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Preface 

 

 
Brains rule the world, and brain-like computation is increasingly used in computers and e-
lectronic devices. Brain-like computation is about processing and interpreting data or direct-
ly putting forward and performing actions. Learning is a very important aspect. This book is 
on reinforcement learning which involves performing actions to achieve a goal. Two other 
learning paradigms exist. Supervised learning has initially been successful in prediction and 
classification tasks, but is not brain-like. Unsupervised learning is about understanding the 
world by passively mapping or clustering given data according to some order principles, 
and is associated with the cortex in the brain. In reinforcement learning an agent learns by 
trial and error to perform an action to receive a reward, thereby yielding a powerful method 
to develop goal-directed action strategies. It is predominately associated with the basal 
ganglia in the brain. 
The first 11 chapters of this book, Theory, describe and extend the scope of reinforcement 
learning. The remaining 11 chapters, Applications, show that there is already wide usage in 
numerous fields. Reinforcement learning can tackle control tasks that are too complex for 
traditional, hand-designed, non-learning controllers. As learning computers can deal with 
technical complexities, the tasks of human operators remain to specify goals on increasingly 
higher levels. 
This book shows that reinforcement learning is a very dynamic area in terms of theory and 
applications and it shall stimulate and encourage new research in this field. We would like 
to thank all contributors to this book for their research and effort. 
 
Summary of Theory: 
Chapters 1 and 2 create a link to supervised and unsupervised learning, respectively, by re-
garding reinforcement learning as a prediction problem, and chapter 3 looks at fuzzy-
control with a reinforcement-based genetic algorithm. Reinforcement algorithms are modi-
fied in chapter 4 for future parallel and quantum computing, and in chapter 5 for a more ge-
neral class of state-action spaces, described by grammars. Then follow biological views; in 
chapter 6 how reinforcement learning occurs on a single neuron level by considering the in-
teraction between a spatio-temporal learning rule and Hebbian learning, and in a global 
brain view of chapter 7, unsupervised learning is depicted as a means of data pre-processing 
and arrangement for reinforcement algorithms. A table presents a ready-to-implement desc-
ription of standard reinforcement learning algorithms. The following chapters consider mul-
ti agent systems where a single agent has only partial view of the entire system. Multiple 
agents can work cooperatively on a common goal, as considered in chapter 8, or rewards 
can be individual but interdependent, such as in game play, as considered in chapters 9, 10 
and 11. 



VI        

Summary of Applications: 
Chapter 12 continues with game applications where a robot cup middle size league robot 
learns a strategic soccer move. A dialogue manager for man-machine dialogues in chapter 
13 interacts with humans by communication and database queries, dependent on interaction 
strategies that govern the Markov decision processes. Chapters 14, 15, 16 and 17 tackle 
control problems that may be typical for classical methods of control like PID controllers 
and hand-set rules. However, traditional methods fail if the systems are too complex, time-
varying, if knowledge of the state is imprecise, or if there are multiple objectives. These 
chapters report examples of computer applications that are tackled only with reinforcement 
learning such as water allocation improvement, building environmental control, chemical 
processing and industrial process control. The reinforcement-controlled systems may conti-
nue learning during operation. The next three chapters involve path optimization. In chap-
ter 18, internet routers explore different links to find more optimal routes to a destination 
address. Chapter 19 deals with optimizing a travel sequence w.r.t. both time and distance. 
Chapter 20 proposes an untypical application of path optimization: a path from a given pat-
tern to a target pattern provides a distance measure. An unclassified medical image can the-
reby be classified dependent on whether a path from it is shorter to an image of healthy or 
unhealthy tissue, specifically considering lung nodules classification using 3D geometric 
measures extracted from the lung lesions Computerized Tomography (CT) images. Chapter 
21 presents a physicians' decision support system for diagnosis and treatment, involving a 
knowledgebase server. In chapter 22 a reinforcement learning sub-module improves the ef-
ficiency for the exchange of messages in a decision support system in air traffic manage-
ment. 
 
 
 

 
 
 
 

January 2008 Cornelius Weber 
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Neural Forecasting Systems 

Takashi Kuremoto, Masanao Obayashi and Kunikazu Kobayashi 
Yamaguchi University 

Japan 

1. Introduction   

Artificial neural network models (NN) have been widely adopted on the field of time series 
forecasting in the last two decades. As a kind of soft-computing method, neural forecasting 
systems can be built more easily because of their learning algorithms than traditional linear 
or nonlinear models which need to be constructed by advanced mathematic techniques and 
long process to find optimized parameters of models. The good ability of function 
approximation and strong performance of sample learning of NN have been known by 
using error back propagation learning algorithm (BP) with a feed forward multi-layer NN 
called multi-layer perceptron (MLP) (Rumelhart et. al, 1986), and after this mile stone of 
neural computing, there have been more than 5,000 publications on NN for forecasting 
(Crone & Nikolopoulos, 2007).  
To simulate complex phenomenon, chaos models have been researched since the middle of 
last century (Lorenz, 1963; May, 1976). For NN models, the radial basis function network 
(RBFN) was employed on chaotic time series prediction in the early time (Casdagli, 1989). 
To design the structure of hidden-layer of RBFN, a cross-validated subspace method is 
proposed, and the system was applied to predict noisy chaotic time series (Leung & Wang, 
2001). A two-layered feed-forward NN, which has its all hidden units with hyperbolic 
tangent activation function and the final output unit with linear function, gave a high 
accuracy of prediction for the Lorenz system, Henon and Logistic map (Oliveira et. al, 2000).  
To real data of time series, NN and advanced NN models (Zhang, 2003) are reported to 
provide more accurate forecasting results comparing with traditional statistical model (i.e. 
the autoregressive integrated moving average (ARIMA)(Box & Jankins, 1976)), and the  
performances of different NNs for financial time series are confirmed by Kodogiannis & 
Lolis (Kodogiannis & Lolis, 2002). Furthermore, using benchmark data, several time series 
forecasting competitions have been held in the past decades, many kinds of NN methods 
showed their powerful ability of prediction versus other new techniques, e.g. vector 
quantization, fuzzy logic, Bayesian methods, Kalman filter or other filtering techniques, 
support vector machine, etc (Lendasse et. al, 2007; Crone & Nikolopoulos, 2007).  
Meanwhile, reinforcement learning (RL), a kind of goal-directed learning, has been 
generally applied in control theory, autonomous system, and other fields of intelligent 
computation (Sutton & Barto, 1998). When the environment of an agent belongs to Markov 
decision process (MDP) or the Partially Observable Markov Decision Processes (POMDP), 
behaviours of exploring let the agent obtain reward or punishment from the environment, 
and the policy of action then is modified to adapt to acquire more reward.  When prediction 
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error for a time series is considered as reward or punishment from the environment, one can 
use RL to train predictors constructed by neural networks.  
In this chapter, two kinds of neural forecasting systems using RL are introduced in detail: a 
self-organizing fuzzy neural network (SOFNN) (Kuremoto et al., 2003) and a multi-layer 
perceptron (MLP) predictor (Kuremoto et al., 2005). The results of experiments using Lorenz 
chaos showed the efficiency of the method comparing with the results by a conventional 
learning method (BP). 

2. Architecture of neural forecasting system 

The flow chart of neural forecasting processing is generally used by which in Fig. 1. The tth 

step time series data )( ty  can be embedded into a new n-dimensional space ( )t x  according 

to Takens Theorem (Takens, 1981). Eq. (1) shows the detail of reconstructed vector space 

which serves input layer of NN, here τ is an arbitrary delay. An example of 3-dimensional 

reconstruction is shown in Fig. 2. The output layer of neural forecasting systems is usually 
with one neuron whose output  ( )1ˆ +ty  equals prediction result. 

 
))1((,),( ),((        

))( , ),( ),(
1

()(
2

ττ −−−=

=

ntytyty

txtxtxt
n

L

Lx

  (1) 

y(t)

X(t)

Evaluation of Prediction

 Learning or Predicting iterations

y(t+1)
^

Time Series data

Reconstructed Inputs

 Neural Network with hidden layers

 Output layer of NN
Modify parameters

 

Fig. 1. Flow chart of neural forecasting methods.  
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There are various architectures of NN models, including MLP, RBFN, recurrent neural 

network (RNN), autoregressive recurrent neural network (ARNN), neuro-fuzzy hybrid 

network, ARIMA-NN hybrid model, SOFNN, and so on. The training rules of NNs are also 

very different not only well-known methods, i.e., BP, orthogonal least squares (OLS), fuzzy 

inference, but also evolutional computation, i.e., genetic algorithm (GA), particle swarm 

optimization (PSO),  genetic programming (GP), RL, and so on.  

 

 

Fig. 2. Embedding a time series into a 3-dimensional space. 

2.1 MLP with BP 

MLP, a feed-forward multi-layer network, is one of the most famous classical neural 

forecasting systems whose structure is shown in Fig. 3. BP is commonly used as its learning 

rule, and the system performs fine efficiency in the function approximation and nonlinear 

prediction.  

For the hidden layer, let the number of neurons is K, the output of neuron k is kH , then the 

output of MLP is obtained by Eq. (2) and Eq. (3). 
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Fig. 3. A MLP with n input neurons, one hidden layer, and one neuron in output layer using 
BP training algorithm. 

Here  ,ykw kiw represent the connection of kth hidden neuron with output neuron and 

input neurons, respectively.  Activation function f (u) is a sigmoid function (or hyperblolic 

tangent function) given by Eq. (4). 

 
)exp(1

1
)(

u
uf

β−+
=      (4) 

Gradient parameter β is usually set to 1.0, and to correspond to f (u), the scale of time series 

data should be adjusted to (0.0, 1.0).  

BP is a supervised learning algorithm, using sample data trains NN providing more correct 

output data by modifying all of connections between layers. Conventionally, the error 

function is given by the mean square error as Eq. (5). 

 ∑
−

=

+−+=
1

0

2))1(ˆ)1((
1

)(
S

t

tyty
S

WE   (5) 

Here S is the size of train data set, y (t+1) is the actual data in time series. The error is 

minimized by adjusting the weights according to Eq. (6), Eq. (7) and Eq. (2), Eq. (3). 

 ),(),(),( ikyk

old

ikyk

new

ikyk wwWwwWwwW Δ−= ηα    (6) 
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 )/,/(),( ikykikyk wEwEwwW ∂∂∂∂=Δ   (7) 

Here α is a discount parameter (0.0<α ≤ 1.0), η is the learning rate (0.0 < η ≤ 1.0). The 

training iteration keeps to be executed until the error function converges enough. 
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Fig. 4. A MLP with n input neurons, two hidden layers, and one neuron in output layer 
using RL training algorithm. 

2.2 MLP with RL 

One important feature of RL is its statistical action policy, which brings out exploration of 

adaptive solutions. Fig. 4 shows a MLP which output layer is designed by a neuron with 

Gaussian function. A hidden layer consists of variables of the distribution function is added. 

The activation function of units in each hidden layer is still sigmoid function (or hyperbolic 

tangent function) (Eq. (8)-(10)). 

 
)exp(1

1

1 kk wR µβ
µ

∑−+
=    (8) 
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1

2 kk wR σβ
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=   (9) 

 
))(exp(1

1

3 kii

k
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R
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β

    (10) 

And the prediction value is given according to Eq. (11).  
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Here  
321 ,, βββ  are gradient constants, w ( ,kwµ ,kwσ kiw ) represents the connection of kth 

hidden neuron with neuron μ,σ in statistical hidden layer and input neurons, respectively. 

The modification of w  is calculated by RL algirthm which will be described in section 3. 

2.3 SOFNN with RL 

A neuro-fuzzy hybrid forecasting system, SOFNN, using RL training algorithm is shown in 

Fig. 5. A hidden layer consists of fuzzy membership functions  ( ))( txB iij
 is designed to 

categorize  input data of each dimension in ( ))(),...,(),( 21 txtxtx nx , t = 1, 2, ..., S (Eq. (12)).  

The fuzzy reference 
kλ , which calculates the fitness for an input set ( )tx , is executed by 

fuzzy rules layer (Eq. 13).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. A SOFNN with n input neurons, three hidden layers, and one neuron in output layer 
using RL training algorithm. 
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2

2

2

)(
exp)(

ij

iji

iij

mtx
txB

σ
 (12) 

 ∏
=

=
n

i

iick txBtX
1

))(())((λ  (13) 

Where i = 1, 2, ..., n, j means the number of membership function which is 1 initially, 
ijijm σ,  

are the mean and standard deviation of jth membership function for input )( tx i
, c  means 

each of membership function which connects with kth rule, respectively. c ∈  j, ( j  = 1, 2, ..., l  
), and l is the maximum number of membership functions. If an adaptive  threshold of 

( ))( txB iij
 is considered, then the multiplication or combination of membership functions 

and rules can be realized automatically, the network owns self-organizing function to deal 
with different features of inputs. 
The output of neurons σµ ,  in stochastic layer is given by Eq. (14), Eq. (15) respectively. 

 

∑

∑
=
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k

k
kk w

λ

λ
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∑

∑
=

k
k

k
kk w

λ

λ

σ
σ

 (15) 

Where
kk ww σµ , are the connections between σµ , and rules,  and σµ , are the mean 

and standard deviation of stochastic function ( ) ( )( )tty xw ,,1ˆ +π  whose description is 

given by Eq. (11). The output of system can be obtained by generating a random data 
according this probability function. 

3. SGA of RL 

3.1 Algorithm of SGA 

A RL algorithm, Stochastic Gradient Ascent (SGA), is proposed by Kimura and Kobayashi 

(Kimura & Kobayashi, 1996, 1998) to deal with POMDP and continuous action space. 

Experimental results reported that SGA learning algorithm was successful for cart-pole 

control and maze problem. In the case of time series forecasting, the output of predictor can 

be considered as an action of agent, and the prediction error can be used as reward or 

punishment from the environment, so SGA can be used to train a neural forecasting system 

by renewing internal variable vector of NN (Kuremoto et. al, 2003, 2005).  

The SGA algorithm is given below. 
  Step 1. Observe an input ( )tx  from training data of time series. 
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  Step 2. Predict a future data ( )1ˆ +ty  according to a probability ( ) ( )( )tty xw,,1ˆ +π . 

  Step 3. Receive the immediate reward 
tr by calculating the prediction error.  

 

( ) ( )
( ) ( )⎪⎩

⎪
⎨
⎧

>+−+−

≤+−+
=

ε

ε

11ˆ

11ˆ

tytyifr

tytyifr
rt  (16) 

Here r , ε are evaluation constants greater than or equal to zero.    

  Step 4. Calculate characteristic eligibility ( )tei
and eligibility trace  ( )tDi

. 

 ( ) ( ) ( )( ){ }tty
w

te
i

i xw,,1ˆln +
∂

∂
= π  (17) 

 ( ) ( ) ( )1−+= tDtetD iii γ  (18) 

Here )10( <≤ γγ  is a discount factor, 
iw  denotes ith internal variable vector. 

  Step 5. Calculate ( )twiΔ  by Eq. (19). 

 ( ) ( )tDbrtw iti )( −=Δ   (19) 

Here b denotes the reinforcement baseline. 

  Step 6. Improve policy by renewing its internal variable w by Eq. (20). 

 ( )ts www Δ+← α  (20) 

Here ( ) ( ) ( ) ( )( )LL ,,,, 21 twtwtwt iΔΔΔ=Δw  denotes synaptic weights, and other 

internal variables of forecasting system, 
sα  is a positive learning rate. 

  Step 7. For next time step t+1, return to step 1. 

Characteristic eligibility ( )tei
, shown in Eq. (17), means that the change of the policy 

function is concerning with the change of system internal variable vector (Williams, 1992). In 

fact, the algorithm combines reward/punishment to modify the stochastic policy with its 

internal variable renewing by step 4 and step 5. The finish condition of training iteration is 

also decided by the enough convergence of prediction error of sample data. 

3.2 SGA for MLP 

For the MLP forecasting system described in section 2.2 (Fig. 4), the characteristic eligibility  

( )tei
 of Eq. (21)-(23) can be derived from Eq. (8)-(11) with the internal viable ,kwµ ,kwσ kiw   

respectively.   
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The initial values of ,kwµ ,kwσ kiw are random numbers in (0, 1) at the first iteration of 

training. Gradient constants 
321 ,, βββ  and reward parameters r, ε  denoted by Eq. (16) have 

empirical values.  

3.3 SGA for SOFNN 

For the SOFNN forecasting system described in section 2.3 (Fig. 5), the characteristic 

eligibility ( )tei
 of Eq. (24)-(27) can be derived from Eq. (11)-(15) with the internal viable 

,kwµ ,kwσ ijijm σ,  respectively.   
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Here membership function 
ikB  is described by Eq. (12), fuzzy inference 

kλ is described by 

Eq. (13). The initial values of ,kwµ ,kwσ ijijm σ, are random numbers included in (0, 1) at the 

first iteration of training. Reward r, threshold of evaluation error ε denoted by Eq. (16) have 

empirical values. 

4. Experiments 

A chaotic time series generated by Lorenz equations was used as benchmark for forecasting 

experiments which were MLP using BP, MLP using SGA, SOFNN using SGA. Prediction 

precision was evaluated by the mean square error (MSE) between forecasted values and 

time series data. 

4.1 Lorenz chaos 

A butterfly-like attractor generated by the three ordinary differential equations (Eq. (28))  is 

very famous on the early stage of chaos phenomenon study (Lorenz, 1969). 
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Here ϕφδ  , ,  are constants. The chaotic time series was obtained from dimension o(t) of Eq. 

(29) in forecasting experiments, where 005.0=Δt , 0.16=δ , 92.45=φ , 0.4=ϕ .  

 

⎪
⎩

⎪
⎨

⎧

−Δ+=+

+−Δ−=+

−Δ+=+

))()()(()()1(

))()()()(()()1(

))()(()()1(

tqtptottqtq

tptotqtottptp

totpttoto

ϕ

φ

σ
  (29) 

The size of sample data for training is 1,000, and the continued 500 data were served as 
unknown data for evaluating the accuracy of short-term (i.e. one-step ahead) prediction. 

4.2 Experiment of MLP using BP 

It is very important and difficult to construct a good architecture of MLP for nonlinear 
prediction. An experimental study (Oliveira et. al, 2000) showed the different prediction 
results for Lorenz time series by the architecture of  n : 2n : n : 1, where n denotes the 
embedding dimension and the cases of n = 2, 3, 4 were investigated for different term 
predictions (long-term prediction). 
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Fig. 6. Prediction results after 2,000 iterations of training by MLP using BP. 
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Fig. 7. Prediction error (MSE) in training iteration of MLP using BP. 

For short-term prediction here, a three-layer MLP using BP and 3 : 6 : 1 structure shown in 
Fig. 3 was used in experiment, and  time delay τ =1 was used in embedding input space. 

Gradient constant of sigmoid function β = 1.0, discount constant α = 1.0, learning rate η = 

0.01,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. One-step ahead forecasting results by MLP using BP. 
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and the finish condition of training was set to E(W) < 4100.5 −× . The prediction results  after 

training 2,000 times are shown in Fig. 6, and the change of prediction error according to the 
iteration of training is shown in Fig. 7. The one-step ahead prediction results are shown in 
Fig. 8. The 500 steps MSE of one-step ahead forecasting by MLP using BP was 0.0129. 

4.3 Experiment of MLP using SGA 

A four-layer MLP forecasting system with SGA and 3 : 60 : 2 : 1 structure shown in Fig. 4 
was used in experiment, and  time delay τ =1 was used in embedding input space. Gradient  
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Fig.9. Prediction results before iteration by MLP using SGA.    

        

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Prediction results after 5,000 iterations of training by MLP using SGA.  
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constants of sigmoid functions 0.10 ,0.18 ,0.8 321 === βββ , discount constant γ = 0.9, 

learning rate 56 100.2 ,100.2 −− ×=×== kwkwwij µσ ααα , the reward was set by Eq. (30), and the 

finish condition of training was set to 30,000 iterations where the convergence E(W) could be 
observed. The prediction results after 0, 5,000, 30,000 iterations of training are shown in Fig. 
9, Fig. 10 and Fig. 11 respectively. The change of prediction error during training is shown in 
Fig. 12. The one-step ahead prediction results are shown in Fig. 13. The 500 steps MSE of 
one-step ahead forecasting by MLP using SGA was 0.0112, forecasting accuracy was 13.2% 
upped than MLP using BP. 

 

 

 

 

 

 

 

 

 

Fig. 11. Prediction results after 30,000 iterations of training by MLP using SGA. 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Prediction error (MSE) in training iteration of MLP using SGA. 
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Fig. 13. One-step ahead forecasting results by MLP using SGA. 

4.4 Experiment of SOFNN using SGA 

A five-layer SOFNN forecasting system with SGA and structure shown in Fig. 5 was used in 

experiment, time delay τ =2 was used in 3, 4, or 5-dimensional embedding input spaces. 

Initial value of weight 
kwµ

 had random values in (0.0, 1.0), 0.15 ,0.0 ,5.0 === ijijk mw σσ
and 

discount γ = 0.9, learning rate 36 100.2 ,100.3 −− ×=×=== kwkwijwmij µσσ αααα , the reward r was 

set by Eq. (31), and the finish condition of training was also set to 30,000 iterations where the 

convergence E(W) could be observed. The prediction results after training are  shown in Fig. 

14, where the number of input neurons was 4 and data scale of results was modified into 

(0.0, 1.0). The change of prediction error during the training is shown in Fig. 15. The one-

step ahead prediction results are shown in Fig. 16. The 500 steps MSE of one-step ahead 

forecasting by SOFNN using SGA was 0.00048, forecasting accuracy was 95.7% and 96.3% 

upped than the case by  MLP using BP and by MLP using SGA respectively.  
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Fig. 14. Prediction results after 30,000 iterations of training by SOFNN using SGA. 

 

 

Fig. 15. Prediction error (MSE) in training iteration of SOFNN using SGA. 
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Fig. 16. One-step ahead forecasting results by SOFNN using SGA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. The number of membership function neurons of SOFNN using SGA increased in 
training experiment. 
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Fig. 18. The number of rules of SOFNN using SGA increased in training experiment. 

One advanced feature of SOFNN is its data-driven structure building. The number of 
membership function neurons and rules increased with samples (1,000 steps in training of 
experiment) and iterations (30,000 times in training of experiment), which can be confirmed 
by Fig. 17 and Fig. 18. The number of membership function neurons for the 4 input neurons 
was 44, 44, 44, 45 respectively, and the number of rules was 143 when the training finished. 

5. Conclusion 

Though RL has been developed as one of the most important methods of machine learning, 
it is  still seldom adopted in forecasting theory and prediction systems. Two kinds of neural 
forecasting systems using SGA learning were described in this chapter, and the experiments 
of training and short-term forecasting showed their successful performances comparing 
with the conventional NN prediction method. Though the iterations of MLP with SGA and 
SOFNN with SGA in training experiments took more than that of MLP with BP, both of 
their computation time were not more than a few minutes by a computer with 3.0GHz CPU. 
A problem of these RL forecasting systems is that the value of reward in SGA algorithm 
influences learning convergence seriously, the optimum reward should be searched 
experimentally for different time series. Another problem of SOFNN with SGA is how to  
tune up initial value of deviation parameter in membership function and the threshold those  
were also modified by observing prediction error in training experiments. In fact, when 
SOFNN with SGA was applied on an neural forecasting competition “NN3” where 11 time 
series sets were used as benchmark, it did not work sufficiently in the long-term prediction  
comparing with the results of other methods (Kuremoto et. al, 2007; Crone & Nikolopoulos, 
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2007). All these problems remain to be resolved, and it is expected that RL forecasting 
systems will be developed remarkably in the future. 
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Reinforcement Learning in System Identification 

Mariela Cerrada and Jose Aguilar 
Universidad de los Andes 

       Mérida-Venezuela 

1. Introduction   

The Reinforcement Learning (RL) problem has been widely researched an applied in several 
areas (Sutton & Barto, 1998; Sutton, 1988; Singh & Sutton, 1996; Schapire & Warmuth, 1996; 
Tesauro, 1995; Si & Wang, 2001; Van Buijtenen et al., 1998). In dynamical environments, a 
learning agent gets rewards or penalties, according to its performance for learning good 
actions. 
In identification problems, information from the environment is needed in order to propose 
an approximate system model, thus, RL can be used for taking the on-line information 
taking. Off-line learning algorithms have reported suitable results in system identification 
(Ljung, 1997); however these results are bounded on the available data, their quality and 
quantity. In this way, the development of on-line learning algorithms for system 
identification is an important contribution. 
In this work, it is presented an on-line learning algorithm based on RL using the Temporal 
Difference (TD) method, for identification purposes. Here, the basic propositions of RL with 

TD are used and, as a consequence, the linear TD(λ) algorithm proposed in (Sutton & Barto, 
1998) is modified and adapted for systems identification and the reinforcement signal is 
generically defined according to the temporal difference and the identification error. Thus, 
the main contribution of this paper is the proposition of a generic on-line identification 
algorithm based on RL. 
The proposed algorithm is applied in the parameters adjustment of a Dynamical Adaptive 
Fuzzy Model (DAFM) (Cerrada et al., 2002; Cerrada et al., 2005). In this case, the prediction 

function is a non-linear function of the fuzzy model parameters and a non-linear TD(λ) 
algorithm is obtained for the on-line adjustment of the DAFM parameters. 
In the next section the basic aspects about the RL problem and the DAFM are revised. Third 
section is devoted to the proposed on-line learning algorithm for identification purposes. 
The algorithm performance for time-varying non-linear systems identification is showed 
with an illustrative example in section fourth. Finally, conclusions are presented. 

2. Theoretical background 

2.1 Reinforcement learning and temporal differences 

RL deals with the problem of learning based on trial and error in order to achieve the overall 
objective (Sutton & Barto, 1998). RL are related to problems where the learning agent does 
not know what it must do. Thus, the agent must discover an action policy for maximize the 
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expected gain defined by the rewards that the agents gets. At time t, (t=0, 1, 2, ...), the agent 
receives the state St and based on this information it choises an action at. As a consequence, 
the agent receives a reinforcement signal or reward rt+1. In case of the infinite time domain, a 
discount weights the received reward and the discounted expected gain is defined as: 

  

(1) 

where μ, 0 < μ ≤ 1, is the discount rate, and it determines the current value of the futures 
rewards. 
On the other hand, TD method permits to solve the prediction problem taking into account 
the difference (error) between two prediction values at successive instants t and t+1, given 

by a function P. According to the TD method, the adjustment law for the parameter vector θ 

of the prediction function P(θ) in given by the following equation (Sutton, 1988) : 

  
(2) 

where xt is a vector of available data at time t and η, 0 < η ≤ 1, is the learning rate. The term 
between parentheses is the temporal difference and the equation (2) is the  TD algorithm that 
can be used on-line in a incremental way. 
RL problem can be viewed as a prediction problem where the objective is the estimation of 
the discounted gain defined by equation (1), by using the TD algorithm. 
Let        be the prediction of  Rt . Then, from equation (1): 

  (3) 

The real value of Rt+1 is not available, then, by replacing it by its estimated value in (3), the 
prediction error is defined by the following equation: 

  (4) 

which describe a temporal difference. The reinforcement value rt+1 is defined in order to 
obtain at time t+1 a better prediction of Rt , given by      , based on available information. In 
this manner, a good estimation in the RL problem means the optimization of Rt  .  
Thus, denoting     as P and by replacing the temporal difference in (2) by that one defined in 
(4), the parameters adjustment law is: 

  (5) 

The learning agent using the equation (5) for the parameters adjustment is called Adaptive-
Heuristic-Critic (Sutton & Barto, 1998). In on-line applications, the time t is the same iteration 
time in the learning process by using equation (5). 

tR̂

R̂

tR̂
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2.2 Dynamical adaptive fuzzy models 

Without loss of generality, a fuzzy logic model MISO (Multiple Inputs-Single Output), is a 
linguistic model defined by the following M fuzzy rules: 

  
(6)

 

where xi is a vector of linguistic input on the domain of discourse Ui ; y is the linguistic 
output variable on the domain of discourse V; Fil and Gl are fuzzy sets on Ui and V, 
respectively, (i=1,... ,n) and (l=1,... ,M), each one defined by their membership functions. 
The DAFM is obtained from the previous rule base (6), by supposing input values defined 
by fuzzy singleton, gaussian membership functions of the fuzzy sets defined for the fuzzy 
output variables and the defuzzification method given by center-average method. Then, the 
inference mechanism provides the following model (Cerrada et al., 2005): 

  

(7)

 

where X=(x1 x2 ... xn)T is a vector of linguistic input variables xi at time t; α( vil,tj), β( wil,tj) and 

γ( ul,tj) are time-depending functions; vil and wil are parameters associated to the variable xi 
in the rule l; ul is a parameter associated to the center of the output fuzzy set in the rule l. 
Definition. Let xi(tj) be the value of the input variable xi to the DAFM at time tj to obtain the 

output y(tj). The generic structure of the functions αιl(vil,tj), βιl(wil,tj) and γl(ul,tj) in equation 
(7), are defined by the following equations (Cerrada et al., 2005): 

  
(8) 

 

  

(9) 

  
(10) 

where: 

  
(11) 
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or 

  

(12) 

The parameters vil, wil and ul can be on-line or off-line adjusted by using the following 
iterative generic algorithm: 

 θηθθ Δ+=+ )()1( kk  (13) 

where θ(t) denotes the vector of parameters at time t, Δθ is the parameter increment at time t 

and η, 0<η<1, is the learning rate. Tuning algorithm by using off-line gradient-based 
learning is presented in (Cerrada et al., 2002; Cerrada et al., 2005). 
In this work, the initial values of parameters are randomly selected on certain interval, the 
number of rules M is fixed and it is not adjusted during the learning process. The input 
variables xi are also known, then, the number of adjustable parameters is fixed. 

Clearly, by taking the functions αιl(vil,tj), βιl(wil,tj) and γl(ul,tj) as parameters in equation (7), a 
classical Adaptive Fuzzy Model (AFM) is obtained (Wang, 1994). The mentioned parameters 
are also adjusted by using the learning algorithm (13). Comparisons between the 
performances of the AFM and DAMF in system identification are provided in (Cerrada et 
al., 2005). 

3. RL-based on-line identification algorithm 

In this work, the fuzzy identification problem is solved by using the weighted identification 
error as a prediction function in the RL problem, and by suitably defining the reinforcement 
value according to the identification error. Thus, the minimization of the prediction error (4) 
drives to the minimization of the identification error. 
The critic (learning agent) is used in order to predict the performance on the identification as 
an approximator of the system's behavior. The prediction function is defined as a function of 

the identification error e(t,θt)=y(t)-ye(t,θt), where y(t) denotes the real value of the system 

output at time t and ye(t,θt) denotes the estimated value given by the identification model by 

using the available values of θ at time t.  
Let Pt be the proposed non-linear prediction function, defined as a cumulative addition on 
an interval of time, given by the following equation : 
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where e(xk,θt)=y(k)-ye(xk,θt) defines the identification error at time k and the value of θ at time 
t, and K defines the size of the time interval. Then: 
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where: 
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By replacing (15) into (5), the following learning algorithm for the parameters adjustment is 
obtained: 
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where expression in equation (15) can be viewed as the eligibility trace (Sutton & Barto, 1998), 

which stores the temporal record of the identification errors weighted by the parameter λ. 

From (14), the function P(xt+1,θt) is obtained in the following manner: 
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By replacing (18) into (17), the learning algorithm is given. 

In the prediction problem, a good estimation of Rt  is expected; that implies P(xt ,θt) goes to 

rt+1+ μP(xt+1,θt). This condition is obtained from equation (4). Given that the prediction 
function is the weighted sum of the square identification error e2(t), then it is expected that: 

 ),(),
1

(0 1 θθμ tt
xPtt

xPrt <++≤ +
 (19) 

On the other hand, a suitable adjustment of identification model means that the following 
condition is accomplished: 

 ),(),
1

(0 θθ tt
xPtt

xP <+≤  (20) 

The reinforcement rt+1 is defined in order to accomplish the expected condition (19) and 
taking into account the condition (20). Then, by using equations (14) and (18), the 
reinforcement signal is defined as: 

 ),θP(x),θP(xtxer tttttt >−= +++ 11

2

1     if      ) ,(
2

1
 θμ  (21) 

 ),θP(x),θP(xr ttttt ≤= ++ 11     if                              0   (22) 

In this way, the identification error into the prediction function P(xt+1,θt), according to the 

equation (18), is rejected by using the reinforcement in equation (22). The learning rate η in 
(17) is defined by the following equation: 
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Thus, an accurate adjustment of parameters is expected. Usually, η(0) is around 1, and ρ is 

around 0. Parameters μ and λ can depend on the system dynamic: small values in case of 
slow dynamical systems, and values around 1 in case of fast dynamical systems. 
In this work, the proposed RL-based algorithm is applied to fuzzy identification and the 
identification model is provided by the DAFM in (7). Then, the prediction function P is a 

non-linear function of the fuzzy model parameters and a non-linear approach of TD(λ) is 
obtained. 

3.1 Descent-gradient-based analysis 

The proposed identification learning algorithm can be studied like a descent-gradient 
method with respect to the parametric predictive function P. In the descent-gradient method 
for optimization, the objective is to find the minimal value of the error measure on the 

parameters space, denoted by J(θ), by using the following algorithm for the parameters 
adjustment: 

 { }[ ] ),(),(
t

x|z E 2   1 θθθαθθθθ t
xP

t
xPt

t
tt ∇Δ −+=+=+   (24) 

In this case, a error measure is defined as: 

 { }( )2),(x|z E ),( θθ xPxJ −=   (25) 

where E{z|x} is the expected value of the real value z, from the knowledge of the available 
data x. 
In this work, the learning algorithm (17) is like a learning algorithm (24), based on the 

descent-gradient method, where rt+1+μP(xt+1, θt) is the expected value E{z|x} in (25). By 
appropriate selecting rt+1 according to (21) and (22), the expected value in the learning 
problem is defined in two ways: 

 { } ),θP(x),θP(xtxP ttttt ≤= ++ 11     if      ) ,(x|z E θμ   (26) 

or 

 { } ),θP(x),θP(xtxP ttttt >= +1

2     if      ) ,(x|z E θλμ   (27) 

Then, the parameters adjustment is made on each iteration in order to attain the expected 

value of the prediction function P according to the predicted value of P(xt+1,θt) and the real 

value P(xt,θt). In both of cases, the expected value is minor than the obtained real value  

P(xt,θt) and the selected value of rt+1 defines the magnitude of the defined error measure. 

4. Illustrative example 

This section shows an illustrative example applied to fuzzy identification of time-varying 
non-linear systems by using the proposed on-line RL-based identification algorithm and the 
DAFM described in section 2.2. Comparisons by using off-line gradient-based tuning 
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algorithm are presented in order to highlight the algorithm performance. For off-line 
adjustment purposes, the input-output training data is obtained from Pseudo-Random 
Binary Signal (PRBS) input signal. The performance of the fuzzy identification is evaluated 
according to the identification relative error (er=(y(t)-ye(t))/y(t)) normalized on [0,1]. 
The system is described by the following difference equation: 

 )()]1(),([)1( kukykygky +−=+   (28) 

where 
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In this case, the unknown function g=[.] is estimated by using the DAFM and, additionally, a 
sudden change on a(k) is proposed by setting a(k)=0, k>400. After an extensive training 

phase, the fuzzy model with M=8, δ1=4 and δ2=1 (in equations (8),(9),(11)), has been chosen. 
In this case, the fuzzy identification performance is adequate and the Root Mean Square 
Error (RMSE)  is 0.1285 in validation phase. Figure 1 shows the performance of the DAFM 
using the off-line gradient-based tuning algorithm with initial conditions on the interval 
[0,1] and using the following input signal: 
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Fig. 1. Fuzzy identification using off-line tuning algorithm and DAFM 
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In the following, fuzzy identification performance by using the DAFM with the proposed 
RL-based tuning algorithm is presented. Equation (17) is used for the parameters 
adjustment with the prediction function defined in (14) and the reinforcement defined in 

(21)-(22). Here, λ=μ=0.9, K=5 and the learning rate is set up by the equation (23) with ρ=0.01. 
Note that the iteration index t is the same time k in system (28). After experimental proofs, 
the performance approaching the accuracy obtained from off-line adjustment is obtained 
with M=6 and initial conditions on [0.5,1.5]. Here, the RMSE= 0.0838 is achieved. Figure 2 
shows the tuning algorithm performance and table 1 shows the comparative values related 
to the RMSE. 

M 
RMSE off-

line 

RMSE 

On-line 

6 0.1110 0.0838 

8 0.1285 0.1084 

10 0.1327 0.1044 

15 0.1069 0.0860 

20 0.1398 0.1056 

Table 1. Comparison between the on-line proposed algorithm and off-line tuning 

 

Fig. 2. Fuzzy identification using RL-based tuning algorithm and DAFM  
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4.1 Initial condition dependence 

In order to show the algorithm sensibility according to the initial conditions of the fuzzy 
model parameters, the following figures show the tuning algorithm performance. In this 
case, the system is described by the equation (31): 
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where: 
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Figure 3 shows the tuning process by using a model with M=20 and initial conditions on the 
interval [0.5,1.5]. In this case, even when the initial error is large, the tuning algorithm 
performance also shows an adequate performance and the tuning process has an suitable 
evolution (here, a sudden change on a(k) is not considered). Figure 4 shows the tuning 
process by using a model with initial conditions on the interval [0,1] an also a suitable 
performance of the proposed identification algorithm is shown. 

 

 

 

Fig. 3. Fuzzy identification using RL-based tuning algorithm and DAFM with initial 
conditions on [0.5,1.5].  
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The previous tests show the performance and the sensibility of the proposed on-line 
algorithm is adequate in terms of (a) The initial conditions of the DAFM parameters, (b) 
Changes on the internal dynamic (the term a(k) in the example) and (c) Changes on the 
inputs signal (the proposed input u(k)). 
These ones are very important aspects to be evaluated in order to consider an on-line 
identification algorithm. In the example, even though the initial error depends on the initial 
conditions of the DAFM parameters, a good evolution of the learning algorithm is 
accomplished. Table 1 also shows the number of rules M do not strongly determines the 
global performance of the proposed on-line algorithm although a similar RMSE could be 
obtained with a low number of rules and off-line tuning. However, this one could be not 
reached whether good quality and quantity of historical data is not available in off-line 
approaches. 

 

 

 

Fig. 4. Fuzzy identification using RL-based tuning algorithm and DAFM with initial 
conditions on [0,1]. 
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6. Conclusion 

This work proposes an on-line tuning algorithm based on reinforcement learning for the 
identification problem. Both the prediction function and the reinforcement signal have been 
defined by taking into account the identification error, according to the classical recursive 
identification algorithms. The presence of the reinforcement signal in the proposed tuning 
algorithm permits to reject the identification error into the prediction function, then, the 
parameters adjustment not only depends on the gradient direction. 
The proposed algorithm has been applied in fuzzy identification, then, the prediction 
function is a non-linear function of the fuzzy model parameters. In this case, the proposed 
identification model is a Dynamical Adaptive Fuzzy Model (DAFM) that has reported a 
good performance in identification problems. 
In order to show the algorithm performance, an illustrative example related to time-varying 
non-linear system identification using a DAFM has been developed. The obtained results 
have been compared by using the off-line gradient-based learning algorithm. The 
performance obtained by using the DAFM with the proposed on-line algorithm is adequate 
in terms of the main aspects to be taken into account in on-line identification: the initial 
conditions of the model parameters, the changes on the internal dynamic and the changes 
on the input signal. 
Even when similar results could be obtained by using the DAFM with off-line tuning, in this 
case good quality and quantity of available historical data is needed to reach a suitable 
validation phase in off-line tuning. This one highlights the use of the on-line learning 
algorithms and the proposed RL-based on-line tuning algorithm could be an important 
contribution for the system identification in dynamical environments with perturbations, for 
example, in process control area.  
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1. Introduction 

In recent years, the concept of the fuzzy logic or artificial neural networks for control 
problems has grown into a popular research area [1]-[3]. The reason is that classical control 
theory usually requires a mathematical model for designing controllers. The inaccuracy of 
mathematical modeling of plants usually degrades the performance of the controllers, 
especially for nonlinear and complex control problems [4], [25]. Fuzzy logic has the ability to 
express the ambiguity of human thinking and translate expert knowledge into computable 
numerical data.  
A fuzzy system consists of a set of fuzzy IF-THEN rules that describe the input-output 
mapping relationship of the networks. Obviously, it is difficult for human experts to 
examine all the input-output data from a complex system to find proper rules for a fuzzy 
system. To cope with this difficulty, several approaches that are used to generate the fuzzy 
IF-THEN rules from numerical data have been proposed [5]-[8]. These methods were 
developed for supervised learning; i.e., the correct “target” output values are given for each 
input pattern to guide the learning of the network. However, most of the supervised 
learning algorithms for neuro-fuzzy networks require precise training data to tune the 
networks for various applications. For some real world applications, precise training data 
are usually difficult and expensive, if not impossible, to obtain. For this reason, there has 
been a growing interest in reinforcement learning algorithms for use in fuzzy [9]-[10] or 
neural controller [11]-[12] design. 
In the design of a fuzzy controller, adjusting the required parameters is important. To do 
this, back-propagation (BP) training was widely used in [11]-[12], [18]. It is a powerful 
training technique that can be applied to networks with a forward structure. Since the 
steepest descent technique is used in BP training to minimize the error function, the 
algorithms may reach the local minima very fast and never find the global solution. 
The development of genetic algorithms (GAs) has provided another approach for adjusting 
parameters in the design of controllers. GA is a parallel and global technique [9], [19]. 
Because it simultaneously evaluates many points in a search space, it is more likely to 
converge toward the global solution. Some researchers have developed methods to design 
and implement fuzzy controllers by using GAs. Karr [2] used a GA to generate membership 
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functions for a fuzzy system. In Karr’s work, a user needs to declare an exhaustive rule set 
and then use a GA to design only the membership functions. In [20], a fuzzy controller 
design method that used a GA to find the membership functions and the rule sets 
simultaneously was proposed. Lin [27] proposed a hybrid learning method which combines 
the GA and the least-squares estimate (LSE) method to construct a neuron-fuzzy controller. 
In [20] and [27], the input space was partitioned into a grid. The number of fuzzy rules (i.e., 
the length of each chromosome in the GA) increased exponentially as the dimension of the 
input space increased. To overcome this problem, Juang [26] adopted a flexible partition 
approach in the precondition part. The method has the admirable property of small network 
size and high learning accuracy. 
Recently, some researchers [9], [19], [28]-[29] applied GA methods to implement 
reinforcement learning in the design of fuzzy controllers. Lin and Jou [9] proposed GA-
based fuzzy reinforcement learning to control magnetic bearing systems. In [19], Juang and 
his colleagues proposed genetic reinforcement learning in designing fuzzy controllers. The 
GA adopted in [19] was based upon traditional symbiotic evolution which, when applied to 
fuzzy controller design, complements the local mapping property of a fuzzy rule. In [28], Er 
and Deng proposed dynamic Q-Learning for on-line tuning the fuzzy inference systems. 
Kaya and Alhajj [29] proposed a novel multiagent reinforcement learning approach based 
on fuzzy OLAP association rules mining. However, these approaches encountered one or 
more of the following major problems: 1) the initial values of the populations were 
generated randomly; 2) the mutational value was generated by the constant range while the 
mutation point is also generated randomly; 3) the population sizes always depend on the 
problem which is to be solved. 
In this chapter, we propose a reinforcement sequential-search-based genetic algorithm (R-
SSGA) method for solving above-mentioned problems. Unlike the traditional reinforcement 
learning, we formulate a number of time steps before failure occurs as the fitness function. 
The new sequential-search-based genetic algorithm (SSGA) is also proposed to perform 
parameter learning. Moreover, the SSGA method is different from traditional GA, which the 
better chromosomes will be initially generated while the better mutation points will be 
determined for performing efficient mutation. Compared with traditional genetic algorithm, 
the SSGA method generates initialize population efficiently and decides efficient mutation 
points to perform mutation. The advantages of the proposed R-SSGA method are 
summarized as follows: (1) The R-SSGA method can reduce the population sizes to a 
minimum size (4); (2) The chromosome which has the best performance will be chosen to 
perform the mutation operator in each generation. (3) The R-SSGA method converges more 
quickly than existing traditional genetic methods.  
This chapter is organized as follows. Section 2 introduces the sequential-search-based 
genetic algorithm. A reinforcement sequential-search-based genetic algorithm is presented 
in Section 3. In Section 4, the proposed R-SSGA method is evaluated using two different 
control problems, and its performances are benchmarked against other structures. Finally, 
conclusions on the proposed algorithm are summarized in the last section. 

2. The sequential-search-based genetic algorithm  

A new genetic learning algorithm, called sequential-search-based genetic algorithm (SSGA), 
is proposed to adjust the parameters for the desired outputs. The proposed SSGA method is 
different from a traditional genetic algorithm [9], [19]. The SSGA method generates initial 
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population efficiently and decides efficient mutation points to perform mutation. Like 
traditional genetic algorithm [9], [19], the proposed SSGA method consists of two major 
operators: reproduction, crossover. Before the details of these two operators are explained, 
coding, initialization and efficient mutation are discussed as follows:  
Coding step: The first step in the SSGA method is to code a neuro-fuzzy controller into a 
chromosome. We adopt a Takagi-Sugeno-Kang (TSK) type neuro-fuzzy controller [13] to be 
the structure of the proposed SSGA method. A TSK-type neuro-fuzzy controller employs 
different implication and aggregation methods than the standard Mamdani controller [1].  
Instead of using fuzzy sets the conclusion part of a rule, is a linear combination of the crisp 
inputs. 

IF x1 is A1j (m1j , σ1j )and x2 is A2j(m2j , σ2j )…and xn is Anj (mnj , σnj ) 

 THEN y’=w0+w1x1+…+wixi  (1) 

where ijm and ijσ  represent a Gaussian membership function with mean and deviation 

with ith dimension and jth rule node. A fuzzy rule in Fig. 1 is represented the form in Eq. 
(1). 
 

Rule1 Rule2 … Rulej … RuleR 

 

 

 

jm1  j1σ jm2 j2σ …. 
njm  njσ  0w  1w  …. 

nw  

Fig. 1. Coding a fuzzy controller into a chromosome in the SSGA method. 

Initialization step: Before the SSGA method is designed, individuals forming an initial 
population should be generated. Unlike traditional genetic algorithm, an initial population 
is generated randomly within a fixed range. In the SSGA method, the initial population is 
generated efficiently to ensure that chromosomes with good genes can be generated. The 
detailed steps of the initialization method are described as follows: 

• Step 0: The first chromosome that represents a TSK-type fuzzy controller will be 
generated initially. The following formulations show how to generate the 
chromosomes: 

 Deviation: Chrj[p]=random[ minσ , maxσ ] (2) 

where p=2, 4, 6, …, 2*n 

 Mean: Chrj[p]= random[ minm , maxm ] (3) 

where p=1, 3, 5, …, 2*n-1 

 Weight: Chrj[p]= random [ minw , maxw ] (4) 
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where p=2*n +1,…, 2*n +(1+n) 

where Chrj means chromosome in ith rule and p represent the pth gene in a Chrj; 

[ minσ , maxσ ],[ minm , maxm ], and [ minw , maxw ] represent the predefined ranges of 

deviation, mean, and weight. The ranges are determined by practical experimentation or 
trial-and-error tests.  

• Step 1: To generate the other chromosomes, we use the SSGA method to generate the 
new chromosomes. The search algorithm of the SSGA method is similar to the local 
search procedure in [14]. In the SSGA method, every gene in the previous chromosomes 
is selected using a sequential search and the gene’s value is updated to evaluate the 
performance based on the fitness value. The details of the SSGA method are as follows: 

(a) Sequentially search for a gene in the previous chromosome. 
(b) Update the chosen gene in (a) according to the following formula: 
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 where p=2, 4, 6, …, 2*n  
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 where p=1, 3, 5, …, 2*n-1  
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 where p=2*n +1,…, 2*n +(1+n)  

 where 
λλ )_/1(**),_( valuefitnessvvvaluefitness =Δ  (8) 

where [ ]1,0, ∈λα  are the random values; valuefitness _  is the fitness 

computed using Eq (11); p represents the pth gene in a chromosome; j represents the 

jth rule, respectively. The function ),_( vvaluefitnessΔ returns a value, such 

that ),_( vvaluefitnessΔ comes close to 0 as valuefitness _  increases. This 

property causes the mutation operator to search the space uniformly during the 

initial stage (when valuefitness _  is small) and locally during the later stages, 

thus increasing the probability of generating children closer to its successor than a 
random choice and reducing the number of generations. 

(c) If the new gene that is generated from (b) can improve the fitness value, then replace 
the old gene with the new gene in the chromosome. If not, recover the old gene in the 
chromosome. After this, go to (a) until every gene is selected. The pseudo code for 
the SSGA method is listed in Figure 2. The Chrk,j represents the kth chromosome and 
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jth rule in a fuzzy controller. And Nf denote the size of the population, 
fitness(Chrk,j_new) is a fitness function by Eq.(11) using the kth new chromosome. 

 

 

Fig. 2. The pseudo code for the SSGA method. 

• Step 2: If no genes are selected to improve the fitness value in step 1, than the new 
chromosome will be generated according to step 0. After the new chromosome is 
generated, the initialization method returns to step 1 until the total number of 
chromosomes is generated. 

The firing strength of a fuzzy rule is calculated by performing the “AND” operation on the 
truth values of each variable to its corresponding fuzzy sets, 

 
[ ]

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−= ∏

=
2

2)1(

1

exp
ij

iji
n

i

j

mu
u

σ
 (9) 

where ijm and ijσ are, respectively, the center and the width of the Gaussian membership 

function of the jth term of the ith input variable ix . The output of a fuzzy system is 

computed by 

Procedure Sequential-Search-Based Genetic Algorithm 

Begin 

Let p=0,i=0; 

Repeat 

k=k+1; 

Repeat  

   j=j+1; 

  Repeat  

  p=p+1; 

  Perform Chrk,j_new=inttialize(Chrk,j _old[p]);by(5)to(8); 

Evaluate fitness(Chrk,j _new) and fitness(Chrk,j _old) by(11); 

  If fitness(Chrk,j _new) >fitness(Chrk,j _old) Then 

Chrk,j _old = Chrk,j _new;; else Chrk,j _new = Chrk,j _old; 

Until p=2*n+(1+n); 

Until j=R; 

   Until k=Nf; 

End 
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where the weight jw  is the output action strength associated with the jth rule and outu  is 

the output of the network. 
Efficient mutation step: Although reproduction and crossover will produce many new 
strings, they do not introduce any new information to the population at the site of an 
individual. Mutation is an operator that randomly alters the allele of a gene. We use an 
efficient mutation operation, which is unlike the traditional mutation, to mutate the 
chromosomes. In the SSGA method, we perform efficient mutation using the best fitness 
value chromosome of every generation. And we use the SSGA method to decide on the 
mutation points. When the mutation points are selected, we use Eqs. (5) to (7) to update the 
genes. The efficient mutation of an individual is shown in Fig. 3. 

 

Fig. 3. Efficient mutation operation using 3 mutation points with jth rule. 

Reproduction step: Reproduction is a process in which individual strings are copied 
according to their fitness value. In this study, we use the roulette-wheel selection method 
[15] – a simulated roulette is spun – for this reproduction process. The best performing 
individuals in the top half of the population [19] advances to the next generation. The other 
half is generated to perform crossover and mutation operations on individuals in the top 
half of the parent generation. 
Crossover step: Reproduction directs the search toward the best existing individuals but 
does not create any new individuals. In nature, an offspring has two parents and inherits 
genes from both. The main operator working on the parents is the crossover operator, the 
operation of which occurred for a selected pair with a crossover rate that was set to 0.5 in 
this study. The first step is to select the individuals from the population for the crossover. 
Tournament selection [15] is used to select the top-half of the best performing individuals 
[19]. The individuals are crossed and separated using a two-point crossover that is the new 
individuals are created by exchanging the site’s values between the selected sites of parents’ 
individual. After this operation, the individuals with poor performances are replaced by the 
newly produced offspring. 
The aforementioned steps are done repeatedly and stopped when the predetermined 
condition is achieved. 
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3. Reinforcement sequential-search-based genetic algorithm (R-SSGA) 

Unlike the supervised learning problem, in which the correct “target” output values are 
given for each input pattern to perform neuron-fuzzy controller learning, the reinforcement 
learning problem has only very simple “evaluative” or “critical” information, rather than 
“instructive” information, available for learning. In the extreme case, there is only a single 
bit of information to indicate whether the output is right or wrong. Figure 4 shows how the 
R-SSGA method and its training environment interact in a reinforcement learning problem. 
The environment supplies a time-varying input vector to the R-SSGA method, receives its 
time-varying output/action vectors and then provides a reinforcement signal. Therefore, the 
reinforcement signal indicates whether a success or a failure occurs.  
 

 

Fig. 4. The proposed R-SSGA method. 

As show in Fig. 4, the R-SSGA method consists of a TSK-type fuzzy controller which acts as 
the control network to determine a proper action according to the current input vector 
(environment state). The structure of the R-SSGA method is different from Barto and his 
colleagues’ actor-critic architecture [16]-[17]. Two neuron-like adaptive elements are 
integrated in this system [16]-[17]. They are the associative search element (ASE) used as a 
controller, and the adaptive critic element (ACE) used as a predictor. Temporal difference 
techniques and single-parameter stochastic exploration are used in [16]. The input to the R-
SSGA method is the state of the plant, and the output is a control action of the state, denoted 
by f. The only available feedback is a reinforcement signal that notifies the R-SSGA method 
only when a failure occurs. An accumulator plays a role which is a relative performance 
measure shown in Fig. 4. It accumulates the number of time steps before a failure occurs 
[30]. Thus, the feedback takes the form of an accumulator that determines how long the 
experiment is still a “success”; this is used as a relative measure of the fitness of the 
proposed R-SSGA method. That is, the accumulator will indicate the “fitness” of the current 
R-SSGA method. The key to this learning algorithm is formulating a number of time steps 
before failure occurs and using this formulation as the fitness function of the R-SSGA 
method. The advantage of the proposed method need not use the critical network as either a 
multi-step or single-step predictor. 
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Fig. 5. Flowchart of the R-SSGA method 

Figure 5 shows the flowchart of the R-SSGA method. The R-SSGA method runs in a 
feedforward fashion to control the environment (plant) until a failure occurs. Our relative 
measure of fitness function takes the form of an accumulator that determines how long the 
experiment is a “success”. In this way, according to a defined fitness function, a fitness value 
is assigned to each string in the population where high fitness values means good fit. Thus, 
we use a number of time steps before failure occurs to define the fitness function. The fitness 
function is defined by: 

  Fitness_Value (i) =TIME-STEP(i) (11) 

where TIME-STEP(i) represents how long the experiment is still a “success” about the ith 
population. Eq.(11) reflects the fact that long-time steps before failure occurs ( to keep the 
desired control goal longer) mean higher fitness of the R-SSGA method. 

4. Illustrative examples 

To verify the performance of the proposed R-SSGA method, two control examples—the cart-
pole balancing system and a water bath temperature control system—are presented in this 
section. For the two computer simulations, the initial parameters are given in Table 1 before 
training. 
In this example, we shall apply the R-SSGA method to the classic control problem of the 
cart-pole balancing. This problem is often used as an example of inherently unstable and 
dynamic systems to demonstrate both modern and classic control techniques [22]-[23] or 
reinforcement learning schemes [18]-[19], and is now used as a control benchmark. As 
shown in Fig. 6, the cart-pole balancing problem is the problem of learning how to balance 
an upright pole. The bottom of the pole is hinged to the left or right of a cart that travels 
along a finite-length track. Both the cart and the pole can move only in the vertical plane; 
that is, each has only one degree of freedom. 
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Table 1: The initial parameters before training

Parameters Value 

Population Size 4 

Crossover Rate 0.5 

Coding Type 

Real Number 

[ minσ , maxσ ] 

[0,1] 

[ minm , maxm ] 

[0,1] 

[ minw , maxw ] 

[-20,20] 

Example l. Cart-Pole Balancing System 

 

 

Fig. 6. The cart-pole balancing system. 

There are four state variables in the system:θ , the angle of the pole in an upright position 

(in degrees);θ& , the angular velocity of the pole (in degrees/seconds); x , the horizontal 

position of the cart's center (in meters); and x& , the velocity of the cart (in meters/seconds). 

The only control action is f, which is the amount of force (in Newtons) applied to the cart to 

move it left or right. The system fails when the pole falls past a certain angle ( ± 12o is used 
here) or when the cart runs into the boundary of the track (the distance is 2.4m from the 
center to each boundary of the track). The goal of this control problem is to determine a 
sequence of forces that, when applied to the cart, balance the pole so that it is upright. The 
motion equations that we used were: 
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where 

l = 0.5 m, the length of the pole; 

m = 1.1 kg, combined mass of the pole and the cart; 

mp = 0.1 kg, mass of the pole;  

 g = 9.8 m/s, acceleration due to the gravity; (16) 

cμ = 0.0005, coefficient of friction of the cart on the track, 

pμ = 0.000002, coefficient of friction of the pole on the cart, 

Δ  = 0.02(s), sampling interval. 

The constraints on the variables were
oo 1212 ≤≤− θ , -2.4m ≤≤ x 2.4m, and -

10N ≤≤ f 10N. A control strategy was deemed successful if it balanced a pole for 100,000 

time steps. 

The four input variables ),,,( xx &&θθ and the output ft are normalized between 0 and 1 over 
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the following ranges, θ ∈[-12,12], θ&∈ [-60,60], x ∈ [-2.4,2.4], x& ∈ [-3,3], ft ∈ [-10,10]. The 

fitness function in this example is defined in Eq.(11) to train the R-SSGA method where 
Eq.(11) is used to calculate how long it takes the cart-pole balancing system to fail and 

receives a penalty signal of -1 when the pole falls past a certain angle ( C°> 12||θ ) and 

when the cart runs into the boundaries of the tracks falls( mx 4.2|| > ). In this experiment, 

the initial values were set to (0, 0, 0, 0). And we set four rules constitute a TSK-Type fuzzy 
controller.  
A total of five runs were performs. Each run started at same initial state. The simulation 
result in Fig.7 (a) shows that the R-SSGA method learned on average to balance the pole at 
the 16th generation. In this figure, each run indicates that the largest fitness value in the 
current generation was selected before the cart-pole balancing system failed. When the 
proposed R-SSGA learning method is stopped, we choose the best string in the population 
in the final generation and tested it on the cart-pole balancing system. The final fuzzy rules 
generated by the R-SSGA method are described as follows: 

 

Rule 1: IF x1 is A11(0.38,0.35) and x2 is A21(5.67,0.32) and x3 is A31(0.19,1.91) 

and x4 is A41(0.40,0.825)  

THEN y’=-2.94+0.42x1 -0.20 x2 -0.70 x3 +0.40x4 

 

Rule 2: IF x1 is A12(0.52,1.70) and x2 is A22(7.43,0.39) and x3 is A32(0.37,14.9) 

and x4 is A42(1.28,0.44)  

THEN y’=12.21+ 12.16x1 -0.25 x2 +0.32 x3 +4.66x4 

 

Rule 3: IF x1 is A13(0.52,6.66) and x2 is A23(12.1,0.39) and x3 is A33(0.37,9.64) 

and x4 is A43(1.28,0.44)  

THEN y’=11.93+ 9.63x1 -0.25 x2 +0.32 x3+ 9.64x4 

 

Rule 4: IF x1 is A14(0.52,17) and x2 is A24(9.29,0.39) and x3 is A34(0.37,3.98) 

and x4 is A44(1.28,0.44)  

THEN y’=11.93-3.98 x1 – 0.25x2 +0.32 x3+10.29 x4 
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(a) 

 

(b) 

 

(c) 

Fig. 7. The performance of (a) the R-SSGA method, (b) the SEFC method [19], and (c) the 
TGFC method [9] on the cart-pole balancing system. 

Figure 8(a) show the angular deviation of the pole when the cart-pole balancing system was 
controlled by the well-trained R-SSGA method starting at the initial 
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state: 0)0(,0)0(,0)0(,0)0( ==== θθ &&rr . The average angular deviation was 0.0060.  

 

(a) 

 

(b) 

 

(c) 

Fig. 8. Angular deviation of the pole by a trained (a) the R-SSGA method, (b) the SEFC 
method [19], and (c) the TGFC method [9]. 
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In the experiment, we compare the performance of our system with the symbiotic evolution 
fuzzy controller (SEFC) [19] and the traditional genetic fuzzy controller (TGFC) [9]. In the 
SEFC and TGFC, the population sizes were also set to 50, and the crossover and mutation 
probabilities were set to 0.5 and 0.3, respectively. Figures 7 (b) and (c) show that the SEFC 
method and the TGFC method learned on average to balance the pole at the 80th and 149th 
generation. In this example, we compare the CPU times of the R-SSGA method with the 
SEFC and the TGFC methods. Table 2 shows the CPU times of the three methods. As shown 
in Table 2, our method obtains shorter CPU times than the SEFC and the TGFC methods. 
Figures 8(b) and 8(c) show the angular deviation of the pole when the cart-pole balancing 
system was controlled by the [19] and [9] models. The average angular deviation of the [19] 
and [9] models were 0.060 and 0.10. We also try to control the cart-pole balancing system at a 

different initial state: 1)0(,3)0(,3.0)0(,6.0)0( ==== θθ &&rr . Figure 9 (a)-(c) shows 

the angular deviation of the pole when the cart-pole balancing system was controlled by the 
R-SSGA, the SEFC [19], and the TGFC [9] models at the initial 

state: 1)0(,3)0(,3.0)0(,6.0)0( ==== θθ &&rr . 

 

(a) 

 

(b) 
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(c) 

Fig. 9. Angular deviation of the pole by a trained (a) the R-SSGA method, (b) the SEFC 
method [19], and (c) the TGFC method [9] at the initial state: 

1)0(,3)0(,3.0)0(,6.0)0( ==== θθ &&rr . 

Table 3 shows the number of pole-balance trials (which reflects the number of training 
episodes required) measured. The GENITOR [24] and SANE (Symbiotic Adaptive Neuro-
Evolution) [21] were applied to the same control problem, and the simulation results are 
listed in Table 3. In GENITOR, the normal evolution algorithm was used to evolve the 
weights in a fully connected two-layer neural network, with additional connections from 
each input unit to the output layer. The network has five input units, five hidden units and 
one output unit. In SANE, the traditional symbiotic evolution algorithm was used to evolve 
a two-layer neural network with five input units, eight hidden units, and two output units. 
An individual in SANE represents a hidden unit with five specified connections to the input 
and output units. In Table 3 we can see that the proposed method is feasible and effective. 
And the proposed R-SSGA method only took 4 rules and the population size was 4. 

 

Method Mean (Sec) Best (Sec) Worst (Sec) 

R-SSGA 20 3 60 

SEFC [19] 36 4 236 

TGFC [9] 165 8 412 

 

Table 2. Performance comparison of the R-SSGA, the SEFC, and the TGFC methods. 
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Method Mean Best Worst 

GENITOR [24] 2578 415 12964 

SANE [21] 1691 46 4461 

TGFC [9] 80 26 200 

SEFC [19] 149 10 350 

R-SSGA 17 5 29 

 

Table 3. Performance comparison of various existing models in Example 1. 

In this example, to verify the performance of our proposed method, we use five different 
initial states for the R-SSGA, the SEFC, and the TGFC methods. The five different initial 
states are shown as follows: 

 

S1: 3)0(,8)0(,2.0)0(,8.0)0( ==== θθ &&rr  

S2: 0)0(,2)0(,1.0)0(,3.0)0( ==== θθ &&rr  

S3: 2)0(,4)0(,1.0)0(,5.0)0( ==== θθ &&rr  

S4: 3)0(,6)0(,4.0)0(,7.0)0( ==== θθ &&rr  

S5: 1)0(,2)0(,1.0)0(,2.0)0( ==== θθ &&rr  

 

Figure 10 (a)-(c) show that the R-SSGA, the SEFC, and the TGFC methods learned on 
average to balance the pole at the 78th, 105th, and 166th generation. Figure 11(a)-(c) show the 
angular deviation of the pole when the cart-pole balancing system was controlled by the R-
SSGA method, the SEFC method [19], and the TGFC method [9] that starting at the initial 

state: 0)0(,0)0(,0)0(,0)0( ==== θθ &&rr . The average angular deviations were 

0.010, 0.040, and 0.080. Table 4 shows the number of pole-balance trials measured of the R-
SSGA, the SEFC [19], and the TGFC [9] methods. In Table 4, we see that the proposed 
method obtains a better performance than some existing methods [9], [19]. 



Reinforcement Evolutionary Learning for Neuro-Fuzzy Controller Design 

 

49 

 

(a) 

 

(b) 

 

(c) 

Fig. 10. The performance of (a) the R-SSGA method, (b) the SEFC method [19], and (c) the 
TGFC method [9] on the cart-pole balancing system starting at five different initial states. 
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(a) 

 

(b) 

 

(c) 

Fig. 11. Angular deviation of the pole by a trained (a) the R-SSGA method, (b) the SEFC 
method [19], and (c) the TGFC method [9]. 
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Table 4: Performance comparison of existing models in Example 1. 

Method Mean Best Worst 

TGFC [9] 166 57 407 

SEFC [19] 105 47 189 

R-SSGA 78 24 165 

Example 2. Water Bath Temperature Control System  

The goal of this simulation was to control the temperature of a water bath system given by  
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where y(t) is the system output temperature in C°  ; u(t) is the heat flowing into the system; 

0Y  is the room temperature; C is the equivalent system thermal capacity; and R is the 

equivalent thermal resistance between the system borders and the surroundings. 
Assuming that R and C are essentially constant, we rewrite the system in Eq.(17) into 
discrete-time form with some reasonable approximation. The system 
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is obtained, where α and β are constant values describing R and C. The system parameters 

used in this example were α=
40015.1 −e , β=

367973.8 −e , and 0Y =25.0( C° ), which were 

obtained from a real water bath plant in [3]. The input u(k) was limited to 0, and  the voltage 
was 5V. The sampling period was Ts=30. The system configuration is shown in Fig. 12, 
where yref was the desired temperature of the controlled plant. 
 

 

Fig. 12. Flow diagram of using the R-SSGA method for solving the temperature control 
problem. 
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In this example, yref and y(k) and the output u(k) were normalized between 0 and 1 over the 
following ranges: yref :[25,85], y(k):[25,85], and u(k):[0,5]. The values of floating-point 
numbers were initially assigned using the R-SSGA method initially. The fitness function was 
set for each reassigned regulation temperature T=35, 55, and 75, starting from the current 
temperature and again after 10 time steps. The control temperature error should be within 

± 1.5 C° ; otherwise failure occurs. In the R-SSGA method, we set five rules constitute a 

TSK-Type fuzzy controller using the proposed R-SSGA method. A total of five runs were 
performed. Each run started at same initial state. 
The simulation result in Fig. 13(a) shows that the R-SSGA method learned on average to 
success at the 25th generation. In this figure, each run indicates that the largest fitness value 
in the current generation was selected before the water bath temperature system failed. 
When the R-SSGA learning is stopped, we chose the best string in the population in the final 
generation and tested it with two different examples in the water bath temperature control 
system. The final fuzzy rules of a TSK-Type fuzzy controller by the R-SSGA method are 
described as follows: 

 

Rule 1: IF x1 is A11(1.23, 0.75) and x2 is A21(0.13, 0.81)  

THEN y’=7.09 +8.50 x1+1.51 x2 

 

Rule 2: IF x1 is A12(0.18, 0.352) and x2 is A22(1.09, 0.45)  

THEN y’=-19.41-14.051 x1 -16.81 x2 

 

Rule 3: IF x1 is A13(0.19, 0.36) and x2 is A23(1.10, 0.46) 

 THEN y’=-19.42 -14.05 x1 -16.80 x2 

 

Rule 4: IF x1 is A14(0.0001 1.27) and x2 is A24(1.09, 0.45) 

 THEN y’=5.40+ 8.47 x1 -16.81 x2  

 

Rule 5: IF x1 is A15(5.0, 0.66) and x2 is A25(0.14, 0.08)  

 THEN y’=-4.85-5.88 x1 +9.45 x2  

 

where ),( ijijij mA σ represents a Gaussian membership function with mean ijm and 

deviation ijσ  in ith input dimension and jth rule. In this example, as with example 1, we 

also compare the performance of our system with the SEFC method [19] and the TGFC 
method [9]. Figures 13 (b) and 10(c) show the performance of [19] and [9] methods. In this 
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figure we can see that the SEFC and TGFC methods learned on average to balance the pole 
at the 49th and 96th generation but in our model just take 25 generations. 

 

(a) 

 

(b) 

 

(c) 

Fig. 13. The performance of the water bath system for (a) the R-SSGA method, (b) the SEFC 
method [19] and, (c) the TGFC method [9]. 

For testing the controller system, we compare the three methods (the R-SSGA, SEFC, and 
TGFC methods). The three methods are applied to the water bath temperature control 
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system. The comparison performance measures included a set points regulation and a 
change of parameters. 
The first task was to control the simulated system to follow three set points  
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The regulation performance of the R-SSGA method is shown in Fig. 14(a). The error curves 
of the three methods are shown in Fig. 14(b). In this figure, the R-SSGA method obtains 
smaller errors than others. 

 

(a) 

 

(b) 

Fig. 14. (a) Final regulation performance of the R-SSGA method for water bath system. (b) 
The error curves of the R-SSGA method, the SEFC method and the TGFC method. 

In the second set of simulations, the tracking capability of the R-SSGA method with respect 
to ramp-reference signals is studied. We define  
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The tracking performance of the R-SSGA method is shown in Fig. 15(a). The corresponding 
errors of the three methods are shown in Fig. 15(b). The results show the good control and 
disturbance rejection capabilities of the trained R-SSGA method in the water bath system. 

 

(a) 

 

(b) 

Fig. 15. (a) The tracking of the R-SSGA method when a change occurs in the water bath 
system. (b) The error curves of the R-SSGA method, the SEFC method [19], and the TGFC 
method [9]. 

To test their regulation performance, a performance index, sum of absolute error (SAE), is 
defined by 
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where )(kyref  and )(ky  are the reference output and the actual output of the simulated 
system, respectively. Table 5 shows the comparison the SAE among the R-SSGA method, the 
SEFC method, and the TGFC method. As show in Table 5, the proposed R-SSGA method 
has better performance than that of the others. And the proposed method only takes 5 rules 
and the populations’ size is minimized to 4.  
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ref kykySAE  R-SSGA  SEFC [19] TGFC [9] 

Regulation Performance 360.04 370.12 400.12 

Tracking Performance 54.187 90.81 104.221 

Table 5: Performance comparison of various existing models in Example 2. 

5. Conclusions 

A novel reinforcement sequential-search-based genetic algorithm (R-SSGA) is proposed. The 
better chromosomes will be initially generated while the better mutation points will be 
determined for performing efficient mutation. We formulate a number of time steps before 
failure occurs as the fitness function. The proposed R-SSGA method makes the design of 
TSK-Type fuzzy controllers more practical for real-world applications, since it greatly 
lessens the quality and quantity requirements of the teaching signals. Two typical examples 
were presented to show the fundamental applications of the proposed R-SSGA method. 
Simulation results have shown that 1) the R-SSGA method converges quickly; 2) the R-SSGA 
method requires a small number of population sizes (only 4); 3) the R-SSGA method obtains 
a smaller average angular deviation than other methods. 
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1. Introduction  

Reinforcement Learning (RL) remains an active research area for a long time (Kaelbling et 
al., 1996; Sutton & Barto, 1998) and is still one of the most rapidly developing machine 
learning methods in recent years (Barto & Mahadevan, 2003). Related algorithms and 
techniques have been used in different applications such as motion control, operations 
research, robotics and sequential decision process (He & Jagannathan, 2005; Kondo & Ito, 
2004; Morimoto & Doya, 2001; Chen et al., 2006b). However how to speed up learning has 
always been one of the key problems for the theoretical research and applications of RL 
methods (Sutton & Barto, 1998).  
Recently there comes up a new approach for solving this problem owning to the rapid 
development of quantum information and quantum computation (Preskill, 1998; Nielsen & 
Chuang, 2000). Some results have shown that quantum computation can efficiently speed 
up the solutions of some classical problems, and even can solve some difficult problems that 
classical algorithms can not solve. Two important quantum algorithms, Shor’s factoring 
algorithm (Shor, 1994; Ekert & Jozsa, 1996) and Grover’s searching algorithm (Grover, 1996; 
Grover, 1997), have been proposed in 1994 and 1996 respectively. Shor’s factoring algorithm 
can give an exponential speedup for factoring large integers into prime numbers and its 
experimental demonstration has been realized using nuclear magnetic resonance 
(Vandersypen et al., 2001). Grover’s searching algorithm can achieve a square speedup over 
classical algorithms in unsorted database searching and its experimental implementations 
have also been demonstrated using nuclear magnetic resonance (Chuang et al., 1998; Jones, 
1998a; Jones et al., 1998b) and quantum optics (Kwiat et al., 2000; Scully & Zubairy, 2001). 
Taking advantage of quantum computation, the algorithm integration inspired by quantum 
characteristics will not only improve the performance of existing algorithms on traditional 
computers, but also promote the development of related research areas such as quantum 
computer and machine learning. According to our recent research results (Dong et al., 
2005a; Dong et al., 2006a; Dong et al., 2006b; Chen et al., 2006a; Chen et al., 2006c; Chen & 
Dong, 2007; Dong et al., 2007a; Dong et al., 2007b), in this chapter the RL methods based on 
quantum theory are introduced following the developing roadmap from Superposition-
Inspired Reinforcement Learning (SIRL) to Quantum Reinforcement Learning (QRL).  
As for SIRL methods we concern mainly about the exploration policy. Inspired by the 
superposition principle of quantum state, in a RL system, a probabilistic exploration policy 
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is proposed to mimic the state collapse phenomenon according to quantum measurement 
postulate, which leads to a good balance between exploration and exploitation. In this way, 
the simulated experiments show that SIRL may accelerate the learning process and allow 
avoiding the locally optimal policies. 
When SIRL is extended to quantum mechanical systems, QRL theory is proposed naturally 
(Dong et al., 2005a, Dong et al., 2007b). In a QRL system, the state value can be represented 
with quantum state and be obtained by randomly observing the quantum state, which will 
lead to state collapse according to quantum measurement postulate. The occurrence 
probability of eigenvalue is determined by probability amplitude, which is updated 
according to rewards. So this approach represents the whole state-action space with the 
superposition of quantum state, which leads to real parallel computing and a good tradeoff 
between exploration and exploitation using probability as well.  
Besides the introduction of SIRL and QRL methods, in this chapter, the relationship between 
different theories and algorithms are briefly analyzed, and their applications are also 
introduced respectively. The organization of this chapter is as follows. Section 2 gives a brief 
introduction to the fundamentals of quantum computation, which include the superposition 
principle, parallel computation and quantum gates. In Section 3, the SIRL method is 
presented in a probabilistic version through mimicking the quantum behaviors. Section 4 
gives the introduction of QRL method based on quantum superposition and quantum 
parallelism. Related issues and future work are discussed as a conclusion in Section 5. 

2. Fundamentals of quantum computation 

2.1 State superposition and quantum parallel computation 

In quantum computation, information unit (also called as qubit) is represented with 
quantum state and a qubit is an arbitrary superposition state of two-state quantum system 
(Dirac’s representation) (Preskill, 1998): 

 〉+〉=〉 1|0|| βαψ  (1) 

where α  and β  are complex coefficients and satisfy 1|||| 22 =+ βα .  〉0| and 〉1|  are 

two orthogonal states (also called basis vectors of quantum state 〉ψ| ), and they 

correspond to logic states 0 and 1. 
2|| α  represents the occurrence probability of 〉0|  when 

the qubit is measured, and 
2|| β is the probability of obtaining result 〉1| . The physical 

carrier of a qubit is any two-state quantum system such as two-level atom, spin-1/2 particle 
and polarized photon. The value of classical bit is either Boolean value 0 or value 1, but a 
qubit can be prepared in the coherent superposition state of 0 and 1, i.e. a qubit can 
simultaneously store 0 and 1, which is the main difference between classical computation 
and quantum computation. 
According to quantum computation theory, the quantum computing process can be looked 

upon as a unitary transformation U  from input qubits to output qubits. If one applies a 

transformation U to a superposition state, the transformation will act on all basis vectors of 

this superposition state and the output will be a new superposition state by superposing the 
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results of all basis vectors. So when one processes function f(x) by the method, the 

transformation U can simultaneously work out many different results for a certain input 

x . This is analogous with parallel process of classical computer and is called quantum 
parallelism. The powerful ability of quantum algorithm is just derived from the parallelism 
of quantum computation.  

Suppose the input qubit 〉z| lies in the superposition state: 

 )1|0(|
2

1
z| 〉〉+=〉   (2) 

The transformation zU describing computing process is defined as the following: 

 〉⊕→〉 )z(fy,z|yz,:|Uz  (3) 

where 〉yz,|  represents the input joint state and 〉⊕ )z(fy,z|  is the output joint state. 

Let 0y =  and we can easily obtain (Nielsen & Chuang, 2000):  

 ))1(f,1|)0(f,0(|
2

1
z|Uz 〉〉+=〉  (4) 

The result contains information about both )0(f  and )1(f , and we seem to evaluate )z(f  

for two values of z  simultaneously. 
Now consider an n-qubit cluster and it lies in the following superposition state: 
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where xC  is complex coefficients and 
2

x |C|  represents occurrence probability of 〉x|  

when state 〉ψ|  is measured. 〉x|  can take on 
n2  values, so the superposition state can be 

looked upon as the superposition state of all integers from 0 to 12n − . Since U  is a unitary 

transformation, computing function )x(f  can give (Preskill, 1998): 
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Based on the above analysis, it is easy to find that an n-qubit cluster can simultaneously 

process 
n2  states. However, this is different from the classical parallel computation, where 

multiple circuits built to compute )x(f  are executed simultaneously, since quantum 

parallel computation doesn’t necessarily make a tradeoff between computation time and 
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needed physical space. In fact, quantum parallelism employs a single circuit to evaluate the 
function for multiple values of x simultaneously by exploiting the quantum state 
superposition principle and provides an exponential-scale computation space in the n-qubit 
linear physical space. Therefore quantum computation can effectively increase the 
computing speed of some important classical functions. So it is possible to obtain significant 
result through fusing quantum computation into reinforcement learning theory.  

2.2 Quantum gates 

Analogous to classical computer, quantum computer accomplishes some quantum 
computation tasks through quantum gates. A quantum gate or quantum logic gate is a basic 
quantum circuit operating on a small number of qubits. They can be represented by unitary 
matrices. Here we will introduce several simple quantum gates including quantum NOT 
gate, Hadamard gate, phase gate and quantum CNOT gate. The detailed description of 
quantum gates can refer to (Nielsen & Chuang, 2000). 

A quantum NOT gate maps 〉→〉 1|0| and 〉→〉 0|1|  respectively and that can be 

described by the following matrix: 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

01

10
UNOT   (7) 

When a quantum NOT gate is applied on a single qubit with state 〉+〉=〉 1|0|| βαψ , 

then the output will become 〉+〉=〉 0|1|| βαψ . The symbol for the NOT gate is drawn 

in Fig.1 (a).  
The Hadamard gate is one of the most useful quantum gates and can be represented as:  

 ⎥
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H   (8) 

Through the Hadamard gate, a qubit in the state 〉0|  is transformed into a superposition 

state in the two states, i.e. 
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Another important gate is phase gate which can be expressed as 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

i0

01
Up   (10) 

pU  generates a relative phase  π  between the two basis states of the input state, i.e. 

 〉+〉=〉 1|i0||Up βαψ   (11) 
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The CNOT gate acts on two qubits simultaneously and can be represented by the following 
matrix: 
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The symbol for the CNOT gate is shown as in Fig.1 (b).  If the first control qubit is equal to 

〉1| , then CNOT gate flips the target (second) qubit. Otherwise the target remains 

unaffected. This can be described as follows: 
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Just like AND and NOT form a universal set for classical boolen  circuits, the CNOT gate 
combined with one qubit rotation gate can implement any kind of quantum calculation. 

(a)

(b)  

Fig. 1. Symbols for NOT and CNOT gate 

3. Superposition-inspired reinforcement learning 

Similar the standard RL, SIRL is also a RL method that is designed for the traditional 
computer, instead of a quantum algorithm. However, it borrows the ideas from quantum 
characteristics and provides an alternative exploration strategy, i.e., action selection method. 
In this section, the SIRL will be presented after a brief introduction of the standard RL 
theory and the existing exploration strategies. 

3.1 Reinforcement learning and exploration strategy 

Standard framework of RL is based on discrete-time, finite Markov decision processes 

(MDPs) (Sutton & Barto, 1998). RL algorithms assume that state  S  and action )s( n
A  can be 

divided into discrete values. At a certain step, the agent observes the state of the 



Reinforcement Learning: Theory and Applications 

 

64 

environment (inside and outside of the agent)  ts ,  and then choose an action ta . After 

executing the action, the agent receives a reward 1tr + , which reflects how good that action is 

(in a short-term sense).  
The goal of reinforcement learning is to learn a mapping from states to actions, that is to say, 

the agent is to learn a policy ]1,0[: )( →∪× ∈ iSi ASπ , so that expected sum of 

discounted reward of each state will be maximized: 
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where )1,0[∈γ  is discounted factor, ),( asπ  is the probability of selecting action a  

according to state s  under policy π , },|'Pr{ 1' aassssp ttt

a

ss ==== +  is probability 

for state transition and },|{ 1 aassrEr ttt

a

s === +  is expected one-step reward. Then 

we have the optimal state-value function 
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In dynamic programming, (15) is also called Bellman equation of 
*V . 

As for state-action pairs, there are similar value functions and Bellman equations, where 

),( asQπ
 stands for the value of taking action a  in state s  under policy π : 
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Let α  be the learning rate, the one-step update rule of Q-learning (a widely used 

reinforcement learning algorithm) (Watkins & Dayan, 1992) is: 

)',(max(),()1(),( 1'1 asQrasQasQ tattttt ++ ++−← γαα   (19) 
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Besides Q-learning, there are also many other RL algorithms such as temporal 
difference (TD), SARSA and multi-step version of these algorithms. For more detail, 
please refer to (Sutton & Barto, 1998). 
To approach the optimal policy effectively and efficiently, the RL algorithms always 
need a certain exploration strategy. One widely used exploration strategy is ε -

greedy ))1,0[( ∈ε , where the optimal action is selected with probability ε−1  and a 

random action is selected with probability ε . Sutton and Barto (Sutton & Barto, 1998) 

have compared the performance of RL for different ε , which shows that a nonzero ε  

is usually better than 0=ε  (i.e., blind greedy strategy). Moreover, the exploration 

probability ε  can be reduced over time, which moves the agent from exploration to 

exploitation. The ε -greedy method is simple and effective, but it has one drawback 

that when it explores it chooses equally among all actions. This means that it makes no 
difference to choose the worst action or the next-to-best action. Another problem is that 
it is difficult to choose a proper parameter ε  which can offer the optimal balancing 

between exploration and exploitation.  
Another kind of action selection methods are randomized strategies, such as Boltzmann 
exploration (i.e., Softmax method) (Sutton & Barto, 1998) and Simulated Annealing (SA) 
method (Guo et al., 2004). It uses a positive parameter τ  called the temperature and 

chooses action with the probability proportional to )/exp( ),( τasQ . Compared with ε -

greedy method, the greedy action is still given the highest selection probability, but all 
the others are ranked and weighted according to their value estimates. It can also move 
from exploration to exploitation by adjusting the "temperature" parameter τ . It is 

natural to sample actions according to this distribution, but it is very difficult to set and 
adjust a good parameter τ  and may converge unnecessarily slowly unless the 

parameter τ  is manually tuned with great care. It also has another potential 

shortcoming that it may works badly when the values of the actions are close and the 
best action can not be separated from the others. A third problem is that when the 
parameter τ  is reduced over time to acquire more exploitation, there is no effective 

mechanism to guarantee re-exploration when necessary.  
Therefore, the existing exploration strategies usually suffer from the difficulties to hold 
the good balancing between exploration and exploitation and to provide an easy 
method of parameter setting. Hence new ideas are necessary to explore more effective 
exploration strategies to achieve better performance. Inspired by the main 
characteristics of quantum computation, we present the SIRL algorithm with a 
probabilistic exploration policy.  

3.2 Superposition-inspired RL  

The exploration strategy for SIRL is inspired by the state superposition principle of a 
quantum system and collapse postulate, where a combined action form is adopted to 
provide a probabilistic mechanism for each state in the SIRL system. At state s , the 

action to be selected is represented as:  

 ∑
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Where ∑
=

=
m

i

ic
1

1 , 10 ≤≤ ic , mi ,...2,1= . sa is the action to be selected at state s  and 

the action selection set is },...,,{ 21 maaa . Equation (20) is not for numerical computation 

and it just means that at the state s , the agent will choose the action ia  with the occurrence 

probability ic , which leads to a natural exploration strategy for SIRL. 

After the execution of action ia from state s , the corresponding probability ic  is updated 

according to the immediate reward r  and the estimated value of the next state )'(sV . 

 ))'(( sVrkcc ii ++←   (21) 

where k is the updating step and the probability distribution ),...,,( 21 mccc  is normalized 

after each updating process. The procedural algorithm of standard SIRL is shown as in Fig. 
2. 

Procedural SIRL: 

Initialize )(sV arbitrarily, π  to the policy to be evaluated 

π : ∑
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Repeat (for each episode): 
Initialize s  

Repeat (for each step of episode): 
a ←  action given by π  for s  

Take action a : observe reward, r , and next state,
's  

)]()'([)()( sVsVrsVsV −++← γα  

))'(( sVrkcc ii ++←  

'ss ←  

until s  is terminal 

until the learning process ends 

Fig. 2. A standard SIRL algorithm 

In the SIRL algorithm, the exploration policy is accomplished through a probability 
distribution over the action set. When the agent is going to choose an action at a certain 

state, the action ia  will be selected with probability ic , which is also updated along with 

the value funcion updating. Comparing the SIRL algorithm with basic RL algorithms, the 
main difference is that with the probabilistic exploration policy, the SIRL algorithm makes 
better tradeoff between exporation and exploitation without bothering to tune it by the 
designers. 
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3.3 Simulated experiments 

The performance of the SIRL algorithm is tested with two examples, which are a puzzle 
problem and a mobile robot navigation problem.  
 

1. The puzzle problem 

First, let’s consider a puzzle problem as shown in Fig. 3, which is in a )12~0(1313×  

gridworld environment. From any state the agent can perform one of four primary actions: 
up, down, left and right, and actions that would lead into a blocked cell are not executed. 
The task is to find an optimal policy which will let the agent move from S(11,1) to G(1,11)  
with minimized cost (number of moving steps).  
The experiment setting is as follows. Once the agent finds the goal state it receives a reward 
of 100 and then ends this episode. All steps are punished by a reward of -1. The discount 
factor γ  is set to 0.99 for all the algorithms that we have carried out in this example. In this 

experiment, we compare the proposed method with TD algorithm. For the action selection 
policy of TD algorithm, we use ε -greedy policy (ε  = 0.01). As for SIRL method, the action 

selecting policy uses the values of ic  to denote the probability of an action, which is defined 

as ∑
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1 ...)( . For the four cell-to-cell actions ic  is 

initialized uniformly.  
 

 

 
Fig. 3. A puzzle problem. The task is to move from start (S) to goal (G) with minimum 
number of steps 
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Fig. 4. Performance of SIRL (the left figure) compared with TD algorithm (the right figure) 

The experimental results of the SIRL method compared with TD method are plotted in Fig. 
4. It is obvious that at the beginning phase SIRL with this superposition-inspired exploration 
strategy learns extraordinarily fast, and then steadily converges to the optimal policy that 
costs 40 steps to the goal G. The results show that the SIRL method makes a good tradeoff 
between exploration and exploitation. 
 
2. Mobile robot navigation 
A simulation environment has also been set up with a larger grid-map of 400×600. And the 

configuration of main parameters is as follows: learning rate 5.0=α , discount factor 

9.0=γ . Fig. 5. shows the result in complex indoor environment, which verifies the 

effectiveness of robot learning using SIRL for navigation in large unknown environments. 

 

Fig. 5. Simulation result of robot navigation in indoor environment  
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4. Quantum reinforcement learning 

When the SIRL is applied to a real quantum system, for example, to run the algorithm on a 
quantum computer, the representation and the computation mode will be dramatically 
different, which will lead to quantum reinforcement learning (QRL). Then we can take the 
most advantages of this quantum algorithm, such as the speeding up due to quantum 
parallel computation. 

4.1 Representation 

One of the most fundamental principles of quantum mechanics is the state superposition 
principle. As we represent a QRL system with quantum concepts, similarly, we have the 
following definitions and propositions for QRL. 

Definition 1: (Eigenvalue of states or actions) States s  or actions a  in a RL system are 

denoted as corresponding orthogonal quantum states 〉ns|  (or 〉na| ) and are called the 

eigenvalue of states or actions in QRL. 

Then we get the set of eigenvalues of states: }s{|S n 〉=  and that of actions for state i : 

}a{|A n)i( 〉= . 

Corollary 1: Every possible state 〉s|  or action 〉a|  can be expanded in terms of an 

orthogonal complete set of functions, respectively. We have 
 
 

 ∑ 〉=〉
n

nn ss || β   (22) 

 ∑ 〉=〉
n

nn aa || β  (23) 

where nβ  is probability amplitude, which can be a complex number, 〉ns|  and 〉na|  are 

eigenvalues of states and actions, respectively. And the nβ  in equation (22) is not 

necessarily the same as the ones in equation (23), which just mean this corollary holds for 

both of 〉s|  and 〉a| . 
2|| nβ  means the probability of corresponding eigenvalues and 

satisfies 

 ∑ =
n

n 1|| 2β  (24) 

Proof: (sketch)  

(1) State space  }{| 〉s  in QRL system is a N -dimension Hilbert space, 

(2) States }{| 〉ns  in traditional RL system are the eigenvalue of states 〉s|   in QRL system, 

(Definition 1) 
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Then }{| 〉ns  are N  linear independent vectors for this N -dimension Hilbert space, 

according to the definition of Hilbert space, any possible state 〉s|  can be expanded in 

terms of the complete set of 〉ns| . And it is the same for action space }{| 〉a . 

So the states and actions in QRL are different from those in traditional RL.  
1. The sum of several states (or actions) does not have a definite meaning in traditional 

RL, but the sum of states (or actions) in QRL is still a possible state (or action) of the 
same quantum system, and it will simultaneously take on the superposition state of 
some eigenvalues.  

2. The measurement value of  〉s|  relates to its probability density. When 〉s|  takes on an 

eigenstate 〉is| , its value is exclusive. Otherwise, its value has the probability of 
2|| iβ  

to be one of the eigenstate 〉is| . 

Like what has been described in Section 2, quantum computation is built upon the concept 
of qubit. Now we consider the systems of multiple qubits and propose a formal 
representation of them for QRL system. 

Let sN  and aN  be the numbers of states and actions respectively, then choose numbers m 

and n, which are characterized by the following inequalities:  
 

 s

m

s NN 22 ≤≤ , a

n

a NN 22 ≤≤   (25) 

And use m and n qubits to represent eigenstate set S＝{s} and eigenaction set A＝{a} 

respectively: 
 

s : ⎥
⎦

⎤
⎢
⎣

⎡
⋅⋅⋅

m

m

b

a

b

a

b

a

2

2

1

1
, where 1|||| 22 =+ ii ba , mi ,...2,1=  

 

 

a : ⎥
⎦

⎤
⎢
⎣

⎡
⋅⋅⋅

n

n

β
α

β
α

β
α

2

2

1

1
, where 1|||| 22 =+ ii βα , ni ,...2,1=  

Thus the states and actions of a QRL system may lie in superposition states:  

 

}

∑
=

〉=〉

m

s

s

m sCs
1...11

000

)( ||
L

  (26) 
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}

∑
=

〉=〉

n

a

a

n aCa
1...11

000

)( ||
L

 (27) 

where sC  and aC  can be complex numbers and satisfy 

 

}

∑
=

=

m

s

sC
1...11

000

2 1||
L

 (28) 

 

}

∑
=

=

n

a

aC
1...11

000

2 1||
L

 (29)  

4.2 Action selection policy 

In QRL, the agent is also to learn a policy ]1,0[: )( →∪× ∈ iSi ASπ , which will maximize 

the expected sum of discounted reward of each state. That is to say, the mapping from states 

to actions is ASsf →= :)( π , and we have 

 

}

∑
=

〉=〉=

n

a

a

n

s aCasf
1...11

000

)( ||)(
L

  (30) 

where aC  is probability amplitude of action 〉a|  and satisfies (29). 

 

Definition 2: (Collapse) When a quantum state 〉=〉 ∑
n

nn ψβψ ||  is measured, it will be 

changed and collapse randomly into one 〉nψ|  of its eigenstates with corresponding 

probability 
2||| 〉〈 ψψ n : 

 
22*2 ||||)(||||| nnn βψψψψ =〉〉=〉〈   (31) 

Then when an action 〉)(| n

sa  is measured, we will get 〉a|  with the occurrence probability 

of 
2|| aC . In QRL algorithm, we will amplify the probability of “good” action according to 

corresponding rewards. It is obvious that the collapse action selection method is not a real 
action selection method theoretically. It is just a fundamental phenomenon when a quantum 
state is measured, which results in a good balancing between exploration and exploitation 
and a natural “action selection” without setting parameters. 
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4.3 Value function updating and reinforcement strategy 

In Corollary 1 we pointed out that every possible state of QRL 〉s|  can be expanded in 

terms of an orthogonal complete set of eigenstate 〉ns| : ∑ 〉=〉
n

nn ss || β . If we use an m-

qubit register, it will be 

}

∑
=

〉=〉

m

s

s

m sCs
1...11

000

)( ||
L

.  

According to quantum parallel computation theory, a certain unitary transformation U  

from input qubit to output qubit can be implemented. Suppose we have such a “quantum 

black box” which can simultaneously process these 
m2  states with the value updating rule 

 ))()'(()()( sVsVrsVsV −++← α   (32) 

where α  is learning rate, and r  is the immediate reward. It is like parallel value updating 

of traditional RL over all states, however, it provides an exponential-scale computation 
space in the m-qubit linear physical space and can speed up the solutions of related 
functions. 
The reinforcement strategy is accomplished by changing the probability amplitudes of the 
actions according to the updated value function. As we know that action selection is 

executed by measuring action 〉)(| n

sa  related to certain state 〉)(| ms , which will collapse to 

〉a|  with the occurrence probability of 
2|| aC . So it is no doubt that probability amplitude 

updating is the key of recording the “trial-and-error” experience and learning to be more 

intelligent. When an action 〉a|  is executed, it should be able to memorize whether it is 

“good” or “bad” by changing its probability amplitude aC . For more details, please refer to 

(Chen et al., 2006a; Dong et al., 2006b; Dong et al., 2007b). 

As action 〉)(| n

sa  is the superposition of n possible eigenactions, to find out 〉a|  and to 

change its probability amplitudes are usually interactional for a quantum system.  So we 

simply update the probability amplitude of 〉)(| n

sa  without searching 〉a| , which is 

inspired by Grover’s searching algorithm (Grover, 1996).  
The updating of probability amplitude is based on Grover iteration. First, prepare the 
equally weighted superposition of all eigenactions 

 

}

)|(
2

1
|

1...11

000

)(

0 ∑
=

〉=〉

n

a
n

n aa
L

  (33) 

This process can be done easily by applying the Hadamard transformation to each qubit of 

an initial state 〉= 0| a . We know that 〉a|  is an eigenaction and can get 
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n

naa
2

1
| )(

0 =〉〈  (34) 

Now assume the eigenaction to be reinforced is 〉ja| , and we can construct Grover 

iteration through combining two reflections 
jaU  and )(

0
n

a
U  (Preskill, 1998; Nielsen & 

Chuang, 2000) 

 ||2 jja aaIU
j

〈〉−=   (35) 

 IaaU nn

a
n −〈〉= ||2 )(

0

)(

0)(
0

  (36) 

where I  is unitary matrix. 
jaU  flips the sign of the action 〉ja| , but acts trivially on any 

action orthogonal to 〉ja| . This transformation has a simple geometrical interpretation. 

Acting on any vector in the 
n2 -dimensional Hilbert space, 

jaU  reflects the vector about the 

hyperplane orthogonal to 〉ja| . On the other hand, )(
0

n
a

U  preserves 〉)(

0| na , but flips the 

sign of any vector orthogonal to 〉)(

0| na . Grover iteration is the unitary transformation 

 
j

n aaGrov UUU )(
0

=  (37) 

By repeatedly applying the transformation GrovU  on 〉)(

0| na , we can enhance the 

probability amplitude of the basis action 〉ja|  while suppressing the amplitude of all other 

actions. This can also be looked upon as a kind of rotation in two-dimensional space. 

Applying Grover iteration GrovU  for K  times on 〉)(

0| na  can be represented as 

 〉++〉+=〉 φθθ |))12cos((|))12sin((| )(

0 KaKaU j

nK

Grov  (38) 

where ∑
≠

〉
−

=〉
jaa

n
a|

12

1
| φ ,θ  satisfying 

n2/1sin =θ . Through repeating Grover 

iteration, we can reinforce the probability amplitude of corresponding action according to 
the reward value.  

Thus when an action 〉)(

0| na  is executed, the probability amplitude of 〉ja|  is updated by 

carrying out ))]'(([ sVrk +  (an integer) times of Grover iteration. k  is a parameter and 

the probability amplitudes will be normalized with ∑ =
a

aC 1|| 2
 after each updating. 
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4.4 Quantum reinforcement learning algorithm 

The procedural form of a standard QRL algorithm is described as Fig. 6 (Dong et al., 2007b). 
QRL is inspired by the superposition principle of quantum state and quantum parallel 
computation. The state value can be represented with quantum state and be obtained by 
randomly observing the simulated quantum state, which will lead to state collapse 
according to quantum measurement postulate. And the occurrence probability of 
eigenvalue is determined by probability amplitude, which is updated according to rewards. 
So this approach represents the whole state-action space with the superposition of quantum 
state and makes a good tradeoff between exploration and exploitation using probability. The 
merit of QRL is twofold. First, as for simulation algorithm on traditional computer it is an 
effective algorithm with novel representation and computation methods. Second, the 
representation and computation mode are consistent with quantum parallel computation 
system and can speed up learning in exponential scale with quantum computer or quantum 
logic gates. 
In this QRL algorithm we use temporal difference (TD) prediction for the state value 
updating, and TD algorithm has been proved to converge for absorbing Markov chain when 
the stepsize is nonnegative and digressive (Sutton & Barto, 1998; Watkins & Dayan, 1992). 
Since QRL is a stochastic iterative algorithm and Bertsekas and Tsitsiklis have verified the 
convergence of stochastic iterative algorithms (Bertsekas & Tsitsiklis, 1996), we give the 
convergence result about the QRL algorithm as Theorem 1. The proof and related 
discussions can be found in (Dong et al., 2006a; Chen et al., 2006c; Dong et al., 2007b): 
Theorem 1: For any Markov chain, quantum reinforcement learning algorithm converges at 

the optimal state value function 
*)(sV  with probability 1 under proper exploration policy 

when the following conditions hold (where kα  is stepsize and nonnegative): 

 

 ∞=∑
=

∞→

T

k

k
T

1

lim α ,          ∞<∑
=

∞→

T

k

k
T

1

2lim α   (39) 

 

From the procedure of QRL in Fig. 6, we can see that the learning process of QRL is carried 
out through parallel computation, which also provides a mechanism of parallel updating. 
Sutton and Barto (Sutton & Barto, 1998) have pointed out that for the basic RL algorithms 
the parallel updating does not affect such performances of RL as learning speed and 
convergence in general. But we find that the parallel updating will speed up the learning 
process for the RL algorithms with a hierarchical setting (Sutton et al., 1999; Barto & 
Mahadevan, 2003; Chen et al., 2005), because the parallel updating rules give more chance to 
the updating of the upper level learning process and this experience for the agent can work 
as the “sub-goals” intrinsically that will speed up the lower learning process. 
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Fig. 6. The algorithm of a standard QRL (Dong et al., 2007b) 

4.5 Physical implementation 

Now let’s simply consider the physical realization of QRL and detailed discussion can be 
found in (Dong et al., 2006b). In QRL algorithm, the three main operations occur in 
preparing the equally weighted superposition state for calculating the times of Grover 
iteration, initializing the quantum system for representing states or actions, and carrying out 
a certain times of Grover iteration for updating probability amplitude according to reward 
value. In fact, we can initialize the quantum system by equally weighted superposition for 
representing states or actions. So the main operations required are preparing the equally 
weighted superposition state and carrying out Grover iteration. These can be implemented 
using the Hadamard transform and the conditional phase shift operation, both of which are 
relatively easy in quantum computation. 

Consider a quantum system described by n qubits, it has 
n2  possible states. To prepare an 

equally weighted superposition state, initially let each qubit lie in the state 〉0| , then we can 

perform the transformation H  on each qubit independently in sequence and thus change 
the state of the system. The state transition matrix representing this operation will be of 

dimension 
nn 22 ×  and it can be implemented by n shunt-wound Hadamard gates. This 

process can be represented into: 
 
 

Procedure QRL: 

Initialize ∑
=
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000

)( ||
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m sCs , ∑
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000

)( ||)(
L
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Repeat (for each episode) 
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=

〉=〉
111

000

)( ||
L

Ls

s

m sCs : 

1. Observe 〉= )(|)( n

sasf  and get 〉a| ; 

2. Take action 〉a| , observe next state 〉'| s , reward r , then 

(a) Update state value: ))()'(()()( sVsVrsVsV −++← γα  

(b) Update probability amplitudes:  

repeat  for ))]'(([ sVrk +  times 

〉=〉 )()( ||U )(
0

n

saa

n

sGrov aUUa n  

Until for all states ε≤Δ |)(| sV . 
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The other operation is the conditional phase shift operation which is an important element 
to carry out the Grover iteration. According to quantum information theory, this 
transformation may be efficiently implemented using phase gates on a quantum computer. 
The conditional phase shift operation does not change the probability of each state since the 
square of the absolute value of the amplitude in each state stays the same.  

4.6 Simulated experiments 

The presented QRL algorithm is also tested using two examples: Prisoner’s Diploma and the 
control of a five-qubit system. 
1. Prisoner’s Diploma 
The first example is derived from typical Prisoners’ Dilemma. In the Prisoners’ Dilemma, 
each of the two prisoners, prisoner I and prisoner II, must independently make the action 
selection to agree to give evidence against the other guy or to refuse to do so. The situation 
is as described in Table 1 with the entries giving the length of the prison sentence (years in 
prison) for each prisoner, in every possible situation. In this case, each of the prisoners is 
assumed to minimize his sentence. As we know, this play may lead to Nash equilibrium by 
giving the action selection (agree to give evidence, agree to give evidence) with the outcome of (3, 
3) years in prison. 
 

prisoner II 
Prisoner I 

Agree to give evidence Refuse to give evidence 

Agree (3, 3) (0, 5) 

Refuse (5, 0) (1, 1) 

Table 1. The Prisoners’ Dilemma  

Now, we assume that this Prisoners game can be played repeatedly. Each of them can 
choose to agree or refuse to give evidence against the other guy and the probabilities of the 
action selection (agree to give evidence, agree to give evidence) are initially equal. To find a better 
outcome, the two prisoners try to improve their action selection using learning. By applying 
the QRL method proposed in this chapter, we get the results as shown in Fig. 6 and Fig. 7 
(Chen et al., 2006a; Chen et al., 2006c). From the results, it is obvious that the two prisoners 
get smarter when they try to cooperate indeliberately and both of them select the action of 
“Refuse to give evidence” after about 40 episodes of play. Then they steadily get the outcome 
of (1, 1) instead of (3, 3) (Nash equilibrium).  
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Fig. 6. The outcome (years in prison) of the Prisoners problem for each prisoner   

 

Fig. 7. The whole outcome of the Prisoners problem (Sum of years in prison for both 
prisoners)  
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2. Control of a five-qubit system 
The second axample is about the control of a five-qubit system (Dong et al., 2006c). With the 
development of quantum information technology, quantum control theory has drawn the 
attention of many scientists (Chen et al., 2005). The objective of quantum control is to 
determine how to drive quantum systems from an initial given quantum state to a pre-
determined target quantum state with some given time. According to quantum mechanics, 

the state 〉)t(|ψ  of arbitary time t can be reached through an evolution on the initial state  

〉)0(|ψ . It can be expressed as  

 〉=〉 )0(|Û)t(| ψψ   (41) 

where  Û  is a unitary operator and satisfies: 

 IÛÛÛÛ == ++
  (42) 

where 
+Û  is the Hermitian conjugate operator of Û . So the control problem of quantum 

state can be converted into finding appropriate unitary operator Û . 

In this example, we consider the five-qubit system, it has 32 eigenstates. In practical 
quantum information technology, some state transitions can easily be completed through 
appropriate unitary transformations but the other ones are not easy to be accomplished. 
Assume we know its state transitions satisfy the following equations through some 
experiments: 

〉=〉 00000|Û00001| 00  ;   〉=〉 00001|Û00010| 01 ;   〉=〉 00010|Û00011| 02 ; 

〉=〉 00011|Û00100| 03 ;    〉=〉 00100|Û00101| 04 ;   〉=〉 00001|Û00111| 11 ; 

〉=〉 00010|Û01000| 12 ;    〉=〉 00100|Û01010| 14 ;   〉=〉 00101|Û01011| 15 ; 

〉=〉 00111|Û01000| 21 ;    〉=〉 01010|Û01011| 24 ;   〉=〉 00111|Û01101| 31 ; 

〉=〉 01010|Û10000| 34 ;    〉=〉 01011|Û10001| 35 ;    〉=〉 01100|Û01101| 40 ; 

〉=〉 10000|Û10001| 44 ;     〉=〉 01100|Û10010| 50 ;   〉=〉 10000|Û10110| 54 ; 

〉=〉 10001|Û10111| 55 ;     〉=〉 10100|Û10101| 62 ;     〉=〉 10101|Û10110| 63 ; 

〉=〉 10110|Û10111| 64 ;     〉=〉 10010|Û11000| 70 ;    〉=〉 10110|Û11100| 74 ; 

〉=〉 10111|Û11101| 75 ;      〉=〉 11001|Û11001| 80 ;     〉=〉 11100|Û11101| 84 ; 

〉=〉 11001|Û11111| 91  

In the above equations, Û  is reversible operator.  For example, we can easily get 
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 〉=〉 00001|Û00000| -1

00   (43) 

Assume the other transitions are impossible except the above transitions and corresponding 

inverse transitions. If the initial state and the target state are 〉11100|  and 〉11111|  

respectively, the following task is to find optimal control sequence through QRL. 
 

 

 

Fig. 8. The grid representation for the quantum control problem of a five-qubit system 

Therefor we first fill the eigenstates of five-qubit system in a grid room and they can be 
described as shown in Fig. 8. Every eigenstate is arranged in a corresponding grid and the 
hatched grid indicates that the corresponding state can not be attained. The two states with 
a common side are mutually reachable through one-step control and other states can not 
directly reach each other through one-step control. Now the task of the quantum learning 
system is to find an optimal control sequence which will let the five-qubit system transform 

from 〉11100|  to 〉11111| . Using the QRL method proposed previously, we get the 

results as shown in Fig. 9. And more experimental results are shown in Fig. 10 to 
demonstrate its performance with different learning rates. From the results, it is obvious that 
the control system can robustly find the optimal control sequence for the five-qubit system 
through learning and the optimal control sequences are shown in Fig. 11. We can easily 
obtain two optimal control sequences from Fig. 11: 
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}Û,Û,Û,Û,Û,Û,Û,Û,Û,Û,Û,Û,Û,Û{1_Sequence 91807050

-1

4031

-1

2112

-1

02

-1

03

-1
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-1

34

-1

54

-1

74=   (44) 

 

}Û,Û,Û,Û,Û,Û,Û,Û,Û,Û,Û,Û,Û,Û{2_Sequence 91807050

-1

403111

-1

01

-1

02

-1

03

-1

14

-1

34

-1

54

-1

74=   (45) 

 

 

 

 

 

 

 

Fig. 9. The performance of QRL for optimal control sequence 
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Fig. 10. The performance of QRL with different learning rates 

 

 

Fig. 11. The control paths for the control of a five-qubit system 
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5. Conclusion 

According to the existing problems in RL area, such as low learning speed and tradeoff 
between exploration and exploitation, SIRL and QRL methods are introduced based on the 
theory of RL and quantum computation in this chapter, which follows the developing 
roadmap from the superposition-inspired methods to the RL methods in quantum systems. 
Just as simulated annealing algorithm comes from mimicking the physical annealing 
process, quantum characteristics also broaden our mind and provide alternative approaches 
to novel RL methods. 
In this chapter, SIRL method emphasizes the exploration policy and uses a probabilistic 
action selection method that is inspired by the state superposition principle and collapse 
postulate. The experiments, which include a puzzle problem and a mobile robot navigation 
problem, demanstrate the effectiveness of SIRL algorithm and show that it is superior to 
basic TD algorithm with ε -greedy policy. As for QRL, the state/action value is represented 

with quantum superposition state and the action selection is carried out by observing 
quantum state according to quantum collapse postulate, which means a QRL system is 
designed for the real quantum system although it can also be simulated on a traditional 
computer. The results of simulated experiments verified its feasibility and effectiveness with 
two examples: Prisoner’s Dilemma and the control of a five-qubit system. The contents 
presented in this chapter are mainly the basic ideas and methods related to the combination 
of RL theory and quantum computation. More theoretic research and applictions are to be 
investigated in the future.  
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1. Introduction 

In this chapter, we introduce the notion of simple context-free decision processes, which 
are an extension of episodic finite-state Markov decision processes (MDPs). Intuitively, a 
simple context-free decision process can be thought of as an episodic finite-state MDP with a 
stack. In fact, many reinforcement learning methods can be applied to the class of simple 
context-free decision processes with natural modification on their equations. 
On the other hand, in grammatical inference area, some non-regular subclasses of simple 
grammars, such as very simple grammars and right-unique simple grammars, have been 
found to be efficiently identifiable in the limit from positive data. Especially, the class of 
right-unique simple decision processes, which are simple context-free processes based on 
right-unique simple grammars, is a superset of the class of episodic finite-state MDPs. 
Because episodic states histories are regarded as positive data, one might expect that those 
positive results in grammatical inference area could be applied to reinforcement learning 
directly. 
However, one should note that grammars generating the same language can generate 
different probabilistic languages. While it is enough to find a process representing the target 
language in the scheme of identification in the limit, in reinforcement learning, one has to 
find a process representing the target probabilistic language. 
Therefore, we need to modify the results in grammatical inference area for applying them to 
reinforcement learning. Actually, a grammar can be more general than another in the sense 
that it generates all the probabilistic languages generated by the other. Hence, finding a 
most general grammar gives a solution to this problem. This chapter however shows that 
both classes of simple grammars and right-unique simple grammars do not admit most 
general grammars. 
Besides, we show that there is an intermediate class between right-unique simple grammars 
and simple grammars that admits an algorithm computing a most general grammar from 
any two grammars whose languages coincide.  
We present an algorithm that learns the optimal actions under right-unique simple context-
free processes, by concatenating the algorithm learning right-unique simple grammars from 
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positive data, the one computing a most general grammar and the modified update 
equations of some usual reinforcement learning methods. 

2. Notation and definitions  

Before we give the definition of simple context-free MDPs, we write some standard notation 
and definitions and introduce subclasses of simple grammars and probabilistic grammars.  
 A context-free grammar (CFG) is a quadruple denoted by <V, Σ, R, S>, where V is a finite 
set of nonterminal symbols, Σ is a finite set of terminal symbols, R ⊂ V×(V ∪ Σ)* is a finite set 
of production rules, and S∈V is the start symbol. Let G=<V, Σ, R, S> be a CFG. We write 
XAZ

G⇒ XYZ if there is a rule A→Y. When G is clearly identified, we write simply ⇒  

instead of 
G⇒ .  *⇒  denotes the reflective and transitive closure of ⇒ . G is said to be 

reduced if and only if, for all A in V, there are some x,y,z in Σ* such that  S *⇒ xAz *⇒ xyz.  

L(G, X) denotes a language derived from X, i.e., }|*{ * xXx G⇒Σ∈ . L(G)=L(G,S) is called the 

language of G. Let ε denote the empty sequence. If x is a sequence, let |x| denote the length 
of x. Let |A| for a set A denote the cardinality of A, and |G| denote∑ ∈→

+
RXA

XA |||| .  

In order to be easy to read, terminal symbols and nonterminal symbols are denoted by 
a,b,c,… and A,B,C,… respectively, and finite sequence of terminal symbols and nonterminal 
symbols are denoted by …,x,y,z and , ,γ,… respectively. 
 CFGs G=<V, Σ, R, S> and H=<V’, Σ, R’, S’> are equivalent modulo renaming of nonterminal 
symbols when there is a bijection φ:V→V’ such that A→X is in R if and only if φ(A)→φ*(X) 
is in R’, and φ(S)=S’. φ* is a homomorphism (V ∪ Σ)* →(V ∪ Σ)* defined recursively: φ*(ε)= ε, 
φ*(aX)=aφ*(X) and φ*(AX)= φ(A)φ*(X). 
Definition 1. Let G=<V, Σ, R, S> be a CFG. G is called a simple grammar (SG) if and only if 

• G is in Greibach normal form, that is, for each rule of G is written as αaA → . 

• RaA ∈→ α  and RaA ∈→ β  imply βα = . 

The subclasses of SGs which will appear in this chapter are defined below. 
Definition 2. Let G=<V, Σ, R, S> be an SG. G is called a right-unique simple grammar 

(RSG) if and only if 

• RaA ∈→ α  and RaB ∈→ β  imply βα = . 

Definition 3. Let G=<V, Σ, R, S> be an SG. G is called a very simple grammar (VSG) if and 
only if 

• RaA ∈→ α  and RaB ∈→ β  imply BA =  and βα = . 

From definitions, a VSG is an RSG, and an RSG is an SG. 
Let G=<V, Σ, R, S> be an SG. A probability assignment P on G is a map from R to [0,1] such 
that ∑ ∈

=
)(

1)(
ARr

rP  for all A in V, where }{)( RXAAR ∈→= . A probabilistic simple 

grammar (PSG) is a pair of G and P, where P is probability assignment on an SG G. Let G(P) 
be a PSG. All of sequences of production rules that are used in the left-most derivation of 
S *

G⇒ x, where )(GLx ∈ , is called the left Szilard language of G. When G is an SG, every x in 

L(G) has a unique sentence in the left Szilard language of it. Let us denote that sentence by 
r(G,x,1), …, r(G,x,|x|). Then, the probabilistic language of G(P), 

]1,0[*)(:)](|Pr[ →Σ⋅ PowPG  is defined as ]),(|Pr[ SPGx , where 
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r(G,X,x,1),…,r(G,X,x,|x|) are the sequence of rules used in the derivation X *

G⇒ x. G(P) is 

called consistent if and only if 1)](|Pr[
)(

=∑ ∈ GLx
PGx . In order that )](|Pr[ PG⋅  is regarded as 

a probability on Σ*, G(P) is required to be consistent. A sufficient condition of consistency is 
known (Wetherell, C. S., 1980). Let M(G(P)) be a (|V|,|V|) matrix whose element ))(( PGmij

 

represents the expectation of the number of the occurrences of the nonterminal symbol 

jA derivable in one step from 
iA . G(P) is consistent if 1)))((( <PGMρ , where )(Mρ  is the 

spectral radius of M. 

3. An extension of finite-state Markov decision processes 

3.1 A representation of episodic finite-state MDPs with grammatical formalism 

In this section, first, we describe the notion of the simple context-free Markov decision 
processes, by using a simple example of an episodic finite-state MDP. After that, the 
definition of simple context-free Markov decision process will be given. 
Fig.1 is an episodic finite-state MDP, which contains 5 states, {a, b, c, d, e}. ‘S’ indicates the 
initial state, and double circles indicate end states ({a, e}). The actions the robot can take are 
‘L’ and ‘R’. Reward given to the robot is -1 for every step, and if the robot gets in the end 
state ‘e’, 1 is given. In this case, it is obvious that, if the robot takes ‘R’ action for every state, 
the best policy is acquired. 
 

 
Fig. 1. An episodic finite-state MDP 

A possible history of states is a sequence of states representing the transition of the robot 
from the initial state to an end state, such as {cba, cde, cbdba, … }. Let us call the set of 
possible histories the language generated by the finite-sate MDP in Fig. 1. While this 
language is a regular language, some regular languages cannot be generated by any finite-
state MDPs. For example a singleton {aae} cannot be the language of any MDP, because each 
letter identifies one state. The fact that aae is a possible history implies that the robot may 

translate from the state a to a. Thus, ean  is also a possible history for any n > 0.  

Therefore, the possible histories can be also described as a language for some regular 
grammar G, and its language class is not required to include the class of regular languages.  
The class of simple grammars is one of the subclasses of CFGs such that all languages 
generated by finite-state MDPs are generated by them. For example, a CFG whose rules are 
{S→cC, C→bB, B→a, B→cC, C→dD, D→e, D→cC} generates the language of the MDP in 
Fig.1. The derivation of ‘cbcde’ is written as S⇒ cC⇒ cbB⇒ cbcC ⇒ cbcdD⇒ cbcde. That CFG is 

a b c d e

S

R R R

LL L
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a simple grammar, and a regular grammar, if nonterminal symbols are regarded as states 
(Fig. 2).  

 
Fig. 2. Expressing the MDP in fig.1 by a regular grammar or simple grammar 

 A probabilistic CFG is defined by assigning a non-negative real number to every rule, 
where 1)(

)(
=∑ ∈ ARr

rP  and }{)( RXAAR ∈→= . In a finite-state MDP, if a policy is decided, 

the probabilities of histories (the measure on the language) are determined. On the MDP in 
Fig. 1, let us suppose that the policy is chosen as the probability of choice of ‘R’ or ‘L’ is 
assigned to 0.5 for every state. In that case, the probability of a sentence ‘w’ in the language 

is ||2 w− . The pair of a language and a measure on it is called a probabilistic language. When a 
policy which is taken by a robot is changed, the probabilistic language of MDP changes 
correspondingly. 
Every context-free grammar generates various probabilistic languages by assigning various 
probabilities to each rule of it. The set of all probabilistic languages generated from a CFG G 
by assigning a probability to each rule of it is called the probabilistic generality of G. The 
probabilistic generality of G is a subset of ]}1,0[)({ →GL . For instance, suppose that G is a 

CFG whose rules are {S→aS, S→b}. The probabilistic generality of it is written as follows: 

{ }]1,0[),1()(|]1,0[}*{: ∈−=→ qqqbaPbaP nn . 

It is clear that the fact that grammars A and B generate the same language does not imply its 
probabilistic generalities of them are the same. Suppose that H is a CFG that has rules 
{S→aA, S→b, A→aA, A→b}. Obviously, L(G) = L(H). But the generality of H is  

{ }]1,0[),1()(,1)(|]1,0[}*{: ∈−=−=→ qrqrbaaPqbPbaP nn . 

So generalities of them are different from each other.  

3.2 Simple context-free Markov decision processes 

Simple context-free MDP is formally defined as follows 
Definition 4. Let G be an simple grammar. G(U,P,C) =<V,Σ,R,S,U,P,C> is a simple context-

free decision process if and only if U, P and C are the following set and functions. 

• U is a finite set of actions. 

• P : R×U → [0,1] is a probabilistic assignment.  For all (A,u) in V×U, 1),(
)(

=∑ ∈ ARr
urP  

• C : Σ → (-∞,∞) is a reward function. 
In the following, when G is in a subclass of SGs, we call the simple context-free decision 
process G(U,P,C) [the name of the subclass]-DP. 
Corresponding to a given SG-DP, a sequence of discrete random variables X(1), Y(1), X(2), 
Y(2), … is given as follows. X(1) =S, the domain of X(i) is Σ*V* and the domain of Y(i) is U. 

 B C D  
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R R RR

LL L L
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Clearly, X and Y are an infinite-state MDP. Every episodic finite-state MDP is equivalent to 
some SG-DP as we have discussed in the beginning of this section. In fact, an episodic finite-
state MDP whose states are 

knaa +,,1 L and end states are 
knn aa ++ ,,1 L  for some n >0 and k 

>=0,  can be represented by the form of SG-DP <V,Σ,R,S,U,P,C>: 

}1,|{}1,|{

},,...,{
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knjnVAaAnjVAAaAR
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kn
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)( jji AaAP →  equals to the transition probability from i to j, and )( jni aAP +→  equals to the 

transition probability from i to n+j, where n+j is an end state. U is the same set of actions as 
the MDP, and C is also the same. 
Policies, value-function, optimal value function, etc. are introduced below in analogues to 
those of MDPs. Let G(U,P,C) = <V, Σ, R, S,U,P,C> be an SG-DP. 
Definition 5. A policy of G(U,P,C) is a map UV → . 

One of the main purposes of reinforcement learning is to determine a policy μ so as to 
maximise the expectation of the total reward from S. 
Definition 6. A value function of G(U,P,C) under a policy μ, ),(: ∞−∞→VJμ

, is defined as 

∑ ∑
∈ =

=
),(

||

1

)(]),(|Pr[)(
AGLx

x

i

iaCAPGxAJ  ,μμ
 

where 
||21 xaaax L=  and 

μP  is the probability assignment of G under μ, namely, 

for RaA ∈→ α , ))(,()( AaAPaAP μααμ →=→ . 

When 1)))((( <μρ PGM  for any policy μ , all value functions of G(U,P,C) are finite. 

Definition 7. The optimal value function of G(U,P,C) denoted as ),(:* ∞−∞→VJ  is defined 

as 

)(sup)(* AJAJ μπμ∈= , 

where π  is the set of all policies. 

There exists some policy 
*μ  such that )()( **

AJAJ =μ
. 

Definition 8. 
*μ  is called an optimal policy. 

Definition 9. The optimal action-value function ),(:* ∞−∞→×UVQ  is defined as 

. ∑ ∑
∈→ =

⎟
⎠

⎞
⎜
⎝

⎛
+→=

)( 1

*1*

1

)()(),(),(
ARBaBA
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Definitions 5 - 9 are a natural extension of the usual definitions on reinforcement learning 
for finite-state MDPs, whose discounting factor equals 1. Most of well known reinforcement 
learning methods, such as Q-learning, TD(λ) can be applied to SG-DPs corresponding to the 
above definitions. In the following theorem, an extended Q-learning for SG-DPs is 
introduced and its convergence to the optimal action-value is established. A proof is in 
(Shibata et al., 2006). 
Theorem 1. Assume that 1)))((( <μρ PGM  for any policy μ . A sequence of V×U×[0,1], 

L),,,(),,,( 222111 kuAkuA  is supposed to satisfy the following conditions for all (A,u) in V×U. 

.   and  ∞<∞= ∑∑
== ),(),(

2

),(),( uAuA

t

uAuA

t

tttt

kk
  

The sequence of random variables L,, 21 QQ  defined by the following iteration (the extended 

Q-Learning) converges to the optimal action-value function of G(U,P,C) as ∞→t  with 

probability 1. 

 ,⎟
⎠

⎞
⎜
⎝

⎛
++−= ∑

= ∈+

m

i

it
Uv

tttttttt vBQaCkuAQkuAQ
1

1 ),(max)(),()1(),(  

where the sequence 
mBB L1

 is randomly chosen with probability ),( 1 tmt uBaBAP L→ . 

4. Identification in the limit of right-unique simple grammars from positive 
data 

4.1 Learning simple grammars 

A most rigid theoretical model for learning concepts would be identification in the limit 
proposed by Gold (1967). Because episodic states histories are regarded as positive data, one 
might expect that fruits of grammatical inference on identification in the limit from positive 
data could be directly applied to reinforcement learning. As simple context-free decision 
processes are a generalization of finite Markov decision processes, we should refer to results 
on grammatical inference of simple grammars. It is known that however simple languages 
are not identifiable in the limit from positive data, because every regular language with an 
endmarker is a simple language and the class of whole regular languages is not identifiable 
in the limit from positive data (Gold 1967). 
 On the other hand, Yokomori (2003, 2007) has shown that very simple grammars, which 
form a small subset of simple grammars, are polynomial-time identifiable in the limit from 
positive data. A very simple grammar is a simple grammar such that each terminal symbol 
has exactly one production rule in which it occurs. Therefore, the grammar has exactly the 
same number of production rules as terminal symbols. Decision processes constructed on 
very simple grammars are, however, too restricted and they are no longer able to cover 
finite Markov decision processes. 
 Thus we need another richer subclass of simple grammars that should give an extension of 
finite Markov decision processes and at the same time it should be efficiently identifiable in 
the limit from positive data. Here we introduce a new class of grammars, called right-
unique simple grammars, which is located between simple grammars and very simple 
grammars. This class still defines a small proper subclass of simple languages, but actually it 
satisfies the two desired properties mentioned above. 
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 In this section, we show the efficient learnability of right-unique simple grammars. 

4.2 Identification in the limit from positive data 

First we let the reader recall the notion of identification in the limit from positive data 
established by Gold (1967). A positive presentation of a language L* is an infinite sequence 
of strings where all and only elements of L* appear. Each string appearing in a positive 
presentation is called a positive example of L*. A learning algorithm  is an algorithm 
which takes a positive presentation w1,w2,… as input, and outputs some infinite sequence of 
grammars G1,G2,…, i.e.,  infinitely repeats the cycle where  receives wi and outputs Gi for 
i = 1, 2,…. A learning algorithm  converges to G on a presentation w1,w2,… if for all but 
finitely many i, Gi = G holds.  identifies a class  of languages in the limit from positive 
data if for every positive presentation of every L* ,  converges to a grammar G 
generating the exact language L*. 
 Usually learning algorithms are supposed to output a grammar consistent with the given 
positive examples, i.e., the conjectured grammar generates all the examples. Moreover, they 
do not change the conjecture unless the current conjecture is inconsistent with the newly 
given example. Our learning algorithm, which will be presented in Sec. 3.4, also has this 
standard property. 

4.3 Right-unique simple grammars 

Our learning target here is right-unique simple languages defined by right-unique simple 

grammars. A simple grammar  is called a right-unique simple grammar 

(RSG) if whenever both  and  are rules of the grammar with  and 

,  holds. We note that G is a very simple grammar if moreover we have A = 

B in addition to . 
 Let us see an example of an RSG. The grammar consisting of the following rules is an RSG: 

 

where S,T,U are nonterminal symbols and  are terminal symbols. The 
generated language is a set of formulae of first-order logic in Polish notation. 

 The definition of RSGs allows us to define the function  for each RSG G, called the shape 

of G, that assigns an integer to each terminal symbol as 

 

This function is homomorphically extended so that  for any 

 (  for the empty string ). It is easy to see that whenever  with 

 and , we have . Moreover we have  

for any proper prefix x' of x, because  entails . Particularly for 

, we have  and  for any proper prefix w' of w. In this 

way, the function  strongly characterizes the derivations and the language of G. In 

general, we let us call any function  from  to  a shape if it holds that  and 

 (homomorphism) for all  and . 
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 We also say that a shape  is compatible with a language L if  and  for 

all  and any proper prefix w' of w. Consequently,  is always compatible with . 
 Here we note that any language L admits a finite number of compatible shapes. This is 

because, if  is compatible with L and , then 

, 

because x is a proper prefix of xay and  for any . Therefore, a language L 

admits at most  compatible shapes, where . 
 To simplify our discussion, here we introduce a special form of RSGs, called canonical 

form. Every RSG can be transformed into canonical form with preserving the language and 

the shape. The set of nonterminal symbols of an RSG G in canonical form of shape  is 
exactly 

 

and every rule has the form 

 

for some . For instance, an RSG G consisting of the rules 

 

is converted into G' in canonical form with the rules 

  (1) 

Here the start symbol S of G is divided into S0 and [a,0] in G’ and A is divided into [a,1] and 
[b,0]. Therefore, it is allowed to consider only RSGs in canonical form. Actually our learning 
algorithm for RSGs computes its conjecture in canonical form. 

4.4 Learning algorithm 

By definition, each shape has a finite number of RSGs in canonical form. Together with the 
fact that any language admits a finite number of compatible shapes, we see that there is a 
finite number of RSLs consistent with the given positive examples. This property is known 
as finite thickness. Angluin (1980) has shown that every class of languages with finite 
thickness is identifiable in the limit from positive data. Thus RSGs are identifiable in the 
limit from positive data. 
 Our learning algorithm outputs an RSG that generates a minimal language among all the 
RSLs containing the given positive examples. This strategy ensures that the algorithm finally 
converges to a grammar representing the target language. If the current conjecture G does 

not generate the target language L*, we never have , because of the minimality of 

the conjecture. Thus there is , which will appear in the positive presentation 
of L*. Then the algorithm eventually abandons the conjecture G and the times changing the 
conjecture is finite by the finite thickness of the class of RSLs. Finally the conjecture 
converges to a grammar generating the target language. 
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 To enable us to analyze the efficiency of the learning task, we present a concrete learning 
algorithm for RSGs. The learning method for RSGs is basically same as Yokomori's (2003, 
2007) algorithm for very simple grammars. The first step of our algorithm for learning RSGs 
is to find shapes compatible with the given positive examples. Then the algorithm computes 
consistent RSGs in canonical form whose shapes are those found at the first step. At last a 
minimal (with respect to its language) grammar among those candidate RSGs is picked up. 
Fig. 3 represents this learning strategy. 

 

Fig. 3. Flow of our learning algorithm. 

To enumerate all the compatible shapes for a given set L of positive examples, it is enough to 

check the compatibility of shapes  satisfying that  with 

. Deciding the compatibility of a shape with a finite language is 
trivially done in linear time. Therefore, the enumeration of compatible shapes is done in  

 time simply by the brute-force search where . This upper 
bound is polynomial if we fix . It would be natural to ask whether a more efficient 
algorithm that finds a compatible shape in polynomial time in | | is possible. Concerning 
this question, it is known that deciding whether or not a finite language admits a compatible 
shape is NP-complete if we regard | | as a variable. 
 Once we obtain a compatible shape, one can straightforwardly construct the minimum RSG 
in canonical form of that shape that is consistent with the given positive examples. For a 

given set L of examples and a shape  compatible with L, the algorithm picks up the least 
rules from the set 

 

so that the resultant grammar generates all the elements of L. For instance, when two 

positive examples aabccc, bc are given, the only compatible shape  is such that (a) = 1, (b) = 

0, (c) = . To derive those two strings, exactly the rules in (1) are needed. Thus, the output 

of the learning algorithm is G'. This procedure can be done in almost linear time in  

where  is the sum of the lengths of all the positive examples. 
 In general, multiple compatible shapes would be computed. In that case, we will compute 
grammars as many as the compatible shapes and have to choose one among those as the 
conjecture. The criterion is to choose a minimal grammar with respect to the language. That 
is, we have to solve the inclusion problem of RSGs. This procedure would be rather purely 
an issue of formal language theory and thus we relegate this subroutine to (Yoshinaka 2006), 
where it is shown that inclusion of two RSGs computed as output candidates is decidable in 
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polynomial time in . Let us write the upper bound of the running time of this 

subroutine as  for a polynomial p. In order to pick up a minimal RSG among m 

output candidates, we execute this subroutine  times. Recall that we have  
where  is the length of a longest positive example. Therefore, our algorithm updates its 

conjecture in  steps. 
 Let us see an example. Suppose that the first positive example is abbc. There are two 

compatible shapes  and : 

 

 

The minimum consistent RSGs G1 and G2 constructed on  and , respectively, have the 
following production rules: 

 

 

We have . Therefore our algorithm outputs 
G2. 

5. Probabilistic generality of subclasses of simple grammars 

5.1 Probabilistic generalities and unifiablity 

Definition 10. The Probabilistic generality of an SG G is defined as  

{ }. on  assignment yprobabilit a is GPPGG |)](|Pr[)( ⋅=Γ  

An SG H is more general than G if and only if )()( HG Γ⊂Γ . 

The following lemma establishes requirements for )()( HG Γ⊂Γ . 

Lemma 1. Let G = <V,Σ,R,S > and H = <V',Σ,R',S'> be reduced SGs. )()( HG Γ⊂Γ  if and only 

if L(G) = L(H) and there is some map 
22': ≥≥ → VVψ  that satisfies the following condition, 

where { }2|)(|2 ≥∈=≥ ARVAV . For all A in 
2'≥V  and all x in Σ* , αxAS H

*'⇒  implies 

βψ )(* AxS G⇒ . 

Suppose that C is a subclass of SGs. In the following, we will discuss whether C has a more 
general grammar than arbitrary two grammars that generate the same language. 
Definition 11. Let C and D be subclasses of SGs. C is unifiable within D if and only if, for 
all G, H in C such that L(G) = L(H), there is I in D such that )()()( IHG Γ⊂Γ∪Γ . 

The main result of this section is construction of an SG G* that is more general than a finite 
number of given RSGs whose languages are equivalent. However, neither the class of SGs 
nor the class of RSGs is unifiable within itself, as we see in what follows. The proofs for all of 
them use Lem. 1. In the following, we say that C is unifiable when C is unifiable within C 
itself. 
Theorem 2. The class of SGs is not unifiable. 
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A proof of Theorem 2 is written in (Shibata et al., 2006). The class of RSGs is also not 
unifiable. This fact is showed by considering the finite language L= (a|b)(c|d)(e|f) = 
{ace,acf,ade,adf,bce,bcf,bde,bdf}. On the other hand, the class of VSGs is unifiable. For any 
VSGs G and H, L(G)=L(H) implies )()( HG Γ=Γ . Suppose that αxAS G

*⇒  and βyBS G

*⇒ . 

A=B if and only if 'αα xaxA G⇒  and 'ββ yayB G⇒  from the definition of a VSG. If H is a 

VSG such that L(G)=L(H), '* αα xaxAS G ⇒⇒  if and only if '' * γγ xaxCS H ⇒⇒ . Thus, there 

is a bijection ': VV →ψ , and αxAS G

*⇒  if and only if γψ )(' * AxS H⇒ . From Lemma 1, 

)()( HG Γ=Γ . 

5.2 A unifiable subclass of simple grammars 

In this subsection, we will introduce unifiable simple grammars. The class of USGs is 
unifiable and is a superclass of the class of RSGs. This implies that the class of RSGs is 
unifiable within the class of USGs. Because the proof of unifiability for the class of USGs is 
constructive, the algorithm that unifies a finite number of RSGs whose languages are equal 
is also given. 
Let G = <V,Σ,R,S > be an SG. Let { }RaAaAG ∈→Σ∈= ασ |)( . The relation between A and B 

given by )()( BA GG σσ =  is an equivalence relation, thus let A denote the equivalence class 

containing A. )}'()(|'{ AAVAA σσ =∈= . We also introduce the notation 

)}'()(,|'{ AAUAVAU σσ =∈∃∈=  and 
mm AAAA LL 11 = . 

 
Definition 12. An SG G is a unifiable simple grammar (USG) if and only if 

• BA = , RaA ∈→ α  and RaB ∈→ β  imply βα = . 

Neighbourhood pairs introduced below play the most important role in constructing the 
proof of the unifiability of the class of USGs. Before we define neighbourhood pairs, it is 
necessary that two new notions are introduced. 
Definition 13. For a subset U of V, { }xBAUBVAU *,|)up( ⇒∈∃∈=  is called the upstream of 

U. 
Definition 14. Let T and U be subsets of V. W(T,U) denotes (V-T | TU )*. 
The upstream of U is easy to compute from R. Using the above definitions, we define a 
neighbourhood pair as follows. 
Definition 15. Let <T,U> be a pair of subsets of V. <T,U> is called a neighbourhood pair if 
and only if the following conditions hold. 
1. φ=∩UT . 

2. For some A in V, AU = . 

3. For some B in V, )up(BT = . 

4. For all x, αxS *⇒  implies ),W( UT∈α . 

An intuitive meaning of a neighbourhood pair can be seen in the fourth condition of 

Definition 15. If a nonterminal symbol TA∈  appears in α  such that αxS *⇒ , some 

UB ∈  is adjoining on the right side of A. Fig. 4 is an algorithm to find a neighbourhood 

pair. The computational cost required to find a neighbourhood pair from G is 
O(|G||V|). 
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Fig. 4. Finding a neighbourhood pair 

We explain only the abstract of the proof, which is constructing a unified USG from two 
arbitrary USGs. For the complete proof of it, refer to (Shibata et al., 2006). 
First, we find and eliminate all neighbourhood pairs from both USGs. While some 
neighbourhood pair is found, we eliminate it keeping the generality of the grammar. 
 

 
Fig. 5. Transformation of USGs 

In Fig. 5, Φ(G, <T,U>) denotes the USG obtained by eliminating a neighbourhood pair 
keeping the generality. Φ(G, <T,U>) is a USG obtained by eliminating useless nonterminal 
symbols and rules from a USG <V’,Σ,R’,S > where 

)()(' UTTVV ×∪−= , 

{ } { }UTBARaABaBATVARaAaAR ×∈∈→→∪−∈∈→→= ),|)(),(|)(' ( , , ααϕααϕ . 

The above map φ from V* to V’* is defined recursively as the following. 
 

• εεϕ =)( . 

• 

⎩
⎨
⎧ =∈

=
othewize.)(A

, and  if

βϕ
γβγϕ

βϕ
BTABA

A
)(),(

)(
 

Φ(G, <T,U>) is more general than G. 
 

USG transform(USG G) { 
while ( There exists an neighbourhood pair <T,U> in G ) { 

G = Φ(G, <T,U>) ; 
} 
return G; 

} 

NeighbourhoodPair find(USG G=<V,Σ,R,S >) { 
for(each VA∈  and }{SVB −∈ ){ 

)up(BT = ; 

AU = ; 

for (each RaB ∈→ α ) { 

if (( TB ∈  and ),( UTWC ∉α  for some UC ∈ )  

or ( TB ∉  and ),( UTW∉α )) { 

>< UT ,  is not a neighbourhood pair, so break this and continue the 1st loop; 

} 
} 
return >< UT , ; 

} 
return no_neighbourhood_pair ; 

} 
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Let G/σ denote a USG <V/σ,Σ,R/σ,S> , where 

}|{/ VAAV ∈=σ , 

}.|{/ RaAaAR ∈→→= αασ  

Definition 16. USGs G and H are σ-isomorphic if and only if G/σ and H/σ are equivalent 
modulo renaming of nonterminal symbols. 
When neither a USG G nor a USG H has neighbourhood pair, L(G) = L(H) implies that G is     
σ-isomorphic to H. If G and H are σ-isomorphic, it is easy to unify them. In fact, let G=< 
V,Σ,R,S > and H=< V’,Σ,R’,S’ > be σ-isomorphic. A USG defined as HG ⊗  is obtained by 

eliminating useless nonterminal symbols and rules from a USG >⊗Σ⊗< )',(,',,' SSRRVV , 

where 
,)}()(|'),{(' BAVVBAVV σσ =×∈=⊗  

,and }'|),{(' RaBRaAaBARR ∈→∈→⊗→=⊗ βαβα  

).B,(A)B,(ABBAA mm11m1m1 LLL =⊗  

Thus we have the following theorem. 
Theorem 3. The class of USGs is unifiable. 
As a finite language admits a finite number of compatible shapes, any RSL has a finite 
number of compatible shapes. This entails that any RSL is generated by only a finite number 
of RSGs in canonical form. In fact, for any RSG G, we can compute all the RSGs in canonical 
form generating the same language. It is easy to see that if G is an RSG and H is the 
canonical form of G, i.e., L(G)=L(H), 

HG ## =  and H is in canonical form, then H is more 

general than G. Since we have proven Theorem 3 in a constructive manner we obtain the 
following theorem. 
Theorem 4. For every RSG G, we can construct a USG G* which satisfies the following 
property.  For any RSG H such that L(H) = L(G), *)()( GH Γ⊂Γ .  

 Fig. 6 shows a unification algorithm of RSGs whose languages are equivalent. 
 

 
Fig. 6. Unification of USGs 

We finally describe only the result of the order of |G*|. The time complexity of the 
algorithm is mainly dominated by |G*|. |G*| is ))(( )amb(2 GGmO , where 

})()(|max{|)( GLHLHHGm ==  and RSGan  is   

and amb(G) is the number of the equivalence classes with respect to σ-isomorphism whose 
languages equal to L(G), that is, 

{ } .  and RSGan  is lsnonterminarenaming  modulo amb )()(|/)( GLHLHHG == σ  

USG unify(RSGs 
mGG ,,1 L ) { 

  Confirm that all languages of 
mGG ,,1 L  equal; 

return )()( 1 mGG transformtransform ⊗⊗L ; 

} 



Reinforcement Learning: Theory and Applications 

 

98 

6. Implementation and experiments 

6.1 Implementation of the learning algorithm for RSGs and the extension of QL 

In the following, we assume that environments are RSG-DPs. The class of RSG-DPs is 
sufficiently large and includes the class of episodic finite-state MDPs, as we have described 
in Section 3. Those are the reasons why we assume that environments are RSG-DPs. For 
instance, let us consider other classes described in this chapter. The class of VSG-DPs does 
not include the class of episodic finite-state MDPs. If we assume the class of SG-DPs in stead 
of RSG-DPs as the class of environments, it is too large to learn, that is, the class of SGs is not 
learnable from positive data. The class of USGs is learnable theoretically, but efficient 
learning method is not known yet. 
Although sequences of observations can be identified as positive data of grammars and we 
have an efficient learning algorithm for RSGs, we cannot apply a technique of reinforcement 
learning with assuming that the environment is constructed on the grammar obtained by 
the learning algorithm in Section 4. As discussed in Section 5, it is possible that any RSG-DP 
based on the grammar output by the learning algorithm does not generate the same 
probabilistic language as the environment, though both define the same (nonprobabilistic) 
language. In this case, actually the RSG that bases the environment must be one candidate 
computed in the learning algorithm, though it is not chosen as the output by the 
nondeterministic choice. Here, we modify the learning algorithm in Section 4 so that it 
outputs all the RSGs generating the same language as the grammar output by the original 
algorithm. By applying the unification algorithm in Section 5 to obtained RSGs, we get a 
USG that is more general than the RSG that bases the environment. 
Combining the learning algorithm and the unification algorithm with an extended Q-
learning, we obtain the algorithm in Fig. 7. Let us call that algorithm RSG-QL. RSG-QL does 
not require any grammar which bases the environment to be given. Only the set of actions 
and the set of observations (= terminal symbols) are given. 
Fig. 7 shows update of the RSG-QL for one episode, or sentence. At first, a USG G, which 
intends to represent the environment, is set to an episodic finite-state MDP. This is just a 
tentative one, and when a USG is computed from the learning algorithm and the unification 
algorithm, it is substituted for G. If G cannot derive a prefix x given by the environment, the 
algorithm abandon updating Q until the episode ends. After the episode ends, it is added to 
the set of histories, and new USG is computed. 
There are two new external functions in Fig. 7. Those are the same things in the ordinary 
reinforcement learning. environ(x,u) returns an observation (= terminal symbol) when a 
prefix of the sequence of observations is x and the action that the learning robot takes is u. 
Suppose that the environment is identified with an RSG-DP H(U,P,C), then environ(x,u) 
randomly returns a with the probability ),( uaAP α→ , where βxAS H

*⇒ . environ(x,u) itself 

is not controlled by the learning algorithm directly. It is controlled by the selection of 
actions. 
The other function is strategy(Q,G,x). strategy(Q,G,x) is the function that decides which 
action the learning robot takes. It can be arbitrarily chosen within the condition of Theorem 
1. Actually, famous strategies such as eps-greedy and soft-max are often chosen (Sutton & 
Barto 1998). 
For an implementation of the function enumRSGs(positive_data), i.e., the learning algorithm 
of RSGs from positive data, we introduce the way to save computational cost (Yokomori 
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2003, 2007). Suppose that input positive data is 
tww ,,1 L , and terminal symbols which occurs 

in positive data at least once are 
naa ,,1 L .   Let 

tM  be a matrix whose element 
ijm  is the 

number of 
ja  in 

iw . As we have seen in Section 4, each compatible shape 

T))(#,),((# 1 naas L=  satisfies 1−=sM t
. This implies that the number of independent 

variables is dimker(
tM ) if other conditions to be compatible are ignored. In addition, any 

elements of s  is not less than -1. Thus the number of candidates of compatible shapes is 

( ))ker(dim
|)|(max tM

ii wO . 

)ker(dimlim tt M∞→
 is constant for any positive data of G, so we denote it as dim(G). If an 

upper bound of dim(G) is known, the algorithm can wait for enumeration of candidates 
until dimker(

tM ) becomes less than it. 

 

 
Fig. 7. RSG-QL for one episode 

Now let us see how our learning algorithm works through an example. Let G be an RSG 
whose rules are 
 

]2,][1,][0,[ aaaaS → , ]1,][0,[ bbbS → , ]0,[]}0,[],0,[],0,{[ cceba → ,  

dca →]}0,[],2,{[ , ]2,][1,][0,[]0,[ eeeec → , fe →]0,[ , 

ga →]1,[ , ]0,[]1,[ hhb → , ihea →]}0,[],1,[],2,{[ , 

je →]2,[ .  

G = >Σ< SRV ,,,  is a USG, initially, an episodic finite-state MDP. 

Q = a map from UV ×  to ),( ∞−∞ . 
RSG-QL () { 

ε=x ; 

),,( εQGu strategy= ; 

while ( ε≠= )),(( uxa environ ) { 

if ( βαα xaxAS G ⇒⇒* ){ 

 ; where  , m

m

i

i
Uv

BBvBQaCkuAQkuAQ L1

1

),(max)(),()1(),( =⎟
⎠

⎞
⎜
⎝

⎛
++−= ∑

= ∈
β  

} 

xax = ; 

),,( xQGu strategy= ; 

} 

{x}historyhistory ∪= ; 

if ( )(GLx ∉ ){ 

minimals = enumRSGs (history); 
if(minimals != null) H = unifyRSGs(minimals); 

} 
} 
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Positive data from G is, for instance, {bcefijhi, bcecdijhi, bcdhi, acefijgi, bcdhi, acececefijijijgi, …}. 
Fig. 8 shows the transition of dimker(

tM ), the number of appeared terminal symbols || tΣ  

and the number of compatible shapes for t sentences from some positive data.  
We assumed that 5)ker(dim ≤G . When dimker(

tM ) is less than 5, candidates of possible 

shapes are enumerated.  

 
Fig. 8. dimker(

tM ) and the number of candidates for possible shapes  

After 100 sentences were input, the algorithm output the grammar H whose rules are 

]1,][0,[ aaaS → , ]1,][0,[ bbbS → , ]0,[]}0,[],0,[],0,{[ cceba → ,  

dca →]}0,[],2,{[ , ]2,][1,][0,[]0,[ eeeec → , fe →]0,[ , 

]0,[]1,[ gga → , ]0,[]1,[ hhb → , ihge →]}0,[],0,[],1,{[ , 

je →]2,[ .  

L(G)=L(H) although G and H have different shapes. While there are 15 candidates for 
possible shape, recall that all of them do not give the same minimal language. The 
ambiguity of G is usually less than it. In this case, the ambiguity of G is 4. 

6.2 An experiment for RSG-QL 

Finally, as an experiment for RSG-QL, we consider the problem of maximizing total reword 
in a maze (Fig. 9). 
A robot starts from the position st=(1,2) on the map of Fig. 9 and moves towards the goal 
gl=(9,2). The robot observes the position where it is. The robot can take four kinds of actions, 
left, right, up or down. The robot is given a reward -1 per single step. 

 
Fig. 9. The map of the maze. 
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The difference from ordinary maze problems is the way to give reward after the goal. The 
robot is allowed to occupy a location either f+=(5,6)  or  f-=(5,2) at most once. If the robot 
arrives at the goal, the robot is given two different kinds of reward that depend on its path. 
If the robot has passed through f+, it observes h+ with probability 0.9 and h- with 0.1. On 
the other hand, if the robot has passed through f-, it observes h+ with 0.1 and h- with 0.9. 
The reward corresponding to observation of h+ is 100, and of h- is 50. So, the best action of 
the robot is to pass through f+. 
Formally, the RSG G=<V,Σ,R,S> representing the environment is written as follows. 

{ }−+∪=Σ hhMAP , . 

{ } { }SaaaV ],0,[],0,[|]0,[ −+∪=/∈= ffgl MAP, . 

{ }
{ }
{ }
{ }
{ },]st[st  h-f-  hf-  h-f  hf   

glgl   

-ff-f--f   

ffff   

-ffgl  ,

0,]1,[,]1,[,]1,[,]1,[

|]0,[

|]1,][0,[]0,[

|]1,][0,[]0,[

|]0,[]0,[

,S

aa

aa

aa

,,bbabbaR

→→+→→++→+∪

→∪
→∪

++++→∪

+=/→=

>

>

>

>

 

where MAP = {(i,j)|(i,j) is a reachable position on the map in Fig. 9}, and ba >  if and only if 

the robot can move from a to b in one step. cba >>  denotes ba >  and cb > . For instance, 

)6,6()6,4( >> +f , +/ f>)6,6(  and anywheregl >/ . 

There is another H=<V’,Σ,R’,S> such that L(G) = L(H), where V’ and R’ are as follows. 

{ } { }SaaV ∪∈= MAP|]0,[' . 

{ }
{ }.]st[st   h-gl  hgl   0,]0,[,]0,[

|]0,[]0,['

,S

babbaR

→→+→∪
→= >  

Fig.10 shows the shapes of G and H for gl, f+ and f-. the RSG-DP based on G cannot 
identified with any finite-state MDP, while the one on H is identified with an episodic finite-
state MDP.  

 
Fig. 10. (Left) The shape of G  (Right) The shape of H 

G and H are all the RSGs in canonical form whose languages are equivalent to L(G). Thus 
both G and H, and only G and H are enumerated by the learning algorithm for RSGs from 
positive data.  
The USG G*=<V*,Σ,R*,S> which is the result of unifyRSG(G,H), i.e. the algorithm in Fig. 6, is 
as follows. 
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{ } { } { }SaaaaaV ,]0,[,]0,[,]0,[,]0,[|0,[,0,[|]0,[* −−−++−++∪∈−+∪∈= ffffEAST]]WEST . 

{ }
{ }
{ }
{ }
{ },]st[st  h-f-  hf-  h-f  hf     

-f--f  ff     

glf-gl-  fgl     

EAST b,--       

WEST  b,

0,]1,[,]1,[,]1,[,]1,[

]0,[)2,4(,]0,[)6,4(

|]1,[]0,[],1,[]0,[

|]0,[]0,[,]0,[]0,[

|]0,[]0,[*

,S

aaa

babbabba

babbaR

→→+→→++→+∪
→+++→∪

→+→+∪
∈→+→+∪

∈→=

>

>

>

 

where WEST denotes the left half of MAP, that is, { }4|),( ≤∈ iji MAP , and EAST denotes 

the right half of MAP, that is, { }6|),( ≥∈ iji MAP .  

 

Fig.11. (Left) Total reward and episode length of RSG-QL, (Right) Comparison of naive QL 
and RSG-QL  

 
Note that G* is not an RSG. Because the SG-DP based on G* is not an RSG-DP, it is not 
identified with any episodic finite-state MDP. 
The optimal length of episode of this problem is 16 when the robot passes f+, and thus the 
maximum total reward is 79. The left side of Fig. 11 shows a result of the experiment of the 
SG-QL algorithm in Fig. 7 on the above maze problem. The algorithm converges to one USG 
as the basis of the environment at approximately the 200th episode. The result demonstrates 
that the robot approaches the optimal path and obtains maximum total reward after the 
completion of the inference.  In the right side of Fig. 11, our method is compared to the 
naive Q-Learning method, in which the environment is assumed to be an episodic finite 
MDP (the same thing as H). The total reward obtained by the naive Q-Learning method is 
approximately 40, indicating that the robot is passing through f- and failing to maximize 
total reward.  

7. Conclusion 

In this chapter, we presented two new notions. One is an extension of episodic finite-state 
MDPs from the point of view of grammatical formalism. We can extend well-known 
methods of reinforcement learning and apply them to this extension easily. The other is the 
probabilistic generalities of grammars and unifiability of them. This notion plays an 
important role to apply the recent results of grammatical inference area. The difficulty with 
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applying them is the need of consideration for the probabilistic generality of grammars. The 
reason is that, if the languages of two grammars are equivalent, it is not necessary that the 
generalities of them are also equivalent. We presented the idea of unifiability and a method 
to unify grammars in some grammar class to overcome the difficulty. 
Episodic finite-state MDPs can be extended by using the class of SGs and its subclasses; 
VSG, RSG, USG and SG itself. Although the class of SG-DPs is enough large to contain all 
episodic finite-state MDPs, the class of SGs is neither learnable from positive data nor 
unifiable. The class of VSGs is efficiently learnable in the limit from positive data, but the 
class of VSG-DPs does not include the class of episodic finite-state MDPs. The class of USG-
DPs contains all episodic finite-state MDPs and the class of USGs is unifiable, but no 
efficient learning algorithm for it is known yet. In the four subclasses of simple grammars, 
the class of RSGs is the only class that satisfies efficient learnability and unifiablity and 
contains all episodic finite-state MDPs at the same time. The class of RSGs is not unifiable 
within itself, but it is unifiable within the class of USGs. 
Finally, we presented the method RSG-QL for RSG-DPs, combining the extended Q-learning 
with the learning algorithm and the unification algorithm. Using a maximize-reward 
problem in a simple maze, we demonstrated that RSG-QL learns the best answer, but the 
naive QL does not, when the environment is regarded as an RSG-DP. The advantage of 
RSG-QL is that it is applicable for the wider class of environment with requiring no prior 
knowledge except that the environment is regarded as an RSG-DP. On the other hand, RSG-
QL requires the environment to be precisely identified with some RSG-DP, otherwise the 
learning algorithm for RSGs from positive data does not work well. In future work, it is 
required to find algorithms that are stronger for errors. That might be established by using 
statistical learning methods for grammatical inferences. 
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1. Long term potentiation(LTP), depression(LTD) and Hebbian type learning 
rule 

Hebb (1949) formulated the idea that modification is strengthened only if the pre- and post-
synaptic elements are activated simultaneously (Fig.1). Experimentally, long term 
potentiation (LTP) and long term depression (LTD) are generally considered to be the 
cellular basis of learning and memory. Bliss & Lømo (1973) first found that high- frequency 
electrical stimulation (“tetanus,” 100-500 Hz) effectively produced LTP in the hippocampal  

ΔWij is the strength of the change in

synaptic weight

Xi is the output of the input cell

Yj is the output of the output cell

η is the learning coefficient

ΔWij=η Xi ⋅Yj

Input Cell Output Cell
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Fig. 1. The Hebbian Learning Rule 
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CA1 pyramidal cells. Recently, a series of experiments provided direct empirical evidence of 
Hebb’s proposal (Markram et al., 1997; Magee & Johnston, 1997; Zhang et al., 1998; Feldman, 
2000; Boettiger & Doupe, 2001; Sjostrom, 2001; Froemke & Dan, 2002). These reports 
indicated that synaptic modification can be induced by repetitive pairing of EPSP and back-
propagating action potentials (BAPs). Pre-synaptic spiking within tens of milliseconds 
before postsynaptic spiking induced LTP whereas the reverse order resulted in LTD. This 
spike-timing-dependent LTP/LTD has been confirmed by using pyramidal cell pairs in 
hippocampal cultures, in which they found an asymmetric profile of LTP and LTD in 
relation to the relative timing between EPSPs and BAPs (Debanne & Thompson, 1998; Bi & 
Poo, 1998). 
The influence of location dependency of synaptic modification along dendritic trees was 
examined in the CA1 area of rat hippocampal slices (Tsukada et al.,  2005). A pair of 
electrical pulses was used to stimulate the Schaffer-commissural collaterals (SC) and stratum 
oriens (SO). Then we estimated the profile of LTP and LTD at a layer specific location from 
the proximal to distal region of the stratum radiatum. 
Figure 2 shows the optical imaging results of LTP and LTD induced by a series of different 
spike timing (τ). The widest and strongest LTP was observed when simultaneous stimuli (τ= 
0 ms) were applied. LTP decreased rapidly in space and time as the absolute value of 
relative timing increased to 15 ms on both sides. Accordingly, LTP was induced when back-
propagating spikes (Stim B) were applied within a time window of 15 ms before and after 
the onset of Stim A, whereas LTD was induced on both sides at |τ| = 20 ms. Outside the 50 
ms time window, synaptic modification disappeared. These instances of LTP and LTD 
showed a globally symmetric window of spike timing similar to a “Mexican hat function.”  

 

Fig. 2. Input-Output Timing Dependent LTP/LTD 
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Fig. 3. Layer-specific profiles of LTP and LTD 

We tested the location dependence of synaptic modification along dendritic trees. A 
symmetric window was obtained at the proximal region of the SR where GABAergic 
interneurons are projected, while an asymmetric window was obtained at the distal region 
of the SR where there is no projection of GABAergic interneurons (Fig 3). 
The region-specific profiles of LTP/LTD depend on the network with or without the 
inhibitory projection on the layer of SR. Two factors of “after hyperpolarization” of spikes 
and “region-specific projection of inhibitory interneurons”, which organize “lateral 
inhibition” for timing τ, underlie the “symmetric” profile for timing τ, while one factor of 
“after hyperpolarization” of spikes serves to organize the “asymmetric” profile. The 
“symmetric” profile, with a sharp window for τ, works as a coincidence detector between 
the input of CA3 Shaffer collaterals and the output of CA1 pyramidal cells. The time 
window corresponds to the time interval of a gamma cycle under the assumption that 
sequence information is processed in a time scheme of several gamma cycles (local) in a 
theta cycle (global) (Lisman, 1989; Aihara et al., 2000). On the other hand, the “asymmetric” 
profile, with a broad time window after τ= 0 ms, is able to integrate sequence information 
(“temporal summation”) or to code phase information. This difference between the distal 
region and the proximal region of SR was seen in the results of temporal-pattern-dependent 
LTP using optical imaging of CA1 area in hippocampal slices (Aihara et al., 1997; Aihara et 
al., 2005). The sensitivity of LTP to the temporal pattern is even higher in the distal region 
than in the proximal region (Aihara et al., 2005). These results suggest an important function 
of memory processing depending on the synaptic localization on dendrites of CA1 
pyramidal cells. 



Reinforcement Learning: Theory and Applications 

 

108 

2. Spatio-temporal learning rule (non Hebbian)  

The spatiotemporal learning rule (STLR), proposed as a non-Hebbian type by Tsukada et al. 
(1996) consisted of two defining factors: (a) cooperative plasticity (Input-Input timing 
coincidence) without a postsynaptic spike and (b) temporal summation (Fig 4).  

 

Fig. 4. Spatio-Temporal Learning Rule (STLR) 

 

Fig. 5a. Temporal Pattern Stimuli 
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Fig. 5b. Temporal Sequence Pattern Dependent LTP/LTD - Effects of Markov Chain 
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Fig. 6. Input-Input Timing-Dependent LTP/LTD 
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The neurophysiological evidence of “temporal summation” was obtained by applying 
temporal stimuli (Markov chain stimuli) to Schaffer collaterals of CA3 (Tsukada et al., 1994; 
1996; Aihara et al., 2000) (Fig 5a,b). The cooperative plasticity (Fig 6) was measured by using 
two stimulus electrodes to stimulate the Schaffer-commissural collaterals (SC). First, 
electrode A was stimulated at 2 s intervals, but this did not produce any change in the 
synapse. Electrode B was then stimulated at a range of -50ms to 50ms with respect to 
electrode A. When the stimuli from both electrodes were simultaneous (relative timing τ=0), 
an extremely large plasticity appeared, but when it was shifted by 10 ms, there was almost 
no activity, and if it shifted another 10 ms, LTD appeared instead of LTP. When the relative 
timing was shifted 50 ms, it returned to normal. These data show that a time window exists 
in response to the relative timing τ. That is, the existence of a Mexican hat-shaped time 
window at the range of τ=±50ms. The coincidence of spike timing of Schaffer-collateral-
paired stimulation of CA3 played a crucial role in inducing associative LTP (Tsukada et al., 
2007). However it remains to be clarified whether the associative LTP is independent of 
back-propagated action potentials (BAPs) or not. 
Only local dendritic depolarization at synaptic sites, such as theta-burst stimulation, can 
induce homosynaptic LTP evoked in the conditioning pathway by application of the 
associative pairing protocols to Schaffer collaterals even in the absence of BAP (in the 
presence of low TTX) (Golding et al., 2002). Robust homosynaptically induced LTP is 
observed in both the absence and presence of low TTX in the conditioning pathway (Fig.7a ; 
Tsukada et al., 2007). These results suggest that homosynaptic LTP by the present pairing 
protocol is induced under the condition of inhibiting activation of dendritic Na+ channels.  

 

 

Fig. 7a/b. Input-input timing-dependent LTP can be induced independent of 
backpropagating action potentials (BAPs) 
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However, in the same preparation, the magnitude of the heterosynaptically induced LTP in 

association with conditioning bursts is reduced, while a considerable amount of the LTP 

was preserved in the presence of low TTX (Fig.7b). Homo-synaptic and hetero-synaptic 

associative LTP can be induced under conditions of inhibited BAPs, even in the absence of a 

cell spike. If the two inputs synchronize at the dendritic synapse of CA1 pyramidal cells, 

then the synapse is strengthened, and the functional connection is organized on the 

dendrite. If the two inputs are asynchronous then the connection is weakened. A schematic 

representation was drawn in Fig.8. The functional connection/disconnection depends on the 

input-input timing dependent LTP (cooperative plasticity). This is different from the 

Hebbian learning rule, which requires coactivity of pre- and post-cell. However, the 

magnitude LTP is also influenced by BAPs. From these experimental results, it can be 

concluded that the two learning rules, STLR and HEBB, coexist in single pyramidal neurons 

of the hippocampal CA1 area. 

STLR (non-Hebbian) incorporates two dynamic processes: fast (10 to 30 ms) and slow (150 to 

250 ms). The fast process works as a time window to detect spatial coincidence among 

various inputs projected to a weight space of the hippocampal CA1 dendrites, while the 

slow process works as a temporal integrator of a sequence of events. In a previous paper in 

which parameters were fitted to the physiological data of LTP’s time scale (Aihara et al., 

2000), the decay constant of fast dynamics was identified as 17 ms, which matches with the 

period of hippocampal gamma oscillation. The decay constant of the slow process is 169 ms, 

which corresponds to a theta rhythm. This suggests that cell assemblies are synchronized at 

two time scales in the hippocampal- cortical memory system, and this is closely related to 

the memory formation of spatio-temporal context. 
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Fig. 8. A schematic presentation of synaptic potentiation or depression by the synchronous 
or asynchronous inputs 
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3. The functional differences between STLR and HEBB  

Two rules are applied to a single-layered feed-forward network with random connections 
(Fig 9a) and their abilities to separate spatiotemporal patterns are compared with those of 
other rules, including the Hebbian learning rule and its extended rules (Tsukada & Pan, 
2005). The elements of input patterns are connected to each neuron through a separate 
weight wij (i =1,2,...,N, j =1,2, ...,N). The potential of each neuron depends both on a 
weighted sum of the simultaneously provided inputs (spatial summation) and inputs 
arrived in the near past (temporal summation). 
The above mentioned functions are expressed in the following equations. 
 
 
Spatial summation: 
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Fig. 9a. All Connected 1 Layer Neural Network 
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Fig. 9b. The Spatio-Temporal Pattern of Inputs 

And the output of the neuron: 

 ))(()( 1θ−= iini tyftr   (3) 

where a set of label x1, x2, ..., xN are inputs to neurons, xi(tn) is an input to i neuron at time tn 
(n=1,2, ..., n), wij(tn) is a synaptic weight from neuron j to neuron i at time tn, yi(tn) is the 

potential of neuron i at time tn. ri(tn) is its output, 
1

λ is time decay constant of temporal 

summation, 
1

θ  is threshold. The output function of neurons is defined as:  
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The spatiotemporal pattern used in this simulation consists of 5 frames of spatial patterns 
(Fig. 9b), i.e., A1, A2, A3, A4, A5 (Ai is a spatial frame).  
Every frame consists of N elements (N=120) and each element is chosen as "1" or "0" 
randomly, but the total number of "1"s is maintained throughout the various spatial patterns 
(in this simulation, half of the elements in one spatial frame are “1”, and the other half are 
“0”). The Hamming distance (HD) between every two spatial patterns is 8 bits (if not 
specified in the simulation). In some cases it is 2 or 24 bits (mentioned). Calculating all of the 
permutations of 4 spatial patterns, 24 spatiotemporal patterns were grouped as a training 
set. The last frame of each spatiotemporal pattern is the same (A5). During the learning 
process, the 24 spatiotemporal patterns in the training set were learned by each neural 
network under the same initial conditions. After finishing the learning course, a test pattern 
(same as the learned pattern) was applied to the networks to attain an output-pattern (for 
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each learning rule, the threshold of neurons 
1

θ  is set so that about half of the elements in the 

output-pattern are “1”). We compared HDs between output-patterns for each learning rule. 
The averaged HD is often adopted to compare the ability of discriminating spatiotemporal 
patterns, which is defined as: 

∑
∑=

pairs ofnumber 

pair)  thisof HD* pairs of(number 
HD averaged  

Three learning algorithms were used to train each of 24 spatiotemporal input patterns in 
single-layer neural network models. Each of the neural networks had the same initial 
condition. The differentiation of output-patterns represented in learned networks was 
analyzed by their Hamming distances (Fig.10a). HEBB produced the same output pattern, 
with a Hamming distance of zero, for all of the different spatiotemporal input patterns (Fig. 
10a). This proves that the Hebbian learning rule cannot discriminate different 
spatiotemporal input patterns. Covariant Hebbian rule showed a slight improvement in 
their pattern separation ability (Fig.10a). The spatiotemporal learning rule had the highest 
efficiency in discriminating spatiotemporal pattern sequences (Fig.10a). The novel features 
of this learning rule were induction of cooperative plasticity without a postsynaptic spike 
and the time history of its input sequences. According to the Hebbian rule, connections 
strengthen only if the pre- and post-synaptic elements are activated simultaneously, and 
thus, the Hebbian rule tends to map all of the spatio-temporal input patterns with identical 
firing rates into one output pattern. HEBB has a natural tendency to attract analogous firing 
patterns into a representative one, in the simple word “pattern completion”. In contrast, the 
spatio-temporal rule produces different output patterns depending on each individual input 
pattern. From this, the spatiotemporal learning rule has a high ability in pattern separation, 
while the Hebbian rule has a high ability in pattern completion. Finally, the network trained 
by the spatiotemporal learning rule produced the widest bimodal-distribution of Hamming 
distance (Fig10b), which shows that it has the highest efficiency in pattern separation.  
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Fig. 10a. Output Pattern Distribution 
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Fig. 10b. The Effect of Input Timing-Coincidence on Output Distribution 

The two factors responsible for the high efficiency in pattern separation are spatial 

coincidence and temporal summation. The network trained by the learning rule without 

spatial coincidence produced the one-modal distribution. From this fact, we can conclude 

that the distribution in the longer range of the bimodal distribution (Fig.10b) in the 

histogram is generated by the spatial coincidence factor while the distribution in the short 

range is generated by the spatiotemporal summation. Thus, the ability of separating 

patterns in the network can be improved by introducing two factors: spatiotemporal 

summation and spatial coincidence, but the latter is more important. 

4. Interaction of both rules in a dendrites-soma system 
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Fig. 11a. The Change in Synaptic weight according to Hebbian Learning Rule 
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Fig. 11b. The Change in Synaptic Weight according to the Spatio-temporal Learning Rule 
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Fig. 11c. The Function of Local (dendrite) –Global (soma) Interaction and the Role of Back 
Propagating Spikes (BAPs) 

The extension of the theoretical simulation results imply that this phenomenon occurs in a 
dendrites-soma system in a single pyramidal cell with many independent local dendrites in 
the CA1 area of the hippocampus. This system includes a spine structure, NMDA receptors, 
and sodium and calcium channels. The pyramidal cell integrates all of these local dendrite 
functions. The spatiotemporal learning rule and the Hebbian rule coexist in single 
pyramidal neurons of the hippocampal CA1 area (Tsukada et al., 2007).  The Hebbian rule 
leads to the pattern completion and the spatiotemporal learning rule leads to the pattern 
separation.  
Schematic illustrations were drawn in Figure-11abc. HEBB leads to pattern completion 
(Fig.11a). In contrast, STLR leads to pattern separation (Fig.11b). In the spatiotemporal 
learning rule, synaptic weight changes are determined by the “synchrony” level of input 
neurons and its temporal summation (bottom-up) whereas in the Hebbian rule, the soma 
fires by integrating dendritic local potentials or by top-down information such as 
environmental sensitivity, awareness, and consciousness. The coexistence of the 
spatiotemporal learning rule (local information) and the Hebbian rule (global information) 
on the neuronal level may support this dynamic process that repeats itself until the internal 
model fits the external environment (Fig 11c). The dendrite-soma interaction (Fig 11c) in 
pyramidal neurons of the hippocampal CA1 area can play an important role in the context 
formation of policy, reward, and value in reinforcement learning.  
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5. Mechanisms of reinforcement learning in single cells 

The role of soma spiking in relation to top-down information raises a number of interesting 
computational predictions. Hippocampal theta is one of the candidates of top-down 
information which is driven by the medial septum (Buzsaki et al.,1983). The theta 
stimulation of adult rat hippocampal synapses can induce LTP (Thomas et al.,1998). Another 
candidate is extrinsic modulation by acetylcholine, serotonin, norepinephrine and 
dopamine. They can alter neuronal throughput and BAPs (so-called “meta-plasticity”) in 
such a way that these transmitters diffuse broadly.  
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1. Introduction  

In many ways and in various tasks, computers are able to outperform humans. They can 
store and retrieve much larger amounts of data or even beat humans at chess. However, 
when looking at robots they are still far behind even a small child in terms of their 
performance capabilities. Even a sophisticated robot, such as ASIMO, is limited to mostly 
pre-programmed behaviours (Weigmann, 2006). The reliance on robots that must be 
carefully programmed and calibrated before use and thereafter whenever the task 
changes, is quite unacceptable for robots that have to coexist and cooperate with humans, 
especially those who are not necessarily knowledgeable about robotics. Therefore there is 
an increasing need to go beyond robots that are pre-programmed explicitly towards those 
that learn and are adaptive (Wermter, Weber & Elshaw, 2004; Wermter, Weber, Elshaw, 
Panchev et al., 2004). Natural, dynamic environments require robots to adapt their 
behaviour and learn using approaches typically used by animals or humans. 
Hence there is a necessity to develop novel methods to provide such robots with the 
learning ability to deal with human competence. Robots shall learn useful tasks, i.e. tasks 
in which a goal is reached, if executed successfully. Reinforcement learning (RL) is a 
powerful method to develop goal-directed action strategies (Sutton & Barto, 1998). In RL, 
the agent explores a ‘state space’ which describes his situation within the environment, by 
taking randomized actions that take him from one state to another. Crucially, a reward is 
received only at the final goal state, in case of successful completion. Over many trials, the 
agent learns the value of all states (in terms of reward proximity), and how to get to 
higher-valued states to reach the goal. 
In Section 2 we will review RL in the brain, focusing on the basal ganglia, a group of 
nuclei in the forebrain implicated in RL. 
Section 3 presents algorithms for RL and describes their possible relation to the basal 
ganglia. In its canonical formulation, RL maps discretely defined states to discrete actions. 
Its application to robotics is challenging, because sensors, such as a camera, deliver high-
dimensional input that does not define a state in a way suitable for most tasks. 
Furthermore, several actions are to be learnt in different contexts with different reward 
types being given. 
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In Section 4 we will address how a neural network performing RL can be embedded in a 
larger architecture in which other modules follow different processing and learning 
principles. Taking inspiration from the brain, the sensory cortex may extract meaning 
from sensory information that may be suitable for defining a state as it is used for RL by 
the basal ganglia (Weber, Muse, Elshaw & Wermter, 2005). The motor cortex on the 
other hand may store movement primitives that may lead from one state to the next. 
Moreover, the basal ganglia might delegate learnt movement primitives to the motor 
cortex, so to focus on the learning of other, in particular higher-level, actions (Weber, 
Wermter & Elshaw, 2006). 
Section 5 addresses vision, an untypical field for RL. We posit that visual stimuli can act 
as reinforcers for saccade learning (Weber & Triesch, 2006) and gaze following, leading 
to the emergence of mirror neuron like representations in motor cortex (Triesch, Jasso & 
Deák, 2007), and altering neuron properties in visual cortical areas (Roelfsema & Ooyen, 
2005; Franz & Triesch, 2007). Together, this encourages a view in which RL acts at the 
core, while unsupervised learning establishes the interface to a complex world. 
Section 6 discusses whether experiments are based on oversimplifying assumptions. 

2. Anatomy and physiology  

Our focus will be reinforcement  learning in the basal ganglia. However, since the basal 
ganglia’s main outputs are inhibitory, and since they are not yet connected in neonates 
(Humphries, Gurney& Prescott, 2005), there must be more fundamental brain substrates 
for behaviour/action initiation.  

2.1 Reticular formation  

The brain’s reticular formation (RF) has been proposed as such a device for action 
selection (Humphries et al., 2005; Kilmer, 1997). The RF’s giant neurons receive input 
from many brainstem nuclei, enabling them to sample from all sensory systems, and 
their axons bifurcate to project downward to the spinal cord as well as upward to the 
midbrain, enabling the production of motor behaviour and the control of higher-level 
brain centers. 
The RF contains several specialized circuits. A potent example are the giant neurons in 
the caudal pontine RF which respond at very short latency to acoustic stimuli, and 
which are hypothesized to elicit the startle response to a loud and unexpected acoustic 
stimulus (Lingenhöhl & Friauf, 2004). The paramedian pontine RF is involved in the 
control of horizontal eye movements, and the midbrain RF in vertical eye movements 
(Sparks, 2002; Weber & Triesch, 2006). 
Model of Behaviour Generation  

Kilmer (1997) proposed a “command computer” model of the RF which outputs one 
behaviour, given as input several vectors of recommended behaviours, originating from 
several sensory systems. The RF model computes the winning behaviour using a 
relatively small number of connections and a distributed representation. Humphries et 
al. (2005) optimized the originally randomized connectivity by a genetic algorithm. In a 
robotic demonstration involving the behaviours ‘wander’, ‘avoid obstacle’ and 
‘recharge energy’, the genetic algorithm augmented the model’s behaviour selection 
from near-chance levels to achieving very long survival times. 
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The RF is rarely implicated in learning (see Bloch and Laroche (1985) for a counter-example), 
but rather seems “pre-programmed” at birth. Other brain structures are needed to allow 
adaptation to beneficial circumstances in the environment. 

2.2 Basal ganglia  

 

Fig. 1. Selected brain areas and connections. The thick arrows denote the primary basal 
ganglia (BG) → thalamus → cortex loop. This includes the direct pathway through the BG 
via striatum and GPi. The indirect and hyperdirect pathways are via STN, GPe and GPi. The 
SNr has a similar connectivity as the GPi (not shown for simplicity), so one often refers to 
“GPi/SNr”. Dopaminergic nigro-striatal projections from SNc reach the CN and Put which 
make the dorsal striatum. Meso-limbic projections from VTA reach the NAcc which is part 
of the ventral striatum. Meso-cortical projections are from VTA to regions in the prefrontal 
and cingular cortex. Abbreviations: Inside the BG: CN = caudate nucleus; Put = putamen; 
NAcc = nucleus accumbens; GPe/i Globus pallidus externus/internus; STN = subthalamic 
nucleus; SNc/r = Substantia nigra pars compacta/reticulata. Outside of the BG: VTA = 
ventral tegmental area; RF =reticular formation.  

Figure 1 shows the relevant areas and their abbreviations related to the basal ganglia (BG). 
The main input nucleus of the BG is the striatum which receives its main input from motor 
and prefrontal cortex, but also from intralaminar thalamic nuclei (not shown in Figure). The 
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striatum accounts for approximately 95% of the total neuron population of the BG in the rat  
(Wood, Humphries & Gurney, 2006). The dorsal striatum (neostriatum) consists of the puta-
men and the caudate nucleus. The ventral striatum consists of the nucleus accumbens (core 
and shell) and the olfactory tubercle (not shown in Figure). The principal neurons of the 
dorsal striatum, the medium spiny neurons, are inhibitory GABAergic projection neurons. 
They emit collaterals to neighbouring spiny neurons before they project to output stages of 
the BG, namely to either GPi or SNr (Houk et al., 2007).  
According to Shepherd (2004), the cortical and thalamic afferents to the BG have a cruciform 
axodendritic pattern. This implies that individual axons cross the dendritic fields of many 
neurons in the neostriatum, but make few synapses with any particular cell (Wilson, 2004). 
The opposite is also true. Any particular neostriatal neuron can synapse (sparsely) with a 
large number of afferents.  
Optimal Decision Making  

Based on the connectivity of the BG, Bogacz and Gurney (2007) propose a model of optimal 
decision making that implements the statistical multihypothesis sequential probability ratio test 
(MSPRT). The underlying assumption is that the different regions of the cortex each send 
evidence yi  for a particular decision i to the striatum. A problem of passing this directly to 
the thalamus is that the action would be performed as soon as the accumulated evidence in 
a given channel reaches a certain threshold. This is not optimal, because in the presence of 
noise, a wrong channel could first reach threshold (not to mention the “technical” problem 
of defining when to start to integrate, as addressed in Stafford and Gurney (2007)). Rather 
should the difference between the favored channel and the other channels reach a threshold.  

Mathematically, yi − ln Σ
j 
e

y
j 

is better sent to the thalamus.  

Bogacz and Gurney (2007) identify the first term yi with the direct pathway: the striatum in-
hibits the GPi/SNr which then disinhibits a corresponding thalamic region so to perform 
the action. The positive sign is because the tonically spiking inhibitory GPi/SNr neurons are 

silenced. The second term −ln Σ
j 
e

y
j 

represents the indirect (hyperdirect) pathway. It has a 

negative sign because the cortical afferents excite the STN (the only excitatory nucleus of the 
BG) which then excite the GPi/SNr neurons’ inhibitory activity. Diffuse STN → GPi/SNr 
connections implement the sum over all channels.  
This model is minimal in terms of its mechanisms, and encourages additional functionality 
to be implemented in the same structures. For example, the number of hypotheses yi in the 
input is the same as the number of outputs; however, the BG has a much larger input 
structure (striatum) than output structure (GPi/SNr), which suggests a transformation to 
take place, such as from a sensory to a motor representation. For example, the GPi/SNr 
might extract a low-dimensional subspace from the high-dimensional cortical and striatal 
representations by a principle component analysis (PCA) algorithm (Bar-Gad, Havazelet-
Heimer, Goldberg, Ruppin & Bergman, 2000). Learning, not only action selection, becomes 
important.  
Rewards  

Dopamine neuron activity in SNc and VTA is known to be correlated with rewards, learning 
and also with addictive behaviour. Dopamine neurons are active during delivery of an 
unexpected reward. If a stimulus predicts a future reward, then they will instead become 
active at the onset of the reward-predicting stimulus (Fiorillo, Tobler & Schultz, 2003). 
Dopamine neuron firing in the VTA is suppressed by aversive stimuli (Ungless, Magill & 
Bolam, 2004). These neurons (SNc borders the SNr, an output nucleus of the BG) project 
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dopaminergic axon fibres into the input nuclei (Fischer, 2003): the nigro-striatal projection is 
from the substantia nigra to the dorsal striatum; the meso-limbic projection is from the VTA 
to the ventral striatum; there is also a meso-cortical projection from the VTA to prefrontal and 
cingular cortex (Fig. 1). Consequentially, during the delay period of delayed-response tasks 
neurons in striatum were found to be selective for the values of individual actions 
(Samejima, Ueda, Doya & Kimura, 2005), and in orbitofrontal (a part of prefrontal) cortex 
neural activity represents the value of expected reward (Roesch & Olson, 2004). There may 
be a finer grain resolution of the reward delivery system, as Wilson (2004) suggests that any 
local region of the neostriatum may receive its dopaminergic innervation from a relatively 
small number of dopaminergic neurons. 
 The concept of a reward is however wider. Unexpected, biologically salient stimuli elicit a 
short-latency, phasic response in dopaminergic neurons (Dommett, Coizet, Blaha, 
Martindale & Lefebvre, 2005). If not reinforced, responses to novel stimuli become 
habituated rapidly, and the responses to rewarding stimuli also decline if stimuli can be 
predicted.  
D1 and D2 Receptors  

Dopamine has varying effects on neurons, because different neurons have different 
dopamine receptors. Lewis and O’Donnell (2000) state “D1 receptors may enhance striatal 
neuron response to [excitatory] NMDA receptor activation, where as D2 receptors may 
decrease responses to non-NMDA [e.g. inhibitory] receptors”. Vaguely interpreted, D1 
supports direct excitatory responses and D2 supports later decisions by limiting inhibition. 
This correlates with the findings of Hikosaka (2007) who make use of the fact that saccades 
to highly rewarded positions are initiated earlier than saccades to less rewarded positions. 
Injections of dopamine D1 receptor antagonist delayed the early, highly rewarded saccades. 
Injections of D2 antagonist delayed even more the later, less rewarded saccades. 
The models of Brown, Bullock and Grossberg (2004) and Hazy, Frank and O’Reilly (2007) 
(Section 4) feature ‘Go’ cells which have the D1 receptor and project along the direct pathway 
to facilitate an action, and ‘NoGo’/‘Stop’ cells which have the D2 receptor and which project 
to the indirect pathway to suppress an action.  
In addition to facilitating activation, dopamine directly facilitates learning by increasing the 
number of synaptic receptors (Sun, Zhao & Wolf, 2005). As an example of dopamine-
modulated Hebbian learning, Reynolds, Hyland and Wickens (2001) showed that synapses 
between the cortex and the striatum could be potentiated only with concurrent stimulation 
of the substantia nigra.  
BG-Thalamo-Cortical Loops  

The function of the basal ganglia as a learning action selection device makes sense only in 
the context of its main input, the cortex and its main output, the thalamus. Wilson suggests 
that the striatum contains a functional re-mapping of the cortex. For example, motor and 
somatosensory cortical representations of a single body part specifically converge on a 
particular region of the putamen (Flaherty & Graybiel, 1991), which is implicated in sensory 
guided movements.The other part of the neostriatum, the caudate nucleus, receives input 
from more anterior cortical areas and is implicated in memory-guided movement (Houk et 
al., 2007). Posterior cortical areas (such as the lower visual system) seem to be less connected 
with the BG. Specificity is preserved throughout the projection target of the BG which are 
the 50-60 nuclei of the thalamus (Herrero, Barcia & Navarro, 2002) and which project back to 
specific areas of the cortex.  
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3. Theory of reinforcement learning  

The canonical reinforcement learning network (Sutton & Barto, 1998) has an input layer on 
which the activity of exactly one unit codes the state s of the agent and an output layer on 
which the activity of one unit codes the action a the agent is going to choose given the in-
put. Fig. 2. a) shows the architectures of two algorithm classes, TD-learning and SARSA. 
Input and output layers are termed state and actor in both implementations. A critic may be 
used only to guide learning. Given a random initial state (position) of the agent within the 
limited state space, and another state at which a reward r is consistently given, the agent 
learns to maneuver directly to the rewarded state.  
In the case of TD-learning all states are assigned goodness values v that represent the sum of 
discounted future rewards and are kept by the critic in a lookup table V . A distant reward 
will be discounted in that it keeps only a proportion, e.g. γ ≈ 0.9, of its original value for 
each step required to get it. So if the reward r will be reached in n steps, then the current 
state will be worth v = r γn

 

.  
Standard reinforcement learning lacks a “working memory” to backtrack recently visited 
states when a reward is given. Instead, a state value v is updated from the value v׳

 

of the 
neighbor state that is visited in the next step. Since then one step is done, the reward was 
further away in the previous state, hence v = γ v׳. If the reward is given, instead v = r + γ v׳

 

. 
This equation will be inconsistent for neighbouring states during early learning. Step (5) of 
the algorithm in Fig. 2c) quantifies this error which is then used in steps (6) to update the 
value v of the previous state. The difference in time between the new estimate r + γ v׳

 

and 
old estimate v taken in step (6) bestows this class of algorithms the name Temporal 
Difference (TD) learning.  
The actor-critic architecture employs a dedicated neuron, the critic, to encode the expected 
future reward – or the values v – in its connections V . The connections Q to the actor which 
encode the action policy are separate1. The critic influences the actor update, step (7) in Fig. 
2, through its prediction error δ. Vice versa, the current action policy determines which 
states the agent will visit next, and this feeds back into the update of the critic’s value v.  
SARSA2 

 

encodes the value of state-action pairs (s, a) instead of the value of states. It may be 
implemented with a critic neuron that is connected to all state units and all action units. Fig. 
2, right, shows an implementation without a critic, using only the weights from the state 
units to the action units. These store the state-action values Q and are also used to choose 
the action in step (3). However, computation of v and v׳

  

involves state units j, j׳
 

and action 
units i, i׳

 

, hence, crosstalk involving some lateral connections must exist.  
The state values V (or Q in case of SARSA) depend on the action strategy, because that influ-
ences the number of steps required to reach the reward. The action strategy is implemented 
in step (3) of the algorithm. Note the stochastic choice of actions. A deterministic agent may 
select a long path with a gradual increase of value rather than a short path on which it hasn’t 
yet assigned any value to some states. The stochasticity allows for exploration of new states 
over exploitation of a previously thought optimal strategy. During learning, weights Q and 
hence the inputs h in step (3) become larger and so the character of action choice becomes 
more deterministic.  

                                                 
1 These connections are sometimes called “P” to denote action preferences. 
2 SARSA computes the values from (s, a, r, s0, a0), hence the name. 
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Fig. 2. TD-learning vs. SARSA. a) Architectures. The actor-critic architecture used in TD-
learning has weights from all state space units to all action units and to the critic. SARSA is 
missing these critic weights, but there is additional information flow via links that are not 
shown. b) Trained weights for a toy problem. Dark blue denotes strong positive weights. 
The rewarded position is indicated by a “×” in the 16×12 state space. c) Algorithms. Actor-
critic learning assigns a value to a state s, SARSA to a state-action pair (s, a). Note: (i) The 
value in step (4) reduces to a single weight because only state unit j׳

 

and action unit i׳
 

have 
activation 1, others are 0. (ii) In TD-learning, step (3) may be done after (7).  
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Relation to Basal Ganglia 

The lateral inhibition in the striatum might ensure that neurons will be active only in a 
small focused region which directly represents the state, just like a single active neuron 
denotes the state in the models. In such a localist – as opposed to a distributed – code, a 
neuron does not participate in the coding of several completely different states. Thereby 
an assignment of reward to all active units will not interfere with other states, which is 
important in the critic-and actor update steps (6), (7) in Fig. 2. In accordance with this 
demand, the striatum is known as a ‘silent structure’, in which only a small percentage 
of the dominant neuron type, the spiny projection neurons, is strongly active at any one 
time3.  
If the striatum encodes the state sj, and if the GPi/SNr encode actions ai, then the δ 

could modulate learning by dopaminergic projections to either striatum or GPi/SNr 
neurons to form the multiplicative factor in the actor update, step (7).  
Dopaminergic neurons are mainly found in the VTA and the SNc, and they do not have 
spatial or motor properties (Morris, Nevet, Arkadir, Vaadia & Bergman, 2006). 
Corresponding to the value δ, dopaminergic neurons exhibit bursts of activity in 
response to unexpected  rewarding stimuli or conditioned stimuli associated with those 
rewards (Ungless et al., 2004). Their firing correlates with expected reward values, i.e. 
probability times magnitude of the reward (Tobler, Fiorillo & Schultz, 2005). While 
dopamine neurons generally respond briefly to unexpected reward delivery, trained 
neurons will respond briefly to the cue that predicts an upcoming reward, but not to the 
expected reward itself, and their baseline firing will be suppressed, when an expected 
reward fails to be delivered (Schultz, Dayan & Montague, 1997).  
Biological Support for SARSA  

When monkeys choose to reach one of two levers, one paired with a frequent reward 
and the other with a less frequent reward, they do not always choose the more 
frequently rewarded action, even if overtrained. Instead, they adopt “probability 
matching”, a suboptimal strategy in which the distribution of responses is matched to 
the reward probabilities of the available reward. This allows neural activations to be 
measured, when deciding for the lesser rewarded action (Niv, Daw & Dayan, 2006;  
Morris et al., 2006). Within just 200 msec after stimulus presentation dopamine neurons 
fire in proportion to the reward associated with the lever that they will reach at later, 
even if the reach is performed seconds later. In particular, they will fire less if the 
monkey is going to choose the poor reward. These results seem to contradict the actor-
critic models in which the value v of a state is independent of the next action4. They are 
in accordance with SARSA, in which the value depends on the state and the action that 
is chosen (but not yet executed). 
Multiple Tasks During Learning  

Rothkopf and Ballard (2007) hint at a problem that arises in realistic scenarios when 
multiple reinforcement strategies are learning concurrently. Since there is only one 
dopamine reward signal, not only the successful strategy, but all active strategies would 
receive it. Their solution is to share it: each strategy consumes an amount of the reward 
that is proportional to the reward that it expects from the current state transition, the 

                                                 
3 Brown et al. (2004) suggest that feedforward inhibition causes such sparse firing, because recurrent 
(feedback) inhibition would require significant activation of many neurons to be effective. 
4 However, a predictive (cortical) input to the basal ganglia could denote already the next state. 



Reinforcement Learning Embedded in Brains and Robots 

 

127 

difference of the corresponding values. Unfortunately, a strategy would not receive any 
amount of the reward if the reward comes completely unexpected under this strategy. 
This might be remedied by taking into account confidence values to each strategy’s 
prediction. In any  case, the different parallel loops need to communicate, possibly via 
the indirect pathway of the basal ganglia.  
Exploration – Exploitation  

Sridharan, Prashanth and Chakravarthy (2006) address the problem that a RL network 
has to produce randomness in some controllable fashion, in order to produce stochastic 
action choices. For this purpose they implement an oscillatory circuit via reciprocal 
excitatory-inhibitory connections. The indirect pathway (see Fig. 1) represents a suitable 
oscillatory circuit in that the STN excites the GPe and in turn receives inhibition. 
Together with short-range lateral inhibition the model produces chaotic oscillatory 
activity that becomes more regular only with stronger input from the cortex (Sridharan 
et al.,2006). They propose that, in case of weak or novel sensory input, the irregular 
firing causes an agent to behave more randomly and thereby to explore the state space. 
A biological manifestation of randomness could be in the pauses by which GPe neurons 
randomly and independently of each other interrupt their otherwise regular high-
frequency firing (Elias et al., 2007). These pauses last approximately half a second and 
happen on average every 5 seconds with Poissonian interpause intervals. There are less 
pauses during high motor activity, indicating less randomness during performance.  

4. Implementations  

A central idea about ‘lower’ and ‘higher’ parts of the brain is that lower centers “swap 
out” functions that they cannot perform themselves. At the lowest level we might find 
distributed control circuits such as in some inner organs, as well as spinal cord reflex 
mechanisms. Since they function autonomously we may not actually cast them into a 
hierarchy with other brain structures.  
The reticular formation at a very low level is mature at birth and regulates the choice of 
basic behaviours such as eat, fight or mate. As a centralized structure it can coordinate 
these behaviours, which the distributed control circuits would not be able to do 
(Prescott, 2007). Yet it lacks sophisticated learning capabilities and cannot cope with a 
complex and changing environment.  
The basal ganglia implement a memory of successful actions in performing stimulus-
response mappings that lead to rewards based on experiences of previous stimulus-
response performance. Whether any reward is of interest may be set by a currently 
active basic behaviour (a thirsty animal will appreciate water but not food). So the 
reticular formation may have control over the basal ganglia, in selecting sub-circuits for 
different types of reward and  strategies.  
But the sensory stimuli from a complex environment are not necessarily suitable as a 
‘state’ in reinforcement learning. A situation like “food is behind the door” is hardly 
represented suitably. Suitable state representations are unlikely to be learnt from 
reinforcement learning, and unsupervised learning is a better candidate. The basal 
ganglia may “swap out” such functionality to the cortex. To learn useful 
representations, unsupervised learning in the cortex may be guided by rewards and 
attentional selection (see Section 5).  
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The cortex features various functionalities despite its homogeneous structure. (i) Preprocess-
ing in low hierarchical levels in the posterior cortex. The purpose is to transform light or 
sound into meaningful entities like objects, words or locations. (ii) Working memory in 
higher hierarchical levels in more anterior cortex. An example usage is for task setting: the 
strategy to use, or the reward to expect, is dependent on an initial stimulus that must be 
held in memory. The cortex may thereby determine which part of the basal ganglia to use, 
possibly overriding influence from the reticular formation. (iii) Motor primitives, 
presumably on a middle hierarchical level, in the motor cortex. For example, an action like 
“press the left lever” is a coordinated temporal sequence of muscle activations. Such action 
primitives reside in the motor cortex, and also the cerebellum, which we do not address 
further, is involved.  
Architectural Choices  

Tiered architectures are common in robotics. They allow to implement short-term reactive 
decisions while at the same time pursuing long-term goals. They also allow for computer 
programs to be implemented in modules with minimal inter-modular communication.  
Brooks’ subsumption architecture is an early example (Brooks, 1986). From the robot’s low-
est control layer to the highest layer, actions are for example: “avoid an object” — “wander 
around”—“explore the world”—“create a map”, the latter of which may be the ultimate 
goal of a particular robotic application. The layers of such an architecture are however not 
directly  identifiable with brain structures such as reticular formation — basal ganglia — 
cortex.  
Unlike structured computer programs the ‘modules’ of the brain are highly inter-dependent. 
Computations involve multiple brain structures, and actions are often redundantly executed 
in parallel. For example saccades are destroyed by a combined lesion of the midbrain 
superior colliculus (SC) and the cortical frontal eye field (FEF), but not by a lesion of either 
of the two (Sparks, 2002). Another design principle of the brain is recurrence – connections 
form loops within and between brain structures.  
Several models which mainly focus on the basal ganglia implement a larger loop structure.  
The basic loop (Fig. 1) is Striatum → GPi/SNr → Thalamus → Cortex → Striatum. This loop 
is topographic in the sense that there are separate parallel loops, each for a specific feature, 
thought or action (Houk et al., 2007). Action on the level of the GPi/SNr activates the entire 
corresponding loop that  includes slices of the thalamus and cortex as well.  
Robot Action Selection  

Prescott, Stafford and Gurney (2006) use a basal ganglia model for basic behaviour selection 
in a Khepera robot. The robot removes cylinders from its arena using five action patterns in 
the natural order: cylinder-seek, cylinder-pickup, wall-seek, wall-follow, cylinder-deposit. 
Scalar salience signals for each of these actions, which depend on perception and 
motivation, are the input to the basal ganglia. These are implemented with standard leaky 
integrator neurons and hand-set parameters to select coherent sequences of actions. A 
sophisticated embedding architecture complements the basal ganglia model: perceptual 
sub-systems (e.g. visual cortex) and motivational sub-systems (e.g. reticular formation)  for 
computation of the salience signals; stereotyped, carefully timed “fixed action patterns” (e.g. 
motor cortex) for action execution. A “busy signal” prevents currently performed actions 
from being interrupted by other action bids. In the model of Brown et al. (2004), such a 
suppression of lingering actions is done via the STN which sends diffuse excitation to the 
inhibitory BG output nuclei GPi/SNr.  



Reinforcement Learning Embedded in Brains and Robots 

 

129 

Working Memory Control  

Hazy et al. (2007) generalize action selection to the selection of working memory represen-
tations in the pre-frontal cortex (PFC). This tackles the temporal credit assignment problem 
in trace conditioning where there is a gap between the conditioned stimulus and the reward. 
The working memory capacity of the PFC bridges this gap and delivers sustained input to 
the basal ganglia. Working memories with different time spans in parallel loops allow for 
the execution of nested tasks. Their example application is the 1-2-AX task, in which a 
subject after seeing a ‘1’ must identify the consecutive letters ‘A-X’, but after seeing a ‘2’ 
must identify the sequence ’B-Y’. The numbers ‘1’, ‘2’ are memorized for a longer duration 
in an ‘outer’ loop. An ‘inner’ loop identifies the desired letter sequence within a short 
duration. A third loop elicits the motor response. While the basal ganglia resolve only these 
loops, the much larger cortex distinguishes also the contents within the loops. In the 1-2-AX 
task these are the values of the numbers and the digits. The model PFC stores them in 
hypercolumn-like “stripes” with one of several entries in a stripe being active in a winner-
take-all fashion. Gating is nevertheless accomplished in the basal ganglia that does not need 
to reflect the individual features within a stripe.  
Basal Ganglia Mediate Cortical Control on Superior Colliculus  

The superior colliculus (SC) is a phylogenetically old structure eliciting reactive saccades 
from direct retinal input. Planned saccades are elicited on the SC only via direct cortical 
input and concurrent disinhibition by the basal ganglia. This suggests that planned saccades 
are driven by expected reward (Hikosaka, 2007). Brown et al. (2004) implement such an 
extensive circuit and simulate saccade tasks which involve target selection and timing. 
Their model takes into account the cortical layer structure. ‘Planning’ cells in cortical layer 3 
with sustained activity send preparatory bids to the basal ganglia, while associated 
‘executive’ cells in layer 5 generate phasic outputs if and when their basal ganglia gate 
opens. Planning cells are modulated by layer 6 cells which possibly reside in higher-level 
cortical area (PFC) that is in control. These same cells of cortical layer 6 are a source of 
excitation to the thalamic cells whose disinhibition allows plans to execute.  
A hypothesis of Brown et al. (2004) is that thalamo-striatal connections (not shown in Fig. 1) 
become active in trials during which premature release of a movement leads to non-reward; 
this shall lead to a learned activation of the indirect channel and therefore guide the learning 
of ‘STOP’ responses.  
Basal Ganglia Instruct Cortex  

There appear to be two positions related to the association between the prefrontal  cortex 
(PFC) and basal ganglia. The conventional view is that the PFC drives the learning of the 
basal ganglia. This is mainly based on the fact that the striatum neurons require numerous 
synchronous inputs from cortex (and thalamus) to become active. An alternative view  is 
that while the dopamine system ‘teaches’ the striatum, the basal ganglia teaches the cortex 
through the basal ganglia-thalamo-cortical loop (Laubach, 2005; Graybiel, 2005). Our model 
of Weber et al. (2006) utilises this alternative.  
Areas of the motor cortex execute action primitives; on the other hand, the basal ganglia are 
well equipped for learning these actions by reinforcement learning in the first place. In our 
model an action that has been acquired by the basal ganglia is then imitated by the motor 
cortex. Thereby the resources used for reinforcement learning, such as the large state space  
that may reside in the striatum, would be available for further learning. See Section 5 for a 
description of this visually guided robot docking action (Weber, Wermter & Zochios, 2004). 
Both of these levels of neural processing have been implemented on a PeopleBot robot.  



Reinforcement Learning: Theory and Applications 

 

130 

In our model of Weber et al. (2006) the motor cortex reads the visual input and motor output 
of the basal ganglia. It  establishes an internal representation of these input-output pairs by 
unsupervised self-organization (Hinton, Dayan, Frey & Neal, 1995). With ‘incomplete’ input 
in which vision is present but the action missing, the network will find a ‘complete’ internal 
code from which it will generate an appropriate action. Horizontal hetero-associator weights 
on the internal layer associate the current representation with a future representation one 
time step ahead, and thereby perform prediction, allowing for mental simulation of an 
action.  
Experimental evidence supports our model. During associative learning, Pasupathy and 
Miller (2005) found earlier changes of neural activity in the striatum than in the PFC. In their 
study, primates were rewarded if they made saccades to a certain direction, dependent on 
the appearance of a complicated cue shown at the fixation point. The primate learnt the re-
warded direction by trial and error. Once the relationships were learned the input-response 
pairs where reversed. When relearning the appropriate behaviour to the input, the striatum 
was found to have direction-specific firing almost straight away. In contrast, the PFC only 
gained direction selectivity following 15 correctly performed trials. This is consistent with 
the striatum training the PFC.  
Jog, Kubota, Connolly, Hillegaart and Graybiel (1999) trained rats to make a left-right deci-
sion in a T-maze task. Striatal neurons which were initially active at the point of the junction 
became less active when the task had been learnt. Instead, they increased their activities at 
the beginning and at the end of the task. This suggests that the striatum might be putting 
together sequences of known behaviours that, once learned, are executed elsewhere.  
Task Switching  

Representing actions on the cortex might also make them easier to control by other cortical 
areas. Prelimbic and infralimbic regions of rat prefrontal cortex were shown to remember 
different strategies and aid in switching between learnt strategies (Rich & Shapiro, 2007). In 
an extension of our model of the motor cortex (Weber et al., 2006) we therefore showed that 
language input to another cortical area can influence which motor sequence on the motor 
cortex representation to recall (Wermter, Weber, Elshaw, Gallese & Pulvermüller, 2005). 
These cortical learning principles can lead to language-guided neural robots in the future.  

5. Visual system  

The actor-critic model of reinforcement learning has been used to perform various robot ac-
tions, such as camera-guided robot docking (Martínez-Marín & Duckett, 2005). In our ap-
proach (Weber et al., 2004), we first trained the peripheral vision so that it can supply a visu-
ally obtained state as input to the action selection network.  
Overall, there are three processing steps and associated training phases involved in the 
learning of the docking behaviour (see Fig. 3). First, training the weights between the visual 
input and the “what” area by unsupervised learning. The learning paradigm is that of a 
generative model (hence the feedback connections in Fig. 3) in which the color image is 
reconstructed from sparse activations of neurons in the “what” area. Second, training the 
lateral weights within and between the “what” and the “where” areas by supervised 
learning. For this purpose, a supervisor placed a blob of activation onto the position on the 
“where” area which corresponded to the correct position of the object within the image. 
After learning, an attractor network covering the “what” and the “where” areas creates the 
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“where”representation by pattern completion if only the “what” representation is supplied 
as input.  
 

 

Fig. 3. Neural architecture for visual pre-processing and reinforcement-learnt action. Thick 
arrows denote trained weights. Only the ones depicted dark are used during performance 
while those depicted bright are involved in training. The area on shaded background 
labelled ‘saccades’ is assumed to perform saccades to bring the object from any location on 
the ‘where’ area to its center, as indicated by the arrows pointing to the middle. Saccades 
can be used here to replace supervised learning of the “what” → “where” connections 
(shaded background) by reinforcement  learning (see Section 5.1).  

The robot needed to approach the table at a right angle. For the final step therefore the vi-
sual “where” representation of the object was augmented by the robot angle w.r.t. the table, 
here discretized into just seven angle values. This outer product yielded the state space, a 3-
dimensional block in which one unit’s activity denoted the visual object position and the 
robot angle; in other words, seven layers of the visual space, one for every possible robot an-
gle. Finally, the weights from this state space to the critic and the four actor units, denoting 
‘forward’, ‘backward’, ‘turn left’ and ‘turn right’, were trained by TD-learning.  
The critic weights assign each state a value v which is initially zero. For each trial the robot 
is initialized to a random starting position and the steps of Fig. 2 are followed until the 
reward is obtained. The reward signal is given when the target is perceived in the middle of 
the lower edge of the visual field (hence at the  grippers) and when the robot rotation angle 
is zero. When the robot hits the table or looses the object out of sight, then a new trial is 
started without a reward. During learning, states that lead quickly to the goal will be 
assigned a higher value v by strengthening their connections V to the critic unit. The weights 
Q to the motor units which have been activated simultaneously are also increased, if the 
corresponding action leads to a better state.  
In short, we have used a simple ‘what-where’ visual system as a preprocessing module, sup-
plying suitable input to a state space for reinforcement learning. In-line with the classical 
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view, this simplified visual system learns from visual data irrespective of the use of vision 
for action and reward-seeking.  

5.1 Reward in the visual system  

In recent years evidence is accumulating that even the lower visual system such as the 
primary visual cortex V1 is sensitive to reward learning. Shuler and Bear (2006) repeatedly 
presented rats a light flash to one eye followed by a reward given after two seconds. V1 
neurons acquired reward-dependent responses such as sustained responses after visual 
stimulus offset, or increasing responses until the time of the (expected) reward. Schoups, 
Vogels, Qian and Orban (2001) trained monkeys to discriminate oriented bars (such as 

distinguishing 45
◦ 

from 43
◦ 

orientations), after the presentation of which they had to respond 
with saccades to a certain direction to receive a juice reward. After training, the slopes of the 
orientation tuning curves were increased in V1 neurons tuned to orientations near the 
trained orientation5. On the other hand, no modifications of the tuning curves were 
observed for orientations that had been shown as often but which were not decision 
relevant.  
But learning in the adult visual system is not always reward dependent. Furmanski, Schlup-
peck and Engel (2004) trained subjects to detect very low-contrast oriented patterns, 
following which they indicated a decision, but which did not incur a reward. This fMRI 
study revealed increased V1 responses for practiced orientations relative to control 
orientations. However, Vessel (2004) conjectures that stimuli that make sense and are richly 
interpretable on a higher level are ‘rewarding’ and perceived as pleasurable. He recalls that 
there is an increasing number of opiate receptors as one traverses up the visual hierarchy. 
Hence, mere neuronal activation might be regarded as reward and be utilized in learning 
algorithms.  
Saccade Learning  

In Weber and Triesch (2006) we have trained saccades using a reward signal made only 
from visually-induced activation. The model exploits the fact that the fovea (the center of the 
retina) is over-represented in visual areas. Saccades to an object are rewarded dependent on 
the resolution increase of the object — a value that is higher the closer the object is brought 
to the fovea. Motor units which code for a certain saccade length, and which become active 
in a noisy competition, compete via limited afferent connections. A motor unit that brings 
the object closest to the fovea will learn with the highest reward modulation and ultimately 
win. Since there is evidence for a different learning mechanism for horizontal saccades, we 
applied this algorithm for the learning of vertical saccades in combination with a different 
algorithm for horizontal saccades.  
When saccades have been learnt, we can assume that neurons in higher visual areas of the 
“where” pathway exist which code for saccades of a certain direction and amplitude, as in-
dicated in the shaded area of Fig. 3. These are then akin to action units. With the algorithm 
of Weber and Triesch (2006) we can then learn the “what“ → “where” connections by 
reward-based learning  instead of by supervised learning.  

                                                 
5 Neurons which adapted their tuning curves were found only in supra- and infragranular layers of V1 
where there are dense intra- and inter-area horizontal connections as well as inter-area top-down 
connections. Neurons in layer IV which receive bottom-up input from retina/thalamus did not adapt. 
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Gaze Following  

The potential of a purely visual stimulus as a reward is also used in a RL model of how in-
fants learn to follow the gaze of the mother (Triesch et al., 2007), a skill which infants learn 
only after 18 months of age. The model assumes an infant’s tendency to look frequently at 
the mother’s face. It assumes further that the mother then looks to the left or the right, and 
that there is an interesting (rewarding) stimulus where the mother looks. The infant initially 
cannot make use of the mother’s gaze direction, but after making (initially random) sample 
eye movements, it will find out that rewarding stimuli can be found in the line of sight of 
the mother. The model predicts a mirror-neuron like premotor representation with neurons 
that become activated either when the infant plans to look at a certain location or when the 
infant sees the mother looking in the direction of that location.  

5.2 Attention-gated reinforcement learning  

Attention-Gated Reinforcement Learning (AGREL) (Roelfsema & Ooyen, 2005) is a link be-
tween supervised and reinforcement learning for 1-of-n classification tasks. In supervised 
learning of such tasks the teacher’s learning signal is 1 for the correct output unit and 0 for 
the other output units, and is given for every data point. The rules of reinforcement learning 
are that if the network – of which the output will be stochastic winner-take-all – guesses 
correctly, then a reward signal is given, else not. AGREL gives learning rules which in this 
case lead to the same average weight changes as supervised backpropagation learning, 
albeit learning is slower due to insufficient feedback when the network guesses incorrectly.  

 

Fig. 4. Architecture of AGREL. One-in-n of the output units is active at a time, just like in 
TD-learning and SARSA. The input and hidden layers, however, may have a distributed 
code.  

The AGREL architecture is that of a multilayer perceptron and shown in Fig. 4. An input 
unit i conveys its activation xi via weight vji to the activation yj of hidden layer unit j which 
has a logistic transfer function 

 

Activations are then conveyed to an output unit k, while the output units compete via a soft-
max function: 
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The actual, binary output zk of the neuron follows the probability ek of being active, which is 
thus the average activation.  
Learning  

In order to understand AGREL, lets first consider error backpropagation6. The average 
update of a weight wkj from a hidden unit j to an output unit k is:  

  (1) 

where tk is the teacher signal and ek is, in backpropagation, the continuous activation on 
output neuron k. Unlike supervised backpropagation, AGREL considers only the winning 
output neuron, k = s, for learning. Now we apply Eq. 1 for reinforcement learning in which 
we distinguish two cases, unrewarded and rewarded trials. For unrewarded trials, which 
means ts =0, Eq. 1 becomes  

 

and for rewarded trials, where ts = 1, Eq. 1 becomes (defining δ := ts − es) 

 

In order to make both weight update steps consistent, one defines  

 for unrewarded trials, and  for rewarded trials. 
To complete our brief treatment of AGREL,the top-down feedback weights wjk to the hidden 
layer learn with the same rule as the wkj. A weight vji from an input unit i to a hidden layer 
unit j is updated according to:  

 

Hence, learning of the weights from the input to hidden unit j scales with the weight wjs that this 
unit receives from the only active output unit s. The term f(δ) depends on whether the winning 
unit equals the correct output.  
Applications  

AGREL works only with immediate rewards and does not build up action strategies as TD-
learning does. While TD-learning requires that only one input unit is active at a time, AGREL 
accepts a distributed code as input. Applications are therefore in the sensory system where a 
classification of a stimulus needs to be made, and where some kind of reward signal is promptly 
available.  
For example, monkeys had previously been trained to categorize faces, and it emerged that 
neurons in the inferotemporal cortex preferentially encode diagnostic features of these faces, i.e. 
features by which categories can be distinguished, as opposed to features that vary irrespective of 
categories. Roelfsema and Ooyen (2005) showed that neurons of the hidden layer  

                                                 
6 Here we outline chapter “4.1 Average Weight Changes in AGREL” of Roelfsema and Ooyen (2005) 
from back to front. 
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in AGREL also learn preferentially to code for diagnostic features. This explains that 
feature representations in the sensory cortex are not merely dependent on the (statistics 
of) sensory input, but are tailored to decisions, and thereby aimed at rewards.  
Another example is the simulation of the abovementioned experiments of Schoups et al. 
(2001): orientation selective neurons in V1 (AGREL’s hidden layer) adjust their tuning 
curves to distinguish orientations that are being classified, while neurons that are as often 
activated, but without action relevance, do not adjust their tuning curves.  
In Franz and Triesch (2007), vergence eye movements were trained using AGREL so to 
fixate an object with both eyes in depth. No external reward was given, but a successful 
focusing of both eyes on a single point  in space led to binocular zero-disparity cells 
having a particularly high activation, which was regarded as a reward. The model 
predicts a variety of disparity tuning curves observed in the visual cortex and thereby 
presents additional evidence that purely visually-induced activation can constitute a 
reward signal.  

6. Beyond behaviourism  

Reinforcement learning (RL) theory has probably been the most influential outcome of be-
haviourist psychology, and neuroscientific support for it continues to grow. It seems very 
likely that there is RL in the basal ganglia, complemented by unsupervised learning in the 
cortex and supervised learning in the cerebellum (Doya, 1999), possibly building upon ge-
netic ‘learning’ in the reticular formation.  
However, the brain still resists a unifying description. Baum (2004) argues that either 
cognitive behaviour can be described in a compressed way using a few theories like RL. 
Or it has been reasonably well optimized by evolution, and theories which are simple 
enough to comprehend inevitably miss out a lot of significant detail. In attempting to 
uncover simple psychological principles, the behaviourists have left a legacy in which the 
same theories which illuminate brain activity, can render us blind to other significant 
aspects.  

6.1 Experimental conditions  

In the early 1970’s, every psychology department still had a “rat lab”. The researchers did 
what they could to control the experimental conditions. But a rat swimming in a water 
maze is still aware that light glistens off the water in subtly different ways according to its 
direction, and although the walls were white and high, the sounds of birdsong outside the 
window or footsteps in the corridor were still there, providing good orientation cues. 
While human beings are often only vaguely aware of their surroundings, animals are 
highly attuned to their environment. A neuroscientist recounts how simply wearing a 
different lab coat can radically change an animal’s behaviour (Panksepp,1998, p.18).  
Also, the fashion at the time was to write up experiments on living animals in the same 
formal manner that has proven so useful when dealing with non-living subject matter. 
Conceptual analysis, a view of the world in stimulus-response terms, left no place for 
context (either external or internal). An observer at the time might see that the written 
accounts of the experiments were patently not portraying what was happening. They were 
merely reporting how the researchers interpreted what they saw, suppressing often more 
interesting behaviours as “irrelevant”. The purpose of the experimental conditions was to 
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effectively deprive the animals of every possible natural behaviour apart from the sought-
for response. Much of the time, the animals would do anything except the behaviour under 
test.  
The first legacy of the behaviourists has been an oversimplified account of the experimental 
conditions under which RL was investigated. We have attempted to demonstrate that the 
maths of RL can be formulated under assumptions that are also supported by the behaviour 
of animals in their natural environment. Oversimplification can be avoided with a careful, 
honest eye on neuroscientific results and the use of robots to test the theories in a practical 
context.  

6.2 Embedded behaviours  

The founder of ecology, Konrad Lorenz, identifies adaptation (including RL) as merely one 
of nine types of cognitive behaviour (Lorenz, 1996). He claims RL is a phylogenetically 
significant information acquiring system, but one which requires sophisticated subsystems 
for its operation. For example, both stimulus recognition and adaptive modifiability must be 
attuned to the message of success or failure coming from the activities terminating the 
whole action, which also must be capable of appraising significance. Mechanisms which 
enable the organism to distinguish reliably between biological success and failure are rarely 
as simple as the binary or scalar values used by RL.  
Innate behaviours such as eat, fight and flee7

 

have been described as mutually incompatible 
modes of vertebrate behaviour (Kilmer et al., 1969), and the candidate brain system for se-
lecting between these kinds of action is the reticular formation in the brainstem. Without a 
cortex (and basal ganglia), electrical stimulation in the brainstem can induce complex and 
coordinated behaviours, including eating, grooming and attack (Berntson & Micco, 1976). 
These behaviours are modifiable in complex ways. Very little is understood concerning 
emotion or motivation, yet these are clearly crucial to a full understanding of RL in animals. 
Lorenz’s cognitive behaviours include exploratory behaviour. This requires coherent 
activity concerning something which has not been learned, by definition. Yet it also has a 
rationale and a logic which is adaptive, distinguishing it from the blind randomness of 
behaviourists’ descriptions, and of the standard RL protocols. 
But just as the study of adaptation has grown significantly since the behaviourists’ first for-
mulations, so has RL. For some time, neuroscientific evidence has implicated the basal 
ganglia in RL. Panksepp (1998) (ch.8) revisits the literature on self-stimulation reinforcement 
and concludes that dopamine activity does not reinforce consumatory but anticipatory 
behaviours. So it is more akin to “the joy of the hunt”. If this is the case, the old view of a 
specific stimulus becoming linked to a response via some general reinforcer seems unlikely. 
A better interpretation is that a stimulus set (which includes what is relevant in the wide-
ranging context) is linked to the response via a reinforcer that is appropriate given that 
context 
Hence, the second legacy of the behaviourists has been to encourage the widening of the 
scope of behaviours we study. It is inadequate to describe primitive behaviours as merely 
“innate” as this fails to account for the variety of their expression. Likewise, RL is not a 

                                                 
7 Kilmer, McCulloch and Blum (1969) list the following: sleep, eat, drink, fight, flee, hunt, search / 
explore, urinate, defecate, groom, mate, give birth, mother the young, build a nest, and special 
speciesdependent forms of behaviour such as migrate, hibernate, gnaw, and hoard. 
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single, monolithic mechanism. What counts as a “stimulus” can range from a single 
neuron’s activation to widely distributed patterns. Dopamine is unlikely to be the only 
reinforcer and the “response” can be as varied as any animal  behaviour.  

6.3 Neuroconstructivism  

Lorenz has also criticized the assumption that the human mind, before any experience, was 
a tabula rasa, and the equivalent assumption that “learning” must “enter into” any 
physiological behaviour process whatever. The most common response to this is to claim 
that anything not learned must be innate. But this is an artificially narrow choice which 
follows from the philosophical assumptions science has inherited from Plato and Descartes. 
Science proceeds on the assumption that the only things that count are ideas which can be 
considered independent of anything else: objects which can be observed. This has served us 
well for centuries, and will continue to do so. But as psychology has already found out, 
studying cognitive behaviour in the same way leads to a number of difficulties. Inevitably, 
this will also become a problem for RL too, at some point. 
Fortunately, there is an alternative viewpoint which promises to avoid many of the 
problems inherited from Cartesianism. Rather than assuming that things can be “atomic” as 
Plato suggested, Heidegger (1927/1962) emphasizes that all behaviour is executed in some 
context. We are thrust into a rich, pre-existing world and are actively living out our 
purposes in it from the start. There is no such thing as an object which has no context. 
Attempts to isolate things like “stimuli” and “responses” involve very high-level, 
sophisticated abstractions which Heidegger called present-at-hand, that is, we can examine 
them.  
The neuroconstructivism of Mareschal et al. (2007) is typical of this more modern approach. 
They still expect all science to rest upon processes in the physical world, but this is in terms 
of a “coherent account”. Components are intelligible as contributory constituents of the 
whole which gives them meaning. The system in turn is defined in terms of its components 
and their mutual relationships. One advantage of this formulation is that it simultaneously 
avoids the behaviourists’ narrowness and the equally  beguiling trap of modularity8. It is 
simply inappropriate in the real world to consider a “stimulus” as a single entity. Their 
conceptualization of “response” is equally sophisticated. According to neuroconstructivism, 
the outcome of almost every event is a distributed set of partial representations which are 
inevitably context dependent. All living systems (including cells) are considered proactive in 
the sense that they can be seen to be “active on their own behalf”. This leads to an interactive 
interdependence between components, characterized by processes of cooperation and 
competition.  

                                                 
8 Mareschal et al. cite Marr (1982) as their straw man here. According to them, Marr distinguishes 
independent computational, algorithmic and implementational levels. “For example, the same 
algorithm can be implemented in different technologies, or the same goals can be reached via different 
representational formats and transformations. The implication is that one can study and understand 
cognitive information processing without reference to the substrate in which it is implemented.” 
Mareschal et al. (2007) (p.209) radically reject this view as an intelligent system must function in real 
time. Any sub-task is constrained not only by its functional definition but also by how it works, as it 
mustn’t take too long. The implementation level cannot therefore be independent of the algorithmic. 
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6.4 Perception is an active process  

Constructivists like Piaget (1953); Glasersfeld (1995) and Bickhard (2000) have emphasized 
that perception is essentially an active process. Psychological and physiological evidence 
(Gibson, 1979; Jeannerod, 1997; Noë, 2004) seems to indicate this is a viable theory. Although 
the basal ganglia are closely linked to action selection, there is a strong link with attention as 
well (Fielding, Georgiou-Karistianis & White, 2006). It is natural for researchers to focus on 
the most visible aspect of selected behaviour, the movement. But an action which has been 
selected is also being attended to. The implication of basal ganglia deficiencies in Attention 
Deficit Hyperactivity Disorder, following Teicher et al. (2000), confirms this compound 
nature of attention and action, as does the equitable treatment of sensory and motor basal 
ganglia afferents.  
The model of Brown et al. (2004) illustrates this broader view of RL. It approximates the 
thousands of millions of interconnecting neurons in a model of less than 100 units, and 
tackles the complexity of the brain in a modular architecture9. It is sufficiently complex to 
take motivation and attention into account, as well as “learning”. Indeed, the ability of the 
basal ganglia model to select between competing afferents may well provide a basis for 
choice – that element which distinguishes psychological learning from mere adaptation. In 
their words, “The basal ganglia interact with the laminar circuits in the frontal cortex and 
the superior colliculus to help satisfy the staging requirements of conditional voluntary 
behaviour.” In the process they demonstrate that RL establishes stimulus control over plans, 
not responses, and provide a coherent alternative model of working memory.  
The complexity of the basal ganglia, and their sensitivity to context, suggest a broadening of 
the simple stimulus-response view. Previous research becomes a special case. Stimuli 
become more natural and responses can be more than some action, as perception and 
attention are implicated in basal ganglia processing too.  
The Heideggerian view that context is primary and conceptual data10

 

is derivative, finds 
newfound support here and opens new possibilities. Many of the difficulties faced by 
Artificial Intelligence are the direct result of the Cartesian viewpoint that all context must be  
constructed from nothing. The recent success of embodied-embedded robotics research 
supports Heidegger’s proposal that context is “given” (Wheeler, 2005). We have indicated 
above that the basal ganglia architecture seems to especially facilitate the processing of 
context alongside RL.  
The understanding of RL has also widened. The change from a generally applicable 
pleasure-or-pain (with no clear cognitive implication) to a much more specific “sought-for” 
success (the cognitive link predicted by Interactivism (Bickhard, 1999)) means that RL is 
poised to address specific instances in a realistic way. RL, therefore, has much more in 

                                                 
9 The assumption of modularity helps us conceptualize what is going on and formulate testable 
hypotheses, but it must be borne in mind that modularity is a function of our worldview, supported by 
its success in fields like computing and business systems. Writers like Braitenberg and Schüz (1998) go 
to great lengths to convey the messiness of the cortex. Overviews like Shepherd (2004) and Kandel, 
Schwartz and Jessell (2000) always indicate that, while neural pathways are a convenient way of getting 
to grips with the material, there are always exceptions and complications. Modularity is more an 
artefact of our scientific understanding than it is an aspect of the subject matter being explored. 
10 Heidegger would class this as “present-at-hand” – the stuff of scientific theories, or the disembodied 
“ideas” of Plato. Also the Cartesian view that things may be conceived of in isolation (that things-
inthemselves are primary) is undermined by the same neuroscientific evidence. 
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common with the natural world and the variety of animal behaviour indicated by Lorenz 
(1996) than is warranted by the behaviourist evidence alone. This wider view places RL 
alongside other modern developments in philosophy and robotics. Such a combination  
must surely be grounds for hope that we will continue to see more robust and successful 
developments in artificial intelligence.  
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1. Introduction  

Distributed reinforcement learning is concerned with what action an agent should take, 
given its current state and the state of other agents, so as to minimize a system cost function 
(or maximize a global objective function). In this chapter, we give an overview of distributed 
reinforcement learning and describe how it can be used to build distributed systems that can 
adapt and optimize their operation to a dynamic environment. In particular, we focus on 
decentralized systems, where an agent has only a partial view of the system and does not 
have access to the system cost (or reward) function, that is, an agent does not have full 
observability of the state of all other agents in the system and system utility (performance) is 
not directly measurable in real-time.  
Theoretical results that establish convergence and optimality guarantees for single-agent 
reinforcement learning algorithms do not hold for distributed (multi-agent) systems. This is 
because distributed environments are inherently non-stationary: agents can independently 
learn, adapt, and initiate new tasks. In fact, Bernstein et al. have shown that the problem of 
optimizing agent behavior in such a decentralized multi-agent system has non-deterministic 
exponential time-complexity (Bernstein et al., 2002). Thus, most existing approaches use 
approximate algorithms for distributed reinforcement learning. 
In order for agents to learn globally good policies, we assume the need for agents to 
cooperate. This is because greedy policies at agents, based only on local state at the agent, do 
not necessarily improve global utility; in fact, they can even decrease global utility, as 
demonstrated in the “tragedy of the commons” problem. Another key property of 
distributed reinforcement learning is scalability; learning algorithms will cause message 
passing between agents and the algorithms need to make efficient use of the network.  
Examples of distributed systems that perform online optimization using distributed 
reinforcement learning include packet routing in MANETs (Dowling, 2005), information-
directed routing in Sensor Networks (Ghasemaghaei et al, 2007; Zhang et al, 2006), and 
optimization of application configurations in pervasive computing environments (Rigole, 
2006). Although these systems all employ different variants of distributed reinforcement 
learning, they are all cooperative; agents selflessly contribute towards a common goal.  
We see distributed reinforcement learning having similar potential to function 
approximation with reinforcement learning (RL). In both cases, the theoretical foundation 
that RL adopts from dynamic programming no longer applies, but that does not prevent the 
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development of useful systems. From a RL perspective, the potential advantages of adding 
distribution to reinforcement learning algorithms include the ability to handle larger state 
spaces by partitioning the state space over agents, an increased rate of learning through 
parallel learning over more computational hardware, and the ability to build more robust 
systems using redundant agents. For distributed systems, distributed reinforcement 
learning is an approach that can be used to build robust, self-managing and self-optimizing 
systems. 
In the next sections, we address these questions, describe existing and related approaches to 
distributed reinforcement learning and decentralized control, and, finally, we present our 
work on collaborative reinforcement learning, and show how it can be used to build an 
adaptive load-balancing system. 

2. Challenges of physical aspects of distributed systems 

Physical aspects of distributed systems should be accounted for in any distributed 
reinforcement learning algorithm. For example, agents communicate by message passing 
over a network, but messages may be lost and message delivery is typically not guaranteed 
within a fixed time bound. Message passing is required in distributed reinforcement 
learning algorithms to enable agents to collaborate to solve distributed problems and to 
enable agents to collectively learn improved policies by sharing their local information with 
one another. Care must be taken when designing distributed reinforcement learning 
algorithms, to ensure that collective learning strategies do not generate excessive amounts of 
network traffic, flooding the system. Techniques for improving network utilization should 
also be considered, such as the caching of recent data received from neighbors, 
asynchronous message passing, and sending batches of messages. 
Given that accounting for the network is crucial to distributed reinforcement learning, there 
are a number of related issues that must be taken into account when designing distributed 
reinforcement learning algorithms. These include: 

• degree of centralization: centralization of system state or cost (reward) signals introduces 

both a bottleneck and a single point of failure in a system. However, distribution of 

system state and cost functions requires adapting the Markov Decision Process (MDP) 

framework to a distributed (multi-agent) system.  

• non-stationary environments: distributed systems cannot be modeled as strict MDPs, as 

they may have non-Markovian aspects such as multiple, concurrent decision-making 

agents and history dependence (Tesauro, 2007). However, RL is only guaranteed to 

work in stationary (or almost stationary) environments. Network connections, however, 

are non-stationary, but in practice may be stable for long enough periods to enable 

learning or at least be amenable to modeling. Learning algorithms should not just 

guarantee eventual convergence on a near-optimal policy, but also guarantee timely 

convergence to ensure that real-time distributed system constraints are met. Realistic 

experimentation plays an important role in validating the timeliness of convergence of 

algorithms.  

• agent and network dynamism: in the system of interest, will the number of agents be fixed 

or limited, and will there be any form of control on how and when agents join the 

system? Can agents adapt their connections to change their neighbors at runtime, thus 
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changing the system topology? We must assume there is no control over agents leaving 

the system, as hosts (and, therefore, agents) can fail arbitrarily.  

• message passing costs: what events in the learning algorithms cause message passing? We 

need to modify learning algorithms so that message passing costs are included when 

calculating the costs of actions that induce message passing. In general, acquiring 

experience in distributed systems is costly, as it affects system performance. 

• agent views: do agents collaborate to solve system problems? How is an agent’s local 

view of the system represented? What update strategies are used to update an agent’s 

view? Are update strategies synchronous or asynchronous to the execution of the 

agent’s learning algorithm? 

• model-based learning: model-free learning is generally not useful where acquiring real-

world experience is more expensive than computation. How do we integrate model-

based learning into distributed reinforcement learning algorithms? 

• approximating the system cost signal: how can agents approximate the system cost signal, 

given that the global utility of a distributed system is not directly measurable at 

runtime?  Solutions need to address the spatial credit assignment problem: how agents 

determine which other agents and states were responsible for taking good actions. 

Solutions must quickly and efficiently propagate changes to relevant agents. Solutions 

may also address non-linear system cost functions, where a small action, relative to the 

size of the system, by one agent can produce large changes in system utility.  

3. Distributed reinforcement learning problem definition 

Goldman and Zilberstein characterize multi-agent reinforcement learning as a decentralized 

control problem for stochastic systems (Goldman and Zilberstein, 2004). In decentralized 

control systems, agents take decisions without complete state information with the goal of 

optimizing some system performance measure. The general distributed learning problem 

can be characterized as how an agent can learn a policy, using partially-observable state 

information that minimizes a partially-observable system cost function in the presence of 

other independent agents, who are also learning a policy under the same conditions. 

We now formulate the problem in terms of discrete-time stochastic control problems, based 

on (Cogill et al, 2006). The system has a finite state space S, and a finite set A of actions 

available at each time step. A cost ℜ→),( asg  is incurred when an action Aa ∈  is 

taken while in state Ss ∈ . At the time step after an action a is taken in state S, the system 

state transitions with probability ),|'( assp  to Ss ∈' . The goal of the system is to learn a 

policy for choosing actions that minimizes the overall cost incurred over a given time 

period, where costs may be geometrically discounted over time. (The alternative, equivalent 

formulation is to maximize accumulated rewards; we minimize costs to explicitly model the 

cost of message passing over a network). A policy AS →:π  describes which action is 

chosen by the system, based on the current system state. Here we consider the problem of 

choosing a policy to minimize the expected total discounted cost 
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where 0 ≤ γ  < 1. For a policy π , we can compute the total cost 
πV  from state s by solving: 
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For the expected total discounted cost, there is a unique optimal value function, ( )sV *
, 

which minimizes the total cost for all initial states: 
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A closely related function is the optimal action-value function, Q*(s, a), given by 
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γ   (4) 

An optimal policy 
*π , not necessarily unique, is obtained from Q* by taking 

( )asQ
a

,minarg ** =π . 

The above equations describe an optimal policy for a system with globally observable state 
and system actions, independent of whether a single agent controls the policy or many 
agents collaboratively control the policy. In some versions of distributed reinforcement 
learning system, many agents use local actions and message passing to control the evolution 
of the single system MDP.  
Decentralized reinforcement learning is a different decentralized control model, where many 
independent RL agents learn their local policy using both local state, and a model of 
neighboring agents built using message passing (Schneider et al, 1999; Dowling et al, 2005). 
In decentralized reinforcement learning, an agent has a model for its neighbors, called its view of 
the system. There is no global state identifying the current state of the system and no global 
actions. The desired system behavior must be realized by providing agents with actions to 
affect their local environment, as well as the ability to both collaborate and communicate 
with other agents. At this point, we can no longer model the system as a single MDP, and 
formally reason about the system’s optimal policy. The system still has a cost function that 
should be minimized, although its representation is now distributed.  
For problems that can be factored, agents can often approximate the system cost function, by 
knowing that the agent and its neighbors make a linear contribution to the system cost. 
Here, an agent learns a policy that minimizes the cost of its actions based both on its local 
state and its view, where a view is the agent’s set of neighboring agents. This way, local cost 
functions at agents can, over time, converge on a good approximation of the system cost. 
The policy will only be approximate, because other agents are simultaneously learning local 
policies (and may execute conflicting actions that reduce system utility), and the agent’s 
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view is typically not always fully consistent with the actual state of neighbors (as it would 
be overly expensive to maintain synchronized views of neighbors). Also, agents may need to 
learn about costs at remote parts of the system, not represented in their local view. In this 
case, it is important that the view model enables estimated costs to propagate over multiple 
views to reach the relevant agents in the system.  
We now present our simplified model for decentralized reinforcement learning. A 

decentralized reinforcement learning agent in is described by the tuple  

 ),,( iiii vASn =   (5) 

, where Nni ∈   is an agent from the set of all agents in the system N , iS  is the set of 

local states at in , iA  is the set of local actions at in ,  Nvi ⊂ is the set of neighboring 

agents of in .  The global state the system is a function of all local states at all agents in the 

system. A neighbor relation is defined from one agent to another agent, if one agent can 
send messages directly to the other agent. An agent may have a local representation of its set 

of neighbors, ),...,( 10 −= Ni vvv , defined as the agent’s view of the system. The set of all 

agents and their neighbors defines the topology of the system as a graph; where agents are 
the vertices and neighbor relations are the directed edges. Typically, an agent has much 
fewer neighbors than there are agents in the system. Finally, the behavior of the system 

containing K agents is defined as a set of policies, one for each of the agents, iii AS →:π  

for i = 1, . . . ,K-1. The decentralized reinforcement learning problem is defined as how the 
set of policies minimizes a system cost function.  

4. Related work on distributed reinforcement learning 

In distributed reinforcement learning, actions by individual agents can potentially influence 
any other agent in the system. However, a naïve approach to action selection where agents 
are required to reach full consensus on the best action for the system does not scale, due to 
the excessive message passing required to reach consensus. In this section we cover some of 
the existing distributed reinforcement learning models that reduce the amount of system 
knowledge that an agent requires to select an action that is approximately optimal for the 
system. We also discuss Ant Colony Optimization (ACO), a multi-agent learning model not 
directly related to RL, but which addresses the same problem of decentralized control.  

4.1 Coordination graphs for the collaborative multi-agent control of a system MDP 
A multi-agent RL system can be modeled as the collaborative multi-agent control of a single 
MDP (Guestrin et. al, 2003). In this model, the distributed control problem involves the 
online or offline computation of a coordinated action for a group of n agents. Each agent i 

selections a local action ia  and the joint action of all n agents is )a,..,(a =a 1-n0 . The joint 

action generates a cost  g(a)  for the group of agents, where the optimal joint action is 

)(minarg* aga
a

= . The goal of the agents is to select actions that minimize the received 



Reinforcement Learning: Theory and Applications 

 

148 

costs over a sequence of actions. However, if agents have full observability of the system, 
the size of the joint action space increases exponentially in the number of agents in the 
system.  
One way to reduce the size of the joint action space is to enable agents to exclude those 
states that do not need to be estimated when computing joint actions. This approach is 
viable for problems that can be factored. Factored problems can be sub-divided, solved 
separately by agents and the overall result can be calculated as a linear combination of the 
results of the sub-problems. Guestrin introduced a coordination graph (CG) as a model for 
representing factored problems (Guestrin et. al, 2003), where the global coordination 
problem is approximated as a set of local coordination problems involving a smaller number 
of agents. In a CG, the global cost function, g(a), is decomposed into a sum of local cost 
functions, fi, calculated independently at each agent using every possible action combination 
within the agent's neighborhood: 

 ( ) ( )i

n

i af=ag ∑
1

  (6) 

 

Fig. 1. The global Q-function for a 4-agent problem can be modeled in a coordination graph 
(Kok and Vlassis, 2006). 
Although Guestrin’s CG model was designed for off-line approximation, Kok and Vlassis 
adapted the model for online learning. In both models, the global Q-function is factored in a 
CG. In Fig. 1, we can see how Guestrin decomposes the global Q-function using an agent’s 
set of neighbors, called agent-based decomposition (Guestrin et. al, 2002), while Kok and 
Vlassis decompose the global Q-function using connections between pairs of agents, called 
edge-based decomposition (Kok and Vlassis, 2006). In edge-based decomposition, an edge 

from agent i to agent j is represented as a Q-function, jiQ , , where the sum of all edges (Q-

functions) defines the global Q-function.  Local Q-functions are updated based on the local 
Q-functions of the pair of agents that form the edge. This compares to agent-based 
decomposition where local Q-functions are updated based on the local Q-functions of all 
neighbors. In order to calculate the best joint action, agents in Kok and Vlassis’ model use an 
approximate algorithm called max-plus, while agents in Guestrin’s model use an exact 
algorithm called variable-elimination. The edge-based decomposition approach scales 
linearly to the width of the CG, while the agent-based decomposition approach scales 
exponentially (Kok and Vlassis, 2006). 
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The main problem with applying coordination graphs to online optimization of distributed 
systems is that it is often communication constraints that determine the topology of 
distributed systems, not problem constraints as in coordination graphs. The approach also 
assumes that problems can be factored, and does not explicitly account for the possibility of 
agent failure. 

4.2 Independent learners  
An alternative to selecting joint actions is to allow agents take individual actions, with the 
goal that the collective behavior of the agents will minimize the system cost function (Kok 
and Vlassis, 2007). Experiments by Claus and Boutilier with groups of independent Q-
learning agents showed the need for agent cooperation to ensure that local agent actions are 
globally good (Claus and Boutilier, 1998). Agent’s that are unaware of other agents can 
choose actions which are suboptimal for the system, as they use local Q-values that are 
incorrectly assumed to be independent of the actions selected and rewards received by the 
other agents. Another approach to building an independent learner model, where agents are 
unaware of one another, is Wolpert’s Collective Intelligence (COIN) model (Lawson and 
Wolpert, 2002). In the COIN model, problems are structured such that independent agents’ 
local cost models are adapted to approximate the system cost model, ensuring that actions 
that are locally good are always globally good. This approach, however, has limited 
applicability.  

4.3 Distributed value functions 

Schneider et al., 2002, have designed a distributed reinforcement learning algorithm where 
independent agents coordinate learning by sharing value functions between one another. 
Agents define a weight function f(i,j) that defines an agent's fixed set of neighbors (through 
weights being zero to non-neighbors, and non-zero for neighbors), and the weight of the Q-
values from neighbors that should be contributed to updates to Q-values.  The weight 
function is quite a general, as it defines both the static topology of the system and how value 
information is transferred over the network to a state-action pair from a successor state. As it 
is an approximate algorithm, they do not provide any convergence guarantees. The update 
function is defined as: 

 ( ) ( ) ( ) ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
+− ∑ jjj

a
neighbours

iiiiiii a',s'Qmaxji,f+as,Ra,sQ=a,sQ
j

γαα .1  (7) 

However, the weight function assumes that agents can exchange information about their 
local values at no cost and that the environment is stationary. Also, the model does not 
provide support for reducing network utilization, such as caching data and asynchronous or 
batched message passing.  

4.4 DEC-POMDP-Com 

Goldman and Zilberstein address an offline version of the decentralized reinforcement 
learning problem for independent agents. They firstly assume that agents have probabilistic 
observations of the state space (noisy observations), that is, agents are described locally by a 
partially observable Markov Decision Process (POMDP). A group of agents is defined as a 
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decentralized POMDP (DEC-POMDP). They also provide agents with an explicit language 
of communication, consisting of an alphabet of messages, to develop a communication 
policy. Communication policies model agent communications and its associated costs and 
the complete model of decentralized POMDPs with communication support is called a 
DEC-POMDP-Com. With this model, a joint policy can be defined over agents as a set of 
local policies, where each policy is composed of the communication and action policies for 
each agent. The result is a complex model, which eschews a potentially simpler approach of 
integrating messaging costs into reward functions. As their model is an off-line approach, it 
is unsuitable for online learning in distributed systems. 

4.5 Ant colony optimization 

The distributed control problem is also addressed by Ant-Colony Optimization (ACO), a 
non-reinforcement learning based approach, best described as a meta-heuristic for 
producing approximate solutions to combinatorial optimization problems (Dorigo and 
Stuetzle, 2004). Combinatorial optimization problems involve finding the minimum cost 
solution from a set of possible solutions, and problems are defined as  

 ( )Ωf,S,=Π   (8) 

, where S is the set of candidate solutions, f is the objective function that assigns a value 

f(s)  to each candidate solution, Ss ∈ , and Ω is a set of constraints (Dorigo and Stuetzle, 

2004). ACO can be used to solve both static and dynamic combinatorial problems, where 
dynamic problems have non-stationary stochastic dynamics. Dynamic problems are defined 
as a function of some quantities whose value is set by the dynamics of an underlying 
system.  
In order solve dynamic combinatorial optimization problems, ACO algorithms construct a 
problem with the following structure (Curran, 2003): 

• a set of components { }MccC ,...,1= , which correspond to agents with a single state in 

RL; 

• a set of L connections among C, which correspond to neighbor relationships between 
agents; 

• a connection cost function, ℜ→× RLJ :  defined over the connections, and 

parameterized by time. J(l, t) corresponds loosely to the expected cost g(s,a); 

• ACO defines a solution to a combinatorial optimization problem as the lowest cost 
feasible path through the topology, that is, the graph of components and connections, 
which satisfies the set of problem requirements; 

• In ACO a solution cost function is typically a summation of the connection cost over the 
connections that the solution contains. This is similar to factoring the system cost 
function in factored MDPs, as it is also a linear combination of the cost of the sub-
problems. 

ACO works by a population of agents, called ants, finding minimum cost paths (solutions) 
in the component graph by exploring, measuring the cost of edges as it traverses them, and 
storing estimated path costs at components as a pheromone trail.  Components represent the 
environment of the agents, and pheromone trails store path costs from the current 

component ic  to another (often the terminal) component Mc . The pheromone trail at ic can 
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be observed by other agents as they traverse component ic , in a form of indirect 

communication, known as stigmergy. Other agents can use the pheromone trail as a partial 
solution to their (potentially different) optimization problem.  
Similar to agent action selection in RL, ants choose a connection in the graph using a 
probabilistic decision rule, and must balance exploration and exploitation to ensure that 
good quality solutions are found in reasonable time. However, an ant also has a memory of 
the path it has traversed that can be used in decision making, for example, to prevent loops 
in paths. When an ant has reached its termination conditions, it generally uses its memory to 
retrace its path and update the pheromone trails to reflect the cost of the solution found. 
This process of sending backward ants is very similar to multi-step backups in RL.  Also, the 
backup approach in ACO naturally factors optimization problems by only attempting to 
update some subset of the states in the system, those states traversed by the ant from the 
start state. This is similar to approaches in RL used to reduce the amount of states updated 
after an action is taken, such as coordination graphs and prioritized sweeping (Sutton and 
Barto, 1998). 
An important difference with RL is ACO’s pheromone trail decay, in which the value of the 
pheromone trails decreases automatically over time. Decaying discovered solutions over 
time prevents too early convergence on sub-optimal solutions and increases exploration. 
Decay also helps adaptation from old solutions to new solutions in response to changes in 
the environment. Later, in collaborative reinforcement learning, we show how the similar 
mechanisms of decaying of estimated costs in RL can be used by agents learning in non-
stationary environments. 
ACO problems can be viewed as a subset of RL problems (Curran, 2003). In particular, ACO 
is applicable to problems where: 

• agents are independent learners; 

• states are discrete and all paths eventually terminate, that is, absorbing Markov 
Decision Processes in RL; 

• there are start states, which are those where optimization is initiated, and whose value 
must be optimized. 

A significant difference between ACO and RL are connection costs in ACO which may be 
time-varying, enabling adaptation to a non-stationary environment. RL has no time-based 
model for decaying discovered solutions. 

5. Collaborative reinforcement learning 

The rest of this chapter concerns our work on collaborative reinforcement learning (CRL), 
(Dowling et al, 2005; Dowling, 2004). CRL’s system model defines a decentralized 
reinforcement learning system as a set of independent, collaborative learner agents. Similar 
to ACO, collaborative reinforcement learning models system optimization problems as a set 
of discrete optimization problems (DOP), that can be initiated at any agent and solved at 
any agent in the system. A DOP is defined as the combinatorial optimization problem, see 
Equation 8, of finding the agent from a discrete set of agents (the system) that can solve a 
particular problem with lowest cost. The ACO-like notion of a DOP as the problem to be 
solved by an agent can also be viewed as a task from traditional RL literature. 
In CRL, a system is modeled as a graph, G(V,E), where agents are vertices and views of 
neighbors, defined later in Equation 10, define the edges in the graph. From the agent-
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perspective the goal of CRL is to solve a DOP at the lowest cost agent in the system. From a 
system perspective, the goal of CRL is to minimize the total cost of solving all DOPs in the 
system. Each agent is an independent learner with its own local MDP; there is no global 
MDP or any joint actions defined over agents. Agents have only local actions and local 
states, but may collaborate with neighbors to solve DOPs and share estimated costs of 
solving DOPs with one another. 

 

 

 

Fig. 2. A Discrete Optimization Problem (DOP) in CRL involves agents finding the lowest 
cost path from a Start Agent to a Terminal Agent that can solve the DOP. 

In CRL, a DOP is solved as a sequential decision making problem, where the objective is to 
solve the DOP at lowest cost at some agent in the system (see  

Fig. 2). This system problem can be viewed as an absorbing MDP (although no system MDP 
is explicitly represented) where the agents are states, that is, the DOP is guaranteed to enter 
a terminal state after a finite amount of time. Each agent has at least one state, an initial state, 
where the solution to the DOP is started, and at least one (and possibly all) agent(s) have a 
terminal state, where the DOP is solved.  
There are three types of action that are supported in CRL for an agent to solve a DOP: a local 
action that contributes to solving the DOP at the current agent, a delegation action that 
forwards the DOP to a neighbor, and a discovery action that attempts to find a new neighbor 
(that may be able to solve the DOP at lower cost).  Discovery actions are necessary for 
system bootstrap, when an agent does not have any neighbors, and for discovering new 
neighbors online. The three action types are illustrated in  
Fig. 3, where it is shown how a MDP can be started either by an application at the agent’s 
host or by a neighbor delegating the DOP to it.  In distributed systems, delegation actions 
map to message passing over a network and discovery actions map to some form of 
underlying service or host discovery protocol. A discovery action that finds a new neighbor 
adds a new delegation action for the neighbor and a new Q-Value entry in its lookup table 
for the relevant state(s).  For delegation actions, CRL provides a connection cost as an explicit 
model for the cost of using a network link. Agents attempt to learn a policy that solves 
DOPs with minimal cost, treating all three types of action equally, and attempting to select 
the action with the minimal estimated cost, given the agent's current state.  
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Fig. 3. Agent i has two states and three actions (a delegation, local and discovery action). The 
connected state is an initial state for the MDP at agent i and when the terminal state is 
reached at some agent the DOP has been solved. These are the three main types of action in 
CRL: local actions attempt to solve the DOP at the agent, delegation actions attempt to 
forward the DOP to a neighbor, and discovery actions try to find new neighbors. DOPs can 
be started by either an application or a neighbor; delegation and local actions may fail. 

5.1 CRL system model 

We now present the system model for Collaborative Reinforcement Learning (CRL). An 

agent in is described by the tuple  

 ),,,( iiiii CvASn =  (9) 

, where iS  is its set of local states, iA  is the set of local actions, Nvi ⊂ is the set of 

neighboring agents of in , and iC is the cache, a set of all cached views of neighbors of in . A 

cached view is defined as a pair containing a Q-function  ( )jii asQ ,  at in , where ja is a 

delegation-action, and a V-value ( )vj sV  for a state vs  at a neighboring agent jn ,  for 

which a state transition is possible from is at agent in  to js at agent jn , 

 ( ) ( )( ) ( ) 0,,,, >∈ jivivjjii assPifCsVasQ  (10) 
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            iv  

, where ii Ss ∈ , ij Aa ∈  , 
U
j

ijjv vSSs
=

∈∈
0

,
, and ( ) ℜ∈vj sV . A state transition from a 

state is at in to a state js
at jn is realized by the termination of the local MDP at in

and 

the initiation of a new MDP at jn
. The state js

is called a connected state as it represents 
the connection of the MDPs at the two different agents. On a successful state transition state 

is  to state js
, a backup of 

( )vj sV  is made to its entry in the cache at agent in . A cached 

view of a neighbor, thus, represents a directed connection from agent in to agent jn
 for 

the delegation of DOPs and the backup of V-value information. Model-based Q-learning 
algorithms can use the cached V-values to reason about the cost of delegation actions to 
neighbors, without having to send messages to those neighbors; thus helping improve 
network utilization. As we will see, the cached V-values can also be updated 
asynchronously by neighbors, using advertisements, and over time, by decay of the cache. 

5.2 Advertisement of estimated DOP costs between agents  

When an agent executes a delegation action to successfully forward a DOP to a neighbor, it 
receives an instantaneous cost (backup) from its neighbor that is used to update the agent’s 
cached V-value. However, agents can also asynchronously advertise to their neighbors 
updates to the V-values of their connected states. This asynchronous advertisement enables 
agents to learn about remote parts of the system without executing actions. 

 

Fig. 4. Agent j advertises its V-value for state s to neighbors k and i. Advertisement enables 
agents to collectively learn about the state space by agents sharing updated V-values; agents 
do not have to take actions to learn about changes in the state space. 

In Fig. 4, we can see how agent  jn sends its updated V-value to neighboring agents in  and 

kn . In this example, at agent k the V-value for a local action is -68, whereas its estimated 

cost of its neighbor agent j solving it is -52 (of which -10 is the estimated connection cost to j 
). Agent k will, therefore, have a higher probability of delegating a DOP to agent j than 
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attempting to solve it locally. In this example, the advertisement may be caused by a local 

action at jn  or possibly by an advertisement received by jn . Advertisements can cause 

cascading changes in MDPs at many agents caused by a change in a MDP at a single agent. 

Implementation strategies for advertisement of V-values include broadcasting (useful in 
wireless networks where the network medium is shared), gossiping values periodically, 
conditional notification, and return values from delegation actions. Advertisements should 
be sent regularly to neighbors to indicate the agent's availability and refresh any cached V-
values.  

5.3 Decaying of cached Q-values for connected states 

In the absence of advertisements, agents decay the V-values in their cache over time. The 
decay model allows agents to remove non-contactable agents from their set of neighbors 
when a cost threshold is reached. Decay enables agents to adapt their policies to a dynamic 
set of neighbors, as neighbors that were lower cost in the past are gradually forgotten over 
time in the absence of advertisements from them, for example, because they left the system. 
The rate of decay of costs in the cache is configurable, with higher rates more appropriate 
for more dynamic networks. Cached V-values for connected states are decayed using the 
following equation: 

 ( )( ) ( ) tdsVsVDecay ρ.=  (11) 

where td is the amount of time elapsed since the last received advertisement for ( )sV  from 

a neighbor, ( ) ℜ∈sV , and ρ  is a scaling factor that sets the rate of decay. 

5.4 CRL learning algorithm 

The CRL learning algorithm is a distributed model-based reinforcement learning algorithm with a 
cost model for network connections. In CRL, agents maintain a model of the state transition 

probabilities, ( )assPi ,' , which is particularly useful for state transitions to connected 

states, as they represent network links between agents. Even a simple statistical model based 
on recent observations of the network link can be a powerful predictor of whether it will 
function or not (Dowling et al., 2005).  

Executing actions in CRL returns a cost signal, ( )asgi ,  from the agent’s local 

environment. However, delegation actions receive an additional connection cost, 

( )assDi ,' , that provides the estimated network cost of delegating the DOP from the local 

agent to a neighboring agent. Our distributed model-based reinforcement learning 
algorithm for delegation actions is 

 ( ) ( ) ( ) ( ) ( )( )∑
∈

++=
iSs

jiiii s'VassDassPas,gas,Q
'

,'.,'  (12) 

, where s is the current state, a the action to be executed from the set of possible actions, and 

s’ is the next state from the set of possible next states. ( )'sV j  is the estimated cost of the 



Reinforcement Learning: Theory and Applications 

 

156 

neighbor j solving the DOP, that is, it is the value function for agent j’s connected state s’. 

The value, ( )'sV j , is retrieved from the local cache at agent i, and no message needs to be 

sent to agent j to calculate it. ( )assPi ,'  is calculated from the local state transition model, 

as the probability of the next state being s’ after action a was executed in state s.  

If, however, the action is not a delegation action, the connection cost, ( )assDi ,' , becomes 

zero. Thus, the distributed model-based reinforcement learning algorithm for local actions 
and discovery actions is: 

 ( ) ( ) ( ) ( )( )∑
∈

+=
iSs

jiii s'VassPas,gas,Q
'

.,'   (13) 

The pseudo-code for the algorithm that a CRL agent executes at each time-step is outlined in 
Fig. 5. In this version, advertisement and decay are implemented as synchronous activities 
in the single thread; an alternative implementation would be to execute them 
asynchronously in a second thread. 

 
Fig. 5. Pseudo-Code for the CRL algorithm. 

5.5 System optimization in CRL 

The system optimization problem in CRL involves minimizing the cost of solving all DOPs 
in the system, that is, terminating all MDPs at all CRL agents. The system optimization 
problem is defined as minimizing the total cost of solving all DOPs 

 ( )∑ ∑
−

=

−

=

1

0

1

0

,
K

i

Mi

j

ji DOPng   (14) 

, where K is the number of agents in the system and Mi is the number of DOPs to be solved 

at agent i. When DOPs are not competing for finite resources in the system and the network 

environment is stable, the DOPs can be optimized using local information and cached views 

Thread 1 
1. repeat forever 
2. listen for a DOP/advertisement from a neighbor/application; 
3. if (no DOP) execute asynchronous advertisements; update/decay cache; 

 
4. repeat 
5.   observe the local environment’s current state s, 
6.   select and execute some legal action (local, delegation or discovery action) in state s  

 using a probabilistic action selection strategy; 
7.   receive a cost g followed by an observed transition to a state s’; 
8.   update the state transition model; 
9.   execute the model-based distributed learning algorithm; 
10.   execute asynchronous advertisements;  
11.   decay cached delegation costs; 
12. until DOP solved locally or DOP delegated 
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of neighbors. However, when there are several agents attempting to solve DOPs 

concurrently at neighboring agents or the network environment is dynamic, the local 

estimated DOP solution cost at agent i quickly becomes stale, and agents need feedback 

from their neighbors to improve the quality of their local models. 

5.6 Non-Markovian aspects in CRL 

There are several heuristics in CRL that seek to overcome non-Markovian properties of 

distributed systems. For example, the DOP can have a local memory with information such 

as the list of currently visited agents, and a timeout value for when the DOP becomes 

invalid due to real-time constraints. The DOP memory can ensure that DOPs do not traverse 

loops, something MDP cannot prevent. The timeout value for a DOP could be added to an 

agent’s MDP state space, although it could reduce the potential for collective learning of 

advertised V-Values, as the advertised values would now include a timeout value. 

6. Load balancing experiments using CRL 

We now define the load balancing problem for CRL. These experiments extend some 

previous work on load balancing using CRL (Dowling, 2004). We define the load balancing 

problem as a set J of n loads, and a set M of m hosts, where the goals are to store all load in 

the system (maximize resource utilization) in as short a time as possible (minimize the 

number of messages sent when storing the load), as well as to balance load equally among 

agents in the system. These last two goals can conflict, as storing loads as quickly as possible 

may not equalize load in the system. In our problem, we assume that any load can be 

potentially stored at any agent, subject to available local storage at the agent. We simplify 

the network cost problem by assuming that all network connections have equal latency. The 

loads have an entry point at some host (or hosts) in system; a load is routed from an entry 

point to a host that handles the load, constrained by the network topology of the system, 

which may contain cycles. 

In our experiments, we define two different cost models for CRL that only differ by their 

cost models: in the discrete cost model, a successful store action for a load has no cost and an 

unsuccessful store action has some fixed high cost; in the gradient cost model, a successful 

store action has a cost that is a function of the spare capacity at the agent and an 

unsuccessful store action has some fixed high cost. In both models, we assigned a fixed 

connection cost for forwarding a load to a neighboring agent (in a real network, the 

connection cost could be measured from the underlying network message sending cost).  

The purpose of these two different CRL models is to show how the algorithm can be tuned 

exploit the first available space at agents (discrete model will prefer the first agent with 

spare capacity), or to exploit space at higher capacity agents (gradient cost model will prefer 

agents with higher spare capacity). 

We ran our experiments in a discrete event simulator written in Java. The experiments 

define a topology of agents with connections between them, and a set of DOPs, where each 

DOP is a load storage problem. The unit of time in the experiments corresponds to a step in 
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the simulator, where a step involves the execution of an action (storage, delegation or 

discovery) by an agent.  

6.1 Experiment 1: Grid topology: Balancing of load over 48 homogenous agents and 2 
server agents 

The goal of this experiment is to evaluate whether agents can exploit their total load 
capacity (maximize resource usage), and minimize the amount of messages sent between 
agents (minimize time required to store all load). Sub-goals include evaluating how the 
different CRL policies exploit the higher load capacity at two servers in topology, and how 
well load is equalized among agents in the system. The topology in this experiment is a 
Grid; there are 48 agents with a capacity of 20 units, and 2 server agents with a capacity of 
200 units. Each agent has 10 neighbors, where each agent i is connected to neighbors ((i+1) 
mod 50, … , (i+9) mod 50). The servers are placed at positions 47 and 48 in the grid, with the 
starting position at 0. Load units are sent into the system via the agent at position 0.  We 
compare the two different CRL policies (CRL-discrete and CRL-gradient) with both a 
random policy (that selects a random action), and a dynamic programming (DP) solution 
that performs a breadth-first balancing of the load from the entry point. The CRL policies 
use a Boltzmann action selection strategy with a temperature parameter used to control the 
ratio of explorative to exploitative actions (Sutton and Barto, 1998). The results for the CRL 
and random policies were averaged over 5 experimental runs. The configuration parameters 
for the CRL policies are given in Table 1, below. 

Parameter Value 

initial Q-Values for storage/discovery actions -3 

initial Q-Values for delegation actions  (-3*numNeighbours) + 
connection cost 

connection cost -10 

MinQValue -200 

MaxQValue 0 

delegation success reward -2 

cache decay rate 0.01 

action store success reward for CRL-gradient  (MinQValue / (2 * (Capacity –
CurrentLoad)) 

action store success reward for CRL-discrete 0 

action store failure CRL-gradient/CRL-discrete MinQValue 

Temperature 0.9 

Table 1. CRL-gradient and CRL-discrete configuration parameters. 
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As illustrated in  

Fig. 6, all the policies successfully exploit the available capacity in the system. The random 
policy eventually finished after ~120,000 time steps. The dynamic programming (DP) policy 
is near optimal with respect to the number of time steps (i.e., actions executed) required to 
store the load. The CRL-discrete policy is also near optimal, as it is an exploitative policy 
that favors storing load over delegating load until an agent has reached its maximum 
capacity. The CRL-gradient policy is also near optimal until there is roughly 5% capacity left 
in the system, after which it performs similar to the random policy. This is because, at 5% 
spare capacity, the advertised V-Values from neighbors with a spare capacity reach the 
MinQValue, and DOPs effectively have to do a random walk to find the agents with spare 
capacity. This effect can be seen in Fig. 9. 
In Figures 7-10, we can see how long the different policies take to discover and exploit the 
servers. Fig. 11 shows how well the loads are equalized among agents. The CRL and DP 
policies are more exploitative and tend to fill agents capacities sequentially from agent 0, 
leading to suboptimal load equalization, but they still compare favorably with the Random 
policy. The measure we used to determine load equalization is the standard deviation of 
agent loads from the mean agent load (in terms of percentage of capacity used) at agents.  
 
 

 

 

 

Fig. 6. Grid Topology: Load Balancing in a static topology with 48 agents and 2 servers (at 
positions 48, 49 in the grid) with CRL-gradient, CRL-discrete, Dynamic Programming and a 
random policy. Resource utilization is eventually maximized by all policies, while message 
passing is near-optimally minimized in both DP and CRL-Discrete. 
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Fig. 7. Grid Topology: CRL-Discrete Policy. This exploitative policy favors storage actions at 
agents that are not fully loaded. Notice how agents are filled almost sequentially from the 
source of the load, agent 0. 

 

 

Fig. 8. Grid Topology: CRL-Gradient Policy. This policy favors storage actions on servers, 
but becomes random when agents are almost fully loaded. Notice how quickly the server 
agents are almost discovered and exploited, even though they are 3 hops from agent 0. 
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Fig. 9. Grid Topology: Dynamic Programming policy. Notice the similarity of this 
exploitative policy to the CRL-Discrete Policy. 

 

 

 

Fig. 10. Grid Topology: The random policy took over 15 times longer than the DP and CRL-
Discrete policies to store all the load. 
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Fig. 11. Grid Topology: Standard Deviation of the Percentage of Load Capacity used at 
Agents for DP, CRL-Discrete, CRL-Gradient and Random Policies. 

6.2 Experiment 2: Random topology: Balancing of load over 48 homogenous agents 
and 2 server agents 

The goal of this experiment is, again, to maximize resource usage, and minimize message 
overhead, but this time in a random graph topology. In this topology, there are 48 agents 
with a capacity of 20 units, and 2 server agents with a capacity of 200 units. Each agent has 
10 different neighbors, randomly distributed from the set of available agents, but where an 
agent cannot be a neighbor to itself. The servers are placed at positions more than 1-hop 
away from the starting position at 0. Load units are sent sequentially into the system via the 
agent at position 0.  The same random topology was used to evaluate all policies, and the 
results were averaged over 5 experimental runs. 
Again, we compare the two different CRL policies (CRL-discrete and CRL-gradient) with a 
random policy (that randomly selects an action from the local store action and the set of 
delegation actions), but the DP policy was not included as it does not finish, due to the 
presence of cycles in the topology. The CRL configuration parameters were the same as in 
experiment 1, with the exception of the Temperature, which was set to 0.85 for slightly 
increased exploration.  
In Fig. 12, we can see that the CRL-Discrete policy is very effective at exploiting all available 
load in the system, while the CRL-Gradient policy again becomes a roughly random policy 
for the last ~5% spare capacity in the system. The Random Policy took an increased amount 
of time, over the grid topology, and terminated at time step ~150,000. 
In another experiment, we added some dynamism to the environment by adding an extra 
server to the system when the system’s load capacity was full (see Fig. 13). At the same time 
step, we added a discovery action to the 1-hop neighbors from agent 0 to enable them to 
discover the server (located at a 2-hop distance from the source agent 0). As can be seen, the 
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CRL-discrete policy quickly discovers and exploits the new server, while the CRL-gradient 
policy takes a longer time to do so. There was also quite high variation in how long the CRL-
gradient policy took to discover the new server, indicating a high level of randomness in its 
exploration. The upward spike near the end of CRL-gradient policy was a point where 
collaborative feedback (that is, advertisements) from the new server eventually influenced 
reached the origin agent 0. 

 

Fig. 12. Random Graph: Load Balancing for CRL-gradient, CRL-discrete and Random 
Policies.  

 

Fig. 13. Dynamism in the Random Topology: a new server was added, when the 50 agents 
were full, and was quickly exploited by the CRL-Discrete policy, less so by CRL-Gradient. 
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6.3 Discussion of experiments and CRL 

The experiments show how CRL can be used to build a system that adapts to a dynamic 
environment. Agents interact with their local environment by storing loads and receiving 
feedback on available local storage capacity. Agents interact with their neighbors by 
delegating load storage to them, receiving estimated costs for neighbors’ storing loads. 
Through delegating load and locally storing load, agents collaboratively provide a load 
balancing service that is robust, adaptive, and can learn about and exploit new agents 
introduced into the system. The experiments could easily be extended to improve 
performance by adding asynchronous advertisements and adding heuristics, for example, 
adding memory to the DOP of the list of agents already visited prevent DOPs entering 
network loops. 
CRL, itself, is an approximate approach to online, decentralized reinforcement learning. It 
has similarities with population-based techniques such as ACO, particle swarm intelligence 
(Kennedy and Eberhart, 2001) and evolutionary computing: the system takes a diverse set of 
DOPs as input, and it reinforces the selection of agents that were successful at solving the 
DOPs given the state of the system environment; this process improves system utility for a 
stable environment and can also adapt a system to better match its changing environment. 
Rather than having agents die and be replaced by fitter agents, CRL agents decay their 
solutions to purge the system of stale information and use collaborative feedback to 
cooperatively learn new solutions.  

7. Future of distributed reinforcement learning 

Distributed reinforcement learning is an emerging field that offers the promise of enabling 
the construction of distributed systems that can adapt and optimize their operation online.  
Existing approaches to distributed reinforcement learning include multi-agent control of a 
single MDP that describes system behavior, and decentralized approaches where agents are 
independent learners that collaborate to provide system services and collectively learn from 
one another to build local policies that improve system utility.  
Designers of distributed reinforcement learning algorithms should give careful 
consideration to real-world properties of distributed systems, such as the high cost of 
message passing, and the possibility of failure for both agents and network connections. As 
a proof of concept, in this chapter, we showed how collaborative reinforcement learning can 
be used to build a load balancing system that can adapt to a dynamic environment. 
In the future, we anticipate that distributed reinforcement learning algorithms will be 
increasingly applied in a variety of domains, from large-scale grid computing systems, to 
optimize resource usage, to small-scale wireless and sensor networks, where power usage 
and radio transmission usage should be minimized. In both cases, the goal of distributed 
reinforcement learning will be to replace existing parametric models with online learning 
models that can demonstrate improved adaptation to dynamic environments. 
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1. Introduction 

It is well known that Reinforcement Learning (RL) techniques are able to solve Markovian 
stationary decision problems (MDP) with delayed rewards. However, not much is known 
yet about how these techniques can be justified in non-stationary environments. In a non-
stationary environment, system characteristics such as probabilities of state transitions 
and reward signals may vary with time. This is the case in systems where multiple agents 
are active, the so called Multi-Agent Systems (MAS). The difficulty in a MAS is that an 
agent is not only subject to external environmental changes, (like for instance load 
changes in a telecommunication network setting) but, also to the decisions taken by other 
agents, with whom the agent might have to cooperate, communicate or compete. So a key 
question in multi-agent Reinforcement Learning (MARL) is how multiple reinforcement 
learning agents can learn optimal behavior under constraints such as high communication 
costs. In order to solve this problem, it is necessary to understand what optimal behavior 
is and how can it be learned. 
In a MAS rewards are sensed for combinations of actions taken by different agents, and 
therefore agents are actually learning in a product or joint action space.  Moreover, due to 
the existence of different reward functions, it usually is impossible to find policies which 
maximize the expected reward for all agents simultaneously. The latter is possible in the 
so-called team games or multi-agent MDP's (MMDP's). In this case, the MAS is purely 
cooperative and all agents share the same reward function. In MMDP's the agents should 
learn how to find and agree on the same optimal policy. In general, an equilibrium point 
is sought; i.e. a situation in which no agent on its own can change its policy to improve its 
reward when all other agents keep their policy fixed. 
In addition, agents in a MAS face the problem of incomplete information with respect to 
the action choice.  One can assume that the agents get information about their own choice 
of action as well as that of the others. This is the case in what is called joint action 
learning, (Littman, 2001),(Claus & Boutilier, 1998), (Hu & Wellman, 2003). Joint action 
learners are able to maintain models of the strategy of others and explicitly take into 
account the effects of joint actions. In contrast, independent agents only know their own 
action. The latter is often a more realistic assumption since distributed multi-agent 
applications are typically subject to limitations such as partial or non observability, 
communication costs, asynchronism and stochasticity. 
Our work in MARL is mainly motivated by the early results achieved by simple learning 

automata (LA) that can be interconnected in games, networks and hierarchies. A learning 
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automaton describes the internal state of an agent as a probability distribution according 

to which actions should be chosen. These probabilities are adjusted with some 

reinforcement scheme according to the success or failure of the actions taken. Important to 

note is that LA are updated strictly on the basis of the response of the environment, and  

not on the basis of any knowledge regarding other automata, i.e. nor their strategies, nor 

their feedback. As such LA agents are very simple. Moreover, LA can be treated 

analytically, from a single automaton model acting in a simple stationary random 

environment to a distributed automata model interacting in a complex environment.  

The past few years, a substantial amount of research has focused on comprehending 

(Tuyls & Nowé 2005) and solving single-stage multi-agent problems,  modeled as normal 

form games from game theory e.g. joint-action learners (Claus & Boutilier, 1998); ESRL 

(Verbeeck et al, 2007 (b)) or Commitment Sequences (Kapetanakis et al, 2003). Recently, 

more researchers focus on solving the more challenging multi-stage game or sequential 

games where the agents have to take a sequence of actions. These can be modeled as 

Markov Games (Shapley, 1953). Many real-world problems are naturally translated into 

multi-stage problems. The expressiveness of multi-stage games allows us to create more 

realistic simulation models with less abstraction. This brings us closer to the application 

level. Moreover, we argue that multi-stage games help to improve the scalability of an 

agent system. 

Here we present a summary of current LA-based approaches to MARL. We especially 

focus on multi-stage multi-agent decision problems of the following type : ergodic 

Markov Games, partial observable ergodic Markov Games and episodic problems that 

induce tree-based Markov games. We describe both their analytical as well as their 

experimental results, and we discuss their contributions to the field. As in single agent 

learning, we consider the different updating mechanisms relevant to sequential decision 

making; i.e. using global reward signals for updating called Monte Carlo updating, versus 

using intermediate rewards to update strategies, the so-called Bootstrapping methods. 

First we start with a short description of the underlying mathematical material for 

analyzing multi-agent, multi-stage learning schemes. 

2. Markov decision processes and Markov games 

In this section we briefly explain the formal frameworks used in single and multi-agent 

learning. 

2.1 The Markov property 

A Stochastic process {X(t)|t  T} is a system that passes from one state to another governed 

by time.  Both the state space   as the index set (time) T can be either discrete or continuous.  

A Markov process is a stochastic process that satisfies the Markov property. This property 

states that the future behavior of the process given its path only depends on its current state. 

A Markov process whose state space is discrete is also called a Markov chain, whereas a 

discrete-time chain is called stationary or homogenous when the probability of going from 

one state to another in a single step is independent of time. So, if the current state of the 



Multi-Automata Learning 

 

169 

Markov chain at time t is known, transitions to a new state at time t + 1 are independent of 

any of the previous states. 

One of the most important questions in the theory of Markov chains is how the chain will be 
distributed among the states after a long time.  In case the Markov chain is ergodic,  a 
unique stationary probability distribution exists. However the process can also be absorbed 
into a closed set of states. An absorbing state is a state from which there is a zero probability 
of exiting. An absorbing Markov system is a Markov system that contains at least one 
absorbing state, and possesses the property that it is possible to get from each non-absorbing 
state to some absorbing state in one or more time-steps. More information on the properties 
of Markov processes can be found in (Puterman,  1994). 

2.1 Definition of an MDP 

A Markov Decision Process (MDP) is a  discrete-time Markov process characterized by a set 
of states; each having several actions from which a decision maker must choose.  The 
decision maker earns a reward for each state visited. The problem of controlling an MDP for 
which transition probabilities and rewards are unknown can be stated as follows. Let S= {s1, 
… , sN } be the state space of a finite Markov chain {Xt}t ≥0  and Ai = {ai1, . . . , ail} the action set 
available in state si. Each starting state si, action choice ai  Ai and ending state sj has an 
associated transition probability Ti->j (ai) and reward Ri->j (ai). The overall goal is to learn a 
policy  , or a set of actions,  = (a1, . . . , aN) with aj   Aj so that the expected average reward 
for policy  :  J() is maximized:  
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The policies we consider, are limited to stationary, nonrandomized policies. Under the 
assumption that the Markov chain corresponding to each policy  is ergodic, it can be 
shown that the best strategy in any state is a pure strategy, independent of the time at which 
the state is occupied (Wheeler & Narendra, 19986). Assume the limiting distribution of the 
Markov chain to be (α) = ( 1(α), . . ., N(α)) with forall i,  i(α) > 0 as n -> ∞.  Thus, there are 
no transient states and the limiting distribution (α) can be used to rewrite Equation 1 as: 
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2.2 Definition of a Markov game  
An extension of single agent Markov decision problems to the multi-agent case is 
straightforward and can be defined by Markov Games (Shapeley, 1953). In a Markov Game, 
actions are the joint result of multiple agents choosing an action separately. Note that Ai,k = 
{ai,k1, . . ., ai,kl} is now the action set available in state si for agent k, with k: 1 . . . n, n being the 
total number of agents present in the system. Transition probabilities Ti->j (ai) and rewards   
Ri->j (ai) now depend on a starting state si, ending state sj  and a joint action ai from state si, i.e. 
ai = (ai1, . . ., ain) with aik  Ai,k . The reward function  Ri->j (ai) is now individual to each agent 

k, indicated as 
ij

kR . Different agents can receive different rewards for the same state 

transition. Since each agent k has its own individual reward function, defining a solution 
concept becomes non-trivial.   
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Again we will only treat non-randomized policies and we will assume that the Markov 
Game is ergodic in the sense that there are no transient states present and a limiting 
distribution on the joint policies exists. We can now use Equation 2 to define the expected 
reward for agent k , for a given joint policy . 
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Due to the existence of different reward functions, it is in general impossible to find an 
optimal policy for all agents simultaneously. Instead, equilibrium points are sought.  In an 
equilibrium, no agent can improve its reward by changing its policy if all other agents keep 
their policy fixed. In the case of single state multi-agent problems, the equilibrium strategies 
coincides with the Nash equilibria of the corresponding normal form game. In the case of 
multi stage problems, limiting games can be used as analysis tool. The limiting game of a 
corresponding multi-agent multi-state problem can be defined as follows:  each joint agent 
policy is viewed as a single play between players using the agent's policies as their 
individual actions. The payoff given to each player is the expected reward for the 
corresponding agent under the resulting joint policy. Analyzing the multi state problem 
now boils down to explaining the behaviour of the multi-agent learning technique in terms 
of Nash equilibriums in this limiting game. 

  

 
Fig. 1. A Markov Game Problem and its corresponding limiting game 
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Figure 1 shows an example Markov game with 4 states and 2 agents. States s0 and s1 are the 
only action states, with  2 possible actions (0 and 1) for each each agent. Joint actions and 
nonzero rewards (R) associated with the state transitions are indicated in the figure. All 
transitions are deterministic, except in the non-action states s2 and s3 where the process goes 
to any other state with equal probability (1/4). The corresponding limiting game for this 
problem is shown in the accompanying table. Equilibria in this game are indicated in bold. 
In a special case of the general Markov game framework, the so-called team games or multi-
agent MDP's (MMDP's) (Boutilier, 1999) optimal policies are proven to exist.  In this case, 
the Markov game is purely cooperative and all agents share the same reward function. This 
specialization allows us to define the optimal policy as the joint agent policy, which 
maximizes the payoff of all agents. An MMDP can therefore also be seen as an extension of 
the single agent MDP to the cooperative multi-agent case. 

 3. Learning automata as simple policy iterators 

The study of learning automata started in the 1960's by Tsetlin and his co-workers  
(Tsetlin, 1973). The early models were examples of fixed-structure stochastic automata. In its 
current form, LA are closely related to a Reinforcement Learner of the policy iteration type. 
Studying learning automata theory is very relevant for multi-agent reinforcement learning,  
since learning is treated analytically not only in the single automaton setting, but also in the 
case of distributed interconnected automata and hierarchies of automata interacting in 
complex environments (Narendra & Thathachar, 1989) . In this section, we only discuss the 
single automaton case in stationary environments. More complicated LA models and their 
behaviour will be discussed in the following sections. 
A variable structure learning automaton formalizes a general stochastic system in terms  
of actions, action probabilities and environment responses. The action probabilities, which 
make the automaton mathematically very tractable, are updated on the basis of the 
environment input. Formally, the automata can be defined as follows: a quadruple { A, r, p, 
U } for which : A = {a1, …, al } is the action or output set of the automaton, r(t) is an element 
of the set {0,1} and denotes the environment response at instant t, p(t) = (p1(t), … , pl(t)) is the 
action probability vector of the automaton, with pi(t) = Prob(a(t) = ai)  and which satisfies the 
condition that  Σli=1 pi(t)=1  for all t and U is called the learning algorithm and denotes the 
schema with which the action probabilities are updated on the basis of the environment 
input. The output a of the automaton is actually the input to the environment. The input r of 
the automaton is the output of the environment. In general the environment refers to all 
external conditions and influences affecting life and development of an organism. In the P-
model learning automaton, the output r(t) of the environment is considered to be binary. 
The output set of the environment is the set {0,1} so that output signal r = 0 is identified with 
a failure or an unfavourable response, while r = 1 denotes a success or a favourable 
response. Static environments are characterized by penalty probabilities ci . They represent 
the probability that the application of action ai will be successful or not, i.e. Prob(r = 0 | a = 
ai) = ci . Knowing ci , the reward probability di for action ai is given by: di  = 1 - ci . Other 
environment models exist, depending on the nature of the environment response. In the Q-
model the environment response is an element of a discrete, finite set of possible responses 
which has more than 2 elements, while in the S-model the environment response r is a real 
number in the interval [0,1]. 
Important examples of linear update schemes are linear reward-penalty, linear 
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reward-inaction and linear reward-ε-penalty. The philosophy of those schemes is essentially 
to increase the probability of an action when it results in a success and to decrease it when 
the response is a failure.  The general algorithm is given by: 
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with l the number of actions of the action set A. The constants r and p are the reward and 
penalty parameters respectively. When r = p  the algorithm is referred to as linear reward-
penalty L R-P, when p = 0  it is referred to as linear reward-inaction 
L R-I and when p is small compared to r it is called linear reward-ε-penalty L R-εP. In the 
above, it is assumed that ci and di are constants. This implies that the environment is 
stationary and that the optimal action am can be identified. The goal of the learning 
automaton is to find this optimal action, without knowing the environments' reward or 
penalty probabilities. The penalty probability cm of the optimal action has the property that 
cm = mini { ci }. Optimality of the learning automaton can then be defined using the quantity  
M(t) = E[r(t) = 0 | p(t)] which is the average penalty for a given action probability vector. 
Consider for instance a pure-chance automaton, i.e. the action probability vector p(n) is 
given by: pi(n) = 1 / l  for all i: 1, … , l. Then M(t) is a constant (denoted by M0) and given by: 
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=
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Definition 1 

A learning automaton is called optimal if  ( )[ ] mt ctME =∞→lim  

While optimality is desirable in stationary environments, practically it may not be achieved 
in a given situation. In this case, ε-optimality may be reached. So, put differently, the 
objective of the learning scheme is to maximize the expected value of reinforcement received 
from the environment, i.e. E[r(t) | p(t) = p] by searching the space of all possible action 
probability vectors. Stated as above, a learning automata algorithm can be viewed as a 
policy iteration approach. 
In arbitrary environments and for arbitrary initial conditions, optimality or ε-optimality may 
be hard to reach. Some form of desired behaviour in these cases can be specified by 
expediency and absolute expediency. 
Definition 2 
A learning automaton is called expedient if it performs better than a pure-chance automaton, i.e.  

( ) 0lim MtMt <∞→  

Definition 3 

A learning automaton is said to be absolutely expedient if ( ) ( )[ ] ( )tMtptME <+ 1  

Absolute expediency imposes an inequality on the conditional expectation of M(t) at each 
instant. In (Narendra & Thathachar, 1989) it is shown that in stationary environments 
absolute expediency implies ε-optimality. 
The reinforcement learning algorithms given above, i.e. the L R-P , L R-I and L R-εP schemes 
show the following asymptotic behaviour: the L R-I scheme is proved to be absolutely 
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expedient and thus ε-optimal in stationary environments. The L R-P scheme is found to be 
expedient, while the L R-εP scheme is also ε-optimal, (Narendra & Thathachar, 1989). 
Another classification used for reinforcement schemes is made on the basis of the properties 
of the induced Markov process {p(t)}{t>0} . If the penalty probabilities ci of the environment 
are constant, the probability p(t+1) is completely determined by p(t) and hence {p(t)}{t>0} is a 
discrete-time homogeneous Markov process. The L R-P and L R-εP  schemes result in Markov 
processes that are ergodic, the action probability vector p(t) converges in distribution to a 
random variable p*, which is independent of the initial conditions. In case of the L R-εP  
scheme, the mean value of p* can be made as close as desired to the optimal unit vector by 
choosing r and p sufficiently small. The Markov process generated by the L R-I scheme is 
non-ergodic and converges to one of the absorbing states with probability 1. 
Choosing parameter r sufficiently small can make the probability of convergence to the 
optimal action as close to 1 as desired. More on the convergence of learning schemes can be 
found (Narendra & Thathachar, 1989). 

4. Interconnected learning automata for ergodic Markov games 

It is well known that Reinforcement Learning techniques (Sutton & Barto, 1998) are able to 
solve single-agent Markovian decision problems with delayed rewards. In the first 
subsection we focus on how a set of interconnected LA is able to control an MDP (Wheeler 
& Narendra, 1986) . In the next subsection, we show how to extend this result to the multi-
agent case in a very natural way.  

4.1 Control of MDP’s 

The problem of controlling a Markov chain can be formulated as a network of automata in 
which control passes from one automaton to another. In this set-up every state in the 
Markov chain has a LA that tries to learn the optimal action probabilities in that state with 
learning scheme given in Equation 4. Only one LA is active at each time step and transition 
to the next state triggers the LA from that state to become active and take some action. LA 
LAi active in state si is not informed of the one-step reward Ri->j(ai) resulting from choosing 
action ai ЄAi in si and leading to state sj.  However when state si is visited again, LAi 
receives two pieces of data: the cumulative reward generated by the process up to the 
current time step and the current global time. From these, LAi computes the incremental 
reward generated since this last visit and the corresponding elapsed global time. The 
environment response or the input to LAi is then taken to be: 
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where i(ti + 1) is the cumulative total reward generated for action ai in state si and i(ti + 1) 
the cumulative total time elapsed. The authors in (Wheeler & Narendra, 1986) denote 
updating scheme as given in Equation 4 with environment response as in Equation 5 as 
learning scheme T1. The following results were proved: 
Lemma1  (Wheeler & Narendra, 1986) 
The Markov chain control problem can be asymptotically approximated by an identical 
payoff game of N automata.   
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Theorem 1 (Wheeler & Narendra, 1986) 
Let for each action state si of an N state Markov chain, an automaton LAi using the Monte 
Carlo updates as described above and having ri actions be associated with. Assume that the 
Markov Chain, corresponding to each policy α is ergodic. Then the decentralized adaptation 
of the LA is globally ε-optimal with respect to the long-term expected reward per time step, 
i.e. J(α). 
The principal result derived is that, without prior knowledge of transition probabilities or 
rewards, the network of independent decentralized LA controllers is able to converge to the 
set of actions that maximizes the long-term expected reward (Narendra & Thathachar, 1989). 
Moreover instead of one agent visiting all states and keeping a model for all the states in the 
system as in traditional RL algorithms such as Q-learning; in this model there are some non-
mobile LA agents who do not move around the state space but stay in their own state 
waiting to get activated and learn to take actions only in their own state. The intelligence of 
one mobile agent is now distributed over the states of the Markov chain, more precisely 
over the non-mobile LA agents in those states.   

4.2 Control of Markov games 

In a Markov Game the action chosen at any state is the joint result of individual action 
components performed by the agents present in the system. The LA network of the previous 
section can be extended to the  framework of  Markov Games just by putting a simple 
learning automaton for every agent in each state (Vrancx et al., 2007) Instead of putting a 
single learning automaton in each action of the system, we propose to put an automaton 
LAi,k in each state si with i: 1 . . . N and for each agent k, k: 1 . . . n. At each time step only the 
automata of one state are active; a joint action triggers the LA from that state to become 
active and take some joint action. 
As before, LA LAi,k active for agent k in state si is not informed on the one-step reward Ri->j,k 

(ai) resulting from choosing joint action  ai = (ai1, . . ., ain) with aik  Ai,k in si and leading to 
state sj. When state si is visited again, all automata  LAi,k with k: 1 . . . n receive two pieces of 
data: the cumulative reward generated for agent k by the process up to the current time step 
and the current global time. From these, all LAi,k compute the incremental reward generated 
since this last visit and the corresponding elapsed global time. The environment response or 
the input to LAi,k  is exactly the same as in Equation 6. The following result was proven in 
(Vrancx et al., 2007) :  
Theorem 2 (Vrancx et al, 07) 
The Learning Automata model proposed for ergodic Markov games with full state observability is able 
to find an equilibrium point in pure strategies for the underlying limited game. 
The behaviour of the LA learning model on the sample problem described in section 2.2 is 
demonstrated in Figure 2. We show the average reward over time for both agents. 
Since we are interested in the long term convergence we show a typical run, rather than an 
average over multiple runs. To demonstrate convergence to the different equilibria, we use a 
single very long run in which the automata are allowed to converge and are then restarted. 
After every restart the automata are initialized with random action probabilities in order to 
allow them to converge to different equilibria. 
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Fig. 2. Experimental results on the example Markov game of Figure 1. 

5. Interconnected learning automata for partially observable ergodic Markov 
games  

The main difference with the previous setup for learning Markov games (Vrancx et al., 2007) 
is that here we do not assume that agents can observe the complete system state. Instead, 
each agent learns directly in its own observation space, by associating a learning automaton 
with each distinct state it can observe. Since an agent does not necessarily observe all state 
variables, it is possible that it associates the same LA with multiple states, as it cannot 
distinguish between them. For example, in the 2-state problem of Figure X, an agent 
associates a LA with each location  it can occupy, while the full system state consists of the 
joint locations of all agents. As a consequence, it is not possible for the agents to learn all 
policies. For instance in the 2-state problem, the automaton associated by agent x with 
location L1 is used in state s1 ={L1,L1} as well as state s2 ={L1,L2}. Therefore it is not possible 
for agent x to learn a different action in state s1  and s2. This corresponds to the agent 
associating actions with locations, without modelling the other agents. 
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Fig. 3.  A 2-location grid-world problem and its corresponding Markov game. 

So the definition of the update mechanism here is exactly the same as in the previous model, 
the difference is that here agents only update their observable states which we will call 
locations to differentiate with the notion of a Markov game state. This will give the 
following:  a LA  LAi,k active for agent k in location Li is not informed on the one-step reward 
Ri->j,k (ai) resulting from choosing joint action  ai = (ai1, . . ., ain) with aik  Ai,k in si and leading 
to state Lj. Instead, when location Li is visited again,  automaton LAi,k receives two pieces of 
data: the cumulative reward generated for agent k by the process up to the current time step 
and the current global time. From these, automaton LAi,k compute the incremental reward 
generated since this last visit and the corresponding elapsed global time. 
The environment response or the input to LAi,k   is then taken to be: i,k (ti + 1) = i,k (ti + 1) /    

i,k (ti + 1) where i,k (ti + 1) is the cumulative total reward generated for action ai,k in location 
Li and ηi,k (ti + 1)  the cumulative total time elapsed. We still assume that the Markov chain 
of system states generated under each joint agent policy α is ergodic. In the following we 
will show that even when the agents have only knowledge of their own location, in some 
situations it is still possible to find an equilibrium point of the underlying limiting game. 
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Table 1. Limiting game for the 2-location grid world experiment of Figure 3. 

Theorem 3 (Verbeeck et al, 2007( a)) 
The network of LA that was proposed here for myopic agents in Markov Games, converges to a pure 
equilibrium point of the limiting game provided that the Markov chain of system states generated 
under each joint agent policy is ergodic and agents' transition probabilities do not depend on other 
agents' activities. 

 

Fig. 4. Average Reward for the 2-location grid-world problem of Figure 3 . 

Figure 4 shows experimental results of the LA network approach on the grid world problem 
of Figure 3.  In these experiments both agents were given an identical reward based on their 
joint location after acting. The agents receive rewards 1.0 and 0.5 for joint locations {L1,L2} 
and {L2,L1} respectively and reward 0.01 when both agents are in the same location. The 
resulting limiting game matrix for this reward function is shown in Table 1. In  Figure 4 we 
show the average reward over time for both agents, during a single  long run of the 
algorithm, in which agents are allowed to converge and are then randomly re-initialised. We 
can observe that the agents move to either the optimal or the suboptimal equilibrium of the 
underlying limiting game, depending on their initialisation. 

  Agent 2 

  (0,0) (0,1) (1,0) (1,1) 

(0,0) 0.38 0.28 0.48 0.38 

(0,1) 0.48 0.14 0.82 0.48 

(1,0) 0.28 0.42 0.14 0.28 
 A

g
e

n
t 

1
 

(1,1) 0.38 0.28 0.28 0.38 
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6. Hierarchical learning automata for episodic problems 

Until now we only considered ergodic Markov games, which excludes problems that have a 
periodic nature or absorbing states such as finite episodic tasks. To this end we study agents 
constructed with hierarchical learning automata. An agent here is more complex than a 
simple learning automaton in the sense that the agents’ internal state is now a hierarchy of 
learning automata. The idea is that in each step of the episode the agent chooses to activate 
an automaton of the next level of its hierarchy. The numbers of steps of the episodic task 
defines the size of the internal LA hierarchy. In (Narendra & Parthasarathy, 1991),  
hierarchical learning automata were introduced for multi-objective optimization. A simple 
problem of consistently labelling images was given. At a first stage, the object had to be 
recognized and in a second stage the background of the image was determined. 
When several hierarchical agents play an episodic multi-agent task a corresponding Markov 
game can be determined as follows: at each time step, there is a new state available for each 
joint action possible. The resulting state space is then a tree, so no loops or joining branches 
are allowed.  Similar to the previous section,, it is the case that learning automata can belong 
to different states, and we could call this setting an POMarkov game (in analogy with 
POMDP’s). Note that in this section we only consider cooperative tasks. 

6.1 Hierarchical LA agents 

Learning automata can be combined into more complex structures such as hierarchies. 
Figure 5 shows an interaction between such hierarchies. 

 

Fig. 5. An interaction between two agents constructed with a hierarchy of learning 
automata. 
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A hierarchical LA works as follows. The first automaton that is active is the root at the top of 
the hierarchy: LA A This automaton selects one of its l actions. If, for example, the 
automaton selects action 2, the learning automaton that will become active is learning 
automaton LA A2. Then this active learning automaton is eligible for selecting an action. 
Based on this action, another learning automaton at the next level will become active. This 
process repeats itself until one of the learning automata at the bottom of the hierarchy is 
reached. 
The interaction of the two hierarchical agents of Figure 5 goes as follows. At the top level (or 
in the first stage) Agent 1 and Agent 2 meet each other in a game with stochastic rewards. 
They both take an action using their top level learning automata, respectively A and B. 
Performing actions ai by A and bk by B is equivalent to choosing automata Ai and Bk to take 
actions at the next level. The response of environment E1 : rt  {0,1}, is a success or failure, 
where the probability of success is given by c1ik . At the second level the learning automata 
Ai and Bk choose their actions aij and bkl respectively and these will elicit a response from the 
environment E2 of which the probability of getting a positive reward is given by c2ij,kl. At the 
end of the episode all the automata that were involved in one of the games, update their 
action selection probabilities based on the actions performed and the responses of the 
environments. 

6.2 Monte Carlo updating 

In the Monte Carlo method, the updating of the probabilities is based on the averaged 
sample returns. This averaged return is usually generated at the end of an episode. Each 
time such a clear end state is reached, an averaged return is generated by calculating a 
weighted sum of all the returns obtained. This sum is then given to all learning automata 
that were active during the last episode in order to update their action probabilities. Thus 
when we reach an end stage at time step t we generate the following sum: R = 1 r1 + 2 r2 + . 
. . + t rt where ri is the reward generated at time step i. Note that the weights i should sum 
up to 1 and 0 ≤ i ≤ 1 for all i. 
Theorem 4 (Narendra & Parthasarathy, 1991) 
 If all the automata of the hierarchical learning automata update their action probabilities at each stage 
using the L R-I update scheme and if the composite reward is constructed as a Monte Carlo reward and 
at each level the step sizes of the automata are chosen sufficiently small then the overall system is 
absolutely expedient. 
Stated differently, this means that the overall performance of the system will improve at 
each time step and convergence is assured toward a local optimum. The optima of the 
dynamical system under consideration, are the pure equilibrium points of the 
corresponding limiting single stage game. 
Using a careful exploration strategy called exploring selfish reinforcement learning which is 
used in combination with hierarchical LA, it was shown in (Verbeeck et al., 2007) that the 
optimal equilibrium path can be learned.  

7. Monte Carlo updating versus bootstrapping 

Standard single agent reinforcement learning techniques, such as Q-learning (Watkins & 
Dayan, 1992), which are by nature designed to solve sequential decision problems, use the 
mechanism of bootstrapping to handle non-episodic tasks. Bootstrapping means that values 
or estimates are learned on the basis of other estimates (Sutton & Barto, 1998). The use of 
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next state estimates allows reinforcement learning to be applied to non-episodic tasks. 
Another advantage of bootstrapping over Monte Carlo methods include the fact that the 
former can be naturally implemented in an on-line, fully incremental fashion. As such, these 
methods can learn from each transition, which can sometimes speed-up learning time. 
For instance the Q-learning algorithm, which is a value iteration method (see (Sutton & 
Barto, 1998); (Tsitsiklis, 1994)) bootstraps its estimate for the state-action value Qt+1(s,a) at 
time t+1 upon the estimate for Qt(s',a') with s' the state where the learner arrives after taking 
action a in state s : 

 ( ) ( ) ( ) ( )⎟
⎠
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⎝
⎛ ′′++−←

′+ asQrasQasQ t
a

ttt ,max,1,1 γαα  (6) 

With α the usual step size parameter,  γ  [0,1] a discount factor and rt the immediate 
reinforcement received at time step t. Non-bootstrapping evaluation methods such as Monte 
Carlo methods update their estimates based on actual returns. For instance the every-visit 
Monte Carlo method updates a state-action value Q(s,a) at time t+n (with n the time for one 
episode to finish) based on the actual return Rt and the previous value: 

 ( ) ( ) ( ) ( )ttnt RasQasQ αα +−←+ ,1,  (7) 

With Rt =   rt+1 + γ rt+2 + γ2 rt+3 + . . .  + γn-1 rn   and t is the time at which (s,a) occurred.    
Methods that learn their estimates, to some extend, on the basis of other estimates, i.e. they 
bootstrap are called Temporal Difference Learning Methods. The Q-learning algorithm seen 
in Equation 7 can be classified as a TD(0) algorithm. The back-up for each state is based on 
the immediate reward, and the estimation of the remaining rewards which is given by the 
value of the next state. One says that Q-learning is therefore a one-step TD method. 
However, one could also consider backups based on a weighted combination as follows:  
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In the limit, all real rewards up-until-termination are used, meaning there is no 
bootstrapping, this is the Monte Carlo method. So, there is a spectrum ranging from using 
simple one-step returns to using full-backup returns. Some of them were implemented in 
the set-up of section 5. The Monte Carlo technique, which was described there and which is 
commonly used in a LA setting, is compared with the following variations: intermediate 
rewards, one-step updating, n-step updating.  

7.1 Intermediate rewards 

In (Peeters et al., 2006) an update mechanism based on Intermediate Rewards was 

introduced. With this technique the learning automata at level l only get informed about the 
immediate reward and the rewards on the remainder of the path. The LA does not get 
informed about the rewards that are given to automata on the levels above because the 
learning automaton at this level has no direct influence over rewards depending on higher 
level actions and they would clutter up its combined reward. In (Van de Wege, 2006) a 
theoretical proof that hierarchical learning automata using only the rewards of the 
remainder of the path will converge to an equilibrium path in an identical pay-off multi-
stage game (under the same conditions we described above for the traditional Monte Carlo 
technique) is given. The complete algorithm can be found in Figure 6. Because the learning 
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automata get updated at the end of an episode, the intermediate rewards technique is still 
an off-line algorithm. 
 
 

 

 

 

Fig. 6.  The pseudo code of the Intermediate Rewards algorithm. 

7.2 One-step returns 

In the One-Step Estimates technique, introduced in (Peeters et al., 2007), the updating of the 
learning automata will no longer take place at an explicit end-stage. The automata get 
informed immediately about the local or immediate reward they receive for their actions. In 
addition each automaton has estimates about the long term reward for each of its actions. 
These estimates are updated by combing the immediate rewards with an estimate of 
possible rewards that this action might give on the remainder of the path, similar to TD(0) 
methods. The behavior of the algorithm is controlled by three parameters: α, γ and ρ. Here, 
α is the step size parameter from the LR-I update scheme (Equation 8), γ is the discount 
factor as used in traditional bootstrapping (Equation 9), and ρ controls the influence of the 
difference between the combined reward and the old-estimate on the new-estimate (Note: in 
standard Q-learning notation this parameter is denoted by α). 

7.3 n-step returns 

The 1-step algorithm described above can easily be extended to the general n-step case. This 
creates a whole range of updating algorithms for multi-stage games, similar to the range of 
algorithms that exist for the single agent case. Figures 7 to 9 show the general n-step 
updating algorithm for pursuit learning automata. The parameters α, γ and ρ are equivalent 
to those of the 1-step algorithm, described above.  
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Fig. 7  Pseudo code of the n-step algorithm. This part of the n-step algorithm shows how to 
handle immediate rewards. 

 

 

Fig. 8 Pseudo code of the n-step algorithm. This part of the n-step algorithm computes the 
complete n-step reward and shows how to update the estimates. 

 

 

Fig. 9 Pseudo code of the n-step algorithm. This part of the n-step algorithm handles the 
updating of the estimates of the parents in the hierarchy. 

The interaction between the hierarchies remains the same as for the Monte Carlo case (and 
the 1-step case). The learning automata at the top of the hierarchies start by selecting an 
action. Based on this joint-action the environment generates a reward and this reward is 
handed to the automata. Since this is the immediate reward, the automata cannot yet 
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generate the n-step truncated return (if n > 1) instead they propagate this reward to their 
parents (Figure 7  line 10). The automata that receive this reward check whether this is the 
nth reward they have received (Figure 8 line 1). If so, they compute the n-step truncated 
return (Figure 8 line 2), update the estimates of the long term reward of their own actions 
(Figure 8 line 3), update their probabilities (Figure 8 line 4) and keep their nth-level-
grandparents up to date by providing them with the updated estimates (Figure 8 line 5). If 
the parents didn't receive the nth reward yet (thus they can't compute the n-step reward yet), 
they just propagate the reward to their parents (Figure 8 lines 6 and 7).  
In addition to propagating the immediate rewards, the automata also propagate their 
updated estimates. The parents receiving an estimate from their children check whether it is 
the estimate they need to compute the n-step truncated return (i.e. the estimate coming from 
level (n+1)th and they adjust the estimates of their nth-level-grandchildren if necessary. This 
process continues for each level that gets activated in the hierarchies. 

7.4 Empirical results 

For the Monte Carlo updating and the Intermediate Rewards method, there are theoretical 
proofs guaranteeing that the learning automata converge to an equilibrium path in any 
multi-stage game. This can be proved under the assumptions that the learning automata use 
the LR-I update scheme and the step sizes are chosen small enough. We have however no 
guarantee that the automata will converge to the optimal equilibrium path. Therefore it is 
useful the compare the practical performance of the different update techniques. A thorough 
comparison can be found in Peeters et al. 2007 (b).  
Here we show experiments of a series of 1000 Random Games. For each value of the 
learning rate we considered in our experiments, we averaged the obtained reward over 1000 
randomly generated games. Thus after each of the 1000 runs, we reset the values of the 
reward matrices to a random number in [0,1]. In the experiment we used 2 hierarchies of 8 
levels, with 2 actions per automaton. This gives a total of (28)2 = 65.563 solution paths.  
Figure 10 shows the results for the Monte Carlo algorithm and the 4-step reward. 
The average reward when using the Monte Carlo algorithm is systematically lower 
compared to the average reward of any of the n-step algorithms (the plot shown is for the 4-
step algorithm, but this is observed for the whole tested range of 1-step to 8-step, although 
the performance differs). All of our results demonstrate that the performance increases 
when the hierarchical learning automata use an n-step updating algorithm. 

 

Fig. 10 The average reward using Monte Carlo (left) and the 4-step rewards for various 
learning rates. The rewards are averaged over 1000 runs. 
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In general, using the Intermediate Reward technique, the average reward increases, 
compared to the Monte Carlo approach, however the variance of the rewards to which the 
hierarchies converge, remains the same (these results are not shown here). The results of the 
n-step algorithm show that the average convergence can remain at the same high level 
(compared to Monte Carlo updating) while the variance of the solution-paths is much less. 
This means that if the hierarchies converge to a sub-optimal solution, they are more likely to 
converge to a sub-optimal solution with an average reward that is almost as good as the 
optimal. 

8. Conclusion 

In this chapter we have demonstrated that Learning Automata are interesting building 
blocks for multi-agent Reinforcement learning algorithms. LA can be viewed as policy 
iterators, that update their action probabilities based on private information only. Even in 
multi-automaton settings, each LA is updated using only the environment response, and not 
on the basis of any knowledge regarding the other automata, i.e. nor their strategies, nor 
their feedback.  
As such LA based agent algorithms are relatively simple and the resulting multi-automaton 
systems can still be treated analytically. Convergence proofs already exist for a variety of 
settings ranging from a single automaton model acting in a simple stationary random 
environment to a distributed automata model interacting in a complex environment.  
The above properties make LA attractive design tools for multi-agent learning applications, 
where communication is often expensive and payoffs are inherently stochastic. They allow 
to design multi-agent learning algorithms with different learning objectives. Furthermore, 
LA have also proved to be able to work in asynchronous settings, where the actions of the 
LA are not taken simultaneously and where reward comes with delay.  
We have demonstrated this design approach in 2 distinct multi-agent learning settings. In 
ergodic markov games each agent defers its action selection  to a local automaton, associated 
with the current system state. Convergence to an equilibrium between agent policies can be 
established by approximating the problem by a limiting normal form game. In episodic 
multi-stage learning problems agents were designed as tree-structured hierarchies of 
automata, mimicking the structure of the environment. Convergence of this algorithm can 
again be established based on existing automata properties. By using Intermediate Rewards 
instead of Monte Carlo rewards, the hierarchical learning automata are shown (both 
empirically and theoretically) to have a faster and more accurate convergence by even using 
less information. However, the Intermediate Rewards update mechanism is still an off-line 
algorithm in which the updating happens at explicit end-states.  The general n-step 
algorithm solves this problem by handing immediate rewards to the automata which use 
bootstrapping to compensate for the absence of reward of the remainder of the path. 
Empirical experiments show that the n-step rewards (with an appropriate value for n) 
outperform both the Monte Carlo technique as well as the Intermediate Rewards.   
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1. Introduction 

 Abstraction is a higher order cognitive ability that facilitates the production of rules that are 
independent of their associations.  
In standard reinforcement learning it is often expedient to directly associate situations 
(states) with actions in order to maximise the environmental reward signal. This may lead to 
problems including a lack of generalisation and not utilising higher order patterns in 
complex domains. Thus standard Q-learning has been developed to include models or 
genetics-based search (Learning Classifier Systems), which improve learning speeds and 
generality. In order to extend reinforcement learning techniques to higher-order rules, 
abstraction is considered here.  
The process of abstraction can be likened to Information Processing Theory (a branch of 
Learning Theory) (Miller, 1956), which suggests that humans have the ability to recognize 
patterns in data and chunk these patterns into meaningful units. The individual patterns do 
not necessarily remain in a memory store due to the holistic nature of the individual 
patterns. However, the chunks of meaningful information remain, and become a basic 
element of all subsequent analyses.  
The need for abstraction arose from the data-mining of rules in the steel industry through 
application of the genetics-based machine learning technique of Learning Classifier Systems 
(Holland, 1975), which utilise a Q-learning type update for reinforcement learning. It was 
noted that many rules had similar patterns. For example, there were many rules of the type 
'if side guide setting < width, then poor quality product' due to different product widths. 
This resulted in a rule-base that was unnecessarily hard to interpret and slow to learn. The 
initial development of the abstraction method was based on the known problem of 
Connect4 due to its vast search space, temporal nature and available patterns.  
The contribution of this chapter is that the novel method of abstraction is described and 
shown to be effective on a large search space test problem. Abstraction enabled higher order 
rules to be learned from base knowledge, which mimic important aspects of human 
cognition. Tests showed that the abstracted rules were more compact, had greater utility 
and assisted in developmental learning. The emergence of abstracted rules corresponded 
with escaping from local minima that would have otherwise trapped basic reinforcement 
learning techniques, such as standard Q-learning.  
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2. Background  

During the application of the Genetics-Based Machine Learning technique of Learning 
Classifier Systems (LCS) to data-mine rules in the steel industry, Browne noted that many 
rules had similar patterns (Browne 2004). For example, there were many rules of the type 'if 
side guide setting < width, then poor quality product' due to different product widths. This 
resulted in a rule-base that was unnecessarily hard to interpret and slow to learn. A method 
is sought to generate higher order (abstracted) rules from the learnt base rules. 
A novel Abstraction algorithm has been proposed (see figure 1) to improve the performance 
of a reinforcement learning genetics-based machine learning technique in a complex multi-
step problem (Browne & Scott, 2005). It is hoped that this algorithm will help reinforcement 
learning techniques identify higher-order patterns inherent in an environment.  

 

Fig. 1. Abstraction from data to higher order rules. 

2.1 Test domain  
Connect 4 is a turn-based game between two players, each trying to be the first to achieve 
four counters in a row (horizontally, vertically or diagonally). The game takes place on a 7 * 
6 board; players take it in turns to drop one of their counters into one of the seven columns. 
The counters will drop to the lowest free space in the column. Play continues until the board 
is full or one player gets four in a row, see figure 2. Optimum strategies exist (Allis, 1988; 
Watkins, 1989), so the problem is both known and bounded. 
A client-server program of Connect 4 was written in Java, as Java Applets can easily be 
viewed on the internet, allowing a website to be constructed for this project [please visit: 
http://sip189a.rdg.ac.uk].  
A Q-Learning (Sutton & Barto, 1998) approach to the problem is implemented in order to 
provide benchmark learning performance. Two different approaches were taken to training 
the Q-Learning system. The first progressively trained the algorithm against increasingly 
hard opponents, whilst the second trained for the same number of games, but against the 
hardest opponent from the outset.  
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Fig. 2. Connect 4 board, black horizontal win  

The Abstraction algorithm requires rules in order to perform abstraction. A well-known 
LCS, XCS (Butz, 2004) was implemented to create rules and provide a second benchmark 
learning performance.  

3. Biological inspiration for abstraction  

The human brain has inspired artificial intelligence researchers, such as the development of 
Artificial Neural Networks that model aspects of low-level neuronal activity. Higher-level 
functional modelling has also been undertaken, see ACT-R and SOAR architectures 
(Anderson et al, 2004; Laird et al, 1987). Behavioural studies suggest that pattern 
recognition, which includes abstraction, is important to human cognition. Thus this section 
considers how the brain abstracts. This includes using the common neuroscience technique 
of studying subjects with liaisons to specific brain areas.  
It has been observed in cases of autism that there is a lack of abstraction. A well studied case 
is that of Kim Peek -due to his Savant abilities and popularity as the inspiration for the main 
character in the film Rain Man. He was born with macrocephaly (an enlarged head), an 
encephalocele (part of one or more of the skull plates did not seal) and agenesis of the 
corpus callosum (the bundle of nerves that connects the two hemispheres of the brain is 
missing). Brain studies, such as MRI, show that the there is also no anterior commissure and 
damage to the cerebellum.  
Kim has the ability to analyse certain types of information in great detail, e.g. Kim's father 
indicates that by the age of 16-20 months Kim was able to memorize every book that was 
read to him. It is speculated that neurons have made other connections in the absence of a 
corpus callosum, resulting in the increased memory capacity (Treffert & Christensen, 2005). 
However, Kim has difficulty with motor skills, such as buttoning a shirt, which is likely to 
be caused by the damaged cerebellum as it normally coordinates motor activities. His 
general IQ is well below normal, but he scores very highly in some subtests.  
An absent corpus callosum (ACC) does not regenerate as no new callosal fibers emerge 
during an infant's development. Although people with ACC lead productive and 
meaningful lives there are common developmental problems that may occur with disorders 
of the corpus callosum (DCC). The National Organization for Disorders of the Corpus 
Callosum states:  

Behaviorally individuals with DCC may fall behind their peers in social and 
problem solving skills in elementary school or as they approach adolescence. In 
typical development, the fibers of the corpus callosum become more efficient as 
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children approach adolescence. At that point children with an intact corpus 
callosum show rapid gains in abstract reasoning, problem solving, and social 
comprehension. Although a child with DCC may have kept up with his or her 
peers until this age, as the peer-group begins to make use of an increasingly 
efficient corpus callosum, the child with DCC falls behind in mental and social 
functioning. In this way, the behavioral challenges for individuals with DCC may 
become more evident as they grow into adolescence and young adulthood.  

Behavioural characteristics related to DCC difficulties on multidimensional tasks, such as 
using language in social situations (for example, jokes, metaphors), appropriate motor 
responses to visual information (for example, stepping on others' toes, handwriting runs off 
the page), and the use of complex reasoning, creativity and problem solving (for example, 
coping with math and science requirements in middle school and high school, budgeting) 
(NODCC, 2007).  
The connection between the left and right half of the brain is important as each hemisphere 
tends to be specialised on certain tasks. The HERA model asserts that the left pre-frontal 
cortex is associated with semantic (meaning) memory, whilst the right is associated with 
episodic (temporal) memory (Tulving et al., 1994). Memories themselves are associated with 
the hippocampus, which assists in transforming short to long term memory. This is intact in 
many savants, such as Kim Peek. Thus, it is postulated here that a link is needed between 
the separated episodic and semantic memory areas in order for abstract, higher order, 
knowledge to form -it is not sufficient just to create long-term generalised memories.  
A caveat of the above analysis is that even with modern behavioural studies, functional 
MRI, PET scans and other neurological analysis, the brain/mind is highly complex, plastic 
and still not fully understood.  

4. Learning classifier systems  

This section outlines the architecture of XCS, including the required adjustments for the 
Connect 4 domain, so that it may train against a pre-coded expert system. A standard XCS 
(Butz, 2004, available from www-illigal.ge.uiuc.edu/) was implemented with the 
Abstraction algorithm (see section 5). Following these results tests were also conducted with 
a modified version of XCS (mXCS) that had its reinforcement learning component adjusted 
to complement the Abstraction algorithm.  

4.1 Setup and board representation  

The board representation formed an important part of the LCS. Each space on the board 
could be one of three possible states, red, yellow or empty, however it was considered 
useful to further split down the empty squares into two categories, playable and unplayable 
(unplayable squares are above the playable squares and become playable in the future as the 
game progresses).  
A two character representation for each space was chosen, leading to an 84 character long 
string representing the board (running from top row to bottom row). The encoding for a red 
was chosen as “11” and a yellow was “10”, a playable space was “00” whilst an unplayable 
was “01”. Mutation may only generalize by replacing specific characters with a “#”; where 
hashes can stand for either a “1” or a “0”.  
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4.2 Gameplay and reward  

LCS must decide upon the best move to play at its turn without knowing where its 
opponent will play in the subsequent turn. An untrained LCS will often play randomly as it 
attempts to learn the best moves to play. After each move has been played by the opponent, 
the LCS attempts to match the state of the board to its rules. Attached to each of these 
classifiers are three pieces of information: the move that should be played, the win score (the 
higher this is the more likely a win will occur) and the accuracy score (accuracy of the win 
score). Win scores of less than 50 indicate a predicted loss, greater than 50 is a projected win.  
After matching, an action must be selected through explore, exploit or coverage. Exploring 
(which is most likely to happen) uses a weighted roulette wheel based on accuracy to choose 
a move. Exploiting chooses the move that has the greatest win score and is used for 
performance evaluation. Coverage generates a new rule by simply selecting a random move 
to play for the current board position.  
θGA the GA threshold was set to 1000 games, the GA would run after a set of 1000 games had 

been played and the maximum population size was set to 5000. χ, the crossover possibility 
was set to generate 500 random crossovers every time the GA is run. Of the 500 crossovers 
generated, approximately 100 in every GA run passed validity checks and were inputted 

into the new population. μ, the mutation rate was set at a 1% chance to receive a mutation 
and then a 2% that each character in that rule would receive a mutation. Deletion θ 
probabilities (θdel) were based upon tournament selection of rule fitness and the number of 
rules deleted was chosen to keep the population size at 5000. 
The standard reinforcement update for LCS is the Widrow-Hoff update (Butz & Wilson, 
2002), which is a recency weighted average. A Q-learning type update is used within the 
LCS technique for multistep decision problems (Lanzi, P-L., 2002).  

5. Abstraction algorithm  

The Abstraction algorithm was designed to work upon generated rules, e.g. by the LCS. 
Abstraction is independent of the data itself. Other methods, such as the standard coverage 
operator, depend directly on the data. Crossover and mutation depend indirectly on the 
data as they require the fitness of the hypothesized rules, which is dependent on the data. 
Abstraction is a higher order method, as once good rules have been discovered; it could 
function without the raw data being available.  
The abstraction attempts to find patterns in the rules that performed best within the LCS. 
Having found a pattern common to two or more of the LCS rules, the Abstraction algorithm 
is to generate a new rule in the abstracted population based solely on this pattern. This 
allows the pattern to be matched when it occurs in any state, not just the specific rules that 
exist within the LCS.  
Not all of the rules generated by the LCS are worthwhile and therefore the Abstraction 
algorithm should not be run upon all of the rules within the LCS. The domain is noiseless, 
so the parameters chosen to govern the testing of rules for abstraction were the conditions 
that a rule must have a 100% win score and a 100% accuracy. Therefore the rules abstracted 
by the Abstraction algorithm should only be rules that lead to winning situations.  
The main mechanism that allowed the abstraction to perform was a windowing function 
that was used in rule generation as well as rule selection (when it came to choosing an 
abstracted rule to play). The windowing function acted as a filter that was passed over the 
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‘good’ rules generated by the LCS. This filter would compare two rules at a time for 
similarities that could lead to abstracted rules.  
The windowing function worked in all directions on the board, horizontally, vertically and 
in both diagonal directions. The window size was set to 4 space/counters (8 characters in 
terms of the board representation). However code allowed for a window size of between 4 
and 6 spaces/counter (8 – 12 characters in terms of the board representation), any greater 
than a window size of 6 and the vertical and diagonal windows no longer fit on the board.  
Any match that is found is turned into an abstracted rule, each rule had 8 characters 
(assuming a window size of 4) to represent the pattern occurring on the board. Each rule 
also had to be assigned a move to play whenever that rule was used. The move assigned 
was always chosen from one of the playable spaces within the pattern. An example rule is 
'10,10,10,00:11’, which translate to 'if three red counters in a row and payable space in the 
next position, then play in the next position'. All rules entered the abstracted population 
with a win and accuracy of 50.  
Several limitations were placed upon what was considered a valid match for the Abstraction 
algorithm, including ignoring all unplayable areas. A valid pattern had to contain at least 
one playable space and no more than 2 playable spaces. Patterns without a playable space 
are useless because rules as they offer nowhere for a move to be played. The second 
limitation placed upon the abstraction process was that a valid rule could have a maximum 
of one unplayable space. This helps limit the generation of “empty” rules. Figure 3 shows an 
example of two windowing functions finding a match and generating an abstracted rule.  

 

Fig. 3. Example of Abstraction Algorithms generating a new rule.  

5.1 Base rule discovery  

As with the LCS, the Abstraction algorithm also had a GA that was run upon the population 
to generate new rules. It had a single point crossover and mutation; however it had no 
deletion algorithm as all the abstraction rules were kept. Duplication was prevented 
through a duplication check that was made each time a rule was to be inserted into the rule-
base, including those generated by crossover and mutation.  
A LCS can function alone, but the Abstraction algorithm cannot function without a rule-base 
to work on; hence it needs an LCS to function alongside it. How the two are combined and 
work together is detailed in this section.  
When the LCS with abstraction needs to play a move, the system searches the board for any 
matches within its abstracted rule set. The board is searched by passing the windowing 
function over the board (horizontally vertically and diagonally). A rule is then chosen out of 
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all matched rules. When exploiting the rule with the best win score is chosen, whilst when 
exploring a roulette wheel based upon accuracy is used.  
The chosen abstracted rule also has a move associated with it, however unlike the LCS rules 
the move does not relate directly to the board. With a window size of 4 counters the rule 
could occur anywhere on the board, horizontally, vertically or diagonally. Therefore an 
extra calculation is required to translate the abstracted rules’ move into the corresponding 
move on the actual board.  
If no abstracted rule is found after the initial search of the board state, then control of 
playing the move is handed to the base LCS.  

6. Results  

The following section details the results found during the trials of the LCS and Abstraction 
algorithm. Initial trials investigated the difficulty of the problem domain with standard Q-
learning and XCS techniques. Preliminary tests of the Abstraction algorithm with XCS were 
followed by tests of the Abstraction algorithm with a modified XCS (mXCS) where the 
reinforcement learning complemented the abstraction. The use of abstraction as the training 
progressed was investigated. During these tests, each system was trained for 20,000 games 
against an opponent that played randomly. Finally, the robustness of the Abstraction 
algorithm to changes in the domain was tested by increasing the difficulty of the opponent.  

6.1 Q-Learning and standard XCS  

The Q-Learning Algorithm performed well in the initial 20,000 games (see figure 4), 
achieving an average win percentage of 69%. However, there was no progress in the wins as 
the 20,000 games progressed, with the win percentage always remaining at around 69%. 
This exhaustive search nature of the algorithm meant it took several weeks of computation 
on a 3GHz PC. Ideally, each test would have been repeated 10 times and the average results 
taken, but this was impractical due to time constraints.  
The XCS performance trend was similar, with an average win percentage of 62% reached 
quickly, but no further improvements. Analysis of the rules showed that they had become 
trapped in local optima. A few specific strategies had been learnt, such as initially trying to 
build a column of counters in a given column. However, if this column happened to be 
blocked, then the overall strategy failed.  

  

Fig. 4. Graphs of win percentages for the 3 algorithms Solid Line -Q-Learning Algorithm, 
square -XCS Algorithm, circle -mXCS with Abstraction.  
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When the Abstraction algorithm is added it produces a similar trend until 6000 trials. A 
significant improvement is noted after 8000 trials as the performance increases to 90%. This 
compares favorably with both Q-learning (69%) and standard XCS (62%).  
During testing the rules that the Abstraction algorithm produced were observed and an 
interesting pattern arose in the order in which the abstractions were discovered. In early 
generations no abstracted rules are found, whilst mXCS attempts to establish a set of good 
rules that have a win and accuracy of 100. The first abstracted rules found are not rules for a 
direct win (i.e. 3 in a row and play in the fourth). The first rules that emerge are those rules 
that cause a 3 in a row situation with an empty playable fourth space.  
Learning to form 3 in a row followed by learning to form 4 in a row is a novel example of 
incremental learning. Intuitively, it could be expected that learning to form 4 in a row, 
which is closer to obtaining the reward, would be achieved first. Incremental learning is 
hypothesized to be an important cognitive ability (Butz, 2004).  
Whilst there is no direct feedback from the abstraction rule-base to the mXCS rule-base, it is 
possible to see them evolve together and there is a definite dependency between the two. 
With the introduction of abstracted rules to make 3 in a row, this is likely to occur far more 
often (as abstracted rules take preference over mXCS rules). With 3 in a row occurring more 
often, mXCS has more opportunities to conceive of rules that directly give a win. Therefore, 
with more winning rules the Abstraction algorithm is more likely to come up with 
abstracted rules that lead to a direct win, greatly bolstering the winning ability of the 
algorithm.  

6.2 Effect of abstraction  

The use of abstracted rules as training progresses can be monitored, see figure 5. As outlined 
in section 5, the combined system always plays a matching abstracted rule in preference to a 
matching base rule. After 8000 trials the base rules were accurate enough to allow 
abstraction to start. Once abstraction had started, the performance of the system continued 
to improve beyond that of standard XCS and Q-learning (see figure 4). A further 8000 trials 
occur where the system uses a combination of both base and abstracted rules. After this 
period the system just uses abstracted rules in its decision-making. Small improvements in 
performance occurred due to the action of the genetic algorithm in the abstracted 
population.  

 

Fig. 5. Graph of percentage base rules versus abstracted rules (solid line) as training 
progresses (circle line).  
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The random opponent still defeats the system in 10% of the games when it chances upon a 
good strategy. As there are multiple positions for good strategies to occur in, the system is 
rarely presented with them, which makes them difficult to learn. In order to determine the 
robustness and scalability of the techniques the difficulty of the opponent was increased.  

6.3 Robustness of the systems  

The opponent could now block a potentially winning three in a row state. The system has to 
learn to create multiple win situations. This is a significantly harder problem, especially as 
the opponent could win either randomly or in the act of blocking, which halts the game. All 
algorithms perform poorly as all win percentages are under 20%. If no good base rules are 
found, then the Abstraction algorithm will not start.  
Instead of training from the start with the harder opponent, it was decided to train first with 
the simple opponent and then switch to the harder opponent, see figure 6. After the switch, 
standard XCS performed better than the Q-Learning Algorithm, achieving a win percentage 
of 15%, it should be noted that the performance was less than the Q-Learning algorithm 
during the first 20000 games. Analysis of the Q-Learning algorithm testing showed that 
progressive training, from the easiest to the hardest opponent, caused it to get stuck in a 
local optimum with a win percentage of only 11%. The generality and adaptability of the 
standard XCS algorithm enables it to switch opponent without as great a penalty.  
The performance of the Abstraction algorithm was significant. Not only did it outperform 
standard XCS and Q-learning (53%, compared with 15% and 11% respectively), but it 
performed significantly better then when it had been trained only on the harder opponent 
(53% compared with 19%). This is a good example of incremental learning, where it is 
necessary to build up the complexity of the problem domain.  

 

Fig. 6. Change in opponent at 20x103 games played (Solid Line -Q-Learning Algorithm, 
square -XCS, circle -mXCS with Abstraction).  

The concept of abstraction has been applied to the alternative domain of the Multiplexer 
problem (Browne & Ioannides, 2007). This was to test if a different representation (alphabet) 
could be used between the initial population (e.g. binary alphabet) and the abstracted 
population (e.g. s-expression alphabet). Result showed on hypothesised base data that 
abstraction is capable of scaling well on the formed rules (max length 1034 bits compared 
with 84 bits for the Connect4 domain). A significant advantage was the compacting of the 
rule-based, see figure 7 and see table 1, compared with a bit string of 1034. Abstraction also 
selected the most appropriate functions within the s-expressions for the domain (two from a 
possible 10).  
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Fig. 7. Abstracted XCS with hypothesised base rules on 3-MUX ♦, 6-MUX ■, 135-MUX ▲, 
1034-MUX x problem  

MUX  Condition  Length  

3  VALUEAT OR 2 2  4  

3  VALUEAT AND 2 2  4  

3  VALUEAT ADDROF 2 2  4  

3  VALUEAT AND 2 POWEROF 1  5  

3  VALUEAT OR POWEROF 2 2  5  

3  VALUEAT OR POWEROF 1 2  5  

6  VALUEAT ADDROF 4 5  4  

6  VALUEAT ADDROF 5 4  4  

6  VALUEAT ADDROF 4 POWEROF 5  5  

6  VALUEAT ADDROF POWEROF 3 4  5  

6  VALUEAT ADDROF POWEROF 5 4  5  

135  VALUEAT ADDROF 128 134  4  

135  VALUEAT ADDROF 134 128  4  

135  VALUEAT ADDROF POWEROF 22 128  5  

135  VALUEAT ADDROF 128 PLUS 133 134  6  

1034  VALUEAT ADDROF 1033 1024  4  

1034  VALUEAT ADDROF PLUS 1029 1029 1024  6  

1034  VALUEAT ADDROF MULTIPLY 1025 324 1024  6  

1034  VALUEAT ADDROF PLUS 1029 1024 1024  6  

1034  VALUEAT ADDROF MULTIPLY 1029 324 1024  6  

1034  VALUEAT ADDROF PLUS 1033 1033 1024  6  

Table 1. Abstracted rules on 3-MUX, 6-MUX, 135-MUX & 1034-MUX problem  



Abstraction for Genetics-Based Reinforcement Learning 

 

197 

7. Discussion  

Abstraction may appear a trivial task for humans and the positive results from this work 
intuitive, but abstraction has not been routinely used in genetics-based reinforcement learning.  
One reason is that the time each iteration requires is an important consideration and abstraction 
increases the time for each iteration. Typically XCS takes 20 minutes to play 1000 games (and 
remains constant), mXCS with abstraction takes 20 minutes for 100 games (although this can vary 
greatly depending on the choice of parameters) and the Q-Learning algorithm ranges from 5 
minutes for 1000 games initially to 90 minutes for 1000 games after 100,000 games training. 
However, given a fixed amount of time to train all three algorithms mXCS with abstraction 
would perform the best, once the initial base rules were found.  
The Q-Learning algorithm has to visit every single state at least once in order to form a successful 
playing strategy. Whilst the Q-Learning system would ultimately play a very good game, weeks 
of computation failed to achieve the level of success the Abstraction algorithm had in a very short 
space of time (hours rather than weeks). Although better Q-learning algorithms (including 
generalization capabilities) exist (Sutton & Barto, 1998) this choice of benchmark algorithm 
showed the scale of the problem, which is difficult to calculate.  
The improvement in abstraction performance from standard XCS to the modified XCS was due 
to using simpler reinforcement learning. The Widrow-Hoff delta rule converges much faster, 
which for simpler domains that can be solved easily is beneficial. However, slower and more 
graceful learning may be required in complex domains when interacting with higher level 
features.  
The abstracted rules allow the system to play on states as a whole, including those that have not 
been encountered, where these states contain a known pattern. This is useful in data-mining, but 
with the inherent dangers of interpolation and extrapolation. The abstracted rule-base is also 
compact as an abstracted rule covers more states than either a generalized LCS rule or a Q-
learning state. Unique states may still be covered by the base rules.  
Abstraction has been shown to give an improvement in a complex, but structured domain. It is 
anticipated that the Abstraction algorithm would be suited to other domains containing repeated 
patterns.  

8. Future work  

Instead of the current linear filters in the Abstraction algorithm, it is possible to vary the size and 
shape in order to represent and hopefully discover advantageous multi-win situations. The 
abstraction method is static and determined a priori, which is successful for this structured 
domain. The next stage is to evolve the abstracted rules and/or filters thus reducing the 
searching time.  
A process termed 'hypothesizing' is proposed (see figure 1) where the abstracted rules form a 
template in order to produce new rules for the base population, with the worth of the abstracted 
rule being determined by the success of their hypothesized rules.  

9. Conclusion  

A novel Abstraction algorithm has been developed to successfully improve the performance 
of a genetics-based machine learning technique in a complex multi-step problem. It is hoped 



Reinforcement Learning: Theory and Applications 

 

198 

that this algorithm will help to fulfill the intended use of the LCS technique as a test bed for 
artificial cognitive processes.  

10. Acknowledgements  

Our thanks to the Nuffield Foundation for their support through grant NUF-URB04.  

11. References  

Allis, V. (1988). A Knowledge Based Approach of Connect 4. Masters Thesis, Vrije Universiteit, 
Netherlands.  

Anderson, JR.; Bothell, D.; Byme, MD.; Douglass, S.; Lebiere C. & Qin Y (2004). An 
integrated theory of the mind. Psychological Review 111 4, pp. 1036-1060.  

Browne, WN. & Scott, D. (2005). An abstraction agorithm for genetics-based reinforcement 
learning. GECCO 2005, editors Hans-Georg Beyer et al. Washington D. C., USA, pp. 
1875-1882.  

Browne, WN. & Ioannides, C. (2007) Investigating Scaling of an Abstracted LCS Utilising 
Ternary and S-Expression Alphabets. International Workshop on Learning Classifier 
Systems, London  

Browne, WN. (2004). The development of an industrial learning classifier system for data-
mining in a steel hot strip mill. Applications of Learning Classifier Systems. Bull, L. 
(Ed.), pp. 223-259, Springer, Berlin.  

Butz, M. & Wilson, SW. (2002). An algorithmic description of XCS. Soft Computing: a fusion of 
foundations, methodologies and applications, 6 pp. 162-170.  

Butz, M. (2004). Rule-base evolutionary online learning systems: learning bounds, classification and 
prediction. PhD thesis University of Illinois, Illinois.  

Holland, JH. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: University of 
Michigan press.  

Laird, J.; Newell, A. & Rosenbloom, P. (1987) Soar -An architecture for general intelligence. 
Artificial Intelligence 33 pp. 1-64.  

Lanzi, P-L. (2002). Learning classifier systems from a reinforcement learning perspective. 
Soft Computing: a fusion of foundations, methodologies and applications, 6 pp. 162-170.  

Miller, GA. (1956). The magical number seven, plus or minus two; Some limits on our 
capacity for processing information. Psychological Review, 63, pp. 81-97.  

NODCC. (2007) National Organization for Disorders of the Corpus Callosum 
http://www.nodcc.org  

Sutton,  RS. & Barto, AG. (1998). Reinforcement learning: An introduction. MIT Press, 
Cambridge, MA.  

Treffert, DA. & Christensen, DD. (2005) Inside the Mind of a Savant Scientific American pp. 
50-55.  

Tulving, E.; Kapur, S.; Craik, FIM.; Moscovitch, M. & Houle. S. (1994) Hemispheric 
encoding/retrieval asymmetry in episodic memory: positron emission tomography 
findings. Proc. Natl. Acad. Sci. U. S. A. 91, pp. 2016–2020  

Watkins, CJCH. (1989). Learning from Delayed Rewards. PhD thesis, King's College, 
Cambridge, England.  

 



11 

Dynamics of the Bush-Mosteller Learning 
Algorithm in 2x2 Games 

Luis R. Izquierdo1 and Segismundo S. Izquierdo2 

1University of Burgos 
 2University of Valladolid 

Spain 

1. Introduction  

Reinforcement learners interact with their environment and use their experience to choose 
or avoid certain actions based on the observed consequences. Actions that led to satisfactory 
outcomes (i.e. outcomes that met or exceeded aspirations) in the past tend to be repeated in 
the future, whereas choices that led to unsatisfactory experiences are avoided. The empirical 
study of reinforcement learning dates back to Thorndike’s animal experiments on 
instrumental learning at the end of the 19th century (Thorndike, 1898). The results of these 
experiments were formalised in the well known ‘Law of Effect’, which is nowadays one of 
the most robust properties of learning in the experimental psychology literature: 
“Of several responses made to the same situation those which are accompanied or closely followed by 
satisfaction to the animal will, other things being equal, be more firmly connected with the situation, 
so that, when it recurs, they will be more likely to recur; those which are accompanied or closely 
followed by discomfort to the animal will, other things being equal, have their connections to the 
situation weakened, so that, when it recurs, they will be less likely to occur. The greater the 
satisfaction or discomfort, the greater the strengthening or weakening of the bond.” (Thorndike, 
1911, p. 244) 

Nowadays there is little doubt that reinforcement learning is an important aspect of much 
learning in most animal species, including many phylogenetically very distant from 
vertebrates (e.g. earthworms (Maier & Schneirla, 1964) and fruit flies (Wustmann, 1996)). 
Thus, it is not surprising that reinforcement learning –being one of the most widespread 
adaptation mechanisms in nature– has attracted the attention of many scientists and 
engineers for decades. This interest has led to the formulation of various models of 
reinforcement learning and –when feasible– to the theoretical analysis of their dynamics. In 
particular, this chapter characterises the dynamics of one of the best known stochastic 
models of reinforcement learning (Bush & Mosteller, 1955) when applied to decision 
problems of strategy (i.e. games).  
The following section is devoted to explaining in detail the context of application of our 
theoretical analysis, i.e. 2-player 2-strategy games. Section 3 is a brief review of various 
models of reinforcement learning that have been studied in strategic contexts. Section 4 
presents the Bush-Mosteller reinforcement learning algorithm. Section 5 describes two types 
of critical points that are especially relevant for the dynamics of the process: self-reinforcing-
equilibria (SREs) and self-correcting-equilibria (SCEs). Sections 6 and 7 detail the relevance 
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of these equilibria. Section 8 analyses the robustness of the model to “trembling-hands” 
noise and, finally, section 9 presents the conclusions of this chapter. The reader can replicate 
all the simulation runs reported in this chapter using an applet available at 
http://www.luis.izquierdo.name/papers/rl-book; we have also placed the source code 
used to create every figure in this chapter at the same web address. 

2. Decision problems of strategy 

At the heart of any learning algorithm we always find the problem of choice: learning is 
about making better decisions. At the most elementary level, decision problems can be 
classified according to the factors that may influence the outcome of the problem. Following 
that criterion we can distinguish, in ascending order of generality, the following categories 
(Colman, 1995): 
1. Individual decision-making problems of skill. In this category there is no uncertainty 

involved: a single individual makes a decision, and the outcome of the problem 
depends solely on that decision (e.g. the problem of distributing a fixed production 
generated in various factories over several consumption centres, each with a given 
demand, in order to minimise transportation costs).  

2. Individual decision-making problems under risk. In these problems, the solitary 
decision maker does not know with certainty the consequences of each of the possible 
options available to her, but she can meaningfully attach probabilities to each of the 
outcomes that may occur after each of her possible choices (e.g. the decision of buying a 
lottery ticket or not).  

3. Individual decision-making problems under uncertainty. In this type of problem, as in 
the previous case, even though the consequences of a decision cannot be known with 
certainty at the time of making the decision, the range of possible consequences for each 
decision can be roughly identified in advance. However, unlike in decisions under risk, 
in decisions under uncertainty probabilities cannot be meaningfully attached to each of 
those consequences (e.g. deciding what to order in a new restaurant). 

4. Decision problems of strategy. These problems involve many decision makers, and each 
of them has only partial control over which outcome out of a conceivable set of them 
will actually occur. Decision makers may have the ability to adapt to each other’s 
decisions (e.g. setting prices in an oligopoly with the aim of maximising individual 
profit). 

5. Decision problems under ignorance, or structural ignorance (Gilboa & Schmeidler, 1995 
and 2001). This category is characterised by the fact that it is not possible to 
meaningfully anticipate the set of potential consequences that each of the possible 
choices may have (e.g. deciding whether to give the go-ahead to genetically modified 
crops). 

Problems of skill have been extensively studied in several branches of mathematics. In 
decision-making under risk, compelling solutions have been derived using the theory of 
probability and expected utility theory. Expected utility theory, however, has not been so 
successful in the study of decision-making under uncertainty and strategic decision-making, 
which is the competence of game theory. Finally, understandably so, the formal study of 
decision problems under ignorance has not developed much. 
In this chapter we formally study social interactions that can be meaningfully modelled as 
decision problems of strategy and, as such, using game theory as a framework. Game theory 
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is a branch of mathematics devoted to the formal analysis of decision making in social 
interactions where the outcome depends on the decisions made by potentially several 
individuals. A game is a mathematical abstraction of a social interaction where (Colman, 
1995): 

• there are two or more decision makers, called players; 

• each player has a choice of two or more ways of acting, called actions or (pure) strategies, 
such that the outcome of the interaction depends on the strategy choices of all the 
players; 

• the players have well-defined preferences among the possible outcomes (Hargreaves 
Heap & Varoufakis, 1995). Thus, payoffs reflecting these preferences can be assigned to 
all players for all outcomes. These payoffs are very often numerical (Fig. 1) 

 

Player 2 

 

Player 2 chooses  
LEFT 

Player 2 chooses 
RIGHT 

Player 1 chooses  
UP 

3 , 3 0 , 4 

Player 1 

Player 1 chooses 
 DOWN 

4 , 0 1 , 1 

 

Fig. 1. Normal form or payoff matrix of a 2-player, 2-strategy game. 

A normal (or strategic form) game can be defined using a function that assigns a payoff to 
each player for every possible combination of actions. For games with only two players 
this function is commonly represented using a matrix (see Fig. 1). The example shown in 
Fig. 1 is a 2-player 2-strategy game: there are two players (player 1 and player 2), each of 
whom must select one out of two possible (pure) strategies. Player 1 can choose Up or 
Down, and player 2 simultaneously decides between Left or Right. The payoffs obtained 
by each player are represented in the corresponding cell of the matrix. Player 1 obtains the 
first payoff in the cell (coloured in red) and player 2 gets the second (coloured in blue). As 
an example, if player 1 selects Down and player 2 selects Left, then player 1 gets a payoff 
of 4 and player 2 obtains a payoff of 0. This chapter deals with 2×2 (2-player 2-strategy) 
games, which can be represented using a matrix like the one shown in Fig. 1. 
Game theory is a useful framework to accurately and formally describe interdependent 
decision-making processes. Furthermore, it also provides a collection of solution concepts 
that narrow the set of expected outcomes in such processes. The most widespread 
solution concept in game theory is the Nash equilibrium, which is a set of strategies, one 
for each player, such that no player, knowing the strategy of the other(s), could improve 
her expected payoff by unilaterally changing her own strategy (e.g. the unique Nash 
equilibrium of the game represented in Fig. 1 is the combination of strategies Down-
Right). The Nash equilibrium has been tremendously influential in the social sciences, 
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especially in economics, partly because it can be interpreted in a great number of 
meaningful and useful ways (Holt & Roth, 2004). Unfortunately, as a prediction tool, the 
concept is formally valid only when analysing games played by rational players with 
common knowledge of rationality1 under the assumption of consistently aligned beliefs 
(Hargreaves Heap & Varoufakis, 1995). Such assumptions are clearly not appropriate in 
many social contexts, where it might not be clear at all that the outcome of the game 
should be a Nash equilibrium. In particular, if players are assumed to adapt their 
decisions using a reinforcement learning algorithm, it is often the case that the final 
outcome of their repeated interaction will not be a Nash equilibrium –as will be shown 
below.  

3. Reinforcement learning in strategic contexts 

In strategic contexts in general, empirical evidence suggests that reinforcement learning is 
most plausible in animals with imperfect reasoning abilities or in human subjects who 
have no information beyond the payoff they receive and may not even be aware of the 
strategic nature of the situation (Duffy, 2005; Camerer, 2003; Bendor et al., 2001a; Roth & 
Erev, 1995; Mookherjee & Sopher, 1994). In the context of experimental game theory with 
human subjects, several authors have used simple models of reinforcement learning to 
successfully explain and predict behaviour in a wide range of games (McAllister, 1991; 
Roth & Erev, 1995; Mookherjee & Sopher, 1994; Mookherjee & Sopher, 1997; Chen & Tang, 
1998; Erev & Roth, 1998; Erev et al., 1999). In general, the various models of reinforcement 
learning that have been applied to strategic contexts tend to differ in the following, 
somewhat interrelated, features: 

• Whether learning slows down or not, i.e. whether the model accounts for the ‘Power 
Law of Practice’ (e.g. Erev & Roth (1998) vs. Börgers & Sarin (1997)). 

• Whether the model allows for avoidance behaviour in addition to approach 
behaviour (e.g. Bendor et al. (2001b) vs. Erev & Roth (1998)). Approach behaviour is 
the tendency to repeat the associated choices after receiving a positive stimulus; 
avoidance behaviour is the tendency to avoid the associated actions after receiving a 
negative stimulus (one that does not satisfy the player). Models that allow for 
negative stimuli tend to define an aspiration level against which achieved payoffs are 
evaluated. This aspiration level may be fixed or vary endogenously (Bendor et al., 
2001a; Bendor et al., 2001b). 

• Whether “forgetting” is considered, i.e. whether recent observations weigh more than 
distant ones (Erev & Roth, 1998; Rustichini, 1999; Beggs, 2005).  

• Whether the model imposes inertia – a positive bias in favour of the most recently 
selected action (Bendor et al., 2001a; Bendor et al., 2001b). 

Laslier et al. (2001) present a more formal comparison of various reinforcement learning 
models. Each of the features above can have important implications for the behaviour of 
the particular model under consideration and for the mathematical methods that are 
adequate for its analysis. For example, when learning slows down, theoretical results from 

                                                 
1 Common knowledge of rationality means that every player assumes that all players are 
instrumentally rational, and that all players are aware of other players’ rationality-related 
assumptions (this produces an infinite recursion of shared assumptions). 
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the theory of stochastic approximation (Benveniste et al., 1990; Kushner & Yin, 1997) and 
from the theory of urn models can often be applied (e.g. Ianni, 2001; Hopkins & Posch, 
2005; Beggs, 2005), whereas if the learning rate is constant, results from the theory of 
distance diminishing models (Norman, 1968; Norman, 1972) tend to be more useful (e.g. 
Börgers & Sarin, 1997; Bendor et al., 2001b; Izquierdo et al., 2007). Similarly, imposing 
inertia facilitates the analysis to a great extent, since it often ensures that a positive 
stimulus will be followed by an increase in the probability weight on the most recently 
selected action at some minimal geometric rate (Bendor et al., 2001b). 
Two of the simplest and most popular models of reinforcement learning in the game 
theory literature are the Erev-Roth (ER) model (Roth & Erev, 1995; Erev & Roth, 1998) 
and the Bush-Mosteller (BM) model (Bush & Mosteller, 1955). Both models are 
stochastic: players’ strategies are probabilities or propensities to take each of their 
possible actions. In the ER model, playing one action always increases the probability of 
playing that action again (i.e. only positive stimulus are considered), and the sensitivity 
of players’ strategies to a new outcome decreases as the game advances (Power Law of 
Practice). On the other hand, the BM model is an aspiration-based reinforcement 
learning model where negative stimuli are possible and learning does not fade with 
time.  
A special case of the BM model where all stimuli are positive was originally considered 
by Cross (1973), and analysed by Börgers & Sarin (1997). In this chapter we characterise 
the dynamics of the BM model in 2×2 games where aspiration levels are fixed, but not 
necessarily below the lowest payoff (i.e. negative stimuli are possible). The dynamics of 
this model were initially explored by Macy & Flache (2002) and Flache & Macy (2002) in 
2×2 social dilemma games using computer simulation, and their work was formalised 
and extended for general 2×2 games by Izquierdo et al. (2007). This chapter follows 
closely the work conducted by Izquierdo et al. (in press), who analysed the BM model 
using a combination of computer simulation experiments and theoretical results. Most 
of the theoretical results used in this chapter derive from Izquierdo et al. (2007).  

4. The BM reinforcement learning algorithm 

The model we analyse here is an elaboration of a conventional Bush-Mosteller (1955) 
stochastic learning model for binary choice. In this model, players decide what action to 
select stochastically: each player’s strategy is defined by the probability of undertaking 
each of the two actions available to them. After every player has selected an action 
according to their probabilities, every player receives the corresponding payoff and 
revises her strategy. The revision of strategies takes place following a reinforcement 
learning approach: players increase their probability of undertaking a certain action if it 
led to payoffs above their aspiration level, and decrease this probability otherwise. 
When learning, players in the BM model use only information concerning their own 
past choices and payoffs, and ignore all the information regarding the payoffs and 
choices of their counterparts.  
More precisely, let I = {1, 2} be the set of players in the game, and let Yi be the pure-

strategy space for each player i ∈ I. For convenience, and without loss of generality, later 
we will call the actions available to each of the players C (for Cooperate) and D (for 
Defect). Thus Yi = {C, D}. Let ui be the payoff functions ui that give player i’s payoff for 

each profile y = (y1, y2) of pure strategies, where yi ∈ Yi is a pure strategy for player i. As 
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an example, ui(C, D) denotes the payoff obtained by player i when player 1 cooperates 

and player 2 defects. Let Y = ×i∈I  Yi be the space of pure-strategy profiles, or possible 
outcomes of the game. Finally, let 

iyip ,
 denote player i’s probability of undertaking 

action yi. 
In the BM model, strategy updating takes place in two steps. First, after outcome 

),( nn yy 21=ny  in time-step n, each player i calculates her stimulus si(yn) for the action just 

chosen n
iy  according to the following formula: 
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where Ai is player i’s aspiration level. Hence the stimulus is always a number in the interval 
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where n
yi i

p ,
 is player i’s probability of undertaking action yi in time-step n, and li is player i’s 

learning rate (0 < li < 1). Thus, the higher the stimulus magnitude (or the learning rate), the 
larger the change in probability. The updated probability for the action not selected derives 
from the constraint that probabilities must add up to one. Note that the state of the game can 
be fully characterized by a two-dimensional vector p = [ p1 , p2 ], where pi is player i’s 
probability to cooperate (i.e. pi = pi,C). We will refer to such vector p as a strategy profile, or a 
state of the system.  
In the general case, a 2×2 BM model parameterisation requires specifying both players’ 
payoff function ui, aspiration level Ai, and learning rate li. Our analysis is based on the 
theoretical results derived by Izquierdo et al. (2007), which are valid for any 2×2 game, but –
for illustrative purposes– we focus here on systems where two players parameterised in 
exactly the same way (Ai = A and li = l) play a symmetric Prisoner’s Dilemma game. The 
Prisoner’s Dilemma is a two-person game where each player can either cooperate or defect. 
For each player i, the payoff when they both cooperate (ui(C, C) = Ri, for Reward) is greater 
than the payoff obtained when they both defect (ui(D, D) = Pi, for Punishment); when one 
cooperates and the other defects, the cooperator obtains Si (Sucker), whereas the defector 
receives Ti (Temptation). The dilemma comes from the fact that, individually, each player is 
better off defecting given any of her counterpart’s choices (Ti > Ri and Pi > Si; i = 1, 2), but 
they both obtain a greater payoff when they both cooperate than when they both defect (Ri > 
Pi; i = 1, 2). Symmetry implies that Ti = T,  Ri = R,  Pi = P and Si = S. Figure 1 shows an 
example of a symmetric Prisoner’s Dilemma. A certain parameterisation of this type of 
system will be specified using the template [ T , R , P , S | A | l ]2.  
The following notation will be useful: A parameterised model will be denoted S, for System. 
Let Pn(S) be the state of a system S in time-step n. Note that Pn(S) is a random variable and a 
strategy profile p is a particular value of that variable. The sequence of random variables 
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{Pn(S)}n≥0 constitutes a discrete-time Markov process with potentially infinite transient 
states. 

5. Attractors in the dynamics of the system 

Macy & Flache (2002) observed and described two types of attractors that govern the 
dynamics of the BM model: self-reinforcing equilibria (SRE), and self-correcting 
equilibria (SCE). These two concepts are not equilibria in the static sense of the word, 
but strategy profiles which act as attractors that pull the dynamics of the simulation 
towards them. The original concepts of SRE and SCE were later formalised and refined 
by Izquierdo et al. (2007). 
SREs are absorbing states of the system (i.e. states p that cannot be abandoned) where 
both players receive a positive stimulus (Izquierdo et al., 2007). An SRE corresponds to 
a pair of pure strategies (pi is either 0 or 1) such that its certain associated outcome gives 
a strictly positive stimulus to both players (henceforth a mutually satisfactory outcome). 
For example, the strategy profile [ 1 , 1 ] is an SRE if both players’ aspiration levels are 
below their respective Ri = ui(C, C). Escape from an SRE is impossible since no player 
will change her strategy. More importantly, SREs act as attractors: near an SRE, there is 
a high chance that the system will move towards it, because there is a high probability 
that its associated mutually satisfactory outcome will occur, and this brings the system 
even closer to the SRE. The number of SREs in a system is the number of outcomes 
where both players obtain payoffs above their respective aspiration levels. 
The definition of the other type of attractor, namely the SCE, is related to the expected 
motion function of the system. The Expected Motion (EM) of a system S in state p for 
the following iteration is given by a function vector EMS(p) whose components are the 
expected change in the probabilities to cooperate for each player. Mathematically, 
 

)(] )(EM  )(EM [)( 21 pPPppp nn =≡≡ )S()|S(SSS ΔEEM ,  

DDDCCDCC
Pr{DD}Pr{DC}Pr{CD}Pr{CC}  )(EM iiiii pppp Δ⋅+Δ⋅+Δ⋅+Δ⋅=pS  

 

where {CC, CD, DC, DD} represent the four possible outcomes that may occur.  
For instance, for a Prisoner’s Dilemma parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2,  the function 
EM(p) is 
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This Expected Motion function is represented by the arrows shown in figure 2. 
Consider now differential equation (1), which is the continuous time limit approximation of 
the system’s expected motion:   
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Fig. 2. Expected motion of the system in a Prisoner’s Dilemma game parameterised as [ 4 , 3 , 
1 , 0 | 2 | 2−4 ]2, together with a sample simulation run (1000 iterations). The arrows 
represent the expected motion for various states of the system; the numbered balls show the 
state of the system after the indicated number of iterations in the sample run. The 
background is coloured using the norm of the expected motion. For any other learning rate 
the size of the arrows (i.e. the norm of the expected motion) would vary but their direction 
would be preserved.  

Thus, for the Prisoner’s Dilemma parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2, the associated 
differential equation is 
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Some trajectories of this differential equation are shown in figure 3. The expected motion at 
any point p in the phase plane is a vector tangent to the unique trajectory to which that point 
belongs. Having explained the expected motion of the system and its continuous time limit 
approximation we can now formally define SCEs. 

 

Fig. 3. Trajectories in the phase plane of the differential equation corresponding to the 
Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2, together with a sample 
simulation run ( l = 2−4 ). The background is coloured using the norm of the expected 
motion. This system has an SCE at [ 0.37 , 0.37 ].  

An SCE of a system S is an asymptotically stable critical point (Mohler, 1991) of differential 
equation (1) (Izquierdo et al., 2007). Roughly speaking this means that all trajectories in the 
phase plane of Eq. (1) that at some instant are sufficiently close to the SCE will approach the 
SCE as the parameter t (time) approaches infinity and remain close to it at all future times.  
Note that, with these definitions, there could be a state of the system that is an SRE and an 
SCE at the same time. Note also that EMS(SCE) = 0 and EMS(SRE) = 0. In particular, the 
Prisoner’s Dilemma represented in figure 3 exhibits a unique SCE at [ 0.37 , 0.37 ] and a 
unique SRE at [ 1 , 1 ]. 
Let fx(t) denote the solution of differential equation (1) for some initial state x. Figure 4 
shows fx(t) for the Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2 for 
different (and symmetric) initial conditions x = [x0 , x0]. For this particular case and settings, 
the two components of fx(t) = [f1,x(t) , f2,x(t)] take the same value at any given t, so the 
representation in figure 4 corresponds to both components of fx(t). Convergence to the SCE 
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at [ 0.37 , 0.37 ] can be clearly observed for every initial condition x, except for x = [1, 1], 
which is the SRE. 

 

Fig. 4. Solutions of differential equation (1) for the Prisoner’s Dilemma game parameterised 
as [ 4 , 3 , 1 , 0 | 2 | l ]2 with different (and symmetric) initial conditions  
x = [x0 , x0]. This system has a unique SCE at [ 0.37 , 0.37 ] and a unique SRE at [ 1 , 1 ].  

The use of expected motion (or mean-field) approximations to understand simulation 
models and to design interesting experiments has already proven to be very useful in the 
literature (e.g. Huet et al., 2007; Galán & Izquierdo, 2005; Edwards et al., 2003; Castellano et 
al., 2000). Note, however, that such approaches are approximations whose validity may be 
constrained to specific conditions: as we can see in Figure 3, simulation runs and trajectories 
will not coincide in general. Later in this chapter we show that trajectories and SCEs are 
especially relevant for the transient dynamics of the system, particularly with small learning 
rates, but, on the other hand, the mean-field approximation can be misleading when 
studying the asymptotic behaviour of the model.  

6. Attractiveness of SREs 

Macy and Flache’s experiments (Macy & Flache, 2002; Flache & Macy, 2002) with the BM 
model showed a puzzling phenomenon. A significant part of their analysis consisted in 
studying, in a Prisoner’s Dilemma in which mutual cooperation was mutually satisfactory 
(i.e. Ai < Ri = ui(C, C)), the proportion of simulation runs that “locked” into mutual 
cooperation. Such ”lock-in rates” were reported to be as high as 1 in some experiments. 
However, starting from an initial state which is not an SRE, the BM model specifications 
guarantee that after any finite number of iterations any outcome has a positive probability of 
occurring (i.e. strictly speaking, lock-in is impossible)2. To investigate this apparent 

                                                 
2 The specification of the model is such that probabilities cannot reach the extreme values of 
0 or 1 starting from any other intermediate value. Therefore if we find a simulation run that 
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contradiction we conducted some qualitative analyses that we present here to familiarise the 
reader with the complex dynamics of this model. Our first qualitative analysis consisted in 
studying the expected dynamics of the model. Figure 5 illustrates the expected motion of a 
system extensively studied by Macy & Flache: the Prisoner’s Dilemma game parameterised 
as [ 4 , 3 , 1 , 0 | 2 | 0.5 ]2. As we saw before, this system features a unique SCE at  
[ 0.37 , 0.37 ] and a unique SRE at [ 1 , 1 ]. Figure 5 also includes the trace of a sample 
simulation run. Note that the only difference between the parameterisation of the system 
shown in figure 2 and that shown in figure 5 is the value of the learning rate. 

 

Fig. 5. Expected motion of the system in a Prisoner’s Dilemma game parameterised as  
[ 4 , 3 , 1 , 0 | 2 | 0.5 ]2, with a sample simulation run.  

Figure 5 shows that the expected movement from any state is towards the SCE, except for 
the only SRE, which is an absorbing state. In particular, near the SRE, where both 
probabilities are high but different from 1, the distribution of possible movements is very 
peculiar: there is a very high chance that both agents will cooperate and consequently move 

                                                                                                                            
has actually ended up in an SRE starting from any other state, we know for sure that such 
simulation run did not follow the specifications of the model (e.g. perhaps because of 
floating-point errors). For a detailed analysis of the effects of floating point errors in 
computer simulations, with applications to this model in particular, see Izquierdo and 
Polhill (2006), Polhill and Izquierdo (2005), Polhill et al. (2006),  Polhill et al. (2005). 
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a small distance towards the SRE, but there is also a positive chance, tiny as it may be, that 
one of the agents will defect, causing both agents to jump away from the SRE towards the 
SCE. The improbable, yet possible, leap away from the SRE is of such magnitude that the 
resulting expected movement is biased towards the SCE despite the unlikelihood of such an 
event actually occurring. The dynamics of the system can be further explored analysing the 
most likely movement from any given state, which is represented in Figure 6.  

 

Fig. 6. Figure showing the most likely movements at some states of the system in a 
Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | 0.5 ]2, with a sample simulation 
run. The background is coloured using the norm of the most likely movement. 

Figure 6 differs significantly from Figure 5; it shows that the most likely movement in the 
upper-right quadrant of the state space is towards the SRE. Thus, the walk towards the SRE 
is characterised by a fascinating puzzle: on the one hand, the most likely movement leads 
the system towards the SRE, which is even more likely to be approached the closer we get to 
it; on the other hand, the SRE cannot be reached in any finite number of steps and the 
expected movement as defined above is to walk away from it (see figure 5).  
It is also interesting to note in this game that, starting from any mixed (interior) state, both 
players have a positive probability of selecting action D in any future time-step, but there is 
also a positive probability that both players will engage in an infinite chain of the mutually 
satisfactory event CC forever, i.e., that neither player will ever take action D from then 
onwards (see Izquierdo et al., in press).  
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The probability of starting an infinite chain of CC events depends largely on the value of the 
learning rate l. Figure 7 shows the probability of starting an infinite chain of the mutually 
satisfactory outcome CC in a Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2  
| l ]2, for different learning rates l, and different initial probabilities to cooperate x0 (the same 
probability for both players). For some values, the probability of immediately starting an 
infinite chain of mutual cooperation can be surprisingly high (e.g. for l = 0.5 and initial 
conditions [ x0 , x0 ] = [ 0.9 , 0.9 ] such probability is approximately 44%).  

 

Fig. 7. Probability of starting an infinite chain of the Mutually Satisfactory (MS) outcome CC 
in a Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2. The 5 different 
(coloured) series correspond to different learning rates l. The variable x0, represented in the 
horizontal axis, is the initial probability of cooperating for both players.  

In summary, assuming that aspirations are different from payoffs (see Izquierdo et al., 2007), 
a BM process that starts in an initial state different from an SRE will never reach an SRE in 
finite time, and there is always a positive probability that the process leaves the proximity of 
an SRE. However, if there is some SRE, there is also a positive probability that the system 
will approach it indefinitely (i.e. forever) through an infinite chain of the mutually 
satisfactory outcome associated to the SRE.   

7. Different regimes in the dynamics of the system 

This section illustrates the dynamics of the BM model for different learning rates. Most of 
the theoretical results that we apply and summarise in this section are valid for any 2×2 
game and can be found in Izquierdo et al. (2007). The analysis is presented here in a 
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somewhat qualitative fashion for the sake of clarity and comprehensibility, and illustrates 
the behaviour of the BM model using the Prisoner’s Dilemma shown in figure 1. 
In the general case, the dynamics of the BM model may exhibit three different regimes: 
medium run, long run, and ultralong run. The terminology used here is borrowed from 
Binmore & Samuelson (1993) and Binmore et al. (1995), who reserve the term short run for 
the initial conditions. 
“By the ultralong run, we mean a period of time long enough for the asymptotic distribution to be a 
good description of the behavior of the system. The long run refers to the time span needed for the 
system to reach the vicinity of the first equilibrium in whose neighborhood it will linger for some 
time. We speak of the medium run as the time intermediate between the short run [i.e. initial 
conditions] and the long run, during which the adjustment to equilibrium is occurring.” (Binmore 
et al., 1995, p. 10) 
Binmore et al.’s terminology is particularly useful for our analysis because it is often the case 
in the BM model that the “first equilibrium in whose neighborhood it [the system] will linger for 
some time”, i.e. the long run, is significantly different from the asymptotic dynamics of the 
system. Whether the three different regimes (medium, long, and ultralong run) are clearly 
distinguishable in the BM model strongly depends on the players’ learning rates. For high 
learning rates the system quickly approaches its asymptotic behaviour (the ultralong run) 
and the distinction between the different regimes is not particularly useful. For small 
learning rates, however, the three different regimes can be clearly observed. Since the 
ultralong run is the only regime that is (finally) observed in every system, we start our 
description of the dynamics of the BM model characterising such regime (for details see 
Propositions 2 and 3 in Izquierdo et al., 2007). Assuming players’ aspirations are different 

from their respective payoffs (ui(y) ≠ Ai for all i and y): 

• If players’ aspirations are below their respective maximin3, the BM system converges to 
an SRE with probability 1 (i.e. the set formed by all SREs is asymptotically reached with 
probability 1). If the initial state is completely mixed, then every SRE can be 
asymptotically reached with positive probability. 

• If players’ aspirations are above their respective maximin: 
- if there is any SRE then the BM system converges to an SRE with probability 1. If the 

initial state is completely mixed, then every SRE can be asymptotically reached with 
positive probability.  

- If there are no SREs then the process is ergodic, so the states of the system present an 
asymptotic distribution which is independent of the initial conditions.  

In the context of the Prisoner’s dilemma game described above, this implies that if players’ 
aspirations are above the payoff they receive when they both defect (Ai > ui(D, D) = Pi), 
which is their maximin, then the ultralong run is independent of the initial state. Under such 
conditions, there is an SRE if and only if mutual cooperation is satisfactory for both players 
(i.e. Ai < ui(C, C) = Ri) and, if that is the case, the process converges to certain mutual 
cooperation (i.e. the unique SRE) with probability 1. As an example, note that the ultralong-
run behaviour of the systems shown in figures 2, 3, 5 and 6 is certain mutual cooperation.  

                                                 
3 Maximin is the largest possible payoff players can guarantee themselves in a single-stage 
game using pure strategies. 
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7.1 Learning by large steps (fast adaptation) 

As mentioned above, when learning takes place by large steps, the system quickly reaches 
its ultralong-run behaviour. To explain why this is the case we distinguish between two 
possible classes of systems: 

• In systems where there is at least one SRE, the asymptotic behaviour is quickly 
approached because SREs are powerful attractors (e.g. see figures 5 and 6). The reason 
for this is that, if an SRE exists, the chances of a mutually satisfactory outcome not 
occurring for a long time are low, since players update their strategies to a large extent 
to avoid unsatisfactory outcomes. Whenever a mutually satisfactory outcome occurs, 
players update their strategy so the chances of repeating such a mutually satisfactory 
outcome increase. Since learning rates are high, the movement towards the SRE 
associated with such a mutually satisfactory outcome takes place by large steps, so only 
a few coordinated moves are sufficient to approach the SRE so much that escape from 
its neighbourhood becomes very unlikely. In other words, with fast learning the system 
quickly approaches an SRE, and is likely to keep approaching that SRE forever (this is 
the system’s ultralong-run behaviour). As an example, consider figure 7 again: starting 
from any initial probability to cooperate x0, the occurrence of a mutually satisfactory 
outcome CC would increase both players’ probability to cooperate (the updated 
probability can be seen as the following period’s x0), which in turn would increase the 
probability of never defecting (i.e. the probability of starting an infinite chain of CC). 
Thus, if learning rates are large, a few CC events are enough to take the state of the 
system into areas where the probability of never defecting again is large. 

• In the absence of SREs, the fact that any outcome is unsatisfactory for at least one of the 
players4 and the fact that strategy changes are substantial, together imply that at least 
one player will switch between actions very frequently –i.e. the system will indefinitely 
move rapidly and widely around a large area of the state space. 

7.2 Learning by small steps (slow adaptation) 

The behaviour of the BM process with low learning rates is characterised by the following 
features (Izquierdo et al., 2007; Proposition 1):   

• For low enough learning rates, the BM process with initial state x tends to follow the 
trajectory fx(t) in the phase plane of Eq. (1), i.e. the trajectory that corresponds to f(0) = x 
(e.g. see figure 3).  

• For low enough learning rates l, the BM process in time-step n tends to be concentrated 
around a particular point of the mentioned trajectory: the point fx(n·l) (e.g. see figure 4). 

• If trajectories get close to an SCE (as t increases), then, for low learning rates, the BM 
process will tend to approach and linger around the SCE; the lower the learning rate, 
the greater the number of periods that the process will tend to stay around the SCE.  

• Eventually the system will approach its asymptotic behaviour, which –as explained 
above– is best characterised by the SREs of the system. 

When learning takes place by small steps the transient regimes (i.e. the medium and the 
long run) can be clearly observed, and these transient dynamics can be substantially 
different from the ultralong-run behaviour of the system. For sufficiently small learning 

                                                 
4 Recall that each player’s aspiration level is assumed to be different from every payoff the 
player may receive. 
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rates and number of iterations n not too large (n·l bounded), the medium-run dynamics of 
the system are best characterised by the trajectories in the phase plane of Eq. (1), which can 
follow paths substantially apart from the end-states of the system (see figure 8, where the 
end-state is [1 , 1]). Under such conditions, the expected state of the system after n iterations 
can be estimated by substituting the value n·l in the trajectory that commences at the initial 
conditions (see figure 4). The lower the learning rates, the better the estimate, i.e. the more 
tightly clustered the dynamics will be around the corresponding trajectory in the phase 
plane (see figure 8).  
When trajectories finish in an SCE, the system will approach the SCE and spend a significant 
amount of time in its neighbourhood if learning rates are low enough and the number of 
iterations n is large enough (and finite)5. This latter regime is the long run. The fact that 
trajectories are good approximations for the transient dynamics of the system for slow 
learning shows the importance of SCEs –points that ”attract” trajectories within their 
neighbourhood– as attractors of the actual dynamics of the system. This is particularly so 
when, as in most 2×2 games, there are very few asymptotically stable critical points and they 
have very wide domains of attraction.  

 

Fig. 8. Three sample runs of a system parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2 for different 
values of n and l. The product n·l is the same for the three simulations; therefore, for low 
values of l, the state of the system at the end of the simulations tends to concentrate around 
the same point.  

Remember, however, that the system will eventually approach its asymptotic behaviour, 
which in the systems shown in figures 2, 3, 4, 5, 6, 7 and 8 is certain mutual cooperation. 
Having said that, as Binmore et al., (1995) point out, approaching the asymptotic behaviour 
may require an extraordinarily long time, much longer than is often meant by long run, 
hence the term ultralong run. 
To illustrate how learning rates affect the speed of convergence to asymptotic behaviour, 
consider once again the Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2, a 
system extensively studied by Macy & Flache (2002). The evolution of the probability to 
cooperate with initial state [ 0.5 , 0.5 ] (with these settings the probability is identical for both 

                                                 
5 Excluded here is the trivial case where the initial state is an SRE.  
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players) is represented in the rows of figure 9 for different learning rates l. The top row 
shows the evolution for l = 0.5, and the bottom row shows the evolution for l = 2-7.  
For l = 0.5, after only 29 = 512 iterations, the probability that both players will be almost 
certain to cooperate is very close to 1, and it remains so thereafter. For l = 2-4 and lower 
learning rates, however, the distribution is still clustered around the SCE even after 221 = 
2097152 iterations. With low learning rates, the chain of events that is required to escape 
from the neighbourhood of the SCE is extremely unlikely, and therefore this long run 
regime seems to persist indefinitely. However, given sufficient time, such a chain of 
coordinated moves will occur, and the system will eventually reach its ultralong-run regime, 
i.e. almost-certain mutual cooperation. The convergence of the processes to the appropriate 
point in the trajectory fx(n·l) as l → 0 and n·l is kept bounded can be appreciated following 
the grey arrows (which join histograms for which n·l is constant). 
 

 

Fig. 9. Histograms representing the probability of cooperating for one player (both players’ 
probabilities are identical) after n iterations for different learning rates l in a Prisoner’s 
Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2, each calculated over 1,000 simulation 
runs. The initial probability for both players is 0.5. The grey arrows join histograms for 
which n·l is constant. 

8. Trembling hands process 

To study the robustness of the previous asymptotic results we consider an extension of the 
BM model where players suffer from ‘trembling hands’ (Selten, 1975): after having decided 
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which action to undertake, each player i may select the wrong action with some probability 
εi > 0 in each iteration. This noisy feature generates a new stochastic process, namely the 
noisy process Nn, which can also be fully characterized by a 2-dimensional vector prop = 
[prop1 , prop2] of propensities (rather than probabilities) to cooperate. Player i’s actual 
probability to cooperate is now (1 – εi) · propi + εi · (1 – propi), and the profile of propensities 
prop evolves after any particular outcome following the rules given in section 4. Izquierdo et 
al. (2007) prove that the noisy process Nn is ergodic in any 2×2 game6. Ergodicity implies 
that the state of the process presents an asymptotic probability distribution that does not 
depend on the initial state.  
The noisy process has no absorbing states (i.e. SREs) except in the trivial case where both 
players find one of their actions always satisfactory and the other action always 
unsatisfactory – thus, for example, in the Prisoner’s Dilemma the inclusion of noise 
precludes the system from convergence to a single state. However, even though noisy 
processes have no SREs in general, the SREs of the associated unperturbed process (SREUPs, 
which correspond to mutually satisfactory outcomes) do still act as attractors whose 
attractive power depends on the magnitude of the noise: ceteris paribus the lower the noise 
the higher the long run chances of finding the system in the neighbourhood of an SREUP 
(see Figure 10). This is so because in the proximity of an SREUP, if εi are low enough, the 
SREUP’s associated mutually satisfactory outcome will probably occur, and this brings the 
system even closer to the SREUP. The dynamics of the noisy system will generally be 
governed also by the other type of attractor, the SCE (see figure 10). 

 

 

Fig. 10. Histograms representing the propensity to cooperate for one player (both players’ 
propensities are identical) after 1,000,000 iterations (when the distribution is stable) for 
different levels of noise (εi = ε) in a Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 
2 | 0.25 ]2. Each histogram has been calculated over 1,000 simulation runs.  

Figures 11 and 12, which correspond to a Prisoner’s Dilemma game parameterised as [ 4 , 3 , 
1 , 0 | 2 | l ]2, show that the presence of noise can greatly damage the stability of the 
(unique) SREUP associated to the event CC. Note that the inclusion of noise implies that the 
probability of an infinite chain of the mutually satisfactory event CC becomes zero. 

                                                 
6 We exclude here the meaningless case where the payoffs for some player are all the same 
and equal to her aspiration (Ti = Ri = Pi = Si = Ai for some i).    
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The systems represented on the left-hand side of figure 11, corresponding to a learning rate  
l = 0.5, show a tendency to be quickly attracted to the state [ 1 , 1 ], but the presence of noise 
breaks the chains of mutually satisfactory CC events from time to time (see the series on the 
bottom-left corner); unilateral defections make the system escape from the area of the 
SREUP before going back towards it again and again. The systems represented on the right-
hand side of figure 11, corresponding to a lower learning rate (l = 0.25) than those on the 
left, show a tendency to be lingering around the SCE for longer. In these cases, when a 
unilateral defection breaks a chain of mutually satisfactory events CC and the system leaves 
the proximity of the state [ 1 , 1 ], it usually takes a large number of periods to go back into 
that area again.  

 

 

 

Fig. 11. Representative time series of player 1’s propensity to cooperate over time for the 
Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 |0.5 ]2 (left) and [4 , 3 , 1 , 0 | 2 
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|0.25 ]2 (right), with initial conditions [ x0 , x0 ] = [ 0.5 , 0.5 ], both without noise (top) and 
with noise level εi = 10-3 (bottom). 

Figure 12 shows that a greater level of noise implies higher destabilisation of the SREUP. 
This is so because, even in the proximity of the SREUP, the long chains of reinforced CC 
events needed to stabilise the SREUP become highly unlikely when there are high levels of 
noise, and unilateral defections (whose probability increases with noise in the proximity of 
the SREUP) break the stability of the SREUP. 

 

Fig. 12. Evolution of the average probability / propensity to cooperate of one of the players 
in a Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | 0. 5 ]2 with initial state        
[ 0.5, 0.5 ], for different levels of noise (εi = ε). Each series has been calculated averaging over 
100,000 simulation runs. The standard error of the represented averages is lower than 3·10-3 
in every case.  

8.1 Stochastic stability 

Importantly, not all the SREs of the unperturbed process are equally robust to noise. 
Consider, for instance, the system [ 4 , 3 , 1 , 0 | 0.5 | 0. 5 ]2, which has two SRES: [ 1 , 1 ] and  
[ 0 , 0 ]. Using the results outlined in section 7 we know that the set formed by the two SREs 
is asymptotically reached with probability 1; the probability of the process converging to 
one particular SRE depends on the initial state; and if the initial state is completely mixed, 
then the process may converge to either SRE. Simulations of this process show that, almost 
in every case, the system quickly approaches one of the SREs and then remains in its close 
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vicinity. Looking at the line labelled “ε = 0” in figure 13 we can see that this system with 
initial state [ 0.9 , 0.9 ] has a probability of converging to its SRE at [ 1 , 1 ] approximately 
equal to 0.7, and a probability of converging to its SRE at [ 0 , 0 ] approximately equal to 0.3.  
However, the inclusion of (even tiny levels of) noise may alter the dynamics of the system 
dramatically. In general, for low enough levels of “trembling hands” noise we find an 
ultralong-run (invariant) distribution concentrated on neighbourhoods of SREUPs. The 
lower the noise, the higher the concentration around SREUPs. If there are several SREUPs, 
the invariant distribution may concentrate on some of these SREUPs much more than on 
others. In the limit as the noise goes to zero, it is often the case that only some of the SREUPs 
remain points of concentration. These are called stochastically stable equilibria (Foster & 
Young, 1990; Young, 1993; Ellison, 2000). As an example, consider the simulation results 
shown in figure 13, which clearly suggest that the SRE at [ 0 , 0 ] is the only stochastically 
stable equilibrium even though the unperturbed process converges to the other SRE more 
frequently with initial conditions [ 0.9 , 0.9 ]. Note that whether an equilibrium is 
stochastically stable or not is independent on the initial conditions.  
 

 

Fig. 13. Evolution of the average probability / propensity to cooperate of one of the players 
in a Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 0.5 | 0. 5 ]2 with initial state     
[ 0.9 , 0.9 ], for different levels of noise (εi = ε). Each series has been calculated averaging over 
10,000 simulation runs. The inset graph is a magnification of the first 500 iterations. The 
standard error of the represented averages is lower than 0.01 in every case.  



Reinforcement Learning: Theory and Applications 

 

220 

Intuitively, note that in the system shown in figure 13, in the proximities of the SRE at  
[ 1 , 1 ], one single (possibly mistaken) defection is enough to lead the system away from it. 
On the other hand, near the SRE at [ 0 , 0 ] one single (possibly mistaken) cooperation will 
make the system approach this SRE at [ 0 , 0 ] even more closely. Only a coordinated mutual 
cooperation (which is highly unlikely near the SRE at [ 0 , 0 ]) will make the system move 
away from this SRE. This makes the SRE at [ 0 , 0 ] much more robust to occasional mistakes 
made by the players when selecting their strategies than the SRE at [ 1, 1 ], as illustrated in 
figures 14 and 15.   
 
 

 

 

 

Fig. 14. One representative run of the system parameterised as [ 4 , 3 , 1 , 0 | 0.5 | 0. 5 ]2 with 
initial state [ 0.9 , 0.9 ], and  noise εi = ε = 0.1. This figure shows the evolution of the system 
in the phase plane of propensities to cooperate, while figure 15 below shows the evolution of 
player 1’s propensity to cooperate over time for the same simulation run.  
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Fig. 15. Time series of player 1’s propensity to cooperate over time for the same simulation 
run displayed in figure 14.  

9. Conclusions 

This chapter has characterised the behaviour of the Bush-Mosteller (Bush & Mosteller, 1955) 
aspiration-based reinforcement learning model in 2x2 games. The dynamics of this process 
depend mainly on three features: 

• The speed of learning. 

• The existence of self-reinforcing equilibria (SREs). SREs are states which are particularly 
relevant for the ultralong-run or asymptotic behaviour of the process. 

• The existence of self-correcting equilibria (SCEs). SCEs are states which are particularly 
relevant for the transient behaviour of the process with low learning rates. 

With high learning rates, the model approaches its asymptotic behaviour fairly quickly. If 
there are SREs, such asymptotic dynamics are concentrated on the SREs of the system. With 
low learning rates, two transient distinct regimes (medium run and long run) can usually be 
distinguished before the system approaches its asymptotic regime. Such transient dynamics 
are strongly linked to the solutions of the continuous time limit approximation of the 
system’s expected motion. 
The inclusion of small quantities of noise in the model can change its dynamics quite 
dramatically. Some states of the system that are asymptotically reached with high 
probability in the unperturbed model (i.e. some SREs) can effectively lose all their 
attractiveness when players make occasional mistakes in selecting their actions. A field for 
further research is the analytical identification of the asymptotic equilibria of the 
unperturbed process that are robust to small trembles (i.e. the set of stochastically stable 
equilibria).   
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Acquisition in Multi-Agent Environment 
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1. Introduction  

There has been a great deal of research on reinforcement learning in multirobot/agent 
environments during last decades1. A wide range of applications, such as forage robots 
(Mataric, 1997), soccer playing robots (Asada et al., 1996), prey-pursuing robots (Fujii et al., 
1998) and so on, have been investigated. However, a straightforward application of the 
simple reinforcement learning method to multi-robot dynamic systems has a lot of issues, 
such as uncertainty caused by others, distributed control, partial observability of internal 
states of others, asynchronous action taking, and so on. In this paper we mainly focus on 
two major difficulties in practical use :  

• unstable dynamics caused by policy alternation of other agents 

• curse of dimension problem 
The policy alternation of others in multi-agent environments may cause sudden changes in 
state transition probabilities of which constancy is needed for behavior learning to converge. 
Asada et al. (Asada et al., 1999) proposed a method that sets a global learning schedule in 
which only one agent is specified as a learner with the rest of the agents having fixed 
policies to avoid the issue of the simultaneous learning. As a matter of course, they did not 
consider the alternation of the opponent’s policies. Ikenoue et al. (Ikenoue et al., 2002) 
showed simultaneous cooperative behavior acquisition by fixing learners’ policies for a 
certain period during the learning process. In the case of cooperative behavior acquisition, 
no agent has any reason to change policies while they continue to acquire positive rewards 
as a result of their cooperative behavior with each other. The agents update their policies 
gradually so that the state transition probabilities can be regarded as almost fixed from the 
viewpoint of the other learning agents. Kuhlmann and Stone (Kuhlmann and Stone, 2004) 
have applied a reinforcement learning system with a function approximator to the keep-
away problem in the situation of the RoboCup simulation league. In their work, only the 
passer learns his policy is to keep the ball away from the opponents. The other agents 
(receivers and opponents) follow fixed policies given by the designer beforehand. 
The amount of information to be handled in multi-agent system tends to be huge and easily 
causes the curse of dimension problem. Elfwing et al. (Elfwing et al., 2004) achieved the 
cooperative behavior learning task between two robots in real time by introducing the 

                                                 
1 For example, a survey (Yang and Gu, 2004) is available. 
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macro action that is an abstracted action code predefined by the designer. However, only 
the macro actions do not seem sufficient to accelerate the learning time in a case that more 
agents are included in the environment. Therefore, the sensory information should be also 
abstracted to reduce the size of the state space. Kalyanakrishnan et al. (Kalyanakrishnan et 
al., 2006) showed that the learning rate can be accelerated by sharing the learned 
information in the 4 on 5 game task. However, they still need long learning time since they 
directly use the raw sensory information as state variables to determine the situation that 
the learning agent encounters. 
Keys for cooping with the above difficulties are to divide a whole complex situation into 
several ones in which state transition can be regarded as stable enough, and to keep 
exploration space as small as possible based on abstracted task specific information instead 
of the row sensory information. A modular learning system might be a practical solution for 
those difficulties. 
This chapter briefly introduces examples of application of modular learning systems for 
cooperative/competitive behavior acquisition in scenarios of RoboCup Middle Size League. 
A modular learning system is successfully applied for adaptation to the policy alternation of 
others by switching modules each of which corresponds to different situation caused by the 
policy alternation of the other. Introduction of macro actions enables reduction of 
exploration space and simultaneous multi-agent behavior learning. The experimental results 
of 2 on 3 passing task are shown. Furthermore, in order to attack the problem of curse of 
dimension, a state abstraction method based on state value function of a behavior learning 
module is proposed and applied to the 4 on 5 passing task. A player can acquire cooperative 
behaviors with its teammates and competitive ones against opponents within a reasonable 
learning time. Finally, conclusions and future work are shown. 

2. Modular learning system for policy alternation of others 

In this section, a modular learning system for behavior acquisition in the multiagent 
environment is introduced. A multi-module learning system for even single agent learning 
in a multi-agent environment is shown difficult when we straightforwardly apply it. A 
simple learning scheduling is introduced in order to make it relatively easy to assign 
modules automatically. Second, macro actions are introduced to realize simultaneous 
learning in multi-agent environments in which each agent does not need to fix its policy 
according to some learning schedule. More detailed description was given in (Takahashi et 
al., 2005). 

2.1 3 on 1 game 

Before describing the modular learning system in details, a task in the RoboCup middle size 
league context is introduced as a testbed to evaluate the learning system. The game is like a 
three-on-one involving one opponent and three other players. The player nearest to the ball 
becomes a passer who passes the ball to one of its teammates (receivers) while the opponent 
tries to intercept it. Fig.2 shows the viewer of our simulator for the robots and the 
environment and a situation the learning agents are supposed to encounter. Fig.1 shows a 
mobile robot we have designed and built. The robot has an omni-directional camera system. 
A simple color image processing is applied to detect the ball, the interceptor, and the 
receivers on the image in real-time (every 33ms.) The left of Fig.2 shows a situation a 
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learning agent can encounter while the right images show the simulated ones of the normal 
and omni vision systems. The mobile platform is an omni-directional vehicle (roration and 
translation in any direction on the plane are possible at any moment). 

 

Fig. 1. A real Robot 

 

Fig. 2. A 3 on 1 game (left) and the viewer of the game simulator (right) 

2.1 Modular learning system 

The basic idea is that the learning agent could assign one behavior learning module to one 
situation which reflects another agent’s behavior and the learning module would acquire a 
purposive behavior under the situation if the agent can distinguish a number of situations, 
each in which the state transition probabilities are almost constant. We introduce a modular 
learning approach to realize this idea (Fig.3). A module consists of both a learning 
component that models the world and an action planner. The whole system follows these 
procedures: 

• select a module in which the world model is estimated best among the modules; 

• update the model in the module; and 

• calculate action values to accomplish a given task based on the estimated model using 
dynamic programming. 
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Fig. 3. Adaptive behavior selection based on Multi-module learning system 

As an experimental task, we suppose ball passing with the possibility of being intercepted 
by the opponent (Fig.2). The problem for the passer (interceptor) here is to select one 
module of which model can most accurately describe the interceptor’s (passer’s) behavior 
from the viewpoint of the agent and then to take an action based on the policy which is 
planned with the estimated model. 

 

Fig. 4. A multi-module learning system 

Fig. 4. shows a basic architecture of the proposed system, i.e., a modular reinforcement 
learning system. Each module has a forward model (predictor) which represents the state 
transition model and a behavior learner (action planner) which estimates the state-action 
value function based on the forward model in a reinforcement learning manner. This idea of 
a combination of a forward model and a reinforcement learning system is similar to the H-
DYNA architecture (Singh, 1992) or MOSAIC (Doya et al., 2000). The system selects one 
module which has the best estimation of a state transition sequence by activating a gate 
signal corresponding to the module while deactivating the gate signals of the other 
modules; the selected module then sends action commands based on its policy. 

2.3 Behaviors acquisition under scheduling 

First, we show how it is difficult to directly introduce the proposed multi-module learning 
system in the multi-agent system. A simple learning scheduling is introduced in order to 
make it relatively easy to assign modules automatically. 
The initial positions of the ball, passer, interceptor, and receivers are shown in Fig. 2. The 
opponent has two kinds of behaviors: it defends the left side or right side. The passer agent 
has to estimate which direction the interceptor will defend and go to the position so as to 
kick the ball in the direction the interceptor does not defend. From the viewpoint of the 
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multi-module learning system, the passer will estimate which situation of the module is 
going on and select the most appropriate module as its behavior. The passer acquires a 
positive reward when it approaches the ball and kicks it to one of the receivers. 
A learning schedule is composed of three stages to show its validity. The opponent fixes its 
defending policy as a right-side block at the first stage. After 250 trials, the opponent 
changes the policy to block the left side at the second stage and continues this for another 
250 trials. Finally, the opponent changes the defending policy randomly after one trial. 

2.4 Configuration 

The state space is constructed in terms of the centroid of the ball on the image, the angle 
between the ball and the interceptor, and the angles between the ball and the potential 
receivers (see Figs. 9 (a) and (b)). The action space is constructed in terms of the desired 
three velocity values (xd, yd, wd) to be sent to the motor controller (Fig. 6). The robot has a 
pinball-like kick device which allows it to automatically kick the ball whenever the ball 
comes within the region to be kicked. It tries to estimate the mapping from sensory 
information to appropriate motor commands by the proposed method. 

  

Fig. 5. State variables : Left : (a) state variables (position)   Right: (b) state variables (angle) 

 

Fig. 6. Action variables 

2.5 Simulation results 

We have applied the method to a learning agent and compared it with only one learning 
module. The performances between the methods with and without the learning scheduling 
are compared as well. Fig.7 shows the success rates of those during the learning process. 
”success” indicates the learning agent successfully kicked the ball without interception by 
the opponent. The success rate shows the number of successes in the last 50 trials. The 
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“mono. module” in the figure means a “monolithic module” system which tries to acquire a 
behavior for both policies of the opponent.  

 

Fig. 7. Success rates during the learning 

The multi-module system with scheduling shows a better performance than the one-module 
system. The monolithic module with scheduling means we applied the learning scheduling 
mentioned in 2.3 even though the system has only one learning module. The performance of 
this system is similar to the multi-module system until the end of the first stage between the 
fist and the 250th trials; however, it goes down at the second stage because the obtained 
policy is biased by the experiences at the first stage and cannot follow the policy change of 
the opponent. Because the opponent uses one of the policies at random in the third stage, 
the learning agent obtains about 50% of the success rate.  
The term “without scheduling” means we do not apply learning scheduling and the 
opponent changes its policy at random from the beginning. Somehow the performance of 
the monolithic module system without learning scheduling gets worse after 200 trials. The 
multi-module system without a learning schedule shows the worst performance in our 
experiments. This result indicates it is very difficult to recognize the situation at the early 
stage of the learning process because the modules have too few experiences to evaluate their 
fitness; thus, the system tends to select the module without any consistency. As a result, the 
system cannot acquire any valid policies. 

3. Simultaneous learning with macro actions 

The exploration space with macro actions becomes much smaller than the one with 
primitive actions; therefore, the macro action increases the possibility of creating 
cooperative/competitive experiences and leads the two agents to find a reasonable solution 
in a realistic learning time frame. Here, macro actions are introduced in order to realize 
simultaneous learning in a multi-agent environment in which each agent does not need to 
fix its policy according to some learning schedule. In this experiment, the passer and the 
interceptor learn their behaviors simultaneously. The passer learns behaviors for different 
situations caused by the alternation of the interceptor’s policies, i.e., blocking to the left side 
or the right. The interceptor also learns behaviors for different situations caused by the 
alternation of the passer’s policies, i.e., passing a ball to a left receiver or a right one. 
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3.1 Macro actions and state spaces 

Fig. 8 shows the macro actions of the passer and the interceptor. The macro actions by the 
interceptor are blocking the pass way to the left receiver and the right one. On the other 
hand, the macro action by the passer are turning left, turning right around the ball, and 
approaching the ball to kick it. A ball gazing control is embedded in both learners. The 
number of the actions is 2 and 3, respectively. 

 

Fig. 8. Macro actions 

   

Fig. 9. State variables  Left : (a) passer   Right : (b) interceptor 

The state space for the passer is constructed in terms of the y position of the ball on the 
normal image, the angle between the ball and the centers of interceptor, and the angles 
between the balls and the two receivers on the image of omni-directional vision. The 
number of the states is reduced because the set of macro actions enable us to select a smaller 
number of state variables and coarser quantization. The state space for the interceptor is 
constructed in terms of the y position of the passer on the image of normal vision system, 
the angle between the ball and the passer, and the angles between the ball and the two 
receivers on the image of omni-directional vision. 

3.2 Experimental results 

We have checked how the simultaneous learning of the passer and interceptor works on our 
computer simulation. Both agents start to learn their behaviors from scratch and have 1500 
trials without any scheduling. To check whether both learners acquired appropriate 
behaviors against the opponent’s behaviors, we fixed one agent’s policy and checked to see 
if the other could select an appropriate behavior, then determined its success rate. Table 1 
shows these results. 
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Passer Interceptor 
Passer’s 

success rate 
[%] 

Interceptor’s 
success rate 

[%] 
Draw rate [%] 

LM0, LM1 LM0 59.0 23.0 18.0 

LM0,LM1 LM1 52.7 34.3 13.0 

LM0 LM0,LM1 25.6 55.0 19.4 

LM1 LM0,LM1 26.0 59.3 14.7 

LM0,LM1 LM0,LM1 27.6 37.3 25.1 

Table  1.  Success rates for a passer and an interceptor in different cases 

Both players have two modules and were assigned to appropriate situations by themselves. 
LM and the digit number right after the LM indicate the Learning Module and the index 
number of the module, respectively. For example, if the passer uses both LM0 and LM1 and 
the interceptor uses only LM0, then the passer’s success rate, interceptor’s success rate, and 
draw rate are 59.0 %, 23.0%, and 18.0%, respectively. Apparently, the player with multi-
modules switching achieves a higher success rate than the opponent using only one module. 
These results demonstrate the multi-module learning system works well for both. 
The same architecture is applied to the real robots. Fig. 10 shows one example of behaviors 
by real robots. First, the interceptor tried to block the left side, then the passer approached 
the ball with the intention of passing it to the right receiver. The interceptor found it was 
trying to block the wrong side and changed to block the other (right) side, but it was too late 
to intercept the ball and the passer successfully passed the ball to the right receiver. 

  

  

Fig. 10. A sequence of a behavior of passing a ball to the right receiver while 
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4. Cooperative/competitive behavior learning with other’s state value 
estimation modules 

Conventional approaches, including ones described in the previous sections, have been 

suffering from the curse of dimension problem when they are applied to multiagent 

dynamic environments. State/action spaces based on sensory information and motor 

commands easily become too huge for a learner to explore. In the previous section, 

macro actions are introduced to reduce the exploration space and enable agents to learn 

purposive competitive behaviors according to the situation caused by the opponent. As 

the next step, state space should be constructed as small as possible to enable 

cooperative/competitive behaviour learning in practical time. The key ideas to resolve 

the issue are as follows. First, a two-layer hierarchical system with multi learning 

modules is adopted to reduce the size of the sensor and action spaces. The state space of 

the top layer consists of the state values from the lower level, and the macro actions are 

used to reduce the size of the physical action space. Second, the state of the other to 

what extent it is close to its own goal is estimated by observation and used as a state 

value in the top layer state space to realize the cooperative/competitive behaviors. The 

method is applied to 4 (defense team) on 5 (offense team) game task, and the learning 

agent successfully acquired the teamwork plays (pass and shoot) within much shorter 

learning time. Here, the method is briefly introduced. More detailed description was 

given in (Noma et al., 2007). 

Fig.11 shows a basic architecture of the proposed system, i.e., a two-layered multi-

module reinforcement learning system. The bottom layer consists of two kinds of 

modules: behavior modules and other’s state value estimation ones. The top layer 

consists of a single gate module that learns which behavior module should be selected 

according to the current state that consists of state values sent from the modules at the 

bottom layer. The gate module acquires a purposive policy to select an appropriate 

behavior module based on reinforcement learning. 

The role of the other’s state value estimation module is to estimate the state value that 

indicates the degree of achievement of the other’s task through observation, and to send 

this value to the state space of the gate module at the top layer. In order to estimate the 

degree of achievement, the following procedure is taken. 

 

1. The learner acquires the various kinds of behaviors that the other agent may take, 

and each behavior corresponds to each behavior module that estimates state value 

of the behavior. 

2. The learner estimates the sensory information observed by the other through the 3-

D reconstruction of its own sensory information. 

3. Based on the estimated sensory information of the other, each other’s state value 

estimation module estimates the other’s state value by assigning the state value of 

the corresponding behavior module of its own. 
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Fig. 11. A multi-module learning system 

4.1  5 on 4 game 

The game consists of the offense team (five players and one of them can be the passer) and 
the defense team (four players attempt to intercept the ball). The offense player nearest to 
the ball becomes a passer who passes the ball to one of its teammates (receivers) or shoot the 
ball to the goal if possible while the opposing team tries to intercept it (see Fig. 12). 

 

Fig. 12.  A passer and the defense formation 

Only the passer learns its behavior while the receivers and the defense team members take 
the fixed control policies. The receiver becomes the passer after receiving the ball and the 
passer becomes the receiver after passing the ball. After one episode, the learned 
information is circulated among team members through communication channel but no 
communication during one episode. The behavior and the state value estimation modules 
are given a priori. The offense (defense) team color is magenta (cyan), and the goal color is 
blue (yellow) in the following figures. 
The passer who is the nearest to the ball passes the ball to one of four receivers or dribble-
shoots the ball to the goal. After its passing, the passer shows a pass-and-go behavior that is 
a motion to the goal during the fixed period of time. The receivers face to the ball and move 
to the positions so that they can form a rectangle by taking the distance to the nearest 
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teammates (the passer or other receivers) (see Fig. 12). The initial positions of the team 
members are randomly arranged inside their territory. 
The defense team member who is nearest to the passer attempts to intercept the ball, and 

each of other members attempts to “block” the nearest receiver.“Block” means to move to 
the position near the offense team member and between the offense and its own goal (see 
Fig. 12). The offense team member attempts to catch the ball if it is approaching. In order to 
avoid the disadvantage of the offense team, the defense team members are not allowed 
inside the penalty area during the fixed period of time. The initial positions of the team 
members are randomly arranged inside their territory but outside the center circle. 

4.2 Structure of the state and action spaces 

The passer is only one learner, and the state and action spaces for the lower modules and the 
gate one are constructed as follows. The action modules are four passing ones for four 
individual receivers, and one dribble-shoot module. The other’s state value estimation 
modules are the ones to estimate the degree of achievement of ball receiving for four 
individual receivers, that is how easily the receiver can receive the ball from the passer. 
These modules are given in advance before the learning of the gate module. 
The action spaces of the lower modules adopt the macro actions that the designer specifies 
in advance to reduce the size of the exploration space without searching at the physical 
motor level. The state space S for the gate module consists of the following state values from 
the lower modules: 

• four state values of passing behavior modules corresponding to four receivers, 

• one state value of dribble-shoot behavior module, and 

• four state values of receiver’s state value estimation modules corresponding to four 
receivers. 

In order to reduce the size of the whole state space, these values are binarized, therefore its 

size is 24 x 2 x 24=512. 
The rewards are given as follows: 

• 10 when the ball is shot into the goal (one episode is over), 

• -1 when the ball is intercepted (one episode is over), 

• when the ball is successfully passed, 

• when the ball is dribbled. 
When the ball is out of the field or the pre-specified time period elapsed, the game is called 
“draw” and one episode is over. 

4.3 Experimental results 

The success rate is shown in Fig. 13(a) where the action selection is 80% greedy and 20% 
random to cope with new situations. Around the 900th trial, the learning seems to have 
converged at 30% success, 70% failure, and 10% draw. Compared to the results of 
(Kalyanakrishnan et al., 2006) that has around 30% success rate with 30,000 trials, the 
learning time is drastically improved (30 times quicker). Fig. 13(b) indicates the number of 
passes where it decreases after the 350 trials that means the number of useless passes 
decreased. 
In cases of the success, failure, and draw rates when 100% greedy and 100% random are 
55%, 35%, 10%, and 2%, 97%, 1%, respectively. The reason why the success rate in case of 
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100% greedy is better than in case of 80% greedy seems that the control policies of the 
receivers and the defense players are fixed, therefore not so new situations happened. 
An example of acquired behavior is shown in Fig. 14 where a sequence of twelve top views 
indicates a successful pass and shoot scene. 

   

Fig. 13. (a) Success rates and (b) the number of passes 

 

 

 

 

Fig. 14. An example of the acquired behavior in 5 on 4 game 
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Although we have not used the communication between agents during one episode, the 
receiver’s state value estimation modules seem to take the similar role. Then, we performed 
the learning without these modules. Fig. 15 shows the success rate, and we can see that the 
converged success rate is around 21% that is close to 23% of the success rate of the result of 
the existing method (Kalyanakrishnan et al., 2006). 

 

Fig. 15.  Success rate without the receiver’s state value estimation modules 

5. Conclusion 

In this chapter, we have showed a method by which multiple modules are assigned to 
different situations caused by the alternation of the other agent’s policy so that an agent may 
learn purposive behaviors for the specified situations as consequences of the other agent’s 
behaviors. 
Macro actions are introduced to realize simultaneous learning of competitive behaviors in a 
multi-agent system. Results of a soccer situation and the importance of the learning 
scheduling in case of none-simultaneous learning without macro actions, as well as the 
validity of the macro actions in case of simultaneous learning in the multi-agent system, 
were shown. 
We have also showed another learning system using the state values instead of the physical 
sensor values and macro actions instead of the physical motor commands, and adopted the 
receiver’s state value estimation modules that estimate how easy for each receiver to receive 
the ball in order to accelerate the learning. The state and action space abstraction (the use of 
state values and macro actions) contributes to the reduction of the learning time while the 
use of the receiver’s state value estimation modules contributed to the improvement of the 
teamwork performance. 
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France 

1. Introduction 

Human-Computer Interfaces are now widely studied and become one of the major interests 
among the scientific community. More and more electronic devices surround people in their 
day-to-day life. This exponential incursion of electronics in homes, cars and work places is 
not only due to its ability to ease the achievement of common and boring tasks or the 
continuously decreasing prices but also because the increasing “user-friendliness” of 
interfaces makes it easier to use.  
Being studied for more than fifty years, speech and natural language processing knew major 
progresses during the two last decades. It is now feasible to build real Spoken Dialogue 
Systems (SDS) interacting with human users through voice-enabled interactions. Speech 
often appears as a natural way to interact for a human being and it provides potential 
benefits such as hand-free access to machines, ergonomics and greater efficiency of 
interaction. Yet, speech-based interfaces design has been an expert job for a long time. It 
necessitates good skills in speech technologies and low-level programming. Moreover, rapid 
design and reusability of previously designed systems are almost impossible. For these 
reasons, but not only, people are less used to interact with speech-based interfaces which are 
therefore thought as less intuitive.  
Designing and optimizing a SDS is not only the combination of speech and language 
processing systems such as Automatic Speech Recognition (ASR) (Rabiner & Juang 1993), 
Spoken Language Understanding (SLU) (Allen 1998), Natural Language Generation (NLG) 
(Reiter & Dale 2000), and Text-to-Speech (TTS) synthesis (Dutoit 1997) systems. It also 
requires the development of dialogue strategies taking at least into account the 
performances of these subsystems (and others), the nature of the task (e.g. form filling 
(Pietquin & Dutoit 2006a), tutoring (Graesser et al 2001), robot control, or database querying 
(Pietquin 2006b)), and the user’s behaviour (e.g. cooperativeness, expertise (Pietquin 2004)). 
The great variability of these factors makes rapid design of dialogue strategies and 
reusability across tasks of previous work very complex. Most often, such a design is a cyclic 
process composed of strategy hand-coding, prototype releases and expansive and time 
consuming user tests.  In addition, there is also no guarantee that hand-crafted strategies 
developed by experts are anything close to optimal. Because it provides data-driven 
methods and objective clues about performances, statistical learning of optimal dialogue 
strategies became a leading domain of research (Lemon & Pietquin, 2007). The goal of such 
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approaches is to reduce the number of design cycles (Fig. 1).  
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Fig. 1. Optimization for minimizing the number of design cycles 

Supervised learning for such an optimization problem would require examples of ideal 
(sub)strategies which are typically unknown. Indeed, no one can actually provide an 
example of what would have objectively been the perfect sequencing of exchanges after 
having participated to a dialogue. Humans have a greater propensity to criticize what is 
wrong than to provide positive proposals. In this context, reinforcement learning using 
Markov Decision Processes (MDPs) (Levin  et al 1998, Singh et al 1999, Scheffler & Young 
2001, Pietquin & Dutoit 2006a, Frampton & Lemon 2006) and Partially Observable MDP 
(POMDPs) (Poupart et al 2005, Young 2006) has become a particular focus.  

2. Formalism 

2.1 Definitions 

In the rest of this chapter, a dialogue will be referred to as an interaction between two agents 
based on sequential turn taking. In most of the cases, this interaction is goal-directed and both 
agents cooperate in order to achieve an aim (or accomplish a task). In the case of a man-
machine dialog, one of the agents is a human user while the other is a computer (or system). 
In the particular case in which the interaction uses speech as the main communication mean, 
the computer implements a Spoken Dialogue System (SDS) while a system using several 
means of communication is referred to as a Multimodal Dialogue System (MMDS). When the 
man-machine dialog is dedicated to the realisation of a particular task (or set of tasks) it is 
called a task-oriented dialogue system. When one of the agents is an SDS, the dialogue 
consists of a sequence of utterances exchanged at each turn. A spoken utterance is the acoustic 
realisation of the intentions or concepts or dialog acts one of the agents wants to communicate 
to the other and is expressed as a word sequence. 

2.2 Formal description of man-machine spoken dialog 

A man-machine spoken dialog can be considered as a sequential process in which a human 
user and a Dialog Manager (DM) are communicating using speech through speech and 
language processing modules (Fig. 2). The role of the DM is to define the sequencing of 
spoken interactions and therefore to take decisions about what to do at a given time 
(providing information, asking for information, closing the dialog, etc.). A Spoken Dialog 
System is often meant to provide information to a user; this is why it is generally connected 
to a Knowledge Base (KB) through its DM. The dialog is therefore regarded as a turn-taking 
process in which pieces of information are processed sequentially by a set of modules and 
perform a cycle going from the DM to the user and back. At each turn t the DM generates a 
communicative act set at according to its internal state st and corresponding to its decision 
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about what to do in that state. Dialogue communicative acts (shortly dialogue acts) can be of 
different kind such as greeting the user, ask a constraining question to the user, provide 
information to the user, ask for confirmation about some information to the user, query a 
database, close the dialogue. This act set is then transformed into a linguistic representation 
lt (generally a text) by a natural language processing module. The textual representation lt 
serves as an input to a text-to-speech synthesizer to produce a system spoken output syst. 
The TTS and the NLG modules are therefore spoken output generation modules. To this 
spoken solicitation, the user answers by a new spoken utterance ut according to what he 
could understand from syst, to his/her knowledge kt (about the task, the interaction history, 
the world in general) and to the goal gt s/he is trying to achieve by interacting with the 
system. Both spoken utterances syst and ut can be mixed with some background noise nt. 
The noisy user utterance is in turn processed by an automatic speech recognition system, 
which produces a written word sequence wt as a result and a confidence measure CLASR 
about this result. A natural language understanding module subsequently tries to extract 
communicative acts (or concepts) ct from wt (possibly helped by CLASR). The NLU module 
also provides some confidence measure CLNLU about this processing. The NLU and ASR 
sub-systems are speech input processing modules. The set {ct, CLASR, CLNLU} composes 
an observation ot which can be considered as the result of the processing of the DM 
communicative acts at by its environment. The dialogue manager then computes a new 
internal state st+1 according to this observation.  
The following paragraphs will use this description of a man-machine dialog as a base to 
build a probabilistic model. 
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Fig. 2. Man-Machine Spoken Communication 

2.3 MDP and reinforcement learning  

In our vision of the MDP formalism, a discrete-time system interacting with its stochastic 
environment through actions is described by a finite or infinite number of states {si} in which 
a given number of actions {aj} can be performed. To each state-action pair is associated a 
transition probability T giving the probability of stepping from state s at time t to state s’ at 
time t+1 after having performed action a when in state s. To this transition is also associated 
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a reinforcement signal (or reward) rt+1 describing how good was the result of action a when 
performed in state s. Formally, an MDP is thus completely defined by a 4-tuple {S, A, T, R} 

where S is the state space, A is the action set, T is a transition probability distribution over 
the state space and R is the expected reward distribution. The couple {T, R} defines the 
dynamics of the system: 

 ( )aassssP ttt
a
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a
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These last expressions assume that the Markov property is met, which means that the 
system’s functioning is fully defined by its one-step dynamics and that its behavior from 
state s will be identical whatever the path followed before reaching s. To control a system 
described as an MDP (choosing actions to perform in each state), one would need a strategy 

or policy π mapping states to actions: π(s) = P(a|s) (or π(s) = a if the strategy is deterministic).  
In this framework, a RL agent is a system aiming at optimally mapping states to actions, that 

is finding the best strategy π* so as to maximize an overall return R which is a function 
(most often a discounted return is used i.e. a weighted sum of immediate rewards) of all the 
immediate rewards rt.  
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If the probabilities of equations (1) and (2) are known, an analytical solution can be 
computed by dynamic programming, otherwise the system has to learn the optimal strategy 
by a trial-and-error process. RL is therefore about how to optimally map situations to 
actions by trying and observing environment’s feedback. In the most challenging cases, 
actions may affect not only the immediate reward, but also the next situation and, through 
that, all subsequent rewards. Trial-and-error search and delayed rewards are the two main 
features of RL. Different techniques are described in the literature, in the following the 

Watkin’s Q(λ) algorithm (Watkin 1989) will be used. 

3. Human-machine dialogue and Markov decision process 

From the point of view of the dialogue manager, the interaction can probabilistically be 
described by the joint probability of the signals at, ot and st+1 given the history of the 
interaction (Pietquin 2005):  
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In (5), the first term stands for the task model that helps building a new dialogue manager 
internal state thanks to the perceived observation, the second term stands for the response of 
the environment to the dialogue manager stimulation, and the third stands for the dialogue 
manager decision process.  

3.1 Markov property and random noise 

In the case of a SDS, the Markov Property is met if the dialogue manager choice about the 
action at to perform at time t and the according transition probability for stepping to state 
st+1 at time t+1 are only conditioned by the state st at time t and not of previous states and 
actions. From now on, the Markov Property will be assumed. It can anyway be met by a 
judicious choice of the DM state representation, which should embed the history of the 
interaction into the current state. Such a state representation is said informational.  
Let’s illustrate this on a train ticket booking system. When accessing such a system a 
customer can book a ticket by providing information about the cities of departure and 
arrival and a desired time of departure. Like in a 3-slot-filling application, three bits of 
information (sometimes called attributes) should therefore be transferred from the user to the 
system. A very simple way to build the state space is to represent the dialogue state as a 
vector of three Boolean values (e.g. [dep arr time]) set to true if the corresponding attribute is 
supposed to be known by the system and to false otherwise. An ideal dialogue for such an 
application and the corresponding dialogue state evolution is shown in Table 1. 

Speaker Spoken Utterance Dialogue state  

System Hello, how may I help you? [false false false] 

User I’d like to go to Edinburgh.  

System What’s your departure city? [false true false] 

User I want to leave from Glasgow.  

System  When do you want to go from Glasgow to 
Edinburgh ? 

[true true false] 

User On Saturday morning.   

System Ok, seats are available in train n° xxx …   [true true true] 

Table 1. Ideal dialogue in a train ticket booking application 

To meet the Markov property with such a state representation, we have to assume that the 
system behaves the same whatever the order in which the slots where filled (and by the 
way, whatever the values of the attributes). The Markov assumption is also made about the 
environment; that is the user behaves the same whatever the filling order as well. These are 
of course strong assumptions but we will see later that they lead to satisfactory results.  
Finally, most often the noise is considered as being random so as to have independence 
between nt and nt-1. Eq. (5) then simplifies as follow:  
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3.2 Dialogue management as an MDP 

As claimed in paragraph 0 and depicted on Fig. 2, a task-oriented (or goal-directed) man-
machine dialogue can be seen as a turn-taking process in which a human user and a 
dialogue manager exchange information through different channels processing speech 
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inputs and outputs (ASR, TTS ...). In our problem, the dialogue manager’s action (or 
dialogue act) selection strategy has to be optimized, the dialogue manager should thus be 
our learning agent.  
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Fig. 3. Dialogue management as an MDP 

As shown on Fig. 3, the environment modeled by the MDP comprises everything but the 
dialogue manager, i.e. the human user, the communication channels (ASR, TTS …), and any 
external information source (database, sensors etc.). In this context, at each turn t the 
dialogue manager has to choose an action at according to its interaction strategy so as to 
complete the task it has been designed for. The RL agent has therefore to choose an action 
among greetings, spoken utterances (constraining questions, confirmations, relaxation, data 
presentation etc.), database queries, dialogue closure etc. They result in a response from the 
DM environment (user speech input, database records etc.), considered as an observation ot, 
which usually leads to a DM internal state update according to the task model (Eq. 6).  

3.3 Reward function 

To fit totally to the MDP formalism, a reinforcement signal rt is required. In (Singh et al 1999) it 
is proposed to use the contribution of an action to the user’s satisfaction. Although this 
seems very subjective, some studies have shown that such a reward could be approximated 
by a linear combination of the task completion (TC) and objective measures ci related to the 
system performances (Walker et al 1997):  

 ( ) ( )∑ ⋅−⋅=
i

iit cTCr NwNα , (7) 

where N is a Z-score normalization function that normalises the results to have mean 0 and 

standard deviation 1 and wi are non-zero weights. This way, each weight (α and wi) 
expresses the relative importance of each term of the sum in the performance of the system. 

The task completion can for example be measured by the kappa (κ) coefficient (Carletta 
1996):  
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where P(A) is the proportion of correct interpretations of user’s utterances by the system 

and P(E) is the proportion of correct interpretations occurring by chance. One can see that κ 



 
Optimising Spoken Dialogue Strategies within the Reinforcement Learning Paradigm 

 

245 

= 1 when the system performs perfect interpretation (P(A) = 1) and κ = 0 when the only 
correct interpretations were obtained by chance (P(A) = P(E)). In order to compute weights 

α and wi, a large number of users are asked to answer a satisfaction survey after having 
used the system while costs ci are measured during the interaction. The questionnaire 
comprises around 9 statements on a five-point Likert scale and the overall satisfaction is 
computed as the mean value of collected ratings. A Multivariate Linear Regression is then 
applied using the results of the survey as the dependent variable and the weights as 
independent variables. In practice, the significant performance measures ci are mainly the 
duration of the dialogue and the ASR and NLU performances. 

3.4 Partial observability 

If a direct mapping between observations and system (or dialogue) states exists, the process 
is completely observable and the task model (see Eq. 6) can easily be built. Yet, it is rarely 
the case that the observations are directly linked to the dialogue state. Indeed, the real 
dialogue state at time t is related to the information the user intended to transmit to the 
system until time t during the interaction. This information being transmitted through error 
prone statistical speech recognition and understanding systems, it can occur that the 
observation doesn’t contain only the information meant by the user but a probability 
distribution over a set of possible bits of information. Indeed, the output of a speech 
recognition system is usually a list of N word sequences (named N-bests list), each of them 
being associated with a confidence level that can be considered as a probability of the word 
sequence being correct given the spoken utterance (and maybe the context). This N-bests list 
serves as an input to the natural language understanding module which in turn provides a 
list of concept sequences associated to confidence levels.  
This is typically what happens in partially observable environments where a probability 
distribution is drawn over possible states given the observations. For this reason, emerging 
research is focused on the optimization of spoken dialogue systems in the framework of 
Partially Observable Markov Decision Processes (POMDPs) (Poupart et al 2005, Young 2006) 

4. Learning dialogue policies using simulation 

Using the framework described previously, it is theoretically possible to automatically learn 
spoken dialogue policies allowing natural conversation between human users and 
computers. This learning process should be realised online, through real interactions with 
users. One could even imagine building the reinforcement signal from direct queries to the 
user about his/her satisfaction after each interaction (Fig. 4).  
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Fig. 4. Ideal learning process 
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For several reasons, direct learning through interactions is made difficult. First, a human 
user would probably react badly to some of the exploratory actions the system would 
choose since they might be completely incoherent. Anyway a very large number of 
interactions are required (typically tens of thousands of dialogues for standard dialogue 
systems) to train such a system. This is why data driven learning as been proposed so as to 
take advantage of existing databases for bootstrapping the learning process. Two methods 
were initially investigated: learning the state transition probabilities and the reward 
distribution from data (Singh et al, 1999) or learning parameters of a simulation environment 
mainly reproducing the behaviour of the user (Levin et al 2000). The second method is today 
preferred (Fig. 5). Indeed, whatever the data set available, it is unlikely that it contains every 
possible state transitions and it allows exploring the entire state and policy space. Dialogue 
simulation is therefore necessary for expanding the existing data sets and learning optimal 
policies. Most often, the dialogue is simulated at the intention level rather than at the word 
sequence or speech signal level, as it would be in the real world. An exception can be found 
in (Lopez Cozar et al 2003). Here, we regard an intention as the minimal unit of information 
that a dialogue participant can express independently. Intentions are closely related to 
concepts, speech acts or dialogue acts. For example, the sentence "I'd like to buy a desktop 
computer" is based on the concept buy(desktop). It is considered as unnecessary to model 
environment behavior at a lower level, because strategy optimization is a high level concept. 
Additionally, concept-based communication allows error modeling of all the parts of the 
system, including natural language understanding (Pietquin & Renals 2002, Pietquin & 
Dutoit 2006b). More pragmatically, it is simpler to automatically generate concepts 
compared with word sequences (and certainly speech signals), as a large number of 
utterances can express the same intention while it should not influence the dialogue 
manager strategy. Table 2 describes such a simulation process. The intentions have been 
expanded in the last column for comprehensiveness purposes. The signals column refers to 
notations of section 0.  

Signals Intentions Expanded Intentions 

sys0 greeting Hello! How may I help you? 

u0 arr_city = ‘Paris’ I’d like to go to Paris. 

sys1 const(arr_time) When do you prefer to arrive? 

u1 arr_time = ‘1.00 PM’ I want to arrive around 1 PM. 

sys2 rel(arr_time) Don’t you prefer to arrive later? 

u2 rel = false No. 

sys3 conf(arr_city) Can you confirm you want to go to Paris? 

u3 conf = true Yes ! 

… … … 

… … … 

Table 2. Simulated dialogue at the intention level (‘const’ stands for constraining question, 
‘rel’ for relaxation and ‘conf’ for confirmation)  

This approach requires modelling the environment of the dialogue manager as a stochastic 
system and to learn the parameters of this model from data. It has been a topic of research 
since the early 2000’s (Levin et al 2000, Scheffler & Young 2001, Pietquin 2004). Most of the 
research is now focused on simulating the user (Georgila et al 2005, Pietquin 2006a, 
Schatzmann et al 2007a) and assessing the quality of a user model for training a 
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reinforcement learning agent is an important track (Schatzmann et al 2005, Rieser & Lemon 
2006, Georgila et al 2006). Modelling the errors introduced by the ASR and NLU systems is 
also a major topic of research (Scheffler & Young 2001, Lopez Cozar et al 2003, Pietquin & 
Beaufort 2005, Pietquin & Dutoit 2006b). 
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Fig. 5. Learning via simulation 

5. Speech-based database querying 

We will illustrate reinforcement learning based dialogue optimization on the particular task 
of a speech-based database querying system. In such an application, the user wants to 
extract from a database one or a list of records selected according to specific features 
provided by a user through speech-based interactions.  
In the following, several experiments made on a database containing 350 computer 
configurations are described. The database is split into 2 tables (for notebooks and 
desktops), each of them containing 6 fields: pc_mac (pc or mac), processor_type, 
processor_speed, ram_size, hdd_size and brand. The goal of the dialogue system is therefore 
to extract one or a short list of computer configurations from the database and to present it 
the user. To do so, the system will have to gather information about which computer 
features the user wants. In the following, the application is described in terms of actions, 
states and rewards so as to be mapped to the Markov decision processes paradigm.  

5.1 Action set 

The task involves database querying. Therefore possible systems actions do not only imply 
interactions with the user (such as spoken questions, confirmation requests or assertions) 
but also with the database (such as database querying). The action set contains 8 generic 
actions: 

• greet: greeting (e.g. “How may I help you ?”). 

• constQ(arg): ask to constrain the value of arg.  

• openQ: ask an open ended question. 

• expC(arg): ask to confirm the value of arg. 

• allC: ask for a confirmation of all the arguments. 

• rel(arg): ask to  relax the value of arg. 

• dbQ([args]): perform a database query thanks to retrieved information. 

• close: present data and close the dialogue session.  
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The value of arg may be the table’s type (notebook or desktop) or one of the 6 table fields. 
Notice that there is no data presentation action because it will be considered that the data 
presentation is included in the ‘close’ action. This means that, when the dialogue is closed 
by the dialogue manager, it systematically presents to the user the content of the last 
retrieved recordset. 

5.2 State space 

The way the state space is built is very important and several state variables can be 
envisioned for describing the same task. Yet, some general considerations might be taken 
into account:  
1. The state representation should contain enough information about the history of the 

dialogue so as to assume the Markov property to be met. 
2. State spaces are often considered as informational in that sense that they are built 

thanks to the amount of information the DM could retrieve from the environment until 
it reached the current state.  

3. The state representation must embed enough information so as to give an accurate 
representation of the situation to which an action has to be associated (it is not as 
obvious as it sounds).  

4. The state space must be kept as small as possible since the reinforcement learning 
algorithms converge in linear time with the number of states of the underlying Markov 
decision process. 

According to these considerations and the particular task of database querying, two slightly 
different state spaces where built to describe the task as an MDP so as to illustrate the 
sensitivity of the method to the state space representation. In the first representation, 
referred to as S1 in the following, each state is represented by two features.  

• A vector of 7 boolean values (one for each value of arg). Like in the example of 
paragraph 0, each of these values is set to true if the corresponding value of arg is 
known (for example if the user specified to search in the notebooks table, the fist value 
is set to true). This is a way to meet the Markov property (informational state). 

• Information about the Confidence Level (CL) of each value set to true. The confidence 
level is usually a real number ranging between 0 and 1 computed by the speech and/or 
language analysis subsystems (ASR and NLU) and providing information about the 
confidence of the system in the result of its processing. To keep the size of the state 
space reasonable, we only considered 2 possible values for the confidence level: High or 
Low (i.e. High means CL ≥ 0.8 and Low means CL < 0.8).  

Notice that ‘dbQ’ actions will only include values with a High confidence level. For each 
value of arg, there are 3 different possibilities for the corresponding slot in the state 
representation: {value = false, CL = undef}, {value = true, CL = Low}, {value = true, CL = High}. 
This leads to 37 possible states.  
The second way to represent the state space is built on the same basis but an additional state 
variable NDB is added to take the number of records returned by the last database query 
into account. This variable can also take only two values (High or Low) and is set according 
to the comparison of the query result size and a predefined threshold. If no ‘dbQ’ action has 
been performed, the NDB variable is initialized with the High value (an empty query would 
provide the whole database as a result). This state space representation will be referred to as 
S2 in the following.  
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5.3 Reward function 

Once again, there is not a unique way to build the reward function and slight differences in 
the choices can result in large variations in the learned strategy. To illustrate this, some 
simple functions will be described in the following. According to (Walker et al, 1997), the 
reward function (which is here a cost function that we will try to minimize) should rely on 
an estimate of the dialogue time duration (D), the ASR performances (ASR) and the task 
completion (TC) so as to approximate the user’s satisfaction using objective measures:   

 TCwASRwDwR TCASRD ⋅−⋅−⋅=  (9) 

In this last expression, the wx factors are positive weights. Considering the estimate of the 
time duration, two values are actually available: the number of user turns D = NU (the 
number of turns perceived by the user) and the number of system turns D = NS (including 
database queries as well).  
On another hand, the task completion is not always easy to define. The kappa coefficient 
defined in (Carletta 1996) and section 0 is one possibility but didn’t always prove to 
correlate well with the perceived task completion. For the purpose of this experiment, two 
simple task completion measures will be defined: 

 ( )( )iU
R

RGTC
i

∩= #maxmax  (10) 

 ( )( )iUav RGaverageTC ∩= #  (11) 

In these last expressions, #(GU ∩ R) is the number of common values in the user’s goal GU 
(the user goal is supposed to have the same structure as an existing database record and is 
set before the dialogue begins) and one of the records R presented to the user at the end of a 
dialogue. When a value is not present in the user goal it is considered as common (if a field 
is not important to the user, it is supposed to match any value). The first task completion 
measure TCmax indicates how close the closest record in the presented results is. The second 
TCav measures the mean number of common values between the user’s goal and each 
presented record. 
Finally, the ASR performance measures will be provided by the confidence levels (CL) 
computed by the ASR system after each speech recognition task.  

6. Experiments 

The number of required interactions between a RL agent and its environment is quite large 
(104 dialogues at least in our case). So, it has been mandatory to simulate most of the 
dialogues for reasons explained in section 0. An intention-based simulation environment 
has therefore been built as described in (Pietquin & Dutoit 2006a). It simulates ASR errors 
using a constant Word Error Rate (WER). It generates confidence levels as real numbers 
ranging between 0 and 1 according to a distribution measured on a real system. If the 
system has to recognize more than one argument at a time, the CL is the product of 
individual CLs obtained for each recognition task (so it usually decreases). Other ASR 
simulation models can be considered (Pietquin & Beaufort 2005) but it is out of the scope of 
this introduction to the technique.  
Several experimental results obtained with different settings of the state space and the 
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reward function will be exposed in the following. These settings are obtained by combining 
in three different ways the parameters S1, S2, NU, NS, TCmax, TCav mentioned before. Results 
are described in terms of average number of turns (user and system turns), average task 
completion measures (TCmax and TCav) for the performance and action occurrence frequency 
during a dialogue session to get a clue about the learned strategy. These results are obtained 
by simulating 10,000 dialogues with the learned strategy. 

6.1 First experiment: S1, NU, TCmax 

The first experiment is based on the smaller state space S1 (without any information about 
the number of retrieved records). The dialogue cost is computed thanks to the number of 
user turns NU as a measure of the time duration and the TCmax value as the task completion 
measure. Results are shown in the following tables.  

NU NS TCmax TCav 

2.25 3.35 6.7 1.2 

Table 3. Performances of the learned strategy for the {S1, NU, TCmax} configuration  

greet constQ openQ expC AllC rel dbQ close 

1.00 0.06 0.0 0.14 0.0 0.05 1.10 1.00 

Table 4. Learned strategy for the {S1, NU, TCmax} configuration  

When looking at the three first columns of the performance table (Table 4), the learned 
strategy doesn’t look so bad. It actually has a short duration in terms of user turns as well as 
in system turns and has a very high task completion rate in terms of TCmax measure. Yet the 
TCav shows a very low mean value.  
When looking to the average frequency of actions in table, one can see that the only action 
addressed to the user that happens frequently during a dialogue is the greeting action. 
Others almost never occur. Actually, the learned strategy consists in uttering the greeting 
prompt to which the user should answer by providing some arguments. Then the system 
performs a database query with the retrieved attributes and presents the results to the user. 
Sometimes, the user doesn’t provide any attribute when answering to the greeting prompt 
or the value is not recognized at all by the ASR model (very low CL value), so the strategy is 
to perform a constraining question (and not an open-ended question) that will provide an 
argument with a better CL. Sometimes the provided arguments have still a poor CL and an 
explicit confirmation is requested. Sometimes the provided arguments don’t correspond to 
any valid record in the database so the strategy is to ask for relaxation of one argument (this 
also explains why the number of database queries is greater than 1). The value of TCmax is 
not maximal because sometimes the dialogue fails.  
This results in presenting almost the whole database when the user only provides one 
argument when prompted by the greeting. This is why there is a so big difference between 
TCmax and TCav. The desired record is actually in the presented data (TCmax is high) but is 
very difficult to find (TCav is low). The learned strategy is definitely not suitable for a real 
system, specially if the record set have to be presented vocally. An example of dialogue is 
shown in Table 5, where the signal column refers to signals used on Fig. 2 and in section 0. 
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Signals Intentions Expanded Intentions 

a0 → sys0 greeting Hello! How may I help you? 

u0 Table= ‘Notebook’ I’d like to buy a Notebook. 

o0 
Table = ‘Notebook’ 
CL = high 

 

a1 dbQ  

o1 DB = 97 (high)  

a2 → sys2 As = close 
Ok, here are the computers corresponding 
to your request: (proposes the 97 
Notebooks in the DB) …  

Table 5. Dialogue sample for the {S1, NU, TCmax} configuration 

6.2 Second experiment: S2, NU, TCav 

Here, the same settings are used except that the NDB variable is added to the state variables 
and the task completion is measured with TCav.  

NU NS TCmax TCav 

5.75 8.88 6.7 6.2 

Table 6. Performances of the learned strategy for the {S2, NU, TCav} configuration 

greet constQ openQ expC AllC rel dbQ close 

1.00 0.87 1.24 0.31 1.12 0.21 3.13 1.00 

Table 7. Learned strategy for the {S2, NU, TCav} configuration 

Results shows that TCmax and TCav are close to each other, so the presented results are more 
accurate but the number of turns has increased. The number of system turns particularly 
exhibits higher values. This is obviously explained by the increase of database queries. 
Looking at Table 7 one can see that the learned strategy tries to maximize the TCav value 
while minimizing the number of user turns and maximizing recognition performance. To do 
so, it systematically performs a database query after having retrieved information from the 
user. The number of results being among the state variables, the agent learned not to present 
the results when in a state with a high NDB value. If this value is too high after the greeting, 
the learner tries to reach a state where it is lower. Thus it almost systematically performs an 
‘openQ’ action after the greeting so as to get as much information as possible in a minimum 
of turns (this explains the 1.24 value). Yet, this often results in lower CL values, thus it also 
performs a confirmation of all the fields before presenting any result. Sometimes, more 
information is provided after the greeting and only a constraining question is required to 
gather enough information to reach a state with less result. A constraining question is 
preferred in this case because it leads to better recognition results.  
The mean number of user turns shows that only 5.75 turns are usually needed to reach an 
accurate result set because the computer configurations are sufficiently different so as not to 
need too much attributes in the database query to provided accurate results. Thus, the 
system doesn’t ask for all the attribute values to the user. Further investigations would show 
that the system takes advantage of the structure of the database and asks for attributes 
allowing extracting the desired records as fast as possible. 
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Signals Intentions Expanded Intentions 

a0 → sys0 greeting Hello! How may I help you? 

u0 Table = ‘Notebook’ I’d like to buy a Notebook. 

o0 
Table = ‘Notebook’ 
CL = high 

 

a1 dbQ  

o1 DB = high  

a2 → sys2 openQ Do you have any other preference? 

u2 
pc_mac = ‘PC’ 
proc_type = ‘Pentium III’

I’d rather like a PC with a Pentium III 
processor. 

o2 

pc_mac = ‘PC’ 
proc_type = ‘Pentium III’
CL = high 

 

a3 dbQ  

o3 DB = high  

a4 → sys4 constQ(ram) How much memory would you like? 

u4 ram = 128 128 MB. 

a5 dbQ  

o5 DB = low  

a6 → sys6 allC 
You asked for a PC Notebook with a 
Pentium III processor and 128 MB 
memory.  

u6 
conf_table = true 
… 

Yes. 

a7 → sys7 close 

Ok, here are the computers corresponding 
to your request: (proposes the 3 results of 
the DB query) …  
 

Table 8. Dialogue sample for the {S2, NU, TCav} configuration 

6.3 Third experiment: S2, NS, TCav 

The same experiment as the previous one has been performed but replacing the NU measure 
of time duration by the NS measure. It actually makes sense since in a real application, the 
database could be much larger than the one used here. Thus, the database queries could be 
much more time consuming.  

NU NS TCmax TCav 

6.77 7.99 6.6 6.1 

Table 9. Performances of the learned strategy for the {S2, NS, TCav} configuration 

greet constQ openQ expC AllC rel dbQ close 

1.00 1.57 1.24 0.33 1.32 0.31 1.22 1.00 

Table 10. Learned strategy for the {S2, NS, TCav} configuration 
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This obviously results in a decrease of the number of database queries involving a 
proportional decrease of the number of system turns NS. Yet, an increase of the number of 
user turns NU is also observed. By examining the action frequencies, one can notice that the 
number of constraining questions increased resulting in an increase of NU. Indeed, the 
learned strategy implies gathering enough information from the user before performing a 
database query. This explains why the systems ask more constraining questions. 
This last strategy is actually optimal for the considered simulation environment (constant 
word error rate for all tasks) and is suitable for using with this simple application.  

7. Conclusion 

This chapter described a formal description of a man-machine spoken dialogue suitable to 
introduce a mapping between man-machine dialogues and (partially observable) Markov 
decision processes. This allows data-driven optimization of a dialogue manager’s interaction 
strategy using the reinforcement learning paradigm. Yet, such an optimization process often 
requires tenths of thousands of dialogues which are not accessible through real interactions 
with human users because of time and economical constraints. Expanding existing 
databases by means of dialogue simulation is a solution to this problem and several 
approaches can be envisioned as discussed in section 0. In this context, we described the 
particular task of speech-based database querying and its mapping into the MDP paradigm 
in terms of actions, states and rewards. Three experiments on a very simple task have shown 
the influence of parameterization of the MDP on the learned conversational strategy. From 
this, one can say first that the state space representation is a crucial point since it embeds the 
knowledge of the system about the interaction. Second, the reward function is also of major 
importance since it measures how well the system performs on the task by simulating the 
perception of the dialogue quality from the users’ point of view. Performance measure is a 
key of RL. The three experiments described in the last section showed the influence of these 
parameters on the learned strategy and concluded that a correctly parameterized RL 
algorithm could result in an acceptable dialogue strategy while little changes in the 
parameters could lead to silly strategies unsuitable for use in real conditions.  

8. Future works 

Data-driven optimization of spoken dialogue strategies is an emerging area of research and 
lots of problems still remain. One of the first is to find tractable algorithms to train real size 
dialogue systems. Indeed, the standard RL algorithms are suitable for small tasks as 
described in section 0 but real applications can exhibit up to several million of states, 
possibly with continuous observations (Williams et al 2005). The curse of dimensionality is 
therefore of particular interest in the area of spoken dialogue systems. Several attempts to 
tackle this problem in the framework of spoken dialogue systems can be found in the 
literature by scaling up MDPs using supervised learning (Henderson et al 2005) and 
hierarchical learning (Cuayáhuitl et al 2007). Also algorithms for tractable solutions to the 
optimization of spoken dialogue systems via the POMDP paradigm can be found in 
(Poupart et al 2005, Young 2006). This preliminary work in the field of generalisation and 
hierarchical learning shows the interest of the community in these techniques. Another 
problem to tackle is the development of realistic user models, easily trainable from data and 
suitable for training RL-based dialogue managers. Different approaches are being studied 



 
Reinforcement Learning: Theory and Applications 

 

254 

such as the recently proposed agenda-based user model (Schatzmann et al 2007b) that can be 
trained by an Expectation-Maximisation algorithm from data, or user models based on 
dynamic Bayesian networks (Pietquin & Dutoit 2006a). Assessing such user models in terms 
of quality of the trained strategies and similarity with real user behavior is of course 
primordial (Schatzmann et al 2005, Georgila et al 2006, Rieser & Lemon 2006). On another 
hand, it might be interesting to see how to use learned strategies to help human developers 
to design optimal strategies. Indeed, the solution may be in computer-aided design more 
than fully automated design (Pietquin & Dutoit 2003). Finally, designing a complete 
dialogue system using an end-to-end probabilistic framework, from speech recognition to 
speech synthesis systems automatically trained on real data, is probably the next step 
(Lemon & Pietquin 2007).  
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1. Introduction 

Optimal use of water is an important objective of water resource development projects all 
over the world. An integrated approach toward better water resources management in river 
basins for irrigation planning is needed to find optimal water use policies. In the past, 
researchers used variables affecting crop pattern and reservoir releases as decision variables 
(Yeh, 1985). Labadie, 1993, found discrepancies in simulation and optimization models 
which are important factors in non-adaptive and weak system managements in river basins. 
These models become more complicated considering conflicting objectives, stochastic 
hydrology behavior, and uncertain consumptive water use. Labadie, 1993, presented a 
combined simulation-optimization strategy for river system management. In his studies, 
decision variable was reservoir release and objective function was maximization of power 
generation. However, the objective of his study was to assess directly the optimal water use.  
The other group of studies is concerned with indirect optimization of water use by selecting 
the best strategies or alternatives in the river basin or even on the farms. Multi-objective 
methods have been widely used in different water resource projects. Bogardi & Nachtnebel, 
1994, used multicriteria decision analysis in the study of water resources management. 
Other applications of this group can be found in the works of.Karamouz et al., 1992, and 
Owen et al., 1997. 
The theory of fuzzy logic provides a mechanism to represent the degree of satisfaction of 
reservoir objective through the use of fuzzy membership function measures that can be 
combined in an integrated fashion. The fuzzy approach, alluding to the vagueness or 
imprecision inherent in problems of this type, has found increasing application in many 
fields. Fontane et al., 1997, applied reservoir operation based on Fuzzy Logic concept in 
order to deal with imprecise objectives for the reservoirs located in the monographic area on 
the Cache la Poudre river basin in the northern Colorado. Sasikumar and Mujumdar, 1998, 
developed a Fuzzy Waste-Load Allocation Model (FWLAM) for water quality management 
of a river system using fuzzy multiple objective optimization. Dubrovin et al., 2002, used a 
new methodology for fuzzy inference and compared it with a traditional (Sugeno style) 
method, for multipurpose real-time reservoir operation. In these researches, it is implicitly 
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assumed that current decisions are independent of future events and decisions beyond the 
planning horizon. Besides, stochastic nature of hydrologic parameters, imprecise water 
demand, uncertainty of relationship between variables in groundwater and surface water 
resources, can not be completely incorporated into membership functions (Tilmant et al., 
2002, and Karamouz and Mousavi, 2003). 
 Molden and Gates, 1990, Gates and Ahmed, 1995, developed an approach for assessing the 
alternative strategies for improving irrigation water delivery system in the context of 
multiple planning criteria. Alternatives that involve structural, managerial and policy 
changes have also been discussed. The model takes into account the parameter of 
uncertainty on both supply and demand sides of the system resulting from temporal and 
spatial variability and inadequate data. The objective of adequacy, efficiency, dependability 
and equity of water delivery were used to evaluate system performance under each 
alternative considered. Techniques of Multicriterion Decision Making (MCDM) were also 
presented. The part of historical data is created by the decisions of experts, users (farmers), 
designers, and managers and is defined as “Human effects” (Belaineh et al, 2003). In these 
researches, the effects are not completely incorporated into membership functions and the 
results of this method are in conflict by application of this approach. This approach has also 
problems in defining objectives, constraining functions or implementing models. 
Increasing demands for agricultural products with limited water resources lead to water 
allocation and management problems. In addition, the conflicting objectives of individual 
monetary benefits and social benefits make the problems rather more complex. For efficient 
and scientific solutions of these problems, groundwater is also to be optimally extracted and 
combined with surface water to meet the requirements. On the other hand, uncertainty, 
vagueness and random factors make water allocation problems more complex in the form of 
unexpected droughts and floods, uncertainty in conjunctive use of surface and ground 
water, vagueness in water use efficiency and variation of inflows from month to month. As 
control problems become more complex in these applications, the use of traditional control 
techniques requiring mathematical models of the plant becomes more difficult to apply. 
Intelligent controllers have several important advantages, such as shorter development 
time, and less assumption about the dynamical behavior of the plant, that makes them 
attractive for application to these problems. Fuzzy set theory provides a mathematical 
framework for modeling vagueness and imprecision. Neural networks have the ability to 
learn complex mappings, generalize information, and classify inputs. Hybrid controllers 
utilize the advantages of each, as well as other novel techniques, creating a powerful tool for 
intelligent control (Sasaki and Gen, 2003). 
The methodology that can be used in selecting the optimum decision of water allocation for 
each sub-basin from the previous decisions (historical data) is the basic modeling approach 
in this study. This method includes two steps: the first step is to prepare the simulation 
models of water use, and the second step is development of the optimization models of 
water allocation for each sub-basin. Usually, these steps are separated in the literature. In 
this study, models of each step are not only obtained based on compatible methodologies, 
but the results of each optimization model are also obtained based on the optimal values of 
input predictor variables which are selected from the results of simulation models over 
historical data. Therefore, the output values of the simulation models remain constant. In 
other words, the simulation models learn to minimize the error between the output and real 
values (observed values) by using Adaptive Neural Fuzzy Inference System (ANFIS) 
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method. The optimization models are reinforcement learning that seeks to maximize the 
values of the input predictor variables subject to the fixed output values of simulation 
models.  
 For all sub-basins, river outflow was the sole prediction variable for the all simulation 
models. ANFIS method used different sets of input predictor variables for each sub-basin as 
dictated by the hydrologic factors. For example, if groundwater extraction occurred, this 
variable was also used as an input predictor variable, as well as decision variable.  
The abilities and advantages of presented method can be explained as: 1) The direct effects 
of uncertain, vague and random factors over water resources system, water demand 
estimated and hydrological regime can be incorporated into membership function that are 
considered in developing the simulation and optimization models. 2) The Human effects are 
incorporated into membership functions, and the results of this approach will not be 
conflicted in the future conditions. Therefore, these effects can be quantified by using the 
reliabilities of previous and optimum conditions of the decision variables in this study. 3) 
This method does not have problems like MCDM or Economical methods in defining 
objectives, constraining functions or implementing models. 

2. Methods 

2.1 Adaptive neural fuzzy inference system 

An adaptive network is a network structure consisting of a number of nodes connected 
through direct links. Each node represents a process unit, and the links between nodes 
specify the causal relationship between the connected nodes. All or parts of the nodes are 
adaptive, which means the outputs of theses nodes depend on modifiable parameters 
pertaining to these nodes. The learning rule specifies how these parameters should be 
updated to minimize a prescribed error measure, which is a mathematical expression that 
measures the discrepancy between the network’s actual output and a desired output 
(Papadrakakis and Lagaros, 2003). Neuro-fuzzy systems are multi-layer feed forward 
adaptive networks that realize the basic elements and functions of traditional fuzzy logic 
systems (Oh et al., 2002). Since it has been shown that fuzzy logic systems are universal 
approximators, neuro-fuzzy control systems, which are isomorphic to traditional fuzzy logic 
control systems in terms of their functions, are also universal approximators. Adaptive 
Neural Fuzzy Inference System (ANFIS), developed by Jang et al., 1997, is an extension of 
the Takagi, Sugeno, and Kang (TSK) fuzzy model (Li et al., 2001). The TSK fuzzy model was 
known as the first fuzzy model that was developed to generate fuzzy rules from a given 
input-output data set. This model allows the fuzzy systems to learn the parameters using 
adaptive backpropagation learning algorithm. In general, ANFIS is much more complicated 
than fuzzy inference systems (Li et al., 2001). A fuzzy inference system (FIS) can be 
considered to be a parameterized nonlinear map or a crisp function in a consequence called f 
, namely: 
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Where yl is a part of output if Mamdani reasoning is applied or a constant if Sugeno 

reasoning is applied (Jang et al., 1997). The membership function )( iA
xl

i

μ  corresponds to 

the input x = [x1,…,xn] of the rule l and m is the number of fuzzy rules. For the ith input 

predictor variable, xi is the real data (for example- the measured values of inflow and 
storage volume) in one point from the set of observed values. The output values, f(x) are the 
estimated values (for example- the estimated value of release) of simulation function within 
the range of input set. The center of gravity method is used for defuzzification. This can be 
further written as:  

 )x(bw)x(f
m
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Where wl=yl and  
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If FS is a set of continuous estimated value functions on domain D, then f can approximate FS 
to any desired accuracy. Let FS be a bounded function on [a,b] and D={x1,…,xh} a set of 

points in [a,b]. Then there exists the Least Squares Polynomial of degree r≤ between FS and 
Qh, which minimizes the following expression: 

 

2

1

)()(∑
=

−
h

j

jj

S xQxF  (4) 

Overall polynomial’s degree is equal to or less than r. Where Qh is real data of output values 
over hth point of input set (For each input predictor variable i=1,2,…,n and for each point of 
real world data j=1,2,…,h).  
Simulation model. In the Mamdani type of fuzzy system, the real data of the output values 
can be classified into classes such that the length of each class is equal to [a,b]. But in the 
Sugeno type, the length of [a,b]  is only determined over input data set (D), and f can be 
approximately equal to FS; hence, FS is the output values of simulation model. Consider a 
Sugeno type of fuzzy system, the following rule base is developed:  

1. If x1 is 
1

1A and x2 is 
1

2A  , … , and xn is 
1

nA , Then f1=
1

0p  + 
1

1p  x1 +
1

2p  x2 + … + 
1

np  xn . 

2. If x1 is 
2

1A and x2 is 
2

2A  , … , and xn is 
2

nA , Then f2=
2

0p  + 
2

1p  x1 +
2

2p  x2 +… +
2

np  xn . 

                            M                           M                                       M  

m. If x1 is
mA1 and x2 is 

mA2 , … , and xn is
m

nA , Then fm=
mp0 +

mp1  x1 +
mp2  x2 + … +

m

np  xn . 
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If the membership function of fuzzy sets  ( i=1,2,…,m, l=1,2,…,n) is 
l

iμ , m is the number of 

rules and n is the number of variables. In the water resources system,
l

iμ can be the numeral 

value of membership function of input predictor variable such as agricultural water 

demand. Also,
l

iA  is the real world data where the agricultural water demand is one of the 

input predictor variables. Using product for T-norm or logical and, evaluation of the rules 
can be written as (Jang et al., 1997): 
1. Evaluating the rule premises results in 

 )()()( 21
21

nAAAl xxxw l

n

ll μμμ ⋅⋅⋅= K   (5) 

2. Evaluating the implication and the rule consequences gives 
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This can be separated to phases by defining 

 

m21

l
l

w.....ww

w
w

+++
=   (7) 

Then,  
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wl is the connection weights and is updated only after presentation of the entire data set. 
This process is called "Learning", (Jang et al., 1997). 

2.2 Adaptive neural fuzzy reinforcement learning 

On the traditional optimization models of reservoir operation and river basin systems, net 
benefit has been maximized or costs have been minimized. Applications can be found in the 
work of Jacobs and Vogel, 1998, and Malek, 1998. Most of the operation models are not 
consistent in dealing with the objectives of the group of farmers, designers, and decision 
makers with conflicting points of views. Multiobjective uses of water, different strategies 
and natural factors have added complexity to these models. The natural factors can be 
included by considering drought or spring periods. Because of these factors, in recent years, 
efforts are devoted to the development of objective functions and optimization methods of 
water use on large river basins. Main objectives in this research include distributed water, 
excess water in the sub-basins, and allocated water in downstream sub-basins. 
Reinforcement Learning (RL) is one of the major approaches to solve Markov decision 
problems with unknown transition probabilities. RL, one of the most studied reinforcement 

learning algorithms, maintains estimates of the average reward ρ and of the relative value 
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function R(s,x) of choosing decision x in state s, from which an optimal strategy can be 
derived (Jouffe, 1998). It is assumed that the reinforcement learning agent obtains inputs 
from a continuous state space S of dimension NS and may perform actions taken from a 
continuous action space X of dimension NX. The sets of dimensions of the state space and 
the action space will be denoted as DS:={1,..,NS} and DX:={1,…,NX}, respectively. 

Considering, for each state Ss ∈  and each action Xx ∈  , ),(
~

xsth , there is a 

probability density function giving the distribution of the successor state t if action x is 

executed in state s. Furthermore, let Rtxsf ∈),,(
~

 be the (unknown) reward the agent 

gets for executing action x in state s if the action causes a transition to state t. The agent is 
supposed to select actions at discrete points in time.    

The goal of the learning task then is to find a stationary policy XS →:μ  ,i.e. a mapping 

from states to actions, such that the expected sum of future rewards 
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is maximized for each Ss ∈ , where sK+1 is determined from sK using ))(,(
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1 KKK sssh μ+ . 
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be the sum of discounted future rewards the agent may expect if it executes action x in state 

s and behaves according to the policy μ afterwards. Then, the optimal Q-values, ( )xsQ ,
~ *μ

, 

are given by the fixed-point solution of the Bellman equation 
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and the optimal policy μ* is to execute in each state s the action x that maximizes these Q-
values (Apple and Brauer, 2000): 
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maxarg:)s(
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Xx

* μμ
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=  (13) 

Optimization model. In this study, the optimal values of decision variables are obtained by 
combining Fuzzy Reinforcement Learning and Adaptive Neural Fuzzy Inference Systems 
(ANFIS). Simulation model is developed based on ANFIS method and input predictor 
variables (observed values) xi. Optimization model is developed based on two groups of 
variables. First group is known variables and their values can be obtained from the sets of 
input data (historical data). Second group is decision variables that have been unknown in 
the optimization process and will be estimated at the end of optimization process. Hence, fl 
for each rule is written as:  
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Where l=1,2,…,m is the number of rules, i=1,2,..,k is number of input predictor variables 
which m, n and k are the numbers of rules, decision variables, and known variables, 

respectively. 
l

ip is the modifiable parameter for each rule and the input predictor variables 

that were obtained from ANFIS method. In the first step, it is assumed that wl is constant, 
independent of xi and can be estimated based on the known variables. Substituting Eq. 14 
into Eq. 9 results in: 
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Where FO is the estimated values of objective function in optimization model. Defining Cl 
for independent values of decision variables for each rule, Eq.15 can be written as: 
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In this study, Gaussian membership function is used in the simulation and optimization 
process. It is written as (Harris, 2000, and Odhiambo et al., 2001): 

 ( )
( )

22
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=
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l
i
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Where )(xl
iA

μ  is the membership value for fuzzy set, x is the input predictor variables (for 

example- inflow and storage volume in the sub-basin No. 4), φ describes the ‘center‘ of the 

membership function, and σ is the spread of the membership function. Also by using this 

equation the value of variable x can be obtained assuming that )(xl
iA

μ  is known. 

 ( ) σμφ 5.0
)(ln2 xx l

iA
−±=  (19) 

Equation 17 is the objective function and the value of FO (for example- release from the dam) 
in Eq. 16 depends on the value of decision (for example- inflow) and known variables (for 

example- storage volume) xi. If the goal with the membership function (μG) is to find 
maximum value of FO based on the known variables and given modifiable parameters, then 
value of decision variables can be obtained based on maximizing the objective function. This 
process will be completely adjusted with Reinforcement Learning method (Eq. 12). But, in 
this study, it is assumed that value of FS is fixed and can be given by the sets of input data 
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(historical data) or it can be the set of decision-makers (in the future). In other words, the 
goal is to estimate the best values of decision variables that have been obtained from given 
value of FS. Therefore, the optimal value of decision variables must be found based on 
objective function and simulation model. The objective function and constraints can be 
written as: 

 OFMax   (20) 

Subject to: 
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Equation 22 is developed by fuzzy rule base system that can be derived by ANFIS method 
using historical observation data (the sets of input data in simulation process). Equation 22 
can be used for control value of FS, and will be divided into rule base number l and input 
predictor variables number i. 
In the first step, it is assumed that wl is constant and independent of xi, but these connection 
weights (wl) are not constant and depend on xi, as can be seen in Equations 5 and 7. 
Therefore, using trial and error methods, these parameters are found in the presented 
method using fuzzy linear programming with crisp objective function developed by 
Zimmermann, 1996, for solving equations 20 to 22. An algorithm was developed based on 
combining ANFIS method and fuzzy linear programming. The state variables are the values 

of membership function for each decision variable ( )( iA
xl

i

μ ). In this study, this algorithm 

and solution process is called “ANFRL” method, and equations 20 to 22 are the basic 
modeling approach in this method. The optimal values of these variables can be found by 
the solution process, subject to minimizing the error of the estimated value of membership 
function for each decision variable, which is computed by simulation and optimization 

phases. The parameters of membership function (σ and φ) are the constraints in the 
optimization process. Figure 1 shows the algorithm of solution process, which is presented 
in Appendix I.  
Quantifiable parameter for method results justification. Reliability is defined as the probability 
that a state of the system zr is in satisfactory state Z (Hashimoto et al., 1982). 

 )( Zzh r ∈=γ   (23) 

In this paper, there are two satisfactory states. First, in each month, the water resources 
discharge is equal to water demand in downstream sub-basin. The water resources 
discharge includes the release from dam or the excess water of upstream sub-basin, 
groundwater pumping and drainage water reused in the downstream sub-basin. Second, in 
each month, the residual storage volume is equal or greater than inflow. The two 
satisfactory states were chosen so as to reflect concerns on how the system will satisfy the 
two major purposes such as water supply and flood control. Hence, the reliability of the first 
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satisfactory state for the primary water resources management is obtained based on water 
resources discharge toward water demand. The reliability of the second satisfactory state is 
obtained based on the residual storage volume toward inflow. The reliability for the results 
of each optimization model is computed too. 

 

Fig. 1. The algorithm of the solution process (ANFRL method) based on combined ANFIS 
and fuzzy linear programming.   
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Fig. 2. River network and sub-basins of Kor and Seevand river basin. 
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3. Case study: the Kor and Seevand river basin  

General features. The Kor and Seevand river basin is located in the northern part of Fars 
province in Iran and lies between 51o, 45′ to 54o, 30′ eastern latitude and 29o, 01′ to 31o, 15′ 
northern longitude. Total river basin area is 31511 km2 with 16630 km2 of mountains and 
14881 km2 of plains and lakes. Kor river with two branches called Kor and Seevand are the 
artery of this river basin. These two branches join in Marvdasht area and form the main Kor 
River. The downstream reach flows into Bakhtegan Lake and is called Korbal river. River 
network of Kor and Seevand basin is shown in Fig. 2. Doroodzan Dam with 993 million 
cubic meters of capacity is located on Kor river. This dam supplies irrigation demands of 
Ramjerd and Marvdasht plains, domestic water for Shiraz City, and hydropower 
generation.  
Sub-basins characteristics. In this study, the river basin is divided into seven sub-basins. Six 
diversion dams are built on Korbal reach. Some of these ancient diversion dams like 
Feizeabad and Amir are currently under rehabilitation program and play an important role 
in the distribution of irrigation water system. In the future, there will be two more storage 
dams. One will be located near Tang-e-Boraq hydrometeric station on the Kor river 
(Mollasadra Dam), and the other will be located near Ghaderabad hydrometeric station on 
Seevand river (Seiboyeh Dam).  
Sub-basin No. 4 is Doroodzan Lake that is the only available reservoir in Kor and Seevand 
river basin. This sub-basin is considered as a single basin because there is a balance between 
inflow, release, and volume of reservoir that can be evaluated well for periods during which 
observed data are available. Sub-basin No.5 is located between Doroodzan Dam and Pol-e-
Khan hydrometeric station, the irrigation and drainage network lie in this area, too. In this 
sub-basin, there are different water resources such that it is a complete water resource 
system. The amount of water required in this sub-basin is used for agricultural, domestic, 
industrial, and hydropower uses. Release from Doroodzan Dam supplies such demands in 
two downstream sub-basins (No. 6 and No. 7). These water demands have not been 
included in the water demands of sub-basin No. 5 (DEM5). These demands would be input 
predictor variables in the developing simulation models and known variables in the 
optimization analysis of sub-basins No. 5 and No. 6.  
Simulation data characteristics. Simulation of a large-scale river basin can often be very 
difficult considering different factors affecting the hydrologic characteristics of the basin. 
This is mainly due to the fact that water use and water resource systems characteristics can 
significantly vary in different parts of the basin. Therefore, the simulation methods of water 
resources are used on small-scale basin (sub-basin). The simulation models developed for 
this river basin are capable of simulating each sub-basin, separately. The basic modeling 
approach is included in seven simulation models for each sub-basin so that this river basin 
could be simulated by combination of these models. For all sub-basins, the monthly values 
of river flows at each of the downstream hydrometer station are estimated by using the 
simulation models that were developed from the ANFIS method. Hence, seven models are 
obtained in the step of developing simulation models. Observed monthly values were used 
to develop the simulation models from October 1975 to September 2001 that were the sets of 
input data (real world data). The accuracy of the results of each simulation model with the 
real world data is evaluated in another step that is called “ verification modeling”. Each 
simulation model is verified by using observed value of years 1982-83, 1995-96, and 1999-
2000 (36 months). These three years were selected based on normal, dry, and spring periods. 
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Since Doroodzan Dam became operational on October 1975, this date was selected as the 
starting date for all of the analysis in this study. Some observed or measured values were 
incorrect; therefore, these input data were omitted from the analysis. Table 1 shows the 
simulation results in Kor and Seevand river basins obtained from ANFIS methods. 
 

Sub- Basin No. 1 2 3 4 5 6 7 

Name Aspas Tang-e-Boraq Kamfirooz Doroodzan Doroodzan 
Korbal 

up 
Korbal 
Down 

Simulated Data 
(Month) 

295 269 246 246 271 120 96 

Verified Data 
(Month) 

36 36 36 36 36 0 0 

Input predictor 
Variables 

SW1 
DEM1 
GW1 

SW2 
RF1 

SW3 
DEM3 

RF2 

RF3 
VOL 

SW5 
DEM5 

RF3 

VOL 
RF4 

GW5 
DW5 

DEM6 
RF5 

GW6 
DW6 

DEM7 
RF6 

 

River Flow at 
H.S.* (Output 

values) 
RF1 RF2 RF3 RF4 RF5 RF6 RF7 

RMSE** 9.85 12.44 23.19 29.08 10.85 10.81 14.00 

R2 0.78 0.94 0.9 0.71 0.88 0.86 0.89 

Slope*** 1.03 0.98 0.95 0.89 0.995 0.98 0.95 

Fuzzy Rules 5 4 7 8 7 6 6 

 

Table 1. Properties and ANFIS method based simulation results in the Kor and Seevand 
river basin. (*Hydrometeric Station; **Root Mean Square Error; *** Slope of Regression Line). 

3.1 Developing simulation models  
Cross validation. In order to attain statistically significant results, a 10-fold cross validation 
was carried out in the sub-basin No. 5 such that ten different splitting of the data set could 
be considered. The data set had 271 monthly data of input predictor variables that ninety 
percent of the set is the training set and 10% of the set is the test set for each fold. The 
process of the developing simulation model was repeated ten times, for each fold, with 
different rules number and variform membership functions. The six, seven and eight rules 
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respectively with the one of membership function shapes like Gaussian, Bell and Pi Shaped 
were assumed for each time. The Gaussian Combination Shaped for membership function 
with seven rules was also assumed in the 10th time. For all folds, the prediction ability of 
each model was evaluated both on the training set and the test set in terms of Root Mean 
Squared Error (RMSE). For example in the 5th fold, assuming Gaussian membership function 
for each input predictor variables and 6, 7 and 8 rules, RMSE for training set equal 17.68, 
10.81 and 14.86 for 17680, 22800 and 31386 Epoch, respectively.  
 

Fold 1 2 3 4 5 6 7 8 9 10 Mean 

Error on 
Training 

Set 

10.83 10.14 11.53 10.17 11.03 11.58 10.20 11.42 11.64 11.07 10.96 

Error on 
Test Set 

29.83 27.50 10.02 20.64 13.67 10.01 24.58 11.56 13.58 13.98 17.54 

 

Table 2 . RMSE of the 10th simulation model identified from each fold. 

Results of such experiments can be summarized in a table, in which 10 rows are identified as 
errors of 10 simulation models for each fold and the 10 columns are identified errors on the 
10 fold for each simulation model. The average of RMSE in each row is reported, as an 
estimate of the prediction capability of each simulation model. For example, the RMSE of 
the 10th simulation model is identified for each fold and is shown in Table 2. The averages of 
RMSE equal 10.96 and 17.54 for training and test data in this simulation model. There is not 
a statistically significant difference between the means or distributions of error on the 
training and test data at the 99.0 % confidence level. For all simulation models (in each row), 
these means or distributions have not statistically significant differences either. However, at 
this confidence level in each fold there is a statistically significant difference between the 
means of error on the training and test data of each simulation model (in each column). On 
the other hand, the process of developing simulation model is independent of splitting the 
data set, and is dependent on rules number and membership function shape. Therefore, 
Gaussian membership function with seven rules is the best setting of simulation model and 
has the minimum error on training and test data. Note that 10-fold cross validation is only 
considered in the sub-basin No. 5, and results, which have been presented in Table 1, are the 
simulation results in Kor and Seevand river basin for the entire text of this paper. 

Sub-basins simulation models. For all sub-basins, the parameters of membership function (σ,φ) 

and the modifiable parameters (
l

ip ) in the Sugeno type of fuzzy system for each model are 

obtained by using water resources factors (input data) that are only shown in Table 3 for the 
sub-basin No. 5. For example in sub-basin No. 7, the excess water of sub-basin No. 6 (RF6) 
and agricultural water demand (DEM7) in this sub-basin are the input predictor variables 
for estimating the river flow at Jahanabad hydrometeric station (RF7). The unit of these 
variables is million cubic meters per month (MCMM) for all sub-basins. The river flow can 
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be estimated by using these parameters as follows, that is one of the ANFIS models in this 
study: 
 

Rule 
Param

eter 
Constant

RF3  
MCMM 

RF4  
MCMM 

SW5  
MCMM

DEM5  
MCMM 

GW5  
MCMM 

DW5  
MCMM 

VOL 
MC 

1 
1

iP  -1272.08 -2.34 -1.06 -0.65 4.31 -55.00 12.01 1.70 

2 
2

iP  6.75 -0.26 0.21 1.43 -0.04 0.68 1.38 -0.02 

3 
3

iP  -143.20 -0.03 0.31 1.78 -0.31 -1.13 -0.61 0.17 

4 
4

iP  31.80 0.12 0.27 2.65 0.13 -0.77 -0.18 -0.03 

5 
5

iP  -30.04 0.52 0.83 1.08 -1.06 3.08 -1.13 -0.01 

6 
6

iP  -135.80 0.49 0.58 -0.31 -5.03 26.20 4.04 0.39 

7 
7

iP  -224.50 0.22 -0.04 -0.35 0.38 1.45 0.06 0.17 

1 σ ----- 
105.79 95.25 40.32 32.63 5.28 18.19 191.68 

 φ ----- 
50.93 38.51 0.00 0.00 0.00 36.12 624.00 

2 σ ----- 
115.37 114.93 5.67 69.63 32.98 34.13 144.33 

 φ ----- 
30.89 99.00 9.83 112.77 19.07 12.66 708.61 

3 σ ----- 
117.22 110.57 25.91 42.03 4.91 38.28 140.79 

 φ ----- 
47.63 116.21 21.47 116.79 36.77 11.97 930.54 

4 σ ----- 
117.04 111.16 41.14 36.43 11.07 32.47 130.98 

 φ ----- 
26.51 110.80 5.51 92.79 34.22 3.34 472.35 

5 σ ----- 
94.15 122.23 28.32 20.37 21.05 47.40 150.73 

 φ ----- 
131.74 21.29 23.19 0.00 0.00 28.17 908.11 

6 σ ----- 
144.14 118.62 33.98 44.53 33.36 26.48 187.31 

 φ ----- 
78.37 6.32 12.96 9.49 0.00 16.92 369.40 

7 σ ----- 
117.20 112.53 39.35 39.22 6.75 35.31 139.34 

 φ ----- 
39.20 141.80 8.39 182.00 59.91 13.51 868.42 

 

Table 3. The estimated values of the modifiable parameters (
l

iP  ) and the membership 

function parameters (φ and σ) obtained from ANFIS simulation method in the sub-basin No. 
5. The unit of membership function parameters is million cubic meters per month (MCMM) 
and the modifiable parameters are linear coefficient. 
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Rule 1. If x1 is RF6 over the input set with σ=12.03, φ=45.7 (membership function 

parameters); and x2 is DEM7 over the input set with σ=0.7, φ=16.06; then f1= -0.15 + 1.07RF6 - 
2.04DEM7. 

                            M                           M                                       M  

Rule 6. If x1 is RF6 over the input set with σ=11.76, φ=47.18; and x2 is DEM7 over the input set 

with σ=0.64, φ=10.87; then f6= 122.98 + 1.06RF6 – 12.95DEM7. 
The simulation of sub-basin No. 5 is achieved by using relationship between input predictor 
variables and river flow of Pol-e-Khan hydrometeric station or spilled water in this sub-
basin (RF5). Input predictor variables were demand (DEM5), release (RF4), inflow to the dam 
(RF3), storage volume (VOL), groundwater pumping (GW5), surface water (SW5), and 
drainage water reused (DW5). In the sub-basin No.4, release values (RF4) are simulated 
using inflow (RF3) and volume of stored water in the lake (VOL). The detailed overview and 
the type of input predictor variables for other sub-basins are listed in Table 1. Other 
simulation models can be rewritten similar to the presented approach in sub-basin No. 7. 
Abolpour, 2005, presented more detail of simulation models in the case study. 
 
Sub- Basin 
No. 

1 2 3  4    5     6   7 

ANFRL 
Model No. 

1 1 1 1 2 3 1 2 3 4 5 1 2 3 4 5 1 

DEMj  Kn.* ---- Kn. ---- ---- ---- Kn. Kn. Kn. Kn. Kn. Kn. Kn. Kn. Kn. Kn. Kn. 
DWj ---- ---- ---- ---- ---- ---- Kn. Kn. De. Kn. De. Kn. Kn. De. Kn. De. ---- 
GWj De.* ---- ---- ---- ---- ---- Kn. De. Kn. De. De. Kn. De. Kn. De. De. ---- 
SWj  Kn. Kn. Kn. ---- ---- ---- Kn. Kn. Kn. Kn. Kn. ---- ---- ---- ---- ---- ---- 
RF1 Kn. De. ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 
RF2 ---- Kn. De. ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 
RF3 ---- ---- Kn. De. Kn. De. Kn. Kn. Kn. Kn. Kn. ---- ---- ---- ---- ---- ---- 
RF4 ---- ---- ---- Kn. Kn. Kn. De. Kn. Kn. De. De. ---- ---- ---- ---- ---- ---- 
RF5 ---- ---- ---- ---- ---- ---- Kn. Kn. Kn. Kn. Kn. De. Kn. Kn. De. De. ---- 
RF6 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- Kn. Kn. Kn. Kn. Kn. De. 
RF7 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- Kn. 
VOL ---- ---- ---- Kn. De. De. Kn. Kn. Kn. Kn. Kn. ---- ---- ---- ---- ---- ---- 
Length of real 
world data 
(Month) 

295 269 246 246 246 246 271 271 271 271 271 120 120 120 120 120 96 

Length of total 
data (Month) 

300** 324 273 288 288 288 288 288 288 288 288 300 300 300 300 300 300 

Number of 
optimum values 

106 223 151 160 182 121 160 204 165 153 164 148 115 183 132 174 171 

Table 4.  Known and decision variables in each optimization scenario for all sub-basins, and 
optimization results in the Kor and Seevand river basin. (*Known and decision variable, and 
j is sub-basin index.; ** Including real world data , for example 295 months of observed data, 
and predicted values, for example 5 months of simulated data by using ANFIS method). 

Membership function properties. A property of ANFIS method is the development of 
membership functions for each input predictor variable (Jang et al., 1997). These 
membership functions can be used for the evaluation of input predictor variables. For 
example, in the downstream of Doroodzan dam (sub–basin No. 5), membership functions 
are developed for each input predictor variables. In this sub-basin, for each of seven input 
predictor variables, seven membership functions are obtained. Because the values of the 
input and output variables are vague or uncertain over time and / or space, they are 
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classified into classes (e.g. low, mean, very high, etc.) for seven different climate season (e.g. 
Drought – Spring) using fuzzy membership functions. Based on 10-fold cross validation in 
the ANFIS process, the historical data follows the seven formulated fuzzy rules. Each rule 
pertains to a single climate season, adaptively adjusting the midpoints and ranges of the 
membership functions so as to minimize the prediction error. By using these fuzzy 
membership functions, the water resources management policies could be evaluated in the 
real time operation of the system and the results can be compared with the historical records 
of water supply in the study area (Abolpour , 2005, Abolpour & Javan, 2007). 

3.2 Using optimization methods for different scenarios 
The ANFRL method is used to develop optimization models for each sub-basin that has 
obtained the optimum values of decision variables. These models are conducted with 
simulation models developed by using ANFIS method. The membership function 

parameters (σ,φ) and the modifiable parameters (
l

iP ) in optimization models are the same 

values of the simulation models. But, the input predictor variables for each simulation 
models are divided into the known and unknown variables where unknown variables are 
the decision variables in the optimization models. Also, the output values in simulation 
models are one of the known variables in the optimization models. In some of sub basins, 
the ANFRL method may develop several optimization models for each scenario so that they 
are only conducted with one of the simulation models. Therefore, the total number of 
optimization models is 17 in this study and their properties are presented in Table 4. 
In each sub-basin, the optimization models find the optimum values of decision variables 
for the period of past 25 years. The values of known variables are obtained from the sets of 
input data (real world data) that have been used in the process of developing simulation 
models. If the values of known variables that are output values (river flow) in simulation 
models do not exist in the sets of input data, then the predicted values of these variables are 
used in the optimization models. The predicted values are estimated by using the results of 
simulation models. In this manner, the optimization models can be completely implemented 
in each month of the period. For all sub-basins, known and decision variables in each 
optimization scenario are presented in Table 4. The length of real world data is the number 
of input data (historical data) that are used to develop simulation models. The length of total 
data includes the length of real world data and predicted values, which are estimated by 
using ANFIS method. The number of optimum values is the results of optimization models 
that yield the optimal values by using the ANFRL method. The lengths of real world data, 
total data, and the number of optimum values are shown in Table 4, too. 
As an introduction to the problem, we will consider representative sub-basin No. 4, which 
has a surface water reservoir. For this portion of the river basin, we must balance reservoir 
inflows (RF3), outflows (release from dam - RF4), and storage volumes (VOL). The ANFIS 
method uses the formulated fuzzy rule system to predict the single output variable, outflow, 
in response to the two input predictor variables, reservoir inflow and storage volume. A 
different set of decision variables is used for three different optimization scenarios, and they 
are 1) inflow into dam; 2) reservoir storage volume; 3) both inflow and storage volume. In 
the optimization model of scenario No. 1, the inflow value is one of the input data and the 
release value (downstream of this sub-basin) is the output value in the simulation process. 
In the optimization process, the inflow value is decision variable and the optimal value of 
this variable must be found subject to a fixed release value. 
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Because the release values are fixed in the modeling of the optimization process, this 
variable is defined as “known” variable. The values of storage volume (input data) are used 
to develop the simulation model; hence, the specified value of this variable is required in 
using the optimization model of scenario No. 1. Therefore, the sets of input data (observed 
values) are used to find the given values of release and storage volume, and these variables 
are defined as “known” variables (Table 4). The values of inflows that are used as decision 
variables in the process of optimization modeling are called “unknown” variables (Table 4). 
The state variable is the value of membership function for each decision variable and is 
obtained from ANFIS method from simulation process over monthly management periods 
(Table 3). Therefore, in this sub-basin, three optimization models are used and the results of 
optimization model No. 1 and 2 are shown in Fig. 3. 

 

Fig. 3. Results of optimization models in sub-basin No. 4. Optimal and observed data of 
inflow (a-RF3) and storage volume (b-VOL) in Doroodzan Dam. 

Optimization models in sub-basin No.5 are developed under five scenarios. In all models, 
objective functions are defined so that they optimize river flows at Pol-e-Khan hydrometeric 
station (RF5), using ANFRL method. Optimization model No.1 is developed for condition in 
which release of dam (RF4) is the decision variable. In this model, surface water (SW5), water 
demand (DEM5), inflow (RF3), storage volume (VOL), groundwater pumping (GW5) and 
drainage water reused (DW5), are the known variables. Properties of other optimization 
models are presented in Table 4. All areas in this sub-basin have been under cultivation 
during the past 25 years and no new development plans are available for this area. There 
have been a considerable number of dry and spring periods with different severity during 
the past 25 years. Therefore, the results of optimization models can definitely be used for 
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future conditions. The results of optimization model No. 1, 2 and 3 are shown in Fig. 4. For 
the other sub-basins, the characteristics of optimization models are presented in Table 4, but 
the optimum values of decision variables are not shown. 

 

Fig. 4. Results of optimization models in sub-basin No.5. Optimal and observed data of 
release (a-RF4), groundwater pumping (b-GW5), and drainage water reused (c-DW5). 

4. Results and discussion  

An important objective of this study was to maximize the volume of excess water in 
each sub-basin or river flow in each hydrometeric station. Decision variables of 
optimization models included release from the dam, storage volume, river flow in the 
upstream sub-basin, and groundwater pumping or drainage water reused. Results of 
these models are presented in Table 4. In some months, optimum values of decision 
variables could not be found. Optimum values of decision variables were found from 
the algorithm presented in Fig. 1. This process consists of two phases. In the simulation 
phase, the possible values of decision variables are determined from simulation models 
of the ANFIS method. If the possible values for decision variables could be found from 
simulation model, these values would be compared with the primary values obtained 
from optimization phases. If simulation model had a better correlation with real world 
data, the possible values of variables could be obtained for more months. If the values 
of known variables were out of range for the physical conditions of sub-basin, then 
optimization phase would not yield reasonable values for decision variables. Therefore, 
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as it can be seen in Figures 3 and 4, the results of the optimization model are only 
presented for the month in which the model yields the optimum value. 
For all sub-basins, the ANFRL based numerical results are the optimal values of 
decision variables such as excess water, release from dam, groundwater pumping and 
drainage water reused. The justification of applying these values instead of primary 
water resources management should be considered by using a quantifiable parameter. 
Hence, the reliabilities of previous and optimum conditions of the decision variables are 
obtained based on the observed data and the results of optimization models (Eq. 23). In 
the sub-basin No. 4, the storage volume used in computing flood control reliability for 
observed data and the optimal value, is the decision variables in the upstream 
Doroodzan Dam. In sub-basin No. 5, the release from dam, groundwater pumping and 
drainage water reused are the decision variables, used in computing water supply 
reliability for observed data and the optimal value. The reliabilities of previous and 
optimum conditions for each month are shown in Table 5. 
In sub-basin No.5, the annual water supply reliability equals 0.42 based on the observed 
data of release form dam, groundwater pumping and drainage water reused in the past 
25 years. Also, the variation range of monthly reliability is 0.19 to 0.75 (Table 5). The 
decision variable is the release from dam, groundwater pumping and drainage water 
reused in scenarios No. 1, 2 and 3, respectively. The annual reliability equals 0.44, 0.45 
and 0.40 based on the results of scenarios No. 1, 2 and 3, respectively. In scenario No. 4 
(Model-4), the decision variables are release from dam and groundwater pumping. The 
annual reliability equals 0.47 based on the results of this scenario. The release from 
dam, groundwater pumping and drainage water reused are the decision variables in 
scenario No. 5. The water supply reliability, which is based on this scenario result 
equals 0.5 for each year. Therefore, the optimization model results obtained based on 
the scenarios Nos. 1, 2, 4 and 5 yields reliability increment of about 4, 9, 13, and 21 
percent respectively (Table 5).  
For each month, the variation range is 0.18 to 1.0 in the optimization model No. 5 whose 
average is equal to 0.5 has been greater than what was obtained from other 
optimization models. The maximum value of the reliability increment can be related to 
the integration management that is obtained in scenario No. 5. Besides, in this study, 
the reliability is defined based on the satisfactory state that the water resources 
discharge is only equal to water demand. This satisfactory state is created by assuming 
that the water demand is determinate. Hence, the present approach for developing 
simulation and optimization models can enable us to consider the effects of uncertainty, 
vague and random factors over water resources discharge. For example in sub-basin 
No. 5, these effects are 21 percent that are considered in developing models of scenario 
No. 5. 
The reason of considering the agent non-increment of the reliability more than 0.5 is 
that, the water supply reliability recalculated based on another satisfactory state. At this 
state the water resources discharge is equal or greater than water demand and these 
reliability are shown in Table 5. In this way, the satisfactory state is created by 
assuming that the water demand is not determinate. The annual water supply reliability 
in sub-basin No. 5 is equal to 0.86 based on the observed data for the period of the past 
25 years. For all scenarios, the variation range of the annual reliability of water supply 
is 0.86 to 0.96 and is very close to one.  
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Scenario No. 
Month 

P. W.R.M. 1 2 3 4 5 
October 0.53 0.60 0.50 0.69 0.25 0.32 

November 0.40 0.15 0.34 0.04 0.24 0.18 

December 0.19 0.33 0.22 0.21 0.36 0.50 

Jane 0.66 0.83 0.71 0.68 1.00 1.00 

February 0.75 0.95 0.86 0.90 1.00 1.00 

March 0.38 0.60 0.59 0.47 0.75 0.82 

April 0.19 0.13 0.18 0.06 0.06 0.32 

May 0.34 0.32 0.46 0.36 0.55 0.62 

Jun 0.44 0.52 0.61 0.44 0.63 0.39 

July 0.42 0.30 0.39 0.32 0.26 0.27 

August 0.46 0.27 0.43 0.33 0.38 0.41 

September 0.25 0.23 0.16 0.29 0.19 0.22 

Annaul 0.42 0.44 0.45 0.40 0.47 0.50 

Increasing (%) ----- 4.34 9.02 0.00 13.50 20.86 

October 0.57 0.75 0.55 0.69 0.95 0.82 

November 0.78 0.95 0.84 0.97 1.00 1.00 

December 0.98 1.00 1.00 1.00 1.00 1.00 

Jane 0.99 1.00 1.00 1.00 1.00 1.00 

February 1.00 1.00 1.00 1.00 1.00 1.00 

March 1.00 1.00 1.00 1.00 1.00 1.00 

April 0.86 0.95 0.77 0.97 0.99 0.82 

May 0.88 0.93 0.86 0.90 0.90 0.62 

Jun 0.73 0.77 0.70 0.69 0.78 0.73 

July 0.83 0.85 0.84 0.92 0.93 0.87 

August 0.84 0.87 0.84 0.86 0.93 0.95 

September 0.88 0.93 0.89 0.91 1.00 1.00 

Annaul 0.86 0.92 0.86 0.91 0.96 0.90 

Increasing (%) ----- 6.37 0.00 0.93 11.07 4.56 

October 1.00 1.00 ----- 1.00 ----- ----- 

November 0.97 0.88 ----- 0.90 ----- ----- 

December 0.96 0.88 ----- 1.00 ----- ----- 

Jane 0.89 0.94 ----- 1.00 ----- ----- 

February 0.84 1.00 ----- 1.00 ----- ----- 

March 0.82 0.92 ----- 1.00 ----- ----- 

April 0.75 0.82 ----- 0.58 ----- ----- 

May 0.80 1.00 ----- 0.75 ----- ----- 

Jun 0.95 0.87 ----- 0.75 ----- ----- 

July 1.00 0.91 ----- 0.86 ----- ----- 

August 1.00 0.94 ----- 1.00 ----- ----- 

September 0.97 0.99 ----- 0.99 ----- ----- 

Annaul 0.91 0.93 ----- 0.90 ----- ----- 

Increasing (%) ----- 1.86 ----- 0.00 ----- ----- 

Wet Months 0.79 0.91 ----- 0.77 ----- ----- 

Increasing (%) ----- 15.35 ----- 0.00 ----- ----- 

 

Table 5. The water resources and flood control reliabilities for each  scenario in the sub-
basins No. 4 and No. 5. 
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In scenario No. 4, the decision variables are release from the dam and groundwater 
pumping. The increment of the water supply reliability is about 11 percent based on the 
results of this scenario and is greater than what was obtained from other scenarios. The 
annual release from the dam in this scenario is equal to 1070 MCMM that is the maximum 
value of discharge compared to other scenarios. Therefore, in the previous and optimum 
conditions of water resources management, water resources discharge is usually more than 
water demand. This is due to the existence of the effects of the uncertainty and imprecise 
factors such as irrigation efficiency on estimated water demand. Hence, the present 
approach for developing simulation and optimization models can enable us to consider 
these effects which are about 11 percent in sub-basin No. 5.    
In sub-basin No. 4, the annual flood control reliability is equal to 0.91 based on the observed 
data of storage volume for the period of the past 25 years (Table 5). The annual reliability is 
equal to 0.93 based on the results of scenario No. 1, and this optimal value of decision 
variables is only obtained for storage volume. In scenario No. 3 (Model-3), the decision 
variables are storage volume and inflow, and the annual reliability is equal to 0.90 based on 
the results of this scenario. In this case study, most of the previous floods occurred during 
March to May. The residual storage volume is very important during these months, and the 
flood control reliability must be obtained for these months. The variation range of the flood 
control reliability is 0.75 to 0.82 form March to May, and the average value is equal to 0.79 
during this period (Table 5). In scenario No. 1, the variation range is 0.82 to 1.0 whose 
average is equal to 0.91. This value has more than what was obtained from other 
optimization models. In this scenario, the reliability increment is about 15 percent by 
considering the effects of random factors over hydrological regime in the upstream sub-
basin. 

5. Summary and conclusions 

In recent years, fuzzy logic has become a strong tool in water resources studies. The main 
objective of this study is to use this approach in the optimization of water use in river 
basins.  An approach is presented for considering spatial and temporal variation in 
allocating water on a large-scale river basin. Using simulation models is very important in 
developing an optimization model in this study. The simulation model used for this 
purpose consisted of smaller multi-process simulation models. The ability of fuzzy control 
systems or fuzzy rule based on water resources systems have been presented in the previous 
studies (Nguyen and Prasad, 1999, Oldhiambo et al., 2001, and Dubrovin, 2002). ANFIS 
method is a modified form of these methods that can simulate uncertainty, vagueness and 
other factors affecting the input predictor variables. Although this method is not a complete 
reasoning model, the development ability of Gaussion membership functions based on the 
conjunction of univariate fuzzy sets which is defined on the individual components of the 
input domain, is the reason of the application of this method. Monthly data for developing 
simulation model has been used in this study. The selection of these time interval and input 
predictor variables, which had the suitable effects on water balance in each sub-basin, may 
have impact on the quality of model results in this application. However, ANFIS and Fuzzy 
Reinforcement Learning concepts are combined to derive the ANFRL method for 
developing the optimization models.  
Water Balance (WB), Linear Regression (LR), Autoregressive Integrated Moving Average 
(ARIMA), and ANFIS methods are used to simulate seven interconnected sub-basins in this 
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case study. By using the quantitative parameters like modeling efficiency, the accuracy of 
the ANFIS methodology was considered in the simulation of the behavior of complex river 
basin systems within the context of uncertainty. Although, WB and ARIMA methods were 
better methods in upstream sub-basins, ANFIS model was the only method that could be 
used for simulation of all sub-basins (Abolpour, 2005, Abolpour & Javan 2007).  
The presented approach offers two important advantages. First, this method can analyze the 
direct effects of uncertain, vague, conflicting, and random nature variables and parameters 
in a water resources system. In sub-basins No. 4 and 5, the present approach for developing 
simulation and optimization models have the ability of considering the effects of uncertainty 
factors over water resources system, imprecise factors over water demand estimated and 
random factors over hydrological regime. The quantitative values of these effects are 21,11 
and 15 percent, respectively. The average value is about 16 percent, which can be considered 
as water allocation improvement in these sub-basins. Second, this method does not show 
any problem in defining the objective or constraint functions, and the solution process is 
simpler in comparison with other methods like Genetic Algorithm or Multi-Criteria 
Decision Making (MCDM). However, two important disadvantages in using this approach 
are: First, this method requires relatively long periods of historical data for deriving a robust 
rule set. Second, if the ANFIS model cannot yield suitable estimation of water resources 
variability then the results of ANFRL model will not be accurate. 
Moreover, multi-processes optimization models for each sub-basin on a large scale river 
basin are developed too. Combination of the results of these optimization models can yield 
the spatial and temporal optimum values for allocating water. For example, in the Kor and 
Seevand river basins, the manager of water resources system can find the optimum value for 
allocating water in each sub-basin. The results obtained from this analysis enable the 
manager to allocate water for river flow, environmental needs of Bakhtegan Lake and other 
uses in the sub-basin. In the future, this analysis will be performed by using the expected 
values of monthly input data obtained from historical record based on Markov chain 
approach. The analysis could start from anywhere in the sub-basin. Therefore, if the 
expected value of each input predictor variable is given for each sub-basin, the optimum 
value of decision variables could be determined in any other part of the sub-basins.  
The results of ANFIS method were obtained based on the assumption of simulating primary 
water resources management. The results obtained from ANFRL method were based on the 
assumption of selecting optimum strategies from primary water resources management. 
Therefore, if the results of ANFIS method are only used, the sixteen percent improvement in 
water allocation will not be attained for the same conditions in the future. The ANFRL, 
Stochastic Programming Problems with Recourse (SPPR) and Fuzzy Stochastic Dynamic 
Programming (FSDP) methods are used to optimize water allocation in these sub-basins. 
The results of ANFRL method based on utilization of conjunctive use strategy of surface and 
ground water, showed that about 100 percent improvement in water supply reliability as 
compared to the previous decision of water resources management during dry periods 
(Abolpour, 2005, Abolpour & Javan, 2007). The imprecise factors like random, vague an 
uncertainty does not only affect the balance variables of water resources in each sub-basin, 
but are also related to each other. Therefore, if the simulation models based on ANFIS 
method could accurately simulate the relationships between factors and their effects on 
water use modeling in each river basin, the optimization models based on ANFRL method 
could also achieve the same goal in other case study. 
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Appendix I. Solution Process 
The solution process of ANFRL method can be summarized as follows: 

1. Simulation model is derived by using ANFIS method and observed 
data. 

2. Simulation phase which consists of: 

2.1. An initial value of l
iA

μ  is assumed for input predictor 

variables in one of the rules. These are decision variables in 
optimization phase. 

2.2. The values of decision variables are calculated by using 
Gussian equation (Eq. 19) and are the possible values of 
decision variables. 

2.3. In other rules, a value of l
iA

μ  is computed based on 

possible value of decision variables. 
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2.4. The values of connection weights wl and lw  are computed 

for each rule (Equations 5 and 7). 
2.5. In the rule l, the estimated value of crisp function (fl ) is 

calculated based on the possible values of decision and 
known variables (Eq. 8). 

2.6. The estimated value of output function FS is computed by 
using Eq. 9. 

2.7. The initial values of l
iA

μ  are used for other rules and steps 

2.1 to 2.6 are also repeated. 
2.8.  The estimated values of FS are compared with observed 

values, for selecting the possible values of decision 
variables, which are calculated in the simulation phase. 

3. Optimization phase which consists of: 

3.1. The modifiable parameters
l

ip , and Cl are computed by 

using the results of simulation phase. 
3.2.  The constraints are formulated by assuming the initial 

value of μc (Equations 21 and 22). 
3.3. Fuzzy linear programming with crisp objective function is 

used to compute the estimated value of membership 

functions of goal (μG ). 

3.4. The estimated value of μG and the initial value of μc are 
compared. If the difference is negligible, the primary values 
of decision variables are estimated. Otherwise, another 

value of μc is used and steps 3.2 to 3.3 are also repeated. 
3.5. The possible and primary values of decision variables are 

compared. If the difference is negligible, then optimum 
value is obtained and the solution process is stopped. 

 
Appendix II. NOTATION  

l

iA = Fuzzy set of i th input variable for rule l.  

bl(x) = Relative value (connection weights) of membership function for rule l. 
CONS = Constant value of simulation model. 
DEMj = Water demand variable in sub-basin No. j. 
DWj = Drainage water reused in sub-basin No. j. 
FS = The output values of simulation model in ANFIS method. 

FO = The estimated values of objective function in optimization model (ANFRL method). 

=)t,x,s(f
~

 The reward the agent gets for executing action x in state s if the action 

causes a transition to state t. 
GWj = Groundwater pumping in sub-basin No. j. 

h
~

 = A probability density function. 
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=)s(J
~ μ

 The value of expected sum of discounted future rewards for state s 

corresponding to μ. 
l

iP  = The modifiable parameters for each rules and variables that are obtained from ANFIS 

method. 
Qh = The real value of output variable over h th point of input set.  

μQ
~

  = Q-value in reinforcement learning algorithms corresponding to μ. 
*

Q
~ μ

 =   The optimal Q-value corresponding to μ∗. 
RF1 = River flow at Tang-e-Boraq Hydrometeric Station (Spilled water of sub-basin No.1). 
RF2 = River flow at Chamriz Hydrometeric Station (Spilled water of sub-basin No.2). 
RF3 = Inflow of Doroodzan Dam (Spilled water of sub-basin No.3). 
RF4 = Releases from Doroodzan Dam (Spilled water of sub-basin No.4). 
RF5 = River flow at Pol-e-Khan Hydrometeric Station (Spilled water of sub-basin No.5). 
RF6 = River flow at Kheirabad Hydrometeric Station (Spilled water of sub-basin No.6). 
RF7 = River flow at Jahanabad Hydrometeric Station (Spilled water of sub-basin No.7 
or discharged into Bakhtegan Lake). 
SWj = Surface water in sub-basin No. j. 
VOL = Storage volume of Doroodzan Dam for each month. 

=lw The connection weights of membership function for lth fuzzy rule system. 

xi = The real value of ith input predictor variables in simulation analysis, and the values 
of known or unknown variables in the optimization analysis. 
yl =A place of output , which is a constant value in rule l. 
zr = A state of the system. 
Z = Satisfactory state. 

)( iA
xl

i

μ  = The membership function of i th input predictor variable in rule l on fuzzy set A. 

μ* = The optimal value of membership function. 

φ = The " center" of membership function. 

σ = The spread of the membership function. 
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1. Introduction  

During the last few decades, significant changes have been made in the area of building 
construction and management, especially regarding climate control and energy 
conservation.  
A significant turning point was reached in the early 70s with the oil crisis driving a 
movement for airtight buildings to minimize energy consumption. Unfortunately this turn 
resulted in a significant deterioration of the indoor air quality, raising health concerns 
around the world. This started a more involved study of human comfort with respect to air 
quality, lighting and temperature among other factors.  
There has been a drive in recent years to enhance current Building Environmental 
Management Systems (BEMS) with decision logic that takes into account all of the 
aforementioned issues namely thermal comfort, visual comfort, air quality and energy 
consumption. In order to maximize performance on all of the above indexes, the BEMS 
controller can use among other things the mechanical HVAC system, natural ventilation 
through windows, artificial lighting and shading devices. 
There are several aspects of the problem that make it attractive to intelligent control 
implementations. First of all the knowledge of the state of the indoor environment is 
imprecise due to several reasons. Localized phenomena can affect parameters like 
temperature or air velocity making it impossible to measure them accurately. Building 
environments are also characterized by changing dynamics due to human activity as well as 
equipment and building aging. Some parameters like clothing and activity type that are 
normally required to accurately estimate thermal comfort are difficult or even impossible to 
measure. Finally it should also be noted that despite the existence of mathematical models, 
thermal comfort remains a subjective measure and thus any such model is characterized by 
some error. On the other hand the action space is discrete and of small dimensionality. 
The nature of the problem therefore indicates that controllers that are able to generalize can 
offer a good performance. This is also suggested by the numerous controllers proposed in 
the literature ranging from classic PD/PID to fuzzy, neural networks and their 
combinations. 
For the reasons mentioned above, reinforcement learning is also suited for this problem, but 
it also has some unique features that make this approach of particular interest. Although a 
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specific setting of the HVAC system has an immediate impact on energy consumption, its 
effects on the indoor climate can endure for longer periods of time. Using reinforcement 
learning, it is straightforward to capture this effect through discounting, while the same 
would be more involved for other types of controllers. Additionally, its on-line learning 
capabilities allow the controller to follow gradually changing dynamics and minimize the 
adverse effects of abrupt changes, without need for significant reconfiguration. 
This chapter will begin with a detailed presentation of the problem and prior art in the field. 
Controller design issues and alternatives will be discussed, although rigorous theoretical 
analysis will be omitted for the sake of brevity. A simple case study will be presented and 
the performance of the reinforcement learning controller will be compared to that of a 
fuzzy-PD and a typical on/off controller under various scenarios. The chapter concludes 
with current issues and suggestions for future research. 

2. Comfort 

After the emergence of the sick building syndrome and the realization that sealed indoor 
environments can have adverse effects on health and productivity, significant attention is 
now given to the comfort of buildings' occupants. Modern bioclimatic architecture dictates 
an exploitation of local climatic and geographic characteristics to provide a comfortable 
environment while minimizing energy consumption. On the other hand urban construction 
poses some limitations in the application of bioclimatic architecture and of course there are 
millions of buildings already constructed and in use. As a result the need arises for the 
introduction of sophisticated control systems. In order for such systems to be designed, 
comfort must be defined and quantified first. 
When we refer to the comfort level of a building occupant, we have to consider several 
factors like thermal comfort, indoor air quality as well as light and noise levels. There 
are already published standards in the area of comfort and there are others in 
development. Thermal comfort is addressed in ISO 7730:1994 and ASHRAE 55. ISO 
8995:1989 describes lighting demands of indoor work environments and ISO 1996-
3:1987 and 1999:1990 describe noise limits and the impact of noise on human hearing. 
The Centre Europeen de Normalisation is also preparing prEN 15251:2006 under the 
title “Criteria for the indoor environment including thermal, indoor air quality, light 
and noise” (Olesen et al,  2006) 

2.1 Thermal comfort 

Thermal comfort is defined in the ISO 7730 standard as being “That condition of mind 
which expresses satisfaction with the thermal environment”. Although this definition does 
not directly provide the means to measure thermal comfort, the standard proposes the use 
of the Fanger model. This model is based on the following equilibrium of the human body 
(Fanger, 1970): 

 M – W = H + Ec + Cres + Eres (1) 

Where M is the metabolic rate (provided in tables as a function of activity), W is the external 
work (usually considered to be zero), H is the dry heat loss, Ec the evaporative heat 
exchange at the skin during thermal neutrality, Cres the convective respiratory heat exchange 
and Eres the evaporative respiratory heat exchange. The latter four require the knowledge of 
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the air temperature, the mean radiant temperature, the air velocity, the humidity and the 
clothing type in order to be evaluated. 
In actual conditions several of the above parameters (air velocity, clothing type, activity) 
vary from occupant to occupant and as a result the task of measuring and achieving thermal 
comfort for all occupants is almost impossible (Olesen & Parsons, 2002). On the other hand 
people have some ability for self-regulation by adjusting their clothes or opening a window. 
The Fanger model provides two indexes of the thermal comfort. The first is the PMV 
(Predicted Mean Vote) that corresponds to the average vote of a large volume of people 
about their thermal sensation and ranges between -3 (very cold) to +3 (very hot). The second 
is the PPD (Percent of People Dissatisfied) and is derived from the PMV using the following 
relationship (Memarzadeh & Manning, 2000): 

 PPD = 100 – 95 exp(-0.03353 PMV4 – 0.2179 PMV2) (2) 

It should be noted that the PMV, PPD indexes are based on North American and European 
healthy adults in sedentary activity and the ISO standard warns against applying it to 
different groups. 
The last decade the Fanger model has seen some criticism especially because of its 
inaccurate predictions for naturally ventilated buildings. This is because the model doesn’t 
take into account the psychological adaptability that people exhibit, i.e. people living in 
naturally ventilated buildings are used to the large diversity and exhibit different 
preferences and wider tolerances (de Dear & Brager, 2002). 
As an alternative to the Fanger model for fully air-conditioned buildings, the ACS or 
Adaptive Comfort Standard was proposed for naturally ventilated buildings. More 
specifically (de Dear & Brager, 2002) hypothesized that the thermal comfort temperature in 
the latter type buildings is a function of only the outdoor temperature: 

 Tcomfort = 0.31 Tout + 17.8 (3) 

In a similar study (Nicol & Humphreys, 2002) developed their comfort equation as a 
function of the monthly average temperature: 

 Tcomfort = 0.54 Tout,avg + 13.5 (4) 

Using the same methodology (McCartney & Nicol, 2002) developed comfort equations of 
the same type for 5 different European countries using the running mean temperature. 
These efforts where continued with studies for other regions like Singapore (Wong et al, 
2002) and Indonesia (Feriadi & Wong, 2004) 
Although it might seem that the ACS models differ significantly from study to study, its 
significance is still high because of its simplicity and lack of better alternatives for naturally 
ventilated buildings. 

2.2 Air quality 

It is a common misconception that the polluted air is outside, when the truth is that indoor 
air concentrations of various irritating, carcinogenic and mutagenic compounds can be 
higher than their corresponding outdoor concentrations even in industrial areas. Some of 
the most common pollutants found in indoor environments are radon (a carcinogenic 
compound that originates from the ground), CO and other pollutants from cigarette smoke, 
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volatile organic compounds from detergents, disinfectants, glues, paints etc and ozone from 
copying machines and air cleaners. 
The only way to control the concentration of these pollutants is by introducing as much 
fresh air into the building as possible, although that is usually at some cost because the 
fresh air normally needs to be cooled or heated depending on the climate. As an 
indicator of indoor air quality it is common to use the concentration of CO2 where such 
information is available. This is under the assumption that the concentrations of the 
other pollutants will follow similar trends, which in some cases may not be accurate. 

2.3 Light requirements 

Sufficient light is important in establishing a feeling of comfort and maintaining high 
productivity. Light comfort depends on illuminance or the adequacy of light, glare and 
light color (Serra, 1998). Therefore to enable people to perform visual tasks, adequate 
light without side glare and blinding must be provided. The required luminance levels 
can be reached by means of daylight, artificial light or a combination of both. For 
reasons of health, comfort and energy in most cases the use of daylight is preferred over 
the use of artificial light (Serra, 1998). The use of daylight though, depends on many 
factors like occupancy hours, autonomy, building location, daylight hours during 
summer and winter, window openings and orientation. 
To make sure that for a reasonable amount of occupancy time daylight can be used, 
demands on the daylight penetration in the spaces meant for human occupancy have 
been set (CEN, 2002). Despite the fact that lighting can be controlled also by controlling 
shading devices, in commercial BEMS it is common to control only the artificial lighting 
to complement natural light when required.  

2.3 Noise 

Although noise can significantly affect the feeling of comfort and in some cases even 
have temporary or permanent health effects, unfortunately it is impossible to have any 
control over the noise levels via the BEMS. As a result this issue is dealt independently 
during the construction and operation of the building. 

3. State of the art 

Recent developments in BEMS have been influenced by the wider adaptation of 
intelligent control techniques like fuzzy systems, genetic algorithms and neural 
networks. Many of the controllers proposed in the literature have some provisions for 
thermal comfort and almost all have the reduction of energy consumption as objective 
function.  
Starting with fuzzy systems, (Hamdi & Lachiver, 1998) designed a controller consisting 
of two separate fuzzy modules, one to determine the comfort zone and the other to 
provide the actual control. In (Salgado et al., 1997) fuzzy on/off and fuzzy-PID 
controllers where proposed with improved performance over their non-fuzzy 
counterparts. A PMV-based fuzzy controller was chosen by (Dounis & Manolakis, 2001) 
while (Kolokotsa et al. 2001) presented a family of fuzzy controllers that regulate also 
air quality and visual comfort. In (Alcala et al., 2005) the use of weighted linguistic 
fuzzy rule sets was proposed for controlling heating, cooling and ventilation systems. A 
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review of artificial intelligence in buildings with a focus on fuzzy systems is assessed by 
(Kolokotsa, 2006). 
Genetic algorithms have been used to optimize the parameters of control systems in (Huang 
& Lam, 1997) as well as in (Kolokotsa et al., 2002). Similarly (Egilegor et al., 1997) used 
neural networks to adapt the parameters of their fuzzy-PI controller. 
Neural networks have also been used independently for control as in the case of (Karatasou 
et al., 2006) or cooperatively with fuzzy systems as in (Yamada et al., 1999). 
Some other approaches include the neurobat project by (Morel et al., 2001) for predictive 
control, empirical models used in (Yao et al, 2004) and decision support systems using rule 
sets proposed by (Doukas et al., 2007). 

4. Designing a reinforcement learning controller 

Despite the fact that a BEMS controller is also responsible for the artificial lighting, it is 
possible to delegate the lighting control to a separate slave controller, under the assumption 
that the two controllers are independent. This is because the output of the controller 
depends exclusively on the light conditions inside the building and that output only has an 
almost negligible effect on the thermal environment. As a result the state-action 
dimensionality is kept low and the controller can learn faster. 
The choice of the learning algorithm is based on several factors. Since the state space is 
continuous and only a relatively small number of discrete actions are available, algorithms 
based on function approximation are particularly suitable. The authors have used with 
success the recursive least-squares (RLS-TD) algorithm proposed by (Xu et al., 2002) and 
presented in Fig. 1. Nevertheless other approaches are also available. 
 A very important aspect of the design of a controller that is based on reinforcement learning 
is the definition of a reward function. In the case of building environmental control, the 
reward can be based on more than one factors. To make the quantities comparable it is 
prudent to scale everything, so that they take values in the same range - usually [0,1]. 
The energy consumption can be scaled using the ratio of the current consumption that 
includes the heating, air conditioning and ventilation, to the maximum possible 
consumption. For the thermal comfort the PPD index can be chosen, since it is already in the 
desired range. Care should be taken to use the PPD only in the cases where it accurately 
models the reality, according with the guidelines of the ISO standard. Finally in order to 
create the indoor air quality index based on the CO2 concentration, it is possible to use an 
appropriately chosen sigmoid function of the following form: 

 f(x) = 1/(1+exp(-αx+β)) (5) 

The constant parameters α, β for the sigmoid function are chosen empirically based on the 
fact that for CO2 concentrations close to the average outdoor concentrations, the index 
should take near zero values. Similarly double the average outdoor concentration should 
yield an index close to 1.  
Since all the rewards are in the same range with zero being the best value and one the worst, 
it is possible to create a simple reward function based on the weighted average of all the 
indexes: 

 r = -(w1 renergy + w2 rcomfort + w3 rair_quality) (6) 
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where the wi are weights chosen empirically and the minus sign is because learning tries to 
maximize the reward. 
Using the sigmoid function described above it is also possible to scale the inputs to the 
controller to the same range. This approach can help with simplifying the coding scheme 
that precedes the feature vector generation. Besides the usual inputs (temperatures, CO2 
concentrations, etc.) an additional input was given to the controller regarding the time of the 
year and the time of the day. Although this choice increases the dimensionality of the state 
space, it gives the controller sufficient information to anticipate the changes in the outdoor 
environment and choose better actions. 
The learning parameters are chosen based primarily on experience and trial and error. 
Special care should be taken in the choice of the decay and discount factors. This is because 
their effect depends also on the timestep chosen. As an example for a timestep of 10 minutes 
a decay factor of 0.5-0.6 should be used so that the eligibility trace reduces significantly after 
30-40 minutes. If the timestep is lowered to 5 minutes, then the decay factor should be 
increased to 0.7-0.8 to get the same effect and comparable results.  
 

For a given set of basis functions φ(x) 
Initialization: 
 Initialize weight vector Wt randomly 
 Variance matrix Po = I 
 Eligibility traces zo = 0 
Loop: 
 For current state xt and chosen action at, observe new state xt+1 and reward rt 
 Kt+1 = Ptzt / (1+(φΤ(xt) - γ φΤ(xt+1)) Ptzt ) 
 Wt+1 = Wt + Kt+1(rt - (φΤ(xt) - γ φΤ(xt+1))Wt) 
 Pt+1 = Pt – Kt+1(φΤ(xt) - γ φΤ(xt+1))Pt 
 zt+1 = γλzt + φ(xt) 

 

Fig. 1. RLS-TD(λ) algorithm from (Xu et al., 2002) 

5. Case study and sample results 

As an example the case study of a simulated simple building will be investigated. The 
building is comprised of a single 35m2 room, with one window to the north (1m2) and one to 
the west (1m2). All the exterior walls are insulated concrete with a total thickness of 22.5cm. 
The sensor information available is the indoor and outdoor temperatures, the current PPD 
and the date and time. All these variables are used as the state input to the controller with 
the exception of the PPD which is used only in determining the reward function. 
The inputs where scaled using sigmoid functions and then encoded using radial basis 
functions, to create the feature vector. 
The environmental control equipment is composed of a heat pump that has a cooling and 
heating mode and 3 levels for each mode (low, medium, high) with specifications similar to 
modern AC inverter units and a ventilation unit that has a low and high setting. A window 
actuator is also available that can open or close the windows. As a result, all the possible 
combinations give a total of 42 different actions. 
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The reward function is given by equation 7, where the weights were chosen after trial and 
error to fairly balance the importance of energy conservation and thermal comfort. 

 r = -(0.4 renergy + 0.6 rcomfort) (7) 

The decay chosen was 0.5 and the discount factor was 0.85, nevertheless it should be noted 
that small perturbations around those values did not significantly alter the performance of 
the controller. The ε parameter was chosen to be 0.05 for the first two years and 0 
afterwards. 
The results of the first 5 years of simulation are summarized in Table 1, along with 
comparative results from a single year simulation of an on/off and a fuzzy-PD controller. It 
should be noted that the parameters of the fuzzy-PD were chosen empirically and where not 
optimized with training data. 
 

 Reinforcement Learning Fuzzy-PD On/off 

Year 1 2 3 4 5 5 5 

Energy 19.47% 17.16% 15.82% 12.73% 12.78% 11.17% 12.89% 

Avg. PPD 21.1% 15.3% 12.9% 13.7% 13.6% 15.8% 14.44% 

Max PPD 100% 79.8% 65.7% 58.3% 56.4% 60.3% 62.2% 

Table 1. Results from 5 years of simulated building response to the reinforcement learning 
controller. The energy index is given as the ratio of the integrated power consumption to the 
maximum possible consumption in the same period.  
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Fig. 2. A plot of cooling/heating controller signal after 4 years of simulated training (1 in 10 
points are shown for better clarity). 

In Fig. 2 the control signal for the heat pump is presented. It can be observed that the 
controller does not make significant errors and rarely chooses to use the heat pump at the 
high settings. Nevertheless the fact remains that the controller is still learning and its 
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behavior still hasn’t converged. Similarly Fig. 3 shows the PMV and PPD indexes in the 
building for the same period. Here it is more evident that the controller is still learning to 
maintain an acceptable PPD level throughout the simulated year. Nevertheless it is also 
obvious that it is able to keep the PPD under 25% more than 96% of the time. It should be 
noted that the PPD cannot drop below 5% by definition. 
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Fig. 3. The PMV and PPD indexes as a function of time, after 4 years of simulated time. 
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The results presented above show that the reinforcement learning controller within 4 
years of simulated time has achieved performance comparable if not better than other 
controllers. Nevertheless even after the 4 years the controller is still changing its policy 
and further improvements are to be expected by more training, optimization of the 
training parameters and more descriptive feature vectors. 
The advantage that this controller has over the other controllers is that it is possible to 
continually adapt the weight vector, thus allowing it to follow gradual changes in the 
behavior of a building. These changes can stem from equipment aging, leakages or 
changes in the climatic patterns in the area. On the other hand since in a real building 
suboptimal action selection is usually not permitted, exploration during the operation 
of the controller should be avoided. As a result it is necessary to exhaustively train the 
controller beforehand in a similar simulation environment. 

6. Future research opportunities 

This chapter has demonstrated the utility of reinforcement learning in the development 
of controllers for BEMS. It is also evident that the potential benefits both in terms of 
energy conservation as well as in terms of comfort are significant. Nevertheless the 
results presented above and earlier in (Dalamagkidis et al, 2007) signify that there is 
still room for improvements. Besides better fine-tuning of the parameters and further 
training, the authors would like to propose some other ideas for future work. 
On the first order of business is the development of a better reward assignment 
algorithm. Although only hinted at in previous sections, the reward mechanism 
described in this chapter does not represent the real phenomenon with accuracy. A 
separation of the energy consumption related reward from the rest is suggested. This is 
because any control action is associated with a very specific energy consumption that 
occurs only while this control action is in effect. On the other hand the impact of that 
control action on the other comfort related factors lingers for several minutes after that 
action has ceased to occur. 
As an example the effect of the heat pump control on the indoor temperature is 
presented in Fig. 4. Although most of the effect on the temperature occurs within the 
time that the control action was active, there is significant after-effect, that lasts almost 
for 40 minutes after that control action ceased. The same is true for the indoor air 
quality index which represents a more complicated case since it depends on the rate of 
air exchanges and thus depends exclusively on the window and ventilator actions. 
For the case study presented earlier, it was decided to represent the complete reward as 
a simple weighted average of the energy and thermal comfort indexes and a decay 
factor was chosen that reduces the weight of the reward after 30-40 minutes. The 
suggested alternative solution is an n-step backup that waits until the real reward is 
available, with the known disadvantages presented by (Sutton & Barto, 1998). A 
different scheme would involve a more complicated value-updating step, which would 
entail an immediate update based on the energy performance and eligibility traces 
(perhaps even separate) for the other indexes. This mixture of TD(0) and TD(λ) of 
course needs to be evaluated for its convergence properties. The authors expect that an 
improved reward assignment algorithm could benefit both the final performance of the 
controller as well as the convergence speed. 
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Fig. 4. A plot of the absolute temperature deviation after a control command that begun at 
5:00 and lasted 20 minutes, with respect to no control. The two filled lines represent cooling 
for two different buildings and the dashed lines heating. 

An additional method to increase the learning speed is to have two different speeds during 
learning. The first speed would correspond to the value function update speed which could 
be as frequent as every 2 or 3 minutes, while the second speed would correspond to the 
frequency with which a new action is selected and should be around 15 to 20 minutes. This 
change would require using different learning algorithms since now the controller would be 
operating off-policy. Additionally the learning parameters would need to be adjusted to 
correspond to the new temporal characteristics of the learning process. 
Although the scientific literature of the last couple of decades is full with proposals of classic 
and intelligent controllers that claim significant savings in terms of energy and superior 
performance in terms of comfort, the technology mostly used today is still the basic 
thermostat. Besides being a simple and tried technology, the thermostat also has two 
features that help it retain its position. The first is that it requires only a temperature sensor 
that is usually incorporated in the device and the second is that it allows people to directly 
control their environment thus contributing to their feeling of comfort.   
It is therefore the authors’ opinion that in order for a modern controller to be successful and 
replace the installed base of controllers, it needs the aforementioned characteristics in some 
degree. Reducing the sensor demand of the controller can be difficult. Nonetheless it is a 
straightforward process. On the other hand finding ways for the occupants to interact with 
the controller is far more complicated. In (Dalamagkidis et al, 2007) an additional module 
was proposed that is trained by occupant input whenever the latter is available. This 
module is then used as another component in determining the reward function. Another 
idea is for the occupants to be able to override to a degree some of the controller’s actions 
and the controller learning from that experience. 
Regardless of the number of papers proposing new and more efficient technologies for 
building environmental control, the fact remains that the penetration of these technologies 
in the market is minimal if any. To open the doors for the introduction of more advanced 
controllers in BEMS, more work should be done on controllers that can efficiently replace 
what is already installed with little to no additional requirements.  
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1. Introduction 

Learning is the nature for human being. For example, a school-student learns a subject by 
doing exercise and home-work. Then, a school-teacher grades the school-student’s works. 
From this student and teacher interaction, the ability of the student mastering the subject is a 
feedback that the previous teaching method is successful or failure. As a result, the teacher 
will change the teaching method to improve the student ability for mastering the subject. 
This is a picture that the reinforcement learning (RL) agent learns the environment.  
Process control mainly focuses on controlling variable such as pressure, level, flow, 
temperature, pH, level in the process industries. However, the methodologies and principles 
are the same as in all control fields. The early successful application control strategy in 
process control is in evolution of the PID controller and Ziegler-Nichols tuning method 
(Ziegler and Nichols, 1942). Till nowadays, 95% of the controllers implemented in the 
process industries are PID-type (Chidambaram and See, 2002). However, as (i) the industrial 
demands (ii) the computational capabilities of controllers and (iii) complexity of systems 
under control increase, so the challenge is to implement advanced control algorithms.   
There have been commercial successes of the intelligent control methods, but the 
dominating controller in process industries is still by far the PID-controller (Chidambaram 
and See, 2002). This stands to the fact that a simple and general purpose automatic controller 
(for example PID) is demanded in process industries. Therefore, designing advanced 
controllers are to address the industrial user demand. This is the reason that a learning 
method called model-free learning control (MFLC) is introduced. The MFLC algorithm is 
based on a well known Q-learning algorithm (Watkins, 1989).  
Successful applications of RL are well documented in the recent literature, including 
learning to control mobile robots (Bucak and Zohdy, 2001), sustained inverted flight on an 
autonomous helicopter (Ng et al., 2004), and learning to minimize average wait time in 
elevators (Crites and Barto, 1996). However, only few articles can be found regarding RL 
applications for process control: multi-step actions based on RL was fruitfully applied for 
thermostat control (Schoknecht and Riedmiller, 2003), and one of the authors successfully 
applied RL for modeling for optimization in bath reactors by making the most effective use 
of cumulative data and an approximate model (Martinez, 2000). The reason for the 
difference between robotics and process control is possibly the nature of the control task in 
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each field: typically in robotics the degrees of freedom for control are significantly high 
whereas in process plants are much more constrained. However with the shift from 
regulation to optimization and supervisory control the area is entering into a set of problems 
where RL can become the alternative choice.  
This chapter discusses novel, yet simple to implement learning system in process control 
based on RL algorithms. As the ability to store and process large amounts of data in 
computer’s memory and processor increases by time, this ability has made feasible the use 
of learning methods in systems for business, scientific and engineering, and medical 
decision-making. The proposed MFLC is mainly for nonlinear, complex, and time-varying 
chemical processes for which the development of a first-principles model is too costly in 
terms of time and money. The state-action space is defined using a symbolic representation 
and control incremental constraints. The state space is based on length errors of the system 
regarding a goal state. In this chapter, the MFLC approach is discussed for process control.  
This proposed technique is then tested on two laboratory plants: pH control and oxidation 
plants. Industrial pH control has received considerable attentions in literature (see Kalafatis 
et al., 2005 and references therein). However, as the inherent characteristics (time-varying, 
nonlinear and buffer capacity) of pH process dynamic are extremely difficult to model and 
predict in wastewater treatment plant, then a general purpose control strategy is a very 
challenging problem. As result most wastewater treatment plant uses on-off pH control.  
The issues are more complicated when oxidation reduction potential (ORP) is used to 
guarantee on-specification discharge by regulating the residence time. The ORP sensor 
measures the presence oxidizer or reducer in the solution and not the concentration of a 
given chemical species (McPherson, 1993). Many researchers find some processes are near 
optimal in certain ORP values (Peng et al., 2002; Baeza et al., 2000; Kwan, 2005). Clearly, it is 
a challenge to use ORP sensor for controlling the load to a wastewater oxidation process.  
This chapter is organized as follows: a MFLC algorithm for designing controller for chemical 
process control is given in section 2. In section 3, the application for a simulated buffer tank 
control is discussed. Laboratory online applications are discussed in section 4 for pH and 
ORP control processes.  

2. MFLC algorithms 

From the different proposed RL algorithms (Sutton and Barto, 1998), this paper proposes a 
Model-Free Learning Control (MFLC) where the basic Q-learning algorithm is combined 
with symbolic states which are frequently visited to address process control problems 
related to wastewater oxidation plants. The resulting value function, which is a mapping of 
history of visited states and executed actions to cumulative rewards, gives a clue for the 
learning controller to select an action in a given state. Through this function, the agent takes 
into account that taking an action in the current state will provide a given cumulative future 
reward derived from the control task at hand.  This predicted value is used by the controller 
policy for selecting an action from those available in each visited symbolic state. This MFLC 
can be seen in Figure 1. The value of the reinforcement at each time reflects the control task 
objectives (Sutton and Barto, 1998), in process control problem it is proposed to involve 
control energy costs and error tolerance. The “situation” block is used to generate the 
symbolic state from plant readings and control task specification. 
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Fig. 1. MFLC architecture based on Q-Learning 

A central part of RL algorithms is the estimation of the so-called Q-function, which gives the 
benefit of applying action at when the system is in state st. This function is denoted by Q(st, 
at). To learn this Q-function it is necessary to take into account the benefit now and in the 
future: when action at has been selected and applied to the environment, the system moves 
to a new state, st+1, and receives a reinforcement signal, rt+1; The value function for state-
action pairs, Q(st, at), is updated by the basic learning rule: 
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where: 

• 
1+tsA is the set of possible actions in the next symbolic state. 

• The learning rate, 0 ≤ α ≤ 1, is a tuning parameter, that can be used to optimize the speed 
of learning (Although too small learning rates might induce slow learning, while too 
large learning rates might induce oscillations). 

• The discount factor, γ, is used to weight near term reinforcements more heavily than 
distant future reinforcements: If γ is small, the agent learns to behave only for short-
term reward; the closer γ is to 1 the greater the weight assigned to long-term 
reinforcements. 

2.1 MFLC state-action space 

A central issue in Reinforcement Learning algorithms is the definition of the states. In MFLC 
the states are defined based on the control objective and control constraints, as follows: 
In a SISO implementation of the MFLC approach, the control task is defined as the ability to 
achieve and maintain a given process variable inside a specification band r-d and r+d, as 
shown in Figure 2. The width of this band is defined based on the tolerance of the system 
(which depends on measurement noise, disturbances and systems specification) and 
referred to as the goal band, and corresponds to the goal state, where the learning control 
system operates (it is now assumed, without loss of generality, that it is exactly in the 
middle of the working range). 
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Fig. 2. Symbolic states definition in MFLC 

To describe the rest of the symbolic states, it is considered that the process may be in h states 
from the goal state to the maximum positive or negative error of the system, f (Selecting h is 
a trade-off: this number must be large enough to describe all the different behaviours of the 
process, but small enough to reduce learning time and the size of the Q-value matrix). 
If needed, the "length" of each state can be calculated as follows:  
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Thus, the positive bound parameter can be defined as: 
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(For negative errors, the bound parameter is trivial by changing signs). 
Thus, the vector of symbolic states can be represented as follow: 
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where e is the tracking error. The symbolic current state st, is just: 

 ( )jt gs maxarg=  (5) 

In MFLC, the control signal ut is calculated by varying the previous control signal in a 
magnitude calculated from the difference of the numerical values of the selected optimal 
action, at, with respect to the wait action, aw (action corresponding to maintaining the 
previous control signal). That is, 

 ( )twtt aakuu −+= −1  (6) 

This gives a PI-like structure, which simplifies initialization and tuning for the end user (k is 
the tuning parameter defining the aggresiviness of the controller). At each state there is only 
a finite set of possible actions (see Figure 3). These actions are selected based on the systems 
description: in particular from the limitations on the minimum and maximum variations of 
the control signal, as follows: 
Let the incremental control be bounded as: 

 .uuu Δ≤Δ≤Δ  (7) 
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Fig. 3. Definition of the action set 

The number of total actions needed to satisfy the input constraints can be calculated as 
follows: 
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From (7) and (8), the value corresponding to the wait action aw, can be calculated as follows: 
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As expected, not all the actions may be available at each state: only a constrained set of the 
actions is available depending of the symbolic state, e.g. if the error is very small, the only 
actions available are those that correct a small error. 
The number of action in each state is 
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where ρ is a parameter that gives the degree of overlapping with neighboring states 

(selected such that s
aN is integer. Then, the available actions for every state ranges from 

j
pa to j

ba (except in the goal state, where only the wait action can be selected). The idea is 

presented in Figure 3. Those available actions can be calculated as  
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where  



 
Reinforcement Learning: Theory and Applications 

 

300 

 1
1

−
−
−

=
h

NhN
v a

h

a  (12) 

So far, the SISO implementation has been presented. For MIMO system the simplest 
methodology would be used several learning controllers that interact between them.  
Next section discusses the application of the proposed MFLC for a buffer tank control. The 
application is to maintain smoothly the out flow of the tank and to keep the level of the tank 
to avoid overflow and empty.  

3. Buffer tank control 

Buffer tanks are very common in the process industry to alleviate the impact downstream of 
disturbances in temperature, concentration, and flow rate in important process streams 
(Faanes and Skogestad, 2003). In industry, buffer tanks are known under many different 
names, such as intermediate storage vessels, hold up tanks, surge drums, accumulators, 
inventories, mixing tanks, continuous stirred tank reactors (CSTR), and neutralization 
vessels. Typically, the buffer tank shown in Figure 4 is subject to significant and 
unsystematic variations in its inflow rate. For example, if the downstream is fed to a heater, 
fast changes in its feed give temperature variations which affect the rest of the process. Also, 
a buffer tank is often installed to avoid propagation of disturbances from batch operations to 
continuous processes. Furthermore, a buffer tank is also installed between operation units to 
allow a more flexible operation. Therefore, the task of controlling a buffer tank is such that 
the outflow rate must be changed smoothly despite significant variations in its incoming 
flow rate. To avoid overflow and empty, the level in the tank needs to be constantly varied 
within its operation minimum and maximum limits. However, the tank has a limited 
capacity that should be used appropriately. Thus, keeping the tank level in limitation is also 
an important component of the control task to be learnt. 
These tanks are usually used as examples to check novel control algorithms, as they are 
simple to understand and easy to reproduce. For example, a neuro-fuzzy controller is 
proposed by Tani et al. (1996) for controlling a buffer tank using a predictive inductive 
model (neural network) and fuzzy decision rules. 

 

Fig. 4. Buffer tank 

A very simple approach to control a buffer tanks using the proposed MFLC is now 
presented. For designing controller using MFLC, the designer should define how big the Q-
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table and reward function can be. The learner will interact online with the environment and 
learn providing best actions to fulfil the requirement. Once the learner’s parameters are 
defined, they can be used for other similar processes. 

3.1 Problem definition 
The tank has A=100 cm2 and a level constrain 0<h<50 cm. Clearly, the learning system is 
allowed to variate the level of the tank within its minimum and maximum capacity. Another 
limitation is that the controller can only manipulate the valve opening in the range 

0≤u≤100%. The learning controller must comply these limitations: The agent will be 
punished if it generates an action that causes the system to be outside this limitation.  
The main objective of the proposed MFLC is to bring the outflow inside the goal band; the 
process responses are allowed to ocsillate within the band. Therefore, in the case of the 
buffer tank control, the goal band is selected to outflow within ± 2% error of the desired 
outflow (reference). On the other hand, the system allows the level to vary 60% from the 
head of the tank: The remaining 40% is for safety.  

3.2 Design parameters 

In this example, the goal band is defined as ± 1 l/m from the reference. Let reference, r see 
Figure 2, be 50 l/m and therefore, the parameter d is 1 and f is 5 l/m.  The agent also has 

limitation 0.1≤Δu≤0.3 in the variation of the manipulated variable with regard to the 

previous control signal. The gain controller, k, is introduced to be 1×10-4. By taking ρ = 1.5, 
therefore, there are 600 available actions in every symbolic state. For each available action, 
the controller will receive a positive reward (see equation 13) if the next response is inside 
the goal band. Meanwhile, if the next response is reaching the lower and upper bound 
output constrains, the selected action is punished. If the next state is not in the goal state, the 
selection of the action will also be negatively rewarded.  That is : 
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The discounted factor, γ, is set to 0.9 while the learning rate, α, is set to a value of 0.1. The 

policy for selecting an action is ε-greedy policy, with ε = 0.1. The probability for selecting an 
optimal action from those available in each state is 90%.  

3.3 Simulation results and discussion 

The inflow rate into a simulated buffer tank is introduced as in Figure 5 (a), which is a 
sinusoidal signal with amplitude 20, from an average value of 50 l/m. The level evolution 
can be seen in Figure 5(b). The control signal, which is the opening of the out-flow valve, is 
shown in Figure 5 (c). Clearly, the controller opens the valve widely when the system 
observes that the level of the tank is lower; otherwise, the opening of the valve is reduced 
when the level of the tank is high to maintain outflow as constant as possible. As a result, 
the outflow of the system remains in the defined goal band; as shown in Figure 5 (d). The 
noise observes in outflow is because the agent has finite-discrete action space. Thus, the 
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controller objectives are fulfilled: the controller is capable to learn to avoid abrupt changes in 
the out flow.  
Next section discusses the online laboratory application of the proposed MFLC to control 
pH and oxidation processes.  

 
 

Fig. 5. Incoming and outcoming signal for learning to control buffer tank; (a) inflow signal, 
(b) liquid level in the tank, and (c) output manipulation flow.  

4. Online laboratory assessment  

The proposed algorithm has been tested for a view towards real-world applications in the 
laboratory plants. The first application is for controlling a pH process during wastewater 
treatment, which is known as a representative example of highly nonlinear, time-varying 
and difficult to model process plant, mainly resulting from interactions between many 
different chemical species. Thus, this pH process is very difficult to control using standard 
control techniques. Secondly, the MFLC algorithm is tested to control oxidation processes at 
certain ORP values corresponding to on-specification discharge. 

4.1 pH control 
pH control in neutralization process is a ubiquitous problem encountered many process 
control industry (see Kalafatis et al., 2005 and references therein). For example, the pH value 
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is controlled in chemical processes such as fermentation, precipitation, oxidation, flotation 
and solvent extraction process. Also, control of pH in food and beverage production (such 
as in bread, liquor, beer, soy sauce, cheese, and milk production) is an important issue 
because the enzymatic reactions are affected by the pH value of the process and each has its 
an optimum pH which is critical to the yield. Other parameters involved in controlling pH 
process are chemical equilibrium, kinetic, thermodynamic and mixing problems. 
Considering all these influencing factors in controller design is an overwhelming task. On 
the other hand, the process buffer capacity varies with time, which is unknown and 
dramatically changes process gain. This can be understood as, for example, if either the 
concentration in the inlet flow or the composition of the feed changes, the shape of the 
titration curve will be drastically altered. This means that the process nonlinearity becomes 
time dependent and the system moves among several titration curves. Other characteristics 
include the dissociation of weak acids and bases or their salts involved in the solution 
determine the number of hydrogen ions. All weak species have the property, called 
buffering, to resist change in pH. A weak acid, for example, is not completely dissociated, so 
it can absorb hydrogen ion by converting them to undissociated acid molecules. Also, due to 
the nonlinear dependence of the pH value on the amount of titrated reactant the process will 
be inherently nonlinear. Therefore, it is difficult to develop a sound mathematical model of 
the pH process for designing a proper controller. 
Many researchers proposed control strategies based on the titration curve (see Wright and 
Kravaris, 1991 and references therein). Wiener models are used for controller design by 
Kalafatis et al. (2005). These types of controllers are difficult to implement due to the 
complexity of the resulting control structures. Also, the designed controller is not a general 
purpose one, namely as the acid-base system change, the controller needs to be redesigned.   
Intelligent controllers have been proposed by some researchers as alternative strategies, 
applying fuzzy control, neural networks or different combination of intelligent and model-
based methods (Edgar and Postlethwaite, 2000; Krishnapura and Jutan, 2000; Mwembeshi et 
al., 2004; Fuente et al., 2006). As discussed in these cited references, tight and robust pH 
control are often difficult to achieve due to the inherent uncertain, nonlinear and time 
varying characteristics of pH neutralization processes. Also, the controller needs a huge 
number training examples in order to guarantee stability and performance.    
In this section, the MFLC design strategy is assessed experimentally. The experimental setup 
consists of a CSTR (Figure 6) where a process stream (sodium acetate) is titrated with a 
solution of hydrochloric acid (HCl) to maintain at a certain pH value outflow stream. The 
solution of process stream is prepared for various concentration levels. However, the 
titrating stream is prepared using 1% concentration. To have the desirable outflow pH level, 
the controller manipulates titrating flow into the CSTR and it is assumed that the mixing in 
the tank is homogeneous; therefore, the concentration in the effluent stream is similar to the 
concentration in the reactor.  
The control variable ut is the flowrate of the titrating stream (normalized to the maximum 
value), which is applied using a peristaltic pump (ISMATEC MS-1 REGLO/6-160).  
The output variable, yt, is the logarithmic hydrogen ion concentration (pH) in the reactor. 
The pH value in the mixture is measured using an Ag-AgCl electrode (Crison 52-00) and 
transmitted using a pH-meter (Kent EIL9143). The electrode dynamic response presents 
appreciable and asymmetric inertia. The pH measured and the control signals are 
transmitted through an A/D interface (ComputerBoards CIO-AD16, 0-5V). The plant is 
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controlled and monitored with a standard PC, using Matlab and the Real-Time Toolbox for 
online control.  

 

 

Fig. 6. Typical pH neutralization process plant.  

The pH plant shown in Figure 6 is a typical laboratory set-up existing in the Department of 
Systems Engineering, University of Valladolid. The neutralization reactor is to overflow, 
hence the volume of liquid in the tank is constant (1 litter).      
a) Parameters  
The control objective is to bring the pH being inside a goal band with d=0.1, selected based 
on the level of measurement noise and the desired operating range of pH. The controller 

gain, k, is selected to be 2×10-5 and incremental control is defined as -4.2 ×10-4<Δu<4.2×10-4. 
There are 5 available states for negative or positive error. Therefore, there are 11 states. 
Every state has 5 available actions, except in goal state which only requires the wait action. 
Action 22 is the wait action.   

In all the experiments the discounted factor, γ, is set to a value of 0.98 and the learning rate, 

α, is set 0.1. The Q-value matrix is initialized using zero entries. At every time step, the 

selected action is based on an ε-greedy policy, with ε=0.1, to leave enough room for the 
learning controller to explore state and actions. Rewards are defined using the simple 
assignment function 
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b) Online Experimental Results and Discussion 
Many experiments were carried out in the laboratory plant with different conditions, and 
with small variations in the algorithms and tuning parameters. For most cases, the 
application of the proposed MFLC controller to the laboratory plant showed good 



 
Model-Free Learning Control of Chemical Processes 

 

305 

responses. Some responses of the plant for some changes in setpoint, compared with the 
responses for a PID in similar conditions can be seen in Figure 7 for the sodium acetate – 
hydrochloride acid system. The PID controller was tuned based on operating conditions at 
pH=5, where correction and proportional gains are chosen to be 0.01 and 0.001, respectively, 
whereas derivative and integral times are selected to be 1. 
The comparison shows that the responses of the proposed MFLC algorithm settle in the 
reference faster than the PID controller, when a similar time is spent for the parameters: PID 
gives higher peaks and some oscillations due to variations from the nominal conditions.  
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Fig. 7. Output responses of the plant for NaCH3COO-HCl. 
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Fig. 8. Control signals for NaCH3COO-HCl. 
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Also the MFLC controller manipulates the actuator in a smoother than the one given by the 
PID controller (see Figure 8). Since MFLC allows a tolerance error of the process whenever 
the pH is within the control band, the control signal is very smooth when the pH is closer or 
within the control band, even if some exploration is carried out. The detailed discussion of 
the application MFLC to pH control is given in Syafiie et al. (2007a).  

4.2 ORP control in Fenton’s oxidation processes 
Nowadays a central issue in the treatment of industrial wastewaters is the elimination of 
certain organic pollutants, which are very harmful to health even in small concentrations. 
Some of them are phenols, which are usually efficiently and economically eliminated 
through oxidation using Fenton’s reagent. This Fenton’s reagent refers to iron-mediated 
hydroxyl (●OH) production by hydrogen peroxide (H2O2).  
The main issue is maintaining adequate values of hydroxil concentrations despite the huge 
number of chemical reactions involved (Laat and Gallard, 1999; Kwan, 2003). Unfortunately, 
it is very difficult to develop a sound mathematical model of the Fenton’s oxidation 
processes for control purposes. Some reactions are slow rate and others are relative fast, but 
refractory intermediate act as a bottleneck for the complete oxidation. Also, as the process is 
used to decompose organic compounds, many parallel reactions are involved. For more 
detailed discussion, see Syafiie et al. (2007b). 
Moreover, even if a detailed mathematical model were available (possible involving dozens 
of chemical reactions), it would be useless for real-time control, as it is not possible to 

measure in real-time the concentration of specific components (OH•, Fe3+, Fe2+, etc): the only 
available sensors are pH (to measure H+ concentration) and ORP sensors to estimate the 
oxidizers activity (where ORP stands for oxidation-reduction potential). When using ORP 
for process control, it means that it is the present of the oxidizer or reducer that is being 
monitored, and not the chemical it is reacting with (McPherson, 1993). Thus, non-model 
based algorithms based on Reinforcement Learning ideas, such as the proposed MFLC 
algorithm would be very adequate to control this process. 
A schematic of the experimental setup used to test the proposed algorithm is shown in 
Figure 9: For elimination of phenols, it is known that the oxidation reaction for phenol 
breakdown operates optimally on 550 to 600 mV of ORP value (Kwan, 2003), so the setpoint 
of the first MFLC agent is set to 570mV. It is also known that Fenton's reaction must be 
conducted on the range of temperatures between 80 to 90 oC, which is regulated using a 
simple thermostat, to represent industrial practice. Also, level in the buffer tank is not 
controlled to represent industrial practice, although there are detectors for low and high 
values. The reaction occurs on pH values between 3 and 5, so in the pretreatment the 
wastewater is titrated with hydrochloride acid. 
The final part of the process is based on regulating pH to neutralize the drain (It would be 
dangerous for environment if the drain is released without neutralizing the pH). Therefore,. 
This neutralization is based on titrating the acidy stream (drain) with the base titrating flow 
(NaOH) to have pH around 7. Controlling pH of this strong acid-strong base system is 
known very difficult because the process is extremely nonlinear around the neutral pH, so it 
will be controlled using a second MFLC agent, designed following the methodology shown 
in previous section, coordinating with the first one.  
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Fig. 9. Wastewater oxidation at a laboratory pilot plant 

In summary, the first agent in order to handle the oxidation process receives reading of the 
process variables: apart from ORP value in buffer tank, temperature of inlet stream, and 
level and temperature in buffer tank. From this information, the agent learns to perform 
actions to control the oxidation process using the MFLC algorithm. For start-up of the 
process, first the wastewater is pretreated by heating and pH regulation. Once the 
temperature of the process stream reaches 80ºC, the first agent starts the process (turn on the 
pump 2) and starts manipulating the Fenton’s reagent coming into the buffer tank (pump 3) 
to learn to handle the oxidation process.  
a) Parameters  
In this section, the selection of parameters for the MFLC agent that controls the oxidation 
process is discussed. The values of discounted factor γ=0.98 and learning rate α=0.1 from the 
previous study for pH control are maintain as the dynamics are similar. An ε-greedy policy 
is used, with parameter ε=0.1, to leave space for the agent to explore. To allow for sensor 
noise, the process goal is defined to be that the controller tolerates only d=5mV deviations 
from the setpoint r. In normal operation, states are defined for at most 100 mVolt for 

positive and negative error: thus, there are 41 states. The gain, k, is chosen to be 1×10-5: Thus, 
every state has 20 available actions. The reinforcement signal is simple defined to be: 
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The second agent, that controls the neutralization process, is the same as in the previous 

section, except that the controller gain is selected smaller, k = 5×10-7, because the process has 

higher gain.  

b) Online Experimental Results and Discussion 
Different experiments were carried out in the laboratory plant using the proposed MFLC 

agent. Some experiments are now shown for 1000 ppm phenol concentration, 10% FeSO4, 

1% NaOH, 1% HCl and 30% H2O2 

 

 

(a) (b) 

Fig. 10. Oxidation control; (a) measured output, and (b) control signal 

One typical response of the phenol decomposition process, controlled by the proposed 

MFLC agent, after learning, can be seen in Figure 10 (a): it can be seen that the MFLC 

controller maintains the oxidation process around the desired ORP level. This is carried out 

despite the complex dynamics of the system; During the first 1000 seconds, the process 

responses was reaching fast the reference, but then the process responses went down (until 

around 3000 seconds), because of the sequence of slow reactions that consumed both 

oxidizer and catalyst. After the balancing reaction are reached, then the responses of the 

process slowly returns to the goal band by increasing the control signal (see Figure 10, b). 

Thus, the responses of the process are most of time being on the optimal range of the 

reaction (550 to 600 mV), so phenols are correctly oxidized. 

At the same time, the second agent manages the pH of the process on neutral range before it 

is discharged to environment. The responses of the neutralization process are plotted on 

Figure 11 (a). The second agents learns to manipulate the process to maintain it within the 

goal band, although there are some oscillations around the setpoint, as this is known to be a 

highly nonlinear process and the inlet composition changes with time, depending on the 

reactions in the buffer tank. The control signals (Figure 11, b) show that the agent actively 

manipulates the control signal when the process is outside the goal band.  
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(a) (b) 

Fig. 11. pH process control; (a) measured output, and (b) control signal 

5. Conclusion 

This chapter has presented a proposal to apply RL algorithms for process control problems. 
This proposal (called MFLC algorithm) is based on the well known Q-learning algorithm, 
using an specific definition of symbolic states based on specifying tolerances on the outputs 
and constraints on the control and its variation. Also, the propose approach uses few and 
simple tuning parameters to simplify the presentation of these techniques to plant operators. 
The technique has been presented on a simple example (buffer tank) to present the ideas 
behind the algorithm (in particular, the parameter selection issue) and then some 
experimental results in wastewater control problems have been presented to show the 
applicability of the proposed ideas. It is shown that the control objectives are fulfilled by the 
proposed MFLC agents, with smooth manipulated variables. Thus, the proposed MFLC 
technique is promising for increasing the degree and type of automation that can be 
effectively used in process control. 
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1. Introduction  

Rotary kiln is a kind of large scale sintering device widely used in metallurgical, cement, 
refractory materials, chemical and environment protection industries. Its complicated 
working mechanism includes physical change and chemical reaction of material, procedure 
of combustion, thermal transmission among gaseous fluid, solid material fluid and the liner. 
The automation problem of such processes remains unsolved because of the following 
inherent complexities. A rotary kiln is a typical distributed parameter system with 
correlative temperature distribution of gaseous phase and solid phase along its axis 
direction. Limited by device rotation and technical design, sensors and actuators can be 
installed only at the kiln head and kiln tail, and lumped parameter control strategies are 
employed to deal with distributed parameter problems.  Thus the rotary kiln process is a 
multivariable nonlinear system with strong coupling, large lag and uncertain disturbances. 
Moreover, the key controlled variable of burning zone temperature is measured with 
serious disturbances. Most of rotary kilns are still under manual control with human 
operator observing the burning status. As a result, the product quality is hard to be kept 
consistent and energy consumption remains high, kiln liner is easy to wear out, the kiln 
running rate and yield is low. 
Although several advanced control strategies including fuzzy control (Holmblad & 
Østergaard, 1995) , intelligent control (Jarvensivu et al., 2001a; Jarvensivu et al., 2001b) and 
predictive control (Zanovello & Budman, 1999) have been introduced into process control of 
rotary kiln, all these researches focused on stabilizing some key controlled variables but are 
valid only for  cases that boundary conditions do not change frequently. As a matter of fact, 
the boundary conditions of a rotary kiln often change. For example, the material load, water 
content and components of the raw material slurry vary frequently and severely. Moreover, 
the offline analysis data of components of raw material slurry reach the operator with large 
time delay. Thus conventional control strategy cannot reach automatic control and keep the 
product quality consistent. To deal with the complexity of operation conditions, the authors 
have proposed an intelligent control system based on human-machine interaction for an 
alumina rotary kiln in (Zhou et al., 2004; Zhou et al., 2006), in which human intervention 
function was design so that, if the operation condition changed largely, the human operator 
observing burning status can intervene the control actions when the system is in the 
automatic control mode to enhance the adaptability of the control system. 
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This chapter develops a supervisory control approach for burning zone temperature based 
on Q-learning, in which the signals of human intervention are viewed as the reinforcement 
learning signals. Section 2 makes brief descriptions of process and supervisory control 
system architecture. Section 3 discusses the detailed methodology of Q-learning-based 
supervisory control approach. The implementation and industrial applications are shown in 
Section 4. Finally, Section 5 draws the conclusion. 

2. Process description and supervisory control system architecture 

The alumina rotary kiln process is described as follows. Raw material slurry is sprayed into 
the rotary kiln from upper end (the kiln tail). At the lower end (the kiln head), the coal 
powders from the coal injector and the primary air from the air blower are mixed into bi-
phase fuel flow, which is sprayed into the kiln head hood and combusts with the secondary 
air, which comes from the cooler. The heated gas was brought to the kiln tail by the induced 
draft fan, while the material moves to the kiln head via the rotation of the kiln and its self 
weight, in counter direction with the gas. After the material passes through the drying zone, 
pre-heating zone, decomposing zone, burning zone and cooling zone in sequence, soluble 
sodium aluminate is generated in the clinker, which is the product of the kiln process. This 
process aims to reach high digesting rate of alumina in the following digestion procedure. 
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Fig. 1.  Schematic diagram of the alumina rotary kiln 

The control problem of quality index of kiln production is how to keep the liter weight of 
clinker being qualified under fluctuated boundary conditions and operating conditions. The 
liter weight of clinker is hard to measure online and cannot be controlled directly. This 
paper employs the following strategy to deal with this problem. Some online measurable 
technologic parameters with closed relations to the final quality index are chosen and 
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controlled into certain ranges governed by technical requirement so that the quality index 
control is realized indirectly. 
In the sintering process, the normal range of sintering temperature Tsinter of raw material 
depends upon components of raw material slurry. Variations of components of raw material 
slurry require corresponding variations of sintering temperature. Inconsistency of real 
sintering temperature range with requirement of raw material will results in over burning  
or under burning, and clinker quality is not satisfactory. Thus we conclude that components 
of raw material slurry and sintering temperature are the main aspects influencing clinker 
quality. Besides, other factors include particle size of raw material and residing time under 
Tsinter. The relationship between desired Tsinter and components of raw material slurry can be 
viewed as a unknown nonlinear function  

 
sin ([ / ],[ / ],[ / ],[ / ])terT f A S N R C S F A=  (1) 

where [A/S] is the alumina silica ratio of raw material slurry, [N/R] is the alkali ratio, [C/S] is 
the calcium silica ratio, [F/A] is the iron alumina ratio. Among them, the alumina silica ratio 
of raw material slurry has the strongest influence on Tsinter, the latter must be enhanced 
along with the enhancement of the former.  
From above analysis, one may conclude that there are two key issues about the control 
problem of quality index of kiln production. One is how to keep the kiln temperature 
distribution satisfing technical requirement under fluctuated boundary conditions and 
operating conditions, i.e. how to keep burning zone temperature, kiln tail temperature and 
residual oxygen content in combustion gas in their technical required ranges. The other is 
how to adjust the setpoint range of burning zone temperature so that the liter weight of 
clinker may be kept qualified under fluctuated boundary conditions and operating 
conditions.  
 
 

 
 
 
Fig. 2.  General structure of the supervisory control system for rotary kiln process 
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This paper has constructed a supervisory control system consisting of a supervisory level 
and a process control level, whose general structure is shown in Fig. 2. The final target of 
this supervisory control system is to keep the production quality index, i.e. the clinker unit 
weight, being acceptable even if the boundary conditions changed. The related process 
control strategies in process control level include, 1) a hybrid intelligent temperature 
controller was designed, which coordinated the coal feeding u1, damper position of the 
induced draft fan u2, and primary air flow u3 to make the burning zone temperature TBZ, the 
kiln tail temperature TBE, and the residual oxygen content in combustion gas OX satisfy 
technical requirements; TBZ is indirectly measured by an infrared pyrometer located at kiln 
head hood, and TBE is obtained through a thermocouple; 2) individual PI controllers were 
assigned to basic loops of primary air flow, primary air pressure and flow rate of raw 
material slurry; and 3) a human-machine interaction(HMI) mechanism was designed so that 
certain human interventions to coal feeding control from experienced operator can be 
introduced in the mode of automatic control when the operating conditions changed 
significantly. The aforementioned process control strategies were depicted in our previous 
study (Zhou et al., 2004).  
The main part of the supervisory level is an intelligent setting model of TBZ, which adjusts 
the setpoint range of TBZ according to the variations of components of raw material slurry. 
The setpoints of TBE, OX, primary air pressure, flow rate of raw material slurry and the kiln 
rotary speed n are given by the operators according to production scheduling and 
production experiences. 
The intelligent setting model of burning zone temperature consists of a pre-setting model of 
burning zone temperature, a compensation model and a setting selector mechanism. The 
pre-setting model is to give the upper and lower limits of setpoint range of burning zone 

temperature, denoted by 0

_

HI

BZ SPT  and 0

_

LO

BZ SPT , calculating from the offline analysis data of 

components of raw material slurry. The fuzzy clustering analysis combined with case-based 
inference learning is employed to build up the pre-setting model of burning zone 
temperature. The core of the pre-setting model is a case base containing different upper and 
lower limits of setpoint range of burning zone temperature corresponding to different 
components of raw material slurry. Such case base is established through fuzzy clustering 
based data mining from vast process data samples under various components of raw 
material slurry. Details are not described in this paper. 
As a matter of fact, the main problem we are facing is that the components of raw material 
slurry often change due to unstable raw material mixing process and the offline analysis 
data reach to the operator with large time delay so that the operator or the pre-setting model 
cannot directly adjust the setpoint of TBZ duly. As a result, a single intelligent temperature 
controller and a single pre-setting model of TBZ cannot maintain satisfactory performance. In 
such a case, a human operator usually rectifies the output of the temperature controller, i.e. 
the coal feeding, based on the experience of observing burning status through the HMI 
embedded in the control system. Such interventions can adapt the variation of operating 
conditions to a certain degree to sustain the quality of the product.  
To deal with such a problem, a compensation model and a setting selector are appended. 
When the offline analysis data of components of raw material slurry are known and input 
into the system, i.e. the lth sampled time, the setting selector mechanism triggers the pre-
setting model to calculated the proper setpoint range of TBZ. When the components of raw 
material slurry are unknown, the compensation model is triggered to calculated the proper 
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upper and lower limits of setpoint range of the burning zone temperature, denoted by 
1

_

HI

BZ SPT  and 1

_

LO

BZ SPT  respectively. In the following section, a Q-learning strategy is employed 

to construct compensation model to learn the self-adjusting knowledge about the setpoint of 
TBZ through online self-learning from the human intervention signals. 

3. Setpoint adjustment approach based on Q-learning 

3.1 Bases of Q-learning 

Reinforcement learning is learning with a critic instead of a teacher. The only feedback 
provided by the critic is a scalar signal r called reinforcement, which can be regarded as a 
reward or a punishment. Reinforcement learning performs an online search to find an 
optimal decision policy in multi-stage decision problems. 
Q-learning (Watkins & Dayan, 1992) is a reinforcement learning method where the learner 
builds incrementally a Q-function which attempts to estimate the discounted future rewards 
for taking actions from given states. The output of the Q-function for state x and action a  is 

denoted by ),( axQ .When action a  has been chosen and applied, the environment moves to 

a new state, x′ , and a reinforcement signal, r, is received. ),( axQ is updated by 

 1 1 1
( )

( , ) ( , ) { max ( , ) ( , )}k k k k k
a A x

Q x a Q x a r Q x a Q x aα γ− − −′ ′∈
′ ′← + + −  (2) 

where  

 
1

1 ( , )
k

kvisits x a
α =

+
 (3) 

where ( )A x′  is the set of possible actions in state x′ ,  γ  is discount factor , kα is the learning 

rate, and ( , )kvisits x a is the total number of times this state-action pair ( , )x a has been visited 

up to and including the kth iteration. 

3.2 Principle of setpoint adjustment approach based on Q-learning 

In this section, we may design an online self-learning system based on reinforcement 
learning to gradually establish the optimal policy of setpoint adjustment of TBZ. Although it 
cannot reach to the operator in time, the changes of components of raw material slurry may 
be indirectly reflected through certain measurements of the rotary kiln process. The 
measurements can be used to construct the environment state set of the learning system. 
Moreover, information of human interventions can be regarded as evaluations about 
whether the setpoint of TBZ is proper or not, for human interventions often occur when the 
performance is unsatisfactory. Thus this kind of information can be defined as reward signal 
from environment.  
For the learning system, the environment includes the rotary kiln process, the temperature 
controller and the operator. The environment provides current states and reinforcement 
payoffs to the learning system. The learning system produces the compensated upper and 
lower limits of setpoint range of TBZ to temperature controller in the environment. The 
learning system consists of a state perceptron, a critic, a learner and an action selector, as 
shown in Fig. 3. The state perceptron firstly samples and processes selected measurements 
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to construct the original state vector, and then converts the original continuous state vector 
into a discrete feature vector x based on a defined feature extraction function. The action 
selector employs a ε-greedy action selection strategy to produce an amendment of setpoint 

of TBZ , i.e. _BZ SPTΔ and the critic serves to calculate an internal practicable reward r relying 

on some heuristic rules. The learner updates value function of the state-action pair based on 
tabular Q-learning. The final outputs of the learning system are the compensated upper and 
lower limits of setpoint range of TBZ, which are calculated respectively by 
 

 1 1

_ _ _( ) ( ) ( 1)HI HI

BZ SP BZ SP BZ SPT k T k T k= Δ + −  (4) 

 

 1 1

_ _ _( ) ( ) ( 1)LO LO

BZ SP BZ SP BZ SPT k T k T k= Δ + −  (5) 

 

 

 

 Fig. 3.  Schematic diagram of setpoint adjustment approach for TBZ based on Q-learning  
In a Markov decision process (MDP), only the sequential nature of the decision process is 
relevant, not the amount of time that passes between decision stages. A generalization of 
this is the semi-Markov decision process (SMDP) in which the amount of time between one 

decision and the next is a random variable. For the learning process, we define sτ  as state 

perception time span for the perceptron to get the state of the environment and rτ  as reward 

calculation time span, also named as action execution time span, for the critic to calculate 

internal reward. The shortest time span from one decision to the next is s rτ τ τ= + .  
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The design of the learning system concerns the following key issues: 
 
1. Construction of the environment perception state set; 
2. Determination of the action set; 
3. Determination of the immediate reward function; 
4. Determination of the learning algorithm. 

3.3 Construction of the state set 

When components of raw material slurry fluctuate and related offline analysis data are 
unavailable, we hope that the learning system can estimate the changes of the components 
of raw material slurry through the percepted information about the environment state. From 
this idea, some related variables are selected from online measurable variables of the kiln 
process based on human experience, with which the state vector s  is defined to buildup the 

original state space S  of the learning system, where 1 2 3 4 5[ , , , , ]s s s s s=s , ∈s S . 1s is defined as 

the averaged burning zone temperature BZT , 2s  is the averaged flow rate of raw material 

slurry G , 3s  is the averaged coal feeding 1u , 4s and 5s  are the averaged upper and lower 

limit of the setpoint range of TBZ , named as _

HI

BZ SPT and _

LO

BZ SPT respectively, all during sτ . 

They are calculated from  

 
1
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J
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T T j J
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where ( )BZT j , ( )G j , 1( )u j , _ ( )HI

BZ SPT j , _ ( )LO

BZ SPT j  denote the jth sampling values of TBZ , flow 

rate of raw material slurry, coal feeding, upper and lower limits of the setpoint range of TBZ 

during sτ  respectively. J is the total number of sampling values during sτ . 

Since the state space S  defined above is continuous, it is impossible to compute and store 

value functions for every possible state or state-action pair due to the curse of 
dimensionality. The issue is often addressed by generating a compact parametric 
representation, such as an artificial neural network, that approximates the value function 
and can guide future actions. we practically choose to use a feature extraction method 
(Tsitsiklis & Van Roy, 1996)  to map the original continuous state space into a finite feature 
space, then we can employ tabular Q-learning to solve the problem.  
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By identifying one partition per possible feature vector, the feature extraction mapping 

1 1 4 5 2 1 3 2 4 3( ) [ ( , , ), ( ), ( ), ( )]F f s s s f s f s f s=s  defines a partitioning of the original state space. The 

burning zone temperature biasing (from the setpoint range) level feature f1, the temperature 
level feature f2, flow rate of raw material slurry level feature f3, the coal feeding level feature 
f4 are defined respectively by 
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where 1L and 2L  are the thresholds scaling the burning zone temperature bias from setpoint 

range level.  

Each feature function maps the state space S  to a finite set , 1,2,3,4mP m = . Then we 

associate the feature vector 1 2 3 4[ , , , ] ( )x x x x F= =x s  to each state ∈s S . The resulting set of all 

possible feature vectors, also defined as feature space X , is the Cartesian product of the sets 

mP . 
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Because the compensation model for the setpoint of burning zone temperature needs only to 
be applicable for the normal kiln operating conditions, the design of state set needs certain 

filtration in the feature space X . The appearence of  3 3x = or 4 3x =  might means the 

abnormal operating conditions such as low load of  flow rate of raw material slurry during 
kiln starting phase or abnormal coal components. The state set excludes such valued feature 
vectors. 

3.4 Action set 

The learning system aims to deduce the proper or best actions of setpoint adjustment of TBZ 
from specified environment state. The problem to be handled is how to choose 

_BZ SPTΔ according to the changes of environment state. Thus the action set can be defined as 

1 2 3 4 5{ , , , , } { 30, 15,0,15,30}A a a a a a= = − − . 

3.5 Immediate reward signal 

During rτ  after the action selection based on current state judgment, the learning system 

determines the immediate reward signal 1 1( , )MAN AUTOr R u u= Δ Δ , which represents the 

satisfactory degree of the environment about the action execution under current state,   

using the human intervention regulation of coal feeding 1

MANuΔ  and temperature controller 

regulation 1

AUTOuΔ .The reward signal r is determined in table 1.  

 

r 3AUTOCoal LΔ ≤ 3AUTOCoal LΔ > 3AUTOCoal LΔ < −  

3MANCoal LΔ ≤ 0.4 0.4 0.4 

3MANCoal LΔ >  -0.2 0.2 -0.4 

3MANCoal LΔ <  -0.2 -0.4 0.2 

 

Table 1. Definition of immediate reward function R 

 

where L3 is the threshold constant, MANCoalΔ  denotes the total regulation of coal feeding 

from human intervention during rτ , which is calculated by 

 1

r

MAN

MANCoal u
τ

Δ = Δ∑  (15) 

and AUTOCoalΔ  denotes the total regulation from temperature controller during rτ , which is 

calculated by 
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 1

r

AUTO

AUTOCoal u
τ

Δ = Δ∑  (16) 

The immediate reward function R in Table 1 is from the following heuristic rules: 

During rτ , if 3MANCoal LΔ ≤ , which means the operator is satisfied with the regulation 

action of the control system and little human intervention occurs, then a positive reward 

r=0.4 is returned. If MANCoalΔ and AUTOCoalΔ  have same regulation directions , which means 

the direction of regulation action of the control system fits with the operator  expectation 

with short amplitude, then a positive reward r=0.2 is returned. If MANCoalΔ > L3 or 

MANCoalΔ < 3L− , and 3AUTOCoal LΔ ≤ , which means little regulation action of the control 

system occurs while large human intervention occurs, then r=-0.2. If MANCoalΔ and 

AUTOCoalΔ  have contrary regulation directions, which means the operator is not satisfied 

with the regulation action of the control system, then a negative reward r=-0.4 is returned. 

3.6 Algorithm summary 

The whole learning algorithm of the learning system under learning mode is summarized as 
follows: 
 
Step 1: If it is in initialization, then the Q value table of state-action pairs is initialized 

according to expert experience, otherwise goto step 2 directly; 

Step 2: During sτ , the state perceptron obtains and saves measured burning zone 

temperature, flow rate of raw material slurry, coal feeding, upper and lower limits of 
the setpoint range of the burning zone temperature, and calculates related averaged 
values by using (6)-(10), then transfer them into related level features to construct 
feature vector x by using (11)-(14) . 

Step 3: Search in the Q table to make state matching, if unsuccessful then goto step 2 to make 
state judgement again, if successful then go ahead; 

Step 4: The action selector chooses an amendment of setpoint of BZT  as its output according 

to ε-greedy action selection strategy (Sutton & Barto, 1998), where ε=0.1; 

Step 5: During rτ , the critic determines the reward signal r of this state-action pair according 

to  Table 1. 

Step 6: When the current rτ finishes, entering the next sτ , the state perceptron judges the 

next state ′x , state matching is made in the Q table, if unsuccessful then goto step 2 to 
start the next learning round, if successful then using the reward signal r, the learner 
calculates and updates the Q value of the last state-action pair by using (2)-(3), where 

0.9γ = . 

Step 7: Judge if the learning should be finished. When all evaluation values of state-action 
pairs in the Q table do not change obviously, it means that the Q-function have 
converged, and the compensation model is well trained.  

 
The problem of Q table initialization: there is no explicit tutor signal in reinforcement 
learning, the learning procedure is carried out through constant interaction with 
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environment to get the reward signals. Usually, less information from environment will 
results low learning efficiency of reinforcement learning. In this paper different initial 
evaluation values are given for different actions under same state based on expert 
experience so that the convergence of the algorithm has been speedup, and online 
learning efficiency has been enhanced. 

3.7 Technical issues 

The main task of the learning system is to estimate the variations of the kiln operating 
conditions continuously, and to adjust the setpoint range of burning zone temperature 
accordingly. Such adjustments should be made when the burning zone temperature is 
fairly controlled smooth by the temperature controller. Such a judgment signal is given 
out from the hybrid intelligent temperature controller. If the temperature control is in 
the abnormal conditions, the learning procedure must be postponed. In this case the 
setpoint range of the burning zone temperature is kept constant. 
Moreover, setpoint adjustments should be made when the learning system make 
accurate judgment about the kiln operating conditions. Because of complexity and 
fluctuation of kiln operating conditions, accurate judgment for current state usually 
needs long time, and the time span between two setpoint adjustments cannot be too 
short, otherwise the calculated immediate reward cannot reflect the real influence of the 
above adjustment upon the behaviour and performance of the control system. Thus 

special attention should be paid to selection of sτ and rτ . This makes solid foundation, 

on which obtained environmental states and reinforcement payoffs are effective. 
After long term running, large characteristic changes of components of raw material 
slurry, coal and kiln device may appear. The previous optimal designed compensation 
model for the setpoint of burning zone temperature might become invalid under new 
operating conditions. This needs new optimal design to keep good performance of 
control system for long term. In this case, the reinforcement learning system should be 
switched into the learning mode, and above models can be established through new 
learning to improve the performance, so that the control system has strong adaptability 
for long term running.  This is an important issue drawing the attentions of the 
enterprise. 

4. Industrial application  

Shanxi Alumina Plant is the largest alumina plant in Asia with megaton production 
capacity. It has 6 oversize rotary kilns of φ4.5×110m. Its production employs the series 
parallel technology of Bayer and Sintering Processes. Such a production technology 
makes components of the raw material of rotary kilns often vary in large range. It is 
more difficult to keep a stable kiln operation than ordinary rotary kiln. 
A supervisory control system has been developed in the #4 rotary kiln of Shanxi 
Alumina Plant based on the proposed structure and the setpoint adjustment approach 
of burning zone temperature. It is implemented in the I/A Series 51 DCS of Foxboro. 
The Q-learning-based strategy has been realized in the configuration environment of 

Fox Draw and ICC of I/A Series 51 DCS. Related parameters are chosen as sτ ＝30min, 

rτ =120min. 
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Fig. 4. The setpoint of burning zone temperature is properly adjusted after learning 

Fig. 4 shows the condition that, after a period of learning, a set of relatively stable strategies 
of setpoint adjustment has been established so that the setpoint range of TBZ can be 
automatically adjusted to satisfy the requirement of sintering temperature, according to the 
level of raw material slurry flow, the level of coal feeding, the level of TBZ and the level of 
temperature biasing. It can be seen that the setpoint adjustment happened only when TBZ is 
controlled smoothly. The judgment signal, denoted by “control parameter” in Fig. 4, takes 
value of 0 when the burning zone temperature is fairly controlled smooth, and vice versa. 
The adjustment actions of the above reinforcement learning system result in satisfactory 
performance of the kiln temperature controller, with reasonable and acceptable regulation 
amplitude of coal feeding and regulation rhythm, so that the adaptability for variations of 
operating conditions has been significantly enhanced and the production quality index, liter 
weight of clinker, can be kept to reach the technical requirement even if the boundary 
conditions and operation conditions change. Meanwhile, human interventions become 
weaker and weaker since the model application has improved the system performance.  
In the period of test run, the running rate of supervisory control system has been up to 90%. 
Negative influences on the heating and operating conditions from human factors have been 
avoided, rationalization and stability of clinker production has been kept, and operational 
life span of kiln liner has been prolonged remarkably. The qualification rate of clinker unit 
weight has been enhanced from 78.67% to 84.77%; production capacity in unit time per kiln 
has been increased from 52.95t/h to 55t/h with 3.9% increment. The kiln running rate has 

been elevated up to 1.5%. Through the calculation based on average 10℃ reduction of kiln 

tail temperature and average 2% decrease of the residual oxygen content in combustion gas, 
it can be concluded that 1.5% energy consumption has been saved. 
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5. Conclusion 

In this chapter, we focus on the discussion about an implementation strategy of how to 
employ reinforcement learning in control of a typical complex industrial process to 
enhance control performance and adaptability for the variations of operating conditions 
of the automatic control system. 
Operation of large rotary kilns is difficult and relies on experienced human operators 
observing the burning status, because of their inherent complexities. Thus the problem 
of human-machine coordination is addressed when we design the rotary kiln control 
system, and the human intervention and adjustment can be introduced. Except for 
emergent operation conditions that need urgent human operation for system safety, the 
fact is observed that human interventions to the automatic control system usually imply 
human’s discontent to the performance of the control system when the variation of 
boundary conditions occurs. From this idea, an online reinforcement learning-based 
supervisory control system is designed, in which the human interventions might be 
defined as the environmental reward signals. The optimal mapping between rotary kiln 
operating conditions and adjustment of important controller setpoint parameters can be 
established gradually. Successful application of this strategy in an alumina rotary kiln 
has shown that the adaptability and performance of the control system have been 
improved effectively. 
Further research will focus on trying to improve the setting model of the burning zone 
temperature by introducing the offline analysis data of clinker liter weight to reject the 
other uncertain disturbances in the quality control of kiln production.  
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1. Introduction 

Today, providing a good quality of service (QoS) in irregular traffic networks is an 
important challenge. Besides, the impressive emergence and the important demand of the 
rising generation of real-time Multi-service (such as Data, Voice VoD, Video-Conference, 
etc.) over communication heterogeneous networks, require scalability while considering a 
continuous QoS. This emergence of rising generation Internet required intensive studies 
these last years which were based on QoS routing for heterogeneous networks  on the one 
hand and on the backbone architecture level of communication networks characterized by a 
high and irregular traffic on the other hand (Mellouk et al., 2007b).    
The basic function of QoS routing is to find a network path which satisfies the given 
constraints and optimize the resource utilization. The integration of QoS parameters 
increases the complexity of the used routing algorithms. Thus, the problem of determining a 
QoS route that satisfies two or more path constraints (for example, delay and cost) is known 
to be NP-complete (Gravey & Jhonson, 1979). A difficulty is that the time required to solve 
the Multi-Constrained Optimal path problem exactly cannot be upper-bounded by a 
polynomial function. Hence the focus has been on the development of pseudo-polynomial 
time algorithms, heuristics and approximation algorithms for multi-constrained QoS paths 
(Kuipers & Mieghem, 2005).   
At present, several studies have been conducted on QoS routing algorithms which integrate 
the QoS requirements problematic for the routing algorithm. (Song & Sahni, 2006) introduce 
heuristics to find a source-to-destination path that satisfies two or more additive constraints 
on edge weights. (Jaffe, 1984) has proposed a polynomial time approximation algorithm for 
k multi-constrained path which uses a shortest path algorithm such as Dijkstra’s (Sahni, 
2005). (Korkmaz & Krunz, 2001) propose a randomized heuristic that employs two phases. 
In the first one, a shortest path is computed for each of the k QoS constraints as well as for a 
linear combination of all k constraints. The second phase performs a randomized breadth-
first search for a solution of k multi-constrained problem. In (Kuipers & Mieghem, 2005), 
authors suggest that QoS routing in realistic networks could not be NP-complete regarding 
to a particular class of networks (topology and link weight structure).   
Due this complexity, QoS routing problems are divided on several classes according to some 
aspects. For example, we distinguish the single path routing problem and the multipath  
routing problem, where routers maintain multiple distinct paths of arbitrary costs between a 
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source and a destination. The Multipath routing offers several advantages like good 
bandwidth, bounding delay variation, minimizing delay, and improved fault tolerance. So, 
it makes an effective use of the graph structure on a network, as opposed to single path 
routing which superimposes a logical routing tree upon the network topology. We find in 
literature many and various approaches that have been proposed to take into account the 
QoS requirement. The reader can refer to (Masip-Bruin et al., 2006) for an overview. 
Constraints imposed by QoS requirements, such as bandwidth, delay, or loss, are referred to 
as QoS constraints, and the associated routing is referred to as QoS routing which is a part of 
Constrained-Based Routing (CBR). Interest in constrained-based routing has been steadily 
growing in the Networks. Based on heuristics used in all of these approaches to reduce their  
complexity, we can classified it in three main categories:  
Label Switching/Reservation Approaches- spurred by approaches like ATM PNNI, MPLS 
or GMPLS. With MPLS, fixed length labels are attached to packets at an ingress router, and 
forwarding decisions are based on these labels in the interior routers of the label-switched 
path. MPLS Traffic Engineering allows overriding the default routing protocol, thus 
forwarding over paths not normally considered. A resource reservation protocol such as 
RSVP must be employed to reserve the required resources. Another Architecture proposed 
for providing Internet QoS is the Differentiated Services architecture. Diffserv scales well by 
pushing complexity to network domain boundaries.  
Multi-Constrained Path Approaches (MCP)- The goal of all of these approaches is to 
retrieve the shortest path among the set of feasible paths between two nodes. Considerable 
work in the literature has focused on a special case of the MCP problem known as the 
Restricted Shortest Path (RSP) problem. The goal is to find the least-cost path among those 
that satisfy only one constraint. An overview of these approaches can be found in (Kuipers 
et al., 2004).  
Inductive approaches- To be able to make an optimal routing decision, according to 
relevant performance criteria, a network node requires to have a complete knowledge of the 
entire network state and an accurate prediction of the evolution of the networks and its 
dynamics. This, however, is impossible unless the routing algorithm is capable of adapting 
to the network state changes in almost real time. Thus, it is necessary to design intelligent 
and adaptive optimizing routing algorithms which take into account the network state and 
its evolution. We need to talk about QoS based state dependent routing algorithm.  
In this chapter, we present an accurate description of the current state-of-the-art and give an 
overview of our work in the use of reinforcement learning concepts focused on 
communication networks. We focus our attention by developing a system based on this 
paradigm called KOCRA for K Optimal Constrained path Routing Algorithm. Basically, 
these inductive approaches selects routes based on flow QoS requirements and network 
resource availability. After developing in section 2 the concept of routing in high speed 
networks, we present in section 3 the family of inductive approaches. After, we present our 
works based on reinforcement learning approaches in three different communication 
networking domains: wired networks, mobile ad hoc networks, and packet router’s 
scheduling networks. Last section concludes and gives some perspectives of this work.  

2. Routing problem  

As Internet is a large collection of more than 25,000 independent domains called 
autonomous systems (Ases), the cooperation between ASes is not optimized at the network 
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level, but rather it is based on the business relationships between organizations. The fully-
independent management actions in each AS are expressed in terms of a policy-based 
routing strategy which primarily controls the outbound traffic of an AS and can include 
conflicting policies. A global solution for QoS routing over all the ASes must be able to 
handle both the differing QoS provisioning mechanisms and service specifications. This 
latter solution of building models of large ISP’s is so complex to obtain (Quoitin & Uhlig, 
2005). For this, Routing is divided onto two classes: IGP and EGP. IGP, such as OSPF or IS-
IS, compute the interior paths in one AS, while EGP, such as BGP, is responsible for the 
selection of the interdomain paths. To fulfill application QoS requirements, many ISPs have 
deployed mechanisms to provide differentiated services in their networks. In fact, in the last 
decade, the development of none of QoS routing proposals has turned out to be sufficiently 
appealing to become deployed in practice. This is because ISPs have preferred to 
overprovision their networks rather than deliver and manage QoS (Yanuzzi et al., 2005).  
In the IGP or EGP cases, a routing algorithm is based on the hop-by-hop shortest-path 
paradigm. The source of a packet specifies the address of the destination, and each router 
along the route forwards the packet to a neighbour located “closest” to the destination. The 
best optimal path is choosed according to given criteria. When the network is heavily 
loaded, some of the routers introduce an excessive delay while others are under-utilized. In 
some cases, this non-optimized usage of the network resources may introduce not only 
excessive delays but also high packet loss rate. Among routing algorithms extensively 
employed in the same AS routers, one can note: distance vector algorithm such as RIP and 
the link state algorithm such as OSPF or IS-IS (Grover, 2003).   

2.1 Distance vector approach  

Also known as Bellman-Ford or Ford-Fulkerson, the heart of this type of algorithm is the 
routing table maintained by each host. With the distance-vector (DV) routing scheme (e.g. 
RIP, IGRP), each node exchanges with its neighbouring nodes its distance (e.g. hop count) to 
other networks. The neighbouring nodes use this information to determine their distance to 
theses networks. Subsequently these nodes share this information with their neighbours, etc. 
In this way the reachability information is disseminated through the networks. Eventually 
each node learns, which neighbour (i.e. next hop router) to use, to reach a particular 
destination with a minimum number of hops. A node does not learn about the intermediate 
to the destination. These approaches suffers from a classic convergence problem called 
“count to infinity”. It also does not have an explicit information collection phase (it builds its 
routing table incrementally). DV routing protocols are designed to run on small networks.  

2.2 Link state approach  

With link-state (LS) routing (e.g. OSPF or IS-IS), each node builds a complete topology 
database of the network. This topology database is used to calculate the shortest path with 
Dijkstra’s algorithm. Each node in the network transmits its connectivity information to each 
other node in the network. This type of exchange is referred to as flooding. This way each 
node is able to build a complete topological map of the network. The computational 
complexity cost used here is lower than the DV protocol. However, LS algorithms trade off 
communication bandwidth against computational time.   
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3. Inductive approaches  

Modern communication networks is becoming a large complex distributed system 
composed by higher interoperating complex sub-systems based on several dynamic 
parameters. The drivers of this growth have included changes in technology and changes in 
regulation. In this context, the famous methodology approach that allows us to formulate 
this problem is dynamic programming which, however, is very complex to be solved 
exactly. The most popular formulation of the optimal distributed routing problem in a data 
network is based on a multicommodity flow optimization whereby a separable objective 
function is minimized with respect to the types of flow subject to multicommodity  flow 

constraints (Gallager, 1977; Ozdaglar & Bertsekas, 2003). In order to design adaptive 
algorithms for dynamic networks routing problems, many of works are largely oriented and 
based on the Reinforcement Learning (RL) notion (Sutton & Barto, 1997). The salient feature 
of RL algorithms is the nature of their routing table entries which are probabilistic. In such 
algorithms, to improve the routing decision quality, a router tries out different links to see if 
they produce good routes. This mode of operation is called exploration. Information learnt 
during this exploration phase is used to take future decisions. This mode of operation is 
called exploitation. Both exploration and exploitation phases are necessary for effective 
routing and the choice of the outgoing interface is the action taken by the router. In RL 
algorithms, those learning and evaluation modes are assumed to happen continually. Note 
that, the RL algorithms assigns credit to actions based on reinforcement from the 
environment. In the case where such credit assignment is conducted systematically over 
large number of routing decisions, so that all actions have been sufficiently explored, RL 
algorithms converge to solve stochastic shortest path routing problems. Finally, algorithms 
for RL are distributed algorithms that take into account the dynamics of the network where 
initially no model of the network dynamics is assumed to be given. Then, the RL algorithm 
has to sample, estimate and build the model of pertinent aspects of the environment.  
Many of works has done to  investigate the use of inductive approaches based on artificial 
neuronal intelligence together with biologically inspired techniques such as reinforcement 
learning and genetic algorithms, to control network behavior in real-time so as to provide 
users with the QoS that they request, and to improve network provide robustness and 
resilience. For example, we can note the following approaches:  
Q-Routing approach- In this technique (Boyan & Littman, 1994), each node makes its 
routing decision based on the local routing information, represented as a table of Q values 
which estimate the quality of the alternative routes. These values are updated each time the 
node sends a packet to one of its neighbors. However, when a Q value is not updated for a 
long time, it does not necessarily reflect the current state of the network and hence a routing 
decision based on such an unreliable Q value will not be accurate. The update rule in Q-
Routing does not take into account the reliability of the estimated or updated Q value 
because it depends on the traffic pattern, and load levels. In fact, most of the Q values in the 
network are unreliable. For this purpose, other algorithms have been proposed like 
Confidence based Q-Routing (CQ-Routing) or Confidence based Dual Reinforcement Q-
Routing (DRQ-Routing).  
Cognitive Packet Networks (CPN)- CPNs (Gelenbe et al., 2002) are based on random neural 
networks. These are store-and-forward packet networks in which intelligence is constructed 
into the packets, rather than at the routers or in the high-level protocols. CPN is then a 
reliable packet network infrastructure, which incorporates packet loss and delays directly 
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into user QoS criteria and use these criteria to conduct routing. Cognitive packet networks 
carry three major types of packets: smart packets, dumb packets and acknowledgments 
(ACK). Smart or cognitive packets route themselves, they learn to avoid link and node 
failures and congestion and to avoid being lost. They learn from their own observations 
about the network and/or from the experience of other packets. They rely minimally on 
routers. The major drawback of algorithms based on cognitive packet networks is the 
convergence time, which is very important when the network is heavily loaded.  
Swarm Ant Colony Optimization (AntNet)- Ants routing algorithms (Dorigo & Stüzle, 
2004) are inspired by dynamics of how ant colonies learn the shortest route to food source 
using very little state and computation. Instead of having fixed next-hop value, the routing 
table will have multiple next-hop choices for a destination, with each candidate associated 
with a possibility, which indicates the goodness of choosing this hop as the next hop in 
favor to form the shortest path. Given a specified source node and destination node, the 
source node will send out some kind of ant packets based on the possibility entries on its 
own routing table. Those ants will explore the routes in the network. They can memory the 
hops they have passed. When an ant packet reaches the destination node, the ant packet will 
return to the source node along the same route. Along the way back to the destination node, 
the ant packet will change the routing table for every node it passes by. The rules of 
updating the routing tables are: increase the possibility of the hop it comes from while 
decrease the possibilities of other candidates. Ants approach is immune to the sub-optimal 
route problem since it explores, at all times, all paths of the network. Although, the traffic 
generated by ant algorithms is more important than the traffic of the concurrent approaches.   
In the following, we give an overview of our work in the use of reinforcement learning 
concepts focused on communication networks. We focus our attention by developing a 
system based on this paradigm called KOCRA for K Optimal Constrained path Routing 
Algorithm and present our works based on reinforcement learning approaches in three 
different communication networking domains: wired networks, mobile ad hoc networks, 
and packet router’s scheduling networks.  

4. KOCRA system based reinforcement learning in routing wired networks.  

KOCRA is the successor of KONRS, a K Optimal Neural Routing System (Mellouk et al., 
2006a).   

4.1 Brief summary of KONRS  

In (Mellouk et al., 2006a), we have presented an adaptive routing algorithm based on Q 
learning approach, the Q function is approximated by a reinforcement learning based neural 
network (NN). As shown in figure 1, In this approach, NN ensure the prediction of 
parameters depending on traffic variations. Compared to the approaches based on a Q table, 
the Q value is approximated by a reinforcement learning based neural network of a fixed 
size, allowing the learner to incorporate various parameters such as local queue size and 
time of day, into its distance estimation. Indeed, a neural network allows the modelling of 
complex functions with a good precision along with a discriminating training and a taking 
into account of the context of the network. Moreover, it can be used to predict non-
stationary or irregular traffics. In this approach, the objective is to minimize the average 
packet delivery time. Consequently, the reinforcement signal which is chosen corresponds 
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to the estimated time to transfer a packet to its destination. Typically, the packet delivery 
time includes three variables: The packet transmission time, the packet treatment time in the 
router and the latency in the waiting queue.   

 

 

Fig. 1. Neural Net Architecture  

The input cells in NN used correspond to the destination and the waiting queue states. The 
outputs are the estimated packet transfer times passing through the neighbours of the 
considered router.  The algorithm derived from this architecture can be described according 
to the following steps:  
 

When receiving a packet of information:    
1. Extract a destination IP address,    
2. Calculate Neural Network outputs,   
3. Select the smallest output value and get an IP address of the associated router,  
4. Send the packet to this router,  
5. Get an IP address of the precedent router,  
6. Create and send the packet as a reinforcement signal.  

 

At the reception of a reinforcement signal packet:   
1. Extract a Q estimated value computed by the neighbor,  
2. Extract a destination IP address,  
3. Neural Network updating using a retro-propagation algorithm based on gradient 

method,  
4. Destroy the reinforcement packet.  

This approach offers advantages compared to standard Distance Vector (DV) routing policy 
and earlier Q-routing algorithm, like the reduction of the memory space for the storage of 
secondary paths, and a reasonable computing time for alternative paths research. The Q 
value is approximated by a reinforcement learning based neural network of a fixed size. 
Results given in (Mellouk et al., 2006a) show better performances of the proposed algorithm 
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comparatively to standard distance vector and Q-routing algorithms. In fact, at a high load 
level, the traffic is better distributed along the possible paths, avoiding the congestion of the 
network.  

4.2 The concepts behind KOCRA  

This first version of our KONRS routing system explore all the network environment and do 
not take into account loop problem in a way leading to large time of convergence algorithm. 
To address this drawback and reducing computational time, we have worked on the 
evolution of our earlier Q-neural routing algorithm and present the enhanced version of 
KONRS called “K Optimal Constrained path Routing Algorithm (KOCRA)” (Mellouk et al., 
2007a). KOCRA contains three stages. The objective of the first stage is to select the K Best 
candidate paths according to the cost cumulative path from the source and the destination 
nodes (for simplicity, we consider here all link costs equal to 1). The second stage is used to 
integrate the dynamics of traffic. For this, a continuous end-to-end delay among the K Best 
selected Paths is computed using a reinforcement Q-learning function. In order to force the 
router to take the alternative routes regarding to the second stage, we used a third one 
which compute automatically a probability affected to each path based on packet delivery 
time obtained by the second stage and the time latency in queuing file associated for each 
path.  

4.2.1 First stage: constructing K-best paths  

First of all, in spite of exploring the entire network environment which needs large 

computational time and space memory (Mellouk et al., 2006a), our approach reduces this 

environment to K Best no loop paths in terms of cost cumulative links. Thus, each router 

maintains a link state database as map of the network topology. We used a label setting 

algorithm based on the optimality principle and being a generalization of Dijkstra's 

algorithm (Sahni, 2005). In order to find these K best paths, a variant of Dijkstra's algorithm 

proposed in (Eppstein, 1999) was used. The space complexity is O(Kmn), where K is the 

number of paths, m (resp. n) is the number of edges (resp. the number of links). By using a 

pertinent data structure, the time complexity can be kept at O(m+nlogn+K) (Mellouk et al., 

2007a). When a network link changes its state (i.e., goes up or down, or its utilization is 

increased or decreased), the network is flooded with a link state advertisement (LSA) 

message. This message can be issued periodically or when the actual link state change 

exceeds a certain relative or absolute threshold. Obviously, there is tradeoff between the 

frequency of state updates (the accuracy of the link state database) and the cost of 

performing those updates. In our approach, the link state information is updated when the 

actual link state change. Once the link state database at each router is updated, the router 

computes the K optimal paths.  

Let a DAG (N; A) denote a network with n nodes and m edges, where N = {1.. n}, and A 

={aij/i,j€N}. N}. The problem is to find the top K paths from source s to all the other nodes. 

Let’s define a label set X and a one-to-many projection h: N→ X, meaning that each node i€ 

N corresponds to a set of labels h(i), each element of which represents a path from s to i.  
 

* S the source node  

* N –set of nodes in network  
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* X – the label set  

* Count
i 
– Number of paths determined from S to I  

* elm – Affected number to assigned label  

* P – Paths list from S to destination (D)  

* K – paths number to compute  

* h – corresponding between node and affected label number  

/* Initialisation */  
count

i 
= 0 /* for all i � K */  

elem = 1  

h(elem) = s  

h
-1

(s) = {elem}  

distance
elem 

= 0  

X = {elem}  

P
K 

= 0  

While (count
t 
< K and X != { })  

begin  
/* find a label lb from X, such that  

distance
lb 

<= distance
lb1 

,� lb1 � X*/  

X = X – {lb}  

i = h(lb)  

count
i 
= count

i 
+ 1  

if (i == D) then /* if the node I is the destination node D */  

begin  
p = path for 1 to lb  

P
K 

= P
K 

U {h(p)}  

end  
if (count

i 
<= K) then  

begin  
for each arc(i,j) � A  

begin  
/* Verify if new label does not result in loop */  

v=lb  

While (h(v) != s)  

begin  
if (h(v) == j) then  

begin  
goto do_not_add  

end  
v = previous

v
 

end  
/* Save information from new label */  

elem = elem + 1  

distance
elem 

= distance
n 
+ c

ij
 

previous
elem 

= lb 

h(elem) = j  

h
-1

(j) = h
-1

(j) U {elem}  
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X = X U {elem}  

do_not_add:  

end  

end  

end 

4.2.2 Second stage: Q-learning algorithm for optimizing the end-to-end delay  

After finding our K best Optimal Paths based on link costs, the second step is to distribute 

the traffic on these K candidate paths. For this, we use another criteria based on the end-to-

end delay. The reinforcement signal which is chosen corresponds to the estimated time to 

transfer a packet to its destination. This value is computed by a variant of Q-Routing 

algorithm which is considered as an asynchronous relaxation of the Bellman-Ford algorithm 

used in distance vector protocols. Typically, the packet delivery time includes three 

variables: the packet transmission time, the packet treatment time in the router and the 

latency in the waiting queue. In our case, the packet transmission time is not taken into 

account. In fact, this parameter can be neglected in comparison to the other ones and has no 

effect on the routing process.  

In this approach, each router x maintains in a Q-table a collection of values of Q(x, y, d) for 

every destination d and for every interface y. This value reflects a delay of delivering a 

packet for destination d via interface s. Then, the router x forwards the packet to the best 

next router y determined from the Q-table. Just after receiving this packet, the router y 

provides x an estimate of its best Q value to reach the destination. This new information is 

then added in the Q-values of the router x.   

The reinforcement signal T employed in the Q-learning algorithm can be defined as the 

minimum of the sum of the estimated Q (x, y, d) sent by the router y neighbour of router x 

and the latency in waiting queue q
x
 corresponding to router x.  

  
(1)

 

Where Q(x, y, d), denote the estimated time by the router x so that the packet p reaches its 

destination d through the router y. This parameter does not include the latency in the 

waiting queue of the router x.  The packet is sent to the router y which determines the 

optimal path to send this packet.  

Once the choice of the next router is made, the router y puts the packet in the waiting queue, 

and sends back the value T as a reinforcement signal to the router x. It can therefore update 

its reinforcement function as:  

  
(2) 

α and η are the packet transmission time between x and y and the learning rate respectively.  

So, the new estimation  can be written as follows:  

 = +  
(3) 
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Fig. 2. Updating of the reinforcement signal.  

4.2.3 Third stage: adaptive probabilistic path selection.   

The goal of this stage is to distribute the traffic on K best paths in probabilistic manner. To 
force the router to take alternative routes find in K best paths and not only the best one, we 
compute a probability affected to each path automatically. We associated a maximal value 
P

max 
for the best path and divided the rest of probability (1- P

max
) for the remaining (K-1) 

paths. The value of P
max

 is fixed by a counting process. To force the router to take the 

alternative routes find in the second stage and not only the best path, a uniform distributed 
random process is implemented in each router. This process chooses randomly a number 
between [0, 1]. Next, a router choose the path verifying the condition that it’s probability is 
less than this random number. For example, in the situation characterized by K=2 (two 
paths), P1=0.8, P2=0.2, if the random number <=0.8, the router chooses the first path, 
otherwise the router takes the second one. In this manner, the flow packets reach their 
destination with a time close to optimal, while ensuring a good exploration of the remaining 
paths. Unfortunately, this kind of fixed hand probability don’t take automatically into 
account the dynamic of the irregular traffic. We have proposed a second version of 
computing automatically the load balancing distribution. The process is based on the packet 
delivery time computed by our Q reinforcement learning and the latency in queuing file 
associated for each path.   

Let D
i
 (t) be the packet delivery time for path i at time t. Let (t) be the latency in queuing 

file associated to closest router n’ in the direction of path i at time t (that is, the neighbour of 

router n). The following formula allows us to count the probability (t) for the ith path in 
router n at time t:   

  

(4)

 

Where α and β are two tuneable parameters that determine respectively the influence of 

delay time and waited queue time. They have an equivalent influence in the case of α= . 

This formula associates a very small probability for paths with high delay time and/or high 
queue time. This is due to the fact that when delay time (respectively waited time) increase 

the value of  (respectively ) decreases. 
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4.3 Performance evaluation   

To validate our results in the case of irregular traffic in wired networks, we take the results 
given by a well-known Djikstra’s algorithm (which offers to use an existing polynomial-time 
path computation) used in protocols such OSPF, IS-IS or CISCO EIGRP as a reference for 
our study. This choice of this classical approach is argued by the fact that the majority of 
ISP’s used actually this kind of protocols to exchange routing information in their networks. 
In order to do comparison with KOCRA, parameters of standard approach used here are 
fixed in order to optimize the delay and cost criteria simultaneously (on the rest of paper, 
we used the notation “Standard Optimal Multi-Path Routing Algorithm (SOMRA)” for this 
kind of algorithm). All algorithms have been implemented with OPNET and used the same 
data structure. OPNET software constitutes for telecommunications networks an 
appropriate modelling, scheduling and simulation tool. It allows the visualization of a 
physical topology of a local, metropolitan, distant or on board network. The protocol 
specification language is based on a formal description of a finite state automaton.  
The simulations presented in this article consisted of creating a traffic merged in irregular 
network topology, through which the two family of algorithms (KOCRA and SOMRA) 
computed the best paths between two nodes. QoS measures of each of tested algorithms 
concerns two additive constraints: cost and delay criteria. Results given in all the figures are 
evaluated in terms of average packet end-to-end delivery time on both topologies. Time 
simulation is represented on the other axis of the figures.  

4.3.1 Simulation parameters on the irregular topology.  

The topology of the network is specified by a collection of routers and a set of links that bind 
these routers elements. The network traffic is specified in the source router by setting 
several parameters like: the start time, the stop time, the statistical distribution for packet 
inter-arrival times, the statistical distribution for packet size and the destination node.   
To ensure a meaningful validation of our algorithm performance, we devised a realistic 
simulation environment in terms of network characteristics, communications protocols and 
traffic patterns. We focus on IP datagram networks with irregular topology. The topology of 
the network employed for simulations includes 36 interconnected nodes with essentially 
two parts of the network, as shown in Fig 3. This topology is the same used in (Boyan & 
Littman, 1994) for their Q learning approach.  
We model traffic in terms of requests characterized by its source and destination. While we 
concern ourselves with arrival and departure of flows, we do not model the data traffic of 
the flows. For simplicity, we also chose not to implement a proper management of error, 
flow and congestion control. In act, each additional control component has a considerable 
impact on the network performance, making very difficult to evaluate and to study 
properties of each control algorithm without taking in consideration the complex way it 
interacts with all the other control components (Dorigo & Stüzle, 2004). Therefore, we chose 
to test the behavior of our algorithm such that the routing component can be evaluated in 
isolation.  
The traffic is sent/received by four end nodes (marked in the figure noeud100, noeud101, 
noeud102 and noeud103).   
For our simulation results, we studied the performance of the algorithms for increasing 
traffic load, examining the evolution of the network status toward a saturation condition, 
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and for temporary saturation conditions. For this topology, we study the performance of our 
routing strategies according a Poisson Law inter-arrival times statistical distribution.  

 

Fig. 3. Network topology.  

4.3.2 Poisson distribution of model traffic.  

In probability theory, the Poisson distribution is a discrete probability distribution which 
expresses the probability of a number of events occurring in a fixed period of time if these 
events occur with a known average rate, and are independent of the time since the last 
event. The It is represented by random variables N that count a number of discrete 
occurrences (called "arrivals") that take place during a time-interval of given length. The 
probability that there are exactly k occurrences (with k a non-negative integer, k = 0, 1, 2, ...) 
is:   

  

(5)

 

Whereλis a positive real number and is the mean number of occurrences k. The Poisson law 

is then defined by its mean λparameter.  

In our simulations, we suppose the mean λ of the inter-arrival times is 3 s and fix the time 

start to 1 min and the stop time to the end of simulation is fixed to 6 h. 

4.3.3 Simulation results.  

As shown in Fig. 4 which represent time simulation versus the average packet delivery time, 
our probabilistic K Optimal Constrained path Routing Algorithm (KOCRA) give better 
results than the well-known N best optimal path routing Algorithm SOMRA. This is due to 
the fact that in our new approach, routers are able to take into account not only the average 
of delivery delay but also the waiting queue time. Thus, they are able to adapt their 
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decisions very fast and in close concordance with the network dynamics. In spite of the 
many packages taking secondary ways, N-optimal routing does not present better 
performances because it rests on a probabilistic method to distribute the load of the network 
over the closest cost paths, and not on the degradation of the times of routing. So, in classical 
approach, the routers take their decisions only according to the average of delivery delay 
and the exploration of potentials good paths, none trivially best and that can give us betters 
results, is not realized. Our approach, with the introduction of a probabilistic module, 
responds to this inconvenience and shows better results for Poisson law distribution of 
traffic. Thus, mean of average packet delivery time obtained by KOCRA is reduced by 37% 
compared to traditional N best optimal routing Algorithm.   
 

 

Fig. 4. Poisson law distribution simulations results  

5. AMDR based reinforcement learning in mobile ad hoc networks.  

AMDR (Adaptive Mean Delay Routing) is a new adaptive routing protocol based on 
probabilities and built around two exploration RL agents. Exploration agents gather mean 
delay information available at each node in their route and calculate total delay between 
source and destination. According to the delay value gathered, probabilistic routing tables 
are updated at each intermediate node.  In order to deal with mobile nodes synchronisation 
we consider, in our protocol, delay estimation model proposed in [Naimi, 2005; Naimi & 
Jacquet, 2004], instead of instantaneous delay considered in the most oriented delay routing 
protocols.  
Unlike data packets, control packets, used in adaptive routing, are sent in broadcast manner 
and so treated at IEEE 802.11, MAC layer differently than unicast packets. For this, we 
consider that trip delay of a control packet is not the same of a data packet.  
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In AMDR, routing function is determined by means of very complex interactions of forward 
and backward network exploration agents. Forward agents report network delay conditions 
to the backward ones. So, no node routing updates are performed by the forward agents.   
AMDR uses two kinds of agents: Forward Exploration Packets (FEP) and Backward 
Exploration Packets (BEP).  Forward agents explore the paths of the network, for the first 
time in reactive manner, but it continues the exploration proactively.   
FEP packets create a probability distribution at each node for its neighbours. Backward 
agents are used to propagate the information gathered by forward agents through the 
network, and to adjust the routing table entries.    

5.1 Forward exploration packet  

When a new traffic arrives at a node n, periodically the node n generates a forward 
exploration packet called FEP. The FEP packet is then sent to the destination of traffic. Each 
FEP packet contains the following fields: source_node_address, destination_node_address, 
ext_hop_address, stack_of_visiting_nodes_addresses, total_delay.   
If the entry of the current destination does not exist then a routing table entry is 
immediately created. The algorithm of FEP sending is the following:  
 

Algorithm (Send FEP)  
At Each T_interval_secondes Do  
Begin  

Generate a FEP  
If any entry for this destination Then  

Create an entry with uniform probabilities.  
End If  

Broadcast the FEP  
End  

End (Send FEP) 

 
When a FEP arrives to a node i, it checks if the address of the node i is not equal to the 
destination address contained in the FEP agent then the FEP packet will be forwarded. FEP 
packets are forwarded according to the following algorithm:  
 

Algorithm (Receive FEP)  
If any entry for this destination Then  

Create an entry with uniform probabilities.  
ELSE If my_adress ≠ dest_adress Then  

IF FEP not already received then  
Stock address of the current node,  
Recover the available mean delay,  
Broadcast FEP  

ELSE  
Send BEP  

End IF  
End IF  

End (forward FEP) 
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5.2 Backward exploration packet  

As soon as a forward agent FEP reaches its destination, a backward agent called BEP is 
generated and the forward agent FEP is destroyed. BEP inherits the stack and the total delay 
information contained in the forward agent.  We define five options for our algorithm in 
order to reply to a FEP agent. The algorithm of sending a BEP packet depends on the chosen 
option. The five options considered in our protocol are:  

Reply to All: for each FEP reception, the destination a BEP packet is generated. In 
this case, the delay information is not used and the overhead generated is very 
important.  
Reply to First: Only one BEP agent is generated for a FEP packet. The mean delay 
module is not exploited. It’s the same approach used in the AntNet. The overhead 
is reduced but any guarantee to have the best delay paths.  
Reply to N: destination node can generate until N BEP packet for the same FEP. 
The overhead is reduced compared to reply to N but it is more important than the 
Reply to first option.  
Reply to the Best: We save at each node the information of the best delay called 
“Node.Total_delay”. When the first FEP arrives to the destination, 
Node.Total_delay takes the value of total delay of the FEP packet. When another 
FEP arrives, its total delay is compared to the node total delay, and we reply only if 
the FEP has a delay better or equal to the node total delay.  
Reply to delay Constraint: This option focuses on Delay-Constrained-Path (DCP) 
unicast routing. The DCP issue is to select the path with given delay requirement. 
This is the case of real time applications having serious delay constraints. 

Applications needs in term of delay are determined in a max delay supported “D” value. 
Arriving to destination, this one compares FEP total_delay to the application delay_constraint 
“D”. If the FEP total_delay is equal or less than “D” then a BEP is generated and sent to the 
source of the FEP. We give in the following a part of BEP sending algorithm. We focus on 
“Reply to best” option which will be used in simulation part: 
 

Algorithm (Send BEP)  
Select Case Option 

 Case: Reply to All  
....  

Case: Reply to first  
If (First (FEP) ) Then  

…..  
endIf  

Case: Reply to N  
If (N>0) Then  

.......  
endIf  

Case: Reply to Best  
If (FEP.Total_Delay <= Node.Total_Delay) Then  

Genarate BEP  
BEP.Total_Delay=0,  
BEP.dest = FEP.src,  
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Send BEP,  
Node.Total_Delay= FEP.Total_Delay,  

endIf  
Case: Reply to Delay Constraint (D)  
If (FEP.Total_Delay <= D) Then  

......  
End If  

End (Send BEP) 

 
Backward Exploration Packet (BEP) retraces the inverse path traversed by the FEP packet. In 
other words, unlike FEP packets, a BEP packet is sent in a unicast manner because it must 
take the same path of its FEP generator. During its trip, the BEP agent calculates the total 
mean delay of its route and uses this new delay to adjust the probabilistic routing table of 
each intermediate node. The algorithm of forwarding BEP agent is the following: 
 

Algorithm (Receive BEP)  
If (my_adress = BEP.dest) Then  

Update probabilistic routing table  
Else  

Update probabilistic routing table  
Forward BEP  

End If  
End (Receive BEP) 

5.3 Updating routing tables 

Routing tables are updated when a BEP agent is received. The probabilities updating can 
take many forms, and we have chosen updating rules (6), (7), (8) and (9) described in (Baras 
& Mehta, 2003). As soon as, routing table is calculated, data packets are then routed 
according to the highest probabilities in the probabilistic routing tables.  
Unlike on demand routing protocols, there is no guarantee to route all packets on the same 
route because of the proactive exploration. The BEP agent make changes to the probability 
values at the intermediate and final node according to the following update rules: 

 p
fd 
← (p

fd 
+ r) (1+r)  (6)  

 p
nd 
← p

nd
/(1+r)  (7)  

 p
nd 
← p

nd 
– rp

nd  
(8)  

 p
fd 
←p

fd 
+ r (1-p

fd
)  (9) 

In both the above cases, the reinforcement parameter r can be defined as a function of delay. 
Here, r=k /f(c), where k > 0 and f(c) is the cost function (Baras & Mehta, 2003). 

5.4 Flooding optimization  

In order to improve the performance of our routing protocol, we introduce the MPR 
(Nguyen & Minet, 2006) concept in the broadcast process. However, the MPR selection 
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according to native OLSR is unable to build path satisfying a given QoS request. To avoid 
this problem, we propose a new algorithm for MPR selection. We keep at each node a table 
called MPR table containing a partial view of MPR neighbours. Our algorithm takes into 
account the mean delay available at each node. The MPR selection algorithm based on mean 
delay is the same proposed for bandwidth in (Nguyen & Minet, 2006), unlike their approach 
for bandwidth MPR; we define only one kind of MPR which are delay MPR. Mean delay 
MPR selection algorithm is composed of the following steps:  
1. A node N

i 
selects, first, all its neighbours that are the only neighbours of a two hop 

node from N
i
.  

2. Sort the remaining one-hop delay neighbours in increasing order of mean delay.  
3. Consider each one-hop neighbour in that order: this neighbour is selected as MPR if it 

covers at least one two-hop neighbour that has not yet been covered by the previous 
MPR.  

4. Mark all the selected node neighbours as covered and repeat step 3 until all two-hop 
neighbours are covered.  

With the present MPR selection algorithm, we guarantee that paths having best delays will 
be discovered but there are any guarantees about the overhead generated (Ziane & Mellouk, 
2006). 

5.5 Performance evaluation  

We use NS-2 simulator to implement and test AMDR protocol. We present in this section 
two scenarios of simulation. In the first one, we define a static topology of 8 nodes. To 
compare AODV, OLSR and AMDR, we have chosen the Reply to Best option of AMDR. 

5.5.1 Static scenario  

The following table summarizes the simulation environment: 
 

Routing AODV, AMDR, OLSR 

MAC Layer 802.11 

Bandwidth 11Mb/s 

TERRAIN 1000m,1000m 

Nodes 8 

Simulation time 1000 sec 

Data traffic exponential 

Table 1. Simulation settings scenario 1  

We injected three types of traffic in the network and compared for each simulation the file 
trace for each routing protocol. Figure 5 shows the comparison of end to end delay realized 
by AODV, AMDR and OLSR protocols. We can see that, at first OLSR realizes the best 
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delays when AMDR and AODV show a large initial delay, which is required for routes to be 
set up.  
A few times after initialisation stage, AMDR shows more adaptation to changes in the 
network load and realizes the best end to end delay followed by AODV and at last OLSR.  
On the other hand, comparing loss rate performances of the three protocols shows in figure 
6, that OLSR realizes the best performances followed by AMDR and then AODV. AMDR 
performance is justified by keeping alternative paths used when the actual path is broken. 
Any additional delay is need to route waiting traffics and deliverance ratio is well improved 
than AODV. 

 

Fig. 5. Packets delay comparison in static scenario  

 

 

Fig. 6. Comparison of loss rate for static scenario  

From the overhead comparison results, we saw that overhead generated by OLSR was the 
most important followed by AMDR and than AODV. This is justified by the proactive 
exploration process used by AMDR even a route is already established. The difference 
between overhead of AMDR and AODV is not very important because of optimization 
flooding mechanism used in AMDR.  
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5.5.2 Mobility scenario  

In this scenario, we test the impact of mobility on AMDR and compare its performances 
with OLSR and AODV. We define a random topology of 50 nodes. 

Traffic model Exponential 

Surface of simulation 1000m,1000m 

Packets size 512 byte 

Bandwidth 1Mbs 

Rate of mobility 5m /s , 10m/s 

Number of connections 5, 10, 15, 20, 25 

Rate 5 paquets/s 

Simulation duration 500 s 

Table 2. Simulation settings scenario 2  

Table 2 summarizes the simulation setting. We injected at first five traffics, ten, fifteen, 
twenty and at last twenty five traffics. After each simulation we calculate the end to end 
delay realized by each protocol. Figure 7 summarizes our comparison. We can observe that 
with low load, there is no difference in end to end delays. However, more the network is 
loaded more AMDR is better in term of delay. Such performance is justified by the 
adaptation of AMDR to changes in the network load. In the case of AODV and OLSR an 
additional delay is impossible to circumvent for adapting to changes. 

 

Fig. 7. Packets delay comparison for mobility scenario  

Comparing loss rate performance between AODV, AMDR and OLSR, shows in figure 8 that 
both AMDR and OLSR have, in a low loaded network, the same performance when AODV 
realises the best performances. However, in a high loaded network (case of 20 or 25 
connexions), AODV becomes less good than AMDR and OLSR. We justify such results by 
the adaptation of AMDR to load changes when AODV needs more route request function. 
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Fig. 8. Loss rate comparison for mobility scenario 

6. A system based reinforcement learning in packet scheduling 
communications network routing.  

6.1 Problem formulation  

In the dynamic environment the scheduler take the actual evolution of the process into 
account. It is allowed to make the decisions as the scheduling process actually evolves and 
more information becomes available. For that, we consider at each router an agent that can 
make decision. This decision-maker collects information gathered by mobile agents and then 
decides which action to perform after learning the current situation. We will focus on 
dynamic technique and will formulate the packet scheduling problem through several 
routers as a multi-agent Markov Decision Problem (MDP). As Machine learning techniques, 
we use reinforcement learning to compute a good policy in a multi-agent system (Mellouk & 
Hoceini, 2005; Hoceini et al., 2005). Simultaneous decision making in a dynamic 
environment is modelled using multi-agent Markov Decision Processes (MMDPs) 
(Puterman, 2005). However, learning in multi-agent system suffers from several limitations 
such the exponential growing of number of states, actions and parameters with the number 
of agents. In addition, since agents carry out actions simultaneously so they have evolving 
behaviours, transitions are non-stationary. Since centralized MAS may be considered as a 
huge MDP, we work with decentralized system where each agent learns individually in 
environment improved with information gathered by mobile agents.  

6.2 Markov decision processes  

Markov decision problem (MDP) can be used for modelling the interaction of an agent with 
its environment. It is defined as a 4-tuple < S, A, P, r > where S is a finite set of states, A is a 
finite set of actions, P is the transition probability function and r is the reward function. 
Given a state s and an action a, P(s, a, s’) denotes the transition probability of the system to 
state s’ when action a is executed in state s. Hence, the dynamics of the environment can be 
characterized by the transition probabilities. The process is said to be Markovian when the 
transition function depends only on the current state and not on any previously traversed 
states or any previous actions. If the state and action spaces are finite, then it is called a finite 



 
Inductive Approaches Based on Trial/Error Paradigm for Communications Network 

 

345 

Markov decision process (FMDP). The reward function r is defined as a real function r: S x A 
x S → đ, where the scalar reinforcement signal r(s, a, s’) is the reward of taking action a in 
state s and observing state s’ as the next state. A policy π is denoted for a description of 
behaviours of an agent. It is a function that maps the current state s of the system into an 
action. The value of a state s under a policy π is the expected discounted sum of rewards 
obtained following this policy. The action value of a state according to the policy π noted 
Qπ(s, a) is the expected discounted sum of reward obtained by taking action a in state s and 
following policy π. We use the reward as feedback to find an optimal policy π* by iteratively 
refining an initial policy π0.  
In a Markov decision process, the objective of the agent is to find a policy π so as to 
maximize the expected sum of discounted rewards, It has been proved that there exists an 
optimal policy π* such that for any s � S, the following Bellman equation holds: 

  
(10) 

where V(s, π*) is the optimal value for state s. When the transition function is unknown, the 
Q-learning (Watkins, 1989) is one of the algorithms most used to find an optimal policy. In 
Q-learning, Q*(s, a) is the total discounted reward obtained in state s after performing action 
a and following the optimal policy π*. Then, the above equation becomes:  

  
(11)

  

On basis of Q*(s, a) the optimal policy π* can be found by performing an action a in state s so 
as to maximise Q*(s, a).  
The Q-Learning algorithm builds values of Q(s, a) for all s � S and a � A whose initial 
values may be arbitrarily chosen. If the agent, after executing an action a, moves from state s 
to s’ and receives an immediate reward r(s, a), the current Q(s, a) values are updated using 
the following formula:  

  
(12)  

where α, 0≤ α ≤1 is the learning rate. (Watkins & Dayan, 1992) proved that equation (12) 
converges to optimal Q*(s, a). At the end of the learning, an optimal policy π* can be derived 
such as π*(s) = arg max

a 
Q*(s, a).  

6.3 Multi-agent MDPs  

The single MDP and Q-learning are defined for the case where only one action is selected 
with each iteration. In this case the existence of optimal policy π* is guaranteed. 
Nevertheless, the formalism can be extended to problems where multiple actions can be 
carried out simultaneously by several agents (Boutilier, 1999). In this way, we consider n 
agents each one of them having learned the optimal solution from its own MDP. The effort 
of these n agents in individual learning is combined to learn the joint optimal policy of this 
multi-agent MDP.  
We define a multi-agent MDP as 4-tuple (S, A, P, R) where the state space is a subset of the 

joint state space of n agents such that S = S
1 

× ….× S
n 

in which each S
i 
is a discrete state space 

of each agent, the action space is the joint action space of n agents A = A
1 

×…..× A
n 

in which 
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a joint action (a
1
, a

2
, …., a

n
) corresponds to the concurrent execution of the actions a

i 
by each 

agent i. The transition probabilities and rewards are factorial and defined for all states s, s’ � 
S and for all actions a � A respectively as:  

  

 (13) 
 

and R is given by the function R: S × A → đ such that:  

  
(14)  

where r
i
(s

i
, a

i
, s

i
’) is the reward obtained by agent i when it performs action a

i 
in state s

i 
and 

move to state s
i
’.  

However, the multi-agent MDP approach has two disadvantages. The learning is 
centralized, i.e. the task consisting in finding an optimal policy for the group cannot be 
distributed among the agents. Moreover, the need to consider all the joint actions increases 
considerably the complexity of learning, since the size of the space of joint actions grows in 
an exponential way according to the number of agents. We are interested in a decentralized 
MDP with communication where each agent takes into account only its actions but 
considers that all the other agents are part of the environment. The communication is 
governed by mobile agents.  

6.4 Mobile agent  

An important aspect of multi-agent systems is to construct intelligent agent able of 
achieving goals in complex environment. They address specifically the behaviour of the 
agent in its environment changes [Hadeli et al., 2004; Mellouk et al., 2006). Reinforcement 
learning provides a framework of adaptation of the agent’s behaviour according to its 
environment. As mobile agents we consider an ants’ colony. The structure of the model 
identifies two kinds of agents, their responsibilities, and the way they interact. The structure 
consists of a scheduler agent that deals with management of queues on the basis of available 
information (resource capacity) and a resource agent that measures the resource amount 
and gives this information to the scheduler.  
Scheduling in this system is done as follows: Before performing action selection and then 
scheduling the different queues based on their QoS, each scheduler agent sends ants moving 
downstream to control actual situation. They gather information about the availability of the 
resource and then return to the sender agent with the information. On the basis of this 
information the scheduler agent chooses a schedule and sends ants to reserve the needed 
resources by deposing pheromone. After that the scheduler agent regularly sends ants to 
reserve the previously found best resource capacity because if the reservation is not 
refreshed, the pheromone evaporates after a while. From time to time, the scheduler agent 
sends ants to survey the possible new (and better) amount of this resource. If they find a 
better measurement, the scheduler agent reserves the resource that is needed for the new 
schedule and the old reserving information evaporates. Ants are used also to distribute 
information and make their current state known throughout the system. The scheduler 
agent is not restricted to send the ants in one direction only. The ants are sent towards 
various directions which are directly connected with the router containing this scheduler 
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agent. The scheduler agent waits until all the ants arrive back with the gathered information 
and than decides to keep only the ant with the best information, the others terminate. Also, 
each agent sends ants to distribute information about its current state to the other agents. 
Every time an ant arrives at a scheduler agent, it gives a reward according to the 
information that was investigated. This reward is in form of a belief factor which will allow 
each scheduler agent in the multi-agent system to make update on their scheduling policies. 
The belief factor is a function of the synthetic pheromone concentration. It reflects the degree 
of confidence that an agent will consider on the information established by other agents 
from the same cooperating group. The belief factor might be useful in situations where the 
information is not reliable due to changes in the environment. 

6.4.1 Combining pheromone and Q-learning  

At level on each router, the scheduler agent performs a reinforcement learning to schedule 
the service of queues. This scheduling is done by taking account the current state of the 
environment provided by the ant agent. During the learning, the Q-function is updated 
based on the concentration of pheromone in the current state and the neighbour states. The 
used technique combines Q-learning (Sutton & Barto, 1998) with a synthetic pheromone 
introducing a belief factor into the update equation. The formula bellow describes the belief 
factor (Monekosso & Remagnino, 2004):  

  

(15)

  

where Φ(s) is a synthetic pheromone, a scalar value that integrates the basic dynamic nature 
of the pheromone, namely aggregation, evaporation and diffusion. 
where Φ(s) is a synthetic pheromone, a scalar value that integrates the basic dynamic nature 
of the pheromone, namely aggregation, evaporation and diffusion.  

6.5 Proposed model.  

Definition: A decentralized multi-agent MDP is defined as 4-tuple (S, A
i
, P

i
, r

i
), where S is a 

set of all states, A
i 
is the set of all actions of agent i, P

i
: S × A

i → Δ(S) is the state transition 

function where Δ(S) is the set of probability distributions over the set S and r
i
: S × A

i 
× S → đ 

is the individual reward such that r
i
(s, a

i
, s’) is the reward obtained by agent i when it 

performs action a
i 
in state s and move to state s’.  

We define a local policy πi 
for each agent i such that:  

  (16)  

The expected discounted value function of agent i is the following: 

  
(17) 

where  rit is the immediate reward at time step for agent i and γ is a discount factor.  

We consider also Q
i 
as local Q-function, defined for each state-action pair as: 
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  (18) 

The Q-learning update equation adapted to the local decision process according the global 
state space and modified with synthetic pheromone is given by the following formula: 

  

(19) 

where the parameter ξ is a sigmoid function of time periods such that ξ ≥ 0. The value of the 
parameter ξ increases with the number of agents which achieve successfully the current 
task.  

The optimal policy πi,
* for each agent i can be obtained by using the modified formula (11): 

  

(20) 

The effect of one agent’s action depends on the action taken by others or choosing an action 
by an agent may restrict actions that can be selected by others. In this case each agent should 
change its local learned policy in order to achieve a multi-agent global optimal policy. For 
any global state s = (s1, ….., sn) and any joint action a = (a1, …., an), the optimal action value 
function Q*of the multi-agent MDP is the sum of the optimal action value functions 
Qi,*learned by a decentralized multi-agent MDP for each agent. The agents could have 
different estimations on the optimal state-action values according to the environment. These 
estimations wi(s, a) can be computed as: 

  

(21) 

where h
i
(s, a

i
) is the number of estimations’ updates achieved by agent i for (s

1
, ….., s

n
, a

i
) 

and η is an adjustable parameter. So, 

  
(22)

 

When the learning is finished, an optimal policy can be directly derived from the optimal 
action value Q*(s, a) by: 

  

(23) 

6.5.1 Learning algorithm  

The model of the environment’s dynamics, the transition probabilities and rewards is 
unknown in learning of a single agent MDP and consequently the subsequent multi-agent 
MDP. So, the learning of the optimal solution of a problem is done by agents through 
interaction with the environment.  
We describe the global scheduling problem as a multi-agent MDPs in a decentralized 
approach. We derive a multi-agent learning algorithm from traditional reinforcement 
learning method based on Markov decision process to construct global solutions from 
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solutions to the individual MDPs. In this case, we assume that the agents work 
independently by making their trials in the simulated environment. The system state s is 

described by the space state of all agents; an action a
i 
describes which queue is serviced in 

the time slot. Therefore, the goal of scheduling is to find an optimal policy π* such that the 
rewards accumulated are maximized.  
The proposed algorithm converges to the optimal policy and optimal action value function 
for the multi-agent MDP since the difference between standard multi-agent and our 

decentralized multi-agent MDP model is the global states space for each action set A
i 
of an 

agent i. 
The rewards may depend both on the current situation and on the selected action and 
express the desired optimization goal. In our approach, the global action a is a vector of 
single action made by distributed agents each associated with one of the n routers.  
Learning here means iteratively improving the selection policy according to the 
maximization of the global reward. This is done by a Q-learning rule adapted to the local 
selection process (eq. 19). The learning rule relates the local scheduling process of agent i to 
the global optimization goal by considering the global reward R.  

If Q
i 
converges the Q

i,
* predicts if the action a

i 
would be selected next. This action will be 

chosen by a policy greedy.  
In a single-agent learning case, Q-learning converges to the optimal action independent of 
the action selection strategy. However, in a multi-agent situation, the action selection 
strategy becomes crucial for convergence to any joint action. A major challenge in defining a 
suitable strategy for the selection of actions is to make a trade-off between exploration of 
new policies and exploitation of existing policies.  
In our research, we use a Boltzmann distribution (Katanakis & Kudenko, 2002) for the 
probability of choosing an action by each agent. In this strategy, each agent derive a 

scheduling policy from the current value of Q
i 
matrix and then update Q

i 
using the rewards 

from actions chosen by the current scheduling policy according to a probability distribution 

πi
(s, a

i
): 

  

(24) 

where exp is the exponential function and T is a parameter called temperature. The value of 
the temperature determines the possibility for an agent to balance between exploration and 
exploitation. For high temperature, even when an expected value of a given action is high, 
an agent may still choose an action that appears less desirable. In contrast, low temperature 
values support more exploitation, as the agent is more expected to have discovered the true 
estimates of different actions. The three important settings for the temperature are the initial 
value, the rate of decrease and the number of steps until it reaches its lowest limit. This 
lower limit must be set to a value close enough to 0 to allow the learners to converge by 
stopping their exploration.  
In our work, we start with a very high value for the temperature to force the agents to make 
random moves until the temperature reaches a low enough value to play a part in the 
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learning. This is done when the agents are gathering information about the environment or 
the other agents. The temperature defined as a function of iterations is given by: 

  (25) 

where x is the iteration number, s is the rate of decay and T
max 

is the starting temperature.  

In this section we present an algorithm called DEMAL (Decentralized Multi-Agent 
Learning) that uses Q-learning and decentralization on the level of the action. 
 

Algorithm DEMAL  
Repeat  

Initialize s = ( s
1
, ….., s

n
) 

Repeat  
For each agent i  

Choose a
i 
using Boltzman formula  

Take action a
i 
, observe reward r

i 
and state s’  

Q
i
(s, a

i 
)← Q

i
(s, a

i 
)+α{R+γ max [Q

i
(s’, a

i
’) + ξ B(s’, a

i
’)] − Q

i
(s, a

i
)}  

a
i
’  

s ← s’  
until s is terminal  

until algorithm converges 

6.5.2 Approximation  

In this model, we define the optimal policy by using optimal action value function Q*of the 

multi-agent MDP as the sum of the optimal action value functions Q
i,
*learned by a 

decentralized multi-agent MDP for each agent. We can apply this learning algorithm 
directly to solve multi-agent MDP but this method would not be very efficient because of 
the state and action spaces dimension that can be huge since they increase exponentially 
with the number of agents. This increase influences the complexity of the learning algorithm 

since this one depends on the number of states and actions. In tabular methods, Q
i 
values 

were assumed to be stored in lookup tables which can be large since each one depends on 

the number of states and actions. In order to approximate the tabular Q
i 
function, a feed-

forward multilayer neural network like the MLP can be used. Its structure is a three-layered 
model containing an input layer, a hidden layer, and an output layer. The input variables of 

the NN are the states of the system and the set of actions A
i 
for each agent, which have n and 

m dimensions respectively. The output of the network corresponds to the Q
i 
value for the 

current states and actions. Each node in every layer subsequently calculates its activation as 
the weighted sum over its inputs according to: 

  
(26) 
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where x
i 
is the i

th 
input to node j and w

ij 
is the weight of the synapse connecting node i with 

node j from a higher level. A common activation function for MLPs is the sigmoidal function 
which is applied to the hidden layer and which will also be used for our specific 
implementation. 

  (27) 

The technique used to learn the Q-function is the back propagation algorithm [18, 19, 20]. 
The weight update can be expressed by gradient descent, where the weights are added, at 
each iteration by the value of: 

  
(28) 

where η is a small learning rate.  
The network error is backpropagated through the network from output to input space, 
where at each node we aim to match the node’s output o as closely to the target t as possible. 
The network error 

k 
for the output nodes k, can be calculated as: 

  (29) 

For the hidden nodes h 
h 

can be calculated as: 

  
(30) 

The error terms are directly derived from the mean-squared error (MSE) which is defined 
according to formula: 

  
(31) 

The approximate state-action value function Q
i 
is proven to converge to the optimal function 

Q
i,
* (and hence πi 

to πi,
*) given certain technical restrictions on learning rates.  

6.6 Performance evaluation.  

We carried out our evaluation in two stages. The first stage consists to realizing the 
scheduling on level of one router. For that, we just consider in this stage a single agent MDP. 
In the second stage, we solve the whole problem which concerns the optimization of the end 
to end queuing delay through the global scheduling. Hence, we apply our algorithm based 
on the multi-agent MDP in its decentralized version. We start to describe the context of the 
first phase.  
In each router, an agent deals with scheduling N classes of traffic, where each traffic class 
has its own queue q

i
, for i = 1…N. Let q

N 
denote the queue for best-effort traffic, which has 

no predefined delay requirements and R
1
, R

2
,..…,R

N-1 
denote the delay requirements of the 

remaining classes. Let M
1
, M

2
,…,M

N-1 
denote the measured delays of these classes observed 

over the last P packets. We assume that all packets have a fixed size. We consider also that a 
fixed length timeslot is required for transmitting a packet and at most one packet can be 
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serviced at each timeslot. The arrival of packets is described by a Bernoulli process, where 
the mean arrival rate μ

i 
for q

i 
is represented by the probability of a packet arriving for q

i 
in 

any timeslot. Our goal is to learn a scheduling policy that ensures M
i 
≤ R

i 
for i=1,…,N-1. For 

the simulation, we used a three queue system that is Q
1
, Q

2 
and the best effort queue and the 

parameters of this simulation are given in table 3. We have considered two cases according 
to the availability of resource. For investigating the case where the output link capacity of 
the router is sufficient we assume that this capacity is 500 Kbps. In this case, a sufficient 
amount of capacity is provided for each queue so our algorithm satisfied the mean delay 
requirements for Q

1 
and Q

2 
(see fig.9). We have also observed that our approach requires 1.5 

x 10
4 

timeslots in terms of convergence time. In the second scenario (table 4) we consider the 
case where the output link capacity of the router is small and equal to 300 Kbps. The result 
of this case is shown in fig. 10. We observe that an allocation of a share of the available 
bandwidth is given to the delay-sensitive class Q

1 
and then to Q

2 
and the best effort queue. 

This is carried out on the basis of information gathered by a mobile agent. Also, ε = 0.2; γ = 
0.5.  
In the second part of our evaluation, we consider a network with several routers connected 
to each other like in (Bourenane et al., 2007). We introduce also the mobile agents to gather 
and distribute necessary and complete information in order to help the agents to update 
their knowledge of the environment. The figures 10 and 11 show that in both scenarios, the 
presence of mobile agents provides a better queuing delay for all routers. 

 

Queue 
Arrival Rate 

(packets/timeslo
t) 

Mean Delay 
Requirement 

eBi 
Kbps 

Q
1
 0.30 8 64 

Q
2
 0.20 2 128 

BE 0.40 Best-effort Best-effort 

Table 3. Simulation Parameters: Scenario 1 

 

Queue 
Arrival Rate 

packets/timeslot 
Mean Delay 
Requirement 

eBi 
Kbps 

Q
1
 0.30 4 128 

Q
2
 0.20 6 256 

BE 0.40 BE BE 

Table 4. Simulation Parameters: Scenario 2 
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Fig. 9. Mean Delay for three classes 

 

Fig. 10. Average throughput of three queues 

 

Fig. 11. Average queuing delay (scenario 1) 
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Fig. 12. Average queuing delay (scenario 2) 

7. Conclusion  

Due to the growing needs in telecommunications (VoD, Video-Conference, VoIP, etc.) and 
the diversity of transported flows, communication networks does not meet the requirements 
of the future integrated-service networks that carry multimedia data traffic with a high QoS. 
The main drivers of this evolution are the continuous growth of the bandwidth requests, the 
promise of cost improvements and finally the possibility of increasing profits by offering 
new services. First, it does not support resource reservation which is primordial to 
guarantee an end-to-end Qos (bounded delay, bounded delay jitter, and/or bounded loss 
ratio). Second, data packets may be subjected to unpredictable delays and thus may arrive at 
their destination after the expiration time, which is undesirable for continuous real-time 
media. In this context, for optimizing the financial investment on their networks, operators 
must use the same support for transporting all the flows. Therefore, it is necessary to 
develop a high quality control mechanism to check the network traffic load and ensure QoS 
requirements. It’s clear that the integration of these QoS parameters increases the 
complexity of the used algorithms. Anyway, there will be QoS relevant technological 
challenges in the emerging hybrid networks which mixed several different types of 
networks (wireless, broadcast, mobile, fixed, etc.).  
QoS management in networking has been a topic of extensive research in a last decade. As 
the Internet network is managed on a best effort packet routing, QoS assurance has always 
been an open issue. Because the majority of past Internet applications (email, web browsing, 
etc.) do not used strong QoS needs, this issue is somewhat made less urgent in the past. 
Today, with the development of internet real-time application and the convergence of voice 
and data networks, it is necessary to develop a high quality control mechanism to check the 
network traffic load and ensure QoS requirements. Constraints imposed by QoS 
requirements, such as bandwidth, delay, or loss, are referred to as QoS constraints, and the 
associated routing is referred to as QoS routing which is a part of Constrained-Based 
Routing (CBR).  
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Several methods have been proposed to integrate QoS constraints and to reduce their 
complexity. However, for a network node to be able to make an optimal routing decision, 
according to relevant performance criteria, it requires not only up-to-date and complete 
knowledge of the state of the entire network but also an accurate prediction of the network 
dynamics during propagation of the message through the network. This problem is 
naturally formulated as a dynamic programming problem, which, however, is too complex 
to be solved exactly. Reinforcement learning (RL) is used to approximate the value function 
of dynamic programming. In these algorithms, the environment is modeled as stochastic, so 
routing algorithms can take into account the dynamics of the network. However no model 
of dynamics is assumed to be given.  
The second part of this chapter was devoted the study of our system based on reinforcement 
learning for different network communication domains.  
First of all, we have focused our attention in some special kind of Constrained Based 
Routing in wired networks which we called QoS self-optimization Routing. Our algorithm 
is based on a multi-path routing technique combined with the Q-Routing algorithm and is 
tested for improving distribution of traffic on N-Best paths. The learning algorithm is based 
on founding N-Best paths in term of hops router and the minimization of the average packet 
delivery time on these paths. The performance of our algorithm is evaluated experimentally 
with OPNET simulator for different levels of traffic’s load and compared to standard 
optimal path routing algorithms. Our approach prove superior to a classical algorithms and 
is able to route efficiently in networks even when critical aspects are allowed to vary 
dynamically. The fact that the reinforcement signal is continuously updated, parameter’s 
adaptation of our system take into account variations of traffic.  
Secondary, we study the use of reinforcement leaning in AMDR algorithm in the case of 
Mobile Ad Hoc Networks. It is shown from simulation results that combining proactive 
exploration agents with the on-demand route discovery mechanism, the AMDR routing 
algorithm would give reduced end-to-end delay and route discovery latency with high 
connectivity. This is ensured because of the availability of alternative routes in our 
algorithm. The alone case where our approach can provide more important delay is the first 
connection where any route is yet established. On the other hand, the use of delay-MPR 
mechanism, guarantees that the overhead generated will be reduced.  
In the last part, we address the problem of optimizing the queuing delay in several routers 
of a network, through a global packet scheduling. We formulated this problem as a multi-
agent MDP and used the decentralized version since multi-agent MDPs usually have huge 
state and action spaces (because they grow exponentially with the number of agents). This 
decentralized MDP is improved by ant-like mobile agent on the level of each router to 
guarantee a global view of the system’s state. We presented a modified Q-learning 
algorithm in the decentralized approach. Our simulation shows that the proposed approach 
leads to better results than when the multi-agent system acts alone.  
Finally, extensions of the framework for using these techniques across hybrid networks to 
achieve end-to-end QoS needs to be investigated, in particular on large scalable networks. 
Another challenging area concerns the composite metric used in routing packets (especially 
residual bandwidth) which is so complex and the conditioning of different models in order 
to take into account other parameters like the information type of each flow packet (real-
time, VBR, …).  
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1. Introduction 

In the transportation research area, activity and travel modes are critically important 
information, based on which the transportation demand/status are simulated or predicted. 
Once the sequential activity-travel combination is known, such as for instance Sleep-Eat-car-
Work-Eat-Work-car-Eat-bike-Shop-bike-Leisure-bike-Sleep, it is meaningful to observe how 
a learning agent can allocate time and location information for given activity-travel pattern 
combinations in a reasonable way. Also interesting to observe is how it reacts when it is 
thrown off its optimal arrangement because of some unforeseeable events, such as for 
instance a traffic jam. Given a constrained environment, we simulate and look into a 
learning agent’s behavior under the framework of Reinforcement Learning (Mitchell, 1997; 
Sutton & Barto; 1998), which is in fact a synonym for learning by interaction (Kaelbling, 
1996). More specifically, the vector <activity, starting time, duration, location> denotes the  
agent’s current state, where duration indicates how long the agent has spent on the current 
activity. There are two actions available for each state: Stay (continue current activity for  
another time slot at the same location) or Move (travel to a possible location where the agent 
starts to perform the next activity in the pattern). At each state, the agent will receive a 
reward from the environment when any possible action is chosen. By accumulating this 
reward information that it obtained from its trial and error search in the state space, the 
agent finally gets the optimal/satisfactory time and location arrangement. Previous research 
work in this area generally deals with only one of these two allocation problems: they either 
focus on the time planning of the activity patterns (Charypar et al., 2004), or search the 
shortest path in a dynamic programming way (Dijkstra, 1959). In reality, however, a rational 
person will consider the time and location arrangements simultaneously in order to achieve 
a total maximal reward. To the best of our knowledge, it is the first time that both problems 
are integrated and solved using Reinforcement Learning. 
Reinforcement Learning goes back to the very first stages of Artificial Intelligence and 
Machine Learning and has several applications in the domain of Intelligent Knowledge 
Engineering Systems. Indeed, the applications of reinforcement learning are situated in the 
basic roots of artificial intelligence, such as for instance game playing (Littman, 1994; esauro, 
1992, 1994; Thrun, 1995) and robotics (Mahadevan & Connell, 1992; Schaal, 1994). However, 
there are also numerous other application domains such as for instance in elevator 
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dispatching (Crites & Barto, 1996; Barto & Sutton, 1981), production scheduling (Schneider 
et al., 1998), but also in a transportation-related context such as in intelligent lane selection 
(Moriarty, 1998) for achieving a higher traffic throughput. Within an activity-based 
framework, the reinforcement learning technique has been first applied by Arentze and 
Timmermans (Arentze & Timmermans, 2003) in the context of learning and adaptation, and 
only recently by Charypar et al. (Charypar et al., 2004; Charypar & Nagel, 2005) in a time 
allocation problem. 
The current paper elaborates this latter approach by not only focusing on an optimal time 
allocation solution, but also on the allocation of location information. Furthermore, the time 
and location allocation problem were treated and integrated simultaneously, which means 
that the respondents’ reward is not only maximized in terms of minimum travel duration, 
but also simultaneously in terms of optimal time allocation. With respect to the allocation of 
location information, the travel time between two locations (origin and destination 
locations) is used and is made dependent on the transport mode that has been chosen for 
travelling from one location to another. Indeed, travel durations between two locations are 
obviously not equal over different transport modes, so it is warranted to take this dimension 
into account. 
The remainder of this paper has been organized as follows. The basic conceptions of 
reinforcement learning are elaborated in section 2, along with the introduction to Qlearning, 
one of the popular algorithms to realize reinforcement learning. In section 3, we will detail 
by means of artificial examples how Q-learning can be applied to the time and location 
allocation problem respectively, which will help us improve the understanding of 
reinforcement learning. Section 4 illustrates characteristics and results of activity-travel 
patterns being optimized in a more realistic environment. Finally, concluding remarks are 
given in section 5. 

2. Reinforcement learning 

Under a constrained environment, the learning agent can perceive a set S of distinct states, 
which are normally characterized by a number of dimensions, and has a set A of actions to 
perform at each state. Reinforcement learning tasks are generally treated in discrete time 
steps. At each time step t, the agent observes the current state st and chooses a possible 

action to perform, which leads to its succeeding state st+1=δ (st, at). The environment 
responds by giving the agent a reward r(st, at). These rewards can be positive, zero or 
negative. It is probable that these preferable rewards come with a delay. In other words, 
some actions and their consequential state transitions may bring low rewards in short term, 
while it will lead to state-action pairs later with a much higher reward. On the contrary, an 
action in a given state may receive an immediate high reward, whereas it makes the agent 
enter into a path where a series of actions followed, have very low or even negative 
rewards. 

Therefore, the task of the agent is to learn a policy π : S→A, according to which the agent 

will achieve the maximal accumulative reward over time. Given an arbitrary policy π from 
an arbitrary state st, the accumulative reward can be formulated as follows: 
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γ∈[0,1] is the discount factor and it also determines the relative value of immediate versus 
delayed reward, which indicates how far the agent looks into the future. The agent only 

considers the immediate reward if γ is set at zero. A parameter γ close to one means that 
rewards in the far future are given greater emphasis relative to the immediate rewards. 

Now the agent is required to learn the optimal policy π* (s) that maximizes the accumulative 
reward: 

 

We refer to the optimal value function Vπ* as V* for the sake of simplicity. Given a state s, the 
formula above can be extended with the immediate reward explicitly displayed, which 
indicates that the optimal action a at current state s should maximize the immediate reward 

r(s, a) plus the value V*(s) of the succeeding state, discounted by γ : 

 

where δ (s, a) denotes the resulting state after action a is performed at state s. 

2.1 Q-learning algorithm 

It is natural to choose V* as the evaluation function in order to let the algorithm determine 
the state and action pairs that optimize V*. Unfortunately, it is required that the perfect 

knowledge of immediate reward function r and state transition function δ are known in 
advance. When the agent has learned through trial and error the reward and state transition 
pairs responded by its environment at any state, it is able to calculate the optimal action a at 
any state s. 
In reality, however, it is usually impossible for the agent to predict in advance the exact 
outcome of applying an arbitrary action to an arbitrary state. In other words, the domain 
knowledge is probably not perfect. Q-learning (Watkins, 1989; Watkins & Dayan, 1992) is 
then devised to select optimal actions even when the agent has no knowledge about the 
reward and state transition functions. It employs the novel evaluation function Q(s, a) as 
follows 

  (1) 

Then π*(s) and V*(s) in terms of Q (s, a) can be revised as: 

 

Taking into account equation (1), this gives 

  (2) 

The recursive definition of Q(s, a) enables Q-learning algorithm to iteratively approximate 

Q- values. Q̂  is referred as the agent’s estimate of the actual function Q. The Q-learning 

algorithm maintains a large table with entries to each state-action pair. For each entry, the 

value of Q̂  (s,a) is stored and initially fulfilled with a random number. The agent 
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repeatedly observes its current state s, chooses a possible action a to perform, and 

determines its immediate reward r(s, a) and resulting new state δ (s, a). The Q̂  (s,a) value is 

then updated according to the following rule: 

  (3) 

That is to say, the Q̂  -value of current state-action pair is refined based on its immediate 

reward and the Q̂  -value of its next state. After the Q-values of state-action pairs are well 

estimated by Q-learning algorithm, the agent can reach a globally optimal solution by 
repeatedly selecting the action that maximize the local values of Q for current state. The 
actual learning process can be described as follows (Charypar et al., 2004): 
1. 1. Initialize the Q-values. 
2. 2. Select a random starting state s which has at least one possible action to select from. 
3. 3. Select one of the possible actions. This action leads to the next state s’. 
4. 4. Update the Q-value of the state action pair (s, a) according to the update rule above. 
5. 5. Let s = s’ and continue with step 3 if the new state has at least one possible action. If 

it has none go to step 2. 

2.2 Explore vs exploit 

The 2nd step in the learning process does not specify how actions are chosen by the learning 
agent. In each state the agent basically can choose from two kinds of behavior: either it can 
explore the state space or it can exploit the information already present in the Q-values. By 
choosing to exploit, the agent usually gets to states that are close to the best solution so far. 
Because of this, it can refine its knowledge about that solution and collect relatively high 
rewards. On the other hand, by choosing to explore states that are further apart from the 
current best solution, it is possible that it discovers a solution that yields higher rewards 
than the one already known. The strategy above is similar to the local and global search in 
most known optimization algorithms. 
It is common in Q-learning to use a probabilistic approach to selecting actions. One 
straightforward strategy is ε-greedy method, where the probability of making a random 
choice is handled by the parameter ε. In every step, with a probability of 1-ε, the agent 
exploits the information stored in the Q-values, and with probability ε the agent chooses a 
random action in order to explore the state space. 
In the exploration mode, the ε-greedy method assumes equal selection probabilities across 
possible actions, whereas the chance of selecting a better action may be increased by taking 
the current value distribution across alternatives into account. A commonly used method 
assumes a Boltzmann distribution and selects action a with probability: 

 

where ε is a parameter usually called the temperature. The higher the temperature, the more 
evenly probabilities are distributed across alternatives and, hence, the higher the system’s 
tendency to explore (Arentze & Timmermans, 2003). As the temperature decreases, the 
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system assigns increasingly higher probability to the highest valued action, and, hence, the 
lower the tendency to exploit. The value of the temperature parameter (as well as ε) might 
be a function of time rather than a constant. Then, the system can simulate a tendency to 
increase exploration in new environments and decrease this tendency as experience is 
accumulating. 
There are two other possible ways of influencing the system’s tendency to explore. First, the 
choice of the initial value for the value function is relevant. When initial values are set to a 
high level relative to what can be expected, the system will, even for ε = 0 (in the greedy 
method) or low temperature (in the Boltzmann method), display a high rate of exploration 
in an early stage. Second, the system may incrementally update an aspiration level (under 
each state) and switch to an exploration mode each time the currently best alternative 
(under the concerned state) drops below the aspiration level. 

The reinforcement learning is a Markov decision process (MDP), where the functions δ (s, a) 
and r(s, a) depend only on current state and action-pairs. In our application, we will restrict 
ourselves to a discrete MDP, for a discussion of a continuous MDP and for more examples, 
we refer to (Mitchell, 1997). The Q-learning algorithm will converge under two conditions 
(Watkins & Dayan, 1992). First, the immediate reward is bounded, i.e. there exist some 
positive constant c such that for all state action pairs, |r(s, a)|< c. The second condition is 
that the agent selects actions in such a fashion that it visits all possible state-action pairs 
infinitely often. Both conditions were met in the experimental results shown in the 
remainder of the paper. 

3. Time and location allocation for activity and travel combinations 

In this section, a hypothetical example has been presented to improve the understanding of 
Q-learning. A similar example has been presented and explained in Charypar et al. (2004), 
which is repeated here for the sake of clarity. The behavior of the Q-learning algorithm is 
first explained with respect to the time allocation problem; location allocation is dealt with 
subsequently. The integration of time and location allocation in a more realistic environment 
is treated in the next section. 

3.1 Time allocation by means of Q-learning 

3.1.1 Assumptions 

For this first application and for the sake of clarity, the presence of travel modes has been 
ignored in the fixed sequence of activities. There are a number of other simplifying 
assumptions which are made to better understand the behaviour of the agent: 

• Fixed order of only 4 activities (1 sequence), i.e.: Home – Work – Shop – Leisure 

• Time of the day is discretized with a course time slot of 6 hours. The time structure is 
assumed to be periodic, i.e. 24:00 P.M. is connected to 0:00 A.M.. The duration of each 
activity is restricted to 12 hours in order to keep the number of state finite. 

• A state s is characterized by the activity, starting time of activity and duration (time 
already spent at activity), and denoted as a triple (a, s, d). 

• For a state s, an action may be to Stay (‘S’) at the current activity for another time slot or 
to Move (‘M’) on to perform the next activity. 

• No travel time between two activities (ignorance of travel modes) 
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• Parameter setting: Learning rate α = 1; Discounting factor γ =0.8; ε =1 (ε -greedy method 

applied). For purely discrete worlds, α can be safely set equal to 1. The reason is that 
since the system is discrete and finite, the trajectory eventually needs to come back to a 
state where it was before. Once this point has been reached, the system will do exactly 
the same as in the previous “round”. A learning rate of 1 will then lead to the most 
optimal and fastest learning. The agent should not only be interested in immediate 
rewards, but in the total discounted reward. As mentioned before, the discounting 

factorγ defines how much the expected future rewards, affect decisions now. High 

γ means that potential future rewards have a major influence on decisions now – and 
that one is willing to trade short-term loss for long-term gain. While this value can be 
chosen arbitrarily, it should be close to 1 since we are interested in finding the daily time 
plan that maximizes the reward. The chosen value has an impact on the learning speed 
of the algorithm, which is of less importance for the application framework that is 
presented in this paper. More information can be found in Watkins & Dayan (1992). 

In addition to these assumptions, reward tables are artificial and extremely simple, as 
shown in Table 1. 

 

 

Table 1. An example of a simple reward table for activities 

It can be seen from Table 1, that the reward of working 0 hours is 0 and is independent of 
the starting-time of the work-activity. Arriving at work at 6:00 A.M. gives somebody a 
reward of 3 (units) at the moment he/she is working for 6 hours (i.e. from 6:00 A.M. - 
12:00A.M.) or a reward of 5 (units) at the moment the person is working for 12 hours (i.e. 
from 6:00 A.M. - 6 P.M.). Arriving at work later than 6 A.M. gives no reward at all. The 
reward tables for home, shop and leisure are similar. 

3.1.2 Evolution of Q-values and state-action pairs 

Let us now reconsider the Q-learning algorithm. Since α = 1 and γ = 0.8, the update rule for 

our simple example is equal to . In the first step of the 

learning process, all the Q-values of every state-action pair are set equal to zero. Next, a 
random starting state s will be chosen, which has at least one possible action to select from. 
In our example, the starting state may be equal to (Work, 0:00 A.M., 6 hours). The third step 
selects one of the possible actions, which will bring us to the next state s’. Because the 
exploration probability was set maximal, i.e. ε =1, the agent will always randomly choose an 
action in order to explore the state space in an attempt to find a new, better solution than the 
one already known. (On the contrary, when ε =0, the agent will choose the action that has 
the largest Q-value so far.) Suppose the agent randomly chooses to Move on the next 
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activity. The next state turns to be (Shopping, 6:00 A.M., 0 hour). According to the update 
rule in step 4, the updated Q (s, a) = Q (Work, 0:00 A.M., 6 hours; Move) is still equal to 0 
since both the immediate reward and the maximal Q-value of its next state-action pairs are 
zeros. 
Table 2 shows the states that have been visited by the agent in every loop, while Table 3 
illustrates the progress of the Q-values for every state-action pair during the execution of the 
algorithm. 

 

 

Table 2. Visited states per loop (Numbers denote the loop number) 

In the final loop, the state s will be set equal to the state (Shopping, 6:00 A.M., 0 
hours). In this artificial example, no travel time has been taken into account. It should 
be noted that in a realistic scenario, the start time of state s’ should thus be 
augmented with the travel time which is needed to get from state s to state s’. For 
now, the algorithm continues with loop 2, which starts again at step 3 of the 
algorithm procedure. The Q-values stay equal to zero until the 5th loop. In this loop, 
the action is Stay, which will bring the agent to the state (Leisure, 6:00 P.M., 6 hours) 
and a 3-unit immediate reward. It is worth mentioning that the immediate rewards 
are given as “utility per time slice”, which corresponds to a coarse version of 
marginal utility. Also interesting to observe is for instance the 23rd loop, where the 
agent chooses to stay for another 6 hours when it has already been home for 6 hours 
(start from 6:00 P.M.). The immediate reward is calculated as 0 – 1 = -1, which means 
that the agent feels unworthy if continues to Stay. The 24th loop is the first where the 
Q-values of its next state-action pairs are non-zeros. The immediate reward is equal to 
0, but the second part of the update rule looks at the latest updated Q-value for every 
state-action pair, takes the largest Q-value over all the actions and multiplies this by 
the discounting factor. In this case the latest updated Q-value for the state-action pair 
(Work, 6:00 A.M., 0 hours; Stay) is 3 (see loop number 9) and for (Work, 6:00 A.M., 0 
hours; Move) it is 0 (initialization). For this reason, the updated Q-value of the 24th 
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loop is equal to = 0 + 0.8 * Max (3, 0) = 2.4. The computation for the other loops is 
similar (see Table 3). 

 

Table 3. Q-values and state-action pairs 

3.1.3 Optimal time allocation 

The learning procedure continues until each state-action pair has been visited for a sufficient 
large number of times and until the corresponding Q-value converges. Then at each state, 
the agent chooses the action that achieves a maximal Q-value, which means that an optimal 
policy chart can be constructed as shown in Table 4. Starting from an arbitrary state, the 
policy will finally guide the agent to its stable and optimal time planning within a day: 

 

 

Table 4. Policy Chart for iterations going to infinity 
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For instance, the algorithm will first choose a random start state. Let’s say (Shop, 0:00 
A.M., 6 hours). The corresponding action in the policy chart is Stay. As a result, the 
next state is equal to (Shop, 0:00 A.M., 12 hours). According to the policy chart, the 
agent chooses to Move (since the maximal duration for each activity is 12 hours), and 
comes to the next states (Leisure, 12:00 A.M., 0 hours). Carrying out the policy in 
Table 4, the agent sequentially arrives at (Leisure. 12:00 A.M., 6 hours), (Leisure, 12:00 
A.M., 12 hours), (Home, 0:00 A.M., 0 hours), (Home, 0:00 A.M., 6 hours), (Work, 6:00 
A.M., 0 hours), (Work, 6:00 A.M., 6 hours), (Shop, 12:00 A.M., 0 hours), (Shop, 12:00 
A.M., 6 hours), (Leisure, 6:00 PM, 0 hours) and (Leisure, 6:00 PM, 6 hours). Next the 
agent will Move again to the state (Home, 0:00 A.M., 0 hours), thus forming a cycle 
within a day, which is the same as the optimal time planning above. It can be seen 
from the policy chart that an arbitrary start state, such as (Leisure, 0:00 A.M., 6 hours) 
or (Home, 6:00 A.M., 12 hours), will ultimately lead to the same optimal solution. 

3.1.4 Discussion 

Finally, some remarks need to be made with respect to the use of the Q-learning 
algorithm to solve the time allocation problem. First, cycles can also be multiples of 
24 hours. For example, an agent can have one full day where it gets up early and goes 
to bed late, alternated with a less full day where it gets up later and goes to bed 
earlier. Second, an interesting side-effect of the structure of Q-learning is that the 
result of the computation is not only the optimal “cycle” through state space, but also 
the optimal “paths” if the agent is pushed away from the optimal cycle. For example, 
if an activity takes considerably longer than expected, the Q-values at the arrival state 
will still point the way to the best continuation of the plan, as shown in the example 
above. Third, it is possible that some of the Q-values do not converge when their 
state-action pairs have not been sufficiently visited. Then the agent will nevertheless 
find a cycle, albeit possibly not the optimal one. In reality, it may be time consuming 
to visit each state-action pair infinitely in a huge state space with many possible 
actions, which pushes the agent to a tradeoff between the learning time and solution 
quality. 

3.2 Location allocation by means of Q-learning 

Consistent with the time allocation problem, location allocation can also be solved by 
means of Q-learning. For this purpose, it is assumed that people try to 
maximize/minimize the reward/cost of its travel in total. 
Travel distance may not be an optimal measure for determining the burden of travel 
because it is plausible in a realistic situation that the distance between location A and 
location B is shorter than the distance between location A and C, while the travel time 
may be longer (for instance because of a better road network). Furthermore, it is 
possible that there is a difference in the transport mode that is used. 
Translated into a context of Q-learning, the agent learns to find a travel policy that 
achieves maximal reward/minimal cost. It is assumed that the immediate reward of 
traveling between two locations depends upon the travel mode, and has a negative 
correlation with travel time. 
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3.2.1 Assumptions 

Again, consider a simple example with the following simplifying assumptions to better 
understand the behaviour of the decision agent: 

• One activity-travel sequence: Home – public transport – work – walk – leisure – walk – 
shop – public transport – Home. 

• A state is characterized by the activity and current location, and is denoted as (a, l). 

• For a state, an action is to choose the location where the agent can perform the next 
activity in sequence. Activities can be carried out in a limited number of locations: 
Home : Location A 
Work : Location B 
Leisure : Location C or D 
Shop : Location E or F 

• Only the rewards that come from travel are learned to be maximized. 

• Parameter setting: Learning rate α = 1; Discounting factor γ = 0.9; ε =1 (ε -greedy 
method applied). 

In addition to these assumptions, reward tables are artificial and extremely simple, as 
shown in Table 5. 

 

Table 5. An example of a simple reward table for travel 

3.2.2 Evolution of Q-values and state-action pairs 

Taking these simplifying assumptions into account, Home and Work can only be carried out 
at location A and B. It is obvious that the agent only has to decide about the location of 
Leisure and Shop activities, and each of them has two possible choices. The remainder of 
this section illustrates the learning procedure of the agent. 
After all state-action pairs are initialized as zeros, a random state s will be chosen. It should 
be recalled that the state is defined by an activity and an origin location. Assume that the 
agent first visits state (Work, B). In the third step of the learning procedure, the agent 
chooses a random action in order to explore the state space in an attempt to find a better 
solution than the one already know. Let us assume that action (destination) C has been 
chosen to perform the next activity Leisure. The travel mode lies on the sequence and here is 
walk. The updated Q (Work, B; C) thereby equals -8 + 0.9 * max (Q (Leisure, C; E), Q 

(Leisure, C; F) = -8. Assume that the agent selects to walk to E for Shop when it is at the new 
state (Leisure, C), Q (Leisure, C; E) turns to be -10 + 0.9 * max (Q (Shop, E; A)) = -10. As 
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shown in Table 6, the agent visited these states sequentially. These actions at each state and 
their corresponding updated Q-values are demonstrated in Table 7. 

 

Table 6. Visited states per loop 

 

 

Table 7. Q-values and State-action pairs 

3.2.3 Optimal location allocation 

The Q-values tend to converge when each state-action pair has been visited for a sufficient 
large number of times. Then at each state, the agent chooses the optimal action that achieves 
maximal Q-value, thus constructing a policy (chart), as shown in Table 8. 

 

Table 8. Policy chart for iterations going to infinity 

The optimal location allocation for this sample sequence is thus equal to: 
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Home (A) – public transport – Work (B) – walk – Leisure (D) – walk – Shop (E) – public 
transport – Home (A)… 
 
According to these stored Q-values of each state-action pair, the agent know how to react 
properly back to the optimal path when something unforeseeable happens. For instance, 
when location D for Leisure is not available today, the agent carries out Leisure at location C 
instead. Making use of its Q-values information about its two choices at location C, the agent 
wisely selects F as the location for Shopping. Next, it moves back Home at location A and is 
situated on the optimal path again. 

4. Empirical results 

4.1 Optimizing activity-travel pattern allocations 
4.1.1 Preface 

The previous two sections have independently considered time and location allocation in an 
artificial environment. In reality, however, the reward function will be more complex, there 
may exist a more refined time granular; an abundant number of locations may be available 
for a certain activity, and the distribution of these locations may be more disarrayed. 
Because of this, it becomes not so straightforward in the planning of time or locations. 
Furthermore, people will simultaneously take the time and location arrangements into 
account in order to get a maximal reward in total. It is recalled that the reward of daily 
activities depends upon the duration as well as start time, people will not simply endeavor 
to obtain an optimal route for travel, since such a route design may not be perfectly suitable 
for the time arrangement of daily activities. On the other hand, when people allocate time 
for activities, they have to consider the flexible travel times since a number of locations are 
available for the next activity. The time and location arrangements are therefore interacted. 

4.1.2 Assumptions 

We will integrate the two problems under the framework of Q-learning in a more realistic 
environment, which can be described as follows: 

• The elements of sequences are limited to four kinds of activities (i.e. Home, Work, Shop 
and Leisure) and four kinds of travel modes (i.e. walk, bike, car and public transport). 

• Time of the day is discretized with a refined time slot of 15 minutes, and the maximal 
duration of each activity is 12 hours. 

• A state s is characterized by activity, starting time of activity, time already spent at 
activity (duration) and the origin location where the activity is performed. 

• For a state s, an action a may be to Stay: keep performing the activity at current location 
for another time slot, or to Move: move to a possible location where it starts to perform 
the next activity. The travel mode the agent uses to reach these locations is determined 
by the sequence. 

The reward functions of these four activities are illustrated in Figure 1 by means of example.  
Probably the best way to derive these reward tables in reality is to conduct elaborated stated 
preference experiments that are able to quantitatively assess the reward that people 
experience per start time and per time unit that was spent per activity. As a second-best 
alternative, one may use the frequency information per time frame which is available in the 
activity diaries as an approximation for the rewards. While frequency is certainly not a 
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synonym for reward, the idea might work fairly well if we have a look at the purpose of our 
experiment. In our application, the aim is to come up with a time allocation (per activity), 
that corresponds best with the information that is present in the data. Obviously, some 
direct relationship is needed between the model and the data to achieve this. So, even 
though people may not like it to get to work at 7 A.M. (and may report a low reward in a 
realistic situation), the learning model will assign a lot of activities starting at that point in 
time if this happens frequently often in the data. However, the frequency information 
cannot be used entirely without any modification. A simple example can illustrate this.  
 

 

 

 

Fig. 1. Reward tables 

Suppose that somebody has reported to have end sleeping at 3.15 A.M. and that the time 
that he/she was already sleeping was 15 minutes. The reward table that is defined by a 3.00 
A.M. starting time and a 15 minute duration, needs be incremented by 1 unit. However, 
assume now that a second person reported to have ended sleeping at 4.00 A.M. and that the 
time that he/she was already sleeping was 60 minutes. Now, in this case, not only the 
reward table that is defined by a 3.00 A.M. starting time and a 60 minute duration needs to 
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be updated, but the 15-, 30- and 45-minute interval needs to be updated as well. A simple 
program has been established to automate these kind of conversion procedures for the 
frequency information that is present in the data. This may result in a reward function that 
looks like Figure 1 where for instance starting to work for 15 minutes at 2:00 A.M. brings a 
negative reward. However, the agent has a much higher reward if it starts to work at 8:00 
A.M. for the same duration. Additionally, assuming that the shop is only available between 
8:00 A.M. – 8:00 P.M., the agent will acquire no reward if it starts to shop at 6:00 A.M. or 
continues to shop at 11:00 P.M. 
With respect to location allocation, 100 locations were collected in a city and we recorded 
the distances among them. These locations are graphically illustrated in Figure 2, by 
applying the multi-dimensional scaling (MDS) technique (Johnson & Wichern, 1998). Of 
these 100 locations, 20 locations are available for Shopping, and 15 for Leisure. For each 
person, there is only one location available, both for Home and for Work. 

4.1.3 Reward/cost function 

For each travel mode, the travel time among these locations are logged. It is assumed that 
the reward/cost function in term of travel time is as follows: 

Reward (t ) = −c *(b*t)a 

,where c is identical for all travel modes and is applied to easily control the relative 
importance of travel compared with daily activities. The parameters b and a are specifically 
set for each travel mode in order to respectively dominate the range of reward and its 
evolution trend. 

 

Fig. 2. Location distribution 
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The setting of these parameters are shown in Table 9 and their corresponding curve is 
depicted in Figure 3. 

 

Table 9. Parameter setting for reward functions of each travel mode 

 

Fig. 3. Reward function curves of each travel mode 

In such a complicated environment, it is required for the learning agent to look far into the 

future in order to find a good daily plan of time and locations. The discounting factor γ is set 
at 0.99, which is close to one and makes the learning procedure harder to converge. The ε -  
greedy method that was explained before is adopted and ε is set as 1 in order to explore the 
state space sufficiently. 
Due to the use of discrete time intervals, the starting time of activity is calculated as the 
ending time of previous activity plus, instead of real travel time, the minimal number of 
time slots that contains the travel time. It is expected that this adaptation causes trivial 
influence because of the small time granular. 
Furthermore, the discount per time slot should be the same during the learning procedure. 

As a result, the discount factor is equal to γm if it takes the agent m time slots to travel to the 
next location. 

4.1.4 Empirical results 

Three sequences were dealt with in this paper by means of example: 
1. Home – car – Work – car – Shop – car – Leisure – car – Home 
2. Home – public transport – Work – public transport – Home – bike – Leisure – bike – Shop – 

bike – Home 

3. Home – public transport – Work – walk – Leisure – walk – Shop – public transport - Home 
The optimal behaviour of three persons are presented for each pattern by means of example. 
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The home and location pair for each person can be listed as follows: 
Person A: Home – location 7; Work – location 82 
Person B: Home – location 29; Work – location 9 
Person C: Home – location 30; Work – location 54 
The outputs are displayed in Table 10. 

 

Table 10. Optimal output 

*H – Home, W – Work, L – Leisure, S – Shop. 
*Each element in the optimal behavior is denoted as Activity (Start time – End time, 
location). 
For example, when person A chooses sequence 2 for everyday life, he/she would like to stay 
at home from 22:30 P.M. to 6:45 A.M., and then moves by public transport to location 82. At 
17:30 PM, he/she stops working and returns home. Person A does not spend in home time 
(which means that the home activity that was assumed to exist in the given sequence, is 
skipped) and directly rides bicycle to location 0 for Leisure. After two hours leisure, he 
heads to location 6 for one hour’s shopping. Finally, he starts to move by bike back home at 
22:00 P.M. 

4.2 Route optimization vs. activity-travel optimization 

As mentioned above, the equation Reward (t)= -c*(b*t)a is applied to calculate the travel 
reward (cost). We also run our optimization program when c is set as infinite large, which 
makes the agent arrange his route in a fashion that achieves lowest travel cost. The 
experiments revealed that for sequences 2 and 3, the route arrangements are the same as 
those in Table 10, while the situation is probably different for sequence 1. For instance, when 
c is infinite large and sequence 1 is adopted, person A prefer location 83 than location 87 for 
Shop, and person C prefer location 39 than location 33 for Leisure. The output is the result of 
the fact that in sequence 1, traveling by car suffers from low cost and the route arrangement 
is often subject to the activity arrangement in order to achieve highest reward in total, while 
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traveling by public transport, bike or walk is costly and the route should also be carefully 
designed to alleviate the travel cost as much as possible. 
Another interesting output, when c is infinitely large, is that the agent will keep performing 
each activity as long as possible (12 hours in our environment) in order to avoid 
unnecessary location transfers in everyday life, which is apparently reasonable. 

4.3 Back to optimal path gracefully 

When unforeseeable events often happen in our life, such as traffic jam or overtime on work, 
the agent is put off the optimal path. One extraordinary advantage of Q-learning is that the 
agent, according to the Q-values accumulated in the learning procedure, can wisely choose 
the appropriate action and move back to optimal path gracefully as it was also mentioned in 
Charypar & Nagel (2005). We illustrate this characteristic by means of the following two 
examples. 
Example 1: Suppose person A takes sequence 1 as his daily activity-travel pattern. One day, 
he has to deal with extra tasks and keeps working till P.M. 19:00, which is off his optimal 
daily arrangement. He then chooses to go shopping at location 87 for 1 hour and 45 minutes. 
Then he moves to location 0 for leisure and get back home at A.M. 00:00. He will get up at 
A.M. 07:15 as usual and be on the optimal path again. The adjustment process is as: Work 
(07:45 --19:00, 82), Shop (19:15 --21:00, 87), Leisure (21:15 --23:45, 0), Home (00:00 --07:15, 7), 
Work (07:45 --18:00, 82)… 
Example 2: Assume person B adopts sequence 2. One morning, he is delayed one hour by 
traffic jam and starts to work at A.M. 08:45. Based on his experience, he will wisely work for 
9 hours. He then arrives at home at P.M. 19:15 and directly moves to location 0 for leisure. 
After one hour’s leisure, he starts to shop at P.M. 21:00, thus returning to optimal path. The 
process is stated as: Work (08:45 --17:45, 9), Home (19:15 --19:15, 29), Leisure (19:45 --20:45, 
0), Shop (21:00 --22:00, 3), Home (22:30 --06:15, 29), Work (07:45 --17:15, 9)… 

5. Conclusion and discussion 

The methodology presented in this paper was able to allocate time and location information 
to sequences that consist of activities and transport modes. To the best of our knowledge, 
activity and location allocations have not yet been integrated and optimized in previous 
research in order to achieve maximal rewards for a given activity-travel pattern. The 
methodology was based on the reinforcement learning algorithm which has been used to 
help the agent search the optimal path in the huge number of states of given environments. 
During learning, the Q-learning agent tries some actions (i.e., output values) on its 
environment. Then, it is reinforced by receiving a scalar evaluation (the reward) of its 
actions. In a first implementation, it has been assumed that time allocation is dependent on 
the type of activity, the starting time of the activity and the time already spent at that 
activity. Also, the sequence of different activities determined the time allocation. Indeed, 
two sequences that contain a similar activity which has the same starting time and the same 
time spent at that activity, do not have to (and often will not) receive the same time 
allocation for that particular activity, as a result of the different sequence order in which 
other activities occur in both diaries. Technically, the agent will come up with another 
optimal path, a different policy chart and as a result also a different time allocation for both 
sequences. The location allocation problem was initially also solved in the assumption that 
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the allocation is dependent on the travel time between two locations and on the transport 
mode that has been chosen to reach these locations. Also in this case, it is obvious that the 
sequence information of activities and transport modes largely determines the allocation.  
Then, in a final implementation, the idea to integrate time and location allocation 
simultaneously, has been conceived. Dealing with both allocations simultaneously, leads to 
some important advantages. The first advantage is that the reward is not only maximized in 
either the time or the location facet, but the total reward in a day (i.e. the reward that arises 
from determining optimal start and end times and the cost that arises from travelling 
between locations) will be maximized by means of an integrated approach, which is 
obviously more realistic. The second major advantage is that flexible travel times between 
two locations can be incorporated. In the first time allocation implementation, it was 
impossible to achieve this, due to the lack of location information. 
The most important drawback of this integrated implementation, is that the magnitude of 
the importance between the time and location relationship cannot be immediately observed 
from the data. To this end, a simple conversion function has been proposed and tested in the 
empirical section. Further research could for instance use other alternative techniques (for 
instance stated preference) to better specify and understand this relationship. It was also 
mentioned above that the reward tables used in the experiments can be derived from 
frequency information that is present in the data. Alternatively, one may also use reward 
functions or utility functions which include more parameters when determining the utility 
of an action. As such, apart from the starting time and the duration of the activity, the 
activity location, the position of the activity within the activity schedule and the activity 
history are also incorporated in these utility functions. An initial approach has been shown 
in van Bladel et al. (2006). 
As mentioned before, the approach presented in this paper largely relies upon a fixed 
sequence of activities and transport modes. Alternatively, one may also let the 
reinforcement algorithm determine this activity-travel sequence autonomously. An initial 
framework for this has been proposed in Vanhulsel et al. (Vanhulsel et al., 2006) in an 
application where a key event (obtaining a driver’s license) is simulated. However, the 
approach presented only some initial results and needs further investigation. In addition to 
this, one may also want to investigate the use of currently unexplored relational 
reinforcement learning approaches (Driessens, 2004a, 2004b; Dzeroski et al., 2001) in this 
domain, which will employ a relational regression technique in cooperation with a 
Qlearning algorithm to build a relational, generalized Q-function. As such, it combines 
techniques from reinforcement learning with generalization techniques from inductive logic 
programming. 
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1. Introduction  

The benefit of a medical imaging examination in terms of its ability to yield an accurate 
diagnosis depends on the quality of both the image acquisition and the image 
interpretation. During the past century, radiology has grown tremendously due to 
advances in image detector systems and computer technology.  
On the other side, the image interpretation is an error prone task. The number of 
lawsuits filed against medical imaging professionals that are related to the miss of a 
diagnosis is close to 70% (Berlin, 1995). The most common errors are perceptual errors 
that lead to diagnoses misses, representing about 60% of the cases (Renfrew et al., 1992). 
In cancer diagnoses, some studies show that the risks of false negative diagnoses are up 
to 75%. 
These number of diagnosis errors due to misinterpretation of medical images and the 
current development  in automation methods to help the specialist in this error prone 
task, lead to the development of novel devices and techniques to assist the specialist in 
the diagnosis achievement. These systems can provide a second opinion and may be 
used as a first stage of radiological interpretation (Nab et al, 1992). These systems are 
commonly named Computer-Aided Diagnosis (CAD) systems and have been developed 
to assist radiologists and other specialized physicians in the diagnostic setting like early 
detection of lung cancer in radiographs and CT images.  
The system aid may contribute to understand essential features and information hidden 
in the images which are not readily apparent. Also, the effects between the different 
image aspects are not distinguishable. The image information and the extracted 
parameters may be too complex to be solved with conventional techniques. Thus we 
may use other techniques like Machine Learning methods.  Machine Learning methods 
use these complex sets of data, and can help to model the nonlinear relationships that 
exist between them, improving medical care. 
Machine Learning (ML) aims at providing techniques and methods for accumulating, 
changing and updating knowledge in computational systems, and in particular 
mechanisms to help the system  to induce knowledge from examples or new data. These   
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methods are appropriated when we do not have algorithmic solutions, in the absence of 
formal models, or when we do not know precisely the application domain. 
One of the approaches of Machine Learning is reinforcement learning, which 
emphasizes the individual’s learning through interactions with his environment, 
contrasting with classical machine learning approaches that privilege learning from a 
knowledgeable teacher, or on reasoning from a complete model of the environment.  
In Reinforcement Learning the learner is not told which action to take, but instead must 
find which actions yield a better reward after trying them. The most distinguishing 
features of reinforcement learning are trial-and-error search and delayed reward. 
In the Machine Learning community, reinforcement learning has been used to solve 
many complex tasks normally thought of as quite cognitive. For example, a 
reinforcement learning algorithm has performed the medical diagnosis (Stensmo & 
Sejnowski, 1996), bioinformatics (Sahba et al, 2006), speech recognition (Rabiner, 1989), 
spell recognition (Raedt & Bruynooghe, 2004), computational vision and even robots 
locomotion (Smart, 2002). 
The purpose of this chapter is to investigate the adequacy of the reinforcement learning 
technique to classify lesions based on medical image. We will show the application of 
this technique with the goal of lung nodules classification between malignant from 
benign. We will use a set of 3D geometric measures extracted from the lung lesions 
Computerized Tomography (CT) images. 
This work is organized as follows. Section 2 presents a brief overview about the main 
concepts of Reinforcement Learning theory. Following this, in Section 3 the medical 
imaging main modalities are described and its use for cancer detection/diagnosis is 
shown. Specially, we describe the lung cancer problem and some of the methods 
applied for its diagnose based on medical images and computer supported. Section 4 
describes some works proposed in the literature that apply reinforcement learning to 
medical images, presenting a more detailed description of an application of 
reinforcement learning for lung cancer lesions classification. Finally, Section 5 presents 
the final remarks 

2. Reinforcement learning 

Reinforcement learning (Sutton & Barto, 1998) is a formal mathematical framework in 
which an agent manipulates its environment through a series of actions, and in 
response to each action receives a reward value. An agent stores its knowledge on how 
to choose reward maximizing actions in a mapping from agent internal states to actions. 
In essence, the agent’s “task” is to maximize its reward over time. Good task 
performance is precisely and mathematically defined by the reward values. 
Reinforcement learning is a problem formulation, not a solution technique. The siblings 
of reinforcement learning are supervised learning and unsupervised learning. 
One can assert that Reinforcement Learning (RL) is a training which uses a tip or clue 
that can be positive or negative. The apprentice is not taught which action he must 
realize, but some signals are given to him as to allow him to decide/choose a better 
road.  
Is at this point where the RL differentiates from the supervised learning, which 
necessitates a teacher to teach what is the more appropriated action for each state. 
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Reinforcement learning is frequently used when there is no good exemplar behavior to 
be followed, when the environment is unknown or when one wishes to satisfy various 
goals at the same time. This kind of learning is inspired in children’s learning. Children 
perform random actions and discover cause and effect relationships according to 
environmental responses (food, water, a teacher’s smile, a praising word or a very loud 
sound, an electric shock, the awful teacher’s face or a complaint), they learn which actions 
are good and which are bad. 
Formally in the Reinforcement Learning problem there is an agent and an environment that 
interact in a sequence of discrete steps, t = 0; 1; 2; 3; ... On each step, the agent perceives that 
the environment is in a state, st, and selects an action, at. In response, the environment 
makes a stochastic transition to a new state, st+1, and stochastically emits a numerical 

reward, rt+1 ∈ ℜ. The agent seeks to maximize the reward it receives in the long run. For 
example, the most common objective is to choose each action as to maximize the expected 
discounted return. 

For each pair state/action, (s,a), there is a reinforcement signal, R(s,a)→ℜ, which is given to 
the agent when whenever the agent performs the action a in the state s. The agent’s 
relationship with the environment is illustrated in Figure 1. 

 

Fig. 1. Reinforcement learning elements 

The reinforcement signal is the agent’s learning basement. The reinforcement must indicate 
the goal to be reached. For example, when playing draughts the reinforcement can be given 
to the agent just at the end of the game, being positive if the agent wins and negative when 
he loses or be drawn. Doing so, the reinforcement is showing to the agent that his goal is to 
win the game and not to lose or be drawn. The reinforcement learning problem is to choose 
actions policy that maximizes the totality of the rewards received by the agent. An actions 

policy corresponds to a function Π(s) → a, that states which action for each state must be 
realized by the agent. An agent can follow several action policies, but the learning goal is to 
calculate the policy that maximizes the sum of the future rewards, i.e., the total of rewards 

received after adopting that policy.  That optimal policy is called Π*.  

2.1 Q-Learning 

Q-Learning (Watkins & Dayan, 1992) is one of the methods for solving the reinforcement 

learning problem. That technique iteratively estimates a function Q(s,a) →ℜ, which 
determines the sum of expected future rewards when the agent performs the action a in the 
state s,  continuing from there on to act optimally. As that sum can be infinite, whether there 
is not a final state to be attained, it used a discount factor in the sum parcels. That discount 
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factor also differentiates the rewards far away from the actual state, giving a higher value to 
the closest rewards. This way, the function Q defines the sum of the discounted future 
rewards. 
Once it is estimated the function Q, the agent’s behavior (actions policy) can be easily 
determined. As highly valued rewards are linked to a good performance, it is enough for the 
agent to choose, at each state s, the action a, holding the highest value of Q(s,a). 
Nevertheless, following this approach, the agent loses a part of his learning capacity. As at 
each state is always executed the same action (the highest valued action of Q), only that 
action will have their value updated, being able of perpetuating itself as the best action. This 
way, during the training phase, when the Q function is being built, it becomes necessary to 
exchange usufruct and exploitation phases. 
To usufruct means that the agent will choose the best action, in the current Q estimative; 
exploitation means that the agent will choose a random action a’, as to have its Q(s,a’) value 
updated and, possibly, may became the best action. However, the decision on which 
strategy must be adopted at each moment is not trivial, yielding the exploitation /usufruct 
dilemma.  
The inter-change between usufruct and exploitation also occurs in dynamic environments. 
In these cases, the agent just learns the optimal politics. As the environmental variables are 
subject to change, it is necessary the agent be constantly updated, updating its optimal 
policy estimative, which changes with the time. 
The value of Q(s,a) is updated along the agent’s learning, using the following rule: 

 
)],(),'(max.[),(),( asQasQrasQasQ a −++← γα

 
(1)

 

Equation 1: Updating rule in the Q-Learning method 

where α  is the agent’s learning rate, r  is the reinforcement received by the realization of 

action a in the state s, and 
γ

 is the discount rate. The variable s’ indicates the opponent’s 
current state; i.e., the state he is in after having performed the action a in the state s. An 
important characteristic of that rule is that it does not use any knowledge on the 
environment dynamics, just the knowledge on the variables defined by the reinforcement 

learning problem (s, a, s’, e r) and about the learning parameters (α  and 
γ

). Another 
particularity is the rule’s computational efficiency, which just uses basic operations and 
comparisons. 

 

Fig. 2. Learning elements in a Q-Table 
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One particularity of the Q-Learning method is the way in which the Q function is approximated. 
The simpler approach, and also the most popular, represents the Q function by a bi-dimensional 
matrix, called Q-Table, with the states in one dimension and the actions in another. That 
representation makes possible to easily access to tables’ items (for consultation and updating), 
besides being easier to implement, but has the disadvantage of using a lot of space, turning its 
use unfeasible in applications with large actions or large states space. In addition, that 
representation does not generalize the learned knowledge, thus its training needs to simulate all 
possible situations, becoming very slow. The representation of the reinforcement elements into a 
Q-Table is illustrated in Figure 2. 

3. Medical image 

Medical imaging has been undergoing a revolution making possible the execution of 
medical procedures faster, more accurate, and less invasive. The imaging techniques have 
the potential to broaden our observation capabilities and understand the biophysical 
world, leading to a dramatic increase in our ability to apply new algorithms and 
techniques to model physiological functions and dysfunctions in the patient’s body.  
From the discovery of X-rays in 1895, images are used as a way of acquiring information 
on the patients’ health state. In 1917 J. Radon elaborated mathematical theories that would 
allow the tomography reconstruction of images. The use of images spread out from 1967 
with the building of the first tomography by G. N. Hounsfield. Nowadays, there are 
several imaging modalities in the medical area.  
In the last two decades there have been significant advances in computerized medical 
imaging.  Such developments led to new imaging modalities in two, three and multi-
dimensions, which became important clinical tools in the radiological diagnosis. The 
various modalities of radiological images are very significant in the medical practice and 
are also decisive in illnesses treatment. While in the beginning of the last century 
radiological images were the only way of images acquisition, several new modalities were 
developed up to now, and are widely used to acquire anatomical, physiological, metabolic 
and functional information of the human body. Currently, the most common ways of 
acquisition of medical images are: Computerized Tomography (CT), Magnetic Resonance 
Imagery (MRI), Single Photon Emission Computerized Tomography (SPECT), Positron 
Emission Tomography (PET) and Ultrasound.  
Today, medical imaging is an essential part of medicine. The pathologies can be observed 
rather than inferred from symptoms. For example, a specialist can monitor the healing of 
damaged tissue or the growth of a tumor, and determine an adequate therapy.  
Many different imaging techniques are available nowadays and are commonly used in 
clinical daily practice. Each imaging modality is proper to revealing a particular organ or 
pathology characteristics (Hendee & Ritenour), but they are complementary as they offer 
different views of the same tissues or functionalities. 
Some imaging modalities are appropriate to image the anatomical morphology. They 
include radiography, ultrasound (US), computed tomography (CT), magnetic resonance 
imagery (MRI).  On the other side we have the functional modalities that are used to 
study the metabolism of the tissues. In this class we have scintigraphy, single photon 
emission computerized tomography (SPECT), positron emission tomography (PET) and 
the functional magnetic resonance imagery (fMRI). As new techniques are being added 
every few years the list becomes outdated very quickly (Brooks, 2001). We will briefly 
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describe the principal imaging modalities, for a more detailed description see 
[http://www.sprawls.org/resources/]. 
The Ultrasonography is based on high frequency sound waves sent by a transmitter that  
bounce off the different tissues and organs to produce distinctive patterns of echoes that 
are captured by a receiver and forwarded to a computer that translates them into an 
image on a screen. Ultrasound is suitable for abdomen imaging as it distinguish subtle 
variations among soft, fluid-filled tissues. Additionally, it does not damage tissues with 
ionizing radiation, but generates very noisy images. 
Computerized Tomography (CT) is generated by a number of 2D radiographs 
transversally acquired around the patient body. The 3D image is then reconstructed by an 
algorithm using the Radon transform (Helgason, 1980). CT offers high contrast between 
bone and soft tissue and low contrast among different soft tissues. As CT uses X-Rays we 
must take into account the effects of ionizing radiation. CT is much proper for imaging 
the thoracic cage. 
The Magnetic Resonance Imaging relies on the relaxation properties of magnetically-
excited hydrogen nuclei of water molecules in the body. The patient is briefly exposed to 
a burst of radio-frequency energy, which, in the presence of a magnetic field, puts the 
nuclei in an elevated energy state. As the molecules undergo their normal, microscopic 
tumbling, they shed this energy into their surroundings, in a process referred to as 
relaxation. Images are created from the difference in relaxation rates in different tissues. 
MRI uses magnetic fields and non-ionizing radiation in the radio frequency range. Thus, 
according to actual medical knowledge, is harmless to patients and has much better soft 
tissue contrast than X-rays, being adequate for brain and spinal cord scans.  
It can be noticed that those methods involve sophisticated instrumentation and 
equipment based on computers for data collecting, image reconstruction and 
visualization.  
Those forms of imaging are valuable because they are not invasive, that is, instruments do 
not penetrate the patient’s body. Besides that, there is no doubt on the quality of the 
images generated by such equipments, benefiting medical practices such as diagnosis, 
surgical planning and therapy. 
Such images have a high medical content once they store relevant information for the 
exercise of diverse medical specialties: oncology, gynecology, radiology, pneumology and 
cardiology, just to cite some. However, as to take the maximum advantage of those 
images content, specialist of the medical area need to use the computer. 
In addition, those images can be processed and handled as to allow the visualization of 
characteristics initially imperceptible, turning possible better accuracy and important 
characteristics checking used in diagnosis elaboration. Next, those main features can be 
quantified and analyzed through programs and computational models to understand 
their behavior, thus contributing in the diagnosis or just to evaluate the evolution of 
therapeutic protocol. 
Thus, we verify that is necessary to develop computational programs and methods for 
processing and handling the data obtained through the different medical images 
acquisition techniques, allowing the enhancement and preservation of the clinical data 
present in the exam.  
The current degree of development reached by the computational modeling techniques 
together with the fast growing of the computers calculation performance, has allowed the 



 
Application on Reinforcement Learning for Diagnosis Based on Medical Image 

 

385 

study, development and solution of highly sophisticated models able of aiding, with a 
rather fair degree of accuracy, in the results of important medical procedures, such as 
cancer diagnosis, for example. 

3.1 Cancer diagnosis 

Cancer is the name given to all malignant tumors, and when their size is small, in the form 
of a nodule. The word derives from the Latin cancer, which means crab. That name is due to 
the similitude between the crustacean legs and the tentacles of the tumor that infiltrate like 
roots into the healthy tissue of the body.   
There is great difficulty to qualitatively define the benignant or malignant characteristics of 
the nodule, as well as in the tracking and following of its growth in a reliable way. 
Commonly, the evaluation of the nodular growth is done by measuring the nodule in the 
computerized tomography printed film or x-rays using a ruler passed over the image, what 
results in not so accurate measurements. Even though more accurate measurements could 
be directly taken with the digital data, many times they are available to physicians, who 
usually can access only the printed film. 
Surgical nodule extraction is a practice applied to the majority of the patients presenting 
asymptomatic nodule with undetermined etiology, in a patient with etiological data 
compatible with higher susceptibility to cancer. Nevertheless, many of those interventions 
could be avoided once most of the times the nodules are benign. Hence, it is fundamental to 
use more precise techniques to better evaluate the nodular growing and their characteristics, 
to make possible a more reliably determination of the nodule’s benignity or malignancy.  
Some factors difficult the nodule’s identification and diagnosis, among these are:  

• The organ’s structures present similar characteristics (shape, densities, etc.) which 
mixes up one another, turning them confuse; 

• In its initial phase, if the nodule is small and has no well defined shape, is hard to 
diagnostic it; 

• Measurements taken by physicians to analyze the nodule’s evolution, as for example its 
diameter, are done handmade, usually using a ruler sweeping over the image; 

• Physicians’ visual fatigue, emotional factors and experience may influence the 
diagnostic; 

• Finally, in many cases, the image’s quality is bad. 
One of the most common cancers in the world is lung cancer. It is a leading cause of cancer 
death in men and women. Cigarette smoking causes most lung cancers. 

3.2 Lung cancer  

Lung cancer is a serious problem of public health in Europe, United States and many other 
countries around the world because it is becoming the cancer mortality leader for men and 
women. The disease is also known as one of the shortest means for survival among other 
malignancies (Tarantino, 1997). As soon as the diagnosis is made it has been estimated that 
only 13% of the patients will be alive after 5 years (Lag l, 2002). In Brazil, lung cancer 
occupies the first place of cancer’s death in men and the second in women. It is estimated 
that it caused 27.170 deaths (17.850 men and 9.320 women) in 2006 (INCA, 2003). 
In spite of lung cancer earns the benefit for one of the most efficacious measures of primary 
prevention, it has been expected that results of recent campaigns against smoking will 
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become apparent only after two or three decades. While this, lung cancer continues to be 
present in advanced stages with a global outcome close to 13% in five years (Lag l, 2002). 
From the biological point of view, lung cancer is an uncontrolled growth of abnormal cells 
in one or both lungs, which can reproduce very fast and produce regional and distant 
metastasis even when the patient is asymptomatic. Lumps of cancer cells (tumors) impair 
lung’s function when obstructs the bronchi but not when they are located in other areas. The 
pulmonary parenchyma does not have painful nervous terminations and unless the tumor 
invades precociously the parietal pleura, pain will be a late sign of lung cancer (Silva et al, 
2004). 
Nowadays, the main chance to discover a lung cancer in its initial stage is an incidental 
finding of a solitary pulmonary nodule disclosed by Chest X ray or Computed Tomography 
(CT), indicated to explore some abnormal thoracic clinical manifestation or routine 
preoperative evaluation. Other possibility, that has become important in recent years, is a 
CT Screening Lung Cancer Program in high risk patients like heavy smokers that have 
smoked for more than 30 years (Henschke et al, 2003). 
The main problem of the solitary pulmonary nodule is the identification of its nature. 
Sometimes this is possible only with radiological findings that allow diagnosis of benignity 
like total, central, lamellar or popcorn calcifications and high fat contents (hamartoma). 
Alternatively, some data are highly suggestive of malignity like specular margins and 
pleural tail but unfortunately around 15% of these findings also occur in benign nodules. In 
many other cases is not possible with simple radiological criteria to know the true nature of 
the nodule which is classified as undetermined. This situation is particularly frequent in 
nodules shorter than 1 cm of diameter where benign aetiology can respond for more than 
90% of the total (Lillington & Caskey, 1993), (Henschke et al, 2003). 
The top row in Figure 1 shows the texture from a slice of two benign (a and b) and two 
malignant (c and d) nodules. The bottom row in Figure 1 shows their respective 3D shape. 

 

Fig. 3. Benign and malignant lung nodules examples 

At radiological examination, solitary pulmonary nodules are approximately round lesions 
shorter than 3 cm in diameter, completely surrounded by lung parenchyma and can 
represent a benign or malignant disease. Any larger lesion is named pulmonary mass and 
should be considered as malignant until counterproof is found. In all of these situations, 
etiologic definition is paramount to the medical decision. In spite of the gold standard 
diagnosis be the histological examination - normally obtained by invasive procedures - 
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image methods and in special CT can aid diagnostic process in analyzing nodule’s 
attributes (Ost et al, 2003). 
Radiological characteristics of benignity are well known and based in calcifications or 
fat texture patterns which change the mean radiological density out of soft tissues 
range. Malignity does not have similar texture criteria and the diagnosis is normally 
suggested by an irregular shape associated to some clinical data, like tobacco’s load. 
Venous iodine contrast administration during CT adds some improving in texture 
resolution in order to discriminate between benign and malignant nodules (Swensen, 
1997). Recently, there is a renewed attention to quantify wash-in and washout after 
contrast injection to obtain a nodule characterization (Jeong et al, 2005). Unfortunately, 
short diameters and allergic reactions are limiting factors of these techniques. Even the 
most modern metabolic image method in clinical use, that is the Positron Emission 
Tomography (PET) superposed to helical CT examination (PET - CT) with images 
acquisitions before and after 18-fluoro-deoxyglucose intravenous administration, also 
has important limitations represented by false positive of some inflammatory processes 
and false negativity of small or indolent cancers (Gould, 2003), (Pepe, 2005), (Giger , 
1999). 
Some authors have been hypothesizing that quantitative CT data derived from 
geometric and texture parameters may contribute to differential diagnosis between 
benign and malignant solitary pulmonary nodules, even without contrast utilization. 
McNitt-Gray et al. (McNitt-Gray et al, 1999a), (McNitt-Gray et al, 1999b) extracted 
measurements from nodule’s shape, attenuation coefficient, attenuation distribution 
and texture. They used a discriminant analysis technique with stepwise variable 
selection procedure to separate benign from malignant nodules. Kawata et al. (Kawata  
et al, 1997), (Kawata, 1998), ( have presented a method to characterize the internal 
structure of 3-D nodules using computerized tomography images shape index and 
density to locally represent each voxel. They created a histogram of characteristics 
based on shape index, called shape spectrum measurements, to store voxels with a 
given index to define the nodule. Matrices similar to those of the texture-analysis 
method (Co-occurrence matrix) were also created for shape index and density. The 
statistical technique discriminant analysis was employed to classify benign and 
malignant nodules. In Silva et al. (Silva et al, 2004) it was showed that geo-statistical 
functions as  semivariogram, covariogram, correlogram and madogram or some indices 
of spatial autocorrelation as Moran’s Index and Geary’s Coefficient, supply good results 
to discriminate malignant from benign nodules. 

4. Application of reinforcement learning on medical image 

The diffusion of Reinforcement Learning in various application areas is a subject of considerable 
ongoing research. It is argued that the successful implementation of such method can help the 
integration of computer-based systems in the healthcare environment, providing opportunities 
to facilitate and enhance the work of medical experts and ultimately to improve the efficiency 
and quality of medical care. 
One of the main applications area is the use of Reinforcement Learning to build systems that 
support and help the specialist in the diagnose task. Based upon patient’s information, Fakih & 
Das (2006) developed a learning based methodology and recommend test(s) that optimize a 
suitable measurement of diagnostic performance. A comprehensive performance measurement 
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that accounts for the costs of testing, morbidity, and mortality associated with the tests, and time 
taken to reach diagnosis is developed. The performance measurement also accounts for the 
diagnostic ability of the tests. The methodology combines tools from the fields of data mining 
(rough set theory, in particular), utility theory, Markov decision processes (MDP) and 
reinforcement learning (RL). The rough set theory is used in extracting diagnostic information in 
the form of rules from the medical databases. Utility theory is used in bringing various non 
homogenous performance measurements into one cost based measurement. An MDP model 
together with an RL algorithm facilitates obtaining efficient testing strategies. The methodology 
is implemented on a sample problem of diagnosing solitary pulmonary nodule (SPN). The 
obtained results are compared with those from four alternative testing strategies.  
(Stensmo & Sejnowski, 1996) used decision and probability theory to construct such systems 
from a database of typical cases. This simplifies the task of knowledge extraction from physicians 
who often do not know how they have come to a certain diagnosis. Probability models are 
constructed using mixture models that are efficiently learned by the Expectation-Maximization 
algorithm. Problems with missing data are then solved, both for missing data in the case 
database and during diagnosis (missing data are then not yet conducted observations). Decision 
theory is used to find the most informative next question to ask, observation to make, or test to 
do in order to minimize the diagnosis total cost. It is also used to decide when to stop requesting 
more information. To automatically find good utility values for the decision theoretic model, 
temporal difference reinforcement learning is used to increase the system accuracy. Results are 
presented on a case database for heart disease. 
On the other hand, we also found in the literature some works using Reinforcement Learning to 
help the segmentation of medical images. (Shokri & Tizhoosh, 2003) introduced a reinforcement-
learning concept to find the optimal threshold for digital images. The proposed approach can 
integrate human experts knowledge in an objective or subjective way to overcome the 
shortcomings of the existing methods. 
(Peng & Bhanu, 1998) presented a system that achieves robust performance by using 
reinforcement learning to induce a mapping from input images to corresponding segmentation 
parameters. This is accomplished by using the confidence level of model matching as a 
reinforcement signal for a team of learning automata to search for segmentation parameters 
during training. The use of the recognition algorithm as part of the evaluation function for image 
segmentation gives rise to significant improvement of the system performance by automatic 
generation of recognition strategies. The system is verified through experiments on sequences of 
indoor and outdoor color images with varying external conditions. 
(Sahba et al, 2006) introduced a new method for medical image segmentation using a 
reinforcement learning scheme. They use this novel idea as an effective way to optimally find the 
appropriate local threshold and structuring element values and segment the prostate in 
ultrasound images. Reinforcement learning agent uses an ultrasound image and its manually 
segmented version and takes some actions (i.e., different threshold and structuring element 
values) to change the environment (the quality of segmented image). The agent is provided with 
a scalar reinforcement signal determined objectively. The agent uses this objective 
reward/punishment to explore/exploit the solution space. The values obtained using this 
procedure can be used as valuable knowledge to fill a Q-matrix. The reinforcement learning 
agent can use this knowledge for similar ultrasound images as well. The results demonstrated 
high potential for applying reinforcement learning in the field of medical image segmentation. 
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4.1 Reinforcement learning for classifying lesions based on medical imaging 
4.1.1 Image acquisition  

The images herein used were provided by the Fernandes Figueira Institute and the Pedro 
Ernesto University Hospital - both from Rio de Janeiro city – for a project of CAD tools 
development. They were obtained from different real patients, providing a total of 39 
nodules (29 benign and 10 malignant). 
The images were acquired with a Helical GE Pro Speed tomography under the following 
conditions: tube voltage 120 kVp, tube current 100 mA, image size 512×512 pixels, voxel size 
0.67 × 0.67 × 1.0 mm. The images were quantized in 12 bits and stored in the DICOM format 
(Clunie, 2000). 
It is important to stand out that the CT exam was performed with no contrast injection, 
which may be clinically used in order to increase the diagnosis readiness but also carries 
some morbidity and occasional mortality by allergic complications.  
It is also necessary to highlight that the nodules were previously diagnosed by physicians 
and that the final diagnosis of benignity or malignancy was further confirmed by 
histopathological exam of the surgical specimen or by radiological 3-year stability, which 
explains the reduced size of our sample.   

4.1.2 The lung nodules segmentation 

In most cases, lung nodules are easy to be visually detected by physicians, since their shape 
and location are different from other lung structures. However, the nodule’s voxel density is 
similar to that of other structures, such as blood vessels, which makes difficult any kind of 
automatic computer detection. 
Generally speaking, the solitary pulmonary nodule is normally found in Chest X Ray or CT as an 
unexpected finding. The main reason for this is because the nodule (> 1cm) is easily 
distinguished from the surrounding structures. If this distinction is difficult the nodule’s 
diagnosis is difficult too. It is common that in an evaluation of an automatic process for 
segmentation or in a created program to contribute for lung cancer screening, the gold standard 
is the analysis made by one or more radiologists. For example: it can be difficult for an automatic 
segmentation program to distinguish between a nodule and the chest wall, but is relatively easy 
for an experienced observer to separate the two structures. The same occurs with a nodule close 
to a vascular structure. 
Unless the nodule be in a central position close to a hilar vessel, the distinction is not difficult. 
However, another level of situation is represented for a small nodule (< 1cm). In this setting the 
radiological diagnosis can be difficult and separation from vascular structures either. References 
which express the radiologist as a reference point to evaluate computer’s analysis are for example 
(Takashima, 2003). 
A semi-automatic segmentation process was performed using a Pulmonary Nodule Analysis 
System (Silva et al, 2002) called Bebúi. In this, beyond the 3D region growing algorithm with 
voxel aggregation, two resources help and provide greater control in the segmentation 
procedure: the barrier and the eraser. The barrier is a cylinder placed around the nodule by the 
user with the purpose of restricting the region of interest and stopping the segmentation by voxel 
aggregation from invading other lung structures. The eraser is a resource of the system that 
allows physicians to erase undesired structures, either before or after segmentation, in order to 
avoid and correct segmentation errors (Silva et al, 2002).  
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The Marching Cubes algorithm (Lorensen & Clinie, 1987) is used to build an explicit 
representation of volume data. The measurements described along the present paper will use 
this representation. In order to remove irregularities of the reconstructed surface, the Laplacian 
smoothing technique (Ohtake et al, 2001) is used. Figures 2 (a) and (b) show the result of 
applying the Marching Cubes algorithm and the Laplacian technique, respectively. 

 

Fig. 4.a) Application of Marching Cubes.  b) Application of Laplacian technique. 

4.1.3 3D geometric measurements 

The measurements to be presented in this section seek to capture information on the 
nodule’s 3D geometry from the CT. The measurements should ideally be invariant to 
changes in the image’s parameters, such as voxel size, orientation, and slice thickness. 
1. Sphericity Index: The Sphericity Index (SI) measures the nodule’s behavior in relation 

to a spherical object. It is defined as 
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where V is the surface volume and A corresponds to the surface area. Thus, if the 
nodule’s shape is similar to a sphere, the value will be close to 1. In all cases, SI ≤ 1. 

2. Convexity Index: The Convexity Index (CI) (Smith, 1999) measures the degree of 
convexity, defined as the area of the surface of object B (A(B)) divided by the area of the 
surface of its convex hull (A(HB)). That is, 

 ( )
( )B

A B
CI

A H
=

 (3) 

The more convex the object is, the closer to 1 will be the value of CI. For all objects, CI  ≥ 
1. 

3. Curvature Index: The two measurements presented below are based on the main 
curvatures kmin and kmax, defined by 

 2

min,maxk H H K= −m  (4) 

where K and H are the Gaussian and mean curvatures, respectively. The values of H 
and K are estimated using the methods described in (Esse & Drury, 1997). 

• Intrinsic curvature: The Intrinsic Curvature Index (ICI) (Smith, 1999), (Esse & 
Drury, 1997) captures information on the properties of the surface’s intrinsic 
curvatures, and is defined as 
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min max

1

4
ICI k k dA

π
= ∫∫  (5) 

Any undulation or salience on the surface with the shape of half a sphere 
increments the Intrinsic Curvature Index by 0.5, regardless of its size – that is, the 
ICI counts the number of regions with undulations or saliencies on the surface 
being analyzed. 

• Extrinsic curvature: The Extrinsic Curvature Index (ECI ) (Smith, 1999), (Esse & 
Drury, 1997) captures information on the properties of the surface’s extrinsic 
curvatures, and is defined as 

 ( )max max min

1

4
ECI k k k dA

π
= −∫∫  (6) 

Any crack or gap with the shape of half a cylinder increments the ECI in proportion to 
its length, starting at 0.5 if its length is equal to its diameter - that is, the ECI counts the 
number and length (with respect to the diameter) of semi cylindrical cracks or gaps on 
the surface. 

4. Types of Surfaces: With the values of extrinsic (H) and intrinsic (K) curvatures, it is 
possible to specify eight basic types of surfaces [13], [14]: peak (K > 0 and H < 0), pit (K > 
0 and H > 0), ridge (K = 0 and H < 0), flat (K = 0 and H = 0), valley (K = 0 and H > 0), 
saddle valley (K < 0 and H >0), minimal (K <0 and H = 0), saddle ridge (K <0 and H <0).  
The measurements described below were presented in (Koenderink, 1990) for the 
classification of lung nodules and the results were promising. However, they have 
computed curvatures H and K directly from the voxel intensity values, while here we 
compute them with respect to the extracted surface, which is composed by triangles.  
In practice, it is difficult to determine values that are exactly equal to zero, due to 
numerical precision. Therefore we have selected only the types peak, pit, saddle valley 
and saddle ridge for our analysis (Koenderink, 1990). 

• Amount of each Surface Type: 
This measurement indicates the relative frequency of each type of surface in the 
nodule, where APK (Amount of peak surface), API (Amount of pit surface), ASR 
(Amount of saddle ridge surface) and ASV (Amount of saddle valley surface).  

• Area Index for each Surface Type: 
For each surface type, the area occupied in the nodule divided by the total nodule 
area is computed, where AIPK (Area Index for peak surface), AIPI (Area Index for 
pit surface), AISR (Area Index for saddle ridge surface) and AISV (Area Index for 
saddle valley surface). =>  

• Mean Curvedness for each Surface Type: 
Curvedness is a positive number that measures the curvature amount or intensity on 
the surface [13]: 

 
2 2

min max

2

k k
c

+
=  (7) 

The measurements are based on the curvedness and the surface types. For each surface 
type, the mean curvedness is determined using the curvedness of each surface type, 
divided by the curvedness number in each surface type. Where, CPK (mean curvedness 
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for peak), CPI (mean curvedness for pit), CSR (mean curvedness for saddle ridge) and 
CSV (mean curvedness for saddle valley).   

4.1.4 Tests and results 

The idea of classification is to encounter a path from the pattern presented to a known 
target, in the present case to a malignant or to a benign pattern. Furthermore the path found 
should be the shortest in some sense; in such way that the presented pattern seems to be 
nearer from a known target and therefore it can be considered of the type of the target. 
Considering the diverse techniques, the Reinforcement Learning (RL) was chosen to find 
this path, because it can learn without a mathematical model of a path and because it can 
learn a correct path only using a reward when the target is encountered. 
The tests described in this work were carried out using a sample of 36 nodules, 29 benign 
and 7 malignant. It is important to note that the nodules were diagnosed by physicians and 
had the diagnosis confirmed by means of surgery or based on their evolution. Such process 
takes about two years, which explains the reduced size of our sample. The sample included 
nodules with varied sizes and shapes, with homogeneous and heterogeneous characteristics, 
and in initial and advanced stages of development. 
The stepwise analysis (Lachenbruch, 1975) selected 5 out of the 13 measurements (states), 
described in Section 4.1.3, to be analyzed by the reinforcement learning classifier. The 
selected states were ICE, QPK, QSR, QSV and CPI. Each state was discretized in ten 
different values. The discretization of each state is shown in Table 1. 

State ICE QPK QSR QSV CPI 

1 45 – 492.61 9 – 145.88 5 – 167.55 23 – 369.83 0.24 – 0.27 

2 492.61 – 
1.39e+3 

145.89 – 419.67 167.55 – 492.67 369.83 – 
1.06e+3 

0.27 – 0.32 

3 1.39e+3 – 
2.29e+3 

419.67 – 693.44 492.67 – 817.78 1.06e+3 – 
1.76e+3 

0.32 – 0.37 

4 2.28e+3 - 
3.18e+3 

693.44 - 967.22 817.77 - 1.14e+3 1.76e+3 - 
2.45e+3 

0.37 0.43 
 

5 3.18e+3 - 
4.07e+3 

967.22 - 1,240 1.14e+3 - 1,467 2.45e+3 - 
3.14e+3 

0.43 - 0.48 
 

6 4.07e+3 - 
4.97e+3 

1,241 - 1.51e+3 
 

1,468 - 1.79e+3 
 

3.14e+3 - 
3.84e+3 

0.48 - 0.53 
 

7 4.97e+3 - 
5.86e+3 

1.51e+3 - 
1.78e+3 

1.79e+3 - 
2.12e+3 

3.84e+3 - 
4.53e+3 

0.53 0.58 
 

8 5.86e+3 - 
6.76e+3 

1.79e+3 - 
2.06e+3 

2.12e+3 - 
2.44e+3 

4.53e+3 - 
5.22e+3 

0.58 0.64 
 

9 6.76e+3 - 
7.65e+3 

 

2.06e+3 - 
2.33e+3 

 

2.44e+3 - 
2.77e+3 

 

5.22e+3 - 
5.92e+3 

 

0.64 - 0.69 
 

10 7.65e+3 - 
8,102 

2.33e+3 - 2,473 
 

2.77e+3 - 2,931 
 

5.92e+3 - 
6,266 

0.69 - 
0.719 

Table 1. Discretization of each state 

With these states and actions, the matrix Q has the following size: 105x35, because each state 
has ten different values and each action three possibilities. 
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The classificator try to reach the state that corresponds to geometric characteristics of the 
benign or malignant pattern. These  are determined by the above defined states, by the 
increment, constancy and decrement actions over the current value of the corresponding 
state, at each varaiable state starting from a set of states as initial point. An action is 
randomly taken with 50% random rate aiming at finding the bests pair state/action for each 
set of states. The unitary value reinforcement is given to each state change in the case a right 
pattern is found, conversely, the reinforcement is null.  
The learning is done by selecting 19 images of benign and 4 malingnat nodules, and we 
choose as target the most characteristic bening and malignant nodules. To each image is 
assigned a learning step for classification and the set of all those images forms an episode. 
After training, the knowledge should have been acquired. This is verified with a test of 
classification with images not used during the training phase. For this purpose nine benign 
and two malignant images were selected. Figure 3 shows the results obtained, where we 
used the remaining nine benign and two malignant nodules. In this figure we represent in 
the x-axis the nodules case, being cases 1 to 9 benign and cases 10 and 11 malignant. On the 
other hand, the y-axis represents the number of steps from the start point to the target, 
which means the number of actions taking to reach the case target. When a given case takes 
a positive number of steps to reach the target, we have a successful classification. Otherwise 
a negative number represents an incorrect classification and when the classification is not 
determined we set the number of steps as zero. The obtained data was generated from four 
experiments, using 20000, 30000, 40000 and 50000 episodes in the training phase. 
The number of right classification grows from 45% for 20000 episodes to 81% for 50000 
episodes; as shown in Table 2, which indicates a good improvement in the classification 
success as the number of episodes grows. 
Interesting information observed in the results involves the set of 40000 episodes, when the 
number of successful classification decreased, which should be derived from the random 
choices used in the training phase, that lead to a poor learning. But, as already proved in RL 
theorem (Barto et al., 1983), a very high number of episodes drives to a correct learning, 
generating a very high successful rate in the classification. 

 

Fig. 5. Application of reinforcement learning. 
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Due to the relatively small size of the existing CT lung nodule databases and the various CT 
imaging acquisition protocols, it is difficult to compare the diagnosis performance between 
the developed algorithms and others proposed in the literature. 

Success Error Non-Determined Number of Episodes

45.45% 36.36% 18.18% 20,000 

72.72% 9.09% 18.18% 30,000 

45.45% 45.45% 9.09% 40,000 

81.81% 9.09% 9.09% 50,000 

Table 2. Application of Reinforcement Learning. 

The number of studied nodules in our dataset is too small to state definitive conclusions, but 
the preliminary results of this work are very encouraging, demonstrating that a 
reinforcement learning using nodule shape characteristics,  can contribute to discriminate 
benign from malignant lung nodules on CT images. 
Based on these results, we have observed that such shape characteristics provide significant 
support to a more detailed clinical investigation, and the results were very encouraging 
when nodules were classified with reinforcement learning. 
Nevertheless, there is the need to perform tests with a larger database and more complex 
cases in order to obtain a more precise behavior pattern. 

7. Conclusion 

This work presents an overview of current work applying reinforcement learning in medical 
image applications, presenting a detailed illustration of a particular use for lung nodules 
classification.  
The addressed application of reinforcement learning to solve the problem of lung nodules 
classification used the 3D geometric nodules characteristics to guide the classification. Even 
though the results are preliminary we may see that  the obtained results are very 
encouraging, demonstrating that the reinforcement learning classifier using characteristics 
of the nodules’ geometry can effectively classify benign from malignant lung nodules based 
on CT images.  
On the other side, we may observe that this is a machine learning that is not commonly 
applied to medical images and this is an opportunity for more intensive investment in the 
research for this area. 
But some problems are well known in this application and must be more studied. We 
should research how to find out a way to shorter the training phase, while maintaining the 
learning quality. And also must be improved the tests to generate more definitive results 
and to make possible the comparison with other classifiers. 
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1. Introduction  

We can imagine a haywire situation with no healthcare centres nearby. In this situation, a 
high risk patient, away from the medical healthcare center, may get major heart attack or 
unpredictable sudden stroke, or some other noxious symptoms. Lack of on-time 
information, proper diagnosis, and decision making system, may sometimes cause the life of 
the patient. In order to access the timely information and to employ correct diagnosis at 
anytime and anywhere, use of ubiquitous technologies is becoming ideal test-beds for         
u-Healthcare environments. However, using ubiquitous device, it would be one of the most 
crucial requisites to accumulate accurate signals timely and appropriate processing of those 
signals during such critical circumstances. Furthermore, lack of proper decision support 
system may delay the treatment, and it may cost a life of the patient. The effort to rectify any 
of these issues will minimize the time lag between observation and treatment during the 
emergency circumstances, and helps to reduce the diagnosis time, that can be better utilize 
for caring the patient. 
The objective of this chapter is to combine the agent based decision support system with 
ubiquitous artefacts and make it more intelligent, so that it can help the doctors to acquire 
correct and timely diagnosis information and select appropriate treatment choices. Also, 
designed is a novel interpretation of Markov decision process, providing clear mathematical 
formulation to connect reinforcement learning agent system. An attempt is given to 
supervise the dynamic situation by using agent based ubiquitous artefacts and to find out 
the appropriate solution for emergency circumstances, providing correct diagnosis and 
proper treatment in time. The well known reinforcement learning can be utilized to model 
u-healthcare decision support system. The reason for using the RL (Reinforcement Learning) 
agent based on MDP (Markov Decision Process) model is because it needs less number of 
parameters compare to other decision trees it also gives approximation method to make 
trade off between accuracy and speed, in turn, solve the complex number of cases in less 
time compare to other decision support system (Milos H., Fraser H., 2000). 
Organization of this chapter is as follows. Section 2 is a review of the related works, RL 
agent, and Markov decision model is also explained. Section 3 describes the details scenario 
of the proposed approach. Similarly, section 4 discusses the formulation of the model and 
optimal policy finding algorithm of the RL based decision support system. Finally section 5 
& 6 concludes the chapter and contains references.  
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2. Related works 

The concept of ubiquitous healthcare system using agent technology is studied in the 
reference Jakob E. Bardram (2004). Where the author visualized about highly interactive 
hospital, it will facilitate the doctors to access relevant medical information at anytime and 
anywhere, using ubiquitous hardware and software. Similar nature of research is explained 
in the reference work of (Thapa D., et al., 2005). In the reference work of (Wendelken S.M., et 
al., 2003), the idea of location finder agent using iterative deepening search is described. It 
can be utilized to design the patient location finder agent in a u-healthcare system. Similarly, 
the concept of agent based healthcare environment is explained in the reference (Rodriguez 
M., et al., 2003). Although, the functional architecture of the reference work is different, the 
conceptual idea is deployable to our work. 
In the reference work of (Milos H., & Fraser H., 2000) partially observable Markov decision 
process [POMDP] can be deployable utilized for the diagnosis and treatment of ischemic 
heart disease. This work can be theoretically considered as the part of reinforcement 
learning agent. Although POMDP is more suitable to observe the hidden state of the patient, 
its exponential growth is prone to state explosion problem. In our work, we deployed MDP 
assuming the patient state is within the domain of experts’ knowledge. In addition, time 
complexity of the MDP is lesser than POMDP.  
All of the existing works are focused on the exploitation of ubiquitous artefacts for the 
betterment of healthcare system. However, little attention is given to the concept of 
developing integrated emergency system using reinforcement learning decision support 
system in a u-healthcare environment. The main objective of this research is to design agent 
based decision support system using reinforcement learning, to reduce the time lag between 
the onset of the attack and the time that care is administered. Ubiquitous devices combined 
with agent technology can reduce the time latency, and they can provide suitable on-time 
treatment information when the patient is away from the hospital premises. 

2.1 Reinforcement learning agents  

Reinforcement learning (RL) is based on interaction with an environment, from the 
consequences of action, rather than from explicit teaching.  RL methods are intended to 
address the kind of learning and decision making problems that people face in their 
everyday lives. Main elements of Reinforcement learning are states s, actions a, and rewards 
r as depicted in Fig.1. The reinforcement learning agent (RL-agent) is connected to its 
environment via sensors. In every step of interaction the agent receives a feedback about the 
state of the environment st+1 and the reward rt+1 of its latest action at. The agent chooses an 
action at+1 representing the output function, which changes the state st+2 of environment. 
The agent gets a new feedback, through the reinforcement signal rt+2. It involves a decision-
making agent interacting with its environment so as to maximize the cumulative reward 
that it receives over time. The agent perceives aspects of the environment's state and it 
selects right actions. The agent may estimate a value function and use it to construct better 
and better decision-making policies over a given time. The main objective of the agent is to 
maximize the aggregated reinforcement signals. RL could be characterized by a 
mathematical framework of Markov decision processes (MDPs) (Stuart J. R. and Peter N., 
2003).  
In medical healthcare system, when we are supposed to take right decision in a right time, 
reinforcement learning agent, by combining different model and actions, can help a 
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physician to find out the best diagnosis and treatment options in different states of the 
patient. By using RL algorithms we can choose the best alternative action during the 
emergency circumstances which can reduce the total cost (time, treatment complexity etc) of 
the action (diagnosis & treatment) taken by the physician. 

 

                                      

                                     

 

 

 

 

Fig. 1. Reinforcement Learning Agent 

2.2 Markov decision process  

Reinforcement learning basically uses the MDP concept for implementation.  We are using 
the MDP which is based on shortest route approach to reduce the time latency of the 
reactive action, as per our approach, time is as much important as efficiency.  
An MDP is defined by a set of states S, actions A, Reward R, and transition probabilities T 
(Puterman M. L., 1994). A transition function, T: S x A ->P(S), defines the effects of the 
various actions on the state of the environment. P(S) represents the set of discrete 
probability distributions over the set S. The reward function, R: S x A  R, specifies the 
agent’s task to find a policy mapping, choice of action, so as to maximize the expected sum 
of reward. Two types of decision model can be used to obtain the reward. Infinite horizon 
uses discount factor 0<γ<1 to control how much effect future rewards have on the optimal 
decisions, with small values giving significant weight to later rewards. However, finite 
horizon does not use discount factor and the iteration of certain action is known in advance. 
This paper deployed the finite horizon decision model. 
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Implementation of this model in our approach is to ascertain, current state (patient status at 
the time of incident), action (medication, no action), transition probabilities (between current 
state and new state), and reward (cost and complexities) certain payoffs related to this 
transition. The objective of this model is to find out the optimized action to maximize the 
reward or cost in a finite discounted horizon as shown in equation 1. 
Due to the computation complexities of the pure MDP model we use Bellman’s value 
function recursively; it [eqn. 1] calculates the total reward value by adding all the 
suboptimal values [ eqn. 3] at some finite time horizon 

3. Proposed model 

 

Fig. 2. RL based decision support systems in a u-Healthcare system 

Assumption of this research test bed has been made in the ubiquitous environment. As 
shown in Fig.1, when a high risk patient, far from medical facilities, gets some perilous 
occurrence in their body, the ubiquitous sensor device attached to their body sends bio 
signals like (digital sounds of lung, SaO2, EKG) etc. to the home medical server using IEEE 
802.11b wireless network.  
The home medical server is connected to the hospital knowledgebase server through 
TCP/IP using internet connection. This signal sends the patient current status to the HIS 
(Hospital Information Server). On the bases of this crucial input data the decision making 
agent, based on RL model, make inference of the data and provide entire data history of the 
patient with best alternate action (diagnosis and treatment) to the related department with 
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minimal time cost. Decision agent also helps to the related physician check his scheduling, 
and sends the patients profile to the related departments. It helps in timely availability of 
the crucial information to the right place. The flow of Information processing is depicted in 
the following figure 2. 

  
 
Fig. 3. Flow of information processing in a u-Healthcare system 

1. Aquiring bio-signals and pattern recognition can be done by using artificial neural 
network  like back propagation. 

2. Prediction & diagnosis can be done by using time series analysis & self organizing 
feature map (SOM),  artificial neural network . 

3. RL decision making agent is based on MDP (Markov Decision Process), this chapter  
particularly describes about this approach. 

Final output of the decision making agent will be two fold measurements as shown in fig 4: 

• Patient Current State (Level of risk) 
 - Normal 
 - Serious 
 - Emergent 

 

• Emergency Measurement 
 -If the (State = Emergent) 
  Send SMS Message to Doctor 
  Send SMS Message to User Relatives 
  Send SMS Message to Ambulance  

On the basis of the level of risk it suggests best series of action or optimal policy for the 
better way of diagnosis and treatment. 

Acquiring Bio-signal Data
Pattern Recognition

Prediction

Diagnosis

Level of Risk

Recovery Action Suggestion 

Decision Agent

HIS (Hospital Information 
Server) 
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Fig. 4. Complete graphical scenario of RL integrated u-Healthcare System 

As soon as the patients reach to the hospital premises information will be ready for the 
optimal and immediate action by physician. Although this is a conceptual idea, the parallel 
research on this idea has been going on. Our approach is to make the RL based decision 
making model more efficient and rational to save the life of the high risk patients in 
emergency circumstances, with the help of RL integrated ubiquitous artifacts in the u-
Healthcare system. The level of risk will be calculated on the basis of the  input data 
described in Table I. 

Data Standard 

SaO2 Normal      >90% 
Lack of oxygen: 
Mild          90~94% 
Moderate   75-90% 

HR 
(Heart Rate) 

Normal         60~100/min 
Tachycardia  >100/min 
Paroxysmal Tachycardia:         
                    150~250/min 

BP 
(Blood 

Pressure) 

Normal :             120/80mm HG 
Hypertension:     >140/90mmHG 
Serious Hypertension:  
                            >200/140mmHG 
Hypotonic           >100/60mmHG 
Serious Hypotonic <80/60mmHG 

Body 
Temperature 

Normal: 36.5~37Degree 
Slight fever: 
Morning >37.2 
Evening >37.7 
High Fever > 38.3 

Table I. Parameters for calculating the level of risk (Source: AJOU university hospital) 

Emergence measure
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Private  
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4. Formulations to a reinforcement learning problem 

In this paper, we assumed that patient current state is fully observable; we have used the 
MDP model with finite discounted horizon. On the basis of his current available data (like 
heart beat, pulse rate, respiration, chest pain) as shown in table I, and past history of the 
patient from Hospital Information Server, it makes different combination of the action 
(medication or no action or emergency measurement) and reinforce (negative and positive) 
rewards (cost) with every action to go to next state. Finally, it finds out the best action or 
minimum cost (time taking) solution. 

 

Fig. 5. Symbolic representation of Markov Decision Process 

R=Reward, P=Transition probability, A=Action, S=State 
 

Decision Epochs: [Finite time horizon] 

T={1,2,….,N}, ∞≤N  

States(S) = [Normal (s3), Serious (s1), Emergent (s2)] 

S= {s1, s2, s3} 
 

Action (A) = [No action(a1), Medication(a2), Medication with emergency measurement(a3)] 
A = {ai,j | i=1,2,3 and j=1,2,3}, where i refers to the state and j refers to action  

Rewards(R) = {Cost (ri,j) | i=1,2,3 and j= integer } 

R(S1, ai,j )= ri,j  
R (S2, ai,j )= ri,j  
R (S3, ai,j )= ri,j  

If ∞≤N  

Transition Probabilities (pt): [Effect of diagnosis and treatment (p)] 
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pt(s3|s1, a1,2)=p1,2,3 

For example, if the patient is in the state s1 and the action a1,2 will be taken then the 
probability of patient going to state s3 will be p1,2,3.  Where p denotes the probability 
between [0, 1] of transition, and 1, 2, and 3 denotes the action a1,2 and state s3 respectively. 
Calculation of expected Reward or Cost: 

Example: R(S1, a1,1)=  R(S1, a1,1, S1) pt(S2|S1, a1,1) + R(S1, a1,1, S2) pt(S2|S1, a1,1) 

4.1 Finding the best policy or the minimum cost function using DP (Dynamic 
programming) approach 

Compared with other methods for solving MDPs, DP methods are actually quite efficient. 
The (worst case) time DP methods take to find an optimal policy is polynomial in the 
number of states and actions (Stuart J. R. and Peter N., 2003). If  and  denote the number 
of states and actions, this means that a DP method takes a number of computational 
operations that is less than some polynomial function of  and . A DP method is 
guaranteed to find an optimal policy in polynomial time even though the total number of 
(deterministic) policies is . In this sense, DP is exponentially faster than any direct search 
in policy space could be, because direct search would have to exhaustively examine each 
policy to provide the same guarantee.  

choose an arbitrary policy    

 loop 

    

 compute the value function of policy   : 

  solve the linear equations 

 )'()'),(,())(,()( ' sVsssTssRsV Ss ππππ ∈∑+=  (4) 

 improve the policy at each state: 

 ))'()',,(),((minarg:)(' ' sVsasTasRs Ssa ππ ∈∑+=
  (5)

 

 until    

Denote a policy as Л, where Л=action selected in current state. Where )( sV π and )(' sπ  are 

optimal value and control function. We can take Л’ as any random policy and )(sVπ  is 
reward value starting from current state and following the Л policy. Now we can define 

another greedy policy in terms of Л’(s) and make iteration of the value function )(sVπ  

function until  . We consider whether the value could be improved by changing the 
first action taken. If it can, we change the policy to take the new action whenever it is in that 

situation. When  and no improvements are possible, then the policy is considered to 
be optimal. This model will be helpful to achieve the objective of finding an action or a 
sequence of actions that optimizes the time cost of diagnosis and treatment in a given finite 
horizon under emergency circumstances. 
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5. Conclusion 

This paper presents and describes a Reinforcement Learning agent based model used for 
information acquiring and real time decision support system at emergency circumstances. 
The well known reinforcement learning is utilized for modeling emergency u-Healthcare 
system. Markov decision process is also employed to provide clear mathematical 
formulation in order to connect reinforcement learning as well as to express integrated agent 
system. This method will be highly effective for the real time diagnosis and treatment of 
high risk patient during the emergency circumstances, when they are away from the 
hospital premises. Looking at the growing increase in the research area of ubiquitous 
devices this approach seems to be very beneficial and life saving for the high risk patient at 
the time of emergency circumstances. Further pursuing will be to develop some prototype, 
and simulate the testing data, planning modules, and find out the actual outcome of this 
approach. 
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1. Introduction 

In a complex environment where the messages exchange intensively among the agents, a 
difficulty task is to decide the best action for new arriving messages during on-line control. 
A typical form of communication in Air Traffic Flow Management (ATFM) is verbal 
language to exchange the information and there is almost no digital recording of this 
communication between pilot and air controller. As the development of distributed 
computation system [1], the digital message communication is proposed especially for 
processing the immense amount of messages. 
In a real case such as the First Integrated Center of Air Defense and Air Traffic Control - 
CINDACTA I, in Brasilia, the system monitors 70% of the traffic flow in Brazil. According to 
the air traffic control procedure in CINDACTA I, Flight Information Region of Brasilia - FIR-
BS is divided into 14 sectors and managed by 3 regional supervisors (Sao Paulo, Rio de 
Janeiro and Brasilia). Every air controller monitors his sector and is responsible to his 
supervisor.  Only supervisor can make a decision to manage the air traffic flow. Any action 
is realized by air controller according to the decision of supervisor. For example, a decision 
may be to hold a flight in an airport for more 10 minutes, or assign the priority to another 
flight in the landing processing. 
In CINDACTA I, the monitor system (equipment and operation software) is suitable, but 
there is no a general system to manage and synchronize the traffic dynamically and to 
support the decision for adequate traffic management. Supervisor makes the decision just by 
his experience without quantity analyses of the impact of the action. To resolve this kind of 
problem, some researches were developed using the solution of Artificial Intelligence and 
others according to the new conception of ATFM.  
A distributed ATM system has been studied in Australia [2]. The advantages of that 
approach are inherent distribution, autonomy, communication and reliability. Prevôt, from 
NASA Ames Research Center, has studied a distributed approach for operator interfaces 
and intelligent flight guidance, management and decision support [3]. An application of 
multi-agent coordination techniques in ATM, which sets up a methodological framework 
using multi-agent coordination techniques that supports the collaborative work in ATM has 
also been presented recently by Eurocontrol [4]. It should be mentioned that the multi-agent 
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coordination technique is a useful methodological framework, however the research in [4] is 
limited to a software shell. Due to the huge amount of information traffic in ATFM, its 
implementation may not be straightforward when brought into practical fields. 
A multi-agent system (MAS) for ATFM in grid computing - ATFMGC, was developed 
recently [5].  The research proposed an approach of cooperation and negotiation among 
agents using grid computing in a real time traffic synchronization problem. In some aspects 
such as the agent functions, their knowledge representation and inference processes [6] were 
developed. Standard of Balancing among Airports (SBA) as a criterion was also used to 
balance and measure the amount of communication among agents (i.e. airports) and the 
tolerated delay of the flights [5].  
On the other hand, some problems have appeared for the fact of the intense exchange of 
messages in ATFMGC related with more than 10 airports. For a fixed SBA, it is impossible to 
efficiently equilibrate the communication. It is necessary to adapt a suitable mechanism to 
assist the decision process. The System of the Application and Management of the Decision 
Support Air Traffic Flow Control - SISCONFLUX is still in development [16]. Within this 
system, the idea is to introduce Meta-Level Control approach [7, 8] in ATFM. During 
information process, the reinforcement learning [9] is inserted to acquire experience to make 
Markov decision process more efficiency.  
Meta-Level Control approach was developed by Raja and Lesser since 2003 [7, 8] for Multi-
Agent System. This research proposed a Module of Evaluation and Decision Support 
(MAAD) in SISCONFLUX for ATFM with the combination of the Meta-Level Control 
approach and reinforcement learning algorithms (Q-leanring and SARSA [10]). With the 
developed system, four strategies of the modifications of the parameters in the Q-learning 
and SARSA algorithms are studied during reinforcement learning simulation, such as the 
cases of initial heuristic (IH), epsilon adaptative (EA), performance heuristic (PH) and the 
combination of above three (IH + EA + PH). The results from simulation and analyses show 
satisfactory in the traffic management process. 
The chapter is organized in five parts: soon after this introduction, section II presents a 
general view of Meta-Control and algorithms of reinforcement learning. In the third section, 
the proposed system SISCONFLUX and principal model of this research - MAAD are 
described including control process and learning algorithms. A case study is illustrated and 
discussed in section IV. Last section presents the conclusions and future research. 

2. Meta-level control and reinforcement learning algorithms 

2.1 Meta-level control 

Meta-level control is defined as the ability of complex agents operating in open 
environments to sequence domain and deliberative actions to optimize expected 
performance [7, 8]. It is an important topic in automatic control and some related fields. 
Russel and Wefald [11] presented a general approach of meta-reasoning and named as 
Principles of Meta-Reasoning. Some applications and related works were intensely 
studied by Raja and Lesser such as [7, 8, 11]. In these researches, an additional layer of 
meta-control that acts above of the component of control in the system to help the 
decision process. Reinforcement learning is also introduced to make the agents to learn 
knowledge from experience for better to make the decision. 
The actions of the intelligent agents in the classic architecture are classified in two 
types: action and action to recover property of control, as the research in [10]. 
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Considering the Meta-Reasoning, Raja and Lesser [7, 8] mentioned another action: the 
action of Meta-Level Control. It is a process of optimization of the performance of 
agents for choosing the sequence of actions to recover property and the deliberative of 
the activities [8]. 
Reactive controls may be suitable for situations with high restrictions such as: real time, 
limited resources, among others. There are five types of event triggers that require 
Meta-Level decision making [8]: 

• Arrival of a new task from the environment;  

• Presence of a task in the current task set library (current) that it requires 
negotiation with a non-local agent; 

• Failure of a negotiation to reach a commitment;  

• Decision to schedule a new set of tasks or to reschedule existing tasks; 

• Significant deviation of online schedule performance from expected 
performance. 

According [7, 8], Meta-Level Control is a process of deciding among the following 
choices: to drop the goal and not do any analysis; to delay goal analysis; reason about 
the amount of effort to go into goal analysis; and to determine the context of the goal 
analysis – whether to analyze it a single goal or multiple goals within a single agent 
perspective; or to analyze single or multiple goals in the context of a facilitating agent's 
goals. 
Meta-Level Control is useful in situations where options for goal analysis are expensive, 
in other words, the costs or accumulated costs affect agent performance detrimentally. 
It is useful when the cost of goal analysis is significantly more expensive than cost of 
meta-level control actions. It is also useful where a choice has to be made about the type 
of goal analysis and the options for goal analysis have significantly different costs and 
produce results with significantly different utilities. 

2.2 Reinforcement learning 

Reinforcement learning is learning what to do and how to map situations to actions - so as 
to maximize a numerical reward signal [12]. The learner is not told which actions to take, as 
in most forms of machine learning, but instead must discover which actions yield the most 
reward by trying them. In the most interesting and challenging cases, actions may affect not 
only the immediate reward but also the next situation and, through that, all subsequent 
rewards. These two characteristics - trial-and-error search and delayed reward - are the two 
most important distinguishing features of reinforcement learning. One of the challenges that 
arise in reinforcement learning and not in other kinds of learning is the tradeoff between 
exploration and exploitation. 
To obtain a lot of reward, a reinforcement learning agent must prefer actions that it has tried 
in the past and found to be effective in producing reward. But to discover which actions 
these are it has to select actions that it has not tried before. The agent has to exploit what it 
already knows in order to obtain reward, but it also has to explore in order to make better 
action selections in the future. The dilemma is that neither exploitation nor exploration can 
be pursued exclusively without failing at the task. 
For control problems such as ATFM, reinforcement learning agents can be left to learn in a 
simulated environment and eventually they will come up with good controlling policies. 
Some advantages of using reinforcement learning for control problems is that an agent can 
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be retrained easily to adapt to environment changes, and trained continuously while the 
system is online, improving performance all the time [12]. 
The typical mathematical model witch bases Reinforcement Learning is known as Markov 
Decision Process [10]. This model considers two main conditions:  
1. The  Markov Property - Situation in which the probability of transition of a state s for a 

next state s ' depends only on state s and of the action the adopted in s. This means that 
the current state supplies the enough’s information to the learning system decide which 
action must be taken.  

2. Markov Decision Process - is a process in which a set of states S,  s ∈ S, a ∈ set of A(s) 
action, T set of transitions between states associates with the actions and a set of 
probabilities P on the joint S that represents a modeling of the transitions between the 
states. 

Two algorithms of reinforcement learning are used in this research, such as: Q-learning and 
SARSA [12], as mentioned in the following sub-sections.  

2.2.1 Q-leanring algorithm  

A Q-learning agent learns an action-value function, or Q-function, giving the expected 
utility of taking a given action in a given state. The essence of the Q-learning algorithm is 
defined as follows [10 - 15]. At the time t, the agent: 
 
1. Visit state st and select an action at. 
2. Receive r, reward observed in the following state, from the process of the reinforcement 

r(st, at) and observe the next state st+1. 
3. Update the action value : 

  Qt+1(st, at) ← Qt(st, at)+α[r(st, at) + γ maxa, Qt((st+1,at+1) - Qt(st, at)]  (1) 

4. Repeat above steps until stopping criterion is satisfied. 
Where [12],  

 s, a are the original state and action, r is the reward observed in the following state.  
 α : the learning rate, set between 0 and 1. Setting it to 0 means that the Q-values are 

never updated, hence nothing is learned. Setting a high value such as 0.9 means that 
learning can occur quickly.  

γ: discount factor, also set between 0 and 1. This models the fact that future rewards 
are worth less than immediate rewards. Mathematically, the discount factor needs to be 
set less than 0 for the algorithm to converge.  

maxa: the maximum reward that is attainable in the state following the current one. 
i.e. the reward for taking the optimal action thereafter.  

2.2.2  SARSA  algorithm  

The SARSA algorithm is a temporal difference (TD) method that learns action-value 
functions by a bootstrapping mechanism, that is, by making estimations based on 
previous estimations. It is an On-Policy algorithm for reinforcement learning and 
defined as follows [10 - 15]. At the time t, the agent: 
 
1. Visit a state st and select an action at. 
2. Receive r, reward observed in the following state, from the process of the 
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reinforcement r(st, at) and observe the next state st+1. 
3. Assign et(st, at) = et(st, at) +1 
4. Update the action value : 

 Qt+1(st, at) ← Qt(st, at)+α[r(st, at) + γ Qt((st+1,at+1) - Qt(st, at)] et(st, at) (2) 

5. For all s, a do et(st, at) = γλet(st, at) + 1 
6. Repeat above steps until stopping criterion is satisfied. 
 
The major difference between SARSA algorithm and Q-learning, is that the maximum 
value for some action not taken for the next state is not used for updating the Q-values. 
Instead, a new action and a reward are selected using the same policy that determined 
the original action.  

3. Proposed model: evaluation and decision support 

3.1 Propose of SISCONFLUX 

The System of the Application and Management of the Decision Support Air Traffic 
Flow Control - SISCONFLUX is in development. The system is proposed to make the 
suitable decisions for the supervisors of controllers of an air traffic control region, the 
decision restrictive the traffic flow control more effective ahead of determined scenario. 
Such decision action will represent the solution most adequate for the maintenance of 
the best condition of flow of traffic in the Flight Information Region of Brasilia - FIR-BS 
as a whole.  
The SISCONFLUX also is proposed to support the decision according to the determined 
flights, routes or airports condition, to prioritize the traffic flow management. Such 
prioritized action may be established in agreement the emanated orientation of the 
responsible agencies for the air traffic flow management in Brazilian airspace. 
As a part of this system, the Module of Evaluation and Decision Support (MAAD) is 
with the function as a module of analysis and learning. Based on the experience of the 
air traffic controllers and supervisors, MAAD learns the experience and suggest the 
decision to adjusted traffic flow in the sectors of traffic control do not reach the 
condition of congestion or saturation. This suggestion is defined by the other 
subsystem: Module of Balancing of Flow (MBF), which is general manager of the traffic 
flow to balance the delay (Sky or Grand Holding) in the minimum or accepted 
condition.  
The definition of the control or adjustment of the flow is from series actions which are 
specified by some parameters in computation system. These actions are defined by air 
traffic controller and supervisors, for example, to delay a flight in an airport or give 
priority for a landing flight, etc. In such a way, the subsystem can get the input action 
from supervisor, according to pre-established parameters. That input will be sent to 
other integrant modules of the system for the projection of new scenery and restart of 
the operation cycle.  
MAAD is also developed as the interface among the human agents (air controllers and 
supervisors) and with the other modules of the system. Basically it has the function to 
catch the experience of the controllers and supervisors, including these variants to the 
set of results analyzed from the previous modules, besides functioning as origin of data 
for the system as well.  
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Once the decisions are accepted by the supervisors, the same ones will be stored and 
will start to be part of the system as an accepted decision for the data base. Among All 
the tasks of this module can be mentioned:  

• Presentation of the results to the supervisors;  

• Collect of data for learning purpose;  

• Storage of the set of pairs (state; action);  

• Log of events as action of the operators;  

• Activities that are considered useful administratively (item in discussion with the 
command of CINDACTA I).  

To support the decision, the technique of Meta-Level Control is modified and applied to 
the system to improve the performance of the communication between the agents. 
During the control process, the decision is taken being based on the experience and the 
knowledge acquired for the agents with reinforcement learning.  
MAAD as a learning module inserted in the architecture of the SISCONFLUX (Figure 1) 
that guarantees the capacity of adaptation in random situations, or either, adaptation to 
the alterations of the decision environment. The use of reinforcement learning speeds 
up heuristically the decision procedure, where Q-learning and SARSA algorithms are 
introduced. 

 

Fig. 1. Architecture of SISCONFLUX 
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Where: 
SISCONFLUX: The System of the Application and Management of the Decision Support Air 
Traffic Flow Control.  
MAPC: Module of Accompaniment and Forecast of Scenery.  
MBF: Module of Balancing of Flow.  
MAAD: Module of Evaluation and Decision Support. 
STVD: System of Treatment and Visualization of Data.  
RPL: Plans of Repetitive Flights.  
FPL: Plans of Eventual Flights. 
 
Figure 2 shows to a project of functioning of the subsystem and its relationship with the 
other modules of the SISCONFLUX. 
 

 

 

Fig. 2. Relationship among sub-models in SISCONFLUX 
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3.2 Architecture of module of evaluation and decision support (MAAD)  

 

Fig. 3.  Architecture of MAAD 

The model of Module of Evaluation and Decision Support (MAAD) is developed as a Meta-
Level Control layer that a system host receives the messages in a more appropriate 
sequence, set appointments determined messages and prioritizing others. MAAD consists of 
two main modules: Module of Decision and Control – MDC and Module Reinforcement 
Learning - MRL. In such a way, Meta-Level Control uses a set of parameters to associate 
each message (good utility of the message and maximum state period for the execution) and 
generate a series of other parameters: the probability of arrive message in the entrance list 
with high utility, the utility of the messages to set appointments in the agenda list, the 
period of execution for the message that is in the beginning of the agenda and reason of flow 
that measures the messages entering to and leaving from MDC. Figure 3 shows the 
architecture of MAAD. 
Exchanging the messages in a distributed system with a manner of communication needs to 
establish a hierarchy according to aspects of this system. The attributes defined for the 
system are attached to the message of the Meta-Level Controller that the message 
encapsulates and sends it. The destination of the message is also processed by a Meta-
Controller within the Multi-Agent System, which receives the message and analyzes the 
enclosed attributes to make the decision in the most appropriate. The manager in Meta-
Level Control can decide among three actions: to set appointments of the message for 
posterior act of receiving; to transfer the message in the system or still to discard it. 
The approach of intelligent agent makes use of some aspects of Meta-Level Control as to use 
the parameters in Meta-Level of the messages for taking efficient decision and without 
overload the performance of the system in general situation. 
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3.2 Decision and control approach 

The decision process is carried through by MDC which is supported by a Knowledge Base. 

This base is defined as a part of MRL. The heuristic is used initially in MRL by ad hoc form, 

where for each state of the environment, it is suggested with an action that in accordance 

with the previous analysis. However, if dealing with a random environment, it is not always 

suggested a best action initially. This action may be indicated during a long time. Thus the 

suggestions are modified in the manner that the agent knows better the environment that it 

is acting.  

The defined heuristic initially is necessary in the situation that the agent does not operate so 

bad form in the beginning state because it knows very little on the environment. 

The state changes are shared by two modules. MDC is developed for controlling the state 

changes, managing the entrance and the exit of messages and carrying through the 

communication among the diverse agents. And MRL carries through reinforcement learning 

for better decision.  

Six parameters are used to define a state: p1, p2, p3, p4, p5, p6. They are standardized 

respectively in the order of the parameters as follows: 

• p1 represents priority of the message that arrives; 

• p2 represents the existing stated period so that the messages can be processed; 

• p3 represents good utility of the set of appointment of the messages; 

• p4 represents the stated period of execution of the messages that are set appointments; 

• p5 represents probability of a arrived message with high priority; 

• p6 represents the reason of flow of the messages in MAAD. 
Each parameter will receive a value: high, average or low (see figure 4). When a state has 
one or more of the six parameters with value not informing, such as 002, for project decision, 
that state will not be studied. In this form, valid states with the six informed parameters will 
only be dealt by MDC. 
For example, the state (100111011101) 2, in binary, would present the following values for 

each parameter: p1 = 10, p2 = 01, p3 = 11, p4 = 01, p5 = 11, p6 = 01, that correspondents the 

state in decimal form of 2525.  

 

 

 

Fig. 4. The parameters for state presentation where: (11)2 = High, (10)2 = Medium, (01)2 = 
Low and (00)2 = Undefined 

Given a state of the environment from MDC, it can be transferred to MRL and then an action 

will be indicated for the environment. The selected action is executed by the environment 

and then reinforcement behind this action. This action is returned for the agent of learning 

that influences the impact of the suggested action. This process of interaction enters the 

learning agent and the environment will continue and allow the accumulation of experience 

of the Agent for the long time. 

If the learning of the agent to consider only reinforcement learning, the general process will 
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be very slow. Thus, a alternative approach to speed up the learning may be interesting. In 

this form, an adaptation to select randomly between exploitation and exploring may be 

influenced by the performance of the agent in the environment and the external factors to 

the environment. 

To evaluate the performance of the current state of the system - MAAD, five parameters are 
considered and to get the final value of AvD: 

  (3) 

where,  
SDS (Situation of the Host System): this parameter presents situation of the system which 

the MAAD serves. It is with weight three in the general evaluation due to the necessity to 

increase the influence of the system host on the evaluation of performance of the MAAD. 

RF (Reason of the Flow): this parameter is used to measure the flow of the messages in 

MAAD. It is with weight two due to the necessity to show more efficiency of the 

communication of the messages in MAAD. 

SEL (Situation of the Entrance Lists): this parameter is used to measure the queue of 

entrance messages and can be reduced or increased when the system is more congested or 

less congested respectively. 

SAL (Situation of the Agenda): this parameter is used to measure the Agenda of messages 

and is reduced or increased when the Agenda in the system is more congested or less 

congested respectively. 

SPL (Situation of the Ready List): this parameter is used to measure the processed messages 

in the queue and can be reduced or increased when the queue is more congested or less 

congested respectively. 

3.3 Module reinforcement learning – MRL 

The agent of reinforcement learning uses two algorithms that are well defined in the 

literature of reinforcement learning: Q-learning and SARSA [5]. Four strategies of the 

modifications of the parameters in the Q-learning and SARSA algorithms are studied during 

reinforcement learning simulation, such as the cases of initial heuristic (IH), epsilon 

adaptative (EA), performance heuristic (PH) and the combination of above three (IH + EA + 

PH). In totally, eight modifications have been implemented: four modifications for Q-

learning and four modifications for SARSA. 

The first modification is the original implementation of Q-learning and SARSA with an 

initial heuristic (IH). This initial heuristic guides the agent in the start when it still does not 

have experience of the environment that it is acting. For long time, the rules go being 

substituted for the successful actions that the agent goes taking. 

The second modification is a proposal epsilon adaptative (EA) that it reduces the percentage 

of exploration while the actions are successful or increases this percentage while the actions 

negatively influence the evaluation of the performance of the system. There is a version for 

Q-learning and another one for SARSA. 

The third modification uses a definition of heuristic (PH ) based on the performance of the 

MAAD, see Bianchi’s work [14]. The policy of this variable considers a heuristic function 
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based on performance. So, the learning algorithm considers these actions which give the 

best reinforcement associated with the best performance by the heuristic function. An ideal 

performance is defined as 100% of the evaluation space and a value of performance is 

measured in the instant of analysis between 0% and 100%. The bigger the performance of 

the agent, the best is its behavior. The desired situation is to find the politics that allows the 

agent in the distance to minimize between the current performance and the considered ideal 

performance. 

The fourth and last modification is in the implementation of Q-learning and SARSA when 

heuristic initial, adapt epsilon and heuristic (IH + EA + PH) is based on the performance. 

4. Case study 

The case study shows the results from the simulation of the message exchange within the 

developed system. Each knot in the distributed system presents a layer managed in Meta-

Level where the meta-parameters are analyzed for each message. With this consideration, 

we can see that the classification of the messages is based on the importance of the message 

without losing: more importance, higher priority.  

4.1 Simulation condition 

Each message generating source is considered as a knot in the distributed system. The 

message from this source can be processed by other knots. In a determined moment, if there 

is less traffic, fewer messages are needed to be processed, in case no congestion arises in the 

airport system.  

In basic simulation, four knots, i.e. four airports, form the study environment. Three of these 

generating sources send messages to one other knot for analysis. Generally, there is no 

logical difference among each generating source. The intention of the basic simulation is to 

identify the adversities of each airport and the important characteristics which need to be 

treated.  

The adversities from each airport are simulated through generation intervals between the 

messages. To represent a process of intense message exchange, the messages are generated 

with a short interval. On the other hand, a process of small intensity message exchange is 

represented with a long interval.  

To evaluate the quality of learning, an evaluation module is projected to attribute a note to 

the agent. Based on a default table of possible good actions for each case, the evaluation 

module generates the note. This note is generated from the action taken in relation to what it 

is suggested by the default table and also considering the degree of congestion of the 

external path. Here, the evaluation of learning quality is done within the mentioned periods. 

The interval of evaluation between the messages is varied throughout the four simulations. 

The configuration chosen included 32 periods and intervals between the messages of 1 

second for Q-learning and 5 seconds for SARSA. 

4.2 Evaluation of the performance of MAAD 

Each algorithm is tested with the combination of proposed strategies (as mentioned in last 

section). In summary, the strategies include the use of heuristics and adapted parameters by 
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performance that enables the agent to learn flexibly and rapidly.  

Figure 5 shows the result of the evaluation of the performance of messages meta-controlling. 

The curves of performance of Q-learning are worse, in all four  evaluations, compared with 

the curves from SARSA algorithm. The literature justifies this result due to the nature of the 

two algorithms. While Q-learning makes a search among the possibility actions, SARSA 

makes a random choice that considers the probability distribution of the actions until the 

action is selected.  

 

 

Fig. 5. Evaluation of the Performance of MAAD 

As a result, the use of initial heuristic (IH) and epsilon adaptative (EA) present better results 

with SARSA algorithm. In case of Q-learning, the initial heuristic (IH) and performance 

heuristic (PH) present better results according to the observed learning performance. 

However, it is observed that the results of agents learning with Q-learning are worse in 

comparison with SARSA. 
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4.3 Evaluation of the quality of the learning and alteration of the alpha parameter 

 

Fig. 6. Evaluation of the Learning Quality for α = 0.02 

 

Fig. 7. Evaluation of the Learning Quality for α = 0.04 
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In this case, a vector of uplas (state, action, reward) is defined, considering the 
acceptable value depending on the environment conditions. When the decision is taken, 
it is compared with a defined acceptable standard which maximum value is 100%. If a 
decision is within the acceptable standards, a parameter note is developed and stored in 
a note vector. After the complete fulfilling of the note vector, with initially one hundred 
positions, the arithmetic mean of notes is calculated and note value is altered. This 
guarantees that a good decision will lead to the growth of the note and a bad decision to 
its decrease. 
In figure 6, the system tries to make a decision following the expected standard. In the 
initial points, some decisions have bad performance. Initially, a note zero is attributed, 
and to the measure that the module takes good decisions, this note is increased. Some 
bad decisions should expected. This is one of the characteristics of reinforcement 
learning. SARSA algorithm has faster execution time than Q-learning (see figures 6 and 
7). However, the experiments show that it learns slower to reach maximum note. On the 
other hand, the Q-learning algorithm takes a lesser amount of periods to reach a 
maximum note (see figures 6 and 7).  
Concerning the results obtained with the change of alpha parameter, it was adjusted for 
values of 0.02 and 0.04, respectively. With alpha of 0.04, the simulation achieved better 
results. 

5. Conclusions 

This research presented a solution for Meta-Level Control application and 
reinforcement learning in the decision process to improve the efficiency for the 
exchange of messages within a distributed system in ATFM. As a part of the research of 
the Evaluation and Decision Support Module (MAAD), the reinforcement learning 
approach was applied and developed as a sub-module (MRL) with adaptation of two 
algorithms: Q-learning and SARSA. The Meta-Level Control was developed as another 
sub-module (MDC) for making decision regarding information process. 
One of the advantages of the use of reinforcement learning is that the agents acquire 
experience during the iteration process with the environment. As a similar form of 
learning, it utilizes system performance as criteria to verify the performance of the 
agents in the environment. After analyzing the activities of controllers and supervisors, 
the hierarquization of these activities in computation module was established, allowing 
treating more critical situations faster and more effective. At the same time, the 
controllers and supervisors can get the quantitatively impact from the system for their 
decisions.  
The simulation results from four cases by two reinforcement learning algorithms (Q-
learning and SARSA) have shown the correctness and efficiency of the combination of 
Meta-Level Control and reinforcement learning in a special problem of ATFM. As a 
stage research report, the simulation is just a part of the internal message process. Other 
interesting aspect is the evaluation of changes in the value of alpha parameter. The 
learning quality is influenced by a suitable choice of alpha value. 
In further research, it will be pursued the integration of support decision procedures 
with all modules in SISCONFLUX, to effectively assist the activities of controllers and 
supervisors. It is intend to consider a heuristic procedure in MAAD to improve the 
performance, reflecting quantitative criteria of the real life performance of the 
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controllers and supervisors in CINDACTA I. It is also interesting to use other 
reinforcement learning algorithms such as R-learning or Dyna in the system.  
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