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Preface

The convergence of computing and communication has produced a society that
feeds on information. Yet most of the information is in its raw form: data. Ifdata
is characterized as recorded facts, theninformationis the set of patterns, or expec-
tations, that underlie the data. There is a huge amount of information locked up in
databases—information that is potentially important but has not yet been discov-
ered or articulated. Our mission is to bring it forth.

Data mining is the extraction of implicit, previously unknown, and potentially
useful information from data. The idea is to build computer programs that sift
through databases automatically, seeking regularities or patterns. Strong patterns,
if found, will likely generalize to make accurate predictions on future data. Of
course, there will be problems. Many patterns will be banal and uninteresting.
Others will be spurious, contingent on accidental coincidences in the particular
dataset used. And real data is imperfect: some parts will be garbled, some miss-
ing. Anything that is discovered will be inexact: there will be exceptions to every
rule and cases not covered by any rule. Algorithms need to be robust enough to
cope with imperfect data and to extract regularities that are inexact but useful.

Machine learning provides the technical basis of data mining. It is used to
extract information from the raw data in databases—information i.e., ideally,
expressed in a comprehensible form and can be used for a variety of purposes.
The process is one of abstraction: taking the data, warts and all, and inferring
whatever structure underlies it. This book is about the tools and techniques of
machine learning that are used in practical data mining for finding, and if possible
describing, structural patterns in data.

As with any burgeoning new technology that enjoys intense commercial atten-
tion, the use of machine learning is surrounded by a great deal of hype in the
technical—and sometimes the popular—press. Exaggerated reports appear of the
secrets that can be uncovered by setting learning algorithms loose on oceans of
data. But there is no magic in machine learning, no hidden power, no alchemy.
Instead there is an identifiable body of simple and practical techniques that can
often extract useful information from raw data. This book describes these techni-
ques and shows how they work.

In many applications machine learning enables the acquisition of structural
descriptions from examples. The kind of descriptions that are found can be used
for prediction, explanation, and understanding. Some data mining applications
focus on prediction: forecasting what will happen in new situations from data that
describe what happened in the past, often by guessing the classification of new
examples. But we are equally—perhaps more—interested in applications where
the result of “learning” is an actual description of a structure that can be used to
classify examples. This structural description supports explanation and under-
standing as well as prediction. In our experience, insights gained by the user are
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of most interest in the majority of practical data mining applications; indeed, this
is one of machine learning’s major advantages over classical statistical modeling.

The book explains a wide variety of machine learning methods. Some are ped-
agogically motivated: simple schemes that are designed to explain clearly how
the basic ideas work. Others are practical: real systems that are used in applica-
tions today. Many are contemporary and have been developed only in the last
few years.

A comprehensive software resource has been created to illustrate the ideas in
the book. Called the Waikato Environment for Knowledge Analysis, or WEKA1

for short, it is available as Java source code atwww.cs.waikato.ac.nz/ml/weka.
It is a full, industrial-strength implementation of most of the techniques that are
covered in this book. It includes illustrative code and working implementations of
machine learning methods. It offers clean, spare implementations of the simplest
techniques, designed to aid understanding of the mechanisms involved. It also
provides a workbench that includes full, working, state-of-the-art implementations
of many popular learning schemes that can be used for practical data mining or
for research. Finally, it contains a framework, in the form of a Java class library,
that supports applications that use embedded machine learning and even the
implementation of new learning schemes.

The objective of this book is to introduce the tools and techniques for machine
learning that are used in data mining. After reading it, you will understand
what these techniques are and appreciate their strengths and applicability. If you
wish to experiment with your own data, you will be able to do this easily with
the WEKA software. But WEKA is by no means the only choice. For example,
the freely available statistical computing environment R includes many machine
learning algorithms. Devotees of the Python programming language might look
at a popular library calledscikit-learn. Modern “big data” frameworks for distrib-
uted computing, such as Apache Spark, include support for machine learning.
There is a plethora of options for deploying machine learning in practice.
This book discusses fundamental learning algorithms without delving into
software-specific implementation details. When appropriate, we point out where
the algorithms we discuss can be found in the WEKA software. We also briefly
introduce other machine learning software for so-called “deep learning” from
high-dimensional data. However, most software-specific information is relegated
to appendices.

The book spans the gulf between the intensely practical approach taken by
trade books that provide case studies on data mining and the more theoretical,
principle-driven exposition found in current textbooks on machine learning.
(A brief description of these books appears in theFurther readingsection at the
end of chapter: What’s it all about?) This gulf is rather wide. To apply machine
learning techniques productively, you need to understand something about how

1Found only on the islands of New Zealand, theweka(pronounced to rhyme with “Mecca”) is a
flightless bird with an inquisitive nature.
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they work; this is not a technology that you can apply blindly and expect to get
good results. Different problems yield to different techniques, but it is rarely obvi-
ous which techniques are suitable for a given situation: you need to know some-
thing about the range of possible solutions. And we cover an extremely wide
range of techniques. We can do this because, unlike many trade books, this vol-
ume does not promote any particular commercial software or approach. We
include a large number of examples, but they use illustrative datasets that are
small enough to allow you to follow what is going on. Real datasets are far too
large to show this (and in any case are usually company confidential). Our data-
sets are chosen not to illustrate actual large-scale practical problems, but to help
you understand what the different techniques do, how they work, and what their
range of application is.

The book is aimed at the technically aware general reader who is interested in
the principles and ideas underlying the current practice of machine learning.
It will also be of interest to information professionals who need to become
acquainted with this new technology, and to all those who wish to gain a detailed
technical understanding of what machine learning involves. It is written for an
eclectic audience of information systems practitioners, programmers, consultants,
developers, data scientists, information technology managers, specification wri-
ters, patent examiners, curious lay people—as well as students and professors—
who need an easy-to-read book with lots of illustrations that describes what
the major machine learning techniques are, what they do, how they are used, and
how they work. It is practically oriented, with a strong “how to” flavor, and
includes algorithms, and often pseudo-code. All those involved in practical data
mining will benefit directly from the techniques described. The book is aimed at
people who want to cut through to the reality that underlies the hype about
machine learning and who seek a practical, nonacademic, unpretentious approach.
In most of the book we have avoided requiring any specific theoretical or mathe-
matical knowledge. However, recognizing the growing complexity of the subject
as it matures, we have included substantial theoretical material in Chapter 9,
Probabilistic methods, and Chapter 10, Deep learning, because this is necessary
for a full appreciation of recent practical techniques, in particular deep learning.

The book is organized in layers that make the ideas accessible to readers who
are interested in grasping the basics, as well as to those who would like more
depth of treatment, along with full details on the techniques covered. We believe
that consumers of machine learning need to have some idea of how the algorithms
they use work. It is often observed that data models are only as good as the
person who interprets them, and that person needs to know something about
how the models are produced to appreciate the strengths, and limitations, of the
technology. However, it is not necessary for all users to have a deep understand-
ing of the finer details of the algorithms.

We address this situation by describing machine learning methods at succes-
sive levels of detail. The book is divided into two parts. Part I is an introduction
to machine learning for data mining. The reader will learn the basic ideas, the
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topmost level, by reading the first three chapters. Chapter 1, What’s it all about?,
describes, through examples, what machine learning is, where it can be used; it
also provides actual practical applications. Chapter 2, Input: concepts, instances,
attributes, and Chapter 3, Output: knowledge representation, cover the different
kinds of input and output—orknowledge representation—that are involved.
Different kinds of output dictate different styles of algorithm, and Chapter 4,
Algorithms: the basic methods, describes the basic methods of machine learning,
simplified to make them easy to comprehend. Here the principles involved are
conveyed in a variety of algorithms without getting involved in intricate details or
tricky implementation issues. To make progress in the application of machine
learning techniques to particular data mining problems, it is essential to be able to
measure how well you are doing. Chapter 5, Credibility: evaluating what’s been
learned, which can be read out of sequence, equips the reader to evaluate the
results that are obtained from machine learning, addressing the sometimes com-
plex issues involved in performance evaluation.

Part II introduces advanced techniques of machine learning for data mining.
At the lowest and most detailed level, Chapter 6, Trees and rules, and Chapter 7,
Extending instance-based and linear models, expose in naked detail the nitty-
gritty issues of implementing a spectrum of machine learning algorithms,
including the complexities that are necessary for them to work well in practice
(but omitting the heavy mathematical machinery that is required for a few of the
algorithms). Although many readers may want to ignore such detailed informa-
tion, it is at this level that full working implementations of machine learning
schemes are written. Chapter 8, Data transformations, describes practical topics
involved with engineering the input and output to machine learning—e.g., select-
ing and discretizing attributes. Chapter 9, Probabilistic methods, and Chapter 10,
Deep learning, provide a rigorous account of probabilistic methods for machine
learning and deep learning respectively. Chapter 11, Beyond supervised and unsu-
pervised learning, looks at semisupervised and multi-instance learning, while
Chapter 12, Ensemble learning, covers techniques of “ensemble learning,” which
combine the output from different learning techniques. Chapter 13, Moving on:
applications and beyond, looks to the future.

The book describes most methods used in practical machine learning.
However, it does not cover reinforcement learning because it is rarely applied in
practical data mining; nor genetic algorithm approaches because these are really
just optimization techniques that are not specific to machine learning; nor rela-
tional learning and inductive logic programming because they are not very com-
monly used in mainstream data mining applications.

An Appendix covers some mathematical background needed to follow the
material in Chapter 9, Probabilistic methods, and Chapter 10, Deep learning.
Another Appendix introduces the WEKA data mining workbench, which provides
implementations of most of the ideas described in Parts I and II. We have done
this in order to clearly separate conceptual material from the practical aspects of
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how to use it. At the end of each chapter in Parts I and II are pointers to related
WEKA algorithms. You can ignore these, or look at them as you go along, or
skip directly to the WEKA material if you are in a hurry to get on with analyzing
your data and don’t want to be bothered with the technical details of how the
algorithms work.

UPDATED AND REVISED CONTENT
We finished writing the first edition of this book in 1999, the second and third in
2005 and 2011 respectively, and now, in May 2016, are just polishing this fourth
edition. How things have changed over the past couple of decades! While the
basic core of material remains the same, we have made the most of opportunities
to update it and add new material, and as a result the book has doubled in size to
reflect the changes that have taken place. Of course, there have also been errors
to fix, errors that we had accumulated in our publicly available errata file (avail-
able through the book’s home page athttp://www.cs.waikato.ac.nz/ml/weka/book.
html).

SECOND EDITION
The major change in the second edition of the book was a separate part at the end
of the book that included all the material on the WEKA machine learning work-
bench. This allowed the main part of the book to stand alone, independent of the
workbench. At that time WEKA, a widely used and popular feature of the first
edition, had just acquired a radical new look in the form of an interactive graphi-
cal user interface—or rather, three separate interactive interfaces—which made it
far easier to use. The primary one is the “Explorer,” which gives access to all of
WEKA’s facilities using menu selection and form filling. The others are the
Knowledge Flow interface, which allows you to design configurations for
streamed data processing, and the Experimenter, with which you set up automated
experiments that run selected machine learning algorithms with different parame-
ter settings on a corpus of datasets, collect performance statistics, and perform
significance tests on the results. These interfaces lower the bar for becoming a
practitioner of machine learning, and the second edition included a full descrip-
tion of how to use them.

It also contained much new material that we briefly mention here. We
extended the sections on rule learning and cost-sensitive evaluation. Bowing to
popular demand, we added information on neural networks: the perceptron and
the closely related Winnow algorithm; the multilayer perceptron and backpropa-
gation algorithm. Logistic regression was also included. We described how to
implement nonlinear decision boundaries using both the kernel perceptron and

xxviiPreface



radial basis function networks, and also included support vector machines for
regression. We incorporated a new section on Bayesian networks, again in
response to readers’ requests and WEKA’s new capabilities in this regard, with a
description of how to learn classifiers based on these networks, and how to imple-
ment them efficiently using AD trees.

The previous 5 years (1999� 2004) had seen great interest in data mining for
text, and this was reflected in the introduction of string attributes in WEKA, mul-
tinomial Bayes for document classification, and text transformations. We also
described efficient data structures for searching the instance space:kD-trees and
ball trees for finding nearest neighbors efficiently, and for accelerating distance-
based clustering. We described new attribute selection schemes such as race
search and the use of support vector machines; new methods for combining mod-
els such as additive regression, additive logistic regression, logistic model trees,
and option trees. We also covered recent developments in using unlabeled data to
improve classification, including the cotraining and co-EM methods.

THIRD EDITION
For the third edition, we thoroughly edited the second edition and brought it up to
date, including a great many new methods and algorithms. WEKA and the book
were closely linked together—pretty well everything in WEKA was covered in
the book. We also included far more references to the literature, practically tri-
pling the number of references that were in the first edition.

As well as becoming far easier to use, WEKA had grown beyond recognition
over the previous decade, and matured enormously in its data mining capabilities.
It incorporates an unparalleled range of machine learning algorithms and related
techniques. The growth has been partly stimulated by recent developments in the
field, and is partly user-led and demand-driven. This puts us in a position where
we know a lot about what actual users of data mining want, and we have capital-
ized on this experience when deciding what to include in this book.

Here are a few of the highlights of the material that was added in the third edi-
tion. A section on web mining was included, and, under ethics, a discussion of
how individuals can often be “reidentified” from supposedly anonymized data.
Other additions included techniques for multi-instance learning, new material on
interactive cost-benefit analysis, cost-complexity pruning, advanced association
rule algorithms that use extended prefix trees to store a compressed version of the
dataset in main memory, kernel ridge regression, stochastic gradient descent, and
hierarchical clustering methods. We added new data transformations: partial least
squares regression, reservoir sampling, one-class learning, decomposing multi-
class classification problems into ensembles of nested dichotomies, and calibrat-
ing class probabilities. We added new information on ensemble learning
techniques: randomization vs. bagging, and rotation forests. New sections on data
stream learning and web mining were added as well.
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FOURTH EDITION
One of the main drivers behind this fourth edition was a desire to add comprehen-
sive material on the topic of deep learning, a new development that is essentially
enabled by the emergence of truly vast data resources in domains like image and
speech processing, and the availability of truly vast computational resources,
including server farms and graphics processing units. However, deep learning
techniques are heavily based on a potent mix of theory and practice. And we had
also received other requests asking us to include more, and more rigorous, theo-
retical material.

This forced us to rethink the role of theory in the book. We bit the bullet and
added two new theoretically oriented chapters. Chapter 10, Deep learning, covers
deep learning itself, and its predecessor, Chapter 9, Probabilistic methods, gives a
principled theoretical development of probabilistic methods that is necessary to
understand a host of other new algorithms. We recognize that many of our readers
will not want to stomach all this theory, and we assure them that the remainder of
the book has intentionally been left at a far simpler mathematical level. But this
additional theoretical base puts some key material in the hands of readers who
aspire to understand rapidly advancing techniques from the research world.

Developments in WEKA have proceeded apace. It now provides ways of
reaching out and incorporating other languages and systems, such as the popular
R statistical computing language, the Spark and Hadoop frameworks for distrib-
uted computing, the Python and Groovy languages for scripting, and the MOA
system for stream-oriented learning—to name but a few. Recognizing that it is
not possible, and perhaps not desirable, to document such a comprehensive and
fast-evolving system in a printed book, we have created a series of open online
courses,Data Mining with Weka, More Data Mining with Weka, and Advanced
Data Mining with Weka, to accompany the book (athttps://weka.waikato.ac.nz).

The fourth edition contains numerous other updates and additions, and far
more references to the literature. But enough of this: dive in and see for yourself.
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Human in vitro fertilization involves collecting several eggs from a woman’s
ovaries, which, after fertilization with partner or donor sperm, produce several
embryos. Some of these are selected and transferred to the woman’s uterus.
The problem is to select the “best” embryos to use—the ones that are most likely
to survive. Selection is based on around 60 recorded features of the embryos—
characterizing their morphology, oocyte, follicle, and sperm sample. The number
of features is sufficiently large that it is difficult for an embryologist to assess
them all simultaneously and correlate historical data with the crucial outcome
of whether that embryo did or did not result in a live child. In a research
project in England, machine learning has been investigated as a technique for
making the selection, using historical records of embryos and their outcome as
training data.

Every year, dairy farmers in New Zealand have to make a tough business
decision: which cows to retain in their herd and which to sell off to an abattoir.
Typically, one-fifth of the cows in a dairy herd are culled each year near the end
of the milking season as feed reserves dwindle. Each cow’s breeding and milk
production history influences this decision. Other factors include age (a cow is
nearing the end of its productive life at 8 years), health problems, history of
difficult calving, undesirable temperament traits (kicking or jumping fences),
and not being in calf for the following season. About 700 attributes for each of
several million cows have been recorded over the years. Machine learning has
been investigated as a way of ascertaining what factors are taken into account
by successful farmers—not to automate the decision but to propagate their skills
and experience to others.

Life and death. From Europe to the antipodes. Family and business.
Machine learning is a burgeoning new technology for mining knowledge from
data, a technology that a lot of people are starting to take seriously.

1.1 DATA MINING AND MACHINE LEARNING
We are overwhelmed with data. The amount of data in the world, in our lives,
seems ever-increasing—and there’s no end in sight. Omnipresent computers make
it too easy to save things that previously we would have trashed. Inexpensive
disks and online storage make it too easy to postpone decisions about what to do
with all this stuff—we simply get more memory and keep it all. Ubiquitous elec-
tronics record our decisions, our choices in the supermarket, our financial habits,
our comings and goings. We swipe our way through the world, every swipe a
record in a database. The World Wide Web overwhelms us with information;
meanwhile, every choice we make is recorded. And all these are just personal
choices: they have countless counterparts in the world of commerce and industry.
We would all testify to the growing gap between thegeneration of dataand
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the benefit we get from it. Large corporations have seized the opportunity, but the
tools needed to unlock this potential—the tools we describe in this book—are
available to everyone. Lying hidden in all this data is information, potentially
useful information, that we rarely make explicit or take advantage of.

This book is about looking for patterns in data. There is nothing new about
this. People have been seeking patterns in data ever since human life began.
Hunters seek patterns in animal migration behavior, farmers seek patterns in crop
growth, politicians seek patterns in voter opinion, and lovers seek patterns in their
partners’ responses. A scientist’s job (like a baby’s) is to make sense of data, to
discover the patterns that govern how the physical world works, and encapsulate
them in theories that can be used for predicting what will happen in new situa-
tions. The entrepreneur’s job is to identify opportunities, that is, patterns in
behavior that can be turned into a profitable business, and exploit them.

In data mining, the data is stored electronically and the search is automated—or
at least augmented—by computer. Even this is not particularly new. Economists,
statisticians, forecasters, and communication engineers have long worked with
the idea that patterns in data can be soughtautomatically, identified, validated,
and used for prediction. What is new is the staggering increase in opportunities
for finding patterns in data. The unbridled growth of databases in recent years,
databases on such everyday activities as customer choices, brings data mining to
the forefront of new business technologies. It has been estimated that the
amount of data stored in the world’s databases doubles every 20 months, and
although it would surely be difficult to justify this figure in any quantitative
sense, we can all relate to the pace of growth qualitatively. As the flood of data
swells and machines that can undertake the searching become commonplace,
the opportunities for data mining increase. As the world grows in complexity,
overwhelming us with the data it generates, data mining becomes our only
hope for elucidating hidden patterns. Intelligently analyzed data is a valuable
resource. It can lead to new insights, better decision making, and, in commercial
settings, competitive advantages.

Data mining is about solving problems by analyzing data already present
in databases. Suppose, to take a well-worn example, the problem is fickle
customer loyalty in a highly competitive marketplace. A database of customer
choices, along with customer profiles, holds the key to this problem. Patterns of
behavior of former customers can be analyzed to identify distinguishing charac-
teristics of those likely to switch products and those likely to remain loyal.
Once such characteristics are found, they can be put to work to identify present
customers who are likely to jump ship. This group can be targeted for special
treatment, treatment too costly to apply to the customer base as a whole. More
positively, the same techniques can be used to identify customers who might be
attracted to another service the enterprise provides, one they are not presently
enjoying, to target them for special offers that promote this service. In today’s
highly competitive, customer-centered, service-oriented economy, data is the raw
material that fuels business growth.
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Data mining is defined as the process of discovering patterns in data.
The process must be automatic or (more usually) semiautomatic. The patterns
discovered must be meaningful in that they lead to some advantage—e.g., an
economic advantage. The data is invariably present in substantial quantities.

And how are the patterns expressed? Useful patterns allow us to make nontrivial
predictions on new data. There are two extremes for the expression of a pattern:
as a black box whose innards are effectively incomprehensible and as a transparent
box whose construction reveals the structure of the pattern. Both, we are assum-
ing, make good predictions. The difference is whether or not the patterns that
are mined are represented in terms of a structure that can be examined, reasoned
about, and used to inform future decisions. Such patterns we callstructural
because they capture the decision structure in an explicit way. In other words,
they help to explain something about the data.

Most of this book is about techniques for finding and describing structural
patterns in data, but there are applications where black-box methods are more
appropriate because they yield greater predictive accuracy, and we also cover
those. Many of the techniques that we cover have developed within a field known
asmachine learning.

DESCRIBING STRUCTURAL PATTERNS
What is meant bystructural patterns? How do you describe them? And what
form does the input take? We will answer these questions by way of illustration
rather than by attempting formal, and ultimately sterile, definitions. There will be
plenty of examples later in this chapter, but let’s examine one right now to get a
feeling for what we’re talking about.

Look at the contact lens data inTable 1.1. This gives the conditions under
which an optician might want to prescribe soft contact lenses, hard contact lenses,
or no contact lenses at all; we will say more about what the individual features
mean later. Each line of the table is one of the examples. Part of a structural
description of this information might be as follows:

If tear production rate 5 reduced then recommendation 5 none
Otherwise, if age 5 young and astigmatic 5 no then recommendation 5 soft

Structural descriptions need not necessarily be couched as rules such as
these. Decision trees, which specify the sequences of decisions that need to
be made along with the resulting recommendation, are another popular means
of expression.

This example is a very simplistic one. For a start, all combinations of possible
values are represented in the table. There are 24 rows, representing 3 possible values
of age and 2 values each for spectacle prescription, astigmatism, and tear production
rate (33 23 23 25 24). The rules do not really generalize from the data; they
merely summarize it. In most learning situations, the set of examples given as input
is far from complete, and part of the job is to generalize to other, new examples.
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You can imagine omitting some of the rows in the table for which tear production
rate isreducedand still coming up with the rule.

If tear production rate 5 reduced then recommendation 5 none

which would generalize to the missing rows and fill them in correctly. Second, values
are specified for all the features in all the examples. Real-life datasets often contain
examples in which the values of some features, for some reason or other, are
unknown—e.g., measurements were not taken or were lost. Third, the preceding rules
classify the examples correctly, whereas often, because of errors ornoisein the data,
misclassifications occur even on the data that is used to create the classifier.

MACHINE LEARNING
Now that we have some idea of the inputs and outputs, let’s turn to machine
learning. What is learning, anyway? What ismachine learning? These are
philosophical questions, and we will not be much concerned with philosophy in

Table 1.1 The Contact Lens Data

Age
Spectacle
Prescription Astigmatism

Tear Production
Rate

Recommended
Lenses

Young Myope No Reduced None
Young Myope No Normal Soft
Young Myope Yes Reduced None
Young Myope Yes Normal Hard
Young Hypermetrope No Reduced None
Young Hypermetrope No Normal Soft
Young Hypermetrope Yes Reduced None
Young Hypermetrope Yes Normal Hard
Prepresbyopic Myope No Reduced None
Prepresbyopic Myope No Normal Soft
Prepresbyopic Myope Yes Reduced None
Prepresbyopic Myope Yes Normal Hard
Prepresbyopic Hypermetrope No Reduced None
Prepresbyopic Hypermetrope No Normal Soft
Prepresbyopic Hypermetrope Yes Reduced None
Prepresbyopic Hypermetrope Yes Normal None
Presbyopic Myope No Reduced None
Presbyopic Myope No Normal None
Presbyopic Myope Yes Reduced None
Presbyopic Myope Yes Normal Hard
Presbyopic Hypermetrope No Reduced None
Presbyopic Hypermetrope No Normal Soft
Presbyopic Hypermetrope Yes Reduced None
Presbyopic Hypermetrope Yes Normal None
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this book; our emphasis is firmly on the practical. However, it is worth spending
a few moments at the outset on fundamental issues, just to see how tricky they
are, before rolling up our sleeves and looking at machine learning in practice.
Our dictionary defines “to learn” as

to get knowledge of by study, experience, or being taught;
to become aware by information or from observation;
to commit to memory;
to be informed of, ascertain;
to receive instruction.

These meanings have some shortcomings when it comes to talking about
computers. For the first two, it is virtually impossible to test whether learning has
been achieved or not. How do you know whether a machine has “got knowledge
of” something? You probably can’t just ask it questions; even if you could,
you wouldn’t be testing its ability to learn but its ability to answer questions.
How do you know whether it has “become aware” of something? The whole ques-
tion of whether computers can be aware, or conscious, is a burning philosophical
issue. As for the last three meanings, although we can see what they denote in
human terms, merely “committing to memory” and “receiving instruction” seem to
fall far short of what we might mean by machine learning. They are too passive,
and we know that computers find these tasks trivial. Instead, we are interested in
improvements in performance, or at least in the potential for performance, in new
situations. You can “commit something to memory” or “be informed of something”
by rote learning without being able to apply the new knowledge to new situations.
You can receive instruction without benefiting from it at all.

Earlier we defined data mining operationally, as the process of discovering
patterns, automatically or semiautomatically, in large quantities of data—and the
patterns must be useful. An operational definition can be formulated in the same
way for learning. How about things learnt when they change their behavior in a
way that makes them perform better in the future.

This ties learning toperformancerather thanknowledge. You can test learning
by observing the behavior and comparing it with past behavior. This is a much
more objective kind of definition and appears to be far more satisfactory.

But still there’s a problem. Learning is a rather slippery concept. Lots of
things change their behavior in ways that make them perform better in the future,
yet we wouldn’t want to say that they have actuallylearned. A good example is
a comfortable slipper. Has itlearned the shape of your foot? It has certainly
changed its behavior to make it perform better as a slipper! Yet we would hardly
want to call thislearning. In everyday language, we often use the word “training”
to denote a mindless kind of learning. We train animals and even plants, although
it would be stretching the word a bit to talk of training objects such as slippers
that are not in any sense alive. But learning is different. Learning implies think-
ing. Learning implies purpose. Something that learns has to do so intentionally.
That is why we wouldn’t say that a vine has learned to grow round a trellis in
a vineyard—we’d say it has beentrained. Learning without purpose is merely
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training. Or, more to the point, in learning the purpose is the learner’s, whereas in
training it is the teacher’s.

Thus on closer examination the second definition of learning, in operational,
performance-oriented terms, has its own problems when it comes to talking about
computers. To decide whether something has actually learned, you need to see
whether it intended to, whether there was any purpose involved. That makes
the concept moot when applied to machines because whether artifacts can behave
purposefully is unclear. Philosophical discussions of what isreally meant by
“learning,” like discussions of what isreally meant by “intention” or “purpose,” are
fraught with difficulty. Even courts of law find intention hard to grapple with.

DATA MINING
Fortunately the kind of learning techniques explained in this book do not present
these conceptual problems—they are called “machine learning” without really
presupposing any particular philosophical stance about what learning actually is.
Data mining is a practical topic and involves learning in a practical, not a theoret-
ical, sense. We are interested in techniques for finding patterns in data, patterns
that provide insight or enable fast and accurate decision making. The data will
take the form of a set of examples—examples of customers who have switched
loyalties, for instance, or situations in which certain kinds of contact lenses can
be prescribed. The output takes the form of predictions on new examples—a
prediction of whether a particular customer will switch or a prediction of what
kind of lens will be prescribed under given circumstances.

Many learning techniques look for structural descriptions of what is learned,
descriptions that can become fairly complex and are typically expressed as sets of
rules such as the ones described previously or the decision trees described later in this
chapter. Because they can be understood by people, these descriptions serve to explain
what has been learned, in other words, to explain the basis for new predictions.
Experience shows that in many applications of machine learning to data mining, the
explicit knowledge structures that are acquired, the structural descriptions, are at least
as important as the ability to perform well on new examples. People frequently
use data mining to gain knowledge, not just predictions. Gaining knowledge from
data certainly sounds like a good idea if you can do it. To find out how, read on!

1.2 SIMPLE EXAMPLES: THE WEATHER PROBLEM
AND OTHERS

We will be using a lot of examples in this book, which seems particularly appro-
priate considering that the book is all about learning from examples! There are
several standard datasets that we will come back to repeatedly. Different datasets
tend to expose new issues and challenges, and it is interesting and instructive to
have in mind a variety of problems when considering learning methods. In fact,
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the need to work with different datasets is so important that a corpus containing
more than 100 example problems has been gathered together so that different
algorithms can be tested and compared on the same set of problems.

The illustrations in this section are all unrealistically simple. Serious applica-
tion of machine learning involve thousands, hundreds of thousands, or even
millions of individual cases. But when explaining what algorithms do and how
they work, we need simple examples that enable us to capture the essence of
the problem yet small enough to be comprehensible in every detail. We will be
working with the illustrations in this section throughout the book, and they are
intended to be “academic” in the sense that they will help us to understand what
is going on. Some actual fielded applications of learning techniques are discussed
in Section 1.3, and many more are covered in the books mentioned in theFurther
Readingsection at the end of the chapter.

Another problem with actual real-life datasets is that they are often proprietary.
No one is going to share their customer and product choice database with you so that
you can understand the details of their data mining application and how it works.
Corporate data is a valuable asset, one whose value has increased enormously with
the development of machine learning techniques such as those described in this
book. Yet we are concerned here with understanding how these methods work,
understanding their details so that we can trace their operation on actual data. That is
why our illustrations are simple ones. But they are notsimplistic: they exhibit the
features of real datasets.

THE WEATHER PROBLEM
The weather problem is a tiny dataset that we will use repeatedly to illustrate
machine learning methods. Entirely fictitious, it supposedly concerns the condi-
tions that are suitable for playing some unspecified game. In general, examples in
a dataset are characterized by the values of features, orattributes, that measure
different aspects of the example. In this case there are four attributes:outlook,
temperature, humidity, andwindy. The outcome is whether to play or not.

In its simplest form, shown inTable 1.2, all four attributes have values that
are symbolic categories rather than numbers. Outlook can besunny, overcast,
or rainy; temperature can behot, mild, or cool; humidity can behigh or normal;
and windy can betrue or false. This creates 36 possible combinations
(33 33 23 25 36), of which 14 are present in the set of input examples.

A set of rules learned from this information—not necessarily a very good
one—might look like this:

If outlook 5 sunny and humidity 5 high then play 5 no
If outlook 5 rainy and windy 5 true then play 5 no
If outlook 5 overcast then play 5 yes
If humidity 5 normal then play 5 yes
If none of the above then play 5 yes
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These rules are meant to be interpreted in order: the first one; then, if it
doesn’t apply, the second; and so on. A set of rules that are intended to be
interpreted in sequence is called adecision list. Interpreted as a decision list,
the rules correctly classify all of the examples in the table, whereas taken indi-
vidually, out of context, some of the rules are incorrect. For example, the rule
if humidity5 normal then play5 yes gets one of the examples wrong (check
which one). The meaning of a set of rules depends on how it is interpreted—
not surprisingly!

n the slightly more complex form shown inTable 1.3, two of the attri-
butes—temperature and humidity—have numeric values. This means that any
learning scheme must create inequalities involving these attributes, rather than
simple equality tests as in the former case. This is called anumeric-attribute
problem—in this case, amixed-attribute problembecause not all attributes are
numeric.

Now the first rule given earlier might take the form:

If outlook 5 sunny and humidity . 83 then play 5 no

A slightly more complex process is required to come up with rules that
involve numeric tests.

The rules we have seen so far areclassification rules: they predict the
classification of the example in terms of whether to play or not. It is equally
possible to disregard the classification and just look for any rules that stron-
gly associate different attribute values. These are calledassociation rules. Many

Table 1.2 The Weather Data

Outlook Temperature Humidity Windy Play

Sunny Hot High False No
Sunny Hot High True No
Overcast Hot High False Yes
Rainy Mild High False Yes
Rainy Cool Normal False Yes
Rainy Cool Normal True No
Overcast Cool Normal True Yes
Sunny Mild High False No
Sunny Cool Normal False Yes
Rainy Mild Normal False Yes
Sunny Mild Normal True Yes
Overcast Mild High True Yes
Overcast Hot Normal False Yes
Rainy Mild High True No
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association rules can be derived from the weather data inTable 1.2. Some good
ones are:

If temperature 5 cool then humidity 5 normal
If humidity 5 normal and windy 5 false then play 5 yes
If outlook 5 sunny and play 5 no then humidity 5 high
If windy 5 false and play 5 no then outlook 5 sunny

and humidity 5 high.

All these rules are 100% correct on the given data: they make no false
predictions. The first two apply to four examples in the dataset, the next to three
examples, and the fourth to two examples. And there are many other rules: in
fact, nearly 60 association rules can be found that apply to two or more examples
of the weather data and are completely correct on this data. And if you look for
rules that are less than 100% correct, then you will find many more. There are so
many because unlike classification rules, association rules can “predict” any of
the attributes, not just a specified class, and can even predict more than one thing.
For example, the fourth rule predicts both thatoutlook will be sunnyand that
humiditywill be high.

CONTACT LENSES: AN IDEALIZED PROBLEM
The contact lens data introduced earlier tells you the kind of contact lens to
prescribe, given certain information about a patient. Note that this example is
intended for illustration only: it grossly oversimplifies the problem and should
certainly not be used for diagnostic purposes!

Table 1.3 Weather Data With Some Numeric Attributes

Outlook Temperature Humidity Windy Play

Sunny 85 85 False No
Sunny 80 90 True No
Overcast 83 86 False Yes
Rainy 70 96 False Yes
Rainy 68 80 False Yes
Rainy 65 70 True No
Overcast 64 65 True Yes
Sunny 72 95 False No
Sunny 69 70 False Yes
Rainy 75 80 False Yes
Sunny 75 70 True Yes
Overcast 72 90 True Yes
Overcast 81 75 False Yes
Rainy 71 91 True No
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The first column ofTable 1.1gives the age of the patient. In case you’re
wondering,presbyopiais a form of long-sightedness that accompanies the onset
of middle age. The second gives the spectacle prescription:myopemeans short-
sighted andhypermetropemeans longsighted. The third shows whether the
patient is astigmatic, while the fourth relates to the rate of tear production,
which is important in this context because tears lubricate contact lenses. The
final column shows which kind of lenses to prescribe, whetherhard, soft, or
none. All possible combinations of the attribute values are represented in
Table 1.1.

A sample set of rules learned from this information is shown inFig. 1.1.
This is a rather large set of rules, but they do correctly classify all the examples.
These rules are complete and deterministic: they give a unique prescription for
every conceivable example. Generally this is not the case. Sometimes there are
situations in which no rule applies; other times more than one rule may apply,
resulting in conflicting recommendations. Sometimes probabilities or weights
may be associated with the rules themselves to indicate that some are more
important, or more reliable, than others.

You might be wondering whether there is a smaller rule set that performs as
well. If so, would you be better off using the smaller rule set, and, if so, why?
These are exactly the kinds of questions that will occupy us in this book.
Because the examples form acomplete set for the problem space, the rules do
no more than summarize all the information that is given, expressing it in a
different and more concise way. Even though it involves no generalization, this
is often a very useful thing to do! People frequently use machine learning
techniques to gain insight into the structure of their data rather than to make
predictions for new cases. In fact, a prominent and successful line of research
in machine learning began as an attempt to compress a huge database of possi-
ble chess endgames and their outcomes into a data structure of reasonable size.

If tear production rate = reduced then recommendation = none.
If age = young and astigmatic = no and tear production rate = normal

then recommendation = soft
If age = pre-presbyopic and astigmatic = no and tear production

rate = normal then recommendation = soft
If age = presbyopic and spectacle prescription = myope and

astigmatic = no then recommendation = none
If spectacle prescription = hypermetrope and astigmatic = no and

tear production rate = normal then recommendation = soft
If spectacle prescription = myope and astigmatic = yes and

tear production rate = normal then recommendation = hard
If age = young and astigmatic = yes and tear production rate = normal

then recommendation = hard
If age = pre-presbyopic and spectacle prescription = hypermetrope

and astigmatic = yes then recommendation = none
If age = presbyopic and spectacle prescription = hypermetrope

and astigmatic = yes then recommendation = none

FIGURE 1.1

Rules for the contact lens data.
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The data structure chosen for this enterprise was not a set of rules but a deci-
sion tree.

Fig. 1.2 shows a structural description forthe contact lens data in the form
of a decision tree, which for many purposes is a more concise and perspicuous
representation of the rules and has the advantage that it can be visualized more
easily. (However, this decision tree—in contrast to the rule set given in
Fig. 1.1—classifies two examples incorrectly.) The tree calls first for a test on
tear production rate, and the first two branches correspond to the two possible
outcomes. Iftear production rateis reduced(the left branch), the outcome is
none. If it is normal (the right branch), a second test is made, this time on
astigmatism. Eventually, whatever the outcome of the tests, a leaf of the tree is
reached that dictates the contact lens recommendation for that case. The ques-
tion of what is the most natural and easily understood format for the output
from a machine learning scheme is one that we will return to inChapter 3,
Output: knowledge representation.

IRISES: A CLASSIC NUMERIC DATASET
The iris dataset, which dates back to seminal work by the eminent statistician
R.A. Fisher in the mid-1930s and is arguably the most famous dataset used in
machine learning, contains 50 examples each of three types of plant:Iris setosa,
Iris versicolor, and Iris virginica. It is excerpted inTable 1.4. There are four
attributes:sepal length, sepal width, petal length, andpetal width(all measured in
centimeters). Unlike previous datasets, all attributes have values that are numeric.

Tear production rate

None

Reduced

Astigmatism

Normal

Soft

No

Spectacle prescription

Yes

Hard

Myope

None

Hypermetrope

FIGURE 1.2

Decision tree for the contact lens data.
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The following set of rules might be learned from this dataset:

If petal-length , 2.45 then Iris-setosa
If sepal-width , 2.10 then Iris-versicolor
If sepal-width , 2.45 and petal-length , 4.55 then Iris-versicolor
If sepal-width , 2.95 and petal-width , 1.35 then Iris-versicolor
If petal-length $ 2.45 and petal-length , 4.45 then Iris-versicolor
If sepal-length $ 5.85 and petal-length , 4.75 then Iris-versicolor
If sepal-width , 2.55 and petal-length , 4.95 and petal-width , 1.55 then

Iris-versicolor
If petal-length $ 2.45 and petal-length , 4.95 and petal-width , 1.55 then

Iris-versicolor
If sepal-length $ 6.55 and petal-length , 5.05 then Iris-versicolor
If sepal-width , 2.75 and petal-width , 1.65 and sepal-length , 6.05

then Iris-versicolor
If sepal-length $ 5.85 and sepal-length , 5.95 and petal-length , 4.85

then Iris-versicolor
If petal-length $ 5.15 then Iris-virginica
If petal-width $ 1.85 then Iris-virginica
If petal-width $ 1.75 and sepal-width , 3.05 then Iris-virginica
If petal-length $ 4.95 and petal-width , 1.55 then Iris-virginica

These rules are very cumbersome, and we will see inChapter 3, Output:
knowledge representation, how more compact rules can be expressed that convey
the same information.

Table 1.4 The Iris Data

Sepal Length Sepal Width Petal Length Petal Width Type

1 5.1 3.5 1.4 0.2 Iris setosa
2 4.9 3.0 1.4 0.2 I. setosa
3 4.7 3.2 1.3 0.2 I. setosa
4 4.6 3.1 1.5 0.2 I. setosa
5 5.0 3.6 1.4 0.2 I. setosa
. . .
51 7.0 3.2 4.7 1.4 Iris versicolor
52 6.4 3.2 4.5 1.5 I. versicolor
53 6.9 3.1 4.9 1.5 I. versicolor
54 5.5 2.3 4.0 1.3 I. versicolor
55 6.5 2.8 4.6 1.5 I. versicolor
. . .
101 6.3 3.3 6.0 2.5 Iris virginica
102 5.8 2.7 5.1 1.9 I. virginica
103 7.1 3.0 5.9 2.1 I. virginica
104 6.3 2.9 5.6 1.8 I. virginica
105 6.5 3.0 5.8 2.2 I. virginica
. . .
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CPU PERFORMANCE: INTRODUCING NUMERIC PREDICTION
Although the iris dataset involves numeric attributes, the outcome—the type of
iris—is a category, not a numeric value.Table 1.5shows some data for which both
the outcome and the attributes are numeric. It concerns the relative performance of
computer processing power on the basis of a number of relevant attributes: each
row represents 1 of 209 different computer configurations.

The classic way of dealing with continuous prediction is to write the outcome
as a linear sum of the attribute values with appropriate weights, e.g.,

PRP5 � 55:91 0:0489 MYCT1 0:0153 MMIN1 0:0056 MMAX

1 0:6410 CACH� 0:2700 CHMIN1 1:480 CHMAX
:

(The abbreviated variable names are given in the second row of the table.) This
is called alinear regressionequation, and the process of determining the weights is
calledlinear regression, a well-known procedure in statistics that we will review in
Chapter 4, Algorithms: the basic methods. The basic regression method is incapable
of discovering nonlinear relationships, but variants exist—we encounter them later
in this book. In Chapter 3, Output: knowledge representation, we will examine
other representations that can be used for predicting numeric quantities.

In the iris and central processing unit (CPU) performance data, all the attri-
butes have numeric values. Practical situations frequently present a mixture of
numeric and nonnumeric attributes.

LABOR NEGOTIATIONS: A MORE REALISTIC EXAMPLE
The labor negotiations dataset inTable 1.6 summarizes the outcome of
Canadian labor contract negotiations in 1987 and 1988. It includes all collective

Table 1.5 The CPU Performance Data

Cycle
Time (ns)

Main Memory
(Kb)

Cache
(KB) Channels

PerformanceMin Max Min Max

MYCT MMIN MMAX CACH CHMIN CHMAX PRP

1 125 256 6000 256 16 128 198
2 29 8000 32,000 32 8 32 269
3 29 8000 32,000 32 8 32 220
4 29 8000 32,000 32 8 32 172
5 29 8000 16,000 32 8 16 132
. . .
207 125 2000 8000 0 2 14 52
208 480 512 8000 32 0 0 67
209 480 1000 4000 0 0 0 45
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agreements reached in the business and personal services sector for organiza-
tions with at least 500 members (teachers, nurses, university staff, police, etc.).
Each case concerns one contract, and the outcome is whether the contract is
deemed acceptable or unacceptable. The acceptable contracts are ones in
which agreements were accepted by both labor and management. The unac-
ceptable ones are either known offersthat fell through because one party
would not accept them or acceptable contracts that had been significantly per-
turbed to the extent that, in the view of experts, they would not have been
accepted.

There are 40 examples in the dataset (plus another 17 that are normally
reserved for test purposes). Unlike the other tables here,Table 1.6presents the
examples as columns rather than as rows; otherwise, it would have to be stretched
over several pages. Many of the values are unknown or missing, as indicated by
question marks.

This is a much more realistic dataset than the others we have seen. It contains
many missing values, and it seems unlikely that an exact classification can be
obtained.

Fig. 1.3 shows two decision trees that represent the dataset.Fig. 1.3A is
simple and approximate: it doesn’t represent the data exactly. For example, it will

Table 1.6 The Labor Negotiations Data

Attribute Type 1 2 3 . . . 40

Duration (Number of years) 1 2 3 2
Wage increase 1st year Percentage 2% 4% 4.3% 4.5
Wage increase 2nd year Percentage ? 5% 4.4% 4.0
Wage increase 3rd year Percentage ? ? ? ?
Cost of living adjustment {None, tcf, tc} None Tcf ? None
Working hours per week (Number of hours) 28 35 38 40
Pension {None, ret-allw,

empl-cntr}
None ? ? ?

Standby pay Percentage ? 13% ? ?
Shift-work supplement Percentage ? 5% 4% 4
Education allowance {Yes, no} Yes ? ? ?
Statutory holidays (Number of days) 11 15 12 12
Vacation {Below-avg, avg, gen} Avg Gen Gen Avg
Long-term disability
assistance

{Yes, no} No ? ? Yes

Dental plan contribution {None, half, full} None ? Full Full
Bereavement assistance {Yes, no} No ? ? Yes
Health-plan contribution {None, half, full} None ? Full Half
Acceptability of contract {Good, bad} Bad Good Good Good
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predict bad for some contracts that are actually markedgood. But it does make
intuitive sense: a contract is bad (for the employee!) if the wage increase in the
first year is too small (less than 2.5%). If the first-year wage increase is larger
than this, it is good if there are lots of statutory holidays (more than 10 days).
Even if there are fewer statutory holidays, it is good if the first-year wage
increase is large enough (more than 4%).

Fig. 1.3B is a more complex decision tree that represents the same dataset.
Take a detailed look down the left branch. At first sight it doesn’t seem to make
sense intuitively that, if the working hours exceed 36, a contract is bad if there is
no health-plan contribution or a full health-plan contribution but is good if there
is a half health-plan contribution. It is certainly reasonable that the health-plan
contribution plays a role in the decision, but it seems anomalous that half is good
and both full and none are bad. However, on reflection this could make sense
after all, because “good” contracts are ones that have been accepted byboth par-
ties: labor and management. Perhaps this structure reflects compromises that had
to be made to get agreement. This kind of detailed reasoning about what parts of
decision trees mean is a good way of getting to know your data and think about
the underlying problem.

In fact, Fig. 1.3B is a more accurate representation of the training dataset
than Fig. 1.3A. But it is not necessarily a more accurate representation of
the underlying concept of good versus bad contracts. Although it is more
accurate on the data that was used to train the classifier, it may perform less
well on an independent set of test data. It may be “overfitted” to the training
data—following it too slavishly. The tree inFig. 1.3A is obtained from the one
in Fig. 1.3B by a process of pruning, which we will learn more about in
Chapter 6, Trees and rules.
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FIGURE 1.3

Decision trees for the labor negotiations data.
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SOYBEAN CLASSIFICATION: A CLASSIC MACHINE
LEARNING SUCCESS
An often quoted early success story in the application of machine learning to
practical problems is the identification of rules for diagnosing soybean diseases.
The data is taken from questionnaires describing plant diseases. There are about
680 examples, each representing a diseased plant. Plants were measured on 35
attributes, each one having a small set of possible values. Examples are labeled
with the diagnosis of an expert in plant biology: there are 19 disease categories
altogether—horrible-sounding diseases such as diaporthe stem canker, rhizoctonia
root rot, and bacterial blight, to mention just a few.

Table 1.7gives the attributes, the number of different values that each can
have, and a sample record for one particular plant. The attributes are placed into
different categories just to make them easier to read.

Here are two example rules, learned from this data:

If leaf condition 5 normal and
stem condition 5 abnormal and
stem cankers 5 below soil line and
canker lesion color 5 brown

then
diagnosis is rhizoctonia root rot

If leaf malformation 5 absent and
stem condition 5 abnormal and
stem cankers 5 below soil line and
canker lesion color 5 brown

then
diagnosis is rhizoctonia root rot

These rules nicely illustrate the potential role of prior knowledge—often
called domain knowledge—in machine learning, for in fact the only difference
between the two descriptions isleaf condition is normalversusleaf malformation
is absent. Now, in this domain, if the leaf condition is normal then leaf malforma-
tion is necessarily absent, so one of these conditions happens to be a special case
of the other. Thus if the first rule is true, the second is necessarily true as well.
The only time the second rule comes into play is when leaf malformation is
absent but leaf condition isnot normal, i.e., when something other than malforma-
tion is wrong with the leaf. This is certainly not apparent from a casual reading
of the rules.

Research on this problem in the late 1970s found that these diagnostic rules
could be generated by a machine learning algorithm, along with rules for every
other disease category, from about 300 training examples. These training exam-
ples were carefully selected from the corpus of cases as being quite different
from one another—“far apart” in the example space. At the same time, the plant
pathologist who had produced the diagnoses was interviewed, and his expertise
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Table 1.7 The Soybean Data

Attribute
Number
of Values

Sample
Value

Environment Time of occurrence 7 July
Precipitation 3 Above normal
Temperature 3 Normal
Cropping history 4 Same as last year
Hail damage 2 Yes
Damaged area 4 Scattered
Severity 3 Severe
Plant height 2 Normal
Plant growth 2 Abnormal
Seed treatment 3 Fungicide
Germination 3 Less than 80%

Seed Condition 2 Normal
Mold growth 2 Absent
Discoloration 2 Absent
Size 2 Normal
Shriveling 2 Absent

Fruit Condition of fruit pods 3 Normal
Fruit spots 5 �

Leaves Condition 2 Abnormal
Leaf spot size 3 �
Yellow leaf spot halo 3 Absent
Leaf spot margins 3 �
Shredding 2 Absent
Leaf malformation 2 Absent
Leaf mildew growth 3 Absent

Stem Condition 2 Abnormal
Stem lodging 2 Yes
Stem cankers 4 Above soil line
Canker lesion color 3 �
Fruiting bodies on stems 2 Present
External decay of stem 3 Firm and dry
Mycelium on stem 2 Absent
Internal discoloration 3 None
Sclerotia 2 Absent

Roots Condition 3 Normal
Diagnosis 19 Diaporthe stem

canker
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was translated into diagnostic rules. Surprisingly, the computer-generated rules
outperformed the expert-derived rules on the remaining test examples. They gave
the correct disease top ranking 97.5% of the time compared with only 72%
for the expert-derived rules. Furthermore, not only did the learning algorithm
find rules that outperformed those of the expert collaborator, but the same
expert was so impressed that he allegedly adopted the discovered rules in place of
his own!

1.3 FIELDED APPLICATIONS
The examples that we opened with are speculative research projects, not
production systems. And most of the illustrations above are toy problems: they
are deliberately chosen to be small so that we can use them to work through
algorithms later in the book. Where’s the beef? Here are some applications
of machine learning that have actually been put into use.

Being fielded applications, the illustrations that follow tend to stress the use
of learning in performance situations, in which the emphasis is on the ability
to perform well on new examples. This book also describes the use of learning
systems to gain knowledge from decision structures that are inferred from
the data. We believe that this is as important a use of the technology as making
high-performance predictions. Still, it will tend to be underrepresented in
fielded applications because when learning techniques are used to gain insight,
the result is not normally a system that is put to work as an application in
its own right. Nevertheless, in three of the examples below, the fact that the
decision structure is comprehensible is a key feature in the successful adoption
of the application.

WEB MINING
Mining information on the World Wide Web is a huge application area.
Search engine companies examine the hyperlinks in web pages to come up with
a measure of “prestige” for each web page and website. Dictionaries define
prestigeas “high standing achieved through success or influence.” A metric called
PageRank, introduced by the founders of Google and used in various guises by
other search engine developers too, attempts to measure the standing of a
web page. The more pages that link to your website, the higher its prestige.
And prestige is greater if the pages that link in have high prestige themselves.
The definition sounds circular, but it can be made to work. Search engines use
PageRank (among other things) to sort web pages into order before displaying
the result of your search.

Another way in which search engines tackle the problem of how to rank
web pages is to use machine learning based on a training set of example
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queries—documents that contain the terms in the query and human judgments
about how relevant the documents are to that query. Then a learning algorithm
analyzes this training data and comes up with a way to predict the relevance
judgment for any document and query. For each document a set of feature values
is calculated that depend on the query term—e.g., whether it occurs in the title
tag, whether it occurs in the document’s URL, how often it occurs in the docu-
ment itself, and how often it appears in the anchor text of hyperlinks that
point to this document. For multiterm queries, features include how often two
different terms appear close together in the document, and so on. There are many
possible features: typical algorithms for learning ranks use hundreds or thousands
of them.

Search engines mine the content of the Web. They also mine the content of
your queries—the terms you search for—to select advertisements that you might be
interested in. They have a strong incentive to do this accurately, because they only
get paid by advertisers when users click on their links. Search engine companies
mine your very clicks, because knowledge of which results you click on can be
used to improve the search next time. Online booksellers mine the purchasing data-
base to come up with recommendations such as “users who bought this book also
bought these ones”; again they have a strong incentive to present you with compel-
ling, personalized choices. Movie sites recommend movies based on your previous
choices and other people’s choices: they win if they make recommendations that
keep customers coming back to their website.

And then there are social networks and other personal data. We live in the
age of selfrevelation: people share their innermost thoughts in blogs and tweets,
their photographs, their music and movie tastes, their opinions of books, software,
gadgets, and hotels, their social life. They may believe they are doing this
anonymously, or pseudonymously, but often they are incorrect (seeSection 1.6).
There is huge commercial interest in making money by mining the Web.

DECISIONS INVOLVING JUDGMENT
When you apply for a loan, you have to fill out a questionnaire asking for
relevant financial and personal information. This information is used by the loan
company as the basis for its decision as to whether to lend you money. Such
decisions are often made in two stages: first, statistical methods are used to
determine clear “accept” and “reject” cases. The remaining borderline cases are
more difficult and call for human judgment. For example, one loan company
uses a statistical decision procedure to calculate a numeric parameter based on
the information supplied in the questionnaire. Applicants are accepted if this
parameter exceeds a preset threshold and rejected if it falls below a second thresh-
old. This accounts for 90% of cases, and the remaining 10% are referred to loan
officers for a decision. On examining historical data on whether applicants
did indeed repay their loans, however, it turned out that half of the borderline
applicants who were granted loans actually defaulted. Although it would be
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tempting simply to deny credit to borderline customers, credit industry
professionals pointed out that if only their repayment future could be reliably
determined it is precisely these customers whose business should be wooed; they
tend to be active customers of a credit institution because their finances remain in
a chronically volatile condition. A suitable compromise must be reached between
the viewpoint of a company accountant, who dislikes bad debt, and that of a sales
executive, who dislikes turning business away.

Enter machine learning. The input was 1000 training examples of borderline
cases for which a loan had been made that specified whether the borrower had
finally paid off or defaulted. For each training example, about 20 attributes were
extracted from the questionnaire, such as age, years with current employer,
years at current address, years with the bank, and other credit cards possessed.
A machine learning procedure was used to produce a small set of classification
rules that made correct predictions on two-thirds of the borderline cases in an
independently chosen test set. Not only did these rules improve the success rate
of the loan decisions, but the company also found them attractive because they
could be used to explain to applicants the reasons behind the decision. Although
the project was an exploratory one that took only a small development effort,
the loan company was apparently so pleased with the result that the rules were
put into use immediately.

SCREENING IMAGES
Since the early days of satellite technology, environmental scientists have been
trying to detect oil slicks from satellite images to give early warning of ecological
disasters and deter illegal dumping. Radar satellites provide an opportunity
for monitoring coastal waters day and night, regardless of weather conditions.
Oil slicks appear as dark regions in the image whose size and shape evolve
depending on weather and sea conditions. However, other look-alike dark regions
can be caused by local weather conditions such as high wind. Detecting oil slicks
is an expensive manual process requiring highly trained personnel who assess
each region in the image.

A hazard detection system has been developed to screen images for
subsequent manual processing. Intended to be marketed worldwide to a wide
variety of users—government agencies and companies—with different objectives,
applications, and geographical areas, it needs to be highly customizable to
individual circumstances. Machine learning allows the system to be trained on
examples of spills and nonspills supplied by the user and lets the user control
the tradeoff between undetected spills and false alarms. Unlike other machine
learning applications, which generate a classifier that is then deployed in the field,
here it is the learning scheme itself that will be deployed.

The input is a set of raw pixel images from a radar satellite, and the output is
a much smaller set of images with putative oil slicks marked by a colored border.
First, standard image-processing operations are applied to normalize the image.
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Then, suspicious dark regions are identified. Several dozen attributes are extracted
from each region, characterizing its size, shape, area, intensity, sharpness, and
jaggedness of the boundaries, proximity to other regions, and information about
the background in the vicinity of the region. Finally, standard learning techniques
are applied to the resulting attribute vectors. (An alternative, omitting explicit
feature extraction steps, would be to use the deep learning approach discussed in
Chapter 10, Deep learning).

Several interesting problems were encountered. One is the scarcity of training
data. Oil slicks are (fortunately) very rare, and manual classification is extremely
costly. Another is the unbalanced nature of the problem: of the many dark regions
in the training data, only a very small fraction are actual oil slicks. A third is that
the examples group naturally into batches, with regions drawn from each image
forming a single batch, and background characteristics vary from one batch to
another. Finally, the performance task is to serve as a filter, and the user must
be provided with a convenient means of varying the false-alarm rate.

LOAD FORECASTING
In the electricity supply industry, it is important to determine future demand for
power as far in advance as possible. If accurate estimates can be made for the
maximum and minimum load for each hour, day, month, season, and year, utility
companies can make significant economies in areas such as setting the operating
reserve, maintenance scheduling, and fuel inventory management.

An automated load-forecasting assistant has been operating at a major utility
supplier for more than a decade to generate hourly forecasts 2 days in advance.
The first step was to use data collected over the previous 15 years to create a
sophisticated load model manually. This model had three components: base load
for the year, load periodicity over the year, and effect of holidays. To normalize
for the base load, the data for each previous year was standardized by subtracting
the average load for that year from each hourly reading and dividing by the stan-
dard deviation over the year. Electric load shows periodicity at three fundamental
frequencies: diurnal, where usage has an early morning minimum and midday and
afternoon maxima; weekly, where demand is lower at weekends; and seasonal,
where increased demand during winter and summer for heating and cooling,
respectively, creates a yearly cycle. Major holidays such as Thanksgiving,
Christmas, and New Year’s Day show significant variation from the normal load
and are each modeled separately by averaging hourly loads for that day over
the past 15 years. Minor official holidays, such as Columbus Day, are lumped
together as school holidays and treated as an offset to the normal diurnal pattern.
All of these effects are incorporated by reconstructing a year’s load as a sequence
of typical days, fitting the holidays in their correct position, and denormalizing
the load to account for overall growth.

Thus far, the load model is a static one, constructed manually from historical
data, and implicitly assumes “normal” climatic conditions over the year. The final
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step was to take weather conditions into account by locating the previous day
most similar to the current circumstances and using the historical information
from that day as a predictor. The prediction is treated as an additive correction to
the static load model. To guard against outliers, the eight most similar days are
located and their additive corrections averaged. A database was constructed of
temperature, humidity, wind speed, and cloud cover at three local weather centers
for each hour of the 15-year historical record, along with the difference between
the actual load and that predicted by the static model. A linear regression analysis
was performed to determine the relative effects of these observations on load, and
the coefficients were applied to weight the distance function used to locate the
most similar days.

The resulting system yielded the same performance as trained human forecasters
but was far quicker—taking seconds rather than hours to generate a daily forecast.
Human operators can analyze the forecast’s sensitivity to simulated changes in
weather and bring up for examination the “most similar” days that the system used
for weather adjustment.

DIAGNOSIS
Diagnosis is one of the principal application areas of expert systems. Although the
hand-crafted rules used in expert systems often perform well, machine learning
can be useful in situations in which producing rules manually is too labor intensive.

Preventative maintenance of electromechanical devices such as motors and
generators can forestall failures that disrupt industrial processes. Technicians
regularly inspect each device, measuring vibrations at various points to determine
whether the device needs servicing. Typical faults include shaft misalignment,
mechanical loosening, faulty bearings, and unbalanced pumps. A particular chemi-
cal plant uses more than 1000 different devices, ranging from small pumps to very
large turbo-alternators, which used to be diagnosed by a human expert with 20 years
of experience. Faults are identified by measuring vibrations at different places on
the device’s mounting and using Fourier analysis to check the energy present in
three different directions at each harmonic of the basic rotation speed. This infor-
mation, which is very noisy because of limitations in the measurement and record-
ing procedure, can be studied by the expert to arrive at a diagnosis. Although
handcrafted expert system rules had been elicited for some situations, the elicitation
process would have to be repeated several times for different types of machinery;
so a learning approach was investigated.

Six hundred faults, each comprising a set of measurements along with the
expert’s diagnosis, were available, representing 20 years of experience. About half
were unsatisfactory for various reasons and had to be discarded; the remainder
were used as training examples. The goal was not to determine whether or not a
fault existed, but to diagnose the kind of fault, given that one was there. Thus
there was no need to include fault-free cases in the training set. The measured
attributes were rather low level and had to be augmented by intermediate concepts,
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