain

dqa(+) dqs(+") qu>(+ )
—_— r sa = — r sSa i =a — r Sgi
ds s=0 ds g =0 ds g s=0
d oo
= —®(r+sg)| g -(dgj). (2.53)
ds s=0

where g’ form the basis dual to g; (i = 1,2,...,n). This result can finally be
expressed by

= grad® -a, Vacl", (2.54)

d
— @ (r + sa)
ds s=0

where the vector denoted by grad® € [E" is referred to as gradient of the function
@ = @ (r). According to (2.53) and (2.54) it can be represented by

g'. (2.55)

d
grad® = — P (r +s5g;)
ds =0
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Example 2.4. Gradient of the scalar function ||r||. Using the definition of the
directional derivative (2.49) we can write

d d
— || + sa]| 5\/(r+sa)-(r+sa)

ds s=0

s=0

d
= 5\/r-r+2s(r-a)+s2(a-a)

s=0
1 2(r-a)+2s(a-a) _r-a
2yr-r+2s(r-a)+s*(a-a)|_, Il
Comparing this result with (2.54) delivers
r
grad |r|| = — (2.56)

Il

Similarly to (2.54) one defines the gradient of the vector function x = x (r) and the
gradient of the tensor function A = A (r):

d

—x (r + sa) = (gradx)a, VaeE", (2.57)

ds s=0

d

d_A (r + sa) = (gradA)a, VaelE". (2.58)
S s=0

Herein, gradx and gradA represent tensors of second and third order, respectively.

In order to evaluate the above gradients (2.54), (2.57) and (2.58) we represent the
vectors r and a with respect to the linear coordinates (2.19) as

r=x'h;, a=4dh,. (2.59)

With the aid of the chain rule we can further write for the directional derivative of
the function @ = @ (r):

d i i

aq) (r + sa) . = adi [(x" + sa") h;] .
B 1) d(x" + sa’) _ o
9 (xt + sal) ds - o oxi

0D . ) 0D .
—.hl . ]h i) = —4hl -a, V En.
(8x’ ) (a ]) (8x’ ) “ @€
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Comparing this result with (2.54) and bearing in mind that it holds for all vectors a
we obtain

D .
grad® = a—.h’. (2.60)
ox!

The representation (2.60) can be rewritten in terms of arbitrary curvilinear coordi-
nates r = r (91, 02,..., 9”) and the corresponding tangent vectors (2.28). Indeed,
in view of (2.33) and (2.60)

0D . 9D 9% . 0D .
do = —h'= ——h' = —g'. 2.61
& o 96% axi 961 261)
Comparison of the last result with (2.55) yields
d Rl .
&d)(r—i_s‘gi)s:o:_a@f’ i=12,...,n. (2.62)

According to the definition (2.54) the gradient is independent of the choice
of the coordinate system. This can also be seen from relation (2.61). Indeed,
taking (2.33) into account we can write for an arbitrary coordinate system 0 =
6" (0.6%,....6") (i =1.2,....n):

0 . AP 30, D _

gradd = —g' = =—3g/. (2.63)

307 901 0008 T 30
Similarly to relation (2.61) one can express the gradients of the vector-valued
function x = x (r) and the tensor-valued function A = A (r) by

ox

. 0A .
T ®g', gradA=_—QRg'. (2.64)

dx = ‘
gra 3

Example 2.5. Deformation gradient and its representation in the case of simple
shear. Let x and X be the position vectors of a material point in the current and
reference configuration, respectively. The deformation gradient F € Lin® is defined
as the gradient of the function x (X) as

F = gradx. (2.65)

For the Cartesian coordinates in E> where x = x'e; and X = X'e; we can write
by using (2.64),

ox oot . ‘ .
= — J = —@; J = l, : J
F= X7 Re ane, Re F.Je, Re’, (2.66)
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X2 22 v X2 X!
I I
€yl
1 T ””””” e
X x|
X2 ” 1
¥ - -
X! € X!

Fig. 2.3 Simple shear of a rectangular sheet

where the matrix [F’ j] is given by

ox! ox! Ox!
8X21 8X22 3X§
[F{'j] _ | Ox7 0x7 9x” | (2.67)
aX! 9x2 9x3
ox3 ox? ox?
oX! 9x2 ox3

In the case of simple shear it holds (see Fig.2.3)
xl=X'4+yx?% =X X =X3 (2.68)
where y denotes the amount of shear. Insertion into (2.67) yields

‘ 1yo0
[F)]=]ot0]. (2.69)
001

Henceforth, the derivatives of the functions ® = @ (91, 02,..., 9"), X =
x (91, 02,..., 9”) and A = A (91, 02,..., 9”) with respect to curvilinear coordi-
nates 6’ will be denoted shortly by

0P ox 0A
¢si - wv X, = W’ A’i - w' (2'70)

They obey the covariant transformation rule (2.32) with respect to the index i since

I® 9 06F  O0x  Ox 90F  0A  0A 00F

001 9gk 001 007 9ok 001 90T 9ok 00! 27D
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and represent again a scalar, a vector and a second-order tensor, respectively. The
latter ones can be represented with respect to a basis as

xi=x]ig;=x;li g’.

A=A gi@gi=Auig" g =AY i gi®¢. 2.72)

where (o) |; denotes some differential operator on the components of the vector x
or the tensor A. In view of (2.71) and (2.72) this operator transforms with respect
to the index i according to the covariant rule and is called covariant derivative. The
covariant type of the derivative is accentuated by the lower position of the coordinate
index.

On the basis of the covariant derivative we can also define the contravariant one.
To this end, we formally apply the rule of component transformation (1.95), as
(8)|'= g% (e)|;. Accordingly,

X |'= g* Xy, xil'=g"*x;lk.

AR = gmAKL L Al = g Akl AN =g AN L (273)

For scalar functions the covariant and the contravariant derivative are defined to be
equal to the partial one so that:

Pli=d'=d, . (2.74)

In view of (2.63)—(2.70), (2.72) and (2.74) the gradients of the functions & =
@(0',0%...,0"), x = x(0'.0%....0") and A = A(0',67,...,0") take the
form

grad® = @|; g' = |’ g;,

gradxzxf|i g ®gi=)€j|,’ gj®gi=xj|i g ®gi=xj|igj®g;,

gradA =AY g, ® g ®g = Ayl g-Rg' g =A" ] s ®g @ g

=A g, g Qg =Aulg"Re R =A | gr0g' g
(2.75)

2.5 Christoffel Symbols, Representation of the Covariant
Derivative

In the previous section we have introduced the notion of the covariant derivative but
have not so far discussed how it can be taken. Now, we are going to formulate a
procedure constructing the differential operator of the covariant derivative. In other
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words, we would like to express the covariant derivative in terms of the vector or
tensor components. To this end, the partial derivatives of the tangent vectors (2.28)
with respect to the coordinates are first needed. Since these derivatives again
represent vectors in E”, they can be expressed in terms of the tangent vectors g;
or dual vectors gi (i =1,2,...,n) both forming bases of E”. Thus, one can write

gij=Tyg" =Tlgr. i.j=12...n, (2.76)
where the components I';;; and Fi’; (i,j,k=1,2,...,n) are referred to as the
Christoffel symbols of the first and second kind, respectively. In view of the
relation g¥ = gKlg; (k =1,2,...,n) (1.21) these symbols are connected with

each other by
Il =gy, ijk=1.2....n. (2.77)

Keeping the definition of tangent vectors (2.28) in mind we further obtain
gij=ry=r, =g, Lj=12,...,n. (2.78)
With the aid of (1.28) the Christoffel symbols can thus be expressed by
Lijk =Tjik = givj "8k = &ji "&k> (2.79)

=T =gi;g =g;ig ijk=12..n (2.80)

For the dual basis g’ (i =1,2,...,n) one further gets by differentiating the
identities g’ - g ; = &' (1.15):

0= (8;),1(: (¢ gj)u=gung +8 g«

=gugi e (The) =gwg +Th ijk=12..n
Hence,
M =T =-¢g g =g g i.jk=12..n 2.81)
and consequently
gu=-Tg/l =-T, g/ ik=12..n. (2.82)
By means of the identities following from (2.79)
8ij ok = (gi 'gj) k=8i k8 +8 -&jk=Tij +Tjii, (2.83)

where i, j,k = 1,2,...,n and in view of (2.77) we finally obtain
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1

Fijk = 3 (Skivj + 8kjoi —&ijk ) - (2.84)

1 .
rf = Eg“ (g1ivj 817 —&ij1) . ik =1,2,....n. (2.85)

Itis seen from (2.84) and (2.85) that all Christoffel symbols identically vanish in the
Cartesian coordinates (2.20). Indeed, in this case

g,-jze,--ejz&j, i,j=1,2,...,l1 (286)
and hence

Lye =T} =0. i jk=12...n. (2.87)
Example 2.6. Christoffel symbols for cylindrical coordinates in B> (2.17). By
virtue of relation (2.30); we realize that g;;,3 = 2r, while all other derivatives
gik.j (i, J,k =1,2,3)(2.83) are zero. Thus, Eq. (2.84) delivers

Fii=Tan=r Tz =-r, (2.88)

while all other Christoffel symbols of the first kind I';x (i, j.k =1,2,3) are
likewise zero. With the aid of (2.77) and (2.30), we further obtain

Ty =¢''Tij =r Ty, T = g%Tijs = Ty,
I3 = o3 = Ton. i i=1.23 5 80
ij =8 ij3 = L3, 1,] =1,24,5. ( . )

By virtue of (2.88) we can further write
1 1 1 3
P=Ty=_. Ij=-n (2.90)

while all remaining Christoffel symbols of the second kind Fi]; (i, j,k=1,2,3)
(2.85) vanish.

Now, we are in a position to express the covariant derivative in terms of the vector
or tensor components by means of the Christoffel symbols. For the vector-valued
function x = x (91, 02,..., 9") we can write using (2.76)

X, = (Xigi),j = Xi,j gi +xigi,j
= g +xThe = (x",,- +xkF,ij)gi, (2.91)

or alternatively using (2.82)
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X, = (Xigl) =X 8 +xigl.;
= xp. 8 —xillg" = (xy—urh) e @92
Comparing these results with (2.72) yields

koij=12,....n. (2.93)

i i ki
X'|j=x"; +x ij, .Xilj:.Xi,j—xkF’j,

Similarly, we treat the tensor-valued function A = A (91, 02,..., 9”):
A= (A2, ®g))

=AY, g Qg +AVg,  Rg; +AYg, R gk

=AY g, ® g+ AV (F,-lkgl) g+ Alg; ® (F,l'kg/)

= (AY 4 +AYT) + AT ) gi @ g5 (2.94)
Thus,

A= AU, +AVT), + AT, ik =1,2,... 0. (2.95)
By analogy, we further obtain

Aijle= Ajj i —AT] — AuTh.

Al k= AL +AL T — AT, i jk=1.2,....n. (2.96)

Similar expressions for the covariant derivative can also be formulated for tensors
of higher orders.

From (2.87), (2.93), (2.95) and (2.96) it is seen that the covariant derivative taken
in Cartesian coordinates (2.20) coincides with the partial derivative:

-xi|j: Xi,j, Xilj=Xiij .

AT =AY i Aijle= Aijok Afj|k= A{j,k, i,jk=12...,n. (297

Formal application of the covariant derivative (2.93), (2.95) and (2.96) to
the tangent vectors (2.28) and metric coefficients (1.90);, yields by virtue
of (2.76), (2.77), (2.82) and (2.84) the following identities referred to as Ricci’s
Theorem:

gili=gi;—&il};, =0. g'l;=g".;+'T}, =0. (2.98)
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gij k= gij ok —&i T}, — gizrj-k =gijk —Liry —Tjri =0, (2.99)

g7 k= g" .k +g" Tl + gilrf}( =g g/ (—=gimsk +Toniks + Tikm) = 0, (2.100)

where i, j,k = 1,2,...,n. The latter two identities can alternatively be proved
by taking (1.25) into account and using the product rules of differentiation for the
covariant derivative which can be written as (Exercise 2.7)

Aijlk: a;lk bj +aibj|k for A = aibj, (2.101)

AVy=d' |y b/ +a'b/ |, for AY =a'b/, (2.102)
Al =a'lx by +d'bjlx  for Al =a'b;, i, jk=12,....n (2.103)

2.6 Applications in Three-Dimensional Space:
Divergence and Curl

Divergence of a tensor field. One defines the divergence of a tensor field S (r) by

1
divS = lim V/SndA, (2.104)

V—0
A

where the integration is carried out over a closed surface area A with the volume V'
and the outer unit normal vector n illustrated in Fig. 2.4.

For the integration we consider a curvilinear parallelepiped with the edges
formed by the coordinate lines 0',6%, 6% and 6' + AO', 6% + AG2, 03 + AG3
(Fig.2.5). The infinitesimal surface elements of the parallelepiped can be defined
in a vector form by

dAV = £ (d0’g;) x (d0"gk) = £gg'd0’/do", i=1,2,3,  (2.105)
where ¢ = [g122g3] (1.31) and i, j, k is an even permutation of 1,2,3. The corre-
sponding infinitesimal volume element can thus be given by (no summation over
i)
dv =dA" . (db'g;) = [d0' g, dO%g, dO°g5]
= [g18283]d0'd0*d6> = gdh'dH*de>. (2.106)

We also need the identities
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Fig. 2.4 Definition of the divergence: closed surface with the area 4, volume V' and the outer unit
normal vector n

sL(0" + A0Y)

dAM (6! 4 AGY)

A

91

Fig. 2.5 Derivation of the divergence in three-dimensional space

gk =lg182831k = Tl lgig283] + Tl lg1g123] + Ti [g18281]
=T} [g12285] = The. (2.107)

(¢g').i=gig +gg'i=Tlge' —Tigg' =0, (2.108)
following from (1.39), (2.76) and (2.82). With these results in hand, one can express
the divergence (2.104) as follows

divS = lim l/SndA
14

V—0
A
1S 4 . . 4 . .
:%iﬂlov;/ [S(0" + 207)ad® (0 + 207) + 5 (67) a4 (6") .
= AW

Keeping (2.105) and (2.106) in mind and using the abbreviation
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s'(0))=S(0")g(0")g' (6"), i=1.2.3 (2.109)
we can thus write
5 OF+AGk 67+ A6T

aivs = fim ~ 3" / / [s' (0 + A0') — ' (6)]d6) 6"
ok 0

. 3 0"+A0"0/’+A0/’0"+A9"a‘
o b 98" pianigpk
= lim 5> / / / -6 d0’ a6
ok 0J 6l

3

1 sty
- 3@0V;/?d% (2.110)
I

where i, j, k is again an even permutation of 1,2,3. Assuming continuity of the
integrand in (2.110) and applying (2.108) and (2.109) we obtain

. 1, 1 : 1 : , 4
divS = —s',; = — [Sgg'] .= —[S.igg' +S(gg') .. | =S.g'". (11D
g g g
which finally yields by virtue of (2.72),
divS =S, g' =S/ g/ =" g;. (2.112)

Example 2.7. The momentum balance in Cartesian and cylindrical coordinates. Let
us consider a material body or a part of it with a mass m, volume V' and outer surface
A. According to the Euler law of motion the vector sum of external volume forces
fdV and surface tractions #dA results in the vector sum of inertia forces X¥dm,
where x stands for the position vector of a material element dm and the superposed
dot denotes the material time derivative. Hence,

/xdm — /tdA—i—/de. (2.113)
m A 14

Applying the Cauchy theorem (1.77) to the first integral on the right hand side and
using the identity dm = pdV it further delivers

/p)'c'dV = /andA—i—/de, (2.114)
v A 4

where p denotes the density of the material. Dividing this equation by V and
considering the limit case V' — 0 we obtain by virtue of (2.104)
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pX = dive + f. (2.115)

This vector equation is referred to as the momentum balance.

Representing vector and tensor variables with respect to the tangent vectors
gi (i = 1,2,3) of an arbitrary curvilinear coordinate system as

¥=dg, o=0"g:®g;,, f=/fg

and expressing the divergence of the Cauchy stress tensor by (2.112) we obtain the
component form of the momentum balance (2.115) by

paiZUlj|j +7 i=1,2,3. (2.116)

With the aid of (2.95) the covariant derivative of the Cauchy stress tensor can further
be written by

o' k=0 +0 Tl + 0T, i, j k=123 (2.117)

and thus,

ol)j=0".; +o"T}; +o''T), i=123. (2.118)
By virtue of the expressions for the Christoffel symbols (2.90) and keeping in mind
the symmetry of the Cauchy stress tensors 0/ = o/! (i # j = 1,2,3) we thus

obtain for cylindrical coordinates:

1 1 12 13 30°!
Ujl]:U s(p+o- 7Z+o- sr—‘f— - )

0,32
2j 21 22 23
ajlj =0 a(p+a 2 +0 ar+75

33
) o
¥ l; = 031,(/, +0* . 403, —ro'' + —. (2.119)
r
The balance equations finally take the form
30_31
pa' =o', +o'? +o", +——+ .
2 2 2 23 o* 2
pa- =o 1’¢—|—0' R ,r+7+f s
o»
pa’ =o', 402, 40P, —ro'l + —+ . (2.120)
In Cartesian coordinates, where g; = e; (i = 1,2,3), the covariant derivative

coincides with the partial one, so that
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Uij|j: ol j = Oijyj - (2.121)
Thus, the balance equations reduce to
pX1 = o111 +012,2 +013.3 + f1,
pXy = 021,1 +022,20 +023.3 + f2,
pX3 = 031,1 +032,2 +033.,3 + f3, (2.122)

where X; = a; (i = 1,2,3).

Divergence and curl of a vector field. Now, we consider a differentiable vector
field ¢ (91, 02, 93). One defines the divergence and curl of ¢ (91, 02, 93) respec-
tively by

. .1
divt = ‘1111)1()? / (t -n)dA, (2.123)
A
.1 o1
curlt = lim — / (nxt)dA = — lim —/(t x n)dA, (2.124)
V>0V V>0V
A A

where the integration is again carried out over a closed surface area A with the
volume V' and the outer unit normal vector n (see Fig.2.4). Considering (1.66)
and (2.104), the curl can also be represented by

1 N n
curlt = — lim — / tndA = —divt. (2.125)
V>0V
A

Treating the vector field in the same manner as the tensor field we can write
divt = ¢, -g' =1'|; (2.126)
and in view of (2.75), (see also Exercise 1.44)
divt = tr (grad?) . (2.127)
The same procedure applied to the curl (2.124) leads to
curlt =g’ xt,;. (2.128)

By virtue of (2.72); and (1.44) we further obtain (see also Exercise 2.8)
i i ik 1
cutlt =1¢;|; g/ x g' =e/""—t;|; gr. (2.129)
g

With respect to the Cartesian coordinates (2.20) with g; = e; (i = 1,2,3) the
divergence (2.126) and curl (2.129) simplify to
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divt =t/ =t',  +12 0+ 5= t1,1 +tr0 +13.3, (2.130)
curlt = ejikti,j e
= (zo—h3)el+ (hha—t3,1) e+ (1 —ti2)es. (2.131)

Now, we are going to discuss some combined operations with a gradient, divergence,
curl, tensor mapping and products of various types (see also Exercise 2.12).

1. Curl of a gradient:

curl grad® = 0. (2.132)
2. Divergence of a curl:
div curlt = 0. (2.133)
3. Divergence of a vector product:
div(u xv) =v-curlu —u - curly. (2.134)
4. Gradient of a divergence:
graddivt = div (grads)” (2.135)
graddivt = curl curlt + div gradt = curlcurlt 4 At, (2.136)

where the combined operator At = div gradt is known as the Laplacian.

5. Skew-symmetric part of a gradient

1 —
skew (gradt) = Ecurlt. (2.137)

6. Divergence of a (left) mapping
div (fA) = A : gradf + ¢ - divA. (2.138)
7. Divergence of a product of a scalar-valued function and a vector-valued function
div (®@t) =t - grad® + Pdivt. (2.139)
8. Divergence of a product of a scalar-valued function and a tensor-valued function
div (®A) = Agrad® + PdivA. (2.140)

We prove, for example, identity (2.132). To this end, we apply (2.75);, (2.82)
and (2.128). Thus, we write
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curl grad® = g/ x (CD|,- gi) =D, g/ xg' + b, g x gi’j

:@,ijgjxé’i—q)n' Flijgjxé’kzo (2.141)

taking into account that @,; = @,;;, I}, = T}, and g’ x g/ = —g/ x g

@#j,i,j=12,3).

Example 2.8. Balance of mechanical energy as an integral form of the momentum
balance. Using the above identities we are now able to formulate the balance of
mechanical energy on the basis of the momentum balance (2.115). To this end, we
multiply this vector relation scalarly by the velocity vector v = x

v-(pX) =v-divo +v- f.
Using (2.138) we can further write
v-(pX)+ o :gradv =div(vo) +v- f.

Integrating this relation over the volume of the body V' yields

d 1
I (Ev'v)dm%-/a:gradvdV:/div(va)dV—i—/v-de,
m 4 4 4

where again dm = pdV and m denotes the mass of the body. Keeping in mind
the definition of the divergence (2.104) and applying the Cauchy theorem (1.77)
according to which the Cauchy stress vector is given by ¢ = o n, we finally obtain
the relation

d 1
& (Ev'v)dm—}-/a :gradvdV:/v'tdA—i-/v-de (2.142)
m v A v

expressing the balance of mechanical energy. Indeed, the first and the second
integrals on the left hand side of (2.142) represent the time rate of the kinetic energy
and the stress power, respectively. The right hand side of (2.142) expresses the power
of external forces i.e. external tractions ¢ on the boundary of the body A and external
volume forces f inside of it.

Example 2.9. Axial vector of the spin tensor. The spin tensor is defined as a skew-
symmetric part of the velocity gradient by

w = skew (gradv) . (2.143)

By virtue of (1.158) we can represent it in terms of the axial vector
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w=W, (2.144)

which in view of (2.137) takes the form:
1
w = Ecurlv. (2.145)

Example 2.10. Navier-Stokes equations for a linear-viscous fluid in Cartesian and
cylindrical coordinates. A linear-viscous fluid (also called Newton fluid or Navier-
Poisson fluid) is defined by a constitutive equation

o =—pl+2nd+ A (trd) I, (2.146)

where
1
d = sym (gradv) = > [gradv + (gradv)'] (2.147)

denotes the rate of deformation tensor, p is the hydrostatic pressure while n and
A represent material constants referred to as shear viscosity and second viscosity
coefficient, respectively. Inserting (2.147) into (2.146) and taking (2.127) into
account delivers

o = —pl + n|[gradv + (gradv)"] + A (divw) L (2.148)

Substituting this expression into the momentum balance (2.115) and using (2.135)
and (2.140) we obtain the relation

ov = —gradp + ndiv gradv + (n + A) graddivy + f (2.149)
referred to as the Navier-Stokes equation. By means of (2.136) it can be rewritten as
pv = —gradp + (2n + A) graddivw — neurlcurly + f. (2.150)

For an incompressible fluid characterized by the kinematic condition trd = divy =
0, the latter two equations simplify to

v = —gradp + nAv + f, (2.151)

pv = —gradp — ncurl curly + f. (2.152)

With the aid of the identity Av = v.;|" (see Exercise 2.14) we thus can write

ov = —gradp + nv.i|" +f£. (2.153)
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In Cartesian coordinates this relation is thus written out as
pvi = —p.i +n (Vi1 +vien +vizz) + fi, i =1,2,3. (2.154)

For arbitrary curvilinear coordinates we use the following representation for the
vector Laplacian (see Exercise 2.16)

Av = g (Vi 420k —TF TV 4+ TR T = Tk V) g
(2.155)
For the cylindrical coordinates it takes by virtue of (2.30) and (2.90) the following
form

2.1 1 1 —11 -3.3
Av = (r"vhn+v vl +3r v s +2r ,1)g1
—2.2 2 2 —-1.2
+ (r Vi v Fvisz 4y ,3)g2
—2.3 3 3 —11 1.3 -3
+(r Vi v v =2rT v T v s v)g3.

Inserting this result into (2.151) and using the representations v = V' g; and f =
f1g; we finally obtain

.1 fl ap n 1 %! N 92! N 9! n 3 ov! n 2
V= fl—- = -ttt —+ =,
P 17 r2 0p? 0372 or2  ror 3o

ap 1052 92?2 022 1 av?
2 2 0D Loy onve onve  Lov
=1 0z (r28<p2+3zz+3r2+r8r)’
ap 1o 9% 923 2! 13 V3

3 _ 3 ¥ 1oy a7 ' 20v W
pv. = f ar 77(,,2 anz + azz + 972 , a(p + r o }"2). (2156)

Exercises

2.1. Evaluate tangent vectors, metric coefficients and the dual basis of spherical
coordinates in E3 defined by (Fig. 2.6)

r (p,¢,r) =rsingsinge; + rcos e, + r cos ¢ sin pes. (2.157)
2.2. Evaluate the coefficients YT (2.43) for the transformation of linear coordi-

nates in the spherical ones and vice versa.
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Fig. 2.6 Spherical coordinates in three-dimensional space

2.3. Evaluate gradients of the following functions of r:

(a) ||Tl||’ ) r-w, (c)rAr, (d)Ar, (€)wxr,

where w and A are some vector and tensor, respectively.

2.4. Evaluate the Christoffel symbols of the first and second kind for spherical
coordinates (2.157).

2.5. Verify relations (2.96).
2.6. Prove identities (2.99) and (2.100) by using (1.91).

2.7. Prove the product rules of differentiation for the covariant derivative (2.101)—
(2.103).

2.8. Verify relation (2.129) applying (2.112), (2.125) and using the results of
Exercise 1.23.

2.9. Write out the balance equations (2.116) in spherical coordinates (2.157).

2.10. Evaluate tangent vectors, metric coefficients, the dual basis and Christoffel
symbols for cylindrical surface coordinates defined by

s s
r(r,s,7) =rcos—ej + rsin—e; + zes. (2.158)
r r

2.11. Write out the balance equations (2.116) in cylindrical surface coordi-
nates (2.158).

2.12. Prove identities (2.133)—(2.140).
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2.13. Write out the gradient, divergence and curl of a vector field ¢ (r) in cylindrical
and spherical coordinates (2.17) and (2.157), respectively.

2.14. Prove that the Laplacian of a vector-valued function ¢ (r) can be given by
At = t,;|'. Specify this identity for Cartesian coordinates.

2.15. Write out the Laplacian A ® of a scalar field @ (r) in cylindrical and spherical
coordinates (2.17) and (2.157), respectively.

2.16. Write out the Laplacian of a vector field # (r) in component form in an
arbitrary curvilinear coordinate system. Specify the result for spherical coordi-
nates (2.157).



Chapter 3
Curves and Surfaces in Three-Dimensional
Euclidean Space

3.1 Curves in Three-Dimensional Euclidean Space

A curve in three-dimensional space is defined by a vector function
r=r((t), r e B, 3.1

where the real variable ¢ belongs to some interval: #; < ¢ < t,. Henceforth, we
assume that the function r (¢) is sufficiently differentiable and

dr
T #0 (3.2)

over the whole definition domain. Specifying an arbitrary coordinate system
(2.16) as ‘ ‘
0'=6"(r), =123, (3.3)

the curve (3.1) can alternatively be defined by

0 =6"(t), i=123. (3.4)
Example 3.1. Straight line. A straight line can be defined by

r(t)y=a+bt, abeck. 3.5)

With respect to linear coordinates related to a basis H = {h, h,, h3} itis equivalent
to
rrt)y=d +b't, i=1273, (3.6)

where r = r'h;,a =a'h; and b = b'h;.

M. Itskov, Tensor Algebra and Tensor Analysis for Engineers, Mathematical Engineering, 63
DOI 10.1007/978-3-642-30879-6_3, © Springer-Verlag Berlin Heidelberg 2013
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21ce

€

Fig. 3.1 Circular helix

Example 3.2. Circular helix. The circular helix (Fig. 3.1) is defined by
r(t) = Rcos(t)e; + Rsin(t) ey + cte;, ¢ #0, (3.7

where e; (i = 1,2,3) form an orthonormal basis in [E3. For the definition of the
circular helix the cylindrical coordinates (2.17) appear to be very suitable. Indeed,
alternatively to (3.7) we can write

r=R, ¢=1t, z=ct. (3.8)

In the previous chapter we defined tangent vectors to the coordinate lines. By
analogy one can also define a vector tangent to the curve (3.1) as

_dr

= 3.9)

8

It is advantageous to parametrize the curve (3.1) in terms of the so-called arc length.
To this end, we first calculate the length of a curve segment between the points
corresponding to parameters #; and ¢ as

r(t)
s(t) = / dr -dr. (3.10)
r(t1)

With the aid of (3.9) we can write dr = g,d¢ and consequently

t t t
s (1) = / Vg g dt = / llg:lldr = / g (2)dr. (3.1D)
1 1 51
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Using this equation and keeping in mind assumption (3.2) we have

d
== Ve 0 #0. (3.12)

This implies that the function s = s (¢) is invertible and

s s
_ ds
s(t1) s(t1) 8u
Thus, the curve (3.1) can be redefined in terms of the arc length s as
r=r(s)=r(s). (3.14)

In analogy with (3.9) one defines the vector tangent to the curve r (s) (3.14) as

dr _ drds g

= =" = 3.15
“TE T s el G-
being a unit vector: ||@;|| = 1. Differentiation of this vector with respect to s further
yields
da1 d2;
= —_=—. 3.16
M=y T s (3.16)

It can be shown that the tangent vector @, is orthogonal to a;,; provided the latter
one is not zero. Indeed, differentiating the identity a; - @; = 1 with respect to s we
have

a-ay,; = 0. (317)

The length of the vector a;
x(s) = llars || (3.18)

plays an important role in the theory of curves and is called curvature. The inverse
value

pls) = —— (3.19)

is referred to as the radius of curvature of the curve at the point r (s). Henceforth,
we focus on curves with non-zero curvature. The case of zero curvature corresponds
to a straight line (see Exercise 3.1) and is trivial.

Next, we define the unit vector in the direction of a;,;

alaS _ alaS

a, = =—
las ()

(3.20)
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called the principal normal vector to the curve. The orthogonal vectors a; and a;
can further be completed to an orthonormal basis in [E? by the vector

as=a; Xa, (3.21)
called the unit binormal vector. The triplet of vectors a;, @, and aj is referred to as
the moving trihedron of the curve.

In order to study the rotation of the trihedron along the curve we again consider
the arc length s as a coordinate. In this case, we can write similarly to (2.76)

ais="Tray, =123, (3.22)

where Fiks = a;-a; (i,k =1,2,3). From (3.17), (3.20) and (3.21) we immedi-
ately observe that FZS = x and Flls = Ffs = 0. Further, differentiating the identities

as-asz =1, a;-az =0 (3.23)
with respect to s yields
asz-asz,; =0, ajs-a3+a;-az;=0. (3.24)
Taking into account (3.20) this results in the following identity
a)-az; = —ay,s-az = —xa-az = 0. (3.25)

Relations (3.24) and (3.25) suggest that

az,, — —7T (S) a, (326)
where the function

T(s) = —az.s-as (3.27)
is called torsion of the curve at the point r (s). Thus, I'7, = —t and '}, = '}, = 0.
The sign of the torsion (3.27) has a geometric meaning and remains unaffected by
the change of the positive sense of the curve, i.e. by the transformation s = —s’ (see

Exercise 3.2). Accordingly, one distinguishes right-handed curves with a positive
torsion and left-handed curves with a negative torsion. In the case of zero torsion
the curve is referred to as a plane curve.

Finally, differentiating the identities

a-a; =0, a-a=1, a,-a3;=0
with respect to s and using (3.20) and (3.27) we get

;@) = —ay- A1, = —XaAy - Ay = —X, (3.28)

a)-a; =0, a,-a3=—a-az;=r, (3.29)
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Fig. 3.2 Rotation of the moving trihedron

so that ), = —x, T3, = 0 and I';, = 7. Summarizing the above results we can
write
A 0 » 0
[ri]=]-* o« (3.30)
0-70
and
aj,s = xaj,
az,s = —xa +tas, (3.31)
as,s = —Ta,.

Relations (3.31) are known as the Frenet formulas.

A useful illustration of the Frenet formulas can be gained with the aid of a skew-
symmetric tensor. To this end, we consider the rotation of the trihedron from some
initial position at sy to the actual state at s. This rotation can be described by an
orthogonal tensor Q (s) as (Fig. 3.2)

a; (s) =Q(s)a; (s0), i=12.3. (3.32)
Differentiating this relation with respect to s yields
al’aS (S) :QMY (S)al (S()), l = 1,2,3. (333)

Mapping both sides of (3.32) by QT () and inserting the result into (3.33) we further
obtain

ais(5) =Qu(5)Q () a; (), i=17223. (3.34)

Differentiating the identity (1.135) Q (s) QT (s) = I with respect to s we have
Q. (5)QT(s) + Q(s)QT.s(s) = 0, which implies that the tensor W (s) =
Q.; (5) QT (s) is skew-symmetric. Hence, Eq.(3.34) can be rewritten as (see
also [3])

a;s(s)=W(s)a;(s), We Skew®, i=1,2,3, (3.35)
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where according to (3.31)
WE)=t(s)(@3®ar—ax®az) +x(s) (a2 ®@a; —a; @ az). (3.36)

By virtue of (1.136) and (1.137) we further obtain

W = ta; + xa; (3.37)
and consequently
aiy=d xa; =da;, i=1223, (3.38)
where
d =ta, + xa; (3.39)

is referred to as the Darboux vector.

Example 3.3. Curvature, torsion, moving trihedron and Darboux vector for a
circular helix. Inserting (3.7) into (3.9) delivers

d
g, = d—: = —Rsin(t)e; + Rcos(t) e, + ces, (3.40)
so that
g =81 8 = R*+¢? = const. (3.41)

Thus, using (3.13) we may set
s

VR + 2

Using this result, the circular helix (3.7) can be parametrized in terms of the arc
length s by

t(s) = (3.42)

~ s s cs
r(s)=Rcos| ———=)ei+ Rsin| ———— | er + ———e3. (3.43)
) (vR2+c2) : (\/R2+c2) ? vV R% + ¢? :
With the aid of (3.15) we further write
dr ! R sin i e
a = —=— —_ 1 —_—
' s VR2 &+ 2 /R? + 2 !
s
+ R cos (—W) () +Ce3i| s (344)
ar, ==X |:Cos( a )e +sin( a )e:| (3.45)
T TR 2 VR 1) VR +2) '
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According to (3.18) the curvature of the helix is thus

R
By virtue of (3.20), (3.21) and (3.27) we have
aj,s s . K
= = — —_— — — , 3.47
a " cos (m) e —sin (m) e ( )
_ _ 1 . s
a3—alxa2—\/R2:+c2 C Sin W €]
s
—C COS (\/RZ:_FCZ) e, + Re3:| . (348)
¢ cos il e + sin i e (3.49)
az,s = ——— - — m| —— , .
WT Rt NIET= A JR+ea)?
c

It is seen that the circular helix is right-handed for ¢ > 0, left-handed for ¢ < 0 and
becomes a circle for ¢ = 0. For the Darboux vector (3.39) we finally obtain

1
d = Ta; + xaz = \/Rz:-'_zey (351)
C

3.2 Surfaces in Three-Dimensional Euclidean Space

A surface in three-dimensional Euclidean space is defined by a vector function
r=r(t"?), rek, (3.52)

of two real variables ¢! and 12 referred to as Gauss coordinates. With the aid of the
coordinate system (3.3) one can alternatively write

o' =0"(¢'.1?). i=1.223. (3.53)

In the following, we assume that the function r (tl , t2) is sufficiently differentiable
with respect to both arguments and

dr
A0 a=12 (3:54)

over the whole definition domain.
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t2-line

normal é

section

normal plane

Fig. 3.3 Coordinate lines on the surface, normal section and tangent vectors

Example 3.4. Plane. Let us consider three linearly independent vectors x; (i = 0,
1,2) specifying three points in three-dimensional space. The plane going through
these points can be defined by

r(t'.1?) =xo+1' (x; —x0) + 17 (x2—x0). (3.55)
Example 3.5. Cylinder. A cylinder of radius R with the axis parallel to e is defined

by
r(t',1?) = Rcost'e| + Rsint'e, + 1%es, (3.56)

where e; (i = 1,2, 3) again form an orthonormal basis in E3. With the aid of the
cylindrical coordinates (2.17) we can alternatively write

o=t z=1t> r=R. (3.57)
Example 3.6. Sphere. A sphere of radius R with the center at r = 0 is defined by
r (t',1*) = Rsint'sint’e; + Rcost’es + Rcost' sint’es, (3.58)
or by means of spherical coordinates (2.157) as
o=t ¢=1t> r=R. (3.59)
Using a parametric representation (see, e.g., [26])
tr=1'@), 2=12@) (3.60)

one defines a curve on the surface (3.52). In particular, the curves t! = const and
t? = const are called > and ¢! coordinate lines, respectively (Fig. 3.3). The vector
tangent to the curve (3.60) can be expressed by

dr Or dr'  Or di? dr! dr?

TR I T e A T T

, 3.61
m (3.61)

8 =
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where
or

T o
represent tangent vectors to the coordinate lines. For the length of an infinitesimal
element of the curve (3.60) we thus write

g =rg, a=12 (3.62)

(ds)* =dr-dr = (g,dt) - (g.dr) = (g1dt" + g.dt?) - (g1dt" + g2df?). (3.63)

With the aid of the abbreviation

Sup = 8pu = Zu -8B, o, P =12, (3.64)

it delivers the quadratic form
(ds)? = gny (di")’ + 2g12dt'dr? + g5 (dr?)’ (3.65)

referred to as the first fundamental form of the surface. The latter result can briefly
be written as
(ds)* = gupde®de®, (3.66)

where and henceforth within this chapter the summation convention is implied
for repeated Greek indices taking the values from 1 to 2. Similar to the metric
coefficients (1.90);, in n-dimensional Euclidean space g.s (3.64) describe the
metric on a surface. Generally, the metric described by a differential quadratic form
like (3.66) is referred to as Riemannian metric.

The tangent vectors (3.62) can be completed to a basis in E* by the unit vector

g1 X82

= —" (3.67)
g1 x g2l

83

called principal normal vector to the surface.

In the following, we focus on a special class of surface curves called normal
sections. These are curves passing through a point of the surface r (tl,tz) and
obtained by intersection of this surface with a plane involving the principal normal
vector. Such a plane is referred to as the normal plane.

In order to study curvature properties of normal sections we first express
the derivatives of the basis vectors g; (i = 1,2,3) with respect to the surface
coordinates. Using the formalism of Christoffel symbols we can write

0gi

e = D" =Tiogi, =123, (3.68)

gi R[04 -
where

Tiok = 8ive -8k TE =gin-gh, i=123 a=1.2. (3.69)
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Taking into account the identity g3 = g? resulting from (3.67) we immediately
observe that

T3 =T32,, i=1,23 a=1,2. (3.70)
Differentiating the relations
80-83=0, g3-g3=1 3.71)
with respect to the Gauss coordinates we further obtain
gup'83=—8a"g3p. &g =0, @ p=12 (3.72)

and consequently

Ihg =T, I3,=0, a.p=12 (3.73)
Using in (3.68) the abbreviation
bocﬁ = bﬂa = F;ﬂ = _F3aﬂ = gocsﬁ 'g3s avﬂ = 1727 (374)
we arrive at the relations
gap=Tlegp +bopgs, o f=12 (3.75)

called the Gauss formulas.

Similarly to a coordinate system one can notionally define the covariant deriva-
tive also on the surface. To this end, relations (2.93), (2.95) and (2.96) are specified
to the two-dimensional space in a straight forward manner as

= fO s+ Ths  falp= fasp = ol (3.76)
Faﬂ| — P yFEPTe 4 poerTh Fos|,=F _F..T” —F.T"
4 4 Py py» Taply= Fapry —Fpplay = Fapl gy

FYl,= F%., +F4T%, —F T . By =12 (3.77)

Thereby, with the aid of (3.76), the Gauss formulas (3.75) can alternatively be given
by (cf. (2.98))

8alp=bupgs, a.fp=12. (3.78)
Further, we can write

b = bypg™ = —Tspg™ = T, a.p=12. (3.79)
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Inserting the latter relation into (3.68) and considering (3.73),, this yields the
identities
830 = 83lo=—blg, a=12 (3.80)

referred to as the Weingarten formulas.

Now, we are in a position to express the curvature of a normal section. It is called
normal curvature and denoted in the following by x,. At first, we observe that the
principal normals of the surface and of the normal section coincide in the sense that
a, = £g;. Using (3.13), (3.28), (3.61), (3.72); and (3.74) and assuming for the
moment that a, = g3 we get

&8 ( dt) 8 &
Hn = —A2,5°@] = —Z3,5 T+ 83 —834 >
lgdl ds) g lg:II”

de® dth ) de* de? )
= — o 4. * - U= ba B .
(g3 dt) (gﬂ i ) llg:ll b dr llg:ll

By virtue of (3.63) and (3.66) this leads to the following result

_ bopdi®di? (3.81)
gapdrdeh’
where the quadratic form
bopdt®dtP = —dr - dg; (3.82)
is referred to as the second fundamental form of the surface. In the case a, = —g3

the sign of the expression for x, (3.81) must be changed. Instead of that, we assume
that the normal curvature can, in contrast to the curvature of space curves (3.18),
be negative. However, the sign of », (3.81) has no geometrical meaning. Indeed,
it depends on the orientation of g3 with respect to @, which is immaterial. For
example, g3 changes the sign in coordinate transformations like 7' = ¢2, 7> = ¢!

Of special interest is the dependence of the normal curvature x, on the direction
of the normal section. For example, for the normal sections passing through the
coordinate lines we have

by by
%ﬂ|t2=const = ’ %n|t1—con$t = N (383)
811 822

In the following, we are going to find the directions of the maximal and minimal
curvature. Necessary conditions for the extremum of the normal curvature (3.81)
are given by

Qo
Te =0 a=12. (3.84)

Rewriting (3.81) as
(bap — ¥ngap) dt®dtP =0 (3.85)
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and differentiating with respect to t* we obtain
(bap — %ngop) dtP =0, o =1,2. (3.86)

Multiplying both sides of this equation system by g%’ and summing up over o we
have with the aid of (3.79)

(bg _ xnsg) af =0, p=1,2. (3.87)
A nontrivial solution of this homogeneous equation system exists if and only if

1_ 1
‘bl *n by = 0. (3.88)

b? b3 — xy

Writing out the above determinant we can also write

x> — b2,y + =0. (3.89)

bj

The maximal and minimal curvatures »; and x, resulting from this quadratic
equation are called the principal curvatures. One can show that directions of
principal curvatures are mutually orthogonal (see Theorem 4.5, Sect.4). These
directions are called principal directions of normal curvature or curvature directions
(see also [26]).

According to the Vieta theorem the product of principal curvatures can be
expressed by

b
K = X1 Xy = bg = — (390)
g
where
_ _ |bu b _ P
b = |bes| = = bibyn — (b12)", (3.91)
b1 by
g 812 0
g =[218285 = |g21 82 0| = gugn — (g12)*. (3.92)
0 01
For the arithmetic mean of the principal curvatures we further obtain
H—l( +Jf)—1b°‘ (3.93)
= 5 X1 ) = 5 o .

The values K (3.90) and H (3.93) do not depend on the direction of the normal
section and are called the Gaussian and mean curvatures, respectively. In terms of
K and H the solutions of the quadratic equation (3.89) can simply be given by

umo=H+~H?-K. (3.94)
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Fig. 3.4 Torus

One recognizes that the sign of the Gaussian curvature K (3.90) is defined by the
sign of b (3.91). For positive b both x| and x, are positive or negative so that x, has
the same sign for all directions of the normal sections at r (tl, 12). In other words,
the orientation of a, with respect to g3 remains constant. Such a point of the surface
is called elliptic.

For b < 0, principal curvatures are of different signs so that different normal
sections are characterized by different orientations of a, with respect to g3. There
are two directions of the normal sections with zero curvature. Such normal sections
are referred to as asymptotic directions. The corresponding point of the surface is
called hyperbolic or saddle point.

In the intermediate case b = 0, x, does not change sign. There is only one
asymptotic direction which coincides with one of the principal directions (of »; or
%). The corresponding point of the surface is called parabolic point.

Example 3.7. Torus. A torus is a surface obtained by rotating a circle about a
coplanar axis (see Fig.3.4). Additionally we assume that the rotation axis lies
outside of the circle. Accordingly, the torus can be defined by

r(t',?) = (Ro + Rcost?)cost'e;
+ (RO + Rcos 12) sint'e, + Rsint’es, (3.95)

where R is the radius of the circle and Ry > R is the distance between its center
and the rotation axis. By means of (3.62) and (3.67) we obtain

g1 =— (Ro + Rcostz) sintlel + (Ro + Rcostz) costlez,
g>»=—R cost'sint?e; — Rsint! sint?e, + Rcost’es,

g3 = cost! cost’e, + sint! cost?e, + sint’e;. (3.96)
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Thus, the coefficients (3.64) of the first fundamental form (3.65) are given by

g = (Ro + Rcos t2)2, g =0, g»n=R%. (3.97)

In order to express coefficients (3.74) of the second fundamental form (3.82) we
first calculate derivatives of the tangent vectors (3.96), »

gi1=— (RO + Rcostz) costle; — (Ro + Rcostz) sint'es,
gi2=821=R sin ¢! sint2e1 — Rcost! sintzez,

g22=—-R cost! cost’e; — Rsint' cost’e, — Rsint’es. (3.98)
Inserting these expressions as well as (3.96); into (3.74) we obtain
by =— (R() + Rcos 12) cos 12, b, = by =0, by =-—R. (3.99)

In view of (3.79) and (3.97) b} = b} = 0. Thus, the solution of the equation system
(3.88) delivers

bi cost? by
— — K2 —
- W = b2 - =

- =-R"" 3.100
g Ry + Rcost? ? g&n ( )

2{1:bll:

Comparing this result with (3.83) we see that the coordinate lines of the torus (3.95)
coincide with the principal directions of the normal curvature. Hence, by (3.90)

cos 12
R (Ro + Rcost?)’

K =0 = (3.101)

Thus, points of the torus for which —/2 < t> < /2 are elliptic while points for
which /2 < t? < 37 /2 are hyperbolic. Points of the coordinates lines 1> = —m/2
and 1> = /2 are parabolic.

3.3 Application to Shell Theory

Geometry of the shell continuum. Let us consider a surface in the three-
dimensional Euclidean space defined by (3.52) as

r=r(t"?), rek (3.102)

and bounded by a closed curve C (Fig.3.5). The shell continuum can then be
described by a vector function

r*=r* (2 0) =r (' 17) + gat?, (3.103)
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~—— boundary
curve C'

Fig. 3.5 Geometry of the shell continuum

where the unit vector g3 is defined by (3.62) and (3.67) while —h/2 < 13 < h/2.
The surface (3.102) is referred to as the middle surface of the shell. The thickness
of the shell % is assumed to be small in comparison to its other dimensions as for
example the minimal curvature radius of the middle surface.

Every fixed value of the thickness coordinate ¢* defines a surface r* (tl, 12)
whose geometrical variables are obtained according to (1.39), (3.62), (3.64), (3.79),
(3.80), (3.90), (3.93) and (3.103) as follows.

g; :r*sa:ga+t3g3sa:(8£_Z3b£)gpv o = 1,2, (3104)
* *
gt = SL58 g (3.105)
Hgl ng”
2
g = 8u- 85 = 8up —20bep + (I7) bapb, @ f =12, (3.106)

g* =[gtergr] =[(67 — b)) g, (85 —1°b}) g, 83]

= (87 = 1'00) (87 — b)) geys = |85 — 1§

— [1 —28H + (%) K] . (3.107)
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P2+ A

m2(t2 + At?)

Fig. 3.6 Force variables related to the middle surface of the shell

The factor in brackets in the latter expression

3
p=5 =1-200+ () K (3.108)
g

is called the shell shifter.

Internal force variables. Let us consider an element of the shell continuum (see
Fig.3.6) bounded by the coordinate lines t* and t* + A¢* (o« = 1,2). One defines
the force vector f“ and the couple vector m® relative to the middle surface of the
shell, respectively, by

h/2 h/2
f*= / pog*eds’, m® = / pur* x (og**)de’, o =12, (3.109)
—h/2 —h/2

where o denotes the Cauchy stress tensor on the boundary surface A spanned on
the coordinate lines #> and t# (B # «). The unit normal to this boundary surface is
given by

@ _ g*oc

g*a g*
= = = g*a, IB#C{:l,Z, (3110)

*Q koo *

g™l g [gks

* *Q

where we keep in mind that g*¢ - g p=8"-8= 0 and (see Exercise 3.8)

g*
g*aa:giz, B#a=1,2. (3.111)
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Applying the Cauchy theorem (1.77) and bearing (3.108) in mind we obtain

h/2 h/2
1 1
== / ghptdt®, m* = — / V& (rF x ) de’, (3.112)
g—h/2 g—h/2
where again B # « = 1,2 and ¢ denotes the Cauchy stress vector. The

force and couple resulting on the whole boundary surface can thus be expressed
respectively by

P+AtP h/2 tP+Ath
/ tdA©@ = / / t g;ﬂdt3dtﬁ = / gfedt?, (3.113)
Al@) B —h/2 th
P+ALP h/2
/(r* xt)dA® = / / (r* x1) \/g5,d’de?
Al B —h/2
RSN
= / gm®di?, B#a=1,2, (3.114)
B

where we make use of the relation

dA@ = g*\/greediPdr® = J@rdtPd, B#a =12 (3.115)

following immediately from (2.105) and (3.111).
The force and couple vectors (3.109) are usually represented with respect to the
basis related to the middle surface as (see also [1])

f=f"%gs+q"gs. m*=mPgyxgp=gespm?Pgr. (3.116)

In shell theory, their components are denoted as follows.
f*  Components of the stress resultant tensor,

o

q Components of the transverse shear stress vector,

m®  Components of the moment tensor.

External force variables. One defines the load force vector and the load moment
vector related to a unit area of the middle surface, respectively by

p=r'g. c=c"gixg, (3.117)
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The load moment vector c¢ is thus assumed to be tangential to the middle surface.
The resulting force and couple can be expressed respectively by

P2 A2 AL 24 A2 AL

/ /pgdtldtz, / /cgdtldtz. (3.118)

2 t! 2 t!

Equilibrium conditions. Taking (3.113) and (3.118); into account the force
equilibrium condition of the shell element can be expressed as

5 tPHAlf

[ I A g A g () £ ()
a,f=1 B

aF#p

124 A2 1 Ar!
+/ /pgdtldt2:0. (3.119)

12 r!
Rewriting the first integral in (3.119) we further obtain

24 A2 AL
(&%) .« +gpldt'd® = 0. (3.120)

2 /|
Since the latter condition holds for all shell elements we infer that
(&f%)at+gp =0, (3.121)
which leads by virtue of (2.107) and (3.73), to
fe +p =0, (3.122)
where the covariant derivative is formally applied to the vectors f“ according to
(3.76).

In a similar fashion we can treat the moment equilibrium. In this case, we obtain
instead of (3.121) the following condition

[gm® +r x f*)].«+grxp+ge=0. (3.123)
With the aid of (3.62) and keeping (3.122) in mind, it finally delivers

mly +go X f*+c=0. (3.124)
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In order to rewrite the equilibrium conditions (3.122) and (3.124) in component
form we further utilize representations (3.116), (3.117) and apply the product rule
of differentiation for the covariant derivative (see, e.g., (2.101)—(2.103)). By virtue
of (3.78) and (3.80) it delivers

(f*la —D5q" + p*) g+ (f*Pbop + q%|u +p*) g3 =0, (3.125)

(Mg —q° +c?)g3x gp+geaps [P g =0 (3.126)

with a new variable
=P+ bbm, ap=12 (3.127)

called pseudo-stress resultant. Keeping in mind that the vectors g; (i = 1,2,3)
are linearly independent we thus obtain the following scalar force equilibrium
conditions

S%le =bbq* + p* =0, p=1,2, (3.128)

bap £ + q%e +p> =0 (3.129)

and moment equilibrium conditions
m*ly —q” +c” =0, p=1,2, (3.130)

foP = fhe o p=12 a#p. (3.131)

With the aid of (3.127) one can finally eliminate the components of the stress
resultant tensor f *f from (3.128) and (3.129). This leads to the following equation
system

e — (b’y’mw)la —bbg® +p* =0, p=12, (3.132)
bap 4 — bagbPm? + ¢%|o +p* =0, (3.133)
m*ly, —q” +c¢” =0, p=1,2, (3.134)

where the latter relation is repeated from (3.130) for completeness.

Example 3.8. Equilibrium equations of plate theory. In this case, the middle surface
of the shell is a plane (3.55) for which

byp =bg =0, o p=12. (3.135)
Thus, the equilibrium equations (3.132)—(3.134) simplify to

fPa+p’ =0, p=1,2, (3.136)
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4" +p’ =0, (3.137)
m*.,—q° +c” =0, p=1.2, (3.138)
where in view of (3.127) and (3.131) f* = fP* (a # B = 1,2).

Example 3.9. Equilibrium equations of membrane theory. The membrane theory
assumes that the shell is moment free so that

m® =0 =0 ap=12. (3.139)

In this case, the equilibrium equations (3.132)—(3.134) reduce to

[l +p" =0, p=12, (3.140)
bap £ + p* =0, (3.141)
" =0, p=1.2, (3.142)

where again f* = fP* (a # B =1,2).

Exercises

3.1. Show that a curve r (s) is a straight line if x (s) = O for any s.

3.2. Show that the curves r (s) and r’ (s) = r (—s) have the same curvature and
torsion.

3.3. Show that a curve r (s) characterized by zero torsion 7 (s) = O for any s lies
in a plane.

3.4. Evaluate the Christoffel symbols of the second kind, the coefficients of the first
and second fundamental forms, the Gaussian and mean curvatures for the cylinder
(3.56).

3.5. Evaluate the Christoffel symbols of the second kind, the coefficients of the first
and second fundamental forms, the Gaussian and mean curvatures for the sphere
(3.58).

3.6. For the so-called hyperbolic paraboloidal surface defined by
1'e?

r(t',1?)=t'ey +1%er + —e3, >0, (3.143)
c

evaluate the tangent vectors to the coordinate lines, the coefficients of the first and
second fundamental forms, the Gaussian and mean curvatures.
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3.7. For a cone of revolution defined by
r(t', tz) = ct’cost'e, + ct’sint'e, + t?es, ¢ #0, (3.144)

evaluate the vectors tangent to the coordinate lines, the coefficients of the first and
second fundamental forms, the Gaussian and mean curvatures.
3.8. Verify relation (3.111).

3.9. Write out equilibrium equations (3.140) and (3.141) of the membrane theory
for a cylindrical shell and a spherical shell.



Chapter 4
Eigenvalue Problem and Spectral Decomposition
of Second-Order Tensors

4.1 Complexification

So far we have considered solely real vectors and real vector spaces. For the
purposes of this chapter an introduction of complex vectors is, however, necessary.
Indeed, in the following we will see that the existence of a solution of an eigenvalue
problem even for real second-order tensors can be guaranteed only within a complex
vector space. In order to define the complex vector space let us consider ordered
pairs (x, y) of real vectors x and y € E". The sum of two such pairs is defined
by [15]

(1, y1) + (x2,y2) = (x1 +x2,¥1 + y2). 4.1)

Further, we define the product of a pair (x, y) by a complex number « + i by

(@ +ipf) (x.y) = {ax —By.fx + ay), (4.2)

where o, B € R and i = +/—1. These formulas can easily be recovered assuming
that

(x,y)=x +1iy. 4.3)

The definitions (4.1) and (4.2) enriched by the zero pair (0,0) are sufficient to
ensure that the axioms (A.1-A.4) and (B.1-B.4) of Chap.1 are valid. Thus, the
set of all pairs z = (x,y) characterized by the above properties forms a vector
space referred to as complex vector space. Every basis G = {g1,82,...,8un}
of the underlying Euclidean space E" represents simultaneously a basis of the
corresponding complexified space. Indeed, for every complex vector within this
space

z=Xx 41y, “4.4)

M. Itskov, Tensor Algebra and Tensor Analysis for Engineers, Mathematical Engineering, 85
DOI 10.1007/978-3-642-30879-6_4, © Springer-Verlag Berlin Heidelberg 2013
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where x, y € E" and consequently
x=x'gi. y=yug. (4.5)
we can write
2= (x" +iy') gi. (4.6)

Thus, the dimension of the complexified space coincides with the dimension of the
original real vector space. Using this fact we will denote the complex vector space
based on E" by C". Clearly, E" represents a subspace of C”.

For every vector z € C" given by (4.4) one defines a complex conjugate
counterpart by

zZ=x—1iy. 4.7

Of special interest is the scalar product of two complex vectors, say z; = x| + 1y
and z, = x; + iy, which we define by (see also [4])

(x1+iy)-(x2+iy2)) =x1-x2—y1-y2+i(x1-y2+yi-x2). (48

This scalar product is commutative (C.1), distributive (C.2) and linear in each factor
(C.3). Thus, it differs from the classical scalar product of complex vectors given in
terms of the complex conjugate (see, e.g., [15]). As a result, the axiom (C.4) does
not generally hold. For instance, one can easily imagine a non-zero complex vector
(for example e | 4 ie,) whose scalar product with itself is zero. For complex vectors
with the scalar product (4.8) the notions of length, orthogonality or parallelity can
hardly be interpreted geometrically.
However, for complex vectors the axiom (C.4) can be reformulated by

z:2>0, z-z=0 ifandonlyif z=20. 4.9)

Indeed, using (4.4), (4.7) and (4.8) we obtainz -z = x - x + y - y. Bearing in mind
that the vectors x and y belong to the Euclidean space this immediately implies
(4.9).

As we learned in Chap. 1, the Euclidean space E" is characterized by the
existence of an orthonormal basis (1.8). This can now be postulated for the complex
vector space C" as well, because C" includes E" by the very definition. Also
Theorem 1.6 remains valid since it has been proved without making use of the
property (C.4). Thus, we may state that for every basis in C" there exists a unique
dual basis.

The last step of the complexification is a generalization of a linear mapping on
complex vectors. This can be achieved by setting for every tensor A € Lin"

A(x +iy)=Ax +i(Ay). (4.10)
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4.2 Eigenvalue Problem, Eigenvalues and Eigenvectors

Let A € Lin" be a second-order tensor. The equation
Aa=Xla, a#0 4.11)

is referred to as the eigenvalue problem of the tensor A. The non-zero vectora € C”
satisfying this equation is called an eigenvector of A; A € C is called an eigenvalue
of A. It is clear that any product of an eigenvector with any (real or complex) scalar
is again an eigenvector.

The eigenvalue problem (4.11) and the corresponding eigenvector a can be
regarded as the right eigenvalue problem and the right eigenvector, respectively.
In contrast, one can define the left eigenvalue problem by

bA=21b, b+#0, 4.12)

where b € C” is the left eigenvector. In view of (1.115), every right eigenvector
of A represents the left eigenvector of AT and vice versa. In the following, unless
indicated otherwise, we will mean the right eigenvalue problem and the right
eigenvector.

Mapping (4.11) by A several times we obtain

Afa =2a, k=1,2,... (4.13)

This leads to the following (spectral mapping) theorem.

Theorem 4.1. Let A be an eigenvalue of the tensor A and let g (A) = Y }'_, axA*
be a polynomial of A. Then g (A) = Y[, axA* is the eigenvalue of g (A).

Proof. Let a be an eigenvector of A associated with A. Then, in view of (4.13)

gA)a = iakAka = iakkka = (iakkk) a=gA)a.

k=0 k=0 k=0

In order to find the eigenvalues of the tensor A we consider the following
representations:

A=Alg,®g/, a=dgi, b=bhbg', (4.14)

where G = {g1,g2,...,gn}and G’ = {gl, g2 ... ,g"} are two arbitrary mutually
dual bases in E" and consequently also in C". Note that we prefer here the mixed
variant representation of the tensor A. Inserting (4.14) into (4.11) and (4.12) further
yields

Afjajgi =ld'g;, Afjbigj =Ab;g’,
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and therefore

(Aa’ —2a') gi =0, (ALbi—2b;)g’ =0. 4.15)
Since both the vectors g; and g’ (i = 1,2,...,n) are linearly independent the

associated scalar coefficients in (4.15) must be zero. This results in the following
two linear homogeneous equation systems

(Af,» _/\5;)“1 —o. (A{lﬁ —A(S{)bj =0, i=12....n (4.16)

with respect to the components of the right eigenvector a and the left eigenvector b,
respectively. A non-trivial solution of these equation systems exists if and only if

)Afj —M'j) —o0, 4.17)
or equivalently
Al =1 AL Al
A AL A
. . =0, (4.18)
AY A A" — A

where |e| denotes the determinant of a matrix. Equation (4.17) is called the
characteristic equation of the tensor A. Writing out the determinant on the left hand
side of this equation one obtains a polynomial of degree n with respect to the powers
of A

pA) = (=" A"+ (1) A
+ (—1)n_k An—kIX{) + . + I(n)’ (419)

referred to as the characteristic polynomial of the tensor A. Thereby, it can easily be
seen that

10 = Al = A, 1 = ‘Afj . (4.20)
The characteristic equation (4.17) can briefly be written as
pa(d) =0. 4.21)

According to the fundamental theorem of algebra, a polynomial of degree n
has n complex roots which may be multiple. These roots are the eigenvalues
Ai (i =1,2,...,n) of the tensor A.
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Factorizing the characteristic polynomial (4.19) yields

pa) =[] -n. (4.22)

i=1

Collecting multiple eigenvalues the polynomial (4.22) can further be rewritten as

paM) =] -n", (4.23)

i=1

where s (1 < s < n) denotes the number of distinct eigenvalues, while 7; is referred
to as an algebraic multiplicity of the eigenvalue A; (i =1,2,...,s). It should
formally be distinguished from the so-called geometric multiplicity #;, which
represents the number of linearly independent eigenvectors associated with this
eigenvalue.

Example 4.1. Eigenvalues and eigenvectors of the deformation gradient in the
case of simple shear. In simple shear, the deformation gradient can be given by

F=F jei ® e/, where the matrix [F’ j] is represented by (2.69). The characteristic
equation (4.17) for the tensor F takes thus the form

I-1 vy 0
0 1-4 0 =0.
0 0 1—4A

Writing out this determinant we obtain
(1-2°=0,
which yields one triple eigenvalue
A=A =A3=1

The associated (right) eigenvectors @ = a'e; can be obtained from the equation
system (4.16); i.e.

(F, -26)a’ =0, i=123.
In view of (2.69) it reduces to the only non-trivial equation
aty =0.

Hence, all eigenvectors of F can be given by a = a'e; + a’e;. They are
linear combinations of the only two linearly independent eigenvectors e and ej.
Accordingly, the geometric and algebraic multiplicities of the eigenvalue 1 are
t; = 2 and r; = 3, respectively.
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4.3 Characteristic Polynomial

By the very definition of the eigenvalue problem (4.11) the eigenvalues are
independent of the choice of the basis. This is also the case for the coefficients
IX) (i =1,2,...,n) of the characteristic polynomial (4.19) because they uniquely
define the eigenvalues and vice versa. These coefficients are called principal
invariants of A. Writing out (4.22) and comparing with (4.19) one obtains the
following relations between the principal invariants and eigenvalues

= A+ 2+ 4 A,
If) — A.l/\«2+/x1/\’3 + ... +/\1n—lkn’

n

0= 3 Ao Ao,

01<02<...<0f

1V =ids. A, (4.24)

referred to as the Vieta theorem. The principal invariants can also be expressed
in terms of the so-called principal traces trA* (k =1,2,...,n). Indeed, by use of
(4.13), (4.20); and (4.24), we first write

trAk:/\]f‘f‘A];‘i"i'/\ﬁ’ k=1,2,...,n. (4.25)

Then, we apply Newton’s identities (also referred to as the Newton-Girard formulas)
relating coefficients of a polynomial to its roots represented by the sum of the powers
(see e.g. [10]) in the form of the right hand side of (4.25). Taking (4.25) into account,
Newton’s identities can thus be written as

IX) = trA,
1
If) =3 (Ig)trA - trAz) .
1
1) = 2 (10rA - 10rA” 4 rA%)
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1 _ _ _
1 = - (IX‘ DA —1520A? + . 4 (=1 1trA")

k
1 ) i )
= > (=TT Al
i=1

1Y) = detA, (4.26)
where we set Iff) =1l and

detA = |A7)

- }A;’,} 4.27)

is called the determinant of the tensor A.

Example 4.2. Three-dimensional space. For illustration, we consider a second-
order tensor A in three-dimensional space. In this case, the characteristic polynomial
(4.19) takes the form

pa () = =23+ IaA% — x4 + 111, (4.28)
where
I =10 = uA,

1
m=19 =3 @A) - ]
@_ [ 3 3 1 3
Iy =1, = 3 trA” — EtrA trA + 5 (trA)” | = detA (4.29)

are the principal invariants (4.26) of the tensor A. They can alternatively be
expressed by the Vieta theorem (4.24) in terms of the eigenvalues as follows

In =A1+ A2+ A3, 1Ia = A4 + oAz + A3, 1II4 = A1 A5, (4.30)

The roots of the cubic polynomial (4.28) can be obtained in a closed form by means
of the Cardano formula (see, e.g. [5]) as

1 1
/Xk:g{IA+2\/Ii—3HACOS§[l9+2ﬁ(k—1)]}, k=123 (430

where

213 — 9L, 11, + 27111
A A A+3/2 Al B -3, #0. (4.32)
2 (I3 —3M04)°

¥ = arccos |:
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In the case Ii — 3115 = 0, the eigenvalues of A take another form

M= it T ) P feos (k) isin Grk)]. @39

3

where k = 1,2, 3.

4.4 Spectral Decomposition and Eigenprojections

The spectral decomposition is a powerful tool for the tensor analysis and tensor
algebra. It enables to gain a deeper insight into the properties of second-order
tensors and to represent various useful tensor operations in a relatively simple form.
In the spectral decomposition, eigenvectors represent one of the most important
ingredients.

Theorem 4.2. The eigenvectors of a second-order tensor corresponding to pair-
wise distinct eigenvalues are linearly independent.

Proof. Suppose that these eigenvectors are linearly dependent. Among all possible
nontrivial linear relations connecting them we can choose one involving the minimal

number, say r, of eigenvectors a; # 0 (i = 1,2,...,r). Obviously, | < r < n.
Thus,
> aia; =0, (4.34)
i=1
where all o; (i = 1,2,...,r) are non-zero. We can also write
Aai :Aia,’, I :1,2,...,1‘, (435)

where A; # A;, (i #j =1,2,...,r). Mapping both sides of (4.34) by A and
taking (4.35) into account we obtain

r r
Z(X,‘Aa,’ = Zaikiai =0. (436)

i=1 i=1

Multiplying (4.34) by A, and subtracting from (4.36) yield

r r—1
0= Zai Ai—A)a; = Zai Ai —A,)a;.

i=1 i=1

In the latter linear combination none of the coefficients is zero. Thus, we have a
linear relation involving only r — 1 eigenvectors. This contradicts, however, the
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earlier assumption that r is the smallest number of eigenvectors satisfying such a
relation.

Theorem 4.3. Let b; be a left and a; a right eigenvector associated with distinct
eigenvalues A; # A of a tensor A. Then,

bi-a; =0. (4.37)
Proof. With the aid of (1.78) and taking (4.11) into account we can write
biAa; =b; - (Aa;) =b;-(A;a;) = A;b; -a;.
On the other hand, in view of (4.12)
biAa; = (bjA)-a; = (bjA;)-a; = A;b; -a;.
Subtracting one equation from another one we obtain
(Ai =A;)bi-a; =0.

Since A; # A; this immediately implies (4.37).

Now, we proceed with the spectral decomposition of a second-order tensor A.
First, we consider the case of n simple eigenvalues. Solving the equation systems
(4.16) one obtains for every simple eigenvalue A; the components of the right
eigenvector a; and the components of the left eigenvector b; (i =1,2,...,n). n
right eigenvectors on the one hand and n left eigenvectors on the other hand are
linearly independent and form bases of C". Obviously, b, -a; #0(@ = 1,2,...,n)
because otherwise it would contradict (4.37) (see Exercise 4.5). Normalizing the
eigenvectors we can thus write

b,-'aj:&j, i,j:1,2,...,n. (438)
Accordingly, the bases a; and b; are dual to each other such that a = b; and
b = a; (i = 1,2,...,n). Now, representing A with respect to the basis a; ®

b; (i,j=1,2,....,n)as A = AVa; ® b; we obtain with the aid of (1.88), (4.11)
and (4.38)

Aij :aiAbj = b,-Aaj = bi . (Aaj) = b,‘ . ()Ljaj) = /\j&j,

wherei, j = 1,2,...,n. Thus,

A= Zx,a, ®b;. (4.39)

i=1
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Next, we consider second-order tensors with multiple eigenvalues. We assume,
however, that the algebraic multiplicity r; of every eigenvalue A; coincides with
its geometric multiplicity # . In this case we again have n linearly independent right
eigenvectors forming a basis of C" (Exercise 4.4). We will denote these eigenvectors
by al(-k) (i=1,2,....,8;k =1,2,...,r;) where s is the number of pairwise distinct

eigenvalues. Constructing the basis 5" dual to a'® such that

j i
a b =685 i j =12, sik=12..r1=12..r (440)
we can write similarly to (4.39)

i=1 k=

i

a” ®b". (4.41)
1

The representations of the form (4.39) or (4.41) are called spectral decomposition in
diagonal form or, briefly, spectral decomposition. Note that not every second-order
tensor A € Lin" permits the spectral decomposition. The tensors which can be rep-
resented by (4.39) or (4.41) are referred to as diagonalizable tensors. For instance,
we will show in the next sections that symmetric, skew-symmetric and orthogonal
tensors are always diagonalizable. If, however, the algebraic multiplicity of at least
one eigenvalue exceeds its geometric multiplicity, the spectral representation is not
possible. Such eigenvalues (for which r; > #;) are called defective eigenvalues.
A tensor that has one or more defective eigenvalues is called defective tensor.
In Sect. 4.2 we have seen, for example, that the deformation gradient F represents in
the case of simple shear a defective tensor since its triple eigenvalue 1 is defective.
Clearly, a simple eigenvalue (r; = 1) cannot be defective. For this reason, a tensor
whose all eigenvalues are simple is diagonalizable.

Now, we look again at the spectral decompositions (4.39) and (4.41). With the
aid of the abbreviation

P, :Zaff‘)@b;"), i=1,2,...,s (4.42)
k=1
they can be given in a unified form by
A=) AP (4.43)
i=1

The generally complex tensors P; (i = 1,2,...,s) defined by (4.42) are called
eigenprojections. It follows from (4.40) and (4.42) that (Exercise 4.6)

P,'Pj = SijPh l,] = 1,2,...,.5‘ (444)
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and consequently
PiA:APi :AiP,', i = 1,2,...,.5‘. (445)

Bearing in mind that the eigenvectors a,(.k) (i=12,...,5:k=1,2,...,r;) form
a basis of C" and taking (4.40) into account we also obtain (Exercise 4.7)

Z P, =1 (4.46)

i=1

Due to these properties of eigenprojections (4.42) the spectral representation
(4.43) is very suitable for calculating tensor powers, polynomials and other tensor
functions defined in terms of power series. Indeed, in view of (4.44) powers of A
can be expressed by

AR =3P k=0.1.2.... (4.47)

i=1

For a tensor polynomial it further yields

g4 =3 g (4.48)

i=1

For example, the exponential tensor function (1.114) can thus be represented by

exp(A) = Z exp (A;) P;. (4.49)

i=1
For an invertible second-order tensor we can also write
N
Al = ZA;IPi, Ach, (4.50)
i=1

which implies that A; # 0( = 1,2,...,s). The latter property generally char-
acterizes all (not necessarily diagonalizable) invertible tensors (see Exercise 4.9).

With the aid of (4.44) and (4.46) the eigenprojections can be obtained without
solving the eigenvalue problem in the general form (4.11). To this end, we first
consider s polynomial functions p; (1) (i =1,2,...,s) satisfying the following
conditions

pi(A) =68y, i.j=12...s. (4.51)
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Thus, by use of (4.48) we obtain
N s
Di (A)ZZP, (Aj)Pj:ZSiij:Ph i=1,2,...,S. (452)
j=1 J=l1

Using Lagrange’s interpolation formula (see, e.g., [S]) and assuming that s # 1 one
can represent the functions p; (1) (4.51) by the following polynomials of degree
s—1:

A=A

i () = .
pi (M) payy

i=1,2,...,5>1. (4.53)
j=1
i

Considering these expressions in (4.52) we obtain the so-called Sylvester formula
as

SCA-AT
P":n,x,-—,x]j’ i=1,2,...,s> 1. (4.54)

~.

=1
2

~

Note that according to (4.46), P; = I in the the case of s = 1. With this result in
hand the above representation can be generalized by

i=1,2,...,s. (4.55)

Writing out the product on the right hand side of (4.55) also delivers (see, e.g., [48])
1 s—1
P = E;Lis_p_lAP, i=1,2,...,s, (4.56)

where ;0 = 1,

lip = (=1” Z Ao, "'/\o,, 1- 8,-01)...(1 _ 5i0p)’

1<01=+=<0p=<s

Di=8,+[[(i-%). p=12...s-1. i=12..5 (457
=1
i
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4.5 Spectral Decomposition of Symmetric Second-Order
Tensors

We begin with some useful theorems concerning eigenvalues and eigenvectors of
symmetric tensors.

Theorem 4.4. The eigenvalues of a symmetric second-order tensor M € Sym” are
real, the eigenvectors belong to E".

Proof. Let A be an eigenvalue of M and a a corresponding eigenvector such that
according to (4.11)
Ma = Aa.

The complex conjugate counterpart of this equation is

Ma=\a.

Taking into account that M is real and symmetric such that M = M and MT = M
we obtain in view of (1.115)

aM=Aa.
Hence, one can write

0=aMa —aMa = a-(Ma) — (@M) - a

A@-a)—%(@-a) = (A—X) @-a).

Bearing in mind that @ # 0 and taking (4.9) into account we conclude thata -a > 0.
Hence, A = A. The components of @ with respect to a basis G = {g1,82.....8x}
in E” are real since they represent a solution of the linear equation system (4.16);
with real coefficients. Therefore, a € E”".

Theorem 4.5. Eigenvectors of a symmetric second-order tensor corresponding to
distinct eigenvalues are mutually orthogonal.

Proof. According to Theorem 4.3 scalar product of a right and a left eigenvector
associated with distinct eigenvalues is zero. However, for a symmetric tensor
every right eigenvector represents the left eigenvector associated with the same
eigenvalue and vice versa. Taking also into account that the eigenvectors are real we
infer that right (left) eigenvectors associated with distinct eigenvalues are mutually
orthogonal.

Theorem 4.6. Let A; be an eigenvalue of a symmetric second order tensor M. Then,
the algebraic and geometric multiplicity of A; coincide.

Proof. Let ay € E" (k =1,2,...,t;) be all linearly independent eigenvectors
associated with A;, while #; and r; denote its geometric and algebraic multiplicity,
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respectively. Every linear combination of a; with not all zero coefficients is again
an eigenvector associated with A;. Indeed,

ti ti ti ti
MZakak = Zak (Mak) = Zak/\,-ak = A,‘ Zakak. (4.58)
k=1 k=1 k=1 k=1

According to Theorem 1.4 the set of vectors ax (k =1,2,...,t) can be
completed to a basis of E". With the aid of the Gram-Schmidt procedure
described in Chap. 1 (Sect. 1.4) this basis can be transformed to an orthonormal

basis e; (/ =1,2,...,n). Since the vectors e; (j =1,2,....,t;) are linear
combinations of a; (k =1,2,...,t;) they likewise represent eigenvectors of
M associated with A;. Further, we represent the tensor M with respect to the
basis e; ® e,, ([,m =1,2,...,n). In view of the identities Me; = eM =
Aier (k =1,2,...,t) and keeping in mind the symmetry of M we can write using
(1.88)

t n

M=) ex®ec+ Y M,e Qen. (4.59)
k=1 I.m=t;+1

Thus, the characteristic polynomial of M can be given as
pm(A) = My, = X8| (A = 1)" (4.60)

which implies that r; > ¢;.
Now, we consider the vector space E"~" of all linear combinations of the vectors
e; (Il =t +1,...,n). The tensor

n
M = Z M, e ® en
Iom=t;+1

represents a linear mapping of this space into itself. The eigenvectors of M’ are
linear combinationsof e; (I =t; 4+ 1,...,n) and therefore are linearly independent
of ey (k =1,2,...,t). Consequently, A; is not an eigenvalue of M. Otherwise,
the eigenvector corresponding to this eigenvalue A; would be linearly independent
of e (k =1,2,...,t;) which contradicts the previous assumption. Thus, all the
roots of the characteristic polynomial of this tensor

pw (A) = ‘M;m - /\(Slm‘

differ from A;. In view of (4.60) this implies that r; = ¢;.

As a result of this theorem and in view of (4.41) and (4.43), the spectral decompo-
sition of a symmetric second-order tensor can be given by

A

i=1 k=

ri S
a’(,k) (9] a’(.k) = Z AiPiﬂ M (S Symn, (4’61)
1

i=1
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in terms of the real symmetric eigenprojections
i
P =>a"®al (4.62)
k=1
where the eigenvectors al(k) form an orthonormal basis in [E” so that
a -ay) = §;6", (4.63)
wherei,j =1,2,....5: k=1,2,....r;; [ =1,2,...,r1j.
Of particular interest in continuum mechanics are the so-called positive-definite
second-order tensors. They are defined by the following condition
xAx >0, VxeE'S x#0. (4.64)
For a symmetric tensor M the above condition implies that all its eigenvalues are
positive. Indeed, let a; be a unit eigenvector associated with the eigenvalue A; (i =
1,2,...,n). In view of (4.64) one can thus write

Al‘ = aiMai > 0, I = 1,2,...,71. (465)

This allows to define powers of a symmetric positive-definite tensor with a real
exponent as follows

M* =) AP, acR. (4.66)

i=1

4.6 Spectral Decomposition of Orthogonal and
Skew-Symmetric Second-Order Tensors

We begin with the orthogonal tensors Q € Orth” defined by the condition (1.135).
For every eigenvector a and the corresponding eigenvalue A we can write

Qa =Xla, Qa=2.a, (4.67)

because Q is by definition a real tensor such that Q = Q. Mapping both sides of
these vector equations by QT and taking (1.115) into account we have

aQ=1"'a, aQ=21 a. (4.68)

Thus, every right eigenvector of an orthogonal tensor represents its left eigenvector
associated with the inverse eigenvalue.
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Now, we consider the product aQa. With the aid of (4.67); and (4.68), we obtain
@Qu=A@-a)=1% (@-a). (4.69)

Since, however, @ - a = a - @ > 0 according to (4.8) and (4.9) we infer that
AL =1. (4.70)

Thus, all eigenvalues of an orthogonal tensor have absolute value 1 so that we can
write '
A=e” =cosw +isinw. 4.71)

By virtue of (4.70) one can further rewrite (4.68) as
aQ = ta, aQ = \a. (4.72)

If further A # A~! = A or, in other words, A is neither +1 nor —1, Theorem 4.3
immediately implies the relations

a-a=0, a-a=0, A#A1! (4.73)

indicating that @ and consequently @ are complex (definitely not real) vectors. Using
the representation

1
a=—(p+iq), p,qcE" 4.74)
7 (p+iq), p.q

and applying (4.8) one can write
lpl =lgl=1. p-q=0. (4.75)

sothata-a=1/2(p-p+q-q)=1.

Summarizing these results we conclude that every complex (definitely not real)
eigenvalue A of an orthogonal tensor comes in pair with its complex conjugate
counterpart A = A~'. If @ is a right eigenvector associated with A, then @ is its
left eigenvector. For X, a is, vice versa, the left eigenvector and a the right one.

Next, we show that the algebraic and geometric multiplicities of every eigenvalue
of an orthogonal tensor Q coincide. Let a; (k = 1,2,...,t) be all linearly
independent right eigenvectors associated with an eigenvalue A;. According to
Theorem 1.4 these vectors can be completed to a basis of C". With the aid of the
Gram-Schmidt procedure (see Exercise 4.17) a linear combination of this basis can
be constructed in such a way thatay-a; = &, (k,/ = 1,2,...,n). Since the vectors
ap (k =1,2,...,1;) are linear combinations of a; (k = 1,2,...,t;) they likewise
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represent eigenvectors of Q associated with A;. Thus, representing Q with respect
to the basis ay ® a; (k,l =1,2,...,n) we can write

ti n
Q=MZak®ﬁk+ Z Qa1 @ @p.
k=1

I.m=t;+1

Comparing this representation with (4.59) and using the same reasoning as applied
for the proof of Theorem 4.6 we infer that A; cannot be an eigenvalue of Q' =
> =i +1 Q)@ ®@,. This means that the algebraic multiplicity r; of A; coincides
with its geometric multiplicity #;. Thus, every orthogonal tensor Q € Orth” is
characterized by exactly n linearly independent eigenvectors forming a basis of C".
Using this fact the spectral decomposition of Q can be given by

r41 r—|
k k i i
Q=Y dwal)- Y a0 a)
k=1 =1
N ri T
+ Y 0> eV ea + 7> @ ®alt (4.76)
i=1 k=1 k=1

where r4; and r—; denote the algebraic multiplicities of real eigenvalues +1 and
—1, respectively, while a(fi (k=1,2,...,ry1)and a(_l)1 (I =1,2,...,r_) are the
corresponding orthonormal real eigenvectors. s is the number of complex conjugate
pairs of eigenvalues A; = cosw; & isinw; with distinct arguments w; and the

multiplicities r;. The associated eigenvectors al(k) and E;k) obey the following
relations (see also Exercise 4.18)

a®.a% =0, a®.a?) =0, o® -Ey) =585, a®-a™ =0, 477

where i,j = 1,2,...,8; kom = 1,2,...,r;5 1 = 1,2,...,rj; 0 = 1,2,...,
rv1; p = 1,2,...,r—;. Using the representations (4.74) and (4.71) the spectral
decomposition (4.76) can alternatively be written as

41 ri

Q= Za(f:i 0 a(f:i + Zcoswi Z (p,(k) & p,(-k) + q,(k) ® q;k))
k=1 i=1 k=1
r—i K ri
~ Yl wali 4+ Y sine Y (PN @e — ¢V @ p). @78)
=1 i=l k=1

Now, we turn our attention to skew-symmetric tensors W € Skew” as defined in
(1.155). Instead of (4.68) and (4.69) we have in this case

aW = —\a, aW=-\a, (4.79)
aWa =A(a@-a) =—\(a-a) (4.80)
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and consequently
A =—A (4.81)

Thus, the eigenvalues of W are either zero or imaginary. The latter ones come in
pairs with the complex conjugate like in the case of orthogonal tensors. Similarly to
(4.76) and (4.78) we thus obtain

N ri
— i (k) o =) _ (k) (k)
W= E a),-lg (a, ®a;’ —a; ®a,)
k=1

i=1

i

=Y oy (P ed? -4 epl). (4.82)
i=1 k=1

where s denotes the number of pairwise distinct imaginary eigenvalues w;i while

the associated eigenvectors al(k) and E;k) are subject to the restrictions (4.77)3 4.

Orthogonal tensors in three-dimensional space. In the three-dimen-sional case
Q € Orth’, at least one of the eigenvalues is real, since complex eigenvalues of
orthogonal tensors appear in pairs with the complex conjugate. Hence, we can write

A =x1, A =e” =cosw+isinw, A3=e ' =cosw—isinw. (4.83)

In the case sinw = 0 all three eigenvalues become real. The principal invariants
(4.30) take thus the form

Ig=A1+2cosw = +£1+42cosw,

o =2 cosw + 1 = Alg = £lg,

Mo = A, = 1. (4.84)

The spectral representation (4.76) takes the form
Q=24a, ®a; + (cosw +isinw)a®a + (cosw —isinw)a @a, (4.85)

where a; € E and a € C3 is given by (4.74) and (4.75). Taking into account that
by (4.77)
aira=a,-p=a -q=0 (4.86)

we can set
a =qxp. (4.87)

Substituting (4.74) into (4.85) we also obtain

Q=+a,®a;+coswo(p®p+qgRq)+sinw(pR®qg—qp). (488
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By means of the vector identity (1.136) and considering (1.66), (1.92) and (4.87) it
finally leads to

Q =coswl + sinwd; + (1 —cosw) a; R a;. (4.89)

Comparing this representation with (1.73) we observe that any orthogonal tensor
Q € Orth? describes a rotation in three-dimensional space if Illg = A; = 1. The
eigenvector a; corresponding to the eigenvalue 1 specifies the rotation axis. In this
case, Q is referred to as a proper orthogonal tensor.

Skew-symmetric tensors in three-dimensional space. For a skew-symmetric
tensor W € Skew® we can write in view of (4.81)

A =0, A =wi, Az;=-—wi. (4.90)
Similarly to (4.84) we further obtain (see Exercise 4.19)
Iw=0, Ilw= % [W|? = w? Iy = 0. (4.91)
The spectral representation (4.82) takes the form

W=0wi@a®a—-a®Qa)=0(p®q—qp), (4.92)

where a, p and g are again related by (4.74) and (4.75). With the aid of the
abbreviation
wW=wa =wg Xp (4.93)

and bearing (1.169) in mind we finally arrive at the representation (1.158)
W =w. (4.94)

Thus, the axial vector w (4.93) of the skew-symmetric tensor W (4.92) in three-
dimensional space represents its eigenvector corresponding to the zero eigenvalue
in accordance with (1.160).

4.7 Cayley-Hamilton Theorem

Theorem 4.7. Let pa (L) be the characteristic polynomial of a second-order tensor
A € Lin". Then,

n

paA) =Y ()" FIPAF =0, (4.95)
k=0
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Proof. As a proof (see, e.g., [12]) we show that
pa(A)x =0, Vx eE". (4.96)

For x = 0 it s trivial, so we suppose that x # 0. Consider the vectors

yi=A"lx, i=12,.... (4.97)

Obviously, there is an integer number k such that the vectors yi, yo,..., yi are
linearly independent, but

a\y1 +aryrs+ ... faryr + Afx = 0. (4.98)

Note that 1 <k < n.Ifk # n we can complqte the vectors y; (i = 1,2,...,k) to
abasis y; (i = 1,2,...,n) of E".LetA = Al;y; ® y/, where the vectors y' form
the basis dualto y; (i = 1,2,...,n). By virtue of (4.97) and (4.98) we can write

Yi+1 ifi <k,
Ay = k 4.99
Y Afx ==Y a;y; ifi =k (4.99)
j=1
The components of A can thus be given by
00...0 —ay
10...0 —ay
[Af}] =[Ay;l=:: 0 0 a | (4.100)
00...1 —dj
0 A//

where A" and A” denote some submatrices. Therefore, the characteristic polynomial
of A takes the form

—A 0...0 —da]
1 —A...0 —d)
Ay =pr | ] (4.101)
0 0...1 —ap—2A
where par (A) = det(A” — AI). By means of the Laplace expansion rule (see,
e.g., [5]) we expand the determinant in (4.101) along the last column, which yields

pa Q) = par A) (=D* (a1 + a2r + ...+ @A 4 2F). (4.102)
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Bearing (4.97) and (4.98) in mind we finally prove (4.96) by
pa(A) x = (=1)" par (A) (@11 + @A + ... + a A" + AF) x
= (=1)* par (A) (@1x + aAx + ... + A" 'x + AFx)

= (—l)k par (A) (a1y1 +axy, +...+akyr + Akx) =0.

Exercises

4.1. Evaluate eigenvalues and eigenvectors of the right Cauchy-Green tensor C =
FTF in the case of simple shear, where F is defined by (2.69).

4.2. Let g; (i = 1,2,3) be linearly independent vectors in E*. Prove that for any
second order tensor A € Lin®

Ag Agr A
detA — A81Ag2Ag:] (4.103)

(212285]
4.3. Prove identity (4.29); using Newton’s identities (4.26).

4.4. Prove that eigenvectors al(-k) i=12,....,8k=1,2,...,t) of a second
order tensor A € Lin" are linearly independent and form a basis of C" if for
every eigenvalue the algebraic and geometric multiplicities coincide so that r; =
L@ =1,2,...,9).

4.5. Generalize the proof of Exercise 1.8 for complex vectors in C".
4.6. Prove identity (4.44) using (4.40) and (4.42).

4.7. Prove identity (4.46) taking (4.40) and (4.42) into account and using the results
of Exercise 4.4.

4.8. Prove the identity det [exp (A)] = exp (trA).

4.9. Prove that a second-order tensor is invertible if and only if all its eigenvalues
are non-zero.

4.10. Let A; be an eigenvalue of a tensor A € Inv". Show that A;"! represents then
the eigenvalue of A~

4.11. Show that the tensor MN is diagonalizable if M, N € Sym" and at least one
of the tensors M or N is positive-definite.

4.12. Verify the Sylvester formula for s = 3 by inserting (4.43) and (4.46) into
(4.55).
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4.13. Represent eigenprojections of the right Cauchy-Green tensor in the case of
simple shear using the results of Exercise 4.1 by (4.42) and alternatively by the
Sylvester formula (4.55). Compare both representations.

4.14. Calculate eigenvalues and eigenprojections of the tensor A = A;ei R e,

where
-222

[a]=1] 214
241
Apply the Cardano formula (4.31) and Sylvester formula (4.55).

4.15. Calculate the exponential of the tensor A given in Exercise 4.14 using the
spectral representation in terms of eigenprojections (4.43).

4.16. Calculate eigenvectors of the tensor A defined in Exercise 4.14. Express
eigenprojections by (4.42) and compare the results with those obtained by the
Sylvester formula (Exercise 4.14).

4.17. Letc; (i =1,2,...,m) € C" be a set of linearly independent complex
vectors. Using the (Gram-Schmidt) procedure described in Chap.1 (Sect.1.4),
construct linear combinations of these vectors, say a; (i = 1,2,...,m), again
linearly independent, in such a way thata; -@; = 6;; (i,j =1,2,...,m).

4.18. Let a?k) (k =1,2,...,t) be all linearly independent right eigenvectors of
an orthogonal tensor associated with a complex (definitely not real) eigenvalue A;.
Show that al(k) -af[) =0(k,]l=1,2,....t).

4.19. Evaluate principal invariants of a skew-symmetric tensor in three-
dimensional space using (4.29).

4.20. Evaluate eigenvalues, eigenvectors and eigenprojections of the tensor describ-
ing the rotation by the angle « about the axis e3 (see Exercise 1.24).

4.21. Verify the Cayley-Hamilton theorem for the tensor A defined in Exer-
cise 4.14.

4.22. Verify the Cayley-Hamilton theorem for the deformation gradient in the case
of simple shear (2.69).



Chapter 5
Fourth-Order Tensors

5.1 Fourth-Order Tensors as a Linear Mapping

Fourth-order tensors play an important role in continuum mechanics where they
appear as elasticity and compliance tensors. In this section we define fourth-order
tensors and learn some basic operations with them. To this end, we consider a set
Lin" of all linear mappings of one second-order tensor into another one within Lin".
Such mappings are denoted by a colon as

Y=A:X, Aelin", YeLin", VX € Lin". (5.1

The elements of £in" are called fourth-order tensors.

Example 5.1. Elasticity and compliance tensors. A constitutive law of a linearly
elastic material establishes a linear relationship between the Cauchy stress tensor
o and Cauchy strain tensor €. Since these tensors are of the second-order a linear
relation between them can be expressed by fourth-order tensors like

06=C:¢ or e=H:o. (5.2)

The fourth-order tensors € and J{ describe properties of the elastic material and are
called the elasticity and compliance tensor, respectively.

Linearity of the mapping (5.1) implies that
A: X4+Y)=A:X+A:Y, (5.3)

A:@X)=a(A:X), VX, YeLin", Yo R, AeLin". (54)

Similarly to second-order tensors one defines the product of a fourth-order tensor
with a scalar
(@A) : X=aA:X)=A: («X) (5.5)

M. Itskov, Tensor Algebra and Tensor Analysis for Engineers, Mathematical Engineering, 107
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and the sum of two fourth-order tensors by
A+B): X=A:X+B:X, VXelLin" (5.6)
Further, we define the zero-tensor O of the fourth-order by
0:X=0, VXelLin" (5.7)

Thus, summarizing the properties of fourth-order tensors one can write similarly to
second-order tensors

A+B =B+ A, (additionis commutative), (5.8)
A+(B+C€ =(A+B)+C, (addition is associative), (5.9)
O+A=A, (5.10)
A+ (-A) =0, (5.11)
a (BA) = (af) A, (multiplication by scalars is associative), (5.12)
1A =A, (5.13)

a(A+B)=aA+aB, (multiplication by scalars is distributive
with respect to tensor addition), (5.14)
(¢+B)A=aA+ BA, (multiplication by scalars is distributive
with respect to scalar addition), V.A,B,C€ € Lin", Vo, eR. (5.15)
Thus, the set of fourth-order tensors Lin" forms a vector space.

On the basis of the “right” mapping (5.1) and the scalar product of two second-
order tensors (1.143) we can also define the “left” mapping by

Y:A): X=Y:(A:X), YelLin", VXelLin". (5.16)

5.2 Tensor Products, Representation of Fourth-Order
Tensors with Respect to a Basis

For the construction of fourth-order tensors from second-order ones we introduce
two tensor products as follows

A®B:X=AXB, AGB:X=AB:X), VXeLin", (5.17)

where A, B € Lin". Note, that the tensor product “®” (5.17), applied to second-
order tensors differs from the tensor product of vectors (1.80). One can easily show
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that the mappings described by (5.17) are linear and therefore represent fourth-order
tensors. Indeed, we have, for example, for the tensor product “®” (5.17);

A®B:(X+Y)=AX+Y)B
=AXB+AYB=A®B:X+A®B:Y, (5.18)

A®B: (@X) = A («X)B = « (AXB)
=«(A®B:X), VX.YelLin", VacR.  (5.19)

With definitions (5.17) in hand one can easily prove the following identities

ARB+C)=A®B+A®C, B+C)QA=BRA+C®A, (5.20)
AOB+C)=AOB+AOC, B+C)OA=BOA+COA. (521)

For the left mapping (5.16) the tensor products (5.17) yield

Y:A®B=ATYB', Y:A0B=(Y:A)B. (5.22)
As fourth-order tensors represent vectors they can be given with respect to a basis
in Lin".
Theorem 5.1. Let F = {F|,F»,... . F2} and G = {G1,Ga,...,G,2} be two

arbitrary (not necessarily distinct) bases of Lin". Then, fourth-order tensors F; ©
G; (i, j=12,..., nz)form a basis of Lin". The dimension of Lin" is thus n*.

Proof. See the proof of Theorem 1.7.

A basis in Lin" can be represented in another way as by the tensors F; ©
G, (i.j = 1.2,...,n?). To this end, we prove the following identity

@®d)ObRc)=a®bRcRd, (5.23)

where we set
@) (cRd)=albRcRd. (5.24)

Indeed, let X € Lin" be an arbitrary second-order tensor. Then, in view of (1.142)
and (5.17),

@®d)Ob®c): X=0bBXc)(a®d). (5.25)

For the right hand side of (5.23) we obtain the same result using (5.17); and (5.24)
aQbRcRd X=@®b)Q(c®d):X=(bXc)(a®d). (5.26)

For the left mapping (5.16) it thus holds
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Y:a®bRc®d = (aYd)(b®c). (5.27)

Now, we are in a position to prove the following theorem.

Theorem 5.2. Let £ = {ej,es,....e,}, F =4{f1, f2.---. fn}, G = {81,822,

.., 8n} and finally H = {hi, h,, ..., h,} be four arbitrary (not necessarily
distinct) bases of E". Then, fourth-order tensorse; @ f; @ gr Q@ hy (i, j. k.l =
1,2,...,n) represent a basis of Lin".

Proof. In view of (5.23)
e ®f;®gQh=(e;@h)O(f; ®gk).

According to Theorem 1.7 the second-order tensors ¢; ® h; (i,/ = 1,2,...,n) on
the one hand and f'; ® gx (j.k =1,2,...,n) on the other hand form bases of
Lin". According to Theorem 5.1 the fourth-order tensors (e; ® h;) © ( fi® gk)
and consequently e; ® f; ® gx ®h; (i, j, k.| =1,2,..., n) represent thus a basis
of Lin".

As a result of this Theorem any fourth-order tensor can be represented by

A=AMg 0g g Qg =Aug 0g' ®g- g
— Al gi®g g g = .. (5.28)

The components of A appearing in (5.28) can be expressed by

A =gl@gl A g/ @gt, Au=g ®g A g;® gk
Al =g ®g A g/ ®gr, i,jkl=12,.n. (5.29)
By virtue of (1.109), (5.17); and (5.22); the right and left mappings with a second-
order tensor (5.1) and (5.16) can thus be represented by
X=(AMg; @g; @81 ®g1): (Xpg! ®g") =AMX1g: ® g1.
A= (Xpg'®g") (AMgi 0 g ® g ®g1) = AMXig; ® g
(5.30)

We observe that the basis vectors of the second-order tensor are scalarly multiplied
either by the “inner” (right mapping) or “outer” (left mapping) basis vectors of the
fourth-order tensor.



5.3 Special Operations with Fourth-Order Tensors 111
5.3 Special Operations with Fourth-Order Tensors

Similarly to second-order tensors one defines also for fourth-order tensors some
specific operations which are not generally applicable to conventional vectors in the
Euclidean space.

Composition. In analogy with second-order tensors we define the composition of
two fourth-order tensors A and B denoted by A : B as

A:B):X=A:(B:X), VXelLin" (5.31)
For the left mapping (5.16) one can thus write
Y:(A:B)=(Y:A):B, VYeLin". (5.32)

For the tensor products (5.17) the composition (5.31) further yields

(A®B): (C®D) = (AC) ® (DB), (5.33)
(A®B): (COD) = (ACB) ©D, (5.34)

(AOB): (C®D)=A0 (C'BD"), (5.35)

(AOB): (COD)=B:C)AOGD, A,B.C,DcLin". (5.36)

For example, the identity (5.33) can be proved within the following steps

(A®B): (C®D):X = (A ®B) : (CXD)
= ACXDB = (AC) ® (DB) : X, VX € Lin",

where we again take into account the definition of the tensor product (5.17).
For the component representation (5.28) we further obtain

A:B=AMg, ®g, g ®g1): (Bpng’' ®g'0g ®¢g")
=AMB g ®gIRE ® gl (5.37)

Note that the “inner” basis vectors of the left tensor A are scalarly multiplied with
the “outer” basis vectors of the right tensor B.
The composition of fourth-order tensors also gives rise to the definition of
powers as
A=A A A k=12.. A =3 (5.38)

k times

where J stands for the fourth-order identity tensor to be defined in the next section.
By means of (5.33) and (5.36) powers of tensor products (5.17) take the following
form
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A®Bf=A"@B", AOB=A:B/'AOB, k=1,2,... (539

Simple composition with second-order tensors. Let D be a fourth-order tensor
and A, B two second-order tensors. One defines a fourth-order tensor ADB by

(ADB) : X =A(D:X)B, VXelLin". (5.40)
Thus, we can also write
ADB = (A®B):D. (5.41)

This operation is very useful for the formulation of tensor differentiation rules to be
discussed in the next chapter.
For the tensor products (5.17) we further obtain

AB®C)D = (AB)® (CD) = (A®D): (B® C), (5.42)
ABOC)D=(ABD)OC=(A®D): BOC). (5.43)

With respect to a basis the simple composition can be given by

ADB = (A" ®g!) (DMg, ®g; ® gk ® g1) Brg" ® g°)
=A,D*B g’ Rg; RgrDg’. (5.44)
It is seen that expressed in component form the simple composition of second-order

tensors with a fourth-order tensor represents the so-called simple contraction of the
classical tensor algebra (see, e.g., [42]).

Transposition. In contrast to second-order tensors allowing for the unique trans-
position operation one can define for fourth-order tensors various transpositions. We
confine our attention here to the following two operations (e)" and (e)' defined by

AT:X=X:A, A':X=A:X", VXelLin" (5.45)

Thus we can also write
Y:A = (Y:A". (5.46)

Indeed, a scalar product with an arbitrary second order tensor X yields in view of
(1.147) and (5.16)

(Y:A):X=Y:(A:X)=Y:(A:X)
=(Y:A):X"=(Y:A)":X, VXeLin"

Of special importance is also the following symmetrization operation resulting from
the transposition (e)":
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F=-(F+75. (5.47)

1
2
In view of (1.153)y, (5.45), and (5.46) we thus write

F . X=F:symX, Y:F =sym(Y:F). (5.48)

Applying the transposition operations to the tensor products (5.17) we have
A®B)'=AT®B", (A®B)' =BOA, (5.49)
(AOB)'=A0OB" A BcLin". (5.50)

With the aid of (5.26) and (5.27) we further obtain

@b®c®d)"'=b®a®dc, (5.51)
@bRc®d)!=akcbed. (5.52)

It can also easily be proved that
A=A, A"=A, VAecLin (5.53)

Note, however, that the transposition operations (5.45) are not commutative with
each other so that generally D™ % DT,

Applied to the composition of fourth-order tensors these transposition operations
yield (Exercise 5.6):

A:B)T=BT: AT, A:B)'=A4:B. (5.54)

For the tensor products (5.17) we also obtain the following relations (see
Exercise 5.7) .
(A®B)' : (C®D) = [(ADT) ® (CTB)] , (5.55)

(A®B)': (COD) = (AC"B) ©D. (5.56)

Scalar product. Similarly to second-order tensors the scalar product of fourth-
order tensors can be defined in terms of the basis vectors or tensors. To this end, let
us consider two fourth-order tensors A © B and C © D, where A, B, C,D € Lin".
Then, we set

AGB):(CoOD)=A:C)(B:D). (5.57)

As a result of this definition we also obtain in view of (1.141) and (5.23)

@RbR®c®d)::(e® fRQg®h)=(a-e)(b-f)(c-g)(d-h). (558)
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For the component representation of fourth-order tensors it finally yields
A:B=(A%g, ®g;®gc®gl)
2 (Bng” ®g1®g ®g") = AN By (5.59)

Using the latter relation one can easily prove that the properties of the scalar product
(D.1)—(D.4) hold for fourth-order tensors as well.

5.4 Super-Symmetric Fourth-Order Tensors

On the basis of the transposition operations one defines symmetric and super-
symmetric fourth-order tensors. Accordingly, a fourth-order tensor € is said to be
symmetric if (major symmetry)

e'=e (5.60)
and super-symmetric if additionally (minor symmetry)

¢'=c (5.61)
In this section we focus on the properties of super-symmetric fourth-order tensors.
They constitute a subspace of Lin" denoted in the following by Ssym”. First,
we prove that every super-symmetric fourth-order tensor maps an arbitrary (not
necessarily symmetric) second-order tensor into a symmetric one so that

€:X)'=€:X, VCeS8sym" VXelLin". (5.62)
Indeed, in view of (5.45), (5.46), (5.60) and (5.61) we have
e:x)=x:eN'=x:0"=X:€=X:€=X:€"=€:X.

Next, we deal with representations of super-symmetric fourth-order tensors and
study the properties of their components. Let 7 = {F,F,,...,F,2} be an arbitrary

basis of Lin" and 7' = {Fl, F2,... ,F"z} the corresponding dual basis such that

F,:F' =68, pg=12...n" (5.63)
According to Theorem 5.1 we first write

€ =C"F,OF,. (5.64)
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Taking (5.60) into account and in view of (5.49), we infer that
M =C®, p#tq pqg=12 ... n° (5.65)
Letnow F, = M, (p=1,2,....,m)and F, = W,_,, (q =m—+ 1,...,n2) be

bases of Sym” and Skew” (Sect. 1.9), respectively, where m = %n (n + 1). In view
of (5.45), and (5.61)

1

C:W=e€: (W) =-€:W =0, (=12 ..on(=1)  (566)
so that

CFF =CP?=F:C:F =0, p=12,....n%r=m+1,....n* (567

and consequently

“ 1
€= > eM,oM, m= S+ 1). (5.68)

pq=1

Keeping (5.65) in mind we can also write by analogy with (1.156)

€=>C"M,OM,+ > €4 (M,OM, +M,OM,). (5.69)
=1 Pq=1
P>q

Therefore, every super-symmetric fourth-order tensor can be represented with
respect to the basis 3 (M, © My + M, © M,,), where M, € Sym” and p > ¢q =
1,2,..., L n (n + 1). Thus, we infer that the dimension of Ssym” is %m m+1)=
%nz (n + 1)2 + %n (n 4+ 1). We also observe that Ssym” can be considered as the
set of all linear mappings within Sym”.

Applying Theorem 5.2 we can also represent a super-symmetric tensor by € =
Gijklg,- ®g; ® gk ® g;. Inthis case, (5.51) and (5.52) require that (Exercise 5.8)

eijkl — ejilk — elk}l — el}kl — ekll] (570)
Thus, we can also write
e=C"(g;®g)0(g; ®g)

1 .
=ZG”kl(gf®g1+g1®gi)®(g,-®gk+gk®gj)

1 .
:Zel]kl(gj®gk+gk®gj)®(gi®gl+gl®gi)- (5.71)
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Finally, we briefly consider the eigenvalue problem for super-symmetric fourth-
order tensors. It is defined as

C:M=AM, CeS8sym", M #0, (5.72)

where A and M € Sym” denote the eigenvalue and the corresponding eigentensor,
respectively. The spectral decomposition of € can be given similarly to symmetric
second-order tensors (4.61) by

m
€=Y A,M,OM,, (5.73)
p=1
where again m = %n (n + 1) and

M,:M, =6, pqgq=12...,m. (5.74)

5.5 Special Fourth-Order Tensors

Identity tensor. The fourth-order identity tensor J is defined by
J:X=X, VXelLin" (5.75)

It is seen that J is a symmetric (but not super-symmetric) fourth-order tensor such
that 3T = 9. Indeed,
X:3=X, VXelLin". (5.76)

With the aid of (5.17), the fourth-order identity tensor can be represented by
J=1IQL (5.77)
Thus, with the aid of (1.91) or alternatively by using (5.29) one obtains
I=g: 0 0g; 8. (5.78)

An alternative representation for J in terms of eigenprojections P; (i = 1,2,...,s)
of an arbitrary second-order tensor results from (5.77) and (4.46) as
I=) PP, (5.79)
i,j=1
For the composition with other fourth-order tensors we can also write

J:A=A:J=A, VAelin" (5.80)
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Transposition tensor. The transposition of second-order tensors represents a linear
mapping and can therefore be expressed in terms of a fourth-order tensor. This
tensor denoted by J is referred to as the transposition tensor. Thus,

J:X=X' VXeLin". (5.81)
One can easily show that (Exercise 5.9)
Y:T=Y' VY eLin". (5.82)

Hence, the transposition tensor is symmetric such that 7 = I . By virtue of (5.45),
and (5.75), J can further be expressed in terms of the identity tensor by

T=17" (5.83)
Indeed,
J:X=9:X"=X"=7:X, VXelLin".
Considering (5.52) and (5.77)—(5.79) in (5.83) we thus obtain
N

T=18D'=) (PoP) =g g 0g ®g. (5.84)
ij=1

The transposition tensor can further be characterized by the following identities (see
Exercise 5.10)

A:T=A, T-A=A"T, 7:7=9, VAceLin". (5.85)

Super-symmetric identity tensor. The identity tensor (5.77) is symmetric but not
super-symmetric. For this reason, it is useful to define a special identity tensor
within 8sym”. This super-symmetric tensor maps every symmetric second-order
tensor into itself like the identity tensor (5.77). It can be expressed by

.‘JS:%(SJJFU'):(I@I)S. (5.86)

However, in contrast to the identity tensor J (5.77), the super-symmetric identity
tensor J° (5.86) maps any arbitrary (not necessarily symmetric) second-order tensor
into its symmetric part so that in view of (5.48)

P X=X:9 =symX, VX € Lin". (5.87)
Spherical, deviatoric and trace projection tensors. The spherical and deviatoric

part of a second-order tensor are defined as a linear mapping (1.163) and can thus
be expressed by
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SphA = Pyn 1 A, devA = Pyey 1 A, (5.88)

where the fourth-order tensors Py, and Pyey are called the spherical and deviatoric
projection tensors, respectively. In view of (1.163) they are given by

1 1
Por =101 Py, =3--101, (5.89)
n n

where I O I represents the so-called trace projection tensor. Indeed,
IoI: X=1ItrX, VXeLin". (5.90)

According to (5.49), and (5.50), the spherical and trace projection tensors are
super-symmetric. The spherical and deviatoric projection tensors are furthermore
characterized by the properties:

:Pdev : g)dev = g)deVa :Psph : g)sph = ?Spha
deev . :Psph = :Psph . :Pdev = 0. (591)

Example 5.2. Elasticity tensor for the generalized Hooke’s law. The generalized
Hooke’s law is written as

2
0 =2Ge + Atr(e) I = 2Gdeve + (A + §G) tr(e) I, (5.92)

where G and A denote the so-called Lamé constants. The corresponding super-
symmetric elasticity tensor takes the form

€ =2GF + MMO1=2GP, + (31 +2G) Pey. (5.93)

dev

Exercises

5.1. Prove relations (5.20) and (5.21).

5.2. Prove relations (5.22).

5.3. Prove relations (5.42) and (5.43).

5.4. Prove relations (5.49)—(5.52).

5.5. Provethat A" £ ATfor A=aQbQc®d.
5.6. Prove identities (5.54).

5.7. Verify relations (5.55) and (5.56).
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5.8. Prove relations (5.70) for the components of a super-symmetric fourth-order
tensor using (5.51) and (5.52).

5.9. Prove relation (5.82) using (5.16) and (5.81).
5.10. Verify the properties of the transposition tensor (5.85).

5.11. Prove that the fourth-order tensor of the form
C=M @M, + M, ®M,)*

is super-symmetric if M;, M, € Sym”.

5.12. Calculate eigenvalues and eigentensors of the following super-symmetric
fourth-order tensors for n = 3: (a) J° (5.86), (b) Pepn (5.89)1, (c) P, (5.89)2,
(d) € (5.93).



Chapter 6
Analysis of Tensor Functions

6.1 Scalar-Valued Isotropic Tensor Functions

Let us consider a real scalar-valued function f (A, A,,...,A;) of second-order
tensors A; € Lin” (k = 1,2, ...,1). The function f is said to be isotropic if

/(QA1Q™.QA,Q",....QA,Q")
= f(A1,As,....,A), VQ € Orth". 6.1)

Example 6.1. Consider the function f (A,B) = tr (AB). Since in view of (1.135)
and (1.151)

/ (QAQ". QBQ") = r (QAQ"QBQ")
= tr (QABQ") = tr (ABQ'Q)
=t (AB) = f (A,B), VQ € Orth",

this function is isotropic according to the definition (6.1). In contrast, the function
f (A) = tr (AL), where L denotes a second-order tensor, is not isotropic. Indeed,

/ (QAQ") = tr (QAQ'L) # tr (AL).

Scalar-valued isotropic tensor functions are also called isotropic invariants of
the tensors Ay (k = 1,2,...,1). For such a tensor system one can construct, in
principle, an unlimited number of isotropic invariants. However, for every finite
system of tensors one can find a finite number of isotropic invariants in terms
of which all other isotropic invariants can be expressed (Hilbert’s theorem). This
system of invariants is called functional basis of the tensors Ay (k = 1,2,...,1).
For one and the same system of tensors there exist many functional bases.
A functional basis is called irreducible if none of its elements can be expressed
in a unique form in terms of the remaining invariants.
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First, we focus on isotropic functions of one second-order tensor
f (QAQT) = f(A), VQeOrth", A e€Lin". (6.2)

One can show that the principal traces trA¥, principal invariants IX{) and eigenvalues
Ak, (k =1,2,...,n) of the tensor A represent its isotropic tensor functions. Indeed,
for the principal traces we can write by virtue of (1.151)

r (QAQ")" = tr | QAQTQAQ" ... QAQ" | = «r (QAkQT)
k times

= tr (A*Q'Q) = wrA*, vQ e Orth”. (6.3)

The principal invariants are uniquely expressed in terms of the principal traces by
means of Newton’s identities (4.26), while the eigenvalues are, in turn, defined by
the principal invariants as solutions of the characteristic equation (4.21) with the
characteristic polynomial given by (4.19).

Further, we prove that both the eigenvalues Ay, principal invariants II(\IZ) and
principal traces trM* (k = 1,2,...,n) of one symmetric tensor M € Sym” form
its functional bases (see also [46]). To this end, we consider two arbitrary symmetric
second-order tensors M, M, € Sym” with the same eigenvalues. Then, the spectral
representation (4.61) takes the form

n n
M; = Zkini ®n;, M,= Z)\imi ® m;, (6.4)

i=1 i=1

where according to (4.63) both the eigenvectors n; and m; form orthonormal bases
such thatn; -n; = §;; andm; -m; = §;; (i,j =1,2,...,n). Now, we consider
the orthogonal tensor

Q=) m®n. 6.5)

i=1

Indeed,

QQ' = (Zmz ®ni> an Qm;
j=1

i=1

= Z(Sijmi@mj :Zmi@)mi =L

ij=1 i=1
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By use of (1.121), (6.4) and (6.5) we further obtain

(Zmi®ni) ZAjﬂj@nj (an®mk)
k=1

i=1 j=l1

QM, Q"

n n
Z 8,’j8jkkjmi Qmy = inmi Q@ m; = M. (6.6)
ijk=1 i=1

Hence,
S M) = f(QM;Q") = f (My). (6.7)

Thus, f takes the same value for all symmetric tensors with pairwise equal
eigenvalues. This means that an isotropic tensor function of a symmetric tensor is
uniquely defined in terms of its eigenvalues, principal invariants or principal traces
because the latter ones are, in turn, uniquely defined by the eigenvalues according
to (4.24) and (4.25). This implies the following representations

Fon = (1919 ) = F G2
= f (uM,uM?,...,.uM"), M e Sym’". (6.8)
Example 6.2. Strain energy function of an isotropic hyperelastic material. A mate-
rial is said to be hyperelastic if it is characterized by the existence of a strain energy

Y defined as a function, for example, of the right Cauchy-Green tensor C. For
isotropic materials this strain energy function obeys the condition

¥ (QCQ") =y (C)., VQ € Orth’. (6.9)

By means of (6.8) this function can be expressed by

¥ (C) =V (¢, Tlg, Me) = ¥ (A1, As, A3) = ¥ (rC, uC?, e C?) (6.10)

where A; denote the so-called principal stretches. They are expressed in terms of the
eigenvalues A; (i = 1,2, 3) of the right Cauchy-Green tensor C = Z?=1 A;P; as
Ai = «/A;. For example, the strain energy function of the so-called Mooney-Rivlin
material is given in terms of the first and second principal invariants by

Y(C)=ci(c—=3)+clc—-3). (6.11)

where ¢; and ¢, represent material constants. In contrast, the strain energy function
of the Ogden material [30] is defined in terms of the principal stretches by

v =" % (A% 4+ A% 4 A% —3), (6.12)
r=1 "

where u,,a, (r =1,2,...,m) denote material constants.
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For isotropic functions (6.1) of a finite number / of arbitrary second-order
tensors the functional basis is obtained only for three-dimensional space. In order
to represent this basis, the tensor arguments are split according to (1.152) into a
symmetric and a skew-symmetric part respectively as follows:

1 T 1 T
M; = symA; = - (Ai +A]). W, =skewA, = 3 (A —Af).  (6.13)
In this manner, every isotropic tensor function can be given in terms of a finite
number of symmetric tensors M; € Sym® (i = 1,2,...,m) and skew-symmetric
tensors W; € Skew?> (i=12,...,w)as
f= M, M,... .M, W, Ws,...,W,). (6.14)

An irreducible functional basis of such a system of tensors is proved to be given by
(see [2,33,41])
trM;, trM?, trM? ,

r(MM;), tr (MEM;), tr (MiM2) o (MPM2) e (MM M)
W, tr (W, W,), tr (W,W,W,),
r(MW2), tr (MEW2) o (MEW2MOW, ) tr (MW, W),
(MWW, ) o (MW, W2), tr (MiM,; W),
r (MIWIM; W, ) r (VEM; W), o (MM2W, ).
i<j<k=12,....m, p<qg<r=12...,w (6.15)

For illustration of this result we consider some examples.

Example 6.3. Functional basis of one skew-symmetric second-order tensor W €
Skew?. With the aid of (6.15) and (4.91) we obtain the basis consisting of only one

invariant
W2 = 20y = — [W|*. (6.16)

Example 6.4. Functional basis of an arbitrary second-order tensor A € Lin®. By
means of (6.15) one can write the following functional basis of A

trM, trM?2, trM?,
W2, tr (MW?) | tr (M*W?) | tr (M>W’MW) (6.17)

where M = symA and W = skewA. Inserting representations (6.13) into (6.17) the
functional basis of A can be rewritten as (see Exercise 6.2)
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A, A2, A3, r (AAT), o (AAT)?, tr (A2AT),
tr [ (A7) A’ATA — A% (A7) AAT]. (6.18)

Example 6.5. Functional basis of two symmetric second-order tensors M;,M, €
Sym?. According to (6.15) the functional basis includes in this case the following
ten invariants

trM;, trM%, trM? , trMo, trM%, trMZ,
tr (M{Mp) , tr (MiM,), tr (M;M3), tr (M{M3). (6.19)

6.2 Scalar-Valued Anisotropic Tensor Functions

A real scalar-valued function f (Aj,A,,...,A;) of second-order tensors Ay €
Lin" (k = 1,2,...,1) is said to be anisotropic if it is invariant only with respect
to a subset of all orthogonal transformations:

7 (QA1Q", QALQ",....QA/QT)
= f(A1,As,...,A;), VYQ e Sorth" C Orth". (6.20)

The subset Sorth” represents a group called symmetry group. In continuum
mechanics, anisotropic properties of materials are characterized by their symmetry
group. The largest symmetry group Orth® (in three-dimensional space) includes all
orthogonal transformations and is referred to as isotropic. In contrast, the smallest
symmetry group consists of only two elements I and —I and is called triclinic.

Example 6.6. Transversely isotropic material symmetry. In this case the material
is characterized by symmetry with respect to one selected direction referred to as
principal material direction. Properties of a transversely isotropic material remain
unchanged by rotations about, and reflections from the planes orthogonal or parallel
to, this direction. Introducing a unit vector / in the principal direction we can write

Ql =4I, VQeg, 6.21)

where g, C Orth® denotes the transversely isotropic symmetry group. With the aid
of a special tensor

L=I®I, (6.22)

called structural tensor, condition (6.21) can be represented as

QLQ" =L, VQeg,. (6.23)
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Hence, the transversely isotropic symmetry group can be defined by
g, ={QeOrth’ : QLQ" =L}. (6.24)

A strain energy function v of a transversely isotropic material is invariant with
respect to all orthogonal transformations within g,. Using a representation in terms
of the right Cauchy-Green tensor C this leads to the following condition:

¥ (QCQ") =y (C), VQeg,. (6.25)

It can be shown that this condition is a priori satisfied if the strain energy function
can be represented as an isotropic function of both C and L so that

¥ (QCQ",QLQ") = ¥ (C,L), VQ € Orth’. (6.26)
Indeed,
¥ (C.L) =¥ (QCQ".QLQ") =¥ (QCQ".L). ¥Qeg.  (627)
With the aid of the functional basis (6.19) and taking into account the identities
LF=L, ulf=1 k=12,... (6.28)

resulting from (6.22) we can thus represent the transversely isotropic function in
terms of the five invariants by (see also [43])

¥ = ¥ (C,L) = ¥ [oC, trC?, trC3, tr (CL) , tr (C°L)] . (6.29)

The above procedure can be generalized for an arbitrary anisotropic symmetry
group g. Let L; (i = 1,2,...,m) be a set of second-order tensors which uniquely
define g by

g={QeOrth" :QLQ" =L;, i =1,2,....m}. (6.30)
In continuum mechanics the tensors L; are called structural tensors since they lay

down the material or structural symmetry.
It is seen that the isotropic tensor function

/(QA;Q",QL;Q") = f (Ai.L;). VYQ € Orth", (6.31)
where we use the abbreviated notation

f(ALL)) = f (AL A ... AL L Lo, . Ly, (6.32)
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is anisotropic with respect to the arguments A; (i = 1,2,...,1) so that
f(QAQY) =fA). vQeg (6.33)
Indeed, by virtue of (6.30) and (6.31) we have
(A L)) = f(QAQ".QL;Q") = f (QA,Q".L;), VQeg. (634

Thus, every isotropic invariant of the tensor system A; (i =1,2,...,1),L; (j =
1,2,...,m) represents an anisotropic invariant of the tensors A; (i = 1,2,...,1)
in the sense of definition (6.20). Conversely, one can show that for every anisotropic
function (6.33) there exists an equivalent isotropic function of the tensor system
A (i=12,....,0),L; (j =1,2,...,m). In order to prove this statement we
consider a new tensor function defined by

f(ALX)) = f (Q’A,-Q’T) : (6.35)
where the tensor Q' € Orth” results from the condition:
QX;Q"=L;, j=12,....m. (6.36)
Thus, the function f is defined only over such tensors X; that can be obtained from
the structural tensors L; (j = 1,2,...,m) by the transformation
X, =Q'L,Q, j=1.2,....m, (6.37)

where Q' is an arbitrary orthogonal tensor.
Further, one can show that the so-defined function (6.35) is isotropic. Indeed,

7 (QAQ".QX,Q") = f (Q'QA,Q'Q). VQ € Orth”, (6.38)
where according to (6.36)
Q"'QX;Q'Q" =L;, Q"€ Orth". (6.39)
Inserting (6.37) into (6.39) yields
Q"QQ"L,;QQ'Q" =1L, (6.40)

so that
Q" =Q"QQ" eg. (6.41)

Hence, we can write
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/(Q"QA,Q'Q") = / (Q*Q'AQTQ™)
=/ (QAQ") = f (A.X;)
and consequently in view of (6.38)
/(QAQ".QX,Q") = f (A/.X;), VQe Orth". (6.42)

Thus, we have proved the following theorem [50].

Theorem 6.1. A scalar-valued function f (A;) is invariant within the symmetry
group g defined by (6.30) if and only if there exists an isotropic function f (Ai, Lj)
such that

f @A) =f(A.Ly). (6.43)

6.3 Derivatives of Scalar-Valued Tensor Functions

Let us again consider a scalar-valued tensor function f (A) : Lin" — R. This
function is said to be differentiable in a neighborhood of A if there exists a tensor
f (A) ,a € Lin", such that

d%f A+1X)) =f(A)a:X, VXeLin" (6.44)

t=0

This definition implies that the directional derivative (also called Gateaux derivative)
d
I f(A+1tX) exists and is continuous at A. The tensor f (A) , is referred to
1=0
as the derivative or the gradient of the tensor function f (A).
In order to obtain a direct expression for f (A),s» we represent the tensors A

and X in (6.44) with respect to an arbitrary basis, say g; ® g/ (i,j = 1,2,...,n).
Then, using the chain rule one can write

d d . . . f .
—f(A+X = — Al +1X! ) gi J = —X.
al AT dtf[( X)) g0 ],=0 oAl
Comparing this result with (6.44) yields
i of of o of »
A= ——¢g'Rg;, = —g:Qg; = ——g'Qg’ = ~g,®g’. (645
S (A)a aAfjg gj aA,»,g 8= 5,78 ®8 aA,,fg g’. (6.45)

If the function f (A) is defined not on all linear transformations but only
on a subset Slin” C Lin”, the directional derivative (6.44) does not, however,
yield a unique result for f (A),a. In this context, let us consider for example



6.3 Derivatives of Scalar-Valued Tensor Functions 129

scalar-valued functions of symmetric tensors: f (M) : Sym” +— R. In this case,
the directional derivative (6.44) defines f (M) ,v only up to an arbitrary skew-
symmetric component W. Indeed,

M m:X=[f M m+W]:X, VW e Skew”, VX € Sym”".  (6.46)

In this relation, X is restricted to symmetric tensors because the tensor M + X
appearing in the directional derivative (6.44) must belong to the definition domain
of the function f for all real values of ¢.

To avoid this non-uniqueness we will assume that the derivative f (A) ,5 belongs
to the same subset Slin” C Lin" as its argument A € Slin". In particular, for
symmetric tensor functions it implies that

f M) ,pmeSym” for M € Sym”. (6.47)

In order to calculate the derivative of a symmetric tensor function satisfying the
condition (6.47) one can apply the following procedure. First, the definition domain
of the function f is notionally extended to all linear transformations Lin". Applying
then the directional derivative (6.44) one obtains a unique result for the tensor
Jf:m which is finally symmetrized. For the derivative with respect to a symmetric
part (1.153) of a tensor argument this procedure can be written by

f (SymA) »symA = Sym [f (A) 7A] ’ A € Lin". (648)

The problem with the non-uniqueness appears likewise by using the component
representation (6.45) for the gradient of symmetric tensor functions. Indeed, in this
case MY = M/ (i # j =1,2,...,n), so that only n (n + 1) /2 among all n?
components of the tensor argument M € Sym” are independent. Thus, according
to (1.156)

n n
M= ZM”g,- g+ Z M7 (gi ®g;i+g; ®gi), M € Sym". (6.49)
i=1 ij=1
j<i

Hence, instead of (6.45) we obtain

1 — 9f
M).m=— —
f( )M 2ij=lasz

(g®g’ +g' ®g')

l « 9
:‘Z—f (¢i®g;+g;,®gi). MeSym". (6.50)
2 IM;;

It is seen that the derivative is taken here only with respect to the independent com-
ponents of the symmetric tensor argument; the resulting tensor is then symmetrized.
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Example 6.7. Derivative of the quadratic norm ||A|| = VA : A:

d
—[(A+1X): (A +1X)]'/?
dr 1=0
d 5 1/2
= —[A:A+21A : X +°X: X]
dr 1=0
_ 2A: X+ 21X : X A X
20A A+ 2A X+ 02X X2 Al
Thus,
A
[AllA= - (6.51)
Al

The same result can also be obtained using (6.45). Indeed, let A = A;; gi ® gj .
Then,

1Al = VA A = /(Ayg’ @) : (Augk @ g') = /Ay Augite.
Utilizing the identity

3A,-j
TR st i ipg=1.2.....
3 e i 9 1, ],p,.q n

we further write

Al = D ArAETED

= 9A 8r®8&q
1 o o
= 37AT (Ang™ e g @ g, + A e gL ® g1)
1 L 1 A
= —2Ang"ggi®g = —Augf®g = —.
2 [|Al T A] Al

Example 6.8. Derivatives of the principal traces trA* (k = 1,2,...):

d . B d k. _ d k .
E[tr(A_}_tX)]t:O_E[(A—i-ZX) .1]{20_5[(A+zX)]t:0.1
:d;‘t (A +1X) (A +1X) ... (A +1X) 1

k times =0
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k—1
_ k ix k—1— 2 .
=5 [A +1) AXAS z] |
i=0 t=0
=Y AXAIT 1=k (AF) X
Thus,
(trA*) 4 = k (AF1)" (6.52)
In the special case k = 1 we obtain
(trA) o =1L (6.53)

Example 6.9. Derivatives of tr (AKL) (k = 1,2,...) with respect to A, where L is
independent of A:

d k.qT _d k QT
= [(A+zX) ‘L ] T [(A+tX) ] L
k—1 k—1 ) )
=Y AXAST LT =3 (AT LT (AT T X
i=0 i=0
Hence,
k—1 - T
rA L) a =Y (A'LAH—') . (6.54)
i=0
In the special case k = 1 we have
tr (AL) ., = LT. (6.55)

It is seen that the derivative of tr (Ak L) is not in general symmetric even if the tensor
argument A is. Applying (6.48) we can write in this case

k—1 k—1
tr (ML) ,; = sym [Z (MiLMk‘l_’)T:| =Y M (symL)M'"'7' (6.56)
i=0 i=0

where M € Sym”.
Of special importance are the following, respectively, chain and product rule of
differentiation

d
uly(A)].a= d—ZVsA , (6.57)

[f(A)gA]a=gA) f(A)a+S(A)g(A)a. (6.58)
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which can easily be proved by using the formalism of the directional derivative
(6.44). Indeed, we can write for example for (6.57)

d du d du
SUuvA+1X)]] = SyA+X)| = vac X
g VATl =g g ArX)] = s

Example 6.10. Derivatives of the principal invariants IX() (k=1,2,...,n) of
a second-order tensor A € Lin”". By virtue of the representations (4.26) and
using (6.52), (6.58) we obtain
V4= (@A) =1,
1
Pa=3 (10 A - ra?) =11 - A,

3
IQ’,A

1
3 (If)trA — Igl)trA2 + trA3) A

% (A (1= AT) + 101 = (A?) 1 - 21 AT + 3 (A7)]
=[a-10a+ Iff’I]T . (6.59)

Herein, one can observe the following regularity [46]

k—1
A=Y DT AT = IV AATH IV k=120 (6.60)
i=0

where we again set Iff) = 1. The above identity can be proved by mathematical
induction (see also [7]). To this end, we first assume that it holds for all natural
numbers smaller than some k + 1 as

A=Y, [=01,... .k (6.61)
where the abbreviation
k—1 ‘ ) )
Y=Y (=)' (A7) (6.62)

i=0

is used. Then,

k
Yip =Y (D' I (AT) = VAT + 10T = 10 4 AT + 101 (6.63)
i=0
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Further, according to (4.26), (6.52) and (6.58)

k
1 s —i i
19, = - [§ (=D T eA } A

i=1
k
kZ( 1 (AT %Z ()  wAlL (6.64)

Inserting this result as well as (4.26) into the last expression (6.63) we obtain

AT
_ 1.q(k—i) (AT 1 y(k— l) i
Yk+1_——§:( DI (AT [E:( 1y~ trA:| .

i=1
I k
i—1 y(k—i) i
+%[,§=1:(_1) 1 trA’:|.

Adding Yy +1/ k to both sides of this equality and using for Yy 4 the first expression
in (6.63) we further obtain keeping in mind that IOA, A=0

=~

k+ Yiir = Z —1y i (ATY Z( 1 (AT)

i=0
|:Z( 1)1 l I(k l) IXC—!)I) trAi:| .

Taking again (6.60) and (6.64) into account we can write

k+1 1< . . i
Vi = ;Z(‘l) G + DI (AT)
i=0
1 k
i—1 y(k+1—i i
+E[;(_l) i ),AtrA:|
k+1

1

B MRS
i=1

k
1 R 1 k41
+7 [} (—1) k! ”,AtrA’] = TIX‘“),A
i=1

Hence,
(k+1)
LA = Yirr,
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which immediately implies that (6.60) holds for k + 1 as well. Thereby, representa-
tion (6.60) is proved.

For invertible tensors one can get a simpler representation for the derivative

of the last invariant IX” . This representation results from the Cayley-Hamilton
theorem (4.95) as follows

n—1 n
1 A AT = [Z (—1y 1y (AT)'] AT =" (=) g (AT
i=0 i=1
i=0

Thus,
1 A=10A"T, Acnv (6.65)

Example 6.11. Derivatives of the eigenvalues A;. First, we show that simple
eigenvalues of a second-order tensor A are differentiable. To this end, we consider
the directional derivative (6.44) of an eigenvalue A:

d
—AA+1X)| . (6.66)
dr 1=0

Herein, A (¢) represents an implicit function defined through the characteristic
equation
det(A+tX—AI) = p(A,1) =0. (6.67)

This equation can be written out in the polynomial form (4.19) with respect to
powers of A. The coefficients of this polynomial are principal invariants of the
tensor A + tX. According to the results of the previous example these invariants
are differentiable with respect to A 4 ¢X and therefore also with respect to ¢. For
this reason, the function p (4, ¢) is differentiable both with respect to A and ¢. For a
simple eigenvalue Ao = A (0) we can further write (see also [27])

dp (1,0)

A =
P (A0,0) =0, o

£0. (6.68)

A=Xo

According to the implicit function theorem (see, e.g., [5]), the above condition
ensures differentiability of the function A (#) at + = 0. Thus, the directional
derivative (6.66) exists and is continuous at A. It can be expressed by

_ op/ae
o Op/OA

d
SAA+X) (6.69)

t=0,A=Xg
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In order to represent the derivative A;,5 we first consider the spectral representa-
tion (4.43) of the tensor A with pairwise distinct eigenvalues

A= zn:/\,-Pi, (6.70)

i=1

where P; (i =1,2,...,n) denote the eigenprojections. They can uniquely be
determined from the equation system

n
AP =3P k=01....n-1 (6.71)
i=1

resulting from (4.47). Applying the Vieta theorem to the tensor A’ (I = 1,2,...,n)
we further obtain relation (4.25) written as

n
Al =D)AL I=1.2....n (6.72)
i=1

Differentiation of (6.72) with respect to A further yields by virtue of (6.52) and
(6.57)

n
T =Y A s =120

i=1

and consequently
n
Ak=ZA§(x,,A)T, k=0,1,....n—1. (6.73)
i=1
Comparing the linear equation systems (6.71) and (6.73) we notice that
Aia=Pl (6.74)

Finally, the Sylvester formula (4.55) results in the expression

Mg = Sinl + ]_[ » —x (6.75)
Hél
It is seen that the solution (6.75) holds even if the remainder eigenvalues

Aj (j=1,2,...,i—1,i+1,...,n) of the tensor A are not simple. In this
case (6.75) transforms to
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AI

Aia = Sl + ]_[ T (6.76)
J #t
where s denotes the number of pairwise distinct eigenvalues A; (i = 1,2,...,5s).

Let us further consider a scalar-valued tensor function f (A) : Lin" — R, where
A = A (¢) itself is a differentiable tensor-valued function of a real variable ¢ (see
Sect.2.1). Of special interest is the derivative of the composite function f (A (¢)).
Using (2.15); we write

df
dr ds

df (A (t) + s + sO (s))
s=0 B ds

s=0

Introducing auxiliary functions s;(s) = s and s,(s) = s and applying the formalism
of the directional derivative (6.44) we further obtain

df df (A(t) +S1 +S10(S2))
ar ds

s=0

af (A@) + Sl + 510 (s52)) ds;
8s1 ds

s=0

of (AWM + 515 +510(s2)) ds,
ds7 ds

s=0

f (A@) + 512 +50(s2))

— fa: [—A 1o (Sz)}

52=0 8S2 51=52=0
dA  If (A@))
== 7A: v + - a_
dr 057 52=0
This finally leads to the result
df (A@)) dA
= A —. 6.77
a7 fa & (6.77)

Example 6.12. Constitutive relations for hyperelastic materials with isochoric-
volumetric split of the strain energy function. For such materials the strain energy
function is represented in terms of the right Cauchy-Green tensor C by

¥ (C) =y (C)+ U (J), (6.78)

where
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J = lle, C=J?C (6.79)

describe the volumetric and isochoric parts of deformation, respectively. Consti-
tutive relations for hyperelastic materials can be expressed in terms of the strain
energy function by (see e.g. [46])

s=22

=225 (6.80)

where S denotes the second Piola-Kirchhoff stress tensor. Insertion of (6.78) yields
S = Siso + Svol, (681)

where o
Siso =29 (C).c.  Sva =2U (J) .c. (6.82)

In order to express these derivatives we first obtain

T =1 = %HIOC[/Z_IHICC_I - %J”‘C_l (6.83)

using (6.65), (6.57) and (6.79); and taking symmetry of C into account. As the next
step, we calculate the directional derivative of C by virtue of (2.4)

d - d
3 CC+X) 5 (€ +1X) [det(C + 1X)]73

1=0 t=0

d -2/3 d -2/3
= —(C+1X)| J?P4+C—[J(C+1X)]

dr =0 ds t=0

1
= J723X — 51—2/3(: (C":X) =Pio : X, (6.84)
where :
Pio = J 23 [3 - gc o c—l} (6.85)

denotes the isochoric projection tensor. To the directional derivative of 1 ((_J) we
further apply (6.77) as follows

%&[C(CHX)] :&,C:%C(CHX) =v.6: Pio: X, (6.86)

t=0

t=0

Inserting these results in (6.82) we finally obtain

w

_ I
Siso =S : Tiso = J_2/3 [S Y (S : C) C_li| ’ (6.87)
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Sy =U'JC!, (6.88)

where B B
S=2Y,. (6.89)

6.4 Tensor-Valued Isotropic and Anisotropic Tensor
Functions

A tensor-valued function g (A;,A,,...,A;) € Lin" of a tensor system A; €
Lin" (k = 1,2,...,1) is called anisotropic if
2(QA1Q".QA,Q".....QA,Q")

=Qg (A, A5, ...,A)Q", VQ e Sorth" C Orth”. (6.90)

For isotropic tensor-valued tensor functions the above identity holds for all orthog-
onal transformations so that Sorth” = Orth”.

As a starting point for the discussion of tensor-valued tensor functions we again
consider isotropic functions of one argument. In this case,

g (QAQ") = Qg (A)Q", VQ € Orth". (6.91)

For example, one can easily show that the polynomial function (1.113) and the
exponential function (1.114) introduced in Chap. 1 are isotropic. Indeed, for a tensor
polynomial g (A) = >}, a;A* we have (see also Exercise 1.34)

2(QAQ") = Y a (QAQ")" =Y a [ QAQTQAQ" ... QAQ"

k=0 k=0 k times
= Zak (QAkQT) =Q (Z akAk) Q'
k=0 k=0
=Qg(A)Q", VQe Orth". (6.92)

Of special interest are isotropic functions of a symmetric tensor. First, we prove that
the tensors g (M) and M € Sym” are coaxial i.e. have the eigenvectors in common.
To this end, we represent M in the spectral form (4.61) by

M= Zx,bi ® b;, (6.93)

i=1

where b;-b; = §;; (i,j =1,2,...,n). Further, we choose an arbitrary eigenvector,
say by, and show that it simultaneously represents an eigenvector of g (M).
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Indeed, let
Q=2b @b —1=b @b+ ) (Db @b (6.94)

i=1

ik
bearing in mind that I = Y 7_, b; ® b; in accordance with (1.92). The tensor
Q (6.94) is orthogonal since

QQT = 2b;y @by — 1) 2bx @by — 1) = 4b;, Q by —2by Qb —2b; by +1 =1

and symmetric as well. One of its eigenvalues is equal to 1 while all the other ones
are —1. Thus, we can write

QM = 2b; @ by — DM =2A4b; @ by —M =M (2by ® by — 1) = MQ

and consequently
QMQ' = M. (6.95)

Since the function g (M) is isotropic
g(M) =g (QMQ') = Q¢ M) Q"
and therefore
Qe (M) =g M) Q. (6.96)
Mapping the vector by by both sides of this identity yields in view of (6.94)
Qg (M) b = g (M) by. (6.97)

It is seen that the vector g (M) by is an eigenvector of Q (6.94) associated with the
eigenvalue 1. Since it is the simple eigenvalue

g (M) bi = yiby, (6.98)
where yy is some real number. Hence, b represents the right eigenvector of g (M).
Forming the left mapping of b by (6.96) one can similarly show that by is also the

left eigenvector of g (M), which implies the symmetry of the tensor g (M).
Now, we are in a position to prove the following representation theorem [36,46].

Theorem 6.2. A tensor-valued tensor function g (M), M € Sym” is isotropic if and
only if it allows the following representation

n—1
gV =@l + oM+ @M 4.+ MTH =3 TgML (6.99)
i=0
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where @; are isotropic invariants (isotropic scalar functions) of M and can therefore
be expressed as functions of its principal invariants by

o= (I ). =00 (6.100)

Proof. We have already proved that the tensors g (M) and M have eigenvectors in
common. Thus, according to (6.93)

gM) =) yib®b;, (6.101)
i=1
where y; = y; (M). Hence (see Exercise 6.1(¢)),
g(QMQ") =) 7 (QMQ") Q4 ® b)) Q". (6.102)

i=1

Since the function g (M) is isotropic we have
g (QMQ") = Qz M) Q"

=Y n(MQ®b ®b)Q". VYQeOrh'. (6103
i=1
Comparing (6.102) with (6.103) we conclude that
i (QMQ") =y M), i=1,....n, VQe€Orth" (6.104)

Thus, the eigenvalues of the tensor g (M) represent isotropic (scalar-valued) func-
tions of M. Collecting repeated eigenvalues of g (M) we can further rewrite (6.101)
in terms of the eigenprojections P; (i = 1,2,...,s) by

g(M) =) yiP;, (6.105)
i=1

where s (1 <s < n) denotes the number of pairwise distinct eigenvalues of g (M).
Using the representation of the eigenprojections (4.56) based on the Sylvester
formula (4.55) we can write

s—1
P, = Za;” A1 Aoy A)M, i =1,2,....5. (6.106)
r=0
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Inserting this result into (6.105) yields the representation (sufficiency):

gM) =) oM, (6.107)

where the functions ¢; (i =0,1,2,...,5s —1) are given according to (6.8)
and (6.104) by (6.100). The necessity is evident. Indeed, the function (6.99) is
isotropic since in view of (6.92)

n—1

g(QMQ") = > ¢ (QMQ") QM'Q"

i=0

n—1
=Q [ @i (M) M’] Q' =Qg (M) Q", YQ € Orth’".
10 (6.108)

Example 6.13. Constitutive relations for isotropic materials. For isotropic materials
the second Piola-Kirchhoff stress tensor S represents an isotropic function of the
right Cauchy-Green tensor C so that

S(QCQ") =QS(C)Q". VQ € Orth’. (6.109)

Thus, according to the representation theorem
S(C) = aol + a;C + a,C?, (6.110)
where o; = o; (C) (i =0,1,2) are some scalar-valued isotropic functions of C.

The same result can be obtained for isotropic hyperelastic materials by considering
the representation of the strain energy function (6.10) in the relation (6.80). Indeed,
using the chain rule of differentiation and keeping in mind that the tensor C is
symmetric we obtain by means of (6.52)

B Iy dwCt o
S=2) fucr ac Z e G111

sothata; (C) =2 (i + 1) dy/orC'+! (i = 0,1,2).

Let us further consider a linearly elastic material characterized by a linear stress-
strain response. In this case, the relation (6.110) reduces to

S(C) = ¢ (C)I + ¢C, (6.112)

where ¢ is a material constant and ¢ (C) represents an isotropic scalar-valued
function linear in C. In view of (6.15) this function can be expressed by

¢ (C) =a+ btrC, (6.113)
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where a and b are again material constants. Assuming that the reference configura-
tion, in which C = L, is stress free, yields a + 3b + ¢ = 0 and consequently

S(C)=(—c—-3b+brtC)I+cC=b(trC—-3)I+c(C-1).
Introducing further the so-called Green-Lagrange strain tensor defined by
|
E= E(C_I) (6.114)
we finally obtain

S (E) = 2b («E) I + 2¢E. (6.115)

The material described by the linear constitutive relation (6.115) is referred to
as St.Venant-Kirchhoff material. The corresponding material constants 26 and 2¢
are called Lamé constants. The strain energy function resulting in the constitutive
law (6.115) by (6.80) or equivalently by S = 3 /9K is of the form

¥ (E) = btr’E + ctrE?. (6.116)

For isotropic functions of an arbitrary tensor system Ay € Lin" (k =
1,2,...,1) the representations are obtained only for the three-dimensional space.
One again splits tensor arguments into symmetric M; € Sym® (i = 1,2,...,m)
and skew-symmetric tensors W; € Skew> (j =1,2,...,w) according to (6.13).
Then, all isotropic tensor-valued functions of these tensors can be represented as
linear combinations of the following terms (see [33,41]), where the coefficients
represent scalar-valued isotropic functions of the same tensor arguments.

Symmetric generators:
17
M;, M;, M;M; +M;M;, MM; + M;M;, MiM? +M§M"’
W, W,W,+WW, WW-WW. . WW -WW,
MW, -W,M;, W,M;W,, MW, -W,M,
W,M;W; — W M;W,,. (6.117)

Skew-symmetric generators:
Wpa WPWII - qup’
MM; —M;M;, M;M; —M;M;, M;M; —M;M,,
M;M;M; — M;M;M;, M;M;M; — M;M;M;.
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M;M,;M; + M;M;M; + MiM;M; — M;M;M; — M;M;M; — M;M;M;,
MW, +W,M;, MW, -W’M,,
i<j<k=12,....m, p<qg=12...,w (6.118)

For anisotropic tensor-valued tensor functions one utilizes the procedure applied
for scalar-valued functions. It is based on the following theorem [50] (cf. Theo-
rem 6.1).

Theorem 6.3 (Rychlewski’s theorem). A tensor-valued function g (A;) is
anisotropic with the symmetry group Sorth" = g defined by (6.30) if and only
if there exists an isotropic tensor-valued function g (Ai , Lj) such that

gA) =g (ALL)). (6.119)

Proof. Let us define a new tensor-valued function by
¢(a.X)) = Q"¢ (QaQ") Q. (6.120)
where the tensor Q" € Orth” results from the condition (6.36). The further proof is

similar to Theorem 6.1 (Exercise 6.13).

Example 6.14. Constitutive relations for a transversely isotropic elastic material.
For illustration of the above results we construct a general constitutive equation
for an elastic transversely isotropic material. The transversely isotropic material
symmetry is defined by one structural tensor L (6.22) according to (6.24). The
second Piola-Kirchhoff stress tensor S is a transversely isotropic function of
the right Cauchy-Green tensor C. According to Rychlewski’s theorem S can be
represented as an isotropic tensor function of C and L by

S=S(C.L), (6.121)

such that
S(QCQ".QLQ") = QS(C.L)Q". VQ € Orth’. (6.122)

This ensures that the condition of the material symmetry is fulfilled a priori since
S(QCQ".L) =S(QCQ".QLQ") =QS(C.L)Q", VQeg,.  (6.123)

Keeping in mind that S, C and L are symmetric tensors we can write by virtue
of (6.28); and (6.117)

S(C,L) = ool + o)L + o, C
+03C? + a4 (CL + LC) + a5 (C’L + LC?).  (6.124)
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The coefficients o; (i = 0,1,...,5) represent scalar-valued isotropic tensor func-
tions of C and L so that similar to (6.29)

@; (C.L) = & [trC,rC?, arC?, tr (CL) , tr (C°L)]. (6.125)
For comparison we derive the constitutive equations for a hyperelastic transversely
isotropic material. To this end, we utilize the general representation for the trans-

versely isotropic strain energy function (6.29). By the chain rule of differentiation
and with the aid of (6.52) and (6.54) we obtain

Ay oy Y

S=2—"—1I+4 C+6 C?
wC e 0
oy oy
2 L+2 CL +LC 6.126
R (CL) e (C2L) (CL+LO) ( )
and finally
S = apl + ;L + a,C + a3C* + a4 (CL + LC). (6.127)

Comparing (6.124) and (6.127) we observe that the representation for the hypere-
lastic transversely isotropic material does not include the last term in (6.124) with
C?L + LC?. Thus, the constitutive equations containing this term correspond to an
elastic but not hyperelastic transversely isotropic material. The latter material cannot
be described by a strain energy function.

6.5 Derivatives of Tensor-Valued Tensor Functions

The derivative of a tensor-valued tensor function can be defined in a similar fashion
to (6.44). A function g (A) : Lin" + Lin" is said to be differentiable in a
neighborhood of A if there exists a fourth-order tensor g (A) ,ao € Lin" (called the
derivative), such that

d
TEA+X)| =g@A)a:X, VXeLin'. (6.128)
=0

The above definition implies that the directional derivative m g (A +1tX) exists
1=0
and is continuous at A.

Similarly to (6.45) we can obtain a direct relation for the fourth-order tensor
g (A) ,a. To this end, we represent the tensors A, X and G = g (A) with respect to
an arbitrary basis in Lin", say g, ® g/ (i, j = 1,2,....,n). Applying the chain rule
of differentiation we can write
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d d (. :
8@ +X) =E{Gf,»[(A’f,+tX’.‘,)gk®g’]gi®g’}

t=0 =0

a l
— 8Ak —Ixke @ gl (6.129)

In view of (5.30); and (6.128) this results in the following representations

_aG{/ k j_aGi
gvA—BT;?[gi‘@g ®LI®g aA,gl®gk®g ®g’
G/, 3G,
=Wg:®g ®g' ®g]=Wg:®gk®gl®g (6.130)

For functions defined only on a subset Slin” C Lin" the directional deriva-
tive (6.128) again does not deliver a unique result. Similarly to scalar-valued
functions this problem can be avoided defining the fourth-order tensor g (A) ,o as
a linear mapping on Slin". Of special interest in this context are symmetric tensor
functions. In this case, using (5.47) and applying the procedure described in Sect. 6.3
we can write

g (symA) yma = [g(A) .A]'. A €Lin”". (6.131)

The component representation (6.130) can be given for symmetric tensor func-
tions by

8G’

g(M),Mz—Z e "wg +g'®g) g
k=1
1<k
:_Z_gz®(gk®gl+gl®gk)®g, (6.132)

where M € Sym”.

Example 6.15. Derivative of the power function A* (k = 1,2, ...). The directional
derivative (6.128) of the power function yields

d k
— (A+X
dt( +1X)

d k—1
A+ Y TAIXARTT 2
o (3

i=0

t=0 =0

ZA’XA"“‘i. (6.133)
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Bearing (5.17); and (6.128) in mind we finally obtain
k—1
Afa=) A @A AcLin” (6.134)
i=0
In the special case k = 1 it leads to the identity

Aar=J, AelLin". (6.135)

For power functions of symmetric tensors application of (6.131) yields

=~

-1
Mp= ) (M @M) M e Sym” (6.136)

i

I
S)

and consequently
My =3°, M e Sym”. (6.137)

Example 6.16. Derivative of the transposed tensor A, In this case, we can write

d d
2 T _ G aT T —xT
” (A +1X) T (AT +XT) » X
On use of (5.81) this yields
ATA=7. (6.138)

Example 6.17. Derivative of the inverse tensor A~', where A € Inv". Consider the
directional derivative of the identity A~'A = L. It delivers:

=0.

d
— A+1X)""A+1X)
dr 1=0

Applying the product rule of differentiation (2.9) and using (6.133) we further write

d
—A+X)7' A+ATIX=0
dr 1=0
and finally
d
—A+X)7Y  =-ATXATL
dr 1=0
Hence, in view of (5.17),
Al a=-AT®Al (6.139)

The calculation of the derivative of tensor functions can be simplified by
means of differentiation rules. One of them is the following composition rule. Let
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G = g(A) and H = & (A) be two arbitrary differentiable tensor-valued functions
of A. Then,

(GH),A=G,AH+GH, . (6.140)

For the proof we again apply the directional derivative (6.128) taking (2.9)
and (5.40) into account

(GH) ., : X = %[g(A+tX)h(A+tX)]

t=0

d
= —g(A+1tX
dtg( +1X)

d
H+ G—h (A +1X)
o dr

= t=0

=GaA:X)H+GH,,:X)
= (GAH+GH,):X, VXelLin".

Example 6.18. The right and left Cauchy-Green tensors are given in terms of the
deformation gradient F respectively by

C=F'F, b=FF" (6.141)

Of special interest in continuum mechanics is the derivative of these tensors with
respect to F. With the aid of the product rule (6.140) and using (5.42), (5.77), (5.84),
(5.85)1, (6.135) and (6.138) we obtain

Cr=F yF+FFr=TF+FI=(1IF +F QI (6.142)
br=FpF +FF ;= IF  + FT =IQF + (F®I'. (6.143)

Further product rules of differentiation of tensor functions can be written as
(fG)a=GO fia+fGa, (6.144)
(G:H),Aa=H:GA+G:H,, (6.145)
where f = f (A), G = g(A) and H = & (A) are again a scalar-valued and

two tensor-valued differentiable tensor functions, respectively. The proof is similar
to (6.140) (see Exercise 6.15).

Example 6.19. With the aid of the above differentiation rules we can easily express
the derivatives of the spherical and deviatoric parts (1.163) of a second-order tensor
by (compare with (5.89))

1 1
sphA,, = [;u (A) 1} a=-TOT="Py, (6.146)
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1 1
devA,p = [A — —tr(A) I} A=T—-101I=Pq. (6.147)
n n

In a similar way we can also express the derivative of the isochoric part of the
deformation (6.79), as

Cc=(J7PC)c=T7Cc+CO (I c
1
= J_2/3 (ﬂs—gCGC_l) = g)is07 (6148)

where relation (6.83) is utilized.

Example 6.20. Tangent moduli of hyperelastic isotropic and transversely isotropic
materials. The tangent moduli are defined by (see, e.g., [30])

oS oS
C=—==2—, 6.149
E oC ¢ )

where E denotes the Green-Lagrange strain tensor defined in (6.114). For hypere-
lastic materials this definition implies in view of (6.80) the representation

Py Py
€= JEIE Y5cac (6.150)

For a hyperelastic isotropic material we thus obtain by virtue of (6.136), (6.144),
(6.10) or (6.111)

€=4> ki———C"oc!
k; ateratrCl ©
2

Vg

+85rc

(6.151)

For a hyperelastic transversely isotropic material the above procedure yields with
the aid of (6.126)

%y

k—1 [—1
- 4;_:  SaCF e atrck atrcl ¢ oc atr (CL) awr (e = O *
+4 i (CL + LC) © (CL + LC)
e (CL) i (L)

k—1 k—1
+4 Z atrckatr(CL) (CToL+LocT)
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C*'® (CL + LC) + (CL + LC) © C¥!
+Zater8tr(C2L)[ ©(CL +LO) + (CL +1LC) 0 ]

O’y oy
4 LOCL+L L+LC)OL
e o (o) L O (CLFLO+(CL+LO OLI + 857
oy . oy s
12 T+1 41— LRI+I8L). 152
FI25m €118 0 44z Lol +1ol) (6.152)

Example 6.21. Tangent moduli of hyperelastic materials with isochoric-volumetric
split of the strain energy function can be obtained by inserting (6.87) and (6.88) into
(6.81) and (6.149). Thus, applying product rules of differentiation (6.140), (6.144)
and (6.145) and using (6.83) we can write

€= 2S7C = eiso + eVOl? (6153)

where

Cyol = 2Svorc= (U"J*+U'J)C o C =20 J(CT' @ CT')S,  (6.159)

eiso = 2Sis07C = _§J_2/3 I:S % (S C) C_1:| © C_l
+2J7%3 [S,é: Piso + = (s O)(C'eCly
— %C_l ® (C . S,(‘: . g)iso + S):| .

Using the abbreviation B B B
C=28¢c=4V¢¢ (6.155)

the last expression can finally be simplified as follows

T
150—:p

180

_ 2 _ _
1€ Pio — 3J—Z/3 Soc'+c!of)

2 (S:C) [(C—1 ®C) + %C_l o} c—l} : (6.156)

w |

6.6 Generalized Rivlin’s Identities

The Cayley-Hamilton equation (4.95)

A" 1PA QA ()" IPT =0 (6.157)
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represents a universal relation connecting powers of a second-order tensor A with
its principal invariants. Similar universal relations connecting several second-order
tensors might also be useful for example for the representation of isotropic tensor
functions or for the solution of tensor equations. Such relations are generally called
Rivlin’s identities.

In order to formulate the Rivlin identities we first differentiate the Cayley-
Hamilton equation (6.157) with respect to A. With the aid of (6.60), (6.134)
and (6.144) we can write

0= [Z (-1)* IX”A”‘"} A

k=0

n k
— Z(_l)k An—k 0 |:Z (_1)i—l IX(—i) (AT)i_l:|
k=1 i=l1

n—1 n—k
+ Z (_l)k IX() |:ZAn—k—i ®Ai—l:| )

k=0 i=1
Substituting in the last row the summation index k 4 i by k and using (5.42)
and (5.43) we further obtain

n k ] ) ) -

S ATES (g [I oA "' -18 A’_‘] - 0. (6.158)
k=1 i=1

Mapping an arbitrary second-order tensor B by both sides of this equation yields an
identity written in terms of second-order tensors [11]

n k
AT T [ (AT'B) I-BATT ] = 0. (6.159)
k=1 i=l1

This relation is referred to as the generalized Rivlin’s identity. Indeed, in the special
case of three-dimensional space (n = 3) it takes the form

ABA + A’B + BA? —tr (A) (AB + BA) — tr (B) A2

1
— [tr (AB) — trAtrB] A + 3 [t°A — rA%] B
1
— Jtr (A’B) — trAtr (AB) + B [t*A — wA®]F T=0, (6.160)

originally obtained by Rivlin [35] by means of matrix calculations.
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Differentiating (6.159) again with respect to A delivers

n—1 n—k k
O = Z Z (An—k—j ® Aj—l) Z (_l)k—i IXc—i) [tr (Ai—lB) I— BAi_l]
k=1j=1 i=1
n k—1 ‘
+ Y > (DA [ (AT'B) T-BA]
k=2i=1

k—i
oY /T (AT
j=1

n k i—1
+ ZZ (_1)k—i IX{—i)An—k o Z (Aj—lBAi—l—j)T
k=2i=2 j=1
n k ) ] i—1
_ Z Z (_1)k—1 IXc—z)An—kB Z (Ai—j—l ® Aj—l)
k=2i=2 j=1

Changing the summation indices and summation order we obtain

n—1 n k—i
Z Z Z (_l)k—i—j IX(—i—j)An—k {I ® [tr (AJ—IB) Ai—l
i=1k=i+1,=1
— AT'BA/ T~ [r (A'B)T-BA ] o (AT)
+10 (A7'BAT) —BA @A = 0. (6.161)

The second-order counterpart of this relation can be obtained by mapping another
arbitrary second-order tensor C € Lin" as [11]

n—1 n k—i
o3 S T A (AT 1B) €A
i=1k=i+1,;=1
—CA'BA/™' —[r (A" 'B)I-BA" '] r (A/7'C)
+tr (A""'BA/T'C)I-BA/T'CAT!} = 0. (6.162)

In the special case of three-dimensional space (n = 3) Eq. (6.162) leads to the well-
known identity (see [28,35,37])



152 6 Analysis of Tensor Functions

ABC + ACB + BCA + BAC + CAB + CBA — tr (A) (BC + CB)

—tr (B) (CA + AC) — tr (C) (AB + BA) + [tr (B) tr (C) — tr (BC)] A
+[tr (C) tr (A) — tr (CA)] B + [tr (A) tr (B) — tr (AB)] C
—[tr (A) tr (B) tr (C) — tr (A) tr (BC) — tr (B) tr (CA)
—tr (C) tr (AB) + tr (ABC) + tr (ACB)]I = 0. (6.163)

Exercises

6.1. Check isotropy of the following tensor functions:

(@) f (A) = aAb, wherea,b € E",

(b) f(A)=A" + A + AY,

(¢) f(A) = A" + A2 4+ A3, where AV represent the components of A € Lin®
with respect to an orthonormal basis e; (i = 1,2, 3), so that A = AVe; ® e;,

(d) f(A) = detA,

(e) f (A) = Amax, Where Ajax denotes the maximal (in the sense of the norm \/ﬁ)
eigenvalue of A € Lin".

6.2. Prove the alternative representation (6.18) for the functional basis of an
arbitrary second-order tensor A.

6.3. Prove the product rule of differentiation (6.58) by applying the formalism of
the directional derivative (6.44).

6.4. An orthotropic symmetry group g, is described in terms of three structural
tensors definedby L; = I; ® [;, where l; -1 ; = §;; (i, j = 1,2, 3) are unit vectors
along mutually orthogonal principal material directions. Represent the general
orthotropic strain energy function

v(QCQ') =v(C). YQeg, (6.164)
in terms of the orthotropic invariants.

6.5. Using the results of Exercise 6.4, derive the constitutive relation for the second
Piola-Kirchhoff stress tensor S (6.80) and the tangent moduli € (6.149) for the
general hyperelastic orthotropic material.

6.6. Represent the general constitutive relation for an orthotropic elastic material
as a function S (C).

6.7. A symmetry group g of a fiber reinforced material with an isotropic matrix
is described in terms of structural tensors defined by L, = [; ® [;, where the
unit vectors I; (i = 1,2,...,k) define the directions of fiber families and are not
necessarily orthogonal to each other. Represent the strain energy function
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¥ (QCQ") =¥ (C). VQeg, (6.165)
of a fiber reinforced material with two families of fibers (k = 2).

6.8. Derive the constitutive relation S = 291/dC + pC~! and the tangent moduli
€ = 20S/9C for the Mooney-Rivlin material represented by the strain energy
function (6.11).

6.9. Derive the constitutive relation for the Ogden material (6.12) in terms of the
second Piola-Kirchhoff stress tensor using expression (6.80).

6.10. Show that tr (CL;CL;), where L; (i = 1,2, 3) are structural tensors defined
in Exercise 6.4, represents an orthotropic tensor function (orthotropic invariant) of
C. Express this function in terms of the orthotropic functional basis obtained in
Exercise 6.4.

6.11. The strain energy function of the orthotropic St.Venant-Kirchhoff material is
given by

3 3

v (E) = % > ajjtr (BL;) tr (EL;) + ) Gyjtr (EL/EL;). (6.166)
ij=1 i,j=1
i#]

where E denotes the Green-Lagrange strain tensor (6.114) and L; (i =1,2,3)
are the structural tensors defined in Exercise 6.4. a;; = a;; (i,j =1,2,3) and
Gij = G;; (i # j =1,2,3) represent material constants. Derive the constitutive
relation for the second Piola-Kirchhoff stress tensor S (6.80) and the tangent moduli
C (6.149).

6.12. Show that the function ¥ (E) (6.166) becomes transversely isotropic if
1
ap =az, ap=apz, Gp=G;3, Gp= 5 (a2 —ax) (6.167)

and isotropic of the form (6.116) if

ap=ap=a3 =i, Gp=G;3=0»=0G,

ay = daxn =axz = A+ 2G. (6.168)

6.13. Complete the proof of Theorem 6.3.

6.14. Express A™F 5, wherek = 1,2, ....

6.15. Prove the product rules of differentiation (6.144) and (6.145).
6.16. Write out Rivlin’s identity (6.159) for n = 2.



Chapter 7
Analytic Tensor Functions

7.1 Introduction

In the previous chapter we discussed isotropic and anisotropic tensor functions
and their general representations. Of particular interest in continuum mechanics
are isotropic tensor-valued functions of one arbitrary (not necessarily symmetric)
tensor. For example, the exponential function of the velocity gradient or other non-
symmetric strain rates is very suitable for the formulation of evolution equations
in large strain anisotropic plasticity. In this section we focus on a special class of
isotropic tensor-valued functions referred here to as analytic tensor functions. In
order to specify this class of functions we first deal with the general question how
an isotropic tensor-valued function can be defined.

For isotropic functions of diagonalizable tensors the most natural way is the
spectral decomposition (4.43)

A= XS:A,-Pi, (7.1)

i=1

so that we may write similarly to (4.48)

c(A) =Y g)P, (1.2)

i=1

where g (A;) is an arbitrary (not necessarily polynomial) scalar function defined on
the spectrum A; (i = 1,2,...,s) of the tensor A. Obviously, the so-defined function
g (A) is isotropic in the sense of the condition (6.91). Indeed,

2(QAQ") =) ¢ (1)QPQ" =Qg(A)Q", VQeOrh",  (73)

i=1
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where we take into account that the spectral decomposition of the tensor QAQ" is
given by

N
QAQ" =) X QP:Q". (7.4)
i=1

Example 7.1. Generalized strain measures. The so-called generalized strain mea-
sures E and e (also known as Hill’s strains, [16, 17]) play an important role in
kinematics of continuum. They are defined by (7.2) as isotropic tensor-valued
functions of the symmetric right and left stretch tensor U and v and are referred to
as Lagrangian (material) and Eulerian (spatial) strains, respectively. The definition
of the generalized strains is based on the spectral representations by

U= ZS:/\,'P,‘, V= Zyjkipi, (75)

i=1 i=1

where A; > 0 are the eigenvalues (referred to as principal stretches) while P; and
pi (i =1,2,...,s) denote the corresponding eigenprojections. Accordingly,

E=) f(G)P. e=) f()p, (7.6)

i=1 i=1

where f is a strictly-increasing scalar function satisfying the conditions f (1) = 0
and /' (1) = 1. A special class of generalized strain measures specified by

il(/\?—l)Pi fora # 0,

@ = =14 1.7)
> In(A;)P; fora =0,
i=1
s 1
Z—(A;‘—l)p; fora # 0,

e@ = =14 (7.8)
Zln(ki)p,- fora =0

are referred to as Seth’s strains [40], where a is a real number. For example, the
Green-Lagrange strain tensor (6.114) introduced in Chap. 6 belongs to Seth’s strains
as E@.

Since non-symmetric tensors do not generally admit the spectral decomposition
in the diagonal form (7.1), it is necessary to search for other approaches for the
definition of the isotropic tensor function g (A) : Lin" + Lin". One of these
approaches is the tensor power series of the form

o0
gA) =al+aA+aA’+... =) aA" (7.9)
r=0
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Indeed, in view of (6.92)

g(QAQU:=§3m«QAQUF

r=0

—Za, QA’Q" = Qg (A)Q", VQ € Orth”. (7.10)

For example, the exponential tensor function can be defined in terms of the infinite
power series (7.9) by (1.114).

One can show that the power series (7.9), provided it converges, represents a
generalization of (7.2) to arbitrary (and not necessarily diagonalizable) second-
order tensors. Conversely, the isotropic tensor function (7.2) with g (1) analytic on
the spectrum of A can be considered as an extension of infinite power series (7.9)
to its non-convergent domain if the latter exists. Indeed, for diagonalizable tensor
arguments within the convergence domain of the tensor power series (7.9) both
definitions coincide. For example, inserting (7.1) into (7.9) and taking (4.47) into
account we have

g(A) = Za, (ZAP) =Za,ZA’ ,_Zg(A)P (7.11)

i=1 r=0 i=1 i=1

with the abbreviation

o0
g => al. (7.12)
so that
1 3d"g(d)
= e (7.13)

The above mentioned convergence requirement vastly restricts the definition
domain of many isotropic tensor functions defined in terms of infinite series (7.9).
For example, one can show that the power series for the logarithmic tensor function

nA+D=>) (-1 § (7.14)

r=1

converges for |A;| < 1 (i =1,2,...,s) and diverges if |A¢| > 1 at least for some
k (1 <k <s) (see, e.g., [13]).

In order to avoid this convergence problem we consider a tensor function defined
by the so-called Dunford-Taylor integral as (see, for example, [25])

¢ (4) = 1¢g@@1 A dg (7.15)
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taken on the complex plane over I", where I represents a closed curve or consists
of simple closed curves, the union interior of which includes all the eigenvalues
A € C (@i =1,2,...,s) of the tensor argument A. g ({) : C + C is an arbitrary
scalar function analytic within and on I".

One can easily prove that the tensor function (7.15) is isotropic in the sense of
the definition (6.91). Indeed, with the aid of (1.133) and (1.134) we obtain (cf. [34])

¢ (QAQ")

2mi

L b (0 (c1-QaQ") &g

P rolea-aaT

L b coQ@-a Q'

2mi

Qg (A)Q', VQ € Orth". (7.16)

It can be verified that for diagonalizable tensors the Dunford-Taylor integral (7.15)
reduces to the spectral decomposition (7.2) and represents therefore its generaliza-
tion. Indeed, inserting (7.1) into (7.15) delivers

s -1
1
¢W=5-¢ e (u—;xim) a
; —1
1 S
=%g§g@)[;(z—mm} a
- S -,
=5 O a0 e

Rall e
_Z[ﬁﬁg(é)(é Ai) dC}P,—;g(A,)P,, (7.17)

i=1

where we keep (4.46) in mind and apply the Cauchy integral formula (see,
e.g. [5]). Using this result we can represent, for example, the generalized strain
measures (7.6) by

E=/f@U). e=/f(), (7.18)

where the tensor functions f (U) and f (v) are defined by (7.15).

Further, one can show that the Dunford-Taylor integral (7.15) also represents a
generalization of tensor power series (7.9). For this purpose, it suffices to verify
that (7.15) based on a scalar function g (¢) = ¢¥ (k = 0,1,2,...) results into the
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monomial g (A) = A*. To this end, we consider in (7.15) the following identity [25]
g(OI= (D" = ((T—A+A)f = CT—A) + ... + Ak, (7.19)

Thereby, all terms except of the last one have no pole within I" and vanish according
to the Cauchy theorem (see, e.g., [5]), so that

_ L _ k—1 k _ —1 Ak
g(A)—M&fF[(;I AL AR CI—A) ]d;_A. (7.20)

Isotropic tensor functions defined by (7.15) will henceforth be referred to
as analytic tensor functions. The above discussed properties of analytic tensor
functions can be completed by the following relations (Exercise 7.3)

gA) =af (A)+ph(A).if g) =af (A)+Bh(A),
gA)=fA)rA), it gM)=fMh@A), (7.21)
g(A) =1 (h(A), if g)=rGr®).

In the following we will deal with representations for analytic tensor functions and
their derivatives.

7.2 Closed-Form Representation for Analytic Tensor
Functions and Their Derivatives

Our aim is to obtain the so-called closed form representation for analytic tensor
functions and their derivatives. This representation should be given only in terms of
finite powers of the tensor argument and its eigenvalues and avoid any reference to
the integral over the complex plane or to power series.

We start with the Cayley-Hamilton theorem (4.95) for the tensor {I — A

n

Yo DI @r-Ay T =0, (7.22)
k=0

With the aid of the Vieta theorem (4.24) we can write

n

a=1 Tf,= > = )C—ty)...(C—A).  (7.23)

i1 <ip<...<ik

where k = 1,2,...,n and the eigenvalues A; (i = 1,2,...,n) of the tensor A are
counted with their multiplicity.
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Composing (7.22) with the so-called resolvent of A
R()=(¢I-A)" (7.24)

yields

R() = —— 1<"> Z( D CEINTS BV Vi

{I-A k=0

- (n) ZIE?_ LA —DE (7.25)
;I—A k=0

Applying the binomial theorem (see, e.g., [5])

1
A—-¢D' =) (=) (l)zl—PAP, I=1,2,..., (7.26)
p=0 P
where
O (7.27)
p)] pd-pV '
we obtain
R —k—1
R() = Iy Z (=1t ¢RTITPAP L (7.28)
I{I—Ak 0 p

Rearranging this expression with respect to the powers of the tensor A delivers

e
R() =) a,A’ (7.29)
with
& n—k—1
ap= o 2 )T ‘( )I”" g, (7.30)
I{I A k=0 p
where p = 0, 1,...,n — 1. Inserting this result into (7.15) we obtain the following

closed-form representation for the tensor function g (A) [21]

g(A) =) @,A”. (7.31)
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where |
@pzz_yri?ég(@)“pdzﬁ p=01...n-1L (7.32)

The Cauchy integrals in (7.32) can be calculated with the aid of the residue theorem
(see, e.g., [5]). To this end, we first represent the determinant of the tensor {I — A in
the form

19, = det@-A) =[] ¢~ 1)" . (7.33)
i=1

where A; denote pairwise distinct eigenvalues with the algebraic multiplicities
ri (i =1,2,...,s) such that

ZS:” =n. (7.34)
i=1

Thus, inserting (7.30) and (7.33) into (7.32) we obtain

S ri—1

1 , d .,
$r = Zm};ﬂ;f {F [g @) ey () (& —A)"]} (7.35)

i=1
where p =1,2,...,n— 1.

The derivative of the tensor function g (A) can be obtained by direct differentia-
tion of the Dunfod-Taylor integral (7.15). Thus, by use of (6.139) we can write

fWa=s-e@C-Ns@-A TG 730
1 Jr

and consequently

1
¢Wa= 3§ cORO BREO) U (2.37)
1 Jr
Taking (7.29) into account further yields
n—1
gA) A= Y A’ @A (7.38)
p.q=0

where

1
og = Nap = ﬁ_cﬁrg@)ap(z)aq ©de. pg=0.1.....n—1. (1.39)

The residue theorem finally delivers

s 1 . d2r,~—1 .
an = ; (2’,1_ _ 1)| {ll>n/\1, % dé.zrl._l I:g (C) ap (C) aq (C) (é‘ - Ai)z :I}v (740)

where p,q =0,1,...,n —1.
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7.3 Special Case: Diagonalizable Tensor Functions

For analytic functions of diagonalizable tensors the definitions in terms of the
Dunford-Taylor integral (7.15) on the one side and eigenprojections (7.2) on the
other side become equivalent. In this special case, one can obtain alternative closed-
form representations for analytic tensor functions and their derivatives. To this end,
we first derive an alternative representation of the Sylvester formula (4.55). In
Sect. 4.4 we have shown that the eigenprojections can be given by (4.52)

P.=pi(A), i=12...s (7.41)

where p; (i = 1,2,...,s) are polynomials satisfying the requirements (4.51). Thus,
the eigenprojections of a second-order tensor can be considered as its analytic
(isotropic) tensor functions. Applying the Dunford-Taylor integral (7.15) we can
thus write

P, = Lgﬁ piQ@I-A)"dL, i=12,...,s. (7.42)
2mi Jr

Similarly to (7.31) and (7.35) we further obtain

n—l1
P,=> ppAl. i=12...5 (7.43)
p=0
where
=3 i L 0wy 0 - 20 (7.44)
P = D L den! g

and @, (p =0,1,...,n—1) are given by (7.30). With the aid of polynomial
functions p; (1) satisfying in addition to (4.51) the following conditions

dr
Wp,-(k) =0 i,j=1.2,....5; r=12,...,r;,—1 (7.45)
A=1;
we can simplify (7.44) by
L i {2 o, 00— (7.46)
iy = im o —Ai)" - .
P = G =) ey | a1 L

Now, inserting (7.43) into (7.2) delivers

K n—1
gA) =) "g) ) pipA’. (7.47)

i=l1 p=0
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In order to obtain an alternative representation for g (A) ,o we again consider the
tensor power series (7.9). Direct differentiation of (7.9) with respect to A delivers
with the aid of (6.134)

g(A) A= Zar ZA’ T ® (7.48)

r=1 k=0

Applying the spectral representation (7.1) and taking (4.47) and (7.12) into account
we further obtain (see also [19,49])

00 r—1 s
N S D 3L sy X 1

r=1  k=0ij=1

s

o0 Ar Al’
ZZZrarlr 1P ®P+ZZark myy PP,

i=1r=1 i,j=1r=1

J#i
s g (A
:Zg'(A)P®P+Z (A)_A )P®P
i=1 i,j=1
j;éi
= > GyPi®P;, (7.49)
ij=1
where
g (L) ifi =/,
sy '

Inserting into (7.49) the alternative representation for the eigenprojections (7.43)
yields

n—1

g(A) A= Z Gij Y pippigA” ® A7 (7.51)
i,j=1 p.q=0

Thus, we again end up with the representation (7.38)

n—l1
gA) A= Y A’ A" (7.52)
p.q=0
where ;
Nog =1Ngp = Y GijPipig- P-q=0.1...n—1 (7.53)

ij=1
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Finally, let us focus on the differentiability of eigenprojections. To this end, we
represent them by [25] (Exercise 7.5)

1
P = —.95 CI-A)7'dg i=12.. (7.54)
2mi JT,

where the integral is taken on the complex plane over a closed curve I the interior
of which includes only the eigenvalue A;. All other eigenvalues of A lie outside
I;. I; does not depend on A; as far as this eigenvalue is simple and does not lie
directly on I7;. Indeed, if A; is multiple, a perturbation of A by A 4 ¢X can lead to a
split of eigenvalues within [;. In this case, (7.54) yields a sum of eigenprojections
corresponding to these split eigenvalues which coalesce in A; for t = 0. Thus,
the eigenprojection P; corresponding to a simple eigenvalue A; is differentiable
according to (7.54). Direct differentiation of (7.54) delivers in this case

Pra= b (1-A) " ®C-A) "t r=1. (755)
21 T

By analogy with (7.38) we thus obtain

n—1
Pia= ) UpA’ @AY, (1.56)
r.4=0
where
1
Uipg = Vigp = i D ap(Qa,()ds, p.g=0,1,....n—1. (7.57)

By the residue theorem we further write

g = tim | 2 [, @0 © €= 27]L g =0t -1 )

With the aid of (7.49) one can obtain an alternative representation for the deriva-
tive of the eigenprojections in terms of the eigenprojections themselves. Indeed,
substituting the function g in (7.49) by p; and taking the properties of the latter
function (4.51) and (7.45) into account we have

P, ®P; +P; QP;
Pia= .
A Z A — A

(7.59)

j=1
j#i
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7.4 Special Case: Three-Dimensional Space

First, we specify the closed-form solutions (7.31) and (7.38) for three-dimensional
space (n = 3). In this case, the functions o (¢) (k = 0, 1, 2) (7.30) take the form

¢ 2— Cler—a + er—a

ap (§) =

Ml
_ CZ — LA+ A2+ A3) + A1As + Ads + A3A
B (=21 (C—=22) (£ —A3) ’
LA =20 (—A—Ar— A3

O = i T T €A €A

ar (§) = L o_ ! . (7.60)

Me-a  (E—=241) (€= 22) (£ —A3)

Inserting these expressions into (7.35) and (7.40) and considering separately cases
of distinct and repeated eigenvalues, we obtain the following result [23].

Distinct eigenvalues: Ay # Ay # Az # Aq,

B i g(xnx,»xk

l

’

i=l1
3
g () (A + A)
P

3
A
=3 4D (7.61)

3AZA2’A AidjAl [g (A
m=y g0 57 2htleto el

i=1 i,j=1
i#]

(A + Ax) Ajreg’ (M)

3
770127’)102—2 ’ Dzj

i=1

’

2 (A A i [g ) — g (A))]
2 (hi—2;)’ D
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3 / . 3 ) N A
No2 = 120 = ZM_ Z Aidi [g (M) — g (2))]

i=1 Diz ij=1 (Ai _’xj)3 Dy ’
i#j
i ( Hk g () i (A + M) A + 20 [g ) — g ()]
i=1 ij=1 (A,- _’xj)3 Dy ’
i#j
o AL N Gt A [g0) 2 ()]
N2 = N21 ; Dz sz (lz Iy ) D )
zaé
3 3
g (M) g)—g(ry) . )
Mo = — L~ i#jEkAI (7.62)
” ; h ,-;1 (A —2;)" Dy
i#j
where
Di:(xi_,\j)(,\,-—)\k), i#j#k#i=17273. (7.63)

Double coalescence of eigenvalues: A #Aj = Ay = A, j #k,

_ A/Xg (i) —Aigd) | Lig(h) Arig’(A)

A —A)° Ai=2 =17
o = 22 g(/\) g gMRi+1)
: (i — 1) T
g —g)  g®)
LGRS R VR VY 769
o PR 60) (80— )

A —A)

/\4 g () + (2034 + 42202 —4A23 +2%) ¢ (V)
(i — 1)

(X3 =32 g () | 2742 )
i — )’ 6(A; — 1)
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(3A% +74:A% —2A72) [g (A1) — g (V)]
(i =2)°

NMo1 = Mo =

223" (M) + (A 4+ 7TAA% —2A22) g (V)
i —1)*

(420 + 234 =21 g" (M) JA i+ 0" ()
2(A — ) 6 (A — 1)

3

(A7 =302 —2A%) [g (X)) — g (V)]
A —A)

No2 = M2 =

N A2g (A + (lz + 344 — /112) g )
i —1*

(3AA: — A2) g" (X) N Airg" (L)
200 = 1) 6 (A — 1)

AR+ [g ) e W] | 412g/ ) +Ai+20) g (V)

(A —2)° (i =1

mi =

Vi +1g"R) | Ri+A "R
(A =4y’ 6 (i — 1)
po =y = K E VgD g W] 248" @) + i + 50 8" )
12 21 (0 —A)° )

’

CAi+3)g" () i+ ()
200 —A)? 6 (A —A)?

’

— _ g (Al) — 8 (A) g/ (Az) + 3g/ (A) g// (A) g/// (A)
= s T oy Ty Tea—ar 7

Triple coalescence of eigenvalues: Ay = Ay = A3 = A,

/ 1 /
po=gR)—Ag" (V) + zkzg’ (),
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=g W) —-1g" (),
1
¢ = Eg” ). (7.66)

AZ ///A A3 IVA A4VA
noo =g (A)—Ag" (M) + g ()_ g" ) g" (V)

2 12 120 °

g’ Ag”) | AV ) Mg
Nor = 1Mo = > 5 + 3 e

g" ) Agv () A%V (A)
No2 = N20 = 6 24 20

g’ Ay A%V

n = 6 6 + 30

g’ g
Ni2 = N21 = 24 - 60

|4

o = & 12(3), (7.67)

where superposed Roman numerals denote the order of the derivative.

Example 7.2. To illustrate the application of the above closed-form solution we
consider the exponential function of the velocity gradient under simple shear. The
velocity gradient is defined as the material time derivative of the deformation
gradientby L = F. Using the representation of F in the case of simple shear (2.69)
we can write

070

L=Lje ge/, where [L,]=]000 ] (7.68)
000
We observe that L has a triple (r; = 3) zero eigenvalue
M=l =A3=1=0. (7.69)

This eigenvalue is, however, defect since it is associated with only two (1; = 2)
linearly independent (right) eigenvectors

a,=e;, a=e;. (7.70)
Therefore, L (7.68) is not diagonalizable and admits no spectral decomposition in

the form (7.1). For this reason, isotropic functions of L as well as their derivative
cannot be obtained on the basis of eigenprojections. Instead, we exploit the closed-
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form solution (7.31) and (7.38) with the coefficients calculated for the case of triple
coalescence of eigenvalues by (7.66) and (7.67). Thus, we can write

exp (L) = exp (1) [GAZ -1+ 1) I+(1—-A)L+ %LZ} , (7.71)

PRI E
Lo=epM)|(1-2+2 -2+ 2 )9
exp (L) exp()[( + 55+ 1)

1A A2 A3
-4+ T JL®I+I®L
+(2 28 60)( ®I+iel)
N 1 A+A2 Lol
6 6 30
+ (2 /\+)LZ (LPoI+IgL?)
6 24 120
+ LA (L2<§9L+L®L2)+LL2@>L2 (7.72)
24 60 120 N

On use of (7.69) this finally leads to the following expressions

1
exp(L)=I1+L + ELZ, (7.73)

1 1 1
exp(L),L=.‘J+§(L®I+I®L)+8L®L+6(L2®I+I®L2)

1 1
—(L*®L+L®L%)+ —L*®L%. 7.74
+5 4( ®L+LQL?) + ool © (7.74)

Taking into account a special property of L (7.68):
Lf=0, k=2,3,... (7.75)

the same results can also be obtained directly from the power series (1.114) and its
derivative. By virtue of (6.134) the latter one can be given by

oo r—1
1
exp (L) .. = § :F § Lok (7.76)
r= " k=0

For diagonalizable tensor functions the representations (7.31) and (7.38) can be
simplified in the cases of repeated eigenvalues where the coefficients ¢, and 7, are
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given by (7.64)—(7.67). To this end, we use the identities A> = (A; + A) A—A; AI for
the case of double coalescence of eigenvalues (A,- FAj=A = A) and A = AL
A% = A7 for the case of triple coalescence of eigenvalues (A} = Ay = A3 = A).
Thus, we obtain the following result well-known for symmetric isotropic tensor
functions [7].

Double coalescence of eigenvalues: Aj # Aj = A = A, A?= (A +)A-LAL

_Aig() —Ag(A) _g)—g@) _
Po = A — A , 1= Ai—_k’ @ =0, (7.77)
) — 25/ X 2o/
o= oap ER) =g D) g0 + 33 ()
(Ai =AY (Ai =)
gAi)—g) Ag (L) +Aig' (A)
= == Ai A. — s
Not = N0 = (A +A4) PRSI =)
g —g) g A)+g (D)
N = —2 — + 5
(A =) (A = A)
Moz = M20 = N2 = N21 = N2 = 0. (7.78)

Triple coalescence of eigenvalues: Ay = Ay = A3 = A, A = AL, A? = A1,
po=8gR), ¢r=¢p=0, (7.79)

noo =g (A), 7Mor =m0 =N ="nN2=1N0=1N2=1"nu=1n2=0. (7.80)

Finally, we specify the representations for eigenprojections (7.43) and their
derivative (7.56) for three-dimensional space. The expressions for the func-
tions p;, (7.46) and v, (7.58) can be obtained from the representations for ¢,
(7.61), (7.77), (7.79) and n,, (7.62), (7.78), respectively. To this end, we set there
g)=1g(A;) =g =g L) =g () = g (A&) = 0. Accordingly, we
obtain the following representations.

Distinct eigenvalues: Ay # Ay # Az # Aq,

ljlk Aj + Ak 1
i0 = s Pl == , i2 = —, 7.81
Pio D, pit D, pi2 D, (7.81)
A A
Vioo = —Zkikjkk k 3 + / 3 s
(Ai —Aj) Dk (Al _Ak) DJ

Ai (Aj +Ak) + A (i 4+ Ap) N Ai (Aj+Ak) + A (i +A4;)

(A —1,)’ Dy ! (A =) D;

Viol = Vilo = Ak

’
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Ai +A; Ai + Ak
(=AY D=2’ Dy
Um:_z(Aij)[ bt it }

(Ai=2;)" Dr (li—A)" D;
A A 20 A+ 24+ A
(=)' D Gi=A)'D;
2 2
(i —A) De (=)’ D

Vi = Uino = —Ax

Vi12 = Vj21 =

i#jAk#i=123 (182

Vip = —

Double coalescence of eigenvalues: A #Aj = Ay = A, j #k,

A 1
0=—7T——, pi1=——, pi2=0, 7.
Pio PP pPil ) pi2 =20 (7.83)
2AA; Ai + A 2
Vigp = —————, Vil =Vilg = ————, U =-————,
B N P N P Py
Vio2 = Vi20 = Vj12 = Vj21 = Vj22 = 0. (7.84)

Triple coalescence of eigenvalues: A1 = Ay = A3 = A,

po =1, pn=pn=0. (7.85)

The functions viyg (p,g = 0,1,2) are in this case undefined since the only
eigenprojection P is not differentiable.

7.5 Recurrent Calculation of Tensor Power
Series and Their Derivatives

In numerical calculations with a limited number of digits the above presented
closed-form solutions especially those ones for the derivative of analytic tensor
functions can lead to inexact results if at least two eigenvalues of the tensor argument
are close to each other but do not coincide (see [20]). In this case, a numerical
calculation of the derivative of an analytic tensor function on the basis of the
corresponding power series expansion might be advantageous provided this series
converges very fast so that only a relatively small number of terms are sufficient in
order to ensure a desired precision. This numerical calculation can be carried out by
means of a recurrent procedure presented below.
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The recurrent procedure is based on the sequential application of the Cayley-
Hamilton equation (4.95). Accordingly, we can write for an arbitrary second-order

tensor A € Lin”
n—1

=Y (=1 EHIETOAR (7.86)

With the aid of this relation any non-negative integer power of A can be repre-
sented by

=Y o AF, r=0.1.2.... (7.87)

Indeed, for r < n one obtains directly from (7.86)
o) =8, o =) k=01, 0 -1 (7.88)

Further powers of A can be expressed by composing (7.87) with A and representing
A" by (7.86) as

Ar+l — Zw(r)Ak+l Zw(r) Ak +w(r) A"
k=1

n—1 n—1
— Zw(r) Ak + w(r) Z (_1)n—k—1 IXl_k)Ak.
k=1 k=

Comparing with (7.87) we obtain the following recurrent relations (see also [39])
w(()r"rl) (r) ( 1)11 1 (Vl)
o/ =0 4o ()Y k=12, 01, (7.89)

With the aid of representation (7.87) the infinite power series (7.9) can thus be
expressed by (7.31)

n—l1
g(A) =) @,A”, (7.90)
where
o0
p=> a0y (7.91)

Thus, the infinite power series (7.9) with the coefficients (7.13) results in the same
representation as the corresponding analytic tensor function (7.15) provided the
infinite series (7.91) converges.
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Further, inserting (7.87) into (7.48) we obtain again the representation (7.38)

n—1
gA) A= ) npA’ @AY, (7.92)
p.q=0
where
Npg = Ngp = ZarZw" He® g =01, 0~ 1 (7.93)
r=1 k=0

The procedure computing the coefficients 71,4 (7.93) can be simplified by means of
the following recurrent identity (see also [31])

r r—1
ZAI'—k ®Ak A QI+ |:ZAr—l—k ®Ak] A

k=0 k=0

r—1
=A|:ZA’_H‘®A"] +IQA", r=1.2..., (7.94)

k=0

where
r—1 n—1
ZA"‘H‘ ® AF = Z EDAP @AY, r=12... (7.95)
k=0 p.q=0

Thus, we obtain
o0
Npg = E a,g;’q), (7.96)

where [20]

£ =) = 000 = 80,80, P =<q: p.g=0.1,....n—1,

(r) _ £r=1) (n)
00 = Son—1®@y T

(r—1 (r—1 (r—1
E(V) qu _ 0’[]_1)+%-Oryl l) (n) _ %—V ) (n)+a)(r 1),

() — g0 — £0r=D) (r=1) (n) _ £lr= 1) (r=1) o™
%-r %-r Sql+spn lwn Sp 1q Sn lq pn’

w(r—l)’

r=<q:.pq=12,....n—1, r=2,3,... (7.97)

The calculation of coefficient series (7.89) and (7.97) can be finished as soon as for
some r
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Table 7.1 Recurrent calculation of the coefficients a);,’ ) and E(p’q)

(r) (r) (r) (r) (r) (r) (r) (r) (r)
r @y @ o) 00 01 02 11 12 22 ar
0 1 0 0 1
1 0 1 0 1 0 0 0 0 0 1
2 0 0 1 0 1 0 0 0 0 172
3 0 0 0 0 0 1 1 0 0 1/6
4 0 0 0 0 0 0 0 1 0 124
5 0 0 0 0 0 0 0 0 1 1/120
6 0 0 0 0 0 0 0 0 0 1/720
1
(r) —
rgoa,.a)p 1 1 3
1 1 1 1 1
(r) 1 — — — _ _
L ok 2 6 6 24 120
-
‘ara)g) <eg Za,a)g) ,
t=0
,
akl)| <e|Y agll. pg=0.1....n-1. (7.98)
t=1

where ¢ > 0 denotes a precision parameter.

Example 7.3. To illustrate the application of the above recurrent procedure we
consider again the exponential function of the velocity gradient under simple
shear (7.68). In view of (7.69) we can write

=@ —1® . (7.99)

With this result in hand the coefficients a);’) and g;’q) (p,q = 0,1,2) appearing
in the representation of the analytic tensor function (7.90), (7.91) and its deriva-
tive (7.92) and (7.96) can easily be calculated by means of the above recurrent
formulas (7.88), (7.89) and (7.97). The results of the calculation are summarized
in Table 7.1.

Considering these results in (7.90)—(7.92) and (7.96) we obtain the representa-
tions (7.73) and (7.74). Note that the recurrent procedure delivers an exact result
only in some special cases like this where the argument tensor is characterized by
the property (7.75).

Exercises

7.1. Let R (w) be a proper orthogonal tensor describing a rotation about some axis
e € [E3 by the angle w. Prove that R? (w) = R (aw) for any real number a.
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7.2. Specify the right stretch tensor U (7.5); for simple shear utilizing the results of
Exercise 4.1.

7.3. Prove the properties of analytic tensor functions (7.21).

7.4. Represent the tangen moduli for the Ogden material (6.12) in the case of simple
shear by means of (7.49)—(7.50) and by using the result of Exercises 4.13 and 6.9.

7.5. Prove representation (7.54) for eigenprojections of diagonalizable second-
order tensors.

7.6. Calculate eigenprojections and their derivatives for the tensor A (Exer-
cise 4.14) using representations (7.81)—(7.85).

7.7. Calculate by means of the closed-form solution exp (A) and exp (A) ,a, where
the tensor A is defined in Exercise 4.14. Compare the results for exp (A) with those
of Exercise 4.15.

7.8. Compute exp (A) and exp (A) ,o by means of the recurrent procedure with the
precision parameter ¢ = 1 - 107, where the tensor A is defined in Exercise 4.14.
Compare the results with those of Exercise 7.7.



Chapter 8
Applications to Continuum Mechanics

8.1 Polar Decomposition of the Deformation Gradient

The deformation gradient F represents an invertible second-order tensor generally
permitting a unique polar decomposition by

F = RU = VR, (8.1)

where R is an orthogonal tensor while U and v are symmetric tensors. In continuum
mechanics, R is called rotation tensor while U and v are referred to as the right
and left stretch tensor, respectively. The latter ones have already been introduced in
Sect. 7.1 in the context of generalized strain measures.

In order to show that the polar decomposition (8.1) always exists and is unique
we first consider the so-called right and left Cauchy-Green tensors respectively by

C=F'F, b=FF. (8.2)

These tensors are symmetric and have principal traces in common. Indeed, in view
of (1.151)

tr(C*) = tr (F'F...F'F) = tr (FF" ... FF") = tr(b"). (8.3)

k times k times

For this reason, all scalar-valued isotropic functions of C and b such as principal
invariants or eigenvalues coincide. Thus, we can write

CZXS:A,'P,‘, bzi/\ipi, (8.4)
i=1 i=1

where eigenvalues A; are positive. Indeed, let a; be a unit eigenvector associated
with the eigenvalue A;. Then, in view of (1.78), (1.104) and (1.115) and by

M. Itskov, Tensor Algebra and Tensor Analysis for Engineers, Mathematical Engineering, 177
DOI 10.1007/978-3-642-30879-6_8, © Springer-Verlag Berlin Heidelberg 2013
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Theorem 1.8 one can write
Ai =a; - (Aia;) = a; - (Ca;) = a; - (F'Fa;)
= (a;F") - (Fa;) = (Fa;) - (Fa;) > 0.

Thus, square roots of C and b are unique tensors defined by

U=¢E=Z¢EPi, vzdﬁzzmpf. (8.5)
i=l1 i=l1

Further, one can show that
R=FU"! (8.6)

represents an orthogonal tensor. Indeed,
RR" =FU'U'F' = FU’F' =FC™'F"
=FF'F)'FT =FF 'FTFT = L.
Thus, we can write taking (8.6) into account
F =RU = (RUR")R. (8.7

The tensor
RUR! = FRT (8.8)

in (8.7) is symmetric due to symmetry of U (8.5);. Thus, one can write
(RUR")? = (RURT)(RUR")T = (FRT)(FR")T
= FR'RF! = FF' = b. (8.9)

In view of (8.5), there exists only one real symmetric tensor whose square is b.
Hence,
RUR! = v, (8.10)

which by virtue of (8.7) results in the polar decomposition (8.1).

8.2 Basis-Free Representations for the Stretch
and Rotation Tensor

With the aid of the closed-form representations for analytic tensor functions
discussed in Chap.7 the stretch and rotation tensors can be expressed directly in
terms of the deformation gradient and Cauchy-Green tensors without any reference
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to their eigenprojections. First, we deal with the stretch tensors (8.5). Inserting in
(7.61) g(A;) = ~/A; = A; and keeping in mind (7.31) we write

U=gl+¢C+pC, v=gl+geb+pb’ (8.11)
where [45]
0o = AMA2Az(Ar + As + A3)
T M+ )M+ A (As + A
o1 = A4 A3 4 A3+ Mids + AaAs + Asdy
: A+ A) (G + A)(As + A
1
Q2 = (8.12)

A A+ AR + A

These representations for ¢; are free of singularities and are therefore generally
valid for the case of simple as well as repeated eigenvalues of C and b.
The rotation tensor results from (8.6) where we can again write

Ul = ol +¢1C + §2C2. (8.13)

The representations for ¢, (p = 0,1,2) can be obtained either again by (7.61)
where g(A;) = Ai_l/ ? = A7 or by applying the Cayley-Hamilton equation (4.95)
leading to

U™ = I (U? - TyU + Iyl)
= Iy [(Ily — golv)I + (1 — ¢1Iy)C — @2y C?], (8.14)
where
Iy=A1+ A+ A3, Iy = LA + Az + A3h;, Iy = 41445, (8.15)

Both procedures yield the same representation (8.13) where

o= AAr + oAz 4+ A3z B (A1 + Ay + A3)?
0 AiAzAs 1 + A2) (A + A3) (A3 + Ap)’
_ (AT + 234+ A3+ Az + A2As + A3Ay) (A + A2 + A3)
T X MiAshs(Ar + A2)(As + A3)(As + Ar) ’
A A A
. 1+ A2+ A3 (8.16)

T A (A 4 A42) (e + As)(hs + A1)

Thus, the rotation tensor (8.6) can be given by

R =F (sl + ¢ C+C%. (8.17)
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where the functions ¢; (i = 0, 1,2) are given by (8.16) in terms of the principal
stretches A; = +/A;, while A; (i = 1,2,3) denote the eigenvalues of the right
Cauchy-Green tensor C (8.2).

Example 8.1. Stretch and rotation tensor in the case of simple shear. In this loading
case the right and left Cauchy-Green tensors take the form (see Exercise 4.1)

1 vy 0
C=Cle;@e/, [C]=|y1+17 0], (8.18)
0 0 1]
_ A ‘ [ 14+y2y 07
b=bie ®el, [b;]: y 10 (8.19)
0 01

with the eigenvalues

2
Y2 £ Ay 4+ p4 Vid+yrty
. - ) CAs=1. (820)

Aijp=1+

For the principal stretches we thus obtain
Va+yrt
Mp= A= % A= VA =1. 8.21)

The stretch tensors result from (8.11) where

o0 = 1+ y2+4
R ey SN,
0 1+ /y2+4
1= —
2+ \yr+4

1
o= — . (8.22)
2Vy*+4+yr+4
This yields the following result (cf. Exercise 7.2)
_ ) y -
Vyi+4 2 +4
U=Ule, ®e/, [Uj.] - y r+2 1 (8.23)
Vyt+4 2 +d
L 0 0 I
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[ P +2 %
VyE+4 Jyi+d
v=vie ®e/, [v;]z 14 2 N (8.24)
VY +4 2 +d
0 0 1

The rotation tensor can be calculated by (8.17) where

1
So = y2+4_ s
2y +4+yr+4

c _ 3V Aty
: 24244

. 1+ y?2+4 (8.25)
2 = . *
22 +44+y2+4

By this means we obtain

2 4
VrP+4 Jyr+4
R=Rje;@e/, [R]|=|__v 2ol (8.26)
VyE+4 Jyi+4
0 0 1

8.3 The Derivative of the Stretch and Rotation Tensor
with Respect to the Deformation Gradient

In continuum mechanics these derivatives are used for the evaluation of the rate of
the stretch and rotation tensor. We begin with a very simple representation in terms
of eigenprojections of the right and left Cauchy-Green tensors (8.2). Applying the
chain rule of differentiation and using (6.142) we first write

Ur=C"c:Cr=C"c: [I®F) +F' ®1]. (8.27)

Further, taking into account the spectral representation of C (8.4); and keeping its
symmetry in mind we obtain by virtue of (7.49) and (7.50)

Cl/z,c = Z (Ai + A]‘)_l(P,‘ ®P;)". (8.28)
iji=1
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Inserting this result into (8.27) delivers by means of (5.33), (5.47), (5.54), and (5.55)

Ugp= Z(x, +A,)7'[(P; ® FP;)' + P,F' @ P;]. (8.29)
i.j=1

The same procedure applied to the left stretch tensor yields by virtue of (6.143)

s

ve= Y (hi+4;)" [pi ®F'p; + (piF®pj)t]. (8.30)

ij=1

Now, applying the product rule of differentiation (6.140) to (8.6) and taking (6.139)
into account we write

Rr=FU H)p=1I@U ' +FU ' y:Up
=IQU '-FU'@U ) : Uy. (8.31)

With the aid of (7.2) and (8.29) this finally leads to

Rr=1® (ix,—lpi)

i=1

—F ) [(L + )47 [(P @ FP))' + PFT @ P;]. (8.32)
i.j=1

Note that the eigenprojections P; and p; (i = 1,2,...,s) are uniquely defined by
the Sylvester formula (4.55) or its alternative form (7.43) in terms of C and b,
respectively. The functions p;, appearing in (7.43) are, in turn, expressed in the
unique form by (7.81), (7.83) and (7.85) in terms of the eigenvalues A; =
A2 (i =1,2,...,5).

In order to avoid the direct reference to the eigenprojections one can obtain the
so-called basis-free solutions for U,p, v,r and R, (see, e.g., [8, 14, 18,38,47,49]).
As a rule, they are given in terms of the stretch and rotation tensors themselves
and require therefore either the explicit polar decomposition of the deformation
gradient or a closed-form representation for U, v and R like (8.11) and (8.17). In
the following we present the basis-free solutions for U,r, v,y and R,y in terms
of the Cauchy-Green tensors C and b (8.2) and the principal stretches A; =
VA; (i =1,2,...,5). To this end, we apply the representation (7.38) for the
derivative of the square root. Thus, we obtain instead of (8.28)

2 2
CI/Z,C = Z ﬂpq(CP &® Cq)ss bl/zvb = Z npq(bp &® bq)sv (8~33)
Pq=0 P-q=0
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where the functions 7,, result from (7.62) by setting again g (A;) = /A;
This leads to the following expressions (cf. [18])

oo = A~ [IJIIE — IHIE Iy + I

— Iy (311 — 2100) + 3Tyl — IyIIL ] .
o1 = Mo = A~ [I{Iy — [T — [IyIlly

+ 21 (IR + L)) — 4R II{ Ty + 20 Iy — 11

o2 = Moo = A~ [=I{IIy + [T — IgTlyIlly — IpIlig ],
m = AT I — 41Ty + 31Ty

+ 4TI — 6IgIyIlly + Tyl + Mgy,
M2 = M1 = A7 =L + 21y — 2151y + Myl |,
np = A7 I + Iy]

where
A =2 (Iylly — ly)? Iy

and the principal invariants Iy, IIy and IIly are given by (8.15).
Finally, substitution of (8.33) into (8.27) yields

2
Ur= Y 1y [(C" ®FCY)' + C’F" & C’].
r.4=0

Similar we can also write
2
VE= Y Ny [b? @ F'b! + (b’F @ b9)'].
Pq=0
Inserting further (8.13) and (8.36) into (8.31) we get

2

RsF = I ® ngcp
p=0

2
—-F Z SrSiMpq [(CP+’ QFCH) + C'FT ® Cq+t] ,
p.q.rt=0

183

= A

’

(8.34)

(8.35)

(8.36)

(8.37)

(8.38)
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where ¢, and 1,4 (p,q = 0, 1,2) are given by (8.16) and (8.34), respectively. The
third and fourth powers of C in (8.38) can be expressed by means of the Cayley-
Hamilton equation (4.95):

C3 —1cC? 4+ IcC — Il = 0. (8.39)
Composing both sides with C we can also write
C* —1cC? 4 IIcC? — MIcC = 0. (8.40)
Thus,
C? =1cC? - 1IcC + L
C* = (I — 1) C? + (¢ — Iclle) € + IcHIcL (8.41)
Considering these expressions in (8.38) and taking into account that (see, e.g., [44])

Ic = If —2[ly, Tlc = I} —2Iyllly, Illc = I (8.42)

we finally obtain

2 2
Rr=18) c,C"+F Y 1, [(C"®FC)' + C’'F' @ C?]. (8.43)
p=0 P-q=0

where
oo = T~ [T + 2RIIHIIE — 3IHII Iy — 71Ty,
+ I + ST, + GIGII — 311 Iy
— 6IG TG I, + 3Ty — ML, + 11T ]
o1 = 1o = T LTI + GGy — IYIL — 61yl + [T Ty
+ SIGII, + 21311 + 4L TR, — 613 IIE Iy
— 6IY Iy, + 6TyII I + TyIIly, — 21T ] |
o2 = oo = =1 [IJHIG + GGy — I — 41 I
+ Iy + 4IGIIL,) — 3T, + Iyl ]
pi =TIy + I — 715yl — 411
+ SIIIE + 161G My + 41310 — 1613 Ty
— 1213 I Iy + 3IGIL + 120G I — 3IIIIL ]



8.4 Time Rate of Generalized Strains 185

piz = por = =T Iy + QIR — STy — 2 1L,
+ AL + 6IG I Ty — 6IyITyIIL + 101 ]
p =Ty [y + [ — 3yIlyIly + 31015 (8.44)

and
T = =2 (Iplly — ly)* 1115, (8.45)

while the principal invariants Iy, Iy and Iy are given by (8.15).
The same result for R,f also follows from

Rp=FU ) p=IQU ' +FU ' c:Cp (8.46)
by applying for U™!,¢ (7.38) and (7.62) where we set g(A;) = (A;)~"/? = AL
Indeed, this yields

2
C'Pe=U"c= > 1y (Cr & Co, (8.47)
p.q=0

where (4 (p,q = 0, 1,2) are given by (8.44).

8.4 Time Rate of Generalized Strains

Applying the chain rule of differentiation we first write
E=Ec:C, (8.48)

where the superposed dot denotes the so-called material time derivative. The
derivative E,¢ can be expressed in a simple form in terms of the eigenprojections of
E and C. To this end, we apply (7.49) and (7.50) taking (7.18) and (8.5) into account
which yields

Ec= ) fij(P;®P)), (8.49)
ij=1
where
f'0) o
2A; ’
S PO R (830
Py

A basis-free representation for E,c can be obtained either from (8.49) by expressing
the eigenprojections by (7.43) with (7.81), (7.83) and (7.85) or directly by using the
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closed-form solution (7.38) with (7.62), (7.78) and (7.80). Both procedures lead to
the same result as follows (cf. [22,48]).

2
Ec= ) 1p(C"®C)". (8.51)
p.q=0

Distinct eigenvalues: Ay # Ay # Az # Ay,

oo = ikékif/(ki) B 23: A%Aili [f) = f(A)]
v i=1 21 A? ij=1 ()G—,\z.)?) Ag
i#] b

’

(2 22) 202700
To1 =7710=—Z A2

L5 (%3 +23) [f(:ti)_f(xj)],
i,j=1
i#]

(2-22) A

i MALS) i W22 [f ) = f1))]
— ZAiA? A~ 2 92 3 ’
i=1 111#—]1 (Az Aj) Ak

s (B4 Ai)z o 2 (R A WA [F00) - F)]

N :; ZAIAZZ _iél (A?—A§)3 Ax s
i#j

No2 = N0 =

i=1

I (R+22) 100 2L (24 22) [F0) = £, )
N2 = N21 —_Z 2liA,-2 Z=:1 (Az )LZ) A
z#/ ¢

3
') SA)—fAR) ., . .
" ; 20 A Z 02— A§)3Ajk L IEIERAEL (8.52)
t#/
with
=(MB=22)(F-20). £ AkAI=123 @53

Double coalescence of eigenvalues: A; # A; = A = A,

o220 = SO) RSO0 311G

Moo
(A2 —22)° 22,1 (A2 =22)°
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J) = fQ) A+ A Q)
(2= 22)3 2AAQZ =222
_2f(/1f) - f) n Af'A) + A f(A)
3 2
(A2 —22) 20,4 (A2 = 22)

Mot = Nio = (/\,2 + 12)

n =
No2 = N0 = N2 = a1 = N2 = 0. (8.54)

Triple coalescence of eigenvalues: Ay = A, = Az = A,

/
A
Moo = %, Mot = Mo = N1 = Moz = Moo = N2 = Na1 = N2 = 0. (8.55)
Insertion of (8.49) or alternatively (8.51) into (8.48) finally yields by (5.17); and

(5.48);

s 2
E= )" f;P.CP; = > n,Crcc. (8.56)
i,j=1 p.q=0
Example 8.2. Material time derivative of the Biot strain tensor EV = U — L.

Insertion of /(1) = A — 1 into (8.50) and (8.56), yields

B = Z )wlr»

ij=1 J

P;CP;. (8.57)

Keeping (8.33) in mind and applying the chain rule of differentiation we can also
write

2
ED =U=C"2c:C= Z nquPCCq, (8.58)
p.q=0

where the coefficients 7,, (p,qg = 0,1,2) are given by (8.34) in terms of the
principal invariants of U (8.15).

8.5 Stress Conjugate to a Generalized Strain

Let E be an arbitrary Lagrangian strain (7.6);. Assume existence of the so-called

strain energy function v (E) differentiable with respect to E. The symmetric tensor
T=1v(E).E (8.59)

is referred to as stress conjugate to E. With the aid of the chain rule it can be
represented by

1
T=v(E),c:Cr= ES :Ck., (8.60)
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where S = 2y (E),c denotes the second Piola-Kirchhoff stress tensor. The latter
one is defined in terms of the Cauchy stress o by (see, e.g., [46])

S = det(F)F 'oF T, (8.61)

Using (8.59) and (7.7) one can also write
. . 1. .
1//=T:E=S:§C=S:E(2). (8.62)

The fourth-order tensor C,g appearing in (8.60) can be expressed in terms of the
right Cauchy-Green tensor C by means of the relation

I = E,E = E,CI C,E s (8.63)

where the derivative E,¢ is given by (8.49) and (8.50). The basis tensors of the latter
representation are

P; @P;)* ifi = j,

Pij = S e s
(Pi ®P; +P; ®Pi) ifi # J.

(8.64)

In view of (4.44), (5.33) and (5.55) they are pairwise orthogonal (see Exercise 8.2)
such that (cf. [48])

P ifi=kandj =1Ilori =/andj =k,

g)ij P = .
O  otherwise.

(8.65)

By means of (4.46) and (5.86) we can also write

S

Z P = (ZP,-) ® ZP,» — AR =9 (8.66)
i,j=1 i=1 j=l1
j=i

Using these properties we thus obtain
Ce= ) f;'Pi@P), (8.67)
ij=1

where fi; (i,j = 1,2,...,s) are given by (8.50). Substituting this result into (8.60)
and taking (5.22);, (5.46) and (5.47) into account yields [19]

(IR
T = Eizl fi7'P;SP;. (8.68)
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In order to avoid any reference to eigenprojections we can again express them by
(7.43) with (7.81), (7.83) and (7.85) or alternatively use the closed-form solution
(7.38) with (7.62), (7.78) and (7.80). Both procedures lead to the following result
(cf. [48]).
2
T= ) 7,C’SC. (8.69)
p.q=0

Distinct eigenvalues: Ay # Ay # Az # Ay,

3 3
=" Mg 5 222228
e ,
2 A i 2 (32 = 22) 1 Ou) = FQ )AL
i#]

23: (22 +23) 22420
Mot = Mo = — ; 3
LT A

(22 +22) a2a2

+Z<

52 (R =22) G0 - fOIA
i#j
Yo VR 2222
M2 =M = ) | s —
SR Sy RERTY ,,le( )10 — fOIAL
i#j
g (44 4) & (AZ +AZ) PV (22 +22) (22 +23)
ni = - >
LS TN (-8 oo - o
iF#]
s (a2 224 A2
M2 =M1 = +
A S ,,le( B G~ oA

i#j
3 3 1
ZZ: (k )A2 -> ( (8.70)

22 (R=2) G0 - fOIA
i#j

where i # j # k # i and A; are given by (8.53).

Double coalescence of eigenvalues: A; # A; = A = A,

o A202 L ki [)P xg}
TS TR U - S0 2= LG T )
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o 22422 Y [ Ao A }
PTG R G - ] @2y Lran T Tm )
- 1 L [ Moo A }
TR G — 0] gz—we) Lo T Tm ]
Moz = N20 = Mz = 721 = 22 = 0. (8.71)

Triple coalescence of eigenvalues: Ay = A, = A3 = A,

Moo = oMol =Moo =Nt =No2 =170 ="nN12="121 =1n2=0. (872)
S

8.6 Finite Plasticity Based on the Additive Decomposition
of Generalized Strains

Keeping in mind the above results regarding generalized strains we are concerned in
this section with a thermodynamically based plasticity theory. The basic kinematic
assumption of this theory is the additive decomposition of generalized strains (7.6)
into an elastic part E, and a plastic part E,, as

E=E,+E,. (8.73)
The derivation of evolution equations for the plastic strain is based on the second law
of thermodynamics and the principle of maximum plastic dissipation. The second
law of thermodynamics can be written in the Clausius-Planck form as (see, e.g. [46])

D=T:E—y >0, (8.74)

where D denotes the dissipation and T is again the stress tensor work conjugate to
E. Inserting (8.73) into (8.74) we further write

D= idd ‘E,+T:E,>0 (8.75)
= oE, )  Ee 'E, >0, .

where the strain energy is assumed to be a function of the elastic strain as ¢ =
W(Ee) The first term in the expression of the dissipation (8.75) depends solely
on the elastic strain rate Ee, while the second one on the plastic strain rate E
Since the elastic and plastic strain rates are independent of each other the d1551pat10n
inequality (8.75) requires that

Iy

T = .
JE,

(8.76)
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This leads to the so-called reduced dissipation inequality
D=T:E,>0. (8.77)

Among all admissible processes the real one maximizes the dissipation (8.77).
This statement is based on the postulate of maximum plastic dissipation (see,
e.g., [29]). According to the converse Kuhn-Tucker theorem (see, e.g., [6]) the
sufficient conditions of this maximum are written as

P

T >0, (d=0, ®<0, (8.78)

E,=¢

where @ represents a convex yield function and § denotes a consistency parameter.
In the following, we will deal with an ideal-plastic isotropic material described by a
von Mises-type yield criterion. Written in terms of the stress tensor T the von Mises
yield function takes the form [32]

2
@ = ||devT| — \/;Gy, (8.79)

where oy denotes the normal yield stress. With the aid of (6.51) and (6.147) the
evolution equation (8.78); can thus be given by
E, = {|[devT].r

. - devT . devT
= C||devT||,gey : devVT,r = { ——— : Pgoy = {——nr—. 8.80
¢||devT||,gevr : devT,r §||devT|| de §||deVT|| (8.30)

Taking the quadratic norm on both the right and left hand side of this identity
delivers the consistency parameter as { = ||E,||. In view of the yield condition

@ = 0 we thus obtain .
2 E,
devT = {/ —oy ——, (8.81)
3 E,|l

which immediately requires that (see Exercise 1.49)

tE, = 0. (8.82)

In the following, we assume small elastic but large plastic strains and specify the
above plasticity model for finite simple shear. In this case all three principal stretches
(8.21) are distinct so that we can write by virtue of (7.6)

3 3
E,=E=) fO0AP + ) f)P. (8.83)

i=1 i=1
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By means of the identities trP; = 1 and trl"i = 0 following from (4.62) and (4.63)
where r; = 1 (i = 1,2, 3) the condition (8.82) requires that

3
>0k =o. (8.84)

i=1
In view of (8.21) it leads to the equation
Q)= /A Ha?2=0, VA>0, (8.85)

where we set A; = A and consequently A, = A~'. Solutions of this equations can
be given by [22]
1
—(@A*—=A7%) fora # 0,
fa(A) =1 2a (8.86)
InA fora = 0.

By means of (7.6); or (7.18); the functions f, (8.86) yield a set of new generalized
strain measures

1 1
—(U*—U%) = —(CY*—-C%?) fora #0,
(a) 2a 2a
E'Y = . (8.87)
anzzlnC fora =0,

among which only the logarithmic one (¢ = 0) belongs to Seth’s family (7.7).
Henceforth, we will deal only with the generalized strains (8.87) as able to provide
the traceless deformation rate (8.82). For these strains Eq. (8.81) takes the form

devT@ = zcr _E(a)
= Y T
37 RG]

(8.88)
where T denotes the stress tensor work conjugate to E{). T{) itself has no

physical meaning and should be transformed to the Cauchy stresses. With the aid of
(8.60), (8.61) and (8.63) we can write

1 1
= —FSF' = —F(T“ . P,)FT, 8.89
77 deF e ¢ ) (8.89)

where
P, = 2E (8.90)

can be expressed either by (8.49) and (8.50) or by (8.51)—(8.55). It is seen that this
fourth-order tensor is super-symmetric (see Exercise 5.11), so that T : P, = P, :
T4, Thus, by virtue of (1.162) and (1.163) representation (8.89) can be rewritten as
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1
= —F(P, : T“HET
* = Ger Ta T

1 1
= —F|P, : devT®@ 4+ —trT9 (P, - T) | FT. 8.91
detF [ VI 4 JuTH (P2 1) 891

With the aid of the relation

d
P, 1=2 d—tE(“)(C + 11)

t=0

zzgiﬁ(m)pi

i=1

3
=D fODATP (8.92)

=0 i=l1

following from (6.128) and taking (8.86) into account one obtains
1 1
F(P, : DF' = JF (C/271 4 CT) FY = S (b2 + b772).

Inserting this result into (8.91) yields

1
_ . (a) T S
o= —=F (fPu - devT )F 16 (8.93)
with the abbreviation
trTie)
5 = ——(bY? + b Y/?). 8.94
o= detF( + ) (8.94)

Using the spectral decomposition of b by (8.4) and taking into account that in the
case of simple shear detF = 1 we can further write

.1 _
6 = gtrT<a> [(A* + 179 (p1 + p2) + 2ps]., (8.95)

where A is given by (8.21). Thus, in the 1-2 shear plane the stress tensor 6 has the
double eigenvalue étrTW (A*4+A7%) and causes equibiaxial tension or compression.
Hence, in this plane the component ¢ (8.94) is shear free and does not influence the
shear stress response. Inserting (8.88) into (8.93) and taking (8.18) and (8.48) into
account we finally obtain

2 P, P, A
= /ZoyF| 21 "2 " 1FT 46, 8.96
d \[3‘” [ 1P, Al ] e (890
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2 I T T T T T T T
1.8 ’." expected (multiplicative plasticity) —
i ---- additive logarithmic plasticity (a = 0)

1.6 — /' ------ additive generalized plasticity, a = 0.5
E / -—- additive generalized plasticity, a = 0.8
Sb 14 S additive generalized plasticity, a = 1 ]
P S e additive generalized plasticity, a = 2
g 121 / -
s /
= .
g
B 1
=
w
T 0.8
N
=
E 06
S
Z.
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Fig. 8.1 Simple shear of an ideal-plastic material: shear stress responses based on the additive
decomposition of generalized strains

where
1. 0 1/20
A=5C= 1/2 Y 0 ei®ej. (897)
0 00
12

Of particular interest is the shear stress o'~ as a function of the amount of shear y.
Inserting (8.51), (8.52) and (8.90) into (8.96) we obtain after some algebraic
manipulations

o 2+ P22 + 42 ()

, 8.98
Ty 4 + )/2 ( )
where
)
r= g n % (8.99)

and ty = oy/+/3 denotes the shear yield stress. Equation (8.98) is illustrated
graphically in Fig. 8.1 for several values of the parameter a. Since the presented
plasticity model considers neither softening nor hardening and is restricted to small
elastic strains a constant shear stress response even at large plastic deformations
is expected. It is also predicted by a plasticity model based on the multiplicative
decomposition of the deformation gradient (see, e.g., [22] for more details). The
plasticity model based on the additive decomposition of generalized strains exhibits,
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however, a non-constant shear stress for all examined values of a. This restricts the
applicability of this model to moderate plastic shears. Indeed, in the vicinity of the
point y = 0 the power series expansion of (8.98) takes the form

12

1 1, 3
T a4 = = 22— 1)yt + 009). (8.100)
T 4 16" 4

Thus, in the case of simple shear the amount of shear is limited for the logarithmic
strain (@ = 0) by y* <« 1 and for other generalized strain measures by y? < 1.

Exercises

8.1. The deformation gradient is given by F = F' i€ ® e/, where

120
[F,]=1]-220
001

Evaluate the stretch tensors U and v and the rotation tensor R using (8.11), (8.12)
and (8.16), (8.17).

8.2. Prove the orthogonality (8.65) of the basis tensors (8.64) using (4.44), (5.33)
and (5.55).

8.3. Express the time derivative of the logarithmic strain E by means of the
relations (8.48)—(8.50).



Chapter 9
Solutions

9.1 Exercises of Chap.1

11

(a) (A.4)and (A.3):
0=0+(—0) = —0.

() (A.1)~(A.4)and (B.3):

a0 =0+ a0 = ax + (—ax) + a0
=a(0+x)+ (—ax) =ax + (—ax) = 0.

() (A.2)-(A.4)and (B.4):
Ox =0x +0=0x +0x + (—0x) =0x + (—0x) =0, VxeV.
(d) (A2)~(A.4), (B.2), (B.4) and (c):

Dx=(-Dx+0=(—Dx +x + (—x)
=(C-l4+D)x+(—x)=0x+(—x)=0+(—x)=—x, VxeV.

(e) If, on the contrary, & # 0 and x # 0, then according to (b), (B.1) and (B.2):
0=0a'0=0a"(ax) = x.

1.2 Let, on the contrary, x; = 0 for some k. Then, Z?=1 o;x; =0, where o, = 1,
o =0,i=1,....k—1,k+1,...,n.

1.3 If, on the contrary, for some k < n: Zﬁ;l a;x; = 0, where not all o;, (i =
1,2,...,k) are zero, then we can also write: Z?:l o;jx; = 0, where o; = 0, for
i=k+1,...,n.

M. Itskov, Tensor Algebra and Tensor Analysis for Engineers, Mathematical Engineering, 197
DOI 10.1007/978-3-642-30879-6_9, © Springer-Verlag Berlin Heidelberg 2013
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14
(@) §al =8a' + 8ha* + 8’ = d',
(b) §ijx'x/ = 8pxtxt + 8pxlx? + ..+ 83x3x3 = xlxl + x2x% + 3353,
(c) 8l =68} +82+ 68 =3,
ofy . Afs af; af;
L dxd = 2 dy! It g2 It g3
(d) T dx’) = 8x1dx + 8x2dx + 8x3dx .
1.5 (A.4),(C.2), (C.3) and Exercises 1.1(d):

0-x=xk+(x)]-x=Kk+(-Dx]-x=x-x—x-x=0.

1.6 Let on the contrary Z;":l a;g; = 0,wherenotallo; (i = 1,2,...,m) are zero.
Multiplying scalarly by g ; we obtain: 0 = g ; - (Z;":l a;gi). Since g; - g; = 0 for
i #j,wecanwrite:ojg;-8; =0(j =1,2,...,m). The fact that the vectors g ;
are non-zero leads in view of (C.4) to the conclusion thata; =0(j = 1,2,...,m)
which contradicts the earlier assumption.

1.7 Equation (1.6), (C.1) and (C.2):

lx+yI*=(x+y)-(x+y)
=x-x+x-y+y-x+y-y=xP+2x-y+|yl>

1.8 Since G = {g1,8>,..., 8} is a basis we can writt @ = a’g;. Then,a -a =
a'(g;-a). Thus,ifa-g;, = 0@ = 1,2,...,n), thena -a = 0 and according to
(C.4) a = 0 (sufficiency). Conversely, if a = 0, then (see Exercise 1.5) a - g; =
0@ =1,2,...,n) (necessity).

1.9 Necessity. (C.2):a-x =b-x = a-x—b-x =(a—b)-x =0, Vx € E".
Letx = a — b, then (a — b) - (a — b) = 0 and according to (C.4) a — b = 0. This
implies that a = b. The sufficiency is evident.

1.10

(a) Orthonormal vectors e, e, and e3 can be calculated by means of the Gram-
Schmidt procedure (1.10)—(1.12) as follows

V2/2
Rt R
81 0
1/2 o V2/6
e,=gr—(gr-e1)e1 =14 —1/2 ¢, e2=”e/2”= _ﬁ/6 i
-2 2 _2\/5/3
10/9 o 2/3
e\ =g3—(g3-e)er—(g3-e)e;=14-10/9¢,e5=—=1{-2/3

5/9 ”83” 1/3
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(b) According to (1.16), the matrix [,3,/ ] is composed from the components of the
vectors g; (i = 1,2, 3) as follows:

' 11 0
B/1=|21-2
42 1
In view of (1.18)
1 2
-1 = =
5 5
. P 1 2
[O‘,!]:[,Bij]l: 2—§—§
2 1
0-= =
5 5
By (1.19) the columns of this matrix represent components of the dual vectors
so that
-1 1/5 2/5
gl=12¢. g=1-1/5;, &£=1-2/5
0 -2/5 1/5

(c) First, we calculate the matrices [g;;] and [gij ] by (1.25), and (1.24)

3 6

>75 75

236 - 36 2
lgij]=lgi-g;1=[398 |, [&"l=lg;]7' =| -2 == == |,

6821 5 25 25

6 2 9

5 25 25

With the aid of (1.21) we thus obtain

gl =g'lgi +g%g+gBgs=1 2 },

1/5
g?=g"g1+g%g+%gs=1{-1/5¢.
—2/5

2/5
g2 =¢"g1+%e+¢Pgs=1-2/5
1/5
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(d) By virtue of (1.35) we write

110
g= ’j’=21—2 - _s.
42 1

Applying (1.33) we further obtain with the aid of (1.47)

21 -2
g1=g_1gz><g3=—§ 4 2 1 |=—a;+2ay,
a) a as

42 1|
g=g"gxgi=—z|110|=c@-a-2a),
ap ar as

110 1
gl=g'g1xg =z 21 -2|= §(2a1—2a2+a3),
aa as

where a; denote the orthonormal basis the components of the original vectors
g; (i =1,2,3) are related to.

1.11 Let on the contrary o; g’ = 0, where not all o; are zero. Multiplying scalarly
by g ; we obtain by virtue of (1.15):0 = g - (0 g') = &i8} = o; (j = 1,2,3).

1.12 Similarly to (1.35) we write using also (1.18), (1.19) and (1.36)

¢'8%] = [ale’ale/aje’ | = olodai [eele"]

~

=ojajaje’t = o} =[BT =g

-1
Equation (1.42) immediately follows from (1.24) and (1.34).

1.13 The components of the vector g; x g ; with respect to the basis ghk=1,2.3)
result from (1.28), and (1.39) as

(8gixgj)-gr=18igjgkl=eyrg i,j.k=123,
which immediately implies (1.40). In the same manner one also proves (1.44) using
(1.43).
1.14

(a) Sijeijk =8"err +8%eik + ...+ 8Bez =0.
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(b) Writing out the term e’*™e ., we first obtain
. 4 4 -
elkmejkm — ezllejll 4 611261‘12 4L+ ezS €3

12 i21 i13 i31 132 i23
=é' €j12+€l 6’]‘21—‘;-61 €j13+€l €j31+€l €j32—‘r€l €;23.

Fori # j each term in this sum is equal to zero. Let further i = j = 1. Then
we obtain eilzej‘lz + €i21€j21 + eil3€j13 + €i3l€j31 + €i326j32 + ei23ej23 =
e'2ei3 + e'Pejy; = (=1)(=1) + 1-1 = 2. The same result also holds for the
casesi = j = 2andi = j = 3. Thus, we can write ¢’ ¢ 1, = 25,.

(c) By means of the previous result (b) we can write: e/*e;; = 28] = 2(8! + 82 +
83) = 6. This can also be shown directly by

ijk

123 132 213 231 312 321
e’teijxk =e ey te e te ezt e e e e e e

=1 14D+ D) (=D+1-14+1-14+(=1)-(=1) =6.

(d) e"Mery = eer + €V%exin + €3eyy3. It is seen that in the case i = j or
k = [ this sum as well as the right hand side &, 8] — §/6; are both zero. Let
further i # j. Then, only one term in the above sum is non-zero if k = i and
I = jorvice versal = i and k = j. In the first case the left hand side is
1 and in the last case —1. The same holds also for the right side &8/ — §;5] .

Indeed, we obtain fork =i # [ = j:S,iSf —8;81{ =1-1-0=1and for
I=i#k=j:86 —56 =0-1-1=—1

1.15 Using the representationsa = a'g;, b = b’/ g; andc = c1g" we can write by
virtue of (1.40) and (1.44)

(@xb)xc=[ag)x @b gl xe=(a'bejigg") x (c1g')
= aibjc/eijkekl’"gm = aibjc/e;jke”"kgm.
With the aid of the identity e/ ™ ey, = 8};8{ -6 8,{ (Exercise 1.14) we finally obtain
(@axb)xe=adble (555’; - 3;”5}) gn=a'bl 8187 gn —a'bl 188 g,
= aibjc'igj —aibjcjg,- =(a-c)b—(b-c)a.

Relation (1.169) immediately follows from (1.168) taking into account the definition
of the operator (o) (1.66) and the tensor product (1.80).

1.16 Equation (1.64); results immediately from (1.32) and (C.3). Equation (1.64),
can further be proved by using the representations w = w;g', x = x;g’ and y =
y: g’ and by means of (1.45) as follows:
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wx (x+y)=(wig)x(x; +y;) g’ =wi(x;+y;)e’ e gx

= wixje’/kg_lgk + wiyjeijkg_lgk =wXXxX+wxy.
1.17 (A.2)~(A.4) and (1.49):
0=Ax + (—Ax) =A(x +0) + (—Ax) = Ax + A0 + (—Ax) = A0.
1.18 Equation (1.50), Exercises 1.1(c) and 1.17: (0A)x = A(0x) = A0 = 0,

Vx € E".

1.19 Equation (1.62) and Exercise 1.18: A + (-A) = A+ (-DA = (1-1)A =
0A = 0.

1.20 We show that this is not possible, for example, for the identity tensor. Let, on
the contrary, I = a ® b. Clearly, a # 0, since otherwise (a ® b)x = 0Vx € E".
Let further x be a vector linearly independent of a. Such a vector can be obtained
for example by completing a to a basis of E”. Then, mapping of x by I leads to the
contradiction: x = (b - x) a.

1.21 Indeed, a scalar product of the right-hand side of (1.85) with an arbitrary
vector x yields [(y -a)b] - x = (y -a) (b - x). The same result follows also from
y-[(@a®b)x] = (y-a)(b-x), Vx,y € E" for the left-hand side. This implies
that the identity (1.85) is true (see Exercise 1.9).

1.22 For (1.88); we have for example
g'Ag =g (Ag®g) g’ =A" (¢ gi) (- g7) = AM5L8] = AV

1.23 For an arbitrary vector x = x'g; € E? we can write using (1.28), (1.40) and
(1.80)

Wx =wxx=(wg)x(x'gj)
= eijkgwixjgk = eijkgwi (x 'gj)gk = eijkgwi (gk &® gj)x-
Comparing the left and right hand side of this equality we obtain
W=¢pgweg®gl, 9.1

so that the components of W = ijgk ® g/ can be given by Wy; = e;jxgw' orin
the matrix form as

' 0 —w® w?
(W] =g lepnw'] =g | w' 0 —w!
2 1

W w 0
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This yields also an alternative representation for Wx as follows

Wx =g [(Wx® —w'x?) g' + (w'x' —w!'x?) g7 + (w'x? —wx') g°].

It is seen that the tensor W is skew-symmetric because W = —W.

1.24 According to (1.73) we can write
R = cosal +sinwés + (1 —cosa) (e3 ® e3).

Thus, an arbitrary vectora = a’e; in E? is rotated to Ra = cosa (a’e;) +sinwe; x
(a’e;) + (1 — cosa) a’es. By virtue of (1.46) we can further write

1

Ra = cosa (aiei) + sin o (a e) —azel) + (1 — cosa) a‘es

= (a'cosa —a*sina) ey + (a' sina + a’cosa) e, + d’es.

Thus, the rotation tensor can be given by R = Rie; @ e ;> where
cosa —sina 0
[R"] = | sina cosa O

0 0 1

1.25 With the aid of (1.88) and (1.97) we obtain

0-107[23 6 —3-9-8
(a5 ] = [A%gu] = [A*][es] =0 0 0 |39 z[ 00 0],
100][6821 23 6
0-1 2 0
00 0
68211 0

' 236
[A,»’.] = [guAY] = [gu][A¥] = |39 8 }
(A7

[Aij] [gzkA ] [gik] [A ]

236 -3 -9-8 6-2 0 236 6 020
=1398 00 0= 8=3 0 398 =] 7-324
6821 2 3 6 21-6 0 6821 24 978

1.26 By means of (1.54), (1.89), (1.103) and Exercise 1.17 we can write
(AO)x =A(0x) =A0=0, (0A)x =0(Ax) =0,

(ADx =A(Ix) = Ax, (IA)x =I(Ax)=
A(BC)x = A[B(Cx)] = (AB) (Cx) = [(AB)C]x, Vx €E".
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1.27 To check the commutativeness of the tensors A and B we compute the
components of the tensor AB — BA:

[(AB-BA), | = [A} B — Bj AL | = [A][BY | - [B)] A% ]

02077000 00077020 000
=|o000]||oo00|=-|o000|]000|=]|000
000] oot 001|000 000
Similar we also obtain
| 0-20 | 0-10
[(AC—CA)fj]z 0 00|, [(AD—DA)fj]= 0 00|,
0 00 0 00
| 00-3 | 000
[(BC—CB)fj]z 00 0|, [(BD—DB)fj]Z 000 |,
01 0 000
| 0 —127
[(CD—DC)fj]z 0O 00
0-19/2 0

Thus, A commutes with B while B also commutes with D.

1.28 Taking into account commutativeness of A and B we obtain for example for
k=2

(A+B)’=(A+B)(A+B)=A”+AB+ BA + B> = A” + 2AB + B’
Generalizing this result for k = 2,3, ... we obtain using the Newton formula
(A + B)f = Xk: (k)Ak—fB" where (k> K (9.2)
= \! ' i iV(k—i)!

1.29 Using the result of the previous Exercise we first write out the left hand side
of (1.170) by

[e%e) k
exp(A +B) = Z @ + B) => % > (?)A’HB"
k=0 i=0

0 1 k - Ak—iBi
gk_z '(k Ak ZZ ik —
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z“ 7“

-7
summatlon
area

i") [} ‘summation 3

) Z} ‘ ‘ area 5 00

1 1

0|} L _
0 1 2 3 - ook 01 2 3 © ko

Fig. 9.1 Geometric illustration of the summation area and the summation order

Changing the summation order as shown in Fig. 9.1 we further obtain

© o0 Ak i
exp(A +B) = ZZ”(]{_I)'
i=0 k=i

By means of the abbreviation ] = k — i it yields

A'B!
exp(A—l—B)—ZZ TR
i=01=0

The same expression can alternatively be obtained by applying formally the Cauchy

product of infinite series (see e.g. [? ]). For the right hand side of (1.170) we finally
get the same result as above:

oo AI O nyj o o0 Al i
cowenm - (S3) (S ) -ZX 5

=0

o0 Ok
exp(0)=2F=I+0+0+ =1
k=0~
Gl (RN | 21
exp(I)zzﬁz F:Izk——exp(l)l—el
k=0~ k=0 " k=0

1.31 Since the tensors A and —A commute we can write

exp (A)exp(—A) = exp(—A)exp(A) = exp[A + (—A)] = exp(0) = L
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Accordingly
exp (—A) = exp N 9.3)

1.32 This identity can be proved by mathematical induction. Indeed, according to
the results of Exercise 1.30 it holds for k = 0. Then, assuming that it is valid for
some positive integer kK we can write applying (1.170) (Exercise 1.29)

exp [(k + 1) A] = exp (kA + A) = exp (kA) exp (A)
[exp ()] exp (A) = [exp (A))" .

For negative integer k we proceed in a similar way using (9.3):

exp[(k —1)A] = exp (kA — A) = exp (kA) exp (—A)
= [exp (A)]" exp (A) ™" = [exp (A)]* .

1.33 Equations (1.114) and (9.2):
A+B A+B
exp(A—i—B)_Z( ) Z( )"
o AF + BF
=1+ ZT =exp(A) +exp(B) — L
1.34 Equations (1.114) and (1.135):

exp (QAQT) = 3

21
(QAQ")" = )~ 5 Q4Q"QAQ" ... QAQ"
k=0

k times

I
¢
s
Jo)
”
2,
I
)
/
WK
?\T‘l»—a

) Q" = Qexp(A)Q".
1.35 We begin with the power of the tensor D.

D> =DD = (ijgf ®gf)(D;gk®g)

=D Dislgi ®g' =D Djgi ®g' —(D2) gi®g

where [(Dz)i ] = [Df ] [Df ] Generalizing this results for an arbitrary integer
. J J J
exponent yields
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[ ] =[P, ][] = 03 0
———— Lo 0"

m times

We observe that the composition of tensors represented by mixed components
related to the same mixed basis can be expressed in terms of the product of the
component matrices. With this result in hand we thus obtain

— o~ D" — I o J
expD) =) — =exp(D); g ® g,
m=0 :

where
o0 om
Y= 0 0
' m= o e200
[exo@); [ =] 0 0 |=|oeo
m=0 o O 0 €
0 o > =
m=0
For the powers of the tensor E we further obtain
E‘=0k=23...
Hence,
o0 Em
exp(B)=) — =I+E+0+0+...=I+E,
m=0m!
so that
' 110
[exp(E)fj] =010
001

To express the exponential of the tensor F we first decompose it by F = X + Y,
where

| 000 | 020
[x;]=]000]|. [¥;]=]000
001 000

X and Y are commutative since XY = YX = 0. Hence,

exp(F) =exp(X+Y) =exp(X)exp(Y).
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Noticing that X has the form of D and Y that of E we can write

‘ 100 ‘ 120
[exp(X)fj]= 0101, [exp(Y)fj]= 010
00e 001
Finally, we obtain
' ‘ ‘ 100 120 120
[exo ®), | = [exp )}, [ [exo V)i | = | 010 [ {010 | =010
00e 001 00e

1.36 Equation (1.120): (ABCD)" = (CD)" (AB)" = DTCTBTA™.
1.37 Using the result of the previous Exercise we can write

(AA...A)T =ATAT AT = (AT)".
——— ———

k times k times

1.38 According to (1.124) and (1.125) BV = A/', B;; = Aj;;, B/ = A/ and
ij = Aj’, so that (see Exercise 1.25)

[Bij]z[Aij]T= —(1)8(1) , [Bij]:[Aij]Tz (6)—; 23 ,
000 20 24 78

| . [-302 | [ 682
[B/]=[a)] =] -903]|. [B,]=[a] =|-2-3 -6
~806 00 0

1.39 Equations (1.120), (1.126) and (1.131):
1=1"= (AA7") = (A7) AT

1.40 (A* )_1 is the tensor satisfying the identity (A )_1 A¥ = 1. On the other hand,
(A1) AF =A'A"" . A"'AA.. A =L Thus, (A" = (AK)7".
N—— e N——
k times k times

1.41 An arbitrary tensor A € Lin" can be represented with respect to a basis for
example by A = A g; ® g ;. Thus, by virtue of (1.141) we obtain:

c®d:A=c®d: (A2;0g;)=AY(c-g:)(g;-d)
=c(AVg; ®g;)d =cAd = dA"c.
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1.42 The properties (D.1) and (D.3) directly”follow from (1.141) and (1.143).
Further, for three arbitrary tensors A, B = Bg; ® g; and C = C’g; ® g;
we have with the aid of (1.142)

A:B+C)=A:[B"+C")(g;®g,)] = (BY +C")(g:Ag;)
=B (g:Ag;) +C’ (giAg;)
=A: (Bijgi®gj)+A: (Cijgi®gj)=A:B+A:C,

which implies (D.2).
1.43 By virtue of (1.108), (1.89) and (1.142) we obtain

[(@a®b)(c®d)] :I=[(b-¢c)(a®d)] :1
=(0-c)@ald)=(a-d)(b-c).

1.44 By virtue of (1.15), (1.25) and (1.149) we can write
trA = tr(Aijgi ® gj) =AY (g,- -gj) = AYg;
=t (Ayg' ®g’)=Ay (g -g') = Ayg”
= tr(Afjgi ®gj) = Afj (gi-g’)= Aij,j = Al
1.45 Using the results of Exercise 1.10 (c¢) and by means of (1.159) we obtain
w=g (W32g1 L wiig? +W21g3)
=-5 [— (—a; + 2a5) — 3% (a; —a; —2a3) + é 2ay —2a, + a3):|
= —4a, + %a, — Tas.

1.46 Equation (1.147):M: W =M': Wl =M: (-W)=—-(M: W) = 0.

1.47 WF is skew-symmetric for odd k. Indeed, (Wk)T = (WT)k = (-W)f =
(—l)k WK = —Wk. Thus, using the result of the previous Exercise we can write:
rWr = Wk T=0.

1.48 By means of the definition (1.153) we obtain

sym (skewA) = [skewA + (skeWA)T]

N = N =

B (A—AT) + % (A - AT)T}
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171 1 1 1
=_—|-A—-AT+_AT—_A[=0.
2027 2 2 2

The same procedure leads to the identity skew (symA) = 0.
1.49 On use of (1.163) we can write

1 1 1
sph (devA) = sph |:A — —tr(A) Ii| = —tr [A — —tr(A) Ii| I1=0,
n n n
where we take into account that 'l = n. In the same way, one proves that

dev (sphA) = 0.

9.2 Exercises of Chap. 2

2.1 The tangent vectors take the form:

ar
g1 = 70 r cos @ sin e — r sin ¢ sin ges,
@
or . .
g2 = % =rsingcos¢e; —rsinges + rcosg cos ges,
or . . :
g3 = > = sin @ singe | + cos ges + cos ¢ sin pes. 0.4
’

For the metrics coefficients we can further write:

g1-81 = (rcosgsinge; —rsingsinges)

-(rcos@singe| — rsingsinpes) = r?sin’ ¢,
2 ¥

g1-82= (rcosgsinge; —rsingsingpes)
-(rsing cos e —rsinge, + r cos ¢ cos pes)
= 72 (sin ¢ cos ¢ sin ¢ cos ¢ — sin ¢ cos ¢ sin ¢ cos ) = 0,
g1-83= (rcosgsinge; —rsingsingpes)
- (sin @ sin ¢e| + cos e, + cos g sin pes)

= r (sing cosgsin® ¢ —sinp cos ¢ sin> ) = 0,

8282 (rsingcos¢e; —rsinge, + r cos g cospes)
-(rsingcos¢e; —rsinge, + r cos g cos gpes)

= (sin2 @ cos® ¢ + sin® ¢ + cos’ ¢ cos? ¢) =r?
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g2-83= (rsingpcos¢e; —rsinge, + rcosgcosgpes)

- (sing sin¢e| + cos pe, + cos ¢ sin pes)

r (sin2 ¢ sin ¢ cos ¢ — sin ¢ cos ¢ + cos® ¢ sin ¢ cos ¢) =0,

g3-83= (singsinge; + cospe, + cos @ singes)

- (sing singe | + cos pe, + cos @ sin pes)

= sin® ¢ sin® ¢ + cos? ¢ + cos® psin’ p = 1.

Thus,
rZsin’¢ 0 0
[gij]=[gi-2;] = 0 70
0 01
and consequently
1
—— 00
' » r2sin® ¢
[¢7]=T[es] = 0 iz 0
r
0 01

Finally, we calculate the dual basis by (1.21);:

- 1 __jcosg _;sing
D2 8= 1 —r ——es,
r?sin” ¢ sin ¢ sin ¢
2 1 —1 —1 -1
8" = —8>=7r singcosge; —r singe, +r " cosgcospes,
r

g’ = g3 =singsinge; + cospe, + cos @ sin pes.

211

9.5)

2.2 The connection between the linear and spherical coordinates (2.157) can be

expressed by

1 2

Thus, we obtain

0x! =rcos@sing 0! = rsing cos ¢ x! =
dgp ’ g oo
x> 0 0x? sin x>
1) ' ¢ ' or
x> 0x3 x>

— = —rsin@sing, —— =rcospcosp, —
99 rsin g sin ¢ 3% r ) ¢ P

x' =rsingsing, x> =rcos¢, x> =rcosgsing.

sin ¢ sin ¢,

cos ¢,

cos @ sin .
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i oyi qyi
Inverting the so-constructed matrix ai 31 31 further yields according to
do d¢ Or

(2.23)

dp  cosg dp —0 dp _ sing

dx!  rsing’ x2 dx3  rsing’

d¢  singcos¢ dp  sing d¢  cosgpcose

axl r . = R = r '

ar . in g ar # ar ing

— =singsing, — = Cos @, — = cos @ sing.

dx! ¢ dx2 ax3 ¢
2.3 Applying the directional derivative we have

d _ d _
(@: — ||r + sa||™" = —[(r +sa)-(r +sa)]”"/?
ds s=0 ds 5=0
d -
= —[r-r+2sr-a+s’a-al 12
ds s=0
1 2r-a+2sa-a _ r-a
2[(r +5@) - (r +s0)? oy eI

Comparing with (2.54) finally yields

1 r
grad ||~ = —— .
[l

=a-w.

d
= —(r-wHsa-w)
ds s=0

(b): i(r—i—sa)'w
ds

s=0

Hence, grad (r - w) = w.

d
=5 (rAr + saAr + srAa + s*aAa)

(©): i (r +sa)A(r + sa)
ds

§=

s=0

=aAr +rAa=(Ar)-a+ (rA)-a= (Ar +rA)-a,
Thus, applying (1.115) and (1.153); we can write

grad (rAr) = Ar + rA = (A+A")r =2(symA) r.

d d
—A(r + sa) = — (Ar + sAa) = Aa.
ds s—o ds =0

A:
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Comparing with (2.57) we then have
grad (Ar) = A.
(e): In view of (1.65) and using the results of (d) we obtain
grad (w x r) = grad (Wr) = W.
With the aid of the representation w = w'g; we can further write (see

Exercise 1.23)

0 —w® w?
W=Wijg’ ®g’, [Wij]zg w0 —w!
—w? w0

2.4 We begin with the derivative of the metrics coefficients obtained in Exercise 2.1:

000 2r2sing cos¢ 00
3 ij 8 ii
[gijsl]: _g] = 000 s [giij]: ﬁ — 0 00 ,
9¢ 000 0 00

0 2r 0

} 2rsin*¢ 0 0
0 00

Thus, according to (2.84)

1
[Fijl] = 3 (gli,j +81j.i —8ijs1 ):|

0 r2singcos¢ rsin® ¢
= | r’sin¢gcos¢ 0 0 ,
r sin® ¢ 0 0
! —r2singcos¢p 0 0
[Tij2] = [5 (210 +82j.i —gij,z):| = 0 0or|,

0 r 0

1 —rsin¢ 0 0

[FijS] = [E (g3i,j +83j.i —&ij 3 )i| = 0 —-r 0

0 00
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With the aid of (2.77) we further obtain

I ..
Filj = g”F,-ﬂ = g“F,-jl +g12I‘ij2 +g131“,-j3 = 2_—]12, i,j=1,2,3,
r?sin” ¢
0 cotg r7!
) -
[r}]=|cote 0 0 |, 9.6)
00

Lijfp .,
F,-zj =g’y = g¥'Tij1 + g%Tijn + g°Tys = %, i,j =123,

—singgcosgp 0 O
[r,?j] - 0 0o |, 9.7)
0 =0

I} =g T ="' Ty + g% Tijo + g Tiys = Tys, i, =1,2,3,

—rsin’¢ 0 0
ti]=| o -—rof. 9.8)
0 00

2.5 Relations (2.96) can be obtained in the same manner as (2.94). Indeed, using
the representation A = A;; g’ ® g/ and by virtue of (2.82) we have for example for
(2.96);:

A= (Ajg' ®g’)x
=Ajg ®g +Ag xR +Ag Vg
=Ajig' ®g +A; (-The')®g' + A8’ ® (_F/}cgl)
= (A,-j & —Ay T, — A,-II‘j-k) g gl
2.6 Equations (1.91) and (2.72),:
0=TL;= (38" ®g ) u=giili g ®g' =(g"gi®g;)u=28"1k g ® g,
2.7 Using (2.96), we write for example for the left hand side of (2.101)

Aijlk= Aijk —A; T, — AT,
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In view of (2.93), the same result holds for the right hand side of (2.101) as well.
Indeed,

ailk by +aibjlx = (a,-,k —a/Fl-lk) bj +a; (bj,k —b;F}k)
= dj,k bj + aibj,k —a;bjI‘i’k — a,-blI‘j.k
= Ajjx —A; T — AT,

2.8 By analogy with (9.1)

f = eijkg_ltigk g
Inserting this expression into (2.125) and taking (2.112) into account we further
write

curlt = —divi = — (¢/* g 'tigi ® g,) 1 &'

With the aid of the identities (g_lgj) 18 =0(j = 1,2,3) following from (2.76)
and (2.107) and applying the product rule of differentiation we finally obtain

”

curlt = —e" k

g ', g —e g igh;

ik —1 ik —1 ik —1
= —eY g ti,jgk:—e’/ g tilj gk:e‘]l g ti|j i

keeping (1.36), (2.78) and (2.93), in mind.

2.9 We begin with the covariant derivative of the Cauchy stress components
(2.118). Using the results of Exercise 2.4 concerning the Christoffel symbols for
the spherical coordinates we get

13
1 1j Il 1) 1 12 13 12
oV]j=0",;+0"T) +0"'T); =o', +07 2 +0" 3 +30“ cot + 4—,
r

21 ~2) . lj 2 20 J
o =0".;+0V T} +07 Ty
23
=02 402,408 50 singcosp + 0P cotp + 4—,
.

3. 3 i3 3
o/|j =07+, + 07T,
33
=0 4062, +oB 50!y sin2¢ —o0%r + 0% cotep +2—.
r
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The balance equations (2.116) take thus the form

13
o
pa' =o', +0'%, 40" 5 +30"% cotp + 4+ fh

23
. o
pa’ =02, +02 5 +0B 5—csingcosp + o2 cotp + 4— + f2,
.

33
_ o

pa’ =03 +02 5403 5 —0"rsin? ¢ —o0%r + 032 cotp +2— + f3.
r

2.10 The tangent vectors take the form:

or s s .8 I s
g1 =—= (cos— + —sm—)el + (sm— — —cos—)ez,
ar ror r ror r
ar .S S or
gr=——=—sln—-e| +cCos—e,, g3=— =¢e3.
ds r r 0z

The metrics coefficients can further be written by

s 120
i -1 2
lsi]=1lgi-g;]=| 5 1 of [&"]=lss] =]3% 4.5
r r r2
0 0 1 0 0 1
For the dual basis we use (1.21);:
! s s .S
g =g1+ —gr=cos—e| +sin—ey,
r r r
2
s s
g = —g1+(1+—2)g2
r r
.S s N s s .S
= (—sm— + —cos—)e1 + (cos— + —sm—) e,
ror r ror r
83 = g3 =e3.
The derivatives of the metrics coefficients become
52 s 2s _10
T2 2o 000
[gijal] = s 00| [gij,z] = _l 0 0|° [gijaS] =1000
r? r 000

00 0 00
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For the Christoffel symbols we thus obtain by means of (2.84) and (2.77):

2

N N
32 000 000
[Cp] =] 5 _Lg| [Tyl =]000]. [Fys]=[000 .
rz2 r 000 000
0 00
s? s s s? 0
32 rdord 000
2
=) 5 Lo |- [ml=] £ x| [m] =000
rroor r3or? 000
0 00 0 0 0

2.11 First, we express the covariant derivative of the Cauchy stress components by
(2.118) using the results of the previous exercise:

1 1 12 13 1 SZ 0 > 2 1S

j 1 1

o ]I i =0 ", [ g ",;,—0 o 3
J r3 r 2

53 s 52
2j 21 2 23 11 2 12
YV =0" 407 s+07 0 — —0" = +20 "=,
! 2 3
3j 31 kY) 33
o'l =040 +07 ;.

The balance equations (2.116) become

sz o s
1 11 12 13 11 12 1
pa =0 ,+0 s+07 0 S ——+20" 5+ f,
r r r

2 2 2 23 153 2 S 12 s> 2
pa’ =o', 407+, o' — 0P 5 + 202 = + /2,
r r r
pa® =o', +o¥ +0  + 1.
2.12 Equations (2.126), (2.128), (1.32) and (2.82):

div curlf = (gi Xt,,-),j .gj = (_Flijgk X t,; +gi xt,,-j).gj

= —(F;(Jgj ng) 't,l' +(g] Xgi) 'taij = 0’

where we take into consideration that ¢,;; =, ;;, Fl-lj = F}i andg' x g/ = —g/ x
gi (i#j,i,j=1273).
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Equations (2.126), (2.128) and (1.32):
diviuxv) = uxv), g =@;xv+uxv;) g
= (gi Xu,i) v+ (v, xgi) -u =v-curlu —u - curly.
Equations (2.6), (2.75); and (2.126):
graddivt = (t,;-g").; 8/ = (t.;g") g’ + (t.-g".;) g’

Using the relation
(tig)g = [t,i : (—F}kg")] g’

= (t.i-g") (—ijgj) =(ti-g")g'w=(tig")g".; 99
following from (2.82) we thus write
graddivt = (t,;-g') g’ + (t.i-g’)g'.; .
Equations (2.128) and (1.168):
curleurlt = g/ x (g' xt,;),; =g’ x(g'.;xti)+g’ x(g xt.)
= (g ti)g'i—(g 8"t (g 1) 8 — gt
Equations (2.8), (2.64), (2.126), (1.121) and (2?):
divgradt = (1, ®g').; 8/ = (t.; ®g') g’ + (t.®g".;) g’
=gty +(g".;g')t.. (9.10)
div (gradt)" = (1, ®g") g/ = (' ®1.;) g’ + (g, ®t.1) g’
=(tij-g')g +(ti-g')e" ;.

The latter four relations immediately imply (2.135) and (2.136).
Equations (1.153),, (1.169), (2.64); and (2.128):

; ; 1 — 1 —
(ti®g' —g' ®t.,) = Eg' Xt = Ecurlt.

N =

skew (gradt) =
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Equations (2.5), (1.142), (2.112), (2.126) and (2.64);:
div(tA) = (tA) ;i -g' = (tiA)-g' + (tA;) - g’
=A:t,®g +1-(A;g')=A:gradf + 1 -divA.
Equations (2.3), (2.63) and (2.126):
div(Pt) = (1) ;g = (Pit)-g +(Pt,) g
=t (0. g )+ @ (t-g') =1-grad® + Pdivt.
Equations (2.4), (2.63) and (2.112):
div(PA) = (PA) . g' = (P A) g’ + (PA,) g’
=A(P.ig')+ P (A g') =Agrad® + PdivA.
2.13 Cylindrical coordinates, (2.75),, (2.93) and (2.90):
gradt =t;|; g' ® g/ = (ti,j —tkl",-];-) g ®g
=48 08 +rug'®g' —rn(g'eg’+e'we'),
or alternatively
gradt = Zilj gi®gl = (Zi,j +lkF/ij)gi ® g’
=i, g:0g +r'g®g' +1' (g ®g’-rg;xg').
Equations (2.30) and (2.127):
divt = trgradt = 1;,; g7 + gt —2r7 gt
=rt +ho s +r ',
or alternatively
divt = trgradt = t',; +r7 '3 =1" +r7's =t +2 0+ 5 47 .

Equations (2.93) and (2.129):

o1
curlt = e/’kgt,-lj gk
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g7 (1312 —12]3) g1 + (1] —131) g2 + (2|1 —11]2) &3]

r (o —ts) g1+ (3 —13.1) 82 + (2 —11.2) g3].
Spherical coordinates, (9.6)—(9.8):
gradt = (t,-,j —tkl",-];) g g’
= (t11 +tasingcosg + t3rsin’¢) g' @ g' + (L2 +13r) g7 ® g7
+1638° @ + (a—ticotd) g ® g2+ (1 —hicotd) g° @ g
+ (na—tr)g'®g’+ (a-—nr) g g
t (ha—nr ) g’ ®g + (na—nr ') g’ ® g
or alternatively
gradt = (zf,j +t"1"]ij)g,- ®g/ = (' +t2cotp+1r") g ®g'
+(Po+r g 0g’+158:308°
+ (tl,z +1! cot¢) 218>+ (t2,1 —! sin¢cos¢) g:®g!
+ (' s+r g @g’ + (P —t'rsin’g) g3 ® g
+ (s +r g g+ (Po—1r) g ® g’
(2.93), (2.127), (2.129), (9.4)(9.8):

. i 1,1 _ _ _
divt = (ti,j —Zkrll;) gl] = IR +r 2[252 +13,3 +r 2 C0t¢l‘2 + 2r 1Z3
r?sin” ¢

=t 5T, =" 12 4135 Feotgr® + 21718,

curlt = g7 [(1:]2 —1a]3) g1 + (1113 —t3]1) g2 + (2]1 —11]2) &3]

1

=—5——Bo—n3)g1+ t1a—131) 82+ (1 —112) &3]
r?sin ¢

2.14 According to the result (??) of Exercise 2.12

At = divgradt = g7t + (g'.;-g’) t.i .
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By virtue of (2.73), (2.82) and (2.93), we further obtain
At =gt —Tfg"t, = g" (tvij —Fi]}t,k> =gt =1t
In Cartesian coordinates it leads to the well-known relation
divgradt = #,1) +t,22 +£.,33.
2.15 Specifying the result of Exercise 2.14 to scalar functions we can write
A =gl (@ Tk ) = .

For the cylindrical coordinates it takes in view of (2.30) and (2.90) the following
form

1’0 9’0 P 100

AP =r72P ) + P + Py +r D= >ty o
r 1 +®P2o +P,33 +r 3= 2907 T o2 a2y or

For the spherical coordinates we use (9.5)—(9.8). Thus,

1 S¢>

AP = ——— @ +r 2D +P, +- &, +2r o,
I‘2 sin2¢> 11 22 33 n¢ 2 3
1 32q>+ _282¢>+82¢+ 5 t¢a<p+2 _, 00
- T —_— cotgp— ro—.
r2sin’ ¢ 99> 02 d¢ or

2.16 According to the solution of Exercise 2.14
At = g (t,,, —F;;?t,m), 9.11)
where in view of (2.72);
t.. =1t g, ti =15 gr.
By virtue of (2.93), we further write ¢X|;= ¥ ; +Flkl.tl and consequently
5= 1", +F,];jtm|i= ANTIES NS LINES N +F,/f1jtm,i +F,]f1j1";’;tl
Substituting these results into the expression of the Laplacian (??) finally yields

At = gl (zk,i, oS! =Tk + Tt + Th Tt = TRT) )
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Taking (9.5)—(9.8) into account we thus obtain for the spherical coordinates (2.157)

t! 00 ' |
At = —— + = +1!,
(rzsinqu r2 "

+ tv(p

3cotg | 2coshp , 4!, 213,
g +——— —
r rZsin’ ¢ r r3sin” ¢

+ =L+,

2 2
( " Y
risinf¢ 2

2cot¢p , cotp , 4, 2%, 1—cot?d ,
B R e e L A I 2

3
+t ST

3 3
( o9 Y
risinf¢ 12

2¢1, 212,
_L e LS “ =

cot¢ 2t3,  2cotg 213
1 +—= — - g
r r r r r r

9.3 Exercises of Chap.3

3.1 (C4)and (3.18): a; = dr/ds = const. Hence, r (s) = b + sa;.

3.2 Using the fact that d/d (—s) = —d/ds we can write by means of (3.15), (3.18),
(3.20), (3.21) and (3.27): a (s) = —ai(s), a5 (s) = ax(s), ai(s) = —asz(s),
»®' (s) =x(s)and T’ (5) = T (5).

3.3 Let us show that the curve r (s) with the zero torsion 7 (s) = 0 belongs to
the plane p (tl, 12) = r(so) + t'a; (so) + t2a, (s0), where a; (so) and a; (s¢) are,
respectively, the unit tangent vector and the principal normal vector at a point Sp.
For any arbitrary point we can write using (3.15)

r(s) s
r(s)=r(so) + / dr =r (so)+/a1 (s)ds. 9.12)
r(so) 50

The vector a; (s) can further be represented with respect to the trihedron at sy as
a; (s) = o' (s)a; (s0). Taking (3.26) into account we observe that a3,; = 0 and
consequently asz (s) = a3 (s9). In view of (3.23), it yields a; (s) - a3 (so) = 0,
so that a; (s) = a'(s)a;(so) + a®(s)a,(so). Inserting this result into (??)
we have
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r(s) = r (so) +a; (s0) / ol (s)ds + as (s0) / o (s)ds

=1 (s0) + t'a; (s0) + t?a» (s0) ,

where we set 1/ = ff) al (s)ds (i =1,2).

N

3.4 Setting in (2.30) r = R yields

[8ap] = [1;2(1)]

By means of (2.90), (3.74), (3.79), (3.90) and (3.93) we further obtain

-RO —R7'0
[baﬂ]: [ O 0}, [bg]:l: 0 Oi|, Fliﬂ: éﬁzo’ (x’ﬂzl’z’

1 1
— ﬂ = = —_ph% = —— -1
K =pf|=0, H= Sbe =—5R7. (9.13)

3.5 Keeping in mind the results of Exercise 2.1 and using (9.6)—(9.8), (3.58), (3.62),
(3.67),(3.74), (3.79), (3.90) and (3.93) we write

g = Rcost!sint?e; — Rsint' sinf’es,
g, = Rsint! cost?e; — Rsint’e, + Rcost! cost’es,

g3 = —sint!sin tzel — costzez —cost! sintze3,

R2sin’2 0 Rsin’2 0 R7! 0
el = [0 0] =[0G ] = L

[Fl]z 0 cott? [F2]= —sint?cost? 0
ob cott> 0 |7 L 0 0]

K=|pf|=R? H= %bg =R (9.14)

3.6 Equations (3.62), (3.67) and (3.143):

or + 72 or + 7
=— =¢e es, =_—=e es,
81 a1 1 3, 82 92 2 3
X 1 -
£1X8 _ (—i%e; —i'es +e3),

SR P Y A"
81 X8> 1+(fl)2+(t'2)2
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oo
where t' = — (i = 1,2). Thus, the coefficients of the first fundamental form are
c

2 _ 2
gn=g1-81=1+(") . gn=gu=g1-82=11. gn=grg =1+(")".

For the coefficients of the inversed matrix [g“ﬁ ] we have
71)\2 7172
(8] = = i —\2 1+-$t-z) N t—z 2 |-
14+ @Y™ + () 't 1+ (%)
The derivatives of the tangent vectors result in
1
g11=0, g12=821= —e3, g22=0.

By (3.74), (3.79), (3.90) and (3.93) we further obtain
1

bii=81,183=0, bn=bn=gi1283= ,
1+ @) + @)

by =g82,83=0,

1 72 1+ (P)
[ba/-s] = ]3/2 [1 + ([-1)2 —t'(ltt'z) i|

cp-+602+(ﬁf

K =|pt] =~ 1 =y @]
1+ @) + @]
H:%@:- e

¢ [1 + (T + (52)2]3/2‘

3.7 Equations (3.62), (3.67) and (3.144):

ar 2l 2 1
g1 = W = —ct~sint ey + ct~cost e,,
or 1 -
g) = ﬁ =ccost e;+csint ey +e3,
1 X g2 1 .
g3 = £1%% _ (cost'ey +sint'e, — ces).

gy x g2l T+ 2
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Thus, the coefficients of the first fundamental form are calculated as

2
g1 = 8181 =C2(l2) ;812 =81=¢g1-82=0, g22=g2~g2:1+c2,

so that

£ = [(th))_z (1 +0c2)‘1} '

The derivatives of the tangent vectors take the form
— g2 1 2 qin 41 _ o ain gl 1
g1,1 = —Cct“cost ey —ct"sint er, g1,,= 82,1 = —CSINt €1+ CCOSt ey,

g22=0.
By means of (3.74), (3.79), (3.90) and (3.93) this leads to

ct?
b =g1.183= i biy=5by =g1.283=0, by =g2283=0,

1
— 0 1 1
bﬂ = t2 /1 2 s K = bﬁ = 07 H = _bO( = -
[a] ¢ 0+C 0 |a| 20( 2CZ2\/1+C’2

3.8 Taking (3.105) into account we can write

g1 850 - 4 | gt —g 0
* *] *
[gij] =|&nen0) [g j]: [gf/] . -8 &1 0.
0 01 g&|L o 01

which immediately implies (3.111).

3.9 For a cylindrical shell equilibrium equations (3.140) and (3.141) take by means
of (3.77), and (2?) the form

fUafPa4p =0, fPiHfPo+pP =0, —Rf"+pP=0.
For a spherical shell we further obtain by virtue of (??)
U420 +3cot? 124 pl =0,

Fa+fPa—sint>cost? f!! +cott> f2 + p? =0,
Rsin22 f'' £ RF2 4 pd =0,
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9.4 Exercises of Chap.4

4.1 In the case of simple shear the right Cauchy-Green tensor C has the form:
1 y O
C=Cie;@e/. [C]=[Cy]=|r 14720
0 0 1

The characteristic equation can then be written by

1-A y 0
y 14+72=A 0 |=0 = (1-M{A-AQ2+y)+1}=0.
0 0 1-A

Solving the latter equation with respect to A we obtain the eigenvalues of C as

2
”ziv4”2+y4=<v4+”2i”) As=1. (915
2 2 ’ - ‘

Aijp=1+

The eigenvectors a = a'e; corresponding to the first two eigenvalues result from
the equation system (4.16);

-y F Jay  + y4a1
2

+ya® =0,
2 2 4
F Vay2 +
yal +—)/ 4 4 a? =0,

2

> .
Since the first and second equation are equivalent we only obtain
2 7Y + 4+ y? 1 3
a” = fa ., a

=0,

so that a> = /Aja' or a> = —\/A,a'. In order to ensure the unit length of the
eigenvectors we also require that

This yields

1 Al 1 A2
)= —e;+ |———e>, a, = e| — er. (9.16
RV =y v (T RtV xR P ©-10
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Applying the above procedure for the third eigenvector corresponding to the
eigenvalue A3 = 1 we easily obtain: a3 = e3.

4.2 Since the vectors g; (i = 1,2, 3) are linearly independent, they form a basis in
IE3. Thus, by means of the representation A = A’ & ® g/ we obtain using (1.39)

[Ag1Ag2Ags3] = [Aflgi A.jzgj A%gk] = AflA.]'zAg [gig)gr]

= Al AL AR e g = ‘Afj

g =detA g.

4.3 Using (4.26),—3 we write
I = trA,

Iy = % [(trA)2 — trAz] ,

1
My = 2 [MatrA — IAtrA” + rA’].

Inserting the first and second expression into the third one we obtain

1(1
I, = 3 {5 [(trA)2 — trAZ] trA — trAtrA” + trA3}
1 33 42
=3 trA trA trA + — (trA)
44 Since r; = ¢ for every eigenvalue A; we have exactly n = > _,r;
eigenvectors, say afk) (i=12,...,5:k=1,2,...,r;). Let us assume, on the

contrary, that they are linearly dependent so that

Z Z a(k) (k) 0.

i=1k=1

where not all ®are zero. Linear combinations a; = Y, loc(k) a(k) of the

eigenvectors a( ’ associated with the same eigenvalue A; are again eigenvectors or

ZETo Vectors. Thus, we arrive at

s
E gia; = O,

i=1

where &; are either one or zero (but not all). This relation establishes the linear
dependence between eigenvectors corresponding to distinct eigenvalues, which
contradicts the statement of Theorem 4.2. Applying then Theorem 1.3 for the space
C" instead of V we infer that the eigenvectors al(.k) form a basis of C".
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4.5 Leta = aigi. Then, a-@ = a’ (a-g;). Thus,ifa-g, =0(@G =1,2,...,n),
then @ - @ = 0 and according to (4.9) a = 0 (sufficiency). Conversely, if a = 0,
then according to the results of Exercise 1.5 (also valid for complex vectors in C")
a-g; =001 =1,2,...,n) (necessity).

4.6 Equations (4.40) and (4.42):

T

Ti Tj Ti
P,P; = (Z al(k) ® b’gk)) (Z ay) ® by)) = Z Z(gij(gkzal(k) ® by)
k=11=1

k=1

& P, ifi = j,
S ILT R Kl
=1 0 ifi # j.

4.7 By means of (4.40) and (4.42) we infer that Piag.l) = 8,ja(” Every
vector x in C" can be represented with respect the basis of thlS space
a;k) i=12,....,8k=12,...,r;))byx = Z]—l Zk lx(k)a(k) Hence,

i=1 i=1j=lk=1

= ZZZx(k)S a(k) ZZx(k) ® =y, VvxecC,

i=1j=lk=1 j=lk=1

which immediately implies (4.46).

4.8 Let Ay, As,..., A, be eigenvalues of A € Lin". By the spectral mapping

theorem (Theorem 4.1) we infer that exp (4;) (i = 1,2,...,n) are eigenvalues of
n

expA. On use of (4.24) and (4.26) we can thus write: det[exp (A)] = [] expA; =

i=1
exp (Z /\i) = exp (trA).
i=1

4.9 By Theorem 1.8 it suffices to prove that all eigenvalues of a second-order tensor
A are non-zero (statement A) if and only if Ax = 0 implies that x = 0 (statement
B). Indeed, if Ax = 0 then either x = 0 or x is an eigenvector corresponding to a
zero eigenvalue. Thus, if A is true then B is also true. Conversely, if A is not true, the
eigenvector corresponding to a zero eigenvalues does not satisfies the statement B.

4.10 Let a; be a (right) eigenvector corresponding to an eigenvalue A;. Then,
Aa; = M;a;. According to (1.129) A™' (A;a;) = a;, which implies that )ti_l is
the eigenvalue of A~

4.11 Let for example M be positive-definite. Setting in (4.66) « = 1/2 and
o = —1/2 we can define M'/? and its inverse M~!/2, respectively. Now, consider
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a symmetric tensor S = M!?2NM!/? = ST with the spectral representation
S = Z;’=1 /\,‘d,‘ ®di,whered,- 'dj = 8,']‘ (l,j = 1,2, .. .,n).Then,a,- = Ml/zd,‘
is the right eigenvector of MN associated with its eigenvalue A; (i = 1,2,...,n).
Indeed,

MNai = MN (Ml/zdi) = MI/ZSdi = AiMl/zd,' = A,-ai.

In the same manner, one verifies that b; = M~2d; (i = 1,2,...,n) is the
corresponding left eigenvector of MN, such thata; -b; = §;; (i,j = 1,2,...,n).
The eigenvectors d; (i = 1,2,...,n) of S € Sym” form a basis of E". This is also
the case both for the vectors @; and b; (i = 1,2,...,n) since the tensor M2 s
invertible (see proof of Theorem 1.8). This implies the spectral decomposition of
MN by (4.39) as

n
MN = Zkiai ® b,’.
i=1
4.12 Let us consider the right hand side of (4.55) for example fori = 1. In this case
we have

l—[A Al A AT A — A5l
Aj — A A — A3’
/sﬁl
On use of (4.43), (4.44) and (4.46) we further obtain

3 3
/\i—/\ Pi Aj—2A3)P
A-dga—ag  HH TR Z, &%)

Al—kzkl—kg_ Al — Ay Al— A3

S —22) (A — A3) 8, P; Z(/\ — ) (4 — A3) Py

lj— i=1

A1 —2A2) (A1 — A3) (=AM —A3)

_ =) =Ay P
(A1 —A2) (A1 = 43)

In a similar way, one verifies the Sylvester formula also fori = 2 and i = 3.

4.13 By (4.42), (??) and (??) we first obtain

P=a ®a

1 1 Ay
. er| @ ———e) + e
(«/1+A1 1+ A 2) («/1+A1 TV TEA, 2)
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P

9 Solutions

1 1 Ay
= 1+A181®81+1+A182®82+1+A1

(e1Q@er+er®e)

2 1
y2+4+f/\/m \/F
— 0
N BT

0 0

0

e;®e’,

=arQa

1 A, 1 A,
——e — | @ ———e — e
(./—1+A2 ! 1+ A, 2) (Jl A, 1+ A, 2)

1 Ay
= e ®e; + e ey —

Az
I+ A, I+ A, Tra, @@t

2

1
y2+4—y1\/m \/F
- 0
VyP+4 444y /244
0 0

0

e; e,

000
P:=a:®0a3;=e38e3=|000 e,-®ej.
001

The same expressions result also from the Sylvester formula (4.55) as follows

(€= A (C— A3l
(A=A (A1 = A3)

1

2

1
y2+4+%/\/m \/F
0
Vri+4 Y2 +4—yVy +4
0 0

0

e; e,
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_(C—AD(C— A
2T (M —Ay) (A — Ay

2 1
— 0
y:+4—yy2+4 Vy2 44
= 1 2 0 lei®e’,
Vy?+4 yr+4+y /244
0 0 0
000
(C—AD (C—AD »
P; — =1000|e;®e’. (9.17)
T A= AD (A= Ay)
001

4.14 The characteristic equation of the tensor A takes the form:
—2—-1 2 2
2 1-2 4 |=0.
2 4 1-2A
Writing out this determinant we get after some algebraic manipulations
AP =272 —54=0.
Comparing this equation with (4.28) we see that

Ian =0, Iy =-27, Il = 54. (9.18)

Inserting this result into the Cardano formula (4.31) and (4.32) we obtain

21 — 9L, I0, + 27111A}
3/2
2 (I3 —3114)
27-54
2(3-27)%?

1
Ip + 24/I — 310, cos 3 [% + 27 (k — 1)]}

2 2
3.27cos (gn (k — 1)) = 6¢cos (gn (k— 1)), k=1,2,3.

¥ = arccos |:
i| = arccos (1) =0,

= arccos [

Ay =

Wi W=



232 9 Solutions

Thus, we obtain two pairwise distinct eigenvalues (s = 2):
A =06, Ay =A3=-3. (9.19)

The Sylvester formula (4.55) further yields

2 122
A-4T Al A+3L 1 |
n=ll5 = = =g|244 e
j=t T e 244
j#1
p_TJA-MI_A-MI_A-6l 1 i‘? _i vwel
2: = ey e — — i .
jor M A Ak -9 24 s
2

4.15 The spectral representation of A takes the form
A= zs:/\,-P,- = AP + AP, = 6P — 3Ps.
i=1
Thus,
expA = i exp (A;) P;
i=1

=exp (A1) Py +exp (A2) P, = exp (6) Py + exp (—3) P,

6| 122 3 8§ —2-2
& e -
:3 244 ei®6’j+—9 -2 5-4|e;®e;
244 -2—-4 5

e® 4+ 8e ™3 20 —2e73 2e0 —2e73
= — | 2e%—2e73 4e6 + 573 4eb —4de? |e; ®e;.
20 —2e73 4eb — de™3 4e® 4 5¢73

4.16 Components of the eigenvectors @ = a’e; result from the equation system
(4.16)
(A; _ 8}1) al =0, i=123 (9.20)

Setting A = 6 we obtain only two independent equations

—8a' +24?* +24° =0,
2a' —54% +4a> = 0.
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Multiplying the first equation by two and subtracting from the second one we get

a’ = 2a' and consequently a® = 2a'. Additionally we require that the eigenvectors

have unit length so that

(@)’ + (@)’ + (&)’ =1, ©.21)
which leads to
1 n 2 N 2
a, = 381 382 383.
Further, setting in the equation system (??) A = —3 we obtain only one independent
linear equation
a' +2a*>+2a°>=0 (9.22)

with respect to the components of the eigenvectors corresponding to this double
eigenvalue. One of these eigenvectors can be obtained by setting for example a' =
0. In this case, a> = —a? and in view of (??)

1 1
W= ey — —es.

“© =R

and agz) corresponding to the double eigenvalue
2 = @ for the components

Requiring that the eigenvectors agl)
A = —3 are orthogonal we get an additional condition a
of aéz). Taking into account (??) and (??) this yields

a(z) 4 e + ! e, + ! e
= — 1 2 3.
2 342 342 342

With the aid of the eigenvectors we can construct eigenprojections without the
Sylvester formula by (4.42):

Pi=a ®a
12 2 2 2 122
= §e1+§e2+§e3 ® §e1+§e2+§e3 =§ ;jj e; e,

1 1 1 1
P, = agl) ® a(zl) + a(zz) &® agz) = (Eez — E“) &® (Eez - Ee:’,)

4 1 1 4 1 1
+ |- e+ e+ e3 | ®(— e+ er+ e
(ml 32 3ﬁ3) (3\/51 32 3ﬁ3)
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1 8§ -2-2
=9 -2 5-4|e; Qe
-2-4 5

4.17 Since linearly independent vectors are non-zero it follows from (4.9) that ¢; -
¢i #0 (i =1,2,...,m). Thus, the first vector can be given by

C1
a) = —F/——,

C1°Cq
such that a; - @; = 1. Next, we set
/ —
a, =cy—(cy-ay)a,

so that @), - @; = 0. Further, a5 # 0 because otherwise ¢ = (¢, -@))a; =
(c2-ay) (e ~El)_1/ 2 ¢, which implies a linear dependence between ¢; and c».
Thus, we can set a, = a5/ \/a) - @,. The third vector can be given by

a _ _
a = /3 —, where ay=c3—(c3-@m)ay—(c3-a))a,
as-a;
so that a3 - @; = a3 - a, = 0. Repeating this procedure we finally obtain the
set of vectors a; satisfying the condition a; -a@; = §;;,(i,j =1,2,...,m). One

can easily show that these vectors are linearly independent. Indeed, otherwise
Y, a;a; = 0, where not all o; are zero. Multiplying this vector equation scalarly
bya; (j =1,2,...,m) yields, however,a; =0 (j =1,2,...,m).

4.18 Comparing (4.67); with (4.72); we infer that the right eigenvectors
a?k) (k =1,2,...,1t) associated with a complex eigenvalue A; are simultaneously
the left eigenvalues associated with A;. Since A; # ); Theorem 4.3 implies that
a0 Z0 (kD =1.2,....1).

4.19 Taking into account the identities trtWKk = 0, where k = 1,3.,5,... (see
Exercise 1.49) we obtain from (4.29)

Iw = trW = 0,

Iw % [(trW)2 — trWz]

1 1 1 1
——ttW2 = — (W: W) = - (W: W) = - |[W|?,
2 2 2 2

1 3 1
My = 3 [trw3 - Etrwztrw +3 (trW)3i| =0,
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or in another way

[y = detW = detWT = det (—W) = (—1)>detW = —Illy = 0.
4.20 Eigenvalues of the rotation tensor (Exercise 1.24)

cosa —sina 0
R:Rfje,-®e’, where [Rfj]z[R”]: sine cosa 0

0 0 1
result from the characteristic equation
cose —A —sino 0
sine  cosa—A O |=0.
0 0 1—-A

Writing out this determinant we have
(1-2)(A*—2Acosa + 1) =0
and consequently
At =1, Ayz =cosa £isina.

Components of the right eigenvectors @ = a’e; result from the equation system
(4.16)

(R, =82)a’ =0, i=123 9.23)
Setting first A = 1 we obtain a homogeneous equation system

a' (cosa — 1) —a’sina = 0,

a'sina + a? (cosa—1) =0,

leading to a' = a* = 0. Thus, a; = a’e;3, where ¢ can be an arbitrary real number.
The unit length condition requires further that

a) = es.
Next, inserting A = cos o £ isin« into (2?) yields
2

a® = :Fial, a®=0.

Thus, the right eigenvectors associated with the complex conjugate eigenvalues A, /3
are of the form a,;3 = al (e, Fiey). Bearing in mind that any rotation tensor is
orthogonal we infer that @3 = a3, = a' (e, £ ie,) are the left eigenvectors



236 9 Solutions

associated with A,,3. Imposing the additional condition a, -@> = a, -a3 = 1 (4.38)
we finally obtain

2 2

a = 7(81 —iey), a3 = 7(81 + ies).

The eigenprojections can further be expressed by (4.42) as
Pi=a1®a =e3Qes,

_ W2 . V2 .
P,=a®a, = 7(81—182)®7(81+182)

1 1.
:E(el®el+ez®ez)+§1(el®82—82®81),

_ W2 . V2 .
P;=a;R0a; = 7(e1+1e2)®7(e1—1e2)
1 1.
:5(91®6’1+6’2®6’2)—§1(6’1®92—82®6’1)-

4.21 First, we write

4 —2227[-2227 TJ12 6 6
()] =] 214|] 214|=| 62112,
241 241 | 61221
, 12 6 6][-2227 [ 0 54 54
UAﬂ;:: 621 12 214 | =154 81108
61221 ]| 241] [54108 81
Then,
0 54 54
PA(A) =A% —27A—541= | 54 81 108 |e; Re;
54 108 81
—222 100 000
-27 214 e,-®ej—54 010 ei®ej= 000 ei®ej.
241 001 000

4.22 The characteristic polynomial of F (2.69) can be represented by pa (1) =
(1 — A)>. Hence,

0-y07’ ~ [000 |
) =A-F>=]0 00| e, ®e/ =000 |e; e/ =0.
0 00 000
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9.5 Exercises of Chap. 5

5.1 By using (1.106);, (D.2) and (5.17) one can verify for example (5.20); and
(5.21); within the following steps

A®B+C):X=AXB+C)=AXB+AXC=A®B+A®C):X,

AOB+C): X=A[B+0C):X]=AB:X+C:X)
=AB:X)+A(C:X)
=AOB+A0C):X, VXeLin”.

The proof of (5.20), and (5.21), is similar.
5.2 With the aid of (5.16), (5.17) and (1.145) we can write

(Y:A®B):X=Y:(A®B:X)=Y:AXB =ATYB" : X,
Y:AeB): X=Y:(A0B:X)=Y:[AB:X)
=(Y:A)B:X)=[(Y:A)B]:X, VX, Ye€Lin"

5.3 Using the definition of the simple composition (5.40) and taking (5.17) into
account we obtain

AB®C)D:X=AB®C:X)D = A (BXC)D
= (AB)X (CD) = (AB) ® (CD) : X,
ABOCD:X=ABOC:X)D=A[B(C:X)|D

=ABD(C:X) = (ABD)©C:X, VXeLin".
5.4 By means of (1.147), (5.17), (5.22) and (5.45) we can write
A®B)":X=X:(A®B)=A"XB" = (AT®B") : X,
AOB)T:X=X:(A0B)=(X:A)B=B0OA):X,
AOB):X=(A0B):X"=A(B:X")
=AB":X)=(A0B"):X, VXeLin"

Identities (5.51) and (5.52) follow immediately from (1.121) (5.23), (5.24) (5.49),
and (5.50) by setting A = a®b,B =c®d orA = a®d,B = b®c, respectively.
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5.5 Using (5.51) and (5.52) we obtain for the left and right hand sides different
results:

@bhRcd) " =@®cb®d)" =caxd b,
@b®c®d)"T=bRa®dRc)=bdaQc.

5.6 Equations (5.31), (5.32) and (5.45):
A: B X=X:(A:B)=(X:A):B
=B X:A)=B": (A" :X)=(B": A") :X,
(A:B):X=UA:B):X'=A:(B:X")
=A:(B'":X)=(A:B"):X, VXeLin"
5.7 In view of (1.120), (5.17) and (5.45) we write for an arbitrary tensor X € Lin”"
(A®B)': (C®D):X=(A®B)": (CXD) = (A ®B) : (CXD)"
= (A®B): (D'X"C") = AD'X'C'B
= [(AD") @ (C"B)] : X = [(AD") @ (C"B)]': X.
A®B):(COD):X=A®B)" :[(D:X)(C]
=A®B):[D:X)C"] = (D:X)AC'B = (AC'B) 0D : X.

5.8 By virtue of (5.51) and (5.52) we can write

= (Cg Rg @gRe) =CMg ®g ®g ® g
=0g ®g, ®gr® gl

C=(CMg g, g 0g) =C"g g 0g g
=g g, @gr®g

According to (5.60) and (5.61) e =¢ =¢ Taking also into account that the
tensors g, ® g§; ® g« ® g1 (i, j.k,l =1,2,...,n) are linearly independent we
thus write

eijk/ — ejilk — el’kjl'
The remaining relations (5.70) are obtained in the same manner by applying the
identities @ = €™" and € = €™,
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5.9 With the aid of (1.147), (5.16) and (5.81) we get

Y:T):X=Y:(T:X)=Y:X"'=Y":X, VX YeLin".

5.10 On use of (5.31), (5.45), and (5.81) we obtain
A:T):X=A:T:X)=A:X"=A":X, VXelLin".

The second identity (5.85) can be derived by means of (5.54), (5.80) and (5.83) as
follows

AT =3 AT =(AT:9) = (AT:9) = (AT T) =T A
The last identity (5.85) can finally be proved by

T:N:X=T:(T:X)=T:X'=X=9:X, VXelLin"

5.11 C possesses the minor symmetry (5.61) by the very definition. In order to
prove the major symmetry (5.60) we show that € : X = X : €, VX € Lin". Indeed,
in view of (5.17)1, (5.22); and (5.48)

G:X:(M1®M2+M2®M1)S:X:(M1®M2+M2®M1):sme

= M; (symX) M, + M, (symX) M|,

X:€=X:(M @M +M M)
=sym[X: (M; ® My + M, ® Mj)]
= sym (M; XM, + M,XM,) =M, (Sme) M, + M, (Sme) M,;.

5.12
(a) Lete; (i =1,2,3) be an orthonormal basis in E3. By virtue of (5.77), (5.84)

and (5.86) we can write

3
i 1
J° = E Ee,'®(ei®ej+ej®ei)®ej-

ij=1
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(b)

9 Solutions

Using the notation

e ®erter®e

M =e¢; ®e;, i=12,3 M=

ﬁ )
M5231®83:/1-;3®81’ M6:e3®6’2:/1-;2®83 (9.24)

and taking (5.23) into account one thus obtains the spectral decomposition of J°
as

6
=) M,0OM,.
p=l1

The only eigenvalue 1 is of multiplicity 6. Note that the corresponding
eigentensors M, (p = 1,2,...,6) form an orthonormal basis of Lin’.

Using the orthonormal basis (??) we can write keeping (1.92) and (5.89), in
mind

1
fpsph = g M; +M, +M3) © (M; + M, + M;3)

(111000
. 111000

1{111000
= Y PMM,OM,. where PS5 =31 000000
000000
1000000 |

pq=1

Due to the structure of this matrix the eigenvalue problem can be solved sepa-
rately for the upper left and lower right 3 x 3 submatrices. For the latter (zero)
matrix all three eigenvalues are zero and every set of three linearly independent
vectors forms eigenvectors (eigentensors). The characteristic equation of the
upper left submatrix is written by

1 1 1

Z A - Z

3 3 3

o1 —0 = —A*4+A2=0
3 3 3

1 1 1

-

3 3 3

and yields the following eigenvalues

Ar=1, Ays=0.
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The eigenvector (eigentensor) IVII = A'M; corresponding to the first eigenvalue
results from the equation system (4.16),

—%Al +%A2 +§A3 =0,
L 2l
Ll 2
which leads to A' = A? = A3. Thus, the unit eigenvector (eigentensor)

corresponding to the eigenvalue A = 1 is Ml = % M; + M; + M3).
Components of the eigenvectors (eigentensors) corresponding to the double
eigenvalue A,/3 = 0 satisfy the single equation

1 1 1

A+ AT+ A =0 9.25

3 + 3 + 3 (9.25)
One of the eigenvectors (eigentensors) can be obtained by setting for example
A3 = 0. Thus, A = —A? which results in a unit eigenvector (eigentensor)
M, = —%Ml + “/TEMZ. For the spectral representation the third eigenvector

(eigentensor) should be orthogonal to the second one so that

—ﬁAl + QAZ =0 = A'=4%

2 2
Solving this equation together with (??) we obtain the third unit eigenvector
(eigentensor) of the form M3 = —%Ml — %Mz + %My Summarizing
these results the solution of the eigenvalue problem for the tensor Py, can be
represented in the following form.

~ 1
A =1, MlZﬁ(M1+M2+M3),
—~ 2 2
Ay =A3=As=As5=Ag =0, MZ:_§M1+§M2’
~ 6 6 6 ~
M3:_%Ml_%mz+*§M3, M, =M, p=456 (926)

where the tensors My, (¢ = 1,2, ..., 6) are defined by (??).

(c) For the super-symmetric counterpart of the deviatoric projection tensor (5.89),
(n = 3) we can write
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(d)

9 Solutions

-2 1 1 7]
S ———-000
3 3 3
1 2 1
— 22000
6 3 3 3
:P(SieV: Z ?ggvMPQMfI’ where [ngv = _l _l g()()()
p.g=1 3 3 3
0 0 0100
0O 0 0010
. 0 0 0001 |

The eigenvalues of P}, can be obtained as linear combinations of those ones
of Pypn and J° as Ay = 0, A, = 1 (¢ =2,3,...,6). The corresponding
eigentensors are again given by (2?).

With respect to the orthonormal basis (??) the elasticity tensor (5.93) can be
represented by

6
€= > eMM, oM,

pq=1
where B _
2G+A A A 0 0 O
A 26442 A 0 0 O
(€] = A A 2G4+A2 0 0 O
0 0 0 26 0 0
0 0 0 026G 0
| 0 0 0 0 0 2G |

The eigentensors of € are the same as of Py, and Py, and are given by (??).

The eigenvalues are as follows: A} =2G 431, A, =2G (¢ =2,3,...,6). They

can be obtained as linear combinations of those ones of Py, and Py,

9.6 Exercises of Chap.6

6.1

(a)
(b)

/ (QAQ") = aQAQ"b # aAb.

Since the components of A are related to an orthonormal basis we can write
FA)=A"T+A? + AP = Al + A% + AL = A = A

Trace of a tensor represents its isotropic function.
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For an isotropic tensor function the condition (6.1) f(QAQ") = f (A) must
hold on the whole definition domain of the arguments A and YQ € Orth®. Let
us consider a special case where

100 010
A=1]1000 ei®ej, Q= —100 ei®€j.
000 001
Thus,
000
A=QAQ"=|010|e;®e;
000

and consequently
f(A) :All +A12+A13 =1 7éO:A/ll +A/12+A/13 — f(QAQT),
which means that the function f (A) is not isotropic.

detA is the last principal invariant of A and represents thus its isotropic tensor
function. Isotropy of the determinant can, however, be shown directly using the
relation det (BC) = detBdetC. Indeed,

det (QAQ") = detQ detA detQ" = detQ detQ" detA
= det (QQT) detA = detl detA = detA, VQ € Orth”.
Eigenvalues of a second-order tensor are uniquely defined by its principal

invariants and represent thus its isotropic functions. This can also be shown
in a direct way considering the eigenvalue problem for the tensor QAQ" as

(QAQ") a = Aa.
Mapping both sides of this vector equation by QT yields
(Q"QAQ") a = AQ"a.
Using the abbreviation @’ = Q"a we finally obtain
Ad' = \d'.
Thus, every eigenvalue of QAQT is the eigenvalue of A and vice versa. In other

words, the eigenvalues of these tensors are pairwise equal which immediately
implies that they are characterized by the same value of Ap,.. The tensors
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obtained by the operation QAQ" from the original one A are called similar
tensors.

6.2 Inserting

M:%(A—i-AT), W= %(A—AT)
into (6.17) we obtain
trtM = % (trA + trAT) = trA,
trM? = itr (A + AT)2
1 2 T T T\2
= Z[trA +1r (AAT) + tr (ATA) + 1r (AT)]
= % [trA” + r (AAT)].
trM? = %tr (A + AT)3
1 3 2AT T T\2
= g{trA +tr (A%AT) + ir (AATA) + tr [A (AT)]

+ r(ATA?) + tr (ATAAT) + 1 [ (AT)7 A + 1w (A7)}
= % [trA? + 3tr (A?AT)].
W2 = itr (A—A")

_ ! [tr A2 (AAT) —tr (ATA) + tr (AT)Z]

~

= 2 A~ (aAT)].

r (MW?) = _ir [ (A + A7) (A - AT)’]

O | =—

fira” — tr(A°A7) — tr(AATA) + A (A7)’]

0| —

+ r(ATA%) -t (ATAAT) — [(AT)ZA] +tr (AT)3}

= [mA’ —w(a2A)].
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tr (M2W?) = %tr [(A +A")’ (A AT)Z]

— %tr{[Az + AAT £ ATA + (AT)2] [AZ—AAT—ATA+ (AT)Q]}

I
_ 1—6tr[A4 — APAT - A2ATA + A2 (A7)’ + AATA? — AATAAT

—AATA+A(AT) +ATA® — ATA’AT — ATAATA

+ ATA (AT)" + (AT) A% - (AT)" AT — (AT)" A + (A7)

_ 1 4 T\2
= g[trA —w (AAT)’],
tr (M*W>MW)

1
- au[ﬁ — APAT — A2ATA + A2 (A7)’ 4+ AATA? — AATAAT

~AATA+A(AT) + ATA® — ATA’AT — ATAATA
+ ATA (A7) + (AT)"A% - (AT)" AAT - (AT) A + (AT)']
[A%— AT+ ATA - (A7)']}

= %u (A7) A%ATA - A2 (AT)" AAT].

Finally, trA* should be expressed in terms of the principal traces trA’ (i = 1,2, 3)
presented in the functional basis (6.18). To this end, we apply the Cayley-Hamilton
equation (4.95). Its composition with A yields

A — LA’ + IRA? —TILA =0,
so that

trA* = I\ trA> — [\ trA? + M, trA,

where Ia, IIx and Il are given by (4.29). Thus, all the invariants of the functional
basis (6.17) are expressed in a unique form in terms of (6.18).
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6.3 Equation (6.44):

d%f(A—i—tX)g(A—i—tX)

t=0

d d
=5/ AtX) g@+ A g@+iX)

=0 t=0
=[f(A)a:X]gA)+ f(A)[g(A).a:X]
=[gA) fA) A+ (A)gA)a]: X

6.4 By Theorem 6.1 ¥ is an isotropic function of C and L; (i = 1,2, 3). Applying
further (6.15) and taking into account the identities

LL; =0, Lf=L, ulf=1i#jij=123%k=12.. (927
we obtain the following orthotropic invariants
rC, «C?, wC?,
tr(CLy) = tr (CL}), tr(CLy) =tr(CL3), tr(CL3) = tr(CL3),
tr (C2L1) =tr (CZL%) , tr (C2L2) =tr (CZL%) , tr (C2L3) =tr (C2L§) ,
tr(LiCLj)=tr(CLjLi)=tr(LjLiC):O, i 75] =1,2,3. (9.28)
Using the relation

> Li =1 (9.29)
one can further write
tr(C)=C:I=C:(L; +L,+Lj)
=C:L;+C:Ly+C:L; =tr(CL;) + tr (CLy) + tr (CL3) .
In the same manner we also obtain
tr (C?) = tr (C°Ly) + tr (C°Ly) + tr (C°Ls) .

Thus, the invariants trC and trC? are redundant and can be excluded from the func-
tional basis (??). Finally, the orthotropic strain energy function can be represented

by

¥ = [tr(CLy) . tr(CLy)  tr (CLy).
tr (C°Ly) . tr (C°Ly) , tr (C’Ls) , trC*] . (9.30)
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Alternatively, a functional basis for the orthotropic material symmetry can be
obtained in the component form. To this end, we represent the right Cauchy-Green
tensor by C = C”1; ® I ;. Then,
r(CL) = (C"L®1)):1; ®1; =C", i=1,2]3,
r (C2Ly) = (C") + (C)* + (C)*, i=1,2,3,
(€)= (") + (C2) + (CP)’ +3(C?)* (" + C?)

+3(C1%)*(C" 4+ C¥) +3(C¥)* (C2 + CF) + 6C1>CBC.
Thus, the orthotropic strain energy function (??) can be given in another form as
) I:Cll’CZZ’ 3, (C12)2 ’ (C13)2 ’ (C23)2,C12C13C23] '

6.5 Equations (6.52), (6.54), (6.80), (6.136), (6.140), (6.144) (6.149) and (2?):

3 3 7
: S
i +2Y ———— (CL; + L;C),
S= at c3 Zatr(CL) + ;atr(CZL,-) (CL +LC)
P o 0%y
6—— C*OC2+4 L OL;
wConc - OC T Z | 0tr (CL;) dtr (CL; ) oL
2y
+4 Z (CL; +L;C) © (CL; +L;C)

atr (C2L;) dtr (C2L;)

. 2 2 .
+12 Zatr(CL)atrc3 (LoC+CoL)

3y
12) —— - [C*© (CL; + LiC) + (CL; + L;,C) 0 C?
+ 2 G (COL,) 30 [C* ® (CL; + L;C) + (CL; + L;C) © C?]

3

Py
+ 4,2::1 70 (CL) o (C°L,) [L: ® (CL; + L,;C) + (CL; + L;C) 0 L;]

9 ,
I—W(Li®1+1®Li)5.
=1 i

T 123
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6.6 Any orthotropic function S(C) is an isotropic function of C and
L; (i =1,2,3). The latter function can be represented by (6.117). Taking (??)
and (??) into account we thus obtain

3
= Z [O{,'Li + ,3,' (CL, + L;C) + Vi (CZL,' + L; CZ)] s
i=1

where o;, f; and y; (i = 1,2, 3) are some scalar-valued orthotropic functions of C
(isotropic functions of Cand L; (i = 1,2, 3)).

6.7 Applying (6.15) and taking into account the identities L' = L;, trL]" =
1(@=1,2;m=1,2,...) we obtain similarly to (??)

rC, «wC?, wC3,

tr(CLy) = tr (CL}), tr(CLy) = tr(CL3),
tr (LiL,) = tr (L L3) = tr (L{Ly)
=L ®1): (12 ®1) = (1) -15)° = cos* ¢,

tr (C°Ly) = tr (C’L}), tr (C?L,) = tr (C?L3), tr(LiCLy),

where ¢ denotes the angle between the fiber directions /| and /,. Thus, we can write
¥ = ¢ [rC, rC?, rC?, tr (CLy) , tr (CLy)

tr (C°Ly) , tr (C’Ly) , tr (LiLy) , tr (L CLy)] .
6.8 Using (6.59), (6.137), (6.139) and (6.144) we obtain

0
S = 2% + pC! = 2¢11c.c +2¢0lc.c +pC!

=2¢1+42¢, Icl— C) 4+ pC™' =2 (¢ + e21c) I — 2¢,C + pC~!,

S S
C= 256 = 4o I0I-F)-2p(C'®C™').

6.9 Using the abbreviation A; = /11.2 (i = 1,2,3) for the eigenvalues of C we can
write

m

¥ (C) = Z

| kS

( 0(,/2 U‘r/2+A0‘r/2 )
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Assuming further that A} # A, # A3 # A, and applying (6.74) we obtain

0 i ay/2— ay/2— ay/2—
S = 2% = Z,ur (Al'/z "Avc +1\2’/2 "Asc +/\3’/2 11\3,C)
r=1

m m
— ZMI (Alfr/Z—lPI + Agr/z—lpz + Agr/2_1P3) — Zurcar/Z—l. (931)
r=1 r=1

Note that the latter expression is obtained by means of (7.2).

6.10 Using the identities
QLQ=QLQ =L, VQeg,
and taking (1.151) into account we can write
tr (QCQ'L;QCQ'L;) = tr (CQ'L;QCQ'L; Q)
=tr (CLiCLj) , YQeg,.
Further, one can show that
tr (CL,CL;) = t” (CL;), i =1,2,3, (9.32)

where we use the abbreviation tr? (e) = [tr (.)]2_ Indeed, in view of the relation
tr(CL;) =C: (I, ®1;) =1,Cl; we have

tr(CLiCL;) = tr(Cli ®I;Cl; ® l,) = l,'Cl,'tI'(Cll‘ X l,)
=1,Cl;tr (CL;) = > (CL;), i=1,2,3.
Next, we obtain

tr (C’L;) = tr (CICL;) = tr[C (L; + L, + L3) CL;]
3
=Y r(CL;CL;), i=123
j=1

and consequently
tr (CL,CL,) + tr (CL;CL;) = tr (C°L;) — tr* (CLy),

tr (CL;CL,) + tr (CL;CL,) = tr (C°L,) — tr* (CL,)
tr (CLCL3) + tr (CL,CL3) = tr (C°L3) — tr* (CL3) .
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The latter relations can be given briefly by
tr (CL;CL;) + tr (CLtCL;)
=t (CL;) -t (CL)), i#j#k#iii j.k=123.
Their linear combinations finally yield:

tr (CL;CL;) = % [tr (CPLy) + tr (C2L;) — tr (C2Ly) ]

— % [t? (CL;) + t* (CL;) — tr* (CLy)]

wherei # j #k #i;i,j,k=1,2,3.
6.11 We begin with the directional derivative of tr (EL,EL j):

%tr[(l:: + tX) L; (E + tX) Lj]

t=0

d rhLE E 3 2
= o [ELEL; + ¢ (XLEL; + ELXL)) + ’XL:XL,;]

=0
= (XL;EL; + EL;XL;) : I = (XL;EL; + L;EL;X) : I
= (LEL; + L;EL;) : X" = (L;EL; + L;EL;)" : X,

Hence,
tr(EL EL; ) E_LEL +L; EL;.

For the second Piola-Kirchhoff stress tensor S we thus obtain

Iy
S=-F = Za,,Ltr (EL;) Za,,tr (EL;)

i,j=1 lj—l

3
+ Y Gy (LEL; + L;EL;)

ij=1
J#i

3 3
= Z a,'jLitl’ (ELJ) +2 Z G,’jLiELj.
ij=1 i.j=1
J#i
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By virtue of (5.42), (6.137), (6.140) and (6.144) the tangent moduli finally take the
form

S o -
O i,/‘;l
J 1

6.12 Setting (6.167) in (6.166) yields
¥ (B) = sante (BLy) + Jan [o? (BLy) + 0 (ELy)]
+a [tr (ELy) tr (ELy) + tr (EL; ) tr (EL3) |
+axtr (ELy) tr (EL3) + (axn —axn)tr (ELZEL3)

+2G; [tr (EL,EL,) + tr (EL,EL3)] .
Thus, we can write keeping in mind (??)
¥ (B) = Sante (BLy) + S e (BLo) + tr (BLs)
taptr (BL;) [tr (L) + tr (EL3)]
+% (az — az) tr (EL, + ELs) + 2G ,tr [EL E (L, + Ls)] .
Using the abbreviation L = L; and taking (??) into account one thus obtains
¥ (B) = gt (BL) + Jass [oF — tr (BL) |
+aptr (EL) [tE — tr (EL)| + 2Gy, [tr (E’L) — t” (EL)]
43 (@ —a) [ — 21 (L) + 0 (BL)]
Collecting the terms with the transversely isotropic invariants delivers

~ 1 - 1 . -
v (E) = §a23tr2E + E (a22 — 6123) trE? + (6123 —day + 2G12) tr (EZL)

1 1 N ..
+ (Eall + Eazz —diy — 2G12) tr? (EL) + (alz — ay) trEtr (EL) .
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It is seen that the function 1//(I:]) is transversely isotropic in the sense of the
representation (6.29). Finally, considering (6.168) in the latter relation we obtain
the isotropic strain energy function of the form (6.116) as

v (E) = %Atrzl:l + GuE?.

6.13 The tensor-valued function (6.120) can be shown to be isotropic. Indeed,
2(QA;Q".QX;Q") = Q"¢ (Q"QA;Q'Q")Q". VQ € Orth",

where Q” is defined by (6.39). Further, we can write taking (6.41) into account

Q//Tg (Q//QAiQTQ//T) Q// — Q//Fg (Q*Q/AiQ/TQ*T) Q//

— QIITQ*g (Q/AzQ,T) Q*TQ// — QQITg (Q/A’QIT) Q/QT
= Qg (AHXJ) QTa

which finally yields

¢ (QA,Q".QX;Q") = Qg (A;.X;)Q", VQ € Orth".
Thus, the sufficiency is proved. The necessity is evident.

6.14 Consider the directional derivative of the identity A=*A*¥ = I. Taking into
account (2.9) and using (6.133) we can write

d —k
— (A+1X
g At+X)

k—1
AF AT (Z A"XAk—l—") =0
=0 i=0

and consequently

d
— A +X)7*
dt( + tX)

k—1
— _A—k (Z AiXAk—l—i> A—k
t=0

i=0
k—1
=— ) ATEXAT
i=0

Hence, in view of (5.17),

k
AF=— Z ARl g AT (9.33)
j=1
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6.15 Equations (2.4), (2.7), (5.16), (5.17), and (6.128):

dr -
(fG).a:X = E[f(A—i—tX)g(A—HX)] _

d d
= —f(A+:X G —g(A+1X
TS A+X)| G+ fog(A+1X)

t=0

=(fa:X)G+ [(Ga:X)

=(GO fa+fGa): X,

(G:H),:X = %[g(A+tX):h(A+tX)]

t=0

d d
= —g(A X :H c—h(A X
dtg( + tX) + G 5 (A +tX)

=0
=(Ga:X):H+G:(H,:X)
=MH:GA+G:H,,):X, VXelLin,
where f = f (A),G = g (A) and H = & (A).
6.16 In the case n = 2 (6.159) takes the form
0= A7 (DI [r (AT'B) I-BA™]
k=1 i=1

= Aftr(B)I—B] -1\ [tr (B) I — B] + tr (AB) I — BA

and finally

AB + BA — tr (B)A — tr (A) B + [tr (A) tr (B) — tr (AB)] I = 0.

9.7 Exercises of Chap.7

7.1 By using (4.83) and (4.85) we can write

R(w) =P, + einQ + e_in3.

253

t=0

t=0

(9.34)
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Applying further (7.2) we get

R (0) = 1Py + () Py + (¢7) Py
=P 4+ P, + ¢ 7“P; = R (aw) .

7.2 Equations (7.5);, (??) and (??):

s s
U:ZAiPi :Z\/A_iai®ai =e3Qe3
i=1 i=1

+VA D) e S
1+A1 e 1+A12 14+ A, ! 1+A12

As 1 As
+vVA e ® e; — e
(«/_l—i-A_g VTR A, 2) («/1'+A_2 VT A 2)

+2
el®81+L(6’1®6’2+82®81)+y—82®82

2
P4 y:+4 y:+4

+e3 ®es.

7.3 The proof of the first relation (7.21) directly results from the definition of the
analytic tensor function (7.15) and is obvious. In order to prove (7.21), we first write

£ (4) = —gﬁf@)(zl—A) dc, h(A) = —35 ) (ET-A) " az,

where the closed curve I'" of the second integral lies outside I which, in turn,
includes all eigenvalues of A. Using the identity

-1

-2 (¢1-4)" = (¢ =97 [@@-a)7 - (1-4)"]

valid both on I" and I"’ we thus obtain

_ 1 / _ =1 (17 _ =1 /
@) = ﬁgﬁr FOB(E) Q- (E1-A) " dedg

U R g s
e RO e  TG R VR
1 n L S ©) ’ L qer
+2m h( )Zni p§—§’d§(§l_ ) a’
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Since the function f () (¢ — ¢’ )_1 is analytic in ¢ inside I" the Cauchy theorem
(see, e.g. [? ]) implies that

1 ;@ ..

mh e ®=
Noticing further that

1 hg) . _

7 F/C,_édé =h()
we obtain

_ L h(€) o r  anmt
FOnW = 5= ¢ @5 S @A

_ b A
St WAGUIGIG EYOREY

- zimgﬁrg(z)(a—A)—‘dzzg(Ay

Finally, we focus on the third relation (7.21). It implies that the functions &
and f are analytic on domains containing all the eigenvalues A; of A and
h(A;) (i =1,2,...,n) of B=h(A), respectively. Hence (cf. [? ]),

Fh@) =B = b rOC-BE 039
r
where I" encloses all the eigenvalues of B. Further, we write
@G-8 = @-h @) =5 (-hE) " E1-A) e ©36)

where I'’ includes all the eigenvalues A; of A so that the image of I'” under # lies
within I". Thus, inserting (??) into (??) delivers

1 _ NS 7 e T,
f(h(A))——(zm)z b ro-n@)” wr-a) ara

- gﬁf@) ¢—n (&) dz (¢1-A)" a

(@i 1)

1 ’ ’ =1 1o
— e e e
=L e@)e1-a)ar =g ).

2mi Jro
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7.4 In view of (??) we can first write
m
S(O)=g(C) =) pCr/".
r=1
Equations (6.149) and (7.49) further yield
C=28¢c=2¢(C),c=2 Z GiiP, ®P;,
ij=1
where P;, (i = 1,2, 3) are given by (??) while according to (7.50) and (??)

m
2Gi =28 (M) = ) s (@ =2 AF*7?

r=1

m or—4
VE+ 2+
ZZur(a,—z)(—Jr; V) L =12,
r=1

2G33 =2g" (A3) = Z W (o —2) A;z,/Z—Z = Z wr (o —2),

r=1 r=1

_ _ &A1) —g(A) _ < Aor/2-1 ar/2-1
261 =26y = 25— Z_: e (AT = g

IVES e

g(Ai)—g(Ay) _ Aer/2-1 ar/2—1
2G; 2G;3; =2 r — Ay
’ } Ai — As - A3 Zl ( 3 )

- Va4 + y + y) .

-1, i=12.
Y2ty \/V—+ Z (
7.5 Inserting into the right hand side of (7.54) the spectral decomposition in terms

of eigenprojections (7.1) and taking (4.46) into account we can write similarly to
(7.17)
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-1

—95<§I—A) dz—%gﬁr a-Y e, | a
j=1

) -1
1 K

1 _
=5= Do (E-2))P; dfzz—mf]gi;(f—l]‘) 'P;dg

I j=1

N
1 1
Aj) d¢|P
e A
i=
In the case i # j the closed curve I} does not include any pole so that

1
27r1 T

(§ A) d¢=46;. i.j=12,...s.

This immediately leads to (7.54).

7.6 By means of (7.43) and (7.83) and using the result for the eigenvalues of A by
N, A =6, A = —3 we write

p—zzj VI ST S LU
T T T T3 Tt

21
P,=1-P, = -I—-A.
39

Taking symmetry of A into account we further obtain by virtue of (7.56) and (7.84)

2
Pia= Z Ulpg (Ap 0 Aq)s

p.q=0
2A0; Ai +A s s
=— P+ (I®A+AQD) - ——— (A®A)
=2 (=4 (A — )
= —fJS — IA+AQID) ———(A®A
81 +243(® tael 729( DA
The eigenprojection P, corresponds to the double eigenvalue A = —3 and for this

reason is not differentiable.

7.7 Since A is a symmetric tensor and it is diagonalizable. Thus, taking double
coalescence of eigenvalues (??) into account we can apply the representations (7.77)
and (7.78). Setting there A, = 6, A = —3 delivers
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6 4 2e—3 6 _ a3
exp(A) = =2 1 STy
3 9
13e® +32e3 . 10e®— 1973
XP(A) 4 = T+ (AR T +IBA)
7eb + 11e73
————— (AR®A)°.
= (A®A)
Inserting
—-222
A= 214 |e;®e;
241

into the expression for exp (A) we obtain

e® 4+ 8e™3 20 —2e73 2e0 —2e73
exp(A) = 5 2e% —2e73 4e® + 5e73 4e® —de™? |e; Qe
20 —2e73 4e® —de™3 4ef 4 5¢73
which coincides with the result obtained in Exercise 4.15.

7.8 The computation of the coefficients series (7.89), (7.91) and (7.96), (7.97)
with the precision parameter & = 1 - 107 has required 23 iteration steps and has
been carried out by using MAPLE-program. The results of the computation are
summarized in Tables ?? and ??. On use of (7.90) and (7.92) we thus obtain

exp (A) = 44.969251 + 29.89652A + 4.974456A2,

exp(A).a = 16.205829° + 6.829754 I ® A + A ® I)® + 1.967368 (A ® A)*
+1.039719(I® A> + A>® 1) + 0.266328 (A ® A> + A ® A)
+0.034357 (A% ® A?)” .

Taking into account double coalescence of eigenvalues of A we can further write
A= (A, +A)A—2,AI=3A + 18L

Inserting this relation into the above representations for exp (A) and exp (A) ,a
finally yields
exp (A) = 134.509461 + 44.81989A,

exp (A) .4 = 64.76737F° + 16.59809 A ® A + A ® I)® + 3.87638 (A ® A)".

Note that the relative error of this result in comparison to the closed-form solution
used in Exercise 7.7 lies within 0.044%.
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Table 9.1 Recurrent calculation of the coefficients a);,’ )
(r) (r) (r)

r arw, arwg aywy

0 1 0 0

1 0 1 0

2 0 0 0.5

3 9.0 4.5 0

4 0 2.25 1.125

5 12.15 6.075 0.45

6 4.05 4.05 1.0125
23(-107°) 3.394287 2.262832 0.377134
@, 44.96925 29.89652 4.974456

Table 9.2 Recurrent calculation of the coefficients 51(72
(r)

(r) (r) (r)

r ar 56) ar (gq) aro, ary arky, ar&x»

1 1 0 0 0 0 0

2 0 0.5 0 0 0 0

3 0 0 0.166666 0.166666 0 0

4 4.5 1.125 0 0 0.041666 0

5 0 0.9 0.225 0.45 0 0.008333
6 4.05 1.0125 0.15 0.15 0.075 0

23 (-10*6) 2.284387 1.229329 0.197840 0.623937 0.099319 0.015781
Npg 16.20582 6.829754 1.039719 1.967368 0.266328 0.034357

9.8 Exercises of Chap.8

8.1 By (8.2) we first calculate the right and left Cauchy-Green tensors as

520 520
C=FF=|-2 80|e;®e/, b=FF' =280 |e¢;®e’,
0 01 001

with the following eigenvalues Ay = 1, A, = 4, A3 = 9. Thus, A; = VA, =1,
A = /Ay =2, 13 = /A3 = 3. By means of (8.11) and (8.12) we further obtain
Qo= 3,01 =13 ¢ = —g and

F11-20
3 5 1 1 .
U=§I+EC—@C2=§ 2140 |e; ®e’,
. 0 05
11 20
3 5 1 1 ,
V:§I+Eb_@b2:§ 214 0 ei®ej.
| 0 05
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Equations (8.16) and (8.17) further yield ¢ = g—z), g1 = —}1, G = % and
340
37 1 1 .
R:F(%I—ZC+@C2) = | 430 |e@el.
005

8.2 Equations (4.44), (5.33), (5.47), (5.55) and (5.85);:
PPy =P P, +P; ®P;) : (P, P, + P, @ Py)°

=[(Pi®P; +P; @P) : (P, @ P, + P, @ Py)]°

1
3 {[Pi QP +P; @P + (Pi®P) + (P, ® Pi)t]

(PP, +P, QP
= (8ibj1 +8udjx) (Pi ®P; +P; ®@P;)°, i #j, k#L
In the case i = j or k = [ the previous result should be divided by 2, whereas for

i = j and k = [ by 4, which immediately leads to (8.65).
8.3 Setting f(1) = InA in (8.50) and (8.56); one obtains

s

. . 1 . “InA; —InA; _ .

B0 =m0y = Y2 e+ 30 ey
i=1 " ij=1 i

i#]
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Index

Algebraic multiplicity of an eigenvalue, 89, 94,  Complexification, 85

97, 101 Compliance tensor, 107
Analytic tensor function, 159 Components
Anisotropic tensor function, 125 contravariant, 42
Arc length, 64 covariant, 42
Asymptotic direction, 75 mixed variant, 42
Axial vector, 30, 58, 103 of a vector, 5
Composition of tensors, 21
Cone, 83
Basis of a vector space, 2, 3 Contravariant
Binomial theorem, 160 components, 42
Binormal vector, 66 derivative, 48
Biot strain tensor, 187 Coordinate
line, 39, 70
system, 37
Cardano formula, 91 transformation, 39
Cartesian coordinates, 38, 46, 50, 51, 55, 56, Coordinates
60 Cartesian, 38, 46, 50, 51, 55, 56,
Cauchy 60
integral, 161 cylindrical, 37, 40, 42, 50, 55, 60
integral formula, 158 linear, 38, 42, 45, 60
strain tensor, 107 spherical, 60
stress tensor, 15, 78, 107, 192 Covariant
stress vector, 16, 58, 79 components, 42
theorem, 16, 58 derivative, 48
Cayley-Hamilton equation, 172, 179, 184 on a surface, 72
Cayley-Hamilton theorem, 103, 159 Curl of a vector field, 56
Characteristic Curvature
equation, 88 directions, 74
polynomial, 88, 90, 91, 98, 103 Gaussian, 74
Christoffel symbols, 49, 50, 55, 61, 71, 82 mean, 74
Coacxial tensors, 138 normal, 73
Commutative tensors, 21 of the curve, 65
Complex radius of, 65
conjugate vector, 86 Curve, 63
number, 85 left-handed, 66
vector space, 85 on a surface, 70
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plane, 66
right-handed, 66
torsion of, 66
Cylinder, 70
Cylindrical coordinates, 37, 40, 42, 50, 55,
60

Darboux vector, 68
Defective
eigenvalue, 94
tensor, 94
Deformation gradient, 46, 89, 147, 168, 177,
181
Derivative
contravariant, 48
covariant, 48
directional, 128, 144
Gateaux, 128, 144
Determinant
Jacobian, 39
of a matrix, 39, 88
of a tensor, 91
Deviatoric
projection tensor, 118, 147
tensor, 30
Diagonalizable tensor, 94, 158, 162
Dimension of a vector space, 2, 4
Directional derivative, 128, 144
Divergence, 52
Dual basis, 7
Dummy index, 6
Dunford-Taylor integral, 157, 162

Eigenprojection, 94
Eigentensor, 116
Eigenvalue, 87
defective, 94
problem, 87, 116
left, 87
right, 87
Eigenvector, 87
left, 87
right, 87
Einstein’s summation convention, 6
Elasticity tensor, 107
Elliptic point, 75
Euclidean space, 6, 85, 86
Euler-Rodrigues formula, 15
Eulerian strains, 156
Exponential tensor function, 22, 95, 138, 168,
174

Index

Formulas
Frenet, 67
Newton-Girard, 90
Fourth-order tensor, 107
deviatoric projection, 118, 147
isochoric projection, 137, 148
spherical projection, 118, 147
super-symmetric, 114
trace projection, 118
transposition, 117
Frenet formulas, 67
Functional basis, 121
Fundamental form of the surface
first, 71
second, 73

Gateaux derivative, 128, 144
Gauss
coordinates, 69, 72
formulas, 72
Gaussian curvature, 74
Generalized
Hooke’s law, 118
Rivlin’s identity, 150
strain measures, 156
Geometric multiplicity of an eigenvalue, 89,
94,97, 101
Gradient, 44
Gram-Schmidt procedure, 7, 98, 100, 106
Green-Lagrange strain tensor, 142, 148,
156

Hill’s strains, 156
Hooke’s law, 118
Hydrostatic pressure, 59
Hyperbolic
paraboloidal surface, 82
point, 75
Hyperelastic material, 123, 136, 141, 148

Identity tensor, 19
Invariant

isotropic, 121

principal, 90
Inverse of the tensor, 24
Inversion, 24
Invertible tensor, 24, 95
Irreducible functional basis, 121
Isochoric

projection tensor, 137, 148
Isochoric-volumetric split, 136
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Isotropic
invariant, 121
material, 123, 141, 148
symmetry, 125
tensor function, 121

Jacobian determinant, 39

Kronecker delta, 6

Lagrangian strains, 156
Lamé constants, 118, 142
Laplace expansion rule, 104
Laplacian, 57
Left
Cauchy-Green tensor, 147, 177, 181
eigenvalue problem, 87
eigenvector, 87
mapping, 16, 18, 21, 57, 108-111
stretch tensor, 156, 177, 180
Left-handed curve, 66
Length of a vector, 6
Levi-Civita symbol, 11
Linear
combination, 3
coordinates, 38, 42, 45, 60
mapping, 12, 29-31, 107, 117
Linear-viscous fluid, 59
Linearly elastic material, 107, 141
Logarithmic tensor function, 157

Major symmetry, 114

Mapping
left, 16, 18, 21, 57, 108-111
right, 16, 108, 110

Material
hyperelastic, 123, 136, 141, 148
isotropic, 123, 141, 148
linearly elastic, 107, 141
Mooney-Rivlin, 123
Ogden, 123, 153, 175
orthotropic, 152
St.Venant-Kirchhoff, 142
time derivative, 185, 187
transversely isotropic, 125, 143, 148

Mean curvature, 74

Mechanical energy, 58

Membrane theory, 82

Metric coefficients, 19, 71

Middle surface of the shell, 77
Minor symmetry, 114
Mixed product of vectors, 10
Mixed variant components, 42
Moment tensor, 79
Momentum balance, 55
Mooney-Rivlin material, 123
Moving trihedron of the curve, 66
Multiplicity of an eigenvalue
algebraic, 89, 94, 97, 101
geometric, 89, 94, 97, 101

Navier-Stokes equation, 59
Newton’s identities, 90, 122
Newton-Girard formulas, 90
Normal

curvature, 73

plane, 71

section of the surface, 71

yield stress, 191

Ogden material, 123, 153, 175
Orthogonal
spaces, 30
tensor, 25, 99, 102
vectors, 6
Orthonormal basis, 6
Orthotropic material, 152

Parabolic point, 75
Permutation symbol, 11
Plane, 70
Plane curve, 66
Plate theory, 81
Point
elliptic, 75
hyperbolic, 75
parabolic, 75
saddle, 75
Polar decomposition, 177
Positive-definite tensor, 99, 105
Principal
curvature, 74
invariants, 90
material direction, 125, 152
normal vector, 66, 71
stretches, 156, 180, 182
traces, 90
Proper orthogonal tensor, 103
Pythagoras formula, 7

267
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Radius of curvature, 65 Strain energy function, 123
Rate of deformation tensor, 59 Strain tensor
Representation theorem, 139, 141 Biot, 187
Residue theorem, 161 Cauchy, 107
Ricci’s Theorem, 51 Green-Lagrange, 142, 148, 156
Riemannian metric, 71 Strains
Right Eulerian, 156
Cauchy-Green tensor, 105, 123, 126, 136, Hill’s, 156
141, 147, 177, 181 Lagrangian, 156
eigenvalue problem, 87 Seth’s, 156
eigenvector, 87 Stress resultant tensor, 79
mapping, 16, 108, 110 Stress tensor
stretch tensor, 156, 175, 177, 180 Cauchy, 15, 78, 107
Right-handed curve, 66 second Piola-Kirchhoff, 137, 141
Rivlin’s identities, 150 Stretch tensors, 156, 177, 181
Rotation, 14 Structural tensor, 125
tensor, 14, 177, 180, 181 Summation convention, 6
Rychlewski’s theorem, 143 Super-symmetric fourth-order tensor, 114
Surface, 69
hyperbolic paraboloidal, 82
Saddle point, 75 Sylvester formula, 96, 162
Scalar Symmetric
field, 43 generator, 142
product, 6 tensor, 24, 97, 98
of tensors, 26 Symmetry
Second major, 114
Piola-Kirchhoff stress tensor, 137, 141, minor, 114
152, 188 Symmetry group, 125
viscosity coefficient, 59 anisotropic, 126
Second-order tensor, 12 isotropic, 125
Seth’s strains, 156 of fiber reinforced material, 152
Shear orthotropic, 152
viscosity, 59 transversely isotropic, 125, 143
yield stress, 194 triclinic, 125
Shell
continuum, 76
shifter, 78 Tangent
Similar tensors, 244 moduli, 148
Simple shear, 46, 47, 89, 168, 174, 180 vectors, 39
Skew-symmetric Tensor
generator, 142 defective, 94
tensor, 24, 101, 103 deviatoric, 30
Spectral diagonalizable, 94, 158, 162
decomposition, 94, 116 field, 43
mapping theorem, 87 function, 35
Sphere, 70 analytic, 159
Spherical anisotropic, 125
coordinates, 60 exponential, 22, 95, 138, 168, 174
projection tensor, 118 isotropic, 121
tensor, 30 logarithmic, 157
Spin tensor, 58 identity, 19
St.Venant-Kirchhoff material, 142 invertible, 24, 95

Straight line, 63 left Cauchy-Green, 147, 177
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left Cauchy-Green tensor, 181 Unit vector, 6
left stretch, 156, 177, 180

monomial, 22, 159 Vector

of the fourth order, 107 axial, 30, 103

of the second order, 12
of the third order, 30
orthogonal, 25, 99, 102
polynomial, 22, 95, 138

binormal, 66
complex conjugate, 86
components, 5

positive-definite, 99, 105 Darboux, 68
. field, 43
power series, 22, 156 .
function, 35
product, 17
length, 6
proper orthogonal, 103 roduct of vectors, 10, 13
right Cauchy-Green, 105, 123, 126, 136, 5 1 T
141, 147, 177 pace,
right Cauchy-Green tensor, 181 basis of, 2, 3
g y > complex, 85

right stretch, 156, 177, 180

rotation, 14, 177, 180, 181

skew-symmetric, 24, 101, 103

spherical, 30

structural, 125

symmetric, 24, 97, 98
Tensors

coaxial, 138

commutative, 21

composition of, 21

scalar product of, 26
Third-order tensor, 30

dimension of, 2, 4
Euclidean, 6
zero, 1
Vectors
mixed product of, 10
orthogonal, 6
tangent, 39
Velocity gradient, 155, 168, 174
Vieta theorem, 74, 90, 91, 159
Von Mises yield function, 191

Torsion of the curve, 66 Weingarten formulas, 73

Torus, 75

Trace, 28. . Yield stress

Trace projection tensor, 118

T ition. 22 normal, 191
ransposition, shear, 194

Transposition tensor, 117
Transverse shear stress vector, 79
Transversely isotropic material, 125, 143, 148 Zero tensor, 13
Triclinic symmetry, 125 Zero vector, 1
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