

Introduction to Mixed-Signal,
Embedded Design

Introduction to Mixed-Signal,
Embedded Design

Alex Doboli
State University of New York

Stony Brook, NY, USA

Edward H. Currie
Hofstra University

Hempstead, NY, USA

123

Alex Doboli Edward H. Currie

Department of Electrical Engineering Department of Computer Science

State University of New York Hofstra University

Stony Brook, NY 11794, USA Hempstead, NY 11549, USA

adoboli@ece.sunysb.edu edward.currie@hofstra.edu

A previous version of this book was published by The Cypress University Alliance in 2007

ISBN 978-1-4419-7445-7 e-ISBN 978-1-4419-7446-4

DOI 10.1007/978-1-4419-7446-4

Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2010937588

Mathematics Subject Classification (2011): 94CXX, 94-04

c©Springer Science+Business Media, LLC 2011

All rights reserved. This work may not be translated or copied in whole or in part without the written

permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY

10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection

with any form of information storage and retrieval, electronic adaptation, computer software, or by similar

or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are

not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject

to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media(www.springer.com)

Contents

Preface xix

Acknowledgment xxiii

1 An Overview of Mixed-Signal, Embedded System Design 1

1.1 Embedded Applications . 2

1.2 Embedded Architectures . 12

1.3 Top-Down Design Flow . 19

1.4 Embedded Systems Market . 23

1.5 Embedded Design Example: Fan Control System 23

1.5.1 Description of the Fan Controller System 24

1.5.2 Design of the Fan Controller System . 29

1.6 Conclusions . 42

1.7 Further Readings . 43

1.8 Recommended Exercises . 45

2 Microcontroller Architecture 51

2.1 Microcontroller Architecture . 51

2.1.1 Microcontroller Addressing Modes . 53

2.1.2 Instruction Set . 56

2.2 Memory Space . 91

2.3 Conclusions . 96

2.4 Recommended Exercises . 98

3 Hardware and Software Subsystems of Mixed-Signal Architectures 103

3.1 Subsystems of the PSoC Mixed-Signal Architecture 104

3.1.1 PSoC Hardware Components . 106

3.1.2 PSoC Software Components . 110

3.2 The PSoC Interrupt Subsystem . 114

3.2.1 Case Study: Tachometer Interrupt Service Routines 117

3.3 Global I/O Ports . 124

3.4 System Buses . 128

3.5 System Clocks . 143

3.6 Conclusions . 146

3.7 Recommended Exercises . 149

vi CONTENTS

4 Performance Improvement by Customization 151
4.1 Introduction to Application-Specific Customization 152
4.2 Design Methodology for Architecture Customization 155

4.2.1 System Specification and Profiling . 155
4.2.2 System Partitioning and Implementation 160

4.3 Programmable Digital Blocks . 173
4.3.1 Timer Block . 176
4.3.2 Counter Block . 182
4.3.3 Deadband Block . 183

4.4 Customized PSoC Digital Blocks . 184
4.4.1 Pulse Width Modulator Blocks . 184
4.4.2 Multiply ACcumulate . 189
4.4.3 Decimator Blocks . 196

4.5 Conclusions . 201
4.6 Recommended Exercises . 203

5 Programmable Data Communication Blocks 207
5.1 Abstract Communication Channels . 208
5.2 Channel Implementation Units . 212
5.3 Hardware–Software Implementation of Channels 214
5.4 Channel Implementation Unit: SPI Block . 219

5.4.1 Hardware Circuit . 220
5.4.2 Software Routines . 226

5.5 Channel Implementation Unit: UART Block . 229
5.5.1 UART Hardware Circuit . 230
5.5.2 Software Routines . 234

5.6 Conclusions . 238
5.7 Recommended Exercises . 239

6 Continuous-Time, Analog Building Blocks 243
6.1 Introduction to Operational Amplifiers . 244

6.1.1 Ideal OpAmps . 244
6.1.2 Real OpAmps . 244
6.1.3 OpAmp Macromodeling . 254

6.2 Continuous-Time Analog Building Blocks . 263
6.2.1 Inverting Amplifiers . 263
6.2.2 Non-Inverting Amplifier . 270
6.2.3 Summing Amplifier . 271
6.2.4 Difference Amplifier . 272
6.2.5 Integrator . 272
6.2.6 Comparator . 275

6.3 Reconfigurable Continuous-Time Analog Blocks . 276
6.4 Conclusions . 283
6.5 Recommended Exercises . 285

7 Switched-Capacitor Blocks 289
7.1 Introduction To Switched Capacitor Techniques . 290

7.1.1 Nonidealities in Switched Capacitor Circuits 291
7.2 Active Switched Capacitor Circuits . 295

7.2.1 Fixed Gain Amplifier . 295

CONTENTS vii

7.2.2 Comparators . 299
7.2.3 Switched Capacitor Integrator . 300
7.2.4 Switched Capacitor Differentiator . 302
7.2.5 Reference Selection . 303
7.2.6 Analog-to-Digital Conversion . 305

7.3 Switched Capacitor PSoC Blocks . 306
7.3.1 Type C Switched Capacitor Blocks . 307
7.3.2 Type D Switched Capacitor Blocks . 311

7.4 Conclusions . 320
7.5 Recommended Exercises . 322

8 Analog and Digital Filters 325
8.1 Filter Fundamentals . 326

8.1.1 Passive Filters . 327
8.1.2 Linear Active Filters . 328
8.1.3 Digital Filters . 330
8.1.4 Filter Components . 331

8.2 Filter Design . 332
8.2.1 Specific Filter Types . 334
8.2.2 Filter Parameters . 338
8.2.3 Scaling and Normalization . 339
8.2.4 Cascading Analog Filters . 340

8.3 Analog Filters . 344
8.3.1 Time-Continuous Integrators as Filters . 344
8.3.2 The Passive Lowpass Filter . 346
8.3.3 The Sallen–Key Lowpass Active Filter . 349
8.3.4 The Switched-Capacitance Filter . 351
8.3.5 Biquad Switched Capacitor Filter . 352
8.3.6 An Allpass Filter . 355

8.4 Digital Filters . 357
8.4.1 Digital FIR Filter . 359
8.4.2 Infinite Impulse Response Filter . 362

8.5 Filter Design Software Tools . 365
8.6 Conclusion . 366
8.7 Recommended Exercises . 367

9 ∆Σ Analog-to-Digital Converters 373
9.1 Nyquist ADCs-A Short Introduction . 374

9.1.1 Sampling and Quantization . 374
9.1.2 Sampling . 374
9.1.3 Quantization . 378

9.2 ∆Σ ADCs . 379
9.2.1 Oversampling and Noise-Shaping . 380
9.2.2 ∆Σ ADC Performance . 381
9.2.3 First-Order ∆Σ Modulator . 383
9.2.4 PSoC Implementation of First-Order ∆Σ Modulators 387
9.2.5 Impact of Circuit Non-Idealities on ∆Σ Modulator Performance 394
9.2.6 Second-Order ∆Σ Modulator . 405

9.3 Conclusions . 409

viii CONTENTS

10 Future Directions in Mixed-Signal Design Automation 413
10.1 Top-Down Design and Design Activities . 413
10.2 Two Examples of Architecture Customization . 415

10.2.1 IDEA Algorithm for Data Encryption . 415
10.2.2 Face Detection for Image Processing . 417

10.3 Challenges in Mixed-Signal Design Automation . 421
10.3.1 High-Level Specification of Analog and Mixed-Signal Systems 422
10.3.2 Fast Performance Estimation by Customized Simulation Code 424
10.3.3 High-Level Synthesis of Analog Subsystems 435

Index 443

List of Figures

1.1 Popular sensing and actuation devices in embedded applications. 3
1.2 Dataflow and structure of embedded systems. 4
1.3 Analog input interfaces in embedded systems. 4
1.4 Digital input interfaces in embedded systems. 5
1.5 Functionality types for embedded systems. 7
1.6 Real-time constraints in embedded systems. 9
1.7 Signal properties and nonidealities in analog circuits. 10
1.8 Embedded systems design and performance requirements. 11
1.9 PSoC mixed-signal SoC architecture. 13
1.10 Top-down embedded system design flow. 20
1.11 Linear signal-processing flow. 24
1.12 Feedback signal-processing flow (concept-level description). 25
1.13 Block structure for the embedded fan control system (concept-level description). 25
1.14 Temperature reading procedure. 26
1.15 DC motor model and operation. 27
1.16 Temperature sensor. 28
1.17 Interfaced fan controller system (concept-level description). 29
1.18 Design flow for the embedded fan controller. 31
1.19 Fan controller I/O specification (PSoC Express). 32
1.20 System structure and table lookup transfer function (PSoC Express). 33
1.21 Block-level design after functional partitioning. 35
1.22 Refined block-level design after domain selection. 36
1.23 Circuit level implementation after domain selection. 38
1.24 PSoC implementation (after circuit implementation and software development). 39
1.25 Implementation I/O pins. 40
1.26 LCD device operation for monitoring and debugging. 41
1.27 Fan controller monitoring using HyperTerminal. 41

2.1 The M8C microcontroller structure. 52
2.2 Source-immediate addressing mode. 53
2.3 Source-direct and destination-direct addressing modes. 54
2.4 Source-indexed and destination-indexed addressing modes. 55
2.5 MVI instructions. 59
2.6 Data vector transfer example. 60
2.7 Assembly code for data vector transfer. 61
2.8 Stack description and stack-based operations. 65
2.9 Index instruction. 65
2.10 Shift and rotate instruction. 71

x LIST OF FIGURES

2.11 Assembly code for multiplication. 74
2.12 Bit manipulations. 80
2.13 Stack-based operations. 84
2.14 Sequence detector. 86
2.15 Sequence detector design. 87
2.16 Sequence detector implementation using INDEX instructions. 89
2.17 RAM-based sequence detector implementation. 90
2.18 Paged SRAM space. 91
2.19 ReadBlock and WriteBlock SROM functions. 95

3.1 Sense-process and control-actuate flow in embedded applications. 104
3.2 Subsystems of the PSoC architecture. 105
3.3 Matrix of programmable analog blocks. 107
3.4 Matrix of programmable digital blocks. 108
3.5 (a) Boot program and (b) application routine. 111
3.6 Hierarchy of abstraction levels in a mixed-signal architecture. 113
3.7 Interrupt system. 114
3.8 Tachometer interfacing to PSoC. 117
3.9 Specification of the tachometer ISR. 118
3.10 Data structure for handling multiple tachometers. 119
3.11 Pseudocode of the FSM1 ISR. 121
3.12 Pseudocode of the FSM2 ISR. 122
3.13 Connecting multiple tachometers to PSoC. 123
3.14 Hardware and software components implementing the tachometer ISR. 123
3.15 Port driving modes. 124
3.16 GPIO block structure. 127
3.17 PSoC system buses. 128
3.18 Bus connections to the I/O ports. 129
3.19 Bus connections to the I/O ports. 130
3.20 Direct connection of buses GIx and buses GOx. 131
3.21 Array digital interconnect. 132
3.22 Structure of the row digital interconnect. 133
3.23 Row digital interconnect. 134
3.24 Chaining of the programmable digital blocks. 135
3.25 Control registers for programming row digital interconnect. 136
3.26 Local programmable interconnect for the continuous-time analog blocks. 139
3.27 Local programmable interconnect for the switched capacitor analog blocks. . . . 140
3.28 Input port connections for the programmable analog blocks. 141
3.29 Output port connections for the programmable analog blocks. 142
3.30 PSoC system clocks. 143

4.1 Hardware module implementation for reusability. 153
4.2 Design flow for architectures with single processor and shared coprocessors. . . . 154
4.3 Example of a data processing intensive application. 155
4.4 Organization of arrays in the memory. 156
4.5 Block structure of the system specification. 157
4.6 Refined block structure of the system specification. 159
4.7 Generic architecture consisting of processor and shared coprocessor. 162
4.8 Customized hardware circuits for the performance-critical blocks. 163
4.9 Customized hardware circuits for Blocks 10-1 and 11-1. 165

LIST OF FIGURES xi

4.10 Data path for Blocks 10-1 and 11-1. 166
4.11 Controller circuits for Blocks 10-1 and 11-1. 166
4.12 Data path for Blocks 10-1 and 11-1. 167
4.13 Controller for Blocks 10-1 and 11-1. 169
4.14 Modified data processing algorithm. 169
4.15 Inner loop parallelization for the modified algorithm. 170
4.16 Operation scheduling for different hardware resource sets. 171
4.17 PSoC’s array of programmable digital blocks PSoC. 172
4.18 Programmable digital block. 173
4.19 Programmable clocks of the digital blocks. 175
4.20 Input and output configuration. 176
4.21 Dataflow of the timer block. 177
4.22 Main timer function and the corresponding control registers. 178
4.23 Timing diagram for the PSoC timer circuit. 179
4.24 Terminal count firmware routines. 179
4.25 Compare functionality and the corresponding control registers. 180
4.26 Capture function related firmware routines. 182
4.27 The counter functionality and the related control registers. 183
4.28 Configuration and function registers for the deadband circuit. 183
4.29 Deadband circuit timing diagram. 184
4.30 Pulse width modulator. 185
4.31 PWM firmware level routines. 186
4.32 PWM firmware routines (continued). 187
4.33 PWM firmware routines (continued). 188
4.34 PWM firmware routines (continued). 188
4.35 PWM implementation as assembly code routines. 189
4.36 Multiply accumulate (MAC) circuit. 190
4.37 C code for scalar product algorithm. 191
4.38 Assembly code generated by a C compiler. 192
4.39 Assembly code generated by a C compiler (continued). 193
4.40 Assembly code for scalar product without using MAC. 194
4.41 Assembly code for scalar product using MAC. 195
4.42 Dataflow of the decimation operation. 195
4.43 ADC performance as a function of the decimation factor M. 197
4.44 Structure of the PSoC type 1 decimator circuit. 197
4.45 Structure of the PSoC type 2 decimator circuit 199
4.46 Programming of the decimator circuit. 200

5.1 Data communication between modules. 208
5.2 High-level data communication primitives. 209
5.3 Pseudocode of a communicating module. 211
5.4 Successive refinement steps for communication design. 216
5.5 Handling abstract channels and channel implementation units. 219
5.6 PSoC SPI blocks. 220
5.7 PSoC SPIM dataflow. 220
5.8 PSoC SPIS dataflow. 221
5.9 SPI circuit operation. 222
5.10 Timing diagrams of the SPIM circuit. 222
5.11 SPI communication. 225
5.12 Improved SPI communication. 225

xii LIST OF FIGURES

5.13 SPIM start and stop routines. 226
5.14 SPIM send and receive routines. 227
5.15 SPIM read status function. 227
5.16 Program using the SPIM -related routines. 228
5.17 Program using the SPIS related routines. 229
5.18 Block structure of the block UART. 230
5.19 UART receiver operation. 231
5.20 Waveforms for the UART transmit operation. 232
5.21 UART receiver operation. 233
5.22 Waveforms for the UART receiver operation. 235
5.23 UART related functions. 235
5.24 Finding the status of the Rx and Tx subblocks. 236
5.25 Receiving and sending data using the UART block. 237

6.1 Ideal OpAmp symbol and macromodel. 244
6.2 OpAmp macromodel. 245
6.3 Magnitude and phase response for the single-pole OpAmp model. 246
6.4 Magnitude and phase response for the three OpAmp model. 247
6.5 Definition of circuit distortion. 248
6.6 Noise modeling. 253
6.7 Detailed OpAmp macromodel. 254
6.8 Single-stage OpAmp. 255
6.9 Linear hybrid-π MOSFET model. 255
6.10 Transformed linear hybrid-π MOSFET model. 256
6.11 Macromodels of the single-stage OpAmp basic building blocks: (a) differential

input, (b) biasing circuit, and (c) current mirror. 257
6.12 Coupled macromodel of the single-stage OpAmp. 258
6.13 Signal path of the single-stage OpAmp. 259
6.14 Uncoupled macromodel for single-stage OpAmp. 260
6.15 Macromodel for single-stage OpAmp with power-supply variation. 262
6.16 Nonlinear macromodel for single stage OpAmp. 262
6.17 Inverting amplifier. 263
6.18 Impact of the OpAmp pole on the amplifier behavior. 266
6.19 Noise analysis for inverting amplifier. 267
6.20 Impact of offset voltage on inverting amplifier output. 268
6.21 Instrumentation amplifier. 269
6.22 Non-inverting amplifier circuit. 270
6.23 Summing amplifier circuit. 271
6.24 Difference amplifier circuit. 272
6.25 Integrator circuit. 273
6.26 Integrator circuit with a single-pole OpAmp. 274
6.27 Schmitt trigger: (a) inverting circuit, (b) noninverting circuit, and (c) transfer

characteristics. 275
6.28 Analog section of the PSoC architecture. 276
6.29 Reconfigurable continuous-time analog block. 277
6.30 Control registers for PSoC continuous-time analog block. 278
6.31 Possible connections to the resistor matrix bottom node in CT blocks. 278
6.32 Types of links between continuous-time and switched capacitor analog blocks. . 280
6.33 Types of links between continuous-time analog blocks. 281
6.34 Connections between analog bus and continuous-time analog blocks. 282
6.35 Instrumentation amplifier implemented using PSoC. 283

LIST OF FIGURES xiii

7.1 Moving charge with current stimulus. 290
7.2 Time behavior of switched capacitor circuits. 292
7.3 (a) Channel charge injection and (b) clock feedthrough. 294
7.4 Switched capacitor fixed gain amplifier. 295
7.5 Set for (a) signal acquisition (φ1) phase and (b) charge transfer (φ2) phase. . . . 296
7.6 Impact of finite OpAmp gain of the SC amplifier performance. 298
7.7 Dependency of the amplifier gain on the OpAmp’s finite gain. 298
7.8 Amplifier with input switches swapped. 299
7.9 Selectable gain polarity amplifier. 300
7.10 Switched capacitor comparator. 300
7.11 Switched capacitor integrator. 301
7.12 Integrator operation. 301
7.13 Switched capacitor differentiator. 302
7.14 Improved reference selection for noninverting amplifier. 303
7.15 Simple two bit analog-to-digital converter. 304
7.16 Simple two bit analog-to-digital converter. 304
7.17 Analog to digital modulator. 305
7.18 The analog section of the PSoC architecture. 307
7.19 Type C Switched capacitor block. 308
7.20 Type D switched capacitor block. 312
7.21 Differential amplifier with common mode output. 313
7.22 PSoC block placement for the differential amplifier with common mode output. 313
7.23 PSoC implementation of a four state ADC. 316
7.24 Assembly code for two bit ADC. 317
7.25 Isolated analog driver. 318
7.26 Analog isolator driver block placement. 319

8.1 Classical filter functionality. 327
8.2 Examples of lumped, LRC, passive filters. (Reproduced with permission). 329
8.3 Ideal versus nonideal resistors and capacitors. 332
8.4 A graphical representation of basic filter types. 333
8.5 Example of a typical Bode plot. 335
8.6 Sixth order lowpass filter characteristics. 341
8.7 Fifth Order Bandpass filter characteristics. 341
8.8 Typical S-K Analog Filter Section. 342
8.9 A simple integrator-based filter. 345
8.10 Integrator-Based Filter Network. 346
8.11 Integrator-based filter. 346
8.12 Simple Passive LP and HP Filters. 347
8.13 Simple lowpass filter with gain K. 348
8.14 Sallen-Key Filter. 348
8.15 Biquad LP Filter. 355
8.16 Switched Capacitance Lowpass Filter. 356
8.17 First-order passive lowpass, RC filter. 356
8.18 Fourth-order lowpass RC filter. 356
8.19 PSoC’s two-pole lowpass design tool (Excel-based). 357
8.20 PSoC bandpass filter design tool (Excel-based). 358
8.21 PSoC’s filter design wizard. 359
8.22 PSoC’s lowpass filter design wizard. 360
8.23 Allpass Filter. 360

xiv LIST OF FIGURES

8.24 A very simple allpass filter. 361
8.25 Linear phase second-order lowpass filter. 361
8.26 Sampled single pole passive filter. 363
8.27 Second-order IIR filter topology. 363
8.28 LP, HP equivalent digital filter. 364
8.29 Biquadratic response as a function of gain, ω, and d. 365

9.1 Analog signal sensing in embedded systems. 374
9.2 Sampling and quantization in analog-to-digital converters. 374
9.3 Signal sampling. 374
9.4 Signal sampling at increasing sampling frequencies. 375
9.5 Sampling (a) without and (b) with aliasing. 377
9.6 Quantizer block and signal quantization. 378
9.7 Signal quantization and quantizer modeling. 379
9.8 ∆Σ analog-to-digital converters. 380
9.9 Quantization noise in oversampled converters. 380
9.10 Linear model of a ∆Σ modulator. 381
9.11 Noiseshaping in oversampled converters. 382
9.12 First-order ∆Σ modulator. 383
9.13 STF and NTF for the first-order ∆Σ modulator. 384
9.14 Power spectral density of the first-order ∆Σ modulator. 384
9.15 Dynamic range for first-order ∆Σ modulator. 386
9.16 Dynamic ranges for first-order ∆Σ modulator and different OSR values. 386
9.17 Block structure of the PSoC-based implementation of ∆Σ ADCs. 387
9.18 PSoC implementation of first-order ∆Σ ADC. 388
9.19 Power spectrum densities for a first-order ∆Σ modulator, with OSR = 32. . . . 389
9.20 Power spectrum densities for a first-order ∆Σ modulator, with OSR = 64. . . . 389
9.21 The sinc2 function for an OSR value = 64. 390
9.22 Timer interrupt service routine . 391
9.23 ∆Σ ADC API routines. 392
9.24 ∆Σ ADC API routines. 393
9.25 Example of using the ∆Σ ADC API routines . 393
9.26 Modeling of jitter noise . 394
9.27 Effect of jitter noise on the PSD and DR of the first-order ∆Σ modulator. . . . 395
9.28 Impact of the switch thermal noise. 396
9.29 Modeling the impact of switching noise. 397
9.30 Analysis of the switch thermal noise and OpAmp noise. 398
9.31 Modeling of the switch thermal noise . 398
9.32 Impact of the switch thermal noise on the PSD and DR of a first-order

∆Σ modulator. 399
9.33 Modeling of OpAmp noise . 400
9.34 Effect of OpAmp noise on the PSD and DR of a first-order ∆Σ modulator. . . . 401
9.35 Impact of the integrator leakage on the PSD and DR of a first-order

∆Σ modulator. 402
9.36 Modeling of OpAmp slew rate and saturation. 402
9.37 Effect of OpAmp slew rate on the PSD and DR of a first-order ∆Σ modulator. . 403
9.38 Effect of OpAmp saturation on the PSD and DR of a first-order

∆Σ modulator. 404
9.39 Second-order ∆Σ modulator. 404
9.40 STF and NTF for the second-order ∆Σ modulator. 405

LIST OF FIGURES xv

9.41 Power spectral density for the second-order ∆Σ modulator. 406
9.42 Dynamic range for the second-order ∆Σ modulator. 407
9.43 Dynamic range for a second-order ∆Σ modulator and different OSR values. . . 408
9.44 Topology and analysis model for a second-order ∆Σ modulator. 408
9.45 PSoC-based implementation of the second-order ∆Σ modulator. 409

10.1 Signal and data processing in embedded applications. 414
10.2 The IDEA algorithm. 415
10.3 Optimized 16-bit unsigned multiplication algorithm. 416
10.4 Task graph of the face detection algorithm. 418
10.5 Algorithms for skin detection and template matching. 419
10.6 ADFGs for the time-intensive tasks of the face detection algorithm. 420
10.7 SFG and aBlox specification for a fourth order filter 424
10.8 SFG description and high-level specification for ∆Σ modulators. 426
10.9 ∆Σ ADC structure and compiled-code system simulation methodology. 427
10.10 Two basic blocks and their composition into a Σ − ∆ stage. 427
10.11 OTA structural macromodel. 428
10.12 Structural patterns in third order single-loop ∆Σ ADC. 430
10.13 Structure of the C++ main program for system simulation. 432
10.14 C++ code for OTA class. 433
10.15 Pseudocode of the system simulation method. 433
10.16 SNR and DR plots for ∆Σ ADC. 434
10.17 Algorithm for architecture generation. 435
10.18 Example for architecture generation with branch-and-bound. 437

List of Tables

1.1 Summary of embedded systems’ characteristics. 5
1.2 Popular CPU types used in embedded applications. 14
1.3 Popular microprocessors and microcontrollers. 15
1.4 Popular digital signal processors (DSPs). 17
1.5 Popular reconfigurable architectures. 18
1.6 Embedded market predictions (Source: BCC Research Group. 22
1.7 Fan speed control function depending on the measured temperature. 23

2.1 MOV instructions. 57
2.2 MVI instructions. 59
2.3 Characteristics of the four specification styles. 62
2.4 SWAP instructions. 63
2.5 POP and PUSH instructions. 64
2.6 ROMX instructions. 65
2.7 INDEX instructions. 66
2.8 ADC and ADD instructions. 67
2.9 SBB and SUB instructions. 69
2.10 INC instructions. 71
2.11 DEC instructions. 71
2.12 CMP instructions. 72
2.13 ASL and ASR instructions. 73
2.14 RLC and RRC instructions. 74
2.15 Bitwise AND instructions. 76
2.16 Bitwise OR instructions. 77
2.17 Bitwise XOR instructions. 78
2.18 CPL instructions . 79
2.19 TST instructions. 79
2.20 Jump instructions. 81
2.21 CALL and LCALL instructions. 82
2.22 RET and RETI instructions. 82
2.23 SSC instructions. 83
2.24 HALT instruction. 86
2.25 NOP instruction. 86
2.26 Performance of the sequence detector implementation. 88
2.27 SROM functions. 93
2.28 SROM function variables. 93
2.29 SROM return codes. 94

xviii LIST OF TABLES

3.1 List of interrupt types. 115
3.2 Structure of INT MSK registers. 116
3.3 Structure of INT CLR registers. 116
3.4 Programming of the port driving modes. 126
3.5 Structure of the registers GDI O IN and GDI E IN. 131
3.6 Structure of the registers GDI O OU and GDI E OU. 132
3.7 The logic functions implemented in LUTs. 137
3.8 Structure of AMX IN register. 142
3.9 Programming the CPU clock. 145
3.10 Programming the VC1 and VC2 clocks. 145

4.1 Profiling data for the block structure in Figure 4.6. 161
4.2 Physical addresses of the DR0, DR1, and DR2 registers for rows 0 and 1. . . . 173
4.3 Physical addresses of the DR0, DR1, and DR2 registers for rows 2 and 3. . . . 174
4.4 Physical addresses of the CR0 and FN registers for rows 0 and 1. 174
4.5 Physical addresses of the CR0 and FN registers for rows 2 and 3. 175
4.6 Physical addresses of the IN and OU registers for rows 0 and 1. 175
4.7 Physical addresses of the IN and OU registers for rows 2 and 3. 176
4.8 Execution time in clock cycles for different implementation styles 195

6.1 Design tradeoffs for noninverting amplifier . 265
6.2 Programmable connections to the resistor matrix bottom node. 279
6.3 Programmable gains of a continuous-time analog block. 279
6.4 Programmable inverting input connections of a CT analog block. 280
6.5 Programmable, noninverting, input connections of a analog block. 281

7.1 Control register addresses. 307
7.2 Programmable inputs to AMuxSC array. 310
7.3 Programmable inputs to BMuxSC array. 310
7.4 Programmable inputs to CMuxSC array. 310
7.5 Parameters for DiffBlock SC block . 314
7.6 Parameters for the ComBlock SC block. 315
7.7 Parameters for the GainInvert SC block . 315
7.8 Parameters for the TwoBit SC block. 318
7.9 Parameters for ADModulator SC block parameters 320

8.1 Reverse Bessel polynomials. 335
8.2 Chebyshev Polynomials. 336
8.3 Filter order versus first- and second-order factors. 344
8.4 Chebyshev (Elliptic) Rational Polynomials. 362
8.5 Comparison of analog vs. digital filters. 362
8.6 Comparison of filter types. 363

10.1 Comparison of the indirect and indexed addressing modes. 417
10.2 Speed-up results for different coprocessors . 421

Preface

This textbook was developed for upper-level undergraduate, and first-year graduate level,
curricula. It addresses three important aspects of embedded mixed-signal systems: (a) the
defining characteristics of embedded applications, (b) embedded mixed-signal architectures, and
(c) top-down design and design activities for developing performance-satisfying, optimized
implementations. Although the authors have attempted to make the material presented here as
self-contained as possible, the student will find it helpful to take advantage of the bibliographies
at the end of each chapter, and the companion laboratory manual available online.

Embedded applications involve: (i) interfacing to analog signals and digital data, (ii) function-
ality sensing, control, actuation, data computation, and data communication, functionality; and
(iii) design and performance constraints that must be satisfied by the system implementation.
In addition to considering the general challenges of designing mixed-signal, embedded systems,
various analog and digital interfaces and interfacing modules, for example, interfaces to
temperature sensors, tachometers, and LCDs, filters, analog-to-digital converters (ADCs), quan-
tizers, interrupt subsystems, and digital communication components based on standard protocols,
e.g., SPI, UART, and I2C, are discussed in detail.

The topics discussed include the hardware and software used to implement analog and digital
interfaces, for example, ∆Σ ADC topologies and circuits, various filter structures, amplifiers and
other signal-conditioning circuits, PWMs, timers, I/O ports, interrupt service routines (ISRs),
high-level communication primitives (APIs), firmware routines, and data structures for handling
multiple, but similar, peripheral devices.

The authors have chosen Cypress Semiconductor’s Programmable System on (a) Chip (PSoC)
to illustrate many of the key points developed in this text. This choice was based largely on the
fact that PSoC provides a broad range of the various components of a typical mixed-signal
embedded system, for example, A/D and D/A converters, UARTs, ∆Σ modulators, filters, pro-
grammable gain amplifiers, instrumentation amplifiers, comparators, DTMF dialer, counters,
timers, digital buffers, digital inverters, LCD and LED support, sleep timers, watchdogs, MUXs,
PWMs, random sequence generators, flash temperature sensors, eand so on, and all in a single
chip.

Detailed design examples are presented throughout the text as illustrative examples of em-
bedded systems, such as, interfacing to temperature sensor, tachometer and fan, tachometer
ISR, SPI and UART implementations, SPI- and UART-based task communications, and ISR for
decimation in ∆Σ ADCs. Recommended exercises are also provided at the end of each chapter.

The embedded functionality treated here can be divided into four broad categories: (1) con-
trol dominated systems, which are specified as finite state machines (FSM), (2) data-dominated

xx Preface

applications expressed as acyclic dataflow graphs (ADFG), (3) multitasking systems defined as
task graphs, and (4) multimode systems specified as control and dataflow graphs. In addition,
depending on the semantics of execution with respect to time, embedded mixed-signal systems
are continuous-time, discrete-time, and event-driven (reactive) systems.

There are different types of embedded functionalities presented, for example, temperature
controller systems, stack-based operations, subroutines for unsigned multiplication, bit manipu-
lations, sequence detector applications, scalar products of two vectors, and several examples of
communicating tasks. Regarding analog functionality, the material includes comparators, instru-
mentation amplifiers, filters, ∆Σ ADCs, differential and common mode amplification, and several
signal conditioning front-ends.

This text emphasizes the importance of performance constraints and requirements in de-
termining the optimal implementation of an embedded application. The performance attributes
considered are cost, time-to-market, size and weight of the implementation, real-time constraints,
and data accuracy. Constraints can be classified into global constraints, if they refer to the overall
system, and local constraints, if they are related to the individual modules and subsystems. Con-
straint transformation is the relating of the global constraints to the local constraints, including
the correlations between analog and digital constraints. Performance profiling is often used for
computing the performance-criticality of functional blocks.

Several specific constraint transformation procedures, such as, relating the required process-
ing accuracy/bandwidth of the input signals to the signal-to-ratio requirement and sampling
frequency of the ADC, and to the latency constraint of the digital processing are presented.
Other examples include correlating the maximum bit rate of a serial input to the processing
latency of the processing algorithm, studying the impact of the memory access mechanism and
time on the total execution time of an application, estimating and reducing the timing overhead
of data communication, handling predefined timing limits for the tachometer ISR, and improving
system performance by architecture customization to the application’s characteristics.

This textbook also specifies the performance attributes that describe analog and mixed-signal
modules, for example, the nonidealities of continuous-time analog blocks (e.g., OpAmp finite
gain, poles, zeros, input and output impedances, distortion, offset, power supply rejection ratio,
saturation, slew rate, and circuit noise), the nonidealities of switched capacitor blocks (e.g., the
nonzero switch resistance, channel charge injection, clock feedthrough, and finite OpAmp gain),
and the concepts of quantization noise power, signal-to-noise ratio (SNR), dynamic range (DR),
and power spectrum density in ADCs. Finally, the text models the dependency of the ADC
performance on circuit nonidealities (e.g., jitter noise, switch thermal noise, integrator leakage,
and OpAmp bandwidth, slew rate, saturation and noise).

The final chapter provides descriptions of two case studies, which reiterate the design flow
for embedded systems, and ends by introducing some of the current challenges related to design
automation for analog and mixed-signal systems.

LEGAL NOTICE

In this textbook the authors have attempted to teach the techniques of mixed-signal, em-
bedded design based on examples and data believed to be accurate. However, these examples,
data, and other information contained herein are intended solely as teaching aids and should not
be used in any particular application without independent testing and verification by the person

Preface xxi

making the application. Independent testing and verification are especially important in any
application in which incorrect functioning could result in personal injury, or damage to property.

For these reasons the authors and Cypress Semiconductor Corporation make no warranties,
express or implied, that the examples, data, or other information in this volume are free of error,
that they are consistent with industry standards, or that they will meet the requirements for any
particular application.

THE AUTHORS AND CYPRESS SEMICONDUCTOR EXPRESSLY DISCLAIM
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND OF FITNESS
FOR ANY PARTICULAR PURPOSE, EVEN IF THE AUTHORS AND CYPRESS
SEMICONDUCTOR CORPORATION HAVE BEEN ADVISED OF A PARTICU-
LAR PURPOSE, AND EVEN IF A PARTICULAR PURPOSE IS INDICATED
IN THE TEXTBOOK. THE AUTHORS AND CYPRESS SEMICONDUCTOR
ALSO DISCLAIM ALL LIABILITY FOR DIRECT, INDIRECT, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES THAT RESULT FROM ANY USE OF THE
EXAMPLES, EXERCISES, DATA, OR OTHER INFORMATION.

Acknowledgment

Completion of this work would not have been possible without the participation of a number of
people each of whom offered continual support and encouragement throughout the project.

Cypress Semiconductor participants included: George K. Saul (Vice President of the PSoC
Business Unit at Cypress), Steve Gerber (Product Marketing Director), Heather Montag (Senior
Technical Writer), Harold Kutz (Design Engineering Director), Patrick Kane (Director of Cypress’
University Alliance Program), Dennis Sequine (Senior Applications Manager) and David Van Ess
(Principal Applications Engineer).

Particular appreciation is expressed to David Van Ess, who can truly be said to be the
“Engineer’s engineer”. Dave’s prolific writings on “all things-PSoC” served as a rich resource
upon which we drew deeply, often and with reverence.

Pengbo Sun, Varun Subramanian, Christian Ferent and Ying Wei, graduate students at State
University of New York at Stony Brook, helped the authors develop several of the examples in
the book. Yang Zhao helped by improving the figures.

And finally, our heart felt thanks for the many helpful suggestions provided by the students
who participated in the first graduate level, mixed-signal and embedded design course at Stony
Brook to use these materials.

The book is based in part on the following material courtesy of Cypress Semiconductor Corpo-
ration: PSoC Mixed Signal Array (Technical Reference Manual, Document No. PSoC TRM 1.21,
2005), PSoC Express (Version 2.0, 2006), PSoC Designer: Assembly Language User Guide (Spec.
#38-12004, December 8 2003), PSoC Designer: C Language Compiler User Guide (Document
#38-12001 Rev.∗E, 2005), PSoC EXPRESS, Driver Author Guide (Version 2.0, 2006, available
online), Motor Control with PSoC (presentation, 2006), Pseudo Random Sequence Generator
(CY8C29/27/24/22/21xxx Data Sheet, September 21 2005), 8-bit and 16-bit Pulse Width Mod-
ulators (CY8C29/27/24/22/21xxx, CY7C6xxxx, and CYWUSB Data Sheet, October 3 2005),
SPI Master (CYC29/27/24/22/21xxx, CY7C6xxxx, and CYWUSB Data Sheet, October 3 2005),
SPI Slave (CYC29/27/24/22/21xx, CY7C6xxxx, and CYWUSB Data Sheet, October 3 2005),
UART (CYC29/27/24/22/21xxx, CY7C64215, and CYWUSB Data Sheet, October 3 2005),
DelSig8 v3.2, 8 Bit Delta Sigma ADC (Application Note, Oct. 3 2005), and the following appli-
cation notes: AN224, AN2032, AN2036, AN2038, AN2041, AN2091, AN2112, AN2120, AN2129,
AN2132, AN2148, AN2166, AN2168, AN2209, AN2216, AN2218, AN2233a, AN2269, AN2281,
AN2283, AN2315, AN2325, AN2351, AN2326, AN2329, AN2332, AN2333, AN2367.

Chapter 1

An Overview of Mixed-Signal,
Embedded System Design

This chapter is intended to serve as an introduction to embedded mixed-signal sys-
tems and discusses:

• Top-down design flow for developing performance-efficient implementations

• Characteristics of embedded systems with respect to interfacing, functionality, and de-
sign/performance constraints and presents mixed-signal architectures for embedded appli-
cations

• Top-down successive refinement design including specification, simulation, implementation
by tradeoff analysis, testing and debugging, and validation

As a simple and introductory case study, a fan controller is discussed that illustrates the most
important issues regarding the heterogeneous nature of embedded systems (involving various
kinds of sensing and actuation devices, analog circuits, digital hardware, and software), and the
top-down process for determining the design and performance requirements of the implementation

• Section 1 presents types of embedded applications, and their defining characteristics with
respect to interfacing, functionality, and design/performance requirements.

• Section 2 introduces popular architectures used in embedded implementation, for example,
microprocessors and microcontrollers, digital signal processors (DSP), very large instruction
word (VLIW) processors, and reconfigurable architectures.

• Section 3 discusses the design activities of top-down design methodologies.

• Section 4 provides some predictions about the future of the embedded system market.

• Section 5 details the case study for an embedded fan controller design.

• Section 6 summarizes the chapter by enumerating the discussed topics.

• Section 7 presents further readings on embedded systems.

A. Doboli, E.H. Currie, Introduction to Mixed-Signal, Embedded Design,
DOI 10.1007/978-1-4419-7446-4 1, c© Springer Science+Business Media, LLC 2011

2 An Overview of Mixed-Signal, Embedded System Design

1.1 Embedded Applications

Embedded systems are quietly permeating day-to-day life. They serve as entertainers, cooks,
message carriers, and it is hoped soon as drivers, maids, butlers, nurses, and much more. Em-
bedded systems are ubiquitous and unavoidable, and their importance will continue to increase
as new ways of incorporating electronic intelligence emerge in every aspect of our daily lives.

A typical embedded processing flow includes data (signal) acquisition by different kinds of sen-
sors, data processing and storing, and finally data communication to external devices and process
control actuation. Figure 1.1 illustrates some of the popular signal sensing and actuation devices,
including sensing units, for example, temperature sensors, sonars, tachometers, switches, position
sensors, microphones, RFID readers, and actuation devices, for example, motors and speakers.
Moreover, embedded systems can operate either as stand-alone systems, or, in conjunction with
other embedded systems or computing devices. In the latter case, embedded systems may in-
corporate wired and wireless links for data communication with the other computing devices.
Finally, various display units often display data during an embedded system’s operation.

The generic embedded processing flow is instantiated in many popular applications. For ex-
ample, the embedded controller in a “smart shoe” adjusts the shoe’s cushioning level to a runner’s
weight and running style. Or, the embedded microcontroller inside a tennis racquet improves the
hitting of a tennis ball by amplifying the electrical current generated by the piezoelectric fibers
at the ball’s impact. Other popular applications include many other consumer goods, such as,
TV sets, microwave ovens, “smart” pens, cellular phones, and personal digital assistants.

More complex applications involve large networks of interconnected embedded systems (e.g.,
in automobiles, aircraft and ships). Although smaller, they are still very complex applications,
(e.g., robots). In addition to sensing and control at the level of the individual systems, these
applications require networking of the systems to provide more comprehensive sensing of the
environment and coordinated control. Embedded systems in automobiles are traditionally used
to control basic functions such as air intake and fuel, ignition and combustion, exhaust, and
transmission systems [33]. Other embedded systems supervise the air bags and air conditioning,
or provide navigational information.

Depending on their purpose, embedded systems can be differentiated as follows:

1. Embedded systems as controllers: In this case, embedded controllers are stand-alone systems
for supervising the behavior and adjusting the characteristics of the monitored parameters.
The systems possess interfacing capabilities to specific sensors and actuators. Moreover,
embedded controllers compute the control signals for the supervised entities by using a
control algorithm operating on the sensed input signals and the system state. The com-
putational complexity of the executed algorithms is, in general, low to medium. However,
many applications require satisfaction of timing (real-time) constraints, and safety-critical
functioning of the system, which among others includes accurate signal conversion. Many
designs ought to be low cost. Some of the typical applications are fan controllers, vending
machine controllers, pacemakers, robots and automotive controllers.

2. Embedded systems as specialized interfaces: Such embedded systems function as complex
interfacing devices to computing systems (e.g., high performance desktop computers) that
lack the necessary interfaces. The required ”embedded” functionality may include interfac-
ing to analog signals as well as to networks and networking devices, for example Ethernet
cards. These embedded systems not only supply the missing hardware (e.g., the ana-
log circuits) but also relieve the computing system from any data processing related to

1.1 Embedded Applications 3

Embedded system

for

processing and control
tachometer

switch

RFID

reader

sonar

temperature

sensor

wireless

connection

position sensor

Embedded

system

speaker

LCD display

computer

microphone

electric motor

Figure 1.1: Popular sensing and actuation devices in embedded applications.

interfacing, such as data conversions, formatting, encoding, decoding, etc. The computa-
tional complexity of these applications is, in general, low to medium, but it can become
high for high-speed signals and data links. In such implementations, cost has to be low,
size/weight small, throughput fast, and energy consumption minimal. Popular applications
include data acquisition, networking cards, and interfacing to peripherals, such as the mouse
and capacitive sensors.

3. Embedded systems as customized coprocessors: These systems operate as application-specific
coprocessors for a computing system (e.g., desktop computer). Their task is to relieve the
main system of computationally demanding tasks for which the embedded coprocessor
provides an efficient implementation. In data-intensive applications, such as digital sig-
nal processing, graphics, multimedia, image processing, and so on, coprocessors offer data
processing functions that are much faster than those of a general-purpose computer. For
example, data processing using the video coprocessor of the Philips PNX 1300 media pro-
cessor [9] is about ten times faster than using its CPU core. Similarly, coprocessors can
be customized for other computing requirements too, for example low-energy processing
for mobile applications. The cost and size of embedded coprocessors must be kept low,
considering that they are part of larger systems.

4. Networks of embedded systems: Networks of embedded systems are traditionally used in
automotive applications in which a fairly large number of sensors, actuators, and embed-
ded microcontrollers are networked together. The systems execute control algorithms in

4 An Overview of Mixed-Signal, Embedded System Design

To

actuator

Data &

control
Data &

control

Input

interface

Input

interface

Input

interface

Input

interface

Output

interface

Output

interface

From

sensor

From

sensor

From

sensor

From

sensor

Functionality:

Processing

&

Control Procedures
To

actuator

Figure 1.2: Dataflow and structure of embedded systems.

Analog signal Analog interface

Data bits

Status & control signals

Interrupt signals

B

Figure 1.3: Analog input interfaces in embedded systems.

addition to the networking functionality. Therefore, their operation is subject to timing
and safety-critical constraints. Wireless sensor networks have become a promising plat-
form for many applications related to infrastructure management and security, healthcare
and environment protection. One of the challenges is to develop low-cost, physically small
integrated circuits that incorporate processors, memory, interfaces to various sensors, and
wireless transceivers. The energy consumption of these chips needs to be as low as possible.
In addition, energy-efficient communication protocols are needed, including algorithms for
data routing and data aggregation. Finally, scalable, distributed, control techniques are
required to ensure efficient operation of the network.

Figure 1.2 introduces the three defining aspects of embedded applications: (a) the required
interfacing to sensors, actuators, and data links, (b) the embedded functionality for processing
and control, and (c) the design and performance requirements that must be satisfied by the
embedded system’s implementation. Table 1.1 summarizes the characteristics of the four main
types of embedded systems.

A. Interfaces

A common feature of many embedded systems is that they can sense and process a wide
variety of electrical signals, and generate control/output data for a diversity of devices. This
characteristic stresses the importance of providing an embedded system with interfaces to many
different types of analog and digital data. The interfaces can be divided into two main categories,
depending on the nature of the involved signals:

1.1 Embedded Applications 5

Table 1.1: Summary of embedded systems’ characteristics.

Embedded Interfaces Data Requirements
Systems Sensing Actuation Data processing and
Types communication constraints

Controllers Wide Wide - Control Cost, accuracy,
range range timing,

safety-critical
Specialized Wide - Various Conversion, Cost, size,
interfaces range speed formatting, accuracy, timing,

encoding, etc. power consum.
Co-processors - - High-speed Data-intensive Cost, size,

customized speed,
processing power consum.

Networks of Wide Wide Various Control, Cost, size,
embedded range range speed conversion, safety-critical,
systems encoding, etc. power consum.

Digital interface

Data bits

Status & control signals

Interrupt signals

B

M

Input bits

Figure 1.4: Digital input interfaces in embedded systems.

1. Analog interfaces convert analog signals into digital signals for processing by the embedded
processors, and vice versa, digital signals from the processors are converted into analog sig-
nals. Analog inputs of different kinds (e.g., voltage, current, charge, phase, and frequency)
are produced for an embedded system by thermistors, thermocouples, pressure sensors,
strain gauges, passive infrared detectors, ultrasonic receivers, GPSs, proximity sensors, ve-
locity sensors, an so on [24]. Also, diverse analog signals must be generated by an embedded
system for speech synthesizers, step motors, displays and actuators. Figure 1.3 graphically
illustrates an analog input interface that converts an analog signal into B data bits. In
addition, this interface generates status, control, and interrupt signals that are used by the
embedded processing and control algorithms.

Interfacing to these signals requires analog and digital circuits, including signal condition-
ing circuits, analog filters, analog-to-digital converters, digital-to-analog converters, analog
multiplexers, comparator circuits, sampling circuits, amplitude detectors, frequency detec-
tors, modulation/demodulation circuits, analog multipliers and mixers. For example, in a
“smart shoe,” the currents sensed by capacitive sensing are amplified and converted into
digital data and then control signals for the embedded processor.

Because analog signals are of different kinds (e.g., sine, square, triangular, differential in-
puts, etc.) they determine the type of interfacing circuits required. In addition, analog
signal characteristics, e.g., range, frequency, precision, noise, speed of variation, impose
specific interface performance requirements, some of which are illustrated in Figure 1.7,
and discussed in the rest of this chapter.

6 An Overview of Mixed-Signal, Embedded System Design

2. Digital interfaces link embedded systems to external peripherals, other embedded systems,
and digital networks. Figure 1.4 illustrates the concept of a digital interface that creates
the “transition” from M digital input bits to B output data bits. In addition, the interface
generates status, control, and interrupt signal used by the embedded functionality. Digital
interfaces are of two basic types: serial, and parallel. Serial interfaces transmit one data bit
at a time. Parallel interfaces transmit several bits (e.g., one byte) simultaneously. Digital
interfaces usually follow a standard communication protocol, such as I2C, FireWire, SPI,
UART, or USB for serial communication, and PCI Bus and ARM Bus for parallel commu-
nication. Wireless protocols such as IEEE 802.11 and Bluetooth protocols are becoming
increasingly important.

B. Functionality

With respect to the nature of their data processing, embedded systems range from those that
produce single control actions in response to a certain event (e.g., a fan controller system) to more
complex systems that perform multimode data processing, as in the case of network routers.
Embedded systems can be classified into the following four types, depending on the type of
processing involved:

1. Control dominated systems occur in both control and interfacing applications. These sys-
tems produce actions in response to predefined input events and conditions. Typical events
include exceeding, or falling below, predefined threshold values (e.g., the threshold tem-
peratures of a fan controller) meeting predefined conditions and expiration of preset time
intervals.

Control-dominated systems are described graphically as finite state machines (FSM) [28]
with arcs that define the transition between states. Unlabeled arcs indicate that the tran-
sition occurs unconditionally at the next iteration. For labeled arcs, the transition occurs
at the next iteration only if the associated condition, as expressed by the arc label, is true.
Otherwise, the FSM remains in the same state. These conditions are based on the inputs
(including data and events). Output data are generated for a state transition using the in-
puts and the current FSM state. FSMs have an initial state that is entered upon resetting
the FSM.

Figure 1.5(a) illustrates a FSM with three states. The FSM remains in state1 provided that
no event occurs because both output transitions from state1 are controlled by events. For
example, event1 causes the transition to state2. The system remains in this state until the
next iteration, when it returns to state1. The output signal, out, is asserted upon switching
to state2. state1 is the initial state of the FSM.

2. Data-dominated systems are usually signal (data) processing applications in which the em-
bedded system operates as a specialized coprocessor. The functionality involves a large
amount of computations (e.g., additions, multiplications, divisions, shift operations, etc.)
executed iteratively in loops, and on large amounts of data stored in arrays. Digital signal
processing algorithms, such as digital filtering, are typical examples.

Data-dominated systems are described as acyclic dataflow graphs (ADFGs) in which the
nodes define the data processing operations, and arcs indicate the sequencing of the nodes.

1.1 Embedded Applications 7

Each node is executed as soon as its predecessor is finished. The execution of a node takes
a predefined number of time units, measured in terms of clock cycles.

Figure 1.5(b) depicts an ADFG with four nodes and the operations that correspond to each
node as indicated. The execution time of a node is also shown in this figure. The execution
of node1 is followed by the execution of node2 and node3. Finally, node4 is executed only
after both node2 and node3 have finished their respective executions.

{64 time units}

state2

state3

event2

node1

node2

node4

node3

event1/out = ’1’

task2

task3

condition

condition

task1

task3

task2

task4

+

*

*

−

{1 time unit}

{64 time units}

{1 time unit}

(a) (b)

(c) (d)

state1

task1

Reset

Figure 1.5: Functionality types for embedded systems.

3. Multitasking systems are embedded systems with complex functionality, for example JPEG
and MPEG algorithms for multimedia, and face detection/recognition in image processing.
These systems include concurrently executing tasks that exchange data. Each task is an
independent entity with its own inputs, states, and outputs.

Multitasking systems are expressed as task graphs in which nodes correspond to tasks, and
arcs represent the data communicated between the tasks. A task is executed only after all
its predecessors are finished, and the data have been communicated from them to the task.
The execution model for task graphs assumes that tasks are executed only once for each
traversal of the graph.

Figure 1.5(c) presents the task graph with three tasks that are executed in sequence.

4. Multimode systems provide the complex data processing functionalities that are influenced
by the specific operation conditions (operation mode). Depending on certain conditions

8 An Overview of Mixed-Signal, Embedded System Design

(e.g., input events and/or the computed values) multimode systems execute only certain
parts (modes) of their overall functionality.

Multimode systems are described as data and control graphs. The graph nodes describe
tasks, unlabeled arcs present data communications between tasks, and conditional arcs (i.e.,
arcs labeled with logic expressions) express the functionality that is executed only if the
corresponding condition is true. Examples of multimode systems are adaptive filters and
complex networking modules.

Figure 1.5(d) shows a dual mode system. If the condition is true then tasks 1, 2, and 4 are
performed. If the condition is false then tasks 1, 3, and 4 are executed.

Note that this textbook refers primarily to embedded applications that have their functionality
expressed either as FSMs or as ADFGs. Discussion of multitasking and multimode applications
is beyond the scope of this text.

Embedded systems can be also be differentiated by their activation (execution) rule over time:

1. Continuous-time systems are executed continuously in time. Typical applications include
analog subsystems, such as signal conditioning systems and continuous filters.

2. Discrete-time systems execute at regular, that is periodic intervals. These systems in-
clude clocked analog and digital subsystems, for example switched capacitor analog blocks
(switched capacitor filters and analog-to-digital converters), sampling blocks, and sampled
data digital signal processing. The system shown in Figure 1.5(b) is a discrete-time system
because node operations are performed at each clock cycle.

3. Event-driven systems operate in response to external events. Typical applications include
digital control systems, and analog applications, e.g., comparator circuits and variable gain
amplifiers for which the amplification gain depends on the external control signals. The
system in Figure 1.5(a) is event-driven because state transitions are controlled by events.

Note that the majority of embedded mixed-signal systems are actually a mixture of continuous-
time, discrete-time, and event-driven subsystems.

C. Design and performance requirements

With respect to their processing speed and memory size, embedded systems can be inferior to
desktop architectures, which deploy more aggressive design solutions. However, the architecture
of embedded systems must take into account a much larger variety of design and performance
requirements and constraints, as briefly summarized in Table 1.1.

1. Low cost: The majority of embedded system designs have a low-cost constraint.

2. Short time-to-market: Most of the embedded applications have a short time-to-market
requirement, which demands high productivity design flows that are largely based on
computer-aided design (CAD) tools. This requirement can trade off some of the achievable
design quality for a faster design process.

3. Small size and weight: Many embedded designs have“tight” size and weight requirements,
including the batteries needed for powering the system, displays, keyboards, sensors, and
actuators. This influences the packaging options for the chips, for example package size and
number of pins.

1.1 Embedded Applications 9

4. Real-time constraints: Many embedded applications impose timing, or timing related, re-
quirements for their implementations. Real-time constraints demand that certain function-
alities of the design are time constrained: that their execution ends before a preset time
limit, starts after a certain time, or ends within a given length of time. Real-time con-
straints are hard, if their violation causes the failure of the system functioning, and soft,
otherwise.

The latency constraint requires that a system’s execution time (latency) be shorter than an
imposed limit. Figure 1.6(a) defines the latency constraint for an ADFG by requiring that
the difference between the ending time of node4 and the starting time of node1 is less than
the constraint T:

T ending
node4

− T starting
node1

≤ ∆T (1.1)

The throughput constraint requires that the processing of one data token takes less than a
predefined value.

node4

node3

node2

(a)

node1 node4

node3

node2

Tconstraint∆ T constraint∆

Tconstraint∆

Tconstraint∆

node1 node4

node3

node2

node1 node4

node3

node2

(b)

(d)(c)

input at

port

output at

port

input at
port

output at

port

node1

Figure 1.6: Real-time constraints in embedded systems.

The timing constraint in Figure 1.6(b) states that the interval between the time Tavail,
when the input data are available to the system, and Tprod, when the corresponding output
data are produced, must be less than the constraint ∆T :

Tprod − Tavail ≤ ∆T (1.2)

In Figure 1.6(c), this constraint requires that the difference between the time when node4

is finished and node2 starts must be less than ∆T :

T ending
node4

− T starting
node2

≤ ∆T (1.3)

10 An Overview of Mixed-Signal, Embedded System Design

Vmax

t Vin

Vout

VSAT

Saturation

Vout

Coupling

sensor embedded system

Zin
Zout

fmaxfmin

t
Voffset

OffsetSignal range

In

Linearity

f

Noise

PSD

Bandwidth

Vmin

f

Figure 1.7: Signal properties and nonidealities in analog circuits.

The constraint in Figure 1.6(d) defines that node1 must start its execution latest after ∆T
time units after the input becomes available:

T starting
node1

− Tavail = ∆T (1.4)

5. Data accuracy: Different data processing precisions are needed in embedded applications,
ranging from low precision (6–8 bits) to high precision (12–16 bits). Precision requirements
influence the design of analog circuits, such as analog-to-digital converters, the data width
of the digital data, and the length of the data memory word and registers.

The precision of analog signal circuits is significantly affected by the properties of the input
signals (coming from sensors) and the nonidealities of the electronic circuits. Figure 1.7
summarizes important attributes, including the range, frequency bandwidth, offset of the
input signal, and circuit nonidealities, such as linearity, saturation, noise, and loading.

6. Low power and low energy consumption: In mobile applications, embedded designs are pow-
ered by batteries. This requires designs with low energy consumption. Power consumption
is important also in applications in which the large amounts of heat produced during the
circuit operation are difficult to be dispersed.

7. Safety: A large number of embedded designs must guarantee correct operation for any
kind of input data and in any environmental conditions. For example, this is important
for medical devices (e.g., pacemakers), but also in other safety-critical applications, such
as airbag controllers, and car suspension controllers. This sets additional requirements for
testing, debugging, and validating the embedded designs.

8. Robustness: Embedded systems may operate in harsh environments, including environments
with high noise levels, large temperature variations and humidity. Robustness defines the
capacity of an embedded system to correctly operate in such environments. For example,
robustness might relate to a circuit’s operation in the presence of noise, including input
noise, circuit noise, and coupling noise. The impact of noise on the quality of a design is
reflected in various performance metrics (e.g., signal to noise ratio and noise margins).

1.1 Embedded Applications 11

9. Flexibility in developing new applications: Single embedded designs are rarely developed, in-
stead designs usually pertain to families of applications. These applications share significant
portions of their hardware and software designs. It is desirable that a given embedded sys-
tem design - while satisfying the given specification requirements, is still flexible enough in
incorporating new functionalities and in being customized for new performance constraints.

T

∆ T

input
output

− accuracy

− latency

− timing constraints

Analog

interface

Digital

interface

Digital

interface

Functionality:

Processing

&

Control Procedures

Output

interface

Output

interface

− accuracy

− sampling speed

− dynamic range

Figure 1.8: Embedded systems design and performance requirements.

Figure 1.8 illustrates different design and performance requirements in an embedded mixed-
signal system, and some of the interactions between them. The constraints can be classified
into global constraints, if they are at the level of the entire system (e.g., accuracy, speed and
power consumption), and local constraints, if they characterize a particular module (e.g., the
constraints of the analog interface). For example, the figure shows a global timing constraint
between data bits being available at the digital interface and the corresponding outputs being
produced. This defines the maximum overall execution time of the input interface, processing, and
output interface modules. These are local constraints that characterize the modules. The process
of relating the global constraints to the local constraints is called constraint transformation, and
is important for a top-down design methodology, as detailed in Section 1.3 and in the following
chapters of this textbook.

Another example of constraint transformation relates to mapping the global accuracy con-
straint of the system into local requirements of the analog and digital modules. For example, the

12 An Overview of Mixed-Signal, Embedded System Design

analog interface might be constrained by accuracy constraints, which limits the ratio between
the power of the useful signal and noise, a metric called the signal-to-noise ratio. The bandwidth
of the signal and the accuracy constraints impose limits on the sampling speed of the interface,
which, in turn, constrains the speed of the data processing module. In addition, the interface
must have the capability to process the entire signal range, which defines the dynamic range and
also the sampling speed of the interface circuit. Finally, the required data accuracy defines the bit
width of the digital data, which affects the hardware cost and possibly the processing execution
time also. In conclusion, a variety of correlated design and performance constraints characterize
an embedded system both at the global and local levels.

A third example shows the correlations that might exist between the local constraints of
different modules. Depending on the amount of constraints correlations, embedded systems can
be grouped into tightly coupled and loosely coupled systems. Tightly coupled systems involve a
large number of interactions between many module constraints, in contrast to the loosely coupled
systems in which correlations involve few module constraints. For example, in Figure 1.8, the
local timing constraint of the digital interface causes the digital input data to be available at the
rate 1/∆T . To avoid data loss, the rate constraint must be related to the latency requirement of
the processing module, which is a local constraint also. In addition, this correlation introduces
a loose coupling of the two modules. Analog circuits are examples of tightly coupled systems
because of the correlations between voltages and currents at the circuit nodes.

In summary, although embedded systems have certain similarities to desktop computers,
there are significant differences with respect to (i) the types and characteristics of their input and
output signals, (ii) the nature of the executed functionality, and (iii) the cost and performance
constraints imposed on the system. Also, the input and output data are heterogeneous in nature
and characteristics, in contrast to the relatively homogeneous I/Os in desktop computers. These
aspects are handled by the design methodology.

1.2 Embedded Architectures

The PSoC architecture [12] was selected as an illustrative example of an embedded mixed-signal
architecture because it incorporates all of the primary architectural features that are required in
embedded applications, including analog and digital interfaces, embedded processing, and support
for addressing a large variety of performance constraints. This section discusses the structure of
embedded mixed-signal architectures, their main subsystems, and some of the popular embedded
architectures.

Mixed-signal, embedded architectures consist of both digital and analog modules. In addition,
compared to desktop processor architectures, such architectures are resource-constrained. This
means that their data widths are shorter, the clock frequencies are slower, the data and program
memory spaces are smaller, and the embedded CPUs have less hardware resources, e.g., fewer
registers, no pipeline stages, no on-chip cache memory and no floating point operations. However,
embedded architectures interface resources to connect to a rich set of peripherals, have customized
circuitry allowing high performance execution of certain operations, and support for implementing
interrupt service routines and multitasking execution.

The following is a summary of the main subsystems of embedded mixed-signal architectures:

• CPU: The CPU supervises the functioning of the entire system, performs data processing,
and participates in interfacing with peripherals. Many embedded CPUs have simple archi-
tectures, which reduces their cost and power consumption, and simplifies the complexity of

1.2 Embedded Architectures 13

Decimators I2C System Resets

POR and LVD
USB

Digital
clocks

IO Analog
Multiplexer

Switch
Mode
Pump

Internal
Voltage

Reference

Multiply

(MAC)
Accumulate

SRAM
Sleep and

watchdog

4 digital rows

Digital Block Array Analog Block Array

4 analog columns

Analog

reference

Analog
input

muxing

Interrupt

controller

SROM
Flash

memory

CPU core (M8C)

Port 7

Internal low speed oscillator Phase Locked Loop Crystal Oscillator

Multiple Clock Sources

System Resources

System bus

Global digital interconnect

Global analog interconnect

System bus

Port 6 Port 5 Port 4 Port 3 Port 2 Port 1
Analog

Port 0 drivers

Internal main oscillator

Figure 1.9: PSoC mixed-signal SoC architecture [12].

their software tools, including compilers, simulators, and emulators. Table 1.2 summarizes
the main types of CPUs in embedded architectures.

• Memory system: Different kinds of on-chip and off-chip memories store programs and data
of embedded applications. Both nonvolatile (flash, EPROM) and volatile memories (RAM)
make up the relatively small memory space of embedded architectures, which places con-
straints on the footprint of the operating system and size of the application software that
can be supported.

• Analog subsystem: This subsystem includes analog and mixed-signal circuits used primarily
to interface the CPU core to analog peripherals. The available analog circuits include vari-
ous types of filters, analog-to-digital converters, digital-to-analog converters, programmable
gain amplifier circuits, analog output drivers, analog multiplexers, and comparator circuits.
Newer embedded architectures also contain on-chip receiver-transmitter circuits for wireless
communication. In addition to these blocks, some embedded architectures have reconfig-
urable analog circuits that can be customized for application-specific operation.

14 An Overview of Mixed-Signal, Embedded System Design

• Digital subsystem: This subsystem has digital circuits with specialized functions required for
digital networking, or highly used operations and various types of timer circuits, multiply-
accumulate (MAC) circuits, decimators, pulse width modulator (PWM) blocks and in-
terfacing logic. In addition to the predefined circuits, some embedded architectures have
reconfigurable digital blocks that are statically (at system setup and before operation) or
dynamically (during operation) configured to implement specific functionality.

• Interconnect buses: Buses link all of the architectural subsystems including slower system
buses, which link all main subsystems of an architecture, such CPU, memory, interrupt
controller, and input/output ports. In addition, local buses connect certain modules (e.g.,
specialized digital circuits) to the CPU. Local buses offer less connectivity than system
buses, but are faster and relieve the system buses from some of the data communication
burden. Some architectures use separate data and address buses, which has the benefit of
concurrent accessing of program and data memories.

• Input and output ports: Input and output (I/O) ports interface the CPU to the external
peripherals. I/O ports include input buffers, output drivers, registers for storage, and
configuration logic for the port. There are three types of ports: analog I/O ports used for
analog signals, digital I/O ports used for digital signal interfacing controlled by software,
and global I/O for digital input and output ports. Input buffers prevent significant changes
in the electrical characteristics of input signals because of the embedded system itself. Input
buffers decouple the embedded system from the signal source. Output drivers provide the
needed current-driving capability of a port. Configuration logic programs an I/O port,
including its output driving mode and interrupt capabilities.

• Interrupt controllers: These modules provide efficient support for handling interrupt sig-
nals produced by internal timers, general-purpose I/O, and external peripherals. Interrupt
controllers prioritize interrupts depending on their importance, so that more important in-
terrupts are handled first. Upon receiving an interrupt signal, the CPU suspends program
execution, and starts executing the interrupt service routine (ISR) corresponding to the
interrupt.

• Power supply, clocking units, and other hardware support: Other hardware blocks include an
internal main oscillator, internal low-speed oscillator, external crystal oscillator, sleep and
watchdog timer modules, phase-locked loop circuit, interfacing circuits (e.g., I2C controller,
and USB controller), internal voltage reference, and switch mode pump.

Table 1.2 lists the three main processing unit types used in embedded applications: micro-
processor and microcontroller, digital signal processors (DSPs), and reconfigurable architectures.

Table 1.2: Popular CPU types used in embedded applications.

Architecture types Speed (MHz) Memory Interfacing Data width
(bits)

Microprocessors & 12–100 4 k-64 k program., serial, UART, 8-32
microcontrollers 128bytes-2 k data I2C,ADC,SPI

DSP 160–200 16 k-8 M serial, DMA, 16-40
I2C, PWM, etc.

Reconfigurable 80–400 0-8 M programmable programmable

1.2 Embedded Architectures 15

This table also summarizes their main characteristics: processing speed, available memory space,
interfacing capabilities, and power consumption. These units are detailed next. More examples
of embedded architectures can be found in the related literature [32, 39, 40]. Table 1.3 introduces
several popular general-purpose microprocessors and microcontrollers.

Table 1.3: Popular microprocessors and microcontrollers.

Model Speed On-chip Interfacing Data
memory width

ARM7 90 MIPS @ 100MHz 4G - 32 bits
(ARM) addressable

DSP56800 35 MIPS @ 70MHz 28k-152k serial, CAN 16 bits
(Freescale)

MCS51(8051) 1 MIPS @ 12MHz 4k bytes ROM, full duplex 8 bits
(Intel) 128 bytes RAM serial

PIC 24FJXX 16 MIPS @ 32MHz 64k-128k flash SPI, UART 16 bits
(Microchip) 8192 bytes RAM I2C, parallel

80C552 1.36 MIPS @ 24MHz, 8k bytes ROM, parallel I/Os, 8 bits
(Philips) 0.91 MIPS @ 16MHz 256 bytes RAM UART, I2C

MAXQ3120 8MIPS @ 8MHz 16k flash, I/Os, LCD driver 16 bits
(Maxim) 256 words RAM UART, ADCs

PPC pipelined RISC 32k data cache, timers, memory & 32 bits
(IBM) 32k prog. cache coprocessor interf.
PSoC 24MHz 64k flash I/Os, I2C, 8 bits

(Cypress) up to 2k RAM UART, PWM, ADC
XScale superpipelined 32k instr.cache, coprocessor interf., 32 bits
(Intel) RISC 32k data cache media processing

ARM7 [2] is a microprocessor core used in portable devices, advanced user interfaces and au-
tomotive applications. This processor has lower power consumption than other processors, and
provides reasonably high computing speed. The CPU is a 32-bit RISC processor with three-stage
pipelined execution. Sixteen of the thirty-seven 32-bit registers are accessible to developers. ARM
cores have seven operation modes: (1) user mode (normal program execution mode), (2) data
transfer mode, (3) IRQ mode (used for interrupt services), (4) supervisor mode (for operating
system support), (5) abort mode (when aborting data and instruction fetch), (6) system mode
(provides privileged mode for user), and (7) undefined mode (when fetching an undefined instruc-
tion). Besides regular instructions for data processing, data transfer, and branch, the instruction
set also includes instructions specialized for interaction with the coprocessor (e.g., coprocessor
data transfer, coprocessor data operation, and coprocessor register transfer) and software in-
terrupts. ARM Thumb extension reduces the instruction length to 16 bits, hence reducing the
memory size and cost of an embedded system. ARM10 improves instruction execution by branch
prediction, caches and parallel load/store unit. ARM Jazelle has an extension for Java-bytecode
execution.

DSP56800 [3] is a microcontroller for digital signal processing in wireless and wireline com-
munication, voice and audio processing, high-speed control, and many other applications. The
microcontroller is based on a 16-bit Harvard architecture, which can be interfaced to flash and

16 An Overview of Mixed-Signal, Embedded System Design

RAM, and a large set of external peripheral circuits (e.g., serial communication interfaces) pulse
width modulator circuits, analog-to-digital converters, watchdog timers, programmable I/Os, and
controller area networks (CAN). This microcontroller architecture is optimized for efficient execu-
tion of multiply-accumulate instructions, such that the execution unit, memory, and peripherals
can operate in parallel, that is in one instruction cycle the processor can execute one instruction
prefetch, one multiplication involving two 16-bit operands, one 36-bit addition, two data moves,
two address pointer updates, sending and receiving full-duplex data, and timer counting. It can
separately address one program memory and two data memories, by using 16-bit addresses. The
DSP56800 microcontroller has two operation modes for reducing power consumption. In the wait
mode, the core is shut down while the peripherals and the interrupt controller continue to operate.
The stop mode saves more power than the wait mode by deactivating the clock oscillator. This
microcontroller has an on chip emulation unit that allows a user to examine the core, peripheral
registers, and memory. Breakpoints can also be set on the program and data memories, and
single-stepping through program execution is supported.

PIC24FJXXGA006 [8] integrates a 16-bit microcontroller with on-chip flash, timers, and a
large variety of interfacing circuits for example ADC, comparators, PWM, parallel ports for mas-
ter and slave operations, and serial communication modules for UART, I2C, and serial peripheral
interface (SPI). The CPU (PIC24 core) is a modified Harvard architecture with 16-bit data path
and 24-bit address path. The chip has 64 k–128 k bytes of flash. However, the total addressable
memory space includes 8 M bytes of program memory and 64 kbytes of data memory. On-chip
analog circuits include a 10-bit ADC and comparators with programmable I/O configurations.
Three modes of operation are provided to reduce power consumption. On-the-fly clock switching
allows the device clock to be changed under software control. Doze mode reduces CPU speed
during slow operations such as serial communications. The instruction-based, power-saving mode
suspends all operations, or shutsdown the core leaving only the peripherals active.

Philips 83C552 [4] is a single-chip 8-bit microcontroller with an analog-to-digital converter,
high-speed outputs, and pulse width modulation circuit. The microcontroller is an 80C51 CPU
core capable of addressing the 8 kbytes of on-chip ROM and 256 bytes of on-chip RAM. Memory
can be extended externally up to 64 kbytes of ROM and 64 kbytes of RAM. The chip also includes
a 10 bit analog-to-digital converter, PWM circuit, watchdog timers, 16-bit timers/counters, I2C
serial I/O port, full duplex UART circuit, five 8-bit parallel I/O ports, and one 8-bit parallel
input port, all connected by an 8-bit system bus. For reducing power consumption, the chip has
two low power modes. In the idle mode, the CPU is stopped but RAM, timers, serial ports, and
the interrupt controller are operating. In the power-down mode, only RAM remains active.

MAXQ3120 [6] is a mixed-signal controller that integrates on a single chip a RISC proces-
sor, program/data memory, analog-to-digital converters, timers/counters, watchdog timers, LCD
driver, USART, and interfacing circuits for PWM. The core is a 16-bit RISC processor operating
at 8 MHz with 16 registers, 16-bit instruction words and 16-bit address lines. The controller
incorporates 16-bit ∆Σ ADCs, including the related sinc3 filters for decimation. This chip also
has 32 general-purpose I/O pins, an LCD driver, two serial USARTs for serial communication,
a multiply-accumulate circuit, 16-bit programmable timers/counters, PWM support, and one
programmable watchdog timer. The processor clock can be slowed down by a factor of 2, 4, 8,
and 256, or stopped to reduce power consumption.

PPC 405FX [10] is a 32-bit RISC processor with a 5 stage pipeline. The processor has
thirty-two 32-bit registers, 16 Kbyte instruction cache, 16 Kbyte data cache, hardware circuits
for fast multiplication and division, and can address 4 Gbytes of external memory. In addition,
programmable interval timers, watchdog timers, and fixed interval timers are also available.

1.2 Embedded Architectures 17

Higher computing performance is achieved by coupling the processor to a dedicated coprocessor by
the auxiliary processor unit interface, or by connecting memory by the on-chip memory interface.

Table 1.4: Popular digital signal processors (DSPs).

Model Speed On-chip Interfacing Data
memory Width

(bits)
ADSP-219x 160 MHz 16 k-128 k serial, JTAG 16

(Analog Devices) programmable I/Os
PNX 1330 VLIW, 16 k data cache, CCIR, I2C, 32
(Philips) 5 instr.simult. 32 k instr. cache SSI, S/PDIF
SHARC 333 MHz 6 M ROM, DMA, S/PDIF, 32/40

(Analog Devices) 2 M SRAM PWM, DAI, DPI
TMS320C6000 VLIW, 512 k program, DMA, serial, 32

(Texas Instruments) 8 FU 512 k data timers, expansion bus
LSI40x (ZSP400) 200 MHz 96 k-252 k serial, JTAG, 16/32

(VeriSilicon) programmable I/Os

Table 1.4 summarizes the main attributes of some popular digital signal processors. PNX 1330 [9]
is a high-performance media processor. It is meant for real-time, high-quality audio and video
processing in video phones, digital TV sets, desktop computers, and so on. The processor includes
a very large instruction word CPU core, and several multimedia-oriented coprocessors that can
operate independently or in parallel with the CPU. The CPU and the coprocessors are linked by
an internal “data highway” bus that also connects the external SDRAM and external peripheral
devices. Coprocessors are customized for multimedia input, output, and processing: the (1) video
in unit interfaces the media processor to input data from a CCIR 601/656 compliant device, such
as a digital camera. (2) The image coprocessor performs image scaling and filtering, and (3) the
variable length decoder decodes the Huffman-encoded video frames, for example in high-rate
MPEG-1 and MPEG-2 video streams. (4) the enhanced video out unit produces 8-bit CCIR 656
video data streams and (5) the Sony/Philips Digital Interface Out (S/PDIF) module outputs one-
bit, high-speed data streams. The (6) I2C interface provides multimaster, multislave interfacing
at rates of up to 400 kbits/sec. (7) The synchronous serial interface provides interfacing to
analog modem and ISDN front-end devices. Finally, (8) audio in and (9) audio out coprocessors
are interfaces to input and multi-channel output stereo digital audio data. The CPU core is a
VLIW processor that can simultaneously execute five operations in each clock cycle. The CPU
core has a data width of 32 bits, and can address a linear address space of up to 512 M words.
It has 128 full-purpose, 32-bit registers, 16 k of data cache, and 32 k of instruction cache. Power
consumption is reduced by two features: in the global power-down mode, all internal clocks are
shut down, SDRAM is set to a low-power, self-refreshing mode, and the majority of peripherals
are shut down. In addition, the processor can selectively power down peripheral devices.

SHARC - ADSP 2136x [13] is a 32-bit processor for high-quality signal processing, including
audio processing, medical imaging, speech recognition, communication, and so on. The processor
architecture is a super Harvard architecture with parallel data transfers and arithmetic operations.
The clock frequency is 333 MHz. The chip has 6 Mbytes of on-chip ROM and 2 Mbytes of SRAM.
The DSP includes DMA, PWM, and interfaces such as the digital audio interface (DAI), serial
peripheral interface, serial port for point-to-point multiprocessor communication, S/PDIF, and

18 An Overview of Mixed-Signal, Embedded System Design

JTAG for test access. The digital peripheral interface (DPI) consists of interrupt controller, two
wire interface part, signal routing unit, timers, and UART. Two low power modes are available:
the PLL circuit frequency can be programmed in software, and the clock to the peripherals can
be disabled.

TMS320C6000 [16] is a more general-purpose processor consisting of the CPU core, peripher-
als, and memory. The CPU core is a VLIW processor with eight functional units that operate in
parallel. Functional units are organized into two identical sets, each set including one logic unit
for arithmetic and logic operations, one shifting unit, one multiplier, and one data address unit
for data transfers between the registers and memory. The CPU core has 32 registers organized
as two register files. Registers are 32 bits. On-chip peripherals include DMA controller, external
memory interface, power-down logic, serial ports, expansion bus, and timers. The chip has 32-bit
addresses. The on-chip memory includes a 512 k bits instruction memory and a separate 512 k
bit data memory. Instruction memory words are 256-bits, and data memory words can be 8, 16,
or 32-bits. For low-power processing, there are three power-down modes for the TMS320C6000
processor. The first power-down mode blocks the internal clock at the boundary of the CPU,
thus preventing most of the CPU logic from switching. The second power-down mode stops the
on-chip clock structure at the output of the phased lock loop (PLL) circuit. In addition, the
third power-down mode also stops the entire internal clock tree, and disconnects the external
clock structure from the PLL circuit.

Table 1.5: Popular reconfigurable architectures.

Model Speed Memory Interfacing # Max. #
(MHz) gates pins

Altera MAX 7000 125 0 PCI, JTAG 600-5 k 208
(Altera) programmable I/Os

Altera FLEX 10k up to 41 k PCI, JTAG 250 k 470
(Altera) 200 RAM

Xilinx Spartan-II 80 0 PCI, 40 k 224
(Xilinx) programmable I/Os

Xilinx Vertex 400 8 M serial, JTAG, 4,074 k 808
(Xilinx) RAM Ethernet, audio CODEC

Table 1.5 lists the performance attributes for four popular reconfigurable architectures. MAX
7000 [1] is based on EEPROM-based programmable logic devices (PLDs). The basic pro-
grammable unit is a macrocell. Each macrocell consists of a programmable logic AND plane,
a fixed logic OR array, and configurable registers. Hence, the macrocell structure is well suited
for implementing logic functions described as sums of products. Sixteen macrocells form a logic
array block (LABs), and several LABs exist in a MAX 7000 chip. In addition to the macrocells,
each LAB contains 16 shareable expanders that can be used to extend the functionality of any of
the LAB’s macrocells. Depending on the circuit types, the number of LABs is between 2 and 16,
which is equivalent to having between 32 to 256 macrocells, or between 600 to 5000 digital gates.
The maximum clock frequency is ≈ 125 MHz depending on the circuit type. The architecture
includes a reconfigurable interconnect connecting the macrocells, and programmable I/O ports.
Interfaces are for PCI devices and JTAG, but the programmable PLDs can implement a much
larger variety of interfacing procedures. To save power consumption, the macrocells can operate

1.3 Top-Down Design Flow 19

at a power consumption of 50% or lower (eight modes in total), and their slew rate (SR) can also
be lowered so that less signal coupling results during digital switching.

Spartan [15] is a reconfigurable architecture based on configurable logic blocks (CLBs). The
functionality of a CLB is set by programming three lookup tables (LUTs), two multiplexer
circuits, and two flip-flops. A LUT is a logic function generator: two of a CLB’s LUTs can
implement four-input functions, and the other LUT can realize a three input function. CLBs are
organized in two-dimensional arrays, the size of the array varying from 10×10 to 28×28. Hence,
Spartan architectures can include between 5k to 40k gates, between 360 to 2016 flip-flops, and
between 77 to 224 programmable I/Os. The architecture includes three kinds of interconnect:
CLB routing channels along the rows and columns, IOB routing channels connecting the I/Os
and the CLB routing channels, and the global routing channels for the clock and high fanout
signals. The CLB’s flip flop can be also used as on-chip RAM. The architecture includes a low
power-down pin which reduces the power supply current to about 100 µA but at the expense of
losing the flip-flop content.

1.3 Top-Down Design Flow

In essence, the goal of embedded system design is to customize the hardware and software com-
ponents of a design in order to meet the specific functional, cost, and performance needs of the
application, and optimize its characteristics for its operating environment. The idea of customiz-
ing an embedded system design for an application is very important, because it then achieves
the specified performance requirements at relatively low costs compared to desktop computers.
On the negative side, customization may result in less flexibility in terms of efficient reuse of an
embedded system design for a different application. For example, setting a tight cost constraint
for the embedded fan controller (e.g., total cost below $5) might require the use of low-end mi-
crocontrollers or smaller-size reconfigurable chips. In contrast, for implementing complex control
algorithms such as those used in server systems, if the total cost margin is set higher (e.g., $20)
a DSP-based architecture might be used to meet the real-time constraints of the algorithms.
In the customization process, a large number of cost–size–performance tradeoffs are identified,
expressed and analyzed to determine the specific attributes of the hardware circuits and software
modules of the implementation.

Figure 1.10 presents a top-down design flow for embedded system design. The flow starts
from an abstract system specification developed using the functional, interfacing, cost, and per-
formance requirements for the system. Then, the design is incrementally refined during the
top-down design process by continuously adding new implementation details to the design. This
process transforms the global requirements of the system into local requirements for the subsys-
tems and modules. For example, earlier refinement steps determine the number of processing
cores, the partitioning of functionality to the cores, the structure of the memory subsystem and
the number of buses. Later refinement steps determine the implementation details of the building
blocks, such as the topology of the analog circuits, circuit transistor dimensions, logic level design
of the digital circuits, among others. Each refinement step optimizes the design by conducting a
tradeoff analysis that considers different design solutions and their impact on the overall system
performance. Thus, the design flow should incorporate a performance evaluation mechanism to
evaluate the quality of a design decision in terms of its impact on the system performance, and
a modeling procedure to express the defining attributes (e.g., speed, power consumption, etc.) of
the building blocks in the design.

20 An Overview of Mixed-Signal, Embedded System Design

Hardware−software

partitioning
Memory system

design

OS customization

(scheduling)

I/O subsystem

design

System−level trade−off analysis

Data and functional

partitioning

Specification of the individual modules

Module level description

functionality, and

Description of interfaces,

performance requirements

Digital circuit

design

Design of the individual modules

Trade−off analysis and refinement

Analog circuit

design

− topology selection

− transistor sizing

− layout design
− layout design

− transistor sizing

− design mapping

Software

development

− high−level routines

− device drivers

− ISR routines

− system routines− logic design

System specification

Figure 1.10: Top-down embedded system design flow.

1. System specification is the process of describing the interfacing, functionality, and per-
formance constraints of an embedded system. System specification uses, in most cases,
a simulatable notation, for example a specification language. This has the advantage of
being able to simulate the specification to verify its correctness and completeness. Specifi-
cations are at different levels of abstractions, such as concept level, algorithm level, block
(module) level, and circuit (component) level. High level specifications offer more design
opportunities at the expense of a more sophisticated design flow.

2. Functional partitioning step reorganizes a system specification into subsystems and mod-
ules that perform a specialized functionality, such as a specific type of interfacing function
or data processing. The identified modules may undergo separate, top-down, design proce-
dures. For example, data processing modules, such as digital filters, are obviously designed
in a different way than analog processing modules, such as analog-to-digital converters.
The output of this step is a set of descriptions presenting the functionality and interfaces

1.3 Top-Down Design Flow 21

of all modules. Functional partitioning can be performed multiple times in a design flow,
at different levels of abstraction and for different subsystems.

3. System-level tradeoff analysis maps the system-level performance and design requirements
into requirements for the building blocks. Hence, this step realizes constraint transforma-
tion. Numerous design tradeoffs are formulated and analyzed during this step (e.g., cost
vs. speed, speed vs. power consumption and bandwidth vs. accuracy vs. speed). Pos-
sible tradeoff analysis steps include deciding whether a module should be implemented in
hardware or software, an activity known as hardware/software partitioning, or deciding on
the main attributes of the memory subsystem, such as memory size, number of memory
modules, access time required, and so on needed to meet the timing requirements of the sys-
tem. At the I/O level, this step determines the number of I/O ports, their communication
protocols and mapping of input and output signals to ports. Tradeoff analysis also includes
refining the operating system (OS) or firmware level routines (e.g., scheduling of tasks exe-
cuting by the same processor, and arbitration of module access to system and local buses).
It is important to stress that at the end of system-level tradeoff analysis, modules can be
individually designed, because the interfaces, functionality, and performance constraints of
each module are now known.

4. Design of the individual modules is the activity of implementing the modules of the system,
such as different interfacing modules, data processing modules (e.g., video and audio pro-
cessors), the memory module, and the bus communication subsystem. Modules can include
hardware circuits, and software routines of different natures, e.g., drivers, interrupt service
routines (ISR), as well as, control and data access routines. Complex modules undergo
a top-down design process in which their design is refined by partitioning each module’s
functionality into sub-modules. Design tradeoff analysis is utilized to identify the design
requirements of the submodules and define their design.

5. Analog circuit design is the process of implementing the analog and mixed-signal circuits of
a design. Popular analog circuits include operational amplifiers, transconductor amplifiers,
comparator circuits, analog multiplexers, integrator circuits, and sample-and-hold circuits
and many more. Analog circuits are implemented as either continuous-time circuits or
as switched capacitor circuits. Analog circuit design includes the selection of the circuit
topology, transistor sizing, and circuit layout design.

6. Digital circuit design of customized digital circuits for the embedded design includes inter-
facing circuits and customized data processing hardware, for example various digital filters,
decimator circuits, encoders, for example Huffman encoders for multimedia applications to
name just a few types. The design methodologies used depend on the complexity of the
circuits. More complex digital subsystems (e.g., a universal asynchronous receiver trans-
mitter module or a video processor) are subject to separate top-down refinement, including
data and functional partitioning step, followed by tradeoff analysis, and module design. For
simple circuits, the first step is to develop the logic design for combinational and sequen-
tial circuits, followed by mapping these designs to basic digital gates such as NAND and
NOR gates, inverters, multiplexers, decoders, flip-flops, and registers. This is followed by
transistor sizing for basic gates, and circuit layout design.

7. Software development creates application and system software. Application software in-
cludes methods for data processing, control, and graphical user interfaces (GUIs). System
software development addresses real-time operating systems (RTOS), middleware, and net-
working.

22 An Overview of Mixed-Signal, Embedded System Design

8. Circuit modeling is the process of characterizing the behavior of hardware circuits, includ-
ing electrical behavior, silicon area, and number of pins. This step is very important for
correctly predicting the system’s performance, because electronic circuit behavior can vary
significantly from their ideal counterpart. Circuit models predict the main nonidealities of
analog and digital circuits, such as propagation delay, power consumption, noise margins
for digital circuits, and finite gain, poles/zeros, bandwidth, harmonic distortion, and circuit
noise for analog circuits. Different kinds of nonidealities, and therefore different kinds of
models, have to be contemplated at different levels of abstraction in a top-down design
flow. Early design steps, and hence steps at higher levels of abstraction, use coarser circuit
models, because second- and third-order circuit nonidealities have a minor impact on sys-
tem performance. In contrast, later design steps employ more detailed circuit models, in
as much as a more precise insight into circuit behavior is needed. Other kinds of nonide-
alities include bus delay, power supply voltage variations, substrate coupling, sensitivity to
temperature, additional harmonics of input signals, and so on.

9. Software characterization develops models predicting performance attributes of software
routines (e.g., speed, required memory, memory access patterns and power consumption).
Software characterization is difficult because of data-dependent programming constructs,
such as if statements, case statements, and loops. The performance of these constructs is
determined by the specific data values, and therefore can be determined precisely only at
execution time.

Table 1.6: Embedded market predictions (Source: BCC Research Group)[17].

2004 2009 AAGR %
($ billions) ($ billions) (2004–2009)

Embedded software 1,641 3,448 16.0
Embedded hardware 40,539 78,746 14.2
Embedded boards 3,693 billions 5,95 10.0

Total 45,873 billions 88,144 14.0

10. Performance evaluation is the step of finding the performance attributes of the system and
its modules. This step is critical in predicting the performance of different design options
without actually building, testing and measuring the designs. Performance evaluation can
be based on analytical expressions such as system models, processor models, circuit macro-
models, etc., that predict system performance. Models are simple to use in design, but their
development requires significant effort, and their prediction accuracy is not very high. The
alternative is to base performance predictions on simulating a simplified description of the
system. The drawback to this approach is that the simulation time can become lengthy.
This is prohibitive when it is necessary to analyze a large number of design alternatives.

Designing embedded systems requires significant cross-disciplinary knowledge, including system
design, computer architectures, microprocessors and microcontrollers, specification languages,
real-time operating systems, analog and digital circuit design, programming languages, and com-
pilers. This textbook emphasizes the correlations between these disciplines, and stresses the four
main aspects in top-down, refinement-based design, (i) specification, (ii) tradeoff analysis, (iii)
modeling, and (iv) performance evaluation.

1.4 Embedded Systems Market 23

1.4 Embedded Systems Market

BCC Research Group [17] has estimated the worldwide embedded system market to be approx-
imately $45.9 billion in 2004, and suggested that it will grow to $88,144 billion by 2009. They
have also predicted that this dramatic growth of the embedded systems market is due to four
primary reasons: (1) the popularity of embedded systems and systems on chip for mobile con-
sumer products and automotive applications, (2) the growth of an ultra-wide band Internet, (3)
the availability of integrated functionality which increases the value of embedded products signif-
icantly above the value of the components, and (4) the emergence of large markets for specialized
computing systems that are part of more complex systems (not necessarily electronic systems).
Currently, integrated chips for embedded systems are the majority of semiconductor sales: ac-
cording to the World Semiconductor Trade Statistics Blue Book, embedded processors represent
94% of the total semiconductor sales (5 billion processors) in contrast to only 6% for desktop PC
processors, including Pentium and PowerPC processors.

Embedded systems are envisioned by many to be at the core of the next IT revolution.
Projections for future applications include embedded systems in healthcare, Internet-friendly
consumer appliances, sensor networks for environment monitoring for security and protection,
etextiles and support for elderly people and people with disabilities.

1.5 Embedded Design Example: Fan Control System

The section provides a brief illustration of the main characteristics of a simple(r) embedded
system, and the steps applied to develop its implementation. This application is an embedded
fan controller that monitors the temperature inside a computer, and controls the speed of a
fan to ensure that the electronic circuits do not overheat. This example introduces the many
facets of embedded system design, including system specification, specification simulation, design
implementation/testing and debugging. The following chapters elaborate these issues in greater
detail, based on design solutions in [18] and [11].

Table 1.7: Fan speed control function depending on the measured temperature.

Temperature (◦C) Fan Speed
−55 – + 25 Off
+25 – + 35 Low
+35 – + 50 Ramp
+50 – + 130 High

The fan controller adjusts the fan’s speed based on the sensed temperature. The controller
selects one of four predefined fan speed values, (i.e., off, low, ramp, and high) as shown in
Table 1.7. If the temperature stays below 25◦C then the fan remains off. If the temperature is
in the range 25◦C to 35◦C, then the fan rotates at a low speed. For temperatures ranging from
35◦C to 50◦C, the fan’s speed must increase linearly with the temperature, following the ramp
dependency:

Speedfan = K
room temperature

10
(1.5)

where K is a constant.

24 An Overview of Mixed-Signal, Embedded System Design

Finally, if the temperature exceeds 50◦C then the speed of the fan is set to high. An LCD
displays the measured temperature, and the fan speed that is set by the embedded fan controller.
The fan’s speed is measured in rotations per minute (RPMs). The accuracy of the control
procedure with respect to the sensed temperature should be less than 1%. In addition, the cost
and the size of the implementation should be as small as possible, based on the fact that the
controller ought to be usable in low-cost products.

1.5.1 Description of the Fan Controller System

The starting point in designing the signal processing flow of the system is the description of the
fan controller: (i) a temperature-sensing module continuously delivers temperature readings to
the processing unit, (ii) then the processing subsystem computes the required RPM value for
the sensed temperature, and (iii) generates the control (actuation) signals that set the RPM
value of the fan motor to the computed RPM value, and (iv) finally, the LCD unit displays the
temperature and RPM values. The linear processing flow is illustrated in Figure 1.11.

According to this algorithm, the controller apparently performs only a linear succession of
processing steps, from the input to the output. The caveat is that there is not a one-to-one
correspondence between the desired RPM values and the control signals that have to be produced
for the fan motor. Instead, the controller must continuously adjust the values of the control signals
in a feedback loop until the resulting RPM values of the fan correspond to the values in Table 1.7.
Therefore, the linear processing flow of the fan controller system must be extended to the feedback
structure shown in Figure 1.12. The complete processing flow of the fan control system is now
as follows. (i) A temperature sensor provides continuous temperature readings; (ii) a tachometer
measures the rotational speed of the fan motor (i.e., shaft speed) and provides the value to the
processing unit, (iii) the processing unit reads the inputs coming from the temperature sensor
and tachometer, and accordingly adjusts the control signals to the motor to increase or decrease
its RPM value as required by the description in Table 1.7; and finally (iv) the LCD displays
the temperature and RPM values. The continuous adjustment of the control signals sets the
rotational speed of the fan to the RPM values specified in Table 1.7.

Note that the controller design has to solve an important “mismatch” between the nature of
the input signal sensed by the temperature sensor and the type of processing conducted by the
processing unit. The sensed signal is continuous time, that is the signal has a well-defined value
at each instant of time. In contrast, the digital processing unit operates at discrete time units
with a time period defined by the system clock. It is a defining characteristic of mixed-signal
embedded systems to consist of heterogeneous parts, some of which are defined and operate in
continuous-time, others in discrete-time. The mixed-signal system must incorporate interfacing

Control signals

to set RPM value

Display

unit

Temperature

sensing module
Fan motorProcessing

subsystem

Sensed

temperature

Temperature &

RPM values

Figure 1.11: Linear signal-processing flow.

1.5 Embedded Design Example: Fan Control System 25

Temperature &

RPM values

LCD display

unit

Sensed

Temperature
Control signals

to set RPM value

Sensed RPM value

Fan motor
Temperature

sensing module

Tachometer

Processing

subsystem

Figure 1.12: Feedback signal-processing flow (concept-level description).

mechanisms between continuous-time data/processing and discrete-time data/processing. In the
present example, the processing unit samples the continuous-time temperature sensor output at
uniform instances of time, which makes the fan controller a sampled system.

The block structure in Figure 1.13 is based on the processing flow in Figure 1.12.

• Temperature sensor: The temperature sensor used in this example provides an output volt-
age proportional to the temperature. Temperature sensors are small, cheap, and accurate
enough for normal temperature ranges (e.g., -55◦C to 130◦C [5]). Other possibilities are to
sense the temperature using thermistors, thermocouples, or RTDs, but these would com-
plicate the design.

The behavior of a sensor is characterized by its output voltage versus temperature transfer
function, which provides the output voltage of the sensor for a specific temperature value.
The temperature range that can be measured by a sensor depends on the supply voltage
of the sensor, for example lowering the supply voltages reduces the temperature range
that can be measured. The accuracy of the measured temperature is higher for ambient

Temperature

sensor

–55 C

+130 C

T∆

Analog signal

Digital signal

Embedded system

for

fan control

Reset

Tachometer

LCD

DC brushless fan

Figure 1.13: Block structure for the embedded fan control system (concept-level description).

26 An Overview of Mixed-Signal, Embedded System Design

data

analog

voltage

Temperature

sensor ADC
digital

data

Correction

routine
corrected

Figure 1.14: Temperature reading procedure.

temperatures, and slightly decreases for the temperature range extremes [5]. Other electrical
characteristics of a sensor are the output impedance, quiescent current, sensor gain (i.e.,
the average slope of the transfer function), and nonlinearity [5].

Figure 1.14 presents the data processing involved in the temperature reading step. The
continuous-valued output voltage of the sensor is converted into digital data by an analog-
to-digital converter (ADC). Then, the accuracy of the reading is improved by a correction
routine that compensates for some of the conversion errors. Conversion errors are intro-
duced in three places: (1) due to the temperature itself, (2) because of the limited precision
of the ADC step, and (3) the resolution of the compensation table [5, 23].

• Fan: The fan used in this example is a DC “brushless” fan with a duty cycle α, and therefore
speed, controlled by the output of the embedded controller. The system must control the
speed of the fan by modifying its duty cycle.

The behavior of a DC motor can be expressed, with acceptable accuracy, by the circuit
shown in Figure 1.15(a) [18]. Voltage V is provided by the power source, current I is the
resulting current, resistance R the armature coil resistance, and E bemf the voltage generated
across the motor due to the back electromotive force. T represents the torque, and ω
the shaft speed of the fan motor. The following equations, referred to as the transducer
equations, describe the motor’s behavior [18]:

V = I R + Ebemf (1.6)

Ebemf = KV ω (1.7)

T = KM I (1.8)

The constants R, K V , and KM depend on the motor model and manufacturer. More details
about the functioning and characteristics of electric motors can be found in [27, 34].

Figure 1.15(b) illustrates the electric circuit for operating and controlling the fan motor.
This circuit includes a pulse width modulator circuit, and a power FET [14]. PWM circuits
produce waveforms with a programmable duty cycle, α. For the fan controller design, the
duty cycle is determined by the required rotational speed of the fan, as shown in Table 1.7.
The power FET delivers the high currents needed for the motor operation. The control
algorithm senses the temperature and the tachometer RPM readings and adjusts the PWM’s
duty cycle.

The following set of equations describes the functioning of the circuit in Figure 1.15 [18].
If the power FET is on, then:

Vi = I Rs (1.9)

Vm = I (RS + rdson) (1.10)

and if the power FET is off, then:

Vi = 0 (1.11)

Vm = V − Ebemf (1.12)

1.5 Embedded Design Example: Fan Control System 27

(b)

PWM

V

(a)

Ebemf

+

−

V

R

T ω

I

αT

T

Rs

Vi

Vm
−

+

Figure 1.15: DC motor model and operation [18].

Based on the these equations, the following relationships are obtained for the average torque
T and the average shaft speed ω, as functions of the PWM duty cycle α,

V average
i = I Rs α (1.13)

V average
m = I (Rs + rdson) α + (V − Ebemf) (1 − α) (1.14)

and

Taverage = Km Iaverage = Km
V average

i

Rs
(1.15)

ωaverage =
Ebemf

Kv
=

V average
i (Rs+rdson)

Rs (1−α) + V − V average
m

1−α

Kv
(1.16)

Expression (1.16) relates the PWM duty cycle α to the average shaft speed ωaverage of the
DC motor.

• Tachometer: The tachometer measures the rotational speed ω of the fan, that is the shaft
speed, and generates input signals that are used for computing the fan speed. Then, using
Equation (1.16), the PWM duty cycle α is modified so that the fan speed satisfies the
requirements expressed in Table 1.7 for different temperature ranges. If the instantaneous
speed ω is larger or smaller than the required value then the needed adjustment for the
duty cycle α is computed using expression (1.16).

• LCD: The LCD displays the values of the temperature measured by the temperature sensor
and the fan rotational speed ω measured by the tachometer.

Before starting the design of the actual embedded fan controller, the designer has to decide
on the sensing and actuation devices to be used in the application, including the types of the
temperature sensor, fan, tachometer, and LCD. This step is important because it defines the
nature of the input and output signals to the embedded fan controller, and the performance
requirements for the system design.

The selected temperature sensor was the LM20 sensor [5] because of its small cost and simple
interfacing requirements. Figure 1.16(a) presents the output voltage versus the temperature
transfer function of the sensor [5] because the power supply voltage influences the temperature
range that can be measured. Therefore a supply voltage of 2.7 V – 5.5 V is required for this

28 An Overview of Mixed-Signal, Embedded System Design

0.0

0.5

1.5

2.0

2.5

−75 −25 25 75 125

Vtemp

1.0

(a) (b)

Temperature sensor

T

Processing unit

Vtemp
Ro

Vmeasured

Io

R
in

Figure 1.16: Temperature sensor.

application. Note that the curve is predominantly linear, but has a small parabolic curvature at
the extremes of the temperature range. The temperature error is 1.5◦C at normal temperature,
and 2.5◦C at the extremes. This error is corrected by the calibration routine shown in Figure 1.14.
The following equation relates the sensor output voltage and the measured temperature [5],

T = −1481.96 +

√

2.1962 × 106 +
1.8639 − Vo

3.88 × 10−6
(1.17)

The sensor has a small output impedance (≈ 160Ω) simplifying the interfacing of the sensor
to the embedded processor which has very high input impedance. The equivalent circuit is shown
in Figure 1.16(b). Because the current I o is extremely small, the voltage V temp at the processor
pins is the same as the voltage V measured for the sensed temperature.

The type of fan determines the control signals that must be produced by the fan controller,
for example the digital output signals for defining the drive frequency, drive polarity, spin-up
time, and so on. Due to its small size, a three wire, brushless DC fan was chosen for this design.
The fan’s supply voltage is 5 V, and the power FET IRF7463 [14] was selected to deliver the high
current to the motor.

The tachometer generates successive digital pulses that are used to compute the rotational
speed of the fan. The type of the tachometer used defines the embedded processor interfacing
procedure. For example, the tachometer used in the design has a five-step interfacing procedure,
as follows: (1) Upon receiving the first signal from the tachometer, the processor must set the
duty cycle α of the fan to high so that it rotates at constant speed. (2) Upon receiving the next
tachometer signal, the processor waits for a predefined time for the tachometer reading to settle.
(3)–(4) The third and fourth tachometer pulses are used to compute the time difference between
the pulses. The RPM of the fan is based on this time difference. The controller reconnects to
the fan motor so that the fan control algorithm can resume. (5) After receiving the fifth pulse,
the control can proceed with a new tachometer reading and repeat this five-step procedure.

Five pins are needed for interfacing the devices to the controller: one pin for the temperature
sensor, one for the tachometer, one pin for the fan, and two for the LCD. The LCD module
displays outputs of the embedded system using a standard I2C bus interface. A supply voltage
of 5 V can be used for all circuits.

All of the external device details are incorporated into Figure 1.17. This figure presents a
refined block structure of the fan control system, including the external resistors and capacitors for

1.5 Embedded Design Example: Fan Control System 29

µ

(0.1µf)

(0.1 f)

LCD

Tachometer

Embedded system

for

fan control

Temperature sensor

C2

C1

VDD Vfan

R1 (1k)

VDD

R2 (10k)
R3 (15k)

Reset
DC brushless fan

Figure 1.17: Interfaced fan controller system (concept-level description).

connecting the devices to the embedded controller. This step completes the process of defining the
design requirements for the embedded fan controller because all of its interfaces and functionality
are now completely determined.

Note the importance of the application requirements on the implementation decisions made
during the development process. In this case, the cost and size of the fan controller had to be
minimized. Therefore, low-cost devices were selected for temperature sensing, fan motor control,
and display. These devices also require a very simple interfacing structure, which keeps the cost
low for the circuits that interface the sensing and actuation devices to the processing unit. All
electronic circuits can be powered by a single 5 V power supply, which also keeps the system cost
and size low. The control algorithm was kept as simple as possible.

This application does not involve any special speed or reliability requirements. In contrast,
the implementation of the cooling system for a high-end computer server, or a server farm,
although starting from a signal processing flow similar to that of the fan controller, will require
totally different implementation decisions and therefore, it is important to maximize the system’s
reaction speed to events and its reliability to failures. For example, if the temperature rises above
a dangerous limit, then the controller must react quickly and shut down the server, or server farm.
Also, if several of its parts fail to operate normally the system must remain functional. These
requirements will change not only the type of the sensing and actuation devices used, but also
the block structure of the system, for example by having redundant parts, and the functionality
of the control algorithm to incorporate handling of special events.

1.5.2 Design of the Fan Controller System

The implementation process for the embedded fan controller follows a top-down design and
validation flow. The purpose of the flow is to help correct implementation of the system, while
minimizing its cost and time-to-market time.

The top-down methodology starts from the system description, and first develops a high-
level specification of the system functionality and constraints. Having a high-level specification
for the fan controller helps to achieve the goal of building correct implementations because the

30 An Overview of Mixed-Signal, Embedded System Design

specification can be verified either by simulation or rapid prototyping before the system is actually
built. Any errors in the system description are eliminated at this point.

Then, the top-down design flow proceeds through subsequent implementation steps that suc-
cessively refine the specification until the complete system implementation is created. The final
implementation consists of analog and digital circuits, memory, and software routines. Each re-
finement step focuses on a specific implementation issue, and analyzes possible solutions that each
gives different performance tradeoffs. For example, some solutions may be faster, other require
less hardware or software and some might have lower power consumption. Refinement steps select
the solutions with the best potential for satisfying the low-cost requirement of the fan controller
design. Then, all implementation details selected during the current refinement step are added
to the specification, which can then be verified again for correctness. The refinement process
continues until all of the implementation details have been determined, and the implementation
specification has been produced.

The last step of the top-down flow is building the physical system and testing/debugging it.
Figure 1.18 illustrates the entire design flow. The top-down methodology used the following four
steps for the fan controller design.

1. Embedded controller specification: The specification encodes the complete description of
the embedded system, including its interface, functionality, and design/performance re-
quirements. This step usually uses specification notations, i.e., specification/programming
languages (C++, SystemC, VHDL, UML, MATLAB, etc.) or graphical notations such
as Simulink and PSoC Express. The majority of the specification notations support the
development of descriptions that can be simulated, or emulated, for rapid prototyping.
In addition validation of the system description correctness, specifications also enable the
analysis of the effectiveness of different sensing and actuation devices.

2. Specification testing and debugging: The correctness of the system description is validated
by simulating the specification for a set of input signals. The set must be sufficiently large
to cover all situations that can occur during operation. Testing reveals the presence of
errors in a specification and debugging locates the errors and corrects them.

3. System implementation: This step concentrates on the implementation of the system hard-
ware and software. Hardware implementation includes designing the analog and digital
interfacing circuits including the analog-to-digital converter for interfacing the tempera-
ture sensor, and the PWM circuit for actuating the fan motor and selecting the processing
units, on-chip and off-chip memories, power control circuits, and timers. Software imple-
mentation consists of tasks such as developing the drivers for interfacing the peripherals,
the middleware routines (including sensor error compensation routines), the functions of
real-time operating systems such as task synchronization/communication/scheduling, and
the control algorithm of the system.

4. Physical implementation, testing, and debugging. The hardware and software designs are
implemented, tested, and debugged. The implementation must be tested for a set of input
signals that represent all of the possible errors that can actually occur. The experimental
setup includes the controller circuit, temperature sensor, fan, tachometer, LCD, power
source, and an oscilloscope for signal measurement. In addition, a monitoring environment
is needed for observing program execution that displays the register and memory contents,
execution traces, stepwise program execution, and defines the breakpoints in a program.

1.5 Embedded Design Example: Fan Control System 31

Controller requirements

Specification testing

and debugging

Physical implementation,

testing and debugging

System implementation

through successive

refinement

Validated specification

System implementation

of the controller system

Specification development

High−level specification

Figure 1.18: Design flow for the embedded fan controller.

The four design steps for the fan controller are as follows.

1. Embedded fan controller specification. This specifies the system functionality using
PSoC Express’ graphical notation[11].

PSoC Express’ description philosophy is to express a system as a netlist of predefined modules
that are the basic building blocks (e.g., temperature sensors, fans, tachometers, etc). PSoC
Express’ library modules are parameterized, so that a designer can customize the parameters
depending on the application requirements. For example, the range of the temperature sensor
can be defined based on the expected temperature range of the application. PSoC Express’
interface also provides an easy way to describe the control algorithm, and for mapping the input
and output signals to the pins of a single-chip implementation. This makes PSoC Express easy
to use by less experienced designers.

Figures 1.19 and 1.20 illustrate the specification steps in PSoC Express:

32 An Overview of Mixed-Signal, Embedded System Design

Figure 1.19: Fan controller I/O specification (PSoC Express).

• Controller inputs and outputs: This step identifies the input and output modules of an
embedded system, and then defines some of their characteristics depending on the nature
of the devices utilized in the implementation. Figure 1.19 shows the input and output
modules of the fan controller. Input “Temp” denotes the temperature sensor, and is a
predefined device in PSoC Express. Its defining attributes are part of the specification, and
include the following: the integrated circuit type (circuit LM20 [5] in this case), and the
covered temperature range, -55◦C to +130◦C. The second system input is called “Tach”. It
represents the tachometer used for measuring the fan speed. It is also a predefined device
in PSoC Express. The first output, named “Fan” is the fan. Its attributes are related to
the fan selected, e.g., the supply voltage of the fan which was 5 V in this case, and the fan
type for example, two or three wire motor. Finally, the second output describes the LCD
connected by a standard I2C interface to the processing unit. The module called “Interface”
is an instantiation of the PSoC Express module for describing I2C-based interfaces.

• System netlist description: The next specification step connects the modules into the sys-
tem netlist, and, in the process, defines the related attributes of the input and output
modules. First, the tachometer module “Tach” is “connected” to the “Fan” block, because
the tachometer measures the fan speed. This is achieved in PSoC Express by setting a
dedicated attribute of the module “Tach”, called AssociatedFan, to point to the module
“Fan”. Next, the three threshold temperatures of the sensor “Temp” are defined as specified
in Table 1.7. This is achieved in PSoC Express by adding the Interface Valuator module to
the specification. The valuator module is named “SPR”. The input to the “SPR” module
is set to the block “Temp”. Three threshold values are defined for the valuator block cor-
responding to the four temperature ranges in Table 1.7. The resulting valuator description
is shown in Figure 1.19. Hysteresis could also be specified for the module to denote regions
where changes in the input values do not modify the output. This avoids fast switching
of the control signals due to noise. This completes the description of the functional link
between the temperature sensor “Temp” and the valuator block “SPR”.

At this point, note that the system structure is not completely defined. The connection
between the sensed temperature and the fan control has not been characterized.

• Control algorithm: The last specification step describes the control algorithm of the fan
controller. This completes the system structure description by relating the four temperature

1.5 Embedded Design Example: Fan Control System 33

Figure 1.20: System structure and table lookup transfer function (PSoC Express).

ranges in Table 1.7 to the required speed of the fan. In PSoC Express, this is achieved by
defining the transfer function of the module “Fan”. The transfer function was specified as
a table lookup, but other specification constructs are also available (e.g., priority encoder).

Table lookup transfer functions explicitly define the output states of a module for every
combination of its input values. Any input combination can have only one associated output
state, and only one input combination can be active at any time. Input combinations that
do not have any associated output states do not change the system state. For the fan
controller example, the valuator block “SPR” is first designated as the input to the “Fan”
module. Figure 1.20 illustrates the complete table lookup transfer function for the system.

Thus, the embedded fan controller specification developed with the graphical interface of
PSoC Express has the following important characteristics:

1. The specification is at a high level, that is few circuit details are present. The specification
is based on abstract parametric modules, which are defined mainly by their functionality.
There is no need to indicate the physical structure of the modules. The library modules
can be interconnected without having to consider interfacing requirements (e.g., the I2C
interfaces), or electrical loading constraints (e.g., impedance matching).

34 An Overview of Mixed-Signal, Embedded System Design

Graphical notations are intuitive and descriptive, require little learning effort, and are
easy to use. The specification is easy to change, for example for analyzing other types of
temperature sensing devices such as an RTD, or a thermocouple.

2. The specification is heterogeneous. It incorporates modules that operate continuously in
time, and routines that are executed upon the occurrence of certain events. The tempera-
ture sensor, tachometer, and fan operate continuously in time. The control algorithm and
the LCD execute only after an event, e.g., the exceeding of the temperature threshold value,
or displaying a new value, respectively.

3. The specification is comprehensive. It defines the input and output interfaces, functionality,
and design requirements of the embedded fan controller system.

The examples throughout this textbook further illustrate that specifications of mixed-signal
embedded systems are heterogeneous and comprehensive. In addition, using high-level specifica-
tions, instead of low-level descriptions, enhances the design options that can be analyzed, and
simplifies the specification process.

2. Specification testing and debugging. To verify the design, the temperature values are
changed to cover the entire range of -55◦C to +130◦C. For each temperature setting, the value of
the output “Fan” and “SPR” modules must change accordingly to conform to the specification
in Table 1.7.

3. System implementation. In this example, system implementation went through three
successive refinement steps, each step being guided by the goal of minimizing the cost of the final
implementation. The following refinement steps have been used in the design process.

• Functional partitioning: Functional partitioning identified the functional modules (i.e.,
blocks) of the implementation, and defined the block structure of the embedded fan controller
system. Hence, functional partitioning mapped the system specification to the blocks.

Each functional block has well-defined interfaces and functionality, but there are still few
implementation details available for the block. Also, there is little resource sharing between
blocks, such as shared hardware circuits or software routines. Therefore, functional parti-
tioning establishes the starting point in devising the controller architecture by defining the
signal and dataflow of the architecture, and the functionality of the architectural blocks.

• Implementation domain selection: This step refines the functional blocks in the system
architecture by deciding which of their sub-functions are to be implemented as continuous-
time, and which as discrete-time, processing units. The units can employ analog circuits,
digital circuits, and software routines. Each block is designed separately, and meet the
requirements set for the block interfaces and functionality.

For example, this step determines whether the fan control block that fixes the duty cycle,
α, should be a software routine, or a customized digital circuit. Using a software routine is
cheaper solution, but it might provide slower control of the fan than a dedicated hardware
circuit.

• Circuit design and software development: This refinement step completes the implementa-
tion process by designing the related analog and digital circuits, and developing the software
routines for the fan control algorithm, drivers, and interrupt service routines. This step is
then followed by the building of the physical implementation of the system.

1.5 Embedded Design Example: Fan Control System 35

(analog signal)

(digital signal)

From temperature

sensor

From tachometer

Reset

(digital signal)

System

management LCD device

interfacing module

Fan

interfacing module

Fan control

algorithmTachometer

interfacing module

Temperature sensing

interfacing module

System

initialization

(digital signal)

To LCD device

(digital signal)

To fan

Figure 1.21: Block-level design after functional partitioning.

The three refinement steps are detailed next for the fan controller.

A. Functional partitioning. Figure 1.21 presents the block-level structure of the embedded
fan controller. Starting from the system specification in Figures 1.19 and 1.20, the description is
organized into blocks for interfacing the system to the sensors and actuators, and implementing
the fan control algorithm (in Table 1.7). In addition, one block supervises the functioning of the
entire system. Now, the controller architecture and the inputs, outputs, and functionality of each
block in the architecture have been determined.

The architecture consists of the following blocks.

• Temperature sensor interfacing block: - converts the analog voltage produced by the tem-
perature sensor into a digital, unsigned, 8-bit data representing the temperature. This
provides the required accuracy for temperature sensing. This block also compensates for
the systematic errors that can occur during signal conversion, for example voltage offsets,
and ADC precision.

• Tachometer interfacing block: calculates the rotational speed of the fan (shaft speed) using
the digital signal output of the tachometer. The digital signal is utilized to generate an
interrupt signal serviced by a corresponding routine. The interval between two consecutive
interrupt signals is measured, and used to calculate the number of rotations per minute
(RPM) of the fan.

• Fan interfacing block: controls the fan operation by starting/stopping the fan and setting
its duty cycle, α, which is determined by the length of the “high time”, and “low time” of
the block’s digital output signal.

• LCD interfacing block: connects the LCD to the embedded system through a standard I2C
interface. The LCD displays the measured temperature and fan speed.

• Fan control algorithm: implements the control algorithm described in Table 1.7. This mod-
ule takes unsigned, digital inputs from the temperature sensing and tachometer interfacing
blocks. It produces digital control signals for the fan interfacing block, and data and control
signals for the LCD interfacing block.

• System management block: supervises the operation of the entire embedded system. Upon
system reset, including at boot time, it (1) initializes the system configuration, i.e., sys-

36 An Overview of Mixed-Signal, Embedded System Design

Data

conversion

Data

correction

ISR

Management
routines

Interfacing

circuit

TSI ISR

Signal
conversion

circuit

RPM

calculation

From temperature

sensor

(analog signal)

From tachometer

(digital signal) To fan

To LCD device

(digital signal)

(digital signal)

Set Value

Set PWM
pulse width

PWM
circuit

Set PWM

duty cycle

System
initialization

System

management

Fan control

algorithm

Temperature sensing

interfacing module

Tachometer

interfacing module

LCD device
interfacing module

interfacing module
Fan

TAC ISR

S
o

ft
w

a
re

H
a

rd
w

a
re

S
o
ft
w

a
re

S
o

ft
w

a
re

H
a

rd
w

.
S

o
ft

w
a

re
H

a
rd

w
a

re

Reset

(digital signal)

Figure 1.22: Refined block-level design after domain selection.

tem registers, interrupt service routine table, etc., (2) powers up analog circuits (e.g., the
analog-to-digital converters of the temperature sensor interfacing block), buffers, and the
tachometer interface, (3) creates the structures for interfacing the blocks, and (iv) starts
the execution of the fan control algorithm.

B. Implementation domain selection. Once the specification of each module was completed,
the design process further refined the composing modules. The resulting design is shown in
Figure 1.22. This figure details the four interfacing modules presenting their hardware and
software components:

• Temperature sensor interfacing module: includes hardware circuitry for converting the ana-
log input voltage into one-byte, unsigned, digital data representing the measured temper-
ature. The software module includes three layered routines that bridge the gap between
the unsigned data in the buffers of the conversion circuit and the data input to the control
algorithm. The signal conversion hardware includes analog-to-digital converters (ADC)
designed to offer a low-cost, required speed and precision for data conversion, and robust
operation. The software component includes an interrupt service routine executed each
time the embedded processor receives an interrupt from the signal conversion hardware.
The routine called TSI ISR performs digital processing and then moves the converted data
from the data buffer of the converter to a reserved memory address. The data correction
routine processes the read data to compensate for offset/resolution errors, and translates
the corrected value into the corresponding temperature value. This routine is called by the
fan control algorithm. Assembly code programming is introduced in Chapter 2, and ISR
programming in Chapter 3. Chapter 9 presents the signal conversion module, in detail.

• Tachometer interfacing module: consists of two software routines that compute the RPM
values based on the digital interrupt signal from the tachometer. ISR routine TAC ISR

1.5 Embedded Design Example: Fan Control System 37

cyclically executes a five state routine for interfacing with the tachometer: Upon receiving
the first interrupt signal, it disconnects the pin “connected” to the fan and sets it “high”,
so that the fan rotates at constant speed which is required for correct reading by the
tachometer. Upon receiving the next interrupt signal, the second state of the ISR waits for
the reading to settle, after switching the input signal multiplexing circuit. The third ISR
state measures and stores the first edge of the tachometer timer. The fourth state measures
the second edge of the tachometer timer, and calculates the time difference between the
two edges. Then, it reconnects the pin to the fan, so that fan control can resume. The fifth
state waits until the next interrupts are received, after which, it loops back to the first ISR
state. Routine RPM calculation computes RPM based on the time difference calculated in
the fourth ISR state. This routine is called by the control algorithm. Chapter 3 details the
ISR implementation.

• Fan interfacing module: includes hardware for generating the digital control signal for the
fan, and software routines that allow easy control of the module hardware from the control
algorithm. The module hardware is a pulse width modulator, a digital circuit for setting
the duration of high and low levels of the digital signal for the fan. These durations are
defined as multiples of a timer interval. The low level routine, Set PWM pulse width, is
used to configure the PWM control registers. Routine Set PWM duty cycle computes the
length of time length between the high and low levels for a required duty cycle of the fan.
Finally, the routine Set Value, which is called from the fan controller algorithm, finds the
necessary duty cycle using the measured value of the temperature. Chapter 4 presents the
design of customized digital circuits (e.g., PWM) by programming reconfigurable digital
blocks.

• LCD interfacing module: consists of digital hardware circuit and software routines for
interfacing the fan control algorithm to the display unit. The LCD and digital hardware
circuit are connected at the bus level. The LCD acts as a slave module controlled by the
digital hardware circuit of the interface. This circuit generates all control data for the
display and transmits the data serially, bit by bit. The LCD generates an interrupt each
time it receives a data byte, signaling the interface module that it can continue its execution,
for example by executing the ISR routine for transmitting the next byte. The management
routines initialize and set up the data buffers that hold the data transmitted by the ISR
routine and displayed on the LCD.

C. Circuit implementation and software development. The design was implemented using the
CY8C27443 PSoC chip [12] to provide a low-cost implementation of the embedded controller.
PSoC is a system on chip (SoC) that includes a wide variety of specific functional blocks, such
as configurable (i.e., programmable) analog and digital circuits, an 8-bit microcontroller, on-chip
program and data memory, and timers. Chapters 3 to 7 describe PSoC in detail.

Figure 1.23 shows the circuit structure of the fan controller:

• Temperature sensor interfacing module: includes both analog and digital circuits. The
analog circuits are a gain stage to amplify the input voltage from the sensor, and an ADC
to convert the voltage into 8-bit data. Different ADC types could be used [22], but a first–
order ∆Σ converter was selected because of its simplicity, robustness, and low cost. The
digital circuits include a buffer that stores the ADC output, and a decimator that performs
the digital processing required for the analog-to-digital conversion process. Chapters 6 and
7 discuss analog circuit design, including gain stages, and Chapter 9 offer details on the
functioning and design of ∆Σ ADCs. Once a data byte is available for a new temperature

38 An Overview of Mixed-Signal, Embedded System Design

In
te

rru
p
t s

ig
n
a
l

ADCGain

Interrupt signal

fs

Timer

Decimator

fd

PWM

(Customized digital circuits)

(Customized

digital circuits)

I2C interface

(Customized

digital circuits)

f clock

Input

port
Buffer

Input

Processing

unit

(Digital

circuit)

fPWM

Fan motor control circuit

f timer

interface circuit
Tachometer

fI2C

(Customized analog circuits)

From

temperature

sensor

port
Start/Stop/

initialize

Elapsed time

Start/Stop/initialize Set parameters

Temperature sensor interface circuits

2
 b

y
te

s
 fo

r

te
m

p
e
ra

tu
re

 v
a
lu

e

S
ta

rt
/s

to
p
/i
n
it
ia

liz
e

s
e
t
p
a
ra

m
e
te

rs

Output

port

From

tachometer

Output

ports

to LCD
To

fan motor

Figure 1.23: Circuit level implementation after domain selection.

reading, the module produces an interrupt for the processing unit, and the temperature
value is transferred.

The hardware required is the following: one analog PSoC block for the gain stage, one
analog PSoC block for the ADC, and one digital PSoC block for the decimator.

The software routines were developed in assembly and C code: the TSI ISR was written
in assembly code to ensure fast access to the decimator’s registers, and the data correction
and data conversion routines were written in C.

• Tachometer interfacing module: uses a digital timer to measure the interval between con-
secutive interrupt signals from the tachometer.

The hardware implementation required is one digital PSoC block for the timer.

The software routines include assembly code for the TAC ISR to provide access to the
interrupt mechanism of the chip, and C for the RPM routine.

• Fan interfacing module: one digital circuit was required for the pulse width modulator.

This required one digital PSoC block for the PWM.

The fan-related ISR was developed in assembly code, and the management routine in C.

• LCD interfacing module: required one digital PSoC block for the I2C interface with the
LCD. The driver routines were written in assembly code.

1.5 Embedded Design Example: Fan Control System 39

Figure 1.24: PSoC implementation (after circuit implementation and software development).

• Processing unit - executes the control algorithm and also the system management routine.
In addition, it starts/stops, and sets the parameters of the two sensing modules, the fan
interfacing module, and the LCD. The PSoC’s on-chip microcontroller executes these func-
tions. In addition, the implementation requires 21 bytes of data RAM, and 804 bytes of
program memory.

Figure 1.24 illustrates the PSoC implementation of all analog and digital circuits. The chip has 28
pins. Because the number of available pins is much larger than the number of the controller inputs
and outputs, the pin assignment was set to default, and is illustrated in Figure 1.25. Chapter 3
provides more details on PSoC’s I/O ports.

4. Physical implementation, testing, and debugging. After completing the hardware
and software design, the PSoC Express Development Kit (CY3210-ExpressDK) was used for

40 An Overview of Mixed-Signal, Embedded System Design

Figure 1.25: Implementation I/O pins.

the entire fan controller application, including the embedded controller, temperature sensor,
tachometer, fan, and LCD.

The design configuration was uploaded to PSoC via the USB port of the PC and MiniProg
which was connected to the target in-system serial programming (ISSP) connector. The PSoC
programmer was used to automatically program the targeted chip.

The circuit wiring was completed by connecting the “Fan” module. Pin 13 of the PSoC I/O
breadboard was connected to SlotA S4. Then to wire the “Temp” module, Pin 24 was connected
to voltage V ref1. Next, the “Tach” module, Pin 15 was connected to SlotA S6. The fan was
then connected to Slot A.

Figure 1.26 shows the flowchart for programming the LCD (CMX Dev Bd v1.02) used in this
application. LCD programming fixes the number of data bytes to be simultaneously displayed
on the LCD, the memory address of the data to be displayed, and the amount of data to be
displayed. This design displays the measured temperature and RPM value.

The system was operated by changing the value of voltage V ref1 and monitored using the
LCD. The duty cycle of slot A was set to 100%. The higher the duty cycle, the hotter the heater
gets.

Microsoft’s HyperTerminal can be used for more comprehensive monitoring of the system’s
operation. The on-board LCD can display only the values of three registers. However, there are
four registers of primary interest. Monitoring was accomplished by connecting the serial port
COM1 to the development board. Using HyperTerminal, the serial communication speed was set
to 38,400 bits per second. Then, the data transfer parameters were selected, for example ASCII
Setup, Echo typed characters locally for the ASCII Setup. Figure 1.27 shows HyperTerminal’s
graphical user interface.

The following steps were necessary to monitor the system. First, the system was reset by
pressing Master Reset. As a result, the message “CMX Dev Bd v1.02” was displayed on Hy-
perTerminal. Next, the duty cycle of slot A was set to 100% by typing the command “Slot A
100”. HyperTerminal returned the current parameters of slot A. Third, the I2C address and the
count value were defined by the command “Cird 04 04”. After entering this command, HyperT-

1.5 Embedded Design Example: Fan Control System 41

Figure 1.26: LCD device operation for monitoring and debugging.

Figure 1.27: Fan controller monitoring using HyperTerminal.

42 An Overview of Mixed-Signal, Embedded System Design

erminal continuously displayed the four register values, for “Fan”, “Tach”, “SPR”, and “Temp”,
respectively. The register values could be observed as the temperature varied.

To turn down the heat, the command “Slot A 0” was entered. Then, the command “Cird 04
04”which defined the I2C address and the count value. HyperTerminal then displayed the four
register values as the temperature decreased.

1.6 Conclusions

This chapter has introduced embedded mixed-signal systems and explained the top-down design
flow for developing performance-efficient implementations. A case study was presented that
illustrated the basic concepts.

Embedded mixed-signal systems are widely used in control applications, specialized interfac-
ing to powerful computing systems, providing application-specific functionality (coprocessors) to
general-purpose processors, and networked sensing and control devices. Embedded systems real-
ize a dataflow that consists of data (signal) acquisition by sensors, data processing and storing,
digital data communication to other embedded devices, and actuation. In addition, embedded
systems are subjected to very diverse design and performance constraints, including cost, time–to–
market, size, speed, accuracy, power and energy consumption, safety, robustness, and flexibility.
These are important differences between embedded systems and other computing devices.

The three defining elements of embedded mixed-signal systems are as follows: (i) the interfaces
to sensors, actuators, and data links, (ii) the embedded functionality for processing and control;
and (iii) the design and performance constraints that must be satisfied by the implementation.
The chapter introduces the three aspects.

• Interfaces: The system interfaces include both analog interfaces and digital interfaces.
Analog interfaces connect the analog sensors and actuators to the digital processor of the
embedded systems. Digital interfaces implement data communication channels by various
mechanisms, such as SPI, UART and I2C communication standards.

• Functionality: The embedded functionality is of four types: control-dominated function-
ality (expressed as finite state machines) data-dominated processing described by acyclic
dataflow graphs, multitasking functionality (denoted by task graphs) and multimode oper-
ation (defined by control and dataflow graphs). In addition, the functionality is executed
continuously, at discrete times (clocks), or triggered by events. This differentiates embedded
systems into continuous-time, discrete-time, and event-driven (reactive) systems.

• Design and performance constraints: Implementations of embedded systems must satisfy
a rich set of design and performance constraints. Constraints are either global, if they
characterize the entire system, or local, if they refer only to subsystems or modules of
the implementation. Constraint transformation is the process of mapping (translating) the
global constraints to local constraints. Also, the amount of existing constraint correlations
differentiates embedded systems into loosely coupled and tightly coupled systems.

This chapter has introduced the main features of architectures for embedded applications,
and some of the popular architectures. Embedded mixed-signal architectures have the follow-
ing subsystems: CPU, memory, input/output ports, interrupt subsystem, programmable digital
blocks, programmable analog blocks, and clocking subsystem.

Embedded systems’ implementations are developed systematically by following a top-down
design flow. The goal is to address the imposed design and performance requirements by

1.7 Further Readings 43

customization of the hardware and software to the application’s needs. The design flow con-
ducts a successive, and iterative, refinement process starting from a high-level description of the
embedded system until completing the implementation. This includes specification, functional
partitioning, system tradeoff analysis (including constraint transformation), design of the individ-
ual modules, analog circuit design, digital circuit design, software development, circuit modeling,
software characterization (profiling), and performance evaluation.

The second part of this chapter discussed an embedded fan control system case study and the
issues that arise in the top-down design flow of the fan controller. The controller modifies the
fan speed according to the temperature sensed by an analog temperature sensor. In addition,
the implementation must provide good accuracy for the sensed temperature, have low cost and
small size.

Additional, related topics discussed in this chapter included:

• A description of the fan controller (including the sensing and control principles).

• Development of the system specification based on the graphical notation of PSoC Express’
environment.

• Functional partitioning and tradeoff analysis for implementation domain selection. The
trade-off analysis presented also includes constraint transformation for mapping the global
system constraints to local constraints of the subsystems. Functional partitioning deter-
mines the signal processing flow of the implementation, for example the block structure
(each type of block has a basic functionality), block interfaces, and block connections. Im-
plementation domain selection determines whether the system blocks should be continuous-
time, discrete-time, or event-driven; analog or digital; and implemented in hardware or
software.

• The physical implementation, testing, and debugging step is based on the actual analog
circuits, digital circuits, and software routines of the final design. For the PSoC architecture,
the designs were implemented by programming the reconfigurable analog and digital blocks,
connecting the sensors and actuators, programming the LCD, and monitoring the system
operation with HyperTerminal.

1.7 Further Readings

There is an abundant amount of literature on embedded system design and various kinds of
embedded applications. F. Vahid and T. Givargis [39], and P. Marwedel [30] discuss important
theoretical aspects related to embedded system design, such as mathematical (formal) description
of embedded systems, specification languages for embedded design, and algorithms for automated
design and optimization of embedded systems.

A second category of material focuses on presenting architectures and hardware circuits for
embedded systems, including microprocessors, microcontrollers, and DSPs used in embedded
applications. T. Noergaard [32] provides a comprehensive discussion of embedded system ar-
chitectures encompassing hardware building blocks, processors, memory types, I/Os, buses, and
device drivers. R. Haskell [26] and J. Valvano [40] present designs for Motorola’s 68HC12 family
of microcontrollers, including the microcontroller architecture, interfacing, interrupts, and pro-
gramming in assembly code. T. Morton [31] also discusses embedded system design using the
Motorola’s 68HC11 and 68HC12 microcontrollers, but with more focus on embedded program-
ming, including assembly code programming, assembly program design and structure, real-time

44 An Overview of Mixed-Signal, Embedded System Design

I/O and multitasking, real-time multitasking kernels, and C language programming. K. Short [38]
presents embedded system design using Intel’s 80C188EB microprocessor with emphasis on mi-
croprocessor architecture and hardware design. M. Predko [35] discusses embedded design using
the PICmicro processor and details the PICmicro architecture, interfacing, software development,
debugging, and various embedded applications using the microcontroller. J. Hamblen and M. Fur-
man [25] discuss digital design using Altera’s MAX 7000 and FLEX 10 k programmable devices.
R. Ashby [20] describes the PSoC mixed-signal, system- on-chip architectures, and provides many
tips and tricks for using PSoC in real-world design.

A third category of work focuses on embedded software. D. Lewis [29] and M. Barr [21] present
embedded programming in C and C++ programming languages, data representation, mixing
C and assembly code, memory management, concurrent programming, scheduling, and system
initialization. Hardware and software coverification techniques are described by J. Andrews [19].

Other temperature-sensing based embedded systems are presented by M. Raaja in [36] and [37].
These systems use thermocouples and RTDs. Fundamentals of electric motors are discussed by
A. Hughes in [27] and C.-M. Ong [34], among others. R. Ohba presents many interesting applica-
tions and ideas for sensor-based embedded systems in [33], and J. Fraden explains the principles
and functions of many popular sensing devices [24].

1.8 Recommended Exercises 45

1.8 Recommended Exercises

1. List five embedded mixed-signal systems in your home/garage and five embedded mixed-signal
systems in your school library, cafeteria, and grocery store.

2. Identify five popular sensing devices, five actuation devices, (other than those discussed in the
chapter) and five embedded applications that could use these sensing and actuation devices.

3. What other embedded control applications could use the same signal flow as the embedded
fan controller? What is different in these applications?

4. Consider two embedded systems present in your home, and analyze the type of interfaces of
each. For each interface, state whether it is an analog interface or a digital interface. Identify
which part of each system is analog, and which is digital.

5. Select three embedded systems in your home, and identify what are the most important
constraints for each of them. Is it cost, size, weight, reliability, speed, easy to use, and so on?

6. Identify other applications that would involve both continuous and discrete time signals and
processing. What kind of interfacing procedures must exist between the two domains? Would it
be possible to modify the system structure so that all signals and processing belong to a single
domain, for example to the continuous- or discrete-time domains?

7. Discuss the structure of a modified fan controller subject to the constraint that should the
ambient temperature exceed the threshold value of 100◦C, the controller would immediately react
by shutting down the system.

8. Modify the structure of the system in Figure 1.13 so that it reads data from more sensors and
controls multiple fans. Discuss the advantages and limitations of the system structures.

9. The fan controller system discussed in this chapter could vary the duty cycle of the PWM
module based on the measured torque, T, instead of measuring the shaft speed ω, as was the
case in Section 1.5. Develop the signal processing flow that would implement this kind of control.
What kind of functional blocks does the design involve? What hardware circuits and software
routines are needed for the implementation? How does the performance and cost of your design
relate to those of the implementation in Section 1.5?

10. How would the system implementation change if the PWM module is implemented in software
instead of hardware as was the case in Section 1.5? What advantages and problems do you
anticipate in this case?

11. Specify and simulate the fan controller system using the C programming language. Develop
separate modules for the temperature sensor, fan, tachometer, processing unit, and LCD. Find a
solution to mimic the continuous time on a clocked (discrete-time) computer.

12. Consider an embedded system capable of autonomously parking an automobile. What kind of
sensing and actuation devices would your system use? Are such devices currently available? What
would be their defining characteristics? Describe the signal processing flow for the system. What
performance requirements must the parking system address? Create a block-level description of
the design.

13. Develop the signal processing flow and the block structure for a home monitoring system.
The system’s functionality must include the following: (1) activating/deactivating the security

46 An Overview of Mixed-Signal, Embedded System Design

alarm, (2) closing the garage doors at night, (3) turning lights on/off, and (4) watering the flower
garden. Identify the design and performance requirements of this application. What sensing and
actuation devices are needed? What are the building blocks of the system?1

14. Design the block structure of an intelligent garage door opener. The system must automati-
cally open/close the garage door, issue specific warning signals if (a) the car position is too close
to the garage walls, (b) the garage door cannot be closed, or (c) the humidity inside the garage
exceeds a specified threshold value. What are the design requirements for this application? What
sensing and actuation devices should be used to minimize the implementation cost and maximize
the reliability of the implementation?2

1Acknowledgment: This exercise was inspired by the article by J. Benjamin, M. Benjamin, Multifunctional
home control system. Circuit Cellar, 187:14-20, February 2006.

2Acknowledgment: This exercise was inspired by the article by V. Lick, “Intelligent automatic garage door
opener. Circuit Cellar,179:80-85, June 2005.

Bibliography

[1] MAX 7000 Programmable Logic Device Family, Data Sheet, DS-MAX7000-6.7, Al-
tera Corporation, September 2005.

[2] ARM 1136JF-S and ARM 1136J-S, Technical Reference Manual, Revision r1p1,
ARM DDI 0211H, ARM Limited.

[3] DSP56800, Family Manual, 16-Bit Digital Signal Controllers, DSP56800FM, Rev.
3.1, Freescale Semiconductor, November 2005.

[4] 80C552/83C552 Single-Chip 8-Bit Microcontroller with 10-Bit A/D, Cap-
ture/Compare Timer, High-Speed Outputs, PWM, Data Sheet, September 3 2002,
Philips Semiconductors.

[5] LM20 2.4V, 10µA, SC70, micro SMD Temperature Sensor, National Semiconductor,
DS100908, 1999.

[6] High-Precision ADC Mixed-Signal Controller, Maxim Integrated Products, Maxim
Dallas Semiconductor, Rev 1; 8/05.

[7] Intel XScale Microarchitecture for the PXA255 Processor, User’s Manual, March
2003.

[8] PIC24FJ1286GA, General Purpose 16-bit Flash Microcontroller, DS39747A, Mi-
crochip Technology, 2005.

[9] PNX 1300 Series Media Processors, Data Book, Preliminary Specification, Philips
Semiconductors, February 15 2002.

[10] PPC 405 Fx Embedded Processor Core, User’s Manual, IBM, SA 14-2764-00, Jan-
uary 28 2005.

[11] PSoC Express, Version 2.0, Cypress Semiconductor, 2006.

[12] PSoC Mixed Signal Array, Technical Reference Manual, Document No. PSoC TRM
1.21, Cypress Semiconductor Corporation, 2005.

[13] ADSP-2136x SHARC Processor, Hardware Reference Manual, Analog Devices, Re-
vision 3, May 2006.

[14] SMPS MOSFET IRF7463, International Rectifier, PD-93843A, March 30 2000.

[15] Spartan-3 FPGA Family: Complete Data Sheet, Product Specification, DS099 April
26 2006, Xilinx Inc.

48 BIBLIOGRAPHY

[16] TMS320C6000, Technical Brief, Texas Instruments, February 1999.

[17] RG-299R Future of Embedded Systems Technology, Business Communications Com-
pany, INC., 25 Van Zant Street, Norwalk, CT 06855, publisher@bccresearch.com.

[18] Motor Control with PSoC, presentation, Cypress Semiconductors, 2006.

[19] J. Andrews, Co-Verification of Hardware and Software for ARM SoC Design, New
York: Elsevier, 2005.

[20] R. Ashby, Designer’s Guide to the Cypress PSoC, New York: Elsevier, 2005.

[21] M. Barr, Programming Embedded Systems in C and C++, Sebastopol, CA:
O’ Reilly, 1999.

[22] M. Basinger, PSoC Device Selection Guide, Application Note AN2209, Cypress
Semiconductors, May 12 2005.

[23] E. Denton, Application Brief. Tiny Temperature Sensors for Portable Systems,
National Semiconductor Corporation, 2001.

[24] J. Fraden, AIP Handbook of Modern Sensors. Physics, Design and Applications,
Woodbury, NY: American Institute of Physics, 1993.

[25] J. O. Hamblen, M. D. Furman, Rapid Prototyping of Digital Systems, Boston:
Kluwer Academic Publishers, 2001.

[26] R. E. Haskell, Design of Embedded Systems Using 68HC12/11 Microcontrollers,
Upper Saddle River, NJ: Prentice Hall, 2000.

[27] A. Hughes, Electric Motors and Drives. Fundamentals, Types and Applications, New
York: Elsevier, Third edition, 2006.

[28] E. Lee, P. Varaiya, Structure and Interpretation of Signals and System, Reading
MA: Addison-Wesley, 2003.

[29] D. W. Lewis, Fundamentals of Embedded Software. Where C and assembly meet,
Upper Saddle River, NJ: Prentice Hall, 2002.

[30] P. Marwedel, Embedded System Design, Boston, MA: Kluwer Academic Publishers,
2003.

[31] T. Morton, Embedded Microcontrollers, Upper Saddle River, NJ: Prentice Hall, 2001.

[32] T. Noergaard, Embedded Systems Architecture. A Comprehensive Guide for Engi-
neers and Programmers, New York: Elsevier, 2005.

[33] R. Ohba, Intelligent Sensor Technology, New York: John Wiley, 1992.

[34] C.-M. Ong, Dynamic Simulation of Electric Machinery using MAT-
LAB/SIMULINK, Upper Saddle River, NJ: Prentice Hall, 1998.

[35] M. Predko, Programming and Customizing PICmicro Microcontrollers, Upper Sad-
dle River, NJ: McGraw-Hill, 2002.

[36] M. G. Raaja, RTD Temperature Measurement, Application Note AN2120, Cypress
Microsystems, September 12 2003.

BIBLIOGRAPHY 49

[37] M. G. Raaja, Measuring Temperature Using a Thermocouple, Application Note
AN2148, Cypress Microsystems, March 16 2004.

[38] K. L. Short, Embedded Microprocessor Systems Design. An Introduction Using the
INTEL 80C188EB, Upper saddle River, NJ: Prentice Hall, 1998.

[39] F. Vahid and T. Givargis, Embedded System Design. A Unified Hardware/Software
Introduction, New York: John Wiley, 2002.

[40] J. Valvano, Embedded Microcomputer Systems. Real Time Interfacing, Thomson,
Third edition, London: 2007.

Chapter 2

Microcontroller Architecture

The chapter presents the main characteristics of a microcontroller instruction set,
and discusses programming techniques in assembly language for several applications.
It also defines the instruction set architecture of PSoC’s M8C microcontroller.

The instruction set of the M8C microcontroller consists of instructions for (i) data transfer,
(ii) arithmetic operations, (iii) logic operations, (iv) execution flow control, and (v) other miscel-
laneous instructions.

The microcontroller provides ten addressing modes, which result from combining four basic
modes: immediate, direct, indexed, and indirect addressing. Each addressing mode defines a
specific tradeoff among the execution time of the code, the required program memory, and the
flexibility in modifying the code.

The PSoC memory space includes SRAM for storing data, and nonvolatile memory for storing
the program code and the predefined subroutines used in booting up the architecture, accessing
the flash memory that holds the application program, and circuit calibration. In addition, the reg-
ister space stores the status and control information of the embedded mixed-signal architecture.

Several applications illustrate programming techniques in assembly language, and discuss the
performance of these solutions. The applications include data block transfer, stack operation,
unsigned data multiplication, calling assembly routines from programs in high-level programming
languages, bit manipulations, and sequence detectors.

The chapter has the following structure:

• Section 1 presents M8C’s instruction set and addressing modes.

• Section 2 explains PSoC’s SRAM and ROM subsystems.

• Section 3 presents chapter conclusions.

2.1 Microcontroller Architecture

PSoC’s M8C microcontroller is based on an eight-bit Harvard architecture with separate data
and address buses. Figure 2.1 shows the architecture of the M8C, that is the microcontroller
structure, its internal registers and external memory space [2].

A. Doboli, E.H. Currie, Introduction to Mixed-Signal, Embedded Design,
DOI 10.1007/978-1-4419-7446-4 2, c© Springer Science+Business Media, LLC 2011

52 Microcontroller Architecture

DB[7:0]

DA[7:0] XIO IOR IOW

Flash
Page 0

(256 bytes)

Page k

(256 bytes)

Bank 0

(256 bytes)

Bank 1

(256 bytes)

ID[7:0] MW MR
SRAM

page

EPROM

F (CPU_F)

Non−volatile memory space

PC X ASP

SRAM memory space Register space

.....

M8C Microcontroller

Figure 2.1: The M8C microcontroller structure [2].

The M8C has five internal registers.

• A Register (Accumulator) an eight bit, general-purpose register used by instructions that
involve data transfer, arithmetic and logical operations, jump instructions, and so on.

• X Register (Index Register) an eight bit register that can be used either as a general-purpose
register, similar to register A, or for implementing certain addressing modes, for example
source-indexed and destination indexed addressing.

• F Register (Flag Register), also referred to as the CPU F register an eight bit, nonaddress-
able register located at address x,F7H.1 This register stores the various flag and control
bits of the microcontroller utilizing the following bit structure.

– Bit 0 is the GIE (Global Interrupt Enable) bit and determines which of the external
interrupts are enabled, or disabled.

– Bit 1 is the ZF (Zero Flag) bit, and Bit 2, the CF bit (Carry Flag). Both bits are set
by certain types of data transfers, or by data processing instructions.

– Bit 4 is the XIO bit (IO Bank Select), determines the active register bank.

– Bits 6 and 7 are the PgMode bits (Page Mode). They control the accessing of data
stored in SRAM. More details are offered in Subsection 2.2.

• SP Register (Stack Pointer) an eight bit register that points to the top of the stack. The
SRAM page of the stack is pointed to by the eight-bit STD PP register, in the register
space.

• PC Register (Program Counter) stores the 16-bit program memory address, representing
64 K of memory space, and points to the next instruction to be executed.

The PSoC memory space consists of three distinct memory regions:

• Nonvolatile memory space consisting of the permanent read-only memory (EPROM) and
flash memory, that are used to store the program code to be executed by the M8C processor.
The size of the flash memory space can be up to 64 K words, inclusive. The address of a
memory word is pointed to by the PC register. The data read is returned via a dedicated
eight-bit bus, called ID[7:0], as shown in Figure 2.1.

1An ‘x’ before the comma in the address field indicates that this register can be read or written to, no matter
what bank is used.

2.1 Microcontroller Architecture 53

2(3) AND F,

6(2) OR A,

5(1) ADD A,

(4) MOV X, 7

(a) (b)

register X

Decoder

opcode immediate value

instruction

register A register F

Figure 2.2: Source-immediate addressing mode.

• SRAM space stores both global and local variables, and the stack implementation. The
maximum size of the SRAM space is 2048 words, inclusive, and the number of pages is
limited to eight. Because each page is 256 bytes long, eight-bit address words are required
to access an SRAM page. The accessing of pages is controlled by the “control bits” in
the CPU F (CPU Flags) and CUR PP (Current Page Pointer) registers. The SRAM and
register spaces share the same eight-bit address and data buses, DA and DB, respectively.
Control signals MR and MW indicate a memory read and a memory write, respectively.

• Register space consists of the registers needed to control PSoC’s resources, for example the
digital and analog reconfigurable blocks, SRAM and interrupt system. Additional details
about the individual registers are provided as PSoC’s programmable hardware is discussed
later in the text.

The M8C architecture includes two register banks that are selected by bit four (bit XIO)
of the CPU F register. Having two register banks is useful for dynamic hardware recon-

figuration (i.e., when the hardware is reconfigured during execution, to provide different
functionality and/or performance). Each of the banks stores the control information for a
configuration mode.

(Subsection 2.2 provides additional details about the PSoC memory system.)

2.1.1 Microcontroller Addressing Modes

The microcontroller addressing modes impose different conventions, that is rules for generating
the address used in accessing SRAM. Address modes range from very simple address generation
rules, such as utilizing the physical address of the word, specified in a field of the instruction word,
to the implementation of more complex rules that use index registers, or indirect addressing based
on pointers.

Different addressing modes impose different tradeoffs with respect to the (i) flexibility in ad-
dressing memory, (ii) number of instructions required to prepare a memory address, (iii) number
of clock cycles required to access memory, and (iv) the number of registers utilized by an address-
ing mode. Simple addressing modes, for example those specifying the operand value, or indicating
the physical address as part of the instruction word, offer faster memory access, execute in fewer
clock cycles, and require fewer instructions to generate the address. The major disadvantage
of such addressing schemes is their inflexibility, because they impose a rigid mapping of data
to memory words. Unless consistent addressing guidelines are followed, and reused in each new
application, it is difficult to link modules with each other.

54 Microcontroller Architecture

(6) ADD [24], 6

(3) MOV [100], X

(4) SUB [12], A

(5) MOV [3], [9]

(a)

Decoder

RAM

memory

Register

space

address

source addressopcode

(b)

instruction

register A

(2) MOV A, REG[6]

register X

(1) MOV A, [7]

Figure 2.3: Source-direct and destination-direct addressing modes.

The M8C microcontroller supports the following addressing modes.

A. Source-Immediate Addressing

Figure 2.2(a) illustrates source-immediate addressing. Instructions using this mode include a field
that contains the value of one of the instruction operands. The other operand, and the result,
are kept in registers A, X, and F, respectively.

Figure 2.2(b) shows four instructions that use source-immediate addressing. The first instruc-
tion adds the value 5 to the value in register A, and the result is stored in register A. The second
instruction performs a bitwise OR operation on the bits of register A and the mask ‘00000110’.
As a result, bits 1 and 2 of register A are set to the value ‘1’ and the rest of the bits in register
A are unchanged. The third instruction describes a bitwise AND operation between register F,
the register holding the flag and control bits, and the mask ‘00000010’. This instruction resets
all bits of register F except for bit 1, which is left unchanged. The fourth instruction loads the
value “7” into register X.

B. Source-Direct and Destination-Direct Addressing

Figure 2.3(a) describes source-direct and destination-direct addressing. The source address field
of the instruction, for source-direct addressing, contains the address of a location in either the
SRAM space, or the register space. For example, the first instruction in Figure 2.3(b), MOV A,
[7], points to the SRAM cell at the physical address 7. The value found at this address is loaded
into register A. The second instruction is MOV A, REG[6] and refers to the register at address 6
of the register space. Its contents are loaded into the A register.

Destination-direct addressing uses a field of the instruction word to store the destination
address. A destination location can be in SRAM or in the register space. The third instruction
in Figure 2.3(b) uses destination-direct addressing. The value in the X register is loaded in SRAM

2.1 Microcontroller Architecture 55

+

opcode source index

instruction

RAM

memory

Register

space

Decoder

register X

(1) MOV A, [X+7]

(2) MOV X, [X+6]

(4) ADD [X+6], 7

(3) XOR [X+6], A

address

(b)(a)

register A register X

Figure 2.4: Source-indexed and destination-indexed addressing modes.

at the physical address 100. Similarly, the fourth instruction subtracts the value in register A
from the value at SRAM address 12, and the result is stored at SRAM address 12.

Source-direct and destination-direct addressing are combined in instructions that include two
address fields, one to specify the address of the source and the other, the destination address.
This combined mode is called destination-direct source-direct addressing [2]. Instruction five, in
Figure 2.3(b), illustrates a “move” instruction using source-direct and destination-direct address-
ing. In this example, the value in memory address 9 is copied into location with the memory
address 3.

Source-immediate and destination-direct addressing can also be employed simultaneously by
an instruction. One field of the instruction stores the value of one of the source operands,
using source-immediate addressing. A second field contains the address of the destination, which
for certain instructions also represents the destination-direct address of the second operand.
Instruction six, in Figure 2.3(b), illustrates the addition instruction in which the source operand
is accessed by immediate addressing (the operand’s value is 6), the second operand is at the
SRAM address 24, and the result is stored at address 24. Destination-direct addressing is used
to determine the destination.

C. Source-Indexed and Destination-Indexed Addressing

Figure 2.4(a) is a summary of the characteristics of source-indexed and destination-indexed ad-
dressing. For source-indexed addressing, the instruction includes a field for the source index that
represents the relative displacement of the addressed memory location with respect to a base
address stored in the index register X. Hence, the address of the accessed memory location is
obtained by adding the content of the X register and the source index field. The address can
point to a location in either the SRAM space, or to the register space.

The address of the memory location is loaded into the A or X register, depending on the value
of the instruction opcode. Figure 2.4(b) shows two instructions using source-indexed addressing.

56 Microcontroller Architecture

MOV A,[X+7] loads the A register with the value of the memory cell at address register X + 7.
MOV X,[X+6] loads the X register with the value at address register X + 6.

Instructions using destination-indexed addressing include a field that specifies the offset of
the destination related to the reference address stored in the X register. Instruction three in
Figure 2.4 shows an exclusive OR (XOR) instruction with one operand located in the A register
and the second operand at the address given by the value “register X + 6”. The result of the
instruction is stored at the address of the second operand, that is “register X + 6”.

Destination-indexed and source-immediate addressing can also be combined. These instruc-
tions use one of their fields to define a value, for example, used as an operand in an arithmetic
operation, and a second field to store the offset of the second operand and result, as in the case
of destination- indexed addressing. The fourth instruction in Figure 2.4(b) shows an addition
instruction using destination-indexed and source-immediate addressing. One operand has a value
of 7. The second operand is found at the address given by the result of “register X + 6”. The
result is stored at the same address.

D. Source-Indirect and Destination-Indirect Postincrement Addressing

Instructions using source indirect postincrement addressing are often used in transferring blocks
of data, and include a field containing the SRAM address of a pointer to the source data. After
executing the instruction, the value of the pointer is incremented, so that the next datum in the
block can be accessed. The pointer is always located in the current memory page pointed to by
the CUR PP register at the address in the register space. This pointer references data located in
the SRAM page pointed to by the MVR PP register. (Additional details are given in the sections
on MVI instructions, the only instructions that use this mode.)

Destination-indirect postincrement addressing uses a similar addressing scheme for the desti-
nation. The instruction field contains the address of a pointer used to refer to the destination.
After executing this instruction, the value of the pointer is incremented. The pointer is always
located in the current SRAM page pointed to by the CUR PP register. The destination is located
in the SRAM page pointed to by the MVW PP register. MVI instructions are the only ones that
use this addressing mode. (Additional details are given in the sections on MVI instructions.)

The mechanism for these two addressing modes is summarized in Figure 2.5.

2.1.2 Instruction Set

The M8C instruction set includes instructions for (i) data transfer, (ii) arithmetic operations,
(iii) logical operations, (iv) execution flow control, and (v) other miscellaneous instructions. These
instructions use source-immediate, source-direct, source-indexed, source-indirect-postincrement,
destination-direct, destination-indexed, and destination-postincrement addressing.

A. Instructions for Data Transfer

Instructions for data transfer include the following instructions: MOV, MVI, SWAP, POP, PUSH,
ROMX, and INDEX instructions. The instructions are detailed next.

A.1 MOV and MVI instructions

MOV instructions transfer data among the A, SP, and X registers, SRAM space, and register
space. Table 2.1 lists the different kinds of MOV instructions. For each instruction, the table

2.1 Microcontroller Architecture 57

Table 2.1: MOV instructions [2].

Instruction
Semantics Opcode Bytes Cycles

MOV X,SP X ← SP 0x4F 1 4

MOV A,expr A ← expr 0x50 2 4

MOV A,[expr] A ← SRAM[expr] 0x51 2 5

MOV A,[X+expr] A ← SRAM[X+expr] 0x52 2 6

MOV [expr],A SRAM[expr] ← A 0x53 2 5

MOV [X+expr],A SRAM[X+expr] ← A 0x54 2 6

MOV [expr1],expr2 SRAM[expr1] ← expr2 0x55 3 8

MOV [X+expr1],expr2 SRAM[X+expr1]← expr2 0x56 3 9

MOV X,expr X ← expr 0x57 2 4

MOV X,[expr] X ← SRAM[expr] 0x58 2 6

MOV X,[X+expr] X ← SRAM[X+expr] 0x59 2 7

MOV [expr],X SRAM[expr] ← X 0x5A 2 5

MOV A,X A ← X 0x5B 1 4

MOV X,A X ← A 0x5C 1 4

MOV A,REG[expr] A ← REG[expr] 0x5D 2 6

MOV A,REG[X+expr] A ← REG[X+expr] 0x5E 2 7

MOV [expr1],[expr2] SRAM[expr1] ←
SRAM[expr2]

0x5F 3 10

MOV REG[expr],A REG[expr] ← A 0x60 2 5

MOV REG[X+expr],A REG[X+expr] ← A 0x61 2 6

MOV REG[expr1],expr2 REG[expr1] ← expr2 0x62 3 8

MOV
REG[X+expr1],expr2

REG[X+expr1] ← expr2 0x63 3 9

58 Microcontroller Architecture

shows the opcode of the instruction, the number of bytes occupied by the instruction, and the
number of clock cycles required to execute the instruction.

The semantics of the instructions and the addressing mode to be used are as follows.

• MOV X,SP: The value of the SP register is loaded into the X register.

• MOV A,expr: The value of expr is loaded into the A register. This instruction uses imme-
diate addressing for accessing the source value to be loaded into the register.

• MOV A,[expr]: The value found at address expr in SRAM is loaded into the A register
(source-direct addressing).

• MOV A,[X+expr]: The value in the SRAM, at the address given by the value “X register
+ expr”, is loaded into the A register (source-indexed addressing).

• MOV [expr],A: This instruction copies the value in the A register to the SRAM cell at
address expr (destination-direct addressing).

• MOV [X+expr],A: The value in the A register is stored in the SRAM at the address
“X register + expr” (indexed addressing for the destination).

• MOV [expr1],expr2: Value expr2 is loaded into SRAM at address expr1 (source-immediate
and destination-direct addressing).

• MOV [X+expr1],expr2: Value expr2 is stored in SRAM at address “X register + expr1”
(source-immediate and destination indexed addressing).

• MOV X,expr: The X register is loaded with the value expr (source-immediate addressing).

• MOV X,[expr]: The value in SRAM, at address expr, is copied into the X register (source-
direct addressing).

• MOV X,[X+expr]: The X register is loaded with the value found in SRAM at address
“X register + expr” (source-indexed addressing).

• MOV [expr],X: The content of the X register is stored in SRAM at the address expr
(destination-direct addressing).

• MOV A,X: The A register is loaded with the value in the X register.

• MOV X, A: The value in the A register is copied into the X register.

• MOV A,REG[expr]: This instruction loads the A register with the value in register expr,
which is in the register space.

• MOV A,REG[X+expr]: Using the source-indexed addressing mode, the A register is loaded
with the value in the register at address “X register + expr”.

• MOV REG[expr], A: Register expr is loaded with the value of the A register.

• MOV REG[X+expr],A - The value in the A register is copied into the register pointed to
by the value of “X register + expr” (destination indexed addressing).

• MOV REG[expr1],expr2 - Value expr2 is loaded into the register selected by expr1 (destination-
direct addressing).

• MOV REG[X+expr1],expr2 - Value expr2 is stored into the register pointed by expression “X
register + expr1” (destination indexed addressing).

2.1 Microcontroller Architecture 59

VWh

SRAM page

....

SRAM page

....

instruction

XYh

VWh

CUR_PP MVR_PP (MVW_PP)

accessed location

XYh

Figure 2.5: MVI instructions.

If the value zero is loaded into the A register, the ZF flag (Zero Flag) is set and the CF flag
(Carry Flag) remains unchanged.

MVI instructions implement data transfers using source indirect and destination indirect
addressing. Table 2.2 shows the two types of MVI instructions. In contrast to MOV instructions,
the expr field of a MVI instruction is a pointer to a SRAM cell, for example the contents of
SRAM at address expr is an address of another SRAM cell.

• MVI A,[expr] loads the A register with the contents of the memory cell pointed to by
[expr], and [expr] is incremented. The SRAM cell is in the SRAM page pointed to by the
MVR PP register. The last three bits of the MVR PP (MVR PP[2:0]) register at address
0,D4H select the SRAM page for MVI instructions (source indirect addressing).

• MVI [expr],A stores the value found in the A register in the SRAM cell referred to by the
pointer at address expr and the pointer is incremented. The SRAM cell is located in the
SRAM page pointed to by the MVW PP register. The last three bits of the MVW PP
register, that is bits 2-0, (MVW PP[2:0]), at address 0,D5H, select the SRAM page for the
MVI instruction (destination indirect addressing).

The CF flag is unchanged by these instructions. If the value zero is loaded into register
A, the flag ZF is set. Figure 2.5 illustrates the source indirect post-increment and destination
indirect post-increment addressing used by MVI instructions. The address field of the instruction
points to a location in the current SRAM page selected by the CUR PP register. In the figure,
this location is pointed to by XYh. Then, the content of the selected location, shown as value
VWh in the figure, is used as a pointer to a memory location in the SRAM page selected by the
MVR PP register for MVI A, [expr] instructions, and by the MVW PP register for MVI [expr],A
instructions. This is the memory location used in the data transfer.

Table 2.2: MVI instructions [2].

Instruction Semantics Opcode Bytes Cycles

MVI A,[expr] A ← SRAM[SRAM[expr]] 0x3E 2 10
SRAM[expr] ← SRAM[expr] + 1

MVI [expr], A SRAM[SRAM[expr]] ← A 0x3F 2 10
SRAM[expr] ← SRAM[expr] + 1

60 Microcontroller Architecture

Source

05h

08h

10h

A2h

80h

81h

82h

83h

...

...

80h10h

90h

91h

92h

93h

...

...

Destination

90h11h

Figure 2.6: Data vector transfer example.

Characteristics of MOV and MVI instructions

As shown in Table 2.1, there is a variety of ways in which data can be transferred in a system.
Immediate, direct, indexed, and indirect post-increment addressing have specific execution times
that are expressed in terms of clock cycles. Each requires different amounts of memory for storing
their code, expressed in bytes, and some modes involve the A and X registers. Finally, the four
addressing modes offer specific flexibility and benefits in terms of reusable, assembly language,
source code that can be incorporated into new applications.

With respect to execution times, accessing the A register requires the shortest time, followed
by X register accesses, register space accesses, and finally SRAM accesses, which are the slow-
est. Immediate addressing is the fastest, followed by direct addressing, and indexed addressing.
MOV [expr1],[expr2] requires the longest execution time, viz., ten clock cycles, because both
source and destination are located in SRAM, and involve direct addressing.

Example (Execution time for addressing modes). The following example illustrates the perfor-
mance characteristics of the four addressing modes. The goal is to transfer a data vector of
size 4 from address A in the SRAM to address B in memory. In this example, a data value is
one byte long, and the four data values are stored at consecutive memory locations. Figure 2.6
is a graphical representation of the operations to be performed. Table 2.3 shows the perfor-
mance characteristics of the four description styles, namely, the execution time in clock cycles,
nonvolatile (flash) memory requirement in bytes, corresponding number of instructions, and the
flexibility in the development of new programs.

If the four values to be transferred are known in advance, immediate addressing can be used for
data transfer. Figure 2.7(a) shows the source code for this example. Each of the MOV instructions
uses source-immediate addressing to point to the value to be transferred, and destination-direct
addressing to point directly to the location that the data are to be copied to in memory. The data
transfer is fastest in this case, requiring only 32 clock cycles, which is approximately three times
less than the number of clock cycles required for the slowest case, that is using indirect post-
increment addressing. Also, the flash memory requirement is the smallest of the four cases, with
only 12 bytes of memory being required to store the four instructions. However, this method
provides little flexibility, which can be a significant disadvantage. If other values have to be
transferred, or if data are stored at different memory locations, then the code has to be modified.

Figure 2.7(b) shows the assembly language source code required for the data transfer if source
and destination-direct addressing are used. The flash memory requirements are still small (only

2.1 Microcontroller Architecture 61

(d)

(2) MOV [91h], 08h

(3) MOV [92h], 10h

(4) MOV [93h], A2h

(1) MOV [90h], [80h]

(2) MOV A, [X+80h]

(3) MOV [X+90h], A

(4) INC X

(5) MOV A, [X+80h]

(6) MOV [X+90h], A

(7) INC X

(8) MOV A, [X+80h]

(9) MOV [X+90h], A

(2) MOV [91h], [81h]

(3) MOV [92h], [82h]

(4) MOV [93h], [83h]

(1) MOV [10h], 80h

(2) MOV [11h], 90h

(3) MVI A, [10h]

(4) MVI [11h], A

(5) MVI A, [10h]

(6) MVI [11h], A

(7) MVI A, [10h]

(8) MVI [11h], A

(9) MVI A, [10h]

(1) MOV X, 00h

(a) (b)

(10) INC X

(11) MOV A, [X+80h]

(12) MOV [X+90h], A

(13) INC X

(10) MVI [11h], A

(c)

(1) MOV [90h], 05h

Figure 2.7: Assembly code for data vector transfer.

12 bytes), but the execution time is slightly longer than for the first case. Forty clock cycles are
required for the data transfer and although the flexibility is somewhat better, overall it is still
poor. Although this code is independent of the data values that are transferred, it will have to
be changed if different memory addresses and regions for source and destination are involved in
the transfer.

Figure 2.7(c) shows the source code using indexed addressing. The X register stores the index
of the data involved in the transfer. This register is initialized to zero, and incremented after
each transfer. Because of the instructions available, a data value has to be copied from the source
location to the A register, and then moved from the A register to the destination location. This
requires thirteen instructions, which occupy 22 bytes of flash memory, almost double the amount
needed for the first two cases. Although the execution time is also much longer (viz., 68 clock
cycles) which is more than twice the time for the case in Figure 2.7(a), this case affords greater
flexibility. If different memory regions are involved in the transfer, then only the base addresses
of the regions (i.e., 80h for the source, and 90h for the destination) have to be updated. This is
easily achieved by modifying the associated label values for the source and destination.

Figure 2.7(d) shows the source code, using indirect post-increment addressing. The memory
locations at addresses 10h and 11h store the base addresses for the source and destination regions.
Using MVI instructions, a data value is loaded from the source region into the A register, and
then moved to the destination region. No increment instructions are needed, as in the third case,
because the pointer values are automatically incremented. As a result only ten instructions are
required, which occupy 22 bytes in memory, as in the indexed addressing case. The execution

62 Microcontroller Architecture

time is 96 clock cycles, the longest time of the four cases. The flexibility is similar to the third
case except that the labels for the two base addresses have to be changed if different memory
regions are involved in the data transfer.

Clearly, if flexibility and the ease of changing the source code is the main concern, indexed
addressing should be used. If minimal execution time is the focus, then direct addressing provides
fast data transfer while retaining flexibility.

In general, the execution time, in terms of clock cycles required for transferring a data vector
of size K from address A to address B, can be expressed by:

Number of clock cycles = K ×
n

∑

i=1

cyclesi (2.1)

where n is the number of instructions required to transfer one data value, i is the index for the
set of instructions required for the transfer of one data value and cyclesi represents the number
of cycles required for the i–th instruction.

The execution time depends on the number of data items, K, to be transferred and the number
of clock cycles required to transfer each. To reduce the execution time, direct addressing should be
used when small, fixed-size amounts of data need to be accessed, and indexed addressing should
be employed if large datasets, or sets of unknown size, are involved. In addition, the relative
positioning of the allocated memory for the source and target also influences the number of clock
cycles required. For example, manipulating compact memory regions requires the execution of
fewer instructions and hence fewer clock cycles than if data are not in contiguous memory regions.

Table 2.3: Characteristics of the four specification styles.

Immediate Direct Indexed Indirect

Execution time 32 40 68 96
(clock cycles)
flash memory 12 12 22 22

(number of bytes)
Number of 4 4 13 10
instructions
Flexibility very low low high high

A.2 SWAP Instructions

Swap instructions exchange the contents of the A, X, SP registers and SRAM, respectively.
Table 2.4 lists the four kinds of SWAP instructions and is a summary of the semantics of each
instruction, its opcode, the number of bytes occupied by the instruction in ROM, and the number
of clock cycles required for its execution.

The semantics of the SWAP instructions is as follows:

2.1 Microcontroller Architecture 63

• SWAP A,X: This instruction swaps the contents of the A and X registers.

• SWAP A,[expr]: The contents of the A register is swapped with the contents of the SRAM
cell at address expr (source-direct addressing mode).

• SWAP X,[expr]: This instruction swaps the contents of the X register with the contents of
the SRAM cell at address expr (source-direct addressing).

• SWAP A,SP: The contents of the A and SP registers are exchanged.

While SWAP instructions do not modify the CF flag, the ZF flag is set if a value of zero is
loaded into the A register.

Table 2.4: SWAP instructions [2].

Instruction Semantics Opcode Bytes Cycles

SWAP A, X aux ← X; X ← A 0x4B 1 5
A ← aux

SWAP A, [expr] aux ← SRAM[expr]; SRAM[expr] ← A 0x4C 2 7
A ← aux

SWAP X, [expr] aux ← SRAM[expr]; SRAM[expr] ← X 0x4D 2 7
X ← aux

SWAP A, SP aux ← SP; SP ← A 0x4E 1 5
A ← aux

A.3 POP and PUSH Instructions

POP and PUSH instructions are used to implement stack operations. PUSH places a value on
the stack, at the location pointed to by the stack pointer, and then increments the stack pointer
register. POP returns a value from the stack, and decrements the stack pointer register. Table 2.5
lists the various types of POP and PUSH instructions. This table is a summary of the semantics
of the instructions, their respective opcodes, the number of bytes they occupy in SRAM, and the
number of clock cycles required for execution.

The semantics for POP and PUSH instructions is as follows:

• POP A: The SRAM cell value at address SP – 1 is loaded into the A register. The stack
pointer, stored in the SP register, is decremented.

• POP X: The SRAM cell value at address SP – 1 is loaded into the X register. The stack
pointer is decremented.

• PUSH A - The content of the A register is stored on the stack at the location pointed to
by SP register. The stack pointer is incremented.

• PUSH X - The value in register X is stored on the stack. The stack pointer is incremented.

64 Microcontroller Architecture

Table 2.5: POP and PUSH instructions [2].

Instruction Semantics Opcode Bytes Cycles

POP A A ← SRAM[SP-1] 0x18 1 5
SP ← SP-1

POP X X ← SRAM[SP-1] 0x20 1 5
SP ← SP-1

PUSH A SRAM[SP] ← A 0x08 1 4
SP ← SP+1

PUSH X SRAM[SP] ← X 0x10 1 4
SP ← SP+1

POP and PUSH instructions do not modify the CF flag and PUSH instructions do not affect
the ZF flag. If a value of zero is loaded by a POP instruction into the Aregister, the ZF flag
is set.

The SRAM page, which can be located in any of the eight SRAM pages, is selected by the three
least significant bits of the STD PP (STD PP[2:0]) register located at address 0,D1H. Because
the stack is located in a single SRAM page, after reaching address FFH, the stack pointer, SP,
returns to address 00H. Upon reset, the default value of the STD PP register is set to 00H,
and stack operations then refer to SRAM page zero, unless the STD PP register is modified.
Figure 2.8(a) shows the stack implementation for the M8C.

Example. Figures 2.8(b) and (c) show the source code for “safe POP” and “safe PUSH”
instructions. The safe PUSH operation places a value on the stack only if the stack is not
full. Similarly, the safe POP operation pops a value from the stack only if the stack is not empty.
Location 60h in SRAM stores the number of values on the stack and the value at location 61h
indicates the size of the stack. If the number of values is equal to the stack size, then the “zero
flag” is set after the SUB instruction in line 2 of the Figure 2.8(b). In this case, execution jumps
to the label END PUSH. Otherwise, if the stack is not full, the value is pushed onto the stack
(instruction 5) and the variable holding the number of values is incremented (instruction 6). The
pushed value is found in the SRAM at address 80h (instruction 4).

The safe POP operation first checks whether there are values in the stack. If the number
of values is zero (i.e., the stack is empty) and the ZF flag is set after executing instruction 1 in
Figure 2.8(c) execution jumps to the “end” label. Otherwise, the value on top of the stack is
first POP-ped into the A register (instruction 3), and then copied into SRAM at address 81h
(instruction 4). Finally, the variable defining the number of values in the stack is decremented
(instruction 5).

2.1 Microcontroller Architecture 65

A.4 Data transfer from nonvolatile memory: ROMX and INDEX instructions

ROMX instructions transfer data, for ceample global constants, from the nonvolatile memory
(i.e. flash memory) to the A register. Table 2.6 is a summary of the semantics of the instruction,
its opcode, the number of bytes required to store the instruction, and the number of clock cycles
required for execution. The current value of the PC register is stored in two temporary locations,
t1 and t2 with the less significant byte in the former and the more significant byte in the latter.
The address of the memory location to be accessed is determined by the contents of the X and A
registers. The X register contains the less significant byte of the address, and the A register the
more significant byte. After loading the PC register with the address, the value is copied into
the A register. Finally, the PC register is restored to the value saved in the temporary locations,
t1 and t2.

Table 2.6: ROMX instructions [2].

Instruction Semantics Opcode Bytes Cycles

ROMX t1 ← PC[7:0]; PC[7:0] ← X; 0x28 1 11
t2 ← PC[15:8]; PC[15:8] ← A;
A ← ROM[PC]; PC[7:0] ← t1;

PC[15:8] ← t2

If the A register is loaded with a value of zero, then the zero flag is set. However, the Carry
Flag is not changed.

(2) SUB A, [61]

(3) JZ END_PUSH

(4) MOV A, [80]

(5) PUSH A

(6) ADD [60], 1

;PUSH operation

END_PUSH:

(b)

STK_PP

(X+1)h

Xh

(X+2)h

SP

(a)

;POP operation

END_POP:

(c)

(1) MOV A, [60]

(2) JZ END_POP

(3) POP A

(5) SUB [60], 1

(1) MOV A, [60]

(4) MOV [81], A

Figure 2.8: Stack description and stack-based operations.

expr

PC

+

+
A

Table

. . .

. . .
12 bits

Figure 2.9: Index instruction.

66 Microcontroller Architecture

Table 2.7: INDEX instructions [2].

Instruction Semantics Opcode Bytes Cycles

INDEX expr A ← ROM[A+expr+PC] 0xFx 2 13
-2048 ≤ expr ≤ 2047

INDEX instructions are useful for transferring data stored in tables in the flash memory. The
A register is loaded with the contents of the flash memory address obtained by adding the values
stored in A, expr, and PC. Table 2.7 is a summary of the main attributes of this instruction.
The index value that points to a table entry is computed as shown in Figure 2.9. expr is a 12-bit
offset relative to the program counter, and is expressed as its two’s complement. Hence, its most
significant bit is the sign bit. The remaining 11 bits represent offsets in the range -2048 to 2047.
The sum of PC and expr gives the starting address of the table and the A register contains the
table offset of the entry to be accessed.

Using INDEX instructions to access tables is illustrated by an example at the end of this
chapter.

B. Instructions for Arithmetic Operations

Instructions for arithmetic operations include the following instructions: ADC, ADD, SBB, SUB,
INC, DEC, CMP, ASL, ASR, RLC, and RRC instructions. The instructions are presented next.

B.1 Instruction for Addition: ADC and ADD Instructions

ADC and ADD instructions perform addition operations. The ADC instructions add the value
of the CF flag and the two operands. The ADD instructions add the operands but do not add
the CF flag. Table 2.8 presents the different kinds of ADC and ADD instructions. This table
is a summary of the semantics of the instructions, and shows their opcode, the number of bytes
required to store the instruction in the memory, and the number of clock cycles required for
execution.

The semantics of ADC and ADD instructions is as follows:

• ADC A,expr: This instruciton adds the contents of the A register, the value of expres-
sion expr, and the CF flag. The result is stored in the A register (source-immediate ad-
dressing).

• ADC A,[expr]: The contents of the A register are increased by the value found at address
expr in SRAM plus the CF flag (source-direct addressing).

• ADC A,[X+expr]: This instruction adds the contents of the A register, the value in SRAM
at address “X register + expr”, and the CF flag, and stores the result into the A register
(source-indexed addressing).

• ADC [expr],A: The SRAM contents at address expr are added to the contents of the A
register and the CF flag, and the result is stored in SRAM at address expr (destination-
direct addressing).

2.1 Microcontroller Architecture 67

T
ab

le
2.

8:
A

D
C

an
d

A
D

D
in

st
ru

ct
io

n
s

[2
].

In
st

ru
ct

io
n

S
em

an
ti

cs
O

p
co

d
e

B
y
te

s
C

y
cl

es

A
D

C
A

,e
x
p
r

A
←

A
+

e
x
p
r

+
C

F
0x

09
2

4

A
D

C
A

,[
e
x
p
r]

A
←

A
+

S
R

A
M

[e
x
p
r]

+
C

F
0x

0A
2

6

A
D

C
A

,[
X

+
e
x
p
r]

A
←

A
+

S
R

A
M

[X
+

e
x
p
r]

+
C

F
0x

0B
2

7

A
D

C
[e

x
p
r]

,A
S
R

A
M

[e
x
p
r]

←
S
R

A
M

[e
x
p
r]

+
A

+
C

F
0x

0C
2

7

A
D

C
[X

+
e
x
p
r]

,A
S
R

A
M

[X
+

e
x
p
r]

←
S
R

A
M

[X
+

e
x
p
r]

+
A

+
C

F
0x

0D
2

8

A
D

C
[e

x
p
r 1

],
e
x
p
r 2

S
R

A
M

[e
x
p
r 1

]
←

S
R

A
M

[e
x
p
r 1

]
+

e
x
p
r 2

+
C

F
0x

0E
3

9

A
D

C
[X

+
e
x
p
r 1

],
e
x
p
r 2

S
R

A
M

[X
+

e
x
p
r 1

]
←

S
R

A
M

[X
+

e
x
p
r 1

]
+

e
x
p
r 2

+
C

F
0x

0F
3

10

A
D

D
A

,e
x
p
r

A
←

A
+

e
x
p
r

0x
01

2
4

A
D

D
A

,[
e
x
p
r]

A
←

A
+

S
R

A
M

[e
x
p
r]

0x
02

2
6

A
D

D
A

,[
X

+
e
x
p
r]

A
←

A
+

S
R

A
M

[X
+

e
x
p
r]

0x
03

2
7

A
D

D
[e

x
p
r]

,A
S
R

A
M

[e
x
p
r]

←
S
R

A
M

[e
x
p
r]

+
A

0x
04

2
7

A
D

D
[X

+
e
x
p
r]

,A
S
R

A
M

[X
+

e
x
p
r]

←
S
R

A
M

[X
+

e
x
p
r]

+
A

0x
05

2
8

A
D

D
[e

x
p
r 1

],
e
x
p
r 2

S
R

A
M

[e
x
p
r 1

]
←

S
R

A
M

[e
x
p
r 1

]
+

e
x
p
r 2

0x
06

3
9

A
D

D
[X

+
e
x
p
r 1

],
e
x
p
r 2

S
R

A
M

[X
+

e
x
p
r 1

]
←

S
R

A
M

[X
+

e
x
p
r 1

]
+

e
x
p
r 2

0x
07

3
10

A
D

D
S
P
,e

x
p
r

S
P

←
S
P

+
e
x
p
r

0x
38

2
5

68 Microcontroller Architecture

• ADC [X+expr],A: The SRAM value at address “X + expr” is added to the value in the A
register and the CF flag, and the result is stored in SRAM at address register “X + expr”
(destination indexed addressing).

• ADC [expr1],expr2: The SRAM contents at address expr1 are added to the value of expr2
and the CF flag, and the result is saved at SRAM address expr1. This instruction uses
immediate addressing for referring to the source, and direct addressing for referring to the
destination.

• ADC [X+expr1],expr2: This instruction adds the value of expr2 to the value found in
SRAM at address “X + expr1” and the CF flag, and stores the result at the latter address
(source-immediate and destination indexed addressing).

• ADD A,expr: The value of the A register is increased by the value of expr (source-immediate
addressing).

• ADD A,[expr]: The contents of the A register are added to the value found in the SRAM
at address expr, and the result is stored in the A register (source-direct addressing).

• ADD A,[X+expr]: The value in the A register is increased by the memory value pointed to
by X register indexed with the value expr (source-indexed addressing).

• ADD [expr],A: The SRAM value at address expr is increased by the value in the A register
(destination-direct addressing).

• ADD [X+expr],A: The memory value at address “X register + expr” is increased by the
value stored in the A register (destination indexed addressing).

• ADD [expr1],expr2: The memory contents at address expr1 are increased by the value expr2.

• ADD [X+expr1],expr2 - Value expr2 is added to the value in memory at address “register
X + expr1”, and the result is stored at the same address.

• ADD SP,expr - The contents of the SP register are increased by the value of expr.

ADC and ADD instructions set the ZF flag if the result is zero, and clear the flag otherwise.
If the result is larger than 255, i.e., the maximum value that can be represented by eight bits,
the CF flag is set to one. If not, CF is set to zero.

B.2 Instruction for Subtraction: SBB and SUB Instructions

SBB and SUB instructions execute subtraction operations. The SBB instructions subtract the
value of the CF flag and the two operands. The SUB instructions subtract the operands but
not the CF flag. Table 2.9 presents the different kinds of SBB and SUB instructions. This
table is a summary of the semantics of the instructions, and shows their opcode, the number of
bytes required to store the instruction in the memory, and the number of clock cycles needed for
execution.

The semantics of SBB and SUB instructions is as follows.

• SBB A,expr: subtracts the values of expr and CF flag from the A register. The result is
stored in the A register (source-immediate addressing).

• SBB A,[expr] - The value found at address expr in SRAM plus the CF flag are subtracted
from the A register (source-direct addressing).

2.1 Microcontroller Architecture 69

T
ab

le
2.

9:
S
B
B

an
d

S
U

B
in

st
ru

ct
io

n
s

[2
].

In
st

ru
ct

io
n

S
em

an
ti

cs
O

p
co

d
e

B
y
te

s
C

y
cl

es

S
B

B
A

,
e
x
p
r

A
←

A
-

(e
x
p
r

+
C

F
)

0x
19

2
4

S
B

B
A

,
[e

x
p
r]

A
←

A
-

(S
R

A
M

[e
x
p
r]

+
C

F
)

0x
1A

2
6

S
B

B
A

,
[X

+
e
x
p
r]

A
←

A
-

(S
R

A
M

[X
+

e
x
p
r]

+
C

F
)

0x
1B

2
7

S
B

B
[e

x
p
r]

,
A

S
R

A
M

[e
x
p
r]

←
S
R

A
M

[e
x
p
r]

-
(A

+
C

F
)

0x
1C

2
7

S
B

B
[X

+
e
x
p
r]

,
A

S
R

A
M

[X
+

e
x
p
r]

←
S
R

A
M

[X
+

e
x
p
r]

-
(A

+
C

F
)

0x
1D

2
8

S
B

B
[e

x
p
r 1

],
e
x
p
r 2

S
R

A
M

[e
x
p
r 1

]
←

S
R

A
M

[e
x
p
r 1

]
-

(e
x
p
r 2

+
C

F
)

0x
1E

3
9

S
B

B
[X

+
e
x
p
r 1

],
e
x
p
r 2

S
R

A
M

[X
+

e
x
p
r 1

]
←

S
R

A
M

[X
+

e
x
p
r 1

]
-
(e

x
p
r 2

+
C

F
)

0x
1F

3
10

S
U

B
A

,
e
x
p
r

A
←

A
-
e
x
p
r

0x
11

2
4

S
U

B
A

,
[e

x
p
r]

A
←

A
-

S
R

A
M

[e
x
p
r]

0x
12

2
6

S
U

B
A

,
[X

+
e
x
p
r]

A
←

A
-
S
R

A
M

[X
+

e
x
p
r]

0x
13

2
7

S
U

B
[e

x
p
r]

,
A

S
R

A
M

[e
x
p
r]

←
S
R

A
M

[e
x
p
r]

-
A

0x
14

2
7

S
U

B
[X

+
e
x
p
r]

,
A

S
R

A
M

[X
+

e
x
p
r]

←
S
R

A
M

[X
+

e
x
p
r]

-
A

0x
15

2
8

S
U

B
[e

x
p
r 1

],
e
x
p
r 2

S
R

A
M

[e
x
p
r 1

]
←

S
R

A
M

[e
x
p
r 1

]
-
e
x
p
r 2

0x
16

3
9

S
U

B
[X

+
e
x
p
r 1

],
e
x
p
r 2

S
R

A
M

[X
+

e
x
p
r 1

]
←

S
R

A
M

[X
+

e
x
p
r 1

]
-
e
x
p
r 2

0x
17

3
10

70 Microcontroller Architecture

• SBB A,[X+expr] : - The value at address “register X + expr” in memory and the Carry Flag
are subtracted from the A register. The result is stored in the A register (source-indexed
addressing).

• SBB [expr],A: - The A register and the CF flag are subtracted from the value in SRAM at
address expr (destination-direct addressing).

• SBB [X+expr],A: Similar to the previous instruction, the A register and CF flag values
are subtracted from the SRAM value at address “register X + expr” (destination indexed
addressing).

• SBB [expr1],expr2: This instruction subtracts the value expr2 and the CF flag from the
value at address expr1 in the memory. The result is stored in the memory at address expr1
(source-immediate addressing and destination-direct addressing).

• SBB [X+expr1],expr2: The memory contents at the address pointed to by the X register,
indexed with the value expr1 is decreased by the value expr2 plus the CF flag (source-
immediate and destination indexed addressing),

• SUB A,expr : The value represented by expr is subtracted from the A register, and the
result is stored in the A register (source-immediate addressing).

• SUB A,[expr] : The value found at address expr in SRAM is subtracted from the A register,
and the result is stored in the A register (source-direct addressing).

• SUB A,[X+expr] : The value in the A register is decreased by the value of memory entry at
the address pointed to by the X register plus the value expr (source-indexed addressing).

• SUB [expr],A: subtracts the contents of the A register from the value at address expr in
the memory, and the result is stored in memory at the same address (destination-direct
addressing mode).

• SUB [X+expr],A: The A register is subtracted from the memory value at address “register
X + expr”, and the result is stored in memory at the same address (destination indexed
addressing).

• SUB [expr1],expr2: This instruction subtracts the value expr2 from the value at address
expr1 in memory. The result is stored in the memory at address expr1 (source-immediate
addressing and destination-direct addressing).

• SUB [X+expr1],expr2: This instruction subtracts the value expr2 from the value at address
given by “register X + expr1”: (source-immediate and destination indexed addressing).

B.3 Instruction for Incrementing and Decrementing: INC and DEC Instructions

The INC instructions increment the values in the A and X registers, and SRAM. Table 2.10
lists the four kinds of increment instructions and shows the semantics of the instructions, their
opcodes, the number of memory bytes, and their respective execution times.

The DEC instructions decrement the values in the A and X registers, and SRAM. Table 2.11
lists the four kinds of decrement instructions and shows the semantics of the instructions, their
opcodes, the number of memory bytes, and their respective execution times.

2.1 Microcontroller Architecture 71

Table 2.10: INC instructions [2].

Instruction Semantics Opcode Bytes Cycles

INC A A ← A + 1 0x74 1 4

INC X X ← X + 1 0x75 1 4

INC [expr] SRAM [expr] ← SRAM[expr] + 1 0x76 2 7

INC
[X+expr]

SRAM [X+expr] ← SRAM[X+expr] +
1

0x77 2 8

Table 2.11: DEC instructions [2].

Instruction Semantics Opcode Bytes Cycles

DEC A A ← A - 1 0x78 1 4

DEC X X ← X - 1 0x79 1 4

DEC [expr] SRAM[expr] ← SRAM[expr] - 1 0x7A 2 7

DEC
[X+expr]

SRAM[X+expr] ← SRAM[X+expr] - 1 0x7B 2 8

(d)

7 6 5 01234 CF

ASR:

7CF 6 5 01234

ASL:

0

7CF 6 5 01234

RLC:

7 6 5 01234 CF

RRC:

(a) (b)

(c)

Figure 2.10: Shift and rotate instruction.

72 Microcontroller Architecture

Table 2.12: CMP instructions [2].

Instruction Semantics Opcode Bytes Cycles

CMP A, expr A - expr 0x39 2 5

CMP A, [expr] A - SRAM[expr] 0x3A 2 7

CMP A, [X+expr] A - SRAM[X+expr] 0x3B 2 8

CMP [expr1], expr2 SRAM[expr1] - expr2 0x3C 3 8

CMP [X+expr1], expr2 SRAM[X+expr1] - expr2 0x3D 3 9

B.4 Instruction for Comparison: CMP Instructions

The goal of CMP instructions is to set the CF and ZF flags. This instruction subtracts the second
operand of the instruction from the first operand, but the value is not stored. If the result of the
subtraction is negative, the CF flag is set to one, otherwise the flag is cleared. If the result of the
subtraction is zero the ZF flag is set to one. If not, the ZF flag is reset to zero. Table 2.12 is a
summary of the main attributes of the CMP instruction.

B.5 Instruction for Shifting and Rotation: ASL, ASR, RLC, and RRC Instructions

The shift and rotate instructions modify the values in the A register and SRAM. Tables 2.13
and 2.14 list the six kinds of arithmetic shift and rotate instructions, and shows the semantics
of the instructions, their opcodes, the number of memory bytes, and their respective execution
times.

Figure 2.10 illustrates the semantics of the shift and rotate instructions:

• Arithmetic shift left, ASL, moves the bits one position to the left, as shown in Figure 2.10(a).
Bit 7 is pushed into the Carry Flag, and bit 0 is loaded with the bit value 0.

• Arithmetic shift right, ASR, moves the bits one position to the right, as indicated in
Figure 2.10(b). Bit 0 is pushed into the Carry Flag, and bit 7 remains unchanged.

• Rotate left through Carry, RLC, moves the bits one position to the left, as shown in
Figure 2.10(c). Bit 7 is pushed into the Carry Flag, and bit 0 is loaded with the Carry
Flag.

• Rotate right through Carry, (RRC), moves the bits one position to the right, as illustrated
in Figure 2.10(d). Bit 7 is loaded with the Carry Flag, and bit 0 is pushed into the Carry
Flag.

The Carry Flag is set as shown in Figure 2.10. The Zero Flag is set, if the results of the arithmetic
shift and rotate instructions are zero.

2.1 Microcontroller Architecture 73

Table 2.13: ASL and ASR instructions [2].

Instruction Semantics Opcode Bytes Cycles

ASL A see in Figure 2.10 0x64 1 4

ASL [expr] see in Figure 2.10 0x65 2 7

ASL [X+expr] see in Figure 2.10 0x66 2 8

ASR A see in Figure 2.10 0x67 1 4

ASR [expr] see in Figure 2.10 0x68 2 7

ASR [X+expr] see in Figure 2.10 0x69 2 8

Example (Multiplication of two four-bit unsigned values). Figure 2.11(a) illustrates the algorithm
for multiplying the decimal value 14 (represented by the 4-bit long, binary bitstring 1110) with
the decimal value 10 (represented by the 4-bit long, binary bitstring 1010). The result is 8-bits
long and has the value 10001100 (i.e., the decimal value 140). In general, if two M-bit unsigned
numbers are multiplied, the result is 2 M bits long.

This algorithm uses an auxiliary variable to store the final product and examines the second
operand bitwise, starting from the least significant bit. If the analyzed bit is 0 then the first
operand is shifted to the left by one position, which is equivalent to multiplying it by 2. If the
analyzed bit is ‘1’ then the value of the first operand is added to the auxiliary variable holding
the partial result, and the first operand is shifted by one position. After all bits of the second
operand have been examined, the auxiliary variable holds the result of the product.

Figure 2.11(b) shows the assembly language source code for the corresponding multiplication
routine. The two operands for the multiplication routine mul8 are passed to the A and X
registers. Because the contents of these registers change during execution, the routine begins
by saving the two operands on the stack. Then, the X register is set to point to the top of
the stack. The A register, initialized to zero, stores the partial results of the multiplication
algorithm. The CMP instruction, at address 03CC, is used to determine if the multiplication
algorithm has finished, which is indicated by the value of the second operand being zero. Note
that the second operand always becomes zero after performing a number of rotate right shifts
equal to the position of its most significant nonzero bit. In the case, where the algorithm did not
finish, it resets the carry bit, that is bit 2 of the CPU F register, by performing a bitwise AND
of the flags register, CPU F, with the value 251 representing the bitvector 11111011 (address
03D1). Then, the second operand is shifted right with a carry. This pushes the next bit to be
examined into the carry bit of the flags register,CPU F. If there is no carry, then the currently
analyzed bit of the second operand is 0, and the first operand is shifted to the left by one position
(address 03D9). This instruction is equivalent to multiplying the second operand by 2. If there
is a carry (i.e., the currently analyzed bit) if the second operand is 1, then the content of the first
operand is added to the A register holding the partial results. The algorithm iterates until the
stop condition at address 03CC is met.

74 Microcontroller Architecture

(a)

1010

shift left operand 1

shift left operand 1

11100 add operand 1 and then shift left operand 1

add operand 1 and then shift left operand 11110000

00000 (initial) +

10001100

1110 x

(b)

03C9: MOV X, SP

03CA: MOV A, 0

03CF: JZ 0x03DD

03D1: AND F, 251

03D5: JNC 0x03D9

03D7: ADD A, [X−2]

03D9: ASL [X−2]

03DB: JMP 0x03CC

03DD: ADD SP, 254

03DF: RET

03D3: RRC [X−1]

03CC: CMP [X−1], 0

03C7: PUSH X

__mul8:

03C8: PUSH A

Figure 2.11: Assembly code for multiplication.

Table 2.14: RLC and RRC instructions [2].

Instruction Semantics Opcode Bytes Cycles

RLC A See Figure 2.10 0x6A 1 4

RLC [expr] See Figure 2.10 0x6B 2 7

RLC [X+expr] See Figure 2.10 0x6C 2 8

RRC A See Figure 2.10 0x6D 1 4

RRC [expr] See Figure 2.10 0x6E 2 7

RRC [X+expr] See Figure 2.10 0x6F 2 8

2.1 Microcontroller Architecture 75

C. Instructions for Logical Operations

Logical operations are performed by instructions, for example a bitwise AND , bitwise OR, bitwise
exclusive-OR (XOR), and bitwise complement (CPL). The TST instruction performs a bitwise
AND operation, but its purpose is only to set the ZF flag, in as much as the result is not stored.
Logical operations can be performed on the flags register, CPU F, to set the CF and ZF flags to
the desired values.

The AND instructions perform a bitwise AND on the corresponding bits of their two operands,
for example a bitwise AND of bits zero of the two operands, bitwise AND of bits one of the
operands, and so on. Table 2.15 lists the different kinds of bitwise AND instructions and is
a summary of the semantics of the instructions, their opcode, the number of bytes used to
represent the instruction in the memory, and the number of clock cycles required for execution.
Rows 1-7 in the table show AND instructions utilizing different methods of addressing their source
and destination, such as source-immediate, source-direct, source-indexed addressing, destination-
direct and destination indexed. Row 8 shows the instruction AND REG[expr1], expr2 which has,
as an operand, the value in register address expr1. Similarly, the instruction in row 9 uses an
operand stored at address “X + expr1” in the register space. Finally, row 10 shows a bitwise
AND instruction applied to the flags register (register CPU F) and the bit value represented by
expr. This instruction is used to set, or clear, the M8C flags.

The bitwise OR instructions compute the bitwise logical OR of the corresponding bits of
the two operands. For example, bit 0 of the result is the logical OR of the bits 0 (least signif-
icant bits) of the two operands. Bit 1 of the result is the logical OR of the bit 1 of the two
operands, etc. Table 2.16 shows the different kinds of OR instructions, their semantics, opcode,
number of bytes occupied in memory, and number of clock cycles required. Rows 1–7 in the
table show OR instructions using a different source and destination addressing modes. Rows
8 and 9 contain OR instructions with one of the operands located in the register space. The
two instructions utilize direct and indexed addressing, respectively. Row 10 presents bitwise OR
instruction involving the flags register, CPU F. This instruction is the only bitwise OR instruc-
tion that can modify the CF flag, that is bit 2 in register CPU F. This instruction can also
change the ZF flag which is bit 1 of the CPU F register. In addition, the ZF is set whenever a
bitwise OR instruction produces a result with all its bits being zero. Otherwise, the ZF flag is
cleared.

The XOR instructions compute, bitwise, the exclusive-OR (XOR) X of the corresponding
bits of the XOR instruction. For example, bit 0 of the result is the logical XOR of bit 0
of operand one and bit 0 of the second operand. Table 2.17 is a summary of the different
types of XOR instructions. As in the case of AND and OR instructions, XOR instructions
employ source-immediate, direct, and indexed addressing, and destination-direct and indexed
addressing, as shown by the instructions in rows 1–7 of the table. Rows 8 and 9 show XOR
instructions operating on operands stored in the register space. Finally, row 10 presents the
XOR instruction with the flags register, CPU F, as one of the operands. XOR F affects the
CF flag, but the instructions in rows 1–9 do not change the flag. The ZF flag is set if the re-
sult is zero, otherwise the flag is cleared. In addition, XOR F, expr can also modify the ZF
flag.

The CPL instruction stores the bitwise complement of the value initially found in the A regis-
ter, in the A register. Table 2.18 is a summary of the characteristics of this instruction. Although

76 Microcontroller Architecture

T
ab

le
2.

15
:

B
it
w

is
e

A
N

D
in

st
ru

ct
io

n
s

[2
].

In
st

ru
ct

io
n

S
em

an
ti

cs
O

p
co

d
e

B
y
te

s
C

y
cl

es

A
N

D
A

,
e
x
p
r

A
←

A
&

e
x
p
r

0x
21

2
4

A
N

D
A

,
[e

x
p
r]

A
←

A
&

S
R

A
M

[e
x
p
r]

0x
22

2
6

A
N

D
A

,
[X

+
e
x
p
r]

A
←

A
&

S
R

A
M

[X
+

e
x
p
r]

0x
23

2
7

A
N

D
[e

x
p
r]

,
A

S
R

A
M

[e
x
p
r]

←
S
R

A
M

[e
x
p
r]

&
A

0x
24

2
7

A
N

D
[X

+
e
x
p
r]

,
A

S
R

A
M

[X
+

e
x
p
r]

←
S
R

A
M

[X
+

e
x
p
r]

&
A

0x
25

2
8

A
N

D
[e

x
p
r 1

],
e
x
p
r 2

S
R

A
M

[e
x
p
r 1

]
←

S
R

A
M

[e
x
p
r 1

]
&

e
x
p
r 2

0x
26

3
9

A
N

D
[X

+
e
x
p
r 1

],
e
x
p
r 2

S
R

A
M

[X
+

e
x
p
r 1

]
←

S
R

A
M

[X
+

e
x
p
r 1

]
&

e
x
p
r 2

0x
27

3
10

A
N

D
R

E
G

[e
x
p
r 1

],
e
x
p
r 2

R
E
G

[e
x
p
r 1

]
←

R
E
G

[e
x
p
r 1

]
&

e
x
p
r 2

0x
41

3
9

A
N

D
R

E
G

[X
+

e
x
p
r 1

],
e
x
p
r 2

R
E
G

[X
+

e
x
p
r 1

]
←

R
E
G

[X
+

e
x
p
r 1

]
&

e
x
p
r 2

0x
42

3
10

A
N

D
F
,
e
x
p
r

F
←

F
&

e
x
p
r

0x
70

2
4

2.1 Microcontroller Architecture 77

T
ab

le
2.

16
:

B
it
w

is
e

O
R

in
st

ru
ct

io
n
s

[2
].

In
st

ru
ct

io
n

S
em

an
ti

cs
O

p
co

d
e

B
y
te

s
C

y
cl

es

O
R

A
,
e
x
p
r

A
←

A
—

e
x
p
r

0x
29

2
4

O
R

A
,
[e

x
p
r]

A
←

A
—

S
R

A
M

[e
x
p
r]

0x
2A

2
6

O
R

A
,
[X

+
e
x
p
r]

A
←

A
—

S
R

A
M

[X
+

e
x
p
r]

0x
2B

2
7

O
R

[e
x
p
r]

,
A

S
R

A
M

[e
x
p
r]

←
S
R

A
M

[e
x
p
r]

—
A

0x
2C

2
7

O
R

[X
+

e
x
p
r]

,
A

S
R

A
M

[X
+

e
x
p
r]

←
S
R

A
M

[X
+

e
x
p
r]

—
A

0x
2D

2
8

O
R

[e
x
p
r 1

],
e
x
p
r 2

S
R

A
M

[e
x
p
r 1

]
←

S
R

A
M

[e
x
p
r 1

]
—

e
x
p
r 2

0x
2E

3
9

O
R

[X
+

e
x
p
r 1

],
e
x
p
r 2

S
R

A
M

[X
+

e
x
p
r 1

]
←

S
R

A
M

[X
+

e
x
p
r 1

]
—

e
x
p
r 2

0x
2F

3
10

O
R

R
E
G

[e
x
p
r 1

],
e
x
p
r 2

R
E
G

[e
x
p
r 1

]
←

R
E
G

[e
x
p
r 1

]
—

e
x
p
r 2

0x
43

3
9

O
R

R
E
G

[X
+

e
x
p
r 1

],
e
x
p
r 2

R
E
G

[X
+

e
x
p
r 1

]
←

R
E
G

[X
+

e
x
p
r 1

]
—

e
x
p
r 2

0x
44

3
10

O
R

F
,
e
x
p
r

C
P

U
F

←
C

P
U

F
—

e
x
p
r

0x
71

2
4

78 Microcontroller Architecture

T
ab

le
2.

17
:

B
it
w

is
e

X
O

R
in

st
ru

ct
io

n
s

[2
].

In
st

ru
ct

io
n

S
em

an
ti

cs
O

p
co

d
e

B
y
te

s
C

y
cl

es

X
O

R
A

,
e
x
p
r

A
←

A
⊗

e
x
p
r

0x
31

2
4

X
O

R
A

,
[e

x
p
r]

A
←

A
⊗

S
R

A
M

[e
x
p
r]

0x
32

2
6

X
O

R
A

,
[X

+
e
x
p
r]

A
←

A
⊗

S
R

A
M

[X
+

e
x
p
r]

0x
33

2
7

X
O

R
[e

x
p
r]

,
A

S
R

A
M

[e
x
p
r]

←
S
R

A
M

[e
x
p
r]

⊗
A

0x
34

2
7

X
O

R
[X

+
e
x
p
r]

,
A

S
R

A
M

[X
+

e
x
p
r]

←
S
R

A
M

[X
+

e
x
p
r]

⊗
A

0x
35

2
8

X
O

R
[e

x
p
r 1

],
e
x
p
r 2

S
R

A
M

[e
x
p
r 1

]
←

S
R

A
M

[e
x
p
r 1

]
⊗

e
x
p
r 2

0x
36

3
9

X
O

R
[X

+
e
x
p
r 1

],
e
x
p
r 2

S
R

A
M

[X
+

e
x
p
r 1

]
←

S
R

A
M

[X
+

e
x
p
r 1

]
⊗

e
x
p
r 2

0x
37

3
10

X
O

R
R

E
G

[e
x
p
r 1

],
e
x
p
r 2

R
E
G

[e
x
p
r 1

]
←

R
E
G

[e
x
p
r 1

]
⊗

e
x
p
r 2

0x
45

3
9

X
O

R
R

E
G

[X
+

e
x
p
r 1

],
e
x
p
r 2

R
E
G

[X
+

e
x
p
r 1

]
←

R
E
G

[X
+

e
x
p
r 1

]
⊗

e
x
p
r 2

0x
46

3
10

X
O

R
F
,
e
x
p
r

C
P

U
F

←
C

P
U

F
⊗

e
x
p
r

0x
72

2
4

2.1 Microcontroller Architecture 79

Table 2.18: CPL instructions [2].

Instruction Semantics Opcode Bytes Cycles

CPL A A ← Ā 0x73 1 4

Table 2.19: TST instructions [2].

Instruction Semantics Opcode Bytes Cycles

TST [expr1],expr2 SRAM[expr1] & expr2 0x47 3 8

TST [X+expr1],expr2 SRAM[X+expr1] & expr2 0x48 3 9

TST REG[expr1],expr2 reg[expr1] & expr2 0x49 3 9

TST REG[X+expr1],expr2 reg[X+expr1] & expr2 0x4A 3 10

CF is not modified by this instruction, the ZF flag is set if the resulting value, after complement,
is zero.

The TST instructions (test with mask) calculate a bitwise AND of their operands, but do
not store the result. Only the ZF flag is modified as a result of this instruction, but it does not
modify the CF flag. Table 2.19 summarizes the TST instructions.

Example (Different Bit Manipulations). Figures 2.12(a), (b), and (c) present code that sets,
resets, and inverts a single bit in a data byte, respectively. Examples (d), (e), and (f) set, reset,
and invert a group of bits, respectively.

Example (a) sets bit 2 of the A register to 1, leaving all other bits unchanged. Mask MASK 1
has 0 bits for all positions that remain unchanged, and a 1 for the position that is set. A bitwise
OR instructions sets the desired bit to one.

Example (b) resets bit 2 of the A register leaving all other bits unmodified. The used mask
has a bit 1 for all the positions that are not affected, and a bit 0 for the position that is reset. A
bitwise AND instruction resets the desired bit to zero.

Example (c) complements the third bit of the A register, but other bits are unmodified. The
used mask is similar to the mask for example (a). A bitwise XOR instruction complements the
third bit.

80 Microcontroller Architecture

Example (d) sets a group of four bits, bits 2-5, to 1111. The mask has a bit value of 1 for all
the positions that are set, and a bit 0 for each unchanged positions. Similar to case (a), a bitwise
OR instruction is used.

Example (e) resets bits 2 and 4-5, but the other bits are unchanged. The mask used has a
bit value of 1 corresponding to the positions that are not modified, and a bit value of 0 for the
positions that are reset. The bitwise AND instruction resets the wanted bits.

Example (f) complements bits 0-1 and bits 5-6 of the A register. An XOR instruction is
used with a mask that has a bit value of 1 for all positions that are inverted, and the remaining
positions have each a bit value of 0.

(e)

AND A, MASK_2

(a)

(c)

(b)

(d)

(f)

ORG 04h ;Mask "00000100" ORG FBh ;Mask "111111011"MASK_2:

XOR A, MASK_3

ORG 04h ;Mask "00000100"

OR A, MASK_4

ORG 3Ch ;MASK "00111100"

AND A, MASK_5 XOR A, MASK_6

ORG CBh ;Mask "11001011" ORG 63h ;Mask "01100011"

MASK_1:

MASK_3: MASK_4:

MASK_5: MASK_6:

OR A, MASK_1

Figure 2.12: Bit manipulations.

D. Instructions for Flow Control

The instructions in this group define the execution flow of programs beyond the sequential
execution of instructions. This group of instructions includes JACC , JC , JMP , JNC , JNZ ,
JZ , LJMP , CALL, LCALL, RET , RETI, and SSC instructions. Table 2.20 is a summary of the
M8C’s JMP instructions.

• JACC expr: This is an unconditional jump instruction to the address represented by (PC
+ 1) plus the contents of the A register plus the value of expr expressed as a 12-bit, two’s
complement value. The accumulator is unaffected by this instruction.

• JC expr: If the Carry Flag (CF) is set, it causes program execution to jump to the ad-
dress represented by (PC + 1) plus the value of expr expressed as a 12-bit, two’s com-
plement value. The current value of the PC register points to the first byte of the JC
instruction.

2.1 Microcontroller Architecture 81

Table 2.20: Jump instructions [2].

Instruction Semantics Opcode Bytes Cycles

JACC expr PC ← PC + 1 + A + expr 0xEx 2 7

JC expr PC ← PC + 1 + expr 0xCx 2 5
-2048 ≤ expr ≤ 2047

JMP expr PC ← PC + 1 + expr 0x8x 2 5
-2048 ≤ expr ≤ 2047

JNC expr PC ← PC + 1 + expr 0xDx 2 5
-2048 ≤ expr ≤ 2047

JNZ expr PC ← PC + 1 + expr 0xBx 2 5
-2048 ≤ expr ≤ 2047

JZ expr PC ← PC + 1 + expr 0xAx 2 5
-2048 ≤ expr ≤ 2047

LJMP expr PC ← expr 0x7D 3 7
0 ≤ expr ≤ 65535

• JMP expr: This instruction causes an unconditional jump to the address represented by
(PC + 1) plus the value of expr expressed as a 12-bit, two’s complement value. The current
value of the PC register points to the first byte of the JC instruction.

• JNC expr: If the CF flag is not set, program execution jumps to the address represented
by (PC + 1) plus the value of expr expressed as a 12-bit, two’s complement value. The
current value of the PC register points to the first byte of the JNC instruction.

• JNZ expr: If the zero flag (ZF flag) is not set, the instruction causes program execution to
jump to the address represented by (PC + 1) plus the value of expr expressed as a 12-bit,
two’s complement value. The current value of the PC register points to the first byte of
the JNZ instruction.

• JZ expr: If the ZF flag is set, program execution jumps to the address represented by (PC
+ 1) plus the value of expr expressed as a 12-bit, two’s complement value. The current
value of the PC register points to the first byte of the JZ instruction.

• LJMP expr: This instruction causes an unconditional long jump, that is to the 16 bit
address represented by expr .

The CALL instruction causes the PC register to be loaded with the sum of PC+2 and expr.
The current value of PC points to the first byte of the CALL instruction and expr is a 12–bit,
signed number expressed in two’s complement form. The current value of the Program Counter
is pushed onto the stack, by first pushing the more significant byte followed by the less significant
byte. CF and ZF are not changed by this instruction. Table 2.21 shows the main characteristics
of the CALL instruction.

The LCALL instruction loads the value of expr into the PC register expressed as a 16-bit,
unsigned value of the physical address. The address of the instruction following the LCALL
instruction is pushed onto the stack. This instruction is at an address pointed to by the current
PC + 2. The more significant byte of the address is saved on the stack, followed by the less

82 Microcontroller Architecture

Table 2.21: CALL and LCALL instructions [2].

Instruction Semantics Opcode Bytes Cycles

CALL expr PC ← PC + 2 + expr 0x9x 2 11
-2048 ≤ expr ≤ 2047

LCALL expr PC ← expr 0x7C 3 13
0 ≤ expr ≤ 65535

significant byte. The CF and ZF flags are not affected by the execution of this instruction. The
LCALL instruction is summarized in Table 2.21.

Table 2.22: RET and RETI instructions [2].

Instruction Semantics Opcode Bytes Cycles

RET SP ← SP - 1; PC[7:0] ← SRAM[SP]; 0x7F 1 8
SP ← SP - 1; PC[15:8] ← SRAM[SP];

RETI SP ← SP - 1; CPU F ← SRAM[SP]; 0x7E 1 10
SP ← SP - 1; PC[7:0] ← SRAM[SP];
SP ← SP - 1; PC[15:8] ← SRAM[SP];

RET instructions are used to return from a routine called by the instructions CALL and
LCALL. The Program Counter is restored from the stack, and program execution resumes at the
next instruction following the call instruction. This instruction does not modify the CF and ZF
flags. Table 2.22 is a summary of the RET instructions.

RETI instructions are used to return from interrupt service routines (ISRs) and system
supervisory calls (SSCs). After the CPU F register is restored from the stack, the CF and ZF
flags are updated to the new value of the flags register. Then, the Program Counter is restored.
Table 2.22 is a summary of the characteristics of RETI instructions.

Example (Calling assembly code routines from C programs). This example discusses the assembly
code that corresponds to a function call in a high-level programming language, such as C language.
This example is important in that it illustrates the structure required for assembly code routines
that are called from programs in high-level languages.

Figure 2.13(a) shows an arbitrary function f, with three parameters a, b, and c. Each of
these parameters is of type char and f returns a value of type char. The type char was selected
for simplicity, so that each parameter can be stored as one byte. In addition, the function has
two local variables loc1 and loc2. Function f is called using the parameters v1, v2, and v3,
and the returned value is assigned to variable d. The example illustrates the use of PUSH and
POP instructions to transfer data between the calling environment and the called function. The

2.1 Microcontroller Architecture 83

transferred data includes the parameters of the function, the returned value of the function, and
the return address.

Figure 2.13(c) presents the stack structure, called the activation record, AR that is created
when function f is called. The bottom of AR is pointed to by the X register, so that its different
fields can be easily accessed by source-indexed addressing. The bottom entry contains the return
value of the function. The old value of the X register is stored on top of it, so that it can
be retrieved after returning from the function call. Next, AR contains entries for the three
parameters of the function. Then, the return address (the address of the instruction following
the function call) is saved on the stack, with the less significant byte sitting on top of the more
significant byte. Finally, the two top entries store the values of the local variables loc1 and loc2.

Figure 2.13(b) shows the assembly language code for the function call and the called function
f. The calling environment first saves the value of the X register. Then, the X register is loaded
with the value of the stack pointer SP, resulting in the X register pointing to the bottom of AR.
Instruction 3 increases the stack pointer value thereby allocating a stack entry for the returned
value of function f. Because the returned values are of type char, one stack entry (one byte) is
sufficient. Instructions 4-9 push the values of the three parameters on the stack. Instruction 10
calls function f and as a result, the address of the instruction following the call is saved on the
stack.

The assembly language source code for function f starts at instruction 11. The first two
PUSH instructions reserve stack entries for the two local variables. Instruction 13 stores a value
to the local variable loc2, and instruction 14 to variable loc1. Instruction 15 assigns a value to the
returned value of function f. Before returning from the function call, instructions 16-17 remove
the two entries for the local variables from the stack. Instruction RET finds the return address
on top of the stack, and the PC register is loaded with the address of instruction 19.

After returning from the function call, the POP instructions, in lines 19–21, remove the entries
for the three function parameters from the stack. Instruction 22 pops the returned value of the
function, and stores the value in the memory location for variable d. The last instruction restores
the X register to its original value prior to the function call.

Table 2.23: SSC instructions [2].

Instruction Semantics Opcode Bytes Cycles

SSC SRAM[SP] ← PC[15:8]; SP ← SP + 1; 0x00 1 15
SRAM[SP] ← PC[7:0]; SP ← SP + 1;

SRAM[SP] ← CPU F; PC ← 0x0000; CPU F ← 0x00

System supervisory calls (SSCs) are used to call predefined routines that are stored in ROM
and used to perform system functions. Initially, the more significant byte of the PC register is
saved on the stack, followed by the less significant PC byte. Next, the flags register is pushed

84 Microcontroller Architecture

r
e
t
u
r
n

l
o
c
1
;

}

p
a
ra

m
e
te

r
A

p
a
ra

m
e
te

r
C

p
a
ra

m
e
te

r
B

lo
c
a
l
v
a
ri

a
b

le

lo
c
a
l
v
a
ri

a
b

le

S
ta

c
k

Activation record

re
tu

rn
 a

d
d

re
s
s

re
tu

rn
 a

d
d

re
s
s

.
.
.

d

=

f

(
v
1
,

v
2
,

v
3
)
;

.
.
.

(
2
0
)

P
O
P

A

(
2
1
)

P
O
P

A

(b
)

(c
)

(a
)

(
4
)

M
O
V

A
,

[
8
0
]

(
5
)

P
U
S
H

A

(
6
)

M
O
V

A
,

[
8
1
]

(
7
)

P
U
S
H

A

(
8
)

M
O
V

A
,

[
8
2
]

(
9
)

P
U
S
H

A

(
1
0
)

C
A
L
L

f

f
:

.
.
.

(
1
7
)

P
O
P

A

(
1
8
)

R
E
T

.
.
.

.
.
.

(
1
1
)

P
U
S
H

A

;
i
n
c
r
e
m
e
n
t

S
P

(
1
2
)

P
U
S
H

A

;
i
n
c
r
e
m
e
n
t

S
P

(
1
6
)

P
O
P

A

(
1
9
)

P
O
P

A

(
1
5
)

M
O
V

[
X
+
0
]
,

.
.
.

o
ld

 r
e
g

is
te

r
X

re
tu

rn
e
d

 v
a
lu

e

(
1
3
)

M
O
V

[
X

+

7
]
,

0
6
h

(
1
4
)

M
O
V

[
X

+

6
]
,

0
8
h

(
1
)

P
U
S
H

X

;
s
a
v
e

X

(
2
)

M
O
V

X
,

S
P

(
3
)

P
U
S
H

A

(
2
2
)

P
O
P

A

(
2
3
)

M
O
V

[
8
3
]
,

A

(
2
4
)

P
O
P

X

X

c
h
a
r

f
(
c
h
a
r

a
,

c
h
a
r

b
,

c
h
a
r

c
)

{

S
P

c
h
a
r

l
o
c
1
,

l
o
c
2
;

.
.
.

F
ig

u
re

2.
13

:
S
ta

ck
-b

as
ed

op
er

at
io

n
s.

2.1 Microcontroller Architecture 85

onto the stack. After being saved, the flags register is reset. Program execution returns from an
SSC by executing an RETI instruction. Table 2.23 is a summary of the SSC instructions.

E. Other Instructions

The HALT instruction halts program execution by the microcontroller, and suspends further
microcontroller activity pending a hardware reset, for example Power-On, Watchdog Timer, or
External Reset. Table 2.24 is a summary of the main characteristics of the HALT instruction.

The NOP instruction is executed in four clock cycles but has no effect other than to introduce
a quantifiable delay in terms of program execution time. It does increment the program counter
but does not effect anything else, for example: the CF and ZF flags are unaffected. Table 2.25
summarizes NOP instructions.

Example (Design of a sequence detector). Sequence detectors recognize predefined patterns in a
stream of bits and are useful in various data communication protocols. The goal of this example
is to design a sequence detector that outputs a bit value of 1 whenever an odd number of 0 bits
and an odd number of 1 bits are encountered in the input bit stream.

Figure 2.14(a) presents the interface signals of the sequence detector which has two one-bit
inputs and two one-bit outputs. Input In is the port for the input stream. Input Ready is an
external signal, which is reset each time a new bit is available at input In. After a new input is
read by the sequence detector, the Ack signal is generated by the detector and is used to remove
the Ready signal. After the new input has been processed, the corresponding value of the output,
Out, is produced by the sequence detector. Figure 2.14(b) illustrates the sequencing of the four
interface signals.

The behavior of the sequence detector can be described in terms of a finite state machine
(FSM) with four states:

• State A: This state is entered if an even number of 0s and an even number of 1s occur in
the input stream, or upon receiving a reset signal.

• State B : This state is entered if an odd number of 0s and an even number of 1s was present
in the input stream.

• State C : This state is entered if an even number of 0s and an odd number of 1s occur in
the input stream.

• State D : This state is entered if an odd number of 0s and an odd number of 1s occur in the
input stream.

Figure 2.14(c), the state transition diagram, shows all transitions to new states for each
possible state of the detector and each possible input value. If the system is in state A and the
input bit is 0, then the new state is B. If the input bit is 1 the new state is C. The state diagram
also shows the output bits generated for each transition. Output 0 is produced for the transition
from state A to state B. Output 1 is generated for the transition from state C to state D. The
graphical description in Figure 2.14(c) is characterized by the tables provided in Figure 2.14(d).

The design of the sequence detector is given in Figure 2.15 with the data structures organized
as illustrated in Figure 2.15(a). The current state of the detector is stored in the variable

86 Microcontroller Architecture

A B

C D

0/0

Reset

0/0

1/11/0

0/0

0/1

1/0 1/0

Ready

In

Ack

Out

(b)

Out

ReadyIn

Ack

(c)

A

B

C

D

Next State Table Output Table

In=’1’In=’0’ In=’0’ In=’1’

(d)

(a)

B C

A D

AD

C B

’0’ ’0’

’0’ ’1’

’1’ ’0’

’0’ ’0’

Figure 2.14: Sequence detector.

Table 2.24: HALT instruction [2].

Instruction Semantics Opcode Bytes Cycles

HALT REG[CPU SCR] ← REG[CPU SCR] + 1 0x30 1 ∞

Table 2.25: NOP instruction [2].

Instruction Semantics Opcode Bytes Cycles

NOP - 0x40 1 4

2.1 Microcontroller Architecture 87

initialize CurrentState

generate Ack signal

find index into the two tables

read output signal from table

generate output signal

read next state from table

update CurrentState

jump to next_input

wait until new In is generated

In=’0’ In=’1’

.

.

OutputTable

In=’0’ In=’1’

.

.

NextStateTable

CurrentState

+
In

(a) (b)

next_input:

read In signal

Figure 2.15: Sequence detector design.

CurrentState. The next state and output information are organized as two separate tables.
Access is based on the values of the CurrentState variable and signal In. Figure 2.15(b) shows
the pseudocode of the detector. The first step is to initialize the CurrentState variable. The
detector then waits until a new input signal, In, is produced. After the detector reads the
In bit, the Ack output is generated as shown in Figure 2.14(b). The next step calculates the
index used to access tables NextStateTable and OutputTable. Using the computed index, Table
OutputTable is first accessed to find the signal value Out corresponding to the current state and
input signal. Then, the next state is retrieved from Table NextStateTable, and used to update
variable CurrentState. The last step moves execution to the label called next input for processing
the following input bit.

Figure 2.16(a) shows the interface implementation. Pin 1, pin 2, pin 3, and pin 4 of a PSoC
chip are used to connect the four I/O signals of the detector to the external environment. The
four pins are connected to the bits of the Port 0 register, that is the PRT0DR register at address
0,00h in the register space, as shown in the figure. For example, pin 1 is connected to bit 1, and is
used for implementing the input signal In. Similarly, port 4 is linked to bit 7 of the port register,
and used for signal Ready. This figure also shows the configuration of the four control registers
for port 0 and the PRT0DM0 , PRT0DM1 , PRT0DM2 , and PRT0GS registers. (Additional
information about the programming of these registers is provided in Chapter 3.)

Implementation using INDEX instructions. Figure 2.16(b) shows the assembly lan-
guage source code for a sequence detector. This code corresponds to the pseudocode in Fig-
ure 2.15(b). PRT0DR is the address of the port 0 register, and READY MSK is the mask used
to access bit READY, that is bit 7 of the port register. IN MSK is the mask to access bit In
(bit 1). ACK 1 is the mask used to assign a 1 for output ACK. ACK 0 is the mask for producing
a 0 for output ACK. CRT STATE is the SRAM address that stores the current state of the
sequence detector. TEMP1 and TEMP2 are the addresses in SRAM of two locations used to
store temporary values.

Instruction 1 initializes the current state variable with the value 00h representing state A.
Instructions 2-4 implement the busy waiting for the next input bit In. The PRT0DR register is
first read into the A register. Then using mask READY MSK (10000000), bit 7 of the port is
selected. If the bit is nonzero then the program jumps back to label BACK . If a new input is
detected, then a copy of the PRT0DR register is saved in SRAM location TEMP1 (instructions
5–7). Instruction 6 resets bit Out. Instructions 8–9 produce the output signal Ack, first the

88 Microcontroller Architecture

Table 2.26: Performance of the sequence detector implementation.

FSM Step ROM Execution time
(bytes) (clock cycles)

wait until new 6 15 × # BW

input In is generated
read In signal 6 15

generate Ack 6 18
signal

find index into 7 19
the two tables
read output 2 13

signal from table
generate output 4 11

signal
read next state 4 18

from table
update 2 5

CurrentState
wait for Ready Signal 6 15 + # BW

to go High
jump to 2 5

next input
Total 45 149 (without

busy waiting)

signal value is 1 and then 0. Next, instructions 10–13 compute the index used to access the two
tables. Instruction 10 selects the input bit using mask IN MSK (00000010). The A register is
shifted one position to the right, so that it can be used for the index. The index value is stored
in the SRAM location TEMP2 . Instruction 14 accesses Table OutputTable to find the bit value
that has to be output by the detector. Instructions 15–16 set bit 5 of the port register to the
required value. Instructions 17–18 access Table NextStateTable to get the encoding of the next
state. The encoding is stored in the variable CurrentState in instruction 19. Instructions 20–22
delay execution until the READY signal is one (inactive). Finally, program execution jumps to
label FSM to start the processing of the next input bit.

Performance analysis. Table 2.26 is a summary of the memory and timing performance
of the implementation. Rows correspond to the steps shown in Figure 2.15(b). The first row
corresponds to “busy-waiting” until a new input bit is found at the sequence detector. The
timing of the step depends on the number of executed iterations (#BW). The last row shows
the amount of memory and the number of clock cycles required to execute the code. Assuming
that the #BW = 1, new input data are available each time a new iteration starts. Because one
iteration of the code is executed in 149 clock cycles, thus for a clock frequency of 24 MHz, this
results in an execution time of 149×0.041 µsec, or 6.109 µsec per iteration. Thus, input bit
streams of

1

6.109 10−6
bits/sec ≈ 163 kbits/sec (2.2)

2.1 Microcontroller Architecture 89

include "m8c.inc" ; part specific constants and macros

include "PSOCAPI.inc" ; PSOC API definitions for all user modules

ACK_1:

READY_MSK:

IN_RST:

IN_MSK:

ACK_0:

TEMP1:

TEMP2:

CRT_STATE:

PRT0DR:

include "memory.inc" ; constants and macros for SMM/LMM and compiler

(2) MOV A, REG[PRT0DR]

(3) AND A, READY_MSK

(4) JNZ BACK

(5) MOV A, REG[PRT0DR]

(7) MOV [TEMP1], A

(8) OR REG[PRT0DR], ACK_1

FSM:

BACK:

EQU EFh

EQU 08h

(6) AND A, IN_RST

export _main

EQU 80h

_main:

(1) MOV [CRT_STATE], 00h

(9) AND REG[PRT0DR], ACK_0
(10) AND A, IN_MSK

(b)

(11) ASR A

(12) ADD A, [CRT_STATE]

(13) MOV [TEMP2], A

(19) MOV [CRT_STATE], A

(16) MOV REG[PRT0DR], A

(17) MOV A, [TEMP2]

(15) OR A, [TEMP1]

(18) INDEX NextStateTable

(14) INDEX OutputTable

WAITLOOP:
(20) MOV A, REG[PRT0DR]

(21) AND A, READY_MSK

(22) JZ WAITLOOP

OutputTable:

(23) JMP FSM

DB 00h, 00h, 00h, 10h,

 10h, 00h, 00h, 00h

DB 02h, 04h, 00h, 06h,

 06h, 00h, 04h, 02h

NextStateTable:

EQU 02h

EQU 00h

EQU 80h

EQU 81h

EQU 82h

EQU F7h

00000

000000

0

11 1 10 01 1

0 0

0 0

000000 00

Ready

PRT0DR (0,00h)

Pin4 Pin3 Pin2 Pin1

3 17

InAckReady Out

PRT0GS (0,02h)

(a)

4

InAckOut

PRT0DM0 (1,00h)

PRT0DM1 (1,01h)

PRT0DM2 (0,03h)

Figure 2.16: Sequence detector implementation using INDEX instructions.

can be processed without losing a bit. For higher input frequencies, some of the data might be
lost, because the sequence detector then becomes too slow to process all the inputs.

This analysis also shows that about 33% of the total execution time, excluding busy waiting
time, is consumed accessing the two tables, 10% of the time is required to read data from the
input port, 12% of the time is required to generate the Ack signal, 7% of the time is required to
produce the Out signal, 3% to update the state variable, and 3% of the time is required to jump
to the beginning of the detection code. Thus, speedingup execution for processing faster inputs

90 Microcontroller Architecture

ACK_1:

IN_RST:

TEMP1:

ACK_0:

include "m8c.inc" ; part specific constants and macros

include "memory.inc" ; constants and macros for SMM/LMM and compiler

include "PSOCAPI.inc" ; PSOC API definitions for all user modules

READY_MSK:

PRT0DR:

IN_MSK:

export _main

OutputTable: EQU 50h

; NextStateTable

; OutputTable

(19) MOV A, REG[PRT0DR]

(20) AND A, READY_MSK

(21) JNZ BACK

(22) MOV A, REG[PRT0DR]

(23) AND A, INT_RST

(24) MOV [TEMP1], A

(25) OR REG[PRT0DR], ACK_1

(36) MOV A, REG[PRT0DR]

(37) MOV A, READY_MSK

(38) JZ WAITLOOP

(1) MOV [00h], 00h

(2) MOV [10h], 02h

(3) MOV [11h], 04h

(4) MOV [12h], 00h

(5) MOV [13h], 06h

(6) MOV [14h], 06h

(7) MOV [15h], 00h

(8) MOV [16h], 04h

(9) MOV [17h], 02h

(10) MOV [50h], 00h

(11) MOV [51h], 00h

(12) MOV [52h], 00h

(13) MOV [53h], 10h

(14) MOV [54h], 10h

(15) MOV [55h], 00h

(16) MOV [56h], 00h

(17) MOV [57h], 00h

(18) MOV X, 00h

FSM:

BACK:

(26) AND REG[PRT0DR], ACK_0

(27) AND A, IN_MSK

(28) ASR A

(29) ADD A, [X+0]

(30) MOV X, A

(31) MOV A, [X+OutputTable]

(32) OR A, [TEMP1]

(33) MOV REG[PRT0DR], A

(34) MOV A, [X+NextStateTable]

(35) MOV [X+0], A

WAITLOOP:

(39) JMP FSM

EQU F7h

EQU 81h

EQU 02h

EQU 80h

EQU 00h

EQU EFh

EQU 08h

NextStateTable: EQU 10h

_main:

Figure 2.17: RAM-based sequence detector implementation.

can be achieved by two orthogonal improvements: (1) finding faster ways of accessing data in the
two tables, and (2) using faster I/O interfaces.

RAM-based implementation. Figure 2.17 presents an alternative implementation, in which
the FSM data are first moved from the flash memory to the RAM. Data accessing is simpler and
faster than for the example in Figure 2.16(b). Instead of using INDEX instructions, the program
uses indexed addressing to access the FSM tables. The modifications to the code are shown in
bold.

2.2 Memory Space 91

2.2 Memory Space

This section discusses PSoC’s SRAM and ROM space.

A. SRAM Space

The PSoC architecture can have as many as eight, 256 -byte, memory pages. The 256 bytes of
any given page are addressed by an eight bit address. Different memory pages can be used for
storing the data variables of a program, the stack, and the variables accessed by the two indexed
addressing modes. Having multiple memory pages also simplifies the process of simultaneous
execution of multiple tasks in multitasking applications. The variables of a task can be stored
in a separate page, and reducing the amount of data transfer required when switching from the
execution of one task to another. On the negative side, the assembly code programming becomes
slightly more difficult, because programmers must then manage data stored over multiple SRAM
pages.

Figure 2.18 presents the paging mechanism of the SRAM space. Bit 7 of the CPU F register
is used to enable and disable the SRAM paging. If the bit is zero then all memory accesses are
to page zero. If the bit is set, then the last three bits of the CUR PP register at address 0, D0H
(CUR PP[2:0]) select the current SRAM page. Then, with the exception of PUSH , POP , CALL,
LCALL, RETI , RET, and MVI instructions, all other SRAM accesses refer to this page.

In addition to the current SRAM page, the PSoC architecture also gives the option to setup
dedicated pages for the stack and for the indexed addressing mode. The stack page is selected

Decoder

1(0,D0H) 2 0

Page bits [2:0]

(256 bytes)

Page 0
. . .

(256 bytes)

Page 1

(256 bytes)

Page 8

Address

(8 bits)

Select
0

. . .

CPU_F [7]

CUR_PP

Select Select1 8

Select

00H

FFH

Figure 2.18: Paged SRAM space [4].

92 Microcontroller Architecture

by the bits 2–0 of the STK PP register at address 0, D1H. After a reset operation, the three bits
are set to 000, and hence all stack operations refer to page 0.

The indexed addressing mode uses one of three possible SRAM pages depending on the value
of the two bits 7–6 of the CPU F register at address x,F7H:

• If the bits are 0 then page 0 is used for the indexed addressing mode.

• If the bits are 01 or 11 then the used page is that pointed by the bits 2–0 of the STK PP
register at address 0,D1H. Among other situations, this mode is useful to access the elements
of a routine’s activation record in the memory stack.

• If the bits are 10 then indexed addressing uses the page pointed by the bits 2–0 of the
IDX PP register at address 0,D3H. This mode can be used for transferring data located in
different memory pages, for example when data need to be sent from one task to another,
assuming that each task has its own memory page.

Four temporary data registers, TMP DRx , are available to help in accessing the data transfer
between pages. The registers are always accessible independent of the current SRAM page. The
TMP DR0 register is at address x, 60H, the TMP DR1 register at address x, 61H, the TMP DR2
register at address x, 62H, and the TMP DR3 register is located at address x, 63H.

B. SROM Space

SROM stores the code of eight routines used in booting the PSoC chip, reading from and writing
blocks (64 bytes) to the flash memory, and circuit calibration.

The routines are called by executing an SSC instruction that uses the A register for dis-
tinguishing among the eight routines (hence, the identity of the called routine is passed as a
parameter to the SSC instruction by the A register). In addition, the SROM routines use a set of
extra parameters, which are located at predefined memory locations. In addition to the returned
values that are returned as part of their functionality, each SROM function also returns a code
value that signals the success or failure of the routine execution. Table 2.29 enumerated the four
possible return values.

Each flash block is protected against illegal SROM function calls by setting its accessing mode
to one of four possible modes: in the unprotected mode, external read and write operations are
allowed, as well as internal writes and read operations of entire blocks. Internal read operations
are allowed in each of the four modes. The second mode (factory upgrade) allows only external
write and internal write operations. The third mode (field upgrade) permits only internal write
operations. Finally, the fourth mode (full protection) permits only internal read operations.

Table 2.27 lists the SROM eight functions in column one, the value that needs to be loaded
into the A register before executing the SSC routine in column two, and the required stack space
in column three. Table 2.28 presents the variables that are used for passing extra parameters to
the SROM functions, and the addresses of these variables in the SRAM. Note that all variables
are located in page 0. Finally, Table 2.29 enumerates the four codes that indicate the status at
the end of an SROM function execution. To distinguish between legal and illegal SROM function
calls, the value of parameter KEY1 must be set to 3AH and the value of parameter KEY2 to
the stack pointer, SP, plus 3 before executing the SSC instruction for the call.

The behavior of the SROM functions is as follows:

2.2 Memory Space 93

Table 2.27: SROM functions [1].

Function name Function code Stack space
SWBootReset 00H 0

ReadBlock 01H 7
WriteBlock 02H 10
EraseBlock 03H 9
TableRead 00H 3
CheckSum 00H 3
Calibrate0 00H 4
Calibrate1 00H 3

• SROM functions called at system reset.

– CheckSum: The function computes the checksum over a number of blocks in the
flash memory. The number of blocks is defined by the parameter BLOCKID (see
Table 2.28). The checksum value is 16 bits long, and is returned using the following
parameters: KEY1 which holds the least significant byte, and KEY2 which holds the
more significant byte of the checksum value.

– SWBootReset: This function is automatically executed upon hardware reset. It ini-
tializes some of the CPU registers and page 0 of SRAM. It first verifies the checksum
of the calibration data. For valid data, it loads the following registers with the value
00H: A register, X register, CPU F register, SP register, and the Program Counter,
PC. Also, it sets the SRAM page 0 locations to predefined values, and starts execution
of the user code at address 0000H in the flash memory.

The SRAM page 0 memory locations are initialized, depending on their addresses, to
the value 0x00, some predefined hexadecimal values, or to values programmed by the
bit IRAMDIS (bit 0) of the control register, CPU SCR1, at address x,FEH. If the
bit is set to 0 then the corresponding SRAM cells must be initialized to 0x00H after
a watchdog reset, otherwise not, therefore preserving the SRAM value before reset.
More details about the specific values that are loaded into each memory location in
the SRAM page 0 can be found in [1].

Table 2.28: SROM function variables [1].

Variable name SRAM
KEY1 / RETURN CODE 0, F8H

KEY2 0, F9H
BLOCKID 0, FAH
POINTER 0, FBH
CLOCK 0, FCH
Reserved 0, FDH
DELAY 0, FEH
Reserved 0, FFH

94 Microcontroller Architecture

Table 2.29: SROM return codes [1].

Return code value Description
00H successful completion
01H function is not allowed because of the protection level
02H software reset without hardware reset
03H fatal error

• The following are the SROM functions that read and write to the flash memory:

– ReadBlock: This function transfers a data block consisting of 64 bytes from the flash
memory to the SRAM. Figure 2.19 presents the pseudocode for this function. First,
the function verifies if the block pointed by the parameter BLOCKID is readable. If
the block is not readable then the A register and the parameters KEY1 and KEY2
are loaded with values which indicate that reading was not possible due to protection
restrictions.

If the block protection allows reading, then 64 bytes are read from the flash memory
using ROMX instructions, and stored in the SRAM by MVI instructions. The SRAM
area is pointed to by the parameter POINTER. The SRAM page is determined by
the MVW PP register at address 0, D5H, for example for any MVI instruction. The
successful completion of the operation is indicated by loading parameters KEY1 and
KEY2 with the value 00H.

The flash bank is selected by the FLS PR1 register at address 1, FAH, if the architec-
ture has multiple flash banks. Bits 1–0 of the register select one of the four possible
flash banks.

– TableRead: This function accesses part-specific data stored in the flash memory. For
example, these data are needed to erase or to write blocks in the flash memory. The
table to be accessed is selected by programming the parameter BLOCKID . Table 0
provides the silicon ID of the chip, tables 1 and 2 the calibration data for different
power supplies and room temperatures, and table 3 the calibration data for correctly
erasing or writing to the flash memory.

– EraseBlock: This function erases a block in the flash memory. The block is indicated
by the parameter BLOCKID . The function first checks the protection of the block,
and, if writing is not enabled, then the value 01H, indicating failure due to protection,
is loaded into the parameter KEY1.

In addition to the parameter BLOCKID, two other parameters, DELAY and CLOCK,
must also be set before calling the EraseBlock function. The parameters are introduced
in Table 2.28. If the CPU clock is in the range 3–12 MHz, then the value of the
parameter DELAY is set by the following[1],

DELAY =
10−4 × CPUspeed (Hz) − 84

13
(2.3)

For a higher clock speed, the DELAY value is computed as [1]:

DELAY =
102 × 12 − 84

13
(2.4)

2.2 Memory Space 95

is NOT readable then

(2) load 00H into the register A;

(4) load 01H to KEY1;

(5) exit;

bytes in SRAM using MVI instructions.

ROMX instruction and store the

the SRAM area is pointed by POINTER;

the flash bank is selected by

register FLS_PR1.

SROM function ReadBlock:

(1) if the block pointed by BLOCKID

else

(6) read 64 bytes from flash using the

(7) load 00H to KEY1;

(8) load 00H to KEY2;

(9) exit;

end SROM function ReadBlock.

(3) load 00H into KEY2;

is NOT writeable then

(2) load 00H into the register A;

(4) load 01H to KEY1;

(5) exit;

the SRAM area is pointed by POINTER;

the flash bank is selected by

register FLS_PR1.

MVI instruction and store the

bytes in the flash memory.

(7) load 00H to KEY1;

(8) load 00H to KEY2;

(9) exit;

(6) read 64 bytes from SRAM using the

(1) if the block pointed by BLOCKID

else

SROM function WriteBlock:

end SROM function WriteBlock.

(3) load 00H into KEY2;

Figure 2.19: ReadBlock and WriteBlock SROM functions [1].

The parameter CLOCK is defined as:

CLOCK = B − 2 × M × T

256
(2.5)

96 Microcontroller Architecture

The values for B and M are device specific, and are accessed using the TableRead
SROM function.

Different values are used for temperatures, T below and above, 0◦C. For example, for
temperatures below 0◦C, the value of M is stored in the flash bank 0 at address F8H,
and B at address F9H. For temperatures higher than 0◦C, the value of M is found at
address FBH and B at address FCH.

– WriteBlock: This function writes a data block in the SRAM to the flash memory.
Figure 2.19 shows the pseudocode for this function. The parameter POINTER points
to the address of the block in SRAM, and the parameter BLOCKID points to the
location in flash memory region where the data are to be copied. The flash bank is
determined by bits 1-0 of the FLS PR1 register at address 1, FAH.

This function first determines if the flash memory block pointed to by the parameter
BLOCKID is writable, or not. If it is writable, then 64 bytes are accessed by MVI
instructions, starting at the SRAM address given by the parameter PARAMETER.

Parameters DELAY and CLOCK must also be programmed for correct writing to the
flash memory. The value of DELAY is set according to Equation (2.3). The parameter
CLOCK is defined as [1]:

CLOCK =
CLOCKE × MULT

64
(2.6)

The value CLOCKE is the clock parameter for the erase operation, and is computed
according to the equation (2.5). The value of the parameter MULT depends on the
temperature, is stored in table 3 of the flash bank 0 (at address FAH for cold tem-
peratures, and at address FDH for hot temperatures), and can be accessed using the
TableRead SROM function.

• The functions used in calibration are the following:

– Calibrate0: This function transfers the calibration values from the flash memory to
the required registers.

– Calibrate1: This function executes the same functionality as the function Calibrate0,
but in addition also computes the checksum of the calibration data. If the checksum
is incorrect, then a hardware reset in generated, and bit IRESS (bit 7) of the register
CPU SCR1 is set. The CPU SCR1 register is at address x, FEH.

The parameter POINTER points to a 30–byte buffer that is used for computing
the checksum. Also, as MVI instructions are used for the actual data transfer, the
MVR PP and MVW PP registers must point to the same SRAM page.

2.3 Conclusions

This chapter has presented the important characteristics of a microcontroller’s instruction set
and discussed programming techniques, in assembly language, for six popular applications and
routines: data block transfer, stack operation, unsigned data multiplication, calling assembly
routines from programs in high-level programming languages, bit manipulations, and sequence
detectors. It has also discussed the memory space of embedded architectures, including the

2.3 Conclusions 97

microcontroller registers, the SRAM and nonvolatile memory spaces, and the status and control
registers.

PSoC’s M8C microcontroller instruction set was discussed in some detail as an illustrative
example. PSoC instructions can use ten addressing modes that result from combining the four
basic addressing modes: immediate addressing, direct addressing mode, indexed addressing, and
indirect addressing. These addressing modes allow a tradeoff between execution speed and code
size and provide flexibility in mapping data to the microcontroller memory. Using immediate-
and direct-addressing modes results in faster, smaller, but also less flexible code.

M8C’s instruction set includes five categories of instructions: instructions for (1) data transfer,
(2) arithmetic operations, (3) logic operations, (4) execution flow control, and (5) miscellaneous.

• The instructions for data transfer involve M8C’s general-purpose A and X registers, the
SRAM space (instructions MOV, MVI, and SWAP), the stack (instructions POP and
PUSH), and the nonvolatile memory (instructions ROMX and INDEX).

• The instructions for arithmetic operations perform additions (instructions ADD and ADC),
subtractions (instructions SBB and SUB), increment and decrement (instructions INC and
DEC), comparison (instruction CMP), arithmetic shift (instructions ASL and ASR), and
rotate (instructions RLC and RRC).

• The instructions for logic operations execute bit-level logic AND (instructions AND), OR
(instructions OR), XOR (instructions XOR), and complement (instructions CPL).

• The instructions for flow control include: jumps (instructions JACC, JC, JMP, JNC, JNZ,
JZ, and LJMP), subroutine calls (instructions CALL, LCALL, RET, and RETI), and sys-
tem supervisory calls (instructions SSC).

• Other instructions include HALT and NOP instructions.

PSoC’s memory space consists of the microcontroller registers (A, X, CPU F, SP, and PC
registers), the paged SRAM space, the nonvolatile memory (flash and ROM), and the register
space for programming the mixed-signal architecture. The paged memory includes up to eight
SRAM pages, inclusive, and is managed by the CUR PP (the current memory page), STK PP
(stack page), and IDX PP (indexed addressing) registers. The temporary registers, TMP DR,
are available for speeding-up the data transfer between pages. Eight system routines are stored
in ROM that are called by the instructions SSC. The register space is organized as two register
banks, which help fast reconfiguration of the architecture.

Assembly code routines for six different applications have also been provided in this chapter,
for example the sequence detector design provides the most comprehensive discussion. The goal
of sequence detection is to recognize a predefined bitstring in a sequence of input bits. This
example presented the pseudocode of the detector specified as a finite state machine (FSM), two
implementation alternatives, and the performance analysis of the implementation. The design
used a handshaking mechanism to read input and output results at the general-purpose ports of
the architecture. The two implementation alternatives stored the next state and output tables
either in the flash memory, or in SRAM. Performance analysis estimated the execution time and
the memory required. It also estimated the highest data rate of the input that can be processed
without data loss. The example also accounted for the various contributions to the total execution
time of the implementation.

98 Microcontroller Architecture

2.4 Recommended Exercises

1. Develop Assembly routines for adding and subtracting two unsigned operands of lengths two
bytes - in the first case, and then four bytes – in the second case. Many C language compil-
ers represent short unsigned int variables using 2 bytes, and unsigned int variables using
4 bytes.

2. Write a routine in Assembly language for dividing two unsigned bytes. Extend the routine for
division of numbers of arbitrary size (an arbitrary number of bytes is used for their representa-
tion).

3. Write assembly language routines for multiplication and division of signed operands of lengths
2, 4, and 8 bytes. Optimize the routines for a minimum number of execution clock cycles.

4. For a bitstring of length M, write Assembly code routines that set and reset a bit at position P.
Also, develop routines that set and reset a field of length L starting at position P.

5. Write a set of routines that implement the abstract data type a set of positive integers up
to 512 (the elements of the set can be the integers 0, 1, ... , 512). Propose routines for initializing
a set as the empty set, adding the value v to the set, eliminating the value v from the set, and
verifying if the value v is in the set. Use these routines to compute the reunion, intersection, and
difference between two sets.

6. Write a routine in the M8C microcontroller Assembly language for sorting in increasing order
a vector of unsigned bytes. Optimize the flexibility of your code, so that it can run for different
vector sizes and for different memory regions (memory pages) storing the vector.

7. Develop an Assembly code program that searches a value in a vector of sorted values. The
algorithm should implement a binary search method: at the first step, the algorithm compares
the searched value with the value at the middle position of the vector. If the searched value is
less then the algorithm repeats the process for the lower half, and if the value is larger then the
algorithm considers the upper half. The algorithm returns the position of the searched element
(if the value was found), or –1, otherwise. The starting address and the length of the vector
are inputs to the procedure. Assume initially that the value is one byte long. Then, discuss the
changes that must be operated so that data values of size B bytes are handled by the procedure.

8. Write Assembly code routines for multiplying two bidimensional matrices of unsigned integers.
The routines should be flexible in handling matrices with different numbers of rows and columns.

9. Develop the Assembly code routines for a “software” lock. One routine must read serially
eight bits at a rate of one bit per second. Then, the routine checks if the bitstring is equal to the
preset code of the lock. If the two are equal than the signal Unlock is set to 1, otherwise it is
set to 0. The second routine sets the code of the lock by reading serially eight bits at a rate of
ten bits per second.

10. Develop an Assembly language routine that implements a palindrome recognizer. A palin-
drome is a bitstring which is equal to its reversed form. For example, the bitstring 111000111 is

2.4 Recommended Exercises 99

a palindrom, but the bitstring 10100011 is not. Upon receiving the pulse START , the routine
reads eight bits that are sent serially at the bit rate T. The value T is programmable. The eight
bits indicate the length L of the bitstring that is checked. Then, the L bits of the bitstring are
serially input at the same rate T. The system outputs bit 1 if the bitstring is a palindrom, and
bit 0, otherwise.

11. Develop Assembly routines that implement a traffic-light controller. The traffic light controller
controls the traffic moving along four directions: south-to-north, north-to-south, east-to-west, and
west-to-east. The traffic light should stay in a state (e.g., green light) for a specified time T, and
then move to the next state. If no cars are passing on a direction (e.g., north-to-south and
south-to-north, or east-to-west and west-to-east) for B consecutive states then the value of the
time interval T for the state “red light” should be shortened to T/2, and then to T/4, and so
on, until it falls below the threshold TH , and when it is set to 0. Once cars move again in that
direction the value of the state “red light” should be set back to the value T. The moving of cars
in a direction is signaled to the controller by proximity sensors, which generate an asynchronous
pulse of width Tpulse.

12. The task is to develop Assembly code for a bottled-water vending machine. A bottle costs
$0.45. The vending machine accepts nickels, dimes, and quarters. The customer begins entering
coins, one at a time. If exact change has been entered then the output signal Unlatch is generated,
so that the customer can get a bottle. If the amount of deposited money exceeds the price of a
bottle, then change is given. If there is not enough change in the repository then the coins are
refunded by issuing the output signal Refund, and the signal Unlatch is not generated. If there is
enough change in the repository then it should be paid using the minimum amount of coins. The
repository indicates to the controller the number of coins of each type available in the repository:
bits Nx show the number of nickels, bits Dx the number of dimes, and bits Qx the number of
quarters. Change is given to the customer by generating pulse signals for the repository: the
signal NR releases one nickel, the signal DR releases one dime, and the signal QR releases one
quarter. One coin is released at a time. (Acknowledgment: The exercise is based on a homework
problem for Prof. R. Vemuri’s VLSI design course at the University of Cincinnati).

13. Write Assembly routines that implement the basic operators of a circular FIFO (first input
first output) buffer. The buffer is described by two pointers. The pointer head indicates the
first element of the buffer, and the pointer tail points to the last element of the buffer. A new
element is inserted at the tail of the buffer, and only the value that is pointed by the pointer head
can be removed from the buffer. The FIFO buffer is of size MAX - where the value of MAX
is programmable. Once the pointer head reaches the value MAX then it is set back to the
first element of the buffer. Similarly, once the pointer tail indicates to the first buffer element,
the pointer is set to the last element in the FIFO buffer. The assembly routines should offer
the following functionality: create a new FIFO buffer starting at address xxH, reset the buffer,
introduce an element into the buffer, and remove a value from the buffer.

14. Write an Assembly code routine that calculates the expression ((4 + 5) * 3) * (2 + 3) using
only the stack for storing the operand values and the intermediate results of the expression.

15. Develop Assembly code routines for implementing the abstract data type, sorted linked lists
of unsigned bytes. Define the routines for setting up an empty list, inserting a new element to
the list, and removing a value from the list.

100 Microcontroller Architecture

16. For the routines in Figure 2.8, identify all situations in which the “safe ” pop and push
routines are not safe anymore. Extend the two routines so that they are safe in all situations.
Explain your procedure for identifying the conditions that lead to unsafe operation.

17. Write an Assembly routine for realizing the behavior of a pulse width modulation block. The
designer should have the option of programming the pulse width α of the PWM routine through
calling a C function with two parameters: the new value of the pulse width and a pointer to the
PWM block data.

18. Develop the following routines and programs in Assembly code:

• A routine that displays the message “Hello world” on the LCD.

• A program that controls the blinking of an LED once every two seconds with a 50% duty
cycle (the LED is on for one second, and off for one second).

• Two assembly routines that convert a binary number to BCD, and BCD to binary number,
respectively.

• A routine that implements a frequency calculator.

• A routine for the cyclic redundancy check (CRC) function.

19. For the example shown in Figure 2.13, modify the structure of the activation record and
show the Assembly code that must be inserted in the calling and called routines, so that input
parameters of any byte size can be passed, and results of any size are returned.

20. For the C compiler that you are using for your embedded applications, analyze the Assembly
code that is generated for different C statements, for example assignment, if, case, for, while
statements, and different data types, such as arrays and structures. Understand what code
optimizations are carried out by the compiler.

21. Develop Assembly code that reads the values of the constants B, M, and MULT specific to
your PSoC chip.

22. Using SSC instructions and the routines stored in the ROM memory, implement a program
that writes N blocks to the flash memory, then reads M blocks of data from the flash memory
to the SRAM memory, and finally, erases the M blocks of flash memory,

23. For the sequence detector design in Figures 2.15 and 2.16, estimate the execution time
overhead due to busy waiting for different values of the input bit rates, such as 0.1 kbits/sec,
1 kbits/sec, 10 kbits/sec, 50 kbits/sec, and 100 kbits/sec. Discuss the results and propose a
solution to decrease the busy-waiting overhead.

24. For Exercise 14, estimate the execution time in clock cycles if the data values are represented
on one, two, and four bytes. Discuss the increase in execution time depending on the size of the
values that are processed.

2.4 Recommended Exercises 101

25. Find an analytical formula that predicts the execution time of an algorithm depending on
the memory size of the processed values.

26. For exercise 8, assume that each of the matrices occupies multiple SRAM pages. Modify the
algorithm in this case, and propose a way of distributing the matrix elements to the SRAM pages,
so that the execution time of the program is minimized.

Bibliography

[1] PSoC Mixed Signal Array, Technical Reference Manual, Document No. PSoC TRM
1.21, Cypress Semiconductor Corporation, 2005.

[2] PSoC Designer: Assembly Language User Guide, Spec. #38-12004, Cypress
Microsystems, December 8 2003.

[3] PSoC Designer: C Language Compiler User Guide, Document #38-12001 Rev.*E,
Cypress Semiconductor, 2005.

[4] K. Boulos, Large Memory Model Programming for PSoC, Application Note AN2218,
Cypress Microsystems, September 13 2004.

[5] J. Byrd, Interfacing Assembly and C Source Files, Application Note AN2129,
Cypress Microsystems, May 29 2003.

[6] J. Holmes, Multithreading on the PSoC, Application Note AN2132, Cypress
Microsystems, February 24 2004.

[7] D. Lewis, Fundamentals of Embedded Software. Where C and Assembly Meet, Saddle
River, NJ: Prentice Hall, 2002.

[8] M. Raaja, Binary to BCD Conversion, Application Note AN2112, Cypress
Microsystems, February 12 2003.

[9] W. Snyder, J. Perrin, Flash APIs, Cypress Microsystems, August 4 2004.

[10] S. Sukittanon, S. Dame, Embedded State Machine Design for PSoC using C
Programming (Part I of III), Application Note AN2329, Cypress Semiconductor,
February 8 2006.

[11] S. Sukittanon, S. Dame, Embedded State Machine Design for PSoC using an
Automatic Code Generator (Part II of III), Application Note AN2332, Cypress
Semiconductor, December 5 2005.

[12] S. Sukittanon, S. Dame, Embedded State Machine Design for PSoC with Interfacing
to a Windows Application (Part III of III), Application Note AN2333, Cypress
Semiconductor, January 5 2006.

[13] D. Van Ess, Unsigned Multiplication, Application Note AN2032, Cypress Semicon-
ductor, June 21 2002.

[14] D. Van Ess, Signed Multi-Byte Multiplication, Application Note AN2038, Cypress
Semiconductor, August 29 2002.

[15] D. Van Ess, A Circular FIFO, PSoC Style, Application Note AN2036, Cypress
Microsystems, July 21 2002.

Chapter 3

Hardware and Software
Subsystems of Mixed-Signal
Architectures

This chapter focuses on the main hardware and software subsystems for sensing,
processing and control, data communication, and actuation in embedded applica-
tions. The PSoC architecture is used to illustrate the subsystems.

The PSoC architecture incorporates the following subsystems: the analog subsystem (pro-
grammable continuous-time and switched capacitor analog blocks, analog input/output ports,
analog bus, and programmable interconnect), the digital subsystem (including the CPU, volatile
and nonvolatile memory, array of programmable digital blocks, and customized digital blocks),
the interrupt system, the general input/output ports, the system buses, and the system clocks.
The chapter also introduces the software components of the architecture, for example the boot
program, interrupt service and firmware routines.

Because the architecture subsystems are the topics of the following chapters, this chapter
constitutes the transition from the instruction-level presentation of the PSoC architecture in
Chapter 2 to the rest of this textbook.

The chapter has the following structure:

• Section 1 discusses the main subsystems of a mixed-signal architecture, and the hardware
and software components of the PSoC architecture, as illustrative examples.

• Section 2 provides a comprehensive presentation of the PSoC interrupt subsystem and a
tachometer-handling, interrupt service routine case study.

• Section 3 gives a detailed description of the PSoC global input/output ports and their
features and programming.

• Section 4 presents the PSoC bus subsystem, including the interconnect for the digital and
analog blocks.

• Section 5 discusses PSoC’s system clocks.

• Section 6 presents chapter conclusions.

A. Doboli, E.H. Currie, Introduction to Mixed-Signal, Embedded Design,
DOI 10.1007/978-1-4419-7446-4 3, c© Springer Science+Business Media, LLC 2011

104 Hardware and Software Subsystems of Mixed-Signal Architectures

channel 1

Input

channel 1

Input

channel 3

Actuation subsystemProcessingSensing subsystem

Input

Input

channel 2

channel 4

control procedure

Output

Output

Information flow

Processing

&

channel 2

Figure 3.1: Sense-process and control-actuate flow in embedded applications.

3.1 Subsystems of the PSoC Mixed-Signal Architecture

Embedded mixed-signal architectures provide hardware and software support for implementing
the data acquisition, processing, and control of an application. This textbook focuses primarily
on applications involving signal sensing, embedded processing/control, actuation, and advanced
interfacing, and less on applications demanding intensive data computations, such as multimedia
applications. In this context, besides the digital processing capabilities, it is important that
the architecture has the resources needed for interfacing to analog and digital signals, analog
processing (e.g., signal conditioning, filtering and data conversion), and possesses the capability
of identifying and reacting to external and internal events, including timing events.

In summary, embedded mixed-signal architectures incorporate resources for the following four
kinds of activities:

• Sensing of analog signals: This includes analog interfacing resources, such as analog input
ports, circuits for signal conditioning, analog filtering, data buffers and analog-to-digital,
and digital-to-analog conversion and the related software drivers, firmware routines, and
interrupt service routines for operating the circuits.

• Sensing and communication of digital data: The related resources are digital ports, interrupt
controllers, customized digital processing blocks, modules for specific interfacing protocols
(e.g., SPI, UART and I2C), and the corresponding drivers, firmware routines, and interrupt
service routines.

• Execution of the embedded processing and control algorithms: The corresponding resources
are the central processing unit (CPU), volatile and nonvolatile memory, digital blocks with
customized functionality (e.g., timers, watchdog timers, multipliers), programmable digi-
tal blocks, the related drivers, firmware routines, and interrupt service routines, and the
application (control) software.

• Generating actuation signals: This includes the support for producing the output signals
used in actuation. The signals that control the operation of the supervised peripheral

3.1 Subsystems of the PSoC Mixed-Signal Architecture 105

System bus (DB bus)

I/Os

I/Os

Global analog bus

controls

for

from

analog−digital

interface

from

digital

array

from

digital

ports

Clock

subsystems

clocks for CPU, analog array,

analog−digital interface, digital array,

interrupt controller

Interrupt

controller

SRAM

SROM

Digital ports Digital array

Analog−digital

interface

Analog arrayAnalog ports

Register

space

analog ports, digital ports,

analog array, digital array,

analog−digital interface,

system bus, analog bus,

interrupt controller, and

clock subsystem

CPU

Figure 3.2: Subsystems of the PSoC architecture.

devices are both analog and digital. The architectural support includes interfacing logic,
buffers, output ports, and the related driver and firmware routines.

Figure 3.1 illustrates the sense/process, and control/actuate, flow in a typical embedded
control application, and the mapping of the flow to the subsystems of a mixed-signal architecture.
This chapter introduces the main subsystems of an embedded, mixed-signal architecture using
Cypress’ Programmable System on Chip (PSoC) as an illustrative example. PSoC was selected
because it is a system-on-chip (SoC) that provides broad support for analog and digital sensing,
processing, actuation, and data communication. The following chapters explain the use of the
subsystems for developing constraint-satisfying, and performance-optimized, implementations of
embedded applications.

The PSoC mixed-signal architecture [5] incorporates hardware (i.e., analog and digital cir-
cuits) and software support in the form of libraries of firmware routines. The implementation
of complex sensing, control, actuation, and data communication using PSoC is achieved by two
main features of the architecture, hardware programmability and integration of the subsystems
as a single chip (SoC):

• Hardware configuration and reconfiguration: Application developers can utilize platforms
such as PSoC for a wide variety of applications because the analog and digital blocks pro-
vided by the architecture can be individually programmed, that is customized, to meet
application-specific functionality and performance requirements. This allows the devel-
oper/designer to standardize on one hardware/software platform for different applications.

The same programmable analog blocks can be dynamically reconfigured, in real time, to
operate, for example, as a lowpass filter, and then be reconfigured as a bandpass filter,

106 Hardware and Software Subsystems of Mixed-Signal Architectures

and finally reconfigured as an analog-to-digital converter (ADC), for example as a ∆Σ
ADC. Similarly, programmable digital blocks can be configured as a counter, and then
reconfigured as a timer circuit.

Hardware configuration provides several advantages over nonconfigurable circuits. In the
former case, the same circuits can be reused, sometimes within the same application, to
implement different functions. This reduces hardware costs, and the cost of future appli-
cations that reuse the same circuitry. Also, the total development time becomes shorter
because a designer needs only to configure the operation of the programmable hardware
blocks instead of having to build customized circuits for a new application. In addition, the
existing blocks can be easily reused in new designs, hence reducing the design and testing
effort. However, programmable architectures may offer less performance, in some cases,
than customized solutions, especially with respect to the analog circuits, because reconfig-
urability can adversely affect the bandwidth, linearity, noisiness, and precision of analog
circuits.

There are two types of hardware configurability:

– static hardware configuration: The system is programmed once before the start of
operation so that each hardware block always performs the same function.

– dynamic hardware configuration: Following initiation of execution, the initial configu-
ration is repeatedly reprogrammed, that is reconfigured, to offer new behavior in real-
time. (PSoC architecture is dynamically reconfigurable).

• Integration of all architectural subsystems on a single chip: The PSoC architecture is a
complete SoC, namely all of the hardware subsystems required in an embedded application
are integrated and packaged in a single silicon chip. The CPU, the nonvolatile and volatile
memories, the programmable analog and digital blocks, I/O ports, and so on, are all inte-
grated as a SoC. This reduces not only the size and weight of the system compared to a
system built of discrete components, but also improves an implementation’s performance
in terms of speed, power, and reliability.

3.1.1 PSoC Hardware Components

Figure 3.2 illustrates PSoC’s block-level architecture.

• Analog signal sensing subsystem: PSoC provides hardware support for sensing and process-
ing analog signals at frequencies as high as 100 kHz and includes the following modules.

– Matrix of configurable analog blocks: Various analog and mixed-signal circuits and
subsystems, for example different amplifier types (i.e., differential amplifiers, instru-
mentation amplifiers, variable gain amplifiers, etc.), comparator circuits with/without
hysteresis, analog filters, analog -to-digital converters and digital-to-analog converters.

Figure 3.3 illustrates the structure of the analog matrix which is organized as a two-
dimensional array that includes blocks organized in columns. The functionality, in-
puts, outputs, and performance of the analog blocks are determined by programming
dedicated control registers in PSoC’s register space. This matrix includes two types
of configurable analog blocks, that is continuous-time blocks and switched-capacitor
blocks. The continuous-time blocks are denoted as ACBxx, and the switched capacitor
blocks as either ASCxx or ASDxx . There are two types of switched-capacitor topology
type C, and type D (i.e., blocks ASCxx , and ASDxx , respectively).

3.1 Subsystems of the PSoC Mixed-Signal Architecture 107

Comparator bus

(to digital blocks)

Column 0 Column 1 Column 2 Column 3

ACB00 ACB01 ACB02 ACB03

ASC10 ASD11 ASC12 ASD13

ASD20 ASC21 ASD22 ASC23

DB bus

Array of configurable analog blocks

Port 2 Port 0

Global analog interconnect (bus)

Figure 3.3: Matrix of programmable analog blocks [5].

– Analog bus and programmable interconnect: There are three interconnect structures
that link the matrix of programmable analog blocks, and these blocks to the chip’s
I/O pins.

∗ The local programmable interconnect is used to connect the outputs of analog
blocks to the negative, or positive, inputs of another analog block to form larger
analog structures. The local interconnect is also used to link block inputs to
specific reference voltages, or to the ground.

∗ The input of the global analog bus (cf. Figures 3.2 and 3.3) links the chip pins to
the inputs of the programmable analog blocks.

∗ The output of the global analog bus, also called the comparator bus [5], connects
each analog column to the programmable digital blocks, and, via the global digital
buses, to a fixed set of output pins.

(Chapters 6 and 7 discuss the programmable continuous-time and switched capacitor
analog blocks in PSoC.)

• Digital sensing, processing, and actuation subsystem: Includes the modules that implement
all the interfacing, processing, and communication in the digital domain, including:

– CPU: An M8C microcontroller serves as the architecture’s general-purpose processor.
(The M8C’s instruction set is discussed in Chapter 2.)

– Memory subsystem: The memory system includes paged RAM used to store data, flash
memory used to store the application programs, and SROM which contains eight of
the more frequently used system functions. (The memory subsystem is presented in
Chapter 2.)

108 Hardware and Software Subsystems of Mixed-Signal Architectures

GIO bus

DBB00

GOE bus

DB bus

GOO bus

Row 0

Row 1

Row 2

Row 3

Array of digital programmable array

Port0Port2Port4Port6

Port7 Port5 Port3 Port1

DBB01 DCB02 DCB03

DBB10 DBB11 DCB12 DCB13

DBB20 DBB21 DCB22 DCB23

DBB30 DBB31 DCB32 DCB33

GIE bus

Figure 3.4: Matrix of programmable digital blocks [5].

– Digital programmable and customized blocks: Both kinds of blocks can be used to pro-
vide faster application execution times than a software-only implementation executed
by the CPU. These blocks also support data communication functions.

The PSoC architecture incorporates up to 16 programmable digital blocks that can
operate as one of the following: timers, counters, deadband generators, and cyclic
redundant checkers (CRC). In addition, four of the programmable blocks (i.e., the
communication blocks) can also implement serial data communication protocols, for
example the protocols SPI and UART [5]. Figure 3.4 illustrates the matrix of pro-
grammable digital blocks.

The customized blocks are digital circuits with specific functionality, for example pulse
width modulators (PWM), multiply accumulate (MAC) modules, decimator modules,
and I2C interfacing logic.

(The programmable and customized blocks are detailed in Chapters 4 and 5.)

3.1 Subsystems of the PSoC Mixed-Signal Architecture 109

• Interrupt subsystem: Interrupt signals immediately notify the CPU of the occurrence of
predefined events. These events are predefined by conditions that may occur during the
normal operation of the system, such as exceeding a preset threshold value, elapsing of a
certain time interval, availability of data at the input ports, ending of a data transmission,
system reset, etc. In contrast, exceptions describe abnormal situations that occur during
the system functioning, such as division by zero, overflow of memory buffers, and power
loss, among others. Interrupts are widely used for interfacing to sensors, actuators, and
other IO devices and have an advantage over device polling by demanding less execution
time overhead.

PSoC provides hardware and software support for fast interrupt servicing [5]. The hardware
support includes the following.

– Priority encoder: The priority encoder is a hardware circuit that selects the pending
interrupt of highest priority. This interrupt-handling capability is needed because in-
terrupts from various devices, and architectural blocks, can arrive at the same time,
and should be serviced by the system in the order of their relative importance (prior-
ity).

– Interrupt table: The interrupt subsystem provides support for fast identification of the
interrupt source. This is achieved by associating a unique identifier with each interrupt
source, and using that identifier as an index to an interrupt table to find the physical
address of the software routine corresponding to that interrupt. The software routine
handling an interrupt is called an interrupt service routine (ISR).

An example of interrupt table indexing is shown in Figure 3.7. The interrupt table is
located in the SRAM (e.g., starting at the physical address 00H), and set up by the
boot program during system initialization.

– Support for enabling and disabling interrupts: The instruction sets of some archi-
tectures include dedicated instructions for enabling and disabling interrupts. Other
architectures, such as PSoC, do not offer such dedicated instructions, but achieve the
same task by setting and resetting the associated interrupt control bits.

• Interrupt handling : Prior to executing each instruction, the CPU determines whether an
interrupt has occurred. If so, and the interrupts are enabled, then the current program
execution is suspended, the interrupt of the highest priority is identified by the priority
encoder, and the associated ISR is found by indexing the interrupt table. After executing
the related ISR, the execution of the interrupted program is resumed.

Section 3.2 provides more details on the PSoC interrupt subsystem and the related ISRs.

• General input/output ports: The PSoC architecture includes general-purpose programmable
ports. The ports can be programmed as input or output ports. Also, the ports can be
connected either to the CPU, to the digital resources, or to the programmable analog
blocks. Designers can select the driving capabilities of a port depending on the attributes
of the external device. Finally, the ports can be programmed to originate interrupt signals
to the microcontroller.

• System buses: The system buses interconnect the architecture’s input/output ports, CPU,
programmable and customized digital blocks, and programmable analog blocks. The buses
are organized to offer maximum data communication rates in the system, including

110 Hardware and Software Subsystems of Mixed-Signal Architectures

transferring data in parallel between the blocks, and small propagation delays by using
short interconnect.

The bus subsystem includes the system bus (DB) that connects the microcontroller to
the other PSoC subsystems, the global digital interconnect between the ports and the
programmable digital blocks, the local interconnect for the digital blocks, and the analog
interconnect for the programmable analog blocks.

• System clocks: The PSoC architecture includes three possible clocking sources: the internal
main oscillator, the internal low speed oscillator, and the external clocking sources. The
internal main oscillator can operate in two precision modes, the moderate precision mode
and the high precision mode. Depending on the specifics of the application, designers can
select lower clock frequencies to reduce the power and energy consumption. Also, they can
use clocks of higher accuracy (e.g., for the switched capacitor analog circuits), but at the
penalty of increasing the implementation cost due to the external crystal oscillator that is
required and the power consumption of the implementation.

3.1.2 PSoC Software Components

The software running on the mixed-signal architecture includes routines for managing the analog
and digital blocks of the architecture (the routines are called firmware routines), for implement-
ing the behavior executed in response to the external and internal events (the routines are called
Interrupt Service Routines), for booting the system at initialization, and implementing the em-
bedded algorithm of the application.

• Boot program initializes the general-purpose hardware resources of the architecture, con-
figures the application-specific programmable analog and digital blocks, the system inter-
connect, system clocks, and supply voltage, initializes the software runtime environment,
including the data structures and global variables, and then calls the main program of the
embedded application. The steps are summarized in Figure 3.5(a).

• Embedded application algorithms implement the main control and communication function-
ality of the application. Figure 3.1 illustrates the principle of the algorithms. Input data
are sensed (read) from multiple sources. Data are read either periodically at fixed intervals
of time, or in response to the occurrence of an event. The first case represents discrete-
time systems, and the second case corresponds to reactive systems. For example, a discrete
system might sample continuous-time input signals (e.g., a sinusoidal voltage signal) after
each one millisecond. In contrast, a reactive system will read its input only if an event
occurs (e.g., one of the inputs exceeding a specific threshold value).

Some inputs correspond to analog signals and others to digital signals. In addition, inputs
are sensed by hardware modules with different characteristics. Conceptually, each of the
input sources defines an input channel from where data are read by the embedded appli-
cation. Similarly, the actuation data computed and output by the application introduced
several output channels, which are mostly for digital signals. Each channel provides a set
of methods that are called by the main algorithm to interact with the channels. These
methods instantiate a channel, initialize a channel, modify and retrieve the parameters of a
channel, read data from a channel, and put data into a channel. The channel methods help
abstracting away all physical (hardware) details of a channel. For example, when sensing
the voltage produced by a temperature sensor, the read method of the corresponding chan-
nel returns a floating point number representing the voltage value, or an integer number for
the temperature. Channel methods use firmware routines to interact with the hardware.

3.1 Subsystems of the PSoC Mixed-Signal Architecture 111

output actuation data to output channels;

(a)

(b)

void main() {

wait for events (enabled interrupts);

read values from input channels;

}

}

execute control procedure and

compute actuation data;

− configure application specific modules;

− initialize run time environment;

− disable interrupts;

execute boot program:

call main application routine;

− initialize general−purpose resources;

start system timers;

initialize global variables;

while (1) {

enable interrupts;

initialize application−specific modules;

instantiate application−specific channels;

Figure 3.5: (a) Boot program and (b) application routine.

Figure 3.5(b) presents the generic structure of the main routine implementing the em-
bedded control algorithm. The routine starts by initializing the system timers followed
by initializing all hardware modules used by the application. Note that before executing
the application routine, the boot program configures the control registers of the needed
hardware modules, thereby defining the functionality of the modules. However, all the
application-dependent parameters of a module (e.g., pulse width, period of a pulse etc.)
are set in the initialization step of the application routine. Then, the global variables of
the application are defined. The next step instantiates all signal channels required by the
application. At this point, the application routine is ready to sense, process, and actuate.
Therefore, the next step enables all related interrupts giving the system the capability of
identifying external and internal events.

The control algorithm is specified as a while (1) loop (execute “while true” loop), which
terminates only if special events occur, such as the system being reset or shut down. The
loop body comprises the following actions. The system first waits for the occurrence of
an event. For discrete-time systems, events are generated by the system timers (e.g., an
event is produced after each one millisecond), or for reactive systems, by hardware mod-
ules that signal the occurrence of specific conditions (e.g., exceeding of threshold values).

112 Hardware and Software Subsystems of Mixed-Signal Architectures

Upon identifying an event, the algorithm reads the input channel, and then performs the
control algorithm to compute the corresponding actuation values. The last step outputs
the computed values to the output channels.

• Interrupt service routines are executed upon the occurring of an event of interest to the
system. If an event occurs, then a specific interrupt signal is generated for the system.
The events of interest have their corresponding interrupt signals enabled. Before executing
the next instruction of the embedded code, the CPU verifies if an enabled interrupt was
produced. In the case where there is an interrupt, the CPU suspends the execution of the
program, and jumps to the corresponding ISR. The interrupt service routine executes all
actions defined for the interrupt (e.g., sampling the input signal and storing the value in a
reserved area). After the ISR ends, execution resumes back to the point of the embedded
code at which execution was suspended.

• Firmware routines configure and operate the hardware modules of the system, including
input and output ports, programmable hardware blocks, system clocks, and supply voltages.
Typical firmware routines are for starting and stopping a hardware module, configuring the
parameters of the module, enabling and disabling interrupts, sending and retrieving data
to and from the module, and accessing the status of the hardware module.

Firmware routines offer a higher-level interfacing mechanism between the application algo-
rithms and the hardware resources of the architecture. Specifically, the firmware routines
can be grouped into two categories:

– Low-level firmware routines implement all the hardware-related operations, for exam-
ple setting the control registers of the hardware modules to the values for the required
functionality, accessing the data registers of the modules, enabling and disabling the
circuits, activating and deactivating the interrupts, and so on. The user does not have
to specify the hardware-related operations, but must specify some low-level attributes,
such as the physical addresses of the related hardware modules.

– High-level firmware routines offer to application programs an abstract interfacing
mechanism to hardware. In addition to the abstractions offered by the low-level
firmware routines, the high-level routines eliminate all low-level attributes: the hard-
ware modules are identified by abstract names, and the configuration values are de-
noted by abstract symbols.

To distinguish between the two, low-level firmware routines are referred to simply as
firmware routines, and the high-level firmware routines as channels methods (or APIs).
Chapters 4 and 5 offer examples of firmware routines for interacting with specific hardware
blocks, including timer modules, pulse width modulators, and SPI and UART communi-
cation blocks.

The operation of a PSoC-based, mixed-signal system can be summarized as follows. Upon
resetting or powering up the system, the boot program is executed. The program first initializes
the general-purpose resources of the system, and sets the value for voltage stabilization, enables
the watchdog timer module, selects the desired clock signal, and sets up the stack program. Next,
the application initializes specific modules and their interconnects. This is achieved by loading
the control registers with configurations that define amplifiers, analog filters, digital counters,
I2C and UART interfacing blocks, and so on. The runtime environment is then initialized, and

3.1 Subsystems of the PSoC Mixed-Signal Architecture 113

Firmware

(b)(a)

Interrupt Service Routines

Hardware

Application

Channel descriptions

Interrupt Service Routines

Hardware

Channel descriptions

Multithread support

Application

Firmware

Figure 3.6: Hierarchy of abstraction levels in a mixed-signal architecture.

the interrupts are disabled. Final execution control is passed to the routines implementing the
embedded control algorithms.

Execution flow includes parts for the application code (accounting also for the channel meth-
ods) interleaved with parts for ISRs. When switching from the application code to an ISR and
then back to the application code, the system performs what is termed context-switching. Con-
text switching involves saving the state information of the application on the stack, and then
retrieving this information so that the execution of the application code can be resumed with-
out being affected by the ISR execution. Context-switching constitutes overhead, in terms of
execution time and consumed energy, and should be minimized as much as possible.

In summary, the components of mixed-signal architectures are organized to form successive
levels of abstractions, as shown in Figure 3.6(a). The bottom level corresponds to the mixed-signal
hardware, including analog circuits, digital CPU and processing blocks, memory, interfacing logic,
ports, buses and clocks. Firmware routines are software routines that provide a more abstract
interface to the hardware modules. The routines implement all the low-level steps needed for
interacting with hardware, including synchronization, data formatting, and reset. Firmware
might not provide a totally abstract interface: some physical details about hardware (e.g., physical
addresses and module parameters) have to be provided to a routine.

Also, some firmware functionality relies on interrupt service routines. ISRs might access the
hardware directly. Therefore, firmware routines can be seen as being on top of ISRs, even though
both operate directly with the hardware. Channels offer an abstract interface (referred to as an
application interface or API) to manipulate input and output data. The user of a channel does
not have to know any details about the underlying hardware, such as physical addresses, and
configuration parameters, among others. Channels relate the high-level entities in the control
algorithm (e.g., channel identifiers, constants, channel types) to the low-level data (e.g., physical
addresses of registers, ports, and memory areas and configuration data). Finally, the top level
corresponds to the control algorithm of the application.

If an application requires having multiple execution threads, such as in multitasking applica-
tions, then the architecture must include software support for multitasking. The corresponding

114 Hardware and Software Subsystems of Mixed-Signal Architectures

CPU_F 0

GIE

Priority

Encoder

Microcontroller

Pending

interrupt

source
Interrupt

1 interrupt

Posted

request

InterruptR
Q

INT_CLR

INT_MSK

Interrupt vector

Interrupt table

D

Figure 3.7: Interrupt system [5].

hierarchy is shown in Figure 3.6(b). Multitasking support includes capabilities to create and
terminate tasks, task synchronization, and intertask data communication.

The following section introduces the concept of interrupts, and discusses the developing of
interrupt service routines, and the PSoC hardware of the interrupt subsystem.

3.2 The PSoC Interrupt Subsystem

Figure 3.7 shows PSoC’s interrupt system[5]. Interrupt signals are generated to signal the oc-
currence of predefined events. In response, the microcontroller suspends execution of the current
program, saves the present state (contained in the A, F, X, and PC registers) on the stack, and
executes the interrupt service routine corresponding to the signaled event. After the ISR ends,
the microcontroller resumes execution of the program suspended due to the interrupt.

Figure 3.7 illustrates the signal flow that occurs in PSoC hardware for handling an interrupt.
Interrupts are generated by different conditions and sources, including reset, supply voltage,
general-purpose I/O ports (GPIOs), digital blocks, analog blocks, variable clocks, sleep timer,
and the I2C interface. Table 3.1 lists all the possible interrupt sources.

Interrupts are globally enabled (or disabled) by setting (or resetting) bit GIE (bit 0) of the
register CPU F at address x,F7H. If interrupts are enabled, then the interrupt vector (eight bits)
of the interrupt selected by the Priority Encoder is used as an index in the Interrupt Table. The
selected table entry contains the address of the ISR routine corresponding to the interrupt. The
priority encoder circuit selects the interrupt of highest priority among the (multiple) pending
interrupts. An interrupts is called pending, if it was posted (i.e., that the corresponding event
occurred), and if it was individually enabled by setting the content of the interrupt mask register
INT MSK. Also, an interrupt generated by an interrupt source is considered to be posted as long
it is not cleared by the INT CLR register.

Table 3.1 enumerates the 25 different kinds of interrupt signals, their priority, and the address of
the corresponding ISRs.

Interrupt Mask Registers INT MSKx control the enabling and disabling of the individual
interrupts. There are four different mask registers, each controlling different kinds of interrupts.
If a bit is set to zero, then the corresponding interrupt is disabled. If the bit is set to one, then a
posted interrupt becomes pending. Table 3.2 shows how the bits of the INT MSK registers relate
to the different interrupts. The register addresses are also given in the table. For example, if
bit 0 of register INT MSK3 is set, then posted I2C interrupts become pending. Bit 5 of register
INT MSK2 controls the interrupts posted by the digital PSoC basic block DBB31 the block

3.2 The PSoC Interrupt Subsystem 115

Table 3.1: List of interrupt types [5].

Interrupt name Semantics Interrupt Interrupt
priority address

Reset generated upon system reset 0 (highest) 0000H
Supply voltage monitor supply voltage 1 0004H

Analog column 0 generated by analog column 0 2 0008H
Analog column 1 generated by analog column 1 3 000CH
Analog column 2 generated by analog column 2 4 0010H
Analog column 3 generated by analog column 3 5 0014H

VC3 variable clock VC3 6 0018H
GPIO produced by the GPIO ports 7 001CH

(in Section 3.3)
PSoC block DBB00 produced by digital block DBB00 8 0020H
PSoC block DBB01 produced by digital block DBB01 9 0024H
PSoC block DCB02 produced by digital block DBB02 10 0028H
PSoC block DCB03 produced by digital block DBB03 11 002CH
PSoC block DBB10 produced by digital block DBB10 12 0030H
PSoC block DBB11 produced by digital block DBB11 13 0034H
PSoC block DCB12 produced by digital block DBB12 14 0038H
PSoC block DCB13 produced by digital block DBB13 15 003CH
PSoC block DBB20 produced by digital block DBB20 16 0040H
PSoC block DBB21 produced by digital block DBB21 17 0044H
PSoC block DCB22 produced by digital block DBB22 18 0048H
PSoC block DCB23 produced by digital block DBB23 19 004CH
PSoC block DBB30 produced by digital block DBB30 20 0050H
PSoC block DBB31 produced by digital block DBB31 21 0054H
PSoC block DCB32 produced by digital block DBB32 22 0058H
PSoC block DCB33 produced by digital block DBB33 23 005CH

I2C I2C circuit 24 0060H
Sleep timer sleep timer circuit 25 0064H

situated in row 3 and column 1. Similarly, bit 2 of register INT MSK2 enables the interrupts
due to the digital PSoC communication block DCB22 - located in row 2 and column 2. The bits
of register INT MSK0 correspond to interrupts produced by variable clocks, sleep timer, GPIO,
analog PSoC blocks, and supply voltage monitor.

The bit content of Interrupt Clear Registers (INT CLRx) indicates whether the corresponding
interrupts were posted. If a bit is one, then the interrupt was posted. There are four INT CLR
registers, each of their bits controlling a different interrupt. Table 3.3 presents the interrupts for
each of the bits in the registers. The register addresses are also given in the table. For example,
if bit 2 of the INT CLR1 register is set, then there exists a posted interrupt coming from the
digital block DCB02.

The bit ENSWINT in register INT MSK3 (bit 7 of the register) defines the way the INT CLR
bits are handled. If bit ENSWINT is zero, then a posted interrupt can be canceled by setting the
corresponding INT CLR bit to zero. Setting the INT CLR bit does not have any effect. If bit

116 Hardware and Software Subsystems of Mixed-Signal Architectures

Table 3.2: Structure of INT MSK registers [5].

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
(address)

INT MSK3 ENSWINT - - - - - - I2C
(0,DEH)

INT MSK2 DCB33 DCB32 DBB31 DBB30 DCB23 DCB22 DBB21 DBB20
(0,DFH)

INT MSK1 DCB13 DCB12 DBB11 DBB10 DCB03 DCB02 DBB01 DBB00
(0,E1H)

INT MSK0 VC3 Sleep GPIO Analog3 Analog2 Analog1 Analog0 VMonitor
(0,E0H)

Table 3.3: Structure of INT CLR registers [5].

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
(address)

INT CLR3 - - - - - - - I2C
(0,DAH)

INT CLR2 DCB33 DCB32 DBB31 DBB30 DCB23 DCB22 DBB21 DBB20
(0,DBH)

INT CLR1 DCB13 DCB12 DBB11 DBB10 DCB03 DCB02 DBB01 DBB00
(0,DDH)

INT CLR0 VC3 Sleep GPIO Analog3 Analog2 Analog1 Analog0 VMonitor
(0,DCH)

ENSWINT is one, then bit INT CLR being set to one determines the corresponding interrupt to
be posted. An INT CLR bit set to zero does not have any effect. Bit ENSWINT allows producing
software enabled interrupts, in which the ISRs are executed as a result of the program executing
on the CPU, and not by ports, or the digital and analog hardware blocks of the architecture.

The Interrupt Vector Clear register (INT VC at address 0, E2H) contains the highest priority
pending interrupt. If the register is read, then the interrupt address of the highest priority pending
interrupts, or the value 00H if there are no pending interrupts, is returned. A write to the register
clears all pending interrupts.

The PSoC microcontroller executes the following steps once an interrupt has been issued [5]:

1. The execution of the current instruction finishes.

2. Thirteen clock cycles are needed to execute the internal interrupt routine. (i) PC (first,
the more significant byte followed by the less significant byte), and (ii) CPU F registers
are pushed onto the stack. Then, (iii) the CPU F register is set to zero, hence disabling
any future interrupts. (iv) The more significant byte of the PC (PC[15:8]) register is set
to zero. (v) The interrupt vector from the interrupt system is loaded into the lower byte
of the PC register. For example, I2C interrupt causes the value 60H (see Table 3.1) to be
loaded into the PC register.

3. The execution control jumps to the ISR of the received interrupt.

4. The corresponding ISR is performed.

3.2 The PSoC Interrupt Subsystem 117

interrupt

pulse

Timer

Digital

block

Fan

I/O pin I/O pin

High

ISR routines

ISR table

Tachometer

duty cycle

PSoC

PWMCPU

Figure 3.8: Tachometer interfacing to PSoC.

5. A RETI instruction is executed at the end of an ISR. The PC and CPU F registers are
restored to their values saved in the stack.

6. The program resumes execution at the instruction following the last instruction performed
before the interrupt handling.

3.2.1 Case Study: Tachometer Interrupt Service Routines

This subsection details the tachometer servicing ISR. The discussion is based on the ISR used
in the PSoC Express design environment [3] to connect a tachometer to PSoC. This example
illustrates the principal elements involved in interrupt handling by ISRs. It is interesting to note
that the ISR implementation includes both hardware and software. Two programmable digital
blocks are used to produce interrupts for the microcontroller upon receiving tachometer pulses,
and to handle the abnormal functioning of the tachometer, respectively. Correct operation implies
that three tachometer pulses are received within a specified time interval. This case study also
defines the data structures needed for handling multiple tachometers.

Figure 3.8 shows the structure of an embedded system including a fan and a tachometer for
adjusting the speed of the fan. This example was introduced as a case study in Chapter 1. The
tachometer generates pulses that are applied to one of PSoC’s input pins. Consecutive pulses
correspond to one rotation of the fan, and are used by the control algorithm to measure the time
interval between pulses, and thereby compute the rotational speed of the fan.

The tachometer pulses are used to produce interrupt signals internally for the microcontroller.
This avoids long microcontroller idle times, which result if the microcontroller polls the tachome-
ter inputs. Interrupts are generated by a PSoC programmable digital block upon receiving a
pulse from the tachometer. The interrupts are serviced by the corresponding ISR routines that
have their starting address stored in the ISR table. The interrupt vector produced by the priority
encoder module for the specific interrupt becomes the index in the ISR table. The fan speed is
controlled by setting the duty cycle of the pulse width modulation circuit. The PWM is connected
at one output pin of the circuit as shown in Figure 3.8.

118 Hardware and Software Subsystems of Mixed-Signal Architectures

Depending on the nature of the tachometer, the ISR must implement the following steps. For
three-wire fans, the ISR implements a five-state finite state machine, as shown in Figure 3.9(a).
The FSM is initially idle. Upon receiving a pulse from the tachometer (and hence, an associated
interrupt), the PWM associated with the fan is decoupled, and then the fan is connected (for
a short period of time) to the high or low polarity depending on the type of the fan. These
actions correspond to STATE1. After receiving the second interrupt, the FSM moves to the
state STATE2. The state implements the waiting needed for the tachometer reading to stabilize.
The FSM moves to the state STATE3 after receiving the third interrupt. The ISR stores the
current value of the tachometer timer circuit. Finally, the ISR FSM enters the state STATE4

after receiving the fourth tachometer pulse. The FSM records the current value of the tachometer
timer, computes the difference of the current time and the previously stored time (in STATE3),
and saves the difference in the memory. The last action of the state is to reconnect the PWM to
the fan. Next the FSM is again idle.

In addition to the basic functionality, getting correct readings by the tachometer requires that
the time interval between consecutive readings is at least 4 sec. The time interval depends on
the type of the tachometer used. This constraint can be expressed in the ISR FSM by adding an
additional state, called state STATE5. The purpose of the state is to introduce a delay of 4 sec
before the FSM returns to the state STATE1. The resulting ISR FSM is shown in Figure 3.9(b).

(c) (d)

(b)(a)

STATE 1 STATE 2

STATE 3STATE 4

idle

STATE 5
tachometer

pulse

tachometer

pulse
tachometer

pulse

tachometer

pulse

STATE 1 STATE 2

STATE 3STATE 4

idle
tachometer

pulse
tachometer

pulse

tachometer

pulse

tachometer

pulse

STATE 1 STATE 2

STATE 3STATE 4

STATE 7STATE 8

STATE 5

idle

tachometer

pulse

FSM1

start’’
timer

interrupt
STATE 6

start’

FSM2

tachometer

pulse

tachometer

pulse

start

/start’

tachometer

pulse/start’’

/start

/s
to

p
 t

im
e

r

STATE 1 STATE 2

STATE 3STATE 4

idle

tachometer

pulse

timer

interrupt

FSM1

FSM2

5STATE *

tachometer

pulse

tachometer

tachometer

pulse

pulse/start timer

Figure 3.9: Specification of the tachometer ISR.

3.2 The PSoC Interrupt Subsystem 119

FANFlags[# of Fans]_TachFanAssoc[# of Tachometers]

ChannelNumber

ChannelNumber

TmpValue

TachReading

_aiTachResults[]

_TachState

FanID

Figure 3.10: Data structure for handling multiple tachometers.

Although the formulated specification captures the main defining characteristics of the tachome-
ter ISR, the routine can be improved to handle certain additional aspects: (1) provide the ca-
pability for handling multiple tachometers connected at different input pins, and (2) introduce
the functionality for handling cases in which the tachometer does not generate, within a specified
time interval, the three consecutive interrupts required to bring the FSM back to the idle state
(and therefore the FSM is stuck in an intermediate state). The two issues are discussed next.

Handling multiple tachometers by the same ISR can be implemented by defining the data
structures that store the characteristics and state information for each separate tachometer.
In addition, the state STATE5 must switch the ISR to the next tachometer to be serviced in
addition to delaying the FSM for the required time interval. Note that the tachometer handling
procedure must offer fair treatment of all the connected tachometers. A simple policy is round-
robin, in which tachometers are considered successively, one after another, and starting from
the tachometer with the lowest identifier. After the last tachometer has been considered, the
procedure reiterates, starting again from the first tachometer.

Figure 3.10 introduces the data structures for multiple tachometers. Following are the required
data structures:

• Variable TachState stores the current state of the ISR FSM.

• Variable ChannelNumber is a unique index associated with each tachometer. The channel
for the tachometer has an abstract name in the main program, for example Tach. However,
at the ISR level, it is identified by the unique ChannelNumber.

• The variable ChannelNumber is also used as an index in the table TachFanAssoc that
indicates the fan associated with each tachometer. The size of the table is equal to the
number of tachometers in the application.

• Variable TmpValue is an auxiliary variable for the ISR.

• Variable TachReading stores two bytes read from the tachometer timer.

• Table aiTachResults has a two byte entry for each existing tachometer. The entry is used
to store the MSB and LSB found by executing the ISR.

120 Hardware and Software Subsystems of Mixed-Signal Architectures

• Finally, the table FANFlags stores the control information associated with each fan (e.g.,
its polarity). The index FanID that is used to access the table is the content of an entry
in Table TachFanAssoc.

One exceptional situation occurs if the three pulses, and hence the corresponding interrupt
signals, for the ISR FSM are not generated in due time by the tachometer. For example, this
situation would occur if, for any reason, the tachometer were not connected to an input pin. This
situation can be addressed by introducing a supervising routine that resets the tachometer ISR.
The supervising ISR is activated by an interrupt signal produced by a timer circuit, in case the
three tachometer pulses are not received within the required time interval. The timer circuit is
loaded with the predefined time interval, and generates an interrupt after decrementing the value
to zero.

Figure 3.9(c) presents the resulting FSM structure. FSM1 is the ISR handling the tachometer,
and FSM2 is the supervising FSM. FSM2 is initiated by the state STATE1 of FSM1, hence after
the system received the first pulse from the tachometer FSM1 generates the start signal start’
for FSM2. After the predefined time interval has expired (expressed through state STATE6

in FSM2, the timer circuit generates an interrupt, which brings FSM2 into state STATE7.
In this state, FSM2 resets FSM1, and brings it back to the initial state. If FSM1 reaches
the state STATE5 before the time limit ends then the state STATE5 enables the transition of
FSM2 to state STATE8. Note that this solution requires two communicating FSMs (each FSM
handling different interrupt signals). The FSMs interact through the signals indicated by dashed
line arrows.

The number of FSM states can be reduced by restructuring the two FSMs as shown in
Figure 3.9(d). The state STATE5 of FSM1 is merged with the states STATE6, STATE7,
and STATE8 of FSM2 to produce the new state called STATE5∗. After FSM1 receives the
fourth tachometer pulse, the state STATE4 starts the execution of FSM2. The single state
of FSM2 handles the abnormal cases for the current tachometer, switches to the next tachometer
to be handled, implements the required delay of 4 sec between consecutive readings using the
same tachometer, and initiates the execution of FSM1 for the selected tachometer.

Figure 3.11 defines the pseudocode of the FSM1 ISR:

• First, the routine pushes the values of the registers A and X on the stack.

• If the ISR is in the state State1, then it uses the ChannelNumber variable as an index into
the table TachFanAssoc to find the identifier of the PWM of the associated fan. Then,
the information about the PWM is retrieved from Table FANFlags. If the fan does not
control the tachometer (e.g., if the tachometer control pin of the fan is not set), then the
value of the FSM state variable is changed to State2, the registers A and X are restored to
the values stored on the stack, and the ISR execution ends. Note that the RPM reading
is incorrect in this case. If the fan controls the tachometer, then the ISR next finds the
polarity of the fan. If the fan has positive polarity, then the PWM is decoupled from the
fan, and the fan is controlled using the high signal. If the fan has negative polarity, then
it is driven with a low signal, after decoupling its PWM block. The registers A and X are
restored to their saved values, and the execution returns to the interrupted program.

• In the state State2, the ISR only changes the FSM state to State3 and then restores the
registers A and X to their values previous to the ISR execution.

3.2 The PSoC Interrupt Subsystem 121

current_state = STATE5*; break;

switch (current_state){

case STATE1:

find the fan associated to the tachometer;

if the PWM is currently driving the fan then

get the state information of the fan;

find the PWM driving the fan;

}

case STATE4:

end routine

pop registers X and A from the stack;

routine TACH_Timer_LSB_ISR is

unconnect the PWM from the fan AND

drive the fan with the necessary polarity;

find the driving polarity of the fan;

case STATE2;

case STATE3:

record the timer value;

save the difference in the entry of the tachometer;

stop the timer;

disable capture interrupts for timer;

record the timer value;

reconnect the PWM to the fan;

start the tachometer timer;

compute the difference between the two timer recordings

current_state = STATE2; break;

current_state = STATE3; break;

current_state = STATE4; break;

push registers X and A on the stack;

Figure 3.11: Pseudocode of the FSM1 ISR.

• In the state State3, the FSM reads the MSB and LSB of the tachometer timer, and stores
the two values as the two bytes of the SRAM variable TachReading. Then, registers A and
X are restored to their saved values, and the ISR execution ends.

• State4 first stops the tachometer timer and disables its interrupts. Then, it reads the value
of the tachometer timer into the registers A and X. Then, it computes the difference of the
value stored in variable TachReading and the current reading present in registers A and X.
The result is stored in variable TachReading. The fan is reconnected next (by reconnecting
the PWM block to the fan). The current state of the FSM is set to state STATE5∗ (which
actually starts the execution of FSM2). Then, the result in variable TachReading is stored
in Table aiTACH Results, in the entry corresponding to the tachometer channel. The
tachometer timer is restarted, registers A and X are restored, and the ISR execution ends.

Figure 3.12 shows the pseudocode for the FSM2 ISR. The routine corresponds to the FSM
structure in Figure 3.9(d). The purpose of the routine is to restore the correct operation of
FSM1 in the case of incorrect operation of the tachometer, and switching to the next monitored
tachometer:

122 Hardware and Software Subsystems of Mixed-Signal Architectures

enable the capture interrupts of the timer;

end routine

else

routine TACH_Timer_MSB_ISR is

push registers A and X on the stack;

disable the capture interrupt of the timer;

stop the timer of the tachometer;

move to the next monitored tachometer;

find the time of the last tachometer reading;

compute the difference of the two time readings;

if difference < 4 sec then

find the results entry for the tachometer;

reconnect the PWM to the corresponding fan;

get the current system time;

store the current time into the tachometer entry

start the timer;

current_state = STATE1;

pop registers A and X from the stack;

current_state = STATE5*;

if current_state <> STATE5* then

store value FFFFh in the tachometer entry;

start the timer;

Figure 3.12: Pseudocode of the FSM2 ISR.

• After saving registers A and X values on the stack and disabling the timer interrupts,
the routine verifies if the tachometer ISR received three interrupts within the predefined
time limit. In the case where the FSM1 ISR is stuck in an intermediate state (different
from state STATE5∗) then the routine attempts to recover the FSM1 from the erroneous
situation: (i) the value FFFFH is loaded into the results entry of the tachometer to indicate
an incorrect reading, (ii) the state of the tachometer FSM is reset to state STATE5, and
(iii) the PWM is re-connected to the fan.

• The routine switches to the next monitored tachometer by following the round-robin policy.
The routine computes the time interval elapsed from the last reading of the tachometer. If
the time interval is less than the specified limit (4 sec), then the timer circuit is restarted,
and the ISR busy waits until the time constraint is met. Once the time constraint is met,
the state information for the tachometer is updated (e.g., the time of the last reading),
the capture interrupts of the timer are enabled, and the state of FSM1 is modified to the
state STATE1. This starts a new reading process for the tachometer.

The global structure of the hardware and software modules implementing the two tachometer-
related ISRs is given in Figure 3.14. Figure 3.13 illustrates the interconnecting of multiple
tachometers to the same PSoC chip. Each tachometer is connected to a different input pin of
the chip, but the connection of a pin to the interrupt handling resources can be programmed by
PSoC’s programmable interconnect.

The ISR implementation in Figure 3.14 uses two programmable hardware blocks, blocks DCB02
and DCB03, in addition to the software routines. The hardware blocks produce interrupt signals
for the microcontroller upon receiving inputs from the tachometer, and also reduce the timing

3.2 The PSoC Interrupt Subsystem 123

Tachometer3

DCB02

DATA

Tachometer1

Tachometer2

Figure 3.13: Connecting multiple tachometers to PSoC.

INT_CLR

Priority encoder

. . .

. . .

INT_MSK

CPU

GIE

CPU_F

INT
DATA

CLK

internal clock

DCB02

DATA

CLK

DCB03

I/O pin
from

tachometer

request
interrupt

Interrupt table
interrupt vector

INT

internal clock

Figure 3.14: Hardware and software components implementing the tachometer ISR.

overhead due the routines that measure the time intervals related to the tachometer ISRs (e.g.,
measuring the time interval between two consecutive readings of the same tachometer). The
programmable digital block DCB02 is configured as a timer circuit with counter functionality.
(Chapter 4 provides more details about the programmable blocks.) Each input signal from the
tachometer generates an interrupt signal for the microcontroller. The interrupt vector for the
block DCB02 is the index 28H in the interrupt table. After saving the registers of the microcon-
troller, the execution flow of the microcontroller jumps to the ISR TACH Timer LSB ISR that
implements the functionality of FSM1.

Similarly, the programmable block DCB03 is configured as a timer circuit with terminal count
functionality. The timer count is set to the value of the predefined time interval (e.g., 4 sec in
this case). An interrupt is generated by the digital block after the time interval elapses. The
interrupt vector 2CH is produced for this interrupt, and therefore the execution jumps to the
ISR TACH Timer MSB ISR. The ISR implements FSM2.

124 Hardware and Software Subsystems of Mixed-Signal Architectures

(h)

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.15: Port driving modes [5].

3.3 Global I/O Ports

PSoC provides eight configurable ports with up to eight bits per port. Each bit of a port
corresponds to a general-purpose input/output pin block. A pin block includes one pin on the
chip package, input buffers, one “one-bit” register, output drivers, and configuration logic [5].
The configuration logic is used to program the GPIO over a large range of options: (i) the nature
(input or output pin) of the GPIO pin, (ii) its connection (to the CPU, digital block matrix, or
analog blocks matrix), (iii) driving capabilities, and (iv) the associated interrupts. These aspects
are discussed next.

Figure 3.2 introduces the concepts of input ports, and that of output ports, for which data
coming from different PSoC internal sources (e.g., CPU, digital blocks, and analog blocks) are
routed to the output pin to drive external peripheric devices. The selection of the external or
internal source signals for a pin is achieved by configuration logic, which incorporates tri-state
buffers, multiplexer circuits, and control bits programmed by the control registers of the PSoC
GPIO pin block. Each pin block includes a programmable block to select the driving mode of
the pin block depending on the interfacing required for the pin block.

Figure 3.15 illustrates the circuits for the different driving modes of a PSoC pin.

• Figure 3.15(a) shows the resistive pull down mode:

If data are low, then the pin is connected to the positive power supply through the on
PMOS transistor, therefore offering strong driving capabilities. If data are high, then the
pin is connected to ground by the resistor and the conducting NMOS transistor. The fall
time of the signal at the GPIO pin is large due to the increased resistance in series with
the on NMOS transistor.

3.3 Global I/O Ports 125

• Figure 3.15(b) shows the circuit for the strong drive mode. The circuit operates as an
inverter that provides strong driving capabilities independent of the data value.

• Figures 3.15(c) indicates the high impedance mode.The data are not connected to the cir-
cuit inputs. The NMOS and PMOS transistors are both off, and hence the circuit is not
connected to the pin. This mode is used when the GPIO pin is implemented as an input
pin.

• Figure 3.15(d) depicts the circuit for the resistive pull up mode. Its functioning is similar to
the resistive pull down mode: if the input is high, then the NMOS transistor is on offering
a low resistance connection to ground. If the input to the circuit is low, then the PMOS
transistor is on, but the rising time of the output signal at the pin is larger due to the
resistance in series with the conducting PMOS transistor.

• Figure 3.15(e) presents the circuit for the open drain, drives high mode. For a high input,
both MOSFET transistors are off, and hence the circuit output is in high impedance state.
For a low input, the PMOS transistors turn on raising the output to high, and giving strong
driving capabilities at the output. The fall time of the input is longer due to the resistor
in series with the PMOS gate.

• Figure 3.15(f) illustrates the circuit for the slow strong drive mode. The circuit operates
as an inverter, and provides strong output driving capabilities independent of the input
value (by the conducting NMOS and PMOS transistors, respectively). The two resistances
in series with the MOSFET transistors increase the transition time of the input signal,
therefore offering a slow turn on and off of the transistors.

• Figures 3.15(g) indicates the high impedance mode. The operation is similar to that of the
circuit in Figure 3.15(c), but in this case the digital input is also disabled, as shown in
Figure 3.16. This mode is set at system reset, and also used if analog signals are routed to
the pin.

• Figure 3.15(h) shows the open drain, drives low mode. If the input is low, then both
transistors are turned-off, hence the output is in high impedance state. For a high input,
the output is low and has a strong driving capability by the conducting NMOS transistor.
The rise time of the input signal is lengthened by the resistor in series with the NMOS
gate. This mode provides compatibility with I2C interfaces.

The driving capabilities of each port pin are controlled by the PRTxDM2, PRTxDM1, and
PRTxDM0 registers. Table 3.4 presents the values for programming the port modes. Each pin
of a port is controlled by the corresponding bits of the three control registers, for example pin 3
is controlled by bits 3 of the registers PRTxDM2, PRTxDM1, and PRTxDM0.

There are in total 24 registers PRTxDMx, which control the PSoC I/O ports as follows:

• Port 0 is controlled by registers PRT0DM2 at address 0,03H, PRT0DM1 at address 1,01H,
and PRT0DM0 at address 1,00H.

• Port 1 by registers PRT1DM2 at address 0,07H, PRT1DM1 at address 1,05H, and
PRT1DM0 at address 1,04H.

• Port 2 by registers PRT2DM2 at address 0,0BH, PRT2DM1 at address 1,09H, and
PRT2DM0 at address 1,08H.

• Port 3 by registers PRT3DM2 at address 0,0FH, PRT3DM1 at address 1,0DH, and
PRT3DM0 at address 1,0CH.

126 Hardware and Software Subsystems of Mixed-Signal Architectures

Table 3.4: Programming of the port driving modes [5].

Driving mode DM2 DM1 DM0
Resistive pull down 0 0 0

Strong drive 0 0 1
High impedance 0 1 0
Resistive pull up 0 1 1
Open drain high 1 0 0
Slow strong drive 1 0 1

High impedance analog 1 1 0
Open drain low 1 1 1

• Port 4 by registers PRT4DM2 at address 0,13H, PRT4DM1 at address 1,11H, and
PRT4DM0 at address 1,10H.

• Port 5 by registers PRT5DM2 at address 0,17H, PRT5DM1 at address 1,15H, and
PRT5DM0 at address 1,14H.

• Port 6 by registers PRT6DM2 at address 0,1BH, PRT6DM1 at address 1,19H, and
PRT6DM0 at address 1,18H ;

• Port 7 by registers PRT7DM2 at address 0,1FH, PRT7DM1 at address 1,1DH, and
PRT7DM0 at address 1,1CH.

The connections to and from any GPIO port can be programmed to operate as in one of the
following three cases:

• Digital IOs connect the chip pins to the microcontroller of the architecture. This includes
both sending data to the CPU and getting data from the CPU. There are the following
programming options for an I/O pin used as a digital I/O:

– An IO pin is configured as a digital IO by setting to 0 its corresponding bit (called bit
BYP) in register PRTxGS. Bit BYP is used in Figure 3.16 to control the multiplexer
circuit of the output path, and the tri-state buffer going to the global interconnect in
the input path.

There are eight PRTxGS registers, one for each I/O port: PRT0GS at address 0,02H
corresponds to port 0, PRT1GS at address 0,06H is for port 1, PRT2GS at address
0,0AH refers to port 2, PRT3GS at address 0,0EH corresponds to port 3, PRT4GS
at address 0,12H is for port 4, PRT5GS at address 0,16H relates to port 5, PRT6GS
at address 0,1AH is for port 6, and PRT7GS at address 0,1EH corresponds to port
7. Each bit of a PRTxGS register corresponds to a pin of the corresponding I/O port
(bit 0 to pin 0, bit 1 to pin 1, etc.).

– Data communication to/from the CPU is achieved by the PRTxDR registers. The
microcontroller reads input data from the I/O port by accessing the PRTxDR register
for the port. Note that the accessed data are not the value currently stored in the
PRTxDR register but instead the values corresponding to the signals at the port pins.

3.3 Global I/O Ports 127

Q

Slew

control

Drive

logic

DM0
DM1

bus
input

Global

PIN

AOUTINBUF

RESET

R
D

Qin latch

CELLRD

DM[2:0]=110bRead PRTxDR

Input path

Output path

Global

output

bus

BYP

Write

PRTxDR

I2C

I2C

enable

output

En

bus

Data

input

I2C

DM2

DM1

DM0

Vpwr Vpwr

Vpwr

BYP

Figure 3.16: GPIO block structure [5].

Similarly, the CPU transfers output data to a port by writing to the corresponding
PRTxDR register.

The PRTxDR registers are associated with the eight I/O ports: PRT0DR at ad-
dress 0,00H corresponds to the port 0, PRT1DR at address 0,04H relates to the
port 1, PRT2DR at address 0,08H is for port 2, PRT3DR at address 0,0CH relates
to the port 3, PRT4DR at address 0,10H is for port 4, PRT5DR at address 0,14H
corresponds to port 5, PRT6DR at address 0,18H corresponds to port 6, and PRT7DR
at address 0,1CH relates to port 7. Each bit of a PRTxDR register corresponds to a
pin of the corresponding IO port.

• Global IOs connect the GPIO ports to PSoC’s digital configurable blocks. A pin of a GPIO
port is configured as global IO by setting to 1 its corresponding bit BYP in the PRTxGS
register. In Figure 3.16, bit BYP controls the multiplexer of the output path, threby
allowing therefore data on the Global output bus to be routed to the pin. For the input
path, the bit controls the tristate buffer going to the Global input bus.

• Analog IOs link the GPIO ports to PSoC’s configurable analog blocks. This is programmed
by setting the corresponding bits of the PRTxDM2, PRTxDM1, and PRTxDM0 registers

128 Hardware and Software Subsystems of Mixed-Signal Architectures

CPU

Even

output

ports

Odd

output

ports

Even

input

ports

Odd

input

ports

Digital array

System bus (DB)

GOEGOOGIE GIO

Analog bus

ACMP DOUT

System blocks

Analog array

Figure 3.17: PSoC system buses.

to 110. As a result both the digital inputs and the output paths are decoupled from the
pin. The signal at the pin is routed to AOUT in Figure 3.16.

3.4 System Buses

System buses connect the input/output ports and the different PSoC subsystems, such as the
microcontroller, the arrays of programmable analog and digital blocks, clocking circuits, and
memory [5]. The bus characteristics influence the performance of the system including the total
system latency, power consumption, and processing accuracy. For example, if the CPU executes a
task followed by transmitting data to a digital block, the total latency of the processing (including
the processing on the CPU and the digital block) also includes the time required to communicate
the data between the CPU and digital block. Also, the interconnect structure between the data
memory and the data processing subsystems determine the time delay involved in transferring
data to, and from, the subsystems. Finally, the energy (power) consumption of the entire ap-
plication includes the energy (power) consumption of data processing plus the energy (power)
consumption of the data transfers between the architecture blocks.

The data communication delay on a bus depends on two factors:

Tdata com = Tdelay + Tbusy waiting (3.1)

The value Tdata com is the time delay required to send one information data value on the bus,
and the value Tbusy waiting is the waiting time for starting the communication due to the ongoing
communications allocated to the same bus. For simplicity, it was assumed that the bit-width

3.4 System Buses 129

GOO[3]

P1[6]

P1[4]

P1[2]

P1[0]

P1[7]

P1[5]

P1[3]

P1[1]

GIO[0] GIO[2] GIO[4] GIO[6]

GOO[0] GOO[2] GOO[4] GOO[6]

GIO[3]GIO[1] GIO[5] GIO[7]

GOO[1] GOO[7]GOO[5]

Figure 3.18: Bus connections to the I/O ports [5].

for one data value of information is equal to the bus width, so that the entire data value can be
transmitted simultaneously on the bus.

The time delay for communicating a data value depends on the bus characteristics, and is
approximated reasonably well by the following (Elmore delay) [10],

Tdelay ≈ r c L2

2
(3.2)

where r is the resistance per unit length of the bus, c is the capacitance per unit length, and L is
the length of the bus. This expression shows that the bus delay increases rapidly with the length
of the bus, because there is a quadratic dependency between the delay time and the length of the
bus. More accurate bus delay models, and the impact of the bus delay on the architecture design,
are discussed in the literature [7, 8, 11]. The busy waiting time Tbusy waiting of a communication
depends on communication scheduling.

Depending on the kind of signals they interconnect, buses are grouped into (i) data buses,
(ii) address buses, and (iii) control buses (e.g., for control, chaining, and interrupt signals). This
subsection discusses only data buses. Address buses were presented in Chapter 2, and the control
signals are discussed as part of the subsystems to which they pertain.

Figure 3.17 illustrates PSoC’s data bus architecture. These buses can be grouped into sev-
eral categories, depending on the blocks they interconnect: (1) the global system bus connects
the microcontroller to the other PSoC subsystems, (2) the global digital interconnect links the
programmable digital blocks of the PSoC architecture, and (3) the analog interconnect is used
for the programmable analog blocks. The three bus structures are detailed next.

1. Global system bus (DB): The global system bus is an eight-bit shared bus that interconnects
all the main subsystems of the architecture: input and output ports, CPU, memories, digital
blocks, and system resources (timers, watchdogs, etc.). The DB bus is used to transfer
data to and from the CPU, I/O ports, digital blocks, and other system resources. The data
transfer is under the control of the CPU, which executes the corresponding data transfer
instructions.

2. Global digital interconnect bus (GDI): The global digital interconnect links the input and
output ports to the digital array of blocks. There are four GDI buses:

• GIO and GIE: These are each four-bit input buses. The GIO (Global input odd) bus
connects the inputs of the configurable digital blocks in the array to the odd number

130 Hardware and Software Subsystems of Mixed-Signal Architectures

input ports. These are the ports 1, 3, 5, and 7. Similarly, the GIE (Global Input
even) bus connects the inputs of the configurable digital blocks to the even numbered
input ports: 0, 2, 4, and 6.

• GOO and GOE: The GOO (Global output odd) bus connects the outputs of the
configurable digital blocks, in the array, to the odd numbered output ports: ports 1,
3, 5, and 7. Similarly, the bus GOE (Global output even) connects the outputs of the
digital blocks to the even numbered output ports, i.e., 0, 2, 4, and 6.

Figure 3.18 illustrates the connection of the GIO and GOO buses to the I/O ports. Fig-
ure 3.19 shows the interconnection of the GIE buses to the ports.

The global digital interconnect buses are configured by programming the GDI O IN, GDI E IN,
GDI O OU, and GDI E OU registers. The architecture allows direct data transfer between
the GIE/GOE, and GIO/ GOO buses. Figure 3.20 shows the possible connects, and indi-
cates the PSoC registers that control the transfer:

• Register GDI O IN: The register GDI O IN at address 1,D0H controls the connection
of the input bus, GIO, to the output bus GOO. Table 3.5 describes the meaning of
each register bit. For example, if the bit 5 is set to 1, then there is a connection
between the bit 5 of the bus GIO and the same bit of the bus GOO. Otherwise, the
bit 5 of bus GIO does not drive the corresponding bit of GOO.

• Register GDI E IN: The register GDI E IN at address 1,D1H controls the connection
of the input bus GIE to the output bus GOE. Table 3.5 describes the meaning of each
register bit. For example, if the bit 2 is set to 1, then there is a connection between
the bit 2 of the bus GIE and the bit 2 of the bus GOE. Otherwise, the two bits are
not connected to each other.

GOE[6]

P0[6]

P0[4]

P0[2]

P0[0]

P2[6]

P2[4]

P2[2]

P2[0]

GIE[0] GIE[2] GIE[4] GIE[6]

GOE[0] GOE[2] GOE[4]

Figure 3.19: Bus connections to the I/O ports [5].

3.4 System Buses 131

GDI_O_OU

GIE GOE GIO GOO

GDI_E_IN GDI_O_IN

GDI_E_OU

Figure 3.20: Direct connection of buses GIx and buses GOx [5].

Table 3.5: Structure of the registers GDI O IN and GDI E IN [5].

Register 0/1 Bit 7 Bit 6 Bit 5 Bit 4
GDI O IN ’0’ NOC NOC NOC NOC
GDI O IN ’1’ GIO[7]→GOO[7] GIO[6]→GOO[6] GIO[5]→GOO[5] GIO[4]→GOO[4]
GDI E IN ’0’ NOC NOC NOC NOC
GDI E IN ’1’ GIE[7]→GOE[7] GIE[6]→GOE[6] GIE[5]→GOE[5] GIE[4]→GOE[4]

Register 0/1 Bit 3 Bit 2 Bit 1 Bit 0
GDI O IN ’0’ NOC NOC NOC NOC
GDI O IN ’1’ GIO[3]→GOO[3] GIO[2]→GOO[2] GIO[1]→GOO[1] GIO[0]→GOO[0]
GDI E IN ’0’ NOC NOC NOC NOC
GDI E IN ’1’ GIE[3]→GOE[3] GIE[2]→GOE[2] GIE[1]→GOE[1] GIE[0]→GOE[0]

• Register GDI O OU: As shown in Table 3.6, the register GDI O OU at address 1,D2H
programs the connection between the output bus GOO and the input bus GIO. Setting
a bit of the register to 1 establishes a connection from the corresponding bit of the
output bus to the same bit of the input bus.

• Register GDI E OU: The bits of the output bus GOE drive the corresponding bits of
the input bus GIE, if the same bits of the register GDI E OU at address 1,D3H are set
to the value 1. Table 3.6 details the bit structure of the register, and the connections
programmed by each of the register bits.

The Row digital interconnect (RDI) includes the buses that offer data interconnection at
the level of the digital array rows. It was already mentioned and illustrated in Figure 3.4
that the programmable digital blocks are organized as identical rows. Figure 3.21 details
the interconnect structure between GDI and RDI. The BCR buses are the broadcast signals
produced by one row for the other rows of the digital block array. The ACMP signals are
generated by the comparator circuits of the programmable analog blocks. More details
about these signals are in the following subsections of the chapter.

Figure 3.22 provides a more detailed presentation of the RDI structure [5]. The figure
shows the generation of the signals needed for the digital programmable blocks, for example
the input signals DATA and AUX, the output signal RO, the clock CLK, the interrupt
signals INT, and the chaining signals FPB, TPB, TNB, and FNB. Chapters 4 and 5 present

132 Hardware and Software Subsystems of Mixed-Signal Architectures

Table 3.6: Structure of the registers GDI O OU and GDI E OU [5]

Register 0/1 Bit 7 Bit 6 Bit 5 Bit 4
GDI O OU ’0’ NOC NOC NOC NOC
GDI O OU ’1’ GOO[7]→GIO[7] GOO[6]→GIO[6] GOO[5]→GIO[5] GOO[4]→GIO[4]
GDI E OU ’0’ NOC NOC NOC NOC
GDI E OU ’1’ GOE[7]→GIE[7] GOE[6]→GIE[6] GOE[5]→GIE[5] GOE[4]→GIE[4]

Register 0/1 Bit 3 Bit 2 Bit 1 Bit 0
GDI O OU ’0’ NOC NOC NOC NOC
GDI O OU ’1’ GOO[3]→GIO[3] GOO[2]→GIO[2] GOO[1]→GIO[1] GOO[0]→GIO[0]
GDI E OU ’0’ NOC NOC NOC NOC
GDI E OU ’1’ GOE[3]→GIE[3] GOE[2]→GIE[2] GOE[1]→GIE[1] GOE[0]→GIE[0]

ACMP0

Digital blocks row 0

BCR0BCR1

BCR3 BCR2

Digital blocks row 1

Digital blocks row 2

Digital blocks row 3

GIE GIODB GOO GOE

ACMP0

ACMP0
ACMP0

Figure 3.21: Array digital interconnect [5].

in detail how these signals are used to realize the functionality of each programmable digital
block. The block signals are routed as follows.

• DATA: The data signals for the digital blocks are selected among the following sources:
the row input interconnect RI connected to the input buses, the interconnect RO
connected to the output buses, the data from the previous digital block, the ACMP
signals from the analog comparators, the broadcast signals from other rows, and the
low and high DC signals:

– RI interconnect: The local bus is four bits, and is connected to the global input
buses GIE and GIO, as shown in Figure 3.22. For example, the bit 0 of the
bus RI is selected among the bits 0 and 4 of the two global input buses. The
figure presents the source for the other RI bus bits.

– RO interconnect: The four-bit wide bus is driven by the programmable digital
block outputs. More details about the signals follow.

– Broadcast signals: Each row of the digital array can generate the broadcast signal
BCROW (BCR) for the other rows of the architecture. For example, the row 0

3.4 System Buses 133

keeper

RO[0]

RO[1]

RI[0]

RI[1]

RO[1]

RO[2]

RO[2]

RI[2]

RO[3]

RI[1]

RI[0]

RI[2]

RI[3]

GIE[0]

GIE[4]

GIO[0]

GIO[4]

GIE[1]

GIE[5]

GIO[1]

GIO[5]

GIE[2]

GIE[6]

GIO[2]

GIO[6]

GIE[3]

GIE[7]

GIO[3]

GIO[7]

BCROW0
BCROW1

BCROW2
BCROW3

GOE[0]

GOE[4]

GOO[0]

GOO[4]

GOE[1]

GOE[5]

GOO[1]

GOO[5]

GOE[2]

GOE[6]

GOO[2]

GOO[6]

G
O

E
[3

]

G
O

E
[7

]

G
O

O
[3

]

G
O

O
[7

]

VC3

VC2

VC1

CLK32K

SYSCLKX2

Previous block CLK

RI[3:0]

AUX[3:0]

CLK[15:0]

Low

row broadcast
BCROW

Previous block Data

L0

L1

L2

R
O

[3
]

R
O

[0
]

L
3

RO[3:0]

RO[3:0]

RO[3:0]

DB[7:0]
DBI

INT[3:0]

TPB FNB TNB

R
I[3

]

High

Low

ACMP[3:0]

FPB

LUT

LUT

LUT

LUT

DATA[15:0]

Row of programmable digital blocks

keeper

Figure 3.22: Structure of the row digital interconnect [5].

originates the signal BCROW0, and so on. Each BCROW net has a keeper circuit
that stores the last driving value of the net in case the net becomes undriven [5].
Upon resetting the system, the keeper circuit is set to the value 1.

– Analog comparator signals: The ACMP signals are the output signals of the
comparator circuits of the PSoC analog array. More details about the signals
follow in this section and are also given in [5].

– Other signals: The block input DATA can be also connected to other signals, for
example the data input of the previous digital block, and the constant signals high
and low.

• AUX: These signals are the inputs to the auxiliary input of the digital blocks. The
signals are selected from the bits of the local RI bus. Chapters 4 and 5 provide

134 Hardware and Software Subsystems of Mixed-Signal Architectures

Digital

Basic

Block 3

FNB

BC

FPB

TPB

AUX[3:0]

DB[7:0]

DBI

CLK[15:0]

INT[3:0]

DATA[15:0]

RO[3:0]

Digital

Basic

Block 0

Digital

Basic

Block 1

Digital

Basic

Block 2

TNB

Figure 3.23: Row digital interconnect [5].

additional details about the utilization of the inputs AUX, and their selection by the
control registers of a digital block.

• RO: The outputs of the programmable blocks are connected to the local bus RO, as
shown in Figure 3.23, and to the output buses GOO and GOE, as shown in Figure 3.22.
For example, the bit 0 of RO can be output as either bit 0 or bit 4 of the bus GOO,
or bit 0 or bit 4 of the bus GOE.

Figure 3.22 indicates that the output buses GOO and GOE are driven by logic func-
tions defined over the bits of the local buses RI and RO. For example, the bits 0 and
4 of the buses GOO and GOE are a logic function of the bit 0 of RI, bit 0 of RO, and
bit 1 of RO. The logic function is defined based on a two-input Lookup table (LUT):
one input is selected among the bits 0 of RI and RO, and the second input is the bit
1 of RO. A similar structure exists for the other three RO bits, as indicated in the
figure.

• Chaining signals: The programmable blocks of the digital array can be chained to-
gether using the FPB signals (from the previous block), TPB (to the previous block),
FNB (from the next block), and TNB (to the next block). Block chaining is used
for increasing the bit width of data processing, for example to increase the maximum
count value of the counter circuit, if the counter circuit consists of the programmable
digital blocks.

Consecutive digital blocks on the same row can be connected with each other using
the four signals. Also, the last block on a row can be linked to the first block of the
next row, as shown in Figure 3.24.

• CLK: The clock signals for the digital blocks are selected among the following sources:
the SYSCLKX2, CLK32, VC1, VC2, VC3 system clocks (detailed in Section 3.5 of
this chapter), the constant low signal, the broadcast signals of the digital rows, the
local buses RI and RO, and the clock signal of the previous digital block. The clock

3.4 System Buses 135

Digital blocks row 0

Digital blocks row 1

Digital blocks row 2

Digital blocks row 3

FNB

TNB

FPB

TPB

low

low

Figure 3.24: Chaining of the programmable digital blocks.

signal is selected separately for each digital block by programming the control registers
of the block, as described in Chapters 4 and 5.

Figure 3.25 describes the control registers that are involved in the programming of the RDI
interconnect: RDI RI, RDI SYN, RDI IS, RDI LT, and RDI RO [5]. The registers have
the following bit structure.

• Register RDI RI: The registers select the driving signals for the row inputs: the regis-
ter RDI0RI at address x,BOH is for row 0, the register RDI1RI at address x,B8H is
for row 1, the register RDI2RI at address x,COH is for row 2, and the register RDI3RI
at address x,C8H is for row 3.

The structure of the registers RDIxRI is the following:

– Bits 7-6: The bits 7-6 select the input source for the bit 3 of the local bus RI : the
value 00 selects GIE[3], 01 chooses GIE[7], the bits 10 pick the bit GIO[3], and
11 uses GIO[7].

– Bits 5-4: The bits decide the input source for the bit 2 of RI : 00 selects GIE[2],
01 chooses GIE[6], the bits 10 pick GIO[2], and 11 selects GIO[6].

– Bits 3-2: The bits 3-2 select the input source for the bit 1 of the local bus RI : the
value 00 selects GIE[1], 01 chooses GIE[5], the bits 10 pick the bit GIO[1], and
11 uses GIO[5].

– Bits 1-0: The bits pick the input source for the bit 0 of RI : 00 selects GIE[0], 01
chooses GIE[4], 10 picks GIO[0], and 11 uses GIO[4].

• RDI SYN: These registers define the synchronization signals for the RDI sources. By
default, the source signals are synchronized with the system clock, SYSCLOCK. The
system clock is detailed in Section 3.5 of the chapter. One control register exists for
each digital array row: the RDI0SYN register at address x,B1H corresponds to the
row 0, the RDI1SYN register at address x,B9H is for the row 1, the RDI2SYN register
at address x,C1H is for the row 2, and the RDI3SYN register at address x,C9H is
related to the row 3.

The RDI x SYN registers have the following bit structure:

136 Hardware and Software Subsystems of Mixed-Signal Architectures

GIO

Previous
ACMP

DB

RDIxLT0

RDIxRO0

RDIxRO1

RDIxLT1

RI

RO

GOE GOO

RDIxSYN

RDIxRI

RDIxIS

BCRx

Digital

Basic Block 3

Digital

Basic Block 2

Digital

Basic Block 1

Digital

Basic Block 0

GIE

Figure 3.25: Control registers for programming row digital interconnect [5].

– Bit 3: If the bit is set to 1, then for the source to the bus bit 3 of RI, there is no
synchronization of the source, otherwise the source to RI[3] is synchronized with
the system clock SYSCLOCK.

– Bit 2: The bit being set to 1 defines that there is no synchronization of the source
to the bus bit RI[2]. Otherwise, similar to the bit 3, the source is synchronized to
the clock SYSCLOCK.

– Bit 1, bit 0: The behavior of the two bits is similar to that of the bits 3 and 2,
the differences being that bit 1 controls the synchronization of the source to RI[1],
and bit 0 that of RI[0], respectively.

• RDI IS: For each row, this dedicated register defines the nature of the broadcast row
signal (BCROW) and the inputs to the four LUTs of the RDI net. The register RDI0IS
at address x,B2H corresponds to the row 0, the register RDI1IS at address x,BAH
is for the row 1, the register RDI2IS at address x,C2H is for the row 2, and the
register RDI3IS at address x,CAH is for the row 3.

The structure of the RDIxIS registers is the following:

– Bits 5-4: The two bits select which the BCROW signal drives the local broadcast
net of the row corresponding to the RDIxIS register. The value 00 selects
the signal BCROW0, 01 the BCROW1 signal, 10 the BCROW2 signal and 11
the BCROW3 signal.

– Bits 3-0: These bits determine the input A to the four LUTs: bit 3 controls the
LUT 3, bit 2 the LUT 2, and so on. If the bit is 0, then the input A is the
corresponding bit RO, otherwise the corresponding bit RI (cf. Figure 3.22 for
details).

3.4 System Buses 137

• Registers RDI LT: The logic equations of the four LUTs for each row are programmed
by the RDILT0 and RDILT1 registers corresponding to the row. The registers RDI0LT0
and RDI0LT1 at addresses x,B3H and x,B4H are for the row 0, the register RDI1LT0
at address x,BBH and the register RDI1LT1 at address x,BCH are for the row 1, the
registers RDI2LT0 and RDI2LT1 at addresses x,C3H and x,C4H are for the row 2,
and the registers RDI3LT0 and RDI3LT1 at addresses x,CBH and x,CCH are for
the row 3.

The structure of the RDIxLT0 and RDIxLT1 registers is as follows:

– Bits 7-4: The bits of the register RDIxLT0 program the logic function for the
LUT 1, and the bits of the register RDIxLT1 decide the logic function of the
LUT 3.

– Bits 3-0: The bits of the register RDIxLT0 define the logic function for the LUT
0, and the bits of the register RDIxLT1 select the logic function of the LUT 2.

Table 3.7 shows the 16 logic functions that can be programmed into the four LUTs.

Table 3.7: The logic functions implemented in LUTs [5]

Bit Value Logic Function Bit Value Logic Function

0000 FALSE 1000 A NOR B

0001 A AND B 1001 A XNOR B

0010 A AND B 1010 B

0011 A 1011 A OR B

0100 A AND B 1100 A

0101 B 1101 A OR B

0110 A XOR B 1110 A NAND B

0111 A OR B 1111 TRUE

• Registers RDI RO: The outputs of the four LUTs of a row are connected to the global
output buses GOO and GOE depending on the values of the control registers RDIRO0
and RDIRO1 of that row. Depending on the row they are controlling, the two reg-
isters are at the following addresses: for the row 0, the register RDI0RO0 is at the
address x,B5H and the register RDI0RO1 is at the address x,B6H, for the row 1,
the register RDI1RO0 is at the address x,BDH and the register RDI1RO1 is at the
address x,BEH, for the row 2, the register RDI2RO0 is at the address x,C5H and the

138 Hardware and Software Subsystems of Mixed-Signal Architectures

register RDI2RO1 is at the address x,C6H, and for the row 3, the register RDI3RO0
is at the address x,CDH and the register RDI3RO1 is at the address x,CEH.

The bit structure of the registers RDIxRO0 is as follows (cf. Figure 3.22 for details):

– Bits 7–4: The bits control the output of the LUT 1: the bit 7 enables the tristate
buffer for GOO[5], the bit 6 enables the tristate buffer for GOO[1], the bit 5
enables the tristate buffer for GOE[5], and the bit 4 enables the tristate buffer for
GOE[1].

– Bits 3–0: The bits control the output of the LUT 0: the bit 3 enables the buffer
for GOO[4], the bit 2 enables the buffer for GOO[0], the bit 1 enables the buffer
for GOE[4], and the bit 0 enables the buffer for GOE[0].

The bit structure of the registers RDIxRO1 is as follows:

– Bits 7–4:The bits control the output of LUT 3: the bit 7 enables the tri-state
buffer for GOO[7], the bit 6 enables the tri-state buffer for GOO[3], the bit 5
enables the tri-state buffer for GOE[7], and the bit 4 enables the tri-state buffer
for GOE[3].

– Bits 3–0:The bits control the output of LUT 2: the bit 3 enables the tri-state
buffer for GOO[6], the bit 2 enables the tri-state buffer for GOO[2], the bit 1
enables the tri-state buffer for GOE[6], and the bit 0 enables the tri-state buffer
for GOE[2].

3. Analog programmable interconnect and global bus: The programmable analog blocks are
interconnected to each other, to the I/O pins, and to the digital blocks by three types
of interconnect structures: (i) local programmable interconnect, (ii) the input part of the
global analog bus, and (iii) the output part of the global analog bus. The three structures
are detailed next.

• Local programmable interconnect: This interconnect is used to link several programmable
analog blocks to form complex analog networks. This interconnect is either between
neighboring blocks or to some predefined reference voltages and ground. The pre-
cise structure of the local interconnect is different for continuous-time blocks and for
switched capacitor blocks.

The programmable interconnect for the continuous-time analog blocks has three types
of connection: (i) NMUX connections that connect the negative inputs of the continuous-
time analog blocks, (ii) PMUX connections for the positive inputs of the blocks, and
(iii) RBotMux for implementing certain analog functionalities, for example instru-
mentation amplifiers. The local connections are specific for each analog block. Fig-
ure 3.26 shows the interconnect patterns for the three structures. Blocks ACBxx are
continuous-time analog blocks, and Blocks ASCxx and ASDxx are switched capacitor
blocks.

Figure 3.26(a) shows the NMUX connections, Figure 3.26(b) the PMUX connections,
and Figure 3.26(c) the RBotMux interconnect. Note that each continuous-time block
is connected to one of their continuous-time neighbors, and to the switched capacitor
blocks of the second row. Also, the output of each block can be fed back to its
(positive or negative) input. In addition, the negative inputs of each block can be
linked to analog ground, to a high reference voltage (voltage RefHi in the figure),
to a low reference voltage (voltage RefLo in the figure) and to a pin. Besides the
connections to the neighbors illustrated in the figure and the feedback connections,

3.4 System Buses 139

Input

AGND ACBxx

pinABUSx

(a) NMUX connections (negative inputs)

(b) PMUX connections (positive inputs)

(c) RBotMux connections (functionality)

ACBxx

RefHi RefLo

RefLo

pin

Input

AGND

Column 1 Column 3Column 2Column 0

Column 1 Column 3Column 2Column 0

ACB00 ACB01 ACB02 ACB03

ASC10 ASD11 ASC12 ASD13

ACBxx

AGNDVss

Column 1 Column 3Column 2Column 0

ACB01 ACB02 ACB03ACB00

ASC10 ASD11 ASC12 ASD13

ACB01 ACB02 ACB03ACB00

ASC10 ASD11 ASC12 ASD13

Figure 3.26: Local programmable interconnect for the continuous-time analog blocks [5].

the positive inputs can also be linked to the analog ground, and to the reference RefLo
for the edge blocks, to the analog bus, and to a pin.

Figure 3.27 summarizes the possible interconnect structures for switched capacitor
blocks.

• Global analog bus input: Figure 3.28 presents the programmable input port connections
to the programmable analog blocks. The inputs are selected by the four “four-to-
one” multiplexer circuits ACMx, one for each column. The two select bits ACIx for
multiplexer ACMx are part of the control register AMX IN of the architecture. In
addition, columns 1 and 2 have the possibility to select their inputs either from their
own multiplexer ACMx, or from the multiplexer of the neighboring columns. This
functionality is decided by two “two-to-one” multiplexers ACx controlled by register
ABF CR0. The multiplexer AC1 - controlled by signal ACOL1MUX, selects the input
to Column 1 to be either the output of the multiplexer ACM0 or that of the multiplexer
ACM1. Similarly, the multiplexer AC12 - controlled by signal ACOL2MUX, fixes
the input to Column 2 to be either the multiplexer output ACM2, or that of the
multiplexer ACM1.

Table 3.8 summarizes the programming of the register AMX IN (Analog Input Select
Register). The register is located at the physical address 0,60H. Bits 7-6 select the

140 Hardware and Software Subsystems of Mixed-Signal Architectures

(b) PMUX connections (positive inputs)

ASC10 ASD11 ASC12 ASD13

ACB00 ACB01 ACB02 ACB03

ASD20 ASC21 ASD22 ASC23

Column 0 Column 1 Column 2 Column 3

(a) NMUX connections (negative inputs)

ACB00 ACB01 ACB02 ACB03

ASC10

ASD20

P2[1]

P2[1]

P2[2]

P2[2]

VTempABUS0

Column 0 Column 1 Column 2 Column 3

ABUS1 ABUS2 ABUS3

ASD11 ASC12 ASD13

ASC21 ASD22 ASC23

ASCxx

ASDxx

RefHi

RefHi

(c) RBotMux connections (functionality)

Column 0 Column 1 Column 2 Column 3

ACB00 ACB01 ACB02 ACB03

ASC10

ASD20

ASD11 ASC12 ASD13

ASC21 ASD22 ASC23

ABUS3TrefGND

P2[0]

P2[3]

Figure 3.27: Local programmable interconnect for the switched capacitor analog blocks [5].

input to the multiplexer ACM3, bits 5-4 the input to the multiplexer ACM2, bits 3-2
that of the multiplexer ACM1, and bits 1-0 the input to the multiplexer ACM0. For
example, if bits 7-6 of the register are set to the value 00, then the pin 0 of port
0 is selected as the output of the multiplexer ACM3. The selected output becomes
available as input to the analog blocks on the third column. If bits 7-6 are configured
as 01, then pin 2 of port 0 is the selected input of the multiplexer ACM3. Similarly,

3.4 System Buses 141

AC2

ACB03

ASD13

ASC23

P2[0]

P2[2]

ASD22

ACB02

ASC12ASD11

ASC21

ACB01

ASC10

ASD20

ACB00

P2[6]

RefIn

P2[4]

AGNDIn

P0[1] P0[3] P0[5] P0[7] P0[6] P0[4] P0[2] P0[0]

P2[3]

ACOL1MUX ACOL2MUX

P2[1]

ACM0ACI0 ACI1ACM1 ACI0 ACM2 ACI1ACM3

AC1

Figure 3.28: Input port connections for the programmable analog blocks [5].

the value 10 picks the pin 4 of port 0, and the value 11 chooses the pin 6 of the port
0 as output of the multiplexer.

The control signals ACOLxMUX of the two two-to-one multiplexer circuits going to
the analog columns one and two are configured by the ABF CR0 register at address
1,62H. Bit 7 of the register implements select signal ACol1Mux, and bit 6 corresponds
to the signal ACol2Mux. If bit 7 is 0, then the input to column 1 is the output of the
multiplexer ACM1. Otherwise, the input to the column is the output of the circuit
ACM0. Similarly, if bit 6 is 0, then the output of multiplexer ACM2 becomes the
input to column 2, otherwise the ACM3 output is the selected input.

• Global analog bus output: Figure 3.29 illustrates the interconnect structure to the
output ports of a chip. This bus is also called analog output bus (ABUS). All analog
blocks on a column are linked to a dedicated global interconnect that is linked by an
output buffer to the pins of the chip. The output buffer provides the required driving
capabilities. For example, Column 0 is connected to pin 3 of the GPIO port 0, Column
1 to pin 5 of port 0, Column 2 to pin 4 of port 0, and Column 3 to pin 2 of port 0.

The interconnect of a column can be driven by any of the analog blocks on that column.
However, the application developer must verify that only one circuit drives the column
interconnect at any time. The analog output bus is programmed by setting the control
register, ABF CR0 (Analog Output Buffer Control Register 0), at address 1,62H :

– Bit ABUF1EN: If bit 5 of the register is set to 1, then the analog output buffer
for Column 1 is enabled. The buffer is disabled if the bit is to 0.

142 Hardware and Software Subsystems of Mixed-Signal Architectures

Table 3.8: Structure of AMX IN register [5].

Value Bits 7–6 Bits 5–4 Bits 3–2 Bits 1–0
00 P0[0] → ACM3 P0[1] → ACM2 P0[0] → ACM1 P0[1] → ACM0
01 P0[2] → ACM3 P0[3] → ACM2 P0[2] → ACM1 P0[3] → ACM0
10 P0[4] → ACM3 P0[5] → ACM2 P0[4] → ACM1 P0[5] → ACM0
11 P0[6] → ACM3 P0[7] → ACM2 P0[6] → ACM1 P0[6] → ACM0

P0[3]

Column 0 Column 1 Column 2 Column 3

ACB00 ACB01 ACB02 ACB03

ASD11 ASC12 ASD13ASC10

ASC21 ASD22 ASC23ASD20

P0[5] P0[4] P0[2]

Figure 3.29: Output port connections for the programmable analog blocks [5].

– Bit ABUF2EN: The bit 4 set to 1 enables the analog output buffer for Column 2,
and disables the buffer if the bit is to 0.

– Bit ABUF0EN: Setting bit 3 of the register to 1 enables the buffer for Column 0,
and programming the bit as 0 disables the buffer.

– Bit ABUF3EN: The bit 2 set to 1 enables the analog output buffer for Column 3,
and disables the buffer if the bit is set to 0.

– Bypass: If the bit is set to 1, then the positive input of the amplifier in a re-
configurable analog block is connected directly to the output. In this case, the
operational amplifier of the block must be disabled also. The bypass connection
is disabled by programming the bit as 0.

– PWR: The bit 0 of the register controls the power level of all output buffers: if it
is programmed as 0, then the power level is low, and the power level is high if the
bit is configured as 1.

3.5 System Clocks 143

3.5 System Clocks

The clocking of the modules in PSoC can use nine different clocks, some of which have pro-
grammable values.

PSoC’s clocking subsystem is shown in Figure 3.30. The architecture can use three different
clocking sources: two internal sources, the internal main oscillator (IMO) and the internal low
speed oscillator (ILO), and one external clocking source available from pin 4 of port 1.

• The IMO is disabled (if the external clock is used) by setting IMODIS (bit 1) of the register
OSC CR2 to 1.

• The frequency of the external clock can be between 1 MHz and 24 MHz. The external
clocking source is enabled by setting EXTCLKGEN (bit 2) of the OSC CR2 register located
at address 1,E2H to 1.

Depending on the required precision, the internal main oscillator can operate in two modes:

• Moderate precision IMO: It is based on a 24 MHz internal clock, if the required precision
is not extremely high. In this case, the clock frequency can vary with the temperature
as much as +/– 2.5%. For some applications (e.g., analog-to-digital converters) this clock
frequency variation, also called clock jitter, is too high, and the second IMO mode can be
used.

• High-precision IMO: If high accuracy is needed, then the internal frequency can be locked
to the frequency of a high-precision external crystal oscillator (ECO). The ECO has a
frequency of 32.768 KHz, and is connected to pins 1 and 0 of port 1. As shown in Figure 3.30,

EXTCLK

Loop

Locked

Phase

doubler

Clock

Internal

main

oscillator

: 732
: {1,2,4,8,16,32,128,256}

: {1−16}

clock divider

: {1−16}

clock divider

: {1−16}

clock divider

low speed

oscillator

Internal

External

crystal

oscillator

6
2, 92, 122, 152,: { }

SYSCLKX2

CPUCLK

SYSCLK

VC1

VC2

VC3

Slow IMP operation

PLL lock enable

trimIMO

P1[4]

clock divider

SYSCLKX2

VC3SEL

CLK32K

P1[1]

P1[0]

32 KHz select

SLEEP

Sleep clock divider

ILO trim

ECO trim

SYSCLKX2 disable

Figure 3.30: PSoC system clocks [5].

144 Hardware and Software Subsystems of Mixed-Signal Architectures

the IMO frequency divided by 732 is locked (matched) to the ECO frequency, which gives
a more constant IMO frequency of 732 × 32.768 KHz = 23.986176 MHz, hence very close
to 24 MHz.

The locking of the two frequencies is achieved by the phase locked loop (PLL) circuit. The
enabling of the PLL circuit is controlled PLL Mode (bit 6) of the OSC CR0 register located
at address 1,E0H. If this bit is set to 1, then the PLL circuit is enabled. Note that in this
case, EXTCLKGEN (bit 2) of the OSC CR2 register must be 0. If PLL Mode is 0, then
the PLL circuit is disabled.

The lock time of the PLL circuit (i.e., the time required for the two frequencies to become
equal) is either ≈ 10 ms, if the PLL circuit operates in the low gain mode, or ≈ 50 ms, if
the circuit functions in the high gain mode[5]. However, in the high gain mode, the locked
frequency varies less. The gain mode of the PLL circuit is set by PLLGAIN (bit 7) of the
OSC CR2 register located at address 1,E2H. If this bit is 0, then the circuit is in the low
gain mode, and in high gain mode [5] if it is set to 1. The sequence of steps to lock the
IMO frequency is the following [5]:

1. Enable the ECO by setting the bit EXTCLKGEN in register OSC CR2.

2. Set the CPU frequency to 3 MHz or less.

3. Program the PLL gain (bit PLLGAIN in register OSC CR2), and enable the PLL
circuit by setting the bit PLLMode in register OSC CR0.

4. Wait for the locking time.

5. Increase the CPU speed, if needed.

Figure 3.30 presents the nine different system clocks:

• SYSCLK: This is the main system clock of the architecture. All other clocks are synchro-
nized to it. As shown in the figure, the clock SYSCLK is generated by either an external
clock or by IMO.

• SYSCLKX2: This frequency is twice the frequency SYSCLK. For example, if SYSCLK is
24 MHz, then the frequency SYSCLKX2 is 48 MHz [5]. The high period is always 21 ns
independent of the system clock period.

The system clock SYSCLKX2 can be deactivated by setting to 1 the bit SYSCLKX2DIS
(bit 0) of the register OSC CR2 at address 1,E2H. Deactivating the clock reduces the
energy consumption of the architecture.

• CPUCLK: This is the microcontroller clock. Its frequency is programmed by CPU speed
(bits 2–0) of register OSC CR0 at address 1,E0H. Table 3.9 shows the CPU clock frequencies
that can be programmed. For example, if the control bits are fixed to the value 010, then the
CPU clock frequency is 12 MHz for a 24 MHz IMO, 3 MHz for a 6 MHz, and EXTCLK/2,
if the external clock is used. The CPU clock is resynchronized to the system clock SYSCLK.

Having eight CPU clock frequencies allows implementing voltage scheduling policies to re-
duce the energy consumption of the CPU. The CPU clock frequency is increased or lowered
depending on the specific timing requirements and computational needs of an application.
This also allows changing the supply voltage of the microcontroller to achieve lower energy
consumption.

3.5 System Clocks 145

Table 3.9: Programming the CPU clock [5].

Value 24 MHz IMO 6 MHz IMO External clock
000 3 MHz 750 kHz EXTCLK/8
001 6 MHz 1.5 MHz EXTCLK/4
010 12 MHz 3 MHz EXTCLK/2
011 24 MHz 6 MHz EXTCLK
100 1.5 MHz 375 kHz EXTCLK/16
101 750 kHz 187.5 kHz EXTCLK/32
110 187.5 kHz 93.7 kHz EXTCLK/128
111 93.7 kHz 46.9 kHz EXTCLK/256

• VC1: The variable clock one (VC1) is obtained by dividing the system clock SYSCLK.
The divider value can be programmed in the range 1–16 by setting the bits VC1 divider
(bits 7-4) of register OSC CR1 (oscillator control register 1) at address 1,E1H. Columns 2
and 3 in Table 3.10 present the clock VC1 frequencies for different values of the bits VC1
divider. Column 2 is for the case when the architecture uses the internal main oscillator,
and column 3 is for the situation when an external clock is employed. For example, if the
four bits are set to the value 1100, then the frequency of clock VC1 is 2.18 MHz for IMO,
and EXTCLK/11 for an external clock.

Table 3.10: Programming the VC1 and VC2 clocks [5].

Value 24 MHz IMO External Clock VC2
0000 24 MHz EXTCLK VC1
0001 12 MHz EXTCLK/2 VC1/2
0010 8 MHz EXTCLK/3 VC1/3
0011 6 MHz EXTCLK/4 VC1/4
0100 4.8 MHz EXTCLK/5 VC1/5
0101 4.0 kHz EXTCLK/6 VC1/6
0110 3.43 kHz EXTCLK/7 VC1/7
0111 3.0 kHz EXTCLK/8 VC1/8
1000 2.67 MHz EXTCLK/9 VC1/9
1001 2.40 MHz EXTCLK/10 VC1/10
1010 2.18 MHz EXTCLK/11 VC1/11
1011 2.00 MHz EXTCLK/12 VC1/12
1100 1.85 MHz EXTCLK/13 VC1/13
1101 1.87 kHz EXTCLK/14 VC1/14
1110 1.6 kHz EXTCLK/15 VC1/15
1111 1.5 kHz EXTCLK/16 VC1/16

• VC2: The variable clock two (VC2) is obtained by dividing the clock VC1 with a value
programmable in the range 1–16. The frequency value is selected by setting the bits VC2
divider (bits 3–0) of the register OSC CR1. Column 4 in Table 3.10 presents the VC2 clock

146 Hardware and Software Subsystems of Mixed-Signal Architectures

frequencies for the bit values shown in column 1. For example, if the bits are 1110 then,
the frequency of clock VC2 is the frequency of clock VC1 divided by 15.

• VC3: The variable clock three (VC3) is the most flexible among the three variable clocks
available in the PSoC architecture. It generates a clock signal by dividing a clock signal
selectable among four clocks SYSCLK, SYSCLKX2, VC1, and VC2 by a value in the range
1-256. As a result, the frequency of the clock VC3 can span a very broad range: it can go
as low as about 1 Hz (if an external clock is used) or 366 Hz (if the internal 24 MHz clock
is utilized), and as high as 48 MHz.

The source to the VC3 clock is selected by VC3 input select (bits 1-0) of the OSC CR4
register located at address 1, DEH. The source is the SYSCLK clock, if the bits are set to
00, the VC1 clock if the bits are 01, the VC2 clock if the bits are 10, and the SYSCLKX2
clock for 11. The divider value for the clock VC3 is set by programming the bits VC3
divider (bits 7-0) of the register OSC CR3 at address 1,DFH. The divider value is equal to
the decimal value programmed into register OSC CR3 plus one.

The clock VC3 can be programmed to generate an interrupt after a time interval equal to
the period of VC3. To enable the VC3 interrupt, the bit GIE, in the CPU F register, must
be set (thus, the CPU has the interrupt system enabled), and the bit VC3 (bit 7) of the
register INT MSK0 must be also set. The register INT MSK0 is at the address 0,E0H.
To clear the VC3 interrupt, bit VC3 (bit 7) of the register INT CLR0 at address 0,DAH
must be set to 1.

• CLK32k: This clock is produced either by the internal low-speed oscillator or the external
crystal oscillator.

• CLK24M: This clock is produced by the internal main oscillator of 24 MHz.

• SLEEP: The sleep interval can be programmed from 1.95 ms to 1 sec.

Clock signals can drive bus Global Output Even. This is controlled by the register OSC GO EN
at address 1,DDH. The register bits control the following clock connections to the GOE bits: Bit
7 (SLPINT): the connection of the sleep interrupt to bit 7 of GOE, Bit 6 (VC3): the connection
of VC3 to bit 6 of GOE, bit 5 (VC2): VC2 to bit 5 of GOE, bit 4 (VC1): VC1 to bit 4 of GOE,
bit 3 (SYSCLKX2): SYSCLKX2 to bit 3 of GOE, bit 2 (SYSCLK): the connection of SYSCLK
to bit 2 of GOE, bit 1 (CLK24M): the 24 MHz clock to bit 1 of GOE, and bit 0 (CLK32k): the
32k clock to bit 0 of GOE.

3.6 Conclusions

This chapter has focused on the main hardware and software components that support sensing,
processing and control, data communication, and actuation activities in embedded applications.
The PSoC architecture is used to illustrate the subsystems of an embedded mixed-signal archi-
tecture.

The PSoC architecture is based on two main concepts: the integration as a system-on-chip of
the main subsystems in an embedded application, and programmability of the SoC hardware
resources. The two capabilities lead to lower cost designs, and shorter development time, includ-
ing design and testing effort. The PSoC SoC integrates, in addition to the CPU and memory
(volatile and nonvolatile memory), also programmable analog and digital circuits, customized

3.6 Conclusions 147

digital circuits, interrupt controller, I/O ports, and multiple clocks. Reconfiguration permits
repeated programming of the hardware (analog and digital blocks, and ports) to implement new
functionality and performance constraints. The PSoC analog blocks can be programmed to pro-
vide the necessary functionality, such as signal conditioning, filtering, analog-to-digital conversion
and digital-to-analog converters. The PSoC digital blocks can be reconfigured as timers, coun-
ters, deadband generators, CRCs, and data communication blocks, for example SPI and UART
modules.

The PSoC interrupt subsystem includes the priority encoder, interrupt table, and support
for enabling and disabling interrupts. The chapter presents the programming of the registers
involved in interrupt management, for exmple the registers INT MSK (for masking individual
interrupts), INT CLR (for clearing posted interrupts), and INT VC (for finding the highest
priority pending interrupts). The chapter also details the general structure of interrupt service
routines for interrupt handling. A case study, the tachometer handling ISR, is presented in the
chapter. The ISR measures the time interval of one fan rotation based on the pulses generated
by the tachometer. The ISR routine is described as two communicating FSMs. In addition,
the ISR routine must receive the tachometer pulses within a predefined interval, which sets a
hard timing constraint for the tachometer. The case study defines the data structures needed for
handling multiple tachometers. It is interesting to note that the tachometer routine is a hardware-
software design, including two programmable digital blocks that produce the interrupts for the
microcontroller and implement the required timing constraint.

PSoC incorporates programmable general-purpose input output ports (GPIO). The designer
can fix the nature of the ports (input or output ports), driving capabilities, connections to CPU,
analog and digital blocks, and the like and associated interrupts. The GPIO attributes are
controlled by the registers PRTxDMx (for driving capabilities), PRTxGS (for selecting a port as
either analog or digital), and PRTxDR (for data communication with the CPU).

The PSoC system buses interconnect the input/output ports, the microcontroller, analog and
digital blocks, and clocks. The data buses include the following types of interconnect.

• An eight-bit global data bus that is shared by all PSoC subsystems.

• The global digital interconnect (GDI) links the input ports to the four-bit buses GIO
and GIE, and the four-bit buses GOO and GOE to the output ports. These buses are
programmed by the registers GDI O IN, GDI E IN, GDI O OU, and GDI E OU.

• The row digital interconnect (RDI) connects the GDIs to the rows of the digital blocks
array. The RDI bits can be driven besides the GDI bits, also by the broadcast signals
coming from other rows, by the analog comparator circuits, clocks, interrupts, and chaining
signals from the neighboring digital blocks. RDIs are programmed by the registers RDI RI
(for the connections to the buses GIE and GIO), RDI RO (for the connections to the
buses GOE and GOO), RDI SYN (for synchronization), and RDI IS (for selecting the
broadcast signal). Finally, register RDI LT specifies logic functions based on the RDI bits.

• The interconnect to the analog blocks includes three components: the local programmable
interconnect, the input part of the analog bus, and the output part of the analog bus. The
local programmable interconnect links the programmable analog blocks by the NMUX,
PMUX, and RBotMux connections. More details about these connections are also offered
in Chapters 6 and 7. The input part of the analog bus connects to the input pins, the
neighboring columns, and the own column of a given analog block. The output part of the
analog bus connects the analog blocks to the output pins.

148 Hardware and Software Subsystems of Mixed-Signal Architectures

The clock system of the PSoC architecture consists of nine programmable clocks. The three
possible clocking sources can be the internal main oscillator, the internal low speed oscillator,
and an external clocking source. This allows implementing either moderate precision clocks based
on the 24 MHz internal oscillator, or high precision clocks, if an external precision oscillator is
used. The nine programmable clocks are SYSCLK (24 MHz), SYSCLKX2 (48 MHz), CPUCLK
(CPU clock with eight possible frequencies), CLK32k, CLK24M, SLEEP, and the programmable
clocks VC1, VC2, and VC3. The clocks are programmed by the registers OSC CRx.

3.7 Recommended Exercises 149

3.7 Recommended Exercises

1. Develop an interrupt service routine, for the sequence detector application in Chapter 2, that
manages the serial inputs of the detector. Discuss the highest bit rate of the detector input that
can be processed by your solution without losing any data. Compare the performance of your
ISR-based solution with the performance of the sampled input design discussed in Chapter 2.

2. Based on Exercise 1, assume a timing constraint that states that consecutive inputs for the
sequence detector must be received in a time interval of 1 sec. An error occurs if the timing
constraint is not met. Modify your design such that the timing constraint is handled with
minimum CPU overhead. Propose a solution for handling the error related to timing constraint
violation.

3. Summarize the structure of the PSoC bus subsystem. Identify the resources that can access
each of the available buses. Identify the registers that control the characteristics of each bus.

Assume that the speed of the buses is 12 MHz, and the processor clock speed is 24 MHz.
Estimate the execution time required to read one byte from an input port, store it in the data
registers of an output port, and then move it to the M8C’s SRAM.

4. For 32-bit input data, propose a time-efficient solution of reading the data from the input
ports, storing the data to the SRAM, moving the data to the output ports, and moving the
data to the registers of the PSoC programmable digital blocks. Identify the data communication
parallelism that is available for the PSoC architecture.

5. Develop a set of assembly code routines that configure, read, and write from any PSoC port.
The identity of the port is passed to the routines through the X register. The data and control
information are passed through the A register.

6. Capacitive sensors can serve as noncontact switches, and are very useful in harsh environ-
ments. Identify the connection mechanism of a capacitive sensor to the PSoC chip. (Additional
information can be found in D. Sequine’s “Capacitive Switch Scan” Application Note, AN2233a,
Cypress, April 14 2004)

7. Develop a set of Assembly code routines that modify the clock frequency of the M8C micro-
controller. The new clock frequency is passed to the routines through the A register.

8. For the unsigned byte multiplication algorithm in Chapter 2, estimate the power and en-
ergy consumption of the microcontroller, if the clock frequency has the following possible value
512 kHz, 1 MHz, 4 MHz, 12 MHz, and 24 MHz. The microcontroller power consumption is P =
A f, parameter A being a constant. Interpret the results.

Bibliography

[1] PSoC Designer: Assembly Language User Guide, Spec. #38-12004, Cypress Mi-
crosystems, December 8 2003.

[2] PSoC Designer: C Language Compiler User Guide, Document #38-12001 Rev.*E,
Cypress Semiconductor, 2005.

[3] PSoC EXPRESS, Version 2.0, Cypress Semiconductor, 2006.

[4] PSoC EXPRESS, Driver Author Guide, Version 2.0, Cypress Semiconductor, 2006,
available at http://www.cypress.com.

[5] PSoC Mixed Signal Array, Technical Reference Manual, Document No. PSoC TRM
1.21, Cypress Semiconductor Corporation, 2005.

[6] D. Cooper, Implementing Inter-Device Communications with PSoC Express, Appli-
cation Note AN2351, Cypress Semiconductor, 2006.

[7] A. Deutsch, P. Coteus, G. Kopcsay, H. Smith, C. Surovic, B. Krauter, D. Edelstein,
P. Restle, On-chip wiring design challenges for gigahertz operation, Proceedings of
the IEEE, 89, (4), pp. 529–555, April 2001.

[8] R. Ho, K. Mai, M. Horowitz, The future of wires, Proceedings of the IEEE, 89, (4),
pp. 490–504, April 2001.

[9] D. Lewis, Fundamentals of Embedded Software. Where C and Assembly Meet, Upper
Saddle River, NJ: Prentice Hall, 2002.

[10] J. Rabaey, A. Chandrakasan, B. Nikolic, Digital Integrated Circuits: A Design Per-
spective, Upper Saddle River, NJ: Prentice Hall, Second edition, 2003.

[11] D. Sylvester, K. Keutzer, “Impact of small process geometries on microarchitectures
in systems on a chip”, Proceedings of the IEEE, 89, 4, pp. 490–504, April 2001.

Chapter 4

Performance Improvement
by Customization

The chapter focuses on design methods for optimizing system performance by
customizing the architecture to the application’s requirements. The basic concepts
are illustrated by examples that employ PSoC’s digital programmable and customized
blocks.

Performance-driven customization involves developing optimized hardware circuits and soft-
ware routines for the performance-critical modules of an application. A module is performance-
critical if it has a significant effect on the global performance of the implementation. Customiza-
tion explores performance–cost tradeoffs for the implementations of the critical modules.

This chapter presents a design methodology for reducing the execution time of algorithms
executed on an architecture with one general-purpose processor and coprocessors that can be
shared by several modules of an application. This architecture is popular for many embedded
applications. The methodology consists of the following steps: specification, profiling, identifica-
tion of the performance-critical blocks, functional partitioning, hardware–software partitioning,
hardware resource allocation, mapping of the performance-critical modules to hardware, and
scheduling of the modules that share the same hardware resource.

PSoC’s support for customization and several illustrative design examples for performance-
driven customization are also discussed. PSoC includes programmable digital blocks and blocks
with dedicated functionality. Blocks can be programmable to function as timers, counters, dead-
band circuits, and CRCs.

This chapter has the following structure:

• Section 1 introduces the concept of performance improvement by application-specific archi-
tecture customization.

• Section 2 presents the design methodology for customization.

• Section 3 discusses PSoC’s programmable digital blocks.

• Section 4 summarizes PSoC’s blocks with dedicated functionality.

• Section 5 presents concluding remarks.

A. Doboli, E.H. Currie, Introduction to Mixed-Signal, Embedded Design,
DOI 10.1007/978-1-4419-7446-4 4, c© Springer Science+Business Media, LLC 2011

152 Performance Improvement by Customization

4.1 Introduction to Application-Specific Customization

The performance of an embedded system, for example, execution speed and power consumption,
can be substantially improved by customizing the system’s architecture to fit the application [4,
7, 9, 10, 19]. Customization involves optimizing the modules for the performance-critical parts of
the application (e.g., blocks and subroutines) including the use of customized hardware circuits
and software routines.

As a rule of thumb, a block or subroutine is defined as “critical” with respect to a system’s
overall performance attribute P, if P changes significantly with the modification of an attribute
S of the block. Or, the sensitivity of P with respect to S is very large.

For example, if the attribute P is the total execution time of a system and S is the execution
time of a block, the block is critical if it involves a large amount of data processing, and/or data
communications with other subroutines. (More precise descriptions of performance criticality
are given in Subsection 4.2.1 of the chapter.) The execution speed of an embedded system can
often be increased by employing customized digital circuits for the critical parts of the applica-
tion. Such circuits can be made much faster than corresponding software subroutines, because
they do not have to follow the instruction cycle of a general-purpose processor (more precisely,
the customized circuits do not implement the fetch-decode-execute-store instruction cycle), or
equivalently, require fewer clock cycles for execution. In some applications, it is also possible to
exploit the parallelism of the subroutine and to execute multiple operations simultaneously. In
this case, the tradeoff is between the design cost and execution speed. The latter can often be
increased substantially by relying upon dedicated hardware circuits for the performance-critical
parts.

In broad terms, customizing an embedded system implementation involves the following tasks:
(i) finding the performance-critical parts in the system (i.e., profiling the system), (ii) selecting the
critical parts that should be implemented in hardware, (iii) determining the nature and structure
of the hardware circuits that can be used to improve system performance, and (iv) implementing
the overall system. The design tasks that correspond to the four generic activities depend on the
specific nature of the embedded system architecture, as follows:

• Finding the performance-critical parts of a system requires that the designer estimate the
performance characteristics of each part (e.g., blocks and subroutines) of the system, and
the contribution of that part to the overall system performance. Improving the critical
parts performance can often significantly enhance overall performance.

For example, if the execution speed of the system is the primary metric of interest, the
designer must determine, for each of the blocks and subroutines, the number of clock cycles
needed to execute and communicate the data. In addition, it may be of interest to determine
the amount of memory needed to store the data variables and to execute the code (e.g., the
stack memory). In the literature [7, 9, 11] this step is referred to as profiling.

• Analyzing the suitability for hardware implementation and deciding on the nature of the
hardware to be employed: The main goal is to partition the performance-critical parts into
the parts that are to be implemented in hardware, and those that are to be implemented
in software. The latter are executed by the general-purpose processor. The designer must
estimate the resulting system performance and cost tradeoffs for each performance-critical
part that is to be implemented in hardware. This step also determines the main character-
istics of the hardware used, for example the structure of the circuits, the amount of resource
required, and the mapping of the performance-critical parts to the physical circuits.

4.1 Introduction to Application-Specific Customization 153

PSoC provides two kinds of digital blocks that allow implementation of application-specific
hardware: (1) Programmable digital blocks that are programmed to implement the basic
functions, such as timers, counters, deadband generators, and cyclic redundancy clocks [1].
(These blocks are discussed in Section 4.3.) (2) Specialized digital blocks provide dedicated
functionality, such as multiply accumulate (MAC), decimator, and watchdog timers [1].

• Implementing the overall system: This step includes the tasks of designing the hardware
circuits, developing the software routines (including the firmware routines for controlling
and accessing the hardware), and integrating the entire system.

Low−level

firmware layer

.

Routines Routines Routines

Routines Routines Routines
.

API layer

Circuit layer
Hardware circuit

Application

layer

1 Hardware circuit
2

Hardware circuit k

Method nMethod 2Method 1

Figure 4.1: Hardware module implementation for reusability.

To improve design reusability, the customized hardware modules are based on a three-layer
approach:

– The circuit layer includes the hardware used for the critical block, or subroutine.

– The low-level firmware layer incorporates the software routines, including interrupt
service routines and drivers, that configure and operate the physical blocks. This
layer utilizes the physical addresses of the blocks’ control, status, and data registers,
to implement functionality. Even if two hardware blocks have the same functionality,
their firmware routines might actually differ somewhat, because the two blocks may
have different physical implementations.

– The high-level firmware (API) layer involves the interfacing routines that are used in
the control and processing routines of an embedded system to operate the hardware
blocks. The hardware is described at an abstract level using symbolic identifiers and
abstract data, and without involving any physical details about the hardware. These
routines rely on the low-level firmware layer for actually interacting with the hardware.

Figure 4.1 illustrates the three-layer implementation of modules. This figure is based on the
assumption that different implementation styles are available for a given functional block.
Alternative hardware circuits, shown as blocks (i.e., Hardware circuiti) can be used for
implementing the block, with specific firmware and API routines existing for each circuit.

High-level firmware layer (API) methods provide an abstract interface to the blocks, hiding
all of their implementation details. These methods are called without the designer knowing
all the implementation details of the method. Only the precise functionality of the method,
and the amount of resource required for its implementation must be known (e.g., hard-
ware and memory) and the performance it delivers in terms of execution time and power

154 Performance Improvement by Customization

Blocks in

hardware

Profiled system specification

and performance−critical blocks

Hardware−software

partitioning

Block scheduling

P
e
rf

o
rm

a
n

c
e
 n

o
t

m
e
t

o
r

c
o

n
s
tr

a
in

t
v
io

la
ti

o
n

s

Hardware allocation and block binding

Blocks in

software

Figure 4.2: Design flow for architectures with single processor and shared coprocessors.

consumption. The designer can utilize this information for the partitioning, hardware al-
location, and mapping steps to decide which specific circuit must be used in the system
implementation to achieve the required performance. (These tasks are discussed in more
detail in Subsection 4.2.2.)

The actual design tasks depend on the architecture employed by the embedded application:

• Architectures with a single general-purpose processor and associated coprocessors: The hard-
ware used for the selected performance-critical blocks and the subroutines function as a co-
processor, and the functionality handled in the software domain is executed by the general-
purpose processor, which also controls the coprocessor. Each of the selected critical parts
is implemented as a dedicated circuit, and therefore, there is no sharing of hardware.

This situation requires a design procedure that partitions the blocks and subroutines into
those that are implemented in hardware circuits, and those that are to be implemented in
software. This task is called hardware–software partitioning [7, 9, 10]. If the same block,
or subroutine, can be implemented using alternative hardware circuits (e.g., different adder
circuits, multiplier blocks, etc.) then a second task called hardware resource allocation must
be performed to identify the nature of the hardware circuits that offer the best performance–
cost tradeoff.

• Architectures that have one general-purpose processor and shared coprocessors: Although
this system has only one general-purpose processor, the same hardware circuits can be
shared to implement multiple, performance-critical subroutines, or blocks. In this case, the
processor controls the shared coprocessors. Compared to the previously discussed architec-
tures that did not allow sharing of the coprocessors, the cost of the system implementation
can be significantly lower due to the hardware sharing, and the performance may be only
marginally degraded as a result of the additional overhead introduced by sharing.

In addition to the hardware–software partitioning, and hardware resource allocation tasks,
the mapping (binding) of the critical blocks and subroutines to the hardware, and the

4.2 Design Methodology for Architecture Customization 155

for (j = 0; j < SZ; j++) {

aux = 0;

G[i][j] = aux;

}

aux += a[m][n] * F[i+m][j+n];

for (m = −L; m <= L; m++)

for (n = −L; n <= L; n++)

for (i = 0; i < SZ; i++)

Figure 4.3: Example of a data processing intensive application.

execution scheduling for the critical blocks that share hardware is also required. The cor-
responding design flow is summarized in Figure 4.2, and detailed in Subsection 4.2.2.

• Architectures that have multiple general-purpose processors plus shared coprocessors: This
is the most general case. There may be no processor that maintains overall control. The
importance of such architectures for computationally intensive applications is continuing to
increase, for example in multimedia, image processing, and telecommunications.

In this case, the design process involves not only the tasks of hardware–software partitioning,
hardware resource allocation and mapping/scheduling of the customized hardware that are
specific to the previous architectures, but also the tasks of allocating the general-purpose
processors, mapping the software subroutines to processors, allocating the interconnect
structure between the processors, mapping the data communications to the interconnect
structures, and scheduling the software routines and data communications.

4.2 Design Methodology for Architecture Customization

In this section, the discussion focuses on the design methodology for embedded applications
that utilize architectures with a single general-purpose processor and shared coprocessors for the
performance-critical blocks and subroutines.

Figure 4.2 illustrates the design methodology for improving the execution time of embedded
systems by customizing the system’s architecture. This methodology is based on the following
tasks: (1) specification and profiling, (2) hardware–software partitioning, (3) hardware resource
allocation, (4) operation binding, and (5) operation scheduling.

4.2.1 System Specification and Profiling

The goal of the profiling step is to characterize the execution times, in terms of clock cycles
and memory size requirements, of the blocks and subroutines for both data and program in the
application specification, that is algorithm. Then, as shown in Figure 4.2, this information can
be used to guide the design methodology. This section uses an example to illustrate the profiling
step.

156 Performance Improvement by Customization

...

row SZ−11wor

......

_a (row=1, column=2)i

0 1 2 0 1SZ−1 SZ−1

row 0

Figure 4.4: Organization of arrays in the memory.

Figure 4.3 presents a typical example of an iterative algorithm used in digital signal processing
(DSP) [4, 8, 15] applications that share the following defining characteristics:

1. The processing is data dominated, and involves a large number of multiplication/addition
computations and data transfers to/from the data arrays.

2. The number of iterations for each loop is known and constant.

3. In addition, the iterations of inner (“for”) loop instructions are either uncorrelated or
loosely correlated, because there are no interdependencies between iterations, and therefore
the inner loop can be executed in parallel, provided that the architecture has the necessary
hardware capabilities.

These three features of DSP algorithms encourage two kinds of performance optimizations of
the system:

1. Optimization of the operators, individual instructions, and instruction sequences inside the
loop bodies.

2. Optimization of the processing, and data accesses, across different loop iterations.

Both types of optimizations use the data collected in the profiling step.

Before discussing the parts that form the specification in Figure 4.3, the organization of the
array data in the memory has to be detailed. This is important because accessing the data
stored in the two-dimensional arrays involves significant overhead resulting from computation
of the positions of the elements. Figure 4.4 illustrates the organization of the data arrays. For
simplicity, it is assumed that the data and memory word size are the same, for example if PSoC
is the target architecture, then the array elements are each one byte. The elements in the two-
dimensional arrays a, F, and G in the specification are stored in consecutive memory locations,
one row after another, as shown. The element a[m][n] is located at the following entry i of the
linear sequence:

i = m × SZ + n (4.1)

where the constant SZ is the length of a row. For example, the memory entry for the element
a[1][2] is at index i = 1 × SZ + 2 = SZ + 2, as shown in Figure 4.4.

Profiling involves the following steps:

• Producing the assembly code level description: The application’s assembly code is obtained
by compiling (i.e., translating) the C program into assembly code. The designer can then

4.2 Design Methodology for Architecture Customization 157

cmp [m],L+1

// aux += mult

add [aux], A

L4

17

18

15

14

13

β:

δ:

φ:

mov [i], 0x00
// i=0

1

2

3

4

5

6

7

9

10

11

12
8

16

α:

add A, [n]

mov A, [j]

// get F[i+m][j+n]

mov A, [i]

add A, [m]

call _mult

add A, [temp1]

mov X, A

mov X, SZ

cmp [i], SZ
// i<SZ

cmp [j], SZ
// j<SZ

// m<=L

// n<=L

mov [temp1], A

mov A, [_F+X]

mov [j], 0x00
// j = 0

mov [aux], 0x00
// aux=0

mov [m], −L
// m=−L

// get a[m][n]

mov A, [m]

mov X, SZ

call _mult

add A, [n]

mov X, A

mov A, [_a + X]

mov [temp2], A

mov X, SZ

call _mult

mov X, A

// store to G[i][j]

mov A, [i]

add A, [j]

mov A, [aux]

mov [_G + X], A

mov [n], −L
// n=−L

α

stop

inc [j]
//j++

// m++
inc [m]

// F[i+m][j+n]*a[m][n]

mov X,[temp2]

call _mult

L4:

L3:

jnc L4

jnc L3
L3

jnc L2

L2

jnc L1

L1

L1:

L2:

jmp β

//i++
inc [i]
jmp φ

jmp δ

// n++
inc [n]
jmp α

α

β

δ

φ

cmp [n],L+1

Figure 4.5: Block structure of the system specification.

determine the execution time and the program/data memory requirements by summing the
number of execution clock cycles and memory bytes, respectively, required to execute each
assembly code instruction.

• Functional partitioning: This is a hardware-related reorganization of the specification. The
assembly code instructions are grouped into blocks, such that each block corresponds to a
single instruction in the initial C program, and each block can be a hardware circuit with
precise functionality. This is important in determining the impact of a dedicated hardware
circuit with respect to performance improvement.

• Finding the performance-criticality of the blocks: This requires the designer to calculate the
performance attributes for each block in the specification, and for the entire system. Based
on this analysis, the designer can determine the performance-criticality of the blocks.

158 Performance Improvement by Customization

For example, consider the following profiling example.
A. Developing the assembly code description. Figure 4.5 shows the assembly code structure

of the specification in Figure 4.3. This representation is important for correctly estimating
the number of clock cycles needed for each part of the C specification (i.e., the instructions or
operations). This is quite easy to compute because the number of clock cycles required to execute
each assembly instruction is known for a general-purpose processor. Also, the amount of RAM
required for storing data, and flash/EPROM for storing code can be estimated.

The following is the correspondence between the high-level instructions in Figure 4.3 and
the assembly code in Figure 4.5. (Note that although the assembly code in what follows is
based on the PSoC microcontroller instruction set, the discussion is valid for any general-purpose
processor.)

• The instruction for, with the index i, is represented by Blocks 1 and 2: Block 1 initializes
the index i where [i] is the memory cell for variable i , and Block 2 checks the upper bound
of the loop instruction. Block 18 increments the index after each iteration.

• Similarly, Blocks 3 and 4 correspond to the for loop with the index j where [j] is the
memory cell for variable j . Block 17 increments the index j .

• The initialization of the element aux corresponds to Block 5 and [aux] is the memory cell
for variable aux.

• Blocks 6 and 7 are used for the for instruction with the index m where [m] is the memory
cell for variable m, and Blocks 8 and 9 are used for the for loop with the index n where [n]
is the memory cell for variable n. Block 14 increments index n, and Block 15 increments
the index m.

• Block 10 accesses the array element a[i][j] from memory. The first five instructions use
Equation (4.1) to compute the index of the array element in memory. The element is then
retrieved using indexed addressing, where the constant a indicates the start address of the
array a. The data are stored in the memory location temp2.

As is the case for the PSoC microcontroller’s instruction set, it is assumed that the general-
purpose processor does not have an instruction for multiplication, but instead uses the
multiplication subroutine, mult. The multiplicands are passed as parameters to the mul-
tiplication subroutine from the A and X registers, and the result is returned to these
registers.

• Block 11 represents the assembly code for accessing the array element F[i+m][j+n]. In-
structions 1-8 compute the index of the element in memory. Then, the value is accessed
using indexed addressing with the constant F pointing to the start address of the array F.

• Block 12 multiplies a[i][j] with F[i+m][j+n], and the result is added to the value of the
element aux by Block 13.

• Block 16 assigns the value to the element G[i][j]. The first four instructions compute the
index of the element, and the rest of the instructions assign the value of the variable aux
to the element G[i][j].

B. Functional partitioning for hardware-oriented, specification reorganization. The initial
block structure of the specification is restructured, so that all the instructions in a block can
be implemented using only one hardware module with a precisely defined functionality. This is

4.2 Design Methodology for Architecture Customization 159

φ

3

4

5

6

7

8

1

φ:

δ:

β:

9

10−1

10−2

11−1

11−2

12

α:

14

L3

L2

L1 15

16−1

16−2

17

18

stop

L1:

L2:

L3:

L4:

L4

α

13

β

δ

2

Figure 4.6: Refined block structure of the system specification.

important in determining the performance improvement that results from developing, and then
utilizing, a customized hardware circuit for a set of assembly code instructions. For example,
the first five instructions of Block 10, in Figure 4.5, compute the index of an array element in
memory, and instructions 6 and 7 access memory to retrieve and store the array element, in a
processor register. From an execution point of view, the first five instructions use the hardware
circuits for computation (i.e., for multiplication and addition), and instructions 6 and 7 employ
the memory circuits, and the address, data, and control signals of the memory modules. Hence,
improving the execution speed of Block 10 must take into consideration the hardware required
for computing the address, and the hardware for data access from memory. To determine the
performance improvement offered by each customized hardware module, it is important to split
Block 10 into two subblocks, such that each sub-block can be implemented by hardware with
dedicated functionality.

The block structure in Figure 4.5 is reorganized as shown in Figure 4.6 to reflect the types
of circuits used in processing and communication. Block 10 was split into two sub-Blocks 10-1
and 10-2. The first nine instructions of Block 11 compute the index of an array element, and
were organized as the sub-Block 11-1, while the remaining instruction, defined as sub-Block 11-2
accessed memory. Similarly, Block 16 was split into the sub-Block 16-1 that computes an array
element index, and Block 16-2 for reading an array element from memory.

C. Finding the performance-criticality of the blocks. Table 4.1 shows the profiling data for
the refined block structure shown in Figure 4.6. The first column shows the block number, the
second the number of required clock cycles, the third the number of bytes in nonvolatile memory
(e.g., flash or EPROM) required to store the block’s code, and the fourth the number of internal

160 Performance Improvement by Customization

registers storing data. For Blocks 10-1, 11-1, 12, and 16-1, the profiling data include the number of
clock cycles required to execute the multiplication subroutine mult, and the number of EPROM
bytes required to store the code of the subroutine. The execution time for Blocks 10-2, 11-2,
and 16-2 includes the time needed to transfer data from the memory. These values are expressed
as symbols because their actual values depend on the implementation style.

The execution-time criticality of the block is computed starting from the total execution time of
the application:

Toverall = SZ2 (2L + 1)
2
(T9 + T10−1 (4.2)

+ T10−2 + T11−1 + T11−2 + T12 + T13 + T14)

+ SZ2 (2L + 1)(T7 + T8 + T15)

+ SZ2 (T4 + T5 + T6 + T16−1 + T16−2 + T17)

+ SZ (T2 + T3 + T18) + T1

(4.3)

or, considering the profiled clock cycles in Table 4.1:

Toverall = SZ2 (2L + 1)
2
(136 + 3 mult + 2 memory access) + SZ2 (2L + 1)(33) (4.4)

+ SZ2 (76 + mult + memory access) + SZ (33) + (8)

The blocks’ performance-criticality is characterized by starting from Equation (4.4). This
equation shows that the highest criticality is that of Blocks 9, 10-1, 10-2, 11-1, 11-2, 12, 13, and
14, for which the execution complexity is proportional to the value SZ 2(2L+1)2. For example,
if SZ = 4 and L = 2, then the execution time for the seven blocks is more than 90% of the total
execution time of the system. This percentage increases as the values of the two constants
increase.

4.2.2 System Partitioning and Implementation

The goal of the design process is to maximize the performance of the system implementation, for
example minimize the system execution time by utilizing customized hardware circuits for the
performance-critical blocks. Two kinds of customization optimizations can be achieved in the
process: (i) optimization of the operators, individual instructions, and instruction sequences of
the critical blocks, and (ii) optimization of the data processing and communication pertaining to
different critical blocks.

The targeted architecture has one processor, and one coprocessor, that can be shared among
multiple performance-critical blocks and subroutines as shown in Figure 4.7. The general-purpose
processor executes the blocks, and subroutines, in the software domain. In addition, the coproces-
sor consists of hardware circuits that implement critical blocks that are mapped to the hardware
domain. The processor and coprocessor exchange data via the shared memory. These data can
be mapped to multiple memory circuits, so that multiple data accesses can occur in parallel.
The interconnect structure provides the needed connectivity between the processing elements
and memory.

The first design optimization refers to the execution-time, optimized implementation of the op-
erators, individual instructions, and instruction sequences pertaining to the performance-critical
regions of an application. The example in Figure 4.3 is used as an illustration of this optimiza-
tion. The refined block structure is shown in Figure 4.6, and the profiling data are given in

4.2 Design Methodology for Architecture Customization 161

Table 4.1: Profiling data for the block structure in Figure 4.6.

Block # Clock Cycles # EPROM Bytes # Register

1 8 3 -

2 13 5 -

3 8 3 -

4 13 5 -

5 8 3 -

6 8 3 -

7 13 5 -

8 8 3 -

9 13 5 -

10-1 30 + mult 9 + mult 2

10-2 5 + 4 2
memory access

11-1 52 + mult 17 2

11-2 memory access 2 2

12 17 + mult 4 2

13 7 2 1

14 12 4 -

15 12 4 -

16-1 35 + mult 11 2

16-2 memory access 2 2

17 12 4 -

18 12 4 -

162 Performance Improvement by Customization

interconnect

shared

memory

shared

memory

General purpose

processor

+ +

* *

register

register

RAM

control

logic

...

...

...

Configurable

data path

Coprocessor

...

system bus

local

Figure 4.7: Generic architecture consisting of processor and shared coprocessor.

Table 4.1. Blocks 9, 10-1, 10-2, 11-1, 11-2, 12, 13, and 14 are the performance-critical blocks of
the application. As shown in Table 4.1, of the eight blocks, the most critical from an execution
time point-of-view, are Blocks 10-1, 10-2, 11-1, 11-2, and 12. These blocks are further considered
as candidates for implementation as customized hardware circuits.

These five blocks provide three kinds of functionality: Blocks 10-1 and 11-1 compute the
index of an array element, Blocks 10-2 and 11-2 access the data memory, and Block 12 multiplies
two values. The nature of the operations involved for the three block types, and the kind of
corresponding hardware circuits, are different. For example, the blocks for computing the array
element indexes involve data transfers between the processor registers, addition operations, and
multiplications. The blocks for accessing the data memory involve registers and interconnect to
memory. Block 12 requires data registers for the operands, and a multiplication module.

Figure 4.8 shows possible hardware structures for the implementation of the performance-critical
blocks:

• Figure 4.8(a) shows the structure of a possible hardware module for Block 12. The structure
uses three registers to store the two operands and the result, and a multiplier circuit. In
addition to the time Tmult, as measured in clock cycles, required to perform the multiplica-
tion operation, the circuit also introduces overhead for register loading time, and retrieving
the result from the register. The total execution time is given by:

THW
12 = Tmult + 2 × Treg load + Treg read (4.5)

• Figure 4.8(b) shows a possible hardware structure for accessing the memory that stores
the array elements. The access times for one memory word are cumulatively represented
as the time Tmem read for reading data from memory to a processor register, and the time
Tmem write for writing data from a processor register to memory. Hence,

T10−2 = T11−2 = Tmem read (4.6)

• Figure 4.8(c) illustrates a possible hardware structure for computing the index of the mem-
ory element a[i][j], if the array a is a bidimensional array of size SZ × SZ. This structure

4.2 Design Methodology for Architecture Customization 163

i

MemoryProcessor

(b)

(c)

memory

address

a

. . .

row 0

row 1

row SZ−1

+ + memory address

read/write

Data

*

b

result

Lookup table _a

(a)

j

Figure 4.8: Customized hardware circuits for the performance-critical blocks.

is an alternative to the more “intuitive” implementation that uses a multiplier module to
compute the starting address of row i, within the array.

Each element of the lookup table stores a pointer to the first element of a row: the first
element points to the start of the first row, the second element to the start of the second
row, and so on. The contents of the table are known once the array data are allocated
in memory. The memory address is found by summing the starting memory address of
the array a, the displacement of the row i, and the displacement, within the row i, of
the column j. The resulting memory address is placed on the memory address bus. The
advantage of the solution is that no multiplications are needed at the penalty of needing
extra memory for storing the lookup table.

The total execution time Tad comp includes the time to load the registers holding the indexes
i and j, the time to read from the lookup table, and the time to perform the two additions:

THW
10−1 = 2 × Treg load + Tlookup + 2 × Tadder (4.7)

THW
11−1 = 4 × Treg load + Tlookup + 4 × Tadder (4.8)

The information about the block-criticality and the execution time of the corresponding hard-
ware circuits is used to guide the design decisions with respect to (a) hardware–software parti-
tioning, (b) hardware resource allocation, (c) operation binding, and (d) scheduling.

A. Hardware–software partitioning. Hardware–software partitioning is the task of sepa-
rating the specification blocks, and subroutines, into those that are implemented in the hardware
domain (using customized circuits), and those that are executed by the general–purpose proces-
sor, so that the performance improvement is maximized, and the customization cost is less than

164 Performance Improvement by Customization

a predefined limit. Alternatively, the scope of hardware–software partitioning can also be defined
as cost minimization subject to satisfying the performance constraints.

Each of the performance-critical, customized hardware blocks and subroutines is analyzed
to determine the system performance improvement. For example, if Block 11-1, is based on
the hardware circuit shown in Figure 4.8(c), then the change in execution time for the system
becomes:

∆T = SZ2 (2L + 1)2 (TSW
11−1 − THW

11−1) (4.9)

The resulting execution speed-up, defined as the ratio of the software execution time to the
hardware–software execution time, for the system can be approximated by:

Speedup ≈ TSW
9 + TSW

10−1 + TSW
10−2 + TSW

11−1 + TSW
11−2 + TSW

12 + TSW
13 + TSW

14

TSW
9 + TSW

10−1 + TSW
10−2 + THW

11−1 + TSW
11−2 + TSW

12 + TSW
13 + TSW

14

(4.10)

Similarly, if Blocks 10-1, 10-2, 11-1, 11-2, and 12 are all implemented in hardware, the change in
execution time is given by:

∆T = SZ2 (2L + 1)2 [(TSW
10−1 − THW

10−1) + (TSW
10−2 − THW

10−2) (4.11)

+ (TSW
11−1 − THW

11−1) + (TSW
11−2 − THW

11−2) + (TSW
12 − THW

12)]

and the resulting speed-up is:

Speed − up ≈ TSW
9 + TSW

10−1 + TSW
10−2 + TSW

11−1 + TSW
11−2 + TSW

12 + TSW
13 + TSW

14

TSW
9 + THW

10−1 + THW
10−2 + THW

11−1 + THW
11−2 + THW

12 + TSW
13 + TSW

14

(4.12)

If the cost limit is exceeded, then the design process must consider alternative subsets of the set
of performance-critical blocks, and find the subset that gives the best performance improvement,
at a cost below the limit. For example, in the case of the five performance-critical blocks,
the alternative subsets would be {Block 10-1, Block 11-1, Block 12}, {Block 10-2, Block 11-2,
Block 12}, {Block 11-1, Block 11-2, Block 12}, and so on.

Note that in the worst case, the number of subsets that must be analyzed to find the best
performance/cost tradeoff can be very large. If the set of performance-critical blocks has the
cardinality N, then 2N subsets must be analyzed. Note that this number grows exponentially
with respect to N . To address this issue, blocks are analyzed in decreasing order of the ratio:

Ei =
∆Ti

∆Costi
(4.13)

where ∆Ti is the difference in the execution time in clock cycles, between the software and
hardware implementations of Block i, and ∆Cost i is the cost increase due to the customized
circuit. The factor Ei describes the performance improvement, per cost unit, that is provided
by Block i . Therefore, provided that the cost limit is not exceeded, the design method maps
the performance-critical blocks to the hardware domain in decreasing order of E i. For the five
performance critical blocks, this method maps hardware Block 11-1, followed by the Blocks 10-1,
12, 10-2, and 11-2 to the hardware domain.

B. Hardware resource allocation. This step identifies the nature, and number, of hard-
ware circuits that are incorporated into the application-specific coprocessor. This is justified by
the fact that there are often many alternative hardware implementations possible for the same

4.2 Design Methodology for Architecture Customization 165

(a)

+ +

+ +

memory address

row SZ −1

row 0

row 1

...

Lookup table
_F

yjxi

(b)

10−1/11−1
MUX

+

MUX MUX

+

+

i x

j +

yj

_F

row SZ −1

row 1

...

row 0

memory address

Lookup table

10−1/11−1

_ai

10−1/11−1

Figure 4.9: Customized hardware circuits for Blocks 10-1 and 11-1.

block functionality. These alternative implementations not only provide different execution times,
and consume specific amounts of hardware, but also create distinct opportunities for sharing the
hardware circuits by different functional blocks. This is an important way to reduce the total
cost.

For example, consider Blocks 10-1 and 11-1 that compute the indexes of elements in two
different arrays, as shown in Figures 4.5 and 4.6 In principle, these blocks perform the same
computations. However, Block 11-1 also calculates the element indexes by summing the values
of four variables. Figure 4.8(c) presents the customized circuit for Block 10-1, and Figure 4.9(a)
introduces the circuit for Block 11-1. The only difference between the circuits is the two additional
adders in the second circuit. Equations (4.7) and (4.8) express the respective execution times.

The two blocks can be modified in several ways to lower the total implementation cost. Cost
can be reduced by sharing a single hardware circuit for the implementation of the two blocks,
instead of having separate circuits for each of the blocks. Figure 4.9(b) shows the resulting circuit.
Two multiplexer circuits are added to the initial Block 11-1 circuit, so that the correct indexes
of the array elements can be selected. The third multiplexer selects the starting address of the
array, represented by the constant a for Block 10-1, and the constant F for Block 11-1. The
selection signals for the multiplexer circuits can be implemented by setting a dedicated bit, if
Block 10-1 is executed, and resetting the bit, if Block 11-1 is performed. The implementation

166 Performance Improvement by Customization

index

DEMUX

+

MUX

+

+

MUX MUX

MUX

memory

address

F(t2,t3) F(t2,t3)

F(s2,t2,s3,t3)

F(s2,t2,s3,t3)

row SZ −1

row 0

row 1

...

Lookup table

yxji

ji

register A register B

_a _F

F(s3,t3)

Figure 4.10: Data path for Blocks 10-1 and 11-1.

select adder output

s0

s1

s2

s3

load register i

load register j

load register _a

add

add

select register j

store in register B

DEMUX output to adder

access table

select register i

store in register A

DEMUX output to table

t0

t3

t1

t2

10−1

CLK

CLK

CLK

AND
CLK

11−1

CLK

CLK

CLK

CLK
AND

CLK

)b()a(

CLK

load register i
load register j
load register x
load register y
load register _F

select register x
select register i
add

access table
store in register A

select register y
select register j
add

add
add
store in register B

DEMUX output to table

DEMUX output to adder

select adder output

Figure 4.11: Controller circuits for Blocks 10-1 and 11-1.

4.2 Design Methodology for Architecture Customization 167

address

DEMUX

row SZ −1

row 0

row 1

...

Lookup table

+

MUX MUX

register A

x y 0ji
_a_F

F(s2,s3,s4,s5)

F(s2,s3,s4,s5)

F(s2,s3,s4,s5)

register B

memory

Figure 4.12: Data path for Blocks 10-1 and 11-1.

cost is reduced by the elimination of the customized circuit for Block 10-1. Although, the cost
reduction is slightly diminished by the three additional multiplexers.

The tradeoff, in this case, is the increase of the execution times of the two blocks. Assuming
that all of the control signals are generated in sequence, the new (worst case) execution times are
now:

T
′HW
10−1 = 2 × Treg load + Tlookup + 2 × Tadder + 3 × TMUX (4.14)

T
′HW
11−1 = 4 × Treg load + Tlookup + 4 × Tadder + 3 × TMUX (4.15)

(assuming that all control signals are generated in sequence). In the best case, the two execution
times increase only by the propagation delay of one multiplexer circuit, if the multiplexer circuits
are activated in parallel.

The cost of the hardware circuits in Figure 4.9(b) can be further lowered by sharing the
circuits for computing the two indexes of the array elements. The resulting circuit has a data
path and controller circuits, which are shown in Figures 4.10 and 4.11. The data path circuit in
Figure 4.10 uses the same adder circuit to first sum the values x and i , and then to sum values y
and j .

Figure 4.11(a) is the controller for Block 10-1, and Figure 4.11(b) is the controller for Block 11-
1. For Block 10-1, in the state s1, the circuit loads values into the data path registers. In state s2,
the circuit accesses the lookup table. The selected value in the lookup table is stored in the A
register. Finally, in state s3, the following two sums are computed: register A + DEMUX output,
and a + index. The actions corresponding to the controller states of Block 11-1 are indicated
in Figure 4.11. The multiplexer and demultiplexer circuits of the data path are controlled by
signals that depend on s2, s3, t2, and t3. These four signals are 1, if the controller circuit
is in the corresponding state, and 0, if it is not. The functions F are the logic functions of

168 Performance Improvement by Customization

the combinational circuits that produce the select signals for the multiplexer and demultiplexer
circuits.

The execution times of Blocks 10-1 and 11-1 are now equal, and described by the following:

T10−1 = T11−1 = 4 × TFSM (4.16)

TFSM = max{Treg load, Tadder + TDEMUX + Tlookup (4.17)

+ Tregload, TDEMUX + 3 × Tadder + Treg load}

Equation (4.17) defines the clock period for the controller circuit. Note that this circuit has lower
implementation cost, in terms of the data path components, than the previous two circuits, but
the execution times of Blocks 10-1 and 11-1 are now larger.

Figures 4.12 and 4.13 show a hardware solution with an even smaller number of data path
components than the previous designs. A single adder circuit is introduced to perform all addition
operations of Blocks 10-1 and 11-1. For the data path in Figure 4.12, the actions executed in each
state of the controller are also shown. This circuit has the simplest data path of the hardware
designs presented.

In this case, the execution times of Blocks 10-1 and 11-1 are the longest and given by:

T10−1 = T11−1 = 6 × TFSM (4.18)

TFSM = max{Treg load, Tadder + TDEMUX + Tlookup (4.19)

+ Tregload, TDEMUX + Tadder + Treg load}
≈ Tadder + TDEMUX + Tlookup + Tregload (4.20)

In addition to the alternatives for sharing hardware modules among the block implementa-
tions, another possibility for improving the system’s execution time is to consider using faster
adder and multiplier circuits. For example, ripple-carry adder circuits have a lower cost than look
ahead adder circuits, but their execution time (time delay) is also significantly longer. Discussing
efficient circuit structures for different arithmetic and logic operators is beyond the scope of this
text. More details can be found in the related literature [4, 8, 15].

C–D. Operation binding/scheduling. In addition to improving the system performance
by employing customized hardware for the individual blocks and subroutines, the designer can
also consider exploiting the parallelism between operations in the same block, or in different
blocks. This further reduces the system execution time, because multiple operations can now be
executed in parallel.

Without addressing the operation parallelism of the application, its execution time, shown in
Figure 4.3, cannot be reduced below the limit given by:

Tlimit = SZ2 (2L + 1)
2
(T9 + T10−1 + T10−2 + T11−1 + T11−2 + T12 + T13 + T14) (4.21)

However, if the values of the constants SZ and L are large, this limit may still be very large.

The execution time of the application can be reduced by observing that there are no depen-
dencies between the iterations of the innermost loop, other than all iterations adding a value to

4.2 Design Methodology for Architecture Customization 169

register B

s3

s4

s4

CLK

CLK

CLK

CLK

CLK

10−1/11−1
AND
CLK

s0

s1

s2

load register y
load register x
load register j
load register i

load register with
_a or _F

add

access table

select either 0 or x
select register i

store in register A

select either 0 or y

select register j

add

select register A
select register B

add
store in register B

store in register B

select register _a
or register _F

select register B

DEMUX output to table

store in register B

add
DEMUX output to

Figure 4.13: Controller for Blocks 10-1 and 11-1.

for (n = −L; n <= L; n++)

auxv = 0;

}

G[i][j] = auxv;
}

auxv += aux[n];

aux[n] = a[m][n] * F[i+m][j+n];

for (i = 0; i < SZ; i++)

for (j = 0; j < SZ; j++) {

for (m = −L; m <= L; m++) {

for (n = −L; n <= L; n++)

Figure 4.14: Modified data processing algorithm.

170 Performance Improvement by Customization

the variable aux. This dependency can be removed by introducing the array aux[2L+1], such
that the element n corresponds to the iteration n. The iteration uses this element for storing the
product of the two matrix elements. The value auxv is computed by summing all the elements
of the matrix aux[2L+1]. Figure 4.14 shows the modified algorithm.

If the hardware circuits offer support for parallel execution, modifying these algorithms allows
the innermost iterations to be executed in parallel. Figure 4.15 presents the block structure of the
application, so that the operation parallelism is exposed. The figure assumes that L = 2, hence
the inner most loop of the algorithm includes five iterations. For simplicity reasons, the initial
performance-critical blocks of the application were merged into the following blocks: Block CA
computes the address of an array element, Block MA accesses the data memory, and Block *
multiplies two data values.

In this case, implementing optimized hardware circuits involves two additional steps: opera-
tion binding and operation scheduling:

• Operation binding is the process of mapping the specification’s functional blocks to the
hardware resources of the architecture. This step is justified by the fact that the application-
specific coprocessor can be based on multiple instances of the same hardware circuits, and
therefore there is a variety of ways in which the functional blocks can be mapped to the
circuits.

n=2
CA

MA

CA

MA

CA

MA

CA

MAMA

CA

MA

CA

MA

CA

MA

CA

MA

CA

MA

CA

* * ** *

+

following blocks

parallelized inner loop

n=−2 n=−1 n=0 n=1

preceeding blocks

Figure 4.15: Inner loop parallelization for the modified algorithm.

• Operation scheduling is the activity of time sequencing the execution of blocks and subrou-
tines mapped to the same hardware circuits.

4.2 Design Methodology for Architecture Customization 171

The goal of operation binding and scheduling is to maximize the performance improvement,
by minimizing the execution time of the system.

For the parallelized inner loop of the block structure in Figure 4.15, Figure 4.16 illustrates
two instances of operation binding and scheduling. These instances differ in terms of the number
of hardware circuits that were allocated in the coprocessor.

In Figure 4.16(a), the architecture included a distinct hardware circuit for each of the CA
blocks (computing the index), MA (accessing the memory), and * (for multiplication). Because
of resource limitations, only the blocks pertaining to two of the five iterations can be executed
simultaneously. The time scheduling of the execution is also shown. For example, in step 0,
only Block CA is executed, but in step 1, Blocks MA and CA of two different iterations occur in
parallel, because they use different hardware circuits. Hence, the execution of the two iterations
ends in only six steps, as compared to ten steps, if the two iterations are executed in sequence.
Four iterations are performed in ten steps using parallel execution, as compared to the twenty
steps required for serial execution. The total execution time of the five iterations is 15 cycles for
the parallel execution, and 25 cycles if the iterations are performed sequentially. Hence, compared
to sequential execution, parallel execution provides a relative speed-up of about 25%. Relative
speed-up is the ratio:

Speedup =
Tserial − Tparallel

Tserial
× 100 [%] (4.22)

MA

1

2

3

4

5

6

7

CA

CA

*

CA

CA

*

0

1

2

3

4

5

(b)(a)

CA

CA

*

CA

CA

*

CA

CA

*

CA

*

CA

...

iterationiterationiterationiteration iterationiteration

MA

MA

MAMA

AMAM

MA

MA

MA

MAMA

0

Figure 4.16: Operation scheduling for different hardware resource sets.

172 Performance Improvement by Customization

The execution-time reduction increases slightly as a function of L.

The execution time of the loop iterations can be further reduced by allocating more hardware
circuits to increase the number of parallel operation executions. Figure 4.16(b) illustrates this
case. The coprocessor includes two additional circuits for computing the memory address, and
one for multiplication. In addition, the architecture includes two memory circuits that can be
accessed in parallel. The operations of the four iterations are executed in eight steps, as shown,
and five iterations take only nine steps. This corresponds to a speed-up of 55%, as compared
to the serial execution of the iterations, and a speed-up of 40%, as compared to the coprocessor
used for the case in Figure 4.16(a).

Note that introducing one additional multiplier circuit to the coprocessor in Figure 4.16(a)
does not improve the performance of the design. Also, for the coprocessor in Figure 4.16(b),
the improvement would be only two execution steps for the execution of the four iterations, a
speed-up of ≈ 25%, and none for the execution of the five iterations. Therefore, adding more
hardware resources does not necessarily improve execution time.

GIO bus

DBB00

GOE bus

DB bus

GOO bus

Row 0

Row 1

Row 2

Row 3

Array of digital programmable array

Port0Port2Port4Port6

Port7 Port5 Port3 Port1

DBB01 DCB02 DCB03

DBB10 DBB11 DCB12 DCB13

DBB20 DBB21 DCB22 DCB23

DBB30 DBB31 DCB32 DCB33

GIE bus

Figure 4.17: PSoC’s array of programmable digital blocks PSoC [1].

4.3 Programmable Digital Blocks 173

4.3 Programmable Digital Blocks

In this section, PSoC hardware is customized for an application by utilizing the programmable
digital blocks and PSoC’s dedicated circuits.

PSoC has 16 programmable digital blocks, as shown in Figure 4.17. The blocks are organized
as a two-dimensional array, as discussed in Chapter 3. Figure 4.18 describes the structure of a
digital PSoC block. Each programmable block has three inputs, clock, data and auxiliary data
(Aux Data), and four outputs, primary output (PO), auxiliary output (AO), block interrupt
(BI), and broadcast output (BO).

The operation of a block is determined by programming seven registers: CR0 and FN for
storing the configuration and function state of a block, IN and OU for selecting the input and
output signals, and DR0, DR1, and DR2 for storing the data. In addition, the INT regis-
ter defines the blocks interrupt mask. (cf. Chapter 3 for details on the INT register). Each
digital PSoC block operates independently, and has a unique interrupt vector that points to a
specific interrupt service routine. The physical addresses of the seven registers are shown in
Tables 4.2–4.7 for the 16 blocks.

AO
F2

BC

INT

PO

BO

BI

F1

Ouput

selection

Clock

synchronization
CLK

AUX_DATA

DATA

Aux data

selection
...

...

...Clocks

Data

Aux

Data

Clock

selection

Data

selection

Ouput

selection

Figure 4.18: Programmable digital block [1].

Table 4.2: Physical addresses of the DR0, DR1, and DR2 registers for rows 0 and 1 [1].

DBB00 DBB01 DCB02 DCB03 DBB10 DBB11 DCB12 DCB13

DR0 0,20H 0,24H 0,28H 0,2CH 0,30H 0,34H 0,38H 0,3CH

DR1 0,21H 0,25H 0,29H 0,2DH 0,31H 0,35H 0,39H 0,3DH

DR2 0,22H 0,26H 0,2AH 0,2EH 0,32H 0,33H 0,3AH 0,3EH

174 Performance Improvement by Customization

The PSoC blocks are programmed with respect to [1]: (1) the input and clock signals, (2) the
output signals, (3) the basic functionality, and (4) the data widths of the blocks:

• The data signal is selected as one of 16 different input signals. Similarly, the clock signal
is chosen from one of 16 alternative clock signals, and then resynchronized with either
SYSCLK, or SYSCLKX2. An auxiliary data selection circuit chooses one of four auxiliary
data inputs, which is used primarily for the SPI slave function (cf. Chapter 5 for details on
the SPI blocks).

• Each digital PSoC block has a primary and a secondary data output. Both outputs can be
routed to one of four different destinations. PSoC blocks have two additional outputs: the
block interrupt outputs for generating interrupt signals, and the broadcast output.

• PSoC blocks can be configured to be a timer, counter, deadband circuit, or a cyclic redun-
dancy clock (CRC) circuit. PSoC communication blocks (Blocks DCB in Figure 4.17) can
be either an SPI master or slave, or a UART. (These circuits are presented in Chapter 5.)

• The data width of a circuit can be expanded by chaining several digital PSoC blocks
together. This chaining is achieved by using the primary output signals (also refer to
Section 3.4 and Figure 3.24).

Table 4.3: Physical addresses of the DR0, DR1, and DR2 registers for rows 2 and 3 [1].

DBB20 DBB21 DCB22 DCB23 DBB30 DBB31 DCB32 DCB33

DR0 0,40H 0,44H 0,48H 0,4CH 0,50H 0,54H 0,58H 0,5CH

DR1 0,41H 0,45H 0,49H 0,4DH 0,51H 0,55H 0,59H 0,5DH

DR2 0,42H 0,46H 0,4AH 0,4EH 0,52H 0,53H 0,5AH 0,5EH

Table 4.4: Physical addresses of the CR0 and FN registers for rows 0 and 1 [1].

DBB00 DBB01 DCB02 DCB03 DBB10 DBB11 DCB12 DCB13

CR0 0,23H 0,27H 0,2BH 0,2FH 0,33H 0,37H 0,3BH 0,3FH

FN 1,20H 1,24H 1,28H 1,2CH 1,30H 1,34H 1,38H 1,3CH

As shown in Figures 4.18–4.20, a PSoC digital block clock signal is selected as one of 16 possible
clock signals using the Clock input (bits 3-0) of the IN register. The selected clock signals are
then synchronized with one of the available system clocks, either SYSCLK or SYSCLK2 . The
identity of the synchronization signal is determined by AUXCLK (bits 7-6) of the OU register.

4.3 Programmable Digital Blocks 175

SEL_SYSCLKX2

16−1...CLKs

SYSCLKX2

2−1

4−1
Block CLK

SYSCLKX2

SYSCLK

SYSCLK

Figure 4.19: Programmable clocks of the digital blocks [1].

Table 4.5: Physical addresses of the CR0 and FN registers for rows 2 and 3 [1].

DBB20 DBB21 DCB22 DCB23 DBB30 DBB31 DCB32 DCB33

CR0 0,43H 0,47H 0,4BH 0,4FH 0,53H 0,57H 0,5BH 0,5FH

FN 1,40H 1,44H 1,48H 1,4CH 1,50H 1,54H 1,58H 1,5CH

Table 4.6: Physical addresses of the IN and OU registers for rows 0 and 1 [1].

DBB00 DBB01 DCB02 DCB03 DBB10 DBB11 DCB12 DCB13

IN 1,21H 1,25H 1,29H 1,2DH 1,31H 1,35H 1,39H 1,3DH

OU 1,22H 1,26H 1,2AH 1,2EH 1,32H 1,36H 1,3AH 1,3EH

Similarly, the DATA signal to the block is selected as one of the 16 possible input signals based
on the bits Data input (bits 7-4) of the IN register.

OUTEN (bit 2) of the OU register enables, or disables, the primary output of the PSoC
digital blocks. AUXEN (bit 5) of the OU register enables, or disables the auxiliary output of the
block. Output select (bits 1-0) selects the output data row for the primary output, and AUX IO
select (bits 4-3) defines the output data row for the auxiliary output, as shown in Figure 4.20.

176 Performance Improvement by Customization

4.3.1 Timer Block

The main purpose of the timer block is to generate low-level timing and interrupt signals based
on a selectable clock signal that is provided as an input [1]. This block produces programmable
frequencies and pulse widths that can be used for timing.

Specifically, the functionality of the timer block can be grouped into three categories: (A) ter-
minal count (count down) functions, (B) compare functions, and (C) capture functions. In addi-
tion, the block includes routines to start, and stop, the timer. The start timer routine enables the
timer circuit, and starts the main timer, compare, and capture functions. The timer stop routine
disables the timer circuit. As a result, all outputs, including the interrupt output, are gated low.
The internal state registers are reset, but the data registers used in counting, for example the
timer value, period, and compare value, are not affected.

The implementation for each of the timer block functions relies on both hardware and software.
The hardware circuits implement the functionality that actually generates the low-level signals.
The software consists of firmware routines that set, and access, the data and control registers of
the hardware.

Table 4.7: Physical addresses of the IN and OU registers for rows 2 and 3 [1].

DBB20 DBB21 DCB22 DCB23 DBB30 DBB31 DCB32 DCB33

IN 1,41H 1,45H 1,49H 1,4DH 1,51H 1,55H 1,59H 1,5DH

OU 1,42H 1,46H 1,4AH 1,4EH 1,52H 1,56H 1,5AH 1,5EH

BO

BI

...

...

...

Data
Aux

Clocks

Data

IN

3 047 012347 6 5

Clock

synchronization
CLK

AUX_DATA

DATA

16−1

16−1

MUX

MUX

4−1
MUX

DEMUX

1−4

1−4

...

...

RO[3−0]

RO[3−0]

OU

DEMUX

Figure 4.20: Input and output configuration [1].

A. Terminal count

Terminal count (TC) generates a programmable timing signal frequency based on the input clock
signal. The related functionality includes (1) an operator that sets the period of the timer circuit,
(2) the main timer function that decrements the content of the timer circuit at each clock cycle,

4.3 Programmable Digital Blocks 177

and (3) a function that generates an interrupt signal upon reaching the value 00H. Figure 4.21
shows the inputs, outputs, and dataflow of the timer block.

The following are the three TC-related functions:

1. Write period function: This function sets the timer circuit’s period value. This value is
stored in a dedicated register, DR1 (Data Register 1). The contents of the register do
not change during the countdown process, and thus the value can be used for repeatedly
initializing the timer block with the same period value. In addition to the DR1 register,
the period value is also loaded into the DR0 register (Data Register 0), which is used for
the count down function. Tables 4.2 and 4.3 provide the physical addresses of the DR0 and
DR1 registers for the 16 programmable digital blocks of a PSoC chip.

2. Main timer function: This function produces a timing signal frequency equal to the clock
frequency divided by the period value loaded into the DR1 register. The pulse width is
either one input clock period, or one half of the input clock period.

DR0==00H

>=

==

DR1

DR0

DR2

CLK

MOV reg[DR1], xxH

MOV A, reg[DR2]

CMP

MOV A, reg[DR0]

Data

00H

TC

MOV reg[DR2], yyH

enable

Figure 4.21: Dataflow of the timer block [1].

This functionality is implemented by the timer circuit decrementing the value of its DR0
register on each rising edge of the clock signal. Upon reaching the value 00H on the next
positive edge of the clock, the Terminal Count (TC) output of the block is raised, the
counter is reloaded with the period value stored in its DR1 register and the count down
process resumes.

3. Terminal count interrupt function: If the block interrupt is enabled, then the positive edge
of the TC output generates an interrupt signal. This happens when the DR0 register
reaches the value 00H.

Hardware circuit. The hardware circuit implements the required data transfer involving
the DR0 and DR1 registers required by the three functions as shown in Figure 4.21, and gen-

178 Performance Improvement by Customization

erates the output, TC, and the interrupt signal. The circuit operation is programmed by the
control registers, CR0 and FN. Tables 4.4 and 4.5 show the physical addresses of the CR0 and
FN registers of the 16 programmable digital blocks.

Figure 4.22 illustrates the PSoC implementation of the main timer function [1]. The timer
remains in the initial state until it is enabled by setting enable (bit 0) of the control register, CR0,
to 1.

If the timer circuit is enabled, when the rising edge of the next clock cycle occurs, the timer
period stored in the DR1 register is copied into the DR0 register and is used for the countdown
operation. Then, on the rising edge of the clock, the DR0 register is decremented, if its value is
not 00H. Once the value in the DR0 register becomes 00H, the output, TC, of the block is set
to 1. If interrupts are enabled, an interrupt signal is also produced. Bit 3 of the FN register
enables/disables the interrupts on terminal count. Bit 2 of the CR0 register determines the pulse
width of the TC output, and the interrupt signal to be one full, or one half, clock cycle. Then,
the timer period is reloaded into the DR0 register from the DR1 register. The countdown process
resumes on the rising edge of the next clock cycle. Figure 4.23 shows the timing diagram for the
PSoC timer [1].

3 1 012

CR0 FN

0 7 6 5 4 2

interrupt
Generate

Lower
Terminal Count

output

Assert
Terminal Count

output

clock

enable

clock AND DR0 <> 00h

clock AND DR0 == 00h

000

select half/full clock

tnuoClanimreTnotpurretnielbane

last block in a chain

clock

clockenable

if interrupts are enabled

Remove
interrupt

Initial
state

DR1 −> DR0

Decrement
content of DR0DR1 −> DR0

Figure 4.22: Main timer function and the corresponding control registers.

Software routines. Firmware routines set the control registers that start and stop the
timer circuit, set the timer period, and enable/disable the interrupts. Figure 4.24 shows three
short firmware routines related to the terminal count functions. The Timer Start routine enables
the timer circuit by setting bit 0 of the timer blocks control register. Figure 4.22 shows how
this bit is used by the rest of the timer functionality. After setting the enabling bit, the timer
circuit starts counting down on the next clock cycle. The Timer Stop routine disables the timer
circuit by resetting bit 0 of CR0. The Timer WritePeriod routine writes a 16-bit value into the

4.3 Programmable Digital Blocks 179

00H

CLK

DR0

TC

Figure 4.23: Timing diagram for the PSoC timer circuit [1].

Timer_Start:

_Timer_Start:

ret

reg[CR0] |= 0x01

Timer_Stop:

_Timer_Stop:

ret

reg[CR0] &= ~0x01

Timer_WritePeriod:

_Timer_WritePeriod:

mov reg[DR1_LSB], A

mov A, X

mov reg[DR1_MSB], A

ret

Figure 4.24: Terminal count firmware routines [20]. Courtesy of Cypress Semiconductor Corpo-
ration.

DR1 register that stores the period value. The LSB of the new value is in the A register, and
the MSB of the new value is stored in the X register.

B. Compare functionality

The compare functionality can generate an output signal of programmable frequency and pulse
width, and an interrupt signal. The compare functions (1) writing the pulse width (compare)
value into the DR2 register (i.e. the Data Register 2) (2) reading the compare value from the
DR2 register, (3) producing the output signal, and (4) enabling/disabling the interrupts:

1. Write compare value: This function loads the DR2 register with the 16-bit value used in
the timers compare function. The output signals pulse width is equal to (DR1 – DR2), and
is programmed by selecting the appropriate register values.

2. Read compare value: This function returns the 16-bit value stored in the DR2 register that
is used in the compare function.

3. Compare function: This block compares the values of the decrementing DR0 register, and
the DR2 register that stores the reference value. If the tested condition is true, then the
auxiliary output of the timing circuit is set. The comparison operator can be programmed
for either DR0 ≤ DR2, or DR0 < DR2. If the value of the DR1 register is larger than
the value of the DR2 register, the compare output is low for the first (DR1 – DR2) clock
cycles. Then, for the next DR2 clock cycles the output is high. Therefore, both the output
period (DR1) and the pulse width (DR2) are programmable.

180 Performance Improvement by Customization

3

s
e
l
e
c
t

h
a
l
f
/
f
u
l
l

c
l
o
c
k

e
n
a
b
l
e

l
a
s
t

b
l
o
c
k

i
n

a

c
h
a
i
n

c
l
o
c
k

s
e
l
e
c
t
e
d

c
o
m
p
a
r
e

D
e
c
r
e
m
e
n
t

c
l
o
c
k

A
N
D

t
e
s
t

i
s

f
a
l
s
e

t
e
s
t

i
s

t
r
u
e

c
l
o
c
k

A
N
D

c
l
o
c
k

A
N
D

0

0

0

c
l
o
c
k

i
f

i
n
t
e
r
r
u
p
t
s

a
r
e

e
n
a
b
l
e
d

D
R
1

−
>

D
R
0

A
N
D

l
o
w
e
r

A
u
x
i
l
i
a
r
y

O
u
t
p
u
t

c
o
m
p
a
r
e

t
r
u
e

D
e
c
r
e
m
e
n
t

i
n
t
e
r
r
u
p
t

o
n

C
R

0
F

N

0

c
l
o
c
k

A
N
D

D
R
0

<
>

0
0
h

D
R
0

=
=

0
0
h

1

c
l
o
c
k

e
n
a
b
l
e

D
R
1

−
>

D
R
0

2
7

6
5

4
2
 −

 0

s
t
a
t
e

G
e
n
e
r
a
t
e

i
n
t
e
r
r
u
p
t

R
e
m
o
v
e

i
n
t
e
r
r
u
p
t

L
o
w
e
r

a
u
x
i
l
i
a
r
y

o
u
t
p
u
t

I
n
i
t
i
a
l

e
n
a
b
l
e

D
R
0

a
n
d

D
R
2

A
N
D

c
o
m
p
a
r
e

D
R
0

a
n
d

D
R
2

A
s
s
e
r
t

O
u
t
p
u
t

A
u
x
i
l
i
a
r
y

A
N
D

c
o
m
p
a
r
e

F
ig

u
re

4.
25

:
C

om
p
ar

e
fu

n
ct

io
n
al

it
y

an
d

th
e

co
rr

es
p
on

d
in

g
co

n
tr

ol
re

gi
st

er
s.

4.3 Programmable Digital Blocks 181

If a capture function call occurs, then it overrides the DR2 register value used for compar-
ison. (For more details, cf. the section on the capture functionality.)

4. Enable/disable compare interrupts: These functions enable interrupt signals, if the tested
comparison condition is true. If enabled, the interrupt signal is generated on the rising edge
of the compare output. Other functions disable the interrupts.

Tables 4.2 and 4.3 show the physical addresses of the DR2 registers of the 16 programmable
digital blocks. The compare functionality is implemented using both hardware and firmware as
in the case of the terminal count functionality.

Hardware circuit. The hardware circuit generates CMP, the low-level compare output, and
the interrupt signal, which are the basis for the related data transfer shown in Figure 4.21.

Figure 4.25 illustrates the PSoC implementation of the compare functionality [1]. The circuit
stays in the initial state provided that the timer circuit is not enabled. After enabling the timer
by setting bit 0 in the CR0 register to 1, the DR0 and DR2 registers are compared at each clock
cycle. Bit 4 of the FN register selects the comparison relationship to be either DR0 ≤ DR2 or
DR0 < DR2.

If the values of the DR0 and DR2 registers are equal, then the auxiliary output CMP of the
circuit is set, and an interrupt signal is produced, if interrupts are enabled by setting bit 3 of the
FN register. The length of the auxiliary output signal and interrupt signal are either one, or one
half, clock cycles, because they are selected by bit 2 of the CR0 register.

Software routines. The firmware routines provide the capability to write/read the com-
pare value stored in the DR2 register, to enable/disable the compare related interrupts, and to
start/stop the circuit. Note that the start/stop routines are the same as those for the terminal
count functionality shown in Figure 4.24.

Figure 4.24 shows the related firmware routines. The Timer Write CompareValue routine
loads the 16-bit value used for the comparison function into the DR2 register. The LSB is in the
A register, and the MSB is in the X register. The Timer ReadCompareValue routine returns
the content of the DR2 register. The LSB is returned in the A register and the MSB in the
X register.

C. Capture Functionality

The capture function returns the value of the DR0 register. There are two kinds of capture
functions: hardware capture and software capture. Hardware capture occurs on the rising edge
of the data input. Software capture occurs if the CPU core attempts to read the contents of the
decrementing DR0 register. In both cases, the contents of the decrementing DR0 register are
copied to the DR2 register, and the value can be accessed from there. The resulting data transfer
is shown in the Figure 4.21.

Software routines. Figure 4.26 shows the firmware routine that implements the capture
function. This routine, called Timer ReadTimerSaveCV, returns the value of the DR0 register
without affecting the other registers.

It first allocates three stack locations to store the counter value, that is, bytes DR0 MSB and
DR0 LSB, and the flags register. The X register points to the bottommost of the three stack
locations allocated. Then, the values of the configuration register, CR0, and compare register,
bytes DR2 MSB and DR2 LSB, are stored on the stack, above the allocated locations. Next, two

182 Performance Improvement by Customization

mov reg[DR2_LSB], A

Timer_ReadTimer:

_Timer_ReadTimer:

mov A, reg[DR0_LSB]

mov A, reg[DR2_MSB]

mov A, reg[DR2_LSB]

mov X, A

ret

Timer_ReadTimerSaveCV:

_Timer_ReadTimerSaveCV:

mov X, SP

add SP, 3
mov A, reg[CR0_LSB]

push A

mov A, reg[DR2_LSB]
push A

mov A, reg[DR2_MSB]

push A

mov A, reg[DR0_MSB]

mov [X+1], A

mov A, reg[DR0_LSB]
mov [X+2], A

mov A, 0

tst reg[CPU_SCR0], CPU_SCR0_GIE_MASK

jz .SetupStatusFlag

mov A, FLAG_GLOBAL_IE

.SetupStatusFlag:

mov [X], A

M8C_DisableGInt
pop A

pop A

pop A

pop A
mov reg[CR0_LSB], A

pop X

reti

mov reg[DR2_MSB], A

Figure 4.26: Capture function related firmware routines [20]. Courtesy of Cypress Semiconductor
Corporation.

bytes of the counter register (bytes DR0 MSB and DR0 LSB) are saved in the stack entries X +
1 and X + 2, respectively. Flags are stored in the stack entry pointed to by the X register. After
disabling the interrupts, the DR2 and CR0 registers are restored to their saved values. Finally,
the A and X registers return the value of the counter register: byte DR0 MSB is returned in the
A register and byte DR0 LSB is returned in the X register.

4.3.2 Counter Block

The functionality of the counter block is very similar to that of the timer block. As in the case
of the timer block, a counter has one clock input, one data input, one primary output, and one
auxiliary output. The main functions are also similar. However, the counter circuits do not
implement the capture functionality of the timer block.

The counter block uses three data registers: the DR0 register for counting, the DR1 register
for storing the period value, and the DR2 register for storing the compare value. The period
value is loaded into the DR1 register only if the counter circuit is disabled. The value is also
automatically copied into the DR0 register.

Figure 4.27 shows the PSoC implementation for the countdown function of the block [1]. The
main difference, with respect to the terminal count functionality of the timer block in Figure 4.22,
is that the content of the DR0 register is decremented only if the Data input is high. If the
Data input is low, then decrementing stops, the two output signals are set to low, and the values
of the three registers of the counter circuit DR0, DR1, and DR2, are saved.

Upon decrementing the value of the DR0 register to 00H, the counter circuit sets the auxiliary
output to high, and issues an interrupt signal if interrupts are enabled. Similar to the timer block,
interrupts are enabled by setting bit 3 of the FN register to 1. The auxiliary output and interrupt
signals are always applied for one clock cycle.

4.3 Programmable Digital Blocks 183

���������
�������	�
	���

��	�	���

27 013456

FN

2 1 0

CR0

���������	��

����	�����	��	�	�����

��������

���������

������

�	�	

��������	�����

������

�����������
��������	���

�����

�����

�����	���	���	��	���

���������

��������	���
�����	���	���	 �	���

��������
!���

"����������#

������
��$�����%	&�����

'�(��
��$�����%	&�����

�
	����������	���	������"

����)�
���������

��	�	���

*������
�����

Figure 4.27: The counter functionality and the related control registers.

4.3.3 Deadband Block

Deadband circuits generate two nonoverlapping clocks, called PHI1 and PHI2, that are separated
by a value called the deadband. Deadband circuits are implemented using PSoC digital blocks,
for which the configuration and function registers are as shown in Figure 4.28. The deadband
generator has three inputs: viz., the clock signal, the reference signal (the input DATA of the
digital block), and the KILL signal (the input Aux DATA of the block). The primary circuit
output generates clock PHI1, and the secondary output clock PHI2. The input reference can be
produced by a PWM or by toggling a bit using the Bit–Bang interface [1]. The bit is the primary
output of the previous digital block, or the bit-bang clock register.

Figure 4.29 shows the operation of the enabled deadband circuit. After the reference signal
is asserted, the next rising edge of the clock cycle causes the count register of the PSoC block
to be loaded with the period value, P. Then the count value is decremented on each clock cycle,
and after reaching value zero, clock PHI1 becomes high. Clock PHI1 is lowered to zero on the

register)

CR0

2 1 0 2 1 07 6 5 4 3

FN

00: synchronous restart KILL mode

01: disable KILL mode

10: asynchronous KILL mode

11: reserved

bit bang clock

(PWM or Bit−Bang)

1 0 0

dead bandenable

bit bang mode
(input reference is

PO of previous block
or Bit Bang Clock

Figure 4.28: Configuration and function registers for the deadband circuit.

184 Performance Improvement by Customization

REFERENCE

Tlow

022 1201

CLOCK

Pulse width

∆T

PH1

PH2

Dead Band

COUNT

Figure 4.29: Deadband circuit timing diagram [1].

falling edge of the reference input. Similarly, this behavior is repeated for clock PHI2 generated
at the auxiliary output. On the rising edge of the reference signal, value P is loaded into the
count register, and then decremented each clock cycle. Upon reaching value zero, clock PHI2 is
set high until the time of the falling edge of the reference signal.

Deadband and ∆T are defined as:

Deadband = P + 1 (4.23)

∆T = Tlow + P + 1 (4.24)

These values are determined by the characteristics of the reference signal and period value P.

If the circuit is disabled then all outputs are low, the DR0, DR1, and DR2 registers save their
state, and the internal state of the circuit is set to a reset state. The asynchronous signal, KILL,
applied to the data input of the block disables both outputs immediately.

4.4 Customized PSoC Digital Blocks

PSoC has three types of hardware blocks with customized functionality: (1) pulse width modu-
lation, (2) multiply-accumulate, and (3) decimator circuits.

4.4.1 Pulse Width Modulator Blocks

Pulse width modulators (PWM) generate digital signals of programmable period, W and pulse
width, P as defined in Figure 4.30(a). The duty cycle of the PWM is given by:

Duty cycle =
Pulse width

Period
=

W

P + 1
(4.25)

The following routines are the firmware-level functions of the PWM block:

• PWM Start: This function enables the PWM.

4.4 Customized PSoC Digital Blocks 185

Period

Pulse width

(a) (b)

FN

0 0 0 0 0 0 0

0 0 11

7 6 5 4 3 2 1 0

01235 467

CR0

Figure 4.30: Pulse width modulator.

• PWM Stop: This function disables the PWM. As a result, the circuit outputs are lowered
to 0.

• PWM WritePulseWidth: This function sets the pulse width of the output signal. If the
loaded value is W then the pulse width is W × T clock. T clock is the period of the clock
signal to the PWM.

• PWM WritePeriod: This function sets the period of the output signal. If the loaded value
is P, then the period of the signal is actually (P + 1) × T clock, where T clock is the period
of the PWM clock signal.

• PWM bReadCounter : This function returns the current value of the counter register.

• PWM bReadPulseWidth: This function returns the value of the pulse width.

• PWM EnableInterrupts: This function enables interrupts when the terminal count reaches
zero.

• PWM DisableInterrupts: This function disables interrupts when the terminal count reaches
zero.

The PWM is based on digital PSoC blocks programmed to operate as counters [1]. One digital
PSoC block is used for an 8-bit PWM, and two chained, digital, PSoC blocks are required for a
16-bit PWM. Figure 4.30(b) shows the configuration of the FN and CR0 control registers:

• Bits 2-0 in the FN register configure the digital PSoC block as a counter.

• Bit 3 determines the type of interrupt, that is, interrupt on a terminal count, if the bit is
set to 0, and interrupt on a true compare value, if the bit is set to 1.

• Bit 4 sets the compare function, which is either ≤, if the bit is set to 0, or <, if the bit
is set to 1.

• Bit 5 set to 1 configures the digital PSoC block as standalone, because it is an 8-bit PWM.

• Bit 6 enables the primary output of the PSoC block to drive the broadcast net, if the bit
value is 1, or disables the driving if the bit value is.

• Bit 7 is set to 0, if the data input is noninverted, and if set to 1, the data input is inverted.

• Bit 0 in the CR0 register is set to 1, if the PWM is enabled, and to 0, if the PWM is
disabled.

186 Performance Improvement by Customization

RAM_EPILOGUE RAM_USE_CLASS_1

ret

RAM_PROLOGUE RAM_USE_CLASS_1

PWM_Stop:

_PWM_Stop:

PWM_Stop_M

#pragma ioport PWM_COUNTER_REG: 0x024

#pragma ioport PWM_PERIOD_REG: 0x025

#pragma ioport PWM_COMPARE_REG: 0x026

#pragma ioport PWM_CONTROL_REG: 0x027

#pragma ioport PWM_FUNC_REG: 0x124

#pragma ioport PWM_OUTPUT_REG: 0x126

#pragma ioport PWM_INPUT_REG: 0x125

#pragma ioport PWM_INT_REG: 0x0E1

// register DR0

// register DR1

// register DR2

// register CR0

// register FN

// register IN

// register OU

// register INT

#define PWM_Start_M PWM_CONTROL_REG |= 0x01

#define PWM_Stop_M PWM_CONTROL_REG &= ~0x01

PWM_Start:

_PWM_Start:

RAM_EPILOGUE RAM_USE_CLASS_1

ret

PWM_Start_M

RAM_PROLOGUE RAM_USE_CLASS_1

_PWM_WritePulseWidth:
PWM_WritePulseWidth:

RAM_PROLOGUE RAM_USE_CLASS_1

mov reg[PWM_COMPARE_REG], A

RAM_EPILOGUE RAM_USE_CLASS_1

ret

RAM_PROLOGUE RAM_USE_CLASS_1

RAM_EPILOGUE RAM_USE_CLASS_1

ret

PWM_WritePeriod:
_PWM_WritePeriod:

mov reg[PWM_PERIOD_REG], A

Figure 4.31: PWM firmware level routines [20]. Courtesy of Cypress Semiconductor Corporation.

In addition to the FN and CR0 registers, the DR0, DR1, IN, OU, and DR2 registers are
also used in the implementation of the PWM. The DR0 register is the down counter. The
DR1 register stores the period value, and the DR2 register stores the pulse width of the output
signal.

Similar to the counter circuit, bits 7-4 in the IN register select one of the 16 possible data
inputs, and bits 3-0 select one of the 16 possible clock signals. The OU register follows the
general bit structure of the other programmable blocks.

Figure 4.31 shows the implementation of the firmware functions for a digital PSoC block. This
figure shows the physical addresses of the eight PSoC block registers for configuration, function,
data, input and output selection, and interrupt mask. Routine PWM Start starts the operation
of the PWM by enabling bit 0 of the configuration CR0 register. Similarly, routine PWM Stop
stops the PWM by disabling bit 0 of CR0 register. The PWM WritePulseWidth routine loads the
pulse width, expressed as multiples of the selected clock cycles, into the DR2 register, which is
used as a compare register for the PWM. The routines parameter is passed through the A register.

4.4 Customized PSoC Digital Blocks 187

mov [PWM_INPUT_REG], A

_PWM_bReadCounter:

_BPWM_ReadCounter:

bPWM_ReadCounter:

_bPWM_ReadPulseWidth:

bPWM_ReadPulseWidth:

_PWM_bReadPulseWidth:

PWM_bReadPulseWidth:

bOrigCompareValue: EQU 0

bOrigClockSetting: EQU 1

wCounter: EQU 2

STACK_FRAME_SIZE: EQU 3

RAM_PROLOGUE RAM USE_CLASS_2

mov X, SP

mov A, reg[PWM_COMPARE_REG]

push A

PWM_Stop_M

M8C_SetBank1

mov A, reg[PWM_INPUT_REG]

push A

mov A, reg[PWM_COMPARE_REG]

RAM_PROLOGUE RAM USE_CLASS_1

RAM_EPILOGUE RAM USE_CLASS_1

ret

mov reg[PWM_INPUT_REG], 0x00

M8C_SetBank0

mov A, reg[PWM_COUNTER_REG]

mov A, reg[PWM_COMPARE_REG]

push A

mov A, [X+bOrigCompareValue]

mov reg[PWM_COMPARE_REG], A
M8C_SetBank1

mov A, [X+bOrigClockSetting]

M8C_SetBank0

PWM_Start_M
pop A

ADD SP, −(STACK_FRAME_SIZE−1)

RAM_EPILOGUE RAM_USE_CLASS_2

ret

PWM_bReadCounter:

Figure 4.32: PWM firmware routines (continued) [20]. Courtesy of Cypress Semiconductor Cor-
poration.

The PWM WritePeriod routine sets the period of the PWM by loading the DR1 register with
the period value. The parameter of the routine is passed through the A register.

Figure 4.32 shows the firmware routines for reading the pulse width and the current value
of the counter register stored in the DR0 register. Figure 4.33 shows the firmware routines for
enabling and disabling interrupts. Figure 4.34 presents the API method for setting the duty cycle
of the PWM,

Example (Software implementation of a PWM). Figure 4.35 shows the main elements of the
software implementation of a PWM. The circuit is used to turn an LED on/off based on the values
in the PRT2DR register. Initially, the LED is turned on by loading a 1 in the PRT2DR register.

188 Performance Improvement by Customization

Then, the value of the PWM pulse width, i.e., 0xFF in this example, is loaded into memory at
address 4.

The LED remains on for a time interval equal to the execution time of the delay loop1 loop.
The pulse width of the PWM emulation is given by:

Pulse width = [(7 + 5) × (R5 + 1) + (7 + 5 + 8)] × (R4 + 1) × clock cycles (4.26)

PWM_DisableInt:

RAM_PROLOGUE RAM_USE_CLASS_1

RAM_EPILOGUE RAM_USE_CLASS_1

ret

_PWM_DisableInt:

PWM_DisableInt_M

#define PWM_EnableInt_M M8C_EnableIntMask(PWM_INT_REG, 0x02)

#define PWM_DisableInt_M M8C_DisableIntMask(PWM_INT_REG, 0x02)

PWM_EnableInt:

_PWM_EnableInt:

RAM_PROLOGUE RAM_USE_CLASS_1

PWM_EnableInt_M

RAM_EPILOGUE RAM_USE_CLASS_1

ret

Figure 4.33: PWM firmware routines (continued) [20]. Courtesy of Cypress Semiconductor Cor-
poration.

bDutyCycle = 100;

void PWMSetDutyCycle (BYTE bID, BYTE bDutyCycle) {

}

BYTE Period,

BYTE CompareValue;

if (bDutyCycle > 100) {

}

Period = PWMGetPeriod (bID);

CompareValue = ((int) (Period + 1) * (int)bDutyCycle)/100;

PWMSetPulseWidth (bID, CompareValue);

Figure 4.34: PWM firmware routines (continued) [20]. Courtesy of Cypress Semiconductor Cor-
poration.

The same equation should be used to evaluate the length of time that the LED is off. R4 and
R5 represent the values loaded at memory addresses 4 and 5, respectively. The execution time is
7 clock cycles for a decrement instruction, 5 cycles for a jump instruction, and 8 clock cycles for
a move instruction.

If memory entries at addresses 4 and 5 are initialized to zero, the minimum pulse width is
32 clock cycles. Similarly, the minimum PWM period is 64 clock cycles. This means that the code
cannot be used, if shorter pulse widths, or faster PWM signals, are needed. Also, the values of
pulse width and period are controlled by two variables. The variable stored at location 5 provides
a finer tuning, whereas the variable at location 4 gives a coarser adjustment. Fine tuning is in

4.4 Customized PSoC Digital Blocks 189

jnz innerloop2

include "m8c.inc"

include "memory.inc"

include "PSoCAPI.inc"

export _main

_main:

mov reg[PRT2DR], 0x01

mov [4], 0xFF

delay_loop1:

mov [5], 0xFF

dec [5]

dec [4]

jnz delay_loop1

delay_loop2:

mov [4], 0xFF

mov reg[PRT2DR], 0x00

mov [5], 0xFF

dec [5]

dec [4]

jnz delay_loop2

jmp _main

.terminate

innerloop1:

jnz innerloop1

innerloop2:

Figure 4.35: PWM implementation as assembly code routines.

steps of 12 clock cycles, and coarse tuning is in steps of 32 cycles. The code has to be modified,
if finer adjustment steps are needed for PWM pulse width, or period.

4.4.2 Multiply ACcumulate

Multiply ACcumulate (MAC) circuits can provide two distinct functions: fast multiplication
of two operands, and multiplication followed by summing, that is accumulating, the resulting
products.

Figure 4.36 shows the structure of a MAC that is connected to the system bus. Its operation
does not require an additional clock or enable signal. For fast multiplication, the 8-bit multipli-
cands are loaded into the MUL X and MUL Y registers, and the 16-bit product is available in
the register pair, MUL DH and the MUL DL. The MUL DH register stores the more significant
byte, and MUL DL register the less significant byte. The two multiplicands are signed integers,
and the product is also a signed integer.

For the multiply accumulate function, the two multiplicands are loaded into registers MAC X
and MAC Y. The product is summed with the previous results, and stored as a 32-bit, signed
number in the ACC DR3, ACC DR2, ACC DR1, and ACC DR0 registers. These registers are
reset by writing into the MAC CL1 or MAC CL0 register. The type of MAC function, that is

190 Performance Improvement by Customization

A
C

C
_
D

R
2

A
C

C
_
D

R
1

A
C

C
_
D

R
0

M
U

L
_
X

M
U

L
_
Y

M
A

C
_
Y

S
y
s
te

m
 b

u
s

S
y
s
te

m
 b

u
s

1
6

b
i
t
s

3
2

b
i
t
s

M
A

C
_
X

8

b
i
t
s

8

b
i
t
s

A
C

C
_
D

R
3

M
A

C
_
C

L
0

M
A

C
_
C

L
1

S
y
s
te

m
 b

u
s

M
u

lt
ip

li
e
r

A
c
c
u

m
u

la
to

r

M
U

L
_
D

H
M

U
L

_
D

L

F
ig

u
re

4.
36

:
M

u
lt

ip
ly

ac
cu

m
u
la

te
(M

A
C

)
ci

rc
u
it

[1
].

4.4 Customized PSoC Digital Blocks 191

sp += a[i] * b[i];

#include "PSoCAPI.h"

void main {

char b[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2};

char a[] = {5, 4, 3, 2, 1, 2, 1, 2, 1, 2, 3, 4, 5, 6, 7, 8};

char sp;

int i;

sp = 0;

for (i = 0; i < 16; i++)

}

#include <m8c.h>

Figure 4.37: C code for scalar product algorithm.

either multiplication, or multiply and accumulate, is selected by loading the multiplicands into
the respective register pair.

Example (Scalar product of two vectors). This example illustrates the computational speed
benefits offered by the use of MAC, as compared to software routines, by calculating the scalar
product of two vectors, a and b. The two vectors can have dimensions of 16, 64, or 256. This
example compares three implementations of the scalar product algorithm using C language,
assembly code, and assembly code using the MAC for multiplication and summing the partial
results.

A. C program for the scalar product of two vectors

Figure 4.37 shows the C code for the scalar product algorithm. The code produced by the
C compiler resides in flash memory. This includes the program instructions, and the constant
values, required for initializing vectors a and b.

Figure 4.38 highlights the main steps of the code. The data stack space is first allocated for all
local variables. Each stack entry is one byte. Variable i is stored at the bottom of the stack. Two
stack entries, i.e., two bytes, are allocated for the variables, as variable i of type int. Vector a is
stored next, and occupies sixteen stack locations entries (i.e., one entry for each vector element).
Vector b is stored on top of vector a, and also has sixteen allocated entries. Finally, variable
sp is allocated on top of the stack. Figure 4.38(a) shows the stack allocation of the local data
variables.

Next, the code for the compiled program initializes the stack entries for vectors a and b with
the constant values stored in flash. Figure 4.38(b) shows the code fragment for initializing vector
a. Similar code initializes vector b. The first instruction, at address 0318, sets the current page
pointer CUR PP, stored in register 208, to point to SRAMs page zero. Then, the virtual register,
r1, also located in SRAMs page 0, but at address 03, is loaded with value 80, virtual register
r0 situated in SRAMs page 0, at address 04, is loaded with value 1, and virtual register r3

192 Performance Improvement by Customization

.

register SP

register X

b

a

i

sp

0318: MOV REG[208], 0

031B: MOV [__r1], 80

031E: MOV [__r0], 1

0321: MOV [__r3], X

0323: ADD [__r3], 2

0326: MOV REG[213], 7

0329: PUSH X

032A: MOV [__rX], 0

032D: MOV A, [_r0]

032F: MOV X, [__r1]

0331: PUSH A

0332: ROMX

0333: MOV REG[208], 0

0336: MVI [__r3], A

0338: POP A

0339: INC X

033A: ADC A, 0

033C: INC [__rX]

033E: CMP [__rX], 16

0341: JNZ 0x0031

0343: POP X

(a)

(b)

.

Figure 4.38: Assembly code generated by a C compiler.

located in SRAM page 0, at address 01, points to the first, that is, the bottommost stack entry
assigned to vector a. The instruction at address 0326 sets the MVW PP register, stored in a
register at address 213, to point to SRAM page 7. The MVW PP register is used to efficiently
move data from the accumulator into SRAM by using indirect addressing. Then, the contents
of the X register, pointing to the bottommost stack entry storing local variables, is saved on the
stack. The virtual register rX is initialized with the value 0.

Data transfer from flash memory. At address 032D, the A register is loaded with the
contents of the virtual register r0, and the X register with the contents of the virtual register
r1. The A register is stored on the stack, because the following instruction ROMX alters its

contents. Registers A and X are used to determine the address in flash, from which instruction
ROMX, at address 0332, reads data. The A register contains the most significant byte, and the
X register, the least significant byte. Address 0x0150 is for first read operation. The read data
are returned in the A and X registers. The move immediate instruction, MVI, at address 0336,
stores the data in the A register into a page pointed to by the MVW PP register (SRAM page 7)
and location register X + 2. Then, the contents of the A register are popped from the stack and
the index of the next vector elements is incremented. Virtual register rX is also incremented,
and execution jumps back to address 0x033, if there are elements in vector A that still have to
be read. Finally, the POP X instruction, at address 0343, restores the contents of the X register
to point to the bottommost stack element allocated for the local variables.

Scalar product of two vectors. Figure 4.39 shows the compiler-produced assembly code
required to compute the scalar product of two vectors, in this example. The code first initializes
the stack entries holding the loop index i, to zero. These are the entries pointed to by the
X register, and the entry on top of it. Next, the virtual registers are set so that they point to the
SRAM page holding vectors a and b. Virtual register r0 points to page 7, where vector b is

4.4 Customized PSoC Digital Blocks 193

03A0: MOV REG[212], A

03A4: MOV [__r2], A

03A6: PUSH X

03A7: MOV A, [__r0]

03A9: MOV X, [__r2]

03AB: LCALL __mul8

03AE: POP X

03AF: ADD [X+34], A

03B1: INC [X+1]

03B3: ADC [X+0], 0

03B6: MOV A, [X+1]

03B8: SUB A, 16

03BA: MOV A, [X+0]

03BC: XOR A, 128

03BE: SBB A, 128

03C0: JC 0x0373

036D: MOV [X+1], 0

0370: MOV [X+0], 0

0373: MOV REG[208], 0

0376: MOV [__r0], 7

0379: MOV [__r1], X

037B: ADD [__r1], 18

037E: MOV A, [X+1]

0380: ADD A, [__r1]

0382: MOV [__r1], A

0384: MOV A, [X+0]

0386: ADC A, [__r0]

0388: MOV REG[212], A

038A: MVI A, [_r1]

039A: MOV [__r3], A

0398: ADD A, [__r3]

0396: MOV A, [X + 1]

0393: ADD [__r3], 2

0391: MOV [__r3], X

038E: MOV [__r2], 7

038C: MOV [__r0], A

039C: MOV A, [X+0]

039E: ADC A, [__r2]

03A2: MVI A, [__r3]

Figure 4.39: Assembly code generated by a C compiler (continued).

stored. Then the virtual register r1 is loaded and points to the start of the vector b (register X
+ 18). Then, virtual register r1 is updated to point to the current element b[i]. This element
occupies the i – 1 entry on top of the stack entry holding b[0]. The current SRAM page number
for MVI instruction is computed, and stored in the MVR PP register located in register 212.
For this example, the MVR PP register points to SRAM page 7. The value of element b[i] is
loaded into the A register, and then stored in the virtual register r0.

A similar set of steps is executed to access vector element a[i]. Virtual register r2 points to
the SRAM page number, and virtual register r3 to the element a[i]. After storing the current
SRAM page in the MVR PP register (register 212), element a[i] is moved to the A register,
and the virtual register r2. At this point, both operands are available. Element a[i] is stored
in register r2 and element b[i] in register r0. Next, the value of the X register is stored on
the stack, because the multiplication routine mul8 affects the register value. Then, value b[i]
is stored in the A register, and the a[i] value in the X register. The two multiplicands for the
multiplication routine mul8 are passed by using the values in the A and X registers.

This partial product is stored in the A register and this partial product is added to the location
at address X register + 34, storing the scalar product. The X register is restored to the saved
value. Index i is incremented and the code iterates until all of the pairs of vector elements a[i]
and b[i] are multiplied together. The final scalar product is stored at entry X + 34 in the data
stack.

B. Assembly code for scalar product without using MAC.

Figure 4.40 shows the Assembly code for the scalar product of two vectors without using the
hardware MAC. The code is much shorter and faster than the code produced by the C compiler.

194 Performance Improvement by Customization

JNZ _mul8

MOV [24], 4

MOV [25], 5

MOV [26], 6

MOV [27], 7

MOV [28], 8

MOV [29], 9

MOV [30], 8

MOV [31], 7

MOV [32], 6

MOV [33], 5

MOV [34], 4

MOV [35], 3

MOV [36], 2

MOV [37], 0

MOV X, 5

MOV A, 0

MOV reg[0xD1], 0

MOV [3], 0

MOV [5], 5

MOV [6], 4

MOV [7], 3

MOV [8], 2

MOV [9], 1

MOV [10], 2

MOV [11], 1

MOV [12], 2

MOV [13], 1

MOV [14], 2

MOV [15], 3

MOV [16], 4

MOV [18], 6

MOV [19], 7

MOV [20], 8

MOV [17], 5

MOV [21], 1

MOV [22], 2

_mul8:

CMP [X], 0

AND F, 251

RRC [X]

JNC shift

JZ accu

ADD A, [X+16]

shift:

ASL [X+16]

JMP _mul8

accu:

.terminate

JMP .terminate

ADD [37], A

MOV A, 0

INC X

INC [3]

CMP [3], 16

MOV [23], 3

Figure 4.40: Assembly code for scalar product without using MAC.

The values for vectors a and b are stored directly into SRAM starting from address 5 to and
ending at 20, for vector a, and address 21 to 36 for vector b. Index i is stored at location 3, and
the scalar product is computed using the location at address 37. The X register is set to point
to the first element in vector a, and the A register is used to compute the product a[i] × b[i]. If
the value of element a[i] is zero, the multiplication algorithm ends, and execution jumps to the
section labeled accu. The product value stored in the A register is added to the memory entry
storing the scalar product (address 37). Then, the X register is incremented to point to the next
element in vector a and index i is incremented. If there are still elements to be multiplied, then
the algorithm jumps to address mul8, and continues the computation.

The code for multiplying two unsigned numbers starts at address mul8, and the algorithm
is shown in Figure 2.11 of Chapter 2. Note that in this algorithm, the values of vectors a and b
are destroyed during multiplication. The end result of the scalar product is stored at address 37.

C. Assembly code for scalar product using MAC

Figure 4.41 shows the assembly code, using MAC for the scalar product algorithm. First, the
MAC is reset, including the ACC DR3, ACC DR2, ACC DR1, and AC DR0 register. This is
accomplished by writing to the MAC CL0 register located at address EEH. The partial products
a[i] × b[i] are computed by writing operand a[i] into the MAC X register at address ECH, and
operand b[i] into the MAC Y register located at address EDH. Instruction MOV reg[EDH],0
is introduced after each partial product to allow the MAC to finish its computation. After all
partial products have been computed, the value of the scalar product is stored in the four registers:
ACC DR3 located at address EEH, ACC DR2 at located address EFH, ACC DR1 located at
address ECH, and AC DR0 located at address EDH.

4.4 Customized PSoC Digital Blocks 195

MOV reg[EDH], 0

MOV reg[ECH], 8

MOV reg[EDH], 2

MOV A, reg[EEH]

MOV reg[EDH], 3

MOV reg[ECH], 7

MOV reg[EDH], 0

MOV reg[EDH], 4

MOV reg[ECH], 6

MOV reg[EDH], 0

MOV reg[EDH], 5

MOV reg[ECH], 5

MOV reg[EDH], 0

MOV reg[EDH], 6

MOV reg[ECH], 4

MOV reg[EEH], 0

MOV reg[ECH], 5

MOV reg[EDH], 1

MOV reg[EDH], 0

MOV reg[ECH], 4

MOV reg[EDH], 2

MOV reg[EDH], 0

MOV reg[ECH], 3

MOV reg[EDH], 3

MOV reg[EDH], 0

MOV reg[ECH], 2

MOV reg[EDH], 4

MOV reg[EDH], 0

MOV reg[ECH], 1

MOV reg[EDH], 5

MOV reg[EDH], 0

MOV reg[ECH], 2

MOV reg[EDH], 6

MOV reg[EDH], 0

MOV reg[EDH], 7

MOV reg[ECH], 3

MOV reg[EDH], 0

MOV reg[EDH], 8

MOV reg[ECH], 2

MOV reg[EDH], 0

MOV reg[EDH], 9

MOV reg[ECH], 1

MOV reg[EDH], 0

MOV reg[EDH], 8

MOV reg[ECH], 2

MOV reg[EDH], 0

MOV reg[EDH], 7

MOV reg[ECH], 1

MOV reg[EDH], 0

Figure 4.41: Assembly code for scalar product using MAC.

Table 4.8: Execution time in clock cycles for different implementation styles

Vector size C Code C Code Assembly Code Assembly Code
without MAC with MAC without MAC with MAC

16 8958 6043 2861 390
64 45177 23659 11932 1580
256 – – 52268 6188

bit sequence
M

fB

Figure 4.42: Dataflow of the decimation operation.

D. Execution times

Table 4.8 summarizes the execution times for each of the implementations discussed. In addition
to the listed execution times, 1494 clock cycles are needed for initializing the embedded system.
Vector sizes of 256 could not be handled by the version of the C compiler used for this example.
Note that using MAC for vectors of length 16, the code produced by the C compiler required

196 Performance Improvement by Customization

2915 fewer clock cycles than when MAC was used. This represents a 32% saving in the execution
time of the algorithm. For vectors of length 64, the execution time, when using MAC, is 21, 618
clock cycles less than without MAC, which is a 47% improvement in execution time. For vectors
of length 16, the execution time for the algorithm written in assembly code is 6097 clock cycles
shorter,which is a 68% saving in time, as compared to the C code without MAC. The time saving
increases to 33, 245 clock cycles for vectors of length 64, which represents a 73% improvement.
Finally, for vectors of length 16, the algorithm written in assembly code using MAC requires 8560
fewer clock cycles than the C algorithm without MAC. Similarly, for vectors of length 64, it
needs 43, 597 fewer clock cycles. These savings in time represent 95% and 96%, respectively, of
the execution time of the C program.

4.4.3 Decimator Blocks

Decimator blocks are used to remove the frequency components above a given frequency value f B ,
and then to reduce the data rate of the signal by the factor M, called the down sampling factor.
Figure 4.42 presents the dataflow of the decimation operation. Chapter 7 discusses incremental,
analog-to-digital converters, and Chapter 9 discusses oversampled ADCs, which are two popular
applications of decimator blocks.

The transfer function for decimator circuits is defined as

H(z) =

(

1

M

)2

(1 − z−M)2
(

1

1 − z−1

)2

(4.27)

PSoC provides two types of decimator blocks: type 1, and type 2. Type 1 circuits imple-
ment only the integration part of the transfer function H(z), whereas the differentiation part is
computed in software. Type 2 provides a full hardware implementation of the transfer function.

The resolution of the analog-to-digital converters that use PSoCs decimator circuits can be
estimated using the following two relationships: for single integration [1]:

Resolution (# bits) = 1.5 × (log2 M − 1) (4.28)

and for double integration [1]:

Resolution (# bits) = 2 × (log2 M − 1) (4.29)

Figure 4.43 shows the ADC resolution, in terms of the number of bits, as a function of the deci-
mation factor M. The two plots correspond to single, and double integration, during decimation.
For single integration, the decimation factor M = 32 provides 6 bit resolution, M = 64 provides
6.5 bit resolution, and M = 256 gives 10.5 bit resolution. For double integration, the decimation
factor M = 32 provides 8 bit resolution, the factor M = 64 provides 10 bit resolution, and the
factor M = 256 gives 14 bit resolution.

Type 1 Decimators

This decimator circuit can be programmed to perform a single or a double integration operation [1].
The structure of the circuit is shown in Figure 4.44. The input data are applied to the one-bit
input, DATA. If the input bit is 0, then the value -1 is added to the accumulated value, otherwise,
the value 1 is added. The accumulated value is 16-bits long and is stored in the A0 register for

4.4 Customized PSoC Digital Blocks 197

single integration
8

10

12

of bits

2

4

6

6432 128 256

log M

double integration

Figure 4.43: ADC performance as a function of the decimation factor M.

MUX1

MUX2

DEMUX ACC REG 1 (16 bits)

ACC REG 0 (16 bits)

OURPUT REG 0 (16 bits)

ACC REG 1

A
C

C
 R

E
G

 0

DB[7:0]

16

16

16
1

16

16

ADDER

DATA

(from

comparator

bus)

Figure 4.44: Structure of the PSoC type 1 decimator circuit [1].

the first integration operation, i.e., the sum of DATA + A0 register. The 16-bit A1 register stores
the accumulated value for the second integration operation (the sum A0 register + A1 register).
The output register contains the sum of the two integration operations.

Type 2 Decimators

Type 2 decimator circuits offer a full hardware implementation of the integration and differ-
entiation steps in a decimator. The circuit structure is shown in Figure 4.45.

The type 1, and type 2, decimators are programmed by using the DEC CR0, DEC CR1,
and DEC CR2 control registers. Note that PSoCs decimator circuits are designed for analog-to-
digital conversion (ADC) only, and therefore the control registers bit structures are based on this
fact.

198 Performance Improvement by Customization

Register DEC CR0: This register has the physical address 0,E6H.

The bit structure of the register is as follows [1]

• IGEN (bits 7-4) selects the analog comparator column that is gated for the incremental
ADC operation. If the value is 0001, then the analog column 0 is selected, if 0010, then the
analog column 1 is used, if 0100, then the analog column 2 is chosen, and if 1000, then the
column 3 is selected.

• ICLKS0 (bit 3) is used in conjunction with ICLKS (bits 5-3) of the DEC CR1 register to
determine the digital block that generates the gating signal for incremental ADC.

The following digital blocks are selected for different values of the bits ICLKS :
(1) Block 02 for 0000, (2) Block 12 for 0001, (3) Block 01 for 0010, (4) Block 11 for 0011,
(5) Block 00 for 0100, (6) Block 10 for 0101, (7) Block 03 for 0110, (8) Block 13 for 0111,
(9) Block 22 for 1000, (10) Block 32 for 1001, (11) Block 21 for 1010, (12) Block 31 for 1011,
(13) Block 20 for 1100, (14) Block 30 for 1101, (15) Block 23 for 1110, and (16) Block 33
for 1111.

• DCOL (bits 2-1) selects the input to the decimator circuit from one of PSoC’s four analog
comparator columns. Column 0 is selected by the value 00, column 1 by 01, column 2 by 10,
and column 3 by 11.

• DCLKS0 (bit 0) is used in conjunction with the DCLKS (bits 2-0) of the DEC CR1 register
to select the digital block that generates the DCLK signal for the decimator registers, that
is, the DEC, DIFF 0, and DIFF 1 registers in Figure 4.45.

The following digital blocks are selected for different values of the bits DCLKS :
(1) Block 02 for 0000, (2) Block 12 for 0001, (3) Block 01 for 0010, (4) Block 11 for 0011,
(5) Block 00 for 0100, (6) Block 10 for 0101, (7) Block 03 for 0110, (8) Block 13 for 0111,
(9) Block 22 for 1000, (10) Block 32 for 1001, (11) Block 21 for 1010, (12) Block 31 for 1011,
(13) Block 20 for 1100, (14) Block 30 for 1101, (15) Block 23 for 1110, and (16) Block 33
for 1111.

Register DEC CR1: The physical address of this register is 0, E7H.

The bit structure of the register is as follows [1]:

• ECNT (bit 7) set to the value 0 disables the decimator as a counter for incremental ADC,
and instead configures the circuit to operate together with a ∆Σ ADC. If the bit is 1 then
the decimator is enabled for an incremental ADC. The bit is available only for decimators
of type 1.

• IDEC (bit 6) selects the digital block latch control between noninverted, if the bit is set
to 0, and inverted, if the bit is set to 1.

• ICLKS (bits 5-3) are used in conjunction with the ICLKS0 (bit 3) of the DEC CR0 register
to determine the digital block that generates the gating signal for the incremental ADC
operation.

• DCLKS (bits 2-0) are used in conjunction with DCLKS0 (bit 0) of the DEC CR0 register
to select the digital block that generates the signal DCLK for the decimator registers.

Register DEC CR2: The physical address of this register is 1, E7H.

The bit structure of this register is as follows [1]:

4.4 Customized PSoC Digital Blocks 199

Accumulator

D
E

C

R
e
g

M
U

X

D
IF

F

R
E

G
 0

D
IF

F

R
E

G
 0

MUX out

1
7

1
7

1
7

1

A
D

D
E

R

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

D
B

[7
:0

]
D

A
T
A

(f
ro

m

c
o

m
p

a
ra

to
r

b
u

s
)

F
ig

u
re

4.
45

:
S
tr

u
ct

u
re

of
th

e
P

S
oC

ty
p
e

2
d
ec

im
at

or
ci

rc
u
it

[1
]

200 Performance Improvement by Customization

digital

decimator

col 1 col 2 col 3 col 4

MUX

for ∆Σ ADC

latch

DCLK

MUX

MUX

ECNT

ECNT

DCOL/IGEN

output

DCLKS

DCLK

IDEC

for
incremental ADC

digital blocks

blocks

ICLKS

Figure 4.46: Programming of the decimator circuit.

• Mode (bits 7-6) programs the operation of the type 2 decimator circuits: The decimator
functions as a type 1 decimator, if the bits are 00, and the circuit is used for incremental
ADC, if the bits are 01, and functions as a type 2 decimator, if the bits are 10.

• Data out shift (bits 5-4) programs the shifting of the output bits: No shifting of bits occurs
for the value 00, shifting of all bits to the right by one position for the value 01, shifting of
all bits to the right by two positions for the value 10, and shifting of all bits to the right by
four positions for the value 11.

• Data format (bit 3) defines the type of input data: if the bit is 0, then an input bit 0 is
interpreted by the decimator as the value -1, and the input bit 1 as the value 1. If the
control bit is programmed to 1 then the input bit 0 has the value 0, and for the input bit 1,
the value is 1.

• Decimation rate (bits 2-0) programs the decimation rate of the circuit as: (1) the circuit is
off for the value 000, (2) the rate is 32 for the value 001, (3) the rate is 50 for the value 010,
(4) the rate is 64 for the value 011, (5) the rate is 125 for the value 100, (6) the rate is
128 for the value 101, (7) the rate is 250 for the value 110, and (8) the rate is 256 for the
value 111.

The 16-bit output register of the decimator circuit is implemented using two 8-bit registers [1]:

• Register DEC DH: The physical address of this register is 0, E4H. The register contains
the more significant byte of the output register. If the register is written to, contents of the
accumulator registers is cleared.

• Register DEC DL: The physical address of this register is 0, E5H. This register stores the
least significant byte of the output register. As in the previous case, writing to this register
clears the accumulator registers.

4.5 Conclusions 201

4.5 Conclusions

This chapter has focused on design methods for optimizing system performance by customization
of the architecture for the application. The concepts are illustrated by referring to PSoC’s
programmable and customized digital blocks.

Performance-driven customization involves developing optimized modules for the performance-
critical modules of an application, including customized hardware circuits and software routines.
A module is performance-critical, if it has a significant effect on the global performance of the
implementation. For example, with respect to the total system execution time, a module is
performance-critical if it involves a large amount of processing and/or data communications with
other subroutines. For developing optimized modules, architecture customization explores differ-
ent performance–cost tradeoffs for the critical modules.

Any design methodology for architecture customization includes four general steps: (i) finding
the performance-critical parts of an application, (ii) selecting the critical parts that are subjected
to implementation in hardware, (iii) determining the nature and structure of the optimized hard-
ware circuits, and (iv) implementing the overall system design. The design methodologies differ
depending on the type of the targeted architecture: architectures with one general-purpose pro-
cessor and dedicated coprocessors, with one general-purpose processor and shared coprocessors,
and with multiple general-purpose processors plus shared coprocessor.

A design methodology for reducing the execution time of algorithms executed on an architec-
ture with one general-purpose processor and coprocessors that are shared by multiple modules
of the implementation has also been presented. This architecture is popular for many embedded
applications. The analyzed application is inspired by digital signal processing, and was selected
because of the following characteristics: it performs a large number of computations, the number
of loop iterations is constant and known, and loop iterations can be executed in parallel, in as
much as there are few data dependencies between the iterations.

The discussed design methodology consists of the following: specification, profiling, identifica-
tion of the performance-critical blocks, functional partitioning, hardware–software partitioning,
hardware resource allocation, mapping of the performance-critical modules to hardware, and
scheduling of the modules that share the same hardware resource.

The second part of the chapter treated the support offered by the PSoC architecture for
customization, and explained several design examples that illustrate the design methodology
for performance-driven customization. The support provided by the PSoC architecture includes
programmable digital blocks and blocks with dedicated functionality.

Programmable digital blocks can implement the following functions: timer, counter, dead-
band, and CRC. The operation of a block is defined by programming seven registers: registers IN
and OU define the programmable input, output, and clock, registers FN and CR0 set the func-
tionality, and registers DR2, DR1, and DR0 store the data involved in the circuit operation. In
addition, register INT controls the interrupt generation by a programmable block. This chapter

202 Performance Improvement by Customization

defined the functionality of the blocks, and described the firmware and API routines for operating
the programmable blocks. (Refer to [1] for details on CRC blocks.)

The dedicated PSoC functionality and associated programming for the pulse width modu-
lator (PWM), multiply accumulate (MAC), and decimator were also treated in detail in this
chapter. (Refer to [1] for details on sleep and watchdog timers.)

A comprehensive discussion was presented of two examples of performance-driven architecture
customizations: the software implementation of PWM, and the speed-optimized implementation
of an algorithm for computing the scalar product of two vectors. Two additional design examples
are presented in Chapter 10.

4.6 Recommended Exercises 203

4.6 Recommended Exercises

1. Using the PSoC programmable digital blocks, develop a technique for measuring the signal
frequency. The goal of this exercise is to maximize the precision of the measurement.1

2. Develop an execution-time efficient implementation of the transfer function:

H(z) = 2 × 0.0488 + 0.0976z−1 + 0.0488z−2

1 − 0.9428z−1 + 0.3333z−2

Estimate the maximum frequency of the signals that can be filtered with your implementation.
Provide solutions for increasing the signal frequency that can be processed.

3. Develop a cost efficient implementation of the transfer function:

H(z) = 2 × 0.1464 + 0.1464z−2

1 − 0.5858z−1 + 0.4142z−2

Estimate the maximum frequency of the signals that can be filtered with your implementation.
Provide solutions for increasing the signal frequency that can be processed. What is the corre-
sponding cost increase?

4. Provide an execution time efficient implementation of the transfer function

H(z) = 2 × 0.1464 − 0.2929z−1 + 0.1464z−2

1 + 0.1716z−2

Estimate the maximum frequency of the signals that can be filtered with your implementation.
Provide solutions for increasing the signal frequency that can be processed.

5. Design a cost-efficient implementation for a filter bank that includes the three transfer functions
in exercises 2, 3 and 4. Minimize the execution time of the implementation. The solution should
exploit all opportunities for hardware sharing among the implementations for the three transfer
circuits.

6. Develop a time-efficient design for a bitstream sequence recognizer. The input data are received
serially at an input port. The application must recognize if a predefined sequence of length 8
appeared in the input. Estimate the execution time of your design, and predict the maximum
input bit rate that can be handled by your implementation without bit loss.

Extend the design for sequences of lengths 16 bits and then 32 bits.

7. Propose a design for a FIFO (First-In-First-Out) buffer. The buffer should handle data of
length B bytes, where the length is a parameter for the design. Estimate the execution time of
your implementation. Suggest solutions for speedingup the design.

8. Develop (a) a cost-efficient and (b) a time-efficient algorithm for computing the square root
of an unsigned integer number. Compare the two solutions.

9. Program the CRC algorithm in C language, and then in assembly code. Estimate the exe-
cution time, and code size, for the two algorithms. Identify the C language constructs that lead

1(See Application Note AN2283, “Measuring Frequency,” Cypress Semiconductor Corporation.

204 Performance Improvement by Customization

to significant execution overhead. Propose solutions that minimize the execution time of the
C program. Compare the execution times of the two software procedures with the execution time
of the CRC hardware module that is based on PSoC, programmable, digital blocks.

10. Propose a general approach for scheduling the operations pertaining to parallel loop iterations.
Assume that there are no data dependencies between operations in different iterations. Consider
an example of 5 parallel iterations and explain the scheduling result of your algorithm.

11. Propose a general method for binding operations to hardware circuits and variables to
registers. The goal is to find the minimum amount of hardware that guarantees satisfying a
predefined timing constraint on a ADFG (Acyclic Dataflow Graph). Illustrate your algorithm on
an ADFG with more than 10 nodes that represent operations on at least 5 variables.

12. Is it possible to develop a hardware-only, PSoC-based implementation for the differentiation
step of the decimator module, assuming that only Type 1 decimator blocks are available? If so,
describe your design and if not, explain why not.

13. The design example in Section 4.2 minimized the execution time for a given cost of the hard-
ware circuits. How does the design change, if the goal is to find the minimum cost implementation
that meets a specified execution time requirement?

14. Analyze the advantages and limitations of the cost function defined in expression (4.12).
Propose more complex cost functions that address the limitations.

15. Compute the expressions of the logic functions F in Figures 4.10 and 4.12.

16. Develop firmware routines for managing and operating the deadband block. Use the firmware
routines in a C program to generate nonoverlapping signals with different frequencies, and dead-
band values.

17. Build a 32-bit PWM module and develop the corresponding firmware routines for starting
and stopping the module, setting the pulse width and period, enabling and disabling interrupts,
and reading the pulse width and counter.

18. Identify possibilities of optimizing the execution time of the code in Figure 4.39(b) and
Figure 4.40. Find the reasons for the difference in execution time between the C code and the
assembly code, without MAC.

19. Develop a set of firmware routines for operating the type 1 decimator blocks.

20.For the international data encryption algorithm (IDEA), propose an implementation that is
optimized for execution time. The algorithm is described in Chapter 10. Compare your solution
with the solution discussed in Chapter 10.

Bibliography

[1] PSoC Mixed Signal Array, Technical Reference Manual, Document No. PSoC TRM
1.21, Cypress Semiconductor Corporation, 2005.

[2] Pseudo Random Sequence Generator, CY8C29/27/24/22/21xxx Data Sheet,
Cypress Semiconductors, September 21 2005.

[3] 8-bit and 16-bit Pulse Width Modulators, CY8C29/27/24/22/21xxx, CY7C6xxxx,
and CYWUSB Data Sheet, Cypress Semiconductors, October 3 2005.

[4] J. Ackenhusen, Real-Time Signal Processing: Design and Implementation of Signal
Processing Systems, Upper Saddle River, NJ: Prentice Hall, 1999.

[5] M. Chiodo et al., A case study in computer-added codesign of embedded controllers,
Journal of Design Automation of Embedded Systems, 1, (1), pp. 51-67, 1996.

[6] D. Comer, Computer Networks and Internets with Internet Applications, third
edition, Upper Saddle River, NJ: Prentice Hall, 2001.

[7] G. De Micheli, R. Ernst, W. Wolf, Readings in Hardware/Software Co-Design, San
Francisco: Morgan Kaufmann, 2002.

[8] P. Diniz, E. da Silva, S. Netto, Digital Signal Processing, Cambridge: Cambridge
University Press, 2002.

[9] R. Ernst, J. Henkel, and T. Benner, Hardware-software cosynthesis of
microcontrollers, IEEE Design & Test, 10, (4), December 1993, pp. 64-75.

[10] R. Gupta, G. De Micheli, A Cosynthesis Approach to Embedded System Design
Automation, Journal of Design Automation of Embedded Systems, 1, (1), pp. 69-
120, January 1996.

[11] A. A. Jerraya, J. Mermet, System-Level Synthesis, A. A. Jerraya, J. Mermet (edi-
tors), Boston: Kluwer Academic Publishers, 1999.

[12] O. Ozbek, Estimating PSoC Power Consumption, Application Note AN2216,
September 21 2004.

[13] M. Raaja, Binary to BCD Conversion, Application Note AN2112, Cypress
Semiconductors, February 12 2003.

[14] V. Sokil, Hardware Bitstream Sequence Recognizer, Application Note AN2326,
Cypress Semiconductors, December 8 2005.

206 BIBLIOGRAPHY

[15] D. Stranneby, Digital Signal Processing: DSP and Applications, Boston: Newnes,
2001.

[16] S. Sukittanon, S. Dame, 3-Channel Filterbank in PSoC, Application Note AN2315,
Cypress Semiconductors, September 26 2005.

[17] J. Valvano, Embedded Microcomputer Systems. Real Time Interfacing, third edition,
London: Thomson 2007.

[18] D. Van Ess, Measuring Frequency, Application Note AN2283, Cypress
Semiconductors, May 26 2005.

[19] W. Wolf et al. Hardware-Software Codesign: Principles and Practices, Boston:
Kluwer Academic Publishers, 1999.

[20] PSoC Express, Version 2.0, Cypress Semiconductor, 2006.

Chapter 5

Programmable Data
Communication Blocks

This chapter presents a design methodology for implementing performance-optimized
communication subsystems for embedded applications. Serial communication mod-
ules based on the SPI and UART standards are detailed, and their implementation
using PSoC’s programmable digital block is explained.

Communication channels are important for connecting multiple embedded systems, or a sys-
tem to its peripherals. A channel has high-level primitives for configuring the channel, send-
ing/receiving data on the channel, and managing the channel operation and properties.

This chapter defines the main characteristics of the channel implementation units (CIUs) that
can serve as abstract channels. To help devise a systematic methodology for mapping abstract
channels to predefined CIUs, CIUs are described as tuples with four components: the primitives,
the required hardware resources, their performance, and specific constraints. The tuple informa-
tion is used to identify the CIUs (from a predefined library) that are implementation alternatives
for an abstract channel. The design methodology presented results in optimized implementations
for the communication channels in an embedded application by: (i) selecting for each abstract
channel the set of feasible CIUs, (ii) finding the abstract channels that share the same CIU, and
(iii) building hardware/software implementations for the channels that cannot be mapped to the
existing CIUs. The last part of the chapter focuses on the SPI and UART communication mod-
ules, and their hardware–software implementation based on the programmable communication
blocks in PSoC. Several examples illustrate the use of the SPI and UART firmware routines for
communication.

This chapter has the following structure:

• Section 1 introduces the concept of abstract data channels.

• Section 2 defines CIUs and their main properties.

• Section 3 discusses the design methodology for implementing abstract channels by reusing
CIUs from a predefined library.

• Section 4 details PSoC’s SPI block.

• Section 5 presents PSoC’s UART modules.

A. Doboli, E.H. Currie, Introduction to Mixed-Signal, Embedded Design,
DOI 10.1007/978-1-4419-7446-4 5, c© Springer Science+Business Media, LLC 2011

208 Programmable Data Communication Blocks

Module M4

Module M1

Module M2

Module M1

channel CH1

(b)

CH1

CH2

CH3

CH4

(a)

Module M2

Module M3

Figure 5.1: Data communication between modules.

• Section 6 presents the chapter conclusions.

5.1 Abstract Communication Channels

Communication blocks (e.g., SPI [2, 3] and UART [4]) provide interfacing capability between
modules through serial, or parallel, bit transmission. Communication blocks are important not
only for interfacing the embedded system to other systems and to the external peripherals, but
also for connecting (integrating) the system’s modules. Before discussing the hardware–software
implementation of communication blocks in more detail, it is appropriate to consider some high-
level data communications concepts, for example abstract channels and their related high-level
primitives.

In a simple case, two systems, or modules, exchange data, such as characters, integers, floating
point numbers, structures, and so on, by calling a set of high-level primitives pertaining to the
abstract communication channels defined for the two communicating systems:

• Abstract data channel: An abstract data channel is established between each pair of com-
municating modules to transmit data of a certain type, such as characters, integers, long
integers, etc. The two modules can send and receive data on the channel. A module
can have multiple abstract channels for communication with several modules and for send-
ing/receiving different data types.

Even though this definition may seem restrictive, it simplifies the presentation of abstract
channels, and captures the main aspects of their design. A more general definition would
be a single channel for communicating data of different types between two modules, and
also single channels that support the broadcasting of data from one module to multiple
modules. The concepts presented for the restricted channel definitions can be extended to
the more general channel types.

Figure 5.1 illustrates several abstract channel examples. Note that each channel represents
a given module pair that only communicates a specific type of data on the channel. In
Figure 5.1(a), the modules M1 and M2 use the channel CH1 for communicating characters.
Figure 5.1(b) shows the modules M1 and M2 communicating through the channel CH1, the

5.1 Abstract Communication Channels 209

Communication primitives

Send

IsEmpty

NewTokenSent

IsOverrun

Receive

NewTokenReceived

Enable/disable

Interrupts

Configure

Figure 5.2: High-level data communication primitives.

modules M1 and M3 using the channel CH2, and modules M2 and M3 sending/receiving
data on the channel CH3.

• High-level primitives: The high-level primitives of a channel allow the two communicating
modules (i) to send and (ii) receive data on the channel, (iii) to verify whether the channel
is ready for sending or receiving data, and (iv) to manage the operation of the channel.
This set of primitives is summarized in Figure 5.2.

1. Send: This primitive sends a data value from one module to the other. In the non-
blocking send function, there is no confirmation signal returned from the receiving
module to the sending module to confirm the successful receipt of the data value. In
the blocking send function, the sender does not transmit another data value unless the
receiver confirms the receipt of the previous one.

Hence, for the nonblocking send function, data might be lost, if the sending module
transmits several data values before the receiver gets a chance to access (receive) the
data. On the positive side, there is less interaction (synchronization) between the two
modules as compared to that of the blocking send. This simplifies the design because
no acknowledgment signal must be generated by the transmitter for the sender, and
also increases the degree of concurrency between the two modules. Higher concurrency
results in shorter execution times for the communication modules due to the shorter
busy–waiting times of the modules.

2. NewValueSent: This function returns the logic value true, if the current data value
was transmitted, and the value false, otherwise.

3. IsEmpty: This primitive returns the logic value true, if the buffer used for sending
data are empty. If the physical data transmission is ongoing, or has not started, the
function returns the value false.

Note that the function is not the complement of the function NewValueSent if different
buffers are used to store/transmit data, as is the case for PSoC’s SPI and UART
modules.

4. Receive: This function receives a new data value transmitted on the specified channel.
If new data are available, then the function returns the new data value. Otherwise, it
returns a predefined value that signals that new data have not been received. This def-
inition corresponds to the nonblocking receive function because the module execution

210 Programmable Data Communication Blocks

can proceed if new data are not available. In contrast, the blocking receive function
suspends the module execution until the new data are received.

Compared to the blocking receive, the nonblocking receive function reduces the idle
waiting time of the receiving module, but can result in data loss if the module is not
sufficiently fast in retrieving the received data.

5. NewValueReceived: This routine returns the logic value true, if a new data value was
received by the module, and the value false, otherwise.

6. IsOverrun: This routine returns the logic value true, if the received data value was
overwritten by a new data value, before the receiving module accessed the data. Oth-
erwise, it returns the value false.

7. ConfigureCommunication: These routines configure the parameters of the transmission
process, including the starting and stopping conditions for communication on the
channel.

8. Enable/Disable Interrupts: These functions enable/disable the interrupts that signal
specific transmission conditions. For example, interrupts can be produced, if the
transmission of a data value was completed, or a new data value was received at the
input. Interrupts offer the necessary support to implement nonblocking send/receive
primitives, for example they indicate if a new data communication can be initiated
for a nonblocking send operation, or a new data value is available at the input for
nonblocking transmit primitives.

Example (Two communicating modules). This example presents the pseudocode for two commu-
nicating modules. Each module receives a data value from the other module, performs computa-
tions, and then communicates a data value to the other module. The intermodule communication
uses an abstract channels, and the related high-level primitives.

The functionality of the communicating modules M1 and M2 in Figure 5.1(a) can be expressed
as shown in Figure 5.3. First, the modules are configured for communication by using the Config-
ureCommunication routines. Then, the module continuously polls the function NewValueReceived
until a new data value is received on the channel. After accessing the data value by calling the
function Receive, the module performs its computations. Finally, it checks whether the trans-
mission buffer is empty and therefore available to send a new data value. The routines IsEmpty
and NewValueSent are utilized for this purpose. After the buffer becomes available and a new
data value transmission can be started, the data value is sent by calling the primitive Send . This
step completes one iteration. Then, the module proceeds with a new iteration, as shown in the
figure.

Although the communication procedure between the two modules is simple to describe and
implement, it has two main disadvantages. First, the modules might stay idle for long time
intervals during their polling steps before receiving and sending data. This results in a low
utilization rate of the modules, and longer execution times for the modules. The utilization rate
can be increased by replacing polling by nonblocking communication primitives and interrupt-
based implementation of the primitives.

Secondly, data loss can occur as a result of the difference in the execution speed of the two
modules. In this example, there is no data loss, even if one module is much slower than the other

5.1 Abstract Communication Channels 211

Poll until output

Start

Configure communication
channel

available

ready

not available

not ready

Poll until input data

is available

Read input data

Compute

unit ready

Send output data

Figure 5.3: Pseudocode of a communicating module.

module. This is because the module executions synchronize at the beginning, and end, of each
iteration. Synchronization is achieved at the polling steps. For example, if module M1 is faster
than module M2, at the beginning of each iteration, it must wait until module M2 completes its
current iteration, so that it can send the data value for module M1. However, for the case in which
module M1 only produces data for module M2, without receiving any data values from module
M2, data loss can result unless blocking send functions are used. Thus an acknowledgement
signal that is produced by module M2, and received by module M1 is required.

212 Programmable Data Communication Blocks

5.2 Channel Implementation Units

Channel implementation units are physical modules that implement the theoretical concepts of
abstract channels, and high-level communication, primitives. The implementation of abstract
channels must not only provide the high-level primitives listed in Figure 5.2, but also (i) deliver
the required performance, and (ii) meet any design constraints imposed by the physical implemen-
tation of the system, such as available hardware resources, number of existing I/O pins, existing
supply voltages and clock frequencies. The main performance attributes and design constraints
describing communication channel implementations are as follows:

• Performance metrics: These metrics are the performance characteristics of a data commu-
nication implementation, such as speed and energy/power consumption.

The communication bandwidth of a channel, also denoted as bit rate, or throughput, is
defined as [17]:

Bandwidth =
Number of information bits/frame

total number of bits/frame
× 1

bit time
(5.1)

The bit time is the time required to send/transmit one bit. The value 1/bit time is called
the baud rate [17]. Note that taking the bandwidth requirement into consideration during
the design process constrains both the characteristics of the implementation (e.g., the time
(speed) required to send or receive a bit) and the temporal overhead of the communication
protocol, such as overhead for the start and end frames, and parity bits. Increasing the
communication bandwidth relies mainly on improving the bit rate (and decreasing the bit
time) of the channel.

The communication bandwidth is the main element in finding the communication delay of
transmitting data from one module to another module.

• Design constraints: These constraints are introduced by the characteristics of the envi-
ronment and hardware circuits used in the implementation, and refer to three important
issues:

1. Global clock: The presence, or absence, of a global clock for the communicating mod-
ules determines whether these channels are synchronous, or asynchronous, respectively.
In synchronous communication, a global clock is used by both modules for data trans-
mission and reception. The global clock is either a dedicated resource, or an output
signal generated by one of the modules for use by other modules, such as in the SPI
protocol which is discussed in Subsection 5.4. In asynchronous communication, no
common clock is involved; instead the modules use specific control bits to signal the
starting/ending of a data communication, and transmit the data bits at precise inter-
vals of time. Examples of asynchronous protocols are the UART protocol presented
in Subsection 5.5, and the 1-wire protocol [9].

Asynchronous protocols have higher overhead due to the extra information that needs
to be sent between the modules and therefore lower bandwidths if more relaxed timing
intervals are used for transmitting one bit. However, they provide more flexibility in
as much as they do not require a global clock.

2. Number of physical links: The number of physical links available for data communi-
cation determines how many bits can be sent simultaneously between the modules.

5.2 Channel Implementation Units 213

Serial protocols transmit one–bit at a time, whereas parallel protocols send multiple
bits in parallel. Hence, the bandwidth of parallel protocols is higher, but at the ex-
pense of more physical interconnects and I/O pins. For SoCs with a small number of
pins this can be an important limitation.

Serial protocols are further distinguished as full-duplex, half-duplex, and simplex con-
nections [17]. In full-duplex, bits are transferred in both directions simultaneously,
that is from module M1 to module M2, and vice versa. Half-duplex communication
allows communication in both directions with the constraint that bits are transmitted
only in one direction at a time. Finally, simplex connections allow transmission in one
direction.

Although the transmitting bandwidths in a single direction might be similar for all
three cases, full-duplex supports execution overlapping of the primitives send and
receive. This improves the concurrency of the two communicating modules at the
expense of using one more physical link.

3. Noise level: For communication in noisy environments where data may be altered,
redundant bits are computed by the sender and sent along with the data so that
the receiver can determine if the received data are correct. In the simplest case, the
redundant information is a parity bit: for even parity, the parity bit is computed
such that the number of the transmitted bits 1 is even, and odd, if odd parity is
used. Other error-checking mechanisms include the cyclic redundancy check (CRC)
and checksum [17]. The penalty for maintaining the integrity of communication is
obviously the increase in communication overhead in terms of reducing the bandwidth
and the hardware required for error checking.

The goal of an abstract channel implementation is to find an optimized design that (i) provides
the communication primitives required by the application, (ii) can be built with the hardware
available and (iii) meets all performance requirements, and (iv) satisfies any other design (e.g.,
cost, size, number of used I/O pins, etc.). In many cases, the implementations utilize standard
specifications (e.g., SPI, UART, PCI, etc.) which allow easier interfacing to peripherals. The
available implementation modules are stored in a library, and reused as required. The intuitive
design approach is to identify, for each abstract channel, all library modules that can correctly
implement the channel, and then select the best solution from the chosen modules. The iden-
tification procedure verifies the matching of the properties of an abstract channel and of the
implementations in the library. The matching procedure requires a precise definition of the
properties of implementation modules.

By definition, the channel implementation unit (CIU) CIi provides (i) a set of high-level
communication primitives, (ii) requires a certain amount of hardware resources, (iii) is capable
of delivering a given performance, and (iv) must meet a set of design constraints, such as size,
number of I/O pins, external clocks, and supply voltages. Therefore, the channel implementation
unit can be expressed formally as the tuple:

CIi = < Primitivesi, HWresourcesi, P erformancei, Constraintsi > (5.2)

For example, the PSoC’s SPI module provides a set of high-level primitives for configuring the
module, verifying the status of a communication, data sending and receiving, and interrupt
enabling and disabling. These primitives, detailed in Subsection 5.4, form the set Primitives of the
module. The set HWresources includes all the hardware resources needed for the implementation
of the SPI module, for example one of the four PSoC programmable communication blocks and

214 Programmable Data Communication Blocks

interconnection wires. The constraint set includes three I/O pins and a 3.3V supply voltage.
The attribute Performance includes the communication speed of about 1 Mbits/sec. The above
definition is general and extensible to other attributes, such as the power consumption of the
module [11].

The channel implementation units available for embedded system design are part of a prede-
fined library, ChLibrary :

CHLibrary = {CI1, CI2, · · · , CIM} (5.3)

For example, for the PSoC architecture, Subsections 5.4 and 5.5 present two channel implemen-
tation units, for the SPI block and the UART block. Also, several other PSoC-based implemen-
tations are available in the technical literature, including the implementation of the 1-wire pro-
tocol [14], the design of a specialized 9-bit UART serial protocol [9], and various communication
circuits with coding and error correction [10, 13, 15, 16]. These CIUs form the library CHLibrary
available for developing PSoC-based, embedded system implementations. The space spanned by
the four elements of the CIi tuples is defined by the library CHLibrary , and is the union of the
corresponding parameters of the modules in the library.

5.3 Hardware–Software Implementation of Channels

Implementing the abstract channels in a system specification requires addressing the following
problems [6]:

1. Selecting the channel implementation units that are feasible for each abstract channel.

2. Finding the abstract channels that can share an implementation unit.

3. Developing the hardware–software implementation of each channel implementation unit.

In addition, the implementations must meet the performance requirements of each abstract chan-
nel (e.g., the communication delay, average and peak loads) and satisfy all the design constraints,
such as the number of required I/O pins, clock frequencies, and buffer memories, while minimizing
the total hardware cost of the solution.

Several design methodologies can be employed to address the design problem [6, 8]. Given
its effectiveness, a simplified version of the channel design methodology proposed by Daveau et
al. [6] is appropriate. The methodology has the following refinement steps:

1. Channel implementation unit allocation: The step selects the channel implementation units,
from the channel library CHLibrary that can be used for each of the abstract channels in
the specification. Hence, this step identifies the set of viable design solutions, because each
of the identified CIUs can potentially be used as the abstract channel.

Because abstract channels can be developed in different ways, this step identifies the CIU
candidates that (i) provide the necessary primitives for the abstract channels, (ii) deliver
the performance required by the application, (iii) use the available hardware resources, and
(iv) do not violate the design constraints.

2. Abstract channel mapping: This task identifies the abstract channels that share the same
CIU. This reduces the amount of hardware used in the design and the cost of the design.

5.3 Hardware–Software Implementation of Channels 215

It may also help meet the design constraints, for example if there are not enough physical
interconnects, or I/O pins, available to build multiple CIUs.

Handling channel implementation mapping is a complex task. It involves finding (i) the
scheduling (arbitration) scheme by which the single CIU services the multiple abstract
channels, (ii) inserting buffers for storing the data of an abstract channel that cannot be
immediately serviced by the CIU, and (iii) adding glue and control logic for multiplexing the
shared CIU. While addressing the three issues, the design process must estimate the perfor-
mance of the channel implementation, the amount of used hardware, and the satisfaction
of all design requirements.

3. Developing channel implementation units: In some design flows, this step might actually
precede channel allocation and mapping. The CIUs for different communication schemes
are designed and stored in the library, CHLibrary , for future use. However, it is possible
that a new CIU must be developed at the end of the channel allocation and mapping steps,
because none of the implementations in the library are actually feasible solutions. For
example, none of the CIUs can offer the needed communication bandwidth. In this case,
the software and the hardware for the needed CIU must be codesigned.

This activity also involves the developing of the data structures and routines that manage
the multiple abstract channels, and their channel implementation units.

Figure 5.4 illustrates the methodology for the first two steps. Sections 5.4 and 5.5 detail the
implementation of two channel implementation units for the PSoC architecture, the SPI and the
UART modules.

1. Channel implementation unit allocation. There are several possible channel implemen-
tations that can serve as the specific abstract channel AC j. The channel implementation CI i

is called a valid implementation of the channel AC j as long as (i) the primitives offered by the
implementation cover all the primitives of the abstract channel, (ii) the performance of the imple-
mentation is equal, or superior, to the performance required by the abstract channel, (iii) there
are sufficient hardware resources available for the implementation, and (iv) the design require-
ments of the implementation do not conflict with the design requirements of the other modules,
or the characteristics of the environment.

The four conditions are summarized formally as follows [6]:

APrimitivesj ⊆ Primitivesi (5.4)

APerformancej ≤ Performancei (5.5)

HWresourcesi ⊆ available hardware (5.6)

Constraintsi ∩ {∪k Constraintsk ∪ Environment} = ∅ (5.7)

The channel implementation allocation procedure considers all of the abstract channels, AC j,
in a system specification, and identifies all the channel implementations that are valid for the chan-
nel AC j by verifying conditions (5.4)-(5.6). The resulting set is denoted as the set ValidCI(ACj).
Note that conditions (5.4)-(5.6) depend only on the individual channel ACj and the currently
analyzed implementation CIi. Thus, the results for CIU allocation do not depend on the order
of analyzing the abstract channels in the specification.

2. Abstract channel mapping. The design task involves: (i) the initial channel mapping is
produced for all the abstract channels in the specification by mapping the channels to a dedicated

216 Programmable Data Communication Blocks

k

yes

no

no

no

no

yes

yes

yes

Save the allocated channel implementations if their total cost is lower

Performance requirements met?

Performance requirements met?

Save the allocated channel implementations and their total cost

Performance requirements met?

Performance requirements met?

For each AC select the feasible CI with the minimum HWresourcesj

Attempt possible mergings of channels CI and CI

Attempt possible mergings of channels CI and CI

m n

i i

ts

Modify the selection of AC to CI of higher costq

Figure 5.4: Successive refinement steps for communication design.

CIUs and (ii) an improvement step in which alternative mappings are created in the attempt to
lower the overall implementation cost by having multiple abstract channels sharing the same
CIU.

The initial implementation solution for the communication subsystem selects the feasible chan-
nel implementation CIi that uses the minimum amount of hardware resources HWresourcesi, and
thus the channel implementation with minimum hardware cost, for each abstract channel ACj .
In addition, it must not conflict with the constraints already imposed by the previously selected
CIUs (condition (5.7)). The bandwidth of the channel implementation must be sufficiently high
to accommodate the average and peak load requirements and the communication delay constraint
of the abstract channel. The communication delay estimation must also consider any overhead
introduced by the protocols and the hardware-software implementation of the channel, CI i.

In addition, all design constraints must be satisfied by the selected CIUs. This condition (5.7)
involves the constraints due to the other selected CIUs, and therefore introduces correlations
among the selected channel implementations. For example, selecting a very fast, but resource-

5.3 Hardware–Software Implementation of Channels 217

wise expensive, CIU constrains the nature of the CIUs that can be used for mapping the remaining
abstract channels within the resource constraints of the design. Therefore, the order of mapping
the abstract channels to CIUs is important.

Several strategies can be considered for building the initial mapping. The first strategy,
called “most constrained channels first, is to consider the abstract channels in the decreasing
order of their performance constraints, for example the abstract channels with high bandwidth
requirements, first. Each of the abstract channels is mapped to the lowest cost CIU that delivers
the needed performance.

The second strategy, called best bandwidth and cost ratio first, computes the following ratio:

RCIj
= max

{

Performancei

HWresourcesi

}

(5.8)

for each abstract channel CI j , where the maximum value is computed considering all the CIUi

that meet the performance requirement of the abstract channel. Then, the abstract channels are
mapped in the decreasing order of their RCIj

values.

The one-to-one mapping of the abstract channels to channel implementation can result in
violating the design constraints, e.g., the number of required I/O pins may be higher than the
number of available pins. Also, the solution may not represent the minimum hardware cost,
because the cost can be lowered by sharing one channel implementation for several abstract
channels.

To address the design constraint and hardware cost issues, the improvement step of the
methodology in Figure 5.4 attempts to map multiple abstract channels to the same channel im-
plementation. This is achieved by “merging” two distinct channel implementations CI m and CI n,
so that all the abstract implementations initially mapped to the two channels are now mapped
onto a single channel implementation. The merging step obviously reduces the hardware cost of
the channel implementation. However, the single channel may not offer enough bandwidth to
satisfy the communication load and delay requirements of all the mapped abstract channels. This
can be addressed by “switching”, the shared CIU, to a CIU of higher hardware cost but with
superior bandwidth. Repeated channel merging and switching steps are conducted and analyzed
until the implementation solution is satisfactory for the entire application.

Two channel implementation units CI m and CI n can be merged and replaced by one of the
two CIUs, for example CIU CI m, if the following conditions are met:

Primitivesn ⊆ Primitivesm (5.9)

Compose(APerformancem, APerformancen) ≤ Performancem req′d. (5.10)

Relationship (5.9) states that the channel CI m should have all the primitives of channel CI n.
The relationship (5.10) denotes that the channel implementation must be capable of meeting the
communication speed constraints of all the abstract channels APerformancem mapped to the
channel CI m and all the abstract channels APerformancen on the channel CIn. The opera-
tor Compose finds the resulting performance after merging the two channels. The performance
depends on the scheduling policies used for executing the channel primitives on the CIU. For
example, the round-robin policy treats all abstract channels identically, and in sequence, one

218 Programmable Data Communication Blocks

channel after another. A different approach is to assign a priority to the abstract channels, and
“execute” the high priority channel first.

Note that the conditions expressed by (5.6), about having sufficient hardware available,
and (5.7), on meeting the design constraints, were not mentioned in the above equation set
because they are implicitly satisfied in as much as channel CI m met the conditions when it was
selected. However, for applications where this is an invalid assumption, the two conditions would
have to be analyzed.

3. Developing channel implementation units. This step designs the hardware circuits and
develops the firmware routines for the CIU.

Because a CIU was previously defined as the tuple:

CIi = < Primitivesi, HWresourcesi, P erformancei, Constraintsi > (5.11)

this step implements the primitives Primitivesi as a mixture of hardware circuits and software rou-
tines to provide the performance Performancei. The hardware used is expressed as HWresourcesi.
Two case studies are shown for CIU implementations: Subsection 5.4 presents the PSoC-based,
hardware/software implementation of the block SPI, and Subsection 5.5 discusses the implemen-
tation of the UART block.

Figure 5.5 illustrates the data structures and routines that manage the data communication
on multiple abstract channels and CIUs. The data structures create the necessary associations
between the abstract channels and CIUs, high-level primitives of an abstract channel and the
CIU firmware.

This figure shows that the same set of firmware routines can handle identical CIUs, such as the
X channel type. Multiple identical CIUs are used if the channel allocation and mapping confirm
that similar abstract channels ought to be mapped to distinct CIUs to meet the bandwidth
requirement of the application. A different set of firmware routines handle CIUs of different
types, such as the Y channel type. The management subsystem uses two tables:

1. Symbolic channel names table: This table links the symbolic names of the abstract channels,
for example channel CH1, to the physical addresses of the corresponding CIUs, such as the
addresses of the hardware control registers, associated RAM/ROM blocks, associated pins,
clocks, and so on. The information in this table is chosen after executing the channel
allocation and mapping steps.

2. Firmware routine pointers table: The entries in this table point to the firmware routines
that are needed to implement the high-level primitives of an abstract channel. The firmware
routine is selected based on the nature of the high-level primitive and the identity (type)
of the actual CIU, which is indicated by the corresponding entry in the symbolic channel
names table.

This figure exemplifies the calling of the primitive send using the abstract channel CH1
to transmit the data value A. The figure assumes that the abstract channel uses the CIU of
type X that relies on the hardware block 1 for its physical implementation. This mapping of
the abstract channel CH1 was determined in the channel allocation and mapping steps shown
in Figure 5.4. The high-level primitive send maps the channel identifier CH1 to the physical
addresses corresponding to the CIU, such as the data and control registers of the hardware
block 1. Also, the addresses of the firmware routines of the CIU needed for the primitive send

5.4 Channel Implementation Unit: SPI Block 219

High−level primitives

symbolic name

symbolic name

.....

symbolic name

pointer to firmware routines

pointer to firmware routines

pointer to firmware routines

.....

Routine Routine Routine.....

Hardware circuits
Hardware circuits Hardware circuits

Firmware routines

&

physical addresses

Firmware routines

&

physical addresses

send (channel CH1, token A)

.....

Channel type X

parameters
set

Block 1

get values &

interrupts

Block m
Block 1

parameters
set get values &

interrupts

Channel type Y

Figure 5.5: Handling abstract channels and channel implementation units.

are identified using the firmware routine pointers table. Then, the firmware routines are called
using the physical addresses of the CIU to configure, start, and stop the communication on the
channel, and also transmit the data value, A, to the hardware block 1 that actually sends the
bits of the data value.

5.4 Channel Implementation Unit: SPI Block

The hardware/software implementation of the serial peripheral interface (SPI) block [1, 2, 3]
is based on the SPI protocol that implements a full-duplex, synchronous, serial transmission
between two blocks. One of the blocks is configured as the SPI master (SPIM) and the other
block as the SPI slave (SPIS).

Full-duplex, serial communication occurs as follows: the SPIM transmits serial bits to the
SPIS, while, simultaneously, the SPIS sends serial bits to the SPIM. In addition to bi-directional
data transfer, the SPI protocol uses two additional signals generated by the SPIM for the slave
block: the clock SCLK and the select signal SS . Figure 5.6 illustrates the SPI protocol signals.
(The hardware circuits for the SPI blocks are discussed in Subsection 5.4.1, and the software
routines are presented in Subsection 5.4.2.)

220 Programmable Data Communication Blocks

SPIS

MISO(DATA) MOSI(PO)

CLK SCLK(AO)

SS

MOSI(PO)

SCLK

MISO(DATA)

SPIM

Figure 5.6: PSoC SPI blocks [1].

receive

Pin port

register

SCLK

SS

MOSI

CLK polarity

LSB first

Enable

CLK phase
SPI Done TX reg fullRX reg empty

transmit

MISO

clock

Rx buffer

16:1

1:4

1:4

Control/Status register
Interrupt

requestInt enable

SPI done

16:1

Tx buffershift register

Figure 5.7: PSoC SPIM dataflow [2].

5.4.1 Hardware Circuit

Figure 5.7 illustrates the dataflow of the master module (SPIM), Figure 5.8 shows the dataflow
of the slave (SPIS), and Figure 5.9 presents the functioning of the SPI hardware using PSoC’s
programmable digital communication blocks [1, 2, 3]. The related control/status register and
data registers are also shown in these figures.

A PSoC programmable digital communication block is configured as an SPI module (SPIM
or SPIS) by setting bits 2-0 (called the “bits Function”) of the FN register to the value 110. The
physical addresses of the FN registers are listed in Tables 4.4 and 4.5. If bit 3 of the same register
is set to 0, then the module is a SPIM, and if the bit is set to 1, then the module is a SPIS.

The operation of the blocks SPI is shown in Figure 5.9, and is as follows:

• Clocks: The circuit uses an internal clock INT CLK with a period twice as long as the
period of the input clock CLK (the input clock is presented in Figures 5.6, 5.7, and 5.8):

TINT CLK = 2 TCLK (5.12)

The internal clock is also used by the SPIM to generate the clock, SCLK , that is used for
operation by the SPIS, as shown in the Figures 5.6–5.8. The clock SCLK corresponds to
the auxiliary output (AO) of the PSoC digital communication block. The clock SCLK is

5.4 Channel Implementation Unit: SPI Block 221

receive

SPI Done

MISO

CLK polarity

LSB first

Enable

CLK phase
lluf ger XTytpme ger XR

transmit

shift register

16:1

SS

SCLK

MOSI

4:1

Tx bufferRx buffer

1:4

Control/Status register
Interrupt

requestInt enable

SPI done

16:1

Figure 5.8: PSoC SPIS dataflow [3].

produced after the circuit SPIM is enabled, and stops when the circuit is disabled. The
clock can be programmed to be idle on 0 (noninverted clock), or on 1 (inverted clock).
Non-inverting is programmed by setting the bit 1 (bit Clock Polarity) of the control/status
register CR0 to 0, and for inverting to 1.

• Serial transmission and reception: Circuit functioning for data transmission and reception
is summarized in Figure 5.9. The following registers and flags are involved in the commu-
nication process.

The SPIM and SPIS modules use the DR0, DR1, and DR2 data registers of the PSoC’s
programmable digital communication blocks for serial transmission: the DR1 register is the
transmit register (TX), the DR2 register is the receive register (RX), and the DR0 register
is the shift register (SR) as shown in Figures 5.7 and 5.8. The physical addresses of the
registers are given in Tables 4.2 and 4.3.

The following fields of the CR0 register define the status (flags) of the SPIM or SPIS
blocks [1].

1. RX Reg Full: The bit 3 (RX Reg Full bit) is 0, if the register RX is empty, and 1, if
a new byte was loaded into the register RX. The bit is reset after reading from the
register RX of the corresponding block SPI.

2. TX REG EMPTY: Bit 4 (TX REG EMPTY bit) of the CR0 register is 0, if there is
a byte buffered in the TX register. If data are loaded into the TX register, the bit is
cleared.

3. SPI Complete: Bit 5 (bit SPI Complete) is set to 1, if the byte was shifted out. If the
serial transmission is ongoing, or if no transmission is active, the bit is 0. The bit is
reset after reading the CR0 register.

4. Overrun: Bit 6 (bit Overrun) indicates overrun status of the RX register has occurred.
If the bit is 0 then there was no overrun, and if the bit is 1, an overrun and hence,
data loss has occurred. The bit is reset after reading the CR0 register.

The functioning of the blocks SPI is discussed next. The operation is illustrated in Fig-
ure 5.9. The corresponding signal waveforms are shown in Figure 5.10.

222 Programmable Data Communication Blocks

1 bit

shift register = TX

Initial
state

transmission?
ongoing

RX REG Full = ’1’

RX = shift register

I
N
T
_
C
L
KTX Reg Empty = ’1’

load byte to
register TX

Initial
state

TX Reg Empty = ’0’

INT_CLK

Receive bit serially

INT_CLK

TX Reg Empty = ’0’

yes

FSM for TX loading: FSM for sending byte:

no AND

INT_CLK

INT_CLK

INT_CLK

I
N
T
_
C
L
K

A
N
D

7
x

Shift register by
1 bit & transmit

Figure 5.9: SPI circuit operation.

latched into RX

... D7D6 0D7D

SR=TX

received
first bit

shift
first bit

SR=TXshift
last bit

si XTsi XT
loadedloaded

INT_CLK

CLK

MOSI

RX REG FULL

SCLK

TX REG EMPTY

Figure 5.10: Timing diagrams of the SPIM circuit [1].

5.4 Channel Implementation Unit: SPI Block 223

The SPIM and SPIS blocks are enabled by setting bit 0 (Enable) of the circuit’s CR0
register to 1. The circuit is not enabled, if the bit is 0. The circuit moves to the initial
state.

To initiate a serial transmission, a byte is loaded into the SPIM block’s TX register, if a
transmission is not already in progress. Once the data are loaded into the register, the TX
REG EMPTY bit is cleared, as shown in the Figure 5.10.

The rising/falling edges of the clock, INT CLK , are used to simultaneously store one input
bit, and shift out one output bit. For example, storing (latching) of input bits can be
programmed to occur on the rising/falling edge of the clock, and the shifting out of bits to
occur on the falling/rising edge. This mode is called 0, if the clock polarity is noninverting,
and Mode 1 for an inverting clock polarity [2, 3]. If bit 2 (Clock Phase bit) of the CR0
register is set to 0, then latching occurs on the rising edge, otherwise, it occurs the falling
edge. If the clock polarity is noninverting this mode of operation is called Mode 3, and if
the polarity is inverting then it is denoted as Mode 4 [2, 3]. The figures shown are all for
Mode 0.

If no transmission is in progress then the value of the TX register is copied into the shift
register (SR). Then, if the Clock Phase bit is set to 0, on the following falling edge of the
clock, the first bit is shifted in, and on the next rising edge, the first bit is shifted out. After
receiving and shifting out eight data bits, the RX REG FULL bits and TX REG EMPTY
are asserted on the falling and, respectively on the rising edge of the clock, as shown in the
timing diagram in Figure 5.10. Once the eighth bit has been received, the content of the
shift register is copied into the register RX register. If the content of the RX register has
not already moved then it is lost, which asserts the OVERRUN bit half a cycle before the
last bit is received.

The clock signal SCLK is generated by SPIM for SPIS. In Mode 0, the rising edge of the
clock SCLK is used by SPIS to store the input bits, and the falling edge for shifting out
the output bits, which are then latched by SPIM. This defines the setup time of the input
shift register to be one half of the period of the INT CLK clock:

tsetup = 0.5 TINT CLK (5.13)

The functioning is similar for other modes selected by the corresponding settings of the
Clock Phase and Clock Polarity bits.

The SPIM and SPIS blocks can be configured so that they start the serial transmission with
either the most significant bit, or the least significant bit. This is achieved by programming
the bit 7 (LSB First bit) of the CR0 register. If the bit is 0, then the most significant bit
is shifted out first, otherwise the serial transmission starts with the least significant bit.

• Interrupts: If enabled, interrupts are produced for two conditions: (1) interrupts are gen-
erated when the register TX becomes empty, by default, and (2) when the SPI Complete
signal is produced. The first interrupt type can be used to signal that the buffer TX is
available for transmitting a new byte. The second interrupt indicates that a new byte
was received, and is available in the buffer RX. The two interrupt signals are depicted in
Figures 5.7 and 5.8.

The two interrupts are selected by setting bit 4 (Interrupt Type bit) of the corresponding
FN register. If the bit is set to 0, then an interrupt occurs on TX REG EMPTY , and if
the bit is set to 1 then an interrupt occurs on SPI Complete.

224 Programmable Data Communication Blocks

• Slave Select: The input signal Slave Select (SS) must be enabled, in addition to setting the
bit Enable, for starting the operation of an SPIS module.

The input SS can be controlled by a signal generated by a dedicated block, an I/O pin, or by
firmware, but not by the related SPIM block, because SPIM does not have an output for this
purpose. The control of the SS signal is programmed by bit 5 (AUXEN) of the DCBxxOU
register for PSoC’s digital communication block. If the bit is 1, then the signal SS is active,
and the software-controlled slave selection occurs. In addition to this bit, Bits 4-3 (AUX
IO Select) of the register DCBxxOU must be set to the value 00. If Bit AUXEN is set to
0, then the signal SS is defined by hardware, as selected by the bits AUX IO Select : row
input 0 for the bits 00, row input 1 for the bits 01, row input 2 for the bits 10, and row
input 3 for the bits 11.

Depending on the mode set for the SPIS, the signal SS must be handled in different ways,
so that the setup timing requirement expressed by Equation (5.13) is met. This guarantees
the correct functioning of the SPIS. For modes 0 and 1, the signal SS must be disabled
after the communication of a byte, and then re-enabled at least Tsetup before the next byte
is communicated. This guarantees the correct reception of the first bit, which is latched on
the rising clock edge for the two modes. For modes 2 and 3, the latching is on the falling
edge, and therefore the setup timing constraint is automatically satisfied without having to
disable and re-enable the signal SS.

The operation of a SPIS is similar to that of a SPIM with the difference that the register
TX must be loaded before the falling edge of the input SS.

Example (Performance tradeoffs for the SPI communication). The example analyzes the timing
overhead involved in the communication through the block SPI, if the control of the slave SPIS
is accomplished by software or by a dedicated hardware circuit.

Figure 5.11 illustrates the first case, in which the signal SS is activated and deactivated by
setting the corresponding bits of the register DCBxxOU of the related PSoC communication
block. Figure 5.11(a) shows the transmission of the first byte by the SPIM. Five clock cycles at
24 MHz are needed to load the byte in the register TX of the block SPIM, and then nine clock
cycles at 12 MHz are needed to transmit serially the byte. Thus, about 1 (0.95) µsec are required
to transmit the first byte. This provides a bit rate of about 1 (1.05) Mbits/sec.

Figure 5.11(b) presents the timing overhead, if several bytes are communicated using blocks
SPI programmed in modes 0 or 1, and software for activating and deactivating the signal SS of
the SPIS. Ten clock cycles at 24 MHz are needed to activate the signal SS for the slave. The
loading of the register TX with a new bytes is in parallel with the serial transmission of the
previous byte. Finally, the signal SS is deactivated in ten clock cycles at 24 MHz. Thus, the
total timing requirement is about 1.57 µsec, and the bit rate is about 0.63 Mbits/sec.

Finally, Figure 5.12 shows the timing overhead if several bytes are communicated, and a
dedicated hardware circuit is used to produce the SS signal for the SPIS block. In this case, the
total time to transmit one byte is approximately 1.00 µsec to send one byte, or 0.92 Mbits/sec.
This is an improvement of about 46% in communication time (speed) at the expense of using an
additional PSoC digital block to generate the SS signal. This overhead can be further reduced,
if the instruction, MOV, for loading the received data into the RX register is executed in parallel

5.4 Channel Implementation Unit: SPI Block 225

1.57

0

1

2

3

4

5

6

7

SR <− TX

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

µ sec

µ sec

µ sec

µ sec

µ sec

MOV REG[TX], 10H

)b()a(

SS active

SS deactivated

SIPSMIPS

M
O

V
 R

E
G

[T
X

],
..
.

M
O

V
 A

,
R

E
G

[R
X

]

OR REG[DCBxxOU],...

SR <− TX
0.20

0.95

transmission
serial

M
O

V
 R

E
G

[T
X

],
..
.

O
R

 R
E

G
[D

C
B

x
x
O

U
],

..
.

0.41

transmission
serial

1.16

Figure 5.11: SPI communication.

0.83

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

SR <− TX

µ sec

µ sec

SS active

SS deactivated

SIPSMIPS

MOV REG[TX],...

MOV A, REG[RX]

MOV REG[TX],...

1.08

Figure 5.12: Improved SPI communication.

226 Programmable Data Communication Blocks

ret

void SPIM_Start (BYTE bConfiguration); mov A, SPIM_MODE_2 | SPIM_LSB_FIRST

call SPIM_Start

...

void SPIM_Stop (void); call SPIM_Stop
...

or A, bfCONTROL_REG_START_BIT

SPIM_Start:

mov REG[SPIM_CR_0], A

ret

SPIM_Stop:

and REG[SPIM_CR_0],

~bfCONTROL_REG_START_BIT

Figure 5.13: SPIM start and stop routines [2]. Courtesy of Cypress Semiconductor Corporation.

with the reception of the next data byte, similar to the instruction that loads the TX register.
In this case, the time required to send one byte is approximately 0.83 µsec, and the bit rate is
≈ 1.20 Mbits/sec. This is an improvement of ≈ 91% of the communication time, as compared
to the case shown in Figure 5.11(b).

The software routines for programming the blocks SPI are discussed next.

5.4.2 Software Routines

The software routines for the SPI (SPIM and SPIS) modules are for: (1) starting/stopping
the SPI circuits, (2) sending/receiving data, (3) reading the status of the module, and (4) en-
abling/disabling its interrupts. These routines correspond to the set of high-level primitives
shown in Figure 5.2. The related software routines are [2]:

1. Starting/stopping the SPI module: Two routines are available for this functionality:

• SPIM Start (SPIS Start): This routine configures the SPIM (SPIS) module for the de-
sired operation mode, and then enables the circuit. The operation mode can be chosen
(1) as one of the four modes of the circuits SPI (using the constants SPIM MODE 0 ,
SPIM MODE 1, SPIM MODE 2, and SPIM MODE 3 for the SPIM blocks, and the
SPIS MODE 0, SPIS MODE 1, SPIS MODE 2, and SPIS MODE 3 constants for
the SPIS blocks), and (2) either sending the least significant bit first (by specify-
ing constant SPIM LSB FIRST), or the most significant bit first (by the constant
SPIM MSB FIRST) of the byte to be sent. The prototype of the function is shown
in Figure 5.13. Similar prototypes exist for the functions SPIS Start [3].

For assembly programming, the low level routine, SPIM Start, sets the control CR0
register of the PSoC programmable block implementing the SPIM module. The desired
mode is passed through register A, as shown in Figure 5.13.

• SPIM Stop (SPIS Stop): This function disables the corresponding SPIM (SPIS) mod-
ule by resetting the Enable bit of the corresponding programmable block’s CR0 reg-

5.4 Channel Implementation Unit: SPI Block 227

ret

mov A, bSIMData

call SPIM_SendTxData
...

SPIM_SendTxData:

mov REG[SPIM_RX], A

ret

BYTE SPIM_bReadRxData (void); call SPIM_bReadRxData

mov bRxData, A
...

SPIM_bReadRxData:

mov A, REG[SPIM_RX]

void SPIM_SendTxData (BYTE bSPIMData);

Figure 5.14: SPIM send and receive routines [2]. Courtesy of Cypress Semiconductor Corpora-
tion.

ret

BYTE SPIM_bReadStatus (void); call SPIM_bReadStatus

and A, SPIM_DONE
...

SPIM_bReadStatus:

mov A, REG[SPIM_CR0]

Figure 5.15: SPIM read status function [2]. Courtesy of Cypress Semiconductor Corporation.

ister. The prototype for this function and its Assembly language implementation are
shown in Figure 5.13.

2. Sending/Receiving data: The related software routines are as follows.

• SPIM SendTxData (SPIS SendTxData) : This routine sends one byte from the SPIM
(SPIS) to the slave (master) device. The function has one parameter, which is the byte
to be transmitted, and does not return any value [2]. The prototype of the function
is shown in Figure 5.14.

This low-level routine, also shown in Figure 5.14, actually loads the byte into the TX
register of the SPIM (SPIS) module. The data for this routine are passed through the
register A, as shown in Figure 5.14.

• SPIM bReadRxData (SPIS bReadRxData): This low-level routine reads a byte sent by
the slave (master) module for the master (slave), and returns the value to the caller.
The prototype of the function is given in Figure 5.14.

This routine places the byte received from the slave module into the A register. Fig-
ure 5.14 shows this process. The low-level routine reads the value in the RX register
of the circuit SPIM (SPIS).

228 Programmable Data Communication Blocks

while (!(SPIM_bReadStatus() & SPIM_TX_BUFFER_EMPTY));

char Message[] = "Hello world!";

char *pStr = Message;

void main() {

SPIM_Start (SPIM_MODE_0 | SPIM_MSB_FIRST);

while (*pStr != 0) {

SPIM_SendTxData (*pStr);

pStr++;

}
}

#include "PSoCAPI.h"

Figure 5.16: Program using the SPIM -related routines [2]. Courtesy of Cypress Semiconductor
Corporation.

3. Reading the status of the module: The status of the blocks SPI can be accessed by using
the following function:

• SPIM bReadStatus (SPIS bReadStatus) : As shown by the function prototype in Fig-
ure 5.15, this routine returns one byte, which is the content of the control/status
register, CR0, of the corresponding PSoC block. The assembly-level routine for ac-
cessing the status information is also illustrated in the figure.

To access the individual status flags, a bitwise-AND instruction must use the returned
value and the following masks as operands: (i) mask 0x20 to access the flag SPI
Complete, (ii) mask 0x40 for the flag Overrun, (iii) mask 0x10 for the flag TX REG
EMPTY , and (iv) mask 0x08 for the flag RX REG FULL.

4. Enabling/disabling interrupts: There are two routines for this functionality.

• SPIM EnableInt (SPIS EnableInt): This routine enables the SPIM (SPIS) interrupt
on the SPI Complete condition. The function does not have any parameters, and does
not return a value.

• SPIM DisableInt (SPIS DisableInt): This function disables the SPIM (SPIS) module’s
interrupt.

5. Enabling/disabling the Select signal of SPIS: The two functions are as follows.

• SPIS EnableSS : The related block SPIS is enabled provided that the SS input of the
block is controlled by software. This routine does not have any parameters, and does
not return a value.

• SPIS DisableSS : This function disables the input SS of the PSoC communication block
used for the SPIS, if the input is controlled by software. The routine does not have
any parameters, and does not return a value.

Example (SPIM communication). This example presents a C program that transmits the charac-
ters of a character string using the high-level primitives of the block SPIM [2]. The code is shown

5.5 Channel Implementation Unit: UART Block 229

while (!(SPIS_bReadStatus() & SPIS_SPI_COMPLETE)) ;

void main() {

BYTE bData;

while (1) {

bData = SPIS_bReadRxData ();

...

SPIS_SetupTxData (bData);

}
}

SPIS_Start (SPIS_MODE_0 | SPIS_MSB_FIRST);

#include "PSoCAPI.h"

Figure 5.17: Program using the SPIS related routines [2]. Courtesy of Cypress Semiconductor
Corporation.

in Figure 5.16. The character string is stored by the variable Message, and the pointer pStr is used
to traverse the characters in the string. The hardware circuit of the block SPIM is configured and
enabled using the SPIM Start routine (Mode 0 is used for the serial transmission, and the most
significant bit of a byte is sent out first). The variable pStr traverses each of the string characters
until reaching the character ‘\0’ that signals the end of the string. For each character, the pro-
gram first waits until the TX register of the SPIM is empty. The TX REG EMPTY flag signals,
if the buffer is empty: the value returned by the function SPIM bReadStatus is bitwise AND-ed
with the mask 0x10 (constant SPIM TX REG EMPTY). After the TX buffer becomes empty,
the character pointed to by the variable pStr is transmitted by calling the SPIM SendTxData
routine. Then, the variable pStr is incremented to point to the next character, and the loop
repeats until the character ‘\0’ is reached and the program ends.

Example (SPIS communication): This second example discusses a C program for receiving bytes
by using the SPIS module. The program illustrates the use of the high-level primitives related to
the SPIS block. The initial instruction configures the block by calling the SPIS Start routine.
Then, inside the infinite loop, the code waits until the next byte has been “completely” received by
polling the SPI Complete flag. The byte is retrieved by calling the SPIS bReadRxData function,
and stored in the variable, bData. The SPIS SetupTxData function is called to transmit a byte
to the SPI master module.

5.5 Channel Implementation Unit: UART Block

The universal asynchronous receiver transmitter block (UART) is an 8-bit, duplex, RS-232 com-
pliant, serial communication block [1, 4]. The transmitted frames are 11-bits long, if the optional
parity bit is included, or 10-bits long, if no parity bit is transmitted. The structure of the frame

230 Programmable Data Communication Blocks

Int enable

Tx Control/Status register

Tx buffer TX shift register

RX shift register

RX Control/status register

RX buffer14:1

16:1 1:14

RX input

TX output

Enable

RX active

Parity error

Framing error

Overrun

TX completeEnable

TX data

RX data

RX interrupt

request

TX interrupt
request

Int enable

RX register full

TX Buffer empty

clock

Figure 5.18: Block structure of the block UART [4].

is the following: a start bit is followed by eight data bits, an optional parity bit, and finally the
stop bit.

The implementation of the UART block includes both hardware circuits and software routines.
The hardware circuits implement the UART functionality by using two PSoC programmable
communication blocks [1]. Bits 2-0 of the block’s FN register must be set to 101. In addition,
bit 3 must be set to 0, for the PSoC programmable block to operate as a receiver, and to 1 as a
transmitter. The physical addresses of the FN registers are shown in Table 4.4. In addition, the
circuits can be programmed to select clock frequency, and the UART’s interrupt conditions.

The software routines offer a high-level interface to initialize the circuit, enable its operation,
set its communication parameters, and send/receive a data byte.

5.5.1 UART Hardware Circuit

The hardware includes circuits for the transmit block and the receive block each of which is
capable of operating independently.

A. Transmit block

This circuit uses two data registers and one control register: the transmit (TX) register uses the
DR1 register of the programmable communication blocks, the DR0 register as the shift register,
and the CR0 register as the control register. The physical addresses of the data registers are in
Tables 4.2 and 4.3, and the addresses of the control registers are given in Tables 4.4 and 4.5. The
structure of the block is shown in Figure 5.18.

The operation of the transmit block is illustrated in Figure 5.19. The operation is controlled
by the internal clock, INT CLK , which is obtained by dividing the UART’s external clock, CLK,
by eight, that is the frequency of the clock, CLK, has to be eight times larger than the desired

5.5 Channel Implementation Unit: UART Block 231

load shift

register

TX Reg Empty=’1’

generate

START bit

shift out

1 bit

Generate PARITY bit?

generate

PARITY bit

TX is loaded

INT_CLK

INT_CLK

INT_CLK

no

INT_CLK

INT_CLK

yes AND

INT_CLK

INT_CLK
AND

7x

load register TX

idle state
PO=’1’

generate

STOP bit
set

TXComplete=’1’

load register TX

initial state

enable

TX Reg Empty=’0’

Figure 5.19: UART receiver operation [4].

232 Programmable Data Communication Blocks

PARITYTX Reg empty

INT_CLK

TX complete

TX out
START bit 2 bit 3 bit 4 bit 5 bit 6bit 0 bit 1 bit 7 STOP START

Figure 5.20: Waveforms for the UART transmit operation [4].

baud rate. If no data are available in the TX register, or if the block is not enabled, then the
block output is set to the value 1. The block is enabled by setting the Enable bit (bit 0) of
the CR0 register to the value 1.

After enabling the block, the data are loaded into the register TX, on the positive edge of the
internal clock, INT CLK. This immediately resets the TX REG EMPTY bit, indicating that
the register is no longer empty. The TX REG EMPTY bit is implemented as bit 4 of the CR0
register. Thus, a new byte can be loaded into the TX register only after the TX REG BIT bit
is set to 1 again. After one clock cycle, the data in the TX register are loaded into the shift
register and the START bit is generated at the output of the block. Loading the shift register
resets the TX REG EMPTY bit, and therefore the TX register can be loaded with a new byte.
After generating the start bit, one data bit is sent out serially on the next eight rising edges of
the clock, INT CLK. Then, if the parity option was selected, the parity bit is transmitted on
the next rising edge, followed by the STOP bit, after one clock cycle. Then, the transmission
process continues for the next data byte. The TX Complete bit (bit 5) of the CR0 register signals
whether the transmission process is ongoing, or finished. If this bit is 0 then bits are still being
shifted out, and if it is 1, then the current byte has been transmitted. This bit is cleared if the
CR0 register is read.

Generation of the parity bit is controlled by the Parity Enable bit (bit 1) of the CR0 register.
If this bit is set to 1 then the parity bit is generated. The parity type is determined by the Parity
Type bit (bit 2) of the CR0 register. If the bit is 0 then even parity is used, otherwise odd parity
bit is generated.

The transmitter block can be programmed to generate two kind of interrupts: (i) on the
generation of the signal TX REG EMPTY , and (ii) on the generation of the TX Complete signal
which are selected by bit 4 of the FN register. If this bit is set to the value 0, then an interrupt is
generated on setting the TX REG EMPTY signal, otherwise an interrupt is produced on setting
the TX Complete signal. The timing diagram for the transmit operation is shown in Figure 5.20.

B. Receive Block

The UART receiver block receives 11 (10)-bit packets serially, the first bit being the START bit,
followed by eight data bits, one optional PARITY bit, and the STOP bit.

• Reception is initiated asynchronously by receiving the START bit at the input (the bit is
encoded as 0).

• Then, each input bit is received at a rate equal to the baud rate.

• The PARITY bit can be programmed for checking for even, or odd, parity. For even parity
there must be an even number of 1 bits in each of the 11 (10)-bit packets received, and for
odd parity, there must be an odd number of 1 bits in each packet.

5.5 Channel Implementation Unit: UART Block 233

IN
T

_
C

L
K

start INT_CLK

receive

1 bit in ff

RX Active=’1’

RX Active=’0’

INT_CLK

no AND

set Overrun bit to ’0’ or ’1’

RX reg full=’1’

set Framing error bit to ’0’ or ’1’

set Parity error bit to ’0’ or ’1’

STOP bit

receive

load shift register

into register RX

load bit in ff

into the shift register

PARITY bit generated?

PARITY bit

receive

INT_CLK

INT_CLK
AND

7x

START bit received

INT_CLK

AND
INT_CLK

yes

START bit received

initial state

enable

idle state

PO=’1’
PO=RX input

Figure 5.21: UART receiver operation [4].

234 Programmable Data Communication Blocks

• The receiving of the STOP bit (encoded as the bit 1) signals the end of the packet. This
sets the status flags, makes the received data available in the RX register, and resets the
receiver block back to the state in which it is ready to receive a new packet.

• The status flags of the receiver block indicate (1) that the reception is active (RX Active
flag), or (2) that a new byte was received (RX Reg full flag), and whether the reception was
correct. In addition, these flags can also indicate that (3) there was a framing error (Fram-
ing error flag), (4) a parity error (Parity error bit) has occurred, or (5) an overrun situation
occurred (bit Overrun).

• The UART receiver block can generate an interrupt upon receiving a new data byte.

The dataflow of the receiver block is shown in Figure 5.18, and its functionality is summarized
in Figure 5.21. In the idle state (before enabling the receiver block) the primary output (PO) of
the UART receiver block is equal to the receiver (RX input), and the auxiliary output (AO) has
the value 1.

After being enabled, the receiver operation enters the initial state until the start bit is received
at the RX input. This enables the internal clock, INT CLK, with a frequency eight times lower
than the input clock frequency provided to the receiver block. The RX Active flag is set to the
value 1, indicating that data are being received. The next eight bits received represent the data
byte: on the rising edge of the clock, INT CLK, each bit is first stored in the input flip flop,
and then into the shift register. After receiving the optional PARITY bit, on the next clock
cycle, INT CLK, the RX Active flag is reset, indicating that the transmission has ended. Then,
the next bit received is the STOP bit. The received data byte is transferred from the shift register
to the RX register and the following flags are set: (i) the RX register full bit is set to the value
1 to indicate that a new byte was received, (ii) the Framing error bit is set to the value 1, if the
STOP bit was 0 (otherwise the flag is set to 0), and (iii) the Parity error bit is set to 1, if a parity
error was detected. Finally, the Overrun flag is set to 1, if the RX register was loaded with a
new byte, before the previous byte was read from the RX register. If interrupts were enabled,
an interrupt is produced upon the RX register full flag being set to 1. Figure 5.22 shows the
waveforms for the UART receiver block.

5.5.2 Software Routines

The software routines for the UART block provide the following functions [4]: (1) starting/stopping
the block, (2) sending/receiving data, (3) reading the status of the UART receiver and transmitter
subblocks, and (4) enabling/disabling the interrupts of the UART Block:

1. Starting/stopping the UART block: The following two functions implement the related
functionality:

• UART Start : This routine configures and enables the related UART block and has
one input parameter that encodes the parity type to be used by the module. The con-
stant 0x00 (UART PARITY NONE) disables the generation of the parity bit, 0x02
(UART PARITY EVEN) defines even parity for the block, and 0x06
(UART PARITY ODD) sets odd parity. The prototype of this function is shown
in Figure 5.23.

• UART Stop: This function disables the related module and does not have any pa-
rameters, and does not return a value. The prototype of this function is shown in
Figure 5.23.

5.5 Channel Implementation Unit: UART Block 235

Overrun

bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7

bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7START

RX out

PARITY STOP

RX input

INT_CLK

START
STOP

PARITY

RX Reg full

Parity error

Framing error

RX Active

Figure 5.22: Waveforms for the UART receiver operation [4].

Figure 5.23: UART related functions [4]. Courtesy of Cypress Semiconductor Corporation.

2. Sending/receiving data: The corresponding software routines are as follows.

• UART SendData: This routine transmits a byte that is passed as an argument to
the routine. The function loads the byte to the TX register, and starts the serial
communication process. The ending of the serial communication is indicated by the TX
Complete flag being set. The prototype of this function is shown in Figure 5.23.

• UART bReadRxData: This function returns the data byte that was received, and
stored in the RX register. The prototype of the function is given in Figure 5.23.

3. Reading the status of the UART receiver/transmitter: The status of the receiver and trans-
mitter subblocks is retrieved by calling the following two functions.

• UART bReadRxStatus : This function returns the status byte of the receiver subblock.
The prototype of the function is shown in Figure 5.23.

The individual flags are retrieved by computing a bitwise AND of the byte returned
by the function and the following constants:

(i) for RX REG FULL flag,the mask 0x08 (UART RX REG FULL)

236 Programmable Data Communication Blocks

Figure 5.24: Finding the status of the Rx and Tx subblocks [4]. Courtesy of Cypress Semicon-
ductor Corporation.

(ii) for RX PARITY ERROR Flag,0x80 (UART RX PARITY ERROR)

(iii) for Overrun flag, 0x40 (UART RX OVERRUN ERROR)

(iv) for Framing Error flag, 0x20 (UART RX FRAMING ERROR)

(v) for Error flag (that symbolizes any error), 0xE0 (UART RX ERROR)

• UART bReadTxStatus : This function returns the status byte of the transmit sub-
block. The prototype of the function is shown in Figure 5.23.

Two distinct flags are retrieved by computing the bitwise AND between the
returned byte and specific masks: the flag TX Complete is found by using the mask
0x20 (UART TX COMPLETE), and the flag TX REG EMPTY by 0x10
(UART TX BUFFER EMPTY).

4. Enabling/disabling the interrupts of the block UART: The following four routines are defined
for this purpose.

• UART EnableInt : This routine enables the two interrupts of a UART block. The
prototype of the function is shown in Figure 5.23.

• UART DisableInt : This function disables all the interrupts of a UART block. The
prototype of the function is shown in Figure 5.23.

• UART SetTxIntMode: This routine programs the interrupt mode of the TX sub-
block.The prototype of the function is shown in Figure 5.23. If the input parameter
is set to 0x00 (UART INT MODE TX REG EMPTY) then an interrupt is generated
after the TX REG EMPTY flag is asserted, and if set to

0x01 (UART INT MODE TX COMPLETE) then after the TX Complete flag has
been set an interrupt is produced.

• UART IntCntl : This function separately enables/disables the interrupts of the receiver
and transmitter subblocks. The prototype of the function is shown in Figure 5.23.
The receiver and transmitter interrupts are enabled by passing the following constants
UART ENABLE RX INT and UART ENABLE TX INT , respectively, as parameters
to the function. The interrupts are disabled by calling the routine with the following
parameters: the constant UART DISABLE RX INT for the receiver, and the constant
UART DISABLE TX INT for the transmitter.

Example [4]: This example demonstrates how to find the status flags for the Rx and Tx subblocks.
The related assembly code instructions are shown in Figure 5.24.

Figure 5.24(a) illustrates the code for polling the status RX Complete flag until the next
byte is received. Calling the UART bReadRxStatus subroutine returns the status of the RX

5.5 Channel Implementation Unit: UART Block 237

.TxData:

jmp .WaitForData

mov A, UART_PARITY_NONE

call UART_Start

call Counter8_Start

call UART_bReadRxStatus

and A, UART_RX_Complete

.WaitForData:

jz .WaitforData

and A, UART_RX_ERROR

jz .GetData

mov A, 0x00

jmp .TxData

.GetData:

call UART_bReadRxData

call UART_SendData

Figure 5.25: Receiving and sending data using the UART block [4]. Courtesy of Cypress Semi-
conductor Corporation.

subblock. The specific bit is found by computing the bitwise AND of the status byte and the
UART RX COMPLETE mask. Figure 5.24(b) presents the code for polling the status flag TX
Complete until the ongoing transmission ends.

Example [4]: This second example discusses the assembly code for an application that receives
bytes using the UART communication protocol, and then returns the received byte, if the byte
was correctly received, or the value 0x00, if an error has occurred during transmission.

The code first configures and enables the block by calling the UART Start subroutine. The
module then waits until the byte has been received in the RX buffer. If no error has occurred
during the reception, then the data are retrieved from the RX buffer and stored into the A register
by calling the UART bReadRxData routine. If an error has occurred then the constant 0x00 is
loaded into the A register. The data are returned by calling the UART SendData subroutine.

238 Programmable Data Communication Blocks

5.6 Conclusions

This chapter has presented a design methodology for implementing performance optimized com-
munication subsystems for embedded applications. Serial communication modules based on the
SPI and UART standards have been detailed, and their implementation, using PSoC’s pro-
grammable digital block, explained.

Communication channels offer a set of high-level primitives for data communication between
two systems. Channels are important for connecting multiple embedded systems, or a system to
its peripherals. High-level primitives are used to configure the channel, sending/receiving data
on the channel, and managing the channel operation and properties. An example was presented
that illustrates the use of primitives to provide the functionality of the communicating modules.

This chapter has also defined the main characteristics of channel implementation units (CIUs)
for abstract channels, including performance attributes, or example the bandwidth of CIUs, and
constraints, such as the number of required links, availability of global clocks, and noise level of
the environment. To help in devising a systematic methodology for mapping abstract channels
to predefined CIUs, CIUs are described as tuples with four components: (i) offered primitives,
(ii) needed hardware resources, (iii) their performance values, and (iv) specific constraints. Then,
the tuple information can be used to identify the CIUs, in a predefined library, that are imple-
mentation alternatives for a specific abstract channel.

The design methodology presented finds optimized implementations for the communication
channels in an embedded application by conducting the following activities: (i) selecting the
set of feasible CIUs for each abstract channel, (ii) finding the abstract channels that share the
same CIUs, and (iii) building hardware/software implementations for the channels that cannot
be mapped to the existing CIUs.

The remainder of this chapter focused on the SPI and UART communication modules, and
their hardware/software implementation based on PSoC’s programmable communication blocks.
The SPI protocol is an example of a serial, full-duplex, synchronous data transmission between
a master and a slave. Data transmission and reception are simultaneous, and clocked by a
clock generated by the master. UART is a serial, eight-bit, full-duplex, asynchronous protocol.
The transmitted frames are 11 bits long, and include a parity bit for detecting erroneous data
transfers. Several examples illustrated the use of the SPI and UART firmware routines, and
propose solutions that minimize the timing overhead of SPI data transmission.

5.7 Recommended Exercises 239

5.7 Recommended Exercises

1. Extend the concept of abstract data channels to define prioritized abstract data channels,
in which data channels have specific priorities assigned to them. If two abstract channels are
mapped on the same CIU then the channel with higher priority is served first, if the two channels
need to communicate simultaneously. Discuss the high-level primitives that must be introduced
for handling channel priorities. Detail the implementation details required for the CIUs.

2. Using the flow shown in Figure 5.3, write C programs for two communicating modules. One
module reads data from its input port, and sends it to the other module, which stores the data
in the flash memory. Use the UART protocol for the application. Identify the maximum rate of
the data at the input port, so that no data are lost in your design.

3. Study the PSoC based implementation of the 1-wire protocol as described in the Application
Note by W. Randall 1-Wire User Modules, AN2166, Cypress Microsystems, May 24 2004.

4. For the communication protocols presented in the chapter bibliography (SPI, UART, 1-wire,
9-bit protocol), identify the set of primitives, performance attributes, hardware requirements,
and constraints for each of the protocols.

5. Propose an algorithm that implements the Compose operator required for the channel merging
step. The goal should be to satisfy the timing requirements of the application while meeting the
constraints set for the hardware resources available for CIUs.

6. Following the generic data structure shown in Figure 5.5, indicate the data structure needed to
implement the communicating modules shown in Figure 5.1(b). Assume that the abstract data
channels CH1, CH2, and CH3 share the same CIU, and channel CH4 is mapped to a distinct
CIU.

7. Study the I2C protocol for PSoC as described in [1].

8. Write C code that implements the data communication shown in Figure 5.1(b). Assume that
modules M1 and M2 communicate using the SPI protocol, while UART protocol is used for the
rest of the communications. Estimate the timing overhead that is due to data communication.
Identify the number of I/O pins that are used for communication considering that each module
is executed on a separate PSoC chip.

9. For the two modules shown in the Figure 5.1, write C programs for the modules, such
that one byte is sent from module M1 to module M2 using UART then the next byte is sent
using SPI, and so on. Your solution should reuse the same hardware blocks to implement the
SPI and UART protocols (dynamic reconfiguration). Estimate the timing overhead that is due
to dynamic reconfiguration, and compare this overhead with the execution time of the data
communication.

10. For the structure shown in Figure 5.1(b), write a C function that would broadcast a byte
from module M1 to the other three modules. After sending out a byte, module M1 waits
until an acknowledgement signal is received from all modules, indicating that the byte was
received.

11. For Exercise 10, extend the solution such that modules M1 waits for a predefined time
period T to receive the acknowledgment signal from the other modules. In the case, where the

240 Programmable Data Communication Blocks

acknowledgment signal is not received, M1 assumes that the communication was not successful,
and resends the data to the module that did not acknowledge.

12. For Exercise 10, propose an implementation of the broadcast function that is flexible in
handling any number of targeted modules, provided that there is a path from module M1 to the
other modules.

Bibliography

[1] PSoC Mixed Signal Array, Technical Reference Manual, Document No. PSoC TRM
1.21, Cypress Semiconductor Corporation, 2005.

[2] SPI Master, CYC29/27/24/22/21xxx, CY7C6xxxx, and CYWUSB Data Sheet, Cy-
press Semiconductor Corporation, October 3 2005.

[3] SPI Slave, CYC29/27/24/22/21xx, CY7C6xxxx, and CYWUSB Data Sheet, Cypress
Semiconductor Corporation, October 3 2005.

[4] UART, CYC29/27/24/22/21xxx, CY7C64215, and CYWUSB Data Sheet, Cypress
Semiconductor Corporation, October 3 2005.

[5] D. Comer, Computer Networks and Internets with Internet Applications, Upper
Saddle River, NJ: Prentice Hall, Third edition, 2001.

[6] J.-M. Daveau, G. F. Marchioro, T. Ben-Ismail, A. A. Jerraya, Protocol selection
and interface generation for HW-SW codesign, IEEE Transactions on Very Large
Scale Integration Systems, 5, (1), pp. 136-144, March 1997.

[7] G. De Micheli, R. Ernst, W. Wolf, Readings in Hardware/Software Co-Design, San
Francisco: Morgan Kaufmann, 2002.

[8] A. A. Jerraya, J. Mermet, System-Level Synthesis, A. A. Jerraya, J. Mermet (edi-
tors), Boston: Kluwer Academic Publishers, 1999.

[9] A. Kagan, Implement 9-Bit Protocol on the PSoC UART, Application Note AN2269,
Cypress Semiconductors, September 20 2005.

[10] V. Kremin, RC5 Codec, Application Note AN2091, Cypress Microsystems, February
5 2003.

[11] O. Ozbek, Estimating PSoC Power Consumption, Application Note AN2216,
September 21 2004.

[12] M. Raaja, Binary to BCD Conversion, Application Note AN2112, Cypress Semicon-
ductors, February 12 2003.

[13] M. Raaja, Manchester Encoder using PSoC, Application Note AN2281, Cypress
Semiconductors, June 2 2005.

[14] W. Randall, 1-Wire User Modules (Introduction), Application Note AN2166, Cy-
press Microsystems, May 24 2004.

242 BIBLIOGRAPHY

[15] V. Sokil, Hardware Bitstream Sequence Recognizer, Application Note AN2326, Cy-
press Semiconductors, December 8 2005.

[16] V. Sokil, Serial Bit Receiver with Hardware Manchester Decoder, Application Note
AN2325, Cypress Semiconductors, December 8 2005.

[17] J. Valvano, Embedded Microcomputer Systems. Real Time Interfacing, London,
Third edition: Thomson, 2007.

Chapter 6

Continuous-Time, Analog
Building Blocks

This chapter1 presents a discussion of basic concepts of continuous-time analog cir-
cuits, including circuit operation and performance characterization in the presence
of nonidealities. Also discussed are the uses of PSoC’s programmable, continuous-
time, reconfigurable analog blocks as application-specific analog circuits.

The first section introduces the defining characteristics of operational amplifiers (OpAmps).
OpAmps are described by a set of nonlinearities, including finite, frequency-dependent gain, poles
and zeros, distortion, offset voltages, output saturation, slew rate, common mode gain, and noise.
Understanding the impact of nonidealities on OpAmp performance is very important, not only
for circuit design (which is not the focus of this text), but also for predicting the performance of
analog and mixed-signal subsystems.

The discussion uses OpAmp structural macromodels as a vehicle for describing the func-
tionality/performance of OpAmps and OpAmp-based blocks. Macromodels are an efficient, yet
accurate enough, method of capturing the nonidealities of real OpAmps for system design. Sys-
tem simulation, for design and verification, using macromodels is also fast and applicable to
complex subsystems, in contrast to transistor-level simulation, which is precise, but very slow.

The second section introduces OpAmp-based analog blocks, that is inverting and noninverting
amplifiers, instrumentation amplifiers, summing and difference amplifiers, integrators, and com-
parators, both with and without hysteresis. Estimates of the impact of the OpAmp nonidealities
on the performance of the basic blocks is also discussed. The third section introduces PSoC’s
programmable, continuous-time, analog blocks and their structure. The control programmable
registers that are used to configuring the analog block are also discussed in detail.

This chapter has the following structure:

• Section 1 defines a broad set of OpAmp nonidealities and presents a systematic method for
building OpAmp macromodels.

• Section 2 focuses on the OpAmp-based basic block and estimates performance.

• Section 3 introduces PSoC’s programmable continuous-time analog blocks.

1Sections of this chapter are reproduced from references [12] and [17]. Courtesy of Cypress Semiconductor
Corporation.

A. Doboli, E.H. Currie, Introduction to Mixed-Signal, Embedded Design,
DOI 10.1007/978-1-4419-7446-4 6, c© Springer Science+Business Media, LLC 2011

244 Continuous-Time, Analog Building Blocks

+

N
V

V +

−V
gain dVVo

V +

−V

(a) (b)

dV
oV

Vd

V
P

+

−

Figure 6.1: Ideal OpAmp symbol and macromodel.

• Section 4 provides the chapter conclusions.

6.1 Introduction to Operational Amplifiers

Operational amplifiers, widely known as OpAmps, are the basic building blocks in analog design.
The primary use of OpAmps is to amplify (multiply) an input signal by a constant value. The
input signal is usually a voltage, but can also be a current.

The output signal of an OpAmp, usually a voltage, is given by the following relationship:

Vo = gain × Vd (6.1)

where Vo is the output signal of the operational amplifier, Vd is the differential input signal
(V+ − V−), and gain is the constant gain of the OpAmp. This amplifier is also referred to as a
linear operational amplifier, due to the linear relationship between its input and output signals.

6.1.1 Ideal OpAmps

By definition, an ideal OpAmp is described by the following properties:

• Gain: The gain of the OpAmp is assumed to be infinite and not a function of frequency, or
input amplitude. The OpAmp’s gain at frequency zero is called its DC gain, and denoted
as gain0.

• Input impedance: The ideal OpAmp has infinite input impedance that does not depend on
frequency. Therefore, the input current of an ideal OpAmp is zero.

• Output impedance: The ideal OpAmp has zero output impedance that is also independent
of frequency.

Figure 6.1 shows the symbol and model for an ideal OpAmp.

6.1.2 Real OpAmps

Real OpAmps deviate significantly from that of ideal linear operational amplifiers with respect
to gain, phase, frequency, linearity and noise. The following are the more important nonidealities
of a real OpAmp:

6.1 Introduction to Operational Amplifiers 245

p

−

+

V

V
in

R

R

C

p Ro

+

oV

+

Figure 6.2: OpAmp macromodel.

• Finite gain: The gain of real OpAmps is a function of frequency which can be expressed in
terms of poles and zeros. The DC gain is finite.

• Poles and zeros: The behavior of real, i.e., nonideal, operational amplifiers depends on the
frequency. The transfer function of an OpAmp as a function of frequency (defined as the
ratio Vo/Vd), can be expressed as:

Vo

Vd
=

ansn + an−1s
n−1 + an−2s

n−2 + ... + a0

bmsm + bm−1sm−1 + bm−2sm−2 + ... + b0
(6.2)

=
an(s − zn)(s − zn−1)...(s − z0)

bm(s − pm)(s − pm−1)...(s − p0)
(6.3)

where s = jω, ω = 2πf , f is the frequency, pm, pm−1, ... , p0 are the poles of the amplifier,
and zn, zn−1, ..., z0 are its zeros. Thus the magnitude and phase of the gain for real
OpAmps are both functions of frequency.

The DC gain is given by:

gain0 =
a0

b0
. (6.4)

The transfer function of an OpAmp is often approximated using only first-order polynomials
of the variable s:

gain(f) =
Vo

Vd
=

a1

b1

[

s − zd

s − pd

]

(6.5)

where pd is the dominant pole, and zd is the dominant zero. If the circuit does not have
zeros, or if the zeros have little influence on the transfer function for the frequency domain
of interest, then the gain is:

gain(f) =
Vo

Vd
=

a0

b1

[

1

s − pd

]

(6.6)

or

gain(f) =

[

gain0

1 − j f
f3db

]

(6.7)

where gain0, the gain at frequency zero, is:

gain0 = − a0

b1 pd
(6.8)

f3dB is called the 3 dB frequency of the circuit [2], and is defined as

f3dB =
pd

2π
(6.9)

246 Continuous-Time, Analog Building Blocks

ϕ

gain

ft

45

(a) (b)

gain

f

f

−20dB/dec

f3dB

f
3dB

0

Figure 6.3: Magnitude and phase response for the single-pole OpAmp model.

Equation (6.7) represents the single-pole model of an OpAmp, and Figure 6.2 shows the
circuit description of this model. The pole is expressed as:

pd = − 1

Rp Cp
(6.10)

Figure 6.3(a) is a graph of the variation of the gain magnitude with the frequency, f , for the
single-pole circuit model. The OpAmp gain remains close to the DC-gain gain0 until the
frequency gets close to the frequency f3dB . When f = f3dB, the OpAmp gain (expressed
in dB) is 3 dB lower than the DC-gain gain0. The slope of the plot is -20 dB/dec for
frequencies greater than f3dB . Finally, the frequency ft at which the circuit gain is one is
called the unity gain frequency [2].

Example (Transfer function of the single-pole OpAmp model): The transfer function of the
single-pole OpAmp macromodel is given by:

Vo

Vd
=

gain0

1 − j f
f3dB

(6.11)

The magnitude response can be expressed as:

gain(f) = |Vo

Vd
| (6.12)

When f = f3db, the magnitude of the gain is equal to:

gain(f3db) =
gain0√

2
(6.13)

Or expressed in dB,

gain(f3db) = gain0 − 3 dB (6.14)

Imposing the condition that the magnitude(ft) = 1, and solving for the unknown frequency
ft, yields:

ft = f3dB

√

gain2
0 − 1 (6.15)

6.1 Introduction to Operational Amplifiers 247

gain
DC

ftfp3fp2fp1

[dB]gain
fp1 fp2 fp3

f[log scale]

f[log scale]

[deg]
ϕ

(a)

−270

−225

−180

−135

−90

−45

(b)

Figure 6.4: Magnitude and phase response for the three OpAmp model.

for the unity gain frequency. The phase response is given by:

ϕ(f) = arctan
f

f3dB
(6.16)

Thus, the phase, ϕ, is 45 degrees when f = f3dB . Figure 6.3 (b) illustrates the phase
response.

More complex circuit models involve two, or more, poles, assuming that the poles are well
separated. As shown in Figure 6.4, each additional pole changes the slope of the magnitude
plot by -20 dB

dec , and the phase response by 90 degrees.

• Input impedance: The input impedance of real OpAmps is a function of frequency and may
be very large, but not infinite. This can be modeled as an input resistance Rin in series
with a capacitance, Cin, as shown in Figure 6.7. A more accurate modeling results, if the
common-mode input impedance is also considered. The common-mode input impedance is
defined as the input impedance, with respect to ground, when the two differential inputs
of an OpAmp are tied together. The common-mode input impedance can be modeled by
adding two capacitors, Ccm, each connected to one of the differential inputs and ground,
as shown in Figure 6.7.

Less precise OpAmp models may include only a very large input resistance, Rin, to represent
the input impedance, as shown in Figure 6.2.

• Output impedance: The output impedance of real OpAmps is small, but not zero. A simple
model for this nonzero output impedance is the addition of a resistance, Ro, in the OpAmp
macromodel, as shown in Figure 6.2. A more accurate modeling, including the modification
of the output impedance with resistance results, if the model uses a structure formed of
two resistors, Ro, and two capacitors, Co, connected as shown in Figure 6.7.

• Distortion: W. Sansen defines the distortion of a circuit as the difference in time in the
shapes of the output and input signals [9]. Distortion changes the shape of the output

248 Continuous-Time, Analog Building Blocks

distorted

in

VDD

VSS

Vin

Vout

Vout

saturated output

gain

saturated output

undistorted output

distorted output

(a) (b)

characteristic
transfer

V

Figure 6.5: Definition of circuit distortion.

signal from that of the input signal. For a linear OpAmp without distortion, its output
signal has the same shape as the input signal, even though the latter has been amplified,
or attenuated.

Figure 6.5(b) illustrates the effect of circuit distortion on the output signal and shows the
circuit’s transfer characteristics. The straight line corresponds to an ideal linear circuit, for
which Vout = gain Vin. The bold line represents the distorted transfer characteristics. The
output signal has a different shape from that of the input signal, as shown in bold lines by
signal Vout.

Nonlinear distortion is produced by a circuit’s nonlinear transfer function Vo/Vin [9]. Non-
linear distortion can be classified as either (1) weak or (2) hard distortion. From a math-
ematical point of view, weak distortion produces continuous output signals, whereas hard
distortion generates discontinuous output waveforms [9]. In most cases, hard distortions
occur because of the improper use of the circuit, and are therefore not taken into account
during the analog circuit design process.

Weak distortion can be expressed in terms of a Taylor series expansion as [8, 9]:

Vo = ao + a1Vin + a2V
2
in + a3V

3
in + a4V

4
in + · · · (6.17)

where

ai =
1

i!

∂iVo

∂V i
in

(6.18)

In most cases, it is sufficiently accurate to consider an approximation that includes only
the first four terms of this series:

Vo = ao + a1Vin + a2V
2
in + a3V

3
in (6.19)

where ao is the DC component of Vout, a1 is the linear gain of the circuit, and

a2 =
1

2

∂2Vout

∂V 2
in

(6.20)

6.1 Introduction to Operational Amplifiers 249

and

a3 =
1

6

∂3Vout

∂V 3
in

(6.21)

As shown in [9], for an input signal given by:

Vin(t) = V cos(ωt) (6.22)

and considering only first- second- and third-order nonlinearities, the output signal can be
expressed as

Vo(t) =

[

a0 + V 2 a2

2

]

+

[

a1 + V 2 3

4
a3

]

V cos(ωt) (6.23)

+

[

V 2 a2

2

]

cos(2ωt) +

[

V 3 a3

4

]

cos(3ωt) (6.24)

Two performance attributes describe the nonlinearity of an OpAmp: second-order harmonic
distortion (HD2), and third-order harmonic distortion (HD3). For sinusoidal input signals,
they are defined as:

HD2 =
1

2

a2

a1
V (6.25)

HD3 =
1

4

a3

a1
V 2 (6.26)

In general, HDn is the ratio of the output component at nω and the output component at
ω.

The total harmonic distortion (THD) of a circuit is defined as

THD =
√

HD2
2 + HD2

3 + HD2
4 + ... (6.27)

• Offset voltage: The offset voltage, VOS , describes the impact of transistor mismatches on the
output voltage. For ideal OpAmps, the output voltage, Vo, is zero when the two differential
inputs are connected. However, for real circuits Vo = 0. By definition, VOS is the input
voltage that would return Vo to zero [2]. The offset voltage VOS is shown in the model in
Figure 6.7.

• Common-mode rejection ratio: The common-mode rejection ratio (CMRR) characterizes
the capability of an OpAmp to reject common signals applied at its differential inputs [8].
By definition,

CMRR(dB) = 20 log

∣

∣

∣

∣

Ad

Ac

∣

∣

∣

∣

(6.28)

where Ad is the differential gain of the OpAmp, and Ac is the common mode gain. The
common mode gain is defined as the ratio of the output signal and the corresponding
common input signal applied to the differential inputs. For best performance, CMRR
should be as high as possible.

Another definition of CMRR is based on the impact of the common mode voltage Vc on
the offset voltage [2]:

CMRR(dB) = −20 log

∣

∣

∣

∣

∂VOS

∂Vc

∣

∣

∣

∣

(6.29)

250 Continuous-Time, Analog Building Blocks

• Power Supply Rejection Ratio: The power supply rejection ratio (PSRR) describes the
capability of an OpAmp to operate correctly, if its power supply lines are noisy and the
noise propagates to the OpAmp’s output. PSRR is defined as

PSRR =
Ad

circuit gain from power supply to output
(6.30)

where Ad is the differential gain and the denominator is the ratio of the output voltage to
the corresponding power supply noise.

• Output saturation: The output signal of a real OpAmp is limited to the voltage range
(−Vneg,+Vpos). This circuit behaves as an amplifier, only if the output voltage is within
this range. Otherwise, the distortion of the output signal is very high. Figure 6.5(a) shows
an example of output saturation. Output saturation can be modeled using clipping, as
shown in Figure 6.7.

• Slew Rate: Slew Rate (SR) defines the maximum rate of change of the output signal that
can accommodated by the OpAmp without significant distortion of the output [2, 8]:

SR =
dVout

dt
(6.31)

If the rate of change is beyond the SR then the output signal experiences a large distor-
tion, for example the output signal may saturate. SR is caused by the inability to charge
or discharge the OpAmp’s capacitors fast enough, especially the OpAmp compensation
capacitor [2].

• Noise: Circuit noises are signals produced by complex physical phenomena, such the ran-
dom movement of electrons in conductors, random trapping and releasing of carriers by
dangling bonds, movement of carriers across potential barriers, influence of generation–
recombination centers on the diffusion of carriers, trapping and releasing of carriers flowing
through discontinuous materials, generation of additional carriers by high velocity carriers,
and so on [1, 8, 13]. This can be modeled as random signals with the following character-
istics.

The mean square value of a noise signals x(t) is defined as

X2 =
1

T

∫ T

0

x2(t)dt (6.32)

where T is a time interval. This mean square value represents the power delivered by signal
x(t) in time T to a resistance of 1 Ω. The Root Mean Square (RMS) is defined for signal
x(t) as

X =

√

1

T

∫ T

0

x2(t)dt (6.33)

The equivalent RMS value of two uncorrelated noise voltages in series or two uncorrelated
noise currents in parallel, is given by

Xequivalent =
√

X2
1 + X2

2 (6.34)

6.1 Introduction to Operational Amplifiers 251

where x1 and x2 are two uncorrelated noise sources, and X1 and X2 are their respective
RMS values. In general, for n noise voltages in series, or n noise currents in parallel, the
equivalent RMS value is equal to

Xequivalent =
√

X2
1 + X2

2 + · · · + X2
n (6.35)

Noise power density and power spectral density characterize the way noise power is dis-
tributed over a frequency range [2]. The definition of noise power density, depends on
whether the noise signal is a voltage or a current. If the noise is a voltage, E, then the noise
power density is equal to:

e2(f) =
dE2

df
(6.36)

And if noise is a current, I, then the noise power density is given by

i2(f) =
dI2

df
(6.37)

where E2 and I2 are the mean square values of the two noise signals and e2 is expressed in
units of V 2/Hz, and i2 in units of A2/Hz.

Power spectral density (PSD) is given by

e(f) =

√

dE2

df
(6.38)

if the noise signal is voltage E and

i(f) =

√

dI2

df
(6.39)

if noise is current I. White noise has constant power spectral density over the frequency

band, e(f) = n0 [2, 8]. Hence, for a frequency range (flow, fhigh), the RMS value of a white
noise signal is expressed as [2, 10]

E = n0

√

fhigh − flow (6.40)

The RMS value increases with the square of the bandwidth fhigh − flow, but does not
depend on the actual frequency values, as long as, the difference is constant. If the frequency
range increases k times, then the RMS value increases by the factor

√
k.

1
f noise is characterized by a power density that is inversely proportional to the frequency [2]:

e2(f) =
n2

1

f
(6.41)

Then, the RMS value of the noise signal for a frequency range (flow, fhigh) is equal to:

E = n1

√

ln

[

fhigh

flow

]

(6.42)

252 Continuous-Time, Analog Building Blocks

1
f noise is dominant at low frequencies, whereas white noise is more important at high
frequencies. By definition, the corner frequency fc is the frequency at which the power
density of white noise is equal to the power density of 1

f
noise. Considering only white and

1
f noise, the overall noise power density in a circuit can be described as [2, 10]

e2 = n2
0

[

1 +
fc

f

]

(6.43)

For a frequency range (flow, fhigh), the mean square value of the overall noise is given by
the following:

E2 =

∫ fhigh

flow

e2(f)df (6.44)

= n2
0

∫ fhigh

flow

[

1 +
fc

f

]

df (6.45)

= n2
0

(

fhigh − flow + fc ln

[

fhigh

flow

])

(6.46)

Thus, the RMS value of the overall noise is equal to

E = n0

√

fhigh − flow + fc ln

[

fhigh

flow

]

(6.47)

Example [10]: For a given constant PSD of the white noise equal to

n0 = 25
nV√
Hz

, (6.48)

the corner frequency fc =10KHz, and the frequency range (flow, fhigh)=(60Hz, 20KHz),
the RMS value of the overall noise is equal to:

v = 25
nV√
Hz

√

20KHz − 60Hz + 10KHz ln

[

20KHz

60Hz

]

= 6.98 µV (6.49)

In a circuit, resistor and MOSFET transistor white noise is due to the thermal noise [2,
8]. Thermal noise originates because of the random motion of carriers in a resistor or a
transistor channel. The thermal noise of resistors is modeled as a voltage source in series
with the resistor, as shown in Figure 6.6(a). The mean square value of the noise voltage
source is:

V 2
thermal = 4 k T R (6.50)

6.1 Introduction to Operational Amplifiers 253

thermal

2

v
thermal

2

thermal
i

2

thermal
i

2 +

v

)c()b(

R

R
thermal

i

+

−

−

2

(a)

+

−

Figure 6.6: Noise modeling.

where k is the Boltzmann constant (k = 1.38 10−23J/K), T is the absolute temperature
in degrees Kelvin, and R is the resistance. Thermal noise can also be modeled as a noise
current source in parallel with the resistor, as shown in Figure 6.6(b). Then, the mean
square value of the noise current source is expressed as

I2
thermal =

4 k T

R
(6.51)

The thermal noise in the channel of a MOSFET transistor is modeled as a noise current
source connected across the drain and source terminals of the transistor [8]. The RMS value
of the current source is equal to

I2
thermal = 4 k T γ gm (6.52)

where γ is a process dependent constant, and gm is the transconductance of the transistor,

gm =
∂ID

∂Vgs
(6.53)

for a constant Vds.

In a circuit, 1/f noise is due primarily to the flicker noise of the MOSFET transistors [2, 8].
Flicker noise is modeled as a voltage noise source connected to the gate of a transistor. The
RMS value of the source is [8]:

V 2
flicker =

K

CoxW L

(

1

f

)

(6.54)

where K is a constant, Cox is the capacitance per unit area, Wand L are the width and
length of the transistor, and f is the frequency.

All noise sources in a differential amplifier can be lumped into three equivalent noise sources
connected at the differential inputs of an OpAmp[2]. Figure 6.6(c) shows the two noise
current sources, and the noise voltage source.

As shown throughout this chapter, this OpAmp model is an important way to evaluate
the noisiness of an analog block, for example an inverting and noninverting amplifier, by
computing the equivalent, input-referred noise of the block. If X2

signal is the mean square

value of the input signal, and X2
noise is the mean square value of the input-referred noise of

the block, then the signal-to-noise ratio (SNR) of the circuit is defined as

SNR(dB) = 10 log
[X2

signal

X2
noise

]

(6.55)

254 Continuous-Time, Analog Building Blocks

V

V
−

inC

cm
C

cm
C

p
R

V
2

in
R

V1

gain
DC

p
R

L p

Lp

R
o

R
o

V
2

/2

V
2
/2

V
1

Vo

oC

oC

odcV

C
p

pC

+

OS
V

V

dm

+

+

+

Figure 6.7: Detailed OpAmp macromodel.

SNR is the ratio of the input signal and noise, and should have as high a value as possible
to provide good analog processing accuracy.

Most of the circuit characteristics discussed thus far can be incorporated into the more precise
macromodel shown in Figure 6.7. The macromodel is important for fast, yet accurate, simulation
of analog circuits. This macromodel captures finite gain, one pole and one zero, input impedance,
common-mode input impedance, output impedance, offset voltage, common mode gain, and
output saturation.

6.1.3 OpAmp Macromodeling2

This subsection illustrates a systematic process for developing the macromodel of a single stage
differential OpAmp, which can be automated as a computer program. The OpAmp considered
in the section is shown in Figure 6.8.

Different methods are available for circuit macromodeling, including circuit analysis, tabular
forms and curve fitting and neural networks among others. Many of these methods produce
blackbox models, which are mathematical expressions for predicting the performance of circuits.
However, these models do not offer insight into circuit design, because most of the physical (i.e.,
of the performance attributes is lost). In contrast, structural models are networks of current
and voltage sources, capacitors, resistors, diodes, and so on. The component parameters directly
relate to the transistor parameters in the circuit. Structural models not only predict the circuit’s
performance, but also offer insight into circuit design.

This modeling technique is detailed in [15] and [16]. Steps 1-6 generate the circuit models in
the frequency (AC) domain, step 7 describes circuit noise, step 8 defines circuit clipping, step 9
expresses CMRR, step 10 models the circuit PSRR, and step 11 presents a summary on modeling
the harmonic distortion of the circuit. (More details about modeling of harmonic distortion using
this method can be found in [16].)

The modeling method consists of the following activities:

Step 1 (Grounding of biasing voltages): First, all biasing voltages are grounded, for example
Vbn in Figure 6.8. Biasing transistors not only supply the DC current, or voltage, for the circuit,

2This subsection was co-written by Y. Wei and A. Doboli. This section is based on the papers Y. Wei,
A. Doboli, “Systematic Development of Analog Circuit Structural Macromodels through Behavioral Model De-
coupling”, Proceedings of the Design Automation Conference, 2005, pp. 57-62. Y. Wei, A. Doboli,“Systematic
Development of Nonlinear Analog Circuit Macromodels Through Successive Operator Composition and Nonlinear
Model Decoupling”, Proceedings of the Design Automation Conference, 2006, pp. 1023-1028 and Y. Wei, A.
Doboli, “Structural Macromodeling of Analog Circuits Through Model Decoupling and Transformation”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 27, No. 4, April 2008, pp.
712–725.

6.1 Introduction to Operational Amplifiers 255

v1

v2

M1 M2

v3

M5
Vbn

Vin1 Vin2

M3 M4

current mirror

biasing

differential pair

Figure 6.8: Single-stage OpAmp [18] c© 2010 IEEE.

gmgVgb

Cgb Cgs

Cgd
Vg Vd

Csb Vs

Vb

Cdb

gmsVsbgmdVdb

Figure 6.9: Linear hybrid-π MOSFET model.

but also affect the performance of the circuit. For example, transistors such as M5, that supply
the biasing current, also connect other transistors to the power supply, so they influence the
power supply rejection ratio (PSRR) of the OpAmp. Also, biasing transistors introduce thermal
and other noise into the circuit.

Step 2 (Circuit partitioning): The OpAmp is decomposed into basic building blocks. Next,
macromodels for the basic building blocks are developed separately, and put together to form the
model of the entire circuit. This step helps reduce the macromodel development effort through
reuse of the basic building block models.

Many popular OpAmps are based on fundamental building blocks, including differential pairs,
wide-swing current mirrors, cascade current mirrors, cascode stages, active loads, and folded
cascode stages [8]. To achieve the required performance, building blocks are connected together
directly, or by single transistors. For example, the OpAmp in Figure 6.8 includes one current
mirror, one differential pair, and one biasing transistor (M5). The circuit partitioning into
building blocks is shown in the figure.

Step 3 (MOSFET transistor models): For MOSFET transistors, each of the circuit’s MOS-
FET transistors is expressed as a small-signal equivalent circuit based on a transformed hybrid-π

256 Continuous-Time, Analog Building Blocks

sCgdVdb
+ Cgd

Vg

Vb

Vd

Vb

Vs

Vb

 Cgd
+ Cdb

Cgs
+ Csb

Cgs

+ Cgb

gmdgmsVsb(sCgd−gmg)

Vgb

gmsgmdVdb(sCgs+gmg)

Vgb

sCgsVsb

Figure 6.10: Transformed linear hybrid-π MOSFET model [18] c© 2010 IEEE.

transistor model. The transformed MOSFET model is presented in Figure 6.10. This is different
from the popular hybrid-π transistor model [14] shown in Figure 6.9 in that the cross-coupled
dependencies between the model parameters have been removed by decoupling, so that all tran-
sistor voltages and currents can be calculated by evaluating the model in one pass, from left to
right. In the traditional hybrid-π model, the cross-coupling of the parameters requires that a set
of equations be developed and solved for the transistor’s voltages and currents.

In Figures 6.9 and 6.10, voltages Vg, Vs, Vd, and Vb are the gate, source, drain, and bulk
voltages, respectively, of a transistor. Capacitors Cgs, Cgb, Csb, Cgd, and Cdb are the respective
gate to source, gate to bulk, source to bulk, gate to drain, and drain to bulk capacitances [13].
Voltages Vgb, Vdb, and Vsb are the respective gate to bulk, drain to bulk, and source to bulk
voltages and gmg, gmd, and gms are the transconductances of the transistor.

Step 4 (Basic building block modeling): This step produces reusable macromodels for the
basic building blocks. First, for each building block in the circuit, the MOSFET transistors are
replaced by their transformed hybrid-π models. The terminal voltages of a building block are
chosen as the independent variables in the model of the building block. The current flowing into
the terminal is determined by the circuit parameters and the terminal voltages. For example, the
differential input, biasing circuit, and current mirror of the single-stage OpAmp are represented
as macromodels in Figure 6.11. These models are obtained by replacing the MOSFET transistors
with their decoupled models. All voltages in the basic block models are related to the transistor
parameters. Note that all nodes in a building block are visible (accessible) from the outside,
so that any node can be connected to any other node in the circuit, depending on the building
block’s connections to other building blocks.

Step 5 (Producing coupled circuit macromodels): The models for all building blocks in a circuit
form the circuit macromodel. For example, the two device netlists connected between node v1

and ground in Figure 6.11 are merged to form the netlist connected between node v1 and ground
in Figure 6.12. The resulting circuit macromodel is coupled because there are cross-coupled
dependencies between the model parameters. For the resulting netlist:

C1 = Cgs3 + Csb3 + Cgs4 + Csb4 + Cgb5 + Cdb5 (6.56)

and

R1 =
1

gms3 + gms4 + gmd5
(6.57)

6.1 Introduction to Operational Amplifiers 257

(c)

gmg1+gmd1

i2

v2

sCgd2v3 Cdb1+Cgs1+Cgb1

v3

i3

gmd2
(sCgd2−gmg2) Cgd2+Cdb2

v2

(sCgs3+gmg3)

vin1

(sCgs4+gmg4)

vin2
gmd3

v2

gmd4

+Cgs4+Csb4

Cgs3+Csb3

gms3+gms4v3

v1

i1

v2

i2

gmd3Cgd3+Cdb3
(sCgd3−gmg3)

vin1
gms3

v1

(a)

(b)

v1

i1

gmd5Cgd5+Cdb5

(sCgd4−gmg4)

vin2

gms4

v1 Cgd4+Cdb4 gmd4

i3

v3

Figure 6.11: Macromodels of the single-stage OpAmp basic building blocks: (a) differential input,
(b) biasing circuit, and (c) current mirror.

Similarly, the two netlists connected between node v2 and ground in Figure 6.11 are merged to
build the netlist in Figure 6.12 connected between v2 and ground. For this netlist

C2 = Cdb1 + Cgs1 + Cgb1 + Cgd3 + Cdb3 (6.58)

(6.59)

and

R2 =
1

gmd1 + gmg1 + gmd3
(6.60)

Finally, the two netlists connected between node v3 and ground are merged, as shown in Fig-
ure 6.11, to build the netlist in Figure 6.12 connected between v3 and ground, so that

C3 = Cdb2 + Cgd2 + Cgd4 + Cdb4 (6.61)

and

R3 =
1

gmd2 + gmd4
(6.62)

In general, each node’s voltage depends only on the voltages of its adjacent nodes. Node nj

is said to be adjacent to node ni, if the two nodes are the terminals of the same block. Hence,

258 Continuous-Time, Analog Building Blocks

vin2

v1

v2

v3

(sCgs3+gmg3)
vin1

(sCgs4+gmg4)

vin2

gmd3
v2

gmd4
v3 C1 R1

(sCgd3−gmg3)

vin1

gms3

v1

sCgd2
v3 C2 R2

C3 R3
(sCgd2−gmg2)

v2
gms4

v1
(sCgd4−gmg4)

Figure 6.12: Coupled macromodel of the single-stage OpAmp [18] c© 2010 IEEE.

the voltage vi of node ni can be written as

vi = (Ri + sCi) ×
∑

j

(sCmj
± Gmj

)vj (6.63)

where (sCmj
± Gmj

)vj denotes the voltage controlled current source (V CCS) in block i. Ri

and Ci are the total resistance and capacitance associated with node ni. The complete coupled
macromodel of the single-stage OpAmp in Figure 6.8 is shown in Figure 6.12.

The advantage of the structural macromodel is that it shows how circuit nodes relate to the
circuit parameters and there is a one-to-one mapping from the parameters of the original circuit
to the macromodel parameters. For example, in order to see how transistor M3 is connected
in the circuit, one would find all the elements in the model that depend on the parameters of
transistor M3. It turns out that the first and third voltage-controlled current sources of block
v1, and the first two voltage controlled current sources of block v2 depend on the parameters of
transistor M3. A comparison of these current sources with the decoupled linear MOS model,
shows that the gate, drain, and source of transistor M3 are connected to vin1, v2 and v1.

Pole and zero modeling . There is a pole in the model at each internal node formed by resistor
Ri and capacitor Ci. Zeros exist for some voltage controlled current sources, for example the
(sCgd3 − gmg3)vin1 current source in the block of v2 . All zeros and poles are clearly shown in
the structural macromodel. However, their influence on the transfer function cannot be derived
directly due to the coupling between blocks. In the model in Figure 6.12, voltage v1 is expressed
as a function of voltages v2 and v3, voltage v2 depends on voltages v1 and v3, and voltage v3

on voltages v1 and v2. To address this issue, the circuit macromodel has to be further refined
by uncoupling the cross-coupled dependencies in the model. The uncoupled circuit macromodel
results from removing all cross-coupled dependencies in the coupled model.

Step 6 (Uncoupled circuit macromodels): The model uncoupling step modifies the coupled
macromodel, in that all of the voltage dependencies are replaced by their equivalent functions of
the inputs. The decoupling step defines the decoupling sequence by signal path tracing so that

6.1 Introduction to Operational Amplifiers 259

v3

sCgd2−gmg2

sCgd2gmd3

vin2

v1 v2

vin1

sCgs3+gmg3

sCgd3−gmg3

gms3

gms4

gmd4sCgs4+gmg4

sCgd4−gmg4

Figure 6.13: Signal path of the single-stage OpAmp [18] c© 2010 IEEE.

the symbolic expression for the voltage that needs to be decoupled is derived starting from the
lower order to the higher order.

For uncoupling, it is necessary to first determine which voltage dependencies should be de-
coupled. For example, in Figure 6.12, voltage v1 depends on voltages vin1, vin2, v2, and v3. and
voltage v2 depends on voltages vin1, v1, and v3. Obviously, there is a coupling, i.e., a cross-
dependency, between voltages v1 and v2. Hence, the voltage that be should be solved first must
be determined.

The signal-path tracing algorithm of Huang, Gathercole, and Mantooth [5] can be used to
find the sequence of the nodes in the circuit. The signal path for the OpAmp in Figure 6.8 is
shown in Figure 6.13. The dotted line represents the feedback voltage dependency, which needs
to be decoupled. The modeling sequence follows the signal path from the input to the output as
vin1,2 → v1 → v2 → v3.

Then, the coupled model is transformed using the uncoupling sequence. The feedback de-
pendent voltage vi is replaced by its equivalent voltage vi,eq, as shown in Figure 6.14. This
corresponds to replacing each dotted feedback path in the signal path by the feedforward paths
from the inputs in Figure 6.13.

In the frequency domain, the equivalent voltages vi,eq have the general form [15]:

vi,eq =

P
∑

p=1

ai,0 + ai,1s + · · · + ai,n−1s
n

bi,0 + bi,1s + · · · + bi,n−1sn
vin,p (6.64)

where P is the number of inputs. The coefficients of si are given by

ai,j =
∑

t

(

(±1)
∏

kikj

Gαk

m,kikj

∏

lilj

Cβl

m,lilj

)

(6.65)

where αk and βl are 0 or 1, Gm,kikj
is the transconductance between node ki and kj , and Cm,lilj

is the transcapacitance between node li and lj . If there are N nodes in the coupled model, then

K
∑

k=1

αk = N − j ,

L
∑

l=1

βl = j (6.66)

260 Continuous-Time, Analog Building Blocks

v3−

−

(sCgs3+gmg3)

vin1

(sCgs4+gmg4)

vin2 C1 R1 v1

gmd3

v2,eq v3,eq

gmd4

+

−

n,4

n,5

n,3i

i

i

(sCgd3−gmg3)

vin1

gms3

v1
sCgd2

C2 R2

R3C3
(sCgd2−gmg2)

v3,eq

(sCgd4−gmg4)

vin2

gms4

v2v1

−

−

n,3

n,1

n,4

n,2

i

i

i

i

+

−

v2

+

−

+

−

Figure 6.14: Uncoupled macromodel for single-stage OpAmp [18] c© 2010 IEEE.

where K and L are the total number of Gm,kikj
and Cm,lilj in the model.

Next, the symbolic expressions for all coefficients are found by solving a set of equations [15].
Feedback dependencies are substituted by their equivalent symbolic functions and the equivalent
voltage-controlled current sources are functions of the input frequency, as shown in Figure 6.14.

Step 7 (Noise modeling): Thermal noise and 1/f noise are the dominant noise sources in the
MOS transistor. The noise current density can be approximated as Equation (6.67) for thermal
noise and Equation (6.68) flicker noise [8].

i2n,th =
8kT

3
gms (6.67)

i2n,1/f =
K

CoxWL

(

1

f

)

g2
mg (6.68)

where, as discussed previously, γ is technology dependent and ≈ 2/3 for long channel devices,
and 2.5 for submicron MOS devices [8].

Noise current sources are added to each circuit node, as shown in Figure 6.14. To calculate
the total output noise, all input sources are removed, and then the symbolic expression for the
output noise is derived directly from Figure 6.14, without solving any equations. The noise
current sources in Figure 6.14 have the general form presented in expressions (6.69) and (6.70):

i2n,i =
8kT

3
gms,i +

K

CoxWiLi

(

1

f

)

g2
mg,i (6.69)

and

i2n,R =
4kT

R
(6.70)

The total output noise in the band from fl to fh is the integral of the output noise density
over the given bandwidth, which can be approximated as

Vn,tot =

k0
∑

k=1

Vn,out(fk)

[

fh − fl

k0

]

(6.71)

6.1 Introduction to Operational Amplifiers 261

where Vn(fk) is the output noise at frequency fk, and

fk = fl + (fh − fl)

(

k

k0

)

(6.72)

Step 8 (Modeling of clipping): The transistors connected to the node that have the largest
swing dominate the distortion of the circuit. If the swing is too large, it may drive the transistor
into a linear, or cutoff region, resulting in voltage clipping. Clipping can be modeled by calculating
the maximum swing a node can tolerate, which is set by the DC operating point. In other
words, all the transistors should be in the correct operating region in order to give the proper
performance. The maximum swing the node can tolerate is equal to min(Vmax − V0, V0 − Vmin),
where Vmax and Vmin are the highest and lowest voltages, respectively, that the node can reach
without clipping, and V0 is the DC operating voltage of the node. The maximum swing for
Figure 6.14 can be expressed as:

⎧

⎨

⎩

VB − VTn5 < V1 < Vin1,2 − VTn3,4

Vin1 − VTn3 < V2 < VDD − |VTp1,2|
Vin2 − VTn2 < V3 < V2 − |VTp2|

(6.73)

Step 9 (Modeling of common-mode rejection ratio): The differential-mode gain Adm is calcu-
lated from the macromodel by setting vin1 = vid/2 and vin2 = −vid/2, and the common-mode
gain Acm is calculated from the macromodel by setting vin1 = vic and vin2 = vic. CMRR is the
ratio of the two gains.

Step 10 (Modeling of power-supply rejection ratio): Variations in the power-supply voltages
are propagated to the OpAmp output. If the small signal variation in the positive (VDD) and
negative (VSS) power supply voltages are denoted by vdd and vss, respectively, then the small
signal, OpAmp output voltage is:

vo = Admvid + A+vdd + A−vss (6.74)

where A+ and A− are the small signal gains from the positive and negative power supplies to the
output, respectively. The positive and negative power supply rejection ratio are defined as [3]

PSRR+ =
Adm

A+
(6.75)

and,

PSRR− =
Adm

A−
(6.76)

PSRR+ and PSRR− can be calculated from the macromodel excited by the variation (vdd and
vss) on the power-supplies, as shown in Figure 6.15.

Step 11 (Modeling of harmonic distortion): Circuit nonlinearity is modeled by including
nonlinear current sources at each voltage node, as shown in Figure 6.16. Nonlinear current
sources are symbolic functions of the nonlinearity coefficients [14] and small signal parameters of
the MOSFET transistor, which is described in detail in [16].

For example, the equivalent nonlinear current source for the drain current of transistor M3 is

in2
d3 = K2g3

v2
in1 + (K2gd3

+ K2d3
)TFv2

v2 + (K2gs3
+ K2d3

− K2s3
)TFv1

v1 (6.77)

262 Continuous-Time, Analog Building Blocks

C2

v3

vin2
(sCgd2−gmg2)gms4

v1
(sCgd4−gmg4)

v2
R3

C3 Csb2 gmd2

vdd

v1

(sCgs3+gmg3)

vin1 vin2

(sCgs4+gmg4) gmd3
v2

gmd4

v3
C1

R1
vss

gmd5Csb5

v2

(sCgd3−gmg3)

vin1

gms3
v1

sCgd2
v3

R2

Cgs1+Csb1

+Cgs2+Csb2
gmd1

vdd

Figure 6.15: Macromodel for single-stage OpAmp with power-supply variation.

C

v3

v2

Σ
k

Σ
k

Σ
k

Σ
k

Σ
k

Σ
k

Σ
k

(sCgs3+gmg3) (sCgs4+gmg4) gmd4gmd3

R1C1v3v2vin2vin1

v1

gms4(sCgd4−gmg4)

v1

(sCgd2−gmg2)
C3 R3v2vin2

k
Σ
k

Σ
kΣ i

(sCgd3−gmg3)

vin1

gms3

v1

sCgd2

C2 R2v3

i C C i C
nk

d3
nk
d4

sb3
nk

sb4
nk

d5

nk

db5
nk

k
Σ
k

Σ i d4

nk

d2i
nk

C db4
nk

db2
nk

C

k
Σ
k

Σ i
nk

d3 i d1

nk

db3
nk

C db1
nk

Figure 6.16: Nonlinear macromodel for single stage OpAmp [18] c© 2010 IEEE.

6.2 Continuous-Time Analog Building Blocks 263

IR2

ILIRo
IRin

IR1

+

− Vo

2R

R1
Vi

(a) (b)

Vp

Vn

R1

R2

Vi

gain (Vp − Vn
)

+

Rin

Vp

Vn

Vo

RL

R o

Figure 6.17: Inverting amplifier.

where,

TFv1
= (C3C2 + C3G2 + G3C2 + G3G2 + s2Cgd2Cgd3 + gmg2sCgd3)((−gmg3 − sCgs3)vin1

+ (−gmg4 − sCgs4)vin2) + (gmd3G3 + gmd4gmg2 + gmd4sCgd2 + gmd3C3)
(gmg3 − sCgd3)vin1 + (gmd4G2 + gmd4C2 + gmd3sCgd3)(gmg4 − sCgd4)vin2

TFv2
= (gms3C3 + gms3G3 + Cgd3sgms4)((−gmg3 − sCgs3)vin1 + (−gmg4 − sCgs4)vin2)

+ (G1G3 + G1C3 + C3sC1 + G3sC1 + gmd4gms)vin1 + (sCgd3G1 + s2Cgd3C1)
+gms3gmd4)(gmg4 − sCgd4)vin2

(6.78)

6.2 Continuous-Time Analog Building Blocks

This section provides a brief discussion of the basic analog circuits, inverting amplifiers, nonin-
verting amplifiers, summing amplifiers, difference amplifiers, integrators, and comparators. For
each analog block, the functioning of the circuit and the impact of nonidealities on the circuit
operation are also discussed.

6.2.1 Inverting Amplifiers

The behavior of an ideal inverting amplifier, shown in Figure 6.17(a), is described by the following:

Vo = gain Vi (6.79)

where gain ∈ R and gain < 0. Note that this behavior does not depend on frequency, or input
signal magnitude.

The inverter gain depends only on the values of the two resistors R1 and R2. For an ideal
OpAmp, voltages Vn = Vp = 0, and there is no current flowing into the differential OpAmp inputs.
Therefore, the currents iR1

and iR2
flowing through the resistors R1 and R2 are equal.

iR1
=

Vi

R1
= iR2

= − Vo

R2
(6.80)

and therefore,

Vo = gain Vi = −R2

R1
Vi (6.81)

264 Continuous-Time, Analog Building Blocks

The gain of the inverting amplifier is set by the ratio of the two resistors R1 and R2, and is
constant for the entire frequency range,

gain = −R2

R1
(6.82)

The impact of circuit nonidealities and noise on the inverter behavior, for example OpAmp
nonidealities, are treated next.

Impact of finite OpAmp gain, finite input resistance, and nonzero output re-
sistance. Real OpAmps have finite DC gain, finite input impedance, and nonzero output
impedance. To characterize the effect of OpAmp nonidealities on the noninverting amplifier’s
behavior, the OpAmp macromodel, shown in Figure 6.17(b), is used. Resistance Rin is the input
resistance of the OpAmp, Ro the output resistance, and gaino is the finite DC gain. The following
set of equations can be derived for this circuit:

IR1 = IRin
+ IR2

Vn − Vo = IR2
R2

Vn = IRin
Rin Vo = IL RL

Vi − Vn = IR1
R1 IR2

+ IRo
= IL

gain0 (Vp − Vn) = IRo
Ro + Vo Vp = 0

where currents IR1
, IR2

, IRin
, IRo

, and IL are the currents through the resistors R1, R2, Rin,
Ro, and RL. The unknowns are currents IR1

, IR2
, IRin

, IRo
, and IL, and voltages Vo and Vn.

The gain of the inverting amplifiers is equal to:

gain=− (gain0 R2 − Ro)RinRL

R1((gain0+1)Rin+R2)RL+RinRLRo+R1(R2+Rin+RL)Ro+R2Rin(RL+Ro)
(6.83)

The input resistance of the inverting amplifier is:

Rin =
Vi

IR1

(6.84)

=
R1 [(Rin(gain0+1)+R2)RL + (Rin+R2+RL)Ro]+Rin(RoRL+R2(Ro+RL))

(R2+Rin+gain0 Rin)RL+(R2+Rin+RL)Ro

The output resistance of the inverting amplifier is:

Rout =
Vo

IL
=

gain0 R2 − Ro

1 + gain0

1+
R2
RL

(6.85)

6.2 Continuous-Time Analog Building Blocks 265

Because Rin, RL are much larger than R1, and R2 is much larger than Ro, the above expressions
become

gain ≈ − R2
[

R1 + R1+R2

gain0

] = gainideal
1

1 +

[

1−gainideal

gain0

] (6.86)

Rinput ≈ R1 +
R2

1 + gain0
(6.87)

Routput ≈ R2

1 + 1
gain0

(6.88)

Table 6.1: Design tradeoffs for noninverting amplifier

OpAmp gain ǫ = 0.9 ǫ = 0.99 ǫ = 0.999

gain0 = 100 R2

R1
< 10 R2

R1
< 0.01 not possible

gain0 = 1,000 R2

R1
< 110 R2

R1
< 9.1 R2

R1
< 0.001

gain0 = 10,000 R2

R1
< 1, 110 R2

R1
< 100 R2

R1
< 9

Table 6.1 summarizes the design tradeoffs existing between (i) the accuracy of achieving a
specified gain for the inverting amplifier, (ii) the DC gain of the OpAmp, and (iii) the gain value
of the inverting amplifier. The accuracy is described by the value ǫ, such that

ǫ <
gainInv Amp

gainideal
< 1 (6.89)

Note that the ratio:

gainInv Amp

gainideal
< 1 (6.90)

is always less than one. For very high accuracy, for example ǫ = 0.999, it is required that the
OpAmp has a large DC gain, for example gain0 = 10, 000. Also, the maximum amplifier gain
that can be achieved is less than 9. If gain0 is small, the required accuracy cannot be achieved,
or is achieved at the expense of an extremely low gain (attenuation) for the inverting amplifier,
as shown in the table for gain0 values of 100 and 1,000. If the accepted accuracy can be less, for
example ǫ = 0.9, then OpAmps with smaller DC gain can be used, e.g., gain0 = 100, and higher
amplifier gains can be achieved by the inverting amplifier, as is illustrated by columns 3 and 4 in
the table.

Impact of OpAmp poles. OpAmp poles have a significant impact on the frequency behavior
of the inverting amplifier. The following analysis assumes that the OpAmp behavior is modeled
using a single (dominant) pole. Figure 6.18 presents the macromodel for the single pole model.
The analysis presents the magnitude and phase response of the inverting amplifier in the frequency
domain.

266 Continuous-Time, Analog Building Blocks

+

dominant pole

C P

gain (−)0

R

V

2R

p

Vp

i

1 R

Vn
Vo

Vp Vn

Figure 6.18: Impact of the OpAmp pole on the amplifier behavior.

Single pole model. Following an analysis similar to the previous case, the gain of an inverting
amplifier is

gain(f) = − gain0 R2 − Rp

R1(gain0 + 1 + R2

R1
+

Rp

RL

R1+R2+RL

R1
+

Rp

Xc(f)
R1+R2

R1
)

(6.91)

where

Xc(f) =
1

j ω Cp
=

1

j 2π f Cp
(6.92)

is the impedance of capacitor Cp.

The inverting amplifier gain can be approximated by

gain(f) ≈ − gainideal

(1 + R1+R2

gain0R1
+ R1+R2

gain0 R1

Rp

Xc)
(6.93)

Or, because gain0 R1 >> R1 + R2

gain(f) ≈ − gainideal

(1 +

[

R1+R2

gain0 R1

]

Rp

Xc)

= − gainideal

1 + 2πRpCpf

[

R1+R2

gain0 R1

]

j

(6.94)

The magnitude response in the frequency domain is equal to

|gain(f)| ≈ − gainideal
√

1 + (2πRpCpf
[

R1+R2

gain0 R1

]

)2
(6.95)

The phase response is expressed as

tan ϕ(f) ≈ −2πRpCpf

[

R1 + R2

gain0 R1

]

(6.96)

The 3 dB frequency f3dB of the inverting amplifier is given by

f3dB =
1

2πRpCp

[

gain0 R1

R1 + R2

]

= fOpAmp
3dB

[

gain0

1 + |gainideal|

]

(6.97)

6.2 Continuous-Time Analog Building Blocks 267

2
R2

R 2

+

i

V i
Vo

i
2

R1

2
nv

i
2

n
R 1 +

−

Figure 6.19: Noise analysis for inverting amplifier.

Equation shows that inverting amplifiers are characterized by gain-bandwidth tradeoffs. In-
creasing the gain of the amplifier decreases the bandwidth of the amplifier, and decreasing the
gain increases the bandwidth. For example, the performance of a very good OpAmp is about
gain0 = 104 V

V , and its 3dB frequency is ≈ f3dB = 10KHz. For these values,

f3dB =
105

1 + |gainideal|
kHz (6.98)

and, f3dB = 50MHz for gainideal = 1, and f3dB = 9MHz for gainideal = 10. For a more common
OpAmp, e.g., the 741 OpAmp, f3dB = 1KHz and gain0 = 103 V

V [2]:

f3dB =
103

1 + |gainideal|
kHz (6.99)

The 3 dB frequency of the inverting amplifier is f3dB = 500KHz for gainideal = 1, and f3dB = 90KHz
for gainideal = 10.

Impact of noise. Figure 6.19 shows the primary noise sources in an inverting amplifier.

Resistor R1 is in parallel with a noise current source with power density i
2
R1. Resistor R2 has in

parallel a noise current source with the power density i
2
R1, and the OpAmp introduces two noise

sources, the noise voltage source v2
n and the noise current source i

2
n. As previously discussed,

the noise of the two resistors is thermal noise and can be described as i
2
R1 = 4 k T/R1 and

i
2
R2 = 4 k T/R2, respectively.

Applying the superposition principle, the overall power density at the output of the inverting
amplifier is expressed as

v2
o = v2

n

(

1 +
R2

R1

)2

+ i
2
n R2

2 + i
2
R1 R2

2 + i
2
R2 R2

2 (6.100)

or

v2
o = v2

n

(

1 +
R2

R1

)2

+ i
2
n R2

2 +

(

4 k T

R1

)

R2
2 +

(

4 k T

R2

)

R2
2 (6.101)

268 Continuous-Time, Analog Building Blocks

0VOS

2

+

+

R

Vn−

i
V

inR gain

(Vp
− Vn)

R L

R o1R

Vo

Vp

Figure 6.20: Impact of offset voltage on inverting amplifier output.

Assuming an ideal OpAmp, the input-referred power density of the inverting amplifier is equal
to

v2
input−referred =

v2
n

(

1 + R2

R1

)2

+ i
2
n R2

2 +

(

4 k T
R1

)

R2
2 +

(

4 k T
R2

)

R2
2

(R2

R1)2
(6.102)

The amplifier SNR is

SNR = 10 log

[

v2
i

v2
input−referred

]

(6.103)

= 10 log

[

v2
i (R2

R1
)2

v2
n

(

1 + R2

R1

)2

+ i
2
n R2

2 + 4 k T
R1

R2
2 + 4 k T

R2
R2

2

]

(6.104)

The above expressions show the existence of a tradeoff involving the amplifier noise, gain, and
SNR. The overall power density at the output of the inverting amplifier is reduced by lowering
the value of resistor R2 and increasing the value of resistor R1. However, this results in low
amplifier gains. If the amplifier gain has to be large then the overall noise at the output also
increases. In addition, increasing R1 and/or decreasing R2, reduces the SNR.

Impact of offset voltage. Figure 6.20 shows the circuit used to analyze the impact of the
offset voltage VOS on the output voltage Vo of the inverting amplifier. The output voltage of the
inverting amplifier is

Vo = −
A(R2Vin + R1VOS + R2VOS) − RoVin + R1Ro

Rin
VOS

R1(gain0 + 1 + R2

Rin
) + Ro + R1 Ro

Rin
(1 + Rin+R2

RL
) + R2(1 + Ro

RL
)

(6.105)

This expression can be approximated by:

Vo ≈ R2Vin + (R1 + R2)VOS

R1 + R2

A + R1Ro

A (1
Rin

+ 1
RL

+ R2

RLRin
)

(6.106)

≈ gainidealVin − (1 + |gainideal|)VOS (6.107)

6.2 Continuous-Time Analog Building Blocks 269

V

OS
V

OS

0

0

+

A)

+

+

−

−

(a) (b)

o1

R
A

GR

RG

RA

i2

Vp

Vn

V

gain

RL

o1

o2

R

R

R

R

Vn

−

+

−

pV(

V Vn(
p

V

i2V

i1
V

Vo2
V

G

G

i1V

V

Vn

Vp

) A

gain

Figure 6.21: Instrumentation amplifier.

An error voltage at the amplifier output that increases with the gain of the amplifier is introduced
by the offset voltage. This error is greater for larger amplifier gains and therefore the signal
processing is less precise for large gains.

Instrumentation amplifiers are used for precise amplification of the difference of two input
voltages [2]. Figure 6.21(a) shows the schematics of an instrumentation amplifier based on the
circuit described in [11]. Figure 6.21(b) shows the macromodel for this circuit. The models used
for the two OpAmps describe only the offset voltage VOS and the finite gain, but, for simplicity
do not include finite input and nonzero output impedances, poles, distortion, and so on. Also,
it is assumed that the two OpAmps have similar characteristics, and hence their offset voltages
and gains are equal.

The output voltage of the instrumentation amplifier is expressed by

Vo =
RA + RG

RG + R1+RA+RG

gain0
+ 2 R1(RA+RG)

gain0RL

(Vi1 − Vi2) (6.108)

≈
(

1 +
RA

RG

)

(Vi1 − Vi2) (6.109)

This shows that the output voltage of the instrumentation amplifier does not depend on the
offset voltages. In reality, the effect of the offset voltage cannot be entirely removed due to the
mismatches existing between the characteristics of the two OpAmps and the values of the external
components. The gain of the circuit is fixed by the ratio RA

RG
.

270 Continuous-Time, Analog Building Blocks

0

R
V

RL

R 2

R
1

+

V
o

)

i +

−

(a) (b)

−

o

gain

(VnVp

V

R 2

R 1

iV Vp

in
R

V n

o

Figure 6.22: Non-inverting amplifier circuit.

6.2.2 Non-Inverting Amplifier

The behavior of ideal noninverting amplifier circuits is described by

Vo = gainideal Vi (6.110)

where gainideal is the gain of the noninverting amplifier, and gainideal ∈ R and gainideal > 0.

Figure 6.22(a) shows the schematics of noninverting amplifiers. For ideal OpAmps, the output
voltage is equal to the value:

Vo =

(

R1 + R2

R1

)

Vi =

(

1 +
R2

R1

)

Vi (6.111)

and

gainideal = 1 +
R2

R1
(6.112)

Impact of finite OpAmp gain, finite input resistance, and nonzero output resistance.

Figure 6.22(b) shows the circuit used to study the impact of these nonidealities on amplifier gain
which is given by:

gain =
[gain0(R1+R2)Rin+R1Ro]RL

R1(R2+Rin+ARin)RL+RinRLRo+R1(R2 + Rin+RL)Ro+R2Rin(RL+Ro)
(6.113)

and can be approximated by:

gain ≈ gainideal
1

1 + 1
gain0

gainideal

(6.114)

assuming that Rin, RL >> R1, R2, and Ro << gain0 R1.

6.2 Continuous-Time Analog Building Blocks 271

0

+
L

)

R o

R

nV

in
R

R 1

R 2
+

−

−

(a) (b)

R

o

1

2

3

gain

p

Vp
(Vn

1

2

V

V

R
2

1R

3

V

V

V

V
Vo

R

Figure 6.23: Summing amplifier circuit.

6.2.3 Summing Amplifier

The behavior of the summing amplifier is described by the expression

Vo = gain1 Vi1 + gain2 Vi2 (6.115)

Thus, the output voltage Vo is the weighted sum of the two voltage inputs, Vi1 and Vi2. Fig-
ure 6.23(a) shows the circuit of a summing amplifier. Following the same reasoning as for the
inverting amplifier circuit, the output voltage of the circuit is described by:

Vo = −
(

R3

R1
Vi1 +

R3

R2
Vi2

)

(6.116)

where gain1 = −R3

R1
, and gain2 = −R3

R2
. If R1 = R2 = R then gain = gain1 = gain2 = −R3

R , and

Vo = −R3

R (Vi1 + Vi2).

As with other amplifier types, the behavior of the ideal summing amplifier is not influenced
by frequency and the OpAmp nonidealities, e.g., finite gain and input impedance, nonzero out-
put impedance, offset voltage, distortion, and noise. However, the behavior of real circuits is
influenced by all of these factors. The impact of OpAmp nonidealities on the behavior of the
summing amplifier is discussed next.

Impact of finite OpAmp gain, finite input resistance, and nonzero output resis-
tance. Figure 6.23(b) shows the circuit for finding the influence of these nonidealities on the
summing amplifier output. The output voltage is given by:

Vo = −
[R3

R1
Vi1 + R3

R2
Vi2][1 − Ro

gain0R3
]

1 + 1
gain0

+ R3

gain0Rin
+

R3+Ro(1+
R3+R2

RL
+

R2
Rin

+
R2R3

RinRL
)

gain0R2
+

Ro+R3(1+
Ro
RL

)

gain0R1

(6.117)

If Rin >>R2, R3; RL >>Ro, R2, R3; gain0R1 >> Ro; gain0R2 >> Ro; and gain0R3 >> Ro then
Equation (6.117) can be reduced to:

Vo = −
[

R3

R1
Vi1 +

R3

R2
Vi2

][

1 +
1

gain0
(1 +

R3

R2
+

R3

R1
)

]

−1

(6.118)

272 Continuous-Time, Analog Building Blocks

0
+

)

(a) (b)

R 4

Vn

inR
+

−

R

−

R R

RR
V

V

Vo

2

43

1

2

1

R 2

(Vp Vn

1
V

2
V

1

3R

V
p

R o
V o

R
Lgain

Figure 6.24: Difference amplifier circuit.

6.2.4 Difference Amplifier

The output voltage Vo of the difference amplifier is the weighted difference of its two input
voltages. The behavior of the amplifier is specified by:

Vo = gain2 Vi2 − gain1 Vi1 (6.119)

where gain1 > 0 and gain2 > 0. If the two gains are equal then the difference amplifier is called
a differential amplifier.

Figure 6.24(a) shows the difference amplifier circuit. For an ideal OpAmp,

Vo =

[

1 + R2

R1

1 + R3

R4

]

Vi2 −
[

R2

R1

]

Vi1 (6.120)

with

gain1 =
R2

R1
(6.121)

and,

gain2 =
1 + R2

R1

1 + R3

R4

(6.122)

The impact of nonidealities can be computed by following a procedure similar to the noninverting
amplifier, and using the model in Figure 6.24(b).

6.2.5 Integrator

The output voltage of an integrator is the integral, over time, of the input voltage. The circuit’s
behavior, as a function of time, is given by:

Vo(t) = K

∫

Vi(t)dt (6.123)

where K is a constant.

6.2 Continuous-Time Analog Building Blocks 273

IR

IC

(a)

+

− Vo

C

R
Vi

+
Rin

Vp

Vi

(b)

gain0

(Vp−Vn)

R

C

Ro
Vo

RL

Vn

Figure 6.25: Integrator circuit.

Figure 6.25(a) shows an integrator circuit. The behavior of the ideal integrator circuit is
characterized by the following set of equations:

Vi(t) = IR(t) R (6.124)

IC(t) =
d Q(t)

dt
(6.125)

= −C
d Vo(t)

dt
(6.126)

IR(t) = IC(t) (6.127)

or

d Vo(t)

dt
= − 1

R C
Vi(t) (6.128)

Thus,

Vo(t) = − 1

R C

∫

Vi(t)dt (6.129)

Impact of OpAmp poles. Figure 6.26 shows the circuit used to study the impact of the
OpAmp pole on the integrator’s behavior. The OpAmp pole is represented by resistor Rp and
capacitor Cp, and the finite OpAmp gain is gain0. For this analysis, the input resistance Rin of
the OpAmp is assumed to be infinite, and the output resistance Ro to be zero.

The following set of equations describes the behavior of the single-pole integrator model in
the frequency domain

Vi − Vn = IR R
Vn − Vo = IC Xc

IR = IC

- gain0 Vn = IRp
Rp + Vo

IC + IRp
= Icp

+ IL

Vo = ICp
Xcp

Vo = IL RL

274 Continuous-Time, Analog Building Blocks

I
R IRp IL

IC

ICp

0
+

n

−

gain

Vn(Vp

i
V

R

C

R p
Vo

R L
C p

)Vp

V

Figure 6.26: Integrator circuit with a single-pole OpAmp.

After simplifications the integrator output is given by

Vo = −
gain0(1 − Rp

gain0 Xc
)XcXcpRL Vi

RL Rp(R+Xc)+R Xcp (gain0RL+RL+Rp)+Rp Xc Xcp+RL Xcp (Rp+Xc)
(6.130)

If RL >> Rp and gain0 R >> Rp, then

Vo ≈ −gainDC

(1 − Rp

gain0 Xc
)

1 + gain0
R
Xc

+
Rp

Xcp
+ R

Xc

Rp

Xcp

Vi (6.131)

≈ −gainDC
1

1 + gain0
R
Xc

+
Rp

Xcp
+ R

Xc

Rp

Xcp

Vi (6.132)

and the integrator’s transfer function becomes:

H(f) ≈ − gain0

1 + gain0
R
Xc

+
Rp

Xcp
+ R

Xc

Rp

Xcp

(6.133)

Note that the denominator of the transfer function H(f) is a second-order polynomial of frequency
f .

Example: If R = 250kΩ, C = 2nF , gain0 = 104 V
V , and k = RpCp = 0.025, then the OpAmp dom-

inant pole is near 10 Hz. The magnitude of the transfer function is:

|H(f)| ≈ 104

√

(1 − 0.493 10−3 Hz−2f2)2 + 0.986 f2 103
(6.134)

and the phase is

ϕ(f) ≈ arctan
0.3141 103 f

1 − 0.493 10−3Hz−2 f2
(6.135)

6.2 Continuous-Time Analog Building Blocks 275

VV

V

V

T1

High

V

Low

inT2

Vo

(c)

−−

+

Vin

a

o

V

Vo

R

R b

V ref

Vx in

R a

V

V x

R b

)b()a(

+

Figure 6.27: Schmitt trigger: (a) inverting circuit, (b) noninverting circuit, and (c) transfer
characteristics.

6.2.6 Comparator

The behavior of a comparator is described by:

Vo = Vhigh, if Vin > VT (6.136)

Vo = Vlow, if Vlow < VT (6.137)

where Vin and Vo are the input and output voltages, Vhigh is the high reference voltage, Vlow

is the low reference voltage and VT is the threshold voltage. If the input voltage is larger than
the threshold voltage then the comparator output is the high reference voltage, otherwise the
comparator output is the low reference voltage.

Schmitt triggers are comparators that switch, depending on different threshold voltages, to
the high and low reference voltages. The behavior of a Schmitt trigger is determined by

Vo = Vhigh, if Vin > VT1, (6.138)

Vo = Vlow, if Vin < VT2 (6.139)

Having different threshold voltages for switching to the two reference voltages is useful in
avoiding repeated switching of the circuit due to fluctuations of the input voltage. Figure 6.27(a)
presents an inverting Schmitt trigger, and Figure 6.27(b) shows a noninverting Schmitt trigger.

Figure 6.27(c) summarizes the behavior of the inverting Schmitt trigger. If the input voltage
exceeds the threshold voltage VT1 then the circuit output switches to Vhigh. As long as Vin < VT2

the circuit output remains Vhigh. If the input voltage exceeds the threshold value VT2 then the
output switches to the low reference value Vlow. If the input voltage is then lowered, the output
signal remains Vlow until the input voltage falls below the value VT1, at which point the output
swings back to Vhigh.

The equations for the two threshold values are:

VT1 = Vlow

[

RB

RA + RB

]

+ Vref

[

RA

RA + RB

]

(6.140)

VT2 = Vhigh

[

RB

RA + RB

]

+ Vref

[

RA

RA + RB

]

(6.141)

The width of the hysteresis function is given by:

VT2 − VT1 = (Vhigh − Vlow)
RB

RA + RB
(6.142)

276 Continuous-Time, Analog Building Blocks

Port 2 Analog drivers

c
o

m
p

a
ra

to
r b

u
s

references

Analog

Analog

MUX−es
input

Analog bus

System bus

Port 0

c
o

m
p

a
ra

to
r b

u
s

c
o

m
p

a
ra

to
r b

u
s

c
o

m
p

a
ra

to
r b

u
s

ACB02 ACB03ACB00

ASC10 ASC11 ASC12 ASC13

ASD20 ASD21 ASD22 ASD23

Analog AnalogAnalogAnalog
column 0 column 1 column 2 column 3

ACB01

Figure 6.28: Analog section of the PSoC architecture [17].

6.3 Reconfigurable Continuous-Time Analog Blocks

PSoC’s analog section includes an analog array with up to 12 analog blocks as shown in Fig-
ure 6.28. The analog blocks are grouped in columns, with three blocks in each column. Each
column includes continuous-time analog blocks (blocks ACB00 to ACB03 in the figure), and
switched-capacitor blocks (blocks ASC10, ASC12, ASC21, and ASC23, and blocks ASD20,
ASD11, ASD22, and ASD13 as shown in the figure).

The functionality and interconnection of each analog block can be programmed specifically for
each application. Each of the analog blocks can be connected to a variety of signals, e.g., different
reference voltages, analog bus (ABUS), ground (AGND), neighboring analog blocks, and input
ports. A block’s output can be routed to different destinations, such as to the analog bus and
neighboring blocks. The nature of the input and output signals supplied to each of the blocks in
an analog array is controlled by a set of programmable control registers.This subsection details
the continuous-time analog processing blocks. (The switched capacitor blocks are discussed in
the following chapter.) Figure 6.29 shows the topology of a reconfigurable continuous-time analog
processing block which includes both programmable amplifier gain and selection of the input and
output signals.

The following are the main parts of a continuous-time block:

• Control registers: The functionality and interfacing of each continuous-time analog block
is controlled by programming four registers called ACBxxCR0, ACBxxCR1, ACBxxCR2,
and ACBxxCR3 (xx indicates the analog block ACBxx). The ACBxxCR0 register pro-
grams the resistor matrix, the ACBxxCR1 register selects the input signals and outputs of
the block, and the ACBxxCR2 register determines the block’s functionality with respect
to comparator mode, testing, and power levels. The ACBxxCR3 register determines the
block’s functionality (e.g., amplifier or comparator) configuration as an instrumentation

6.3 Reconfigurable Continuous-Time Analog Blocks 277

LPCMPEN

ss

Block inputs

Block inputs

ABus
AGND

RefLo

RefHi

AGND SCBLK

Adjacent Column RBOTMUX

RTopMUX

CompCap
PWR

Gain

EXGAIN

RTapMUX
RBotMUX

TestMUX

AnalogBus

Gain

NMUX

PMUX

LOUT

GOUT

CBUS

OUT

V
Transparent,

PHI1, or PHI2

AGND

RefHi,RefLo

AGND

GIN

LIN
INSAMP

CMOUT

dd

V

ABUS

+

−

P
o

rt
 i

n
p

u
t

+

−

CBUS Driver

P
M

u
x
O

u
t

F
B

R
e

s
is

to
r

m
a

tr
ix

L
a

tc
h

Figure 6.29: Reconfigurable continuous-time analog block [17].

amplifier, etc. Figure 6.30 shows the structure of the four control registers associated with
each continuous-time, analog block.

The ACR00CR1 register at address 72H controls Block ACB00 ; the ACB01CR1 register
at 76H, Block ACB01 ; the ACB02CR1 register at 7AH Block ACB02 ; and the ACB03CR1
register at 7EH block ACB03.

• OpAmp: Each block includes a differential OpAmp for implementing the signal process-
ing functionality. The OpAmp mode is selected by setting bit CompCap - bit 5 of the
ACBxxCR2 register.

• Comparator: Each continuous-time analog block has a comparator that operates only if
the OpAmp is not enabled, and vice versa. The comparator is enabled by bit LPCMPEN ,
which is bit 3 of the ACBxxCR3 register. In the comparator mode bit CompCap is reset,
which disables the OpAmp. Bit CompCap corresponds to bit 5 in the ACBxxCR2 register.

• Resistor matrix: The resistor matrix determines the programmable gain of an analog block.
Bits RTapMUX are used to select the needed gain value from a set of 18 possible gain
values, or 18 different attenuation values. Bit EXGAIN decides between two gain domains:
standard gain which includes 16 of the 18 gain values, and high gain which has 2 possible
gains. Finally, bit Gain decides whether the analog block operates as an amplification block
with a gain magnitude larger than one, or as an attenuation block with a gain magnitude

278 Continuous-Time, Analog Building Blocks

A
n

a
lo

g
B

u
s

07 123456

ACBxxCR0

07 123456

ACBxxCR1

07 123456

ACBxxCR2

TestMux

TMUXEN

PWRCPhase

CLatch

CompCap

07 123456

ACBxxCR3

LPCMPEN

CMOUT

INSAMP

EXGAIN

RBotMUXPMUX

RTopMUX

RTapMUX

GainNMUX

CompBus

Figure 6.30: Control registers for PSoC continuous-time analog block.

INSAMPACB00 ACB01 ACB02 ACB03

ASC10 ASD11 ASC12 ASD13

ACB01ACB00 ACB02 ACB03

(a)

(b)

INSAMP

INSAMP INSAMP

Figure 6.31: Possible connections to the resistor matrix bottom node in CT blocks [17].

6.3 Reconfigurable Continuous-Time Analog Blocks 279

Table 6.2: Programmable connections to the resistor matrix bottom node [17].

bit INSAMP bits RbotM
(2 bits) ACB00 ACB01 ACB02 ACB03

1 0 00 ACB01 ACB00 ACB03 ACB02
2 0 01 AGND AGND AGND AGND
3 0 10 Vss Vss Vss Vss
4 0 11 ASC10 ASD11 ASC12 ASD13

Table 6.3: Programmable gains of a continuous-time analog block [17].

RTap bits (4 bits) EXGain bit Loss Gain Domain
1 0000 1 0.0208 48.000 High gain
2 0001 1 0.0417 24.000 High gain
3 0000 0 0.0625 16.000 Standard gain
4 0001 0 0.1250 8.000 Standard gain
5 0010 0 0.1875 5.333 Standard gain
6 0011 0 0.2500 4.000 Standard gain
7 0100 0 0.3125 3.200 Standard gain
8 0101 0 0.3750 2.667 Standard gain
9 0110 0 0.4375 2.286 Standard gain
10 0111 0 0.5000 2.000 Standard gain
11 1000 0 0.5625 1.778 Standard gain
12 1001 0 0.6250 1.600 Standard gain
13 1010 0 0.6875 1.455 Standard gain
14 1011 0 0.7500 1.333 Standard gain
15 1100 0 0.8125 1.231 Standard gain
16 1101 0 0.8750 1.143 Standard gain
17 1110 0 0.9375 1.067 Standard gain
18 1111 0 1.0000 1.000 Standard gain

less than one. Table 6.3 lists the possible amplification and attenuation values for an
analog block, and the corresponding configuration of bits RTapMUX and EXTgain. Bits
RTapMUX are the four bits 7-4 in the ACBxxCR0 register. Signal EXgain is bit 0 of the
ACBxxCR3 register. Finally, bit Gain is bit 3 in the ACBxxCR0 register.

In addition, different feedback structures can be programmed by selecting different top and
bottom nodes for the resistor matrix. The top node of the resistor matrix can be either the
supply voltage Vdd or the output voltage of the OpAmp. This selection is determined by
bit RTopMUX .

The bottom node of the resistor matrix is determined by two bits RBotMUX , which selects
one of five different possibilities: analog ground (AGND), VSS , a neighboring switched-
capacitor block (SCBLK), the resistor matrix of a neighboring continuous-time analog
block (RBotMUX), and (GIN (LIN)). Table 6.2 shows the control bit values that select

280 Continuous-Time, Analog Building Blocks

ACB03

ACB01ACB00

ACB00 ACB01

(a)

(b)

ASC10 ASD11 ASC12 ASD13

ACB02 ACB03

ACB02

Figure 6.32: Types of links between continuous-time and switched capacitor analog blocks.

one of four different options. Note that in each of the four cases bit INSAMP is reset.
Figure 6.31 shows the connection styles presented in Table 6.2.

The resistor matrices of neighboring blocks can be connected to each other to build an
instrumentation amplifier. Bit INSAMP has to be set for this purpose. Figure 6.31(a)
shows the continuous-time analog blocks involved in the connections for this case.

Bit RTopMUX is bit 2 of register ACBxxCR0 . Signals RBotMux are implemented using
bits 1-0 of register ACBxxCR0 . Bit INSAMP corresponds to bit 1 of the ACBxxCR3
register.

• Reconfigurable input connections to the inverting OpAmp input: An analog block’s func-
tional flexibility is provided by the ability to select the kind of signal applied to the inverting
input of the OpAmp. The signal selection is controlled by the three NMUX bits and an
8-1 multiplexer, also referred to as NMux [17], at the OpAmp input.3 The three NMUX
bits represent bits 5-3 of the ACRxxCR1 register corresponding to the analog block xx .

Table 6.4: Programmable inverting input connections of a CT analog block [17].

NMUX bits (3 bits) ACB00 ACB01 ACB02 ACB03
1 000 ACB01 ACB00 ACB03 ACB02
2 001 AGND AGND AGND AGND
3 010 RefLo RefLo RefLo RefLo
4 011 RefHi RefHi RefHi RefHi
5 100 Feedback Feedback Feedback Feedback
6 101 ASC10 ASD11 ASC12 ASD13
7 110 ASD11 ASC10 ASD13 ASC12
8 111 Port input Port input Port input Port input

Table 6.4 summarizes the types of input signals for different bit values for the NMUX bits.
Different kinds of inputs can be provided:

– Feedback connection coming from the resistor matrix.

3Refer to Chapter 3 for additional details on the interconnect for analog blocks.

6.3 Reconfigurable Continuous-Time Analog Blocks 281

ACB03

(a)

(b)

ASC10 ASD11 ASC12 ASD13

ACB00 ACB01

ACB01ACB00

ACB02 ACB03

ACB02

Figure 6.33: Types of links between continuous-time analog blocks.

– Connections to reference voltages, reference low (RefLo) and reference high (RefHi),
and to the analog ground (AGND).

– Signal connection to PSoC’s input ports.

– Connections to neighboring continuous-time and switched-capacitor, analog blocks as
shown in Figure 6.32. These connections are of three types: (i) horizontal links to
neighboring analog blocks on the same row as illustrated in Figure 6.32(a), (ii) vertical
links coming from blocks on the same column but on the next row. These links are
illustrated in Figure 6.32(b), and (iii) crossing connections that come from neighboring
blocks positioned on the diagonal, as shown by the dashed lines in Figure 6.32(b).
Other available connections are also shown.

Table 6.5: Programmable, noninverting, input connections of a analog block [17].

PMUX bits (3 bits) ACB00 ACB01 ACB02 ACB03
1 000 RefLo ACB02 ACB01 RefLo
2 001 Port input Port input Port input Port input
3 010 ACB01 ACB00 ACB03 ACB02
4 011 AGND AGND AGND AGND
5 100 ASC10 ASD11 ASC12 ASD13
6 101 ASD11 ASC10 ASD13 ASC12
7 110 ABUS0 ABUS1 ABUS2 ABUS3
8 111 Feedback Feedback Feedback Feedback

• Reconfigurable input connections to the noninverting OpAmp input: There is a similar
capability to program the nature of the signals applied to the positive input of the OpAmp.
Signal selection is controlled by the three bits PMUX applied to an 8–1 multiplexer called
PMUX [17]. Bits PMUX are bits 2-0 of the ACBxxCR1 registers, that also control the
reconfigurable connections to the inverting inputs.

Table 6.5 lists the input signals that can be applied to the noninverting input of the OpAmp.
These signals are of various types:

282 Continuous-Time, Analog Building Blocks

ABUS3

ACB01ACB00 ACB02 ACB03

Analog bus

ABUS0
ABUS1

ABUS2

Figure 6.34: Connections between analog bus and continuous-time analog blocks.

– Feedback connections that come from the resistor matrix.

– There are four types of links that connect neighboring analog blocks: (1) horizontal
links, (2) vertical links, (3) crossing links that are similar to the links for the inverting
OpAmp input as shown in Figure 6.33(a) and (b), and (4) extension links, shown by
dotted lines in Figure 6.33(b), that connect analog blocks ACB01 and ACB02 . These
links do not exist for the inverting inputs.

– Reference low, RefLo, signal and analog ground, AGND, that are applied to the
OpAmp noninverting input.

– Input signals that come from the input ports.

– Signals that come from the analog bus (cf. Figure 6.28). The analog Block ACB00
is connected to bit 0 (Bit ABUS0) of the analog bus, Block ACB01 to bit 1 (Bit
ABUS1) of the analog bus, Block ACB02 to bit 2 (Bit ABUS2) of the analog bus, and
Block ACB03 to bit 3 (Bit ABUS3) of the analog bus. Figure 6.34 illustrates these
connections.

• Programmable outputs: The output signal of a continuous-time block is produced at the
output of the enabled circuit, which is either an OpAmp or a comparator, but not both.
The output signal can be routed to several destinations as follows.

– Analog bus: The output signal is routed to PSoC’s analog bus ABUS . This is controlled
Bit AnalogBus, which is bit 7 of the ACBxxCR1 register4.

– Comparator bus: The output signal is applied to PSoC’s comparator bus CBUS. This is
programmed by setting bit CompBus, bit 6 of the ACBxxCR1 register. The connection
to the bus CBUS includes a latch circuit, which can be programmed to store the
information, or pass it through transparently. This functionality is selected by bit
CLatch, which is bit 6 of the ACBxxCR2 control register. In addition, this latch
can be programmed to be transparent, either for clock PHI1 (if bit CPhase is reset),
and for clock PHI2 (if bit CPhase is set). Bit CPhase corresponds to bit 7 in the
ACBxxCR2 register.

• Test mode: For testing purposes, some of the input signals applied to a continuous-time
block can be routed to the analog bus, and then to the chip pins, so that they can be
measured externally. Bit TMUXEN enables the test multiplexer. The two TestMUX bits
determine which of the block inputs is routed to the analog bus ABUS . The following signals
are selected for the four values of the TestMUX bits: (i) positive input for value “00”,
(ii) analog ground (AGND) for 01, Reference Low (RefLo) for value “10”, and Reference
High (RefHi) for “11”. The selected signal is routed to bit ABUS0 of the analog block for
Block ACB00, to bit ABUS1 for Block ACB01, to bit ABUS2 for Block ACB02, and to

4Chapter 3 provides additional details on the analog bus.

6.4 Conclusions 283

LPCMPEN=’0’

Continuous time analog block ACB01

Continuous time analog block ACB00

RBotMux = "00"
RTopMux = ’1’

EXGAIN = ’0’

EXGAIN = ’0’
RTAPMux = "0011"
RBotMux = "01"
RTopMux = ’1’

CMOUT = ’0’

CompBus = ’0’
AnalogBus = ’0’

AnalogBus = ’1’
CompBus = ’0’

CMOUT = ’0’

LPCMPEN=’0’
CompCap = ’1’

RTAPMux = "0011"

TMUXEN = ’0’

PWR = "10"

PWR = "10"

TMUXEN = ’0’

INSAMP = ’1’

PMux = "001"

PMux = "001"

NMux = "100"

NMux = "100"

INSAMP = ’0’

CompCap = ’1’

A

+

−

+

−

V V

V

A

B

i1

R

R

o1

i2

R

R

B

Figure 6.35: Instrumentation amplifier implemented using PSoC [17]. Courtesy of Cypress Semi-
conductor Corporation.

Bit ABUS3 for Block ACB03. In addition, bit CMOUT connects the common mode input
of the OpAmp to the corresponding analog bus bit.

Bit TMUXEN corresponds to bit 4 of the ACBxxCR2 register. Bits TestMux are bits 3-2
of the same register. Bit CMOUT is bit 2 of the ACBxxCR3 register.

• Power mode: The power mode of the OpAmp is determined by the two PWR bits. These
bits are bits 1-0 of the register. The following power modes are selected by the two bits:
(i) power off, if the bits are “00”, (ii) low power, if the bits are “01”, (iii) medium power
for bits “10”, and (iv) high power for bits “11”. These power levels are doubled in the high
bias mode [17].

Figure 6.35 shows the implementation of an instrumentation amplifier using two continuous-time
analog blocks and the programming of the four control registers for each of the two blocks [17].

6.4 Conclusions

The chapter has presented the basic concepts of continuous-time analog circuits, including circuit
operation and performance characterization in the presence of nonidealities and discussed PSoC’s

284 Continuous-Time, Analog Building Blocks

programmable continuous-time analog blocks for implementing application-specific analog circuits
by the use of reconfiguration.

The first part of the chapter introduced the defining characteristics of operational amplifiers
(OpAmps), including both ideal and real OpAmps. Ideal OpAmps, a theoretical concept, have
infinite gain and input impedance, and zero output impedance. In contrast, real OpAmps were
described by a set of nonlinearities, including finite, frequency-dependent gain, poles and zeros,
distortion, offset voltages, output saturation, slew rate, common mode gain, and noise. Under-
standing the impact of nonidealities on the OpAmp performance is very important, not only for
circuit design, but also for predicting the performance of the analog and mixed-signal systems,
for example analog filters, analog-to-digital converters and digital-to-analog converters.

Discussion centered on OpAmp structural macromodels as a vehicle for describing the func-
tionality and performance of OpAmps. As shown, macromodels are an efficient, yet accurate,
way of capturing the nonidealities of real OpAmps for system design. System simulation for
design and verification using macromodels is fast and applicable to complex subsystems, in con-
trast to transistor-level simulation, which is precise but very slow and hence useful only for small
circuits. The chapter also presented a systematic method based on decoupling to produce circuit
macromodels. This method can be programmed as a computer-aided design tool.

The second part of the chapter introduced basic OpAmp-based analog blocks, including invert-
ing and noninverting amplifiers, instrumentation amplifiers, summing and difference amplifiers,
integrators, and comparators, both with, and without, hysteresis. Estimates of the impact of the
OpAmp nonidealities on the performance of the basic blocks were also developed.

The third part of the chapter introduced PSoC’s programmable, continuous-time, analog
blocks. The discussion referred to the structure of the blocks, and the programmable control
registers for configuring an analog block. Each block can be configured with respect to its func-
tionality, attributes (e.g., gain), inputs, outputs, and power level. Each block also incorporates a
comparator. The operation of each block is controlled through four registers called ACBxxCR0 ,
ACBxxCR1, ACBxxCR2, and ACBxxCR3 . The programmable, switched, and continuous-time
capacitor blocks can be connected with each other to form larger networks, for example filters
and analog-to-digital converters.

6.5 Recommended Exercises 285

6.5 Recommended Exercises

1. Starting from Equation (6.2), find the OpAmp transfer function. Find the analytical expres-
sions of the magnitude and phase response for the two-pole model, and expressions for the 3 dB
frequency and unit gain frequency points.

2. Graph the magnitude and phase response using the expressions derived for Exercise 1. Assume
that the dominant pole is at 1 KHz, the secondary pole at 100 KHz and that the DC gain is
40 dB. Identify the position of the 3 dB and unity gain frequency points on your graphs.

3. For the OpAmp model in Exercise 2, assume that nonlinear distortion is approximated by
the first three terms in Equation (6.15). Plot the output voltage Vo of the OpAmp model for
different values of the nonlinearity coefficient a2.

4. Find the transfer function for the noninverting amplifier assuming a single-pole model for the
OpAmp. Study the effect of the pole position on the gain accuracy of the circuit.

5. For the summing amplifier, derive an analytic expression for the output voltage assuming a
one-pole model the OpAmp. Study the impact of the pole position on the amplifier’s frequency
response.

6. Derive an analytic expression, in the frequency domain, for the voltage Vo1 − Vo2 for the
instrumentation amplifier illustrated in Figure 6.21(a). Assume a single-pole model for the two
OpAmps. Find the conditions that minimize the impact of the two poles on the difference voltage.

7. Propose and implement a PSoC-based solution for offset compensation for high gain ampli-
fier circuits (gain > 100). (Additional information is available in the Application Note by V.
Grygorenko, Offset Compensation for High Gain Amplifiers, AN2320, Cypress Semiconductor
Corporation, October 28 2005.)

8. Estimate the impact of noise on a noninverting amplifier. Analyze the resulting SNR for
different noise power levels and amplifier gains.

9. Study the nonidealities caused by the finite gain of the inverting and noninverting amplifiers.
For the inverting amplifier shown in Figure 6.17, plot the relative gain error versus the ratio
R2/R1 for gains equal to 10, 100, 1,000, and 10,000. Explain your results. Repeat the exercise
for the noninverting amplifier shown in Figure 6.22. For the noninverting amplifier, plot the
relative gain error versus gain0 for R2/R1 equal to 1, 10, 100, and 1000. Compare your results
with the results in Table 6.1, and summarize the tradeoffs that exist between gain error, the
values of the resistances, and the gain0.

10. For the difference amplifier in Figure 6.24, determine the CMRR for ideal OpAmps and then
calculate the CMRR for the following OpAmp nonidealities: finite gain, offset voltage, noise, and
poles. Compare the two CMRR expressions. Discuss any tradeoffs.

11. Identify the different discrete outputs from the continuous-time, analog PSoC blocks, and the
destinations to which each of the outputs can be routed.

12. Explain the use of INSAMP (bit 1 of the ACBxxCR3 register).

13. Estimate the input-referred noise power density of the circuit in Exercise 1, assuming that
the OpAmp is ideal and noiseless, and using only dominant noise sources.

286 Continuous-Time, Analog Building Blocks

14. Find the analytical expressions for the magnitude and phase response of the circuit in Exercise
1, if the OpAmp has a DC gain of 40 dB and the dominant pole is located at 1KHz.

15. A first-order low-pass filter can be created by connecting capacitor C2 in parallel with resistor
R2, of the inverting amplifier circuit in Figure 6.17. Find the analytical expressions for the
magnitude and phase response, assuming that the OpAmp is ideal.

Bibliography

[1] R. J. Baker, CMOS Circuit Design, Layout, and Simulation, second edition, Hobo-
ken, NJ: J. Wiley Interscience, 2005.

[2] S. Franco, Design with Operational Amplifiers and Analog Integrated Circuits, New
York: McGraw Hill, 2002.

[3] P. Gray, P. Hurst, S. Lewis, R. Meyer, “Analysis and Design of Analog Integrated
Circuits”, fourth edition, Hoboken, NJ: J. Wiley & Sons, 2001.

[4] R. Gregorian, G. Temes, “Analog MOS Integrated Circuits for Signal Processing”,
J. Wiley & Sons, 1986.

[5] X. Huang, C. Gathercole, H. Mantooth, Modeling nonlinear dynamics in analog
circuits via root localization, IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, 50, (7), pp. 895–907, July 2003.

[6] C. Motchenbacher, J. Connelly, Low Noise Electronic System Design, Hoboken, NJ:
J. Wiley, 2000.

[7] G. Palumbo, S. Pennisi, High-Frequency harmonic distortion in feedback ampli-
fiers: Analysis and Applications, IEEE Transactions on Circuits and Systems - I:
Fundamental Theory and Applications, 50, (3), pp. 328–340, March 2003.

[8] B. Razavi, Design of Analog CMOS Integrated Circuits, New York: 2001.

[9] W. Sansen, “Distortion in elementary transistor circuits”, IEEE Transactions on
Circuits and Systems - II: Analog and Digital Signal Processing, 46, (3), pp. 315-
325, March 1999.

[10] D. Seguine, Lower Noise Continuous Time Signal Processing with PSoC, Application
Note AN224, Cypress, October 12 2004.

[11] D. Van Ess, Differential Amplifier, Application Note AN2367, Cypress, April 14
2006.

[12] D. Van Ess, Understanding Switched Capacitor Analog Blocks, Application Note
AN2041, Cypress, March 30 2004.

[13] S. M. Sze, Physics of Semiconductor Devices, Hoboken, NJ: J. Wiley & Sons, 1981.

[14] P. Wambacq, W. Sansen, Distortion Analysis of Analog Integrated Circuits, Boston:
Kluwer, 1998.

288 BIBLIOGRAPHY

[15] Y. Wei, A. Doboli, Systematic Development of analog circuit structural macromod-
els through behavioral model decoupling, Proceedings of the Design Automation
Conference (DAC), pp. 57–62, 2005.

[16] Y. Wei, A. Doboli, Systematic development of nonlinear analog circuit macromodels
through successive operator composition and nonlinear model ecoupling, Proceedings
of the Design Automation Conference (DAC), 2006, pp. 1023-1028.

[17] PSoC Mixed Signal Array, Technical Reference Manual, Document No. PSoC TRM
1.21, Cypress Semiconductor Corporation, 2005.

[18] Y. Wei, A. Doboli, Structural Modeling of Analog Circuits Through Model De-
coupling and Transformation, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 27, (4), pp. 712-725, April 2008.

Chapter 7

Switched-Capacitor Blocks

This chapter1 presents an introduction to switched capacitor (SC) circuits, and
PSoC’s programmable SC blocks.

The principle of operation of SC circuits is based on the fact that the movement of charge
stored on a capacitor can approximate the average current through a resistor. The behavior of
these circuits is influenced by a number of circuit nonidealities, such as the nonzero resistance of
“on” switches, channel charge injection, and clock feedthrough.

Basic SC circuits can be employed in a wide variety of circuits, including fixed gain amplifiers,
selectable gain amplifiers, comparators, integrators, and differentiators. In addition, the concept
of auto-zeroing is explained for SC amplifiers and the effect of the OpAmp finite gain and nonzero
switch resistance on the gain value is also discussed.

The second part of this chapter describes PSoC’s two types of programmable switched ca-
pacitance circuits (viz., type C and type D). Chapter 3 detailed the interconnect structure for
SC blocks, which can be connected to neighboring continuous-time and SC blocks to form more
complex networks (e.g., filters and ADCs). This chapter presents the structure and the control
registers of the programmable SC blocks. The functionality of each SC block can be programmed
as inverting/noninverting amplifiers, integrators, and comparators. Four programmable capaci-
tor arrays can be programmed to set the gain value of these blocks. The inputs, outputs, and
clocks of a SC block are also configurable.

Chapters 8 and 9 illustrate the use of PSoC’s programmable SC blocks to build analog filters
and ∆Σ analog-to-digital converters:

This chapter has the following structure.

• Section 1 provides an introduction into SC techniques.

• Section 2 describes the basic SC circuits.

• Section 3 describes PSoC’s programmable SC blocks.

• Section 4 provides concluding remarks.

1This chapter is based in part on material found in reference [4]. Other sections of this chapter are reproduced
from [7]. Courtesy of Cypress Semiconductor Corporation.

A. Doboli, E.H. Currie, Introduction to Mixed-Signal, Embedded Design,
DOI 10.1007/978-1-4419-7446-4 7, c© Springer Science+Business Media, LLC 2011

290 Switched-Capacitor Blocks

I

(a)

V

C

(c)

V

R

∆Q ∆Q

Φ1
Φ2

V

C

(b)

∆Q ∆Q

M1 M2

Φ
2

Φ
1

Figure 7.1: Moving charge with current stimulus.

7.1 Introduction To Switched Capacitor Techniques

Analog circuit design typically requires the use of resistors, capacitors, and integrated active
devices. Inductors have proven to be of less importance and interest because of size, cost and other
issues. It is the nature of integrated circuitry that small precision resistors are more difficult to
manufacture and consequently more expensive than capacitors [4]. Given that making capacitors
is easier and cheaper, it follows that techniques were developed to use capacitors instead of
resistors in high-quality analog circuits [1, 4, 5]. These techniques led to the development of
switched capacitor (SC) architectures that utilize capacitors and precise timing of switches to
control charge flow both to and from these capacitors to replace many of the resistors that would
otherwise be required.

Analog circuit design is largely about controlling the movement of charge between voltage
nodes. Figure 7.1 shows charge movement through a resistor and through a switched capacitor.
Equation (7.1) represents the current flow from a voltage potential to ground through the resistor
shown in Figure 7.1(a):

i =
V

R
(7.1)

Note that this current is a linear continuous movement of charge.

In Figure 7.1(b), when the φ1 switch is closed and the φ2 switch is open, the capacitor charges
to the full potential V. The equation for the amount of stored charge is:

Q = C V (7.2)

where the capacitance C is a constant. Thus for a given capacitor, the stored charge Q is
proportional to V, the applied potential.

When the switch φ1 is opened and switch φ2 is closed, the stored charge moves to ground.
For each sequential pair of switch closures, a quantum of charge is moved. If the switches are
opened and closed at the rate of fs, the charge quanta also move at this rate. Equation (7.3)
shows that the repetitive movement of charge is equivalent to an average current given by:

Iaverage =
Q

T
= Q fs = C V fs (7.3)

Unlike the resistor, this current is not actually a continuous movement of charge. The charge
move in quanta. However, this is not a problem for a system for which the signal is sampled at
the end of each switching cycle. Equation (7.4) shows that a switched capacitor is equivalent to

7.1 Introduction To Switched Capacitor Techniques 291

a resistor when they have equivalent ratios of voltage drop versus delivered current:

Requivalent =
V

Iaverage
=

1

C fs
(7.4)

Hence, the equivalent resistance is inversely proportional to the capacitance and the switching
frequency, and can be altered, merely by changing the switching frequency. The larger the
capacitance C, the larger the charge quanta, resulting in more current for the same value of fs,
and thus a smaller equivalent resistance. Increasing frequency fs causes more quanta to be
transferred per unit of time, resulting in a higher current and lower effective resistance.

Figure 7.1(c) presents a switched-capacitor circuit that uses the transistors M1 and M2 to
implement the switches φ1 and φ2. If the clock signal φ1 is high, then the gate to source voltage,
Vgs, of transistor M1 is larger than the threshold voltage of the transistor, therefore the transistor
is conducting, that is the switch is closed. During this time, clock φ2 is low, hence the gate to
source voltage Vgs of transistor M2 is lower then its threshold voltage, and the transistor is off,
that is the switch is open. The circuit operation is similar for clock φ1 low and clock φ2 high,
but now transistor M1 is off, and transistor M2 is on.

Figure 7.2 is a graph of the voltage Vc across the capacitor as a function of time, and for
different capacitance values and transistor widths. Note that the rise time of the voltage increases
with the capacitance value C, and decreases with the width W of transistor M1.

In addition, the following timing requirements must be satisfied for switches φ1 and φ2 for
the two circuits in the figure to exhibit similar behavior.

• Switches φ1 and φ2 can never be closed at the same time.

• Switch φ1 must have time to open before switch φ2 is closed.

• Switch φ2 must have time to open before switch φ1 is closed.

• The switching rate fs must allow enough time for the circuitry to fully charge and discharge
in the allotted phase cycle.

7.1.1 Nonidealities in Switched Capacitor Circuits

The main nonidealities that influence the behavior of switched capacitor circuits are (a) the
nonzero resistance of conducting MOSFETs, (b) channel charge injection, and (c) clock
feedthrough [1, 4, 5]. Other nonidealities (e.g., the impact of OpAmp nonidealities on the switched
capacitor circuit behavior) are discussed later in this chapter.

A. Nonzero Resistance of Conducting MOSFETs

Equations (7.1)–(7.4) characterize the average current through the conducting transistors, and
the final value of the voltage Vc across the capacitor. However, it is more difficult to find the
variations in time of the current conducted by the “on” transistor and the voltage across the
capacitor. Figure 7.2 shows the current ID and the voltage Vc as functions of time for different
values of the capacitor C and input voltage Vin. This section computes the analytical expression
for the voltage Vc as a function of time. The analysis refers to the Figure 7.1(c), in which
transistor M1 is conducting (clock φ1 is one), and transistor M2 is off (clock φ2 is zero).

292 Switched-Capacitor Blocks

Figure 7.2: Time behavior of switched capacitor circuits.

Expressed analytically, the voltage Vc is given by the solution of the following differential equation:

d

dt
[Vc(t)] =

ID(t)

C
(7.5)

The current ID through the transistor M1 depends on the operation region of the transistor,
which is either linear mode or saturation.

If transistor M1 is in the linear operation mode (i.e., Vgs − Vth > Vds then

d

dt
[Vc(t)] =

µn Cox W

2LC

[

(VDD − Vc(t) − Vth)(Vin − Vc(t)) −
(Vin − Vc(t))

2

2

]

(7.6)

After solving the differential equation, the voltage Vc, as a function of time, is given by:

Vc(t) =
2 K exp(AVin t) − A exp(A Vint) + exp(K t + K[1]) Vin

A exp(A Vin t) + exp(K t + K[1])
(7.7)

where

A =
µn CoxW

2 LC
(7.8)

7.1 Introduction To Switched Capacitor Techniques 293

and

K = A (VDD − Vth). (7.9)

The constant K [1] is determined by the initial value of the voltage Vc (the voltage at time 0).

If transistor M1 is in saturation mode, that is Vgs − Vth < Vds, and λ is neglected (channel
length modulation is the influence of the voltage Vds on the properties of the channel), then

d

dt
[Vc(t)] =

µn Cox W

2L C
(VDD − Vc(t) − Vth)2 (7.10)

After solving the differential equation, the voltage Vc, as a function of time, becomes:

Vc(t) =
(A t − C[1]) (VDD − Vth) − 1

A t − C[1]
(7.11)

where

A =
µn Coc W

2L C
(7.12)

and the constant C[1] depends on the initial value of the output voltage Vc, which as a function
of time, can be represented using Equations (7.7) and (7.11).

If Vin = VDD, then after the transistor turns on (Vφ1
≤ Vth), it enters the saturation mode.

Voltage Vc is described by Equation (7.11). Imposing the requirement that the voltage Vc is zero
when the transistor starts to conduct provides the condition for finding the constant C[1] :

C[1] = − 1

VDD − Vth
(7.13)

Note that in this case the transistor does not enter the linear operation mode. The condition for
linear mode imposes that Vgs–Vth > Vds, which requires that Vφ1 ≥ VDD + Vth. This condition
is never satisfied for a clock signal bounded by the supply voltage. The voltage Vc is described
by

Vc(t) = VDD − Vth − 1

A t − C[1]
(7.14)

This equation shows that the constant A must be large for the voltage Vc(t) to increase
quickly to the value VDD – Vth. This requires transistors with large width W. Also, note that
the voltage Vc(t) is bound by the value VDD – Vth.

B. Channel Charge Injection

In Figure 7.1, the charge transferred by transistor M1 to capacitor C is slightly different from
the value expressed in Equation (7.1). Channel charge injection is one of the main reasons for
the difference. Figure 7.3(a) indicates that when transistor M1 conducts a current, the channel
stores a charge equal to

Qchannel = W L Cox (VDD − Vin − Vth) [5] (7.15)

294 Switched-Capacitor Blocks

Φ
2

V
G

V
D

V
S

C
gd

C
gs

∆V
out

− −−− −

p−substrate

V
DS

V
GS

V
DG

source

n+

drain

n+

gate

(a)

channel C

(b)

M

Figure 7.3: (a) Channel charge injection and (b) clock feedthrough.

where W and L are the width and length of the transistor, C ox is the gate capacitance per unit
area, VDD is the gate voltage, and V th is the threshold voltage of the transistor.

Once transistor M1 is turned off, the transistor channel’s charge is transferred to capacitor C.
This causes an additional variation of the voltage across the capacitor equal to:

∆VC =
W L Cox(VDD − Vin − Vth)

C
[5] (7.16)

Moreover, because the threshold voltage is given by the expression:

Vth = VTH0 + γ
(
√

VSB + |2 φF | −
√

|2 φF |
)

(7.17)

the output voltage variation, due to channel charge injection, can also be expressed as

∆VC = −W L Cox

C

[

Vin − VDD + VTH0 − γ
√

2|φF | + γ
√

Vin + |2φF |
]

(7.18)

Note that the impact of channel charge injection on the voltage Vc is reduced by using
transistors with small width W. However, this decreases the value of the constant A, and increases
the time needed for the voltage to rise to the value VDD – Vth. Hence, there is a tradeoff between
the accuracy of SC-based processing and the speed of the processing [5].

C. Clock Feedthrough

Clock feedthrough represents the capacitive coupling of the clock signal applied to the MOSFET
gate and the MOSFET gate-to-source and gate-to-drain capacitances [4]. Figure 7.3(b) illustrates
the clock feedthrough phenomenon. Capacitance C gs is the gate-to- source capacitance of a
MOSFET, and capacitance C gd is the gate-to-drain capacitance.

If clock φ2 switches, then because of the capacitive coupling, the output voltage also changes
as shown by Equation [4]:

∆ Vout =
−Cgd,2 ∆ Vφ2

Cgd + C
(7.19)

7.2 Active Switched Capacitor Circuits 295

V
in

C
A

V
out

Φ
1

Φ
2

Φ
1

C
F

Φ
1

Φ
2

+

−

Figure 7.4: Switched capacitor fixed gain amplifier.

The effect of clock feedthrough is reduced for a small capacitance C gd, thus for transistors with
small width W. However, small width also lowers the speed of the circuits.

7.2 Active Switched Capacitor Circuits

This section presents the structure and operation of popular switched capacitor circuits, such
as amplifiers, comparators, integrators, and differentiators. The utilization of these circuits in
different applications is also illustrated.

7.2.1 Fixed Gain Amplifier

Figure 7.4 shows a simple architecture for a fixed gain amplifier. It consists of an OpAmp, an
input capacitor CA, a feedback capacitor CF , and five switches. This circuit has two distinct
phases of operation, namely (1) φ1 phase, the acquisition of signals, and (2) φ2 phase, the transfer
of charge:

• φ1 phase: Figure 7.5(a) shows that three switches are closed during the signal acquisition
(φ1) phase. This results in the OpAmp being configured as a follower. Negative feedback
causes the voltage at the inverting input to be close to ground potential. This deviation
from true ground potential (i.e., zero) is referred to as the OpAmp’s input offset error
(Voffset). The input side of capacitor CA is also at ground potential, as is the output
side of capacitor CF . Measurement of this offset error, and storage, on both capacitors
removes the effect this offset error may have on the output during the charge transfer
phase. Because this measurement is done automatically during the acquisition phase, it is
known as an “autozero” adjustment. During the transition period between the phases, all
the switches are open for a brief period and the charge stored on the capacitors does not
change.

• φ2 phase. Figure 7.5(b) shows that two switches are closed during the charge transfer (φ2)
phase. Equation (7.20) defines the amount of charge needed to charge the input capacitor
now that its input has been connected to input voltage V in:

∆Q = Vin CA (7.20)

296 Switched-Capacitor Blocks

0 Φ
2

Φ
1

Φ
1

V
offset

V
in

C
A

V
out

Φ
1

Φ
2

Φ
1

C
F

Φ
1

Φ
2

∆Q

(a) (b)

0

V
in

C
A

V
out

Φ
2

Φ
1

C
F

+ +

−−

Figure 7.5: Set for (a) signal acquisition (φ1) phase and (b) charge transfer (φ2) phase.

This charge has no other path to take except by the feedback capacitor. Therefore, the
feedback capacitor must receive the same amount of charge. Equation (7.21) describes how much
the output voltage will change due to this transfer of charge:

Vout = − ∆Q

CF
(7.21)

Combining equations (7.20) and (7.21) to produce the amplifier’s transfer function, yields:

Gain =
Vout

Vin
= − CA

CF
(7.22)

The result is an inverting amplifier with its gain determined by the ratio of its two capacitors.
Note that the output voltage is available after the transfer of charge and near ground (Voffset)
during signal acquisition.

The following paragraph explains the “auto-zeroing” behavior of the amplifier in more detail.
The charge stored at the end of the acquisition phase, on the capacitors CA and CF , is described
by the following equations.

Qi
A = CA Voffset (7.23)

Qi
F = CF Voffset (7.24)

The output voltage is equal to Voffset.

The charge stored at the end of the transfer phase on the two capacitors is equal to

Qf
A = −CA (Vin − Voffset) (7.25)

Qf
F = CF (Voffset − V f

out) (7.26)

Due to the charge conservation law, the charge at the end of the acquisition phase and transfer
phase is equal:

Qi
A + Qi

F = Qf
A + Qf

F (7.27)

7.2 Active Switched Capacitor Circuits 297

Hence, the amplifier output voltage at the end of the transfer phase is expressed as

V f
out = Voffset −

Qf
F

CF
= Voffset −

Qi
A + Qi

F − Qf
A

CF
(7.28)

V f
out = Voffset −

(CA + CF)Voffset − CA(Voffset − Vin)

CF
(7.29)

V f
out = −CA

CF
Vin (7.30)

Expression (7.30) shows that the amplifier output voltage, at the end of the transfer phase does
not depend on the value of the offset voltage.

Example (Impact of the MOSFET nonzero resistance on the amplifier transfer function):
This exercise analytically characterizes the modification of the amplifier transfer function due to
the nonzero resistance of the MOSFET transistors used to implement the switches in a switched
capacitor design. Equations (7.20)–(7.22) assumed a zero resistance of the MOSFETSs controlled
by clock φ2 in Figure 7.5(b). In reality, conducting transistors have a nonzero resistance. Let
Ron1 be the “on” resistance of the MOSFET, between input and capacitor CA, and Ron2 the
“on” resistance of the MOSFET connected between capacitor CF and output.

Assuming that the OpAmp has zero offset voltage, the following differential equation describes
the voltage variation across the capacitor CA:

d

dt
[VCA

(t)] =
1

Ron1 CA
(Vin − VCA

(t)) (7.31)

Thus,

VCA
(t) = Vin

(

1 − exp

[

− t

Ron1 CA

])

(7.32)

and the charge stored on a capacitor CA, as a function of time, is given by:

Q(t) = CA Vin

(

1 − exp

[

− t

Ron1 CA

])

(7.33)

Finally, the output voltage as a function of time is given by

Vout(t) = −CA

CF
Vin

(

1 − exp

[

− t

Ron1 CA

])

− Ron2

Ron1
Vin exp

[

− t

Ron1 CA

]

(7.34)

Vout(t) = −CA

CF
Vin + Vin exp

[

− t

Ron1 CA

](

CA

CF
− Ron2

Ron1

)

(7.35)

The speed of the circuit increases with the value
[

CA

CF
− Ron2

Ron1

]

/[Ron1 CA]. Hence, for a fixed
gain, the product Ron1 CA must be large for a fast circuit.

298 Switched-Capacitor Blocks

−

()

Vin

CA

Vout

CF

Vx

2Φ

2Φ

V
x

A DC V
x

gain 0

Figure 7.6: Impact of finite OpAmp gain of the SC amplifier performance.

100 101 102 103 104
–100

–10–1

A
DC

G
a
in

C
A
/C

F
=1/32

C
A
/C

F
=4/32

C
A
/C

F
=8/32

C
A
/C

F
=16/32

Figure 7.7: Dependency of the amplifier gain on the OpAmp’s finite gain.

Example (Impact of the finite OpAmp gain on the amplifier transfer function). This example
describes the effect of the finite OpAmp gain on the transfer function of the amplifier. Figure 7.6
shows the circuit used in the analysis, in which the OpAmp was replaced by its small-signal
model. The model assumes that the input impedance of the OpAmp is infinite. The charge
conservation law applied after the end of the transfer phase results in the following equation:

(Vin − Vo

gain0
) CA = +(

Vo

gain0
− Vo) CF (7.36)

gain0 is the finite OpAmp DC gain. The transfer function of the circuit is expressed as

Vo

Vin
= −CA

CF

[

1

1 − 1
gain0

+ CA

CF gain0

]

(7.37)

7.2 Active Switched Capacitor Circuits 299

C
A

V
out

V
in

Φ
1

C
F

Φ
1

Φ
2

Φ
2

Φ
1

+

−

Figure 7.8: Amplifier with input switches swapped.

Thus,

Vo

Vin
= Gain

[

1

1 − 1
gain0

− Gain
gain0

]

(7.38)

where Gain is the amplifier gain for an ideal OpAmp (with infinite OpAmp gain). Hence, the
gain precision of amplifiers decreases with the value of the amplifier gain and the OpAmp gain.
Figure 7.7 is a graph of the dependency of the amplifier’s gain on the OpAmp’s finite DC gain
for different values of the ration CA/CF .

Selectable gain polarity amplifier. The circuit in Figure 7.8 is similar to that shown in Fig-
ure 7.4 except that the input switches have swapped phase. Now the input capacitor acquires
Vin during the acquisition phase φ1. The charge needed to pull the input back to ground during
the transfer phase φ2 moves in the opposite direction to that of the first example. This causes
the output voltage to also move in the opposite direction. The result is a positive gain amplifier
with a gain defined in Equation (7.39):

Gain =
Vin

Vout
=

CA

CF
(7.39)

Figure 7.9 shows the modification that allows the correct phasing for both positive and negative
gain operation. For the rest of these examples the control signal Sign is assumed to be positive.
That is, the CA acquires Vin during φ1 and moves back to zero during φ2.

7.2.2 Comparators

Figure 7.10 shows the structure of a switched capacitor comparator. As compared to the am-
plifier, the comparator does not have the structure including the feedback capacitor CF andthe

300 Switched-Capacitor Blocks

Φ
2

C
A

V
out

Φ
1

C
F

Φ
2

Φ
1

V
in

Sign

Φ
1

+

−

Figure 7.9: Selectable gain polarity amplifier.

V
out

C
A

Φ
1

Sign

Φ
2

Φ
1

V
in

Figure 7.10: Switched capacitor comparator.

two switches. Intuitively, this is equivalent to setting the capacitance value, CF , to zero in
equation (7.39) (the amplifier’s gain as the ratio of the values of the two capacitors). If the
feedback capacitance is zero, then the gain is infinite, and the circuit acts as a comparator.

The functionality of the comparator can be explained based on the charge transfer during
operation. During the acquisition phase (switches φ1 are closed), the input voltage V in is con-
nected to the capacitor CA, and the charge Q = CA Vin is stored on the capacitor. The OpAmp
is configured as a voltage follower, and hence the output voltage V o is zero. During the transfer
phase (switch φ2 is closed), the capacitor CA, charged with charge Q, applies the voltage Vin to
the OpAmp input. Because of the very large OpAmp gain, the circuit output is saturated to the
corresponding positive or negative supply voltage (depending on whether the input voltage, V in,
is positive or negative).

7.2.3 Switched Capacitor Integrator

Figure 7.11 shows a switched capacitor integrator. Unlike a fixed gain amplifier, the feedback
path of the circuit does not have the switch φ1 to ground. This keeps the charge on the feedback
capacitor CF from being removed during the acquisition phase φ1 while still allowing the transfer
of the input charge during phase φ2.

During the acquisition phase, the circuit is configured as shown in Figure 7.12(a). The charge
stored on capacitor CA is given by

Q = CA Vin (7.40)

7.2 Active Switched Capacitor Circuits 301

Φ
1

C
F

Φ
2

Φ
2

Φ
1

V
in

Sign

V
out

C
A

Figure 7.11: Switched capacitor integrator.

Sign

Φ
1

V
in

C
A

V
out

C
F

Φ
2

Φ
2

Vin

Φ
1

Φ
1

Sign

(a) (b)

C
A

Vout

Φ
1

C
F

Φ
2

Φ
2

+

−

Figure 7.12: Integrator operation.

Figure 7.12(b) shows the circuit configuration during the transfer phase φ2. The charge stored
on capacitor CA is transferred onto capacitor CF , because both terminals of capacitor CA are
connected to ground. The overall charge stored on capacitor CF (after the transfer) is expressed
by the following:

Qtot = Q′ + CA Vin (7.41)

where Q′ is the charge on the capacitor CF before the transfer phase. The output voltage, after
the transfer phase, Φ2, is given by

Vout(t) = Vout(t − Ts) +
CA

CF
Vin (7.42)

V out(t) is the output voltage at the end of the current transfer phase, and Vout(t – Ts) is
the voltage at the end of the previous transfer phase (thus, the output voltage corresponding to
charge Q′ is stored on capacitor CF). T s is the sampling period of the circuit. Given that

d

dt

[

Vout(t)
]

≈ Vout(t) − Vout(t − Ts)

t − (t − Ts)
=

CA

CF

Vin

Ts
(7.43)

thus,

d

dt

[

Vout(t)
]

≈ CA

CF
fs Vin (7.44)

302 Switched-Capacitor Blocks

C
A

V
out

Φ
1

C
F Φ

2

Φ
1

V
in

+

−

Figure 7.13: Switched capacitor differentiator.

Equation (7.44) shows that the switched capacitor circuit behaves as an integrator with a gain
equal to CA/CF fs, where f s is its sampling frequency.

A similar result is obtained if the z transform is applied to Equation (7.42). Then

Vout(z) = Vout(z) z−1 + Vin(z)
CA

CF
(7.45)

Vout(z) =

(

z

z − 1

)

CA

CF
Vin(z) (7.46)

Because

z = exp[−s Ts] (7.47)

and,
(

z

z − 1

)

≈ 1

s Ts
(7.48)

the transfer function of the circuit is given by:

Vout

Vin
=

1

s

CA

CF
fs (7.49)

Equation (7.49) is the transfer function of an integrator with a gain of CA/CF fs, as shown by
the previous analysis. Equations (7.44) and (7.49) state that the circuit is an adjustable gain
integrator for which the gain can be varied by changing the capacitor ratio CA/CF .

7.2.4 Switched Capacitor Differentiator

Figure 7.13 shows that the input is permanently connected to the input capacitor. This topology
makes the feedback capacitor function as a resistor and the input capacitor as a capacitor. It
does allow for the operation shown in equation (7.50):

(Vin − Vin z−1) CA = −Vout CF (7.50)

Manipulating equation (7.50) results in the transfer equation (7.51):

Gain =
Vout

Vin
= − (1 − z−1)

CA

CF
= − s

CA

CF

1

fs
(7.51)

Equation (7.51) shows that this is an adjustable differentiator.

7.2 Active Switched Capacitor Circuits 303

ARefMux

Φ
1

Φ
2

Φ
1

V
in

V
ref+

V
ref−

Sign

C
A

V
out

Φ
1

C
F

Φ2

+

−

Figure 7.14: Improved reference selection for noninverting amplifier.

7.2.5 Reference Selection

So far, all of the examples discussed have had their input voltage referenced to ground. Although
ground is often a convenient reference point, other reference points are possible. Figure 7.14
shows the noninverting amplifier with an improved reference selection. Signal ARefMux allows
for the selection of two other references besides ground. Equations (7.52)-(7.54) define the output
voltage for an amplifier. The equations assume that the reference is ground, Vref+, or Vref−,
respectively:

Vout =
CA

CF
Vin (7.52)

Vout =
CA

CF
(Vin − Vref+) (7.53)

Vout =
CA

CF
(Vin − Vref−) (7.54)

The first expression was already justified for the traditional noninverting amplifier. The
second expression is explained next. During the acquisition phase (switches φ1 are closed),
the capacitor CA is charged with the charge Q = CA V in. Let’s assume that the selection
signal ARefMux selects the input voltage Vref+. During the transfer phase, as the capacitor CA

is charged with the charge Q = CA V ref+, the charge CA (Vin - Vref+) is transferred to the
capacitor CF . The resulting output voltage is the following.

Vo =
CA

CF
(Vin − Vref+) (7.55)

The third equation can be explained by similar reasoning.

Example (Two-bit ADC [7]. Courtesy of Cypress Semiconductor Corporation): Combining the
comparator in Figure 7.10 with the reference selection in Figure 7.14 results in a comparator with
multiple compare points shown in Figure 7.15.

304 Switched-Capacitor Blocks

ARefMux

Vref−

Φ1

Sign

C
A

Vout

2
Φ

Φ 1

Vin

Vref+

Figure 7.15: Simple two bit analog-to-digital converter [7]. Courtesy of Cypress Semiconductor
Corporation.

ARefMux selects

Vout is high

Vref+ Vref−

State
1

State
2

State
3

ARefMux selects ground

ARefMux selects

Vout is low

Figure 7.16: Simple two bit analog-to-digital converter [7]. Courtesy of Cypress Semiconductor
Corporation.

With proper control of signal ARefMux, it is possible to determine which of the following
four conditions is satisfied by voltage V in: (a) greater than voltage V ref+: (b) less than voltage
V ref+, but greater than ground: (c) less than ground, but greater than voltage V ref− and
(d) less than voltage V ref−. These four situations make this circuit a two-bit analog-to-digital
converter (ADC).

The functioning of the two-bit ADC corresponds to the three states of the finite state machine
(FSM) illustrated in Figure 7.16. In state one, signal ARefMux selects ground as the reference
signal. The output of the comparator is high if the input voltage is greater than ground, and
the comparator output is low otherwise. Then, if the input signal is larger than ground the FSM
moves to state two, otherwise the FSM goes to state three. In state two, the signal ARefMux
selects the signal V ref+ as the reference signal. If the input voltage is larger than the refer-
ence V ref+ then the comparator output is high, and the comparator output is low otherwise.
Similarly, in state three, the control signal ARefMux selects the signal V ref− as reference. The
comparator output is high if the input voltage is larger than the reference V ref−, and the output
is low if the input is smaller than signal V ref−. The FSM returns to state one after being in
states two and three.

7.2 Active Switched Capacitor Circuits 305

ARefMux

Φ
2

Φ
1

V
in

V
ref+

V
ref−

V
out

Sign

C
A

Φ
1

C
F

Φ
2

Φ
1

+

−

Figure 7.17: Analog to digital modulator [7]. Courtesy of Cypress Semiconductor Corporation.

In conclusion, the values of the two output bits encode the following four situations:

• Value “00”: the input voltage is smaller than the reference V ref−.

• Value “01”: the input voltage is smaller than ground and larger than the reference V ref−.

• Value “10”: the input voltage is larger than ground, and smaller than the reference V ref+.

• Value “11”: the input voltage is larger than the reference V ref+.

Section 7.3 discusses the PSoC-based implementation of the two-bit ADC.

7.2.6 Analog-to-Digital Conversion

A slight modification of the reference selection allows this circuit to function as an analog-to-
digital modulator. Figure 7.17 shows that a comparator has been added to the output and
connected to the reference selection multiplexer.

Selecting the proper signal ARefMux value allows the output of the comparator to determine
the reference voltage. The relationship is:

• The reference is set to voltage V ref+ when the comparator is high (positive output value).

• The reference is set to voltage V ref− when comparator is low (negative output value).

The switches associated with the feedback capacitor are configured to make an integrator.
The comparator control causes a reference, with the same polarity as the voltage V out, to be
subtracted from the input. This negative feedback attempts to move the voltage V out back
towards zero.

Assume that:

306 Switched-Capacitor Blocks

• The initial condition of voltage V out is zero.

• The switch cycle is preformed a number of n times.

• Voltage V out is greater than zero (comparator is high) a number a of those times. The
frequency, f s, is constant.

Then, the output voltage is expressed as

Vout =
CA

CF

[

n Vin − a Vref+ − (n − a) Vref−

]

(7.56)

If the references are of equal but opposite polarity, then solving for voltage Vin results in the
following equation

Vin = Vref

(

2a − n

n

)

+ Vout
1

n

CF

CA
(7.57)

Because,

Vref = Vref+ = −Vref− (7.58)

Voltage V in is a function of voltages V ref and V out.

As stated earlier, the negative feedback causes voltage V out to move back towards ground
every cycle. This makes voltage V out less than the value CA/CF Vref . As the value n becomes
larger, the contribution of voltage V out to Equation (7.57) becomes negligible. This allows for a
more simplified Equation (7.59):

Vin ≈ Vref

(

2a

n
− 1

)

(7.59)

assuming that,

Vout <
CA

CF
Vref ≈ 0 (7.60)

Voltage V in is not dependent on the ratio of the two capacitors. It is only a function of
voltage V ref , and the ratio of value a and value n. Measuring voltage V in is just a function of
counting the number of times the comparator is high (value a) during a sequence of n switch
cycles. The range is -Vref (for a = 0) to +V ref (for a = n), and the resolution is 2 Vref/n. The
longer the period is (larger value n) the better the resolution of the voltage measurement.

7.3 Switched Capacitor PSoC Blocks

PSoC’s switched capacitor architecture is actually quite versatile, and can provide many different
functions simply by altering the circuit’s switch closure configurations. This architecture is used
as the basis for the switched capacitor blocks in the PSoC microcontroller, and is implemented
with Type C and Type D switched capacitor blocks [6]. However, there are small but significant
differences between the various block types.

7.3 Switched Capacitor PSoC Blocks 307

Port 2 Analog drivers

c
o

m
p

a
ra

to
r b

u
s

references

Analog

Analog

MUX−es
input

Analog bus

System bus

Port 0

c
o

m
p

a
ra

to
r b

u
s

c
o

m
p

a
ra

to
r b

u
s

c
o

m
p

a
ra

to
r b

u
s

ACB02 ACB03ACB00

ASC10 ASC11 ASC12 ASC13

ASD20 ASD21 ASD22 ASD23

Analog AnalogAnalogAnalog
column 0 column 1 column 2 column 3

ACB01

Figure 7.18: The analog section of the PSoC architecture [6].

Table 7.1: Control register addresses [6].

ASC10 ASC12 ASC21 ASC23
register ASCxxCR0 80H 88H 94H 9CH
register ASCxxCR1 81H 89H 95H 9DH
register ASCxxCR2 82H 8AH 96H 9EH
register ASCxxCR3 83H 8BH 97H 9FH

7.3.1 Type C Switched Capacitor Blocks

Figure 7.18 shows the array of the programmable analog PSoC blocks. There are four columns of
blocks with each column having its own analog bus, comparator bus, and clock to generate the φ1

and φ2 clocks. Chapter 3 detailed the analog interconnect structure, and also the available system
clocks. (Additional discussion of the interconnections between continuous-time and switched
capacitor blocks is provided in Chapters 3 and 6.) Each column contains one type C switched
capacitor block and one type D switched capacitor block for a total of eight switched capacitor
blocks.

The type C switched capacitor block, shown in Figure 7.19, consists of the following elements:

• Control registers: Four control registers are available for each type C block . These regis-
ters program the (i) functionality, (ii–iii) input and output configuration, (iv) power mode,
and (v) sampling procedure of each switched capacitor type C block. The registers corre-
sponding to block xx are denoted as ASCxxCR0, ASCxxCR1, ASCxxCR2, and ASCxxCR3.
Table 7.1 presents the addresses of the control registers for each of the four type C blocks.

308 Switched-Capacitor Blocks

(M10)

BCap

C inputs

BQTAP

B inputs

ACMux

RefLo

RefHi

AGND

A inputs

CB

AB

O

x AutoZero

FCapCCap

ACap

CBUS
Driver

Modulation

ASign

inputs

AnalogBus x

Mod bit control

ARefMux

BMuxSC

+ AutoZero

x !AutoZero

(comparator)

(M1)

(M2)

(M3)

(M4)

(M6)
(M 5)

PWR
(M7)

(M9)

(M8)

x FSW0

2Φ

Φ 1

Φ 1

2Φ

Φ 1

2Φ

Φ 12Φ

2Φ(+ !AutoZero)

x FSW1

+

Φ 1

2Φ

Φ 1

−

+

Figure 7.19: Type C Switched capacitor block [6].

• OpAmp: The OpAmp is the central component of a type C switched capacitor block. The
power mode of the OpAmp can be selected as one of four possible power states, i.e., off,
low, medium, and high. Two control bits, PWR, are used for this purpose, such as, bits
1–0 of the related register ASCxxCR3. If the bits are “00” then the OpAmp is off. The
OpAmp is in low power mode if the control bits are set to “01”, in medium power mode, if
set to “10”, and high power mode, if set to “11”.

The functionality of the switched capacitor block is programmed by reconfiguring the topol-
ogy of the network surrounding the OpAmp. Bits FSW1 and FSW0 aid in determining
the block’s functionality.

– Bit FSW1: This is a one-bit field that determines whether capacitor array FCap is
connected. If the bit is zero then FCap capacitor is not connected, and the OpAmp
functions as a comparator. If the bit is set, capacitor FCap becomes the feedback path
so that the circuit can function either as a gain stage, or an integrator. Bit FSW1
corresponds to bit 5 of register ASCxxCR3.

– Bit FSW0: This is a one-bit field that determines whether the capacitor array FCap is
discharged during clock phase φ1. If the bit is set to one, capacitor FCap is discharged,
and the OpAmp functions as a gain stage. If the bit is set to zero, the capacitor is not
discharged, and the circuit functions as an integrator. Bit FSW0 corresponds to bit 4
in register ASCxxCR3.

• Programmable capacitor matrices: Each PSoC block has four programmable capacitor ar-
rays, called ACap array, BCap array, CCap array, and FCap array [6]. The first three

7.3 Switched Capacitor PSoC Blocks 309

capacitor arrays appear in the input of the OpAmp, and the FCap array is in the feedback
path of the OpAmp.

The programmable features of the ACap capacitor array consist of the following items.

– ACap capacitor value: The value of this capacitor is programmed by bits 4-0 of the cor-
responding register ASCxxCR0. These five bits determine a capacitance value ranging
from 0 to 31 units.

– ASign bit: A one-bit field sets the gain of the block to either positive or negative. The
control bit corresponds to bit 5 of register ASCxxCR0. The block gain is positive if the
bit is zero, and negative if the bit is one, similar to the scheme shown in Figure 7.9.
For a positive gain, the input signal (if selected) is sampled by clock φ1, or if the
reference signal is selected then it is sampled by clock φ2. The reference selection
is implemented in a similar manner to that of the selectable gain polarity amplifier
shown in Figure 7.14.

– AutoZero bit: This is a one-bit field that, when set, forces an autozero during the φ1

signal acquisition phase. The AutoZero bit corresponds to bit 5 of the control register
ASCxxCR2. If this bit is zero then there is no shorting of the feedback capacitor CF,
because switch M9 is permanently open. If the bit is one, then switch M6 is always
closed, thereby connecting the input capacitor CA(ACAP) to the OpAmp inverting
input. Finally, switch M5 is always open. Switch M9 is controlled by clock φ1 to short
circuit capacitor CF. Switch M5, connecting capacitor CACap to ground, is controlled
by clock φ1. Switch M6, controlled by clock φ2, connects capacitor CA to the OpAmp
input.

The programmable BCap, a switched capacitor array, connects to the summing node of the
OpAmp. The BCap array acts in many ways the same as the ACap array except that it
only samples its input on clock φ2, and is always referenced to ground. The BCap array
can be programmed as follows.

– BCap capacitor value: A five-bit field to set the value of the BCap capacitor array
from 0 to 31 units. The control field corresponds to bits 4-0 in register ASCxxCR1.

The programmable CCap capacitor array connects to the summing node of the OpAmp.
It is primarily used for multiple input amplifiers, for example in filter design. CCap array
can be programmed as follows:

– CCap capacitor value: A five-bit field to set the value of CCap capacitor array from 0
to 31 units. The five bits are implemented as bits 4–0 in register ASCxxCR2.

The FCap array can be programmed as follows:

– FCap capacitor value: A one-bit field sets the value of the FCap array to either 16 or
32 units. Bit 7 of register ASCxxCR0 selects 16 units if the bit is set to zero, and 32
units if the bit is set to 1. Each unit of capacitance is approximately 50fF.

• Programmable inputs: The nature of the inputs to the three capacitor arrays ACap, BCap,
and CCap is determined by the settings of the associated control registers. In addition, the
reference voltage to the capacitor array ACap is also selectable by the control registers.

The inputs to the ACap capacitor array are programmable as follows:

310 Switched-Capacitor Blocks

Table 7.2: Programmable inputs to AMuxSC array [6].

ACMux bits (3 bits) ASC10 ASC21 ASCB12 ASC23
1 000 ACB00 ASD11 ACB02 ASD13
2 001 ASD11 ASD20 ASD13 ASD22
3 010 RefHi RefHi RefHi RefHi
4 011 ASD20 Vtemp ASD22 ABUS3
5 100 ACB01 ASC10 ACB03 ASC12
6 101 ACB00 ASD20 ACB02 ASD22
7 110 ASD11 ABUS1 ASD13 ABUS3
8 111 P2[1] ASD22 ASD11 P2[2]

– Bits ACMux: A three-bit field (bits 7--5 of register ASCxxCR1) is used to select the
inputs to the ACap and the CCap arrays. Table 7.2 shows the inputs selected by
different control bits values.

– Bits ARefMux : A two-bit field (bits 7–6 of register ASCxxCR3) selects the voltage
potential to which the A input is referenced. It can be analog ground (AGND), the
positive reference voltage V ref+, the negative reference voltage V ref−, or a voltage
reference determined by the state of the output comparator. Bits “00” select the analog
ground, bits “01” the reference voltage high, and bits “10” the reference voltage low.
For bits “11”, the reference voltage is RefHi if the comparator output is high, and
RefLo for a low comparator output.

Table 7.3: Programmable inputs to BMuxSC array [6].

BMuxSC bits (2 bits) ASC10 ASC21 ASCB12 ASC23
1 00 ACB00 ASD11 ACB02 ASD13
2 01 ASD11 ASD20 ASD13 ASD22
3 10 P2[3] ASD22 ASD11 P2[0]
4 11 ASD20 TrefGND ASD22 ABUS3

Table 7.4: Programmable inputs to CMuxSC array [6].

ACMux bits (3 bits) ASC10 ASC21 ASCB12 ASC23
1 000 ACB00 ASD11 ACB02 ASD13
2 001 ACB00 ASD11 ACB02 ASD13
3 010 ACB00 ASD11 ACB02 ASD13
4 011 ACB00 ASD11 ACB02 ASD13
5 100 ASD20 ASD11 ASD22 ASD13
6 101 ASD20 ASD11 ASD22 ASD13
7 110 ASD20 ASD11 ASD22 ASD13
8 111 ASD20 ASD11 ASD22 ASD13

7.3 Switched Capacitor PSoC Blocks 311

The inputs to the BCap capacitor array are programmed as follows.

– Bits BMuxSC : A two-bit field selects the inputs to the capacitor BCap. The bits
correspond to bits 3–2 in register ASCxxCR3. Table 7.3 summarizes the input selection
for different control bit values.

The inputs to the capacitor array CCap are also selected by the control bits ACMux used
to select the inputs to the capacitor ACap. However, there is much less flexibility than
for capacitor array ACap. Table 7.4 presents the input selection by the three control bits
ACMux.

• Programmable outputs: The output of a Type C switched capacitor block can be connected
to either analog blocks (continuous-time or switched capacitor block) or digital blocks.

– Bit AnalogBus: A one-bit field that, when set, connects the output to an analog buffer.
The control bit corresponds to bit 7 of the register ASCxxCR2 corresponding to the
block xx. If the bit is set then the connection is enabled, and disabled, if the bit is
zero.

– Bit CompBus: A one-bit field that, when set, connects the comparator to the data
inputs of the digital blocks. The bit is mapped to bit 6 of register ASCxxCR2. If the
bit is zero then the connection to the comparator bus is disabled, and the connection
is enabled if bit CompBus is one.

• Clocking scheme: The clocking scheme of a type C switched capacitor block is selectable by
bit ClockPhase, bit 6 of register ASCxxCR0. If the ClockPhase bit is set then the external
clock φ2 becomes the internal clock φ1. If the bit is zero then the external clock φ1 is also
used for the internal clock φ1. It is primarily used to match the input signal sampling to
the output of a switched capacitor block.

7.3.2 Type D Switched Capacitor Blocks

Figure 7.20 shows the type D switched capacitor block. Type D blocks are quite similar to the
type C switched capacitor blocks shown in Figure 7.19 with the following differences.

• Instead of a multiplexed input to the CCap capacitor array, there is a connection to the
output of the block. The other side of the capacitor CCap connects to the summing node of
the type C switched capacitor block next to it. This configuration is used to build biquad
filters.

• The control field BSW allows the capacitor BCap to function as either a switched capacitor
or fixed capacitor.

• A programmable BCap switched capacitor connects to the summing node of the OpAmp.

• An AnalogBus switch connects the OpAmp’s output to an analog buffer.

• A CompBus switch connects the comparator to the digital blocks.

Capacitor BCap acts, in many ways, the same as the capacitor ACap except that it only
samples its input on the clock phase φ2 and is always referenced to ground. It is primarily used
for multiple input amplifiers. Capacitor CCap is of primary benefit in designing filters.

There are 16 different parameters for a type D switched capacitor block. Thirteen are the
same as the type C switched capacitor block, and have been discussed in the previous subsection.
The remaining three are shown below along with a description of operation:

312 Switched-Capacitor Blocks

x !BSW x AutoZero

RefLo

RefHi

AGND

A inputs

Power

x AutoZero

FCap

x FSW0

ACap

ARefMux

AnalogBus x

CB

CCap

AMux

ASign

B inputs

BMuxSCD

BCap

x BSW

+ !BSW

+ AutoZero

x
 !

A
u

to
Z

e
ro

(comparator)

x BSW x !AutoZero

2Φ

Φ 1

Φ 1

Φ 1

2Φ

Φ 12Φ

2Φ(+ !AutoZero)

x FSW1

Φ 1
Φ 1

2Φ

2Φ

Φ
1

2Φ

2Φ

+

−

Dr

Figure 7.20: Type D switched capacitor block [6].

• Field AMux : A three-bit field to set the inputs to the ACap.

• Field BSW : A one-bit field that when selected causes BCap to function as a switched
capacitor input. If not set then it functions as a capacitor.

• Field BMux(SCB): A one-bit field to set the inputs to the BCap.

Example (Differential amplifier with common mode output [7]. Courtesy of Cypress Semi-
conductor Corporation). Figure 7.21 shows the architecture for a differential amplifier with a
common mode output. A common mode output signal is useful to many signal processing appli-
cations, and so on when common mode feedback is used to drive a shield or a signal guard. The
PSoC implementation of the circuit is shown in Figure 7.22.

The two input buffers are PGA (programmable gain amplifier) user modules with matched
gains. The differential output is defined by Equation (7.61):

Vdifferential = PosInput − NegInput (7.61)

The amplifier is an A – B amplifier with a gain of one. Its parameters are shown in Table 7.5.
For a difference amplifier with a gain of one, the values of capacitors FCap, ACap, and BCap must
be the same. Capacitor CCap is not used so its value is set to zero. The continuous-time blocks
source both input signals, so that there is no phasing problem with sampling their outputs. Field
ClockPhase remains set to value Norm. The field ACMux is set to connect its input to block

7.3 Switched Capacitor PSoC Blocks 313

CT

CT

P0[2]

PosInput

NegInput

DiffBlock

ComBlock

P0[1]
Differential signal

P0[3]

Common mode signal

P0[5]

Gain = 0.5

Buffer

Buffer

Gain = 1.0

Gain = −1.0

GainInvert

+

+

−

+

−

−

−

−

Figure 7.21: Differential amplifier with common mode output [7]. Courtesy of Cypress
Semiconductor Corporation.

ACB00

P0[3]

Buffer0

P0[1] P0[2]

C
o

m
p

a
ra

to
r

Gain

ACB01

PosInput

C
o

m
p

a
ra

to
r

AGND (ARefMux)

DiffBlock
SCBLK

ASC10

(AMux)

(BMux)

(AnalogBus)

(CompBus)

Output Bus 0

Disable

Disable Disable

Gain

NegInput

ACB00

AI1

P0[5]

AGND

SCBLK
(AMux)

(ARefMux)

Disable

(CompBus)

(AnalogBus)

Buffer1

AGND

ComBlock
SCBLK

(AMux)

(BMux)

(ARefMux)

Disable

Disable

(CompBus)

(AnalogBus)

ASD11

ASD21
Gain Invert

ASD11

Output Bus 1

AI0

ACB01ACB01

ACB00

Figure 7.22: PSoC block placement for the differential amplifier with common mode output [7].
Courtesy of Cypress Semiconductor Corporation.

314 Switched-Capacitor Blocks

Table 7.5: Parameters for DiffBlock SC block

Control fields Value
1 FCap 16
2 ClockPhase Norm
3 ASign Pos
4 ACap 16
5 ACMux ACB01
6 BCap 16
7 AnalogBus AnalogOutBus0
8 CompBus Disable
9 AutoZero On
10 CCap 0
11 ARefMux AGND
12 FSW1 On
13 FSW0 On
14 BMux ACB00
15 Power High

ACB01. Field ARefMux is set to analog ground, so both input references have the same potential.
Field BMux is set to connect its input into ACB00. Field ASign is set to value Pos (positive).
To be an amplifier, fields FSW1, FSW0, and AutoZero must be set On. The comparator is not
used, so field CompBus is set to value Disable. Field AnalogBus is set to value AnalogOutBus0,
so that the output can be brought to the analog buffer on pin P0[3]. Control bits Power are set
to value High.

The common mode output is defined by Equation (7.62):

Vcommon =
PosInput + NegInput

2
(7.62)

What is desired is a stage that can implement an A + B amplifier. Unfortunately, the
architecture limits the B input to negative gains. The solution is to build a – A – B amplifier,
and follow it with a gain stage of –1. The parameters required for a - A - B amplifier, with a
gain of 0.5, are show in Table 7.6.

A gain of 0.5 for both inputs is obtained by setting capacitor FCap to 32, and capacitors
ACap and BCap to 16. Capacitor CCap is not used, so its value is set to zero. The continuous-
time blocks source both input signals, so that there is no phasing problem with sampling their
outputs. Field ClockPhase remains set to value Norm. Bits ACMux are set to connect its input
to block ACB01. Field ARefMux is set to analog ground (AGND), so both input references have
the same potential. Field BMux is set to connect its input into block ACB00. Capacitor BCap
is required to be a switched capacitor, so field BSW is set to value On. Field ASign is set to
Neg (negative). To be an amplifier, fields FSW1, FSW0, and AutoZero must be set on. The
comparator is not used, so CompBus is set to value Disable. AnalogBus is also not used so it is
set to value Disable. Field Power is set value High.

This block is to be followed by a gain inversion stage. The parameters for a –1 gain stage
are shown in Table 7.7. For a gain of –1, the values of capacitors Fcap and ACap must equal.
Capacitors BCap and CCap are not used, so their values are set to zero. Bit ASign is set to Neg
(negative). Its input is sampled on the same phase as a valid ComBlock output signal, so field
ClockPhase can remain set to Norm. Control bits ACMux are set to connect its input to block

7.3 Switched Capacitor PSoC Blocks 315

Table 7.6: Parameters for the ComBlock SC block.

Control fields Value
1 FCap 32
2 ClockPhase Norm
3 ASign Neg
4 ACap 16
5 ACMux ACB01
6 BCap 16
7 AnalogBus Disable
8 CompBus Disable
9 AutoZero On
10 CCap 0
11 ARefMux AGND
12 FSW1 On
13 FSW0 On
14 BSW On
15 BMux ACB00
16 Power High

Table 7.7: Parameters for the GainInvert SC block
.

Control fields Value
1 FCap 16
2 ClockPhase Norm
3 ASign Neg
4 ACap 16
5 ACMux ASD11
6 BCap 0
7 AnalogBus AnalogOutBus1
8 CompBus Disable
9 AutoZero On
10 CCap 0
11 ARefMux AGND
12 FSW1 On
13 FSW0 On
14 BMux Not Set
15 Power High

ASD11. Bit ARefMux is set to AGND (analog ground). Control field BMux is not needed so it
is not set. Again FSW1, FSW0, and AutoZero must be set on. The comparator is not used, so
bit CompBus is disabled. Field AnalogBus is set to AnalogOutBus1 so that the output can be

316 Switched-Capacitor Blocks

connected to the analog buffer on pin P0[5]. Power for this example is set to high. The actual
setting for other applications is determined by signal bandwidth.

These five blocks implement the circuit shown in Figure 7.21. The column clocks are set
to 1 MHz. This sets the sample rate to 250 Ksps. When used as amplifiers, the SC blocks should
not be sampled faster than 350 Ksps.

Example (Two-bit analog-to-digital converter [7]. Courtesy of Cypress Semiconductor Corpora-
tion). In Figure 7.17, a four-state ADC was shown that used a switched capacitor block as a
comparator and changed the references to determine four different conditions. Figure 7.23(a)
shows that architecture. The PSoC-based implementation is shown in Figure 7.23(b).

The input is brought in from pin P2[2] and connected to a SC Block (TwoBit). It is configured
as a comparator. Software manipulates the field ARefMux in control register
TwoBit SCBLOCKcr3 to select the reference to be analog ground AGND, voltage Vref+, or
voltage Vref−. Bit 7 of the Analog Comparator control register (register CMP CR) allows the
software to determine the state of the column 3 comparator. Software determines whether the
input is (i) greater than voltage Vref+, (ii) less than voltage Vref+ but greater than ground,
(iii) less than ground but greater than voltage Vref−, and less than voltage Vref−.

The parameters for a comparator with a configurable reference are shown in Table 7.8. For
a comparator, capacitor FCap is not connected, so its value is unimportant. Capacitor ACap
needs to be some nonzero value. Capacitors BCap and CCap are not used, so their values are set
to zero. The input is from a continuous input signal, so there is no phase sampling problem, and
bit ClockPhase can be set to Norm. Bit ACMux is set to connect its input to port Port 2 2. Bit
ARefMux is to be controlled by software, but is set to a default value of AGND (analog ground).
Bit BMux is not needed so it is not set. Bit ASign is set to Pos (positive). To implement a
comparator, bits FSW1 and FSW0 must be set to Off, but bit AutoZero must be set On. This
disconnects the feedback capacitor. Setting bit CompBus to ComparatorBus 3 allows the CPU
access to the state of the comparator. Bit AnalogBus is set to Disable. Bit BSW is not used, and
is set to Off. Bit Power is set High. The column clock is set to 8 MHz. This sets the sample rate
to 2 Msps (megasamples per second). When used as a comparator, a switched capacitor should
not be sampled faster than 2 Msps.

The code in Figure 7.24 shows the software used to control this application. The program runs
in a loop where the input is continuously sampled, and compared with the selectable references
to determine one of four different levels. Dout1 and Dout0 are set accordingly.

P2[2]
D1 out

outD0inA

buf3

(b)(a)

In0 Out0

Out1In1

ASD13

dis

con

off

C
o

m
p

a
ra

to
r

ASC23

ACB03

SCBlock
Comparator

P1[1]

P1[0]

P2[2]
Microcontroller

CLK3

Figure 7.23: PSoC implementation of a four state ADC [7]. Courtesy of Cypress Semiconductor
Corporation.

7.3 Switched Capacitor PSoC Blocks 317

Figure 7.24: Assembly code for two bit ADC [7]. Courtesy of Cypress Semiconductor Corporation.

318 Switched-Capacitor Blocks

Table 7.8: Parameters for the TwoBit SC block.

Control fields Value
1 FCap 0
2 ClockPhase Norm
3 ASign Pos
4 ACap 31
5 ACMux Port 2 2
6 BCap 0
7 AnalogBus Disable
8 CompBus ComparatorBus 3
9 AutoZero On
10 CCap 0
11 ARefMux AGND
12 FSW1 Off
13 FSW0 Off
14 BSW Off
15 BMux Not Set
16 Power High

Buffer Digital buffer

P1[7]
P0[7]

P1[5]

475k

220pF

AD modulator

A
in Opto

isolator

D
out A

out
+

−

Figure 7.25: Isolated analog driver [7]. Courtesy of Cypress Semiconductor Corporation.

Example (Isolated analog driver [7]. Courtesy of Cypress Semiconductor Corporation). There
are times when it is necessary to get an analog signal across an isolated barrier. For a higher
frequency signal with no DC component, this can easily be done with capacitor or transformer
coupling. For lower frequencies, the transformers and capacitors become increasing larger. The
expense and size of these components for lower frequency and DC coupled signals makes this
solution prohibitively expensive.

A cheaper solution requires using an SC block as an analog-to-digital (AD) modulator. Fig-
ure 7.17 shows an architecture for an AD modulator that converts an input signal to a series of
pulses where a one represents voltage Vref+, a zero represents voltage Vref−, and the average is
equal to the input signal.

Figure 7.25 shows how it can be assembled to pass the signal across an isolation barrier.
The input signal (voltage Ain) is buffered and passed to the AD modulator, where the signal is
converted to a series of digital pulses. These pulses are brought out of the chip via the digital
buffer. The pulses (Dout) pass through an opto-isolator. Now isolated, these pulses are averaged
to reconstruct an analog signal (voltage Aout). The lowpass filter is set to 1.5 kHz to eliminate
the harmonics generated by the pulses.

7.3 Switched Capacitor PSoC Blocks 319

CMP

C
o

m
p

a
ra

to
r

(AMux)

Disable

Gain

Buffer2

Off

AI2

P0[7]

ACB02

Buffer

Disable

ASC12
ADModulator

SCBLK
ACB02

(AnalogBus)

(CompBus)

(ARefMux)

Figure 7.26: Analog isolator driver block placement [7]. Courtesy of Cypress Semiconductor
Corporation.

The PSoC implementation is shown in Figure 7.26. The input buffer is a PGA user module.
Its parameter selection is left as an exercise for the reader. The ADmodulator is an integrator
with a comparator controlled input reference. Its parameters are shown in Table 7.9.

In theory, the ratio of ACap/FCap is unimportant. Practical considerations of loop gain and
comparator offset dictate that capacitor FCap should be set to 32 and capacitor ACap set to 16.
Capacitors BCap and CCap are not used, so their values are set to zero. The continuous-time
blocks source the input signal, so that there is no phasing problem with sampling their outputs.
Signal ClockPhase can remain set to value Norm. The signal ACMux is set to connect its input
to block ACA02. Control bit ARefMux is set to value CMP, allowing the output comparator to
control the reference selection. Bit BMux is not needed, so it does not need to be set. Bit ASign
must be set to Pos (positive). To be an integrator, bit FSW1 and bit AutoZero must be set On
and bit FSW0 must be set Off. The comparator needs to connect to the digital blocks, so the
CompBus field is set to ComparatorBus2. Field AnalogBus is set to value Disable. Bits Power
are set High.

The DigitalBuffer is an SPI slave user module that allows the comparator bus to be output
on pin P1[7]. This output is connected to an optoisolator followed by a filter.

320 Switched-Capacitor Blocks

Table 7.9: Parameters for ADModulator SC block parameters

Control Fields Value
1 FCap 32
2 ClockPhase Norm
3 ASign Pos
4 ACap 16
5 ACMux ACA02
6 BCap 0
7 AnalogBus Disable
8 CompBus ComparatorBus2
9 AutoZero On
10 CCap 0
11 ARefMux CMP
12 FSW1 On
13 FSW0 Off
14 BMux Not Set
15 Power High

7.4 Conclusions

This chapter has presented an introduction to switched capacitor (SC) circuits, and the pro-
grammable SC blocks that are provided by PSoC.

The basic principles of operation for SC circuits has been discussed in some detail. This
principle is based on the controlled movement of charge, which is then stored on capacitors. The
charge movement approximates an average current through a resistor. The value of the equiv-
alent resistance depends on the capacitance value and the switching frequency of the capacitor.
Switches are implemented by transistors controlled by clock signals. The behavior of SC circuits
is influenced by a number of circuit nonidealities, and the like the nonzero resistance of “on”
switches, channel charge injection, and clock feedthrough.

Basic SC circuits have also been presented (e.g., fixed gain amplifier circuit selectable gain
amplifier, comparator, integrator, and differentiator) and the concept of auto-zeroing was ex-
plained for SC amplifiers. The effect of the OpAmp finite gain and nonzero switch resistance
on the gain value was also presented. Two examples illustrated the use of basic SC circuits in
building a two-bit quantizer and an analog-to-digital converter.

PSoC provides an array of programmable SC circuits. There are two types of circuits: type C
and type D SC circuits. Chapter 3 detailed the interconnect structure for SC blocks, which
can be connected to the neighboring continuous-time and SC blocks to form more complex net-
works, such as filters and ADCs. This chapter detailed the structure and control registers of
the programmable SC blocks. It was shown that the functionality of each SC block can be pro-
grammed as inverting and noninverting amplifiers, integrators, and comparators by programming
the registers ASCxxCR3. Four programmable capacitor arrays (ACap, BCap, CCap, and FCap)
can be programmed to set the gain value of the block. Registers ASCxxCR2, ASCxxCR1, and

7.4 Conclusions 321

ASCxxCR0 control the values of the four capacitor arrays. The inputs, outputs, and clocks of a
SC block can also be configured by the four control registers.

The chapter ended by presenting three design examples based on PSoC’s programmable
SC blocks: a differential amplifier with common mode output, a two-bit analog-to-digital con-
verter, and an isolated analog driver.

322 Switched-Capacitor Blocks

7.5 Recommended Exercises

1. Assuming a switching frequency of 2.5 KHz and an equivalent resistance of 1000 ohms, calculate
the required capacitance for a capacitor that could be used to replace the resistor.

2. For the circuit in Figure 7.1(b), explain what would happen if switches φ1 and φ2 were closed
at the same time.

3. For the circuit in Figure 7.1(c) with W/L = 20 and C = 1pF , compute the expressions for
the voltage Vc across the capacitor, if switch φ2 is open and switch φ1 is closed. Assume that
the transistor is in saturation, and then repeat the computations if the transistor is in the linear
region. Consider a 0.6 µ CMOS process.

4. Find the voltages computed in Exercise 3 by simulating the circuit (using a circuit simulator).
Compare the simulation results with the values computed in Exercise 3. Comment on the accuracy
of the analytical computations.

5. Repeat Exercise 3 for both decreasing and increasing values of the ratio W/L and the capaci-
tance C. Explain the effect of the changing ratio and capacitance values on the behavior of the
voltage Vc as a function of time.

6. For the circuit in Exercise 3, estimate the output error that is due to charge injection.

7. For a fixed-gain SC amplifier, size the circuit such that the maximum output error due to the
nonzero resistance of the switches is less than 1%. Circuit sizing means finding all constraints for
the capacitor values, switch resistances, and OpAmp gain, such that the accuracy requirement is
met. Repeat the exercise if the analyzed error is due to charge injection.

8. For the ideal SC integrator, compute and plot the output voltage of the integrator for different
values of the capacitor ratio, CA/CF , and for a fixed sampling frequency. Repeat the exercise if
the capacitance ratio is constant but the sampling frequency is changing. Discuss your results.

9. Propose a scheme to simulate the differential amplifier in Section 7.4, and then use the scheme
to study the effect of nonidealities on the circuit’s performance. The considered nonidealities are
nonzero switch resistance, and OpAmp finite gain. Propose a procedure also to analyze the effect
of channel charge injection and clock feedthrough on the circuit performance.

10. Using the simulation method in Exercise 9, size the circuit such that the total output error
due to nonidealities is less than 1%.

11. Repeat Exercise 9 for the common mode part of the differential amplifier with common mode
in Section 7.4.

12. Repeat Exercise 10 for the common mode part of the differential amplifier with common
mode in Section 7.4.

13. Using programmable SC blocks, implement the successive approximation register (SAR)
method for analog-to-digital conversion. The method matches the input signal to be converted
with the bitstring of the result by applying a binary search method. The method starts with
the bitstring for the mid-scale voltage. This value splits the range into two equal halves. The
bitstring is then converted into an analog voltage by the means of adigital-to-analog converter.

7.5 Recommended Exercises 323

If the DAC output is lower than the input voltage then the method selects the mid-value of the
upper half, and the process is repeated. A result bit for that position is set to high. If the DAC
output is higher then the input then it selects the mid-point of the lower half before continuing
the process. The result bit is reset. The process continues until all bits of the representation are
produced.

14. Develop a simulation model for the two-bit comparator in Section 7.4. Find a simple way of
co-simulating the SC and digital circuits of the design.

15. Build the simulation model for the isolated analog driver in Section 7.4. Find a simple
solution for co-simulating the SC circuits and digital part of the design.

Bibliography

[1] R. J. Baker, CMOS Circuit Design, Layout, and Simulation, second edition, Hobo-
ken, NJ: J. Wiley Interscience, 2005.

[2] S. Franco, Design with Operational Amplifiers and Analog Integrated Circuits,
New York: McGraw Hill, 2002.

[3] P. Gray, P. Hurst, S. Lewis, R. Meyer, Analysis and Design of Analog Integrated
Circuits, fourth edition, Hoboken, NJ: J. Wiley & Sons, 2001.

[4] R. Gregorian, G. Temes, Analog MOS Integrated Circuits for Signal Processing,
Hoboken, NJ: J. Wiley & Sons, 1986.

[5] B. Razavi, Design of Analog CMOS Integrated Circuits, New York: McGraw Hill,
2001.

[6] PSoC Mixed Signal Array, Technical Reference Manual, Document No. PSoC TRM
1.21, Cypress Semiconductor Corporation, 2005.

[7] D. Van Ess, Understanding Switch Capacitor Analog Block, Application Note AN
2041, Cypress, March 30, 2004.

Chapter 8

Analog and Digital Filters

This chapter provides an overview of the subject of analog and digital filters
describing the basic types, their primary characteristics, some key design criteria,
practical considerations in component selection, and modern design tools. Although
the subject of filters is quite broad and widely discussed in the literature, fortunately
for designers much of the work required to design filters for modern applications
has been greatly facilitated by advances in hardware and software.

There has, perhaps, been more written on the subject of filters than any other single topic
in electrical engineering and yet it remains terra incognita for many. However, there exists a
wealth of literature that illuminates and summarizes the basic concepts of filters and attempts
to simplify filter design.1 This chapter discusses filters and filtering in general terms and uses
PSoC’s inherent filter support to provide illustrative examples.

However, the material covered in this chapter is otherwise completely general and provides
the basic filter concepts and principles that are of broad applicability in mixed-signal embedded
systems. A brief discussion of passive filters is followed by a detailed analysis of some of the
more popular active filter types, their characteristics, and implementations. The treatment in
this chapter is based on each filter’s transfer function, because it is the transfer function that
ultimately determines parameters such as phase shift, overshoot, ringing, etc. That is, the char-
acteristics of the transfer function for a given filter type uniquely determine the filters behavior in
terms of magnitude response, phase response, etc., as long as the physical circuit remains linear.

The chapter has the following structure:

• Section 1 introduces filter fundamentals.

• Section 2 discusses filter design.

• Section 3 presents a discussion of analog filters.

• Section 4 discusses digital filters.

• Section 5 describes popular filter design tools.

• Section 6 presents concluding remarks.

1References [4], [10], [22], [26], [30], [31], [36], [39], and [45]–[47] are but a small sampling of such literature.

A. Doboli, E.H. Currie, Introduction to Mixed-Signal, Embedded Design,
DOI 10.1007/978-1-4419-7446-4 8, c© Springer Science+Business Media, LLC 2011

326 Analog and Digital Filters

8.1 Filter Fundamentals

One might well ask why so much has been written about filters. And more to the point, why
include a chapter on filters in a text about mixed-signal and embedded systems. The answer
is simply that embedded systems typically involve data acquisition (via sensors and other input
devices), data processing, some decision making, and subsequently output of data and control
signals that drive actuators and other devices. And it is in the nature of things that applica-
tions involved with signal handling and/or signal processing are inherently susceptible to the
introduction of unwanted signals.

Such signals may arise as the result of poor shielding, thermal noise sources, transients cou-
pling into the signal path, etc. As a result, filters are found in virtually all modern electronic
devices, e.g., cell phones, televisions, stereo systems, amateur and professional communication
systems, etc.

There are a number of reasons for filters being so important some of the most common
are: 1) the need to separate signals that have been combined with noise (thermal, atmospheric,
interference (EMI sources), etc.) 2) to restore a signal that has otherwise been distorted or
altered, and 3) to separate a given signal from one or more other signals, e.g., as a result of simple
“mixing” of two or more signals, as in the case of telemetry systems and transmitters/receivers.
Because embedded systems typically employ sensors and actuators, both of which are capable
of serving either as noise sources or pathways for the introduction of noise into an embedded
system, filtering of both the latter and former arises naturally. Unfortunately, as a general rule,
“Where there is a signal, there is noise...”.

In an embedded system, sensors are often used to provide information on linear/angular posi-
tion and displacement, linear and/or rotational velocity and acceleration, temperature, pressure,
vibration, etc., in the form of voltages, currents and frequencies.

In such applications, specific parameters to be measured include amplitude, waveshape, phase,
timing, frequency, pattern recognition, etc. In order to facilitate computation and decision making
by the embedded system, analog signals are converted into their digital equivalents, processed
and, based on predefined criteria, output signals are produced in analog and/or digital formats.
At each stage of this process spurious signals (noise) may be introduced and/or signals may be
degraded, or otherwise corrupted.

Filters are often used in conjunction with analog-to-digital converters to remove electro-
magnetic interference (EMI), radio frequency interference (RFI) and electrical noise in general
from a wide other sources. Filters are typically used in conjunction with a wide variety of sensors
for the same reason. One of the most common sources of EMI noise has proven to be 50–60 Hz
signals from local AC power sources. Filters can be very effective in removing much of this type
of interference.

There is a wide variety of technologies to consider when designing a filter. However, broadly
speaking there are two basic classifications of filters: active and passive. Although active filters
require power, they assure, inter alia, that each stage of the filter has a sufficiently high input
impedance to minimize loading of the previous stage. Loading does occur with passive filters and
when employing multiple passive stages can result in a substantial loss of signal. Filters of the
active type can be further classified as either digital or analog. Digital filters can have excellent
filter characteristics, as shown and their use has been greatly facilitated by the advent of the
digital signal processor (DSP). However, digital filters are not currently capable of providing as
much dynamic range as active filters.

8.1 Filter Fundamentals 327

Figure 8.1: Classical filter functionality.

However, in some situations the designer must be content with reducing “noise” to an
“acceptable” level. Eliminating noise completely is indeed a “ a consummation devoutly to
be wished ...”2, but it is seldom achieved.

Each type of filter has certain advantages and disadvantages [35]. Therefore the designer must
carefully weigh the pros and cons of each, and determine the best filter technology for a given
application. It is also the case that in some embedded designs more than one filter technology
will be required.

Historically, filters have been used to provided the types of functionality shown in Figure 8.1.
As shown, an input signal of constant amplitude is applied to a generic filter while being “swept”
over an arbitrary frequency range. Depending on the type of filter used, the output may be
one of the four shown, or some permutation thereof. Filters may also have much more complex
characteristics than those shown. In real world applications, this type of arrangement is often
used to test filters. The generic filter is referred as the DUT (Device Under Test) and the DUT’s
output is viewed on an oscilloscope, or spectrum analyzer, to determine its characteristics. A
combination of tracking generator, to provide the swept frequency of a signal in the range of
interest, and spectrum analyzer, sometimes referred to as a scalar network analyzer, provide a
graphical representation of the performance of a filter with respect to magnitude vs. frequency
and serves as an excellent method of determining actual performance of a given filter. A vector
network analyzer provides both magnitude and phase performance graphically.

8.1.1 Passive Filters

Passive filters of the types shown in Figure 8.2 were, for many years, the most prevalent form
of filter, but in recent years, as more and more integrated circuit technology has emerged, and
with the introduction of the operational amplifier, active filters have become commonplace in a
wide variety of applications and they have largely replaced passive filters. However, passive filters

2William Shakespear, The Tragedy of Hamlet, Prince of Denmark , Act 3, Scene 1.

328 Analog and Digital Filters

are still used in certain types of applications because they are simple, their electrical character-
istics are easy to determine, and they are capable of performing well at very high frequencies.
The principal objections to passive filters are: sensitivity of a passive filter’s characteristics to
variations in component values (due to aging, ambient temperature fluctuations, etc.), physical
component size at low frequencies, objectionable input/output impedances for some applications
and insufficient rolloff.

• RLC filters consisting of a wide variety of passive combinations of resistors, capacitors, and
inductors, represent polynomial approximations to ideal filters. This type of filter does
not require a power supply for its operation and can be used at frequencies as high as
several hundred megahertz. At higher frequencies, the wavelength of the signal becomes
comparable to that of the passive components and other (adverse) effects emerge. However,
RLC filters can exhibit significant passband loss, a factor which makes them unacceptable
for many applications.

• Mechanical filters rely on mechanical resonance, either torsional, bar flexural, or disk flexure
mode and utilize the piezoelectric effect. Mechanical filters are often used in the range of
100 kHz–700 kHz with bandwidths that range from .05 to 5% of the center frequency and
have as many as 12 poles.

• Crystal filters are based on the mechanical characteristics of quartz crystals and the piezo-
electric effect and are most commonly employed where very high Q3 steep bandpass char-
acteristics, and a specific center frequency are required. This type of filter is particularly
useful in communications devices. Crystal filters generally provide much better characteris-
tics than lumped or discrete component counterparts. It is possible to obtain Qs well above
10,000 with crystal (quartz) resonators. Crystal filters can have temperature dependencies
that require that in some applications they be housed in a temperature controlled oven.

• SAW (surface acoustic wave) filters convert electrical signals into a mechanical waves in
a piezoelectric crystal. A wave propagates across the crystal and is then converted back
into an electrical signal. The characteristics of the wave and the resulting delay introduced
by the speed of propagation of the surface acoustic wave can be altered as it propagates
through the SAW filter. Its characteristics allow it to be used in much the same way that
digital filters are implemented.

However, RLC, mechanical, crystal, and SAW filters are most commonly found in high frequency
applications such as cell phones and communications equipment as a result of several factors:
cost, frequency ranges supported by each of these technologies, and size.

8.1.2 Linear Active Filters

Active RC filters, for example of the type shown in Figure 8.8, are characterized by their rel-
atively small size, weight and external power requirements and, generally speaking, are without
attenuation concerns in the passband. However, a power supply is required and, depending on
the specific application, active filters can prove significantly more expensive than their passive
counterparts. Additionally, the active filters can, in some applications, be the source of a sub-
stantial amount of noise that otherwise would be absent with passive filters. One of the most
common disadvantages of active filters is that they can give rise to serious distortion of the output
signal if overdriven by the input signal. In addition, the introduction of an operational amplifier
introduces additional factors that must be taken into account: amplifier bandwidth limitations,

3 Q is a figure of merit for filters and defined in a later section of this chapter.

8.1 Filter Fundamentals 329

F
ig

u
re

8.
2:

E
x
am

p
le

s
of

lu
m

p
ed

,
L
R

C
,
p
as

si
v
e

fi
lt

er
s.

(R
ep

ro
d
u
ce

d
w

it
h

p
er

m
is

si
on

)
[2

7
].

330 Analog and Digital Filters

amplifier noise, noise introduced by the OpAmp’s and power supply. Active filters are typically
used for signal frequencies in the 0.1 Hz to 500 kHz band.

Unless stated otherwise, it is assumed in this chapter that the operational amplifiers employed
are“ideal”, that is their open loop gain and input impedance are infinite, and their output
impedance is zero. It is also assumed that their open loop gain and input/out impedances
are not functions of frequency. The deviations introduced by nonideal OpAmps [21] are discussed
briefly in the latter part of this chapter.

Switched capacitance filters use switch capacitance techniques to implement a wide variety
of filter types. They have a number of manufacturing benefits in terms of smaller chip area,
higher precision, and lower chip manufacturing costs than their resistor counterparts. However,
the characteristics of active filters, independent of the underlying technology, have a strong
dependence on RC time constants. Integrated resistor and capacitor values can vary as much
as ±30. Fortunately, the ratio of capacitance used can be controlled to approximately .05%.
Therefore, by employing switched-capacitor filters based on capacitor ratios, external components
can, in some cases, be obviated. Switched capacitors are sometime referred to as“temporal
resistors.”

8.1.3 Digital Filters

Digital filters, often based on DSPs, have proven capable of performance heretofore thought to
be unachievable by other techniques. These filters typically provide little or no ripple in the
passband, for example .02% as compared to an analog filter that might have 6% ripple in the
same passband.[35] Analog filters are dependent on the available component values of resistance
and capacitance, both of which may exhibit temperature and/or temporal variances, e.g., as a
result of aging, thermal environment variations, among others, in their respective values.

In terms of attenuation and roll-off, the digital filter is clearly superior to the analog filter.
Furthermore, digital filters are capable of providing linear phase thus assuring a completely
symmetrical response to a step function input [3]. However dynamic range is another issue. Both
in terms of dynamic frequency and dynamic amplitude, operational amplifiers, also referred to
as OpAmps, are far superior to their digital counterpart. As a result, analog filter frequency
responses are typically expressed in logarithmic terms as opposed to the linear scales used for
digital filters. In addition, digital filters need substantial amounts of time to complete their
filtering algorithms whereas analog filters are capable of providing an order of magnitude or
more of improvement in terms of responsiveness. Digital filters are generally more expensive to
implement than their analog counterparts because they typically require an anti-aliasing filter,
an analog-to-digital converter, a DSP to execute the filtering algorithms, and a digital-to-analog
converter followed by an anti-imaging filter. Analog filters are usually based on operational
amplifiers and passive components, such as resistors and capacitors.

In brief, digital filters provide high accuracy, linear phase, no component value drift support
adaptive filtering and are relatively easy to design, whereas analog filters are less accurate, suffer
from component value variances, do not provide a linear phase response, are difficult to implement
as adaptive filters,4 and can be challenging to design. However, a digital filter tends to be
inherently more expensive and can be incapable of executing its filter algorithm within a single

4Adaptive filters are filters that are capable of altering their characteristics, i.e. their transfer function, in real
time thus enabling them to “adapt” to changing noise situations. This is particularly useful when the type of
noise to be encountered is not known a priori. Such filters are typically digital filters.

8.1 Filter Fundamentals 331

sampling clock period. Analog filters are capable of operating at extremely short sampling periods
and are often cheaper than their digital counterparts.

Thus analog filters offer greater dynamic range in terms of frequency and amplitude, are fast,
cheaper and arguably are easier to design than digital filters. However, digital filters represent
a programmable solution, offer superior performance in terms of roll-off in the transition band,
have relatively little or no ripple (particularly when compared to their analog counterpart), and
are capable of providing phase linearity and excellent stopband attenuation. Also, digital filters
are relatively unaffected by component value variations.

There are a number of technologies available for removing unwanted “noise” and/or the
recovery of signals from noise. Fortunately, many mixed-signal, embedded system applications
do not require the sophisticated filtering capabilities of digital filters and often lowpass analog
filters are a quite acceptable solution to an embedded system’s filtering requirements.

It has been suggested, in the vernacular, that the distinction between noise and signal is simply
that noise is the “stuff you don’t want” and signal, is the “stuff you do want.” Fortunately, there
are actually much more substantive ways for describing noise and signal. The real concern about
noise is simply how to remove it.

Noise can often obscure the signal to the point that it is virtually impossible to recover
the“true signal” without some form of filtering. Digitizing analog signals was thought, many
years ago, to be a way of completely removing or at least minimizing noise in a system, but the
process of converting an analog signal to a digital equivalent can introduce “noise” that, in some
cases is even more of a problem than would have been encountered by merely processing the
signal in a purely analog environment. Furthermore, in some systems it is not intuitively obvious
what is noise and what is signal. For this reason it is generally a good practice to design systems
that have a “naturally” high noise immunity because it is often easier to keep noise out than
remove it, once it is present. However, it is not possible, in general, to completely avoid noise
problems simply by employing good engineering techniques. It is this simple fact that occupies
our attention for the balance of this chapter.

8.1.4 Filter Components

Nonideal operational amplifiers have been dealt with in some detail in Chapter 6. Real-world
resistors and capacitors can bear little resemblance to their ideal counterparts [17] as shown in
Figure 8.3.5 Because of their physical design resistors, capacitors, and inductors can exhibit
resistive, inductive, and capacitive characteristics. When designing analog filters, where possible,
resistor values should be chosen that have values ranging from 1KΩ to 100 KΩ. Resistors are
generally of three types: carbon composition, wire-wound, and metal-film. Carbon composition
is the most widely available, and are typically the cheapest of these three types.

Noncritical use in room temperature environments can often warrant using carbon-based
resistors. For filter design, when using carbon composition resistors, tolerances should be 5%
or less for best results. In critical applications, for which the ambient temperatures are higher
than normal room environments and best performance is required, metal-film or wire wound
resistors are recommended. Fifth- and sixth-order filters should be implemented with 2% or
better resistors and seventh- and eighth-order filters should use 1% tolerance resistors. Staying

5Note that ESR in this figure refers to “Effective Series Resistance” which arises as a result of resistance
introduced by various constituents of a real world capacitor, e.g., dielectric resistance, plate resistance, resistance
of terminal leads, etc. It is of particular concern for electrolytic capacitors, which are often used when large
capacitance values are required (e.g., tens of microfarads, or greater).

332 Analog and Digital Filters

C
C

R R L

L

R

ESR

C

Figure 8.3: Ideal versus nonideal resistors and capacitors.

within these ranges, whenever possible, will help to limit current requirements for low-value
resistors and the inherent noise associated with high-value resistors.

The choice of capacitance values is less restrictive as long as the values chosen are well above
stray capacitances present. Typical values range from 1 nF to 1−10µF . Ceramic disk capacitors
can be used in noncritical applications, but they have a nonlinear temperature dependence that
can degrade filter performance by 10% or more in some environments. Mylar, polystyrene, teflon,
among others capacitors are excellent choices for filter implementations for critical applications.
Resistors and capacitors can both undergo substantial changes in parameter value when subjected
to high temperatures, widely varying temperatures, vibration, shock, and aging. This, in turn,
can have a significant impact on a filter’s characteristics and may actually degrade an embedded
system’s performance. Thus the choice of component types must be considered carefully when
designing a filter for a particular environment and especially if the environmental conditions are
unspecified.

8.2 Filter Design

Perhaps the simplest of passive analog filters are shown in Figures 8.12 (a) and (b). The reader
may note that neither circuit has an inductive component. This is in part due to the fact that
inductors tend to be large and more expensive than capacitors and resistors. In today’s world,
of ever-decreasing component size, inductors are often expensive, difficult to manufacture, and
introduce other concerns, all of which can generally be avoided by utilizing resistors (or their
switched capacitor equivalent), capacitors, and active components, that is OpAmps. As shown,
life without inductors is not as difficult as one might think. Combining resistors, capacitors,
and OpAmps has proven to be very effective alternative to inductor-based filters. And there
are additional benefits to replacing inductors with a combination of resistors, capacitors and
an OpAmp (e.g., gain can be added, inductive coupling is largely eliminated the active filter’s
higher input impedance and lower output impedance make it easy to cascade filters for increased
performance, and perhaps the greatest benefit is the ability to tune the active filter by varying
passive, noninductive components). Therefore, inductor-based filters have proven to be much
less common and are not explicitly treated except in passing in the discussion that follows.
However, that is not to suggest that the functionality provided by inductors can be ignored. It
is incumbent on the OpAmp to provide any of the benefits that an inductor might provide which
would otherwise be lost in relying solely on capacitors and resistors.

8.2 Filter Design 333

Figure 8.4: A graphical representation of basic filter types.

Before continuing it is helpful to define some terms to be used in this chapter. Filters can be
broadly characterized as one of four types: bandpass, lowpass, highpass, and bandreject. The
term “passband” refers to the band of frequencies that a given filter will pass.

There are four fundamental types of ideal analog and digital filters in common use.

• Lowpass filter: Rejects all frequencies ω above a given frequency,6 typically from 0 Hz,
that is DC, to the corner frequency, ωc.

Hlp(ω) =

{

A if |ω| ≤ ωc

0 if |ω| < 0

• Highpass filter: Rejects all frequencies below a given frequency, and its passband ranges
from ωc to ∞. (It should be noted that such a highpass filter is not possible in real-world de-
signs based on OpAmps due to the inherent limitations of operational amplifier bandwidth.)

Hhp(ω) =

{

0 if |ω| ≤ ωc

A if |ω| > 0

Thus,

Hhp(ω) = A − Hlp(ω) (8.1)

• Bandpass filter: Rejects all frequencies below a given frequency ωc1 and all frequencies
above a given frequency ωc2.

6In this discussion it is assumed that ω ≥ 0 and the term “frequency” in this context refers to angular frequency
unless otherwise noted.

334 Analog and Digital Filters

Hbp(ω) =

{

A if ωc1 ≤ |ω| ≤ ωc2

0 if ωc1 < |ω| and ωc2 < |ω| < ∞

• Bandreject (aka Bandstop) filter blocks: “Rejects” all frequencies between ωc1 and
ωc2. Thus this filter has two passbands DC to ωc1 and ωc2 to ∞. These filters are also
referred to as “notch filters.”

Hbr(ω) =

{

0 if ωc1 ≤ |ω| ≤ ωc2

A if ωc1 < |ω| and ωc2 < |ω| < ∞

and therefore,

Hbr(ω) = A − Hbp(ω) (8.2)

Unfortunately, as Snepscheut 7 observed, “In theory, there is no difference between theory and
practice, but in practice, there is.” This observation most certainly applies to filters. Although
ideal filters serve well as theoretical concepts and abstract models for filters, as a practical matter
they are not physically realizable. This is the result of several unachievable factors: (1) the ideal
filter’s sharp transition from passband to stopband and stop band to passband (2) the requirement
for constant gain within the passband/stopband, and (3) because ideal filters are noncausal. Thus
the designer must determine the necessary tradeoffs that are required to design an acceptable
filter that can actually be built. Figure 8.6 shows diagrammatically how one might approximate
an ideal bandpass filter with a physical filter.

Any filter can be uniquely characterized by its impulse response, step response, or frequency
response, and having done so the other two responses are contemporaneously determined. Typ-
ically, filter characteristics are represented as graphs of the magnitude of the gain and phase
versus frequency, called Bode plots and named for Hendrik Wade Bode, a recognized pioneer in
the fields of control theory and electronic telecommunications. An example of a Bode graph, or
plot, is shown in Figure 8.5.

Figures of merit for filters include passband amplitude characteristics, stopband amplitude
characteristics and stopband attenuation. In the case of an ideal filter, the passband amplitude
should be constant (i.e., “flat’) the stop band amplitude should also be constant (i.e., zero), and
the transition from passband to stopband, and vice versa should be a step function. The ideal
filter should have amplitude and delay characteristics which are independent of frequency.

8.2.1 Specific Filter Types

There is a broad range of filter types and implementations, whoever, the following are the most
commonly encountered whether implemented individually as redundant stages in some cases with
varying parameters, or as a permutation of the basic types described below.

• Bessel: This filter’s response is smooth and flat in the passband. However, near the
passband attenuation rises slowly and far from the passband it rises at the rate of nX6
dB/octave where n is the filter’s order. The transition region change is slower than that
of Butterworth [5], Chebychev, inverse Chebychev, and so on. Bessel filters do not exhibit
ringing or significant overshoot in the passband, as is the case for Butterworth, Chebychev,
and inverse Chebychev.

7Jan L.A. van de Snepscheut, 1958–1994, Professor of Computing Science. California Institute of Technology.

8.2 Filter Design 335

Figure 8.5: Example of a typical Bode plot.

The transfer function for a Bessel filter is given by,

H(s) =
θn(0)

θn(s
ω0

)
(8.3)

where

θn(x) =

n
∑

k=0

(2n − k)!

(n − k)!

xk

2n−k
(8.4)

Table 8.1: Reverse Bessel polynomials.

θ0(x) = 1
θ1(x) = x1 + 1
θ2(x) = x2 + 3x1 + 3
θ3(x) = x3 + 6x2 + 15x1 + 15
θ4(x) = x4 + 10x3 + 45x2 + 105x1 + 105
θ5(x) = x5 + 15x4 + 105x3 + 420x2 + 945x1 + 945
θ6(x) = x6 + 21x5 + 210x4 + 1260x3 + 4725x2 + 10395x1 + 10395

• Butterworth: T his filter has a gain versus frequency characteristic that is also completely
flat in the passband but its attenuation in the stopband rises much faster than that of the

336 Analog and Digital Filters

Bessel filter, but not as steeply as that of the Chebychev and inverse Chebychev filters. The
Butterworth filter is often referred to as having a maximally flat response in the passband,
because it exhibits virtually no ripple in the passband. The Butterworth’s “roll-off” is
monotonic and smooth at a rate of 20 dB/decade, or equivalently 6 dB/octave for each of
its poles. For example a fourth-order Butterworth would have a roll-off of 80 dB per each
decade above cutoff. The Butterworth also does not exhibit ringing in the stopband.

|H(jω)| =
1

√

[

1 +
(

ω
ωc

)2n]

(8.5)

• Chebychev: This filter exhibits ripples in the pass band. Its attenuation rises sharply in
the transition region compared to that of the Bessel and Butterworth filters, but not as
sharply as the inverse Chebyshev. It exhibits little ringing in the stopband, but it does
exhibit some overshoot when subjected to a step function, although less than that of the
inverse Chebychev.

|H(jω)| =
1

√

1 + ǫ2T 2
n

(

ω
ω0

)

(8.6)

where ǫ is the ripple factor and T 2
n is the Chebyshev polynomial of the nth-order.

Table 8.2: Chebyshev Polynomials.

T0(x) = 1
T1(x) = x
T2(x) = 2x2 − 1
T3(x) = 4x3 − 3x
T4(x) = 8x4 − 8x2 + 1
T5(x) = 16x5 − 20x3 + 5x
T6(x) = 32x6 − 48x4 + 18x2 − 1
T7(x) = 64x7 − 112x5 + 56x3 − 7x
T8(x) = 128x8 − 256x6 + 160x4 − 32x2 + 1
T9(x) = 256x9 − 576x7 + 432x5 − 120x3 + 9x

• Inverse Chebychev: This filter provides a very flat response in the passband. It has a
much steeper response in the transition region than Butterworth, Bessel, or Chebychev but
does tend to exhibit more ringing, overshoot, and ringing in response to a step function.

The basic form of this filter is given by

|Hn(jω)| =
1

√

[

1 + ǫ2T 2
n

(

ω
ω0

)]

(8.7)

where Tn is the Chebyshev polynomial of order n as shown in Table 8.1 and ǫ is the ripple
factor8.

8The ripple factor is the parameter that controls the amount of ripple in the passband.

8.2 Filter Design 337

• Elliptic filter: (aka Cauer) This a filter can have the same amount of ripple in the pass-
band, as in the stopband or the ripple in both bands can be varied independently. This
type of filter also has the fastest transition from passband to stopband of any of the filters
discussed in this chapter.

The basic form of its transfer function is given by

|H(jw)| =
1

√

1 + ǫ2R2
n(ξ, ω

ω0
)

(8.8)

where Rn are the Chebyshev rational functions given by

Rn(ξ, x) = cd

(

n
K(1

Ln
)

K(1
ξ)

cd−1
(

x,
1

ξ

) 1

Ln

)

(8.9)

(cf. Table 8.2).9[28]

There are many types of filters of which the five most common are Bessel, Butterworth,
Chebychev 1, Chebychev II, and elliptic filters. It is useful to compare each to an ideal filter that
has the following characteristics: unit gain in the passband(s), zero gain in the stopband(s), and
zero phase shift in the passband. Such a filter is of course not obtainable as a practical matter,
but it is possible to achieve progressively sharper passband–stopband transitions by increasing
the order of the filter. However, all five exhibit nonzero phase shifts no matter what the order
of the respective filter. Nonetheless, there is a type of filter referred to as an ideal linear phase
filter which has as its primary characteristic that its phase shift is proportional to frequency. For
an arbitrary transfer function:

H(s) = |H(jω)|ejθ(ω) = G(ω)ejω(ω) (8.10)

and the phase components are defined by:

PD = Phase Delay = −θ(ω)

ω
(8.11)

τ(ω) = Group Delay = −∂θ(ω)

∂ω
(8.12)

Therefore if the variation in phase is a linear function of the frequency, then the group delay is
constant, and there is no distortion. If this is not the case, the energy corresponding to each
frequency component may be unchanged, but the phase relationship between each component
will be changed resulting in distortion of the original signal.

As an illustrative example, consider the second-order lowpass filter whose transfer function is
given by

H(s) =
ω2

0

s2 + 1
Qω0

s + ω2
0

(8.13)

with

τ(ω) =
1

ω0Q

[

1 +

(

ω2

ω2
0

)]

−1[

1 −
(

1 − 1

2Q2

)](

2ω

ω0

)2

+

(

ω

ω0

)4]−1

(8.14)

9Note that cd is the Jacobi elliptic cosine function, K a “complete” elliptic integral of the first kind and
Ln(ξ). = Rn(ξ, ξ).

338 Analog and Digital Filters

and therefore for ω << ω0,

τ(ω) ≈ 1

ω0Q
=

2ξ

ω0
(8.15)

Thus as shown in Figure 8.25, the group delay is relatively constant with respect to a nor-
malized angular frequency in the range 0 < ω ≤ 0.2, where 0.05 ≤ ξ ≤ 1.0.

8.2.2 Filter Parameters

Filter design is based on consideration of a number of factors which, when taken together, com-
pletely characterize the filter required. The key design parameters are allowable passband and
stopband ripple, the filters transient response, its monotonicity, rate of attenuation at/near cutoff,
the roll-off rate beyond cutoff and the filter’s order.

• Allowable passband and stop band ripple: A filter that fails to exhibit monotonicity in the
passband will exhibit what is referred to as ripple.

• Transient response: This can be a much more serious issue in filter design than other filter-
related issues, because filters can “ring”. Such oscillations can introduce noise into the
embedded system, give rise to inaccurate input data and/or unduly influence the systems
response to sensor input, and so on. High Q and extremely sharp cutoff may be highly
desirable, but unfortunately the higher the Q and the sharper the cutoff, the greater the
ringing is. One way of determining the degree of ringing that a filter can produce is to
subject the filter to a step function. Ringing can be difficult to control and the best
approach is often to impose no sharper cutoff or higher Q than is really needed in a given
design.

• It may seem that the order of a filter is not a particularly critical design criterion. However,
the higher the order is, the more components are required, and therefore the higher the cost
and the greater the physical volume. Perhaps even more important is that higher order
filters involve correspondingly greater complexity in terms of the design effort. The order
of the filter should be based primarily on the required roll-off characteristics, and wherever
possible Occam’s razor10 should be employed.

In thinking about, and designing filters, there are four rather simple parameters that can be
relied upon to characterize a reasonably good filter for a particular application:

1. fc: The cutoff frequency

2. fs: The frequency at which the stopband begins

3. Amin: The maximum allowable change, or equivalently the minimum allowable attenuation,
within the passband

4. Amax: The maximum allowable variation in gain within the passband.

Note that the gain axis represents the “normalized gain” and that the corner or “cutoff”
frequency is shown as the −3 dB point on the magnitude plot in Figure 8.5. The cutoff frequency

10Occam’s razor is attributed to a 14th century monk and can be simplistically stated as “The simplest solution
is typically the best”.

8.2 Filter Design 339

is defined as the point at which the magnitude of the gain has dropped by a factor of 1/
√

2 or
.707.

Also the unit of measure for gain is given in dB defined as

dB = 20 log

[

Vout

Vin

]

(8.16)

Furthermore,the slope shown as −20 dB/decade represents the rate of attenuation. This can
also be expressed as -6 dB/octave. One of the principal figures of merit of a filter is its Q which
is defined as

Q =
fc

∆f
(8.17)

where

∆f = fH − fL (8.18)

is defined as the width in Hz of the half-power points. Recall that the −3 dB point also represents
the half-power point because

20 log

[

Vout

Vin

]

= −3 dB (8.19)

which implies that,

Vout

Vin
=

√
2

2
= .707 (8.20)

However, power is proportional to the square of the maximum amplitude of the voltage and
therefore because .7072 ≈ .5, the −3 dB point corresponds to the “half-power point.” The -3 dB
point also defines the cutoff frequency fC . In the case of digital filters, the cutoff frequency is
specified as the point at which amplitude is 50 − 99% of the maximum value. For biquadratic
filters with low Q factors (e.g., Q ≤ 2) there is relatively little sensitivity to component tolerances.
For 2 < Q < 20 component sensitivity issues begin to arise and for 20 < Q, depending on the
technology involved, component sensitivity can become a serious issue.

8.2.3 Scaling and Normalization

One technique that can be used to reduce the amount of work required to design a particular
filter is to employ normalization[26, 29]. This allows a designer to focus on the desired filter
characteristics and then use scaling to “scale” the filter for a particular frequency, or range of
frequencies, without altering the filters characteristics. It is also possible to scale the filter’s
impedance by using a similar technique. Note that for a capacitor, doubling the frequency halves
the impedance and for an inductor doubles the impedance which represents a 6 dB change.

Typically, a cutoff frequency of 1 radian per second, or equivalently 1/2π Hz, and an impedance
of 1 ohm are chosen to “normalize” a particular filter configuration being analyzed. This choice
is easily understood when one considers that for a combination of a one farad capacitor and one
ohm resistor, the cutoff frequency becomes one radian per second. However, designers work with
filters in two contexts: (a) the analysis of a particular filter and (b) the “synthesis” of a filter to
meet a specific set of requirements [40, 44, 48]. In the latter case, the design is often facilitated
by using more realistic values, for example R = 10KΩ and a cutoff frequency of 1KHz.

340 Analog and Digital Filters

8.2.4 Cascading Analog Filters

The characteristics of a nonideal filter can often be improved by passing the signal though a series
of filter stages. This is a result of the fact that a second-order filter has a maximum phase shift
of 180 degrees and is therefore unconditionally stable, meaning no chance for oscillation to occur.
Thus second-order filters11 are attractive as basic building blocks for higher-order filters.

Fortunately, any linear time invariant (LTI) system can be represented in terms of combi-
nations of first and second-order stages, sometimes referred to as sections (cf. Table 8.3). One
of the significant benefits of analog filters is the fact that they can be cascaded. Care must be
exercised in doing so to avoid loading successive stages in such an arrangement, but the high
input impedance of many OpAmps reduces the loading to a level that for most applications,
is insignificant. Furthermore, adding additional filtering stages comes at the cost of additional
components (i.e., resistors, capacitors, and OpAmps), increased power requirements, increased
printed circuit board real estate, and makes the design more susceptible to component tolerance
variations, noise, and so on. Nonetheless, the benefits often outweigh the costs.

The transfer function for N cascaded filter stages is given by[12, 13]:

H(s) =

N
∏

j=1

Hj(s) = H(s)1H(s)2H(s)3 · · ·H(s)N (8.21)

where Hj(s) is the transfer function for the j th filter section and s = σ + jω. Because multipli-
cation of the transfer functions is commutative, it may appear that the order of application of
each stage is irrelevant. However, in order to avoid loss of dynamic range and signal clipping each
transfer function is typically applied to the input signal in order of increasing Q for each stage.
To minimize noise, the gain of each successive stage should be less than that of the preceding
stages.

Any physically realizable circuit can be represented by a transfer function that is a rational
polynomial which is a function of s.

The j th stage of order n can be expressed as

Hj(s) =
N(s)j

D(s)j
= K

b0 + b1s
1 + b2s

2 + b3s
3 + b4s

4 + . . . + bmsm

a0 + a1s1 + a2s2 + a3s3 + a4s4 + . . . + ansn
(8.22)

Hj(s) =
N(s)j

D(s)j
= K

(s − z1)(s − z2) . . . (s − zm−1)(s − zm)

(s − p1)(s − p2) . . . (s − pn−1)(s − pn)
(8.23)

where an and bm are real, and the order of N(s) is less than the order of D(s).12

The “frequency response” of a filter, section or stage is defined as:

Hj(s = jω) = K
(jω − z1)(jω − z2) · · · (jω − zm−1)(jω − zm)

(jω − p1)(jω − p2) · · · (jω − pn−1)(jω − pn)
(8.24)

However, terms such as (jω − pm) represent the distance in the s-plane from jω to pm and
therefore:

|jω − pi| =
√

σ2 + (ω − ωi) and |jω − pi| =
√

σ2 + (ω − ωi) (8.25)

11Equally important is the fact that second-order characteristic equations are readily solved by the quadratic
“formula.”

12If this is not the case then the numerator should be divided by the denominator until m< n.

8.2 Filter Design 341

Figure 8.6: Sixth order lowpass filter characteristics [27].

Figure 8.7: Fifth Order Bandpass filter characteristics [27].

and,

∠(s − pi) = tan−1

[

−
(

ω − ωi

σi

)]

and ∠(s − zi) = tan−1

[

−
(

ω − ωi

σi

)]

(8.26)

Thus it is the frequency response on the jω axis defined by the distance from each of the
poles and zeros to a point s = jω in the s-plane, that determines the magnitude and phase of the
transfer function for a particular value of s.

342 Analog and Digital Filters

R1 R2

C4

C3

Figure 8.8: Typical S-K Analog Filter Section.

Therefore,

|H(jω)| = K

∏m
i=1(jω − zi)

∏n
i=1 |(jω − pi)

(8.27)

and,

∠H(jω) =
m

∑

i=1

∠(jω − zi) −
n

∑

i=1

∠(jω − pi) (8.28)

Note that:

lim
s→zi

H(s) = 0 (8.29)

lim
s→pi

H(s) = ∞ (8.30)

and because the coefficients of N(s)j and D(s)j are real, the zeros and poles must be either real or
occur in complex pairs. It is helpful to plot the poles and zeros in the complex s-plane. (Typically
poles are represented by x s and zeros by circles.) Recall that the Laplace [29] transform and the
complex Fourier transform are related in that the Fourier transform is given by

X(ω) =

∫

∞

−∞

f(t)e−jωtdt (8.31)

and the Laplace transform by

X(σ, ω) =

∫

∞

−∞

[

f(t)e−σt
]

e−jωtdt =

∫

∞

−∞

f(t)e−(σ+jω)tdt (8.32)

Note also that the sign of σ determines the stability, or lack thereof, of a filter section and whether
it is critically damped, underdamped, or overdamped. Therefore because s = σ + ω, Equation
8.32 becomes:

L(s) =

∫

∞

−∞

f(t)e−stdt (8.33)

The term e−st = e−(σ+jω) represents both exponential and sinusoidal components. In the case of
a real pole (i.e., pi = −σ), an exponentially decaying component is introduced, where the rate of

8.2 Filter Design 343

decay is determined by the location of the pole: the farther to left of the origin, the faster the rate
of decay of a pole is. Poles to the right of the origin, introduce instability and therefore must be
avoided when designing filters. Poles at the origin (i.e. pi = 0) are defined as “marginally” stable
and contribute a constant amplitude component. Similarly, a pair of poles on the imaginary axis
introduce a constant amplitude, oscillatory component. A three dimensional graph of σ , ω, and
d is shown in Figure 8.29 for a biquadratic filter.

The Bode plot can be constructed directly from the poles and zeros of a filter section to
determine the shape of a section’s response as a function of angular frequency.

The so-called “break frequencies” are defined by

ωb =
√

(σ2 + ω2) (8.34)

and can be derived from the transfer function for a given section or from the pole–zero diagram.

The distance to each pole is measured along the imaginary axis, for example by using a
compass to draw an arc on the s-plane where the arc is centered at the origin and the radius is
the distance to each pole and zero in the left-hand side of the plane. At frequencies above each
pole and zero, the slope of their respective asymptotes changes by ±20 dB per decade beginning
at the break frequency of each pole or zero.

Complex conjugate poles, or zeros, add two breaks of ±20 dB per decade resulting in an
asymptote with a slope of 40 dB per decade. The slope of the asymptotic function representing
the magnitude at any point ω is determined solely by on the number of breakpoints at values less
than ω. For Z zero breakpoints to the left of ω and P pole breakpoints, the slope at ω is given
by slope = 20(Z − P) dB per decade. Although this method does not provide the actual gain
of the section, it does provide insight into the behavior of the filter as a function of frequency.

Without any loss of generality, attention is restricted in the following discussion to values of
n such that 0 < n ≤ 2, that is

H(s) =
a0 + a1s

1 + a2s
2

b0 + b1s1 + b2s2
⇐⇒ Generic Biquad (8.35)

and the following case for a2 = a1 = 0:

H(s) =
a0

b0 + b1s1 + b2s2
⇐⇒ Lowpass (8.36)

Substituting jω = s yields, after some rearranging,

H(jw) =
a0

(jω)2 + (b1/b2)ω + (b0/b2)
(8.37)

and because a0 is just a scaling factor, let a0 = ω2
0 so that

H(jw) =
1

(jω/ω0)2 + (b1jω/b2ω2
0) + (b0/b2ω2

0)
(8.38)

a2 = a0 = 0,

H(s) =
a1s

1

b0 + b1s1 + b2s2
⇐⇒ Bandpass (8.39)

344 Analog and Digital Filters

Table 8.3: Filter order versus first- and second-order factors.

n an

1 (s + 1)
2 (s2 + 1.4142s + 1w)
3 (s + 1)(s2 + s + 1)
4 (s2 + 0.7654s + 1)(s2 + 1.8748s + 1)
5 (s + 1)(s2 + 0.6180s + 1)(s2 + 0.6180s + 1)
6 (s2 + 0.5176s + 1)(s2 + 1.4142s + 1)(s2 + 1.9391s + 1)
7 (s + 1)(s2 + 0.4450s + 1)(s2 + 1.2470s + 1)(s2 + 1.8019s + 1)
8 (s2 + 0.3902s + 1)(s2 + 1.1111s + 1)(s2 + 1.6629s + 1)(s2 + 1.9619s + 1)

a1 = a0 = 0,

H(s) =
a2s

2

b0 + b1s1 + b2s2
⇐⇒ Highpass(Biquad) (8.40)

a1 = 0,

H(s) =
a0 + a2s

2

b0 + b1s1 + b2s2
(8.41)

8.3 Analog Filters

In the following sections, several types of common analog filters are discussed. Those considered
are only a small sample of known designs, however, they represent some of the more popular
architectures.

8.3.1 Time-Continuous Integrators as Filters

Perhaps the simplest of all active filters is the OpAmp-based integrator[49]. Figure 8.9 shows one
such integrator and its symbolic representation. Because the transfer function for an integrator
can be expressed simply as

H(s) = − 1

sRC
(8.42)

and therefore

H(jω) = − 1

(jω)RC
=

∣

∣

∣

∣

1

ωRC

∣

∣

∣

∣

∠ − 90◦ (8.43)

so that the phase shift is 90 degrees and the gain decreases with increasing frequency. Note that
at ω = 0, that is for DC input, this filter exhibits a single pole because the output voltage is
limited only by the power supply. Although not a particularly interesting filter, it can be used

8.3 Analog Filters 345

Figure 8.9: A simple integrator-based filter.

as the basis for creating much more sophisticated filters. Consider the transfer function for a
second-order, lowpass filter, namely

H(s) =
ω2

0

s2 + ω0

Q + ω2
0

(8.44)

Because H(s) = Vout/Vin, Equation 8.44 can be expressed as,

ω2
0Vin = s2 Vout +

ω0

Q
s Vout + ω2

0Vout (8.45)

and,

ω2
0

s2
Vin = Vout +

ω2
0

Qs
Vout +

ω2
0

s
Vout (8.46)

so that

Vout = ω2
0

[

1

s2

]

Vin − ω2
0

[

1

s2

]

Vout −
ω2

0

Q

[

1

s

]

Vout (8.47)

=
ω2

0

s2
[Vin − Vout] −

ω2
0

sQ
Vout (8.48)

Vin must undergo successive integrations to produce Vout , as shown in Figure 8.10. It should
be noted that by convention the summands are assumed to be noninverting and the integrators
inverting. Because the integral of a sum is equal to the sum of the integrals, that is,

∫

(f + g) =

∫

f +

∫

g (8.49)

and
[

1

s

]

⇒
∫

and

[

1

s2

]

⇒
∫∫

The filter can be based on the circuit shown in Figure 8.11 provided that values of R1C1 and
R2C2 are determined by

ω0

Q
=

1

R2C2
⇒ R2C2 =

Q

ω0
(8.50)

346 Analog and Digital Filters

Figure 8.10: Integrator-Based Filter Network.

R1 R2

C2
C1

+

−

+

−

Figure 8.11: Integrator-based filter.

and,

ω2
0 =

1

R1C1R2C2
⇒ R1C1 =

1

ω2
0R2C2

=
1

ω0Q
(8.51)

8.3.2 The Passive Lowpass Filter

It is helpful to consider the classical lowpass filter. This simple RC network and its converse
shown in Figures 8.12 (a) and (b), respectively, are used in many applications where relatively
simple filtering is required.

Obviously the transfer function for Figure 8.12 a) is given by

Hlp(s) =
1

1 + sRC
(8.52)

It proves useful to introduce an angular frequency ωc defined as

ωc =
1

RC
(8.53)

Thus Equation 8.52 becomes:

Hlp(s) =

[

1 +
s

ωc

]

−1

=

[

1 +
jω

ωc

]

−1

=

[

1

1 + jΩ

]

(8.54)

where Ω = ω/ωc , a normalized angular frequency, so that the magnitude of H(s)lp is given by

|Hlp(s)| =
1√

1 + Ω2
(8.55)

8.3 Analog Filters 347

Figure 8.12: Simple Passive LP and HP Filters.

In order to understand in general terms how this simple filter will behave as a function of fre-
quency, consider expressing the transfer function in terms of dB

G(dB) = 20 log(|H(s)|) = 20 log

[

1√
1 + Ω2

]

= 20 log(1) − 20 log (1 + Ω2)
1/2

(8.56)

Note that when ω = ωc, Ω = 1 and therefore Equation 8.56 becomes:

G(dB) = 20 log(1) − 20 log (1 + 12)
1/2

= − 20 log (2) = 3 dB (8.57)

As the frequency, f, of the input signal increases:

1 + Ω2 ≈ Ω2 (8.58)

and therefore,

G(w) ≈ −20 log Ω (8.59)

Note that the transfer function for the RC filter shown in Figure 8.12 (b) is given by

Hhp(s) =
sRC

1 + sRC
(8.60)

which also has a single pole at s = −1/RC.

Therefore as in the previous case:

G(dB) = 20 log(|H(s)|) = 20 log

[

Ω√
1 + Ω2

]

= 20 log(Ω) − 20 log (1 + Ω2)
1/2

(8.61)

which for Ω >> 1 yields: G(dB) ≈ 0. Note that for sufficiently large Ω the slope of the response
curve becomes −20 dB per decade, or equivalently −6 dB per octave.

It is quite easy to provide isolation to this passive circuit to avoid any loading effects on the
filter by the next stage by simply adding a voltage follower using an OpAmp [14] as shown in
Figure 8.18. Although arguably now an active filter, in actuality the sole function of the OpAmp
is to minimize loading. Figure 8.18 shows an example of a fourth-order filter in which each stage
is buffered from the previous stage by a voltage follower. In later examples, the OpAmp will
actually provide feedback to the filter and contribute some energy to minimize loss effects due to
Ohmic dissipation.

As shown in Figure 8.13 it is a simple matter to add gain to these types of filters. The transfer
function then becomes

H(s) =
K

(1 + jΩ)
(8.62)

348 Analog and Digital Filters

Figure 8.13: Simple lowpass filter with gain K.

Note that K–1 is used for the value of the feedback resistor for the noninverting OpAmp. The
gain provided by the OpAmp is determined by

Vout =

[

R1 + R2

R1

]

Vin (8.63)

so that the gain contribution for the filter shown in Figure 8.13 is simply:

Vout

Vin
=

[

1 + (K − 1)

1

]

= K (8.64)

If the relative positions of the capacitor C and resistor R are reversed as shown in Figure 8.12
then the passive network has a transfer function given by

H =
K jΩ

(1 + jΩ)
(8.65)

and therefore,

Figure 8.14: Sallen-Key Filter.

8.3 Analog Filters 349

G(dB) = 20 log

[

Ω2

1 + Ω2

]1/2

= 20 log[Ω] − 20 log[1 + Ω2] (8.66)

This result illustrates an important feature or features sometimes referred to as “turning a
filter inside out.” This refers to the fact that replacing f with 1/f in a transfer function for a
filter causes a lowpass filter to become a highpass filter and conversely a highpass filter to become
a lowpass filter. This is equivalent to replacing the filter’s capacitors with resistors, and resistors
with capacitors. Note, however, that in both cases the OpAmp does not contribute any energy
to the RC filter or feedback, merely circuit gain.

8.3.3 The Sallen–Key Lowpass Active Filter

Although there appear to be a virtually unlimited number of basic filter designs, one of the most
common is the so-called Sallen-Key[26],[32], VCVS,13 two pole filter which is shown in Figure 8.14.
This filter has become popular for several reasons: (a) It is based on one OpAmp, two resistors,
and two capacitors, and is therefore relatively easy to implement; (b) its gain characteristic is flat
in the passband with “good” characteristics outside the passband; (c) multiple S–K filters can
be cascaded to create arbitrarily complex, multipole filters; and (d) it is relatively inexpensive.
Therefore this type of filter is suitable for a wide range of applications.

Such filters can be designed based on either continuous-time, or switched capacitance
devices[25]. In the following, examples of each are presented together with illustrative examples
based on PSoC technology. The gain equation for this particular configuration of the Sallen-Key
filter is given by [26] as

Vout

Vin
=

K

s2(R1R2C3C4) + s
[

R1C3 + R2C3 + R1C4(1 − K) + 1
] (8.67)

or,

Vout

Vin
=

K
R1R2C3C4

s2 + s

[

1−K
R2C4

+ R1+R2

R1R2C4

]

+ 1
R1R2C3C4

(8.68)

and defining:

ω2 =
1

R1R2C3C4
= ω0ωn (8.69)

and

1

d
=

√
R1R2C3C4

R1C3 + R2C3 + R2C4(1 − K)
(8.70)

which yields, after rearranging:

Vout

Vin
=

K

s2 + dωs + ω2
(8.71)

13Voltage controlled voltage source.

350 Analog and Digital Filters

Note that d, the damping factor given by Equation (8.70), is an explicit function of the gain K and
frequency ω that are determined by the chosen values of resistance and capacitance. Obviously
this degree of coupling is not very desirable in real-world applications. This dependance can be
reduced somewhat by setting R1 = R2 = R and C1 = C2 = C so that:

ω2
0 =

[

1

RC

]2

(8.72)

and,

Q =
RC

2RC + RC(1 − K)
=

1

3 − K
(8.73)

Thus Q and frequency are no longer mutually dependent. Note also that K > 3 results in the
filter becoming an oscillator.

As an illustrative example, consider the following

Vout

Vin
=

K
(RC)2

s2 + s

[

1−K
RC+ 2R

R2C

]

+ 1
(RC)2

(8.74)

and if

ω2
0 =

1

RC
(8.75)

then Equation (8.74) becomes:

Vout

Vin
=

Kω2
0

s2 + s

[

1−K
ω0+

2R

R2C

]

+ ω2
0

(8.76)

and

d =
1 − K

RC + 2R
R2C

(8.77)

Assuming that d, c3, C4, K, ω0, ωn are constants, Equations (8.69) and (8.70) can be solved
for R1 and R2 [34]. Note that the values for R1 and R2 are, in the case of PSoC, switched
capacitors whose equivalent resistance value is determined by the switching frequency fs.

Thus, solving Equation (8.70) for R2 and substituting it into Equation (8.69) yields, after
rearranging,

R1 =
d +

√

d2 − 4
(

[C3/C4] + 1 − K
)

2ωnω0

[

C3 + (1 − k)C4

] (8.78)

and similarly,

R2 =
1

R1C3C4ω2
0ω2

n

(8.79)

8.3 Analog Filters 351

However, R1 ∈ R and therefore,
√

d2 − 4
(

C3

C4
+ 1 − K

)

must also be ∈ R, and therefore it follows

that,

d2 > 4

(

C3

C4
+ 1 − K

)

(8.80)

There are several important things to note about the results:

1. Damping is not a function of frequency.
2. If the gain K = 1, then C4 ≥ 4C3/d2

3. C3 can be chosen arbitrarily to provide the required circuit impedance.

These filters are trivial to implement using PSoC’s continuous time (CT) programmable gain
amplifier with a PSoC buffer and external components for R1, R2, C3, and C4. However, caution
should be used in such cases as rolloff frequencies should be restricted to one tenth of the gain
bandwidth of the amplifier.

8.3.4 The Switched-Capacitance Filter

The basic RC-Biquad filter is shown in Figure 8.15 and its transfer function is given by

Vout

Vin
=

R2

R1

1

R2R3CCACB

[

s2 +
C4

R3CACB
s +

1

R2R3CACB

]

−1

(8.81)

Because the middle OpAmp is functioning solely as a unity gain inverter stage, it has been
replaced in the PSoC implementation of this filter. The PSoC equivalent circuit is obtained by
replacing all of the resistors used in this figure with their switched capacitor equivalent [43]. The
switched capacitance version of this same circuit is shown in Figure 8.16. Its transfer function is
given by

Vout

Vin
=

−C1CB

C2C3

[

1− s
2fs

CACB
C2C3

−
1
4
−

1
2

C4
C2

]

fs
2

s2 + C4

C2

[

sfs
CACB
C2C3

−
1
4
−

1
2

C4
C2

]

+

[

f2
s

CACB
C2C3

−
1
4
−

1
2

C4
C2

] (8.82)

Note that

Q =
C2

C4

[

CACB

C2C3
− 1

4
− 1

2

C4

C2

]

−1/2

(8.83)

G = −C1

C2

CB

C3
(8.84)

and

fc =
1

2π

fs
[

CACB

C2C3
− 1

4 − 1
2

C4

C2

]1/2
(8.85)

352 Analog and Digital Filters

8.3.5 Biquad Switched Capacitor Filter

It is quite easy to construct a biquad switched capacitor filter [43] by employing two of PSoC’s
programmable switched capacitor blocks which results in a filter that consists of two OpAmps,
eight capacitors, and has a programmable sample frequency. Referring to Figure 8.16, and
assuming both switched capacitor blocks are clocked at the same rate

Vout1 = Vout1z
−1 − Vin

C1

CA
− Vout2

C2

CA
−

[

Vout2 − Vout2z
−1

]

C4

CA
−

[

Vin − Vinz−1

]

Cp

CA
(8.86)

Vout2 = Vout2z
−1 − Vout1z

−1 C3

CB
−

[

Vin − Vinz−1

]

Cpp

CB
(8.87)

Therefore,

[

Vout1

Vin

]

=

[

Vout1

Vin

]

z−1 − C1

CA
− C2

CA

[

Vout2

Vin

]

−
[

1 − z−1

]

C4

CA

[

Vout2

Vin

]

− Cp

CA

[

1 − z−1

]

(8.88)

[

Vout2

Vin

]

=

[

Vout2

Vin

]

z−1 − C3

CB

[

Vout1

Vin

]

z−1 − Cpp

CB

[

1 − z−1

]

(8.89)

and,

[

Vout1

Vin

]

[1 − z−1] = − C1

CA
− C2

CA

[

Vout2

Vin

]

−
[

1 − z−1

]

C4

CA

[

Vout2

Vin

]

− Cp

CA

[

1 − z−1

]

(8.90)

[

Vout2

Vin

]

[1 − z−1] = − C3

CB

[

Vout1

Vin

]

z−1 − Cpp

CB

[

1 − z−1

]

(8.91)

so that,

[

Vout1

Vin

]

= − C1

CA

1

[1 − z−1]
− C2

CA

[

Vout2

Vin

]

1

[1 − z−1]
− C4

CA

[

Vout2

Vin

]

− Cp

CA
(8.92)

[

Vout2

Vin

]

= − C3

CB

[

Vout1

Vin

]

z−1

[1 − z−1]
− Cpp

CB
(8.93)

which can be treated as a system consisting of two equations in the two unknowns,
[

Vout1/Vin

]

and
[

Vout2/Vin

]

, and therefore leads to:

[

Vout1

Vin

]

=
−CBCpz

2 + 2CBCpz − CBC1z
2 − CBCp + CBC1z

CBCAz2 − 2CBCAz + C2C3z + C4C3z − C4C3 + CBCA
(8.94)

+
CppC2z

2 + CppC4z
2 − 2CppC4z − CppC2z + CppC4

CBCAz2 − 2CBCAz + C2C3z + C4C3z − C4C3 + CBCA

and,

[

Vout2

Vin

]

=
CppCAz2 − 2CppCAz + CppCA + CpC3z − CpC3 + C1C3z

CBCAz2 − 2CBCAz + C2C3z + C4C3z − C4C3 + CBCA
(8.95)

8.3 Analog Filters 353

The bilinear transform that maps the imaginary axis iω into the unit circle |z| = 1 (to retain the
frequency characteristics), and the left half of the s-plane onto the interior of the unit circle in
the z -plane (to retain stability), is given by

z =
1 +

(

T
2

)

s

1 −
(

T
2

)

s
=

1 +
(

1
2fs

)

s

1 − (1
2fs

)

s
(8.96)

where fs is the sampling frequency.

Substituting Equation (8.96) in Equations (8.95) and (8.95) yields:

H(s)out1 =

−Cpp

C3

[

1 +

(

s
fs

) (

1 + C4

C2

)]

+ C1CB

C2C3

(

s
fs

)2

+ C1CB

C2C3

(

s
fs

)[

1 + 1
2

(

s
fs

)]

[

CBCA

C2C3
− C4

2C2
− 1

4

](

s
fs

)2

+ C4

C2

(

s
fs

)

+ 1

(8.97)

H(s)out2 =

−CppCA

C2C3

(

s
fs

)2

+
Cp

C2

(

1 − s
fs

)(

s
fs

)

+ C1

C2

[

1 − 1
4

(

s
fs

)2]

[

CBCA

C2C3
− C4

2C2
− 1

4

](

s
fs

)2

+ C4

C2

(

s
fs

)

+ 1

(8.98)

The second-order transfer function for a filter can be expressed in a generalized form as

H(s) =

hhp

(

s
2πf0

)2

+ hbp

(

s
2πf0

)

+ hlp

(

s
2πf0

)2

+ d

(

s
2πf0

)

+ 1

(8.99)

where f0 is defined as the rolloff frequency and d is the damping factor with typical values in
the range 0 ≤ d ≤ 2. The parameters hhp, hbp and hlp are the highpass, bandpass, and lowpass
coefficients, respectively. Note that the transfer function for a “section” is uniquely determined
by five parameters, namely, hhp, hbp, hlp, d (or alternatively Q) and f0.

Comparing Equation 8.99 with Equations 8.97 and 8.98, shows that

hhp1 = − CpCB

[

CACB − 1

2

C3

C4
− 1

4
C2C3

]

−1

(8.100)

hbp1

d
≈ −C1CB

C4C3
(8.101)

hhp2 = − CppCA

[

CBCA − 1

2
C3C4 −

1

4
C2C3

]

−1

(8.102)

hbp2

d
≈ −Cp

C4
(8.103)

354 Analog and Digital Filters

hlp2 ≈ −C1

C2
(8.104)

In order for the denominators of Equations (8.99), (8.97), and (8.98) to be the equal the following
equality must be true

(

s

2πf0

)2

+ d

(

s

2πf0

)

+ 1 =

[

CBCA

C2C3
− C4

2C2
− 1

4

](

s

fs

)2

+
C4

C2

(

s

fs

)

+ 1 (8.105)

where f0 is defined as

f0 =
fs

2π

√
C2C3

√

CaCB − 1
2

C4

C3
− 1

4
C2

C3

= 2π

√

CACB

C2C3
− C4

2C2
− 1

4
(8.106)

and d is defined as

d =
C4

√

CACB − 1
2

C4

C2
− C2C3

4

√

C3

C2
=

C4

C2

1
√

CACB

C2C3
− C4

2C2
− 1

4

(8.107)

Note that typical values for d fall in the range 0 ≤ d ≤ 2. depending on whether the response is
oscillatory, underdamped, critically damped, or overdamped. Obviously oscillating filters are to
be avoided.

The oversample ratio OSR is given by

OSR =
f0

fs
=

1

2π

√
C2C3

√

CACB − 1
2

C4

C3
− 1

4
C2

C3

(8.108)

Note that the rollover frequency is directly proportional to the sampling frequency, a feature of
switched capacitor filters, and the oversample ratio and damping factor are not a function of the
parasitic capacitance terms (i.e. Cpp and Cp). Once the rolloff frequency, damping value, and
pass coefficients for a particular filter section have been selected, Equations (8.106) and (8.107)
can be used to determine the values of CA, CB , C2, C3, and C4. Equations (8.101)–(8.104) can
then be used to determine C1.

Values for the parasitic capacitances Cp, Cpp, if not explicitly known, are often assumed to be
zero. Given that three parameters fully characterize the filter’s behavior but two equations are
used to determine the values for CA, CB , C2, C3, and C4 the system is not uniquely determinant.
This can be viewed as both an advantage and a disadvantage in that an iterative process may
be required to determine these values and an advantage in that it provides the designer some
latitude in choosing component values. Fortunately, PSoC is provided with software wizards for
a lowpass and bandpass section design that programmatically select values for CA, CB , C2, C3,
and C4.

Traditionally, filter design has been an iterative process often involving tradeoffs. In what
follows it is shown that much of the work has now been automated, allowing a designer to quickly
converge on an acceptable design. The PSoC architecture provides both bandpass and lowpass
modules together with tools that greatly facilitate the design process. However, a highpass
module is not provided because such a filter would of necessity require a very high OSR which
would in turn require substantially more silicon real estate at the chip level and substantially
increase costs.

8.3 Analog Filters 355

CA

C4

R1

R2

CB

R3R

R

Figure 8.15: Biquad LP Filter.

PSoC’s spreadsheet-based design tools for bandpass and lowpass filters allow the designer to
select a filter type (e.g., Butterworth, .1 dB Chebyshev, 1 dB Chebyshev, Bessel or Gaussian),
the desired center frequency, bandwidth, and gain. Once initial values have been chosen for C2

and C4, values are automatically calculated for CA, CB C3 and C1. It should be noted that
available capacitance values are “quantized”, for example C1, C2, C3,C4, can only have integer
values in the range from 0 to 32 and CA and CB can have the values 16 or 32.

8.3.6 An Allpass Filter

One of the more curious forms of filters is the allpass filter. One might well ask why have a filter
that passes all frequencies? The answer is simply that there are situations for which it is useful
to be able to pass all frequencies, but with a constant phase shift for the frequencies of interest.
The phrase “allpass filter” is, however, at the very least ambiguous and at most misleading. Such
filters are better described as delay equalizers, phase-shift filters, or time-delay filters. One such
filter is shown in Figure 8.23. Assuming that R1 = R3 and that R2 = R1/2, the transfer function
for the allpass filter shown in Figure 8.23 can be expressed as

H(s) =

[

1 +
RF

RA

][

1

R4 + R6

][

sR4RC + R4 − R6

1 + sRC

]

(8.109)

Setting R4 = R6/2 yields

H(s) = 0.33

[

1 +
RF

RA

][

sRC − 1

1 + sRC

]

(8.110)

and if Rf = RA, then

H(s) = −
[

1 − sRC

1 + sRC

]

(8.111)

and if ωc = 1/RC, the transfer function in the frequency domain becomes

H(jω) =

[

1 − j
(

ω
ωc

)

1 + j
(

ω
ωc

)

]

(8.112)

356 Analog and Digital Filters

Figure 8.16: Switched Capacitance Lowpass Filter.

Figure 8.17: First-order passive lowpass, RC filter.

Figure 8.18: Fourth-order lowpass RC filter.

and therefore, the phase if given by

θ = 180◦ − 2 tan−1

(

ω

ωc

)

(8.113)

and is shown graphically in Figure 8.25.

A much simpler allpass filter is shown in Figure 8.24. In this case the transfer function is
given by

H(s) = − [s − [1/RC)]

[s + (1/RC)]
(8.114)

and the phase as a function of frequency can be shown to vary from 0◦ to 180◦. Reversing R and
C changes the transfer function to

H(s) = +
[s − (1/RC)]

[s + [1/RC)]
(8.115)

8.4 Digital Filters 357

Figure 8.19: PSoC’s two-pole lowpass design tool (Excel-based) [50].

and the phase in this case is given by

θ = tan−1

(

[2ω/RC]

[ω2 − (1/RC)]

)

(8.116)

which results in a circuit capable of varying phase from -180◦to 0◦.

8.4 Digital Filters

In typical embedded system applications it is often necessary to filter data that are in digital
form. Digital filters[16][41] have becoming increasingly important in critical applications because
among other things they are not affected by the temperature, passive component drift, OpAmp
nonidealities, and so on, that are characteristic of active filters. The fact that the filtering
is implemented in the digital domain means that digital filters can be employed as “adaptive
filters” for speech recognition, noise cancelation and echo suppression.

Digital and analog filters are dramatically different in terms of implementation, but the design
methodology for each is rather similar, in that the filter’s desired characteristics must be specified

358 Analog and Digital Filters

Figure 8.20: PSoC bandpass filter design tool (Excel-based) [50].

and the values of the associated parameters be determined. In the analog domain this requires
determining the appropriate OpAmp characteristics, and resistance/capacitance values. In the
digital domain, one must determine the necessary coefficient values and deal with the vagaries of
developing the associated software algorithm(s).

Although implementing filters in the digital domain may seem, superficially at least, to be
perhaps more aesthetically pleasing, it has some potentially serious drawbacks. Not the least
of these is the fact that for real-time operation, the digital filter must be capable of completing
execution of the necessary algorithm(s) between sample periods. Buffering of input data can be
employed in some systems to provide sufficient time to complete the necessary computations, but
as a practical matter this is not an acceptable alternative in the majority of real-time applications.

Given that the real world is largely analog, tradeoffs must be considered when designing an
embedded system that take into account cost, performance, and stability that often lead to an
embedded system implementation consisting of both analog and digital techniques. A comparison
of analog and digital filters is provided in Table 8.5.

8.4 Digital Filters 359

Figure 8.21: PSoC’s filter design wizard [50].

In addition, digital filters can be based on convolving the input signal with the filter’s impulse
response which is perhaps the most general method of filtering, or by employing recursion. In the
first case samples of the input signal are “weighted” and the resulting samples are summed. In
the second case, previous output values of the filter input are fed back. These two digital filters
are referred to as finite impulse response (FIR) and infinite impulse response (IIR), respectively.
FIR filters do not strictly speaking have an analog, however, IIR filters can be considered to have
as their analog counterparts, Bessel, Butterworth, Chebyshev, and Elliptic filters.

The IIR filter is a recursive filter in that it employs feedback and therefore an impulse applied
to an IIR filter is, in theory at least, present for an infinite time, hence the name.

8.4.1 Digital FIR Filter

The defining form for a FIR filter, assuming LTI applies, is given by:

y[n] = b0x[n] + b1x[n − 1] + · · · + bM−1x[n − N + 1] (8.117)

where the bi are “weight” coefficients and N is the number of zeros.

Alternatively, Equation 8.117 can be expressed as:

y[n] =
1

N

N−1
∑

m=0

x[n − m] (8.118)

360 Analog and Digital Filters

Figure 8.22: PSoC’s lowpass filter design wizard [50].

C

Vin
Vout

R2

R3

RA

RF

R4

R5

R1

+

−
+

−

Figure 8.23: Allpass Filter.

H(ejω) =
1

N

N−1
∑

m=0

e−jmω =
1

N

[1 − e−jmN]

[1 − ejω]
=

1

N

[

e−j(N−1)ω/2

]

[ejmω/2 − e−jmω/2]

[ejω/2 − e−jω/2]
(8.119)

8.4 Digital Filters 361

Figure 8.24: A very simple allpass filter [51].

Figure 8.25: Linear phase second-order lowpass filter.

and because,

sin(θ) =
ejθ − e−jθ

2j
(8.120)

H(ejω) =
1

N

[

e−j(1/2)(N−1)ω

][

sin
(

ω N
2

)

sin
(

ω
2

)

]

(8.121)

Note the transfer functions 1
N dependence. As shown in Figure 8.28, recursion can be used to

perform the functions of both lowpass and highpass filtering.

362 Analog and Digital Filters

Table 8.4: Chebyshev (Elliptic) Rational Polynomials.

R1(x, ξ) = x

R2(x, ξ) =
[

(
√

1 − ξ2 − 1)x2 + 1
][

√

1 − ξ2 + 1)x2 − 1
]

−1

. . .

Rn(x, ξ) = cd

[

n
K

(

1
Ln

)

K(1
ξ
)

cd−1(x, 1
ξ), 1

Ln

]

Table 8.5: Comparison of analog vs. digital filters.

Analog Filters Digital Filters

Nonlinear Phase Linear Phase (FIR)
Simulation/Design - Easy Simulation/Design - Difficult
ADC, DAC, & DSP - Not Required ADC, DAC, & DSP - Not Required
Adaptive Filters - Easy Adaptive Filters - Hard
Real-time Performance - Good Real-time Performance - Depends
Drift - Caused by Component Variations Drift - None
Accuracy - Less Accurate Accuracy - High
Good Dynamic Range Typically Not as Good as Analog

8.4.2 Infinite Impulse Response Filter

In the case of a LTIS (linear time invariant system) an infinite impulse response filter is repre-
sented [38] by

y[n] = b0x[n] + b1x[n − 1] + . . . + bmx[n − M]

− a1y[n − 1] − · · · − aNy[n − N] (8.122)

A biquad filter[38] can be represented by setting N = M = 2, that is,

y[n] = b0x[n] + b1x[n − 1] + b2[n − 2] − a1y[n − 1] − a2y[n − 2] (8.123)

and therefore by applying the z-transform to Equation (8.123), the corresponding transfer func-
tion is given by

H(z) =
b0 + b1z

−1 + b2z
−2

1 + a1 + a2z−2
(8.124)

This represents an infinite impulse response filter because the output is summed with the input.
The topology for this transfer function is represented in Figure 8.27.

In implementing this filter, using PSoC, several factors must be taken in account. PSoC has
an integral MAC as part of its architecture, therefore

Vhp = Vin − Vlp (8.125)

8.4 Digital Filters 363

Table 8.6: Comparison of filter types.

Filter Passband Transition Stopband
Type Region

Bessel(B) Flat B < W < C < I < E No Ringing
Butterworth(W) Flat B < W < C < I < E No Ringing
Chebyshev (C) Ripple B < W < C < I < E No Ringing
Inverse Chebyshev (I) Flat B < W < C < I < E No Ringing
Elliptic (E) Ripple B < W < C < I < E Ringing

Figure 8.26: Sampled single pole passive filter.

y[n]x[n]

Z−1

Z−1

Figure 8.27: Second-order IIR filter topology.

Vlp =
Vhp

sRC
(8.126)

so that,

Vhp

Vin
=

sRC

1 + sRC
(8.127)

and

Vlp

Vin
=

1

1 + sRC
(8.128)

364 Analog and Digital Filters

Highpass

Vin

Vhp

Vlp

Vhp

Vin

Vlp

R

R

C

C
Lowpass

Vin

_

+ 1
R

1
sC

Figure 8.28: LP, HP equivalent digital filter.

But because the input values for a digital filter are discrete an equivalent topology is required
for the digital filter. For example, replacing the integrator with an accumulator, and RC by an
appropriate scale factor results in Figure 8.26. In this case the defining equations are given by

Vhp = Vin − Vlpz
−1 (8.129)

and

Vlp =
Vhp

a
− Vlpz

−1 (8.130)

Thus

Vhp

Vin
=

a(z − 1)

1 + a(z − 1)
(8.131)

and

Vlp

Vin
=

1

1 + a(z − 1)
(8.132)

And applying the z transform yields

Vhp

Vin
=

as

fs

[

1 +
as

fs

]

−1

(8.133)

Vlp

Vin
=

[

1 +
as

fs

]

−1

(8.134)

where fs is the sampling frequency and the rolloff frequency is:

f0 =
fs

2πa
(8.135)

In this case the rolloff frequency is a function of both the sample frequency and the attenuation
factor a. Alternatively the attenuation factor can be determined from the rolloff frequency. One
way of simplifying the design is to restrict the values of a to integer powers of two, that is, a = 2n

where n is an integer. Imposing this restriction yields the immediate benefit that division of the
binary value of a reduces to a series of n right shifts. For example, if a = 256, then dividing the
numerator merely requires a one-byte shift. In coding such a filter algorithm it will of course be
necessary to initialize the filter to establish the starting value of Vlp.

8.5 Filter Design Software Tools 365

8.5 Filter Design Software Tools

The personal computer [11] has done much to ease some of the burden of filter design by serving as
an environment in which a variety of filter design applications can be employed. Everything from
simple Java programs that graphically display the relationships between pole/zero placement
in the complex plane to the resulting Bode plots, to sophisticated applications that allow the
designer to specify a wide range of desired design parameters for an nth-order filter consisting of
an arbitrary number of stages (sections). This is indeed a fortunate state of affairs in that much
of filter design involves iteration and tradeoffs which the modern PC and available software are
well equipped to handle.

Cypress provides several tools as part of its PSoC Designer development environment that
greatly facilitate the design of lowpass and bandpass filters using integrated filter modules.
Figures 8.19–8.21 show three such tools, the first two of which are Microsoft Excel-based and
the third a windows-based application. The first two allow the designer to specify virtually any
of the parameters involved and then provide a graphical representation of the resulting filter
characteristics. The third allows the designer to specify the center frequency, sample frequency
bandwidth and gain and provides calculated gain, Q, oversample ratio, and values for the as-
sociated capacitance values. The application shown in Figure 8.21 automatically populates the
calculated values into the appropriate fields in PSoC Designer. However, it does not allow the
designer the complete freedom to specify arbitrary values for the other parameters such as C1

and C3 among others. If this is required, the Excel-based tools must be employed.

Other tools include MatLab,14 Mathcad,15 Electronic Workbench,16 and a number of
Internet-based design tools are now available to aid the designer. However, each of these tools
assumes some a priori knowledge of basic analog and/or digital filter concepts[28]. It has not
been possible in the few pages of this chapter to provide much more than an overview of the
subject of filters. Nonetheless, the authors have attempted to provide the necessary background
that will allow the reader to profitably use any one of the tools discussed herein.

Figure 8.29: Biquadratic response as a function of gain, ω, and d.

14The MathWorks
15MathSoft
16National Instruments

366 Analog and Digital Filters

8.6 Conclusion

The subject of filter design is far too complicated to be covered in a single chapter. However,
the basic concepts have been presented in at least a cursory manner and the reader can rely
on a number of PC-based tools to facilitate the design of filters for embedded applications. SoC
technologies such as PSoC provide software support in the form of wizards and hardware modules
for both bandpass and lowpass filters (e.g., Bessel, Butterworth, Chebychev, and custom filters
with either real or complex poles). The designer has merely to specify a minimal set of parameters
(e.g., fc, fsample, bandwidth, gain, etc.) to complete the filter’s design. The resulting PSoC filter
parameters are automatically entered into PSoC Designer. PSoC Designer also provides the
designer with several alternatives in terms of filter module placement in order to obtain optimum
utilization of PSoC’s resources.

PSoC’s bandpass modules allow the designer to set the midband gain, Q and center frequency
programmatically. The filter’s center frequency stability is determined by the clock accuracy and
the sampling rates employed can be as high as 1 MHz. These modules also have an integral
comparator referenced to ground and can be used as band-limited zero-crossing detectors. The
center frequency is determined by PSoC’s OpAmp characteristics, capacitor values, and clock
frequency.

8.7 Recommended Exercises 367

8.7 Recommended Exercises

1. Design a second-order, Sallen-Key lowpass analog filter, using C = 0.33µf and Rf = 47K
ohms, that has a 3dB cutoff frequency of 750 Hz. Sketch the Bode plots for gain and phase as a
function of angular frequency.

2. Q has been defined in this chapter as Q = fc/∆f .

a. Show that for a filter consisting of an inductor, capacitor and resistor connected in parallel,
Q could also be defined by any of the following:

Q =
ω

∆ω0
=

[energy stored]

[energy dissipated]
=

R

ω0L
= ω0RC ≈ number of ringing cycles

b. Show that at resonance iin = Q ∗ iR

3. Derive the transfer function for the allpass filter given by Equation 8.109 and then design an
allpass filter that has a phase shift of 53.13◦ at ω = 20, 000 radians/sec. Use commonly available
values for resistance and capacitance to the extent practicable.

4. Using the circuit shown in Figure 8.9, design a integrator-based filter with Q = .707 and
ω0 = 31, 415 radians per second. Sketch the corresponding Bode graphs.

5. Beginning with the transfer function:

Vout

Vin
=

Ks2

s2 + s(ω0

Q) + ω2

Derive the equivalent OpAmp circuit and sketch the resulting Bode graphs for magnitude and
phase. Show each step in your development.

6. Beginning with Equations (8.91) and (8.92), derive Equation (8.93).

7. A second-order filter (section) has complex poles at s = − 3 ± j2 and a single zero at the
origin of the s-plane. Find this section’s transfer function and evaluate it for s = 0 + j6. Sketch
the Bode plot for this transfer function for 0.01 ≤ ω ≤ 100 radians per second.

8. The impulse responses for the ideal lowpass and highpass filters discussed in this chapter are
given by

hlp(t) =

[

ωcA

π

]

sinc

(

ωct

π

)

and

hhp(t) = A −
[

ωcA

π

]

sinc

(

ωct

π

)

respectively. Sketch these functions. Are these filters causal or noncausal? Derive the impulse
functions for the ideal bandpass and bandstop filters. Are either the bandpass or bandstop causal
filters?

368 Analog and Digital Filters

9. The normalized pole positions for a Butterworth filter are given by:

pm = −sin

[

(2m − 1)π

2n

]

+ jcos

[

(2m − 1)π

2n

]

Find the poles for a seventh-order Butterworth filter.

10. Given that d =
√

2, K = 1.0, C3 = 0.0022µF , ω0 = 1.0, and ωn = 2π(1000), calculate the
values for R1 and R2 for a lowpass Butterworth (Sallen–Key), two-pole filter. Sketch the Bode
plots for magnitude and phase as functions of angular frequency.

11. Consider the multistage filter shown in Figure 8.18 and assume that it has n stages (sections)
instead of four as shown. Assuming that all of the stages have the same cutoff frequency fc, show
(a) that the coefficients for this filter’s transfer function are given by

a1 = a2 = · · · = α =
√

21/n − 1 (8.136)

and (b), that fc of each stage is 1/α higher than fc for the n stage filter.17

17From an example suggested by Thomas Kugelstadt. “Active Filter Design Techniques,” Texas Instruments
SLOD006A (Op Amps For Everyone, Chapter 16).

Bibliography

[1] P. L. D. Abrie, The Design of impedance Matching Networks, Norwood, MA: Artech House,
1985.

[2] A. S. Sedra and P. Bracket: Filter Theory and Design:Active Passive, New York and London:
Pitman, 1979.

[3] A. Antoniou. Digital Filters: Analysis, Design and Applications, New York: McGraw-Hill,
1993.

[4] H. Berlin. Design of Active Filters with Experiments, Indiana: Howard W. Sams & Co.,
1979.

[5] S. Butterworth. On the Theory of Filter Amplifiers, Wireless Engineer (aka Experimental
Wireless and Radio Engineer), 7, pp. 536–541: 1930.

[6] A. B. Carlson, Communications Systems, New York: McGraw-Hill, 1986.

[7] C. H. Chen. Signal Processing Handbook, New York: Marcel Deker, Inc., 1988.

[8] W. K. Chen. Passive and Active Filters: Theory and Implementations, John Wiley & Sons,
New York: 1986.

[9] W.K. Chen. Broadband Matching Theory and Implementations, New Jersey and London:
World Scientific, 1988.

[10] W.K Chen. The Circuits and Filters Handbook, Boca Raton, Florida: CRC Press/IEEE,
1995.

[11] T.R. Cuthbert. Circuit Design Using Personal Computers, John Wiley & Sons, New York:
1983.

[12] G. Daryanani. Principles of Active Network Synthesis and Design, John Wiley & Sons, New
York: 1976.

[13] M.G. Ellis. Electronic Filter Analysis and Synthesis, Norwood MA: Artech House, 1994.

[14] S. Franko. Design with Operational Amplifiers and Analog Integrated Circuits, New York:
McGraw-Hill, 1988.

[15] M. Van Falkenburg. Analog Filter Design, New York: Oxford University Press, 1982.

[16] R.W. Hamming. Digital Filters, Third Edition, Upper Saddle River, NJ: Prentice-Hall, 1989.

[17] P. Horowitz and W. Hill. The Art of Electronics, second edition, Cambridge: Cambridge
Press, 1989.

370 BIBLIOGRAPHY

[18] L.P. Huelsman, Active and Passive Analog Filter Design, New York: McGraw-Hill, 1993.

[19] L.P. Huelsman and P.E. Allen. Introduction to the Theory and Design of Active Filters, New
York: McGraw-Hill, 1993.

[20] L.P. Huelsman, P. Lawrence. Active Filters: Lumped, Distributed, Integrated, Digital and
Parametric, New York: McGraw-Hill, 1970.

[21] R.G. Irvine. Operational Amplifier, Characteristics and Applications, Upper Saddle River,
NJ: Prentice-Hall, Inc., 1994.

[22] D. Johnson and J. Hilburn. Rapid Practical Design of Active Filters, New York: John Wiley
& Sons, 1975.

[23] D.E. Johnson, J.R. Johnson and H.P. Moore. A Handbook of Active Filters, Upper Saddle
River, NJ: Prentice-Hall, 1980.

[24] B.C. Kuo. Automatic Control Systems, Englewood Cliffs, New Jersey: Prentice-Hall, 1962.

[25] Kerry Lancaster. A Basic Introduction to Filters-Active Passive and Switched-Capacitor,
National Semiconductor, App Note 779, 1991.

[26] D. Lancaster. Active Filter Cookbook, Second Edition, Boston: Newnes, 1996.

[27] K. Lee, Private communication. Korea Advanced Institute of Science and Technology
(KAIST), Taejon, Korea.

[28] M.D. Lutovac, V. D. Tosic, B. L. Evans. Filter Design for Signal Processing using MATLAB
and Mathematica, Englewood Cliffs, NJ: Prentice-Hall, 2000.

[29] D. Meador. Analog Signal Processing with Laplace Transforms and Active Filter Design,
London: Delmar-Thomson Learning, 2002.

[30] W. Middlehurst. Practical Filter Design, Englewood Cliffs, NJ: Prentice-Hall, 1993.

[31] S. Niewiadomski. Filter Handbook: A Practical Design Guide, Boca Raton, Florida: CRC
Press, 1989.

[32] R.P. Sallen. A Practical Method of Designing RC Active Filters, IRE Transactions Circuit
Theory, CT-2, pp. 74–85, March 1955.

[33] M. Schaumann, S. Ghausi and K.R. Laker, K.R. Design of Analog Filters, Englewood Cliffs,
NJ: Prentice-Hall, 1990.

[34] D. Sequine and C. McNeese. Adjustable Sallen and Key Low-Pass Filters, Application Note
#AN2031, Cypress Semiconductor, 2004.

[35] S.W. Smith. The Scientists and Engineer’s Guide to Digital Signal Processing, first edition,
San Diego, California Technical Pub., 1997.

[36] R.C. Stephenson. Active Filter Design Handbook, New York: McMillan Press, 1985.

[37] K.L. Su. Analog Filters, London: Chapman and Hall, 1996.

[38] S. Sukittanon and S. G. Dame. nth Order IIR Filtering Graphical Design Tool for PSoC.
Application Note #AN2312. Cypress Semiconductor, 2005.

BIBLIOGRAPHY 371

[39] F.P. Tedeschi. The Active Filter Handboook, Blueridge Summit, PA: Tab Books Inc., 1979.

[40] G.C. Temes and J.W. LaPatra. Circuit Synthesis and Design, New York: McGraw-Hill, 1977.

[41] T.J. Terrell. Introduction to Digital Filters, New York: Macmillan Press, 1980.

[42] G.H. Tomlinson. Electrical Networks and Filters: Theory and Design, New York: Prentice-
Hall, 1991.

[43] D. Van Ess. Understanding Switched Capacitor Filters, Cypress Microsystems Application
Note #AN2168, Cypress Semiconductor, 2004.

[44] L. Weinberg. Introduction to Modern Network Synthesis, New York: McGraw-Hill, 1962.

[45] H.P. Wettman. Reference Data for Radio Engineers, Indianapolis: Howard W. Sams & Co.,
Inc., 1999.

[46] A.B. Williams and F. Taylor. Electronics Filter Designer’s Handbook, 2nd Ed., New York:
McGraw-Hill, 1988.

[47] S. Winder, Analog and Digital Filter Design, second edition, Boston: Newnes Press, 1997.

[48] A.I. Zverev. Handbook of Filter Synthesis, New York: John Wiley & Sons, 1967.

[49] Design Using Integrator Blocks, Maxim Application Note 727, 2001.

[50] PSoC Designer 4.0 and 5.0. Cypress Semiconductor Corporation, 2009.

[51] D. Sequine. Private communication. Cypress Semiconductor Corporation, 2009.

Chapter 9

∆Σ Analog-to-Digital Converters

The chapter discusses the basic concepts of Delta Sigma (∆Σ) analog-to-digital con-
verters (ADCs), and details the design of first- and second-order ∆Σ ADCs using
the PSoC architecture.

Analog-to-digital converters (ADCs) are important subsystems in many embedded mixed-
signal systems. They convert continuous-valued, continuous-time signals into discrete-valued,
discrete-time data by sampling and quantization. A ∆Σ ADC can be used to minimize the in-band
quantization noise power by oversampling and noise-shaping to achieve the desired conversion
accuracy.

• Oversampling is defined as the use of a sampling frequency that is much larger than the
Nyquist frequency. High oversampling rates reduce the in-band, quantization noise power,
and simplify the removal of the images by lowpass filtering.

• Noise-shaping results from selecting the ∆Σ modulator, transfer function such that the
signal transfer function (STF) is an allpass filter, and the noise transfer function (NTF) is
a highpass filter that eliminates the in-band quantization noise.

The PSoC-based implementation of an eight-bit, first-order, ∆Σ ADC implementation dis-
cussed in this chapter includes the modulator, decimator, and API routines. The modulator is
based on PSoC’s programmable SC blocks. The decimator for lowpass filtering and downcon-
version is a hardware/software design with the integration part of the decimator implemented
using PSoC’s Type 1 decimator blocks and the differentiation part in software. The API routines
include subroutines for managing the ADC.

In addition, this chapter presents analytical expressions and simulation models for estimating
the degradation in ADC performance due to nonidealities, for example clock jitter, switch thermal
noise, integrator leakage, and OpAmp noise, finite gain, slew rate, and saturation.

This chapter has the following structure:

• Section 1 defines the concepts of Nyquist converts, including sampling and quantization.

• Section 2 presents the defining elements of ∆Σ ADCs, such as oversampling, noise-shaping,
modulator performance, and first- and second-order ∆Σ modulators.

• Section 3 provides chapter conclusions.

A. Doboli, E.H. Currie, Introduction to Mixed-Signal, Embedded Design,
DOI 10.1007/978-1-4419-7446-4 9, c© Springer Science+Business Media, LLC 2011

374 ∆Σ Analog-to-Digital Converters

x(t)
Signal conditioning High performance filter ADC

fs

x d
signal

Sensed

Figure 9.1: Analog signal sensing in embedded systems.

x

f s

xd

Sampler Quantizer

N

Figure 9.2: Sampling and quantization in analog-to-digital converters.

9.1 Nyquist ADCs-A Short Introduction

Analog-to-digital converters are systems that can be used to convert continuous-valued, continuous-
time signals into discrete-valued, discrete-time data. Figure 9.1 shows a typical application of an
ADC in a mixed-signal, embedded system. After amplification and filtering, the analog signals
acquired from the sensing elements are converted into digital data. The latter are then processed
by a microcontroller, DSP, or customized digital blocks, for example digital filters.

9.1.1 Sampling and Quantization

The ADC process involves two steps: sampling and quantization. Sampling is the representation
of a continuous-time signal by a sequence of continuous-valued signals at discrete-time inter-
vals. Quantization is the approximation of a continuous-valued signal as a discrete-valued signal.
Figure 9.2 illustrates this two-step conversion process.

9.1.2 Sampling

The principal requirement for sampling is to collect sufficient data to accurately represent a
continuous-time signal by the sampled discrete-time data. This requirement can be stated more

t

x(t)

Figure 9.3: Signal sampling.

9.1 Nyquist ADCs-A Short Introduction 375

Approximation

(a)

(b)

(c)

Approximation

Approximation

x(t)

t

x(t)

t

x(t)

t

Figure 9.4: Signal sampling at increasing sampling frequencies.

definitively as the determination of the sampling frequency that allows a precise description of
the continuous-time signals. This requirement can be illustrated as shown in Figures 9.3 and 9.4.
A sufficient number of points must be sampled to allow a precise description of the signal. If
only one point is collected for each time period of the signal, then the sampled points all have
the same amplitude, which leads, erroneously, to a constant signal. If two points are sampled
in each time period, then the approximation improves. The signal then resembles a saw tooth.
If three points are collected in each time period, the approximation improves still more. The
approximation continues to improve as a direct function of the number of points sampled in each
time period. The following theorem defines the sufficient condition for an accurate representation
of a continuous-time signal by sampled data.

Nyquist sampling theorem: A band-limited signal can be reconstructed exactly, if the sampling
frequency is greater than the Nyquist frequency. (Note: The Nyquist frequency is defined as twice
the signal bandwidth.)

For example, if the highest spectral component of a signal x, has the frequency fH , then the
related Nyquist frequency is fNyquist = 2× fH, and the sampling frequency fs should meet the
requirement fs > fNyquist = 2× fH.

A simplified proof of Nyquist’s sampling theorem: If the continuous-time signal is x (t), the
sampling signal is s(t), and the sampled signal is x s(t), then assuming a very short positive level

376 ∆Σ Analog-to-Digital Converters

for the sampling signal, the sampling signal can be expressed as [1]:

s(t) =
∞
∑

n=−∞

δ(t − nTs) = δ(t) + δ(t ± Ts) + δ(t ± 2Ts) + ... δ(t ± nTs) + ... (9.1)

where the function δ(t) is one for t = 0, zero for t = 0 and T s is the sampling period. The
sampled signal can then be expressed as

xs(t) = x(t) × s(t) =

∞
∑

n=−∞

x(t) δ(t − nTs) =

∞
∑

n=−∞

x(nTs) δ(t − nTs) (9.2)

Note that the sequence x(nT s) includes the sampled data at instances, nTs. The Fourier
transform of the sampled signal, x s(t), provides some insight into the frequency domain charac-
teristics of the sampled signal:

Xs(f) =

∫

∞

−∞

xs(t) e−j2πftdt =

∫

∞

−∞

∞
∑

n=−∞

x(t) δ(t − nTs) e−j2πftdt (9.3)

Xs(f) =

∫

∞

−∞

∞
∑

n=−∞

x(t) ej2πnfst e−j2πftdt =

∫

∞

−∞

∞
∑

n=−∞

x(t) e−j2π(f−nfs)tdt (9.4)

Xs(f) =

∞
∑

n=−∞

∫

∞

−∞

x(t) e−j2π(f−nfs)tdt =

∞
∑

n=−∞

X(f − nfs) (9.5)

where X is the Fourier transform of the original signal, and Xs is the Fourier transform of the
sampled signal. Thus, the sampled signal is expressed in the frequency domain as the following
series:

Xs(f) = X(f) + X(f ± fs) + X(f ± 2fs) + X(f ± 3fs) + ...X(f ± nfs) + ... (9.6)

Equation (9.6) completes the proof of Nyquist’s sampling theorem. The sampled signal in-
cludes the original signal X(f) plus the images, that is copies, X(f ±n fs). These images are
located at distances equal to the positive and negative multiples of the sampling frequency fs.

If the sampling frequency, fs, is larger than twice the frequency, fH , of the highest spectral
component of the signal X, then the original signal and the images do not overlap, and a lowpass
filter can be used to eliminate the images and retrieve the original signal X from the sampled
signal Xs. As the sampling frequency increases, obviously the distance between the images
increases, which helps filter out the images. If the sampling frequency is below the Nyquist
frequency, the original signal and the images overlap, which makes recovering the original signal
impossible. This phenomenon is called aliasing. Figure 9.5 presents the two situations: sampling
without and with aliasing.

Reconstruction of the sampled signal: The original signal can be recovered by lowpass filtering
of the sampled signal. Assuming that the transfer function of the ideal filter is given by [1, 8]:

Hideal(f) = rect

[

f

fs

]

(9.7)

9.1 Nyquist ADCs-A Short Introduction 377

+

sfs

f

2
B−

s−f
f

2
B−

f

2
B

f

2
B−fs fs−fs

f s f sf s f s

f

2
B−s2f

f
2

B+s2ffs
f

2
B+fs

f

2
B−

f

2
B

f

2
B−

f

2
B−s−2f

f

2
B+s−2f

f

2
B−s−f −fs

X (f)
s

X (f)
s

2
B

f

(a)

(b)

f

f

2
B+

f

2
B+

f

f

Figure 9.5: Sampling (a) without and (b) with aliasing.

where the function rect is zero for frequencies outside the range [−fs/2, fs/2], and one within
the range.

The signal x (t) (the reconstructed, sampled signal) is the convolution of the lowpass filter
transfer function h(t) and the signal Xs(t) [1, 8]:

x(t) = h(t) ∗ xs(t) (9.8)

The time domain expression for the transfer function is the inverse Fourier transform of H(f):

h(t) =

∫

∞

−∞

H(f) ej2πftdf =

∫

∞

−∞

rect
f

fs
ej2πftdf =

∫ fs/2

−fs/2

ej2πftdf =
sin πfst

πt
(9.9)

h(t) = fs sinc(fst) (9.10)

where the function sinc is defined as

sinc(x) =
sin(πx)

πx
. (9.11)

Substituting Equation (9.10) into Equation (9.8), results in the following expression for the signal,
x(t):

h(t) ∗ xs(t) = fssinc(fst)

∞
∑

n=−∞

x(nTs)δ(t − nTs) (9.12)

h(t) ∗ xs(t) = fs

∞
∑

n=−∞

x(nTs)sinc(fst)δ(t − nTs) (9.13)

h(t) ∗ xs(t) = fs

∞
∑

n=−∞

x(nTs)sinc

[

fs(t − nTs)

]

=
∞
∑

n=−∞

x(nTs)sinc

[

t − n Ts

Ts

]

(9.14)

378 ∆Σ Analog-to-Digital Converters

∆ max

000

001

010

011

101

111

110

100

y

x(t)

. . .
B bits

x(t)

(a) (b)

y = x(t)

V

Figure 9.6: Quantizer block and signal quantization.

Equation (9.14) shows that according to the Whittaker–Shannon interpolation relationship,
the convolution h(t) ∗ xs(t) actually represents the signal x(t). This mathematical proof explains
that the original signal x(t) can be retrieved by passing the signal xs(t) through a lowpass filter.

9.1.3 Quantization

Quantization is the process of converting a sampled continuous-valued signal into discrete-valued
data. Figure 9.6(a) presents a B -bit quantizer block. If the quantizer block outputs B bits,
and therefore the discrete data are represented using B bits, the continuous-valued range of the
input signal x(t) is divided into 2B − 1 subranges, each of the ranges being represented by a
unique bitstring of length B. For a three-bit quantizer, Figure 9.6(b) describes the eight bitstring
encodings and the corresponding subranges. Note that all the values within a subrange are
represented as the same bitstring, which obviously introduces an approximation error. This error
is called the quantization error. If all discretization ranges are equal, then the quantizer is called
a uniform quantizer .

For a uniform quantizer, and input scaled to the range (–1, 1), the width ∆ of a discretization
range is:

∆ =
2

2B − 1
(9.15)

Figure 9.7(a) illustrates the definition of ∆. The quantization error er is within the range
(−∆/2,∆/2), as shown in Figure 9.7(b):

er ∈ (−∆

2
,
∆

2
) (9.16)

The quantization noise exhibits very complex behavior that is obviously correlated to the input
signal. R. Gray has provided a very detailed analysis of the quantization noise in ∆Σ ADCs[4].
Nevertheless, these models are very hard to use in analysis of the behavior and performance
of ADCs. Instead, for the purpose of ADC analysis, the quantization noise is approximated as
(i) white noise, and (ii) uncorrelated to the input signal [1, 4, 5]. Bennett’s condition [4] states
that the above two properties of the quantization noise hold if the following four conditions are
true: (i) the input does not overload the quantizer, (ii) the number B of quantization bits is
large, (iii) the width ∆ is small, and (iv) the joint probability density function of the input at

9.2 ∆Σ ADCs 379

y

/ 2

∆ / 2−

x s x d

e r

e r

(a) (b) (c)

+

∆

x(t) x(t)

∆

Figure 9.7: Signal quantization and quantizer modeling.

various sampling moments is smooth. In this case, the quantized data xd can be modeled as the
sum of the continuous-valued, sampled signal x s, and the quantization noise er:

xd = xs + er (9.17)

This modeling is shown in Figure 9.7(c).

The power spectral density of the noise er is flat, and is equally distributed over the range
(−∆/2,∆/2):

fe(e) =
1

∆
(9.18)

The quantization noise power is:

σ2
e =

∫ ∆/2

−∆/2

e2 fe(e)de =
1

∆

∫ ∆/2

−∆/2

e2de =
∆2

12
(9.19)

Using Equation (9.15), the quantization noise power can be expressed as a function of the number
of quantization bits as follows:

σ2
e =

1

3(2B − 1)2
(9.20)

This result shows that increasing the number of quantization bits B reduces the quantization
noise power σ2

e , and thus improves the accuracy of quantization.

9.2 ∆Σ ADCs

Figure 9.8 illustrates the block structure of ∆Σ ADCs which consist of the ∆Σ modulator and
the decimator block. The modulator provides the sampling part of the conversion process with
the goal of providing the desired conversion accuracy by minimizing the in-band quantization
noise power of the modulator. The ∆Σ modulator reduces the in-band quantization noise power
by oversampling the input signal, and noise-shaping the quantizer noise by proper selection of the
transfer function H(z). The output of the modulator quantizer is the input to the decimator block,

380 ∆Σ Analog-to-Digital Converters

filter

+ H(z)

D/A

decimator

−

digital

output

low pass

filter

downsampling

analog domain digital domain

∆Σ modulator

analog

input

anti−aliasing

Figure 9.8: ∆Σ analog-to-digital converters.

oversampling converters

Bf

2
Bf

2

f

2
sf

2
s

− −

f

Power spectral density

Nyquist converters

Figure 9.9: Quantization noise in oversampled converters.

which reconstructs the sampled signal as discussed in the previous subsection. The decimator
circuit performs the down-sampling process to address the oversampling of the modulator and
a lowpass digital filtering to eliminate the images that accompany the sampled signal. The
modulator uses analog circuits, and the decimator uses digital circuits.

The following sections present the principle of ∆Σ ADC, the related performance metrics,
and ∆Σ ADCs of different orders, for example first-order and second-order modulators.

9.2.1 Oversampling and Noise-Shaping

The operation of ∆Σ modulators relies on two basic concepts, oversampling and noise-shaping,
for achieving accurate data conversion [1, 4]:

• Oversampling: As stated previously, oversampling refers to using a sampling frequency that
is higher than the Nyquist frequency fNyquist. The oversampling ratio (OSR) is defined as
the ratio of the sampling frequency to the Nyquist frequency:

OSR =
fs

fNyquist
(9.21)

OSR values are expressed as powers of two, for example 2, 4, 6, 8, 16, ... , 256, because
these values simplify the implementation of the digital decimator.

Using high OSR values increases the distance between the sampled signal and its images
(cf. Figure 9.5) and allows the images to be removed by simpler antialiasing filters.

The second advantage of oversampling is the reduction of the in-band noise power. Assum-
ing the white noise model for quantization noise, the quantization noise power ∆2/12 is

9.2 ∆Σ ADCs 381

e(z)

H(z)+ +
X(z) Y(z)

−

Figure 9.10: Linear model of a ∆Σ modulator.

uniformly distributed over the frequency range (−OSR × fB/2, OSR × fB/2), and there-
fore the in-band quantization noise power is reduced by the factor, OSR, that is,

Pin−band =
σ2

e

OSR
(9.22)

Figure 9.9 shows that the in-band noise power decreases with the value of OSR. The quan-
tization noise outside the signal band is filtered out by digital filtering in the decimator
block.

• Noise-shaping: The term noise-shaping refers to selecting the modulator transfer function
H(z) (cf. Figure 9.8), such that the signal transfer function (STF) of the modulator acts
as an allpass filter, and the noise transfer function (NTF) is a highpass filter that removes
the in-band quantization noise. Figure 9.11 illustrates the concepts of highpass NTF, and
shows that the remaining in-band quantization noise power is low.

Using the quantizer model in Figure 9.7(c), a ∆Σ modulator can be analyzed using the
model in Figure 9.10. The modulator output is given by:

Y (z) =
H(z)

1 + H(z)
X(z) +

1

1 + H(z
E(z) (9.23)

Thus

STF (z) =
H(z)

1 + H(z)
(9.24)

and

NTF (z) =
1

1 + H(z)
(9.25)

∆Σ modulators, for which the NTF is a highpass filter, are called lowpass modulators [5].
These modulators are used in converting signals with a narrow frequency band at low frequencies.
In contrast, high-frequency signals have a narrow band at high center frequencies, and thus require
modulators with NTFs that are bandstop filters instead of highpass filters. These ∆Σ modulators
are called bandpass modulators. The discussion in this chapter is restricted to lowpass ∆Σ
modulators because the targeted applications involve only the sampling of low-frequency signals.

9.2.2 ∆Σ ADC Performance

The performance attributes of ∆Σ ADCs determine the accuracy of the conversion process by
relating the quantization noise power to the power of the input signal [1, 3, 5]. Signal-to-noise
ratio (SNR) and dynamic range (DR) are the most popular performance figures of merit used
in ∆Σ design.

382 ∆Σ Analog-to-Digital Converters

noiseshaping and oversampling

f

2

sBf

2

f

oversampling converters

Power spectral density

convertersNyquist converters

Figure 9.11: Noiseshaping in oversampled converters.

• Signal-to-noise ratio: Signal-to-noise ratio is defined as the ratio of the signal power to the
in-band quantization noise power:

SNR (dB) = 10 log

[

signal power

in − band quantization noise power

]

(9.26)

For a sinusoidal input signal of magnitude A, the corresponding SNR is computed by the
following expression [3]:

SNR (dB) = 10 log

[A2

2
∆2

12

]

= 10 log

[

(2B − 1)2 ∆2

8
∆2

12

]

≈ 6.02 B + 1.76 (dB) (9.27)

This shows that increasing SNR by 3 dB improves the accuracy by 0.5 bits. Also, a SNR
of ≈ 50 dB corresponds to 8 bits accuracy, 62 dB to 10 bits, 74 dB to 12 bits, 86 dB to
14 bits , and 98 dB to 16 bits.

Given that the in-band quantization noise power decreases with OSR, SNR improves with
higher OSR :

SNR (dB) = 10 log

[(2B
−1)2∆2

8
∆2

12 OSR

]

≈ 6.02 B + 10 log OSR (9.28)

This shows that doubling the OSR frequency increases the accuracy by 0.5 bits, or, equiv-
alently increases the SNR by 3 dB.

• Dynamic range: Dynamic range is defined as the ratio of the output power for a sinusoidal
input with full-range amplitude to the output power of the smallest input signal that it
can distinguish and quantize [1, 3]. The full-range amplitude is defined by the quantizer
used [3], and is ∆/2 for a single-bit quantizer. The smallest signal that can be processed is
of the same magnitude as the quantization error, and therefore the corresponding SNR is
zero. DR is defined as:

DR (dB) = 10 log

[1
2

∆2

4

in − band quantization noise power

]

(9.29)

The dynamic range is linked to the ADC resolution by the following expression

B (bits) =
DR (dB) − 1.76

6.02
(9.30)

9.2 ∆Σ ADCs 383

yd(t)
+

z −11 −

z −1
++

z −11 −

z −1 x(t)

−

e(t)

(b)

−

x(t)

(a)

yd(t)

Figure 9.12: First-order ∆Σ modulator.

9.2.3 First-Order ∆Σ Modulator

Figure 9.12(a) shows the topology of a first-order ∆Σ modulator [5] where:

yd(t) = (x(t) − yd(t))
z−1

[

1 − z−1

] + e(t) (9.31)

yd(t) = x(t)
z−1

[

1 − z−1

] + e(t) (9.32)

yd(t) = z−1 x(t) + (1 − z−1) e(t) (9.33)

Hence, the signal transfer function (STF) of a first-order ∆Σ modulator is:

STF (z) = z−1 (9.34)

and its noise transfer function (NTF) is:

NTF (z) = 1 − z−1 (9.35)

Equation (9.34) shows that the STF delays the input signal, but otherwise leaves it unchanged.
The NTF in expression (9.35) acts as a highpass filter for the quantization noise. Figure 9.13 illus-
trates the STF and NTF of the first-order ∆Σ modulator. Note the noise-shaping characteristics
of the NTF.

The total in-band quantization noise power of a first-order ∆Σ modulator can be estimated
by expressing the noise power as the cumulative value over the input signal frequency band of the
oversampled and noise-shaped quantization noise power. The effect of oversampling is illustrated
by equation (9.19), and the result of noise-shaping is modeled using NTF. Hence, the following
expression results for the in-band quantization noise power.

Pin−band =

∫

fb
2

−
fb
2

[

e2

fs

]

|NTF (f)|2 df (9.36)

Figure 9.14 shows the graph of the power spectral density for a first-order ∆Σ modulator.
The “spike” occurs at the input signal frequency. Note the noise-shaping characteristics of the
PSD. Also, the figure shows that the quantization noise can be approximated reasonably well
as whitenoise, provided that the sampling frequency is much larger than the frequency of the
highest spectral component.

Substituting:

z = ej2πf/fs (9.37)

384 ∆Σ Analog-to-Digital Converters

10–3 10–2 10–1 100
–70

–60

–50

–40

–30

–20

–10

0

10

Transfer functions

Frequency [rad/sec] (Normalized)

M
a
g

n
it

u
d

e
 [

d
B

] STF
NTF

Figure 9.13: STF and NTF for the first-order ∆Σ modulator.

10–3 10–2
–150

–100

–50

0

Frequency (f/fs)

S
p

e
c
tr

u
m

 [
d

B
]

Figure 9.14: Power spectral density of the first-order ∆Σ modulator.

9.2 ∆Σ ADCs 385

into

NTF = 1 − z−1NTF =

[

1 − cos 2π
f

fs

]

+ j sin(2π
f

fs
) (9.38)

results in

NTF =

[

1 − cos 2π
f

fs

]

+ j sin(2π
f

fs
) (9.39)

|NTF |2 =

[

1 − cos 2π
f

fs

]2

+ sin2

(

2π
f

fs

)

= 4 sin2

(

π
f

fs

)

(9.40)

Hence, the total in-band quantization noise power can be predicted as:

Pin−band =

∫ fb/2

−fb/2

[

e2

fs
4

]

sin2

(

π
f

fs

)

df (9.41)

= 4

[

e2

fs

]
∫ fb/2

−fb/2

sin2

(

π
f

fs

)

df (9.42)

= 4
e2

fs

[

1

2

(

f − fs

2π
sin 2π

f

fs

)∣

∣

∣

∣

fb
2

−
fb
2

]

(9.43)

= 2
e2

fs

[

fb − fs

π
sin

(

π
fb

fs

)]

(9.44)

Using the approximation that:

sin x ≈ x − x3

3!
(9.45)

and substituting it into Equation (9.44), the in-band quantization noise power for a single-bit
quantizer becomes:

Pin−band =
π2

9 OSR3
(9.46)

For a sinusoidal signal of amplitude A, the SNR of the first-order ∆Σ modulator is given by

SNR (dB) = 10 log

[A2

2
π2

9 OSR3

]

= 10 log

[

9 A2 OSR3

2 π2

]

(9.47)

Figure 9.15 is a graph of DR versus input amplitude for the first-order modulator and OSR =
32. The sampling frequency is normalized (fs = 1), and the input signal frequency is fin = 1/512.
The DR is ≈ 34 dB, and the highest SNR value is ≈ 46 dB. The SNR increases with the
amplitude of the input signal until reaching a value that saturates the modulator quantizer.

Figure 9.16 shows the dependency of the dynamic range of the first-order ∆Σ modulator on
the OSR. The same conditions were used in Figure 9.15. DR is plotted for the OSR values 32,
64, 128, and 256. DR is 34 dB for OSR of 32 , 38 dB for OSR of 64, 42 dB for OSR of 128, and
more than 50 dB for OSR of 256.

The next two subsections describe the implementation of first-order, ∆Σ modulators using PSoC’s
programmable, switched-capacitor block, and characterizes the impact of circuit nonidealities on
the modulator performance.

386 ∆Σ Analog-to-Digital Converters

–60 –50 –40 –30 –20 –10 0
–40

–30

–20

–10

0

10

20

30

40

50

Dynamic range

Input amplitude [dB]

S
N

R
 [

d
B

]

Figure 9.15: Dynamic range for first-order ∆Σ modulator.

–50 –45 –40 –35 –30 –25 –20 –15 –10 –5 0
–40

–20

0

20

40

60

80

Dynamic range vs. OSR

Input amplitude [dB]

S
N

R
 [

d
B

]

OSR=32
OSR=64
OSR=128
OSR=256

Figure 9.16: Dynamic ranges for first-order ∆Σ modulator and different OSR values.

9.2 ∆Σ ADCs 387

Timer

DELSIG8_bfStatus

DELSIG_cResult

Application

∆Σ
modulator

v
in

API

routines
ISR

interrupt

Decimator Microcontroller

Clock

Figure 9.17: Block structure of the PSoC-based implementation of ∆Σ ADCs.

9.2.4 PSoC Implementation of First-Order ∆Σ Modulators

Figure 9.17 shows the block structure of the PSoC-based implementation of an eight-bit ∆Σ
ADC [7]. The ADC’s input signal is limited to the range:

Vin ∈ (−Vref ,+Vref) (9.48)

The voltage, Vref , can be selected to be either VDD/2, where VDD is the chip’s supply voltage,
1.6 Vbandgap the bandgap voltage, or an external voltage is supplied to port 2 of the chip.

The oversampling ratio of the modulator is fixed at 64. The DR of the ideal modulator is shown
in Figure 9.16. The value of the input signal is [7]:

Vin =
n − 128

128
Vref (9.49)

where n is the eight-bit output of the ADC.

The block structure shown in the figure is valid for both first-order and second-order ∆Σ ADCs.
The structure is implemented in both hardware and software domains, and includes the following
components.

• ∆Σ modulator: The modulator block implements the structure shown in Figure 9.12(a) and
utilizes PSoC’s programmable switched-capacitor blocks.

• Decimator: The functionality of the decimator block includes lowpass filtering of the high-
frequency (outband) images of the sampled signal, and the downconversion of the signal
by a factor equal to OSR. A sinc2 filter [5] is used for lowpass filtering. The integration
part of the filter is implemented in hardware and based on the PSoC decimator block. The
differentiation part is handled in software. Signal downconversion is obtained by initializing
the timer with the OSR value, and programming the timer to generate an interrupt at the
end of the downcount process. The corresponding ISR routine implements the differentia-
tion algorithm, and is executed once for each OSR input processed by the PSoC decimator
block.

388 ∆Σ Analog-to-Digital Converters

interrupt

1

x
Reset

ACAP

FCAP

Vref−

Vref+

DATA DATA bus

Data latch

source clock

CPU

Φ

Φ 1

Vin

Φ 1

2Φ Φ 1

2Φ

2Φ

Vout

Decimator

8−bit

timer
generator

Clock
φ

1

φ
2

+

−

Figure 9.18: PSoC implementation of first-order ∆Σ ADC [7].

• API routines: The API routines handle starting/stopping the ADC block, starting/stopping
the signal conversion procedure, managing the status information of the converter (including
verifying that a new data byte is available), and accessing the data output of the converter.
The application program relies on these API routines to access the ADC data by a polling
mechanism.

• Clocks: Several clocks are needed for the circuit, including the clocks φ1 and φ2 for the
switched capacitor circuits of the ∆Σ modulator, for the quantizer circuit (the clock operates
at the frequency fs), for the digital decimator block, and for the timer. The quantizer,
digital decimator, and timer use the same clock frequency.

Figure 9.18 illustrates the implementation of a first-order ∆Σ ADC based on PSoC’s pro-
grammable switched capacitor and digital blocks [7]. The implementation uses one programmable
SC block configured as an integrator. The comparator of the SC block implements the quantizer
of the modulator. In addition, the design uses two digital blocks: one Type 1 decimator block (cf.
Subsection 4.4.3 in Chapter 4) and one programmable block configured as a timer. Figures 9.19
and 9.20 illustrate the measured power spectrum densities for a first-order ∆Σ modulator, with
OSR = 32, and OSR = 64, respectively. To reduce the number of necessary clocks, all digital
blocks are clocked with the same signal as the signal used for the SC block [7]. The frequency of
this signal is four times higher then the required frequency. Therefore, the 8-bit timer generates
an interrupt signal after 4 × OSR clock cycles, which, in this design, is after 256 clock cycles.
This explains the need for introducing an 8-bit timer.

The decimator block implements the following sinc2 transfer function:

H(z) =

[

1

OSR

1 − z−OSR

1 − z−1

]2

(9.50)

Figure 9.21 presents the transfer function of the sinc2 function for an OSR value of 64. Note
that the zeros of the transfer function occur at the frequencies fb/2 + m afs/2, which provides
an efficient way of suppressing the images in the sampled signal. Another advantage is the

9.2 ∆Σ ADCs 389

Figure 9.19: Power spectrum densities for a first-order ∆Σ modulator, with OSR = 32.

Figure 9.20: Power spectrum densities for a first-order ∆Σ modulator, with OSR = 64.

390 ∆Σ Analog-to-Digital Converters

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
–120

–100

–80

–60

–40

–20

0

Frequency

M
a
g
n
it
u
d
e
 [
d
B

]

Figure 9.21: The sinc2 function for an OSR value = 64.

simple implementation procedure of the transfer function, which includes few hardware blocks
and simple software routines.

The integration part of the transfer function is obtained by a PSoC Type 1 decimator block.
The quantizer output is connected to the decimator DATA input. The block operates at the
sampling frequency of the modulator.

Differentiation is carried out in software, and is executed at the down-converted rate. Down-
conversion is implemented by the 8-bit timer, which generates interrupts at time intervals equal
to the value OSR/fs (actually 4 × OSR/fs in this design because a single clock is used for all of
the circuits). The ISR called performs the differentiation step. Figure 9.22 shows the pseudocode
for the ISR which implements the FSM shown in Figure 9.22(a). State 1 is the initial state of the
FSM. After receiving a timer interrupt, the FSM reads a 16-bit data from the digital decimator
block implementing the double integration step. Data are available in the registers DEC DL and
DEC DH of the decimator (cf. Subsection 4.4.3 in Chapter 4). Then, states 2-4 introduce a
delay of four “steps” as required for double differentiation. State 5 accesses the data registers of
the digital decimator block, and computes the difference between this value and the value found
in State 1. State 5 may also include other processing of the converted values, such as finding
their RMS values. If the ADC is to stop after a fixed number of data conversions State 5 counts
the number of converted values. Figure 9.22(b) shows the pseudocode of the ISR routine. The
converted value is placed in the variable DELSIG8 cResult by the ISR, and the status of the
modulator is available in the variable DELSIG8 Status. These variables are accessible to the
API routines called by the application programs.

In State 5, the ISR also determines whether the read value resulted in an overflow. This pro-
cedure consists of the following steps: (i) the bitstring of the modulator output is first converted
to unipolar representation. This is needed because the input voltage range is centered around

9.2 ∆Σ ADCs 391

end ISR;

1 2 3 4 5

timer

interrupt

timer

interrupt

timer

interrupt

timer

interrupt

2B −1

2
(i) iResult = iResult +

2B −1

2
(iii) iResult = iResult −

(a)

(b)

(ii) adjust iResult, if overflow

case STATE2:

switch FSM_state is

timer_ISR is

case STATE3:

case STATE4:

case STATE1:
access registers DEC_DL and DEC_DH of the
decimator block and store their values in Temp1;

move to STATE2;

move to STATE3;

move to STATE4;

move to STATE5;

case STATE5:
access registers DEC_DL and DEC_DH of the
decimator block and store their values in Temp2;

store Temp2 − Temp1 in variable iResult;
handle overflow;
// user defined code
count a new data sample;
move to STATE1;

end case;

Figure 9.22: Timer interrupt service routine [7].

zero, that is (−Vref ,+Vref). The conversion is achieved by shifting the input range up by the
value Vref , which is accomplished by adding the value

AD =
2B − 1

2
(9.51)

to the read value B being the number of bits of the ADC. (ii) If overflow has occurred, the
read value is modified to the bit-representation of the largest (smallest, respectively) input value.
(iii) The unipolar representation is converted back to the bipolar description, which corresponds
to subtracting the value AD from the unipolar representation.

API routines: The API routines for the ∆Σ ADC include procedures for starting/stopping
the ADC module, starting/stopping the data conversion process, accessing and clearing the con-
verter’s status information converter, and retrieving the converted data from the ADC. Fig-
ure 9.23 shows the prototypes for the existing API routines. In addition to these functions,
variable DELSIG8 Status indicates the status of the ADC (the variable is zero unless new data
are available), and variable DELSIG8 cResult holds the most recently converted byte.

The available API routines are [7]:

392 ∆Σ Analog-to-Digital Converters

char DELSIG8_cGetDataClearFlag (void);

char DELSIG8_cResult;

void DELSIG8_Start (BYTE bPowerSetting);

void DELSIG8_SetPower (BYTE bPowerSetting);

void DELSIG8_Stop (void);

void DELSIG8_StartAD (void);

void DELSIG8_StopAD (void);

BYTE DELSIG8_fIsDataAvailable (void);

char DELSIG8_cGetData (void);

void DELSIG8_ClearFlag (void);

BOOL DELSIG8_bfStatus;

Figure 9.23: ∆Σ ADC API routines [7]. Courtesy of Cypress Semiconductor Corporation.

• DELSIG8 Start initializes the ADC block, and sets the power level of the SC circuits. The
power level is passed as a parameter in the A register.

• DELSIG8 SetPower sets the power level of the circuits. The power level is passed through
the A register. The circuits can operate in four power levels: off (value 0), low power
(value 1), medium power (value 2), and high power (value 3).

• DELSIG8 Stop sets the power level of the SC circuits to off.

• DELSIG8 StartAD starts the conversion process. This routine enables the integrator, the
timer, and the decimator.

• DELSIG8 StopAD stops the conversion process by disabling the integrator, the timer, and
the decimators.

• DELSIG8 fIsDataAvailable confirms the availability of new converted data. This function
returns a nonzero value, if data are ready.

• DELSIG8 ClearFlag clears the data availability flag.

• DELSIG8 cGetData returns the converted data.

• DELSIG8 cGetDataClearFlag returns the converted data and clears the data availability
flag.

Figure 9.24 shows the Assembly language for the API routines.

ADC AtoDCR2 and ADC AtoDCR3 are the ASDxxCR2 and ASDxxCR3 registers of the SC block
implementing the modulator. The ADC T DR1 and ADC T CR0 registers are DBBxxDR1 and
DBBxxCR0 registers of the programmable digital block that implements the timer module. The
ADC ISR REG register corresponds to the INT MSKx register that enables the interrupt gener-
ation by the timer block. The DEC CR1 register is the corresponding register of the decimator
block. Finally, variable ADC fStatus indicates the status of the ADC (i.e., whether new data are
ready), and is set by the ISR. Variable ADC iResult stores the converted data byte, and is set
by the ISR.

9.2 ∆Σ ADCs 393

ret

ADC_SetPower:

_ADC_SetPower:

mov X, SP

and A, 03H

push A

mov A, reg[ADC_AtoDCR3]

and A, ~03H

or A, [X]

mov reg[ADC_AtoDCR3], A

pop A

ret

ADC_RESET_INTEGRATOR_M

mov reg[ADC_T_DR1], FFH

or reg[ADC_T_CR0], 01H

ret

ADC_StartADC:

_ADC_StartADC:

call ADC_SetPower

or reg[DEC_CR1], C0H

ADC_StopADC:

_ADC_StopADC:

ADC_RESET_INTEGRATOR_M

and reg[ADC_ISR_REG],~[ADC_ISR_MASK]

ADC_cGetData:

_ADC_cGetData:

mov A, [ADC_iResult]

ret

ADC_fIsDataAvailable:

_ADC_fIsDataAvailable:

mov A, [ADC_fStatus]
ret

macro ADC_RESET_INTEGRATOR_M

IF ADC_NoAZ
or reg[ADC_AtoDCR2], 20H

ENDIF

or reg[ADC_AtoDCR3], 10H

endm

mov A, [ADC_fStatus]
mov [ADC_fStatus], 00H

_ADC_fClearFlag:
ADC_fClearFlag:

Figure 9.24: ∆Σ ADC API routines [7]. Courtesy of Cypress Semiconductor Corporation.

DELSIG8_ClearFlag();

DELSIG8_Start (DELSIG8_HIGHPOWER);

DELSIG8_StartAD();

while (1) {

if (DELSIG8_fIsDataAvailable()) {

cSample = DELSIG8_cGetData();

}
}

}

char cSample;

void main () {

#include "PSoCAPI.h"

#include <m8c.h>

M8C_EnableGInt;

Figure 9.25: Example of using the ∆Σ ADC API routines [7]. Courtesy of Cypress Semiconductor
Corporation.

394 ∆Σ Analog-to-Digital Converters

zero−order

hold

+

fs
in

fs

random

number

σ

Figure 9.26: Modeling of jitter noise [2].

Example (Using the API routines) Figure 9.25 shows the C code for an application that uses
the ∆Σ ADC API routines. First, the global interrupts are enabled. Then, the ADC block is
started by calling the API routine, DELSIG8 Start, and the conversion process is initiated by the
API routine, DELSIG8 StartAD. The program polls to determine the availability of new data by
calling the DELSIG8 fIsDataAvailable routine. If new data are available, then they are returned
by the DELSIG8 cGetData subroutine. The ClearFlag routine resets the ADC status flag before
starting the next iteration of the while loop.

9.2.5 Impact of Circuit Non-Idealities on ∆Σ Modulator Performance

The performance of ∆Σ modulators is reduced by several types of circuit nonidealities [2, 3, 4, 5],
for example (a) clock jitter, (b) switch thermal noise, (c) OpAmp noise, (d) OpAmp finite gain,
(e) OpAmp slew rate, and (f) OpAmp saturation. This subsection estimates the performance
degradation (e.g., in-band noise power) due to the different nonlinearity types. Performance
degradation is characterized either in terms of analytical expressions if the mathematical com-
putations are not too complex, or as simulation models.

A. Impact of jitter noise. Jitter noise is the noise introduced by variations in the sampling
frequency fs [3, 4]. The power spectral density for jitter noise is expressed by the following [3].

PSDjitter =
A2

2

(2πfinσ)2

fs
(9.52)

where parameter A is the amplitude of a sinusoidal input signal, fin the frequency of the signal,
and σ the standard deviation of the sampling frequency.

The in-band noise power due to clock jitter is given by:

Pin−band,jitter =

∫ fb/2

−fb/2

PSDjitterdf =
A2

2

(2πfbσ)2

OSR
(9.53)

9.2 ∆Σ ADCs 395

10–3 10–2

–120

–100

–80

–60

–40

–20

0

Frequency (f/fs)

S
p
e
c
tr

u
m

 [
d
B

]

ideal

σ=1%

σ=3%

–50 –40 –30 –20 –10 0
–10

0

10

20

30

40

50

60

Input amplitude [dB]

S
N

R
 [
d
B

]

ideal

σ=1%

σ=3%

Figure 9.27: Effect of jitter noise on the PSD and DR of the first-order ∆Σ modulator.

This result shows that the in-band noise power decreases with the value of the oversampling
ratio OSR, but increases with the signal amplitude A and frequency fin.

Figure 9.26 shows the behavioral model used for modeling jitter noise [2]. The model adds
the value obtained by the chain consisting of the random number generator, the zero-order hold
block, and the block multiplying by the constant σ (the standard deviation) to the constant
frequency fs. Figure 9.27 illustrates the effect of jitter noise on the PSD and DR of a first-order
∆Σ modulator.

396 ∆Σ Analog-to-Digital Converters

C

+
z −11 −

z −1

+

v
1
2

(t)

(a)

(b)

−

e(t) + v
2

(t)
2

(M4)

(M3)

(M2)

(M1)

AΦ 1

CF 2Φ

Φ 1

Vin Vout

VoutVin

2Φ

+

−

Figure 9.28: Impact of the switch thermal noise.

B. Impact of switch thermal noise. The switches in the SC circuits introduce thermal noise
that increases the in-band noise power of the ∆Σ modulator [4, 5]. The thermal noise of a
conducting MOSFET transistor M is expressed as

ī2M =
4kT

R
(9.54)

where k is Boltzmann’s constant, T is temperature in Kelvin, and R the resistance of the con-
ducting transistor.

Each of the switches in the SC modulator circuit is a noise source. Figure 9.28(b) shows the
circuit including the noise sources for the circuit shown in Figure 9.28(a). The noise signal v̄2

1

represents the noise sources at the SC integrator’s input, and the noise signal v̄2
2 the noise sources

at the integrator output. Note that the impact of the noise signal v̄2
2 on the in-band noise power is

much less than the impact of the signal v̄2
1 . The reason is that the transfer function for signal v̄2

1

is the STF of the modulator, and the transfer function for v̄2
2 is the NTF of the modulator.

Therefore, for simplicity reasons, this analysis considers only the noise source v̄2
1 .

The in-band noise power, due to the switch thermal noise, is defined as:

Pin−band,sw =

∫ fb/2

fb/2

v̄2
1 |STF |2 df (9.55)

9.2 ∆Σ ADCs 397

M1

Φ1

Φ2

CA CA

R

iM

(b)(a)

M3 R

–2

iM
–2

Figure 9.29: Modeling the impact of switching noise.

The noise source, v̄2
1 , is due to the thermal noise of the switches controlled by the clock φ1

(transistors M1 and M3), and the clock φ2 (transistors M2 and M4). Hence, the noise, v̄2
1 , includes

the noise sources, v̄2
1,φ1

, during clock φ1 and v̄2
1,φ2

during clock φ2:

v̄2
1 = v̄2

1,φ1
+ v̄2

1,φ2
(9.56)

The noise value, v̄2
1,φ1

represents the noise voltage across the capacitor CA during the acqui-
sition phase (the switches controlled by clock φ1 are closed). This voltage generates the noise
charge:

¯qCA
2 = C2

A v̄2
1,φ1

(9.57)

The voltage, v̄2
1,φ1

, is estimated using Figure 9.29(a), in which the conducting transistors M1

and M3 are replaced with their equivalent circuits, as shown in Figure 9.29(b). According to
equation (9.54), the thermal noise of the two transistors is:

v̄2
M1,2 =

4kT

RM1
R2

M1 +
4kT

RM2
R2

M2 (9.58)

If the two transistors are identical and hence, have equal on-resistances, R, then:

v̄2
M1,2 = 8kTR (9.59)

The voltage v̄2
1,φ1

is given by:

v̄2
1,φ1

=

∫

∞

0

8kTR

1 + (2RCA 2πf)2
df =

8kTR

4πRCA
arctan(4πRCf) |∞0 =

kT

C
(9.60)

The noise value v̄2
1,φ2

represents the noise voltage across the capacitor CA during the transfer
phase (the switches controlled by clock φ2 are closed). Figure 9.30(a) represents the SC circuit
during the charge transfer phase. After solving the nodal equations for the circuit, the following
expression results for the voltage across the capacitor CA:

vCA

vi
≈ A RL XCA

2ARLR + ARLXCA + XCA + XCF
≈ 1

1 + s(2R + 1
A)CA

(9.61)

where

XCA =
1

s CA
(9.62)

398 ∆Σ Analog-to-Digital Converters

AC

R

(a)

C F

A v c

v c2
v R L

(b)

2

OpAmp

R

C F

R L

C A

A v c

v c

v

Figure 9.30: Analysis of the switch thermal noise and OpAmp noise.

zero−order

hold

+

Vin

CA

2RA

1
1 +

1kT

random

number

V’inx

Figure 9.31: Modeling of the switch thermal noise [2].

and

XCF =
1

s CF
(9.63)

are the impedances of the two capacitors, and the resistance RL is very large. A is the gain of
the OpAmp.

Using expression (9.61), the value of the voltage, v̄2
1,φ2

, is:

v̄2
1,φ2

=

∫

∞

0

8kTR

1 + [2RCA (1 + 1
A) 2πf]2

df =
kT

CA

[

1

1 + 1
2RA

]

(9.64)

Substituting equations (9.60) and (9.64) into equations (9.55) and (9.56), the in-band noise
power due to the switch thermal noise becomes:

Pin−band,sw =

∫

fb
2

−fb
2

[

kT

CA
+

kT

CA(1 + 1
2R A)

]

|STF |2df =

[

kT

CA
+

kT

CA(1 + 1
2R A)

]

fb (9.65)

Alternatively, the effect of the switch thermal noise can be studied using the simulation model
shown in Figure 9.31. Figure 9.32 illustrates the PSD and DR degradation due to the switch’s
thermal noise in a first-order ∆Σ modulator.

C. Impact of OpAmp noise. The modulator performance degradation due to the OpAmp noise
can be estimated using the circuit in Figure 9.30(b) where OpAmp noise is denoted as ¯v2

OpAmp.

9.2 ∆Σ ADCs 399

10–3 10–2
–150

–100

–50

0

Frequency (f/fs)

S
p
e
c
tr

u
m

 [
d
B

]

ideal

Noiserms=10–4

Noiserms=10–3

–50 –40 –30 –20 –10 0
–10

0

10

20

30

40

50

60

Input amplitude [dB]

S
N

R
 [
d
B

]

ideal

Noiserms=10–4

Noiserms=10–3

Figure 9.32: Impact of the switch thermal noise on the PSD and DR of a first-order ∆Σ modulator.

The voltage across the capacitor CA is given by

vCA

vOpAmp
≈ − 1

1 + s(2R + 1
A)CA

(9.66)

The noise voltage across the capacitor CA can be estimated by:

v̄2
CA,OpAmp =

∫

∞

0

v̄2
OpAmp

1 + (2RCA (1 + 1
A) 2πf)2

df =
v̄2

OpAmp

8RCA(1 + 1
A)

(9.67)

Similarly, an estimate of the in-band noise power due to the OpAmp noise can be obtained from

Pin−band,sw =

∫ fb/2

−fb/2

v̄2
OpAmp

8RCA(1 + 1
A)

|STF |2df =
v̄2

OpAmp

8RCA(1 + 1
A)

fb (9.68)

400 ∆Σ Analog-to-Digital Converters

zero−order

hold

+

Vin

CA

vOpAmp

–2

8 R

A

1
1 +

1

random

number

V’inx

Figure 9.33: Modeling of OpAmp noise [2].

Figure 9.33 illustrates the modeling of the OpAmp noise [2]of a first-order ∆Σ modulator.
Figure 9.34 is a graph of PSD and DR for both the ideal case and in the presence of OpAmp
noise.

D. Impact of integrator leakage. The transfer function of real integrators is modeled by [3]:

Hinteg(z) =
z−1

1 − (1 − µ)z−1
(9.69)

where the parameter µ describes the integrator leakage. The NTF of the first-order modulator
is defined as

NTF (z) =
1

1 + Hinteg(z)
=

1 − (1 − µ)z−1

1 + µz−1
≈ 1 − (1 − µ)z−1 (9.70)

and

|NTF |2 = [1 − (1 − µ) cos 2π
f

fs
]2 + [(1 − µ) sin 2π

f

fs
]2 (9.71)

|NTF |2 = 1 + (1 − µ)2 − 2(1 − µ) cos 2π
f

fs
(9.72)

The total in-band quantization noise power is estimated by

Pin−band =

∫ fb/2

−fb2

e2fs

[

1 + (1 − µ)2 − 2(1 − µ) cos 2πffs

]

df

Pin−band =

∫ fb/2

−fb/2

e2

fs
(µ2 − 2µ + 2) df −

∫ fb/2

−fb/2

e2

fs
2(1 − µ) cos 2π

f

fs
df

Pin−band =
µ2 − 2µ + 2

OSR

[

∆2

12

]

− 2(1 − µ) sin

(

2π
fb

fs

) [

∆2

π 12

]

(9.73)

Pin−band ≈ µ2 − 2µ + 2

OSR

[

∆2

12

]

− 2(1 − µ)

[

π
fb

fs
−

(π fb

fs
)3

3!

] [

∆2

π 12

]

(9.74)

Thus, the total in-band quantization noise power can be estimated and is given by

Pin−band =
µ2

OSR

[

∆2

12

]

+ (1 − µ)
π2

OSR3

[

∆2

36

]

=
π2

OSR3

[

∆2

36

]

+
∆2

12

[

µ2

OSR
− µ

π2

3OSR3

]

(9.75)

9.2 ∆Σ ADCs 401

10
–3

10
–2

–120

–100

–80

–60

–40

–20

0

Frequency (f/fs)

S
p

e
c
tr

u
m

 [
d

B
]

ideal

V
Opamp,rms

=10
–7

V
Opamp,rms

=10
–6

–50 –40 –30 –20 –10 0
–10

0

10

20

30

40

50

60

Input amplitude [dB]

S
N

R
 [

d
B

]

ideal

V
OpAmp,rms

=10
–7

V
OpAmp,rms

=10
–6

Figure 9.34: Effect of OpAmp noise on the PSD and DR of a first-order ∆Σ modulator.

The increase of the in-band quantization noise power due to the integrator losses is equal to the
value

∆Pin−band =
∆2

12

[

µ2

OSR
− µ

π2

3OSR3

]

(9.76)

Hence, the effect of the integrator losses on the modulator accuracy is reduced by increasing the
modulator’s oversampling ratio, OSR. Figure 9.35 illustrates the degradation due to the integrator
leakage of the PSD, and DR, of a first-order ∆Σ modulator.

E. Impact of OpAmp slew rate. Figure 9.36 shows the slew-rate model for the OpAmp of an
integrator block. Finding analytical expressions that relate the modulator performance to the

402 ∆Σ Analog-to-Digital Converters

10–3 10–2

–120

–100

–80

–60

–40

–20

0

Frequency (f/fs)

S
p
e
c
tr

u
m

 [
d
B

]

ideal

µ=0.1

–50 –40 –30 –20 –10 0
–10

0

10

20

30

40

50

60

Input amplitude [dB]

S
N

R
 [
d
B

]

ideal

µ=0.1

Figure 9.35: Impact of the integrator leakage on the PSD and DR of a first-order ∆Σ modulator.

slew−rate

1

s
+

g

Vin Vout

(a)

saturation

Figure 9.36: Modeling of OpAmp slew rate and saturation [2].

9.2 ∆Σ ADCs 403

10–3 10–2

–120

–100

–80

–60

–40

–20

0

Frequency (f/fs)

S
p
e
c
tr

u
m

 [
d
B

]

ideal

rSR=1

–50 –40 –30 –20 –10 0
–10

0

10

20

30

40

50

60

Input amplitude [dB]

S
N

R
 [
d
B

]

ideal

rSR=1

Figure 9.37: Effect of OpAmp slew rate on the PSD and DR of a first-order ∆Σ modulator.

OpAmp slew-rate is difficult. Figure 9.37 is a graph of the PSD and DR of a first-order ∆Σ ADC
in the presence of OpAmp slew rate.

F. Impact of OpAmp saturation. The effect of OpAmp saturation on the modulator’s perfor-
mance is difficult to express in closed-form. Figure 9.36 shows the modeling of OpAmp saturation
for an integration block [2]. Figure 9.38 is a graph of the PSD and DR of a first-order ∆Σ ADC
in the presence of OpAmp saturation.

404 ∆Σ Analog-to-Digital Converters

10–3 10–2
–150

–100

–50

0

Frequency (f/fs)

S
p
e
c
tr

u
m

 (
d
B

)

ideal

V
sat

= 0.7

V
sat

= 0.7

–50 –40 –30 –20 –10 0
–10

0

10

20

30

40

50

60

Input amplitude [dB]

S
N

R
 [
d
B

]

ideal

V
sat

= 0.7

Figure 9.38: Effect of OpAmp saturation on the PSD and DR of a first-order ∆Σ modulator.

e(z)

+
z −1 −2− z2

z −1 −2+ z1 − 2
+

z −1 −2− z2

z −1 −2+ z1 − 2
+

(a) (b)

−

x(z) y(z)

−

x(z) y(z)

Figure 9.39: Second-order ∆Σ modulator.

9.2 ∆Σ ADCs 405

10–3 10–2 10–1 100
–120

–100

–80

–60

–40

–20

0

Transfer functions

Frequency [rad/sec] (Normalized)

M
a
g
n
it
u
d
e
 [
d
B

]

STF
NTF

Figure 9.40: STF and NTF for the second-order ∆Σ modulator.

9.2.6 Second-Order ∆Σ Modulator

Figure 9.39 shows the structure of a second-order ∆Σ modulator. In this case, the transfer
function H(z) is defined as [1, 5]:

H(z) =
2 z−1 − z−2

1 − 2 z−1 + z−2
(9.77)

The modulator output is given by

y(z) =
2 z−1 − z−2

1 − 2 z−1 + z−2
[x(z) + y(z)] + e(z) (9.78)

y(z) = [2 z−1 + z−2] x(z) + [1 − z−1]2 e(z) (9.79)

Hence, the modulator STF is

STF = 2 z−1 + z−2 (9.80)

and the NTF is

NTF = (1 − z−1)2 (9.81)

Figure 9.40 shows graphs of the STF and NTF. Note the noise-shaping characteristics of the
modulator NTF. Figure 9.41 illustrates the power spectral density of the second-order modulator
for OSR equal to 32, a normalized sampling frequency and an input signal frequency equal
to 1/512 of the sampling frequency. This graph shows that the circuit operates as an ADC,
because most of the signal power is concentrated at the input frequency. The quantization noise
can be approximated reasonably well as white noise.

406 ∆Σ Analog-to-Digital Converters

10–3 10–2

–50

–100

–150

0

Frequency (f/fs)

S
p
e
c
tr

u
m

 [
d
B

]

Figure 9.41: Power spectral density for the second-order ∆Σ modulator.

The in-band quantization noise power of the second-order modulator must be estimated in
order to find prediction models for the modulator’s performance. Substituting the expression for
NTF, i.e., Equation (9.81) into Equation (9.36), yields the in-band quantization noise power as:

Pin−band =
e2

fs

∫ fb/2

−fb/2

[

1− cos

(

2π
f

fs

)

+ cos

(

4π
f

fs

)2

+2 sin

(

2π
f

fs

)

− sin

(

4π
f

fs

)2]

df (9.82)

and

Pin−band =
e2

fs

[

6 fb − 4 fs

π
sin

(

2π
fb

fs

)

+
fs

2π
sin

(

4π
fb

fs

)]

(9.83)

Using the approximation:

sin x ≈ x − 1

3!
x3 +

1

5!
x5 (9.84)

yields,

sin

[

2π
fb

fs

]

= 2π
fb

fs
− 1

3!

[

2π
fb

fs

]3

+
1

5!

[

2π
fb

fs

]5

(9.85)

sin

[

4π
fb

fs

]

= 4π
fb

fs
− 1

3!

[

4π
fb

fs

]3

+
1

5!

[

4π
fb

fs

]5

(9.86)

9.2 ∆Σ ADCs 407

–70 –60 –50 –40 –30 –20 –10 0
–10

0

10

20

30

40

50

60
Dynamic range

Input amplitude [dB]

S
N

R
 [
d
B

]

Figure 9.42: Dynamic range for the second-order ∆Σ modulator.

and the in-band quantization noise power is

Pin−band ≈ 2e2

OSR

[

3 − 4
2π fb

fs
− 1

3! (2π fb

fs
)3 + 1

5! (2π fb

fs
)5

2π fb

fs

(9.87)

+
4π fb

fs
− 1

3! (4π fb

fs
)3 + 1

5! (4π fb

fs
)5

4π fb

fs

]

Pin−band ≈ π4 e2

5 OSR5
(9.88)

Hence, if the modulator uses a one-bit quantizer, i.e., ∆ = 2, then

Pin−band ≈ π4

15 OSR5
(9.89)

For a sinusoidal input signal, the SNR of the second-order ∆Σ modulator is given by

SNR (dB) = 10 log

[

15 A2 OSR5

2π4

]

(9.90)

This result shows that doubling the OSR increases SNR by 15 dB corresponding to 2.5 bits, in
precision.

Figure 9.42 shows the DR graph for OSR = 32 dB. The frequency of the input signal in this
case was 1/512 of the sampling frequency. The maximum SNR is ≈ 56 dB, which is ≈ 10 dB more
than for the first-order ∆Σ modulator. The dynamic range is ≈ 65 dB, as compared to 34 dB
for the first-order ∆Σ modulator. Figure 9.43 shows the DR graphs for four OSR values (32, 64,
128, and 256). Note that DR and the maximum SNR increase with the OSR value, as expected.

408 ∆Σ Analog-to-Digital Converters

0

–20

–40
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10

0

20

40

60

80

100

Dynamic range vs. OSR

Input amplitude [dB]

S
N

R
 [
d
B

]

OSR = 32
OSR =.64
OSR = 128
OSR = 256

Figure 9.43: Dynamic range for a second-order ∆Σ modulator and different OSR values.

y(z)

+
1 1

+ +

+
1

z –1 1 –

z –1 1 –

z –1 1 –

z –1 1 –

1
+

–

–

–

(a)

(b)

x(z)

e(z)

y(z)

x(z)

–

Figure 9.44: Topology and analysis model for a second-order ∆Σ modulator.

Also, for an input of -20 dB and OSR of 32, the resulting SNR is close to 39 dB. For the OSR
of 256, the SNR increases to ≈ 84 dB, which is 15 dB higher, as predicted by Equation (9.90).

The PSoC implementation of the second-order ∆Σ-ADC is similar to that of the first-order
∆Σ ADC shown in Figure 9.17. The only difference is the use of a second-order ∆Σ modulator
instead of a first-order ∆Σ modulator. Figure 9.44 shows the topology for the second-order ∆Σ
modulator [7]. Figure 9.44(a) shows the block structure of the topology, and Figure 9.44(b)
illustrates the linear model used in a performance analysis. The circuit implementation of the
modulator is shown in Figure 9.45. This implementation uses two programmable SC blocks to
implement the modulator’s two integrators. The digital part (the decimator and timer) and the
related firmware routines are similar to those of the first-order modulator.

9.3 Conclusions 409

Φ2

Φ2

Φ2

Φ2

Φ2

Φ2

Vin

Φ1

Φ1

Φ1

Φ1

Φ1

Φ1

Φ1

Φ1

Vout

x
Reset

ACAP

FCAP

Vref–

Vref+

x
Reset

ACAP

FCAP

+

–

+

Vref+

Vref–

–

Figure 9.45: PSoC-based implementation of the second-order ∆Σ modulator [7].

9.3 Conclusions

This chapter has presented a discussion of the basic concepts of ∆Σ analog-to-digital convert-
ers (ADCs), and detailed the implementation of first-order and second-order ∆Σ ADCs using the
PSoC architecture.

ADCs are important subsystems in many embedded mixed-signal systems. They convert
continuous-valued, continuous-time signals into discrete-valued discrete-time, data. The ADC op-
eration is based on two steps, sampling and quantization. Sampling represents a continuous-time,
continuous-valued signal as a discrete-time, continuous-valued signal. Quantization approximates
continuous-valued signals as discrete-valued data.

The Nyquist sampling theorem was also introduced in this chapter and defines the sufficient
condition for accurate reconstruction of the sampled signal from the sampling data. The Nyquist
sampling theorem states that the signal can be correctly reconstructed if the sampling frequency
is greater than twice the frequency of the highest spectral component (called Nyquist frequency).
The sampled data included the original signal and images at negative/positive multiples of the
sampling frequency. If the sampling frequency is greater than the Nyquist frequency, then the
signal and the images do not overlap, otherwise aliasing occurs as a result of overlapping of the
signal and its images. The original signal can be reconstructed by lowpass filtering. The transfer
function of the filter is

H(f) = rect
f

fs
(9.91)

As shown, a B -bit quantizer approximates a continuous-valued signal as a bitstring of B bits.
The introduced quantization error er is modeled as white noise with a power spectral density
of 1/∆, where ∆ is the discretization range of the quantizer. The accuracy of the signal con-
version process depends on the quantization noise power, which, for the white noise model for
quantization noise, is expressed as:

σ2
e =

∆2

12
(9.92)

=
1

3(2B − 1)2
(9.93)

Hence, the conversion accuracy improves if the number of quantization bits, B, is higher.

ADCs include a modulator and a decimator and to achieve the desired conversion accuracy,
the modulator samples the input signal with the goal of minimizing the in-band quantization

410 ∆Σ Analog-to-Digital Converters

noise power. This is achieved by two orthogonal concepts, oversampling and noise-shaping. The
decimator reconstructs the sampled signal by conducting lowpass filtering to eliminate the images,
and downconversion back to the signal frequency band.

• Oversampling implies that the sampling frequency is much larger than the Nyquist fre-
quency. The oversampling ratio (OSR) is the ratio of the sampling frequency to the Nyquist
frequency. High OSR values reduce the in-band quantization noise power, and also increase
the distance between the signal and its images, which simplifies the removal of the images
by lowpass filtering.

• Noise-shaping selects the ∆Σ modulator transfer function such that the signal transfer
function (STF) is an allpass filter, and the noise transfer function (NTF) is a highpass filter
that eliminates the in-band quantization noise.

The performance of ∆Σ modulators in terms of accuracy of the signal conversion process is
characterized by

• Signal-to-noise ratio (SNR) which is the ratio of the signal power to the in-band quantization
noise power. Increasing SNR by 3 dB improves accuracy by 0.5 bits. Also, doubling OSR
increases SNR by 3 dB.

• Dynamic range (DR) is the ratio of the output power of a sinusoidal input, with full-range
amplitude, to the output power of the input signal, for which the SNR is zero.

The theory and implementation of first-order and second-order ∆Σ ADCs and the STF/NTF
of associated modulators was discussed in detail. Analytical expressions and simulation results
were derived for the power spectrum density, in-band quantization noise power, and SNR of the
first-order and second-order ∆Σ modulators.

The PSoC-based implementation of an eight-bit first-order ∆Σ ADC was also discussed. The
implementation included three parts, the modulator, decimator, and API routines:

• The modulator used PSoC’s programmable SC blocks with an OSR of 64.

• The decimator, for lowpass filtering and downconversion, was based on a digital sinc2 filter
and a hardware/software design with the integration part of the decimator implemented
using PSoC’s customized Type 1 decimator blocks and the differentiation part of the deci-
mator conducted in software.

To keep the overhead low, downconversion was achieved by using a programmable digital
block for generating the interrupts that activated the differentiation routine. The pro-
grammable block was configured as a timer, initialized with the OSR value, and produced
an interrupt upon counting down to the value zero.

• The API routines discussed included subroutines for (i) starting/stopping an ADC, and the
signal conversion process, (ii) managing (reading/clearing) the status of the converter, and
(iii) reading the converted data values. This chapter also provided an example of reading
data from an ADC by a polling mechanism.

Finally, analytical expressions and simulation models for estimating the ADC performance
degradation due to nonidealities (e.g., clock jitter, switch thermal noise, integrator leakage, and
OpAmp noise, finite gain, slew rate, and saturation) were presented and discussed in detail. Sim-
ulation graphs illustrated and quantified the degradation in performance, (e.g., power spectrum
density and DR) as a result of the presence of certain nonidealities.

Bibliography

[1] G. Bourdopoulos, A. Pnevmatikakis, V. Anastassopoulos, T. Deliyannis, Delta-
Sigma Modulators. Modeling, Design and Applications, London: Imperial College
Press, 2003.

[2] P. Malcovati, S. Brigati, F. Francesconi, F. Maloberti, P. Cusinato, A. Baschirotto,
Behavioral Modeling of switched-capacitor sigma-delta modulators, IEEE Transac-
tions on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 50, 3,
pp. 352–364, March 2003.

[3] F. Medeiro, A. Perez-Verdu, A. Rodriguez-Vazquez, Top-Down Design of High-
Performance Sigma-Delta Modulators, Kluwer Academic Publishers, Boston, 1999.

[4] S. Norsworthy, R. Schreier, G. Temes, Delta-Sigma Data Converters. Theory,
Design, and Simulation, Piscataway, NJ: Nyork, IEEE Press, 1997.

[5] R. Schreier, G. Temes, Understanding Delta-Sigma Data Converters, New York:
J. Wiley & Sons, 2005.

[6] PSoC Mixed Signal Array, Technical Reference Manual, Document No. PSoC TRM
1.21, Cypress Semiconductor Corporation, 2005.

[7] DelSig8 v3.2, 8 Bit Delta Sigma ADC, Application Note, Cypress Semiconductor
Corporation, Oct. 3 2005.

[8] http://www.wikipedia.org.

Chapter 10

Future Directions in Mixed-Signal
Design Automation

The goal of embedded system design is to develop customized hardware and software
for an embedded application, so that the functional, cost, and performance needs
of the application are met.This chapter introduces some of the current challenges
related to design automation for analog and mixed-signal systems, as advanced top-
ics. The topics include high-level specification of analog and mixed-signal systems,
a simulation method for fast performance estimation and high-level synthesis of
analog subsystems.

10.1 Top-Down Design and Design Activities

Figure 10.1 summarizes some of the popular modules in embedded applications, e.g., temperature
and humidity sensing, statistical processing of the sensed data, data communication protocols,
image processing, data encryption and decryption, control algorithms, and interfacing to a LCD.
Most of these modules have been discussed in the previous chapters. In the following discus-
sion, the implementations of the IDEA encryption routine and a face detection image processing
procedure are discussed.

A typical top-down design flow for embedded systems starts from an abstract system speci-
fication for the functional, interfacing, cost, and performance requirements of the system. The
design is incrementally refined by continuously adding new implementation details to the de-
sign. Each refinement step optimizes the design by conducting tradeoff analysis that considers
different design solutions and their impact on the overall system cost and performance. The
design flow should incorporate a performance evaluation mechanism to evaluate the quality of
design decisions, and a modeling procedure to express the defining attributes of implementation
modules.

The top-down design flow involves the following activities:

• System specification: The process of describing the defining properties of an embedded
system.

• Functional partitioning: Reorganizing a system specification into modules, each having a
specialized functionality, for example a certain interfacing function, or data processing.

A. Doboli, E.H. Currie, Introduction to Mixed-Signal, Embedded Design,
DOI 10.1007/978-1-4419-7446-4 10, c© Springer Science+Business Media, LLC 2011

414 Future Directions in Mixed-Signal Design Automation

from

image

processing

(face detection)

encryption

algorithm

(IDEA)

data communication

protocol (SPI, UART)

statistical

computation

temperature/

humidity sensing

control algorithm

(FSM)

LCD interface

(I2C)
to LCD

decryption

algorithm

(128x128 pixels)

image unsigned

bytes

from

serial link

to serial linksensors

Figure 10.1: Signal and data processing in embedded applications.

• System-level tradeoff analysis: Mapping system-level performance and design requirements
into requirements for the building blocks. Hence, this step produces a constraint transforma-
tion. Numerous design tradeoffs are analyzed (e.g., cost-speed, speed-power consumptions,
accuracy-speed, etc.).

The outcomes of tradeoff analysis may include determining whether a module should be
implemented in hardware or software (an activity referred to as hardware–software parti-
tioning), the number of I/O ports and communication protocols to be used, mapping input
and output signals to ports, allocating the hardware resources used in customization, map-
ping data to memory pages, and so on. Note that the system modules can be individually
designed after a system-level tradeoff analysis.

• Design of the individual modules: Design of interfacing modules, data processing mod-
ules (for example video and audio processors), memory modules, and bus communication
subsystem.

Modules can include hardware circuits and software routines. Complex modules undergo a
separate top-down design process.

• Analog circuit design: Implementation of analog and mixed-signal circuits.

• Digital circuit design: Implementation of the customized digital circuits, for example inter-
facing circuits and customized data processing hardware.

• Software development: Creation of application software and system software, for example
methods for data processing, control, and graphical user interfaces (GUIs).

• Circuit modeling: Characterizing the behavior of hardware circuits, for example propa-
gation delay, power consumption, noise margins for digital circuits, and poles and zeros,
bandwidth, harmonic distortion, and circuit noise for analog circuits.

• Software characterization: Development of the models that predict the performance of
software routines, including speed, required memory, memory access patterns, and power
consumption.

10.2 Two Examples of Architecture Customization 415

tempx2 = result2 ^ result10; // (13) XOR result of (2) and (10)

WORD x[32][4];

WORD y[32][4];

WORD z[9][6];

for (i=0; i<32; i++) {

tempx1 = x[i][0];

tempx2 = x[i][1];

tempx3 = x[i][2];

tempx4 = x[i][3];

for (j=0; j<8; j++) {

}
// final transformation

// eight rounds of transformations

result5 = result1 ^ result3; // (5) XOR result of (1) and (3)
result6 = result2 ^ result4; // (6) XOR result of (2) and (4)

result8 = result6 + result7; // (8) add result of (6) and (7)

tempx1 = result1 ^ result9; // (11) XOR result of (1) and (9)
tempx3 = result3 ^ result9; // (12) XOR result of (3) and (9)

}
}

result1 = tempx1 * z[j][0]; // (1) multiply x1 and 1st subkey
result2 = tempx2 + z[j][1]; // (2) add x2 and 2nd subkey
result3 = tempx3 + z[j][2]; // (3) add x3 and 3rd subkey
result4 = tempx4 * z[j][3]; // (4) multiply x4 and 4th subkey

y[i][0] = tempx1 * z[8][0]; // (1) multiply x1 and 1st subkey
y[i][1] = tempx3 + z[8][1]; // (2) add x2 and 2nd subkey
y[i][2] = tempx2 + z[8][2]; // (3) add x3 and 3rd subkey
y[i][3] = tempx4 * z[8][3]; // (4) multiply x4 and 4th subkey

result9 = result8 * z[j][5]; // (9) multiply (8)and 6th subkey

result7 = result5 * z[j][4]; // (7) multiply (5)and 5th subkey

result10 = result7 + result9; // (10) add result of (7) and(9)

tempx4 = result4 ^ result10; // (14) XOR result of (4) and (10)

void IDEA () {

Figure 10.2: The IDEA algorithm.

• Performance evaluation: Analysis of the system performance that can be based on analytical
expressions (e.g., system models, processor models, circuit macromodels), or on a simulation
of simplified descriptions of the system.

10.2 Two Examples of Architecture Customization

This section provides a succinct description of two case studies for the design of embedded system
implementations: (i) an IDEA encryption routine, and (ii) a face detection algorithm for image
processing. In this discussion, particular stress is placed on top-down design (e.g., specification,
tradeoff analysis, profiling or modeling, and performance evaluation).

10.2.1 IDEA Algorithm for Data Encryption

This subsection presents the PSoC-based implementation proposed by V. Sabino and J. Powers
for the International Data Encryption Algorithm (IDEA) [30]. The design goal was to provide
a time-efficient implementation of the algorithm using PSoC. The solution explores performance

416 Future Directions in Mixed-Signal Design Automation

mov reg[MAC_Y], A ; to MAC_Y ACC = (x_MSB * y_LSB) + (x_LSB * y_MSB)

mov A, [varx] ; x_MSB

mov reg[MUL_X], A ; to MUL_X

mov reg[MAC_CL0], A ; clear accumulator

mov A, [vary+1] ; y_LSB

mov reg[MAC_Y], A ; to MAC_Y ACC = (x_MSB * y_LSB)

mov reg[MUL_X], A ; to MUL_X MUL = (x_LSB * y_LSB)

mov A, [varx+1] ; x_LSB

mov A, reg[MUL_DH] ; MUL_DH

tst [varx+1], 0x80 ; MSBit of x_LSB is 1?

jz .+4 ; if not skip over add

add A, [vary+1] ; add to y_LSB

tst [vary+1], 0x80 ; MSBit of y_LSB is 1?

jz .+4 ; if not skip over add

add A, [varx+1] ; add to y_LSB

mov [ASM_z], A ; to ASM_z−MSB

mov A, reg[MUL_DL] ; MUL_DL

mov [ASM_z+1], A ; to ASM_z_LSB

mov A, [vary] ; y_MSB

mov A, reg[ACC_DR0] ; ACC_LSB

add [ASM_z], A ; add to ASM_z_MSB

; ASM_z = varx * vary

Figure 10.3: Optimized 16-bit unsigned multiplication algorithm.

optimization by customization of PSoC’s programmable, digital resources to address the perfor-
mance needs of the algorithm. The solution follows the design and tradeoff analysis procedures
illustrated in Chapter 4.

The IDEA algorithm generates four 16-bit unsigned integers that are the encryptions of the
four 16-bit unsigned integers provided at the input. The outputs are stored in the y-matrix,
and the inputs are in the x -matrix. Encryptions are computed in eight iterations and a final
transformation, as shown in Figure 10.2. The algorithm uses fifty-two, 16-bit, key values that
are stored in the z -matrix.

The profiling of the IDEA algorithm (described in the C language) indicated that the total
number of clock cycles is ≈ 2.4 millions cycles. This corresponds to an execution time of
≈ 100 msec for a clock frequency of 24 MHz. Hence, only 80 bytes can be encrypted per second,
which is a serious constraint for a real-life application. Moreover, an analysis showed that ≈ 63%
of the total execution time is spent performing multiplications, and ≈ 32% of the time is utilized
for array indexing and memory paging. The total time required to execute the other instructions
(e.g., addition, exclusive or, etc.) is less than 5%.

To speedup the IDEA execution time, an optimized algorithm, shown in Figure 10.3, was
developed for fast multiplication of 16-bit unsigned integers. Note that the optimized algorithm’s
execution time is ≈ 112 clocks, as compared to ≈ 1400 clocks for integer multiplication in the
C language. The algorithm uses PSoC’s MAC block which is described in Chapter 4.

Array indexing and memory paging consumed approximately 1/3 of the total execution time of
the algorithm. Table 10.1 details the total number of clocks for the instructions that are involved
in accessing matrices x, y, and z for two possible addressing modes: indirect, by instructions MVI,
and indexed. The setup time includes the overhead due to the instructions that establishes the

10.2 Two Examples of Architecture Customization 417

Table 10.1: Comparison of the indirect and indexed addressing modes.

MVI instructions Indexed addressing
Clocks # Loops Total # Clocks # Clocks Loops Total # Clocks

Setup 10 1 10 22 32 704

Memory
access

20 256 5120 12 256 3072

Other 13 64 832 9 64 576

Other 6 32 192 7 32 224

values of the registers, for example the MVR PP and MVW PP registers used for reading and
writing, based on indirect addressing. The table shows that MVI instructions have a lower
setup overhead than indexed addressing. This is because the matrices x - and y-matrices can be
stored in different pages (the x -matrix is read and the y-matrix is written), so that the MVR PP
and MVW PP registers do not have to be modified. Indexed addressing requires modifying the
IDX PP register each time the memory page needs to be changed for addressing another data
matrix, which increases the setup time significantly.

Nevertheless, the total number of clock cycles for indexed addressing is 4576 clock cycles, as
opposed to 6154 clock cycles for indirect addressing. This is due to the fact that memory access
is much slower for MVI instructions. In the final design, the IDEA implementation used indexed
addressing in which the x and y-matrices were placed in different SRAM pages, and the z -matrix
was stored in the local page. The resulting execution time for indexing and paging was ≈ 2457
clock cycles, which is almost 50% better than the unoptimized case.

The execution time for the optimized implementation was approximately 189, 241 clock cycles,
less than the initial 2.4 millions clock cycles. The execution time was approximately 7.9 msec for
a clock frequency of 24 MHz. Hence, the optimized implementation was about12 times faster than
the initial design. In the optimized design, ≈ 64% of the total time was required for multiplication,
and only 1.3% for indexing and memory paging. The rest of the instructions, which represented
less than 5% of the initial execution time, were ≈ 35% of the execution time. This result suggests
that the performance-criticality of an instruction depends not only on the particular instruction
but also on how the instruction was implemented. This is an important observation, in as much
as further reduction of the overall execution time (i.e., below 189,241 clock cycles) would also
require optimizing instructions other than multiplication, indexing, and memory paging.

10.2.2 Face Detection for Image Processing1

A simple algorithm for human face detection is discussed in this subsection as an illustrative
example of an image processing algorithm. The goal of the algorithm is to identify human
faces in an image in real-time. There are several kinds of face detection algorithms, such as

1Portions reprinted with permission from Y. Weng, A. Doboli, Smart sensor architecture customized for image
processing. Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium,
396-403: 2004.

418 Future Directions in Mixed-Signal Design Automation

Gmean

R G B

Start

Cr Cb

CbthCrth

Gnew

Gfmean

Cov

Sum

Th

Pick

End

Gf

Figure 10.4: Task graph of the face detection algorithm [37] c© 2010 IEEE.

knowledge-based, feature invariant, appearance-based, and template matching methods [38]. This
subsection focuses on a simplified, template-matching algorithm for face detection [37].

The steps of the face detection algorithm are summarized in Figure 10.4:

• After the image is loaded, tasks R, G, B extract the red, green, and blue information from
the image which can be extracted in parallel, as shown. The image size is 128×128 pixels.

• Steps Cr and Cb convert the RGB color space into the YCbCr color space. This step is
executed because the skin can be detected more effectively due to the smaller variation in
the skin chrominance [7]. The skin region is found using values Cr and Cb, as follows:

Cr = 0.5 × R − 0.41869 × G − 0.08131 × B (10.1)

Cb = −0.16874 × R − 0.33126 × G + 0.5 × B (10.2)

Figure 10.5 shows the pseudocode of the skin detection algorithm using values Cr and Cb.

• Steps Crth and Cbth find the skin region of an image by comparing the values Cr and
Cb with predefined threshold values. The if instruction of the pseudocode in Figure 10.5
implements this step.

Note that the algorithm in Figure 10.5 was split into four tasks Cr, Cb, Crth, and Cbth
illustrating the parallelism of the tasks Cr and Cb, and tasks Crth and Cbth, respectively.

10.2 Two Examples of Architecture Customization 419

Functional partitioning can reduce the algorithm’s execution time by executing the tasks
in parallel.

• Task Gnew leaves the G value of the face and skin regions of an image unchanged, and sets
the colors of the rest of the image to black.

• Task Gmean calculates the mean G values of the image pixels.

• Task Gf finds the G color values of the face template image.

• Task Gfmean computes the mean of the G color values of the face template pixels.

• Task Cov computes the covariance of each pixel in the image and template.

• Task Sum adds up the covariances of a face region of the same size as the template.

Note that tasks Cov and Sum occur after the functional partitioning of the template
matching algorithm in Figure 10.5.
The correlation coefficient is given by:

cor coef =

temp length/2
∑

−temp length/2

temp length/2
∑

−temp length/2

(Template − Template mean)(B − B mean) (10.3)

• Task Th filters out the regions that do not represent faces by comparing the correlation
coefficient with predefined threshold values.

• Task Pick selects and marks the face region.

if ((−35 < Cr[i][j]<40) && (Cb[i][j] < −68))

void skin_extraction() {

for (int i = 0; i <= image_height; i++) {

Cb[i][j] = −0.16874 * R[i][j] − 0.33126 * G[i][j] + 0.5 * B[i][j];

Cr[i][j] = 0.5 * R[i][j] − 0.41869 * G[i][j] − 0.08131 * B[i][j];

skin[i][j] = true;
else

skin[i][j] = false;
}

}
}

void template_matching() {

for (int i = 0; i < height; i++) {

for (int j = 0; j < width; j++) {

for (int k = −temp_length/2; k < temp_length/2; k++) {

for (int l = −temp_length/2; l < temp_length/2; l++) {

(B[k+temp_length/2][l+temp_length/2− B_mean);
}

}
}

}
}

cor_coef+=(Template[k+temp_length/2][l+temp_length/2−Template_mean)*

for (int j = 0; j <= image_width; j++) {

Figure 10.5: Algorithms for skin detection and template matching [37] c© 2010 IEEE.

420 Future Directions in Mixed-Signal Design Automation

32x128x128 iterations

+ +

*

+ +

*

Stop

Start

+ +

*

Cov:

Stop

Start

+ + + +

+ +

Sum:

Start

+ + + +

+ +

+ +

Stop

+ +

Pick:

Start

+ + +

Stop

Th:

32x32x128x128 iterations 32x32x128x128 iterations

128x128 iterations

Figure 10.6: ADFGs for the time-intensive tasks of the face detection algorithm.

Implementation of the face detection algorithm in C++, and profiling the resulting code
indicates that the execution time of the tasks Cov, Sum, Th, and Pick represents ≈ 99% of
the total execution time. Therefore, speeding-up the execution mainly involves optimizing the
implementation of the four tasks. The purpose of optimization is to identify the number and
type of hardware resources that must be utilized by the general-purpose processor to achieve the
maximum speed-up of the execution time as compared to the software-only implementation. The
allocated hardware resources form an application-specific coprocessor, which can be based on the
programmable digital circuits.

The data communication between processor and coprocessor is made possible by the use of
shared memory. This communication time represents timing overhead that must be added to the
task execution time, if the task is performed by a coprocessor. Assuming that the bus is B -bits,
the timing overhead for a task “moved” to the coprocessor is expressed as

tincom =
Ninput

B
(tcom) (10.4)

tout
com =

Noutput

B
(tcom) (10.5)

where tincom represents the time required by the task to read input data from the shared memory,
time tout

com is the time needed by the task to write output data to the shared memory, and Ninput

and Noutput are the number of bits that are to be read and written, respectively. tcom is the time,
assumed to be equal, required to read and write B bits to the shared memory.

The next step is to find the number and type of hardware circuits that form the application-
specific coprocessor. The analysis uses acyclic dataflow graphs (ADFG) to describe the operators
of a task and the data dependencies between operators. Recall that Chapter 1 introduced ADFGs,
and Chapter 4 presented a case study that used ADFGs for developing the application-specific

10.3 Challenges in Mixed-Signal Design Automation 421

Table 10.2: Speed-up results for different coprocessors

Case # # adders # multipliers # logic (NAND) Speed-up
1 1024 1024 512 2

2 512 512 512 1.9

3 512 128 512 1.56

4 128 512 512 1.33

5 128 128 512 1.15

coprocessor. Figure 10.6 shows the ADFGs for the four time-intensive tasks of the face detection
task graph and, as dashed lines, the number of times each task needs to be performed.

Table 10.2 summarizes the execution time speed-ups that results for coprocessors with dif-
ferent resource sets. Five different cases are shown, each case being defined by the number of
adders, multipliers, and NAND gates available in the coprocessor. The design procedure used is
similar to the one discussed in Chapter 4. As expected, having coprocessors with more hardware
resources leads to higher speed-ups, because more operations can be executed in parallel. Nev-
ertheless, the difference in the resulting speed-ups can be very small for situations in which the
amount of available hardware resources is very different. For example, for the first two cases, the
speed-ups differ by less than 5%, even though the first case used twice the number of resources
than the second case. Cases three and four show that additional adders are more beneficial than
additional multipliers, due to the fact that a large number of addition operations were required
by the original algorithm. Because multipliers are more complex than adders, thus allocating
more complex hardware, and hence increasing cost, does not necessarily improve performance.
In the fifth case, the speed-up is very small and is unlikely to justify the extra cost of a coprocessor.

Thus designing an application-specific coprocessor for an embedded application can lead to
important performance improvements. However, allocating the coprocessor resources is not
trivial, because more hardware does not necessarily result in substantial performance improvements.

10.3 Challenges in Mixed-Signal Design Automation

One current bottleneck in embedded, mixed-signal, system-on-chip (SoC) development is the
design of the analog and mixed-signal IP cores, and the integration and verification of the final
designs [14]. Existing research and CAD tools offer remarkable solutions to the synthesis of
analog circuits, e.g., OpAmps, operational transconductors (OTA), comparators, etc. See [14] for
a recent overview on this topic. Commercial tools, including Virtuoso NeoCircuit and Virtuoso
NeoCell from Cadence and Circuit Explorer from Synopsys, are available for transistor sizing and
layout design of analog circuits. Obviously, the next step is to address the problem of synthesis
of more complex analog and mixed-signal systems, for analog-to-digital and digital-to-analog
converters, phase-locked loop circuits, and transceivers. This is a significant undertaking and
requires addressing three important problems:

• High-level specification for synthesis of analog and mixed-signal systems

422 Future Directions in Mixed-Signal Design Automation

• Fast simulation methods for analog and mixed-signal systems

• Automated analog and mixed-signal system synthesis

10.3.1 High-Level Specification of Analog and Mixed-Signal Systems2

According to Hosticka et al. [19], analog systems can be expressed at four levels of abstraction:

• Concept level: The system is defined as a network of modules (e.g., filters, analog-to-digital
converters, digital-to-analog converters, programmable gain blocks, oscillators, etc.).

• Algorithm level: The system is presented as interconnected basic building blocks (e.g.,
adders, integrators, switches, multipliers, quantizers, etc.).

• Macro level: The system specification describes the interconnections of circuits (e.g., OpAmps,
OTAs, comparators, etc.).

• Component level: The schematic of the system is defined as a network of devices (e.g.,
transistors, diodes, capacitors, inductors and resistors).

Depending on the amount of implementation detail present in a system specification, component
and algorithm level descriptions are defined to be high-level specifications, because they contain
little, or no detail about the implementation. In contrast, macro- and component-level descrip-
tions are referred to as low (physical)-level specifications. This discussion focuses on high-level
specification of analog and mixed-signal systems for automated design.

High-level specifications are developed using specification languages (e.g., VHDL-AMS [1,
8, 26], Verilog-AMS [26], SystemC [16], etc.) or graphical schemes, e.g., the notations in
Simulink and PSoC Express. High-level specifications can serve different purposes, such as simu-
lation, verification, and automated design (synthesis). Design methodologies, based on high-level
descriptions, offer not only short design closures at lower costs, but are also capable of a more
complete exploration of the possible design alternatives, than low-level specifications. However,
low-level design environments (e.g., transistor sizing and layout tools) are arguably more mature
than high-level design tools such as CAD tools for filters and ADCs. There are a relatively large
number of design environments based on low-level specifications [9, 17, 22, 27, 28, 35] in contrast
to the very few approaches for high-level synthesis [5, 13, 29, 33].

The focus in this discussion is on algorithmic high-level descriptions, because they are more
approachable for automated design than concept-level specifications. Note that concept-level
specifications do not indicate the nature of the modules in a specification, for example the type
of filters or ADCs. This complicates the design flow because the nature of the modules also
has to be selected. The most intuitive solution would be an expert system that identifies the
best implementation option for each module depending on the performance requirements of the
system from a predefined module library. For an effective selection, it is very important to have a
comprehensive and accurate characterization (modeling) of the library modules. A limitation of
this approach is the restricted selection of module implementations from the predefined library
only. This issue can be addressed by providing an efficient mechanism for adding new module
implementations to the library, and an automated procedure for modeling the implementations.

From an automated design perspective, algorithmic specifications must express the function-
ality, performance constraints and requirements of the implementation. This functionality defines

2This subsection is based on the paper - A. Doboli, R. Vemuri, ”Behavioral modeling for high-level synthesis of
analog and mixed-signal systems from VHDL-AMS, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 22, (11), 1504-1520, November 2003, c© 2010 IEEE.

10.3 Challenges in Mixed-Signal Design Automation 423

mixed-domain relationships (e.g., relationships in the time and frequency domains) between the
input, output, and state signals of a system. Performance descriptions denote relationships
between the attributes of the signals and building blocks in a system.

Three different styles have been used to denote the functionality of analog systems:

• Declarative specifications define constraints among the signals in a system. Differential
algebraic equations (DAEs) are typical declarative specifications in the time domain. The
specification may include the initial state of the system. In the frequency domain, transfer
functions are examples of declarative specifications. The system behavior results implicitly
by solving the DAE set at consecutive instances, or computing the frequency response of
the transfer function.

Note that declarative specifications do not reveal the signal processing and flow structure
of the implementation. However, this information is important for finding the system
topology (architecture). Some type of symbolic processing must be employed to find the
system structure, for example the well-known transformation rules for implementing a filter
transfer function in observable, controllable, and ladder forms [5].

• Algorithmic specifications relate the input, output, and state signals based on the semantics
of a simulation engine. The functionality is defined as a sequence of simulation steps. The
system behavior can be determined by executing the simulation steps of the simulation
engine. Similar to declarative specifications, they do not offer insight into the system
topology.

• Functional (denotational) specifications define a system as a composition of basic functions.
A pure functional specification has the property of referential transparency, which imposes
the condition that the system functionality can be fully deduced from the semantics of its
building blocks. Each basic function has inputs and outputs but no state. Signal flow graphs
(SFGs) are an example of a functional specification notation. The system functionality
results from explicitly showing the signal processing and flow. This information can be used
as a starting point for finding different architectures for an analog system [11, 12, 33, 34].

Figure 10.7 (a) illustrates the SFG for a fourth-order filter [11]. Figure 10.7(b) shows
the high-level description of the SFG. The description reveals the architecture of the filter
because it represents, at an abstract level, the filter’s signal flow and processing. The macro
construct defines one filter stage, including its inputs, outputs, and processing operations,
for example addition, integration, and multiplication by a constant. The macro variables,
e.g., variables m, n, p, and o, are introduced to express the signal flow between operators.
The fourth-order filter includes two instantiations of the macro stage 1.

Descriptions of performance attributes may refer to the following two facets:

• Signal attributes refer to an electrical signal (e.g., voltage, current, frequency, and phase).
Specifications may describe the value range or the punctual values of an attribute, such as
maximum value, minimum value, and steady-state value. Sums and integrals can express
the cumulative values of performance attributes. Performance attributes can also be related
to the design parameters and nonidealities of a specific implementation.

• The constraints and relationships of the performance specifications can be expressed in
declarative, algorithmic, or functional style. Specifications may also include partial deriva-
tives to define sensitivities of certain system performance with respect to the signal and
block attributes. Note that unlike the functionality specifications, performance descriptions

424 Future Directions in Mixed-Signal Design Automation

(a)

o
++ Integ

* −1.9374

Integ

*1.7251

i n

m

p v n

m

Integ

* −1.9374

*1.7251

Integ
p

end macro;

inputs i1;

outputs out;

arch controlable is

variables m, n, p;

o[1] = i1 + m;

o[2] = −1.9374 * p;

n = o[1] + o[2];

p = integ (n);

m = 1.7251 * integ (p);

out = integ (p);

end arch;

end macro;

(b)

outputs o is voltage;

inputs i is voltage;

macro filter is continuous_time

arch two_stage_filter is

o is array[2]; variables v;

v = stage_1.controlable (i);

o = stage_1.controlable (v);

end arch;

macro stage_1

Figure 10.7: SFG and aBlox specification for a fourth order filter [11] c© 2010 IEEE.

do not have to provide insight into the system topology. Moreover, algorithmic descrip-
tions may be faster to simulate in as much as they do not require equation-solving, as do
declarative and functional descriptions.

Figure 10.8 shows the SFG for a second-order ∆Σ modulator, and its high-level specification
using a functional description. The attributes section of the specification defines a set of constraints
that must be satisfied by the implementation of the modulator.

10.3.2 Fast Performance Estimation by Customized Simulation Code

It3 has been repeatedly reported that one of the important challenges in mixed-signal design
automation is the large number of optimization variables that must be simultaneously addressed
[12, 17, 27]. Analog and mixed-signal circuit simulators are often too slow for use inside the SoC
synthesis loop, experience stability problems, and are unable to exploit the specifics of circuits
and systems. Behavioral circuit and system models that are used for speedingup mixed-signal

3This subsection is based on the paper by H. Zhang, S. Doboli, H. Tang, A. Doboli, Compiled code simulation
of analog and mixed-signal systems using piecewise linear modeling of nonlinear parameters, Integration the
VLSI Journal, Elsevier, 40 (2007), pp. 193–208 and the paper by H. Zhang, A. Doboli, Fast Time-Fomain
Simulation Through Combined Symbolic Analysis and Piecewise Linear Modeling, in Proceedings of the 2004
IEEE International Behavioral Modeling and Simulation Conference, 2004, pp. 141–146.

10.3 Challenges in Mixed-Signal Design Automation 425

system simulation are of two kinds: structural (physical) and mathematical models. (See [4] for
a presentation of the most recent advances in behavioral modeling and simulation.)

The primary consideration when considering techniques for fast simulation of analog systems
with nonlinear parameters is the development of optimized code for a simulator that is customized
to each individual system. The code generation methodology relies on calculating symbolic
expressions for the output voltages and currents, and the state variables of a system. Each
kind of interconnection structure IST between two blocks bi and bj is captured as a separate
C++ class CIST (bi, bj) with the related methods encapsulating the symbolic composition rule of
the two blocks. All instances of the structure IST present in the system topology are formulated
as objects of class CIST , for which the identity of blocks bi and bj is set as the two blocks actually
appearing in the structural instance. This representation is applied bottom-up, so that blocks b
correspond to building blocks and composed blocks in the system.

Code generation utilizes detailed structural macromodels for the building blocks, for example
OTA, OpAmp, comparators, including many nonidealities, such as finite gain, poles and zeros,
CMRR, phase margin, and fall and rise time. Chapter 6 discussed one method for building
structural OpAmp macromodels, but the technique can be utilized for other circuits also, for
example operational transconductors. Code optimization identifies and eliminates loop invariants,
that is code that has the same effect for all loop iterations, and propagates constant subexpressions
present in the simulation loop. The technique is very fast and has few stability problems.

Figure 10.9 shows the proposed compiled-code simulation methodology and the structure of
a single-loop ∆Σ modulator. The methodology produces C++ code for customized simulators
generated from the system netlist used as input specification. The simulator code is organized as
calling and called C++ methods, that reflect the hierarchical structure of a system. C++ meth-
ods include variables corresponding to the state variables of the system, and instructions for
computing the values of output and state variables, that is voltages and currents at each time
and frequency instance. Instructions are found using symbolic composition rules for each struc-
tural pattern that links multiport blocks. Blocks in structural patterns are either basic blocks,
if they correspond to basic analog circuits, or composed blocks, if they are generated by block
composition. Additional code is generated for postprocessing the simulation data to compute the
required performance attributes of the system. For a ∆Σ ADC, the output voltage of the mod-
ulator is used to calculate typical performance figures, for example signal-to-noise ratio (SNR)
and dynamic range (DR).

The remainder of this discussion centers on the basic circuit modeling for compiled-code simu-
lation, block composition using symbolic rules, and provides some of the simulation methodology
details.

A. Modeling of basic building blocks. A system architecture (netlist) is built out of
interconnected multiport blocks. Blocks are either basic building blocks, such as operational
transconductors, OpAmps, and comparators, or composed blocks, such as integrators and ADC
stages. The behavior, as a function of time, of an N-port block is expressed as symbolic equations
between voltages V (t) and currents I(t) at its N ports, derivates of its K state variables Vs(t)
denoting voltages across energy storing devices, (e.g., capacitors and inductors in the block) and
M internal voltage and current sources Uinternal, that is those used to express offset voltages of
a circuit.

For example, Figure 10.10(a) shows the 4-port block for an OTA and the 4-port block for an
integrator. The OTA block has two ports for across voltage Vidm = Vip − Vin and two ports for

426 Future Directions in Mixed-Signal Design Automation

g’
2

− −

Vin
g

1
g

2+ +integ integ
Vos3s2s1 s4 s5

g’
1

end macro

inputs vin is voltage;

outputs vo is voltage with range GND−VDD;

attributes

define delta = max(vo.voltage) − min(vo.voltage);

define Bandwidth(o) = Frequency.((o.voltage −

 o.voltage(DC) < 3dB) at 1);

min(vin.voltage) in [−0.45*delta, 0.45*delta];

max(vin.voltage) in [−0.45*delta, 0.45*delta];

derivate (s3,time) > 176.0e3*delta;

derivate (s5,time) > 176.0e3*delta;

g4/(g1*g2) > 1.25;

Bandwidth(s1) > 160kHz;

Bandwidth(s2) > 160 kHz;

Bandwidth(s3) > 160 kHz;

Bandwidth(s4) > 160 kHz;

Bandwidth(s5) > 160 kHz;

g1 < g2;

arch SFG is

variables s1, s2, s4, s5;

s3 with range −0.2V−0.2V;

s1 = g1 * vin;

s2 = s1 − g3 * vo;

s3 = integ (s2);

s4 = g2 * s3 − g4 * vo;

s5 = integ (s4);

if s5 > VDD/2 then

vo = VDD;

else

vo = GND;

end if;

end arch;

macro SD_converter is

Figure 10.8: SFG description and high-level specification for ∆Σ modulators [7] c© 2010 IEEE.

10.3 Challenges in Mixed-Signal Design Automation 427

(a)

Calculate symbolic

expressions for the

sub−structures

Link structural and PWL

models of building blocks

to the symbolic expressions

Generate optimized

code for simulation in AC

and time domain

Library of structural

and PWL models

Identify sub−structures

in the architecture

Building blocks

(circuits)

System architecture

(b)

OutIn

fs

OTA1

C1

C1

OTA2

C2

C2

K1

Stage 2

K2

Stage 1

−

−

+

+

−

−

+

+

Figure 10.9: ∆Σ ADC structure and compiled-code system simulation methodology [39].
Reprinted from H. Zhang, S. Doboli, H. Tang, A. Doboli, Compiled Code Simulation of Analog
and Mixed-Signal Systems using Piecewise Linear Modeling of Nonlinear Parameters, Integration
the VLSI Journal, Elsevier, 40 (2007), pp. 193–208, with permission from Elsevier.

I
in

v
in

v
ip

I
ip

v
op

I
op

v
on

I
on I

in

v
in

v
ip

I
ip

v
op

I
op

v
on

I
on

(a) (b)

F1
4x4

Q1
4x1

S1
4x15

F2
4x4

Q2
4x2

Fc
4x4

Qc
4x3

Sc
4x25

(c)

v
ip

v
in

v
on

v
op

I
in

I
ip I

op

I
on

S2
4x10

Figure 10.10: Two basic blocks and their composition into a Σ − ∆ stage [39]. Reprinted from
H. Zhang, S. Doboli, H. Tang, A. Doboli, Compiled Code Simulation of Analog and Mixed-Signal
Systems using Piecewise Linear Modeling of Nonlinear Parameters, Integration the VLSI Journal,
Elsevier, 40 (2007), pp. 193–208, with permission from Elsevier.

across voltage Vout = Vop − Von. Voltages and currents at the four ports of the OTA block are
related by the following symbolic expression.

[Iip(t) Iin(t) Iop(t) Ion(t)]T = [Fij]4×4[Vip(t) Vin(t) Vop(t) Von(t)]T +
[Sij]4×15[VCd

(t−1) VCcm,1
(t−1) VCcm,2

(t−1) VL1,1
(t−1) VL1,2

(t−1) VL2,1
(t−1)

VL2,2
(t − 1) VC3,1

(t − 1) VC3,2
(t − 1) VL4,1

(t − 1) VL4,2
(t − 1) VC5,1

(t − 1)
VC5,2

(t − 1) VCo,1
(t − 1) VCo,2

(t − 1)]T +
[Q]4×1Voffset

Matrix terms, Fij , Sij , and Qij , are computed by symbolically solving the nodal equations of
the OTA structural macromodel in Figure 10.11 after replacing the derivates of state variables
according to BEI (Backward Euler Integration) formula. The structural macromodel in the figure
was obtained by extending the OTA model by Gomez[15] to the fully differential mode (DM) by
duplicating the single end stage, the common mode stage, the intermediate and output stages,

428 Future Directions in Mixed-Signal Design Automation

Voffset

Ccm

Ccm

Rd

Cd

V1Vidm
gm1(Vc1+Vc2)/2

R1

L1

R1

L1

V2

R2

L2

R2

L2

V3gm2V2

Icm Idm

R3

C3

C3

R3

R4

L4

R4

L4

V5

gm4V4

R5

C5

C5

R5

gm5V5

Vc1

Vc2

V4 V6

CoRo

CoRo

Vout

GmoV6

Icm = f(V3) = f(Vicm)

Idm = f(Vidm)

Figure 10.11: OTA structural macromodel [39]. Reprinted from H. Zhang, S. Doboli, H. Tang,
A. Doboli, Compiled Code Simulation of Analog and Mixed-Signal Systems using Piecewise Lin-
ear Modeling of Nonlinear Parameters, Integration the VLSI Journal, Elsevier, 40 (2007), pp.
193–208, with permission from Elsevier.

and the dominant pole stage. Functional, state, and offset matrices for popular building blocks,
such as OTAs, OpAmps, and comparators are calculated once, and stored in a library.

To exemplify the mathematical structure of matrix terms Fij , the following two terms are
defined:

F11 =
Ccm

h
+

Cd

h + Cd Rd
(10.6)

and,

F31 = 8h
GmGm4Gm5R3R5(L4 + hR4)

(h + C3R3)(h + C5R5)
(10.7)

Similarly, the terms Sij and Qij have the following form:

S11 = S21 = − Cd

h + Cd Rd
(10.8)

Q11 =
Cd

h + CdRd
+

Ccm

h
(10.9)

Q21 = − Cd

h + CdRd
(10.10)

B. Block composition. To produce the compiled-code simulator for the entire system, the
simulation methodology merges small clusters of interconnected blocks into composed blocks with

10.3 Challenges in Mixed-Signal Design Automation 429

the same temporal behavior as the original clusters. The merging process is bottom-up, starting
from the N -port representation of basic blocks until the port description of the entire system
is found. For example, the two 4-port blocks in Figure 10.10(a) are merged to create the block
for a ∆Σ stage, as shown in Figure 10.10(b). Then, as shown in Figure 10.10(c), the ∆Σ stage
is described as a 4-port composed block with the same temporal behavior as the two connected
blocks. Figure 10.12 shows the bottom-up merging of blocks for a third-order single-loop ∆Σ
ADC. The topmost block corresponds to the entire ADC, and is simulated to find the time domain
behavior of the system.

The behavior of composed blocks is found by symbolically settingup and solving the nodal
equations for its composing blocks. Variables corresponding to the voltages and currents at the
interconnection wires between the blocks are eliminated from the equation set. For example, the
Σ∆ stage in Figure 10.10(a) consists of the OTA block linked to the OpAmp-C block by two wires.
As explained in Figure 10.10(b), the OTA block has functional matrix F 1

4x4, state matrix S1
4x15,

and offset matrix Q1
4x1. There are 15 state variables in the OTA structural macromodel. The

symbolic functional matrix F 2
4x4, state matrix S2

4x10, and offset matrix Q2
4x2 describe the OpAmp-

C block. The OpAmp-C macrocell has 10 state variables, and two offset voltages, Voffset and
Vodc. Figure 10.10(c) presents the composed block for the stage, and described by matrices F c

4×4,
Sc

4×25, and Qc
4×3. The form of the matrix parameters was illustrated by showing the expression

for element F c
11. Also considered was the case where Vi and If (the DAC currents) are known,

and Ii and Vo are unknown.

F c
11 =

(F 2
22 − F 1

33)(F
2
11F

1
11 − F 1

14F
2
41 + F 1

11F
2
44)

(F 2
12 + F 1

43)(F
2
41 + F 1

34) − (F 2
11 + F 1

33)(F
2
11 + F 1

44)
(10.11)

+
(F 2

21 + F 1
34)(F

2
12F

1
11 − F 1

13F
2
41 + F 1

11F
2
43)

(F 2
12 + F 1

43)(F
2
41 + F 1

34) − (F 2
11 + F 1

33)(F
2
11 + F 1

44)

+
F 1

31(F
1
13(F

2
11 + F 1

44) − F 1
14(F

2
12 + F 1

33))

(F 2
12 + F 1

43)(F
2
41 + F 1

34) − (F 2
11 + F 1

33)(F
2
11 + F 1

44)

The parameters, F c
ij , Sc

ij , and Qc
ij , are described by similar expressions.

The structural pattern for a given cluster of interconnected blocks is defined by (i) the number
of blocks in the cluster, (ii) number of ports, state variables, internal voltage and current sources
of each block, and (iii) the connection structure, that is the number of wires between blocks.
Structural patterns do not describe the symbolic descriptions of the F , S, and Q matrices of
their interconnected blocks. For example, the composed blocks for the three single stages of the
third-order ∆Σ modulator in Figure 10.12 have the same structural pattern, even though each
stage is based on different circuits.

The same symbolic expressions are used to calculate matrices F c, Sc, and Qc for all composed
blocks corresponding to the same structural pattern. For example, all matrices for the single
stages in Figure 10.12 are found using the same symbolic expressions, obviously involving the
parameters of the corresponding circuit macromodels. If the symbolic expressions of the composed
block matrix elements are interpreted as functions of the composing macromodel parameters, then
these functions are the same for identical structural patterns. This property results from the fact
that the nodal equations are the same for identical structural patterns. Thus, after eliminating
the same unknown voltages and currents at the internal interconnection wires, the same symbolic
expressions are obtained.

430 Future Directions in Mixed-Signal Design Automation

[S] [Q][F]
4x4 4x25 4x3

OTA active-C integrator
4-port block:

[S] [Q][F]
4x4 4x25 4x3

OTA active-C integrator
4-port block:

[S] [Q][F]
4x4 4x25 4x3

[S] [Q][F]
4x4 4x24x10

OpAmp 4-port block:

Circuit parameters

found through

numerical simulation:

Zin,cm

Zout Phi_error

Zin,dmf

Gm,cm

Pole1

Pole2

Zero1

Zero2

Pole3 Zero3

.......
CMRR Avdm

Gm,dm

Circuit parameters

found through

numerical simulation:

Zin,cm

Zout

Zin,dmf

Pole1

Pole2

Zero1

Zero2

Pole3 Zero3

Avcm

CMRR

Avdm

BW PM
.......

[S] [Q]4x15
[F]

4x4 4x1

Circuit parameters

found through

numerical simulation:

.......

Zin Zout

Avac CMRR

Tfall_h Tfall_l

Trise_h Trise_l

Td_fh Td_fl

Td_rh Td_rl

Vout_h Vout_l

[S] [Q][F]
4x4 4x94x75

OTA active-C integrator
4-port block:

OTA 4-port block:

4-port block:
3-integrator chain

4-port block:
3rd order Delta-Sigma modulator

[S] [Q][F]
4x4

4-port block:
Comparator

[S] [Q][F]
4x4 4x3 4x1

4x78 4x10

Figure 10.12: Structural patterns in third order single-loop ∆Σ ADC [39]. Reprinted from
H. Zhang, S. Doboli, H. Tang, A. Doboli, Compiled Code Simulation of Analog and Mixed-
Signal Systems using Piecewise Linear Modeling of Nonlinear Parameters, Integration the VLSI
Journal, Elsevier, 40 (2007), pp. 193–208, with permission from Elsevier.

A Symbolic Composition Rule (SCR) is the set of symbolic expressions for all the F c, Sc, and
Qc matrix elements that characterize a given structural pattern. SCRs relate the symbolic func-
tional, state, and offset matrices of composed blocks to the symbolic matrices of their composing
blocks. As explained, SCRs are found by setting up the nodal equations for the blocks in the
structural pattern, and eliminating the unknown voltages and currents at the internal wires of
the connected ports.

C. Compiled-code simulation methodology. Figure 10.9(b) shows the proposed compiled-
code simulation methodology. The first step identifies the structural patterns (substructures) that
connect the building blocks in the system architecture (netlist). Several structural patterns can
usually be identified for complex systems, and Figure 10.12 shows the structural patterns in the
third -order single-loop ∆Σ ADC. The 3-integrator chain macromodel is obtained by composition
of the three structurally identical macromodels for OTA active-C integrators.

The next step computes the symbolic expressions for the SCR of each structural pattern.
Next, the parameters in the symbolic expressions are linked to the building block macromodel
parameters. Finally, optimized code is generated for customized simulation. Code is generated for
each unit in the system architecture, for example basic blocks, structural patterns, and composed
blocks. The code for a unit is a sequence of assignment statements that numerically calculate

10.3 Challenges in Mixed-Signal Design Automation 431

the elements in the F , S, and Q matrices of the unit. Code generation carefully identifies any
redundant subexpressions. For example, for the OTA macromodel, subexpression h + CdRd was
identified as common to all matrix elements. Hence, the subexpression was named as a new
variable, and its value reused, in all instances.

The simulation algorithm implements a simulation loop for the entire time range to be sim-
ulated. The time increment is h, the parameter also used in the BEI formula. At each instance
in time, the algorithm calculates only a subset of all voltages and currents in the system netlist,
including output signals, state variables, and across voltages and by currents of nonlinear de-
vices. For nonlinear devices, the simulation algorithm also identifies the correct linearized region.
The identification step calculates the voltages and currents for nonlinear devices assuming that
the linearized regions at the current instance remain the same as for the previous time. If the
assumption is false, then the algorithm recalculates the voltages and currents of the nonlinear
devices after switching these to the closest linearized regions. The identification step ends when
the closest feasible regions are found.

Figure 10.13 presents the pseudocode of the C++ main program for a simulator, customized
for a given system netlist. The program includes local variables defined for all internal nodes
of the system. Each variable includes a voltage and a current component. Then, objects are
instantiated for each block of the system depending on the kind of the block. These classes
embed the structural model of the circuit and the symbolic composition rules (SCR) to compute
its functional, state, and offset matrices. For example, similar objects are created for all identical
OTA circuits using the class defined for these OTAs in Figure 10.14. Similar classes exist for
OpAmps, comparators, etc. Objects are instantiated for each block composition depending on
the specific partitioning of the system architecture. For the ∆Σ ADC in Figure 10.9(a), and its
decomposition shown in Figure 10.12, all active OTA-C integrator models are obtained by using
the same composition rule of the OTA objects and the objects describing capacitors. Objects are
connected by the variables describing inputs, outputs, and nodes. Next, the system is initialized
by setting all its state variables to their initial values. Finally, the code for time domain simulation
calls the system simulation method at successive instances separated by h, the time integration
step.

Figure 10.14 presents the pseudocode for the C++ class corresponding to OTAs. Any other
circuit class has a similar structure. Protected variables correspond to the two input nodes
representing the differential inputs, the two output nodes for the differential output of the OTA,
and the arrays used to store the values for the circuit functional, state, and offset matrices. The
class methods set the numerical values of the model components, e.g., the values of capacitors,
resistors, and constant current and voltage sources, initialize the state matrix, calculate the state
and functional matrix elements, update the value of the state sub-matrix for the next instance
of time, and simulate the OTA circuit over time. Classes for SCRs have similar structures.

The methods for computing functional, state, and offset matrices and for updating the state
are optimized by sharing common sub-expressions. In the present case, the functional matrix F
of the OTA class, e.g., has elements F31 and F32 defined by the following symbolic expressions:

F31 =
8hGmGm4Gm5GmoR3R5(L4 + hR4)

(h + C3R3)(h + C5R5)
(10.12)

and

F32 =
−8hGmGm4Gm5GmoR3R5(L4 + hR4)

(h + C3R3)(h + C5R5)
(10.13)

432 Future Directions in Mixed-Signal Design Automation

struct node { double v, i; };
void main (void) {

struct node internal signals;

for all blocks in the system architecture do
create an instance of the class corresponding to the block type;

for all symbolic composition rules (SCR) in the architecture do
create an instance of the class corresponding to the SCR type;

connect all created objects to inputs, outputs, and internal signals;
set the initial state of the system;

for all blocks in the architecture do
calculate the functional, state, and offset matrices of the block;

for the time interval of interest at successive instances with time step h do

simulate the system (current time instance);

};

Figure 10.13: Structure of the C++ main program for system simulation [39]. Reprinted from
H. Zhang, S. Doboli, H. Tang, A. Doboli, Compiled Code Simulation of Analog and Mixed-Signal
Systems using Piecewise Linear Modeling of Nonlinear Parameters, Integration the VLSI Journal,
Elsevier, 40 (2007), pp. 193–208, with permission from Elsevier.

The simulation code calculates the numerical value of element F31 and then assigns its negative
value to element F32 without actually computing the expression of F32. Common expression
sharing is very efficient, especially for code that is repeatedly executed inside a loop statement,
for example the simulation loop. The method update state matrix, called at each new instance of
the simulated time range, computes sub-expressions, such as h/(h + CdRd), hGmR3/(h+C3R3),
and so on. These sub-expressions are constant, and thus represent invariants for the simulation
loop. Invariants are extracted outside the simulation loop, and executed only once before the
loop execution starts. As experiments show, loop invariant elimination is an important source
for speedingup simulation speed, especially for the methods of SCR classes.

Figure 10.15 shows the pseudocode of the system simulation algorithm. At each instance
of time, the algorithm identifies the current linearized region for the nonlinear devices. The
identification step first calculates the voltages and currents for the nonlinear devices by traversing,
bottom-up, the structure hierarchy of the system and assuming that the linearized regions at the
current instance remain the same as those at the previous time. If this assumption is false, then
the algorithm reiterates the calculation of the voltages and currents after switching to the closest
PWL region, and so on. The iteration process stops when the closest feasible PWL region is
found. The nonlinear component, linearized region checking and adjusting process, are inside
each basic module and are called before state matrices are updated. Changing the current region
of a module also results in updating of the functional and offset matrices for this module and all
composed modules that contain this module.

Experiments demonstrate the importance of circuit nonidealities, (e.g., poles, zeros, input
and output impedances etc.) on the accuracy of ADC simulation. Figure 10.16 shows the SNR
and DR plots for the ADC. The maximum SNR is 64dB and DR is 67dB. Similar values resulted
from a Spectre simulation. This confirms the correctness of the symbolic method. The figure also
shows the importance of using detailed circuit models, for example circuit models that include

10.3 Challenges in Mixed-Signal Design Automation 433

class OTA {

public:

friend class OTA ActiveC Integrator;

OTA (parameter list);

set input(input signals);

simulate();

get output();

protected:

Node in p, in n; // input ports

Node out p, out n; // output ports

double F[4][4]; // functional matrix

double S[4][15]; // state matrix

double Q[4]; // offset matrix

set initial state();

update state();

private:

calculate functional matrix();

calculate state matrix();

calculate offset matrix();

};

Figure 10.14: C++ code for OTA class [39]. Reprinted from H. Zhang, S. Doboli, H. Tang,
A. Doboli, Compiled Code Simulation of Analog and Mixed-Signal Systems using Piecewise Lin-
ear Modeling of Nonlinear Parameters, Integration the VLSI Journal, Elsevier, 40 (2007), pp.
193–208, with permission from Elsevier.

void simulate the system (current time instance) {
while current linearized segments are not correct do

for all blocks following the bottom-up structure of the architecture do
calculate the port signals of the blocks;

for all blocks in the architecture do
find the corresponding linearized segments and check if they are correct;
if the guessed linearized segments are not correct then update the segments;

for all blocks following the bottom-up structure of the architecture do

update the functional, state, and offset matrices;

};

Figure 10.15: Pseudocode of the system simulation method [39]. Reprinted from H. Zhang,
S. Doboli, H. Tang, A. Doboli, Compiled Code Simulation of Analog and Mixed-Signal Systems
using Piecewise Linear Modeling of Nonlinear Parameters, Integration the VLSI Journal, Elsevier,
40 (2007), pp. 193–208, with permission from Elsevier.

poles and zeros, rather than ideal models. In the right-hand side of Figure 10.16, the three plots
with dotted lines correspond to simulations, which used circuit macromodels with one pole and
two poles. In the first two cases, the system still worked as an ADC, but the SNR was reduced
by ≈ 5 dB and 13 dB, and the DR by ≈ 4 dB and 12 dB, respectively, due to the poles. In
the third case, the poles prevented the system from functioning correctly. This example confirms
that using detailed circuit models is compulsory.

434 Future Directions in Mixed-Signal Design Automation

-100

-80

-60

-40

-20

0

20

40

60

0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07

"fft_output_test.txt"

–40

–30

–20

–10

0

10

20

30

40

50

60

70

–80 –70 –60 –50 –40 –30 –20 –10 0

Ideal
2TPoles(1/2.89e-6, 1/1.0e-8)
2TPoles(1/2.89e-6, 1/1.4e-8)

Figure 10.16: SNR and DR plots for ∆Σ ADC [39]. Reprinted from H. Zhang, S. Doboli, H. Tang,
A. Doboli, Compiled Code Simulation of Analog and Mixed-Signal Systems using Piecewise Linear
Modeling of Nonlinear Parameters, Integration the VLSI Journal, Elsevier, 40 (2007), pp. 193–
208, with permission from Elsevier.

10.3 Challenges in Mixed-Signal Design Automation 435

procedure mapping (signal-flow, cur block, OpAmp nr) is

for ∀ sub-graph ∈ signal-flow that has cur block as its output block and can be

mapped to a library component; in decreasing order of the number of blocks in sub-graph do

if sharing is possible and library component for sub-graph exists in netlist then

make the required connections for sub-graph in netlist;

if signal-flow was completely mapped then

call GA for constraint transformation & component synthesis, and save solution if best so far;

else

signal = select an input signal of sub-graph;

mapping (signal-flow, block ∈ signal-flow with output signal, OpAmp nr);

end if

end if

if (OpAmp nr + nr of OpAmps for sub-graph) * MinArea < current best then

allocate hardware component for the mapping of sub-graph, and add it to netlist;

if signal-flow was completely mapped then

call GA for constraint transformation & component synthesis, and save solution if best so far;

else

signal = select an input signal of sub-graph;

mapping (signal-flow, block ∈ signal-flow with output signal, OpAmp nr + nr of OpAmps for sub-graph);

end if

end if

end for

end procedure

Figure 10.17: Algorithm for architecture generation, A. Doboli, N. Dhanwada, A. Nunez-Aldana,
R. Vemuri, A Two-Layer Library-based Approach to Synthesis of Analog Systems from VHDL-
AMS Specifications, ACM Transactions on Design Automation, 9(22), pp. 238–271, April 2004,
c© 2010 ACM, Inc. reprinted here by permission.

10.3.3 High-Level Synthesis of Analog Subsystems

This4 subsection focuses only on architecture generation, and does not discuss other related steps
such as constraint transformation [12] and system parameter optimization [11, 12, 34]. A modern
way of synthesizing ∆Σ modulator topologies is discussed in [33].

Architecture generation produces multiple mappings of an SFG to netlists of library compo-
nents. It is difficult to predict what the best implementation architecture might be for a system,
given the large diversity of possible performance requirements. The performance of an archi-
tecture is evaluated only after distributing the system-level constraints to the components, and
instantiating the topologies and sizing the transistors of the OpAmps in the netlist. Although
the problem of architecture generation is NP-hard, it can be addressed, for small netlists, by a
branch-and-bound algorithm [18]. The SFG representations for many applications (e.g., signal

4This subsection is based on the paper A. Doboli, N. Dhanwada, A. Nunez-Aldana, R. Vemuri, A Two-Layer
Library-based approach to synthesis of analog systems from VHDL-AMS specifications, ACM Transactions on
Design Automation, 9, (2), 238–271, April 2004, c© 2010 ACM, Inc. reprinted by permission.

436 Future Directions in Mixed-Signal Design Automation

conditioning systems) filters and ADC, are small, so that it is practical to search for all corre-
sponding mappings.

Figure 10.17 shows the architecture generation algorithm. It maps the SFG structure, denoted
by variable signal-flow, onto the netlist indicated by variable netlist. Variable OpAmp nr repre-
sents the number of OpAmps in a partial mapping solution. This variable is equal to the number
of programmable analog blocks used, for architectures similar to that of PSoC.

To minimize the area, or equivalently, the number of programmable analog blocks, of the
implementation, architecture generation attempts two hardware sharing possibilities between
blocks in different signal paths, and between blocks of the same signal path. Blocks in distinct
SFG paths can share the same library component if they have identical inputs and perform the
same operation. A set of blocks of the same SFG path can share a component if the component
implements the functionality of the entire set. The algorithm analyzes all possible mappings,
because the two sharing options might conflict with each other.

The following three elements are specific to architecture generation.

• The branching rule (line 2 of the code), describes how distinct mapping solutions are pro-
duced for a partial solution. It lists all of the SFG block structures, pointed to by the
variable sub-graph, that have cur block as their output block, and that can be mapped
to library components. The branching rule contemplates two kinds of SFG transforma-
tions. Functional transformations replace a particular block structure with a distinct, but
semantically equivalent structure. For example, for improving bandwidth, an OpAmp is
replaced by a chain of two OpAmps with lower gains, or two noninverting amplifiers are
substituted by two inverting amplifiers. These structural changes permit improved gain-
bandwidth tradeoff explorations during constraint transformation. Transformations per-
taining to circuit interfacing introduce additional circuits, for example follower circuits, or
various input/output stages for reducing the loading/coupling effects between connected
components.

• The bounding rule (line 13 of the code) eliminates a partial solution if it finds that its
minimum possible area is greater than the area of the best solution found thus far (variable
current best). The minimum area for a partial mapping is estimated using value MinArea,
the area of an OpAmp with transistors sized to the minimum dimensions. This rule is
important for eliminating architectures with an unreasonably large number of OpAmps.
Such architectures could result from repeatedly replacing singular blocks with chains of
OpAmps, or using multiple OpAmp-based components as the basis for a single block. For
example, an adder block could be mapped to a summing amplifier with additional gain
stages for each of the inputs. Even though these architectures provide the necessary signal
flow and processing, they do not have any potential for significant performance improve-
ments, and their parameters are hard to optimize, given the large number of parameters.

• The sequencing rule, a heuristic, decides the order of traversing the branching alternatives.
A good sequencing rule can dramatically improve the speed of the algorithm. The bounding
rule becomes efficient if a high-quality solution is found early. The proposed sequencing
rule first considers branching alternatives, which map a higher number of blocks to one
library component. Also, the algorithm analyzes the case in which blocks of SFG sub-graph
share the existing components in the partial netlist, and then try mapping the sub-graph to
dedicated components. The two strategies help finding an architecture with fewer OpAmps,
early.

10.3 Challenges in Mixed-Signal Design Automation 437

Figure 10.18(a) shows an SFG and a fragment of the decision tree for its mapping to library
circuits. Each node in the decision tree relates to a partial solution and a specific value for
variable cur block. Arcs are annotated by the corresponding mapping decisions. The number of
OpAmps used is indicated for each complete mapping of the SFG. The algorithm uses a library
of patterns, which relate SFG structures to library circuits. A block structure, referred to as
comp1, and its corresponding library circuit are shown in Figure 10.18(b). This example uses
similar patterns for the block that multiplies an input voltage by a constant and is mapped to
a gain stage denoted as comp2, and the block that adds two input voltages and is mapped to
a summing amplifier named comp3. The algorithm first attempts to map the output summing
block 1 of the SFG to component comp3 (summing amplifier), followed by mapping blocks 2, 3,
and 4 to a second summing amplifier, and block 5 to a gain stage. The resulting architecture uses
3 OpAmps. A distinct solution shown in the decision tree is generated by mapping block 2 alone
to a summing amplifier, followed by mapping blocks 3, 4, and 5 to three different gain stages.
The resulting architecture has 5 OpAmps. The branching rule also introduces an additional block

* ci

* cj

+ out
-- voltage

-- voltage
in1

-- voltage
in2

block2 block2

block1

block3block5

block4

block5

1+

....

....

....

....

=>

b)

a)

map on comp3

map on comp1

map on comp2map on comp2

map on comp2

map on comp2

map on comp1

for +, and map
introduce block

on comp3

Decision treeSignal-flow graph

+ 2

4

5

*c2

*c3

i2

i3

o -- voltage

3
*c1

i1
-- voltage -- voltage

* c

block for optim.
additional

–

+

R1

R2

R4

R3

out

in1

in2

2 op amps

5 op amps

3 op amps

Figure 10.18: Example for architecture generation with branch-and-bound, A. Doboli,
N. Dhanwada, A. Nunez-Aldana, R. Vemuri, A Two-Layer Library-based Approach to Synthesis
of Analog Systems from VHDL-AMS Specifications, ACM Transactions on Design Automation,
9(22), pp. 238–271, April 2004, c© 2010 ACM, Inc. reprinted here by permission.

438 Future Directions in Mixed-Signal Design Automation

into the SFG, shown as a dashed box. This results in an architecture with two OpAmps. Blocks
1 and 5 are mapped to one summing amplifier, followed by mapping blocks 2, 3, and 4 to a second
summing amplifier.

This brings to an end the discussions in this textbook that were designed to introduce the
reader to some of the many facets of embedded, mixed-signal, system design. Although the
presentation is by no means comprehensive, the authors hope that by now the reader is sufficiently
motivated to continue her or his quest to master more and more complex embedded mixed-signal
systems.

Bibliography

[1] IEEE Standard VHDL Language Reference Manual (Integrated with VHDL-AMS
Changes), IEEE Std. 1076.1.

[2] PSoC Express, Version 2.0, Cypress Semiconductor, 2006.

[3] PSoC Mixed Signal Array, Technical Reference Manual, Document No. PSoC TRM
1.21, Cypress Semiconductor Corporation, 2005.

[4] IEEE Transactions on CADICS, Special Issue on Behavioral Modeling and Simu-
lation of Mixed-Signal/Mixed-Technology Circuits and Systems, 22, (2), February
2003.

[5] B. Antao, A. Brodersen, ARCHGEN: Automated synthesis of analog systems, IEEE
Transactions on Very Large Scale Systems, 3, pp. 231–244, June 1995.

[6] O. Bajdechi, G. Gielen, J. Huijsing, “Systematic Design Exploration of Delta-Sigma
ADCs”, IEEE Transactions on Circuits & Systems - Part I, 51, (1), pp. 86–95,
January 2004.

[7] D. Chai, K. N. Ngan, Locating facial region of a head-and-shoulders color image,
Proceedings of the Third International Conference on Automatic Face and Gesture
Recognition, pp. 124–129, 1998.

[8] E. Christen, K. Bakalar, VHDL-AMS - A hardware description language for analog
and mixed-signal spplications, IEEE Transactions on Circuits and Systems - Part II,
46, pp. 1263–1272, October 1999.

[9] J. Cohn, D. Garrod, R. Rutenbar, L. Carley, KOAN/ANAGRAM II: New tools
for device-level analog placement and routing”, Journal of Solid-State Circuits, 26,
pp. 330–342, March 1991.

[10] G. De Micheli, Synthesis and Optimization of Digital Circuits, New York: McGraw-
Hill, 1994.

[11] A. Doboli, R. Vemuri, Behavioral modeling for high-level synthesis of analog and
mixed-signal systems from VHDL-AMS, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 22, (11), pp. 1504–1520, November 2003.

[12] A. Doboli, N. Dhanwada, A. Nunez-Aldana, R. Vemuri, A two-layer library-based
approach to synthesis of analog systems from VHDL-AMS specifications, ACM
Transactions on Design Automation, 9, (2), pp. 238–271, April 2004.

440 BIBLIOGRAPHY

[13] K. Francken, G. Gielen, A high-level simulation and synthesis environment for delta-
sigma modulators, IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 22, (8), pp. 1049–1061, August 2003.

[14] G. Gielen, R. Rutenbar, Computer-aided design of analog and mixed-signal inte-
grated circuits, Proceedings of the IEEE, 88, pp. 1824–1854, December 2000.

[15] G. J. Gomez et al., “A Nonlinear Macromodel for CMOS OTAs”, Proceedings of
International Symposium on Circuits and Systems (ISCAS), pp. 920–923, 1995.

[16] T. Grotker, S. Liao, G. Martin, S. Swan, System Design with SystemC, Boston:
Kluwer, 2002.

[17] M. Hershenson, S. Boyd, T. H. Lee, Optimal design of a CMOS op-amp via geometric
programming, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 20, (1), pp. 1–21, January 2001.

[18] E. Horowitz, S. Sahni, Fundamentals of Computer Algorithms, New York: Computer
Science Press, 1985.

[19] B. J. Hosticka, W. Brockherde, R. Klinke, R. Kokozinski, Design methodologies for
analog monolithic circuits, IEEE Transactions on Circuits & Systems - Part I, 41,
pp. 387–394, May 1994.

[20] X. Huang et al., Modeling nonlinear dynamics in analog circuits via root localization,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
22, (7) pp. 895–907, 2003.

[21] V. Kremin, DTMF Detector, Application Note, AN 2122, Revision A, Cypress Semi-
conductor Corporation, August 3 2004.

[22] W. Kruiskamp, D. Leenaerts, DARWIN: CMOS opamp synthesis by means of genetic
algorithm, Proceedings of the Design Automation Conference, 1995, pp. 433–438.

[23] F. Leyn et al., Analog small-signal modeling. behavioral signal-path modeling for
analog integrated circuits, IEEE Transactions on Circuits & Systems - Part II, 48,
(7), pp. 701–711, 2001.

[24] F. Medeiro, A. Perez-Verdu, A. Rodriguez-Vazquez, Top-down design of high-
performance sigma-delta modulators, Boston: Kluwer, 1999.

[25] A. Moscovici, High Speed A/D Converters - Understanding Data Converters through
SPICE, Boston: Kluwer, 1999.

[26] F. Pecheux, C. Lallement, A. Vachoux, VHDL-AMS and Verilog-AMS as alternative
hardware description languages for efficient modeling of multidiscipline systems,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
24, (2), pp. 204–225, February 2005.

[27] R. Phelps, M. Krasnicki, R. Rutenbar, L. Carley, J. Hellums, Anaconda: simulation-
based synthesis of analog circuits via stochastic pattern search, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 19, pp. 703-717, June
2000.

BIBLIOGRAPHY 441

[28] B. N. Ray, P. P. Chaudhuri, P. K. Nandi, Efficient synthesis of OTA network for
linear analog functions, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 21, pp. 517–533, May 2002.

[29] E. Sanchez-Sinencio, J. Ramirez-Angulo, AROMA: An area optimized CAD pro-
gram for cascade SC filter design, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, CAS-14, pp. 296–303, 1985.

[30] B. Schneier, Applied Cryptography, Hoboken, NJ: John Wiley, 1996.

[31] D. Seguine, Capacitive Switch Scan, Application Note AN2233a, Revision B, Cypress
Semiconductor Corporation, April 14 2005.

[32] R. Sommer, I. Rugen-Herzig, E. Hennig, U. Gatti, P. Malcovati, F. Maloberti,
K. Einwich, C. Clauss, P. Schwarz, G. Noessing, From system specification to lay-
out: Seamless top-down design methods for analog and mixed-signal applications,
Proceedings of the Design, Automation and Test in Europe Conference (DATE),
2002.

[33] H. Tang, A. Doboli, High-level synthesis of delta-sigma modulators optimized for
complexity, sensitivity and power consumption, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 25, (3), pp. 597–603, March 2006.

[34] H. Tang, H. Zhang, A. Doboli, Refinement based synthesis of continuous-time analog
filters through successive domain pruning, plateau search and adaptive sampling,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
25, (8), pp. 1421–1440, August 2006.

[35] G. Van Der Plas et al., AMGIE - A synthesis environment for CMOS analog inte-
grated circuits”, IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 20, pp. 1037–1058, September 2001.

[36] Y. Wei, A. Doboli, Systematic development of analog circuit structural macromodels
through behavioral model decoupling, Proceedings of Design Automation Conference
(DAC), 2005.

[37] Y. Weng, A. Doboli, Smart sensor architecture customized for image processing,
Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications
Symposium, pp. 396-403, 2004.

[38] M.-H. Yang, et al., Detecting faces in images: A Survey, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 24, (1), January 2002.

[39] H. Zhang, S. Doboli, H. Tang, A. Doboli, Compiled code simulation of analog and
mixed-signal systems using piecewise linear modeling of nonlinear parameter, Inte-
gration the VLSI Journal, New York: Elsevier, 40, (3), pp. 193–209, 2007.

[40] H. Zhang, A. Doboli, Fast Time-Fomain Simulation Through Combined Symbolic
Analysis and Piecewise Linear Modeling, in Proceedings of the 2004 IEEE Interna-
tional Behavioral Modeling and Simulation Conference, 2004, pp. 141–146.

Index

3 − dB frequency, 245
ACj , 215
CIi, 215
HD2, 249
HD3, 249
HDn, 249
∆Σ ADC, 380
∆Σ modulator, 373
∆Σ ADC, 373
∆Σ modulator, 379
1
f noise, 251

A, 79
A Register, 52
Abstract channel mapping, 214, 215
Abstract data channel, 208
ACap, 309
accessing mode, 92
Accumulator, 52
ACMP, 131
ACMux, 310
activation record, 83
activation rule, 8
active filters, 325, 328
active RC filters, 328
acyclic dataflow graphs, 6, 420
adaptive filters, 8
ADC, 66, 67
ADC [expr1], expr2, 68
ADC [expr], A, 66
ADC [X+expr1], expr2, 68
ADC [X+expr], A, 68
ADC A, [expr], 66
ADC A, [X+expr], 66
ADC A, expr, 66
ADD, 66
ADD [expr1], expr2, 68
ADD [expr], A, 68
ADD [X+expr1], expr2, 68
ADD [X+expr], A, 68
ADD A, [expr], 68

ADD A, [X+expr], 68
ADD A, expr, 68
ADD SP, expr, 68
addressing mode, 51, 53
ADFG, 420
ADFGs, 6
algorithm level, 422
algorithmic high-level, 422
Algorithmic specifications, 423
aliasing, 376
allpass filter, 355, 373
amplifier transfer function, 297
Analog bus, 282
Analog bus and programmable interconnect, 107
Analog circuit design, 21
Analog comparator signals, 133
Analog filters, 325
analog interconnect, 129
analog interfaces, 5
Analog IO’s, 127
Analog programmable interconnect, 138
Analog signal sensing, 374
Analog signal sensing subsystem, 106
Analog subsystem, 13
Analog-to-digital converters, 373
AND instructions, 75
AO, 220, 234
API routines, 388
AR, 83
arbitration, 215
architecture customization, 415
ARefMux, 303, 310
arithmetic operations, 56
arithmetic operations table, 66
Arithmetic shift left instructions, 72
Arithmetic shift right, 72
ASCxxCR0, 307
ASCxxCR1, 307
ASCxxCR2, 307
ASCxxCR3, 307

A. Doboli, E.H. Currie, Introduction to Mixed-Signal, Embedded Design,
DOI 10.1007/978-1-4419-7446-4, c© Springer Science+Business Media, LLC 2011

444 INDEX

ASDxxCR, 392
ASDxxCR3, 392
ASL, 72
ASR, 72
assembly code description, 158
asynchronous, 212
auto-zeroing, 289
autozero adjustment, 295
AUX, 133
auxiliary output, 220, 234

B-bit quantizer, 378
Band Reject, 333
Bandpass, 333
Bandpass Filter, 333
bandpass modulators, 381
Bandreject, 333
Bandstop, 334
Basic building block modeling, 256
baud rate, 212
BCap, 311
Bennett’s condition, 378
Bessel, 334
bit rate, 212
Bit-Bang interface, 183
bits Function, 220
bitvector, 73
bitwise OR instruction, 75
bitwise OR, 75
Block composition, 428
BLOCKID, 93
blocking send, 209
BMuxSC, 311
Bode plot, 334
Boot program, 110
break frequencies, 343
Broadcast signals, 132
buffers, 215
Buses GIO and GIE, 129
BYP, 126
Bypass, 142

C block, 307
Calibrate0, 96
Calibrate1, 96
CALL instruction, 81
capacitor array, 309
capture functions, 176
carry flag, 65
Cascading analog filters, 340

CCap, 311
CF, 66
CF flag, 59, 68
Chaining signals, 134
channel charge injection, 289, 291
channel implementation unit, 213
Channel implementation unit allocation, 214,

215
channel implementation units, 207
channel length modulation, 293
char, 82
charge transfer phase, 295
Chebychev, 336
CheckSum, 93
circuit layer, 153
Circuit modeling, 22
Circuit partitioning, 255
CIU, 213
CIU allocation, 215
CIUs, 207
CLK32k, 146
CLOCK, 94, 95
clock cycles, 53
Clock feedthrough, 294
clock feedthrough, 289, 291
clock jitter, 143, 410
Clock phase, 223
clocking units, 14
Clocks, 220, 388
CMP instructions, 72
CMRR, 249
common-mode input impedance, 247
Common-Mode Rejection Ratio , 249
communication bandwidth, 212
communication delay, 212
Comparator, 277
comparator, 275
Comparator bus, 282
compare function, 179
compare functions, 176
compiled-code simulation, 425, 430
Component level, 422
composed blocks, 429
concept level, 422
concept-level specifications, 422
ConfigureCommunication, 210
constraint transformation, 11, 42
context-switching, 113
continuous output, 248

INDEX 445

continuous-time, 24
Continuous-time systems, 8
control bits, 53
Control dominated systems, 6
control logic, 215
Control registers, 276
control registers, 307
control signals, 53
controllers, 2
convolution, 377
coprocessors, 3
corner frequency, 252
counter block, 182
coupled circuit macromodels, 256
CPL instruction, 75
CPU, 12
CPU Flags register, 53
CPU F, 53
CPU F Register , 52
CPUCLK, 144
crossing links, 282
Crystal Filters, 328
CUR PP, 53, 56
current page pointer, 53
customized coprocessors, 3

DAE, 423
Data accuracy, 10
data availability flag, 392
data communication delay, 128
data dominated, 156
Data dominated systems, 6
Data flow, 4
Data Register 0, 177
Data Register 1, 177
data transfer, 56
data vector, 60
DB, 129
DBBxxCR0, 392
DBBxxDR1, 392
deadband, 183
DEC, 70
decibel, 339
Decimator, 387
decimator, 373
Declarative specifications, 423
decrement instructions, 70
DELAY, 94
delay equalizers, 355
DELSIG8 cGetData, 392

DELSIG8 cGetDataClearFlag, 392
DELSIG8 ClearFlag, 392
DELSIG8 fIsDataAvailable, 392
DELSIG8 SetPower, 392
DELSIG8 Start, 392
DELSIG8 StartAD, 392
DELSIG8 Stop, 392
DELSIG8 StopAD, 392
Delta Sigma modulator, 424
design and performance constraints, 42
Design constraints, 212
Design of the individual modules, 21
destination indexed addressing, 52
destination-direct addressing, 54, 55
Developing channel implementation units, 215
difference amplifier, 272
different addressing modes, 53
Differential Algebraic Equations, 423
differential mode, 427
Digital circuit design, 21
Digital filters, 325
digital Filters, 357
digital filters, 330
digital interfaces, 6
Digital IOs, 126
Digital subsystem, 14
discontinuous output, 248
Discrete-time systems, 8
discrete-time systems, 110
discretization, 378
Distortion, 247
DM, 427
down-sampling, 380
downconversion, 373, 387
DR, 381, 382
DR0, 177
DR1, 177
dynamic hardware configuration, 53
dynamic hardware reconfiguration, 106
Dynamic range, 381, 382

Elmore delay, 129
Embedded application algorithms, 110
Enable/disable compare interrupts, 181
enabling and disabling interrupts, 109
Enabling/disabling interrupts, 228
ENSWINT, 115
equivalent resistance, 291
EraseBlock, 94
Event-driven systems, 8

446 INDEX

exceptions, 109
exclusive OR, 56, 75
execution flow control, 56
execution scheduling, 155
expr, 66
external crystal oscillator, 146
External Reset, 85

face detection, 417
face detection algorithm, 415, 420
factory upgrade, 92
faster memory access, 53
fewer clock cycles, 53
field upgrade, 92
finite gain, 245, 373
Finite State Machine, 85
finite state machine, 6, 304
Firmware routine pointers table, 218
Firmware routines, 112
First Order ∆Σ Modulator, 383
first-order ∆Σ ADC, 373
first-order modulators, 380
fixed gain amplifier, 295
flash memory, 52
Flexibility, 11
follower, 295
FSM, 6, 85
full protection mode, 92
full-duplex, 213
function call, 82
Function Send, 209
Functional partitioning, 157
functional partitioning, 20, 34

Gain, 244
gain at frequency zero, 245
GDI, 129
General input/output ports, 109
Generating actuation signals, 104
GIE, 52
global accuracy constraint, 11
global analog bus, 107
Global clock, 212
global constraints, 42
Global data bus, 129
global data bus, 129
global digital interconnect, 129
Global digital interconnect bus, 129
Global Interrupt Enable, 52
Global IO’s, 127

Global Output Odd, 130
globally enabled, 114
glue, 215
GOO, 130
Grounding of biasing voltages, 254

half-duplex, 213
HALT, 85
HALT instruction, 85
hard constraints, 9
hard distortions, 248
hardware resource allocation, 154, 164
Hardware-software partitioning, 163
hardware-software partitioning, 21
Harvard architecture, 51
Hendrik Wade Bode, 334
high impedance mode, 125
High precision IMO, 143
high-level firmware (API) layer, 153
High-level firmware routines, 112
High-level primitives, 209
High-level specification, 422
high-level synthesis, 422
Highpass, 333
highpass filter, 373
horizontal links, 282

I2C interfaces, 125
ID, 52
IDEA algorithm, 416
ideal inverting amplifier, 263
ideal linear phase filter, 337
IDEA encryption, 415
ILO, 143
IMO, 143
Impact of integrator leakage, 400
Impact of jitter noise, 394
Impact of noise, 267
Impact of offset voltage, 268
Impact of OpAmp noise, 398
Impact of OpAmp poles, 265, 273
Impact of OpAmp saturation, 403
Impact of OpAmp slew rate, 401
Impact of switch thermal noise, 396
implementation domain selection, 34
in-band noise power, 394, 396
INC, 70
INC instructions, 70
INDEX instructions, 66
Index Register, 52

INDEX 447

inductor-based filters, 332
infinite impulse response, 362
Input and output ports, 14
input channel, 110
Input impedance, 247
input offset error, 295
input part of the global analog bus, 139
input-referred noise, 253
instruction clock cycles, 65
Instruction for comparison, 72
Instruction for incrementing and decrementing,

70
Instruction for shifting and rotation, 72
Instruction for subtraction, 68
instruction opcodes, 65
instruction semantics, 65
instruction set, 51
instructions, 53
Instructions for arithmetic operations, 66
Instructions for data transfer, 56
instructions for flow control, 80
Instrumentation amplifiers, 269
INT MSKx, 114, 392
integrator, 272
integrator leakage, 410
interconnect buses, 14
interconnection structure, 425
internal low speed oscillator, 143
internal main oscillator, 143
internal oscillator, 146
internal registers, 51, 52
Interrupt Clear Registers, 115
Interrupt controllers, 14
Interrupt Mask Registers, 114
Interrupt Service Routines, 82, 112
Interrupt subsystem, 109
interrupt system, 53
Interrupt Table, 114
Interrupt table, 109
Interrupt Vector Clear, 116
Interrupts, 223
IO Bank Select, 52
IRAMDIS, 93
IsEmpty, 209
IsOverrun, 210
ISRs, 82
IST, 425

JACC, 80
JACC expr, 80

JC, 80
JC expr, 80
JMP, 80
JMP expr, 81
JNC, 80
JNC expr, 81
JNZ, 80
JNZ expr, 81
Jump Instructions, 80
JZ, 80
JZ expr, 81

KEY1, 94
KEY2, 94
KILL signal, 183

latency constraint, 9
LCALL instruction, 81
linear mode, 292
linear operation mode, 293
linear operational amplifier, 244
Linear Time Invariant System, 362
LJMP, 80
LJMP expr, 81
local constraints, 42
Local programmable interconnect, 107, 138
lock time, 144
logical operations, 56
loosely coupled, 12
Low power and low energy consumption, 10
low-level firmware layer, 153
Low-level firmware routines, 112
lowpass ∆Σ modulators, 381
lowpass filter, 333
lowpass modulators, 381
LTIS, 362

M8C instruction set, 56, 57, 161
M8C microcontroller, 51
macro level, 422
macromodel, 254
Main timer function, 177
mapping(binding), 154
Matrix of configurable analog blocks, 106
maximally flat response, 336
mean square value, 250
Mechanical filters, 328
memory read, 53
Memory Space, 91
Memory subsystem, 107

448 INDEX

Memory system, 13
memory write, 53
Microcontroller Addressing Modes, 53
Microcontroller Architecture, 51
MiniProg, 40
MiniProg programmer, 43
mixed-signal design automation, 421, 424
mixed-signal system simulation, 425
Mode 4, 223
Modeling of clipping, 261
Modeling of common-mode rejection ratio, 261
Modeling of harmonic distortion, 261
Modeling of power-supply rejection ratio, 261
modeling procedure, 19
Moderate precision IMO, 143
Mode 0, 223
Mode 1, 223
Mode 3, 223
modulator quantizer, 380
MOSFET, 297
MOSFET transistor models, 255
MOV, 56, 57, 161
MOV [expr1], expr2, 58
MOV [expr], A, 58
MOV [expr], X, 58
MOV [X+expr1], expr2, 58
MOV [X+expr], A, 58
MOV A, [expr], 58
MOV A, [X+expr], 58
MOV A, expr, 58
MOV A, reg[expr], 58
MOV A, X, 58
MOV REG[expr1], expr2, 58
MOV REG[expr], A, 58
MOV REG[X+expr1], expr2, 58
MOV REG[X+expr], A, 58
MOV X, 58
MOV X, [X+expr], 58
MOV X, A, 58
MOV X, expr:, 58
MOV X,SP, 58
MR, 53
Multi-mode systems, 7
multiple abstract channels, 215
MVI, 56
MVI [expr], A, 59
MVI A, [expr], 59
MVI instruction, 56
MVI instructions, 59

MVR PP, 56, 59
MVW PP, 56
MW, 53

N-port representation, 429
Networks of embedded systems, 3
NewValueReceived, 210
NewValueSent, 209
NMUX connections, 138
Noise, 250
Noise level, 213
Noise modeling, 260
Noise power density, 251
noise transfer function, 373, 381
noise-shaping, 373, 379–381
nonblocking receive, 209
nonblocking send, 209
noninverting amplifier, 270
Nonlinear distortion, 248
Nonvolatile memory space, 52
nonzero resistance, 297
nonzero resistance, 291
nonzero switch resistance, 289
NOP instruction, 85
NTF, 373, 381
Number of physical links, 212
Nyquist frequency, 373, 375, 380, 409
Nyquist sampling theorem, 375, 409

Offset voltage, 249
On Chip Emulation Unit, 16
on resistance, 297
OpAmp, 277
OpAmp finite gain, 289
OpAmp noise, 373, 410
OpAmp power mode, 308
open drain, drives low mode, 125
operand value, 53
Operation binding, 170
Operation binding/scheduling, 168
Operation scheduling, 170
oscillator control register, 145
OSR, 380
output channels, 110
Output impedance, 244, 247
Output saturation, 250
Overrun, 221
Oversampling, 373, 380
oversampling, 379
oversampling ratio, 380

INDEX 449

Page Mode, 52
parallel protocols, 213
Passband, 333
passive analog filters, 332
Passive Filters, 327
PC, 52
PC register, 52
pending, 114
Performance attributes, 423
performance estimation, 424
performance evaluation mechanism, 19
Performance metrics, 212
performance-critical, 201
performance-criticality, 157
Phase Locked Loop, 144
phase-shift filters, 355
Philips PNX 1300, 3
PICmicro, 44
PLL, 144
PMUX connections, 138
PO, 234
Pogoed, 52
pointer, 53, 56
pointer address, 56
Pole and zero modeling, 258
Poles and zeros, 245
POP A, 63
POP and PUSH instruction set, 63
POP and PUSH instructions, 63
POP instruction, 63
POP X, 63
posted, 114
Power mode, 283
Power spectral density, 251
power spectral density, 379, 383
Power supply, 14
Power Supply Rejection Ratio, 250
predefined routines, 83
primary output, 234
Priority encoder, 109, 114
processing and control algorithms, 104
profiling, 152, 416
Program Counter, 52
programmable capacitor arrays, 308
Programmable outputs, 282
PRTxDM0, 125
PRTxDM1, 125
PRTxDM2, 125
PSD, 251

PSoC architecture, 12
PSoC resources, 53
PSRR, 250
pulse width modulation, 184
PUSH A, 63
PUSH instruction, 63
PWM, 184
PWM bReadCounter, 185
PWM bReadPulseWidth, 185
PWM Start, 184
PWM Stop, 185, 186
PWM WritePeriod, 185, 187
PWM WritePulseWidth, 185, 186
PWR, 142, 308

quantization, 374, 378
quantization bits, 379
quantization error, 378
quantization noise, 378
quantization noise power, 379, 383
quantizer block, 378
quantizer model, 381
quantizer modeling, 379

RBotMux, 138
RDI, 131
RDI IS, 135
RDI LT, 135
RDI RI, 135
RDI RO, 135
RDI SYN, 135
reactive systems, 110
Read compare value, 179
ReadBlock, 94
Real OpAmps, 244
Real-time constraints, 9
Receive, 209
receive register, 221
reconfigurable, 280
reconfigurable blocks, 53
referential transparency, 423
Register GDI E IN, 130
Register GDI E OU, 131
Register GDI O IN, 130
Register GDI O OU, 131
Register RDI RI, 135
Register space, 53
register space, 53, 106
registers, 53
Registers RDI LT, 137

450 INDEX

resistive pull down mode, 124
resistive pull up, 125
resistor matrix, 277
resource-constrained, 12
RET, 82
RET instructions, 82
RETI, 82
RETI instructions, 82
RI, 133
RI interconnect, 132
RLC, 72
RLC Filters, 328
RMS, 250
RO, 134
RO interconnect, 132
Robustness, 10
ROM Space, 92
ROMX, 94
ROMX instructions, 65
Root mean square value, 250
Rotate left through Carry, 72
Row digital interconnect, 131
RRC, 72
RX, 221
RX input, 234
RX Reg Full, 221

safe POP, 64
safe PUSH, 64
Safety, 10
Sallen–Key, 349
sampled system, 25
sampling, 374
Sampling and Quantization, 374
sampling frequency, 375, 380
SAR, 322
saturation, 292, 373
SBB, 68
SBB [expr1], expr2, 70
SBB [expr], A, 70
SBB [X+expr1], expr2, 70
SBB [X+expr], A, 70
SBB A, [expr], 68
SBB A, [X+expr], 70
SBB A, expr, 68
SBB and SUB instructions, 68
scheduling, 215
Schmitt triggers, 275
SCLK, 219, 220, 223
SCR, 430

SC amplifiers, 289
second-order ∆Σ modulator, 405
second-order harmonic distortion, 249
second-order modulators, 380
selectable gain polarity amplifier, 309
semantics of ADC and ADD, 66
semantics of SBB and SUB, 68
Sending/Receiving data, 227
Sending\receiving data, 235
Sensing of analog signals, 104
Sensing/communication of digital data, 104
sequence detector, 85
Serial protocols, 213
Serial transmission and reception, 221
SFG, 423
shift and rotate instructions, 72
short time-to-market, 8
signal attributes, 423
signal flow graphs, 423
signal processing flow, 24
signal quantization, 379
signal transfer function, 373, 381
signal-to-noise ratio, 12, 253, 381
simplex, 213
simulation models, 373
sinc, 388
sinc function, 377
single-bit quantizer, 382
single-pole model, 266
single-pole OpAmp, 246
Slave Select, 224
slew rate, 250, 373, 410
slow strong drive, 125
small size and weight, 8
SNR, 253, 381
Software characterization, 22
Software development, 21
source indirect post-increment addressing, 56
source-direct addressing, 55
Source-direct destination-direct addressing, 54
source-immediate addressing, 54, 55
source-indexed addressing, 52
source-indexed and destination-indexed address-

ing, 55
SP, 52
specialized interfaces, 2
specification languages, 422
SPI Complete, 221
SPI master, 219

INDEX 451

SPI slave, 219
SPIM, 219
SPIM communication, 228
SPIM bReadStatus, 228
SPIM SendTxData, 227
SPIM Start, 226
SPIM Stop(SPIS Stop), 226
SPIS, 219
SPIS communication, 229
SPIS bReadStatus, 228
SPIS DisableSS, 228
SPIS EnableSS, 228
SPIS SendTxData, 227
SR, 223, 250
SRAM, 52, 53
SRAM page selection, 64
SRAM space, 53, 91
SROM functions, 94
SS, 219, 224
SSC, 83
SSC instruction, 92
SSCs, 82, 83
stack, 52
stack description, 79
stack operations, 63
stack pointer, 52
stack-based operations, 79
Starting/stopping the SPI module, 226
Starting/stopping the UART, 234
static hardware reconfiguration, 106
STD PP, 64
STF, 373, 381
stop band amplitude characteristics, 334
structural macromodel, 427
structural pattern, 429
SUB, 68
SUB [expr1], expr2, 70
SUB [expr], A, 70
SUB [X+expr1], expr2, 70
SUB [X+expr], A, 70
SUB A, [expr], 70
SUB A, [X+expr], 70
SUB A, expr, 70
successive approximation register, 322
summing amplifier, 271
SWAP A, [expr], 63
SWAP A, SP, 63
SWAP A, X, 63
SWAP instructions, 62

SWAP X, [expr], 63
SWBootReset, 93
switch thermal noise, 410
switched capacitance filters, 330
switched capacitor, 289, 290
switched capacitor comparator, 299
switched capacitor integrator, 300
Switched capacitors, 330
symbolic channel names table, 218
symbolic composition rule, 430
symbolic processing, 423
synchronous, 212
SYSCLK, 144
SYSCLKX2, 144
system buses, 109, 128
system bus (DB), 110
system clocks, 110
system specification, 20
System Supervisory Calls, 82, 83
system topology, 423
system-level tradeoff analysis, 21

Tbusy waiting, 128
Tdata com, 128
table offset, 66
TableRead, 94
tachometer, 27
tachometer servicing ISR, 117
task graphs, 7
temporal resistors, 330
ten addressing modes, 54
terminal count, 176
terminal count interrupt, 177
Test mode, 282
test with mask, 79
THD, 249
Thermal noise, 252
throughput, 212
throughput constraint, 9
tightly coupled, 12
time-delay filters, 355
timing constraint, 9
total harmonic distortion, 249
tradeoff analysis, 19
transfer function, 246
transmit register, 221
TST, 79
TST instructions, 79
Two bit ADC, 303
two-step conversion, 374

452 INDEX

TX, 221
TX REG EMPTY, 221
Type 1 Decimators, 196

UART Block, 229
UART Hardware Circuit, 230
UART bReadRxData, 235
UART bReadRxStatus, 235
UART DisableInt, 236
UART EnableInt, 236
UART SendData, 235
UART SetTxIntMode, 236
uncorrelated noise currents, 250
uncorrelated noise voltages, 250
uncoupled circuit macromodels, 258
uniform quantizer, 378
unity gain frequency, 246
unprotected mode, 92

valid implementation, 215
ValidCI(ACj), 215
VC1, 145

VC2, 145
VC3, 146
VCVS, 349
vertical links, 282
very large instruction word, 17

Watchdog-Timer-Reset, 85
Weak distortion, 248
white noise, 251, 378
Write compare value, 179
Write period function, 177
WriteBlock, 96

X, 83
X Register , 52
XII, 52, 53
XII Register, 53
XOR, 56, 75
XOR instructions, 75

zero flag, 65
ZF, 52

	Contents
	List of Figures
	List of Tables
	Preface
	Acknowledgment
	1 An Overview of Mixed-Signal, Embedded System Design
	1.1 Embedded Applications
	1.2 Embedded Architectures
	1.3 Top-Down Design Flow
	1.4 Embedded Systems Market
	1.5 Embedded Design Example: Fan Control System
	1.5.1 Description of the Fan Controller System
	1.5.2 Design of the Fan Controller System

	1.6 Conclusions
	1.7 Further Readings
	1.8 Recommended Exercises
	Bibliography

	2 Microcontroller Architecture
	2.1 Microcontroller Architecture
	2.1.1 Microcontroller Addressing Modes
	2.1.2 Instruction Set

	2.2 Memory Space
	2.3 Conclusions
	2.4 Recommended Exercises
	Bibliography

	3 Hardware and Software Subsystems of Mixed-Signal Architectures
	3.1 Subsystems of the PSoC Mixed-Signal Architecture
	3.1.1 PSoC Hardware Components
	3.1.2 PSoC Software Components

	3.2 The PSoC Interrupt Subsystem
	3.2.1 Case Study: Tachometer Interrupt Service Routines

	3.3 Global I/O Ports
	3.4 System Buses
	3.5 System Clocks
	3.6 Conclusions
	3.7 Recommended Exercises
	Bibliography

	4 Performance Improvement by Customization
	4.1 Introduction to Application-Specific Customization
	4.2 Design Methodology for Architecture Customization
	4.2.1 System Specification and Profiling
	4.2.2 System Partitioning and Implementation

	4.3 Programmable Digital Blocks
	4.3.1 Timer Block
	4.3.2 Counter Block
	4.3.3 Deadband Block

	4.4 Customized PSoC Digital Blocks
	4.4.1 Pulse Width Modulator Blocks
	4.4.2 Multiply ACcumulate
	4.4.3 Decimator Blocks

	4.5 Conclusions
	4.6 Recommended Exercises
	Bibliography

	5 Programmable Data Communication Blocks
	5.1 Abstract Communication Channels
	5.2 Channel Implementation Units
	5.3 Hardware--Software Implementation of Channels
	5.4 Channel Implementation Unit: SPI Block
	5.4.1 Hardware Circuit
	5.4.2 Software Routines

	5.5 Channel Implementation Unit: UART Block
	5.5.1 UART Hardware Circuit
	5.5.2 Software Routines

	5.6 Conclusions
	5.7 Recommended Exercises
	Bibliography

	6 Continuous-Time, Analog Building Blocks
	6.1 Introduction to Operational Amplifiers
	6.1.1 Ideal OpAmps
	6.1.2 Real OpAmps
	6.1.3 OpAmp MacromodelingThis subsection was co-written by Y. Wei and A. Doboli. This section is based on the papers Y. Wei, A. Doboli, ``Systematic Development of Analog Circuit Structural Macromodels through Behavioral Model Decoupling'', Proceedings of t

	6.2 Continuous-Time Analog Building Blocks
	6.2.1 Inverting Amplifiers
	6.2.2 Non-Inverting Amplifier
	6.2.3 Summing Amplifier
	6.2.4 Difference Amplifier
	6.2.5 Integrator
	6.2.6 Comparator

	6.3 Reconfigurable Continuous-Time Analog Blocks
	6.4 Conclusions
	6.5 Recommended Exercises
	Bibliography

	7 Switched-Capacitor Blocks
	7.1 Introduction To Switched Capacitor Techniques
	7.1.1 Nonidealities in Switched Capacitor Circuits

	7.2 Active Switched Capacitor Circuits
	7.2.1 Fixed Gain Amplifier
	7.2.2 Comparators
	7.2.3 Switched Capacitor Integrator
	7.2.4 Switched Capacitor Differentiator
	7.2.5 Reference Selection
	7.2.6 Analog-to-Digital Conversion

	7.3 Switched Capacitor PSoC Blocks
	7.3.1 Type C Switched Capacitor Blocks
	7.3.2 Type D Switched Capacitor Blocks

	7.4 Conclusions
	7.5 Recommended Exercises
	Bibliography

	8 Analog and Digital Filters
	8.1 Filter Fundamentals
	8.1.1 Passive Filters
	8.1.2 Linear Active Filters
	8.1.3 Digital Filters
	8.1.4 Filter Components

	8.2 Filter Design
	8.2.1 Specific Filter Types
	8.2.2 Filter Parameters
	8.2.3 Scaling and Normalization
	8.2.4 Cascading Analog Filters

	8.3 Analog Filters
	8.3.1 Time-Continuous Integrators as Filters
	8.3.2 The Passive Lowpass Filter
	8.3.3 The Sallen--Key Lowpass Active Filter
	8.3.4 The Switched-Capacitance Filter
	8.3.5 Biquad Switched Capacitor Filter
	8.3.6 An Allpass Filter

	8.4 Digital Filters
	8.4.1 Digital FIR Filter
	8.4.2 Infinite Impulse Response Filter

	8.5 Filter Design Software Tools
	8.6 Conclusion
	8.7 Recommended Exercises
	Bibliography

	9 Analog-to-Digital Converters
	9.1 Nyquist ADCs-A Short Introduction
	9.1.1 Sampling and Quantization
	9.1.2 Sampling
	9.1.3 Quantization

	9.2 ADCs
	9.2.1 Oversampling and Noise-Shaping
	9.2.2 ADC Performance
	9.2.3 First-Order Modulator
	9.2.4 PSoC Implementation of First-Order Modulators
	9.2.5 Impact of Circuit Non-Idealities on Modulator Performance
	9.2.6 Second-Order Modulator

	9.3 Conclusions
	Bibliography

	10 Future Directions in Mixed-Signal Design Automation
	10.1 Top-Down Design and Design Activities
	10.2 Two Examples of Architecture Customization
	10.2.1 IDEA Algorithm for Data Encryption
	10.2.2 Face Detection for Image ProcessingPortions reprinted with permission from Y. Weng, A. Doboli, Smart sensor architecture customized for image processing. Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium, 396-4

	10.3 Challenges in Mixed-Signal Design Automation
	10.3.1 High-Level Specification of Analog and Mixed-Signal SystemsThis subsection is based on the paper - A. Doboli, R. Vemuri, "Behavioral modeling for high-level synthesis of analog and mixed-signal systems from VHDL-AMS, IEEE Transactions on Computer-Aid
	10.3.2 Fast Performance Estimation by Customized Simulation Code
	10.3.3 High-Level Synthesis of Analog Subsystems
	Bibliography

	Index
	Cover
	Contents
	List of Figures
	List of Tables
	Preface
	Acknowledgment
	1 An Overview of Mixed-Signal, Embedded System Design
	1.1 Embedded Applications
	1.2 Embedded Architectures
	1.3 Top-Down Design Flow
	1.5 Embedded Design Example: Fan Control System
	1.4 Embedded Systems Market
	1.5.1 Description of the Fan Controller System
	1.5.2 Design of the Fan Controller System

	1.6 Conclusions
	1.7 Further Readings
	1.8 Recommended Exercises
	Bibliography

	2 Microcontroller Architecture
	2.1 Microcontroller Architecture
	2.1.1 Microcontroller Addressing Modes
	2.1.2 Instruction Set

	2.2 Memory Space
	2.3 Conclusions
	2.4 Recommended Exercises
	Bibliography

	3 Hardware and Software Subsystems of Mixed-Signal Architectures
	3.1 Subsystems of the PSoC Mixed-Signal Architecture
	3.1.1 PSoC Hardware Components
	3.1.2 PSoC Software Components

	3.2 The PSoC Interrupt Subsystem
	3.2.1 Case Study: Tachometer Interrupt Service Routines

	3.3 Global I/O Ports
	3.4 System Buses
	3.5 System Clocks
	3.6 Conclusions
	3.7 Recommended Exercises
	Bibliography

	4 Performance Improvement by Customization
	4.1 Introduction to Application-Specific Customization
	4.2 Design Methodology for Architecture Customization
	4.2.1 System Specification and Profiling
	4.2.2 System Partitioning and Implementation

	4.3 Programmable Digital Blocks
	4.3.1 Timer Block
	4.3.2 Counter Block
	4.3.3 Deadband Block

	4.4 Customized PSoC Digital Blocks
	4.4.1 Pulse Width Modulator Blocks
	4.4.2 Multiply ACcumulate
	4.4.3 Decimator Blocks

	4.5 Conclusions
	4.6 Recommended Exercises
	Bibliography

	5 Programmable Data Communication Blocks
	5.1 Abstract Communication Channels
	5.2 Channel Implementation Units
	5.3 Hardware--Software Implementation of Channels
	5.4 Channel Implementation Unit: SPI Block
	5.4.1 Hardware Circuit
	5.4.2 Software Routines

	5.5 Channel Implementation Unit: UART Block
	5.5.1 UART Hardware Circuit
	5.5.2 Software Routines

	5.6 Conclusions
	5.7 Recommended Exercises
	Bibliography

	6 Continuous-Time, Analog Building Blocks
	6.1 Introduction to Operational Amplifiers
	6.1.1 Ideal OpAmps
	6.1.2 Real OpAmps
	6.1.3 OpAmp MacromodelingThis subsection was co-written by Y. Wei and A. Doboli. This section is based on the papers Y. Wei, A. Doboli, ``Systematic Development of Analog Circuit Structural Macromodels through Behavioral Model Decoupling'', Proceedings of t

	6.2 Continuous-Time Analog Building Blocks
	6.2.1 Inverting Amplifiers
	6.2.2 Non-Inverting Amplifier
	6.2.3 Summing Amplifier
	6.2.5 Integrator
	6.2.4 Difference Amplifier
	6.2.6 Comparator

	6.3 Reconfigurable Continuous-Time Analog Blocks
	6.4 Conclusions
	6.5 Recommended Exercises
	Bibliography

	7 Switched-Capacitor Blocks
	7.1 Introduction To Switched Capacitor Techniques
	7.1.1 Nonidealities in Switched Capacitor Circuits

	7.2 Active Switched Capacitor Circuits
	7.2.1 Fixed Gain Amplifier
	7.2.2 Comparators
	7.2.3 Switched Capacitor Integrator
	7.2.4 Switched Capacitor Differentiator
	7.2.5 Reference Selection
	7.2.6 Analog-to-Digital Conversion

	7.3 Switched Capacitor PSoC Blocks
	7.3.1 Type C Switched Capacitor Blocks
	7.3.2 Type D Switched Capacitor Blocks

	7.4 Conclusions
	7.5 Recommended Exercises
	Bibliography

	8 Analog and Digital Filters
	8.1 Filter Fundamentals
	8.1.1 Passive Filters
	8.1.2 Linear Active Filters
	8.1.3 Digital Filters
	8.1.4 Filter Components

	8.2 Filter Design
	8.2.1 Specific Filter Types
	8.2.2 Filter Parameters
	8.2.3 Scaling and Normalization
	8.2.4 Cascading Analog Filters

	8.3 Analog Filters
	8.3.1 Time-Continuous Integrators as Filters
	8.3.2 The Passive Lowpass Filter
	8.3.3 The Sallen--Key Lowpass Active Filter
	8.3.4 The Switched-Capacitance Filter
	8.3.5 Biquad Switched Capacitor Filter
	8.3.6 An Allpass Filter

	8.4 Digital Filters
	8.4.1 Digital FIR Filter
	8.4.2 Infinite Impulse Response Filter

	8.5 Filter Design Software Tools
	8.6 Conclusion
	8.7 Recommended Exercises
	Bibliography

	9 Analog-to-Digital Converters
	9.1 Nyquist ADCs-A Short Introduction
	9.1.2 Sampling
	9.1.1 Sampling and Quantization
	9.1.3 Quantization

	9.2 ADCs
	9.2.1 Oversampling and Noise-Shaping
	9.2.2 ADC Performance
	9.2.3 First-Order Modulator
	9.2.4 PSoC Implementation of First-Order Modulators
	9.2.5 Impact of Circuit Non-Idealities on Modulator Performance
	9.2.6 Second-Order Modulator

	9.3 Conclusions
	Bibliography

	10 Future Directions in Mixed-Signal Design Automation
	10.1 Top-Down Design and Design Activities
	10.2 Two Examples of Architecture Customization
	10.2.1 IDEA Algorithm for Data Encryption
	10.2.2 Face Detection for Image ProcessingPortions reprinted with permission from Y. Weng, A. Doboli, Smart sensor architecture customized for image processing. Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium, 396-4

	10.3 Challenges in Mixed-Signal Design Automation
	10.3.1 High-Level Specification of Analog and Mixed-Signal SystemsThis subsection is based on the paper - A. Doboli, R. Vemuri, "Behavioral modeling for high-level synthesis of analog and mixed-signal systems from VHDL-AMS, IEEE Transactions on Computer-Aid
	10.3.2 Fast Performance Estimation by Customized Simulation Code
	10.3.3 High-Level Synthesis of Analog Subsystems
	Bibliography

	Index

