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Preface

Mechanics of Solids  is an important course for all engineering students by
which they develop analytical skill. In this course, laws of mechanics are applied
to parts of bodies and skill is developed to get solution to engineering problems
maintaining continuity of the parts.

The author has clearly explained theories involved and illustrated them by
solving a number of engineering problems. Neat diagrams are drawn and
solutions are given without skipping any step. SI units and standard notations
as suggested by Indian Standard Code are used throughout. The author has
made this book to suit the latest syllabus of Gujarat Technical University.

Author hopes, the students and teachers of Gujarat Technical University will
receive this book whole-heartedly as most of the earlier books of the author
have been received by the students and teachers all over India.

The suggestions and corrections, if any, are most welcome.

The author acknowledges the efforts of M/s. New Age International Publish-
ers in bringing out this book in nice form. He also acknowledges the opportu-
nity given by AICTE for associating him with B.U.B. Engineering College,
Hubli.

—Author
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1
Introduction to

Mechanics of Solids

The state of rest and the state of motion of the bodies under the action of different forces has
engaged the attention of mathematicians and scientists for many centuries. The branch of physical
science that deal with the state of rest or the state of motion of bodies is termed as mechanics.
Starting from the analysis of rigid bodies under gravitational force and application of simple forces
the mechanics has grown into the analysis of complex structures like multistorey buildings, aircrafts,
space crafts and robotics under complex system of forces like dynamic forces, atmospheric forces
and temperature forces.

Archemedes (287–212 BC), Galileo (1564–1642), Sir Issac Newton (1642–1727) and Einstein
(1878–1955) have contributed a lot to the development of mechanics. Contributions by Varignon,
Euler, and D. Alemberts are also substantial. The mechanics developed by these researchers may
be grouped as

(i) Classical mechanics/Newtonian mechanics

(ii) Relativistic mechanics

(iii) Quantum mechanics/Wave mechanics.

Sir Issac Newton, the principal architect of mechanics, consolidated the philosophy and experimental
findings developed around the state of rest and state of motion of the bodies and putforth them in
the form of three laws of motion as well as the law of gravitation. The mechanics based on these
laws is called Classical mechanics or Newtonian mechanics.

Albert Einstein proved that Newtonian mechanics fails to explain the behaviour of high speed
(speed of light) bodies. He putfourth the theory of Relativistic mechanics.

Schrödinger (1887–1961) and Broglie (1892–1965) showed that Newtonian mechanics fails to
explain the behaviour of particles when atomic distances are concerned. They putforth the theory
of Quantum mechanics.

Engineers are keen to use the laws of mechanics to actual field problems. Application of laws
of mechanics to field problems is termed as Engineering mechanics. For all the problems between
atomic distances to high speed distances there are various engineering problems for which Newtonian
mechanics has stood the test of time and hence is the mechanics used by engineers.

The various bodies on which engineers are interested to apply laws of mechanics may be
classified as

(i) Solids and
(ii) Fluids.

1



2 MECHANICS OF SOLIDS

The bodies which do not change their shape or size appreciably when the forces are applied
are termed as Solids while the bodies which change their shape or size appreciably even when small
forces are applied are termed as Fluids. Stone, steel, concrete etc. are the example of solids while
water, gases are the examples of fluids.

In this book application of Newtonian mechanics to solids is dealt with.

1.1 BASIC TERMINOLOGIES IN MECHANICS

The following are the terms basic to the study of mechanics, which should be understood clearly.

Mass

The quantity  of the matter possessed by a body is called mass. The mass of a body will not change
unless the body is damaged and part of it is physically separated. If the body is taken out in a space
craft, the mass will not change but its weight may change due to the change in gravitational force.
The body may even become weightless when gravitational force vanishes but the mass remain the
same.

Time

The time is the measure of succession of events. The successive event selected is the rotation of
earth about its own axis and this is called a day. To have convenient units for various activities,
a day is divided into 24 hours, an hour into 60 minutes and a minute into 60 seconds. Clocks are
the instruments developed to measure time. To overcome difficulties due to irregularities in the
earths rotation, the unit of time is taken as second which is defined as the duration of 9192631770
period of radiation of the cesium-133 atom.

Space

The geometric region in which study of body is involved is called space. A point in the space may
be referred with respect to a predetermined point by a set of linear and angular measurements. The
reference point is called the origin and the set of measurements as coordinates. If the coordinates
involved are only in mutually perpendicular directions, they are known as cartesian coordination.
If the coordinates involve angles as well as the distances, it is termed as Polar Coordinate System.

Length

It is a concept to measure linear distances. The diameter of a cylinder may be 300 mm, the height
of a building may be 15 m, the distance between two cities may be 400 km.
Actually metre is the unit of length. However depending upon the sizes involved micro, milli or kilo
metre units are used for measurements. A metre is defined as length of the standard bar of
platinum-iradium kept at the International Bureau of weights and measures. To overcome the
difficulties of accessibility and reproduction now metre is defined as 1690763.73 wavelength of
krypton-86 atom.

Continuum

A body consists of several matters. It is a well known fact that each particle can be subdivided
into molecules, atoms and electrons. It is not possible to solve any engineering problem by treating
a body as conglomeration of such discrete  particles. The body is assumed to be a continuous
distribution of matter. In other words the body is treated as continuum.
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Rigid Body

A body is said to be rigid, if the relative positions of any two particles do not change under the
action of the forces acting on it. In Fig. 1.1 (a), point A and B are the original positions in a body.
After the application of forces F1, F2, F3, the body takes the position as shown in Fig. 1.1(b). A′
and B′ are the new positions of A and B. If the body is treated as rigid, the relative position of A′B′
and AB are the same i.e.

A′B′ = AB

Many engineering problems can be solved by assuming bodies rigid

B

A

B′

A′
F1

F2

F3

(a) (b)

Fig. 1.1

Particle

A particle may be defined as an object which has only mass and no size. Theoretically speaking
such a body cannot exist. However in dealing with problems involving distances considerably larger
compared to the size of the body, the body may be treated as a particle, without sacrificing
accuracy.

For example:

— A bomber aeroplane is a particle for a gunner operating from the ground.
— A ship in mid sea is a particle in the study of its relative motion from a control tower.

— In the study of movement of the earth in celestial sphere, earth is treated as a particle.

Force

Force is an important term used in solid mechanics. Newton’s first law states that everybody
continues in its state of rest or of uniform motion in a straight line unless it is compelled by an
external agency acting on it. This leads to the definition of force as ‘force is an external agency
which changes or tends to change the state of rest or uniform linear motion of the body’.

 Magnitude of force is defined by Newton’s second law. It states that the rate of change of
momentum of a body is directly proportional to the impressed force and it takes place in the
direction of the force acting on it. Noting that rate of change of velocity is acceleration, and the
product of mass and velocity is momentum we can derive expression for the force as given below:

From Newton’s second law of motion
 Force ∝ rate of change of momentum

∝ rate of change of (mass × velocity)
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Since mass do not change,

 Force ∝ mass × rate of change of velocity
∝ mass × acceleration

F ∝ m × a ...(1.1)

= k × m × a

where F is the force, m is the mass and a is the acceleration and k is the constant of proportionality.

In all the systems, unit of force is so selected that the constant of the proportionality becomes
unity. For example, in S.I. system, unit of force is Newton, which is defined as the force that is
required to move one kilogram (kg) mass at an acceleration of 1 m/sec2.

∴ One newton = 1 kg mass × 1 m/sec2

Thus k = 1
F = m × a ...(1.2)

However in MKS acceleration used is one gravitational acceleration (9.81 m/sec2 on earth
surface) and unit of force is defined as kg-wt.

Thus
F in kg wt = m × g ...(1.3)

Thus 1 kg-wt = 9.81 newtons ...(1.4)
It may be noted that in usage kg-wt is often called as kg only.

Characteristics of a Force

It may be noted that a force is completely specified only when the
following four characteristics are specified

— Magnitude
— Point of application

— Line of action
— Direction.

In Fig. 1.2, AB is a ladder kept against a wall. At point C, a person
weighing 600 N is standing. The force applied by the person on the
ladder has the following characters:

— magnitude is 600 N

— the point of application is C which is at 2 m from A along the
ladder

— the line of action is vertical
— the direction is downward.

It may be noted that in the figure
— magnitude is written near the arrow

— the line of arrow shows the line of application
— the arrow head shows the point of application
— the direction of arrow represents the direction of the force.

600 N

C

B

A

2
m

2
m

Fig. 1.2
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1.2 UNITS

Length (L), mass (M) and time (S) are the fundamental units used in mechanics. The units of all
other quantities may be expressed in terms of these basic units. The three commonly used systems
are

— Metre, Kilogram, Second (MKS)

— Centimetre, Gram, Second (CGS)
— Foot, Pound, Second (FPS).

The systems are named after the units used to define the fundamental quantities length, mass
and time. Using these basic units, the units of other quantities can be found. For example in MKS
the units for various quantities are

Quantity Unit
Area m2

Volume m3

Velocity m/sec
Acceleration m/sec2

Momentum kg-m/sec [Since it is = mass × velocity]
Force kg-m/sec2 [Since it is = mass × acceleration]

S.I. Units

Presently the whole world is in the process of switching over to SI-system of units. SI units stands
for the System International d′ units or International System of units. As in MKS units in SI also
the fundamental units are metre for length, kilogram for mass and second for time. The difference
between MKS and SI system arises mainly in selecting the unit of force. In MKS unit of force is
kg-wt while in SI units it is newton. As we have already seen one kg-wt is equal to 9.81 newtons.

The prefixes used in SI when quantities are too big or too small are shown in Table 1.1.

Table 1.1. Prefixes in SI Units

Multiplying Factors Prefix Symbol

1012 tera T

109 giga G

106 mega M

103 kilo k

100 — —

10–3 milli m

10–6 micro m

10–9 nano n

10–12 pico p

10–15 femto f

10–18 atto a
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1.3 SCALAR AND VECTOR QUANTITIES

Various quantities used in mechanics may be grouped into scalars and vectors. A quantity is said
to be scalar, if it is completely defined by its magnitude alone. Examples of scalars are length, area,
time and mass.

A quantity is said to be vector if it is completely defined only when its magnitude as well as
direction are specified. The example of vectors are displacement, velocity, acceleration, momentum,
force etc.

1.4 COMPOSITION AND RESOLUTION OF VECTORS

The process of finding a single vector which will have the same effect as a set of vectors acting
on a body is known as composition of vectors. The resolution of vectors is exactly the opposite
process of composition i.e., it is the process of finding two or more vectors which will have the
same effect as that of a vector acting on the body.

Parallelogram Law of Vectors

The parallelogram law of vectors enables us to determine the single vector called resultant vector
which can replace the two vectors acting at a point with the same effect as that of the two vectors.
This law was formulated based on exprimental results on a body subjected to two forces. This law
can be applied not only to the forces but to any two vectors like velocities, acceleration, momentum
etc. Though stevinces employed it in 1586, the credit of presenting it as a law goes to Varignon
and Newton (1687). This law states that if two forcer (vectors) acting simultaneously on a body
at  a point are represented in magnitude and directions by the two adjacent sides of a parallelogram,
their resultant is represented in magnitude and direction by the diagonal of the parallelogram which
passes thorough the point of intersection of the two sides representing the forces (vectors).

In the Fig. 1.3, the force F1 = 4 units and the force F2  = 3 unit are acting on a body at a
point A. To get the resultant of these forces, according to this law, construct the parallelogram
ABCD such that AB is equal to 4 units to the linear scale and AC is equal to 3 units. Then according
to this law, the diagonal AD represents the resultant in magnitude and direction. Thus the resultant
of the forces F1 and F2 is equal to the units corresponding to AD in the direction α to F1.

F2

F1 α

θ

44

R

A B

33

C D

(a) (b)

R

(c)

θ

Fig. 1.3
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Triangle Law of Vectors

Referring to Fig. 1.3 (b), it can be observed that the resultant AD may be obtained by constructing
the triangle ABD. Line AB is drawn to represent F1 and BD to represent F2. Then AD should
represent the resultant of F1 and F2. Thus we have derived the triangle law of forces from the
fundamental law of parallelogram. The Triangle Law of Forces (vectors) may be stated as if two
forces (vectors) acting on a body are represented one after another by the sides of a triangle, their
resultant is represented by the closing side of the triangle taken from the first point to the last point.

Polygon Law of Forces (Vectors)

If more than two forces (vectors) are acting on a body, two forces (vectors) at a line can be
combined by the triangle law, and finally resultant of all forces (vectors) acting on the body may
be obtained.

A system of four concurrent forces acting on a body are shown in Fig. 1.4. AB represents F1
and BC represent F2. Hence according to triangle law of forces AC represents the resultant of F1
and F2, say R1.

F = 30 kN4

F = 30 kN3

F = 25 kN2

F = 20 kN1

O

E

F4

D

F3

F2

F1
A

R2R2

R1R1

C

B

R

Fig. 1.4

If CD is drawn to represent F3, then from the triangle law of forces AD represents the resultant
of R1 and F3. In other words, AD represents the resultant of F1, F2 and F3. Let it be called as R2.

Similarly the logic can be extended to conclude that AE represents the resultant of F1, F2, F3
and F4. The resultant R is represented by the closing line of the polygon ABCDE in the direction
form A to E. Thus we have derived the polygon law of the forces (vectors) and it may be stated
as if a number of concurrent forces (vectors) acting simultaneously on a body are represented in
magnitude and direction by the sides of a polygon, taken in a order, then the resultant is represented
in magnitude and direction by the closing side of the polygon, taken from the first point to the last
point.

Analytical Method of Composition of Two Vectors

Parallelogram law, triangle law and polygonal law of vectors can be used to find the resultant
graphically. This method gives a clear picture of the work being carried out. However the main
disadvantage is that it needs drawing aids like pencil, scale, drawing sheets. Hence there is need for
analytical method.
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Consider the two forces F1 and F2 acting on a particle as shown in Fig 1.5(a). Let the angle
between the two forces be θ. If parallelogram ABCD is drawn as shown in Fig. 1.5(b) with AB
respresenting F1 and AD representing F2 to some scale, according to parallelogram law of forces
AC represents the resultant R. Drop perpendicular CE to AB.

�

F2

F1
O A

�
�

B

D C

R

E

�

F2

F2

F1

(a) (b)

Fig. 1.5

The resultant R of F1 and F2 is given by

R = AC = AE CE AB BE CE2 2 2 2+ = + +( )

But AB = F1

BE = BC cos θ = F2 cos θ

CE = BC sin θ = F2 sin θ

∴ R = ( cos ) ( sin )F F F1 2
2

2
2+ +θ θ

= F F F F F1
2

1 2 2
2 2

2
2 22+ + +cos cos sinθ θ θ

= F F F F1
2

1 2 2
22+ +cos θ

Since, sin2 θ + cos2 θ = 1.

The inclination of resultant to the direction of F1 is given by α, where

tan α = 
CE

AE

CE

AB BE

F

F F
=

+
=

+
2

1 2

sin

cos

θ
θ

Hence α = tan–1 F

F F
2

1 2

sin

cos

θ
θ+

Particular cases:

1. When θ = 90° [Ref. Fig. 1.6a], R = F F1
2

2
2+

2. When θ = 0° [Ref. Fig. 1.6b], R = F F F F1
2

1 2
2

2
22+ +  = F1 + F2

3. When θ = 180° [Ref. Fig. 1.6c], R = F F F F1
2

1 2 2
22− +  = F1 – F2
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F2

R

(a)

F1 F2

(b)

F1 F2

(c)

F1

Fig. 1.6

Resolution of Vectors

Since the resolution of vectors is exactly opposite process of composition of vectors, exactly the
opposite process of composition can be employed to get the resolved components of a given force.

β
α

F1 F

F2

θ α β= +

β

α

F
F2

F1

(a)

F4
F3

F2

F1

F F F4

F3

F2

F1

Fy

F2

F

Fy

Fx

F

(b)

(c)

Fig. 1.7

In Fig. 1.7(a), the given force F is resolved into two components making angles α and β with F.

In Fig. 1.7(b) the force F is resolved into its rectangular components Fx and Fy.
In Fig. 1.7(c), the force F is resolved into its four components F1, F2, F3 and F4.
It may be noted that all component forces act at the same point as the given force. Resolution

of forces into its rectangular components is more useful in solving the problems in mechanics. In
this case, if the force F makes angle θ with x-axis, from Fig. 1.7(a), it is clear that

Fx = F cos θ and Fy = F sin θ.
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Example 1.1. A boat is rowed at a velocity of 20 km/hour across a river. The velocity of stream
is 8 km/hour. Determine the resultant velocity of the boat.

Solution: Taking downstream direction as x and direction across the river as y, it is given that
Vx = 8 km/hour

Vy = 20 km/hour
∴ The resultant velocity

 V = 8 202 2+  = 21.54 km/hour

 ααααα = tan–1 
V

V
y

x

 = tan–1 20

8
 = 68.20°, as shown in Fig. 1.8

�

V
=

20
 k

m
/h

ou
r

y

V = 8 km/hourx

V Downstream

Fig. 1.8

Example. 1.2. The guy wire of the electrical pole shown in Fig. 1.9(a) makes 60° to the horizontal
and is carrying a force of 60 kN. Find the horizontal and vertical components of the force.

60°

F
Fy

Fx

(a) (b)

20
kN

60°

Fig. 1.9

Solution: Figure 1.9(b) shows the resolution of force F = 20 kN into its components in horizontal
and vertical components. From the figure it is clear that

Fx = F cos 60° = 20 cos 60° = 10 kN (to the left)
Fy = F sin 60° = 20 sin 60° = 17.32 kN (downward)
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Example 1.3. A black weighing W = 10 kN is resting on an inclined plane as shown in Fig.
1.10(a). Determine its components normal to and parallel to the inclined plane.

20°

W

20°
20°

70°

C
B

(a) (b)

A

Fig. 1.10

Solution: The plane makes an angle of 20° to the horizontal. Hence the normal to the plane makes
an angles of 70° to the horizontal i.e., 20° to the vertical [Ref. Fig. 1.10(b)]. If AB represents the
given force W to some scale, AC represents its component normal to the plane and CB represents
its component parallel to the plane.

Thus from ∆ ABC,
Component normal to the plane = AC

= W cos 20°
= 10 cos 20°

= 9.4 kN as shown in Fig. 1.10(b)
Component parallel to the plane = W sin 20° = 10 sin 20°

= 3.42 kN, down the plane
From the above example, the following points may be noted:
1. Imagine that the arrow drawn represents the given force to some scale.

2. Travel from the tail to head of arrow in the direction of the coordinates selected.
3. Then the direction of travel gives the direction of the component of vector.

4. From the triangle of vector, the magnitudes of components can be calculated.

Example 1.4. The resultant of two forces, one of which is double the other is 260 N. If the direction
of the larger force is reversed and the other remain unaltered, the magnitude of the resultant
reduces to 180 N. Determine the magnitude of the forces and the angle between the forces.

Solution: Let the magnitude of the smaller force be F. Hence the magnitude of the larger force is
2F.

Thus F1 = F and F2 = 2F

Let θ be the angle between the two forces.

∴ From the condition 1, we get

R = F F F F1
2

1 2 2
22+ +cos θ  = 260

i.e., F2 + 2F (2F) cos θ + (2F)2 = 2602

5F2 + 4F2 cos θ = 67600 ...(i)
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From condition 2, we get

F F F F1
2

1 2 2
22 180+ + +cos ( )θ  = 180

F2 – 2F(2F) cos θ +  (2F)2 = 32400 ...(ii)

Adding equation (i) and (ii), we get
10F2 = 100000

∴ F = 100 N
Hence F1 = F = 100 N;  F2 = 2F = 200 N
Substituting the values of F1 and F2 in eqn (i), we get,

5(100)2 + 4(100)2 cos θ = 67600

∴ cos θ = 0.44
or θθθθθ = 63.9°

Example 1.5. Two forces F1 and F2 are acting at point A as
shown in Fig. 1.11. The angle between the two forces is 50°.
It is found that the resultant R is 500 N and makes angles 20°
with the force F1 as shown in the figure. Determine the forces
F1 and F2.

Solution: Let ∆ ABC be the triangle of forces drawn to some
scale. In this

∠BAC = α = 20°

∠ABC = 180 – 50 = 130°
∴ ∠ACB = 180 – (20 + 130) = 30°

Applying sine rule to ∆ ABC, we get

AB BC

sin sin sin30 20

500

130°
=

°
=

°
∴    AB = 326.35 N

and BC = 223.24 N.

Thus F1 = AB = 326.35 N
and F2 = BC = 223.24 N

Example 1.6. The resultant of two forces F1 = 400 N and
F2 = 260 N acting at point A is  520 N. Determine the
angle between the two forces and the angle between the
resultant and force F1.

Solution: Let ABC  be the triangle of forces as shown in
Fig. 1.12. θ be the angle between F1 and F2, and α be the
angle between resultant and F1

Using the relation

R = F F F F1
2

2
2

1 22+ + cos θ ,

we get,
5202 = 4002 + 2602 + 2 × 400 × 260 × cos θ

50°

F2

F1A B

C

� = 50°

� = 20°

R

Fig. 1.11

�

F2

A B

C

�

R = 520 N

F = 260 N2

F = 400 N1

Fig. 1.12
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∴ cos θ = 0.20577

∴ θθθθθ = 78.13°
Noting that

R sin α = F2 sin θ

we get sin α = 
260 sin 78.13

520

°
 = 0.489

∴ ααααα = 29.29°

Example 1.7. Fig. 1.13 shows a particular position of 200 mm connecting rod AB and 80 mm long
crank BC. At this position, the connecting rod of the engine experience a force of 3000 N on the
crank pin at B. Find its

(a) horizontal and vertical component

(b) component along BC and normal to it.

�
200 mm

B

80
m

m

60°

Connecting rod

A
CC

Crank

(a)

60° �

Vertical

Horizontal

3000 N

(b)

Fig. 1.13

Solution: The force of 3000 N acts along line AB. Let AB make angle α with horizontal. Then,
obviously 200 sin α = 80 sin 60°

∴ α = 20.268°
Referring to Fig. 1.13(b), we get

Horizontal component = 3000 cos 20.268° = 2814.2 N
Vertical component = 3000 sin 20.268° = 1039.2 N
Components along and normal to crank:
The force makes angle α + 60° = 20.268 + 60 = 80.268° with crank.

∴ Component along crank = 3000 cos 80.268° = 507.1 N
Component normal to crank = 3000 sin 80.268° = 2956.8 N

IMPORTANT FORMULAE

1. Resultant of two vectors can be obtained by solving the triangle of forces.
2. If V1 and V2 are the two vectors at angle ‘θ’ between them, then the resultant is

R = V V V V1
2

2
2

1 22+ + cos θ
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and acts at ‘α’ to V1 vector, where

tan α = V

V V
2

1 2

sin

cos

α
α+

Vectors may be forces, velocities, momentum etc.
3. If a force makes angle θ with x-axis, then its components are

  Fx = F cos θ
  Fy = F sin θ.

4. If a body weighing W rests on an inclined plane, its components normal to and parallel to the plane
are

  Fn = W cos θ, a thrust on the plane.
  Ft = W sin θ, down the plane.

THEORY QUESTIONS

1. Explain the following terms:
(i) Space (ii) Continuum

(iii) Particle (iv) Rigid body.
2. Explain the term ‘Force’ and list its characteristics.
3. Distinguish between

(i) MKS and SI units
(ii) Scalars and vectors.

4. State and explain parallelogram law of vectors.
5. State parallelogram law of vector and derive triangle and polygonal law of vectors.

PROBLEMS FOR EXERCISE

1. The resultant of two forces one of which is 3 times the other is 300 N. When the direction of
smaller force is reversed, the resultant is 200 N. Determine the two forces and the angle between
them. [Ans. F1 = 80.6 N, F2 = 241.8 N, θ = 50.13°]

2. A rocket is released from a fighter plane at an angle upward 20° to the vertical with an acceleration
of 8 m/sec2. The gravitational acceleration is 9.1 m/sec2 downward. Determine the instantaneous
acceleration of the rocket when it was fired. [Ans. 9.849 m/sec2, θ = 49.75° to vertical]



2
Fundamentals of Statics

In this chapter principles of statics is explained and their applications to concurrent and non-concurrent
force system in plane is illustrated by solving several engineering problems.

2.1 PRINCIPLES OF STATICS

The statics is based on the following principles of mechanics:
1. Newton’s laws of mechanics

2. Law of transmissibility
3. Parallelogram law of forces

4. Principles of physical independence
5. Principles of superposition.

2.1.1 Newton’s Laws of Mechanics

As already discussed in first chapter, Newton’s first law gave definition of the force and second law
gave basis for quantifying the force. There are two more Newton’s laws:

a. Newton’s Third Law

b. Newton’s Law of Gravitation
These laws are explained in this article.

(a) Newton’s Third Law

It states that for every action there is an equal and opposite reaction. Consider the two bodies in
contact with each other. Let one body apply a force F on another. According to this law the second
body develops a reactive force R which is equal in magnitude to force F and acts in the line same
as F but in the opposite direction. Figure 2.1 shows the action of a ball on the floor and the reaction
of floor to this action. In Fig. 2.2 the action of a ladder on the wall and the floor and the reactions
from the wall and the floor are shown.

R-reaction
F-action

Fig. 2.1

15
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R1

F1

R2

F2

Fig. 2.2

(b) Newton’s Law of Gravitation

It states that everybody attracts the other body. The force of attraction between any two bodies is
directly proportional to their masses and inversely proportional to the square of the distance between
them. Thus the force of attraction between the bodies of mass m1 and mass m2 at distance ‘d’
between them as shown in Fig. 2.3 is

 F = G 
m m

d
1 2

2
...(2.1)

where G is the constant of proportionality and is known as constant of gravitation.

1
m1

F 2
m2

F

dd

Fig. 2.3

From eqn. 2.1,

G = 
Fd

m m

2

1 2

Hence unit of G = 
N m

kg kg

×
×

2

 = Nm2/kg2

It has been proved by experiments that the value of G = 6.673 × 10–11 Nm2/kg2. Thus if two
bodies one of mass 10 kg and the other of 5 kg are at a distance of 1 m, they exert a force

F = 
6 673 10 10 5

1

11

2

. × × ×−

 = 33.365 × 10–10 N

on each other.
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Similarly 1 kg-mass on earth surface experiences a force of

 F = 
6 673 10 1 5 96504 10

6371 10

11 24

3 2

. .

( )

× × × ×
×

−

 = 9.80665 N

Since, mass of earth = 5.96504 × 1024 kg

 and radius of earth = 6371 × 103 m.
This force of attraction is always directed towards the centre of earth.

In common usage the force exerted by a earth on a body is known as weight of the body. Thus
weight of 1 kg-mass on/near earth surface is 9.80665 N, which is approximated as 9.81 N for all
practical problems. Compared to this force the force exerted by two bodies on each other is negligible.
Thus in statics:

a. Weight of a body = mg
b. Its direction is towards the centre of the earth, in other words, vertically downward.

c. The force of attraction between the other two objects on the earth is negligible.

2.1.2 Law of Transmissibility

According to this law the state of rest or motion of the rigid body is unaltered, if a force acting on
the body is replaced by another force of the same magnitude and direction but acting anywhere on
the body along the line of action of the replaced force.

Let F be the force acting on a rigid body at point A as shown in Fig. 2.4. According to this law,
this force has the same effect on the state of body as the force F applied at point B, where AB is
in the line of force F.

A

B

F

F

Fig. 2.4

In using law of transmissibility it should be carefully noted that it is applicable only if the body
can be treated as rigid. Hence if we are interested in the study of internal forces developed in a body,
the deformation of body is to be considered and hence this law cannot be applied in such studies.

2.1.3 Parallelogram Law of Forces

This has been already explained in chapter 1 along with the derived laws i.e., triangle and polygonal
law.

2.1.4 Principles of Physical Independence of Forces

It states that the action of a force on a body is not affected by the action of any other force on the
body.
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2.1.5 Principles of Superposition of Forces

It states that the net effect of a system of forces on a body is same as the combined of individual
forces acting on the body. Since a system of forces in equilibrium do not have any effect on a rigid
body this principle is stated in the following form also: ‘The effect of a given system of forces on
a rigid body is not changed by adding or subtracting another system of forces in equilibrium.’

2.2 SYSTEM OF FORCES

When several forces of different magnitude and direction act upon a body, they constitute a system
of forces. If all the forces in a system lie in a single plane, it is called a coplanar force system. If
the line of action of all the forces in a system pass through a single point it is called a concurrent
force system. In a system of parallel forces all the forces are parallel to each other. If the line of
action of all forces lie along a single line then it is called a collinear force system. Various system
of forces, their characteristics and examples are given in Table 2.1 below.

Table 2.1 System of Forces

 Force System             Characteristic            Examples

Collinear forces Line of action of all the forces act Forces on a rope in a tug of
along the same line. war

Coplanar All forces are parallel to each other System of forces acting on a
parallel forces and lie in a single plane. beam subjected to vertical

loads (including reactions)

Coplanar All forces are parallel to each other, Weight of a stationary train
like parallel forces lie in a single plane and are acting in on a rail when the track is

the same direction. straight

Coplanar Line of action of all forces pass Forces on a rod resting against
concurrent forces through a single point and forces a wall

lie in the same plane.

Coplanar All forces do not meet at a point, Forces on a ladder resting
non-concurrent forces but lie in a single plane. against a wall when a person

stands on a rung which is not
at its centre of gravity

Non-coplanar All the forces are parallel to each The weight of benches in a
parallel forces other, but not in the same plane. class room

Non-coplanar All forces do not lie in the same A tripod carrying a camera
concurrent forces plane, but their lines of action pass

through a single point.

Non-coplanar All forces do not lie in the same Forces acting on a moving bus
non-concurrent forces plane and their lines of action do

not pass through a single point.

2.3 MOMENT OF A FORCE

Moment of a force about a point is the measure of its rotational effect. Moment is defined as the
product of the magnitude of the force and the perpendicular distance of the point from the line of
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action of the force. The point about which the moment is considered is called moment centre and
the perpendicular distance of the point from the line of action of the force is called moment arm.
Referring to Fig. 2.5, if d1 is the perpendicular distance of point 1 from the line of action of force
F, the moment of F about point 1 is given by

M1 = F d1 ...(2.2)
Similarly, moment about point 2 is given by

M2 = F d2 ...(2.3)
If the moment centre 3 lies on the line of action of the force F, the moment arm is zero and

hence,
M3 = F × 0 = 0 ...(2.4)

Thus, it may be noted that if a point lie on the line of action of a force, the moment of the force
about that point is zero.

The moment of a force has got direction also. In Fig. 2.5 it may be noted
that M1 is clockwise and M2 is anticlockwise. To find the direction of the
moment, imagine that the line of action of the force is connected to the point
by a rigid rod pinned at the point and is free to move around the point. The
direction of the rotation indicates the direction of the moment.

If the force is taken in newton unit and the distance in millimetre, the unit
of moment will be N-mm. Commonly used units of moment in engineering are
kN-m, N-m, kN-mm and N-mm.

2.4 VARIGNON’S THEOREM

French mathematician Varignon (1654–1722) gave the following theorem which is also known as
principle of moments:

The algebraic sum of the moments of a system of coplanar forces about a moment centre in their
plane is equal to the moment of their resultant force about the same moment centre.

Proof: Referring to Fig. 2.6 let R be the resultant of forces F1 and F2 and B the moment centre.
Let d, d1 and d2 be the moment arms of the forces, R, F1 and F2, respectively from the moment centre
B. Then in this case, we have to prove that:

Rd = F1 d1 + F2 d2

Join AB and consider it as y axis and draw x axis at right angles to it at A [Fig. 2.6(b)]. Denoting
by θ the angle that R makes with x axis and noting that the same angle is formed by perpendicular
to R at B with AB1, we can write:

Rd = R × AB cosθ
= AB × (R cosθ)

= AB × Rx ...(a)

where Rx denotes the component of R in x direction.

Fig. 2.5

F

x2

x
3

1x
d
2

d
1
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A

y

� F1

F2
B1

x

R
B

d�

(b)

R

F1

d2

d1

F2

B

A

(a)

d

Fig. 2.6

Similarly, if F1x and F2x are the components of F1 and F2, in x direction, respectively, then
F1 d1 = AB F1x ...(b)

and F2 d2 = AB F2x ...(c)
From Eqns. (b) and (c)

F1 d1 + F2 d2 = AB (F1x + F2x)
= AB × Rx ...(d)

From equation (a) and (d), we get
Rd = F1 d1 + F2 d2

If a system of forces consists of more than two forces, the above result can be extended as given
below:

Let F1, F2, F3 and F4 be four concurrent forces and R be their resultant. Let d1, d2, d3, d4 and
a be the distances of line of action of forces F1, F2, F3, F4 and R, respectively from the moment
centre O, [Ref. Fig 2.7].

If R1 is the resultant of F1 and F2  and its distance from O is a1, then applying Varignon’s
theorem:

R1 a1 = F1 d1 + F2 d2

If R2 is the resultant of R1 and F3 (and hence of F1, F2 and F3) and its distance from O is a2,
then applying Varignon’s theorem:

R2a2 = R1a1 + F3d3

= F1 d1 + F2 d2 + F3 d3

F3

d
2

d
4

d
3

O

F4

F1

F2

d1

R

a

Fig. 2.7
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Now considering R2 and F4, we can write:

Ra = R2 a2 + F4 d4

Since R is the resultant of R2 and F4 (i.e. F1, F2, F3 and F4).

∴ Ra = F1d1 + F2d2 + F3d3 + F4d4 ...(2.5)

Thus, the moment of the resultant of a number of forces about a moment centre is equal to the
sum of the moments of its component forces about the same moment centre.

Example 2.1. Find the moment of 100 N force acting at B about point A as shown in Fig. 2.8.

Solution: 100 N force may be resolved into its horizontal components as 100 cos 60° and vertical
component 100 sin 60°. From Varignon’s theorem, moment of 100 N force about the point A is equal
to sum of the moments of its components about A.

A

B

400 mm

500 mm

100N

60°

Fig. 2.8

   Taking clockwise moment as positive,
MA = 100 cos 60° × 500 – 100 sin 60° × 400

= 25, 000 – 34, 641.02
= – 9641.02 N-mm

= 9641.016 N-mm Anticlockwise.

Example 2.2. What will be the y intercept of the 5000 N force if its moment about A is
8000 N-m in Fig. 2.9.

y

Fy

�
3

4
C

5000 N

Fx

x

y

A

B

Fig. 2.9
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Solution: 5000 N force is shifted to a point B along its line of action (law of transmissibility) and
it is resolved into its x and y components (Fx and Fy as shown in Fig. 2.9).

Fx = 5000 cos θ = =5000
4
5

4000×  N

and Fy = 5000 sin θ = =5000
3
5

3000×  N.

By Varignon's theorem, moment of 5000 N force about A is equal to moment of its component
forces about the same point.

8000 = 4000 × y + 3000 × 0

∴ y = 2 m.

2.5 COUPLE

Two parallel forces equal in magnitude and opposite in direction and separated by a definite
distance are said to form a couple. The sum of the forces forming a couple is zero, since they are
equal and opposite, which means the translatory effect of the couple is zero.

An interesting property can be observed if we consider rotational effect of a couple about any
point. Let the magnitude of the forces forming the couple be F and the perpendicular distance
between the two forces be d. Consider the moment of the two forces constituting a couple about point
1 as shown in Fig. 2.10(a). Let the moment be M1 then,

M1 = Fd1 + Fd2

= F (d1 + d2) = Fd

Now, consider the moment of the forces about point 2 which is outside the two forces as shown
in Fig. 2.10(b). Let M2 be the moment.

Then,

M2 = Fd3 – Fd4

= F (d3 – d4) = Fd

Similarly it can be seen that M3 = Fd

Thus at any point M = Fd ...(2.6)

d
d

d

d1 d3 d5

d4 d6

d2

F F

F

F F

F

1

2

3

(a) (b) (c)

Fig. 2.10

Thus, moment of a couple about any point is the same. Now we can list the following characteristics
of a couple:

– A couple consists of a pair of equal and opposite parallel forces which are separated by a
definite distance;
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– The translatory effect of a couple on the body is zero;

– The rotational effect (moment) of a couple about any point is a constant and it is equal to the
product of the magnitude of the forces and the perpendicular distance between the two forces.

Since the only effect of a couple is a moment and this moment is the same about any point, the
effect of a couple is unchanged if:

– The couple is rotated through any angle;

– The couple is shifted to any other position;
– The couple is replaced by another pair of forces whose rotational effect is the same.

2.6 TRANSFER OF A FORCE TO PARALLEL POSITION

It will be advantageous to resolve a force acting at a point on a body into a force acting at some other
suitable point on the body and a couple. In Fig. 2.11(a) F is a force acting on a body at A.

A A
A

d d

B
B B

(a) (b) (c)

= =

F F

F F

F

M = Pd

Fig. 2.11

Now it can be shown that F at A may be resolved into force F at B and a couple of magnitude
M = F × d, where d is the perpendicular distance of B from the line of action of F through A.

By applying equal and opposite forces F at B the system of forces is not disturbed. Hence the
system of forces in Fig. 2.11(b) is the same as the system given in Fig. 2.11(a). Now the original
force F at A and the opposite force F at B form a couple of magnitude Fd. The system in Fig. 2.11(b)
can be replaced by the system shown in Fig. 2.11(c). Thus, the given force F at A is replaced by
a force F at B and a moment Fd.

2.7 COMPOSITION OF CONCURRENT COPLANAR FORCES

General Approach
In chapter 1, composition of concurrent forces by graphical method and the analytical method

of composition of two force system has been discussed. In this article composition of concurrent
coplanar forces is explained by a general analytic method.

Analytical method consists in finding the components of given forces in two mutually perpendicular
directions and then combining them to get the resultant. Finding the component of a force is called
resolution of forces and is exactly the opposite to the process of composition of forces. Finding the
components of forces in two mutually perpendicularly directions is preferable. The following points
associated with the analytical method of finding rectangular components may be noted:

(i) Imagine that the arrow drawn to show force represents it to some scale

(ii) Travel from tail to head of the arrow in the directions of coordinates
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(iii) The direction of the travel gives the direction of component forces

(iv) From the triangle law of forces, the magnitude of the components can be calculated.

After finding the components of all the forces in the system in the two mutually perpendicular
directions, the component in each direction are algebraically added to get the two components. These
two components, which are mutually perpendicular, are combined to get the resultant.

Let F1, F2, F3 and F4 shown in Fig. 2.12(a) be the system of four forces the resultant of which
is required.

Y

x

F1y

F4y

F4

F1xF4x

F1

F2

F2y F
2x

F3x

F3y

F3

O

�
�

�

Fx

Fy

(b)

R

(a)

Fig. 2.12

The procedure to get the resultant is given below:
Step 1: Find the components of all the forces in X and Y directions. Thus, F1x, F2x, F3x, F4x, F1y,

F2y, F3y, and F4y, are obtained.

Step 2: Find the algebraic sum of the component forces in X and Y directions.
Σ Fx = F1x + F2x + F3x + F4x

Σ Fy = F1y + F2y + F3y + F4y

(Note: In the above case F2x, F3x, F3Y and F4Y have negative values.)

Step 3: Now the system of forces is equal to two mutually perpendicular forces, namely, ΣFx and
ΣFy as shown in Fig. 2.12(b). Since these two forces are perpendicular, the parallelogram of forces
becomes a rectangle. Hence the resultant R is given by:

( ) ( )22
x yR F F= Σ + Σ ...(2.7)

and its inclination to x axis is given by:

 
1

� ���
y

x

F

F
− Σ 

=  Σ 
...(2.8)

Note: R cos α = ΣFx = Rx ...(2.9)

and R sin α = ΣFy = Ry ...(2.10)

i.e., ΣFx and ΣFy are the x and y components of the resultant.
The procedure of finding the component of forces and then finding the resultant is illustrated

with examples 2.3 to 2.9.
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Example 2.3. Determine the resultant of the three forces acting on a hook as shown in Fig. 2.13(a).
y

70 N

80 N

50 N

x

(a)

o

25°

25°

45°
152.86

(b)

5
2
.0

7 R

�

Fig. 2.13

Solution: Force x component y component
70 N 45.00 53.62

80 N 72.50 33.81
50 N 35.36 –35.36

Rx = ΣFx = 152.86,     Ry = ΣFy = 52.07

     R = +152 86 52 072 2. .

i.e., R = 161.48 N.

     α = −tan
.
.

1 52 07
152 86

i.e., ααααα = 18.81° as shown in Fig. 2.13(b).
Example 2.4. A system of four forces acting on a body is as shown in Fig. 2.14(a). Determine the
resultant.
Solution: If θ1 is the inclination of the 200 N force to x axis,

     tanθ1
1
2

=

     sinθ1
1

5
=

     cosθ1
2

5
=

146.16

(b)

6
5
.5

4 R

�

50 N
100 N

200 N

Y

120 N

x

(a)

1
23

4

60º

40°

Fig. 2.14
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Similarly for the force 120 N,

       tanθ2
4
3

= , sin θ2
4
5

= , cos θ2
3
5

=

Now, Rx = ΣFx = − −200
2

5
120

3
5

50× ×  cos 60° + 100 sin 40°

= 146.16 N.

Ry = ΣFy = + −200
1

5
120

4
5

50× ×  × sin 60° – 100 cos 40°

= 65.54 N

      R = +146 16 65 542 2. .
  R = 160.18 N.

 ααααα = tan
.

.
−1 65 54

146 16
= 24.15° as shown in Fig. 2.14(b).

Example 2.5. A system of forces acting on a body resting on an inclined plane is as shown in Fig.
2.15. Determine the resultant force if θ = 60° and if W = 1000 N; N = 500 N; F = 100 N; and
T = 1200 N.

Horizon ta l
θ°

Y

w
T

X

F

N

Fig. 2.15

Solution: In this problem, note that selecting X and Y axes parallel to the plane and perpendicular
to the plane is convenient.

Rx = ΣFx = T – F – W sin θ
= 1200 – 100 – 1000 sin 60° = 233.97 N

 Ry = ΣFy = N – W cos 60° = 500 – 1000 cos 60° = 0.

∴ Resultant is force of 233.97 N directed up the plane.

Example 2.6. Two forces acting on a body are 500 N and 1000 N as shown in Fig. 2.16(a).
Determine the third force F such that the resultant of all the three forces is 1000 N directed at 45°
to x axis.

Solution: Let the third force F make an angle θ with x axis.
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Y
1000 N

R=1000 N

500 N

X
30°

30°

45°

(a) (b)

F

225.9 N

�

408.91 N

Fig. 2.16

Then, R cos α = ΣFx

i.e., 1000 cos 45° = 500 cos 30° + 1000 sin 30° + F cos θ
∴ F cos θ = –255.9

and R sin α = ΣFy

1000 sin 45° = 500 sin 30° + 1000 cos 30° + F sin θ
∴ F sin α = – 408.91 N

∴ F = 225 9 408 912 2. .+
i.e., F = 467.2 N.

 θ = �
�

�
�

−tan
.

.
1 408 91

255 9
 = 61.08° as shown in Fig. 2.16.

Example 2.7. Three forces acting at a point are shown in Fig. 2.17. The direction of the 300 N forces
may vary, but the angle between them is always 40°. Determine the value of θ for which the resultant
of the three forces is directed parallel to b-b.

Solution: Let the x and y axes be as shown in Fig. 2.17. If the resultant is directed along the x axis,
its component in y direction is zero.

i.e., 0 = ΣFy = 300 sin θ + 300 sin (40 + θ) – 500 sin 30°

∴ sin θ + sin (40 + θ) = 
500 30

300
sin °

= 0.8333

∴ sin θ + sin(40 + θ) = 0.8333

2
40

2
40

2
sin × cos

+ +�
��

�
��

+ −�
��

�
��

θ θ θ θ
= 0.8333

2 sin (20 + θ) × cos (20) = 0.8333

∴ θθθθθ = 6.35°

x

30°

b

30º

500 N

Y

300 N 300 N

�
40°

b

Fig. 2.17
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2.8 EQUILIBRIANT OF A FORCE SYSTEM

We have seen that the resultant of a system of forces is a single force which will have the same effect
as the system of forces. According to Newton’s second law of motion, the body starts moving with
acceleration in the direction of the resultant force. If we apply a force equal and opposite to the
resultant, the body should come to the equilibrium state. Such a force is called equilibriant. Thus an
equilibriant of a system of forces may be defined as the force which brings the body to the state of
equilibrium and obviously, this forces is equal in magnitude, but opposite in the direction to the
resultant.

2.9 COMPOSITION OF COPLANAR NON-CONCURRENT FORCE SYSTEM

Let F1, F2 and F3 [Fig. 2.18(a)] constitute a system of forces acting on a body. Each force can be
replaced by a force of the same magnitude and acting in the same direction at point O and a moment
about O. Thus, the given system in Fig. 2.18(a) is equal to the system shown in
Fig. 2.18(b) where ΣMO is the algebraic sum of the moments of the given forces about O.

At O, the concurrent force F1, F2 and F3 can be combined as usual to get the resultant force R.
Now the resultant of the given system is equal to force R at O and a moment ΣMO as shown in Fig.
2.18(c).

(a) (b)

F3
F3

F1

F1

F2 F2

0

0
�Mo

�Mo

(c) (d)

R
R

0

0

d

Fig. 2.18

The force R and moment ΣMO shown in Fig. 2.18(c) can be replaced by a single force R acting
at a distance d from O such that the moment produced by this force R is equal to ΣMO [Ref. 2.18(d)].

Thus, we get a single force R acting at a distance d from the point O which gives the same effect
as the constituent forces of the systems. Thus, the resultant of the given forces may be reduced to
a single force.
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Mathematically,

R F F
F

F

x y

y

x

= +

=

�

�
	



	

( ) ( )

tan

Σ Σ
Σ
Σ

2 2

α
...(2.11)

d = 
Σ M

R
o

where, ΣFx – algebraic sum of the components of all forces in x direction

ΣFy – algebraic sum of the components of all forces in y direction

α – inclination of the resultant R to x direction

ΣMO – algebraic sum of the moments of all the forces about point O

d – is distance of the resultant R from the point O.

Note: R is marked at distance d such that it produces the same direction of moment about point O as ΣMO.

Sometimes the values of ΣFx and ΣFy may come out to be zero, but ΣMO may exist. This means
that the resultant of the system gets reduced to a pure couple.

2.10  x AND y INTERCEPTS OF RESULTANT

In some situations we may be interested in finding only the distance of R along x or y axis, that is
x and y intercepts.

Let d be the distance of the resultant from O and α be its inclination to x axis (Fig. 2.19). Then
the intercepts are given by:

     x d y d=
sin α α

=
cos ...(2.12)

d

Y

X
O

y

x B

F3

F2

F1

�

A

R

Fig. 2.19

Another method of finding the intercepts is as follows:
Let Rx = ΣFx and Ry = ΣFy be the components of the resultant R in x and y directions. Considering

the moment of R about O as the sum of moments of its components about B (Varignon’s theorem)
we get (ref. Fig. 2.20).
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Rd = ΣMO

Rx × 0 + Ry x = ΣMO

∴  x = Σ Σ
Σ

M

R

M

F
o

y

o

y

= ...(2.13)

Y

R x

R y

O

x

x

B

A

R

Fig. 2.20

Similarly, resolving the resultant into its components at A, it can be shown that:

y = 
Σ Σ

Σ
M

R

M

F
o

x

o

x

= ...(2.14)

Example 2.8. A system of loads acting on a beam is shown in Fig. 2.21(a). Determine the resultant
of the loads.

Solution: Taking horizontal direction towards left as x axis and the vertical downward direction as
y axis.

ΣFx = 20 cos 60° = 10 kN
ΣFy = 20 + 30 + 20 sin 60° = 67.3205

BA

20 kN 30 kN

x

1 .5  m 1 .5  m 3 .0  m 2 .0  m

α 60°

R 20 kN

α

Σx

R Σy

d

(a) (b)
Fig. 2.21

∴ R = Σ Σx y� � � �
2 2+  = 10 67 32052 2+ ( . )

i.e., R = 68.0592 kN.

 tan α = 
Σ
Σ

F

F
y

x
 = 6.7321

∴ ααααα = 81.55°.
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Now taking moment about A,

ΣMA = 20 × 1.5 + 30 × 3.0 + 20 sin 60° × 6
= 223.9231 kN-m

    ∴ The distance of the resultant from point O is given by:

      d
M
R

A= = =Σ 223 9231
68 0592

3 290
.

.
. m

∴ x
d= =

°sin
.

sin .α
3 290

81 55

x = 3.326 m.
The value of x intercept may be obtained using Eqn. 2.13 also. Thus,

x = 
Σ Σ

Σ
M

R

M

Fy y

0 0 223 9231

67 3205
= = .

.
 = 3.326 m.

Example 2.9. Find the resultant of the force system shown in Fig. 2.22(a) acting on a lamina of
equilateral triangular shape.

Solution: ΣFx = 80 – 100 cos 60° – 120 cos 30° = – 73.92 N
(Negative sign shows that Rx acts from right to left)

80 N

B 80 N

100 N

60°

x

R

(a)

(b)

C

120 N

100 mm

30°
A

R

�

�Fx

�Fy

y

x

Fig. 2.22

Rx = 73.92
←

 N
ΣFy = 80 + 120 sin 30° – 100 sin 60°

Ry = 53.40 N

    ∴ R = +73 92 53 402 2. .

R = 91.19 N

 tan α = 
Σ
Σ

F

F
y

x
 = 

53

73 92

.40

.

ααααα = 35.84°
Let x be the distance from A at which the resultant cuts AC. Then taking A as moment centre,

 53.40x = 80 × 100 sin 60° + 80 × 50 + 120 sin 30° × 100
 x = 317.008 mm to the right of A as shown in Fig. 2.22(a).
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Example 2.10. Four forces having magnitudes of 200 N, 400 N, 600 N and 800 N respectively, are
acting along the four sides (1 m each) of a square ABCD taken in order, as shown in Fig. 2.23.
Determine the magnitude and direction of the resultant force.

x
R

800 N
A B

200 N

600 N D
C

400 N

400 N

400 N
R

�

�

(a)

(b)

Fig. 2.23

Solution: ΣFx = 200 – 600 = –400 N = 400 N
←−−−

ΣFy = 400 – 800 = –400 N = 400↓ N

∴ R = 2 2 2 2( ) ( ) 400 400 400 2Σ + Σ = + =x y

= 565.68 N

θθθθθ = 1 400
tan

400
− = 45° , as shown in Fig. 2.23(b).

ΣMA = 400 × 1 + 600 × 1 = 1000 N-m.

Let x be the distance from A along x axis, where resultant cuts AB. Then

x = A 1000

400y

M

F

Σ = =
Σ

2.5 m  as shown in the Fig. 2.23(a).

Example 2.11. Forces 2, 3 , 5, 3  and 2 kN respectively act at one of the angular points of a
regular hexagon towards five other angular points. Determine the magnitude and direction of the
resultant force.

Solution: Let the system of forces be as shown in Fig. 2.24 shown below:
Let O be the centre of the encircling circle A, B, C, D, E and F. In regular hexagon each side

is equal to the radius AO. Hence OAB is equilateral triangle.
∴ ∠OAB = 60°

In ∆ABC, BA = BC

∴ ∠CAB = ∠BCA

But ∠CAB + ∠BCA = interior angle at B

= 180° – 120° = 60°
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θ4

θ3

θ2
θ1

O
D

5 kN

E

2 kN

F

A

B C

2 kN 3  kN

3  kN

Fig. 2.24

∴ ∠CAB = ∠BCA =
60

2
 = 30°

θ1 = 30°
∴ θ2 = 60° – 30° = 30°

Similarly θ3 = 30°
and θ4 = 30°

∴ ΣFx = 2 cos 60° + 3  cos 30° + 5 + 3  cos 30° + 2 cos 60°

= 10 kN

ΣFy = –2 sin 60° – 3  sin 30° + 0 + 3  sin 30° + 2 sin 60°

= 0

∴ R = 2 210 0+ = 10 kN

θθθθθ = 0° i.e., the resultant is in the direction x.

Example 2.12. Find the resultant of a set of coplanar forces acting on a lamina as shown in
Fig. 2.25(a). Each square has side of 10 mm.

y

�2

�3

�1

d

1.5 kN 5 kN

x

2 kN

O

R

	


Fy

R

	

(a)

(b)


Fx

Fig. 2.25
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Solution: If θ1, θ2 and θ3 are the slopes of the forces 2 kN, 5 kN and 1.5 kN forces with respect
to x axis, then

   tan θ1 = 
10

10
 = 1 ∴ θ1 = 45°

                                tan θ2 = 
30

40
∴ θ2 = 36.87°

tan θ3 = 
10

20
∴ θ3 = 26.565

  Rx = xFΣ = 2 cos 45° + 5 cos 36.87° – 1.5 cos 26.565° = 4.072 kN

R y= ΣFy = 2 sin 45° – 5 sin 36.87° – 1.5 sin 26.565° = 2.26 kN

R = ( ) ( )Σ ΣF Fx y
2 2+  = 4.66 kN.

  tan
.

.
α = 2 26

4 072

∴ ααααα = 28.99°.
Distance d of the resultant from O is given by

Rd = ΣMO

 4 66 2 45 30 5 36 87 50 1 5 26 565 10. cos sin . . sin .d = × ° × + × ° × + × ° ×
= 199.13

d = 42.77 mm as shown in Fig. 2.25(a).
Note: To find moment of forces about O, 2 kN force is resolved at it’s intersection with y axis and
5 kN and 1.5 kN forces are resolved at their intersection with x axis, and then Varignon theorem is used.

Example 2.13 Determine the resultant of four parallel forces acting on the axle of a vehicle as shown
in Fig. 2.26.

A B C D

1 m1 m 2 m2 m 1 m1 m

xx

60 kN 20 kN 30 kN 40 kN

y R

x

Fig. 2.26

Solution: Let x and y axes be selected as shown in the Figure
Rx = ΣFx = 0
Ry = ΣFy = 60 + 20 + 30 + 40 = 150 kN
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∴  R = 0 1502 2+  = 150 kN

Taking clockwise moment as +ve,
ΣMA = 60 × 0 + 20 × 1 + 30 × 3 + 40 × 4

 = 270 kN-m
∴ Distance of resultant from A

x = 
270

150
 = 1.8 m as shown in the figure.

Example 2.14. Determine the resultant of system of parallel forces acting on a beam as shown in
Fig. 2.27.

80 kN 30 kN 40 kN 50 kN 60 kN

x

2 m2 m 2 m2 m 4 m4 m 2 m2 m

10 m10 m

xx

A B C D E

y R

Fig. 2.27

Solution: Selecting x and y axes as shown in Fig. 2.27

Rx = ΣFx = 0
Ry = ΣFy = 80 – 30 + 40 – 50 + 60 = 100 kN

∴  R = 0 1002 2+  = 100 kN, in y-direction

Taking clockwise moment as positive,

ΣΣΣΣΣMA = 80 × 0 – 30 × 2 + 40 × 4 – 50 × 8 + 60 × 10 = 300 kN-m
∴ The distance of resultant from A is,

x = 
ΣM

R
A

y

= 300

100
 = 3 m as shown in Fig. 2.27.

Example 2.15. The system of forces acting on a bell crank is shown in Fig. 2.28(a). Determine the
magnitude, direction and the point of application of the resultant.

700 N

1000 N

60°

1200 N

500 N

60°

R

150
150

15
0

15
0

x O

	
	


 Fx

R 
Fy

(a)             Fig. 2.28 (b)
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Solution: Rx = ΣFx = 500 cos 60° – 700 = – 450 N = 450 N (from right to left)

Ry = ΣFy = – 1200 – 1000 – 500 sin 60° = – 2633.01 N
= 2633.01 N (downward)

R = 450 2633 012 2+ ( . )

R = 2671.19 N.

      tan
.α = 2633 01

450
ααααα = 80.30°, as shown in Fig. 2.28(b).

Let the point of application of the resultant be at a distance x from the point O along the
horizontal arm. Then,

x × 2633.01 = 500 sin 60° × 300 + 1000 × 150

– 1200 × 150 cos 60° + 700 × 300 sin 60°
x = 141.195 mm, as shown in Fig. 2.28(a).

Example 2.16. Various forces to be considered for the stability analysis of a dam are shown in the
Fig. 2.29. The dam is safe if the resultant force passes through middle third of the base. Verify
whether the dam is safe.

Solution: Rx = ΣFx = 500 kN

Ry = ΣFy = + 1120 – 120 + 420 = 1420 kN
= 1420 kN (downward)

Let x be the distance from O where the resultant cuts the base.

x
O

7 m

y

5 m

4m

420 kN

2m500 kN

120 kN

1120 kN

4 m

Fig. 2.29

Then xΣFy = ΣMO

x × 1420 = 500 × 4 + 1120 × 2 – 120 × 4 + 420 × 5

∴ x = 4.126 m

The resultant passes through the middle third of the base i.e., between 7
3

 m, and 2
7
3

×  m.

Hence, the dam is safe.



FUNDAMENTALS OF STATICS 37

Example 2.17. A building frame is subjected to wind loads as shown in Fig. 2.30. Determine the
resultant of the loads.

1 m 1 m 1 m 1 m 1 m 1  m

5  kN

10 kN

10 kN

5 kN 5 kN
10 kN

10 kN

5 kN

C

6 m

3 m
d 1 .5  m

R

Fig. 2.30

Solution: The roof is inclined at 45° to horizontal and loads are at 90° to the roof. Hence, the loads
are also inclined at 45° to vertical/horizontal.

Now,

Rx = ΣFx = (5 + 10 + 10 + 5 + 5 +10 + 10 + 5) cos 45°

= =60 1
2

42 426× .  kN

ΣFy = –(5 + 10 + 10 + 5) sin 45° + (5 + 10 + 10 + 5) sin 45°

= 0

∴ R = Σ Fx = 42.426 kN
and its direction is horizontal.

Let R be at a distance d from the ridge A.
Then, Rd = ΣMA

60
1

2
5

3

2
10

2

2
10

1

2
10

1

2
10

2

2
5

3

2
× × × × × × × ×d = + + + + +

d = 1.5 m

∴ Resultant is a horizontal force of magnitude 42.426 kN at 1.5 m below A.

Example 2.18. Determine the magnitude, direction and line of action of the equilibriant of the given
set of coplanar forces acting on a planar structure shown in Fig. 2.31.

Solution: The two 40 kN forces acting on the smooth pulley may be replaced by a pair of 40 kN
forces acting at centre of pulley C and parallel to the given forces, since the sum of moments of the
two given forces about C is zero.

Now, Rx = ΣFx = 20 cos 45° – 30 cos 60° – 50 cos 30° + 40 cos 20° – 40 sin 30°

ΣFx = – 26.5714 kN
  = 26.5714 kN (from right to left)
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C
3

m

20°

30°

60°

30 kN

B
20 kN

20 kN

40 kN

A

20 kN
45°

x
E

	

2 m 2 m 2 m

50 kN

30°

	

R
113.4447

26.5741

(a) (b)

40 kN

Fig. 2.31

ΣFy = – 20 sin 45° – 20 + 20 – 30 sin 60° – 50 sin 30°

  – 40 sin 20° – 40 cos 30°

= – 113.4447 kN = 113.4447 kN downward.

R = ( ) ( )Σ ΣF Fx y
2 2+  = 116.515 kN

tan
.
.

α = 113 4447
26 5714

α = °76.82  as shown in Fig. 2.31(b)

Let the resultant intersect AB at  a distance x from A. Then,

x ΣFy = ΣMA

x × 113.4447 = 20 × 4 – 20 × 4 + (30 sin 60°) × 6 + (50 sin 30°)
× 2 – (50 cos 30°) × 2 + (40 cos 20°) × 3

– (40 sin 30°) × 3

x = 1.516 m

The equilibriant is equal and opposite to the resultant. Hence, it is as shown in Fig. 2.31(a) in
which E = 116.515 kN, α = 76.82° and x = 1.516 m.

2.11  TYPES OF FORCES ON A BODY

Before taking up equilibrium conditions of a body, it is necessary to identify the various forces acting
on it. The various forces acting on a body may be grouped into:

(a) Applied Forces

(b) Non-applied Forces
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(a) Applied Forces
These are the forces applied externally to a body. Each of the forces is having contact with the body.
Depending upon type of their contact with the body, the applied forces may be classified as:

(i) Point Force
(ii) Distributed Forces

(i) Point Force: It is the one which has got contact with the body at a point. Practically there
is no force which will have contact with the body at a single point. However, when the contact area
is small compared to the other dimensions in the problem, for simplicity of calculation the force may
be considered as a point load. If a person stands on a ladder, his weight be taken as an applied point
load [Fig. 1.2]. Characteristics of such forces are already explained in Art. 1.1.

(ii) Distributed Forces: Distributed forces may act over a line, a surface or a volume.
Correspondingly they are known as linear, surface and body forces.

Linear Force: A linear force is one that acts along a line on the body. It is usually represented
with abscissa representing the position on the body and ordinate representing the magnitude of the
load. An example of this force is a beam subjected to uniformly distributed/uniformly varying or
general load. The force ‘dF’ at any small length ‘ds’ is given by

dF = w ds

Surface Force: A force acting on the surface of a body is known as surface force. The hydrostatic
pressure acting on a Dam is an example of surface force. The force dF acting on any area dA is given
by

dF = p dA

where ‘p’ is the intensity of force per unit area.

Body Force: A body force is the force exerted from each and every particle of the mass of the
body. Example of this type of force is the weight of a block acting on the body under consideration.
The body force dF of volume dV is given by

dF = γ dV

where γ is the force per unit volume.

(b) Non-applied Forces

There are two types of non-applied forces: (a) Self weight and (b) Reactions.

Self weight: Everybody subjected to gravitational acceleration and hence has got a selfweight.
W = mg

where m is mass of the body and g is gravitational acceleration (9.81 m/sec2 near the earth surface)

Selfweight always acts in vertically downward direction. When analysing equilibrium conditions
of a body, selfweight is treated as acting through the centre of gravity of the body. If selfweight is
very small, it may be neglected.

Reactions: These are self-adjusting forces developed by the other bodies which come in contact
with the body under consideration. According to Newton’s third law of motion, the reactions are
equal and opposite to the actions. The reactions adjust themselves to bring the body to equilibrium.
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If the surface of contact is smooth, the direction of the reaction is normal to the surface of
contact. If the surface of contact is not smooth, apart from normal reaction, there will be frictional
reaction also. Hence the resultant reaction will not be normal to the surface of contact.

2.12 FREE BODY DIAGRAM

In many problems, it is essential to isolate the body under consideration from the other bodies in
contact and draw all the forces acting on the body. For this, first the body is drawn and then applied
forces, selfweight and the reactions at the points of contact with other bodies are drawn. Such a
diagram of the body in which the body under consideration is freed from all the contact surfaces and
shows all the forces acting on it (including reactions at contact surfaces), is called a
Free Body Diagram (FBD). Free Body Diagrams (FBD) are shown for few typical cases in
Table 2.2.

Table 2.2 Free Body Diagrams (FBD) for a Few Typical Cases

Reacting Bodies FBD required for FBD

R 1

R 2

P

G

W
600 N

S
m

oo
th

S
m

oo
th

Sm ooth

P

600 N

Ball

Ba ll

Ladder

B lock weigh ing 600 N

600 N

400 N

W

W

R

T

R

600 N

T

R

2.13 EQUILIBRIUM OF BODIES

A body is said to be in equilibrium when it is at rest or has uniform motion. According to Newton’s
law of motion, it means the resultant of all the forces acting on a body in equilibrium is zero. The
resultant of coplanar system of forces acting on a body is zero when—
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(a) The algebraic sum of the component of forces along each of the two mutually perpendicular
directions is zero (translatory motion is zero).

(b) The algebraic sum of moment of all the forces about any point in the plane is zero
(rotational moment is zero).

The above conditions for coplanar concurrent and non-concurrent forces is discussed and illustrated
in this article.

2.14 EQUILIBRIUM OF CONCURRENT FORCE SYSTEMS

If the moment equilibrium condition is considered about the concurrent point of application of
the forces, the equation results into zero equal to zero. Hence this is not at all a useful equation. Thus
only the conditions to ensure translatory motion is zero gives useful equations. In planar problems
the resultant R of a system of forces is zero only when the following conditions are satisfied.

ΣFx = 0 ...(2.15a)
ΣFy = 0 ...(2.15b)

It may be observed that only one of the above two conditions is not sufficient. For example,
ΣFx = 0 means that R cos α = 0. This will ensure that the resultant R cannot exist in any direction
except in y-direction (α = 90°). Hence the condition ΣFy = 0 also should be satisfied to ensure the
resultant R does not exist, that is, the equilibrium condition exists. After drawing free body diagrams
for each of the body under the action of concurrent force system equations 2.15a and 2.15b may be
written and the problems may be solved.

If a body is in equilibrium under the action of only three concurrent forces, Lami’s theorem also
may be used.

Lami’s theorem states : If a body is in equilibrium under the action of three forces, each force
is proportional to the sine of the angle between the other two forces.

Thus, for the system of forces shown in Fig. 2.32(a).

31 2

sin� ���� ��� �

FF F= = ...(2.15c)

Proof: Draw the three forces F1, F2 and F3 one after the other in direction and magnitude starting
from point a. Since the body is in equilibrium (resultant is zero), the last point must coincide with
a. Thus, it results in triangle of forces abc as shown in Fig. 2.32(b). Now, the external angles at a,
b and c are equal to β, γ and α.

F2 F2F1

F1

F3

F3

� �

	

	

�

�

(a) (b)

c

a

b

Fig. 2.32
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Since ab is parallel to F1,

bc parallel to F2 and

ca parallel to F3.

In the triangle of forces abc

ab = F1,

bc = F2 and ca = F3.
Applying sine rule for the triangle abc,

 
ab bc ca

sin( ) sin( ) sin( )180 180 180−
=

−
=

−α β γ

i.e.,  31 2

sin� ���� ��� �

FF F= =

Note: While determining the direction of the reaction on a body note that if the body is in equilibrium under

the action of only three coplanar forces, those three forces must be concurrent.

Example 2.19. A sphere of weight 100 N is tied to a smooth wall by a string as shown in Fig. 2.33(a).
Find the tension T in the string and reaction R of the wall.

Solution: Free body diagram of the sphere is as shown in Fig. 2.33(b). Figure 2.33(c) shows all the
forces moving away from the centre of the ball. Applying Lami’s theorem to the system of forces.

 
T R

sin sin( ) sin( )90 180 15

100

90 15°
=

−
=

+

∴ T = 103.53 N.
R = 26.79 N.

The above problem may be solved using equations of equilibrium also.

Taking horizontal direction as x axis and vertical direction as y axis,
ΣFy = 0 gives

(a) (b) (c)

15°

y

x

R R

T T15°

100 N 100 N

15°

Fig. 2.33

T cos 15° – 100 = 0
T = 103.53 N.

ΣFx = 0 gives
R – T sin 15° = 0

 R = 26.79 N.
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Notes:

1. The string can have only tension in it (it can pull a body), but cannot have compression in it (cannot
push a body).

2. The wall reaction is a push, but cannot be a pull on the body.

3. If the magnitude of reaction comes out to be negative, then assumed direction of reaction is wrong. It
is acting exactly in the opposite to the assumed direction. However, the magnitude will be the same. Hence
no further analysis is required. This advantage is not there in using Lami's equation. Hence, it is advisable for
beginners to use equations of equilibrium, instead of Lami's theorem even if the body is in equilibrium under
the action of only three forces.

Example 2.20. Determine the horizontal force P to be applied to a block of weight 1500 N to hold
it in position on a smooth inclined plane AB which makes an angle of 30° with the horizontal [Fig.
2.34(a)].

Solution: The body is in equilibrium under the action of applied force P, self-weight 1500 N and
normal reaction R from the plane. Since R, which is normal to the plane, makes 30° with the vertical
(or 60° with the horizontal),

ΣFy = 0, gives

R cos 30°– 1500 = 0
R = 1732.06 N.

ΣFx = 0, gives
P – R sin 30° = 0

P = R sin 30°
P = 866.03 N.

30°
A

(a) (b )

B

P

1500 N

30° R

Y

X
P

Fig. 2.34

Note: Since the body is in equilibrium under the action of only three forces the above problem can be solved
using Lami’s theorem as given below:

  
R P

sin sin( ) sin( )90 180 30

1500

90 30°
=

−
=

+

R = 1732.06 and P = 866.03.

Example 2.21. A roller of weight 10 kN rests on a smooth horizontal floor and is connected to the
floor by the bar AC as shown in Fig. 2.35 (a). Determine the force in the bar AC and reaction from
floor, if the roller is subjected to a horizontal force of 5 kN and an inclined force of 7 kN as shown
in the figure.
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Solution: A bar can develop a tensile force or a compressive force. Let the force developed be a
compressive force S (push on the cylinder). Free Body Diagram of the cylinder is as shown in
Fig. 2.35(b).

(a) (b)

R

7 kN 7 kN

5 kN 5 kN
45°45°

A 30°

C

10 kN

S

30°

Fig. 2.35

Since there are more than three forces in the system, Lami’s equations cannot be applied.
Consider the components in horizontal and vertical directions.

ΣH = 0
S cos 30° + 5 – 7 cos 45° = 0

7cos 45 5
–

cos 30

° −
= =

°
0.058 kNS

Since the value of S is negative the force exerted by the bar is not a push, but it is pull
(tensile force in bar) of magnitude 0.058 kN.

ΣV = 0

R – 10 – 7 sin 45° + S sin 30° = 0

R = 10 + 7 sin 45° – S sin 30°

= 10 + 7 sin 45° – (– 0.058) sin 30°

R = 14.979 kN.

Example 2.22. A cord ACB 5 m long is attached at points A and B to two vertical walls 3 m apart
as shown in Fig. 2.36(a). A pully C of negligible radius carries a suspended load of 200 N and is
free to roll without friction along the cord. Determine the position of equilibrium, as defined by the
distance X, that the pulley will assume and also the tensile force in the cord.

Solution: The pulley C is in equilibrium under the action of tensile forces in CA and CB and vertical
downward load 200 N. The tensile forces in segment CA and CB are the same since the pulley is
frictionless. Now consider the equilibrium of pulley C shown in Fig. 2.36(b).

ΣH = 0

T cos θ1 – T cos θ2 = 0

∴ θ1 = θ2, say, equal to θ
Now, let BC be extended to D.

∆CFD = ∆CFA

∴ CD = AC
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BD = BC + CD = BC + AC = length of chord = 5 m

DE = 3 m

∴ BE = 4 m

B

(a) (b )

3  m

D

F

A I

G

E

1 m

200 N

x H

T T
θθ

θ

θ2

T

θ1

T

200 N

C

Fig. 2.36

As ∆BHI is similar to ∆BDE

                               HI = 
BI

BE
× DE = 

1

4
 × 3 = 0.75

∴ AH = 3  – 0.75 = 2.25

x = 1.125 m. Since  AH = 2x.
At C, ΣV = 0

2 × T sin θ = 200

2 × T × 
4

5
= 200

∴ T = 125 N.
Example 2.23. A roller of radius r = 300 mm and weight 2000 N is to be pulled over a curb of height
150 mm [Fig. 2.37(a)] by a horizontal force P applied to the end of a string wound tightly around
the circumference of the roller. Find the magnitude of P required to start the roller move over the
curb. What is the least pull P through the centre of the wheel to just turn the roller over the curb?

Solution: When the roller is about to turn over the curb, the contact with the floor is lost and hence
there is no reaction from the floor. The reaction R from the curb must pass through the intersection
of P and the line of action of self weight, since the body is in equilibrium under the action of only
three forces (all the three forces must be concurrent).

Referring to Fig. 2.37(b),

  cos
( )α = = − =OC

AO
300 150

300
1
2

∴ α = 60°
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1 5 0

r 300

P

(a)

(b)

P
B

R

A C

O

2000 N

α
O

Fig. 2.37

Now in ∆ AOB, ∠OAB = ∠OBA since OA = OB

but  ∠ + ∠ =OAB OBA α
 2 60∠ = °OBA
 ∠ = °OBA 30

i.e., the reaction makes 30° with the vertical

ΣV = 0, gives

R cos 30° – 2000 = 0

R = 2309.40 N

ΣH = 0, gives

P – R sin 30° = 0

P = 2309.40 × sin 30°

P = 1154.70 N.
Least force through the centre of wheel:

Now the reaction from the curb must pass through the centre of the wheel since the other two
forces pass through that point. Its inclination to vertical is θ = 60°.

If the triangle of forces ABC is constructed [Fig. 2.38(b)], representing selfweight by AB, reaction
R by BC and pull P by AC, it may be observed that AC to be least, it should be perpendicular to
BC. In other words, P makes 90° with the line of action of R.

θ 2000 N

P

(a) (b)

R

A

C

B

θ

Fig. 2.38

From triangle of forces ABC, we get
P = AC = AB sin θ = 2000 sin 60°

P = 1732.05 N.
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2.15   EQUILIBRIUM OF CONNECTED BODIES

When two or more bodies are in contact with one another, the system of forces appears as though
it is a non-concurrent forces system. However, when each body is considered separately, in many
situations it turns out to be a set of concurrent force system. In such instances, first, the body
subjected to only two unknown forces is to be analysed followed by the analysis of other connected
body/bodies. Such examples are illustrated below.
Example 2.24. A system of connected flexible cables shown in Fig. 2.39(a) is supporting two vertical
forces 200 N and 250 N at points B and D. Determine the forces in various segments of the cable.

Fig. 2.39

Solution: Free body diagrams of points B and D are shown in Fig. 2.39(b). Let the forces in the
members be as shown in the figure.

Applying Lami’s theorem to the system of forces at point D,

1 2 250

sin 120 sin 135 sin 105

T T= =
° ° °

∴ T1 = 224.14 N.
T2 = 183.01 N.

Consider the system of forces acting at B.
ΣV = 0

T3 cos 30° – 200 – T2 cos 60° = 0

T3
200 183 01 60

30
= + °

°
. cos

cos

T3 = 336.60 N.
ΣH = 0

T4 – T2 sin 60° – T3 sin 30° = 0
T4 = 183.01 × sin 60° + 336.60 sin 30°

T4 = 326.79 N.

Example 2.25. A rope AB, 4.5 m long is connected at two points A and B at the same level 4 m apart.
A load of 1500 N is suspended from a point C on the rope 1.5m from A as shown in Fig. 2.40(a).
What load connected at a point D on the rope, 1 m from B will be necessary to keep the position
CD level ?
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α

T2 T2

T3 T1

T2 T2

T3

1500 N W

T11.5 m 

1.0m

y

1500 N W =?

C

x
A E F B

2.0 m D

β

(a ) (b ) (c)

α β

Fig. 2.40

Solution: Drop perpendiculars CE and DF on AB.

Let CE = y and

AE = x

From ∆ AEC, x2 + y2 = 1.52 = 2.25 ...(i)

Now, AB = 4 m

and AC + CD + BD = 4.5 m

i.e., CD = 4.5 – 1.5 – 1.0 = 2.0 m

∴ EF = 2.0 m

∴ BF = AB – (AE + EF)

= 4 – (x + 2.0) = 2 – x ...(ii)

From ∆ BFD, BF2 + DF2 = 12

(2 – x)2 + y2 = 1 ...(iii)

From (1) and (3)

x2 – (2 – x)2 = 1.25

i.e., x2 – 4 + 4x – x2 = 1.25

x = 1.3125 m

∴ α = �
��

�
��

= °−cos
.

.
.1 1 3125

1 5
28 955

  β = −�
��

�
��

= °−cos
.

.1 2 1 3125
1

46 567

Applying Lami’s theorem to the system of forces acting at point C [Fig. 2.40(b)], we get

T T1 2

90 118 955

1500

180 28 955sin sin . sin ( . )°
=

°
=

− °

T1 = 3098.39 N

T2 = 2711.09 N
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Applying Lami’s theorem to the system of forces at B [Fig. 2.40(c)], we get

T W T3 2

90 180 46567 136567sin sin( . ) sin .°
=

− °
=

°

∴ T3 = 3993.28 N

and W = 2863.53 N.

Example 2.26. A wire rope is fixed at two points A and D as shown in Fig. 2.41(a). Two weights
20 kN and 30 kN are attached to it at B and C, respectively. The weights rest with portions AB and
BC inclined at angles 30° and 50° respectively, to the vertical as shown in figure. Find the tension
in the wire in segments AB, BC and CD and also the inclination of the segments CD to vertical.

Solution: Applying Lami’s theorem for the system of forces at B [Fig. 2.41(b)], we get

T T1 2

50 150
20
160sin sin sin°

=
°

=
°

T1 = 44.79 kN.

T2 = 29.24 kN.

Writing equations of equilibrium for the system of forces at C [Fig. 2.41(c)], we get

T3 sin θ = T2 sin 50° = 22.4 kN ...(i)

A

20 kN

T1

T2

T2

T3

T1

T2

T2
T3

T3

B

C

30 kN

(a)
(b ) (c )

D
θ

20 kN 30 kN

θ

50º

50º
30º

50º

30º

Fig. 2.41

and T3 cos θ = 30 – T2 cos 50°

= 11.20 ...(ii)

From (1) and (2), tan θ = 1.998687

∴ θθθθθ = 63.422°.

and T3 = 25.045 kN.

Example 2.27. A wire is fixed at two points A and D as shown in Fig. 2.42(a). Two weights 20 kN
and 25 kN are supported at B and C, respectively. When equilibrium is reached it is found that
inclination of AB is 30° and that of CD is 60° to the vertical. Determine the tension in the segments
AB, BC and CD of the rope and also the inclination of BC to the vertical.
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Solution: Writing equations of equilibrium for the system of forces at joints B and C [Figs. 2.42(b)
and (c)], we have

T2 sin θ = T1 sin 30° ...(i)
T2 cos θ = T1 cos 30° – 20 ...(ii)

A D

60°

T3
T3

T1T1

T1

T2

T2
T2

T2
C

20 kN
25 kN

20 kN 25 kN
(b) (c)

θ

30°

θ 60°

(a )

30°B

θ

Fig. 2.42

T2 sin θ = T3 sin 60° ...(iii)
T2 cos θ = 25 – T3 cos 60° ...(iv)

From (1) and (3)
T1 sin 30° = T3 sin 60°

∴ T1 = 3 3T ...(v)
From (2) and (4),

T1 cos 30° – 20 = 25 – T3 cos 60°

  3
3

2
1
2

453 3T T+ =

T3 = 22.5 kN.

From (5), T1 = 38.97 kN.

From (1), T2 sin θ = 19.48

From (2), T2 cos θ = 13.75

∴ tan θ = 1.4167

θ = 54.78.

T2 = 23.84 kN.

Example 2.28. A 600 N cylinder is supported by the frame BCD as shown in Fig. 2.43(a). The frame
is hinged at D. Determine the reactions at A, B, C and D.

Solution: Free body diagram of sphere and frame are shown in Figs. 2.43(b) and 2.43(c), respectively.
Considering the sphere, ΣV = 0, gives

RB = 600 N. ...(i)
ΣH = 0, gives
RA = RC ...(ii)
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O

B

A

D

(a) (b ) (c)

60
0 

m
m

300 m m 

C

600 N

R B

RC R A R C

R B

R D

α
O 150 m mr ≡

150 m
m

D

Fig. 2.43

As the frame is in equilibrium under the action of three forces only, they must be concurrent
forces. In other words, reaction at D has line of action alone OD. Hence, its inclination to horizontal
is given by:

tan α =
450

150
3=

α = 71.5650°
ΣV = 0, gives

RD sin α = RB = 600

∴ RD = 632.456 N.
ΣH = 0, gives
RC = RD cos α

∴∴∴∴∴ RC = 200 N.
From (2), ∴ RA = 200 N.

Example 2.29. Two smooth spheres each of radius 100 mm and weight 100 N, rest in a horizontal
channel having vertical walls, the distance between which is 360 mm. Find the reactions at the points
of contacts A, B, C and D shown in Fig. 2.44(a).
Solution: Let O1 and O2 be the centres of the first and second spheres. Drop perpendicular O1P to
the horizontal line through O2. Figures 2.44(b) and 2.44(c) show free body diagram of the sphere
1 and 2, respectively. Since the surface of contact are smooth, reaction of B is in the radial direction,
i.e., in the direction O1O2. Let it make angle a with the horizontal. Then,

cos α = 2 1 2

1 2 1 2

360O P O A O D

O O O B BO

− −=
+

 = 
360 100 100

0.8
100 100

− − =
+

∴ sin α = 0.6.

Consider sphere No. 1.

ΣV = 0, gives

RB × 0.6 = 100

RB = 166.67 N.

ΣH = 0, gives

RA = RB × 0.8

∴ RA = 133.33 N.
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360 m m

D

C

A

O1

α
P

100 N

100 N

R C

R B

O 2

(b)

(c)(a )

B

R D

R A

Fig. 2.44

Consider sphere No. 2

ΣV = 0, gives

Rc = 100 + RB × 0.6

∴ Rc = 200 N.

ΣH = 0

RD = RB × 0.8

∴ RD = 133.33 N.
Example 2.30. Two cylinders, A of weight 4000 N and B of weight 2000 N rest on smooth inclines
as shown in Fig. 2.45(a). They are connected by a bar of negligible weight hinged to each cylinder
at its geometric centre by smooth pins. Find the force P to be applied as shown in the figure such
that it will hold the system in the given position.

60°

(a)

A
15°

60°

B

15°

45°

P

15°

15°

15°

60°

60°

60°

4000 N 2000 N

(b)

C

45°

45°

60°
P

C

(c)

Fig. 2.45
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Solution: Figures 2.45(b) and 2.45(c) show the free body diagram of the two cylinders. Applying
Lami’s theorem to the system of forces on cylinder A, we get

sin 60

C

°
=

4000

sin(60 90 15)+ −

C = 4898.98 N
Consider cylinder B.

Summation of the forces parallel to the inclined plane (45° to horizontal) = 0, gives:
P cos 15° + 2000 cos 45° – C cos 60° = 0

∴ P = 
4898.98 cos 60 2000 cos 45

cos 15

° − °
°

P = 1071.8 N.

2.16 EQUILIBRIUM OF NON-CONCURRENT FORCE SYSTEMS

To satisfy the condition that there should not be translatory motion of the body subjected to coplanar
forces, in this case also the following two conditions are to be satisfied:

ΣFx = 0; ΣFy = 0

To satisfy the condition that there should not be rotational motion the following condition should
be satisfied.

ΣMA = 0, where A is any point in the plane.

Hence, the necessary and sufficient conditions for equilibrium of coplanar force system are:

ΣFx = 0
 ΣFy = 0 ...(2.16)

and ΣMA = 0
Referring to Fig. 2.46, A, B and C are three points in the x-y plane which are not collinear. Any

system of forces acting on a body may be replaced by a single force and a couple. Let R be such
resultant force.

C

d
ΣFx

ΣF y
R

y

d1
d2B

xA

Fig. 2.46

�

�
�

��
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If the condition ΣMA = 0 is satisfied, we can conclude that the resultant R should be a force
passing through A. If ΣMB = 0 is satisfied, the line of action of the resultant passes through B, i.e.,
AB is the line of action. Now, if ΣMC = 0 is also satisfied, the resultant should be zero since the line
of action of the resultant (line AB) cannot pass through C also. Thus if A, B, C are not collinear
points, the following conditions are necessary and sufficient conditions of equilibrium.

and

Σ
Σ
Σ

M

M

M

A

B

C

=
=
=

�

�
�

�
�

0

0

0
...(2.17)

The equilibrium Equations 2.16 are not independent of equilibrium Equations 2.15. Two of them
are common to the two sets. Referring to Fig. 2.46, R can be resolved into its components perpendicular
to and parallel to AC.

Then, ΣMC = (ΣFx)d

∴ if    ΣMC = 0, (ΣFx)d = 0  or ΣFx = 0
Now, ΣMB = 0

i.e., (ΣFx)d1 + (ΣFx)d2 = 0
But ΣFx = 0
∴ (ΣFy)d2 = 0

Since ABC are not colinear, d2 ≠ 0
∴ ΣFy = 0

Thus, ΣMC = 0 is identical to ΣFx = 0 and ΣMB = 0 is identical to ΣFy = 0. Hence any one of
the following sets may be used as equations of equilibrium:

(1) 0; 0; 0

(2) If line is not in direction,

0; 0; 0

(3) If line is not in direction

0; 0; 0

(4) If , and are non-collinear

0; 0; 0

x y A

y A B

x A B

A B C

F F M

AB y

F M M

AB x

F M M

A B C

M M M

Σ = Σ = Σ = 


Σ = Σ = Σ =


Σ = Σ = Σ = 

Σ = Σ = Σ = 

...(2.18)

It can be proved that if a system is in equilibrium under the action of three forces, those three
forces must be concurrent.

Let P1, P2 and P3 be the forces acting on a body as shown in Fig. 2.47 and let P1 and P2 intersect
at A. Then applying moment equilibrium condition about A, we get

ΣMA = 0 i.e. P3d = 0

where d is distance of line of action of P3 from A.

Since P3 is not zero,
d = 0, i.e. P3 also must pass through A.

Hence, the proposition is proved.
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d

A

P1

P2

P 3

Fig. 2.47

Three problems are solved in this article. The problem of finding the reactions at supports of
beams and trusses also fall under this categories. But these problems are solved in the chapters
analysis of beams and trusses.

Example 2.31. The 12 m boom AB weighs 1 kN, the distance of the centre of gravity G being 6 m
from A. For the position shown, determine the tension T in the cable and the reaction at B [Ref.
Fig. 2.48(a)].

Solution: The free body diagram of the boom is shown in Fig. 2.48(b).
ΣMA = 0, gives

T sin 15° × 12 – 2.5 × 12 cos 30° – 1 × 6 cos 30° = 0

T = 10.0382 kN.

∑ H = 0, gives

HA – T cos 15° = 0

HA = 9.6962 kN

15°
2 .5 kN

G
A

C

B

(a) (b )

A

B

H A

V A

1 kN 2.5 kN30°

15°

15°

6 m
6 m

30°

α
H A

R AVA

(c)

T

Fig. 2.48

∑V = 0, gives

VA = 1 + 2.5 + T sin 15° = 6.0981 kN

RA = V HA A
2 2+

RA = 11.4544 kN.
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ααααα = tan .
.

−1 6 0981
9 6962

= 32.17° as shown in Fig. 2.48(c).

Example 2.32. A cable car used for carrying materials in a hydroelectric project is at rest on a track
formed at an angle of 30° with the vertical. The gross weight of the car and its load is 60 kN and
its centroid is at a point 800 mm from the track half way between the axles. The car is held by a
cable as shown in Fig. 2.49. The axles of the car are at a distance 1.2 m. Find the tension in the
cables and reaction at each of the axles neglecting friction of the track.

60 kN

60°
R1

R2

6
0
0

6
0
0

600

800

G

Cable
T

30°

Fig. 2.49

Solution: Let T be the tension in the cable and the reaction at the pair of wheels be R1 and R2 as
shown in Fig. 2.49.

Now, ∑ of forces parallel to the track = 0, gives

T – 60 sin 60° = 0
T = 51.9615 kN.

Taking moment equilibrium condition about upper axle point on track, we get

R1 × 1200 + T × 600 – 60 sin 60° × 800 – 60 cos 60° × 600 = 0
R1 = 23.6603 kN.

∑  of forces normal to the plane = 0, gives
R1 + R2 – 60 cos 60° = 0

R2 = 30 – 23.6603

R2 = 6.3397 kN.

Example 2.33. A hollow right circular cylinder of radius 800 mm is open at both ends and rests on
a smooth horizontal plane as shown in Fig. 2.50(a). Inside the cylinder there are two spheres having
weights 1 kN and 3 kN and radii 400 mm and 600 mm, respectively. The lower sphere also rests on
the horizontal plane. Neglecting friction find the minimum weight W of the cylinder for which it will
not tip over.

Solution: Join the centres of spheres, O1 and O2 and drop O1D perpendicular to horizontal through
O2.

Now, O1O2 = 400 + 600 = 1000 mm

O2D = 1600 – 400 – 600 = 600 mm
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If α is the inclination of O2O1 to horizontal,

cos α =
600

1000
0 6= .

∴ sin α = 0.8

O 2

O 1

D

1 6 0 0

R 1

R 2

W

A

h 2

h 1 O 2

O 1

D R 2
α

3  kN

1  k N

B
R 3

R 1

(a) (b ) (c)

α

Fig. 2.50

Free body diagrams of cylinder and spheres are shown in Fig. 2.50(b) and (c). Considering the
equilibrium of the spheres,

∑ MO2
= 0, gives

R1 × O1O2 sin α – 1 × O2D = 0
R1 × 1000 × 0.8 = 1 × 600

R1 = 0.75 kN

∑ H = 0, gives

R2 = R1 = 0.75 kN

∑V = 0, gives

R3 = 1 + 3 = 4 kN
Now consider the equilibrium of cylinder. When it is about to tip over A, there is no reaction

from ground at B. The reaction will be only at A. ∑ M A  = 0 gives,

R1 h1 – R2 h2 – W × 800 = 0
R1(h1 – h2) – W × 800 = 0

Since R1 = R2

0.75 × O1D = W × 800
0.75 × 1000 × 0.8 = W × 800

∴ W = 0.75 kN.

IMPORTANT FORMULAE

1. Newton’s third law, F = R.

2. Newton’s gravitational law, F = G 
m m

d
1 2

2 .

3. Weight of a body, W = mg.
4. Moment of a force about a point = F × d.
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5. Varignon’s theorem
Ra = P1d1 + P2d2 + P3d3 + ....

6. Magnitude of a couple
 M = Pd.

7. P at any point A may be resolved into force P at B plus a moment P × d, where ‘d’ is the
perpendicular distance of B from the line of action of P through A.

8. Rx = R cos α = ΣFx

 Ry = R sin α = ΣFy

 tan α = 
Σ
Σ

F

F
y

x

and R = ( ) ( )Σ ΣF Fx y
2 2+ .

9. x and y intercepts of the resultant are given by

 x = 
d M

F
o

ysin α
=

Σ
Σ

and  y = 
d M

F
o

xcos α
= Σ

Σ
.

10. Lami’s theorem:

F F F1 2 3

sin sin sinα β γ
= = .

THEORY QUESTIONS

1. State and explain Newton’s laws of mechanics.
2. Explain the following laws of mechanics:

(i) Law of transmissibility of forces
(ii) Parallelogram law of forces.

3. Write short notes on

(i) Principles of physical independence
(ii) Principles of superposition.

4. Explain with examples the following system of forces
(i) Coplanar concurrent forces

(ii) Coplanar non-concurrent forces
(iii) Non-coplanar non-concurrent forces.

5. State and explain Varignon’s theorem of moments.
6. Define a couple-moment and list its characteristics.



FUNDAMENTALS OF STATICS 59

PROBLEMS FOR EXERCISE

1. A body is subjected to the three forces as shown in Fig. 2.51. If possible determine the direction
of the force F so that the resultant is in x-direction, when

(a) F = 5000 N
(b) F = 3000 N

6 0°

2 00 0 N

x

F

θ 

3 00 0 N

Fig. 2.51

[Ans. (a) 36.87°; (b) Not possible]
2. The frictionless pulley A shown in Fig. 2.52 is supported by two bars AB and AC which are

hinged at B and C to a vertical wall. The flexible cable DG hinged at D, goes over the pulley and
supports a load of 20 kN at G. The angles between the various members are shown in the figure.
Determine the forces in the bars AB and AC. Neglect the size of the pulley.

A

G

20 kN

30°
D

30°

B

C

Fig. 2.52

[Hint: Force in AD = 20 kN, tensile] [Ans. FAB = 0; FAC = 34.641 kN]
3. A cord supported at A and B carries a load of 10 kN at D and a load of W at C a shown in

Fig. 2.53. Find the value of W so that CD remains horizontal.      [Ans. W = 30 kN]

6 0 °

C D

B

3 0 °

W 10 kN

A

Fig. 2.53
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4. Three bars, hinged at A and D and pinned at B and C as shown in Fig. 2.54 form a four-linked
mechanism. Determine the value of P that will prevent movement of bars.

P

45°
60°45°

75°

B C

D

2000 N

A

Fig. 2.54

[Ans. P = 3047.2 N]
5. Two identical rollers, each of weights 100 N are supported by an inclined plane and a vertical

wall as shown in Fig. 2.55. Assuming smooth surfaces, find the reactions induced at the points
of supports A, B, C and D.

D 2

1

B

C

A

3 0 °

Fig. 2.55

[Ans. RA = 86.67 N; RB = 50.00 N; RC = 144.34 N; RD = 115.47 N]

6. Two cylinder of diameters 100 mm and 50 mm, weighing 200 N and 50
N, respectively are placed in a trough as shown in Fig. 2.56. Neglecting
friction, find the reactions at contact surfaces 1, 2, 3 and 4.

[Ans. R1 = 37.5 N; R2 = 62.5 N; R3 = 287.5 N; R4 = 353.5 N]

7. Two smooth spheres each of weight W and radius ‘r’ are in equilibrium in a horizontal channel
of width ‘b’ (b < 4r) and vertical sides as shown in Fig. 2.57. Find the three reactions from the
sides of the channel which are all smooth. Also find the force exerted by each spheres on the
other.

1

2

3

4
45°

120 mm

Fig. 2.56
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b

r

r

Fig. 2.57

[Ans. RA = RD = W cot α, RC = 2W and RB = 
sin

W

α

where cos α = 
2

2

b r

r

−
]

8. Determine the resultant of parallel force system shown in Fig. 2.58.

50 kN 40 kN 40 kN 40 kN

A D

2 m2 m 3 m3 m 3 m3 m
B C

Fig. 2.58

[Ans. R = 10 kN, downward at x = 4 m from A]
9. Determine the resultant of the parallel coplanar force system shown in Fig. 2.59.

D = 600 mm

d
400 N

1000 N

y 

 x30°60°

10°
40°

2000 N

600 N

R

O

Fig. 2.59

[Ans. R = 800 N (towards left); d = 627.50 mm]

10. An equilateral triangular plate of sides 200 mm is acted upon by four forces as shown in
Fig. 2.60. Determine the magnitude and direction of the resultant of this system of forces and
its position.        [Ans. R = 57.3541 kN; α = 6.70°; d = 11.51 mm]
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5 0  kN

B

C

6 0  kN

3 0  kN

8 0  kN

A

R d   

Fig. 2.60

11. Determine the magnitude, direction and the line of application of the equilibriant of the set of
forces shown in Fig. 2.61, which will keep the plane body ABCDEFGH in equilibrium.

[Ans. E = 23.6517 kN; α = 24.37°; x from A = 1.041 m]

0.5 m 
10 kN

30 kN
B
A

C F

20 kN

0.5 m 

H

45°

α
1 m

G

D E

10 kN20 kN

20 kN

0.5  m

0.5  m

1.0  m

10 kNE

Fig. 2.61
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12. Determine the resultant of the four forces acting on a body as shown in Fig. 2.62.

[Ans. R = 200; α = 60°; at a distance y = 8.7679 m below O]

0.5  m 1 m

60°

200 N

400 N

3 m

3 m

500 N
3

4

O

300 N

Fig. 2.62

13. A bracket  is subjected to the system of forces and couples as shown in Fig. 2.63. Find the
resultant of the system and the point of intersection of its line of action with (a) line AB,
(b) line BC and (c) line CD.

[Ans. R = 485.4 N; α = 34.50°; YBA = 112.5 mm; XBC = 163.6 mm; YCD = 93.75 mm]

A150 N

150

B

XBCXBC

20 N-m 40 N-m

100 100 100
250 NC

YCD 125

D R
400 N

125 N

YBAYBA

Fig. 2.63

14. Determine the resultant of the three forces acting on the dam section shown in Fig. 2.64 and
locate its intersection with the base AB. For a safe design this intersection should occur
within the middle third. Is it a safe design?

[Ans. Resultant intersects AB 3.333 m from A. It is a safe design]
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6 m

60°

120 kN

2 m

3 m

50 kN

1 m
30 kN

BA

Fig. 2.64

15. A 1000 N cylinder is supported by a horizontal rod AB and a smooth uniform rod CD which
weighs 500 N as shown in Fig. 2.65. Assuming the pins at A, B, C and D, to be frictionless
and weight of AB negligible, find the reactions at C and D.

[Ans. VC = 937.1 N (upward); HC = 577.3 N (towards left) RD = 562.9 N (upward)]

A B

3 0°
3 .5 m

1.5 m

C

D

Fig. 2.65

16. The frame shown in Fig. 2.66 is supported by a hinge at E and by a roller at D. Determine
the horizontal and vertical components of the reactions at hinge C as it acts upon member
BD. [Ans. HC = 140 N (towards right); VC = 35 N (upward)]

Fig. 2.66



3
Trusses

A truss is a structure made up of slender members pin-connected at ends and is capable of taking
loads at joints. They are used as roof trusses to support sloping roofs and as bridge trusses to support
deck. In many machines steel trusses are used. Transmission towers are also the examples of trusses.
In the case of wooden trusses, the ends are connected by making suitable joints or by nailing and
bolting whereas in steel trusses ends are connected by bolting or welding. The trusses are also known
as ‘pinjointed frames’.

A truss in which all the members lie in a single plane is called as a plane truss. In such trusses
loads act in the plane of the truss only. Roof trusses and bridge trusses can be considered as plane
trusses. If all the members of a truss do not lie in a single plane, then it is called a space truss. Tripod
and transmission towers are the examples of space trusses. In this chapter, the analysis of only plane
trusses is considered.

3.1 PERFECT, DEFICIENT AND REDUNDANT TRUSSES

A pinjointed truss which has got just sufficient number of members to
resist the loads without undergoing appreciable deformation in shape is
called a perfect truss. Triangular truss is the simplest perfect truss and it
has three joints and three members (Fig. 3.1). Perfect trusses with four and
five joints are shown in Figs. 3.2 and 3.3 respectively.

It may be observed that to increase one joint in a perfect truss, two
more members are required. Hence the following expression may be written
down as the relationship between number of joints j, and the number of
members m, in a perfect truss.

m = 2j – 3 ...(3.1)

However, the above equation gives only a necessary, but
not a sufficient condition of a perfect truss. For example, the
two trusses shown in Fig. 3.4(a) and (b) have the same number
of members and joints. The truss shown in Fig. 3.4(a) is per-
fect whereas the one shown in Fig. 3.4(b) is not capable of
retaining its shape if loaded at the joint marked 6. Therefore,
the only necessary and sufficient condition of a perfect truss
is that it should retain its shape when load is applied at any
joint in any direction.

65

Fig. 3.2

Fig. 3.1

1 2

3
1 3

2

3

4

2

1
5

1

2

3

4
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3

1

3

2 5

7

6

4

1

2 4

5

Fig. 3.3

3
1

2 4 6

5

(a)
3

1

2 4
6

5

(b)

P

Fig. 3.4

A truss is said to be deficient if the number of members in
it are less than that required for a perfect truss. Such trusses
cannot retain their shape when loaded. A deficient truss is shown
in Fig. 3.5.

A truss is said to be redundant if the number of members in
it are more than that required in a perfect truss. Such trusses
cannot be analysed by making use of the equations of equilibrium
alone. Thus, a redundant truss is statically indeterminate. Each
extra member adds one degree of indeterminancy. For the analysis
of such members the consistency of deformations is to be
considered. The truss shown in the Fig. 3.6 is a typical redundant
truss. In this truss one diagonal member in each panel is extra.
Hence it is a two-degree redundant truss.

In this chapter, only the analysis of perfect frames is
considered.

3.2 ASSUMPTIONS

In the theory that is going to be developed in this chapter, the following assumptions are made:

(1) The ends of the members are pin-connected (hinged);
(2) The loads act only at the joints;

(3) Self-weights of the members are negligible;
(4) Cross-section of the members is uniform.

If at all the cross-section varies, the centre of gravity of the section is assumed to be located
along the same longitudinal line.

In reality the members are connected by bolting,  riveting or by welding. No special care is taken
to ensure perfect pin-connections. However, experiments have shown that assuming pin-connected
ends is quite satisfactory since the members used are slender.

Fig. 3.6

Fig. 3.5
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In most of the frames the loads act at the joints. Even if a load is not acting at a joint, it can
be replaced by its reaction at the joint and a local bending effect on the member. The frame may
be analysed for the joint loads and the local bending effect on the member superposed in the design
of that member.

In most of the trusses, the self-weight is really small compared to the loads they carry. Hence
self-weight of the members may be neglected.

It is the duty of construction engineer to see that the centroid of all cross-sections lie along a
single axis so that the member is held in equilibrium by the two forces acting at its ends.

Because of the assumption of pin-connected ends, it is more appropriate to call the theory that
is going to be developed in this chapter as analysis of pin-connected plane trusses. Analysis of rigid
frames is not covered in this book.

3.3 NATURE OF FORCES IN MEMBERS

The members of a truss are subjected to either tensile or compressive forces. A typical truss ABCDE
loaded at joint E is shown in Fig. 3.7(a). The member BC is subjected to compressive force C as
shown in Fig. 3.7(b). Effect of this force on the joint B (or C) is equal and opposite to the force C
as shown in Fig. 3.7(b).

A

B C

D

Fig. 3.7(a)

Fig. 3.7(b)

The member AE is subjected to tensile force T. Its effect on the joints A  and E are as shown
in Fig. 3.7(b). In the analysis of frame we mark the forces on the joints, instead of the forces in the
members as shown in Fig. 3.7(c). It may be noted that compressive force in a member is represented
in a figure by two arrows going away from each other and a tensile force by two arrows coming
towards each other. This is quite logical considering the fact that the markings on the members
represent the internal reactive forces developed which are opposite in direction to the applied forces.
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COM PRESSION

TENSIO N
Fig. 3.7(c)

3.4 METHODS OF ANALYSIS

The following three methods are available for the analysis of pin-connected frames:
(1) Method of joints
(2) Method of section
(3) Graphical method.
The first two are analytical methods and they are dealt in this chapter.

3.5 METHOD OF JOINTS

At each joint the forces in the members meeting and the loads acting, if any, constitute a system of
concurrent forces. Hence, two independent equations of equilibrium can be formed at each joint.
First, a joint is selected where there are only two unknown forces. Many times such a joint can be
identified only after finding the reaction at the support by considering the equilibrium of the entire
frame. Then making use of the two equations of equilibrium at that joint the two unknown forces
are found. Then, the next joint is selected for analysis where there are now only two unknown forces.
Thus, the analysis proceeds from joints to joint to find the forces in all the members.

It may be noted that if there are j number of joints, 2j number of the equations can be formed.
There will be three reactions in a general determinate truss. The force in each member is unknown.
Hence, if there are m number of members, the total number of unknowns will be m+3. A problem
can be analysed if there are as many equations as there are unknowns. Hence, a frame analysis
problem is determinate if:

2j = m + 3 ...(3.2)
This equation is the same as Equation 3.1 which was derived on the consideration of a perfect

frame. Hence, a perfect frame is determinate. If m > 2j – 3, then the number of unknowns is more
than the number of equations. Hence, a redundant frame is indeterminate. If m < 2j – 3, then the
number of equations is more than the number of unknowns. Since a set of solutions can satisfy such
equations, it shows instability of the structure. Hence, a deficient frame is not stable.

The method of joints is illustrated with the examples 3.1 to 3.7.

EXAMPLES

Example 3.1. Find the forces in all the members of the
truss shown in Fig. 3.8(a). Tabulate the results.

Fig. 3.8(a)

E

A B

3 m

θ θD

40 kN 40 kN
3 m 3 m

C
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Solution: Step 1: Determine the inclinations of all inclined members. In this case,

tan θ = 
3

3
1=

∴ θθθθθ = 45°
Step 2: Look for a joint at which there are only two unknowns. If such a joint is not available,
determine the reactions at the supports, and then at the supports these unknowns may reduce to only
two.

Now at joints C, there are only two unknowns, i.e., forces in members CB and CD, say FCB and
FCD.
Note: Usually in cantilever type frames, we find such joints without the need to find reactions.

Step 3: Now there are two equations of equilibrium for the forces meeting at the joint and two
unknown forces. Hence, the unknown forces can be determined.

At joint C [Ref. Fig. 3.8(b)] ∑ =V 0 condition shows that the force FCB should act away from
the joint C so that its vertical component balances the vertical downward load at C.

FCB sin 45° = 40

∴ FCB = 40 2 kN

Now ∑ =H 0 indicates that FCD should act towards C.

 FCD – FCB cos 45° = 0

FCD = FCB cos 45° = 40 2
1

2
×  = 40 kN

Note: If the assumed direction of unknown force is opposite, the value will be negative. Then reverse the
direction and proceed.

Step 4: On the diagram of the truss, mark arrows on the members near the joint analysed to indicate
the forces on the joint. At the other end, mark the arrows in the reverse direction.

In the present case, near the joint C, the arrows are marked on the members CB and CD to
indicate forces FCB and FCD directions as found in the analysis of joint C. Then reversed directions
are marked in the members CB and CD near joints B and D, respectively.

Step 5: Look for the next joint where there are only two unknown
forces and analyse that joint.

In this case, there are only two unknown forces at the joint
D as shown in Fig. 3.8(c).

 ∑V  = 0

FDB = 40 kN

 ∑ H  = 0

FDE = 40 kN
Step 6: Repeat steps 4 and 5 till forces in all the members are found.

In the present case, after marking the forces in the members
DB and DE, we find that analysis of joint B can be taken up.
Referring to Fig. 3.8(d).

Fig. 3.8(b)

Fig. 3.8(d)

Fig. 3.8(c)

F D E

FD B

4 0  kN

4 0  kN

D

F BE

F BA

4 0  kN

B

4 0  2

4 5 ° 4 5 °

F C D

F C B

C

4 0  kN

4 5 °
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 ∑V  = 0, gives

FBE sin 45° – 40 – 40 2 × sin 45° = 0

∴ FBE = 80 2  kN

 ∑ H  = 0

FBA – FBE cos 45° – 40 2 × cos 45° = 0

FBA = 80 2
1

2
40 2

1

2
× ×+

∴ FBA = 120 kN
The directions of these forces are marked on the diagram. Now the analysis is complete since

the forces in all the members are determined.

Step 7: Determine the nature of forces in each member and
tabulate the results. Note that if the arrow marks on a member
are towards each other, then the member is in tension and if the
arrow marks are away from each other, the member is in
compression [Ref. Fig. 3.8(e)]. In this case,

Member Magnitude of Force in kN Nature

AB 120 Tension

BC 40 2 Tension

CD 40 Compression

DE 40 Compression

BE 80 2 Compression

BD 40 Tension

Example 3.2. Determine the forces in all the members of the truss shown in Fig. 3.9(a) and indicate
the magnitude and nature of forces on the diagram of the truss. All inclined members are at 60° to
horizontal and length of each member is 2 m.

B C

6 0 ° 6 0 ° 6 0 ° 6 0 °
A D

E

4 0  kN 5 0  kN

6 0  kN
2 m 2 m

Fig. 3.9(a)

Solution: Now, we cannot find a joint with only two unknown forces without finding reactions.

Consider the equilibrium of the entire frame.

∑ M A  = 0, gives

Fig. 3.8(e)

TE NSIO N

CO M PRESSIO N
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RD × 4 – 40 × 1 – 60 × 2 – 50 × 3 = 0

∴ RD = 77.5 kN

∑ H = 0, gives

∴ HA = 0

∴ Reaction at A is vertical only

∑V = 0, gives

RA + 77.5 = 40 + 60 + 50

∴ RA = 72.5 kN

Joint A: ∑V = 0, gives

FAB sin 60° = RA = 72.5

FAB = 83.7158 kN (Comp.)

∑ H = 0, gives

FAE – 83.7158 cos 60° = 0

FAE = 41.8579 kN (Tension)

Joint D: ∑V = 0, gives

FDC sin 60° = RD = 77.5

∴ FDC = 89.4893 kN (Comp.)

∑ H = 0, gives

FDE – 87.4893 cos 60° = 0

∴ FDE = 44.7446 kN (Tension)

Joint B: ∑V = 0, gives

FBE sin 60° – FAB sin 60° + 40 = 0

∴ FBE =
72 5 40

60
37 5278

.
sin

.
−

°
=  (Tension)

∑ H = 0, gives

FBC
 – FAB cos 60° – FBE cos 60° = 0

FBC = (83.7158 + 37.5274) × 0.5

FBC = 60.6218 kN (Comp.)

Fig. 3.9(b)

FAE

FAB

A
6 0 °

R A

Fig. 3.9(c)

F D E

F D C

D6 0 °

R D

Fig. 3.9(d)

B
F BC

F BE
F AB

6 0 °
6 0 °

4 0  kN
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Joint C: ∑V = 0, gives

FCE sin 60° + 50 – FDC sin 60° = 0

FCE =
77 5 50

60

.

sin

−
°

= 31.7543  kN (Tension)

B
F BC

F BE
F AB

6 0 °
6 0 °

4 0  kN

Fig. 3.9(e)

Now the forces in all the members are known. If joint E is analysed it will give the check for
the analysis. The results are shown on the diagram of the truss in Fig. 3.9(f).

B C

A D
E

4 0  kN 5 0  kN

83
.7

15
8

31
.7

54
3

37 .52 78

6 0 .6 2 1 8

4 1 .8 5 7 9 4 4 .7 4 4 6

89.48 93

CO M PRES SIO N

TE NSIO N

6 0  kN

Fig. 3.9(f)

Example 3.3. Determine the forces in all the members of the truss shown in Fig. 3.10 (a).

60° 30°�

3 m3 m 3 m3 m

20 kN

A
C

D

B

RA RD10 kN

Fig. 3.10(a)
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Solution: AB = 6 sin 60° = 3 m; BD = 6 cos 30° = 23.09 m

In ∆ABC, AC = AB = 3 m
∴ ∠ABC = ∠BCA = say θ
∴  2θ = 180 – 60 = 120

or θ = 60°
Taking moment about A, we get

RD × 6 – 10 × 3 – 20 × 3 cos 60° = 0
RD = 10 kN

∴  RA = 20 + 10 – 10 = 20 kN

[Note: H4 = 0]

Joint A: Referring to Fig. 3.10(b)

ΣV = 0, gives

20 – FAB sin 60° = 0

∴ FAB = 23.09 kN [Comp.]

ΣH = 0, gives

FAC – FAB cos 60° = 0 ∴ FAC = 23.09 cos 60° = 11.55 kN [Tensile]

Joint D:

ΣV = 0, gives

FDB sin 30° = 10 or FDB = 20 kN [Comp.]

ΣH = 0, gives

– FDC + FDB cos 30° = 0

i.e., FDC = 20 cos 30° = 17.32 kN [Tensile]
Joint C:

ΣV = 0, gives

FCB sin 60° = 10

∴ FCB = 11.55 kN

check ΣH = 0, gives

FCB cos 60° = FCD – FCA = 17.32 – 11.55

∴ FCB = 11.55, Checked

These forces are marked in Fig. 3.10(e).

A
C

D

B

23
.0

9 11.55

20

11.55 17.32

Compression

Tension

Fig. 3.10(e)

60°
A

FAB

FAC

R = 20A

Fig. 3.10(b)

30°

10

FDC

FDB

D

Fig. 3.10(c)

60°

FCB

FCA FCD

10 kN

Fig. 3.10(d)
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Example 3.4. Determine the forces in the members of truss shown in Fig. 3.11(a).

B C D

30 kN 50 kN 40 kN

20 kN

E

4 m4 m

4 m4 m 4 m4 m
30 kN
FA

VA

HA

Fig. 3.11(a)

Solution: Σ Forces in horizontal direction = 0, gives,

HA = 20 kN

ΣMA = 0 →
– RE × 8 + 50 × 4 + 40 × 8 + 20 × 4 + 30 × 4 = 0

∴  RE = 90 kN

ΣVA = 0, gives

VA + RE = 30 + 50 + 40 + 30

∴  VA = 150 – RE = 150 – 90 = 60 kN
Joint A: ΣV = 0 → FAB = 60 kN (Comp.)

ΣH = 0 → FAF = 20 kN (Tensile)
Joint E:

ΣV = 0, gives, FED = 90 kN (Comp.)
ΣH = 0, gives, FEF = 0

Joint B: Noting that inclined member is at 45°,

 ΣV = 0; gives,

– FBF sin 45° – 30 + 60 = 0

or FBF = 
30

45sin °
 = 42.43 kN [Tensile]

ΣH = 0, gives

 – FBC + FBF cos 45° = 0

or  FBC = 42.43 × cos 45° = 30 kN [Comp.]

FAB

60

FAF20 A

Fig. 3.11(b)

FED

90

EF = 0EF

Fig. 3.11(c)

30 kN

45°
45°

FBC

FBF

60

B

Fig. 3.11(d)
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Joint C: ΣV = 0, gives FCF = 50 kN [Comp.]

ΣH = 0, gives 30 – FCD = 0

or FCD = 30 kN [Comp.]

Joint D: Noting that DF is at 45° as shown in Fig. 3.11(f)

ΣV = 0 →

– FDF cos 45° + 90 – 40 = 0

or FDF  = 
50

45cos °
 = 70.71 kN [Tensile]

Check  ΣH = 0, gives

– FDF cos 45° + 30 + 20 = 0 or FDF = 70.71 kN checked.

Final result is shown in Fig. 3.11(g)

30 50 40

20

30

60 90

60 90

42.43 70
.7

1
50

30 30

20 0
20

Fig. 3.11(g)

Example 3.5. Analyse the truss shown in Fig. 3.12(a).

Solution: All inclined members have the same inclination to
horizontal. Now, length of an inclined member is

 = 2 23 4+  = 5 m

∴ sin θ =
4

5

cos θ =
3

5

30 C

50 kN

FCD

FCF

Fig. 3.11(e)

30 kN D

40 kN

90 kN

45°

45°

FDF

20 kN

Fig. 3.11(f)

Fig. 3.12(a)

3 m 3 m

VA 20 kN

H A

4 
m

4 
m

A

B

C

D

E

θ
θ

θ θ
F
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As soon as a joint is analysed the forces on the joint are marked on members [Fig. 3.12(b)]

V A 2 0  k N

H A

θ

θ θ
20 kN 

15 kN 15 kN

15 kN 

20 kN

25 kNO
O

25
 k

N

R C

A

B D

C

F
E

Fig. 3.12(b)

Joint E: ∑V = 0, gives

FED × 
4

5
 – 20 = 0

∴ FED = 25 kN (Tension)

∑ H = 0, gives

FEF – FED cos θ = 0

∴ FEF = 25
3

5
×  = 15 kN (Comp.)

At this stage as no other joint is having only two unknowns, no further progress is possible. Let
us find the reactions at the supports considering the whole structure. Let the reaction be as shown
in Fig. 3.12(b).

∑ M A = 0, gives

RC × 8 – 20 × 6 = 0

RC = 15 kN

∑V = 0, gives

VA = 20 kN

∑ H = 0, gives

HA = RC = 15 kN

Joint A: ∑V = 0, gives

FAB – VA = 0

FAB = 20 kN (Comp.)

∑ H = 0, gives

FAF – HA = 0

FAF = 15 kN (Comp.)

Fig. 3.12(c)

F EF

F ED

2 0  kN

θ
E

H A

F AB

F AF

A

V A

Fig. 3.12(d)



TRUSSES 77

Joint C: ∑ H = 0, gives

FCB × 
3

5
 – RC = 0

FCB = 15 × 
5

3
 = 25 kN (Comp.)

∑V = 0, gives

FCD = FCB sin θ

= 25 × 
4

5
 = 20 kN (Tension)

Joint B: ∑V = 0, gives

FBF × 
4

5
 – FBC × 

4

5
 + FAB = 0

FBF × 
4

5
= 25 × 

4

5
 – 20 = 0

∴ FBF = 0

∑ H = 0, gives

FBD – 25 × 
3

5
= 0

FBD = 15 kN (Tension)

Joint F:

∑V = 0

FFD = 0 (since FBF = 0)

Note: When three members are meeting at an unloaded joint and out of them two are collinear, then the force
in third member will be zero. Such situations are illustrated in Fig. 3.12(h) and (i).

A

C B D

A

C B D

Fig. 3.12(h) and (i)

Fig. 3.12(f)

F BD

F BC

θ
B

FBFF AB

θ

Fig. 3.12(g)

R C

FC DFC B

Fig. 3.12(e)
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Example 3.6. Find the forces in all the members of the truss shown in Fig. 3.13(a).

Solution: tan θ1 =
4

6
 = 33.69°

θ2 = tan ×− �
��

�
��

1 8

3

1

2
 = 53.13°

θ3 = tan− �
��
�
��

1 4

3
 = 53.13°

θ2= θ3 = θ

sin θ =
4

5
 and cos θ = 

3

5

θ3θ2θ1θ1

C

G

H

2 
m

2  m 2  m 2  m 3  m
FDBA

E

20  kN
12  kN

Fig. 3.13(a)

Joint-by-joint analysis is carried out as given below and the joint forces are marked in Fig. 3.13(b).
Then nature of the force in the members is determined.

C

G

HFDBA

E

15 kN 15 kN 15 kN 15 kN

R A

1 8 .0 278kN

18 .0 27 8kN

1 8 .0 278kN

25 kN

R G

20 kN12 kN

C O M P R E S S IO N

T E N S IO N

Fig. 3.13(b)

Joint H: ∑V = 0, gives

FHG sin θ3 = 20
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∴ FHG = 20
5

4
× = 25  kN (Comp.)

Σ H = 0, gives

FHF – FHG cos θ2 = 0

FHF = 25
3

5
× = 15  kN (Tension)

Now ∑ MG = 0, gives

RA × 6 – 20 × 3 = 0

RA = 10 kN (Downword)

∑V = 0, gives

RG – 10 – 12 – 20 = 0

RG = 42 kN

Joint A: ∑V = 0, gives

FAC sin θ1 – 10 = 0

FAC = 18.0278 kN (Comp.)

∑ H = 0, gives

FAB – FAC cos θ1 = 0

FAB = 15 kN (Tension)

Joint B: ∑V = 0, gives

FBC = 0

∑ H = 0, gives

FBD = FBA = 15 kN (Tension)

Joint C: ∑ Forces normal to AC = 0, gives

FCD = 0 since FBC = 0

∑ Forces parallel to CE = 0

FCE = FCA = 18.0278 (Comp.)

Joint D: ∑V = 0, gives

FDE = 0

∑ H = 0, gives

FDF = FDB = 15 kN (Tension)

Joint E: ∑  Forces normal to CG = 0, gives

 FEF = 0 and

∑  Forces in the direction of  CG = 0, gives

FEG = FCE = 18.0278 kN (Comp.)

Joint F: ∑V = 0, gives

FFG – 12 = 0
FFG = 12 kN (Tension)
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Example 3.7. Analyse the truss shown in Fig. 3.14(a). All the members are of 3 m length.

60° 60° 60° 60° 60° 60°
A

B D F

G
EC

10  kN

20  kN
3 × 3 × 3  =  9  cm

30  kN40  kN

Fig. 3.14(a)

Solution: Since all members are 3 m long, all triangles are equilateral and hence all inclined members
are at 60° to horizontal. Joint-by-joint analysis is carried out and the forces are represented in
Fig. 3.14(b). Then nature of the force is determined.

Joint G: ∑V = 0, gives

FGF sin 60° = 20

FGF = 23.0940 kN (Tension)

∑ H = 0, gives

FGE – FGE cos 60° = 0

FGE = 11.5470 kN (Comp.)

Joint F: ∑V = 0, gives

FFG sin 60° – FGF sin 60° = 0
FFG = FGF = 23.0940 kN (Comp.)

∑ H = 0, gives

FFD + 10 – FGF cos 60° – FFE cos 60° = 0
FFD = 13.0940 kN (Tension)

Now, without finding reaction we cannot proceed. Hence, consider equilibrium of the entire truss.

H A

B D F

G
EC

10  kN

20  kN

30  kN40  kN

V A

13 .6603

8.3771 1.0566 11.547

R E

38
.7

54
3

9.
43

3 7

9.43 37

44 .0747

23
.0

9 4

23.09 4

13 .094

TE N SIO NC O M P RE S S IO N

Fig. 3.14(b)

∑ M A = 0

RE × 6 + 10 × 3 × sin 60° – 40 × 1.5 – 30 × 4.5 – 20 × 9 = 0

∴ RE = 58.1699 kN



TRUSSES 81

∑V = 0, gives

VA = 40 + 30 + 20 – RE = 31.8301 kN

∑ H = 0, gives

HA = 10 kN

Joint A: ∑V = 0, gives

FAB sin 60° – 31.8301 = 0

FAB = 36.7543 kN (Comp.)

∑ H = 0, gives

FAC – FAB cos 60° + 10 = 0

FAC = 8.3771 kN (Tension)

Joint B: ∑V = 0, gives

FBC sin 60° + FAB sin 60° – 40 = 0

FBC = 9.4337 kN (Comp.)

∑ H = 0, gives

FBD + FBC cos 60° – FBA cos 60° = 0

FBD = 13.6603 kN (Comp.)

Joint C: ∑V = 0, gives

FCD sin 60° – FBC sin 60° = 0

FCD = FBC = 9.4337 kN (Tension)

∑ H = 0, gives

FCE + FAC – FCD cos 60° – FBC cos 60° = 0

FCE = 2 × 9.4337 × 
1

2
 – 8.3771 = 1.0566 kN (Comp.)

Joint D: ∑V = 0, gives

FDE sin 60° – FCD sin 60° – 30 = 0

FDE = 44.0747 kN (Comp.)

3.6 METHOD OF SECTION

In the method of section, after determining the reactions, a section line is drawn passing through not
more than three members in which forces are not known such that the frame is cut into two separate
parts. Each part should be in equilibrium under the action of loads, reactions and forces in the
members that are cut by the section line. Equilibrium of any one of these two parts is considered
and the unknown forces in the members cut by the section line are determined.
The system of forces acting on either part of truss constitutes a non-concurrent force system. Since
there are only three independent equation of equilibrium, there should be only three unknown forces.
Hence, in this method it is an essential condition that the section line should pass through not more
than three members in which forces are not known and it should separate the frame into two parts.
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Thus, the method of section is the application of nonconcurrent force system analysis whereas
the method of joints, described in previous article was the application of analysis of concurrent force
system.

Under the following two conditions the method of section is preferred over the method of joints:
(1) In a large truss in which forces in only few members are required;
(2) In the situation where the method of joints fails to start/proceed with analysis.

The method of section is illustrated with the examples 3.8 to 3.11. Examples 3.8 and 3.9 are the
cases in which method of section is advantageous since forces in only few members are required.
Examples 3.10 and 3.11 are the cases in which method of joints fails to start/proceed to get the
solution. In practice the frames may be analysed partly by method of section and partly by method
of joints as illustrated in example 3.11.
Example 3.8. Determine the forces in the members FH, HG and GI in the truss shown in Fig. 3.15(a).
Each load is 10 kN and all triangles are equilateral with sides 4 m.

7  ×  4 =  2 8  m

A

B

C E G I K M
O

NLJHFD

A

10 kN 10 kN 10 kN 10 kN 10 kN 10 kN 10 kN

A

Fig. 3.15(a)

Solution: Due to symmetry,

RA = R0 = 
1

2
 × 10 × 7 = 35 kN

Take section (A)–(A), which cuts the members FH, GH and GI and separates the truss into two
parts. Consider the equilibrium of left hand side part as shown in Fig. 3.15(b) (Prefer part in which
number of forces are less).

A C E G

B D F

60°

60°
FG H

FF H

F G I

10 kN 10 kN 10 kN

35 kN

Fig. 3.15(b)

ΣMG = 0, gives
FFH × 4 sin 60° – 35 × 12 + 10 × 10 + 10 × 6 + 10 × 2 = 0

FFH = 69.2820 kN (Comp.)

∑V = 0, gives

FGH sin 60° + 10 + 10 + 10 – 35 = 0
FGH = 5.7735 kN (Comp.)

∑ H = 0, gives
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FGI – FFH – FGH cos 60° = 0
FGI = 69.2820 + 5.7735 cos 60°

= 72.1688 kN (Tension)
Example 3.9.  Find the magnitude and nature of the forces in the members U3U4, L3L4 and U4L3
of the loaded truss shown in Fig. 3.16(a).

Solution: To determine reactions, consider equilibrium equations.

R 1 R 2

L 6L 5L 4L3L 2L 1L 0

U 1

U 2
U 3 U 4

U 5

200  kN 200  kN 150  kN 100  kN 100  kN

6 
m 8 

m 9 
m

1

1

6 ×  6  =  36

Fig. 3.16(a)

Now, ∑ M LO = 0, gives

R2 × 36 – 200 × 6 – 200 × 12 – 150 × 18 – 100 × 24 – 100 × 30 = 0

R2 = 325 kN

∑V = 0, gives

R1 = 200 + 200 + 150 + 100 + 100 – 325 = 425 kN
Take the section (1)–(1) and consider the right hand side part.

R 2

L 6L 5L4
L 3

F U 3
U 4

U 5

θ1

θ2

U 4

FU
L

4
3

100  kN 100 kN

FL L3 4

Fig. 3.16(b)

Now, U3U4 = 1 6 6 08282 2+ = .

sin θl =
1

6 0828.
 = 0.1644

cos θl =
6

6 0828.
 = 0.9864
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L3U4 = 6 8 102 2+ =

sin θ2 = 0.6 cos θ2 = 0.8

4UMΣ = 0, gives

FL3L4
 × 8 – 325 × 12 + 100 × 6 = 0

FL3L4
= 412.5 kN (Tension)

Σ ML3
= 0, gives

FU4U3
 × cos θ1 × 9 + 100 × 6 + 100 × 12 – 325 × 18 = 0

FU4U3
= 456.2072 kN (Comp.)

∑ H = 0

FU4U3
 sin θ2 – FU4U3

 cos θ1 + FL4L3
 = 0

FU4U3
=

456 2072 0 9864 412 5

0 6

. × . .

.

−

= 62.5 kN (Tension)
Example 3.10.  Find the forces in the members (1), (2) and (3) of French truss shown in Fig. 3.17(a).

a

a

a

a
20 kN

20 kN

20 kN

20 kN

20 kN

20 kN

20 kN

BA 30°

1

2

3

3 m 3 m 6 m 3 m 3 m

18 m
A

A
C

E

Fig. 3.17(a)

Solution: Due to symmetry

RA = RB = 
1

2
20 7× ×  = 70 kN

Now

AC = 4 × a = 
9

30cos °
∴ a = 2.5981 m.
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2 0  kN

2 0  kN

2 0  kN

θ

C

D F 3 E

F 1

F 2

R A =  7 0 kN

Fig. 3.17(b)

Take Section (A)–(A) and consider the equilibrium of left hand side part of the French Truss
shown in Fig. 3.17(b).

Drop perpendicular CE on AB.

Now CE = 9 tan 30° and DE = 3 m

∴ tan θ =
9 30

3
3

1

3
3

tan
×

°
= =

∴ θθθθθ = 60°

∑ M A = 0, gives

F2 sin 60° × 6 – 20 × 2.5981 cos 30° – 20 × 2 × 2.5981 cos 30° – 20 × 3 × 2.5981 cos 30° = 0

F2 = 20 × 2.5981 
( )1 2 3

6

+ +
  since sin 60° = cos 30°

F2 = 51.9615 kN (Tension)

∑V = 0, gives

F1 sin 30° – 70 + 20 + 20 + 20 – 51.9615 sin 60° = 0
F1 = 110 kN (Comp.)

∑ H = 0, gives

F3 + F2 cos 60° – F1 cos 30° = 0

F3 = 69.2820 (Tension)
Note: In this problem, the method of joints cannot give complete solution.

Example 3.11.  Find the forces in all the members of the truss shown in Fig. 3.18(a).

4 5 °
3 0 °

a

a

1  H
A E

G D

15°

3 0  kN

3 0  kN

1 5  kN 1 5  kN

3 0  kN
C

B
F

1 0  m

1

Fig. 3.18(a)
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Solution: Due to symmetry, the reactions are equal.

RA = RE = 
1

2
 × Total load

=
1

2
15 30 30 30 15 60( )+ + + + = kN

Drop perpendicular CH on AF.

In ∆ACH , ∠ACH  = 45°

∴ FC is inclined at 30° to vertical i.e., 60° to horizontal and CH = 5 m

It is not possible to find a joint where there are only two unknowns. Hence, consider section
(1)–(1).

For left hand side part of the frame:

∑ MC = 0, gives

FAE × 5 – 60 × 5 + 15 × 5 + 30 × 2.5 = 0
∴ FAE = 30 kN (Tension)
Assuming the directions for FFC and FBC as shown in Fig. 3.18(b)

∑V = 0, gives

FFC sin 60° – FBC sin 45° + 60 – 15 – 30 = 0 ...(i)

∑ H = 0, gives

FFC cos 60° – FBC cos 45° + FAE = 0

FFC × 
1

2
 – FBC 

1

2
 + 30 = 0

∴ FFC = FBC 2 60− ...(ii)

4 5 °
3 0 °

FAE
A

15°

3 0  kN

1 5  kN
B

F

C

6 0  kN

F F C

E

F BC

Fig. 3.18(b)

Substituting this value of FFC in (1), we get

( ) sinF FBC BC2 60 60 1
2

15− °− +  = 0

FBC 2 60
1

2
sin ° −

�
��

�
�� = 60 sin 60° – 15

FBC = 71.40 kN (Comp.)
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∴ FFC = 71.4042 × 2 60−
= 40.98 kN (Tension)

Assumed directions of FBC and FFC are correct.

Therefore, FBC is in compression and FFC is in tension.
Now we can proceed with method of joints to find the forces in other members. Since it is a

symmetric truss, analysis of half the truss is sufficient. Other values may be written down by making
use of symmetry.

Joint B:

∑  forces normal to AC = 0, gives

FBF – 30 cos 45° = 0
FBF = 21.21 kN (Comp.)

∑  forces parallel to AC = 0, gives

FAB – FBC – 30 sin 45° = 0
FAB = 71.40 + 21.21

= 92.61 kN (Comp)
Joint A: ∑V = 0, gives

FAF sin 30° – FAB sin 45° – 15 + 60 = 0
FAF = 40.98 kN (Tension)

The results are tabulated below:

Members Force in kN

AB and ED – 92.61

BC and DC – 71.40

BF and DG – 21.21

AF and EG + 40.98

FC and GC + 40.98

AE + 30.00

+ means tension and – means compression

IMPORTANT FORMULA

1. In a perfect truss
m = 2j – 3

 where m = number of members
 j = number of joints.

THEORY QUESTIONS

1. Bring out the differences among perfect, deficient and redundant trusses.
2. State the assumptions made in the analysis of pin jointed trusses.
3. How method of joint differs from the method of section in the analysis of pin jointed  trusses?
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PROBLEMS FOR EXERCISE

1 to 17: Determine the forces in all the members of the trusses shown in Fig. 3.19 to 3.35. Indicate
the nature of forces using the convention tension as +ve and compression as –ve.

1.

6 m 6 m

3 m 6 m

4 m

A

F

B

E D

20 kN

Fig. 3.19 (Prob. 1)

[Ans. FAB = +67.5 kN; FBC = +15 kN; FCD = –25 kN; FDE = –30 kN;

FEF = –105 kN; FAE = +62.5 kN; FBE = –62.5 kN; FBD = +25 kN]
2.

4 m

3 m 3 m 3 m
EF

B

C

20 kN

20 kN

A

G
D

Fig. 3.20 (Prob. 2)

[Ans. FAB = +82.0738 kN; FBC = +73.866 kN; FCD = 49.2443 kN; FDE = –45 kN;
FEF = –45 kN; FFG = –67.5 kN; FBG = – 10.0 kN; FFC = +24.622 kN; FCE = 0; FBF = 10 kN]

3.

3  m 3  m 3  m

D

A

F

G

C

E

100  kN

30°

B

Fig. 3.21 (Prob. 3)
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[Ans. FAC = FCE = FEG = +193.1852 kN; FBD = FDE = FFG = –193.1852 kN; all others
are zero members]

4.

E

C A

200  kN

B
4 m 4 m

2 m

2 m

D

Fig. 3.22 (Prob. 4)

[Ans. FEC = +447.2136 kN; FCA = +400 kN; FAB = –447.2136 kN; FBD = –400 kN;
FCD = 0; FCB = –200 kN]

5. [Ans. FDB = FBA =  +5.7735 kN; FBC = FDE = –5.7738 kN;
FAC = –2.8868 kN; FCE = –14.4338 kN; FDC = +17.3205 kN;
FDF = +20.0 kN]

6. [Ans. FAB = –30 kN; FAC = –160 kN; FBC = +50 kN;
FBD = –200 kN; FCD = –50 kN; FCE = –120 kN;
FDF = –266.67 kN; FDE = +83.33 kN]

7. [Ans. FAB = –200 kN; FAD = –100 kN; FBC = FCE = 0;

FBD = 100 2  kN; FBF = –100 2  kN; FDE = –100 kN;

FDG = 0; FEF = +100 kN; FEH = −100 2  kN;

FEG = +100 2  kN; FGH = +100 kN]

G  H

F

CBA

D

1 0 0  kN
2  m 2  m

2 0 0  kN

E

2  m

2  m

Fig. 3.25 (Prob. 7)

Fig. 3.24 (Prob. 6)

1 6 0 kN 1 6 0 kN

3 0  kN

2 0  kN

4  m

4  m

C

3  m
E F

D

BA

Fig. 3.23 (Prob. 5)

E C A3 m

3 m
3 m3 m

3 m

3 m

BD
90° 

F
3 m

10 kN 5 kN
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8. [Ans. FBD = −2 2  kN; FBA = +3 kN; FAC = +3 2  kN; FAD = –3 kN; FDC = –2 kN;

FDF = –5 kN; FCF = − 2  kN; FCE = +6 kN; FFE = + 1 kN; FFH = –4kN; FEH = − 2 kN;
FEG = +5 kN; FGH = +1 kN]

9. [Ans. FAC = –100 5  kN; FAB = +200 kN; FBD = +200 kN;

FBC = –100 kN; FCD = +50 5  kN; FCE = −150 5  kN; FDE

= +35.0 kN; FDF = 300 2  kN; FEF = –300 kN]

10. [Ans. FAB = +5 2  kN; FAC = –5 kN; FBC = –5 kN;

FBD = +5 kN; FCD = +15 2  kN; FCE = –20 kN;

FDE = –15 kN; FDF = +20 2  kN; FEH = –15 kN;

FEF = –20 kN; FFG = +30 2  kN; FFH = +10 2  kN]

5  m 5  m 5  m

F
E

DB

C

1 0 0  kN  

1 0 0  kN  

A

5  m

Fig. 3.27 (Prob. 9)

2  m

2  m

2  m 2  m 2  m 2  m

1 0  kN 5  kN

H

E C
A

BD

F

G

Fig. 3.28 (Prob. 10)

2  m

3 0  kN
B

A

45° 45°
4 0  kN

D

E
C2  m 2  m

Fig. 3.29 (Prob. 11)

Fig. 3.26 (Prob. 8)

A B

D

1 kN

2 kN

C

E

G H

F

2 m

2 m

2 m

2 m 2 m
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11. [Ans. FAB = –15 kN; FAC = +12 2  kN; FBD = −27 5 2.
kN; FBC = –12.5 2 kN; FCE = 0; FCD = +25 kN;

FED = −27 5 2.  kN]
12. [Ans. FAB = –17.32 kN; FAC = +5 kN; FBC = –20 kN;

FBD = –17.32 kN; FCD = +20 kN; FCE = –15 kN;
FDE = –30 kN]

13. [Ans. FAB = 60 kN; FAC = +51.96 kN; FBC = –20 kN; FBD = –40 kN; FCD = +40 kN; symmetry]

3 0 °
C

A F

EB

D2 0  kN 2 0  kN

2 0  kN

1 0  kN 1 0  kN

3  m 3  m

3 0 ° 3 0 °

Fig. 3.31 (Prob. 13)

14. [Ans. FAC = −4 5 13.  kN; FAB = +13.5 kN; FBC = +6 kN; FBD = +13.5 kN; FCD

= −0 5 13.  kN; FCE = −4 10  kN; FDE = 8 kN]

1 m

2 m
H

F

E
C

A
B D G

6 kN 6 kN 6 kN

3 × 4 =  12 m

Fig. 3.32 (Prob. 14)

15. [Ans. FAB = +10 13  kN; FAC = –20 kN; FCB = –48.75 kN; FCE = –20 kN; FCD = –7.5 kN;

FBE = +6 25 13.  kN; FDE = 18.75 kN; FDF = −3 75 13.  kN; FFE = –7.5 kN]

3 m

2 m 2 m

30 kN

A C E F

DB

30 kN

15 kN

2 m

Fig. 3.33 (Prob. 15)

Fig. 3.30 (Prob. 12)

20 kN

20 kN

20 kN2 m

2 m

30 °60 °E
C

A

D

B
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16. [Ans. FAB = 16.91 kN; FAF = +31.55 kN; FBF = +23.91 kN; FBD = –23.91 kN; FBC = +40 kN;
FCD = –40 kN; FDE = –63.1 kN; FDF = +23.91 kN; FEF = +31.55 kN]

3 m 3 m

60°60°
60°

A

B D

E

C 40 kN

F

60° 60°

40 kN

Fig. 3.34 (Prob. 16)

17. [Ans. FAC = –67.48 kN; FAB = +53.99 kN; FBC = +10 kN; FCD = –8.33 kN; FCE = –59.15 kN;
FEF = –24.5 kN; FED = +52.81 kN; FFD = +47.21 kN; FFG = –34.64 kN;
FDG = +47.32 kN]

G

D B A

C

E

F

30°

1.
5 

m 3 
m

30 kN

3 m2 m3 m

10 kN

Fig. 3.35 (Prob. 17)

18. Find the force in the member FG of the triangular Howe truss shown in Fig. 3.36.

A

B

C E G H K

H
D

F

J

L

4.5 m

4 kN

8 kN

8 kN

4 kN

6 kN6 kN6 kN6 kN6 kN

1

1

2 m 2 m 2 m 2 m 2 m

Fig. 3.36

(Hint: Take section (1)–(1) and find force in FD. Then analyse joint F)   [Ans. +28 kN]
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19. Determine the forces in the members AB, AC, DF and CE of the scissors truss shown in
Fig. 3.37.

1

1

A

B

W

D

W W

W

C

E

H

F

W

G

I

J

3  m 3  m 3  m 3  m 3  m 3  m

Fig. 3.37

(Hint: Find reaction RA and analyse joint A. Take section (1)–(1) and find force in DF and CE)

[Ans. FAB = –6.25 W; FAC = 4.51 W; FDF = –3.75 W; FCE = +2.75 W]

20. Find the force in member KL of the French truss shown in Fig. 3.38.

30° 30°A

B

20 kN

20 kN

20 kN

20 kN

15 kN

15 kN

15 kNC

D
A E

F

G

H

A
3 m 3 m 6 m 3 m 3 m

3 ×  6  =  18 m

I
J K N O

L M

Fig. 3.38

(Hint: Take section (A)–(A) and find FLE and FDE. From joint D find FDL. Then analyse joint
L to get FKL)  [Ans. +41.96 kN]



4
Distributed Forces, Centre of

Gravity and Moment of Inertia

The term ‘distributed force’ has been explained in Art 2.11 and this applied force has been classified
into linear surface and the body force. The number of such forces acting on a body is infinite.
However, these forces can be replaced by their resultant which acts through a point, known as the
centre of gravity of the body. In this chapter the method of finding areas of given figures and
volumes is explained. Then the terms centroid and centre of gravity and second moment of area
(moment of inertia of areas) are explained and method of finding them is illustrated with examples.
Theorem of Pappus-Guldinus is introduced which is very useful for finding surface areas and volumes
of solids then the method of finding centre of gravity and moment of inertia (mass moment of inertia)
of solids is illustrated.

4.1 DETERMINATION OF AREAS AND VOLUMES

In the school education methods of finding areas and volumes of simple cases are taught by many
methods. Here we will see the general approach which is common to all cases i.e. by the method of
integration. In this method the expression for an elemental area will be written then suitable integra-
tions are carried out so as to take care of entire surface/volume. This method is illustrated with
standard cases below, first for finding the areas and latter for finding the volumes:

A: Area of Standard Figures

(i) Area of a rectangle
Let the size of rectangle be b × d as shown in Fig. 4.1. dA is an elemental area of side dx × dy.

Area of rectangle, A = ��dA =
/ 2 / 2

/ 2 / 2

b d

b d� �
� � dx dy

= [x] / 2
/ 2

b
b� [y] / 2

/ 2
d

d�

= bd.
If we take element as shown in Fig. 4.2,

Fig. 4.1
94

d/2

d/2

b/2 b/2

O

y

dx
dy

x
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A =
/ 2

/ 2

d

d�
� dA =

/ 2

/ 2

d

d�
� b ⋅ dy

= b [y] / 2
/ 2

d
d�

= bd

(ii) Area of a triangle of base width ‘b’ height ‘h’: Referring to
Fig. 4.3, let the element be selected as shown by hatched
lines

Then dA = b′dy = b
y

h
 dy

A = 
0

h

� dA = 
0

h

� b
y

h
 dy

= 
2

0
2 2

h
b y bh

h

� �
�� �

� 	

(iii) Area of a circle
Consider the elemental area dA = rdθ�dr as shown in Fig. 4.4. Now,

dA = rdθ dr
r varies from 0 to R and θ varies from 0 to 2π

∴ A = 
2�

0 0

R

� �  r dθ dr

= 
22�

0 0
2

R
r� �

� �
� 	

� dθ

= 
22�

0 2

R
�  dθ

= 
2

2

R
 [θ ] 2�

0

= 
2

2

R
 ⋅
2π = πR2

In the above derivation, if we take variation of θ from 0 to π, we get the area of semicircle as
2

�

2

R  and if the limit is from 0 to π /2 the area of quarter of a circle is obtained as 
2

�

4

R .

dy
y

d/2

d/2

b

Fig. 4.2

y
h

b�
dy

b

Fig. 4.3

Fig. 4.4

O

dr
rd�

d�r

� xRR

y
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(iv) Area of a sector of a circle
Area of a sector of a circle with included angle 2α shown in Fig. 4.5 is to be determined. The
elemental area is as shown in the figure

dA = rdθ ⋅ dr
θ varies from –α to α�and r varies from 0 to R

∴ A = ��dA = 
0

R�

��
� � r dθ dr

= 
2

0
2

R
r�

��

� �
� �
� 	

� dθ = 
2

2

R�

��
�  dθ

= 
2

�
2

R
�

��

� �
� �
� 	

 = 
2

2

R
(2α) = R2α.

(v) Area of a parabolic spandrel
Two types of parabolic curves are possible
(a) y = kx2

(b) y2 = kx

Case a: This curve is shown in Fig. 4.6.
The area of the element

dA = y dx

= kx2 dx

∴ A = 
0

a

� dA = 
0

a

� kx2 dx

= k 
3 3

0
3 3

a
x ka� �

�� �
� 	

We know, when x = a, y = h

i.e., h = ka2 or k = 
2

h

a

∴ A = 
3 3

2

1 1
rd

3 3 3 3

ka h a
ha

a
� � �  the area of rectangle of size a × h

Case b: In this case y2 = kx
Referring to Fig. 4.7

dA = y dx = kx  dx

A = 
0

a

� y dx = 
0

a

� kx  dx

Fig. 4.5

x

h

x = a

y = kx
2

x

dx

y

Fig. 4.6

y

O 	
d�
�

dr

rd�r

x

R
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= k 3/2

0

2
3

a

x� �
� �� 	

 = k
2

3
a3/2

We know that, when x = a, y = h

∴ h2 = ka or k = 
2h

a

Hence A = 
2

3

h

a
�  . a3/2

i.e., A = 
2

3
 ha = 

2

3
rd the area of rectangle of size a × h.

(vi) Surface area of a cone
Consider the cone shown in Fig. 4.8. Now,

y = 
x

h
 R

Surface area of the element,

dA = 2πy dl = 2π x

h
R dl

= 2π 
x

h
 R 

dx

sin α

∴ A = 
2

2

2

0

π
α

R

h

x
h

sin

�

�
�
�

�
�

= 
π

α
Rh

sin
 = πRl

(vii) Surface area of a sphere
Consider the sphere of radius R shown in Fig. 4.9. The
element considered is the parallel circle at distance y
from the diametral axis of sphere.

dS = 2πx Rdθ
= 2π R cos θ Rdθ, since x = R cos θ

∴ S = 2πR2 
� � �

� � ��
� cos θ dθ

= 2πR2 [sin θ] � � �
� � ��

= 4πR2

y

y = kx
2

hh

xx

dx

x = a

Fig. 4.7

dl

y	

hh

xx dx

RR

Fig. 4.8

dy xx
Rd�

yy
d�

�

Fig. 4.9
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B: Volume of Standard Solids

(i) Volume of a parallelopiped
Let the size of the parallelopiped be a × b × c. The volume of the element is

dV = dx dy dz

V = 
0

a

�
0

b

�
0

c

�  dx dy dz

= [x] 0
a [y] 0

b [z] 0
c  = abc

(ii) Volume of a cone
Referring to Fig. 4.8

dV = πy2 . dx = π 
2

2

x

h
 R2dx, since y = 

x

h
 R

V = 
π π
h

R x dx
h

R
xh

h

2
2

0

2
2

2
3

0
3� =
�

�
�
�

�
�

= 
π

h2 R2 h R h3 2

3 3
= π

(iii) Volume of a sphere
Referring to Fig. 4.9

dV = πx2 . dy

But x2 + y2 = R2

i.e., x2 = R2 – y2

∴ dV = π (R2 – y2)dy

V = 
R

R�
� π (R2 – y2)dy

= π
3

2

3

R

R

y
R y

�

� �
�� �

� 	

= π
3 3

2 3 ( )

3 3

R R
R R R

� �� 
�� �� � � � �� �� �
� �� �� �� 	

= π R3 1 1
1 1

3 3
� �� � �� �� 	

 = 
4

3
πR3

The surface areas and volumes of solids of revolutions like cone, spheres may be easily found using
theorems of Pappus and Guldinus. This will be taken up latter in this chapter, since it needs the term
centroid of generating lines.
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4.2 CENTRE OF GRAVITY AND CENTROIDS

Consider the suspended body shown in Fig. 4.10(a). The self weight of various parts of this body are
acting vertically downward. The only upward force is the force T in the string. To satisfy the equilib-
rium condition the resultant weight of the body. W must act along the line of string 1–1. Now, if the
position is changed and the body is suspended again (Fig. 4.10(b)), it will reach equilibrium condition
in a particular position. Let the line of action of the resultant weight be 2–2 intersecting 1–1 at G. It is
obvious that if the body is suspended in any other position, the line of action of resultant weight W
passes through G. This point is called the centre of gravity of the body. Thus centre of gravity can be
defined as the point through which the resultant of force of gravity of the body acts.

T

1

1

1 2

2 1

G
W

W = w� 1 W = w� 1

w1

T

(a) (b)

Fig. 4.10

The above method of locating centre of gravity is the practical
method. If one desires to locating centre of gravity of a body
analytically, it is to be noted that the resultant of weight of
various portions of the body is to be determined. For this
Varignon’s theorem, which states the moment of resultant force
is equal to the sum of moments of component forces, can be
used.

Referring to Fig. 4.11, let Wi be the weight of an element in
the given body. W be the total weight of the body. Let the coor-
dinates of the element be xi, yi, zi and that of centroid G be xc, yc,
zc. Since W is the resultant of Wi forces,

W = W1 + W2 + W3 + . . .

= ΣWi

and Wxc = W1x1 + W2x2 + W3x3 + . . .

∴ Wxc = ΣWixi = ��  xdw

Similarly, Wyc = ΣWiyi = ��  ydw
�
�
�
��

...(4.1)

and Wzc = ΣWizi = ��  zdw

Fig. 4.11

Wi

G
W

yi yc xO

zizi zczc

xixi
xcxc

z
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If M is the mass of the body and mi that of the element, then

M = 
W

g
and mi = iW

g
, hence we get

Mxc = Σmixi = ��  xidm

Myc = Σmiyi = ��  yidm
�
�
�
��

...(4.2)

and Mzc = Σmizi = ��  zidm

If the body is made up of uniform material of unit weight �, then we know Wi = Vi�, where V
represents volume, then equation 4.1 reduces to

Vxc = ΣVixi = ��  xdV

Vyc = ΣViyi = ��  ydV
�
�
�
��

...(4.3)

 Vzc =  ΣVizi = ��  zdV
If the body is a flat plate of uniform thickness, in x-y plane, Wi = � Ait (Ref. Fig. 4.12). Hence

equation 4.1 reduces to

Axc = ΣAixi = ��  x dA

Ayc = ΣAiyi = ��  y dA
�
�
�

...(4.4)

y

z

W

xc

yc

Wi

(x , y )i c(x , y )i c

x

dL

W = A dLi �

Fig. 4.12 Fig. 4.13

If the body is a wire of uniform cross-section in plane x, y (Ref. Fig. 4.13) the equation 4.1 reduces
to

Lxc = Σ Lixi = ��  x dL
Lyc = Σ Liyi = ��  y dL

�
�
�

...(4.5)

The term centre of gravity is used only when the gravitational forces (weights) are considered. This
term is applicable to solids. Equations 4.2 in which only masses are used the point obtained is termed
as centre of mass. The central points obtained for volumes, surfaces and line segments (obtained by
eqn. 4.3, 4.4 and 4.5) are termed as centroids.

4.3 CENTROID OF A LINE

Centroid of a line can be determined using equation 4.5. Method
of finding the centroid of a line for some standard cases is illus-
trated below:

(i) Centroid of a straight line
Selecting the x-coordinate along the line (Fig. 4.14)

dx G

xx

LL

O x

Fig. 4.14
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Lxc = 
0

L

�  x dx = 
2 2

0
2 2

L
x L� �

�� �
� 	

∴ xc = 
2

L

Thus the centroid lies at midpoint of a straight line, whatever be the orientation of line
(Ref. Fig. 4.15).

G
O

L
2
L
2

LL

x

y

G

LL

L
2
L
2

O

y

L
2
L
2

cos �cos �
G

L
2
L
2

sin �sin �
	

x

Fig. 4.15

(ii) Centroid of an arc of a circle
Referring to Fig. 4.16,

L = Length of arc = R 2α
dL = Rdθ

Hence from eqn. 4.5

xcL = 
−� α

α
 xdL

i.e., xc R 2α = 
−� α

α
R cos θ . Rdθ

= R2 sin θ
α

α
�

�
�

�

�
�

−

...(i)

∴ xc = 
R

R

R2 2

2

× =
sin sinα
α

α
α

and yc L 
−� α

α
 y dL = 

−� α

α
R sin θ . Rdθ

= R2 cos θ
α

α
�

�
�

�

�
�

−
...(ii)

= 0
∴ yc = 0
From  equation (i)  and  (ii) we can get the centroid of semicircle shown in Fig. 4.17 by putting

α = π/2 and for quarter of a circle shown in Fig. 4.18 by putting α varying from zero to π/2.

Rd�

O 	

	 d�

�
x

xx

Fig. 4.16
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RR

G

G
RR

Fig. 4.17 Fig. 4.18

For semicircle  xc = 
2R

π
yc = 0

For quarter of a circle,

xc = 
2R

π

yc = 
2R

π
(iii) Centroid of composite line segments

The results obtained for standard cases may be used for various segments and then the equations
4.5 in the form

xcL = ΣLixi

ycL = ΣLiyi

may be used to get centroid xc and yc. If the line segments is in space the expression zcL = ΣLizi
may also be used. The method is illustrated with few examples below:

Example 4.1. Determine the centroid of the wire shown in Fig. 4.19.

y
D

G3

C45°

G1

A B k

G2 200 mm200 mm

300 mm

300 mm

600 mm600 mm

Fig. 4.19



DISTRIBUTED FORCES, CENTRE OF GRAVITY AND MOMENT OF INERTIA 103

Solution: The wire is divided into three segments AB, BC and CD. Taking A as origin the coordinates
of the centroids of AB, BC and CD are

G1(300, 0); G2(600, 100) and G3 (600 – 150 cos 45°, 200 + 150 sin 45°)

i.e., G3 (493.93, 306.07)

L1 = 600 mm, L2 = 200 mm, L3 = 300 mm
∴ Total length L = 600 + 200 + 300 = 1100 mm

∴ From the eqn. Lxc = ΣLixi, we get

1100 xc = L1x1 + L2x2 + L3x3

= 600 × 300 + 200 × 600 + 300 × 493.93

∴ xc = 407.44 mm

Now, Lyc = ΣLiyi

1100 yc = 600 × 0 + 200 × 100 + 300 × 306.07

∴ yc = 101.66 mm
Example 4.2. Locate the centroid of the uniform wire bent as shown in Fig. 4.20.

A
G1

G2
150 mm150 mm

250 mm
250 mm

30°
G3

D

B

400 mm400 mm
C

All dimensions in mm

Fig. 4.20

Solution: The composite figure is divided into three simple figures and taking A as origin coordinates
of their centroids noted down as shown below:

AB—a straight line
L1 = 400 mm, G1 (200, 0)

BC—a semicircle

L2 = 150 π = 471.24, G2 475
2 150

,
×�

	


�π

i.e. G2 (475, 95.49)
CD—a straight line

 L3 = 250; x3 = 400 + 300 + 
250

2
 cos 30° = 808.25 mm

 y3 = 125 sin 30° = 62.5 mm
∴ Total length L = L1 + L2 + L3 = 1121.24 mm

∴ Lxc = ΣLixi gives

1121.24 xc = 400 × 200 + 471.24 × 475 + 250 × 808.25

xc = 451.20 mm

Lyc = ΣLiyi gives
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1121.24 yc = 400 × 0 + 471.24 × 95.49 + 250 × 62.5

yc = 54.07 mm
Example 4.3. Locate the centroid of uniform wire shown in Fig. 4.21. Note: portion AB is in x-z plane,
BC in y-z plane and CD in x-y plane. AB and BC are semi circular in shape.

r =
10

0

r =
10

0
r = 140r = 140

z

y
C 45°

A
x

D

B

Fig. 4.21

Solution: The length and the centroid of portions AB, BC and CD are as shown in table below:

Table 4.1

Portion Li xi yi zi

AB 100π 100 0
2 100×

π

BC 140π 0 140
2 140×

π
CD 300 300 sin 45° 280 + 300 cos 45°

= 492.13 0

∴ L = 100π + 140π + 300 = 1053.98 mm

From eqn. Lxc = ΣLixi, we get

1053.98 xc = 100π × 100 + 140π × 0 + 300 × 300 sin 45°

xc = 90.19 mm

Similarly, 1053.98 yc = 100π × 0 + 140π × 140 + 300 × 492.13

yc = 198.50 mm

and 1053.98 zc = 100π × 
200

π
 + 140π × 

2 140×
π

 + 300 × 0

zc = 56.17 mm

4.4 FIRST MOMENT OF AREA AND CENTROID

From equation 4.1, we have

xc = i iW x

W

�
, yc = i iW y

W

�
and zc = i iW z

W

�
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From the above equation we can make the statement that distance of centre of gravity of a body
from an axis is obtained by dividing moment of the gravitational forces acting on the body, about the
axis, by the total weight of the body. Similarly from equation 4.4, we have,

xc = i iA x

A

�
, yc = i iA y

A

�

By terming ΣAix: as the moment of area about the axis, we can say centroid of plane area from any
axis is equal to moment of area about the axis divided by the total area. The moment of area ΣAix: is
termed as first moment of area also just to differentiate this from the term ΣAix

2
i , which will be dealt

latter. It may be noted that since the moment of area about an axis divided by total area gives the
distance of the centroid from that axis, the moment of area is zero about any centroidal axis.

Difference between Centre of Gravity and Centroid

From the above discussion we can draw the following differences between centre of gravity and
centroid:

(1) The term centre of gravity applies to bodies with weight, and centroid applies to lines, plane
areas and volumes.

(2) Centre of gravity of a body is a point through which the resultant gravitational force (weight)
acts for any orientation of the body whereas centroid is a point in a line plane area volume such
that the moment of area about any axis through that point is zero.

Use of Axis of Symmetry

Centroid of an area lies on the axis of symmetry if it exits. This is useful theorem to locate the centroid
of an area.

This theorem can be proved as follows:
Consider the area shown in Fig. 4.22. In this figure y-y is the axis of

symmetry. From eqn. 4.4, the distance of centroid from this axis is
given by:

i iA x

A

�

Consider the two elemental areas shown in Fig. 4.22, which are
equal in size and are equidistant from the axis, but on either side. Now
the sum of moments of these areas cancel each other since the areas and
distances are the same, but signs of distances are opposite. Similarly,
we can go on considering an area on one side of symmetric axis and
corresponding image area on the other side, and prove that total moments of area (ΣAixi) about the
symmetric axis is zero. Hence the distance of centroid from the symmetric axis is zero, i.e., centroid
always lies on symmetric axis.

Making use of the symmetry we can conclude that:
(1) Centroid of a circle is its centre (Fig. 4.23);
(2) Centroid of a rectangle of sides b and d is at distance 

2

b
 and 

2

d
 from the corner as shown in

Fig. 4.24.

Y

Axis of
symmetry

xx xx

XO

Fig. 4.22
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G

b/2b/2
bb

dd

d/2d/2

G

Fig. 4.23 Fig. 4.24

Determination of Centroid of Simple Figures From First Principle

For simple figures like triangle and semicircle, we can write general expression for the elemental area
and its distance from an axis. Then equation 4.4 reduces to:

y = 
ydA

A
�

x = 
xdA

A
�

The location of the centroid using the above equations may be considered as finding centroid from
first principle. Now, let us find centroid of some standard figures from first principle.

Centroid of a Triangle

Consider the triangle ABC of base width b and height h as shown in Fig. 4.25. Let us locate the
distance of centroid from the base. Let b1 be the width of elemental strip of thickness dy at a distance
y from the base. Since �AEF and �ABC are similar triangles, we can write:

1b

b
= 

h y

h

�

b1 = 
h y

h

�� �
� �� �

b = 1
y

h
� ��� �� �

b

∴ Area of the element
= dA = b1dy

= 1
y

h
� ��� �� �

b dy

Area of the triangle A = 
1

2
bh

∴ From eqn. 4.4

y = 
Moment of area

Total area

ydA

A
� �

Now, � ydA = 
0

h

� y 1
y

h
� ��� �� �

b dy

A

E

B

dy

F
b1b1

bb
C

hh
yy

Fig. 4.25
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=
0

h

�
2y

y
h

� �
�� �� �

b dy

= b
2 3

0
2 3

h
y y

h

� �
�� �

� 	

=
2

6

bh

∴ y  =
2

1
2

1
6

ydA bh

A bh
� ��

∴ y  =
3

h

Thus the centroid of a triangle is at a distance 
3

h
 from the base (or 

2

3

h
 from the apex) of the

triangle, where h is the height of the triangle.

Centroid of a Semicircle

Consider the semicircle of radius R as shown in Fig. 4.26. Due to symmetry centroid must lie on y
axis. Let its distance from diametral axis be y . To find y , consider an element at a distance r from
the centre O of the semicircle, radial width being dr and bound by radii at θ and θ + dθ.

Area of element = r dθ�dr.

Its moment about diametral axis x is given by:

rdθ × dr × r sin θ = r2 sin θ dr dθ
∴ Total moment of area about diametral axis,

00

R

��
π

r2 sin θ dr dθ = 
0

3

0
3

π

�
�

�
�
�

�
�

r
R

sin θ dθ

= 
3

3

R
 −
�

�
�

�

�
�cos θ

π

0

= 
3

3

R
 [1 + 1] = 

32

3

R

Area of semicircle A = 
1

2
πR2

∴ y = 

3

2

2
Moment of area 3

1Total area
�

2

R

R
�

= 
4

3

R

π

Thus, the centroid of the circle is at a distance 
4

3�

R
 from the diametral axis.

d�
rr

�
dr

O X

Y

RR

Fig. 4.26
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Centroid of Sector of a Circle

Consider the sector of a circle of angle 2α as shown in Fig. 4.27. Due to symmetry, centroid lies on x
axis. To find its distance from the centre O, consider the elemental area shown.

Area of the element =rdθ dr

Its moment about y axis

= rdθ × dr × r cos θ
= r2 cos θ drdθ

∴ Total moment of area about y axis

=
0

R

��
− α

α

 r2 cos θ drdθ

=
3

0
3

R
r� �

� �
� 	

sin θ
α

α
�

�
�

�

�
�

−

=
3

3

R
 2 sin α

Total area of the sector

=
0

R

��
− α

α

 rdrdθ

=
−
�
�

�
�
�

�
�

α

α

θr
d

R2

0
2

=
2

2

R
θ

α

α
�
��
�
��−

= R2α
� The distance of centroid from centre O

=
Moment of area about axis

Area of the figure

y

=

2

3 2

3

3

2

R

R

Rsin
sin

α

α α
α=

Centroid of Parabolic Spandrel

Consider the parabolic spandrel shown in Fig. 4.28. Height of the element at a distance x from O is
y = kx2

Y

X

dr

d�
�

rr

2	
	

O

RR

G

Fig. 4.27
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Width of element = dx

∴ Area of the element = kx2dx

∴ Total area of spandrel =
0

a

� kx2dx = 
3

0
3

a
kx� �

� �
� 	

 =
3

3

ka

Moment of area about y axis

=
0

a

� kx2dx × x

=
0

a

� kx3 dx

=
4

0
4

a
k x� �

� �
� 	

=
4

4

ka

Moment of area about x axis = dA
ya

.
20�

=
0

a

� kx2dx 
2 2 4

02 2

akx k x� � dx

=
2 5

10

k a

∴ x  =
4 3 3

4 3 4

ka ka a
� �

y  =
2 5 3 3

10 3 10

k a ka
� �  ka2

From the Fig. 4.28, at x = a, y = h

∴ h = ka2 or k = 
2

h

a

∴ y  = 2
2

3 3

10 10

h h
a

a
� �

Thus, centroid of spandrel is 
3 3

,
4 10

a h� �
� �� �

Centroids of some common figures are shown in Table 4.2.

y = kx
2Y

O xx
dx

aa

hh

X

– –G(x, y)

Fig. 4.28



110 MECHANICS OF SOLIDS

Table 4.2 Centroid of Some Common Figures

Shape Figure x y Area

Triangle

y

x

hh G

bb

—
3
h

2
bh

Semicircle

y

x

rrG 0
4

3

R
π

πR2

2

Quarter circle

y

x
RR

G 4

3

R
π

4

3

R
π

πR2

4

Sector of a circle
y

xG
2	2	

2

3

R
α

 sin a 0 αR 2

Parabola

y

G
x

h

2a

0
3
5
h 4

3
ah

Semi parabola

y

h
xa

3
8

a
3
5
h 2

3
ah

Parabolic spandrel

y

x
aa

G
hh 3

4
a 3

10
h

3
ah

Centroid of Composite Sections

So far, the discussion was confined to locating the centroid of simple figures like rectangle, triangle,
circle, semicircle, etc. In engineering practice, use of sections which are built up of many simple
sections is very common. Such sections may be called as built-up sections or composite sections. To
locate the centroid of composite sections, one need not go for the first principle (method of integra-
tion). The given composite section can be split into suitable simple figures and then the centroid of
each simple figure can be found by inspection or using the standard formulae listed in Table 4.2.
Assuming the area of the simple figure as concentrated at its centroid, its moment about an axis can be
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found by multiplying the area with distance of its centroid
from the reference axis. After determining moment of each
area about reference axis, the distance of centroid from the
axis is obtained by dividing total moment of area by total area
of the composite section.

Example 4.4. Locate the centroid of the T-section shown
in the Fig. 4.29.

Solution: Selecting the axis as shown in Fig. 4.29, we
can say due to symmetry centroid lies on y axis, i.e. x  = 0.
Now the given T-section may be divided into two rectangles
A1 and A2 each of size 100 × 20 and 20 × 100. The centroid of
A1 and A2 are g1(0, 10) and g2(0, 70) respectively.

∴ The distance of centroid from top is given by:

y = 
100 20 10 20 100 70

100 20 20 100

� � � � �
� � �

= 40 mm
Hence, centroid of T-section is on the symmetric axis at a distance 40 mm from the top.
Example 4.5. Find the centroid of the unequal angle 200 × 150 × 12 mm, shown in Fig. 4.30.
Solution: The given composite figure can be divided into two rectangles:

A1 = 150 × 12 = 1800 mm2

A2 = (200 – 12) × 12 = 2256 mm2

Total area A = A1 + A2 = 4056 mm2

Selecting the reference axis x and y as shown in
Fig. 4.30. The centroid of A1 is g1 (75, 6) and that of A2 is:

g2
1

6,12 (200 12)
2

� �� �� �� 	
i.e., g2 (6, 106)

∴ x = 
Moment about axis

Total area

y

= 1 1 2 2A x A x

A

�

= 
1800 75 2256 6

4056

� � �
 = 36.62 mm

y = 
Moment about axis

Total area

x

= 1 1 2 2A y A y

A

�

= 
1800 6 2256 106

4056

� � �
 = 61.62 mm

Thus, the centroid is at x  = 36.62 mm and y  = 61.62 mm as shown in the figure.

100100 O

A1 g1–y–y

X
20

G

g2

A2

2020

100100

Y
All dimensions in mmAll dimensions in mm

Fig. 4.29

Fig. 4.30

150150

X12

A1

O
–x

g1–y–y

200200

G

g2

A2

12

Y
All dimensions in mm
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Example 4.6. Locate the centroid of the I-section shown in Fig. 4.31.

Y
100100

g1A120

100100

2020

A2

g2

G

3030 A3
g3

O
150150

X

–y–y

All dimensions in mmAll dimensions in mm

Fig. 4.31

Solution: Selecting the coordinate system as shown in Fig. 4.31, due to symmetry centroid must
lie on y axis,

i.e., x = 0
Now, the composite section may be split into three rectangles

A1 = 100 × 20 = 2000 mm2

Centroid of A1 from the origin is:

y1 = 30 + 100 + 
20

2
 = 140 mm

Similarly A2 = 100 × 20 = 2000 mm2

y2 = 30 + 
100

2
 = 80 mm

A3 = 150 × 30 = 4500 mm2,

and y3 = 
30

2
 = 15 mm

∴ y = 1 1 2 2 3 3A y A y A y

A

� �

= 
2000 140 2000 80 4500 15

2000 2000 4500

� � � � �
� �

= 59.71 mm
Thus, the centroid is on the symmetric axis at a distance 59.71 mm from the bottom as

shown in Fig. 4.31.
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Example 4.7. Determine the centroid of the section of the concrete dam shown in Fig. 4.32.

2 m2 m 2 m2 m 3 m3 m
1 m

1.5 m1.5 m

6.0 m6.0 m

y

O –x–x
8 m8 m

1.0 m

5.0 m5.0 m

A2

A1

g1

G

–y–y

g3

g4A4

A3
g2

x

Fig. 4.32

Solution: Let the axis be selected as shown in Fig. 4.32. Note that it is convenient to take axis in such
a way that the centroids of all simple figures are having positive coordinates. If coordinate of any
simple figure comes out to be negative, one should be careful in assigning the sign of moment of area
of that figure.

The composite figure can be conveniently divided into two triangles and two rectangles, as
shown in Fig. 4.32.

Now, A1 = 
1

2
 × 2 × 6 = 6 m2

A2 = 2 × 7.5 = 15 m2

A3 = 
1

2
 × 3 × 5 = 7.5 m2

A4 = 1 × 4 = 4 m2

A = total area = 32.5 m2

Centroids of simple figures are:

x1 = 
2

3
 × 2 = 

4

3
 m

y1 = 
1

3
 × 6 = 2 m

x2 = 2 + 1 = 3 m

y2 = 
7.5

2
 = 3.75 m

x3 = 2 + 2 + 
1

3
 × 3 = 5 m
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y3 = 1 + 
1

3
 × 5 = 

8

3
 m

x4 = 4 + 
4

2
 = 6 m

y4 = 0.5 m

x = 1 1 2 2 3 3 4 4A x A x A x A x

A

� � �

= 
4
36 15 3 7.5 5 4 6

32.5

� � � � � � �

= 3.523 m

y = 1 1 2 2 3 3 4 4A y A y A y A y

A

� � �

= 
8
36 2 15 3.75 7.5 4 0.5

32.5

� � � � � � �

= 2.777 m

The centroid is at x = 3.523 m

and y = 2.777 m
Example 4.8. Determine the centroid of the area shown in Fig. 4.33 with respect to the axis shown.

y

R = 2 m
g3

g2

g1

O 6 m6 m 3 m3 m

4 m4 m

xx

Fig. 4.33

Solution: The composite section is divided into three simple figures, a triangle, a rectangle and a
semicircle

Now, area of triangle A1 = 
1

2
 × 3 × 4 = 6 m2

Area of rectangle A2 = 6 × 4 = 24 m2

Area of semicircle A3 = 
1

2
 × π × 22 = 6.2832 m2

∴ Total area A = 36.2832 m2
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The coordinates of centroids of these three simple figures are:

x1 = 6 + 
1

3
 × 3 = 7 m

y1 = 
4

3
 m

x2 = 3 m
y2 = 2 m

x3 = 
4 4 2

3 3

R

� �

� �
� �  = –0.8488 m

y3 = 2 m (Note carefully the sign of x3).

x = 1 1 2 2 3 3A x A x A x

A

� �

= 
6 7 24 3 6.2832 ( 0.8488)

36.2832

� � � � � �

i.e., x = 2.995 m

y = 1 1 2 2 3 3A y A y A y

A

� �

= 
6 4

3 24 2 6.2832 2

36.2832

� � � � �

i.e., y = 1.890 m
Example 4.9. In a gusset plate, there are six rivet holes of 21.5 mm diameter as shown in Fig. 4.34.
Find the position of the centroid of the gusset plate.

Y

160160

120120

4
5

6

1 2 3

5050

130130

140140

200200

X7070 7070 7070 7070

Fig. 4.34

Solution: The composite area is equal to a rectangle of size 160 × 280 mm plus a triangle of size 280
mm base width and 40 mm height and minus areas of six holes. In this case also the Eqn. 4.4 can be
used for locating centroid by treating area of holes as negative. The area of simple figures and their
centroids are as shown in Table 4.3.
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Table 4.3

Figure Area in mm 2 xi in mm yi in mm

Rectangle 160 × 280 = 44,800 140 80

Triangle
1
2

 × 280 × 40 = 5600
560
3

160 + 
40
3

 = 173.33

1st hole
− ×π 21.52

4
 = –363.05 70 50

2nd hole –363.05 140 50
3rd hole –363.05 210 50
4th hole –363.05 70 120
5th hole –363.05 140 130
6th hole –363.05 210 140

∴ A = ΣAi = 48221.70

∴ ΣAixi = 44800 × 140 + 5600 × 
560

3
 – 363.05 (70 + 140 + 210 + 70 + 140 + 210)

= 7012371.3 mm3

x = i iA x

A

�
 = 145.42 mm

ΣAiyi = 44800 × 80 + 5600 × 173.33 – 363.05 (50 × 3 + 120 + 130 + 140)
= 4358601 mm3

y = 4358601

48221.70
i iA y

A

�
�

= 90.39 mm
Thus, the coordinates of centroid of composite figure is given by:

x = 145.42 mm
y = 90.39 mm

Example 4.10. Determine the coordinates xc and yc of the
centre of a 100 mm diameter circular hole cut in a thin
plate so that this point will be the centroid of the remain-
ing shaded area shown in Fig. 4.35 (All dimensions are
in mm).

Solution: If xc and yc are the coordinates of the centre of
the circle, centroid also must have the coordinates xc and
yc as per the condition laid down in the problem. The
shaded area may be considered as a rectangle of size 200
mm × 150 mm minus a triangle of sides 100 mm × 75
mm and a circle of diameter 100 mm.

∴ Total area

= 200 × 150 – 
1

2
 × 100 × 75 – 

π
4
�
�
�
� 1002

= 18396 mm2

100100
Y

150150
100

7575

200200 X

Fig. 4.35
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xc = x  = 

21 100
200 150 100 100 75 200 100

2 3 4

18396

cx
�� �� 	� � � � � � � � � �
 �� 
� �� �

∴ xc(18396) = 200 × 150 × 100 – 
1

2
 × 100 × 75 × 166.67 – 

4

�

 × 1002 xc

xc =
2375000

26250
 = 90.48 mm

Similarly,

18396 yc = 200 × 150 × 75 – 
1

2
 × 100 × 75 × (150 – 25) – 

4

�
× 1002 yc

∴ yc =
1781250.0

26250
 = 67.86 mm

Centre of the circle should be located at (90.48, 67.86) so that this point will be the centroid of the
remaining shaded area as shown in Fig. 4.35.

Note: The centroid of the given figure will coincide with the centroid of the figure without circular hole.
Hence, the centroid of the given figure may be obtained by determining the centroid of the figure without the
circular hole also.

Example 4.11. Determine the coordinates of the centroid of the plane area shown in Fig. 4.36 with
reference to the axis shown. Take x = 40 mm.

4x4x 4x4x6x6x

Y4x4x

8x8x

2x
O

R
=

4x

8x8x 4x4x 6x6x

R
= 4x

4x4x

4x4x

4x4x

X

Fig. 4.36

Solution: The composite figure is divided into the following simple figures:
(1) A rectangle A1 = (14x) × (12x) = 168x2

x1 = 7x; y1 = 6x
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(2) A triangle A2 = 
1

2
 (6x) × (4x) = 12x2

x2 = 14x + 2x = 16x

y2 = 
4

3

x

(3) A rectangle to be subtracted
A3 = (–4x) × (4x) = –16x2

x3 = 2x; y3 = 8x + 2x = 10x
(4) A semicircle to be subtracted

A4 = –
1

2
π (4x)2 = –8πx2

x4 = 6x

y4 = 
4

3

R

π
 = 4 × 

4

3

16

3

( )x x

π π
=

(5) A quarter of a circle to be subtracted

A5 = 
1

4
�  × π (4x)2 = –4πx2

x5 = 14x – 
4

3

R

π
 = 14x – (4) 

4

3

x

π
�
�
�
�  = 12.3023x

y5 = 12x – 4 × 
4

3

x

π
�
�
�
�  = 10.3023x

Total area A = 168x2 + 12x2 – 16x2 – 8πx2 – 4πx2

= 126.3009x2

x = i iA x

A

�

ΣAixi = 168x2 × 7x + 12x2 × 16x – 16x2 × 2x – 8πx2 × 6x – 4πx2 × 12.3023x
= 1030.6083x3

∴ x = 
3

2

1030.6083

126.3009

x

x

= 8.1599x = 8.1599 × 40 (since x = 40 mm)
= 326.40 mm

y = i iA y

A

�
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ΣAiyi = 168x2 × 6x + 12x2 × 
4

3

x
 – 16x2 × 10x

– 8πx2 × 16

3

x

π
 – 4πx2 × 10.3023x

= 691.8708x3

∴ y = 
3

2

691.8708

126.3009

x

x

= 5.4780x
= 219.12 mm (since x = 40 mm)

Centroid is at (326.40, 219.12).

4.5 SECOND MOMENTS OF PLANE AREA

Consider the area shown in Fig. 4.37(a). dA is an elemental area with coordinates as x and y. The
term Σy2

i dAi is called moment of inertia of the area about x axis and is denoted as Ixx. Similarly, the
moment of inertia about y axis is

Iyy = Σx2
i dAi

In general, if r is the distance of elemental area dA from the axis AB [Fig. 4.37(b)], the sum of
the terms Σr2 dA to cover the entire area is called moment of inertia of the area about the axis AB. If
r and dA can be expressed in general term, for any element, then the sum becomes an integral. Thus,

 IAB = Σr2
i dAi = � r2 dA  ...(4.6)

Y

X

xx

yy

dA
dA

rr

B

A

(a) (b)

Fig. 4.37

The term rdA may be called as moment of area, similar to moment of a force, and hence r2 dA
may be called as moment of area or the second moment of area. Thus, the moment of inertia of area
is nothing but second moment of area. In fact, the term ‘second moment of area’ appears to correctly
signify the meaning of the expression Σr2 dA. The term ‘moment of inertia’ is rather a misnomer.
However, the term moment of inertia has come to stay for long time and hence it will be used in this
book also.

Though moment of inertia of plane area is a purely mathematical term, it is one of the important
properties of areas. The strength of members subject to bending depends on the moment of inertia of
its cross-sectional area. Students will find this property of area very useful when they study subjects
like strength of materials, structural design and machine design.

The moment of inertia is a fourth dimensional term since it is a term obtained by multiplying
area by the square of the distance. Hence, in SI units, if metre (m) is the unit for linear measurements
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used then m4 is the unit of moment of inertia. If millimetre (mm) is the unit used for linear measure-
ments, then mm4 is the unit of moment of inertia. In MKS system m4 or cm4 and in FPS system ft4 or
in4 are commonly used as units for moment of inertia.

Polar Moment of Inertia

Moment of inertia about an axis perpendicular to the plane of an area is
known as polar moment of inertia. It may be denoted as J or Izz. Thus, the
moment of inertia about an axis perpendicular to the plane of the area at O in
Fig. 4.38 is called polar moment of inertia at point O, and is given by

Izz = Σr2dA ...(4.7)

Radius of Gyration

Radius of gyration is a mathematical term defined by the relation

k = I

A
...(4.8)

where k = radius of gyration,
I = moment of inertia,

and A = the cross-sectional area
Suffixes with moment of inertia I also accompany the term radius of gyration k. Thus, we can

have,

kxx = xxI

A

kyy = yyI

A

kAB = ABI

A
and so on.

The relation between radius of gyration and moment of
inertia can be put in the form:

I = Ak2 ...(4.9)
From the above relation a geometric meaning can be

assigned to the term ‘radius of gyration.’ We can consider k as
the distance at which the complete area is squeezed and kept as
a strip of negligible width (Fig. 4.39) such that there is no
change in the moment of inertia.

y

x

xx

rr

dA

yy

O

Fig. 4.38

Fig. 4.39

A

kk

Axis



DISTRIBUTED FORCES, CENTRE OF GRAVITY AND MOMENT OF INERTIA 121

Theorems of Moments of Inertia

There are two theorems of moment of inertia:
(1) Perpendicular axis theorem, and
(2) Parallel axis theorem.
These are explained and proved below.

Perpendicular Axis Theorem

The moment of inertia of an area about an axis pependicular to its plane (polar moment of inertia) at
any point O is equal to the sum of moments of inertia about any two mutually perpendicular axis
through the same point O and lying in the plane of the area.

Referring to Fig. 4.40, if z-z is the axis normal to the plane of
paper passing through point O, as per this theorem,

Izz = Ixx + Iyy ... (4.10)
The above theorem can be easily proved. Let us consider an elemental

area dA at a distance r from O. Let the coordinates of dA be x and y.
Then from definition:

Izz =�Σr2dA

= Σ(x2 + y2)dA

= Σx2dA + Σy2dA

Izz = Ixx + Iyy

Parallel Axis Theorem

Moment of inertia about any axis in the plane of an area
is equal to the sum of moment of inertia about a parallel
centroidal axis and the product of area and square of the
distance between the two parallel axis. Referring to
Fig. 4.41 the above theorem means:

IAB = IGG + A yc
2 ...(4.11)

where
IAB = moment of inertia about axis AB

IGG = moment of inertia about centroidal axis GG
parallel to AB.

A = the area of the plane figure given and
yc = the distance between the axis AB and the parallel centroidal

axis GG.
Proof: Consider an elemental parallel strip dA at a distance y from the centroidal axis (Fig. 4.41).

Then,  IAB = Σ(y + yc)
2dA

= Σ(y2 + 2y yc + yc
2)dA

= Σy2dA + Σ2y yc dA + Σ yc
2dA

Now, Σy2dA = Moment of inertia about the axis GG

= IGG

y

x

xx

rr

dA

yy

O

Fig. 4.40

G G

A B

ycyc

Centroid

A

dA

y

Fig. 4.41
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Σ2yyc dA = 2yc Σy dA

= 2yc A 
ydA

A

�

In the above term 2yc A is constant and 
ydA

A

�
 is the distance of centroid from the reference axis

GG. Since GG is passing through the centroid itself 
ydA

A
 is zero and hence the term Σ2yycdA is zero.

Now, the third term,

Σyc
2dA = yc

2ΣdA

= Ayc
2

∴ IAB = IGG + Ayc
2

Note: The above equation cannot be applied to any two parallel axis. One of the axis (GG) must be centroidal
axis only.

4.6 MOMENT OF INERTIA FROM FIRST PRINCIPLES

For simple figures, moment of inertia can be obtained by writing the general expression for an
element and then carrying out integration so as to cover the entire area. This procedure is illustrated
with the following three cases:

(1) Moment of inertia of a rectangle about the centroidal axis
(2) Moment of inertia of a triangle about the base
(3) Moment of inertia of a circle about a diametral axis

(1) Moment of Inertia of a Rectangle about the Centroidal Axis: Consider a rectangle of width b
and depth d (Fig. 4.42). Moment of inertia about the centroidal axis x-x parallel to the short side is
required.

Consider an elemental strip of width dy at a distance y from the axis. Moment of inertia of the
elemental strip about the centroidal axis xx is:

= y2dA

= y2b dy

∴ Ixx = 
/ 2

/ 2

d

d�
� y2b dy

= b

/ 23

/ 2
3

d

d

y

�

� �
� 

� �

= b 
3 3

24 24

d d� �
�� 


� �

Ixx = 
3

12

bd

x x

dy

yy

d/2d/2

d/2d/2

bb

Fig. 4.42
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(2) Moment of Inertia of a Triangle about its Base:
Moment of inertia of a triangle with base width b and
height h is to be determined about the base AB
(Fig. 4.43).

Consider an elemental strip at a distance y from
the base AB. Let dy be the thickness of the strip and
dA its area. Width of this strip is given by:

b1 = 
( )h y

h

�
 × b

Moment of inertia of this strip about AB

= y2dA

= y2 b1 dy

= y2 
( )h y

h

�
 × b × dy

∴ Moment of inertia of the triangle about AB,

IAB = 
2

0

( )h y h y bdy

h

�
�

= 
3

2

0

h y
y

h

� 	
�
 �� �

� bdy

= b
3 4

0
3 4

h
y y

h

� �
�� 


� �

= b
3 4

3 4

h h

h

� �
�� 


� �

IAB = 
3

12

bh

(3) Moment of Inertia of a Circle about its Diametral
Axis: Moment of inertia of a circle of radius R is required
about it’s diametral axis as shown in Fig. 4.44

Consider an element of sides rdθ and dr as shown in the
figure. It’s moment of inertia about the diametral axis x-x:

= y2dA
= (r sin θ)2 r dθ dr

= r3 sin2 θ dθ dr
∴ Moment of inertia of the circle about x-x is given by

Ixx = 
0 0

2R

� �
π

r3 sin2 θ dθ dr

A

dy

yy

bb

b1b1

B

hh

Fig. 4.43

dd

X X

RR

�
d�rr

rd�

dr

Fig. 4.44
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= 
0 0

2
1 2

2

R

d dr� �
−

π
θ θ( cos )

= 
0

3

0

2

2

2

2

R
r

dr� −�
��

	

�

θ θ πsin

= 
4

0
8

R
r� �

� 

� �

[2π – 0 + 0 – 0] = 
2

8

π
R4

Ixx = 
πR4

4
If d is the diameter of the circle, then

R = 
2

d

∴ Ixx = 
π
4 2

4d�
�
�
�

Ixx = 
πd 4

64

Moment of Inertia of Standard Sections

Rectangle: Referring to Fig. 4.45.

(a) Ixx = 
3

12

bd
 as derived from first principle.

(b) Iyy = 
3

12

db
 can be derived on the same lines.

(c) About the base AB, from parallel axis theorem,
IAB = Ixx + Ayc

2

= 
3

12

bd
 + bd

2

2

d� 	

 �� �

, since yc = 
2

d

= 
3

12

bd
 + 

3

4

bd

= 
3

3

bd

Fig. 4.45

y

B

y
bb

A

x x

d/2d/2

d/2d/2
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Hollow Rectangular Section: Referring to Fig. 4.46, Moment of inertia
Ixx = Moment of inertia of larger rectangle–Moment of inertia of
hollow portion. That is,

= 
3 3

12 12

BD bd
�

= 
1

12
(BD3 – bd3)

Triangle—Referring to Fig. 4.47.
(a) About the base:
As found from first principle

IAB = 
3

12

bh

(b) About centroidal axis, x-x parallel to base:
From parallel axis theorem,

IAB = Ixx + Ayc
2

Now, yc, the distance between the non-centroidal axis AB and centroidal axis x-x, is equal to 
3

h
.

∴
3

12

bh
= Ixx + 

1

2
bh

2

3

h� 	

 �� �

= Ixx + 
3

18

bh

∴ Ixx = 
3

12

bh
 – 

3

18

bh

= 
3

36

bh

Moment of Inertia of a Circle about any diametral axis

= 
πd 4

64
(as found from first principle)

Fig. 4.46

A

G hh

h/3h/3

bb BB

Fig. 4.47

bb
D/2D/2

D/2D/2

x x

dd

BB
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Moment of Inertia of a Hollow Circle: Referring to Fig. 4.48.
IAB = Moment of inertia of solid circle of diameter D about AB
– Moment of inertia of circle of diameter d about AB. That is,

= 
4

64

D�

 – 
4

64

d�

= 
64

�

 (D4 – d4)

Moment of Inertia of a Semicircle: (a) About Diametral Axis:
If the limit of integration is put as 0 to π instead of 0 to 2π in
the derivation for the moment of inertia of a circle about
diametral axis the moment of inertia of a semicircle is
obtained. It can be observed that the moment of inertia of a
semicircle (Fig. 4.49) about the diametral axis AB:

= 
1
2 64 128

4 4

× =π πd d

(b) About Centroidal Axis x-x:
Now, the distance of centroidal axis yc from the diametral
axis is given by:

yc = 
4

3

2

3

R d

π π
=

and, Area A = 
1
2 4 8

2 2

× =π πd d

From parallel axis theorem,
IAB = Ixx + Ayc

2

πd 4

128
= Ixx + 

π
π

d d2 2

8

2

3
× �
�
�
�

Ixx = 
π

π
d d4 4

128 18
−

= 0.0068598 d 4

Moment of Inertia of a Quarter of a Circle: (a) About the Base: If the limit of integration is put as 0

to π
2

 instead of 0 to 2π in the derivation for moment of inertia of a circle the moment of inertia of a

quarter of a circle is obtained. It can be observed that moment of inertia of the quarter of a circle
about the base AB.

A B

dd

DD

Fig. 4.48

x x
G

ycyc

dd

A B

Fig. 4.49
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= 
1
4 64 256

4 4

× =π
π

πd d

(b) About Centroidal Axis x-x:
Now, the distance of centroidal axis yc from the base is given by:

yc = 
4 2

3 3

R d
�

� �

and the area A = 
2 21

4 4 16

d d� �
� �

From parallel axis theorem,
IAB = Ixx + Ayc

2

4

256

d�
= Ixx + 

22 2

16 3

d d� � 	

 �� ��

Ixx = 
4 4

256 36

d d�
�

�
= 0.00343 d4

The moment of inertia of common standard sections are presented in Table 4.4.

Table 4.4 Moment of Inertia of Standard Sections

Shape Axis Moment of Inertia

Rectangle (a) Centroidal axis x-x Ixx = 
3

12
bd

(b) Centroidal axis y-y Iyy = 
3

12
db

(c) A – B IAB = 
3

3
bd

Hollow Rectangle Centroidal axis x-x Ixx = 
�3 3

12
BD bd

X X

G

A B

RR

4R
3�

Fig. 4.50

d/2d/2

d/2d/2

X X

Y

A
b/2b/2 b/2b/2

B

Y

X Xbb

dd

BB

DD

(Contd.)
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Triangle (a) Centroidal axis x-x Ixx = 
3

36
bh

(b) Base AB IAB = 
3

12
bh

Circle Diametral axis I = � 4

64
d

Hollow circle Diametral axis I = �
64

 (D 4 – d 4)

Semicircle (a) A – B IAB = 
� 4

128
d

(b) Centroidal axis Ixx = 0.0068598 d 4

Quarter of a circle (a) A – B IAB = 
� 4

256
d

(b) Centroidal axis x-x Ixx = 0.00343 d 4

Table 4.4 (Contd.)

Shape Axis Moment of Inertia

X X
h/3h/3

G

bb
A B

hh

A B

dd

DD

dd

X X
G

A B
d/2d/2

d/2d/2

X X
G

A B

dd
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4.7 MOMENT OF INERTIA OF COMPOSITE SECTIONS

Beams and columns having composite sections are commonly used in structures. Moment of inertia
of these sections about an axis can be found by the following steps:

(1) Divide the given figure into a number of simple figures.

(2) Locate the centroid of each simple figure by inspection or using standard expressions.
(3) Find the moment of inertia of each simple figure about its centroidal axis. Add the term Ay2

where A is the area of the simple figure and y is the distance of the centroid of the simple
figure from the reference axis. This gives moment of inertia of the simple figure about the
reference axis.

(4) Sum up moments of inertia of all simple figures to get the moment of inertia of the composite
section.

The procedure given above is illustrated below. Referring to the Fig. 4.51, it is required to find
out the moment of inertia of the section about axis A-B.

(1) The section in the figure is divided into a rectangle, a triangle and a semicircle. The areas
of the simple figures A1, A2 and A3 are calculated.

A3

A1

g3

g1

g2

A2
y2y2

y1y1

y3y3

A

Fig. 4.51

(2) The centroids of the rectangle (g1), triangle (g2) and semicircle (g3) are located. The distances
y1, y2 and y3 are found from the axis AB.

(3) The moment of inertia of the rectangle about it’s centroid (Ig1
) is calculated using standard

expression. To this, the term A1 y1
2 is added to get the moment of inertia about the axis AB as:

I1 = Ig1
 + A1 y1

2

Similarly, the moment of inertia of the triangle (I2 = Ig2
 + A2 y2

2) and of semicircle (I3 = Ig3

+ A3 y3
2) about axis AB are calculated.

(4) Moment of inertia of the composite section about AB is given by:

IAB = I1 + I2 + I3

= Ig1
 + A1 y1

2 + Ig2
 + A2 y2

2 + Ig3
 + A3 y3

2 ...(4.12)
In most engineering problems, moment of inertia about the centroidal axis is required. In such

cases, first locate the centroidal axis as discussed in 4.4 and then find the moment of inertia about this
axis.

Referring to Fig. 4.52, first the moment of area about any reference axis, say AB is taken and is
divided by the total area of section to locate centroidal axis x-x. Then the distances of centroid of
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individual figures yc1, yc2 and yc3 from the axis x-x are determined. The moment of inertia of the
composite section about the centroidal axis x-x is calculated using the expression:

Ixx = Ig1
 + A1

2 yc1  + Ig2
 + A2

2 yc2 + Ig3
 + A3

2 
yc3 ...(4.13)

g1

g2

g3

A

–y–y

y 1c
y 2y 2c

y 3y 3c

B

g

Fig. 4.52

Sometimes the moment of inertia is found about a conveninet axis and then using parallel axis
theorem, the moment of inertia about centroidal axis is found.

In the above example, the moment of inertia IAB is found and yc, the distance of CG from axis
AB is calculated. Then from parallel axis theorem,

IAB = Ixx + Ay2
c

Ixx = IAB – Ay2
c

where A is the area of composite section.
Example 4.12. Determine the moment of inertia of the section
shown in Fig. 4.53 about an axis passing through the centroid
and parallel to the top most fibre of the section. Also determine
moment of inertia about the axis of symmetry. Hence find radii
of gyration.

Solution: The given composite section can be divided into two
rectangles as follows:

Area A1 = 150 × 10 = 1500 mm2

Area A2 = 140 × 10 = 1400 mm2

Total Area A = A1 + A2 = 2900 mm2

Due to symmetry, centroid lies on the symmetric axis y-y.
The distance of the centroid from the top most fibre is

given by:

yc = 
Sum of moment of the areas about the top most fibre

Total area

= 
1500 5 + 1400(10 + 70)

2900

�

= 41.21 mm
Referring to the centroidal axis x-x and y-y, the centroid of A1 is g1 (0.0, 36.21) and that of A2 is

g2 (0.0, 38.79).

Fig. 4.53

150150
y

g2A1

X XG

g1

A2

10y

–y–y

10

140140
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Moment of inertia of the section about x-x axis
Ixx = moment of inertia of A1 about x-x axis + moment of inertia of A2 about x-x axis.

∴ Ixx = 
3150 10

12

�
 + 1500 (36.21)2 + 

310 140

12

�
 + 1400 (38.79)2

i.e., Ixx = 63 72442.5 mm4

Similarly,

Iyy = 
3 310 150 140 10

12 12

� �
�  = 2824,166.7 mm4

Hence, the moment of inertia of the section about an axis passing through the centroid and
parallel to the top most fibre is 6372442.5 mm4 and moment of inertia of the section about the axis of
symmetry is 2824166.66 mm 

4.
The radius of gyration is given by:

k = I

A

∴ kxx = xxI

A

= 
6372442.5

2900

kxx = 46.88 mm

Similarly, kyy = 
2824166.66

2900

kyy = 31.21 mm
Example 4.13. Determine the moment of inertia of the L-section
shown in the Fig. 4.54 about its centroidal axis parallel to the
legs. Also find out the polar moment of inertia.

Solution: The given section is divided into two rectangles A1
and A2.

Area A1 = 125 × 10 = 1250 mm2

Area A2 = 75 × 10 = 750 mm2

Total Area = 2000 mm2

First, the centroid of the given section is to be located.
Two reference axis (1)–(1) and (2)–(2) are chosen as

shown in Fig. 4.54.
The distance of centroid from the axis (1)–(1)

= 1 2sum of moment of areas and about(1) (1)

Total area

A A �

1

10 Y

A1

125125

g1
G

X X

2 2

1

A2 g2

8585

10

Y

Fig. 4.54
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i.e., x = 

75
120 5 750 10

2
2000

� 	� � �
 �� �

= 20.94 mm
Similarly,
the distance of the centroid from the axis (2)–(2)

= y = 

125
1250 750 5

2
2000

� � �
 = 40.94 mm

With respect to the centroidal axis x-x and y-y, the centroid of A1 is g1 (15.94, 21.56) and that of
A2 is g2 (26.56, 35.94).

∴ Ixx = Moment of inertia of A1 about x-x axis + Moment of inertia of A2 about x-x axis

∴ Ixx = 
310 125

12

�
 + 1250 × 21.562 + 

375 10

12

�
 + 750 × 39.942

i.e., Ixx = 3411298.9 mm4

Similarly,

Iyy = 
3125 10

12

�
 + 1250 × 15.942 + 

310 75

12

�
 + 750 × 26.562

i.e., Iyy = 1208658.9 mm4

Polar moment of inertia = Ixx + Iyy

= 3411298.9 + 12,08658.9

Izz = 4619957.8 mm4

Example 14. Determine the moment of inertia of the symmertic I-section shown in Fig. 4.55 about its
centroidal axis x-x and y-y.

Also, determine moment of inertia of the section about
a centroidal axis perpendicular to x-x axis and y-y axis.

Solution: The section is divided into three rectangles A1, A2
and A3.

Area A1 = 200 × 9 = 1800 mm2

Area A2 = (250 – 9 × 2) × 6.7 = 1554.4 mm2

Area A3 = 200 × 9 = 1800 mm2

Total Area A = 5154.4 mm2

The section is symmetrical about both x-x and y-y axis.
Therefore, its centroid will coincide with the centroid of
rectangle A2.

With respect to the centroidal axis x-x and y-y, the
centroid of rectangle A1 is g1 (0.0, 120.5), that of A2 is g2
(0.0, 0.0) and that of A3 is g3 (0.0, 120.5).

Y
200200

g1
A1

9

6.7

250250

g2X X

A2

g3 A3

Fig. 4.55
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Ixx = Moment of inertia of A1 + Moment of inertia of A2

+ Moment of inertia of A3 about x-x axis

Ixx = 
3200 9

12

�
 + 1800 × 120.52 + 

36.7 232

12

�
 + 0

+ 
3200 9

12

�
 + 1800(120.5)2

Ixx = 5,92,69,202 mm4

Similarly,

Ixy = 
3 3 39 200 232 6.7 9 200

12 12 12

� � �
� �

Iyy = 1,20,05,815 mm4

Moment of inertia of the section about a centroidal axis perpendicular to x-x and y-y axis is
nothing but polar moment of inertia, and is given by:

Ixx = Ixx + Iyy

= 59269202 + 12005815

Iyy = 7,12,75,017 mm4

Example 4.15. Compute the second moment of area of the channel
section shown in Fig. 4.56 about centroidal axis x-x and y-y.

Solution: The section is divided into three rectangles A1, A2 and A3.
Area A1 = 100 × 13.5 = 1350 mm2

Area A2 = (400 – 27) × 8.1 = 3021.3 mm2

Area A3 = 100 × 13.5 = 1350.00 mm2

Total Area A = 5721.3 mm2

The given section is symmetric about horizontal axis passing
through the centroid g2 of the rectangle A2. A reference axis (1)–(1) is
chosen as shown in Fig. 4.56.
The distance of the centroid of the section from (1)–(1)

= 

8.1
1350 50 3021.3 1350 50

2
5721.3

� � � � �

= 25.73 mm
With reference to the centroidal axis x-x and y-y, the centroid of

the rectangle A1 is g1(24.27, 193.25) that of A2 is g2 (21.68, 0.0) and
that of A3 is g3 (24.27, 193.25).

Fig. 4.56

1

100100

13.5A1
g1

8.1

400400

g2

X X

A2

A3

g3

Y

1

Y
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∴ Ixx = Moment of inertia of A1, A2 and A3 about x-x

= 
3100 13.5

12

�
 + 1350 × 193.252

+ 
3 38.1 373 100 13.5

12 12

� �
�  + 1350 ×193.252

Ixx = 1.359 ×108 mm4

Similarly, Iyy = 
313.5 100

12

�
 + 1350 × 24.272 + 

3273 8.1

12

�
 + 3021.3

× 21.682 + 
313.5 100

12

�
 + 1350 × 24.272

Iyy = 52,72557.6 mm4

Example 4.16. Determine the polar moment of inertia of the I-section shown in the Fig. 4.57. Also
determine the radii of gyration with respect to x-x axis and y-y axis.

y
8080

12
A1 g1

12

A2

g2

150150

x x

1 1
10

g3
A3

120120
y

Fig. 4.57

Solution: The section is divided into three rectangles as shown in Fig. 4.57
Area A1 = 80 × 12 = 960 mm2

Area A2 = (150 – 22) × 12 = 1536 mm2

Area A3 = 120 × 10 = 1200 mm2

Total area A = 3696 mm2

Due to symmetry, centroid lies on axis y-y. The bottom fibre (1)–(1) is chosen as reference axis
to locate the centroid.
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The distance of the centroid from (1)–(1)

= 
Sum of moments of the areas of the rectangles about (1) (1)

Total area of section

�

= 

128
960 (150 – 6) 1536 10 1200 5

2
3696

� �� � � � � �� �� 	

= 69.78 mm
With reference to the centroidal axis x-x and y-y, the centroid of the rectangles A1 is g1 (0.0,

74.22), that of A2 is g2 (0.0, 4.22) and that of A3 is g3  (0.0, 64.78).

Ixx = 
380 12

12

�
 + 960 × 74.222 + 

312 128

12

�
 + 1536 × 4.222 + 

3120 10

12

�
 + 1200 × 64.782

Ixx = 1,24,70,028 mm4

Iyy = 
3 3 312 80 128 12 10 120

12 12 12

� � �
� �

= 19,70,432 mm4

Polar moment of inertia = Ixx + Iyy

= 1,24,70,027 + 19,70,432

= 1,44,40459 mm4

∴ kxx = 
1,24,70,027

3696
xxI

A



= 58.09 mm

kyy = 
19,70,432

3696
yyI

A



= 23.09 mm.
Example 4.17. Determine the moment of inertia of the built-up section shown in Fig. 4.58 about its
centroidal axis x-x and y-y.

Solution: The given composite section may be divided into simple rectangles and triangles as shown
in the Fig. 4.58

Area A1 = 100 × 30 = 3000 mm2

Area A2 = 100 × 25 = 2500 mm2

Area A3 = 200 × 20 = 4000 mm2

Area A4 = 
1

2
 × 87.5 × 20 = 875 mm2

Area A5 = 
1

2
 × 87.5 × 20 = 875 mm2

Total area A = 11250 mm2
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y

100100

3030 g1
A1

2525

A2

g2

8080

A4
g4 g5 A5

x x

g3 A3

2020

2020
1

200200
y

1

Fig. 4.58

Due to symmetry, centroid lies on the axis y-y.
A reference axis (1)–(1) is choosen as shown in the figure.
The distance of the centroidal axis from (1)–(1)

y = 
sum of moment of areas about (1)–(1)

Total area

= 

1
3000 135 2500 70 4000 10 875 20 20 2

3
11250

� �� � � � � � � � �� �� 	

= 59.26 mm
With reference to the centroidal axis x-x and y-y, the centroid of the rectangle A1 is g1 (0.0, 75.74),

that of A2 is g2(0.0, 10.74), that of A3 is g3 (0.0, 49.26), the centroid of triangle A4 is g4 (41.66, 32.59)
and that of A5 is g5 (41.66, 32.59).

Ixx = 
3100 30

12

�
 + 3000 × 75.742 + 

325 100

12

�
 + 2500 × 10.742 + 

3200 20

12

�
 + 4000

× 49.262 + 
387.5 20

36

�
 + 875 × 32.592 + 

387.5 20

36

�
 + 875 × 32.592

Ixx = 3,15,43,447 mm4

Iyy = 
3 3 3 330 100 100 25 20 200 20 87.5

12 12 12 36

� � � �
� � �  + 875 × 41.662

+ 
320 87.5

36

�
 + 875 × 41.662

Iyy = 1,97,45,122 mm4.



DISTRIBUTED FORCES, CENTRE OF GRAVITY AND MOMENT OF INERTIA 137

Example 4.18. Determine the moment of inertia of the built-up section shown in the Fig. 4.59 about
an axis AB passing through the top most fibre of the section as shown.

A B
400400

10

10

20

380380

10

100100 100100150150

Fig. 4.59

Solution: In this problem, it is required to find out the moment of inertia of the section about an axis
AB. So there is no need to find out the position of the centroid.

The given section is split up into simple rectangles as shown in Fig. 4.59.
Now,
Moment of inertia about AB = Sum of moments of inertia of the rectangle about AB

= 
3400 20

12

�
 + 400 × 20 × 102 + 

100 10

12
100 10 20 5

3
2× + × × +

�

�
�

�

�
�( )  × 2

+ 
100 380

12
10 380 30 190

3
2× + × × +

�

�
�

�

�
�( )  × 2

+ 
100 10

12
100 10 20 10 380 5

3
2× + × × + + +

�

�
�

�

�
�( ) × 2

IAB = 8.06093 × 108  mm4.
Example 4.19. Calculate the moment of inertia of the
built-up section shown in Fig. 4.60 about a centroidal axis
parallel to AB. All members are 10 mm thick.

Solution: The built-up section is divided into six simple
rectangles as shown in the figure.

The distance of centroidal axis from AB

= 
Sum of the moment of areas about 

Total area

AB

= i iA y

A
�

Fig. 4.60

A B
250250

X X

5050

10

10
5050

250250
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Now, ΣAiyi = 250 × 10 × 5 + 2 × 40 × 10 × (10 + 20) + 40 × 10 × (10 + 5)
+ 40 × 10 × 255 + 250 × 10 × (10 + 125)

= 4,82,000 mm3

A = 2 × 250 × 10 + 40 × 10 × 4
= 6600 mm2

∴ y = 
482000

6600
i iA y

A

�

= 73.03 mm
Now,

Moment of inertia about the
centroidal axis

�
�
	

 = 
Sum of the moment of inertia
of the individual rectangles


�
�

= 
3250 10

12

�
 + 250 × 10 × (73.03 – 5)2

+ 
10 403×

+ × −
�

�
�

�

�
� ×

12
40 10 73 03 30 22( . )

+ 
340 10

12

�
 + 40 × 10 (73.03 – 15)2 + 

310 250

12

�
 + 250

× 10 (73.03 – 135)2 + 
340 10

12

�
 + 40 × 10 (73.03 – 255)2

Ixx = 5,03,99,395 mm4.
Example 4.20. A built-up section of structural steel consists of a flange plate 400 mm × 20 mm, a web
plate 600 mm × 15 mm and two angles 150 mm × 150 mm × 10 mm assembled to form a section as
shown in Fig. 4.61. Determine the moment of inertia of the section about the horizontal centroidal
axis.
Solution: Each angle is divided into two rectangles as shown
in Fig. 4.61.

The distance of the centroidal axis from the bottom fibres
of section

= 
Sum of the moment of the areas about bottom fibres

Total area of the section

= i iA y

A
�

Now, ΣAiyi = 600 × 15 × 
600

20
2

� ��� �� 	
 + 140 × 10

× (70 + 30) × 2 + 150 × 10 × (5 + 20)
× 2 + 400 × 20 × 10

= 33,15,000 mm3

Web 600 × 15

600600

X X
–y–y

400400

Flange plate 400 × 20

20

Fig. 4.61
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A = 600 × 15 + 140 × 10 × 2 + 150 × 10 × 2 + 400 × 20
= 22,800 mm2

∴ y = 
3315000

22800
i iA y

A

�

= 145.39 mm

Moment of inertia of the
section about centroidal axis

�
�
	

 = 
Sum of the moments of inertia of the
all simple figures about centroidal axis


�
�

= 
315 600

12

�
 + 600 × 15(145.39 – 320)2

+ 
10 140

12
1400 145 39 100

3
2×

+ −
�

�
�

�

�
�( . )  × 2

+ 
150 10

12
1500 145 39 15

3
2×

+ × −
�

�
�

�

�
�( . )  × 2

+ 
3400 20

12

�
 + 400 × 20 × (145.39 – 10)2

Ixx = 7.45156 × 108 mm4.

Example 4.21. Compute the moment of inertia of the 100 mm × 150 mm rectangle shown in Fig. 4.62
about x-x axis to which it is inclined at an angle

θ = sin–1 
4

5
� �
� �� 	 .

Solution: The rectangle is divided into four triangles as
shown in the figure. [The lines AE and FC are parallel to
x-axis].

Now θ = sin–1 
4

5
� �
� �� 	  = 53.13°

From the geometry of the Fig. 4.62,

BK = AB sin (90° – θ)

= 100 sin (90° – 53.13°)

= 60 mm

ND = BK = 60 mm

∴ FD = 
60

sin
mm

θ
= =60

5313
75

sin .

Fig. 4.62

D

C

A1

M
N

A2

A3

K

15
0

15
0

90°

90°–�
A4

E xx A

100100

� = sin (4/5)–1

F

B

L
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∴ AF = 150 – FD = 75 mm

Hence FL = ME = 75 sin θ = 60 mm

AE = FC = 
AB

cos( ) .90

100

0 8° −
=

θ
 = 125 mm

Moment of inertia of the
section about axisx-x

�
�
	

 =
Sum of the moments of inertia of indivi-
dual triangular areas about axisx-x


�
�

= IDFC + IFCE + IFEA + IAEB

=
3125 60 1

36 2

�
�  × 125 × 60 × � 60 + 

1

3
 × 60 �

2

+ 
3125 60 1

36 2

�
�  × 125 × 60 × � 2

3
× 60 �

2

+ 
3125 60

36

�
+ 1

2
× 125

× 60 × � 1

3
 × 60 �

2

 + 
3125 60 1

36 2

�
�  × 125 × 60 × � 1

3
 × 60 �

2

Ixx = 3,60,00,000 mm4.

Example 4.22. Find moment of inertia of the shaded area shown in the Fig. 4.63 about the axis AB.

R

8080

Q
BA

P

4040

4040

S
4040 4040

Fig. 4.63

Solution: The section is divided into a triangle PQR, a semicircle PSQ having base on axis AB and a
circle having its centre on axis AB.
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Now,

Moment of inertia of the
section about axis AB

�
�
	

 =

Moment of inertia of triangle about
Moment of inertia of semicircle

about moment of inertia of
circle about

PQR
AB
PSQ AB

AB

+
−




�



�



=
380 80

12 128

� �
�  × 804 – 

64

�
 × 404

IAB = 42,92,979 mm4.

Example 4.23. Find the second moment of the shaded portion shown in the Fig. 4.64 about its
centroidal axis.

Y
3030 5050

B

2020

4040
X X

B�B�
GG

–y–y

DE
R

=
20

2020 20204040
Y

A C

Fig. 4.64

Solution: The section is divided into three simple figures viz., a triangle ABC, a rectangle ACDE and
a semicircle.

Total Area = Area of triangle ABC + Area of rectangle ACDE – Area of semicircle

A = 1
2

 × 80 × 20 + 40 × 80 – 1
2

 ×
π × 202

= 3371.68

A y = 1
2

 × 80 × 20 
1 20 40
3

� �� �� 	  + 40 × 80 × 20 – 1
2

 ×
π × 202 × 
4 20

3

�
�

= 95991.77

∴ y = 95991.77
3371.6

 = 28.47 mm

A x = 1
2

 × 30 × 20 × 
2
3

 × 30 + 1
2

 × 50 × 20 × 
1 50 30
3

� �� �� 	

+ 40 × 80 × 40 – 1
2

 × π × 202 × 40
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= 132203.6

∴ x = 
132203.6
3371.68

Ax
A


  = 37.21 mm

Moment of inertia about
centroidal axisx-x

�
�
	

 = 

Moment of inertia of triangle about
axis Moment of inertia of rectangle

about axis moment of semicircle
about axis

ABC
x-x

x-x
x-x

+
−




�



�



∴ Ixx = 
380 20

36

�
 + 

1

2
 × 80 × 20 � 60 – 

2

3
 × 20 – 28.47 �

2

+ 
380 40

12

�
  + 80 × 40 × (28.47 – 20)2

– 0 0068598 20
1

2
20 28

4 20

3
4 2

2

. .47× + × − ×�
�

�
�

�

�
�

�

�
�π

π

Ixx = 6,86,944 mm4.

Similarly, Iyy = 
320 30 1

36 2

�
�  × 20 × 30 � 39.21 – 

2

3
 × 30 �

2

 + 
320 50

36

�

1

2
�  × 20 × 50 × 

�
�
��

39.21 – � 30 + 
1

3
 × 50 �

2
�
�
��

 + 
340 80

12

�

+ 40 × 80(39.21 – 40)2 – 
1

2 64

�
�  × 404 – 

1

2
 × 

4
�

× 402 (40 – 39.21)2

= 1868392 mm4.

4.8 THEOREMS OF PAPPUS-GULDINUS

There are two important theorems, first proposed by Greek scientist (about 340 AD) and then restated
by Swiss mathematician Paul Guldinus (1640) for determining the surface area and volumes generated
by rotating a curve and a plane area about a non-intersecting axis, some of which are shown in
Fig. 4.65. These theorems are known as Pappus-Guldinus theorems.



DISTRIBUTED FORCES, CENTRE OF GRAVITY AND MOMENT OF INERTIA 143

y

x

y

x

y

x

y

x

y

x

y

x

A B

(a) Cylinder Solid cylinder

(b) Cone Solid cone

(c) General curve General solid

A

B

y = kx
2

(d) Sphere Solid sphere

A B

Semicircle

B

A

(e) Torus
Generating surface of revolution

Solid Torus
Generating solid of revolution

y

x

Fig. 4.65

Theorem I
The area of surface generated by revolving a plane curve about a non-intersecting axis in the plane
of the curve is equal to the length of the generating curve times the distance travelled by the centroid
of the curve in the rotation.
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Proof: Figure 4.66 shows the isometric view of the plane curve rotated about x-axis by angle θ. We
are interested in finding the surface area generated by rotating the curve AB. Let dL be the elemental
length on the curve at D. Its coordinate be y. Then the elemental surface area generated by this
element at D

dA = dL(y θ)

∴ A = � dL(y θ)

= θ � y dL

= θ Lyc

= L (yc θ)

A

�
y

D

dL

B

B�

�

x

Fig. 4.66

Thus we get area of the surface generated as length of the generating curve times the distance
travelled by the centroid.

Theorem II
The volume of the solid generated by revolving a plane area about a non-intersecting axis in the
plane is equal to the area of the generating plane times the distance travelled by the centroid of the
plane area during the rotation.

Proof: Consider the plane area ABC, which is rotated through an angle θ about x-axis as shown in
Fig. 4.67.

B

B�

C

�

A

y

x

yy

dA

Fig. 4.67
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Let dA be the elemental area of distance y from x-axis. Then the volume generated by this area
during rotation is given by

dV = dA/yθ
∴ V = � dA/yθ

= θ � y dA

= θ A yc

= A(yc θ)

Thus the volume of the solid generated is area times the distance travelled by its centroid during
the rotation. Using Pappus-Guldinus theorems surface area and volumes of cones and spheres can be
calculated as shown below:

(i) Surface area of a cone: Referring to Fig. 4.68(a),
Length of the line generating cone = L

Distance of centroid of the line from the axis of rotation = y = 
2

R

In one revolution centroid moves by distance = 2πy = πR
∴ Surface area = L × (πR) = πRL

(ii) Volume of a cone: Referring to Fig. 4.68(b),

Area generating solid cone = 
1

2
hR

Centroid G is at a distance y = 
3

R

L/2

L/2

G

y = R/2y = R/2

hh

RR

x

GG

y = R/31y = R/31

RR

(a) (b)

Fig. 4.68

∴ The distance moved by the centroid in one revolution = 2πy = 2π
3

R

∴ Volume of solid cone = 
1

2
hR × 

2

3

R�

  = 
2

3

R h�
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(iii) Surface area of sphere: Sphere of radius R is obtained by rotating a semi circular arc of
radius R about its diametral axis. Referring to Fig. 4.69(a),

Length of the arc = πR

Centroid of the arc is at y = 
2R

�
 from the diametral axis (i.e. axis of rotation)

∴ Distance travelled by centroid of the arc in one revolution

= 2πy = 2π 
2R

�
 = 4R

∴ Surface area of sphere = π R × 4R

= 4π R2

(iv) Volume of sphere: Solid sphere of radius R is obtained by rotating a semicircular area about
its diametral axis. Referring to Fig. 4.69(b).

Area of semicircle = 
2

2

R�

Distance of centroid of semicircular area from its centroidal axis

= y = 
4

3

R

�

∴ The distance travelled by the centroid in one revolution

= 2πy = 2π 4 8

3 3

R R
�

�

∴ Volume of sphere = 
2

� �

2 3

R R
�

= 
34

3

R�

x x

G

y = 2R
�

x x

GG

y = 4R
3�

(a) (b)

Fig. 4.69

4.9 CENTRE OF GRAVITY OF SOLIDS

Centre of gravity of solids may be found using eqn. (4.1) which will be same as those found from
eqns. (4.2) and (4.3) if the mass is uniform. Hence centre of gravity of solids, centre of gravity of
mass or centroid of volumes is the same for all solids with uniform mass. For standard solids, the
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centre of gravity may be found from first principle and the results obtained for standard solids may
be used to find centre of gravity of composite solids. The procedure is illustrated with examples 4.24
to 4.27.
Example 4.24. Locate the centre of gravity of the right circular cone of base radius r and height h
shown in Fig. 4.70.

O C

Z

Dx

B

Y z

h

dx

A

Axis of
rotation

X

r

Fig. 4.70

Solution: Taking origin at the vertex of the cone and selecting the axis as shown in Fig. 4.70, it can
be observed that due to symmetry the coordinates of centre of gravity y  and z  are equal to zero, i.e.
the centre of gravity lies on the axis of rotation of the cone. To find its distance x  from the vertex,
consider an elemental plate at a distance x. Let the thickness of the elemental plate be dx. From the
similar triangles OAB and OCD, the radius of elemental plate z is given by

z = 
x

h
r

∴ Volume of the elemental plate dv

dv  = πz2 dx = πx2 
2

2

r

h
 dx

If γ is the unit weight of the material of the cone, then weight of the elemental plate is given by:

dW = γ�π�x2
2

2

r

h
dx ...(i)

W = 
0

h

�
2

2

r

h

�
�  x2 dx

= γ 
2 3

2
03

h
r x

h

� ��
� 	

 �

= γ π
2

3

r h
...(ii)

Note:
πr h2

3
is volume of cone

�

�
�

�

�
�

Now, substituting the value of dW in (i), above, we get:

� x . dW = 
0

h

� γ 
2

2

r

h

�
 x2 ⋅ x ⋅ dx
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= γ
2 4

2
04

h
r x

h

� ��
� 	

 �

= γ 
2 2

4

r h�
...(iii)

From eqn. 4.1,
W x = � x dW

i.e.,
2

3

r h�
x = 

2 2

4

r h��

∴ x = 
3

4
h

Thus, in a right circular cone, centre of gravity lies at a distance 
3

4
h from vertex along the axis

of rotation i.e., at a distance 
4

h
 from the base.

Example 4.25. Determine the centre of gravity of a solid hemisphere of radius r from its diametral
axis.

Solution: Due to symmetry, centre of gravity lies on the axis of rotation. To find its distance x  from
the base along the axis of rotation, consider an elemental plate at a distance x as shown in Fig. 4.71.

Now, x2 + z2 = r2

z2 = r2 – x2 ...(i)
Volume of elemental plate

dv = πz2 dx = π(r2 – x2)dx ...(ii)
∴ Weight of elemental plate

dW = γdv = γπ(r2 – x2)dx ...(iii)
∴ Weight of hemisphere

W = � dW = 
0

r

� γπ(r2 – x2)dx

= γπ 
2

2

03

r
x

r x
� �

�� 	

 �

= 
32

3

r��
...(iv)

Moment of weight about z axis

= 
0

r

� xdW

x
O x

zr

dw
z

Fig. 4.71
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= 
0

r

� x π(r2 – x2)dx

= π
2 4

2

02 4

r
x x

r
� �

�� 	

 �

= 
4

4

r�
...(v)

∴ x , the distance of centre of gravity from base is given by:

W x = 
0

r

� x dw

i.e., From (iv) and (v) above, we get

32

3

r��
x = 

4

4

r��
x  = 

3

8
r

Thus, the centre of gravity of a solid hemisphere of radius r is at a distance 
3

8
r from its

diametral axis.
Example 4.26. Determine the maximum height h of the cylindrical portion of the body with hemi-
spherical base shown in Fig. 4.72 so that it is in stable equilibrium on its base.

Solution: The body will be stable on its base as long as its centre of
gravity is in hemispherical base. The limiting case is when it is on the
plane x-x shown in the figure.

Centroid lies on the axis of rotation.
Mass of cylindrical portion

m1 = πr2hρ, where ρ is unit mass of material.
Its centre of gravity g1 is at a height

z1 = 
2

h
 from x axis.

Mass of hemispherical portion

m2 = ρ 
32

3

r�

and its CG is at a distance

z2 = 
3

8

r
 from x-x plane.

Since centroid is to be on x-x plane z  = 0

i.e., Σmizi = 0

∴ 1

2

m h
– m2

3

8
 r = 0

πr2hρ
2

h
= ρ 

32 3

3 8

r�
r

Axis of rotation

g1
m1

h

h/2

r
X X

3/8 r
g2 m2

Z

Fig. 4.72
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∴ h2 = 
1

2
r2

or h = 
r

2
 = 0.707 r

Example 4.27. A concrete block of size 0.60 m × 0.75 m × 0.5 m is cast with a hole of diameter 0.2
m and depth 0.3 m as shown in Fig. 4.73. The hole is completely filled with steel balls weighing 2500
N. Locate the centre of gravity of the body. Take the weight of concrete = 25000 N/m3.

0.75 m
0.5 m

X

0.4
m

0.4
m0.2 m0.2 m

0.6
m

0.6
m

0.3 m

0.5 m

Z

Y

Fig. 4.73

Solution: Weight of solid concrete block:

W1 = 0.6 × 0.75 × 0.5 × 25000 = 5625 N
Weight of concrete (W2) removed for making hole:

W2 = 
4

�

 × 0.22 × 0.3 × 25000 = 235.62 N

Taking origin as shown in the figure, the centre of gravity of solid block is (0.375, 0.3, 0.25) and
that of hollow portion is (0.5, 0.4, 0.15). The following table may be prepared now:

Table

Simple Body Wi xi Wixi yi Wiyi zi Wizi

1. Solid block 5625 0.375 2109.38 0.3 1687.5 0.25 1406.25
2. Hole in concrete –235.62 0.5 –117.81 0.4 –94.25 0.15 –35.34

block
3. Steel balls 2500 0.5 1250.0 0.4 1000.0 0.15 375.0

ΣWi = 7889.38 ΣWixi = 3241.57 ΣWiyi = 2593.25 ΣWizi = 1745.91

∴ x = i i i i

i

W x W x

W W
�


 




x = 
3241.57
7889.38

 = 0.411 m

Similarly, y = 
2593.25
7887.38

 = 0.329 m

z = 
1745.91
7889.38

 = 0.221 m
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IMPORTANT FORMULAE

1. Area of sector of a circle = R2 α
2. Area of parabolic spandrel

(i) if y = kx2, A = 1

3
ha = 1

3
 × the area of rectangle of size a × h

(ii) if y2 = kx, A = 
2

3
ha = 

2

3
 × the area of rectangle of size a × h.

3. Surface area of the cone = πRl

4. Surface area of the sphere = 4πR2

5. Volume of a cone = 
2

�

3

R h

6. Volume of a sphere  = 
4

3
 πR3

7. Centroid of a arc of a circle is at xc = 
R sin α

α
 from the centre of circle on the symmetric axis.

8. Centroid of a composite figure is given by

xc = 
ΣA x

A
i i , yc = 

ΣA y

A
i i .

9. Centroid of simple figure from the reference axis

y
y dA

A
= � .

10. For centroid of standard figures refer Table 4.2.

11. Iyy = Σxi
2 dAi and Ixx  = Σyi

2 dAi, Izz = Σri
2dAi = r dA2
� .

12. Radius of gyration k = 
I

A
i.e. I = Ak2.

13. Izz = Ixx+ Iyy.
14. IAB = IGG + Ayc

2.

15. Moment of inertia of standard sections are as shown in Table 4.4.
16. Pappus-Guldinus Theorems:

(i) The area of surface generated by revolving a plane curve about a non-intersecting axis in
the plane of the curve is equal to the length of the generating curve times the distance
travelled by the centroid of the curve in the rotation.

(ii) The volume of the solid generated by a plane area about a non-intersecting axis in the
plane is equal to the area of the generating plane times the distance travelled by the centroid
of the plane area during the rotation.
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17. In a right circular cone, the centre of gravity lies at a distance 
3

4
 × height from the vertex along

the axis of rotation.

18. The centre of gravity of a solid hemisphere of radius r is at a distance 
3

8
 × r from its diametral

axis.

THEORY QUESTIONS

1. Determine the centroid of an arc of radius R from first principle.

2. Distinguish between centroid and centre of gravity.
3. Determine the centroid of a triangle of base width ‘b’ and height ‘h’ by the method of

integration.
4. Locate the centroid of a semicircle from its diametral axis using the method of integration.

5. Explain the terms moment of inertia and radius of gyration of a plane figure.
6. State and prove

(a) Perpendicular axis theorem
(b) Parallel axis theorem of moment of inertia.

7. Determine the moment of inertia of the areas specified below by first principle:
(i) Triangle of base width b and height h about its centroid axis parallel to the base.

(ii) A semicircle about its centroidal axis parallel to the diametral axis.

8. State and explain theorems of Pappus-Guldinus.
9. Locate the centre of gravity of the right circular cone of base radius R and height h.

10. Determine  the centre of gravity of a solid hemisphere of radius R from its diametral axis.

PROBLEMS FOR EXERCISE

1. Determine the centroid of the built-up section in Fig. 4.74. Express the coordinates of centroid
with respect to x and y axes shown. [Ans. x  = 48.91 mm; y  = 61.30 mm]

100100

20

10

8080

10
y

4040 10 2020

2020
xO

120120

Fig. 4.74
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2. Determine the centroid of the reinforced concrete retaining wall section shown in Fig. 4.75.

[Ans. x  = 1.848 m; y  = 1.825 m]

0.3 m

6.0 m6.0 m

y

O

1.4 m1.4 m 2.1 m2.1 m0.5

0.6 m
x

Fig. 4.75

3. Find the coordinates of the centroid of the shaded area with respect to the axes shown in
Fig. 4.76. [Ans. x = 43.98 mm;  y = 70.15 mm]

6060 6060

6060

8080

y

4040 8080
X

R
=

80

Fig. 4.76

4. A circular plate of uniform thickness and of diameter 500 mm as shown in Fig. 4.77 has two
circular holes of 40 mm diameter each. Where should a 80 mm diameter hole be drilled so that
the centre of gravity of the plate will be at the geometric centre.

[Ans. x = 50 mm; y = 37.5 mm]
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200200

40
D=500
D=500

150150

4040

X

Y

Fig. 4.77

5. With respect to the coordinate axes x and y locate the centriod of the shaded area shown in
Fig. 4.78. [Ans. x  = 97.47 mm; y  = 70.77 mm]

Y

100100

3030
5050

3030

7070

R
=5

0

100100 100100
X

Fig. 4.78

6. Locate the centroid of the plane area shown in Fig. 4.79.

[Ans. x  = 104.10 mm; y  = 44.30 mm]

R
=5

0
R=3

04545
8080

y 8080

X225225

Fig. 4.79

7. Determine the coordinates of the centroid of shaded as shown in Fig. 4.80 with respect to the
corner point O. Take x = 40 mm. [Ans. x  = 260.07 mm; y  = 113.95 mm]
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2x2x 2x2x2x2x 6x6x

2x2x

2x2x

3x3x

2x2x

2x2x

3x3x

X

Y
2x2x

R=3x

r=
2x

r=
2x

Fig. 4.80

8. ABCD is a square section of sides 100 mm. Determine the ratio of moment of inertia of the
section about centroidal axis parallel to a side to that about diagonal AC. [Ans. 1]

9. The cross-section of a rectangular hollow beam is as shown in Fig. 4.81. Determine the polar
moment of inertia of the section about centroidal axes.

[Ans. Ixx = 1,05,38,667 mm4; Iyy = 49,06,667 mm4; Izz = 1,54,45,334 mm4]

2020 20204040

8080

2020

4040

6060

120120

 Fig. 4.81

10. The cross-section of a prestressed concrete beam is shown in Fig. 4.82. Calculate the moment
of inertia of this section about the centroidal axes parallel to and perpendicular to top edge.
Also determine the radii of gyration. [Ans. Ixx = 1.15668 × 1010 mm4; kxx = 231.95 mm;

Iyy = 8.75729 × 109 mm4; kyy = 201.82 mm]

10001000

100

150 350350

250250

250250

 Fig. 4.82
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11. The strength of a 400 mm deep and 200 mm wide I-beam of uniform thickness 10 mm, is
increased by welding a 250 mm wide and 20 mm thick plate to its upper flanges as shown in
Fig. 4.83. Determine the moment of inertia and the radii of gyration of the composite section
with respect to cetroidal axes parallel to and perpendicular to the bottom edge AB.

[Ans. Ixx = 3.32393 × 108 mm4; kxx = 161.15 mm;
Iyy = 3,94,06,667 mm4; kyy = 55.49 mm]

250250
20

10

10

400400

A
10

B200200

 Fig. 4.83

12. The cross-section of a gantry girder is as shown in Fig. 4.84. It is made up of an I-section of
depth 450 mm, flange width 200 mm and a channel of size 400 mm × 150 mm. Thickness of
all members is 10 mm. Find the moment of inertia of the section about the horizontal centroid
axis. [Ans. Ixx = 4.2198 × 108 mm4]

400400

150150
10

10 450450

200200

 Fig. 4.84

13. A plate girder is made up of a web plate of size 400 mm × 10 mm, four angles of size 100
mm × 100 mm × 10 mm and cover plates of size 300 mm × 10 mm as shown in Fig. 4.85.
Determine the moment of inertia about horizontal and vertical centroidal axes.

[Ans. Ixx = 5.35786 × 108 mm4; Iyy = 6,08,50,667 mm4]
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 Fig. 4.85

14. Determine the moment of inertia and radii of gyration of the area shown in Fig. 4.86 about
the base A-B and the centroidal axis parallel to AB.

[Ans. IAB = 48,15,000 mm4; Ixx = 18,24,231 mm4

kAB = 35.14 mm; kxx = 21.62 mm]

3030

3030

3030
2020

100100A B

 Fig. 4.86

15. Determine the moment of inertia of the section shown in Fig. 4.87 about the vertical centroidal
axis. [Ans. Iyy = 5,03,82,857 mm4]

100100
2020 8080

6060 6060120120

 Fig. 4.87
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16. A semi-circular cut is made in rectangular wooden beam as shown in Fig. 4.88. Determine the
polar moment of inertia of the section about the centroidal axis.

[Ans. Ixx = 3,35,81,456 mm4; Iyy = 1,00,45,631 mm4; Izz = 2,20,98,980 mm4]

150150

100100

 Fig. 4.88

17. Determine the moment of inertia of the section shown in the Fig. 4.89 about the horizontal
centroidal axis. Also find the moment of inertia of the section about the symmetrical axis.
Hence find the polar moment of inertia.

[Ans. Ixx = 54,09,046 mm4; Iyy = 14,55,310 mm4; Izz = 68,64,356 mm4]

Semicircle

r = 40

3030 3030

100100

 Fig. 4.89

18. The cross-section of a machine part is as shown in Fig. 4.90. Determine its moment of inertia
and radius of gyration about the horizontal centroidal axis.

[Ans. Ixx = 5249090.85 mm4; kxx = 27.05 mm]
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100100
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 Fig. 4.90

19. The cross-section of a plain concrete culvert is as shown in Fig. 4.91. Determine the moment
of inertia about the horizontal centroidal axes. [Ans. Ixx = 5.45865 × 1010 mm4]

400400 40040010001000

10001000

r =
65

0

 Fig. 4.91

20. Determine the centroid of the built-up section shown in Fig. 4.92 and find the moment of
inertia and radius of gyration about the horizontal centroidal axis.

[Ans. Ixx = 1267942 mm4; kxx = 18.55 mm]

2020

20202020

2020

20202020 4040

r =
20

4040

 Fig. 4.92

21. Determine the centre of gravity of the pyramid shown in Fig. 4.93. Ans. x h=�
��

�
��

3
4
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 Fig. 4.93

22. A steel ball of diameter 150 mm rests centrally over a concrete cube of size 150 mm. Determine
the centre of gravity of the system, taking weight of concrete = 25000 N/m3 and that of steel
80000 N/m3. [Ans.  168.94 mm from base]

23. Locate the centre of gravity of the wire shown in Fig. 4.94. Portion BC is in x-y plane and
semicircle CD is parallel to x-z plane.

[Ans. x  = 124.02 mm ; y  = 110.41 mm ; z  = 11.28 mm]

D60C

30°

250250
x

B

200200
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 Fig. 4.94



5
Friction

When a body moves or tends to move over another body, a force opposing the motion develops at the
contact surfaces. The force which opposes the movement or the tendency of movement is called the
frictional force or simply friction. So far, in earlier chapters, we had ignored this force and considered
contacting surfaces are smooth. Actually in almost all cases the contacting surfaces are not smooth.
There are minutely projecting particles which develop frictional force to oppose the tendency to
movement of one surface over the other surface. In this chapter, the additional terminology used in
connection with frictional forces are explained and laws of dry friction (wet friction excluded) are
presented. Applications of these laws to many engineering problems are illustrated.

5.1 COEFFICIENT OF FRICTION

Whenever a resultant force acts in the direction of contacting surfaces frictional force develops to
oppose that force. The frictional force, like any other reaction, has a remarkable property of adjusting
itself in magnitude to the tangential force. However, there is a limit beyond which the magnitude of
the frictional force will not develop. If the applied tangential force is more than this maximum
frictional force, there will be movement of one body over the other body with an acceleration as per
Newton’s second law of mass times acceleration equal to the resultant force. This maximum value of
frictional force, which comes into play when the motion is impending is known as Limiting Friction.
It may be noted that when the applied tangential force is less than the limiting friction, the body
remains at rest and such friction is called Static Friction, which will have any value between zero and
limiting friction. If the value of applied tangential force exceeds the limiting friction, the body starts
moving over another body and the frictional resistance experienced while moving is known as Dynamic
Friction. The magnitude of dynamic friction is found to be less than limiting friction. Dynamic
friction may be further classified into two groups:

(i) Sliding Friction: It is the friction experienced by a body when it slides over the other
body.

(ii) Rolling Friction: It is the friction experienced by a body when it rolls over another body.

It has been experimentally proved that, between two contacting surfaces, the magnitude of limiting
friction bears a constant ratio to the normal reaction between the two and this ratio is called ‘Coefficient

161
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of Friction’. Referring to Fig. 5.1 a body weighing W is being
pulled by a force P and the motion is impending. Let N be
normal reaction and F the limiting frictional force. Then

Coefficient of Friction = 
F

N

Coefficient of friction is denoted by µ. Then

µ = 
F

N
...(5.1)

5.2 LAWS OF FRICTION

The principles discussed in a previous article are mainly due to the experiemental studies by Coulomb
(1781) and by Mozin (1831). These principles constitute the laws of dry friction and may be called as
Coulomb’s laws of dry friction. These laws are listed below:

(i) The frictional force always acts in a direction opposite to that in which the body tends to
move.

(ii) Till the limiting value is reached, the magnitude of frictional force is exactly equal to the
tangential force which tends to move the body.

(iii) The magnitude of the limiting friction bears a constant ratio to the normal reaction between
the two contacting surfaces.

(iv) The force of friction depends upon the roughness/smoothness of the surfaces.

(v) The force of friction is independent of the area of contact between the two surfaces.

(vi) After the body starts moving, the dynamic friction comes into play, the magnitude of which
is less than that of limiting friction and it bears a constant ratio to the normal force. This
ratio is called coefficient of dynamic friction.

5.3 ANGLE OF FRICTION, ANGLE OF REPOSE AND CONE OF FRICTION

Angle of Friction

Consider the block shown in Fig. 5.2 subject to pull P. Let F be
the frictional force developed and N the normal reaction. Thus,
at contact surface, the reactions are F and N. They can be
combined to get the resultant reaction R which acts at angle θ
to normal reaction. This angle is given by

tan θ = 
F

N

As frictional force increases the angle θ increases and it can
reach maximum value � when limiting value of friction is
reached. Thus, when motion is impending

Fig. 5.1

Fig. 5.2

W

P

F

N

R�

F

W

P

F

N
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tan α = 
F

N
 = µ ...(5.2)

and this value of α is called angle of limiting friction. Hence, the angle of limiting friction can be
defined as the angle between the resultant reaction and the normal to the plane on which the motion of
the body is impending.

Angle of Repose

It is very well-known that when grains (food grains, sand, cement, soil etc.) are heaped, there exists a
limit for the inclination of the heap. Beyond that the grains start rolling down. The limiting angle up to
which the grains repose (sleep) is called angle of repose.

Now consider the block of weight W shown in Fig. 5.3 which is resting on an inclined plane that
makes angle θ with the horizontal. When θ is a small, block rests on the plane. If θ is increased
gradually a stage is reached at which the block starts sliding. The angle made by the plane with the
horizontal is called angle of friction for the contacting surfaces. Thus, the maximum inclination of the
plane on which the body, free from external forces, can repose is called angle of repose.

Consider the equilibrium of the block shown in Fig. 5.3. Since the surface of contact is not smooth,
not only normal reaction but frictional force also develops. As the body tends to slide down, the
frictional resistance will be up the plane.

Σ Forces normal to plane = 0, gives

N = W cos θ  ...(i)

Σ Forces parallel to plane = 0, gives

F = W sin θ ...(ii)

Dividing eqn. (ii) by eqn. (i) we get,

F

N
= tan θ

If φ is the value of θ when motion is impending, frictional force will be limiting friction and hence

tan φ = 
F

N
...(5.3)

i.e., tan φ = µ = tan α

or φ = α.

Thus, the value of angle of repose is the same as the value of limiting angle of friction.

Cone of Friction

When a body is having impending motion in the direction of P, the frictional force will be the limiting
friction and the resultant reaction R will make limiting frictional angle � with the normal as shown in

Fig. 5.3
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Fig. 5.4. If the body is having impending motion in some other
direction, the resultant reaction makes limiting frictional angle
� with the normal. Thus, if the direction of force P is gradually
changed through 360°, the resultant R generates a right circular
cone with semicentral angle equal to �.

If the resultant reaction lies on the surface of this inverted
right circular cone whose semicentral angle is limiting frictional
angle �, the motion of the body is impending. If the resultant is
within this cone the body is stationary. This inverted cone with
semicentral angle, equal to limiting frictional angle �, is called
cone of friction.

5.4 PROBLEMS ON BLOCKS RESTING ON HORIZONTAL AND INCLINED PLANES

Analysis of such problems, when motion is impending is illustrated in this article by solving typical
problems.

Example 5.1. Block A weighing 1000 N rests over block B which weighs 2000 N as shown in
Fig. 5.5(a). Block A is tied to a wall with a horizontal string. If the coefficient of friction between A
and B is 1/4 and that between B and the floor is 1/3, what value of force P is required to create
impending motion if (a) P is horizontal, (b) P acts 30° upwards to horizontal?

Solution: (a) When P is horizontal: The free body diagrams of the two blocks are shown in
Fig. 5.5(b). Note the frictional forces are to be marked in the opposite directions of impending relative
motion. In this problem, block B is having impending motion to the right. Hence on it F1 and F2 are
towards right. The relative motion of block A w.r.t. B is to the left. Hence the direction of F1 in this is
towards the right. Another way of thinking for the direction of F1 in case of block A can be ‘actions
and reactions are equal and opposite’. Hence on block B if F1 is towards left, on A it should be
towards right.

(a) (b)

Fig. 5.5

Fig. 5.4

W

F

R
N

F

��
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Now consider the equilibrium of block A.

VF∑ = 0 →

N1 – 1000 = 0 or N1 = 1000 newton.

Since F1 is limiting friction,

1

1

F

N
= µ1 = 1

4

∴ F1 = 1

4
 � 1000 = 250 newton.

HF∑ = 0 →

F1 – T = 0 or T = F1, i.e. T = 250 newton.

Consider the equilibrium of block B.

VF∑ = 0 →

N2 – N1 – 2000 = 0.

∴ N2 = N1 + 2000 = 1000 + 2000 = 3000 newton.

Since F2 is limiting friction,

F2 = µ2 N2 = 1

3
 � 3000 = 1000 newton.

HF∑ = 0 →

P – F1 – F2 = 0

∴ P = F1 + F2 = 250 + 1000 = 1250 newton.

(b) When P is inclined: Free body diagrams for this case are shown in Fig. 5.5(c).
Considering equilibrium of block A, we get

VF∑  = 0 → N1 = 1000 newton.

∴ F1 = 1

4
 � 1000 = 250 newton.

HF∑  = 0 → T = F1 = 250 newton.

Consider the equilibrium of block B.

VF∑ = 0  →
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N2 – 2000 – N1 + P sin 30 = 0

or N2 + 0.5P = 3000, since N1 = 1000 newton.

From law of friction

F2 = µ2N2 = 1

3
 � (3000 – 0.5P)

 = 1000 – 0.5

3
P.

HF∑ = 0 →

P cos 30 – F1 – F2 = 0

∴ P cos 30 – 250 – 
0.5

1000
3

P
 −    = 0

∴       P
0.5

cos 30
3

 +   = 1250

∴       P = 1210.4 newton

Example 5.2. What should be the value of θ in Fig. 5.6(a) which will make the motion of 900 N block
down the plane to impend? The coefficient of friction for all contact surfaces is 1/3.

300 N

900 N

�

Fig. 5.6(a)

Solution: 900 N block is on the verge of moving downward. Hence frictional forces F1 and F2 [Ref.
Fig. 5.6(b)] act up the plane on 900 N block. Free body diagrams of the blocks are as shown in Fig.
5.6(b).

Consider the equilibrium of 300 N block.

Σ Forces normal to plane = 0 →

N1 – 300 cos θ = 0 or N1 = 300 cos θ ...(i)

Fig. 5.5(c)
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From law of friction,

F1 = 
1
3

 N1 = 100 cos θ ...(ii)

For 900 N block:

� Forces normal to plane = 0 →
N2 – N1 – 900 cos θ = 0

or N2 = N1 + 900 cos θ

= 300 cos θ + 900 cos θ

= 1200 cos θ.

From law of friction,

F2 = �2N2 = 
1
3

�� 1200 cos θ = 400 cos θ.

� Forces parallel to the plane = 0 →
F1 + F2 – 900 sin θ = 0

100 cos θ + 400 cos θ = 900 sin θ

∴ tan θ = 
500
900

∴ θ = 29.05°

Example 5.3. A block weighing 500 N just starts moving down a rough inclined plane when it is
subjected to 200 N force acting up the inclined plane and it is at the point of moving up the plane
when pulled up by a force of 300 N parallel to the plane. Find the inclination of the plane and the
coefficient of friction between the inclined plane and the block.
Solution: Free body diagram of the block when its motion is impending down the plane is shown in
Fig. 5.7(a) and that when it is moving up the plane is shown in Fig. 5.7(b).

(a) (b)

Fig. 5.7

Fig. 5.6(b)
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When block starts moving down the plane [Ref. Fig. 5.7(a)]
Frictional forces oppose the direction of the movement. Hence F1 is up the plane and F2 down the

plane. Since it is limiting case

F

N
 = µ.

� forces perpendicular to the plane = 0 →

N – 500 cos θ = 0 or N = 500 cos θ ...(i)

From law of friction,

F1 = µN = 500 µ cos θ ...(ii)

Σ Forces parallel to the plane = 0 →

F1 + 200 – 500 sin θ = 0

Substituting the value of F1 from eqn. (ii), we get

500 sin θ – 500 µ cos θ = 200 ...(iii)

When the block starts moving up the plane [Fig. 5.7(b)]

Σ Forces perpendicular to the plane = 0 →

N – 500 cos θ = 0 i.e., N = 500 cos θ ...(iv)

From law of friction, F2 = µN = 500 µ cos θ ...(v)

Σ Forces parallel to the plane = 0 →

300 – 500 sin θ – F2 = 0

i.e., 500 sin θ + 500 µ cos θ = 300 ...(vi)

Adding eqns. (iii) and (vi), we get

1000 sin θ = 500

i.e., sin θ = 0.5

Hence θθθθθ = 30°

Substituting it in eqn. (vi), we get

500 sin 30 + 500 µ cos 30 = 300

500 µ cos 30 = 300 – 250 = 50

∴ µ = 
50

500 cos 30
 = 0.115

Example 5.4. Block A weighing 1000 N and block B weighing 500 N are connected by flexible wire.
The coefficient of friction between block A and the plane is 0.5 while that for block B and the plane is
0.2. Determine what value of inclination of the plane the system will have impending motion down the
plane? [Ref. Fig. 5.8].
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(a) (b)

Fig. 5.8

Solution: Let θ be the inclination of the plane for which motion is impending. Free body diagrams of
blocks A and B are as shown in Fig. 5.8(b). Considering equilibrium of block A,

Σ  Forces normal to plane = 0 →

N1 – 1000 cos θ = 0 or N1 = 1000 cos θ ...(i)

∴ From law of friction

F1 = µ1N1 = 0.5 � 1000 cos θ = 500 cos θ ...(ii)
Σ  Forces parallel to plane = 0 →

F1 – T – 1000 sin θ = 0

or T = 500 cos θ – 1000 sin θ ...(iii)

Consider the equilibrium of block B,

Σ  Forces normal to plane = 0 →

N2 – 500 cos θ = 0 or N2 = 500 cos θ ...(iv)

From law of friction,

F2 = µ2N2 = 0.2 � 500 cos θ = 100 cos θ ...(v)

Σ  Forces parallel to plane = 0 →

F2 + T – 500 sin θ = 0

Using the values of F2 and T from eqn. (v) and eqn. (iii),

100 cos θ + 500 cos θ – 1000 sin θ – 500 sin θ = 0

600 cos θ = 1500 sin θ

∴ tan θ = 600

1500

∴ θθθθθ = 21.8°
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Example 5.5. What is the value of P in the system shown in Fig. 5.9(a) to cause the motion to impend?
Assume the pulley is smooth and coefficient of friction between the other contact surfaces is 0.2.

(a) (b)

Fig. 5.9

Solution: Free body diagrams of the blocks are as shown in Fig. 5.9(b). Consider the equilibrium of
750 N block.

Σ  Forces normal to the plane = 0 →

N1 – 750 cos 60 = 0 ∴ N1 = 375 newton ...(i)

Since the motion is impending, from law of friction,

F1 = µN1 = 0.2 � 375 = 75 newton ...(ii)

Σ  Forces parallel to the plane = 0 →

T – F1 – 750 sin 60 = 0

∴ T = 75 + 750 sin 60 = 724.5 newton. ...(iii)

Consider the equilibrium of 500 N block.

VF∑ = 0 →

N2 – 500 + P sin 30 = 0

i.e., N2 + 0.5P = 500 ...(iv)

From law of friction,

F2 = µN2 = 0.2 (500 – 0.5P) = 100 – 0.1P ...(v)

HF∑ = 0 →

P cos 30 – T – F2 = 0

i.e., P cos 30 – 724.5 – 100 + 0.1P = 0

∴ P = 853.5 N
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Example 5.6. Two identical planes AC and BC, inclined at 60° and 30° to the horizontal meet at C as
shown in Fig. 5.10. A load of 1000 N rests on the inclined plane BC and is tied by a rope passing over
a pulley to a block weighing W newtons and resting on the plane AC. If the coefficient of friction
between the load and the plane BC is 0.28 and that between the block and the plane AC is 0.20, find
the least and greatest values of W for the equilibrium of the system.

(a) (b)

(c)

Fig. 5.10

Solution:
(a) Least value of W:
In this case motion of 1000 N block is impending down the plane and block W has impending motion
up the plane. Hence free body diagrams for the blocks are as shown in Fig. 5.10(b). Considering the
equilibrium of 1000 N block,

Σ  Forces normal to the plane = 0 →

N1 – 1000 cos 30 = 0 ∴ N1 = 866.0 newton ...(i)

From the law of friction

F1 = µ1N1 = 0.28 � 866.0 = 242.5 newton ...(ii)

Σ  Forces parallel to the plane = 0 →

T – 1000 sin 30 + F1 = 0
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∴ T = 500 – 242.5 = 257.5 newton ...(iii)

Now consider the equilibrium of block weighing W.

Σ  Forces normal to the plane = 0 →
N2 – W cos 60 = 0 i.e., N2 = 0.5  W ...(iv)

From law of friction
F2 = µ2N2 = 0.2 � 0.5 W = 0.1 W ...(v)

Σ  Forces parallel to the plane = 0 →
T – F2 – W sin 60 = 0

Substituting the values of T and F2 from eqns. (iii) and (v), we get

257.5 – 0.1 W – W sin 60 = 0

∴  W = 
257.5

0.1 sin 60+
 = 266.6 N.

(b) For the greatest value of W:
In such case 1000 N block is on the verge of moving up the plane and W is on the verge of moving
down the plane. For this case free body diagrams of the blocks are as shown in Fig. 5.10(c).

Considering the block of 1000 N,

Σ  Forces normal to plane = 0 →

N1 – 1000 cos 30 = 0 ∴ N1 = 866.0 newton ...(vi)

From law of friction,

F1 = µ1N1 = 0.28 � 866.0 = 242.5 N ...(vii)

Σ  Forces parallel to the plane = 0 →

T – 1000 sin 30 – F1 = 0

∴ T = 500 + 242.5 = 742.5 newton ...(viii)

Considering the equilibrium of block weighing W,

Σ  Forces normal to plane = 0 →

N2 – W cos 60 = 0 or N2 = 0.5 W ...(ix)

∴ F2 = µ2N2 = 0.2 � 0.5W = 0.1W ...(x)

Σ  Forces parallel to plane = 0 →

T – W sin 60 + F2 = 0 ...(xi)

Substituting the values of T and F2 from eqns. (viii) and (x), we get,

742.5 – W sin 60 + 0.1 W = 0

or W = 
742.5

sin 60 0.1−
= 969.3 newton
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The system of blocks are, in equilibrium for W = 266.6 N to 969.3 N.

Example 5.7. Two blocks connected by a horizontal link AB are supported on two rough planes as
shown in Fig. 5.11(a). The coefficient of friction on the horizontal plane is 0.4. The limiting angle of
friction for block B on the inclined plane is 20°. What is the smallest weight W of the
block A for which equilibrium of the system can exist if weight of block B is 5 kN?

20°

(a) (b)

Fig. 5.11

Solution: Free body diagrams for blocks A and B are as shown in Fig. 5.11(b). Consider block B.

µ = tan 20°, given.

∴ F1 = N1 tan 20°

VF∑ = 0 →

N1 sin 30 + F1 sin 60 – 5 = 0

0.5N1 + N1 tan 20 sin 60 = 5

N1 = 6.133 kN

Hence, F1 = 6.13 tan 20 = 2.232 kN

HF∑ = 0 →

C + F1 cos 60 – N1 cos 30 = 0

C + 2.232 cos 60 – 6.133 cos 30 = 0

∴ C = 4.196 kN

Now consider the equilibrium of block A.

HF∑ = 0 →
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F2 – C = 0 or F2 = C = 4.196 kN

From law of friction,

F2 = �N2

i.e., 4.196 = 0.4 N2

∴ N2 = 10.49 kN

Then, VF∑ = 0 →

N2 – W = 0

or W = N2 = 10.49 kN

5.5 APPLICATION TO WEDGE PROBLEMS

Wedges are small pieces of hard materials with two of their opposite surfaces not parallel to each
other. They are used to slightly lift heavy blocks, machinery, precast beams etc. for making final
alignment or to make place for inserting lifting devices. In any problem weight of wedge is very small
compared to the weight lifted. Hence in all problems self weight of wedge is neglected. It is found that
in the analysis instead of treating normal reaction and frictional force independently, it is advantageous
to treat their resultant.

If F is limiting friction, then resultant R makes limiting angle � with the normal. Its direction
should be marked correctly. Note that the tangential component of the resultant reaction R is the
frictional force and it will always oppose impending motion. Application to wedge problems is
illustrated below by solving problems.

Example 5.8. Determine the force P required to start the movement of the wedge as shown in Fig.
5.12(a). The angle of friction for all surfaces of contact is 15°.

(a) (b)

Fig. 5.12 (Contd.)
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(c) (d)

Fig. 5.12

Solution: As wedge is driven, it moves towards left and the block moves upwards. When motion is
impending limiting friction develops. Hence resultant force makes limiting angle of 15° with normal.
The care is taken to mark 15° inclination such that the tangential component of the resultant opposes
the impending motion.

The free body diagrams of the block and wedge are shown in Fig. 5.12(b). The forces on block and
wedge are redrawn in Figs. 5.12(c) and (d) so that Lami’s theorem can be applied conveniently.
Applying Lami’s theorem to the system of forces on block

1

sin (180 15 20)

R

− −
= 2

sin (90 15)

R

−
 = 

20

sin (15 20 90 15)+ + +

i.e., 1

sin 145

R
= 2

sin 75

R
 = 

20

sin 140

∴ R1 = 17.85 kN

and R2 = 30.05 kN

Applying Lami’s theorem to system of forces on the wedge, we get

sin 130

P
= 2

sin 105

R

∴ P = 23.84 kN

Example 5.9. A block weighing 160 kN is to be raised by means of the wedges A and B as shown in
Fig. 5.13(a). Find the value of force P for impending motion of block C upwards, if coefficient of
friction is 0.25 for all contact surfaces. The self weight of wedges may be neglected.

Solution: Let φ be the angle of limiting friction.

∴ φ = tan–1 (0.25) = 14.036°

The free body diagrams of wedges A, B and block C are shown in Fig. 5.13(b). The problem being
symmetric, the reactions R1 and R2 on wedges A and B are equal. The system of forces on block C and
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on wedge A are shown in the form convenient for applying Lami’s theorem [Ref. Figs. 5.13(c) and
(d)].

(a) (b)

(c) (d)

Fig. 5.13

Consider the equilibrium of block C.

1

sin (180 16 )

R

− − φ
= 

160

sin 2( 16)φ +

i.e., 1

sin 149.96

R
= 

160

sin 60.072
, since φ = 14.036°.

∴ R1 = 92.42 kN
Consider the equilibrium of the wedge A. Applying Lami’s theorem, we get

sin (180 16)

P

− φ − φ −
= 1

sin (90 )

R

+ φ

∴ P = 
92.42 sin 135.928

sin 104.036
, since φ = 14.036.

i.e., P = 66.26 kN
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5.6 APPLICATION TO LADDER PROBLEMS

A ladder resting against a wall is a typical case of friction problems in non-concurrent system of
forces. Hence we have three equations of equilibrium available. From law of friction we have the

equation F

N
 = µ. Using equilibrium equations and friction law the problems can be solved. The

procedure is illustrated with the examples below:

Example 5.10. A ladder of length 4 m, weighing 200 N is placed against a vertical wall as shown in
Fig. 5.14(a). The coefficient of friction between the wall and the ladder is 0.2 and that between floor
and the ladder is 0.3. The ladder, in addition to its own weight, has to support a man weighing 600 N
at a distance of 3 m from A. Calculate the minimum horizontal force to be applied at A to prevent
slipping.

4 m

3 m

2 m

600 N

200 N

60°

B

A

(a) (b)

600 N
N

B

P

200 N

F
B

B

A

N
A

F
A

60°

P

Fig. 5.14

Solution: The free body diagram of the ladder is as shown in Fig. 5.14(b).

AM∑  = 0 →

200 � 2 cos 60 + 600 � 3 cos 60 – FB � 4 cos 60 – NB � 4 sin 60 = 0

Dividing throughout by 4 and rearranging the terms, we get

0.866 NB + 0.5 FB = 275

From law of friction, FB = �NB = 0.2 NB

∴ 0.866 NB + 0.5 � 0.2 NB = 275

or NB = 284.7 newton.

∴ FB = 56.94 newton.
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VF∑  = 0 →

NA – 200 – 600 + FB = 0

NA = 743.06 newton, since FB = 56.94

∴ FA = µANA

= 0.3 � 743.06 = 222.9 newton

HF∑  = 0 →

P + FA – NB = 0

∴ P = NB – FA = 284.7 – 222.9

i.e., P = 61.8 newton

Example 5.11. The ladder shown in Fig. 5.15(a) is 6 m long and is supported by a horizontal floor
and a vertical wall. The coefficient of friction between the floor and the ladder is 0.25 and between the
wall and the ladder is 0.4. The weight of the ladder is 200 N and may be considered as a concentrated
load at G. The ladder supports a vertical load of 900 N at C which is at a distance of 1 m from B.
Determine the least value of � at which the ladder may be placed without slipping. Determine the
reaction at that stage.

G

�

B

A

6 m

3 m

1 m

C

900 N
N

B

200 N

F
B

B

A

N
A

F
A

�

G

C

� = 0.4

� = 0.25

(a) (b)

900 N

200 N

Fig. 5.15

Solution: Figure 5.15(b) shows the free body diagram of the ladder.
From law of friction,
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FA = 0.25 NA ...(i)

FB = 0.40 NB ...(ii)

Σ FV = 0 →

NA – 200 – 900 + FB = 0

i.e., NA + 0.4 NB = 900 + 200 = 1100 ...(iii)

FH�  = 0 →

FA – NB = 0 i.e., FA = NB

i.e., 0.25 NA = NB ...(iv)

From eqns. (iii) and (iv), we get

NA (1 + 0.4 � 0.25) = 1100

or NA = 1000 newton

∴ FA = 0.25 � NA = 0.25 � 1000 = 250 N

From eqn. (iv) NB = 0.25 NA = 250 N

∴ FB = 0.4 � NB = 0.4 � 250 = 100 N

AM∑  = 0 →

200 � 3 cos α + 900 � 5 cos α – FB � 6 cos α – NB � 6 sin α = 0

∴ Substituting the values of FB and NB, we get

200 � 3 cos α + 900 � 5 cos α – 100 � 6 cos α – 250 � 6 sin α = 0.

or 4500 cos α = 1500 sin α

or tan α = 3

∴ ααααα = 71.57°

Example 5.12. A ladder of length L rests against a wall, the angle of inclination being 45°. If the
coefficient of friction between the ladder and the ground and that between ground and the wall is
0.5 each, what will be the maximum distance on ladder to which a man whose weight is 1.5 times
the weight of ladder may ascend before the ladder begins to slip?

Solution: Figure 5.16(a) shows the ladder when it is about to slip when the man weighing 1.5 W
is at a distance, ‘aL’ from the end A. Its free body diagram is shown in Fig. 5.16(b).

Since ladder is on the verge of slipping, from law of friction,
FA = µNB = 0.5 NB ...(1)

and FB = µNB = 0.5 NB ...(2)
ΣH = 0 →
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.

L

0
5

L

a
L

1.5 W

W

B

A

L

0.5
L

a
L

1.5 W

W

A

B
NB

FB

FA

NA

45°

Fig. 5.16

FA – NB = 0 or NB = FA = 0.5 NA ...(3)

∴ FB = 0.5 NB = 0.25 NA ...(4)

 ΣV = 0 →
NA + FB = W + 1.5 W

i.e., NA + 0.25 NA = 2.5 W

or NA =
2.5

1.5
W = 1.667 W ...(5)

ΣMA = 0 →
–FB L cos 45° – NB L sin 45° + 1.5 W aL cos 45º + W 0.5 L cos 45º = 0

Since sin 45° = cos 45°, we get

FB + NB = 1.5 aW + 0.5 W

0.25 NA + 0.5 NA = 1.5 aW + 0.5 W

i.e., 0.75 × 1.667 W = 1.5 aW + 0.5 W

i.e., 1.25 = 1.5 a + 0.5

or a =
0.75

1.5
 = 0.5

Thus in this case the man can ascend up to ‘0.5 L’ of ladder.

5.7 BELT FRICTION

The transmission of power by means of belt or rope drives is possible because of friction which
exists between the wheels and the belt. Similarly, band brakes stops the rotating discs because of
friction between the belt and the disc. All along the contact surface the frictional resistance develops.
Hence, the tension in the rope is more on the side it is pulled and is less on the other side.
Accordingly, the two sides of the rope may be called as tight side and slack side.
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Relationship between Tight Side and Slack Side Forces in a Rope
Figure 5.17 (a) shows a load W being pulled by a force P over a fixed drum. Let the force on slack
side be T1 and on tight side by T2 [Fig. 5.17(b)]. T2 is more than T1 because frictional force develops
between drum and the rope [Fig. 5.17(c)]. Let θ be the angle of contact between rope and the drum.
Now, consider an elemental length of rope as shown in Fig. 5.17(d). Let T be the force on slack side
and T + dT on tight side. There will be normal reaction N on the rope in the radial direction and
frictional force F = µN in the tangential direction. Then,

WP
(a) (b)

θ

T2
T1

(c)

T2
T1

F

d
2
θ

TT+ dT N

dθ

(d)

F

Fig. 5.17

Σ Forces in radial direction = 0, gives

N T
d

T dT
d− − + =sin sin

θ θ
2 2

0� �

Since dθ is small, sin 
d θ
2

=
d θ
2

∴ − − + =N T
d

T d T
dθ θ

2 2
0� � ...(1)

i.e., N = T
d T

d+�
��

�
��2

θ

From the law of friction,

F N T
d T

d= = +�
��

�
��

µ µ θ
2

...(2)

where µ is coefficient of friction.
Now, Σ forces in tangential direction = 0, gives

 ( )cos cos
2 2

d d
T dT F T

θ θ+ = +

Since d θ
2

 is small, cos 
d θ
2

= 1

∴ T + dT = F + T

or dT = F ...(3)

From (2) and (3), dT = µ T
d T

d+�
��

�
��2

θ
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Neglecting small quantity of higher order, we get
 dT = µTdθ

d T

T
 = µdθ.

Integrating both sides over 0 to θ.

2

1 0

T

T

d T
d

T

θ

= µ θ∫ ∫

 ∴ =log T
T

T

1

2
0µ θ θ

 log
T
T

2

1

= µθ ; since log T2 – log T1 = log 
T

T
2

1

 
T
T

e2

1

= µθ

i.e., T2 = T1eµθ ...(5.4)
Note: θ should be in radians.

Example 5.13. A rope making 1 1
4

 turns around a stationary horizontal drum is used to support a

weight W (Fig. 5.18). If the coefficient of friction is 0.3 what range of weight can be supported by
exerting a 600 N force at the other end of the rope?

Solution: Angle of contact = 1.25 × 2π = 2.5π
(1) Let the impending motion of the weight be downward.

Then,
T1 = 600 N; T2 = W

     2.5 0.3 2.5 0.75

600
W

e e eµ π × π π= = =

W = 6330.43 N

(2) Let the impending motion of weight be upwards. Then

T1 = W; T2 = 600 N

T2 = T1 e
µθ

600 = W e0.75π

W = 56.87 N

Thus, a 600 N force can support a range of loads between 56.87 N to 6330.43 N weight on the
other side of drum.

Example 5.14. In Fig. 5.19 (a) The coefficient  of friction is 0.20 between the rope and the fixed
drum, and between other surface of contact µ = 0.3. Determine the minimum weight W to prevent
downward motion of the 1000 N body.

Fig. 5.18

600 N

W
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W
1000  N 4

3 3
4

F1
N 1

T1

W
1000 N

T2

3
4

N 1

F 1 F2

N 2

T1
T2

α

(a) (b)

Fig. 5.19

Solution: Since 1000 N weight is on the verge of sliding downwards the rope connecting it is the
tight side and the rope connecting W is the slack side. Free body diagrams for W and 1000 N body
are shown in Fig. 5.19(b).

Now, cos α = 0.8
sin α = 0.6

Consider the equilibrium of weight W,
Σ Forces perpendicular to the plane = 0, gives

N1 = W cos α
N1 = 0.8 W ...(1)

∴ F1 = µN1 = 0.3 × 0.8 W

F1 = 0.24 W ...(2)
Σ Forces parallel to the plane = 0, gives

T1 = F1 + W sin α = 0.24 W + 0.6 W

= 0.84 W ...(3)

Angle of contact of rope with the pulley = 180° = π radians
Applying friction equation, we get

T2 = T1eµθ = T1 e0.3π

T2 = 2.566 T1

Substituting the value of T1 from (3)
T2 = 2.156 W ...(4)

Now, consider 1000 N body,

Σ forces perpendicular to the plane = 0, gives
N2 – N1 – 1000 cos α = 0

Substituting the value of N1 from (1),
N2 = 0.8 W + 1000 × 0.8  = 0.8 W + 800

∴ F2 = 0.3 N2 = 0.24 W + 240 ...(5)
Σ forces parallel to the plane = 0, gives

F1 + F2 – 1000 sin α + T2 = 0
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Substituting the values from (2), (4) and (5),
0.24 W + 0.24 W + 240 – 1000 × 0.6 + 2.156 W = 0

W = 136.57 N.
Example 5.15. A torque of 300 N-m acts on the brake drum shown in Fig. 5.20(a). If the brake band
is in contact with the brake drum through 250° and the coefficient of friction is 0.3 determine the
force P applied at the end of the brake lever for the position shown in the figure.

M

r =  2 5 0  m m

300 m m
50 m m

P

(a)

M

P

r

90°

R

T2
T 1

(b)

90°

Fig. 5.20

Solution: Figure 5.20 (b) shows free body diagrams of brake drum and the lever arm.
Now T2 = T1 eµθ

θ =
250
180

π
 radians and µ = 0.3

∴ µ θ = 1.309

∴ T2 = T1 e1.309 = 3.7025 T1

Now, (T2 – T1) r = M

(3.7025 – 1) T1 × 250 = 300 × 103

∴ T1 = 444.04 N

∴ T2 = 1644.058 N
Consider the lever arm. Taking moment about the hinge, we get

T2 × 50 = P × 300
P = 274.0 N.

Example 5.16. Two parallel shafts 3 m apart are to be connected by a belt running over the pulleys
of diamter 500 mm and 100 mm respectively. Determine the length of belt required and the angle
of contacts between belt and each pulley if it is crossed. What power can be transferred if the larger
pulley rotates at 220 revolutions per minute. Given: Maximum permissible tension in the belt = 1 kN
and coefficient of friction between the belt and the pulley is 0.25.

Solution: The crossed belt drive system t is shown in Fig. 5.21.
From the geometry of the system,

sin α =
250 50

0.1
3000

+ =

∴ α = 5.739°

∴ θθθθθ2 = θθθθθ1 = 180 + 2α = 191.478°

= 3.342 radians.
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3000
D

α

α

θ

C

B

G

α
α

α

θ2500 100

E

F

A

Fig. 5.21

Length of belt = Arc length DC + Arc length FE + 2BG

= 250 θ1 + 50 θ2 + 2 × 3000 cos α
= 250 × 3.342 + 50 × 3.342 + 2 × 3000 cos 5.734°

= 6972.5 mm.
Max. tension in the belt = 1 kN = 1000 N.

From rope friction formula

2

1

T

T
= eµθ = e0.25 × 3.342

 = e0.6684 = 2.306

In this case T2 = maximum tension = 1000 N

∴ T1 =
1000

433.66 N
2.306

=

Velocity of the belt = r θ
= 250 × 220 × 2π mm/min.

=
250 220 2

60

× × π
 mm/sec.

= 5799.6 mm/sec.
∴ Power transmitted = (T2 – T1) × Velocity

= (1000 – 433.66) × 5759.6
= 3261884 N-mm/sec.

= 3.261884 kW.
Example 5.17. In the above example, if the belt is parallel connected find angle of contact, length
of belt and minimum that can be transmitted.

Solution: The parallel drive system is as shown in Fig. 5.22.
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D

α

α

θ1

C

B

G

α
α

α

θ2500 100
A

E

F

Fig. 5.22

From the geometry of the system

sin α =
250 – 50

3000
∴ α = 3.822°

∴ θθθθθ1 = π + 2α = 180 + 2 × 3.822

= 187.644°

= 3.275 radians.

θθθθθ2 = π – 2α = 180 – 2 × 3.822

= 172.356

= 3.008 radians.

Length of belt required

= Arc length CD + Arc length EF + 2BG

= 250 θ1 + 50 θ2 + 2 2(3000) (250 50)− −
= 250 × 3.275 + 50 × 3.008 + 2 × 2993.325

= 6955.8 mm.

As frictional force is less on smaller pulley, slippage takes place on smaller pulley. Hence

2

1

T

T
= eµθ2 = e0.25 × 3.008 = 2.1212

∴ T1 = 2 1000
471.4 Newton

2.1212 2.1212

T = =
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Velocity of belt =
2 220 2 220

250
60 60

r
π × π ×× = ×

= 5759.6 mm/sec.
∴ Maximum power that can be transferred without slippage

= (T2 – T1) × Velocity
= (1000 – 471.4) × 5759.6 = 3044517 N mm/sec

= 3.044517 kW.

IMPORTANT FORMULAE

1. µ = 
Limiting F

N
 = tan α

2. T2 = T1 eµθ

THEORY QUESTIONS

1. State the laws of dry friction.

2. Explain the terms: coefficient of friction, angle of friction and cone of friction.
3. Derive the expression for the relationship between tight side and slack side forces in a belt

friction problem.

PROBLEMS FOR EXERCISE

1. A pull of 180 N applied upward at 30° to a rough horizontal plane was required to just move
a body resting on the plane while a push of 220 N applied along the same line of action was
required to just move the same body downwards. Determine the weight of the body and the
coefficient of friction. [Ans. W = 990 N; µ = 0.1732]

2. The block A shown in Fig. 5.23 weighs 2000 N. The cord attached to if passes over a
frictionless pulley and supports a weight equal to 800 N. The value of coefficient friction
between A and the horizontal plane is 0.35. Determine the horizontal force P : (i) If the motion
is impending towards the left. (ii) if the motion is impending towards the right.

[Ans. (i) 1252.82 N (ii) 132.82 N]

800 N

2000 NP
30°

A

Fig. 5.23
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Fig. 5.24

A
B

60° 40°

A C

A

Bθ

P

100 kN 2.5 kN
75°

P B

A

10°
75°

3. A 3000 N block is placed on an inclined plane as
shown in Fig. 5.24. Find the maximum value of W
for equilibrium if tipping does not occur. Assume
coefficient of friction as 0.2. [Ans. 2636.15]

4. Find whether block A is moving up or down the
plane in Fig. 5.25 for the data given below. Weight
of block A = 300 N. Weight of block B = 600 N.
Coefficient of limiting friction between plane AB
and block A is 0.2. Coefficient of limiting friction
between plane BC and block B is 0.25. Assume
pulley as smooth.

[Ans. The block A is stationary since
F developed < Fmin]

5. Two identical blocks A and B are connected by a
rod and they rest against vertical and horizontal
planes respectively as shown in Fig. 5.26. If sliding
impends when θ = 45°, determine the coefficient
of friction, assuming it to be same for both floor
and wall. [Ans. 0.414]

6. Determine the force P required to start the wedge
as shown in Fig. 5.27. The angle of friction for all
surfaces of contact is 15°. [Ans. 26.6784 kN]

7. Two blocks A and B weighing 3 kN and 15 kN,
respectively, are held in position against an inclined
plane by applying a horizontal force P as shown in
Fig. 5.28. Find the least value of P which will
induce motion of the block A upwards. Angle of
friction for all contact surfaces is 12°.

[Ans. 14.025 kN]

Fig. 5.25

Fig. 5.26

Fig. 5.27

Fig. 5.28

3000 N

W

30°

Fric tionless
Pu lley
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15°

A P

B

P

15°

Pier

W  = 20 ,000 N

60°

4 
m

2.
7 

m
2 

m

200  N

800 N

B

A

5°

5°

A

C

BP

8. In Fig. 5.29, C is a stone block weighing 6 kN. It is
being raised slightly by means of two wooden wedges
A and B with a force P on wedge B. The angle
between the contacting surfaces of the wedge is 5°.
If coefficient of friction is 0.3 for all contacting
surfaces, compute the value of P required to impend
upward motion of the block C. Neglect weight of the
wedges. [Ans. 2.344 kN]

9. Find the horizontal force P required to push the block
A of weight 150 N which carries block B of weight
1280 N as shown in Fig. 5.30. Take angle of limiting
friction between floor and block A as 14° and that
between vertical wall and block B as 13° and
coefficient of limiting friction between the blocks as
0.3. [Ans. P = 1294.2 N]

10. The level of precast beam weighing 20,000 N is to
be adjusted by driving a wedge as shown in Fig.
5.31. If coefficient of friction between the wedge
and pier is 0.35 and that between beam and the wedge
is 0.25, determine the minimum force P required on

the wedge to make adjustment of the beam. Angle of the wedge is 15°. (Hint: Vertical component
of reaction on wedge at contact with beam = 1/2 vertical load on beam = 10,000 kN)

[Ans. 9057.4 N]

11. A ladder 5 m long rests on a horizontal ground and leans against a smooth vertical wall at an
angle of 70° with the horizontal. The weight of the ladder is 300 N. The ladder is on the verge
of sliding when a man weighing 750 N stands on a rung 1.5 m high. Calculate the coefficient
of friction between the ladder and the floor.

[Ans. µ = 0.1837]

12. A 4 m ladder weighing 200 N is placed against a vertical wall
as shown in Fig. 5.32 as a man weighing 800 N, reaches a point
2.7 m from A, the ladder is about to slip. Assuming that the
coefficient of friction between the ladder and the wall is 0.2,
determine the coefficient of friction between the ladder and the
floor. [Ans. 0.3548]

13. A uniform ladder of length ‘L’ rests against a vertical wall making
an angle of 60° with the horizontal. Coefficient of friction between
wall and ladder and ground and ladder are 0.3 and 0.25
respectively. A man weighing 650 N ascends the ladder. How
high he will be able to go before the ladder slips? Find the magnitude of weight to be put at the
bottom of the ladder so as to make it just sufficient to permit the man to go to the top. Take
ladder’s weight = 900 N.

(Hint. Find P as found in Example 11. Then W = 
P

µ
)

[Ans. (i) To a length of 0.4345 L i.e., to a height of 0.435 L sin 60° = 0.367 L metres.
(ii) W = 777.68 N]

Fig. 5.29

Fig. 5.30

Fig. 5.31

Fig. 5.32
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14. Determine the maximum weight that can be lowered
by a person who can exert a 300 N pull on rope if the

rope is wrapped 2
1
2

 turns round a horizontal spur as

shown in Fig. 5.33. Coefficient of friction between
spur and the rope is 0.3.

[Ans. 33395.33 N]

15. Determine the minimum value of W required to cause motion of blocks A and B towards right
(Ref. Fig. 5.34). Each block weighs 3000 N and coefficient of friction between blocks and the
planes is 0.2. Coefficient of friction between the drum and rope is 0.1. Angle of wrap over the
drum is 90°. [Ans. 3065.18 N]

A

Fixed
drum

W

30°

Sm ooth
pulley

B

Fig. 5.34

16. Block A shown in Fig. 5.35 weighs 2000 N. The
cord attached to A passes over a fixed drum and
supports a weight equal to 800 N. The value of
coefficient of friction between A and the horizontal
plane is 0.25 and between the rope and the fixed
drum is 0.1. Solve for P: (1) if motion is impending
towards the left, (2) if the motion is impending
towards the right.

[Ans. (1) 1230.94 N; (2) 143.0 N]

17. The dimension of a brake drum is as shown in
Fig. 5.36. Determine the torque M exerted on the
drum if the load P = 50 N. Assume coefficient of
kinetic friction between rope and drum to be 0.15.

[Ans. 747.685 N-m]

18. A belt drive is required to transmit 12 kW power. The velocity of the belt is 9.6 m/sec. If
coefficient of friction is 0.25 and the angle of contact is 150º, determine the maximum tension
is the belt. [Ans. T1 = 2.602 kN]

19. Two parallel shafts are having pulleys of diameters 300 mm and 500 mm. The distance between
the shafts is 2.5 m. They are connected by crossed belt drive system. The speed of the larger
pulley is 500 rpm and coefficient of friction µ = 0.3, determine the maximum power that can
be transmitted, if maximum permissible tension in the belt is 2.4 kN. [Ans. P = 20.3 kN]

Fig. 5.33

W

300 N

Fig. 5.35

Fig. 5.36

500 m m
P

r =  2 5 0

25
0°

30
mm

5 0 m m  
 

800 N

30°

AP



6
Simple Machines

A simple machine is a device with the help of which heavy loads are lifted by applying small effects
in a convenient direction. Pulley used to lift water from a well and screw jacks used to lift motor
car are some of the common examples of simple machines. In this chapter some of the terms
connected with simple machines are explained first followed by the description of the characteristic
features of levers, systems of pulleys, wheel and axle, Weston differential pulley block, inclined
plane, simple screw jack, differential screw jack and winch crab.

6.1 DEFINITIONS

The terms commonly used while dealing with simple machines are defined below:

Load: This is the resistance to be overcome by the machine.
Effort: This is the force required to overcome the resistance to get the work done by the

machine.

Mechanical Advantage: This is the ratio of load lifted to effort applied. Thus, if W is the load
and P is the corresponding effort, then

Mechanical Advantage = 
W

P
...(6.1)

Velocity Ratio: This is the ratio of the distance moved by the effort to the distance moved
by the load in the same interval of time. Thus,

Velocity Ratio = 
D

d
...(6.2)

where, D – distance moved by effort

d – distance moved by the load.

Input: The work done by the effort is known as input to the machine. Since work done by
a force is defined as the product of the force and the distance moved in the direction of the force,

Input = P × D ...(6.3)

If force P is in newton and distance D is in metre, the unit of input will be N-m. One
N-m work is also known as one Joule (J).

Output: It is defined as useful work got out of the machine, i.e., the work done by the load.
Thus,

Output = W × d ...(6.4)

191
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Efficiency: This is defined as the ratio of output to the input. Thus, if we use notation η for
efficiency,

 η = 
Output

Input
 = 

W d

P D

×
×

 = 
W

P

d

D
×

= Mechanical Advantage (MA) × 
1

Velocity Ratio ( )VR

= MA

VR
...(6.5)

i.e., Efficiency = 
Mechanical Advantage

Velocity Ratio

Ideal Machine: A machine whose efficiency is 1 (i.e., 100%) is called an ideal machine. In
other words, in an ideal machine, the output is equal to the input. From eqn. (6.5), in an ideal
machine,

Velocity Ratio = Mechanical Advantage
Ideal Effort: Ideal effort is the effort required to lift the given load by the machine assuming

the machine to be ideal.
For ideal machine,

VR = MA

If Pi is the ideal effort, then

VR = 
W

Pi

∴ Pi = 
W

VR
...(6.6)

Ideal Load: Ideal load is the load that can be lifted using the given effort by the machine,
assuming it to be ideal.

For the ideal machine,
VR = MA

If Wi is the ideal load, then

VR = 
W
P

i

∴ Wi = VR × P  ...(6.7)

6.2 PRACTICAL MACHINES

In practice, it is difficult to get an ideal machine. Friction exists between all surfaces of contacts of
movable parts. Some of the work done by the effort is utilised to overcome frictional resistance.
Hence, the useful work done in lifting the load is reduced, resulting in reduction of efficiency.

Let P = actual effort required

Pi = ideal effort required
W = actual load to be lifted

Wi = ideal load to be lifted
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Then,

P – Pi is called effort lost in friction and W – Wi is called frictional resistance.

Now, η = 
MA

VR

W

P VR
= × 1

From eqn. (6.6), Pi = 
W

VR

∴ η = 
P

P
i

Similarly from eqn. (6.7), Wi = VR × P

∴ η = W

Wi

Thus, η = 
P

P

W

W
i

i

= ...(6.8)

Example 6.1. In a lifting machine, an effort of 500 N is to be moved by a distance of
20 m to raise a load of 10,000 N by a distance of 0.8 m. Determine the velocity ratio, mechanical
advantage and efficiency of the machine. Determine also ideal effort, effort lost in friction, ideal load
and frictional resistance.

Solution: Load, W = 10,000 N

Effort P = 500 N
Distance moved by the effort D = 20 m

Distance moved by the load    d = 0.8 m

Mechanical advantage, MA = 
W

P
= 10 000

500

,

= 20

Velocity ratio, VR = 
D

d
= 20

0 8.

= 25

Efficiency, η = 
MA

VR
= 20

25

= 0.8 = 80 per cent

Ideal effort, Pi = 
W

VR
= 10 000

25

,
 = 400 N

Effort lost in friction = P – Pi

= 500 – 400
= 100 N

Ideal load, Wi = P × VR = 500 × 25
= 12,500 N
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Frictional resistance = Wi – W

= 12,500 – 10,000

= 2500 N

6.3 LAW OF MACHINE

The relationship between the load lifted and the effort required in a machine is called the law of
machine. This is found by conducting experiments in which efforts required for lifting different
loads are determined and then load versus effort graph as shown in Fig. 6.1 is plotted. This is
generally a straight line which does not pass through the origin.

For actua l m achine

F

B

C
θ

θ

m
1

A

O

E For ideal m ach ine

D Load (W )

E
ffo

rt
 (

P
)

Fig. 6.1

The law of machine can be expressed mathematically in the form:

P = mW + C ...(6.9)
where, C is the intercept OA and m = tan θ, the slope of AB. For the ideal machine

MA = VR

W

P
 = VR

This is a straight line relationship passing through the origin and is shown by line OC in
Fig. 6.1.

After plotting the law for the actual machine (AB) and the law for ideal machine (OC), it is
easy to determine efficiency at any given load. The vertical line DEF corresponding to given load
OD is drawn. Then,

DE = Pi, effort required in ideal machine
DF = P, effort required in actual machine

∴ Friction loss = P – Pi

= DF – DE

= EF

 Efficiency, η = 
P

P
i

 = 
DE

DF
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6.4 VARIATION OF MECHANICAL ADVANTAGE

Mechanical Advantage (MA) is given by:

MA = 
W

P

From the law of machine,
 P = mW + C

∴ MA = 
W

mW C+

= 
1

m
C

W
+

...(6.10)

As the load increases, 
C

W
 which is in denominator, decreases and hence mechanical advantage

increases. In limiting case when W tends to infinity, 
C

W
 = 0 and hence maximum mechanical

advantage equals 1

m
. The variation of mechanical advantage with respect to load is as shown in

Fig. 6.2.

Load (W)O

M
.A

.

1
m

Fig. 6.2

6.5 VARIATION OF EFFICIENCY

From eqn. (6.5), the efficiency of the machine is given by η = 
MA

VR
. Using the eqn. (6.10),

η = 
1 1

VR m C
W

×
+

...(6.11)

Since the velocity ratio (VR) is constant for a machine, variation of efficiency with load is
similar to the variation of mechanical advantage with the load.

The maximum efficiency is approached as the load approaches infinity (W → ∞) and its value

is equal to 
1 1

VR m
× . The variation of the efficiency with load is shown in Fig. 6.3.
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Load (W)

η

1
VR

1
m

×

Fig. 6.3

Example 6.2. In a simple machine, whose velocity ratio is 30, a load of 2400 N is lifted by an effort
of 150 N and a load of 3000 N is lifted by an effort of 180 N. Find the law of machine and calculate
the load that could be lifted by a force of 200 N. Calculate also:

(1) The amount of effort wasted in overcoming the friction,

(2) Mechanical advantage, and
(3) The efficiency.

Solution: Let the law of machine be
P = mW + C

In the first case, P = 150 N, and W = 2400 N
In the second case, P = 180 N and W = 3000 N

∴ 150 = 2400 m + C ...(1)
180 = 3000 m + C ...(2)

Subtracting eqn. (1) from eqn. (2), we get
30 = 600 m

m = 0.05
Substituting this value in eqn. (1), we get

150 = 120 + C

∴ C = 30
Hence, the law of machine is

P = 0.05 W + 30 ...(3)
When a force of 200 N is applied:

From the law of machine (3),
200 = 0.05 W + 30

∴ W = 3400 N
Ideal effort is given by:

Pi = 
W

VR
= 3400

30
 = 113.33 N
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∴ Effort wasted in overcoming the friction
= P – Pi = 200 – 113.33
= 86.67 N

Mechanical advantage = 
W

P
= 3400

200

= 17

Efficiency = 
MA

VR
= 17

30
 = .5667

= 56.67%
Example 6.3. In a lifting machine an effort of 150 N raised a load of 7700 N. What is the mechanical
advantage? Find the velocity ratio if the efficiency at this load is 60%. If by the same machine, a
load of 13,200 N is raised by an effort of 250 N, what is the efficiency? Calculate the maximum
mechanical advantage and the maximum efficiency.

Solution: Effort, P = 150 N
Load, W = 7700 N

∴ Mechanical advantage:

MA = 
W

P
= 7700

150
 = 51.33

If the efficiency is 60%,

η = 0.6

η = 
MA

VR

∴ 0.6 = 
51 33.

VR

or  VR = 
51 33

0 6

.

.
i.e., VR = 85.55

When an effort of 250 N raised a load of 13,200 N,

MA = 
W

P
= 13 200

250

,
 = 52.8

∴ η = 
MA

VR
= 52 8

85 55

.

.
= 0.6172

i.e., η = 61.72%
Let the law of machine be

P = mW + C

In the first case,  150 = 7700 m + C ...(1)
In the second case,  250 = 13,200 m + C ...(2)

Subtracting eqn. (1) from eqn. (2), we get
100 = 5500 m
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∴ m = 0.01818
∴ Maximum mechanical advantage

= 
1 1

0 01818m
=

.
= 55

Maximum efficiency = 
1 1

m VR
×  = 

1

0 01818

1

85 55. .
×

= 0.6429
= 64.29%

Example 6.4. The efforts required for lifting various loads by a lifting machine are tabulated below:

Load lifted in N 100 200 300 400 500 600

Effort required in N 16.0 22.5 28.0 34.0 40.5 46.5

Determine the law of machine. If the velocity ratio is 25, calculate efficiency at each load and plot
efficiency versus load curve. From this curve, determine the maximum efficiency.

Solution: Figure 6.4 shows the graph of effort versus load. From this figure, C = 10 N and slope

m = 
30

500
 = 0.06

∴ The law of machine is

P = 0.06 W + 10

50

40

30

20

10

0 100 200 300 400 500 600
Load (W )

C

0

E
ffo

rt
 (

P
)

W  = 500

P = 30

Fig. 6.4

  η = 
MA

VR

W

P VR

W

P
= × = ×1 1

25
 = 

W

P25
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Table below shows the calculation of efficiency for various loads:

Load in N 100 200 300 400 500 600

Effort in N 16.0 22.5 28.0 34.0 40.5 46.5

Efficiency in % 25 36.56 42.86 47.06 49.38 51.61

60
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0
0 100 200 300 400 500 600
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%
 E

ffi
ci

en
cy

700 800 900

Fig. 6.5

From the graph (Fig. 6.5) maximum efficiency is seen as 57%. Actually if it is plotted for
infinitely large load, maximum efficiency will be equal to

 
1 1

m VR
×  = 

1

0 06

1

25.
×  = 0.6667 = 66.67%

6.6 REVERSIBILITY OF A MACHINE

If the removal of effort while lifting results in lowering of the load, the machine is said to be
reversible. The machine is said to be self-locking if the load is not lowered on removal of the effort.

For example, while lifting water from the well, the pot falls back if the effort to pull it up
is removed whereas the screw jack used to lift the motor car will hold the car at the same position
even if the application of the effort is stopped. Hence, the former is a reversible and later is a self-
locking type simple lifting machine.

A simple lifting machine will be reversible or self-locking solely based on its efficiency. It
can be shown that a lifting machine is reversible if its efficiency is greater than 50 per cent and self-
locking if its efficiency is less than 50 per cent.

Let W – load being lifted
P – effort required

VR – Velocity ratio
D – distance moved by the effort
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d – distance moved by the load
Then,

Input = P × D
Output = W × d

∴ Work lost in friction = PD – Wd

When effort is removed, the load can start moving down if it can overcome the frictional
resistance = PD – Wd. Hence the condition for the reversibility is:

Wd > (PD – Wd)

∴ 2Wd > PD

W

P

d

D
�
�
�
�
�
�
�
�

> 1

2

MA × 
1 1

2VR
>

i.e., η > 
1

2
or 50%.

Hence, a machine is reversible if its efficiency is greater than 50%.
Example 6.5. In a lifting machine in which velocity ratio is 30, a load of 5000 N is lifted with an
effort of 360 N. Determine whether it is self-locking or reversible machine. How much is the
frictional resistance?

Solution: VR = 30

W = 5000 N
 P = 360 N

MA = 
W

P
= 5000

360
 = 13.889

efficiency, η = 
MA

VR
= 13 889

30

.

= 0.4630
= 46.30%

Since the efficiency is less than 50%, it is self-locking machine.
Ideal load, Wi = P × VR

= 360 × 30

= 10,800 N
∴ Frictional resistance = Wi – W = 10,800 – 5000

= 5,800 N

6.7 LEVER ARM

Probably lever arm is the first machine to be invented by man. It is a strong rod used to push or lift
slightly a heavy body. Figure 6.6 shows a lever arm AB used for sliding a block. Let W be the weight
to be slightly lifted for pushing. A rigid body is inserted very close to the body (say at C) between
the rod (lever) and floor. The rigid body acts as a hinge about which the lever is to be rotated. If
‘a’ is the effort arm and ‘b’ is the load arm, obviously.
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P

C
W

B
b

O

A

P

Fig. 6.6

Pa = Wb

or P = W 
b

a

∴ Mechanical advantage = 
W

P

a

b
= ...(6.12)

6.8 PULLEYS

A systematic arrangement of one or more pulleys may provide a simple and convenient lifting
machine. In its simplest form, it consists only one pulley over which a rope or chain passes as shown
in the Fig. 6.7. In this case, velocity ratio is equal to one since distance moved by effort is equal
to the distance moved by the load. It just performs changing the direction of the applied force.

Depending on the arrangement, pulleys are classified as:
(1) First order pulley system
(2) Second order pulley system

(3) Third order pulley system.
At times, it may be difficult or may be detour to find velocity ratio directly. In such cases ideal

conditions may be assumed (neglecting friction) and mechanical advantage may be found first. Then
applying VR = MA for ideal machine, the velocity ratio is found. This method of determining
velocity ratio is used for various pulley systems considered here.

P
Effort

W
Load

Fig. 6.7
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First Order Pulley System

A first order pulley system is shown in the Fig. 6.8. Pulley No. 1 is fixed in position to a support
at top. A rope passes over this pulley and one end of this rope is tied to the support at the top, making
a loop, in which pulley No. 2 is suspended and effort is applied at the other end. One end of another
rope is tied to pulley No. 2 and the other end to the top support which makes a loop in which pulley
No. 3 is suspended. Similarly, a number of pulleys can be arranged as shown, when an effort is
applied to lift the load except first pulley all other pulleys move vertically. Therefore, first pulley is
termed as fixed pulley and the others as movable pulleys.

Let an effort P be applied to lift a load W. In an ideal pulley system (friction = 0), the rope

which passes over pulley No. 4 is subjected to a tension W

2
. Then tension in rope which passes over

pulley No. 3 is W

4
 and tension in the rope which passes over pulley No. 2 is W

8
. Hence, an effort

equal to 
W

8
 is required to lift a load W.

∴  P = 
W

8
and hence MA = 

W

P
 = 

W
W

8

 = 8 = 23

But in an ideal machine, VR = MA ∴ VR = 23

W
8

W
8

W
8

W
4

W
4

W
4

W
2

W
2

W
2

4

3

2

1

W Load

W
8

Effort

Fig. 6.8

It is to be noted that in the system considered, there are three movable pulleys and the velocity
ratio is 23. If there are only two movable pulleys, then velocity ratio would be 4 (i.e., 22). In general,
in the first order pulley system, velocity ratio (VR) is given by 2n, where, n is the number of movable
pulleys present in the system. Thus, in first order pulley system

VR = 2n ...(6.13)
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P
Effort

1 1

W

Load

Fig. 6.9

Second Order Pulley System

Figure 6.9 shows a second order pulley system. This system consists of a top pulley block and a
bottom pulley block. In a pulley block pulleys may be arranged side by side or may be one below
the other as shown in Fig. 6.9. The top pulley block is fixed in position to the top support whereas
bottom pulley block can move vertically along with the load which is attached to it. One end of the
rope is attached to the hook provided at the bottom of the top pulley block and the effort is applied
at the other end. A single rope goes round all the pulleys. Let an effort P be applied to lift a load W.

Neglecting frictional losses, the tension in the rope all along the length is P. Take the section
along (1)–(1) and consider the equilibrium of the bottom pulley block.

The load W is lifted using six ropes having equal tension P

∴  W = 6P, ∴ P = 
W

6
, ∴ MA = 

W

P
 = 

W
W

6

 = 6.

But VR = MA in ideal condition

∴ VR = 6.
In general, in the second order pulley system velocity ratio is equal to twice the number of

movable pulleys in the system.
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That is, VR = 2n ...(6.14)

where, n is total number of movable pulley in the system.

Third Order Pulley System

The arrangement of the pulleys in the third order system is shown in the Fig. 6.10. In this system
a pulley (No. 1) is fixed to the top support, over which a rope passes. One end of the rope is attached
to a rigid base at the bottom. The other end is attached to a second pulley. Over this pulley another
rope passes, whose one end is attached to the same rigid base and the other end to a third pulley as
shown. Likewise a series of pulleys can be arranged. The load to be lifted will be attached to the
rigid base.

1

4P
4P
4P

2

2P 2P
2P

3 P

P
P

P4P 2P Effort
Rigid base

W

Fig. 6.10

Referring to the Fig. 6.10, let the effort required be P to lift a load W. Then neglecting friction,
Tension in the rope which passes over pulley No. 3 = P

Tension in the rope which passes over pulley No. 2 = 2P

Tension in the rope which passes over pulley No. 1 = 4P

∴ A total force of 7P is acting on the base.
∴ Lifting force produced on the base = 7P

Considering the equilibrium of rigid base,

7P = W ∴ MA = 
W

P
 = 7

But in an ideal machine, VR = MA, and hence VR = 7.

It can be easily seen that, if there are only two pulleys, VR = 3 and if there is only one pulley,
VR = 1. Therefore, in general, for the third order pulley system:

VR = 2n – 1 ...(6.15)
where, n = number of pulleys.
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6.9 WHEEL AND AXLE

This machine consists of an axle A having diameter d and a wheel B having diameter D (D > d)
co-axially fitted as shown in Fig. 6.11. The whole assembly is mounted on ball bearing so that wheel
and axle can be rotated.

B
A

Effort

W
Load P

Effort

dd

DD

WLoad

(a)

(b)

P

Fig. 6.11

One end of a rope is tied to the pin provided on the wheel and the rope is wound around the
wheel. The other end of the rope provides the means for the application of the effort. One end of
another rope is tied to the pin provided on the axle and wound around the axle in the opposite
direction to that of rope wound to the wheel. To the other end of this rope the load is attached. If
the whole assembly is rotated, one rope gets wound up and the other gets unwound.

Suppose the assembly is moved by one complete revolution, then the distance moved by the
effort = π D and distance moved by the load = π d

∴ VR = 
distance moved by effort

distance moved by load

= 
π
π
D

d
,

or VR = 
D

d
...(6.16)

6.10 WHEEL AND DIFFERENTIAL AXLE

An improvement over wheel and axle machine is made by using one more wheel of bigger diameter
and it is called wheel and differential axle.

d 1

P
Effort

W

Load

Fig. 6.12



206 MECHANICS OF SOLIDS

This consists of a differential axle of diameter d1 and d2 (d1 < d2) and a wheel of diameter
D, fixed uniaxially as shown in Fig. 6.12. One end of the rope is tied to the pin provided on the axle
portion having diameter d1 and a part of the rope is wound around it. The other end of the rope is
wound around axle on the portion having diameter d2 in the opposite direction. This pattern of
winding forms a loop and a simple pulley is installed in this loop as shown in the figure. The load
is attached to this pulley. The second rope is wound to the wheel in such a direction that if it is
unwound, the rope around the bigger diameter axle gets wound up and the rope around smaller
diameter axle gets unwound. One end of this second rope provides means for application of the
effort.

Suppose the whole system makes one complete revolution due to the applied effort, then

Total distance moved by the effort at the differential axle = πD

Length of winding of the rope = πd2

Length of unwinding of rope = πd1

∴ Net wound length = πd2 – πd1

= π(d2 – d1)
But, the rope is continuous and the load is to be lifted by the pulley block in the loop.

∴ Total height over which pulley is lifted = 
π( )d d2 1

2

−

and hence the distance moved by the load = 
π( )d d2 1

2

−

∴ VR = 
π

π
D

d d( )2 1

2
−

VR = 
2

2 1

D

d d−
Hence, velocity ratio in wheel and differential axle is given by:

VR = 
2

2 1

D

d d−
...(6.17)

6.11 WESTON DIFFERENTIAL PULLEY BLOCK

This is a special type of simple pulley system. It is shown in the Fig. 6.13.

W
Load

Fig. 6.13
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This system consists of two pulley blocks, one at the top attached to the support and the other
at the bottom hanging in the chain loop. The top block consists of two wheels of different diameters,
but fixed co-axially. The bottom block is a simple pulley to which the load W is attached. An endless
chain is wound around the pulley system as shown in the figure. All the wheels are made with teeth
so as to accommodate the links of the chain. The chain is essentially used to avoid slipping.

To determine velocity ratio of the system, let us consider pulley block as an ideal machine
and determine its mechanical advantage first. In ideal machine VR = MA. Let the diameter of the
larger wheel of the top block be D and the diameter of the smaller wheel of the top block be d [Fig.
6.14(a)]. Let the effort required to lift the load W be P.

DD
dd

W
2

W
2

W
2

W
2

W

DD
dd

P

W
2

W
2

(a)

(b)

Fig. 6.14

Then the tension in the chain loop in which pulley is hanging is 
W

2
.

Now, taking moment about the axis of top block [Fig. 6.14(b)],

W D W d

2 2 2 2
× = ×  + P × 

D

2

∴
W

4
(D – d) = 

PD

2

 
W

P

D

D d
=

−
2

( )

i.e., MA = 
2D

D d( )−

In an ideal machine,

VR = MA = 
2D

D d( )−
...(6.18)
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6.12 INCLINED PLANE

Inclined plane is a very simple lifting device. The lift is essentially accomplished with the horizontal
displacement.

An inclined plane consists of a plane surface at a definite angle over which the load is to be
lifted.

P
Effort W

θ

Fig. 6.15

Figure 6.15 shows a typical inclined plane. Here the load is a roller which is to be lifted to
a higher elevation. One end of a rope is tied to the roller and the rope is passed over a pulley attached
at the top of the inclined plane. At the other end of the rope the effort is applied.

Let the angle of inclination of the plane be θ and the length of the inclined plane be L. Then,
if the roller is made to roll from bottom to top, applying an effort P, the load is lifted through a height
of L sin θ. In this process the effort P moves through a distance L vertically downwards.

∴ VR = 
distance moved by the effort

distance through which load is lifted

= 
L

L sin sinθ θ
= 1

∴ VR = 
1

sin θ
...(6.19)

Example 6.6. In a first order system of pulleys there are three movable pulleys. What is the effort
required to raise a load of 6000 N ? Assume efficiency of the system to be 80%.

If the same load is to be raised using 520 N, find the number of movable pulleys that are
necessary.

Assume a reduction of efficiency of 5% for each additional pulley used in the system.

Solution: VR = 2n, where n is the number of movable pulleys.
VR = 23 = 8

Now, MA = η × VR

= 0.8 × 8

= 6.4

i.e.,
W

P
 = 6.4

∴ P = 
W

6 4.
 = 

6000

6 4.
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i.e.,  P = 937.5 N

In the second case,

Effort = 520 N

Efficiency η = 0.80 – n1 × 0.05

where n1 = number of additional pulleys required and equal to (n – 3).

 MA = η × VR

i.e.,
W

P
 = η × VR

∴ W = P × η × 2n

= P(0.8 – n1 × 0.05) × 2n

= P[0.8 – (n – 3) × 0.05] 2n

By going for a trial and error solution, starting with one additional pulley i.e., totally with four
pulleys,

W = 520 [0.8 – (4 – 3) × 0.05] 24 = 6240 N

i.e., if four pulleys are used, a load of 6240 N can be raised with the help of 520 N effort.

∴ Number of movable pulleys required = 4

Example 6.7. What force is required to raise the load W shown in Fig. 6.16 ? Assume efficiency of
the system to be 85%.

Solution: The pulley system shown in the Fig. 6.16 is a variation of the second order pulley system.

P

W  = 12000 N

Fig. 6.16

VR = 2 × number of movable pulleys = 6

MA = η × VR

 = 0.85 × 6 = 5.1

i.e.,
W

P
 = 5.1

∴   P = 
W

51

12 000

51.

,

.
=  = 2352.94 N
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Example 6.8. Find the pull required to lift the load W shown in Fig. 6.17(a) assuming the efficiency
of the system to be 78%.

P

W = 12,000 N

P

P

P

(a) (b) (c)

Fig. 6.17

Solution: The pulley system shown in Fig. 6.17(a) is a combination of a first order system and a
second order system as shown in Figs. 6.17(b) and (c).

Let load W be lifted by a distance x. Consider the first order system portion [Fig. 6.17(b)].
Here there are two movable pulleys. Hence

VR = 22 = 4
In this portion P moves by 4x.

Now, consider the second order pulley system portion [Fig. 6.17(c)]. Here there are two
movable pulleys. Hence VR = 2 × 2 = 4.

∴ Distance moved by the effort in this system = 4x.
Hence, the total distance moved by the effort in the given system = 4x + 4x = 8x

∴ VR = 
8x

x
 = 8

Now, MA = η × VR = 0.78 × 8
= 6.24

i.e.,
W
P

 = 6.24

∴  P = 12 000

6 24

,

.
 = 1923.08 N

Example 6.9. A lifting machine consists of pulleys arranged in the third order system. There are
three pulleys in the system. A load of 1000 N is lifted by an effort of 180 N. Find the efficiency of
the machine and the effort lost in friction.

Solution: For the third order system of pulleys,

VR = 2n – 1
where, n is the number of pulleys in the system.

VR = 23 – 1 = 7
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Now, MA = η × VR

i.e.,
W

P
 = η × VR

∴ η = 
W

P VR
× 1

= 
1000

180

1

7
×  = 0.7937

i.e., η = 79.37%
Now,

Ideal effort, Pi = 
W

VR

= 
1000

7

= 142.86 N

∴ Effort lost in friction = P – Pi

= 180 – 142.86
= 37.14 N

Example 6.10. What force P is required to raise a load of 2500 N in the system of pulleys shown
in Fig. 6.18(a). Assume efficiency of the system to be equal to 70%.

Solution: Figure 6.18(a) can be split into two simple systems as shown in Figs. 6.18(b) and 6.18(c).
What is shown in Fig. 6.18(b) is a third order pulley system having two pulleys.

∴ VR = 2n – 1
= 22 – 1 = 3

W

P
W

(a)

(b)

(c)

P

Fig. 6.18

Figure 6.18(c) is also a third order system, having two pulleys.
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∴ VR = 22 – 1 = 3

∴ VR of the whole system = 3 + 3 = 6

Now, MA = η × VR

i.e.,
W

P
 = η × VR

∴ P = 
W

VRη ×

= 
2500

0 7 6. ×

i.e., P = 595.24 N

Example 6.11. In a wheel and axle, diameter of the wheel is 500 mm and that of the axle is 200 mm.
The thickness of the cord on the wheel is 6 mm and that of the axle is 20 mm. Find the velocity ratio
of the machine. If the efficiency when lifting a load of 1200 N with a velocity of 10 metres per minute
is 70%, find the effort necessary.

Solution:  Effective wheel diameter = 
6

2
 + 500 + 

6

2

= 506 mm

Effective axle diameter = 
20

2
 + 200 + 

20

2

 = 220 mm.

For a wheel and axle, the velocity ratio is given by 
D

d

∴  VR = 
506

220
 = 2.30

Mechanical advantage = Efficiency × velocity ratio

 = 0.7 × 2.30 = 1.61

 MA = 
W

P

∴  P = 
1200

1 61.

i.e., P = 745.34 N

Example 6.12. A load of 20 kN is to be lifted by a differential wheel and axle. It consists of
differential axle of 250 mm and 300 mm diameter and the wheel diameter is 800 mm. Find the effort
required if the efficiency of the machine is 55%.
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Solution: Differential axle diameters,

d1 = 250 mm and

d2 = 300 mm

Wheel diameter, D = 800 mm

Load, W = 20 kN

Efficiency, η = 55%

Velocity ratio, VR = 
2

2 1

D

d d−
 = 

2 800

300 250

×
−

 = 32

Mechanical advantage

MA = Efficiency × velocity ratio
= 0.55 × 32 = 17.6

MA = 
W

P

∴ P = 
20 000

17 6

,

.

i.e.,  P = 1136.4 N

Example 6.13. A Weston differential pulley block of diameter 500 mm and 200 mm is used to lift
a load of 5000 N. Find the effort required if the efficiency is 60%.

Solution: Diameter of pulley block D = 500 mm, and

d = 200 mm

Load,  W = 5000 N

Efficiency, η = 60%

Velocity ratio = 
2D

D d−

= 
2 500

500 200

×
−

 = 3.33

 Mechanical advantage = Efficiency × Velocity ratio

= 0.6 × 3.33 = 2

Effort required, P = 
W

MA
 = 

5000

2

i.e., P = 2500 N

6.13 SCREW JACK

This is a device commonly used to lift heavy loads. Screw jack works on the principle same as that
of inclined plane. A typical section of the screw jack is shown in the Fig. 6.19.
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Lever

WScrew
head

Nut

d
Stand

Fig. 6.19

The device consists of a nut and a screw. Monolithically cast nut and stand form the body of
the jack. The load is carried by the screw head fitted onto the screw as shown in the figure. The body
(consisting of nut) is fixed and the screw is rotated by means of a lever.

The axial distance moved by the nut (or by the screw, relative to each other) when it makes
one complete revolution is known as lead of the screw head. The distance between consecutive
threads is called pitch (of a screw thread). If the screw is single threaded, then lead of the screw is
equal to the pitch. If the screw is double threaded then lead of the screw is twice the pitch.

Let R be the length of the lever and d be the mean diameter of the screw.
Let a load W be lifted using an effort P.

If an effort P is applied at the lever end, it is equivalent to an effort P1 at the screw [Fig. 6.20(a)]
and P1 is given by the condition:

P

R 1

P 1

Fig. 6.20(a)

P × R = P1 × 
d

2

∴ P1 = 
2PR

d

Now, consider one complete revolution of the lever. The load W is lifted up by a distance p
equal to the lead of the screw.
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θ
πd

p

Fig. 6.20(b)

This can be compared with that of inclined plane having inclination = tan–1 p

dπ
where, p – lead of the screw

d – mean diameter of screw.
Applying an effort P at the end of the lever is as good as applying an effort P1 (at the screw)

on this inclined plane. [Fig. 6.20(c)].

W

P1

Fθ φ R1θ

Fig. 6.20(c)

Resolving horizontally i.e., parallel to P1

P1 = R1 sin (θ + φ), where ...(1)
R1 is resultant reaction and

φ is limiting angle of friction. Resolving vertically
W = R1 cos (θ + φ) ...(2)

Dividing eqn. (1) by (2)

 
P

W
1  = tan (θ + φ)

∴ P1 = W tan (θ + φ)

But, P1 = 
2PR

d

2PR

d
 = W tan (θ + φ)

∴ P = 
d

R2
 W tan (θ + φ) ...(6.20)

We have tan φ = µ
where µ is the coefficient of friction.
Then,

P = 
d

R2
 W 

tan tan

tan tan

θ φ
θ φ

+
−1

P = 
d

R2
 W 

µ θ
µ θ

+
−

tan

tan1
...(6.20(a))
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where, tan θ = 
p

dπ
If the load is descending, then the friction will be acting in the reverse direction so that the

resultant reaction R shifts as shown in Fig. 6.20(d).

W

P 1

θ
φ

θ
R 1

F

Fig. 6.20(d)

Then eqn. 6.20 changes to

P = 
d

R2
W tan (θ – φ) ...(6.20(b))

Torque required, = T = PR

= 
d

2
W tan (θ + φ)

Hence torque required while ascending

T = 
d

2
 W tan (θ + φ) ...(6.21)

and torque required while descending

 T = 
d

2
 W tan (θ − φ) ...(6.21(a))

Now,

VR = 
Distance moved by the effort

Distance moved by the load

= 
2πR

p
....(6.22)

Example 6.14. A screw jack raises a load of 40 kN. The screw is square threaded having three
threads per 20 mm length and 40 mm in diameter. Calculate the force required at the end of a lever
400 mm long measured from the axis of the screw, if the coefficient of friction between screw and
nut is 0.12.

Solution: Screw diameter, d = 40 mm

Lead of the screw, p = 
20

3
 = 6.667 mm

Load, W = 40 kN
Lever length, R = 400 mm

µ = 0.12
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We have

P = 
d

R2
 W 

µ θ
µ θ

+
−

tan

tan1

and tan θ = p

Dπ

= 
6 667

40

.

π ×  = 0.05305

∴ P = 
40

2 400×
 × 40,000 

0 12 0 05305

1 0 12 0 05305

. .

( . . )

+
− ×

�

�
�

�

�
�

i.e., P = 348.32 kN
Example 6.15. A screw jack has square threads 50 mm mean diameter and 10 mm pitch. The load
on the jack revolves with the screw. The coefficient of friction at the screw thread is 0.05.

(1) Find the tangential force required at the end of 300 mm lever to lift a load of 6000 N.

(2) State whether the jack is self-locking. If not, find the torque which must be applied to keep the
load from descending.

Solution: tan θ = 
p

dπ π
=

×
10

50
 = 0.0637

∴ θ = 3.6426°

tan φ = 0.05

∴ φ = 2.8624°

(1) P = 
d

R2
 × W tan (θ + φ)

= 
50

2 300×
 × 6000 tan (3.6426° + 2.8624°)

P = 57.01 N

(2) We have

VR = 
2 2 300

10

π πR

p
= ×

= 188.496

MA = 
W

P
= 6000

57 01.

= 105.245

Efficiency = 
MA

VR
= 105 245

188 496

.

.

= 0.5583
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i.e., Efficiency = 55.83% > 50.
Hence the screw jack is not self-locking.
∴ The torque required to keep the load from descending

= 
d

2
 W tan (θ − φ)

= 
50

2
 × 600 × tan (3.6426° – 2.8624°)

T = 204.3 N-mm

6.14 DIFFERENTIAL SCREW JACK

Differential screw jack is an improvement over simple screw jack. A typical differential screw jack
is shown in Fig. 6.21. It consists of two threaded elements A and B. Both A and B have threads in
the same direction (right-handed). The element A is a cylinder which has threads on both its outer
and inner surfaces. The threads on the outer surface of the element A fits into the nut C which also
functions as the base of the whole mechanism. The threads on the element B fit into the threads cut
on the inner surface of A. Thus, the element A acts as a screw for the nut C and also as a nut for
the element B. With the help of a lever inserted in the holes made on the top of the block D, which
is attached to the element B, block D can be rotated. When D is rotated, A rotates with it. Rotation
of B is prevented by suitable arrangement.

B

D

A

C

Fig. 6.21

Let D and d be the mean diameters of the screws A and B, respectively.

Let pA and pB be the pitch of the screws A and B, respectively and pA be greater than pB.

If the lever is rotated through one complete revolution, the height through which the element
A moves up = pA

In the mean time, the element B moves down with respect to C.

The distance through which B comes down = pB

∴ Net height through which load is lifted = (pA – pB)
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Let R be the radial distance (from the centre line of A and B) at which an effort P is applied

Now, VR = 
Distance moved by the effort

Distance moved by the load
 = 

2πR

p pA B−
...(6.23)

It can be seen from eqn. (6.23) that the velocity ratio in the differential screw jack is increased
as compared to that of simple screw jack (eqn. 6.22).
Example 6.16. The following are the specifications for a differential screw jack:

(1) Pitch of smaller screw, 5.0 mm

(2) Pitch of larger screw, 10.0 mm

(3) Lever arm length from centre of screw = 500 mm.

The screw jack raises a load of 15 kN with an effort of 185 N. Determine the efficiency of
the differential screw jack at this load.

If the above jack can raise a load of 40 kN with an effort of 585 N, determine the law of
machine.

Solution: Now,  pA = 10.0 mm

 pB = 5.0 mm
Lever arm length, R = 500 mm

  VR = 
2 2 500

10 5 0

π πR

p pA B−
= ×

− .
 = 628.32

 MA = 
W

P
= 15 000

185

,
 = 81.08

∴  η = 
MA

VR
= 81 08

628 32

.

.

 = 0.129 = 12.9 per cent.
To find law of machine:

Let law of machine be P = mW + C

From first case:   185 = m × 15,000 + C ...(1)
From second case:   585 = m × 50,000 + C ...(2)

(2) minus (1) gives,  400 = 35,000 m.

or  m = 
4

350

Substituting this value in eqn. (1), we get

185 = 171.43 + C

∴ C = 13.57 N

∴ Law of machine is P = 
4

350
 W + 13.57

6.15 WINCH CRABS

Winch crabs are lifting machines in which velocity ratio is increased by a gear system. If only one
set of gears is used, the winch crab is called a single purchase winch crab and if two sets are used
it is called double purchase winch crab.
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Single Purchase Winch Crab

Line diagram of a single purchase winch crab is shown in Fig. 6.22. It consists of a load drum of
radius r connected to an axle by gears. The toothed wheel on load drum is called spur wheel and
the toothed wheel on axle is called pinion. Pinion is always smaller in size and it contains less
number of teeth as compared to that on the spur wheel. The axle is provided with a handle of arm
length R. Let the number of teeth on pinion and spur wheel be T1 and T2, respectively. Let the effort
be applied at the end of the handle. When one revolution is made, the distance moved by the effort
is given by:

D = 2πR

When axle makes one revolution, due to gear arrangement load drum moves by T1 number

of teeth, which means that it makes a revolution of 
T

T
1

2

.

∴ The distance over which the load moves:

 d = 2πr × 
T

T
1

2

∴ Velocity ratio,

VR = 
D

d

R

r
T

T

=
×

2

2 1

2

π

π

i.e.,  VR = 
R

r

T

T
× 2

1

...(6.24)

Axle

Load drum

Pinion

T 1

T 2

Hand le

Spur wheel

W

r

Fig. 6.22

Double Purchase Winch Crab

Velocity ratio of a winch crab can be increased by providing another axle with a pair of pinion and
gear as shown in Fig. 6.23. Since two pairs of pinion and gear are used it is called a double purchase
winch crab. This is used for lifting heavier loads.



SIMPLE MACHINES 221

Axle -A

Axle -B

Load drum

r

T 1

T2T3

T 4

Hand le

W

Fig. 6.23

Let the number of teeth on various wheels be T1, T2, T3 and T4 as shown in Fig. 6.23. Let
the handle makes one revolution.

Distance moved by effort P is given by:
D = 2πR ...(6.25)

When axle A makes one revolution, axle B is moved by T1 teeth, i.e., it makes T

T
1

2

 revolutions.

The number of teeth by which spur wheel is moved is 
T

T
1

2

 × T3 and hence load drum makes

T

T
1

2

�

�	



��
×

T

T
3

4

�

�	



��
 revolutions.

∴ The distance moved by the load

d = 2πr × 
T

T
1

2

�

�	



��
 × 

T

T
3

4

�

�	



��

VR = 
D

d

R

r
T

T

T

T

=
×
�
�	


��

×
�
�	


��

2

2 1

2

3

4

π

π

i.e., VR = 
R

r

T

T

T

T
×
�

�	



��
×
�

�	



��
2

1

4

3

...(6.26)

Example 6.17. Following are the specifications of a single purchase crab:

Diameter of the load drum = 200 mm

Length of lever arm R = 1.2 m
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Number of teeth on pinion, T1 = 10

Number of teeth on spur wheel, T2 = 100.

Find the velocity ratio of this machine. On this machine efforts of 100 N and 160 N are required
to lift the load of 3 kN and 9 kN, respectively. Find the law of the machine and the efficiencies at
the above loads.

Solution: Radius of the load drum, r = 
200

2
 = 100 mm

Length of lever arm,  R = 1.2 m = 1200 mm
Velocity ratio of the single purchase crab is given by:

VR = 
R

r

T

T
× 2

1

= 
1200

100

100

10
×

VR = 120
Let the law of machine be P = mW + C

In first case:  P = 100 N; W = 3 kN = 3000 N
∴ 100 = m × 3000 + C ...(1)

In the second case: P = 160 N; and W = 9 kN = 9000 N
∴ 160 = m × 9000 + C ...(2)
Subtracting eqn. (1) from eqn. (2), we get

60 = 6000 m

∴ m = 
1

100
 = 0.01

Substituting this value of m in eqn. (1), we get

100 = 
1

100
 × 3000 + C

∴ C = 70
Hence, the law of machine is

 P = 0.01 W + 70
Efficiencies:

In the first case,

MA = 
W

P
= 3000

100
 = 30

∴ η = 
MA

VR
= 30

120
 = 0.25 = 25%

In the second case,

MA = 
W

P
= 9000

160
 = 56.25
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∴ η = 
MA

VR
= 56 25

120

.

i.e., η = 0.4688 = 46.88%
Example 6.18. In a double purchase crab, the pinions have 15 and 20 teeth, while the spur wheels
have 45 and 40 teeth. The effort handle is 400 mm while the effective diameter of the drum is 150
mm. If the efficiency of the winch is 40%, what load will be lifted by an effort of 250 N applied at
the end of the handle?

Solution: T1 = 15; T2 = 45; T3 = 20; T4 = 40

Length of handle, R = 400 mm

Radius of the load drum, r = 
150

2
 = 75 mm

∴ VR = 
R

r

T

T

T

T
× ×2

1

4

3

= 
400

75

45

15

40

20
× ×

= 32

Now, η = 
MA

VR

∴ 0.40 = 
MA

32

or  MA = 12.8

i.e.,
W

P
 = 12.8, but P = 250 N

∴ W = 12.8 × 250
i.e., W = 3200 N
Applied effort lifts a load of 3200 N

IMPORTANT FORMULAE

1. Mechanical advantage = 
Load

Effort
.

2. Velocity ratio = 
Distance moved by effort

Distance moved by load
.

3. Input = Effort × Distance moved by effort.
4. Output = Load × Distance moved by the load.

5. Efficiency = 
Output

Input

Mechanical advantage

Velocity ratio
= .

6. Law of machine:
P = mW + C.

7. A machine is reversible, if η > 50%.
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8. In case of first order pulleys,
VR = 2n, where n is the number of movable pulleys.

9. In case of second order pulleys,
VR = 2n, is the where n is number of pulleys.

10. In case of third order pulleys
VR = 2n – 1, where n is number of pulleys.

11. In wheel and axle,

VR = 
Diameter of wheel

Diameter of axle
.

12. In case of wheel and differential axle,

VR = 
2D

d d2 1−
.

13. In Weston differential pulley block,

VR = 
2D

D d−
.

14. In inclined plane

 VR = 
1

sin θ
15. In screw jack

VR = 
2πR

p
.

16. In double purchase winch crab

VR = 
R

r

T

T

T

T
× ×2

1

4

3
.

17. In single purchase winch crab

VR = 
R

r

T

T
× 2

1

.

THEORY QUESTIONS

1. Define the following terms:

(i) Mechanical advantage
(ii) Velocity ratio

(iii) Efficiency of a lifting machine.
2. Explain the law of machine. How it is determined ?
3. What is meant by reversibility of machine ? Prove that a machine is reversible if its efficiency is

more than 50%.
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4. With neat sketches explain the different types of pulley systems and derive the expressions for
their efficiency.

5. With neat sketches explain the following simple machines:

(i) Wheel and axle
(ii) Wheel and differential axle

(iii) Weston differential pulley block.

6. Show that in a screw jack effort P required to lift a load W is given by P = 
d

R
W

2 1

µ θ
µ θ

+
−

tan

tan

where φ is angle of friction and tan θ = 
p

dπ
, p being the pitch of screw.

7. Give a neat sketch of

(i) Single purchase winch crab
(ii) Double purchase winch crab

PROBLEMS FOR EXERCISE

1. In a lifting machine an effort of 1.5 kN is to be moved through a distance of 7.2 m to move a load
of 24 kN through a distance of 300 mm. Determine: (1) mechanical advantage, (2) velocity ratio,
(3) efficiency, (4) ideal effort, (5) effort lost in friction, (6) ideal load and (7) frictional resistance.

[Ans. (1) 16; (2) 24; (3) 66.67%; (4) 1.0 kN; (5) 0.5 kN; (6) 36 kN and (7) 12 kN]
2. In a lifting machine an effort of 400 N is required to raise a load of 3000 N and an effort of 640 N,

to raise a load of 5000 N. How much load can be lifted with an effort of 760 N? If the velocity
ratio is 16, determine the efficiency of the machine when an effort of 760 N is applied. Is it a
reversible machine? [Ans. W = 6000 N; η = 49.34; It is not reversible]

3. The following observations were made in an experiment on a lifting machine:

Load in N 500 1000 1500 2000 2500 3000
Effort in N 26 47 76 95 105 127

Draw the load versus effort graph and determine the law of machine. If the velocity ratio is 30
determine the efficiency while lifting a load of 1800 N.
What is the maximum efficiency of the machine ?

[Ans. P = 0.04W + 6; η = 51.28%; maximum η = 83.33%]

4. A lifting machine having velocity ratio 28 starts raising a load of 6420 N on applying an effort of
450 N to it. If suddenly the effort is removed find whether the load comes down or not?

[Ans. η = 50.95%, hence the load comes down]
5. In the first order pulley system having three movable pulleys, how much effort is required to

raise a load of 5780 N if the same system raises a load of 1200 N with an effort of 200 N? Assume
the efficiency to be constant for the pulley system.  [Ans. P = 963.33 N]

6. For the arrangement of pulleys shown in Fig. 6.24, find the effort required to raise the given load
7280 N. Assume efficiency of the system as 75%.  [Ans. P = 2436.7 N]
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P

1280 N

Fig. 6.24

7. For the combination of first order and second order pulley system shown in Fig. 6.25 what will be
velocity ratio?

8200 N

P

Fig. 6.25

Assuming efficiency to be 80%, calculate what effort is required to raise the load of 8200 N.

[Ans. VR = 8; P = 1281.25 N]
8. For a third order pulley system having six movable pulleys, an effort of 720 N is required to raise

a load of 30 kN. Calculate the efficiency of the system. [Ans. 66.14%]
9. For a wheel and axle, the following details are available:

Diameter of the wheel = 540 mm
Diameter of the axle = 270 mm
Thickness of the cord on the wheel = 6 mm
Thickness of the cord on the axle = 20 mm
Calculate the efficiency of the device if an effort of 725 N is required to lift a load of 1000 N.

[Ans. η = 73.26%]
10. A differential axle and wheel consists of a differential axle of 240 mm and 320 mm diameter; and

a wheel of diameter 750 mm. Assuming efficiency to be 57%, find the effort required to raise a
load of 24 kN. [Ans. P = 2.2456 kN]

11. A Weston differential pulley block of diameters 400 mm and 800 mm is used to lift a load of
40,000 N. Find the effort required if efficiency of the system is 60%. [Ans. 26,667 N]
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12. The following particulars refer to a screw jack:
(1) Diameter of the screw rod = 62.5 mm
(2) Length of the handle = 250 mm
(3) Pitch of the square threads = 12.5 mm
(4) Coefficient of friction = 0.05
Find the effort required to lift a load of 5000 N. Find also the efficiency of the jack.

[Ans. P = 71.27 N; η = 55.83%]
13. A screw jack carries a load of 10 kN. It has a square threaded screw of pitch 25 mm and mean

diameter 60 mm. The coefficient of friction between screw and nut is 0.20. Calculate the torque
required to raise the load and the efficiency of the screw. Find also the force required at the end of
the handle 500 mm long to lower the load. [Ans. T = 102.5802 kN-mm; P = 0.2052 kN]

14. The following are the specifications of a single purchase crab:
Diameter of the load drum = 220 mm
Length of lever arm, R = 1.0 m
Number of teeth on pinion, T1 = 10
Number of teeth on spur wheel, T2 = 120
Determine the velocity ratio of the machine. On this machine, it is found in one trial that an effort
of 120 N is required to lift a load 4.2 kN and in another trial an effort of 150 N is required to lift
a load of 11.4 kN. Establish the law of machine. Also calculate efficiencies corresponding to 120
N and 150 N efforts.

Ans. VR P W= = + = =�
�



�

109 091
1

240
102 5 32 08%; 69 67%1 2. ; . ; . .η η

15. In a double purchase crab, the pinions have 12 and 18 teeth while the spur wheels have 24 and 36
teeth. The effective diameter of the drum is 142 mm. The effort handle is 450 mm. What load can
be lifted by an effort of 220 N applied at the end of handle if efficiency of winch is 42%.

[Ans. P = 2342.54 N].



7
Physical and Mechanical

Properties of Structural Materials

The principle materials used in building structures and machines include metals and their alloys,
concrete, wood, stones, bricks and other clay products, bituminous materials and plastics. The products
finally produced with these materials should be strong enough to resist the forces coming on it
without undergoing deformation so as to put it out of use. The product should be durable. The
required properties for different usage is different. Hence an engineer must know the required
properties for his products. Various properties of materials may be grouped into:

(a) Physical Properties
(b) Mechanical Properties.

7.1 PHYSICAL PROPERTIES

The various physical properties of the materials are briefly explained below:
1. Density: It is defined as mass of a material per unit volume. Kilogram is the unit of mass

in SI system. It is found by weighing the material without voids.

2. Bulk density or unit weight: It is defined as weight of material per unit volume. Its unit
in SI is kN/m3. Volume of the material is found from the natural state of material i.e. from
volume of voids and solids together.

3. Specific gravity: It is the ratio of density of materials to the unit weight of water. It may
be noted that for water density and unit weight are one and the same. Specific gravity is a
dimensionless quantity.

4. Porosity: It is the ratio of the volume of voids to the volume of granular materials.
5. Hygroscopy: It is the property of the material to absorb water from the atmosphere. Timber

possesses this property.
6. Water absorption: It is the porperty of the material to absorb water and retain it. It is

expressed as percentage in weight of absorbed water to weight of dry material. Concrete and
bricks possess this property to significant extent.

7. Permeability: It is the property of material by virtue of which it allow water to flow through
it. Soil possesses this property and materials like bitumen and metals are impervious.

8. Weather resistance: It is the ability to sustain alternating changes in wet and dry conditions
of weather. We look for materials with good weather resistance without undergoing
considerable changes in dimensions and loosing mechanical strength.

9. Frost resistance: It is the property to resist repeated freezing and throwing of absorbed
water without losing mechanical strength.

228
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10. Thermal conductivity: It is the ability of the material to transfer heat. Metals have higher
thermal conductivity. Moist materials have higher heat conductivity compared to dry porous
materials.  Rubber is having very low thermal conductivity.

11. Thermal resistivity: It is the reciprocal of thermal conductivity and is defined as time taken
for the flow of unit heat.

12. Fire resistance: It is the property by virtue of which a material resists the action of high
temperature without undergoing substantial changes in shape and loss of strength. Steel has
poor fire resistance. Concrete is better than steel in resisting fire. Bricks are having very
good fire resistance.

13. Sound absorption: It is the property of reducing the reflection of sound waves. Porous
materials have better sound absorption property. In auditoriums and cinema halls we have
to look for materials with good sound absorption properties.

14. Chemical resistance: It is the ability of the material to withstand the action of acids,
alkalies, gases etc. Materials are subjected to the action of these chemicals, which are present
in air or water or land. Stone and wood have poor resistance to chemical actions while bricks
have good chemical resistance.

15. Corrosion: It is the destruction of the material due to slow oxidation. Steel is susceptible
to corrosion. The corrosion rate is high in marine environment.

16. Soundness: A material is said to be sound, if it has good resistance to heat, alternate
freezing and thawing and the other destructive actions of the atmosphere.

17. Durability: It is the ability to resist the combined effects of atmosphere, rain and other
effects and maintain the original strength characters for a long period.

7.2 MECHANICAL PROPERTIES

Resistance to various applied forces is referred as mechanical properties. Some of these properties
are briefly presented below:

1. Properties related to axial loading: For designing structural elements to resist the applied
loads, the following strength properties should be known:

(a) Tensile strength: If an element is subjected to pulling forces, the resistance developed per
unit area is termed as tensile stress and the maximum trensile stress the material can resist
is termed as tensile strength. To find the resisting forces developed a section plane may be
taken through the element and the equilibrium of any one part may be considered. Each part
is in equilibrium under the action of applied forces and internal resisting forces. Fig. 7.1

P P

P pA

(a)

(b)

(c)

pA pA

Fig. 7.1
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shows a bar under tension and stresses at a cross-section and also an element of bar under
tensile stress. In this P is the tensile force applied, p is the tensile stress (resistance per unit
area) and A is the cross-sectional area.

∴ P = pA ...(7.1)
(b) Compressive stress: Instead of pull, if push ‘P’ acts on the element, it tries to shorten the

bar and the internal resistance developed per unit area is called compressive stress

(Ref. Fig. 7.2). Here also  p = 
P

A
.

P P

P pA

pA

Fig. 7.2

2. Properties related to shear loading: If the applied force is trying to shear off a particular
section of the element, the resistance developed for unit area in such case along that section is called
shearing stress. The maximum stress that material can resist is called shearing strength of the
material. Figure 7.3 shows a section of bolt under shearing stress.

Q

Q

Q

Q
Q

Q

Fig. 7.3

If Q is the shear force, q is the shear stress, then the equilibrium condition of any one part
considered shows,

Q = qA, where A is the cross-sectional area of the bolt.

∴ q = 
Q

A
...(7.2)

3. Properties related to torsional moment: A member is said to be in torsion when it is
subjected to a moment about its axis, Fig. 7.5 shows a shaft in torsion. The effect of a torsional
member is to twist it and hence a torsional moment is also called as a twisting moment. In engineering
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problems many members are subjected to torsion. Shafts transmitting power from engine to rear axle
of automobile, from a motor to machine tool and from a turbine to electric motor are the common
examples of members in torsion. Ring beams of circular water tanks and beams of grid floors are
also the examples of members in torsion. The applied torsion is resisted by the material of the
member by developing shear stresses. This shear stress varies linearly from zero at centre of the shaft
to the maximum value at the extreme fibre.

T

T

da

qda

T = qrdaΣ

r

Fig. 7.4

4. Properties related to bending: When a member is supported at two or more points and
subjected to transverse load it bends and develops resistance to the load. The cross-sections of the
members are subjected to bending moment and shear force. Finally the load gets transferred to the
support by end shear. The shear force introduces shear stresses in the material while bending moment
introduces tension in some parts and compression in other parts as shown in Fig. 7.5.

P1 P2 P3

M

M

F

(a) Beam

(b) Bending moment and shear force at a section

F

F

M M

(c) Resistance to shear

(d) Resistance to bending

Fig. 7.5
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5. Fatigue: Many structural memberes are subjected to fluctuation and reversal of stresses as
shown in Fig. 7.6 (a) and (b). A bridge deck is a common example of fluctuation of stresses and
the shaft is the mechanical component subjected to reversal of stresses. This type of stress when
applied repeatedly reduces the strength of material and this effect is called fatigue. This property is
shown in Fig. 7.6 (c). The maximum stress at which even a billion reversal of stresses cannot cause
failure of the material is called endurance limit.
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(c) Breaking stress vs No. of cycles.

Fig. 7.6

6. Abrasive resistance: This is the property by virtue of which a material resists the forces
acting at contact surfaces when one material rubs/moves over the other. This is an important property
to be studied for the materials used for road surfaces and flooring.

7. Impact strength: This property refers to the ability of the material to resist shock loads due
to heavy loads falling on the surface.

8. Hardness: It is the ability of the material to resist penetration from another material. A
number called hardness number is used to measure hardness of various materials. It is based on
hardnesses of ten minerals arranged in the increasing hardness. Diamond has hardness number 10.
Sometimes hardness is measured by size of indentation of steel balls under standard pressure using
hardness testing machine.
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9. Elasticity: It is the property of the material by virtue of which it regains its original shape
and size after the removal of external load. The maximum stress level before which if the load is
removed the material regains its shape and size fully is called its elastic limit.

10. Plasticity: It is the property of the material to retain its changed shape and size after the
loads are removed. It is a required property when a material is to be moulded into different shape.

11. Creep: It is the property of the material by virtue of which it undergoes changes in size with
time under the action of constant load. Concrete possesses this property.

12. Toughness: It is the property of a material whereby it absorbs energy due to straining
actions by undergoing plastic deformation.

The other terms proof stress, factor of safety, working stress and load factors are explained in
the next chapter after explaining the stress strain curves. There are standard tests specified by codes
to quantity various properties of the materials. Knowing the requirements of materials properties for
different purposes, the engineer has to select or reject the materials to be used in construction.

THEORY QUESTIONS

1. Explain the terms:
Weather resistance, frost resistance, thermal resistance and fire resistance.

2. What do you understand by the terms: sound absorption, soundness, corrosion resistance and
durability ?

3. Differentiate between:

(a) Impact strength and toughness (b) Elasticity and plasticity
(c) Tensile stress and shear stress.
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Simple Stresses and Strains

In this chapter general meaning of stress is explained. Expressions for stresses and strains is derived
with the following assumptions:

1. For the range of forces applied the material is elastic i.e. it can regain its original shape and
size, if the applied force is removed.

2. Material is homogeneous i.e. every particle of the material possesses identical mechanical
properties.

3. Material is isotropic i.e. the material possesses identical mechanical property at any point in
any direction.
Presenting the typical stress-strain curve for a typical steel, the commonly referred terms like

limits of elasticity and proportionality, yield points, ultimate strength and strain hardening are explained.
Linear elastic theory is developed to analyse different types of members subject to axial, shear,

thermal and hoop stresses.

8.1 MEANING OF STRESS

When a member is subjected to loads it develops resisting forces. To find the resisting forces
developed a section plane may be passed through the member and equilibrium of any one part may
be considered. Each part is in equilibrium under the action of applied forces and internal resisting
forces. The resisting forces may be conveniently split into normal and parallel to the section plane.
The resisting force parallel to the plane is called shearing resistance. The intensity of resisting force
normal to the sectional plane is called intensity of Normal Stress  (Ref. Fig. 8.1).

Resisting Force
Normal to Plane

Shearing
Force

Section
Plane

p

q

(a) Members
Subject to Forces

(b) Internal Resistances
Developed

(c)

Fig. 8.1
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In practice, intensity of stress is called as ‘‘stress’’ only. Mathematically

Normal Stress = p = lim
∆

∆
∆A

R

A→ 0

= 
dR

dA
...(8.1)

where R is normal resisting force.
The intensity of resisting force parallel to the sectional plane is called Shearing Stress (q).

 Shearing Stress = q = lim
∆A → 0

 
∆
∆

Q

A
 = 

dQ

dA
...(8.2)

where Q is Shearing Resistance.
Thus, stress at any point may be defined as resistance developed per unit area. From equations

(8.1) and (8.2), it follows that
  dR = pdA

or    R = ∫ pdA ...(8.3a)
and   Q = ∫ qdA ...(8.3b)

At any cross-section, stress developed may or may not be uniform. In a bar of uniform cross-
section subject to axial concentrated loads as shown in Fig. 8.2a, the stress is uniform at a section
away from the applied loads (Fig. 8.2b); but there is variation of stress at the section  near the applied
loads (Fig. 8.2c).

P P

PA

(b) Variation of Stresses Away from Ends

(a)

(c) Variation of Stresses Near Ends

Fig. 8.2

Similarly stress near the hole or at fillets will not be uniform as shown in Figs. 8.3 and 8.4. It
is very common that at some points in such regions maximum stress will be as high as 2 to 4 times
the average stresses.
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P

P

P

Fig. 8.3. Stresses in a Plate with a Hole Fig. 8.4

8.2 UNIT OF STRESS

When Newton is taken as unit of force and millimetre as unit of area, unit of stress will be
N/mm2. The other derived units used in practice are kN/mm2, N/m2, kN/m2 or MN/m2. A stress of
one N/m2 is known as Pascal and is represented by Pa.

Hence, 1 MPa = 1 MN/m2 = 1 × 106 N/(1000 mm)2 = 1 N/mm2.

Thus one Mega Pascal is equal to 1 N/mm2. In most of the standard codes published unit of stress
has been used as Mega Pascal (MPa or N/mm2).

8.3 AXIAL STRESS

Consider a bar subjected to force P as shown in Fig. 8.5. To maintain the equilibrium the end forces
applied must be the same, say P.

Axis of the Bar

P P

A Sectional Plane

R

P

R
P

(a) Bar Subjected to Pulls

(b) Resisting Force Developed

Fig. 8.5. Tensile Stresses

The resisting forces acting on a section are shown in Fig. 8.5b. Now since the stresses are
uniform

 R = ∫ pdA = p ∫ dA = pA ...(8.4)
where A is the cross-sectional area.
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Considering the equilibrium of a cut piece of the bar, we get

 P = R ...(8.5)
From equations (8.4) and (8.5), we get

 P = pA

or   p = 
P

A
...(8.6)

Thus, in case of axial load ‘P’ the stress developed is equal to the load per unit area. Under
this type of normal stresses the bar is being extended. Such stress which is causing extension of the
bar is called tensile stress.

A bar subjected to two equal forces pushing the bar is shown in Fig. 8.6. It causes shortening
of the bar. Such forces which are causing shortening, are known as compressive forces and
corresponding stresses as compressive stresses.

P

P R

P

(a) Bar Subjected to Compressive Forces

Axis of the Bar

(b) Resisting Force Developed

Fig. 8.6. Compressive Stresses

Now R = ∫ pdA = p ∫ dA (as stress is assumed uniform)
For equilibrium of the piece of the bar

 P = R = pA

or  p = 
P

A
 as in equation 8.6

Thus, whether it is tensile or compressive, the stress developed in a bar subjected to axial forces,
is equal to load per unit area.

8.4 STRAIN

No material is perfectly rigid. Under the action of forces a rubber undergoes changes in shape and
size. This phenomenon is very well known to all since in case of rubber, even for small forces
deformations are quite large. Actually all materials including steel, cast iron, brass, concrete, etc.
undergo similar deformation when loaded. But the deformations are very small and hence we cannot
see them with naked eye. There are instruments like extensometer, electric strain gauges which can
measure extension of magnitude 1/100th, 1/1000th of a millimetre. There are machines like universal
testing machines in which bars of different materials can be subjected to accurately known forces of
magnitude as high as 1000 kN. The studies have shown that the bars extend under tensile force and
shorten under compressive forces as shown in Fig. 8.7. The change in length per unit length is known
as linear strain. Thus,

 Linear Strain = 
Change in Length

Original Length
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e = 
∆
L

...(8.7)

LL

b¢

(Original Length)

(Shortening)

b

(Extension)

LL

b¢ b

b

(Original Length)

Fig. 8.7

When changes in longitudinal direction is taking place changes in lateral direction also take
place. The nature of these changes in lateral direction are exactly opposite to that of changes in
longitudinal direction i.e., if extension is taking place in longitudinal direction, the shortening of
lateral dimension takes place and if shortening is taking place in longitudinal direction extension
takes place in lateral directions (See Fig. 8.7). The lateral strain may be defined as changes in the
lateral dimension per unit lateral dimension. Thus,

 Lateral Strain = 
Change in Lateral Dimension

Original Lateral Dimension

= 
′ − =b b

b

b

b

δ
...(8.8)

8.5 STRESS-STRAIN RELATION

The stress-strain relation of any material is obtained by conducting tension test in the laboratories
on standard specimen. Different materials behave differently and their behaviour in tension and in
compression differ slightly.

8.5.1 Behaviour in Tension

Mild steel. Figure 8.8 shows a typical tensile test specimen of mild steel. Its ends are gripped into
universal testing machine. Extensometer is fitted to test specimen which measures extension over the
length L1, shown in Fig. 8.8. The length over which extension is mesured is called  gauge length.
The load is applied gradually and at regular interval of loads extension is measured. After certain
load, extension increases at faster rate and the capacity of extensometer  to measure extension comes
to an end and, hence, it is removed before this stage is reached and extension is measured from scale
on the universal testing machine. Load is increased gradually till the specimen breaks.
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L1L1 L2L2
CupCone

Fig. 8.8. Tension Test Specimen Fig. 8.9. Tension Test Specimen after Breaking

Load divided by original cross-sectional area
is called as nominal stress or simply as stress.
Strain is obtained by dividing extensometer
readings by gauge length of extensometer (L1)
and by dividing scale readings by grip to grip
length of the specimen (L2). Figure 8.10 shows
stress vs strain diagram for the typical mild steel
specimen. The following salient points are
observed on stress-strain curve:

(a) Limit of Proportionality (A): It is the
limiting value of the stress up to which
stress is proportional to strain.

(b) Elastic Limit: This is the limiting value
of stress up to which if the material is
stressed and then released (unloaded) strain disappears completely and the original length
is regained. This point is slightly beyond the limit of proportionality.

(c) Upper Yield Point (B): This is the stress at which, the load starts reducing and the extension
increases. This phenomenon is called yielding of material. At this stage strain is about 0.125
per cent and stress is about 250 N/mm2.

(d) Lower Yield Point (C): At this stage the stress remains same but strain increases for some
time.

(e) Ultimate Stress (D): This is the maximum stress the material can resist. This stress is about
370–400 N/mm2. At this stage cross-sectional area at a particular section starts reducing very
fast (Fig. 8.9). This is called neck formation. After this stage load resisted and hence the
stress developed starts reducing.

(f) Breaking Point (E): The stress at which finally the specimen fails is called breaking point.
At this strain is 20 to 25 per cent.

If unloading is made within elastic limit the original length is regained i.e., the stress-strain curve
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Fig. 8.10
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follows down the loading curve shown in Fig. 8.6. If unloading is made after loading the specimen
beyond elastic limit, it follows a straight line parallel to the original straight portion as shown by line
FF′ in Fig. 8.10. Thus if it is loaded beyond elastic limit and then unloaded a permanent strain (OF)
is left in the specimen. This is called permanent set.

Stress-strain relation in aluminium and high strength steel. In these elastic materials  there is
no clear cut yield point. The necking takes place at ultimate stress and eventually  the breaking point
is lower than the ultimate point. The typical stress-strain diagram is shown in Fig. 8.11. The stress
p at which if unloading is made there will be 0.2 per cent permanent set is known as 0.2 per cent
proof stress and this point is treated as yield point for all practical purposes.
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Fig. 8.11. Stress-Strain Relation in Fig. 8.12. Stress-Strain Relation
Aluminium and High Strength Steel for Brittle Material

Stress-strain relation in brittle material. The typical stress-strain relation in a brittle material
like cast iron, is shown in Fig. 8.12.

In these material, there is no appreciable change in rate of strain. There is no yield point and
no necking takes place. Ultimate point and breaking point are one and the same. The strain at failure
is very small.

Percentage elongation and percentage reduction in area. Percentage elongation and percentage
reduction in area are the two terms used to measure the ductility of material.

(a) Percentage Elongation: It is defined as the ratio of the final extension at rupture to original
length expressed, as percentage. Thus,

Percentage Elongation = 
L L

L

′ −
 × 100 ...(8.9)

where L – original length, L′– length at rupture.

The code specify that original length is to be five times the diameter and the portion
considered must include neck (whenever it occurs). Usually marking are made on tension
rod at every ‘2.5 d’ distance and after failure the portion in which necking takes place is
considered. In case of ductile material percentage elongation is 20 to 25.

(b) Percentage Reduction in Area: It is defined as the ratio of maximum changes in the cross-
sectional area to original cross-sectional area, expressed as percentage. Thus,
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Percentage Reduction in Area = 
A A

A

− ′
 × 100 ...(8.10)

where A–original cross-sectional area, A′–minimum cross-sectional area. In case of ductile
material, A′ is calculated after measuring the diameter at the neck. For this, the two broken
pieces of the specimen are to be kept joining each other properly. For steel, the percentage
reduction in area is 60 to 70.

8.5.2 Behaviour of Materials under Compression

As there is chance to bucking (laterally bending) of long specimen, for compression tests short
specimens are used. Hence, this test involves measurement of smaller changes in length. It results
into lesser accuracy. However precise measurements have shown the following results:

(a) In case of ductile materials stress-strain curve follows exactly same path as in tensile test
up to and even slightly beyond yield point. For larger values the curves diverge. There will
not be necking in case of compression tests.

(b) For most brittle materials ultimate compresive stress in compression is much larger than in
tension. It is because of flows and cracks present in brittle materials which weaken the
material in tension but will not affect the strength in compression.

8.6 NOMINAL STRESS AND TRUE STRESS

So far our discussion on direct stress is based on the value obtained by dividing the load by original
cross-sectional area. That is the reason why the value of stress started dropping after neck is formed
in mild steel (or any ductile material) as seen in Fig. 8.10. But actually as material is stressed its
cross-sectional area changes. We should divide load by the actual cross-sectional area to get true
stress in the material. To distinguish between the two values we introduce the terms nominal stress
and true stress and define them as given below:

 Nominal Stress = 
Load

Original Cross-sectional Area
...(8.11a)

True Stress = 
Load

Actual Cross-sectional Area
...(8.11b)

So far discussion was based on nominal stress.
That is why after neck formation started (after ultimate
stress), stress-strain curve started sloping down and the
breaking took place at lower stress (nominal). If we
consider true stress, it is increasing continuously as
strain increases as shown in Fig. 8.13.
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Fig. 8.13. Nominal Stress-Strain Curve
and True Stress-Strain Curve for Mild

Steel.
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8.7 FACTOR OF SAFETY

In practice it is not possible to design a mechanical component or structural component permitting
stressing up to ultimate stress for the following reasons:

1. Reliability of material may not be 100 per cent. There may be small spots of flaws.
2. The resulting deformation may obstruct the functional performance of the component.

3. The loads taken by designer are only estimated loads. Occasionally there can be overloading.
Unexpected impact and temperature loadings may act in the lifetime of the member.

4. There are certain ideal conditions assumed in the analysis (like boundary conditions). Actually
ideal conditions will not be available and, therefore, the calculated stresses will not be 100
per cent real stresses.

Hence, the maximum stress to which any member is designed is much less than the ultimate
stress, and this stress is called Working Stress. The ratio of ultimate stress to working stress is called
factor of safety. Thus

 Factor of Safety = Ultimate Stress

Working Stress
...(8.12)

In case of elastic materials, since excessive deformation create problems in the performance of
the member, working stress is taken as a factor of yield stress or that of a 0.2 proof stress (if yield
point do not exist).

Factor of safety for various materials depends up on their reliability. The following values are
commonly taken in practice:

1. For steel – 1.85

2. For concrete – 3
3. For timber – 4 to 6

8.8 HOOKE’S LAW

Robert Hooke, an English mathematician conducted several experiments and concluded that stress
is proportional to strain up to elastic limit. This is called Hooke’s law. Thus Hooke’s law is, up to
elastic limit

p ∝ e ...(8.13a)

where p is stress and e is strain

Hence, p = Ee ...(8.13b)

where E is the constant of proportionality of the material, known as modulus of elasticity or Young’s
modulus, named after the English scientist Thomas Young (1773–1829).

However, present day sophisticated experiments have shown that for mild steel the Hooke’s law
holds good up to the proportionality limit which is very close to the elastic limit. For other materials,
as seen in art. 1.5, Hooke’s law does not hold good. However, in the range of working stresses,
assuming Hooke’s law to hold good, the relationship does not deviate considerably from actual
behaviour. Accepting Hooke’s law to hold good, simplifies the analysis and design procedure
considerably. Hence Hooke’s law is widely accepted. The analysis procedure accepting Hooke’s law
is known as Linear Analysis and the design procedure is known as the working stress method.
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8.9 EXTENSION/SHORTENING OF A BAR

Consider the bars shown in Fig. 8.14

P

LL �

P

P

LL �

P

Fig. 8.14

From equation (8.6), Stress p = 
P

A

From equation (8.7), Strain, e = 
∆
L

From Hooke’s Law we have,

   E = 
Stress

Strain
= = =p

e

P A

L

PL

A

/

/∆ ∆

or   ∆ = 
PL

AE
. ...(8.14)

Example 8.1. A circular rod of diameter 16 mm and 500 mm long is subjected to a tensile force 40
kN. The modulus of elasticity for steel may be taken as 200 kN/mm2. Find stress, strain and elongation
of the bar due to applied load.

Solution:  Load P = 40 kN = 40 × 1000 N
E = 200 kN/mm2 = 200 × 103 N/mm2

L = 500 mm
 Diameter of the rod d = 16 mm

Therefore, sectional area   A = π πd 2

4 4
=  × 162

= 201.06 mm2

Stress p = 
P

A
= ×40 1000

201 06.
 = 198.94 N/mm2

 Strain e = 
p

E
=

×
198 94

200 103

.
= 0.0009947

 Elongation ∆ = 
PL

AE
= × ×

× ×
4.0 1000 500

201.06 200 103  = 0.497 mm
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Example 8.2. A Surveyor’s steel tape 30 m long has a cross-section of 15 mm × 0.75 mm. With this,
line AB is measure as 150 m. If the force applied during measurement is 120 N more than the force
applied at the time of calibration, what is the actual length of the line?

Take modulus of elasticity for steel as 200 kN/mm2.

Solution:  A = 15 × 0.75 = 11.25 mm2

 P = 120 N, L = 30 m = 30 × 1000 mm

 E = 200 kN/mm2 = 200 × 103 N/mm2

Elongation ∆ = 
PL

AE
= × ×

× ×
120 30 1000

11.25 200 103  = 1.600 mm

Hence, if measured length is 30 m.

Actual length is 30 m + 1.600 mm = 30.001600 m

∴ Actual length of line AB = 
150

30
 × 30.001600 = 150.008 m

Example 8.3. A hollow steel tube is to be used to carry an axial compressive load of
160 kN. The yield stress for steel is 250 N/mm2. A factor of safety of 1.75 is to be used in the design.
The following three class of tubes of external diameter 101.6 mm are available.

Class Thickness
Light 3.65 mm

Medium 4.05 mm
Heavy 4.85 mm

Which section do you recommend?

Solution: Yield stress = 250 N/mm2

Factor of safety = 1.75
Therefore, permissible stress

p = 
250

1 75.
 = 142.857 N/mm2

 Load P = 160 kN = 160 × 103 N

but p = 
P

A

i.e.   142.857 = 160 103×
A

∴  A = 
160 10
142 857

3×
.

 = 1120 mm2

For hollow section of outer diameter ‘D’ and inner diameter ‘d’

 A = 
π
4

(D2 – d2) = 1120

π
4

(101.62 – d2) = 1120
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d2 = 8896.53 ∴ d = 94.32 mm

∴ t = 
D d− = −

2

101.6 94.32

2
 = 3.63 mm

Hence, use of light section is recommended.
Example 8.4. A specimen of steel 20 mm diameter with a gauge length of 200 mm is tested to
destruction. It has an extension of 0.25 mm under a load of 80 kN and the load at elastic limit is
102 kN. The maximum load is 130 kN.

The total extension at fracture is 56 mm and diameter at neck is 15 mm. Find

(i) The stress at elastic limit.

(ii) Young’s modulus.

(iii) Percentage elongation.

(iv) Percentage reduction in area.

(v) Ultimate tensile stress.

Solution:    Diameter d = 20 mm

  Area A = πd 2

4
 = 314.16 mm2

(i) Stress at elastic limit = 
Load at elastic limit

Area

= 
102 10

314.16

3×
 = 324.675 N/mm2

(ii) Young’s modulus E = 
Stress

Strain
within elastic limit

= P A

L

/

/

80 10 /314.16

0.25/200

3

∆
= ×

 = 203718 N/mm2

(iii) Percentage elongation = Final extension

Original length

 = 
56

200
 × 100 = 28

(iv) Percentage reduction in area

= 
Initial area Final area

Initial area

−
 × 100

= 

π π

π
4

20
4

15

4
20

2 2

2

× − ×

×
 × 100 = 43.75
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(v) Ultimate Tensile Stress = 
Ultimate Load

Area

= 130 103×
314 16.

 = 413.80 N/mm2.

8.10 BARS WITH CROSS-SECTIONS VARYING IN STEPS

A typical bar with cross-sections varying in steps and subjected to axial load is as shown in Fig.
8.15(a). Let the length of three portions be L1, L2 and L3 and the respective cross-sectional areas of
the portion be A1, A2, A3 and E be the Young’s modulus of the material and P be the applied axial
load.

Figure 8.15(b) shows the forces acting on the cross-sections of the three portions. It is obvious
that to maintain equilibrium the load acting on each portion is P only. Hence stress, strain and
extension of each of these portions are as listed below:

P 1 2 3
A1

A2
A3

P

L1L1 L2L2
L3L3

P P P P P

(a)

Section Through 1 Section Through 2 Section Through 3

(b)

Fig. 8.15. Typical Bar with Cross-section Varying in Step

Portion Stress Strain Extension

1 p1 = 
P
A1

e1 = 
p
E

P
A E

1

1
= ∆1 = PL

A E
1

1

2 p2 = 
P

A2
e2 = 

p
E

P
A E

2

2
= ∆2 = 

PL
A E

2

2

3 p3 = P
A3

e3 = 
p
E

P
A E

3

3
= ∆3 = 

PL
A E

3

3

Hence total change in length of the bar

∆ = ∆1 + ∆2 + ∆3 = 
PL

A E

PL

A E

PL

A E
1

1

2

2

3

3

+ + ...(8.15)
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Example 8.5. The bar shown in Fig. 8.16 is tested in universal testing machine. It is observed that
at a load of 40 kN the total extension of the bar is 0.280 mm. Determine the Young’s modulus of
the material.

PP d = 25 mm1 d = 25 mm3d = 20 mm2

250 mm250 mm150 mm150 mm 150 mm150 mm

Fig. 8.16

Solution: Extension of portion 1, PL

A E E

1

1

3

2

40 10 150

4
25

= × ×

×π

Extension of portion 2,
PL

A E E

2

2

3

2

40 10 250

4
20

= × ×

×π

Extension of portion 3, PL

A E E

3

3

3

2

40 10 150

4
25

= × ×

×π

Total extension = 
40 10 4 150

625

250

400

150

625

3×
× + +�
�
�

�
�
�E π

 0.280 = 
40 10 43× × ×

E Eπ
1.112

E = 200990 N/mm2

Example 8.6. The stepped bar shown in Fig. 8.17 is made up of two different materials. The material
1 has Young’s modulus = 2 × 105 N/mm, while that of material 2 is 1 × 105 N/mm2. Find the
extension of the bar under a pull of 30 kN if both the portions are 20 mm in thickness.

P = 30 kN30 kN b = 40 b = 30

800800600600

Material 1
Material 2

Fig. 8.17

Solution: A1 = 40 × 20 = 800 mm2

A2 = 30 × 20 = 600 mm2
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Extension of portion 1, PL

A E
1

1 1

3

5

30 10 600

800 2 10
= × ×

× ×
 = 0.1125 mm.

Extension of portion 2, PL

A E
2

2 2

3

5

30 10 800

600 1 10
= × ×

× ×
 = 0.4000 mm.

∴ Total extension of the bar = 0.1125 + 0.4000 = 0.5125 mm.
Example 8.7. A bar of length 1000 mm
and diameter 30 mm is centrally bored for
400 mm, the bore diameter being 10 mm
as shown in Fig. 8.18. Under a load of 30
kN, if the extension of the bar is 0.222 mm,
what is the modulus of elasticity of the bar?

Solution: Now

 L1 = 1000 – 400 = 600 mm

  L2 = 400 mm

 A1 = 
π
4

 × 302 = 225 π

A2 = 
π
4

 × (302 – 102) = 200 π

∆1 = 
PL

A E
1

1

∆2 = 
PL

A E
2

2

∴ ∆ = ∆1 + ∆2 = 
P

E

L

A

L

A
1

1

2

2

+
�

�	



��

i.e.,  0.222 = 
30 10 600

225

400

200

3× +
�
�	



��E π π

∴ E = 200736 N/mm2.

8.11 BARS WITH CONTINUOUSLY VARYING CROSS-SECTIONS

When the cross-section varies continuously, an elemental length of the bar should be considered and
general expression for elongation of the elemental length derived. Then the general expression should
be integrated over entire length to get total extension. The procedure is illustrated with Examples 8.8
and 8.9.

Example 8.8. A bar of uniform thickness ‘t’ tapers uniformly from a width of b1 at one end to b2
at other end in a length ‘L’ as shown in Fig. 8.18. Find the expression for the change in length of
the bar when subjected to an axial force P.

Fig. 8.18

30 kN 30 kND = 30 d = 30

400400
10001000



SIMPLE STRESSES AND STRAINS 249

b1b1
P P

dxxx

LL

bb bb

t

Cross-section

b2

Fig. 8.19

Solution: Consider an elemental length dx at a distance x from larger end. Rate of change of breadth

is 
b b

L
1 2−

.

Hence, width at section x is  b = b1 – 
b b

L
1 2−

 x = b1 – kx

where k = 
b b

L
1 2−

∴ Cross-section area of the element = A = t(b1 – kx)
Since force acting at all sections is P only,

Extension of element = 
Pdx

AE
[where length = dx]

 = 
Pdx

b kx tE( )1 −

Total extension of the bar  = 
0 1 0 1

L LPdx

b kx tE

P

tE

dx

b kx
 
−
=

−( ) ( )

 = 
P

tE k
b kx

L
1

1

0
−
�
�	


��

−
�

�
�

�

�
�log ( )

  = 
P

tEk
b

b b

L
x

L

− −
−�

�


�

�
��

�
��

log 1
1 2

0

 = 
P

tEk
[– log b2 + log b1] = 

P

tEk
 log 

b

b
1

2

 = 
PL

tE(b b )
log

b
b1 2

1

2−
. ...(8.16)
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Example 8.9. A tapering rod has diameter d1 at one end and it tapers uniformly to a diameter d2
at the other end in a length L as shown in Fig. 8.20. If modulus of elasticity of the material is E,
find its change in length when subjected to an axial force P.

Cross-section

d1d1
P P

dxxx

LL

bb
d2

d

Fig. 8.20

Solution: Change in diameter in length L is d1 – d2

∴ Rate of change of diameter, k = 
d d

L
1 2−

Consider an elemental length of bar dx at a distance x from larger end. The diameter of the bar
at this section is

  d = d1 – kx.

Cross-sectional area A = 
π πd2

4 4
= (d1 – kx)2

∴ Extension of the element = 
P dx

d kx E
π
4 1

2( )−

Extension of the entire bar   ∆ = 
0

1
2

4

L P dx

d kx E



−π
( )

= 
4

0 1
2

P

E

dx

d kx

L

π 
 −( )

= 
4 1

1 0

P

Ek d kx

L

π −
�

�	



��

= 
4 1 1

1 2 2 1

P
E d d

L
d dπ ( )− −
�

�	



��
, since d1 – kL = d2

∴  ∆ = 4

1 2

1 2

1 2

PL

E d d

d d

d dπ ( )

( )

−
×

−
 = 

4PL
Ed d1 2π

. ...(8.17)
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Note: For bar of uniform diameter extension is PL

d
E

π 2

4

 and for tapering rod it is PL

d d E
π
4 1 2

.

Thus the change is, instead of d2 for uniform bar, d1 d2 term appears if the bar tapers uniformly.

Example 8.10. A steel flat of thickness 10 mm tapers uniformly from 60 mm at one end to 40 mm
at other end in a length of 600 mm. If the bar is subjected to a load of 80 kN, find its extension.
Take E = 2 × 105 MPa. What is the percentage error if average area is used for calculating
extension?

Solution: Now,   t = 10 mm  b1 = 60 mm b2 = 40 mm
 L = 600 mm   P = 80 kN = 80000 N

Now, 1 MPa = 1 N/mm2

Hence E = 2 × 105 N/mm2

Extension of the tapering bar of rectangular section

∆∆∆∆∆ = 
PL

tE b b( )1 2−
 log 

b

b
1

2

= 
80000 600

10 2 10 60 405

×
× × −( )

 log 
60

40

= 0.4865 mm
If averages cross-section is considered instead of tapering cross-section, extension is given by

∆ = 
PL

A Eav

Now  Aav = 
60 10 40 10

2

× + ×
 = 500 mm2

∆ = 
80000 600

500 2 105

×
× ×

 = 0.480 mm

∴ Percentage error = 
0 0

0

.4865 .48

.4865

−
 × 100

= 1.348
Example 8.11. A 2.0 m long steel bar is having uniform diameter of 40 mm for a length of 1 m and
in the next 0.5 m its diameter gradually reduces from 40 mm to 20 mm as shown in Fig. 8.21.
Determine the elongation of this bar when subjected to an axial tensile load of 200 kN. Given
E = 200 GN/m2.

20

200 kN

15001500 500500

200 kN4040

Fig. 8.21
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Solution: Now,  P = 200 × 103 N

E = 200 GN/m2 = 
200 10

1000

9

2

×
( )

 N/mm2

= 200 × 1000 N/mm2

= 2 × 105 N/mm2

Extensions of uniform portion and tapering portion are worked out separately and then added to
get extension of the given bar.

Extension of uniform portion

∆1 = 
PL

AE
 = 

200 10 1500

4
40 2 10

3

2 5

× ×

× × ×π  = 1.194 mm.

Extension of tapering portion

∆2 = 
4

1 2

PL

E d dπ
 = 4 200 10 500

2 10 60 40

3

5

× × ×
× × × ×π

= 0.265 mm

Total extension = ∆1 + ∆2 = 1.194 + 0.265 = 1.459 mm
Example 8.12. The extension of a bar uniformly tapering from a diameter of d + a to
d – a in a length L is calculated by treating it as a bar of uniform cross-section of average diameter
d. What is the percentage error?

Solution: Actual extension under load

 P = 
4

1 2

PL

d d Eπ
 = 

4PL

d a d a Eπ( )( )+ −

= 
4

2 2

PL

E d aπ ( )−
If it is treated as a bar of uniform diameter ‘d’, erroneous extension calculated

= 
PL

d E
π
4

2×
 = 

4
2

PL

d Eπ

∴ Percentage error = 

4 4

4
100

2 2 2

2 2

PL

E d a

PL

Ed
PL

E d a

π π

π

( )

( )

−
−

−

×

= 

1 1

1

2 2 2

2 2

( )

( )

d a d

d a

−
−

−

 × 100
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= 1
2 2

2−
−�

�	



��
d a

d
 × 100

= 100
a

d

2

2

8.12 SHEAR STRESS

Figure 8.22 shows a bar subject to direct shearing
force i.e., the force parallel to the cross-section of
bar. The section of a rivet/bolt subject to direct shear
is shown in Fig. 8.23. Let Q be the shearing force
and q the shearing stress acting on the section. Then,
with usual assumptions that stresses are uniform we
get,

Q

Q

R
Q

Q

Q

Fig. 8.23. Rivet in Direct Shear

 R = ∫ q dA = q ∫ dA = qA

For equilibrium Q = R = qA

i.e., q = 
Q

A
...(8.18)

Thus, the direct stress is equal to shearing force per unit area.

8.13 SIMPLE SHEAR

A material is said to be in a state of simple shear if it is subjected
to only shearing stress. A shearing force tries to shear off the
cross-section of the body. Consider a bolt subjected to pure shear
as shown in Fig. 8.24a. A rectangular element at this section is
shown in Fig. 8.24b.

Let the intensity of shear stress be qab and thickness of
element be ‘t’. Consider the equilibrium of the element.

Vertical force on  AB = qab × AB × t

This can be balanced by vertical downward force on CD.

Q

P

R

Q

Fig. 8.22. Direct Shear Force on a
Section

Fig. 8.24

Element

(a) Bolt Subjected to Shearing
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qab × AB × t = qcd × CD × t

 qab = qcd = q(say)
Since qab and qcd are giving rise to equal and opposite forces

q × AB × t, with moment arm = AD, they form a couple of
magnitude equal to

q × AB × t × AD ...(1)

This can be balanced by another couple only. i.e. qbc and qcd
should form an equal and opposite couple. Hence their direction
will be as shown in Fig. 8.24b.

Let  qbc = qad = q′
The couple formed by these forces

= q′ × AD × t × AB ...(2)

Equating (1) and (2) we get, q = q′.
Thus if a section is subjected to pure shear, the state of stress in

any element at that section is as shown in Fig. 8.24c.
State of stress at 45° to shearing direction is of engineering interest.

To study it, for simplicity, consider a square element of side ‘a’ and
thickness ‘t’, under simple shear as shown in Fig. 8.25a.

C

aa

a

a D qA

q
B

(a)

p

C

D qA

(b)

Fig. 8.25

Since it is square element AC = a 2 . Consider section along AC and let ‘p’ be the stress on this
section. From equilibrium condition of system of forces in the direction normal to AC, we get

 p × AC × t = q CD t cos 45° + q AD t sin 45°

  pa 2t  = qat 1/ 2  + qat 1/ 2

= qat 2
i.e., p = q

Thus in case of simple shear tensile stress of the same magnitude as
shearing stress develops at 45° to shearing plane. By taking stresses on
diagonal BD it can be shown that compressive stress of magnitude q acts
on this plane. Thus simple shear gives rise to tensile and compressive
stresses across planes inclined at 45° to the shearing planes, the intensity
of direct stresses being of same magnitude as shearing stresss.

C

D

qcd

qab

qbc

B

A
qad

(b) Element under Shear

q

q

(c) State of Simple Shear

Fig. 8.24

C

DA

��

C�B�
B

Fig. 8.26
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Shearing strain. Shearing stress has a tendency to distort the element to position AB′C′D from
the original position ABCD as shown in Fig. 8.26.

This deformation is expressed in terms of angular displacement and is called shear strain. Thus

 Shear strain = 
BB

AB

′
 = tan φ

= φ, since angle φ is small

8.14 POISSON’S RATIO

When a material undergoes changes in length, it undergoes changes of opposite nature in lateral
directions. For example, if a bar is subjected to direct tension in its axial direction it elongates and
at the same time its sides contract (Fig. 8.27).

�L

Fig. 8.27. Changes in Axial and Lateral Directions

If we define the ratio of change in axial direction to original length as linear strain and change
in lateral direction to the original lateral dimension as lateral strain, it is found that within elastic limit
there is a constant ratio between lateral strain and linear strain. This constant ratio is called
Poisson’s ratio. Thus,

Poisson’s ratio = 
Lateral strain

Linear strain
...(8.19)

It is denoted by 
1

m
, or µ. For most of metals its value is between 0.25 to 0.33. Its value for steel

is 0.3 and for concrete 0.15.

8.15 VOLUMETRIC STRAIN

When a member is subjected to stresses, it undergoes deformation in all directions. Hence, there will
be change in volume. The ratio of the change in volume to original volume is called volumetric
strain.

Thus ev = 
δV

V
...(8.20)

where eV = Volumetric strain

δV = Change in volume
 V = Original volume

It can be shown that volumetric strain is sum of strains in three mutually perpendicular directions.
i.e., ev = ex + ey + ez
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For example consider a bar of length L, breadth b and depth d as shown in Fig. 8.28.

d

bb
LL

z
y

x

Fig. 8.28

Now, V = Lbd

Since volume is function of L, b and d.

δV = δL bd + L δb d + Lb δd

 
δV

V
 = 

δv

Lbd

eV = 
δ δ δL

L

b

b

d

d
+ +

eV = ex + ey + ez

Now, consider a circular rod of length L and diameter ‘d’ as shown in Fig. 8.29.

z
y

x

LL

dd

Fig. 8.29

Volume of the bar    V = 
π
4

 d2L

∴  δV = 
π
4

 2dδd L + 
π
4

 d2 δL (since v is function of d and L).

∴
δ

π
V

d L
4

2
 = 2

δd

d
 + 

δL

L

 eV = ex + ey + ez; since ey = ez = 
δd

d

In general for any shape volumetric strain may be taken as sum of strains in three mutually
perpendicular directions.

8.16 ELASTIC CONSTANTS

Modulus of elasticity, modulus of rigidity and bulk modulus are the three elastic constants. Modulus
of elasticity (Young’s Modulus) ‘E’ has been already defined as the ratio of linear stress to linear
strain within elastic limit. Rigidity modulus and Bulk modulus are defined in this article.
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Modulus of Rigidity: It is defined as the ratio of shearing stress to shearing strain within elastic
limit and is usually denoted by letter G or N. Thus

 G = 
q

φ
...(8.21)

where G = Modulus of rigidity
 q = Shearing stress

and φ = Shearing strain
Bulk Modulus: When a body is subjected to identical stresses p in three mutually perpendicular

directions, (Fig. 8.30), the body undergoes uniform changes in three directions without undergoing
distortion of shape. The ratio of change in volume to original volume has been defined as volumetric
strain (ev). Then the bulk modulus, K is defined as

K = 
p

ev

where   p = identical pressure in three mutually perpendicular directions

 ev = 
∆v

v
, Volumetric strain

∆v = Change in volume
 v = Original volume

Thus bulk modulus may be defined as the ratio of identical pressure ‘p’ acting in three  mutually
perpendicular directions to corresponding volumetric strain.

p

pp

p

p p

p

p

p

p

p

p

(a) (b)

Fig. 8.30

Figure 8.30 shows a body subjected to identical compressive pressure ‘p’ in three mutually
perpendicular directions. Since hydrostatic pressure, the pressure exerted by a liquid on a body within
it, has this nature of stress, such a pressure ‘p’ is called as hydrostatic pressure.

8.17 RELATIONSHIP BETWEEN MODULUS OF ELASTICITY
AND MODULUS OF RIGIDITY

Consider a square element ABCD of sides ‘a’ subjected to pure shear ‘q’
as shown in Fig. 8.31. AEC′D shown is the deformed shape due to shear
q. Drop perpendicular BF to diagonal DE. Let φ be the shear strain and
G modulus of rigidity.

A
j

C¢ C

aa
q

D
aa

qq
BE

F¢
q

Fig. 8.31
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Now, strain in diagonal   BD = 
DE DF

DF

−

 = 
EF

DB

 = 
EF

AB 2

Since angle of deformation is very small we can assume ∠BEF = 45°, hence EF = BE cos 45°

∴ Strain in diagonal BD = 
EF

BD

BE

AB
= °cos 45

2

 = 
a

a

tan cosφ 45

2

°

 = 
1

2

1

2
tan φ φ= (Since φ is very small)

= 
1

2
× q

G
, since φ = 

q

G
...(1)

Now, we know that the above pure shear gives rise to axial tensile stress q in the diagonal
direction of DB and axial compression q at right angles to it. These two stresses cause tensile strain
along the diagonal DB.

Tensile strain along the diagonal DB = 
q

E

q

E

q

E
+ = +µ µ( )1 ...(2)

From equations (1) and (2), we get

1

2
1× = +q

G

q

E
( )µ

E = 2G(1 + µ) ...(8.22)

8.18 RELATIONSHIP BETWEEN MODULUS OF ELASTICITY AND BULK MODULUS

Consider a cubic element subjected to stresses p
in the three mutually perpendicular direction x, y,
z as shown in Fig. 8.32.

Now the stress p in x direction causes tensile

strain 
p
E

 in x direction while the stress p in y and

z direction cause compressive strains µ 
p

E
 in x

direction.

Hence,   ex = 
p

E

p

E

p

E
− −µ µ

  = 
p

E
( )1 2− µ

Similarly ey = 
p

E
( )1 2− µ

Fig. 8.32

z
y

x p

p

p

p

p

p



SIMPLE STRESSES AND STRAINS 259

 ez = 
p

E
( )1 2− µ ...(1)

∴ Volumetric strain ev = ex + ey + ez = 
3

1 2
p

E
( )− µ

From definition, bulk modulus K is given by

 K = 
p

e

p
p

E
v

= −3 1 2( )µ

or  E = 3K(1 – µ) ...(2)

Relationship between EGK:

We know  E = 2G(1 + µ) ...(a)

and  E = 3K(1 – 2µ) ...(b)

By eliminating µ between the above two equations we can get the relationship between E, G,
K, free from the term µ.

From equation (a)  µ = 
E

G2
1−

Substituting it in equation (b), we get

E = 3 1 2
2

1K
E

G
− −�
�

�
�

�
��

�
	


 = 3 1 2K
E

G
− +�

�
�
�

 = 3 3K
E

G
−�

�
�
�

 = 9K – 
3KE

G

∴ E
K

G
1

3+�
�

�
�  = 9K

or  E
G K

G

+�
�

�
�

3
 = 9K ...(c)

or   E = 
9

3

KG

G K+
...(8.23a)

Equation (c) may be expressed as

  
9 3

E

G K

KG
= +

i.e.,
9 3 1

E G K
= + ...(8.23b)

Example 8.13. A bar of 25 mm diameter is tested in tension. It is observed that when a load of 60
kN is applied, the extension measured over a guage length of 200 mm is 0.12 mm and contraction
in diameter is 0.0045 mm. Find Poisson’s ratio and elastic constants E, G, K.

Solution:  Now,   P = 60 kN = 60000 N

 Area A = 
π
4

 × 252 = 156.25π mm2

 Guage length L = 200 mm
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 ∆ = 0.12 mm

 ∆d = 0.0045 mm

Linear strain = 
∆
L

= 0 12

200

.
 = 0.0006

 Lateral strain = 
∆d

d
= 0 0045

25

.
 = 0.00018

∴ Poisson’s ratio = 
Lateral strain

Linear strain

0.00018

0.0006
=

 µµµµµ = 0.3

Now, ∆ = 
PL

AE

0.12 = 
60000 200

156 25

×
×. π E

or E = 203718.3 N/mm2

Using the relation  E = 2G(1 + µ)

We get   G = E

2 1

203718 3

2 1 0 3( )

.

( . )+
=

+µ
 = 78353.2 N/mm2

From the relation,   E = 3K(1 – 2µ), we get

 K = 
E

3 1 2

203718 3

3 1 2 0 3( )

.

( . )−
=

− ×µ
 = 169765.25 N/mm2

Example 8.14. A circular rod of 25 mm diameter and 500 mm long is subjected to a tensile force
of 60 kN. Determine modulus of rigidity, bulk modulus and change in volume if Poisson’s ratio =
0.3 and Young’s modulus E = 2 × 105 N/mm2.

Solution:  From the relationship

  E = 2G(1 + µ) = 3k(1 – 2µ)

We get,   G = E

2 1

2 10

2 1 0 3

5

( ) ( . )+
= ×

+µ
 = 0.7692 × 105 N/mm2

and  K = 
E

3 1 2
2 10

3 1 2 0 3

5

( ) ( . )+
= ×

− ×µ
 = 1.667 × 105 N/mm2

Longitudinal stress = 
P

A
= ×

×

60 10

4
25

3

2π  = 122.23 N/mm2

 Linear strain = 
Stress

E
=

× 5
122 23

2 10

.
 = 61.115 × 10–5

 Lateral strain = ey = – µex and ez = – µex

   Volumetric strain ev = ex + ey + ez

= ex(1 – 2µ)

= 61.115 × 10–5 (1 – 2 × 0.3)
= 24.446 × 10–5

but  
Change in volume

v
 = ev
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∴   Change in volume = ev × v

= 24.446 × 10–5 × 
π
4

 × (252) × 500

= 60 mm3

Example 8.15. A 400 mm long bar has rectangular cross-section 10 mm × 30 mm. This bar is
subjected to

(i) 15 kN tensile force on 10 mm × 30 mm faces,

(ii) 80 kN compressive force on 10 mm × 400 mm faces, and

(iii) 180 kN tensile force on 30 mm × 400 mm faces.

Find the change in volume if E = 2 × 105 N/mm2 and µ = 0.3.

400400

8080

180 kN180 kN 3030

15 kN15 kN

1010

80 kN80 kN

180 kN180 kN

15 kN15 kN
y

z
x

Fig. 8.33

Solution: The forces on the bar are as shown in Fig. 8.33. Let the x, y, z be the mutually perpendicular
directions as shown in the figure.

Now,  px = 
15 10

10 30

3×
×

 = 50 N/mm2 (Tensile)

 py = 
80 10

10 400

3×
×

 = 20 N/mm2 (Comp.)

pz = 
180 10

30 400

3×
×

 = 15 N/mm2 (Tensile)

Noting that a stress produces a strain of p/E in its own direction, the nature being same as that

of stress and µ p

E
 in lateral direction of opposite nature, and taking tensile stress as +ve, we can write

expression for strains ex, ey, ez as

  ex = 
50 20 15

E E E
+ −µ µ

= 
1

E
(50 + 0.3 × 20 – 0.3 × 15) = 

1

E
(51.5)

  ey = – µ µ50 20 15

E E E
− −

= 
1

E
(– 0.3 × 50 – 20 – 0.3 × 15) = – 

39 5.

E
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ez = – µ µ50 20 15

E E E
+ +

= 
1

E
(– 0.3 × 50 + 20 × 0.3 + 15) = 

6

E

Volumetric strain: ev = ex + ey + ez

= 
1

E
(51.5 – 39.5 + 6) = 

18

E

But
Change in volume

Volume
 = ev

∴   Change in volume = ev × Volume

 = 
18

2 105×
 × 10 × 30 × 400

   = 10.8 mm3

Example 8.16. A bar of rectangular section shown in Fig. 8.34 is subjected to stresses px, py and
pz in x, y and z directions respectively. Show that if sum of these stresses is zero, there is no change
in volume of the bar.

y
z

x

px

pzpz

pypy

px

pzpz

pypy

Fig. 8.34

Solution: A stress p produces strain of magnitude p/E in its direction and a strain µ p

E
 of opposite

nature at right angles to its direction.

Hence  ex = 
p

E

p

E

p

E
x y z− −µ µ

 ey = – µ µ
p

E

p

E

p

E
x y z+ −

 ez = – µ µ
p

E

p

E

p

E
x y z− +
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Now, ev = ex + ey + ez

= 
p

E

p

E

p

E
x y z( ) ( ) ( )1 2 1 2 1 2− + − + −µ µ µ

i.e.,
dV

V

p p p

E
x y z=

+ +( )
(1 – 2µ)

Hence if px + py + pz = 0

ev = 
dV

V
 = 0

∴ dV = 0
i.e., there is no volumetric change, if px + py + pz = 0.

Example 8.17. In a laboratory, tensile test is conducted and Young’s modulus of the material is
found to be 2.1 × 105 N/mm2. On the same material torsion test is conducted and modulus of rigidity
is found to be 0.78 × 105 N/mm2. Determine Poisson’s Ratio and bulk modulus of the material.

[Note: This is usual way of finding material properties in the laboratory].

Solution: E = 2.1 × 105 N/mm2

 G = 0.78 × 105 N/mm2

Using relation E = 2G(1 + µ)

we get 2.1 × 105 = 2 × 0.78 × 105 (1 + µ)

 1.346 = 1 + µ
or  µµµµµ = 0.346

From relation  E = 3K(1 – 2µ)

we get 2.1 × 105 = 3 × K(1 – 2 × 0.346)

K = 2.275 × 105 N/mm2

Example 8.18. A material has modulus of rigidity equal to 0.4 × 105 N/mm2 and bulk modulus equal
to 0.8 × 105 N/mm2. Find its Young’s Modulus and Poisson’s Ratio.

Solution:  G = 0.4 × 105 N/mm2

K = 0.8 × 105 N/mm2

Using the relation E = 
9

3

GK

K G+

 E = 
9 0 10 0 8 10

3 0 8 10 0 10

5 5

5 5

× × × ×
× × + ×

.4 .

. .4

E = 1.0286 × 105 N

From the relation  E = 2G(1 + µ)

we get 1.0286 × 105 = 2 × 0.4 × 105(1 + µ)

1.2857 = 1 + µ
or µ µ µ µ µ = 0.2857
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8.19 COMPOSITE/COMPOUND BARS

Bars made up of two or more materials are called composite/compound bars. They may have same
length or different lengths as shown in Fig. 8.35. The ends of different materials of the bar are held
together under loaded conditions.

P P Rigid
connection

Material 2Material 1

Rigid support
P

Material 2Material 1

Fig. 8.35

Consider a member with two materials. Let the load shared by material 1 be P1 and that by
material 2 be P2. Then

(i) From equation of equilibrium of the forces, we get

P = P1 + P2 ...(8.24a)

(ii) Since the ends are held securely, we get

∆l1 = ∆l2

where ∆l1 and ∆l2 are the extension of the bars of material 1 and 2 respectively

i.e.
P L

A E

P L

A E
1 1

1 1

2 2

2 2

= ...(8.24b)

Using equations 8.24(a) and (b), P1 and P2 can be found uniquely. Then extension of the system

can be found using the relation ∆l = 
P L

A E
1 1

1 1

or ∆l = 
P L

A E
2 2

2 2

 since ∆l = ∆l1 = ∆l2.

The procedure of the analysis of compound bars is illustrated with the examples below:

Example 8.19. A compound bar of length 600 mm consists of a strip of aluminium 40 mm wide and
20 mm thick and a strip of steel 60 mm wide × 15 mm thick rigidly joined at the ends. If elastic
modulus of aluminium and steel are 1 × 105 N/mm2 and 2 × 105 N/mm2, determine the stresses
developed in each material and the extension of the compound bar when axial tensile force of 60
kN acts.
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Solution: The compound bar is shown in the figure 8.36.

Data available is
 L = 600 mm
 P = 60 kN = 60 × 1000 N

  Aa = 40 × 20 = 800 mm2

 As = 60 × 15 = 900  mm2

  Ea = 1 × 105 N/mm2, Es = 2 × 105 N/mm2.
Let the load shared by aluminium strip be Pa and that shared by

steel be Ps. Then from equilibrium condition
Pa + Ps = 60 × 1000 ...(1)

From compatibility condition, we have
 ∆a = ∆s

 
P L

A E

P L

A E
a

a a

s

s s

=

i.e.   
P Pa s×

× ×
=

×
× ×

600

800 1 10

600

900 2 105 5

 Ps = 2.25 Pa ...(2)
Substituting  it in eqn. (1), we get

 Pa + 2.25 Pa = 60 × 1000

i.e.  Pa = 18462 N.

∴ Ps = 2.25 × 18462 = 41538 N.

∴ Stress in aluminium strip = 
P

A
a

a

= 18462

800

 = 23.08 N/mm2

 Stress in steel strip = 
P

A
s

s

= 41538

900
 = 46.15 N/mm2

Extension of the compound bar = 
P L

A E
a

a a

= ×
× ×

18462 600

800 1 105

∆l = 0.138 mm.

Example 8.20. A compound bar consists of a circular rod of steel of 25
mm diameter rigidly fixed into a copper tube of internal diameter 25 mm
and external diameter 40 mm as shown in Fig. 8.37. If the compound bar
is subjected to a load of 120 kN, find the stresses developed in the two
materials.

Take Es = 2 ×105 N/mm2

 and Ec = 1.2 × 105 N/mm2.

Fig. 8.36

Copper tube

Steel rod

Fig. 8.37

600 mm600 mm
Steel

Aluminium

60 kN
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Solution: Area of steel rod   As = 
π
4

 × 252 = 490.87 mm2

Area of copper tube Ac = 
π
4

 (402 – 252) = 765.76 mm2

From equation of equilibrium,
 Ps + Pc = 120 × 1000 ...(1)

where Ps is the load shared by steel rod and Pc is the load shared by the copper tube.
From compatibility condition, we have

    ∆s = ∆c

  
P L

A E

P L

A E
s

s s

c

c c

=

P Ps c

490 87 2 10 765 76 1 2 105 5. . .× ×
=

× ×
∴ Ps = 1.068 Pc ...(2)

From eqns. (1) and (2), we get
1.068 Pc + Pc = 120 × 1000

∴ Pc = 
120 1000

2 068

×
.

 = 58027 N

∴   Ps = 1.068 Pc = 61973 N

∴ Stress in copper = 
58027

9765 76.
 = 75.78 N/mm2

Stress in steel = 
61973

490 87.
 =  126.25 N/mm2

Example 8.21. A reinforced concrete column of size 300 mm × 500
mm has 8 steel bars of 16 mm diameter as shown in Fig. 8.38. If the
column is subjected to an axial compressive force of 800 kN, find the

stresses developed in steel and concrete. Take 
E

E
s

c
 = 18.

Solution: Area of steel = 8 × 
π
4

 × 162 = 1608.5 mm2

∴ Area of concrete = 300 × 500 – 1608.5 = 148391.5 mm2

From equilibrium condition,
Pc + Ps = 800 × 1000 ...(1)

From compatibility condition,
  ∆s = ∆c

P L

A E

P L

A E
s

s s

c

c c

=

P

E

P

E
s

s

c

c1608 5 148391 5. .
=

Fig. 8.38

16 dia. steel

600600

300300
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 Pc = 
1483915

1608 5

.

.
× E

E
Pc

s
s

= 
1483915

1608 5

1

18

.

.
× Ps

= 5.125 Ps ...(2)
From eqns. (1) and (2), we get

Ps + 5.125 Ps = 800 × 1000
∴ Ps = 130612 N.

Hence  Pc = 5.125 Ps = 669388 N

Hence stress in concrete = 
P

A
c

c

= 669388

148391 5.
 = 4.51 N/mm2

and stress in steel = 
P

A
s

s

= 130612

1608 5.
 = 81.2 N/mm2

Example 8.22. Three pillars, two of aluminium and one of steel support a rigid platform of 250 kN
as shown in Fig. 8.39. If area of each aluminium pillar is 1200 mm2 and that of steel pillar is 1000
mm2,  find the stresses developed in each pillar.

Take Es = 2 × 105 N/mm2 and Ea = 1 × 106 N/mm2.

Solution: Let force shared by each aluminium pillar be Pa and that
shared by steel pillar be Ps .

∴ The forces in vertical direction = 0 →
Pa + Ps + Pa = 250

 2Pa + Ps = 250 ...(1)

From compatibility condition, we get

 ∆s = ∆a

   
P L

A E

P L

A E
s s

s s

a a

a a

=

P Ps a×
× ×

= ×
× ×

240

1000 2 10

160

1200 1 105 5

∴  Ps = 1.111 Pa ...(2)

From eqns. (1) and (2), we get

 Pa (2 + 1.111) = 250

∴ Pa = 80.36 kN

Hence from eqn. (1),

Ps = 250 – 2 × 80.36 = 89.28 kN

Fig. 8.39

250 kN

S
te

el A
lu

m
in

iu
m

A
lu

m
in

iu
m

24
0 

m
m

16
0 

m
m
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∴ Stresses developed are

 σs = 
P

A
s

s

= ×89 28 1000

1000

.
 = 89.28 N/mm2

 σa = 
80 36 1000

1200

. ×
 = 66.97 N/mm2

Example 8.23. A steel bolt of 20 mm diameter passes centrally through a copper tube of internal

diameter 28 mm and external diameter 40 mm. The length of whole assembly is 600 mm. After tight

fitting of the assembly, the nut is over tightened by quarter of a turn. What are the stresses introduced

in the bolt and tube, if pitch of nut is 2 mm? Take Es = 2 × 105 N/mm2 and Ec = 1.2 × 105 N/mm2.

Copper tube

Steel bolt

600 mm

Copper tube

Steel bolt

(a)
(b)

Fig. 8.40

Solution: Figure 8.40 shows the assembly. Let the force shared by bolt be Ps and that by tube be
Pc. Since there is no external force, static equilibrium condition gives

Ps + Pc = 0 or Ps = – Pc

i.e., the two forces are equal in magnitude but opposite in nature. Obviously bolt is in tension and
tube is in compression.

Let the magnitude of force be P. Due to quarter turn of the nut, the nut advances by 
1

4
 × pitch

= 
1

4
 × 2 = 0.5 mm.

[Note. Pitch means advancement of nut in one full turn]

During this process bolt is extended and copper tube is shortened due to force P developed. Let
∆s be extension of bolt and ∆c shortening of copper tube. Final position of assembly be ∆, then

 ∆s + ∆c = ∆

i.e.
P L

A E

P L

A E
s s

s s

c c

c c

+  = 0.5

P P×
× × ×

+ ×
− × ×

600

4 20 2 10

600

4 40 28 1 2 102 5 2 2 5( / ) ( / ) ( ) .π π
 = 0.5

     P ×
× ×

+
− ×

�

�
�

�

�
�

600

4 105( / )π
1

20 2

1

(40 28 ) 1.22 2 2
 = 0.5

∴  P = 28816.8 N
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∴ ps = 
P

A
s

s

=
×

28816 8

4 202

.

( / )π
 = 91.72 N/mm2

pc = 
P

A
c

c

=
−

28816 8

4 40 282 2

.

( / ) ( )π
 = 44.96 N/mm2

8.20 THERMAL STRESSES

Every material expands when temperature rises and contracts when temperature falls. It is established
experimentally that the change in length ∆ is directly proportional to the length of the member L and
change in temperature t. Thus

  ∆ ∝ tL

= α tL ...(8.25)
The constant of proportionality α is called coefficient of thermal expansion and is defined as

change in unit length of material due to unit change in temperature. Table 8.1 shows coefficient of
thermal expansion for some of the commonly used engineering materials:

Table 8.1

Material Coefficient of thermal
expansion

Steel 12 × 10–6/°C

Copper 17.5 × 10–6/°C

Stainless steel 18 × 10–6/°C

Brass, Bronze 19 × 10–6/°C

Aluminium 23 × 10–6/°C

If the expansion of the member is freely permitted, as shown in Fig. 8.41, no temperature
stresses are induced in the material.

LL

αtLαtL

Fig. 8.41 Free Expansion Permitted

If the free expansion is prevented fully or partially the stresses are induced in the bar, by the
support forces. Referring to Fig. 8.42,
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LL

αtLαtL

(a)

(b)

(c)

R P

Fig. 8.42

If free expansion is permitted the bar would have expanded by
∆ = α tL

Since support is not permitting it, the support force P develops to keep it at the original position.
Magnitude of this force is such that contraction is equal to free expansion, i.e.

 
PL

AE
 = α tL

or  p = E α t. ...(8.26)

which is the temperature stress. It is compressive in nature in this case.
Consider the case shown in Fig. 8.43 in which free expansion is prevented partially.

LL

αtL

R = P P

δ

δ

Fig. 8.43

In this case free expansion = α tL

Expansion prevented ∆ = α tL – δ
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The expansion is prevented by developing compressive force P at supports

∴
PL

AE
 = ∆ = α tL – δ. ...(8.27)

Example 8.24. A steel rail is 12 m long and is laid at a temperature of 18°C. The maximum
temperature expected is 40°C.

(i) Estimate the minimum gap between two rails to be left so that the temperature stresses do
not develop.

(ii) Calculate the temperature stresses developed in the rails, if:
(a) No expansion joint is provided.

(b) If a 1.5 mm gap is provided for expansion.

(iii) If the stress developed is 20 N/mm2, what is the gap provided between the rails?

Take E = 2 × 105 N/mm2 and α = 12 × 10–6/°C.

Solution:
(i) The free expansion of the rails

= α tL = 12 × 10–6 × (40 – 18) × 12.0 × 1000

= 3.168 mm
∴ Provide a minimum gap of 3.168 mm between the rails, so that temperature stresses

do not develop.
(ii) (a) If no expansion joint is provided, free expansion prevented is equal to 3.168 mm.

i.e.  ∆ = 3.168 mm

∴  
PL

AE
 = 3.168

∴ p = 
P

A
= × ×

×
3168 2 10

12 1000

5.
 = 52.8 N/mm2

(b) If a gap of 1.5 mm is provided, free expansion prevented ∆ = α tL – δ = 3.168 – 1.5 =
1.668 mm.

∴ The compressive force developed is given by 
PL

AE
 = 1.668

or p = 
P

A
= × ×

×
1.668 2 10

12 1000

5

 = 27.8 N/mm2

(iii) If the stress developed is 20 N/mm2, then p = 
P

A
 = 20

If δ is the gap,  ∆ = α tL – δ

∴ PL

AE
 = 3.168 – δ

i.e. 20 × 
12 1000

2 105

×
×

 = 3.168 – δ

∴  δδδδδ = 3.168 – 1.20 = 1.968 mm
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Example 8.25. The temperature of a steel ring is raised through 150°C in order to fit it on a wooden
wheel of 1.2 m diameter. Find the original diameter of the steel ring and also the stresses developed
in the ring, when it cools back to normal temperature. Assume Es = 2 × 105 N/mm2 and  αs = 12
× 10–6/°C.

Solution: Let D be the diameter of ring after heating and ‘d’ be its diameter before heating
∴ D = 1.2 m = 1200 mm.

Circumference of ring after heating = πD

Circumference of ring before heating (L) = πd

∴  πD = πd + αs t (πd)
D = d + αs t d = (1 + αs t)d

i.e., 1200 = [1 + 12 × 10–6 × 150] d

∴ d = 1197.84 mm.

when it cools expansion prevented
∆ = π(D – d) = αstπd = 12 × 10–6 × 150 πd

= 1800 × 10–6 πd

∴
PL

AE
 = 1800 × 10–6 πd

P

A

d

E
�
�
	



× ×π
 = 1800 × 10–6 πd

Stress p = 
P

A
 = 1800 × 10–6 × 2 × 105 = 360 N/mm2

Example 8.26. The composite bar shown in Fig. 8.44 is rigidly fixed at the ends A and B. Determine
the reaction developed at ends when the temperature is raised by 18°C. Given

Ea = 70 kN/mm2

Es = 200 kN/mm2

αa = 11 × 10–6/°C

αs = 12 × 10–6/°C

Aluminium

1.5 m1.5 m 3.0 m3.0 m

A = 600 mma
2

Steel

A = 400 mms
2

(a)

(b)

Fig. 8.44
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Solution:  Free expansion = αa tLa + αstLs

 = 11 × 10–6 × 18 × 1500 + 12 × 10–6 × 18 × 3000
 = 0.945 mm

Since this is prevented

 ∆ = 0.945 mm.
Ea = 70 kN/mm2 = 70000 N/mm2 ;

Es = 200 kN/mm2 = 200 × 1000 N/mm2

If P is the support reaction,

 ∆ = 
PL

A E

PL

A E
a

a a

s

s s

+

i.e.  0.945 = P
1500

600 70000

3000

400 200 1000×
+

× ×
�

�
�

�

�
�

0.945 = 73.214 × 10–6 P

or P = 12907.3 N

Example 8.27. The steel bar AB shown in Fig. 8.45 varies linearly in diameter from 25 mm to 50
mm in a length 500 mm. It is held between two unyielding supports at room temperature. What is
the stress induced in the bar, if temperature rises by 25°C? Take Es = 2 × 105 N/mm2 and
αs

 = 12 × 10–6/°C.

500 mm500 mm

A B

25
 m

m

50 mm

Fig. 8.45

Solution: Free expansion of bar = α tL

 = 12 × 10–6 × 25 × 500
 = 0.15 mm.

This expansion is prevented ∴ ∆ = 0.15 mm.
If P is the force developed by supports, then it can cause a contraction of

 4 4 500

25 50 2 101 2
5

PL

d d E

P

π π
= × ×

× × × ×
Equating it to the contraction prevented, for satisfying the compatibility, we get

4 500

25 50 2 105

P ×
× × × ×π

 = 0.15
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∴  P = 58905 N

∴ Corresponding maximum stress = 
P

Amin

=
×

58905

4
252π

= 120 N/mm2.

8.21 THERMAL STRESSES IN COMPOUND BARS

When temperature rises the two materials of the compound bar experience different free expansion.
Since they are prevented from seperating, the two bars will have common position. This is possible
only by extension of the bar which has less free expansion and contraction of the bar which has more
free expansion. Thus one bar develops tensile force and another develops the compressive force. In
this article we are interested to find such stresses.

Consider the compound bar shown in Fig. 8.46(a). Let α1, α2 be coefficient of thermal expansion
and E1, E2 be moduli of elasticity of the two materials respectively. If rise in temperature is ‘t’,

Free expansion of bar 1 = α1 tL

Free expansion of bar 2 = α2 tL

Let α1 > α2. Hence the position of the two bars, if the free expansions are permitted are at AA
and BB as shown in Fig. 8.46(b)

d tL2

B

B

�2

C

C

P2

�1

A

A

P1

Bar -2

Bar-1

�1tL�1tL

Bar -2

Bar-1

Fig. 8.46

Since the two bars are rigidly connected at the ends, the final position of the end will be
somewhere between AA and BB, say at CC. It means Bar–1 will experience compressive force P1

which contracts it by ∆1 and Bar–2 experience tensile force P2 which will expand it by ∆2.

The equilibrium of horizontal forces gives,

P1 = Pc, say P

From the Fig. 8.46 (b), it is clear,

  α1 tL – ∆1 = α2 tL + ∆2

∴  ∆1 + ∆2 = α1 tL – α2 tL = (α1 – α2) tL.

If the cross-sectional areas of the bars are A1 and A2, we get

PL

A E

PL

A E1 1 2 2

+  = (α1 – α2) t L ...(8.28)

From the above equation force P can be found and hence the stresses P1 and P2 can be determined.
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Example 8.28. A bar of brass 20 mm is enclosed in a steel tube of 40 mm external diameter and
20 mm internal diameter. The bar and the tubes are initially 1.2 m long and are rigidly fastened at
both ends using 20 mm diameter pins. If the temperature is raised by 60°C, find the stresses induced
in the bar, tube and pins.

Given:  Es = 2 × 105 N/mm2

 Eb = 1 × 105 N/mm2

 αs = 11.6 × 10–6/°C

αb = 18.7 × 10–6/°C.

Solution:

Pin
�stL

B

B

C

C

�s

�b

A

A

1200 mm1200 mm

�b bt�b bt

2020 4040

Steel tube

Brass rod

Fig. 8.47

t = 60° Es = 2 × 105 N/mm2 Eb = 1 × 105 N/mm2

 αs = 11.6 × 10–6/°C αb = 18.7 ×10–6/°C

 As = 
π
4

(402 – 202) Ab = π
4

 × 202

= 942.48 mm2 = 314.16 mm2

Since free expansion of brass (αb tL) is more than free expansion of steel (αs tL), compressive
force Pb develops in brass and tensile force Ps develops in steel to keep the final position at CC
(Ref: Fig. 8.47).

Horizontal equilibrium condition gives Pb = Ps, say P. From the figure, it is clear that
∆s + ∆b = αb tL – αstL = (αb – αs)tL.

where ∆s and ∆b are the changes in length of steels and brass bars.

∴ PL

A E

PL

A Es s b b

+  = (18.7 – 11.6) × 10–6 × 60 × 1200.

P × 1200 
1

942.48 2 10

1

314.16 1 105 5× ×
+

× ×
�

�
�

�

�
�  = 7.1 × 10–6 × 60 × 1200

∴  P = 11471.3 N

∴ Stress in steel = 
P

As

= 11471.3

942.48
 = 12.17 N/mm2

and Stress in brass = 
P

Ab

= 11471.3

314.16
 = 36.51 N/mm2
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The pin resist the force P at the two cross-sections at junction of two bars.

∴ Shear stress in pin = 
P

2 × Area of pin

= 
114713

2 4 202

.

/× ×π
 = 18.26 N/mm2

Example 8.29. A compound bar is made of a steel plate 50 mm wide and 10 mm thick to which
copper plates of size 40 mm wide and 5 mm thick are connected rigidly on each side as shown in
Fig. 8.48. The length of the bar at normal temperature is 1 m. If the temperature is raised by 80°,
determine the stresses in each metal and the change in length. Given αs =12 × 10–6/°C, αc = 17 ×
10–6/°C, Es = 2 × 105 N/mm2, Ec = 1 × 105– N/mm2.

LL �ctL�ctL

�stL

PC

PC

A

A

PS

B

B

C

C

Copper

Steel
Copper

Fig. 8.48

Solution: Now, L = 1000 mm, As = 50 × 10 = 500 mm2, Ac = Free expansion of copper αctL is
greater than free expansion of steel αstL . To bring them to the same position, tensile force Ps acts
on steel plate and compressive force Pc acts on each copper plate.

∴ Ps = 2Pc

If ∆s and ∆c are changes in the length of steel and copper plates.
∆s + ∆c = (αc – αs) tL

∴  
P L

A E

P L

A E
s

s s

c

c c

+  =  (αc – αs) tL

But Ps = 2Pc

∴ 2

500 2 10 200 1 105 5

P Pc c

× ×
+

× ×
 =  (17 – 12) × 10–6 × 80

∴   Pc = 5714.28 N
∴   Ps = 11428.56 N

∴ Stress in copper = 
P

A
c

c

= 5714 28

200

.
 = 28.57 N/mm2

 Stress in steel = 
P

A
s

s

= ×5714 28 2

500

.
 = 22.86 N/mm2
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Changed length if compound bar is represented by line CC in the figure.

∴ Change in length = αs t L + δs

= αs t L + 
P L

A E
s s

s s

= 12 × 10–6 × 80 × 1000 + 
11428 56 1000

500 2 105

. ×
× ×

= 1.07 mm

8.22 HOOP STRESSES

The internal or external pressure applied to thin cylinders is resisted by stresses developed in the
circumferential direction of the cylinder. This type of stress is called hoop stress. Consider a thin
cylinder of diameter subject to internal press p as shown in Fig. 8.49(a).

dθ θ
p

p DD

D/2D/2

(a)
(b)

Fig. 8.49

Consider half the section shown in Fig. 8.49(b). The normal pressure on the element of unit
length as shown in Fig. 8.49(b)

= p × 
D

2
 dθ

Its vertical component = 
pD

2
dθ cos θ

∴ Bursting force normal to the horizontal section

= 2 
0

2

2

π
θ θ

/
cos� p

d
d  = pd sin /θ π

0

2

= pd.
This bursting force is resisted by the hoop stresses f. Let ‘t’ be the thickness of cylinder. Then

resisting force per unit length of cylinder.
= 2 × ft

Equating resisting force to bursting force, we get

2ft = pd

or   f = 
pd

t2
...(8.29)
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Example 8.30. A thin cylinder of internal diameter D = 1 m and thickness t = 12 mm is subjected
to internal pressure of 2 N/mm2. Determine the hoop stress developed.

Solution: Hoop stress f = 
pd

2t
= ×

×
2 1000

2 12
 = 83.33 N/mm2

IMPORTANT FORMULAE

1. If stress is uniform

p = 
P

A

2. (i) Linear strain = 
Change in length

Original length

(ii) Lateral strain = 
Change in lateral dimension

Original lateral dimension

3. Poisson’s ratio = 
Lateral strain

Linear strain
, within elastic limit.

4. Percentage elongation = 
′ −L L

L
 × 100.

5. Percentage reduction in area = 
A A

A

− ′
 × 100.

6. Nominal stress = 
Load

Original cross-sectional area
.

7. True stress = 
Load

Actual cross-sectional area
.

8. Factor of safety = 
Ultimate stress

Working stress

  However in case of steel, = 
Yield stress

Working stress
.

9. Hooke’s Law, p = Ee.

10. Extension/shortening of bar = 
PL

AE
.

11. Extension of flat bar with linearly varying width and constant thickness = 
PL

tE b b( )1 2−
 log 

b

b
1

2

.

12. Extension of linearly tapering rod = 
4

41 2 1 2

PL

E d d

PL

d d Eπ π
=

( / )
.
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13. Direct shear stress = 
Q

A
.

14. Volumetric strain ev = 
δV

V
 = ex + ey + ez.

15. E = 2G (1 + µ) = 3K (1 – 2µ)

or
9 3 1

E G K
= + .

16. Extension due to rise in temperature:
 ∆ = α tL

17. Thermal force, P is given by

 
PL

AE
 = extension prevented.

THEORY QUESTIONS

1. Explain the terms: stress, strain, modulus of elasticity.

2. Draw a typical stress-strain curve for mild steel, indicate salient point and define them.

3. Distinguish between

(i) Elastic limit and yield point. (ii) Nominal stress and true stress.

4. Explain the term factor of safety.

5. A bar of uniform thickness t tapers uniformly from a width b1 at one end to b2 at the other end in
a length L. Find the expression for its extension under an axial pull P.

6. A tapering rod has diameter d1 at one end and it tapers uniformly to a diameter d2 at the other end
in a length L. If the modulus of elasticity is E, find the change in length when subjected to an
axial force P.

7. Show that pure shear gives rise to tensile and compressive stresses across the planes inclined at
45° to the shearing planes, the intensity of the direct stresses being of the same magnitude as
shearing stress.

8. Show that volumetric strain in a bar is equal to the sum of strains in three mutually perpendicular
directions.

9. Explain the terms:

(i) Modulus of elasticity (ii) Modulus of rigidity and

(iii) Bulk modulus.

10. Derive the relationship between

(i) Modulus of elasticity and modulus of rigidity

(ii) Modulus of elasticity and bulk modulus.

11. Show that in a compound bar of length L, when temperature increases by t, the force ‘P’ developed
is given by
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PL

A E

PL

A E1 1 2 2

+  = (α1 – α2) tL

where A1, A2–Cross-sectional areas of bar 1 and bar 2 respectively
E1, E2–Young’s moduli of bar 1 and bar 2 respectively and

α1, α2–are coefficient of thermal expansion of bars 1 and 2 respectively.
12. Show that in a thin cylinder subject to internal pressure ‘p’ is given by

f = 
pd

t2

where d–diameter of the cylinder

 t–thickness of cylinder.

PROBLEMS FOR EXERCISE

1. Tension test was conducted on a specimen and the following readings were recorded.

Diameter = 25 mm
Gauge length of extensometer = 200 mm

Least count of extensometer = 0.001 mm
At a load of 30 kN, extensometer reading = 60

At a load of 50 kN, extensometer reading = 100
Yield load = 160 kN
Maximum load = 205 kN

Diameter neck = 17 mm
Final extension over 125 mm original length = 150 mm

Find Young’s Modulus, yield stress, ultimate stress, percentage elongation and percentage
reduction in area.

[Ans. E = 2.0372 × 105 N/mm2, py = 325.95 N/mm2. Ultimate stress = 417.62 N/mm2,
% elongation = 20% reduction in area = 53.76]

2. The composite bar shown in Fig. 8.50 is subjected to a tensile force of 30 kN. The extension
observed  is  0.44. Find the Young’s modulus of brass, if Young’s modulus of steel is 2 × 105

N/mm2. [Ans. 99745 N/mm2]

Steel Brass

500 mm 300 mm

25 mm �
20 mm �

P = 30 kN

Fig. 8.50

3. The steel flat shown in Fig. 8.51 has uniform thickness of 20 mm. Under an axial load of 100 kN,
its extension is found to be 0.21 mm. Determine the Young’s modulus of the material.

[Ans. E = 2.06293 × 105 N/mm2]
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b = 801b = 801
100 kN

b = 40 mm2

P = 100 kN

500 mm500 mm

Fig. 8.51

4. Find the extension of the bar shown in Fig. 8.52 under an axial load of 25 kN.

[Ans. ∆ = 0.555 mm]

P

�1 = 25 mm
�2 = 15 mm

P = 25 kN

400 mm400 mm 400 mm400 mm 400 mm400 mm

Fig. 8.52

5. The compound bar shown in Fig. 8.54 consists of three materials and supports a rigid horizontal
platform. Find the stresses developed in each bar, if the platform remains horizontal even after
the loading with 100 kN. Given

Bar 1 Bar 2 Bar 3

Length 1200 mm 1500 mm 1800 mm

C.S. Area 800 mm2 1000 mm2 1200 mm2

Young’s modulus 2 × 105 N/mm2 1.2 × 105N/mm2 1.0 × 105 N/mm2

[Hint: ∆1 = ∆2 = ∆3 = ∆, Find P2 – P3 in terms of P1.P1 + P2 + P3 = 100 × 103]

 [Ans. p1 = 59.52 N/mm2, p2 = 28.57 N/mm2, p3 = 19.84 N/mm2]

6. The composite bar shown in Fig. 8.53 is 0.20 mm short of distance between the rigid supports at
room temperature. What is the maximum temperature rise which will not produce stresses in the
bar ? Find the stresses induced in the bar when temperature rise is 60°. Given:

αs = 12 × 10–6/°C αc = 17.5 × 10–6/°C

Es = 2 × 105 N/mm2 Ec = 1.2 × 105 N/mm2

As = 400 mm2 Ac = 300 mm2

[Ans. (a) 42.10 °C, (b) ps = 36 N/mm2, pc = 48 N/mm2]
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100 mm100 mm

250 mm250 mm

Copper

Steel

0.2 mm

Fig. 8.53

7. At room temperature the gap between bar A and bar B shown in Fig. 8.54 is 0.2 mm. What are the
stresses developed in the bars, if temperature rise is 30°C ? Given:

Aa = 800 mm2 Ab = 600 mm2

Ea = 2 × 105 N/mm2 Eb = 1 × 105 N/mm2

αa = 12 × 10–6/°C αb = 23 × 10–6 /°C

La = 250 mm Lb = 200 mm.
[Ans. pa = 7.15 N/mm2 ; pb = 9.53 N/mm2]

Bar A Bar B

250 mm250 mm 200 mm200 mm

Fig. 8.54



9
Beams

9.1 INTRODUCTION

A beam may be defined as a structural element which has one dimension considerably larger than
the other two dimensions, namely breadth and depth, and is supported at few points. The distance
between two adjacent supports is called span. It is usually loaded normal to its axis. The applied
loads make every cross-section to face bending and shearing. The load finally get transferred to
supports. The system of forces consisting of applied loads and reactions keep the beam in equilibrium.
The reactions depend upon the type of supports and type of loading. In this chapter type of supports,
types of beams and types of loading are first explained and then the methods of finding reactions,
bending moment and shear forces are illustrated for the following determinate beams:

(a) Simply supported beams
(b) Cantilever beams and
(c) Overhanging beams.

9.2 TYPES OF SUPPORTS

Various types of supports and reactions developed are listed below:

Simple Support: If the beam rests simply on a support it is
called a simple support. In such case the reaction at the support is at
right angles to the support and the beam is free to move in the direction
of its axis and also it is free to rotate about the support (Fig. 9.1).

Roller Support: In this case, beam end is supported on rollers.
In such cases, reaction is normal to the support since rollers can be
treated as frictionless. [Fig. 9.2 (a)]. Many mechanical components
are having roller supports which roll between guides. In such cases,
reaction will be normal to the guides, in both the direction (Fig. 9.2).
At roller support beam is free to move along the support. It can rotate
about the support also.

Hinged Support: At a hinged end, a beam cannot move in any direction. However, it can
rotate about the support (Fig. 9.3). Hence the support will not develop any resisting moment, but it
can develop reaction in any direction to keep the end stationary. The reaction R can be split into its
horizontal and vertical components for the purpose of analysis.

Thus, in Fig. 9.3,
VA = R sin θ

283

Fig. 9.1

Fig. 9.2

9 0 °

R
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HA = R cos θ
Fixed Support: At such supports, the beam end is not free to translate or rotate. Translation

is prevented by developing support reaction in any required direction.
Referring to Fig. 9.4 the support reaction R which is at an angle θ to x axis may be

represented by HA and VA, where
 VA = R sin θ
HA = R cos θ

Rotation is prevented by developing support moment MA as shown in Fig. 9.4. Thus at fixed
support A, there are three reactions HA, VA and MA.

R
V A

A

�

R
V A

A M A

�

H A H A

Fig. 9.3 Fig. 9.4

9.3 TYPES OF BEAMS

Simply Supported Beam: When both end of a beam are
simply supported it is called simply supported beam (Fig.
9.5). Such a beam can support load in the direction normal to
its axis.

Beam with One End Hinged and the Other on
Rollers: If one end of a beam is hinged and other end is on
rollers, the beam can resist load in any direction (see Fig.
9.6).

Over-hanging Beam: If a beam is projecting beyond
the support. It is called an over-hanging beam (Fig. 9.7). The
overhang may be only on one side as in Fig. 9.7(a) or may
be on both sides as in Fig. 9.7(b).

Cantilever Beam: If a beam is fixed at one end and
is free at the other end, it is called cantilever beam (Fig. 9.8).

Propped Cantilever: It is a beam with one end fixed
and the other end simply supported (Fig. 9.9).

Both Ends Hinged: In these beams both ends will be
having hinged supports (Fig. 9.10).

Fig. 9.6

Fig. 9.7

Fig. 9.5

Fig. 9.8

Fig. 9.9

Fig. 9.10
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Continuous Beam: A beam is said to be continuous, if
it is supported at more than two points (Fig. 9.11).

In the case of simply supported beams, beams with one end hinged and the other on rollers,
cantilever and over-hanging beams, it is possible to determine the reactions for given loadings by
using the equations of equilibrium only. In the other cases, the number of independent equilibrium
equations are less than the number of unknown reactions and hence it is not possible to analyse them
by using equilibrium equations alone. The beams which can be analysed using only equilibrium
equations are known as Statically Determinate beams and those which cannot be analysed are known
as Statically Indeterminate beams. The latter beams can be analysed using the conditions of continuity
in deformations in addition to equilibrium equations. Such cases will not be treated in this book.

9.4 TYPES OF LOADING

Usual types of loadings on the beams are discussed here.
Concentrated Loads: If a load is acting on a beam over

a very small length, it is approximated as acting at the mid point
of that length and is represented by an arrow as shown in
Fig. 9.12.

Uniformly Distributed Load (UDL): Over considerably
long distance such load has got uniform intensity. It is represented
as shown in Fig. 9.13 (a) or as in (b). For finding reaction, this
load may be assumed as total load acting at the centre of gravity
of the loading (middle of the loaded length). For example, in the
beam shown in Fig. 9.13, the given load may be replaced by a
20 × 4 = 80 kN concentrated load acting at a distance 2 m from
the left support.

Uniformly Varying Load: The load shown in Fig. 9.14
varies uniformly from C to D. Its intensity is zero at C and is
20 kN/m at D. In the load diagram, the ordinate represents the
load intensity and the abscissa represents the position of load on
the beam.

Hence the area of the triangle represents the total load and the centroid of the triangle

represents the centre of gravity of the load. Thus, total load in this case is 
1
2

3 20 30× × =  kN and

the centre of gravity of this loading is at 1
3

3 1× =  m from D, i.e., 1 + 3 – 1 = 3 m from A. For

finding the reactions, we can assume that the given load is equivalent to 30 kN acting at 3 m from A.

General Loadings: Figure 9.15 shows a general loading.
Here the ordinate represents the intensity of loading and abscissa
represents position of the load on the beam. For simplicity in
analysis such loadings are replaced by a set of equivalent
concentrated loads.

Fig. 9.11

Fig. 9.13

Fig. 9.14

Fig. 9.15

Fig. 9.12

a

(a )

20 kN/m

4 m

(b )
4 m

20 kN/m

2 0  kN /m

CA BD

1m
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External Moment: A beam may be subjected to external moment at
certain points. In Fig. 9.16, the beam is subjected to clockwise moment
of 30 kN-m at a distance of 2 m from the left support.

In this chapter the beams subjected to concentrated loads, udl and
external moments are dealt with.

9.5 REACTIONS FROM SUPPORTS OF BEAMS

A beam is in equilibrium under the action of the loads and the reactions. Hence the equilibrium may
be written for the system of forces consisting of reactions and the loads. Solutions of these equations
give the unknown reactions.

Example 9.1. The beam AB of span 12 m shown in Fig. 9.17 (a) is hinged at A and is on rollers
at B. Determine the reactions at A and B for the loading shown in the Figure.

Solution: At A the reaction can be in any direction. Let this reaction be represented by its components
VA and HA as shown in Fig. 9.17 (b). At B the reaction is in vertical direction only. The beam is in
equilibrium under the action of system of forces shown in Fig. 9.17 (b).

10 kN

4 m 4 m2 m

12 m

2 m

15 kN

30° 45°

20 kN 10 kN 15 kN

30° 45°

20 kN

H A

RA

(c)

VA

(a)
(b)

HA

VA RB

A B

Fig. 9.17

Now, ∑ H  = 0, gives
HA – 15 cos 30° – 20 cos 45° = 0

 HA = 27.1325 kN
 ∑ MA = 0, gives

RB × 12 – 10 × 4 – 15 sin 30° × 6 – 20 sin 45° × 10 = 0
RB = 18.8684 kN.

 ∑V  = 0, gives
VA + 18.8684 – 10 – 15 sin 30° – 20 sin 45° = 0

∴ VA = 12.7737 kN

∴ RA = H VA A
2 2 2 227 1325 12 7737+ = +. .

i.e., RA = 29.989 kN.

and ααααα = tan
( . )

( . )
−1 12 7737

27 1325
 = 25.21°.

[Note: For finding moments, inclined loads are split into their vertical and horizontal components.
Horizontal components do not produce moment about A.]

Fig. 9.16

2 m

30 kN-m



BEAMS 287

Example 9.2. Find the reactions at supports A and B in the beam AB shown in Fig. 9.18 (a).

1 m

6 m

80 kN

75° 60°

50 kN

2 m 2.5  m

60°

60 kN

60° R B

B

H A

VA

R A

H A

VA

α

(a)
(b)

A 30°

Fig. 9.18

Solution: The reaction at B will be at right angles to the support, i.e., at 60° to horizontal as shown
in the figure. Let the components of the reactions at A be HA and VA. Then

∑ MA = 0 gives

RB sin 60° × 6 – 60 sin 60° × 1 – 80 × sin 75° × 3 – 50 × sin 60° × 5.5 = 0

∴  RB = 100.4475 kN.

 ∑ H  = 0, gives

HA + 60 cos 60° – 80 cos 75° + 50 cos 60° – RB cos 60° = 0
 HA = –60  cos 60° + 80 cos 75° – 50 cos 60° + 100.4475 cos 60°

 = 15.9293 kN

∑V  = 0, gives

VA + RB sin 60° – 60 sin 60° – 80 sin 75° – 50 sin 60° = 0

VA = –100.4475 sin 60° + 60 sin 60° + 80 sin 75° + 50 sin 60°
 = 85.5468 kN

∴ RA = 15 9293 85 54682 2. .+

i.e., RA = 87.0172 kN.

 α = tan
.

.
−1 85 5468

15 9293

i.e.,  ααααα = 79.45°, as shown in Fig. 9.18(b).

Example 9.3. Find the reactions at supports A and B of the loaded beam shown in Fig. 9.19(a).

R A
VB

VB

R B

H B

H B

9m

(a) (b)

2  m 2 m1 m4 m

20 kN
30 kN /m

60 kN

45° BA
α

Fig. 9.19
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Solution: The reaction at A is vertical. Let HB and VB be the components of the reaction at B.
∑ MB  = 0, gives

               RA × 9 – 20 × 7 – 30 × 4 × 5 – 60 sin 45° × 2 = 0
∴  RA = 91.6503 kN.

∑ H A = 0, gives
 HB – 60 cos 45° = 0

∴  HB = 42.4264 kN.
  ∑VA  = 0

        91.6503 + VB – 20 – 30 × 4 – 60 sin 45° = 0
VB = 90.7761 kN.

∴ RB  = 42 4264 90 77612 2. .+
∴  RB = 100.2013 kN.

α = tan
.
.

−1 90 7761
42 4264

ααααα = 64.95°, as shown in Fig. 9.19(b).

Example 9.4. The cantilever shown in Fig. 9.20 is fixed at A and is free at B. Determine the reactions
when it is loaded as shown in the Figure.

2 m 1 m 1 m

20 kN
16 kN /m

12 kN 10 kN

H A

M A

V A

A B

Fig. 9.20

Solution: Let the reactions at A be HA, VA and MA as shown in the figure
Now  ΣH = 0, gives

 HA = 0.
 ΣV = 0, gives

VA – 16 × 2 – 20 – 12 – 10 = 0
∴  VA = 74 kN.

ΣM = 0, gives
MA – 16 × 2 × 1 – 20 × 2 – 12 × 3 – 10 × 4 = 0

∴ MA = 148 kN-m.
Example 9.5. Compute the reaction developed at support in the cantilever beam shown in Fig. 9.21.

Solution: Let the vertical reaction be VA and moment be MA. There is no horizontal component of
reactions, since no load is having horizontal component

 ΣV = 0, gives

VA – 20 × 2 – 15 × 10 = 0
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10 kN15 kN

A

B

2 m2 m

MA

1 m1 m 1 m1 m 1 m1 m

20kN/m

30 kN-m

Fig. 9.21

∴ VA = 65 kN.
 ΣM = 0, gives

MA – 20 × 2 × 1 – 15 × 3 – 30 – 10 × 5 = 0

 MA = 165 kN-m
Example 9.6. Determine the reactions at supports A and B of the overhanging beam shown in
Fig. 9.22.

A

1.5 m1.5 m3 m3 m1 m1 m1 m1 m

B

30 kN 40 kN20 kN/m

RA RB

Fig. 9.22

Solution: As supports A and B are simple supports and loading is only in vertical direction, the
reactions RA and RB are in vertical directions only.

ΣMA = 0, gives
RB × 5 – 30 × 1 – 20 × 3 × (2 + 1.5) – 40 × 6.5 = 0

∴ RB = 100 kN.
 ΣV = 0, gives

RA + RB – 30 – 20 × 3 – 40 = 0
∴  RA = 130 – RB = 130 – 100 = 30 kN.

Example 9.7. Find the reactions at supports A and B of the beam shown in Fig. 9.23.

A

2 m2 m

B

20 kN/m 20 kN

4 m4 m 3 m3 m 2 m2 m 2 m2 m

60 kN

30 kN

Fig. 9.23

Solution: Let VA and HA be the vertical and the horizontal reactions at A and VB be vertical reaction
at B.

 ΣH = 0, gives
 HA = 0.
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 ΣMA = 0, gives

– 20 × 2 × 1 + 60 × 4 + 30 + 20 × 11 – VB × 9 = 0
∴  VB = 50 kN.

 ΣV = 0, gives

– 20 × 2 + VA – 60 + VB – 20 = 0
VA = 120 – VB = 120 – 50

 VA = 70 kN.
Example 9.8. Determine the reactions at A and B of the overhanging beam shown in Fig. 9.24(a).

VA R B

H A

3 m 2 m1 m2 m

40 kN-m 30 kN
20 kN /m A45°

BA

VA R A

H A

α

(a ) (b )

Fig. 9.24

Solution: ∑ MA = 0

RB × 6 – 40 – 30 sin 45° × 5 – 20 × 2 × 7 = 0

 RB = 71.0110 kN.

∑ H  = 0

 HA = 30 cos 45° = 21.2132 kN

 ∑V  = 0

VA – 30 sin 45° + RB – 20 × 2 = 0
VA = 30 sin 45° – RB + 40

VA = –9.7978
(Negative sign show that the assumed direction of VA is wrong. In other words, VA is acting

vertically downwards).

RA = V HA A
2 2+

RA = 23.3666 kN.

 α = tan−1 V

H
A

A
 ααααα = 24.79°, as shown in Fig. 9.24(b).

Example 9.9.  A beam AB 20 m long supported on two intermediate supports 12 m apart, carries
a uniformly distributed load of 6 kN/m and two concentrated loads of 30 kN at left end A and 50
kN at the right end B as shown in Fig. 9.25. How far away should the first support C be located
from the end A so that the reactions at both the supports are equal ?

Solution: Let the left support C be at a distance x metres from A.
Now,  RC = RD (given)

 ∑V  = 0, gives

RC + RD – 30 – 6 × 20 – 50 = 0
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or 2RC = 30 + 120 + 50 since RC = RD

or  RC = 100 kN

∴  RD = 100 kN

 ∑ MA = 0, gives

100x + 100 (12 + x) – 6 × 20 × 10 – 50 × 20 = 0

200x = 1000

x = 5 m.

R DR C
20 m

x 12 m

30 kN

6  kN /m

A

50 kN

C D
B

Fig. 9.25

9.6 SHEAR FORCE AND BENDING MOMENT

The load applied on a beam gets transferred to supports. To see how this transfer takes place,
consider a simply supported beam subject to the loads as shown in Fig. 9.26.

∑ MB  = 0, gives

RA × 7 = 20 × 5 + 40 × 3 + 60 × 1
 RA = 40 kN

 RB = (20 + 40 + 60) – 40
= 80 kN

2 m 2 m 1 m

20 kN 40 kN 60 kN

A B
2 m

Fig. 9.26

Now to find what is happening at a section, consider the section at C which is at a distance of
3 m from A. Imagining a cut at this section, left hand side portion and right hand side portions are
drawn separately in Fig. 9.27.

3 m

4 m

20 kN

20 kN

20 kN

100 kN-m

100 kN-m
40 kN

60 kN

BC

80 kN

40 kNA

Fig. 9.27
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Considering the algebraic sum of vertical forces acting on left hand side portion, it is found that
a net vertical force of 40 – 20 = 20 kN is experienced at the section. This effect is shown in Fig.
9.27 by dotted line. Again considering the portion on left hand side, the moment experienced at C
is given by

 MC = 40 × 3 – 20 × 1
 = 100 kN-m clockwise.

This moment is also shown on left hand side portion of the beam at C by dotted line.

Now, considering the right hand side portion:

Force experienced at C

= 80 – 60 – 40 = –20 kN

= 20 kN. downward
and the moment experienced is M = 80 × 4 – 60 × 3 – 40 × 1

= 100 kN-m. anticlockwise
These forces and moments are also shown in Fig. 9.27 on right hand side portion of the beam

at C.
Thus the section C is subjected to a force of 20 kN, which is trying to shear off the beam as

shown in Fig. 9.28(a), and is also subjected to a moment of 100 kN-m which is trying to bend the
beam as shown in Fig. 9.28(b). Since this force of 20 kN is trying to shear off the section, it is called
as shear force at section C. The moment is trying to bend the beam at C and hence it is called as
bending moment at that section. The shear force and bending moment at a section in a beam may
be defined as follows:

F

F

(a) Shear fo rce a t C

(b) Bend ing mom ent a t C

A B

A B
M

C

C
F

M

C

Fig. 9.28

“Shear Force at a section in a beam (or any structural member) is the force that is trying to shear
off the section and is obtained as algebraic sum of all the forces acting normal to the axis of beam
either to the left or to the right of the section”.

“Bending Moment at a section in a beam is the moment that is trying to bend the beam and is
obtained as algebraic sum of moment of all the forces about the section, acting either to the left or
to the right of the section”.
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Hence to find shear force or bending moment at a section, a cut at the section is to be imagined
and any one portion with all the forces acting on that portion, is to be considered. It may be noted
that for finding bending moment at a section, the moment of the forces are to be found about the
section considered.

9.7 SIGN CONVENTION

Although different sign conventions may be used, most of the engineers use the following sign
conventions for shear forces and bending moment.

(a) The shear force that tends to move left portion upward relative to the right portion shall be
called as positive shear force (Fig. 9.29).

+ve S.F. –  ve  S .F.

Fig. 9.29

(b) The bending moment that is trying to sag the beam shall be taken as positive bending
moment. If left portion is considered positive bending moment comes out to be clockwise moment
(Fig. 9.30).

Fig. 9.30

To decide the sign of moment due to a force about a section, assume the beam is held tightly
at that section and observe the deflected shape. Then looking at the shape sign can be assigned. Thus
in the problem shown in Fig. 9.26 and 9.27, 40 kN reaction at A produces positive moment at C and
20 kN load produces negative moment.

9.8 RELATIONSHIP BETWEEN LOAD INTENSITY, SHEAR FORCE AND BENDING
 MOMENT

Consider the beam AB subject to a general loading as shown in Fig. 9.31(a). The free body diagram
of a segment of beam at a distance x from A and of length δx is shown in Fig. 9.31(b). The intensity
of loading on this elemental length may be taken as constant. Let it be w/unit length.

Let shear force and bending moment acting on the section at a distance x be F and M
respectively. At section at a distance x + δx, these values be F + δF  and M + δM respectively. Now
from the equilibrium of the element.
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∑V  = 0 leads to

– F + F + δF – wδx = 0

or
δ
δ
F

x
 = w

In the limiting case as δx → 0, ...(9.1)

dF

dx
 = w

x

(a ) Po sition  of E lem ent

(b ) SF  on  e leme nt

M
w/Un it Length

M +dM
F +dF

F
dx

(c) En la rged  v iew  of E lem ent

Fig. 9.31

The moment equilibrium condition at section x + dx leads to

M – Fδx – wδx × 
δx

2
 – (M + δM) = 0

Neglecting the small quantity of higher order, we get

 Fδx + δM = 0

or
δ
δ
M
x

 = –F

In the limiting case as x → 0,  we get ...(9.2)

dM

dx
 = –F

9.9 SHEAR FORCE AND BENDING MOMENT DIAGRAMS

Shear force and bending moment in a beam vary from section to section. The graphical representation
of shear force in which ordinate represents shear force and the abscissa represents the position of the
section is called Shear Force Diagram (SFD). The diagram in which the ordinate represent bending
moment the abscissa represent the position of the section is called Bending Moment Diagram (BMD).
In drawing SFD and BMD, the sign conventions explained earlier are used. These diagrams are
usually located below the load diagram.
From equations 1 and 2, it may be concluded that the rate of change of shear force (slope of shear
force diagram curve) at any section is equal to the intensity of loading at that section and the rate
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of change of bending moment (i.e., shape of bending moment diagram curve) is equal to the shear
force at that section. From equation 2, it can also be concluded that the bending moment will be
maximum/minimum where shear force (dM/dx) is zero.

At any section, if moment changes its sign the point representing that section is called the point
of contraflexure. Obviously, the moment at that section is zero.

9.10 SFD AND BMD FOR A FEW STANDARD CASES

The methods of drawing shear force and bending moment diagrams have been explained here in case
of the following beams subjected to standard loading conditions.

(a) Cantilever beams

(b) Simply supported beams and
(c) Overhanging beams

9.10.1 Cantilever Subject to a Concentrated Load at Free End

Consider the section X–X at a distance x from free end in a cantilever beam shown in
Fig. 9.32(a).

From left hand side segment of beam,

F = –W

Thus shear force is constant i.e., it will not vary with x. Hence the SFD is as shown in
Fig. 9.32(b).

M = –Wx, linear variation.

At  x = 0, MA = 0

x x

W

A x B

(a) Load D iagram

(b) SFD

W– ve

–  ve W l

(c) BM D

Fig. 9.32

At  x = l, MB = –Wl

Hence BMD is as shown in Fig. 9.32(c).

9.10.2  A Cantilever Subject to UDL Over its Entire Span

Consider the beam shown in Fig. 9.33(a).
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Considering the left hand side portion of the beam from the section X–X which is at a distance
x from the free end A,

F = –Wx, linear variation
At  x = 0, FA = 0

At  x = l, FB = –wl

x

x
w /un it length

A x B

(a) L oad D ia gram

(b) S FD
w l

– ve

–  ve

(c) B M D

l

w
2
l2

Fig. 9.33

Hence SFD is as shown in Fig. 9.33(b).

M = − = −wx
x wx

2 2

2

This is parabolic variation. As magnitude increases at a faster rate with x, it is concave parabola
as shown in Fig. 9.33(c), with extreme values as given below:

At  x = 0, MA = 0,

At  x = l, M
wl

B = −
2

2

9.10.3 Simply Supported Beam Subjected to a Concentrated Load

Let W be the concentrated load acting on beam AB at a distance ‘a’ from the end A as shown in Fig.
9.34(a).

Now RA = 
Wb

l
and RB = 

Wa

l
Consider the portion AC. At any distance x from A,

F = RA = 
Wb

l
,  constant

M = RA x = 
Wb

l
x,  linear variation.

At  x = 0, MA = 0

At  x = a, MC = 
Wab

l
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For portion AC SFD and BMD can be drawn.

Consider portion CB. The expression derived for portion AC will not hold good for this portion.
Taking a section at a distance x from B and considering the right hand side segment of the beam,

F = –RB = − Wa

l
, constant

M = RBx = 
Wa

l
x , linear variation.

At  x = 0, MB = 0

At x = b, MB = 
Wab

l

W

A B

(a) L oad  D iag ra m

C ba
l

(c) B M D

W ab
l

(b ) S F D

W a
l

+  ve

–  ve

W b
l

Fig. 9.34

SF and BM diagrams for this portion can now be drawn. Hence SFD and BMD for the beam is
as shown in Fig. 9.34(b) and 9.34(c) respectively.

Particular case:

When a = b = l/2

F = 
Wb

l

W l

l

W= =( / )2

2
and moment under the load (centre of span since a = b = l/2)

M = 
Wab

l

W l l

l

Wl= × =/ /2 2

4

9.10.4  A Simply Supported Beam Subjected to UDL

Let the beam AB of span l be subjected to uniformly distributed load of intensity w/unit length as
shown in Fig. 9.35(a).

RA = 
wl l

l

wl. / 2

2
=
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 RB = 
wl

2
At a section X–X which is at a distance x from A,

 F = RA – wx = 
wl

wx
2

− ,  linear variation

At x = 0, FA = 
wl

2

At   x = l,   FB = − wl

2

∴ SFD is as shown in Fig. 9.35(b).

A B

(a) Load D iagram

(b) SF D

(c) BM D

x
l

+ ve

–  ve

w
8
l2

x

x
w /unit length

w
2

l

w
2

l

Fig. 9.35

Shear force is zero at x given by

0 = 
wl

wx
2

−

x = 
l

2
∴ Maximum moment occurs at this points.
At section X–X

M = RAx – wx . x wl
x

wx

2 2 2

2

= − ,  parabolic variation.

As x increases rate of reduction in the value of M is faster. Hence it is convex parabola.
At x = 0, MA = 0
At  x = l, MB = 0

Maximum moment occurs at x = 
l

2
 where shear force i e

dM

dx
. . ,
�
��

�
��

= 0

Mmax = 
wl

l
w l wl

2
2

2
2 8

2 2
. /

( / )− =

Hence BMD is as shown in Fig. 9.35(c).
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9.10.5  Overhanging Beam Subjected to a Concentrated Load at Free End

Consider the overhanging beam ABC of span AB = l and overhang BC = a, subjected to a concentrated
load W at free end as shown in Fig. 9.36(a).

W

A C

(a) Load D iagram

(b) SFD

(c) BM D Wa

Bl

+ ve

–  veWa
l

a

R A

W

– ve

Fig. 9.36

RA = 
Wa

l
, downward

∴ RB = W
Wa

l
W l

a

l
+ = +�

��
�
��

Portion AB:

Measuring x from A and considering left side of the section.

  F = –RA = − Wa

l
, constant

 M = –RAx = − Wax

l
, linear variation.

At  x = 0, MA = 0

At  x = l, MB = –Wa

Portion BC:

Measuring x from C, shear force and bending moments at that section are given by
F = W, constant

 M = –Wx, linear variation.
At  x = 0, MC = 0

At  x = a, MB = –Wa.

SFD and BMD for the entire beam is shown in Fig. 9.36(b) and 9.36(c) respectively.

Example 9.10.  Draw shear force and bending moment diagram for the cantilever beam shown in
Fig. 9.37(a).
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Solution: Portion AB:

At distance x, from A,
 F = –20 –20 x, linear variation.

At x = 0, FA = –20 kN

At x = 1, FB = –20 –20 × 1 = – 40 kN.

 M = –20x –20x .
x

2
, parabolic variation

At x = 0, MA = 0

At x = 1 m, MB = –20 –20 × 1 × 
1
2

 = – 30 kN-m.

Portion BC:
Measuring x from A,

 F = –20 – 40 – 20x, linear variation.
At x = 1 m, FB = –80 kN

At x = 3 m, FC = –120 kN.

M = –20x –40(x – 1) –20x .
x

2
, parabolic variation;

At  x = 1 m, M = –30 kN-m

At   x = 3 m, M = – 60 – 40 × 2 – 20 × 3 × 
3
2

 = –230 kN-m
Hence SFD and BMD are shown in Fig. 9.37(b) and 9.37(c) respectively.

A C

(a) Load D iagram

1 m 2 m

20 kN /m

B

40 kN20 kN

– ve
40

120

80

20

(b) SFD

230

– ve30

(c) BM D

Fig. 9.37
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Example 9.11. Draw the SF and BM diagrams for the beam shown in Fig. 9.38(a) and find out the
position and the magnitude of maximum moment.

Solution: ∑ MA = 0 →
RB × 10 = 20 × 5 × 2.5 + 20 × 5 + 40 × 7.5 + 20 × 8.5

∴ RB = 82 kN.

 ∑V  = 0 →
∴  RA = 20 × 5 + 20 + 40 + 20 – 82 = 98 kN.
Portion AC:

Measuring x from A,
  F = 98 – 20x, linear variation

At x = 0, FA = 98 kN
At x = 5 m, FB = 98 – 100 = –2 kN

Points where shear force is zero is given by,
0 = 98 – 20x

or x = 4.9 m

(c) BM D

A
C D E

(a) Load D iagram

B

20 kN20 kN /m

2

98

(b) SFD

4.9 m

40 kN 20 kN

5 m 2.5 m 1 m 1.5 m

– ve22
62 82 82

240.1

240
185

123

+ ve

20 kN /m

Fig. 9.38

Moment is given by

M = 98x – 20x x
2

, parabolic variation.

At x = 0, MA = 0

At x = 5 m, MB = 98 × 5 – 
20 5

2

2×
 = 240 kN-m
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Maximum moment occurs at x = 4.9 m where F = 
dM

dx
= 0

Mmax = 98 × 4.9 – 20 × 
4 9

2

2.
 = 240.1 kN-m

Portion CD:

Measuring x from B and considering right hand side segment of the beam,
F = –82 + 20 + 40 = –22 kN, constant

 M = 82x – 20(x – 1.5) – 40(x – 2.5)
= 22x + 130, linear variation.

At  x = 2.5 m, MD = 22 × 2.5 + 130 = 185 kN-m
At  x = 5 m, MC = 22 × 5 + 130 = 240 kN-m.

Portion DE:

Measuring x from B and considering the portion of the beam on the right side of the section,

F = –82 + 20 = –62 kN, constant
 M = 82x – 20(x – 1.5) linear variation

At  x = 1.5 m,
 ME = 82 × 1.5 = 123 kN-m.

At  x = 2.5, M = 82 × 2.5 – 20 × 1 = 185 kN-m.

Portion EB:

Measuring x from B and considering the right side segment,

F = –82 kN, constant
 M = 82x, linear variation.

At  x = 0, MB = 0
At  x = 1.5 m, ME = 82 × 1.5 = 123 kN-m.

SFD and BMD are shown in Fig. 9.38(b) and 9.38(c) respectively, for the entire beam.
Example 9.12. A beam of span 8 m has roller support at A and hinge support at B as shown in
Fig. 9.39(a). Draw SF and BM diagrams when the beam is subjected to udl, a concentrated load and
an externally applied moment as shown in the Figure.

Solution: ∑ MA = 0 →
RB × 8 – 10 × 4 × 2 – 20 × 4 + 240 = 0

RB = –10 kN (upwards)
= 10 kN. (downwards)

∑V  = 0 →
RA = 10 × 4 + 20 + 10 = 70 kN.

Portion AC:

Measuring x from A and considering left hand side segment of the beam,
F = 70 – 10x, linear variation

At  x = 0, FA = 70 kN
At  x = 4 m, FC = 70 – 40 = 30 kN
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M = 70x – 10x 
x

2
, parabolic variation

At x = 0, MA = 0

At x = 4 m, MC = 70 × 4 – 10 × 4 × 
4
2

 = 200 kN-m.

Portion CD: Measuring x from B,

 F = 10 kN, constant
M = –10x + 240, linear variation

 x = 4 m, MC = 200 kN-m
At  x = 2 m, MD = –10 × 2 + 240 = 220 kN-m.

Portion DB:

Measuring x from B,

 F = 10 kN, constant
M = –10x, linear variation

At  x = 0, MB = 0
At  x = 2 m, MD = –10 × 2 = –20 kN-m.

A

(a) Loading Diagram

B

20 kN10 kN /m

+ ve

70

(b) SFD

4 m 2 m

D

240 kN -m

2 m R B

R A

30
10 10

(c) BMD

+ ve

220
200

– ve
20

C

Fig. 9.39

SFD and BMD are shown in Fig. 9.39(b) and 9.39(c).
Note: The bending moment value will be the same at a point, whether calculated by considering left hand

side or the right hand side segment of the beam, if there is no external moment acting at that point. If the
external moment is acting at a point, there will be sudden change in BMD at that point to the extent equal to
the magnitude of external bending moment.

Example 9.13. The overhanging beam ABC is supported at A and B, the span AB being 6 m. The
overhang BC is 2 m (see Fig. 3.42 a). It carries a uniformly distributed load of 30 kN/m over a length
of 3 m from A and concentrated load of 20 kN at free end. Draw SF and BM diagrams.
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Solution: Σ ΜΑ = 0 →
  RB × 6 = 20 × 8 + 30 × 3 × 1.5

∴ RB = 49.167 kN.
ΣV = 0 →
RA = 30 × 3 + 20 – 49.167 = 60.833 kN.

Portion AD:
Measuring x from A and considering left side segment,

  F = 60.833 – 30x, linear variation
At  x = 0, FA = 60.833 kN.
At x = 3 m,

FD = 60.833 – 30 × 3 = –29.167 kN.
The point of zero shear is given by

 0 = 60.833 – 30x
or, x = 2.028 m.

At section X–X, the moment is given by

 M = 60.833 x – 30
2

2x
,  parabolic variation

At  x = 0, MA = 0
At x = 3 m,

MD = 60.833 × 3 – 30 × 
9
2

 = 47.5 kN-m.

Maximum moment occurs at x = 2.028 m. since here F = 
dM

dx
= 0

Mmax = 60.833 × 2.028 – 30 × 
2 028

2

2.
 = 61.678 kN-m.

A

(a) Loading  D iagram

B

30 kN /m

+ ve

60.833

(b) SFD

3 m 2 m

20

3 m
D

C

– ve

+  ve
20

29.167
29.167

(c) BM D

47.5

– ve

+ ve61.678 3.371 m

2.028

40

20 kN

Fig. 9.40
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Portion DB:

Measuring x from the free end C and considering right hand side segment,
F = 20.0 – 49.167

= 29.167 kN, constant.

M = –20x + 49.167 (x – 2), linear variation
At x = 5 m, MD = –20 × 5 + 49.167 × 3 = 47.5 kN-m.

At x = 2 m, MB = –20 × 2 = – 40 kN-m.
In this portion the bending moment changes the sign. The point of contraflexure is given by the

expression
 0 = –20x + 49.167 (x – 2)

i.e.,  x = 3.371 m from free end.
Portion BC:

Measuring x from free end,
 F = 20 kN, constant

M = –20x, linear variation
At  x = 0, MC = 0
At  x = 2 m, MB = – 40 kN-m.

Hence SF and BM diagrams are as shown in Fig. 9.40(b) and 9.40(c) respectively.
Example 9.14.  Draw BM and SF diagrams for the beam shown in Fig. 9.41(a), indicating the values
at all salient points.
Solution:  ∑ MB  = 0 →

RE × 4 + 20 × 1 – 30 × 2 × 1 – 40 × 3 – 25 × 1 × 4.5 = 0

A

(a) Load D iagram

+ ve

56.875

(b) SFD

C

– ve
+  ve

25

40 kN

43.125

3.125

D E

20 kN

1 m 2 m 1 m 1 m 1 m

– ve
20

43.125

B
30 kN /m

25 kN /m
F

(c) BM D

3 3 .9 1 5

20 12.5

33.75 30.625

1.896 m

1.392 m 1.29  m

– ve – ve

R A R E

Fig. 9.41
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RE = 68.125 kN.
∑V  = 0 →
RB = 20 + 30 × 2 + 40 + 25 × 1 – 68.125

= 76.875 kN.
Portion AB:
Measuring x from A,

F = –20 kN, constant
 M = –20x, linear variation

At  x = 0, MA = 0
At  x = 1 m,  MB = –20 kN-m
Portion BC:
Measuring x from B,

F = –20 + 76.875 – 30x, linear variation
At  x = 0, F = 56.875 kN.
At  x = 2 m,  F = –3.125 kN-m.
The point of zero shear force is given by

 0 = –20 + 76.875 – 30x

x = 1.896 m from B.

At distance x from B the moment is given by

M = –20(x + 1) + 76.875x – 30x
x

2
= –20 + 56.875x – 15x2, parabolic variation

At  x = 0, MB = –20 kN-m.
At  x = 2 m,  MC = –20 + 56.875 × 2 – 15 × 4

= 33.75 kN-m.
Maximum moment occurs where SF = 0. i.e., at x = 1.896 m.
∴  Mmax = –20 + 56.875 × 1.896 – 15 × 1.8962

 = 33.913 kN-m.
The bending moment is changing its sign in this portion. Hence the point of contraflexure exists

in this portion. It is given by
 0 = –20 + 56.875x – 15x2

∴ x = 0.392 m.
i.e., the point of contraflexure is at 1.392 m from the free end A.

Portion CD:
Measuring x from F,

Shear force = 25 × 1 – 68.125 – 40
 = –3.125 kN, constant

M = –25 × 1 × (x – 0.5) + 68.125 (x – 1) – 40 ( x – 2), linear variation
At  x = 3 m, MC = 33.75 kN-m.
At x = 2 m,  MD = –25 × 1.5 + 68.125

= 30.625 kN-m.
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Portion DE:

Measuring x from free end F,

Shear force = 25 – 68.125 = – 43.125 kN, constant
M = –25 (x – 0.5) + 68.125(x – 1), linear variation

At x = 2 m, MD = 30.625 kN-m.
At x = 1 m,  ME = –12.5 kN-m.

Portion EF: M = 0, at x = 1.29 m
Measuring x from free end F,

Shear force F = 25x, linear constant
At x = 0, FF = 0

At x = 1 m,  FE = 25 kN

M = –25x.
x

2
, parabolic variation

At x = 0, MF = 0

At x = 1 m,  ME = –12.5 kN-m.
SF and BM diagrams are as shown in Fig. 9.41(b) and 9.41(c) respectively.

9.11 SHORT-CUT PROCEDURE

To save time, one can calculate the values only at salient points and draw shear force and bending
moment diagrams, noting the following points:

(a) Wherever concentrated load is acting (including support reaction), there will be sudden
change in SF value to the extent of that force at that point, in the direction of that force (while
proceeding from left to right).

(b) If an external moment is acting at a point on the beam, there will be sudden change in the
value of bending moment to the extent of that external bending moment. While proceeding from left,
it will be increase in value, if the moment is clockwise. There will be drop in bending moment value
if the external bending moment is anticlockwise. Exactly opposite phenomenon will be observed
while proceeding from right to left.

(c) Since 
dF

dx
w=  and 

dM

dx
F= , the shear force curve will be one degree higher than that of load

curve and bending moment curve will be one degree higher than that of shear force curve. The nature
of variation, for various loads is listed in Table 9.1.

Table 9.1 Nature of SF and BM Variation

       Load    SF  BM

No load Constant Linear

Uniformly distributed load Linear Parabolic

Uniformly varying load Parabolic Cubic

The following points also may be noted while drawing shear force and bending moment
diagrams:
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(a) The bending moment is maximum when shear force is zero. The location and the value of
maximum moment should always be indicated in bending moment diagram.

(b) The point of contraflexure is an important point in a BMD, hence if it exists, its location
should be indicated.

This method of drawing SFD and BMD is illustrated with two problems below:

Example 9.15. Determine the reactions and construct the shear force and bending moment diagrams
for the beam shown in Fig. 9.42(a). Mark the salient points and the values at those points.

Solution: ∑ MA = 0 →
RB × 6 + 120 – 60 × 4 – 60 × 7 = 0

∴ RB = 90 kN.

 ∑V  = 0 → RA = 60 + 60 – 90 = 30 kN.

SFD:

In portion ADE, F = 30 kN.
In portion EB, F = 30 – 60 = –30 kN.

In portion BC, F = 60 kN.
SFD is as shown in Fig. 3.45(b).

BMD:

At A,  MA = 0
Just to the left of D,  M = 30 × 2 = 60 kN-m.

Just to the right of D,   M = 30 × 2 – 120 = –60 kN-m.
At E, M = –60 × 3 + 90 × 2 = 0

At B,  M = –60 × 1 = –60 kN-m.
At C,  M = 0

BMD is as shown in Fig. 9.42(c).

A

(a) Load D iagram

120 kN-m

+ ve

30

(b) SFD

D

– ve

+  ve

(c) BM D

60 kN

E C

0

60 kN

B

30

30 30

60 60

+ ve

–  ve

60

60

– ve

60

1 m2 m2 m 2 m

R A

R B

Fig. 9.42
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Example 9.16. Draw the bending moment and shear force diagram for the beam loaded as shown
in Fig. 9.43. (a). Mark the values at the salient points Determine the point of contraflexure also.

15 kN

A

10kN/m

B C D

E

F

20 kN

50 kN-m

4 m 2 m 2 m 2 m 2 m

68

37

+

3
18

38 38

0

62

26

x

+

–

(b) SFD

(a)

(b) BMD

50

RA RE

–

Fig. 9.43

Solution:  ΣMA = 0, gives

RE × 10 – 10 × 4 × 2 – 15 × 6 – 20 × 8 – 50 = 0
∴ RE = 38 kN

 ΣV = 0, gives
RA + RE – 10 × 4 – 15 – 20 = 0

RA = 75 –  RE = 75 – 38 =37 kN
SFD:

Values at salient points are:
FA = RA = 37 kN

In portion AB, FB = 37 – 10 × 4 = – 3 kN
In portion BC, F = 37 – 40 = 3 kN

In portion CD, F = 37 – 40 – 15 = – 18 kN
In portion DE, F = 37 – 40 – 15 – 20 = – 38 kN
In portion EF, F = 0.

∴ SFD is as shown in Fig. 9.43 (b)
BMD:

At A, MA = 0
At B, MB = 37 × 4 – 10 × 4 × 2 = 68 kN-m

At C, MC = 37 × 6 – 10 × 4 × 4 = 62 kN-m
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At D, calculating from right hand side MD = – 50 + 38 × 2 = 26 kN-m

At E, ME = – 50 kN-m
Point of contraflexure is between D and E. Let it be at distance x from support E. Then

– 50 + 38x = 0

∴ x = 1.32 m from E as shown in Fig. 9.43 (c)
BMD is as shown in Fig. 9.43 (c)

IMPORTANT FORMULAE

1. Shear force at a section of the beam = Σ all forces to the left or right of the section.
2. Bending moment at a section of the beam = Σ moments of all forces to the left or to the right of the

section, moment centre being the section.

3.
dF

dx
 = w and 

dM

dx
  = – F

THEORY QUESTIONS

1. Explain the following types of supports to beams:

(i) Simple support (ii) Hinged support
(iii) Fixed support

2. Bring out the difference between statically determinate and indeterminate beams.
3. Derive the relationship between,

(i) Shear force and load intensity (ii) Bending moment and shear force

PROBLEMS FOR EXERCISE

1. Determine the reaction at A and B on the overhanging beam shown in Fig. 9.44.

A
R B

2 m 3 m 1 m 2 m 

30  kN
20 kN /m

45°α

40 kN-m
B

RA

Fig. 9.44

  [Ans. RA = 23.3666 kN; a = 24.79°; RB = 71.011 kN]
2. An overhanging beam is on rollers at A and is hinged at B and is loaded as shown in Fig. 9.45.

Determine the reactions at A and B.

1 m 4 m4 m

A B

10 kN/m20 kN

Fig. 9.45

[Ans. RA = 45 kN; RB = 15 kN]
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3. In all the problems given below draw SFD and BMD indicating values at salient point. (See Fig.
9.46 to 9.50).

A B C D

2  kN

2  kN -m

3  kN

1  kN /m

1 m 1 m 1.5 m 1.5 m

E

Fig. 9.46

[Ans. FB = 4.25, FE = 3.75, Mmax = 4.5 kN-m at D

Point of contraflexure at 1.47 m from A]

A B C D

5 0  kN

1 0  kN /m

3 m 2 m 2 m2 m

E

Fig. 9.47

[Ans. FB = 70.83, FE = 29.17, Mmax = 45 kN-m at B

Point of contraflexure at 4.313 m from A]

A B C D

1 0  kN /m1 0  kN /m

2 m 2 m2 m

E

4 0  kN 2 0  kN

F

2 m 2 m

Fig. 9.48

[Ans. RB = 46.67 kN, RE = 53.33 kN, MB = –20 kN-m

ME = – 40 kN-m, MC = 33.33 kN-m,
Point of contraflexure : 2.75 m from A and 3.57 m from F]

A B C D

20 kN/m 10 kN/m

2 m 4 m 2 m

40 kN

Fig. 9.49

[Ans. RB = 95, RC = 45, Mmax = –4.375 at 4.75 m from A

No +ve moment anywhere]
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A
B C D

5 0  kN

1 m 1 m 3 m 1.5 m

E

2 0  kN -m
1 0  kN /m 2 0  kN

Fig. 9.50

[Ans. RA = 47, RD = 53, MB = 47, MC = 44 to 24, MD = 30

Point of contraflexure 2.59 m from F]
4. Determine load P such that reactions at supports A and B are equal in the beam shown in Fig. 9.51.

Draw SF and BM diagram marking the values at salient point.
[Ans. P = 20 kN, RA = RB = 50 kN, Mmax = 62.5 kN-m at 2.5 m from A,

Point of contraflexure 1.667 m from C]

A
B CD

2 0  kN /m
P

4 m 2 m 1 m

Fig. 9.51

5. A bar of length ‘l’ is supported at A and B which are at distances ‘a’ from the ends as shown in
Fig. 9.52. Find the distance ‘a’ such that maximum moment is least. Using the above results find
the most economical length of railway sleeper if the rails are 1.6 m apart.

A B DE

w /u n it len g th

C

l

a b a

Fig. 9.52

[Hint: Moment at B = Moment at central point E]

[Ans. a = 0.2071
Economical length of railway sleeper = 2.73 m]



10
Stresses in Beams

As seen in the last chapter beams are subjected to bending moment and shear forces which vary from
section to section. To resist them stresses will develop in the materials of the beam. For the simplicity
in analysis, we consider the stresses due to bending and stresses due to shear separately.

Under compression

Under tension

Neutral
layer

(a) Sagging moment case

Under
compression

Under
tension Neutral

layer

Neutral
axis

Neutral
axis

(b) Hogging moment case

Fig. 10.1. Nature of Stresses in Beams

Due to pure bending, beams sag or hog depending upon the nature of bending moment as shown
in Fig. 10.1. It can be easily observed that when beams sag, fibres in the bottom side get stretched
while fibres on the top side are compressed. In other words, the material of the beam is subjected
to tensile stresses in the bottom side and to compressive stresses in the upper side. In case of hogging
the nature of bending stress is exactly opposite, i.e., tension at top and compression at bottom. Thus
bending stress varies from compression at one edge to tension at the other edge. Hence somewhere
in between the two edges the bending stress should be zero. The layer of zero stress due to bending
is called neutral layer and the trace of neutral layer in the cross-section is called neutral axis [Refer
Fig. 10.1].

313
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10.1 ASSUMPTIONS

Theory of simple bending is developed with the following assumptions which are reasonably acceptable:
(i) The material is homogeneous and isotropic.

(ii) Modulus of elasticity is the same in tension and in compression.

(iii) Stresses are within the elastic limit.

(iv) Plane section remains plane even after deformations.

(v) The beam is initially straight and every layer of it is free to expand or contract.

(vi) The radius of curvature of bent beam is very large compared to depth of the beam.

10.2 BENDING EQUATION

There exists a define relationship among applied moment, bending stresses and bending deformation
(radius of curvature). This relationship can be derived in two steps:

(i) Relationship between bending stresses and radius of curvature.
(ii) Relationship between applied bending moment and radius of curvature.

(i) Relationship between bending stresses and radius of curvature: Consider an elemental length
AB of the beam as shown in Fig. 10.2(a). Let EF be the neutral layer and CD the bottom
most layer. If GH is a layer at distance y from neutral layer EF, initially AB = EF = GH =
CD.

E
G

F
H

A

C

B

D

y

(a) (b)

E�

G�

F�

H�

C� D�

A� B�

RR

�

Fig. 10.2

 Let after bending A, B, C, D, E, F, G and H take positions A′, B′, C′, D′, E′, F′, G′ and H′
respectively as shown in Fig. 10.2(b). Let R be the radius of curvature and φ be the angle subtended
by C′A′ and D′B′ at centre of radius of curvature. Then,

 EF = E′F′, since EF is neutral axis

= Rφ ...(i)

Strain in GH = 
Final length – Initial length

Initial length
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= 
G H GH

GH

′ ′ −

But  GH = EF (The initial length)
= Rφ

and G′H′ = (R + y) φ

∴ Strain in layer GH = 
( )R y R

R

+ −φ φ
φ

= 
y

R
...(ii)

Since strain in GH is due to tensile forces, strain in GH = f/E ...(iii)

where f is tensile stress and E is modulus of elasticity.
From eqns. (ii) and (iii), we get

 
f

E

y

R
=

or
f
y

E
R

= ...(10.1)

(ii) Relationship between bending moment and radius of curvature: Consider an elemental area
δa at distance y from neutral axis as shown in Fig. 10.3.

y

�a

Fig. 10.3

From eqn. 10.1, stress on this element is

 f = 
E

R
 y ...(i)

∴ Force on this element

= 
E

R
 y δa

Moment of resistance of this elemental force about neutral axis

= 
E

R
 y δa y

= 
E

R
 y2 δa
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∴ Total moment resisted by the section M′ is given by

M′ = ∑ E

R
y a2 δ

 = 
E

R
y a2 δ∑

From the definition of moment of inertia (second moment of area) about centroidal axis, we
know

I = Σy2 δa

∴ M′ = 
E

R
 I

From equilibrium condition, M = M′ where M is applied moment.

∴ M = 
E

R
 I

or
M

I

E

R
= ...(10.2)

From eqns. (10.1) and (10.2), we get

M
I

f
y

E
R

= = ...(10.3)

where M = bending moment at the section

I = moment of inertia about centroid axis
f = bending stress

y = distance of the fibre from neutral axis
E = modulus of elasticity and

R = radius of curvature of bent section.
Equation (10.3) is known as bending equation.

10.3 LOCATING NEUTRAL AXIS

Consider an elemental area δa at a distance y from neutral axis [Ref. Fig. 10.3].
If ‘f ’ is the stress on it, force on it = f δa

But f = 
E

R
 y, from eqn. (10.1).

∴  Force on the element = 
E

R
 y δa

Hence total horizontal force on the beam

 = ∑ E

R
y aδ
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  = 
E

R
y aΣ δ

Since there is no other horizontal force, equilibrium condition of horizontal forces gives

E

R
y aΣ δ  = 0

As 
E

R
 is not zero,

  Σy aδ  = 0 ...(i)

If A is total area of cross-section, from eqn. (i), we get

 ∑ y a

A

δ
 = 0 ...(ii)

Noting that Σyδa is the moment of area about neutral axis, 
Σy a

A

δ
 should be the distance of

centroid of the area from the neutral axis. Hence 
Σy a

A

δ
 = 0 means the neutral axis coincides with

the centroid of the cross-section.

10.4 MOMENT CARRYING CAPACITY OF A SECTION

From bending equation, we have
M

I

f

y
=

i.e., f = 
M

I
 y ...(i)

Hence bending stress is maximum, when y is maximum. In other words, maximum stress occurs
in the extreme fibres. Denoting extreme fibre distance from neutral fibre as ymax equation (i) will be

 fmax = 
M

I
 ymax ...(ii)

In a design fmax is restricted to the permissible stress in the material. If fper is the permissible
stress, then from equation (ii),

fper = 
M

I
 ymax

∴  M = 
I

ymax

 fper

The moment of inertia I and extreme fibre distance from neutral axis ymax are the properties of

section. Hence I

ymax

 is the property of the section of the beam. This term is known as modulus of

section and is denoted by Z. Thus
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Z = 
I

ymax

...(10.4)

and M = fper Z ...(10.5)

Note : If moment of inertia has unit mm4 and ymax has mm, Z has the unit mm3.

The eqn. (10.5) gives permissible maximum moment on the section and is known as moment
carrying capacity of the section. Since there is definite relation between bending moment and the
loading given for a beam it is possible to find the load carrying capacity of the beam by equating
maximum moment in the beam to moment carrying capacity of the section. Thus

Mmax = fper Z ...(10.6)
If permissible stresses in tension and compressions are different for a material, moment carrying

capacity in tension and compression should be found separately and equated to maximum values of
moment creating tension and compression separately to find the load carrying capacity. The lower
of the two values obtained should be reported as the load carrying capacity.

10.5 SECTION MODULI OF STANDARD SECTIONS

Section modulus expressions for some of the standard sections are presented below:
(i) Rectangular section: Let width be ‘b’ and depth be ‘d’ as shown in Fig. 10.4.

Since N-A is in the mid depth

ymax = d/2

 I = 1

12
3bd

∴ Z = 
I

y

bd

dmax

/

/
= 1 12

2

3

i.e., Z = 1/6 bd2 ...(10.7)

(ii) Hollow rectangular section. Figure 10.5 shows a typical
hollow rectangular section with symmetric opening. For
this,

I = 
BD bd

BD bd
3 3

3 3

12 12

1

12
− = −( )

ymax = D/2

∴ Z = 
I

ymax

 = 
1

12 2

3 3( )BD bd

D

−
/

i.e. Z = 
1
6

BD bd
D

3 3−
...(10.8)

bb

ymaxymax

N
G

d/2d/2

d/2d/2

A

Fig. 10.4

BB

bb

dd
G

ymaxymax D/2D/2

D/2D/2

AN

Fig. 10.5
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(iii) Circular section of diameter ‘d’. Typical section is shown in Fig. 10.6. For this,

I = 
π
64

 d4

ymax = d/2

∴  Z = 
I

y

d

dmax

/

/
= π 64

2

4

i.e., Z = 
π
32

d3

(iv) Hollow circular tube of uniform section. Referring to Fig. 10.7,

 I = 
π π
64 64

4 4D d−

= 
π
64

 (D4 – d4)

ymax = D/2

∴  Z = 
I

y

D d

Dmax

( )

/
= −π

64 2

4 4

i.e., Z = 
π
32

D d
D

4 4−
...(10.9)

(v) Triangular section of base width b and height ‘h’. Referring to Fig. 10.8,

I = 
bh3

36

 ymax =  
2

3
h

∴ Z = 
I

y

bh

hmax

/

/
=

3 36

2 3

i.e., Z = 
bh2

24
...(10.10)

Example 10.1. A simply supported beam of span 3.0 m has a cross-section 120 mm × 180 mm. If
the permissible stress in the material of the beam is 10 N/mm2, determine

(i) maximum udl it can carry

(ii) maximum concentrated load at a point 1 m from support it can carry.

Neglect moment due to self weight.

y = d/2maxy = d/2max

N A

d

G

Fig. 10.6

ymaxymax

N
G

A
dd DD

Fig. 10.7

N
G

bb

y = 2h/3maxy = 2h/3max

hh

A

Fig. 10.8
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Solution:

Here b = 120 mm, d = 180 mm, I = 
1

12
 bd3, ymax = 

d

2

∴  Z = 
1

6
2bd

= 
1

6
120 1802× ×  = 648000 mm3

fper = 10 N/mm2

∴ Moment carrying capacity of the section
= fper × Z

= 10 × 648000 N-mm
(i) Let maximum udl beam can carry be w/metre length as shown in Fig. 10.9.

In this case, we know that maximum moment occurs at mid span and is equal to Mmax = 
wL2

8
.

Equating it to moment carrying capacity, we get,

w × 3
8

2

 × 106 = 10 × 648000

∴  w = 5.76 kN/m.
(ii) Concentrated load at distance 1 m from the sup-

port be P kN. Referring to Fig. 10.10.

Mmax = 
P a b

L

P× × = × ×1 2

3

 = 
2

3

P
 kN-m

 = 
2

3
106P ×  N-mm

Equating it to moment carrying capacity, we get

 
2

3
106P ×  = 10 × 648000

∴  P = 9.72 kN-m.

Example 10.2. A circular steel pipe of external diameter 60 mm and thickness 8 mm is used as a
simply supported beam over an effective span of 2 m. If permissible stress in steel is 150 N/mm2,
determine the maximum concentrated load that can be carried by it at mid span.

Solution:
External diameter  D = 60 mm
Thickness = 8 mm

Fig. 10.9

Fig. 10.10

w/m

3 m3 m

P

a = 1ma = 1m b = 2 mb = 2 m

L = 3 mL = 3 m
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8 mm

60 mm60 mm

P = ?

2 m2 m

(a) (b)

Fig. 10.11

∴ Internal diameter = 60 – 2 × 8 = 44 mm.

 I = 
π
64

 (604 – 444) = 452188 mm4

 ymax = 30 mm.

∴ Z = 
I

ymax

= 452188

30
 = 15073 mm3.

Moment carrying capacity

 M = fper Z = 150 × 15073 N-mm.

Let maximum load it can carry be P kN.

Then  maximum moment = 
PL

4

= 
P × 2

4
 kN-m

= 0.5 P ×106 N-mm.

Equating maximum bending moment to moment carrying capacity, we get

0.5P × 106 = 150 × 15073

∴ P = 4.52 kN.

Example 10.3: Figure 10.12 (a) shows the cross-section of a cantilever beam of 2.5 m span. Material
used is steel for which maximum permissible stress is 150 N/mm2. What is the maximum uniformly
distributed load this beam can carry?

Solution: Since it is a symmetric section, centroid is at mid depth.

 I = MI of 3 rectangles about centroid
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180 mm180 mm 10 mm

10 mm

10 mm
400 mm400 mm

w/m = ?

2 m2 m

(a) (b)

Fig. 10.12

= 
1

12
180 103× ×  + 180 × 10 (200 – 5)2

+ 
1

12
10 400 20 3× × −( )  + 10 × (400 – 20) × 02

+ 
1

12
 × 180 × 103 + 180 × 10 (200 – 5)2

= 182.6467 × 106 mm4

[Note: Moment of above section may be calculated as difference between MI of rectangle of size 180 × 400
and 170 × 380. i.e.,

I = 
1

12
 × 180 × 4003 – 

1

12
170 3803× ×

ymax = 200 mm.

∴  Z = 
I

ymax

= ×182.6467 10

200

6

 = 913233 mm3.

∴ Moment carrying capacity

= fper × Z

= 180 × 913233

= 136985000 N-mm.

If udl is w kN/m, maximum moment in cantilever

= wL = 2w kN-mm

= 2w × 106 N-mm

Equating maximum moment to movement carrying capacity of the section, we get

 2w × 106 = 136985000

∴ w = 68.49 kN/m
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Example 10.4. Compare the moment carrying capacity of the section given in example 10.3 with
equivalent section of the same area but

(i) square section

(ii) rectangular section with depth twice the width and

(iii) a circular section.

Solution:
Area of the section = 180 × 10 + 380 × 10 + 180 × 10

= 7400 mm2

(i) Square section

If ‘a’ is the size of the equivalent square section,

a2 = 7400 ∴ a = 86.023 mm.
Moment of inertia of this section

= 
1

12
 × 86.023 × 86.0233

= 4563333 mm4

 Z = 
I

ymax . /
= 4563333

86 023 2
 = 106095.6 mm3

Moment carrying capacity = f Z = 150 ×  106095.6

= 15.914 × 106 N-mm

∴
Moment carrying capacity of I section

Moment carrying capacity of equivalent square section
 = 

136985000

15.914 106×
  = 8.607.

(ii) Equivalent rectangular section of depth twice the width.

Let b be the width
∴ Depth d = 2b.

Equating its area to area of I-section, we get
 b × 2b = 7400

 b = 60.8276 mm
 ymax = d/2 = b = 60.8276

 M = f 
I

y

b b

bmax

( )= × × ×
150

1

12

2 3

= 150 × 
8

12
 b3 = 150 × 

8

12
 × 60.82763

= 22506193 N-mm.

∴
Moment carrying capacity of I section

Moment carrying capacity of this section
= 136985000

22506193
 = 6.086.
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(iii) Equivalent circular section.

Let diameter be d.

Then,  
πd 2

4
 = 7400

  d = 97.067

 I = 
π

64
 d4

 ymax = d/2

∴   Z = 
I

y
d

max

= π
32

3.

 M = fper Z = 150 × 
π
32

 × 97.0673 = 13468024

∴ Moment carrying capacity of I section
Moment carrying capacity of circular section

= 136985000

13468024
 = 10.17.

[Note. I section of same area resists more bending moment compared to an equivalent square, rectangular or
circular section. Reason is obvious because in I-section most of the area of material is in heavily stressed zone.]

Example 10.5. A symmetric I-section of size 180 mm × 40 mm, 8 mm thick is strengthened with 240
mm × 10 mm rectangular plate on top flange as shown is Fig. 10.13. If permissible stress in the
material is 150 N/mm2, determine how much concentrated load the beam of this section can carry
at centre of 4 m span. Given ends of beam are simply supported.

Solution: Area of section A

= 240 × 10 + 180 × 8 + 384 × 8 + 180 × 8 = 8352 mm2

240 mm240 mm

10 mm

400 mm400 mm

8 mm thick

180 mm180 mm

Fig. 10.13

Let centroid of the section be at a distance y from the bottom most fibre. Then

 A y  = 240 × 10 × 405 + 180 × 8 × (400 – 4) + 384 × 8 × 200 + 180 × 8 × 4
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i.e., 8352 y  = 2162400

∴  y  = 258.9 mm

 I = 
1

12
 × 240 × 103 + 240 × 10 (405 – 258.9)2

+ 
1

12
× 180 × 83 + 180 × 8 (396 – 258.9)2

+ 
1

12
 × 8 × 3843 + 8 × 384 (200 – 258.9)2

+ 
1

12
180 83× ×  + 180 × 8 (4 – 258.9)2

= 220.994 × 106 mm4

∴ ytop = 405 – 258.9 = 146.1 mm

ybottom = 258.9 mm.
∴ ymax = 258.9 mm

∴  Z = 
I

ymax

.

.
= ×220 994 10

258 9

6

  = 853588.3

∴ Moment carrying capacity of the section
= fper Z = 150 × 853588.3
= 128038238.7 N-mm

= 128.038 kN-m.
Let P kN be the central concentrated load the simply supported beam can carry. Then max

bending movement in the beam

= 
P × 4

4
 = P kN-m

Equating maximum moment to moment carrying capacity, we get

P = 128.038 kN.
Example 10.6. The cross-section of a cast iron beam is as shown in Fig. 10.14(a). The top flange
is in compression and bottom flange is in tension. Permissible stress in tension is 30 N/mm2 and its
value in compression is 90 N/mm2. What is the maximum uniformly distributed load the beam can
carry over a simply supported span of 5 m?

Solution:
Cross-section area A = 75 × 50 + 25 × 100 + 150 × 50

= 13750 mm2

Let neutral axis lie at a distance y  from bottom most fibre. Then

 Ay  = 75 × 50 × 175 + 25 × 100 × 100 + 150 × 50 × 25

13750 × y  = 1093750

∴  y  = 79.54 mm
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75 mm75 mm

150 mm150 mm

25

50 mm50 mm

50 mm50 mm

100 mm100 mm

–y–y

ft

fc

(a) (b)

Fig. 10.14

∴ I = 
1

12
 × 75 × 503 + 75 × 50 (175 – 79.54)2

+ 
1

12
 × 25 × 1003 + 25 × 100 (100 – 79.54)2

+ 
1

12
 × 150 × 503 + 150 × 50 (25 – 79.54)2

= 61.955493 × 106 mm4.
Extreme fibre distances are

 ybottom = y  = 79.54 mm.

ytop = 200 – y  = 200 – 79.54 = 120.46 mm.

Top fibres are in compression. Hence from consideration of compression strength, moment
carrying capacity of the beam is given by

M1 = fper in compression × 
I

ytop

= 90 × 
61955493 10

120

6.
.46

×

  = 46.289178 × 106 N-mm

= 46.289178 kN-m.
Bottom fibres are in tension. Hence from consideration of tension, moment carrying capacity of

the section is given by

  M2 = fper in tension × 
I

ybottom
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= 
30 61.955493 10

79.54

6× ×

= 21.367674 × 106 N-mm

= 21.367674 kN-m.
Actual moment carrying capacity is the lower value of the above two values. Hence moment

carrying capacity of the section is
= 21.367674 kN-m.

Maximum moment in a simply supported beam subjected to udl of w/unit length and span L is

= 
wL2

8

Equating maximum moment to moment carrying capacity of the section, we get maximum load
carrying capacity of the beam as

w × 
5
8

2

 = 21.367674

∴ w = 6.838 kN/m.

Example 10.7. The diameter of a concrete flag post varies from 240 mm at base to 120 mm at top
as shown in Fig. 10.15. The height of the post is 10 m. If the post is subjected to a horizontal force
of 600 N at top, find the section at which stress is maximum. Find its value also.

Solution: Consider a section y metres from top. Diameter at this section is

  d = 120 + 
y

10
 (240 – 120)

 = 120 + 12y mm

∴  I = 
π
64

 d4

Z = 
I

d
d

/2 32
3= π

= 
π
32

 [120 + 12y]3

At this section, moment is given by
 M = 600 y N-m

= 600000 y N-mm.
Equating moment of resistance to moment at the section, we get

f Z = M

where f is extreme fibre stress

∴ f . π
32

 [120 + 12y]3 = 600000 y

∴  f = 600000 × 32 
y

yπ [ ]120 12 3+

Fig. 10.15

120 mm

240 mm240 mm

10 m10 m

ymym
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For ‘f ’ to be maximum,
df

dy
 = 0

600000 × 32 [(120 + 12y)–3 + y(– 3) (120 + 12y)–4 × 12] = 0
i.e., (120 + 12y)–3 = 36 (120 + 12y)–4 y

i.e.,   1 = 36 (120 + 12y)–1 y

i.e., 120 + 12y = 36y

∴  y = 5 m.
Stress at this section f is given by

f = 600000 × 32 × 
5

120 12 5 3π ( )+ ×

f = 5.24 N/mm2.
Example 10.8. A circular log of timber has diameter D. Find the dimensions of the strongest
rectangular section one can cut from this.

Solution: Let the width and depth of strongest section that can be cut from
the log be ‘b’ and ‘d’ respectively. Then,

D2 = b2 + d2

or   d2 = D2 – b2

For rectangular section

I = 
1

12
3bd

ymax =  d/2.

∴  z = 
I

ymax

= 1

6
 bd2

 = 
1

6
 b (D2 – b2) = 

1

6
 (bD2 – b3)

The beam is strongest if section modulus is maximum. Hence the condition is

dz

db
 = 0

1

6
 [D2 – 3b2] = 0

i.e.,  D2 = 3b2

or  b = 
D

3
.

∴ d = ( ) /D b D
D

D2 2 2
2

3
2 3− = − =

Thus the dimensions of strongest beam

 = 
D
3

 wide × 2/3  D deep.

Fig. 10.16

D dd

bb
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10.6 PROPORTIONING SECTIONS

In designing beams, span of the beam is known and load expected on the beam can be estimated.
Hence bending moment to be resisted by the beam can be calculated. A designer has to select suitable
section of the beam of desirable materials. Theoretically speaking, the section required changes along
the span. Usually uniform sections are used. Hence the section selected should be capable of resisting
the maximum moment. In case of circular sections we may find the diameter required, since section
modulus required depends only on diameter. In case of rectangular sections, section modulus depends
upon width and depth. Hence usually width is assumed and depth is calculated or else ratio of width
to depth is assumed and section is selected. For steel sections, Indian Standard Hand Book may be
used to identify standard section that satisfies the required section modulus value. This process of
proportioning sections is known as Design. The design process is illustrated with the following
examples:
Example 10.9. Design a timber beam is to carry a load of 5 kN/m over a simply supported span of
6 m. Permissible stress in timber is 10 N/mm2. Keep depth twice the width.

Solution:
w = 5 kN/m, L = 6 m.

∴ Maximum bending moment

= 
wL2 2

8

5 6

8
= ×

 = 22.5 kN-m

= 22.5 × 106 N-mm
Let b be the width and d the depth. Then in this problem d = 2b

∴  Z = 
1

6
 bd2 = 

1

6
 × b (2b)2

= 
2

3
 b3

f = 10 N/mm2 (given)

Hence design requirement is
f Z = M

i.e.,  10 × 
2
3

 b3 = 22.5 × 106

∴  b = 150 mm.

∴  d = 2b = 300 mm.
Use 150 mm × 300 mm section.

Example 10.10. A cantilever of 3 m span, carrying uniformly distributed load of 3 kN/m is to be
designed using cast iron rectangular section. Permissible stresses in cast iron are f = 30 N/mm2 in
tension and fc = 90 N/mm2 in compression. Proportion the section suitably.

Solution:
Span of cantilever = 3 m  w = 3 kN/m

∴ Maximum moment = 
wL2 2

2
3 3

2
= ×

 = 13.5 kN-m

= 13.5 × 106 N-mm
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Let b be the width and d the depth.

∴ Z = 
1

6
 bd2

Since it is rectangular section, N-A lies at mid-depth, and stresses at top and bottom are same.
Hence, permissible tensile stress value is reached earlier and it governs the design.

fper = 30 N/mm2

∴ Design condition is

f Z = M

30 × 
1

6
 bd2 = 13.5 × 106

bd2 = 2700000

Using b = 100 mm, we get

 d2 = 
2700000

100

∴  d = 164.3 mm

Use 100 mm wide and 165 mm deep section.

Example 10.11. A circular bar of simply supported span 1 m has to carry a central concentrated
load of 800 N. Find the diameter of the bar required, if permissible stress is 150 N/mm2.
Solution: Let the diameter of the bar be ‘d’. Now, W = 800 N L = 1 m = 1000 mm.

∴ Maximum moment = 
WL

4

= 
800 1000

4

×
 = 200000 N-mm

 f = 150 N/mm2

 Z = 
π
32

 d3

∴ Design condition is,

150 × π
32

 d3 = 200000

∴  d = 23.8 mm

Select 25 mm bar (which is available in market)

10.7 SHEAR STRESS DISTRIBUTION

In the 9th chapter we have seen that in a beam bending moment as well as shearing forces act. Shear
force gives rise to shearing stresses in the beam. In this article expression for shearing stress is
derived and its variation across the section is discussed. A designer has to see that  the beam is safe
not only in bending but in shear also.
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10.7.1 Expression for Shear Stress

Consider an elemental length ‘δx’ of beam shown in Fig. 10.17 (a). Let bending moment at section
A-A be M and that at section B-B be M + δM. Let CD be an elemental fibre at distance y from neutral
axis and its thickness be δy. Then,

Bending stress on left side of elemental fibre

= 
M

I
 y

M

A B

M + M�

C D �y
y

A B
�x�xx

bb

�y
y

ytyt

(a) (b)

C D

q

C D

M
I

yb dy M + M�
I

yb dy

(c)

Fig. 10.17

∴ The force on left side of element

= 
M

I
 y b δy

Similarly, force on right side on elemental fibre

= M M

I

+ δ  y bdy

∴ Unbalanced horizontal force on right side of elemental fibre

= 
M M

I

+ δ
 y bδy – 

M

I
 y bδy

= 
δM

I
 yb δy

There are a number of such elemental fibres above CD. Hence unbalanced horizontal force on
section CD
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= 
dM

Iy

yt

�  y b δy

= 
dM

Iy

yt

�  y b dy = 
δM

I
yb dy

y

yt

�
Let intensity of shearing stress on element CD be q. [Refer Fig. 10.17 (c)]. Then equating

resisting shearing force to unbalanced horizontal force, we get

 q b δx = 
δM

I
yb dy

y

yt

�

∴ q = 
δ
δ
M

x bI
yb dy

y

yt1
�

As δx → 0, q = 
dM

dx bI

1
 (a y )

where a y  = Moment of area above the section under consideration about neutral axis.

But we know
dM
dx

 = F

∴ q = 
F
bI

 (a y ) ...(10.11)

The above expression gives shear stress at any fibre y distance above neutral axis.

10.7.2 Variation of Shear Stresses Across Standard Sections

Variation of shear stresses across the following three cases are discussed below:
(i) Rectangular

(ii) Circular and

(iii) Isosceles triangle.

(i) Rectangular section. Consider the rectangular section of width ‘b’ and depth shown in Fig.
10.18(a). Let A-A be the fibre at a distance y from neutral axis. Let the shear force on the
section be F.

Ad/2d/2

d/2d/2

A

y

bb

Parabolic
variation

q = 1.5 qmax av

(a) (b)

Fig. 10.18
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From equation (10.11), shear stress at this section is

q = 
F

bI
 (a y )

where (a y ) is the moment of area above the section about the neutral axis. Now,

a = b(d/2 – y)

y  = y + 
1

2
 (d/2 – y) = 

1

2
 (d/2 + y)

∴ a y  = 
b

2
 (d/2 – y) × 

1

2
 (d/2 + y)

 = 
b

2
 (d2/4 – y2)

I = 
1

12
 bd3

∴ q = 
F

b bd

b
1

12
23

 (d2/4 – y2)

= 
6

3

F

bd
 (d2/4 – y2)

This shows shear stress varies parabolically.

When y = ± d/2, q = 0

At y = 0, qmax = 
6

3

F

bd
 

d 2

4
 = 1.5 

F

bd

= 1.5 qav

where qav = 
F

bd
 is average shear stress.

Thus in rectangular section maximum shear stress is at neutral axis and it is 1.5 times average
shear stress. It varies parabolically from zero at extreme fibres to 1.5 qav at mid depth as shown in
Fig. 10.18(b).

(ii) Circular section. Consider a circular section of diameter ‘d’ as shown in Fig. 10.19 (a) on
which a shear force F is acting. Let A-A be the section at distance ‘y’ from neutral axis at
which shear stress is to be found. To find moment of area of the portion above A-A about
neutral axis, let us consider an element at distance ‘z’ from neutral axis. Let its thickness be
dz. Let it be at an angular distance φ and A-A be at angular distance θ as shown in figure.
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y
A�

	
Z

A

dz

b/2b/2 b/2b/2

dd

Neutral
axis

d/2d/2

d/2d/2

Parabolic
variation

q = 4/3 qmax av

(a) (b)

Fig. 10.19

Width of element b = 2. d

2
 cos φ

 = d cos φ

z = d

2
 sin φ

∴  dz = d

2
 cos φ dφ

∴ Area of the element

a = bdz = d cos φ . 
d

2
 cos φ dφ

= 
d2

2
 cos2 φ dφ

Moment of this area about neutral axis
 = area × z

= 
d 2

2
 cos2 φ dφ d

2
 sin φ

= 
d 3

4
 cos2 φ sin φ dφ

∴ Moment of area about section A-A about neutral axis

(a y ) = 
θ

π/ 2 2

4�
d  cos2 φ sin φ dφ

= 
d3 3 2

4 3

−�

�
�

�

�
�

cos
/

φ

θ

π

[Since if cos φ = t, dt = – sin φ dφ and – t3/3 is integration]
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∴ (a y ) = 
d3

4 3×
 − +�
��

�
��

cos cos2 3

2

π θ

= 
d

12
 cos3 θ

Now  I = 
πd 4

64

∴ q = 
F

bI
 (a y )

= F

d d

d

cos θ π
64

124

3

×  cos3 θ

= 64

12 2

F

dπ
 cos2 θ

= 
16

3
 

F

dπ 2  [1 – sin2 θ]

= 
16

3 2

F

dπ
 1

2

2

−
�
	


�
�


�

�
�
�

�

�
�
�

y

d /

= 
16

3
1

4
2

2

2

F

d

y

dπ
−
�

�
�

�

�
�

Hence shear stress varies parabolically.

At y = ± d/2, q = 0

y = 0, q = qmax = 
16

3 2

F

dπ

= 
4

3 4 2

F

dπ /

= 
4

3 Area

F

= 
4

3
 qav.

where qav = average shear stress.
Thus in circular sections also shear stress varies parabolically from zero at extreme edges to the

maximum value of 4

3
 qav at mid depth as shown in Fig. 10.19(b).
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(iii) Isosceles triangular section. Consider the isosceles triangular section of width ‘b’ and

height ‘h’ as shown in Fig. 10.20(a). Its centroid and hence neutral axis is at 2

3

h  from top

fibre. Now shear stress is to be found at section A-A which is at a depth ‘y’ from top fibre.

b
b


2y/32y/3yy

gg

G

bb

2h/32h/3

h/3h/3

hh

2h/32h/3
h/2h/2

q = 1.5qmax av

q = 4/3qcentroid av

(a) (b)

Fig. 10.20

At A-A width b′ = 
y
h

b

Area above A-A a = 
1

2
 b′y

 = 
1

2
2b

h
y

Its centroid from top fibre is at 2

3

y .

∴ Distance of shaded area above the section A-A from neutral axis y  = 
2

3

2

3

h y− .

∴  a y  = 
1

2

b

h
 y2 

2

3

2

3

h y−�
	

�
�

 = 
1

3

b

h
 y2 (h – y)

Moment of inertia of the section

 I = 
bh3

36
.
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∴ Shear stress at A-A

  q = 
F

bI
 a y

= 
F

y
h

b
bh

b

h×
×3

36

1

3
 y2 (h – y)

= 
12

3

F

bh
 y(h – y)

Hence at y = 0, q = 0
At y = h, q = 0

At centroid,  y = 
2

3

h

q = 
12 2

33

F

bh

h
 (h – 2h/3)

= 
8

3

F

bh
 = 

4

3
 

F

bh1 2/

= 
4

3
 qav

where qav is average shear stress.

For qmax, 
dq

dy
 = 0

i.e.,
12

3

F

bh
 (h – 2y) = 0

i.e., at y = h/2

and hence qmax = 
12

23

F

bh

h
.  (h – h/2)

= 
12

4

3F

bh

F

bh
=

= 
1 5

1 2

. F

bh/

= 1.5 qav.
Thus in isosceles triangular section shear stress is zero at extreme fibres, it is maximum of 1.5

qav at mid depth and has a value 
4

3
 qav at neutral axis. The variation of shear stress is as shown in

Fig. 10.20(b).
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10.8 SHEAR STRESSES IN BUILT-UP SECTIONS

In sections like I, T and channel, shear stresses at various salient points are calculated and the shear
stress variation diagram across depth is plotted. It may be noted that at extreme fibres shear stress
is zero since (a y ) term works out to be zero. However it may be noted that the procedure explained
below is for built up section with at least one symmetric axis. If there is no symmetric axis along
the depth analysis for shear stress is complex, and that is treated beyond the scope to this book.

Example 10.12. Draw the shear stress variation diagram for the I-section shown in Fig. 10.21(a)
if it is subjected to a shear force of 100 kN.

180 mm180 mm

10 mm

10 mm

80 mm80 mm

10 mm

400 mm400 mm

19.217
1.068

29.10

(a) (b)

Fig. 10.21

Solution: Due to symmetry neutral axis is at mid depth.

I = 
1

12
 × 180 × 103 + 180 × 10 × (200 – 5)2

+ 
1

12
 × 10 × 3802 + 10 × 380 × (200 –200)2

+ 
1

12
 × 180 × 103 + 180 × 10 × (200 – 5)2

 = 182.646666 × 106 mm4

Shear stress at y = 200 mm is zero since a y  = 0.

Shear stress at bottom of top flange

 = 
F

bI
 (a y )
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= 
100 1000

180 182 646666 10
180 10 1956

×
× ×

× × ×
.

( )

= 1.068 N/mm2

Shear stress in the web at the junction with flange

= 
100 1000

10 182 646666 106

×
× ×.

 (180 × 10 × 195)

= 19.217 N/mm2

Shear stress at N-A

= 
100 1000

10 182 646666
180 10 195 10 200 10

190

2

×
×

× × × + × − ×�
��

�
��.

( )

= 29.10 N/mm2.

Symmetric  values  will  be  there  on  lower  side.  Hence  shear  stress  variation is as shown
in Fig. 10.21(b).

Example 10.13. A beam has cross-section as shown in Fig. 10.22(a). If the shear force acting on
this is 25 kN, draw the shear stress distribution diagram across the depth.

120 mm120 mm

12 mm

12 mm

120 mm120 mm

2.9 N/mm
2

29 N/mm
2

31.17 N/mm
2

(a) (b)

Fig. 10.22

Solution: Let y  be the distance of centroid of the section from its top fibre. Then

 yt = 
Moment of area about top fibre

Total area

= 
120 12 6 + (120 12) 12× × − × × + −�

	
�
�

× + − ×

12
120 12

2
120 12 120 12 12( )

= 34.42 mm
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∴ Moment of inertia about centroid

I = 
1

12
 × 120 × 123 + 120 × 12 (34.42 – 6)2

+ 
1

12
 × 12 × 1083 + 12 × 108 34

108

2

2

.42 −�
	

�
�

= 2936930 mm4

Shear stresses are zero at extreme fibres.

Shear stress at bottom of flange:

Area above this level, a = 120 × 12 = 1440 mm2

Centroid of this area above N-A

 y  = 34.42 – 6 = 28.42 mm

Width at this level b = 120 mm.

∴ qbottom of flange = 
25 1000

120 2936930

×
×

 × 1440 × 28.42

= 2.90 N/mm2

Shear stress at the same level but in web, where width b = 12 mm

= 
25 1000

12 2936930

×
×

 × 1440 × 28.42

= 29.0 N/mm2

Shear stress at neutral axis:

For this we can consider a y  term above this section or below this section. It is convenient to
consider the term below this level.

a = 12 × (120 – 34.42) = 1026.96 mm2

The distance of its centroid from N-A

= 
120 34

2

− .42
 = 42.79 mm.

Width at this section b = 12 mm.

∴  q = 
25 1000

12 2936930

×
×

 × 1026.96 × 42.79

= 31.17 N/mm2

Hence variation of shear stress across the depth is as shown in Fig. 10.22(b).
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Example 10.14. The unsymmetric I-section shown in Fig. 10.23(a) is the cross-section of a beam,
which is subjected to a shear force of 60 kN. Draw the shear stress variation diagram across the
depth.

100 mm100 mm

ytyt
20 mm

150 mm150 mm

160160

20

20

200 mm200 mm

2.61 N/mm
2

13.03 N/mm
2

18.37 N/mm
2

15.24 N/mm
2

2.04 N/mm
2

(a) (b)

Fig. 10.23

Solution: Distance of neutral axis (centroid) of the section from top fibre be yt. Then

 yt = 

100 20 10 200 20 20 20 20
60
2

150 20 200 10

100 20 160 20 150 20

× × + − − × × + 1�
	

�
�

+ × × −
× + × + ×

( )

( )

 = 111 mm

I = 1

12
 × 100 × 203 + 100 × 20 (111 – 10)2

+ 1

12
 × 20 × 1603 + 160 × 20 (111 – 100)2

+ 1

12
 × 150 × 203 + 150 × 20 (111 – 190)2

 = 46505533 mm4

Shear stress at bottom of top flange

= 
F

bI
 a y

= 
60 1000

100 46505533

×
×

 × 100 × 20 × (111 – 10)

= 2.61 N/mm2

∴ Shear stress at the same level, but in web

= 
60 1000

20 46505533

×
×

 × 100 × 20 (111 – 10)

= 13.03 N/mm2
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Shear stress at neutral axis:

a y  = a y  of top flange + a y  of web above N-A

= 100 × 20 × (111 – 10) + 20 × (111 – 20) × 
111 20

2

−

 = 284810 mm3.

∴ Shear stress at neutral axis

 = 
F

bI
 (a y )

 = 
60 1000

20 46505533

×
×

 × 284810

 = 18.37 N/mm2.
Shear stress at junction of web and lower flange:

Considering the lower side of the section for finding a y , we get

a y  = 150 × 20 × (190 – 111) = 237000 mm3

∴ q = 
60 1000

20 46505533

×
×

 × 237000

= 15.28 N/mm2

At the above level but in web, shear stress

 = 
60 1000

150 46505533

×
×

 × 237000

= 2.04 N/mm2

At extreme fibres shear stress is zero. Hence variation of shear across the depth of the section
is as shown in Fig. 10.23.

IMPORTANT FORMULAE

1. Bending equation: 
M

I

f

y

E

R
= = .

2. Modulus of section Z = 
I

ymax

.

3. Moment carrying capacity of section = fper Z.
4. Section modulus of various sections:

(i) Rectangular: 1

6
 bd2 (ii) Hollow rectangular: 1

6

3 3BD bd

D

−

(iii) Solid circular section: 
π
32

d3 (iv) Hollow circular section: π
32

4 4D d

D

−

(v) Solid triangular section: bh2

24
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5. Shear stress in a beam q = 
F

bI
ay( )

6. In rectangular sections,
 qmax = 1.5 qav, at y = d/2

In circular sections  qmax = 
4

3
 qav , at centre

In triangular section, qmax = 1.5 qav, at y = 
h

2
.

THEORY QUESTIONS

1. State the assumptions made in deriving bending equation.

2. Derive the bending equation M
I

F
Y

E
R

= =  with usual meaning.

3. Derive the expression for finding shear stress in a beam in the form q = 
F

bI
ay( ) with usual nota-

tions.
4. Show that maximum shear stress in a beam of rectangular section is 1.5 qaverage.

5. Show that in a beam of solid circular section maximum shear stress is 
4

3
 × q average.

6. Draw the variation of shear stresses across the depth of a beam of triangular section, finding the
values at critical depths.

PROBLEMS FOR EXERCISE

1. A I-section has flanges of size 200 × 12 mm and its overall depth is 360 mm. Thickness of web
is also 12 mm. It is used as a simply supported beam over a span of 4 m to carry a load of
60 kN/m over its entire span. Draw the variation of bending and shearing stresses across the depth.

117.8 N/mm
2

117.8 N/mm
2

1.37 N/mm
2

22.78 N/mm
2

32.02 N/mm
2

(a) Variation of bending stress (b) Variation of shear stress

Fig. 10.24
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2. Unsymmetric I-section shown in Fig. 10.25 is used as a cantilever of span 2 m to carry uni-
formly distributed load of 6 kN/m over entire span. Draw the variation of bending stress across
the depth marking the values at salient point.

120 mm120 mm

10 mm

10 mm

10 mm

240 mm240 mm

180 mm180 mm

133.27133.27

33.56 N/mm
2

31.04 N/mm
2

23.10 N/mm
2

26.88 N/mm
2

(a) (b)

Fig. 10.25

3. Calculate the variation of shear stresses at various salient level near fixed support in the above
problem and give the sketch. [Ans. See Fig. 10.26]

0.32 N/mm
2

133.27
mm

133.27
mm

3.87 N/mm
2

5.79 N/mm
2

0.26 N/mm
2

4.61 N/mm
2

Fig. 10.26

4. A cantilever beam of 1.2 m span is having cross-section as shown in Fig. 10.27. The permissible
stresses in tension and compressions are 20 N/mm2 and 80 N/mm2 respectively. Determine the
maximum concentrated load W it can carry at the free end.  [Ans. W = 44.576 kN]

[Note: In cantilever tension is at top.]
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6060 6060 6060

6060

120120

120120

180180
All dimensions in mm

Fig. 10.27

5. A timber beam is to be designed to carry a load of 6 kN/m over a simply supported span of 5 m.
Permissible stress is 10 N/mm2. Keeping the depth twice the width, design the beam. If the
permissible stress in shear is 1 N/mm2, check for shear.

[Ans. Required b = 141.18, d = 282.31. Hence select 150 × 300 mm section]



11
Principal Stresses and Strains

A structural member need not be always under simple (only one type) of stress. It may be subjected
to direct stresses in different directions and may be subjected to shear stresses also. A beam is usually
subjected to axial stresses due to bending and also for shear stresses. A shaft is subjected to shear
stresses due to torsion and axial stresses due to bending/direct thrust. The stresses may vary from
point to point in the member.

In a three-dimensional system, stresses acting at a point may be represented as shown in Fig. 11.1.

pz

qzx

qzy

qxy

qxz

px

py

qyz

qyx

py

py

pxpx

q
q

q
q

Fig. 11.1 Fig. 11.2

In many engineering problems, two dimensional idealization is made as shown in Fig. 11.2. In
this chapter discussion is limited to two dimensional stress system. First general expression for
stresses on a plane inclined at a selected axis is discussed. Then the terms principal stresses and
planes are explained and the expressions to get them are presented. A number of problems are solved
to make the concept clear. At the end analysis is given for principal strains also.

11.1 STRESSES ON INCLINED PLANES

Consider the element in a structural member which is under a general two dimensional state of stress
as shown in Fig. 11.3(a). Note the sign convention:

+ve face +ve direction is +ve stress for px and py. In other words tensile stresses are +ve.

Shearing stress as shown in the figure is +ve stress.

346
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py

py

pxpx

q

qB
E

C

A
O

D

θ
px

py

CE

D

θpn

pt

(a) (b)

q
q

Fig. 11.3

Now we are interested in finding state of stress on plane DE which makes anticlockwise angle
θ with the plane of stress px, in other words with y-axis.

For simplicity let us consider thickness of the element as unity. We are interested in finding
normal and tangential stresses acting on the plane DE. Let normal stress be pn and tangential stress
pt as shown in Fig. 11.3(b). Since the system is in equilibrium,

Σ Forces normal to DE = 0 gives
   pn × DE × 1 = px × CD × 1 × cos θ + q × CD × 1 × sin θ

+ py × CE × 1 × sin θ + q × CE × 1 × cos θ

∴  pn = px 
CD

DE
 cos θ + py 

CE

DE
 sin θ + q 

CD

DE
 sin θ + q 

CE

DE
cos θ

Since
CD

DE
 = cos θ and

CE

DE
 = sin θ, we get

 pn = px cos2 θ + py sin2 θ + q cos θ sin θ + q sin θ cos θ

= p p qx y
1 2

2

1 2

2
2

+�
�

�
�

+ −�
�

�
�

+cos cos
sin cos

θ θ θ θ ,

since cos2 θ = 
1 2

2

+ cos θ
and sin2 θ = 

1 2

2

− cos θ

Thus  pn = 
p p p p

q
x y x y+

+
−

+
2 2

2 2cos sinθ θ ...(11.1)

Similarly from equilibrium condition of forces tangential to plane DE, we get

      p DEt × × 1 = px × CD × 1 × sin θ – q × CD × 1 × cos θ
– py × CE × 1 × cos θ + q × CE × 1 × sin θ

∴   pt = p
CD

DE
p

CE

DE
q

CD

DE
q

CE

DEx ysin cos cos sinθ θ θ θ− − +

But   
CD

DE
 = cos θ and

CE

DE
 = sin θ.

∴  pt = px sin θ cos θ – py sin θ cos θ – q cos2 θ + q sin2 θ
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 = (px – py) sin θ cos θ – q(cos2 θ – sin2 θ)

= 
p p

qx y−
−

2
2 2sin cosθ θ ,

since 2 sin θ cos θ = sin 2θ
and  cos2 θ – sin2 θ = cos 2θ

Thus

 pt = 
p p

qx y−
−

2
2 2sin cosθ θ ...(11.2)

Thus in case of a general two dimension stress system the normal and tangential stresses acting
on a plane making anticlockwise angle θ with the plane of px(y direction) are as given by equations
(11.1) and (11.2).

Angle of Obliquity of Resultant Stress

The resultant of the stresses on the above inclined plane can be found as

R = p pn t
2 2+

which is inclined at ‘α’ to the plane (Ref. Fig. 11.3c).

tan α = 
p

p
n

t

In other words, the resultant is inclined at θ + α to the plane  of px.

α

pn

R

pt E Cq

D

py

px

�

Fig. 11.3(c)

11.2 PRINCIPAL STRESSES AND PLANES

The planes on which shearing stresses are zero are called principal planes and the stresses normal
to principal planes are known as principal stresses.

Principal Plane

To locate principal plane

 pt = 0

From eqn. (11.2), 
p px y−

2
 sin 2θ – q cos 2θ = 0
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∴ tan 2θ = 
q

p px y( )/− 2
 = 

2q

p px y−
...(11.3)

There are two values for 2θ which differ by 180° for which
eqn. (11.3) can be satisfied. Let 2θ1 and 2θ2 be the solution.
Referring to Fig. 11.4, we find

 sin 2θ1 = 
2

42 2

q

p p qx y( )− +
...(11.4a)

 cos 2θ1 = 
p p

p p q

x y

x y

−

− +( )2 24
...(11.4b)

Similarly,

 sin 2θ2 = 
−

− +

2

42 2

q

p p qx y( )
...(11.5a)

and  cos 2θ2 = 
− −

− +

( )

( )

p p

p p q

x y

x y
2 24

...(11.5b)

2θ1 and 2θ2 differ by 180°. Hence we can say θ1 and θ2 differ by 90°. Thus direction of principal
planes to the plane of pn are given by eqn. (11.4). Another principal plane is at right angles to it.

Principal Stresses

Principal stresses are the normal stresses on principal planes. Hence the values of principal stresses
may be obtained by substitutes θ1 and θ2 values for θ in the expression for pn. Denoting the values
as p1 and p2, we get

 p1 = pn at θ = θ1

= 
p p p px y x y+

+
−

2 2
 cos 2θ1 + q sin 2θ1

= 
p p p p p p

p p q
q

q

p p q

x y x y x y

x y x y

+
+

− −

− +
+

− +2 2 4

2

42 2 2 2( ) ( )

= 
p p p p q

p p q

x y x y

x y

+
+

− +

− +2

1

2

4

4

2 2

2 2

( )

( )

= 
p p

p p q
x y

x y

+
+ − +

2

1

2
42 2( )

= 
p p p p

qx y x y+
+

−�
��

�
��

+
2 2

2
2

and    p2 = pn at θ = θ2

 = 
p p p px y x y+

+
−

2 2
 cos 2θ2 + q sin 2θ2

= 
p p p p p p

p p q

q q

p p q

x y x y x y

x y x y

+
+

− − −

− +
+ −

− +2 2 4

2

42 2 2 2

[ ( )]

( )

( )

( )

Fig. 11.4

(p
– p ) + 4q

x
y

2

2

p – px y

2q

2q
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= 
p p p p q

p p q

x y x y

x y

+
−

− +

− +2

1

2

4

4

2 2

2 2

( )

( )

= 
p p

p p qx y
x y

+
− − +

2

1

2
42 2( )

= 
p p p p

qx y x y+
−

−�
��

�
��

+
2 2

2
2

Thus the principal stresses are given by

p1 = 
p p p p

qx y x y+
+

−�
��

�
��

+
2 2

2
2 ...(11.6a)

and  p2 = 
p p p p

qx y x y+
−

−�
��

�
��

+
2 2

2
2 ...(11.6b)

It can be proved that principal stresses are maximum and minimum stresses also. To find
extreme value of normal stress pn,

dp

d
n

θ
 = 0

i.e.,
p px y−

2
 2(– sin 2θ) + q 2 cos 2θ = 0

i.e.,
p px y−

2
 sin 2θ – q cos 2θ = 0

i.e., pt = 0
Thus the principal planes are the planes of maximum/minimum normal stresses also. Plane

corresponding to θ1 gives the maximum value while plane corresponding to θ2 gives minimum
normal stress.

Plane of Maximum Shear Stress

For maximum shear

dp

d
t

θ θ θ= ′
 = 0

i.e.,
p px y−

2
 . 2 cos 2θ′ – q 2 (– sin 2θ′) = 0

or    tan 2θ′ = 
− −( )p p

q
x y

2
...(11.7)

From eqn. (11.3) and eqn. (11.7), we get

  tan 2θ × tan 2θ′ = –1
Hence 2θ′ and 2θ values differ by 90°. In other word planes of extreme shearing stresses are

at 
90

2
 = 45° to the principal planes.
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Value of maximum shearing stress may be obtained by substituting θ′ for θ in equation for pt
(eqn. 11.2)

Now  tan 2θ′ = 
− −( )p p

q
x y

2

From Fig. 11.5, we get

 sin 2θ′ = 
( )

( )

p p

p p q

x y

x y

−

− +2 24

cos 2θ′ = 
−

− +

2

42 2

q

p p qx y( )

∴  pt (max) = 
p px y−

2
 sin 2θ′ – q cos 2θ′

= 
p p p p

p p q

q q

p p q

x y x y

x y x y

− −

− +
− −

− +2 4

2

42 2 2 2( )

( )

( )

= 
1

2

4

4

2 2

2 2

( )

( )

p p q

p p q

x y

x y

− +

− +

= 
1

2
42 2( )p p qx y− +

= 
p p

qx y−�
��

�
��

+
2

2
2

...(11.8a)

= 
1

2
 the difference between p1 and p2

= 
p p1 2

2

−
...(11.8b)

The direction of principal planes and the planes of maximum shearing stresses may be indicated
as shown in Fig. 11.6(a) or 11.6(b).

x

q
pl

an
e

m
ax

q
plane

max

p = plane1 y

q45°

45°

45°
p -plane2

(a)

x

p2
y

(b)

q

p1

q

Fig. 11.6

Fig. 11.5

(p
– p ) + 4q

x
y

2

2

– 2q

(p – p )x y

2q¢
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Example 11.1. Show that sum of normal stresses in any two mutually perpendicular directions is
constant in case of a general two dimensional stress.

Solution: Let px and py as shown in Fig. 11.3(a) be normal stresses and q be the shearing stresses.
Let the thickness of element be unity.

Taking element as shown in Fig. 11.3(b) and considering the equation of equilibrium in the
direction normal to the plane DE, we get

 pn × 1 × DE = px × 1 × CD cos θ + py × 1 × CE sin θ
 + q × 1 × CD sin θ + q × 1 × CE cos θ

∴  pn = p
CD

DE
p

CE

DE
q

CD

DE
q

CE

DEx ycos sin sin cosθ θ θ θ+ + +

Noting that 
CD

DE
 = cos θ and

CE

DE
 = sin θ, we get

pn = px cos2 θ + py sin2 θ + q cos θ sin θ + q sin θ cos θ

i.e., pn = p px y
1 2

2

1 2

2

+�
�

�
�

+ −�
�

�
�

cos cosθ θ
 + 2q sin θ cos θ

= 
p p p px y x y+

+
−

2 2
 cos 2θ + q sin 2θ ...(1)

If pn′ is the stress on a plane at right angles to CD, θ′ = θ + 90°. Hence from the above general
expression for stress on an inclined plane, we get

pn′ = 
p p p px y x y+

+
−

2 2
 cos 2(θ + 90) + q sin 2(θ + 90)

 = 
p p p px y x y+

−
−

2 2
 cos 2θ – q sin 2θ ...(2)

Adding eqns. (1) and (2), we get

pn + pn′ = px + py

Thus sum of normal stresses in any two mutually perpendicular planes is constant and is equal
to px + py .

Example 11.2. A material has strength in tension, compression and shear as 30N/mm2, 90 N/mm2

and 25 N/mm2, respectively. If a specimen of diameter 25 mm is tested in tension and compression
identity the failure surfaces and loads.

Solution:
(a) In tension: Let axial direction be x direction.
Since it is uniaxial loading,

py  = 0, q = 0 and only px exists.
∴ when the material is subjected to full tensile stress, px = 30 N/mm2.

 p1 = 
30 0

2

30 0

2
0

2
2+ + −�

�
�
�

+  = 30 N/mm2
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 p2 = 
30 0

2

30 0

2
0

2
2+ − −�

�
�
�

+  = 0

qmax = 
p px y−

= −
2

30 0

2
 = 15 N/mm2 < 25 N/mm2.

Hence failure criteria is normal stress p1 = 30 N/mm2.
Corresponding load P is obtained by

p = 
P

A

30 = 
P

( / )π 4 252×
or P = 14726 N.

Failure surface is given by plane of p1 which is as shown in Fig. 11.7.

(b) In case of compression test
 px = – 90 N/mm2, py = q = 0

∴  At failure when px = – 90 N/mm2, load is

 – 90 = 
P

( )π 4 252×
or    P = – 44178 N i.e., 44178 N compressive.

At this stage   qmax = 
p p

qx y−�
��

�
��

+
2

2
2

  = 
− −�
�

�
�

+90 0

2
0

2
2

  = 45 N/mm2 > 25 N/mm2.
∴ Material fails because of maximum shear and not by axial

compression.

 qmax = 
p p

qx y−�
��

�
��

+
2

2
2

 = 
px −�
�

�
�

+0

2
0

2
2

 = 
px

2

∴  px = 2qmax = 2 × 25 = 50 N/mm2.
∴ Corresponding axial load is given by

 50 = 
P

( )π 4 252×
or    P = 24543 N
The plane of qmax is at 45° to the plane of px . This failure surface is shown in Fig. 11.8.

Plane of p1

P

P

Fig. 11.7

Failure plane

px

px

45°

Fig. 11.8
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Example 11.3. The direct stresses at a point in the strained material are 120 N/mm2 compressive
and 80 N/mm2 tensile as shown in Fig. 11.9. There is no shear stress. Find the normal and tangential
stresses on the plane AC. Also find the resultant stress on AC.

30°
A B

D C

120 N/mm2

80 N/mm280 N/mm2

120 N/mm2

(a) (b)

A B

Cpn pta

R

80 N/mm2

120 N/mm2

Fig. 11.9

Solution: The plane AC makes 30° (anticlockwise) to the plane of px (y-axis). Hence θ = 30°.

px = 80 N/mm2 py = – 120 N/mm2 q = 0

∴ pn = 
p p p px y x y+

+
−

2 2
 cos 2θ + q sin 2θ

  = 
80 120

2

80 120

2

− + − −( )
 cos (2 × 30) + 0

  = – 20 + 100 cos 60

Thus     pn = 30 N/mm2

pt = 
p px y−

2
 sin 2θ – q cos 2θ

  = 
80 120

2
2 30 0

− − × −( )
sin ( )

Thus pt = 86.6 N/mm2.

The resultant of pn and pt is given by

 p = p pn t
2 2+  = 30 86 62 2+ .

 p = 91.65 N/mm2

Angle made by the resultant stress with pt is given by tan α = 
p

p
n

t

= 30

86 6.

∴  α = 19.1° as shown in Fig. 11.9(b).
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Example 11.4. The state of stress at a point in a strained material is as shown in Fig. 11.10. Determine

(i) the direction of principal planes

(ii) the magnitude of principal stresses and

(iii) the magnitude of maximum shear stress.

Indicate the direction of all the above by a sketch.

150 N/mm2

100 N/mm2

200 N/mm2

Fig. 11.10

Solution: px = 200 N/mm2  py = 150 N/mm2 q = 100 N/mm2

Let the principal plane make anticlockwise angle θ with the plane of px i.e. with y-axis. Then

tan 2θ = 
2 2 100

200 150

q

p px y−
=

×
−

 = 4

∴ 2θ = 75.96 and 75.96 + 180
∴ θθθθθ = 37.98° and 127.98°

p1 = 
p p p p

q
x y x y+

+
−�

��
�
��

+
2 2

2
2

= 
200 150

2

200 150

2
100

2
2+ + −�

�
�
�

+

 = 175 + 103.08

 p1 = 278.08 N/mm2

and  p2 = 
p p p p

qx y x y+
−

−�
��

�
��

+
2 2

2
2

∴  p2 = 175 – 103.08 = 71.92 N/mm2.

 qmax = 
p p

qx y−�
��

�
��

+
2

2
2

i.e.,  qmax = 103.08 N/mm2
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The planes of maximum shear are at 45° to the principal planes. Principal planes and planes of
maximum shear are shown in Fig. 11.11.

x

qmax plane

qmax plane

p -plane1 y

q45°

45°

45°
p - plane2

Fig. 11.11

Example 11.5. The state of stress in a material stressed to two-dimensional state of stress is as
shown in Fig. 11.12. Determine principal stresses and maximum shear stress and the planes on
which they act.

60 N/mm2

20 N/mm2

80 N/mm2

Fig. 11.12

Solution:

 p1, 2 = 
p p p p

qx y x y+
±

−�
��

�
��

+
2 2

2
2

In this problem,

 px = 80 N/mm2 py = – 60 N/mm2 q = 20 N/mm2.

∴  p1, 2 = 
80 60

2

80 60

2
20

2
2+ − ± − −�

�
�
�

+( ) ( )

= 10 70 202 2± +

= 10 ± 72.8

∴  p1 = 82.8 N/mm2



PRINCIPAL STRESSES AND STRAINS 357

and  p2 = – 62.8 N/mm2

qmax = 
p p

qx y−�
��

�
��

+
2

2
2

= 72.8 N/mm2

Let θ be the inclination of principal stress to the plane of px. Then,

tan 2θ = 
2 2 20

80 60

q

p px y−
= ×

−  = 2

∴ 2θ = 63.44° or 63.44 + 180

∴ θθθθθ = 31.72° or  121.72°
Planes of maximum shear make 45° to the above planes

∴  θ′θ′θ′θ′θ′ = 15.86° and 60.86°

Example 11.6. The state of stress in two-dimensionally stressed body at a point is as shown in
Fig. 11.13(a). Determine the principal planes, principal stresses, maximum shear stress and their
planes

75 N/mm2

100 N/mm2

50 N/mm2

Fig. 11.13(a)

Solution: Let x and y directions be selected as shown in the figure. Then

 px = – 100 N/mm2, py = – 75 N/mm2, q = – 50 N/mm2

∴  p1 = 
p p p p

qx y x y+
+

−�
��

�
��

+
2 2

2
2

= 
− − + − +�

�
�
�

+ −100 75

2

100 75

2
50

2
2( )

= – 87.5 + 51.54
i.e.,  p1 = – 35.96 N/mm2

 p2 = – 
p p p p

qx y x y+
−

−�
��

�
��

+
2 2

2
2



358 MECHANICS OF SOLIDS

= – 87.5 – 51.54

i.e.,  p2 = – 139.04 N/mm2

 qmax = 
p p

qx y−�
��

�
��

+
2

2
2

i.e.,  qmax = 51.51.
Let principal plane of p1 make angle θ with x-axis. Then

tan 2θ = 
2 2 50

100 75

q

p px y−
= −

− +
( )

 = 4

∴ 2θ = 75.96 and 75.96 + 180
or θ = 37.98°  and 127.98°.

The planes of maximum shear stresses are at 45° to the principal planes. These planes are shown
in Fig. 11.13(b).

x

qmax plane

qmax plane

p - plane1 y

θ45°

45°

45°
p - plane2

Fig. 11.13(b)

Example 11.7. State of stress at a point in a material is as shown in the Fig. 11.14(a). Determine
(i) principal stresses

(ii) maximum shear stress
(iii) plane of maximum shear stress and
(iv) the resultant stress on the plane of maximum shear stress.

75 N/mm2

50 N/mm2

100 N/mm2

x

y

Fig. 11.14(a)
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Solution: Selecting x and y-axis as shown in figure,

 px = – 50 N/mm2, py = 100 N/mm2, and q = 75 N/mm2.

∴  p1 = 
p p p p

q
x y x y+

+
−�

��
�
��

+
2 2

2
2

= 
− + + − −�

�
�
�

+50 100

2

50 100

2
75

2
2

= 25 + 106.07

= 131.07 N/mm2.

 p2 = 
p p p p

qx y x y+
−

−�
��

�
��

+
2 2

2
2

= 25 – 106.07

= – 81.07 N/mm2.

 qmax = 
p p

qx y−�
��

�
��

+
2

2
2

= 106.07 N/mm2.

The principal plane makes an angle θ to y-axis in anticlockwise direction. Then

 tan 2θ = 
2 2 75

50 100
2

q

p px y−
= ×

− −�
�

�
�

 = – 2

∴ 2θ = – 63.43°
or θ = – 31.72° = 31.72° clockwise.

Plane of maximum shear makes 45° to it
θ = – 31.72 + 45.00 = 13.28°.

Normal stress on this plane is given by

 px = 
p p p px y x y+

+
−

2 2
 cos 2θ + q sin 2θ

= 
− + + − − + ×50 100

2

50 100

2
2 13 28 75 2 13 28cos ( . ) sin ( . )

= 25 – 67.08 + 33.54

= – 8.54 N/mm2

 pt = qmax = 106.07 N/mm2.

∴ Resultant stress p = ( . ) .− +8 54 106 072 2

= 106.41 N/mm2
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Let ‘p’ make angle φ to tangential stress (maximum shear
stress plane). Then referring to Fig. 11.14(b)

tan φ = 
p

p
n

t

= 8 54

106 07

.

.
∴ φ = 4.6° as shown in Fig. 11.14(b).

Example 11.8. Show that when a material is subjected to shearing
stresses and unidirectional direct stress, the major and minor
principal stresses are of opposite nature.

Solution: Let px be uniaxial stress

i.e. py = 0
Let q be the shearing stresses.

Then from the equation

 p1 = 
p p p p

q
x y x y+

+
�
��

�
��

+−

2 2

2
2

= 
p p

qx x

2 2

2
2+ �

�
�
�

+

and  p2 = 
p p

qx x

2 2

2
2− �

�
�
�

+

Since the second term is larger than the first term, naturally p1 is +ve and p2 is –ve. Thus major
and minor principal stresses are having opposite nature.

11.3 PRINCIPAL STRESSES IN BEAMS

Figure 11.15 shows an element of a beam subjected to bending moment and shear force. We know,
the bending stress at point A, in the beam,

bending stress px  = 
M

I
y

and shear stress q = 
F

bI
ay( )

where M—Bending moment at the section

F—Shear force
I—Moment of inertia
y—Distance of the point from neutral axis

b—width

and  ay —moment of area above the level of fibre at A about neutral axis.

The state of stress at point A is as shown in the Fig. 11.16 knowing px and q the required
principal stresses, maximum shear stress etc. may be found. The nature of bending stress (tensile or
compressive) should be carefully noted.

Fig. 11.14(b)

13.25°p = 8.54x

4.6°

p =t 106.07

N/mm2
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M

F

F

N AA

A
y

px

NN AA

q

Fig. 11.15

px px

q

q
Stresses at point A

Fig. 11.16

Example 11.9. A shear force of 100 kN and a sagging moment of 80 kN-m act at a certain cross-section
of rectangular beam 100 mm wide and 200 mm deep. Compute the principal stresses at a point 30
mm below the top surface.

Solution: Referring to Fig. 11.17,

I = 
1

12
 × 100 × 2003 = 66.667 × 106 mm4

At point A, which is at 30 mm below top fibre
y = 100 – 30 = 70 mm

∴  fx = 
M

I
y = 80 10

66 667 10

6

6

×
×.

 × 70 = 84 N/mm2 (compressive)

∴  px = – 84 N/mm2

AA

A

10
0

m
m

10
0

m
m

10
0

m
m

10
0

m
m

100 mm

30 mm

yy

N

q

q

84 N/mm
2

Fig. 11.17



362 MECHANICS OF SOLIDS

Shearing stress q = 
F

bI
ay( )

= 100 10

100 66 667 10

3

6

×
× ×.

 [100 × 30 × (100 – 15)]

= 3.82 N/mm2 as shown in Fig.

Thus,    px = – 84 N/mm2, py = 0, q = 3.82 N/mm2

∴ p1,2 = 
− + ± − +�

�
�
�

+84 0

2

84 0

2
3 82

2
2( . )

= – 42 ± 42.17
∴  p1 = 0.17 N/mm2

p2 = – 84.17 N/mm2

Example 11.10. A simply supported beam of 4 m span carries loads as shown in Fig. 11.18. The
cross-section of the beam is 100 mm wide and 180 mm deep. At a section 1.5 m from left support,
calculate the bending and shearing stresses at distances 0, 45 mm and 90 mm above the neutral axis.
Find the principal planes and principal stresses at these points.

1 m1 m 1 m1 m 1 m1 m 1 m1 m

20 kN 20 kN 20 kN

A B

Fig. 11.18

Solution: Due to symmetry,

RA = RB = 
20 20 20

2

+ +
 = 30 kN

∴ At section 1.5 m from A,

F = 30 – 20 = 10 kN
M = 30 × 1.5 – 20 × 0.5 = 35 kN-m

I = 
1

12
 × 100 × 1803 = 48.6 × 106 mm4

∴ Bending stress = f = 
M

I
y = 35 10

48 6 10

6

6

×
×.

y

It varies linearly across the depth.
when y = 0, f1 = 0

y = 45 mm, f2 = 32.4 N/mm2 (comp).
y = 90 mm, f3 = 64.8 N/mm2 (comp).
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Shearing stress at a fibre ‘y’ above N–A is

q = 
F

bI
ay( )

  = 
10 1000

100 48.6 106

×
× ×

( )ay

∴ At  y = 0, q1 = 
10 1000

100 48.6 106

×
× ×

 (100 × 90 × 45)

 = 0.833 N/mm2

At y = 45 mm, q2 = 
10 1000

100 48.6 106

×
× ×

 100 × 45 × 90
45

2
−�

�
�
�

= 0.625 N/mm2

At  y = 90 mm, q3 = 0

The state of stresses on elements under considerations are as shown in Fig. 11.19.

0.833

0.833

32.4 32.4

0.625

0.625

64.8 64.8

(a) At y = 0 (b) At y = 45 mm (c) At y = 90 mm

Fig. 11.19

(a) At neutral axis (y = 0) : The element is under pure shear

px = py = 0 ; q = 0.833 N/mm2

  p1, 2 = 0 ± 0 0 8332 2+ ( . )  = ± 0.833 N/mm2

 p1 = 0.833 N/mm2

 p2 = – 0.833 N/mm2.

Inclination to the plane of px , tan 2θ = 
2 0.833×

0
 = ∝

∴  2θ = 90° and 270°
∴  θθθθθ = 45° and 135°

(b) At y = 45 mm

 px = – 32.4 N/mm2 py = 0, q = 0.625 N/mm2

∴ p1, 2 = 
− +32.4

2

0
 ± 

− −�
�

�
�

+32.4

2
0 625

2
20

.� �

= – 16.2 ± 16.212
∴  p1 = 0.012 N/mm2
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  p2 = – 32.412 N/mm2

tan 2θ = 
2 0.625

32.4

×
− − 0

 = 0.09876

2θ = 5.64° and 185.64°

∴ θθθθθ = 2.82° and 92.82°
(c) At y = 90 mm,

 px = – 64.8 N/mm2, py = 0, q = 0

∴  p1, 2 = 
− + ± − −�

�
�
�

+64.8 0

2

64.8 0

2

2
20

= – 32.4 ± 32.4

∴  p1 = 0 N/mm2

 p2 = – 64.8 N/mm2

tan 2θ = 0 ∴ 2θ = 0° and 180° or θθθθθ = 0° and 90°
Example 11.11. A simply supported beam of span 6 m has I-section as shown in Fig. 11.20(a). It
carries uniformly distributed load (inclusive self weight) of 60 kN/m over entire span. Calculate the
principal stresses and the maximum shearing stress at 100 mm above neutral axis of the beam at
a section 1.5 m from support.

10 mm

10 mm

40
0

40
0

10 mm

200200

(a) (b) (c)

Fig. 11.20

Solution: L = 6 m, w = 60 kN/m

∴ Reaction at support = 
6 60

2

×
 = 180 kN

∴ Moment at 1.5 m from support

  M = 180 × 1.5 – 60 × 
1.5

2

2

 = 202.5 kN-m

Shear force at 1.5 m from support
F = 180 – 1.5 × 60 = 90 kN
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Moment of inertia of the I-section,

I = 
1

12
 × 200 × 4003 – 

1

12
 × 190 × 3803

 = 197.86 × 106 mm4

∴ Bending stress at 100 mm above N–A

f = 
M

I
y = ×

×
202 5 10

197 86 10

6

6

.

.
 × 100 = 102.35 N/mm2 (compressive)

Shear stress is given by

 q = 
F

bI
ay( )

.
= ×

× ×
90 1000

10 197 86 106  × (200 × 10 × 195 + 10 × 90 × 145)

= 23.68 N/mm2

Thus the state of stress on an element at y = 100 mm, as px = f = – 102.35 N/mm2, py = 0
q = 23.68 N/mm2

∴  p1, 2 = 
− + ± − −�

�
�
�

+102 35 0

2

102 35 0

2
23 68

2
2. .

( . )

 = – 51.175 ± 56.388

∴ p1 = 5.21 N/mm2 p2 = – 107.56 N/mm2

qmax = − −�
�

�
�

+102.35 0

2
23.68

2
2( )  = 56.39 N/mm2

11.4 PRINCIPAL STRAINS

Let ex be the strain in x-direction and ey be the strain in y-direction where x and y are cartesian
coordinate directions. Let shearing strain with respect to x-y coordinates be γxy. Then it is possible
to find normal strain en, tangential strain et and shearing strain γnt on any plane inclined at θ to the
plane of px. Then defining the plane with zero shearing strain as principal shearing plane, we can
find the principal planes and principal strains.

(a)

�
�

B C

A Dq

q

q

q

px px bb

aa
py

E

py

E1

�
�

E E

E1 E1

C

D

n

nt

t

(b)

A

B

D

Fig. 11.21
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�xy

�

bey

B1 C1

D PD1

aex b�xy

t

C
B Q

n

A

E1

Referring to Fig. 11.21(a), which represent state of stress at A with their positive senses it may
be noted that direct strain ex and ey are tensile strains and shearing strain γxy reduces the angle θ.

Figure 11.22 shows the element at A with its de-formed shape (shown with dotted lines) with
ex,ey  and γxy positive. Now we are interested in finding strains en, et and γnt on a plane at ‘θ’ to the
plane of px forces. The size of element (a × b) is so selected that the diagonal AE is normal to the
plane DE i.e. ∠CAD is also θ, for the convenience.

(a) To find en

Let AC = l,
∴ AD = l cos θ = a

AB = l sin θ = b

Drop ⊥ C1, P to AD

⊥ BQ to C1P.

Now,
AP = AD + DD1 + D1P

= a + aex + bγxy

= l cos θ + l cos θ × ex + l sin θ × γxy

= l [cos θ + ex cos θ + γxy sin θ]
 PC = PQ + QC

= b + bey

= l sin θ + l sin θ × ey = l sin θ (1 + ey)

∴ AC1 = AP PC2 2+

= l (cos cos sin ) sin ( )θ θ γ θ θ+ + + × +e ex xy y
2 2 21

Neglecting small quantities of higher order,

 AC1 = l cos cos sin cos sin sin2 2 2 22 2 2θ θ γ θ θ θ θ+ + + +e ex xy y

= l 1 2 2 2+ + +( cos sin ) sin cose ex y xyθ θ γ θ θ

Expanding by the binomial theorem and neglecting small quantities of order 2 and above, we get
AC1 = l [1 + ex cos2 θ + ey sin2 θ  + γxy sin θ cos θ]

∴ ex = 
AC AC

AC
1 −

 = ex cos2 θ + ey sin2 θ + γxy sin θ cos θ ...(11.9a)

But cos2 θ = 
1 2

2

+ cos θ
, sin2 θ = 

1 2

2

− cos θ

and sin θ cos θ = 
1

2
 sin 2θ

∴  ex = 
e e e ex y x y+

+
−

2 2
 cos 2θ + 

1

2
 γxy  sin 2θ ...(11.9b)

Fig. 11.22

p t 
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Strain et can be found by replacing θ in the above equation by 90 + θ.

∴ et = 
e e e ex y x y+

−
−

2 2
 cos 2θ – 

1

2
 γxy sin 2θ ...(11.10)

To find γnt :

�

bey
C1

D PD1

aex b�xy

CB Q

n

A

bb

aa

D2

R

bey

E1 E2

E3

C2C3

Fig. 11.23

After straining let point E1 move to E2. Draw E2R parallel to E1 D [Ref. Fig. 11.23]

∴ Total shearing strain
= ∠CAC1 + ∠D1E2R = φ1 + φ2

To find φ1 :
Now : CC3 = CC2 sin θ

= (CQ – C2Q) sin θ

= ( )
tan

ae b bex xy y+ −
�

�
	




�
�γ

θ
1

 sin θ

= (aex + bγxy) sin θ – bey cos θ
Noting that l cos θ = a and l sin θ = b, we get

CC3 = lex cos θ sin θ + l sin2 θ γxy – ley sin θ cos θ
= l (ex – ey) sin θ cos θ + l γxy sin2 θ

∴  φ1 = 
CC

l
3  = (ex – ey) sin θ cos θ + γxy sin2 θ ...(1)

To find φ2 :
 E3E2 = Extension of AE1

= AE1 en = a cos θ ex = l cos2 θ × ex ...(2)

  φ2 = 
RD

E D

DD RD

E D

DD E E

E D
2

1

2 2

1

2 3 2

1

= − = −

= 
ae l e

a
x ncos cos

sin

θ θ
θ

− 2

= 
le le

l
x ncos cos

sin cos

2 2θ θ
θ θ
−

= (ex – en) cot θ ...(3)
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Substituting the value of en from eqn. 11.9(a), we get

φ2 = (ex – ex cos2 θ – ey sin2 θ – γxy sin θ cos θ) cot θ
= (ex sin2 θ – ey sin2 θ – γxy sin θ cos θ) cot θ
= (ex – ey) sin2 θ cot θ – γxy sin θ cos θ cot θ
= (ex – ey) sin θ cos θ – γxy cos2 θ ...(4)

∴ γnt = φ1 + φ2

= (ex – ey) sin θ cos θ + γxy sin2 θ + (ex – ey) sin θ cos θ – γxy cos2 θ
= 2(ex – ey) sin θ cos θ – γxy (cos2 θ – sin2 θ)

= (ex – ey) sin 2θ – γxy cos 2θ

∴
1

2
 γnt = 

e ex y−
2

 sin 2θ – 
1

2
 γxy cos 2θ ...(11.11)

Note. Equation 11.1 is analogous to eqn. 11.9(b) and eqn. 11.2 is analogous to eqn. 11.11 in which p1

or p2 are replaced by e1 and e2 and q has been replaced by 
1

2
 γxy .

Defining principal strain as the normal strains on the plane where shearing strains is zero, the
direction of principal plane is obtained from 11.11 as

 tan 2θ = 
2

1
2

γ γxy

x y

xy

x ye e e e

�
�

�
�

−
=

−
...(11.12)

The magnitude of principal planes may be obtained exactly on the same line as the principal
stresses were obtained. The final result will be

 e1, 2 = 1
2

(ex + ey) ± 
e ex y

xy

−�
�


�
��

+ �
�

�
�2

1

2

2 2

γ

= 1
2

(ex + ey) ± 
1

2
2 2( )e ex y xy− + γ ...(11.13)

The maximum shearing strain occurs at 45° to the plane of principal plane and its magnitude is
given by

 γmax = 
1

2
2 2( )e ex y xy− + γ ...(11.14)

11.5 MEASUREMENT OF STRAIN

Strain is a physical quantity while stress is a concept. Hence it is possible to measure the strains in
an experimental investigation. For this electrical strain gauges are used. Electrical strain gauge
consists of a set of fine wires fixed at a predefined angles and then glued to the experimental model.
After loading the model is strained, resulting into changes in the length and diameter of the wire.
Hence the resistance of the wire also changes. Electrical strain meters, which work on the principal
of Wheatstone Bridge measure the change in resistance and converts it to strains and then displays
the readings. The set of strain gauges fixed at a point in different direction is called ‘strain rosettes’.
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Commonly used strain rosettes are 45° rosette and 120° rosette which are as shown in Fig. 11.24.
45° rosette is also known as rectangular rosette.

O A

B
C

45°

45°

B

A

C

120°

120°

120°

120° 120°60° 60°

60°

A

BC

(a) Rectangular rosette (b) 120° rosette (c) Another form of 120° rosette

Fig. 11.24

Treating one of the strain gauge direction, strains eθ1 and eθ2 of the other two gauges is known
writing eθ1 and eθ2 in terms of ex, ey and γxy, it is possible to find ex,,ey and γxy.

After finding ex, ey and γxy it is possible to find the corresponding stresses. We know,

Ee1 = p1 – µp2 ...(1)
Ee2 = p2 – µp1 ...(2)

Multiplying Eqn. (2) with µ and adding it to eqn.1, we get,
E(e1 + µe2) = p1 – µ2p1 = p1(1 – µ2)

∴  p1 = 
E e e( )1 2

21

+
−

µ
µ

...(11.15a)

Similarly  p2 = 
E e e( )2 1

21

+
−

µ
µ

...(11.15b)

Example 11.12. At a point strains measured with rectangular rosettes are eA = 600 microns, eB =
300 microns and ec = – 200 microns. Determine the principal strains. Find principal stresses also
taking E = 2 × 105 and µ = 0.3.

Solution: Taking the direction of strain gauge as x-axis,
ex = 600 microns

 eB = e45 = 300 microns and ec = e90 = – 200 microns = ey

∴ 300 = 
1

2
 (ex + ey) + 

1

2
 (ex – ey) cos 2 × 45 + 

1

2
 γxy sin 2 × 45

  = 
1

2
 (600 – 200) + 

1

2
 (600 + 200) × 0 + 

1

2
 γxy

 γxy = 200 microns.

∴ Principal strains are

e1, 2 = 
1

2
 (ex + ey) ± e ex y

xy

−�
�


�
��

+ �
�

�
�2

1

2

2 2

γ
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 = 
1

2
(600 – 200) ± 600 200

2

1

2
200

2 2+�
�

�
�

+ ×�
�

�
�

 = 200 ± 412.3
∴ e1 = 612.3 micron = 612.3 × 10–6

e2 = – 212.3 micron = – 212.3 × 10–6

[Note: 1 micron = 1 × 10–6]

∴  p1 = 
E e e( )1 2

21

+
−

= × − × ×
−

−µ
µ

2 10 (612.3 0.3 212.3) 10

1 0.3

5 6

2

i.e., p1 = 120.57 N/mm2.

p2 = 
E e e( )2 1

21

+
−

= × − + ×
−

µ
µ

2 10 ( 212.3 0.3 612.3)

1 0.3

5

2

i.e., p2 = – 6.29 N/mm2

Example 11.13. In an experimental investigation strains observed with a 120° rosette are, e0 = 800
microns, e120 = – 600 microns and e240 = 100 microns. Determine the principal stresses, if E = 2 × 105

N/mm2 and µ = 0.3.

Solution: ex = 800

– 600 = e120 = 
e e e ex y x y+

+
−

2 2
 cos 240 + 

1

2
 γxy sin 240

i.e., – 600 = 
e e e ex y x y+

−
−

2 2
 (0.5) – 

0 866

2

.
 γxy ...(1)

100 = e240 = 
e e e ex y x y+

+
−

2 2
 cos 480 + 

1

2
 γxy sin 480

∴ 100 = 
e e e ex y x y+

−
−

2 2
 (0.5) + 

0 866

2

.
 γxy ...(2)

Adding eqns. (1) and (2), we get

 – 500 = ex + ey – 
e ex y−

2

i.e.,  – 1000 = ex + 3ey

But  ex = 800 microns

∴ 3ey = – 1000 – 800 = – 1800
∴ ey = – 600 microns

Substituting the values of ex and ey in eqn. (2), we get

 100 = 
800 600

2

800 600

2

− − +
 (0.5) + 

0 866

2

.
 γxy

 γxy = 808.3 microns
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Thus ex = 800 microns, ey = – 600 micron and γxy = 808.3 microns

∴ e1, 2 = 
e e e ex y x y

xy

+
±

−�
�


�
��

+ ��
�
�2 2

1

2

2 2

γ

= 
800 600

2

800 600

2

1

2
808 3

2 2− ± +�
�

�
�

+ ×�
�

�
�

.

= 100 ± 808.29

∴ e1 = 908.29 microns = 908.29 × 10–6

and e2 = – 708.29 microns = – 708.29 × 10–6

∴ p1 = 
E e e( )1 2

21

+
−

= × − × ×
−

−µ
µ

2 10 (908.29 0.3 708.29) 10

1 0.3

5 6

2

i.e., p1 = 152.9 N/mm2

p2 = 
E e e( )1 1

21

+
−

= × − × ×
−

−µ
µ

2 10 ( 708.29 + 0.3 908.29) 10

1 0.3

5 6

2

i.e., p2 = – 95.8 N/mm2

IMPORTANT FORMULAE

1. pn = 
p p p px y x y+

+
−

2 2
 cos 2θ + q sin 2θ.

2. pt = 
p px y−

2
 sin 2θ  – q cos 2θ.

3. Principal planes are given by

 tan 2θ = 
2q

p px y−
.

4. p1, 2 = 
p p p p

qx y x y+
±

−�
�


�
��

+
2 2

2
2

.

5. Maximum shear stress = 
p p p p

qx y1 2
2

2

2 2

− =
−�

�

�
��

+ .

6. Plane of maximum shear is at 45° to the principal planes.
7. Obliquity of resultant stress on a plane at θ to the plane of px

= θ + α to the plane of px

where α = tan–1 p

p
n

t

.
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8. en = 
e e e ex y x y+

+
−

2 2
  cos 2θ + 

1

2
 γxy sin 2θ

1

2
 rnt = 

( )e ex y−
2

 sin 2θ – 
1

2γ xy

 cos 2θ

e1, 2 = 
1

2
(ex + ey) ± e ex y

xy

−�
�


�
��

+ �
�

�
�2

1

2

2 2

γ

γmax = 
e e e ex y

xy
1 2

2 2

2 2

1

2

− =
−�

�

�
��

+ �
�

�
�

γ .

THEORY QUESTIONS

1. Derive the expressions for normal and tangential stresses on a plane inclined at θ to the plane of
px force. Take a general two dimensional state of stress.

2. State the equations for normal and tangential stresses on an inclined plane, in an element under
general two dimensional stress system. Derive the expressions for principal planes, principal
stresses and maximum shear stress.

3. Explain the terms principal stresses and principal strains.

PROBLEMS FOR EXERCISE

1. A point in a strained material is subjected to tensile stresses px = 180 N/mm2 and py = 120 N/mm2.
Determine the intensities of normal, tangential and resultant stresses on a plane inclined at 30°

anticlockwise to the axis of minor stress.

[Note : Axis of minor stress means the plane of major stress]

[Ans. pn = 165 N/mm2, pt = 25.98 N/mm2, p = 167.03 N/mm2, α = 111.05° anticlockwise to the
axis of minor principal plane]

2. The state of stress at a point in a strained material is as shown in Fig. 11.25. Determine the
normal, tangential and the resultant stress on plane DE. Determine the direction of resultant also.

40 N/mm2

C

120 N/mm2

D

B

A

E

60°

Fig. 11.25

[Ans. pn = 0, pt = 69.28 N/mm2, p = 69.28 N/mm2 acts tangential to DE.]



PRINCIPAL STRESSES AND STRAINS 373

3. The state of stress at a point is as shown in Fig. 11.26. Determine the principal stresses and
maximum shear stress. Indicate their planes on a separate sketch.

[Ans. p1 = 133.13 N/mm2, p2 = – 93.13 N/mm2, qmax = 113.13 N/mm2, θ = – 22.5° and 67.5°,
θ′ = 22.5 and 112.5°]

100 N/mm2

60 N/mm2

80 N/mm2

(a)

x-axis

p - plane1

qmax plane

q - planemax
y-axis

45°

45°

45°

p - plane2

(b)

22
.5

°

Fig. 11.26

4. The state of stress in a two dimensionally stressed material is as shown in Fig. 11.27. Determine
the principal stresses, principal planes and the maximum shear stress. Determine normal and
tangential stresses on plane AC also.

60 N/mm2

A

80 N/mm2

C 60 N/mm2

60°

Fig. 11.27

[Ans. p1 = – 9.18 N/mm2, p2 = – 130.82 N/mm2, qmax = 60.82 N/mm2, θ = – 40.27° and 49.73°,
pn = – 116.96 N/mm2, pt = 21.34 N/mm2]
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