
DUANE BIRNBAUM

Microsoft®

Excel VBA
Programming
for the Absolute
Beginner
Second Edition

© 2005 by Thomson Course Technology PTR. All rights reserved. No
part of this book may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, record-
ing, or by any information storage or retrieval system without written
permission from Thomson Course Technology PTR, except for the
inclusion of brief quotations in a review.

The Premier Press and Thomson Course Technology PTR logo and
related trade dress are trademarks of Thomson Course Technology PTR
and may not be used without written permission.

Microsoft is a registered trademark of Microsoft Corporation in the
United States and/or other countries.

All other trademarks are the property of their respective owners.

Important: Thomson Course Technology PTR cannot provide software
support. Please contact the appropriate software manufacturer’s tech-
nical support line or Web site for assistance.

Thomson Course Technology PTR and the author have attempted
throughout this book to distinguish proprietary trademarks from
descriptive terms by following the capitalization style used by the
manufacturer.

Information contained in this book has been obtained by Thomson
Course Technology PTR from sources believed to be reliable. However,
because of the possibility of human or mechanical error by our sources,
Thomson Course Technology PTR, or others, the Publisher does not
guarantee the accuracy, adequacy, or completeness of any information
and is not responsible for any errors or omissions or the results
obtained from use of such information. Readers should be particularly
aware of the fact that the Internet is an ever-changing entity. Some
facts may have changed since this book went to press.

Educational facilities, companies, and organizations interested in
multiple copies or licensing of this book should contact the publisher
for quantity discount information. Training manuals, CD-ROMs, and
portions of this book are also available individually or can be tailored
for specific needs.

ISBN: 1-59200-729-5

Library of Congress Catalog Card Number: 2004114911

Printed in the United States of America

05 06 07 08 09 BH 10 9 8 7 6 5 4 3 2 1

Thomson Course Technology PTR,
a division of Thomson Course Technology

25 Thomson Place
Boston, MA 02210

http://www.courseptr.com

Publisher and General Manager
of Course Technology PTR:
Stacy L. Hiquet

Associate Director of Marketing:
Sarah O’Donnell

Marketing Manager:
Heather Hurley

Manager of Editorial Services:
Heather Talbot

Acquisitions Editor:
Mitzi Koontz

Senior Editor:
Mark Garvey

Marketing Coordinator:
Jordan Casey

Project Editor:
Scott Harris/Argosy Publishing

Technical Reviewer:
Arlie Hartman

PTR Editorial Services
Coordinator:
Elizabeth Furbish

Copy Editor:
D. A. de la Mora

Interior Layout Tech:
Shawn Morningstar

Cover Designer:
Mike Tanamachi

CD-ROM Producer:
Keith Davenport

Indexer:
Nancy Fulton

Proofreader:
Jan Cocker

First, a special thank you goes out to my family:

• My wife Jill, for putting up with the late nights and weekends I spent
writing

• My 8-year old son Aaron, who thinks it’s cool that his Dad writes such
long books with so many words, but wishes it included chapters on
dragons or wizards

• My 5-year old son Joshua, who wished his Dad would have played more
games with him instead of working on this book. Don’t worry, Josh;
because of the guilt trip you sent me on, I’ll more than make it up to you.

I would also like to thank Scott Harris at Argosy Publishing, Mitzi Koontz, and all
of the other contributors associated with Course Technology for their invaluable
help in putting this book together.

Acknowledgments

D
uane Birnbaum began programming in graduate school, where he wrote
custom software for interfacing the electronic equipment required for his
experiments and analyzing the data obtained from them. Since completing

his Ph.D. in physical chemistry in 1991, he has worked as a post-doctoral and research
scientist in academia and industry while continuing to teach on a part-time basis.
He has been teaching courses in introductory programming, database design, and
data analysis in the Computer Science department at Indiana University/Purdue
University at Indianapolis for the past 8 years.

About the Author

Introduction . x

Chapter 1 Visual Basic for Applications with Excel 1
Project: Colorful Stats . 1

Installing and Enabling VBA . 3

The VBA Integrated Development Environment (IDE). 5

Getting to the IDE from Excel . 5

Components of the IDE . 5

Programming Components within Excel . 10

Macro Selection . 10

The Visual Basic Toolbar . 11

Getting Help with VBA . 15

VBA Help . 16

Constructing the Colorful Stats Program . 17

Requirements of the Colorful Stats Program . 18

Chapter Summary . 22

Chapter 2 Beginning Programs with VBA25
Project: Biorhythms and the Time of Your Life . 25

Variables, Data Types, and Constants . 26

Declaring Variables. 27

Data Types . 31

Constants . 40

Simple Input and Output with VBA . 40

Collecting User Input with InputBox() . 40

Output with MsgBox() . 41

Manipulating Strings with VBA Functions . 42

Fun with Strings . 43

Constructing the Biorhythms and the Time of Your Life Program 47

Requirements for Biorhythms and the Time of Your Life 48

Designing Biorhythms and the Time of Your Life . 48

Coding Biorhythms and the Time of Your Life. 49

Chapter Summary . 54

Contents

Chapter 3 Procedures and Conditions55
Project: Poker Dice . 55

VBA Procedures . 56

Event Procedures. 56

Private, Public, and Procedure Scope . 60

Sub Procedures . 60

Function Procedures . 64

Logical Operators with VBA . 69

Conditionals and Branching. 71

Constructing the Poker Dice Program . 77

Requirements for Poker Dice . 77

Designing Poker Dice . 78

Coding Poker Dice. 81

Chapter Summary . 97

Chapter 4 Loops and Arrays .99
Project: Math Game. 100

Looping with VBA . 100

Do Loops . 101

For Loops . 103

Input Validation. 107

Validation with the InputBox() Function. 107

Validation with a Spreadsheet Cell. 109

Arrays . 109

One-Dimensional Arrays . 111

Multi-Dimensional Arrays . 114

Dynamic Arrays . 116

Programming Formulas into Worksheet Cells . 120

A1 Style References. 120

R1C1-Style References . 122

Constructing the Math Game. 123

Requirements for the Math Game . 123

Designing the Math Game . 124

Coding the Math Game Program . 134

Chapter Summary . 147

vi Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Chapter 5 Basic Excel Objects .149
Project: Battlecell. 149

VBA and Object-Oriented Programming . 150

Objects Defined . 151

VBA Collection Objects. 153

The Object Browser . 155

Top-Level Excel Objects. 160

The Application Object . 160

The Workbook and Window Objects . 161

The Worksheet Object . 169

The Range Object . 170

Working with Objects . 173

Constructing Battlecell . 177

Requirements for Battlecell . 177

Designing Battlecell . 180

Coding Battlecell . 182

Chapter Summary. 205

Chapter 6 VBA UserForms and Additional Controls 207
Project: Blackjack . 208

Designing Forms with VBA . 208

Adding a Form to a Project. 209

Components of the UserForm Object . 210

Adding ActiveX Controls to a Form . 212

Showing and Hiding Forms . 213

Modal Forms. 214

Designing Custom Dialog Boxes Using Forms . 215

Derived Data Types in VBA . 233

Defining Custom Data Types in VBA . 234

Defining Enumerated Types in VBA . 235

Chapter Project: Blackjack . 237

Requirements for Blackjack . 237

Designing Blackjack . 239

Writing the Code for Blackjack . 246

Chapter Summary. 266

viiContents

Chapter 7 Error Handling, Debugging,
and Basic File I/O .269
Project: Word Find . 269

Error Handling. 270

Using the On Error Statement . 271

Debugging. 274

Break Mode. 274

The Immediate Window . 275

The Watch Window . 277

The Locals Window. 279

File Input and Output (I/O) . 279

File I/O Using Workbook and Worksheet Objects . 281

Using VBA File I/O Methods . 282

Chapter Project: Word Find. 296

Requirements for Word Find . 296

Designing Word Find . 298

Writing the Code for Word Find . 301

Chapter Summary. 326

Chapter 8 Using XML with Excel-VBA Projects 329
Project: Revisiting the Math Game . 329

Introduction to XML . 330

What Is XML? . 331

XML Syntax. 334

XML Schemas . 337

XML Validation . 338

XML and Excel . 338

XML and VBA . 343

The XmlMap Object . 345

Chapter Project: The Math Game. 349

Requirements for the Math Game Program . 350

Designing the Math Game . 351

Coding the Math Game Program . 357

Chapter Summary. 373

viii Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Chapter 9 Excel Charts .377
Project: The Alienated Game . 377

The Chart Object . 378

Accessing Existing Charts . 379

Manipulating Charts . 383

Creating Charts . 388

Chart Events. 392

Chapter Project: The Alienated Game. 396

Requirements for the Alienated Game . 397

Designing the Alienated Game . 397

Coding the Alienated Game . 402

Chapter Summary . 425

Chapter 10 VBA Shapes .427
Project: Excetris . 427

The Shapes Collection and Shape Objects . 428

Manipulating a Shape Object. 430

The ShapeRange Collection Object . 432

Activating Shape Objects . 435

The OLEObjects Collection . 436

Chapter Project: Excetris . 439

Requirements for Excetris. 439

Designing Excetris . 441

Coding Excetris . 445

Chapter Summary . 471

A Final Word. 471

Index .473

ixContents

V
isual Basic for Applications (VBA for short) is a programming environment
designed to work with Microsoft’s Office applications (Word, Excel,
Access, and PowerPoint). Components in each application (for example,

worksheets or documents) are exposed as objects to the programmer to use and
manipulate to a desired end. Almost anything you can do through the normal use
of the Office application can also be automated through programming.

VBA is a complete programming language, but you can’t use it outside the appli-
cation in which it is integrated. This does not mean VBA can be integrated only
with Office programs. Any software vendor that decides to implement VBA can
include it with their application.

VBA is relatively easy to learn, but to use it in a new application, you must first
become familiar with the object model of the application. For example, the
Document and Dictionary objects are specific to the Word object model, whereas
the Workbook, Worksheet, and Range objects are specific to the Excel object model.
As you proceed through this book, you will see that the Excel object model is
fairly extensive; however, if you are familiar with Excel, you will find that using
these objects is generally straightforward.

Why VBA?
As a beginning language, VBA will suit your needs well. VBA is not as vast as many
popular languages because such extensiveness is simply unnecessary. VBA was
built to work with and extend the abilities of Office applications, so it doesn’t
need the substance of a programming language used to build full-blown appli-
cations from scratch. The relative simplicity of VBA makes it less intimidating
and easier for you to learn. VBA, however, does share many of the programming
constructs common to all languages, so it also serves as a great introduction to
programming. For these reasons, and the fact that Excel is the most popular
spreadsheet application available, I am writing this book.

As a scientist, I never really gave business-orientated Excel a chance. The earliest
versions of Excel didn’t even have graphical capabilities; even after they were

Introduction

added, Excel still couldn’t match other spreadsheet applications geared toward the scientist.
After ignoring Excel for several years, I started a new job where Excel was the only spread-
sheet application available; it was then that I discovered that it uses a macro language based
on the already very popular Visual Basic. I started writing programs to handle some of the
routine data analyses required around the lab, and the time I have saved using these pro-
grams has sold me on Excel as a valuable component in any lab or business.

Who Should Read This Book?
The goal of this book is to help you learn VBA programming with Excel. No prior programming
experience is required or expected. Although you do not have to be an Excel user, you must
have a good understanding of the basic tools involved in using any spreadsheet application.
This includes a basic understanding of ranges and cell references, formulas, built-in functions,
and charts. I ask my students at the start of every semester if they know how to use Excel.
At least 90 percent of them say they are very comfortable with the application. Within two
weeks of the start of the semester it is clear that no more than 10 percent of the class can
write a proper formula—one that takes advantage of absolute and relative references,
and built-in functions. Furthermore, fewer than 5 percent know anything about chart types
and the kind of analyses they should be used in. If you’re not comfortable with spreadsheet
applications or it’s been a while since you have used a spreadsheet, then I recommend you
consider purchasing another introductory book on how to use the Excel application prior
to learning how to program in VBA for Excel. In addition to spreadsheets, I also expect you
to have a basic understanding of the Windows operating system.

What’s in This Book and What Is Required?
I developed the programs in this book using Excel 2003 for Windows. Although Excel and
VBA don’t change much from one version to the next, I can’t guarantee that the programs
in this book will execute without error in earlier versions of Excel. With each new version
of Excel, VBA is updated with new objects, and existing objects are expanded with new prop-
erties and methods. If I use even one new object, property, or method specific to VBA-Excel
2003 in a program, then it will generate an error if executed in a previous version of Excel;
therefore, you need Excel 2003—with VBA installed and activated—to use this book.

The chapter projects in this book feature the development of games using VBA with Excel.
This is somewhat unusual in the sense that prior to writing this book, I had never seen an
Excel application that runs any kind of a game; however, it does serve to make programming
more fun. After all, what’s the first thing anybody does when a new computer is purchased?

xiIntroduction

The answer: find the games that are installed and start playing. With this book, you get to
write the program and then play the game. It actually works quite well. The games developed
in this book illustrate the use of basic programming techniques and structures found in all
programming languages as well as all of the common (and some less common) components
in Excel.

What’s on the CD-ROM?
The CD that accompanies this book includes the following:

• The source code for the longer sample programs and the chapter projects discussed
in the book, including all supporting image and sound files

• Audacity, an open-source audio editor

• The GIMP for Windows, a photo retouching and image composition program

• POV-Ray, a tool for creating high-quality three-dimensional graphics

• SawCutter, a tool for designing sounds

• cEdit Professional, an advanced, alternative text editor and IDE

xii Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Visual Basic
for Applications

with Excel

1
C H A P T E R

I
n this first chapter, I introduce you to the programming tools available in
Excel. These tools include the VBA IDE (Integrated Development Environ-
ment), controls and functions available through the main Excel applica-

tion, and VBA on-line help. After your introduction to the VBA programming
environment, I take you through a very short and simple program that calculates
some basic statistics from a sample data set. The program displays the statistics
in a worksheet formatted with a large font, bright colors, and a border to complete
the Colorful Stats project.

Specifically this chapter will cover:

• Installing and enabling VBA

• The VBA IDE and components within

• Programming tools within Excel

• Using VBA on-line help

Project: Colorful Stats
The project in this chapter is short and simple, but will serve as your first intro-
duction to the VBA programming environment, ActiveX controls, event-driven
programming, and using VBA to interact with your spreadsheet. A view of the
Colorful Stats spreadsheet is shown in Figure 1.1.

C H A P T E R

Don’t concern yourself with syntax (the rules of the VBA language) at this time. In subse-
quent chapters, I will show you the tools needed to build VBA projects. For right now, I just
want you to see how easy it is to make something work and recognize that many of the key-
words we use in VBA programming projects in this book are already familiar to you as an
Excel user.

Keywords are words used by the programming language for a special purpose
and therefore are reserved. This means you cannot use a keyword in your program
for anything other than what was designed into the language.

HINT

2 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

In the Real World
Event-driven programming refers to the creation of a program that is designed to run when the
user generates a stimulus. For example, a keystroke or a mouse click may trigger specific
pieces of a program to execute. The event-driven programming model has been popular for
years (since the first graphical-based operating systems such as Windows and Macintosh were
introduced) and is now commonplace. It is vastly superior to older programs that did not allow
for much user interaction because the programmers dictated the flow of the program. In
event-driven programming, the user dictates the flow of the program and it is up to programmers
to anticipate the user’s needs.

Figure 1.1

The Colorful Stats
project.

Installing and Enabling VBA
Unfortunately, there are enough unscrupulous programmers out in the world that security
is of paramount importance for your computer. Computer viruses are common and, like
technology in general, are becoming increasingly more complex. Macro language viruses
such as those written in VBA are relatively easy to write—even for a beginning programmer.
As a result, Microsoft has added several levels of security to its Office programs in order to
protect against macro viruses. The first level of security Microsoft has implemented is simply
to disable macro language support for its Office programs. Disabling macro language support
is now the standard for the normal installation of Office or any of its component programs.

If items such as add-ins, wizards, and the VBA project files on this book’s accompanying CD
do not function, then your Excel program was either installed without VBA or with VBA dis-
abled. You must install VBA and enable macro language support before you can access the
VBA IDE and create your own projects or use any of the aforementioned tools.

To install or enable VBA, you must insert the CD that contains the Excel program into your
computer and run the Office/Excel setup program by doing the following:

1. Double-click the Add/Remove Programs icon in the Microsoft Windows Control Panel
(found on the Start menu).

2. If you installed Excel as part of Microsoft Office, click Microsoft Office (edition and
version) in the currently installed programs box, and then click the Change button.
If you installed Excel individually, click Excel (edition and version) in the currently
installed programs box, and then click the Change button.

3. On the features to install screen in the Setup program, click the plus sign (+) next to
Office Shared Features.

4. Select Visual Basic for Applications, click the arrow next to your selection, and then
click Run from My Computer.

5. In addition, you should install the VBA help files by selecting Visual Basic Help and
Run from My Computer.

After the installation is complete, you may also need to change the macro security setting
in Excel before you can run any VBA programs. To change the macro security setting in
Excel, do the following:

1. Select Tools, Macro, Security from the Excel application window (see Figure 1.2).

2. Set the security level to Medium or Low to enable macros.

3Chapter 1 • Visual Basic for Applications with Excel

4

I recommend setting the macro security level to Medium so that you will be able to run (and
therefore test) your VBA programs, yet still receive a warning message that macros are present
in the file. With the macro security level set to Medium, you will always know if a macro is
present in an Excel file, and then you can decide if it’s safe. Never enable macros attached
to an Excel file from an untrustworthy source! Note that setting the security level to High
will disable any macro attached to an Excel file that has not been digitally signed.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 1.2

Macro security
level settings

in Excel.

In the Real World
To ensure that third-party software written for Excel 2003 is from a trustworthy source,
Microsoft allows programmers to digitally sign a file or a VBA project by using a digital signa-
ture. A digital signature is an electronic authentication mechanism for a program or document.
A digital signature confirms that the program originated from the signer and has not been
altered. To digitally sign macro projects, you must install a digital certificate. A digital certifi-
cate attached to a program vouches for its authenticity. Digital certificates are obtained from
commercial vendors such as Verisign who act as a trusted third party in the transaction. When
you set the macro security level to High, you can run macros written by programmers if they
are digitally signed and have been added to your list of trusted sources.

The VBA Integrated Development Environment (IDE)
Before learning how to program in VBA, you have to learn how to use the software required
for creating your projects. The VBA development software is included with each component
of the Microsoft Office suite of programs, including Excel. Starting the VBA development
software places you in the VBA programming environment IDE, which provides you with a
number of tools for use in the development of your project.

Getting to the IDE from Excel
Before you begin creating projects with VBA you must know your way around the IDE. You
can access the IDE from Excel in a couple of different ways. In Excel: select Tools, Macro,
Visual Basic Editor (as shown in Figure 1.3); or use the keystroke Alt + F11.

Alternatively, select the Visual Basic toolbar from the View/Toolbars menu item in Excel.
When the toolbar is displayed, select the Visual Basic Editor icon found in the middle of the
toolbar (see Figure 1.4).

Components of the IDE
After opening the VBA IDE you may find yourself looking at a window similar to what is
shown in Figure 1.5. This figure shows the VBA IDE and some of the tools that can be used
to create projects.

5Chapter 1 • Visual Basic for Applications with Excel

In the Real World
An IDE is software used by programmers for rapid application development (RAD). IDE’s are
available for numerous programming languages and are often quite expensive to purchase
(several hundred dollars or more for a single license). The price is worth it because IDE’s provide
tools that enable programmers to develop applications quickly, saving them considerable
time and money. Yet, the most important component of any development software is the
compiler, which for many languages can be obtained at no cost. The compiler converts your
program into the binary code your computer understands. If you have the compiler, all you
really need to create an application—albeit with considerably more effort—is a text editor.
Excel comes with its own IDE and VBA compiler, thus making it more of a value than you may
realize.

6 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 1.3

Accessing the
VBA IDE from

the Tools menu
in Excel.

Figure 1.4

Accessing the
VBA IDE from the

Visual Basic
toolbar.

The View/Toolbars
menu item

The List
representing

available toolbars

The Visual Basic toolbarThe Visual Basic editor icon

Like in most applications, there is a menu bar across the top of the window. You may only
recognize a few items that exist within this menu, but don’t worry. I’ll show you the func-
tion of most of these items as we proceed through the book.

The Standard toolbar is one of four toolbars available from the IDE. Like any toolbar, its func-
tion is to give the user fast access to common tools available within the application. Again,
I will explain the use of many of these functions, as well as the use of other toolbars, as we
proceed through the book.

Of particular importance is the Project Explorer window, shown in the upper left corner of
the IDE window in Figure 1.5. The Project Explorer lists all projects currently open, including
those opened by Excel upon startup. The Project Explorer also lists the components of any
opened projects. For example, Figure 1.5 shows that there is currently one project, called
Book1, open, and that this project contains four Excel objects: Sheet1, Sheet2, Sheet3, and
ThisWorkbook. I will discuss Excel objects in detail in Chapter 5. For right now, recognize that
these objects represent familiar components from Excel (the workbook and worksheets it
contains).

If I open more workbooks in Excel, or add more worksheets to a currently open
workbook in Excel, then their names will appear on the object list in the Project
Explorer window.

HINT

7Chapter 1 • Visual Basic for Applications with Excel

Figure 1.5

The VBA IDE.

The menu bar

The Standard
toolbar

The Project
Explorer window

An Object
Code window

The Properties
window

8

Just below the Project Explorer window in Figure 1.5 is the Properties window. The Properties
window displays a list of attributes or properties of the currently selected object in the Project
Explorer window. These properties are used to manipulate the behavior and appearance of
the object to which they belong. The properties of Sheet1 are displayed in Figure 1.5 because
it has been selected in the Project Explorer. Choosing a different object will result in a dif-
ferent properties list in the Properties window, as not all objects have the same properties.
As a simple example in manipulating the properties of a worksheet, open a new workbook
in Excel, note the name of your workbook and any worksheets it contains (do not change
any names), then open the VBA IDE. Once in the IDE, display the Project Explorer and Properties
windows. If the Project Explorer and Properties windows are not already displayed you can
access them through the View menu item (see Figure 1.6). You can also use the keystrokes
Ctrl+R and F4 to access the Project Explorer and Properties windows, respectively.

Once the Project Explorer window is displayed, find the project that represents the workbook
you opened while in Excel (probably Book1 or Book2). If the components of the workbook you
opened in Excel are not displayed, click the + sign next to the Microsoft Excel Objects folder
directly underneath the project name. Next, find the object labeled Sheet1, select it with your
mouse and then turn your attention to the Properties window. Scroll down the Properties
window until you come to the Name property (the one without the parentheses around it).
Delete the text entered to the right of the Name property and enter MySheet. Figure 1.7 illus-
trates how to find the Name property.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 1.6

Accessing the
Project Explorer
and Properties

windows.

Toggle back to Excel by pressing Alt+F11, or select it from the taskbar in Windows. You will
note that the name of Sheet1 has now been replaced with MySheet in your Excel workbook,
as shown in Figure 1.8.

See how easy it is to alter the properties of a worksheet in Excel using VBA? As VBA developers,
however, we will seldom, if ever, alter the properties of a workbook or worksheet at design
time. The bulk of the work affecting workbooks and worksheets will occur at run time; however,
we will alter properties of ActiveX controls at design time.

Design time refers to project development and the manipulation of object
properties using the VBA IDE prior to running any code. Conversely run time will
refer to the manipulation of object properties using a program; thus, the properties
of the object do not change until the code is executed.

HINT

9Chapter 1 • Visual Basic for Applications with Excel

Figure 1.7

Accessing the
Name property of

a worksheet.

The View Object icon

The View Code icon

The Sheet1
selection

The Name property

Figure 1.8

An edited
worksheet name

in Excel.

The worksheet name

10

Finally, I will show you one more component of the VBA IDE. If you look back at Figure 1.5
you will also see a standard code window. Windows such as these are used as containers for
your program(s). This is where you type in the code for your program, so these windows are
essentially text editors very similar to Notepad. You must be aware that there are pre-defined
code windows for specific Excel objects, namely the workbook (for example, ThisWorkbook)
and the worksheets (for example, Sheet1). The code window displayed in Figure 1.5 repre-
sents Sheet1 contained within the workbook Book1.

You will also be able to add components to your project and they will have their own code win-
dows. I will explain how to use code windows more thoroughly as we proceed through this
book. For now, know that you can open a code window by double clicking on any object listed
in the Project Explorer. You can also select the object in the Project Explorer and click on the
View Code icon at the top left of the window (refer to Figure 1.7), select Code from the tools
menu, or press F7 (refer to Figure 1.6). Note that you can also view the selected object in Excel
by selecting the appropriate item from these same locations (refer to Figures 1.7 and 1.8).

There are, of course, more components to the VBA IDE, but I’ve shown you enough to get you
started for now. As the need arises, I will introduce more tools from the IDE that will aid in
the development of various projects.

Programming Components within Excel
Not everything of interest to the VBA programmer can be found in the VBA IDE. There are a
few programming-related components that you can access from the Excel application. The
components I am referring to are the Macro items found under the Tools menu, and three
of the available toolbars—Visual Basic, Control Toolbox, and Forms—found in the View menu
in Excel.

Macro Selection
Now that you’ve had an introduction to the VBA IDE, it’s time to look at development tools
accessed directly from Excel. To begin, take a closer look at the Macro selection from the
Tools menu, shown in Figure 1.3. Notice two other items displayed in Figure 1.3 that I have
not yet discussed: Macros and Record New Macro. Essentially the Record Macro tool will
allow you to create a VBA program by simply selecting various tasks in Excel through the
normal interface. The Record Macro tool is quite helpful, as you will see in Chapter 4 when
I discuss it in detail. The Macros menu item will simply display a dialog box with a list of
some or all of the currently loaded VBA programs. Again I will explain the Macro menu item
in more detail later in the book, but for now, remember that it is one way to access and run
desired VBA programs. Figure 1.9 shows the Macro dialog box.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Macros typically refer to programs that are recorded as the user executes a
series of tasks from the normal application interface. They are useful when a
user repeatedly performs the same tasks in Excel. Instead of having to repeat
tasks, the user can simply record his/her actions once, then “play back” the
macro when he/she needs to repeat the same series of tasks. However, it is pos-
sible to access programs that were not recorded through the Macro menu item,
thus I will use the term macro to refer to both recorded programs and those
programs written from scratch.

The Visual Basic Toolbar
The Visual Basic toolbar shown in Figure 1.4 provides another set of tools for the VBA devel-
oper. You have already seen how selecting the Visual Basic Editor icon from this toolbar gives
you access to the VBA IDE. There are several other useful items on the Visual Basic toolbar,
including Run Macro, Record Macro, and Design Mode, that I will discuss later. Also
included on the Visual Basic toolbar is an icon for the Control Toolbox, denoted by the
crossed hammer and wrench. The Control Toolbox can also be accessed via the Toolbars item
on the View menu.

The Control Toolbox (refer to Figure 1.10) provides you with ActiveX controls which are
graphical tools, such as a Check Box or Command Button, that may be associated with a
macro. The Text Box, Command Button, Label, and Image Control are just some of the
ActiveX controls available and are specifically labeled in Figure 1.10. You place controls on
a worksheet by first clicking on the desired control and then drawing it onto the worksheet.
Start by selecting the Command Button control and drawing it on a worksheet as shown in
Figure 1.11.

HINT

11Chapter 1 • Visual Basic for Applications with Excel

Figure 1.9

The Macro dialog
box displaying
the available

VBA programs.

Currently selected
Macro

List of available
Macros

12 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

After the Command Button is placed on the worksheet, you will notice that it is selected and
the application is currently in Design Mode (check that the Design Mode icon in the upper
left corner of the Control Toolbox appears “pressed in”). You can access the properties of the
Command Button control while in Design Mode. With the Command Button control
selected while in Design Mode, select the Properties icon from the Control Toolbox. A window
much like the Properties window in the VBA IDE will appear. The Properties window lists all
the attributes or properties used to describe the Command Button control. Figure 1.12
shows the Properties window.

Figure 1.10

The Control
Toolbox.

The Properties
Window toggle

View Code

The Command
Button control

The Text Box control

Figure 1.11

The Command
Button control

placed on a
worksheet.

The Design
Mode toggle

The Image control

The Label control

13Chapter 1 • Visual Basic for Applications with Excel

Figure 1.12

The Properties
window of the

Command Button
control.

In the Properties window of the Command Button control change the Caption property to
Click Me and then notice how the new caption is displayed on the control. You should also
change the Name property to something like cmdColorChange. The prefix cmd references the
type of control (Command Button) and the rest of the name refers to the function of the pro-
gram that is triggered when the button is pressed. You can also play with some of the other
properties such as Font, ForeColor, BackColor, Width, and Height to change the appearance of
the control. You can even display a picture within the Command Button control through
the Picture property, and then select an image file from your computer.

The Name property is an important property of any ActiveX control. The value
of the Name property should be changed to something meaningful as soon
as the control is added to the worksheet. Typically, an abbreviated word telling
us the type of control (the cmd at the beginning of the name above denotes a
Command Button) and its function in the program will work well. The Name
property of an ActiveX control should be changed if you refer to it in your program.
A meaningful name will help you remember it, as well as make the code more
readable.

Once the appearance of your Command Button control is to your liking, select the View
Code icon from the Control Toolbox, or double click on the Command Button control to access
the code window. You will be taken immediately to the VBA IDE. Now it’s time to make the
Command Button control functional, and you can only do that by adding code to its code
window. Figure 1.13 shows the code window for the Command Button control.

TRICK

14 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 1.13

The VBA IDE
showing the code

window for the
worksheet named

Sheet1.

The title bar tells us the object to which this code window belongs. In this case, the code
window belongs to the worksheet named Sheet1 in the workbook named Book1. This is
because I placed the Command Button control on Sheet1 of Book1 in the Excel application.
You may recall that I changed the name of the worksheet in Excel to MySheet, but the name
of the worksheet as it will have to be referenced in code is still Sheet1. In the upper left corner
of the code window is a dropdown list box containing the names of all objects contained
within the selected worksheet. The name of the Command Button control is displayed
because the cursor in the editor is within an event procedure of this Command Button control.

Event procedures are self-contained blocks of code that require some type of
stimulus in order to run. The stimulus often comes directly from the user (for
example, a mouse click), but may also result from another piece of code.

Event procedures are predefined for ActiveX controls and other Excel objects, such as work-
books and worksheets. All event procedures for the selected object are listed in the upper
right corner of the code window in a dropdown list box. I will discuss event procedures in
more depth in Chapter 3. For now, just take a look at the Click() event. The Click() event is
a very common event procedure that is built into most ActiveX controls. Any code placed
within the predefined procedure will trigger when the user clicks once on the object—in
this case, the Command Button control named cmdColorChange. The procedure is defined as
listed in Figure 1.13 with the following two lines of code:

Private Sub cmdColorChange_Click()

End Sub

HINT

The title bar

The object list

The procedure list

The Editor

The name of the procedure will always be the name of the object with an underscore followed
by the name of the event. You cannot change the name of a predefined event procedure
without changing the Name property of the object. If you do change the name of the event
procedure, the code within the procedure will not run when you want it to. The keyword
Sub is required and is used as the defining opening of any procedure—event-type or
programmer-defined. Private is an optional keyword; I’ll discuss it in Chapter 3. The second
line End Sub is always used to close a procedure. Now type the following lines of code within
the Click() event procedure of the Command Button control named cmdColorChange.

Range(“A1”).Select

Cells.Interior.ColorIndex = Int(Rnd * 56) + 1

These two lines will select cell A1 on the worksheet and set the fill color of all cells in the
worksheet to one of fifty-six possible colors. This is the equivalent of a user first selecting all
the cells in a worksheet and then changing the fill color from the formatting toolbar in the
Excel application. The color of the cells is chosen randomly and will change with each click
of the Command Button control because the above code will run once with each click event.
So the entire procedure now looks like the following.

Private Sub cmdColorChange_Click()

Range(“A1”).Select

Cells.Interior.ColorIndex = Int(Rnd * 56) + 1

End Sub

Return to the Excel application and exit Design Mode by toggling the icon on the Control
Toolbox (refer to Figure 1.10). Now test the program by clicking on the Command Button
control. The color of all cells in the worksheet will change color with each click. Figure 1.14
shows an example of my worksheet after one click on the Command Button control.

You can save the workbook as you would an Excel workbook. The Command Button control
and event procedure code will be saved with the workbook.

Getting Help with VBA
I can’t emphasize enough how important it is that you become comfortable with the on-line
help in the VBA IDE (not to mention in the Excel application). The on-line help provides fast
access to solutions for any programming problems you have with your project. Books make
good resources and are much better at teaching you how to program, but they can’t cover
everything. Often, all you need to see is a simple example of how to use a particular function
or other keyword; the on-line help does contain documentation on every keyword, program-
ming construct, and object you might use in your project. The bottom line is this: there is
always something helpful on-line, it’s just a matter of finding the right document.

15Chapter 1 • Visual Basic for Applications with Excel

16

VBA Help
Using the on-line help with VBA subject matter is identical to using the on-line help in
Excel. To access the VBA help, you must have the IDE open and active; otherwise, everything
is the same, from the Help menu to the help window and even the office assistant (if you
choose to use it). Select Help, Microsoft Visual Basic Help to activate the Visual Basic Help
dialog box shown in Figure 1.15. With the Visual Basic Help dialog you can browse a table of
contents or enter keywords to search for on-line documentation. After you select a topic, doc-
umentation related to that topic appears in another Visual Basic Help window (for example,
refer to Figure 1.16).

To look up documentation concerning a known keyword in VBA (for example,
the syntax requirements for a particular VBA keyword), first select that keyword
in the code, press F1, and the document that describes that keyword will imme-
diately appear in the Help window.

You will not have on-line help with your VBA projects until you install these
VBA help files with a custom installation. Refer to the Installing and Enabling
VBA section earlier in this chapter to learn how to install the VBA help files.

TRAP

TRICK

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 1.14

The Color
Changer program.

17Chapter 1 • Visual Basic for Applications with Excel

Constructing the Colorful Stats Program
When starting a project, programmers often compile a list of specific requirements, then refer
to this list while designing the algorithm(s) that will be followed when writing the program.

Figure 1.15

The Visual Basic
Help dialog box.

Figure 1.16

The Visual Basic
Help dialog

window showing
a help document.

18 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The advantage you have when compiling a requirement list is that the source document can
be used to build a protocol for testing the program. I will follow this procedure for the chapter
projects including the Colorful Stats project that follows.

Requirements of the Colorful Stats Program
The purpose for the Colorful Stats program (as it relates to this book) is to give you a demonstra-
tion of ActiveX controls, event procedures, and using VBA to interact with an Excel worksheet.
The practical purpose of the Colorful Stats program is to allow a user to immediately calculate
basic statistics for a selected set of data. I’ve defined a few specific requirements for the
Colorful Stats program and they are listed as follows:

1. The program shall calculate the following statistics for a selected data set—the number
of data elements selected by the user, the minimum value, the maximum value, the
sum total, the average value, and the standard deviation.

2. The program shall use Excel worksheet formulas to calculate the statistical parameters
listed in Requirement 1.

3. The program shall write the formulas for the statistical parameters to the worksheet
cells D2 through D7. Corresponding labels shall be written to cells C2 through C7.

4. The program shall change the interior color of cells C2 through D7 to green.

5. The program shall change the border color of cells C2 through D7 to red.

6. The program shall format the font of cells C2 through D7 to Arial, 16 pt, bold, and blue.

7. The program shall be initiated from a mouse click of a Command Button control
placed on the worksheet.

Designing the Colorful Stats Program
When designing a program, I consider the user interface, program inputs and outputs, the loca-
tion of the code (for example, event procedures of ActiveX controls), and the use and configuration
of other programming components that I have not yet discussed. Since this is the first chapter
project, I have kept it short and simple to make it easier to follow the design procedure.

I start by making the very simple user interface for the Colorful Stats program. The interface
will use a single Command Button control placed on a worksheet to activate the program.
I’m assuming that the data will be entered in column A of the worksheet (although this is
not required) so I will place the Command Button control in columns C and D, close enough
to the top of the worksheet so it is likely to be seen by the user when opened, but below row
7 to avoid masking the statistical values (refer to Figure 1.17). Note that I have altered the
Name, Caption, and Font properties of the Command Button control.

All program inputs and outputs are from, and to, the current active worksheet. The data
used in the calculation of the statistical values must come from the cells that are selected
by the user. I will write the program to output cell formulas to the desired worksheet cells
so that Excel calculates the statistical values. I must also output labels to the cells adjacent
to the statistical values for clarity. I will also format all output as described in the requirements.
Finally, the program is to be initiated from a user’s click of the Command Button control,
so I will enter all programming statements in the Click() event procedure of the Command
Button control.

Ideally, the Colorful Stats program would be activated from an interface inde-
pendent of the worksheet that contains the data (i.e., using an ActiveX control
on the worksheet containing the data is not the best solution). The program
should also write the statistics to a new worksheet rather than risk overwriting
data in the active worksheet. However, this requires a little more programming
than I should show you right now.

At this point in the book, the only tool I’ve shown you for running a loaded
macro that may be independent of the selected worksheet is the Macro dialog
box (refer to Figure 1.9). As you proceed through this book you will learn other
methods for initiating macros and how to create new worksheets.

TRICK

19Chapter 1 • Visual Basic for Applications with Excel

Figure 1.17

The user interface
for the Colorful
Stats program.

20

Coding the Colorful Stats Program
As stated in the previous section, all of the code is to be placed in the Click() event proce-
dure of the Command Button control. The code window can be accessed via the VBA IDE by
double clicking on the Command Button control while in Design Mode. You can also select
the appropriate object (cmdCalculate) from the object dropdown list in the code window for
the worksheet on which the ActiveX control was placed (refer to Figure 1.18).

As you can see, the following code was placed in the Click() event procedure of the cmdCalculate
Command Button control. Now let’s take a closer look at each line of code.

The very first and last lines define the type of procedure as a Click() event, as described earlier
in this chapter. Immediately following the opening line of code is a comment.

Comments (or remarks) are notes left in the code by the programmer to help
describe the function of the program. Comments make it easier to find prob-
lems with the code, or add different features to the code at a later time. Enter
comments (also known as remarks) into the code by beginning the line with an
apostrophe (or Rem). You must enter another apostrophe for each new line; the
VBA text editor will color each comment line green (default color; change by
selecting Tools, Options, Editor Format, and Comment Text from the list of
Code colors). Comments are not part of the program, and are ignored when the
program runs; thus, comments do not decrease the execution speed of a program.

HINT

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 1.18

VBA IDE showing
the code window
for the worksheet

containing the
ActiveX Controls

of the Colorful
Stats project.

Private Sub cmdCalculate_Click()
‘———————————————-
‘Add formulas for summary stats
‘———————————————-
With ActiveSheet

‘These formulas are entered into the new worksheet.
.range(“D2”).Formula = “=COUNT(“ & ActiveWindow.Selection.Address & “)”
.range(“D3”).Formula = “=MIN(“ & ActiveWindow.Selection.Address & “)”
.range(“D4”).Formula = “=MAX(“ & ActiveWindow.Selection.Address & “)”
.range(“D5”).Formula = “=SUM(“ & ActiveWindow.Selection.Address & “)”
.range(“D6”).Formula = “=AVERAGE(“ & ActiveWindow.Selection.Address & “)”
.range(“D7”).Formula = “=STDEV(“ & ActiveWindow.Selection.Address & “)”

‘———————————
‘Add labels and stats
‘———————————
.range(“C2”).Value = “Count:”
.range(“C3”).Value = “Min:”
.range(“C4”).Value = “Max:”
.range(“C5”).Value = “Sum:”
.range(“C6”).Value = “Average:”
.range(“C7”).Value = “Stan Dev:”
.range(“C2:D7”).Select

End With

‘——————————————-
‘Format the labels and stats.
‘——————————————-
With Selection

.Font.Size = 16

.Font.Bold = True

.Font.Color = vbBlue

.Font.Name = “Arial”

.Columns.AutoFit

.Interior.Color = vbGreen

.Borders.Weight = xlThick

.Borders.Color = vbRed
End With
range(“A1”).Select

End Sub

21Chapter 1 • Visual Basic for Applications with Excel

22

I will discuss code structures, Excel objects, and object syntax in subsequent chapters. If you
are even somewhat familiar with Excel, however, you probably have a pretty good idea as to
what’s happening in the above code. First, the cell formulas are written to the indicated cells
(D2 through D7) using the range selected by the user as the parameter for each worksheet
function. Next, the statistical labels are written to the corresponding cells in the adjacent
columns (C2 through C7). The last part of the program formats the font, border, and color of
cells C2 through D7 before selecting cell A1. Another example of the worksheet after some
arbitrary data has been entered in column A and the program run is shown in Figure 1.19.

That’s all there is to it! This code will run once each time the Command Button control is
clicked (don’t forget to exit Design Mode and select some data first).

Chapter Summary
Well, I didn’t show you very much program code in this chapter, but you did get a solid intro-
duction to the VBA programming environment. You did learn how to access the VBA IDE
and how to view and use some of its major components. You also learned how to add ActiveX
controls to a worksheet, change their properties, and add code to their event procedures.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 1.19

The Colorful Stats
program after

running.

23Chapter 1 • Visual Basic for Applications with Excel

After a brief look at using the on-line help and installing the VBA help files, you developed
a small project that used a Command Button control on a worksheet to initiate a program
that calculated statistical values from user-selected data. Your program then formatted the
output with color, a new font, and a border.

In Chapter 2 you learn about some basic programming concepts and tools, variables and
data types. I focus particularly on the string data type.

C H A L L E N G E S

1. Open a new workbook in Excel, then access the VBA IDE to find the names of the
different event procedures for a worksheet. In particular note the SelectionChange()
event procedure of any worksheet.

2. While in the Excel application, add a Label control to a worksheet. Change the
Name property of the Label control to lblCellAddress. Change the Caption and
other appearance properties (Font, BackColor, ForeColor, and so on) as desired.

3. Add the following line of code to the SelectionChange() event procedure of the
worksheet to which you added the Label control.

lblCellAddress.Caption = “You selected cell “ & Target.Address

4. Return to the worksheet, exit Design Mode, and click on any cell in the worksheet
containing the Label control. What happens?

5. Return to the VBA IDE and the line of code above. Place the cursor within the
word Caption and press F1. Repeat with the Address keyword.

This page intentionally left blank

Beginning Programs
with VBA

2
C H A P T E R

N
ow that you know your way around the VBA IDE for Excel, it’s time to
introduce some basic programming concepts common to all languages.
The next three chapters are devoted to these basic programming structures

that, although they may not be that exciting, are essential for developing VBA
projects.

Specifically, in this chapter we look at:

• Variables and data types

• Constants

• Simple input and output

• String functions

Project: Biorhythms and the Time of Your Life
The Biorhythms and the Time of Your Life program (see Figure 2.1) begins by asking
for the user’s name and birth date. The program then calculates the length of the
user’s life in years, months, days, hours, minutes, and seconds. Following the user
input, the user’s name, birth date, and age (in the aforementioned units) are dis-
played in the worksheet. The worksheet also contains an embedded chart that
displays the current state of the user’s three biorhythm cycles (physical, emotional,
and intellectual).

C H A P T E R

26 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

This program demonstrates the use of several variable types; including numbers, text, and
dates. The program also demonstrates the use of some of VBA’s built-in functions—primarily
those functions used to manipulate text and dates.

Variables, Data Types, and Constants
Since this book focuses on a spreadsheet application, it’s only natural that I introduce vari-
ables by asking you to think about the following: what types of values can be entered into a
spreadsheet cell and how you might use them? You know that you can enter numbers and
text in any spreadsheet cell in Excel. Also, you may or may not know that the format of a
spreadsheet cell can be changed to one of several possibilities. For example, a number can be
formatted such that the value is displayed with or without digits to the right of the decimal
point. Numbers can also be formatted as currency or as a percentage (along with a few other
options). Text can be displayed as entered or be automatically converted to a date or time.
The content or value of a spreadsheet cell can be changed or deleted at any time.

From this point forward, the contents of a spreadsheet cell (text or numbers) in
Excel will be referred to as its value. You have already seen in the Chapter 1 project
and will continue to see throughout this book, the use of the Value property to
access or change the contents of a spreadsheet cell.

HINT

Figure 2.1

The Biorhythms
and the Time
of Your Life

spreadsheet.

In essence, spreadsheet cells are temporary storage containers for numbers and text that
can be displayed and used in a number of different formats. This also describes a variable in
any programming language. You can use variables in programs for temporary storage of
data. For example, any data input by a user (possibly from a Text Box Control), can be stored
in a variable and used later in the program. In the Colorful Stats project from Chapter 1, the
following line of code acts a lot like a variable.

.range(“C6”).Value = “Average:”

Here the text “Average” is copied to spreadsheet cell C6. I could have just as easily copied the
text into a program variable first and then copied the contents of the variable to the cell C6.
I didn’t use an additional program variable because I wanted to save a couple of steps and
because, as discussed earlier, spreadsheet cells already act a lot like variables. To accomplish
this same task using a program variable, use the following:

Dim myString as String

myString = “Average:”

.range(“C6”).Value = myString

The variable myString is first declared (declaration is discussed in the next section) and then
assigned the string literal “Average:”. The value of spreadsheet cell C6 is then assigned the
value stored in the variable myString.

Declaring Variables
To declare a variable is to tell the computer to reserve space in memory for later use. To
declare a variable use a Dim (short for Dimension) statement.

Dim myVar As Integer

The name of the variable is myVar. The name must begin with an alphabetic character and
cannot exceed 255 characters or contain any spaces. You should avoid the use of punctua-
tion marks or other unusual characters in the variable name, as many of them are not
allowed; however, the underscore character is allowed and works well for separating multi-
ple words contained within a single variable name (for example, First_Name). Avoid using
reserved VBA keywords and don’t repeat variable names within the same scope (discussed
later in this chapter). As a convention, the variable name should be descriptive of the value
it will hold. For example, if you use a variable to hold someone’s first name, then a good
name for that variable might be firstName or FirstName. My preference is to begin a variable
name with a lowercase letter and then capitalize the first letter of any subsequent words
appearing in the name. I try to keep the length to a minimum (fewer than 12 characters)

27Chapter 2 • Beginning Programs with VBA

28 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

only because I don’t like typing long names. Of course, you can adopt your own conventions
as long as they don’t contradict rules established by VBA.

Use Option Explicit in the general declarations section of a module window to
force explicit variable declarations (see Figures 2.2 and 2.3). Otherwise variables
can be dimensioned implicitly (without a Dim statement) as they are required in
code. In other words, you can begin using a new variable without ever declaring
it with a Dim statement if you don’t use the Option Explicit statement. This is
not good programming practice as it makes your code harder to interpret, and
subsequently more difficult to debug. You can automatically have Option
Explicit typed into each module window by checking the Require Variable
Declaration option in the Tools/Options menu item of the VBA IDE.

Following the variable name, the data type is specified for the variable. In the example
above, the variable is declared as an integer data type. This tells VBA what kind of data can
be stored in this variable and how much memory must be reserved for the variable. I will
discuss data types in detail later in this chapter.

Object and Standard Modules
Modules refer to a related set of declarations and procedures. Each module will have a sepa-
rate window in the VBA IDE and, depending on the origination of the module, it will have
different behavior with regard to variable declarations. I will refer to the module window
shown in Figure 2.2 as an object module because it is associated with an object (the Worksheet
object in this example).

TRICK

Figure 2.2

The object
module for an

Excel worksheet.

This module will automatically contain all event procedures associated with the worksheet
Sheet1, and any ActiveX controls added to this worksheet. Object modules may also contain
programmer-defined procedures (I will cover procedures in Chapter 3, “Procedures and Con-
ditions”). Each worksheet will have a separate code window as will the workbook.

A standard module must be added to the project via the Insert menu of the VBA IDE, as
shown in Figure 2.3.

Standard modules are contained within a separate folder in the Project Explorer and may
be renamed in the Properties window (see Figure 2.3). Standard modules contain variable
declarations and programmer-defined procedures.

29Chapter 2 • Beginning Programs with VBA

Figure 2.3

Inserting a
standard module.

The Module
menu item

In the Real World
Modularized code aids in the compartmentalization of program code. Compartmentalization is
the process of breaking a large programming problem into several smaller problems and then
solving each of these smaller problems separately. Compartmentalization is vital in the
development of software applications.

30 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Variable Scope
Scope, in the context of variables, refers to the time when a variable is visible or available to
the program. When a variable is in its scope, it can be accessed and/or manipulated. When
a variable is out of scope, it is unavailable—essentially invisible to the program.

A variable declared within the code block of a procedure (such as the Click() event proce-
dure of the Command Button control), is a procedural level variable. Procedural level variables
are only available while program execution occurs within the procedure that the variable
was declared. In Figure 2.2, the variable myVar4 is only visible to the program while the code
in the Activate() event procedure of the worksheet executes. When program execution is
triggered by the Activate() event, the variable myVar4 is dimensioned in memory. Program
execution proceeds through the event procedure until reaching the End Sub line of code,
after which the variable is released from memory and is no longer available. Each time the
procedure executes, the variable is created and destroyed. Thus, myVar4 will not retain its
value between calls to the procedure. If necessary, the Static keyword can be used to tell
VBA to remember the value of the variable between calls to a procedure. Consider the fol-
lowing example:

Private Sub Worksheet_Activate()

Static myVar4 As Integer

myVar4 = myVar4 + 1

End Sub

In this procedure the variable myVar4 will increment its value by one with each call to the
procedure. If you replace the Static keyword with Dim, myVar4 will never exceed a value of 1.

Integer variables are initialized to a value of 0 at declaration.

Declaring a variable outside of a procedure with a Dim statement makes it a module level vari-
able. The scope of a module level variable depends on the keyword used in the declaration.
For example in Figure 2.2 the variables myVar, myVar2, and myVar3 are declared outside all
procedures.

The area outside of any defined procedure is known as the general declarations
section of a module (object or standard). This area can only be used for declarations.

HINT

TRICK

These three variables are declared with the Dim, Private, and Public keywords. The Private
and Public keywords are only allowed for variable declaration in the general declarations
section of a module. Each of the three variables, myVar, myVar2, and myVar3 are visible to any
procedure within this module. In addition, the variable myVar3 is visible to any procedure in
any module of this project. Variables declared in the general declarations section of a mod-
ule (object or standard) with the Public keyword are commonly referred to as global.

When declaring a variable with the Public keyword in the general declarations
section of an object module, it must be referenced in other modules of the project
by first identifying the name of the object module. For example, to reference
and assign a value to the variable myVar3 in Figure 2.2 in any other module in that
project, you must use code similar to the following:

Sheet1.myVar3 = 5

You do not have to reference the name of the module for variables declared with
the Public keyword in the general declarations section of a standard module.

To summarize: the keywords Dim and Private have the same function in variable declara-
tions when used in the general declarations section of any module; the Public keyword can
be used to declare global variables in a standard or object module.

Data Types
Data types define the kind of value that may be stored within the memory allocated for a
variable. As with spreadsheet cells, there are numerous data types; the most common are
defined in Table 2.1.

Numerical Data Types
The numerical data types listed in Table 2.1 are integer, long, single, and double. A variable
declared as an integer or long data type can hold whole numbers or non-fractional values
within the specified ranges. If you need a variable to hold fractional or “floating point” val-
ues, then use a single or double data type. Pay attention to the value of the number that
might have to be stored within the variable. If the value gets too large for the data type, your
program will crash. For example, the following code will generate an overflow error because
the value 50000 is outside the allowed range for an integer data type:

Dim myNum As Integer

myNum=50000

TRICK

31Chapter 2 • Beginning Programs with VBA

32

You must also be careful about mixing numerical data types because you may not get the
desired result. The following code will execute without errors, but the variable answer will
hold the value 32 after execution of this block, not 31.8 as you might want.

Dim answer As Integer

Dim num1 As Single

Dim num2 As Integer

num1 = 5.3

num2 = 6

answer = num1 * num2

Changing the variable answer to a single data type will correct the problem. Using the code
as shown above is a good way to ensure an integer is stored within a variable that receives
its value from a computation involving floating point numbers. Notice that the value stored
in answer is rounded to the nearest whole integer.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Data type Storage size Range

Boolean 2 bytes True or False

Integer 2 bytes -32,768 to 32,767

Long 4 bytes -2,147,483,648 to 2,147,483,647

Single (floating-point) 4 bytes -3.402823E38 to -1.401298E-45 for
negative values; 1.401298E-45 to
3.402823E38 for positive values

Double (floating-point) 8 bytes -1.79769313486231E308 to -
4.94065645841247E-324 for negative
values; 4.94065645841247E-324 to
1.79769313486232E308 for positive values

Date 8 bytes January 1, 100 to December 31, 9999

Object 4 bytes Any Object reference

String (variable-length) 10 bytes + string length 0 to approximately 2 billion

String (fixed-length) Length of string 1 to approximately 65,400

Variant (with numbers) 16 bytes Any numeric value up to the range of a
Double

Variant (with characters) 22 bytes + string length Same range as for variable-length String

User-defined (using Type) Number required by The range of each element is the same
elements as the range of its data type.

TA B L E 2.1 C O M M O N V B A D A T A T Y P E S

By using variables with numerical data types, you can carry out mathematical operations as
you normally would using just the numbers the variables contained. You can add, subtract,
multiply, and divide variables; you can square and cube numerical variables or raise them
to any desired power. See Table 2.2 for a list of the operators used for common mathematical
operations in VBA.

Basically, any mathematical operation that can be performed on a number can be per-
formed on a numerical variable. The following are a few examples:

Dim num1 As Integer

Dim num2 As Integer

Dim answer As Integer

num1 = 10

num2 = 5

answer = num1 + num2 ‘ answer Holds 15

answer = num1 - num2 ‘ answer Holds 5

answer = num1 * num2 ‘ answer Holds 50

answer = num1 / num2 ‘ answer Holds 2

answer = num1 ^ 2 ‘ answer Holds 100

answer = 2 ^ num2 ‘ answer Holds 32

After declaring the variables num1, num2, and answer, a few mathematical operations are car-
ried out over several lines of code. The result of each line is given as a comment within the
same line of code. In the code above, the equal sign (=) does not designate equality; instead
it works as an assignment operator. For example, the variable answer gets the result of
adding the two variables num1 and num2.

33Chapter 2 • Beginning Programs with VBA

Operation Operator

Addition +

Subtraction -

Multiplication *

Division /

Exponential ^

TA B L E 2. 2 C O M M O N M AT H E M AT I C A L O P E R AT O R S U S E D I N V B A

34 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Next, I will look at a fairly simple spreadsheet that uses integer variables and some simple math.

Although it is not required, it is a good idea to place all variable declarations for a
procedure at the start of your code. With variable declarations at the beginning
of your code, you will be able to find them quickly when you need to debug.

Magic Squares
I believe I was first introduced to magic squares in sixth or seventh grade math. The idea is
to fill a square grid with numbers such that the sum of all rows, columns, and diagonals
add up to the same value. The number of columns/rows in the grid is an odd number and
you can only use each value once. For example, a 3 × 3 grid must be filled with the numbers
1 through 9 so that everything sums up to 15. A 5 × 5 grid uses 1 through 25 and all rows,
columns, and diagonals add up to 65. The 3 × 3 is pretty easy even if you don’t know or see
the pattern.

Figure 2.4 shows the spreadsheet containing the 3 × 3 grid. The Magic Squares spreadsheet is
available on the CD-ROM that accompanies this book.

The Magic Squares spreadsheet is preformatted for colors, borders, and font size. The program
will be contained entirely within the SelectionChange() event procedure of the worksheet. To
get to the SelectionChange() event procedure, double click the worksheet name in the VBA

TRICK

Figure 2.4

A 3 × 3 Magic
Square.

Project Explorer window to open its code module. Select Worksheet from the object’s drop-
down list, then select SelectionChange from the procedure dropdown list. The program will
simply calculate the sum of all rows, columns, and diagonals in the magic square and display
the result in adjacent cells. The program code is listed below. The SelectionChange() event
procedure triggers every time the user selects a new cell in the worksheet.

Private Sub Worksheet_SelectionChange(ByVal Target As Range)
‘———————————————————
‘Dimension variables to hold sums
‘———————————————————
Dim row1 As Integer
Dim row2 As Integer, row3 As Integer
Dim col1 As Integer, col2 As Integer, col3 As Integer
Dim diagonal1 As Integer, diagonal2 As Integer

‘————————————————————————————————-
‘Sum the rows, cols, and diagonals and store result in variables.
‘————————————————————————————————-
row1 = Range(“B3”).Value + Range(“C3”).Value + Range(“D3”).Value
row2 = Range(“B4”).Value + Range(“C4”).Value + Range(“D4”).Value
row3 = Range(“B5”).Value + Range(“C5”).Value + Range(“D5”).Value

col1 = Range(“B3”).Value + Range(“B4”).Value + Range(“B5”).Value
col2 = Range(“C3”).Value + Range(“C4”).Value + Range(“C5”).Value
col3 = Range(“D3”).Value + Range(“D4”).Value + Range(“D5”).Value

diagonal1 = Range(“B3”).Value + Range(“C4”).Value + Range(“D5”).Value
diagonal2 = Range(“B5”).Value + Range(“C4”).Value + Range(“D3”).Value

‘———————————————-
‘Copy results to the worksheet.
‘———————————————-
Range(“B6”).Value = col1
Range(“C6”).Value = col2
Range(“D6”).Value = col3

Range(“E3”).Value = row1
Range(“E4”).Value = row2
Range(“E5”).Value = row3

Range(“E6”).Value = diagonal1
Range(“E2”).Value = diagonal2

End Sub

35Chapter 2 • Beginning Programs with VBA

36

First, variables are declared for holding the summations of the rows, columns, and diago-
nals in the magic square. I am using integer data types because I know that I will not be
working with floating point values, and the numbers used will be small.

Next, the values of three cells are added and stored in the previously dimensioned variables.
The values of the individual spreadsheet cells are obtained in what should now be a familiar
way. Notice that within a row, the row index does not change in the sum of the three values.
Similarly, the column index does not change in the sum of the three values within a column.
Finally, both row and column indices change in the sum over the diagonals.

Next the contents of these summations are copied to the spreadsheet cells in the corre-
sponding row or column.

As the user enters in the numbers to the cells in the Magic Squares worksheet, the procedure
above is triggered and the values of the summations are updated as shown in Figure 2.5.

I could have bypassed using variables and simply copied the summation of the three cells
directly to the appropriate spreadsheet cell, but using variables with descriptive names
makes it a little easier to understand the function of the program.

You have probably recognized that the Magic Squares worksheet isn’t anything you couldn’t
do with formatting and formulas directly in the Excel application; however, with a program,
you can show the spreadsheet to a friend or colleague who knows Excel. He or she will wonder

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 2.5

Magic Squares
in action.

how you did it, as there aren’t any formulas in the spreadsheet cells that hold the summa-
tions of the rows and columns. Your friend might even be impressed. You can also try a 5 × 5,
or any size grid as long as the number of rows and columns is odd and equal. The median
value of the number set multiplied by the grid dimension will tell you the sum that the values
in all rows, columns, and diagonals should equal (for example, a 5 × 5 grid uses the numbers
1 to 25 with a median of 13. So the rows, columns, and diagonals should sum to 5 × 13 = 65).

As you may have realized by now, VBA is not case sensitive; that is, it does not
matter if you type your code with upper or lower case letters. However, VBA
does preserve capitalization wherever it’s used. This is helpful with variable def-
initions. If you use uppercase letters when declaring a variable, any additional
references to that variable within the same scope will automatically follow the
same capitalization scheme. So after a variable is defined with a Dim statement,
you can type additional references to that variable using all lowercase letters
and VBA will automatically convert the capitalization for you. This is a handy
feature to ensure you are spelling your variable names correctly as you type
them in your code.

String Data Types
Variables with string data types are used to hold characters as text. The characters can be
numbers, letters, or special symbols (for example, punctuation marks). Basically, just about
anything you can type on your keyboard can be held within a string variable. To declare a
variable with the string data type, use the String keyword. To initialize a string variable,
place the string value within double quotation marks.

Dim myText As String

myText = “VBA is fun”

There are two types of string variables, variable length and fixed length. The example above
is that of a variable length string because myText can hold just about any length of text (see
Table 2.1). Following is an example of a declaration for a fixed length string:

Dim myString As String * 8

myString = “ABCDEFGHIJKL”

In the example above, the string variable myString can hold a maximum of eight characters.
You can try to initialize the variable with more characters (as was done above), but only the
first eight characters in this example will be stored in the variable. The value of myString is
then “ABCDEFGH”. Fixed length strings are more commonly used as a part of a user-defined
data type discussed in a later chapter. In most cases, you will not know the length of the
string to be stored in a variable so you should use the variable length type.

TRICK

37Chapter 2 • Beginning Programs with VBA

38

I will discuss string manipulation a little later in this chapter. Next, I will finish my discus-
sion on data types by looking at variants and a few less common data types.

Variant Data Types
Variant data types are analogous to the General category in the number format of a spread-
sheet cell in the Excel application. Variables are declared as variants by using the keyword
Variant, or by not specifying a data type.

Dim myVar

Dim myVar2 As Variant

Variant type variables can hold any type of data except a fixed length string. Variant data
types relax the restrictions on the value a particular variable can hold and thus give the pro-
grammer more flexibility; however, variant data types can also be dangerous if overused—
they can slow down program execution—and programs with a large number of variant data
types can be very difficult to debug. So while I don’t recommend using them, I do recognize
that many programmers do use variants, and the on-line help is filled with examples using
variants, so I will offer a brief example here:

Dim myVar As Integer

myVar = 10

myVar = “Testing”

The example above will generate a type mismatch error because an attempt is made to enter
the string “Testing” into an integer variable; however, if you change the variable myVar to a
variant, the code will execute and myVar will hold the string value “Testing” when all is com-
plete. The following code will run without error.

Dim myVar

myVar = 10

myVar = “Testing”

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

In the Real World
A lot of what programmers do with strings revolves around extracting desirable information
out of them. For example, a search engine on the Internet will look for certain keywords on a
Web page and store them in a database. The search engine may load the entire textual content
of a Web page into a string variable and then extract various keywords from that variable.
Then, when a user searches that database by entering in various keywords, the user’s keywords
are stored in string variables and compared to database content.

Using variants allows you to use the same variable to hold multiple data types (one at a time).
The variable myVar holds the integer value 10 (albeit briefly) before being assigned the string
value “Testing”.

You are probably starting to see the danger of using variant data types. Imagine a large pro-
gram with numerous procedures and variables. Within this program are two variables of
type variant that initially hold numerical values and will need to be used within the same
mathematical operation before the program is finished executing. If one variable is mis-
takenly reinitialized with a string before the mathematical operation, an error will result
and may crash the program (or at least taint the result). Debugging this program may pre-
sent problems that depend on how hard it is to find the string initialization of the variant
variable, and additional problems associated with the string variant. So even though it may
be tempting to use variants as a way to prevent errors that crash your program (as in the
example above), in actuality the use of variants make your code “loose,” and may result in
logic errors that are difficult to find.

Logic errors are the result of a mistake in a programming algorithm. They may or
may not cause your program to crash, depending on the specific nature of the
error. Trying to multiply variables of a string and integer data type would crash
program execution, making the error relatively easy to find. Adding when you
should have multiplied is a type of logic error that will not crash a program, but
will certainly taint the result. Logic errors can be very serious because you may
never find them or even know they exist.

Other Data Types
There are just a couple more data types that need to be mentioned. You will see them in
action in subsequent chapters.

The Boolean data type holds the value true or false. You can also represent true as a 1 and
false as a 0. Boolean variables will be very useful when dealing with programming struc-
tures that use conditions, as you will see in the next chapter. Declare and initialize a
Boolean variable as follows:

Dim rollDice As Boolean

rollDice = False

You can also specify variables of type date. Variables of type date are actually stored as floating
point numbers with the integer portion representing a date between 1 January, 100 and 31
December 9999, and the decimal portion representing a time between 0:00:00 to 23:59:59.
The date data type is mostly a convenience when you need to work with dates or times.

HINT

39Chapter 2 • Beginning Programs with VBA

40 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

There are a handful of VBA functions that use variables of type date that add to this conve-
nience. You will see a couple of examples of date functions in the chapter project.

Constants
Constants allow you to assign a meaningful name to a number or string that will make your
code easier to read. This is analogous to using named ranges in your spreadsheet formulas.
There are numerous mathematical constants for which it makes sense to use constant data
types. A constant string might be used when you need frequent use of a particular spread-
sheet label. Constants are declared using the Const keyword as shown below.

Const PI = 3.14159

Dim circumference As Single

Dim diameter As Single

diameter = 10.32

circumference = PI* diameter

The declaration and initialization of a constant occur in the same line of code. The value of
a constant can never change, so it is a good idea to use constants when you need the same
value throughout the life of your program. Constant names are uppercase as a convention
only; it is not required by VBA.

Simple Input and Output with VBA
You have already seen how to get input from the user through the use of the Value property
of a spreadsheet cell. Conversely, you can generate output for the user through the spread-
sheet. Yet there may be times when you want something more dynamic and dramatic than
a spreadsheet cell. The easiest method for gathering input from the user and sending output
back is the InputBox() and MsgBox() functions.

Just as Excel comes with a large number of functions for the user to use in
spreadsheet formulas (for example, the SUM() function), VBA contains numerous
functions for the programmer. VBA programming functions, just like Excel
functions, typically require one or more values (called parameters or arguments)
to be passed to them, and then return one or more values (most commonly
one) back to the program.

Collecting User Input with InputBox()
When you need to prompt the user for input and want to force a response before program
execution continues, then the InputBox() function is the tool to use. The InputBox() function

HINT

sends to the screen a dialog box that must be addressed by the user before program execu-
tion proceeds. Figure 2.6 shows the dialog box.

The InputBox() function returns the data entered by the user as a string if the OK button is
clicked or the Enter key is pressed on the keyboard. If the user clicks the Cancel button, then
a zero-length string is returned (“”). Here is the syntax required for creating an InputBox()
(parameters in brackets are optional).

InputBox(prompt [,title] [,default] [,xpos] [,ypos] [,helpfile, context])

The prompt is the only required parameter that must be passed to the function. Typically, the
prompt, title, and sometimes the default are used. You must assign the return value of
the function to a variable of type string.

Dim name As String

name = InputBox(“Please enter your name.”, “Name”, “Last, First”)

The prompt and title must be strings, which is why they are enclosed in double quotation
marks. Alternatively, you can use string variables for these parameters. The title parameter
is displayed in the title bar of the dialog box. The default parameter is displayed in the text
box of the dialog box. Including a little help in the prompt or default parameter will
increase the chances of getting the correct input. In the example above, I included a default
parameter that serves to tell the user what format I want the name entered.

Output with MsgBox()
The MsgBox() function outputs a message to the user in the form of a message box like the
one shown in Figure 2.7.

The MsgBox() function is a good way to alert the user about some type of problem, or ask a
question that requires a yes/no answer. Here is the syntax for the MsgBox() function:

MsgBox(prompt[, buttons] [, title] [, helpfile, context])

41Chapter 2 • Beginning Programs with VBA

Figure 2.6

The InputBox()
dialog box.

42 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The prompt is the only required parameter, although buttons and title are usually included.
The example below was used to generate the message box in Figure 2.7:

userResponse = MsgBox(“Testing the Message Box”, vbOKOnly, “Message”)

The prompt must be a string or string variable and is used as the message you want the user
to read. The buttons parameter requires a numeric expression (either an integer or constant)
and tells VBA what buttons and/or icons are to be placed on the message box. There are several
choices for buttons, including OK, OK/Cancel, Abort/Retry/Ignore, and Yes/No. You can also
display an icon (warnings or information type), a help button, and add some additional
formatting with your choice of buttons. For a complete list of button choices, look up the
MsgBox() function in the on-line help by typing msgbox in the keyword field of the help window
(see Figure 2.8). The reference vbOKOnly, in the above expression is actually a named constant
associated with this function. For example, the value of vbOKOnly is zero. I used the constant
expressions because it’s easier to interpret the code and I know exactly what I am asking for
in the appearance of the message box. Finally, the title can be included as a string or string
variable.

The MsgBox() function returns an integer between 1 and 7 depending on the button selected.
Obviously this is only useful when there is more than one button. The return value should
then be used to select a course of action in your program.

Finally, you should take care not to use too many message boxes in your program. Always ask
yourself: are there other ways to get input or display the message besides including a message
box? Most users (including myself) find it extremely annoying to have to answer a message box
when it’s not really necessary.

Manipulating Strings with VBA Functions
Now it’s time to get back to strings and have a little fun. Strings are more of an unknown to
the programmer in the sense that you seldom know how long they are, or how much of the

Figure 2.7

The message box.

string actually represents useful information. Thankfully, there is a plethora of functions
designed to work on string variables that you can use to extract the information you need.
Table 2.3 summarizes many of these functions.

As with most functions, the string functions require one or more parameters be passed. All
functions must return a value so the syntax will look something like this:

myVar = FunctionName(parameter list)

where myVar is a variable of the proper type for the return value of the function, FunctionName
is the name of the VBA function, and parameter list is a list of one or more values to be passed
to the function. Parameters can be literals (for example, 5.2 or “Hello”), but are usually in the
form of variables.

Fun with Strings
The best way to learn these functions is to use them, so let’s create a program that asks for the
user’s name and then outputs components of the name to a worksheet. I call it Fun with
Strings, and Figure 2.9 shows the spreadsheet, which can also be found on the CD_ROM.

43Chapter 2 • Beginning Programs with VBA

Figure 2.8

Settings for the
buttons argument

with the
MsgBox()
function.

44 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Function Name Returns

Str() A string representation of a number

Val() A numerical representation of a string

Trim() A string with leading and trailing spaces removed

Left() A portion of a string beginning from the left side

Right() A portion of a string beginning from the right side

Mid() Any portion of a string

InStr() A number representing the place value of a particular character within a string

InStrRev() The position of an occurrence of one string within another, from the end
of string

StrReverse() A string with its character order reversed

Len() A number of characters in a string

LCase() A string with all characters lowercase

UCase() A string will all characters uppercase

StrConv() A string converted to one of several possible formats

StrComp() A number indicating the result of a string comparison

Asc() Number representing the ANSI code of a character

Chr() One character string representing the ANSI code of a number

TA B L E 2. 3 V B A S T R I N G F U N C T I O N S

Figure 2.9

Fun with Strings.

Specifically, the program will output the user’s first name and last name along with the
number of characters in each name to separate cells in the spreadsheet. The program will
also convert the user’s name to both all uppercase and all lowercase characters as well as
reverse the order of the first and last name. The code is placed in the Click() event proce-
dure of a Command Button control placed on the worksheet. The Name property of the Com-
mand Button control was changed to cmdBegin and the Caption property to “Begin”. When
the user clicks on the command button, code execution begins. After some variable decla-
rations, the InputBox() function is used to prompt the user for his/her first and last name.
You will notice that I am assuming the user enters his/her first name followed by one space
and then the last name.

Input validation is an important component in any program that requires user
input. I have not yet covered enough programming constructs to discuss input
validation; I will wait until Chapter 4 to discuss it.

Everything entered by the user is stored in the string variable userName.

Private Sub cmdBegin_Click()

Dim userName As String

Dim firstName As String

Dim lastName As String

Dim strLength As Integer

Dim spaceLoc As Integer

‘———————————————————————-

‘Collect user name, find the space between

‘first and last names, and separate the names.

‘———————————————————————-

userName = InputBox(“Enter your first and last name.”, “Name”)

spaceLoc = InStr(1, userName, “ “)

firstName = Left(userName, spaceLoc - 1)

‘—————————————-

‘Output to the worksheet

‘—————————————-

Range(“C3”).Value = firstName

strLength = Len(firstName)

Range(“C4”).Value = strLength ‘length of first name

strLength = Len(userName)

HINT

45Chapter 2 • Beginning Programs with VBA

46 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

lastName = Mid(userName, spaceLoc + 1, strLength - spaceLoc)

Range(“C5”).Value = lastName

strLength = Len(lastName)

Range(“C6”).Value = strLength

Range(“C7”).Value = UCase(userName)

Range(“C8”).Value = LCase(userName)

Range(“C9”).Value = StrConv(userName, vbProperCase)

Range(“C10”).Value = StrReverse(userName)

Range(“C11”).Value = lastName & “, “ & firstName

End Sub

To help picture what will happen in the program, let’s assume the variable userName contains
the string “Fred Flintstone”. This string is 15 characters long; Table 2.4 shows the locations
of each character.

The program determines the location of the space by using the InStr() function. The
InStr() function is passed three parameters, the number 1, the string variable userName, and
a single character string containing a space. The parameter 1 represents the location to start
searching within the string passed in the next parameter, in this case, userName. The last
string is a space and this represents the character the InStr() function is searching for
within the value of userName. The InStr() function then returns an integer value represent-
ing the location of the space within the userName string. This integer value is the location of
the space between the first and last name of the user—in this example, location 5 (see Table
2.4)—and is stored in the integer variable spaceLoc. The Left() function is then passed two
parameters, the userName string, and the length of the portion of the userName string to
return. The variable spaceLoc is holding the location of the space (5 in our example), so using
spaceLoc – 1 for the length parameter in the Left() function returns just the first name
(“Fred”). The Len() function is used to return the length of the firstName string as an inte-
ger and this value is stored in the variable strLength. The values of the firstName string and
strLength variables are then copied to the worksheet.

Character F r e d F l i n t s t o n e

Location 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TA B L E 2. 4 C H A R A C T E R L O C A T I O N S I N A S T R I N G

The Mid() function is used to return the last name of the user to the string variable lastName.
The Mid() function takes three parameters: the original string userName (“Fred Flintstone”),
the starting location of the new string (spaceLoc – 1), and the length of the string to return
(strLength – spaceLoc). The variable strLength was reinitialized to the length of userName
prior to using the Mid() function. Again, the variables holding the last name and the number
of characters in the last name are copied to the worksheet.

The UCase() and LCase() functions convert the userName string to all uppercase and all lower-
case letters, respectively; and the StrConv() function converts the userName string to proper
case. Finally, the StrReverse() function reverses the order of the characters in the userName
string and the & (ampersand) character is used to concatenate strings and rearrange the
user’s name such that the last name is first, followed by a comma and the first name.

String concatenation is the process of combining one or more strings together
to form a new string. The strings are combined from left to right using either the
ampersand (&) or addition (+) operators. To avoid ambiguity with the mathemat-
ical addition operator, I recommend that you always use the ampersand (&)
operator for string concatenation.

You did not see all the string functions in action in the Fun with Strings program. You will see
more in the next project and throughout this book. I will explain their use in detail as they
appear in various code snippets and programming projects. In the meantime, I recommend
you play with the string functions I have already discussed in order to get comfortable using
them.

Constructing the Biorhythms
and the Time of Your Life Program
This project will utilize several of the VBA programming components discussed in this chapter.
The project contains several different examples of data types including integer, floating
point, string, and date types. I introduce some new functions designed to work with the date
and string data types. The project also demonstrates nesting functions, the use of constants,
and some simple mathematical operations.

The majority of the work for this project will be handled by the Excel application via for-
mulas and a chart. The requirements handled by the VBA program will be limited to col-
lecting the user’s name and birth date, and outputting the result of some date calculations.
As was the case for the Colorful Stats project in Chapter 1, there is nothing in this project that
could not be accomplished in the Excel application without the aid of a VBA program.

HINT

47Chapter 2 • Beginning Programs with VBA

48

Nonetheless, I will show you how to build a fun little project that you can use daily to track
the status of your biorhythms.

Your biorhythms (if you believe in them) are on sinusoidal cycles that vary in length for the
three types. The lengths of the cycles are 23, 28, and 33 days for your physical, emotional,
and intellectual cycles, respectively; with each cycle type starting on your birth date. Your
best days are supposedly in the first half of a cycle when the sinusoidal curve is positive.
Likewise, your worst days are in the second half of a cycle when the curve is negative. Critical
days are said to be when you cross the boundary between positive and negative days.

I don’t have a lot of faith in biorhythms, but they are fun to calculate and examine; and if
you are having a bad day when your biorhythms are negative or critical, it gives you some-
thing to blame it on.

Requirements for Biorhythms and the Time of Your Life
As mentioned earlier, I’ve left most of the work to the Excel application by using formulas
to calculate the sinusoidal curves for the three cycles, and a chart to display the curves. The
specific requirements of the project follow:

1. The biorhythm spreadsheet shall use formulas to calculate a sinusoidal curve for
each of the three cycle types. Note that these three curves are static.

2. The spreadsheet shall contain an embedded chart that displays the static curves
described in requirement 1.

3. The VBA program shall be initiated from a Command Button control added to the
spreadsheet.

4. The program shall ask the user for his or her name and birth date.

5. The program shall output the user’s name (formatted in proper case) and birth date
(formatted as Month, Day, Year, Weekday) to the spreadsheet.

6. The program shall calculate the user’s age in years, months, days, hours, minutes,
and seconds and output the results to the spreadsheet.

7. The program shall calculate the current position of the user’s biorhythms in each of
the three cycles (day and magnitude) and output the results to the spreadsheet.

8. The embedded chart on the spreadsheet shall contain a data series for each of the
values calculated in the previous requirement.

Designing Biorhythms and the Time of Your Life
The user interface for the project consists of a single Excel worksheet containing the data
for the static sinusoidal curves, an embedded chart, and a Command Button control for

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

initiating the program. The worksheet is preformatted to make the data presentable. The
scatter chart contains six different data series that include the three static curves (column
A has the x-values and columns B through D the y-values) and the values for the current status
of the user’s biorhythms (not visible until the program has been run). I will enter the VBA
program within the Click() event procedure of the Command Button control on the work-
sheet so the user can initiate it with a simple mouse click. Figure 2.10 shows the Biorhythms
and the Time of Your Life spreadsheet prior to executing the program.

The program requires the user to input his or her name and birth date. I will use an InputBox()
function to collect this input and store it in a program variable. Next, the program will
calculate the user’s age in the different units (specified in the requirement list) and output
the results to cells G30 through G35. Other outputs include the user’s birth date to cells G29
and H29 formatted in a long form (month, day, year, weekday) and the current day and mag-
nitude for each of the user’s biorhythm cycles (cells A38 through A40 for the days, cells B38,
C39, and D40 for the magnitudes). The calculation of the user’s current biorhythms is based
on his/her birth date and the number of 23, 28, or 33 day periods that have passed since he or
she was born. Once the program has output the results to the worksheet, the chart is auto-
matically updated by Excel.

Coding Biorhythms and the Time of Your Life
I have entered the following code to the object module for the Biorhythms and the Time of Your
Life worksheet shown in Figure 2.10.

49Chapter 2 • Beginning Programs with VBA

Figure 2.10

The Biorhythms
and the Time of

Your Life
spreadsheet.

50

Option Explicit

Private Sub cmdCalculate_Click()

Dim userName As String

Dim yrPassed As Single, moPassed As Single, dayPassed As Single

Dim hrPassed As Single, minPassed As Single, secPassed As Single

Dim userBday As Date, curDate As Date

Dim bDate As String, bMonth As String

Dim bDay As Integer, bYear As Integer

Const SECSPERMIN = 60, MINSPERHOUR = 60

Const HOURSPERDAY = 24, DAYSPERYEAR = 365.25

Const PHYSICAL = 23, EMOTIONAL = 28, INTELLECTUAL = 33

Const PI = 3.14159265358979

‘——————————————————

‘Get the user’s name and birth date.

‘——————————————————

userName = LCase(InputBox(“What is your name?”, “Name”))

userBday = DateValue(InputBox(“When is your birthday? (month/day/year)”, “Birth Date”))

‘——————————————————————-

‘Calculate length of life in different units.

‘——————————————————————-

curDate = Now ‘Gets current time and date.

secPassed = DateDiff(“s”, userBday, curDate)

minPassed = secPassed / SECSPERMIN

hrPassed = minPassed / MINSPERHOUR

dayPassed = hrPassed / HOURSPERDAY

yrPassed = dayPassed / DAYSPERYEAR

moPassed = yrPassed * 12

‘———————————————————

‘Get user’s birthday in proper format.

‘———————————————————

bDate = Format(userBday, “dddd”)

bMonth = Format(userBday, “mmmm”)

bDay = Day(userBday)

bYear = Year(userBday)

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

‘——————————

‘Format user’s name.

‘——————————

userName = StrConv(userName, vbProperCase)

‘———————————————————————————-

‘Enter time values into appropriate cells in worksheet.

‘———————————————————————————-

Range(“G28”).Value = Trim(Left(userName, InStr(1, userName, “ “)))

Range(“H28”).Value = Trim(Right(userName, Len(userName) - Len(Range(“G28”).Value)))

Range(“G29”).Value = bMonth & “ “ & Str(bDay)

Range(“H29”).Value = bYear & “ (“ & bDate & “)”

Range(“G30”).Value = yrPassed

Range(“G31”).Value = moPassed

Range(“G32”).Value = dayPassed

Range(“G33”).Value = hrPassed

Range(“G34”).Value = minPassed

Range(“G35”).Value = secPassed

‘—————————————

‘Formula for day of cycle.

‘—————————————

Range(“A38”).Value = (Range(“G32”).Value / PHYSICAL - _

Int(Range(“G32”).Value / PHYSICAL)) * PHYSICAL

Range(“A39”).Value = (Range(“G32”).Value / EMOTIONAL - _

Int(Range(“G32”).Value / EMOTIONAL)) * EMOTIONAL

Range(“A40”).Value = (Range(“G32”).Value / INTELLECTUAL - _

Int(Range(“G32”).Value / INTELLECTUAL)) * INTELLECTUAL

‘——————————————————-

‘Formula for magnitude of biorhythym.

‘——————————————————-

Range(“B38”).Value = Sin((Range(“G32”).Value / PHYSICAL - _

Int(Range(“G32”).Value / PHYSICAL)) * _

PHYSICAL * 2 * PI / PHYSICAL)

Range(“C39”).Value = Sin((Range(“G32”).Value / EMOTIONAL - _

Int(Range(“G32”).Value / EMOTIONAL)) * _

EMOTIONAL * 2 * PI / EMOTIONAL)

51Chapter 2 • Beginning Programs with VBA

52

Range(“D40”).Value = Sin((Range(“G32”).Value / INTELLECTUAL - _

Int(Range(“G32”).Value / INTELLECTUAL)) * _

INTELLECTUAL * 2 * PI / INTELLECTUAL)

End Sub

Variable declaration is required by adding Option Explicit to the general declarations section
of the object module for the worksheet. All other code is added to the Click() event procedure
of the Command Button control named cmdCalculate. Variables and constant declarations
are placed at the top of the procedure. Date and string variables are used to hold and manip-
ulate the name and birth date obtained from the user. Numerical variables are used to hold
the various lengths of time the user has been alive and the numerical components of the
user’s birthday.

Input is gathered from the user with the InputBox() function. Notice that I placed the InputBox()
function inside the parameter list of the LCase() function. This is called nesting functions. In
nested functions, the innermost function runs first; in this case, InputBox(), then whatever
the user enters in the input box is passed to the next function, LCase(). The string entered
by the user is then stored in the userName variable with all characters lower case. Another
InputBox() function is used to retrieve the user’s birthday. Again the InputBox() is nested in
another function. The DateValue() function is passed a string parameter representing a date
and is used to convert the string to a value of type date. The date is then store in the vari-
able userBday.

Now you must process the information obtained from the user. First, I get the current date
and time from the operating system by using the Now function and store it in the date vari-
able curDate. The Now function is somewhat unusual in that it does not take any parameters.
The curDate and userBday variables are passed to the DateDiff() function along with the single
character string “s”. The DateDiff() function calculates the difference between two dates in
the interval specified, in this case “s” for seconds. Once the user’s life in seconds is known,
it’s a simple matter to convert this number to minutes, hours, days, months, and years using
the constants defined earlier.

The DateDiff() function returns a value of type variant (long). This means that
the function will return a long integer unless the value exceeds its range
(2,147,483,647), in which case it will promote the return value to the next largest
data type with integer values. In the Biorhythms and the Time of Your Life pro-
gram, the range of the long data type will be exceeded by anyone more than 68
years old. Thus, to avoid a possible data-type error, the variable secPassed was
declared as a single data type. This ensures the value from DateDiff() will be
within the variable’s allowed range of values. I did not want a floating-point
number for the value of secPassed, but I don’t need to be concerned because I
know the DateDiff() function will only return a whole number.

HINT

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The Format() function can be used with numerical, string, and date data. Here Format() is
used to return the weekday the user was born, and the month as text rather than the
numerical representation. The dates are passed as variables along with format strings
(“dddd” and “mmmm”). These strings tell the function what format to use on the return value.
For example, “dd” would return the numerical value for the day of the month, and “ddd”
would return the three-letter abbreviation.

Next, the Day() and Year() functions are used to return the day of the month and year as
integers and the StrConv() function converts the user’s name to proper case (first letter of
each name is capitalized).

Now that the time of life values have been calculated and the user’s name and birth date
formatted as desired, they are output to the appropriate cells in the worksheet. The only
new element here is the Str() function which converts a numerical value to a string data
type. The Str() function is not really needed for the conversion in this case. Since the & is
used as the string concatenation operator, VBA assumes I want the variable bDay treated as if
it were a string when the Str() function is omitted. If + is used as the string concatenation
operator, then the Str() function must be used to avoid a type mismatch error. For clarity,
I recommend using Str() in examples like this even when using the &.

The converse of the Str() function is the Val() function. The Val() function is
used to convert string data to numerical data.

The last part of the program calculates and outputs the user’s current day and magnitude
for each of his/her biorhythm cycles. The current status of the user’s cycle is calculated using
the number of days he or she has been alive (from cell G32) and the length of each cycle. The
Int() function is used to return the integer portion of a floating point number and the sin()
function calculates the sine of the value passed to it. Note the use of the line continuation
characters in the code.

That concludes this chapter’s project. Although it’s not exactly a long program, you may be
feeling a bit overwhelmed by the number of functions used. Don’t worry about learning all
the functions available in VBA and how to use them—you can’t! There are way too many, so
it’s a waste of time to try to memorize them all. I am familiar with the string functions,
because I use them quite often, although I still had to look up syntax and parameter lists a
couple of times while writing this project. The date functions are another matter. I didn’t
know any of the date functions before writing this program. What I did know is the essence
of how a function works. I also realized that VBA was very likely to have a number of functions
that worked on the date data type. Then it was a simple matter of searching the on-line
help and looking at my choices.

HINT

53Chapter 2 • Beginning Programs with VBA

54

Chapter Summary
This chapter introduced you to some important basics of programming; including variables,
data types, and constants. I placed particular emphasis on the most common data types:
numbers and strings. I also took a look at programming modules in VBA and their effect on
the scope of a variable. Finally, I discussed several functions used to manipulate values of
type string and date.

In Chapter 3, I will take a more in-depth look at VBA modules and procedures. Then, I will
examine some more basic programming constructs with conditional operators and decision
structures.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

C H A L L E N G E S

1. Write a program that will add two numbers input by the user and display the
result in a spreadsheet. Use an input box and the Val() function to convert the user
input to a numerical data type.

2. Place a Command Button control on a worksheet and write a program in the Click()
event procedure that increments a variable by 5 with every click of the mouse.
Output the value of this variable in a message box.

3. Write a program that extracts the time from the string returned by the Now func-
tion and outputs it in a message box.

4. Insert a new standard module and define a procedure that, when executed,
prompts the user for his/her name and phone number. The form of the phone
number entered by the user should include two dashes; one after the area code
and one after the 3-digit prefix. Your program should use string functions to
remove the dashes and then output the user’s name and dash-less phone number
to a worksheet.

5. Write a program that automatically sums the rows, columns, and diagonals of a
5 × 5 magic square.

Procedures and
Conditions

3
C H A P T E R

A
lthough the two topics in this chapter title don’t necessarily go hand in
hand, they do represent basic constructs essential for any program. In this
chapter, you closely observe both procedures and conditions in order to

establish some basic tools with which to work in VBA.

Specifically, in this chapter I will discuss:

• Sub Procedures

• Function Procedures

• Event Procedures

• Conditional Logic

• Conditional Statements and the If/Then/Else and Select/Case Code
Structures

Project: Poker Dice
Poker Dice is a variation of five-card draw using dice instead of cards. This is the first
functional program that can’t be created in the Excel application alone. The Poker
Dice spreadsheet is shown in Figure 3.1.

The program introduces two new controls (Check Box and Image controls), sub
procedures, and a conditional programming structure (If/Then/Else).

C H A P T E R

VBA Procedures
I briefly discussed programming modules in Chapter 2. You may remember that a module
is a segment of your project that contains a related set of declarations and procedures. You
may also remember that every module has its own window within the VBA IDE and, depending
on whether or not it is an object module or a standard module, slightly different behavior
regarding variables. Programming procedures can be constructed within each of these module
windows if they are not already defined. Let’s take a look at the different type of procedures
that can be used and/or built using VBA.

Event Procedures
You have already seen a few examples of event procedures; such as the Click() event procedure
of a Command Button control, and the SelectionChange() event procedure of a worksheet.
VBA predefines these procedures in the sense that you cannot change the name of the proce-
dure, nor the object within Excel to which the procedure belongs, nor the conditions under
which the procedure is triggered. For the most part, all you can do with these procedures is
add the code to be executed when the event is triggered. Typically, several events are associ-
ated with each Excel object; whether it is a worksheet, workbook, chart, or ActiveX control.
Figure 3.2 shows the object module for a worksheet and displays all of the events associated
with a worksheet in Excel.

56 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 3.1

The Poker Dice
program.

Event procedures are defined with the Sub keyword followed by the name of the procedure.

Private Sub Worksheet_Activate()

‘Event procedure code is listed here.

End Sub

The name of the procedure listed above is Worksheet_Activate(), although it will be more
commonly referred to as the Activate() event. No parameters are passed to this procedure
because the parentheses are empty. This procedure is triggered when the worksheet to which
it is associated is activated; that is, when you switch between two different windows or work-
sheets, the Activate() event of the currently selected worksheet is triggered. The procedure
ends with the line End Sub, unless the statement Exit Sub is used within the procedure code.

Parameters with Event Procedures
Parameters are the list of one or more variables passed to the event procedure when it is trig-
gered. The values of the parameters passed to the event procedure contain information
related to the event. A comma separates multiple variables, and the variable data type is also
declared. VBA defines everything about the parameters passed to the event procedure;
including the number of parameters, the name of each parameter and their data types, and
the method in which they are passed. Although it is possible to change the name of the vari-
ables in the parameter list under certain circumstances, I do not recommend editing the
event procedure definition in any way.

57Chapter 3 • Procedures and Conditions

Figure 3.2

Worksheet
events in Excel.

Dropdown list
of events

58

The following example shows the MouseDown() event procedure of a Command Button control.
This procedure triggers when the user clicks on the Command Button control with the
mouse. The first and last lines of the procedure are automatically created by VBA. I added the
four lines of code within the procedure.

Private Sub CommandButton1_MouseDown(ByVal Button As Integer, ByVal Shift As Integer,

ByVal X As Single, ByVal Y As Single)

Range(“A2”).Value = Button

Range(“B2”).Value = Shift

Range(“C2”).Value = X

Range(“D2”).Value = Y

End Sub

There are four parameters passed to the MouseDown() event procedure: Button, Shift, X, and
Y; they have all been declared as numerical data types. These parameters contain numerical
information describing the event that just occurred, and they can be used as variables
within the procedure because they have already been declared. The ByVal keyword will be
discussed later in this chapter, so just ignore it for now. The previous code was added to the
MouseDown() event procedure of a Command Button control placed on a worksheet with a
few column headers as shown in Figure 3.3.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 3.3

Parameter
values of the
MouseDown()

event procedure.

The values of the parameter variables are copied to the appropriate cells in this worksheet
when the user clicks on the Command Button control. The variable Button represents the
mouse button that was clicked—a value of 1 for the left mouse button, 2 for the right mouse
button, and 3 for the middle mouse button (if it exists). The variable Shift represents the
combination of Shift, Ctrl, and Alt keys held down while the mouse button was clicked.
Since there are eight possible combinations of these three keys, the variable Shift can hold
an integer value between zero and seven. The variables X and Y represent the location of the
mouse cursor within the Command Button control when the mouse button was clicked. The
values of X and Y fall within zero to the value of the Width property of the Command Button
control for X, and zero to the value of the Height property for Y. The upper left corner of the
Command Button control is X = 0, Y = 0.

You now see how helpful the information within these parameters can be. For example, a
programmer might use the MouseDown() and MouseUp() event procedures of an ActiveX control
to catch a right click of the mouse button on the control. The MouseDown() event procedure
might be used to display a menu with various options, and the MouseUp() event procedure
would then be used to hide the menu. Does this sound familiar?

It is both impractical and unnecessary to discuss all of the event procedures of all Excel
objects and ActiveX controls in this book. The examples you have seen so far are a good rep-
resentation of how to use event procedures in VBA. In order to establish which event proce-
dures (if any) should be used in your program, do the following:

• Ask yourself, “When should something happen?”

• Search for the event procedure(s) that will be triggered by the answer to the question,
“When should something happen?” The event procedures have sensible names
related to the action that triggers them; however, it may be useful to look up the
description of the event procedure in the online help.

• If you cannot find an event procedure that triggers when desired, redesign your
program with ActiveX controls that do contain a useful event procedure. If you still
can’t find anything, then there are probably errors in the logic of your algorithm.

• Test possible procedures by writing simple programs such as the one for the
MouseDown() event procedure listed earlier.

• Insert the code that carries out the tasks you want once you recognize the proper
event procedure.

59Chapter 3 • Procedures and Conditions

60

Private, Public, and Procedure Scope
The Private and Public keywords used with procedure definitions have a similar function
to that used with variable declarations. Private and Public are used to define the proce-
dure’s scope. The Public keyword makes the procedure visible to all other procedures in all
modules in the project. The Private keyword ensures that the procedure is visible to other
procedures within the same module, but keeps it inaccessible to all other procedures out-
side the module in which it is defined. The Private and Public keywords are optional, but
VBA includes them in predefined event procedures. If Private or Public is omitted, then the
procedure is public by default.

Use the Option Private statement in the general declarations section of a mod-
ule to keep public modules visible only within the project. Omit Option Private
if you wish to create reusable procedures that will be available for any project.

Sub Procedures
Although all procedures are really sub (short for subroutine) procedures, I will use the term
to refer to those procedures created entirely by the programmer. The basic syntax and oper-
ation of a sub procedure is the same as for an event procedure. You define the procedure
with the scope using the Public or Private keywords, followed by the keyword Sub, the pro-
cedure name, and the parameter list (if any). Sub procedures end with the End Sub state-
ment. You can either type in the procedure definition or use the Insert/Procedure menu
item to bring up the Add Procedure dialog box, as shown in Figure 3.4.

Private Sub myProcedure(parameter list)

‘Sub procedure code is listed here.

End Sub

TRICK

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 3.4

The Add
Procedure
dialog box.

Sub procedures differ from event procedures in that:

• the programmer defines the procedure name and any variable names in the
parameter list.

• the programmer decides how many (if any) variables are in the parameter list.

• they can be placed in both object and standard modules.

• execution begins when they are “called” using code from other parts of the program
and cannot be automatically triggered.

The following program collects two numbers from the user, adds them, and outputs the
result. This program can reside in any module. For simplicity, I tested this program by run-
ning it directly from the VBA IDE. To begin program execution from the VBA IDE, first insert
the mouse cursor within the procedure to be executed, and then press F5 or select the
appropriate icon from the Standard toolbar or Run menu, as shown in Figure 3.5.

Option Explicit

Dim answer As Integer

Private Sub Main()

Dim num1 As Integer

Dim num2 As Integer

61Chapter 3 • Procedures and Conditions

Figure 3.5

Running a
program from
the VBA IDE.

The Run
Sub/UserForm

menu selection

The Run
Macro button

62

num1 = Val(InputBox(“Please enter the first operand”, “First operand”))

num2 = Val(InputBox(“Please enter the second operand”, “Second operand”))

Call AddUserInput(num1, num2)

SendResult

End Sub

Private Sub AddUserInput(num1 As Integer, num2 As Integer)

answer = num1 + num2

End Sub

Private Sub SendResult()

MsgBox (“The answer is “ & Str(answer))

End Sub

First, variable declaration is required with Option Explicit and a module level variable
(answer) is declared.

The majority of the program is listed in the sub procedure Main(). The sub procedure Main()
is declared as Private and serves as the central procedure for the program. Two procedure-
level integer variables (num1 and num2) are declared and assigned to the return value of input
boxes. The Val() function is used to convert the string type return value from the InputBox()
function to a numerical value.

After two values are input by the user, the program makes the calls to the sub procedures
AddUserInput() and SendResult(). The Call keyword is used to send program execution to
AddUserInput() and the variables num1 and num2 are passed to this procedure. The Call keyword
is required when passing parameters enclosed in parentheses; otherwise it is unnecessary
(for example, AddUserInput num1, num2 is an identical statement). After the AddUserInput()
procedure executes, program execution resumes in the Main() procedure where it left off.
The line SendResult is another procedure call and sends program execution to the
SendResult() sub procedure. As no parameters are passed, the Call keyword is omitted
(although you may include it if you like). The Main() procedure, and consequently the pro-
gram, terminates after program execution returns from the SendResult() procedure. The
AddUserInput() procedure’s only purpose is to accept the two addends from the Main() pro-
cedure, add them together, and store the result in the module level variable answer. Note
that I used the same variable names for the two addends when defining the AddUserInput()
procedure. This is perfectly legitimate, as this is outside the scope of the original num1 and
num2 variables. Finally, the SendResult() procedure is used to output the answer using a basic
message box. A Str() function is used to convert the numerical variable answer to a string
before it is concatenated to the rest of the message.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Keep your procedures as short as possible. You will find that as your procedures
get longer, they get harder to read and debug. As a general rule I try to keep my
procedures to a length such that all of the code is visible on my monitor. If your
procedure gets much longer than one screen, break the procedure into two or
more procedures.

ByVal and ByRef
You should have noticed the ByVal keyword in the parameter list of the MouseDown() event
procedure shown earlier in the chapter. The ByVal keyword tells VBA to make a copy of the
value stored in the accompanying variable. Thus, any manipulation of the copied value
within the procedure does not affect the original variable.

The alternative to passing a variable by value is to pass a variable to another procedure by
reference; the ByRef keyword is used to do so. When you pass by reference you are essentially
passing the original variable to the procedure. Any manipulation of the variable in the new
procedure is permanent, so the variable does not retain its original value when program
execution proceeds back to the calling procedure. This is true even if you use a new variable
name in the procedure that accepts the variable passed by reference. Passing by reference is
the default behavior, so you can omit the ByRef keyword if you wish.

The following short program will make the behavior of ByVal and ByRef clear. I suggest
inserting a new module into a project, adding the code below, and running the program
from the procedure Main().

Private Sub Main()
Dim num1 As Integer
Dim num2 As Integer
num1 = 10
num2 = 15
Call PassByRef(num1)
Call PassByVal(num2)
MsgBox (num1 & “ “ & num2)

End Sub
Private Sub PassByRef(ByRef num3 As Integer)

num3 = 20
End Sub
Private Sub PassByVal(ByVal num2 As Integer)

num2 = 20
End Sub

Figure 3.6 shows the message box output by this program.

TRICK

63Chapter 3 • Procedures and Conditions

64

First two integer variables are declared and initialized to the values 10 and 15. The first vari-
able, num1, is passed by reference to the procedure PassByRef() in a variable called num3. The
value 20 is assigned to the num3 variable inside the PassByRef() procedure. Next the variable
num2 is passed by value to the PassByVal() procedure, where it is copied to another variable
called num2. The num2 variable in the PassByVal() procedure is then assigned the value 20. The
program ends with the output of the original num1 and num2 variables in a message box.

Now ask yourself: “What values output in the message box?” The answer is 20 for the num1
variable, and 15 for the num2 variable. The variable num1 holds the value 20 at the end of the
Main() procedure because it was changed in the PassByRef() procedure. Even though a dif-
ferent variable name was used in the PassByRef() procedure, the num3 variable still refers to
the same memory location holding the value assigned to the num1 variable. Essentially, we
have one variable with two names, each with its own scope. The num2 variable retains its
value of 15 at the end of Main() procedure because it had been passed by value to the Pass-
ByVal() procedure. Passing by value makes a copy of the variable’s value to a new variable,
even if the variable in the accepting procedure (PassByVal) has the same name. In this case,
there are two variables with the same name.

You pass a variable by reference to a procedure in order to change the value of the original
variable; or when the variable is needed in the procedure, but its value does not have to be
changed. If the variable needs to be altered for another purpose but must retain its original
value; then pass the variable by value using the ByVal keyword.

Function Procedures
Function procedures are very much like other procedures with one significant difference:
they return a value to the calling procedure. Now you might be concerned or confused by
the fact that I used the term functions back in Chapter 2 in reference to Excel’s spreadsheet
functions and VBA’s string and date functions. So, what’s the difference between these two
terminologies? There is no difference. Everything I have, or will call a function is essentially
the same thing. A function is a small program built with a specific purpose that, when used,
will return a value to the calling procedure or spreadsheet cell(s).

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 3.6

Message Box
output from

sub procedure
Main().

If you are familiar with the built-in functions available in the Excel application, such as
SUM(), AVERAGE(), STDEV(), then you already have a basic understanding of how they work.
Functions are often (but not always) passed one or more values and they always return at
least one value. For example, if I enter the formula =AVERAGE(A2:A10) into cell A11 on a work-
sheet in the Excel application, I know that the average of the nine values given in the range
A2:A10 will be calculated and returned to cell A11. Excel recognizes the AVERAGE keyword in
the formula as one of its built-in functions. Excel then calls the function procedure AVERAGE()
and passes the range of values specified in parentheses—in this case, 9 values. The function
procedure AVERAGE() then calculates the average of the values passed in as parameters and
returns the result to the spreadsheet cell containing the formula. In VBA, you can also call
function procedures such as Left(), Mid(), and DateDiff(), as you have seen in previous
examples. You can even use the built-in functions of the Excel application. Finally, you can
create your own function procedures in VBA.

Creating Your Own VBA Functions
The basic syntax for creating a function procedure in VBA is as follows:

Private/Public Function FunctionName(paramter list) as type

‘Function procedure code is listed here

FunctionName = Return value

End Function

This is similar to the syntax for any procedure with the procedure name, parameter list, and
an End statement. You can, and should include a Private or Public keyword to define the
scope of the function. One obvious difference is the Function keyword replaces Sub. Also, you

65Chapter 3 • Procedures and Conditions

In the Real World
At the most basic level, you can think of a memory location in your computer as a sequence of
electrical switches that can be on or off. With these two possible conditions we have the basis
for the binary language a computer understands (0 for off and 1 for on). The values stored by
a programming variable are then just a patterned sequence of switches that are either on or off.

Some languages, such as C or C++, allow the programmer to directly access memory locations of
variables. This extends the power of a programming language dramatically, but is not without dan-
gers. For example, if you change the state of the wrong memory location you can easily cause the
computer to crash. VBA handles memory management for you, so it is inherently safer than
these other languages; however, with this safety you sacrifice some powerful capabilities.

66

should define a return type to the function. The return data type is used for the value that
the function sends back to the calling procedure. If you do not specify the data type, then
the function’s return value will be of type variant. The function returns a value by assign-
ing the desired value to the name of the function, although the return value is usually
stored in a variable.

Use Exit Sub or Exit Function if you need to return program execution to the
calling procedure before the rest of the code in the procedure executes.

Functions are called from expressions where you would normally insert a variable or literal.
For example, instead of assigning a literal to a variable, a function call can be used to assign
the function’s return value to the variable.

myVar = MyFunction(param1)

Here, the variable myVar is assigned the return value of the function named MyFunction()
that is passed one parameter in the form of a variable named param1.

Now let’s consider an example of a function that mimics one of Excel’s built-in functions.
The following function calculates the result of raising a number to a specified power. I
named the function PowerDB() and set its return value as type double. The PowerDB() func-
tion accepts two numerical values for input, the number to which the exponent will be
applied (number), and the value of the exponent (n). The function has been given public scope.

The code is really very simple. The value of the variable number is raised to the power of the
value of the variable n, and then the result is restored in the variable number. The value of
the variable number is assigned to the function so that it may be returned to the calling pro-
cedure.

Public Function PowerDB(ByVal number As Double, n As Single) As Double

number = number ^ n

PowerDB = number

End Function

A procedure that utilizes the PowerDB() function can be written as follows:

Private Sub TestPower()

Dim number As Double

Dim n As Single

Dim result As Double

TRICK

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

number = Val(InputBox(“Enter a number.”, “Number”))

n = Val(InputBox(“Enter the value of the exponent.”, “Exponent”))

result = PowerDB(number, n)

MsgBox (number & “^” & n & “ = “ & result)

End Sub

The only new idea here is the line that calls the PowerDB() function, result = PowerDB(num-
ber, n). The variable result is assigned the return value of the function and output in a
message box. Note that the data types for the PowerDB() function and variable result match
(double). The variable number was passed to the PowerDB() function by value because if I
passed it by reference its value would be changed by the function. Since I want to use the
original value of number in the final output, I must pass it by value. The variable n was passed
by reference because I did not change its value in the function procedure and VBA is more
efficient when passing values by reference.

A public scope for the function PowerDB() makes it visible to all procedures in the project
and the Excel application provided the function is contained in a standard module. Thus,
this function can now be used like any other function in Excel. Returning to the Excel appli-
cation and entering the formula =PowerDB(2,8) into any worksheet cell will return the value
256 to that cell. The PowerDB() function is even listed in Excel’s insert function tool as shown
in Figure 3.7 and 3.8.

You now see that I named the function PowerDB() in order to avoid a conflict with Excel’s
POWER() function. You can create your own library of VBA functions to use in your spread-
sheet applications. Keeping a library of VBA functions saves you valuable time as you do not
have to re-write these functions to use them in another project.

67Chapter 3 • Procedures and Conditions

Figure 3.7

Step 1 of the
Insert Function

tool in the Excel
application.

68

Using Excel Application Functions in VBA
Now that you know how to write functions in VBA and make them available to your spread-
sheets, you are also aware that you can re-create any function already available in the Excel
application. Although recreating Excel’s functions would be a good way to improve your
VBA programming skills, it’s certainly not a practical use of your time. Why reinvent what’s
already been created for you? It would be nice if you could use Excel’s application functions
in your VBA code, as they are mostly complimentary, not repetitive, to VBA’s set of functions.
That way, if you need a specific function performed in your program that is not already
included with VBA, you don’t have to write it yourself.

Well, there is a method to use the Excel application functions, of course, and it is really quite
simple.

result = Application.WorksheetFunction.Power(number, n)

Replacing the call to the PowerDB() function in the TestPower() sub procedure shown earlier
with the line of code above will give the exact same result. The difference is that this code
uses Excel’s POWER() function and not the PowerDB() function. The syntax will be explained
in detail in Chapter 5, “Basic Excel Objects,” but you can probably guess what’s happening
from the names used in this line of code. The component Application.WorksheetFunction
will return all functions available from the Excel application. From there it is a simple mat-
ter of adding on the name of the function and inserting the required parameters into the
parentheses. Two more examples illustrate the use of the AVERAGE() and STDEV() functions
from the Excel application.

myVar = Application.WorksheetFunction.Average(5, 7, 9)

myVar2 = Application.WorksheetFunction.StDev(3, 7, 11)

The examples above will return the value 7 to the variable myVar and 4 to the variable myVar2.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 3.8

Step 2 of the
Insert Function

tool in the Excel
application.

Logical Operators with VBA
Logic as applied to a computer program is evaluating an expression as true or false. An
expression is typically, but not always, a comparison of two variables such as var1>var2 or
var1=var2 (see Table 3.1 for a list of available comparison operators). A programmer reads
these expressions as follows:

• The value of var1 is greater than the value of var2.

• The value of var1 equals the value of var2.

The statements are evaluated as true or false.

Imagine a simple device that takes a single expression as input, evaluates that expression as
true or false, spits out the answer, and then moves on to the next expression. The evaluation
of the expression is a simple task since there are only two choices and computers are very
good at assigning 1’s (true) or 0’s (false) to things. The difficulty arises from trying to make
sense out of the expressions that have been evaluated as true or false. This is where Boolean
(after the nineteenth century mathematician George Boole) algebra comes in to play.
Boolean algebra refers to the use of the operators AND, OR, NOT, and a few others to evaluate
one or more expressions as true or false. Then, based on the result of the logic, the program
selects a direction in which to proceed.

AND, OR, and NOT Operators
VBA uses logical AND to make a decision based on the value of two conditions. The value of
each condition can be one of two values, true or false. Consider the following two conditions.

Condition 1 Condition2

myVar > 10 myVar < 20

69Chapter 3 • Procedures and Conditions

Operator Function

= Tests for equality

<> Tests for inequality

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

TA B L E 3 .1 C O M P A R I S O N O P E R A T O R S I N V B A

The expression Condition1 AND Condition2 evaluates as true only if Condition1 and Condition2
are both true. If either or both conditions evaluate to false then the overall result is false.
The evaluation of expressions using logical operators is easily displayed in truth tables.
Table 3.2 shows the truth table for logical AND.

The logical operator OR returns true from an expression when at least one of the conditions
within the expression is true.

The expression Condition1 OR Condition2 evaluates as true when either Condition1 or Condition2
is true or if both conditions are true. Table 3.3 shows the truth table for logical OR.

The NOT operator simply returns the opposite logic of the condition; so if the condition is
false, NOT will return true and vice versa. Table 3.4 shows the truth table.

There are a few other logical operators (Xor, Eqv, and Imp) but they are seldom used or
needed, so let’s turn our attention to the practical use of Boolean algebra within the code
structures If/Then/Else and Select Case.

70 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Condition1 Condition2 Condition1 AND Condition2

True True True

True False False

False True False

False False False

TA B L E 3 . 2 T R U T H TA B L E F O R T H E A N D O P E R A T O R

Condition1 Condition2 Condition1 OR Condition2

True True True

True False True

False True True

False False False

TA B L E 3 . 3 T R U T H TA B L E F O R T H E O R O P E R A T O R

71Chapter 3 • Procedures and Conditions

Condition1 NOT Condition1

True False

False True

TA B L E 3 . 4 T R U T H TA B L E F O R T H E N OT O P E R A T O R

Conditionals and Branching
It may seem like I’ve covered a fair amount of VBA programming, but in reality, I’ve barely
scratched the surface. Right now, you can’t really do much with the VBA programs you’ve
written, because you haven’t learned any programming structures; however, that is about to
change as I begin to examine a simple yet very useful VBA code structure. The If/Then/Else
structure is known as both a conditional and branching structure because it uses condi-
tional statements to change the flow or direction of program execution.

If/Then/Else
There are several ways to implement this code structure. The most basic uses the two
required keywords If and Then.

If (condition) Then Code statement

In the example above, the code statement following Then will execute if condition evaluates
as true; otherwise code execution proceeds with the next statement. The entire structure
takes just one line of code. It’s convenient when you have just one brief code statement that
needs to be executed if the condition is true. Multiple statements can be entered on the
same line if you separate them with colons (:), but then your code may be hard to read. If
you need more than one code statement executed, then for the sake of readability, you
should use the block form of If/Then.

If (condition) Then

‘Block of code statements

End If

Again, the condition must be true or the block of code statements will not execute. When
using more than one line in the program editor for If/Then, you must end the structure
with End If.

72

The following procedure is a simple number-guessing game where the computer comes up
with a number between 0 and 10 and asks the user for a guess. Three If/Then structures are
used to determine what message is output to the user depending on their guess.

Private Sub NumberGuess()

Dim userGuess As Integer

Dim answer As Integer

answer = Rnd * 10

userGuess = Val(InputBox(“Guess a number between 0 and 10.”, “Number Guess”))

If (userGuess > answer) Then

MsgBox (“Too high!”)

MsgBox (“The answer is “ & answer)

End If

If (userGuess < answer) Then

MsgBox (“Too low!”)

MsgBox (“The answer is “ & answer)

End If

If (userGuess = answer) Then MsgBox (“You got it!”)

End Sub

A random number generated by the Rnd function returns a random number of type single
between 0 and 1. The random number is multiplied by 10 and assigned to the variable answer
to make it fall between 0 and 10. Using an integer data type for the variable answer ensures
that the calculated value is rounded and stored as an integer.

The If/Then structures each use one condition that compares the values stored in the userGuess
and answer variables. Only one of these conditions can be true, and the message box in the
If/Then structure with the true condition executes.

Previously, you saw the = operator used as an assignment operator. For example,
a value is assigned to a variable.

In the context of conditional expressions, the = operator is a comparison operator.
Using the same character for more than one type of operation is known as over-
loading an operator.

If you know you want one block of code executed when a condition is true and another
block of code executed when the same condition is false, then use the Else keyword.

If (condition)

‘This block of code executes if the condition is true

HINT

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Else

‘This block of code executes if the condition is false.

End If

The If/Then structures in the number guess procedure can also be written as follows, where
<> is the “not equal” operator (see Table 3.1):

If (userGuess <> answer) Then

MsgBox (“Wrong! The answer is “ & answer)

Else

MsgBox (“You got it!”)

End If

This time, instead of using additional If/Then statements, the keyword Else is used to direct
the program to another block of code that is executed if the condition (userGuess <> answer)
evaluates to false.

There is no limit on the number of conditions you can use with an If/Then code structure.
The condition

If (userGuess <> answer) Then

can also be written as

If (userGuess < answer) Or (userGuess > answer) Then

Where the logical operator Or is used in the expression for the conditional. Thus, if only one
conditional evaluates as true, then the expression returns true and the logic is maintained.
You can use more than two conditionals if needed; however, your code will get harder to
read as the number of conditionals in one line of code increases. You will see an excessive
use of conditionals in the Poker Dice project at the end of this chapter.

There are numerous possibilities for achieving the same logic when using If/Then/Else and
conditionals. You can also nest the If/Then/Else code structure if you want to. The proce-
dure below outputs a short message to the user depending on the current time and day of
the week. After some variable declarations, a few familiar date functions are used to deter-
mine the current time and day of the week.

Private Sub myTime()

Dim time As Date

Dim theHour As Integer

Dim theDayOfTheWeek As Integer

time = Now

theHour = Hour(time)

73Chapter 3 • Procedures and Conditions

74

theDayOfTheWeek = Weekday(time)

If (theHour > 8) And (theHour < 17) Then

If (theDayOfTheWeek > 0) And (theDayOfTheWeek < 6) Then

MsgBox (“You should be at work!”)

Else

MsgBox (“I love weekends.”)

End If

Else

MsgBox (“You should not be at work!”)

End If

End Sub

The first If/Then/Else structure is checking if the time of the day is between 8:00 A.M. and
5:00 P.M., since the variable theHour holds an integer value between 0 and 23. If the expres-
sion is true then another If/Then/Else structure will execute. This If/Then/Else structure is
nested in the first one and is checking the value for the day of the week. If the day of the
week is Monday through Friday, then a message box is used to display the string “You should

be at work!”. (Remember that it had to be between 8:00 A.M. and 5:00 P.M. to get to this point.)
Otherwise, the nested If/Then/Else outputs the message “I love weekends.” If the time of
day is not between 8:00 A.M. and 5:00 P.M., then the string “You should not be at work!” is
displayed in a message box.

There is no limit to the number of nested If/Then statements you can use; however, after
three or four levels, keeping track of the logic can be difficult and your program may be dif-
ficult to read and debug.

It is a good idea to indent your code with each level of logic. You will find your
programs much easier to read and debug if indented properly.

Another option regarding If/Then/Else structures is the ElseIf clause. The ElseIf clause is
used like the Else clause with a conditional expression. You must also include Then when
using ElseIf. The following example uses a series of ElseIf clauses to display the day of the
week in a message box.

If (theDayOfTheWeek = 0) Then

MsgBox (“It’s Sunday!”)

ElseIf (theDayOfTheWeek = 1) Then

MsgBox (“It’s Monday!”)

ElseIf (theDayOfTheWeek = 2) Then

TRICK

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

MsgBox (“It’s Tuesday!”)

ElseIf (theDayOfTheWeek = 3) Then

MsgBox (“It’s Wednesday!”)

ElseIf (theDayOfTheWeek = 4) Then

MsgBox (“It’s Thursday!”)

ElseIf (theDayOfTheWeek = 5) Then

MsgBox (“It’s Friday!”)

Else

MsgBox (“It’s Saturday!”)

End If

There is no limit to the number of ElseIf clauses that can be used; however, ElseIf cannot
be used after an Else clause. You can also nest more If/Then/Else structures inside an ElseIf
clause.

Select/Case
There are innumerable ways to accomplish the same task with If/Then/Else and ElseIf code
structures. But keep in mind that using a large number of If/Then/Else and ElseIf state-
ments can make it difficult to follow the logic of your program. You should consider using
the Select/Case code structure in situations where you find yourself using a large number
of ElseIf statements. The Select/Case code structure is used when you need to test the value
of a variable multiple times and, based on the outcome of those tests, execute a single block
of code. The Select/Case syntax is fairly simple and easy to understand.

Select Case expression

Case condition1

‘This block of code executes if condition1 is true.

Case condition2

‘This block of code executes if condition2 is true.

‘There is no limit on the number of cases you can use

Case Else

‘This block of code executes if none of the other conditions were true.

End Select

A Select/Case structure must begin with Select Case and end with End Select. The expression
immediately following Select Case is typically a variable of numerical or string data type.
Next, a list of one or more code blocks is entered just beneath the keyword Case and a con-
dition. The condition is a comparison to the expression in the opening line of the structure.
VBA proceeds down the list until it finds a condition that evaluates as true, then executes

75Chapter 3 • Procedures and Conditions

76

the block of code within that case element. Any additional case elements following one that
evaluates as true are ignored, even if their conditions are also true. Thus, order of the case
elements is important. The last case element should use Case Else. This ensures that at least
one block of code executes if all other conditions are false.

The following example uses a Select/Case structure in a VBA function designed to work with
an Excel spreadsheet. The input value should be numerical and expressed as a percentage.
This percentage represents a student’s score and is passed into the function and stored in
the variable studentScore. The variable studentScore is used as the test expression for the
Select/Case structure.

Public Function AssignGrade(studentScore As Single) As String

Select Case studentScore

Case 90 To 100

AssignGrade = “A”

Case Is >= 80

AssignGrade = “B”

Case 70 To 80

AssignGrade = “C”

Case Is >= 60

AssignGrade = “D”

Case Else

AssignGrade = “F”

End Select

End Function

There are two forms for writing the conditionals in the case elements; both are shown in
this example. The first case element uses Case 90 To 100. This condition is specified as a
range of values with the lower value inserted first followed by the To keyword and then the
upper value of the range. This condition evaluates as true if the value stored in the variable
studentScore is greater or equal to 90 and less than or equal to 100.

If the value of studentScore is less than 90, VBA proceeds to the next case element which is
Case Is >= 80. This is the other form for a condition using the Is keyword to specify a range
with a comparison operator >= (greater than or equal to). If the value of studentScore is
greater than or equal to 80, this condition is true and the block of code within this element
executes (assuming the previous condition was false). Again, VBA proceeds down the list
until it finds a true condition and then evaluates that case element’s code block. If Case Is

>= 60 in the AssignGrade() function is placed at the top of the Select/Case structure, then
all students with a percentage higher than 60 would be assigned a grade of D even if they
have a score of 100.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Constructing the Poker Dice Program
Poker Dice is a variation on five-card draw using dice instead of cards. Since each die offers
six possible values instead of thirteen and no suits, you will get better hands with this game.
This program illustrates the use of conditionals with If/Then/Else and ElseIf code struc-
tures, as well as sub and function procedures. Poker Dice will also introduce you to a couple
of new ActiveX controls, the Image control and the Check Box control. Please find the project
along with the images of the dice on the accompanying CD.

Requirements for Poker Dice
I want to create a program that simulates five card draw using dice instead of cards. The spread-
sheet is preformatted in the Excel application for color, font, and borders. The requirements
of the program are as follows:

1. The user interface shall consist of a single spreadsheet formatted to simulate a
game board with five Image controls, five Check Box controls, two Command Button
controls, and a merged area of cells for outputting messages to the user.

2. A new game shall be initiated by clicking a button and clearing the game board
(spreadsheet) of images, check marks, and text.

3. The button that clears the game board shall be disabled after each use and another
button that is used to roll the dice enabled.

4. Clicking the roll dice button (enabled in requirement three) shall simulate the roll
of five dice.

5. When simulating a roll of the dice, the program shall display five dice images.
Each image shall be randomly selected from one of six images.

6. After the initial roll of the dice, the program shall report the result of the hand as
text in a spreadsheet cell.

7. The user shall have one chance to discard dice and roll again.

8. The Image and Check Box controls shall be disabled for the first roll of the dice and
enabled for the second roll.

9. The user shall select dice to save by clicking on a check box or a dice’s image.

10. After the second roll, the program shall display the new images of the dice and
display the new result.

11. After the second roll, the button used to roll the dice shall be disabled and the
button used to clear the game board enabled.

77Chapter 3 • Procedures and Conditions

78 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Designing Poker Dice
Figure 3.9 shows my design for the Poker Dice program’s user interface. I formatted the cells
for width, height, and background colors of black or green from the Excel application. I also
merged cells C12:E13 into one cell and formatted its border as shown in Figure 3.9. The
merged cells will serve to display the result of the hand for each roll to the user. I added
ActiveX controls for displaying dice images (Image controls), selecting dice to hold (Check
Box controls), and playing the game (Command Button controls).

The Image Control
The Image control is used to display image files (most commonly bitmaps, jpegs, or gifs). The
Image control can be added to a worksheet from the control toolbox like any other ActiveX
control. Figure 3.10 shows the icon for the Image control.

Figure 3.9

The Poker Dice
program interface.

Check Box controls

Image controls

Command
Button controls

Merged cells

Figure 3.10

The control
toolbox.

The Check Box
control

The Image control

Image files can be loaded into the Image control at Design Time or run time via the Picture
property. Some of the more important properties of the Image control are summarized in
Table 3.5

Table 3.6 lists the properties of the Image controls I changed at Design Time for the Poker
Dice program. With the BackStyle property set to transparent, the control cannot be seen
unless an image is loaded or the control is selected while in design mode (see Figure 3.9). I
matched the size of the Image controls (Width and Height properties) to that of the dice
images.

79Chapter 3 • Procedures and Conditions

Property Function

Name Used for referencing the control in your program

AutoSize If true, the control will automatically resize itself to fit the image size.

BackStyle Use the transparent setting if you don’t want the user to know it’s there
until an image is loaded.

Picture The path to the image file to be displayed

PictureAlignment Aligns the image to the specified location

PictureSizeMode Clip, Stretch, or Zoom. Not important if AutoSize is true. May distort the
image.

TA B L E 3 . 5 S E L E C T E D P R O P E RT I E S O F T H E I M A G E C O N T R O L

Property Value

Width, Height 75

Name imgDice1, imgDice2, etc.

BackStyle transparent

AutoSize True

BorderStyle None

SpecialEffect Flat

TA B L E 3 . 6 P R O P E RT Y S E T T I N G S O F I M A G E

C O N T R O L S I N T H E P O K E R D I C E P R O G R A M

80 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The Image control also has several event procedures; most notably the Click(), BeforeDragOver(),
and BeforeDropOrPaste() event procedures. I will use the Click() event procedure of the
Image controls to allow a user to select a dice; that is, when the user clicks on an image of
a dice, its corresponding Check Box will toggle on or off.

The Check Box Control
The Check Box control is a familiar and relatively easy control to use. Figure 3.10 shows the
icon for the Check Box control. Check Box controls are designed to give the user multiple
selections from a group.

Use the Option Button control if you wish to limit the user to only one choice.

Table 3.7 lists the most important properties of the Check Box control.

Most Check Box control properties relate to its appearance; you will have to use more than
what is listed in Table 3.7; however, these are the properties most commonly manipulated
at Design Time. The Name property is used to reference the Check Box control and the Value
property tests whether or not the user has it selected. Table 3.8 lists the properties of the
Check Box controls I changed at Design Time for the Poker Dice program.

The Check Box control has several event procedures associated with it, but you will seldom
use anything other than its Click() event procedure.

Locating the Code for Poker Dice
Requirement 2 for the Poker Dice program specifies that a button will be used to initiate the
program. Other requirements specify actions for mouse clicks on images as well as another
button. Since all ActiveX controls are drawn on the same worksheet, the entire program can
be written in the object module for the worksheet containing the game board. The Click()

TRICK

Property Function

Name Used for referencing the control in your program

Caption Displays text that describes a choice for the user.

Value Boolean property. True if checked.

TA B L E 3. 7 S E L E C T E D P R O P E RT I E S O F T H E C H E C K B O X C O N T R O L

event procedures of the two Command Button controls and the Image controls must all contain
code. Custom sub and function procedures will be added as needed to satisfy the remaining
requirements and keep the event procedures from getting too long. You must keep in mind
that the purpose of writing your own sub and function procedures is to compartmentalize
your program into smaller and therefore more easily solved tasks.

Coding Poker Dice
The Poker Dice program code will be written in the object module of the worksheet con-
taining the game board. The Click() event procedures of the Command Button controls will
contain the code that initiates the game, whereas the Click() event procedures of the Image
controls will simply toggle the Check Boxes.

Selecting the Dice
To begin, let’s write code that allows a user to select a dice to hold when he or she clicks on
its image. This means you have to change the Value property of the Check Box controls from
the Click() event procedure of the Image controls. The user is allowed to toggle the Check Box
on and off, so you should use the Not operator to change the Boolean value of the Check Box’s
Value property. The user can accomplish the same thing by clicking on the Check Box directly;
however, you don’t need to write any code for this as it’s automatically handled by the Check
Box.

Option Explicit

Private Sub imgDice1_Click()

ckBox1.Value = Not ckBox1.Value

End Sub

81Chapter 3 • Procedures and Conditions

Property Value

Name ckBox1, ckBox2, etc.

BackStyle Transparent

Caption Empty

SpecialEffect Sunken

Value False

TA B L E 3 . 8 P R O P E RT Y S E T T I N G S O F C H E C K B O X

C O N T R O L S I N T H E P O K E R D I C E P R O G R A M

82

Private Sub imgDice2_Click()

ckBox2.Value = Not ckBox2.Value

End Sub

Private Sub imgDice3_Click()

ckBox3.Value = Not ckBox3.Value

End Sub

Private Sub imgDice4_Click()

ckBox4.Value = Not ckBox4.Value

End Sub

Private Sub imgDice5_Click()

ckBox5.Value = Not ckBox5.Value

End Sub

Resetting the Game Board
Before a user can play a game of Poker Dice, he or she must reset the game board by clearing
the dice, check marks, and text. I handle the resetting of the game board with the procedures
ToggleControls() and the Click() event of the Command Button control named cmdNewGame.
These procedures are fairly straightforward.

The ToggleControls() sub procedure is passed a Boolean parameter that is used to enable
or disable all of the Check Box and Image controls on the game board. Set the Enabled prop-
erty of an ActiveX control to true in order to activate the control for use. Set the Enabled
property of an ActiveX control to false to make it unavailable to the user. Please note: the
caption will be grayed out. These controls must be disabled prior to the first roll of the dice
to prevent the user from accidentally selecting one of these controls. If a Check Box is
selected prior to the first roll, the dice’s image will not be loaded for its corresponding
Image control (you will see why shortly). The ToggleControls() sub procedure must be called
later in the program so that the Check Box and Image controls are enabled prior to the user
making his or her second roll of the dice. Note that one Boolean value must be passed to
the ToggleControls() sub procedure in order to specify enabling or disabling the controls.
The procedure’s scope is private since it only needs to be accessed from code in the object
module.

The code in the ToggleControls() sub procedure could have been left in the
Click() event procedure of the Command Button control; however, moving
this code to a custom sub procedure serves to shorten the Click() event pro-
cedure, and prevents a code redundancy later in the program for re-enabling
these controls.

TRICK

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Private Sub ToggleControls(toggle As Boolean)

‘Toggle the Enabled property of the Check Box and Image controls.

ckBox1.Enabled = toggle

ckBox2.Enabled = toggle

ckBox3.Enabled = toggle

ckBox4.Enabled = toggle

ckBox5.Enabled = toggle

imgDice1.Enabled = toggle

imgDice2.Enabled = toggle

imgDice3.Enabled = toggle

imgDice4.Enabled = toggle

imgDice5.Enabled = toggle

End Sub

The Click() event of the Command Button control named cmdNewGame clears the Check
Boxes, images, and text from the game board and calls the ToggleControls() sub procedure.
You can remove any checks selected by the user by setting the Value property of all Check
Box controls to false. To clear a cell’s content you can set the Value property of the cell to an
empty string as I have done with the merged cells on the game board. Note that when refer-
ring to cells that have been merged, use the row and column indices of the upper left cell
in the merged group, in this case cell C12. To allow the user his or her first roll, you must
enable and disable the Command Buttons cmdRollDice and cmdNewGame, respectively. Finally,
you can remove the images from the Image controls by passing an empty string to VBA’s
LoadPicture() function.

Private Sub cmdNewGame_Click()

‘Initialize ActiveX controls on the worksheet.

‘—————————————

‘Clear check box controls.

‘—————————————

ckBox1.Value = False

ckBox2.Value = False

ckBox3.Value = False

ckBox4.Value = False

ckBox5.Value = False

ToggleControls False ‘Call sub to disable Image and Check Box controls

83Chapter 3 • Procedures and Conditions

84

‘———————————————————————————-

‘Clear text from merged cells. Enable/disable buttons.

‘Clear images from Image controls.

‘———————————————————————————-

Range(“C12”).Value = “”

cmdRollDice.Enabled = True

cmdNewGame.Enabled = False

imgDice1.Picture = LoadPicture(“”)

imgDice2.Picture = LoadPicture(“”)

imgDice3.Picture = LoadPicture(“”)

imgDice4.Picture = LoadPicture(“”)

imgDice5.Picture = LoadPicture(“”)

End Sub

Figure 3.11 shows the Poker Dice game board while the user attempts to click on an Image
control after it has been reset. The Image control is grayed while the user clicks it, but its
associated Check Box is not and cannot be checked at this time.

Rolling the Dice
The Command Button control’s (cmdRollDice) Click() event procedure loads images of dice into
the Image controls. The image for each control is selected randomly from one of six choices.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 3.11

The Poker Dice
game board after

resetting.

The static integer variable numRolls keeps track of how many times the user has clicked on
this button. The variable numRolls is incremented by one each time this procedure executes;
however, the user is allowed only two clicks per game. For example, when numRolls reaches
a value of two, it resets to zero near the end of the procedure.

The string variables uses imageFile and imagePath to hold the name of the file and path to
that file, respectively. The file path is stored in a variable; if it needs to be changed later, only
one line of code needs editing. (The syntax used to get the file path string will make more
sense after you have read Chapter 5.) When the workbook containing Poker Dice is loaded,
Excel keeps track of the file path to the loaded workbook (PokerDice.xls). The line of code
that stores the file path in the variable imagePath accesses this information using the Path
property of the Workbook object. This will actually prevent a “file not found” error if the
workbook is copied to a new location on the same, or another computer. An additional back-
slash is concatenated onto the string for later use.

The program must select an image of a dice randomly; therefore, I use the Randomize() func-
tion to initialize VBA’s random number generator. Without any arguments passed to it, Ran-
domize() will use the system clock to set a seed value for random number generation.
Without the Randomize() function, the same seed value will be used for random number
generation. As a result, the same random number sequence will be reproduced each time
the program is run. Obviously, I do not want the same sequence of random numbers for
each game; therefore, I have added the Randomize() function to the program.

To load an image, I have written several conditional blocks of code. An If/Then/Else code
structure checks the Value property of the Check Box controls. If the value is false, then a
randomly-chosen image is loaded into the Image control. If the value is true, then no image
is loaded—this is why the Image and Check Box controls are cleared and disabled for the first
roll. The random number is converted to an integer with the Int() function. As written, the
value of the random number can only fall between 1 and 6. I store the random number in a
spreadsheet cell because I will need to access this value in another procedure later in the
program in order to check the result of the hand. Alternatively, I could use a set of module-
level variables to hold the result from the random number generation. The entire path to
the desired image file is stored in the string variable imageFile. I used filenames “1.bmp”,
“2.bmp”, etc., for my image files in order to make the string concatenation easy. Finally, the
image is loaded into the Image control by passing the file path to the LoadPicture() func-
tion. This If/Then/Else block is repeated for each of the five Image controls. (In Chapter 5,
you will learn how to loop through a set of objects so that you will not have to write the
redundant code I’ve written here.)

85Chapter 3 • Procedures and Conditions

86

Another If/Then/Else structure is used to test the value of the variable numRolls. After the
user has rolled twice, the Command Button controls named cmdRollDice and cmdNewGame are
disabled and enabled, respectively. The Check Box and Image controls are enabled with a
call to ToggleControls() sub procedure (if it’s the user’s first roll). If it’s the user’s second
roll, the variable numRolls is reinitialized to zero for the next game.

The sub procedure DisplayResult() is called without passing parameters in order to deter-
mine the result of the user’s hand. This procedure serves to simplify the program by com-
partmentalizing the larger problem into smaller and more manageable problems—in this
case, scoring the hand.

Private Sub cmdRollDice_Click()

‘Use random numbers to select an image of a die for each Image control

Static numRolls As Integer

Dim imageFile As String

Dim imagePath As String

‘————————————-

‘Set path to image files.

‘————————————-

imagePath = Workbooks(“PokerDice.xls”).Path & “\”

numRolls = numRolls + 1

Randomize ‘Seed random number generator

‘——————————————————————————————

‘For each image control, get a random number between 1 and 6.

‘Use the random number to load specific dice image.

‘——————————————————————————————

If ckBox1.Value = False Then

Range(“B2”).Value = Int(Rnd * 6) + 1

imageFile = imagePath & Trim(Str(Range(“B2”).Value)) & “.bmp”

imgDice1.Picture = LoadPicture(imageFile)

End If

If ckBox2.Value = False Then

Range(“C2”).Value = Int(Rnd * 6) + 1

imageFile = imagePath & Trim(Str(Range(“C2”).Value)) & “.bmp”

imgDice2.Picture = LoadPicture(imageFile)

End If

If ckBox3.Value = False Then

Range(“D2”).Value = Int(Rnd * 6) + 1

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

imageFile = imagePath & Trim(Str(Range(“D2”).Value)) & “.bmp”

imgDice3.Picture = LoadPicture(imageFile)

End If

If ckBox4.Value = False Then

Range(“E2”).Value = Int(Rnd * 6) + 1

imageFile = imagePath & Trim(Str(Range(“E2”).Value)) & “.bmp”

imgDice4.Picture = LoadPicture(imageFile)

End If

If ckBox5.Value = False Then

Range(“F2”).Value = Int(Rnd * 6) + 1

imageFile = imagePath & Trim(Str(Range(“F2”).Value)) & “.bmp”

imgDice5.Picture = LoadPicture(imageFile)

End If

‘——————————————————

‘Use a static variable to ensure the

‘user only gets one draw per game.

‘——————————————————

If numRolls = 2 Then

cmdRollDice.Enabled = False

cmdNewGame.Enabled = True

numRolls = 0

Else

ToggleControls True

End If

DisplayResult ‘Call sub to display result of roll.

End Sub

Figure 3.12 shows an example of the Poker Dice game board after one roll of the dice.

Scoring the Hand
In order to score the user’s hand, you first determine the number of dice with the same
value (for example, three dice with a value of four and two dice with a value of six), then
assign a result to the hand (for example, full house). Because I have not yet covered enough
VBA programming structures, the process of evaluating the user’s hand is somewhat cum-
bersome, a bit inefficient, and longer than is otherwise necessary; however, you will see several
examples of decision structures and functions in the Poker Dice program. After you have read
about VBA’s looping structures in Chapters 4 and 5, you can come back to this program and
improve it.

87Chapter 3 • Procedures and Conditions

88

The sub procedure DisplayResult() makes several function calls to determine the result of
the user’s hand. The first series of function calls (GetNumOnes, GetNumTwos, and so on) deter-
mine the number of dice with a particular value in the user’s hand. These functions do not
have any parameters, but they do return integers to a series of variables. These variables are
passed to another series of functions (IsNothingOrStraight, IsOnePair, and so on) that score
the hand and return a string. This is somewhat inefficient in that all seven function calls
are made even if the hand has been properly scored by a previously called function. For
example, if the first call to the IsNothingOrStraight() function procedure properly scores
the hand, the code in the remaining functions still executes. This is why the variable result
is passed to these functions—it must retain its string value if the function does not score the
hand. The final result is then written to the merged cells on the game board (cell C12).

Private Sub DisplayResult()

‘Evaluate the hand based on the value of the each die.

Dim numOnes As Integer

Dim numTwos As Integer

Dim numThrees As Integer

Dim numFours As Integer

Dim numFives As Integer

Dim numSixes As Integer

Dim result As String

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 3.12

The Poker Dice
game board after

one roll.

‘—————————————————————————————————-

‘Function calls to determine the number of die displaying each value.

‘—————————————————————————————————-

numOnes = GetNumOnes

numTwos = GetNumTwos

numThrees = GetNumThrees

numFours = GetNumFours

numFives = GetNumFives

numSixes = GetNumSixes

‘—————————————————————-

‘Call functions for the result of the hand.

‘—————————————————————-

result = IsNothingOrStraight(numOnes, numTwos, numThrees, _

numFours, numFives, numSixes, result)

result = IsOnePair(numOnes, numTwos, numThrees, _

numFours, numFives, numSixes, result)

result = IsTwoPair(numOnes, numTwos, numThrees, _

numFours, numFives, numSixes, result)

result = IsThreeOfAKind(numOnes, numTwos, numThrees, _

numFours, numFives, numSixes, result)

result = IsFourOfAKind(numOnes, numTwos, numThrees, _

numFours, numFives, numSixes, result)

result = IsFiveOfAKind(numOnes, numTwos, numThrees, _

numFours, numFives, numSixes, result)

result = IsFullHouse(numOnes, numTwos, numThrees, _

numFours, numFives, numSixes, result)

Range(“C12”).Value = result

End Sub

The line continuation (_) character tells VBA that I really want just one line of
code, but I need to type it on more than one line in the text editor. Make sure
there is a single space between the last character and the underscore before
proceeding to the next line.

The function procedures GetNumOnes(), GetNumTwos(), GetNumThrees(), GetNumFours(), GetNumFives(),
and GetNumSixes() are called from the DisplayResult() sub procedure and they determine
the number of dice with a particular value. These functions use numerous If/Then code

TRICK

89Chapter 3 • Procedures and Conditions

90

structures to check the values of the dice stored in the second row of the spreadsheet (cells
B2 through F2). The random number function Rnd() generated these values earlier in the
program. A variable is then incremented if its associated value is found in a spreadsheet cell.
These functions effectively determine how many dice show the value 1, 2, 3, 4, 5, or 6.

Private Function GetNumOnes() As Integer

‘Determine the number of dice displayed with a value of 1

Dim numOnes As Integer

If Range(“B2”).Value = 1 Then numOnes = numOnes + 1

If Range(“C2”).Value = 1 Then numOnes = numOnes + 1

If Range(“D2”).Value = 1 Then numOnes = numOnes + 1

If Range(“E2”).Value = 1 Then numOnes = numOnes + 1

If Range(“F2”).Value = 1 Then numOnes = numOnes + 1

GetNumOnes = numOnes

End Function

Private Function GetNumTwos() As Integer

‘Determine the number of dice displayed with a value of 2

Dim numTwos As Integer

If Range(“B2”).Value = 2 Then numTwos = numTwos + 1

If Range(“C2”).Value = 2 Then numTwos = numTwos + 1

If Range(“D2”).Value = 2 Then numTwos = numTwos + 1

If Range(“E2”).Value = 2 Then numTwos = numTwos + 1

If Range(“F2”).Value = 2 Then numTwos = numTwos + 1

GetNumTwos = numTwos

End Function

Private Function GetNumThrees() As Integer

‘Determine the number of dice displayed with a value of 3

Dim numThrees As Integer

If Range(“B2”).Value = 3 Then numThrees = numThrees + 1

If Range(“C2”).Value = 3 Then numThrees = numThrees + 1

If Range(“D2”).Value = 3 Then numThrees = numThrees + 1

If Range(“E2”).Value = 3 Then numThrees = numThrees + 1

If Range(“F2”).Value = 3 Then numThrees = numThrees + 1

GetNumThrees = numThrees

End Function

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Private Function GetNumFours() As Integer

‘Determine the number of dice displayed with a value of 4

Dim numFours As Integer

If Range(“B2”).Value = 4 Then numFours = numFours + 1

If Range(“C2”).Value = 4 Then numFours = numFours + 1

If Range(“D2”).Value = 4 Then numFours = numFours + 1

If Range(“E2”).Value = 4 Then numFours = numFours + 1

If Range(“F2”).Value = 4 Then numFours = numFours + 1

GetNumFours = numFours

End Function

Private Function GetNumFives() As Integer

‘Determine the number of dice displayed with a value of 5

Dim numFives As Integer

If Range(“B2”).Value = 5 Then numFives = numFives + 1

If Range(“C2”).Value = 5 Then numFives = numFives + 1

If Range(“D2”).Value = 5 Then numFives = numFives + 1

If Range(“E2”).Value = 5 Then numFives = numFives + 1

If Range(“F2”).Value = 5 Then numFives = numFives + 1

GetNumFives = numFives

End Function

Private Function GetNumSixes() As Integer

‘Determine the number of dice displayed with a value of 6

Dim numSixes As Integer

If Range(“B2”).Value = 6 Then numSixes = numSixes + 1

If Range(“C2”).Value = 6 Then numSixes = numSixes + 1

If Range(“D2”).Value = 6 Then numSixes = numSixes + 1

If Range(“E2”).Value = 6 Then numSixes = numSixes + 1

If Range(“F2”).Value = 6 Then numSixes = numSixes + 1

GetNumSixes = numSixes

End Function

The function procedures IsNothingOrStraight(), IsOnePair(), IsTwoPair(), IsThreeOfAKind(),
IsFourOfAKind(), IsFiveOfAKind(), IsSixOfAKind(), IsFullHouse() are called from the Display
Result() sub procedure, and effectively score the hand and return a string result.

91Chapter 3 • Procedures and Conditions

92

Each of these functions tests for a particular score (for example, one pair, two pair, and so
on) indicated by the function name. These functions use If/Then/Else structures with
numerous conditional statements. I said earlier in the chapter there would be an excessive
use of conditionals—at this point, it can’t be helped much, but I have used a line continua-
tion character (_) in an effort to make the code easier to read.

Consider the IsNothingOrStraight() function procedure. The six conditionals in the first
If/Then/Else structure are all linked with logical And. This means that all conditionals must
be true if the block of code within the first If/Then statement is to be executed. If the num-
ber of occurrences of each die’s value is equal to or less than one, a nested If/Then/Else code
structure is then used to determine if the hand is a “6 High Straight”, a “6 High”, or a “5
High Straight”. If one of these conditional statements is true, then the function is assigned
the value of one of the aforementioned strings which is returned to the calling procedure.
If none of the conditionals are true, the original result is returned. Similar logic applies to
the remaining functions and their determination of a score. You should study each function
carefully noting the use of logical operators, parentheses, and If/Then/Else code structures.

Parentheses can be used to change the order of operator execution in VBA
expressions. For example the conditional statement (5 > 4 Or 6 > 3) And 7 < 3
evaluates to false whereas the expression 5 > 4 Or 6 > 3 And 7 < 3 evaluates
to true.

Private Function IsNothingOrStraight(numOnes As Integer, numTwos As Integer, _

numThrees As Integer, numFours As Integer, numFives As Integer, _

numSixes As Integer, result As String) As String

If (numOnes <= 1) And (numTwos <= 1) And (numThrees <= 1) And _

(numFours <= 1) And (numFives <= 1) And (numSixes <= 1) Then

If (numSixes = 1) And (numOnes = 0) Then

IsNothingOrStraight = “6 High Straight”

ElseIf (numSixes = 1) And (numOnes = 1) Then

IsNothingOrStraight = “6 High”

Else

IsNothingOrStraight = “5 High Straight”

End If

Else

IsNothingOrStraight = result

End If

End Function

TRICK

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Private Function IsOnePair(numOnes As Integer, numTwos As Integer, _

numThrees As Integer, numFours As Integer, numFives As Integer, _

numSixes As Integer, result As String) As String

If (numOnes = 2) And (numTwos <= 1) And (numThrees <= 1) And _

(numFours <= 1) And (numFives <= 1) And (numSixes <= 1) Then

IsOnePair = “Pair of Ones”

ElseIf (numOnes <= 1) And (numTwos = 2) And (numThrees <= 1) And _

(numFours <= 1) And (numFives <= 1) And (numSixes <= 1) Then

IsOnePair = “Pair of Twos”

ElseIf (numOnes <= 1) And (numTwos <= 1) And (numThrees = 2) And _

(numFours <= 1) And (numFives <= 1) And (numSixes <= 1) Then

IsOnePair = “Pair of Threes”

ElseIf (numOnes <= 1) And (numTwos <= 1) And (numThrees <= 1) And _

(numFours = 2) And (numFives <= 1) And (numSixes <= 1) Then

IsOnePair = “Pair of Fours”

ElseIf (numOnes <= 1) And (numTwos <= 1) And (numThrees <= 1) And _

(numFours <= 1) And (numFives = 2) And (numSixes <= 1) Then

IsOnePair = “Pair of Fives”

ElseIf (numOnes <= 1) And (numTwos <= 1) And (numThrees <= 1) And _

(numFours <= 1) And (numFives <= 1) And (numSixes = 2) Then

IsOnePair = “Pair of Sixes”

Else

IsOnePair = result

End If

End Function

Private Function IsTwoPair(numOnes As Integer, numTwos As Integer, _

numThrees As Integer, numFours As Integer, numFives As Integer, _

numSixes As Integer, result As String) As String

If (numOnes = 2 And numTwos = 2) Or _

(numOnes = 2 And numThrees = 2) Or _

(numOnes = 2 And numFours = 2) Or _

(numOnes = 2 And numFives = 2) Or _

(numOnes = 2 And numSixes = 2) Or _

(numTwos = 2 And numThrees = 2) Or _

(numTwos = 2 And numFours = 2) Or _

(numTwos = 2 And numFives = 2) Or _

93Chapter 3 • Procedures and Conditions

94 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

(numTwos = 2 And numSixes = 2) Or _

(numThrees = 2 And numFours = 2) Or _

(numThrees = 2 And numFives = 2) Or _

(numThrees = 2 And numSixes = 2) Or _

(numFours = 2 And numFives = 2) Or _

(numFours = 2 And numSixes = 2) Or _

(numFives = 2 And numSixes = 2) Then

IsTwoPair = “Two Pair”

Else

IsTwoPair = result

End If

End Function

Private Function IsThreeOfAKind(numOnes As Integer, numTwos As Integer, _

numThrees As Integer, numFours As Integer, numFives As Integer, _

numSixes As Integer, result As String) As String

If (numOnes = 3 And numTwos < 2 And numThrees < 2 And numFours < 2 _

And numFives < 2 And numSixes < 2) Then

IsThreeOfAKind = “Three Ones”

ElseIf (numOnes < 2 And numTwos = 3 And numThrees < 2 And _

numFours < 2 And numFives < 2 And numSixes < 2) Then

IsThreeOfAKind = “Three Twos”

ElseIf (numOnes < 2 And numTwos < 2 And numThrees = 3 And _

numFours < 2 And numFives < 2 And numSixes < 2) Then

IsThreeOfAKind = “Three Threes”

ElseIf (numOnes < 2 And numTwos < 2 And numThrees < 2 And _

numFours = 3 And numFives < 2 And numSixes < 2) Then

IsThreeOfAKind = “Three Fours”

ElseIf (numOnes < 2 And numTwos < 2 And numThrees < 2 And _

numFours < 2 And numFives = 3 And numSixes < 2) Then

IsThreeOfAKind = “Three Fives”

ElseIf (numOnes < 2 And numTwos < 2 And numThrees < 2 And _

numFours < 2 And numFives < 2 And numSixes = 3) Then

IsThreeOfAKind = “Three Sixes”

Else

IsThreeOfAKind = result

End If

End Function

Private Function IsFourOfAKind(numOnes As Integer, numTwos As Integer, _

numThrees As Integer, numFours As Integer, numFives As Integer, _

numSixes As Integer, result As String) As String

If numOnes = 4 Then

IsFourOfAKind = “Four Ones”

ElseIf numTwos = 4 Then

IsFourOfAKind = “Four Twos”

ElseIf numThrees = 4 Then

IsFourOfAKind = “Four Threes”

ElseIf numFours = 4 Then

IsFourOfAKind = “Four Fours”

ElseIf numFives = 4 Then

IsFourOfAKind = “Four Fives”

ElseIf numSixes = 4 Then

IsFourOfAKind = “Four Sixes”

Else

IsFourOfAKind = result

End If

End Function

Private Function IsFiveOfAKind(numOnes As Integer, numTwos As Integer, _

numThrees As Integer, numFours As Integer, numFives As Integer, _

numSixes As Integer, result As String) As String

If numOnes = 5 Then

IsFiveOfAKind = “Five Ones”

ElseIf numTwos = 5 Then

IsFiveOfAKind = “Five Twos”

ElseIf numThrees = 5 Then

IsFiveOfAKind = “Five Threes”

ElseIf numFours = 5 Then

IsFiveOfAKind = “Five Fours”

ElseIf numFives = 5 Then

IsFiveOfAKind = “Five Fives”

ElseIf numSixes = 5 Then

IsFiveOfAKind = “Five Sixes”

Else

95Chapter 3 • Procedures and Conditions

96

IsFiveOfAKind = result

End If

End Function

Private Function IsFullHouse(numOnes As Integer, numTwos As Integer, _

numThrees As Integer, numFours As Integer, numFives As Integer, _

numSixes As Integer, result As String) As String

If (numOnes = 3 And numTwos = 2) Or (numOnes = 3 And numThrees = 2) Or _

(numOnes = 3 And numFours = 2) Or (numOnes = 3 And numFives = 2) Or _

(numOnes = 3 And numSixes = 2) Or (numTwos = 3 And numOnes = 2) Or _

(numTwos = 3 And numThrees = 2) Or (numTwos = 3 And numFours = 2) Or _

(numTwos = 3 And numFives = 2) Or (numTwos = 3 And numSixes = 2) Or _

(numThrees = 3 And numOnes = 2) Or (numThrees = 3 And numTwos = 2) Or _

(numThrees = 3 And numFours = 2) Or (numThrees = 3 And numFives = 2) Or _

(numThrees = 3 And numSixes = 2) Or (numFours = 3 And numOnes = 2) Or _

(numFours = 3 And numTwos = 2) Or (numFours = 3 And numThrees = 2) Or _

(numFours = 3 And numFives = 2) Or (numFours = 3 And numSixes = 2) Or _

(numFives = 3 And numOnes = 2) Or (numFives = 3 And numTwos = 2) Or _

(numFives = 3 And numThrees = 2) Or (numFives = 3 And numFours = 2) Or _

(numFives = 3 And numSixes = 2) Or (numSixes = 3 And numOnes = 2) Or _

(numSixes = 3 And numTwos = 2) Or (numSixes = 3 And numThrees = 2) Or _

(numSixes = 3 And numFours = 2) Or (numSixes = 3 And numFives = 2) Then

IsFullHouse = “Full House”

Else

IsFullHouse = result

End If

End Function

Figure 3.13 shows an example of the Poker Dice game board after two rolls of the dice.

That concludes Poker Dice. It really is a pretty simple program. The difficulty lies in following
the logic of the large number of conditions contained in the expressions with the If/Then/Else
code structures. Some of the procedures are longer than I normally write them because of
the number of conditionals involved and I have not yet discussed loops. As you may have
already guessed, these procedures can be simplified significantly with the use of different
programming structures and techniques. You will look at a couple of these structures in the
next chapter.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Chapter Summary
In this chapter, you covered a considerable amount of material on some of the tools required
to help you build a strong programming foundation. You started by taking an in-depth look
at procedures in VBA; specifically, event, sub, and function procedures. You learned how to
use and build these procedures while considering the procedure’s scope, available parameters,
and return values (function procedures). You even learned how to build new function pro-
cedures to use within formulas created in the Excel application. Finally, you saw two new
code structures, If/Then/Else and Select/Case and you learned how to use Boolean logic
within conditional expressions so a program could branch off in different directions in
terms of code execution. In essence, you learned how to write a program that can make simple
decisions.

97Chapter 3 • Procedures and Conditions

Figure 3.13

The Poker Dice
game board after

two rolls.

98 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

C H A L L E N G E S

1. Draw a simple image of a smiley face using MS Paint then load the image into an
Image control placed on a worksheet in Excel. Using the MouseDown() event pro-
cedure of the Image control, write a program that displays a message to the user
every time the user clicks on the image. The message should tell the user if he
or she clicked on the eyes, nose, mouth, or face of the image and which button
they used. The message can be displayed with a message box, or in a Label control,
or on the spreadsheet.

2. Write a function procedure in VBA that returns the square root of a number. The
function should be made available to the Excel application.

3. Write a sub procedure in VBA that either adds, subtracts, multiplies, or divides
two numbers. The procedure should be called by another sub procedure that
collects the two numbers from the user and asks the user which mathematical
operation is desired. The calling procedure should also output the result, displaying
the original values and the answer.

4. Add a few Check Box controls or Option Button controls to a worksheet, then
use a Select/Case code structure in a sub procedure that outputs a message to
the user telling them which box or option has been selected.

5. Add some features to the Poker Dice program. For example, keep a record of a
user’s session (n games) by outputting the results of each game to a spreadsheet
column off the game board. Use a static variable to track the row number of the
cell you output the results to. You can also assign point values to each hand
based on its value and track the user’s point total for a session of Poker Dice. To
make getting a good hand more difficult, you can create additional dice images
using new colors (blue, green, and so on).

Loops and Arrays
4
C H A P T E R

I
n Chapter 3, “Procedures and Conditions,” you started building your
programming foundation with the branching structures If/Then/Else
and Select/Case. In this chapter, you will significantly expand on that

foundation by learning looping code structures and arrays. Loops and arrays are
fundamental to all programming languages; they expand the capabilities of a
program significantly and make them easier to write. You’ll begin this chapter by
looking at the different looping structures available in VBA before moving on to
arrays.

Specifically, this chapter will cover:

• Do Loops

• For Loops

• Input Validation

• Arrays

• Multi-Dimensional Arrays

• Dynamic Arrays

• Recording Macros

• The Forms Toolbar Controls

C H A P T E R

100 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Project: Math Game
The Math Game program is a natural choice for programming with a spreadsheet application
like Excel. The Math Game requires only basic math skills; it may be more fun for kids to play,
but it’s a lot of fun for adults to write. To play the Math Game, you answer as many questions
as you can in the allotted time. After you finish, the questions are reviewed and scored. The
Math Game spreadsheet is shown in Figure 4.1.

Looping with VBA
Program looping is the repetition of a block of code a specified number of times. The number
of times the block of code is repeated may be well defined or based on a conditional statement.
All computer languages contain looping structures because these structures are excellent at
solving problems that would otherwise require repetitive code. Imagine a program whose
function it is to search for a specific name in a column of data with one hundred entries. A
program with one hundred If/Then statements testing the value of each cell for the required
name will solve the problem. The program would be technically easy to create, but cumber-
some to type the repetitive code and it would look awful. Fortunately, we have looping code
structures to help us.

Figure 4.1

The Math Game
program

worksheet.

Each execution of the block of code inside a looping structure represents one
iteration of the loop.

Do Loops
Do loops will execute a given block of code repetitively based on the value of a conditional
expression. All Do-Loops require the keywords Do and Loop, plus one additional keyword
(While or Until) depending on the desired action. The keywords are used to build four basic
representations of the Do-Loop. The first two representations use the keyword Until with a
conditional statement that determines if, and how many times the code inside the loop exe-
cutes. With the conditional statement at the end of the loop, the code inside the loop executes
at least one time.

Do

‘Block of code executes at least once and continues to loop if condition is

false.

Loop Until (condition)

When the conditional statement is at the beginning of the loop, the code inside the loop
will not execute unless the logic of the conditional statement allows it. When using Until,
the code inside the loop executes if the conditional statement is false.

Do Until (condition)

‘Block of code executes only if condition is false.

Loop

The next two representations of the Do-Loop use the keyword While with a conditional state-
ment that determines if, and how many times the code inside the loop executes. When
While is used, the code inside the loop executes when the conditional statement is true.

Do

‘Block of code executes at least once and continues to loop if condition is

true.

Loop While (condition)

When deciding on which representation of the Do-Loop to use, ask yourself whether you
need the code inside the loop to execute at least once. If you do, then put the conditional at
the end. The choice of While or Until depends on the logic of the conditional expression.

Do While (condition)

‘Block of code executes only if condition is true.

Loop

HINT

101Chapter 4 • Loops and Arrays

102

Beware of creating loops that never stop repeating, otherwise known as infinite loops. When
constructing your Do-Loop, create it with a conditional expression that will change its logi-
cal value (true to false and vice versa) at some point during the code’s execution within the
loop. It is easier to create an infinite loop than you might think. The following example is
suppose to find the first occurrence of the string Flintstone in the first column of a work-
sheet, output a message to the screen, and then quit.

Dim I As Integer

I = 1

Do

If (Cells(I, “A”).Value = “Flintstone”) Then

MsgBox (“Yabba Dabba Do! I found a Flintstone in row “ & Str(I))

End If

I = I + 1

Loop Until (Cells(I, “A”).Value = “Flintstone”)

You can use the Cells property to return all or just one cell on a worksheet.
Using the Cells property without any parameters returns all cells on the work-
sheet.

ActiveSheet.Cells

To return a specific cell, you can specify a row and column index. For example,
the following line of code returns cell D1.

ActiveSheet.Cells(1,4)

The Cells property is convenient for using inside of loops when the indices for
the row and column are replaced with looping variables. Alternatively, you can
specify the column parameter with a string.

ActiveSheet.Cells(1,”D”)

The loop will always fail for two reasons. First, if the string Flintstone does not appear in
the first column of the worksheet, then the loop is infinite because the conditional state-
ment at the end of the loop (Cells(I, “A”).Value = “Flintstone”) will never be true. Second,
even if the string Flintstone does appear in the first column of the worksheet, the output
from the MsgBox() function will not appear because the conditional statement at the end of
the loop will be true before the conditional statement associated with the If/Then structure.

If you find your program stuck in an infinite loop, use Ctrl-Alt-Break to suspend
program execution.

TRICK

TRICK

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

In most cases you can construct a loop with logical expressions that will work with both
While or Until, so using one or the other is simply a matter of personal preference. The fol-
lowing Do-Loops have the exact same function, but the first loop uses While and the second
uses Until.

Dim I As Integer

I = 1

Do

If (Cells(I, “A”).Value = “Flintstone”) Then

MsgBox (“Yabba Dabba Do! I found a Flintstone in row “ & Str(I))

End If

I = I + 1

Loop While (Cells(I, “A”).Value <> “”)

If I change the conditional operator to =, then I change the logic of the conditional state-
ment, so I must use the keyword Until to get the same result from the loop.

Dim I As Integer

I = 1

Do

If (Cells(I, “A”).Value = “Flintstone”) Then

MsgBox (“Yabba Dabba Do! I found a Flintstone in row “ & Str(I))

End If

I = I + 1

Loop Until (Cells(I, “A”).Value = “”)

Both of these loops search the first column for the string Flintstone. Once the desired string
is found, a message box outputs a statement with the index of the worksheet row in which
the string was found. In both examples, the Do-Loop continues until an empty cell is found.
Both loops will execute at least once because the conditional expression is at the end of the
loop. Neither loop will be infinite because Excel will always add empty rows to the end of a
spreadsheet as more rows of data are added.

For Loops
When you know the number of iterations required from a loop, the For/Next loop is the best
choice of structures. The syntax is very simple.

For variable = start To end Step value

‘Block of code

Next variable

103Chapter 4 • Loops and Arrays

104 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The required keywords are For, To, and Next. To keep track of the number of iterations
through the loop requires a counting variable as well as starting and ending values. The key-
word Step is optional but if it’s used, the value that follows it is used to denote the step size
of the counting variable with each iteration through the loop. The step’s value can be any
positive or negative integer; the default value is +1 when Step is omitted. Table 4.1 lists a few
examples of For/Next loops.

The variable I in Table 4.1 should be declared as an integer prior to use and the ending value
for the loop is usually another variable rather than a constant. In most cases, you will use
the default step size of +1, so the keyword Step is omitted.

Use the statement Exit Do or Exit For to force code execution to leave a looping
structure and proceed with the first line of code after the loop. Normally, Exit Do
or Exit For will be within a branching structure (If/Then or Select/Case) inside of
the loop.

The following example of a VBA function mimics the FACT() function in the Excel applica-
tion by calculating the factorial of an integer.

TRICK

Loop Example Output from Message Box

For I = 0 To 10 11 iterations: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10

MsgBox (I)

Next I

For I = 0 To 10 Step 2 6 iterations: 0, 2, 4, 6, 8, and 10

MsgBox (I)

Next I

For I = 0 To 10 Step 3 4 iterations: 0, 3, 6, and 9

MsgBox (I)

Next I

For I = 10 To 0 Step –5 3 iterations: 10, 5, and 0

MsgBox (I)

Next I

TA B L E 4 .1 E X A M P L E S O F F O R / N E X T L O O P S I N V B A

Public Function Factorial(myValue As Integer) As Long

Dim I As Integer

Dim factorialValue As Long

factorialValue = 1

For I = 2 To myValue

factorialValue = factorialValue * I

Next I

Factorial = factorialValue

End Function

The For/Next loop is a natural choice, because you need the looping variable to increment
by one with each iteration until it reaches the value of the integer passed into the function.
Each iteration through the For/Next loop multiplies the next factor by the previous result,
effectively producing the factorial of the value stored in the variable myValue. For example,
if myValue is 5 then the variable factorialValue will be calculated as 1*2*3*4*5.

Finally, consider the most obvious example of looping in spreadsheet applications, which is
looping through a range of cells in a worksheet. For now, I will illustrate looping through a
worksheet range using a For/Next loop.

105Chapter 4 • Loops and Arrays

In the Real World
The factorial function can also be written as a recursive procedure. A recursive procedure is one
that calls itself.

Public Function Factorial(N As Integer) As Integer

If N <= 1 Then

Factorial = 1

Else

Factorial = Factorial(N - 1) * N

End If

End Function

Although the factorial example above is a nice illustration of recursion, it is not a practical
example. Recursive procedures can be very demanding on system resources and they must
contain logic that will eventually stop the procedure from calling itself.

Recursive procedures are most often and most effectively applied to tree-like data structures
such as the file system on a computer.

106 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

For I = 1 To 10

For J = 4 To 7

Cells(I, Chr(64 + J)).Value = I * J

Next J

Next I

The looping structures discussed so far are not the best choice for looping
through a range of cells—even though doing so is a simple enough task. A bet-
ter looping structure for handling this task is the For/Each loop discussed in
Chapter 5, “Basic Excel Objects.”

The example above uses one For/Next loop nested inside another For/Next loop to loop
through the worksheet range D1:G10. The nested (inside) loop will execute 4 iterations with
each iteration of the outer loop. In the example just given, the value of J iterates from 4
through 7 for each value of I. The code loops through the range by rows, as the variable used
for the row index (I) is also the counting variable for the outer loop. The Chr() function is
used to convert a numerical input representing an ASCII (American Standard Code for Infor-
mation Interchange) value to its corresponding keyboard character; in this case the values
68 through 71 will be converted to the uppercase letters D through G. The Chr() function in
VBA works with values 0-255. Table 4.2 lists a few of the more common characters in the set.
Alternatively, you could replace the Chr() function with the looping variable J; which, in
this case, would make for easier and cleaner code; however, I wanted to introduce the Chr()
function since it can be quite useful when working with the Cells and Range properties.

HINT

ASCII Value Keyboard Character

8 backspace

9 tab

10 line feed

13 carriage return

32 space

48-57 0-9

65-90 A-Z

97-122 a-z

TA B L E 4 . 2 S E L E C T E D A S C I I C O N V E R S I O N C H A R A C T E R S

Input Validation
Trusting that a user will input the type of data required by your program is a leap of faith.
You can, and should, provide hints to the user indicating the type of data and format your
program requires; however, you should also include code in your program to check what the
user enters against a required format. The process of checking user input for accuracy is
known as validation. Validation should be included whenever input is required from the user
and the format of that input cannot be guaranteed. Examples discussed thus far in this book
include: the InputBox() function, the Text Box control, and spreadsheet cells. This may seem
like a daunting task at first, but asking where the validation code needs to be entered in a
program and when it needs to run, simplifies the task considerably.

Validation with the InputBox() Function
In the Chapter 2 project, the program asked the user to input his or her name and birthday.
The program assumed the user would enter the information in the proper format. For the
user’s name, the desired format was first name-space-last name and for the user’s birthday,
a date format of month, day, and year (e.g., 3/4/86 or 3-4-1986). The DateValue() function handled
some of the input validation for us by allowing multiple date formats, but more validation
is required.

Consideration of where the validation code should go and when it should run is easy with
the InputBox() function. The validation should occur as soon as the user enters data. The
best way to determine this is to put the InputBox() function inside a Do-Loop. In the Biorhythms
and Time of Your Life project in Chapter 2, user validation could be added as follows:

Dim userName As String

Dim userBirthday As Date

Dim nameOk As Boolean

nameOk = True

Do

userName = InputBox(“What is your first and last name?”, “Name”)

If (userName <> “”) Then nameOk = ValidateName(userName)

Loop While (nameOk = False) Or (userName <> “”)

The InputBox() function is inserted inside a Do-Loop where the return value is tested by the
function procedure ValidateName(). The ValidateName() procedure returns true if the name sat-
isfies the desired format, otherwise it returns false. The loop is repeated if the ValidateName()
name procedure returns false, or the user hits the cancel button (InputBox() returns an
empty string) on the input box.

107Chapter 4 • Loops and Arrays

108

The ValidateName() function procedure accepts the string entered by the user as input and
tests for the number of spaces inside the string.

Private Function ValidateName(userName As String) As Boolean

Dim strLength As Integer

Dim I As Integer

Dim numSpaces As Integer

Dim tempString As String

Dim msb As Integer

userName = Trim(userName)

strLength = Len(userName)

For I = 1 To strLength

If Left(userName, 1) = “ “ Then

numSpaces = numSpaces + 1

End If

userName = Right(userName, Len(userName) - 1)

Next I

If (numSpaces > 1) Then

ValidateName = False

msb = MsgBox(“Please enter just two names separated by one space”,

vbCritical, “Error”)

Else

ValidateName = True

End If

End Function

Any leading or trailing spaces on the string entered by the user are removed using the Trim()
function so extra spaces before or after the names are forgiven. The length of the resulting
string is then stored in the strLength variable for use in the subsequent For/Next loop.

The For/Next loop tests the leftmost character for equality to a space before removing this
character. If the character is a space then a variable keeping track of the number of spaces
in the string is incremented by one. Essentially, the For/Next loop iterates through each
character in the string and counts the number of spaces found within that string. If more
than one space is found in the string entered by the user, then the function returns false,
otherwise it returns true.

For example, if the user enters either of the strings FredFlintstone or Fred J Flintstone in the
input box, then the ValidateName() function returns false to the calling procedure just after out-
putting the message Please enter just two names separated by one space in a message box.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Obviously, the ValidateName() function procedure does not test for all possible mistakes
users might make entering in their names, but it does illustrate how to use input validation
with the InputBox() function. To test for other potential errors by the user, simply add more
code (specific to the type of error you are looking for) to the ValidateName() function procedure.

Validation with a Spreadsheet Cell
In older versions of Excel, validation of spreadsheet content meant writing a lot of code to
ensure the data was of proper type and/or format. With the latest versions of Excel, this is
no longer the case. Data validation is now included in the Excel application, so you don’t
necessarily have to write any code. Figure 4.2 to shows the data validation dialog box (select
Data, Validation from the Excel application menu). Use this tool in your spreadsheets to
force validation of data entered by the user. If your project creates new worksheets that
require data validation, you can use the record macro tool discussed later in this chapter to
learn how to add it to your program.

Arrays
Normally, arrays are not discussed until the end of introductory programming books; how-
ever, as you are already familiar with spreadsheet applications, the concept of an array
should come easily. An array is a variable that can hold multiple values. You should use
arrays when a related set of values is to be stored in a variable. Doing so relieves you from
having to declare a new variable with a unique name for each value in the set. Arrays are
convenient as they simplify programming code tremendously.

A spreadsheet column that contains data is basically the same thing as an array—it’s a group
of related values. Each cell within a spreadsheet column containing the related set of values
is referenced by a row and column index. Values in an array are also referenced using indices.

109Chapter 4 • Loops and Arrays

Figure 4.2

The Data
Validation dialog.

110

I assume that you organize your spreadsheets in the normal way—by placing data inside
columns rather than rows—but the argument is the same whether you equate a spreadsheet
column or row to an array.

Before starting with the simplest example of an array (the one-dimensional array), consider
a sub procedure that uses a worksheet column much as a programmer would use an array
in an application that does not work with a spreadsheet.

In previous chapters, and throughout this chapter I use the Cells property of
the Excel Application object in code examples. The Cells property is straight-
forward, with a row and column index that corresponds to a single spreadsheet
cell. Although discussed in detail in Chapter 5, be aware as you look at the
examples in this chapter that the Cells property acts like a function that returns
a Range object consisting of a single spreadsheet cell. I have used the Value
property of the Range object extensively thus far, but the Range object has many
other properties for the VBA programmer to use besides the Value property,
and you will see many examples in this chapter and subsequent chapters.

The BubbleSort() procedure sorts a column of integer values from lowest to highest value.
Two integer variables and a Boolean variable are all you need.

Public Sub BubbleSort()
‘Sorts data in A2:A11 and writes sorted data to B2:B11

Dim tempVar As Integer
Dim anotherIteration As Boolean
Dim I As Integer

Range(“A2:A11”).Copy Range(“B2:B11”) ‘Copy all data to column B
Range(“B1”).Value = “Sorted Data”
Do

anotherIteration = False
For I = 2 To 10

‘Compare and swap adjacent values
If Cells(I, “B”).Value > Cells(I + 1, “B”).Value Then

tempVar = Cells(I, “B”).Value
Cells(I, “B”).Value = Cells(I + 1, “B”).Value
Cells(I + 1, “B”).Value = tempVar
anotherIteration = True

End If
Next I

Loop While anotherIteration
End Sub

HINT

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

111Chapter 4 • Loops and Arrays

A For/Next loop nested inside a Do-Loop will iterate through a column of 10 values until the
data is sorted from lowest to highest value. The nested For/Next loop effectively pushes the
largest value from wherever it is located to the last position, much like a bubble rising from
the depths to the surface. The For/Next loop starts at the beginning of the data list and com-
pares two successive values. If the first value is larger than the second value, then the position
of the two values are swapped with help from the variable tempVar. The next two values are
then compared, where the first of these values was the second value in the previous compar-
ison (or first if it had been swapped). Please note: the row index in the Cells property uses I + 1,
so the looping variable in the For/Next loop works from 2 to 11 so that the procedure sorts ten
values. If a swap of two values has to be made, then the Boolean variable anotherIteration is
set to true to ensure the outer Do-Loop continues with at least one more iteration.

Each iteration through the Do-Loop moves the next largest value in the set down the column
to its correct position. Thus, it will take up to n iterations to sort the data, where n is the
number of values in the set. This does not make the BubbleSort() procedure terribly effi-
cient, but it works well for small data sets. The worksheet shown in Figure 4.3 illustrates
what happens to a set of numbers after each iteration through the Do-Loop loop. Note that
Figure 4.3 was created for display only; the BubbleSort() procedure sorts values from col-
umn A and copies them to column B only.

One-Dimensional Arrays
An array is a variable used to hold a group of related values; it must be declared just as a
variable is declared. An array is declared with a single name and the number of elements
(values) that can be stored in the array.

Dim myArray(number of elements) As Type

Figure 4.3

Worksheet
illustration of the
BubbleSort()
sub procedure.

112

You may also declare arrays using the Public or Private keywords to define the scope as you
would with a regular variable declaration. If you do not specify a data type, then, like a variable,
the array will be a variant type. Arrays may be declared as any available data type in VBA. All
elements in arrays with numerical data types are initialized with the value 0. Elements of
string arrays are initialized with an empty string. When specifying the number of elements,
you must consider the lower bound of the array. The default lower bound is zero.

Dim myArray(10) As Integer

When you need multiple array declarations of the same size, use a constant to
specify the size of the arrays in the declarations.

Const ARRAYSIZE=10

Dim myArray1(ARRAYSIZE) As Integer

Dim myArray2(ARRAYSIZE) As Integer

Dim myArray3(ARRAYSIZE) As Integer

Etc.

This way, if you have to edit the size of your arrays, you only need to change the
value of the constant.

Thus, the integer array myArray declared above has 11 elements accessed with the indices 0
through 10. To override the default, set the lower bound of the array in the declaration.

Dim myArray(1 To 10) As Integer

The array myArray now has just 10 elements because the lower bound has been explicitly set
to one.

Use the statement Option Base 1 in the general declarations section of a module
to change the default lower bound of all arrays declared in the module to 1.

You can initialize a single element in the array as you would a variable, but you must
include the index of the element you wish to change.

myArray(5) = 7

However, arrays are typically initialized inside a loop. To insert the spreadsheet’s values of
the first 10 cells of column A into an array, do the following:

Dim I As Integer

Dim myArray(10) As Integer

HINT

HINT

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

For I = 0 To 9

myArray(I) = Cells(I + 1, “A”).Value

Next I

Then use another loop to output the values of the array. The following loop squares the val-
ues stored in the array myArray before copying them to column B of the spreadsheet.

For I = 0 To 9

Cells(I + 1, “B”).Value = myArray(I)^2

Next I

Now let’s revisit the BubbleSort() procedure, this time using an array. The sub procedure
BubbleSort2() works exactly like the BubbleSort() procedure, except that the tests and swaps
are performed on the values in the set after they have been loaded into an array rather than
just using the worksheet column.

Public Sub BubbleSort2()

Dim tempVar As Integer

Dim anotherIteration As Boolean

Dim I As Integer

Dim myArray(10) As Integer

For I = 2 To 11

myArray(I - 2) = Cells(I, “A”).Value

Next I

Do

anotherIteration = False

‘Compare and swap adjacent values

For I = 0 To 9

If myArray(I) > myArray(I + 1) Then

tempVar = myArray(I)

myArray(I) = myArray(I + 1)

myArray(I + 1) = tempVar

anotherIteration = True

End If

Next I

Loop While anotherIteration = True

Range(“B1”).Value = “Sorted Data”

For I = 2 To 11

Cells(I, “B”).Value = myArray(I - 1)

Next I

End Sub

113Chapter 4 • Loops and Arrays

114

After variable declarations, the values in column A of the worksheet are loaded into the
array with a simple For/Next loop. The For/Next loop nested in the Do-Loop is just as it was
in the BubbleSort() procedure, except now the Cells property has been replaced with the
array named myArray. The looping variable in the For/Next loop now runs from 0 to 9 because
the lower bound for the array is 0 not 1. When the first value is greater than the second, the
values are swapped. Finally, the sorted values are written to column B in the worksheet.

Multi-Dimensional Arrays
If one-dimensional arrays are analogous to a single column in a spreadsheet, then two-
dimensional arrays are analogous to multiple columns in a spreadsheet. Three-dimensional
arrays are analogous to using multiple worksheets and higher dimensions than three are a bit
difficult to imagine, but nevertheless are available. You can declare multi-dimensional
arrays in VBA with up to 60 dimensions. Unless you’re comfortable imagining multi-dimensional
spaces greater than dimension three, I suggest keeping the number of dimensions in an
array to three or less.

Dim myArray(10, 2) As Integer

The above declaration creates a two-dimensional integer array with 11 rows and 3 columns
(remember the lower-bound is 0). Access the individual elements of the array using the row
and column indices.

myArray(5, 1) = Cells(6, “B”).Value

This example assigns the value of the spreadsheet cell B6 to the sixth row and second col-
umn in the array myArray.

As with one-dimensional arrays, multi-dimensional arrays are typically accessed within
loops; however, you need to use nested loops in order to access both indices in a multi-
dimensional array.

The sub procedure below transposes the values of a group of cells in a worksheet. This sub
procedure takes input from the first ten rows and three columns in a worksheet and trans-
poses the values to the first three rows and ten columns in the same worksheet. See Figure
4.4 and Figure 4.5 for depictions of the initial spreadsheet and the spreadsheet resulting
from running the Transpose() sub procedure.

After variable declarations, the values in the spreadsheet are loaded into the two-dimensional
array named transArray.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

A three-dimensional array is declared with three values within the parentheses
of its declaration (for example, Dim myArray(9, 2, 2)). You could use a three-
dimensional array to keep track of rows and columns from multiple worksheets,
whereas a two-dimensional array would keep track of rows and columns from a
single worksheet.

The looping variables in the nested For/Next loops are used to access the row and column
indices of the array transArray. The looping variables I and J are used as the column and
row indices, respectively, in both the array and worksheet. Next, the contents of the work-
sheet are cleared using the ClearContents method of the Range object. (The Range object will
be covered in detail in Chapter 5.)

To transpose the values, the looping variables I and J are now used to access the opposite
index (i.e., I is used for the row index; J is used for the column index) in the Cells property;
however, the array transArray uses the indices as in the previous For/Next loop. These nested
For/Next loops effectively transpose the values, as shown in Figure 4.5.

HINT

115Chapter 4 • Loops and Arrays

Figure 4.4

An Excel
spreadsheet prior

to running the
Transpose()

sub procedure.

Figure 4.5

An Excel
spreadsheet after

running the
Transpose()

sub procedure.

116

Public Sub Transpose()

‘Transposes first 10 rows and first 3 columns of worksheet

‘to first 3 rows and first 10 columns.

Dim I As Integer

Dim J As Integer

Dim transArray(9, 2) As Integer

For I = 1 To 3

For J = 1 To 10

transArray(J - 1, I - 1) = Cells(J, I).Value

Next J

Next I

Range(“A1:C10”).ClearContents

For I = 1 To 3

For J = 1 To 10

Cells(I, J).Value = transArray(J - 1, I - 1)

Next J

Next I

End Sub

Dynamic Arrays
The BubbleSort2() and Transpose() sub procedures use arrays with fixed lengths. The num-
ber of values in fixed length arrays cannot be changed while the program is running. This
is fine as long as the required length of the array is known before running the program;
however, the use of dynamic arrays allows programmers to create a more robust program.
Wouldn’t the BubbleSort2() procedure be more useful if it sorted data with any number of
values rather than just ten values? A similar question can be asked of the Transpose() procedure
—wouldn’t it be more useful if it worked with any size data set rather than just a set with
10 rows and 3 columns? If you do not want to limit the BubbleSort2() and Transpose() sub
procedures to constant-sized data sets, then you must use dynamic arrays.

The size of a dynamic array can be changed (increased or decreased) as necessary while the
program runs. To declare a dynamic array, use empty parentheses instead of a value for the
bound(s).

Dim myArray() As Integer

After the required length of the array has been determined then the array is re-dimensioned
using the ReDim keyword.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

ReDim can also be used as a declarative statement with arrays, but potential con-
flicts may arise if there are variables of the same name within your project—
even if they are of different scope. Therefore, avoid using ReDim as a declarative
statement, but use it to re-size previously declared arrays.

ReDim myArray(size)

The ReDim statement will re-initialize (erase) all elements of the array. If you need to preserve
the existing values then use the Preserve keyword.

ReDim Preserve myArray(size)

If the new size of the array is smaller than the original size, then the values of the elements
at the end of the array are lost. Normally, an array is re-dimensioned with the Preserve key-
word only when the new size is larger than the previous size of the array. When re-sizing an
array with the Preserve keyword, you can only change the size of the last dimension; you
cannot change the number of dimensions, and you can only change the value of the upper
bound. You will see an example of using ReDim Preserve in the Math Game project at the end
of the chapter.

The BubbleSort2() and Transpose() sub procedures are now rewritten using dynamic arrays.

Public Sub DynamicBubble()

Dim tempVar As Integer

Dim anotherIteration As Boolean

Dim I As Integer

Dim arraySize As Integer

Dim myArray() As Integer

‘———————————

‘Get the array size.

‘———————————

Do

arraySize = I

I = I + 1

Loop Until Cells(I, “A”).Value = “”

ReDim myArray(arraySize - 1)

‘————————————————————-

‘Get the values. Convert text to numbers.

‘————————————————————-

HINT

117Chapter 4 • Loops and Arrays

118

For I = 1 To arraySize

myArray(I - 1) = Val(Cells(I, “A”).Value)

Next I

Do

anotherIteration = False

For I = 0 To arraySize - 2

If myArray(I) > myArray(I + 1) Then

tempVar = myArray(I)

myArray(I) = myArray(I + 1)

myArray(I + 1) = tempVar

anotherIteration = True

End If

Next I

Loop While anotherIteration = True

‘————————————

‘Write data to column B.

‘————————————

For I = 1 To arraySize

Cells(I, “B”).Value = myArray(I - 1)

Next I

End Sub

After declaring the dynamic array, you must determine the required size of the array. A Do-Loop
is used to iterate through the cells in the worksheet’s column A until an empty cell is found.
By keeping track of the number of iterations with the variable I, the number of values in
the column—and hence the required size of the array—is discovered. Then the array is re-
dimensioned with the appropriate variable and ReDim statement.

This is not the best method for learning how many values the user has entered into column
A of the worksheet, as the potential for error is high. For example, any text entered into a cell
will be converted to a numerical value with the Val() function—ususally zero. The procedure
also limits the sort to data entered into column A of the worksheet. In the next chapter, I’ll
discuss additional methods for allowing the user more flexibility in terms of where the data
can be input, and gathering user input such that ambiguities in the data are minimized.

The rest of the DynamicBubble() procedure is the same as the BubbleSort2() procedure except
the upper limit of all looping variables are set to the same value as the size of the array.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The DynamicTranspose() sub procedure is re-written using a dynamic array that is re-dimensioned
with two dimensions. One dimension is for the number of rows in the grid of values to be
transposed and the other dimension is for the number of columns.

Once again, Do-Loops are used to determine the number of rows and columns holding values
in the worksheet. The array transArray is then re-dimensioned to the same number of rows
and columns. Don’t forget the lower bound on each dimension is 0. The rest of the procedure
is the same, with the exception of the upper limit on the looping variables used in the
For/Next loops.

Public Sub DynamicTranspose()

Dim I As Integer

Dim J As Integer

Dim transArray() As Integer

Dim numRows As Integer

Dim numColumns As Integer

‘—————————————-

‘Get rows for dynamic array.

‘—————————————-

Do

numRows = I

I = I + 1

Loop Until Cells(I, “A”).Value = “”

‘———————————————-

‘Get columns for dynamic array.

‘———————————————-

I = 0

Do

numColumns = I

I = I + 1

Loop Until Cells(1, Chr(I + 64)).Value = “”

ReDim transArray(numRows - 1, numColumns - 1)

‘—————————————————-

‘Copy data from worksheet to array.

‘—————————————————-

119Chapter 4 • Loops and Arrays

120

For I = 1 To numColumns

For J = 1 To numRows

transArray(J - 1, I - 1) = Val(Cells(J, Chr(I + 64)).Value)

Next J

Next I

Range(“A1:C10”).ClearContents

‘———————————————————————

‘Copy data from array to worksheet transposed.

‘———————————————————————

For I = 1 To numColumns

For J = 1 To numRows

Cells(I, Chr(J + 64)).Value = transArray(J - 1, I - 1)

Next J

Next I

End Sub

Programming Formulas into Worksheet Cells
If you are going to be an Excel VBA programmer, then it is inevitable that you will have to
create programs that enter formulas into worksheet cells. Thankfully, it is a pretty simple
thing to do; however, you must decide on the reference style you wish to use—A1 type, or
R1C1 type.

A1 Style References
The A1 style uses the column and row headings (letters and numbers, respectively) as indices
to reference a particular worksheet cell (for example, A1, B5, C2, etc.). Dollar signs in front
of an index denote an absolute reference; the lack of a dollar sign on an index denotes a rel-
ative reference. The A1 style reference is the preferred style of most Excel users.

Creating a formula using VBA is easy. Instead of using the Value property of the range
returned by the Cells property, you use the Formula property and assign a string value. The
string should be in the form of an Excel formula.

In reality, you can also assign formula strings to the Value property of a range;
however, it makes your code easier to read if you use the Formula property when
assigning formulas to a range.

HINT

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The following example inserts a formula in cell A11 of a worksheet that calculates the sum
of the values in the range A2:A10 using the Excel application’s SUM() function.

Dim formulaString As String

formulaString = “=SUM(A2:A10)”

Cells(11, “A”).Formula = formulaString

If you want to create a set of related formulas in a column, you can use a looping structure
to iterate through the cells that receive the formula. The following example uses formulas
inserted into the cells of column B in a worksheet to calculate a running sum of column A.

Dim formulaString As String

Dim I As Integer

Cells(1, “B”).Value = Cells(1, “A”).Value

For I = 2 To 10

formulaString = “=A” & Trim(Str(I)) & “+B” & Trim(Str(I - 1))

Cells(I, “B”).Formula = formulaString

Next I

Looping through the cells is not the most efficient method available in VBA for inserting
formulas. Using loops to insert formulas can slow your program down considerably, espe-
cially if it is running on an older machine with a relatively slow processor. You would not
enter individual formulas in the Excel application when it is possible to copy and paste, so
why do it with your VBA code? Instead, you can use Copy() and Paste() or AutoFill() methods
that run much faster.

Dim formulaString As String

Dim I As Integer

Cells(1, “B”).Value = Cells(1, “A”).Value

formulaString = “=A2+B1”

Cells(2, “B”).Formula = formulaString

To use the Copy() and Paste() methods, first insert the formula in the original cell as before,
execute the Copy() method on the range returned by the Cells property, select the desired
range, and paste the formula.

Cells(2, “B”).Copy

Range(“B2:B10”).Select

ActiveSheet.Paste

A method is yet another type of procedure that performs a specific action on a
program component or object. The Paste() method performs its action on an
Excel worksheet by pasting the contents of the clipboard onto the worksheet.

HINT

121Chapter 4 • Loops and Arrays

122 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Another option is to use the AutoFill() method by specifying the destination range. The
term Destination is a named argument predefined for the AutoFill() method in VBA. Named
arguments allow the programmer to pass values to a function without having to worry about
the order of the arguments, or how many commas must be included for optional arguments
that are not used. Use the named argument operator (:=) to assign the value to the name.

Cells(2, “B”).AutoFill Destination:=Range(“B2:B10”)

Or, if you prefer, you can still pass the arguments in a list.

Cells(2, “B”).AutoFill Range(“B2:B10”)

The second line of code using the AutoFill() method works because Destination is the first
argument/parameter that must be passed to the method. (As it turns out, the Destination
argument is the only required parameter of the AutoFill() method.) Using the named argu-
ment with the named argument operator makes the code more readable; therefore, the first
example with the AutoFill() method is probably better. You can use named arguments with
any procedure in VBA.

Specifically, the Copy() and AutoFill() methods associate with the Range object returned by
the Cells property, and the Paste() method associates with the Worksheet object. I’ll discuss
these objects in detail in the next chapter.

R1C1-Style References
The R1C1 style uses the letters R for row and C for column followed by numbers to reference
spreadsheet cells. For example, R[-1]C[2] is a relative reference to the cell one row lower and
two columns higher than the cell that contains this reference in a formula. To denote an
absolute reference, leave off the brackets (for example, R-1C2). The R1C1 reference style can
be turned on in the Excel application by clicking Tools, Options, General, and then clicking
R1C1 reference style as shown in Figure 4.6.

You can use the R1C1 reference style in your VBA code any time. It can be a preferable style
to use when dealing with references to columns, as the indices use a numerical value. The
value of the string variable formulaString in the previous example can be assigned as shown
here:

formulaString = “=R[0]C[-1]+ R[-1]C[0]”

Cells(2, “B”).FormulaR1C1 = formulaString

Although the Formula property of the Range object returned by the Cells property would
work just as well, I have used the FormulaR1C1 property for consistency.

Whether you use the A1 style or R1C1 reference style in your VBA code is of no
consequence to the user. The user will see whichever style they have set their
Excel application to use.

Constructing the Math Game
The Math Game is designed as an exercise in basic math skills suitable for an elementary
school child. The game gives the player one minute to correctly answer as many questions
as possible with the selected operation (addition, subtraction, multiplication, or division).
After the one-minute interval, the user’s answers are scored and the result displayed on the
worksheet. The game uses several programming structures and techniques discussed in this
chapter, including loops and arrays.

Requirements for the Math Game
If you have young children or teach in elementary school, then you can use the Math Game
as a testing tool of basic math skills (probably first and second graders). Your kids may not
enjoy the test, but you can have a lot of fun writing it—and after you are comfortable with
VBA, add more features to the program to suit your needs. The requirements of the Math
Game as I have defined them follow:

1. The user interface shall consist of a single spreadsheet formatted to accentuate the
numerical question. The operands, operator, and answer shall all have a large spread-
sheet cell formatted with a large, easy to read font.

2. The user interface shall contain a Command Button control for initiating the program.

HINT

123Chapter 4 • Loops and Arrays

Figure 4.6

Selecting the
R1C1 reference
selection in the

Excel application.

Selecting the R1C1
reference style

124

3. The user interface shall contain a timer that counts down to zero from 60 seconds
(displaying each second). The timer shall be written to a spreadsheet cell.

4. The user interface shall contain five Option Button controls that allow the user to
select a specific operator (addition, subtraction, multiplication, division, or random)
for the game.

5. The user interface shall provide three spreadsheet columns for writing the questions,
user’s answers, and correct answers when the game is finished.

6. When the program begins, the Command Button and Option Button controls shall
be disabled for the duration of the game.

7. The Command Button and Option Button controls shall be re-enabled when the
game ends.

8. When the game begins, the program shall automatically select the worksheet cell in
which the user enters his or her answers to the questions.

9. Operands for each question shall be randomly selected integers between zero and
ten.

10. The mathematical operator for each question shall be chosen from the user’s selection
of the Option Button controls. If the user selects the Option Button labeled “Any,”
then the operator shall be selected randomly for each question and written to the
proper spreadsheet cell.

11. The user shall proceed to the next question by pressing the Enter key.

12. The user must enter an answer to the question before proceeding to the next question.

13. When the user enters an answer, the question shall be cleared and the worksheet cell
containing the answer is re-selected; that is, the cursor shall remain in the same
worksheet cell for the duration of the game.

14. The game is over when the timer reaches zero.

15. When the game ends, the questions, user’s answers, and correct answers shall be
written to the spreadsheet.

16. When the game ends, the user’s score shall be calculated and written to the spread-
sheet.

17. Incorrect answers shall be highlighted in the worksheet with a different font color.

Designing the Math Game
The program interface is built from a single Excel worksheet. The worksheet is formatted with
colors and a large font to make it easy for the user to see the questions. The macro recording

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

125Chapter 4 • Loops and Arrays

tool is activated while formatting the worksheet in order to save most of the interface design
as VBA code. ActiveX controls (Option Buttons and a Command Button control) are drawn
on the worksheet in a convenient location to provide the user with a selection of mathe-
matical operators, and an easy way to start the program. The Math Game worksheet is shown
in Figure 4.7.

The only input required by the Math Game program is the user’s answers to the questions as
they are entered from the keyboard. The program must make it convenient for the user to
quickly enter his or her answers in the required worksheet cell, so the program must keep
the answer cell selected through the duration of the game. This can be accomplished pro-
grammatically by selecting the cell when the user starts the game and setting the direction
in which the selection moves after Enter is pressed on the keyboard (see Tools, Options, Edit,
and the Move selection after Enter Check Box from the Excel application).

Program outputs include a timer written to a worksheet cell that counts down from 60 sec-
onds, and the questions and score of the user’s game. VBA contains an OnTime() method of
the Application object that can handle the program’s timer. The questions and answers can
simply be written to the worksheet. Arrays are convenient tools for storing the questions and
answers as the game is played.

Figure 4.7

The Math Game
worksheet.

The timer

The question

Game results

Option Button controls Command Button control User’s answer

126

As with previous programming projects, the program code can be entirely contained within
the object module for the game’s worksheet. The program must be initiated from the
Click() event of the Command Button control. Other programming tasks will be assigned
to various event, sub, and function procedures in order to properly compartmentalize the
program.

The Math Game program is considerably more complex than the first three projects in this
book; therefore, as you might expect, it’s going to be longer. With slightly longer programs,
I typically write a brief outline of the tasks that need to be accomplished based on the
requirement list. Generally, the outline defines the sub and function procedures I need to
write for the program. The Click() event of the Command Button control will serve as the
main procedure for the program, looking very much like a program outline with procedure
calls that follow the flow of the program. Other event procedures that are needed include
the Click() events of the Option Button controls that are used to set the operator for each
question. The project outline follows:

1. Format the worksheet (record formatting)

2. Add ActiveX controls and set their Design Time properties

3. Disable the ActiveX controls (sub procedure)

4. Clear the results from a previous game (Click() event of Command Button control)

5. Initialize variables (Click() event of Command Button control)

6. Select the answer cell (Click() event of Command Button control)

7. Get operands for the question (sub procedure)

8. Get an operator for the question (sub procedure)

9. Start the program timer (sub procedure)

10. Collect the user’s answers and repeat steps 7 and 8 (Change() event of the worksheet)

11. Disable the timer (use the same sub procedure that starts the timer)

12. Enable ActiveX controls (use the same sub procedure that disables the controls)

13. Clear the game board (sub procedure)

14. Score the user’s answers and write the results to the worksheet (Click() event of
Command Button control)

Recording Macros
Up to this point, all chapter projects have been preformatted with no specific instructions
on how it was done. I assume you are an experienced Excel user and are comfortable with
formatting worksheets; however, there will be occasions when you need to create new

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

formatted worksheets programmatically. You could write VBA code that formats the work-
sheet as you want, but this is often a tedious exercise and is not really necessary. You will
know how you want the worksheet formatted; you just don’t want it done until the user has
reached a certain stage in your program. This is one example of when recording a macro is
very handy. The basic steps for recording a macro are as follows:

1. Turn on Excel’s macro recorder.

2. Format the worksheet as desired.

3. Stop the recorder.

4. Proceed to the VBA IDE and find the VBA code you just recorded.

5. Clean the recorded code for readability and add it to your program.

Another situation in which recording macros is useful is when you need to learn how to use
a particular VBA function. If you can’t find what you need in the online help or get your
code to run correctly, simply record a macro that uses the desired function of the Excel
application. Of course, you must know how to perform the same task within the Excel appli-
cation that you are trying to add to your VBA code. Once the task is recorded, return to the
VBA IDE and examine the recorded VBA code.

To begin recording a macro, in the Excel application select Tools, Macros, and Record New
Macro, as shown in Figure 4.8. You can also select the Record Macro button on the Visual
Basic toolbar.

127Chapter 4 • Loops and Arrays

Figure 4.8

Starting the
Macro Recorder.

The Record
Macro button

128

A dialog box will appear, as shown in Figure 4.9, asking you to input a name for your macro,
where you want to store the code (a new workbook, the current workbook, or a personal
macro workbook), and for a description of the macro. You can enter in new values or use the
default. I recommend at least changing the name of the macro to something meaningful.
Store the macro in whatever workbook you want, but keep in mind the macro will be saved
with the workbook you choose, and will only be available when this workbook is open.

After selecting the name and location of the macro, a small toolbar with a small square but-
ton will appear, as shown in Figure 4.10. After you are finished recording the macro, click
this button to stop the recorder. Until you click the stop button, every action you perform in
the Excel application is recorded as VBA code.

After stopping the recorder, you can find the new VBA code stored in a standard module in
the previously designated project. The module and code window that results from recording
a macro that formats cells A1, B1, and C1 for the Math Game is shown in Figure 4.11.

To record this macro, I follow the procedure above, and then format the cells before stopping
the recorder. Specific tasks carried out in the Excel application while the recorder was on
were: adding the text to the cells, specifying font size, bold, centered text, word wrapped
text, a border, row height, and column widths. The code, exactly as recorded, is as follows:

Sub MathGameFormat()

‘

‘ MathGameFormat Macro

‘ Macro recorded 11/16/2004 by Duane Birnbaum

‘

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 4.9

Naming and
storing the macro.

Figure 4.10

The Stop
Recording button.

‘

Range(“A1”).Select

ActiveCell.FormulaR1C1 = “Question”

Range(“B1”).Select

ActiveCell.FormulaR1C1 = “Answer”

Range(“C1”).Select

ActiveCell.FormulaR1C1 = “Correct Answer”

Range(“A1:C1”).Select

Selection.Font.Bold = True

With Selection.Font

.Name = “Arial”

.Size = 12

.Strikethrough = False

.Superscript = False

.Subscript = False

.OutlineFont = False

.Shadow = False

.Underline = xlUnderlineStyleNone

.ColorIndex = xlAutomatic

End With

Selection.Borders(xlDiagonalDown).LineStyle = xlNone

129Chapter 4 • Loops and Arrays

Figure 4.11

The VBA IDE
showing a

recorded macro.

Module added by
macro recorder

130

Selection.Borders(xlDiagonalUp).LineStyle = xlNone

Selection.Borders(xlEdgeLeft).LineStyle = xlNone

Selection.Borders(xlEdgeTop).LineStyle = xlNone

With Selection.Borders(xlEdgeBottom)

.LineStyle = xlDouble

.Weight = xlThick

.ColorIndex = xlAutomatic

End With

Selection.Borders(xlEdgeRight).LineStyle = xlNone

Selection.Borders(xlInsideVertical).LineStyle = xlNone

Rows(“1:1”).RowHeight = 32.25

Columns(“A:A”).ColumnWidth = 10.71

Columns(“B:B”).ColumnWidth = 9

Columns(“C:C”).ColumnWidth = 10.86

With Selection

.HorizontalAlignment = xlCenter

.VerticalAlignment = xlBottom

.WrapText = False

.Orientation = 0

.AddIndent = False

.IndentLevel = 0

.ShrinkToFit = False

.ReadingOrder = xlContext

.MergeCells = False

End With

Range(“C1”).Select

With Selection

.HorizontalAlignment = xlCenter

.VerticalAlignment = xlBottom

.WrapText = True

.Orientation = 0

.AddIndent = False

.IndentLevel = 0

.ShrinkToFit = False

.ReadingOrder = xlContext

.MergeCells = False

End With

End Sub

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

131Chapter 4 • Loops and Arrays

As you can see, recording just a few tasks will generate a considerable amount of code.
(I even took care to minimize my worksheet cell selections knowing it would reduce the
amount of recorded code.) Because of the volume of code generated by the macro recorder,
I do not recommend recording many tasks at any one time. You want to be able to record
small pieces, then clean up the recorded code and proceed to the next task.

Much of the recorded code can be eliminated by deleting the setting of default values and
compressing multiple statements into one line of code. You will get better at this as you gain
experience with VBA programming. The macro I just showed you can be quickly reduced to
the following:

Sub MathGameFormat()

‘ Revised macro

Range(“A1”).Select

ActiveCell.FormulaR1C1 = “Question”

Range(“B1”).Select

ActiveCell.FormulaR1C1 = “Answer”

Range(“C1”).Select

ActiveCell.FormulaR1C1 = “Correct Answer”

Range(“A1:C1”).Select

Selection.HorizontalAlignment = xlCenter

With Selection.Font

.Bold = True

.Name = “Arial”

.Size = 12

End With

With Selection.Borders(xlEdgeBottom)

.LineStyle = xlDouble

.Weight = xlThick

End With

Rows(“1:1”).RowHeight = 32.25

Columns(“A:A”).ColumnWidth = 10.71

Columns(“B:B”).ColumnWidth = 9

Columns(“C:C”).ColumnWidth = 10.86

Range(“C1”).Select

Selection.WrapText = True

End Sub

132

The macro is public by default and is contained inside a standard module.

The With/End With code structure is used to execute a series of statements
on the same Excel object. This removes the requirement of constantly qualifying
the object before setting one of its properties. The With/End With programming
structure will be covered in Chapter 5.

To run a recorded macro in the Excel application, select Tools, Macro, Macros or press
Alt+F8. A dialog box displaying a list of available macros will appear, as shown in Figure 4.12.

Select the macro you want and press the Run button to execute the code in the macro.

Any public procedure (recorded or not) stored in a standard or object module
will appear in the list of available macros.

After recording the formatting of the worksheet cells A1 through C1, I record another man-
ageable amount of formatting, clean up the code and paste it within the previously
recorded procedure. After all recording is completed and the code is reduced, it can be
copied to any sub procedure necessary to fulfill the algorithm for the program. For exam-
ple, the recorded code may be needed inside the Click() event procedure of a Command
Button control. Although the formatting macro is not a required part of the Math Game pro-
gram, I have included the recorded macro (after editing) on the book’s accompanying CD.

The macro-recording tool in Excel was really designed for non-programming users as a
method to extend the capabilities of their spreadsheets and eliminate the tedium of repet-
itive tasks. As it turns out, the macro-recording tool can also serve the VBA programmer as
a method of eliminating tedious programming tasks and learning how to carry out specific
tasks in Excel with VBA code.

HINT

HINT

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 4.12

Selecting an
available macro.

The Forms Toolbar
Along with the macro recorder, Excel comes with a few other controls similar to ActiveX con-
trols that are designed for use with recorded macros. The controls are available from the Forms
toolbar and can be accessed through the View menu in the Excel Application (see Figure 4.13).

Most of these controls are the same as the controls on the
Control toolbox and their functions are basically the same.
The difference: how the controls on the Forms toolbar are
used. These controls are designed for non-programmers to
use with recorded macros; therefore, they do not have code
windows other than the module containing the recorded
macro. To attach a macro to a control from the Forms tool-
bar, first draw the control on a worksheet and right click on
the control to view its menu, then select Assign Macro. The
Assign Macro dialog box, shown in Figure 4.14, will appear
with a list of all available procedures (any procedure
declared with the Public keyword) currently open in Excel.

Select the procedure you want to execute and click the OK button. The macro will be
assigned to the major event of the control (typically a Click() event).

You can use these controls to initiate VBA procedures just as you would with controls from
the Control toolbox; however, you sacrifice considerable flexibility with respect to proper-
ties and events associated with the control. Nevertheless, if all you need is code initiation,
the Forms toolbar controls offer a simple set of tools.

133Chapter 4 • Loops and Arrays

Figure 4.13

The Forms
toolbar.

Figure 4.14

The Assign Macro
Dialog Box.

134

Coding the Math Game Program
The Math Game was written following the design algorithm I have already discussed; all code
was written in the object module of the worksheet. The program starts when the user clicks
on the Command Button control and ends when the timer reaches zero. Option Button con-
trols are used to select the operator. You should begin writing your programs by setting the
properties of the ActiveX controls (if any are used).

Adding the ActiveX Controls
The program design calls for one Command Button and five Option Button controls. You
should be quite familiar with the Command Button control. The Option Button control is
similar to a Check Box except that a user can only select one button from a group. A group
of Option Button controls is defined by their container—in this case, a worksheet. It does not
matter how many Option Button controls I add to a worksheet, the user will only be able to
select one. Table 4.3 shows selected properties of the ActiveX controls for the Math Game
program that I changed at design time. (Size and display properties are not shown in the
table, but, as is usually the case were edited from their default values.)

Addition is set as the default operator for the game by setting the Value property of optAdd
to true. The controls are initially enabled so that the user may choose an operator and start
the game. The entire program is contained in the object module of the formatted worksheet
that contains the ActiveX controls.

Several module level variables are declared, including three dynamic arrays (mathQuestions,
mathOperators, and userAnswers) for storing the questions, operators, and the user’s answers.
The variable opType will tell the program what mathematical operation is currently being
used in the question. The variables numQuestions, curDate, and gameRunning store the number
of questions asked, the current date and time (used later to set the timer), and a Boolean
value used by the program to know whether or not the Change() event of the worksheet
should be ignored. These variables are declared at module level because more than one pro-
cedure in the program needs to access and/or manipulate them. The module level variable
declarations and the Click() event procedures of the Option Button controls follow:

Keep the number of module level variables in your program to an absolute min-
imum. A common trap novice programmers make is to create most of the vari-
ables module level (and later global when you include more modules in your
program). Although module level variables may seem convenient, they can
make your program prone to logic errors that are difficult to debug.

HINT

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Option Explicit

Private mathQuestions() As Integer

Private mathOperators() As String

Private userAnswers() As Integer

Private opType As Integer

Private numQuestions As Integer

Private curDate As Date

Private gameRunning As Boolean

135Chapter 4 • Loops and Arrays

ActiveX Control Property Value

Command Button Name cmdBegin

Caption Begin

Option Button Name optAdd

Value True

Caption +

Option Button Name optSubtract

Value False

Caption -

Option Button Name optMultiply

Value False

Caption x

Option Button Name optDivide

Value False

Caption /

Option Button Name optAny

Value False

Caption Any

TA B L E 4 . 3 S E L E C T E D P R O P E RT I E S O F T H E A C T I V E X
C O N T R O L S U S E D I N T H E M A T H G A M E

136

Private Sub optAdd_Click()

Range(“Operator”).Value = “+”

opType = 1

End Sub

Private Sub optSubtract_Click()

Range(“Operator”).Value = “-”

opType = 2

End Sub

Private Sub optMultiply_Click()

Range(“Operator”).Value = “x”

opType = 3

End Sub

Private Sub optDivide_Click()

Range(“Operator”).Value = “/”

opType = 4

End Sub

Private Sub optAny_Click()

Range(“Operator”).Value = “”

End Sub

The purpose of these Click() event procedures is to write the operator (+, -, ×, and /) to the
appropriate worksheet cell (merged cells H8:H9). Please note: I defined a named range for cells
H8:H9 in the Excel application calling it Operator. I can now use this name in my program to
refer to the range. This makes the code easier to read (otherwise known as self-documenting).
The module level variable opType is assigned a designated integer (1 = addition, 2 = subtraction,
3 = multiplication, and 4 = division) with each click of an Option Button control. The program
will need to read the value of opType when storing each question.

Starting and Initializing the Math Game Program
The Click() event procedure of the cmdBegin Command Button control serves as the main
procedure in the Math Game program. This procedure initializes a few variables, clears the
worksheet, and makes several calls to sub procedures that get the game started.

Private Sub cmdBegin_Click()

‘—————————————————-

‘Initialize variables and controls.

‘—————————————————-

EnableControls False

numQuestions = 0

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

137Chapter 4 • Loops and Arrays

gameRunning = True

Range(“A2:C” & UsedRange.Rows.Count).ClearContents

Range(“Answer”).Select

Application.MoveAfterReturn = False

‘——————————————————————————-

‘Get the operator type and operands for the question.

‘——————————————————————————-

GetOperatorType

GetOperands

‘————————————————————-

‘Mark the start time and start the clock.

‘————————————————————-

curDate = Now

MathGame

End Sub

Examination of the Click() event procedure of the Command Button control cmdBegin
shows an immediate call to the sub procedure EnableControls(). This procedure is used to
enable or disable the ActiveX controls on the worksheet via a Boolean value (passed in to the
parameter ctrlsEnabled, see next sub procedure). At this stage of the program, I want to dis-
able all ActiveX controls so the user doesn’t accidentally select one while the game runs;
therefore, I pass in the value false.

After the ActiveX controls are disabled, a couple more module-level variables are initialized
(numQuestions and gameRunning) before the first three columns of the spreadsheet are cleared.
The UsedRange property of the Application object returns exactly what its name implies—the
range on the worksheet containing the data. I use this range along with the Rows and Count
properties of the Range object to tell me how many rows are used on the spreadsheet so they
can be cleared (see Chapter 5 for a discussion of the Application object, Range object, and
their properties). This effectively clears the results of a previous game from the worksheet.

After clearing the worksheet of the previous game’s results, the range of cells in which the
user must enter his/her answer is selected. This is the range L8:M9 which I merged and
defined a name for (Answer) in the Excel application. The MoveAfterReturn property of the
Application object is set to false to prevent the cursor from moving (usually down one cell)
after the user presses enter on the keyboard. This feature can be found in the Excel appli-
cation under Tools, Options, and the Edit tab (see Figure 4.15).

I only had a vague memory of setting the cursor direction after Enter feature in
Excel, so I searched Options dialog (because it seemed like the most reasonable
place) in the Excel application until I found it. Then, with the macro recorder
turned on, I deselected the Move selection after Enter check box (see Figure 4.15)
and examined the resulting VBA code to learn how to program this feature.

Private Sub EnableControls(ctrlsEnabled As Boolean)

‘Enables/Disables ActiveX controls on the worksheet.

cmdBegin.Enabled = ctrlsEnabled

optAdd.Enabled = ctrlsEnabled

optSubtract.Enabled = ctrlsEnabled

optDivide.Enabled = ctrlsEnabled

optMultiply.Enabled = ctrlsEnabled

optAny.Enabled = ctrlsEnabled

End Sub

After the game’s variables and controls are initialized, the first question is randomly gen-
erated before starting the timer.

Generating Random Questions and Operators
You have already seen how to generate random numbers in VBA. The Math Game program
requires the operands for each question to be randomly generated and the operator is ran-
domly generated if the user selects the proper Option Button control (the button labeled
“Any,” see Figure 4.7).

TRICK

138 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 4.15

The Edit tab of
the Options
dialog in the

Excel application.

Move selection
after Enter

The GetOperatorType() procedure tests the Value property of the Option Button controls to
see which operator has been selected by the user. If the user selects the option “Any,” then
the GetRandomOperator() procedure is called to generate a random number between 1 and 4.
This procedure writes the operator to the merged cells I defined with the name Operator,
and is only used when the operator is randomly chosen by the program. You should recall
that when a user selects a specific operator, the Click() event procedure of the Option Button
control writes that operator to the Operator range.

Private Sub GetOperatorType()

‘Gets the operator selected by the user.

If optAdd.Value = True Then opType = 1

If optSubtract.Value = True Then opType = 2

If optMultiply.Value = True Then opType = 3

If optDivide.Value = True Then opType = 4

If optAny.Value = True Then GetRandomOperator

End Sub

Private Sub GetRandomOperator()

‘Randomly selects the type of operator for the question.

Randomize

opType = Int(4 * Rnd) + 1

Select Case opType

Case Is = 1

Range(“Operator”).Value = “+”

Case Is = 2

Range(“Operator”).Value = “-”

Case Is = 3

Range(“Operator”).Value = “x”

Case Is = 4

Range(“Operator”).Value = “/”

Case Else

Range(“Operator”).Value = “+”

End Select

End Sub

A question’s operands are written to the appropriate cell locations (F8:G9, defined name Left-
Operand and I8:I9, defined name RightOperand) with the GetOperands() sub procedure that calls
the GetRandomNumber() function procedure in order to generate and return the operands ran-
domly. If the mathematical operation is division, the GetRandomNumber() function uses a loop
that will continue to iterate until a second operand is found that results in a non-fractional
answer. The VBA operator Mod is used to test the two random numbers for a remainder of zero.

139Chapter 4 • Loops and Arrays

140

The GetOperands() sub procedure is called from the Click() event of the Command Button
control cmdBegin and the Change() event of the worksheet (listed later).

Private Sub GetOperands()

‘Adds randomly choosen operands to the worksheet.

Dim rightOperand As Integer

rightOperand = GetRandomNumber(1)

Range(“RightOperand”).Value = rightOperand

Range(“LeftOperand”).Value = GetRandomNumber(rightOperand)

End Sub

Private Function GetRandomNumber(divisibleBy As Integer) As Integer

‘Generates the random numbers for the operands.

Dim ranNum As Integer

Const upperLimit = 10

Randomize

‘———————————————————————————-

‘Generate the random integer. If operation is division,

‘then make sure the two operands are evenly divisible.

‘———————————————————————————-

Do

ranNum = Int(upperLimit * Rnd) + 1

Loop Until ((opType <> 4) Or (ranNum Mod divisibleBy = 0))

GetRandomNumber = ranNum

End Function

The game is now ready for the user to enter his or her answer, so the timer must start count-
ing down.

Starting the Timer
The essence of the Math Game program is contained within the sub procedure appropriately
named MathGame(). This procedure controls the game’s clock and calls the sub procedures
that score the user’s answers when the clock reaches zero. The clock is controlled with a
very special method of the Application object—the OnTime() method. You can use the OnTime()
method to set up repetitive calls to the same procedure based on a given time increment; in
this case, one second.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

141Chapter 4 • Loops and Arrays

To begin, the MathGame() procedure uses the integer variable numSeconds to hold the amount
of time left in the game. The length of the game is held in the constant TIMEALLOWED. The
number of seconds left in the game is calculated by the VBA function DateDiff() using the
current time and the time the program was initiated with the click of the Command Button
control cmdBegin (stored in the module level variable curDate). This value is written to cell I3
on the worksheet with a defined name of Clock.

In order to count down in one second intervals, a date one second later than the current time
is calculated by adding the two dates returned from VBA’s Now() and TimeValue() functions.
This date is then assigned to the variable nextTime. The Now() function returns the current
date and time and the TimeValue() function returns a date converted from a string (formatted
using hours:minutes:seconds). I passed the TimeValue() function a string specifying one
second (“00:00:01”). As you are about to see, the nextTime variable is used to specify the next
time the MathGame() procedure executes.

The most interesting statement in the MathGame() procedure comes next. The OnTime()
method that belongs to the Application object is set up to repeatedly call the MathGame() sub
procedure. The OnTime() method takes up to four parameters for input, two of which are
required. Because I only need to pass the OnTime() method three parameters, I am using
named arguments. The EarliestTime parameter represents the next time the system will call
the procedure specified by the Procedure parameter, in this case the MathGame() procedure.
The EarliestTime and Procedure parameters are required. The other two parameters, both of
which are optional are LatestTime and Schedule. The LatestTime parameter represents the
latest time the procedure specified by the Procedure parameter can be called; however it is
not required here. The Schedule parameter is used to schedule a new call to the procedure
specified by the Procedure parameter. In this case, Schedule must be used and set to true in
order to ensure the next call to the MathGame() procedure occurs. It is important to point out
that between calls to the MathGame() procedure, the system is allowed to process other
events; thus, the system is not locked up processing code as it would be if we used a looping
structure to handle the timer. This allows the user to enter answers into the appropriate
worksheet cell. The MathGame() procedure is now set up to execute every second. Figure 4.16
shows the Math Game program worksheet during a game. The timer started at 60 seconds.

Following the initial use of the OnTime() method, an If/Then decision structure is used to
check the value of the timer. If the timer is less than or equal to zero, then the OnTime()
method is used to disable the timer by setting the Schedule parameter to false; thus, the
MathGame() procedure will no longer be called. Without this statement, the MathGame() pro-
cedure will be called every second and drastic action (ctrl+alt+break) will have to be taken
to stop the program.

142

After the timer reaches zero, calls to the procedures EnableControls(), ClearBoard(), and
ScoreAnswers() are made to enable the ActiveX controls, clear the values in the spreadsheet
cells containing the question and answer, and score the results of the game.

Private Sub MathGame()

‘Manages the clock while testing. Calls scoring procedures when test is over.

Dim numSeconds As Integer

Dim nextTime As Date

Const TIMEALLOWED = 60

numSeconds = DateDiff(“s”, curDate, Now)

‘————————-

‘Start the clock.

‘————————-

Range(“Clock”).Value = TIMEALLOWED - numSeconds

nextTime = Now + TimeValue(“00:00:01”)

Application.OnTime EarliestTime:=nextTime, Procedure:=”MathGameSheet.MathGame”,

Schedule:=True

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 4.16

The Math Game
worksheet as
the program

is running.

‘————————————————————————————————-

‘Disable timer when it reaches zero, score results, and clean up

‘worksheet controls/cells.

‘————————————————————————————————-

If (TIMEALLOWED - numSeconds <= 0) Then

gameRunning = False

Application.OnTime EarliestTime:=nextTime, Procedure:=”MathGameSheet.MathGame”,

Schedule:=True

EnableControls True

ClearBoard

ScoreAnswers

Application.MoveAfterReturn = True

End If

End Sub

The MathGame() procedure handles the timer and scoring when the game is over, but it does
not collect the questions or user’s answers. Instead, these values are captured in the
Change() event of the worksheet.

Collecting Answers
The Change() event of a worksheet triggers when the content of cells on the worksheet are
changed by the user. In the Math Game program, this event will trigger every time the user
enters an answer. Excel passes the altered cell’s range to the Change() event via the Target
parameter. The user’s answers are entered into the merged range L8:M9 defined with the
name Answer; therefore, the value of the Target parameter will be L8.

If the user has entered the answer in the correct cell, a series of statements are executed. A
modicum of input validation is included in the conditional for the If/Then decision struc-
ture. If the user presses Enter without typing in an answer, then no code inside the If/Then
decision structure is executed. This forces the user to enter an answer for each question. Fur-
thermore, the gameRunning variable must be true or the code in the decision structure will
not execute. (This prevents the program from displaying a question when the game is over.)

If the user does answer a question, then the numQuestions variable is incremented by one,
the StoreQuestions() sub procedure is called, and a new question is obtained from calls to
the GetRandomOperator() (if required) and GetOperands() procedures and displayed.

Private Sub Worksheet_Change(ByVal Target As Range)

‘Stores answer entered by the user and gets next question.

143Chapter 4 • Loops and Arrays

144

If (Target.Address = “L8”) And (Range(“Answer”).Value <> “”) And gameRunning Then

numQuestions = numQuestions + 1

StoreQuestions

If optAny.Value = True Then

GetRandomOperator

End If

GetOperands

Range(“Answer”).Select

Selection.Value = “”

End If

End Sub

The StoreQuestions() sub procedure is called from the Change() event of the worksheet, so
the code within is executed every time the user enters an answer to a question. The dynamic
variable arrays declared at module level are re-dimensioned to increase their size by one
with each call to this procedure. The Preserve keyword is used to ensure that previously
stored values are not lost.

The two-dimensional array mathQuestions maintains the same number of dimensions, and
only the upper bound of the last dimension changes, as required when using the Preserve
keyword. Thus, the mathQuestions array can be thought of as containing two rows (indexed
by 0 and 1) and n columns where n is equal to the number of questions asked during the game.

The operands (cells F8 and I8 defined as LeftOperand and RightOperand, respectively) for each
question are stored in rows 0 and 1 of the mathQuestions array. The mathematical operator
used and the user’s answers are stored in the arrays mathOperators and userAnswers, respec-
tively. The index value in the arrays used to store the mathematical operators and the user’s
answers is identical to the index value in the array used to store the corresponding question.
This is critical for outputting these values to the correct worksheet cells later in the program.

The user’s answer is passed to the Val() function before storing in the array. This serves as
more input validation. If the user enters a non-numerical string, then the answer will usu-
ally be set to zero depending on the string, as discussed earlier in this chapter.

Private Sub StoreQuestions()

‘Stores the questions and answers in dynamic arrays.

ReDim Preserve mathQuestions(1, numQuestions) As Integer

ReDim Preserve mathOperators(numQuestions) As String

ReDim Preserve userAnswers(numQuestions) As Integer

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

mathQuestions(0, numQuestions - 1) = Range(“LeftOperand”).Value

mathQuestions(1, numQuestions - 1) = Range(“RightOperand”).Value

mathOperators(numQuestions - 1) = Range(“Operator”).Value

userAnswers(numQuestions - 1) = Val(Range(“Answer”).Value)

End Sub

After the timer has reached zero, the game is over and the last question is cleared with the
ClearBoard() sub procedure before the user’s results are scored and tabulated.

Private Sub ClearBoard()

‘Clears the operands and the answer from the worksheet cells.

Range(“LeftOperand”).Value = “”

Range(“RightOperand”).Value = “”

Range(“Answer”).Value = “”

End Sub

Scoring the Answers
The ScoreAnswers() sub procedure called at the end of the game from the MathGame() proce-
dure reads the questions asked during the game from variable arrays and displays them on
the worksheet. This procedure also checks the user’s answers and outputs the score as a per-
centage of questions answered correctly.

I use a For/Next loop to iterate through the arrays holding the questions and answers, because
I know the number of questions that were asked during the game is stored in the module
level variable numQuestions. The lower bound on the arrays are zero, so the looping variable
ranges from zero to the number of questions less one.

String concatenation is used to output the questions asked during the game to column A on
the worksheet. The user’s answers are output to column B on the worksheet. Using the loop-
ing variable as the indices for the arrays guarantees that the questions match their corre-
sponding answer.

To display the correct answer in column C of the worksheet, a formula string is created and
copied to the appropriate cell using the Formula property of the cell range. Because a _ was
used to display multiplication in column A, an If/Then decision structure replaces it with
Excel’s required multiplication operator (*) in the formula for column C. If the user entered
a wrong answer, the answer is displayed in red and the integer variable numWrong is incre-
mented by one. Finally, the user’s score is calculated and output to the end of column B on
the worksheet as a formula.

145Chapter 4 • Loops and Arrays

146

Private Sub ScoreAnswers()

‘After the test is over, the user’s answers are scored and the

‘results written to the worksheet.

Dim I As Integer

Dim numWrong As Integer

‘————————————————————————————————————-

‘Loop through the arrays and score answers. Mark wrong answers in red.

‘Write the questions, user answers, and correct answers to the worksheet.

‘————————————————————————————————————-

For I = 0 To numQuestions - 1

Cells(I + 2, “A”).Value = mathQuestions(0, I) & mathOperators(I) &

mathQuestions(1, I)

Cells(I + 2, “B”).Value = userAnswers(I)

If mathOperators(I) = “x” Then ‘Excel requires asterisk (*) for multiplication.

Cells(I + 2, “C”).Formula = “=” & mathQuestions(0, I) & “*” &

mathQuestions(1, I)

Cells(I + 2, “B”).Font.Color = RGB(0, 0, 0)

Else

Cells(I + 2, “C”).Formula = “=” & mathQuestions(0, I) &

mathOperators(I) & mathQuestions(1, I)

Cells(I + 2, “B”).Font.Color = RGB(0, 0, 0)

End If

If Cells(I + 2, “B”).Value <> Cells(I + 2, “C”).Value Then

Cells(I + 2, “B”).Font.Color = RGB(255, 0, 0)

numWrong = numWrong + 1

End If

Next I

‘———————————————————————

‘Compute % correct and write to the worksheet.

‘———————————————————————

Cells(I + 2, “A”).Value = “Score (%)”

Cells(I + 2, “B”).Font.Color = RGB(0, 0, 0)

Cells(I + 2, “B”).Formula = “=” & (numQuestions - numWrong) / numQuestions & “*100”

End Sub

Figure 4.17 shows the Math Game program worksheet immediately after a game is played.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

This concludes the Math Game program. I wrote the program following the algorithm
described earlier. I added small details usually related to formatting the spreadsheet to the
appropriate procedures after the program was working to satisfaction.

I wrote the Math Game program using a single code module. To add a small amount of com-
plexity to the program, you could separate the procedures listed earlier into two or more
code modules. For example, some programmers prefer to leave only event procedures in
object modules and locate all of their custom procedures in standard modules. Splitting the
code for the Math Game program into an object and standard module is left and an exercise
for the reader. As a hint, be aware of variable scope for those variables required in both modules.

Chapter Summary
You covered a significant number of topics concerning VBA programs in this chapter. The
looping code structures (Do-Loop and For/Next) and variable arrays provide enormous power
by allowing us to write more efficiently and significantly shorten the code.

You also examined a number of methods used for interaction with an Excel worksheet
including input validation, entering formulas in spreadsheet cells, and using the Change()
event procedure of a worksheet.

147Chapter 4 • Loops and Arrays

Figure 4.17

The Math Game
program.

148 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The Math Game used all of these tools plus a special method (OnTime()) of the application
object to repeatedly call a procedure at a specified time interval.

You also examined the macro recorder and Forms toolbar controls.

The next chapter introduces the Excel object model concentrating on the objects at the top of the
hierarchy. You have seen many examples of Excel objects in the first four chapters of this book.
Now it is time to take an in depth look at these objects, their properties, and their methods.

C H A L L E N G E S

1. Write a procedure that outputs a random number to the first 100 cells in column
A of an Excel worksheet.

2. Add a statement to the procedure from the previous question that inserts a
formula into cell A101 and that calculates the sum of the first 100 cells. If you
can’t get it on your own, record a macro and examine the code.

3. Write a VBA procedure that uses a For/Next loop to store the contents of the first
10 cells in row 1 of an Excel worksheet to a variable array.

4. Write a VBA procedure that uses nested For/Next loops to store the contents of
the range A1:E5 in an Excel worksheet to a two-dimensional array.

5. Write a VBA procedure that uses nested For/Next loops to store the contents of
the range A1:E5 in each of three Excel worksheets to a three-dimensional array.

6. Change the procedures above using an input box to ask the user for the number
of rows and/or columns and/or worksheets in which to retrieve values for storage
in the same arrays. Use Do-loops and dynamic arrays. Add validation to the input
box.

7. Record a macro that formats a worksheet to look like the worksheet in the Math
Game, less the ActiveX controls.

8. Modify the Math Game program so that its timer starts at the specified number
of seconds entered by the user in cell I3.

9. Modify the Math Game program so that the questions and answers are written to
the spreadsheet as the user enters each answer.

10. Change the Math Game program such that it uses two code modules. The same
object module for the worksheet and a standard module. Leave only the event
procedures in the object module for the worksheet. Hint: You will have to
increase the scope of those variables and procedures referenced in both modules
to public.

Basic Excel
Objects

5
C H A P T E R

T
he preceding chapters concentrated on fundamental programming
constructs common to all languages. Now it is time to introduce some
VBA- and Excel-specific programming concepts and capabilities. You will

be using programming tools referred to as objects, specifically some of the objects
available in VBA and Excel.

In this chapter you will learn about:

• Objects

• VBA Collection Objects

• The Object Browser

• The Application Object

• Workbook and Window Objects

• The Worksheet Object

• The Range Object

• With/End With and For/Each

• Adding sound to your VBA program

Project: Battlecell
The Battlecell program will familiarize you with many of Excel’s top level and
most common objects, as well as reinforce code and data structures previously

C H A P T E R

150 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

discussed. You will also become familiar with the Object Browser, in order to access all of
the objects in the available libraries, not just in the Excel library. The Battlecell program
relies heavily on Excel’s Application, Workbook, Worksheet, and Range objects. The program is
a computer simulation of the classic Battleship game you may have played as a kid, and a
natural choice for a spreadsheet application. Figure 5.1 shows the Battlecell game board
designed from an Excel worksheet with a game in progress.

VBA and Object-Oriented Programming
If VBA is your first programming language, then chances are you have not heard of object-
oriented programming. Don’t worry if you haven’t heard of it; VBA does not qualify as an
object-oriented language. There are some technicalities that disqualify VBA from calling
itself “object-oriented,” but VBA still shares many of the same concepts as genuine object-
oriented languages. Mainly, object-oriented languages and VBA commonly share the exis-
tence of objects and some of the tools used to manipulate these objects. These tools include
properties, events, and methods. (Other languages may call these tools something different,
but they are really the same thing.) You have already seen several VBA objects in action. For
example, in Chapter 1, the project code contained many references to Excel objects and
some of their properties. Objects must be discussed in VBA at a relatively early stage. Objects
show up early, often, and everywhere in your VBA code. This is a good thing, because your
programs can’t really do much without them.

Figure 5.1

The Battleship
game sheet.

Objects Defined
There is no need to get too abstract here with the definition of an object. It really is a pretty
simple thing to understand. You can think of objects as separate computer programs with
specific (and often common) functions that are available for repeated use in your programs.
Objects are dynamic in that they can be easily manipulated in code with the various parameters
used to define them.

In one common analogy, objects are equated as nouns in the English language. A program-
ming object can be described with adjectives (properties), be capable of performing different
actions with verbs (methods), and be built out of other objects. As an example, consider a
bicycle. A bicycle can be described by its size, color, and type (among other things). For example,
it might be a 26" blue ten-speed. The color, size, and type are all adjectives that describe the

151Chapter 5 • Basic Excel Objects

In the Real World
Although C++ has been around for a few years, most object-oriented languages are relatively
new. Java is an object-oriented language that gained a strong following with the rise in popu-
larity of the World Wide Web. Other languages such as VBA, and some web-based languages
(e.g., JavaScript, Perl) do not satisfy all the definitions required for the object-oriented label;
however, all of these languages use objects extensively and thus serve as a good introduction
to object-based programming, if they aren’t totally object-oriented.

Program objects, such as ActiveX controls in VBA, allow greater flexibility and power in soft-
ware development because they can be developed by one group of programmers and used by
other groups in virtually any application. It is this ability to re-use program objects and the
time savings it creates that make objects so popular among programmers.

The requirements for a language to be designated as object-oriented are really quite strict.
One requirement is that object-oriented languages must allow programmers to build new
classes (object definitions). Furthermore, the objects created from a new class must support
inheritance. Inheritance refers to the ability of one class to inherit from another. This simply
means that the new class (also known as the derived class) will have all the members of the
inherited class (also known as the parent class). Although VBA allows programmers to define
new classes, it does not support inheritance and for this reason (and others not beyond the
scope of this text), VBA is not considered object-oriented.

The latest version of Visual Basic (VB .net) and the relatively new development language C#
satisfy object-oriented requirements. The popularity of object-oriented languages is likely to
continue and the migration of object-based languages to true object-oriented status is also
probable (if they survive). However, it appears that for the time being, VBA will remain object-
based, and not object-oriented.

152

bicycle. Thus, they are all properties of the bicycle. A bicycle can also perform various actions;
it can move straight or turn when ridden. Moving and turning are action verbs that tell you
what tasks the bicycle can perform. Moving and turning are methods of the bicycle. Finally,
the bicycle is built out of other objects such as a frame, wheels, handlebars, and pedals.
These objects, in turn, have their own properties and methods. For example, a bicycle wheel
is of a certain diameter, is built out of aluminum or titanium alloys, and it turns or rolls.
The diameter and type of material are properties of the wheel object, and to turn or roll
would be two of its methods. So you see, there is sort of a hierarchy to the objects in your
bicycle and the bicycle object itself sits at the top of the hierarchy.

I could take it further. For example, a wheel is built from a tire, rim, and spoke objects. The
tires are built from organic polymers, and so on, and so on. The description continues until
eventually you will get to the objects at the very bottom of the hierarchy. These objects may
have properties and methods, but they are not built out of any other objects. It may take you
awhile to get to this level if you really think about your bicycle. Eventually you could break
the bicycle down to its subatomic components. Of course, then you would have to stop
because you would reach the limit of human knowledge. Fortunately, in any program, the
object hierarchy does not extend that far and is well defined by the programmer. In this
case, you get help from Excel and VBA in defining the objects, but it is still up to you to
choose which objects you want or need to use in your program.

Now there is one more attribute of an object that has not yet been mentioned (at least not
here; but it was discussed in Chapter 3). Consider what happens when a tire on your bicycle
goes flat; or when the rider pedals the bicycle; or when the rider turns the handlebars on
the bicycle. These are all events that occur when some action is carried out. Don’t be confused
with the method of the bicycle turning and the event of the rider turning the handlebars.
They are not the same—one depends on the other. In this particular case, the bicycle turns
when the rider turns the handlebars. Events are actions triggered by an external stimulus
of the object. You write code to use the turn_bicycle() method when the rider triggers the
handlebar_turn() event. The code that is executed (invoking the turn_bicycle() method) is a
coded response to the user’s stimulus (handlebar_turn() event).

Object events are very powerful programming tools, as they allow for a much more interac-
tive experience between the program and the user. Think about what a program would be
like without events. Once you started the program running, you would not do anything else
except maybe type in some information when prompted by the program. That is, the pro-
grammer would completely dictate the flow of the program. If you remember computers
prior to GUI’s then you may remember this kind of programming. You have already seen
some of the events associated with a couple of Excel’s objects in previous chapters. Now, you
should have a little better understanding as to why events exist.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Now let’s consider some of the objects in Excel. If you are a regular user of Excel or any
spreadsheet program, then you are already familiar with many of its objects. For example,
there are Workbook objects, Worksheet objects, Range objects, Chart objects, and many more.
The rest of this chapter is devoted to showing you how to use a few of Excel’s objects, and in
particular, some of its top-level objects.

VBA Collection Objects
Collection objects in VBA are fairly straightforward—they are exactly what the name
implies: a group or collection of the same object types. Referring to the bicycle example
again, consider a collection of bicycles. The bicycle objects in your bicycle collection can be
different sizes, colors, and types, but they are all bicycles.

Collection objects allow you to work with objects as a group rather than just working with
a single object. In VBA, collection objects are typically denoted with the plural form of the
object types that can belong to a collection (not all can). For example, any Workbook object
belongs to a Workbooks collection object. The Workbooks collection object contains all open
Workbook objects. The Excel window shown in Figure 5.2 contains three open Workbook
objects (Book1, Book2, and Book3).

To select a Workbook object from the Workbooks collection object, the code would look like this:

Workbooks(2).Activate

153Chapter 5 • Basic Excel Objects

Figure 5.2

Excel Workbook
objects.

Workbook objects

Worksheet objects

154

This line of code uses the Workbooks property of the Application object (more on this later)
to return a single Workbook object from the Workbooks collection object and then uses the
Activate() method of the Workbook object to select the desired object.

The required syntax when addressing objects in VBA is object.property or
object.method. You may also specify multiple properties in order to reach the
desired property or method. For example, Application.ActiveSheet
.Range(“A1”).Font.Bold = True is of the form object.property.property.property
.property because ActiveSheet, Range(“A1”), and Font all represent properties
that return objects. Bold is a Boolean property of the Font object and its value is
set to true. As you may have guessed, this line of code turns on bold formatting
in cell A1 of the current worksheet.

So, from the collection of Workbook objects shown in Figure 5.2, which Workbook object does
the previously mentioned line of code return? If you answered Book2, you’d be wrong,
although that is the intuitive answer. The number in parentheses refers to a relative index
number for each Workbook object as it was created. (In this case, Book1 was created first, Book2
second, and Book3 third.) The confusing part is that an index value of 1 is reserved for the
currently selected Workbook object, regardless of when that Workbook object was created. So
to select Book2 you would actually have to use an index value of 3 in the above line of code.
An index value of 2 would return Book1 and an index value of 1 or 4 would return Book3.

There will always be two choices of an index for the currently selected Workbook object, the
value 1 because it is reserved for the currently selected object, and the value corresponding
to its sequence in being created. The behavior of the Workbooks collection object can be con-
fusing, but with practice, patience, and above all, testing, I’m sure you can figure it out.

To avoid confusion, you can select a workbook unambiguously—if you know the name of the
desired Workbook object—using the following line of code.

Workbooks(“Book2”).Activate

Here you simply include the name of the object as a string in place of the index number.
Obviously, this is much less confusing and makes your code easier to read, so I recommend
doing it this way whenever possible.

When you need to step through several objects in a collection, use a loop and a
looping variable to represent the index of the object to be returned.

For I=1 To 3

If Workbooks(I).Saved Then Workbooks(I).Close

Next I

TRICK

HINT

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Other examples of collection objects include Worksheets, Windows, and Charts. For example,
each of the Workbook objects in Figure 5.2 contains three Worksheet objects that belong to sep-
arate Worksheets collection objects. There are three Worksheets collection objects in this
example because they are lower in the object hierarchy than the Workbook object.

The Object Browser
The VBA IDE includes a convenient and very useful tool for browsing through all available
objects for a project and viewing their properties, methods, and events. It is called the
Object Browser, and you’ll use it to view Excel’s object model and learn about what objects
are available for you to use in your programs. You can also view all procedures and constants
from your current project.

To open the Object Browser, select View, Object Browser, as shown in Figure 5.3, or simply
hit F2. Figure 5.4 shows the Object Browser.

155Chapter 5 • Basic Excel Objects

Figure 5.3

Selecting the
Object Browser

from the VBA IDE.

Figure 5.4

The Object
Browser.

Object libraries

Object definitions
(Classes)

Object members
(properties,

methods, and
events)

156

To use the object browser, first select the library from which you need to view the desired
object, or select All Libraries (see Figure 5.5).

An object library is a collection of objects provided by a specific application. You may notice
libraries for Excel, Office, VBA, and VBAProject. You may see others as well, but it is these spe-
cific libraries that are of the most interest to you now. As you might have guessed, the Excel
library contains objects specific to Excel and the Office library contains objects common to
all MS Office applications (Word, PowerPoint, Excel, etc.). The VBA library adds a few objects
specific to the VBA programming language, and the VBAProject library represents objects in
the project currently open in Excel (that is, a workbook). In this chapter, it is the Excel
library that is of the most interest to you because it’s the library that contains specific
objects that will allow you to interact with and extend Excel’s capabilities.

After selecting the Excel library you’ll see a list of all available objects within Excel in the bot-
tom left window of the Object Browser (see Figure 5.4 or 5.5). The window is labeled Classes
but don’t let that confuse you. A class is just an object definition. A class definition is used to
create an instance of the object it defines. This is all just technical jargon that you don’t need
to worry about right now—just remember that when you see the word class, you should imme-
diately think “object.” Also, remember that the class/object list represents all objects available
for you to use in your program. After selecting an object from the list, the available properties,
methods, and events of the selected object will be displayed in the window on the bottom right
side of the Object Browser (refer to Figure 5.4). This window is labeled Members, because these
items belong to, or are members of the selected object. When you select an item in the mem-
bers list, information about that member—the member type, required syntax, and data type—
will be displayed at the very bottom of the Object Browser. Once you become more familiar
with the Object Browser, and VBA in general, you should find this information more helpful.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 5.5

Selecting an
object library.

To learn more about a specific object or one of its members, simply select an
item in the Object Browser and press F1. The Help window will appear, display-
ing the result for the selected item in much more detail than what you see in the
Object Browser.

If you prefer a more graphical representation of the Excel object model, look for the Object
Model chart in the Help window under Microsoft Excel Objects. The chart, shown in Figure
5.6, displays the object hierarchy and provides links to documentation on the entire Excel
Object Model.

Whatever tool you prefer to use (the Object Browser or Object Model chart), keep in mind
that there is a hierarchy of objects that must be followed. You should think of the object
hierarchy as a path to the object of interest much like a file path in a computer’s operating
system. It is a good idea to use these tools to set a specific object property or invoke an
object’s method when you’re having difficulty navigating through the object hierarchy.

Consider a simple example. How do we insert the string “VBA is fun!” into cell A4 of Sheet2
in Book2 from the project shown in Figure 5.2? From examples in previous chapters, you
know that you can use the Range property of the Application object.

Range(“A4”).Value = “VBA is fun!”

TRICK

157Chapter 5 • Basic Excel Objects

Figure 5.6

The Excel Object
Model.

158

However, the line of code above will insert the string into the current or active worksheet,
and this may not be your target worksheet. To ensure the string finds the correct target, first
select the desired workbook.

Workbooks(“Book2”).Activate

To find the next object in the desired path to cell A4 of Sheet2 of Book2, look at the Object
Browser. Since the above line of code gets you to the Workbook object, start by selecting the
Excel object library and Workbook from the list of objects. Immediately, the members of the
Workbook object are displayed on the right. If you scroll through this list you will eventually
come to a property called Worksheets, as shown in Figure 5.7.

To select Sheet2, use the following code.

Workbooks(“Book2”).Worksheets(“Sheet2”).Activate

The second part of this statement (Worksheets(“Sheet2”)) is really the same code as written
for selecting the Workbook object from the Workbooks collection object. The Worksheet object
Sheet2 is selected from the Worksheets collection object. This code uses the Worksheets prop-
erty of the Workbook object to return a Worksheet object from the Worksheets collection
object. Since the Worksheet object is lower in the object hierarchy than the Workbook object,
it follows it in the line of code above. Finally, the Activate() method of the Worksheet object
selects Sheet2 within the workbook Book2. That was a mouthful, but if you work through
the hierarchy slowly, and view each of these components through the Object Browser, it
will make sense.

To add the string “VBA is fun!” to cell A4, use the following code:

Workbooks(“Book2”).Sheets(“Sheet2”).Range(“A4”).Value = “VBA is fun!”

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 5.7

Viewing the
Worksheets

property of the
Workbook object.

The Range property is found in the list of members for the Worksheet object, as shown in
Figure 5.8. Note that the Cells property could have also been used.

Workbooks(“Book2”).Sheets(“Sheet2”).Cells(4, “A”).Value = “VBA is fun!”

The Range property returns a Range object that represents one or more cells in a continuous
block on a worksheet. In this case, the Range property returns the Range object that repre-
sents cell A4. Next, the Value property of the Range object is used to set the contents of cell
A4 to the desired string “VBA is fun!”, as shown in Figure 5.9.

159Chapter 5 • Basic Excel Objects

Figure 5.8

Viewing the
Range property

of the Worksheet
object.

Figure 5.9

Inserting a string
in a worksheet

cell.

160

You may be wondering if you really need to work your way through the entire object hierarchy
to set one property? The answer is yes, but only if each object referenced in the code needs to be
identified out of a collection of objects. For example, if there is only one Workbookobject open, then

Sheets(“Sheet2”).Range(“A4”).Value = “VBA is fun!”

works just as well as the previous code. Actually, this code will execute regardless of how
many Workbook objects are open, but it will put the string in the currently selected or active
workbook. Likewise,

Range(“A4”).Value = “VBA is fun!”

executes, but it will put the string in the active worksheet; thus, each object qualifier is nec-
essary only as long as it is needed to identify one specific object out of several possibilities.

Top-Level Excel Objects
I will start at the top of the hierarchy in the Excel object model and work my way through
the first few objects. There are too many objects in the model to cover them all, but the goal
of this chapter is to get you comfortable navigating through the object model and learning
how to use new objects on your own.

The Application Object
The Application object is the top-level object in Excel’s object model. It represents the entirety
of the Excel application (see Figure 5.6). As the top-level object it is unique and thus, seldom
needs to be addressed in code; however, there are a few occasions when you must use the
Application object’s qualifier in code. One example is the OnTime() method used in the Math
Game program in Chapter 4. Other examples where the Application object must be explicitly
referenced in code include the Width and Height properties used to set the size of the applica-
tion window, and the DisplayFormulaBar property used to show or hide the formula bar.

Application.Width = 600

Application.Height = 450

Application.DisplayFormulaBar = True

For the most part, you need to use the Application object qualifier to set properties pertain-
ing to the appearance of the Excel window, such as shown above, or the overall behavior of
Excel as shown below.

Application.Calculation = xlManual

Application.EditDirectlyInCell = False

Application.DefaultFilePath = “C:\My Documents”

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

161Chapter 5 • Basic Excel Objects

The Application object qualifier must also be used with the very helpful ScreenUpdating and
WorksheetFunction properties.

Application.ScreenUpdating = False

Range(“A11”) = Application.WorksheetFunction.Sum(Range(“A1:A10”))

However if you just need to set properties of lower-level objects, then the Application object
qualifier is not needed.

ActiveCell.Formula = “=SUM(A1:A10)”

The line of code above uses the ActiveCell property of the Application object to return a
Range object. The Range object returned by this line of code is the currently selected spread-
sheet cell. The Formula property of the Range object is then set with the given string. The for-
mula is then entered into the cell and the result calculated as normal by Excel. To view all
the Application object’s properties, methods, and events, select it from the Classes list in the
Object Browser, as shown in Figure 5.10.

The events associated with the Application object are not enabled by default so
they will not work like other Excel object event procedures. Enabling events for
the Application object involves the use of a class module and other advanced
methods that are beyond the scope of this book and will not be discussed.

The Workbook and Window Objects
You have already seen in action, in some of the examples in this chapter, the Workbooks, and
Worksheets collection objects, as well as the Workbook and Worksheet objects. The difference

HINT

Figure 5.10

The Application
object as viewed

through the
Object Browser.

162

between collection objects and regular objects was discussed earlier. When working with
these objects, keep in mind that the Workbook object is higher in the hierarchy than the
Worksheet object. If you are familiar with Excel, this makes sense to you because a single
workbook can hold multiple worksheets.

However, the Window object may be unfamiliar and/or a bit confusing. Window objects refer to
instances of windows within either the same workbook, or the application. Within the Excel
application, the Windows collection object contains all Window objects currently opened; this
includes all Workbook objects and copies of any Workbook objects. The Window objects are
indexed according to their layering. For example, in Figure 5.2, you could retrieve Book2 with
the following code:

Application.Windows(2).Activate

because Book2 is the center window in a total of three Window objects. After Book2 is retrieved
and thus brought to the top layer its index would change to 1 when using the Windows col-
lection object. This is different from accessing Book2 using the Workbooks collection object.
As stated previously, Workbook objects are indexed according to the order of their creation
after the value of 1, which is reserved for the selected, or top-level Workbook object.

You may be thinking that the Windows collection object within the Application object is
essentially the same as the Workbooks collection object. This may or may not be true depend-
ing whether or not the user creates a new window by selecting New Window from the Win-
dow menu in the Excel application. This effectively makes a copy of the currently selected
workbook. You may also use the NewWindow() method of either the Window or Workbook object
in your code to accomplish the same task.

Application.Windows(1).NewWindow

When a new window is created, the caption in the title bar from the original window is con-
catenated with a colon and an index number. For example, Book1 becomes Book1:1 and
Book1:2 when a new window is created (see Figure 5.11). These captions can be changed in
code by manipulating the Caption property of the Window object.

Do not confuse the creation of a new window from the Window menu with that of a new
workbook. New workbooks are created when the user selects New from the File menu, or by
using the Add() method of the Workbooks collection object. Of course, creating a new work-
book also creates a new window, but the reverse is not true. If a new Window object is created
through the use of the Window menu in Excel (or NewWindow() method in VBA), then this
window does not belong to the Workbooks collection object and thus, cannot be accessed in
code by using the following:

Application.Workbooks(“Book1:2”).Activate

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

This code fails because Book1:2 does not belong to the Workbooks collection object but to the
Windows collection object of either the Application object or the Workbook object named
Book1. It could be accessed with either of the following lines of code:

Workbooks(“Book1”).Windows(“Book1:2”).Activate

Or,

Application.Windows(“Book1:2”).Activate

These examples and the above descriptions demonstrate that there may be more than one path
to retrieving an object of interest in your code, and that differences between some objects may
be quite subtle. I recommend that you play with these examples and create instances of new
windows and new workbooks in your code. Then access these objects through as many paths
as you can think of. You will find that it doesn’t take long to get comfortable working with the
Workbooks collection, Windows collection, Workbook, and Window objects.

All properties, methods, and events for these objects can be viewed in the Object Browser.
Let’s take a closer look at a few of them via an example, starting with the Workbooks collection
object, shown in Figure 5.4.

There are only a few properties and methods of the Workbooks collection object and their func-
tions are straightforward. Add the following procedure to a standard module in a workbook.

163Chapter 5 • Basic Excel Objects

Figure 5.11

Creating a new
window in Excel.

164

Public Sub AddWorkbooks()

Dim I As Integer

For I = 1 To 3

Workbooks.Add

Next I

End Sub

If you execute this procedure by selecting AddWorkbooks from the Macro menu in Excel, you
will immediately see three new workbooks opened in Excel. To select a specific workbook,
insert the following line of code after the For/Next loop in the AddWorkbooks() sub procedure.

Workbooks(Workbooks.Count).Activate

This is another example of nesting, and it will activate the last workbook to be opened in
Excel. The statement Workbooks.Count returns the number of open workbooks in Excel and
is then used as the index to activate the last workbook added. If you prefer, edit the above
code to make it more readable:

Dim numWorkbooks as Integer

NumWorkbooks = Workbooks.Count

Workbooks(NumWorkbooks).Activate

Through the Object Browser, you will notice that the Workbooks collection object only has a few
members. They are relatively straightforward to use, and you have already seen a couple of
them (the Add() method and Count property). You may find the Open() and Close() methods and
Item property useful as well. Some of these members will be addressed later, albeit with differ-
ent objects. You will find that many of the collection objects share the same properties and
methods. This is not unusual, but be aware that depending on the object you use, the parame-
ters that are either available or required for these members may vary. Figures 5.12 and 5.13
show that the Workbooks collection object and the Workbook object both have Close() methods.

If you look at the bottom of the Object Browser windows displayed in Figure 5.12 and Figure
5.13, you will see that the Close() method of the Workbooks collection object does not accept
any arguments, but the Close() method of the Workbook object can accept up to three argu-
ments, all of which are optional (denoted by the brackets).

Consider the following VBA procedure illustrating the use of the Close() method of the
Workbook object. The code can be placed in a standard or object module.

Public Sub CloseFirstLast()

Workbooks(Workbooks.Count).Close SaveChanges:=False

Workbooks(1).Close SaveChanges:=False

End Sub

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

This procedure will close the first and last workbooks opened in Excel without prompting the
user to save changes. However, if this procedure is contained somewhere in a code module for
the last workbook to be opened, then only the last workbook will be closed. This is because
the module containing this code will close before the last line (Workbooks(1).Close
SaveChanges:=False) is executed. In the example above, the Close() method of the Workbook
object is used, not the Close() method of the Workbooks collection object. This must be the case
because an index value was specified, and therefore only the Workbook object designated by an
index of 1 is available. Because the Workbook object is used, optional arguments can be used
with the method. In this case, the prompt to the user for saving changes to the workbook is
set to false (the default is true), so the workbook closes immediately. If you want to close all
workbooks simultaneously, then use the Close() method of the Workbooks collection object.

Workbooks.Close

165Chapter 5 • Basic Excel Objects

Figure 5.12

The Close()
method of the
Workbooks

collection object.

Figure 5.13

The Close()
method
Workbook

objects.

166

In this case, there are no optional arguments allowed, so the user will be prompted to save
the currently selected workbook. All open workbooks will be closed using the line of code
above. There is no way to close a single workbook using the Workbooks collection object. To
close just one workbook, you need to use the Close() method for a Workbook object.

Now consider an example that sizes and centers the application in the middle of the user’s
screen such that one-eighth of the screen on every side is unused by Excel. In addition, the
workbook is sized so that it just fits inside the available space provided by the application
window.

The following code was added to an open workbook and saved as Center.xls on this book’s
CD-ROM.

Option Explicit

Private Sub Workbook_Open()

Application.WindowState = xlMaximized

CenterApp Application.Width, Application.Height

CenterBook

End Sub

Private Sub CenterApp(ByVal maxWidth As Integer, maxHeight As Integer)

‘This procedure is used to center the application window

Application.WindowState = xlNormal

Application.Left = maxWidth / 8

Application.Top = maxHeight / 8

Application.Width = 3 * maxWidth / 4

Application.Height = 3 * maxHeight / 4

End Sub

Private Sub CenterBook()

‘This procedure will center the workbook within the application with no extra space

‘below or above the workbook window

ActiveWindow.WindowState = xlNormal

Workbooks(“Center.xls”).Windows(1).Width = Application.UsableWidth

Workbooks(“Center.xls”).Windows(1).Height = Application.UsableHeight

Workbooks(“Center.xls”).Windows(1).Left = 0

Workbooks(“Center.xls”).Windows(1).Top = 0

End Sub

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Private Sub Workbook_WindowResize(ByVal Wn As Window)

‘Display 20-21 rows of the workbook.

If (Wn.VisibleRange.Rows.Count < 21) Then

Do

Wn.Zoom = Wn.Zoom - 1

Loop Until (Wn.VisibleRange.Rows.Count >= 21)

Else

Do Until (Wn.VisibleRange.Rows.Count <= 21)

Wn.Zoom = Wn.Zoom + 1

Loop

End If

End Sub

Explicit variable declaration is turned on as usual in the general declarations section of the
code window. The main procedure is the Open() event of the Workbook object to ensure that
the program is executed immediately after the workbook is opened. You can access the
object module for the workbook through the ThisWorkbook selection in the project explorer,
as shown in Figure 5.14.

The name of the module ThisWorkbook can be change via the Name property
in the properties window for the Workbook object.

HINT

167Chapter 5 • Basic Excel Objects

Figure 5.14

The
ThisWorkbook
object module.

The
ThisWorkbook

object

168

The WindowState property (xlMaximized is a constant defined by VBA) of the Application
object is used to maximize the Excel window (fill the user’s screen). The application window
is set to fill the user’s screen so that its maximum size can be determined. The Width and
Height properties of the Application object are then passed to the CenterApp() sub procedure
while the application is maximized.

Different users will have different monitor resolution settings. To ensure consis-
tency from one machine to another, you must first learn the dimensions of the
user’s screen. Most languages provide a Screen object from which to determine
these properties. VBA has no Screen object; therefore, you have to be a bit less
elegant about getting the desired width and height.

The CenterApp() sub procedure receives two arguments, maxWidth and maxHeight. The func-
tion of the CenterApp() procedure is to center the application window within the user’s
screen, leaving one-eighth of the screen (on all sides) unoccupied by Excel. The CenterApp()
sub procedure begins by setting the WindowState property to xlNormal. This is the equivalent
of the user clicking the middle window icon at the top-right corner of the workbook window.
The application window must be returned to a normal state because you cannot move a
maximized window; thus, trying to set the Left property of the Application object will cause
an error and the program will crash. After returning the window state to normal, the appli-
cation window is resized by setting the Left, Top, Width, and Height properties accordingly.

Next, the Open() event procedure calls the CenterBook() sub procedure without passing argu-
ments. The CenterBook() procedure is called for the purpose of filling the workbook within
the Excel application window. The workbook window is set to a normal state just like the
application window so that it may be resized. The UsableWidth and UsableHeight properties
of the Application object are used to set the values for the Width and Height properties of the
Window object representing the workbook. The Windows property of the Workbook object is used
to return the top-level window (Windows(1)). Finally, the position (Left, Top) properties of the
window are set to the upper-left corner of the application window (0,0).

It is not necessary to use Workbooks(“Center.xls”) qualifier in the CenterBook() procedure. I
did this only to illustrate the path to the desired object. If the reference to the Workbook
object Center.xls were to be omitted, then VBA would simply use the default object path.
The default object path is to the active window of the current workbook. Since this code
runs immediately after opening Center.xls, it is the current workbook. An index of 1 is used
to select the active or top-level window. As there is only one window in Center.xls, you don’t
have to worry about getting to the desired window; however, if you created multiple win-
dows in the Center.xls workbook, then you might want to use the Window object’s Caption
property instead of an index number.

HINT

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The last procedure in the Center.xls project is the WindowResize() event of the Workbook
object. This event procedure accepts one argument representing the Window object associated
with the workbook being centered. The WindowResize() event triggers whenever the workbook
window is resized; thus, the previous code in the CenterBook() procedure will trigger this
event. The code in the WindowResize() event serves to increase or decrease the Zoom property
of the Window object such that approximately 21 rows of the worksheet are displayed in the
window. The VisibleRange property of the Window object returns a Range object (discussed
later) representing those cells that are visible to the user in the Excel application. The Rows
property of the Range object then returns another Range object representing the visible rows.
Finally, the Count property (a property common to collection objects) of the Range object
returns the number of cells in the Range object returned by the Rows property. The entire
object/property path effectively returns the number of rows in the range of cells visible to the
user.

The Worksheet Object
The Worksheet object falls just under the Workbook object in Excel’s object hierarchy. To inves-
tigate some of the events of the Worksheet object, the following code has been added to the
SelectionChange() event procedure of Sheet1 in the Center.xls workbook.

Private Sub Worksheet_SelectionChange(ByVal Target As Range)

Dim msgOutput As String

msgOutput = “The name of this worksheet is “ & Worksheets(1).Name

MsgBox (msgOutput)

Worksheets(2).Select

End Sub

The SelectionChange() event procedure was first introduced in Chapter 2, and is found in
the object module of a worksheet. The SelectionChange() event procedure is triggered when-
ever the user changes the current selection in the worksheet. The Target argument passed
to the SelectionChange() event procedure is a range that represents the cells selected by the
user. I will discuss the Range object shortly; for right now, ignore it because the current example
does not use the passed argument.

The code in the SelectionChange() event procedure is straightforward. First, a string variable
is created and assigned a value (“The name of this worksheet is”) that is then concatenated
with the name of the worksheet obtained from the Name property of the Worksheet object.
The full object path is not used to return the name of the worksheet, as this code will only
be executed when the user changes the selection in the first worksheet of the Worksheets
collection object (Sheet1). Therefore, the object path travels through the current Workbook object.

169Chapter 5 • Basic Excel Objects

170 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

This is why index numbers can be used with the Worksheets property of the Workbook object
without having to worry about returning the wrong sheet. After displaying the concate-
nated string in a message box, the Select() method of the Worksheet object is used to select
the second worksheet in the Worksheets collection object. (This will generate an error if only
one worksheet exists in the collection.)

Next, code is added to the Worksheet_Activate() event procedure of Sheet2. The Worksheet
_Activate() event procedure is triggered when a worksheet is first selected by the user or,
in this case, by selecting the worksheet using program code (Worksheets(2).Select). The
code is essentially the same as the previous example.

Private Sub Worksheet_Activate()

Dim msgOutput As String

msgOutput = “This worksheet is “ & Worksheets(2).Name

MsgBox (msgOutput)

End Sub

The Worksheet_Activate() event procedure is not triggered when a workbook is
first opened, so it is not a good place for initialization routines intended to run
as soon as a workbook is opened. These procedures should be placed in the
Workbook_Open() event procedure.

You may have noticed in the object browser an object called Sheets. The Sheets
collection object is nearly identical to the Worksheets collection object and the
two objects can often be used interchangeably (as is the case in the previous
two examples). The difference between these two objects is that the Sheets
collection object will also contain any chart sheets open in the active work-
book. So, if you expect chart sheets to be open in the workbook of interest, you
should access worksheets using the Sheets collection object; otherwise, either
collection object will suffice.

The Range Object
The Range object represents a group of one or more contiguous cells in an Excel worksheet. The
Range object is one level beneath the Worksheet object in Excel’s object hierarchy, and it is
extremely useful, as it allows us to manipulate the properties of an individual cell or col-
lection of cells in a worksheet. You will probably find yourself using the Range object in every
program you write using VBA for the Excel application.

HINT

TRICK

Consider the following code examples that use properties of the Range object.

Range(“A1”).Value=”Column A”

Range(“A1:G1”).Columns.AutoFit

Range(“A1:C1”, “E1:F1”).Font.Bold = True

The Range object is one example of a VBA collection object that does not use
the plural form of an existing object for its name. The Range object is a collection
object in the sense that it represents a collection of cells in a worksheet, even
if the collection represents only one cell.

First, note that a long object path is omitted from the examples above; thus, these lines of
code will operate on the currently selected worksheet. The first line inserts the text Column
A into cell A1 by setting its Value property. The Range property was used to return a Range
object representing a single cell (A1) in this example. You have already seen several examples
of the Value property in this book. Although the Value property exists for several objects, it
is the Range object for which it is most commonly used. The second line of code above uses
the AutoFit() method of the Range object to adjust the width of columns A through G such
that the contents of row 1 will just fit into their corresponding cells without overlapping
into adjacent columns. This is equivalent to the user selecting Format, Column, AutoFit
Selection from the Excel application menu.

Entries in other rows that are longer than the entries in row 1 will still run into the next
column. To automatically adjust the width of these columns such that the contents of every
cell in the columns fit within cell boundaries, use the range A:G instead of A1:G1. The third
and last example demonstrates setting the Bold property of the Font object to true for two
distinct ranges in the active worksheet. The two ranges are A1:C1 and E1:F1. You are allowed
to return a maximum of two ranges, so adding a third range to the arguments in the paren-
theses would generate a run-time error.

The examples above demonstrate just a couple of formatting methods and properties
belonging to the Range object (AutoFit(), Columns, and Font). If you are a regular user of Excel,
then you have probably surmised that there are numerous other properties and methods
related to formatting spreadsheet cells. You can either search the Object Browser or the
online help for more examples on how to use formatting options of interest; however, when
you know what formatting options you want to include in your VBA program, record a
macro. It is a quick and easy way to generate the code you need without having to search
the documentation for descriptions of the desired objects, properties and methods. After
you have recorded the macro in a separate module, you can clean up the recorded code and
then cut and paste into your program as needed.

HINT

171Chapter 5 • Basic Excel Objects

172

You may have noticed that the range arguments used in the examples above (A1, A1:G1, etc.)
are of the same form used with cell references in the Excel application. The identical syntax
is highly convenient because of its familiarity.

Finally it is time to take a closer look at the Cells property, specifically the Cells property
of the Application, Range, and Worksheet objects.

Using the Cells Property
The Cells property returns a Range object containing all (no indices used) or one (row and
column indices are specified) of the cells in the active worksheet. When returning all of the
cells in a worksheet, you should only use the Cells property with the Application and Worksheet
objects, as it would be redundant, and thus confusing, to use it with the Range object. For
example,

Range(“A1:A10”).Cells

returns cells A1 through A10, thus making the use of the Cells property unnecessary.

The Cells property will fail when using it with the Application object unless
the active document is a worksheet.

To return a single cell from a Worksheet object you must specify an index. The index can be a
single value beginning with the left uppermost cell in the worksheet (for example, Cells(5)
returns cell E1) or the index can contain a reference to the row and column index (recom-
mended) as shown below.

Cells(1, 4).Value=5

Cells(1, ”D”).Value =5

This is the familiar notation used throughout this book. Both lines of code will enter the
value 5 into cell D1 of the active worksheet. You can either use numerical or string values
for the column reference. You should note that the column reference comes second in both
examples and is separated from the row reference by a comma. I recommend using the sec-
ond example above, as there is no ambiguity in the cell reference—though on occasion it’s
convenient to use a numerical reference for the column index.

Now consider some examples using the Cells property of the Range object.

Range(“C5:E7”).Cells(2, 2).Value = 50

Range(“C5:E7”).Cells(2, “A”).Value = 50

HINT

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

This code may confuse you because they appear to be trying to return two different ranges
within the same line of code; however, that is not the case, but you can use these examples
to more carefully illustrate how the Cells property works.

Before reading on, guess in what worksheet cell each of these lines places the value 50. If
you guessed cells B2 and A2, respectively, you’re wrong. Instead, the value 50 is entered in
cells D6 and A6, respectively, when using the above lines of code. Why? It’s because the Cells
property uses references relative to the selected range. Without the reference to the Range
object in each statement (Range(“C5:E7”)), the current range is the entire worksheet, thus
Cells(2,2) returns the range B2; however, when the selected range is C5:E7, Cells(2,2) will
return the second row from this range (row 6) and the second column (column D). Using a
string in the Cells property to index the column forces the selection of that column regard-
less of the range selected. The row index is still relative; therefore, the second example above
returns the range A6.

Working with Objects
You have now seen numerous examples of objects and how to set their properties and invoke
their methods and events, but there are a couple more tools that can be of tremendous use
when working with objects: the With/End With code structure that, although never required,
works well to simplify code; and the object data type, which allows you to reference existing
objects or even create new objects. The object data type is not as easy to use as the numeri-
cal and string data types you’re now familiar with, but it is an essential tool for the creation
of useful and powerful VBA programs.

The With/End With Structure
VBA includes a programming structure designed to reduce the number of object qualifiers
required in your code. Although the With/End With structure discussed in this section is not
required under any circumstances, its use is often recommended because it makes your pro-
grams more readable. Also you will often see the With/End With structure in recorded macros.
Consider the following code:

Range(“A1:D1”).Select

With Selection.Font

.Bold = True

.Name = “Arial”

.Size = 18

End With

173Chapter 5 • Basic Excel Objects

174

With Selection

.HorizontalAlignment = xlCenter

.VerticalAlignment = xlCenter

End With

When executed, this code selects the range A1:D1 of the active worksheet using the Select()
method of the Range object. The Select() method applies to several objects including the
Worksheet and Chart objects. You will notice that using the Select() method with the Range
object will cause the selected range to be highlighted in the worksheet, just as if the user
used the mouse to make the selection.

Immediately after invoking the Select() method, the With/End With structure appears. The
With statement requires an object qualifier to immediately follow. In this case, the Selection
property of the Window object is used to return a Range object from which the Font property
returns a Font object associated with the selected range. The statement could have just as
easily been written without the Select() method and Selection property and entered using the
Range property to return the desired Range object (for example, With Range(“A1:D1”).Font).

Once inside the structure, any property of the object can be set without having to qualify
the object in each line of code. Subordinate objects and their properties can also be
accessed. Each line within the structure must begin with the dot operator followed by the
property or object name, then the method or assignment.

After all desired properties and/or methods have been invoked for the given object, the
structure closes with End With.

You will note that a second With/End With structure is used to set the horizontal and vertical
alignment of the selected range. This is because I recorded this code and cleaned it up by
deleting lines of code created by the macro recorder for default assignments. The example
can be compressed further as shown below:

With Range(“A1:D1”)

.HorizontalAlignment = xlCenter

.VerticalAlignment = xlCenter

.Font.Bold = True

.Font.Name = “Arial”

.Font.Size = 18

End With

The With/End With structure is straightforward and particularly useful when a large number
of properties or methods of one object are to be addressed sequentially in a program.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The Object Data Type
A chapter on Excel objects would not be complete without a discussion of the object data type.
If you find multiple instances of the same object in your program, then you can use an object
variable to handle the reference rather than constantly retyping the qualifiers. Also, variables
can be assigned meaningful names, making the program easier to interpret. Object variable
are similar to other VBA data types in that they must be declared in code. For example,

Dim myObject as Object

declares an object variable named myObject; however, assigning a value to an object variable
differs from assignments to more common data types. The Set keyword must be used to
assign an object reference to a variable.

Set myObject = Range(“A1:A15”)

This will assign the Range object representing cells A1 through A15 to the variable myObject.
Properties of the object can then be initialized in the usual way.

myObject.Font.Bold = True

This sets the values in cells A1 through A15 to be displayed in bold-face type. Declaring vari-
ables as above using the general object data type is not recommended because the object
will not be bound to the variable until run-time. If VBA has trouble resolving references to
various properties and methods when checking them at run-time, it can significantly slow
down execution of a program. I recommend that you use object-specific data types when-
ever possible. Any object type can be used—just consult the Object Browser for a list of avail-
able types. Using the Range object, the above example can be rewritten thusly:

Dim myRange as Excel.Range

Set myRange=Range(“A1:A15”)

myRange.Font.Bold = True

You may also include the library (Excel) in your declaration to avoid any ambiguity; however,
it is the object type (Range) that is important. Now the object will be referenced at compile
time and VBA will have no trouble working out references to the properties and methods of
the object, as the type of object and the library to which it belongs have been explicitly
declared. You will see more examples of object variable types in the next section, in subse-
quent chapters, and in the Battlecell program.

For/Each and Looping through a Range
As stated at the beginning of this chapter, objects are often built from other objects. For
example a Workbook object usually contains several Worksheet objects, which in turn contains

175Chapter 5 • Basic Excel Objects

176

multiple Range objects. It may be necessary, on occasion, to select individual objects con-
tained within other objects. For example, you may want to access each individual Worksheet
object in a Worksheets collection object in order to set certain properties. If you are thinking
loops then you are right on track, but you’re not going to use any of the looping structures
previously discussed. Instead, you’ll use a looping structure specifically designed to iterate
through collections. The loop is the For/Each loop, and its use is illustrated in the example
that follows:

Dim myRange As Excel.Range

Dim myCell As Excel.Range

Randomize

Set myRange = Range(“A1:B15”)

For Each myCell In myRange

myCell.Interior.ColorIndex = Int(Rnd * 56) + 1

Next

In this example, the background of a group of cells is changed to all different colors.
To accomplish this, each cell is accessed individually as a Range object before setting the
ColorIndex property of the Interior object. The For/Each loop is used for this purpose.

Two object references are required with the For/Each loop; one for the individual objects,
and the other for the collection of objects. In this example, the object variable myRange rep-
resents a collection of cells while the object variable myCell represents each individual cell
within myRange.

The reference to the object variable myRange must be set (cells A1 through B15 in this example)
before it can be used in a For Each loop.

The loop begins with the keywords For Each, followed by the variable that is to represent the
individual elements in the collection—myCell in this example. The keyword In is followed by
the name of the collection—myRange in this example. Note, that it is not necessary to set the
object reference to the variable myCell, as VBA handles this automatically in the For Each loop.

Inside the loop, properties and methods of the individual elements can be addressed. In this
case, the ColorIndex property of the Interior object is changed using a randomly generated
number between 1 and 56 (there are 56 colors in Excel’s color palette). Once each statement
within the loop is executed, the Next keyword is used to continue the loop.

VBA iterates through the cells in the collection first by row and then by column. Therefore,
in this example, the order follows A1, B1, A2, B2, A3, B3, and so on.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

When all elements of the collection have been accessed and each statement executed, pro-
gram execution resumes at the end of the loop as normal. The above code was added to a
standard module in a sub procedure named CellColors() and executed. Figure 5.15 shows
the result.

This a common technique for iterating through a collection of spreadsheet cells. You will
see more examples of this technique in the Battlecell program.

Constructing Battlecell
The Battlecell game is a simplified computer simulation of the classic board game Battleship.
It is a natural choice for a game program using Excel because the grid-like layout used in the
original game can easily be duplicated on a worksheet.

Requirements for Battlecell
Even if you never played Battleship as a kid, you are probably familiar with the game. Either
your siblings played it, or your friends, or perhaps your own children play it now. You can
also find several versions of the game on the Internet and in many department stores.

If you are familiar with the game, you might think that defining a list of requirements for
the game to be a pretty easy task, but this is not necessarily the case as this program will be
considerably more complex than anything you’ve written so far. The biggest problem is that
Battlecell is the first project in this book that actually requires a bit of intelligence on the
part of the computer (that is, your program) in order to properly mimic the original. Some

177Chapter 5 • Basic Excel Objects

Figure 5.15

The result of
executing the
CellColors()
sub procedure.

178 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

intelligence is required by the program when selecting a target on the user’s grid. Knowing,
if a ship has been previously hit, what direction a ship has been placed, and how many hits
are required to sink a ship all require some thought. You and I might take these things for
granted when playing the game, but a computer must have instructions from the program
as to the most likely location of an opponent’s ship. As it turns out, adding even rudimen-
tary intelligence to a program isn’t an easy task.

Programming intelligence into a game does not require any new or immensely complicated
VBA structures that I have not yet discussed; however, what it does require is a clever algo-
rithm (plan).

Because it would likely double the length of the program, and the major goal of the Battlecell
program is to give you experience with Excel’s most common VBA objects, I’ve decided to
skip adding the intelligence to this program. Instead, I will walk you through the use of the
Workbook, Worksheet, and Range objects to program the layout and basic operation of the
game. I will even add a little multimedia in the form of sound to make it more exciting. I
highly encourage you to come back to this program at some point and add an intelligent
component to the program that helps the computer play more competitively.

The requirements for Battlecell as I have defined them follow:

1. The program shall use a single worksheet for the game board.

2. When the program file is opened or the workbook window is resized, the program
shall maximize the application window and size the worksheet such that the game
board fits within the application window.

3. The user’s and computer’s grid shall be 10 by 10 cells in size and defined in separate
ranges on the worksheet.

In the Real World
The term artificial intelligence (AI) was first coined at the Massachusetts Institute of Technology
in the mid 1950s and refers to the branch of computer science that tries to make computers
think like humans. In reality, there is no such thing (at least not yet). Instead, AI is mimicked in
a computer by very clever algorithms designed by computer scientists and then written into a
program. At this point in time, human understanding of our own brain function is much too
inadequate in order to properly write a program that can generate thoughts in a computer that
are as complex as thoughts in our own minds. However, in 1997 computer scientists at IBM were
able to write a program for a super-computer that defeated world chess champion Gary Kasparov.

4. A range of merged cells shall be used to output messages to the user.

5. The game shall begin from the click of a Command Button control.

6. The Command Button control shall be disabled while the game is played.

7. When the user places his or her ships, the program shall output a message to the user
indicating what ship (name and number of cells) is to be placed on the game board.

8. The user shall place 5 ships on their game board by selecting the appropriate number
of cells (5 = carrier, 4 = destroyer, 3 = battleship, 2 = submarine, 1 = patrol boat).

9. The program shall validate the user’s ship selections for location (the entire ship must
be within the user’s grid and cannot overlap another ship) and size (the ship must be
of the correct length and be contained entirely within one worksheet row or one
worksheet column) and display a message box citing a reason for an invalid selection.

10. The program shall output error messages to the user for: wrong length, outside
range, spans multiple rows and columns, overlap with another ship.

11. The program shall color the worksheet cell light blue when the user selects a valid
location for a ship.

12. After the player has finished placing his or her ships, then the program shall ran-
domly choose locations for its ships following the same validation rules as the player
(within its own grid).

13. The computer shall mark the location of its ships with an X entered into the cells.
The font format shall match the color of the background so the user cannot see the
location of the computer’s ships.

14. The user shall fire at the computer’s ships by selecting an individual cell on the
computer’s grid.

15. The user’s selection of a target shall be validated for range length (only one cell
allowed) and location (must be within the computer’s grid). An appropriate error
message shall be output if the user’s target selection is invalid.

16. When the user selects a target, the program shall play a sound file simulating cannon
fire.

17. When the user selects a target, the program shall play a sound file simulating an
explosion if it’s a hit.

18. If the user scores a miss, the target cell shall be colored blue.

19. If the user scores a hit, the target cell shall be colored red.

20. The computer shall fire a random shot at the user’s grid after each shot taken by the
user.

179Chapter 5 • Basic Excel Objects

21. If the computer scores a miss, then the target cell shall be colored green.

22. If the computer scores a hit, then the target cell shall be colored red.

23. When the game is over (either the user or computer has scored 17 hits), the program
shall output a message to the game board.

24. When the game is over, the program shall play one of two different sound files
depending on the winner.

25. When the workbook file is closed, the program shall clear the game board, enable
the Command Button control, and resave the workbook file.

Designing Battlecell
As stated in previous chapters, when designing a program, you need to consider the user
interface and all inputs and outputs required by the program. The Battlecell program interface
shown in Figure 5.16 is fairly simple, consisting of two 10 by 10 grids in which the user and
computer must place their ships. The user will input ship and target selections via mouse
clicks on worksheet cells. Clicking the Command Button control will initiate the game and
an area of merged cells will serve as a message board to help the user know what to do.
Other program inputs and outputs include help messages output to the worksheet and
sound files that are played during the course of the game.

180 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 5.16

The Battlecell
worksheet
interface.

The user’s ship grid The computer’s
ship grid

Merged cells
for help
messages

Command
Button control
for starting
the game

The program will require at least two modules, including the object modules for the Workbook
and Worksheet objects containing the game. The object module for the Workbook object is
required for its Open(), BeforeClose(), and WindowResize() events that will be used to satisfy
the requirements for clearing, resizing, and resaving the workbook. The object module for
the Worksheet object is needed for its SelectionChange() event that will satisfy the require-
ments for the user’s selection of ship locations and targets. Standard modules may be used
as well in order to better organize the code.

The Battlecell program’s design is summarized in the following:

1. Format the worksheet with two 10 by 10 grids, merged cells for help messages, and
a Command Button control. Use colors, borders, and large fonts to make the grids,
merged cells and Command Button control stand out. Define names for the two
grids and the merged cells in order to make the code that references these ranges
easier to read.

2. Resize the workbook window via the Zoom property of the Window object (sub procedure).
The workbook should automatically resize when the user opens the workbook file or
resizes the workbook window (Open() and WindowResize() events of the Workbook object).

3. Clear the user’s and computer’s grids (sub procedure) of color and values, and save
the workbook when the user closes the workbook file (BeforeClose() event of the
Workbook object).

4. Initialize the game (sub procedure) when the user clicks the Command Button control
(Click() event of the Command Button control).

5. Capture the user’s selections for ship placement (SelectionChange() event of the
Worksheet object) and color the selection light blue if valid (several custom sub
procedures that validate the selection for the following: location within the user’s
grid, length, one row or one column, overlap with another ship). The validation
procedures should return an error message if the user’s selection is invalid.

6. Randomly generate locations for the computer’s ships and mark them with an X
after validation. This will require several sub procedures that generate the row and
column indices for the computer’s ships. The same sub procedures that validate the
user’s ship selections should also validate the randomly generated selections used for
the computer’s ships.

7. Capture the user’s selections for targeting the computer’s ships (SelectionChange()
event of the Worksheet object) and color the validated target blue for a miss and
red for a hit. The target must be validated for the following: location within the
computer’s grid, only one cell selected, and the target has not been previously selected.
Use custom sub procedures that return an error message if the target is not validated.

181Chapter 5 • Basic Excel Objects

182

8. Play a sound file if the user’s target is valid.

9. Play another sound file (explosion) if the user scores a hit, and test for the end of the
game. Play another sound file (specific for the user winning the game) if the game is
over.

10. Immediately following the user’s target selection, simulate the computer’s return
fire. Randomly generate a target (sub procedure) and color the validated target
green for a miss and red for a hit. Validate the target using the same validation
procedures used to validate the user’s target.

11. If the computer scores a hit, then test for the end of the game and play another
sound file (specific for the computer winning the game) if the game is over.

12. Re-enable the Command Button control and terminate the program when a winner is
declared (sub procedure).

Coding Battlecell
As requirement lists get longer and designs more complex, so do programs. Battlecell will
have to be written in multiple code modules. The Workbook object’s code module contains
the event procedures necessary for handling open, close, and window resizing events. The
Worksheet object’s code module will also be required for its SelectionChange() event as well
as the Click() event of the Command Button control. Since a worksheet serves the program
interface, much of the program will be contained within its code module. Standard code
modules are optional, but with longer programs, are usually good ideas for organizing the
various procedures that make up the program.

Opening and Closing the Battlecell Workbook
Several of the requirements for the Battlecell program can best be satisfied using the Open(),
BeforeClose(), and WindowResize() events of the Workbook object. The Open() event is trig-
gered when a workbook file (.xls extension) is first opened, thus making it an ideal location
for sizing both the application and workbook windows. The WindowResize() event procedure
is triggered whenever the user resizes the workbook window, so it must also include code that
ensures the Battlecell game board is in the user’s viewable range. Since two event procedures
must resize the game board, I will write a custom sub procedure that handles this task and
call it from the event procedures. To resize the workbook window such that the game board
is completely visible, I can increase or decrease the zoom (found on the Standard toolbar)
programmatically.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

183Chapter 5 • Basic Excel Objects

You may be wondering how I knew the Open(), BeforeClose(), and
WindowResize() events of the Workbook object existed. Part of it is experience,
but requirement number 2 clearly tells me to look for an event procedure asso-
ciated with the Workbook object; thus, I opened a code module for the Workbook
object and searched the names of the event procedures in the drop-down list
box. After searching the online help describing these event procedures, I settled
on these three events for satisfying the program requirements.

As you gain experience with VBA, you will not only remember more tools available
to use in your programs, but you will also learn how to find what is available and
find it quickly.

The code I have written for the Workbook object’s code module follows:

Option Explicit

Private Sub Workbook_Open()

‘——————————————————————————————-

‘Maximize the application and workbook windows, then use the

‘worksheet zoom to change the viewable area of the worksheet

‘——————————————————————————————-

Application.ScreenUpdating = False

Range(“A1”).Select

Application.WindowState = xlMaximized

ActiveWindow.WindowState = xlMaximized

ZoomGameBoard

End Sub

The Open() event of the Workbook object is triggered when the Excel file is opened by the user.
It’s an excellent location for code that initializes the appearance of the workbook and/or
specific worksheets. I have used it here to maximize the Excel application window and the
workbook window by setting the WindowState property of the Application and Window objects
to the VBA-defined constant xlMaximized. The ZoomGameBoard() sub procedure (listed later) is
called in order to zoom in or out on the workbook window such that the game board fits
within the user’s visible range.

Private Sub Workbook_BeforeClose(Cancel As Boolean)

‘———————————————————-

‘Reset the board and save the workbook.

‘———————————————————-

Dim cmdObj As OLEObject

Battlesheet.ClearBoard

HINT

184

Set cmdObj = ActiveSheet.OLEObjects(“cmdStart”)

cmdObj.Enabled = True

If Not Me.Saved Then Me.Save

End Sub

The BeforeClose() event of the Workbook object is triggered when the user closes the work-
book. This procedure actually executes before the workbook is closed. I have used this event
to clear the Battlecell game board and re-save the workbook file that contains the game. The
board is cleared by calling the ClearBoard() sub procedure listed in the object module for
the Worksheet object named Battlesheet. The ClearBoard() sub procedure must have public
scope because it is accessed from more than one code module. The object module contain-
ing the ClearBoard() procedure must be qualified in the path (Battlesheet.ClearBoard)
because the procedure is contained in an object module.

Take a close look at the BeforeClose() event procedure as it contains an element that is prob-
ably unfamiliar. You will notice that I have declared an object variable of type OLEObject.
ActiveX controls placed on worksheets are part of the OLEObjects collection object. Thus, in
order to enable the Command Button control named cmdStart, I must access the control by
setting an object reference to a variable (cmdObj in this case) via the OLEobjects collection
object. Once the variable reference is set, I can change its Enabled property to true.

The last task before closing the workbook is to save it using the Save() method of the Work-
book object. If the Saved property of the Workbook object returns false, then the Save()
method is used to resave the Battlecell.xls workbook.

You can use the Me keyword to refer to the current instance of an object cur-
rently in scope. All procedures associated with the current object have access to
the object referred to by Me. For example, when the Me keyword is used in the
BeforeClose() event procedure of the Workbook object, it references the
Workbook object. You could also reference the Workbook object in the Battlecell
game using Workbooks(“BattleCell.xls”).Saved or ThisWorkbook.Saved.

Private Sub Workbook_WindowResize(ByVal Wn As Window)

‘————————————————————————————————-

‘Use the worksheet zoom to change the viewable area of the sheet.

‘————————————————————————————————-

Application.ScreenUpdating = False

Range(“A1”).Select

ZoomGameBoard

End Sub

TRICK

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The WindowResize() event is triggered whenever the user resizes the workbook window via
its window icons in the upper-right corner, or by dragging an edge or corner of the window.
I have used the WindowResize() event procedure to call the ZoomGameBoard() sub procedure.
Note that the SreenUpdating property of the Application object is set to false so that the
changes made to the appearance of the workbook will not be seen by the user until the pro-
cedure as ended (End Sub).

Private Sub ZoomGameBoard()

‘—————————————————————————————

‘Set worksheet zoom such that about 600 cells are visible.

‘—————————————————————————————

Const NUMCELLS = 550

Select Case ActiveWindow.VisibleRange.Cells.Count

Case Is <= NUMCELLS

Do Until (ActiveWindow.VisibleRange.Cells.Count >= NUMCELLS)

ActiveWindow.Zoom = ActiveWindow.Zoom - 2

Loop

Case Else

Do Until (ActiveWindow.VisibleRange.Cells.Count <= NUMCELLS)

ActiveWindow.Zoom = ActiveWindow.Zoom + 2

Loop

End Select

End Sub

The ZoomGameBoard() sub procedure increases or decreases the workbook zoom (found on the
Standard toolbar) in order to keep the Battlecell game board within the user’s viewable
range. The game board uses rows 1 through 18 and columns A through Y, which represents
450 total cells. So I use the Count property of the Range object to return the number of cells
in the range returned by the VisibleRange property of the Window object. If the visible range
is too small (not enough cells are visible), then the zoom is decreased and vice versa. I
increase the number to 550 to ensure a little cushion around the range of cells used by the
game.

Initializing Battlecell and Starting the Game
The worksheet module named Battlesheet contains most of the game’s code because this
worksheet serves as the user interface and contains the Command Button control that starts
play. The code begins with a few module-level variables that are used in multiple procedures
in this module.

185Chapter 5 • Basic Excel Objects

186

Option Explicit

Private allowSelection As Boolean

Private gameStarted As Boolean

Private ships As Variant

Private Const NUMSHIPS = 5

The module level variables allowSelection and gameStarted are used by the program to dis-
tinguish between the two different types of cell selections made by the user and whether or
not the game is active. The first type of selection occurs when the user places his or her ships
and the second type of selection occurs when the user selects a target on the computer’s
grid. These variables should be initialized at the start of the game and altered after the user
has placed his/her ships.

You may recall in Chapter 2 that I recommended you not use variant variables because vari-
ants can slow program execution speed and make your program more difficult to read. Well,
sometimes variant variables are just a little too convenient, and here is one example. The
variable ships is declared as a variant because I intend to use this variable to hold an array of
strings representing the types of ships (carrier, battleship, and so on). Unlike most program-
ming languages, VBA does not allow arrays to be initialized in a declaration, so I have to use
a variant variable and VBA’s Array() function to initialize the array (see InitializeGame() sub
procedure). Alternatively, I could declare a string array with five elements (Private ships(4)

As String), but then I have to initialize each element separately (ships(0) = “Carrier”,
ships(1) = “Battleship”, and so on) and I find that annoying (decide your own preference).

Private Sub cmdStart_Click()

cmdStart.Enabled = False

InitializeGame

ClearBoard

Range(“Output”).Value = “Place your “ & ships(numShipsPlaced) & _

“: Select “ & shipSize(numShipsPlaced) & “ contiguous cells”

End Sub

The code entered in the Click() event of the Command Button control is short and simple.
First the Command Button control is disabled before two sub procedures are called to initialize
program variables and clear the game board. The ClearBoard() sub procedure is the same pro-
cedure called from the BeforeClose() event of the Workbook object. The last statement outputs
a message to the user indicating what ship must be placed. The variables shipSize and
numShipsPlaced are global variables declared in a standard module (listed later) and represent
the total number of cells that make up each ship and the number of ships already placed by
the user, respectively. The variable shipSize is another array variable of type variant.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Private Sub InitializeGame()

‘——————————————————————-

‘Initialize variables for starting the game.

‘——————————————————————-

ships = Array(“Carrier”, “Battleship”, “Destroyer”, “Submarine”, “Patrol Boat”)

shipSize = Array(5, 4, 3, 3, 2)

Set pRange = Range(“Player”)

Set cRange = Range(“Computer”)

numShipsPlaced = 0

allowSelection = True

gameStarted = False

End Sub

The InitalizeGame() sub procedure initializes the module level and global variables used by
the program. The only two variables I have not already discussed are pRange and cRange
which are both global variables (type range) used to represent the 10 by 10 grids for the
player and computer, respectively. Note that the range B2:K11 was defined in the Excel appli-
cation with the name “Player” and the range O2:X11 was defined with the name “Computer”.
Figure 5.17 shows the Battlecell worksheet with the “Player” range selected.

187Chapter 5 • Basic Excel Objects

Figure 5.17

The Battlecell
worksheet with

the “Player” range
selected.

Defined name for
the selected range

188

public Sub ClearBoard()

‘———————————————————-

‘Clear the game grids and output cell.

‘———————————————————-

Dim bothGrids As Range

Set bothGrids = Application.Union(Range(“Player”), Range(“Computer”))

With bothGrids

.ClearContents

.Interior.ColorIndex = xlNone

End With

Range(“Output”).Value = “”

End Sub

The code in the sub procedure ClearBoard() effectively clears the player’s and computer’s
grids of colors and values, and also clears the merged cells (J14:P15 defined with the name
“Output” in the Excel application) of any help message that might be displayed. This proce-
dure must have public scope so that it may be called from the BeforeClose() event of the
Workbook object.

The range variable bothGrids is set to reference the combination of two ranges (the two
ranges defined with the names “Player” and “Computer” in the application) using the Union()
method of the Application object. This object variable is then used in a With/End With struc-
ture to clear the contents and background color of the player’s and computer’s grids. Note
that I cannot use the pRange and cRange variables here because it is possible that this code
may be triggered from the BeforeClose() event of the Workbook object before a game is
started when these variables have not been initialized.

Player Selections: Placing Ships and Firing at the Computer
The program requirements state that the user must select his or her choices for ship and target
locations by selecting specific cells on the worksheet. The user’s selections for ship locations
and targets are captured by the SelectionChange() event procedure of the Worksheet object.
Specifically, the Target argument passed to the SelectionChange() event procedure holds the
range selected by the user. The code in this procedure will have to distinguish between the
two types of selections the user might make (i.e., ship placement or targeting of computer’s
ships). Custom procedures will be needed for validating the user’s selection, marking the
location of the user’s ships, and marking the location of the user’s targets.

Private Sub Worksheet_SelectionChange(ByVal Target As Range)

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

189Chapter 5 • Basic Excel Objects

‘—————————————————————

‘Test if player is firing at the computer.

‘This is first because LocatePlayerShip will turn gameStarted variable to true.

‘—————————————————————

If gameStarted Then PlayerFire Target

‘———————————————————————————————-

‘Test if player is setting his/her ships before game starts.

‘———————————————————————————————-

If allowSelection Then LocatePlayerShip Target

End Sub

The SelectionChange() event procedure consists of two procedure calls based on the values
of the allowSelection and gameStarted variables. If allowSelection is true, then the user is
selecting worksheet cells for locating his or her ships. If gameStarted is true, then the user
has placed his/her ships and is firing at targets on the computer’s grid. It is critical that at
no time during the execution of the program that the values of both variables are true.

Private Sub LocatePlayerShip(Target As Range)

‘———————————————————————————————-

‘Capture user’s selections for ship locations. If selection is

‘valid then color it blue and display message for next ship.

‘———————————————————————————————-

Dim errMsg As String

If RangeValid(Target, “Player”, errMsg) Then

Target.Interior.Color = RGB(0, 255, 255)

numShipsPlaced = numShipsPlaced + 1

If (numShipsPlaced < NUMSHIPS) Then

Range(“Output”).Value = “Place your “ & ships(numShipsPlaced) & _

“: Select “ & shipSize(numShipsPlaced) & “ contiguous cells”

Else

allowSelection = False

PlaceComputerShips

gameStarted = True

Range(“Output”).Value = “You may begin”

End If

Else

MsgBox errMsg

End If

End Sub

190

The LocatePlayerShip() sub procedure is called from the SelectionChange() event procedure
and passed the user’s cell selection in the form of the range variable Target. The primary
goal of the LocatePlayerShip() sub procedure is to validate and mark the user’s selection
for a ship. To accomplish this goal, the Boolean value returned by the RangeValid() function
procedure (listed later) is used as the conditional statement in an If/Then/Else code block.
If the user’s selection is valid then the interior color of the selection is colored light blue,
and the numShipsPlaced variable is incremented by one. If the user’s selection is invalid then
the RangeValid() procedure sets the value of the string variable errMsg that was passed (by ref-
erence) as an argument. This error message is then output to the user in a message box. The
nested If/Then/Else code block tests if the user has placed all five ships. If not, then a message is
output to place the next ship. If the user has placed all five ships, then the PlaceComputerShips()
sub procedure is called in order to generate the location of the computer’s ships, the gameStarted
variable is set to true, and the user is informed that he/she can begin firing. Figure 5.18
shows the Battlecell worksheet after the user has placed four ships.

Private Sub

PlayerFire(Target As Range)

‘—————————————————————————————

‘If player is firing at computer, then record the shot as

‘a hit or miss and track the number of hits.

‘—————————————————————————————

Dim errMsg As String

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 5.18

The Battlecell
worksheet after

the user has
placed four of

five ships.

If TargetValid(Target, “Computer”, errMsg) Then

PlayWav ActiveWorkbook.Path & “\Sounds\cannon.wav”

HitOrMiss Target

ComputerFire

Else

MsgBox errMsg

End If

End Sub

The PlayerFire() sub procedure is used to validate and mark the user’s target selection
when firing at the computer. This procedure is also called from the SelectionChange() event
procedure and passed the user’s cell selection as the range variable Target. It is also very sim-
ilar in form to LocatePlayerShip() sub procedure with an If/Then/Else code block that first
validates the user’s selection. If the selection is valid, a sound file is played (more later) and
the procedure marks the user’s targets on the computer’s grid by coloring them green or
red via a call to the HitOrMiss() sub procedure. This is immediately followed by a call to the
ComputerFire() sub procedure which simulates the computer’s turn at firing back at the user.
If the user’s selection is invalid, then a message box outputs an error message.

Private Sub HitOrMiss(Target As Range)

‘Tests if player scores a hit. If so, then game ends

Static numTargetHits As Integer

‘——————————————————-

‘Test if players attack scored a hit.

‘——————————————————-

If Target.Value = “X” Then

Target.Interior.Color = RGB(255, 0, 0)

PlayWav ActiveWorkbook.Path & “\Sounds\explode.wav”

numTargetHits = numTargetHits + 1

If (numTargetHits = 17) Then ‘Test for end of game.

Range(“Output”).Value = “You’ve sunk all of my ships.”

PlayWav ActiveWorkbook.Path & “\Sounds\playerwins.wav”

GameOver

End If

Else

Target.Interior.Color = RGB(0, 0, 255)

End If

End Sub

191Chapter 5 • Basic Excel Objects

192 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The HitOrMiss() sub procedure is called from PlayerFire() and serves to test whether or not the
user has scored a hit against the computer. Hits are scored by coloring the cell red when the
target cell holds an X; otherwise the cell is colored blue. The procedure also tracks the number
of hits scored by the user with the static integer variable numTargetHits. When the number of
hits reaches 17, then the user wins and the game is over. Figure 5.19 shows the Battlecell worksheet
after the user and computer have each scored several misses and one hit.

Computer Selections: Placing Ships and Firing at the Player
Selecting locations for the computer’s ships is a more challenging problem in that the ran-
domly selected locations must be validated using the same rules as for the user’s ships. To
randomly generate a ship’s location, I need two numbers that represent a single cell’s row
and column index. These two numbers will have to be bound such that the cell falls within
the computer’s grid. One additional random number (0 or 1) is required to determine the
direction (0 = horizontal, 1 = vertical) the ship is placed. The location of a ship is only valid if
all of its cells fall within the computer’s grid. That is, it is possible for the random numbers
to represent a valid cell, but one or more of the remaining cells may fall outside the range or
overlap with another ship that was already placed. The program must not proceed to placing
the next ship until the current ship is in a valid location; therefore, the process of placing a
ship for the computer will require a loop that executes until the location is validated.

Figure 5.19

The Battlecell
worksheet for a

game in progress.

Private Sub PlaceComputerShips()

Dim rowIndex As Integer, colIndex As Integer

Dim isRow As Boolean

Dim rangeStr As String, compSelection As Range

numShipsPlaced = 0

‘————————————————————————————————-

‘Loop through the placement of each ship. This loop

‘iterates an unknown number of times depending on random numbers.

‘————————————————————————————————-

Do

SetFirstCell rowIndex, colIndex, isRow

If isRow Then

rangeStr = Chr(colIndex + 64) & rowIndex & “:” & _

Chr(colIndex + 64) & _

(rowIndex + shipSize(numShipsPlaced) - 1)

Else

If (colIndex + shipSize(numShipsPlaced) - 1) < 25 Then

rangeStr = Chr(colIndex + 64) & rowIndex & “:” & _

Chr(colIndex + 64 + shipSize(numShipsPlaced) - 1) & _

rowIndex

Else

‘Columns after column Z cause problems.

rangeStr = Chr(colIndex + 64) & rowIndex & “:” & “Z” & rowIndex

End If

End If

Set compSelection = Range(rangeStr)

If (AssignShipToLocation(compSelection)) Then _

numShipsPlaced = numShipsPlaced + 1

Loop While (numShipsPlaced < NUMSHIPS)

End Sub

The PlaceComputerShips() sub procedure mostly consists of a Do-Loop that iterates until all
five of the computer’s ships are placed. The loop begins with a call to the SetFirstCell() sub
procedure (listed next) which generates the random numbers for the cell’s row and column
index (rowIndex, colIndex) and the direction of the ship (isRow). Next, the large If/Then/Else
code block builds a string in the form of an Excel range (for example, R6:U6). The number of
cells represented in this string matches the length of the ship being placed.

193Chapter 5 • Basic Excel Objects

194

The nested If/Then/Else structure is required to handle situations where the range extends
past column Z on the worksheet. Excel labels the next column after Z with AA; therefore, the
character returned by the Chr() function will not represent a valid column label and the
rangeStr variable will not represent a syntactically correct Excel range. This will generate a
run-time error when the range variable compSelection is set immediately following the
If/Then/Else code block. To avoid this error, the second column reference in the rangeStr
variable is set to Z in order to generate a syntactically correct range, albeit an invalid range
for the game (the computer’s grid ends at column Y).

The location of the computer’s ships must be kept hidden from the user. To do this, the pro-
gram can simply enter a value into the cells representing the location of a ship. The value is
not important since the worksheet cells are formatted for the same font color as the back-
ground. I will use an X just to make testing the program easier. Later it should be replaced
by a space so that the user can’t cheat and highlight all cells in the computer’s grid in order
to see where the X’s are. Figure 5.20 shows the Battlecell worksheet (with the computer’s grid
highlighted) immediately following the random placement of the computer’s ships.

Misses and hits scored by the user against the computer are color coded for visual confir-
mation and to make it easy to validate new targets.

Finally, just before the Do-Loop ends, a call to the AssignShipToLocation() function procedure
tests the selection and marks it with X’s if it is valid before the variable numShipsPlaced is
incremented by one.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 5.20

The Battlecell
worksheet

showing the
location of the

computer’s ships.

Private Sub SetFirstCell(rIndex As Integer, cIndex As Integer, isRow As Boolean)

‘Randomly select a row and column index within the computer’s grid

‘to place the first cell for a ship.

Dim lowerRow As Integer, upperRow As Integer

Dim lowerCol As Integer, upperCol As Integer

Randomize

‘———————————————————————-

‘Initialize values for range of random numbers.

‘———————————————————————-

lowerRow = cRange.Row

upperRow = cRange.Row + cRange.Rows.Count - 1

lowerCol = cRange.Column

upperCol = cRange.Column + cRange.Columns.Count - 1

‘—————————————————————————————————————-

‘Generate random numbers for cell location and direction of ship placement.

‘—————————————————————————————————————-

rIndex = Int((upperRow - lowerRow + 1) * Rnd + lowerRow)

cIndex = Int((upperCol - lowerCol + 1) * Rnd + lowerCol)

If (Int(2 * Rnd) = 0) Then isRow = True Else: isRow = False

End Sub

The SetFirstCell() sub procedure is quite simple and is used to generate the random num-
bers for the initial cell and direction of the computer’s ship. The bounds for the random
numbers are set using the Row, Rows, Column, and Columns properties of the Range object. The
values are effectively returned to the calling procedure (PlaceComputerShips()) by passing
the variables rowIndex, colIndex, isRow by reference. Note that the value for isRow is converted
to a Boolean from a random number generated between 0 and 1.

Private Function AssignShipToLocation(compSelection As Range) As Boolean

‘—————————————————————

‘Mark ship location if selection is valid.

‘—————————————————————

Dim c As Range

If RangeValid(compSelection, “Computer”) Then

For Each c In compSelection

c.Value = “X”

195Chapter 5 • Basic Excel Objects

196

Next

AssignShipToLocation = True

End If

End Function

The AssignShipToLocation() function procedure first validates the randomly generated
range representing the computer’s ship (passed as the range variable compSelection) and
marks the cells with an X if the selection is valid. The procedure returns a Boolean value
to the PlaceComputerShips() procedure indicating the validity of the range. Note that the
same validation procedure is used here (RangeValid()) as was used to validate the user’s ship
locations.

The computer’s target selection is also done randomly. This makes it easy for the user to win
the game, but you can add an intelligent targeting algorithm later. Random numbers rep-
resenting the cell row and column are generated for a target. If the target’s background
color is white then the computer scores a miss. If it’s cyan, the computer scores a hit.

Private Sub ComputerFire()

Dim targetCell As String, targetRange As Range

Static numTargetHits As Integer

Dim tryAgain As Boolean

‘—————————————————————————————————

‘Generate a random target, validate it, then test for hit or miss

‘Also test for end of game.

‘—————————————————————————————————

Do

targetCell = SetTargetCell

Set targetRange = Range(targetCell)

If TargetValid(targetRange, “Player”) Then

tryAgain = False

If targetRange.Interior.Color = RGB(0, 255, 255) Then

Range(“Output”).Value = “I hit your ship!”

targetRange.Interior.Color = RGB(255, 0, 0)

numTargetHits = numTargetHits + 1

If (numTargetHits = 17) Then

Range(“Output”).Value = “I’ve sunk all of your ships!”

PlayWav ActiveWorkbook.Path & “\Sounds\computerwins.wav”

GameOver

End If

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Else

Range(“Output”).Value = “I missed!”

targetRange.Interior.Color = RGB(0, 255, 0)

End If

Else

tryAgain = True

End If

Loop While (tryAgain)

End Sub

The ComputerFire() sub procedure is called from PlayerFire() and simulates the computer’s
return fire at the user’s grid. The logic is essentially the same as the PlayerFire() and
HitOrMiss() sub procedures listed earlier except that the target is now randomly generated
using the SetTargetCell() function procedure. The target is validated using the same sub
procedure that validated the user’s target selection (TargetValid()).

Private Function SetTargetCell() As String

Dim cIndex As Integer, rIndex As Integer

Dim lowerRow As Integer, upperRow As Integer

Dim lowerCol As Integer, upperCol As Integer

‘——————————————————————————-

‘Use random numbers for selecting a row and columns,

‘then convert it to a string in A1 notation.

‘——————————————————————————-

lowerRow = pRange.Row

upperRow = pRange.Row + pRange.Rows.Count - 1

lowerCol = pRange.Column

upperCol = pRange.Column + pRange.Columns.Count - 1

Randomize

rIndex = Int((upperRow - lowerRow + 1) * Rnd + lowerRow)

cIndex = Int((upperCol - lowerCol + 1) * Rnd + lowerCol)

SetTargetCell = Chr(cIndex + 64) & rIndex

End Function

Public Sub GameOver()

cmdStart.Enabled = True

End

End Sub

197Chapter 5 • Basic Excel Objects

198

The game ends when either the user or computer scores 17 hits. The Command Button con-
trol is enabled and the End keyword is used to terminate the program and clear all variables.

Validating Selections
Custom validation procedures should test the user’s and computer’s ship and target selec-
tions for proper location and size. Because there are several validation procedures, I have
placed them in their own standard code module. This is not really necessary as all of the
remaining code could have been included with the object module for the Worksheet object;
however, the code in the object module was getting a bit long and more difficult to navigate,
so a new module was added and named Validation in order to better organize the program’s
procedures.

The standard code module contains several global variable declarations previously dis-
cussed. These variables are given public scope because they must be accessed in multiple
code modules.

It is worth repeating that it is best to avoid the use of global variables as they
make your code harder to read and leave your data unprotected; however, at this
level of programming, it is difficult to avoid the use of global variables and they
are acceptable as long as their number is kept to a minimum.

Option Explicit

Public pRange As Range, cRange As Range

Public numShipsPlaced As Integer

Public shipSize As Variant

The two main validation procedures in the Validation code module are RangeValid() and
TargetValid() which are used to validate the user’s and computer’s ship locations and target
selections, respectively. Each of these functions calls several subordinate function procedures
that validate a specific requirement of the range.

These two procedures were designed to handle validation for both the user’s and computer’s
ships and targets; therefore, the argument msg is declared in the argument list for each func-
tion using the VBA keyword Optional. Using Optional indicates that the argument is not
required in the calling statement. (Error messages are only required for the user’s selections.)
If Optional is used, then all subsequent arguments in the parameter list must also be
optional and declared using the Optional keyword.

Public Function RangeValid(shipLocation As Range, grid As String, _

Optional msg As String) As Boolean

HINT

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

‘Validates players selections when placing ships.

Dim tempRange As Range

RangeValid = True

‘————————————

‘Define range for tests.

‘————————————

If (grid = “Player”) Then

Set tempRange = pRange

Else

Set tempRange = cRange

End If

‘——————————————————————————-

‘Call several functions testing for specific errors.

‘Exit function immediately with any failed test.

‘——————————————————————————-

RangeValid = TestLength(shipLocation, msg)

If (Not RangeValid) Then Exit Function

RangeValid = TestIfInRange(shipLocation, tempRange, msg)

If (Not RangeValid) Then Exit Function

RangeValid = TestForMultipleRowsOrCols(shipLocation, msg)

If (Not RangeValid) Then Exit Function

RangeValid = TestForOverlap(shipLocation, msg)

If (Not RangeValid) Then Exit Function

End Function

The functions listed here rely heavily on the Range object and a few of its properties; but by
now, you should be getting more comfortable with the Range object. The RangeValid() func-
tion procedure tests the user’s and computer’s ships for valid length, location within the
correct grid, spanning multiple rows or columns, and overlap with a previously placed
ship—using a separate function for testing each criteria (TestLength(), TestIfInRange(),
TestForMultipleRowsOrCols(), and TestForOverlap()). If each criteria passes, then the function
returns true to the calling procedure, otherwise it returns false.

199Chapter 5 • Basic Excel Objects

200

Private Function TestLength(shipLocation As Range, msg As String) As Boolean

‘————————————————————

‘Check if length of selection is correct

‘————————————————————

TestLength = True

If shipLocation.Count <> shipSize(numShipsPlaced) Then

msg = “Please select “ & shipSize(numShipsPlaced) & “ cells”

TestLength = False

End If

End Function

Private Function TestIfInRange(shipLocation As Range, tempRange As Range, msg As

String) As Boolean

‘————————————————————————————————

‘Check if selection is in player’s/computer’s range and that

‘either column index or row index is identical across the range.

‘————————————————————————————————

Dim col1 As Integer, col2 As Integer

Dim row1 As Integer, row2 As Integer

TestIfInRange = True

col1 = shipLocation.Column

col2 = shipLocation.Column + shipLocation.Columns.Count

row1 = shipLocation.Row

row2 = shipLocation.Row + shipLocation.Rows.Count

If (row1 < tempRange.Row) Or (row2 > tempRange.Row + tempRange.Rows.Count) _

Or (col1 < tempRange.Column) _

Or (col2 > tempRange.Column + tempRange.Columns.Count) Then

msg = “Selection out of range”

TestIfInRange = False

End If

End Function

Private Function TestForMultipleRowsOrCols(shipLocation As Range, msg As String) As

Boolean

‘—————————————————————————-

‘Check if selection spans multiple rows or columns.

‘—————————————————————————-

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

TestForMultipleRowsOrCols = True

If (shipLocation.Columns.Count > 1) And (shipLocation.Rows.Count > 1) Then

msg = “Selection must be within the same row or column”

TestForMultipleRowsOrCols = False

End If

End Function

Private Function TestForOverlap(shipLocation As Range, msg As String) As Boolean

‘————————————————————————————-

‘Check to see if selection overlaps a previous selection.

‘————————————————————————————-

Dim c As Range

TestForOverlap = True

For Each c In shipLocation

If c.Interior.Color = RGB(0, 255, 255) Or c.Value = “X” Then

msg = “Selection cannot overlap another ship!”

TestForOverlap = False

End If

Next

End Function

The TargetValid() function procedure tests the user’s and computer’s targets for proper
length (one cell) and location (within each other’s grids, and not previously selected). The
subordinate functions TestForOneCell() and TestLocation() handle the specific tests for val-
idating the target.

Public Function TargetValid(shotSelection As Range, grid As String, _

Optional msg As String) As Boolean

‘Tests user’s/computer’s selection of target.

Dim tempRange As Range

‘————————————

‘Define range for tests.

‘————————————

If (grid = “Player”) Then

Set tempRange = pRange

Else

Set tempRange = cRange

End If

201Chapter 5 • Basic Excel Objects

202

msg = “Select one cell within the computer’s grid.”

‘—————————————————-

‘Test if only one cell is selected.

‘—————————————————-

TargetValid = TestForOneCell(shotSelection, msg)

‘———————————————————————————————-

‘Test if player’s/computer’s selection is in computer’s grid or

‘if player/computer already selected the target cell.

‘———————————————————————————————-

TargetValid = TestLocation(shotSelection, tempRange, msg)

End Function

Private Function TestForOneCell(shotSelection As Range, msg As String) As Boolean

TestForOneCell = True

If shotSelection.Count > 1 Then

msg = “You can only fire at one cell!”

TestForOneCell = False

End If

End Function

Private Function TestLocation(shotSelection As Range, tempRange As Range, msg As

String) As Boolean

Dim c As Range

‘TestLocation = True

For Each c In tempRange

If c.Address = shotSelection.Address Then

TestLocation = True

If c.Interior.Color = RGB(0, 0, 255) Or _

c.Interior.Color = RGB(255, 0, 0) Or _

c.Interior.Color = RGB(0, 255, 0) Then

msg = “You have already selected that cell!”

TestLocation = False

Exit Function

End If

End If

Next

End Function

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Adding Sound to Your VBA Program
Microsoft removed support for playing sound files in Excel several versions ago. This leaves
two choices for playing sounds in Excel applications with VBA: ActiveX controls and the
Windows API (application programming interface).

As there are no ActiveX controls for playing sound that currently ship with VBA, the Windows
API will be used for adding sound to your VBA programs in this book.

There is a multimedia control that comes with Windows and it can be used to
play sound files in your VBA programs; however, it cannot be accessed from the
Control toolbox, so its use is beyond the scope of this book. That’s really just as
well, because using it to play sound files is actually more difficult than using the
Windows API.

The Windows API
The Windows Application Programming Interface (API) is the interface used to program-
matically control the Windows operating system. The Windows API is comprised of numerous
procedures that provide programmatic access to the features of the Windows operating system
(for example, windows functions, file functions, and so on). The API procedures are stored
in the system directory of Windows as .dll (dynamic link library) files. There can be dozens
of procedures stored within a single .dll file. The API procedures are conceptually the same
as procedures used in any programming language, including VBA; however, because the API
procedures are written in C/C++, accessing them via the VBA programming environment
can be difficult—in some cases, impossible.

Normally, the Windows API is left as an advanced programming topic for some very good
reasons. Using the Windows API can be dangerous as it bypasses all of the safety features
built into VBA to prevent the misuse of system resources and the subsequent system crashes
they usually cause (but nothing that can’t be fixed by rebooting your computer); however,
the API can greatly extend the ability and therefore, the power of a program.

Fortunately, tapping into the Windows API to play a .wav file (Wave Form Audio) is about as
easy as it gets. This section of the book will only show you how to play .wav files using the
Windows API and will not discuss the Windows API in any detail. Instead, the Windows API
is left as an advanced topic for you to consider after becoming comfortable with VBA. The
Windows API is the best (and probably easiest) tool available to all VBA programmers for
adding sound to a program, but it should not be used extensively by beginning programmers;
therefore, I will only show you how to use it to add sound to a VBA program.

TRICK

203Chapter 5 • Basic Excel Objects

204

To use a function from the Windows API in VBA, open a code module and use a Declare state-
ment in the general declarations section to create a reference to the external procedure
(Windows API function). Note that line continuation character has been used in the declaration
below due to its length.

Public Declare Function sndPlaySoundA Lib “winmm.dll” _

(ByVal lpszSoundName As String, ByVal uFlags As Long) As Long

In reality, this is a relatively short API declaration. This declaration creates a reference to the
sndPlaySoundA() function found in the file winmm.dll. It looks a lot like a function call in
VBA, but it is only a declaration; the call to the function will come later. Capitalization is
important and will not be corrected automatically if typed incorrectly.

The function accepts two arguments as listed in the declaration. The argument lpszSoundName
represents the string specifying the filename and path to the .wav file to be played, and the
argument uFlags represents the integer used to denote whether or not program execution
should proceed immediately (1) or wait until after the file is done playing (0). The sndPlaySoundA()
function returns a value of type Long that may be discarded. Hence, calls to the sndPlaySoundA()
function from a VBA procedure can appear as follows.

sndPlaySoundA “Path to .wav file”, 1

returnVal = sndPlaySoundA(“Path to .wav file”, 0)

Playing Wav Files Via the Windows API
I entered the code for playing these files in a new standard module named General. (I used a
new module to make it easy to export this code to other VBA projects.) The code is very simple,
consisting of the declarative statement for the API function and a short sub procedure with one
argument representing a file path. The PlayWav() sub procedure consists of one line of code
that calls the sndPlaySoundA() API function passing the file path to the .wav file and the value
for the uFlags argument (0 indicates that program execution will pause while the sound file is
playing). The PlayWav() sub procedure is called when the user selects a target to fire at and
when the game ends (see the PlayerFire(), HitOrMiss(), and ComputerFire() procedures).

Option Explicit

Public Declare Function sndPlaySoundA Lib “winmm.dll” _

(ByVal lpszSoundName As String, ByVal uFlags As Long) As Long

Public Sub PlayWav(filePath As String)

sndPlaySoundA filePath, 0

End Sub

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

205Chapter 5 • Basic Excel Objects

The .wav files used in the Battlecell program are courtesy of http://www
.a1freesoundeffects.com.

You can see how easy it is to play sound files using the Windows API. Although program-
ming via the Windows API is an advanced technique, there really is nothing simpler for the
VBA programmer to use for playing sound files.

This concludes the Battlecell program. The program is not terribly long or complex, but is
starting to approach a level of programming that makes the game fun even for adults. The
intention of the program is to help you get comfortable using VBA objects and navigating
through Excel’s object hierarchy. The Range object is used extensively in the Battlecell program
and that will be typical of the VBA programs you write. The use of Workbook and Worksheet
object event procedures is also prevalent in the Battlecell program. To take full advantage of
the power of VBA, you should get comfortable identifying and using these procedures.

Chapter Summary
This chapter represents a critical phase in your development as a VBA programmer. Under-
standing objects and their role in creating dynamic and powerful applications is critical in
any programming language including VBA.

In this chapter, we learned how to use several of Excel’s top-level objects and how to navi-
gate through its object model. Specifically, you looked at the Application, Workbook, Window,
Worksheet, and Range objects in detail. Some of the event procedures, methods, and proper-
ties of these objects were also introduced.

Next, you learned about some of the tools available in VBA for working with objects. This
included the Object Browser for navigating through the object hierarchy and getting fast
help to an object of interest. The With/End With code structure, object data type, and For/Each
loop were also introduced.

Finally, the Battlecell program illustrated a practical and fun programming example that
relied heavily on Excel’s top-level objects. As there is a tendency for such things to occur, a
few subordinate objects also appeared in the program.

TRICK

206 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

C H A L L E N G E S

1. Write a VBA procedure that outputs a range after being selected by the user (one
statement will do it).

2. Write a VBA procedure that first asks the user to input some text and then
changes the caption of the current window to the text value input by the user.

3. Write a VBA procedure that adds three additional workbooks to the application
and 10 additional worksheets to each workbook added. Hint: Use object vari-
ables and nested For/Each loops.

4. Write a VBA procedure that deletes all but one worksheet in all workbooks cur-
rently open in the Excel application. Again use nested For/Each loops. To turn off
prompts to the user, use the DisplayAlerts property of the Application object.

5. Open a workbook with more than one worksheet. Write a procedure that inserts
a string in each cell in the range A1:E5 in every worksheet. Make the string a con-
catenation of the worksheet name and cell address (for example, Sheet1:A3).

6. Use the Worksheet_Change() event procedure to alter the properties of the Font
object (Bold, Size, Color, and so on) after the user enters text into a cell. Use a
With/End With code structure.

7. Create a spreadsheet that contains several names in multiple rows and columns.
Write a VBA procedure that finds a specific name within a highlighted range on
the spreadsheet. Use the Find() method of the Range object and the Worksheet_
SelectionChange() event procedure of the Worksheet object. Refer to the Object
Browser or on-line help for syntactic requirements. Then record a macro with a
similar function and compare the recorded procedure to your own.

8. Design an algorithm for adding intelligence to the Battlecell program, then
implement your algorithm by writing the code that will make the computer a
more competitive player. Add your code to a new standard module inserted into
the Battlecell project. The initial procedure for simulating intelligence should be
called from the ComputerFire() procedure in the Battlecell program. You can
remove the SetTargetCell() procedure from the Battlecell program that is used
to randomly generate a target for the computer. This is a tough one, so be sure to
take plenty of time designing your algorithm before writing any code!

VBA UserForms and
Additional Controls

6
C H A P T E R

U
serForms are programmable containers for ActiveX controls. They enable
you to build customized windows to serve as a user interface in any VBA
application. UserForms are similar to other VBA objects in that they have

properties, methods, and events that you use to control the appearance and
behavior of your interface window; but the main function of a UserForm is to
serve as a container for other ActiveX controls. UserForms are part of the VBA
object library, and therefore, are available to use in all MS Office applications
(Excel, Word, PowerPoint, and so on). In this chapter you will learn how to design
UserForms using ActiveX controls for inclusion in your VBA programs.

In this chapter I will examine:

• UserForms

• The Option Button Control

• The Scroll Bar Control

• The Frame Control

• The RefEdit Control

• The MultiPage Control

• The List Box and Combo Box Controls

• Custom Data Types and Enumerations

C H A P T E R

208 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Project: Blackjack
Blackjack is a standard on most computers. You can find numerous versions of this game in
Windows, Java, and JavaScript. This chapter reproduces the game using VBA UserForms with
Excel, which is something you probably have not seen before. Figure 6.1 shows the Blackjack
game in the Excel application.

Designing Forms with VBA
If you have previous programming experience in Visual Basic (even as a novice), then User-
Forms (hereafter referred to as a VBA form or just form when used in the general sense) will
be very familiar, because they will remind you of Visual Basic forms. If you have never used
Visual Basic, then VBA forms will probably look just like another Window; however, VBA
forms are not quite VB forms or regular windows because they don’t have as many features.
For example, there are no minimize and maximize buttons in the upper-right corner. Also,
there are fewer properties and methods available for altering the appearance and behavior
of the UserForm object. Nonetheless, VBA forms are invaluable for adding custom user inter-
faces to your applications.

Forms are included in VBA to allow programmers to build custom user interfaces with their
office applications. Up to this point, input from the user via dialog boxes has been limited
to InputBox() and MsgBox() functions. Because forms can be customized using a number of
ActiveX controls, they greatly extend the ability of VBA programmers to collect user input.

Figure 6.1

The Blackjack
game.

Adding a Form to a Project
To add a form to a project, select Insert/UserForm from the menu bar in the VBA IDE as
shown in Figure 6.2.

A new folder labeled Forms will appear in the Project Explorer window. An example of a
form just added to a project is shown in Figure 6.3.

209Chapter 6 • VBA UserForms and Additional Controls

In the Real World
The graphical user interface (GUI) that made operating systems, such as Macintosh and Windows,
so popular was first made available in the early 1980s by Apple Computer; however, the tech-
nology was actually developed by researchers at Xerox.

Macintosh computers remained extremely popular until Microsoft’s release of Windows 95,
the first version of Windows that matched Macintosh for ease of use.

Figure 6.2

Inserting a VBA
form into a

project from
the VBA IDE.

210 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 6.3

A new UserForm
as viewed from

the VBA IDE.

Components of the UserForm Object
In the same manner as ActiveX controls, when you select a form, its properties appear in the
Properties window in the VBA IDE (see Figure 6.3). Table 6.1 lists some of the properties of
the UserForm object that you will commonly set at Design Time.

The Forms folder in
the Project Explorer

Properties of the
UserForm object

The Toolbox with
ActiveX controls

The Combo
Box control

The Option
Button control

The MultiPage
control

The RefEdit controlThe List Box
control

The Frame
control

The Scroll Bar
control

Property Description

Name Sets the name of the UserForm object for use as a code
reference to the object.

BackColor Sets the background color of the form.

Caption Sets the text displayed in the title bar.

Height Sets the height of the form.

StartUpPosition Sets the position of the form on the screen when displayed.

Width Sets the width of the form.

TA B L E 6 .1 S E L E C T E D P R O P E RT I E S O F T H E U S E R F O R M O B J E C T

The UserForm object has several additional appearance properties besides those
listed in Table 6.1. These properties include BorderColor, BorderStyle, and
SpecialEffect which are used for aesthetic appeal.

Forms represent separate entities in a VBA project and have their own code window. To view
the code window (module) associated with the UserForm object, select the View Code icon
from the Project Explorer; or select View, Code from the menu bar; or hit F7 (all with the
form selected). You can also double click on the form to open its code window. The structure
of a form code window (sometimes referred to as a form module) is the same as any other
module window. The upper-left corner contains a dropdown list with all objects contained
within the form, including the UserForm object. The upper-right corner contains a dropdown
list of all event procedures associated with the various objects that may be contained in the
form. There is also a general declarations section for making module level declarations in
the form module. An example code window for a form is shown in Figure 6.4.

The behavior of variables and procedures declared with the Dim, Private, and Public keywords
in a form module are identical to that of an object module as discussed in Chapter 3. Thus,
the scope of variables and procedures declared as Public in the general declarations section
of a form module are global, but must be accessed from other modules using the variable’s
module identifier (for example, moduleName.variableName or moduleName.procedureName).

The UserForm object has several event procedures, including Click(), Activate(), and
QueryClose() among others. To view the full list of event procedures of the UserForm object,
select the UserForm object in the object dropdown list and then select the event procedure
dropdown list from the form module (see Figure 6.4). Some of these event procedures should
be familiar, as they are common to several ActiveX controls. Table 6.2 lists a few of the more
commonly used event procedures of the UserForm object.

HINT

211Chapter 6 • VBA UserForms and Additional Controls

Figure 6.4

The code window
of a form—

otherwise known
as a form module.

Event procedure
dropdown list

Object
dropdown list

212 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The Initialize() event of the UserForm object is triggered when the form is first loaded, and
therefore, is an excellent location for code that initializes program variables and controls.
The Activate() event is also used for initialization; however, it is not triggered when the
UserForm object is loaded, but only when the form is made active. The QueryClose() and Terminate()
events are triggered when the UserForm is unloaded from memory, making these event pro-
cedures good locations for code that clears memory and/or ends the program.

Adding ActiveX Controls to a Form
Like the Worksheet object, the UserForm object is a container object, meaning it is used to hold
other objects. When a form is added to a project, the Control Toolbox should automatically
appear (see Figure 6.3). If the Control Toolbox does not appear, select View/Toolbox from the
menu bar. There will be a few additional controls displayed in the control toolbox when
viewed with a form (relative to a worksheet), including the MultiPage and Frame controls
(discussed later).

ActiveX controls are added to a form in the same manner that they are added to worksheets.
When added to a form, you access the properties of an ActiveX control via the Properties
window and you access event procedures associated with ActiveX controls via the form mod-
ule that contains them. To practice using ActiveX controls on forms, open Excel and from the
VBA IDE, insert a form into a new VBA project. Adjust the size properties (Width and Height)
of the UserForm object and change its Caption property to “Hello”. Add Label and Command
Button controls to the form and change their Name properties to something meaningful (for
example, lblOutput, and cmdHello). Also, adjust the size and appearance properties of the
Label and Command Button controls to suit your taste. Next, double-click on the Command
Button control to access its Click() event procedure in the code module of the UserForm
object and add one line of code such that the entire procedure appears as follows:

Event Description

Activate() Triggered when the UserForm is activated (i.e., shown).

Initialize() Triggered when the UserForm is loaded.

QueryClose() Triggered when the UserForm is closed or unloaded.

Terminate() Triggered when the UserForm is closed or unloaded.

TA B L E 6 . 2 S E L E C T E D E V E N T P R O C E D U R E S O F

T H E U S E R F O R M O B J E C T

Private Sub cmdHello_Click()

lblOutput.Caption = “Hello!”

End Sub

The form, as viewed at Design Time, from the VBA IDE is shown in Figure 6.5.

When the user clicks the Command Button control name cmdHello, the preceding procedure
is triggered, and the Caption property of the Label control named lblOutput is changed.

To test the application, select the form and click on Run/Sub UserForm from the IDE standard
toolbar (see Figure 6.5) or menu bar, or press F5 on the keyboard. The form appears as a window
above the Excel application. Click the Command Button control to output the simple message
to the Label control. To close the form, click on the X in the upper-right corner of the window.

Showing and Hiding Forms
To display a form from the Excel application, call the Show() method of the UserForm object
in a procedure that can be triggered from Excel (a public procedure in a standard module
or an event procedure from an object module). The basic syntax follows:

UserFormName.Show [Modal]

213Chapter 6 • VBA UserForms and Additional Controls

Figure 6.5

A sample form at
Design Time.

Run Sub/UserForm
button

The UserForm
object caption

Label control

Command
Button control

214

To load a form into system memory without displaying it, call VBA’s Load()
method.

Load UserFormName

The UserForm object and all of its components can be accessed programmatically
after loading it into memory. Note that the Show() method will also load a form
if it has not been previously loaded into memory.

For example, the following code displays a UserForm object named frmMessage when the Click()
event procedure of a Command Button control named cmdShowForm is triggered. The Command
Button control can be placed on a worksheet or another form.

Private Sub cmdShowForm_Click()

frmMessage.Show

End Sub

To hide a form from the user but retain programmatic control, call the Hide() method of
the UserForm object.

UserFormName.Hide

The Hide() method does not remove the UserForm object from system memory, thus the form
and its components can still be accessed programmatically. To remove a form from system
memory, call VBA’s UnLoad() method.

UnLoad UserFormName

Modal Forms
The Show() method of the UserForm object takes an optional Boolean parameter that speci-
fies whether or not the form is modal. The default value of the modal parameter is true,
which creates a modal form. A modal form is one that must be addressed by the user, and
subsequently closed (by the user or the program) before any other part of the Excel applica-
tion can be accessed. If the form is modeless, then the user may select between any open
windows in the Excel application.

Modeless forms are only supported in MS Office 2000, and later versions. Trying
to create a modeless form in an earlier version of MS Office will generate a run-
time error.

Use the VBA-defined constants vbModal and vbModeless with the Show() method
to show modal and modeless forms, respectively.

TRICK

TRICK

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

A modal form is safest, unless user interaction with the Excel application is required while
the form is displayed. The form can be displayed via the Show() method from anywhere in a
VBA program; however, be aware that program execution may proceed differently depending
on where in a procedure the form is shown and whether the form is modal. For example,
the two procedures below will yield different results.

In the first example, the Show() method is called for a UserForm object in order to display a
modeless form. Next, a MsgBox() function displays some text. In this example, code execution
proceeds through the entire procedure—first displaying the form, then the message box—so
both dialogs are displayed to the user at the same time.

Private Sub MyProcedure()

frmMyUserForm.Show vbModeless

MsgBox(“The message box is displayed immediately after the UserForm”)

End Sub

In the second example, the form is displayed modally, enabling code execution within the
procedure to pause while the form is displayed. After the user closes the form, program exe-
cution proceeds to the next line of code; thus, when using a modal form, program behavior
is identical to the MsgBox() and InputBox() functions.

Private Sub MyProcedure()

frmMyUserForm.Show vbModal

MsgBox(“The message box is displayed after the UserForm is closed.”)

End Sub

To determine which version of Excel is running on a user’s computer, test the
Version property of the Application object. The Version property returns a
read-only string containing a number that represents the version of Excel cur-
rently running on your computer (for example, 11.0 for Excel 2003).

Now that you know how to display a form in a program, it’s time to look at a few specific
ActiveX controls that are used with forms and see how they interact with the Excel application.

Designing Custom Dialog Boxes Using Forms
As mentioned earlier, forms are generally used as dialog boxes to collect user input relevant
to the current application. You use ActiveX controls to expand the capabilities of forms well
beyond that of the InputBox() and MsgBox() functions.

TRICK

215Chapter 6 • VBA UserForms and Additional Controls

216 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Some of the ActiveX controls available for forms are identical to those used with an Excel
worksheet, but there are also a few new controls as well as others I have not yet discussed;
therefore, with the aid of a couple of examples, I will illustrate the use of several ActiveX
controls that have not yet been introduced.

The Option Button Control
The Option Button control is similar to that of the Check Box control in that it offers the
user a selection from a group of possibilities. The difference between the two: the Option
Button control gives the user one selection; therefore, when the user selects an Option But-
ton from a group of Option Buttons, a previously selected Option Button is automatically
deselected.

Option Button controls are grouped by the container on which they have been added. So no
matter how many Option Button controls are added to the form shown in Figure 6.6, only
one can be selected at any given time.

The most common Option Button control properties that you will set (excluding size and
appearance properties) include the Name, Caption, and Value properties. The Boolean Value
property represents the selection state of the control (selected=true) and is the property
most commonly addressed in your VBA code. The Name and Caption properties are typically
set at Design Time.

The Click() event is the most commonly used event procedure of the Option Button control. The
Click() event is triggered whenever the user changes the state of an Option Button; thus, it is
a good location for code that processes the user’s change made to the Value property of the
control.

The Scroll Bar Control
You have undoubtedly seen and used scroll bars in numerous applications for scrolling
through lengthy documents or large figures. Scroll bars sometimes automatically appear on
the sides and/or the bottom of VBA controls so the user can view the entire content displayed

Figure 6.6

Option Button
controls grouped

by a form.

in a control. Situations such as these require nothing extra from you, or your program—the
scroll bars are simply there to provide the user with a method of seeing the complete content
of the control; however, VBA also provides a Scroll Bar control that you may add to forms in
your project to enhance an interface, such that the user may do more than just scroll
through content.

There are several properties of the Scroll Bar control that are of interest to you as a VBA pro-
grammer (other than the usual appearance and size properties). Table 6.3 summarizes the
major properties of the Scroll Bar control.

You may use the Scroll Bar control to read or set the value for the property of another con-
trol or program object. Typically, the Scroll Bar control sets a value from a large range of
choices. For example, you may use a Scroll Bar control on a form to provide the user with a
method of activating a worksheet from all possible worksheets in a workbook.

The Change() and Scroll() events are the two most common event procedures associated
with the Scroll Bar control. The Change() event procedure is triggered when the value of the
Scroll Bar control is changed by the user. The Scroll() event procedure is triggered when the
user drags the scroll box on the Scroll Bar control. The following code uses the Initialize()
event of a UserForm object, and the Change() and Scroll() events of a Scroll Bar control
(named scrWorksheet) to select distinct worksheets in the active workbook.

217Chapter 6 • VBA UserForms and Additional Controls

Property Description

Name The name used for programmatic access to the control.

Min The minimum allowed value of the Scroll Bar. The minimum occurs when the
scroll box is located at its minimum location.

Max The maximum allowed value of the scroll bar. The maximum occurs when the
scroll box is located at its maximum location.

SmallChange Defines the amount the value of the Scroll Bar is incremented or
decremented when the user clicks on either scroll arrow.

LargeChange Defines the amount the value of the Scroll Bar is incremented or decremented
when the user clicks on the Scroll Bar on either side of the scroll box.

Value The value of the Scroll Bar as defined by range set by the Min and Max
properties

TA B L E 6 . 3 S E L E C T E D P R O P E RT I E S

O F T H E S C R O L L B A R C O N T R O L

218

Private Sub scrWorksheet_Change()

Worksheets(scrWorksheet.Value).Select

End Sub

Private Sub scrWorksheet_Scroll()

Worksheets(scrWorksheet.Value).Select

End Sub

Private Sub UserForm_Initialize()

scrWorksheet.Max = Worksheets.Count

scrWorksheet.LargeChange = Worksheets.Count / 5

End Sub

In this example, the Max and LargeChange properties of the Scroll Bar control cannot be set at
Design Time because the number of worksheets in the active workbook is an unknown; there-
fore, these properties are set in the Initialize() event of the UserForm object. The program
uses both the Change() and Scroll() events of the Scroll Bar control to select a Worksheet object
from the Worksheets collection object of the active Workbook object (not qualified in code). If
the Scroll() event is not used, then the user will not see which worksheet is selected if he
or she moves the scroll box by dragging. Instead, the user will not see the selected worksheet
until the scroll box is released.

To test this code, open Excel and create a new workbook with multiple worksheets. Next,
from the VBA IDE add a form and draw a Scroll Bar control onto it. Note that you can make
a vertical or horizontal scroll bar by dragging the sizing handles of the Scroll Bar control
horizontally or vertically on the form. Set the Name property of the Scroll Bar control and add
the code to the form module’s code window. Then, with the form selected, press F5 to run
the program.

The Frame Control
The Frame control groups ActiveX controls on a form. The ActiveX controls grouped within
a Frame control may be related by content, or in the case of Option Button controls, be made
mutually exclusive. The properties of the Frame control are seldom referenced in code. The
Name and Caption properties along with a couple of appearance properties (BorderStyle, Font,
etc.) are typically set at Design Time.

You will seldom (if ever) programmatically access the Frame control. The Frame control
organizes or groups controls on a form for aesthetic appearance; in the case of Option
Button controls, behavior. A sample form using two Frame controls, each grouping a set of
Option Button controls, is shown in Figure 6.7. A Scroll Bar and two Label controls have also
been added to the UserForm.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The purpose of the form shown in Figure 6.7 is to give the user a selection between different
font types, sizes, and colors. The result of the user’s selections is displayed in the Label control
at the bottom of the form. The font size of the text in this Label control is adjusted by the
Scroll Bar control (the value of which is displayed in the adjacent Label control). The Frame
controls group the Option Button controls by content and make each set mutually exclusive.
Without at least one Frame control, the user would only be allowed to select one of the eight
Option Buttons.

I set the usual properties of these controls at Design Time. This includes the Name, Caption,
size, and appearance properties (fonts, colors, borders, and so on) of each control. The Min
and Max properties of the Scroll Bar control were set to 6 and 40, respectively.

The code for this demonstration program is contained entirely in event procedures of the
UserForm object and ActiveX controls. The Initialize() event of the UserForm object sets the
initial Caption property of the Label control that displays the font size (in pts), and the Click()
event procedure of each Option Button control sets the ForeColor and Font properties of the
Label control at the bottom of the form. Finally, the Change() event of the Scroll Bar control
adjusts the font size of the Label control at the bottom of the form and writes this size to the
adjacent Label control. The entire program entered into the form module follows:

Option Explicit

Private Sub UserForm_Initialize()

lblFontSize.Caption = scrFontsize.Value & “ pt”

End Sub

Private Sub optBlack_Click()

lblResult.ForeColor = vbBlack

End Sub

Private Sub optBlue_Click()

lblResult.ForeColor = vbBlue

219Chapter 6 • VBA UserForms and Additional Controls

Figure 6.7

Using the Frame
control on a form.

220

End Sub

Private Sub optGreen_Click()

lblResult.ForeColor = vbGreen

End Sub

Private Sub optOrange_Click()

lblResult.ForeColor = RGB(255, 125, 0)

End Sub

Private Sub optRed_Click()

lblResult.ForeColor = vbRed

End Sub

Private Sub optArial_Click()

lblResult.Font = “Arial”

End Sub

Private Sub optSans_Click()

lblResult.Font = “MS Sans Serif”

End Sub

Private Sub optTimes_Click()

lblResult.Font = “Times New Roman”

End Sub

Private Sub scrFontsize_Change()

lblResult.Font.Size = scrFontsize.Value

lblFontSize.Caption = scrFontsize.Value & “ pt”

End Sub

Note that, when possible, I use VBA color constants to set the ForeColor property of the Label
control; however, orange is not a defined constant, so I call VBA’s RGB() function to set the
red, green, and blue components (integers between 0 and 255) to return the long integer rep-
resenting orange.

The RefEdit Control
A common requirement for custom dialog boxes is providing an interface in which the user
can select a range of cells from a worksheet. Your program then uses the selected range for
some specific task. The RefEdit control makes it easy to acquire a worksheet range from a form.

Several of Excel’s dialogs and wizards contain RefEdit controls, including the chart wizard
shown in Figure 6.8.

The RefEdit control allows the user to select a range from an existing Excel worksheet, and
have the textual reference for the selected range automatically entered into the edit region
of the control. You can also enter the range manually by typing in the text area of the control.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

To test how a RefEdit control works, you don’t even need any code. Just add a form to any
VBA project. Draw a RefEdit control on the form and press F5 on your keyboard. Next, select
a range from any worksheet and the reference will be added to the RefEdit control as shown
in Figure 6.9.

You can also collapse the form by clicking on the drop button at the right of the RefEdit con-
trol prior to selecting the range.

221Chapter 6 • VBA UserForms and Additional Controls

Figure 6.8

Selecting a
worksheet range

using Excel’s
chart wizard.

RefEdit
controls

Figure 6.9

Selecting a
worksheet range

using a RefEdit
control on a form.

RefEdit control
drop button

222

You read the selected range from the RefEdit control with the Text or Value properties. Both
properties are strings, so it doesn’t matter which one you read. For example, the following
line of code reads the value of the Text property of a RefEdit control named RefEdit1 to create
a Range object:

Dim selRange As Range

Set selRange = Range(RefEdit1.Text)

After the selRange object variable is set, you can access its properties and methods as needed.

You will seldom use any properties of the RefEdit control other than the Name, Text, or Value
properties (excluding the usual appearance and size properties). The Name property provides
a meaningful name to the control for code readability. The Text or Value property provides
you with the selected range, which is the task for which this control was designed.

There are several event procedures of the RefEdit control that you may find useful. The
Enter(), Exit(), Change(), and DropButtonClick() events are triggered when the focus enters
or exits the control, the text in the control is changed, or the drop button is pressed (as
implied by their names); but be wary of referencing the RefEdit control in any of its own
event procedures, as this may cause your program to lock up. The RefEdit control has a his-
tory of bugs (see the MSDN developer Web site at http://msdn.microsoft.com and search for
RefEdit control) that have not yet been resolved. Instead, you have to find workarounds.

I recommend using the RefEdit control when you need a range selection from the user
entered in a form; however, I further suggest that you do not try to read the range text
entered in the RefEdit control from any of its own event procedures. Instead, you should
read the text from the event procedure of another ActiveX control. The Click() event of a
Command Button control works quite well as you will see later in this chapter.

You cannot use the RefEdit control on a modeless form. Doing so will cause
Excel and VBA to lock up after showing the form and selecting a worksheet
range.

The MultiPage Control
The MultiPage control is another example of a container control that groups or organizes
the user interface on a form into multiple categories. An example of the MultiPage control
in the Excel application is the Options dialog box shown in Figure 6.10. The Options dialog
can be selected in the Excel application from the Tools menu. You can see from this example
that the MultiPage control allows you to cram a lot of options onto a single form.

TRAP

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The MultiPage control allows you to design an interface with multiple pages that group a
related set of controls. The different pages are selected using the page tabs.

The MultiPage control is a container for a Pages collection object; each page on a MultiPage
control is a Page object contained in the Pages collection. As with most container controls,
you generally set their appearance at Design Time and you only write a minimum amount
of code for them (if any), unless a specific path to a Page object is required.

By default, when you add a MultiPage control to a form, two pages are included. To add
more pages, right click on a page tab while in Design Mode and select New Page from the
shortcut menu. Figure 6.11 shows a form in Design Mode containing a MultiPage control.

Properties of the MultiPage control that you will want to investigate include the Style,
TabOrientation, and MultiRow properties which set the appearance and location of the tabs.

223Chapter 6 • VBA UserForms and Additional Controls

Figure 6.10

The Options
dialog in Excel.

Page tabs

Figure 6.11

VBA’s MultiPage
control.

224 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The SelectedItem property returns the currently selected Page object. It is useful for identi-
fying what page on the MultiPage control is active. For example:

If MultiPage1.SelectedItem.Caption = “Page 1” Then

MsgBox “You are viewing page 1.”

End If

Interestingly, there is no Activate() or Select() method of the MultiPage or Page objects.
These seem like the consistent choices for methods that should select specific Page objects.
Instead, you can set the Value property of the MultiPage control to an index value repre-
senting a specific Page object in the Pages collection object. The following line of code selects
the second page (index numbers start at zero) of a MultiPage control.

MultiPage1.Value = 1

If you select a page on the MultiPage control while in Design Mode, you will have access to
the Design Mode properties of a Page object. There aren’t many properties, but the Name and
Caption properties of each Page object should be changed from their default values.

The Page object has no events, and the event procedures unique to the
MultiPage control are seldom used except in more advanced applications; thus,
they will not be discussed. However, the MultiPage control does have a few
common event procedures such as Click() and Change()with which you should
already have some familiarity.

The List Box and Combo Box Controls
The List Box control displays data in the form of a list from which the user may select one
or more items. The Combo Box control combines the features of a List Box control with a
Text Box control, allowing the user to enter a new value if desired. Properties of the List Box
and Combo Box controls commonly set at Design Time and Run Time are listed in Table 6.4.

The List Box control may be drawn on the form with varying height and width such that it
displays one or more items in the list. If there are more items in the list that can be dis-
played in the area provided, the scroll bars will automatically appear. Normally the List Box
control is drawn with its Height property set to a value large enough for several values to be
displayed, because it is difficult to see the scroll bar when the control is at a minimum
height. If space on the form is at a premium, use a Combo Box control and set the Style
property to dropdown list.

Data is added to the List Box and Combo Box controls at run time using their AddItem() method.

ControlName.Additem (item)

TRICK

The AddItem() method must be called for every row of data added to the list. A looping code
structure will often work well to complete this task. Other methods belonging to both the
List Box and Combo Box controls include, Clear() and RemoveItem() which remove all or one
item from the control’s list, respectively. The Combo Box control also includes a DropDown()
method that, when invoked, displays the control’s list.

The most useful event procedure of the List Box and Combo Box controls is the Change()
event. Although you may find the DropButtonClick() event procedure of the Combo Box control
quite useful as well. The Change() event is triggered when the Value property of the control
changes. (The Value property of the List Box and Combo Box control is the selected item from
the list.) The DropButtonClick() event of the Combo Box control is triggered when the controls
dropdown button is clicked signaling that the user is viewing the list of items in the control.

Be sure to check the Object Browser for a complete list of properties, methods, and events
associated with the ActiveX controls discussed in this chapter.

225Chapter 6 • VBA UserForms and Additional Controls

Property Description

Name Sets the name of the control to use as a code reference to the object.

MultiSelect List Box control only. Indicates whether of not the user will be able to select
multiple items in the list.

ColumnCount Sets the number of data columns to be displayed in the list.

ListStyle Indicates whether option buttons (single selection) or check boxes
(multi selection) should appear with items in the list.

Value Holds the current selection in the list. If a multi-select List Box control
is used, the BoundColumn property must be used to identify the column
from which the Value property is set.

BoundColumn Identifies the column that sets the source of the Value property in a
multi-select List Box.

List Run-time only. Used to access the items in the control.

ListCount Run-time only. Returns the number of items listed in the control.

ListIndex Run-time only. Identifies the currently selected item in the control.

Style Combo Box control only. Specifies the behavior of the control as a combo
box or a dropdown list box.

TA B L E 6 . 4 S E L E C T E D P R O P E RT I E S O F T H E L I S T B O X

A N D C O M B O B O X C O N T R O L S

226

A Custom Dialog for Quick Stats
The following example of a custom dialog is built from a UserForm object and several ActiveX
controls. The form window allows a user to quickly select a worksheet range and calculate
some basic statistics. Furthermore, the form allows the user to summarize their work by
writing the statistics for each selected range to a List Box control for later review. Figures
6.12 and 6.13 show the two pages of the MultiPage control used in the form’s design.

The form contains a Combo Box, a List Box, and a RefEdit control that allow a user to select
a workbook, worksheet, and cell range from the Excel application. Basic statistics are calcu-
lated from the selected range when the Command Button control with Caption property
“Calculate” is clicked. The Command Button control with Caption property “Add to Summary”
adds the stats to the List Box control on the second page of the MultiPage control. Two additional
Command Button controls at the bottom of the form (Caption properties “Clear” and “OK”)
close the custom dialog and clear the List Box control on page 2 of the MultiPage control.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Page 1 selected

MultiPage control

RefEdit control

Label controls

Figure 6.12

Page 1 of the
summary

statistics form
design.

Combo Box control

List Box control

Command
Button controls

Figure 6.13

Page 2 of the
summary

statistics form
design.

Page 2 selected

List Box control

Label controls

Table 6.5 summarizes the properties of the ActiveX controls that were changed from their
default values at Design Time. Label controls that only serve to provide a textual label for
other controls, and are not referenced in the program, are not listed in Table 6.5. Table 6.5
does not list any of the appearance properties that were changed in these controls. You
should be able to recognize different fonts, colors, borders, and you will probably want to
change them anyway to suit your personal preference.

227Chapter 6 • VBA UserForms and Additional Controls

Control Property Setting

Label Name lblCount, lblSum, lblMin, lblMax and so on

Label TextAlign fmTextAlignCenter

Label BorderStyle fmBorderStyleSingle

Command Button Name cmdCalcStats, cmdSummary, cmdClear, cmdOk

Command Button Caption “Calculate”, “Add to Summary”, “Clear”, “Ok”

Command Button Enabled False for cmdClear, True for other three Command
Buttons

RefEdit Name refStats

Combo Box Name cmbWorkbooks

Combo Box Style fmStyleDropDownList

Stats Page List Box Name lstWorksheets

Summary Page List Box Name lstSummary

Summary Page List Box ColumnCount 9

Summary Page List Box ColumnWidths 84 pt; 115 pt; 36 pt; 36 pt; 36 pt;
36 pt; 30 pt; 30 pt; 36 pt

MultiPage Name mpgSummary

MultiPage TabOrientation fmTabOrientationTop

MultiPage Style fmTabStyleTabs

Page 1 on MultiPage control Name pgStats

Page 1 on MultiPage control Caption “Stats”

Page 2 on MultiPage control Name pgSummary

Page 2 on MultiPage control Caption “Summary”

TA B L E 6 . 5 P R O P E RT Y S E T T I N G S O F A C T I V E X C O N T R O L S

F O R T H E S U M M A R Y S T A T S C U S T O M D I A L O G

228

The Style property of the Combo Box control can take one of two constant values; fmStyle-
DropDownCombo, and fmStyleDropDownList. If the Style property is fmStyleDropDownCombo, the
user can enter a value in the Combo Box control as well as choose from the list. If the Style
property is fmStyleDropDownList, the control is essentially a List Box and the user must
choose only from the list provided.

You can also change the number of data columns in the Combo Box and List Box controls
from their default value of one. The ColumnCount and ColumnWidths properties set the number
of data columns, and their widths (in points), respectively. Be sure to separate the different
widths in the ColumnWidths property with a semicolon (;).

Microsoft uses the point for the size properties of the ActiveX controls in VBA.
A point is 1/72 of an inch. You are probably more familiar with the point as a size
unit for fonts. It’s the same unit that describes the Width, Height, and
ColumnWidths properties (and many others) of ActiveX controls.

The code for the Summary Stats dialog is contained entirely within its form module. All pro-
gram code is entered into several event procedures of the ActiveX controls on the form.
These procedures follow:

Option Explicit

Private Sub UserForm_Initialize()

Dim wb As Workbook

For Each wb In Workbooks

cmbWorkbooks.AddItem wb.Name

If ActiveWorkbook.Name = wb.Name Then

cmbWorkbooks.Value = wb.Name

End If

Next

mpgSummary.Value = 0

End Sub

The Initialize() event of the UserForm object serves to add the names of all open workbooks
to the Combo Box control named cmbWorkbooks. A For/Each loop iterates through all the
Workbook objects in the Workbooks collection and the AddItem() of the Combo Box control
adds the name of each workbook to the list. When the active workbook is found, an If/Then
decision structure ensures that the name of the active workbook is displayed in the edit area
of the Combo Box control by setting the Value property of the control.

TRICK

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The last statement in the Initialize() event procedure uses the Value property of the Multi-
Page control to ensure that the first page (index 0) of the MultiPage control is selected when
the form is shown. If this statement is omitted, then the form is shown with the page that
is selected while in design view of the VBA IDE.

Private Sub mpgSummary_Change()

If mpgSummary.SelectedItem.Caption = “Summary” Then

cmdClear.Enabled = True

Else

cmdClear.Enabled = False

End If

End Sub

The Change() event of the MultiPage control is triggered whenever the user selects a different
page on the control. I use this event to enable or disable the Command Button control
named cmdClear. This is the Command Button that clears the List Box on the second page of
the MultiPage control. Since this Command Button only applies to the second page of the
MultiPage control, it is disabled when the first page of the MultiPage control is selected.
The Caption property of the Page object that is returned by the SelectedItem property of the
MultiPage control tells the program what page is currently selected.

Private Sub cmbWorkbooks_Change()

Dim ws As Worksheet

Workbooks(cmbWorkbooks.Value).Activate

lstWorksheets.Clear

For Each ws In Worksheets

lstWorksheets.AddItem ws.Name

If ActiveSheet.Name = ws.Name Then

lstWorksheets.Value = ws.Name

End If

Next

End Sub

The Change() event of the Combo Box control is triggered when the value of the control is
changed. This trigger occurs when the user selects a new workbook from the list, and when
the Initialize() event of the UserForm object sets the Value property of the control; therefore,
the code that adds the names of the worksheets in the active workbook to the List Box control
is best placed in this event procedure.

229Chapter 6 • VBA UserForms and Additional Controls

230

First, a For/Each loop iterates through all Worksheet objects in the Worksheets collection and
the AddItem() method of the List Box control adds the name of each worksheet to the list.
Because I did not specify a Workbook object in the opening statement of the For/Each loop
only the names of the worksheets from the active workbook are added to the List Box. An
If/Then decision structure nested in the For/Each loop tests for equality between the name
of the active worksheet and the Name property of the Worksheet object currently identified in
the loop. When the condition is true, the Value property of the List Box control sets this
name to be the selected item in the list.

Private Sub lstWorksheets_AfterUpdate()

Worksheets(lstWorksheets.Value).Select

End Sub

The AfterUpdate() event is triggered after data in a control is changed through the user
interface; therefore, when the user selects a new worksheet in the List Box control, the Value
property of the List Box control is changed and the AfterUpdate() event is triggered. The single
line of code in the AfterUpdate() event simply passes the new value of the List Box control
to the Worksheets property of the Application object in order to select the new worksheet.

Private Sub refStats_DropButtonClick()

refStats.Text = “”

End Sub

Private Sub refStats_Enter()

refStats.Text = “”

End Sub

Earlier, I suggested that you avoid using the event procedures of the RefEdit control. For the
most part, that recommendation remains; however, I have used the DropButtonClick() and
Enter() event procedures in this program to clear text from the RefEdit control. These two
event procedures trigger when the user selects the RefEdit control (either the drop button
or edit area of the control). It’s important that the text is removed from the RefEdit control
before the user selects another worksheet range; otherwise, the new selection may be
inserted into, rather than replace, the previous selection. After testing the program, these
two events behaved—at least with these very simple program statements.

Private Sub cmdCalcStats_Click()

Const NUMFORMAT = “#.00”

On Error Resume Next

lblCount.Caption = Application.WorksheetFunction.Count _

(Range(refStats.Text))

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

231Chapter 6 • VBA UserForms and Additional Controls

lblSum.Caption = Application.WorksheetFunction.Sum _

(Range(refStats.Text))

lblMin.Caption = Application.WorksheetFunction.Min _

(Range(refStats.Text))

lblMax.Caption = Application.WorksheetFunction.Max _

(Range(refStats.Text))

lblMedian.Caption = Application.WorksheetFunction.Median _

(Range(refStats.Text))

lblAvg.Caption = Format(Application.WorksheetFunction.Average _

(Range(refStats.Text)), NUMFORMAT)

lblStanDev.Caption = Format(Application.WorksheetFunction.StDevP _

(Range(refStats.Text)), NUMFORMAT)

End Sub

In the Click() event procedure of the Command Button control named cmdCalculate, Excel
worksheet functions calculate the statistics that are written to the Label controls. The work-
sheet functions are passed Range objects created from the text entered in the RefEdit control.
Note the use of line continuation characters with the excessively long statements and the
Format() function to format the numerical output for the average and standard deviation
such that only two decimal places are shown.

You probably noticed the statement On Error Resume Next in the Click() event
of the Command Button control cmdCalcStats. Adding this statement to a pro-
cedure prevents the program from crashing when it generates a Run Time error
by sending program execution to the next line of code. I will discuss debugging
and error handling in the next chapter.

Private Sub cmdSummary_Click()

Dim curRow As Integer

curRow = lstSummary.ListCount

lstSummary.AddItem cmbWorkbooks.Value

lstSummary.List(curRow, 1) = refStats.Text

lstSummary.List(curRow, 2) = lblCount.Caption

lstSummary.List(curRow, 3) = lblSum.Caption

lstSummary.List(curRow, 4) = lblMin.Caption

lstSummary.List(curRow, 5) = lblMax.Caption

lstSummary.List(curRow, 6) = lblMedian.Caption

HINT

232

lstSummary.List(curRow, 7) = lblAvg.Caption

lstSummary.List(curRow, 8) = lblStanDev.Caption

End Sub

The AddItem() method of the List Box and Combo Box controls only adds values to the first
column of the control. When the ColumnCount property is greater than one, the List prop-
erty must be used to add data to the other columns in the control. You can think of the List
property as a two-dimensional array with the first index represented by the control’s rows
and the second index represented by the control’s columns; thus, the code in the Click()
event procedure of the Command Button control named cmdSummary makes perfect sense as
it uses a row and column index with the List property to write the workbook name, selected
range, and statistical values to the List Box. The ListCount property of the List Box control
returns the number of items listed in the control and serves as the row index for setting the
value of the List property. Index values for the List property start at zero, so the final col-
umn index representing the ninth column in the control is 8.

Private Sub cmdClear_Click()

lstSummary.Clear

End Sub

Private Sub cmdOk_Click()

Unload frmSamples

End

End Sub

Private Sub UserForm_QueryClose(Cancel As Integer, CloseMode As Integer)

Unload frmSamples

End

End Sub

The last three procedures listed for the program are short and simple. The Click() event pro-
cedure of the Command Button control named cmdClear invokes the Clear() method of the
List Box control to remove all of its listed items. The Click() event of the Command Button
control named cmdOk and the QueryClose() event of the UserForm object are both used to
close the form. They unload the form from system memory and end the program.

Figures 6.14 and 6.15 show both pages of the Summary Stats dialog form after running the
program with some test data.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

233Chapter 6 • VBA UserForms and Additional Controls

Derived Data Types in VBA
You have come far enough along in your VBA programming experience that I can now intro-
duce you to derived data types. The two derived types I will discuss are custom data types

Figure 6.14

The Stats page on
the Summary

Statistics dialog.

Figure 6.15

The Summary
page on the

Summary
Statistics dialog.

234

and enumerations. Custom data types are powerful data structures that allow you to handle
more complicated systems while reducing and simplifying your code. Enumerated types are
relatively simple data structures that produce more readable code.

Defining Custom Data Types in VBA
As is the case in any programming language, custom data types in VBA are derived from
existing data types. A custom data type is a collection of related elements, possibly of dif-
ferent types, having a single name assigned to them.

Consider an application that is required to store and retrieve information about customers
in a database. The database contains information that includes a customer’s identification
number, name, age, gender, and address. Certainly you could declare five separate variables
for each of these items and your program could read/write information from/to the database
using the five separate variables; however, this is a cumbersome approach that will end with
a program that is longer, less efficient, and more difficult to read—not to mention, more dif-
ficult to write.

Of course, the answer to this problem is a custom data type derived from the data types of
the original five variables. Custom data types in VBA are defined using the Type and End Type
statements with the required elements declared between as shown in the following example:

Public Type CustomerInfo

ID As Integer

Name As String * 30

Age As Integer

Gender As String * 1

Address As String * 50

End Type

In this example, I assigned the name CustomerInfo to a custom data type with five elements:
two integer and three fixed length strings (see Chapter 2). A custom data type must be
defined in the general declarations section of a module. The Private and Public keywords
define the scope of the definition; private types are available only within the module where
the declaration is made, and public types are available in all modules in the project.

It is important to distinguish between a variable declaration and a custom data type definition.
The latter only defines the data type and does not create any variables. That is, defining a
custom data type does not expose any data; therefore, assigning public scope to the definition
of a custom data type is a perfectly reasonable thing to do. Just as you want to be able to
declare integer variables throughout your program, you may also want to create variables of
a custom type throughout your program.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

To declare a variable of type CustomerInfo is like any other variable declaration. The following
declaration creates a CustomerInfo variable named customer.

Dim customer As CustomerInfo

Individual elements for a variable of a custom data type are accessed using the dot (.) oper-
ator as shown in the following:

customer.ID = 1234

customer.Name = “Fred Flintstone”

customer.Gender = “M”

customer.Age = 40

Some other things you can do with custom data types include: declaring variable arrays,
defining elements as arrays, and passing variables, or elements of variables, to procedures.
In the Blackjack project, you will see a variable array declared from a custom data type with
elements that are also declared as arrays.

Defining Enumerated Types in VBA
Like custom data types, enumerated types contain multiple elements; however, enumerated
types are derived only from the integer data type. In an enumerated type, each integer is
assigned an identifier called an enumerated constant. This allows you to use symbolic
names rather than numbers, making your program more readable.

You must define an enumerated type in the general declarations section of a module. Once
an enumeration is defined, you can declare variables, parameters, or a procedure’s return
value with its type.

Enumerated types are defined with their elements listed between the Enum and End Enum

statements. The following definition reproduces VBA’s VbDayOfWeek enumerated type.

Public Enum Weekdays

Sunday = 1

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

End Enum

235Chapter 6 • VBA UserForms and Additional Controls

236

The elements of an enumerated type are initialized to constant values within the Enum state-
ment. You can assign the elements of an enumerated type both positive and negative integers.
If no specific assignment is made, then VBA assigns the first element 0, the second element
1, and so on. Alternatively, you can assign a value to the first element and VBA will make
subsequent assignments to all other elements by incrementing each value by one. In the
Weekdays enumerated type, I assigned 1 to Sunday and made no assignments for the remaining
elements; however, VBA automatically assigns the value 2 to Monday, 3 to Tuesday, and so on.

The assigned values in an enumerated type are constants and therefore can’t be
modified at run time.

Variables of an enumerated type are declared in the usual way using the name of enumerated
type. They can be assigned any integer value, but it defeats the purpose of using an enumer-
ated type if you assign the variable anything other than one of the enumerated constants.

Dim wkDay As Weekdays

wkDay = Tuesday

In effect, you should treat the variable wkDay as a highly constrained integer that can only
be assigned values between 1 and 7, even though it can store any value of type integer.

Next, consider the following function called GetDayOfWeek() that is declared public in a
standard module. The return type of the GetDayOfWeek() function is that of the previously
defined enumerated type Weekdays. When called in a worksheet formula, this function
returns an integer value between 1 and 7 depending on the value of the string passed to the
function. Certainly, an identical function can be written without using an enumerated type;
however, the purpose of an enumerated type is to make your program more readable and
the Weekdays enumerated type achieves that goal.

Public Function GetDayOfWeek(wkDay As String) As Weekdays

wkDay = LCase(wkDay)

Select Case wkDay

Case Is = “sunday”

GetDayOfWeek = Sunday

Case Is = “monday”

GetDayOfWeek = Monday

Case Is = “tuesday”

GetDayOfWeek = Tuesday

TRICK

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Case Is = “wednesday”

GetDayOfWeek = Wednesday

Case Is = “thursday”

GetDayOfWeek = Thursday

Case Is = “friday”

GetDayOfWeek = Friday

Case Is = “saturday”

GetDayOfWeek = Saturday

End Select

End Function

Chapter Project: Blackjack
The Blackjack game is a favorite for beginning programmers because it is relatively straight-
forward programming and can be a lot of fun to customize. The game is saved as Blackjack.xls
on the CD-ROM accompanying this book. I added some sound to the game, but it could easily
be dressed up with features such as animation or odd rule twists. This particular version uses
an Excel UserForm and various ActiveX controls to simulate the card game. There are two
players, the user and the computer, and the game follows most of the standard rules of
Blackjack. The computer serves as the dealer. The idea is to draw as many as five cards with
a total value that comes as close to 21 as possible without going over. Face cards are worth
10 and aces are 1 or 11. All other cards are face value. The game begins with two cards dealt
to each player. One of the dealer’s cards is dealt face down so it is unknown to the player
(i.e., user). The player draws cards until the hand’s value exceeds 21 or the player decides to
stop. After the player is finished, the dealer takes its turn.

Requirements for Blackjack
Because of my familiarity with the game, the requirement list for the Blackjack game was rel-
atively easy to compile. Due to project length, I did not add many of the rules normally found
in Blackjack such as doubling down, splitting, insurance for dealer blackjack, and so on. If
you are unfamiliar with these features, you can find descriptions in the challenges at the end
of the chapter. It would be great practice for you to add some of these features to the game.

The requirements for the Blackjack game, as I’ve defined them, follow:

1. The program interface shall be split between a worksheet and a VBA form with the
form simulating the game board and the worksheet storing the results of each hand.

2. The form shall be displayed when the player clicks a Command Button located on the
worksheet that stores the results of each hand.

237Chapter 6 • VBA UserForms and Additional Controls

238

3. The game shall begin with the shuffling of the deck when the player clicks a Com-
mand Button located on the form.

4. When the cards are shuffled, a second form shall be momentarily displayed indicat-
ing that the cards are being shuffled. The code that simulates the shuffling shall be
executed at this time.

5. When the cards are shuffled, the program shall play a sound file suggestive of a deck
being shuffled.

6. The game shall simulate shuffling between one and three decks as selected by the
player.

7. The program shall run the shuffling simulation whenever the player changes the
number of decks used in the game. The default number of decks shall be one.

8. The player shall be able to place a bet on each hand only before the cards are dealt.
The player can choose an amount for the bet from a list of choices or enter their own.
The default amount for a bet shall be two dollars.

9. Dealing a new hand shall be triggered from the click of a Command Button control.

10. Whenever cards are dealt, the program shall play a sound file suggestive of a card
being flipped from the deck.

11. When a new hand is dealt, the program shall simulate dealing two cards each to the
dealer and player. The first card dealt to the dealer shall be face down.

12. Cards shall be displayed to the player as images using a set of 53 bitmaps (52 for the
deck and one for the deck’s back).

13. The player’s hand shall be automatically scored by the program and the result
displayed after the first two cards are dealt.

14. The player can choose to stand at any time after being dealt the first two cards from
the click of a Command Button control.

15. Additional cards shall be drawn by the player (one at a time) from the click of a
Command Button control. The player’s score shall be updated after each draw.

16. Face cards shall count as 10 and Aces as one or eleven. All other cards shall count as
face value.

17. The dealer’s and the player’s hand shall not exceed five cards.

18. After the player chooses to stand, the program shall display the dealer’s hidden card,
calculate and display the dealer’s score, and simulate the dealer’s play based on the
following rule: the dealer must draw another card while its score is fifteen or less;
otherwise, the dealer must stand.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

19. The program shall evaluate the dealer’s and player’s scores and display a message
indicating the winner, or push if it’s a tie.

20. The program shall calculate and display the player’s balance from the amount of the
bet and the result of each hand.

21. The program shall output the result of each hand to the worksheet. The result con-
sists of the dealer’s and player’s final score, and the player’s new balance.

22. The program shall allow the player to quickly clear the results from the worksheet
from a click of a Command Button control located on the worksheet.

Designing Blackjack
This project uses many of the tools discussed in previous chapters of this book, including
various code structures and common ActiveX controls. In particular, the project includes
additional tools discussed in this chapter. These tools include UserForms and their code
modules, along with Frame, and Combo Box controls.

The Blackjack game runs from a VBA form that contains several ActiveX controls. The form is
separated into a Dealer area and a Player area using Frame controls. The dealer frame contains
these ActiveX controls:

• Five Image controls for displaying images of cards representing the dealer’s hand.

• A Combo Box control (used as a dropdown list) so the player can choose the number
of decks (52 cards per deck) used in the game.

• A Label control for displaying the score of the dealer’s hand.

The player frame contains these ActiveX controls:

• Five Image controls for displaying images of cards representing the player’s hand.

• A Combo Box control for the player to enter or select an amount to bet.

• A Label control for displaying the player’s score.

• A Label control for displaying the player’s current balance.

• A Command Button control for beginning and selecting a new game.

• A Command Button control for selecting another draw from the deck.

A single Label control displays the result of each hand. Figure 6.16 shows the Blackjack form
(named frmTable) interface with the previously listed ActiveX controls. Table 6.6 lists the set-
tings of a few select properties of the ActiveX controls added to the Blackjack form. In most
instances, font, color, and size properties were also changed from their default values, but
are not listed in the table.

239Chapter 6 • VBA UserForms and Additional Controls

240 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Object Property Value

UserForm Name frmTable

… BackColor Green

… Caption “Blackjack”

… StartUpPosition CenterScreen

… BorderStyle fmBorderStyleNone

Frames Name frmDealer and frmPlayer

… Caption “Dealer” and “Player”

… BorderStyle fmBorderStyleSingle

Image Name imgDlr1 through imgDlr5 and imgPlayer1 through
imgPlayer5

… AutoSize False

… BorderStyle fmBorderStyleSingle

Combo Box Name cmbNumDecks

… Style fmStyleDropDownList

… Value/Text “1”

Combo Box Name cmbBet

… Style fmStyleDropDownCombo

… Value/Text “$2”

Command Button Name cmdHit

… Caption “Hit”

… Enabled False

Command Button Name cmdDeal

… Caption “Begin”

… Enabled True

Labels Name lblPlayerScore and lblDealerScore

… Caption Empty String

… BorderStyle fmBorderStyleNone

… ForeColor White

… TextAlign fmTextAlignCenter

TA B L E 6 . 6 S E L E C T P R O P E RT I E S O F T H E B L A C K J A C K F O R M

To set the size of the Image controls, I first set the AutoSize property of one
Image control to true. Then, I loaded an image of a card into the control at
Design Time via its Picture property. The Image control automatically adjusts its
Width and Height properties to fit the image exactly. Finally, I removed the image
from the Image control by deleting the path from its Picture property and set
the Width and Height properties of all other Image controls to match.

TRICK

241Chapter 6 • VBA UserForms and Additional Controls

Object Property Value

Label Name lblResult

… ForeColor Red

… BorderStyle fmBorderStyleNone

… TextAlign fmTextAlignCenter

Label Name lblEarnings

… Caption “$0”

… ForeColor Blue

… BorderStyle fmBorderStyleNone

… TextAlign fmTextAlignCenter

TA B L E 6 . 6 S E L E C T P R O P E RT I E S O F T H E

B L A C K J A C K F O R M (C O N T I N U E D)

Figure 6.16

The form design
for the Blackjack

game.

Combo Box controls

Label controls

Image controls

Frame controls

Command Button controls

242

In addition to the Blackjack form, a second form is added to the project to serve as a splash
screen to distract the player as the code that simulates the shuffling of the deck executes.
The code doesn’t really take that long to run, but the delay in the game is a nice distraction
that doesn’t require the player to do anything, and it serves to inform the player that the
end of the deck was reached and must be reshuffled. Figure 6.17 shows the deck shuffling
form with two Label controls.

The code module for the Shuffling form contains the code for initializing and shuffling the
deck.

The last part of the interface for the Blackjack game is the worksheet that shows the form
and stores the results of each hand. Figure 6.18 shows the worksheet for the Blackjack game.
It contains two Command Button controls: one for showing the Blackjack form, and the second
for clearing the content of the first three columns that store the result of each hand.

Program inputs include bitmap image files, Wave Form Audio (.wav) files, the number of
decks in the game, an amount to bet on each hand and numerous mouse clicks. The image
files represent a deck of cards, and are displayed in the Image controls on the Blackjack form.
A total of fifty-three images are needed to represent the deck (52 for the faces and 1 for the
card back). You can create simple images such as these shown using just about any drawing
program (I used MS Paint). These images are loaded into the Image controls when a new hand
is dealt and when the player or dealer draws additional cards. The .wav files are played when-
ever the deck is shuffled or cards are dealt. Combo Box controls on the Blackjack form allows
the player to choose the number of decks and select an amount to bet on each hand.

Program outputs include the results of each hand and the playing of the .wav sound files. The
results of each hand include the player’s score, the dealer’s score, and the player’s new balance
to columns A, B, and C of the worksheet, respectively. The sound files are played such that pro-
gram execution is continuous (i.e., the program does not pause while the sound file plays).

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 6.17

The Shuffling
form.

The outline of program execution follows:

• The game starts from the Command Button control on the worksheet labeled
Blackjack. This displays the Blackjack form. A public procedure in a standard code
module is connected to the Command Button (this button is from the Forms toolbar)
and its code shows the form.

The Initialize() event procedure of the Blackjack form should contain code that
initializes its ActiveX controls.

• A single Command Button control on the form begins the game, deals each hand,
and offers the player the choice to stand or hit on the current hand.

• The Caption property of this Command Button control starts with “Begin” and
changes between “Deal” and “Stand” as the game proceeds.

The Click() event of the Command Button control contains code that initializes the
game (shuffles the cards and sets the Caption property to “Deal”) when the Caption
property is “Begin”. If the Caption property is “Deal”, then the code should clear the
Blackjack form of card images, and simulate the dealing of two cards each to the
dealer and player. If the Caption property is “Stand”, then the code should display
the dealer’s hidden card and start the dealer’s turn at drawing cards before ending the
hand. At a minimum, custom sub procedures should be used to handle shuffling,
clearing the form of images, dealing the hand, and drawing the dealer’s cards. More
custom procedures may be added to handle these tasks when the program is written.

243Chapter 6 • VBA UserForms and Additional Controls

Figure 6.18

The Blackjack
worksheet.

244

• When the player changes the number of decks, the Change() event of the Combo Box
control is triggered and the program forces an immediate shuffling of the deck.

• The code that simulates shuffling the deck is entered in the code module for the
Shuffling form.

The deck of cards is simulated using an array. The length of the array depends
on the number of decks selected by the player in the Combo Box control. The
deck array variable must be global as it must also be accessed by the code in the
Blackjack form module.

The array must store the value of each card, its suit, and the file path to the image
representing the card. To handle these different data types, the deck should be
constructed from a custom data type.

The Activate() event procedure of the UserForm object contains the code for initial-
izing and shuffling the deck. It should also play the shuffling .wav file and hide
the form after a short delay.

The deck is shuffled randomly by generating integer random numbers between
0 and the number of elements in the array. Next, two elements in the array
(chosen randomly) representing two cards in the deck are swapped. The process
of choosing two random numbers and swapping two elements in the deck array
is contained within a loop such that it may be repeated. Figure 6.19 illustrates the
process of swapping two cards in an array. When this process is repeated many
times, the deck is effectively shuffled.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 6.19

Swapping two
cards in the deck.

• Four cards are dealt (two to the dealer and two to the player) with each new hand. The
procedure that handles this task must loop through the image controls to find the cor-
rect control for displaying the card image, load the image of the card, store the value
of each card for scoring, increment to the next card, play the draw card .wav file, and
test if the deck needs shuffling. The first card drawn to the dealer must be displayed
face down. Card information is stored in an array, so an array index must increment by
one after each draw. The index representing the dealer’s face-down card will have to be
stored in a variable so its image and value can be called upon when the hand is over.

• A second Command Button control on the Blackjack form allows the player to draw
more cards. This control must be initially disabled and then enabled when the player
is allowed to draw more cards.

The Click() event of this Command Button control should simulate drawing a
single card to the player’s hand. The code will have to display the card image in
the appropriate Image control, play a .wav file, score the player’s hand after each
draw, and test for a bust.

The code cannot allow the player to draw more than three cards while the player’s
score is less than twenty-one.

If the player busts, then the dealer’s cards are shown and score calculated before
the hand is ended.

The program must test if the deck needs reshuffling after each draw.

• After the player stands on a score of twenty-one or less, then the dealer draws cards
until its score is sixteen or higher. The procedure that handles this task will have
to load the card images, play a .wav file, score the dealer’s hand, increment the
deck array variable, and test if the deck must be shuffled after each draw. The dealer
cannot draw more than three cards.

• A hand ends when either the player busts or the dealer finishes drawing cards. When
the hand ends the program must test to see who won or if the hand is a push, then
output the result to a Label control. The player’s new balance is written to a Label
control (win or lose) and the results of the hand are written to the worksheet.

• Results are cleared when the public procedure attached to the Command Button
control labeled “Clear” (located on the worksheet) is executed.

• The game ends when the player closes the Blackjack form. This triggers the QueryClose()
event of the UserForm object where the program removes the forms from system
memory and ends the program.

• A majority of the code is entered in the code module for the Blackjack form. The
remaining code is contained in the code module for the Shuffling form and two
standard code modules.

245Chapter 6 • VBA UserForms and Additional Controls

246

Writing the Code for Blackjack
Since the Blackjack form is the major component of the user interface, its code module
contains most of the program code. Much of this code is contained in event procedures of
the UserForm object and the ActiveX controls it contains. Several procedures private to the
Blackjack form’s code module are added to support the tasks required for the game.

Program code for shuffling the cards is contained in the code module for the Shuffling form
and public variable declarations and procedures are located in standard modules. I have
included two standard modules for Blackjack: one for variables and procedures specifically
created for the Blackjack game, and one for general purpose procedures that can be exported
to other projects.

General Purpose Public Procedures
The procedures listed below could be used in just about any VBA project. You have already
seen the PlayWav() procedure in the Battlecell program from Chapter 5. I have added one
more procedure called Delay(). The entire content of the code module follows:

Option Explicit

Private Const DELAY_CODE = 0

Private Const CONTINUE_CODE = 1

Public Declare Function sndPlaySoundA Lib “winmm.dll” _

(ByVal lpszSoundName As String, ByVal uFlags As Long) As Long

Public Sub PlayWav(filePath As String)

sndPlaySoundA filePath, CONTINUE_CODE

End Sub

Public Sub Delay(curTime As Single, pauseTime As Single)

Do While Timer < pauseTime + curTime

DoEvents

Loop

End Sub

This module contains two short and simple public procedures, two module level constant
declarations, and one API declaration for playing .wav sound files. The PlayWav() sub procedure
is simply one line of code that calls the sndPlaySoundA() function in the winmm.dll system
file. The constants (DELAY_CODE and CONTINUE_CODE) clarify the action of the API function call.
In this case, program execution continues while the sound file is played. The PlayWav()
procedure is called to play sound files when the program shuffles or deals cards.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The Delay() sub procedure is called to delay the execution of the Blackjack program. The delay
is needed when a new hand is dealt and when the dealer draws more cards to give the game
an appearance of dealing one card at a time. It is also called for an aesthetic affect when the
Shuffling form is displayed because it only takes the program a fraction of a second (processor
dependent) to effectively shuffle the cards. The delay is caused by a Do-Loop that executes
until a specified number of seconds (indicated by the variable pauseTime) has passed. The VBA
function DoEvents() yields the computer’s processor so that the operating system can process
other events. This allows the player to make other selections while the loop executes.

Public Procedures and Variables for the Blackjack Program
The second standard module included with the Blackjack program includes the variables and
procedures specifically related to the Blackjack game and are not transferable to other appli-
cations.

The module uses two public enumerations named CardDeck and CardSuits to define related
sets of constants that describe a deck of cards. The CardDeck enumeration defines the number
of cards in a single deck, the number of cards in a suit, and the number of suits in a deck.
The CardSuits enumeration defines integer constants that will be used later to initialize a
deck of cards by suit. The suits are used in the filenames of the images so a card’s suit must
be known in order to load the correct image. The constants defined in these enumerations
have public scope so they are available in all code modules. Since they are constants, and
therefore cannot be changed elsewhere in the program, I don’t have to worry about data
contamination.

Next, a custom data type for the deck of cards is defined with two elements: value and filename.
The integer element value represents the face value of a card. The string element filename
stores the name of the image file associated with a card. All three elements of the custom
data type are arrays with fifty-two elements (the number of cards in a single deck). The cus-
tom data type is named Deck and a public dynamic array variable of type Deck is declared and
named theDeck. The array theDeck must be dynamic because its length will vary with the
number of decks selected by the player.

Option Explicit

Public Enum CardSuits

bjSpades = 1

bjDiamonds = 2

bjClubs = 3

bjHearts = 4

End Enum

247Chapter 6 • VBA UserForms and Additional Controls

248

Public Enum CardDeck

bjcardsindeck = 52

bjCardsInSuit = 13

bjNumSuits = 4

End Enum

Type Deck

value(bjcardsindeck - 1) As Integer

filename(bjcardsindeck - 1) As String

End Type

Public theDeck() As Deck

Public Sub Blackjack()

frmTable.Show vbModal

End Sub

Public Sub ClearResults()

Dim lastRow As Integer

lastRow = ActiveSheet.UsedRange.Rows.Count

Range(“A2:C” & lastRow).ClearContents

End Sub

The two public procedures Blackjack() and ClearResults() are short and simple. Each procedure
is attached to a Command Button control on the worksheet. The Command Button controls pro-
vide the player with an easy interface to show the Blackjack form and clear the results from the
worksheet. The form is shown modally for no particular reason. If you prefer, you can certainly
change it to a modeless form. The worksheet is cleared by calling the ClearContents() method
of the Range object after determining the last used row in the worksheet via the UsedRange prop-
erty of the Worksheet object. The UsedRange property returns a Range object representing the used
range on the worksheet. The Rows property returns another Range object representing the rows
in the range returned from the UsedRange property. Finally, the Count property returns an inte-
ger representing the number of rows in the range.

Shuffling the Deck for the Blackjack Program
The code module for the Shuffling form (named frmShuffle) contains the part of the Blackjack
program that simulates the shuffling of the deck. The Activate() event procedure of the
UserForm object is triggered when the form’s Show() method is executed from elsewhere in

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

the program. The custom sub procedures InitDeck() and ShuffleDeck() are called from the
Activate() event procedure in order to initialize and shuffle the deck. A sound file simulating
a deck being shuffled is played while program execution is delayed for one and a half seconds.
The program is delayed so that the player can actually see the form before it is hidden again
with the form’s Hide() method.

Option Explicit

Private Sub UserForm_Activate()

Const DELAY_TIME = 1.5

‘——————————————————————

‘Initialize and shuffle the deck(s) values.

‘——————————————————————

InitDeck

ShuffleDeck

‘———————————————————————-

‘Play shuffle sound while program delays long

‘enough to display the form.

‘———————————————————————-

PlayWav (ActiveWorkbook.Path & “\Sounds\shuffle.wav”)

Delay Timer, DELAY_TIME

frmShuffle.Hide

End Sub

The InitDeck() sub procedure first re-dimensions the size of the global Deck array variable
theDeck to the number of decks selected in the Combo Box control (named cmbNumDecks) on
the Blackjack form. Next, the custom array is filled with values, and filenames representing
each card in a deck using nested For/Next loops. Note the use of array indices for the custom
data type variable theDeck and each of its elements: value and filename because each deck
has fifty-two cards.

For each deck, the card values are sequentially filled from one to ten, where aces are one, face
cards are ten, and all other cards are face-value. Each deck is also filled with the strings for
the filenames of the card images which are built using the enumerations, the GetSuitLabel()
function procedure, and the card number (ranges from one to thirteen). Please note the use
of line continuation characters in some of the longer program statements.

Private Sub InitDeck()

Dim curCard As Integer, curSuit As Integer, curDeck As Integer

Dim numDecks As Integer, cNum As Integer

249Chapter 6 • VBA UserForms and Additional Controls

250

‘—————————————————————————————-

‘Initialize N decks with values 1-10. Fours suits per deck.

‘Ace=1, Jack=King=Queen=10

‘—————————————————————————————-

numDecks = frmTable.cmbNumDecks.value - 1

ReDim theDeck(numDecks)

For curDeck = 0 To numDecks

For curSuit = 1 To bjNumSuits

For curCard = 0 To bjCardsInSuit - 1

cNum = curCard + 1

If (curCard + 1) < 10 Then

theDeck(curDeck).value(curCard + bjCardsInSuit * _

(curSuit - 1)) = curCard + 1

Else

theDeck(curDeck).value(curCard + bjCardsInSuit * _

(curSuit - 1)) = 10

End If

theDeck(curDeck).filename(curCard + bjCardsInSuit * _

(curSuit - 1)) = cNum & GetSuitLabel(curSuit)

Next curCard

Next curSuit

Next curDeck

End Sub

Private Function GetSuitLabel(suit As Integer) As String

Select Case suit

Case Is =bjSpades

GetSuitLabel = “Spades”

Case Is =bjDiamonds

GetSuitLabel = “Diamonds”

Case Is =bjClubs

GetSuitLabel = “Clubs”

Case Is =bjHearts

GetSuitLabel = “Hearts”

End Select

End Function

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The ShuffleDeck() sub procedure performs five-hundred swaps per deck of two randomly
selected cards in the deck array variable theDeck in order to effectively shuffle the deck. You
can change the number of swaps at Design Time by simply changing the value of the NUMSWAPS
constant. A series of variables serve as temporary storage locations for all the elements that
describe a card (the index value for the deck, the value of the card, and the filename of the
image representing the card) so two cards can be swapped as illustrated in Figure 6.19.

Private Sub ShuffleDeck()

Dim ranCard1 As Integer, ranCard2 As Integer

Dim ranDeck As Integer

Dim tempCard As Integer, tempSuit As Integer

Dim tempName As String

Dim curSwap As Integer, numDecks As Integer

Const NUMSWAPS = 500

Randomize

numDecks = frmTable.cmbNumDecks.value

‘———————————————————————————

‘Shuffle the deck by swapping two cards in the array.

‘———————————————————————————

For curSwap = 0 To NUMSWAPS * numDecks

ranCard1 = Int(Rnd * bjcardsindeck)

ranCard2 = Int(Rnd * bjcardsindeck)

ranDeck = Int(Rnd * numDecks)

tempCard = theDeck(ranDeck).value(ranCard1)

tempName = theDeck(ranDeck).filename(ranCard1)

theDeck(ranDeck).value(ranCard1) = _

theDeck(ranDeck).value(ranCard2)

theDeck(ranDeck).filename(ranCard1) = _

theDeck(ranDeck).filename(ranCard2)

theDeck(ranDeck).value(ranCard2) = tempCard

theDeck(ranDeck).filename(ranCard2) = tempName

Next curSwap

End Sub

251Chapter 6 • VBA UserForms and Additional Controls

252

The Shuffling form only appears for a second or two, but it serves a very important purpose.
First, it informs the player that the marker for the end of the deck was reached and the deck
is being reshuffled. Second, the code contained within its code module effectively shuffles
the array representing the deck(s).

Playing a Hand of Blackjack
Now it is time to get to the meat of the program which is contained in the Blackjack form
code module. Module level variable declarations define a host of integers required by the
program. Most of the names are self-explanatory. These variables are used in multiple pro-
cedures in the form module and store the following values: the number of cards drawn by
the player and dealer (numPlayerHits and numDlrHits), the current deck and the current location
in the deck (curDeck and curCard) from which the dealer draws the next card, the location
and image for the dealer’s face-down card (hiddenCard, hiddenDeck, hiddenPic), the value of
the cards in the player’s and dealer’s hands (scores), and the dealing order for the first four
cards dealt for a new hand (dealOrder).

Option Explicit

Private numPlayerHits As Integer

Private numDlrHits As Integer

Private curCard As Integer ‘Track the location in the deck.

Private curDeck As Integer ‘Track the location in the deck if there is more

than one deck.

Private hiddenCard As Integer ‘Temporary storage of the face-down card.

Private hiddenDeck As Integer

Private hiddenPic As Image

Private scores(4, 1) As Integer ‘Track values of cards dealt to dealer and player.

Private dealOrder As Variant ‘Set the order of Image controls for initial dealing

of four cards.

Private Const PLAYER = 1 ‘Use to reference array index for scores.

Private Const DEALER = 0

Private Const DEALERSTAND = 16 ‘Dealer stands on this value or higher.

The Activate() event of the UserForm object initializes the variant array dealOrder. This array
is a list of strings that match the Name property of four Image controls. The order of the strings
is set to the order in which the initial four cards are dealt to the dealer and player for a new
hand. I created this array so that I could simulate the dealing of the four cards using a loop
(see DealCards() sub procedure); otherwise, a lot of repetitive code would be needed.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The InitForm() sub procedure is called to initialize some of the ActiveX controls on the
form—namely, the Label and Combo Box controls.

Private Sub UserForm_Activate()

dealOrder = Array(“imgDlr1”, “imgPlayer1”, “imgDlr2”, “imgPlayer2”)

InitForm

End Sub

Private Sub InitForm()

Dim I As Integer

‘———————————

‘Clear label controls.

‘———————————

lblResult.Caption = “”

lblDlrScore.Caption = “0”

lblPlyrScore.Caption = “0”

‘———————————————————————————-

‘Set values to be displayed in dropdown lists for the

‘number of decks, and the value of a bet.

‘———————————————————————————-

cmbNumDecks.Clear

cmbNumDecks.AddItem (“1”)

cmbNumDecks.AddItem (“2”)

cmbNumDecks.AddItem (“3”)

cmbBet.Clear

cmbBet.AddItem (“$2”)

cmbBet.AddItem (“$5”)

cmbBet.AddItem (“$10”)

cmbBet.AddItem (“$25”)

cmbBet.AddItem (“$50”)

cmbBet.AddItem (“$100”)

End Sub

The Change() event procedure of the cmbNumDecks Combo Box is triggered when the user
changes its displayed value. This forces an immediate reshuffling of the deck with a call to
the NeedShuffle() procedure that will show the Shuffling form and trigger its previously
listed code. The Caption property of the Command Button control is set to “Deal” in case the

253Chapter 6 • VBA UserForms and Additional Controls

254

player changes the number of decks immediately after the form is loaded and shown (i.e.,
when the Caption property reads “Begin”).

The NeedShuffle() procedure accepts one optional Boolean argument that, when used,
forces a reshuffling of the deck. If it is not forced, then the deck will still be shuffled if the
current card location in the deck has reached the marker specified by the constant LASTCARD.
If neither condition is met, then program execution exits the procedure without shuffling
the deck. Remember, this procedure will have to be called after each card is dealt; so in most
instances, the NeedShuffle() procedure will not cause the deck to be shuffled.

Private Sub cmbNumDecks_Change()

NeedShuffle True

cmdDeal.Caption = “Deal”

End Sub

Private Sub NeedShuffle(Optional forceShuffle As Boolean)

Public Const LASTCARD = 10

‘—————————————————————————————-

‘Test for the number of cards already played to

‘see if the deck needs reshuffling. Must increment the deck

‘and reset card number when using multiple decks.

‘—————————————————————————————-

If (curCard + (curDeck * 51) >= _

Val(cmbNumDecks.value) * (bjcardsindeck - 1) - LASTCARD) _

Or forceShuffle Then

frmShuffle.Show

curCard = 0 ‘Reset deck location after reshuffling.

curDeck = 0

ElseIf curCard > 51 Then

curCard = 0

curDeck = curDeck + 1

End If

End Sub

The Click() event of the Command Button control cmdDeal is triggered from the Blackjack
form, but the action taken depends on the value of its Caption property. If the Caption property
is set to “Begin”, then the deck is shuffled and the Caption property is reset to “Deal”. The
Caption property will only read “Deal” when the program is set to begin a new hand; there-
fore, when the Caption property is set to “Deal”, the game table must be cleared with a call
to the ClearBoard() sub procedure before a new hand is dealt by calling the DealCards() sub
procedure.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The last possible value of the Caption property is “Stand”. In this case, the player has decided
to stand on the current score of his or her hand and it is the dealer’s turn to draw. First, the
dealer’s hidden card is displayed and score calculated with a call to the CalcScore() proce-
dure. The simulation of the dealer’s turn to draw is handled by the DealerDraw() procedure.
After the dealer’s turn is over and program execution returns to the Click() event, the game
is ended with a call to GameOver().

Private Sub cmdDeal_Click()

If cmdDeal.Caption = “Begin” Then

frmShuffle.Show

cmdDeal.Caption = “Deal”

ElseIf cmdDeal.Caption = “Deal” Then

ClearBoard

DealCards

Else ‘Player decides to stand.

cmdHit.Enabled = False

imgDlr1.Picture = hiddenPic.Picture

CalcScore DEALER

DealerDraw

GameOver

End If

End Sub

The ClearBoard() sub procedure serves to reset variables and ActiveX controls on the form.
The images of the cards from the Image controls are removed by setting their Picture prop-
erty with the LoadPicture() method while passing it an empty string. The For/Each loop iter-
ates through all ActiveX controls on the form, identifying those controls whose name begins
with “img” in order to find the Image controls. Since all ActiveX controls on the form are
part of a Controls collection object, I use a For/Each loop to iterate through the controls on
the Blackjack form (named frmTable); however, I need the decision structure to identify the
first three letters in the name of each control because there is no collection object for control
types, only for all controls on the form.

The dealer’s and player’s hands are stored in the two-dimensional variable array called
scores. The array’s size is five rows by two columns, where the first column is reserved for
the dealer’s hand, and the second column for the player’s hand. The value of each card dealt
to both players is stored in this array.

Private Sub ClearBoard()

Dim I As Integer

Dim imgCtrl As Control

255Chapter 6 • VBA UserForms and Additional Controls

256

‘—————————————————————

‘Clear images of card from image controls.

‘—————————————————————

For Each imgCtrl In frmTable.Controls

If Left(imgCtrl.Name, 3) = “img” Then

imgCtrl.Picture = LoadPicture(“”)

End If

Next

‘———————————————

‘Reset variables and controls.

‘———————————————

numPlayerHits = 0

numDlrHits = 0

lblDlrScore.Caption = “0”

lblResult.Caption = “”

For I = 0 To 4

scores(I, DEALER) = 0

scores(I, PLAYER) = 0

Next I

cmbBet.Enabled = False

End Sub

The DealCards() sub procedure handles the initial dealing of the four cards required to start
a new hand. Since most of the required actions for each card dealt are the same, I wanted
to handle this task with a loop; however, it is a bit more difficult to loop through four spe-
cific Image controls from a group of ten. This is why I declared the variant variable array
named dealOrder—to identify these four Image controls. I also was careful to add the Image
controls to the form in the same order specified in the dealOrder array (see Activate() event
procedure). This way, I ensure that the For/Each loop iterates through the four Image con-
trols in the desired order. (That is, once the first Image control listed in the dealOrder array
is found.)

Once a proper Image control is identified, the program loads the card image into the Image
control, the value of the card is stored in the variable array scores, the .wav file is played, and
the program tests if the deck must be shuffled with a call to the NeedShuffle() procedure.

The first card is dealt face down to the dealer (represented by the image file Back.bmp); how-
ever, the program must remember the location of this card in the deck using the module
level variables hiddenCard and hiddenDeck because it will be needed when the hand ends—at

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

257Chapter 6 • VBA UserForms and Additional Controls

which time the program must display the card and calculate the dealer’s score. The card
image is also stored for later use by loading it into the Picture property of the image object
variable hiddenPic with the LoadPicture() method. This does not display the image any-
where on the form because hiddenPic is an object variable, not an ActiveX control. This effec-
tively stores the image in the computer’s memory until it is needed. Alternatively, you could
add another Image control to the form, set its Visible property to false, and load the image
for the face-down card into its Picture property until it is needed. Figure 6.20 shows an
example of the Blackjack form after the initial four cards of a hand are dealt.

Private Sub DealCards()

‘———————————————————————————-

‘Deals four cards; two each to the player and dealer.

‘———————————————————————————-

Dim fileCards As String

Dim fileSounds As String

Dim imgCtrl As Control

Dim I As Integer

fileCards = ActiveWorkbook.Path & “\Cards\”

fileSounds = ActiveWorkbook.Path & “\Sounds\”

Figure 6.20

Starting a new
hand of Blackjack.

258

‘————————————————————————————————

‘Loop through the controls to find next image control. Load

‘the image of the card, store the value of the card for scoring,

‘increment to the next card, play the draw sound, and test if

‘the deck needs reshuffling.

‘————————————————————————————————

For Each imgCtrl In frmTable.Controls

If I >= 4 Then Exit For ‘Already found the 4 Image controls.

If imgCtrl.Name = dealOrder(I) Then

If (I = 0) Then

imgCtrl.Picture = LoadPicture(fileCards & “Back.bmp”)

hiddenCard = curCard

hiddenDeck = curDeck

Set hiddenPic = New Image

hiddenPic.Picture = LoadPicture(fileCards & _

theDeck(hiddenDeck).filename(hiddenCard) & “.bmp”)

scores(0, DEALER) = theDeck(curDeck).value(curCard)

Else

imgCtrl.Picture = LoadPicture(fileCards & _

theDeck(curDeck).filename(curCard) & “.bmp”)

End If

If (I = 1) Then

scores(0, PLAYER) = theDeck(curDeck).value(curCard)

ElseIf (I = 2) Then

scores(1, DEALER) = theDeck(curDeck).value(curCard)

Else

scores(1, PLAYER) = theDeck(curDeck).value(curCard)

End If

curCard = curCard + 1

PlayWav (fileSounds & “\draw.wav”)

Delay Timer, 0.5

NeedShuffle

I = I + 1

End If

Next

‘————————————-

‘Score the player’s hand.

‘————————————-

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

259Chapter 6 • VBA UserForms and Additional Controls

CalcScore PLAYER

cmdDeal.Caption = “Stand”

cmdHit.Enabled = True

End Sub

The Blackjack program calculates the dealer’s and player’s score with the variable array
scores and the CalcScore() sub procedure. A For/Next loop iterates through the scores array,
identifying which player’s score to sum using the iPlayer argument, and totals the values
of each card in a hand. The number of Aces in a hand are counted and scored as eleven;
unless the total score exceeds twenty-one, in which case the Aces are scored as one.

Private Sub CalcScore(iPlayer As Integer)

‘——————————————————————————

‘Calculates the player’s and dealer’s score. Pass 0

‘for the dealer and 1 for the player.

‘——————————————————————————

Dim I As Integer

Dim numAces As Integer

Dim score As Integer

Const MAXHANDSIZE = 5

‘————————————————————————

‘Calculates the score. Aces count one or eleven.

‘————————————————————————

For I = 0 To MAXHANDSIZE - 1

score = score + scores(I, iPlayer)

If scores(I, iPlayer) = 1 Then numAces = numAces + 1

Next I

If (numAces > 0) Then

score = score + 10 * numAces

For I = 1 To numAces

If (score > 21) Then score = score - 10

Next I

End If

If (iPlayer = 0) Then

lblDlrScore.Caption = score

Else

lblPlyrScore.Caption = score

End If

End Sub

260

The Command Button control cmdHit is enabled after the first four cards of a new hand are
dealt (see Figure 6.20). Its Click() event is triggered each time the player decides (and is
allowed) to draw another card. This procedure loads a card image into the proper Image control
and records the value of the card before playing the .wav file that sounds like a card being
flipped. Next, the score of the player’s hand is calculated using CalcScore().

The module variable numPlayerHits was incremented by one early in the procedure. If the
value of this variable reaches three, then the Command Button control cmdHit is disabled
and this Click() event procedure cannot be triggered. The same is true if the player busts
(score exceeds twenty-one). The screen shot in Figure 6.21 shows a hand where the player
busted after drawing two cards (the two of hearts and king of clubs). Since the player busted,
the dealer did not have to draw any more cards despite having a score less than sixteen.

The player’s turn at drawing cards is over when they bust, draw three cards (giving them a
total of five cards), or choose to stand on their current hand. The action taken when the
player stands is handled in the Click() event procedure of the Command Button control
named cmdDeal. If the player busts, the hand is immediately ended by displaying the dealer’s
hidden card, calculating its score, and calling the GameOver() sub procedure. If the player
manages to draw three cards without busting, then the player is forced to stand on his or
her hand because it is the only enabled Command Button on the form.

As always, when a card is dealt, the NeedShuffle() procedure is called to test if the deck
needs to be shuffled.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 6.21

A player bust in a
hand of Blackjack.

Private Sub cmdHit_Click()

‘———————————————————

‘Player chooses to draw another card.

‘———————————————————

Dim fileCards As String

fileCards = ActiveWorkbook.Path & “\Cards\”

‘—————————————————————

‘Load the card image and record the score.

‘—————————————————————

numPlayerHits = numPlayerHits + 1

If (numPlayerHits = 1) Then imgPlayer3.Picture = _

LoadPicture(fileCards & theDeck(curDeck).filename(curCard) & “.bmp”)

If (numPlayerHits = 2) Then imgPlayer4.Picture = _

LoadPicture(fileCards & theDeck(curDeck).filename(curCard) & “.bmp”)

If (numPlayerHits = 3) Then imgPlayer5.Picture = _

LoadPicture(fileCards & theDeck(curDeck).filename(curCard) & “.bmp”)

scores(numPlayerHits + 1, PLAYER) = theDeck(curDeck).value(curCard)

PlayWav (ActiveWorkbook.Path & “\Sounds\draw.wav”)

‘———————————————————————————————-

‘Calculate player’s score, increment deck to next card, and

‘test if the player has reached maximum number of allowed hits.

‘———————————————————————————————-

CalcScore PLAYER

curCard = curCard + 1

If numPlayerHits > 2 Then

cmdHit.Enabled = False

CalcScore DEALER

End If

NeedShuffle

‘———————————————————————————

‘If player busts, show dealer’s hand and end the game.

‘———————————————————————————

If lblPlyrScore.Caption > 21 Then

imgDlr1.Picture = hiddenPic.Picture

261Chapter 6 • VBA UserForms and Additional Controls

262 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

CalcScore DEALER

GameOver

End If

End Sub

After the player has selected to stand on his or her current hand, the DealerDraw() procedure
is called in order to simulate the dealer’s turn at drawing additional cards. This procedure
uses a loop to draw up to three cards for the dealer as long as the dealer’s score is less than
sixteen. When a card is drawn, the card’s image is loaded into the appropriate Image con-
trol, the card’s value is stored, the dealer’s score calculated, and the deck is tested to see if
it needs shuffling.

Private Sub DealerDraw()

‘————————————————————————

‘Call if dealer needs hits. Dealer must stand on

‘16 or higher and hit with <16.

‘————————————————————————

Dim fileCards As String

fileCards = ActiveWorkbook.Path & “\Cards\”

‘——————————————————————————————-

‘Dealer takes hits while score is <16 to a max of five cards.

‘——————————————————————————————-

Do While (lblDlrScore.Caption < DEALERSTAND)

If (numDlrHits = 3) Then Exit Sub

numDlrHits = numDlrHits + 1

If (numDlrHits = 1) Then imgDlr3.Picture = LoadPicture(_

fileCards & theDeck(curDeck).filename(curCard) & “.bmp”)

If (numDlrHits = 2) Then imgDlr4.Picture = LoadPicture(_

fileCards & theDeck(curDeck).filename(curCard) & “.bmp”)

If (numDlrHits = 3) Then imgDlr5.Picture = LoadPicture(_

fileCards & theDeck(curDeck).filename(curCard) & “.bmp”)

PlayWav (ActiveWorkbook.Path & “\Sounds\draw.wav”)

Delay Timer, 0.5

scores(numDlrHits + 1, DEALER) = theDeck(curDeck).value(curCard)

CalcScore DEALER

curCard = curCard + 1

NeedShuffle

Loop

End Sub

A hand is over when the player busts or the dealer finishes drawing cards. In both cases, the
GameOver() sub procedure is called to determine the winner, update the player’s balance
based on how much the player bet, and output the results to the form and the worksheet
(calls WorksheetOutput() procedure) before resetting the ActiveX controls.

Figure 6.22 shows the Blackjack form after a hand won by the player when the dealer busted
drawing the nine of diamonds.

Private Sub GameOver()

‘——————————————————————

‘Display results when the hand is finished.

‘——————————————————————

Dim earningsLength As Integer

Dim betLength As Integer

Dim pScore As Integer, dScore As Integer

263Chapter 6 • VBA UserForms and Additional Controls

Figure 6.22

A dealer bust in a
hand of Blackjack.

264

earningsLength = Len(lblEarnings.Caption)

betLength = Len(cmbBet.value)

pScore = lblPlyrScore.Caption

dScore = lblDlrScore.Caption

‘————————————

‘Dealer and player push.

‘————————————

If (dScore = pScore) Then

lblResult.Caption = “Push”

End If

‘——————————————————————————

‘Player wins if their score is higher than dealer’s

‘without busting or if dealer busts.

‘——————————————————————————

If ((Val(dScore) < Val(pScore)) And (Val(pScore) < 22)) _

Or ((Val(pScore) < 22) And (Val(dScore) > 21)) Then

lblResult.Caption = “You Win!”

lblEarnings.Caption = “$” & Val(Right(lblEarnings.Caption, _

earningsLength - 1)) + Val(Right(cmbBet.value, betLength - 1))

End If

‘——————————————————————————

‘Dealer wins if their score is higher than player’s

‘without busting or if player busts.

‘——————————————————————————

If ((Val(dScore) > Val(pScore)) And (Val(dScore) < 22) _

Or (Val(dScore) < 22) And (Val(pScore) > 21)) Then

lblResult.Caption = “Dealer Wins!”

lblEarnings.Caption = “$” & Val(Right(lblEarnings.Caption, _

earningsLength - 1)) - Val(Right(cmbBet.value, betLength - 1))

End If

‘——————————————

‘Calculate player’s balance.

‘——————————————

earningsLength = Len(lblEarnings.Caption)

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

If Val(Right(lblEarnings.Caption, earningsLength - 1)) < 0 Then

lblEarnings.ForeColor = RGB(255, 0, 0)

Else

lblEarnings.ForeColor = RGB(0, 0, 150)

End If

WorksheetOutput

cmdHit.Enabled = False

cmdDeal.Caption = “Deal”

cmbBet.Enabled = True

End Sub

The last requirement of the program is to output the results of the hand to the worksheet.
Most of this code should be quite familiar to you as it simply copies the Caption property of
the Label controls to cells on the worksheet and formats the winning score in bold. The new
technique here is using the Find() method of the Range object to locate the next empty cell
in column A of the worksheet. The Find() method takes several arguments but the What
argument is the only one required. The What argument identifies the string you are looking
for in the specified range (in this case, A:A). The After argument is optional, but I use it here
to tell the Find() method to start looking after cell A1.

The Find() method returns a Range object. I used the Row property of the Range object
returned by the Find() method in order to return the index of the first empty row in column
A to the variable nextRow. Next, I use the value stored in the nextRow variable to identify
where to write the results of the hand.

Private Sub WorksheetOutput()

‘——————————————————————-

‘Output results of the hand to the worksheet.

‘——————————————————————-

Dim nextRow As Integer

‘————————————————————————————————

‘Find first empty row in column A and write results to that row.

‘————————————————————————————————

nextRow = Range(“A:A”).Find(What:=””, After:=Range(“A1”)).Row

Range(“A” & nextRow).value = lblDlrScore.Caption

Range(“B” & nextRow).value = lblPlyrScore.Caption

Range(“C” & nextRow).value = lblEarnings.Caption

265Chapter 6 • VBA UserForms and Additional Controls

266 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

‘———————————————————————

‘Put the winner in bold font. Color the player’s

‘balance to match the form.

‘———————————————————————

If lblResult.Caption = “Dealer Wins!” Then

Range(“A” & nextRow).Font.Bold = True

ElseIf lblResult.Caption = “You Win!” Then

Range(“B” & nextRow).Font.Bold = True

End If

Range(“C” & nextRow).Font.Color = lblEarnings.ForeColor

End Sub

Finally, the QueryClose() event of the UserForm object unloads the forms from the com-
puter’s memory before ending the program. The QueryClose() event is triggered when the
player closes the form.

Private Sub UserForm_QueryClose(Cancel As Integer, CloseMode As Integer)

Unload frmTable

Unload frmShuffle

End

End Sub

That’s it for the Blackjack program. Take the code, play with it, change it, add to it, learn
from it, and enjoy. If you have trouble, then focus on just a small piece of the program until
you figure it out before moving on to the next problem.

Chapter Summary
This chapter introduced VBA UserForms and a few new ActiveX controls. Specifically, you
learned how to add UserForms to a VBA project and show them in a program. This chapter dis-
cussed adding ActiveX controls to a form, including the Frame, Scroll Bar, Option Button,
RefEdit, MultiPage, Combo Box, and List Box controls and how to use the code window of a
form. You also learned how to create custom data types that are derived from existing VBA
data types. Finally, you learned how to use modal and modeless UserForms.

267Chapter 6 • VBA UserForms and Additional Controls

Challenges
1. Add a modeless form (set the ShowModal property of the UserForm object) to a

VBA project then add two Command Button controls to a worksheet. Using their
Click() event procedures, use one Command Button control to show the form,
and the other Command Button control to hide the form.

2. Add a RefEdit control and a Command Button control to the form created in the
previous challenge. The RefEdit control is for the user to display a selected
range. Then add code to the Command Button control such that it changes the
format of the selected range by increasing its font size to 24 and its color to
green (vbGreenor RGB(0,255,0)). You must show the form as modal or your program
may lock up.

3. Create a form that contains a List Box control. Use the AddItem() method of the
List Box control to display the contents of column A of the active worksheet.
Hint: Use a For/Each to iterate through the cells in column A in the Activate()
event procedure of the UserForm object.

4. Add a Command Button control to the form from the previous challenge and
change the MultiSelect property of the List Box control to allow multiple selec-
tions. Add code to the Click() event procedure of the Command Button control
that will copy the selected values of the List Box control to column B of the
worksheet. Hint: Use the Selected property of the List Box control to return an
array of Boolean values that can be used to determine which items are displayed
in the control and have been selected by the user. Use the ListCount and List
properties of the List Box control along with a For/Next loop to return the
selected values of the List Box control if its Selected property is true.

5. Alter the Blackjack game to pay double the bet if the player is dealt a blackjack
(one Ace and one card of value 10).

6. Alter the Blackjack game to immediately end if the player or dealer is dealt
blackjack. Whoever has the blackjack is declared the winner and the other
player is not allowed to draw. If both players are dealt blackjack, then it’s a push.

7. Doubling down is the process of doubling your bet after the first two cards are
dealt. If you choose to double down, then you can only draw one more card. Add
this feature to the Blackjack game.

8. Splitting is the process of splitting your first two cards into two separate hands.
You then draw one more card for each hand and you are not allowed any more
draws. Your bet applies to both hands and each hand competes against the
dealer’s hand. Add this feature to the Blackjack game.

(continues)

268 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Challenges (continued)
9. Alter the Blackjack game to incorporate a MultiPage control with two pages on

the Blackjack form. The first page of the MultiPage control should contain the
existing Blackjack game table. The second page of the MultiPage control should
contain a List Box control with two columns (set the ColumnCount property). Use
the List Box control as a card counter. The first column should list the card type
(Ace, King, Queen, and so on). The second column should list the number
of cards that have been played from the deck for the card type listed in the adja-
cent row of the first column. Don't forget to reset the List Box when the deck is
shuffled.

Error Handling,
Debugging, and

Basic File I/O

7
C H A P T E R

T
he ability to read and write data to a computer’s disk drives is funda-
mental to most programming languages. This chapter examines some of
the different tools available in VBA and Excel that allow a programmer to

write code for viewing a computer’s file structure, and to read and write text files.
Additional tools required for error handling and debugging your VBA programs
are also discussed.

Specifically, this chapter will cover:

• Error handling

• Debugging

• File dialogs

• Creating text files

Project: Word Find
The Word Find program uses a text file containing a list of words associated with
various topics that can be updated by the user to create word search puzzles. The
program can also print each puzzle for the user’s enjoyment. Figure 7.1 shows
the Wordfind worksheet that is used by the Word Find program.

C H A P T E R

270 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Error Handling
All programs contain errors (often called bugs). Syntax errors occur when the programmer
violates the rules of the language (for example, misspelled keywords, missing components
of a code structure, or improper declaration of a variable), preventing the program from
compiling. Syntax errors are relatively easy to fix because the VBA debugger sends you right
to the source of the problem. Logic errors occur when the code contains errors that result
in improper program behavior (for example, an infinite loop or wrong variable initialization).
Logic errors do not prevent the program from compiling and executing; therefore, logic
errors can be difficult to find. With proper debugging, however, the number of errors in a
program can be significantly reduced.

Besides syntax and logic errors, it is possible that a program’s code may generate a runtime
error as a result of invalid input. Examples might include a divide by zero error (as seen in
Chapter 6) or a file not found error. Programmers must anticipate errors such as these
because if they are left unchecked, these errors will cause the program to crash. Further-
more, errors of this type cannot be fixed by altering the logic of the program. In situations
such as these, the program requires additional error handling code and procedures. Error
handling code should be included whenever the program interacts with the user or other
components of the computer. Validation procedures are examples of error handling proce-
dures; I have already discussed adding them to your code (see Chapter 4). This section will
focus on special statements and objects available in VBA for handling anticipated errors.

Figure 7.1

The Wordfind
worksheet.

Using the On Error Statement
In the MultiPage.xls project from Chapter 6, the Click() event of the cmdCalcStats Command
Button control contained the statement:

On Error Resume Next

The On Error statement enables error handling in a VBA program. The On Error statement must
be followed with instructions to VBA for deciding a course of action when a runtime error is
encountered. The course of action taken depends on the type of error that is anticipated.

The On Error statement must precede the code that is anticipated to generate
the runtime error. The On Error statement is normally placed near the beginning
of a procedure.

In the case of the Click() event procedure in Chapter 6, a runtime error was anticipated for
the AVERAGE(), MEDIAN(), and STDEVP() worksheet functions when the user failed to select
data, but clicked the Calculate button. Because the runtime error will only occur under spe-
cial circumstances, it was handled by using the Resume Next clause. The Resume Next clause
sends program execution to the next line of code following the line that generated the error.
When the user notices that no statistics were calculated after clicking the Calculate button,
then he or she should conclude that they need to select a range of cells on the worksheet.
The Resume Next clause is the simplest solution for handling runtime errors and works well
in the MultiPage.xls project; however, it may not always be the best solution.

When an anticipated error requires execution of a special block of code, use the GoTo state-
ment after On Error.

On Error GoTo ErrorHandler

The term ErrorHandler refers to a line label used to direct program execution to the block of
code specifically created for handling the runtime error. Line labels must start at the left-
most position in the editor window and end with a colon. The error handling code follows
the line label.

The use of the GoTo statement goes all the way back to the earliest versions of
Basic and a few other programming languages. The GoTo statement is rarely seen
anymore because when overused, the order of execution of programming
statements can be very difficult to follow and results in what is termed
“spaghetti code.” Spaghetti code is very hard to debug and for that reason, the
use of the GoTo statement in VBA should be limited to error handling routines.

An illustration of the error handling process appears in Figure 7.2.

HINT

HINT

271Chapter 7 • Error Handling, Debugging, and Basic File I/O

272

Figure 7.2 shows the order of program execution in a sub procedure that contains error han-
dling code. The order of program execution proceeds as follows:

1. If no error is generated, the main block of code executes but program execution exits
the sub procedure before reaching the ErrorHandler line label.

2. An error is generated and code execution proceeds to the ErrorHandler line label.

3. The error is resolved in the ErrorHandler and code execution proceeds back to the
original line of code that generated the error. Then the main block of code executes
before program execution exits the sub procedure.

4. If the error is not resolved, then program execution should exit the sub without
executing the main block of code.

Now consider the Click() event procedure of the Calculate button after I added a little more
error handling code.

Private Sub cmdCalcStats_Click()

Const NUMFORMAT = “#.00”

On Error GoTo ErrorHandler

lblCount.Caption = Application.WorksheetFunction.Count _

(Range(refStats.Text))

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 7.2

Order of program
execution in a

procedure with
error handling.

lblSum.Caption = Application.WorksheetFunction.Sum _

(Range(refStats.Text))

lblMin.Caption = Application.WorksheetFunction.Min _

(Range(refStats.Text))

lblMax.Caption = Application.WorksheetFunction.Max _

(Range(refStats.Text))

lblMedian.Caption = Application.WorksheetFunction.Median _

(Range(refStats.Text))

lblAvg.Caption = Format(Application.WorksheetFunction.Average _

(Range(refStats.Text)), NUMFORMAT)

lblStanDev.Caption = Format(Application.WorksheetFunction.StDevP _

(Range(refStats.Text)), NUMFORMAT)

Exit Sub

ErrorHandler:

MsgBox “An error was encountered while attempting to calculate the statistics. “ _

& vbCrLf & Err.Description & vbCrLf & _

“Check for a valid range selection and try again.” & vbCrLf, _

vbCritical, “Error “ & Err.Number

End Sub

After the constant declaration, the error handler is “turned on” with the On Error statement
and a reference to the ErrorHandler line label. The error handling code starts with the line
label, but is not a separate procedure. Instead, it is a block of code isolated by the line label;
therefore, an Exit Sub statement is placed near the end of the procedure just before the line
label to prevent the code in the error-handling block from being executed if no error is gen-
erated.

The error handling code follows the line label, and due to the structure of the sub procedure,
will only be executed when a runtime error occurs. In this example, the error handling code
is only one statement, albeit a long one. A message box with a description of the error is dis-
played to the user. The description is obtained from the Description property of the Err
object. The Err object stores information about runtime errors and is intrinsic to VBA. The
properties of the Err object are initialized when a runtime error occurs with an error handling
routine enabled so you can access its properties in any error handling code block.

When possible, you should write code in your error handler that fixes the error
and resumes program execution at the error’s source using the Resume keyword.
In this example, that is not possible because the error is generated by an invalid
range selection. In this case, the best you can do is to anticipate the cause of the
error and suggest a solution to the user.

TRICK

273Chapter 7 • Error Handling, Debugging, and Basic File I/O

274 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 7.3 shows the message box displayed by the error handler in the Click() event pro-
cedure of the Calculate button.

More examples of error handling code blocks are discussed later in the chapter.

Debugging
By now, you have certainly encountered numerous errors in your programs and probably
struggled to correct some of these errors. Finding bugs in a program can be frustrating. For-
tunately, VBA has several tools to help debug a program.

Break Mode
When your program generates a runtime error, a dialog box similar to the one shown in Figure
7.4 is displayed.

Selecting the Debug option will load the VBA IDE and display the program in Break Mode.
While in Break Mode, program execution is paused and can be stepped through one line at
a time to closely examine factors such as order of code execution and the current values
stored within variables. The line of code that generated the error will be highlighted as
shown in Figure 7.5.

Figure 7.3

The message box
displayed by the
error handler in

the MultiPage.xls
project from

Chapter 6.

Figure 7.4

The runtime error
dialog box.

To intentionally enter Break Mode, insert a breakpoint at the desired location in the program
using the Debug menu item or Debug toolbar (select from the View menu) in the VBA IDE
(refer to Figure 7.5). You can also toggle a breakpoint by clicking the left margin of the code
window next to the line of code at which you want program execution to pause, or by press-
ing F9.

Insert break points at locations in code where bugs are suspected or known to exist and then
run the program. Break Mode is entered when program execution proceeds to a line of code
containing a breakpoint. At this time, you have the option of resetting the program, stepping
through the program one line at a time, or continuing normal operation of the program.
While in Break Mode, the value currently stored in a variable can be checked by holding the
mouse cursor over the name of that variable. Logic errors are often caused by code that assigns
the wrong value to a variable. Break Mode can help locate the code that creates these errors.

Another useful debugging method is stepping through code while in Break Mode. Use Step
Into on the Debug toolbar, or press F8, to execute one line of code at a time starting from
the location of the break. The order of program execution can be verified, and values stored
within variables checked as code execution proceeds one line at a time.

The Immediate Window
Stepping through code one line at a time can be tedious if the error is not found quickly.
The Immediate window allows you to test program variables and procedures under normal
program execution. The Immediate window is displayed by selecting it from the View menu,
the Debug toolbar (refer to Figure 7.5), or by pressing Ctrl + G in the IDE.

275Chapter 7 • Error Handling, Debugging, and Basic File I/O

Figure 7.5

The VBA IDE in
Break Mode.

The Debug toolbar

Toggle breakpoints

Step Into

Debug windows

276

The Immediate window is often used to hold the value of a variable or variables written to
it with debugging statements located at suspected trouble spots in the program. Debugging
statements use the Assert() and Print() methods of the Debug object. The Assert() method
can be used to break program execution based on a Boolean expression. The Print() method is
used to write values to the Immediate window.

Debugging statements are not compiled and stored in the executable program
file, so there is no harm in leaving them in your code.

The CalcScore() sub procedure in the Blackjack form module from Chapter 6 is listed below.
You may remember that this procedure calculates the scores of the dealer’s and player’s
hands. One of the trickier pieces of this procedure is the part that scores Aces as either one
or eleven depending on the value of the hand. The procedure must score the Ace as eleven
as long as the player’s score does not exceed twenty-one. Several debugging statements have
been added to the procedure to test its effectiveness.

In the CalcScore() sub procedure, the expression (numAces = 0) is used with the Assert()
method of the Debug object to break program execution. The expression can be any expres-
sion that evaluates as true or false, as in this example, or any Boolean variable. The Assert()
method breaks program execution when the Boolean expression evaluates as false. In this
example, program execution breaks only when an Ace is dealt to either the dealer or player
and their hand is scored. This allows you to step through each line of code that calculates
the value of the hand based on the number of Aces dealt without having to waste time in
Break Mode when no Ace has been dealt. Three statements use the Print() method of the
Debug object to write the value of the variable score to the Immediate window before, dur-
ing, and after the handling of the Aces. It is a good idea to include a string with the Print()
method identifying the variable, especially if there are more debugging statements else-
where in the program. After, or during program execution, the Immediate window and its
contents can be viewed from the VBA IDE as shown in Figure 7.6.

Private Sub CalcScore(iPlayer As Integer)

‘——————————————————————————

‘Calculates the player’s and dealer’s score. Pass 0

‘for the dealer and 1 for the player.

‘——————————————————————————

Dim I As Integer

Dim numAces As Integer

Dim score As Integer

Const MAXHANDSIZE = 5

HINT

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

‘————————————————————————

‘Calculates the score. Aces count one or eleven.

‘————————————————————————

For I = 0 To MAXHANDSIZE - 1

score = score + scores(I, iPlayer)

If scores(I, iPlayer) = 1 Then numAces = numAces + 1

Next I

Debug.Assert (numAces = 0)

Debug.Print “Score Ace as 1: “ & score

If (numAces > 0) Then

score = score + 10 * numAces

Debug.Print “Score Ace as 11: “ & score

For I = 1 To numAces

If (score > 21) Then score = score - 10

Next I

End If

Debug.Print “Final Score: “ & score

If (iPlayer = 0) Then

lblDlrScore.Caption = score

Else

lblPlyrScore.Caption = score

End If

End Sub

You can also use the Immediate window to enter code statements while the program is in
Break Mode. Statements that change the value of a variable, or the property of an ActiveX
control, or call a procedure can be entered directly into the Immediate window. The state-
ments take effect after the Enter key is pressed. Using the previous example, the value of the
variable score can be changed while in Break Mode by entering score = 5 (or any integer
value) in the Immediate window. This is useful for re-directing program execution and testing
the results without having to alter code.

The Watch Window
Besides the Immediate window, another useful tool for debugging VBA programs is the
Watch window. The Watch window makes it possible to track the value of a variable or
expression (property, function call, and so on) from anywhere in a program. Add a watch to
an expression from the Debug menu or right click the expression and choose Add Watch
from the shortcut menu. The resulting dialog box is shown in Figure 7.7.

277Chapter 7 • Error Handling, Debugging, and Basic File I/O

278

Choose either a specific procedure containing the expression you want to watch, or choose
all procedures. Next, choose a specific module containing the expression you want to watch,
or select all modules. Finally, select the type of Watch (Watch Expression, Break When Value
Is True, or Break When Value Changes). The watch type selected will be displayed in the
Watch window only when the program enters Break Mode. Therefore, if the Watch type
Watch Expression is selected, a breakpoint will have to be inserted in the procedure(s) con-
taining the expression before running the program. The other two watch types automati-
cally pause the program at the specified location. A Watch window showing the value of an
expression while the program is in Break Mode is shown in Figure 7.8.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 7.6

The Immediate
window.

Figure 7.7

The Add Watch
dialog box.

The Locals Window
The Locals window (see Figure 7.9) displays the value of the declared variables local to the
procedure in which program execution has been paused with a breakpoint. Module-level
variables are also listed under the object Me in the Locals window. Display the Locals window
by selecting it from the View menu or Debug toolbar.

When you suspect a procedure contains a logic error, insert a breakpoint in the procedure,
run the program, and display the Locals window before stepping through the procedure’s
code. This is a handy tool for debugging a procedure as it allows you to view the values of
all local variables while stepping through the code.

File Input and Output (I/O)
VBA includes several objects, methods, and functions that can be used for file I/O. You have
probably surmised that one possibility for file I/O involves the Workbook object and its methods
for saving and opening files; however, there are other tools available in VBA, the most relevant
of which will be discussed in this chapter.

When a VBA application requires file I/O, it often involves a relatively small amount of data
stored in program variables, and not in a worksheet or document. With Excel, the programmer
has the choice of copying the data to a worksheet so the user can save the data in the usual
way (File/Save menu item), or saving the content of the variables directly to a file. It is often

279Chapter 7 • Error Handling, Debugging, and Basic File I/O

Figure 7.8

The Watch
window.

280

more convenient to simply write the data directly to a file on the hard drive so the user does
not have to be concerned with the task. In fact, it may be undesirable to give the user access
to the data, as he or she might alter it before saving. In this case, reading and writing simple
text files within the program code offers an attractive solution.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 7.9

The Locals
window.

In the Real World
There are many types of files stored on a computer’s hard drive including operating system
(OS) files (for example, Windows or Macintosh files used to handle specific tasks performed by
the OS), image files, and Excel files. Most of these files are created by specific applications and
therefore are proprietary. Proprietary files should only be accessed by the applications from
which they were created. In Windows, proprietary files have unique file extensions such as
.doc, .xls, and .ppt to name just a few. The file extensions are used by the OS to identify the
application that created the file.

A proprietary file (such as one created by Excel) contains not only the textual and numerical
information entered by the user, but also content that the application uses to specify formatting
options selected by the user (bold, font size and type, and so on) as well as any non-textual
information entered by the user (for example, images and charts). The methods used to write
all of this additional information to the file are specific to the application, and therefore can
only be opened by the application that originally created the file.

File I/O Using Workbook and Worksheet Objects
The Workbook and Worksheet objects contain methods for opening, closing, and saving work-
books in the same manner a user might perform these operations from the Excel application.
You can open and save workbook files using a variety of formats with VBA code. The same file
formats may also be used to save individual worksheets within an existing workbook.

Opening and Saving Workbooks
You use the Open() method of the Workbooks collection object to open Excel-compatible files.
The Open() method accepts numerous arguments, but the only required argument is the
Filename. The syntax for the Open() method of the Workbooks collection object, including all
arguments, follows:

Workbooks. Open(Filename, UpdateLinks, ReadOnly, Format, Password, WriteResPassword,

IgnoreReadOnlyRecommended, Origin, Delimiter, Editable, Notify, Converter, AddToMru,

Local, CorruptLoad)

You will never use most of these arguments, but those with unfamiliar names can be found
in the online help. The following statement opens a workbook named MyWorkbook.xls
located in the same directory as the active workbook. Note that the active workbook must
be previously saved or the Path property of the Workbook object will not return a valid file
path. Alternatively, you may use a string to specify the full path.

Dim filePath As String

filePath = ActiveWorkbook.Path

Workbooks.Open Filename:=filePath & “\MyWorkbook.xls”

To save a workbook from a VBA program, use either the Save() method of the Workbooks col-
lection object or the SaveAs() method of the Workbook object. The Save() method does not
accept arguments and will save a new workbook to the default directory (the directory last
used or the directory specified in the General tab of Excel’s Options dialog if a workbook has
not been previously saved).

Workbook(“MyWorkbook.xls).Save

The SaveAs() method accepts many of the same arguments as the Open() method of the
Workbooks collection object. Most important are the Filename and FileFormat arguments
used to specify the file’s name and path, and the file type (.xls, .csv, .txt, and so on). The

281Chapter 7 • Error Handling, Debugging, and Basic File I/O

282

FileFormat argument should be specified as one of VBA’s defined xlFileFormat constants
(look up xlFileFormat in the Object Browser to see a complete list). The syntax for the
SaveAs() method of the Workbook object follows:

expression.SaveAs(Filename, Fileformat, Password, WriteResPassword,

ReadOnlyRecommended, CreateBackup, AccessMode, ConflictResolution, AddToMru,

TextCodepage, TextVisualLayout, Local)

The following line of code saves the active workbook to the default directory as an Excel
2003 file (xlWorkbookNormal).

ActiveWorkbook.SaveAs Filename:= “MyWorkbook.xls”, FileFormat:=xlWorkbookNormal

You may also save data in a specific worksheet using the SaveAs() method of the Worksheet
object. Again, the two main arguments are Filename and FileFormat.

expression.SaveAs(FileName, FileFormat, Password, WriteResPassword,

ReadOnlyRecommended, CreateBackup, AddToMru, TextCodepage, TextVisualLayout, Local)

You cannot use the SaveAs() method of the Worksheet object to save the entire workbook, but
only data within a specific worksheet. Typically, you save the content of a single worksheet as
some type of text file (comma delimited, tab delimited, .html, .xml, and so on). The following
example saves the data in the active worksheet to a comma delimited text file named
MyData.csv.

Text files only contain characters from the ANSI character set. The ANSI character
set is comprised of 256 characters that represent the characters from your key-
board (alphabetical, numerical, punctuation, and so on).

ActiveSheet.SaveAs Filename:=”MyData.csv”, FileFormat:=xlCSV

Figure 7.10 shows an Excel worksheet with random numerical data that has been saved as a
comma-delimited text file. Figure 7.11 shows the resultant file opened in WordPad.

Using VBA File I/O Methods
In addition to the Open(), Save(), and SaveAs() methods of the Workbooks, Workbook, and Worksheet
objects, VBA and its associated object libraries include several I/O objects such as the
Dialogs, FileDialog, FileSystem, and FileSystemObject objects, and other subordinate
objects. Some of these objects are conceptually more difficult to use and therefore will not
be discussed in this chapter; however, I will show you how to use one object from the Office
library and VBA’s Open statement for adding file I/O to your programs.

TRICK

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The FileDialog Object
Included in the Office library of objects is the FileDialog object. The FileDialog object is
essentially the standard dialog used in Office applications for opening and saving files. The
dialog boxes from the FileDialog object allow users to specify the files and folders that a
program should use and will return the paths of the selected files or folders. You can also
use the FileDialog object to execute the associated action of the specified dialog box.

A reference must be set to the Microsoft Office object library before you can
use the FileDialog object. From the VBA IDE, select Tools, References, and be
sure the Check Box labeled Microsoft Office 11.0 Object Library is selected.

TRICK

283Chapter 7 • Error Handling, Debugging, and Basic File I/O

Figure 7.10

An Excel
worksheet

after saving as
a text file

(.csv extension).

Figure 7.11

The text file that
results from

saving the
worksheet in

Figure 7.10.

284

The FileDialog object contains two methods called Show() and Execute(). You use the Show()
method to show one of four possible dialog boxes (see Table 7.1) depending on the constant
passed to the FileDialog property of the Application object. The following statement shows
the Open dialog.

Application.FileDialog(msoFileDialogOpen).Show

The Execute() method allows the user to carry out the specified action of the dialog box for
files that are compatible with the Excel application (for example, files of type .xls, .xlt, .csv,
and so on). For example, the Open dialog box allows the user to select one or more files to
open when the Execute() method of the FileDialog object is invoked. When the following
statement follows the Show() method for the Open dialog, the item(s) selected by the user
are opened in Excel.

Application.FileDialog(msoFileDialogOpen).Execute

Be careful to set the properties of the FileDialog object appropriately for the
desired action. For example, you cannot set the FilterIndex property of the
FileDialog object when showing the Folder Picker dialog box because this dia-
log box shows only folders and does not allow file extension filters.

The FileDialogFilters and FileDialogSelectedItems Collection Objects
The FileDialog object has two subordinate collection objects—the FileDialogFilters and the
FileDialogSelectedItems collection objects. The FileDialogFilters collection object contains
a collection of FileDialogFilter objects that represent the file extensions used to filter what
files are displayed in the dialog box (used with the Open and Save As dialog boxes). Use the

TRICK

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Dialog Type VBA Constant (FileDialogType)

Open msoFileDialogOpen

Save msoFileDialogSaveAs

File Picker msoFileDialogFilePicker

Folder Picker msoFileDialogFolderPicker

TA B L E 7.1 D I A L O G T Y P E S U S E D W I T H T H E F I L E D I A L O G O B J E C T

Filters property of the FileDialog object to return the FileDialogFilters collection and the
Item property of the FileDialogFilters collection object to return a FileDialogFilter object.
The Description and Extensions properties of the FileDialogFilter object return the description
(for example, All Files) and the file extension used to filter the displayed files (for example, *.*).

I wrote the CheckFileFilters() sub procedure to generate a list of all possible file filters and
their descriptions, then output the lists via message boxes. The procedure simply loops
through each FileDialogFilter object in the FileDialogFilters collection and concatenates
their Description and Extensions properties to separate string variables. Add the following
procedure to any code module then run the program to generate message boxes similar to
those shown in Figures 7.12 and 7.13.

Public Sub CheckFileFilters()

Dim fileFilters As FileDialogFilters

Dim fileFilter As FileDialogFilter

Dim I As Integer

Dim descrs As String

Dim xtns As String

Set fileFilters = Application.FileDialog(msoFileDialogOpen).Filters

‘———————————————————————

‘Loop through collection and build strings of

‘all extensions and descriptions.

‘———————————————————————

For I = 1 To fileFilters.Count

Set fileFilter = fileFilters.Item(I)

descrs = descrs & fileFilter.Description & vbCrLf ‘Add carriage

return/line feed to strings.

xtns = xtns & fileFilter.Extensions & vbCrLf

Next I

MsgBox descrs

MsgBox xtns

End Sub

The FileDialogSelectedItems collection object contains the paths (as strings) to the files or
folders selected by the user. Use the SelectedItems property of the FileDialog object to
return the FileDialogSelectedItems collection. The GetSelectedItem() sub procedure first
shows the Open dialog then loops through all items selected by the user in order to build a
string containing their file paths. The file paths are then output in a message box. Note that
the Item property of the FileDialogSelectedItems object returns a string.

285Chapter 7 • Error Handling, Debugging, and Basic File I/O

286

Public Sub GetSelectedItem()

Dim selItems As FileDialogSelectedItems

Dim I As Integer

Dim paths As String

‘——————————————————————————————————————

‘Build a list of file paths to all files selected by user from Open dialog.

‘——————————————————————————————————————

Application.FileDialog(msoFileDialogOpen).Show

Set selItems = Application.FileDialog(msoFileDialogOpen).SelectedItems

For I = 1 To selItems.Count

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 7.12

File filter
descriptions

for Excel.

Figure 7.13

File filer
extensions
for Excel.

paths = paths & selItems.Item(I) & vbCrLf

Next I

MsgBox paths

End Sub

You can use the Add() method of the FileDialogFilters collection object to create your own
list of filters. The LoadImage() sub procedure shows the File Picker dialog box after clearing
the FileDialogFilters collection and adding two new filters (*.*, and *.bmp). The Add()
method requires a description and extension. An optional Position argument indicates the
position of the added filter in the list.

The Show() method is called to display of the Open dialog after its properties are set. The
Show() method of the FileDialog object returns -1 if the user presses the action button
(Open in this example) and 0 if the action is cancelled. The FilterIndex property sets which
filter is selected when the dialog is shown—essentially creating a default file filter. With the
AllowMultiSelect property of the FileDialog object set to false, the user can only select one
file. The path to this file is returned by the SelectedItems property of the FileDialog object
which is used to load the selected image into an Image control named imgTest. You can test
this procedure by adding it to the code module of a Worksheet object. Be sure to place an
Image control on the worksheet and set its Name property before running the program.

Public Sub LoadImage()

Dim fileDiag As FileDialog

Dim imagePath As String

Set fileDiag = Application.FileDialog(msoFileDialogFilePicker)

With fileDiag

.AllowMultiSelect = False

.Filters.Clear

.Filters.Add Description:=”All files”, Extensions:=”*.*”

.Filters.Add Description:=”Image”, Extensions:=”*.bmp”, Position:=1

.FilterIndex = 1

.InitialFileName = “”

.Title = “Select BMP file”

If .Show = -1 Then ‘User pressed action button

imagePath = .SelectedItems(1)

imgTest.Picture = LoadPicture(imagePath)

End If

End With

End Sub

287Chapter 7 • Error Handling, Debugging, and Basic File I/O

288 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The path to the file selected by the user is returned from the FileDialogSelectedItems col-
lection and stored in the string variable imagePath. If the Execute() method of the FileDialog
object is omitted in the program, your program will need this path. Do not use the Execute()
method of the FileDialog object when selecting files that are not compatible with Excel—
doing so will either result in a runtime error or open a workbook containing incompre-
hensible data.

If the AllowMultiSelect property of the FileDialog object is true, the FileDialogSelectedItems
collection will hold more than one file path. The ShowFileDialog() sub procedure loads the
Open dialog box and allows the user to select multiple files. If the user clicks the Open button
then the Execute() method attempts to open all selected files.

Public Sub ShowFileDialog()

Dim fileDiag As FileDialog

Const EXCELFILES = 2

‘——————————————————-

‘Configure and show the open dialog.

‘Open all files selected by the user.

‘——————————————————-

Set fileDiag = Application.FileDialog(msoFileDialogOpen)

With fileDiag ‘Configure dialog box

.AllowMultiSelect = True

.FilterIndex = EXCELFILES

.Title = “Select Excel File(s)”

.InitialFileName = “”

If .Show = -1 Then ‘User clicked Open

.Execute ‘Open selected files

End If

End With

End Sub

The dialog box resulting from the ShowFileDialog() sub procedure is shown in Figure 7.14.

The FileSystem Object
The FileSystem object is a collection of methods that you can use to set and obtain infor-
mation about files, directories, and drives. You can find the members of the FileSystem
object listed in the Object Browser and in Table 7.2. You can use them as though they were
just another group of VBA built-in functions. That is, you do not need to qualify the object
when using these methods in your program.

The Open Statement
The Open statement is used to read or write data to a file. Table 7.3 summarizes the type of
access, and modes or functions available for reading and writing data to a file with VBA.

There is also a Binary access type for reading and writing to any byte position in
a file as might be done with an image; however, this technique is beyond the
scope of this book.

The Open statement requires several arguments, including a string that designates the path
to a specified file. If the file does not exist, then one will be created. The Open statement also
requires an access mode (Append, Binary, Input, Output, or Random) and a file number. Optional
parameters include an access parameter (Read, Write, or Read Write), lock (used to restrict
operations on the file from other programs), and record length (specifies the length of the
buffer or record).

Open “C:\Data\Test.txt” For Input As #1

The preceding line opens a file named Test.txt found at the designated path for input, and
assigns the file to the file number 1. If the file is not found, then one will be created at the
designated location with the name Test.txt.

You can open multiple files in your VBA programs, but they must be assigned
unique file numbers.

HINT

HINT

289Chapter 7 • Error Handling, Debugging, and Basic File I/O

Figure 7.14

The Open dialog
box of the
FileDialog

object.

Title property

AllowMultiSelect
property

InitialFileName property

FilterIndex property

290 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Member Description

ChDir Changes the current directory.

ChDrive Changes the current drive.

CurDir Returns the current directory path.

Dir Returns the name of a file, directory, or folder that matches a pattern,
file attribute, or the volume label of a drive.

EOF End of file.

FileAttr The mode used to open a file with the Open statement.

FileCopy Copies a file from a source path to a destination path.

FileDateTime Returns the date and time that a file was created or last modified.

FileLen Returns the length of a file in bytes.

FreeFile Returns an Integer representing the next file number available for
use by the Open statement.

GetAttr Returns an Integer representing the attributes of a file or directory.

Kill Deletes a file or files.

Loc Specifies the current read/write position within an open file.

LOF Returns a Long integer specifying the length of an open file in bytes.

MkDir Creates a new directory.

Reset Closes all disk files opened using the Open statement.

RmDir Deletes an empty directory.

Seek Returns a Long integer specifying the current read/write position within an open file.

SetAttr Sets attribute information for a file.

TA B L E 7. 2 M E M B E R S O F T H E F I L E S Y S T E M O B J E C T

These methods are primarily designed to be used with the Open statement, but you may also
find them useful with the other objects and methods discussed in this chapter.

291Chapter 7 • Error Handling, Debugging, and Basic File I/O

Example Return Value

ChDir “C:\Documents and Settings” or ChDir “..” N/A

ChDrive “D:” N/A

MsgBox CurDir Outputs the current directory path
in a message box.

fileName = Dir(“C:\test.txt”, vbNormal) The file name if it exists.
Otherwise an empty string.

EOF(fileNum) A Boolean value indicating whether
the end of an opened file (specified
with a file number) has been reached.

Mode = FileAttr(fileNum, 1) Returns a Long integer indicating the
mode used to open a file (Input,
Output, Random, and so on).

FileCopy “C:\TestFile.txt”, “D:\TestFile.txt” N/A

fileDate = FileDateTime(“C:\test.txt”) For example, 1/23/2004 10:25:14 AM

fileSize = FileLen(“C:\test.txt”) For example, 4

FileNumber = FreeFile For example, 2

myAttr = GetAttr(CurDir) 0=Normal, 1=Read-Only, 2=Hidden,
4=System, 16=Directory, 32=Archive

Kill “C:\test.txt” N/A

MyLocation = Loc(1) A Long integer

FileLength = LOF(1) For example, 4

MkDir “TestDir” N/A

Reset N/A

RmDir “TestDir” N/A

Seek(1) If the file is opened in Random mode
it returns the number of the next
record, otherwise it returns the
current byte position in the file.

SetAttr “C:\test.txt”, vbReadOnly N/A

292

Sequential Access Files
Writing information to a sequential access file is sort of like recording music to a cassette
tape. The songs vary in length and are recorded one after the other. Because it is hard to
know the location of each song on the tape, it is difficult to quickly access a particular song.
When information is written to a sequential file, the individual pieces of data (usually
stored in variables) vary in length and are written to the file one after the other. For example,
a sequential file containing names and phone numbers may look something like what’s
shown here:

“John Smith”, “111-2222”

“Joe James”, “123-4567”

“Jane Johnson”, “456-7890”

The names and phone numbers were all written to the file as strings so they are enclosed in
quotes. Numerical values written to a sequential access file will not contain the quotes. The
strings containing the names vary in length and will require different amounts of memory
for storage. If access to a part of the sequential file is desired at a later time (say we want
Jane Johnson’s phone number), the entire file must be read into memory because it is not
possible to know the location of the desired component within the file. After loading the
file, the content must be searched for the desired value. This makes sequential access inef-
ficient with very large files, because it will take too long to access the desired information.
With smaller files, however, that do not take long to read, sequential access will work well.
The CreateSeqFile() sub procedure writes textual information from the first three rows in
columns A and B of a worksheet to a sequential access file.

Public Sub CreateSeqFile()

Dim filePath As String

Dim I As Integer

filePath = ActiveWorkbook.Path & “\SeqPhone.txt”

Open filePath For Output As #1

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Access Type Writing Data Reading Data

Sequential Print#, Write# Input#, Input

Random Put Get

TA B L E 7. 3 F I L E A C C E S S M O D E S W I T H V B A

For I = 1 To 3

Write #1, Cells(I, “A”).Value, Cells(I, “B”).Value

Next I

Close #1

End Sub

The procedure above uses a For/Next loop to write the contents of the first three cells of
columns A and B to a file called SeqPhone.txt. The I/O operation is terminated with the Close
statement. The resulting file as viewed from Notepad is shown in Figure 7.15.

Using Write # places quotes around each value written to the file. The file contains three
lines of data because Write # adds a new line character to the end of the last value written
to the file; because the For/Next loop iterates three times, the Write # statement was executed
three times, resulting in three lines of data.

Because the structure of the file is known, it is a simple task to alter the CreateSeqFile() pro-
cedure to create a new procedure that reads the data.

Public Sub ReadSeqFile()

Dim filePath As String

Dim I As Integer

Dim theName As String

Dim theNumber As String

I = 1

filePath = ActiveWorkbook.Path & “\SeqPhone.txt”

Open filePath For Input As #1

Do While Not EOF(1)

Input #1, theName, theNumber

Cells(I, “A”).Value = theName

Cells(I, “B”).Value = theNumber

I = I + 1

293Chapter 7 • Error Handling, Debugging, and Basic File I/O

Figure 7.15

Using Notepad to
view a sequential
file created using

VBA code.

294

Loop

Close #1

End Sub

I changed the Open statement in the ReadSeqFile() procedure to allow for data input, and I
replaced Write # with Input #. I also replaced the For/Next loop with a Do-loop and used the
EOF() function in the conditional to test for the end of the file. The EOF() function accepts
the file number as an argument and returns true when the end of the file is reached. The
loop, therefore, continues as long as the EOF() function returns false (Do While NOT False
equates to Do While True). Variables must be used to hold the strings returned from the file.
Two variables (theName and theNumber) are used in order to match the structure of the pro-
cedure that wrote the data to the file.

Random Access Files
Random access files allow the programmer to access specific values within the file without
having to load the entire file into memory. This is accomplished by ensuring that the indi-
vidual data elements are of the same length before writing to the file. Again, consider the
example of a phone book. Instead of storing the information as variable-length strings, the
name and phone number can be stored with fixed length strings. The combination of the two
fixed length strings that follow require the same amount of memory for every line written
to the file. This will make it easy to locate a particular line in the file when the data is input.

Dim theName As String*20

Dim theNumber As String*8

If the name to be stored is less than 20 characters, then spaces are added to match the
defined length. If the string exceeds 20 characters, only the first 20 characters of the string
are stored; therefore, it is important to define the length of the string so that it will be long
enough to contain any possible value, yet not so long that too much memory is wasted by
saving lots of spaces. The resulting data file might then look something like this:

“John Smith ”, “111-2222”

“Joe James ”, “123-4567”

“Jane Johnson ”, “456-7890”

Each line in the file requires the same amount of memory to store and is referred to as a
record. Records can be represented by one or more values of the same or different data type
(string, integer, and so on). Because the length of each record is identical, finding a specific
record in the file without loading the entire file into memory is relatively easy (as you will
see shortly).

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Rather than declare the individual elements of a record as separate variables, it is useful to
define a custom data type that can be used in a variable declaration. The variable of the
newly defined type can include all the desired elements of the record. To define a phone
record for the previous example, a custom data type that includes both string elements
must be declared in the general declarations section of a module.

With the new data type definition, any variable can now be declared in a procedure as type
Phone as shown in the CreateRanAccessFile() sub procedure. Individual elements of the
phoneRec variable are accessed using the dot operator. To take full advantage of the custom
data type, I write the phoneRec variable to a file using random access.

Private Type Phone

theName As String*20

theNumber As String*8

End Type

Public Sub CreateRanAccessFile()

Dim phoneRec As Phone

Dim filePath As String

Dim I As Integer, recNum As Integer

recNum = 1

filePath = ActiveWorkbook.Path & “\randomPhone.dat”

Open filePath For Random As #1 Len = Len(phoneRec)

For I = 1 To 3

phoneRec.theName = Cells(I, “A”).Value

phoneRec.theNumber = Cells(I, “B”).Value

Put #1, recNum, phoneRec

recNum = recNum + 1

Next I

Close #1

End Sub

The length of the record is specified by passing the variable phoneRec to the Len() function.
The data is written to the file using the Put statement. (You should read a random access
file with the Get statement.) An integer variable indicating the record number (recNum)
must also be included with the custom variable in the Put statement so VBA knows where
to insert the value within the file. The record number (indicated by the variable recNum in
the CreateRanAccessFile() procedure) must begin with the value 1.

295Chapter 7 • Error Handling, Debugging, and Basic File I/O

296 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Chapter Project: Word Find
The Word Find project is an Excel VBA program that creates word search puzzles. Words for
a puzzle are associated with a topic that the program uses to sort the data. The topics and
words used in a puzzle are stored in a random access file. The file containing the words and
topics is accessed and displayed by the program. New words and topics for puzzles can be
added to the file by the user. A puzzle is created when the user selects individual words and
places them within a fifteen by fifteen grid running in any direction. After placing the
words, the empty spaces in the puzzle are randomly filled with letters before printing. The
Word Find program is stored on the accompanying CD-ROM as Wordfind.xls.

Requirements for Word Find
The objectives for the Word Find project are to demonstrate some basic techniques for file I/O
and error handling in a VBA program. To accomplish the task, I use an Excel worksheet as
the grid for a word search puzzle and a VBA form for updating the data required by the pro-
gram. The requirements for the program follow:

1. A VBA form (UserForm object) shall be used as the interface for updating the program’s
data (words and topics) stored in a random access file.

2. The form shall display all unique topics stored in the data file.

3. The form shall display all words stored in the data file that are associated with a
user-selected topic.

In the Real World
Many applications save data to a type of random access file that is more commonly referred to
as a database. Database files such as those created by MS Access (.mdb extension) offer a lot
more power to the programmer relative to the random access file created by VBA’s Open state-
ment. A single database file normally contains multiple tables of data that are linked together
through related fields (columns). Furthermore, it is usually possible to use a database’s pro-
gramming engine to link your VBA program to a database file such that you can quickly retrieve
and update very specific data.

With Excel, it is possible to link your VBA program to an Access database (and many others) even
if the Access GUI has not been installed on your computer. Unfortunately, it would take at least
an entire book to properly discuss database normalization, the Structured Query Language
(SQL), and ActiveX Data Objects (ADO)—the topics required to understand and use database
files in your VBA program.

4. The form shall allow the user to add new records to the data file.

5. The form shall allow the user to update (edit) previously stored words in the data file
for an existing topic. Note that the program will not allow for existing topics to be
updated.

6. The form shall display new and updated records as they are created.

7. An Excel worksheet shall be used to create the word search puzzle.

8. The puzzle worksheet shall isolate an area of cells (fifteen by fifteen cells in size) for
displaying a puzzle.

9. The puzzle worksheet shall isolate an area of cells for displaying the list of words
that have been added to a puzzle.

10. The puzzle worksheet shall isolate an area of cells for displaying help/error messages
to the user when creating a puzzle.

11. The puzzle worksheet shall isolate an area of cells for displaying a puzzle’s title.

12. The puzzle worksheet shall display a list of unique topics from the data file for the
user to choose from when creating a puzzle.

13. The puzzle worksheet shall display a list of words from the data file associated with
the topic selected by the user.

14. The user shall be able to select a word from the displayed list of words on the puzzle
worksheet and add it to the puzzle by indicating a starting position on the puzzle
grid.

15. The user shall be able to select a direction for a word added to the puzzle from a
series of buttons on the worksheet.

16. The program shall validate the user’s selection for the location of a word to ensure
the entire word fits within the defined area of the puzzle grid. There will be no
validation to prevent a word from overwriting another word(s).

17. The user shall be able to clear the contents of the puzzle, the list of words in the
puzzle, the list of topics, and the list of words associated with the selected topic from
a button on the worksheet.

18. The user shall be able to finish a puzzle by adding randomly selected uppercase letters
to the empty cells in the puzzle grid from a button on the worksheet.

19. The user shall be able to print the puzzle and the list of words contained in the puzzle
from a button on the worksheet.

20. The user shall be able to display the form used to update the data in the data file
from a button on the worksheet. Note that the user will not be able to edit the data
in the file directly from the worksheet.

297Chapter 7 • Error Handling, Debugging, and Basic File I/O

298

21. The user shall be able to refresh the list of topics, and list of words associated with
a topic from a button on the worksheet.

22. The data for the program shall be stored in a random access file containing three
fields of data per record. The first field contains the numbers used to identify spe-
cific records (rows) of data. The second field contains the topics, and the third field
contains the words associated with the topics in the second field.

23. The data from the file shall be stored in a worksheet that is hidden from the
user. The data from the file shall be written to the worksheet when the user elects
to show the update form.

24. When the user chooses to edit an existing record or add a new record, the program
shall write the new data to the text file and the hidden worksheet.

As with every program you write, you will edit the requirement list after you have designed
it; sometimes even after you started writing the program because it is nearly impossible to
think of everything from the beginning. I added and removed requirements from the pre-
vious list after careful consideration of the program’s design and objectives.

Designing Word Find
The Word Find program’s design features objects that are now familiar to you, including a
VBA form and a worksheet. The form serves to allow the user to update the data file with
new records as well as edit existing records. The worksheet serves as the interface for creating
a word search puzzle. The program takes advantage of the grid-like nature of a worksheet to
create the puzzle. Words are written to the puzzle using individual cells for holding the letters.
After the puzzle is finished, it is a relatively simple task to print it for someone’s enjoyment.

Designing the Form
The program is divided into two parts: the first part contains the form used to update the
data file and the second part contains the worksheet used to create a puzzle. Figure 7.16
shows the form’s design from the IDE.

Whenever a program is required to display a list, you should immediately think List Box or
Combo Box control. I have added a Combo Box control to the form for displaying the list of
topics and a List Box control for displaying the list of words associated with a selected topic.
That is, when the user changes the selection in the Combo Box control the list of words in
the List Box control will also change to match the topic.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Although I have not previously discussed the Text Box control, you should find it fairly easy
to use. It is a simple control that serves to collect textual input from a user. As with all con-
trols, you should edit the Name and appearance (size, font, and so on) properties of the Text
Box control at Design Time. The value of the Text property stores whatever is currently
entered in the Text Box, so this property is frequently accessed in your programs. Other
properties of interest include: MaxLength, MultiLine, PasswordChar, SpecialEffect, TextAlign,
and WordWrap. You should take the time to familiarize yourself with the Text Box control and
some of its properties. The Text Box controls I added to the form serve to display the cur-
rently selected topic and word. I have used Text Box controls instead of Label controls
because the user must be able to enter new values into these controls.

The purpose of the form is to allow the user to enter new records or edit existing records
stored in the Wordfind.txt data file. I added the Text Box and Command Button controls to
the form in order to achieve this purpose. To add a new record, the user can enter a new word
in the appropriate text box control with an existing topic, or the user can enter a new topic
before clicking the Add New button. To edit an existing record, the user must first select a
word from the List Box to enable the Update button. Next, the user can edit the word and
click Update. When the Update button is clicked, the existing record will be overwritten in the
data file.

The data from the file must also be added to a hidden worksheet. I decided to use the work-
sheet because I wanted to display the data alphabetically sorted; thus taking advantage of
Excel’s ability to quickly sort data. It also makes sense to store the data somewhere it can be
quickly and easily accessed, yet still protected. A worksheet that is hidden from the user
works quite well, although further protections should probably be added (password protec-
tion of the worksheet). It is also important that the data in the hidden worksheet be updated
as the file is updated by the user.

299Chapter 7 • Error Handling, Debugging, and Basic File I/O

Figure 7.16

Design Time
view of the form
used for updating

the Word Find
program’s
data file.

Text Box controls

Command Button controls

Label control

Combo Box control

List Box control

300

I have left a couple of potential problems in the form’s design. It does not protect against
adding identical records to the data file, does not allow records to be deleted, and it does
not allow the user to edit the name of an existing topic (in case of a misspelling). I have left
the challenge of solving these limitations to the reader along with several other enhancements
to the program (see the Challenges at the end of the chapter).

Designing the Worksheet
A word search puzzle is created on a worksheet—the design of which is shown in Figure 7.17.
A worksheet makes an ideal interface for this program since it is easy to write letters to the
cells and print a portion of the worksheet (as you will see in the program code).

As was done with the form, the worksheet contains a Combo Box and List Box control for
displaying the topic and word lists, respectively. The data listed in the ActiveX controls on the
puzzle worksheet will be read only from the hidden worksheet and not from the data file.
Nothing is included directly on the worksheet that will allow the user to edit the data file.
Instead, a Command Button control with the caption Update Lists is used to show the form
that updates the data file. Other Command Button controls added to the worksheet include
the following:

• Clear All: Clears data from the puzzle and ActiveX controls.

• Refresh: Refreshes the topic and word lists. This button is meant to be used after
the user has updated the data using the form.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 7.17

The Word Find
worksheet
interface.

Merged cells

Puzzle grid

Merged cells

Combo Box control

Command
Button controls

List Box control

Merged cells

Command
Button controls

• Print Puzzle: Prints the puzzle.

• Pictures of arrows: Eight buttons for selecting the direction in which the program
writes the word in the puzzle.

• Fill: Randomly fills the empty cells in the puzzle with uppercase letters.

In addition to the ActiveX controls, several areas of the worksheet are reserved for the puzzle,
the puzzle title, the word list, and help messages. The puzzle grid is fifteen by fifteen cells
and is formatted with borders and color. The range A1 : Q1 is merged and formatted with a
light colored font so that the title of the puzzle (topic) is centered in the middle of the puzzle.
The fifteen cells in the eight rows immediately below the puzzle are merged into three cells
per row. This gives a total of twenty-four cells for holding the list of words that have been
added to a puzzle. Finally, an area of cells just to the right of the puzzle are merged and for-
matted in a large font to hold error and help messages output by the program. All of these
areas were assigned defined names (Puzzle, Topic, WordList, and Output) to make the code
that accesses these ranges easier to read.

Program execution is meant to proceed as follows:

1. The user populates the Combo Box and List Box controls with topics and words by
clicking the Refresh button.

2. The user selects a topic from the Combo Box control and a new list of words is dis-
played in the List Box.

3. The user selects a word from the list in the List Box.

4. The user selects a cell in the puzzle grid.

5. The user clicks a button indicating the direction in which to write the word and the
word is added to the puzzle.

6. The user continues to add words to the puzzle until he or she is satisfied with the
puzzle.

7. The user clicks the Fill button and the program fills empty cells in the puzzle grid.

8. The user clicks the Print Puzzle button and the puzzle and word list is printed.

Writing the Code for Word Find
As the interface for this program has two distinct parts, so will the code. The form and work-
sheet components can be written and tested as independent programs, then added together
to complete this project. I will start with the code module for the UserForm object that
updates the data file.

301Chapter 7 • Error Handling, Debugging, and Basic File I/O

302

Writing the Code for the Userform Module
The program’s data is stored in a random access file. The advantage to this type of file is that
it can be quickly updated as long as your program correctly tracks the record number. In
order to do this, a custom data type is required to ensure each record uses the same amount
of memory. The custom data type named PuzzleList is built from three elements: a long
integer and two strings. The long integer is an identification number (IDNum), and as you will
see, I use it to make finding specific records easier. The two strings will hold the topics and
words. The integer variable recNum is still required to serve as a place locator for I/O operations
on a random access file. The value of the recNum variable will match that of the identification
number which makes it easier to locate and update records in the data file. A variable array
of type PuzzleList is declared at module level to be used in reading the data from the file
and writing it out to the hidden worksheet.

Option Explicit

Private recNum As Integer

Private Type PuzzleList

IDNum As Long

topic As String * 30

word As String * 15

End Type

Private curList() As PuzzleList

When the form is shown, its Activate() event procedure is triggered and its code calls the
procedures that load the data from the file and writes it to the hidden worksheet. The data
file’s topics are retrieved from the worksheet by passing the dynamic array variable topics to
the GetUniqueTopics() sub procedure. The name of the procedure, GetUniqueTopics(), implies
its function. Remember that the data file, and thus the hidden worksheet, contains a topic
for every word; therefore numerous repeat values for the topic exist. The array is passed by
reference, so when it is re-dimensioned and filled with values in the GetUniqueTopics() sub
procedure, it can be added to the Combo Box control via its List property (the List property
of the Combo Box control is a variant array). The last line of code in the Activate() event pro-
cedure sets the topic that will be displayed in the Combo Box control. Be aware that setting
the Value property of a Combo Box control triggers its Change() event.

Private Sub UserForm_Activate()

Dim topics() As String

‘—————————————————-

‘Initialize worksheet and controls.

‘—————————————————-

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

GetAllRecords

WriteToWorksheet

GetUniqueTopics topics

cmbTopics.List = topics

cmbTopics.Value = cmbTopics.List(0)

End Sub

The purpose of the GetAllRecords() sub procedure is to load the data from the file and store
it in the module level variable array curList. Because the procedure involves file I/O, some
validation and error handling code is included.

To avoid file I/O errors that may crash the program, first the path to the Workdfind.txt file
must be validated and appropriate action taken if the file is not found. The Dir() function
serves to validate the file path. The Dir() function is a member of the FileSystem object, but
can be used without its object qualifier. In the GetAllRecords() sub procedure, the Dir()
function returns the string “WordFind.txt” if this file is found at the specified path. If the
file does not exist at the specified path then the Dir() function returns a zero-length string
(“”) and the GetFile() function is called to display a file dialog and give the user a chance
to find and select the file to open. If the user finds the file and selects OK, then its path is
returned to the variable filePath. If the file’s path is not found and the user selects Cancel,
then code execution continues.

The second step in avoiding a program crash from a file I/O error is adding an error handler.
Although it is difficult to foresee errors other than an invalid path and/or file name, cer-
tainly more possibilities for file I/O errors exist (for example, a corrupt file); therefore, the
error handler is added to display a message box indicating the nature of the error and end
the program. The error handler is also called if the file path is invalid and the user chooses
to cancel the file dialog used to find the file (this returns an empty string for the file path).
I handle the error this way because of the difficulty in predicting what error might occur.
All I know is that the Open statement has failed, so the program must end. Most importantly,
the error handler prevents the program from crashing and starting the debugger.

Normally, I would place the call to the GetFile() sub procedure in the error handler, but the
Open statement does not fail if a valid path is used and the file is not found at this location.
Instead a new file is created and that’s not the required action.

Private Sub GetAllRecords()

Dim filePath As String

Dim curRec As PuzzleList

303Chapter 7 • Error Handling, Debugging, and Basic File I/O

304

‘—————————————————————————-

‘Load all records from random access text file into

‘variable array of custom data type.

‘—————————————————————————-

On Error GoTo FileIOError

filePath = ActiveWorkbook.Path & “\Wordfind.txt”

‘——————————-

‘Test for valid path.

‘——————————-

If Dir(filePath) <> “Wordfind.txt” Then

filePath = GetFile

End If

‘—————————————————————-

‘Open the file and fill records into custom

‘variable array.

‘—————————————————————-

recNum = 1

Open filePath For Random Access Read As #1 Len = Len(curRec)

Do While Not EOF(1)

Get #1, recNum, curRec

ReDim Preserve curList(recNum - 1)

curList(recNum - 1).IDNum = curRec.IDNum

curList(recNum - 1).word = curRec.word

curList(recNum - 1).topic = curRec.topic

recNum = recNum + 1

Loop

Close #1

recNum = recNum - 1

Exit Sub

‘—————————————————————

‘Use error handler for unforeseen errors.

‘—————————————————————

FileIOError:

MsgBox “The program has encountered an error trying to “ & _

“access the file Wordfind.txt. “ & vbCrLf & Err.Description, _

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

vbCritical, “Error “ & Err.Number

End

End Sub

The GetFile() sub procedure is only called from the GetAllRecords() sub procedure when the
data file is not found at the specified path. The procedure shows a FileDialog object to allow
the user to search the computer’s file structure in order to locate the file. If the user locates
the file and clicks the OK button, then the file’s path is returned to the calling function.

Private Function GetFile() As String

Dim fileDiag As FileDialog

‘——————————————————-

‘Configure and show the open dialog.

‘Return path to calling function.

‘——————————————————-

Set fileDiag = Application.FileDialog(msoFileDialogFilePicker)

With fileDiag ‘Configure dialog box

.Filters.Clear

.Filters.Add Description:=”All files”, Extensions:=”*.*”

.Filters.Add Description:=”Text”, Extensions:=”*.txt”, Position:=1

.AllowMultiSelect = False

.FilterIndex = 1

.Title = “Select Wordfind.txt File”

.InitialFileName = “”

If .Show = -1 Then ‘User clicked Open

GetFile = .SelectedItems(1) ‘Return path to selected file

End If

End With

End Function

The data is written to a hidden worksheet named Lists that is in the same workbook as the
Wordfind puzzle worksheet. After the sheet is cleared, the topics, words, and identification
numbers are copied to the first three columns of the Lists worksheet from the module level
variable array curList (this variable was initialized in the GetAllRecords() sub procedure)
using a For/Next loop. I qualify the Lists worksheet with an object variable (ws) because it is
never the active worksheet.

The last statement in the procedure sorts the data alphabetically, first by topic and then by
word. This is the major reason I write the data to the worksheet—to take advantage of its fast
sorting capabilities so the data is listed alphabetically in the ActiveX controls. Furthermore,

305Chapter 7 • Error Handling, Debugging, and Basic File I/O

306

when the topics are sorted alphabetically, it’s easier to pick out the unique values from the
list. Note that I passed the Sort() method of the Range object several arguments. They are all
optional, but at the very least, Key1 and Key2 must be included in order to specify the primary
and secondary keys on which to sort, which in this case, are the topic and word, respectively.
I also included the MatchCase argument to specify a case-insensitive sort. You can also pass the
Sort() method arguments that specify the sort order for each key (Order1, Order2), whether
or not to ignore a header row (Header), whether to sort by rows or columns (Orientation), and
whether or not to treat numbers as text for each key (DataOption1, DataOption2).

Excel worksheets are hidden and unhidden by selecting Format, Sheet, Hide/Unhide
in the application window.

Private Sub WriteToWorksheet()

Dim lastRow As Integer

Dim ws As Worksheet

Dim I As Integer

Set ws = Worksheets(“Lists”)

‘——————————

‘Clear the worksheet

‘——————————

lastRow = ws.UsedRange.Rows.Count

ws.Range(“A2:C” & lastRow).ClearContents

‘—————————————-

‘Write records to worksheet

‘—————————————-

For I = 2 To recNum

ws.Cells(I, “A”).Value = Trim(curList(I - 2).topic)

ws.Cells(I, “B”).Value = Trim(curList(I - 2).word)

ws.Cells(I, “C”).Value = Trim(curList(I - 2).IDNum)

Next I

‘———————-

‘Sort records.

‘———————-

TRICK

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

ws.Range(“A2:C” & recNum).Sort Key1:=ws.Range(“A2”), Key2:=ws.Range(“B2”), _

MatchCase:=False

End Sub

When the user selects a new topic, the Change() event of the Combo box is triggered and the
List Box is updated with the words associated with the selected topic. This event is also trig-
gered from the Activate() event of the UserForm object when the List property of the Combo
Box is assigned the values in the variable array topics. The words are added to the List Box
by the GetWords() sub procedure which reads the values from the hidden worksheet.

Private Sub cmbTopics_Change()

txtTopic.Text = cmbTopics.Text

txtWord.Text = “”

cmdUpdate.Enabled = False

GetWords

End Sub

Private Sub GetWords()

Dim I As Integer

Dim ws As Worksheet

‘—————————————————————

‘Add word list to list box associated with

‘topic on combo box.

‘—————————————————————

lstWords.Clear

Set ws = Worksheets(“Lists”)

For I = 2 To ws.UsedRange.Rows.Count

If ws.Cells(I, “A”).Value = cmbTopics.Value Then

lstWords.AddItem ws.Cells(I, “B”).Value

End If

Next I

End Sub

The Click() event of the List Box is triggered whenever the user selects a new value from its
list. After the selected word is copied to the Text Box control, the ID number associated with
the selected word is retrieved using the GetIDNum() function. The ID number is copied to a
Label control on the form. I originally added the Label control to the form to test and help
debug the program. It serves no purpose to allow the user to see this value; however, the

307Chapter 7 • Error Handling, Debugging, and Basic File I/O

308

Label control serves as a convenient location for storing the number of the record currently
displayed on the form. The record number is required for updating the file so it can simply
be read from the Label control when the user selects the Update button. If you like, you can
set the Visible property of the Label control to false to prevent the user from seeing the
record number. Figure 7.18 shows an example of how the form appears when a word has
been selected from the List Box control.

Private Sub lstWords_Click()

txtWord.Text = lstWords.Text

lblIDNum.Caption = GetIDNum

cmdUpdate.Enabled = True

End Sub

Private Function GetIDNum() As Long

Dim ws As Worksheet

Dim c1 As Range, c2 As Range

‘————————————————————————————

‘Loop through columns A and B in Lists worksheet to find

‘the correct topic and word and then return ID number.

‘————————————————————————————

Set ws = Worksheets(“Lists”)

For Each c2 In ws.Range(“A2:A” & ws.UsedRange.Rows.Count)

If c2.Value = cmbTopics.Value Then

For Each c1 In ws.Range(“B2:B” & ws.UsedRange.Rows.Count)

If c1.Value = lstWords.Text Then

GetIDNum = ws.Range(“C” & c1.Row).Value

Exit Function

End If

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 7.18

The update form
from the Word
Find program
displaying a

user-selection.

Next

End If

Next

End Function

To add a new record to the data file, the user must simply enter values for the topic and
word before clicking the Add New button. Calls to the AddRecToWorksheet(), AddToControls(),
and AddToFile() sub procedures update the hidden Lists worksheet and the ActiveX controls,
and add a new record to the data file. Note that a new ID number must be assigned to the
new record. The code in these procedures should be familiar to you.

Private Sub cmdAddNew_Click()

‘—————————————————————

‘If nothing in text boxes then exit the sub.

‘—————————————————————

If txtWord.Text = “” Or txtTopic.Text = “” Then

MsgBox “You must enter a topic and word before updating the list.”, _

vbOKOnly, “No Entry”

txtWord.SetFocus

Exit Sub

End If

‘———————————————————————————

‘Add the new record to the Lists worksheet, the file,

‘the List box, and the combo box.

‘———————————————————————————

AddRecToWorksheet

AddToControls

AddToFile

txtWord.Text = “”

recNum = recNum + 1

End Sub

Private Sub AddRecToWorksheet()

Dim ws As Worksheet

309Chapter 7 • Error Handling, Debugging, and Basic File I/O

310

‘—————————————————————————

‘Update the “Lists” worksheet with the new record.

‘—————————————————————————

Set ws = Worksheets(“Lists”)

ws.Cells(recNum + 1, “A”).Value = txtTopic.Text

ws.Cells(recNum + 1, “B”).Value = txtWord.Text

ws.Cells(recNum + 1, “C”).Value = recNum

ws.Range(“A2:C” & recNum + 1).Sort Key1:=ws.Range(“A2”), _

Key2:=ws.Range(“B2”), _

Order1:=xlAscending, Header:=xlNo, MatchCase:=False, _

Orientation:=xlSortColumns, DataOption1:=xlSortNormal

End Sub

Private Sub AddToControls()

Dim I As Integer

‘——————————————————-

‘Update the controls on the Userform.

‘Update topic only if its new.

‘——————————————————-

lblIDNum.Caption = recNum

lstWords.AddItem txtWord.Text

For I = 0 To cmbTopics.ListCount - 1

If cmbTopics.List(I) = txtTopic.Text Then

Exit Sub ‘The topic is not new, so exit sub.

End If

Next I

cmbTopics.AddItem txtTopic.Text

End Sub

Private Sub AddToFile()

Dim filePath As String

Dim curRec As PuzzleList

On Error GoTo FileIOError

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

‘——————————-

‘Test for valid path.

‘——————————-

filePath = ActiveWorkbook.Path & “\Wordfind.txt”

If Dir(filePath) <> “Wordfind.txt” Then

filePath = GetFile

End If

curRec.topic = txtTopic.Text

curRec.word = txtWord.Text

curRec.IDNum = recNum

‘—————————————————————————-

‘Add the new record to the random access text file.

‘—————————————————————————-

Open filePath For Random Access Write As #1 Len = Len(curRec)

Put #1, recNum, curRec

Close #1

Exit Sub

‘—————————————————————

‘Use error handler for unforseen errors.

‘—————————————————————

FileIOError:

MsgBox Err.Description, vbCritical, “Error “ & Err.Number

End

End Sub

Updating the data file is a bit trickier. Care has to be taken to ensure the correct record in
the file is overwritten. This is where the Label control becomes so convenient because its
Caption property holds the number of the currently displayed record. A record is updated
when the user clicks the Update button, presumably after editing an existing word from the
list. The Click() event procedure of the Update button updates the Lists worksheet, the
ActiveX controls, and the data file with calls to UpdateWorksheet(), UpdateControls(), and
UpdateFile(), respectively. Note that the topic is validated before the record is updated
because the program requirements specified that no updates to the topics are allowed.

Private Sub cmdUpdate_Click()

Dim I As Integer

311Chapter 7 • Error Handling, Debugging, and Basic File I/O

312

Dim validTopic As Boolean

For I = 0 To cmbTopics.ListCount - 1

If cmbTopics.List(I) = txtTopic.Text Then

validTopic = True

Exit For

End If

Next I

If Not validTopic Then

MsgBox “You must use a current topic before updating a record.”, _

vbOKOnly, “No Valid Topic”

Exit Sub

End If

‘———————————————————————————

‘Update record in worksheet, controls, and text file.

‘Only allow updates to the word and not the topic.

‘———————————————————————————

UpdateWorksheet

UpdateControls

UpdateFile

cmdUpdate.Enabled = False

End Sub

Private Sub UpdateWorksheet()

Dim ws As Worksheet

Dim updateRow As Long

Set ws = Worksheets(“Lists”)

updateRow = ws.Range(“C2:C” & ws.UsedRange.Rows.Count).Find(lblIDNum).Row

ws.Range(“B” & updateRow).Value = txtWord.Text

End Sub

Private Sub UpdateControls()

‘—————————————————————

‘Update the list box containing the words.

‘—————————————————————

lstWords.List(lstWords.ListIndex) = txtWord.Text

End Sub

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Private Sub UpdateFile()

Dim filePath As String

Dim curRec As PuzzleList

On Error GoTo FileIOError

filePath = ActiveWorkbook.Path & “\Wordfind.txt”

‘——————————-

‘Test for valid path.

‘——————————-

If Dir(filePath) <> “Wordfind.txt” Then

filePath = GetFile

End If

‘———————————

‘Update current record.

‘———————————-

curRec.IDNum = lblIDNum.Caption

curRec.topic = txtTopic.Text

curRec.word = txtWord.Text

Open filePath For Random Access Write As #1 Len = Len(curRec)

Put #1, Val(lblIDNum.Caption), curRec

Close #1

Exit Sub

‘—————————————————————

‘Use error handler for unforeseen errors.

‘—————————————————————

FileIOError:

MsgBox Err.Description, vbCritical, “Error “ & Err.Number

End

End Sub

The last procedure listed in the code module for the UserForm object is the QueryClose()
event procedure that is simply used to hide the form.

Private Sub UserForm_QueryClose(Cancel As Integer, CloseMode As Integer)

frmWordFind.Hide

End Sub

313Chapter 7 • Error Handling, Debugging, and Basic File I/O

314

Because the GetUniqueTopics() sub procedure is called from the code modules for the UserForm
and the Worksheet objects, I entered it into a standard code module and gave it public scope.
It is called from the Activate() event of the UserForm object in order to retrieve the unique
values for the topics listed in the Lists worksheet. The variable array topics is passed by ref-
erence and filled with the unique topics from column A of the worksheet.

Public Sub GetUniqueTopics(topics() As String)

Dim c As Range, cRange As Range

Dim ws As Worksheet

Dim lastRow As Integer

Dim curValue As String

Dim I As Integer

‘————————————————————————

‘Set object variables. The range should only be

‘set to the used portion of column A.

‘————————————————————————

Set ws = Worksheets(“Lists”)

lastRow = ws.UsedRange.Rows.Count

Set cRange = ws.Range(“A2:A” & lastRow)

‘—————————————————————————-

‘Loop through column A in Lists worksheet and find

‘all unique topics.

‘—————————————————————————-

For Each c In cRange

If c.Value <> curValue Then

ReDim Preserve topics(I)

curValue = c.Value

topics(I) = c.Value

I = I + 1

End If

Next

End Sub

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Writing the Code for the Worksheet Module
The remaining code is entered into the code module for the Worksheet object and controls the
creation of a word search puzzle. This part of the program only reads data from the hidden
worksheet (Lists) so it does not require any file I/O. The code for the Worksheet object module
is listed next.

In the same manner as the Activate() event of the UserForm object, the Click() event of the
Refresh button (Name property cmdRefresh) serves to fill the Combo Box and List Box controls
with the unique topics and words from the Lists worksheet. To clear the worksheet of data
requires triggering the Click() event of the Clear All button (cmdClear). The named ranges
on the worksheet make the program more readable by identifying what ranges must be
cleared of data. Note that the ClearContents() method of the Range object fails if the range
contains merged cells; therefore, the Value property of the ranges defined by the names Output
and Topic are initialized to a zero-length string in order to clear their content.

Option Explicit

Private Sub cmdRefresh_Click()

Dim topics() As String

‘————————————————————

‘Get unique topics and add to combo box.

‘————————————————————

GetUniqueTopics topics

cmbTopics.List = topics

cmbTopics.Value = cmbTopics.List(0)

End Sub

Private Sub cmdClear_Click()

‘——————————————————————-

‘Clear the puzzle board and ActiveX controls.

‘——————————————————————-

Range(“WordList”).ClearContents

Range(“Puzzle”).ClearContents

Range(“Output”).Value = “”

Range(“Topic”).Value = “”

cmbTopics.Clear

lstWords.Clear

End Sub

315Chapter 7 • Error Handling, Debugging, and Basic File I/O

316

The Change() event of the Combo Box control and the GetWords() sub procedure fill the List
Box control with the words associated with the selected topic. The selected topic serves as a
title for the puzzle. After the words are added to the List Box, the user may select one item
from the list (MultiSelect property fmMultiSelectSingle). This triggers the Click() event pro-
cedure of the List Box control which contains a single statement that outputs a string to the
worksheet range named Output telling the user what to do next.

Private Sub cmbTopics_Change()

‘——————————————————————————-

‘Get words associated with topic and add to list box.

‘——————————————————————————-

GetWords

Range(“Topic”).Value = cmbTopics.Value ‘Add a title to the puzzle.

End Sub

Private Sub GetWords()

Dim c As Range, cRange As Range

Dim ws As Worksheet

Dim lastRow As Integer

‘————————————————————————

‘Set object variables. The range should only be

‘set to the used portion of column A.

‘————————————————————————

Set ws = Worksheets(“Lists”)

lastRow = ws.UsedRange.Rows.Count

Set cRange = Worksheets(“Lists”).Range(“A2:A” & lastRow)

‘—————————————————————————-

‘Loop through column A in Lists worksheet and find

‘all unique topics. Then add word from column B to List box.

‘—————————————————————————-

lstWords.Clear

For Each c In cRange

If c.Value = cmbTopics.Value Then

lstWords.AddItem ws.Range(“B” & c.Row).Value

End If

Next

lstWords.AddItem “”

End Sub

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Private Sub lstWords_Click()

Range(“Output”).Value = “Select a location in the puzzle grid and “ _

& “click on an arrow to specify the words direction.”

End Sub

The Click() event procedure of the Command Button controls containing an image of an
arrow (I used the Picture property to load the images at Design Time) sends program execution
to the PlaceWord() sub procedure. The PlaceWord() sub procedure accepts a string argument
that indicates the direction (“N”, “NE”, “E”, “SE”, “S”, “SW”, “W”, and “NW”) in which to write
the word in the puzzle. There are a total of eight Click() event procedures that call the
PlaceWord() sub procedure.

Private Sub cmdEast_Click()

PlaceWord (“E”)

End Sub

Private Sub cmdNE_Click()

PlaceWord (“NE”)

End Sub

Private Sub cmdNorth_Click()

PlaceWord (“N”)

End Sub

Private Sub cmdNW_Click()

PlaceWord (“NW”)

End Sub

Private Sub cmdSE_Click()

PlaceWord (“SE”)

End Sub

Private Sub cmdSouth_Click()

PlaceWord (“S”)

End Sub

Private Sub cmdSW_Click()

PlaceWord (“SW”)

End Sub

Private Sub cmdWest_Click()

PlaceWord (“W”)

End Sub

The idea of adding a word to a puzzle in one of eight different directions is conceptually
pretty simple. The practical solution to the problem is a bit more difficult. You should rec-
ognize that in order to copy each letter of the word to a worksheet cell, you must loop

317Chapter 7 • Error Handling, Debugging, and Basic File I/O

318 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

through the string value of the word one letter per iteration. Next, while proceeding through
each letter in the string variable, you must increment or decrement a row and/or column
index (depends on the specified direction) in order to locate the next cell before copying a
letter to that cell.

The PlaceWord() sub procedure writes the selected word in the List Box control to the specified
cells on the worksheet in its puzzle area. For example, if the user clicks on the Command
Button control named cmdSE (bottom right button in the 3 × 3 grid of buttons), then the selected
word will be written on a diagonal proceeding down and to the right on the puzzle grid, as
shown with the word “BOSTON” in Figure 7.19.

An error handler is required in the PlaceWord() sub procedure to ensure that the user has
selected a word from the List Box control before trying to add it to the puzzle. VBA gener-
ates an error if you try to access the ListIndex property of the List Box control when no
item(s) is selected.

The user’s selection is validated with a call to the SelectionValid() function procedure
before it is written to the puzzle with a call to the WriteWord() sub procedure. The constants
INC, DEC, and NOCHANGE are passed to the WriteWord() sub procedure and specify whether to
increment, decrement, or do not change the value of the row and column indices while
adding the word to the puzzle one letter at a time. For example, if the word is supposed to
go straight left to right (wordDirection = “E”), then the column index of the cell must be
incremented by one and the row index of the cell must remain unchanged while the word
is added to the puzzle letter by letter.

Figure 7.19

Adding words
to a puzzle.

Private Sub PlaceWord(wordDirection As String)

Const INC = 1, DEC = -1, NOCHANGE = 0

On Error GoTo ErrorHandler

If Not SelectionValid(wordDirection) Then

Exit Sub

End If

Range(“Output”).Value = “”

‘—————————————-

‘Write word to puzzle grid.

‘—————————————-

Select Case wordDirection

Case Is = “NW”

WriteWord DEC, DEC

Case Is = “N”

WriteWord DEC, NOCHANGE

Case Is = “NE”

WriteWord DEC, INC

Case Is = “E”

WriteWord NOCHANGE, INC

Case “SE”

WriteWord INC, INC

Case “S”

WriteWord INC, NOCHANGE

Case “SW”

WriteWord INC, DEC

Case “W”

WriteWord NOCHANGE, DEC

End Select

WordToList ‘Add word to the list below puzzle.

Range(“Output”).Value = “”

Exit Sub

ErrorHandler:

Range(“Output”).Value = “Please select a word from the list!”

End Sub

319Chapter 7 • Error Handling, Debugging, and Basic File I/O

320

The SelectionValid() and CountCells() function procedures work together to validate the
user’s selection on the puzzle grid for adding a word. The selection is validated to ensure
that the user has selected only one cell, that this cell is within the puzzle grid, and that the
entire length of the word fits in the puzzle grid. The CountCells() function procedure helps
with the latter task.

Private Function SelectionValid(wordDirection As String) As Boolean

Dim wordLength As Integer

‘—————————————————

‘Test that user selected one cell.

‘—————————————————

If Selection.Count <> 1 Then

SelectionValid = False

Range(“Output”).Value = “You must select ONE cell in the puzzle grid.”

Exit Function

End If

‘————————————————————

‘Start cell must be in the puzzle range.

‘————————————————————

If (Selection.Row < 2 Or Selection.Row > 16) Or _

(Selection.Column < 2 Or Selection.Column > 16) Then

SelectionValid = False

Range(“Output”).Value = “Your selection must be in the puzzle grid.”

Exit Function

End If

‘————————————————————-

‘The word should fit within puzzle range.

‘————————————————————-

wordLength = Len(lstWords.List(lstWords.ListIndex))

If wordLength > CountCells(wordDirection) Then

Range(“Output”).Value = “The selection does not fit in the target area.”

SelectionValid = False

Exit Function

End If

SelectionValid = True

End Function

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The CountCell() function procedure first calculates the number of available cells going up,
down, left, and right from the user’s selection on the puzzle grid. Next, a Select/Case structure
chooses the number of available cells from these four possible values based on the word’s
direction. The function returns the maximum allowed number of cells that can be used to
add a word to the puzzle in the desired direction. The SelectionValid() function procedure
compares this returned value to the length of the word selected by the user in order to vali-
date that word.

Private Function CountCells(wordDirection As String) As Integer

Dim numCellsUp As Integer, numCellsDown As Integer

Dim numCellsLeft As Integer, numCellsRight As Integer

numCellsUp = Selection.Row - 1

numCellsDown = 17 - Selection.Row

numCellsLeft = Selection.Column - 1

numCellsRight = 17 - Selection.Column

‘——————————————————————————————

‘Determine the number of available cells in the puzzle grid

‘for given word direction. Ignore placement of other words.

‘——————————————————————————————

Select Case wordDirection

Case Is = “NW”

CountCells = Application.WorksheetFunction.Min(_

numCellsUp, numCellsLeft)

Case Is = “N”

CountCells = numCellsUp

Case Is = “NE”

CountCells = Application.WorksheetFunction.Min(_

numCellsUp, numCellsRight)

Case Is = “E”

CountCells = numCellsRight

Case “SE”

CountCells = Application.WorksheetFunction.Min(_

numCellsDown, numCellsRight)

Case “S”

CountCells = numCellsDown

321Chapter 7 • Error Handling, Debugging, and Basic File I/O

322

Case “SW”

CountCells = Application.WorksheetFunction.Min(_

numCellsDown, numCellsLeft)

Case “W”

CountCells = numCellsLeft

End Select

End Function

The WriteWord() sub procedure adds the word to the puzzle one letter at a time. The word
is first converted to all uppercase letters using the UCase() function before a Do-Loop iter-
ates through the word letter by letter. Each letter is written to the appropriate cell based
on the values of the vertical and horizontal arguments. These arguments were passed in
from the PlaceWord() sub procedure as the INC, DEC, and NOCHANGE constants. That is, the values
of the vertical and horizontal arguments will either be 1, -1, or 0. These values are used to
increment, decrement, or leave unchanged the row and column indices passed to the Cells
property of the Worksheet object.

Private Sub WriteWord(vertical As Integer, horizontal As Integer)

Dim curWord As String, wordLength As Integer

Dim I As Integer

Dim cellRow As Integer, cellCol As Integer

‘———————————

‘Initialize variables.

‘———————————

curWord = UCase(lstWords.Value)

wordLength = Len(curWord)

cellRow = Selection.Row

cellCol = Selection.Column

‘—————————————————————————————

‘Write the word to the puzzle grid in indicated direction.

‘—————————————————————————————

Do

Cells(cellRow, cellCol).Value = Mid(curWord, I + 1, 1)

I = I + 1

cellRow = cellRow + vertical

cellCol = cellCol + horizontal

Loop While (I < wordLength)

End Sub

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

After a word has been successfully added to the puzzle, the WordToList() sub procedure adds
the word to the next cell in a series of cells below the puzzle grid. These cells are a merged
set of five cells across one row. For example, the range B18 : F18 is merged into one cell as is
G18 : K18, L18 : P18, B19 : F19, and so on. Because merged cells are accessed using the row and
column index of the upper most left cell in the range, the merged cells of interest are those
with column index values of 2, 7, and 12. Even though I use a For/Each loop to iterate through
the defined range of merged cells, I must qualify the cell in a conditional statement using
a column index because the loop still accesses every cell in the merged range and I only
want it to access every fifth cell.

Private Sub WordToList()

Dim c As Range

‘————————————————————————

‘Add the word to the list below the puzzle grid.

‘Cells are merged across five columns.

‘————————————————————————

For Each c In Range(“WordList”)

If c.Value = “” And (c.Column = 2 Or c.Column = 7 Or _

c.Column = 12) Then

c.Value = lstWords.Value

Exit Sub

End If

Next

End Sub

The Click() event procedure of the Fill button (cmdFill) fills the empty cells in the puzzle
grid with randomly chosen uppercase letters. To generate random uppercase letters, I gen-
erate random numbers between 65 and 90 and convert them to their ASCII character using
the Chr() function. (The ASCII characters A through Z are represented by decimal values 65
through 90.) A For/Each loop searches the puzzle grid for empty cells and adds a letter to
each. Figure 7.20 shows an example of a completed puzzle that is ready for printing.

Private Sub cmdFill_Click()

Dim c As Range

Dim ranNum As Integer

‘———————————————————-

‘Output random uppercase characters to

‘empty cells in puzzle grid.

‘———————————————————-

323Chapter 7 • Error Handling, Debugging, and Basic File I/O

324

Randomize

For Each c In Range(“Puzzle”)

ranNum = Int(26 * Rnd + 65)

If c.Value = “” Then c.Value = Chr(ranNum)

Next

Range(“Output”).Value = “”

End Sub

The data update form is shown modally when the user clicks the Update Lists button
(cmdUpdateLists).

Private Sub cmdUpdateLists_Click()

frmWordFind.Show vbModal

End Sub

The last procedure listed is the Click() event of the Print button (cmdPrint). This procedure
first removes the borders and background color from the area of cells that define the puzzle
so they won’t show on the printout. Next, the PrintArea property of a PageSetup object is set
to the string representing the range that defines the puzzle grid and the list of words below
it. I defined the range A1 : Q25 in the Wordfind worksheet to the name “Print_Area”. The

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 7.20

A completed
word search

puzzle.

325Chapter 7 • Error Handling, Debugging, and Basic File I/O

PrintOut() method of the Worksheet object prints the defined area. Finally, the original borders
and color are added back to the puzzle area of the worksheet. An error handler is included
to display any runtime errors generated by trying to print the puzzle (for example, No
printer available).

Private Sub cmdPrint_Click()

On Error GoTo ErrorHandler

‘————————————————————

‘Format puzzle with no borders or color.

‘————————————————————

Range(“Puzzle”).Select

Selection.Borders(xlEdgeLeft).LineStyle = xlNone

Selection.Borders(xlEdgeTop).LineStyle = xlNone

Selection.Borders(xlEdgeBottom).LineStyle = xlNone

Selection.Borders(xlEdgeRight).LineStyle = xlNone

Selection.Borders(xlInsideVertical).LineStyle = xlNone

Selection.Borders(xlInsideHorizontal).LineStyle = xlNone

Selection.Interior.ColorIndex = xlNone

‘————————————————————-

‘Print the puzzle and word list below it.

‘————————————————————-

ActiveSheet.PageSetup.PrintArea = “Print_Area”

ActiveSheet.PrintOut Copies:=1

‘—————————————————————-

‘Reset the borders and color on the puzzle.

‘—————————————————————-

Selection.Borders(xlEdgeLeft).LineStyle = xlContinuous

Selection.Borders(xlEdgeTop).LineStyle = xlContinuous

Selection.Borders(xlEdgeBottom).LineStyle = xlContinuous

Selection.Borders(xlEdgeRight).LineStyle = xlContinuous

Selection.Borders(xlInsideVertical).LineStyle = xlContinuous

Selection.Borders(xlInsideHorizontal).LineStyle = xlContinuous

Selection.Interior.ColorIndex = 34

Exit Sub

326

‘———————————————————

‘Output unforeseen errors with printing.

‘———————————————————

ErrorHandler:

MsgBox Err.Description, vbCritical, “Error”

End

End Sub

This concludes the Word Find program. If you know someone who likes word search puzzles,
you can now create a few for him or her. Add the features described in the Challenges sec-
tion at the end of the chapter to more easily create puzzles with this program.

Chapter Summary
In this chapter, you learned how to create and access text files using sequential and random
methods. VBA includes a number of additional methods for file I/O not covered in this chapter;
however, learning how to read and write text files is a good first step and often comes in
handy with applications that only require access to small amounts of data. You also learned
how to create error-handling routines in VBA procedures that prevent the program from
crashing because of a runtime error. Finally, you learned how to use some of the debugging
tools available from the VBA IDE to help write near error-free code.

This chapter introduced the last of the fundamental programming concepts covered in this
book. The remaining chapters are concerned with programming specific objects in the Excel
object model.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

327Chapter 7 • Error Handling, Debugging, and Basic File I/O

C H A L L E N G E S

1. Load the Wordfind.xlsproject and open the IDE. Find the PlaceWord() sub procedure
and set a breakpoint on the statement If Not SelectionValid(wordDirection)
Then. Return to Excel and run the program by clicking the Clear All button. Do not
click refresh! Next, select a cell in the puzzle grid and click on an arrow button.
When the debugger is invoked follow the order of program execution to see
which statement generates the runtime error and triggers the code in the error
handler.

2. Load the Wordfind.xls project and open the IDE. Set a break point to the state-
ment that starts the For/Each loop in the GetWords() sub procedure listed in the
code module for the Wordfind worksheet. Inside the For/Each loop, add a
Debug.Print statement that outputs the value of the iterative cell to the Imme-
diate window. Run the program to initiate debug mode and step through the pro-
gram code while viewing the content of the Immediate window.

3. Clear the content of the Wordfind worksheet by clicking the Clear All button.
Proceed to the IDE and replace the Debug.Print statement in Challenge 2 with
the Debug.Assert statement: Debug.Assert c.Value = cmbTopics.Value. Next, pro-
ceed to the Wordfind worksheet and click the Refresh button. After the program
enters debug mode view the worksheet again to see if the content of the ActiveX
controls has changed.

4. Write two VBA programs that save the content of the first 10 rows and columns
in a worksheet to a tab-delimited text file. First use the SaveAs() method of the
Worksheet object, then try using the Open statement to create a sequential access
file. Be sure to include an error handler in the procedure that writes the data to
the file.

5. Write two VBA programs that read the content of the text file created in Challenge
4. Use the Open() method of the Workbooks collection object and the Open state-
ment.

6. Write a VBA program that saves the content of the first 3 rows and columns in a
worksheet to a random access file. Write another program that reads the file
into a worksheet.

7. Write a VBA program containing a UserForm with an Image control and a Command
Button control such that the click of the Command Button control allows the
user to select an image for loading into the Image control.

8. Edit the form module’s code and/or design in the Word Find program to prevent
the user from adding identical records to the data file.

(continues)

328 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

C H A L L E N G E S (C O N T I N U E D)
9. Edit the form module’s code in the Word Find program to allow the user to

update existing topics in the data file.

10. Edit the form module’s code in the Word Find program to allow users to delete
selected records from the data file.

11. Edit the error handler in the GetAllRecords() sub procedure of the form module
in the Word Find program such that it creates a new data file when a runtime
error occurs. Be sure to fix any errors in other procedures that may result from
the creation of an empty data file.

12. Enhance the Word Find program to include validation procedures that prevent
the user from overwriting words previously added to a puzzle.

13. Enhance the Word Find program to include the ability to save and reload puzzles.
Do not save the entire worksheet; instead, save the content of the puzzle and
word list to a text file (give the file a custom extension such as .puz). Then write
a procedure to read the text file into the Wordfind worksheet. Be sure to include
a FileDialog object to allow the user to select a saved puzzle.

14. Enhance the Word Find program to include the ability to automatically generate
puzzles based on the user’s selection of a topic. The program should randomly
select twenty-four words (or as many words that are in the list for that topic)
from the list and add them to the puzzle without overwriting each other. Alter-
natively, the program can add just those words selected by the user from the List
Box control. Be sure to change the MultiSelect property of the List Box control
to allow for multiple selections.

Using XML with
Excel-VBA Projects

8
C H A P T E R

I
f you have any experience with the World Wide Web, whether it’s devel-
oping Web sites or just browsing, then I am sure you have heard of XML
(eXtensible Markup Language). Although not a new technology, it has

only been in recent years that XML has generated a lot of interest. This is partially
evident by Microsoft’s decision to add XML support to some of its Office programs
(including Excel) starting with version 10.0 (XP) and extending that support in
version 11.0 (2003). I expect the level of XML support to increase in subsequent
versions of Office applications. In this chapter I will discuss the following topics:

• Basic XML syntax

• Opening and saving XML files with Excel

• Importing and exporting XML documents with VBA

• The XmlMap Object

• The ListObject Object

Project: Revisiting the Math Game
In Chapter 4 I introduced you to the Math Game program which used a worksheet
interface to quiz a student’s elementary math skills. In this chapter, I will discuss
enhancements to the Math Game program that rely on data from XML files.
Enhancements to the Math Game program include the following:

• The ability to use prewritten tests read from an XML file instead of
generating problems for a test randomly.

C H A P T E R

• The ability to track students’ test scores and automatically increase the difficulty
level of their next test based on the results of their last test.

• The ability to save students’ scores to an XML file.

The Math Game program relies on XML files serving as a database that store the tests, student
information, and test scores. The main interface for the program is similar to the one from
Chapter 4 and is shown in its revised form in Figure 8.1. Worksheets have been added to the
program interface to allow a user (i.e., teacher) to quickly write and save exams, update stu-
dent lists, and view test results.

Introduction to XML
You may already be familiar with the HyperText Markup L anguage (HTML) which is used by
Web developers to instruct browsers on how to display Web pages. For example, when the
following HTML code is saved as a text file with an .html (or .htm) extension, any Web
browser can recognize the file and display its markup. In this case, a browser displays the
message HELLO WORLD! on a white background as shown in Figure 8.2.

<HTML>

<HEAD>

<TITLE>Basic HTML Document</TITLE>

</HEAD>

330 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 8.1

The Math Game.

<BODY BGCOLOR=WHITE>

<P>HELLO WORLD!</P>

</BODY>

</HTML>

HTML uses predefined tags enclosed in angle brackets (< >) to identify different formatting
elements of a document. You don’t really have to know HTML to identify the purpose of the
tags in the previous document. For example, <TITLE> </TITLE> defines the title of the document
and <BODY> </BODY> defines that part of the document displayed in the browser window (see
Figure 8.2). You will note that the tags do not appear in the Web browser window. Of course,
that is the purpose of HTML—to use tags to mark up how a document should appear in a
browser window without showing the markup language.

In addition to the few tags I’ve shown here, there are many more HTML tags for
marking up how a Web document is displayed; however, it’s not this book’s pur-
pose to teach you HTML. Instead, I suggest consulting some of the numerous
Web tutorials or available books if you are interested in learning HTML.

XML is another markup language with similarities to HTML, but with an entirely different
purpose. In the next few sections, I will define and describe what it takes to create a basic
XML document.

What Is XML?
XML is a text-based markup language designed to describe a document’s data, not its appear-
ance. HTML is great for displaying data, but it is difficult and awkward to use for describing
data. XML serves to separate the two processes making it easier to do both. Because HTML dis-
plays data and XML describes data, the two technologies are complimentary, not competitive.

TRICK

331Chapter 8 • Using XML with Excel-VBA Projects

Figure 8.2

A basic HTML
document.

Document title

Document body

332

When you create a new XML document, you define the tags; therefore, you are essentially
defining a new language. This is an area where XML differs significantly from HTML. Yes,
both markup languages use tags, but with HTML, all tags are predefined by a standard.

Even though you define the tags, there are a few rules you must follow when creating an
XML document. The standards that define XML syntax (discussed later) must be followed,
and if you intend to allow other applications to use your language, you must create another
document called a schema that defines the tags in your document. All of this results in XML
documents that store your data as text files for use in Web browsers and other applications.

XML is becoming very popular for several reasons. Foremost, XML is free, so you do not have
to pay any proprietary fees in order to use it. With regard to Web development, XML files are
text files and the Web is very good at exchanging data stored in text files. XML finally gives
Web developers a consistent (and best of all free) medium in which to share data, but the
Web is not the only medium for which XML is well-suited. Application development often
requires the use of text files and/or database files for storing and sharing critical data. XML
allows for the use of a consistent medium for data I/O without having to install and config-
ure additional drivers or pay for proprietary software. Finally, because XML documents are
text documents, they can easily be shared between applications across any platform.

An XML Sample
In the Math Game program, I create an XML language that describes an elementary math
test. The following XML code describes a test for the Math Game program. The code is only a
portion of the document, but the omitted portion is repetitive.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

In the Real World
In the highly competitive world of computer technology it is a rare occurrence when everyone
agrees on a standard. The XML standard (defined by the World Wide Web Consortium—see
http://www.w3c.org) has been widely adopted and continues to grow in terms of its use and
available support tools (editors, code libraries, samples, and so on). The popularity of XML
continues to grow even though it is relatively simplistic when compared to other data-
communication technologies used to store and transfer information. Will XML eventually
replace some of these more advanced and efficient technologies? Only time will tell, but the
idea of using a free technology that doesn’t require the installation of special software drivers,
or the purchase of special licenses, is intriguing.

<?xml version=”1.0” encoding=”UTF-8”>

<test>

<problem>

<number>1</number>

<left_operand>2</left_operand>

<operator>+</operator>

<right_operand>1</right_operand>

<answer>3</answer>

</problem>

<problem>

<number>2</number>

<left_operand>3</left_operand>

<operator>+</operator>

<right_operand>2</right_operand>

<answer>5</answer>

</problem>

</test>

You should be able to recognize that this defines the structure of an elementary math test.
The first line of the code is an XML declaration and defines the XML version and character
encoding used in the document. In this example, the document conforms to the 1.0 speci-
fication of XML (see http://www.w3c.org) and uses the Unicode text formatting character set
(UTF-8).

<?xml version=”1.0” encoding=”UTF-8”>

Most XML files begin with a similar line and Excel requires this line, or it won’t recognize
the file as XML and will try to open it as an ordinary text file.

I invented all other tags (<test>, <problem>, <number>, <left_operand>, <operator>,
<right_operand>, and <answer>) used in the document, and examination of the XML docu-
ment’s structure shows a repetitive pattern. The document consists of a set of two <problem>
</problem> tags nested within the root tag <test> </test>. There are also several tags describ-
ing the problem number, operands, operator, and answer nested within each <problem>
</problem> tag; thus, there is a hierarchy to the document’s structure that follows from
<test> to <problem> to all remaining elements.

A test with only two problems doesn’t really test a student’s ability. In reality,
the XML document would contain several more <problem> tags, but I’ve left
them out for brevity.

HINT

333Chapter 8 • Using XML with Excel-VBA Projects

334

XML Syntax
I’ve already discussed how XML allows you to create your own language by defining your
own set of tags to use in a document; however, you still have to follow a standard set of rules
when creating your own XML language. Unlike HTML, the syntax requirements of XML are
strict, but there aren’t very many rules and they are easy to learn.

XML Documents Must Have a Root Element
Every XML document you write must contain a pair of tags that define a root element. In
the previous example, the tags <test> </test> define the document’s root element (I use the
words tag and element interchangeably). All other tags must be nested within this element.
Nested elements are referred to as child elements. There are also sub-child elements and par-
ent elements, but this is just jargon for describing a document’s hierarchy. For example, the
root element <test> is a parent to the child element <problem>. Furthermore, <problem> is a
parent element to the child elements <number>, <left_operand>, <operator>, <right_operand>,
and <answer> which are also sub-child elements to <test>.

XML Elements Must Have a Closing Tag
In HTML, you can get away with omitting the closing tag for many of its elements. For example,
you can omit the closing tags </P> and for closing paragraphs and list elements,
respectively.

<P>This is my paragraph.

This is an item in my list.

In XML, all elements must have a closing tag. To distinguish a closing tag from an opening
tag, you use a forward slash (/) inside the angle bracket of the second tag, as follows:

<p>This is my paragraph.</p>

This is an item in my list.

<name>Fred Flintstone</name>

In cases where tags do not have an ending tag (such as the tag in HTML, used to define
an image), you may use a single tag in XML, but you must also include a forward slash just
before the closing angle bracket, as follows:

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

You may have noticed that the opening declaration in the XML test document
does not have a closing tag. This is because the declaration is not an XML ele-
ment, and is technically not even part of the XML document. The declaration
begins with <? and ends with ?> to indicate that this is a special header line and
not part of the document itself. There is, therefore, no violation of XML syntax.

XML Tags Are Case-Sensitive
In HTML, you are allowed to mix uppercase or lowercase characters. For example, HTML
doesn’t care if you open the body of a document with <BODY> and close it with </body>.

In XML, opening and closing tags must be written in the same case. The tag pair <TEST> </test>
is illegal in XML and must be written as <test> </test> or <TEST> </TEST> or some other com-
bination where the case of each letter in the opening and closing tags match exactly.

Although not required by XML, it is a convention to use all lowercase characters
in your XML tags. To distinguish separate words in a single tag, you may use
mixed case or an underscore, such as <firstName> or <first_name>. At the very
least, you should use descriptive names for your tags as it helps self-document
your XML code.

XML Tags Must Be Properly Nested
In HTML, some tags can be improperly nested but still yield the desired result. The following
HTML statement improperly nests the bold () and italic (<I>) tags.

This sentence is in bold font and the last word is also in <I>italic</I>

In XML, the statement must be written with properly nested tags.

This sentence is in bold font and the last word is also in <i>italic</i>

To help document your XML code, you can include comments in the same manner
that they are used in HTML.

<—This is a comment. —>

XML Attributes Must Be Enclosed in Quotes
In XML, tags may have attributes assigned as name/value pairs. For example, in the XML doc-
ument describing a test for the Math Game, I could extend the definition of the <test> tag to
include a test identification number for the purpose of describing the level of difficulty.

<test testID=”1A”>

HINT

TRICK

TRICK

335Chapter 8 • Using XML with Excel-VBA Projects

336

In this example, testID is an attribute of the tag <test> and it must be assigned a value using
quotes.

Use child elements instead of attributes as much as possible in your XML
documents. There are no rules in XML that state when to use attributes or child
elements; however, it is usually easier to include a child element instead of an
attribute. For example, instead of using the testID attribute, you could just as
easily include it as a child element of <test>.

<test>

<testID>1A</testID>

<!—and so on—>

XML Element Names
I’ve already discussed some aspects of naming your XML element tags, such as their case-
sensitivity and the convention to use all lowercase characters. There are a few more rules
and conventions regarding element names. Rules that you must follow include:

• Names may contain letters, numbers, and other characters.

• Names must not start with a number or punctuation character.

• Names must not start with XML (or any other form of these letters in a different
case).

• Names must not contain spaces.

Remember to use descriptive names for your tags, but avoid the following:

• Overly long names. Names should be descriptive and as short as possible. For example,
don’t use the_students_first_name when first_name is sufficient.

• Using the dash (-), colon (:) or period (.) in a name. Depending on the software that
reads your XML document, you could get into some trouble using these characters
as the program may try to subtract something, or try to invoke a property or method
of an unknown object. The colon is reserved for something called namespaces (not
discussed) and should never be used in an element’s name.

• Unusual characters that may not be supported on all platforms. Characters with
umlauts, accents, and so forth are legal in XML, but if they are not supported by the
software using your XML document, the program may crash.

TRICK

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

XML Schemas
XML schemas are text-based documents written in the XML schema language that describe
the structure of your XML document(s). An XML schema is, in effect, the definition of your
language. In order for other people to use your language in their application they need the
definitions described in the schema. Other applications need this definition in order to
understand the elements’ meaning in your XML document; otherwise, the language cannot
be understood except by your own applications—because, of course, you know the meaning
of your own language. The following schema defines the elements of the XML document
that describes a test for the Math Game program.

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<xsd:element nillable=”true” name=”test”>

<xsd:complexType>
<xsd:sequence minOccurs=”0”>

<xsd:element minOccurs=”0” maxOccurs=”unbounded” nillable=”true”
name=”problem” form=”unqualified”>

<xsd:complexType>
<xsd:sequence minOccurs=”0”>

<xsd:element minOccurs=”0” nillable=”true” type=”xsd:integer”
name=”number” form=”unqualified”>

</xsd:element>
<xsd:element minOccurs=”0” nillable=”true” type=”xsd:integer”

name=”left_operand” form=”unqualified”>
</xsd:element>
<xsd:element minOccurs=”0” nillable=”true” type=”xsd:string”

name=”operator” form=”unqualified”>
</xsd:element>
<xsd:element minOccurs=”0” nillable=”true” type=”xsd:integer”

name=”right_operand” form=”unqualified”>
</xsd:element>
<xsd:element minOccurs=”0” nillable=”true” type=”xsd:integer”

name=”answer” form=”unqualified”>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>

337Chapter 8 • Using XML with Excel-VBA Projects

338 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

If you glance through this code, you may recognize that it’s defining data types and prop-
erties for the elements in the XML document describing a test. Unfortunately, learning how
to write XML schemas is beyond the scope of this book; however, at this point, it really doesn’t
matter because Excel will generate schemas for you if you don’t define them yourself. In the
Math Game program, you will never have to work with a schema even though they are present
and working in the background.

XML Validation
Validation is the process of testing XML documents and schemas to ensure that they follow
the rules of the language. After writing an XML document, you should check to ensure that
it is well-formed; that is, the document must adhere to the syntax rules I’ve already dis-
cussed. The process of testing a document’s form is analogous to compiling a VBA program.
When your VBA program contains syntax errors, you receive a compile error and the debug-
ger is invoked. When your XML document is not well-formed, a good XML editor will display
an error message and highlight the section of the document containing the error.

Although you can use simple text editors such as Notepad for creating XML
documents, these editors cannot validate your code. Instead, I recommend you
find a dedicated XML editor if you intend to spend any time developing applications
that rely on XML documents. Alternatively, you can find XML validation tools on
the internet. One such validation tool can be found at http://www.w3schools
.com/dom/dom_validate.asp.

XML and Excel
Microsoft first added minimal XML support to Office 2000 (so little support that I don’t
really count it) and Excel with the ability to embed XML in spreadsheets saved as HTML doc-
uments. Support for XML has since been extended in Office XP and 2003 where users can
save a spreadsheet as an XML document using either a custom or an Excel-spreadsheet
schema. You can also open XML documents as new spreadsheets or import the data from an
XML document into an existing worksheet.

Many of the features I am about to show, both from the Excel application and
VBA, are supported only in Excel 2003.

Opening and Importing XML Documents into an Excel Worksheet
To open an XML document from the Excel application, select File, Open and then choose the
desired XML file (.xml file extension) from the Open dialog box. After selecting a file, you

HINT

TRICK

will be asked if you want to open the file as an XML list, read-only workbook, or to use the
XML Source Task Pane (see Figure 8.3). Typically, you load the data into a worksheet as an
Excel list in order to take advantage of the data management features a list provides.

If the XML file does not reference an existing schema document (.xsd file extension), Excel
will automatically create one (you may be notified of this fact as shown in Figure 8.4) and
store it internally with the workbook. You don’t have to see the schema, or know how it
describes your XML document, but you should know that it’s there working in the back-
ground defining your data elements for Excel.

When you open an XML file as a list, Excel adds the data to a worksheet and creates a list
(normally created from the Data menu). An Excel list provides additional features and for-
matting that makes it easy to identify and modify the list. Figure 8.5 shows data from an
XML document that describes a list of words and topics (something you might use in the
project for Chapter 7). The list is highlighted with a blue border, and a filter (normally
selected from the Data menu) is automatically applied. In addition, an asterisk marks the
next available row for inserting data into the list. The following XML code defines the basic
structure of the XML file opened in Figure 8.5—the data was omitted for brevity.

<?xml version=”1.0” encoding=”UTF-8”?>

<word_find>

<topic_word_pair>

<topic></topic>

<word></word>

</topic_word_pair>

<!—repeat topic_word_pair element—>

</word_find>

339Chapter 8 • Using XML with Excel-VBA Projects

Figure 8.3

Selecting the
data format

when opening
an XML file.

Figure 8.4

Opening an XML
file with no
referenced

schema.

340 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 8.5

Opening an XML
file as a list.

You can manage the list and the data it contains from the XML selection on the Data menu
and/or the Source Task Pane (see Figures 8.6 and 8.7). For example, you can export changes
to the list to the XML file, refresh the data in the list, edit the properties of the XML map,
and more. As you will see shortly, Excel provides several objects that allow your VBA pro-
grams to accomplish these same tasks.

AutoFilter

List border

Insert row

Figure 8.6

The XML menu
selection in Excel.

Excel also uses the provided (or created) XML schema to create an XML map that serves to
map the elements in the XML file to specific ranges in the worksheet. The map, shown in
the Source Task Pane in Figure 8.7, was created automatically when I opened the XML file.
The topicID element is mapped to the range A1:A23 in the worksheet and word is mapped to
B1:B23. The map tells Excel how changes to the list must be saved in the XML file such that
it preserves its original structure.

You can also import data from an XML file into any existing worksheet by selecting Data,
XML, Import (see Figure 8.6) from the application window. Again, a schema will be auto-
matically created (if one is not referenced) and you will be prompted to select a range in the
worksheet telling where you want the data inserted.

Saving Worksheets to XML Files
Saving existing data from a worksheet to an XML file is easy. Select File, Save As from the
application window and choose one of two possibilities for XML file types from the Save As
dialog box as shown in Figure 8.8.

341Chapter 8 • Using XML with Excel-VBA Projects

Figure 8.7

The XML Source
Task Pane.

342

Saving Data as an XML Spreadsheet
If you choose to save the data as an XML spreadsheet, Excel will use its own schema to define
the document. As you might expect, the XML required to define a spreadsheet is quite long, but
you don’t have to worry about that because Excel creates it for you. The root tag is <Workbook>
and it will contain nested <Worksheet> tags for every worksheet in a workbook. In addition
to the <Worksheet> tags, there are several other tags that describe the formatting and objects
in the workbook. The following code shows the basic format of a document saved using the
Excel-XML structure (data and attributes have been deleted for brevity and clarity).

<Workbook>

<DocumentProperties/>

<OfficeDocumentSettings/>

<ExcelWorkbook/>

<Styles>

<Style/>

</Styles>

<Names>

<NamedRange”/>

</Names>

<Worksheet>

<Table>

<Column>

<Row>

<Cell>

<Data/>

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 8.8

Excel’s Save As
dialog.

Save as an XML
spreadsheet

Save as XML data

</Cell>

</Row>

</Table>

<WorksheetOptions/>

</Worksheet>

</Workbook>

The document resulting from saving a workbook with the Excel-XML structure is just a text
file; however, it is also an XML file defined using the Excel-XML schema. As a well-formed
and schema-defined XML document, it can be opened by other applications that support
XML such that the formatting and other elements of the spreadsheet (for example, formu-
las) are preserved. Unfortunately, Excel cannot save objects such as autoshapes and charts in
an Excel workbook to an XML document.

Saving a Worksheet as XML Data
Saving data in a worksheet to an XML document without following the Excel-XML schema is
a bit more complicated. In fact, you can’t save worksheet data to a new XML file using the
file type XML Data (see Figure 8.8) unless it has first been mapped to an existing schema. The
easiest way to save data to a new XML file without using the Excel-XML format is to first open
or import an existing XML file with the desired structure as a list into a worksheet. The XML
file doesn’t even need data, just the required tags. After opening the XML file and editing
the data in Excel, you can simply save it as a new XML file using the map created by Excel
when you first opened or imported the file.

XML and VBA
The XML object model may still be evolving, but the Excel 2003 object model is reasonably
robust with regard to XML support. There are several methods of the Workbook object that
can be used to import and export XML data. Furthermore, the XmlMaps object has been added
to the object hierarchy to provide more methods for data management.

Saving and Opening XML Documents
To save a workbook as an XML document use the SaveAs() method of the Workbook object.
The following example saves the workbook as an XML document with the name myFile.xml
using two named arguments (Filename and FileFormat) with the SaveAs() method.

ActiveWorkbook.SaveAs Filename:= “myFile.xml”, FileFormat:=xlXMLSpreadsheet

The constant xlXMLSpreadsheet assigned to the FileFormat argument specifies the Excel-XML
format.

343Chapter 8 • Using XML with Excel-VBA Projects

344 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

To open an XML document previously saved with the Excel-XML structure use either the
Open() or OpenXML() methods of the Workbooks collection object.

Workbooks.Open Filename:= “myFile.xml”

If the structure of the XML document is Excel-XML, then the opened file will conform to that
of a normal Excel spreadsheet; however, if the file is just a well-formed XML document (not
structured as Excel-XML), then Excel will open it as tabular data. Figure 8.9 shows the result
of opening the words.xml file with the Open() method of the Workbooks collection object. The
words.xml file had not been previously saved using the Excel-XML structure.

The OpenXML() method of the Workbooks collection object includes an optional argument
(LoadOption) that allows you to choose how to open the XML file. VBA-defined constants you
can use with the LoadOption argument include: xlXmlLoadImportToList, xlXmlLoadOpenXml,
xlXmlLoadMapXml, and xlXmlLoadPromptUser. To import the document as a list, use xlXml-
LoadImportToList; otherwise xlXmlLoadOpenXml will open the document in tabular form.
Using the constant xlXmlLoadMapXml will display the schema-map of the XML document file
in the XML Source Task Pane, but will not import any data into the worksheet. Finally, the
constant xlXmlLoadPromptUser displays a prompt (see Figure 8.3) to the user so he or she can
choose how to open the file.

Workbooks.OpenXML Filename:= “myFile.xml”, LoadOption:=xlXmlLoadImportToList

Figure 8.9

An XML file
opened in tabular

form.

The XmlMap Object
When you open an XML file, either programmatically or through the application interface,
Excel automatically creates an XML map. An XML map is represented in VBA by the XmlMap
object. An XML map serves to map the elements and attributes of an XML file to worksheet
ranges. For example, the XML map named word_find_Map in Figure 8.7 maps the range A1:A23
to the <topic> element in the words.xml document and the range B1:B23 to the <word> element.

Each XmlMap object is contained in an XmlMaps collection object which is returned from the
Workbook object via the XmlMaps property. The following code loops through the XmlMaps col-
lection in the active workbook and prints the names of all XmlMap objects in the active work-
book to the Immediate window.

Dim maps As XmlMaps

Dim myMap As xmlMap

Set maps = ActiveWorkbook.XmlMaps

For Each myMap In maps

Debug.Print myMap.Name

Next

The XmlMap object includes four methods for importing and exporting data between an XML
file or string variable, and worksheet ranges mapped to the object. Use the Import() and Export()
methods of the XmlMap object to import and export data between an XML file and mapped
ranges on a worksheet. The following example first imports data from the XML file called
words.xml using an existing XmlMap object in the active workbook and then exports the same
data to the file words2.xml. The file words2.xml is created if it doesn’t already exist.

Dim filePath As String, filePath2 As String

filePath = ActiveWorkbook.Path & “\words.xml”

filePath2 = ActiveWorkbook.Path & “\words2.xml”

ActiveWorkbook.XmlMaps(1).Import URL:=filePath, Overwrite:=True

ActiveWorkbook.XmlMaps(1).Export URL:=filePath2, Overwrite:=True

The URL argument of the Import() and Export() methods is a string that specifies a file’s
path. When the Overwrite argument is true, the data is overwritten in the worksheet cells
or the file, depending if you are importing or exporting data, respectively. At least one
XmlMap object (note the index value used with the XmlMaps property) must already exist in the
active workbook, or the previous code listing will fail to execute. Furthermore, the XmlMap
object should be compatible with the structure of the XML file words.xml, or the data will
not be properly mapped to the appropriate ranges in the worksheet. Presumably, you can

345Chapter 8 • Using XML with Excel-VBA Projects

346

create the XmlMap object from a compatible file by opening it in the Excel application prior
to invoking these methods, so this shouldn’t present a problem.

To copy data between a string variable and a mapped range on a worksheet, use the
ImportXml() and ExportXml() methods of the XmlMap object. The following example exports
data mapped with the XmlMap object named word_find_Map to the string variable xmlStr.
The ExportXml() method returns an XlXmlExportResult constant (xlXmlExportSuccess or
xlXmlExportValidationFailed) indicating the result of the data export. The names of the con-
stants are self-explanatory.

Dim xmlStr As String

If ActiveWorkbook.XmlMaps(“word_find_Map”).ExportXml(Data:=xmlStr) <>

xlXmlExportSuccess Then

MsgBox “Export failed”

End If

Similarly, to copy data from the string variable xmlStr to the cells mapped by the XmlMap
object named word_find_Map, I use the ImportXml() method of the XmlMap object. The content
of the variable xmlStr must be structured as a well-formed XML document.

If ActiveWorkbook.XmlMaps(“word_find_Map”).ImportXml(xmlData:=xmlStr) <>

xlXmlImportSuccess Then

MsgBox “Import failed”

End If

The ImportXML() method returns an XlXmlImportResult constant that I have used to test for
a successful import (the remaining two constants are xlXmlImportElementsTruncated and
xlXmlImportValidationFailed).

There are several properties associated with the XmlMap object. Most notable are the Name,
DataBinding, IsExportable, RootElementName, and Schemas properties. The DataBinding prop-
erty returns an XmlDataBinding object. The XmlDataBinding object represents the connection
between the data source (XML file) and the XmlMap object. The Refresh() method of the
XmlDataBinding object quickly refreshes the mapped cells with the data from the XML file.

ActiveWorkbook.XmlMaps(“word_find_Map”).DataBinding.Refresh

The IsExportable property of the XmlMap object returns a Boolean value indicating whether
or not Excel can export the mapped data. Potential reasons that an export would fail
include: file path error, improper mappings, or incompatibilities with the schema.

The Schemas property returns an XMLSchemas collection object contained by an XmlMap object.
Typically, there is only one XmlSchema object per XmlMap object; so specifying an index value

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

of 1 with the Schemas property returns the desired XmlSchema object. The XmlSchema object rep-
resents the schema that defines the mapped XML document.

The following code listing first exports mapped data to a file called words3.xml before out-
putting the value of a few properties of an XmlMap object to the Immediate window. The
XmlMap object was created from the words.xml file whose structure was listed earlier in this
chapter.

Dim myMap As XmlMap

Dim filePath As String

filePath = ActiveWorkbook.Path & “\ words3.xml”

Set myMap = ActiveWorkbook.XmlMaps(“word_find_Map”)

With myMap

If .IsExportable Then

.Export URL:=filePath, Overwrite:=True

Else

MsgBox “Not exportable”

End If

Debug.Print .Name

Debug.Print .RootElementName

Debug.Print .Schemas(1).XML

End With

The XML property of the XmlSchema object (returned by the Schemas property of the XmlMap
object) returns a string representing the schema used in the mapping; thus, it is an excel-
lent method for collecting a schema for an existing XML file. Unfortunately, the XML prop-
erty returns the string without white space so you have to add the line feeds and
indentation to make the text well-formed.

Other methods of the Workbook object you can use to save or import XML data include:
SaveAsXmlData(), XmlImport(), and XmlImportXml(). The SaveAsXmlData() method exports
mapped data to an XML document file. It requires two arguments—Filename and Map—that
are used to specify a name for the XML file and the XmlMap object representing the mapped
data.

Dim myMap As XmlMap

Dim filePath As String

Set myMap = ActiveWorkbook.XmlMaps(1)

filePath = ActiveWorkbook.Path & “\test.xml”

ActiveWorkbook.SaveAsXMLData Filename:=filePath, Map:=myMap

347Chapter 8 • Using XML with Excel-VBA Projects

348

The XmlImport() and XmlImportXml() methods import data from an XML file and data stream
(string variable), respectively. Both methods require a data source (XML file or string variable)
and an XmlMap object. The arguments Overwrite and Destination are optional, but Destination
must be omitted if the XmlMap object has already been loaded into the workbook. This makes
sense because once an XmlMap object has been created, the data is mapped to specific ranges
in the worksheet and cannot be changed. The following code imports XML data from the
file sample.xml to a mapped range on the active worksheet using an existing XmlMap object
(sample_Map).

Dim myMap As XmlMap

Dim filePath As String

filePath = ActiveWorkbook.Path & “\sample.xml”

Set myMap = ActiveWorkbook.XmlMaps(“sample_Map”)

ActiveWorkbook.XmlImport URL:=filePath, ImportMap:=myMap, Overwrite:=True

The XmlImport() method imports data from an XML file whereas the XmlImportXml() method
imports XML data from a string variable. The data stored in the string variable (xmlStr in the
following example) must be that of a well-formed XML document and is assigned to the Data
argument of the XmlImportXml() method.

ActiveWorkbook.XmlImportXml Data:=xmlStr, ImportMap:=myMap2, Overwrite:=True

The ListObject Object
As discussed earlier, when you import XML data into a worksheet you have the choice to
insert the data as an Excel list. When adding XML data to a list, Excel creates a ListObject
object to represent the list. The ListObject object is subordinate to the Worksheet object;
therefore, all ListObject objects added to a worksheet are returned as a collection via the
ListObjects properties of the Worksheet object. Individual ListObject objects can be accessed
from the ListObjects collection.

Dim lstObjects as ListObjects

Dim lstObject As ListObject

Set lstObjects = ActiveSheet.ListObjects

Set lstObject = lstObjects(1)

Each XML data set that has been mapped to a list is represented by a ListObject object. The
ListObject object provides an easy path to the range of cells mapped to an XML document.
Use the Range property of the ListObject object to return the Range object representing these
mapped cells. To return the range representing the insert row for a list (that’s the row with

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

the asterisk, see Figure 8.5), use the InsertRowRange property. Please note that the active
cell(s) must be within the ListObject object’s range or the InsertRowRange property will fail.

Dim lstObject As ListObject

Dim insertRow As Range

Set lstObject = ActiveSheet.ListObjects(1)

‘——————————————————————

‘If list is not active then activate its range.

‘——————————————————————

If Not lstObject.Active Then

lstObject.Range.Activate

End If

Set insertRow = lstObject.InsertRowRange

To ensure the ListObject object’s range is active, the Boolean value returned by the Active
property of the ListObject object is tested in a conditional statement. The ListObject
object’s range is activated with the Activate() method of the Range object. This allows you
to set the Range object returned by the InsertRowRange property of the ListObject object. It
is now a simple matter to add new data to the list. For example, if the data is mapped to two
columns that include a name and number, you can add new data as follows:

insertRow.Cells(1, 1).Value = “Duane Birnbaum”

insertRow.Cells(1, 2).Value = 5

Here I use the Cells property of the Range object to return the first cell in the first two
columns of the range represented by the variable insertRow.

If the data in an Excel list has been mapped to XML data, you can access the resulting XmlMap
object via the XmlMap property of the ListObject object.

Dim myMap As XmlMap

Set myMap = ActiveSheet.ListObjects(1).XmlMap

Now you can invoke all the properties and methods of the XmlMap object that were discussed
earlier.

Chapter Project: The Math Game
The Math Game program from Chapter 4 was fairly simple with randomly generated prob-
lems that were stored in memory, and then written to a worksheet at the end of the game—
potentially the only data saved by the program (but only if the user so desired). The new

349Chapter 8 • Using XML with Excel-VBA Projects

350

version of the Math Game automatically stores the program’s data (tests, student names, and
test results) in XML files. I added worksheet interfaces for writing tests, maintaining student
lists, and viewing test results. The program illustrates the use of basic XML files as a data-
base for an application and how these files are accessed using Excel-VBA.

Requirements for the Math Game Program
The original interface to the Math Game program required a single worksheet that presented
randomly generated math problems, timed the game, and scored the results when the time
allotted reached zero. The student taking the test was allowed to choose the mathematical
operation. I’ve kept that interface pretty much intact; removing the Option Button controls
that allowed the student to choose the mathematical operator for the problems, and adding
one Combo Box control that displays the list of students stored in an XML file. The only
other requirements for the Math Game worksheet interface are that the student must sign in
via a Combo Box control before starting a test, and the student may print the results of his
or her test by clicking on a Command Button control placed on the worksheet. The remaining
requirements for the Math Game worksheet interface are listed in Chapter 4 so I will not
repeat them here.

The new features to the Math Game program require two additional worksheets; one for writ-
ing exams, and the other for maintaining the list of students and viewing test results. The
following lists the requirements of the part of the program interface involving these two
worksheets.

1. The user shall be allowed to write a new test by entering the problems in a worksheet
and then save the test to an XML file.

2. The difficulty level and length of time allowed to complete a test (test properties)
shall also be stored in an XML file.

3. The user shall be allowed to edit existing tests from the same worksheet interface.
This means that the program must be able to import data from an XML file represent-
ing a test.

4. The worksheet interface used to create or edit tests shall be previously formatted
with two XML maps and Excel lists that map the problems and properties of a test
to the appropriate XML files.

5. Test files shall be named by concatenating a filename and difficulty level input by
the user.

6. When a student signs in to take a test, the XML test file of the appropriate level shall
be loaded into the test worksheet.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

7. While taking a test, problems shall be read from the test worksheet and displayed on
the Math Game worksheet.

8. When a student finishes a test, the test is scored and the result recorded. When a stu-
dent fails to finish a test within the allotted time, unanswered problems shall be
included in the result as incorrect answers.

9. Students and their current testing level shall be entered in an Excel list whose ranges
are mapped to an XML file.

10. Updates to the list of students shall be allowed; that is, the program must be able to
export the data mapped to the student’s XML file.

11. The list of students shall provide the data source for the Combo Box control on the
Math Game worksheet.

12. The user shall be allowed to view the test results for all students.

13. The results worksheet shall be formatted with an XML map and Excel list to link the
data in the worksheet to the file containing the results.

14. The results worksheet and the XML file containing the results shall be updated at the
completion of each test.

15. The user shall be able to clear the worksheet and XML file of all test results.

Designing the Math Game
As far as a student is concerned, the program interface doesn’t change much from the one
in the Chapter 4 program. The Math Game worksheet still contains the test problems, the timer,
and the scored results. The number and type of ActiveX controls is the part that’s different.
Additional worksheets contained in the project are not meant to be viewed by a student, so
hiding them would be a good idea.

The other two worksheets must contain lists of test problems, students, and results. I will use
a single worksheet for creating the list of problems that make up a test (Create_Edit_Tests)
and another worksheet will contain the list of students and their test results (Students). I will
create each XML map and corresponding data list prior to writing any code, but after I have
designed and written the XML files. This must be the case because I can’t create an XML map
in a worksheet without an XML file.

Taking a Test
The interface used to take a test is shown in Figure 8.10. I removed the Option Button con-
trols from the Chapter 4 program and added a Combo Box and a Command Button control;
otherwise, the interface is the same. I set the Style property of the ComboBox control to

351Chapter 8 • Using XML with Excel-VBA Projects

352

fmStyleDropDownList so the student cannot enter a new name but only choose existing
names from the list. As usual, I also edited the Name property and a few appearance proper-
ties of the ActiveX controls at design time.

The process of taking a test is uncomplicated and nearly identical to the Chapter 4 program.
After a student selects his or her name from the Combo Box control, the Command Button
control labeled Begin is enabled and must be used to start the test. The appropriate test is
loaded into the Create_Edit_Tests worksheet to provide the source for the test questions.
Problems are presented one at a time and the student must enter an answer to each prob-
lem before continuing. The answer cell remains selected at all times during a test. When the
student finishes the test, or the allotted time runs out, the test is scored and written to the
worksheet. The length of time allotted for a test is also read from the Create_Edit_Tests
worksheet. After completing a test, a student can print the range of cells containing the
problems, answers, and score (columns A through C) with a click of the Command Button
control labeled Print.

Creating Tests
Tests are written from a separate worksheet interface. Figure 8.11 shows the Create_Edit_Tests
worksheet with problems from an existing test imported into its data list.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 8.10

The Math Game
worksheet
interface.

Command
Button

control

The problem

Test results The timer

Student’s
answer

Command
Button
control

Combo Box
control

The data in the worksheet is formatted as an Excel list and is mapped to two XML files. The
range A2:C2 is mapped to an XML file with the following structure:

<?xml version=”1.0” encoding=”UTF-8”?>

<test_properties fileID=””>

<level></level>

<time></time>

</test_properties>

The elements <level> and <time> are mapped to cells B2 and C2 respectively, and the fileID
attribute of the <test_properties> element is mapped to cell A2. I initially created the map
by importing the file as an XML list when it was void of data; although, it doesn’t matter if
there is data in the XML file because it’s the document structure that’s important. The name
of the map is test_properties_Map. Excel creates the initial value for a map’s name by con-
catenating the root element name with the word Map. You can change it by selecting Data,
XML, XML Map Properties in the Excel application window.

The <level> and <time> elements are non-repeating child elements of <test_properties> so
each test will have an associated test properties file. These files are named by concatenating
the fileID attribute in cell A2 with the character p followed by the xml file extension.

353Chapter 8 • Using XML with Excel-VBA Projects

Figure 8.11

The
Create_Edit_

Tests worksheet
used to write or

edit tests.

Excel Lists mapped
to XML files

Command Buttons
XML Map
Name

XML Source
Task Pane

Element Type
Icons

354 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

When opening an XML file in Excel that does not reference a schema, Excel
automatically creates a schema based on the XML source data. If you resave the
data from Excel and examine the resulting XML source code in a text editor, you
will notice two new declarations. The first new declaration is referred to as the
standalone document declaration and can be found in the XML declaration at
the beginning of the document.

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>

Excel adds the standalone document declaration so that it knows the XML doc-
ument has external markup declarations (the schema created by Excel), but
these external declarations do not affect the document’s content.

In addition to the standalone document declaration, Excel adds a reference to
the location of the schema reserved for an Excel workbook. The reference is
added as an attribute to the root element of the XML document.

<root_element_name xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

The <level> and <time> elements are non-repeating child elements of <test_properties> so
each test will have an associated test properties file. These files are named by concatenating
the fileID attribute in cell A2 with the character p followed by the xml file extension.

To create a test, the user simply enters values for the number, operands, operator, and answer
into the corresponding columns in the worksheet. In order to save time, the user may use
formulas (if desired) to calculate answers or generate operands. The problems contained in
the data list (cells D2:H22 in Figure 8.11) are mapped to a second XML file. The data list can be
extended to any number of rows. The name of the XML map is test_Map (see Figure 8.11) and
the XML document structure is listed again in the following:

<?xml version=”1.0” encoding=”UTF-8”?>

<test>

<problem>

<number></number>

<left_operand></left_operand>

<operator></operator>

<right_operand></right_operand>

<answer></answer>

</problem>

<!—repeating <problem> elements—>

</test>

The structure of the XML test file contains the root element <test> with a series of child elements
(<problem>) that represent the test problems. Each <problem> element contains the child elements
that define a problem (<number>, <left_operand>, <operator>, <right_operand>, and <answer>).

TRICK

When this file is opened as an XML list, the data elements are loaded into adjacent columns
in the worksheet. Element types (child, parent, attribute, and so on) can be identified from
the icon displayed in the XML Source Task Pane. In order for Excel to recognize a repeating
parent element such as <problem>, I had to include at least two of these elements in the orig-
inal file that I opened with Excel when creating the XML list and map.

I will use the fileID attribute of the <test_properties> element to specify the file name of
a test file; therefore, each test is associated with two XML files (for example, test7p.xml and
test7.xml). The program only needs one of these files to open an existing test because a test
file’s name is stored in the fileID attribute of the test properties file; thus, when the user
chooses to open a test file, they must be shown a selection of test property files and not the
test files themselves.

You may be wondering why I used two XML files to describe a single test. An
easier approach might combine the two structures into a single XML document
similar to the following:

<?xml version=”1.0” encoding=”UTF-8”?>

<test fileID=””>

<level></level>

<time></time>

<problem>

<number></number>

<left_operand></left_operand>

<operator></operator>

<right_operand></right_operand>

<answer></answer>

</problem>

<!—repeating <problem> elements—>

</test>

The problem with this structure is that the <level> and <time> elements, and
the fileID attribute are associated with every <problem> element in the file; so
when Excel imports the data into a worksheet, it will repeat the values for the
fileID attribute, and <level> and <time> elements. This causes a data redun-
dancy and the resulting map is said to be denormalized. Excel cannot export data
from a denormalized map to an XML file.

HINT

355Chapter 8 • Using XML with Excel-VBA Projects

356

Maintaining Student Lists and Viewing Test Results
The last part of the Math Game program is the worksheet used to edit the student list and
view their test results. The worksheet interface is shown in Figure 8.12.

Because these are relatively small lists, I included both of them in one worksheet. The XML
document structure describing the students is as follows:

<?xml version=”1.0” encoding=”UTF-8”?>

<students>

<student>

<name> </name>

<level></level>

</student>

<!—repeating <student> elements—>

</students>

The file’s data consists of the student’s name and current testing level. The data in the
<level> element will have to be updated whenever a student passes a test. A single file called
students.xml stores all data describing the students. The data in the file is mapped to the
first two columns in the worksheet using the XML map named students_Map.

Test results are also stored in a single XML file called results.xml (listed next) mapped to the data
in columns I through K via the XML map named results_Map. Because the file stores all test

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 8.12

The Students
worksheet used
for maintaining
the student list

and viewing test
results.

Command
Button controls

Student list

Data Filter

Test Results list

results, the program will have to add one more <student> element with each completed test.
The <name> element is the name of the student; the <test> element, the name of the test; and
the <score> element, the test result expressed as percent correct.

<?xml version=”1.0” encoding=”UTF-8”?>

<results>

<student>

<name> </name>

<test> </test>

<score></score>

</student>

<!—repeating <student> elements—>

</results>

One of the advantages to using an Excel list to view the results is the applied filter can be
used to quickly view individual students or all student results (or a custom filter if desired).

Coding the Math Game Program
Much of the code for the Math Game involves objects and methods discussed in previous
chapters. At this point you are familiar with many of the structures and common objects
used in Excel-VBA programs. New topics will usually come in the form of a new object and
its associated methods and subordinate objects. Now, the greatest challenge for you is
designing programs and developing algorithms.

Since I am using three worksheets for the program interface, I will try to isolate the code
that serves each interface to their respective code modules; however, there are occasions
when it is easier to add procedures to a standard module so they can be shared by multiple
interfaces.

Writing Tests
The code module for the worksheet used to create or edit tests must contain procedures that
import and export data between the mapped ranges in the worksheet and the two XML files
that describe a test document’s properties and its problems.

The first procedure listed is the Click() event of the Command Button control labeled Save
File (see Figure 8.11). This procedure exports the data entered in the lists to two separate
XML files (the test and test properties files). Both file names are obtained from cell A2 in the
worksheet. The test properties file name is appended with a p just before the xml file extension.

357Chapter 8 • Using XML with Excel-VBA Projects

358

When a worksheet already contains an Excel list mapped to an XML document file, you can
use the XmlMap object to export the current data from the list to the file. This is exactly what
I’ve done here. I set the XmlMap object variable to its corresponding XML map in the worksheet
using the name defined when the XML document was first imported into the worksheet. The
names of the XML maps can be found in the XML Source Task Pane (select Data, XML, XML
Source). After testing to see if the map is exportable (IsExportable property), I invoked the
Export() method of the XmlMap object to export the data from the list to the file specified in
the URL argument. With the Overwrite argument set to true, an existing file is replaced with
the current data; however, if the file doesn’t exist, then a new one is created. This means
this event procedure can be used to save new test files or save edits to existing test files.

Finally, because the event procedure involves file I/O, I have added a basic error handler to
output the nature of the error to the user via a message box before ending the program.

Option Explicit

Private Sub cmdFileSave_Click()

Dim mapProperties As XmlMap, mapTests As XmlMap

Dim pathProperties As String, pathTests As String

On Error GoTo ExportError

‘——————————————————————————————

‘Save the new exam as an xml file (one for test properties

‘and one for test).

‘——————————————————————————————

pathProperties = ActiveWorkbook.Path & “\TestProperties\” & Range(“A2”).Value & “p.xml”

pathTests = ActiveWorkbook.Path & “\Tests\” & Range(“A2”).Value & “.xml”

Set mapProperties = ActiveWorkbook.XmlMaps(“test_properties_Map”)

Set mapTests = ActiveWorkbook.XmlMaps(“test_Map”)

If mapProperties.IsExportable Then

mapProperties.Export URL:=pathProperties, Overwrite:=True

Else

MsgBox “XML map is not exportable!”, vbOKOnly, “XML Map”

End If

If mapTests.IsExportable Then

mapTests.Export URL:=pathTests, Overwrite:=True

Else

MsgBox “XML map is not exportable!”, vbOKOnly, “XML Map”

End If

Exit Sub

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

ExportError:

MsgBox “Test file not saved.” & Err.Description, vbOKOnly, _

“File Save Error: “ & Err.Number

End

End Sub

When the user decides to edit an existing test file, a click of the Command Button labeled
Open File sends program execution to its Click() event procedure. I have used this procedure
to display a file open dialog containing a list of test property files from which the user must
choose one. The data in the selected file, along with the data in its test file counterpart, are
then imported into the worksheet. For example, if the user selects the file test1p.xml, its data
is imported into the mapped range A2:C2 and the value of its fileID attribute specifies the
test file to import into the test_Map range. I have written two custom procedures (GetXMLFile()
and OpenXMLFile()) to handle these tasks.

Private Sub cmdFileOpen_Click()

Dim fileName As String

‘———————————————-

‘Import xml files to worksheet.

‘———————————————-

fileName = GetXmlFile

If fileName <> “” Then

OpenXMLFile fileName

End If

End Sub

The GetXMLFile() function procedure uses a FileDialog object (refer to Chapter 7) to display
an Open dialog box. I set the file path to the TestProperties directory that contains the test
property XML files and added a FileDialogFilters object to ensure the dialog box lists only
XML files. The selected file is returned to the calling procedure as a string where it is passed
to the OpenXMLFile() procedure. The Open dialog is shown in Figure 8.13.

Private Function GetXmlFile() As String

Dim fileDiag As FileDialog

Dim fPath As String

fPath = ActiveWorkbook.path & “\TestProperties\”

359Chapter 8 • Using XML with Excel-VBA Projects

360

‘——————————————————-

‘Configure and show the open dialog.

‘Open the file selected by the user.

‘——————————————————-

Set fileDiag = Application.FileDialog(msoFileDialogOpen)

With fileDiag ‘Configure dialog box

.Filters.Clear

.Filters.Add Description:=”XML”, Extensions:=”*.xml”, Position:=1

.FilterIndex = 1

.AllowMultiSelect = False

.Title = “Select XMl Test File”

.InitialFileName = fPath

If .Show = -1 Then ‘User clicked Open

GetXmlFile = .SelectedItems.Item(1)

End If

End With

End Function

I added the OpenXMLFile() procedure to a standard code module and gave it public scope
because it has to be called from other object code modules in the program. The procedure
first uses the string from the fileName argument to import the test properties data from the
XML file to the cells in the list. The XmlImport() method of the Workbook object imports the data
from the XML document file. It is worth reiterating that the XML document file structure
must match the existing XML map structure in the workbook. If the two structures do not
match, Excel ignores the command.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 8.13

The Open dialog
for selecting

existing test files.

Public Sub OpenXMLFile(fileName As String)

Dim ws As Worksheet

On Error GoTo ImportError

‘———————————————————————

‘Open the test properties and test XML files.

‘———————————————————————

Set ws = Worksheets(“Create_Edit_Tests”)

ActiveWorkbook.XmlImport URL:=fileName, _

ImportMap:=ActiveWorkbook.XmlMaps(“test_properties_Map”), _

Overwrite:=True

ws.Columns(“A:C”).ColumnWidth = 7

ActiveWorkbook.XmlImport URL:=ActiveWorkbook.path & _

“\Tests\” & ws.Range(“A2”).Value & _

“.xml”, ImportMap:=ActiveWorkbook.XmlMaps(“test_Map”), _

Overwrite:=True

Exit Sub

ImportError:

MsgBox “Could not import XML file.” & Err.Description, _

vbOKOnly, “File Import Error: “ & Err.Number

End

End Sub

Maintaining the Student List and Viewing Results
After a test is completed and scored, the results are added to the Students worksheet and the
XML file is automatically updated (discussed later). Results can be viewed from the Students
worksheet, where the XML list that holds all test results has been created in columns I
through K. Although there is no need to allow the user to export the results, they are
allowed to clear the data from the XML file.

Users may clear the list in the worksheet manually or by clicking the Command Button con-
trol labeled Reset. This triggers the Click() event procedure that follows. To clear the list, I
first activate its range of cells before using the InsertRowRange property of the ListObject
object to determine the next available row in the list. The list’s range must be active or the
InsertRowRange property fails—generating a runtime error. Data in the list is deleted using
the Delete() method of the Range object and shifting cells up. Note that I do not update the
XML document file after clearing the range. It’s not necessary since it will be updated with
the next completed test.

361Chapter 8 • Using XML with Excel-VBA Projects

362

Option Explicit

Private Sub cmdResetResults_Click()

Dim insertRow As Integer

Dim lsObj As ListObject

‘————————

‘Clear the list.

‘————————

Set lsObj = ActiveSheet.ListObjects(“Results”)

If Not lsObj.Active Then

lsObj.Range.Activate

End If

insertRow = lsObj.InsertRowRange.Row

Range(“I1”).Select

If insertRow <= 2 Then Exit Sub

Range(“I2:K” & insertRow - 1).Delete xlShiftUp

End Sub

Students are added to or removed from the data base by editing the corresponding XML doc-
ument (students.xml) via the Students worksheet. When the Click() event procedure of the
Command Button control labeled Update is triggered, the data in the list overwrites the data
in the XML document file. Again, I have used the Export() method of the XmlMap object to
update an XML file. The UpdateStudentXml() sub procedure was also entered into a standard
code module because it is called from more than one object module.

Private Sub cmdUpdate_Click()

UpdateStudentXml True

End Sub

Public Sub UpdateStudentXml(Optional UpdateCmbList As Boolean)

Dim mapStudents As xmlMap

Dim pathStudents As String

On Error GoTo UpdateError

‘————————————-

‘Update student XML file.

‘————————————-

pathStudents = ActiveWorkbook.path & “\Students\students.xml”

Set mapStudents = ActiveWorkbook.XmlMaps(“students_Map”)

If mapStudents.IsExportable Then

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

mapStudents.Export URL:=pathStudents, Overwrite:=True

Else

MsgBox “XML map is not exportable!”, vbOKOnly, “XML Map”

End If

‘——————————————————————————

‘Update combo box if this procedure was called from

‘Update button on sheet 3.

‘——————————————————————————

If UpdateCmbList Then ListStudents

Exit Sub

UpdateError:

MsgBox “Student list not updated.” & Err.Description, _

vbOKOnly, “File Save Error: “ & Err.Number

End

End Sub

The ListStudents() sub procedure is called from UpdateStudentXml() and the Open() event
procedure of the Workbook object. The procedure serves to update the list of students listed
in the Combo Box control on the Math Game worksheet. Notice that I use the ListObject object
to retrieve the student names. This is another advantage of Excel lists—the Range property of
the ListObject object makes it easy to access the content of the list, so you don’t have to
search through the rows to find the last item. It is also worth noting that in order to access
the Combo Box control, I had to qualify the worksheet name in the object path because the
ListStudents() sub procedure is not in the same code module as the control.

Public Sub ListStudents()

Dim studList As ListObject

Dim student As Range

Dim I As Integer

‘———————————————-

‘Add student list to combo box.

‘———————————————-

MathGameSheet.cmbStudents.Clear

Set studList = Worksheets(“Students”).ListObjects(“Students”)

For I = 2 To studList.Range.Rows.Count

MathGameSheet.cmbStudents.AddItem studList.Range.Cells(I, 1).Value

Next I

End Sub

363Chapter 8 • Using XML with Excel-VBA Projects

364

Taking a Test
A majority of the code for the Math Game program is still located in the same worksheet
module as the original program from Chapter 4. Once the test begins, the algorithm is
pretty much the same, but instead of generating problems randomly, they are read from the
Create_Edit_Tests worksheet. Since the algorithm and much of the code is nearly the same
as the program from Chapter 4, I will limit the discussion to the new sections of the program.

Before a test begins, a student must sign in by selecting their name from the Combo Box
control which triggers its Change() event.

Option Explicit

Private curQuestion As Integer

Private numQuestions As Integer

Private curDate As Date

Private gameRunning As Boolean

Private curStudent As String

I use the Change() event procedure to initialize variables and the appearance of the work-
sheet, after which the appropriate test for the student (according to their level) is loaded
into the Create_Edit_Tests worksheet.

Private Sub cmbStudents_Change()

Dim fileName As String

Dim studLevel As Integer

Dim studRange As Range

If gameRunning Then Exit Sub

ClearBoard

With Range(“A2:C” & UsedRange.Rows.Count)

.ClearContents

.Font.Color = vbBlack

End With

Range(“B1”).Value = cmbStudents.Value & “‘s” & “ Answer”

curStudent = cmbStudents.Value

‘—————————————————————————-

‘Determine the test level for the selected student.

‘—————————————————————————-

Set studRange = Worksheets(“Students”).ListObjects(“Students”).Range

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

studLevel = studRange(studRange.Find(What:=curStudent).Row, 2).Value

‘———————————————————————————————-

‘Load a new exam when the student name is changed in combo box.

‘———————————————————————————————-

fileName = ActiveWorkbook.path & “\TestProperties\test” & studLevel & “p.xml”

cmdBegin.Enabled = True

OpenXMLFile fileName

End Sub

Private Sub ClearBoard()

‘——————————————————————————————-

‘Clears the operands and the answer from the worksheet cells.

‘——————————————————————————————-

Range(“LeftOperand”).Value = “”

Range(“RightOperand”).Value = “”

Range(“Answer”).Value = “”

End Sub

The test begins with the triggering of the Click() event of the Command Button control
labeled Begin. The questions are read from the Create_Edit_Tests worksheet. (Recall that the
appropriate test is loaded into this worksheet after the user signs in.)

Instead of using index numbers with the ListObjects collection object, I prefer
to use specific names for each ListObject; however, Excel assigns the names
List1, List2, and so on to each list as it is created. Therefore, to change a name
to something meaningful, I select the worksheet containing the list(s) I want to
name and then write a VBA procedure similar to the following:

Sub ChangeLOName()

Dim lo As ListObject

For Each lo In ActiveSheet.ListObjects

If lo.Name = “List1” Then

lo.Name = “Problems”

End If

Next

End Sub

This gives a meaningful name to the ListObject object that I can reference in my
program to make it more self-documenting.

TRICK

365Chapter 8 • Using XML with Excel-VBA Projects

366

Setting the MoveAfterReturn property of the Application object to false ensures that the
answer cell (merged range L8:M9) remains selected as the student enters his or her answers.
Setting the Calculation property to manual prevents interference from Excel attempting to
calculate the worksheet while the timer counts down. This isn’t really necessary, but if you
don’t turn off the automatic calculation in a situation like this, you will probably see con-
siderable screen flicker while the program executes.

Problems are written to the worksheet with a call to the GetProblem() sub procedure which reads
individual problems from the Create_Edit_Testsworksheet and writes it to the appropriate cells
on the Math Game worksheet. Next, the timer is started with a call to the MathGame() sub
procedure.

Private Sub cmdBegin_Click()

Dim qNumbers As Range

Set qNumbers = Worksheets(“Create_Edit_Tests”).ListObjects(“Problems”).Range

‘—————————————————-

‘Initialize variables and controls.

‘—————————————————-

cmdBegin.Enabled = False

gameRunning = True

curQuestion = 1

numQuestions = qNumbers.Cells(qNumbers.Rows.Count, 1).Value

Range(“Answer”).Select

Application.MoveAfterReturn = False

Application.Calculation = xlCalculationManual

‘————————————

‘Get the first question.

‘————————————

GetProblem

‘————————————————————-

‘Mark the start time and start the clock.

‘————————————————————-

curDate = Now

MathGame

End Sub

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Private Sub GetProblem()

Dim ws As Worksheet

‘——————————————————————————-

‘Reads the problem from the test worksheet and writes

‘it to the cells in the Math Game worksheet.

‘——————————————————————————-

Set ws = Worksheets(“Create_Edit_Tests”)

Range(“LeftOperand”).Value = ws.ListObjects(“Problems”).Range.Cells(curQuestion

+ 1, 2).Value

Range(“Operator”).Value = ws.ListObjects(“Problems”).Range.Cells(curQuestion

+ 1, 3).Value

Range(“RightOperand”).Value = ws.ListObjects(“Problems”).Range.Cells(curQuestion

+ 1, 4).Value

curQuestion = curQuestion + 1

End Sub

The MathGame() procedure contains the call to the OnTime() method of the Application object
and sets the schedule for this procedure to be called every second. The allotted time for a
test is read from the Create_Edit_Tests worksheet. The OnTime() method is cancelled when
the timer reaches zero or the student answers every test question. After the test is over, the
results are scored, variables and properties are reset, and the student’s level is increased by
one if they score 100%.

Private Sub MathGame()

‘Manages the clock while testing. Calls scoring procedures when test is over.

Dim numSeconds As Integer

Dim nextTime As Date

Dim timeAllowed As Integer

Dim newLevel As Boolean

On Error GoTo TimingError

timeAllowed = Worksheets(“Create_Edit_Tests”).Range(“C2”).Value

numSeconds = DateDiff(“s”, curDate, Now)

‘————————-

‘Start the clock.

‘————————-

367Chapter 8 • Using XML with Excel-VBA Projects

368

Range(“Clock”).Value = timeAllowed - numSeconds

nextTime = Now + TimeValue(“00:00:01”)

Application.OnTime EarliestTime:=nextTime,

Procedure:=”MathGameSheet.MathGame”, Schedule:=True

‘————————————————————————————————-

‘Disable timer when it reaches zero, score results, and clean up

‘worksheet controls/cells.

‘————————————————————————————————-

If (timeAllowed - numSeconds <= 0) Or (curQuestion >= (numQuestions + 2)) Then

Application.OnTime EarliestTime:=nextTime,

Procedure:=”MathGameSheet.MathGame”, Schedule:=False

cmbStudents.Value = “”

ClearBoard

If curQuestion < numQuestions Then

WriteRemainingProblems

End If

newLevel = ScoreAnswers

StoreResults

If newLevel Then IncrementStudentLevel

Application.MoveAfterReturn = True

Application.Calculation = xlCalculationAutomatic

gameRunning = False

End If

Exit Sub

TimingError:

MsgBox “An error occurred with the game timer.” & vbCrLf & Err.Description _

, vbOKOnly, “Timer Error: “ & Err.Number

End

End Sub

Student answers to questions are captured from the Change() event of the Worksheet object
which is triggered when an answer is entered (student presses the Enter key on the key-
board). After the answer is collected, the next question is written to the Math Game worksheet
with another call to the GetProblem() sub procedure. Problems and the student’s answer are
written to the report area of the worksheet before the answer is cleared from the problem
area.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Private Sub Worksheet_Change(ByVal Target As Range)

‘———————————————————————————-

‘Copies question and answer entered by the user to the

‘report area and gets the next question.

‘———————————————————————————-

If (Target.Address = “L8”) And (Range(“Answer”).Value <> “”) And gameRunning

Then

Range(“A” & curQuestion).Value = Range(“LeftOperand”).Value & _

Range(“Operator”).Value & Range(“RightOperand”).Value

Range(“B” & curQuestion).Value = Range(“Answer”).Value

GetProblem

Range(“Answer”).Value = “”

End If

End Sub

If the student fails to finish the test, the remaining unanswered questions are written to the
report area of the Math Game worksheet with a call to the WriteRemainingProblems() sub pro-
cedure. This procedure is called from the MathGame() sub procedure listed earlier.

Private Sub WriteRemainingProblems()

Dim qRange As Range

Dim c As Range

‘——————————————————————————————-

‘Writes questions not answered by student to the report area.

‘——————————————————————————————-

Set qRange = Worksheets(“Create_Edit_Tests”).ListObjects(“Problems”).Range

For Each c In Range(“A” & curQuestion & “:A” & numQuestions + 1)

c.Value = qRange.Cells(curQuestion, 2).Value

c.Value = c.Value & qRange.Cells(curQuestion, 3).Value

c.Value = c.Value & qRange.Cells(curQuestion, 4).Value

curQuestion = curQuestion + 1

Next

End Sub

You may recall that in the Math Game program from Chapter 4, I used arrays to hold the
problems and answers as they were generated by the program. That’s no longer necessary
since the problems are listed in a worksheet. This makes scoring a student’s test a little easier

369Chapter 8 • Using XML with Excel-VBA Projects

370

since all I have to do is read an answer from the Create_Edit_Tests worksheet and compare it
to the student’s answer listed in column B of the MathGameworksheet. Note that the ScoreAnswers()
function procedure returns a Boolean value to the calling procedure indicating whether or
not the student scored 100 percent on the test.

Private Function ScoreAnswers() As Boolean

Dim I As Integer

Dim numWrong As Integer

Dim ws As Worksheet

Dim c As Range

‘———————————————————————————————

‘After the test is over, the user’s answers are scored and the

‘results written to the worksheet.

‘———————————————————————————————

Set ws = Worksheets(“Create_Edit_Tests”)

I = 1

For Each c In Range(“C2:C” & curQuestion - 1)

c.Value = ws.ListObjects(“Problems”).Range.Cells(I + 1, 5).Value

If (c.Value <> Range(“B” & c.Row).Value) Or (Range(“B” & c.Row).Value = “”) Then

Range(“B” & c.Row).Font.Color = RGB(255, 0, 0)

numWrong = numWrong + 1

Else

Range(“B” & c.Row).Font.Color = RGB(0, 0, 0)

End If

I = I + 1

Next

‘———————————————————————

‘Compute % correct and write to the worksheet.

‘———————————————————————

Cells(I + 1, “A”).Value = “Score (%)”

Cells(I + 1, “B”).Font.Color = RGB(0, 0, 0)

Cells(I + 1, “B”).Formula = “=” & (I - 1 - numWrong) / (I - 1) & “*100”

If Cells(I + 1, “B”).Value = 100 Then ScoreAnswers = True

End Function

The StoreResults() sub procedure writes individual test results to the Students worksheet
and the XML document file (results.xml). First, the appropriate ListObject object is made

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

active before the student’s name and score is added to the end of its list (determined using
the InsertRowRange property). Note that I turned off the screen updating because I don’t
want to show the Students worksheet.

Since the XmlMap object already exists, it’s a simple task to export the new results to the XML
document file.

Private Sub StoreResults()

Dim studList As ListObject

Dim wsTest As Worksheet, wsStud As Worksheet, wsGame As Worksheet

Dim mapResults As xmlMap

Dim pathResults As String

Dim nextRow As Integer

On Error GoTo StoreError

‘——————————————————

‘Stores results of exam to XML file.

‘——————————————————

Set wsTest = Worksheets(“Create_Edit_Tests”)

Set wsStud = Worksheets(“Students”)

Set wsGame = Worksheets(“Math Game”)

Set studList = wsStud.ListObjects(“Results”)

If Not studList.Active Then

Application.ScreenUpdating = False

wsStud.Activate

studList.Range.Activate

nextRow = studList.InsertRowRange.Row

wsGame.Activate

End If

studList.Range.Cells(nextRow, 1).Value = curStudent

studList.Range.Cells(nextRow, 2) = wsTest.Range(“A2”).Value

studList.Range.Cells(nextRow, 3) = Cells(Range(“A:A”).Find(What:=”Score”).Row, 2).

Value

Set mapResults = ActiveWorkbook.XmlMaps(“results_Map”)

pathResults = ActiveWorkbook.path & “\TestResults\results.xml”

If mapResults.IsExportable Then

mapResults.Export URL:=pathResults, Overwrite:=True

371Chapter 8 • Using XML with Excel-VBA Projects

372

Else

MsgBox “XML map is not exportable!”, vbOKOnly, “XML Map”

End If

Exit Sub

StoreError:

MsgBox “An error occurred while attempting to store the results.” _

& vbCrLf & Err.Description, vbOKOnly, “Store Error: “ & Err.Number

End Sub

When a student scores 100 percent on a test, their level is increased by one so that the next
time they sign in they are given the next test in the sequence. The IncrementStudentLevel()
sub procedure (called from the MathGame() sub procedure if the student scored 100 percent)
increments a student’s level in the appropriate list in the Students worksheet and then
updates the XML document file (students.xml) with a called to the UpdateStudentXml() sub
procedure located in a standard module (listed earlier). The next test associated with the stu-
dent’s new level is then loaded in the worksheet.

Private Sub IncrementStudentLevel()

Dim studList As ListObject

Dim studLevel As Range

Dim ws As Worksheet

Dim fileName As String

On Error GoTo FileError

Set ws = Worksheets(“Students”)

‘———————————————————

‘Increment the value in the worksheet.

‘———————————————————

Set studList = ws.ListObjects(“Students”)

Set studLevel = ws.Cells(studList.Range.Find(What:=curStudent).Row, 2)

studLevel.Value = studLevel.Value + 1

‘————————————————————-

‘Save the xml file and load the new test.

‘————————————————————-

UpdateStudentXml False

fileName = ActiveWorkbook.path & “\TestProperties\test” & studLevel.Value & “p.xml”

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

OpenXMLFile fileName

Exit Sub

FileError:

MsgBox “The student’s level was not increased.” _

& vbCrLf & Err.Description, vbOKOnly, “IncrementStudentLevel: “ & Err.Number

End Sub

The last procedure listed is the Click() event of the Command Button control labeled Print.
This procedure prints the report area of the Math Game worksheet (columns A through C)
using the PrintOut() method of the Range object.

Private Sub cmdPrint_Click()

Dim pRange As Range

Dim lastRow As Integer

‘———————————————-

‘Print the results of the test.

‘———————————————-

On Error GoTo PrintError

lastRow = Range(“A:A”).Find(What:=””, After:=Range(“A1”)).Row - 1

Set pRange = Range(“A1:C” & lastRow)

pRange.PrintOut

Exit Sub

PrintError:

MsgBox Err.Description, vbOKOnly, “Printing Error “ & Err.Number

End

End Sub

That concludes the revised version of the Math Game program. As usual, I left considerable
room for improvement; some of these improvements are suggested as exercises in the Chal-
lenges section at the end of the chapter.

Chapter Summary
In this chapter, you were introduced to XML by learning its purpose, definition, and basic
syntax. You also learned how to open and save XML documents from the Excel application
window and the advantages of adding the data to an Excel list. Finally, you learned how to
use several new objects in the Excel object model designed to support XML. This included

373Chapter 8 • Using XML with Excel-VBA Projects

374

the XmlMap object and the ListObject object and some of their associated and/or subordinate
objects. For the chapter project, you revisited the Math Game by adding XML support such
that the program’s data was stored in XML document files.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

C H A L L E N G E S

1. Open your favorite text editor, then enter and save the following with an .xml
file extension.

<?xml version=”1.0” encoding=”UTF-8”?>
<myData>

<myElement>
<ranData1>A</ranData1>
<ranData2>1</ranData2>

</myElement>
<myElement>

<ranData1>B</ranData1>
<ranData2>2</ranData2>

</myElement>
</myData>

2. Open your xml file in Excel as an XML list. From the Source Task Pane
(select Data, XML, XML Source) select the different elements in the XML map
and note what is selected in the worksheet. Add a couple more rows of data to
the list by first selecting the insert row (the row marked with an asterisk *) and
entering random values. With the list selected, export the data to the same
XML file by selecting Data, XML, Export. Finally, re-open the file in a text editor
and note the change from the original.

3. Clear the data from the XML list in Challenge 2 then refresh the list by selecting
Data, XML, Refresh XML Data.

4. Write a VBA procedure that exports the data from your XML list created in
Challenge 2 to a new XML file.

5. Write a VBA procedure that refreshes the data in your XML list created in
Challenge 2.

6. Write a VBA procedure that outputs the schema text associated with the XML
map created in Challenge 2 to a text file. Hint: use the XML property of the
XmlSchema object to retrieve the schema text. Next, use the Open statement
(see Chapter 7) to save the schema text.

(continues)

375Chapter 8 • Using XML with Excel-VBA Projects

C H A L L E N G E S (C O N T I N U E D)
7. Revise the Math Game program to allow students to skip problems. While

taking a test, the program should repeat skipped problems after the student
has answered the last problem.

8. Revise the Math Game program to force students to sign in to take a test using a
password. Passwords should be saved in the students.xml document file.

9. Revise the Math Game program to store the complete results of each exam.
This includes the answers entered by the student and the length of time taken
to finish.

10. Revise the Math Game program to allow a user to quickly view basic statistics
regarding test results. For example, the program should calculate the average
score on a particular test, the average number of attempts per test, and so on.

This page intentionally left blank

Excel Charts
9
C H A P T E R

C
harts are valuable tools for data analysis and presentation in Excel or any
other spreadsheet application. Unfortunately, the learning curve for creating
charts is typically a bit longer and steeper than for other spreadsheet

components. This is also true with regard to programming charts in Excel
because the Chart object is a rather substantial component of the Excel object model.
Before attempting to program with Excel’s Chart object, a good understanding of
the common chart types and their components is required.

This chapter discusses the following topics:

• The Chart object

• Accessing charts

• Chart sheets and embedded charts

• Manipulating charts

• Creating charts

• Chart events

Project: The Alienated Game
The Alienated Game is similar to a number of games that can be found on the Inter-
net. The game is played with a bubble chart and interacts with the user via the
mouse. The object of the game is to swap two images to create a group of three or more
aliens in a row or column (please forgive the images of the aliens—I’m artistically
challenged). The Alienated Game I created for Excel is shown in Figure 9.1.

C H A P T E R

The Chart Object
A graphical representation of the Charts collection object and Chart object are shown in Fig-
ure 9.2. The figure shows the objects and collections that are subordinate to the Chart
object. Many of these components also have numerous subordinate objects, so Figure 9.2
does not illustrate the breadth of the Chart object. You should not be intimidated, though,
because programming the Chart object involves many of the same techniques that have
been discussed throughout this book. The goal of this chapter is to point out major compo-
nents and some of the unique properties involved with programming the Chart object.

378 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 9.1

The Alienated
Game.

In the Real World
Charts are used in spreadsheet applications as a tool for interpreting data. The analysis may be
as simple as a visual inspection of the charted numerical data or as complex as a multidimen-
sional curve-fit to the data.

Complex data analyses involving searches for parameter minima through multidimensional
space often required customized software that ran on mainframe (or larger) computers. With
the incredible advances in computer technology in recent years, the same analysis can now
often be done on a desktop computer using ordinary software such as Excel.

Accessing Existing Charts
When creating a chart in Excel, you have the choice of embedding the chart in an existing
worksheet or creating a new worksheet to hold the chart. When a chart is created and
placed in a new worksheet, it is referred to as a chart sheet. Chart sheets are special because
their only function is to display a chart; they cannot be used for holding any other data.
Worksheets and chart sheets serve as containers for embedded charts. There are no limits
(other than system memory) to the number of embedded charts a worksheet or chart sheet
can hold. Using VBA to programmatically control chart sheets and embedded charts involves
the use of different objects that, at first, can be a little confusing; however, when the object
model is followed, the differences make sense.

Chart Sheets
In Chapter 5, you learned that a collection of Worksheet objects were members of the Worksheets
collection object. Chart sheets (see Figure 9.3), on the other hand, are not included with this
collection. This makes sense because a chart sheet is not a spreadsheet and should not be
contained in a collection object called Worksheets. Instead, chart sheets are members of two
different collection objects: the Sheets and Charts collection objects. The Sheets collection
object has broader scope, including both Worksheet objects and Chart objects (as chart
sheets). This is somewhat unusual because chart sheets and worksheets are really two dif-
ferent beasts, and collection objects generally hold objects of only one type. As you might
expect, however, VBA does provide a collection object that contains only chart sheets—the

379Chapter 9 • Excel Charts

Figure 9.2

The Charts
collection object
and subordinate

objects in the
Excel object

model.

380 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Charts collection object. As an example, consider a workbook that contains multiple worksheets
and chart sheets. All Chart objects can be returned to your program in a Charts collection
via the Charts property of the Workbook object.

ActiveWorkbook.Charts

It is important to point out that the Charts collection object returned by the Charts property
returns only the chart sheets in the specified workbook. To access an individual chart sheet,
specify an index (or object name as a string) with the Charts property.

ActiveWorkbook.Charts(1)

or

ActiveWorkbook.Charts(“MyChart”)

Consider the GetChartSheets() sub procedure. This procedure uses a For/Each loop to iterate
through a Sheets collection in an attempt to return only those sheets from the active work-
book that are chart sheets. This procedure will execute successfully if the active workbook
only contains chart sheets—something that you will probably never create. The problem
with the GetChartSheets() sub procedure is that any worksheets contained in the active
workbook will also be returned in the Sheets collection; therefore, a runtime error is gen-
erated (type mismatch) when the current iteration of the loop tries to access a Worksheet
object with the variable that was declared as a Chart object (chSheet).

Figure 9.3

A chart sheet.

Public Sub GetChartSheets()

Dim chSheet As Chart

For Each chSheet In ActiveWorkbook.Sheets

Debug.Print chSheet.Name

Next

End Sub

To fix the GetChartSheets() sub procedure use the Charts property of the Workbook object to
return all Chart objects (as chart sheets) from the active workbook.

Public Sub GetChartSheets()

Dim chSheet As Chart

For Each chSheet In ActiveWorkbook.Charts

Debug.Print chSheet.Name

Next

End Sub

It may seem confusing to use the Charts property to return a collection of chart sheets, and
not all charts (including embedded charts) from the workbook. An embedded chart is a
chart that has been placed on a worksheet (see Figure 9.4), or a chart sheet (see Figure 9.5).
When you think about it, embedded charts are subordinate to a Worksheet object or Chart
object (when it references a chart sheet); so it makes sense that you cannot access embedded
charts from a property of the Workbook object.

381Chapter 9 • Excel Charts

Figure 9.4

An embedded
chart placed on

a worksheet.

382

Embedded Charts
To access embedded charts, use the ChartObjects collection and ChartObject objects. A ChartObjects
collection object contains all ChartObject objects on a worksheet or chart sheet. A ChartObject
object is a container for a single Chart object, but not if this Chart object represents a chart
sheet. If there was such a thing as a Sheet object, then I would tell you the ChartObjects and
ChartObject objects are subordinate objects of the Sheet object; however, there is no Sheet
object in the Excel object model. So where do these objects fall in the hierarchy? As I said
before, it’s confusing at first, but makes sense when you think about it—but the ChartObjects
and ChartObject objects are subordinate to the Worksheet object and the Chart object. They
are only subordinate, however, to the Chart object when the Chart object represents a chart
sheet. Confusion between the ChartObject object and the Chart object will be a common
source of error in your VBA code when programming charts. The following example helps
clarify how to use these objects to access an embedded chart.

Public Sub GetEmbeddedChartObjects()

Dim chObj As ChartObject

For Each chObj In ActiveSheet.ChartObjects

Debug.Print chObj.Chart.Name

Next

End Sub

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 9.5

An embedded
chart placed on

a chart sheet.

The GetEmbeddedChartObjects() sub procedure loops through all ChartObject objects on the
active sheet (chart sheet or worksheet) using a For/Each loop. A Chart object is returned via
the Chart property of the ChartObject object and the value of the Chart object’s Name prop-
erty is output to the Immediate window. Please note that to access the actual Chart object
and not just the container object, the Chart property of the ChartObject object must be used
(chObj.Chart). Without the Chart property (for example, chObj.Name), the preceding proce-
dure would output the value of the Name property of a ChartObject object, which is not the
same as the Name property of the Chart object. The point of this is to illustrate that the path
to a Chart object contained in an embedded chart is:

Application

Workbook

Worksheet or Chart (as a chart sheet)

ChartObject

Chart.

You now know how to access Chart objects associated with chart sheets and embedded
charts using the VBA objects summarized in Table 9.1. Next, I will discuss some of the methods
and properties you can use to manipulate these charts.

Manipulating Charts
You can create several different types of charts in Excel, including the common column and
pie charts and the not-so-common doughnut and radar charts. Table 9.2 summarizes the
more commonly used chart types available in Excel and their function.

383Chapter 9 • Excel Charts

Object Function

Sheets collection A collection of all sheets in the specified workbook, including chart
sheets as Chart objects and Worksheet objects.

Charts collection A collection of all chart sheets in the specified workbook as Chart
objects.

Chart Represents a single Chart object (embedded or as a chart sheet).

ChartObjects collection A collection of all ChartObject objects on a specified worksheet or
chart sheet.

ChartObject Represents the container object for an embedded Chart object.

TA B L E 9.1 V B A O B J E C T S U S E D T O A C C E S S E X C E L C H A RT S

384 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

There are several objects subordinate to the Chart object that represent various components
of an Excel chart. The properties and methods of all these objects can be used in your VBA
code to alter the appearance and behavior of an Excel chart. Some of the objects that are com-
mon to most charts are shown in Figure 9.6 and the Excel application file ChartDemos.xls
(found on the book’s CD-ROM) contains several examples of manipulating charts using VBA
programs. One worksheet from this file (named Chart Type) is shown in Figure 9.7.

Chart Type Function

Column Compares categorized values by charting the data as vertical columns running
from 0 to the charted value. There is one column for each value and all
columns in the same category have the same color.

Bar The same as a column chart, except that the columns now run in a horizontal
direction and are called bars.

Line Similar to column and bar charts, except that the values are charted as points
connected by a line.

Pie Charts each value in a data series as its percent contribution to the whole.

Area Combines a line chart with a pie chart. Shows the contribution to the whole
for several data series over time or categories.

Scatter Plots x,y coordinate pairs as a series of points.

Bubble Same as a scatter, except that a third variable is included and represented by
the size of the data marker.

TA B L E 9. 2 C O M M O N E X C E L C H A RT T Y P E S

Figure 9.6

A line chart
illustrating the

components
represented by

some of the
objects in Excel’s
Chart object

model.

AxisTitle object

ChartTitle object

SeriesCollection
object

Legend object

Series object

ChartArea object

Axis object

(xl category)
PlotArea objectPoint objectAxes

collection
objects

The Chart Type worksheet contains a column of arbitrary data charted in a column chart.
Several ActiveX controls are used to change the properties of the embedded chart. Option
Button controls are used to select one of four chart types (Column, Bar, Area, or Line).
Another set of Option Button controls and a Scroll Bar control are used to change the color
of the chart area, plot area, and data series.

To learn how to manipulate properties of a chart using VBA, record a macro
while changing the desired properties from the Excel application.

To change the type of chart, the integer constant representing the chart type is passed to the
sub procedure SetChartType() where the ChartType property of the Chart object is set. I
found the constants used to specify the chart type in the online help by looking up the
ChartType property. I found the ChartType property in the list of Chart object members in
Object Browser.

Private Sub optArea_Click()

SetChartType (xlArea)

End Sub

Private Sub optBar_Click()

SetChartType (xlBarClustered)

End Sub

HINT

385Chapter 9 • Excel Charts

Figure 9.7

The Chart Type
worksheet with
a column chart.

386

Private Sub optColumn_Click()

SetChartType (xlColumnClustered)

End Sub

Private Sub optLine_Click()

SetChartType (xlLine)

End Sub

Private Sub SetChartType(myType As Integer)

Dim myChart As Chart

Set myChart = ActiveSheet.ChartObjects(1).Chart

myChart.ChartType = myType

End Sub

For example, selecting the Option Button labeled Bar in Figure 9.7 changes the chart type to
a bar chart.

The path to the chart traverses the Worksheet object, the ChartObjects collection object, and
the ChartObject object before finally reaching the destination Chart object. An index value
of one is used to return the specific ChartObject object from the ChartObjects collection
object. This works because there is only one chart embedded on the worksheet. If subse-
quent charts are added to the worksheet, their index values will proceed in the order they
are added (2, 3, 4, and so on). As with any collection object, be careful when using index val-
ues to return specific objects to ensure that the desired object is returned.

Option Buttons and a Scroll Bar are used to set the color of various components of the chart.
The action occurs in the sub procedure ChangeColor() which is called when the Change()
event of the Scroll Bar control or the Click() event of one of the Option Button controls is
triggered by the user.

Private Sub optChartArea_Click()

ChangeColor

End Sub

Private Sub optPlotArea_Click()

ChangeColor

End Sub

Private Sub optSeries_Click()

ChangeColor

End Sub

Private Sub scrColor_Change()

ChangeColor

End Sub

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

In the ChangeColor() sub procedure, a reference to the chart is set with the variable myChart
using the same object path in the SetChartType() sub procedure. A simple test for the value
of the Option Button controls (optChartArea, optPlotArea, and optSeries) sets the variable
used as the conditional in a Select/Case decision structure. In the Select/Case structure, the
ColorIndex property of the ChartArea, PlotArea, and Series objects is assigned to the Value
property of the Scroll Bar control (scrColor). The ChartArea object generally represents the
background, axes, titles and legend in a chart; but this depends on the chart type. The
PlotArea object represents the area on a chart where the data is plotted (data markers, data
labels, gridlines, and so on). The Series object represents an individual data series and is
returned from the SeriesCollection collection object.

Private Sub ChangeColor()

Dim component As Integer

Dim myChart As Chart

Set myChart = ActiveSheet.ChartObjects(1).Chart

If optChartArea.Value = True Then component = 1

If optPlotArea.Value = True Then component = 2

If optSeries.Value = True Then component = 3

Select Case component

Case 1

myChart.ChartArea.Interior.ColorIndex = scrColor.Value

Case 2

myChart.PlotArea.Interior.ColorIndex = scrColor.Value

Case 3

If optLine.Value <> True Then

myChart.SeriesCollection(1).Interior.ColorIndex = scrColor.Value

End If

Case Else

MsgBox (“Please select a chart component”)

End Select

End Sub

The available objects and properties of a Chart object will vary somewhat with
chart type; therefore, it is very important that you have a good understanding of
the type of chart you are trying to manipulate.

For example, unlike the area, column, and bar charts, a line chart does not have
an Interior object subordinate to its Series object. As a result, you cannot set
the ColorIndex property of the Interior object of the Series object for a line
chart. Attempting to do so will result in a runtime error.

TRAP

387Chapter 9 • Excel Charts

388

Although the Chart Type worksheet illustrates the manipulation of a few properties of the
Chart object, it is not a practical example of a good VBA application because it is just as easy
for the user to manipulate these properties from the Excel application.

Typically, properties of a Chart object are set from VBA code when the chart must be added
to the workbook or worksheet programmatically.

See the PieClock.xls workbook for another example of chart manipulation
where an analog clock is simulated using a pie chart.

Creating Charts
To write a VBA procedure that creates a chart, you must decide whether to create a chart
sheet or embed the chart in an existing worksheet. The difference between creating a chart
sheet and embedding a chart is subtle; it is presented in the code listings that follow. These
procedures can also be found in the ChartDemo.xls file and activated from the worksheet
named Embedded Charts.

Creating a Chart Sheet
The sub procedure AddChartSheet() creates a new chart sheet and a column chart of sample
data selected from a worksheet by the user.

The worksheet range that contains the data is selected via a custom dialog box using methods
discussed in Chapter 6. The Add() method of the Charts collection object is used to create
a column chart on a new chart sheet. Remember, the Charts collection object represents a
collection of chart sheets in a workbook (refer to Table 9.1). After the chart sheet is added, the
chart it contains is automatically active because it is the only component of the sheet. Next,
a With/End With structure is used to modify the properties of the Chart object. Many of these
subordinate objects and properties have common sense names, so their function is intuitive.

Public Sub AddChartSheet()

Dim dataRange As Range

Set dataRange = Range(frmDataRange.txtDataRange.Text)

frmDataRange.Hide

Charts.Add

With ActiveChart

.ChartType = xlColumnClustered

.HasLegend = True

.Legend.Position = xlRight

HINT

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

.Axes(xlCategory).MinorTickMark = xlOutside

.Axes(xlValue).MinorTickMark = xlOutside

‘————————————————————————————

‘Use Excel worksheet function to set the maximum scale on

‘the value axis.

‘————————————————————————————

.Axes(xlValue).MaximumScale = Application.WorksheetFunction. _

RoundUp(Application.WorksheetFunction. _

Max(dataRange), -1)

.Axes(xlCategory).HasTitle = True

.Axes(xlCategory).AxisTitle.Characters.Text = “X-axis Labels”

.Axes(xlValue).HasTitle = True

.Axes(xlValue).AxisTitle.Characters.Text = “Y-axis”

.SeriesCollection(1).Name = “Sample Data”

.SeriesCollection(1).Values = dataRange

End With

End Sub

In the AddChartSheet() sub procedure, a specific Axis object is returned from the Axes col-
lection object by passing a defined constant with the Axes() method. The Axes() method
returns an Axis object and takes up to two parameters: one for the axis type (xlCategory,
xlSeries, or xlValue), and another for the axis group (xlPrimary or xlSecondary). The axis
type xlCategory represents the x-axis on the chart, and xlValue represents the y-axis. The axis type
xlSeries applies only to 3D charts and represents the z-axis. The axis group is either xlPrimary
(default) or xlSecondary (applies to charts containing multiple Series objects).

The rest of the objects and properties set via the Axis object are fairly straightforward and
include setting tick marks and chart labels. The upper limit of the y-axis scale is set using
Excel worksheet functions that return the maximum value from the variable dataRange
(defined at the beginning of the procedure) rounded up to single-digit precision.

The data is finally added to the chart by setting the Values property of the Series object
(returned from the SeriesCollection collection object) with the range variable dataRange.

Figure 9.8 shows the components specifically added to the chart by the preceding code. The
chart also contains components created from default properties of the various chart related
objects. For example, the gridlines in the figure are the major gridlines on the y-axis and are
displayed by default. To prevent them from being displayed, I could have added a statement
such as ActiveChart.Axes(xlValue).MajorGridlines = False.

389Chapter 9 • Excel Charts

390

Creating an Embedded Chart
To add an embedded chart to a worksheet, use the Add() method of the ChartObects collec-
tion object. The AddEmbeddedChart() sub procedure creates the same column chart as the
AddChartSheet() sub procedure listed in the previous section; however, it embeds the chart
on an existing worksheet named Embedded Charts.

Public Sub AddEmbeddedChart()

Dim dataRange As Range

Set dataRange = Range(frmDataRange.txtDataRange.Text)

frmDataRange.Hide

Sheets(“Create Chart”).ChartObjects.Add Left:=200, _

Top:=50, Width:=500, Height:=350

Sheets(“Create Chart”).ChartObjects(1).Activate

With ActiveChart

.ChartType = xlColumnClustered

.SeriesCollection.NewSeries

.HasLegend = True

.Legend.Position = xlRight

.Axes(xlCategory).MinorTickMark = xlOutside

.Axes(xlValue).MinorTickMark = xlOutside

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 9. 8

The column chart
created by the

AddChartSheet()
sub procedure.

MaximumScale

ChartType =
xlColumnClustered

MinorTickMark =
xlOutside

SeriesCollection(1).
Values

HasLegend = True

Legend.Position =
xlRight

SeriesCollection(1).
Name=”Sample
Data”

HasTitle = True

AxisTitle.Characters.
Text = “X-axis
Labels”

.Axes(xlValue).MaximumScale = Application.WorksheetFunction.RoundUp(_

Application.WorksheetFunction.Max(dataRange), -1)

.Axes(xlCategory, xlPrimary).HasTitle = True

.Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = _

“X-axis Labels”

.Axes(xlValue, xlPrimary).HasTitle = True

.Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = “Y-axis”

.SeriesCollection(1).Name = “Sample Data”

.SeriesCollection(1).Values = dataRange

End With

End Sub

When adding an embedded chart, the Add() method of the ChartObjects collection object
accepts four parameters that define the position of the upper-left corner of the chart on the
worksheet, as well as the chart width and height. The position properties of the Add()
method (Left and Top) are relative to the upper-left corner of cell A1 and are in units of
points. The Activate method of the ChartObject object is equivalent to selecting the chart
because only one Chart object is contained in a ChartObject object.

Before setting the properties of the Chart object, the chart must contain at least one Series
object. Thus, the NewSeries method is used to add an empty Series object to the chart. This
is another difference from adding chart sheets, where a Series object is automatically added
on creation of the chart sheet. The properties of the Chart object are then set in the same
manner as was done with the chart sheet.

The preceding examples demonstrate only a small fraction of the objects, properties, and
methods available in a Chart object. Don’t be intimidated by the breadth of the Chart object
and its components! Always remember that a large problem can be broken into many smaller,
more manageable problems. Once you learn how to access a chart, setting the properties of
any of its component objects is basically the same. The hard part is learning what objects
are available to the specific chart being manipulated. The number of component objects in
a Chart object varies with the chart type (column, bar, scatter, and so on) and with the sub-
category of chart type (clustered, stacked, 3D, and so on). For example, a 3D column chart
has Wall, Floor, and Corners objects, but a clustered column chart does not have these objects.

To learn the differences between chart types or to just learn what is available for a specific
chart type, use recorded macros. First, create the chart from the Excel application then alter
its appearance with the macro recorder turned on. Be careful to record only a small number
of actions, say two to three at one time, because the macro recorder adds a lot of unnecessary
code (setting default values). Keep in mind that as you select a component of the chart with

391Chapter 9 • Excel Charts

392

the mouse, you are really selecting a component object of the Chart object. The dialog box
that appears when the component object is double-clicked or selected from the chart menu
sets the properties of that object. For example, the Format Axis dialog box shown in Figure
9.9 appears when the user double-clicks on a chart axis.

Figure 9.9 shows some of the properties of the Axis object. If the macro recorder is on while
these properties are altered, the VBA code used to set these properties will be recorded when
OK is clicked in the dialog box. After recording a small macro, proceed to the VBA IDE to
examine the recorded code. If any of the code needs clarification, select the unknown key-
word and press F1 to retrieve its documentation from the online help. This is an extremely
helpful tool for learning how to program specific Excel components and the advantage
should be exploited.

Chart Events
The Chart object has several events that are triggered by various user actions. Some of the
events are familiar—like Activate(), MouseDown(), and MouseUp()— but a few are unique to the
Chart object. Table 9.3 summarizes the less familiar events associated with the Chart object.

Chart object events are not automatically enabled with embedded charts.
Although Chartobject events can be enabled for embedded charts, the methods
involved are beyond the scope of this book.

HINT

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 9.9

The Format Axis
dialog box.

Chart Sheets
Chart events are automatically enabled with chart sheets. To catch events triggered by the user
in a chart sheet, add code to an event procedure contained in the module associated with the
chart sheet. The code window can be opened in the same manner as with a worksheet. Figure
9.10 shows the code window of a chart sheet selected from the project explorer. The active
project displayed in Figure 9.10 is an Excel workbook containing several chart sheets.

393Chapter 9 • Excel Charts

Event Trigger

Calculate When new or changed data is charted

DragOver When a range of cells is dragged over a chart

DragPlot When a range of cells is dragged and dropped on a chart

Resize When the chart is resized

Select When a chart element is selected

SeriesChange When the value of a charted data point changes

TA B L E 9. 3 C H A RT O B J E C T E V E N T S

Figure 9.10

Adding code to an
event procedure
of a chart sheet.

Chart sheet
component module

Chart sheets

394

Unfortunately, some of the events unique to the Chart object cannot be used with a chart
sheet because there is no manner in which the user can trigger them. For example, the user
cannot drag and drop a range of cells over the chart when the data is in another worksheet;
however, the other chart events work as expected, and an example using the Select() event
procedure of the Chart object is listed here.

Private Sub Chart_Select(ByVal ElementID As Long, ByVal Arg1 As Long, ByVal Arg2 As Long)

If ElementID = xlSeries And Arg2 > 0 Then

ActiveChart.SeriesCollection(Arg1).Points(Arg2).ApplyDataLabels

Type:=xlShowValue

End If

End Sub

The Select() event procedure of the Chart object accepts three parameters: ElementID is a
long integer that refers to the component object selected by the user (ChartArea, PlotArea,
Series, and so on), and Arg1 and Arg2 are long integers that refer to specific components of
the selected object; thus, the meaning of Arg1 and Arg2 depends on the object selected by the
user. The definitions of Arg1 and Arg2 for some of the more common chart components are
listed in Table 9.4.

The preceding Select() event procedure is triggered when the user selects a chart component.
If that component is a single data point on the chart then Arg1 holds the index value of the
selected Series object (representing a series of values) and Arg2 holds the index value of
the selected Point object (representing the individual values in the series).

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

ElementID Arg1 Arg2

xlAxis, xlAxisTitle, xlDisplayUnitLabel, xlMajorGridlines, xlMinorGridlines Axis Index Axis Type

xlChartArea, xlChartTitle, xlCorners, xlDataTable, xlLegend, xlPlotArea None None

xlDataLabel, xlSeries Series Index Point Index

xlErrorBars, xlLegendEntry, xlLegendKey Series Index None

xlTrendline Series Index TrendLine
Index

xlXErrorBars, xlYErrorBars Series Index None

TA B L E 9. 4 A R G U M E N T D E F I N I T I O N S F O R T H E S E L E C T ()
E V E N T O F T H E C H A RT O B J E C T

The purpose of the code entered in the Select() event procedure is to add a label to any
point in a data series selected by the user. To accomplish this, the parameter ElementID is
tested for equivalence to three (VBA-defined constant xlSeries, see online help for addi-
tional constants) because that’s the value that represents a Series object. If the user has
selected a single point in a data series, the selected point is labeled with its value by using
the ApplyDataLabels() method of the Point object and setting the Type argument to the con-
stant xlShowValue. In this example, Arg2 holds the value –1 if the entire series is selected and
will not hold a meaningful value until the user selects an individual point from the data
series. When the user does select an individual data point, the value of Arg2 is passed to the
Points() method, which returns a Point object from the Points collection object. In this
case, the Points() method returns the specific data point selected by the user.

Consider the chart shown in Figure 9.11 where two data series are plotted in a scatter chart.

The chart is contained in a chart sheet and the Select() event procedure of the Chart object
contains the previously listed code. If the user selects Series 1 with a single click of the mouse,
the Select() event procedure is triggered but the parameters passed to the procedure are
ElementID=3, Arg1=1, and Arg2=-1; so the conditional expression in the If/Then statement is
false; therefore, no label is added to the chart. With Series 1 selected, the user then clicks
on the 6th data point in Series 1. Again, the Select() event procedure is triggered, but this
time the parameters passed to it are ElementID=3, Arg1=1, and Arg2=6. This time, the condi-
tional in the If/Then statement is true and the label 54 is added to the chart.

395Chapter 9 • Excel Charts

Figure 9.11

Detecting a user
selection with the
Select() event

of the Chart
object.

Data label

396 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Before writing the code for the Select() event procedure, I recorded a macro
while adding a label to a charted point. This reminded me how to add the label
to individual data points using VBA.

To learn how to use the Select() event procedure of the Chartobject, I added the
statement Debug.Print ElementID; Arg1; Arg2 to the procedure and watched
the Immediate window while I clicked on various components of the Chartobject.

Chapter Project: The Alienated Game
The Alienated Game uses a chart sheet for the user interface (see Figure 9.12) and illustrates
the use of several VBA objects subordinate to the Chart object. The program uses the less
common bubble chart type because the data markers (represented by Point objects in VBA)
in a regular scatter chart cannot hold images. A total of ten data series with ten values each
are charted and their markers are randomly filled with one of seven images. The object of
the game is to swap two images such that it will create a sequence of three or more identical
images in a column or row (hereafter referred to as a score sequence). When a score sequence
is created, their images are removed from the chart and the images above the score sequence
are moved down. Finally, the empty markers at the top of the chart are randomly filled with
new images. The player scores ten points for each image removed and the game ends when
all possible moves are exhausted.

HINT

Figure 9.12

The Alienated
Game.

Requirements for the Alienated Game
From the user’s point of view, the Alienated Game is quite simple because all they have to do
is select data markers on a chart. From your point of view, I’m betting the game is more of a
challenge; especially if you’re not that comfortable with charts. If your comfort level is low,
that provides all the more reason to spend ample time planning the program.

The following list contains my requirements for the Alienated Game.

1. The game interface shall consist of a bubble chart created on a chart sheet.

2. The chart’s data point markers shall display 100 images in a 10 by 10 grid.

3. Each image displayed in a data marker shall be randomly chosen from one of seven
images.

4. The program shall be initiated from a form button placed on the chart.

5. The program shall track the user’s score and display it via a chart title.

6. The program shall display help messages to the user via a chart title.

7. When a new game begins, all data markers in the chart shall be updated with new
images.

8. Any time new images are added to the chart, the program shall scan the chart for
a score sequence.

9. When a score sequence is found, the program shall record the score (10 pts per
image), remove the images, move images above the score sequence down to fill the
vacancies, and add new images to the top of the chart.

10. When the user selects two images for swapping, the program shall validate the
selection before swapping the images. Selections are valid if they are adjacent and
non-diagonal and they must generate at least one score sequence. Valid selections
are swapped and the chart is scanned in order to process the score sequence.

11. The source data for the chart shall be added programmatically when a new game
begins and the chart is initialized. The source data shall remain static.

12. The images displayed in the chart’s data markers shall be mapped to the values in
a range of 100 cells in a hidden worksheet. Changes made to the chart during the
course of a game shall be a result of changes made to these mapped values.

Designing the Alienated Game
My goal for this project is to illustrate how to program with Excel’s Chart object model, so
its interface must take advantage of an Excel chart. This makes the project unusual with

397Chapter 9 • Excel Charts

398 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

respect to everything you’ve seen thus far because the game’s interface will not involve a
worksheet or VBA form. Nevertheless, charts are constructed in order to display data that is
typically stored in a worksheet; so the game will still require many of the common Excel
objects you have seen in other projects.

The Chart Sheet Interface
This chapter teaches you how to program Excel’s Chart object so the interface for the project
is built from a chart. Specifically, a chart sheet consisting of a bubble chart will serve to dis-
play the images.

The requirements state that the game must involve a 10 by 10 grid of 100 images. To satisfy
this requirement I will create the chart from ten data sets consisting of ten x,y-value pairs.
The data is charted as ten different series in the chart. Each data set must use the same set
of values for the x-axis variable to ensure vertical alignment of the images (for example, if
x=2 for one element in each series, then their corresponding data markers are vertically
aligned across the y-axis). In addition, the values for the x-axis variable must have a uniform
increment for homogeneous spacing of the images. To ensure the images are aligned hori-
zontally the y-values must be equivalent within a data series (for example, if y=2 for every
element in a series, then the corresponding data markers are aligned horizontally across
the x-axis), and the difference in the y-values between data series must also be uniform. The
magnitude of the numbers doesn’t really matter since the data is static, but I will keep it
simple and use 0-9 for the x-axis variable, and 0-9 for the y-axis series (that is, the first y-axis
data series is all 0’s, the second is all 1’s, and so on). The third variable in a bubble chart is
expressed by the size of the data marker. I don’t need this variable, but I need it to be iden-
tical for all data points such that the images are uniform in size. Figure 9.13 shows the chart
sheet interface for the Alienated Game and how the chart sheet appears before any images are
added to the data markers. Note that I formatted the chart to include a background image
simulating a starry night sky.

As can be seen in Figure 9.13 a new game is started from the click of a button. The button
must come from the Forms toolbar because you cannot place ActiveX controls on a chart
sheet. The button is assigned to a public VBA procedure that initializes the chart with new
images and clears the score so a new game can begin.

Displaying the score and help messages to the user is a bit more difficult than usual. In pre-
vious projects, I have used merged cells or Label controls to display text, but neither of these
options is available with a chart sheet. The best way to display text on a chart is to use the
axis and chart titles—that’s what you see in Figure 9.13.

For a more advanced version of the Alienated Game, check out the Alienated_
Embedded.xls project on the Book’s CD-ROM. This version of the game uses
an embedded chart for the user interface; so a class module is required to
enable the event procedures of the Chart object.

Capturing User Selections
In order to know what image the user has selected, the program must identify the specific
data series and data point whose marker displays the selected image. As discussed previously,
selecting a chart component triggers the Select() event of the Chart object. To identify specific
components requires testing the ElementID, Arg1, and Arg2 arguments that Excel passes to
the Select() event. The Alienated Game will take advantage of the Select() event procedure
for identifying user-selected images.

Mapping the Images
Keeping track of the images and their locations in the chart is critical if the game is going
to work properly. Keep in mind that the chart’s images are actually data markers; it is natural
to think of deleting or changing the data values to simulate image swaps or deletions. You
could probably even design the program to function by altering the charted values, but that
seems too complicated. Since the bubble chart will constantly have to display 100 images in
a 10 by 10 grid, it will be a lot easier if the data remains static and all the program changes
are the images contained in the data markers.

HINT

399Chapter 9 • Excel Charts

Figure 9.13

The Alienated
Game chart sheet

interface prior
to filling the
markers with

images.

400

There are a number of methods you could use to track the chart’s images including the use
of a multi-dimensional array that is updated with each alteration of a data marker on the
chart. This also seems like a lot of extra work when I can use a worksheet range to map each
image type and its location in the chart. For example, consider the images shown in Figure
9.14 and their associated file names.

I purposely used integers in each file name to identify the specific alien. To add images to
the chart, the program must first create a 10 by 10 map of integers between 1 and 7 in a
worksheet range consisting of 10 rows and 10 columns as shown in Figure 9.15. The values
in this range (hereafter referred to as the image map) correspond directly to the integer val-
ues in the file names of the alien images.

The chart’s data markers are then loaded using the values from the image map contained
in the ImageMap worksheet. Generating the integers randomly ensures that the image markers
are filled randomly with one of the seven images shown in Figure 9.14. The chart sheet created
from the image map shown in Figure 9.15 is shown in Figure 9.16.

Since the image map identifies each image in the chart, any change to the images required
during the course of a game must be mirrored in the image map. In fact, it will be easiest
to first update the image map and use it to update the images displayed in the chart.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 9.14

The images of the
aliens and their
associated file
names used in
the Alienated

Game.

401Chapter 9 • Excel Charts

Figure 9.15

The sample map
of image

identifiers used
by the Alienated
Game to track

image markers in
the chart sheet

interface.

Figure 9.16

The chart sheet
with data markers
filled with images
using the integer

map shown in
Figure 9.15.

402

Program Outline
When playing a game, the Alienated Game should proceed as outlined in the following:

1. The user initiates a new game with a click of the form button drawn on the chart
sheet interface.

2. The chart sheet and ImageMap worksheet containing the image map are initialized for
a new game.

3. The data is added to the chart as ten distinct series.

4. Data markers are filled with images using the image map contained in the ImageMap
worksheet.

5. The image map is scanned for score sequences. If score sequences are found, the
score is updated and their corresponding values and images are deleted from the
image map and chart, respectively.

6. Vacancies in the image map are filled by moving values down columns and randomly
adding new values to the vacated cells at the top of the columns.

7. The images displayed in the data markers in the chart are updated by reading the
image map.

Steps 5–7 are repeated until there are no more score sequences found.

8. The user begins play by selecting two images in the chart for swapping.

9. The user’s selection is validated to ensure the swap produces a score sequence.
In addition, the swap must involve adjacent data markers (same row or column,
no diagonals).

10. If the player’s selection is invalid, a message is output to the chart sheet explaining
the problem.

Steps 5–7 are repeated until there are no more score sequences found.

11. The game continues until there are no more possible swaps that can create a score
sequence or the user decides to start a new game. Creating a sub procedure that
scans the chart for potential moves is left as an exercise for the reader.

Coding the Alienated Game
Since the program interface consists of a single chart sheet and the program requires the
Select() event of the Chart object, I have entered all of the program code in the module for
the chart sheet.

Module level declarations include a string for holding the path to the image files, integers
for holding the series and point numbers for the two images selected by the user, and a custom

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

data type defining the type DataPoints. I will use variables declared as DataPoints to hold the
last cell in the range of cells mapped to score sequences in the chart. A DataPoints variable
will also hold the number of cells in the score sequence.

Option Explicit

Private Type DataPoints

cellRange As Range

numCells As Integer

End Type

Private filePath As String

Private pt1Series As Integer

Private pt2Series As Integer

Private pt1Point As Integer

Private pt2Point As Integer

Initializing the Chart Sheet
The public sub procedure Main() is triggered from the form button on the chart sheet and
contains calls to the initialization procedures for the chart sheet, then scans the chart for
score sequences. Screen updating is initially turned off otherwise Excel will update the
screen as images are added or removed from the chart. Screen updating is turned back on
so that the user can see the chart before it is scanned for score sequences. Note that the
ChartTitle object is used to display help messages to the user telling them how to play the
game. The ChartTitle object is accessed via the ChartTitle property of the Chart object,
which in turn is returned from the Sheets property of the Application object. I added the
title to the bottom of the chart when initially formatting it.

Public Sub Main()

Dim msg As ChartTitle

Set msg = Sheets(“Alienated”).ChartTitle

‘————————————————

‘Call initialization procedures.

‘————————————————

Application.ScreenUpdating = False

InitData

AddSeries

InitSeriesImages

Application.ScreenUpdating = True

Delay 1

403Chapter 9 • Excel Charts

404

‘——————————————————————————-

‘Scan the chart, remove and score consecutive images,

‘then update the chart with new images...repeat.

‘——————————————————————————-

ProcessChart

‘————————————————————————-

‘Update messages and initialize chart for player

‘selection of two images.

‘————————————————————————-

msg.Text = “Select two adjacent aliens to swap. “ & _

“Two single clicks will select a single alien.”

End Sub

The InitData() sub procedure is called from Main() and serves to reset the score, outputs an
informational message, and fills the image maps range in the ImageMap worksheet with ran-
dom integer values between 1 and 7. I named the range B2:K11 ImageMap when formatting
the ImageMap worksheet.

Private Sub InitData()

Dim msg As ChartTitle, score As AxisTitle

Dim wsAlien As Chart, wsMap As Worksheet

Dim c As Range

‘—————————————————

‘Initialize Alienated chart sheet.

‘—————————————————

Set wsAlien = Sheets(“Alienated”)

Set wsMap = Worksheets(“ImageMap”)

Set msg = wsAlien.ChartTitle

Set score = wsAlien.Axes(xlCategory).AxisTitle

score.Text = “0”

filePath = ActiveWorkbook.Path & “\AlienImages\alien”

msg.Text = “Please wait while board is initialized.”

‘————————————————————-

‘Initialize data on the Hidden worksheet.

‘————————————————————-

Randomize

With wsMap

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

For Each c In .Range(“ImageMap”)

c.Value = Int(Rnd * 7) + 1

Next

End With

End Sub

The AddSeries() sub procedure is also called from Main() and its purpose is to add the data
to the chart. Since the data remains static, I can add it programmatically using variant
arrays. You can add a data series to a chart via the SeriesCollection object that is returned
using the SeriesCollection property of the Chart object. I first delete any existing series
before adding ten new series in a For/Next loop. I set all three variables (x, y, and point size)
for each series within the loop. Since each data series requires the same set of x-values and
marker sizes, I can use variant arrays (xArray and ptSize) with the XValues and BubbleSizes
properties of the SeriesCollection object to set the x-axis and marker size values. Values for
the y-axis variable are constant for a given set of x-values and are set using the Values prop-
erty of the SeriesCollection object.

Prior to setting the data values for each series, I set the BubbleScale property of a ChartGroup
object. A ChartGroup object represents all the data series charted with the same format (line,
bar, bubble, and so on). In this example, all ten series are charted with the same format (bubble)
so the ChartGroups property with an index value of 1 returns all ten series as a ChartGroup
object. The BubbleScale property only applies to bubble charts and sets a scale factor for the
bubbles on the chart. I have to set this property because the images I created are too large to
fit in a reasonably sized chart; thus, I scaled them down to 35 percent of their original size.

Private Sub AddSeries()

Dim I As Integer

Dim chAlien As Chart

Dim xArray As Variant, ptSize As Variant

On Error GoTo ErrorHandler

xArray = Array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

ptSize = Array(1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

‘————————————————————

‘Add 10 data series to the bubble chart.

‘————————————————————

Set chAlien = Sheets(“Alienated”)

chAlien.ChartGroups(1).BubbleScale = 35

With chAlien

405Chapter 9 • Excel Charts

406

If .SeriesCollection.Count > 0 Then

For I = .SeriesCollection.Count To 1 Step -1

.SeriesCollection(I).Delete

Next I

End If

For I = 1 To 10

.SeriesCollection.NewSeries

.SeriesCollection(I).XValues = xArray

.SeriesCollection(I).Values = Array(10 - I, 10 - I, 10 - I, _

10 - I, 10 - I, 10 - I, 10 - I, 10 - I, 10 - I, 10 - I)

.SeriesCollection(I).BubbleSizes = ptSize

Next I

End With

Exit Sub

ErrorHandler:

MsgBox Err.Description, vbCritical, “Error”

End

End Sub

At this point in the program, the image map in the ImageMap worksheet has been randomly
filled with numbers and the chart has been initialized by resetting the score to zero and
adding ten new series of data. All that remains is to fill the chart markers with the images
of the aliens. This is accomplished in the InitSeriesImages() sub procedure. In this procedure,
nested For/Each loops iterate through each Points collection object associated with the
Series object for the chart. Recall that there are ten data series in the chart; therefore,
the SeriesCollection object contains ten Series objects. Furthermore, each Series object
contains a Points collection containing ten Point objects making for a grand total of 100
data points. The nested For/Each loops effectively iterate through each Point object in the
chart and use the UserPicture() method of the ChartFillFormat object to load an image of
an alien into the data marker. The ChartFillFormat object is returned by the Fill property
of the Point object. The specific image is selected using the value of the cell in the ImageMap
worksheet mapped to the specific Point object in the chart (recall how the file names for the
alien images were named, see Figure 9.14). If the image map does not contain a value, then
the ColorIndex property of the Interior object associated with the Point object is set to
xlNone. This effectively removes an image from a data marker and leaves the marker without
a background color so it cannot be seen. This is included in the InitSeriesImages() procedure
because this procedure will be called again when sequential images need to be removed
from the chart.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Private Sub InitSeriesImages()

Dim chAlien As Chart

Dim chSeries As Series, chPoint As Point

Dim imageIndex As Integer

Dim wsMap As Worksheet

Dim I As Integer, J As Integer

On Error GoTo InitSeriesError

‘———————————————————————————————-

‘Use inital image map to fill data points in chart with images.

‘———————————————————————————————-

Set chAlien = Sheets(“Alienated”)

Set wsMap = Worksheets(“ImageMap”)

I = 1: J = 1

With chAlien

For Each chSeries In .SeriesCollection

For Each chPoint In chSeries.Points

imageIndex = wsMap.Range(“ImageMap”).Cells(I, J).Value

If imageIndex <> 0 Then

chPoint.Fill.UserPicture PictureFile:=filePath & _

imageIndex & “.png”

Else

chPoint.Interior.ColorIndex = xlNone ‘Erase image

End If

J = J + 1 ‘Increment column index

Next

I = I + 1 ‘Increment row index

J = 1 ‘Reset column index

Next

End With

Exit Sub

InitSeriesError:

MsgBox “An error was encountered while loading images into the chart. “ _

& vbCrLf & Err.Description, vbOKOnly, “Chart Initialization Error: “ _

& Err.Number

End

End Sub

407Chapter 9 • Excel Charts

408 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Scanning the Chart
Scanning the chart sheet is required immediately after images are added to the bubble
chart. A chart scan must be triggered when a new game begins and when the player swaps
two images. Since a chart scan may ultimately result in the removal of images and subse-
quent addition of new images, this may trigger more scans.

The last procedure called from sub Main() is ProcessChart(). The ProcessChart() sub proce-
dure essentially outlines the process of scanning a chart for score sequences, updating the
score, removing score sequences, moving images down columns in the chart, and adding
new images. Since new images are added randomly to replace scored sequences, it is always
possible that more score sequences will be created; thus, the whole process is repeated in a
Do Loop until there are no more score sequences found. Most of these tasks are accomplished
with calls to the ScanImages() function procedure, and the CalcScore(), RemoveImages(), and
MoveImages() sub procedures.

The most interesting statement in this procedure is the conditional used with the If/Then
code block If (Not MapRanges) <> -1. On occasion, you may need to test if a dynamic array
variable has been dimensioned with a ReDim statement. (The variable MapRanges is declared
as a dynamic array and its value is returned from the ScanImages() function procedure.)
Unfortunately, VBA does not provide a function that will test this condition (the IsArray()
function only tests if the variable was originally declared as an array). To work around this
deficiency, you can test the numerical value returned by the statement Not ArrayVariableName,
where ArrayVariableName is the name of the array variable. If the expression Not ArrayVariable
Name returns -1, then the variable has not been dimensioned with a ReDim statement. It’s a
bit cryptic, but in the ProcessChart() sub procedure, it works well in the decision structure
to identify whether or not the ScanImages() function procedure found any score sequences
and thus dimensioned the array.

Private Sub ProcessChart()

Dim MapRanges() As Range

Dim scanAgain As Boolean

‘——————————————————————————-

‘Scan the chart, remove and score consecutive images,

‘then update the chart with new images...repeat.

‘——————————————————————————-

Do

MapRanges = ScanImages

If (Not MapRanges) <> -1 Then

scanAgain = True

CalcScore MapRanges

Application.ScreenUpdating = False

RemoveImages MapRanges

Application.ScreenUpdating = True

Delay 1

Application.ScreenUpdating = False

MoveImages MapRanges

Else

scanAgain = False

End If

Loop While scanAgain

End Sub

The function procedure ScanImages() is called from ProcessChart() and serves to search the
image types in the chart for score sequences by scanning the values in the image map in the
ImageMap worksheet. There is a lot happening in this procedure, so examine it closely. First,
note that the function procedure returns an array of Range objects. This is the first example
of a function procedure I’ve shown you that returns an array of any type. All you have to do
to denote an array for the return type is add empty parentheses to the data type in the open-
ing statement for the function.

You cannot create function procedures that return arrays in versions of Excel
prior to Excel 2000.

Since the function returns an array of objects (specifically Range Objects), each element of
the array will have to be referenced with a Set statement, but the return value will be
assigned without using the Set keyword. As always, the data type of the return variable
must match the function’s data type.

Next, please note that the variables endPointsRow and endPointsCol are declared as dynamic
arrays of the custom data type DataPoints defined in the general declarations section of the
module. These two variables are assigned the return value from calls to the ScanRowOrCol()
function procedure (listed later) and end up storing the score sequences. The range component
of the endPointsRow and endPointsCol variables actually hold a reference to just the last cell
in a range that must be scored. This is why the second component numCells is required in
the DataPoints defined type. The first call to ScanRowOrCol() scans the rows in the mapped
range and the second call scans the columns. As an example, consider the map shown in Figure
9.17 where I have emphasized the ranges that the program must score.

TRAP

409Chapter 9 • Excel Charts

410

When this image map is scanned, the array variable endPointsRow will be dimensioned with
three elements. The cellRange components of each element will represent the ranges D4, H6,
and E7 and their corresponding numCells components will hold 3, 3, and 4, respectively. The
array variable endPointsCol will be dimensioned with only one element whose components
are K8 and 4.

If a score sequence is found, then the ranges are converted to represent all cells whose values
and corresponding images must be removed. This is done with the ConvertToRange() sub pro-
cedure that is passed the empty array variable retRange (among others) that serves as the
return value of the ScanImages() function procedure. The array variable retRange is dimen-
sioned according to how many different ranges containing score sequences have been found
in the image map on the ImageMap worksheet. The elements of the retRange variable are care-
fully filled depending on whether all elements are in rows, columns, or both. Using the
example from Figure 9.17, the array variable retRange will be dimensioned with four elements
containing references to the ranges B4:D4, F6:H6, B7:E7, and K5:K8.

As you will see, scanning the rows and columns in the mapped range is not a trivial task so
you will have to follow this code carefully.

Private Function ScanImages() As Range()

Dim wsMap As Worksheet

Dim mapRange As Range

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 9.17

A sample map
showing the
image types

contained in the
bubble chart for

the Alienated
Game.

Dim endPointsRow() As DataPoints, endPointsCol() As DataPoints

Dim retRange() As Range

Dim endIndex As Integer

Dim rowsExist As Boolean, colsExist As Boolean

Set wsMap = Worksheets(“ImageMap”)

Set mapRange = wsMap.Range(“ImageMap”)

‘———————————-

‘Scan rows and columns.

‘———————————-

endPointsRow = ScanRowOrCol(mapRange.Rows)

endPointsCol = ScanRowOrCol(mapRange.Columns)

If (Not endPointsRow) <> -1 Then rowsExist = True

If (Not endPointsCol) <> -1 Then colsExist = True

‘——————————————————————-

‘Convert mapped points to ranges for removal.

‘——————————————————————-

If rowsExist And colsExist Then

ReDim retRange(UBound(endPointsRow) + UBound(endPointsCol) + 1)

ConvertToRange endPointsRow, 0, True, retRange, endIndex

ConvertToRange endPointsCol, endIndex, False, retRange

End If

If rowsExist And Not colsExist Then

ReDim retRange(UBound(endPointsRow))

ConvertToRange endPointsRow, 0, True, retRange

End If

If Not rowsExist And colsExist Then

ReDim retRange(UBound(endPointsCol))

ConvertToRange endPointsCol, 0, False, retRange

End If

ScanImages = retRange

End Function

The function procedure ScanRowOrCol() is called from ScanImages() and returns a variable
array of type DataPoints. The argument passed to this function is a range variable of the
columns or rows (see ScanImages() function procedure) in the image map. Nested For/Each
loops iterate through the rows or columns in the image map searching for score sequences.

411Chapter 9 • Excel Charts

412

When a sequence is found, the last cell in the range is assigned to the cellRange component of
the variable array endPts and the number of cells in the sequence is assigned to the numCells
component. The variable array endPts is returned to the calling procedure after the image
map has been scanned.

You will notice that I have to Set a reference to a row or column range immediately inside
the outer For/Each loop. This seems unnecessary since the range variable r should return an
entire row or column from the image map, and the range variable c should subsequently
return individual cells from r without having to set a reference to the range variable
curRowOrCol; however, without setting the reference to the variable curRowOrCol, the range
variable c will end up representing the exact same range as the variable r. This seems
counter-intuitive to me and may be a bug in the VBA language, but at least it has an easy fix.

Private Function ScanRowOrCol(rangeToScan As Range) As DataPoints()

Dim wsMap As Worksheet

Dim c As Range

Dim r As Range, curRowOrCol As Range

Dim prevVal As Integer, consecVals As Integer

Dim endPts() As DataPoints

Dim numPts As Integer

Set wsMap = Worksheets(“ImageMap”)

consecVals = 1

‘——————————————————————————————

‘Loop through individual cells in input range and determine

‘number of consecutive cells with the same value.

‘——————————————————————————————

For Each r In rangeToScan

Set curRowOrCol = wsMap.Range(r.Address)

For Each c In curRowOrCol

If prevVal = c.Value Then

consecVals = consecVals + 1

If (consecVals >= 3) Then

If consecVals >= 4 Then numPts = numPts - 1

ReDim Preserve endPts(numPts)

Set endPts(numPts).cellRange = c

endPts(numPts).numCells = consecVals

numPts = numPts + 1

End If

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Else

prevVal = c.Value

consecVals = 1

End If

Next

prevVal = 0

consecVals = 1

Next

ScanRowOrCol = endPts

End Function

The purpose of the sub procedure ConverToRange() is to convert the values of a DataPoints
variable representing score sequences to their full range; that is, it takes the cellRange and
numCells components of the variable and converts them to a range expressing all cells. For
example, the values H6 and 3 stored in the cellRange and numCells components of a DataPoints
variable are converted to H4:H6 or F6:H6 depending on whether the variable represents a row or
column. The DataPoints variable is passed in as the endPts array. The argument start represents
the starting index that must be used to specify the elements assigned to the array variable
retRange (passed by reference). The argument isRow specifies whether or not to convert the
values in the array variable endPts to a row range or column range, and the argument endIndex
is used to specify the last index used in the variable array retRange (required if this procedure
is immediately called a second time when there are both row and column ranges to be scored).

Private Sub ConvertToRange(endPts() As DataPoints, start As Integer, _

isRow As Boolean, retRange() As Range, Optional endIndex As _

Integer)

Dim I As Integer

Dim rIndex As Integer, cIndex As Integer

‘—————————————————————————————-

‘Convert ranges passed in as single cells to continuous

‘ranges representing consecutive cells with same image map.

‘—————————————————————————————-

For I = start To UBound(endPts) + start

If isRow Then

rIndex = endPts(I - start).cellRange.Row

cIndex = endPts(I - start).cellRange.Column - _

endPts(I - start).numCells + 1

Else

413Chapter 9 • Excel Charts

414

rIndex = endPts(I - start).cellRange.Row - _

endPts(I - start).numCells + 1

cIndex = endPts(I - start).cellRange.Column

End If

Set retRange(I) = Worksheets(“ImageMap”).Range(Chr(cIndex + 64) & _

rIndex & “:” & endPts(I - start).cellRange.Address)

Next I

endIndex = I

End Sub

The sub procedure CalcScore() is called from ProcessChart() and serves to update the score
displayed in an AxisTitle object on the bubble chart. The argument MapRanges contains ref-
erences to all score sequences found from the latest scan of the image map. Counting the
number of cells in these ranges is easy and ten points are assigned to each cell. The point
total is updated by setting the Text property of the AxisTitle object for the x-axis.

Private Sub CalcScore(MapRanges() As Range)

Dim I As Integer

Dim totPts As Integer

Dim score As AxisTitle

Const PTSPERIMAGE = 10

‘————————————————————————————-

‘Calculates the player’s score. 10 pts per removed image.

‘————————————————————————————-

Set score = Sheets(“Alienated”).Axes(xlCategory).AxisTitle

For I = 0 To UBound(MapRanges)

totPts = totPts + MapRanges(I).Rows.Count

totPts = totPts + MapRanges(I).Columns.Count

totPts = totPts - 1

Next I

score.Text = Val(score.Text) + totPts * PTSPERIMAGE

End Sub

That gets you through the toughest part of the program. What remains are some procedures
that handle removing, moving, and swapping images in the chart and updating the corre-
sponding map in the ImageMap worksheet.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

415Chapter 9 • Excel Charts

The RemoveImages() sub procedure is called from ProcessChart() and its function is to
remove images from chart markers that have been scored. The procedure takes advantage of
the near one-to-one correspondence between the row and column indices of the image map,
and the series and point indices of the chart (there is an offset of 1 because the image map
starts with row 2 and column 2 in the ImageMap worksheet, and series and point indices start
with 1). A For/Each loop nested inside a For/Next loop handles the image removal. The outer
For/Next loop iterates through each Range object referenced in the argument mapRange (variable
array) that references the cells in the image map that have been scored. The inner For/Each
loop iterates through each cell in a scored range in order to use the cell’s row and column
indices as indicators for the series, and point indices with the Item() method of the Series
Collection object and the Points() method of the Series object. The Item() method returns
a specific Series object using the index value passed to the method and the Points() method
returns a specific Point object using the index value passed to this method. The ColorIndex
property of the Interior object associated with a specific Point object is then used to remove
the image by setting its value to xlNone.

Private Sub RemoveImages(mapRange() As Range)

Dim chAlien As Chart

Dim chSeriesCol As SeriesCollection

Dim c As Range

Dim I As Integer

‘——————————————————-

‘Remove images that have been scored.

‘——————————————————-

Set chAlien = Sheets(“Alienated”)

Set chSeriesCol = chAlien.SeriesCollection

For I = 0 To UBound(mapRange)

For Each c In mapRange(I)

chSeriesCol.Item(c.Row - 1).Points(c.Column - 1). _

Interior.ColorIndex = xlNone

Next

Next I

End Sub

Figure 9.18 shows the bubble chart after the ranges shown in Figure 9.17 have been used to
remove scored images.

416

After scored images are removed from the chart, the images lying above an empty set of
markers must be moved down. The MoveImages() sub procedure is called from ProcessChart()
to handle this task. Before images can be moved down the chart, the values in the image
map in the ImageMap worksheet must be moved. The MoveMap() sub procedure moves the values
in the image map down in order to fill vacancies left by removing these values when scoring
a range. Updating the chart is easy—just call the InitSeriesImages() sub procedure listed
earlier that uses the image map to identify which data markers in the chart receive what
alien image.

After a one second delay, the vacancies in the top rows of the mapped range are randomly
filled with a call to the FillMap() sub procedure before the new images are added to the
chart with another call to InitSeriesImages().

Figure 9.19 shows the bubble chart and image map after the images in Figure 9.18 have been
moved down, but before new images have been added.

Private Sub MoveImages(mapRange() As Range)

‘————————————————————-

‘Move mapped values down after deletions.

‘————————————————————-

MoveMap mapRange

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 9.18

The bubble chart
in the Alienated
Game after the

removal of
scored images.

‘—————————————-

‘Move images down on chart.

‘—————————————-

InitSeriesImages

Application.ScreenUpdating = True

Delay 1

Application.ScreenUpdating = False

FillMap

InitSeriesImages

End Sub

There are probably numerous algorithms that could be developed for quickly and efficiently
moving values down in the image map; unfortunately, I couldn’t think of any. My algorithm
for moving values down is not particularly efficient, but that’s okay; the image map only
contains 100 cells and it won’t take too long to iterate through them all. After clearing the
scored ranges (the easy part), the MoveMap() sub procedure iterates through the columns in
the image map with a For/Each loop. With each column returned to the range variable mapCol,
I first test for an empty cell within this range using the Find() method of the Range object.
If there is no empty cell in the column then the loop iterates to the next column range; so
in some cases, this procedure may not have to iterate through all 100 cells in the range.

417Chapter 9 • Excel Charts

Figure 9.19

The bubble chart
after moving the

images down.

418

When an empty cell is discovered, a nested For/Each loop iterates through all cells in the col-
umn, collecting values from non-empty cells. For example, if a column contains two empty
cells, then the array variable colVals will end up with eight elements. Immediately follow-
ing the For/Each loop a For/Next loop writes the values in the array variable colVals back to
the column starting with a row index that ensures the values are written in continuous
cells, and that the loop finishes in row 11. This process is repeated for each column with an
empty cell or cells (see Figure 9.20 to see the result).

Private Sub MoveMap(mapRange() As Range)

Dim I As Integer

Dim wsMap As Worksheet

Dim mapCol As Range, firstEmptyCell As Range

Dim colVals() As Integer

Dim rngDel As Range, c As Range

‘——————————-

‘Clear scored ranges.

‘——————————-

Set wsMap = Worksheets(“ImageMap”)

For I = 0 To UBound(mapRange)

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 9.20

The ImageMap
worksheet after

vacancies are
filled by moving

values down.

Set rngDel = wsMap.Range(mapRange(I).Address)

rngDel.ClearContents

Next I

I = 0

‘————————————————————————————

‘Loop through columns and collect all non-zero values

‘in each column then clear column and write values back

‘in consecutive cells.

‘————————————————————————————-

For Each mapCol In wsMap.Range(“ImageMap”).Columns

Set firstEmptyCell = mapCol.Find(What:=””)

If Not firstEmptyCell Is Nothing Then

For Each c In wsMap.Range(mapCol.Address)

If c.Value <> “” Then

ReDim Preserve colVals(I)

colVals(I) = c.Value

I = I + 1

End If

Next

mapCol.ClearContents

For I = 11 - UBound(colVals) To 11

mapCol.Cells(I - 1, 1).Value = colVals(I - _

(11 - UBound(colVals)))

Next I

I = 0

End If

Next

End Sub

Empty cells at the top of the image map are filled with a call to the FillMap() sub procedure.
Integer values between 1 and 7 are randomly added to any empty cells found in the image map.

Private Sub FillMap()

Dim mapRange As Range

Dim c As Range

Randomize

419Chapter 9 • Excel Charts

420

‘—————————————————————————-

‘Fill empty cells in image map with random integer

‘between 1 and 7.

‘—————————————————————————-

Set mapRange = Worksheets(“ImageMap”).Range(“ImageMap”)

For Each c In mapRange

If c.Value = “” Then

c.Value = Int(Rnd * 7) + 1

End If

Next

End Sub

Private Sub Delay(pauseTime As Single)

Dim curTime As Single

curTime = Timer

Do

DoEvents

Loop While (curTime + pauseTime) > Timer

End Sub

Playing the Game
The game is played by searching the chart for two adjacent images in a single row or column
that can be swapped in order to create a score sequence. The user selects an image by first
selecting a series and then selecting a specific point within that series; that is, it takes two
single clicks to select a single point if a series has not already been selected. When the user
selects an image (or any chart component), it triggers the Select() event of the Chart object.
This is where I have entered the code that collects the specific Point objects representing the
chart markers selected by the user.

For the purposes of the Alienated Game, I am interested in selections that result in values for
all three arguments (ElementID, Arg1, and Arg2) Excel passes to the Select() event. Specifi-
cally, I am looking for ElementID=3 (VBA-defined constant xlSeries), and values of Arg1 and
Arg2 that are between 1 and 10. When these conditions are satisfied, the function procedure
AssignSelection() is called to assign the index values of the Series and Point objects
selected by the user to the module-level variables pt1Series, pt1Point, pt2Series, and
pt2Point. If the selection is valid (the user selected adjacent, non-diagonal images), then the
procedure continues with a call to the ImageSwap() function procedure (listed later). The
ImageSwap() procedure returns a Boolean value indicating whether or not a successful swap

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

occurred (it fails if it doesn’t produce a score sequence). If the swap is successful, the
ProcessChart() sub procedure is called to start the whole process of scoring, removing, and
updating the chart. If the swap is unsuccessful, the user must choose two new images.

Private Sub Chart_Select(ByVal ElementID As Long, ByVal Arg1 As Long, ByVal Arg2 As Long)

‘Catch player’s selection of individual points

Dim msg As ChartTitle

Dim swapSuccessful As Boolean

Static selection As Integer

‘———————————————————————

‘If the first selection only selects a series

‘then exit the sub.

‘———————————————————————

If Arg2 < 0 Then

Exit Sub

End If

‘—————————————————————————————-

‘Collect points selected by the player. Validate 2nd point.

‘Exit the sub if point 2 is not validated.

‘—————————————————————————————-

Set msg = Sheets(“Alienated”).ChartTitle

If ElementID = xlSeries And Arg2 > 0 Then

If Not AssignSelection(selection, Arg1, Arg2) Then Exit Sub

End If

‘————————————————-

‘Swap, score, and replace images.

‘————————————————-

swapSuccessful = ImageSwap

If swapSuccessful Then

ProcessChart

Else

selection = 0

Exit Sub

End If

msg.Text = “Select Two More Aliens”

End Sub

421Chapter 9 • Excel Charts

422

The AssignSelection() function procedure assigns the index values of the Series and Point
objects selected by the user to the module-level variables pt1Series, pt1Point, pt2Series, and
pt2Point. These variables are needed by other procedures that help swap the images selected
by the user. The procedure is divided into two parts in an If/ElseIf decision structure. The
If block assigns the first image selected by the user and the ElseIf block assigns the second
image after it is validated.

Private Function AssignSelection(selection As Integer, seriesNum As Long, _

ptNum As Long) As Boolean

Dim msg As ChartTitle

Set msg = Sheets(“Alienated”).ChartTitle

‘——————————-

‘Collect first point.

‘——————————-

If selection = 0 Then

pt1Series = seriesNum

pt1Point = ptNum

msg.Text = “One Alien Selected”

selection = selection + 1

AssignSelection = False

Exit Function

‘——————————————

‘Collect 2nd point if valid.

‘——————————————

ElseIf selection = 1 Then

If Not ValidatePt2(seriesNum, ptNum) Then

AssignSelection = False

selection = 0

Else

pt2Series = seriesNum

pt2Point = ptNum

msg.Text = “Two Aliens Selected”

AssignSelection = True

selection = 0

End If

End If

End Function

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The function procedure ValidatePt() validates the second image selected by the user only in
that the selections must be adjacent images within the same row or column. If the second
image selected by the user is not valid then the user must start over and select two new images.

Private Function ValidatePt2(Arg1 As Long, Arg2 As Long) As Boolean

Dim msg As ChartTitle

Set msg = Sheets(“Alienated”).ChartTitle

‘————————————————————————————

‘Test value of point 2 to ensure its in adjacent row or

‘column cannot be diagonal to point 1.

‘————————————————————————————

ValidatePt2 = True

If (Abs(pt1Series - Arg1) > 1 Or Abs(pt1Point - Arg2) > 1) Or _

(Abs(pt1Series - Arg1) = 1 And (pt1Point <> Arg2)) Or _

((pt1Series = Arg1) And (pt1Point = Arg2)) Then

msg.Text = “You must select adjacent cells.”

ValidatePt2 = False

End If

End Function

The function procedure ImageSwap() is called from the Select() event and serves to swap the
images selected by the user. First, the values in the image map are swapped with a call to the
ImageMapSwap() sub procedure. Next, the image map is scanned with a call to the ScanImages()
function procedure in order to check if the swap is valid. Recall that the ScanImages() func-
tion procedure returns a variable array whose elements are Range objects from the image
map that represent score sequences. If the call to ScanImages() returns a value, then the
user’s selection is valid and the whole process of swapping, scoring, and removing images
continues with a call to the ProcessChart() sub procedure in the Select() event. If the swap
does not result in any score sequences, then the image map is returned to its original state
with another call to ImageMapSwap(), a message is displayed to the user, and the ImageSwap()
function returns false to the calling procedure.

Private Function ImageSwap() As Boolean

Dim msg As ChartTitle

Dim MapRanges() As Range

Set msg = Sheets(“Alienated”).ChartTitle

423Chapter 9 • Excel Charts

424

ImageMapSwap

MapRanges = ScanImages

If (Not MapRanges) <> -1 Then ‘Swapped images should result in score.

TwoImageSwap

ImageSwap = True

Else

ImageMapSwap ‘First swap did not result in scored ranges.

msg.Text = “Selection must create 3 or more sequential aliens.”

ImageSwap = False

End If

End Function

The last two procedures listed for the Alienated Game are ImageMapSwap() and TwoImageSwap()
which swap the two values in the image map and the two images in the chart that correspond
to the user’s selection. These are both straightforward swapping procedures.

Private Sub TwoImageSwap()

Dim series1Pts As Points, series2Pts As Points

Dim wsMap As Worksheet

‘———————————

‘Initialize variables.

‘———————————

On Error GoTo SwapError

Set series1Pts = Sheets(“Alienated”).SeriesCollection(pt1Series).Points

Set series2Pts = Sheets(“Alienated”).SeriesCollection(pt2Series).Points

Set wsMap = Worksheets(“ImageMap”)

‘——————-

‘Swap images.

‘——————-

series1Pts(pt1Point).Fill.UserPicture PictureFile:=filePath & _

wsMap.Cells(pt1Series + 1, pt1Point + 1).Value & “.png”

series2Pts(pt2Point).Fill.UserPicture PictureFile:=filePath & _

wsMap.Cells(pt2Series + 1, pt2Point + 1).Value & “.png”

Exit Sub

SwapError:

MsgBox “An error occurred while swapping images. The game must end.” _

& vbCrLf & Err.Description, vbOKOnly, “Error: “ & Err.Number

End

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

425Chapter 9 • Excel Charts

End Sub

Private Sub ImageMapSwap()

Dim tempInt As Integer

Dim wsMap As Worksheet

Set wsMap = Worksheets(“ImageMap”)

‘————————————————————

‘Swap numbers mapped to selected images.

‘————————————————————

tempInt = wsMap.Cells(pt1Series + 1, pt1Point + 1)

wsMap.Cells(pt1Series + 1, pt1Point + 1) = _

wsMap.Cells(pt2Series + 1, pt2Point + 1)

wsMap.Cells(pt2Series + 1, pt2Point + 1) = tempInt

End Sub

That concludes the Alienated Game. I had a lot of fun writing it and hope you enjoy playing
it and adding your own features.

Chapter Summary
In this chapter, you took a close look at Excel’s Chart object and many of its related or sub-
ordinate objects. You learned how to use specific objects to access charts existing as chart
sheets or embedded charts. You also saw several examples of manipulating existing charts
through the use of the properties and methods of the Chart object and its subordinate
objects. You also learned how to create charts (chart sheets or embedded charts) using a VBA
procedure. Finally, you learned how to use some of the unique event procedures associated
with the Chart object.

426 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

C H A L L E N G E S

1. With Excel’s macro recorder turned on, create a column chart (chart sheet or
embedded) in Excel and format the chart to a desired appearance. Stop the macro
recorder and examine the recorded code. Remove any unnecessary code in the
macro and change the structure of the procedure to make it more readable. Now
run the code from the Excel application.

2. Add an embedded chart to a worksheet along with a Scroll Bar control. Attach
code to the Change() event procedure of the Scroll Bar control that changes the
maximum value y-axis scale.

3. Add a scatter chart to a worksheet from x- and y-data points entered in two
columns of the worksheet. Create a VBA procedure that animates one of the
charted points by changing its x- and y-values in a looping structure. Include a
delay in the loop as discussed in previous chapters.

4. Write a VBA procedure that adds a chart to a worksheet and formats it to a
desired appearance. The chart should be added after the user selects the data
and clicks on a Command Button control.

5. Create a chart sheet with a scatter chart. Using the Select() event procedure of
the scatter chart, create a procedure that outputs the values of the ElementID,
Arg1, and Arg2 parameters to the worksheet as the user clicks on various elements
of the chart.

6. Spice up the Alienated Game by adding different levels of difficulty. For example,
after the player reaches a certain score, start adding new images to the chart
with new identification numbers. This reduces the number of potential moves
the player can make.

7. Add sound to the Alienated Game, such as a small ding or knock that plays once
for each image that is scored.

8. Add a procedure to the Alienated Game that scans the image map and notifies
the player if there are no more possible moves.

VBA Shapes
10

C H A P T E RC H A P T E R

V
BA shapes refer to those objects added to a document or worksheet from the
Drawing toolbar in the application. This includes AutoShapes, freeforms,
images, and text. The Drawing toolbar is common to most Microsoft

Office applications, so programming its components only differs in terms of
the document to which its shapes are added (for example, an Excel worksheet,
Word document, or a PowerPoint slide).

These topics are specifically discussed in this chapter:

• The Shapes collection and Shape objects

• Manipulating a Shape object

• The ShapeRange collection object

• Activating Shape objects

• The OLEObjects collection

Project: Excetris
Excetris is modeled after the classic Tetris computer game. The object of the game
is to fill a predefined region on an Excel worksheet with five basic shapes so that
gaps between the shapes are avoided. The player is continuously given one shape
to add to the game board within a limited time period. When an entire row
across the game board is filled with shapes, the row is removed and the shapes
above moved down. Play continues until the player runs out of room for adding
more shapes. You will find Excetris on the accompanying CD-ROM, stored as
Excetris.xls. Figure 10.1 shows the Excel version of Excetris.

The Shapes Collection and Shape Objects
The Shapes collection object represents all Shape objects in the drawing layer of the work-
sheet. The Shapes property of the Worksheet object is used to return the entire collection of
Shape objects in the drawing layer. The following line of code uses the Count property of the
Shapes collection object to return the total number of shapes in the drawing layer of the
active worksheet:

ActiveSheet.Shapes.Count

You can think of the drawing layer as a sheet of clear plastic cellophane draped
over the top of the worksheet; therefore, shapes added to the drawing layer are
positioned on top of the worksheet and mask the cells underneath. The masked
cells can still be used to hold data.

Like other collection objects, an index or name can be specified to return a single Shape
object from the collection. To return a Shape object by index, specify a number.

ActiveSheet.Shapes(1).Select

Or, to return a Shape object by name, include the name in quotes.

ActiveSheet.Shapes(“Oval 1”).Select

HINT

428 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 10.1

The Excetris game.

To add a shape to a worksheet, use one of several Add() methods of the Shapes collection
object. For example, to add a line, use the AddLine() method.

ActiveSheet.Shapes.AddLine(10, 100, 250, 500).Select

The AddLine() method accepts four parameters for the starting and ending x- and y-values
representing the x, y-coordinate pairs of the two points used to define the line. The coordinates
are specified in points relative to the upper-left corner of the worksheet. In the preceding
example, a line is drawn on the active worksheet from point x = 10, y = 100 to the point x = 250,
y = 500.

The Add() methods of the Shapes collection object also return a reference to the
newly added Shape object, so it is possible to immediately apply a property or
method to the shape in the same statement. It is often convenient to select the
object then use a With/End With structure to manipulate several properties of the
object. You’ll see an example of this in the section “Manipulating a Shape Object.”

Other Add() methods of the Shapes collection object include AddShape(), AddPicture(),
AddOLEObject(), and AddPolyline(), to name just a few. The AddShape() method refers to the
AutoShapes found on the Drawing toolbar (see Figure 10.2). The example that follows adds
a triangle to the active worksheet and selects it:

ActiveSheet.Shapes.AddShape(msoShapeIsoscelesTriangle, 230, 220, 25, 20).Select

The AddShape() method requires five parameters representing, in order, the shape type (a
VBA defined constant, msoShapeIsoscelesTriangle in the example), and the Left, Top, Width,
and Height properties of the object.

All of the Add() methods are implemented in a manner similar to that of the AddShape()
method, but the required parameters are specific to the shape type. You will see more examples
of different shape types in the remainder of the chapter. For details about each method and

HINT

429Chapter 10 • VBA Shapes

Figure 10.2

The Drawing
toolbar.

AutoShapes

430

the parameters it requires, consult the online help or the members of the Shapes collection
in the Object Browser (see Figure 10.3).

Manipulating a Shape Object
After a Shape object is selected from the Shapes collection object, you can edit the shape
through its properties and methods. As always, the properties and methods available are
specific to the type of Shape object. Also, there may be properties and methods of subordi-
nate objects available for editing. The following example adds a rectangle to the active work-
sheet and manipulates a few of its properties; the result is shown in Figure 10.4.

ActiveSheet.Shapes.AddShape(msoShapeRectangle, 100, 100, 50, 50).Select

With Selection

.Name = “Red Square”

.Left = 10

.Top = 10

End With

With ActiveSheet.Shapes(“Red Square”)

.Fill.ForeColor.RGB = RGB(255, 0, 0)

.ZOrder msoBringToFront

End With

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 10.3

The Object
Browser showing
members of the
Shapes collection

object.

The AddShape() method of the Shapes collection object is used to add a rectangle to the draw-
ing layer. In the preceding example, the constant msoShapeRectangle sets the shape type. The
shape type is followed by four parameters that represent the Left, Top, Width, and Height
properties of the AutoShape, respectively. After the shape is added to the drawing layer, its
Name, Left, and Top properties are edited. The color of the shape is set as red (using the RGB()
function) by returning a FillFormat object via the Fill property. Finally, the ZOrder()
method of the Shape object is used to bring the shape to the front of the drawing layer.

Not all properties and subordinate objects are immediately available from an
object selected using the Select() method. In the previous example, the Fill
property and ZOrder() method are not available for the Shape object when it has
been selected using the Select() method. Instead, another With/End With
structure is needed to return the Shape object without selecting it before the
Fill property and ZOrder() method can be applied.

The previous example illustrates some of the properties and methods common to most
shapes. As is the case with the Chart object discussed in Chapter 9, some shapes and their
subordinate objects have unique properties and methods that cannot be applied to all Shape
objects. For example, the TextEffect property of the Shape object cannot be applied to shapes
that do not contain text; therefore, when manipulating a shape through a VBA program, be
careful to use the properties and methods that apply to that specific shape to avoid Run
time errors.

Looping through a Collection of Shapes
Looping through a collection of Shape objects is essentially the same as looping through any
other collection object. The code listed here loops through the Shapes collection object of
the active worksheet. This is comparable to the methods discussed in earlier chapters for

HINT

431Chapter 10 • VBA Shapes

Figure 10.4

Adding a Shape
object to a
worksheet.

432

looping through worksheet cells contained within a range. An object variable is declared
and used as the looping variable in a For/Each loop. The Shape collection object is returned
using the Shapes property of the Worksheet object. As each Shape object is returned in the
For/Each loop, it is tested for type via the Type property, and if the shape represents a line its
name is copied to the worksheet.

Public Sub LoopThruShapes()

Dim sh As Shape

Dim I As Integer

I = 1

For Each sh In ActiveSheet.Shapes

If sh.Type = msoLine Then

Cells(I, 1).Value = sh.Name

I = I + 1

End If

Next

End Sub

The preceding example represents one possible method for selecting and manipulating spe-
cific shapes from a collection. Next, you’ll see a method for selecting a subset of Shape
objects from a Shape collection using the ShapeRange collection object.

Sample code listed in this chapter and a couple of additional examples illustrat-
ing the use of various Shape objects can be found in the ShapeDemos.xls Excel
file on the CD-ROM that accompanies this book. Select different worksheets in
the workbook to view the different demonstrations. The worksheet labeled
Misc Shapes is shown in Figure 10.5.

The ShapeRange Collection Object
The ShapeRange collection object represents a collection of Shape objects that may contain
all, some, or just one of the Shape objects in the drawing layer of a worksheet. A ShapeRange
collection object can be constructed from the current shapes using any of several criteria
defined in decision structures (If/Then). For example, a ShapeRange collection object could be
constructed out of just those shapes that are of type AutoShape, or perhaps only those Shape
objects that are lines.

If you want to return all selected Shape objects to a ShapeRange collection object, use the
ShapeRange property of the Selection object when it represents a group of selected Shape
objects.

HINT

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

ActiveSheet.Shapes.SelectAll

Selection.ShapeRange.Rotation = 30

Selection.ShapeRange(1).Rotation = 60

The first line selects all Shape objects in the active worksheet. The second line sets the angle
of rotation to 30 degrees for all selected Shape objects. The third line sets the angle of rota-
tion to 60 degrees for the first Shape object that was added to the collection (out of those
objects currently selected).

To return a subset of the Shape objects as a ShapeRange collection object, use the Range prop-
erty of the Shapes collection object.

ActiveSheet.Shapes.Range(1).Select

ActiveSheet.Shapes.Range(“Line 1”).Select

ActiveSheet.Shapes.Range(Array(1, 2, 3, 4)).Select

ActiveSheet.Shapes.Range(Array(“Line 1”, “WordArt 2”)).Select

The Range property of the Shapes collection object accepts an integer, string, or parameter
array as arguments. A parameter array specified with the Array() function is more practical
because the Range property is not needed to select a single shape from the Shapes collection
object. The parameter array may contain a list of integers representing the index values of the

433Chapter 10 • VBA Shapes

Figure 10.5

The Misc Shapes
worksheet

from the
ShapeDemos.xls

workbook.

434

Shape objects or strings representing their names. Alternatively, you can build a parameter
array holding the integers or strings representing specific objects based on various condi-
tions. Consider the following procedure used to select all the lines in the drawing layer of
the active worksheet:

Public Sub SelectLines()

Dim sh As Shape

Dim lineNames() As Variant

Dim numLines As Integer

Dim ws As Worksheet

Set ws = ActiveSheet

For Each sh In ws.Shapes

If sh.Type = msoLine Then

ReDim Preserve lineNames(numLines)

lineNames(numLines) = sh.Name

numLines = numLines + 1

End If

Next

ws.Shapes.Range(lineNames).Select

Selection.ShapeRange.Line.Weight = 4.5

End Sub

The SelectLines() procedure uses a For/Each loop to iterate through the Shapes collection
object for the active worksheet and build a parameter array (lineNames declared as variant)
containing the names of the Shape objects of type msoLine. The name of each object of type
msoLine is copied to the lineNames array for later use.

Next, the parameter array is passed to the Range property of the Shapes collection object, and
objects of type msoLine are returned and selected. Additional code can now be added to mod-
ify the selected shapes. In this example, the ShapeRange property is used to return all the
selected shapes and set the thickness of the lines via the Weight property.

Figure 10.6 shows the result of applying the preceding procedure to the shapes contained in
the worksheet displayed in Figure 10.5.

The preceding procedure represents a useful method for selecting a range of Shape objects
of a particular type when you don’t know the proper names or index values at Design time.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

435Chapter 10 • VBA Shapes

Figure 10.6

The Misc Shapes
worksheet after
execution of the
SelectLines()
sub procedure.

Activating Shape Objects
Since most Shape objects (with the exception of OLEObjects) do not have any associated event
procedures, you can use the OnAction property of the Shape object to simulate a Click()
event. After the following code is executed, a Shape object named MyRectangle will activate
a VBA procedure called LoopThruShapes() when clicked. Technically, this is not the action of
a Click() event procedure, but practically it serves the same purpose.

ActiveSheet.Shapes.AddShape(msoShapeRectangle, 100, 100, 50, 50).Select

Selection.Name = “MyRectangle”

ActiveSheet.Shapes(“MyRectangle”).OnAction = “LoopThruShapes”

The OnAction property of the Shape object must be executed before a user’s click will activate
the specified procedure (LoopThruShapes()). This can be done anywhere in the program, but
including it in the procedure that adds the shape used to simulate the Click() event is a
good place for the code. Once the OnAction property has assigned a procedure to the Shape
object, the connection between the shape and the macro is saved with the workbook and
can be viewed from the application by showing the Assign Macro dialog box (right-click on
the shape and select Assign Macro) as shown in Figure 10.7.

The LoopThruShapes() sub procedure is listed earlier in this chapter. The result of the
LoopThruShapes() sub procedure after application to the Misc Shapes worksheet is shown in
Figure 10.8.

436

The OLEObjects Collection
The OLEObjects collection object represents all of the ActiveX controls on a document or
worksheet and can be accessed from the Worksheet object or the Shapes collection object.
Existing ActiveX controls can be accessed and new controls added to a worksheet. For example,
a Command Button can be added to a worksheet with either the Add() method of the
OLEObjects() collection object, or the AddOLEObject() method of the Shapes collection object.

ActiveSheet.OLEObjects.Add(ClassType:=”Forms.CommandButton.1”).Select

Or

ActiveSheet.Shapes.AddOLEObject(ClassType:=”Forms.CommandButton.1”).Select

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 10.7

The Assign Macro
dialog box.

Figure 10.8

The Misc Shapes
worksheet after
execution of the
LoopThruShapes()

sub procedure.

Other ActiveX controls are added using very similar code to that which adds a
Command Button by including the type of control in the assignment of the
ClassType argument (for example, Forms.Label.1 and Forms.TextBox.1).

Properties of the newly added OLEObject object are manipulated in one of two ways. First, if
the property is listed in the Object Browser under the class OLEObject, then it can be
assigned a new value in the usual way by returning the OLEObject from the OLEObjects col-
lection object. If the property is not listed under the OLEObject class in the Object Browser,
then you must return the actual control object by using the Object property before setting
the new value of the control’s property.

The sub procedure AddCommandButton() adds a Command Button control to the active work-
sheet using the AddOLEObject() method of the Shapes collection object. Returning the object
from the OLEObjects collection object sets the Name, Left, and Top properties of the OLEObject;
however, to set the Caption property, you must first return the control using the Object property
of the OLEObject object.

Public Sub AddCommandButton()

ActiveSheet.Shapes.AddOLEObject(_

ClassType:=”Forms.CommandButton.1”).Name = “cmdTest”

With ActiveSheet.OLEObjects(“cmdTest”)

.Left = Range(“C1”).Left

.Top = Range(“C4”).Top

End With

ActiveSheet.OLEObjects(“cmdTest”).Object.Caption = “Click Me”

End Sub

Event procedures for an OLEObject object can be written prior to their addition to a work-
sheet. You must name the event procedure as VBA would name it when adding the control
at Design time. For example, if you intend to add a Command Button control at Run time
using the AddCommandButton() sub procedure and you need its Click() event procedure, then
you must name the procedure cmdTest_Click(). Furthermore, the event procedure must be
added to the object module of the worksheet to which the Command Button control will be
added. The Click() event procedure listed here will trigger when the user clicks on the Com-
mand Button control cmdTest (previously created by running the AddCommandButton() sub
procedure) provided the Click() event procedure is added to the object module of the same
worksheet to which the Command Button was added.

Private Sub cmdTest_Click()

MsgBox (“Hello”)

End Sub

HINT

437Chapter 10 • VBA Shapes

438

To execute this code, select the worksheet named OLEObjects in the ShapeDemos.xls work-
book and click on the button labeled Add Command Button. A Command Button control will
immediately appear on the worksheet with the caption Click Me. With a click on the newly
added Command Button control a message box appears with the message Hello. The final
product of this sequence of events is shown in Figure 10.9.

It is sometimes desirable to create programs that are completely independent of a work-
sheet or even a workbook. For example, you may want to store programs in your personal
macro workbook so they can be executed from the Excel application without having to load
a specific workbook file. This is a relatively simple task when your program does not require
ActiveX controls, because all the worksheet formatting can be handled with code.

Considering the sub procedures listed previously, it may seem tempting to try and create
programs that add ActiveX controls to a worksheet at Run time in order to avoid the require-
ments of a specific worksheet. Unfortunately, this task cannot be completed because the
event procedures of the control added at Run time must still be added to the object module
of a specific worksheet; therefore, adding ActiveX controls from a VBA program has limited
utility and might just as well be added at Design time when the event procedures are written.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 10.9

Adding an
OLEObject object

to a worksheet
and activating its

pre-defined
Click() event.

Chapter Project: Excetris
How to play the Excetris game was described at the beginning of the chapter and the work-
sheet containing the game is shown again in Figure 10.10. My objective for this program is
to demonstrate the use of the Shapes collection object and some of its component objects
while creating a fun program.

Excetris involves a minimal amount of animation involving a small group of Shape objects as
they move down the area of the worksheet defined as the game board (cells C3:L17 in Figure
10.10). VBA is somewhat limited with regard to animation. The easiest tool available for use
in animating an object is the OnTime() method of the Application object; however, its mini-
mum one-second interval (see Chapter 4) will prevent Excetris from reaching a high level of
difficulty for the player.

Requirements for Excetris
My idea is to create a game modeled after the original Tetris with an emphasis on program-
ming Shape objects in Excel. The game’s interface will once again be constructed from a
worksheet. A specific range on a worksheet provides the game board and the game pieces
are constructed out of Shape objects (AutoShapes of type msoShapeRectangle). The program
tallies a score based on the number of shapes removed from the game board and assigns
bonus points when multiple rows are removed as a result of placing a single shape.

439Chapter 10 • VBA Shapes

Figure 10.10

The Excetris
worksheet.

440

The requirements for Excetris are listed in the following:

1. The user interface shall be constructed from a single Excel worksheet.

2. The worksheet shall be formatted to contain a well-defined range of cells to serve as
the game board. The game board shall consist of 15 rows and 10 columns and the
cells shall be sized to identical widths and heights.

3. The worksheet shall be formatted to contain cell ranges for displaying the score and
outputting messages to the player.

4. The worksheet shall contain a button for starting a new game.

5. When the user clicks the button to start a new game the program shall clear the
game board of all Shape objects (excluding the button), reset the score, clear the
message area, and initialize program variables.

6. After the game board is initialized, the program shall add one Excetris game shape to
the top of the game board and begin moving it down in one second intervals.

7. Each game shape shall be constructed from four Shape objects with identical properties.
Each Shape object in a game shape shall be constructed as a square and exactly match
the size of a single cell in the game board.

8. A game shape shall continuously move down the game board until it reaches the
bottom of the board or another shape, at which point it comes to a rest.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

In the Real World
Multitasking refers to a computer’s ability to manage multiple processes with a single central
processing unit (CPU). For example, it is common to have more than one application (such as
Microsoft Word and Excel) open at the same time. For each application that is open and running,
the operating system creates a separate execution path, called a thread. In many programming
languages it is also possible to create a single application that involves multiple threads. Your
program can carry out more than one task at the same time. The ability to create a multi-
threaded program greatly enhances the options available to the programmer for extending the
power of a program. For example, multiple threads can be used to animate multiple objects in
a gaming type application.

VBA does not fully support the creation of threads; however, multiple threads can be created
in a somewhat limited fashion using either the Windows API or ActiveX controls. An ActiveX
control that operates in a similar fashion to that of the OnTime() method (except with milli-
second time resolution) is the easiest method, but unfortunately it is not included with VBA.

441Chapter 10 • VBA Shapes

9. After a game shape comes to a rest another shape is added to the top of the game
board and the process of moving down is repeated.

10. The user shall be able to direct a game shape’s movement by rotating it, moving it
to the left or right, or moving it down the game board as far as possible.

11. The user shall direct a shape’s movement left, right, or down with different key
strokes.

12. After a shape comes to a rest, the program shall scan the game board for rows that
are completely filled with shapes. The program shall remove all filled rows, move all
shapes above the now vacant row down one row, and update the score.

13. The user shall be awarded 100 pts per row removed unless multiple rows are removed
as the result of the placement of a single game shape in which case the point total
for a row is multiplied by the number of rows removed.

14. When multiple rows are removed the program shall display a message and image
indicating the user received bonus points.

15. The game shall end when a new shape added to the game board overlaps (at least
partially) with an existing shape.

Designing Excetris
I constructed Excetris from an Excel worksheet and added the code to a standard module, but
the program could just as easily be entered into the code module for the worksheet—take
your choice. The worksheet cells that define the game board must be square and will match
the size of the individual squares in a game shape. The game can easily be initiated from a
form button or Command Button control by attaching the form button to a public procedure,
or calling the same procedure from the Click() event of the Command Button control. I could
also initiate the program with a Shape object and assign a procedure with the Assign Macro
dialog shown in Figure 10.7.

While considering the game’s design I focused on three major problems unique to Excetris.

• Creating and adding the different shapes to the game board.

• Rotating and moving the shapes left, right, and down.

• Tracking the location of each shape on the game board so they can easily be removed
when required.

Creating Excetris Shapes
The program will use just the five shapes shown in Figure 10.11, but the program should be
written to make it relatively easy to add more shapes later.

442

Each of the five shapes used in Excetris are built from four distinct Shape objects
(msoShapeRectangle) that are positioned as shown in Figure 10.11. To make it easier to
manipulate the four Shape objects as if they were a single shape, the program will include a
custom data type that defines the properties of an Excetris game shape. The elements of the
custom type will include the following:

• An integer between 1 and 5 that defines one of five shape types shown in Figure
10.11. The value of this element will be randomly generated making it easy to choose
the next shape that is added to the top of the game board.

• A decimal value that defines the line weight of each Shape object. The value of this
element sets the border thickness around each square in the shape.

• A long integer that defines the fill color of each Shape object. Colors will make the
shapes more interesting. All four squares in a shape will have the same color, but
that color will be randomly selected.

• A Range object that defines the location of the active shape relative to the worksheet
cells it masks. This range maps the shape to the worksheet and is critical for tracking
the shape’s location as it moves down the game board.

• A decimal value that defines the size of each Shape object. Each of the four Shape
objects is square so its size will be set to either the width or height of a cell in the
game board. The size of each square exactly matches the size of the cells in the game
board to make it easier to keep all of the shapes aligned.

• A Boolean that defines whether or not a newly added shape overlaps with an existing
shape on the game board. The value of this element will be used to decide when the
game is over.

Moving Excetris Shapes
You will notice from Figure 10.11 that each shape is built from four identical squares. As
stated earlier, each square is a separate Shape object, but the program will have to manipu-
late these four squares as if it were just one shape. One option is to group the objects using
the Group() method of the ShapeRange object. I decided against this option because of how

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 10.11

The five shapes
used in the

Excetris game.

VBA sets the axis of rotation for some of the shapes shown in Figure 10.11. For example, con-
sider the shape shown in Figure 10.12 and what happens if the four squares are grouped and
rotated counterclockwise 90 degrees.

You will notice that the shape on the left starts with all of its squares directly above a work-
sheet cell; but after it’s rotated counterclockwise 90 degrees (resulting in the shape on the
right), each square is offset from the cells below it. This offset causes a problem because the
shapes must maintain vertical and horizontal alignment with all other shapes on the game
board. Even though it would be relatively easy to programmatically group shapes and move
them, it is not as easy to compensate for the offset that results from rotating the shapes
with less symmetry. I will, therefore, leave all four squares as separate Shape objects, but
move them in a way that gives the illusion of one shape.

To preserve the shapes’ vertical and horizontal alignment, I am going to use the Left, Top,
Width, and Height properties of the worksheet cells below the squares. The active shape is
moved by incrementing or decrementing the Left and/or Top properties of each of the four
Shape objects depending on the required direction.

The new position of the active shape must be validated before moving the shape. To be valid,
the new position must be entirely contained within the game board and there must not be
any other squares occupying any part of it.

The downward movement of a shape is controlled by repeated calls to the same procedure
set up with the OnTime() method of the Application object. This procedure must move the
shape down one row each time it is called. Moving the shape to the left, right, and all the
way down the game board is controlled by the player. The OnKey() method of the Application
object can be used to assign a procedure to a keystroke. This allows the player to direct the
movement of the active shape using the keyboard.

443Chapter 10 • VBA Shapes

Figure 10.12

Rotating a
grouped shape

90 degrees.

Removing Shapes
As shapes are added to the game board they will have to be assigned unique identifiers so
they can be removed at a later time. The four Shape objects that make up the active shape
will always be assigned the same name. These Name properties of each Shape object are
changed to include the address of the worksheet cell they mask when the active shape
comes to a rest. For example, the game board shown in Figure 10.13 includes a total of eight
Shape objects. The four Shape objects that make up the active shape are assigned the names
Square1, Square2, Square3, and Square4. The four Shape objects that have come to a rest have
been assigned names that include the cell addresses SquareE16, SquareE17, SquareF16, and
SquareF17.

In addition to using the cell addresses in the Shape object’s name, each cell masked by a
Shape object will be assigned an x to its Value property; thus, when the game board is
scanned, any row whose cells all contain an x are known to be completely masked by Shape
objects. Furthermore, the location of each Shape object is easily identified because their
name contains the address of the cell they mask—making it easier to delete them from the
game board when required.

Program Outline
When playing a game, the Excetris program should proceed as outlined in the following:

1. A randomly generated shape appears at the top of the game board.

2. The shape moves down one row on the game board every second.

444 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 10.13

Using names to
track the Shape

objects added to
the game board.

Shape Names:
Square1, Square2, Square3, and Square4

Shape Names:
SquareE16, SquareE17, SquareF16,
and SquareF17

3. The player moves the shape to the left right or as far down the game board as possible
using various keystrokes. The player can also rotate the shape counterclockwise 90
degrees with another keystroke.

4. When the shape can no longer move down the game board, it stops and another
shape appears at the top of the game board.

5. If the player successfully positions the shapes such that a row or rows in the game board
are completely masked by shapes, then the shapes are removed from the game board,
the score is updated, and the other shapes above the deleted row(s) are moved down.

6. The game continues until a new shape added to the game board overlaps with an
existing shape.

Coding Excetris
The entire program is entered into a single standard module. The general declarations sec-
tion of the program contains just two module-level variable declarations and the definition
of a custom data type (ExcetrisShape). The variable gameShape is declared as type ExcetrisShape
and will be used to define the properties of the active shape—the shape that moves down the
game board. The other module-level variable, numRotations tracks the number of 90 degree
rotations the player selected for the active shape.

Option Explicit

Private Type ExcetrisShape

esType As Integer

esWeight As Single

esColor As Long

esRange As Range

esSquareSize As Single

esRangeOverlap As Boolean

End Type

Private gameShape As ExcetrisShape

Private numRotations As Integer

Starting the Game and Initializing the Worksheet
The main sub procedure Excetris() is called from the Click() event of the Command Button
control on the worksheet. The Excetris() sub procedure initializes the numRotations variable,
the game board, and the keyboard before adding a new shape to the game board and starting

445Chapter 10 • VBA Shapes

446

its movement downward. The short delay (half a second) ensures that the player sees the
new shape before it starts moving.

Public Sub Excetris()

‘——————————————————

‘Initialize worksheet and variables.

‘——————————————————

NewGame

numRotations = 0

SetKeys

‘————————————————————-

‘Add the first shape and start it moving.

‘————————————————————-

AddShape

Range(“Score”).Select

Delay (0.5)

MoveShape

End Sub

The sub procedure NewGame() is called from Excetris() and removes all Shape objects from
the worksheet and clears the cells representing the game board, the player’s score, and the
message range.

Private Sub NewGame()

Dim sh As Shape

‘———————————————————————————

‘Clear the worksheet for a new game. Delete all shapes

‘except the button and clear x’s, score, and message.

‘———————————————————————————

For Each sh In ActiveSheet.Shapes

If sh.Type = msoAutoShape Then

sh.Delete

End If

Next

Range(“GameBoard”).ClearContents

Range(“Score”).Value = “”

Range(“Message”).Value = “”

End Sub

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The sub procedure SetKeys() is called from Excetris() and serves to initialize the keyboard
interface required for the game. The OnKey() method of the Application object sets the pro-
cedures that will be called when either the Tab key; or the left, right, or up arrow keys are
pressed by the player. If you don’t like playing the game with this set of keys, then you can
just change the code entered for the OnKey() method. For example, to use the down arrow
instead of the Tab key to call the sub procedure DropShapes(), change the appropriate state-
ment to Application.OnKey “{DOWN}”, “DropShapes“. Available keys and their codes can be
found by looking up the OnKey() method in the online help.

Private Sub SetKeys()

‘—————————————————————————-

‘Sets procedure calls when these keys are selected

‘by the player.

‘—————————————————————————-

Application.OnKey “{TAB}”, “DropShapes”

Application.OnKey “{LEFT}”, “MoveLeft”

Application.OnKey “{RIGHT}”, “MoveRight”

Application.OnKey “{UP}”, “RotateCC”

End Sub

When a game ends, it is important to reset the default action of the keys, otherwise Excel
will continue to activate the procedures listed in the SetKeys() sub procedure.

Private Sub ResetKeys()

‘———————————————————————————

‘Resets keys to default action after the game is over.

‘———————————————————————————

Application.OnKey “{TAB}”

Application.OnKey “{LEFT}”

Application.OnKey “{RIGHT}”

Application.OnKey “{UP}”

End Sub

Adding New Shapes
New shapes are added to the top of the game board as a set of four VBA AutoShapes. This set
of shapes represents the active shape for the game that continuously moves down the game
board until it comes to a rest at its final location. There is never more than one active shape
present on the game board.

447Chapter 10 • VBA Shapes

448

The AddShape() sub procedure initializes the elements of the module-level variable gameShape
before calling the procedures that initialize the shape’s range (range of cells masked by the
shape), and builds the shape by adding the four squares to the game board. The type of
shape is randomly selected from one of the five possible choices shown in Figure 10.11. The
fill color is also randomly generated with three values passed to the RGB() function. The size
of each square in the active shape is set to the width of a cell on the game board (I used cell
F3, but any would do). After the shape is built and added to the game board an If/Then deci-
sion structure tests if it overlaps with another shape on the game board. If it does, then the
game ends with a call to the GameOver() sub procedure.

Private Sub AddShape()

Dim ranRed As Integer, ranGreen As Integer, ranBlue As Integer

‘———————————————————————————

‘Randomly adds one of 5 possible shapes to game board.

‘———————————————————————————

Randomize

ranRed = Int(Rnd * 256)

ranGreen = Int(Rnd * 256)

ranBlue = Int(Rnd * 256)

‘——————————————————————

‘Initialize common properties of the squares

‘that make up every shape.

‘——————————————————————

gameShape.esType = Int(5 * Rnd) + 1

gameShape.esWeight = 0.5

gameShape.esColor = RGB(ranRed, ranGreen, ranBlue)

gameShape.esSquareSize = Range(“F3”).Width

‘——————————————————————————-

‘Initialize the location of the shape, then build it.

‘——————————————————————————-

InitShape

BuildShape

If gameShape.esRangeOverlap Then GameOver

End Sub

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The InitShape() sub procedure is called from AddShape() and serves to initialize the esRange
element of the gameShape variable. This element stores the current location of the active shape,
or more specifically, the range of cells masked by the shape. A Select/Case structure testing
against the esType element (this value was randomly generated in the AddShape() procedure)
of the gameRange variable determines the initial assignment to the esRange element. Note that
for shapes 3, 4, and 5, the location is specified using two distinct range values. The active
shape is added to the area of the game board specified by the initial value of the esRange
element.

Private Sub InitShape()

‘————————————————————————

‘Initializes location element of the shapes that

‘drop down the game board.

‘————————————————————————

Select Case gameShape.esType

Case Is = 1

Set gameShape.esRange = Range(“F3:I3”)

Case Is = 2

Set gameShape.esRange = Range(“G3:H4”)

Case Is = 3

Set gameShape.esRange = Range(“F3:H3,H4”)

Case Is = 4

Set gameShape.esRange = Range(“F3:H3,G4”)

Case Is = 5

Set gameShape.esRange = Range(“G3:H3, F4:G4”)

End Select

End Sub

The sub procedure BuildShape() is also called from AddShape() and serves to add the four
AutoShapes (type msoShapeRectangle) to the game board. Using the range stored in the
esRange element of the gameShape variable, four Shape objects are added to the game board
using the AddShape() method of the Shapes collection object. A For/Each loop iterates
through the range stored in the esRange element and sets the position and size of each Shape
object with the Left, Top, Width, and Height properties of the looping range variable repre-
senting a single cell. Each Shape object is assigned a line weight and fill color using the
esWeight and esColor elements of the gameShape variable that were initialized in the
AddShapes() sub procedure. Each Shape object in the active shape is assigned a name by con-
catenating the string “Square” with a unique index value between 1 and 4. The four Shape
objects that make up the active shape will always have these names.

449Chapter 10 • VBA Shapes

450

After the active shape has been added to the game board, a decision structure nested inside
a For/Each loop tests if the new shape overlaps any existing Shape objects on the game board.
As you will see, when an active shape comes to a rest, the names of each Shape object are
changed and the cells they overlap are assigned the value x.

Private Sub BuildShape()

Dim I As Integer

Dim newShapes As Shapes

Dim c As Range

‘———————————————————-

‘Builds a game shape from four squares.

‘———————————————————-

I = 1

Set newShapes = ActiveSheet.Shapes

For Each c In gameShape.esRange

newShapes.AddShape(msoShapeRectangle, c.Left, c.Top, _

c.Width, c.Height).Select

Selection.ShapeRange.Line.Weight = gameShape.esWeight

Selection.ShapeRange.Fill.ForeColor.RGB = gameShape.esColor

Selection.ShapeRange.Name = “Square” & I

I = I + 1

Next

‘—————————————————————————————-

‘Test if added shape overlaps existing shape on game board.

‘—————————————————————————————-

For Each c In gameShape.esRange

If c.Value = “x” Then

gameShape.esRangeOverlap = True

Exit For

End If

Next

End Sub

Moving the Shapes
After a new shape is added to the game board, it must start its trek downward. When the
active shape moves, it jumps one row down, or one column to the left or right, or rotates
counterclockwise. The program will have to validate each potential move in any direction to

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

ensure there is no overlap with an existing shape and that the result of a move keeps the
shape entirely within the defined area of the game board (see Figure 10.14). After the active
shape moves, the program must update its location stored in the esRange element of the
gameShape variable. When the movement of the active shape down the game board is blocked
by an existing Shape object, the program must stop the movement, rename each Shape object
in the active shape to include the cell ranges they mask, test for filled rows, and then start
the whole process over again by adding another shape to the game board. All these tasks
require several procedures in order to keep the code organized and readable.

The MoveShape() sub procedure is responsible for moving the active shape down the game
board one row at a time. The move is validated first with a call to the NewActiveRange() function
procedure in the conditional expression of an If/Else decision structure. If the move is val-
idated, then a For/Each loop iterating through each Shape object in a ShapeRange collection
object moves the active shape down one row, one shape at a time (this happens so fast that
it appears as though all four Shape objects move simultaneously). Next, the OnTime() method of
the Application object is invoked in order to set up the next call to the MoveShape() procedure.
I use the minimum time interval of one second so it will not be possible to move the active
shape any faster unless you increase the number of rows it moves with each procedure call.
Note that the next call to the MoveShape() procedure is only set if the current move was val-
idated; therefore, there is never a need to cancel a call previously set with the OnTime()
method.

451Chapter 10 • VBA Shapes

Figure 10.14

The Excetris game
board showing

the allowed
movements of

an active shape.

Active shape

452

You may wonder why I didn’t move all four Shape objects in the active shape
simultaneously by returning a ShapeRange object and setting its Top property as
shown in the following code:

Dim shRange As ShapeRange

Set shRange = ActiveSheet.Shapes.Range(Array(“Square4”, _

“Square3”, “Square2”, “Square1”))

shRange.Top = shRange.Top + yInc

Although this is perfectly acceptable VBA code, it will generate a Run time error
in our program because a ShapeRange object is a collection object; therefore the
variable shRange contains four distinct objects with potentially four different
values for their Top properties. Trying to set the Top property of a ShapeRange
variable fails when the Top properties of the individual objects are not identical.
In fact, the only case when the Top properties of the four Shape objects in the
active shape are identical is when the first shape type in Figure 10.11 is in a hori-
zontal position.

If a move down the game board is invalid (as determined by the return value of the
NewActiveRange() function procedure), then a call to the SetActiveRange() sub procedure
will rename the Shape objects in the active shape, set the Value properties of the cells it
masks to x, and scan the game board for filled rows before starting the whole process over
again by adding and moving a new shape.

Public Sub MoveShape()

Dim sh As Shape

Dim yInc As Single

‘——————————————————————————————

‘Move the shape down one row in worksheet-after validating.

‘Cancel OnTime method when shape must be stopped and set new

‘worksheet range for the stopped shapes.

‘——————————————————————————————

yInc = gameShape.esSquareSize

If NewActiveRange(“Down”) Then

For Each sh In ActiveSheet.Shapes.Range(Array(“Square4”, _

“Square3”, “Square2”, “Square1”))

sh.Top = sh.Top + yInc

Next

‘———————————————————————————-

‘Set repeated calls (one per second) to this procedure.

‘———————————————————————————-

TRAP

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Application.OnTime EarliestTime:=Now + TimeValue(“00:00:01”), _

Procedure:=”MoveShape”, Schedule:=True

Else

SetActiveRange

End If

End Sub

The DropShapes() sub procedure is triggered when the player presses the Tab key and serves
to move the active shape as far down the game board as possible. A Do-Loop repeatedly calls
the NewActiveRange() function procedure in order to count how many rows the active shape
can move down the game board. For example, the active shape shown in Figure 10.14 can
drop another four rows. The number of rows the active shape can move is stored in the vari-
able rowCount. The NewActiveRange() function procedure resets the esRange element of the
gameShape variable if the move is valid, but does not move the active shape.

After the maximum number of rows the active shape can move down the game board has
been determined, each Shape object in the active shape is moved the requisite number of
rows using a For/Each loop as was done in the MoveShape() sub procedure.

Private Sub DropShapes()

Dim rowCount As Integer

Dim sh As Shape

Dim canMoveDown As Boolean

‘—————————————————————————

‘Count the number of rows the shapes can be moved.

‘—————————————————————————

Do

rowCount = rowCount + 1

canMoveDown = NewActiveRange(“Down”)

Loop While canMoveDown

‘————————————————————————————————-

‘Drop the shapes as far as possible when player hits the Tab key.

‘————————————————————————————————-

For Each sh In ActiveSheet.Shapes.Range(Array(“Square4”, “Square3”, _

“Square2”, “Square1”))

sh.Top = sh.Top + (rowCount - 1) * sh.Height

Next

End Sub

453Chapter 10 • VBA Shapes

454

The MoveLeft() and MoveRight() sub procedures are triggered from the left and right arrow
keys and serve to move the active shape one column to the left or right. These procedures
are essentially identical except for the direction the active shape is moved. If the new loca-
tion for the active shape is valid, then a For/Each loop iterates through each Shape object in
the active shape and moves it to the left or right via the Left property of the Shape object.

Private Sub MoveLeft()

Dim sh As Shape

‘—————————————————————————————————

‘Move shape left after validation when player hits left arrow key.

‘—————————————————————————————————

If NewActiveRange(“Left”) Then

For Each sh In ActiveSheet.Shapes.Range(Array(“Square4”, “Square3”, _

“Square2”, “Square1”))

sh.Left = sh.Left - sh.Width

Next

End If

End Sub

Private Sub MoveRight()

Dim sh As Shape

‘——————————————————————————————————

‘Move shape right after validation when player hits right arrow key.

‘——————————————————————————————————

If NewActiveRange(“Right”) Then

For Each sh In ActiveSheet.Shapes.Range(Array(“Square4”, “Square3”, _

“Square2”, “Square1”))

sh.Left = sh.Left + sh.Width

Next

End If

End Sub

The sub procedure RotateCC() rotates the active shape counterclockwise 90 degrees. Most of
the work is done in the NewActiveRange() sub procedure, which sets the target range for the
active shape and stores it in the esRange element of the gameShape variable. I then use a
For/Each loop to iterate through each cell referenced in the esRange element of the gameShape
variable and set the Left and Top properties of each Shape object in the active shape to the

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Left and Top properties of the corresponding cell. The number of rotations is tracked
because setting the target range for the next rotation of the active shape depends not only
on the shape type, but also on how many times it has been previously rotated.

Private Sub RotateCC()

Dim c As Range

Dim I As Integer

‘—————————————————————————————

‘Simulate a counter clockwise rotation (after validation)

‘when player hits up arrow key. Move shape by mapping it to

‘the new range.

‘—————————————————————————————

I = 1

If NewActiveRange(“CC”) Then

For Each c In gameShape.esRange

ActiveSheet.Shapes(“Square” & I).Left = c.Left

ActiveSheet.Shapes(“Square” & I).Top = c.Top

I = I + 1

Next

numRotations = numRotations + 1

If numRotations = 4 Then numRotations = 0

ActiveSheet.Range(“Score”).Select

End If

End Sub

The NewActiveRange() sub procedure serves two purposes. First, it validates the target range
of the active shape before it is moved. Second, if the target range is valid, it updates the
esRange element of the gameShape variable that is used by the program to track the location
of the active shape. The procedure accepts one string argument named direction that spec-
ifies the direction the program has requested the shapes be moved (left, right, down, or
counterclockwise rotation). A Select/Case structure uses the value of the direction to set the
values in a variant array called changes. The variable array changes contains eight values that
are used in the ChangeAllIndices() function procedure to increment or decrement the row
and column indices of all four cells represented in the esRange element of the gameShape vari-
able. For example, when the value of the direction argument is “Down” only the row indices
should change; thus, the changes array contains alternating values of 0 and 1 (column
indices are first). The changes array is passed to the ChangeAllIndices() function procedure
which returns a Range object to the variable tmpRng representing the target range for the

455Chapter 10 • VBA Shapes

456 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

active shape. The variable tmpRng is then tested to see if its address is contained within the
game board and no existing shapes mask these cells. If the value of tmpRng is validated, then
its value is assigned to NewActiveRange() and returned to the calling procedure.

Private Function NewActiveRange(direction As String) As Boolean

Dim tempRng As Range, c As Range

Dim changes As Variant

‘———————————————————————————

‘Create a new range based on direction the game shape

‘is supposed to move.

‘———————————————————————————

Select Case direction

Case Is = “Down”

changes = Array(0, 1, 0, 1, 0, 1, 0, 1)

Case Is = “Left”

changes = Array(-1, 0, -1, 0, -1, 0, -1, 0)

Case Is = “Right”

changes = Array(1, 0, 1, 0, 1, 0, 1, 0)

Case Is = “CC”

changes = GetCCArray ‘Too long to leave in here.

End Select

Set tempRng = ChangeAllIndices(gameShape.esRange, changes)

‘—————————————————————————————

‘Loop through each cell in new range to validate location.

‘—————————————————————————————

For Each c In tempRng

If c.Value = “x” Or c.Column < 3 Or c.Column > 12 _

Or c.Row < 3 Or c.Row > 17 Then

NewActiveRange = False

Exit Function

End If

Next

Set gameShape.esRange = tempRng

NewActiveRange = True

End Function

The GetCCArray() function procedure is called from NewActiveRange() to return the values for
the variable array changes for the case of a counterclockwise rotation. I wrote a separate func-
tion procedure for this because it requires a rather lengthy block of code. Setting the values
for this array is complicated by the fact that the required changes depend on the shape type
and the number of previous rotations. To determine the values required for the array, I drew
figures of each shape as they would appear when rotated 90 degrees counterclockwise and
mapped a range to each shape as shown in Figure 10.15. I obtained the values for the array
from the differences in the row and columns indices for the ranges mapped to each shape.

Private Function GetCCArray() As Variant()

‘———————————————————————————-

‘The parameters for rotating the shapes are dependent

‘on the shape type. The parameter array specifies the

‘increment/decrement on the row and column indices for

‘each of the four squares in a game shape.

‘———————————————————————————-

457Chapter 10 • VBA Shapes

Figure 10.15

Mapping shape
rotations to cell

ranges.

458

Select Case gameShape.esType

Case Is = 1

If numRotations = 0 Or numRotations = 2 Then

GetCCArray = Array(2, -1, 1, 0, 0, 1, -1, 2)

Else

GetCCArray = Array(-2, 1, -1, 0, 0, -1, 1, -2)

End If

Case Is = 2

GetCCArray = Array(0, 0, 0, 0, 0, 0, 0, 0)

Case Is = 3

If numRotations = 0 Then

GetCCArray = Array(1, -1, 0, 0, -1, 1, 0, -2)

ElseIf numRotations = 1 Then

GetCCArray = Array(-1, 1, 0, 0, 1, -1, -2, 0)

ElseIf numRotations = 2 Then

GetCCArray = Array(1, -1, 0, 0, -1, 1, 0, 2)

ElseIf numRotations = 3 Then

GetCCArray = Array(-1, 1, 0, 0, 1, -1, 2, 0)

End If

Case Is = 4

If numRotations = 0 Then

GetCCArray = Array(1, -1, 0, 0, -1, 1, 1, -1)

ElseIf numRotations = 1 Then

GetCCArray = Array(-1, 1, 0, 0, 1, -1, -1, -1)

ElseIf numRotations = 2 Then

GetCCArray = Array(1, -1, 0, 0, -1, 1, -1, 1)

ElseIf numRotations = 3 Then

GetCCArray = Array(-1, 1, 0, 0, 1, -1, 1, 1)

End If

Case Is = 5

If numRotations = 0 Or numRotations = 2 Then

GetCCArray = Array(-1, -1, -2, 0, 1, -1, 0, 0)

Else

GetCCArray = Array(1, 1, 2, 0, -1, 1, 0, 0)

End If

End Select

End Function

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The function procedure ChangeAllIndices() is called from NewActiveRange() and uses the
variable array argument rcInc (passed in as the changes array) to change the row and column
indices of the Range object stored in the esRange element of the gameShape variable. Recall
that the Range object returned by this function is assigned to a temporary variable that
becomes the new range for the active shape (esRange element of the gameShape) after valida-
tion. The ChangeAllIndices() procedure first collects all four cell ranges mapped to the
active shape before altering the row and column indices of each range using the values
passed in to the rcInc array. The new active range is then reconstructed using the four new
range addresses.

Private Function ChangeAllIndices(inputRange As Range, rcInc As Variant) As Range

Dim cellRng(3) As Range, cellStr(3) As String

Dim c As Range, I As Integer

Dim tempStr As String

‘———————————————————-

‘Get all individual cells in the range.

‘———————————————————-

For Each c In inputRange

Set cellRng(I) = c

I = I + 1

Next

‘——————————————————————————

‘Alter the row and column indices of all four cells.

‘——————————————————————————

cellStr(0) = Chr(64 + cellRng(0).Column + rcInc(0)) & _

cellRng(0).Row + rcInc(1)

cellStr(1) = Chr(64 + cellRng(1).Column + rcInc(2)) & _

cellRng(1).Row + rcInc(3)

cellStr(2) = Chr(64 + cellRng(2).Column + rcInc(4)) & _

cellRng(2).Row + rcInc(5)

cellStr(3) = Chr(64 + cellRng(3).Column + rcInc(6)) & _

cellRng(3).Row + rcInc(7)

‘—————————-

‘Rebuild the range.

‘—————————-

Select Case gameShape.esType

459Chapter 10 • VBA Shapes

460

Case Is = 1

tempStr = cellStr(0) & “:” & cellStr(3)

Case Is = 2

tempStr = cellStr(0) & “:” & cellStr(3)

Case Is = 3

tempStr = cellStr(0) & “:” & cellStr(2) & “,” & cellStr(3)

Case Is = 4

tempStr = cellStr(0) & “:” & cellStr(2) & “,” & cellStr(3)

Case Is = 5

tempStr = cellStr(0) & “:” & cellStr(1) & “,” & cellStr(2) & _

“:” & cellStr(3)

End Select

Set ChangeAllIndices = Range(tempStr)

End Function

Before running the Excetris program, it is vital that the Width and Height proper-
ties of the cells in the game board are identical. These properties may be diffi-
cult to set from the application window because Excel uses different units for
the row Height and column Width (How much sense does that make?). To ensure
perfectly square cells, I first adjusted the cell heights to a desired value in the
application window, and then executed the SetColumnWidth() macro listed next
in order to adjust the column widths.

Sub SetColumnWidth()

Dim c As Range

For Each c In Range(“GameBoard”).Columns

c.ColumnWidth = 3.78

Next

For Each c In Range(“GameBoard”)

Debug.Print “Width: “ & c.Width & “ Height: “ & c.Height

Next

End Sub

Column widths must be adjusted using the ColumnWidth property because the
Width and Height properties of the Range object are read-only. I executed the
SetColumnWidth() procedure until the Immediate window displayed identical
values for the Width and Height properties of the cells in the game board—
adjusting the value assigned to the ColumnWidth property between executions.

HINT

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

When the active shape can no longer move down the game board, the SetActiveRange() sub
procedure is called from MoveShape(). The purpose of this procedure is to mark the cells on
the game board masked by the active shape, and change the Name properties of the four Shape
objects that make up the active shape. The names of the Shape objects are changed to
include the address of the cells they mask. Masked cells are marked by assigning an x to
their Value property.

Private Sub SetActiveRange()

‘Shape is set to the worksheet cell range it is above

Dim c As Range

Dim I As Integer

I = 1

For Each c In gameShape.esRange

c.Value = “x”

ActiveSheet.Shapes(“Square” & I).name = “Square” & _

Chr(c.Column + 64) & c.Row

I = I + 1

Next

‘———————————————————————————-

‘Scan board to test for a filled row. Once the shape is

‘set and renamed...add another shape...repeat process.

‘———————————————————————————-

ScanRange

numRotations = 0

AddShape

Range(“Score”).Select

Delay (0.5)

MoveShape

End Sub

After the masked cells are marked and the names of the Shape objects altered, the
SetActiveRange() sub procedure calls the ScanRange() sub procedure to look for filled rows
before staring the process of adding a new shape to the top of the game board and start it
on its way down.

461Chapter 10 • VBA Shapes

462

Removing Shapes and Scoring Filled Rows
The remaining procedures handle the process of scanning the game board for rows filled
with shapes, scoring the filled rows, and removing their shapes; then moving the shapes
above a scored row down one row.

Consider the Excetris game board, shown in Figure 10.16, where the player has just dropped
an active shape that fills two non-consecutive rows with Shape objects.

The ScanRange() sub procedure is called from SetActiveRange() after the active shape can no
longer move down the game board. This procedure uses a For/Next loop to iterate through
all rows in the game board starting from the bottom. First, the function procedure TestRow()
is called in order to test if all the cells in the current row contain an x. If TestRow() returns
true, then the row is processed with a call to the ProcessRow() sub procedure which removes
the x’s and shapes from the filled row and updates the score. This results in the game board
shown in Figure 10.17.

Next, the game board is updated with a call to the ProcessBoard() sub procedure which han-
dles the task of moving the shapes and x’s lying above a scored row down one row. The
ProcessBoard() sub procedure must also update the names of all Shape objects it moves to
correspond to the new addresses of the cells they mask. After the ProcessBoard() sub proce-
dure executes, the game board shown in Figure 10.17 will appear as shown in Figure 10.18.

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 10.16

The Excetris
game board

immediately after
the player drops

a shape that
finishes two rows.

Rows to score

I also added a simple embellishment to the program that assigns bonus points if multiple
rows are removed as a result of the placement of a single Excetris shape. The BonusCall() sub
procedure simply displays a message and smiley face to the player (see Figure 10.19). Bonus
points are calculated using the number of scored rows multiplied by the number of points
per row (100).

463Chapter 10 • VBA Shapes

Figure 10.17

The Excetris game
board from Figure

10.16 after one
row is scored.

Figure 10.18

The Excetris game
board from Figure

10.17 after the
ProcessBoard()

sub procedure
has moved

shapes down.

464

When a row is removed and scored, the looping variable I is incremented by one so it retains
its value in the next iteration. Although unusual, I did this because the ProcessBoard() sub
procedure has already moved the shapes down a row so the program has to continue the
scan with the same row index. Rows are removed and scored one at a time, rather than all
at once because I found it easier to handle non-consecutive filled rows using this algorithm.
Alternatively, I am sure you can work out an algorithm that removes all filled rows and then
scores them before moving any shapes down the game board.

Private Sub ScanRange()

Dim c As Range, r As Range

Dim scoreRow As Boolean

Dim numRows As Integer

Dim I As Integer

‘————————————————————————————-

‘Scan game board for a row filled with shapes. If such a

‘row is found, then remove the row and move others down.

‘————————————————————————————-

For I = 17 To 4 Step -1

Set r = Range(“C” & I & “:L” & I)

scoreRow = TestRow(r)

‘————————————————————-

‘Score the row and remove shapes and x’s.

‘————————————————————-

If scoreRow Then

I = I + 1

numRows = numRows + 1

If numRows > 1 Then BonusCall (numRows) ‘Display bonus image

ProcessRow r, numRows

‘—————————————————

‘Move shapes and x’s down one row

‘—————————————————

ProcessBoard r.Row

If numRows > 1 Then DeleteBonus

End If

Next I

End Sub

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Private Function TestRow(r As Range) As Boolean

Dim c As Range

‘————————————————————

‘If even one cell does not have an “x”

‘then the row is not scored.

‘————————————————————

For Each c In Range(r.Address)

If c.Value <> “x” Then

TestRow = False

Exit Function

End If

Next

TestRow = True

End Function

In order to remove the Shape objects representing a filled row on the game board, I create a
ShapeRange object referenced by the variable shRange using the names of the shapes assigned
in the SetActiveRange() sub procedure. Recall that a shape’s name contains the string
“Square” concatenated with the cell address it masks. The shapes are easily removed from the
game board by invoking the Delete() method of the ShapeRange collection object (see Figure
10.17 or 10.19).

Private Sub ProcessRow(r As Range, numRows As Integer)

Dim c As Range

Dim shRange As ShapeRange

Const POINTSPERROW = 100

‘——————————————————-

‘Clear the x’s and shapes from a row.

‘Score the row.

‘——————————————————-

Set shRange = ActiveSheet.Shapes.Range(Array(“SquareC” & r.Row, _

“SquareD” & r.Row, “SquareE” & r.Row, “SquareF” & r.Row, _

“SquareG” & r.Row, “SquareH” & r.Row, “SquareI” & r.Row, _

“SquareJ” & r.Row, “SquareK” & r.Row, “SquareL” & r.Row))

r.ClearContents

shRange.Delete

Range(“Score”).Value = Val(Range(“Score”).Value) + POINTSPERROW * numRows

End Sub

465Chapter 10 • VBA Shapes

466

The function of the ProcessBoard() sub procedure is to move all shapes above a scored row
down one row along with the x’s in the cells they mask. In addition, the procedure must
rename the Shape objects to update the row index in their names—which turned out to be
the most difficult task required of this procedure.

Moving the Shape objects and the x’s is easy. I just cut and paste the range on the game board
above a scored row down one row. I also have to redefine the named range to its original ref-
erence because a cut and paste operation alters the value of the range referenced by a name.
Figure 10.19 shows the Shape objects that must be moved and renamed after a filled row has
been removed and scored.

Changing the names of the Shape objects requires two steps. First, I collect the numbers at
the end of the Name property of each Shape object that represents the row index of the cell
the Shape object masks. These row indices are stored in the integer array shNum. Decision
structures are required because the Command Button control is part of the Shapes collec-
tion object and I don’t want to include it here. I also have to be careful to store only the num-
bers associated with shapes that were moved; therefore, another decision structure tests the
row index of the scored row passed in as the argument rIndex. After collecting a shape’s row
index, its new name is stored in another variable array (shNames) after incrementing the row
index by one. The shape is assigned a temporary name beginning with the string “tempName”
and a unique index value. After the appropriate shapes have been temporarily renamed,

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

Figure 10.19

The game board
from Figure 10.16
after removing

the second
filled row.

Shapes that
must be moved

down one row

another loop renames them using the values in the shNames array. This seems like a lot of
work and I am sure you are wondering why I didn’t just rename the shapes to their final
string values in the first For/Each loop. The problem I encountered was assigning the same
name to two different Shape objects. Consider the Shape objects above cells I13 and I14 in Figure
10.19. If I try to change the row index for the Shape object name “SquareI13” in the first
For/Each loop, I will duplicate the name of the Shape object directly below it and this gener-
ates a Run time error. Figure 10.20 shows the game board after the shapes shown in Figure
10.19 have been moved down one row.

Private Sub ProcessBoard(rIndex As Integer)

Dim cutRange As Range, pasteRange As Range

Dim allSquares As Shapes

Dim sh As Shape

Dim shNum As Integer

Dim shNames() As String

Dim I As Integer

Set cutRange = Range(“C4:L” & rIndex - 1)

Set pasteRange = Range(“C5:L” & rIndex)

467Chapter 10 • VBA Shapes

Figure 10.20

The Excetris game
board after the

appropriate
shapes shown in
Figure 10.19 have

been moved
down one row.

468

‘————————————————————————————

‘Copy x’s and shapes down one row. Re-define the altered

‘named range that results from the cut and paste.

‘————————————————————————————

cutRange.Cut Destination:=pasteRange

ActiveWorkbook.Names(“GameBoard”).Delete

ActiveWorkbook.Names.Add Name:=”GameBoard”, RefersTo:= _

“=Excetris!C3:L17”

‘——————————————————————————————-

‘Collect existing names of squares to be moved (increment row

‘index in name by 1) before temporarily renaming.

‘——————————————————————————————-

Set allSquares = ActiveSheet.Shapes

For Each sh In allSquares

If sh.name Like “Square*” Then

shNum = Val(Right(sh.name, Len(sh.name) - 7))

Else

shNum = 999

End If

If sh.Type = msoAutoShape And shNum < rIndex Then

ReDim Preserve shNames(I)

shNames(I) = left(sh.name, 7) & Val(Right(sh.name, _

Len(sh.name) - 7)) + 1

sh.name = “tempName” & I

I = I + 1

End If

Next

‘—————————————————

‘Rename shapes using stored names.

‘—————————————————

I = 0

For Each sh In allSquares

If (sh.Type = msoAutoShape) And (sh.name Like “tempName*”) Then

sh.name = shNames(I)

I = I + 1

End If

Next

End Sub

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

The BonusCall() sub procedure is called when the player earns a bonus by filling more than
one row as a result of placing a single Excetris shape. The procedure displays one of three
smiley faces on the worksheet using the AddPicture() method of the Shapes collection object.

Images can also be represented as Shape objects and are part of the Shapes collection when
they are directly added to a worksheet. The AddPicture() method requires a path to the
image file along with a location (left, top) and size (width, height) specified in points. The
VBA-defined constant msoCTrue is used with the LinkToFile and SaveWithDocument arguments
that specify that the image is linked to the file from which it was created, and that the
image will be saved with the document. After a one second delay, the image is deleted with
a call to the DeleteBonus() sub procedure in the ScanBoard() procedure.

Private Sub BonusCall(factor As Integer)

Dim filePath As String

Dim wsShapes As Shapes

Dim picLeft As Single, picTop As Single

Const PICSIZE = 50 ‘Units are points

On Error GoTo BonusError

‘————————————————————————

‘Display an image when bonus points are awarded.

‘————————————————————————

filePath = ActiveWorkbook.Path & “\Images\”

Set wsShapes = ActiveSheet.Shapes

picLeft = Range(“picLeft”).left + 5

picTop = Range(“picTop”).top

Select Case factor

Case Is = 2

Range(“Message”) = “Double Bonus Points!”

wsShapes.AddPicture(filePath & “Smile1.png”, msoCTrue, msoCTrue, _

picLeft, picTop, PICSIZE, PICSIZE).Select

Case Is = 3

Range(“Message”) = “Triple Bonus Points!”

wsShapes.AddPicture(filePath & “Smile2.png”, msoCTrue, msoCTrue, _

picLeft, picTop, PICSIZE, PICSIZE).Select

Case Is = 4

Range(“Message”) = “Quadruple Bonus Points!”

wsShapes.AddPicture(filePath & “Smile3.png”, msoCTrue, msoCTrue, _

picLeft, picTop, PICSIZE, PICSIZE).Select

469Chapter 10 • VBA Shapes

470

End Select

Selection.name = “BonusPic”

Range(“R9”).Select

Exit Sub

BonusError:

Range(“Message”).Value = Err.Description

End Sub

Private Sub DeleteBonus()

‘——————————————————

‘Delete the bonus image and message.

‘——————————————————

Delay (1)

Range(“Message”).Value = “”

ActiveSheet.Shapes(“BonusPic”).Delete

End Sub

The GameOver() sub procedure is called from AddShape() when a new shape has been added
on top of an existing shape on the game board. The procedure serves to reset the tab and
arrow keys with a call to ResetKeys() and outputs the string “Game Over!” to the worksheet
before ending the program.

Private Sub GameOver()

ResetKeys

Range(“O12”).Value = “Game Over!”

Range(“P9”).Select

End

End Sub

Private Sub Delay(pauseTime As Single)

Dim begin As Single

begin = Timer

Do While Timer < begin + pauseTime

DoEvents

Loop

End Sub

Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

This concludes the construction of the Excetris program. The next step in the development
of Excetris would be to add multiple levels of difficulty to the game. In the original version
of Tetris, the game is made more challenging by increasing the speed of the shapes as they
move down the game board. Unfortunately, the shapes cannot be moved any faster using the
OnTime() method of the Application object because the program already uses its minimum
time interval of one second. The shapes could be incremented down two rows instead of one,
which would simulate a faster downward motion of the shapes. Other possibilities include
creating additional shape types that make it harder for the player to find a fit or include an
occasional “Hot” shape that automatically drops to the bottom of the game board as soon
as it’s added (make its color a bright red-orange!). Use your imagination and you’ll think of
methods for making the game more challenging and exciting to play.

Chapter Summary
Chapter 10 discussed the Shape object and the tools available in Excel for adding shapes to a
worksheet and manipulating existing shapes. I discussed the Shapes collection object and
some of its properties and methods used to add and manipulate Shape objects and demon-
strated the use of the ShapeRange collection object for selecting and manipulating a specific
set of Shape objects from a collection. You saw the OLEObjects collection object and how to
add an ActiveX control to a worksheet using a VBA program.

A Final Word
Congratulations on finishing this book. You are now ready to tackle your own VBA projects
in Excel. You will find that even with the relatively basic programming skills taught in this
book, you will be able to create robust and helpful projects for the home and business. If you
are interested in learning more about programming in VBA with Excel, I suggest looking
into the .Net languages and how you can use them to create Office applications. You may
also want to increase your use of the Windows API for extending the abilities of your VBA
programs. Whatever you decide, the most important thing to remember is that you should
have fun! Good luck and thank you.

—Duane Birnbaum

471Chapter 10 • VBA Shapes

472 Microsoft Excel VBA Programming for the Absolute Beginner, Second Edition

C H A L L E N G E S

1. Create a program in VBA that adds several lines, rectangles, ovals, and triangles
to a worksheet. Use a looping code structure.

2. Create a VBA program that creates a ShapeRange collection object from just the
ovals in the drawing layer of a worksheet. Then alter the appearance of the ovals
by adding a fill color.

3. Using a For/Each loop in a VBA procedure, select just the rectangles created in
the first challenge and align them to column C in the worksheet. Use the Left
property of the Range and Shape objects.

4. Add several Shape objects to the drawing layer of an Excel worksheet, then use
the Group() method of the ShapeRange collection object to group the range of
shapes into a single shape. Rotate the grouped Shape object using its Rotation
property.

5. Edit the Excetris program to include sound. Find sound files that play when an
active shape moves down the game board, when the tab key is pressed in order
to drop a shape, and when a filled row is removed and scored.

6. Edit the Excetris program to include an additional shape type, bringing the total
number of shape types to six. Build the new shape type out of four rectangular
shapes as was done with the other five shape types. Edit all procedures neces-
sary for adding, setting, moving, and keeping track of the location of the new
shape type.

A
Absolute references, denoting, 122
Activate() event, 57, 211, 212, 392

playing a hand of Blackjack and, 252
shuffling deck for Blackjack program and,

248, 249
of UserForm object, 314, 315

Activate() method
of Range object, 349
of Worksheet object, 158

ActiveCell property, 161
ActiveX controls, 9, 11, 18, 151, 184, 203, 266, 440

adding to forms, 212–213
adding to Math Game program, 134–136
in Blackjack game, 239
Enabled property of, 82
forms customized with, 208
within Frame control, 218
on Math Game worksheet, 125
property settings of, for summary stats

custom dialog, 227
UserForms for, 207
VBA shapes and, 436, 437, 438

ActiveX Data Objects (ADO), 296
AddChartSheet() sub procedure, 388, 389, 390
AddCommandButton() sub procedure, 437
AddEmbeddedChart() sub procedure, 390
AddItem() method

of Combo Box control, 225, 226, 229, 232
of List Box control, 225, 226, 229, 232

Addition operator (+), 33
AddLine() method, 429
Add() method, 164

of ChartObjects collection object, 391
of Charts collection object, 388
of FileDialogFilters collection object, 287
of Shapes collection, 429

AddOLEObject() method, 429, 437
AddPicture() method, 429

of Shapes collection object, 469
AddPolyline() method, 429
Add Procedure dialog box, 60
AddRecToWorksheet() sub procedure, 309

AddSeries() sub procedure, 405
AddShape() method, 429, 431
AddShape() sub procedure, 448, 449
AddToControls() sub procedure, 309
AddToFile() sub procedure, 309
AddUserInput(), sub procedure, 62
Add Watch dialog box, 278
AddWorkbooks() sub procedure, 164
ADO. See ActiveX Data Objects
After argument, outputting results of hand to

Blackjack worksheet and, 265
AfterUpdate() event, 230
Alienated Game program, 377, 396–425

capturing user selections, 399
chart sheet interface, 398
coding, 402–425

initializing chart sheet, 403–407
playing the game, 420–425
scanning chart, 408–420

designing, 397–402
mapping images, 399–401
outline for, 402
playing the game, 420–425
requirements of, 397

AllowMultiSelect property, of FileDialog object,
287, 288

Ampersand character (&), for concatenation, 47
AND operator, 69

truth table for, 70
Angle brackets (<>), around HTML tags, 331
ANSI character set, 282
Answers

collecting, in Math Game program, 143–145
scoring, in Math Game program, 145–147

A1 style references, 120–122
Apostrophes (’), in comments, 20
Application object, 125, 137, 150, 160–161, 205

Cells property of, 172
FileDialog property of, 284
MoveAfterReturn property of, 366
OnKey() method of, 443
Version property of, 215

ApplyDataLabels() method, of Point object, 395
Area chart, 384, 385

Index

474

Arg1, 394, 399, 420
Arg2, 394, 395, 399, 420
Arguments, 40
Array() function, 433
Arrays, 99, 109–120, 369

defined, 109
dynamic, 116–120
multi-dimensional, 114–116
one-dimensional, 111–114

Artificial intelligence (AI), 178
ASCII characters, random numbers converted to, 323
ASCII conversion characters, selected, 106
Assert() method, of Debug object, 276
Assign Macro dialog box, 133, 436
Assignment operator (=), 33, 72
AssignSelection() function, 422
AssignShipToLocation() function, 194, 196
Authentication, 4
AutoFill() method, 121, 122
AutoFit() method, of Range object, 171
AutoShapes, 427, 447, 449
AutoShape type, 432
AutoSize property, 241
AVERAGE() function, 65, 68, 271
Axes collection object, 389
Axes() method, 389
Axis object, 392
AxisTitle object, 414

B
Bar chart, 384, 385, 391
Battlecell program, 149–150, 246

coding, 182–202
computer selections: placing ships and firing at
player, 192–198
initializing Battlecell and starting game, 185–188
opening and closing Battlecell workbook, 182–185
player selections: placing ships and firing at
computer, 188–192
sound added to VBA program, 203–205
validating selections, 198–202

constructing, 177
designing, 180–182
requirements for, 177–180

Battlecell workbook, opening and closing, 182–185
Battlecell worksheet

for game in progress, 192
with location of computer’s ships, 194
with “Player” range selected, 187
after user has placed four of five ships, 190

Battleship game, Battlecell program based on, 150, 177
BeforeClose() event, of Workbook object, 182, 183, 184, 188
BeforeDragOver() procedure, 80
BeforeDropOrPaste() procedure, 80
Binary code, 5
Binary language, 65
Biorhythms, 48
Biorhythms and the Time of Your Life program, 25

coding, 49–52
constructing, 47–48
design of, 48–49
requirements for, 48

Bitmap image files, for Blackjack game, 242
Bitmaps, 78
Blackjack form, 242

closing, 245
dealer bust and, 263
select properties of, 240–241

Blackjack form module, CalcScore() sub procedure of, 276
Blackjack game, 237
Blackjack program, 208, 237–266

code for, 246–266
general purpose public procedures, 246–247
playing a hand of Blackjack, 252–266
public procedures and variables for, 247
shuffling deck, 248–252

dealer bust in hand of Blackjack, 263
designing, 239, 242–245
player bust in hand of Blackjack, 260
requirements for, 237–239
starting new hand of Blackjack, 257
swapping two cards in deck, 244
writing code for, 246–266

Blackjack() public procedure, in Blackjack program, 248
BonusCall() sub procedure, 469
Bonus points, assigning in Excetris program, 463
Boole, George, 69
Boolean algebra, 69, 70
Boolean data types, 39
Boolean logic, within conditional expressions, 69–70, 97
BorderColor property, 211
Borders, for puzzle area of worksheet, 325
BorderStyle property, 211, 218
Brackets ([]), in R1C1 style references, 122
Branching, conditionals and, 71–76
Break Mode, 274–275
Breakpoints, inserting, 275
Break When Value Changes, 278
Break When Value Is True, 278
Browsers, 330

Index

Bubble chart, 384
in Alienated Game program, 398, 410, 416

Bubble chart type, 396
BubbleScale property, of ChartGroup object, 405
BubbleSort() procedure, 110, 113, 114
BubbleSort2() sub procedure, 113, 116, 117
Bugs, 222, 270
BuildShape() sub procedure, 449
Button variable, 59
ByRef keyword, 63
ByVal keyword, 58, 63

C
C, 65
C#, 151
C++, 65, 151
CalcScore() sub procedure, 276, 408, 414

playing a hand of Blackjack and, 259, 260
Call keyword, 62
Capitalization, 37

in API declarations, 204
Caption property, 168, 213, 226

Blackjack game and, 243
changing, 13
of Command Button control, 18
Frame control and, 218
Option Button control and, 216
playing a hand of Blackjack and, 253, 254, 255

CardDeck enumeration, 247
CardSuits enumeration, 247
Case elements, conditionals in, 76
Case keyword, 75
Case sensitivity, 37

with XML tags, 335
CellColors() sub procedure, 177
Cell property, 106
Cells, color of, 15
Cells property, 102, 110, 115, 122, 159

of Range object, 349
using, 172–173

CenterApp() sub procedure, 168
CenterBook() procedure, 168
Central processing unit (CPU), 440
ChangeAllIndices() function procedure, 455, 459
ChangeColor() sub procedure, 386, 387
Change() event procedure

of Combo Box control, 229, 316
of MultiPage control, 224, 229
of RefEdit control, 222
of Scroll Bar control, 217, 219

of worksheet, 143
of Worksheet object, 368

Chart events, 392
chart sheets and, 393

ChartFillFormat object, UserPicture() method of, 406
ChartGroup object, BubbleScale property of, 405
Chart object, 153, 155, 174, 377, 425

accessing existing charts, 379
chart sheets, 379–381
embedded charts, 382–383

Alienated Game design and, 397
chart events, 392–396
chart sheets and, 393–396

creating, 388–389
creating embedded charts, 390–392
events, 392, 393
manipulating charts, 383–388

ChartObject object, 382, 383, 386
ChartObjects collection object, 382, 386
Charts, 377, 378

creating, 388
manipulating, 383–388
scanning in Alienated Game program, 408–420

Charts collection object, 378, 379, 380
Chart sheets, 379–381, 393–396, 425

creating, 388–389
initializing in Alienated Games program, 403–407
interface in Alienated Game program, 398

Charts property, of Workbook object, 380
ChartTitle object, 403
Chart Type worksheet, 384, 385
Check Box, 11
Check Box control, 56, 77, 216

in Poker Dice program, 80
property settings of, in Poker Dice program, 81
selected properties of, in Poker Dice program, 80

CheckFileFilters() sub procedure, 285
Child elements, 336, 353, 354
Chr() function, 106, 194, 323
Class definition, 156
Classes, 151, 156
Clear All button, Click() event of, 315
Clear All control, 300
ClearBoard() sub procedure, 142, 184, 186, 188

playing a hand of Blackjack and, 254, 255
ClearContents() method, 115

of Range object, 248, 315
Clear() method

of Combo Box control, 226
of List Box control, 226, 232

ClearResults() public procedure, in Blackjack program, 248

475Index

476

Click() event procedure, 14, 19, 58, 50, 81, 126, 211, 212
of Calculate button, 272, 274
of Clear All button, 315
of cmdCalcStats Command Button control, 271
of Fill button, 323
in Math Game program, 134–135, 137
MultiPage control and, 224
Option Button control and, 216
of Print button, 324

Clock, in Math Game program, 140
Close() method, of Workbook object, 164, 165
Closing tags, for XML elements, 334
Clustered chart type, 391
cmdCalcStats Command Button control, Click() event

of, 271
cmdCalculate, 231
cmdHit control, 260
cmd prefix, 13
Code, adding to event procedure of chart sheet, 393
Code window, 10
Collection objects, in VBA, 153–155
Colon (:)

avoiding in XML element names, 336
at end of line labels, 271
in new window captions, 162

Color
cell, 15, 176–177
chart, 386
for puzzle area of worksheet, 325
shape, 431, 471
Shape objects, 442
of targets in Battlecell program, 194, 196

Color Changer program, 16
Color constants, VBA, 220
Colorful Stats program, 1

coding, 20–22
constructing, 17–22
designing, 18–19
requirements of, 17, 18
user interface for, 19

ColorIndex property, 176
of Interior object, 387, 406, 415

Column chart, 384, 385, 390, 391
ColumnCount property, 228
Column indexes, 109
Column property, of Range object, 195
Columns method, 171
Columns property, of Range object, 195
Column widths, adjusting in Excetris program, 460
ColumnWidths property, 228

Combo Box control, 224–225, 226, 266
on Blackjack form, 242
for new Math Game program, 350
playing a hand of Blackjack and, 253
selected properties of, 225
in Word Find program, 298
for worksheet design in Word Find program, 300

Command Button, 11, 12
Command Button control, 134

functionality of, 13–15
MouseDown() event procedure of, 58
Properties window of, 13

Comments, 20
Comparison operator(s) (=), 72

in VBA, 69–71
Compartmentalization, 29
Compiler, 5
ComputerFire() sub procedure, 191, 197
Computer viruses, 3
Concatenation, string, 47
Conditional operator (=), 103
Conditionals, branching and, 71–76
Conditional statements, with Do loop, 101
Constants, 26, 40, 47, 54
Const keyword, 40
Container controls, 222, 223
Container objects, 212
Controls, on worksheets, 11–12
Control Toolbox, 10, 11, 212
ConvertToRange() sub procedure, 410, 413
Copy() method, 121
CountCells() function, 320, 321
Count property, 164, 169, 248

of Range object, 185
of Shapes collection, 428

Crashes, 31, 39, 303, 326, 336
Create_Edit_Tests worksheet, 353, 364, 366, 367, 370
CreateRanAccessFile() sub procedure, 295
CreateSeqFile() procedure, 293
Ctrl-Alt-Break, program execution suspension and, 102
Custom data type definition, variable declaration vs., 234
Custom data types, 233

defining in VBA, 234–235
Custom dialog boxes, for quick statistics, 226–233
CustomerInfo, variable declaration, 235

D
Dash (-), avoiding in XML element names, 336
Data, saving as XML spreadsheet, 342–343

Index

Database files, 296
DataBinding property, Xml Map object and, 346
Data columns, in Combo Box and List Box controls, 228
Data markers, image mapping and, 400, 401
DataPoints variable, 403, 411
Data types, 26, 31–40, 47, 54

Boolean, 39
common VBA, 32
numerical, 31–34
specifying, 28
string, 37–38
variant, 38–39

Data Validation dialog box, 109
Date type, 47
DateDiff() function, 52, 141
DateValue() function, 107
Date variables, in Biorhythms and Time of Your Life

program, 52
Day() function, 53
DealCards() sub procedure, playing a hand of Blackjack

and, 254, 256
DealerDraw() sub procedure, playing a hand of Blackjack

and, 262
Debugging, 270, 274–279

Break Mode, 274–275
Immediate window, 275–277
Locals window, 279
Watch window, 277–279

Debug object, Assert() and Print() methods of, 276
Debug toolbar, 275
DEC constant, 322
Declare statement, Windows API and, 204
Declaring

arrays, 111–112, 115
dynamic arrays, 116–117, 118
variables, 27–31

Delay() sub procedure, 247
DeleteBonus() sub procedure, 469
Denormalized maps, 355
Derived class, 151
Derived data types, in VBA, 233–237
Description property, of Err object, 273
Design Mode, 11, 12, 15
Design time, 9, 213
Destination argument, 122, 348
Dialog boxes

custom
designing using forms, 215–233
for quick statistics, 226–233

Dialogs object, 282

Dice
rolling, in Poker Dice program, 84–87
selecting, in Poker Dice program, 81–82

Digital certificates, 4
Digital signatures, 4
Dim keyword, 31, 211
Dim statement, 27, 28
Dir() function, 303
DisplayFormulaBar property, 160
DisplayResult() sub procedure, 86, 88
Divide by zero error, 270
Division operator (/), 33
.doc files, 280
DoEvents() function, 247
Do keyword, 101
Dollar signs ($), in front of indexes, 120
Do loops, 101–103, 107
Dot (.) operator

custom data types and, 235
random access files and, 295

Double data type, 31, 32
Doubling down, in Blackjack game, 267
Drawing layers, in worksheets, 428
Drawing toolbar, 427, 429
DropButtonClick() event procedure, 230

of Combo Box control, 226
of RefEdit control, 222

DropShapes() sub procedure, 447, 453
Dynamic arrays, 116–120

in Math Game program, 134
DynamicBubble() procedure, 118
Dynamic link library (.dll) files, 203
DynamicTranspose() sub procedure, rewriting with

dynamic array, 119

E
EarliestTime parameter, 141
Editing, shapes, 430, 431
Edit tab, of Options dialog in Excel, 137, 138
ElementID parameter, 394, 395, 399, 420
Element names, XML, 336
ElseIf clause, 74–75
Else keyword, 72, 73
Embedded charts, 382–383, 425

creating, 390–392
on worksheets, 381

Embedded Charts worksheet, 388, 390
EnableControls() sub procedure, 137, 142
Enabled property, of ActiveX control, 82

477Index

478

End Enum statement, enumerated type definition
and, 235

End keyword, 198
End Sub statement, 57, 60
End Type statement, 234
Enter() event procedure, 230

of RefEdit control, 222
Enumerated types

assigned values in, 236
defining in VBA, 235–237

Enumerations, 234
Enum statement, 235, 236
EOF() function, 294
Equal sign (=), 33
Err object, 273
ErrorHandler line label, 271, 272, 273
Error handlers, 303, 318, 325
Error handling, 270–274, 326

code, 270
order of program execution and, 272
using On Error statement, 271

Errors
logic, 39
type mismatch, 38
types of, 270

esRange element, of gameShape variable, 453, 454,
455, 459

Event-driven programming, 2
Event procedures, 14, 18, 56–59, 97

parameters with, 57–59
of RefEdit control, 222
for UserForm object, 211, 212

Events, 150, 162
Excel

color palette in, 176
file filer extensions for, 286
file filter descriptions for, 286
files, 280
getting to IDE from, 5
InsertFunction tool in, 67, 68
macro recording tool in, 132
new window created in, 162–163
Options dialog box in, 222, 223
programming components within, 10–15
top-level objects in, 160–172, 205
Visual Basic for applications with, 1–23
worksheet events in, 57
XML and, 338–343
XML menu selection in, 340

Excel application functions, in VBA, 68

Excel charts, 377–426
Chart object and, 377, 378–396
types of, 384
VBA objects used in accessing, 383

Excel library, 156
Excel Object Model, 157
Excel objects

Application object, 160–161
Range object, 170–172
top-level, 160–173
Window object, 161–169
Workbook object, 161–169
Worksheet object, 169–170

Excel worksheet
object module for, 28
XML documents opened/imported into, 338–341

Excetris program, 427, 439–471
coding, 445–471
designing, 441–445
moving shapes, 442–443
outline, 444–445
removing shapes, 444
requirements for, 439–441
shape creation, 441–442

ExcetrisShape data type, 445
Execute() method, of FileDialog object, 284, 288
Exit Do statement, 104
Exit() event procedure, of RefEdit control, 222
Exit For statement, 104
Exit Function, 66
Exit Sub statement, 57, 66, 273
Exponential operator (^), 33
Export() method

URL argument of, 345
of XmlMap object, 358

ExportXml() method, of XmlMap object, 346

F
FACT() function, 104
Factorial function, 104, 105
FileDialogFilters collection object, 284–288
FileDialogFilters object, 359
FileDialog object, 282, 283–284, 359

dialog types used with, 284
Open dialog box of, 289

FileDialog property, of Application object, 284
FileDialogSelectedItems collection object, 284–288
FileFormat argument, 281, 282

Index

File input and output (I/O), 279–295. See also VBA file
I/O methods

opening/saving workbooks, 281–282
in Word Find program, 303
Workbook and Worksheet objects and, 281–282

Filename argument, 281, 282, 347
filename string element, in Blackjack program, 247, 249
File numbers, assigning, 289
File Picker dialog box, 287
FileSystem object, 282, 288

members of, 290–291
FileSystemObject object, 282
Fill button, Click() event procedure of, 323
Fill colors, 15, 442
Fill control, 301
FillFormat object, 431
FillMap() sub procedure, 416, 419
Fill property, 431
FilterIndex property, 287
Filters property, of FileDialog object, 285
Find() method, outputting results of hand to Blackjack

worksheet and, 265
Fixed length string variables, 37
Floating point data type, 47
Floating point numbers, 32
Font method, 171
Font object, 174
Font property, 174

of Command Button control, 18
Frame control and, 218

Font size, Scroll Bar control and, 219
For/Each loop, 106, 205

looping through range and, 175–177
Worksheet objects in Worksheets collection and, 230

ForeColor property, of Label control, 220
For keyword, 104
For loops, 103–106
Format Axis dialog box, 392
Format() function, 53, 231
Formatting, with Range object, 171
Form design, in Word Find program, 298–300
Forms

ActiveX controls added to, 212–213
adding to project, 209
custom dialog boxes designed with, 215–233
designing with VBA, 208–233
modal, 214–215
showing and hiding, 213–214

Forms toolbar, 10, 133
Formula property, 120, 122, 145
FormulaR1C1 property, 122

Formulas, programming into worksheet cells, 120–123
For/Next loop, 103, 105, 108, 111
Forward slash (/), in XML elements closing tags, 334
Frame control, 212, 218–220, 266

in Blackjack game, 239
Freeforms, 427
Function, defined, 64
Function calls, 66
Function procedures, 64–65, 97
Fun with Strings program, 43, 45–47

G
Game board, resetting in Poker Dice program, 82–84
GameOver() sub procedure, 448, 470

playing a hand of Blackjack and, 255, 260, 263
General declarations section, of module, 30
GetAllRecords() sub procedure, 303, 305
GetCCArray() function, 457
GetChartSheets() sub procedure, 380, 381
GetDayOfWeek() function, 236
GetEmbeddedChartObjects() sub procedure, 383
GetFile() sub procedure, 303, 305
GetIDNum() function, 307
GetOperands() sub procedure, 140, 143
GetOperatorType() procedure, 139
GetProblem() sub procedure, 366, 368
GetRandomNumber() function, 139
GetRandomOperator() procedure, 139, 143
GetSelectedItem() sub procedure, 285, 286
Get statement, 295
GetSuitLabel() function, 249
GetUniqueTopics() sub procedure, 302, 314
GetWords() sub procedure, 316
GetXMLFile() function, 359
gifs, 78
Global variables, 31, 198
GoTo statement, 271
Graphical user interface (GUI), 209
Group() method, of ShapeRange object, 442
GUI. See Graphical user interface

H
Hard drive, 280
Height property, 160, 212, 241

of Application object, 168
Excetris program and, 460
List Box control and, 225

Help, VBA, 15–17
Hidden worksheets, 299, 303, 304, 309

479Index

480

Hide() method, forms hidden with, 214
HitOrMiss sub procedure, 191, 192
horizontal argument, 322
“Hot” shapes, 471
.html extension, 330
HTML (HyperText Markup Language), 330

I
IBM, 178
IDE (Integrated Development Environment), 1, 5
ID numbers, retrieving, 307
If/ElseIf decision structure, 422
If keyword, 71
If/Then decision structure, 143
If/Then/Else conditional statement, 56
If/Then/Else structure, 71–75, 86, 92, 97, 99, 194
If/Then statement, 100
Image control, 56, 77

on Blackjack form, 242
playing a hand of Blackjack and, 256, 257
in Poker Dice program, 78–80
property settings of, in Poker Dice program, 79
selected properties of, in Poker Dice program, 79
sizing in Blackjack game, 241

imageFile, 85
Image files, 280
ImageMapSwap() procedure, 423, 424
ImageMap worksheet, 400, 404, 406, 409, 414, 416, 418
imagePath, 85
Images, 427

loading, in Poker Dice program, 85
mapping, in Alienated Games program, 399–401

ImageSwap() function, 420, 423
Immediate window, 275–277
Import() method, URL argument of, 345
ImportXml() method, of XmlMap object, 346
INC constant, 322
IncrementStudentLevel() sub procedure, 372
Indentation, in code, 74
Indexes

dollar signs in front of, 120
for objects, 154
returning Shape objects by, 428
returning single cell from Worksheet object and, 172
of Window objects, 162

Infinite loops, 102
Inheritance, 151
InitData() sub procedure, 404
InitDeck() sub procedure, 249
InitForm() sub procedure, 253

Initialize() event procedure, 212
of Blackjack form, 243
of UserForm object, 218, 219, 228

InitializeGame() sub procedure, 187
Initializing arrays, 112
InitSeriesImages() sub procedure, 406, 416
InitShape() sub procedure, 449
Input #, 294
InputBox() function, 52, 208, 215

collecting user input with, 40–41
validation with, 107–109

Input/output (I/O). See also I/O; File input and output
Input validation, 45, 107–109, 144

with InputBox() function, 107–109
with spreadsheet cell, 109

InsertFunction tool, in Excel, 67, 68
InsertRowRange property, 349, 361, 371
InStr() function, 46
Integer data type, 28, 31, 32, 47, 235
Intelligence, programming into games, 177, 178
Interior object, 387

ColorIndex property of, 415
I/O (input/output)

in Colorful Stats program, 19
with VBA, 40–42

iPlayer argument, 259
IsExportable property, 346, 358
IsNothingOrStraight() function, 92
Item property, 164

of FileDialogSelectedItems object, 285
Iteration, 101, 177

J
Java, 151
JavaScript, 151
jpegs, 78

K
Kasparov, Gary, 178
Keywords, 2, 38

L
Label and Image Control, 11
Label control, 219, 227

in Blackjack game, 239
data file updates and, 311
ForeColor property of, 220
playing a hand of Blackjack and, 253

Index

LargeChange property, of Scroll Bar control, 218
LCase() function, 47, 52
Left property, of Shape object, 454
Len() function, 295
Line chart, 384, 385
Line continuation character (_), 89, 92
Line labels, error handling code after, 271
List Box control, 224–225, 226, 266

selected properties of, 225
in Word Find program, 298
for worksheet design in Word Find program, 300

ListCount property, of List Box control, 232
ListIndex property, 318
ListObject object, 348–349, 370, 374

names for, 365
Lists worksheet, 305, 309, 315
LoadImage() sub procedure, 287
Load() method, form loading and, 214
LoadOption argument, VBA-defined constants used

with, 344
LoadPicture() function, 83, 85
LoadPicture() method, playing a hand of Blackjack and,

255, 257
Locals window, 279
LocatePlayerShip() sub procedure, 190
Logical operators, with VBA, 69–71
Logic errors, 39, 270, 279
Long data type, 31, 32
Looping

structures, 87
through collection of shapes, 431–432
through worksheet cells, 121
with VBA, 100–106

Loop keyword, 101
Loops, 99

For, 103–106
Do, 101–103
For/Each, 176
infinite, 102
nested, 106

LoopThruShapes() sub procedure, 435, 436
Lower bounds of arrays, 112
lpszSoundName argument, 204

M
Macro dialog box, 10, 11
Macro language support, disabling, 3
Macro language viruses, 3
Macro projects, digital signing of, 4

Macro Recorder
chart types and, 391
starting, 127

Macros
attaching to control, from Forms toolbar, 133
defined, 11
naming and storing, 128
recording in Math Game program, 126–132
selecting, 10

Macro security settings, changing in Excel, 3–4
Magic Squares, 34–37
Main() sub procedure, 62, 403
Map argument, 347
Mapping images, in Alienated Games program, 399–401
MapRanges variable, 408
Maps, denormalized, 355
Masked cells, marking in Excetris program, 461
Massachusetts Institute of Technology (MIT), 178
Mathematical operators, in VBA, 33
MathGameFormat macro, 128–130

revised, 131
MathGame() procedure, 140, 141, 143
Math Game program, 100, 123–147, 349–372

ActiveX controls added to, 134–136
coding, 134–136
collecting answers in, 143–145
designing, 124–133
enhancements to, 329–330
outline for, 126
random questions and operators generated in,

138–140
recording macros in, 126–132
requirements for, 123–124
scoring answers in, 145–147
selected properties of ActiveX controls in, 135
starting and initializing, 136–138
starting timer in, 140–143
test for, 332–333, 337–338
worksheet, 147

Math Game program (new version)
coding, 357–373

maintaining student list and viewing test results,
361–363
taking test, 364–373
writing tests, 357–361

creating tests, 352–355
designing, 351–355
requirements for, 350–351
taking a test, 351–352

MathGame sub procedure, 366, 367, 369
mathOperators array, 144

481Index

482

mathQuestions array, 144
maxHeight argument, 168
MaxLength property, 299
Max property, of Scroll Bar control, 218, 219
maxWidth argument, 168
MEDIAN() worksheet function, 271
Medium setting, for macro security level, 4
Me keyword, 184
Memory location, in computer, 65
Methods, 150, 162
Microsoft Office 11.0 Object Library, 283
Mid() function, 47
Min property, of Scroll Bar control, 219
Misc Shapes worksheet

after execution of LoopThruShapes() sub procedure,
436

after execution of SelectLines() sub procedure, 435
Modal forms, 214–215
Modal UserForms, 266
Modeless forms, 214
Modeless Userforms, 266
Mod operator, 139
Module level variables, 30, 279

in Math Game program, 134, 137
Modules, 28–29, 56

object, 28
standard, 29

MouseDown() event procedure, 58, 59, 63, 392
MouseUp() event procedure, 59, 392
MoveAfterReturn property, 137, 366
MoveImages() sub procedure, 408, 416
MoveLeft() sub procedure, 454
MoveMap sub procedure, 416
MoveRight() sub procedure, 454
MoveShape() sub procedure, 451, 453, 461
MsgBox() function, 208, 215

output with, 41–42
settings for button argument with, 43

MS Paint, 242
Multi-dimensional arrays, 114–116
MultiLine property, 299
MultiPage control, 212, 222–224, 266

Change() event of, 229
Value property of, 229

MultiPage.xls project, 271
Multiplication operator (*), 33, 145
MultiRow property, MultiPage control and, 223
Multitasking, 440
myChart variable, 386
myRange object variable, 176

N
Named argument operator (:=), 122
Named arguments, 122
Name property, 15

changing, 13
of Command Button control, 18
Frame control and, 218
Option Button control and, 216
RefEdit control and, 222
of Scroll Bar control, 218
Xml Map object and, 346

Names
constant, 40
variable, 27

Namespaces, 336
NeedShuffle() procedure, playing a hand of Blackjack

and, 253, 254, 256, 260
Nested loops, 106
Nesting, 164

of XML tags, 335
Nesting functions, 47, 52
NewActiveRange() function, 451, 452, 453
NewActiveRange() sub procedure, 455, 457
NewGame() sub procedure, 446
NewSeries method, 391
NewWindow() method, 162
Next keyword, 104
nextRow variable, 265
nextTime variable, 141
NOCHANGE constant, 322
Notepad, 10, 338
NOT operator, 69

truth table for, 71
Now() function, 52, 141
Number guess procedure, 72, 73
Numbers, formatting in spreadsheet cell, 26
Numerical data types, 31–34, 58
Numerical variables, in Biorhythms and Time of Your Life

program, 52
numQuestions variable, 143, 145
numSeconds variable, 141

O
Object Browser, 150, 155–160, 163, 164, 171, 205, 226

FileSystem object and, 288
opening, 155

Object data type, 175, 205
Object definitions, 151
Object library, 156

Index

Object Model chart, 157
Object module, 28, 211
Object-oriented programming, VBA and, 150–151
Objects, 149

defined, 151–153
working with, 173–177

Office library, 156
Office programs, security levels for, 3
OLEObjects collection, 436–438
OLEObjects collection object, 184, 471
OnAction property, of Shape object, 435
One-dimensional arrays, 111–114
On Error statement, using, 271
OnKey() method, 443, 447
OnTime() method, 125, 140, 141, 160, 367, 440, 451
Open dialog box, 359, 360
Open() event, of Workbook object, 167, 182, 183
Open() method, 164, 281, 344
Open statement, 282, 289, 296
OpenXMLFile() procedure, 359, 360
OpenXML() method, of Workbooks collection object, 344
Operating system (OS) files, 280
Operator execution, parentheses and, 92
Operators, generating in Math Game program, 138–140
Optional keyword, 198
Option Button control, 80, 216, 266

in Math Game program, 134, 135, 136
Option Explicit statement, 28
Option Private statement, 60
Options dialog box, in Excel, 222, 223
OR operator, 69

truth table for, 70
Output, with MsgBox() function, 41–42
Overflow errors, 31
Overwrite argument, 348, 358

P
Page object, 224
Pages collection object, MultiPage control and, 223
PageSetup object, PrintArea property of, 324
Parameters, 40, 41

with event procedures, 57–59
Parent class, 151
Parentheses, order of operator execution and, 92
PassByRef() procedure, 64
PassByVal() procedure, 64
PasswordChar property, 299
Paste() method, 121
Path property, of Workbook object, 281
Period (.), avoiding in XML element names, 336

Perl, 151
Picture property, 13, 79, 241, 317
Pie chart, 384
PieClock.xls workbook, 388
PlaceComputerShips() sub procedure, 193, 196
PlaceWord sub procedure, 317, 318, 322
PlayerFire() sub procedure, 191, 192, 197
PlayWav() sub procedure, 204, 246
Point object, 394, 395, 406, 420, 422
Points, 228
Poker Dice program, 55, 77–97

Check Box control in, 80
coding, 81–96
designing, 78–81
Image control in, 78–80
locating code for, 80–81
property settings of check box controls in, 81
requirements for, 77
resetting game board in, 82–84
rolling the dice in, 84–87
scoring hand in, 87–96
selecting dice in, 81–82

PowerDB() function, 66, 67, 68
.ppt files, 280
Preserve keyword, 117, 144
PrintArea property, of PageSetup object, 324
Print() method, of Debug object, 276
PrintOut() method

of Range object, 373
of Worksheet object, 325

Print Puzzle control, 301
Private keyword, 15, 60, 65, 112, 211

custom data types and, 234
variables declared with, 31

Procedural level variable, 30
Procedure parameters, 141
Procedures

event, 56–59, 97
function, 64–65, 97
passing variables to, 235
recursive, 105
VBA, 56–68

ProcessBoard() sub procedure, 462, 464, 466
ProcessChart() sub procedure, 408, 409, 414, 415, 421,

423
ProcessRow() sub procedure, 462
Programming, event-driven, 2
Programming components within Excel, 10–15

macro selection, 10
Visual Basic toolbar, 11–15

Programming procedures, 56

483Index

484

Programs
Alienated Game, 377, 396–425
Battlecell, 149–150, 246
Biorhythms and the Time of Your Life, 25, 47–53
Blackjack, 208
Colorful Stats, 17–22
Excetris, 427, 439–471
Fun with Strings, 43, 45–47
Math Game, 100, 123–147, 329–330, 349–372
Poker Dice, 55, 77–97
Word Find, 269, 296–326

Project Explorer window, 7, 8
Projects, forms added to, 209
Properties, 150, 162
Properties window, 8

of Command Button control, 13
Proprietary files, 280
Public keyword, 60, 65, 112, 211

custom dta types and, 234
variables declared with, 31

Public procedures
for Blackjack program, 247–248
general purpose, 246–247

Put statement, 295
PuzzleList custom data type, 302
Puzzles, word search, 296

Q
QueryClose() event, 211, 212, 313

of UserForm object, 232, 245, 266
Quotes, around XML attributes, 335–336

R
RAD. See Rapid application development
Random access files, 294–295, 302
Randomize() function, 85
Random numbers, 72
Random questions, generating in Math Game program,

138–140
Range object, 110, 115, 122, 150, 153, 159, 161, 169,

170–172, 175, 176, 195, 199, 348, 409, 442
in Battlecell program, 195, 199, 205
Cells property of, 172–173
ClearContents() method of, 248
PrintOut() method of, 373
Row property of, 265
Select() method of, 174

Range property, 106, 159, 171, 174
of ListObject object, 348
of Shapes collection object, 433, 434

Ranges, For/Each loops and looping through, 175–177
RangeValid() function procedure, 190
Rapid application development (RAD), 5
rcInc array, 459
ReadSeqFile() procedure, 294
recNum integer variable, 302
recNum variable, 295
Recorded macros

chart types and, 391
With/End With structure in, 173–174

Record Macro tool, 10, 11
Records, 294–295

numbers of, 295
updating, 311

Rectangle, adding to worksheet, 430
Recursive procedures, 105
Re-dimensioning dynamic arrays, 116, 117, 119
ReDim keyword, 116, 117
ReDim statement, 408
RefEdit control, 220–222, 226, 230, 266
Refresh control, 300
Refresh() method, of Xml-DataBinding object, 346
Remarks, 20
RemoveImages() sub procedure, 408, 415
RemoveItem() method, List Box control, Combo Box

control and, 226
Requirements

for Alienated Game program, 397
for Battlecell program, 177–180
for Blackjack program, 237–239
for Colorful Stats program, 17, 18
for Excetris program, 439–441
for Math Game program, 123–124
for new Math Game program, 350–351
for Poker Dice program, 77
for Word Find program, 296–298

Resizing windows, 168, 169
Resizing workbook window, in Battlecell program, 181,

182
Resume Next clause, 271
Return data type, 66
Reusability, objects and, 151
RGB() function, 220, 431, 448
Rnd function, 72
RootElementName property, Xml Map object and, 346
Root elements, in XML documents, 334
RotateCC() sub procedure, 454
Row property, of Range object, 195, 265

Index

Rows, in spreadsheets, 109
Rows property, 169, 248

of Range object, 195
Run Macro, 11
Run time, 9
Runtime error dialog box, 274
Runtime errors, 270, 271, 273, 326, 452

S
SaveAs() method, of Workbook object, 281, 283, 343
SaveAsXmlData() method, 347
Save() method, of Workbooks collection, 281
ScanBoard() procedure, 469
ScanImages() function, 408, 409, 410, 411, 423
Scanning charts, in Alienated Game program, 408–420
ScanRange() sub procedure, 461, 462
ScanRowOrCol() function procedure, 409, 411
Scatter chart, 384, 391

in Biorhythms and the Time of Your Life program, 49
data series plotted in, 395

Schedule parameter, 141
Schemas, XML, 337–338
Schemas property, Xml Map object and, 346, 347
Scope, 30
ScoreAnswers() function, 370
ScoreAnswers() sub procedure, 142, 145
Scored images, removing from chart in Alienated Game

program, 415, 416
Score sequences, in Alienated Game program, 396
Scoring filled rows, in Excetris program, 462, 465
Scoring hand, in Poker Dice program, 87–96
Screen object, 168
ScreenUpdating property, 161
Scroll Bar control, 216–218, 266

selected properties of, 217
Scroll bars, 216
Scroll() event, Scroll Bar control and, 217
Search engines, 38
Security, 3
Select/Case structure, 75–76, 97, 99
SelectedItem property, 224
Select() event procedure, of Chart object, 394, 395, 396,

399, 402, 420
SelectionChange() event procedure, 56, 169, 181

of Magic Squares spreadsheet, 34–35
of Worksheet object, 188, 189, 190, 191

Selection property, of Window object, 174
SelectionValid() function, 318, 319, 321
SelectLines() procedure, 434, 435

Select() method
of Range object, 174
of Worksheet object, 170

Semicolon (;), between widths in ColumnWidths
property, 228

SendResult() sub procedure, 62
Sequential access files, 292–294
SeriesCollection collection object, 387
Series Collection object, 405, 406
Series object, 387, 389, 391, 394, 395, 406, 420, 422
SetActiveRange() sub procedure, 452, 461, 465
SetChartType() sub procedure, 385
SetColumnWidth() macro, 460
SetFirstCell() sub procedure, 193, 195
SetKeys() sub procedure, 447
Set keyword, 175
SetTargetCell() function procedure, 197
ShapeDemos.xls workbook, 432, 433
Shape objects, 428–432, 442, 471

activating, 435
looping collection of, 431–432
manipulating, 430–432

ShapeRange collection object, 432–434, 465
ShapeRange object, 452
ShapeRange property, of Selection object, 432
Shapes

adding to worksheets, 429
creating in Excetris program, 441–442
moving in Excetris program, 442–443
removing in Excetris program, 444

Shapes collection, 428–432, 469
Shapes collection object, 471
Shapes property, of Worksheet object, 428
Sheets collection object, 170, 379
Shift variable, 59
Ship locations, in Battlecell program, 188–198
ShowFileDialog() sub procedure, 288
Show() method, 213

of FileDialog object, 284, 287
form loading and, 214
modal forms and, 214, 215
shuffling deck for Blackjack program and, 248

ShuffleDeck() sub procedure, shuffling deck for
Blackjack program and, 249, 251

Shuffling deck of cards, in Blackjack game, 244, 248–252
Shuffling form, in Blackjack game, 242, 244
Single data type, 31, 32
Sinusoidal cycles, biorhythms in, 48
sndPlaySoundA() function, 204
Sound, adding to Battlecell program, 182, 203–205

485Index

486

Sound files
in Blackjack game, 242
shuffling deck for Blackjack program and, 249

Spaces, removing in strings, 108
Spaghetti code, 271
SpecialEffect property, 211, 299
Splitting, in Blackjack game, 267
Spreadsheet applications, charts used in, 378
Spreadsheet cell, input validation with, 109
Spreadsheets

Biorhythms and the Time of Your Life, 26
Magic Squares, 34
Poker Dice, 56

SQL. See Structured Query Language
Stacked chart type, 391
standalone document declaration, in Excel, 354
Standard code window, 10
Standard module, 29
Standard toolbar, 7
Static keyword, 30
Statistics, custom dialog for, 226–233
STDEV() function, 65, 68
STDEVP() worksheet function, 271
Stepping through code, break mode and, 275
Stop Recording button, 128
StoreQuestions() sub procedure, 143, 144
StoreResults() sub procedure, 370
StrConv() function, 47
Str() function, 53, 62
String concatenation, 47, 145
String data types, 37–38, 47
String functions, VBA, 44
String keyword, 37
String manipulation, with VBA functions, 42–47
Strings, character locations in, 46
String variables, in Biorhythms and the Time of Your Life

program, 52
StrReverse() function, 47
Structured Query Language (SQL), 296
Student lists, maintaining in new Math Game program,

356–357, 361–363
Style property

of Combo Box control, 228, 351
MultiPage control and, 223

Sub keyword, 15, 57
Sub procedures, 56, 60–63, 97
Subroutine procedures, 60
Subtraction operator (–), 33
SUM() function, 65, 121

Summary Statistics dialog, 228
Stats page on, 233
Summary page on, 233

Super-computers, 178
Symbols

+, 33
&, 47
=, 33
<>, 69, 331
’, 20
+, 33, 69, 72, 103
[], 122
:, 162, 271, 336
<, 69
>, 69
<=, 69
>=, 69
-, 33, 336
/, 33, 334
*, 33, 145
^, 33
., 235, 295, 336
$, 120
_ , 89, 92
:=, 122
“, 335–336
;, 228

Syntax, 2
for addressing objects in VBA, 154
errors, 270

T
TabOrientation property, MultiPage control and, 223
Tags, HTML, 331
Target argument, 169
Target locations, in Battlecell program, 188–192, 196
Target parameter, 143
TargetValid() function, 201
TargetValid() procedure, 198
Terminate() event procedure, 212
TestPower() sub procedure, 68
TestProperties directory, 359
Test results, viewing in new Math Game program,

356–357, 361–363
TestRow() function procedure, 462
Tests

creating in new Math Game program, 352–355
taking in new Math Game program, 351–352, 364–373
writing for new Math Game program, 357–361

Index

Tetris computer game, 427, 439, 471
TextAlign property, 299
Text Box control, 11, 107, 299, 307
Text editors, 5, 10, 338
Text files, 282, 283
Text property, 222, 299
theDeck array, in Blackjack program, 247, 249, 251
theName variable, 294
Then keyword, 71
theNumber variable, 294
ThisWorkbook object module, 167
Thread, 440
Three-dimensional arrays, 114
TIMEALLOWED constant, 141
Timer, starting in Math Game program, 140–143
TimeValue() function, 141
tmpRng variable, 456
ToggleControls() sub procedure, 82, 83, 86
To keyword, 104
Tools menu (Excel), VBA IDE accessed from, 5, 6
topics variable array, 314
Top-level objects, Excel, 160–172, 205
Transpose() sub procedure, 114, 115, 116, 117
Transposing values, 115
Trim() function, 108
Trustworthy sources, 4
Truth table(s)

for AND operator, 70
for NOT operator, 71
for OR operator, 70

Two-dimensional arrays, 114
TwoImageSwap() procedure, 424
Type mismatch error, 38
Type statement, custom dta types and, 234

U
UCase() function, 47, 322
uFlags argument, 204
Underscore character (_), in variable names, 27
Unicode text formatting character set, 333
Until keyword, 101
UpdateControls(), 311
UpdateFile(), 311
UpdateStudentXml() sub procedure, 372
UpdateWorksheet(), 311
Updating records, 311
URL argument, 345
userAnswers array, 144
Userform module, in Word Find program, 302–314

UserForm object, 208, 246
components of, 210–212
event procedures of, 212
Initialize() event of, 218, 219, 228
QueryClose() event of, 232, 245, 266
selected properties of, 210

UserForms, 207, 266
UserPicture() method, of ChartFillFormat object, 406
User selections, capturing in Alienated Game program, 399

V
Val() function, 53, 62, 144
ValidateName() function procedure, 107, 108, 109
ValidatePt() function procedure, 423
Validation

defined, 107
XML, 338

Validation module, 198
Validation procedures, 270

in Battlecell program, 198–202
Value integer element, in Blackjack program, 247, 249
Value property, 26, 40, 110, 120, 315

of Combo Box control, 226
of List Box control, 226, 230
of MultiPage control, 224, 229
Option Button control and, 216
RefEdit control and, 222
of Scroll Bar control, 387

Values
in spreadsheet cell, 26
transposing, 115

Values property
of SeriesCollection object, 405
of Series object, 389

Variable arrays, declaring, 235
Variable declaration

custom data type definition vs., 234
placement of, 34

Variable length string variables, 37
Variables, 26, 27, 54

in Blackjack program, 247–248
declaring, 27–31
global, 31
in Math Game program, 134
memory locations of, 65
module level, 30
procedural level, 30

Variable scope, 30–31
Variant data types, 38–39

487Index

488

Variant keyword, 38
Variant variables, Battlecell program and, 186
VBA

collection objects in, 153–155
color constants in, 220
common data types in, 32
creating function procedures in, 65–66
defining custom data types in, 234–235
derived data types in, 233–237
designing forms with, 208–233
enumerated types defined in, 235–237
Excel application functions in, 68
file access modes with, 292
For/Next loops in, 104
installing and enabling, 3–4
I/O with, 40–42
logical operators with, 69–71
looping with, 100–106
mathematical operators in, 33
object-oriented programming and, 150–151
saving workbook from program in, 281
string functions, 44
XML and, 343–344

VBA debugger, 270
VBA file I/O methods, 282–295

FileDialogFilters collection object, 284–288
FileDialog object, 283–284
FileDialogSelectedItems collection object, 284–288
FileSystem object, 288
Open statement, 289
random access files, 294–295
sequential access files, 292–294

VBA help, accessing, 16–17
VBA IDE (Integrated Design Environment), 1, 5–10

accessing from Visual Basic toolbar, 6
in break mode, 274–275
components of, 5–10
getting help with, 15–17
Object Browser in, 155

VBA library, 156
VBA program, sound added to, 203–205
VBAProject library, 156
VBA shapes, 427–472

activating Shape objects, 435
OLEObjects collection, 436–438
ShapeRange collection object, 432–434
Shapes collection and Shape objects, 428–432

VbDayOfWeek enumerated type, 235
VB.net, 151
Verisign, 4

Version property, 215
vertical argument, 322
View Code icon, 13, 211
Viruses, 3
Visible property, 308
VisibleRange property, of Window object, 169, 185
Visual Basic (VB), for applications with Excel, 1–23
Visual Basic Editor icon, from Visual Basic toolbar, 5, 11
Visual Basic toolbar, 6, 10, 11–15

W
Watch Expression, 278
Watch type, selecting, 278
Watch window, 277–279
Wave Form Audio (.wav file), 203

for Blackjack game, 242
Wav files, playing via Windows API, 204–205
Web pages, 330
Weekdays enumerated type, 236
what argument, outputting results of hand to Blackjack

worksheet and, 265
While keyword, 101
Width property, 59, 160, 212, 241

of Application object, 168
Excetris program and, 460

Window object, 155, 161–169, 205
WindowResize() event, of Workbook object, 169, 182,

183, 185
Windows API (Application Programming Interface),

203–205
WindowState property, 168
With/End With structure, 173–175, 205, 388
Wizards, 220
Word Find program, 269, 296–326

designing, 298–301
form design, 298–300
requirements for, 296–298
worksheet design, 300–301
writing code for, 301–326
writing code for Userform module, 302–314
writing code for Worksheet module, 315–326

Wordfind worksheets, 269, 270
Word search puzzles, 296, 324
WordToList() sub procedure, 323
WordWrap property, 299
Workbook object, 150, 153, 154, 161–169, 162, 175, 205, 279

Charts property of, 380
Close() method of, 164, 165
object module for, in Battlecell program, 181

Index

Open() event of, 167
SaveAs() method of, 281, 283, 343
viewing worksheets property of, 158
WindowResize() event of, 169

Workbook_Open event procedure, 170
Workbooks, 8, 9

centering, 166
closing, 165–166
opening, 281
saving, 15, 281–282

Workbooks collection object, 163
Workbooks objects, 155
Workbook windows, resizing, 168, 169
Worksheet_Activate() event procedure, 170
Worksheet cells, programming formulas into, 120–123
WorksheetFunction property, 161
Worksheet interface, for Battlecell program, 180
Worksheet module, writing code for, 315–326
Worksheet object, 150, 153, 159, 162, 169–170, 174, 175,

205, 386
Cells property of, 172
Change() event of, 368
object module for, in Battlecell program, 181
PrintOut() method of, 325
Select() method of, 170
Shapes property of, 428

Worksheets
altering properties of, in Excel using VBA, 7–9
for Blackjack game, 242, 243
controls on, 11–12
drawing layers in, 428
embedded chart on, 381
hidden, 299, 303, 304, 309
for Magic Squares, 34–37
for Math Game program 125
for new Math Game program, 350, 351
saving as text files, 283
saving as XML data, 343
saving to XML files, 341
shapes added to, 429
triggering Change() event of, 143
for Word Find program, 269, 270, 300–301
word search puzzle created on, 300

Worksheets collection object, 379
Worksheets objects, 155
World Wide Web, 151, 329
World Wide Web Consortium, 332
Write #, 293, 294
WriteRemainingProblems() sub procedure, 369
WriteWord() sub procedure, 318, 322

X
xlFileFormat constants, 282
.xls files, 280
XML Data file type, 343
XML editor, 338
XML (eXtensible Markup Language), 329

description of, 331–332
Excel and, 338–343

data saved as XML spreadsheet, 342–343
opening/importing XML documents into Excel
worksheet, 338–341
worksheet saved as XML data, 343
worksheets saved to XML files, 341

overview of, 330–331
sample, 332–333
schemas, 337–338
syntax, 334–336

case-sensitive tags, 335
closing tags, 334
element names, 336
nesting of tags, 335
quotes around attributes, 335–336
root elements, 334

validation, 338
VBA and, 343–344

saving and opening XML documents, 343
XmlMap object, 345–349

ListObject object, 348–349
XML files, in new Math Game program, 353, 355
XmlImport() method, 347, 348, 360
XmlImportXml() method, 347, 348
XmlMap object, 343, 345–348, 358, 374
XML Source Task Pane, 339, 340, 341, 344
XML spreadsheet, saving data as, 342–343
.xsd file extension, 339

Y
y-axis, in chart sheet, 389
Year() function, 53

Z
z-axis, in chart sheet, 389
Zero, divide by error, 270
Zero-length string, 41
ZoomGameBoard() sub procedure, 183, 185
Zoom property, of Window object, 169, 181
ZOrder() method, of Shape object, 431

489Index

