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Cover

Featured in the background on the cover are two photographs of instruments 
that earmark measurement chronology. Leeuwenhoek’s microscope stands 
at its beginning, ushering in a golden age of experimentation. A modern 
temperature sensor symbolizes the present.

During the 17th century, Galileo Galilei’s (1564–1642) telescope and Antony 
van Leeuwenhoek’s (1632–1723) microscope, both made of lenses, allowed 
man to begin probing the intricacies of his macroscopic and microscopic 
worlds. The microscope pictured on the front cover is an exact replica of van 
Leeuwenhoek’s original microscope made before 1673. It was constructed 
in 2006 by Mr. Leon Hluchota, tool and die maker, of the Department of 
Aerospace and Mechanical Engineering at the University of Notre Dame. 
One of Leeuwenhoek’s original microscopes is at the University Museum, 
Utrecht, The Netherlands. That microscope’s magnification was calibrated 
by Dr. J. van Zuylen in 1981 and found to be 266×, with a focal length of 0.94 
mm and a resolution of 1.35 μm. This magnification was at least one order of 
magnitude better than any other contemporary device and was not exceeded 
until over a century later.

The temperature sensor shown on the front cover was developed by Eric 
Matlis, Ph.D., in 2008 at the Institute for Flow Physics and Control at the 
University of Notre Dame. This state-of-the-art sensor is part of a suite of 
highbandwidth sensors based on the use of miniature, AC-driven, weakly 
ionized plasmas. The sensors can be designed to measure surface pres-
sure, shear stress, gas temperature, and gas species, either singly or in 
combination.
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Preface

This text covers the fundamental tools of experimentation that are currently
used by both engineers and scientists. These include the basics of experimen-
tation (types of experiments, units, and technical reporting), the hardware of
experiments (electronics, measurement system components, system calibra-
tion, and system response), and the methods of data analysis (probability,
statistics, uncertainty analysis, regression and correlation, signal characteri-
zation, and signal analysis). Historical perspectives also are provided in the
text.

This second edition of Measurement and Data Analysis for Engi-
neering and Science follows the original edition published by McGraw-Hill
in 2005. Since its first publication, the text has been used annually by over 30
universities and colleges within the U.S., both at the undergraduate and grad-
uate levels. The second edition has been condensed and reorganized following
the suggestions of students and instructors who have used the first edition.
The second edition differs from the first edition as follows:

• The number of text pages and the cost of the text have been reduced.

• All text material has been updated and corrected.

• The order of the chapters has been changed to reflect the sequence of
topics usually covered in an undergraduate class. Former Chapters 2
and 3 are now Chapters 11 and 12, respectively. Their topics (units
and technical communication) remain vital to the subject. However,
they often can be studied by students without covering the material in
lecture. Former Chapter 6 on measurement systems has been moved up
to Chapter 3. This immediately follows electronics, now Chapter 2.

• Some sections within chapters have been reorganized to make the text
easier to follow as an introductory undergraduate text. Some sections
now are denoted by asterisks, indicating that they typically are not
covered during lecture in an introductory undergraduate course. The
complete text, including the sections denoted by an asterisk, can be
used as an upper-level undergraduate or introductory graduate text.

• Over 150 new problems have been added, bringing the total to over
420 problems. A Problem Topic Summary now is included immediately
before the review and homework problems at the end of each chapter to
guide the instructor and student to specific problems by topic.

xi



xii

• The text is now complemented by an extensive text web site for students
and instructors (www.nd.edu/∼pdunn/www.text/measurements.html).
Most appendices and some chapter features of the first edition have been
moved to this site. These include unit conversions (formerly Appendix
C), learning objectives (formerly Appendix D), review crossword puzzles
and solutions (formerly at the end of each chapter and Appendix F), dif-
ferential equation derivations (formerly Appendix I), laboratory exercise
descriptions (formerly Appendix H), MATLABr sidebars with M-files
(formerly in each chapter), and homework data files. Instructors who
adopt the text for their course can receive a CD containing the review
problem/homework problem solutions manual, the laboratory exercise
solution manual, and a complete set of slide presentations for lecture
from Taylor & Francis / CRC Press.

Many people contributed to the first edition. They are acknowledged in the
first edition preface (see the text web site). Since then, further contributions
have been made by some of my Notre Dame engineering students, my senior
teaching assistants Dr. Michael Davis and Benjamin Mertz, and my colleagues
Professor Flint Thomas, Dr. Edmundo Corona, Professor Emeritus Raymond
Brach, Dr. Abdelmaged Ibrahim, and Professor David Go. Dr. Eric Matlis and
Mr. Leon Hluchota provided the instruments shown on the cover. Jonathan
Plant also has supported me as the editor of both editions.
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...there is a diminishing return from increased theoretical complexity and ...
in many practical situations the problem is not sufficiently well defined to

merit an elaborate approach. If basic scientific understanding is to be
improved, detailed experiments will be required ...

Graham B. Wallis. 1980. International Journal of Multiphase Flow 6:97.

The lesson is that no matter how plausible a theory seems to be, experiment
gets the final word.

Robert L. Park. 2000. Voodoo Science. New York: Oxford University Press.

Experiments essentially pose questions and seek answers. A good experiment
provides an unambiguous answer to a well-posed question.

Henry N. Pollack. 2003. Uncertain Science ... Uncertain World. Cambridge:

Cambridge University Press.

1.1 Chapter Overview

Experimentation has been part of the human experience ever since its begin-
ning. We are born with highly sophisticated data acquisition and computing
systems ready to experiment with the world around us. We come loaded with

1
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the latest tactile, gustatory, auditory, olfactory, and optical sensor packages.
We also have a central processing unit capable of processing data and perform-
ing highly complex operations at incredible rates with a memory far surpassing
any that we can purchase.

One of our first rudimentary experiments, although not a conscious one,
is to cry and then to observe whether or not a parent will come to the aid
of our discomfort. We change the environment and record the result. We are
active participants in the process. Our view of reality is formed by what we
sense. But what really are experiments? What roles do they play in the process
of understanding the world in which we live? How are they classified? Such
questions are addressed in this chapter.

1.2 Role of Experiments

Perhaps the first question to ask is, “Why do we do experiments?” Some of
my former students have offered the following answers:

“Experiments are the basis of all theoretical predictions. Without experi-
ments, there would be no results, and without any tangible data, there is no
basis for any scientist or engineer to formulate a theory. ... The advancement
of culture and civilization depends on experiments which bring about new
technology... .” (P. Cuadra)

“Making predictions can serve as a guide to what we expect, ... but to
really learn and know what happens in reality, experiments must be done.”
(M. Clark)

“If theory predicted everything exactly, there would be no need for ex-
periments. NASA planners could spend an afternoon drawing up a mission
with their perfect computer models and then launch a flawlessly executed
mission that evening (of course, what would be the point of the mission, since
the perfect models could already predict behavior in space anyway?).” (A.
Manella)

In the most general sense, man seeks to reach a better understanding of
the world. In this quest, man relies upon the collective knowledge of his prede-
cessors and peers. If one understood everything about nature, there would be
no need for experiments. One could predict every outcome (at least for deter-
ministic systems). But that is not the case. Man’s understanding is imperfect.
Man needs to experiment in the world.

So how do experiments play a role in our process of understanding? The
Greeks were the earliest civilization that attempted to gain a better under-
standing of their world through observation and reasoning. Previous civiliza-
tions functioned within their environment by observing its behavior and then
adapting to it. It was the Greeks who first went beyond the stage of sim-
ple observation and attempted to arrive at the underlying physical causes of
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what they observed [1]. Two opposing schools emerged, both of which still
exist but in somewhat different forms. Plato (428-347 B.C.) advanced that
the highest degree of reality was that which men think by reasoning. He be-
lieved that better understanding followed from rational thought alone. This is
called rationalism. On the contrary, Aristotle (384-322 B.C.) believed that
the highest degree of reality is that which man perceives with his senses. He
argued that better understanding came through careful observation. This is
known as empiricism. Empiricism maintains that knowledge originates from
and is limited to concepts developed from sensory experience. Today it is
recognized that both approaches play important roles in advancing scientific
understanding.

There are several different roles that experiments play in the process of
scientific understanding. Harré [2], who discusses some of the landmark exper-
iments in science, describes three of the most important roles: inductivism,
fallibilism, and conventionalism. Inductivism is the process whereby the
laws and theories of nature are arrived at based upon the facts gained from the
experiments. In other words, a greater theoretical understanding of nature is
reached through induction. Taking the fallibilistic approach, experiments are
performed to test the validity of a conjecture. The conjecture is rejected if the
experiments show it to be false. The role of experiments in the conventionalis-
tic approach is illustrative. These experiments do not induce laws or disprove
hypotheses but rather show us a more useful or illuminating description of
nature. Testings fall into the category of conventionalistic experiments.

All three of these approaches are elements of the scientific method.
Credit for its formalization often is given to Francis Bacon (1561-1626). The
seeds of experimental science were sown earlier by Roger Bacon (c. 1220-1292),
who was not related to Francis. Roger attempted to incorporate experimental
science into the university curriculum but was prohibited by Pope Clement IV.
He wrote of his findings in secrecy. Roger is considered “the most celebrated
scientist of the Middle Ages.” [3] Francis argued that our understanding of
nature could be increased through a disciplined and orderly approach in an-
swering scientific questions. This approach involved experiments, done in a
systematic and rigorous manner, with the goal of arriving at a broader the-
oretical understanding. Using the approach of Francis Bacon’s time, first the
results of positive experiments and observations are gathered and considered.
A preliminary hypothesis is formed. All rival hypotheses are tested for possible
validity. Hopefully, only one correct hypothesis remains. Today the scientific
method is used mainly to validate a particular hypothesis or to determine
the range of validity of a hypothesis. In the end, it is the constant interplay
between experiment and theory that leads to advancing our understanding, as
illustrated schematically in Figure 1.1. The concept of the real world is devel-
oped from the data acquired through experiment and the theories constructed
to explain the observations. Often new experimental results improve theory
and new theories guide and suggest new experiments. Through this process,
a more refined and realistic concept of the world is developed. Anthony Lewis
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summarizes it well, “The whole ethos of science is that any explanation for
the myriad mysteries in our universe is a theory, subject to challenge and
experiment. That is the scientific method.”

FIGURE 1.1
The interplay between experiment and theory.

Gale [4], in his treatise on science, advances that there are two goals of
science: explanation and understanding, and prediction and control. Science is
not absolute; it evolves. Its modern basis is the experimental method of proof.
Explanation and understanding encompass statements that make causal con-
nections. One example statement is that an increase in the temperature of a
perfect gas under constant volume causes an increase in its pressure. These
usually lead to an algorithm or law that relates the variables involved in
the process under investigation. Prediction and control establish correlations
between variables. For the previous example, these would result in the corre-
lation between pressure and temperature. Science is a process in which false
hypotheses are disproved and, eventually, the true one remains.

1.3 The Experiment

What exactly is an experiment? An experiment is an act in which one phys-
ically intervenes with the process under investigation and records the results.
This is shown schematically in Figure 1.2. Examine this definition more closely.
In an experiment one physically changes in an active manner the process be-
ing studied and then records the results of the change. Thus, computational
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simulations are not experiments. Likewise, sole observation of a process is not
an experiment. An astronomer charting the heavens does not alter the paths of
planetary bodies; he does not perform an experiment, rather he observes. An
anatomist who dissects something does not physically change a process (al-
though he physically may move anatomical parts); again, he observes. Yet, it is
through the interactive process of observation-experimentation-hypothesizing
that understanding advances. All elements of this process are essential. Tradi-
tionally, theory explains existing results and predicts new results; experiments
validate existing theory and gather results for refining theory.

FIGURE 1.2
The experiment.

When conducting an experiment, it is imperative to identify all the vari-
ables involved. Variables are those physical quantities involved in the pro-
cess under investigation that can undergo change during the experiment and
thereby affect the process. They are classified as independent, dependent,
and extraneous. An experimentalist manipulates the independent variable(s)
and records the effect on the dependent variable(s). An extraneous variable
cannot be controlled, but it affects the value of what is measured to some
extent. A controlled experiment is one in which all of the variables in-
volved in the process are identified and can be controlled. In reality, almost
all experiments have extraneous variables and, therefore, strictly are not con-
trolled. This inability to precisely control every variable is the primary source
of experimental uncertainty, which is considered in Chapter 7. The measured
variables are called measurands.

A variable that is either actively or passively fixed throughout the ex-
periment is called a parameter. Sometimes, a parameter can be a specific
function of variables. For example, the Reynolds number, which is a nondi-
mensional number used frequently in fluid mechanics, can be a parameter
in an experiment involving fluid flow. The Reynolds number is defined as
Re = ρUd/µ, where U is the fluid velocity, d is a characteristic length, ρ is
the fluid’s density, and µ is the fluid’s absolute viscosity. Measurements can be
made by conducting a number of experiments for various U, d, ρ, and µ. Then
the data can be organized for certain fixed values of Re, each corresponding
to a different experiment.

Consider for example a fluid flow experiment designed to ascertain whether
or not there is laminar (Poiseuille) flow through a smooth pipe. If lami-
nar flow is present, then theory (conservation of momentum) predicts that
∆p = 8QLµ/(πR4), where ∆p is the pressure difference between two locations
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along the length, L, of a pipe of radius, R, for a liquid with absolute viscosity,
µ, flowing at a volumetric flow rate, Q. In this experiment, the volumetric
flow rate is varied. Thus, µ, R, and L are parameters, Q is the independent
variable, and ∆p is the dependent variable. R, L, Q, and ∆p are measur-
ands. The viscosity is a dependent variable that is determined from the fluid’s
temperature (another measurand and parameter). If the fluid’s temperature
is not controlled in this experiment, it could affect the values of density and
viscosity, and hence affect the values of the dependent variables.

Example Problem 1.1
Statement: An experiment is performed to determine the coefficient of restitution, e,

of a ball over a range of impact velocities. For impact normal to the surface, e = vf /vi,
where vi is the normal velocity component immediately before impact with the surface
and vf is that immediately after impact. The velocity, vi, is controlled by dropping the
ball from a known initial height, ha, and then measuring its return height, hb. What
are the variables in this experiment? List which ones are independent, dependent,
parameter, and measurand.

Solution: A ball dropped from height ha will have vi =
√

2gha, where g is the local
gravitational acceleration. Because vf =

√
2ghb, e =

√
hb/ha. So the variables are

ha, hb, vi, vf , e, and g. ha is an independent variable; hb, vi, vf , and e are dependent
variables; ha and g are parameters; ha and hb are measurands.

Often, however, it is difficult to identify and control all of the variables
that can influence an experimental result. Experiments involving biologi-
cal systems often fall into this category. In these situations, repeated mea-
surements are performed to arrive at statistical estimates of the measured
variables, such as their means and standard deviations. Repetition implies
that a set of measurements are repeated under the same, fixed operating
conditions. This yields direct quantification of the variations that occur in
the measured variables for the same experiment under fixed operating con-
ditions. Often, however, the same experiment may be run under the same
operating conditions at different times or places using the same or compa-
rable equipment and facilities. Because uncontrollable changes may occur in
the interim between running the experiments, additional variations in the
measured variables may be introduced. These variations can be quantified
by the replication (duplication) of the experiment. A control experiment
is an experiment that is as nearly identical to the subject experiment as
possible. Control experiments typically are performed to reconfirm a sub-
ject experiment’s results or to verify a new experimental set-up’s perfor-
mance. Finally, experiments can be categorized broadly into timewise and
sample-to-sample experiments [10]. Values of a measurand are recorded
in a continuous manner over a period of time in timewise experiments. Val-
ues are obtained for multiple samples of a measurand in sample-to-sample
experiments. Both types of experiments can be considered the same when
values of a measurand are acquired at discrete times. Here, what distin-
guishes between the two categories is the time interval between samples.
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In the end, performing a good experiment involves identifying and con-
trolling as many variables as possible and making accurate and precise mea-
surements. The experiment always should be performed with an eye out for
discovery. To quote Sir Peter Medawar [6], “The merit of an experiment lies
principally in its design and in the critical spirit in which it is carried out.”

1.4 Experimental Approach

Park [7] remarks that “science is the systematic enterprise of gathering
knowledge about the world and organizing and condensing that knowledge
into testable laws and theories.” Experiments play a pivotal role in this
process. The general purpose of any experiment is to gain a better under-
standing about the process under investigation and, ultimately, to advance
science. Many issues need to be addressed in the phases preceding, during,
and following an experiment. These can be categorized as planning, design,
construction, debugging, execution, data analysis, and reporting of results
[10].

Prior to performing the experiment, a clear approach must be developed.
The objective of the experiment must be defined along with its relation to
the theory of the process. What are the assumptions made in the experi-
ment? What are those made in the theory? Special attention should be given
to assuring that the experiment correctly reflects the theory. The process
should be observed with minimal intervention, keeping in mind that the
experiment itself may affect the process. All of the variables involved in the
process should be identified. Which can be varied? Which can be controlled?
Which will be recorded and how? Next, what results are expected? Does the
experimental set-up perform as anticipated? Then, after all of this has been
considered, the experiment is performed.

Following the experiment, the results should be reviewed. Is there agree-
ment between the experimental results and the theory? If the answer is
yes, the results should be reconfirmed. If the answer is no, both the experi-
ment and the theory should be examined carefully. Any measured differences
should be explained in light of the uncertainties that are present in the ex-
periment and in the theory.

Finally, the new results should be summarized. They should be pre-
sented within the context of uncertainty and the limitations of the theory
and experiment. All this information should be presented such that another
investigator can follow what was described and repeat what was done.
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1.5 Classification of Experiments

There are many ways to classify experiments. One way is according to the
intent or purpose of the experiment. Following this approach, most exper-
iments can be classified as variational, validational, pedagogical, or
explorational.

The goal of variational experiments is to establish (quantify) the mathe-
matical relationships of the experiment’s variables. This is accomplished by
varying one or more of the variables and recording the results. Ideal vari-
ational experiments are those in which all the variables are identified and
controlled. Imperfect variational experiments are those in which some of the
variables are either identified or controlled. Experiments involving the de-
termination of material properties, component behavior, or system behavior
are variational. Standard testing also is variational.

Validational experiments are conducted to validate a specific hypothesis.
They serve to evaluate or improve existing theoretical models. A critical
validational experiment, which also is known as a Galilean experiment, is
designed to refute a null hypothesis. An example would be an experiment
designed to show that pressure does not remain constant when an ideal gas
under constant volume is subjected to an increase in temperature.

Pedagogical experiments are designed to teach the novice or to demon-
strate something that is already known. These are also known as Aris-
totelian experiments. Many experiments performed in primary and sec-
ondary schools are this type, such as the classic physics lab exercise designed
to determine the local gravitational constant by measuring the time it takes
a ball to fall a certain distance.

Explorational experiments are conducted to explore an idea or possible
theory. These usually are based upon some initial observations or a simple
theory. All of the variables may not be identified or controlled. The exper-
imenter usually is looking for trends in the data in hope of developing a
relationship between the variables. Richard Feynman [8] aptly summarizes
the role of experiments in developing a new theory, “In general we look for
a new law by the following process. First we guess it. Then we compute the
consequences of the guess to see what would be implied if this law that we
guessed is right. Then we compare the result of the computation to nature,
with experiment or experience, compare it directly with observation, to see
if it works. If it disagrees with experiment it is wrong. In that simple state-
ment is the key to science. It does not make any difference how beautiful
your guess is. It does not make any difference how smart you are, who made
the guess, or what his name is − if it disagrees with experiment it is wrong.
That is all there is to it.”

An additional fifth category involves experiments that are far less com-
mon and lead to discovery. Discovery can be either anticipated by theory



Experiments 9

(an analytic discovery), such as the discovery of the quark, or serendipi-
tous (a synthetic discovery), such as the discovery of bacterial repression by
penicillin. There also are thought (gedunken or Kantian) experiments that
are posed to examine what would follow from a conjecture. Thought experi-
ments, according to our formal definition, are not experiments because they
do not involve any physical change in the process.
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1.6 Problem Topic Summary

Topic Review Problems Homework Problems
Experiments 2, 3, 5, 6 1, 2, 3, 4, 5, 6, 7, 8
Variables 1, 4, 7 2, 4, 6, 9

TABLE 1.1
Chapter 1 Problem Summary

1.7 Review Problems

1. Variables manipulated by an experimenter are (a) independent, (b) de-
pendent, (c) extraneous, (d) parameters, or (e) presumed.

2. Immediately following the announcement by the University of Utah, on
March 23, 1989, that Stanley Pons and Martin Fleischmann had “dis-
covered” cold fusion, scientists throughout the world rushed to perform
an experiment that typically would be classified as (a) variational, (b)
validational, (c) pedagogical, (d) explorational, or (e) serendipitous.

3. If you were trying to perform a validational experiment to determine
the base unit of mass, the gram, which of the following fluid conditions
would be most desirable? (a) a beaker of ice water, (b) a pot of boiling
water, (c) a graduated cylinder of water at room temperature, (d) a
thermometer filled with mercury.

4. Match the following with the most appropriate type of variable (indepen-
dent, dependent, extraneous, parameter, or measurand): (a) measured
during the experiment, (b) fixed throughout the experiment, (c) not
controlled during the experiment, (d) affected by a change made by the
experimenter, (e) changed by the experimenter.

5. What is the main purpose of the scientific method?

6. Classify the following experiments: (a) estimation of the heating value of
gasoline, (b) measuring the stress-strain relation of a new bio-material,
(c) the creation of Dolly (the first sheep to be cloned successfully).
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7. An experiment is performed to determine the velocity profile along a
wind tunnel’s test section using a pitot-static tube. The tunnel flow rate
is fixed during the experiment. Identify the independent, dependent, ex-
traneous, and parameter variables from the following list: (a) tunnel fan
revolutions per minute, (b) station position, (c) environment pressure
and temperature, (d) air density, (e) change in pressure measured by
the pitot-static tube, (f) calculated velocity.

1.8 Homework Problems

1. Give one historical example of an inductivistic, a fallibilistic, and a con-
ventionalistic experiment. State each of their significant findings.

2. Write a brief description of an experiment that you have performed or
one with which you are familiar, noting the specific objective of the
experiment. List and define all of the independent and dependent vari-
ables, parameters, and measurands. Also provide any equation(s) that
involve the variables and define each term.

3. Give one historical example of an experiment falling into each of the four
categories of experimental purpose. Describe each experiment briefly.

4. Write a brief description of the very first experiment that you ever per-
formed. What was its purpose? What were its variables?

5. What do you consider to be the greatest experiment ever performed?
Explain your choice. You may want to read about the 10 ‘most beauti-
ful experiments of all time’ voted by physicists as reported by George
Johnson in the New York Times on September 24, 2002, in an article
titled “Here They Are, Science’s 10 Most Beautiful Experiments.” Also
see R.P. Crease, 2003. The Prism and the Pendulum: The Ten Most
Beautiful Experiments in Science. New York: Random House.

6. Select one of the 10 most beautiful physics experiments. (See
http://physics-animations.com/Physics/English/top ref.htm). Briefly ex-
plain the experiment and classify its type. Then list the variables in-
volved in the experiment. Finally, classify each of these variables.

7. Measure the volume of your room and find the number of molecules in
it. Is this an experiment? If so, classify it.

8. Classify these types of experiments: (a) measuring the effect of humidity
on the Young’s modulus of a new ‘green’ building material, (b) demon-
strating the effect of the acidity of carbonated soda by dropping a dirty

http://physics-animations.com/Physics/English/top_ref.htm
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penny into it, (c) determining whether a carbon nanotube is stronger
than a spider web thread.

9. Consider an experiment where a researcher is attempting to measure
the thermal conductivity of a copper bar. The researcher applies a heat
input q′′, which passes through the copper bar, and four thermocouples
to measure the local bar temperature T (x). The thermal conductivity,
k, can be calculated from the equation

q′′ = −k dT
dx .

Variables associated with the experiment are the (a) thermal conductiv-
ity of the bar, (b) heater input, (c) temperature of points 1, 2, 3, and 4
from the thermocouples, (d) pressure and temperature of the surround-
ing air, (e) smoothness of copper bar at the interfaces with the heaters,
and (f) position of the thermocouples. Determine whether each variable
is dependent, independent, or extraneous. Then determine whether each
variable is a parameter or a measurand.
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Nothing is too wonderful to be true, if it be consistent with the laws of nature
and in such things as these, experiment is the best test of such consistency.

Michael Faraday (1791-1867) on March 19, 1849. From a display at the Royal

Institution, London.

... the language of experiment is more authoritative than any reasoning: facts
can destroy our ratiocination − not vice versa.

Alessandro Volta (1745-1827), quoted in The Ambiguous Frog: The Galvani-Volta

Controversy on Animal Electricity, M. Pera, 1992.
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2.1 Chapter Overview

We live in a world full of electronic devices. Stop for a minute and think of
all the ones you encounter each day. The clock radio usually is the first. This
electronic marvel contains a digital display, a microprocessor, an AM/FM
radio, and even a piezoelectric buzzer whose annoying sound beckons us
to get out of bed. Before we even leave for work we have used electric
lights, shavers, toothbrushes, blow dryers, coffee pots, toasters, microwave
ovens, refrigerators, and televisions, to name a few. At the heart of all these
devices are electrical circuits. For us to become competent experimentalists,
we need to understand the basics of the electrical circuits present in most
instruments. In this chapter we will review some of the basics of electrical
circuits. Then we will examine several more detailed circuits that comprise
some common measurement systems.

2.2 Concepts and Definitions

Before proceeding to examine the basic electronics behind a measurement
system’s components, a brief review of some fundamentals is in order. This
review includes the definitions of the more common quantities involved in
electrical circuits, such as electric charge, electric current, electric field, elec-
tric potential, resistance, capacitance, and inductance. The SI dimensions
and units for electric and magnetic systems are summarized in tables on
the text web site. The origins of these and many other quantities involved
in electromagnetism date back to a period rich in the ascent of science, the
17th through mid-19th centuries.

2.2.1 Charge

Electric charge, q, previously called electrical vertue [1], has the SI unit of
coulomb (C) named after the French scientist Charles Coulomb (1736-1806).
The effect of charge was observed in early years when two similar materials
were rubbed together and then found to repel each other. Conversely, when
two dissimilar materials were rubbed together, they became attracted to
each other. Amber, for example, when rubbed, would attract small pieces
of feathers or straw. In fact, electron is the Greek word for amber.

It was Benjamin Franklin (1706-1790) who argued that there was only
one form of electricity and coined the relative terms positive and negative
charge. He stated that charge is neither created nor destroyed, rather it is
conserved, and that it only is transferred between objects. Prior to Franklin’s
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declarations, two forms of electricity were thought to exist: vitreous, from
glass or crystal, and resinous, from rubbing material like amber [1]. It now is
known that positive charge indicates a deficiency of electrons and negative
charge indicates an excess of electrons. Charge is not produced by objects,
rather it is transferred between objects.

2.2.2 Current

The amount of charge that moves per unit time through or between materi-
als is electric current, I. This has the SI unit of an ampere (A), named after
the French scientist Andre Ampere (1775-1836). An ampere is a coulomb
per second. This can be written as

I = dq/dt. (2.1)

Current is a measure of the flow of electrons, where the charge of one elec-
tron is 1.602 177 33 × 10−19 C. Materials that have many free electrons
are called conductors (previously known as non-electrics because they eas-
ily would lose their charge[1]). Those with no free electrons are known as
insulators or dielectrics (previously known as electrics because they could
remain charged) [1]. In between these two extremes lie the semi-conductors,
which have only a few free electrons. By convention, current is considered to
flow from the anode (the positively charged terminal that loses electrons)
to the cathode (the negatively charged terminal that gains electrons) even
though the actual electron flow is in the opposite direction. Current flow
from anode to cathode often is referred to as conventional current. This
convention originated in the early 1800’s when it was assumed that posi-
tive charge flowed in a wire. Direct current (DC) is constant in time and
alternating current (AC) varies cyclically in time, as depicted in Figure
2.1. When current is alternating, the electrons do not flow in one direction
through a circuit, but rather back and forth in both directions. The symbol
for a current source in an electrical circuit is given in Figure 2.2.

2.2.3 Force

When electrically charged bodies attract or repel each other, they do so
because there is an electric force acting between the charges on the bodies.
Coulomb’s law relates the charges of the two bodies, q1 and q2, and the
distance between them, R, to the electric force, Fe, by the relation

Fe = Kq1q2/R
2, (2.2)

where K = 1/(4πεo), with the permittivity of free space εo = 8.854 187 817
× 10−12 F/m. The SI unit of force is the newton (N).
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FIGURE 2.1
Direct and alternating currents.

2.2.4 Field

The electric field, E, is defined as the electric force acting on a positive
charge divided by the magnitude of the charge. Hence, the electric field has
the SI unit of newtons per coulomb. This leads to an equivalent expression
Fe = qE. So, the work required to move a charge of 1 C a distance of 1 m
through a unit electric field of 1 N/C is 1 N·m or 1 J. The SI unit of work
is the joule (J).

2.2.5 Potential

The electric potential, Φ, is the electric field potential energy per unit
charge, which is the energy required to bring a charge from infinity to an
arbitrary reference point in space. Often it is better to refer to the poten-
tial difference, ∆Φ, between two electric potentials. It follows that the SI
unit for electric potential is joules per coulomb. This is known as the volt
(V), named after Alessandro Volta (1745-1827). Volta invented the voltaic
pile, originally made of pairs of copper and zinc plates separated by wet
paper, which was the world’s first battery. In electrical circuits, a battery is
indicated by a longer, solid line (the anode) separated over a small distance
by a shorter, solid line (the cathode), as shown in Figure 2.3. The symbol
for a voltage source is presented in Figure 2.2.

2.2.6 Resistance and Resistivity

When a voltage is applied across the ends of a conductor, the amount of
current passing through it is linearly proportional to the applied voltage.
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FIGURE 2.2
Basic circuit element symbols.

The constant of proportionality is the electric resistance, R. The SI unit
of resistance is the ohm (Ω), named after Georg Ohm (1787-1854).

Electric resistance can be related to electric resistivity, ρ, for a wire of
cross-sectional area A and length L as

R = ρL/A. (2.3)

The SI unit of resistivity is Ω·m. Conductors have low resistivity values
(for example, Ag: 1.5 × 10−8 Ω·m), insulators have high resistivity values
(for example, quartz: 5 × 107 Ω·m), and semi-conductors have intermediate
resistivity values (for example, Si: 2 Ω·m).

Resistivity is a property of a material and is related to the temperature
of the material by the relation

ρ = ρ0[1 + α(T − T0)], (2.4)
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FIGURE 2.3
The battery.

where ρ0 denotes the reference resistivity at reference temperature T0 and
α the coefficient of thermal expansion of the material. For conductors, α
ranges from approximately 0.002/◦C to 0.007/◦C. Thus, for a wire

R = R0[1 + α(T − T0)]. (2.5)

2.2.7 Power

Electric power is electric energy transferred per unit time, P (t) =
I(t)V (t). Using Ohm’s law, it can be written also as P (t) = I2(t)R. This
implies that the SI unit for electric power is J/s or watt (W).

2.2.8 Capacitance

When a voltage is applied across two conducting plates separated by an
insulated gap, a charge will accumulate on each plate. One plate becomes
charged positively (+q) and the other charged equally and negatively (−q).
The amount of charge acquired is linearly proportional to the applied volt-
age. The constant of proportionality is the capacitance, C. Thus, q = CV .
The SI unit of capacitance is coulombs per volt (C/V). The symbol for
capacitance, C, should not be confused with the unit of coulomb, C. The
SI unit of capacitance is the farad (F), named after the British scientist
Michael Faraday (1791-1867).

2.2.9 Inductance

When a wire is wound as coil and current is passed through it by applying
a voltage, a magnetic field is generated that surrounds the coil. As the
current changes in time, a changing magnetic flux is produced inside the coil,
which in turn induces a back electromotive force (emf). This back emf
opposes the original current, leading to either an increase or a decrease in the
current, depending upon the direction of the original current. The resulting
magnetic flux, φ, is linearly proportional to the current. The constant of
proportionality is called the electric inductance, denoted by L. The SI
unit of inductance is the henry (H), named after the American Joseph Henry
(1797-1878). One henry equals one weber per ampere.
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Element Unit Symbol I(t) V (t) VI=const

Resistor R V (t)/R RI(t) RI

Capacitor C CdV (t)/dt (1/C)
∫ t

0
I(τ)dτ It/C

Inductor L (1/L)
∫ t

0
V (τ)dτ LdI/dt 0

TABLE 2.1
Resistor, capacitor, and inductor current and voltage relations.

Example Problem 2.1
Statement: 0.3 A of current passes through an electrical wire when the voltage

difference between its ends is 0.6 V. Determine [a] the wire resistance, R, [b] the total
amount of charge that moves through the wire in 2 minutes, qtotal, and [c] the electric
power, P .

Solution: [a] Application of Ohm’s law gives R = 0.6 V/0.3 A = 2 Ω. [b] Integration

of Equation 2.1 gives q(t) =
∫ t2

t1
I(t)dt. Because I(t) is constant, qtotal = (0.3 A)(120

s) = 36 C. [c] The power is the product of current and voltage. So, P = (0.3 A)(0.6 V)
= 0.18 W = 0.2 W, with the correct number of significant figures.

2.3 Circuit Elements

At the heart of all electrical circuits are some basic circuit elements. These
include the resistor, capacitor, inductor, transistor, ideal voltage source, and
ideal current source. The symbols for these elements that are used in circuit
diagrams are presented in Figure 2.2. These elements form the basis for
more complicated devices such as operational amplifiers, sample-and-hold
circuits, and analog-to-digital conversion boards, to name only a few (see
[2]).

The resistor, capacitor, and inductor are linear devices because the
complex amplitude of their output waveform is linearly proportional to the
amplitude of their input waveform. A device is linear if [1] the response to
x1(t) + x2(t) is y1(t) + y2(t) and [2] the response to ax1(t) is ay1(t), where
a is any complex constant [4]. Thus, if the input waveform of a circuit com-
prised only of linear devices, known as a linear circuit, is a sine wave of
a given frequency, its output will be a sine wave of the same frequency.
Usually, however, its output amplitude will be different from its input am-
plitude and its output waveform will lag the input waveform in time. If the
lag is between one-half to one cycle, the output waveform appears to lead
the input waveform, although it always lags the input waveform. The re-
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sponse behavior of linear systems to various input waveforms is presented
in Chapter 4. The current-voltage relations for the resistor, capacitor, and
inductor are summarized in Table 2.1.

2.3.1 Resistor

The basic circuit element used more than any others is the resistor. Its
current-voltage relation is defined through Ohm’s law,

R = V/I. (2.6)

Thus, the current in a resistor is related linearly to the voltage difference
across it, or vice versa. The resistor is made out of a conducting material,
such as carbon, carbon-film, or metal-film. Typical resistances range from a
few ohms to more than 107 Ω.

2.3.2 Capacitor

The current flowing through a capacitor is related to the product of its
capacitance and the time rate of change of the voltage difference, where

I =
dq

dt
= C

dV

dt
. (2.7)

For example, 1 µA of current flowing through a 1 µF capacitor signifies that
the voltage difference across the capacitor is changing at a rate of 1 V/s. If
the voltage is not changing in time, there is no current flowing through the
capacitor. The capacitor is used in circuits where the voltage varies in time.
In a DC circuit, a capacitor acts as an open circuit. Typical capacitances
are in the µF to pF range.

2.3.3 Inductor

Faraday’s law of induction states that the change in an inductor’s magnetic
flux, φ, with respect to time equals the applied voltage, dφ/dt = V (t).
Because φ = LI,

V (t) = L
dI

dt
. (2.8)

Thus, the voltage across an inductor is related linearly to the product of its
inductance and the time rate of change of the current. The inductor is used
in circuits in which the current varies in time. The simplest inductor is a wire
wound in the form of a coil around a nonconducting core. Most inductors
have negligible resistance when measured directly. When used in an AC
circuit, the inductor’s back emf controls the current. Larger inductances
impede the current flow more. This implies that an inductor in an AC circuit
acts like a resistor. In a DC circuit, an inductor acts as a short circuit.
Typical inductances are in the mH to µH range.
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2.3.4 Transistor

The transistor was developed in 1948 by William Shockley, John Bardeen,
and Walter Brattain at Bell Telephone Laboratories. The common transis-
tor consists of two types of semiconductor materials, n-type and p-type. The
n-type semiconductor material has an excess of free electrons and the p-type
material a deficiency. By using only two materials to form a pn junction,
one can construct a device that allows current to flow in only one direc-
tion. This can be used as a rectifier to change alternating current to direct
current. Simple junction transistors are basically three sections of semicon-
ductor material sandwiched together, forming either pnp or npn transistors.
Each section has its own wire lead. The center section is called the base,
one end section the emitter, and the other the collector. In a pnp tran-
sistor, current flow is into the emitter. In an npn transistor, current flow
is out of the emitter. In both cases, the emitter-base junction is said to be
forward-biased or conducting (current flows forward from p to n). The op-
posite is true for the collector-base junction. It is always reverse-biased or
non-conducting. Thus, for a pnp transistor, the emitter would be connected
to the positive terminal of a voltage source and the collector to the nega-
tive terminal through a resistor. The base would also be connected to the
negative terminal through another resistor. In such a configuration, current
would flow into the emitter and out of both the base and the collector. The
voltage difference between the emitter and the collector causing this cur-
rent flow is termed the base bias voltage. The ratio of the collector-to-base
current is the (current) gain of the transistor. Typical gains are up to ap-
proximately 200. The characteristic curves of a transistor display collector
current versus the base bias voltage for various base currents. Using these
curves, the gain of the transistor can be determined for various operating
conditions. Thus, transistors can serve many different functions in an elec-
trical circuit, such as current amplification, voltage amplification, detection,
and switching.

FIGURE 2.4
Voltage and current sources.
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2.3.5 Voltage Source

An ideal voltage source, shown in Figure 2.4, with Rout = 0, maintains a
fixed voltage difference between its terminals, independent of the resistance
of the load connected to it. It has a zero output impedance and can supply
infinite current. An actual voltage source has some internal resistance. So
the voltage supplied by it is limited and equal to the product of the source’s
current and its internal resistance, as dictated by Ohm’s law. A good voltage
source has a very low output impedance, typically less than 1 Ω. If the
voltage source is a battery, it has a finite lifetime of current supply, as
specified by its capacity. Capacity is expressed in units of current times
lifetime (which equals its total charge). For example, a 1200 mA hour battery
pack is capable of supplying 1200 mA of current for 1 hour or 200 mA for 6
hours. This corresponds to a total charge of 4320 C (0.2 A × 21 600 s).

2.3.6 Current Source

An ideal current source, depicted in Figure 2.4, with Rout = ∞ maintains
a fixed current between its terminals, independent of the resistance of the
load connected to it. It has an infinite output impedance and can supply
infinite voltage. An actual current source has an internal resistance less than
infinite. So the current supplied by it is limited and equal to the ratio of the
source’s voltage difference to its internal resistance. A good current source
has a very high output impedance, typically greater than 1 MΩ. Actual
voltage and current sources differ from their ideal counterparts only in that
the actual impedances are neither zero nor infinite, but finite.

2.4 RLC Combinations

Linear circuits typically involve resistors, capacitors, and inductors con-
nected in various series and parallel combinations. Using the current-
voltage relations of the circuit elements and examining the potential dif-
ference between two points on a circuit, some simple rules for various com-
binations of resistors, capacitors, and inductors can be developed.

First, examine Figure 2.5 in which the series combinations of two resis-
tors, two capacitors, and two inductors are shown. The potential difference
across an i-th resistor is IRi, across an i-th capacitor is q/Ci, and across
an i-th inductor is LidI/dt. Likewise, the total potential difference, VT , for
the series resistors’ combination is VT = IRT , for the series capacitors’
combination is VT = q/CT , and for the series inductors’ combination is
VT = LT dI/dt. Because the potential differences across resistors, capaci-
tors, and inductors in series add, VT = V1 + V2. Hence, for the resistors’
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FIGURE 2.5
Series R, C, and L circuit configurations.

series combination, VT = IR1 + IR2 = IRT , which yields

RT = R1 + R2. (2.9)

For the capacitors’ series combination, VT = q/C1 + q/C2 = q/CT , which
implies

1/CT = 1/C1 + 1/C2. (2.10)

For the inductors’ series combination, VT = L1dI/dt+L2dI/dt = LT dI/dt,
which gives

LT = L1 + L2. (2.11)

Thus, when in series, resistances and inductances add, and the reciprocals
of capacitances add.

Next, view Figure 2.6 in which the parallel combinations of two resistors,
two capacitors, and two inductors are displayed. The same expressions for
the i-th and total potential differences hold as before. Hence, for the resistors’
parallel combination, IT = I1 + I2, which leads to

1/RT = 1/R1 + 1/R2. (2.12)

For the capacitors’ parallel combination, qT = q1 + q2, which leads to

CT = C1 + C2. (2.13)

For the inductors’ parallel combination, IT = I1 + I2, which gives

1/LT = 1/L1 + 1/L2. (2.14)
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FIGURE 2.6
Parallel R, C, and L circuit configurations.

Thus, when in parallel, capacitances add, and the reciprocals of resistances
and inductances add.

Example Problem 2.2
Statement : Determine the total equivalent resistance, RT , and total equivalent

capacitance, CT , for the respective resistance and capacitance circuits shown in Figure
2.7.

Solution: For the two resistors in parallel, the equivalent resistance, Ra, is

1

Ra
=

1

4
+

1

4
= 2 Ω.

The two other resistors are in series with Ra, so RT = Ra + 2 + 6 = 10 Ω.
For the two capacitors in parallel, the equivalent capacitance, Cb, is Cb = 3 + 3 =

6 µF . This is in series with the two other capacitors, which implies that

1

CT
=

1

2
+

1

3
+

1

Cb
=

1

2
+

1

3
+

1

6
= 1.

So, CT =1 µF.

To aid further with circuit analysis, two laws developed by G. R. Kirch-
hoff (1824 - 1887) can be used. Kirchhoff’s current (or first) law, which
is conservation of charge, states that at any junction (node) in a circuit, the
current flowing into the junction must equal the current flowing out of it,
which implies that

∑

node

Iin =
∑

node

Iout. (2.15)

A node in a circuit is a point where two or more circuit elements meet.
Kirchhoff’s voltage (or second) law, which is conservation of energy,
says that around any loop in a circuit, the sum of the potential differences
equals zero, which gives
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FIGURE 2.7
Resistor and capacitor circuits.

∑

i,cl.loop

Vi = 0. (2.16)

A loop is a closed path that goes from one node in a circuit back to it-
self without passing through any intermediate node more than once. Any
consistent sign convention will work when applying Kirchhoff’s laws to a
circuit. Armed with this information, some important DC circuits can be
examined now.

2.5 Elementary DC Circuit Analysis

In DC circuits, current is steady in time. Thus, there is no inductance, even
if an inductor is present. An actual inductor, however, has resistance. This
typically is on the order of 10 Ω. Often, an inductor’s resistance in a DC
circuit is neglected.
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FIGURE 2.8
A battery and electric motor circuit.

The first elementary DC circuit to analyze is that of a DC electric motor
in series with a battery, as shown in Figure 2.8. Examine the battery first.
It has an internal resistance, Rbatt, and an open circuit voltage (potential
difference), Voc. Rbatt is the resistance and Voc the potential difference that
would be measured across the terminals of the battery if it were isolated
from the circuit by not being connected to it. However, when the battery is
placed in the circuit and the circuit switch is closed such that current, Ia,
flows around the circuit, the situation for the battery changes. The measured
potential difference across the battery now is less because current flows
through the battery, effectively leading to a potential difference across Rbatt.
This yields

Vbatt = Voc − IaRbatt, (2.17)

in which Vbatt represents the closed-circuit potential difference across the
battery. Similarly, the DC motor has an internal resistance, Ra, which is
mainly across its armature. It also has an opposing potential difference,
Em, when operating with the battery connected to it. To summarize, Voc is
measured across the battery terminals when the switch is open, and Vbatt is
measured when the switch is closed.
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Now what is Em in terms of the known quantities? To answer this, apply
Kirchhoff’s second law around the circuit loop when the switch is closed.
Starting from the battery’s anode and moving in the direction of the current
around the loop, this gives

Voc − IaRbatt − Em − IaRa = 0, (2.18)

which immediately leads to

Em = Voc − Ia(Rbatt + Ra). (2.19)

This equation reveals a simple fact: the relatively high battery and motor
internal resistances lead to a decrease in the motor’s maximum potential
difference. This consequently results in a decrease in the motor’s power
output to a device, such as the propeller of a remotely piloted aircraft.

FIGURE 2.9
An electrical circuit.

Example Problem 2.3
Statement: For the electrical circuit shown in Figure 2.9, determine [a] the magni-

tude of the current in the branch between nodes A and B and [b] the direction of that
current.

Solution: Application of Kirchhoff’s second law to the left loop gives 5 V − (1 Ω)(I1

A) + 2 V − (1 Ω)(I3 A) = 0. Similar application to the right loop yields 2 V − (2
Ω)(I2 A) + (1 Ω)(I3 A) = 0. At node A, application of Kirchhoff’s first law implies I1

− I2 − I3 = 0. These three expressions can be solved to yield I1 = 3.8 A, I2 = 0.6 A,
and I3 = 3.2 A. Because I3 is positive, the direction shown in Figure 2.9, from node A
to node B, is correct.

The second elementary direct-current circuit is a Wheatstone bridge.
The Wheatstone bridge is used in a variety of common instruments such
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FIGURE 2.10
The Wheatstone bridge configuration.

as pressure transducers and hot-wire anemometers. Its circuit, shown in
Figure 2.10, consists of four resistors (R1 through R4), each two comprising
a pair (R1 and R2; R3 and R4) in series that is connected to the other pair
in parallel, and a voltage source, Ei, connected between the R1-R3 and the
R2-R4 nodes. The voltage output of the bridge, Eo, is measured between the
R1-R2 and the R3-R4 nodes. Eo is measured by an ideal voltmeter with an
infinite input impedance such that no current flows through the voltmeter.

An expression needs to be developed that relates the bridge’s output
voltage to its input voltage and the four resistances. There are four un-
knowns, I1 through I4. This implies that four equations are needed to reach
the desired solution. Examination of the circuit reveals that there are four
closed loops for which four equations can be written by applying Kirchhoff’s
second law. The resulting four equations are

Ei = I1R1 + I2R2, (2.20)

Ei = I3R3 + I4R4, (2.21)

Eo = I4R4 − I2R2, (2.22)

and
Eo = −I3R3 + I1R1. (2.23)

Kirchhoff’s first law leads to I1 = I2 and I3 = I4, assuming no current flows
through the voltmeter. These two current relations can be used in Equations
2.20 and 2.21 to give

I1 =
Ei

R1 + R2
(2.24)
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and

I3 =
Ei

R3 + R4
. (2.25)

These two expressions can be substituted into Equation 2.23, yielding the
desired result

Eo = Ei

[
R1

R1 + R2
− R3

R3 + R4

]
. (2.26)

Equation 2.26 leads to some interesting features of the Wheatstone
bridge. When there is no voltage output from the bridge, the bridge is
considered to be balanced even if there is an input voltage present. This
immediately yields the balanced bridge equation

R1

R2
=

R3

R4
. (2.27)

This condition can be exploited to use the bridge to determine an unknown
resistance, say R1, by having two other resistances fixed, say R2 and R3, and
varying R4 until the balanced bridge condition is achieved. This is called
the null method. This method is used to determine the resistance of a
sensor which usually is located remotely from the remainder of the bridge.
An example is the hot-wire sensor of an anemometry system used in the
constant-current mode to measure local fluid temperature.

FIGURE 2.11
Cantilever beam with four strain gages.

The bridge can be used also in the deflection method to provide an
output voltage that is proportional to a change in resistance. Assume that
resistance R1 is the resistance of a sensor, such as a fine wire or a strain gage.
The sensor is located remotely from the remainder of the bridge circuit in
an environment in which the temperature increases from some initial state.
Its resistance will change by an amount δR from R1 to R

′

1. Application of
Equation 2.26 yields

Eo = Ei

[
R

′

1

R
′

1 + R2
− R3

R3 + R4

]
. (2.28)
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Further, if all the resistances are initially the same, where R1 = R2 = R3 =
R4 = R, then Equation 2.28 becomes

Eo = Ei

[
δR/R

4 + 2δR/R

]
= Eif(δR/R). (2.29)

Thus, when using the null and deflection methods, the Wheatstone bridge
can be utilized to determine a resistance or a change in resistance.

One practical use of the Wheatstone bridge is in a force measurement
system. This system is comprised of a cantilever beam, rigidly supported on
one end, that is instrumented with four strain gages, two on top and two
on bottom, as shown in Figure 2.11. The strain gage is discussed further
in Chapter 3. A typical strain gage is shown in Figure 3.3 of that chapter.
The electric configuration is called a four-arm bridge. The system operates
by applying a known force, F , near the end of the beam along its centerline
and then measuring the output of the Wheatstone bridge formed by the
four strain gages. When a load is applied in the direction shown in Figure
2.11, the beam will deflect downward, giving rise to a tensile strain, εL, on
the top of the beam and a compressive strain, −εL, on the bottom of the
beam. Because a strain gage’s resistance increases with strain, δR ∼ εL, the
resistances of the two tensile strain gages will increase and those of the two
compressive strain gages will decrease. In general, following the notation in
Figure 2.11, for the applied load condition,

R
′

1 = R1 + δR1, (2.30)

R
′

4 = R4 + δR4, (2.31)

R
′

2 = R2 − δR2, (2.32)

and
R

′

3 = R3 − δR3. (2.33)

If all four gages are identical, where they are of the same pattern with
R1 = R2 = R3 = R4 = R, the two tensile resistances will increase by δR
and the two compressive ones will decrease by δR. For this case, Equation
2.28 simplifies to

Eo = Ei(δR/R). (2.34)

For a cantilever beam shown in Figure 2.11, the strain along the length of the
beam on its top side is proportional to the force applied at its end, F . Thus,
εL ∼ F . If strain gages are aligned with this axis of strain, then δR ∼ εL, as
discussed in Section 3.3.2. Thus, the voltage output of this system, Eo, is
linearly proportional to the applied force, F. Further, with this strain gage
configuration, variational temperature and torsional effects are compensated
for automatically. This is an inexpensive, simple yet elegant measurement
system that can be calibrated and used to determine unknown forces. This
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configuration is the basis of most force balances used for aerodynamic and
mechanical force measurements.

Example Problem 2.4
Statement: Referring to Figure 2.10, if R1 = 1 Ω, R2 = 3 Ω, and R3 = 2 Ω,

determine [a] the value of R4 such that the Wheatstone bridge is balanced, and [b] the
bridge’s output voltage under this condition.

Solution: Equation 2.27 specifies the relationship between resistances when the
bridge is balanced. Thus, R4 = R2R3/R1 = (3)(2)/1 = 6 Ω. Because the bridge is bal-
anced, its output voltage is zero. This can be verified by substituting the four resistance
values into Equation 2.26.

2.6 Elementary AC Circuit Analysis

As shown in Table 2.1, the expressions for the voltages and currents of AC
circuits containing resistors, capacitors, and inductors involve differentials
and integrals with respect to time. Expressions for V (t) and I(t) of AC
circuits can be obtained directly by solving the first-order and second-order
ordinary differential equations that govern their behavior. The differential
equation solutions for RC and RLC circuits subjected to step and sinusoidal
inputs are presented later in Chapter 4. At this point, a working knowledge
of AC circuits can be gained through some elementary considerations.

When capacitors and inductors are exposed to time-varying voltages in
AC circuits, they each create a reactance to the voltage. Reactance plus
resistance equals impedance. Symbolically, X + R = Z. Often an RLC
component is described by its impedance because it encompasses both re-
sistance and reactance. Impedance typically is considered generalized resis-
tance [2]. For DC circuit analysis, impedance is resistance because there is
no reactance. For this case, Z = R.

Voltages and currents in AC circuits usually do not vary simultaneously
in the same manner. An increase in voltage with time, for example, can be
followed by a corresponding increase in current at some later time. Such
changes of voltage and current in time are characterized best by using com-
plex number notation. This notation is described in more detail in Chapter
9.

Assume that the voltage, V (t), and the current, I(t), are represented
by the complex numbers Voe

iφ and Ioe
iφ, respectively. Here eiφ is given by

Euler’s formula,

eiφ = cos φ + i sin φ, (2.35)

where i =
√
−1. In electrical engineering texts, j is used to denote

√
−1
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because i is used for the current. Throughout this text, i symbolizes the
imaginary number. The real voltage and real current are obtained by multi-
plying each by the complex number representation eiωt and then taking the
real part, Re, of the resulting number. That is,

V (t) = Re(V eiωt) = Re(V ) cos ωt − Im(V ) sin ωt (2.36)

and

I(t) = Re(Ieiωt) = Re(I) cos ωt − Im(I) sin ωt, (2.37)

in which ω is the frequency in rad/s. The frequency in cycles/s is f , where
2πf = ω.

Expressions for capacitive and inductive reactances can be derived using
the voltage and current expressions given in Equations 2.36 and 2.37 [2]. For
a capacitor, I(t) = CdV (t)/dt. Differentiating Equation 2.36 with respect
to time yields the current across the capacitor,

I(t) = −VoCω sin ωt = Re[Vo
ei/ωC

1/iωC
]. (2.38)

The denominator of the real component is the capacitive reactance,

XC = 1/iωC. (2.39)

In other words, V (t) = I(t)XC .
For the inductor, V (t) = LdI(t)/dt. Differentiating Equation 2.37 with

respect to time yields the voltage across the inductor,

V (t) = −IoLω sinωt = Re[iωLIoe
i/ωC ]. (2.40)

The numerator of the real component is the inductive reactance,

XC = i/ωL. (2.41)

Simply put, V (t) = I(t)XL.
Because the resistances of capacitors and inductors are effectively zero,

their impedances equal the reactances. Further, the resistor has no reac-
tance, so its impedance is its resistance. Thus, ZR = R, ZC = 1/iωC, and
ZL = iωL.

Ohm’s law is still valid for AC circuits. It now can be written as V = ZI.
Also the rules for adding resistances apply to adding impedances, where for
impedances in series

ZT =
∑

Zi, (2.42)

and for impedances in parallel

ZT = 1/
∑

(
1

Zi
). (2.43)
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Example Problem 2.5
Statement: An electrical circuit loop is comprised of a resistor, R, a voltage source,

Eo, and a 1-µF capacitor, C, that can be added into the loop by a switch. When the
switch is closed, all three electrical components are in series. When the switch is open,
the loop has only the resistor and the voltage source in series. Eo = 3 V and R = 2 Ω.
Determine the expression for the current as a function of time, I(t), immediately after
the switch is closed.

Solution: Applying Kirchhoff’s second law to the loop gives

RI(t) +
1

C

∫
I(t)dt = Eo.

This equation can be differentiated with respect to time to yield

R
dI(t)

dt
+

I(t)

C
=

dEo

dt
= 0,

because Eo is a constant 3 V. This equation can be integrated to obtain the result
I(t) = C1e−t/RC , where C1 is a constant. Now at t = 0 s, current flows through the
loop and equals Eo/R. This implies that C1 = 3/2 = 1.5 A. Thus, for the given values

of R and C, I(t) = 1.5e−t/(2 × 10−6). This means that the current in the loop becomes
almost zero in approximately 10 µs after the switch is closed.

FIGURE 2.12
Thévenin and Norton equivalent circuits.
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2.7 *Equivalent Circuits

Thévenin’s equivalent circuit theorem states that any two-terminal
network of linear impedances, such as resistors and inductors, and voltage
sources can be replaced by an equivalent circuit consisting of an ideal voltage
source, ETh, in series with an impedance, ZTh. This circuit is shown in the
top of Figure 2.12.

Norton’s equivalent circuit theorem states that any two-terminal
network of linear impedances and current sources can be replaced by an
equivalent circuit consisting of an ideal current source, ITh, in parallel with
an impedance, ZTh. This circuit is illustrated in the bottom of Figure 2.12.

The voltage of the Thévenin equivalent circuit is the current of the Nor-
ton equivalent circuit times the equivalent impedance. Obtaining the equiv-
alent impedance sometimes can be tedious, but it is very useful in under-
standing circuits, especially the more complex ones.

The Thévenin equivalent voltage and equivalent impedance can be
determined by examining the open-circuit voltage and the short-circuit cur-
rent. The Thévenin equivalent voltage, ETh, is the open-circuit voltage,
which is the potential difference that exists between the circuit’s two ter-
minals when nothing is connected to the circuit. This would be the voltage
measured using an ideal voltmeter. Simply put, ETh = Eoc, where the sub-
script oc denotes open circuit. The Thévenin equivalent impedance,
ZTh, is Eth divided by the short-circuit current, Isc, where the subscript
sc denotes short circuit. The short-circuit current is the current that would
pass through an ideal ammeter connected across the circuit’s two terminals.

An example diagram showing an actual circuit and its Thévenin equiv-
alent is presented in Figure 2.13. In this figure, ZTh is represented by RTh

because the only impedances in the circuit are resistances. Rm denotes the
meter’s resistance, which would be infinite for an ideal voltmeter and zero
for an ideal ammeter.

The Thévenin equivalents can be found for the actual circuit. Kirchhoff’s
voltage law implies

Ei = I(R1 + R2). (2.44)

Also, the voltage measured by the ideal voltmeter, Em, using Ohm’s law
and noting that R2 << Rm, is

Em = Eth = IR2. (2.45)

Combining Equations 2.44 and 2.45 yields the open-circuit or Thévenin
equivalent voltage,

ETh = Ei
R2

R1 + R2
. (2.46)
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FIGURE 2.13
A circuit and its Thévenin equivalent.

Further, the short-circuit current would be

Isc = Ei/R1. (2.47)

So, the Thévenin equivalent resistance is

RTh ≡ ETh

Isc
=

R1R2

R1 + R2
. (2.48)

The resulting Thévenin equivalent circuit is shown in the bottom of Figure
2.13.

An alternative approach to determining the Thévenin impedance is to
replace all voltage sources in the circuit by their internal impedances and
then find the circuit’s output impedance. Usually the voltage sources’ in-
ternal impedances are negligible and can be assumed to be equal to zero,
effectively replacing all voltage sources by short circuits. For the circuit
shown in Figure 2.13, this approach would lead to having the resistances R1

and R2 in parallel to ground, leading directly to Equation 2.48.

This alternative approach can be applied also when determining the
Thévenin equivalent resistance, which is the output impedance, of the
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Wheatstone bridge circuit shown in Figure 2.10. Assuming a negligible in-
ternal impedance for the voltage source Ei, RTh is equivalent to the parallel
combination of R1 and R2 in series with the parallel combination of R3 and
R4. That is,

RTh =
R1R2

R1 + R2
+

R3R4

R3 + R4
. (2.49)

Example Problem 2.6
Statement: For the circuit shown in the top of Figure 2.13, determine the Thévenin

equivalent resistance and the Thévenin equivalent voltage, assuming that Vs = 20 V,
R1 = 6 Ω, R2 = 3 Ω, and Rm = 3 MΩ.

Solution: Because Rm >> R2, the Thévenin equivalent voltage is given by Equation
2.46 and the Thévenin equivalent resistance by Equation 2.48. Substitution of the given

values for Vs = Ei, R1, and R2 into these equations yields Eth = (20)
[

3
6+3

]
= 6.67 V

and Rth =
(6)(3)
6+3

= 2 Ω.

2.8 *Meters

FIGURE 2.14
Voltage and current meters.

All voltage and current meters can be represented by Thévenin and
Norton equivalent circuits, as shown in Figure 2.14. These meters are char-
acterized by their input impedances. An ideal voltmeter has an infinite
input impedance such that no current flows through it. An ideal amme-
ter has zero input impedance such that all the connected circuit’s current
flows through it. The actual devices differ from their ideal counterparts
only in that the actual impedances are neither zero nor infinite, but finite.
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A voltmeter is attached in parallel to the point of interest in the circuit. An
ammeter is attached in series with the point of interest in the circuit. A good
voltmeter has a very high input impedance, typically greater than 1 MΩ.
Because of this, a good voltmeter connected to a circuit draws negligible
current from the circuit and, therefore, has no additional voltage difference
present between the voltmeter’s terminals. Likewise, because a good amme-
ter has a very low input impedance, typically less than 1 Ω, almost all of
the attached circuit’s current flows through the ammeter.

Resistance measurements typically are made using an ohmmeter. The
resistance actually is determined by passing a known current through the
test leads of a meter and the unknown resistance and then measuring the
total voltage difference across them. This is called the two-wire method.
This approach is valid provided that the unknown resistance is much larger
than the resistances of the test leads. In practice, this problem is circum-
vented by using a multimeter and the four-wire method. This method
requires the use of two additional test leads. Two of the leads carry a known
current through the unknown resistance and then back to the meter, while
the other two leads measure the resulting voltage drop across the unknown
resistance. The meter determines the resistance by Ohm’s law and then
displays it.

2.9 *Impedance Matching and Loading Error

When the output of one electronic component is connected to the input of
another, the output signal may be altered, depending upon the component
impedances. Each measurement circumstance requires a certain relation be-
tween the output component’s output impedance and the input component’s
input impedance to avoid signal alteration. If this impedance relation is not
maintained, then the output component’s signal will be altered upon connec-
tion to the input component. A common example of impedance mismatch
is when an audio amplifier is connected to a speaker with a high input
impedance. This leads to a significant reduction in the power transmitted
to the speaker, which results in a low volume from the speaker.

A loading error can be introduced whenever one circuit is attached
to another. Loading error, eload, is defined in terms of the difference be-
tween the true output impedance, Rtrue, the impedance that would be mea-
sured across the circuit’s output terminals by an ideal voltmeter, and the
impedance measured by an actual voltmeter, Rmeas. Expressed on a per-
centage basis, the loading error is

eload = 100

[
Rtrue − Rmeas

Rtrue

]
. (2.50)
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FIGURE 2.15
Voltage circuit (top) and current circuit (bottom) illustrating loading error.

Loading errors that occur when measuring voltages, resistances, or cur-
rent can be avoided by following two simple rules. These rules, summarized
at the end of this section, can be derived by considering two circuits, one in
which an actual voltage source circuit is connected to an actual voltmeter,
and the other in which an actual current source circuit is connected to an
actual ammeter. These circuits are shown in Figure 2.15.

For the voltage circuit, Kirchhoff’s voltage law applied around the outer
circuit loop gives

Vm = Vs − IoRout. (2.51)

Kirchhoff’s current law applied at node A yields

Io = IA = Vm/Rin, (2.52)

where all of the current flows through the voltmeter’s Rin. Substituting
Equation 2.52 into Equation 2.51 results in

Vm = Vs


 1

1 +
(

Rout

Rin

)


 = Vs

[
Rin

Rin + Rout

]
. (2.53)

When Rin >> Rout, Vm = Vs. Noting for this voltage measurement case
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that Rtrue = Rout and Rmeas = (RinRout)/(Rin + Rout), the loading error
becomes

eload,V =

[
Rout

Rin + Rout

]
. (2.54)

For the current circuit, Kirchhoff’s current law applied at node B yields

Is = IB + Io. (2.55)

Kirchhoff’s voltage law applied around the circuit loop containing Rin and
Rout gives

ImRin = IBRout. (2.56)

Substituting Equation 2.56 into Equation 2.55 results in

Im = Is


 1

1 +
(

Rin

Rout

)


 = Is

[
Rout

Rin + Rout

]
. (2.57)

When Rin << Rout, Im = Is. Noting for the current measurement case
that Rtrue = Rin and Rmeas = (RinRout)/(Rin + Rout), the loading error
becomes

eload,I =

[
Rin

Rin + Rout

]
. (2.58)

Loading errors can be avoided between two circuits by connecting them
via a buffer that has near-infinite input and near-zero output impedances.
This is one of the many uses of operational amplifiers. These are presented
in Chapter 3.

Example Problem 2.7
Statement: Determine the minimum input impedance, Rmin, of a voltage measure-

ment circuit that would have less than 0.5 % loading error when connected to a circuit
having an output impedance of 50 Ω.

Solution: Direct application of Equation 2.54 implies

0.5

100
=

50 Ω

50 Ω + Rmin
.

Solving for the minimum input impedance gives Rmin = 9950 Ω, or approximately 10
kΩ. This condition can be met by using a unity-gain operational amplifier in the non-
inverting configuration at the input of the voltage-measurement circuit (see Chapter
3).
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The impedance relation for optimum power transmission between an
output source and an input circuit can be determined [8]. For the voltage
circuit in Figure 2.15, noting that the power received, Pin, equals V 2

in/Rin,
Equation 2.53 becomes

Pin = V 2
s

[
Rin

(Rin + Rout)2

]
. (2.59)

Differentiating Equation 2.59 with respect to Rin, setting the result equal
to zero and solving for Rin gives

Rin = Rout. (2.60)

Substitution of Equation 2.60 into the derivative equation shows that this
condition ensures a maximum transmission of power. Equation 2.60 rep-
resents true impedance matching, where the two impedances have the
same value.

Example Problem 2.8
Statement: Determine the power that is transmitted, Pt, between two connected

circuits if the output circuit impedance is 6.0 Ω, the input circuit impedance is 4.0 Ω,
and the source voltage is 12 V.

Solution: Substitution of the given values into Equation 2.53 gives Vm = 12
[

4
6+4

]

= 4.8 V. Now, the power transmitted is given by Pt = V 2
in/Rin = 4.82/4 = 5.8 W,

with the correct number of significant figures.

Impedance matching also is critical when an output circuit that generates
waveforms is connected by a cable to a receiving circuit. In this situation, the
high-frequency components of the output circuit can reflect back from the
receiving circuit. This essentially produces an input wave to the receiving
circuit that is different from that intended. When a cable with characteristic
impedance, Rcable, is connected to a receiving circuit of load impedance,
Rin, and these impedances are matched, then the the input wave will not
be reflected. The reflected wave amplitude, Ar, is related to the incident
wave amplitude, Ai, by

Ar = Ai

[
Rcable − Rin

Rcable + Rin

]
. (2.61)

When Rcable < Rin, the reflected wave is inverted. When Rcable > Rin, the
reflected wave is not inverted [2].

The rules for impedance matching and for loading error minimization,
as specified by Equations 2.53, 2.57, 2.60, and 2.61, are as follows:

• Rule 1 − loading error minimization: When measuring a voltage,
the input impedance of the measuring device must be much greater than
the equivalent circuit’s output impedance.
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• Rule 2 − loading error minimization: When measuring a current,
the input impedance of the measuring device must be much less than
the equivalent circuit’s output impedance.

• Rule 3 − impedance matching: When transmitting power to a load,
the output impedance of the transmission circuit must equal the input
impedance of the load for maximum power transmission.

• Rule 4 − impedance matching: When transmitting signals having
high frequency through a cable, the cable impedance must equal the
load impedance of the receiving circuit.

2.10 *Electrical Noise

Electrical noise is defined as anything that obscures a signal [2]. Noise
is characterized by its amplitude distribution, frequency spectrum, and the
physical mechanism responsible for its generation. Noise can be subdivided
into intrinsic noise and interference noise. Intrinsic noise is random and
primarily the result of thermally induced molecular motion in any resistive
element (Johnson noise), current fluctuations in a material (shot noise), and
local property variations in a material (1/f or pink noise). The first two
are intrinsic and cannot be eliminated. The latter can be reduced through
quality control of the material that is used.

Noise caused by another signal is called interference noise. Interference
noise depends on the amplitude and frequency of the noise source. Common
noise sources include AC-line power (50 Hz to 60 Hz), overhead fluorescent
lighting (100 Hz to 120 Hz), and sources of radio-frequency (RF) and elec-
tromagnetically induced (EMI) interference, such as televisions, radios, and
high-voltage transformers.

The causes of electrical interference include local electric fields, magnetic
fields, and ground loops. These noticeably affect analog voltage signals with
amplitudes less than one volt. A surface at another electric potential that is
near a signal-carrying wire will establish an undesirable capacitance between
the surface and the wire. A local magnetic field near a signal-carrying wire
will induce an additional current in the wire. A current flowing through one
ground point in a circuit will generate a signal in another part of the circuit
that is connected to a different ground point.

Most interference noise can be attenuated to acceptable levels by proper
shielding, filtering, and amplification. For example, signal wires can be
shielded by a layer of conductor that is separated from the signal wire by an
insulator. The electric potential of the shield can be driven at the same po-
tential as the signal through the use of operational amplifiers and feedback,
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thereby obviating any undesirable capacitance [5]. Pairs of insulated wires
carrying similar signals can be twisted together to produce signals with the
same mode of noise. These signals subsequently can be conditioned using
common-mode rejection techniques. Use of a single electrical ground point
for a circuit almost always will minimize ground-loop effects. Signal ampli-
fication and filtering also can be used. In the end though, it is better to
eliminate the sources of noise than to try to cover them up.

The magnitude of the noise is characterized through the signal-to-noise
ratio (SNR). This is defined as

SNR ≡ 10 log10

[
V 2

s

V 2
n

]
, (2.62)

where Vs and Vn denote the source and noise voltages, respectively. The volt-
age values usually are rms values (see Chapter 9). Also, a center frequency
and range of frequencies are specified when the SNR is given.
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2.11 Problem Topic Summary

Topic Review Problems Homework Problems
Basics 1, 2, 4, 6, 7, 13, 14, 15 8, 9, 10

20, 21, 22, 23, 24, 25
Circuits 3, 5, 8, 9, 10, 11, 12 4, 5, 7, 8, 11, 12

16, 17, 18, 19
Systems 8, 9, 10, 11 1, 2, 3, 6
Op Amps 23 13, 14

TABLE 2.2
Chapter 2 Problem Summary

2.12 Review Problems

1. Three 11.9 µF capacitors are placed in series in an electrical circuit.
Compute the total capacitance in µF to one decimal place.

2. Which of the following combination of units is equivalent to 1 J? (a) 1
C·A·W, (b) 1 W·s/C, (c) 1 N/C, (d) 1 C·V.

FIGURE 2.16
Electrical circuit.

3. For the electrical circuit depicted in Figure 2, given R1 = 160 Ω, R3 =
68 Ω, I1 = 0.9 A, I3 = 0.2 A, and R2 = R4, find the voltage potential,
E, to the nearest whole volt.
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Quantity Famous Person
current James Joule
charge Charles Coulomb

electric field work Georg Ohm
electric potential James Watt

resistance Andre Ampere
power Michael Faraday

inductance Joseph Henry
capacitance Alessandro Volta

TABLE 2.3
Famous people and electric quantities.

4. The ends of a wire 1.17 m in length are suspended securely between two
insulating plates. The diameter of the wire is 0.000 05 m. Given that
the electric resistivity of the wire is 1.673 × 10−6 Ω·m at 20.00 ◦C and
that its coefficient of thermal expansion is 56.56 × 10−5/◦C, compute
the internal resistance in the wire at 24.8 ◦C to the nearest whole ohm.

5. A wire with the same material properties given in the previous problem
is used as the R1 arm of a Wheatstone bridge. The bridge is designed to
be used in deflection method mode and to act as a transducer in a system
used to determine the ambient temperature in the laboratory. The length
of the copper wire is fixed at 1.00 m and the diameter is 0.0500 mm.
R2 = R3 = R4 = 154 Ω and Ei = 10.0 V. For a temperature of 25.8 ◦C,
compute the output voltage, Eo, in volts to the nearest hundredth.

6. Which of the following effects would most likely not result from routing
an AC signal across an inductor? (a) A change in the frequency of the
output alternating current, (b) a back electromagnetic force on the input
current, (c) a phase lag in the output AC signal, (d) a reduction in the
amplitude of the AC signal.

7. Match each of the following quantities given in Table 2.3 with the famous
person for whom the quantity’s unit is named.

8. Given the electrical circuit in Figure 7, where R1 = 37 Ω, R2 = 65 Ω,
R3 = 147 Ω, R4 = 126 Ω, and R5 = 25 Ω, find the total current drawn
by all of the resistors to the nearest tenth A.

Questions 9 through 13 pertain to the electrical circuit diagram given
in Figure 2.18.

9. A Wheatstone bridge is used as a transducer for a resistance temperature
device (RTD), which forms the R1 leg of the bridge. The coefficient of
thermal expansion for the RTD is 0.005/◦C. The reference resistance of
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FIGURE 2.17
Resistor circuit.

FIGURE 2.18
Temperature measurement system.

the device is 25 Ω at a reference temperature of 20 ◦C. Compute the
resistance of the RTD at 67 ◦C to the nearest tenth of an ohm. Use this
procedure to arrive at the answer in the next problem.

10. For the Wheatstone bridge shown in Figure 2.18, R2 = R3 = R4 = 25 Ω
and Ei = 5 V. The maximum temperature to be sensed by the RTD is
78 ◦C. Find the maximum output voltage from the Wheatstone bridge
to the nearest thousandth volt. The answer to this question will be used
in the following problem. (Hint: The answer should be between 0.034 V
and 0.049 V.)

11. A constant gain amplifier, with gain factor G, conditions the output
voltage from the Wheatstone bridge shown in Figure 2.18. The multi-
meter used to process the output voltage from the amplifier, Em, has a
full-scale output of 10 V. Determine the maximum gain factor possible
to the nearest hundred. The answer to this question will be used in the
following problem.
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12. The RTD shown in Figure 2.18 senses a temperature of 60 ◦C. Compute
the voltage output to the multimeter, Em, to the nearest hundredth
volt.

13. What bridge method is used for the RTD measurement system shown
in Figure 2.18? (a) Deflection method, (b) null method, (c) strain gage
method, (d) resistance-temperature method.

14. Which of a following is a consequence of the conservation of energy?

(a) Ohm’s law, (b) Kirchhoff’s first law, (c) potential differences around
a closed loop sum to zero, (d) reciprocals of parallel resistances add.

15. Consider the cantilever-beam Wheatstone bridge system that has four
strain gages (two in compression and two in tension). Which of the fol-
lowing statements is not true: (a) The change in resistance in each gage
is proportional to the applied force, (b) temperature and torsional effects
are automatically compensated for by the bridge, (c) the longitudinal
(axial) strain in the beam is proportional to the output voltage of the
bridge, (d) a downward force on the beam causes an increase in the
resistance of a strain gage placed on its lower (under) side.

16. An initially balanced Wheatstone bridge has R1 = R2 = R3 = R4 = 120
Ω. If R1 increases by 20 Ω, what is the ratio of the bridge’s output voltage
to its excitation voltage?

FIGURE 2.19
Wheatstone bridge circuit.

17. A Wheatstone bridge may be used to determine unknown resistances
using the null method. The electrical circuit shown in Figure 2.19 (with
no applied potential) forms the R1 arm of the Wheatstone bridge. If
R2 = R3 = 31 Ω and Rc = 259 Ω, find the necessary resistance of arm
R4 to balance the bridge. Resistances R1, R2, R3, and R4 refer to the
resistances in the standard Wheatstone bridge configuration. Use the
standard Wheatstone bridge. Round off the answer to the nearest ohm.
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18. A Wheatstone bridge has resistances R2=10 Ω, R3=14 Ω, and R4=3
Ω. Determine the value of R1 in Ω when the bridge is used in the null
method. Round off the answer to the nearest ohm.

19. Calculate the power absorbed by each resistor in Figure 2.20.

+

-

+

-

5 A
3 A

10 V 11 V

(a) (b)

FIGURE 2.20
Two resistors.

20. A 2 mH inductor has a voltage v(t) = 2 cos(1000t) V, with i(t = 0) = 1.5
A. Find the energy stored in the inductor at t = π/6 ms.

21. Determine the coefficient of thermal expansion (in Ω/◦R) of a 1 mm-
diameter wire whose resistance increases by 10 % when its temperature
increases by 1.8 K.

22. Determine the current, in A, through a capacitor that is discharging at
a rate of 10 C in 2.5 s.

23. The typical output impedance of an operational amplifier, in ohms, is
(a) 0, (b) < 100, (c) ∼1000, or (d) > 107.

24. What is the unit of resistance (Ω) in the base units (kg, m, s, and C)?

2.13 Homework Problems

1. Consider the pressure measurement system shown in Figure 2.21. The
Wheatstone bridge of the pressure transducer is initially balanced at
p = patm. Determine (a) the value of Rx (in Ω) required to achieve this
balanced condition and (b) Eo (in V) at this balanced condition. Finally,
determine (c) the value of Ei (in V) required to achieve Eo = 50.5 mV



50 Measurement and Data Analysis for Engineering and Science

when the pressure is changed to p = 111.3 kPa. Note that Rs(Ω) =
100[1 + 0.2(p − patm)], with p in kPa.

FIGURE 2.21
An example pressure measurement system configuration.

2. Consider the temperature measurement system shown in Figure 2.22.
At station B determine (a) Eo (in V) when T = To, (b) Eo (in V) when
T = 72 ◦F, and (c) the bridge’s output impedance (in Ω) at T = 72 ◦F.
Note that the sensor resistance is given by Rs = Ro[1+α(T −To)], with
α = 0.004/◦F , and Ro = 25 Ω at To = 32 ◦F. Also Ei = 5 V.

FIGURE 2.22
An example temperature measurement system configuration.

3. Consider the Wheatstone bridge that is shown in Figure 2.10. Assume
that the resistor R1 is actually a thermistor whose resistance, R, varies
with the temperature, T , according to the equation

R = Roexp

[
β(

1

T
− 1

To
)

]
,
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where Ro = 1000 Ω at To = 26.85 ◦C= 300 K (absolute) and β = 3500.
Both T and To must be expressed in absolute temperatures in Equa-
tion 3. (Recall that the absolute temperature scales are either K or ◦R.)
Assume that R2 = R3 = R4 = Ro. (a) Determine the normalized bridge
output, Eo/Ei, when T = 400 ◦C. (b) Write a program to compute and
plot the normalized bridge output from T = To to T = 500 ◦C.

(c) Is there a range of temperatures over which the normalized output is
linear? (d) Over what temperature range is the normalized output very
insensitive to temperature change?

FIGURE 2.23
Test circuit.

4. For the test circuit shown in Figure 2.23, derive an expression for the
output voltage, Eo, as a function of the input voltage, Ei, and the re-
sistances shown for (a) the ideal case of the perfect voltmeter having
Rm = ∞ and (b) the non-ideal voltmeter case when Rm is finite. Show
mathematically that the solution for case (b) becomes that for case (a)
when Rm → ∞.

5. An inexpensive voltmeter is used to measure the voltage to within 1 %
across the power terminals of a stereo system. Such a system typically
has an output impedance of 500 Ω and a voltage of 120 V at its power
terminals. Assuming that the voltmeter is 100 % accurate such that
the instrument and zero-order uncertainties are negligible, determine
the minimum input impedance (in Ω) that this voltmeter must have to
meet the 1 % criterion.

6. A voltage divider circuit is shown in Figure 2.24. The common circuit is
used to supply an output voltage Eo that is less than a source voltage
Ei. (a) Derive the expression for the output voltage, Eo, measured by
the meter, as a function of Ei, Rx, Ry, and RM , assuming that Rm

is not negligible with respect to Rx and Ry. Then, (b) show that the
expression derived in part (a) reduces to Eo = Ei(Rx/RT ) when RM

becomes infinite.
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FIGURE 2.24
The voltage divider circuit.

7. Figure 2.25 presents the circuit used for a flash in a camera. The capac-
itor charges toward the source voltage through the resistor. The flash
turns on when the capacitor voltage reaches 8 V. If C = 10 µF, find R
such that the flash will turn on once per second.

FIGURE 2.25
Camera flash circuit.

8. Find the differential equation for the current in the circuit shown in
Figure 2.26.

9. Between what pair of points (A, B, C, D) shown in Figure 2.27 should
one link up the power supply to charge all six capacitors to an equal
capacitance?

10. A capacitor consists of two round plates, each of radius r = 5 cm. The
gap between the plates is d = 5 mm. The capacity is given by C =
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−

+

 Vg

R

C

 L

FIGURE 2.26
RLC circuit.

εεoS/d where S is the surface area, d is the gap between plates, εo is the
permittivity of free space, and ε = 1 for air. (a) Determine the maximum
charge qmax of the capacitor in coulombs if the breakdown potential of
the air is Vmax = 10 kV. (b) Find the capacitor energy in both the
International (SI) and the English Engineering (EE) systems.

11. Consider the flash circuit shown in Figure 2.25 for a camera supplied
with a 9.0 V battery. The capacitor is used to modulate the flash of the
camera by charging toward the battery through the resistor. When the
capacitor voltage reaches 8.0 V, the flash discharges at a designed rate
of once per 5 seconds. The resistor in this circuit is 25 kΩ. What is the
capacitance of the capacitor for this design?

A

B

C
D

FIGURE 2.27
Six-capacitor circuit.

12. A researcher is attempting to decipher the lab notebook of a prior em-
ployee. The prior employee diagrammed the circuit shown in Figure 2.28
but gave no specification about the input voltage. Through advanced
forensics you were able to find places where he recorded the measured
current through the inductor IL, at time t, the capacitor voltage VC ,
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FIGURE 2.28
Notebook circuit.

and the capacitor capacitance C. Your boss has asked you to make sure
you are using the right resistors, but the lab notebook does not specify
the resistance. Formulate an expression to determine the resistance of
the resistor. (Note: Assume that the time under consideration is small
and that current through the inductor is constant when solving the dif-
ferential equation. Also assume that the capacitor voltage was known at
the beginning of the experiment when no current was flowing.)

13. Design an op-amp circuit with two input voltages, Ei,1 and Ei,2, such
that the output voltage, Eo, is the sum of the two input voltages.

14. Consider the operational amplifier circuit shown in Figure 2.29 and the
information in Table 2.1, in which R is resistance, C is capacitance, I
is current, and t is time. The transfer function of the circuit can be
written in the form where the output voltage, Eo, equals a function
of the input voltage, Ei, and other variables. (a) List all of the other
variables that would be in the transfer function expression. (b) Using
Kirchhoff’s laws, derive the actual transfer function expression. Identify
any loops or nodes considered when applying Kirchhoff’s laws.

FIGURE 2.29
Op-amp circuit.
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Measure what can be measured and make measurable what cannot be
measured.

Galileo Galilei, c.1600.

If you can measure that of which you speak, and can express it by a number,
you know something of your subject; but if you cannot measure it, your

knowledge is meager and unsatisfactory.
Lord Kelvin, c.1850.

I profess to be a scientific man, and was exceedingly anxious to obtain
accurate measurements of her shape; but... I did not know a word of

Hottentot... Of a sudden my eye fell upon my sextant... I took a series of
observations upon her figure in every direction, up and down, crossways,

diagonally, and so forth... and thus having obtained both base and angles, I
worked out the results by trigonometry and logarithms.

Sir Francis Galton, Narrative of an Explorer in Tropical South Africa, 1853.
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3.1 Chapter Overview

The workhorse of an experiment is its measurement system. This is the
equipment used from sensing an experiment’s environment to recording the
results. This chapter begins by identifying the main elements of a measure-
ment system. The basic electronics behind most of these elements is covered
in Chapter 2. The sensor and the transducer, the first two elements of a
measurement system, will be examined first. Several sensor and transducer
examples will be presented and discussed. Then the essentials of amplifiers
will be covered, which include operational amplifiers that are the basic, ac-
tive elements of all circuit boards today. Finally, filters and contemporary
analog-to-digital processing methods will be considered. The chapter is con-
cluded by examining a typical measurement system.

3.2 Measurement System Elements

A measurement system is comprised of the equipment used to sense an
experiment’s environment, to modify what is sensed into a recordable form,
and to record its values. Formally, the elements of a measurement system
include the sensor, the transducer, the signal conditioner, and the signal
processor. These elements, acting in concert, sense the physical variable,
provide a response in the form of a signal, condition the signal, process the
signal, and store its value.

A measurement system’s main purpose is to produce an accurate numer-
ical value of the measurand. Ideally, the recorded value should be the exact
value of the physical variable sensed by the measurement system. In practice,
the perfect measurement system does not exist, nor is it needed. A result
only needs to have a certain accuracy that is achieved using the most simple
equipment and measurement strategy. This can be accomplished provided
there is a good understanding of the system’s response characteristics.

To accomplish the task of measurement, the system must perform several
functions in series. These are illustrated schematically in Figure 3.1. First,
the physical variable must be sensed by the system. The variable’s stimulus
determines a specific state of the sensor’s properties. Any detectable physical
property of the sensor can serve as the sensor’s signal. When this signal
changes rapidly in time, it is referred to as an impulse. So, by definition,
the sensor is a device that senses a physical stimulus and converts it into
a signal. This signal usually is electrical, mechanical, or optical.

For example, as depicted by the words in italics in Figure 3.1, the tem-
perature of a gas (the physical stimulus) results in an electrical resistance
(the signal) of a resistance temperature device (RTD, a temperature sensor)
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FIGURE 3.1
The general measurement system configuration.

that is located in the gas. This is because the resistance of the RTD sensor
(typically a fine platinum wire) is proportional to the change in temperature
from a reference temperature. Thus, by measuring the RTD’s resistance, the
local temperature can be determined. In some situations, however, the sig-
nal may not be amenable to direct measurement. This requires that the
signal be changed into a more appropriate form, which, in almost all cir-
cumstances, is electrical. Most of the sensors in our bodies have electrical
outputs.

The device that changes (transduces) the signal into the desired quantity
(be it electrical, mechanical, optical, or another form) is the transducer.
In the most general sense, a transducer transforms energy from one form
to another. Usually, the transducer’s output is an electrical signal, such as
a voltage or current. For the RTD example, this would be accomplished
by having the RTD’s sensor serve as one resistor in an electrical circuit
(a Wheatstone bridge) that yields an output voltage proportional to the
sensor’s resistance. Often, either the word sensor or the word transducer



60 Measurement and Data Analysis for Engineering and Science

is used to describe the combination of the actual sensor and transducer.
A transducer also can change an input into an output providing motion.
In this case, the transducer is called an actuator. Sometimes, the term
transducer is considered to encompass both sensors and actuators [2]. So, it
is important to clarify what someone specifically means when referring to a
transducer.

Often after the signal has been transduced, its magnitude still may be
too small or may contain unwanted electrical noise. In this case, the signal
must be conditioned before it can be processed and recorded. In the signal
conditioning stage, an amplifier may be used to increase the signal’s ampli-
tude, or a filter may be used to remove the electrical noise or some unwanted
frequency content in the signal. The signal conditioner, in essence, puts
the signal in its final form to be processed and recorded.

In most situations, the conditioner’s output signal is analog (continuous
in time), and the signal processor output is digital (discrete in time). So,
in the signal processing stage, the signal must be converted from analog to
digital. This is accomplished by adding an analog-to-digital (A/D) converter,
which usually is contained within the computer that is used to record and
store data. That computer also can be used to analyze the resulting data or
to pass this information to another computer.

A standard glass-bulb thermometer contains all the elements of a mea-
surement system. The sensor is actually the liquid within the bulb. As the
temperature changes, the liquid volume changes, either expanding with an
increase in temperature or contracting with a decrease in temperature. The
transducer is the bulb of the thermometer. A change in the volume of the
liquid inside the bulb leads to a mechanical displacement of the liquid be-
cause of the bulb’s fixed volume. The stem of the thermometer is a signal
conditioner that physically amplifies the liquid’s displacement, and the scale
on the stem is a signal processor that provides a recordable output.

Thus, a measurement system performs many different tasks. It senses
the physical variable, transforms it into a signal, transduces and conditions
the signal, and then records and stores a corresponding numerical value.
How each of these elements functions is considered in the following sections.

3.3 Sensors and Transducers

A sensor senses the process variable through its contact with the physical
environment, and the transducer transduces the sensed information into a
different form, yielding a detectable output. Contact does not need to be
physical. The sensor, for example, could be an optical pyrometer located
outside of the environment under investigation. This is a non-invasive
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sensor. An invasive, or in situ, sensor is located within the environment.
Ideally, invasive sensors should not disturb the environment.

Usually the signals between the sensor and transducer and the detectable
output are electrical, mechanical, or optical. Electrically based sensors and
transducers can be active or passive. Passive elements require no external
power supply. Active elements require an external power supply to produce
a voltage or current output. Mechanically based sensors and transducers
usually use a secondary sensing element that provides an electrical output.
Often the sensor and transducer are combined physically into one device.

Sensors and transducers can be found everywhere. The sensor/transducer
system in a house thermostat basically consists of a metallic coil (the sen-
sor) with a small glass capsule (the transducer) fixed to its top end. Inside
the capsule is a small amount of mercury and two electrical contacts (one
at the bottom and one at the top). When the thermostat’s set tempera-
ture equals the desired room temperature, the mercury is at the bottom of
the capsule such that no connection is made via the electrically conducting
mercury and the two contacts. The furnace and its blower are off. As the
room temperature decreases, the metallic coil contracts, thereby tilting the
capsule and causing the mercury to close the connection between the two
contacts. The capsule transduces the length change in the coil into a digital
(on/off) signal.

Another type of sensor/transducer system is in a land-line telephone
mouthpiece. This consists of a diaphragm with coils housed inside a small
magnet. There is one system for the mouth piece and one for the ear piece.
The diaphragm is the sensor. Its coils within the magnet’s field are the
transducer. Talking into the mouth piece generates pressure waves causing
the diaphragm with its coils to move within the magnetic field. This induces
a current in the coil, which is transmitted (after modification) to another
telephone. When the current arrives at the ear piece, it flows through the
coils of the ear piece’s diaphragm inside the magnetic field and causes the di-
aphragm to move. This sets up pressure waves that strike a person’s eardrum
as sound. Newer phones use piezo-sensors/transducers that generate an elec-
tric current from applied pressure waves, and, alternatively, pressure waves
from an applied electric current. Today, most signals are digitally encoded
for transmission either in optical pulses through fibers or in electromagnetic
waves to and from satellites. Even with this new technology, the sensor still
is a surface that moves, and the transducer still converts this movement into
an electrical current.

3.3.1 Sensor Principles

Sensors are available today that sense almost anything imaginable. New ones
are being developed constantly. Sensors can be categorized into domains,
according to the type of physical variables that they sense [4], [2]. These
domains and the sensed variables include
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• chemical: chemical concentration, composition, and reaction rate,

• electrical: current, voltage, resistance, capacitance, inductance, and
charge,

• magnetic: magnetic field intensity, flux density, and magnetization,

• mechanical: displacement or strain, level, position, velocity, acceleration,
force, torque, pressure, and flow rate,

• radiant: electromagnetic wave intensity, wavelength, polarization, and
phase, and

• thermal: temperature, heat, and heat flux.

The first step in understanding sensor functioning is to gain a sound
knowledge about the basic principles behind sensor design and operation.
This is especially true today because sensor designs change almost daily.
Once these basic principles are understood, then any standard measurement
textbook, for example [2], [3], [4], [5], and [18], can be consulted to obtain
descriptions of innumerable devices based upon these principles. Most sensor
and transducer manufacturers now provide information via the Internet that
describes their product’s performance characteristics.

Sensors always are based upon some physical principle or law [8]. The
choice of either designing or selecting a particular sensor starts with iden-
tifying the physical variable to be sensed and the physical principle or law
associated with that variable. Then, the sensor’s input/output characteris-
tics must be identified. These include, but are not limited to, the sensor’s

• operational bandwidth,

• magnitude and frequency response over that bandwidth,

• sensitivity,

• accuracy,

• voltage or current supply requirements,

• physical dimensions, weight, and materials,

• environmental operating conditions (pressure, temperature, relative hu-
midity, air purity, and radiation),

• type of output (electrical or mechanical),

• further signal conditioning requirements,

• operational complexity, and

• cost.
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The final choice of sensor can involve some or all of these considerations.
The following example illustrates how the design of a sensor can be a process
that often involves reconsideration of the design constraints before arriving
at the final design.

Example Problem 3.1
Statement: A design engineer intends to scale down a pressure sensor to fit inside

an ultra-miniature robotic device. The pressure sensor consists of a circular diaphragm
that is instrumented with a strain gage. The diaphragm is deflected by a pressure
difference that is sensed by the gage and transduced by a Wheatstone bridge. The
diaphragm of the full-scale device has a 1 cm radius, is 1 mm thick, and is made of
stainless steel. The designer plans to make the miniature diaphragm out of silicon.
The miniature diaphragm is to have a 600 µm radius, operate over the same pressure
difference range, and have the same deflection. The diaphragm deflection, δ, at its
center is

δ =
3(1 − ν2)r4∆p

16Eh
,

in which ν is Poisson’s ratio, E is Young’s modulus, r is the diaphragm radius, h is
the diaphragm thickness, and ∆p is the pressure difference. Determine the required
diaphragm thickness to meet these criteria and comment on the feasibility of the new
design.

Solution: Assuming that ∆p remains the same, the new thickness is

hn = ho

[
(1 − ν2

n)r4
nEo

(1 − ν2
o )r4

oEn

]
.

The properties for stainless steel are νo = 0.29 and Eo = 203 GPa. Those for silicon
are νn = 0.25 and En = 190 GPa. Substitution of these and the aforementioned values
into the expression yields hn = 1.41 × 10−8 m = 14 nm. This thickness is too small
to be practical. An increase in hn by a factor of 10 will increase the ∆p range likewise.
Recall that this design required a similar deflection. A new design would be feasible if
the required deflection for the same transducer output could be reduced by a factor of
1000, such as by the use of a piezoresistor on the surface of the diaphragm. This would
increase hn to 14 µm, which is reasonable using current micro-fabrication techniques.
Almost all designs are based upon many factors, which usually require compromises to
be made.

3.3.2 Sensor Examples

Sensor/transducers can be developed for different measurands and be based
upon the same physical principle or law. Likewise, sensor/transducers can
be developed for the same measurand and be based upon different physical
principles or laws. A thin wire sensor’s resistance inherently changes with
strain. This wire can be mounted on various structures and used with a
Wheatstone bridge to measure strain, force, pressure, or acceleration. A
thin wire’s resistance also inherently changes with temperature. This, as
well as other sensors, such as a thermocouple, a thermistor, and a constant-
current anemometer, can be used to measure temperature. Table 3.2 lists a
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Measurand Sensor Transducer Domain
strain fine wire or strain gage none mechanical
force strain gage on structure Wheatstone bridge mechanical

pressure strain gage on structure Wheatstone bridge mechanical
acceleration strain gage on structure Wheatstone bridge mechanical
acceleration capacitance sensor on structure Wheatstone bridge mechanical

velocity fine wire constant-T anemometer mechanical
velocity microparticles in laser beams photodetector mechanical

temperature dissimilar-wire junction reference junction thermal
temperature fine wire Wheatstone bridge thermal

relative humidity capacitance sensor Wheatstone bridge electrical

FIGURE 3.2
Example sensors. (L, length; R, resistance; δ, deflection; C, capacitance; U , velocity; T , temp
V , voltage; RH, relative humidity; ε, dielectric constant.)
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number of sensor/transducers, their measurands, and other characteristics.
Each type of sensor listed is considered next.

Fine Wire or Strain Gage Sensor
A sensor based upon the principle that a change in resistance can be

produced by a change in a physical variable is, perhaps, the most common
type of sensor. A resistance sensor can be used to measure displacement,
strain, force, pressure, acceleration, flow velocity, temperature, and heat or
light flux.

One simple sensor of this type is a pure metal wire or strip whose resis-
tance changes with temperature. The resistance of a resistance temper-
ature device (RTD) is related to temperature by

R = Ro[1 + α(T − To) + β(T − To)
2 + γ(T − To)

3 + ...], (3.1)

where α, β, and γ are coefficients of thermal expansion, and Ro is the resis-
tance at the reference temperature To. A wire with a diameter on the order
of 25 µm can be used to measure local velocity in a fluid flow. The fine
wire is connected to a Wheatstone bridge-feedback amplifier circuit that is
used to maintain the wire at a constant resistance, hence at a constant tem-
perature above the fluid’s temperature. As the wire is exposed to different
velocities, the power required to maintain the wire at the constant tempera-
ture changes because of the changing heat transfer to the environment. The
power is proportional to the square root of the fluid velocity. This system is
called a hot-wire anemometer. Example problems involving the hot-wire
anemometer are presented in Chapters 4 and 8.

If a semi-conductor is used instead of a conductor, a greater change
in resistance with temperature can be achieved. This is a thermistor. Its
resistance changes exponentially with temperature as

R = Roexp[η(
1

T
− 1

To
)], (3.2)

where η is a material constant. Thus, a thermistor usually gives better res-
olution over a small temperature range, whereas the RTD covers a wider
temperature range. For both sensors, a transducer such as a Wheatstone
bridge circuit typically is used to convert resistance to voltage.

The strain gage is the most frequently used resistive sensor. A typical
strain gage is shown in Figure 3.3. The gage consists of a very fine wire of
length L. When the wire is stretched, its length increases by ∆L, yielding
a longitudinal strain of εL ≡ ∆L/L. This produces a change in resistance.
Its width decreases by ∆d/d, where d is the wire diameter. This defines the
transverse strain εT ≡ ∆d/d. Poisson’s ratio, ν, is defined as the negative
of the ratio of transverse to longitudinal local strains, -εT /εL. The negative
sign compensates for the decrease in transverse strain that accompanies
an increase in longitudinal strain, thereby yielding positive values for ν.
Poisson’s ratio is a material property that couples these strains.
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FIGURE 3.3
A strain gage with a typical sensing area of 5 mm × 10 mm.

For a wire, the resistance R can be written as

R = ρ
L

A
, (3.3)

where ρ is the resistivity, L the length, and A the cross-sectional area. Taking
the total derivative of Equation 3.3 yields

dR =
ρ

A
dL +

L

A
dρ − ρL

A2
dA. (3.4)

Equation 3.4 can be divided by Equation 3.3 to give the relative change in
resistance,

dR

R
= (1 + 2ν)εL +

dρ

ρ
. (3.5)

Equation 3.5 shows that the relative resistance change in a wire depends on
the strain of the wire and the resistivity change.

A local gage factor, Gl, can be defined as the ratio of the relative
resistance change to the relative length change,

Gl =
dR/R

dL/L
. (3.6)

This expression relates differential changes in resistance and length and
describes a factor that is valid only over a very small range of strain.

An engineering gage factor, can be defined as

Ge =
∆R/R

∆L/L
. (3.7)



Measurement Systems 67

FIGURE 3.4
Schematic of an integrated-silicon pressure sensor.

This expression is based on small, finite changes in resistance and length.
This gage factor is the slope based on the total resistance change throughout
the region of strain investigated. The local gage factor is the instantaneous
slope of a plot of ∆R/R versus ∆L/L. Because it is very difficult to measure
local changes in length and resistance, the engineering gage factor typically
is used more frequently. Equation 3.5 can be rewritten in terms of the engi-
neering gage factor as

Ge = 1 + 2ν + [
∆ρ

ρ
· 1

εL
]. (3.8)

For most metals, ν ≈ 0.3. The last term in brackets represents the strain-
induced changes in the resistivity, which is a piezoresistive effect. This term
is constant for typical strain gages and equals approximately 0.4. Thus, the
value of the engineering gage factor is approximately 2 for most metallic
strain gages.

An alternative expression for the relative change in resistance can be
derived using statistical mechanics where

dR

R
= 2εL +

dv0

v0
− dλ

λ
− dN0

N0
. (3.9)

Here v0 is the average number of electrons in the material in motion between
ions, λ is the average distance travelled by an electron between collisions, and
N0 is the total number of conduction electrons. Equation 3.9 implies that the
differential resistance change and, thus, the gage factor, is independent of
the material properties of the conductor. This also implies that the change
in resistance only will be proportional to the strain when the sum of the
changes on the right hand side of Equation 3.9 is either zero or directly
proportional to the strain. Fortunately, most strain gage materials have this
behavior. So, when a strain gage is used in a circuit such as a Wheatstone
bridge, strain can be converted into a voltage. This system can be used as
a displacement sensor.
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Strain gages also can be mounted on a number of different flexures to
yield various types of sensor systems. One example is four strain gages
mounted on a beam to determine its deflection, as described in Chapter 2.
As force is applied to the beam, it deflects, producing a strain. This strain
is converted into a change in the resistance of a strain gage mounted on the
beam. This is called a force transducer. Another example involves one or
more strain gages mounted on the surface of a diaphragm that separates
two chambers exposed to different pressures. As the diaphragm is deflected
because of a pressure difference between the two chambers, a strain is pro-
duced. The resultant resistance usually is converted into a voltage using a
Wheatstone bridge. This system is called a pressure transducer, although
it actually contains both a sensor (the strain gage) and a transducer (the
Wheatstone bridge). A schematic of a miniature, integrated-silicon pressure
sensor is shown in Figure 3.4. The calibration and use of this type of pres-
sure sensor in a model rocket’s on-board measurement system is presented
in Section 3.7.

An accelerometer uses a strain gage flexure arrangement. An ac-
celerometer in the 1970’s typically contained a small mass that was moved
against a spring as the device containing them was accelerated. The displace-
ment of the mass was calibrated against a known force. This information
then was used to determine the acceleration from the displacement using
Newton’s second law. Accelerometers then used strain gages or piezoelec-
tric transducers instead of a spring, although the size did not change much.
Now micro-accelerometers are available [10]. These contain a very small mass
attached to a silicon cantilever beam that is instrumented with a piezore-
sistor. As the device is accelerated, the beam deflects, the piezoresistor is
deformed, and its resistance changes. The piezoresistor is incorporated into
an on-board Wheatstone bridge circuit which provides a voltage output that
is linearly proportional to acceleration. The entire micro-accelerometer and
associated circuitry is several millimeters in dimension. The calibration and
use of this type of accelerometer in a model rocket’s on-board measurement
system are presented in Section 3.7.

Capacitive Sensor

A capacitive sensor consists of two small conducting plates, each of
area, A, separated by a distance, d, with a dielectric material in between.
The capacitance between the two plates is

C = εoεA/d, (3.10)

where εo is the permittivity of free space and ε the relative permittivity.
When used, for example, to measure pressure, the dielectric is air and one
plate is held fixed. As the other plate moves because of the forces acting on
it, the capacitance of the sensor changes. The change in capacitance is pro-
portional to the difference in pressure from the reference pressure measured
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at zero plate deflection. When used in a capacitive Wheatstone bridge cir-
cuit, the pressure difference is converted into a voltage. This system forms a
capacitive pressure transducer. A central plate fixed to a small mass can
be used instead of air between the two capacitor plates. As the mass and its
attached central plate are accelerated, the change in capacitance with re-
spect to time is sensed. This is converted into a voltage that is proportional
to the acceleration. This system constitutes an accelerometer. Another
use of this type of sensor is to expose the dielectric material to moist air
while keeping the distance between the two plates fixed. The permittivity
of the dielectric material changes with relative humidity, which leads to a
change in the sensor’s capacitance. This type of sensor can be used as a
relative humidity sensor.

Optical-based Sensor
An optically based measurement system can be designed to measure

non-invasively the velocity and velocity fluctuations of a transparent fluid
over the velocity range from ∼1 cm/s to ∼500 m/s with ∼1 % accuracy.
This system is known as the laser Doppler velocimeter (LDV) and op-
erates on the principle of the Doppler effect [9]. A coherent beam of laser
light of a given frequency is directed into the moving fluid containing mi-
croparticles (∼1 µm diameter), which ideally follow the flow. Because these
microparticles are moving with respect to the beam, the frequency of light
as received by the microparticles is Doppler shifted. A photodetector in the
same reference frame as the laser receives the light that is scattered from
the microparticles. This scattered light is frequency shifted once again at
the receiver. The frequency of the scattered light, however, is too high to be
detected using conventional detectors.

This limitation can be overcome by using two beams of equal fre-
quency, intensity, and diameter, and crossing the beams inside the flow.
This produces an ellipsoidal measurement volume with sub-millimeter di-
mensions. This method is called the dual-beam or Doppler frequency dif-
ference method. The crossed beams produce an ellipsoidal measurement
volume, on the order of 0.5 to 1 mm in length and 0.1 to 0.3 mm in diam-
eter. The velocity component, U , of the flow perpendicular to the bisector
of the incident beams separated by an angle, θ, is related to the Doppler
frequency difference, fD, by

U =
λfD

2 sin(θ/2)
, (3.11)

where λ is the wavelength of the incident laser light. The Doppler frequency
difference is the difference between the frequencies of the two scattered light
beams, as received in the laboratory reference frame. Further modifications
can be made by adding other beams of different frequencies in different
Cartesian coordinate directions to yield all three components of the velocity.
Also, frequency shifting usually is employed to compensate for insensitivity
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of Equation 3.11 to flow direction. If two additional, equal-spaced detectors
are added, the phase lag between the signals of the three detectors is re-
lated to the diameter of the microparticle passing through the measurement
volume. This system is called a phase Doppler anemometer.

3.3.3 *Sensor Scaling

Sensors have evolved considerably since the beginning of scientific instru-
ments. Marked changes have occurred in the last 300 years. The tempera-
ture sensor serves as a good example. Daniel Gabriel Fahrenheit (1686-1736)
produced the first mercury-in-glass thermometer in 1714 with a calibrated
scale based upon the freezing point of a certain ice/salt mixture, the freezing
point of water, and body temperature. This device was accurate to within
several degrees and was approximately the length scale of 10 cm. In 1821,
Thomas Johann Seebeck (1770-1831) found that by joining two dissimilar
metals at both ends to form a circuit, with each of the two junctions held
at a different temperature, a magnetic field was present around the circuit.
This eventually led to the development of the thermocouple. Until very re-
cently, the typical thermocouple circuit consisted of two dissimilar metals
joined at each end, with one junction held at a fixed temperature (usually
the freezing point of distilled water contained within a thermally insulated
flask) and the other at the unknown temperature. A potentiometer was used
to measure the mV-level emf. Presently, because of the advance in micro-
circuit design, the entire reference temperature junction is replaced by an
electronic one and contained with an amplifier and linearizer on one small
chip. Such chips even are being integrated with other micro-electronics and
thermocouples such that they can be located in a remote environment and
have the temperature signal transmitted digitally with very low noise to a
receiving station. The simple temperature sensor has come a long way since
1700.

Sensor development has advanced rapidly since 1990 because of MEMS
(microelectromechanical system) sensor technology [2]. The basic nature of
sensors has not changed, although their size and applications have changed.
Sensors, however, simply cannot be scaled down in size and still operate ef-
fectively. Scaling laws for micro-devices, such as those proposed by W.S.N.
Trimmer in 1987, must be followed in their design [10]. As sensor sizes
are reduced to millimeter and micrometer dimensions, their sensitivities to
physical parameters can change. This is because some effects scale with the
sensor’s physical dimension. For example, the surface-to-volume ratio of a
transducer with a characteristic dimension, L, scales as L−1. So, surface
area-active micro-sensors become more advantageous to use as their size is
decreased. On the other hand, the power loss-to-onboard power scales as
L−2. So, as an actuator that carries its own power supply becomes smaller,
power losses dominate, and the actuator becomes ineffective. Further, as
sensors are made with smaller and smaller amounts of material, the prop-
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erties of the material may not be isotropic. A sensor having an output that
is related to its property values may be less accurate as its size is reduced.
For example, the temperature determined from the change in resistance of
a miniature resistive element is related to the coefficients of thermal expan-
sion of the material. If property values change with size reduction, further
error will be introduced if macro-scale coefficient values are used.

The scaling of most sensor design variables with length is summarized
in Table 3.5. This can be used to examine the scaling of some conventional
sensors. Consider the laminar flow element, which is used to determine a liq-
uid flow rate. The element basically consists of many parallel tubes through
which the bulk flow is subdivided to achieve laminar flow through each tube.
The flow rate, Q, is related to the pressure difference, ∆p, measured between
two stations separated by a distance, L, as

Q = Co
πD4∆p

128µL
, (3.12)

where D is the internal diameter of the pipe containing the flow tubes, µ
the absolute viscosity of the fluid, and Co the flow coefficient of the element.
What happens if this device is reduced in size by a factor of 10 in both length
and diameter? According to Equation 3.12, assuming Co is constant, for the
same Q, a ∆p 1000 times greater is required! Likewise, to maintain the same
∆p, Q must be reduced by a factor of 1000. The latter is most likely the
case. Thus, a MEMs-scale laminar flow element is limited to operating with
flow rates that are much smaller than a conventional laminar flow element.

Example Problem 3.2
Statement: Equation 3.12 is valid for a single tube when Co = 1, where it reduces

to the Hagen-Poiseuille law. How does the pressure gradient scale with a reduction in
the tube’s diameter if the same velocity is maintained?

Solution: The velocity, U , is the flow rate divided by the tube’s cross-sectional area,
U = 4Q/(πD2), where D is the tube diameter. Thus, Equation 3.12 can be written
∆p/L = 32µUD−2. This implies that the pressure gradient increases by a factor of 100
as the tube diameter is reduced by a factor of 10. Clearly, this presents a problem in
sensors using micro-capillaries under these conditions. This situation necessitates the
development of other means to move liquids in micro-scale sensors, such as piezoelectric
and electrophoretic methods.

Decisions on the choice of a micro-sensor or micro-actuator are not based
exclusively on length-scaling arguments. Other factors may be more appro-
priate. This is illustrated by the following example.

Example Problem 3.3
Statement: Most conventional actuators use electromagnetic forces. Are either elec-

tromagnetic or electrostatic actuators better for micro-actuators based upon force-
scaling arguments?
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Solution: Using Table 3.5, the electrostatic force scales as L2 and the electromag-
netic force as L4. So, a reduction in L by a factor of 100 leads to a reduction in the
electrostatic force by a factor of 1 × 104 and in the electromagnetic force by a factor of
1 × 108! If these forces are comparable at the conventional scale, then the electrostatic
force is 10 000 times larger than the electromagnetic force at this reduced scale.

The final choice of which type of micro-actuator to use, however, may be based
upon other considerations. For example, Madou [11] argues that energy density also
could be the factor upon which to scale. Energy densities several orders of magnitude
higher can be achieved using electromagnetics as compared to electrostatics, primarily
because of limitations in electrostatic energy density. This could yield higher forces
using electromagnetics as compared to electrostatics for comparable micro-volumes.

3.4 Amplifiers

An amplifier is an electronic component that scales the magnitude of an
input analog signal, Ei(t), producing an output analog signal, Eo(t). In
general, Eo(t) = f {Ei(t)}. For a linear amplifier f {Ei(t)} = GEi(t); for
a logarithmic amplifier f {Ei(t)} = G logx [Ei(t)], where G is the gain of
the amplifier. Amplifiers are often used to increase the output signal of a
transducer to a level that utilizes the full-scale range of an A/D converter
that is between the transducer and the board. This minimizes errors that
arise when converting a signal from analog to digital format.

The common-mode rejection ratio (CMRR) is another characteristic
of amplifiers. It is defined as

CMRR = 20 log10

Gd

Gc
, (3.13)

in which Gd is the gain when different voltages are applied across the am-
plifier’s positive and negative input terminals, and Gc is the gain when the
same voltages are applied. Ideally, when two signals of the same voltage
containing similar levels of noise are applied to the inputs of an amplifier,
its output should be zero. Realistically, however, the amplifier’s output for
this case is not zero, but rather it is some finite value. This implies that the
amplifier effectively has gained the signal difference by a factor of Gc, when,
ideally, it should have been zero. Thus, the lower Gc is, and, consequently,
the higher the CMRR is, the better it is. Typically, CMRR values greater
than 100 are considered high and desirable for most applications.

Today, almost all amplifiers used in common measurement systems are
operational amplifiers. An op amp is comprised of many transistors, resis-
tors, and capacitors in the form of an integrated circuit. For example, the
LM124 series op amp, whose schematic diagram is shown in Figure 3.6,
consists of 13 transistors, 2 resistors, 1 capacitor, and 4 current sources.



Variable Equivalent
displacement distance

strain length change/length
strain rate or shear rate strain change/time

velocity distance/time
surface width × length
volume width × length × height
force mass × acceleration

line force force/length
surface force force/area
body force force/volume

work, energy force × distance
power energy/time

power density power/volume
electric current charge/time

electric resistance resistivity × length/cross-sectional area
electric field potential voltage
electric field strength voltage/length
electric field energy permittivity × electric field strength2

resistive power loss voltage2/resistance
electric capacitance permittivity × plate area/plate spacing
electric inductance voltage/change of current in time

electric potential energy capacitance × voltage2

electrostatic potential energy capacitance × voltage2 with V ∼ L
electrostatic force electrostatic potential energy change/distance

electromagnetic force electromagnetic potential energy change/distance
flow rate velocity × cross-sectional area

pressure gradient surface force/area/length

FIGURE 3.5
Variable scaling with length, L.
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FIGURE 3.6
Internal layout of a low cost FET operational amplifier (National Semicon-
ductor Corporation LM124 series).

FIGURE 3.7
An operational amplifier in an open-loop configuration.

When used in an open-loop configuration, as shown in Figure 3.7, the
output is not connected externally to the input. It is, of course, connected
through the internal components of the op amp. For the open-loop config-
uration, Eo(t) = A [Ei2(t) − Ei1(t) − Vo], where Vo is the op amp’s offset
voltage, which typically is zero. Ei1 is called the inverting input and Ei2

the non-inverting input. Because A is so large, this configuration is used
primarily in situations to measure very small differences between the two
inputs, when Ei2(t) ∼= Ei1(t).

The op amp’s major attributes are as follows:

• Very high input impedance (> 107 Ω)

• Very low output impedance (< 100 Ω)

• High internal open-loop gain (∼ 105 to 106)

These attributes make the op amp an ideal amplifier. Because the input
impedance is very high, very little current is drawn from the input circuits.
Also, negligible current flows between the inputs. The high internal open-
loop gain assures that the voltage difference between the inputs is zero. The
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FIGURE 3.8
An operational amplifier in a closed-loop configuration.

very low output impedance implies that the output voltage is independent
of the output current.

When used in the closed-loop configuration, as depicted in Figure 3.8,
the output is connected externally to the input. That is, a feedback loop is
established between the output and the input. The exact relation between
Eo(t) and Ei1(t) and Ei2(t) depends upon the specific feedback configura-
tion.

Op amps typically can be treated as black boxes when incorporating
them into a measurement system. Many circuit design handbooks provide
equations relating an op amp’s output to its input for a specified task. This
can be a simple task such as inverting and gaining the input signal (the
inverting configuration), not inverting but gaining the input signal (the non-
inverting configuration), or simply passing the signal through it with unity
gain (the voltage-follower configuration). An op amp used in the voltage-
follower configuration serves as an impedance converter. When connected
to the output of a device, the op amp effectively provides a very low out-
put impedance to the device-op amp system. This approach minimizes the
loading errors introduced by impedance mismatching that are described in
Chapter 2. Op amps also can be used to add or subtract two inputs or to
integrate or differentiate an input with respect to time, as well as many
more complex tasks. The six most common op amp configurations and their
input-output relations are presented in Figure 3.9.

Example Problem 3.4
Statement: Derive the expression given for the input-output relation of the differ-

ential amplifier shown in Figure 3.9.
Solution: Let node A denote that which connects R1 and R2 at the op amp’s

positive input and node B that which connects R1 and R2 at the op amp’s negative
input. Essentially no current passes through the op amp because of its very high input
impedance. Application of Kirchhoff’s first law at node A gives

Ei2 − EA

R1
=

EA − 0

R2
.
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FIGURE 3.9
Other operational amplifier configurations.

This implies

EA =

[
R2

R1 + R2

]
Ei2.

Application of Kirchhoff’s first law at node B yields

Ei1 − EB

R1
=

EB − Eo

R2
.

This gives

EB =

[
R1R2

R1 + R2

] [
Ei1

R1
+

Eo

R2

]
.

Now EA = EB because of the op amp’s high internal open-loop gain. Equating the
expressions for EA and EB gives the desired result, Eo = (Ei2 − Ei1)(R2/R1).
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FIGURE 3.10
The sample-and-hold circuit.

In fact, op amps are the foundations of many signal-conditioning circuits.
One example is the use of an op amp in a simple sample-and-hold circuit, as
shown in Figure 3.10. In this circuit, the output of the op amp is held at a
constant value (= GEi) for a period of time (usually several microseconds)
after the normally-closed (NC) switch is held open using a computer’s logic
control. Sample-and-hold circuits are common features of A/D converters,
which are covered later in this chapter. They provide the capability to si-
multaneously acquire the values of several signals. These values are then
held by the circuit for a sufficient period of time until all of them are stored
in the computer’s memory.

Quite often in measurement systems, a differential signal, such as that
across the output terminals of a Wheatstone bridge, has a small (on the
order of tens of millivolts), DC-biased (on the order of volts) voltage. When
this is the case, it is best to use an instrumentation amplifier. An instru-
mentation amplifier is a high-gain, DC-coupled differential amplifier with a
single output, high input impedance, and high CMRR [13]. This configura-
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tion assures that the millivolt-level differential signal is amplified sufficiently
and that the DC-bias and interference-noise voltages are rejected.

3.5 Filters

Another measurement system component is the filter. Its primary purpose
is to remove signal content at unwanted frequencies. Filters can be passive
or active. Passive filters are comprised of resistors, capacitors, and induc-
tors that require no external power supply. Active filters use resistors and
capacitors with operational amplifiers, which require power. Digital filtering
also is possible, where the signal is filtered after it is digitized.

The most common types of ideal filters are presented in Figure 3.11.
The term ideal implies that the magnitude of the signal passing through the
filter is not attenuated over the desired passband of frequencies. The term
band refers to a range of frequencies and the term pass denotes the unaltered
passing. The range of frequencies over which the signal is attenuated is called
the stopband. The low-pass filter passes lower signal frequency content up
to the cut-off frequency, fc, and the high-pass filter passes content above
fc. A low-pass filter and high-pass filter can be combined to form either a
band-pass filter or a notch filter, each having two cut-off frequencies, fcL

and fcH . Actual filters do not have perfect step changes in amplitude at
their cut-off frequencies. Rather, they experience a more gradual change,
which is characterized by the roll-off at fc, specified in terms of the ratio of
amplitude change to frequency change.

The simplest filter can be made using one resistor and one capacitor. This
is known as a simple RC filter, as shown in Figure 3.12. Referring to the top
of that figure, if Eo is measured across the capacitor to ground, it serves as
a low-pass filter. Lower frequency signal content is passed through the filter,
whereas high frequency content is not. Conversely, if Eo is measured across
the resistor to ground, it serves as a high-pass filter, as shown in the bottom
of the figure. Here, higher frequency content is passed through the filter,
whereas lower frequency content is not. For both filters, because they are
not ideal, some fraction of intermediate frequency content is passed through
the filter. The time constant of the simple RC filter, τ , equals RC. A unit
balance shows that the units of RC are (V/A)·(C/V) or s. An actual filter
differs from an ideal filter in that an actual filter alters both the magnitude
and the phase of the signal, but it does not change its frequency.

Actual filter behavior can be understood by first examining the case
of a simple sinusoidal input signal to a filter. This is displayed in Figure
3.13. The filter’s input signal (denoted by A in the figure) has a peak-to-
peak amplitude of Ei, with a one-cycle period of T seconds. That is, the
signal’s input frequency, f , is 1/T cycles/s or Hz. Sometimes the input
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FIGURE 3.11
Ideal filter characteristics.

frequency is represented by the circular frequency, ω, which has units of
rad/s. So, ω = 2πf . If the filter only attenuated the input signal’s amplitude,
it would appear as signal B at the filter’s output, having a peak-to-peak
amplitude equal to E0. In fact, however, an actual filter also delays the
signal in time by ∆t between the filter’s input and output, as depicted by
signal C in the figure. The output signal is said to lag the input signal by ∆t.
This time lag can be converted into a phase lag or phase shift by noting
that ∆t/T = φ/360◦, which implies that φ = 360◦(∆t/T ). By convention,
the phase lag equals −φ. The magnitude ratio, M(f), of the filter equals
Eo(f)/Ei(f). For different input signal frequencies, both M and φ will have
different values.

Analytical relationships for M(f) and φ(f) can be developed for simple
filters. Typically, M and φ are plotted each versus ωτ or f/fc, both of which
are dimensionless, as shown in Figures 4.3 and 4.4 of Chapter 4. The cutoff
frequency, ωc, is defined as the frequency at which the power is one-half
of its maximum. This occurs at M = 0.707, which corresponds to ωτ = 1
for first-order systems, such as simple filters [14]. Thus, for simple filters,
ωc = 1/(RC) or fc = 1/(2πRC). In fact, for a simple low-pass RC filter,

M(ω) = 1/
√

1 + (ωτ)2 (3.14)

and
φ = − tan−1(ωτ). (3.15)
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FIGURE 3.12
Simple RC low-pass and high-pass filters.

Using these equations, M(ω = 1/τ) = 0.707 and φ = −45◦. That is, at
an input frequency equal to the cut-off frequency of an actual RC low-pass
filter, the output signal’s amplitude is 70.7 % of the signal’s input amplitude
and it lags the input signal by 45◦. For an RC high-pass filter, the phase
lag equation is given by Equation 3.15 and the magnitude ratio is

M(ω) = ωτ/
√

1 + (ωτ)2. (3.16)

These equations are derived in Chapter 4.

An active low-pass Butterworth filter configuration is shown in Figure
3.14. Its time constant equals R2C2, and its magnitude ratio and phase
lag are given by Equations 3.14 and 3.15, respectively. An active high-pass
Butterworth filter configuration is displayed in Figure 3.15. Its time constant
equals R1C1, and its phase lag is given by Equation 3.15. Its magnitude ratio
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FIGURE 3.13
Generic filter input/output response characteristics.

is
M(ω) = [R2/R1] · [ωτ/

√
1 + (ωτ)2]. (3.17)

Other classes of filters have different response characteristics. Refer to [13]
for detailed descriptions or [4] for an overview.

Example Problem 3.5
Statement: For the circuit depicted in Figure 3.14, determine the equation relating

the output voltage Eo to the input voltage Ei.
Solution: The op amp’s major attributes assure that no current flows into the op

amp and that the voltage difference between the two input terminals is zero. Assigning
currents and nodes as shown in Figure 3.14 and applying Kirchhoff’s current law and
Ohm’s law to node 1 gives

I1 = I2
E1

R1
= I2.

Applying Kirchhoff’s current law and Ohm’s law at node 2 results in

I2 = I3 + I4
E1

R1
= −E0

R2
− C2Ė0.

Dividing the above equation through by C2 and rearranging terms yields
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FIGURE 3.14
The active low-pass Butterworth filter.

E1

C2R1
= − E0

C2R2
− Ė0,

Ė0 +
1

C2R2
E0 = − 1

C2R1
E1.

This is a first-order, ordinary differential equation whose method of solution is presented
in Chapter 4.

Digital filters operate on a digitally converted signal. The filter’s cutoff
frequency adjusts automatically with sampling frequency and can be as
low as a fraction of a Hz [13]. An advantage that digital filters have over
their analog counterparts is that digital filtering can be done after data has
been acquired. This approach allows the original, unfiltered signal content to
be maintained. Digital filters operate by successively weighting each input
signal value that is discretized at equal-spaced times, xi, with k number of
weights, hk. The resulting filtered values, yi, are given by

yi =

∞∑

k=−∞

hkxi−k. (3.18)
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FIGURE 3.15
The active high-pass Butterworth filter.

The values of k are finite for real digital filters. When the values of hk are
zero except for k ≥ 0, the digital filter corresponds to a real analog filter.
Symmetrical digital filters have h−k = hk, which yield phase shifts of 0◦ or
180◦.

Digital filters can use their output value for the i-th value to serve as an
additional input for the (i+1)-th output value. This is known as a recursive
digital filter. When there is no feedback of previous output values, the filter
is a nonrecursive filter. A low-pass, digital recursive filter [13] can have
the response

yi = ayi−1 + (1 − a)xi, (3.19)

where a = exp(−ts/τ). Here, ts denotes the time between samples and τ the
filter time constant, which equals RC. For this filter to operate effectively,
τ >> ts. Or, in other words, the filter’s cut-off frequency must be much less
than the Nyquist frequency. The latter is covered extensively in Chapter 10.

An example of this digital filtering algorithm is shown in Figure 3.16. The
input signal of sin(0.01t) is sampled 10 times per second. Three output cases
are plotted, corresponding to the cases of τ = 10, 100, and 1000. Because
of the relatively high sample rate used, both the input and output signals
appear as analog signals, although both actually are discrete. When ωτ is
less than one, there is little attenuation in the signal’s amplitude. In fact,
the filtered amplitude is 99 % of the original signal’s amplitude. Also, the
filtered signal lags the original signal by only 5◦. At ωτ = 1, the amplitude
attenuation factor is 0.707 and the phase lag is 45◦. When ωτ = 10, the
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FIGURE 3.16
Digital low-pass filtering applied to a discretized sine wave.

attenuation factor is 0.90 and the phase lag is 85◦. This response mirrors
that of an analog filter, as depicted in Figure 3.13 and described further in
Chapter 4.

Almost all signals are comprised of multiple frequencies. At first, this
appears to complicate filter performance analysis. However, almost any in-
put signal can be decomposed into the sum of many sinusoidal signals of
different amplitudes and frequencies. This is the essence of Fourier analysis,
which is examined in Chapter 9. For a linear, time-invariant system such
as a simple filter, the output signal can be reconstructed from its Fourier
component responses.

3.6 Analog-to-Digital Converters

The last measurement system element typically encountered is the A/D
converter. This component serves to translate analog signal information into
the digital format that is used by a computer. In the computer’s binary
world, numbers are represented by 0’s and 1’s in units called bits. A bit
value of either 0 or 1 is stored physically in a computer’s memory cell using
a transistor in series with a capacitor. An uncharged or charged capacitor
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On Decimal Value 4 2 1 Conversion Decimal
Off Decimal Value 0 0 0 Process Equivalent

Binary Representation 0 0 0 0 · 4 + 0 · 2 + 0 · 1 0
0 0 1 0 · 4 + 0 · 2 + 1 · 1 1
0 1 0 0 · 4 + 1 · 2 + 0 · 1 2
0 1 1 0 · 4 + 1 · 2 + 1 · 1 3
1 0 0 1 · 4 + 0 · 2 + 0 · 1 4
1 0 1 1 · 4 + 0 · 2 + 1 · 1 5
1 1 0 1 · 4 + 1 · 2 + 0 · 1 6
1 1 1 1 · 4 + 1 · 2 + 1 · 1 7

TABLE 3.1
Binary to decimal conversion.

represents the value of 0 or 1, respectively. Similarly, logic gates comprised
of on-off transistors perform the computer’s calculations.

Decimal numbers are translated into binary numbers using a decimal-to-
binary conversion scheme. This is presented in Table 3.1 for a 3-bit scheme.
A series of locations, which are particular addresses, are assigned to a series
of bits that represent decimal values corresponding from right to left to in-
creasing powers of 2. The least significant (right-most) bit (LSB) represents
a value of 20, whereas the most significant (left-most) bit (MSB) of an M -bit
scheme represents a value of 2M−1. For example, for the 3-bit scheme shown
in Table 3.1, when the LSB and MSB are on and the intermediate bit is off,
the binary equivalent 101 of the decimal number 5 is stored.

Example Problem 3.6
Statement: Convert the following decimal numbers into binary numbers: [a] 5, [b]

8, and [c] 13.
Solution: An easy way to do this type of conversion is to note that the power of 2 in

a decimal number is equal to the number of zeros in the binary number. [a] 5 = 4 + 1
= 22 + 1. Therefore, the binary equivalent of 5 is 100 + 1 = 101. [b] 8 = 23. Therefore,
the binary equivalent of 8 is 1000. [c] 13 = 8 + 4 + 1 = 23 + 22 + 1. Therefore, the
binary equivalent of 13 is 1000 + 100 + 1 = 1101.

There are many methods used to perform analog-to-digital conversion
electronically. The two most common ones are the successive-approximation
and ramp-conversion methods. The successive-approximation method
utilizes a D/A converter and a differential op amp that subtracts the analog
input signal from the D/A converter’s output signal. The conversion pro-
cess begins when the D/A converter’s signal is incremented in voltage steps
from 0 volts using digital logic. When the D/A converter’s signal rises to
within ε volts of the analog input signal, the differential op amp’s output,
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Term Formula M = 8 M = 12
MSB Value 2M−1 128 2048
LSB Value 20 1 1

Maximum Possible Value 2M − 1 255 4095
Minimum Possible Value 0 0 0

Number of Possible Values 2M 256 4096
MSB Weight 2−1 1/2 1/2
LSB Weight 2−M 1/256 1/4096

Resolution, Q (mV/bit) EFSR/2M 39.06 2.44
for EFSR = 10 V

Dynamic Range (dB) 20 log10(Q/Qo) −28 −52
Absolute Quantization Error (mV) ±Q/2 ±19.53 ±1.22

TABLE 3.2
M-bit terminology.

now equal to ε volts, causes the logic control to stop incrementing the D/A
converter and tells the computer to store the converter’s digital value. The
ramp-conversion method follows a similar approach by increasing a volt-
age and comparing it to the analog input signal’s voltage. The increasing
signal is produced using an integrating op amp configuration, in which the
op amp configuration is turned on through a switch controlled by the com-
puter. In parallel, the computer starts a binary counter when the op amp
configuration is turned on. When the analog input and op amp configura-
tion signals are equal, the computer stops the binary counter and stores its
values.

The terminology used for an M -bit A/D converter is summarized in
Table 3.2. The values listed in the table for the LSB and MSB are when
the bit is on. The bit equals 0 when it is off. The minimum decimal value
that can be represented by the converter equals 0. The maximum value
equals 2M − 1. Thus, 2M possible values can be represented. The weight of
a bit is defined as the value of the bit divided by the number of possible
values. The resolution and absolute quantization error are based on an M -
bit, unipolar A/D converter with a full-scale range (FSR) equal to 10.00
V, where Qo = 1000 mV/bit. Most A/D converters used today are 12-bit
or 16-bit converters, providing signal resolutions of 2.44 mV/bit and 0.153
mV/bit, respectively.

An analog signal is continuous in time and therefore comprised of an
infinite number of values. An M -bit A/D converter, however, can only rep-
resent the signal’s amplitude by a finite set of 2M values. This presents a
signal resolution problem. Consider the analog signal represented by the
solid curve shown in Figure 3.17. If the signal is sampled discretely at δt
time increments, it will be represented by the values indicated by the open
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FIGURE 3.17
Schematic of analog-to-digital conversion.

circles. With discrete sampling, only the signal values between the sample
times are lost, but the signal’s exact amplitude values are maintained at each
sample time. Yet, if this information is stored using the digital sampling
scheme of the A/D converter, the signal’s exact amplitude values also are
lost. In fact, for the 12-bit A/D converter used to sample the signal shown in
Figure 3.17, the particular signal is represented by only four possible values
(0 mV, 2.44 mV, 4.88 mV, and 7.32 mV), as indicated by the ×’s in the
figure. Thus, a signal whose amplitude lies within the range of ±Q/2 of a
particular bit’s value will be assigned the bit’s value. This error is termed
the absolute quantization error of an A/D converter.

Quite often, if a signal’s amplitude range is on the order of the A/D
converter’s resolution, an amplifier will be used before the A/D converter to
gain the signal’s amplitude and, therefore, reduce the absolute quantization
error to an acceptable level. An alternative approach is to use an A/D board
with better resolution, but, almost always, this is more expensive.
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System Variable Sensor/ Signal Signal
no. (result) Transducer Conditioner Processor
1 pressure strain gage, amplifier, A/D converter,

(→velocity) Wheatstone bridge filter computer
2 force strain gage, amplifiers, digital

(→thrust) Wheatstone bridge filter oscilloscope
3a pressure piezoresistive amplifier microcontroller

(→velocity) element system
3b acceleration differential-capacitive amplifier microcontroller

(acceleration) structure system

TABLE 3.3
The elements of three measurement systems.

3.7 Example Measurement Systems

The designs of three actual measurement systems are presented in this sec-
tion to illustrate the different choices that can be made. The final design of
each system involves many trade-offs between the accuracy and the cost of
their components. The elements of each of these systems are summarized in
Table 3.3. Several major differences can be noted. The most significant are
the choices of the sensor/transducer and of the signal processing system.
These are dictated primarily because of the environments in which each is
designed to operate. System 1 is developed to be located near the test sec-
tion of a subsonic wind tunnel, to be placed on a small table, and to use an
existing personal computer. System 2 is designed to be located on one cart
that can be moved to a remote location when the rocket motor is tested.

- -

FIGURE 3.18
An example pressure measurement system.



Measurement Systems 89

Component Conditions Unknown
Environment T = 294 K, p = 1 atm ρ, ∆p, F ,

εL, δR
Diaphragm εL = 0.001 × F , A = 1 cm2, Co = 0.001
Strain Gage R = 120 Ω at 294 K

Wheatstone Bridge All R = 120 Ω at 294 K, Ei = 5 V Eo

Amplifier Non-inverting op amp, R1 = 1 MΩ R2

Filter Low-pass with R = 1 MΩ, C = 1 µF
A/D Converter EFSR = 10 V, Q < 1 mV/bit M

TABLE 3.4
Velocity measurement system conditions.

A digital oscilloscope is chosen for its convenience of remote operation and
its triggering and signal storage capabilities. System 3 is developed to be
placed inside of a 2 in. internal diameter model rocket fuselage and then
launched over 100 m into the air with accelerations and velocities as high as
60 m/s2 (∼6 g) and 50 m/s, respectively. These conditions constrain the size
and weight of the measurement system package. A small, battery-powered,
microcontoller-based data acquisition system with an A/D converter, am-
plifier, and memory is designed specifically for this purpose [15].

Measurement system 1 is designed to measure the velocity of air flowing
in a wind tunnel, as shown in Figure 3.18. Its pitot-static tube is located
within a wind tunnel. The pitot-static tube and tubing are passive and
simply transmit the total and static pressures to a sensor located outside
the wind tunnel. The actual sensor is a strain gage mounted on a flexible
diaphragm inside a pressure transducer housing. The static pressure port is
connected to one side of the pressure transducer’s diaphragm chamber; the
total pressure port to the other side. This arrangement produces a flexure of
the diaphragm proportional to the dynamic pressure (the physical stimulus)
that strains the gage and changes its resistance (the electrical impulse).
This resistance change imbalances a Wheatstone bridge operated in the
deflection mode, producing a voltage at station B. Beyond station B, the
signal is amplified, filtered, converted into its digital format, and finally
stored by the computer. Another example measurement system, used to
measure temperature, is considered in this chapter’s homework problems.

The velocity measurement system is to be designed such that the input
voltage to the A/D converter, ED, is 10 V when the wind tunnel velocity is
100 m/s. The design also is subject to the additional conditions specified in
Table 3.4. Given these constraints, the desired input and output character-
istics of each measurement system element can be determined for stations
A through E, as denoted in Figure 3.18. Determination of the performance
characteristics for each stage is as follows:
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• Station A: The velocity, V , of 100 m/s yields a dynamic pressure, ∆p,
of 5700 N/m2 using Bernoulli’s equation, ∆p = 0.5ρV 2. The density, ρ,
equals 1.14 kg/m3, as determined using Equation 11.1.

• Station B: The dynamic pressure produces a force, F , on the diaphragm,
which has an area, A, equal to 1 cm2. The resulting force is 0.57 N, noting
that the force equals the pressure difference across the diaphragm times
its area. A longitudinal strain on the diaphragm, εL, is produced by
F , where εL = CoF . The resulting strain is 5.7 × 10−4. According to
Equation 3.7, this gives δR/R = 1.14 × 10−3. The Wheatstone bridge is
operated in the deflection method mode with all resistances equal to 120
Ω at 294 K and V = 0 m/s. The output voltage, Eo = EB , is determined
using Equation 2.29 and equals 1.42 mV.

• Station C: The relatively low output voltage from the Wheatstone bridge
needs to be amplified to achieve the A/D input voltage, ED, of 10 V.
Assuming that the filter’s magnitude ratio is unity, the gain of the am-
plifier equals ED/EB , which is 10/0.142 or 70.4. An op amp in the
non-inverting configuration is used. Its input-output voltage relation is
given in Figure 3.9. Eo/Ei = 70.4 and R1 = 1 MΩ implies that R2

equals 69.4 MΩ.

• Station D: The measurement system operates at steady state. The volt-
ages are DC, having zero frequency. Thus, the filter’s magnitude ratio
is unity. Therefore, ED = EC .

• Station E: If the A/D converter has a full scale input voltage, EFSR, of
10 V, then the converter is at its maximum input voltage when V = 100
m/s. The relationship between the A/D converter’s EFSR, Q, and the
number of converter bits, M , is presented in Table 3.2. Choosing M = 12
does not meet the constraint. The next choice is M = 16. This yields
Q = 0.153 mV/bit, which satisfies the constraint.

Many choices can be made in designing this system. For example, the
supply voltage to the Wheatstone bridge could be increased from 5 V to
10 V or 12 V, which are common supply voltages. This would increase
the output voltage of the bridge and, therefore, require less amplification
to meet the 10 V constraint. Other resistances can be used in the bridge.
A different strain gage can be used on the diaphragm. If the system will
be used for non-steady velocity measurements, then the time responses of
the tubing, the diaphragm, and the filter need to be considered. Each can
affect the magnitude and the phase of the signal. The final choice of specific
components truly is an engineering decision.

Next, examine measurement system 2 that is designed to acquire thrust
as a function of time of a model rocket motor. The first element of the mea-
surement system consists of an aluminum, cantilevered beam with four 120
Ω strain gages, similar to that shown schematically in Figure 2.11. These
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FIGURE 3.19
Two-pole, low-pass Sallen-and-Key filter.

strain gages comprise the legs of a Wheatstone bridge. The maximum out-
put of the bridge is approximately 50 mV. So, the output of the bridge is
connected to an instrumentation amplifier with a gain of 100 and then to a
variable-gain, operational amplifier in the inverting configuration. This al-
lows the signal’s amplitude to be adjusted for optimum display and storage
by the digital oscilloscope. A two-pole, low-pass Sallen-and-Key filter [13]
receives the second amplifier’s output, filters it, and then passes it to the
digital oscilloscope. The filter’s schematic is shown in Figure 3.19. Typical
filter parameter values are R = 200 kΩ, Rf = 200 kΩ, C = 0.1 µF, and K
= 1.586. A low-pass filter is used to eliminate the ∼30 Hz component that
is the natural frequency of the cantilevered beam. The original and filtered
rocket motor thrust data as a function of time are shown in Figure 3.20.
The effect of the low-pass filter is clearly visible. Additional details about
the experiment can be found on the text web site.

Finally, consider the design of measurement system 3, to be used re-
motely in a model rocket to acquire the rocket’s acceleration and velocity
data during ascent. The measurement system hardware consists of two sen-
sor/transducers, one for pressure and the other for acceleration, and a board
containing a microcontroller-based data acquisition system. The pressure
transducer includes an integrated silicon pressure sensor that is signal condi-
tioned, temperature compensated, and calibrated on-chip. A single piezore-
sistive element is located on a flexible diaphragm. Total and static pressure
ports on the rocket’s nose cone are connected with short tubing to each side
of the flexible diaphragm inside the transducer’s housing. The difference in
pressure causes the diaphragm to deflect, which produces an output voltage
that is directly proportional to the differential pressure, which for this case is
the dynamic pressure. The single-axis ±5 g accelerometer contains a polysil-
icon surface sensor. A differential capacitor structure attached to the surface
deflects under acceleration, causing an imbalance in its the capacitor circuit.
This produces an output voltage that is linearly proportional to the accel-
eration. The accelerometer and pressure transducer calibration curves are
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FIGURE 3.20
Original and filtered rocket motor thrust signal.

shown in Figures 3.21 and 3.22, respectively. Both sensor/tranducer outputs
are each routed into an amplifier with a gain of 16 and then to the inputs of
a 12-bit A/D converter. The output digital signals are stored directly into
memory (256 kB). The measurement system board has a mass of 33 g and
dimensions of 4.1 cm by 10.2 cm. The on-board, 3.3 V, 720 mAh Li-battery
that powers the entire system has a mass of 39 g. All of the on-board data
is retrieved after capture and downloaded into a laptop computer. A sample
of the reconstructed data is displayed in Figure 3.23 The rocket’s velocity
in time can be determined from the pressure transducer’s output. This is
compared to the time integral of the rocket’s acceleration in Figure 3.24.
Finally, this information can be used with the information on the rocket’s
drag to determine the maximum altitude of the rocket.
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FIGURE 3.21
Calibration of the accelerometer.

FIGURE 3.22
Calibration of the pressure transducer.
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FIGURE 3.23
Example rocket velocity and acceleration data.

FIGURE 3.24
Integrated acceleration and velocity comparison.
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3.8 Problem Topic Summary

Topic Review Problems Homework Problems
Components 1, 2, 4, 5, 7 1, 2, 4, 5, 8, 9, 12, 13

Systems 3, 6, 8 3, 6, 7, 10, 11, 14, 15

TABLE 3.5
Chapter 3 Problem Summary

3.9 Review Problems

1. Modern automobiles are equipped with a system to measure the temper-
ature of the radiator fluid and output this temperature to a computer
monitoring system. A thermistor is manufactured into the car radiator.
A conducting cable leads from the thermistor and connects the ther-
mistor to one arm of a Wheatstone bridge. The voltage output from
the Wheatstone bridge is input into the car computer that digitally
samples the signal 10 times each second. If the radiator fluid tempera-
ture exceeds an acceptable limit, the computer sends a signal to light a
warning indicator to alert the driver. Match the following components of
the fluid temperature measurement system (radiator fluid temperature,
thermistor, Wheatstone bridge, and car computer) with their function
in terms of a generalized measurement system (sensor, physical variable,
transducer, and signal processor).

2. Which of the following instruments is used to interface analog systems to
digital ones? (a) A/C converter, (b) D/C converter, (c) A/D converter,
(d) AC/DC converter.

3. A metallic wire embedded in a strain gage is 4.2 cm long with a diameter
of 0.07 mm. The gage is mounted on the upper surface of a cantilever
beam to sense strain. Before strain is applied, the initial resistance of
the wire is 64 Ω. Strain is applied to the beam, stretching the wire 0.1
mm, and changing its electrical resistivity by 2 × 10−8 Ωm. If Poisson’s
ratio for the wire is 0.342, find the change in resistance in the wire due
to the strain to the nearest hundredth ohm.

4. What is the time constant (in seconds) of a single-pole, low-pass, passive
filter having a resistance of 2 kΩ and a capacitance of 30 µF?
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FIGURE 3.25
An example temperature measurement system configuration.

5. A single-stage, low-pass RC filter with a resistance of 93 Ω is designed
to have a cut-off frequency of 50 Hz. Determine the capacitance of the
filter in units of µF.

6. Two resistors, RA and RB , arranged in parallel, serve as the resistance,
R1, in the leg of a Wheatstone bridge where R2 = R3 = R4 = 200 Ω
and the excitation voltage is 5.0 V. If RA = 1000 Ω, what value of RB

is required to give a bridge output of 1.0 V?

7. The number of bits of a 0 V-to-5 V A/D board having a quantization
error of 0.61 mV is (a) 4, (b) 8, (c) 12, (d) 16, or (e) 20.

8. Determine the output voltage, in V, of a Wheatstone bridge having
resistors with resistances of 100 Ω and an input voltage of 5 V.

3.10 Homework Problems

1. Consider the amplifier between stations B and C of the temperature
measurement system shown in Figure 3.25. (a) Determine the minimum
input impedance of the amplifier (in Ω) required to keep the amplifier’s
voltage measurement loading error, eV , less than 1 mV for the case when
the bridge’s output impedance equals 30 Ω and its output voltage equals
0.2 V. (b) Based upon the answer in part (a), if an operational amplifier
were used, would it satisfy the requirement of eV less than 1 mV (Hint:
Compare the input impedance obtained in part (a) to that of a typical
operational amplifier)? Answer yes or no and explain why or why not.
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FIGURE 3.26
A closed-loop operational amplifier configuration.

(c) What would be the gain, G, required to have the amplifier’s output
equal to 9 V when T = 72 ◦F?

2. Consider the A/D board between stations D and E of the temperature
measurement system shown in Figure 3.25. Determine how many bits
(M = 4, 8, 12, or 16) would be required to have less than ±0.5 % quan-
tization error for the input voltage of 9 V with EFSR = 10 V.

3. The voltage from a 0 kg-to-5 kg strain gage balance scale has a corre-
sponding output voltage range of 0 V to 3.50 mV. The signal is recorded
using a new 16 bit A/D converter having a unipolar range of 0 V to 10 V,
with the resulting weight displayed on a computer screen. An intelligent
aerospace engineering student decides to place an amplifier between the
strain gage balance output and the A/D converter such that 1 % of the
balance’s full scale output will be equal to the resolution of 1 bit of the
converter. Determine (a) the resolution (in mV/bit) of the converter and
(b) the gain of the amplifier.

4. The operational amplifier shown in Figure 3.26 has an open-loop gain
of 105 and an output resistance of 50 Ω. Determine the effective output
resistance (in Ω) of the op amp for the given configuration.

5. A single-stage, passive, low-pass (RC) filter is designed to have a cut-
off frequency, fc, of 100 Hz. Its resistance equals 100 Ω. Determine the
filter’s (a) magnitude ratio at f = 1 kHz, (b) time constant (in ms), and
(c) capacitance (in µF).

6. A voltage-sensitive Wheatstone bridge (refer to Figure 3.27) is used in
conjunction with a hot-wire sensor to measure the temperature within
a jet of hot gas. The resistance of the sensor (in Ω) is R1 = Ro[1 +
α(T − To)], where Ro = 50 Ω is the resistance at To = 0 ◦C and α =
0.00395/◦C. For Ei = 10 V and R3 = R4 = 500 Ω, determine (a) the
value of R2 (in Ω) required to balance the bridge at T = 0 ◦C. Using
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FIGURE 3.27
The Wheatstone bridge configuration.

this as a fixed R2 resistance, further determine (b) the value of R1 (in
Ω) at T = 50 ◦C, and (c) the value of Eo (in V) at T = 50 ◦C. Next, a
voltmeter having an input impedance of 1000 Ω is connected across the
bridge to measure Eo. Determine (d) the percentage loading error in the
measured bridge output voltage. Finally, (e) state what other electrical
component, and in what specific configuration, could be added between
the bridge and the voltmeter to reduce the loading error to a negligible
value.

7. An engineer is asked to specify several components of a temperature
measurement system. The output voltages from a Type J thermocouple
referenced to 0 ◦C vary linearly from 2.585 mV to 3.649 mV over the
temperature range from 50 ◦C to 70 ◦C. The thermocouple output is to
be connected directly to an A/D converter having a range from −5 V to
+5 V. For both a 12-bit and a 16-bit A/D converter determine (a) the
quantization error (in mV), (b) the percentage error at T = 50 ◦C, and
(c) the percentage error at T = 70 ◦C. Now if an amplifier is installed
in between the thermocouple and the A/D converter, determine (d) the
amplifier’s gain to yield a quantization error of 5 % or less.

8. Consider the filter between stations C and D of the temperature mea-
surement system shown in Figure 3.25. Assume that the temperature
varies in time with frequencies as high as 15 Hz. For this condition,
determine (a) the filter’s cut-off frequency (in Hz) and (b) the filter’s
time constant (in ms). Next, find (c) the filter’s output voltage (peak-
to-peak) when the amplifier’s output voltage (peak-to-peak) is 8 V and
the temperature varies with a frequency of 10 Hz and (d) the signal’s
phase lag through the filter (in ms) for this condition.
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FIGURE 3.28
The operational amplifier in the voltage-follower configuration.

9. An op amp in the negative-feedback, voltage-follower configuration is
shown in Figure 3.28. In this configuration, a voltage difference, ε, be-
tween the op amp’s positive and negative inputs results in a voltage
output of Aε, where A is the open-loop gain. The op amp’s input and
output impedances are Rai and Rao, respectively. Ei is its input volt-
age and Eo its output voltage. Assuming that there is negligible current
flow into the negative input, determine (a) the value of β, and (b) the
closed-loop gain, G, in terms of β and A. Finally, recognizing that A is
very large (∼ 105 to 106), (c) derive an expression for Eo as a function
of Ei, Rx, and Ry.

10. Refer to the information given previously for the configuration shown in
Figure 3.28. When Ei is applied to the op amp’s positive input, a current
Iin flows through the input resistance, Rai. The op amp’s effective input
resistance, Rci, which is the resistance that would be measured between
the op amp’s positive and negative inputs by an ideal ohmmeter, is
defined as Ei/Iin. (a) Derive an expression for Rci as a function of Rai,
β, and A. Using this expression, (b) show that this is a very high value.

11. Refer to the information given previously for the configuration shown in
Figure 3.28. The op amp’s output voltage for this configuration is Eo =
A(Ei−βEo). Now assume that there is a load connected to the op amp’s
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output that results in a current flow, Iout, across the op amp’s output
resistance, Rao. This effectively reduces the op amp’s output voltage by
IoutRao. For the equivalent circuit, the Thévenin output voltage is Eo,
as given in the above expression, and the Thévenin output impedance
is Rco. (a) Derive an expression for Rco as a function of Rao, β, and A.
Using this expression, (b) show that this is a very low value.

12. A standard RC circuit might be used as a low-pass filter. If the out-
put voltage is to be attenuated 3 dB at 100 Hz, what should the time
constant, τ , be of the RC circuit to accomplish this?

13. Design an op amp circuit such that the output voltage, Eo, is the sum
of two different input voltages, E1 and E2.

14. A pitot-static tube is used in a wind tunnel to determine the tunnel’s
flow velocity, as shown in Figure 3.18. Determine the following: (a) the
flow velocity (in m/s) if the measured pressure difference equals 58 Pa,
(b) the value of Rx (in Ω) to have Eo = 0 V, assuming R = 100 Ω and
Rs = 200 Ω at a zero flow velocity, with Ei = 5.0 V, (c) the value of Eo

(in V) at the highest flow velocity, at which the parallel combination of
Rx and Rs increases by 20 %, (d) the amplifier gain to achieve 80 % of
the full-scale range of the A/D board at the highest flow velocity, (e) the
values of the resistances if the amplifier is a non-inverting operational
amplifier, and (f) the number of bits of the A/D board such that there is
less than 0.2 % error in the voltage reading at the highest flow velocity.

15. A force-balance system comprised of a cantilever beam with four strain
gages has output voltages of 0 mV for 0 N and 3.06 mV for 10 N. The
signal is recorded using a 16-bit A/D converter having a unipolar range
of 0 V to 10 V, with the resulting voltage being displayed on a computer
monitor. A student decides to modify the system to get better force
resolution by installing an amplifier between the force-balance output
and the A/D converter such that 0.2 % of the balance’s output for 10 N
of force will be equal to the resolution of 1 bit of the converter. Determine
(a) the resolution (in mV/bit) of the converter, (b) the gain that the
amplifier must have in the modified system, and (c) the force (in N) that
corresponds to a 5 V reading displayed on the monitor when using the
modified system.
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A single number has more genuine and permanent value than an expensive
library full of hypotheses.
Robert J. Mayer, c. 1840.

Measures are more than a creation of society, they create society.
Ken Alder. 2002. The Measure of All Things. London: Little, Brown.

It is easier to get two philosophers to agree than two clocks.
Lucius Annaeus Seneca, c. 40.

4.1 Chapter Overview

In this chapter, the performance of a measurement system is investigated.
Calibration methods are presented that assure recorded values are accurate
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indicators of the variables sensed. Both the static and the dynamic response
characteristics of linear measurement systems are examined. First-order and
second-order systems are considered in detail, including how their output
can lag in time the changes that occur in the experiment’s environment.
With this information, approaches to data acquisition and signal processing,
which are the subjects of subsequent chapters, then can be considered.

4.2 Static Response Characterization

Measurement systems and their instruments are used in experiments to
obtain measurand values that usually are either steady or varying in time.
For both situations, errors arise in the measurand values simply because
the instruments are not perfect; their outputs do not precisely follow their
inputs. These errors can be quantified through the process of calibration.

In a calibration, a known input value (called the standard) is applied
to the system and then its output is measured. Calibrations can either be
static (not a function of time) or dynamic (both the magnitude and the
frequency of the input signal can be a function of time). Calibrations can be
performed in either sequential or random steps. In a sequential calibration
the input is increased systematically and then decreased. Usually this is
done by starting at the lowest input value and calibrating at every other
input value up to the highest input value. Then the calibration is continued
back down to the lowest input value by covering the alternate input values
that were skipped during the upscale calibration. This helps to identify
any unanticipated variations that could be present during calibration. In a
random calibration, the input is changed from one value to another in no
particular order.

From a calibration experiment, a calibration curve is established. A
generic static calibration curve is shown in Figure 4.1. This curve has several
characteristics. The static sensitivity refers to the slope of the calibration
curve at a particular input value, x1. This is denoted by K, where K =
K(x1) = (dy/dx)x=x1

. Unless the curve is linear, K will not be a constant.
More generally, sensitivity refers to the smallest change in a quantity that
an instrument can detect, which can be determined knowing the value of K
and the smallest indicated output of the instrument. There are two ranges
of the calibration, the input range, xmax − xmin, and the output range,
ymax − ymin.

Calibration accuracy refers to how close the measured value of a calibra-
tion is to the true value. Typically, this is quantified through the absolute
error, eabs, where

eabs = |true value − indicated value|. (4.1)
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FIGURE 4.1
Typical static calibration curve.

The relative error, erel, is

erel = eabs/|true value|. (4.2)

The accuracy of the calibration, acal, is related to the absolute error by

acal = 1 − erel. (4.3)

Calibration precision refers to how well a particular value is indicated
upon repeated but independent applications of a specific input value. An
expression for the precision in a measurement and the uncertainties that
arise during calibration are presented in Chapter 7.

Example Problem 4.1
Statement: A hot-wire anemometer system was calibrated in a wind tunnel using a

pitot-static tube. The data obtained is presented in Table 4.1. Using this data, a linear
calibration curve-fit was made, which yielded

E2 = 10.2 + 3.28
√

U.

Determine the following for the curve-fit: [a] the sensitivity, [b] the maximum absolute
error, [c] the maximum relative error, and [d] the accuracy at the point of maximum
relative error.

Solution: Because the curve-fit is linear, the sensitivity of the curve-fit is its slope,
which equals 3.284 V2/

√
m/s. The calculated voltages, Ec, from the curve-fit expres-

sion are given in Table 4.1. Inspection of the results reveals that the maximum difference
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Velocity Measured voltage Calculated voltage
U (m/s) Em (V) Ec (V)

0.00 3.19 3.19
3.05 3.99 3.99
6.10 4.30 4.28
9.14 4.48 4.49
12.20 4.65 4.66

TABLE 4.1
Hot-wire anemometer system calibration data.

between the measured and calculated voltages is 0.02 V, which occurs at a velocity of
6.10 m/s. Thus, the maximum absolute error, eabs, is 0.02 V, as defined by Equation
4.1. The relative error, erel, is defined by Equation 4.2. This also occurs at a velocity of
6.10 m/s, although maximum relative error does not always occur at the same calibra-
tion point as the maximum absolute error. Here, erel = 0.02/4.30 = 0.01, rounded to
the correct number of significant figures. Consequently, by Equation 4.3, the accuracy
at the point of maximum relative error is 1 − 0.01 = 0.99, or 99 %.

4.3 Dynamic Response Characterization

In reality, almost every measurement system does not respond instanta-
neously to an input that varies in time. Often there is a time delay and
amplitude difference between the system’s input and output signals. This
obviously creates a measurement problem. If these effects are not accounted
for, dynamic errors will be introduced into the results.

To properly assess and quantify these effects, an understanding of how
measurement systems respond to transient input signals must be gained. The
ultimate goal would be to determine the output (response) of a measurement
system for all conceivable inputs. The dynamic error in the measurement can
be related to the difference between the input and output at a given time.
In this chapter, only the basics of this subject will be covered. The response
characteristics of several specific systems (zero, first, and second-order) to
specific transient inputs (step and sinusoidal) will be studied. Hopefully, this
brief foray into dynamic system response will give an appreciation for the
problems that can arise when measuring time-varying phenomena.

First, examine the general formulation of the problem. The output signal,
y(t), in response to the input forcing function of a linear system, F (t), can be
modeled by a linear ordinary differential equation with constant coefficients
(a0, ..., an) of the form
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an
dny

dtn
+ an−1

dn−1y

dtn−1
+ ... + a1

dy

dt
+ a0y = F (t). (4.4)

In this equation n represents the order of the system. The input forcing
function can be written as

F (t) = bm
dmx

dtm
+ bm−1

dm−1x

dtm−1
+ ... + b0x, m ≤ n, (4.5)

where b0, ..., bn are constant coefficients, x = x(t) is the forcing function, and
m represents its order, where m must always be less than or equal to n to
avoid having an over-deterministic system. By writing F (t) as a polynomial,
the ability to describe almost any shape of forcing function is retained.

The output response, y(t), actually represents a physical variable fol-
lowed in time. For example, it could be the displacement of the mass of an
accelerometer positioned on a fluttering aircraft wing or the temperature
of a thermocouple positioned in the wake of a heat exchanger. The exact
ordinary differential equation governing each circumstance is derived from a
conservation law, for example, from Newton’s second law for the accelerom-
eter or from the first law of thermodynamics for the thermocouple.

To solve for the output response, the exact form of the input forcing
function, F (t), must be specified. This is done by choosing values for the
b0, ..., bn coefficients and m. Then Equation 4.4 must be integrated subject
to the initial conditions.

In this chapter, two types of input forcing functions, step and sinusoidal,
are considered for linear, first-order, and second-order systems. There are
analytical solutions for these situations. Further, as will be shown in Chap-
ter 9, almost all types of functions can be described through Fourier analysis
in terms of the sums of sine and cosine functions. So, if a linear system’s re-
sponse for sinusoidal-input forcing is determined, then its response to more
complicated input forcing can be described. This is done by linearly su-
perimposing the outputs determined for each of the sinusoidal-input forcing
components that were identified by Fourier analysis. Finally, note that many
measurement systems are linear, but not all. In either case, the response of
the system almost always can be determined numerically. Numerical solu-
tion methods for such a model will be discussed in Section 4.8.

Now consider some particular systems by first specifying the order of
the systems. This is done by substituting a particular value for n into Equa-
tion 4.4.

• For n = 0, a zero-order system is specified by

a0y = F (t). (4.6)
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Instruments that behave like zero-order systems are those whose output
is directly coupled to its input. An electrical-resistance strain gage in
itself is an excellent example of a zero-order system, where an input
strain directly causes a change in the gage resistance. However, dynamic
effects can occur when a strain gage is attached to a flexible structure.
In this case the response must be modeled as a higher-order system.

• For n = 1, a first-order system is given by

a1ẏ + a0y = F (t). (4.7)

Instruments whose responses fall into the category of first-order systems
include thermometers, thermocouples, and other similar simple systems
that produce a time lag between the input and output due to the capacity
of the instrument. For thermal devices, the heat transfer between the
environment and the instrument coupled with the thermal capacitance
of the instrument produces this time lag.

• For n = 2, a second-order system is specified by

a2ÿ + a1ẏ + a0y = F (t). (4.8)

Examples of second-order instruments include diaphragm-type pressure
transducers, U-tube manometers, and accelerometers. This type of sys-
tem is characterized by its inertia. In the U-tube manometer, for exam-
ple, the fluid having inertia is moved by a pressure difference.

The responses of each of these systems are examined in the following
sections.

4.4 Zero-Order System Dynamic Response

For a zero-order system the equation is

y =

(
1

a0

)
F (t) = KF (t), (4.9)

where K is called the static sensitivity or steady-state gain. It can be seen
that the output, y(t), exactly follows the input forcing function, F (t), in time
and that y(t) is amplified by a factor, K. Hence, for a zero-order system,
a plot of the output signal values (on the ordinate) versus the input signal
values (on the abscissa) should yield a straight line of slope, K. In fact,
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instrument manufacturers often provide values for the steady-state gains of
their instruments. These values are obtained by performing static calibration
experiments.

4.5 First-Order System Dynamic Response

First-order systems are slightly more complicated. Their governing equation
is

τ ẏ + y = KF (t), (4.10)

where τ is the time constant of the system = a1/a0. When the time
constant is small, the derivative term in Equation 4.10 becomes negligible
and the equation reduces to that of a zero-order system. That is, the smaller
the time constant, the more instantaneous is the response of the system.

Now digress for a moment and examine the origin of a first-order-system
equation. Consider a standard glass bulb thermometer initially at room
temperature that is immersed into hot water. The thermometer takes a
while to read the correct temperature. However, it is necessary to obtain an
equation of the thermometer’s temperature as a function of time after it is
immersed in the hot water in order to be more specific.

Start by considering the liquid inside the bulb as a fixed mass into which
heat can be transferred. When the thermometer is immersed into the hot
water, heat (a form of energy) will be transferred from the hotter body
(the water) to the cooler body (the thermometer’s liquid). This leads to an
increase in the total energy of the liquid. This energy transfer is governed
by the first law of thermodynamics (conservation of energy), which is

dE

dt
=

dQ

dt
, (4.11)

in which E is the total energy of the thermometer’s liquid, Q is the heat
transferred from the hot water to the thermometer’s liquid, and t is time.
The rate at which the heat is transferred into the thermometer’s liquid de-
pends upon the physical characteristics of the interface between the outside
of the thermometer and the hot water. The heat is transferred convectively
to the glass from the hot water and is described by

dQ

dt
= hA[Thw − T ], (4.12)

where h is the convective heat transfer coefficient, A is the surface area over
which the heat is transferred, and Thw is the temperature of the hot water.
Here it is assumed implicitly that there are no conductive heat transfer
losses in the glass. All of the heat transferred from the hot water through
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the glass reaches the thermometer’s liquid. Now as the energy is stored
within the liquid, its temperature increases. For energy within the liquid to
be conserved, it must be that

dE

dt
= mCv

dT

dt
, (4.13)

where T is the liquid’s temperature, m is its mass, and Cv is its specific heat
at constant volume.

Thus, upon substitution of Equations 4.12 and 4.13 into Equation 4.11,

mCv
dT

dt
= hA[Thw − T ]. (4.14)

Rearranging,
mCv

hA

dT

dt
+ T = Thw. (4.15)

Comparing this equation to Equation 4.10 it can be seen that y = T ,
τ = mCv/hA, and Thw = F (t), with K = 1. This is the linear, first-order
differential equation with constant coefficients that relates the time rate of
change in the thermometer’s liquid temperature to its temperature at any
instance of time and the conditions of the situation. Equation 4.15 must be
integrated to obtain the desired equation of the thermometer’s temperature
as a function of time after it is immersed in the hot water.

Another example of a first-order system is an electrical circuit comprised
of a resistor of resistance, R, a capacitor of capacitance, C, both in series
with a voltage source with voltage, Ei(t). The voltage differences, ∆V , across
each component in the circuit are ∆V = RI for the resistor and ∆V = Q/C
for the capacitor, where the current, I, is related to the charge, Q, by I =
dQ/dt. Application of Kirchhoff’s voltage law to the circuit gives

RC
dV

dt
+ V = Ei(t). (4.16)

Comparing this equation to Equation 4.10 gives τ = RC and K = 1.
Now proceed to solve a first-order system equation to determine the

response of the system subject to either a step change in conditions (by
assuming a step-input forcing function) or a periodic change in conditions
(by assuming a sinusoidal-input forcing function). The former, for example,
could be the temperature of a thermometer as a function of time after it is
exposed to a sudden change in temperature, as was examined above. The
latter, for example, could be the temperature of a thermocouple in the wake
behind a heated cylinder.
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4.5.1 Response to Step-Input Forcing

Start by considering the governing equation for a first-order system

τ ẏ + y = KF (t), (4.17)

where the step-input forcing function, F (t), is defined as A for t > 0 and
the initial condition y(0) = y0. Equation 4.17 is a linear, first-order ordinary
differential equation. Its general solution (see [24]) is of the form

y(t) = c0 + c1e
− t

τ . (4.18)

Substitution of this expression for y and the expression for its derivative
ẏ into Equation 4.17 yields c0 = KA. Subsequently, applying the initial
condition to Equation 4.18 gives c1 = y0 − KA. Thus, the specific solution
can be written as

y(t) = KA + (y0 − KA) e−
t
τ . (4.19)

Now examine this equation. When the time equals zero, the exponential
term is unity, which gives y(0) = y0. Also, when time becomes very large
with respect to τ , the exponential term tends to zero, which gives an output
equal to KA. Hence, the output rises exponentially from its initial value
of yo at t = 0 to its final value of KA at t >> τ . This is what is seen
in the solution, as shown in the left graph of Figure 4.2. Note that at the
dimensionless time t/τ = 1, the value the signal reaches approximately two-
thirds (actually 1 − 1

e or 0.6321) of its final value. The time that it takes
the system to reach 90 % of its final value (which occurs at t/τ = 2.303)
is called the rise time of a first-order system. At t/τ = 5 the signal has
reached greater than 99 % of its final value.

The term y0 can be subtracted from both sides of Equation 4.19 and
then rearranged to yield

M(t) ≡ y(t) − y0

y∞ − y0
= 1 − e−

t
τ , (4.20)

noting that y∞ = KA. M(t) is called the magnitude ratio and is a di-
mensionless variable that represents the change in y at any time t from its
initial value divided by its maximum possible change. When y reaches its
final value, M(t) is unity. The right side of Equation 4.20 is a dimensionless
time, t/τ . Equation 4.20 is valid for all first-order systems responding to
step-input forcing because the equation is dimensionless.

Alternatively, Equation 4.19 can be rearranged directly to give

y(t) − y∞
y0 − y∞

= e−
t
τ ≡ δ(t). (4.21)
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FIGURE 4.2
Response of a first-order system to step-input forcing.

In this equation δ(t) represents the fractional difference of y from its final
value. This can be interpreted as the fractional dynamic error in y. From
Equations 4.20 and 4.21,

δ(t) = 1 − M(t). (4.22)

This result is plotted in the right graph of Figure 4.2. At the dimensionless
time t/τ = 1, δ equals 0.3678 = 1/e. Further, at t/τ = 5, the dynamic error
is essentially zero (= 0.007). That means for a first-order system subjected
to a step change in input it takes approximately five time constants for
the output to reach the input value. For perfect measurement system there
would be no dynamic error (δ(t) = 0) and the output would always follow
the input [M(t) = 1].

4.5.2 Response to Sinusoidal-Input Forcing

Now consider a first-order system that is subjected to an input that varies
sinusoidally in time. The governing equation is

τ ẏ + y = KF (t) = KA sin(ωt), (4.23)

where K and A are arbitrary constants. The units of K would be those of
y divided by those of A. The general solution is

y(t) = yh + yp = c0e
− t

τ + c1 + c2 sin(ωt) + c3 cos(ωt), (4.24)
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in which c0 through c3 are constants, where the first term on the right side
of this equation is the homogeneous solution, yh, and the remaining terms
constitute the particular solution, yp.

The constants c1 through c3 can be found by substituting the expressions
for y(t) and its derivative into Equation 4.23. By comparing like terms in
the resulting equation,

c1 = 0, (4.25)

c2 =
KA

ω2τ2 + 1
, (4.26)

and

c3 = −ωτC2 =
−ωτKA

ω2τ2 + 1
. (4.27)

The constant c0 can be found by applying the initial condition y(0) = y0 to
Equation 4.24, where

c0 = y + 0 − c3 =
ωτKA

ω2τ2 + 1
. (4.28)

Thus, the final solution becomes

y(t) = (y0 + ωτD)e−
t
τ + D sin(ωt) − ωτD cos(ωt), (4.29)

where

D =
KA

ω2τ2 + 1
. (4.30)

Now Equation 4.29 can be simplified further. The sine and cosine terms
can be combined in Equation 4.29 into a single sine term using the trigono-
metric identity

α cos(ωt) + β sin(ωt) =
√

α2 + β2 sin(ωt + φ), (4.31)

where

φ = tan−1(α/β). (4.32)

Equating this expression with the sine and cosine terms in Equation 4.29
gives α = −ωτD and β = D. Thus,

D sin(ωt) − ωτD cos(ωt) = D
√

ω2τ2 + 1 =
KA√

ω2τ2 + 1
(4.33)

and
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φ = tan−1(−ωτ) = − tan−1(ωτ), (4.34)

or, in units of degrees,

φ◦ = −(180/π) tan−1(ωτ). (4.35)

The minus sign is present in Equations 4.34 and 4.35 by convention to denote
that the output lags behind the input.

The final solution is

y(t) = y0 + (
ωτKA

ω2τ2 + 1
)e−

t
τ +

KA√
ω2τ2 + 1

sin(ωt + φ). (4.36)

The first term on the right side represents the transient response while
the second term is the steady-state response. For ωτ << 1, the transient
term becomes very small and the output follows the input. For ωτ >> 1,
the output is droplets attenuated and its phase is shifted from the input by
φ radians. The phase lag in seconds (lag time), β, is given by

β = φ/ω. (4.37)

Examine this response further in a dimensionless sense. The magnitude
ratio for this input-forcing situation is the ratio of the magnitude of the
steady-state output to that of the input. Thus,

M(ω) =
KA/

√
ω2τ2 + 1

KA
=

1√
ω2τ2 + 1

. (4.38)

The dynamic error, using its definition in Equation 4.22 and Equation 4.38,
becomes

δ(ω) = 1 − 1√
ω2τ2 + 1

. (4.39)

Shown in Figures 4.3 and 4.4, respectively, are the magnitude ratio and
the phase shift plotted versus the product ωτ . First examine Figure 4.3. For
values of τω less than approximately 0.1, the magnitude ratio is very close
to unity. This implies that the system’s output closely follows its input in
this range. At ωτ equal to unity, the magnitude ratio equals 0.707, that is,
the output amplitude is approximately 71 % of its input. Here, the dynamic
error would be 1 − 0.707 = 0.293 or approximately 29 %. Now look at
Figure 4.4. When ωτ is unity, the phase shift equals −45◦. That is, the
output signal lags the input signal by 45◦ or 1/8th of a cycle.

The magnitude ratio often is expressed in units of decibels, abbreviated
as dB. The decibel’s origin began with the introduction of the Bel, defined
in terms of the ratio of output power, P2, to the input power, P1, as

Bel = log10(P2/P1). (4.40)
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FIGURE 4.3
The magnitude ratio of a first-order system responding to sinusoidal-input
forcing.

To accommodate the large power gains (output/input) that many systems
had, the decibel (equal to 10 Bels) was defined as

Decibel = 10 log10(P2/P1). (4.41)

Equation 4.41 is used to express sound intensity levels, where P2 corresponds
to the sound intensity and P1 to the reference intensity, 10−12 W/m2, which
is the lowest intensity that humans can hear. The Saturn V on launch has
a sound intensity of 172 dB; human hearing pain occurs at 130 dB; a soft
whisper at a distance of 5 m is 30 dB.

There is one further refinement in this expression. Power is a squared
quantity, P2 = Q2

2 and P1 = Q1
2, where Q2 and Q1 are the base measur-

ands, such as volts for an electrical system. With this in mind, Equation 4.41
becomes

Decibel = 10 log10(Q2/Q1)
2 = 20 log10(Q2/Q1). (4.42)

Equation 4.42 is the basic definition of the decibel as used in measure-
ment engineering. Finally, Equation 4.42 can be written in terms of the
magnitude ratio

dB = 20 log10 M(ω). (4.43)
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FIGURE 4.4
The phase shift of a first-order system responding to sinusoidal-input forcing.

The point M(ω) = 0.707, which is a decrease in the system’s amplitude by
a factor of 1/

√
2, corresponds to an attenuation of the system’s input by −3

dB. Sometimes, this is called the droplets half-power point because, at this
point, the power is one-half the original power.

Example Problem 4.2
Statement: Convert the sound intensity level of 30 dB to loge M(ω).
Solution: The relationship between logarithms of bases a and b is

logb x = loga x/ loga b.

For this problem the bases are e and 10. So,

loge M(ω) = log10 M(ω)/ log10 e.

Now, log10 e = 0.434 294. Also, loge 10 = 2.302 585 and e = 2.718 282. Using Equation
4.43, log10 M(ω) at 30 dB equals 1.500. Thus

loge M(ω) = 1.500/0.434 = 3.456.

The relationship between logarithms of two bases is used often when converting back
and forth between base 10 and base e systems.

Systems often are characterized by their bandwidth and center frequency.
Bandwidth is the range of frequencies over which the output amplitude
of a system remains above 70.7 % of its input amplitude. Over this range,
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Mω) ≥ 0.707 or −3 dB. The lower frequency at which Mω) < 0.707 is
called the low cut-off frequency. The higher frequency at which Mω) <
0.707 is called the high cut-off frequency. The center frequency is the
frequency equal to one-half the sum of the low and high cut-off frequencies.
Thus, the bandwidth is the difference between the high and low cut-off
frequencies. Sometimes bandwidth is defined as the range of frequencies
that contain most of the system’s energy or over which the system’s gain
is almost constant. However, the above quantitative definition is preferred
and used most frequently.

Example Problem 4.3
Statement: Determine the low and high cut-off frequencies, center frequency, and

the bandwidth in units of hertz of a first-order system having a time constant of 0.1 s
that is subjected to sinusoidal-input forcing.

Solution: For a first-order system, M(ω) ≥ 0.707 from ωτ = 0 to ωτ = 1. Thus, the
low cut-off frequency is 0 Hz and the high cut-off frequency is (1 rad/s s)/[(0.1 s)(2π
rad/cycle)] = 5/π Hz. The bandwidth equals 5/π Hz − 0 Hz = 5/π Hz. The center
frequency is 5/2π.

The following example illustrates how the time constant of a thermocou-
ple affects its output.

Example Problem 4.4
Statement: Consider an experiment in which a thermocouple that is immersed in

a fluid and connected to a reference junction/linearizer/amplifier micro-chip with a
static sensitivity of 5 mv/◦C. Its output is E(t) in millivolts. The fluid temperature
varies sinusoidally in degrees Celsius as 115 + 12 sin(2t). The time constant τ of the
thermocouple is 0.15 s. Determine E(t), the dynamic error δ(ω) and the time delay
β(ω) for ω = 2. Assume that this system behaves as a first-order system.

Solution: It is known that

τĖ + E = KF (t).

Substitution of the given values yields

0.15Ė + E = 5[115 + 12 sin 2t] (4.44)

with the initial condition of E(0) = (5 mv/◦C)(115 ◦C) = 575 mV.
To solve this linear, first-order differential equation with constant coefficients, a

solution of the form E(t) = Eh + Ep is assumed, where Eh = C0e−t/τ and Ep =
c1 + c2 sin 2t + c3 cos 2t. Substitution of this expression for E(t) into the left side and
grouping like terms gives

c1 = 575, c2 = 55.1, and c3 = −16.5.

Equation 4.44 then can be rewritten as

E(t) = k0e−t/0.15 + 575 + 55.1 sin 2t − 16.5 cos 2t.

Using the initial condition,

c0 = 16.5.
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Thus, the final solution for E(t) is

E(t) = 575 + 16.5e−t/0.15 + 55.1 sin 2t − 16.5 cos 2t

or, in units of ◦C temperature

T (t) = 115 + 3.3e−t/0.15 + 11.0 sin 2t − 3.3 cos 2t.

The output (measured) temperature is plotted in Figure 4.5 along with the input (ac-
tual) temperature. A careful comparison of the two signals reveals that the output
lags the input in time and has a slightly attenuated amplitude. At t = 2 s, the actual
temperature is ∼106 ◦C, which is less than the measured temperature of ∼109 ◦C.
Whereas, at t = 3 s, the actual temperature is ∼112 ◦C, which is greater than the
measured temperature of ∼109 ◦C. So, for this type of forcing, the measured temper-
ature can be greater or less than the actual temperature, depending upon the time at
which the measurement is made.

The time lag and the percent reduction in magnitude can be found as follows. The
dynamic error is

δ(ω = 2) = 1 − M(ω = 2) = 1 − 1

[1 + (2 × 0.15)2]1/2
= 0.04,

which is a 4 % reduction in magnitude. The time lag is

β(ω = 2) =
φ(ω = 2)

ω
=

− tan−1 ωτ

ω
=

(−16.7 ◦)(π rad/180 ◦)

2 rad/s
= −0.15 s,

which implies that the output signal lags the input signal by 0.15 s. The last two terms
in the temperature expression can be combined using a trigonometric identity (see
Chapter 9), as

11.0sin2t − 3.3cos2t = 11.48sin(2t − 0.29), (4.45)

where 0.29 rad = 16.7◦ is the phase lag found before.

4.6 Second-Order System Dynamic Response

The response behavior of second-order systems is more complex than first-
order systems. Their behavior is governed by the equation

1

ωn
2
ÿ +

2ζ

ωn
ẏ + y = KF (t), (4.46)

where ωn =
√

a0/a2 denotes the natural frequency and ζ = a1/2
√

a0a2

damping ratio of the system. Note that when 2ζ >> 1/ωn, the second
derivative term in Equation 4.46 becomes negligible with respect to the other
terms, and the system behavior approaches that of a first-order system with
a system time constant equal to 2ζ/ωn.
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FIGURE 4.5
The time history of the thermocouple system.

Equation 4.46 could represent, among other things, a mechanical spring-
mass-damper system or an electrical capacitor-inductor-resistor circuit, both
with forcing. The solution to this type of equation is rather lengthy and is
described in detail in many applied mathematics texts (see [24]). Now exam-
ine where such an equation would come from by considering the following
example.

A familiar situation occurs when a bump in the road is encountered by
a car. If the car has a good suspension system it will absorb the effect of the
bump. The bump hardly will be felt. On the other hand, if the suspension
system is old, an up-and-down motion is present that may take several
seconds to attenuate. This is the response of a linear, second-order system
(the car with its suspension system) to an input forcing (the bump).

The car with its suspension system can be modeled as a mass (the body
of the car and its passengers) supported by a spring (the suspension coil)
and a damper (the shock absorber) in parallel (usually there are four sets of
spring-dampers, one for each wheel). Newton’s second law can be applied,
which states that the mass times the acceleration of a system is equal to the
sum of the forces acting on the system. This becomes

m
d2y

dt2
=
∑

i

Fi = Fg + Fs(t) + Fd(t) + F (t), (4.47)

in which y is the vertical displacement, Fg is the gravitational force (= mg),
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Fs(t) is the spring force (= −k[L∗ + y]), where k is the spring constant and
L∗ the initial compressed length of the spring, Fd(t) is the damping force
(= −γdy/dt), where γ is the damping coefficient, and F (t) is the forcing
function. Note that the spring and damping forces are negative because
they are opposite to the direction of motion. The height of the bump as a
function of time as dictated by the speed of the car would determine the
exact shape of F (t). Now when there is no vertical displacement, which is
the case just before the bump is encountered, the system is in equilibrium
and y does not change in time. Equation 4.47 reduces to

0 = mg − kL∗. (4.48)

This equation can be used to replace L∗ in Equation 4.47 to arrive at

m

k

d2y

dt2
+

γ

k

dy

dt
+ y =

1

k
F (t). (4.49)

Comparing this equation to Equation 4.46 yields ωn =
√

k/m, ζ = γ/
√

4km,
and K = 1/k.

Another example of a second-order system is an electrical circuit com-
prised of a resistor, R, a capacitor, C, and an inductor, L, in series with
a voltage source with voltage, Ei(t), that completes a closed circuit. The
voltage differences, ∆V , across each component in the circuit are ∆V = RI
for the resistor, ∆V = LdI/dt for the inductor, and ∆V = Q/C for the
capacitor, where the current, I, is related to the charge, Q, by I = dQ/dt.
Application of Kirchhoff’s voltage law to the circuit’s closed loop gives

LC
d2I

dt2
+ RC

dI

dt
+ I = C

dEi(t)

dt
. (4.50)

Comparing this equation to Equation 4.46 gives ωn =
√

1/LC, ζ =

R/
√

4L/C, and K = C.
The approach to solving a nonhomogeneous, linear, second-order, ordi-

nary differential equation with constant coefficients of the form of Equa-
tion 4.46 involves finding the homogeneous, yh(t), and particular, yp(t),
solutions and then linearly superimposing them to form the complete solu-
tion, y(t) = yh(t)+yp(t). The values of the arbitrary coefficients in the yh(t)
solution are determined by applying the specified initial conditions, which
are of the form y(0) = yo and ẏ(0) = ẏo. The values of the arbitrary coef-
ficients in the yp(t) solution are found through substitution of the general
form of the yp(t) solution into the differential equation and then equating
like terms.

The form of the homogeneous solution to Equation 4.46 depends upon
roots of its corresponding characteristic equation

1

ωn
2
r2 +

2ζ

ωn
r + 1 = 0, (4.51)
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which are

r1,2 = −ζωn ± ωn

√
ζ2 − 1. (4.52)

Depending upon the value of the discriminant
√

ζ2 − 1, there are three
possible families of solutions (see the text web site for the step-by-step so-
lutions):

• ζ2 − 1 > 0: the roots are real, negative, and distinct. The general form
of the solution is

yh(t) = c1e
r1t + c2e

r2t. (4.53)

• ζ2 − 1 = 0: the roots are real, negative, and equal to −ωn. The general
form of the solution is

yh(t) = c1e
rt + c2te

rt. (4.54)

• ζ2 − 1 < 0: the roots are complex and distinct. The general form of the
solution is

yh(t) = c1e
r1t + c2e

r2t = eλt(c1 cos µt + c2 sinµt), (4.55)

using Euler’s formula eit = cos t + i sin t and noting that

r1,2 = λ ± iµ, (4.56)

with λ = −ζωn and µ = ωn

√
1 − ζ2.

All three general forms of solutions have exponential terms that decay
in time. Thus, as time increases, all homogeneous solutions tend toward a
value of zero. Such solutions often are termed transient solutions. When
0 < ζ < 1 (when

√
ζ2 − 1 < 0) the system is called under-damped; when

ζ = 1 (when
√

ζ2 − 1 = 0) it is called critically damped; when ζ > 1

(when
√

ζ2 − 1 > 0) it is called over-damped. The reasons for these names
will be obvious later. Now examine how a second-order system responds to
step and sinusoidal inputs.

4.6.1 Response to Step-Input Forcing

The responses of a second-order system to a step input having F (t) = A for
t > 0 with the initial conditions y(0) = 0 and ẏ(0) = 0 are as follows:
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• For the under-damped case (0 < ζ < 1)

y(t) = KA

{
1 − e−ζωnt

[
1√

1 − ζ2
sin(ωnt

√
1 − ζ2 + φ)

]}
(4.57)

where
φ = sin−1(

√
1 − ζ2). (4.58)

As shown by Equation 4.57, the output initially overshoots the input,
lags it in time, and is oscillatory. As time continues, the oscillations
damp out and the output approaches, and eventually reaches, the input
value. A special situation arises for the no-damping case when ζ = 0.
For this situation the output lags the input and repeatedly overshoots
and undershoots it forever.

• For the critically damped case (ζ = 1),

y(t) = KA
{
1 − e−ωnt(1 + ωnt)

}
. (4.59)

No oscillation is present in the output. Rather, the output slowly and
monotonically approaches the input, eventually reaching it.

• For the over-damped case (ζ > 1),

y(t) = KA ·

{1 − e−ζωnt[cosh(ωnt
√

ζ2 − 1) +
ζ√

ζ2 − 1
sinh(ωnt

√
ζ2 − 1)]}. (4.60)

The behavior is similar to the ζ = 1 case. Here the larger the value of ζ,

the longer it takes for the output to reach the value of the input signal.

Note that in the equations of all three cases the quantity ζωn in the
exponential terms multiplies the time. Hence, the quantity 1/ζωn represents
the time constant of the system. The larger the value of the time constant,
the longer it takes the response to approach steady state. Further, because
the magnitude of the step-input forcing equals KA, the magnitude ratio,
M(t), for all three cases is obtained simply by dividing the right sides of
Equations 4.57, 4.59, and 4.60 by KA.

Equations 4.57 through 4.60 appear rather intimidating. It is helpful
to plot these equations rewritten in terms of their magnitude ratios and
examine their form. The system response to step-input forcing is shown in
Figure 4.6 for various values of ζ. The quickest response to steady state is
when ζ = 0 (that is when the time constant 1/ζωn is minimum). However,
such a value of ζ clearly is not optimum for a measurement system because
the amplitude ratio overshoots, then undershoots, and continues to oscillate
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FIGURE 4.6
The magnitude ratio of a second-order system responding to step-input forc-
ing.

about a value of M(ω) = 1 forever. The oscillatory behavior is known as
ringing and occurs for all values of ζ < 1.

Shown in Figure 4.7 is the response of a second-order system having a
value of ζ = 0.2 to step-input forcing. Note the oscillation in the response
about an amplitude ratio of unity. In general, this oscillation is characterized
by a period Td, where Td = 2π/ωd, with the ringing frequency ωd =

ωn

√
1 − ζ2. The rise time for a second-order system is the time required

for the system to initially reach 90 % of its steady-state value. The settling
time is the time beyond which the response remains within ± 10 % of its
steady-state value.

A value of ζ = 0.707 quickly achieves a steady-state response. Most
second-order instruments are designed for this value of ζ. When ζ = 0.707,
the response overshoot is within 5 % of M(t) = 1 within about one-half of
the time required for a ζ = 1 system to achieve steady state. For values
of ζ > 1, the system eventually reaches a steady-state value, taking longer
times for larger values of ζ.

4.6.2 Response to Sinusoidal-Input Forcing

The response of a second-order system to a sinusoidal input having F (t) =
KA sin(ωt) with the initial conditions y(0) = 0 and ẏ(0) = 0 is
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FIGURE 4.7
The temporal response of a second-order system with ζ = 0.2 to step-input
forcing.

yp(t) =
KA sin[ωt + φ(ω)]

{[1 − (ω/ωn)2]2 + [2ζω/ωn]2}1/2
, (4.61)

where the phase lag in units of radians is

φ(ω) = − tan−1 2ζω/ωn

1 − (ω/ωn)2
for

ω

ωn
≤ 1, (4.62)

or

φ(ω) = −π − tan−1 2ζω/ωn

1 − (ω/ωn)2
for

ω

ωn
> 1. (4.63)

Note that Equation 4.61 is the particular solution, which also is the steady-
state solution. This is because the homogeneous solutions for all ζ are tran-
sient and tend toward a value of zero as time increases. Hence, the steady-
state magnitude ratio based upon the input KA sin(ωt), Equation 4.61 be-
comes

M(ω) =
1

{[1 − (ω/ωn)2]2 + [2ζω/ωn]2}1/2
. (4.64)
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These equations show that the system response will contain both magnitude
and phase errors. The magnitude and phase responses for different values of
ζ are shown in Figures 4.8 and 4.9, respectively. Note that the magnitude
ratio is a function of frequency, ω, for the sinusoidal-input forcing case,
whereas it is a function of time, t, for the step-input forcing case.

First examine the magnitude response shown in Figure 4.8. For low
values of ζ, approximately 0.6 or less, and ω/ωn ≤ 1, the magnitude ra-
tio exceeds unity. The maximum magnitude ratio occurs at the value of
ω/ωn =

√
1 − 2ζ2. For ω/ωn ≥∼ 1.5, the magnitude ratio is less than unity

and decreases with increasing values of ω/ωn.

Typically, magnitude attenuation is given in units of dB/decade or
dB/octave. A decade is defined as a 10-fold increase in frequency (any
10:1 frequency range). An octave is defined as a doubling in frequency (any
2:1 frequency range). For example, using the information in Figure 4.8, there
would be an attenuation of approximately −8 dB/octave [= 20log(0.2) −
20log(0.5)] in the frequency range 1 ≤ ω/ωn ≤ 2 when ζ = 1.

Now examine the phase response shown in Figure 4.9. As ω/ωn increases,
the phase angle becomes more negative. That is, the output signal begins
to lag the input signal in time, with this lag time increasing with ω/ωn. For
values of ω/ωn < 1, this lag is greater for greater values of ζ. At ω/ωn = 1,
all second-order systems having any value of ζ have a phase lag of −90◦ or
1/4 of a cycle. For ω/ωn > 1, the increase in lag is less for systems with
greater values of ζ.

4.7 Higher-Order System Dynamic Response

As seen in this chapter, the responses of linear, first, and second-order sys-
tems to simple step and sinusoidal inputs are rather complex. Most ex-
periments involve more than one instrument. Thus, the responses of most
experimental measurement systems will be even more complex than the
simple cases examined here.

When each instrument in a measurement system is linear, as described
in Chapter 2, the total measurement system response can be calculated
easily. For the overall system, [a] the static sensitivity is the product of all
of the static sensitivities, [b] the magnitude ratio is the product of all of the
magnitude ratios, and [c] the phase shift is the sum of all of the phase shifts.

In the end, the most appropriate way to determine the dynamic response
characteristics of a measurement system is through dynamic calibration.
This can be accomplished by subjecting the system to a range of either
step or sinusoidal inputs of amplitudes and frequencies that span the entire
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FIGURE 4.8
The magnitude ratio of a second-order system responding to sinusoidal-input
forcing.

range of those that would be encountered in an actual experiment. With
this approach, the system’s dynamic errors can be quantified accurately.

Example Problem 4.5
Statement: A pressure transducer is connected through flexible tubing to a static

pressure port on the surface of a cylinder that is mounted inside a wind tunnel. The
structure of the flow local to the port is such that the static pressure, p(t), varies as

p(t) = 15sin2t,

in which t is time. Both the tubing and the pressure transducer behave as second-order
systems. The natural frequencies of the transducer, ωn,trans, and the tubing, ωn,tube,
are 2000 rad/s and 4 rad/s, respectively. Their damping ratios are ζtrans = 0.7 and
ζtube = 0.2, respectively. Find the magnitude attenuation and phase lag of the pressure
signal, as determined from the output of the pressure transducer, and then write the
expression for this signal.

Solution: Because this measurement system is linear, the system’s magnitude ratio,
Ms(ω), is the product of the components’ magnitude ratios, and the phase lag, φs(ω), is
the sum of the components’ phase lags, where ω the circular frequency of the pressure.
Thus,

Ms(ω) = Mtube(ω) × Mtrans(ω)

and

φs(ω) = φtube(ω) + φtrans(ω).
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FIGURE 4.9
The phase shift of a second-order system responding to a sinusoidal-input
forcing.

Also, ω/ωtube = 2/4 = 0.5 and ω/ωtrans = 2/2000 = 0.001. Application of Equa-
tions 4.62 and 4.64, noting ζtrans = 0.7 and ζtube = 0.2, yields φtube = −14.9◦, φtrans

= −0.1◦, Mtube = 1.29, and Mtrans = 1.00. Thus, φs(2) = −14.9◦ + −0.1◦ = −15.0◦

and Ms(2) = (1.29)(1.00) = 1.29. The pressure signal, as determined from the out-
put of the transducer, is ps(t) = (15)(1.29)sin[2t− (15.0)(π/180)] = 19.4sin(2t− 0.26).
Thus, the magnitude of the pressure signal at the output of the measurement system
will appear 129 % greater than the actual pressure signal and be delayed in time by
0.13 s [(0.26 s)/(2 rad/s)].

4.8 *Numerical Solution Methods

Differential equations governing a system’s response to input forcing may be
nonlinear and not have exact solutions. Fortunately, methods are available
to numerically integrate most ordinary differential equations and obtain the
system response [24]. The basic solution approach is to reduce any higher-
order ordinary differential equations to a system of coupled, first-order ordi-
nary differential equations. Then, the first-order equations are solved using
finite-difference methods. For example, the second-order ordinary differen-
tial equation
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d2y(t)

dt2
− cy(t) = d (4.65)

can be reduced to two first-order ordinary differential equations by using
the substitution dy/dt = z(t), which yields the system of equations

dy(t)

dt
= z(t) and

dz(t)

dt
= cy(t) + d. (4.66)

Two initial conditions are needed to obtain a specific solution.
The numerical solution of a first-order ordinary differential equation can

be obtained using various finite-difference methods [3]. The exact differen-
tial, dy(t)/dt = f(y, t), is approximated by a finite difference. There are
many ways to approximate dy(t)/dt. The choice depends upon the required
accuracy and computation time. A straightforward finite-difference approx-
imation for dy(t)/dt is the forward Euler expression

f(yn, tn) ≈ yn+1 − yn

∆t
, (4.67)

where n and n + 1 denote the n-th and n + 1-th points. Equation 4.67 leads
directly to

yn+1 = yn + ∆t f(yn, tn). (4.68)

The expression for f(y, t) is obtained from the governing first-order ordinary
differential equation. An initial condition, y(0), also is specified. This permits
the value of yn+1 to be computed for a fixed ∆t from Equation 4.68. This
algorithm is applied successively up to the desired final time.

Other methods can be used to determine an expression analogous to
Equation 4.67. All these methods are easy to implement. The following
more commonly used methods replace f(yn, tn) in Equation 4.68 by

f(yn+1, tn+1) (4.69)

for the backward Euler method, and

f(yn, tn) + f(yn+1, tn+1)

2
(4.70)

for the improved Euler method. The improved Euler method is more ac-
curate than the forward and backward Euler methods. The fourth-order
Runge-Kutta method replacement for Equation 4.67 is

k1 + 2k2 + 2k3 + k4

6
, (4.71)
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FIGURE 4.10
The response of the system dy(t)

dt − 2y(t) = F (t) = 0.5 − t to forcing as
determined by the MATLAB M-file odeint.m.

where

k1 = f(yn, tn),

k2 = f(yn +
∆t

2
k1, tn +

∆t

2
),

k3 = f(yn +
∆t

2
k2, tn +

∆t

2
), and

k4 = f(yn + ∆t k3, tn + ∆t). (4.72)

The fourth-order Runge-Kutta method is more accurate than any Euler
method. It is the method used most frequently and is quite sufficient for
most numerical integrations [3].

Example Problem 4.6
Statement: A first-order system is described by the equation

dy(t)

dt
− 2y(t) = F (t) = 0.5 − t,

with the initial condition y(0) = 1. Solve this differential equation numerically and
analytically. Use four numerical methods: [1] forward Euler, [2] backward Euler, [3]
improved Euler, and [4] fourth-order Runge-Kutta. Use a step size of 0.05 s. Plot all
the results for comparison.
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Solution: The MATLAB M-file odeint.m can be used for this purpose. The results
are presented in Figure 4.10. The fourth-order Runge-Kutta and improved Euler solu-
tions follow the exact solution closely. The backward Euler method underestimates the
response. The forward Euler method overestimates the response.
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4.9 Problem Topic Summary

Topic Review Problems Homework Problems
System Basics 1, 3, 4, 5, 6, 7, 13, 14,

15, 16, 17, 19, 21, 22, 23
First-Order 2, 8, 11, 12, 18, 20 1, 2, 3, 4, 5, 8,

11, 13, 17
Second-Order 9, 10 6, 7, 9, 10, 12, 14,

15, 16, 18, 19, 20

TABLE 4.2
Chapter 4 Problem Summary

4.10 Review Problems

1. Does a smaller diameter thermocouple or a larger diameter thermocou-
ple have the large time constant?

2. The dynamic error in a temperature measurement using a thermocouple
is 70 % at 3 s after an input step change in temperature. Determine the
magnitude ratio of the thermocouple’s response at 1 s.

3. Determine the % dynamic error of a measurement system that has an
output of 3 sin(200t) for an input of 4 sin(200t).

4. Determine the attenuation (reduction) in units of dB/decade for a mea-
surement system that has an output of 3 sin(200t) for an input of
4 sin(200t) and an output of sin(2000t) for an input of 4 sin(2000t).

5. Is a strain gage in itself classified as a zero, first, second, or higher-order
system?

6. Determine the damping ratio of a RLC circuit with LC = 1 s2 that
has a magnitude ratio of 8 when subjected to a sine wave input with a
frequency of 1 rad/s.

7. Determine the phase lag in degrees for a simple RC filter with RC = 5
s when its input signal has a frequency of 1/π Hz.
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8. A first-order system is subjected to a step input of magnitude B. The
time constant in terms of B equals (a) 0.707B, (b) 0.5B, (c) (1 − 1

e )B,
or (d) B/e.

9. A second-order system with ζ = 0.5 and ωn = 2 rad/s is subjected to a
step input of magnitude B. The system’s time constant equals (a) 0.707
s, (b) 1.0 s, (c) (1 − 1

e ) s, or (d) not enough information.

10. A second-order system with ζ = 0.5 and ωn = 2 rad/s is subjected to
a sinusoidal input of magnitude Bsin(4t). The phase lag of the output
signal in units of degrees is (a) −3, (b) −146, (c) −34, or (d) −180.

11. A first-order system is subjected to an input of Bsin(10t). The system’s
time constant is 1 s. The amplitude of the system’s output is approxi-
mately (a) 0.707B, (b) 0.98B, (c) (1 − 1

e )B, or (d) 0.1B.

12. A first-order system is subjected to an input of Bsin(10t). The system’s
time constant is 1 s. The time lag of the system’s output is (a) −0.15 s,
(b) −0.632 s, (c) −π s, or (d) −84.3 s.

13. What is the static sensitivity of the calibration curve F = 250W + 125
at W = 2?

14. The magnitude of the static sensitivity of the calibration curve V =
3 + 8

√
F at F = 16 is (a) 0, (b) 1, (c) 3, (d) 4, or (e) 8.

15. What is the order of each of the following systems? (a) Strain gage, (b)
pressure transducer, (c) accelerometer, (d) RC circuit, (e) thermocouple,
(f) pitot-static tube.

16. What is the magnitude ratio that corresponds to −6 dB?

17. What is the condition for an RLC circuit to be underdamped, critically
damped, or overdamped?

18. A large thermocouple has a time constant of 10 s. It is subjected to a
sinusoidal variation in temperature at a cyclic frequency of 1/(2π) Hz.
The phase lag, in ◦, is approximately (a) −0.707, (b) −3, (c) −45, or
(d) −85.

19. What is the sensitivity of the linear calibration curve at E =
0.5 exp (10/T ) at (a) T = 283 K, (b) T = 300 K, and (c) T = 350 K. (d)
What type of temperature sensor might result in such an exponential
calibration curve?

20. Consider a first-order system where the frequency of the sinusoidal forc-
ing function is 10 Hz and the system response lags by 90◦. What is the
phase lag in seconds?
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Time (ms) Temperature (◦C)
0 24.8
40 22.4
120 19.1
200 15.5
240 13.1
400 9.76
520 8.15
800 6.95
970 6.55
1100 6.15
1400 5.75
1800 5.30
2000 5.20
2200 5.00
3000 4.95
4000 4.95
5000 4.95
6000 4.95
7000 4.95

TABLE 4.3
Thermocouple Response Data

21. The signal 10sin(2πt) passes through a filter whose magnitude ratio is
0.8 and then through a linear amplifier. What must be the gain of the
amplifier for the amplifier’s output signal to have an amplitude of 16?

22. An electronic manometer is calibrated using a fluid based manometer
as the calibration standard. The resulting calibration curve fit is given
by the equation V = 1.1897P − 0.0002, where the unit of P is inches of
H20 and V is volts. The static sensitivity (in V/in. H20) is (a) 0.0002,
(b) 1.1897P 2 - 0.0002P , (c) 1.1897, or (d) −0.0002.

23. Determine the static sensitivity at x = 2.00 for a calibration curve having
y = 0.8+33.72x+3.9086x2. Express the result with the correct number
of significant figures.
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4.11 Homework Problems

1. A first-order system has M(f = 200 Hz) = 0.707. Determine (a) its time
constant (in milliseconds) and (b) its phase shift (in degrees).

2. A thermocouple held in room-temperature air is suddenly immersed
into a beaker of cold water. Its temperature as a function of time is
recorded. Determine the thermocouple’s time constant by plotting the
data listed in Table 4.3, assuming that the thermocouple behaves as
a first-order system. A more accurate method of determining the time
constant is by performing a least-squares linear regression analysis (see
Chapter 8) after transforming the temperatures into their appropriate
nondimensional variables.

3. A first-order system with a time constant equal to 10 ms is subjected
to a sinusoidal forcing with an input amplitude equal to 8.00 V. When
the input forcing frequency equals 100 rad/s, the output amplitude is
5.66 V; when the input forcing frequency equals 1000 rad/s, the output
amplitude is 0.80 V. Determine (a) the magnitude ratio for the 100 rad/s
forcing case, (b) the roll-off slope (in units of dB/decade) for the ωτ = 1
to ωτ = 10 decade, and (c) the phase lag (in degrees) for the 100 rad/s
forcing case.

4. The dynamic error in a temperature measurement using a thermometer
is 70 % at 3 s after an input step change in temperature. Determine
(a) the magnitude ratio at 3 s, (b) the thermometer’s time constant (in
seconds), and (c) the magnitude ratio at 1 s.

5. A thermocouple is immersed in a liquid to monitor its temperature fluc-
tuations. Assume the thermocouple acts as a first-order system. The
temperature fluctuations (in degrees Celsius) vary in time as T (t) =
50 + 25 cos(4t). The output of the thermocouple transducer system (in
V) is linearly proportional to temperature and has a static sensitivity
of 2 mV/◦C. A step-input calibration of the system reveals that its rise
time is 4.6 s. Determine the system’s (a) time constant (in seconds),
(b) output E(t) (in millivolts), and (c) time lag (in seconds) at ω = 0.2
rad/s.

6. A knowledgeable aerospace student selects a pressure transducer (with
ωn = 6284 rad/s and ζ = 2.0) to investigate the pressure fluctuations
within a laminar separation bubble on the suction side of an airfoil.
Assume that the transducer behaves as an over-damped second-order
system. If the experiment requires that the transducer response has
M(ω) ≥ 0.707 and |φ(ω)| ≤ 20◦, determine the maximum frequency
(in hertz) that the transducer can follow and accurately meet the two
criteria.
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7. A strain gage system is mounted on an airplane wing to measure wing
oscillations and strain during wind gusts. The system is second order,
having a 90 % rise time of 100 ms, a ringing frequency of 1200 Hz, and a
damping ratio of 0.8. Determine (a) the dynamic error when subjected
to a 1 Hz oscillation and (b) the time lag (in seconds).

8. In a planned experiment a thermocouple is to be exposed to a step
change in temperature. The response characteristics of the thermocou-
ple must be such that the thermocouple’s output reaches 98 % of the
final temperature within 5 s. Assume that the thermocouple’s bead (its
sensing element) is spherical with a density equal to 8000 kg/m3, a spe-
cific heat at constant volume equal to 380 J/(kg·K), and a convective
heat transfer coefficient equal to 210 W/(m2·K). Determine the maxi-
mum diameter that the thermocouple can have and still meet the desired
response characteristics.

9. Determine by calculation the damping ratio value of a second-order sys-
tem that would be required to achieve a magnitude ratio of unity when
the sinusoidal-input forcing frequency equals the natural frequency of
the system.

10. The pressure tap on the surface of a heat exchanger tube is connected
via flexible tubing to a pressure transducer. Both the tubing and the
transducer behave as second-order systems. The natural frequencies are
30 rad/s for the tubing and 6280 rad/s for the transducer. The damping
ratios are 0.45 for the tubing and 0.70 for the transducer. Determine the
magnitude ratio and the phase lag for the system when subjected to a
sinusoidal forcing having a 100 Hz frequency. What, if anything, is the
problem in using this system for this application?

11. Determine the percent dynamic error in the temperature measured by
a thermocouple having a 3 ms time constant when subjected to a tem-
perature that varies sinusoidally in time with a frequency of 531 Hz.

12. The output of an under-damped second-order system with ζ = 0.1 sub-
jected to step-input forcing initially oscillates with a period equal to 1
s until the oscillation dissipates. The same system then is subjected to
sinusoidal-input forcing with a frequency equal to 12.62 rad/s. Deter-
mine the phase lag (in degrees) at this frequency.

13. A thermocouple is at room temperature (70 ◦F) and at equilibrium
when it is plunged into a water bath at a temperature of 170 ◦F. It
takes the thermocouple 1 s to read a temperature indication of 120 ◦F.
What is the time constant of the thermocouple-fluid system? This same
thermocouple is used to measure a sinusoidally varying temperature.
The variation in degrees Fahrenheit is given by the equation

T = 100 + 200 sin(10t).



136 Measurement and Data Analysis for Engineering and Science

FIGURE 4.11
Current-pulse RL circuit.

What temperature does the thermocouple indicate after steady state
conditions are reached?

14. A pressure transducer that behaves as a second-order system is sup-
posed to have a damping ratio of 0.7, but some of the damping fluid has
leaked out, leaving an unknown damping ratio. When the transducer is
subjected to a harmonic input of 1850 Hz, the phase angle between the
input and the output is 45◦. The manufacturer states that the natural
frequency of the transducer is 18 500 rad/s. (a) What is the dynamic
error in the transducer output for a harmonic pressure signal of 1200
Hz? (b) If the transducer indicates a pressure amplitude of 50 psi, what
is the true amplitude of the pressure?

15. The output of an under-damped second-order system with ζ = 0.1 sub-
jected to step-input forcing initially oscillates with a period equal to 1
s until the oscillation dissipates. The same system then is subjected to
sinusoidal-input forcing with a frequency equal to 12.62 rad/s. Deter-
mine the phase lag (in degrees) at this frequency.

16. Consider the RL circuit shown in the Figure 4.11, where the source is
the current pulse Is(t) = 6 [u(t) − u(t − 1)] A, R = 5 Ω, and L = 5 H.
What is the current response of the circuit, i(t)?

17. For an RC circuit (R = 2 Ω; C = 0.5 F) with step-input forcing from 0
V to 1 V, determine (a) the voltage of the circuit at 1 s, (b) the voltage
of the circuit at 5 s, and (c) the dynamic error at 1 s.

18. For an RLC circuit (R = 2 Ω; C = 0.5 F; L = 0.5 H) with sinusoidal-
input forcing of the form F (t) = 2 sin(2t), determine (a) the phase lag
in degrees, (b) the phase lag in seconds, and (c) the magnitude ratio.

19. For an RLC circuit, (a) what are the mathematical relationships involv-
ing R, L, and C for the system to be under-damped, critically damped,
or over-damped? (b) What is the equivalent time constant of this sys-
tem?
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FIGURE 4.12
Simple RL circuit.

20. Consider the simple RL circuit shown in Figure 4.12 in which R = 10
Ω and L = 5 H. (a) What is the governing equation for the current
in this circuit? Is it first order or second order? (b) What is the time
constant for this system? (c) If the voltage source has a sinusoidal input
of 5sin(10t) V, what is the solution to the governing equation? What is
the magnitude ratio? What is the phase lag (in seconds)? (d) Plot the
current response versus time.
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When you deal in large numbers, probabilities are the same as certainties. I
wouldn’t bet my life on the toss of a single coin, but I would, with great

confidence, bet on heads appearing between 49 % and 51 % of the throws of a
coin if the number of tosses was 1 billion.

Brian L. Silver. 1998. The Ascent of Science. Oxford: Oxford University Press.

It is the nature of probability that improbable things will happen.
Aristotle, c. 350 B.C.

... it is a very certain truth that, whenever we are unable to identify the most
true options, we should follow the most probable...

René Descartes. 1637. Discourse on Method.

Chance favours only the prepared mind.
Louis Pasteur, 1879.
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5.1 Chapter Overview

Probability underlies all of our lives. How often has one heard that the
chance of rain tomorrow will be 50 % or that there is a good chance to be
a winner in today’s lottery? It is hard to avoid its mention in an electroni-
cally connected society. But what science is behind such statements? Similar
questions can be asked in relation to experiments, such as the probability
that a pressure will exceed a certain limit.

In this chapter we will study some of the tools of probability. We will
start by examining the differences between a population and a sample when
using statistics. Next we will find out how to calculate and present the sta-
tistical information about a population or a sample. Then, we will explore
the concept of the probability density function and its integral, the prob-
ability distribution function. The chapter concludes with a review of basic
probability concepts. After finishing with this chapter, you will have studied
most of the basic concepts of probability. This will prepare you to begin the
study of statistics, which is the subject of Chapter 6.

5.2 Relation to Measurements

Probability and statistics are two distinct but closely related fields of science.
Probability deals with the likelihood of events. The mathematics of proba-
bility shows us how to calculate the likelihood or chance of an event based on
theoretical populations. Statistics involve the collection, presentation, and
interpretation of data, usually for the purpose of making inferences about
the behavior of an underlying population or for testing theory. Both fields
can be used to answer many practical questions that arise when performing
an experiment, such as the following:

• How frequently does this event occur?

• What are the chances of rejecting a correct theory?

• How repeatable are the results?

• What confidence is there in the results?

• How can the fluctuations and drift in the data be characterized?

• How much data is necessary for an adequate sample?

Armed with a good grasp of probability and statistics, all of these ques-
tions can be answered quantitatively.
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5.3 Sample versus Population

Quantitative information about a process or population usually is gathered
through an experiment. From this information, certain characteristics of
the process or population can be estimated. This approach is illustrated
schematically in Figure 5.1. The population refers to the complete col-
lection of all members relevant to a particular issue and the sample to a
subset of that population. Some populations are finite, such as the num-
ber of students in a measurements class. Some populations essentially are
infinite, such as the number of molecules in the earth’s atmosphere. Many
populations are finite but are so large that they are considered infinite, such
as the number of domestic pets in the U.S. The sample is drawn randomly
and independently from the population. Statistics of the sample, such as
its sample mean value, x̄, and its sample variance, S2

x, can be com-
puted. From these statistics, the population’s parameters, which literally
are almost measurements, such as its true mean value, x′, and its true
variance, σ2, can be estimated using methods of statistical inference.

The term statistic was defined by R.A. Fisher, the renowned statistician,
as the number that is derived from observed measurements and that esti-
mates a parameter of a distribution [1]. Other useful information also can
be obtained using statistics, such as the probability that a future measurand
will have a certain value. The interval within which the true mean and true
variance are contained also can be ascertained assuming a certain level of
confidence and the distribution of all possible values of the population.

The process of sampling implicitly involves random selection. When a
measurement is made during an experiment, a value is selected randomly
from an infinite number of possible values in the measurand population.
That is, the process of selecting the next measurand value does not depend
upon any previously acquired measurand values. The specific value of the
selected measurand is a random variable, which is a real number between
−∞ and +∞ that can be associated with each possible measurand value.
So, the term random refers to the selection process and not to the often-
misinterpreted meaning that the acquired measurand values form a set of
random numbers. If the selection process is not truly random, then erroneous
conclusions about the population may be made from the sample.

5.4 Plotting Statistical Information

Usually the first thing done after an experiment is to plot the data and to
observe its trends. This data typically is a set of measurand values acquired
with respect to time or space. The representation of the variation in a mea-
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FIGURE 5.1
The finite sample versus the infinite population.

surand’s magnitude with respect to time or space is called its signal. This
signal usually is one of three possible representations: analog (continuous
in both magnitude and time or space), discrete (continuous in magnitude
but at specific, fixed-interval values in time or space), and digital (having
specific, fixed-interval values in both magnitude and time or space). These
three representations of the same signal are illustrated in Figure 5.2 and
discussed further in Chapter 9. In that figure the analog signal is denoted
by the solid curve, the digital signal by open circles, and the discrete signal
by solid circles. The discrete representation sometimes is called a scatter-
gram.

A cursory examination of the continuous signal displayed in Figure 5.2
shows that the signal has variability (its magnitude varies in time) and
exhibits a central tendency (its magnitude varies about a mean value).
How can this information be quantified? What other ways are there to view
the sample such that more can be understood about the underlying physical
process?

One way to view the central tendency of the signal and the frequency of
occurrence of the signal’s values is with a histogram, which literally is a
picture of cells. Galileo may have used a frequency diagram to summarize
some astronomical observations in 1632 [8]. John Graunt probably was the
first to invent the histogram in 1662 in order to present the mortality rates
of the black plague [9].

Consider the digital representation of the signal shown in Figure 5.2.
There are 10 values in units of volts (1.5, 1.0, 2.5, 4.0, 3.5, 2.0, 2.5, 3.0,
2.5, and 0.5). The resolution of the digitization process for this case is 0.5
V. A histogram of this signal is formed by simply counting the number of
times that each value occurs and then plotting the count for each value on
the ordinate axis versus the value on the abscissa axis. The histogram is
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FIGURE 5.2
Various representations of the same signal.

shown in Figure 5.3. Several features are immediately evident. The most
frequently occurring value is 2.5 V. This value occurs three out of ten times,
so it comprises 30 % of the signal’s values. The range of values is from 0.5 V
to 4.0 V. The average value of the signal appears to be between 2.0 V and
2.5 V (its actual value is 2.3 V).

What are the mechanics and rules behind constructing a histogram? In
practice there are two types of histograms. Equal-probability interval his-
tograms have class intervals (bins) of variable width, each containing the
same number of occurrences. Equal-width interval histograms have class
intervals of fixed width, each possibly containing a different number of oc-
currences. The latter is used most frequently. It is more informative because
it clearly shows both the frequency and the distribution of occurrences. The
number of intervals, hence the interval width, and the interval origin must
be determined first before constructing an equal-width interval histogram.
There are many subtleties involved in choosing the optimum interval width
and interval origin. The reader is referred to Scott [9] for a thorough pre-
sentation.

But how is the number of intervals chosen? Too few or too many intervals
yield histograms that are not informative and do not reflect the distribution
of the population. At one extreme, all the occurrences can be contained in
one interval; at the other extreme, each occurrence can be in its own interval.
Clearly, there must be an optimum number of intervals that yields the most
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FIGURE 5.3
The histogram of a digital signal representation.

representative histogram. An example of how the choice of the number of
intervals affects the histogram’s fidelity is presented in Figure 5.4. In that
figure, the theoretical values of the population are represented by black dots
in the left and center histograms and by a white curve in the right histogram.
The data used for the histogram consisted of 5000 values drawn randomly
from a normally distributed population (this type of distribution is discussed
in Chapter 6). In the left histogram, too few intervals are chosen and the
population is over-estimated in the left and right bins and under-estimated
in the center bin. In the right histogram, too many intervals are chosen and
the population is consistently over-estimated in almost all bins. In the middle
histogram, the optimum number of class intervals is chosen and excellent
agreement between the observed and expected values is achieved.

For equal-probability interval histograms, the intervals have different
widths. The widths typically are determined such that the probability of
an interval equals 1/K, where K denotes the number of intervals. Bendat
and Piersol [17] present a formula for K that was developed originally for
continuous distributions by Mann and Wald [11] and modified by Williams
[12]. It is valid strictly for N ≥ 450 at the 95 % confidence level, although
Mann and Wald [11] state that it is probably valid for N ≥ 200 or even
lower N. The exact expression given by Mann and Wald is K = 2[2(N −
1)2/c2]0.2, where c = 1.645 for 95 % confidence. Various spreadsheets as well
as Montgomery and Runger [6] suggest the formula K =

√
N , which agrees
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FIGURE 5.4
Histograms with different numbers of intervals for the same data.

within 10 % with the modified Mann and Wald formula up to approximately
N = 1000.

For equal-width interval histograms, the interval width is constant and
equal to the range of values (maximum minus minimum values) divided by
the number of intervals. Sturgis’ formula [10] determines K from the number
of binomial coefficients needed to have a sum equal to N and can be used for
values of N as low as approximately 30. Based upon this formula, various
authors, such as Rosenkrantz [5], suggest using values of K between 5 and 20
(this would cover between approximately N = 25 = 32 to N = 220 ' 106).
Scott’s formula for K ([13] and [14]), valid for N ≥ 25, was developed to
minimize the integrated mean square error that yields the best fit between
Gaussian data and its parent distribution. The exact expression is ∆x =
3.49σN−1/3, where ∆x is the interval width and σ the standard deviation.
Using this expression and assuming a range of values based upon a certain
percent coverage, an expression for K can be derived.

The formulas for K for both types of histograms are presented in Ta-
ble 5.1 and displayed in Figure 5.5. The number of intervals for equal-
probability interval histograms at a given value of N is approximately two
to three times greater than the corresponding number for equal-width inter-
val histograms. More intervals are required for the former case because the
center intervals must be narrow and numerous to maintain the same proba-
bility as those intervals on the tails of the distribution. Also, because of the
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FIGURE 5.5
K = f(N) formulas for equal-width and equal-probability histograms. Equal-
probability interval symbols: modified Mann and Wald formula (dash) and
square-root formula (solid). Equal-width interval symbols: Sturgis formula
(dash) and Scott formula (solid).

low probabilities of occurrence at the tails of the distribution, some inter-
vals for equal-width histograms may need to be combined to achieve greater
than five occurrences in an interval. This condition (see [14]) is necessary
for proper comparison between theoretical and experimental distributions.
However, for small samples it may not be possible to meet this condition.
Another very important condition that must be followed is that ∆x ≥ ux,
where ux is the uncertainty of the measurement of x. That is, the interval
width should never be smaller than the uncertainty of the measurand.

To construct equal-width histograms, these steps must be followed:

1. Identify the minimum and maximum values of the measurand x, xmin,
and xmax, thereby finding its range, xrange = xmax − xmin.

2. Determine the number of class intervals, K, using the appropriate for-
mula for equal-width histograms. Preferably, this should be Scott’s for-
mula.

3. Calculate the width of each interval, where ∆x = xrange/K.
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Interval Type Formula Reference
Equal-probability K = 1.87(N − 1)0.40 [11], [12], [17]

Equal-probability K =
√

N [6], [15]
Equal-width K = 3.322 log10 N [10]

Equal-width K = 1.15N1/3 [13], [14]

TABLE 5.1
Formulas for the number of histogram intervals with 95 % confidence.

4. Count the number of occurrences, nj (j = 1 to K), in each ∆x interval.
Check that the sum of all the nj ’s equals N , the total number of data
points.

5. Check that the conditions for nj > 5 (if possible) and ∆x ≥ ux (defi-
nitely) are met.

6. Plot nj vs xmj , where xmj is discretized as the mid-point value of each
interval.

Instead of examining the distribution of the number of occurrences of
various magnitudes of a signal, the frequency of occurrences can be deter-
mined and plotted. The plot of nj/N = fj versus xmj is known as the
frequency distribution (sometimes called the relative frequency distri-
bution). The area bounded laterally by any two x values in a frequency
distribution equals the frequency of occurrence of that range of x values or
the probability that x will assume values in that range. Also, the sum of all
the fj ’s equals 1. The frequency distribution often is preferred over the his-
togram because it corresponds to the probabilities of occurrence. Further, as
the sample size becomes large, the sample’s frequency distribution becomes
similar to the distribution of the population’s probabilities, which is called
the probability density function.

The distribution of all of the values of the infinitely large population
is given by its probability density function, p(x). This will be defined in
the next section. Typically p(x) is normalized such that the integral of p(x)
over all x equals unity. This effectively sets the sum of the probabilities of
all the values between −∞ and +∞ to be unity or 100 %. Similar to the
frequency distribution, the area under the portion of the probability density
function over a given measurand range equals the percent probability that
the measurands will have values in that range.

To properly compare a frequency distribution with an assumed proba-
bility density function on the same graph, the frequency distribution first
must be converted into a frequency density distribution. The frequency
density is denoted by f∗

j , where f∗
j = fj/∆x. This is because the probability

density function is related to the frequency distribution by the expression
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FIGURE 5.6
Sample histogram and frequency distributions of the same data.

p(x) = lim
N→∞,∆x→0

K∑

j=1

fj/∆x = lim
N→∞,∆x→0

K∑

j=1

fj
∗. (5.1)

The N required for this comparative limit to be attained within a certain
confidence can be determined using the law of large numbers [5], which is

N ≥ 1

4ε2(1 − Po)
. (5.2)

This law, derived by Jacob Bernoulli (1654-1703), considered the father of
the quantification of uncertainty, was published posthumously in 1713 [1].
The law determines the N required to have a probability of at least Po that
f∗

j (x) differs from p(x) by less than ε.

Example Problem 5.1
Statement: One would like to determine whether or not a coin used in a coin toss

is fair. How many tosses would have to be made to assess this?
Solution: Assume one wants to be at least 68 % confident (Po = 0.68) that the

coin’s fairness is assessed to within 5 % (ε = 0.05). Then, according to Equation 5.2,
the coin must be tossed at least 310 times (N ≥ 310).
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Often the frequency distribution of a finite sample is used to identify the
probability density function of its population. The probability density func-
tion’s shape tells much about the physical process governing the population.
Once the probability density function is identified, much more information
about the process can be obtained.

5.5 Probability Density Function

Consider the time history record of a random variable, x(t). Its probability
density function, p(x), reveals how the values of x(t) are distributed over
the entire range of x(t) values. The probability that x(t) will be between x∗

and x∗ + ∆x is given by

p(x) = lim
∆x→0

Pr[x∗ < x(t) ≤ x∗ + ∆x]

∆x
. (5.3)

The probability that x(t) is in the range x to x + ∆x over a total time
period T also can be determined. Assume that T is large enough such that
the statistical properties are truly representative of that time history. Fur-
ther assume that a single time history is sufficient to fully characterize the
underlying process. These assumptions are discussed further in Chapter 9.
For the time history depicted in Figure 5.7, the total amount of time during
the time period T that the signal is between x and x + ∆x is given by Tx,
where

Tx =

m∑

j=1

∆tj (5.4)

for m occurrences. In other words,

Pr[x < x(t) ≤ x + ∆x] = lim
T→∞

[
Tx

T

]
= lim

T→∞

1

T

m∑

j=1

∆tj . (5.5)

This implies that

p(x) = lim
∆x→0

1

∆x


 lim

T→∞

1

T

m∑

j=1

∆tj


 = lim

∆x→0,T→∞

[
Tx/T

∆x

]
. (5.6)

Likewise, x could be the number of occurrences of a variable with a ∆x
interval, nj , where the total number of occurrences is N . Here N is like T
and nj is like Tx, so
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FIGURE 5.7
A time history record.

p(x) = lim
∆x→0

1

∆x


 lim

N→∞

m∑

j=1

nj

N


 = lim

∆x→0,N→∞

m∑

j=1

[
nj/N

∆x

]
. (5.7)

Equations 5.6 and 5.7 show that the limit of the frequency density distribu-
tion is the probability density function.

The probability density function of a signal that repeats itself in time
can be found by applying the aforementioned concepts. To determine the
probability density function of this type of signal, the signal only needs to
be examined over one period T . Equation 5.6 then becomes

p(x) =
1

T
lim

∆x→0

1

∆x

m∑

j=1

∆tj . (5.8)

Now as ∆x → 0, ∆tj → ∆x · |dt/dx|j . Thus, in the limit as ∆x → 0,
Equation 5.8 becomes

p(x) =
1

T

m∑

j=1

|dt/dx|j , (5.9)

noting that m is the number of times the signal is between x and x + ∆x.

Example Problem 5.2
Statement: Determine the probability density function of the periodic signal x(t) =

xo sin(ωt) with ω = 2π/T .
Solution: Differentiation of the signal with respect to time yields

dx = xoω cos(ωt)dt or dt = dx/[xoω cos(ωt)]. (5.10)
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FIGURE 5.8
Constructing p(x) from the time history record.

Now, the number of times that this particular signal resides during one period in the
x to x + ∆x interval is 2. Thus, for this signal, using Equations 5.9 and 5.10, the
probability density function becomes

p(x) =
ω

2π
2| 1

xoω cos(ωt)
| = | 1

πxo cos(ωt)
|. (5.11)

The probability density functions of other deterministic, continuous functions of
time can be found using the same approach.

The probability density function also can be determined graphically by
analyzing the time history of a signal in the following manner:

1. Given x(t) and the sample period, T , choose an amplitude resolution
∆x.

2. Determine Tx, then Tx/(T∆x), noting also the mid-point value of x for
each ∆x interval.

3. Construct the probability density function by plotting Tx/(Tx∆x) for
each interval on the ordinate (y-axis) versus the mid-point value of x for
that interval on the abscissa (x-axis).
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FIGURE 5.9
Approximations of p(x) from x(t) = sin(2πt).

Note that the same procedure can be applied to examining the time history
of a signal that does not repeat itself in time. By graphically determining the
probability density function of a known periodic signal, it is easy to observe
the effect of the amplitude resolution ∆x on the resulting probability density
function in relation to the exact probability density function.

Example Problem 5.3
Statement: Consider the signal x(t) = xo sin(2πt/T ). For simplicity, let xo = 1

and T = 1, so x = sin(2πt). Describe how the probability density function could be
determined graphically.

Solution: First choose ∆x = 0.10. As illustrated in Figure 5.8, for the interval
0.60 < sin(2πt) ≤ 0.70, Tx = 0.020 + 0.020 = 0.040, which yields Tx/(Tx∆x) = 0.40
for the mid-point value of x = 0.65. Likewise, for the interval 0.90 < sin(2πt) ≤ 1.00,
Tx = 0.14, which yields Tx/(T∆x) = 1.40 for the mid-point value of x = 0.95. Using
this information gathered for all ∆x intervals, an estimate of the probability density
function can be made by plotting Tx/(T/∆x) versus x.

One simple way of interpreting the underlying probability density func-
tion of a signal is to consider it as the projection of the density of the signal’s
amplitudes, as illustrated below in Figure 5.10 for the signal x = sin(2πt).
The more frequently occurring values appear more dense as viewed along
the horizontal axis.
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FIGURE 5.10
Projection of signal’s amplitude densities.

In some situations, particularly when examining the time history of a
random signal, the aforementioned procedure of measuring the time spent
at each ∆x interval to determine p(x) becomes quite laborious. Recall that
if p(x)dx is known, the probability of occurrence of x for any range of x is
given by

p(x)dx = lim
∆x→0

p(x)∆x = lim
T→∞

[
Tx

T

]
. (5.12)

Recognizing this, an alternative approach can be used to determine the
quantity p(x)dx by choosing a very small ∆x, such as the thickness of a
pencil line. If a horizontal line is moved along the amplitude axis at constant-
amplitude increments and the number of times that the line crosses the
signal is determined for each amplitude increment, Cx, then

p(x)dx = lim
C→∞

[
Cx

C

]
, (5.13)

where C is a very large number. Note that p(x)dx was determined by this
approach, not p(x), as was done previously.

5.6 Various Probability Density Functions

The concept of the probability density function was introduced in Chapter
5. There are many specific probability density functions. Each represents a
different population that is characteristic of some physical process. In the
following, a few of the more common ones will be examined.

Some of the probability density functions are for discrete processes (those
having only discrete outcomes), such as the binomial probability density
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FIGURE 5.11
Graphical approach to determine p(x)dx.

function. This describes the probability of the number of successful out-
comes, n, in N repeated trials, given that only either success (with proba-
bility P ) or failure (with probability Q = 1 − P ) is possible. The binomial
probability density function, for example, describes the probability of ob-
taining a certain sum of the numbers on a pair of dice when tossed or the
probability of getting a particular number of heads and tails for a series of
coin tosses. The Poisson probability density function models the probability
of rarely occurring events. It can be derived from the binomial probability
density function. Two examples of processes that can be modeled by the
Poisson probability density function are number of disintegrative emissions
from an isotope and the number of micrometeoroid impacts on a spacecraft.
Although the outcomes of these processes are discrete whole numbers, the
process is considered continuous because of the very large number of events
considered. This essentially amounts to possible outcomes that span a large,
continuous range of whole numbers.

Other probability density functions are for continuous processes. The
most common one is the normal (Gaussian) probability density function.
Many situations closely follow a normal distribution, such as the times of
runners finishing a marathon, the scores on an exam for a very large class,
and the IQs of everyone without a college degree (or with one). The Weibull
probability density function is used to determine the probability of fatigue-
induced failure times for components. The lognormal probability density
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function is similar to the normal probability density function but considers
its variable to be related to the logarithm of another variable. The diameters
of raindrops are lognormally distributed, as are the populations of various
biological systems. Most recently, scientists have suggested a new probability
density function that can be used quite successfully to model the occurrence
of clear-air turbulence and earthquakes. This probability density function
is similar to the normal probability density function but is skewed to the
left and has a larger tail to the right to account for the observed higher
frequency of more rarely occurring events.

5.6.1 Binomial Distribution

Consider first the binomial distribution. In a repeated trials experiment con-
sisting of N independent trials with a probability of success, P , for an in-
dividual trial, the probability of getting exactly n successes (for n ≤ N) is
given by the binomial probability density function

p(n) =

[
N !

(N − n)!n!

]
Pn(1 − P )N−n. (5.14)

The mean, n̄, and the variance, σ2, are NP and NPQ, respectively, where
Q is the probability of failure, which equals 1−P . The higher-order central
moments of the skewness and kurtosis are (Q−P )/(NPQ)0.5 and 3 + [(1−
6PQ)/NPQ], respectively.

As shown in Figure 5.12, for a fixed N , as P becomes larger, the proba-
bility density function becomes skewed more to the right. For a fixed P , as
N becomes larger, the probability density function becomes more symmet-
ric. Tending to the limit of large N and small but finite P , the probability
density function approaches a normal one. The MATLAB M-file bipdfs.m

was used to generate this figure based upon the binopdf(n,N,P) command.

Example Problem 5.4
Statement: Suppose five students are taking a probability course. Typically, only

75 % of the students pass this course. Determine the probabilities that exactly 0, 1, 2,
3, 4, or 5 students will pass the course.

Solution: These probabilities are calculated using Equation 5.14, where N = 5,
P = 0.75, and n = 0, 1, 2, 3, 4, and 5. They are displayed immediately below and
plotted in Figure 5.13.

p(0) = 1 × 0.750 × 0.255 = 0.0010
p(1) = 5 × 0.751 × 0.254 = 0.0146
p(2) = 10 × 0.752 × 0.253 = 0.0879
p(3) = 10 × 0.753 × 0.252 = 0.2637
p(4) = 5 × 0.754 × 0.251 = 0.3955
p(5) = 1 × 0.755 × 0.250 = 0.2373

sum = 1.0000
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FIGURE 5.12
Binomial probability density functions for various N and P .

5.6.2 Poisson Distribution

Next consider the Poisson distribution. In the limit when N becomes very
large and P becomes very small (close to zero, which implies a rare event) in
such a way that the mean (= NP ) remains finite, the binomial probability
density function very closely approximates the Poisson probability density
function.

For these conditions, the Poisson probability density function allows us
to determine the probability of n rare event successes (occurrences) out of
a large number of N repeated trial experiments (during a series of N time
intervals) with the probability P of an event success (during a time interval)
as given by the probability density function

p(n) =
(NP )n

n!
e−NP . (5.15)

The MATLAB command poisspdf(n,N*P) can be used to calculate the
probabilities given by Equation 5.15. The mean and variance both equal
NP , noting (1 − P ) ≈ 1. The skewness and kurtosis are (NP )−0.5 and
3+1/NP , respectively. As NP is increased, the Poisson probability density
function approaches a normal probability density function.
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FIGURE 5.13
Probabilities for various numbers of students passed.

Example Problem 5.5
Statement: There are 2 × 10−20 α particles per second emitted from the nucleus

of an isotope. This implies that the probability for an emission from a nucleus to
occur in one second is 2 × 10−20. Assume that the total material to be observed
is comprised of 1020 atoms. Emissions from the material are observed at one-second
intervals. Determine the resulting probabilities that a total of 0, 1, 2, ..., 8 emissions
occur in the interval.

Solution: The probabilities are calculated using Equation 5.15, where N = 1020, P
= 2 × 10−20 and n = 0 through 8. The results are

p(0) = 0.135
p(1) = 0.271
p(2) = 0.271
p(3) = 0.180
p(4) = 0.090
p(5) = 0.036
p(6) = 0.012
p(7) = 0.003
p(8) = 0.001
sum = 0.999

These results are displayed in Figure 5.14.
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FIGURE 5.14
Poisson example of isotope emissions.

5.7 Central Moments

Once the probability density function of a signal has been determined, this
information can be used to determine the values of various parameters.
These parameters can be found by computing the central moments of
the probability density function. Computations of statistical moments are
similar to those performed to determine mechanical moments, such as the
moment of inertia of an object. The term central refers to the fact that
the various statistical moments are computed with respect to the centroid
or mean of the probability density function of the population. The m-th
central moment is defined as

〈(x − x′)m〉 = E [(x − x′)m] = µm ≡
∫ +∞

−∞

(x − x′)mp(x)dx. (5.16)

Either 〈 〉 or E [ ] denotes the expected value or expectation of the
quantity inside the brackets. This is the value that is expected (in the prob-
abilistic sense) if the integral is performed.

When the centroid or mean, x′, equals 0, the central moments are known
as moments about the origin. Equation 5.16 becomes
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〈xm〉 ≡
∫ +∞

−∞

xmp(x)dx = µ′
m. (5.17)

Further, the central moment can be related to the moment about the origin
by the transformation

µm =

m∑

i=0

(−1)i

(
m

i

)
µi

1µ
′
m−i where

(
m

i

)
=

m!

i!(m − i)!
. (5.18)

The zeroth central moment, µo, is an identity

µo =

∫ +∞

−∞

p(x)dx = 1. (5.19)

Having µo = 1 assures that p(x) is normalized correctly.
The first central moment, µ1, leads to the definition of the mean

value (the centroid of the distribution). For m = 1,

〈
(x − x′)1

〉
=

∫ +∞

−∞

(x − x′)p(x)dx. (5.20)

Expanding the left side of Equation 5.20 yields

〈(x − x′)〉 = 〈x〉 − 〈x′〉 = 〈x〉 − x′ = 0, (5.21)

because the expectation of x, 〈x〉, is the true mean value of the population,
x′. Hence, µ1 = 0. Now expanding the right side of Equation 5.20 reveals
that

∫ +∞

−∞

(x− x′)p(x)dx =

∫ +∞

−∞

xp(x)dx− x′

∫ +∞

−∞

p(x)dx =

∫ +∞

−∞

xp(x)dx− x′.

(5.22)
Because the right side of the equation must equal zero, it follows that

x′ =

∫ +∞

−∞

xp(x)dx. (5.23)

Equation 5.23 is used to compute the mean value of a distribution given its
probability density function.

The second central moment, µ2, defines the variance, σ2, as

µ2 =

∫ +∞

−∞

(x − x′)2p(x)dx = σ2, (5.24)

which has units of x2. The standard deviation, σ, is the square root of
the variance. It describes the width of the probability density function.
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The variance of x can be expressed in terms of the expectation of x2,
E[x2], and the square of the mean of x, x′2. Equation 5.16 for this case
becomes

σ2 = E[(x − x′)2]

= E[x2 − 2xx′ + x′2]

= E[x2] − 2x′E[x] + x′2

= E[x2] − 2x′x′ + x′2

= E[x2] − x′2. (5.25)

So, when the mean of x equals 0, the variance of x equals the expectation
of x2. Further, if the mean and variance of x are known, then E[x2] can be
computed directly from Equation 5.25.

Example Problem 5.6
Statement: Determine the mean power dissipated by a 2 Ω resistor in a circuit

when the current flowing through the resistor has a mean value of 3 A and a variance
of 0.4 A2.

Solution: The power dissipated by the resistor is given by P = I2R, where I is
the current and R is the resistance. The mean power dissipated is expressed as E[P ].
Assuming that R is constant, E[P ] = E[I2R] = RE[I2]. Further, using Equation 5.25,

E[I2] = σ2
I + I′2. So, E[P ] = R(σ2

I + I′2) = 2(0.4 + 32) = 18.8 W. Expressed with the
correct number of significant figures (one), the answer is 20 W.

The third central moment, µ3, is used in the definition of the skew-
ness, Sk, where

Sk =
µ3

σ3
=

1

σ3

∫ +∞

−∞

(x − x′)3p(x)dx. (5.26)

Defined in this manner, the skewness has no units. It describes the symme-
try of the probability density function, where a positive skewness implies
that the distribution is skewed or stretched to the right. This is shown in
Figure 5.15. When the distribution has positive skewness, the probability
density function’s mean is greater than its mode, where the mode is the
most frequently occurring value. A negative skewness implies the opposite
(stretched to the left with mean < mode). The sign of the mean minus
the mode is the sign of the skewness. For the normal distribution, Sk = 0
because the mean equals the mode.

The fourth central moment, µ4, is used in the definition of the kur-
tosis, Ku, where

Ku =
µ4

σ4
=

1

σ4

∫ +∞

−∞

(x − x′)4p(x)dx, (5.27)
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FIGURE 5.15
Distributions with positive and negative skewness.

which has no units. The kurtosis describes the peakedness of the probability
density function. A leptokurtic probability density function has a slender
peak, a mesokurtic one a middle peak, and a platykurtic one a flat peak.

For the normal distribution, Ku = 3. Sometimes, another expression is
used for the kurtosis, where Ku∗ = Ku − 3 such that Ku∗ < 0 implies
a probability density function that is flatter than the normal probability
density function, and Ku∗ > 0 implies one that is more peaked than the
normal probability density function.

For the special case in which x is a normally distributed random variable,
the m-th central moments can be written in terms of the standard deviation,
where µm = 0 when m is odd and > 1, and µm = 1 · 3 · 5 · · · (m − 1)σm

when m is even and > 1. This formulation obviously is useful in determining
higher-order central moments of a normally distributed variable when the
standard deviation is known.

5.8 Probability Distribution Function

The probability that a value x is less than or equal to some value of x∗ is
defined by the probability distribution function, P (x). Sometimes this
also is referred to as the cumulative probability distribution function. The
probability distribution function is expressed in terms of the integral of the
probability density function

P (x∗) = Pr[x ≤ x∗] =

∫ x∗

−∞

p(x)dx. (5.28)

From this, the probability that a value of x will be between the values of x∗
1

and x∗
2 becomes
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FIGURE 5.16
Example probability density (left) and probability distribution (right) func-
tions.

Pr[x∗
1 ≤ x ≤ x∗

2] = P (x∗
2) − P (x∗

1) =

∫ x∗

2

x∗

1

p(x)dx. (5.29)

Note that p(x) is dimensionless. The units of P (x) are those of x.
Example plots of p(x) and P (x) are shown in Figure 5.16. The probability

density function is in the left figure and the probability distribution function
in the right figure. The P (x) values for each x value are determined simply
by finding the area under the p(x) curve up to each x value. For example,
the area at the value of x = 1 is a triangular area equal to 0.5 × 1.0 ×
1.0 = 0.5. This is the corresponding value of the probability distribution
function at x = 1. Note that the probability density in this example is not
normalized. The final value of the probability distribution function does
not equal unity. What does the maximum value of the probability density
function have to be for the probability density function to be normalized
correctly, as described in Section 5.7? The answer is unity. So, to normalize
p(x) correctly, all values of p(x) should be divided by 1/3 in this example.



Probability 165

5.9 *Probability Concepts

The concept of the probability of an occurrence or outcome is intuitive.
Consider the toss of a fair die. The probability of getting any one of the
six possible numbers is 1/6. Formally this is written as Pr[A] = 1/6 or
approximately 17 %, where the A denotes the occurrence of any one specific
number. The probability of an occurrence can be defined as the number of
times of the occurrence divided by the total number of times considered (the
times of the occurrence plus the times of no occurrence). If the probabilities
of getting 1 or 2 or 3 or 4 or 5 or 6 on a single toss are added, the result is
Pr[1]+Pr[2]+Pr[3]+Pr[4]+Pr[5]+Pr[6] = 6(1/6) = 1. That is, the sum of
all of the possible probabilities is unity. A probability of 1 implies absolute
certainty; a probability of 0 implies absolute uncertainty or impossibility.

Now consider several tosses of a die and, based upon these results, de-
termine the probability of getting a specific number. Each toss results in an
outcome. The tosses when the specific number occurred comprise the set
of occurrences for the event of getting that specific number. The tosses in
which the specific number did not occur comprise the null set or comple-
ment of that event. Remember, the event for this situation is not a single
die toss, but rather all the tosses in which the specific number occurred. Sup-
pose, for example, the die was tossed eight times, obtaining eight outcomes:
1, 3, 1, 5, 5, 4, 6, and 2. The probability of getting a 5 based upon these
outcomes would be Pr[5] = 2/8 = 1/4. That is, two of the eight possible
outcomes comprise the set of events where 5 is obtained. The probability of
the event of getting a 3 would be Pr[3] = 1/8. These results do not imply
necessarily that the die is unfair, rather, that the die has not been tossed
enough times to assess its fairness. This subject was considered briefly (see
Equation 5.2). It addresses the question of how many measurements need
to be taken to achieve a certain level of confidence in an experiment.

5.9.1 *Union and Intersection of Sets

Computing probabilities in the manner just described is correct provided the
one event that is considered has nothing in common with the other events.
Continuing to use the previous example of eight die tosses, determine the
probability that either an even number or the numbers 3 or 4 occur. There is
Pr[even] = 3/8 (from 4, 6, and 2) and Pr[3] = 1/8 and Pr[4] = 1/8. Adding
the probabilities, the sum equals 5/8. Inspection of the results, however,
shows that the probability is 1/2 (from 3, 4, 6, and 2). Clearly the method
of simply adding these probabilities for this type of situation is not correct.

To handle the more complex situation when events have members in
common, the union of the various sets of events must be considered, as
illustrated in Figure 5.17. The lined triangular region marks the set of events
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FIGURE 5.17
The union and the intersection of the sets A and B.

A and the circular region the set of events B. The complement of A is
denoted by A′. The sample space is exhaustive because A and A′ comprise
the entire sample space. For two sets A and B, the union is the set of
all members of A or B or both, as denoted by the region bordered by the
dashed line. This is written as Pr[A ∪ B].

If the sets of A and B are mutually exclusive where they do not share
any common members, then

Pr[A ∪ B] = Pr[A] + Pr[B]. (5.30)

This would be the case if the sets A and B did not overlap in the figure (if
the circular region was outside the triangular region). Thus, the probability
of getting 3 or 4 in the eight-toss experiment is 1/4 (from 3 and 4).

If the sets do overlap and have common members, as shown by the cross-
hatched region in the figure, then

Pr[A ∪ B] = Pr[A] + Pr[B] − Pr[A ∩ B], (5.31)

where Pr[A ∩ B] is the probability of the intersection of A and B. The
intersection is the set of all members in both A and B. So, the correct way
to compute the desired probability is Pr[even∪3∪4] = Pr[even] + Pr[3] +
Pr[4] − Pr[even∩3∩4] = 3/8 + 1/8 + 1/8 − 1/8 = 1/2. Pr[even∩3∩4] =
1/8, because only one common member, 4, occurred during the eight tosses.

5.9.2 *Conditional Probability

The moment questions are asked such as, “What is the chance of getting a 4
on the second toss of a die given either a 1 or a 3 was rolled on the first toss?”,
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more thought is required to answer them. This is a problem in conditional
probability, the probability of an event given that specified events have
occurred in the past. This concept can be formalized by determining the
probability that event B occurs given that event A occurred previously.
This is written as Pr[B | A], where

Pr[B | A] ≡ Pr[B ∩ A]

Pr[A]
. (5.32)

Rearranging this definition gives

Pr[B ∩ A] = Pr[B | A]Pr[A]. (5.33)

This is known as the multiplication rule of conditional probability. Further,
because Pr[A ∩ B] = Pr[B ∩ A], Equation 5.33 implies that

Pr[B | A]Pr[A] = Pr[A | B]Pr[B]. (5.34)

Examination of Figure 5.17 further reveals that

Pr[A] = Pr[A ∩ B] + Pr[A ∩ B′], (5.35)

where A ∩ B′ is shown as the lined region and B′ means not B. Using the
converse of Equation 5.33, Equation 5.35 becomes

Pr[A] = Pr[A | B]Pr[B] + Pr[A | B′]Pr[B′]. (5.36)

Equation 5.36 is known as the total probability rule of conditional probabil-
ity. It can be extended to represent more than two mutually exclusive and
exhaustive events [6].

When events A and B are mutually exclusive, then Pr[B | A] = 0,
which leads to Pr[B ∩ A] = 0. When event B is independent of event A,
the outcome of event A has no influence on the outcome of event B. Then

Pr[B | A] = Pr[B]. (5.37)

Thus, for independent events, it follows from Equations 5.33 and 5.37 that

Pr[B ∩ A] = Pr[B]Pr[A]. (5.38)

That is, the conditional probability of a series of independent events is the
product of the individual probabilities of each of the events. Hence, to answer
the question posed at the beginning of this section, Pr[B ∩ A] = Pr[A]
Pr[B] = (1/6)(2/6) = 2/36. That is, there is approximately a 6 % chance
that either an even number or the numbers 3 or 4 occurred.

The chance of winning the lottery can be determined easily using this
information. The results suggest not to bet in lotteries. Assume that four
balls are drawn from a bin containing white balls numbered 1 through 49,
and then a fifth ball is drawn from another bin containing red balls with
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the same numbering scheme. Because each number selection is indepen-
dent of the other number selections, the probability of guessing the num-
bers on the four white balls correctly would be Pr[1] Pr[2] Pr[3] Pr[4] =
(1/49)(1/48)(1/47)(1/46) = 1/(5 085 024). The probability of guessing the
numbers on all five balls correctly would be Pr[1] Pr[2] Pr[3] Pr[4] Pr[5] =
[1/(5 085 024)](1/49) = 1/(249 166 176) or about 1 chance in 250 million!
That chance is about equivalent to tossing a coin and getting 28 heads in
a row. Recognizing that the probability that an event will not occur equals
one minus the probability that it will occur, the chance of not winning the
lottery is 99.999 999 6 %. So, it is very close to impossible to win the lottery.

Other useful conditional probability relations can be developed. Using
Equation 5.34 and its converse, noting that Pr[A ∩ B] = Pr[B ∩ A],

Pr[B | A] =
Pr[B]Pr[A | B]

Pr[A]
. (5.39)

This relation allows us to determine the probability of event B occurring
given that event A has occurred from the probability of event A occurring
given that event B has occurred.

Example Problem 5.7
Statement: Determine the probability that the temperature, T , will exceed 100

◦F in a storage tank whenever the pressure, p, exceeds 2 atmospheres. Assume the
probability that the pressure exceeds 2 atmospheres whenever the temperature exceeds
100 ◦F is 0.30, the probability of the pressure exceeding 2 atmospheres is 0.10 and the
probability of the temperature exceeding 100 ◦F is 0.25.

Solution: Formally, Pr[p > 2 | T > 100] = 0.30, Pr[p¿2] = 0.10 and Pr[T >100] =
0.25. Using Equation 5.39, Pr[T > 100 | p >2] = (0.25)(0.30)/(0.10) = 0.75. That is,
whenever the pressure exceeds 2 atmospheres there is a 75 % chance that the temper-
ature will exceed 100 ◦F.

Equation 5.36 can be substituted into Equation 5.39 to yield

Pr[B | A] =
Pr[A | B]Pr[B]

Pr[A | B]Pr[B] + Pr[A | B′]Pr[B′]
. (5.40)

This equation expresses what is known as Bayes’ rule, which is valid for
mutually exclusive and exhaustive events. It was discovered accidentally
by the Reverend Thomas Bayes (1701-1761) while manipulating formulas
for conditional probability [1]. Its power lies in the fact that it allows one
to calculate probabilities inversely, to determine the probability of a before
event conditional upon an after event. This equation can be extended to
represent more than two events [6]. Bayes’ rule can be used to solve many
practical problems in conditional probability. For example, the probability
that a component identified as defective by a test of known accuracy ac-
tually is defective can be determined knowing the percentage of defective
components in the population.
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Before determining this probability specifically, examine these types of
probabilities in a more general sense. Assume that the probability of an
event occurring is p1. A test can be performed to determine whether or not
the event has occurred. This test has an accuracy of 100p2 percent. That
is, it is correct 100p2 percent of the time and incorrect 100(1 − p2) percent
of the time. What is the percent probability that the test can predict an
actual event? There are four possible situations that can arise: (1) the test
indicates that the event has occurred and the event actually has occurred
(a true positive), (2) the test indicates that the event has occurred and the
event actually has not occurred (a false positive), (3) the test indicates that
the event has not occurred and the event actually has occurred (a false neg-
ative), and (4) the test indicates that the event has not occurred and the
event actually has not occurred (a true negative). Here, the terms positive
and negative refer to the indicated occurrence of the event and the terms
true and false refer to whether or not the indicated occurrence agrees with
the actual occurrence of the event. So, the probabilities of the four possible
combinations of events are p2p1 for true positive, (1 − p2)(1 − p1) for false
positive, (1− p2)p1 for false negative, and p2(1− p1) for true negative. Now
the probability that an event actually occurred given that a test indicated
that it had occurred would be the ratio of the actual probability of occur-
rence (the true positive probability) to the sum of all indicated positive
occurrences (the true positive plus the false positive probabilities). That is,

Pr[A | IA] =
p2p1

p2p1 + (1 − p2)(1 − p1)
, (5.41)

where IA denotes the event of an indicated occurrence of A and A symbolizes
the event of an actual occurrence.

Alternatively, Equation 5.41 can be derived directly using Bayes’ rule.
Here,

Pr[A | IA] =
Pr[IA | A]Pr[A]

Pr[IA | A]Pr[A] + Pr[IA | A′]Pr[A′]
, (5.42)

which is identical to Equation 5.41 because Pr[IA | A] = p2, Pr[A] = p1,
Pr[IA | A′] = (1 - p2) and Pr[A′] = (1 - p1).

Example Problem 5.8
Statement: An experimental technique is being developed to detect the removal

of a microparticle from the surface of a wind tunnel wall as the result of a turbulent
sweep event. Assume that a sweep event occurs 14 % of the time when the detection
scheme is operated. The experimental technique can detect a sweep event correctly 73
% of the time. [a] What is the probability that a sweep event will be detected during
the time period of operation? [b] What is the probability that a sweep event will be
detected if the experimental technique is correct 90 % of the time?

Solution: The desired probability is the ratio of true positive identifications to
true positive plus false positive identifications. Let p1 be the probability of an actual
sweep event occurrence during the time period of operation and p2 be the experimental
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technique’s reliability (the probability to identify correctly). For this problem, p1 = 0.14
and p2 = 0.73 for part [a] and p2 = 0.90 for part [b]. Substitution of these values into
Equation 5.41 yields P = 0.31 for part [a] and P = 0.59 for part [b]. First, note that
the probability that a sweep event will be detected is only 31 % with a 73 % reliability
of the experimental technique. This in part is because of the relatively low percentage
of sweep event occurrences during the period of operation. Second, an increase in the
technique’s reliability from 73 % to 90 %, or by 17 %, increases the probability from
31 % to 59 %, or by 28 %. An increase in technique reliability increases the probability
of correct detection relatively by a greater amount.

Example Problem 5.9
Statement: Suppose that 4 % of all transistors manufactured at a certain plant

are defective. A test to identify a defective transistor is 97 % accurate. What is the
probability that a transistor identified as defective actually is defective?

Solution: Let event A denote that the transistor actually is defective and event B
that the transistor is indicated as defective. What is Pr[A | B]? It is known that Pr[A]
= 0.04 and Pr[B | A] = 0.97. It follows that Pr[A′] = 1 − Pr[A] = 0.96 and Pr[B | A′]
= 1 − Pr[B | A] = 0.03 because the set of all possible events are mutually exclusive
and exhaustive. Direct application of Bayes’ rule gives

Pr[A | B] =
(0.97)(0.04)

(0.97)(0.04) + (0.03)(0.96)
= 0.57.

So, there is a 57 % chance that a transistor identified as defective actually is defective.
At first glance, this percentage seems low. Intuitively, the value would be expected to
be closer to the accuracy of the test (97 %). However, this is not the case. In fact, to
achieve a 99 % chance of correctly identifying a defective transistor, the test would
have to be 99.96 % accurate!

It is important to note that the way statistics are presented, either in the
form of probabilities, percentages, or absolute frequencies, makes a notice-
able difference to some people in arriving at the correct result. Studies [6]
have shown that when statistics are expressed as frequencies, a far greater
number of people arrive at the correct result. The previous problem can be
solved again by using an alternative approach [6].

Example Problem 5.10
Statement: Suppose that 4 % of all transistors manufactured at a certain plant

are defective. A test to identify a defective transistor is 97 % accurate. What is the
probability that a transistor identified as defective actually is defective?

Solution:

• Step 1: Determine the base rate of the population, which is the fraction of defective
transistors at the plant (0.04).

• Step 2: Using the test’s accuracy and the results of the first step, determine the
fraction of defective transistors that are identified by the test to be defective (0.04
× 0.97 = 0.04).

• Step 3: Using the fraction of good transistors in the population and the test’s false-
positive rate (1 − 0.97 = 0.03), determine the fraction of good transistors that are
identified by the test to be defective (0.96 × 0.03 = 0.03).
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• Step 4: Determine the desired probability, which is 100 times the fraction in step 2
divided by the sum of the fractions in steps 2 and 3 (0.04 / [0.04 + 0.03] = 0.57) or
57 %.

Which approach is easier to understand?

5.9.3 *Coincidences

Conditional probability can be used to explain what appear to be rare co-
incidences. My wife and I took a tour of Scotland in 1999 along with five
other people whom we had never met before. When we boarded the tour
bus in Scotland we were astounded to find out that five out of the seven of
us lived in Indiana! Our reaction was common − what a rare coincidence,
especially because only about one out of every 1000 people in the world
(approximately 0.1 %) live in Indiana and about 3/4 of us on the bus were
from Indiana. But then I started to think and ask questions. It turns out
that the United Kingdom is a very popular vacation spot for people from
the midwestern and eastern United States and that a commercial airline was
having a special offer that included a flight and tour of Scotland for those
flying out of Chicago’s O’Hare and New York City’s Kennedy airports (all
of those on the bus lived near Chicago or New York City). Granted these
conditions do not explain why five people from Indiana versus another mid-
western or eastern state were there, but they do make this coincidence much
more probable and certainly not rare.

As remarked by Stewart [2], “Because we notice coincidences and ignore
noncoincidences, we make coincidences seem more significant than they re-
ally are.” In fact, even today many people still attribute the occurrences of
apparently rarely occurring events to mysterious causes. Perhaps it is eas-
ier to believe in an inexplicable cause than to identify the conditions under
which the event occurred. Most likely, such occurrences are not so rare after
all.

5.9.4 *Permutations and Combinations

The probability of an event can be determined knowing the number of oc-
currences of the event and the total number of occurrences of all possible
events. Finding the number of all possible events can sometimes be confus-
ing. Consider an experiment in which there are three possible occurrences
denoted by a, b, and c, each of which can occur only once without replace-
ment. What is the probability of getting c, then a, then b, which is Pr[cab]?
To determine this probability, the total number of ways that a, b, and c can
be arranged respective of their order must be known. That is, the number
of permutations of a, b, and c must be determined. The number of permu-
tations of n objects is
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n! = n(n − 1)(n − 2)...1, (5.43)

where n! is called n factorial. Stirling’s formula is sometimes useful, where
n! '

√
2πn(n/ exp(n))n, which agrees with Equation 5.43 within 1 % for

n > 9. So, there are six possible ways (abc, acb, bca, bac, cab, and cba) to
arrange a, b, and c. Thus, Pr[cab] = 1/6.

Now what if the experiment had four possible occurrences, a, b, c, and
d, and Pr[cab] needs to be determined? The number of permutations of n
objects taken m at a time, P n

m, is

Pn
m =

n!

(n − m)!
= n(n − 1)(n − 2)...(n − m + 1). (5.44)

So, there are 4!/(4-3)! or 24 possible ways to arrange three of the four possi-
ble occurrences. Thus, Pr[cab] = 1/24. The probability of getting c, then a,
then b is reduced from 1/6 to 1/24 when the possibility of a fourth occurrence
is introduced. Often it is easy to calculate the number of permutations using
a spread sheet program. For example, using Microsoft EXCEL, the value of
Equation 5.44 is given by the command PERMUT(n,m).

Further consider the same experiment, but where the number of possible
combinations of c, a, and b are determined irrespective of the order. That
is, the number of combinations of n objects taken m at a time, Cn

m, given
by

Cn
m =

n!

m!(n − m)!
=

n(n − 1)(n − 2)...(n − m + 1)

m!
, (5.45)

must be found. There are only 4!/(3!1!) or four possible combinations of
three out of four possible occurrences (abc, abd, cdb, and cda). So, the Pr[cab]
= 1/4 for this case. That is, there is a ten-time greater chance (25 % versus
2.5 %) of getting a, b, and c in any order versus getting the particular order
of c, a, and b. Using Microsoft EXCEL, the value of Equation 5.45 is given
by the command COMBIN(n,m).

Finally, if there is repetition with replacement, then the number of possi-
ble combinations of n objects taken m at a time with replacement, Cn

m(r),
is

Cn
m(r) =

(m + n − 1)!

(m!)(n − 1)!
. (5.46)

For our experiment, Equation 5.46 gives 6!/(3!3!) or 20 possible combina-
tions of three out of four possible occurrences. This leads to Pr[cab] = 1/20.
Clearly, when there is repetition, the number of possible combinations in-
creases.
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5.9.5 *Birthday Problems

There are two classic birthday problems that challenge one’s ability to com-
pute the probability of an occurrence [1]. The first is to determine the prob-
ability of at least two out of n people having the same birth date of the year
(same day and month but not necessarily the same year). The second is to
determine the probability of at least two out of n people having a specific
birth date, such as January 18th. For simplicity, assume that there are 365
days per year and that the probability of having a birthday on any day of
the year is the same (both assumptions are, in fact, not true).

Consider the first problem. Often it is easier first to compute the proba-
bility that an event will not occur and then subtract that probability from
unity to obtain the probability that the event will occur. For the second
person there is a probability of 364/365 (= [366 − n]/365 where n = 2) of
not having the same birth date of the year as the first person. For the third
person it is (364/365)(363/365) of not having the same birth date of the year
as the first person or the second person. Here each event is independent of
the other, so the joint probability is the product of the two. Continuing this
logic, the probability, Q, of n people not having the same birth date of the
year is

Q =
364

365
· 363

365
· · · (366 − n)

365
. (5.47)

With a little algebra and using the definition of the factorial, Equation 5.47
can be rewritten as

Q =
1

365n

365!

(365 − n)!
=

1

365n
P 365

n . (5.48)

Thus, the probability, P , of at least two of n people having the same birth
date of the year is

P = 1 − Q = 1 − 1

365n
P 365

n . (5.49)

For n = 10, Equation 5.49 gives P = 11.69 % and for n = 50, P = 97.04 %.
How many people have to be in a room to have a greater than 50 % chance
of at least two people having the same birth date of the year? The answer
is at least 23 people (P = 50.73 %).

Now examine the second problem, which differs from the first problem
in that a specific birth date is specified. The probability of the second of n
people not having that specific birth date is (364/365) and the probability
of the third of n people not having that specific birth date is the same, and
so on. Thus, the probability of n people not having a specific birth date is

Q =

[
364

365

]n−1

. (5.50)
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The probability of at least two of n people having a specific birth date of
the year is

P = 1 − Q = 1 −
[
364

365

]n−1

. (5.51)

For n = 10, Equation 5.51 gives P = 2.44 % and for n = 50, P = 12.58
%. So how many people have to be in a room to have a greater than 50 %
chance of at least two people having a specific birth date of the year? The
answer is at least 254 people (P = 50.05 %).
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5.10 Problem Topic Summary

Topic Review Problems Homework Problems
Basic Probability 1, 2, 3, 11, 14, 15 1

Conditional Probability 10, 16, 17, 18 2, 3, 10
Moments 6, 7, 8, 9, 13 7, 9

Displaying Probabilities 4, 5, 12 4, 5, 6, 8

TABLE 5.2
Chapter 5 Problem Summary

5.11 Review Problems

1. Assuming equal probability of being born any day of the year, match
each of the following birthday occurrence possibilities (for one person)
with its correct probability given in Table 5.3.

2. One of each US coin currencies is placed into a container (a penny, a
nickel, a dime, and a quarter). Given that the withdrawal of a coin from
the container is random, find the correct value for each of the following
described quantities: (a) If two coins are drawn, find the probability of
any one permutation occurring. (b) If three coins are drawn without re-
placement, find the probability of the total being the maximum possible
monetary value. (c) If three coins are drawn with replacement, find the
probability of the total being the maximum possible monetary value.
(d) If two coins are drawn with replacement, find the probability of the
total number of cents being even.

Possibility of Occurrence Probability
on the 31st of a month 0.0849

in August 0.329
on Feb. 29, 1979 (for one born in that year) 0

in a month with 30 days 0.0192

TABLE 5.3
Birthday occurrences and probabilities.
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FIGURE 5.18
A triangular probability density function.

3. A sports bar hosts a gaming night where students play casino games
using play money. A business major has $1500 in play money and decides
to test a strategy on the roulette wheel. The minimum bet is $100 with
no maximum. He decides to bet that the ball will land on red each time
the wheel is spun. On the first bet, he bets the minimum. For each
consecutive spin of the wheel, he doubles his previous bet. He decides
beforehand that he will play roulette the exact number of times that his
cash stock would allow if he lost each time consecutively. What is the
probability that he will run out of money before leaving the table?

4. An engineering student samples the wall pressure exerted by a steady-
state flow through a pipe 1233 times using an analog-to-digital con-
verter. Using the recommendations made in this chapter, how many
equal-interval bins should the student use to create a histogram of the
measurements? Respond to the nearest whole bin.

5. Given the probability density function pictured in Figure 5.18, compute
the height, h, that conserves the zeroth central moment.

6. Compute the first central moment from the probability density function
pictured in Figure 5.18.

7. Compute the kurtosis of the probability density function pictured in
Figure 5.18.

8. Compute the skewness of the probability density function pictured in
Figure 5.18.
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9. Compute the standard deviation of the probability density function pic-
tured in Figure 5.18.

10. A diagnostic test is designed to detect a cancer precursor enzyme that
exists in 1 of every 1000 people. The test falsely identifies the presence
of the enzyme in 20 out of 1000 people who actually do not have the
enzyme. What is the percent chance that a person identified as having
the enzyme actually does have the enzyme?

11. What is the chance that you will throw either a 3 or a 5 on the toss of
a fair die? (a) 1/12, (b) 1/6, (c) 1/3, (d) 1/2, (e) 1/250.

12. A pressure transducer’s output is in units of volts. N samples of its
signal are taken each second. The frequency density distribution of the
sampled data has what units? (a) 1/volts, (b) volts times seconds, (c)
volts/N, (d) none; it is nondimensional, (e) seconds.

13. What is the kurtosis? (a) Bad breath, (b) the fourth central moment,
(c) the mean minus the mode of a distribution, (d) the name of a new,
secret football play that hopefully will make a difference next season,
(e) the square of the standard deviation.

14. How many license plates showing five symbols, specifically, two letters
followed by three digits, could be made?

15. A box contains ten screws, and three of them are defective. Two screws
are drawn at random. Find the probability that neither of the two screws
is defective. Determine the probability with and without replacement.

16. The actual probability of a college student having bronchitis is 50 %. The
student health center’s diagnostic test for bronchitis has an accuracy of
80 %. Determine the percent probability that a student who has tested
positive for bronchitis actually has bronchitis.

17. A newly developed diagnostic test indicates that 80 % of students pre-
dicted to score 100 % on an exam actually do. The diagnostic test has an
accuracy of 90 %. Determine the actual probability of a student scoring
100 % on an exam.

18. Four strain gages are place on a beam to determine an unknown force,
and they are arranged in a Wheatstone bridge configuration so that the
output signal is in millivolts. If N samples are recorded each second,
what are the units of the corresponding frequency density distribution?
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FIGURE 5.19
A probability density function.

5.12 Homework Problems

1. Determine (a) the percent probability that at least 2 out of 19 students
in a classroom will have a birthday on the same birth date of the year,
(b) how many people would have to be in the room in order to have
a greater-than-50 % chance to have a birthday on the same birth date
of the year, and (c) the percent probability that at least 2 of the 19
students will have a birthday on a specific birth date of the year.

2. A cab was involved in a hit-and-run accident during the night near a
famous mid-western university. Two cab companies, the Blue and the
Gold, operate in the city near the campus. There are two facts: (1) 85
% of the cabs in the city are Gold and 15 % are Blue, and (2) a witness
identified the cab as Blue. The court tested the reliability of the witness
under the same circumstances that existed the night of the accident and
concluded that the witness correctly identified each of the two colors
80 % of the time and failed to do so 20 % of the time. Determine the
percent probability that the cab involved in the accident was Blue.
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3. A diagnostic test is designed to detect a bad aircraft component whose
prevalence is one in a thousand. The test has a false positive rate of 5
%, where it identifies a good component as bad 5 % of the time. What
is the percent chance that a component identified as bad really is bad?

4. Use the data file diam.dat. This text file contains two columns of time
(s) and diameter (µm) data in approximately 2500 rows. For the diame-
ter data only (column 2), using MATLAB, plot (a) its histogram and (b)
its frequency distribution. Use Sturgis’s formula for the number of bins,
K, as related to the number of data points, N : K = 1 + 3.322 log10 N .
HINT: MATLAB’s function hist(x,k) plots the histogram of x with k
bins. The statement [a,b] = hist(x,k) produces the column matrices
a and b, where a contains the counts in each bin and b is the center
location coordinate of each bin. MATLAB’s function bar(b,a/N) will
plot the frequency distribution, where N is the total number of x values.

5. Using the graph of the probability density function of an underlying pop-
ulation presented in Figure 5.19, determine (a) the percent probability
that one randomly selected value from this population will be between
the values of 2 and 5. If a sample of 20 values are drawn randomly from
this population, determine (b) how many will have values greater than
2 and (c) how many will have values greater than 5.

6. Let ζ be described by the probability density function p(x) = 0.75(1 −
x2), if (−1 ≤ x ≤ 1) and zero otherwise. Find (a) the probability dis-
tribution function, P (x), (b) the probability Pr(−1/2 ≤ ζ ≤ 1/2) and
Pr(1/4 ≤ ζ ≤ 2), and (c) the value of x such that Pr(ζ ≤ x ) = 0.95.

7. For the measurand values of 7, 3, 1, 5, and 4, determine (a) the sample
mean, (b) the sample variance, and (c) the sample skewness.

8. For the probability density function of something, p(x), shown in Figure
5.20, determine (a) Pr[2 ≤ x ≤ 3], (b) Pr[x ≤ 3], and (c) Pr[x ≤ 7].

9. When a very high voltage is applied between two electrodes in a gas,
the gas will break down and sparks will form (much like lightning).
The voltage at which these sparks form depends on a number of vari-
ables including gas composition, pressure, temperature, humidity, and
the surface of the electrodes. In an experiment, the breakdown voltage
was measured 10 times in atmospheric air and the breakdown voltages
in units of volts were 2305, 2438, 2715, 2354, 2301, 2435, 2512, 2621,
2139, and 2239. From these measured voltages, determine the (a) mean,
(b) variance, and (c) standard deviation.

10. Assume that 14 % of the handguns manufactured throughout the world
are 8-mm handguns. A witness at the scene of a robbery states the
perpetrator was using an 8-mm handgun. The court performs a weapon
identification test on the witness and finds that she can identify the
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FIGURE 5.20
A probability density function of something.

weapon correctly 73 % of the time. (a) What is the probability that an
8-mm handgun was used in the crime? (b) What is the probability if
the witness was able to identify an 8-mm handgun correctly 90 % of the
time?
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That is not exactly true, but it’s probably more true than false.

Murray Winn, St. Joseph County Republican Chairman, cited in The South Bend

Tribune, South Bend, IN, November 6, 2003.

...very many have striven to discover the cause of this direction ... but they
wasted oil and labor, because, not being practical in the research of objects in

nature, being acquainted only with books, ..., they constructed certain
ratiocinations on a basis of mere opinions, and old-womanishly dreamt the

things that were not.

William Gilbert, 1600, cited in De Magnete. 1991. New York: Dover Press.

6.1 Chapter Overview

Statistics are at the heart of many claims. How many times have you heard
that one candidate is ahead of another by a certain percentage in the latest
poll or that it is safer to fly than to drive? How confident can we be in
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FIGURE 6.1
The probability density and distribution functions for the normal distribution.

such statements? Similar questions arise when interpreting the results of
experiments.

In this chapter we will study statistics. We start by examining some
frequently used distributions, including the normal, Student’s t, and χ2.
We will learn how to use them to determine the probabilities of events and
various statistical quantities. We will examine statistical inference and learn
how to estimate the characteristics of a population from finite information.
Finally, we will investigate how experiments are planned efficiently using
methods of statistics. After finishing with this chapter, you will have most
of the tools necessary to perform an experiment and to interpret its results
correctly.

6.2 Normal Distribution

Now, consider the normal distribution in more detail. In the limit when N
becomes very large and P is finite, assuming that the variance remains con-
stant, the binomial probability density function becomes the normal prob-
ability density function.
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Consider a random error to be comprised of a large number of N el-
ementary errors of equal and infinitesimally small magnitude, e, with an
equally likely chance of being either positive or negative, where P = 1/2.
The normal distribution allows us to find the probability of occurrence of
any error in the range from −Ne to +Ne, where the probability density
function is

p(x) =
1√

2πNP (1 − P )
exp

[−(x − NP )2

2NP (1 − P )

]
. (6.1)

The mean and variance are the same as the binomial distribution, NP and
NPQ, respectively, where Q = 1− P . The higher-order central moments of
the skewness and kurtosis are 0 and 3, respectively.

Utilizing expressions for the mean, x′, and the variance, σ2, in Equa-
tion 6.1, the probability density function assumes the more familiar form

p(x) =
1

σ
√

2π
exp

[
− 1

2σ2
(x − x′)2

]
. (6.2)

The normal probability density function is shown in the left plot in Fig-
ure 6.1, in which p(x) is plotted versus the nondimensional variable z =
(x − x′)/σ. Its maximum value equals 0.3989 at z = 0.

The normal probability density function is very significant. Many proba-
bility density functions tend to the normal probability density function when
the sample size is large. This is supported by the central limit and related
theorems. The central limit theorem can be described loosely as follows [10].
Given a population of values with finite variance, if independent samples are
taken from this population, all of size N , then the new population formed by
the averages of these samples will tend to be governed by the normal proba-
bility density function, regardless of what distribution governed the original
population. Alternatively, the central limit theorem states that whatever
the distribution of the independent variables, subject to certain conditions,
the probability density function of their sum approaches the normal prob-
ability density function (with a mean equal to the sum of their means and
a variance equal to the sum of their variances) as N approaches infinity.
The conditions are that (1) the variables are expressed in a standardized,
nondimensional format, (2) no single variate dominates, and (3) the sum
of the variances tends to infinity as N tends to infinity. The central limit
theorem also holds for certain classes of dependent random variables.

The normal probability density function describes well those situations
in which the departure of a measurand from its central tendency is brought
about by a very large number of small random effects. This is most appro-
priate for experiments in which all systematic errors have been removed and
a large number of values of a measurand are acquired. This probability den-
sity function consequently has been found to be the appropriate probability
density function for many types of physical measurements. In essence, a
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measurement subject to many small random errors will be distributed nor-
mally. Further, the mean values of finite samples drawn from a distribution
other than normal will most likely be distributed normally, as assured by
the central limit theorem.

Francis Galton (1822-1911) devised a mechanical system called a quin-
cunx to demonstrate how the normal probability density function results
from a very large number of small effects with each effect having the same
probability of success or failure. This is illustrated in Figure 6.2. As a ball
enters the quincunx and encounters the first effect, it falls a lateral distance
e to either the right or the left. This event has caused it to depart slightly
from its true center. After it encounters the second event, it can either re-
turn to the center or depart a distance of 2e from it. This process continues
for a very large number, N , of events, resulting in a continuum of possible
outcomes ranging from a value of x̄ − Ne to a value of x̄ + Ne. The key,
of course, to arrive at such a continuum of normally distributed values is
to have e small and N large. This illustrates why many phenomena are
normally distributed. In many situations there are a number of very small,
uncontrollable effects always present that lead to this distribution.

6.3 Normalized Variables

For convenience in performing statistical calculations, the statistical variable
often is nondimensionalized. For any statistical variable x, its standardized
normal variate, β, is defined by

β = (x − x′)/σ, (6.3)

in which x′ is the mean value of the population and σ its standard devia-
tion. In essence, the dimensionless variable β signifies how many standard
deviations that x is from its mean value. When a specific value of x, say x1,
is considered, the standardized normal variate is called the normalized z
variable, z1, as defined by

z1 = (x1 − x′)/σ. (6.4)

These definitions can be incorporated into the probability expression of a
dimensional variable to yield the corresponding expression in terms of the
nondimensional variable. The probability that the dimensional variable x
will be in the interval x′ ± δx can be written as

P (x′ − δx ≤ x ≤ x′ + δx) =

∫ x′+δx

x′−δx

p(x)dx. (6.5)
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FIGURE 6.2
Galton’s quincunx.

Note that the width of the interval is 2δx, which in some previous expressions
was written as ∆x. Likewise,

P (−x1 ≤ x ≤ +x1) =

∫ +x1

−x1

p(x)dx. (6.6)

This general expression can be written specifically for a normally dis-
tributed variable as

P (−x1 ≤ x ≤ +x1) =

∫ +x1

−x1

1

σ
√

2π
exp

[
− 1

2σ2
(x − x′)2

]
dx. (6.7)
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FIGURE 6.3
The normal and Student’s t probability density functions.

Using Equations 6.3 and 6.4 and noting that dx = σdβ, Equation 6.7 be-
comes

P (−z1 ≤ β ≤ +z1) =
1

σ
√

2π

∫ +z1

−z1

exp

[−β2

2

]
σdβ,

=
1√
2π

∫ +z1

−z1

exp

[−β2

2

]
dβ,

= 2

{
1√
2π

∫ +z1

0

exp

[−β2

2

]
dβ

}
. (6.8)

The factor of 2 in the last equation reflects the symmetry of the normal
probability density function, which is shown in Figure 6.3, in which p(z)
is plotted as a function of the normalized-z variable. The term in the { }
brackets is called the normal error function, denoted as p(z1). That is

p(z1) =
1√
2π

∫ +z1

0

exp

[−β2

2

]
dβ. (6.9)

The values of p(z1) are presented in Table 6.2 for various values of z1. For
example, there is a 34.13 % probability that a normally distributed variable
z1 will be within the range from x1 −x′ = 0 to x1 −x′ = σ [p(z1) = 0.3413].
In other words, there is a 34.13 % probability that a normally distributed
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zP % P
1 68.27

1.645 90.00
1.960 95.00

2 95.45
2.576 99.00

3 99.73
4 99.99

TABLE 6.1
Probabilities of some common zP values.

variable will be within one standard deviation above the mean. Note that the
normal error function is one-sided because it represents the integral from 0
to +z1. Some normal error function tables are two-sided and represent the
integral from −z1 to +z1. Always check to see whether such tables are either
one-sided or two-sided.

Using the definition of z1, the probability that a normally distributed
variable, x1, will have a value within the range x′ ± z1σ is

2p(z1) =
2√
2π

∫ +z1

0

exp

[
−β2

2

]
dβ =

% P

100
. (6.10)

In other words, there is P percent probability that the normally distributed
variable, xi, will be within ±zP standard deviations of the mean. This can
be expressed formally as

xi = x′ ± zP σ (% P ). (6.11)

The percent probabilities for the zP values from 1 to 4 are presented in
Table 6.1. As shown in the table, there is a 68.27 % chance that a normally
distributed variable will be within ± one standard deviation of the mean
and a 99.73 % chance that it will be within ± three standard deviations of
the mean.

Example Problem 6.1
Statement: Consider the situation in which a large number of voltage measurements

are made. From this data, the mean value of the voltage is 8.5 V and that its variance
is 2.25 V2. Determine the probability that a single voltage measurement will fall in the
interval between 10 V and 11.5 V. That is, determine Pr[10.0 ≤ x ≤ 11.5].

Solution: Using the definition of the probability distribution function, Pr[10.0 ≤
x ≤ 11.5] = Pr[8.5 ≤ x ≤ 11.5] − P r[8.5 ≤ x ≤ 10.0]. The two probabilities on the
right side of this equation are found by determining their corresponding normalized
z-variable values and then using Table 6.2.
First, Pr[8.5 ≤ x ≤ 10.0]:

z =
x − x′

σ
=

10 − 8.5

1.5
= 1 ⇒ P (8.5 ≤ x ≤ 10.0) =

.6827

2
= 0.3413.
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Then, Pr[8.5 ≤ x ≤ 11.5]:

z =
11.5 − 8.5

1.5
= 2 ⇒ P (8.5 ≤ x ≤ 11.5) =

.9545

2
= 0.4772.

Thus, Pr[10.0 ≤ x ≤ 11.5] = 0.4772 - 0.3413 = 0.1359 or 13.59 %. Likewise, the
probability that a single voltage measurement will fall in the interval between 10 V
and 13 V is 15.74 %.

Example Problem 6.2
Problem Statement: Based upon a large data base, the State Highway Patrol has

determined that the average speed of Friday-afternoon drivers on an interstate is 67
mph with a standard deviation of 4 mph. How many drivers out of 1000 travelling on
that interstate on Friday afternoon will be travelling in excess of 72 mph?

Problem Solution: Assume that the speeds of the drivers follow a normal distribu-
tion. The 72 mph speed first converted into its corresponding z-variable value is

z =
72 − 67

4
= 1.2. (6.12)

Thus, we need to determine

Pr[z > 1.2] = 1 − Pr[z ≤ 1.2] = 1 − (Pr[−∞ ≤ z ≤ 0] + Pr[0 ≤ z ≤ 1.2]). (6.13)

From the one-sided z-variable probability table

Pr[0 ≤ z ≤ 1.2] = 0.3849. (6.14)

Also, because the normal probability distribution is symmetric about its mean

Pr[−∞ ≤ z ≤ 0] = 0.5000. (6.15)

Thus,
Pr[z > 1.2] = 1 − (0.5000 + 0.3849) = 0.1151. (6.16)

This means that approximately 115 of the 1000 drivers will be travelling in excess of
72 mph on that Friday afternoon.

6.4 Student’s t Distribution

It was about 100 years ago that William Gosset, a statistician working for
the Guinness brewery, recognized a problem in using the normal distribu-
tion to describe the distribution of a small sample. As a consequence of his
observations it was recognized that the normal probability density function
overestimated the probabilities of the small-sample members near its mean
and underestimated the probabilities far away from its mean. Using his data
as a guide and working with the ratios of sample estimates, Gosset was able
to develop a new distribution that better described how the members of
a small sample drawn from a normal population were actually distributed.
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zP 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359
0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753
0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141
0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517
0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879
0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224
0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549
0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852
0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133
0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389
1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621
1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830
1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015
1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177
1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319
1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441
1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545
1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633
1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706
1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4758 .4761 .4767
2.0 .4772 .4778 .4783 .4788 .4793 .4799 .4803 .4808 .4812 .4817
2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857
2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890
2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916
2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936
2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952
2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964
2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974
2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981
2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986
3.0 .4987 .4987 .4987 .4988 .4988 .4988 .4989 .4989 .4989 .4990
3.5 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998
4.0 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000

TABLE 6.2
Values of the normal error function.
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Because his employer would not allow him to publish his findings, he pub-
lished them under the pseudonym “Student”[2]. His distribution was named
the Student’s t distribution. “Student” continued to publish significant
works for over 30 years. Mr. Gosset did so well at Guinness that he eventu-
ally was put in charge of its entire Greater London operations [1].

The essence of what Gosset found is illustrated in Figure 6.3. The solid
curve indicates the normal probability density function values for various z.
It also represents the Student’s t probability density function for various t
and a large sample size (N > 100). The dashed curve shows the Student’s
t probability density function values for various t for a sample consisting
of 9 members (ν = 8), and the dotted curve for a sample of 3 members
(ν = 2). It is clear that as the sample size becomes smaller, the normal
probability density function near its mean (where z = 0) overestimates the
sample probabilities and, near its extremes (where z > ∼ 2 and z < ∼ −2),
underestimates the sample probabilities. These differences can be quantified
easily using the expressions for the probability density functions.

The probability density function of Student’s t distribution is

p(t, ν) =
Γ[(ν + 1)/2]√

πνΓ(ν/2)

[
1 +

t2

ν

]−(ν+1)/2

, (6.17)

where ν denotes the degrees of freedom and Γ is the gamma function, which
has these properties:

Γ(n) = (n − 1)! for n = whole integer

Γ(m) = (m − 1)(m − 2)...(3/2)(1/2)
√

π for m = half − integer

Γ(1/2) =
√

π

Note in particular that p = p(t, ν) and, consequently, that there are an
infinite number of Student’s t probability density functions, one for each
value of ν. This was suggested already in Figure 6.3 in which there were
different curves for each value of N .

The statistical concept of degrees of freedom was introduced by R.A.
Fisher in 1924 [1]. The number of degrees of freedom, ν, at any stage in
a statistical calculation equals the number of recorded data, N , minus the
number of different, independent restrictions (constraints), c, used for the
required calculations. That is, ν = N − c. For example, when computing
the sample mean, there are no constraints (c = 0). This is because only the
actual sample values are required (hence, no constraints) to determine the
sample mean. So for this case, ν = N . However, when either the sample
standard deviation or the sample variance is computed, the value of the
sample mean value is required (one constraint). Hence, for this case, ν =
N − 1. Because both the sample mean and sample variance are contained
implicitly in t in Equation 6.17, ν = N − 1. Usually, whenever a probability
density function expression is used, values of the mean and the variance are
required. Thus, ν = N − 1 for these types of statistical calculations.
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The expressions for the mean and standard deviation were developed in
Chapter 5 for a continuous random variable. Analogous expressions can
be developed for a discrete random variable. When N is very large,

x′ = lim
N→∞

1

N

N∑

i=1

xi (6.18)

and

σ2 = lim
N→∞

1

N

N∑

i=1

(xi − x′)2. (6.19)

When N is small,

x̄ =
1

N

N∑

i=1

xi (6.20)

and

S2
x =

1

N − 1

N∑

i=1

(xi − x̄)2. (6.21)

Here x̄ denotes the sample mean, whose value can (and usually does) vary
from that of the true mean, x′. Likewise, S2

x denotes the sample variance
in contrast to the true variance σ2. The factor N − 1 occurs in Equation
6.21 as opposed to N to account for loosing one degree of freedom (x̄ is
needed to calculate S2

x).

Example Problem 6.3
Statement: Consider an experiment in which a finite sample of 19 values of a

pressure are recorded. These are in units of kPa: 4.97, 4.92, 4.93, 5.00, 4.98, 4.92, 4.91,
5.06, 5.01, 4.98, 4.97, 5.02, 4.92, 4.94, 4.98, 4.99, 4.92, 5.04, and 5.00. Estimate the
range of pressure within which another pressure measurement would be at P = 95 %
given the recorded values.

Solution: From this data, using the equations for the sample mean and the sample
variance for small N ,

p̄ =
1

19

19∑

i=1

pi = 4.97 and Sp =

√√√√ 1

19 − 1

19∑

i=1

(pi − p̄)2 = 0.046.

Now ν = N − 1 = 18, which gives tν,P = t18,95 = 2.101 using Table 6.4. So,

pi = p̄ ± tν,P Sp (% P ) ⇒ pi = 4.97 ± 0.10 (95 %)

.
Thus, the next pressure measurement is estimated to be within the range of 4.87 kPa
to 5.07 kPa at 95 % confidence.

Now, what if the sample had the same mean and standard deviation values but
they were determined from only five measurements? Then

tν,P = t4,95 = 2.770 ⇒ pi = 4.97 ± 0.13 (95 %)
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tν,P %Pν=2 %Pν=8 %Pν=100

1 57.74 65.34 68.03
2 81.65 91.95 95.18
3 90.45 98.29 99.66
4 94.28 99.61 99.99

TABLE 6.3
Probabilities for some typical tν,P values.

.

For this case the next pressure measurement is estimated to be within the range of 4.84
kPa to 5.10 kPa at 95 % confidence. So, for the same confidence, a smaller sample size
implies a broader range of uncertainty.

Further, what if the original sample size was used but only 50 % confidence was
required in the estimate? Then

tν,P = t18,50 = 0.668 ⇒ pi = 4.97 ± 0.03 (50 %)

.
For this case the next pressure measurement is estimated to be within the range of 4.94
kPa to 5.00 kPa at 50 % confidence. Thus, for the same sample size but a lower required
confidence, the uncertainty range is narrower. On the contrary, if 100 % confidence was
required in the estimate, the range would have to extend over all possible values.

In a manner analogous to the method for the normalized z variable in
Equation 6.4, Student’s t variable is defined as

t1 = (x1 − x̄)/Sx. (6.22)

It follows that the normally distributed variable xi in a small sample will
be within ±tν,P sample standard deviations from the sample mean with %
P confidence. This can be expressed formally as

xi = x̄ ± tν,P Sx (% P ). (6.23)

The interval ±tν,P Sx is called the precision interval. The percentage prob-
abilities for the tν,P values of 1, 2, 3, and 4 for three different values of ν
are shown in Table 6.3. Thus, in a sample of nine (ν = N − 1 = 8), there
is a 65.34 % chance that a normally distributed variable will be within ±
one sample standard deviation from the sample mean and a 99.61 % chance
that it will be within ± four sample standard deviations from the sample
mean. Also, as the sample size becomes smaller, the percent P that a sam-
ple value will be within ± a certain number of sample standard deviations
becomes less. This is because Student’s t probability density function is
slightly broader than the normal probability density function and extends
out to larger values of t from the mean for smaller values of ν, as shown in
Figure 6.3.
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1 %

FIGURE 6.4
Comparison of Student’s t and normal probabilities.

Another way to compare the Student’s t distribution with the normal
distribution is to examine the percent difference in the areas underneath
their probability density functions for the same range of z and t values.
This implicitly compares their probabilities, which can be done for various
degrees of freedom. The results of such a comparison are shown in Figure
6.4. The probabilities are compared between t and z equal to 0 up to t
and z equal to 5. It can be seen that the percent difference decreases as the
number of degrees of freedom increases. At ν = 40, the difference is less than
1 %. That is, the areas under their probability density functions over the
specified range differ by less than 1 % when the number of measurements
are approximately greater than 40.

The values for tν,P are given in Table 6.4. Using this table, for ν = 8
there is a 95 % probability that a sample value will be within ±2.306 sample
standard deviations of the sample mean. Likewise, for ν = 40, there is a 95
% probability that a sample value will be within ±2.021 sample standard
deviations of the sample mean.

A relationship between Student’s t variable and the normalized-z vari-
able can be found directly by equating the x′

is of Equations 6.11 and 6.23.
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ν tν,P=50 % tν,P=90 % tν,P=95 % tν,P=99 %

1 1.000 6.341 12.706 63.657
2 0.816 2.920 4.303 9.925
3 0.765 2.353 3.192 5.841
4 0.741 2.132 2.770 4.604
5 0.727 2.015 2.571 4.032
6 0.718 1.943 2.447 3.707
7 0.711 1.895 2.365 3.499
8 0.706 1.860 2.306 3.355
9 0.703 1.833 2.262 3.250
10 0.700 1.812 2.228 3.169
11 0.697 1.796 2.201 3.106
12 0.695 1.782 2.179 3.055
13 0.694 1.771 2.160 3.012
14 0.692 1.761 2.145 2.977
15 0.691 1.753 2.131 2.947
16 0.690 1.746 2.120 2.921
17 0.689 1.740 2.110 2.898
18 0.688 1.734 2.101 2.878
19 0.688 1.729 2.093 2.861
20 0.687 1.725 2.086 2.845
21 0.686 1.721 2.080 2.831
30 0.683 1.697 2.042 2.750
40 0.681 1.684 2.021 2.704
50 0.680 1.679 2.010 2.679
60 0.679 1.671 2.000 2.660
120 0.677 1.658 1.980 2.617
∞ 0.674 1.645 1.960 2.576

TABLE 6.4
Student’s t variable values for different P and ν.
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99.73 %

95.45 %

68.27 %

FIGURE 6.5
Student’s t values for various degrees of freedom and percent probabilities.

This is

tν,P = ±
{

(x′ − x̄) ± zP σ

Sx

}
(% P ). (6.24)

Now, in the limit as N → ∞, the sample mean, x̄, tends to the true mean, x′,
and the sample standard deviation, Sx, tends to the true standard deviation
σ. It follows from Equation 6.24 that tν,P tends to zP . This is illustrated in
Figure 6.5, in which the tν,P values for P = 68.27 %, 95.45 % and 99.73 %
are plotted versus ν. This figure was constructed using the MATLAB M-file
tnuP.m. As shown in the figure, for increasing values of ν, the tν,P values for
P = 68.27 %, 95.45 % and 99.73 % approach the zP values of 1, 2, and 3,
respectively. In other words, Student’s t distribution approaches the normal
distribution as N tends to infinity.

6.5 Standard Deviation of the Means

Consider a sample of N measurands. From its sample mean, x̄, and its
sample standard deviation, Sx, the region within which the true mean of
the underlying population, x′, can be inferred. This is done by statistically
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FIGURE 6.6
The probability density function of the mean values of x.

relating the sample to the population through the standard deviation of
the means (SDOM).

Assume that there are M sets (samples), each comprised of N measur-
ands. A specific measurand value is denoted by xij , where i = 1 to N refers
to the specific number within a set and j = 1 to M refers to the particular
set. Each set will have a mean value, x̄j , where

x̄j =
1

N

N∑

i=1

xij , (6.25)

and a sample standard deviation, Sxj
, where

Sxj
=

√√√√ 1

N − 1

N∑

i=1

(xij − x̄j)2. (6.26)

Now each x̄j is a random variable. The central limit theorem assures
that the x̄j values will be normally distributed about their mean value (the
mean of the mean values), ¯̄x, where

¯̄x =
1

M

M∑

j=1

x̄j . (6.27)
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This is illustrated in Figure 6.6.
The standard deviation of the mean values (termed the standard devia-

tion of the means), then will be

Sx̄ =


 1

M − 1

M∑

j=1

(x̄ − ¯̄x)2




1/2

. (6.28)

It can be proven using Equations 6.26 and 6.28 [4] that

Sx̄ = Sx/
√

N. (6.29)

This deceptively simple formula allows us to determine from the values of
only one finite set the range of values that contains the true mean value of
the entire population. Formally

x′ = x̄ ± tν,P Sx̄ = x̄ ± tν,P
Sx√
N

(% P ). (6.30)

This formula implies that the bounds within which x′ is contained can be
reduced, which means that the estimate of x′ can be made more precise, by
increasing N or by decreasing the value of Sx. There is a moral here. It is
better to carefully plan an experiment to minimize the number of random
effects beforehand and hence to reduce Sx, rather than to spend the time
acquiring more data to achieve the same bounds on x′.

The interval ±tν,P Sx̄ is called the precision interval of the true
mean. As N becomes large, from Equation 6.29 it follows that the SDOM
becomes small and the sample mean value tends toward the true mean value.
In this light, the precision interval of the true mean value can be viewed as
a measure of the uncertainty in determining x′.

Example Problem 6.4
Statement: Consider the differential pressure transducer measurements in the pre-

vious example. What is the range within which the true mean value of the differential
pressure, p′, is contained?

Solution: Equation 6.30 reveals that

p′ = p̄ ± tν,P Sp̄ = p̄ ± tν,P
Sp√
N

(% P )

= 4.97 ± (2.101)(0.046)√
19

= 4.97 ± 0.02 (95 %)

.
Thus, the true mean value is estimated at 95 % confidence to be within the range from
4.95 kPa to 4.99 kPa.

Finally, it is very important to note that although Equations 6.23 and
6.30 appear to be similar, they are uniquely different. Equation 6.23 is used
to estimate the range within which another xi value will be with a given
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confidence, whereas Equation 6.30 is used to estimate the range that con-
tains the true mean value for a given confidence. Both equations use the
values of the sample mean, standard deviation, and number of measurands
in making these estimates.

6.6 Chi-Square Distribution

The range that contains the true mean of a population can be estimated
using the values from only a single sample of N measurands and Equa-
tion 6.30. Likewise, there is an analogous way of estimating the range that
contains the true variance of a population using the values from only one
sample of N measurands. The estimate involves using one more probability
distribution, the chi-square distribution.

The chi-square distribution is used in many statistical calculations. For
example, it can be used to determine the precision interval of the true vari-
ance, to quantify how well a sample matches an assumed parent distribution,
and to compare two samples of same or different size with one another. The
statistical variable, χ2, represents the sum of the squares of the differences
between the measured and expected values normalized by their variance.
Thus, the value of χ2 is dependent upon the number of measurements, N ,
at which the comparison is made, and, hence, the number of degrees of free-
dom, ν = N − 1. From this definition it follows that χ2 is related to the
standardized variable, zi = (xi − x′)/σ, and the number of measurements
by

χ2 =

N∑

i=1

z2
i =

N∑

i=1

(xi − x′)2

σ2
. (6.31)

χ2 can be viewed as a quantitative measure of the total deviation of all
xi values from their population’s true mean value with respect to their
population’s standard deviation. This concept can be used, for example, to
compare the χ2 value of a sample with the value that would be expected for
a sample of the same size drawn from a normally distributed population.
Using the definition of the sample variance given in Equation 6.21, this
expression becomes

χ2 = νS2
x/σ2. (6.32)

So, in the limit as N → ∞, χ2 → ν.
The probability density function of χ2 (for χ2 ≥ 0) is

p(χ2, ν) = [2ν/2Γ(ν/2)]−1(χ2)(ν/2)−1 exp(−χ2/2), (6.33)

where Γ denotes the gamma function given by
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FIGURE 6.7
Three χ2 probability density functions.

Γ(ν/2) =

∫ ∞

0

x(ν/2)−1 exp(−x)dx = (
ν

2
− 1)! (6.34)

and the mean and the variance of p(χ2, ν) are ν and 2ν, respectively. Some-
times values of χ2 are normalized by the expected value, ν. The appropriate
parameter then becomes the reduced chi-square variable, which is de-
fined as χ̃2 ≡ χ2/ν. The mean value of the reduced chi-square variable
then equals unity. Finally, note that there is a different probability density
function of χ2 for each value of ν.

The χ2 probability density functions for three different values of ν are
plotted versus χ2 in Figure 6.7. The MATLAB M-file chipdf.m was used
to construct this figure. The value of p(χ2 = 10, ν = 10) is 0.0877, whereas
the value of p(χ2 = 1, ν = 1) is 0.2420. For a sample of only N = 2
(ν = N − 1 = 1), there is almost a 100 % chance that the value of χ2 will
be less than approximately 9. However, if N = 11 there is approximately a
50 % chance that the value of χ2 will be less than approximately 9.

The corresponding probability distribution function, given by the inte-
gral of the probability density function from 0 to a specific value of χ2,
denoted by χ2

α, is called the chi-square distribution with ν degrees of free-
dom. It denotes the probability P (χ2

α) = 1 − α that χ2 ≤ χ2
α, where α

denotes the level of significance. In other words, the area under a spe-
cific χ2 probability density function curve from 0 to χ2

α equals P (χ2
α) and
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FIGURE 6.8
The χ2 probability density function for ν = 20.

the area from χ2
α to ∞ equals α. The χ2 probability density function for

ν = 20 is plotted in Figure 6.8. The MATLAB M-file chicdf.m was used
to construct this figure. Three χ2

α values (for α = 0.05, 0.50, and 0.95) are
indicated by vertical lines. The lined area represents 5 % of the total area
under the probability density curve, corresponding to α = 0.05. The χ2

α

values for various ν and α are presented in Table 6.5. Using this table, for
ν = 20, χ2

0.95 = 10.9, χ2
0.50 = 19.3, and χ2

0.05 = 31.4. That is, when ν = 20,
50 % of the area beneath the curve is between χ2 = 0 and χ2 = 19.3.

The χ2 probability distribution functions for the same values of ν used
in Figure 6.7 are plotted versus χ2 in Figure 6.9. For N = 2, there is a
99.73 % chance that the value of χ2 will be less than 9. For N = 11, there
is a 46.79 % chance that the value of χ2 will be less than 9. Finally, for
ν = 4, as already determined using Table 6.5, a value of χ2 = 3.36 yields
P (χ2

α) = 0.50.

6.6.1 Estimating the True Variance

Consider a finite set of xi values drawn randomly from a normal distribution
having a true mean value x′ and a true variance σ2. It follows directly from
Equation 6.32 and the definition of χ2

α that there is a probability of 1−α
2 that

νS2
x/σ2 ≤ χ2

α/2 or that νS2
x/χ2

α/2 ≤ σ2. Conversely, there is a probability of

1 − (1 − α
2 ) = α/2 that σ2 ≤ νS2

x/χ2
α/2. Likewise, there is a probability of
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ν χ2
0.99 χ2

0.975 χ2
0.95 χ2

0.90 χ2
0.50 χ2

0.05 χ2
0.025 χ2

0.01

1 0.000 0.000 0.000 0.016 0.455 3.84 5.02 6.63
2 0.020 0.051 0.103 0.211 1.39 5.99 7.38 9.21
3 0.115 0.216 0.352 0.584 2.37 7.81 9.35 11.3
4 0.297 0.484 0.711 1.06 3.36 9.49 11.1 13.3
5 0.554 0.831 1.15 1.61 4.35 11.1 12.8 15.1
6 0.872 1.24 1.64 2.20 5.35 12.6 14.4 16.8
7 1.24 1.69 2.17 2.83 6.35 14.1 16.0 18.5
8 1.65 2.18 2.73 3.49 7.34 15.5 17.5 20.1
9 2.09 2.70 3.33 4.17 8.34 16.9 19.0 21.7
10 2.56 3.25 3.94 4.78 9.34 18.3 20.5 23.2
11 3.05 3.82 4.57 5.58 10.3 19.7 21.9 24.7
12 3.57 4.40 5.23 6.30 11.3 21.0 23.3 26.2
13 4.11 5.01 5.89 7.04 12.3 22.4 24.7 27.7
14 4.66 5.63 6.57 7.79 13.3 23.7 26.1 29.1
15 5.23 6.26 7.26 8.55 14.3 25.0 27.5 30.6
16 5.81 6.91 7.96 9.31 15.3 26.3 28.8 32.0
17 6.41 7.56 8.67 10.1 16.3 27.6 30.2 33.4
18 7.01 8.23 9.39 10.9 17.3 28.9 31.5 34.8
19 7.63 8.91 10.1 11.7 18.3 30.1 32.9 36.2
20 8.26 9.59 10.9 12.4 19.3 31.4 34.2 37.6
30 15.0 16.8 18.5 20.6 29.3 43.8 47.0 50.9
40 22.2 24.4 26.5 29.1 39.3 55.8 59.3 63.7
50 29.7 32.4 34.8 37.7 49.3 67.5 71.4 76.2
60 37.5 40.5 43.2 46.5 59.3 79.1 83.3 88.4
70 45.4 48.8 51.7 55.3 69.3 90.5 95.0 100.4
80 53.5 57.2 60.4 64.3 79.3 101.9 106.6 112.3
90 61.8 65.6 69.1 73.3 89.3 113.1 118.1 124.1
100 70.1 74.2 77.9 82.4 99.3 124.3 129.6 135.8

TABLE 6.5
χ2

α values for various ν and α.
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FIGURE 6.9
Three χ2 probability distribution functions.

α/2 that νS2
x/σ2 ≤ χ2

1−α
2

or that νS2
x/χ2

1−α
2
≤ σ2. Thus, the true variance

of the underlying population, σ2, is within the sample variance precision
interval, from νS2

x/χ2
α/2 to νS2

x/χ2
1−α

2
with a probability 1−(α/2)−(α/2) =

P . Also there is a probability α/2 that it is below the lower bound of the
precision interval, a probability α/2 that it is above the upper bound of the
precision interval, and a probability α that it is outside of the bounds of the
precision interval. Formally, this is

νS2
x

χ2
α/2

≤ σ2 ≤ νS2
x

χ2
1−α/2

(% P ). (6.35)

The width of the precision interval of the true variance in relation to
the probability P can be examined further. First consider the two extreme
cases. If P = 1 (100 %), then α = 0 which implies that χ2

0 = ∞ and χ2
1 = 0.

Thus, the sample variance precision interval is from 0 to ∞ according to
Equation 6.35. That is, there is a 100 % chance that σ2 will have a value
between 0 and ∞. If P = 0 (0 %), then α = 1 which implies that the sample
variance precision intervals are the same. That is, there is a 0 % chance the
σ2 will exactly equal one specific value out of an infinite number of possible
values (when α = 1 and ν >> 1, that unique value would be S2

x). These two
extreme-case examples illustrate the upper and lower limits of the sample
variance precision interval and its relation to P and α. As α varies from 0 to
1 (hence, P varies from 1 to 0), the precision interval width decreases from
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∞ to 0. In other words, the probability, α, that the true variance is outside
of the sample variance precision interval increases as the precision interval
width decreases.

6.6.2 Establishing a Rejection Criterion

The relation between the probability of occurrence of a χ2 value being less
than a specified χ2 value can be utilized to ascertain whether or not effects
other than random ones are present in an experiment or process. This is
particularly relevant, for example, in establishing a rejection criterion for a
manufacturing process or in an experiment. If the sample’s χ2 value exceeds
the value of χ2

α based upon the probability of occurrence P = 1 − α, it is
likely that systematic effects (biases) are present. In other words, the level of
significance α also can be used as a chance indicator of random effects. A low
value of α implies that there is very little chance that the noted difference
is due to random effects and, thus, that a systematic effect is the cause for
the discrepancy. In essence, a low value of α corresponds to a relatively high
value of χ2, which, of course, has little chance to occur randomly. It does,
however, have some chance to occur randomly, which leads to the possibility
of falsely identifying a random effect as being systematic, which is a Type II
error (see Section 6.8). For example, a batch sample yielding a low value of α
implies that the group from which it was drawn is suspect and probably (but
not definitely) should be rejected. A high value of α implies the opposite,
that the group probably (but not definitely) should be accepted.

Example Problem 6.5
Statement: This problem is adapted from [18]. A manufacturer of bearings has

compiled statistical information that shows the true variance in the diameter of “good”
bearings is 3.15 µm2. The manufacturer wishes to establish a batch rejection criterion
such that only small samples need to be taken and assessed to check whether or not
there is a flaw in the manufacturing process that day. The criterion states that when
a batch sample of 20 manufactured bearings has a sample variance > 5.00 µm2 the
batch is to be rejected. This is because, most likely, there is a flaw in the manufacturing
process. What is the probability that a batch sample will be rejected even though the
true variance of the population from which it was drawn was within the tolerance limits
or, in other words, of making a Type II error?

Solution: From Equation 6.32,

χ2
α(ν) = νS2

x/σ2 =
(20 − 1)(5.00)

(3.15)
= 30.16.

For this value of χ2 and ν = 19, α ∼= 0.05 using Table 6.5. So, there is approximately
a 5 % chance that the discrepancy is due to random effects (that a new batch will be
rejected even though its true variance is within the tolerance limits), or a 95 % chance
that it is not. Thus, the standard for rejection is good. That is, the manufacturer should
reject any sample that has S2

x > 5 µm2. In doing so, he risks only a 5 % chance of
falsely identifying a good batch as bad. If the χ2 value equaled 11.7 instead, then there
would be a 90 % chance that the discrepancy is due to random effects.

Now what if the size of the batch sample was reduced to N = 10? For this case,
α = 0.0004. So, there is a 0.04 % chance that the discrepancy is due to random effects.
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In other words, getting a χ2 value of 30.16 with a batch sample of 10 instead of 20
gives us even more assurance that the criterion is a good one.

6.6.3 Comparing Observed and Expected Distributions

In some situations, a sample distribution should be compared with an ex-
pected distribution to determine whether or not the expected distribution
actually governs the underlying process. When comparing two distributions
using a χ2 analysis,

χ2 ≈
K∑

j=1

(Oj − Ej)
2

Ej
, (6.36)

with Oj and Ej the number of observed and expected occurrences in the j -th
bin, respectively. The expected occurrence for the j -th bin is the product of
the total number of occurrences, N , and the probability of occurrence, Pj .
The probability of occurrence is the difference of the probability distribution
function’s values at the j -th bin’s two end points. It also can be approxi-
mated by the product of the bin width and the probability density function
value at the bin’s mid-point value. Equation 6.36 follows from Equation 6.31
by noting that σ2 ∼ ν ∼ E. Strictly speaking, this expression is an approx-
imation for χ2 and is subject to the additional constraint that Ej ≥ 5 [7].
The number of degrees of freedom, ν, are given by ν = K − (L + n), where
K is the number of bins, preferably using Scott’s formula for equal-width
intervals that was described in Section 5.4. Here, n = 2 because two values
are needed to compute the expected probabilities from the assumed distri-
bution (one for the mean and one for the variance). There is an additional
constraint (L = 1), because the number of expected values must be deter-
mined. Thus, whenever χ2 analysis of this type is performed, ν = K − 3.

From this type of analysis, agreement between observed and expected
distributions can be ascertained with a certain confidence. The percent
probability that the expected distribution is the correct one is specified
by α. By convention, when α < 0.05, the disagreement between the sample
and expected distributions is significant or the agreement is unlikely. When
α < 0.01, the disagreement between the sample and expected distributions
is highly significant or the agreement is highly unlikely.

Example Problem 6.6
Statement: Consider a study conducted by a professor who wishes to determine

whether or not the 300 undergraduate engineering students in his department are
normal with respect to their heights. He determines this by comparing the distribution
of their heights to that expected for a normally distributed student population. His
height data are presented in Table 6.6. Are their heights normal?
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Bin Heights Observed Expected
number k in bin number, Ok number, Ek

1 less than X − 1.5σ 19 20.1
2 between X − 1.5σ and X − σ 25 27.5
3 between X − σ and X − 0.5σ 44 45.0
4 between X − 0.5σ and X 59 57.5
5 between X and X + 0.5σ 60 57.5
6 between X + 0.5σ and X + σ 45 45.0
7 between X + σ and X + 1.5σ 30 27.5
8 above X + 1.5σ 18 20.1

TABLE 6.6
Observed and expected heights

Solution: For this case, ν = 8 − 3 = 5, where K = 8 was determined using Scott’s
formula (actually, K = 7.7, which is rounded up). The expected values are calcu-
lated for each bin by noting that Ek = NPk where N = 300. For example, for bin 2
where −1.5σ ≤ x ≤ −σ, Pk = Pr(−1.5σ ≤ x ≤ −σ) = Pr(z1 = −1.5) − Pr(z1 =
−1) = 0.4332− 0.3413 (using Table 6.2) = 0.0919. So, the expected number in bin 2 is
(0.0919)(300) = 27.5. The results for every bin are shown in Table 6.6.

Substitution of these results into Equation 6.36 yields χ2 = 0.904. For the values of
χ2

α = 0.904 and ν = 5, from Table 6.5, α ' 0.97. That is, the probability of obtaining
this χ2 value or less is ∼97 %, under the assumption that the expected distribution is
correct. Thus, agreement with the assumed normal distribution is significant.

6.7 *Pooling Samples

In some situations it may be necessary to combine the data gathered from M
replicate experiments, each comprised of N measurands. The measurands
can be pooled to form one set of MN measurands [18].

For the j-th experiment

x̄j =
1

N

N∑

i=1

xij and S2
xj

=
1

N − 1

N∑

i=1

(xij − x̄j)
2. (6.37)

From these expressions the following expressions can be developed. The
mean of all x̄j ’s, called the pooled mean of x, {x̄}, the mean of the means,
then becomes

¯̄x = {x̄} =
1

M

M∑

j=1

x̄j =
1

MN

M∑

j=1

N∑

i=1

xij . (6.38)
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FIGURE 6.10
Analysis of 500 test scores using chinormchk.m.

The pooled variance of x, {S2
x}, is actually the average of the variances of

the M experiments where {S2
x} is treated as a random variable and is given

by

{S2
x} =

1

M

M∑

j=1

S2
xj

=
1

M(N − 1)

M∑

j=1

N∑

i=1

(xij − x̄j)
2. (6.39)

The pooled standard deviation, {Sx}, is the positive square root of the
pooled variance. The pooled standard deviation of the means, {Sx̄},
is

{Sx̄} =
{Sx}√
MN

. (6.40)

Now consider when the number of measurands varies in each experiment,
when N is not constant. There are Nj measurands for the j-th experiment.
The resulting pooled statistical properties must be weighted by Nj . The
pooled weighted mean, {x̄}w, is

{x̄}w =

∑M
j=1 Nj x̄j
∑M

j=1 Nj

. (6.41)
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accept H0 reject H0

H0 true correct (1-α) type I error (α)
H0 false type II error (β) correct (1-β)

TABLE 6.7
Null hypothesis decisions and their associated probabilities and errors.

The pooled weighted standard deviation, {Sx}w, is

{Sx}w =

√
ν1S2

x1
+ ν2S2

x2
+ ... + νMS2

xM

ν
, (6.42)

where

ν =

M∑

j=1

νj =

M∑

j=1

(Nj − 1). (6.43)

The pooled weighted standard deviation of the means, {Sx̄}w, is

{Sx̄}w =
{Sx}w[∑M
j=1 Nj

]1/2
. (6.44)

6.8 *Hypothesis Testing

Hypothesis testing [6] incorporates the tools of statistics into a decision-
making process. In the terminology of statistics, a null hypothesis is indi-
cated by H0 and an alternative hypothesis by H1. The alternative hypothesis
is considered to be the complement of the null hypothesis. There is the possi-
bility that H0 could be rejected, that is, considered false, when it is actually
true. This is called a Type I error . Conversely, H0 could be accepted, that
is, considered true, when it is actually false. This is termed a Type II error .
Type II errors are of particular concern in engineering. Sound engineering
decisions should be based upon the assurance that Type II error is mini-
mal. For example, if H0 states that a structure will not fail when its load
is less than a particular safety-limit load, then it is important to assess the
probability that the structure can fail below the safety-limit load. This can
be quantified by the power of the test, where the power is defined as 1 −
probability of Type II error. For a fixed level of significance (see Section
6.6), the power increases as the sample size increases. Large values of power
signify better precision. Null hypothesis decisions are summarized in Table
6.7.
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Consider the rationale behind using statistical analysis to determine
whether or not the mean of a population, x′, will have a particular value,
xo. In an experiment, each measurand value will be subject to small, ran-
dom variations because of minor, uncontrolled variables. The null hypothesis
would be H0 : x′ = xo and the alternative hypothesis H1 : x′ 6= xo. Because
the alternative hypothesis would be true if either x′ < xo or x′ > xo, the
appropriate hypothesis test would be a two-sided t-test. If the the null hy-
pothesis were either H0 : x′ ≤ xo or H0 : x′ ≥ xo, then the appropriate
hypothesis test would be a one-sided t-test. The modifier t implies that
Student’s t variable is used to assess the hypothesis. These tests implicitly
require that all measurand values are provided such that their sample mean
and sample standard deviation can be determined.

Decision of either hypothesis acceptance or rejection is made using Stu-
dent’s t distribution. For a one-sided t-test, if H0 : x′ ≤ xo, then its associ-
ated probability, Pr[X ≤ t], must be determined. X represents the value of
a single sample that is drawn randomly from a t-distribution with ν = N−1
degrees of freedom. Likewise, if H0 : x′ ≥ xo, then its associated probability,
Pr[X ≥ t] must be found. For a two-sided t-test, the sum of the probabilities
Pr[X ≤ t] and Pr[X ≥ t] must be determined. This sum equals 2Pr[X ≥ |t|]
because of the symmetry of Student’s t distribution. These probabilities are
determined through Student’s t value. For hypothesis testing, the particular
t value, termed the t-statistic, is based upon the sample standard deviation
of the means, where t = (x̄ − xo)/(Sx/

√
N).

A p-value, sometimes referred to as the observed level of significance, is
defined for the null hypothesis of a set of measurands as the probability of
obtaining the measurand set or a set having less agreement with the hypoth-
esis. The p-value is proportional to the plausibility of the null hypothesis.
The criteria for accepting or rejecting the null hypothesis are the following:

• p < 0.01 indicates non-credible H0, so reject H0 and accept H1.

• 0.01 ≤ p ≤ 0.10 is inconclusive, so acquire more data.

• p > 0.10 indicates plausible H0, so accept H0 and reject H1.

Sometimes, p = 0.05 is used as a decision value in order to avoid an in-
conclusive result, where p < 0.05 implies plausibility and p > 0.05 signifies
non-credibility. Keep in mind that only the plausibility, not the exact truth,
of a null hypothesis can be ascertained. Rejecting the null hypothesis of a
two-sided test means x′ 6= xo. Accepting the null hypothesis implies that xo

is a plausible value of x′, but not necessarily that xo = x′. So, rejecting a
null hypothesis is more exact statistically than accepting a null hypothesis.
Rejecting the null hypothesis H0 : x′ ≤ xo means x′ ≥ xo. Accepting the
null hypothesis indicates that, plausibly, x′ ≤ xo. Again, it is more exact
statistically to reject the null hypothesis or, conversely, to accept the alter-
native hypothesis. Hence, it is better to pose the null hypothesis such that
its alternative hypothesis most likely will be accepted.
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p-value α = 0.01 α = 0.05 α = 0.10
p ≥ 0.10 accept accept accept

0.05 < p < 0.10 accept accept reject
0.01 < p < 0.05 accept reject reject

p < 0.01 reject reject reject

TABLE 6.8
Null hypothesis decisions and associated p and α values.

Stated differently, if x′ is on the side of xo that favors the null hypothesis,
then the hypothesis should be accepted. If it is not, then the plausibility of
the hypothesis must be ascertained, based upon the aforementioned p-value
criteria. If the hypothesis test is one-sided, then x′ ≤ xo means t ≤ 0 and
p > 0.50, which indicates acceptance. Also, x′ >> xo means t > 0 and
p ∼ 0, which implies rejection. Further, x′ slightly greater than xo means t
is slightly greater than 0 and p is non-zero and finite, signifying plausibility.
If the hypothesis test is two-sided, the larger the value of |t|, the farther
away x′ is from x0. The p-value is calculated with the probability that a
measurand set with x′ = xo has a t-statistic with an absolute value greater
than |t|. Any measurand set with a t-statistic that is greater than |t| or
less than -|t| has less agreement with the null hypothesis. The acceptance or
rejection of the null hypothesis is based upon the the same aforementioned p-
value criteria. The following serves to illustrate how the p-values specifically
are determined for one-sided and two-sided hypothesis tests.

Consider the one-sided test where H0 : x′ ≤ 10. For this example, x̄ =
12, Sx = 3 and N = 20. Thus, the t-statistic value equals (12 − 10)/(3

√
20)

= 2.981. For ν = 19, the corresponding p-value equals 1 − Pr[t ≤ 2.981] = 1
− 0.9962 = 0.0038. Thus, the null hypothesis is rejected and the alternative
hypothesis, that x′ is greater than 10, is accepted.

Next examine the two-sided test where H0 : x′ = 10. Using the same
statistical parameters as in the previous example, where the t-statistic value
is 2.981, the p-value equals 2Pr[t ≥ |2.981|] = (2)(0.0038) = 0.0076. Here the
absolute value of the t-statistic, 2.981, is greater than the p-value, 0.0076. So,
the measurand set with x′ = 10 has less agreement with the null hypothesis.
In fact, because p < 0.01, the null hypothesis is not credible.

More specificity about accepting or rejecting a null hypothesis can be
obtained by associating this decision with a level of significance, α. Here,
the null hypothesis is accepted if the p-value is larger than α and rejected
if the p-value is less than α. The level of significance is the probability of
a Type I error. The relationships between null hypothesis acceptance or
rejection and their associated p and α values are presented in Table 6.8.
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Set A Set B
Test no. δA (mm) δB (mm) δA − δB (mm)

1 3.0806 2.9820 0.0986
2 3.0232 2.9902 0.0330
3 2.9010 3.0728 -0.1718
4 3.1340 2.9107 0.2233
5 3.0290 2.9775 0.0514
6 3.1479 2.9348 0.2131
7 3.1138 2.9881 0.1257
8 2.9316 3.2303 -0.2987
9 2.8708 2.9090 -0.0382
10 2.9927 2.7979 0.1948

TABLE 6.9
Boundary-layer thickness measurements.

Example Problem 6.7
Statement: A test is conducted to assess the reliability of a transducer designed

to indicate when the pressure in a vessel is 120 psi. The vessel pressure is recorded
each time the sensor gives an indication. The test is repeated 20 times, resulting in a
mean pressure at detection of 121 psi with a standard deviation of 3 psi. Determine
the reliability of the transducer based upon a 5 % level of significance.

Solution: It is best statistically to test the null hypothesis that the transducer’s
detection level is 120 psi. The alternative hypothesis would be that the detection level
is either less than or greater than 120 psi. This appropriate test is a two-sided t-test.
For this case, the value of the t-statistic is

t =
x̄ − xo

Sx/
√

N
=

121 − 120

3/
√

20
= 1.491.

For ν = 19, the corresponding p-value equals 2P [|t| ≥ 1.491] = (2)(0.0762) = 0.1524.
According to Table 6.8, the null hypothesis is acceptable. Thus, the transducer can
be considered reliable. At this level of significance, the p-value would have to be less
than 0.05 before the null hypothesis could be rejected and the transducer considered
unreliable.

This type of analysis also can be employed to test the hypothesis that
two measurand sets with paired samples (each having the same number of
samples) come from the same population. This is illustrated by the following
problem.

Example Problem 6.8

Statement: Ten thermal boundary-layer thickness measurements were made at a
specific location along the length of a heat-exchanger plate. Ten other thickness mea-
surements were made after the surface of the heat-exchanger plate was modified to
improve its heat transfer. The results are shown in Table 6.9. Determine the percent
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confidence that the plate surface modification has no effect on the thermal boundary-
layer thickness.

Solution: Assume that the thicknesses follow a t-distribution. This implies that the
differences of the thicknesses for each set, δA−B = δA−δB , also follow a t-distribution.
The mean and the standard deviation of the differences can be computed from the
sample data. They are 0.043 mm and 0.171 mm, respectively. Now if both samples come
from the same population (here, this would imply that the surface modification had
no detectable effect on the boundary-layer thickness), then the difference of their true
mean values must be zero. Thus, the problem can be rephrased as follows. What is the
confidence that a parameter with a mean value of 0.043 mm, δ̄, and a standard deviation
of 0.171 mm, Sδ̄, determined from 10 samples, actually comes from a population whose
mean value is zero?

This involves a two-sided hypothesis test. The null hypothesis is that the mean
value of the differences is zero (that the surface modification has no detectable effect)
and the alternative hypothesis is that the mean value of the differences is not zero (that
the surface modification has a detectable effect). The t-statistic value for this case is

t =

√
N(δ̄ − 0)

Sδ̄

=

√
10(0.043)

0.171
= 0.795.

For ν = 9, the p-value equals 2P [t ≥ |0.795|] = (2)(0.2235) = 0.4470. Thus, there is
approximately a 45 % chance that the surface modification has a detectable effect and
a 55 % chance that it does not. So the present experiment gives an ambiguous result.
If the mean of the thickness difference was smaller, say 0.020 mm, given everything
else the same, then the p-value would be 0.7200, based upon t = 0.37. Now there
is more confidence in the hypothesis that the surface modification has no detectable
effect. However, this still is not significant enough. In fact, to have 95 % confidence
in the hypothesis, the mean of the thickness difference would have to be 0.004 mm,
given everything else is the same. This type of analysis can be extended further to
experiments involving unpaired samples with or without equal variances [6].

6.9 *Design of Experiments

Statistical tools can be used in experimental planning. The method of de-
sign of experiments (DOE) provides an assessment of an experiment’s
output sensitivity to its independent variables. In DOE terminology, this
method assesses the sensitivity of the result (the measurand or dependent
variable) to various factors (independent variables) that comprise the pro-
cess (experiment). The significance of DOE is that it can be carried out
before an experiment is conducted. DOE, for example, can be used to iden-
tify the variables that most significantly affect the output. In essence, DOE
provides an efficient way to plan and conduct experiments.

Methods of DOE have been known for many years. According to Hald
[14], fundamental work on DOE was carried out by R. A. Fisher and pub-
lished in 1935 [8]. DOE, and the related topic, Taguchi methods, have be-
come popular in recent years because of the quest through experimentation
for improved quality in consumer and industrial products (for example, see
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low high
A(mm) 5 10
B(ms) 20 50

TABLE 6.10
Factors and their levels for the detector experiment.

[10], [11], and [12]). These methods also can be applied to forensic science
[13].

The main objective of DOE is to determine how the factors influence
the result of a process. The approach is to determine this by running tri-
als (actual and/or computer trials), and measuring the process response
for planned, controlled changes in the factors. A feature of DOE is that it
provides a ranking of the sensitivity of the result to each factor; it ranks
the factors in terms of their effects. It provides the direction of the sensi-
tivity, whether a factor change increases or decreases the result. A major
and important feature of DOE is that it provides this information with a
minimum number of measurements or calculations. An additional advantage
of DOE is that knowledge of the statistical nature of the input is unnec-
essary. If statistical information is available, DOE can lead directly to an
analysis of variance (ANOVA) (for example, see [14]) and hypothesis tests
for the factors and their interactions. If the statistical nature of some or all
of the factors is unavailable, methods still exist to examine and rank the
sensitivity.

The basics of DOE can be illustrated readily. Consider a hypothetical
experiment with a result, yj , that depends on a number of factors desig-
nated by A, B, C, .... Trials of the experiment are conducted for different,
predetermined values of the factors, where the j -th run produces the j -th
value of the result. The primary function of DOE is to determine a quanti-
tative measure of the effect of each of the factor changes on the result. The
output must be quantitative or measurable. The factors can be quantitative.
They also can be attribute variables, such as hot or cold, fast or slow, and
so forth. In the coverage here, factors will be allowed to take on only two
values called a low level, indicated with a minus sign, and a high level, in-
dicated with a plus sign. The high and low levels of the factors are selected
by the experimenter to represent a practical range of values large enough to
have an influence, yet small enough to determine the local behavior of the
process. It is not uncommon to carry out one exploratory DOE to establish
ranges of variables, and then perform another DOE, based on the results
of the first, for a more refined analysis. In the case of attribute variables,
such as fast and slow, the choice of high and low can be purely arbitrary.
In the case of quantitative variables, the choice usually is intuitive, but it
still remains arbitrary because the signs of the results reverse if the levels
are reversed.
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A: low A: high
B: low 40.9 47.8
B: high 42.4 50.2

TABLE 6.11
Percentage changes for four trials.

To illustrate the method of DOE, consider a hypothetical experiment
in which an experimentalist wishes to assess the sensitivity of a light-level
detector to two factors, the position of the detector from the surface of
an object (factor A) and the time response of the detector (factor B). The
percentage change in the amplitude of the detector’s output from a reference
amplitude is chosen as the result. Table 6.10 lists the factors and their levels.

Four trials are carried out. This provides a complete experiment, in which
all four possible combinations of factor type and level are considered. In one
trial, for example, the detector with the shortest time response, 20 ms (the
low value of B), is placed near the surface, at 5 mm (the low value of A). The
result for this case is an increase in the amplitude of 40.9 %, as displayed
in Table 6.11. Examination of all of the results reveals that the greatest
output is achieved by placing a 50-ms detector 10 mm from the surface of
the object. DOE can be extended readily to consider more than two factors.
To achieve a complete experiment, 2k trials are required, where k is the
number of factors, with two levels for each factor.

6.10 *Factorial Design

The method of DOE suggests a manner in which the contribution of each
factor on an experimental result can be assessed. This is the method of
factorial design. Because this method identifies the effect of each factor,
it can be used to organize and minimize the number of experimental trials.

When dealing with the effects of changes in two factors, two levels and
four runs, a measure of the effect, or main effect, ME, resulting from chang-
ing a factor from its low to high value can be estimated using the average
of the two observed changes in the response. So for factor A,

MEA =
1

2
[(y2 − y1) + (y4 − y3)] . (6.45)

Similarly, a measure of the effect of changing factor B from its low to high
level can be estimated by averaging two corresponding changes as

MEB =
1

2
[(y3 − y1) + (y4 − y2)] . (6.46)
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Trial A B AB M Response Total
1 - - + + T1

2 + - - + T2

3 - + - + T3

4 + + + + T4

TABLE 6.12
Sign pattern for two factors, A and B.

These average effects from four runs have significantly greater reliability
than changes computed from three runs. In addition, an interaction may
exist between the factors. An effect of the interaction can be estimated from
the four runs by taking the differences between the diagonal averages, where

MEAB =
1

2
(y1 + y4) −

1

2
(y2 + y3) =

1

2
[(y1 − y2) + (y4 − y3)] . (6.47)

Finally, a measure of the overall level of the process can be based on the
average as

ME =
1

4
[y1 + y2 + y3 + y4] . (6.48)

Equations 6.45 through 6.48 provide the basic structure of a factorial design
with two levels per factor and four runs. Examine the forms of the above
main effect equations.

If the parentheses in Equations 6.45 through 6.47 are dropped and the
responses are placed in the order of their subscripts, these equations become

MEA =
1

2
[−y1 + y2 − y3 + y4] , (6.49)

MEB =
1

2
[−y1 − y2 + y3 + y4] , (6.50)

and

MEAB =
1

2
[+y1 − y2 − y3 + y4] . (6.51)

A certain pattern of plus and minus signs from left to right appears in each
equation. Table 6.12 lists the pattern of plus and minus signs in columns
under each factor, A and B, the interaction, AB, and the overall gain, M .
Note that the signs of the interaction are products of the signs of the factors.

A full set of trials often is repeated to permit estimation of the effects
of the influence of uncontrolled variables. The above equations can be ex-
pressed more conveniently in terms of the sums or totals of the responses
rather than the responses themselves. That is, for r runs or full sets of trials,
the total, Tj , for the responses, yji, is given by adding the r responses as
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Tj =

r∑

i=1

yji. (6.52)

Experiments organized as above are referred to as 2k designs, which yield
four trials for two levels and two factors. A general form of Equations 6.49
through 6.51 that provides the estimates of the effects for k factors is [14]

MEj =
1

r2k−1




2k∑

i=1

±Ti


 , (6.53)

where j = A,B,AB, ... . For two factors, the proper signs for each term
from left to right in Equation 6.53 are those signs in the column under the
j -th factor of Table 6.12. For example, for r = 1, yj = Tj , if the main effect
of factor B is to be estimated, then Equation 6.53 gives

MEB =
1

2
[−T1 − T2 + T3 + T4] , (6.54)

where the signs are those in the column under B in Table 6.12. For values
of k ≥ 2, a listing of the sequence of signs is given in statistics texts (for
example, see [15]). Note that Equation 6.53 must be modified to calculate
the overall mean, M , of the responses, where,

M =
1

r2k




2k∑

i=1

+Ti


 , (6.55)

in which j = A,B,AB, ..., and all the signs are plus signs.
The sensitivity of a process to a factor level change generally differs from

factor to factor. A small change in one factor may cause a large change in
the response while another does not. Sensitivity is the slope of the response
curve. In factorial design, the sensitivity, ζ, of the response to a certain
factor is the main effect divided by the change in the factor. For example,
in the case of factor B,

ζB =
MEB

B+ − B−
. (6.56)

A problem can arise with the application of Equation 6.56 when the factors
are attributes rather than numeric. As a result, sensitivity is usually viewed
as being determined directly by the main effects themselves.

The example presented in Section 6.9 now can be analyzed using factorial
analysis. Suppose that two runs were conducted, giving the results that are
presented in Table 6.13. With this information, the main effects can be
computed using Equation 6.53 and using the sign patterns in Table 6.12.
For example, the main effect of factor A, detector response time, using
Equation 6.53, is
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A: low A: high
B: low y11 = 40.9 y21 = 47.8

y12 = 41.6 y22 = 39.9
T1 = 82.5 T2 = 87.7

B: high y31 = 42.4 y41 = 50.2
y32 = 42.0 y42 = 46.5
T3 = 84.4 T4 = 96.7

TABLE 6.13
Percentage changes for four trials, each conducted twice.

MEA =
1

4
[−82.5 + 87.7 − 84.4 + 96.7] = 4.4. (6.57)

Similarly, MEB = 2.7 and MEAB = 1.8. These results can be interpreted.
When going from the low to high level of factor A, that is, switching the
detector position from 5 mm to 10 mm, there is a 4.4 % increase in the
detector’s amplitude. Similarly, when going from the low to high level of
factor B, that is, changing from a 20 ms response detector to a 50 ms
response detector, there is a 2.7 % increase in amplitude. The interaction
main effect implies that changing from the combination of a 5 mm position
of the 20 ms response detector to a 10 mm position of the 50 ms response
detector increases the amplitude by 1.8 %. Finally, the average amplitude
increase, M , is found from Equation 6.55, for r = 2 and k = 2, to be 43.9
%.

An inherent feature of any 2k factorial design is that it is presented in a
form that can be analyzed easily using ANalysis Of VAriance (ANOVA) (for
example, see [6], [15]), provided there are two or more full sets of runs, that
is, r > 1. ANOVA yields an important piece of information. It determines
whether the effects of changing the levels of factors are statistically insignif-
icant. If this is so, it means that uncontrolled variables were present in the
experiment and caused changes greater than the controlled factor changes.
If only one run is made, a 2k design provides no measure of uncontrolled
variations, known as the statistical error, and methods other than ANOVA
must be used to measure significance.



Statistics 219

6.11 Problem Topic Summary

Topic Review Problems Homework Problems
Normal 1, 2, 3, 4, 6, 9, 12, 1, 2, 3, 9, 15, 17,

14, 16, 21, 25 22, 24, 25
Student’s t 5, 7, 8, 10, 11, 13, 17, 3, 4, 5, 6, 8, 11, 14,

18, 22, 23, 24 18, 19, 20, 21, 23, 24
Chi-square 15, 19, 20 6, 7, 10, 11, 12, 13,

15, 16, 25

TABLE 6.14
Chapter 6 Problem Summary

6.12 Review Problems

1. Given 1233 instantaneous pressure measurements that are distributed
normally about a mean of 20 psi with a standard deviation of 0.5 psi,
what is the probability that a measured value will be between 19 psi
and 21 psi?

2. What is the probability, in decimal form, that a normally distributed
variable will be within 1.500 standard deviations of the mean?

3. A laser pinpoints the target for an advanced aircraft weapons system.
In a system test, the aircraft simulates targeting a flight-test aircraft
equipped with an optical receiver. Data recorders show that the standard
deviation of the angle of the beam trajectory is 0.1400◦ with a mean
of 0◦. The uncertainty in the angle of the beam trajectory is caused
by precision errors, and the angle is distributed normally. What is the
probability, in decimal form, that the aircraft laser system will hit a
target 10 cm wide at a range of 100 m?

4. The average age of the dining clientele at a restaurant is normally dis-
tributed about a mean of 52 with a standard deviation of 20. What is
the probability, in decimal form, of finding someone between the ages of
18 and 21 in the restaurant?

5. Each of 10 engineering students measures the diameter of a spherical
ball bearing using dial calipers. The values recorded in inches are 0.2503,
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0.2502, 0.2501, 0.2497, 0.2504, 0.2496, 0.2500, 0.2501, 0.2494, and 0.2502.
With knowledge that the diameters of the ball bearings are distributed
normally, find the probability that the diameter of a bearing is within
+0.0005 and −0.0005 of the mean based on the sample statistics.

6. A series of acceleration measurements is normally distributed about a
mean of 5.000 m/s2 with a standard deviation of 0.2000 m/s2. Find the
value such that the probability of any value occurring below that value
is 95 %.

7. Measured accelerations (in m/s2), which are normally distributed, are
9.81, 9.87, 9.85, 9.78, 9.76, 9.80, 9.89, 9.77, 9.78, and 9.85. Estimate the
range of acceleration within which the next measured acceleration would
be at 99 % confidence.

8. From the data given in the previous problem, what range contains the
true mean value of the acceleration?

9. If normal distribution (population) statistics are used (incorrectly!) to
compute the sample statistics, find the percent probability that the next
measured acceleration will be within the sample precision interval com-
puted in the previous accelerometer problem. Compute statistics as if
they were population statistics.

10. A student determines, with 95 % confidence, that the true mean value
based upon a set of 61 values equals 6. The sample mean equals 4.
Determine the value of the sample standard deviation to the nearest
hundredth.

11. The values of x measured in an experiment are 5, 1, 3, and 6. Determine
with 95 % confidence the upper value of the range that will contain the
next x value.

12. A student determines, with 95 % confidence, that the true mean value
based upon a set of N values equals 8. The sample mean equals 7.
Assuming that N is very large (say > 100), determine the value of the
standard deviation of the means to the nearest hundredth. Remember
that the standard deviation of the means has a positive value.

13. The mean and standard deviation of a normally distributed population
are 105 and 2, respectively. Determine the percent probability that a
member of the population will have a value between 101 and 104.

14. The scores of the students who took the SAT math exam were normally
distributed with a mean of 580 and a standard deviation of 60. Determine
the percentage of students who scored greater than 750 to the nearest
hundredth of a percent.
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15. The percent probability that systematic effects have resulted in a χ2

value greater, equal to, or greater than 25 based upon 16 measurements
is (a) 5, (b) 10, (c) 90, (d) 95, or (e) 97.5.

16. Determine the percent probability that a student will score between 60
and 90 on an exam, assuming that the scores are normally distributed
with a mean of 60 and a standard deviation of 15.

17. Determine the range of scores on a test within which 95 % of 12 students
who took an exam having a mean of 60 and a standard deviation of 15,
in whole numbers.

18. Given a mean and a standard deviation of 15 and 2.0, respectively, for
a sample of 11, determine the range that contains the true variance,
estimated at 95 % confidence.

19. A pressure pipeline manufacturer has performed wall thickness mea-
surements for many years and knows that the true variance of the wall
thickness of a pipe is 0.500 mm2. If the variance of a sample is 1.02 mm2,
find the percent probability that this sample variance results from only
random events. Assume a sample size of 16.

20. Determine the sample skewness for the measurand values of 7, 3, 1, 5,
and 4.

21. An engineer has performed wall thickness measurements many times
and knows that the true variance of the wall thickness of a pipe is 0.500
mm2. If the rejection criterion for sample variance is 0.7921 mm2 for a
single wall, find the probability that the rejection criterion is good for a
sample size of 21.

22. What is the probability that a student will score between 75 and 90 on
an exam, assuming that the scores are distributed normally with a mean
of 60 and a standard deviation of 15?

23. What is the probability that a student will score between 75 and 90 on
an exam, assuming that the scores are based on only three students,
with a mean of 60 and a standard deviation of 15?

24. Determine the probability that a student will score between 75 and 90 on
an examination, assuming that the scores are based upon nine students,
with a mean of 60 and a standard deviation of 15.

25. It is known that the statistics of a well-defined voltage signal are given
by a mean of 8.5 V and a variance of 2.25 V2. If a single measurement of
the voltage signal is made, determine the probability that the measured
value will be between 10 V and 11.5 V.

26. What are the units of the standardized normal variate and the normal-
ized z variable?
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6.13 Homework Problems

1. A February 14, 1997 Observer article cited a NCAA report on a fa-
mous midwestern university’s admission gap between all 1992-95 enter-
ing freshmen and the subset of entering freshman football team mem-
bers. The article reported that the mean SAT scores were 1220 for all
entering freshmen and 894 for the football team members. Assume that
the standard deviations of the SAT scores were 80 and 135 for all fresh-
men and all football team members, respectively. Determine (a) the per-
centage of all freshmen who scored greater than 1300 on their SATs, (b)
the percentage of football players who scored greater than 1300 on their
SATs, and (c) the number of football players who scored greater than
half of all of the freshman class, assuming that there were 385 football
players. State all assumptions.

2. Assume that students who took the SAT math exam were normally
distributed about a mean value of 580 with a standard deviation of 60.
Determine what percentage of the students scored higher than 750 on
the exam.

3. Using MATLAB, determine for a class of 69 the percent probability,
to four significant figures, of getting a test score within ±1.5 standard
deviations of the mean, assuming that the test scores are distributed
according to (a) Student’s t distribution and (b) the normal distribution.

4. During an experiment, an aerospace engineering student measures a
wind tunnel’s velocity N times. The student reports the following in-
formation, based on 90 % confidence, about the finite data set: mean
velocity = 25.00 m/s, velocity standard deviation = 1.50 m/s, and un-
certainty in velocity = ±2.61 m/s. Determine (a) N , (b) the standard
deviation of the means based upon this data set (in m/s), (c) the un-
certainty, at 95 % confidence, in the estimate of the true mean value of
the velocity (in m/s), and (d) the interval about the sample mean over
which 50 % of the data in this set will be (in m/s).

5. An aerospace engineering student performs an experiment in a wind
tunnel to determine the lift coefficient of an airfoil. The student takes
61 measurements of the vertical force using a force balance, yielding
a sample mean value of 44.20 N and a sample variance of 4.00 N2.
Determine (a) the percent probability that an additional measurement
will be between 45.56 N and 48.20 N, (b) the range (in N) over which the
true mean value will be, assuming 90 % confidence, and (c) the range
(in N2) over which the true variance will be assuming 90 % confidence.
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6. An airplane manufacturer intends to establish a component acceptance
criterion that is based upon sound statistical methods. Preliminary tests
on 61 acceptable components have determined that the mean load to
produce component failure is 500 psi with a standard deviation of 25
psi. Based upon this information, provide (a) an estimate, with 99 %
confidence, of the value of the next (the 62nd) measured load to produce
failure, (b) an estimate, with 99 % confidence, of the true mean load to
produce failure, and (c) an estimate, with 98 % confidence, of the true
variance. Finally, the manufacturer wants to be 99 % confident that
if the batch sample meets the acceptance criterion. (d) Determine the
range of sample standard deviation values (in psi) that the batch sample
can have and still meet the test criterion.

7. The sample mean of 21 golf ball weights equals 0.42 N, and the sample
variance equals 0.04 N2. Determine the range (in N2) that contains the
true variance, with 90 % confidence.

8. The values of x = 5, 3, 1, and 6 were measured in an experiment. Find
the range within which will contain the next data point with 95 % con-
fidence.

9. The mean and standard deviation of a normally distributed population
of values x are x

′

= 105 and σ = 2. Find the percent probability that a
value of x will be in the range between 101 and 104.

Ek 6.4 13.6 13.6 6.4
Ok 8 10 16 6

TABLE 6.15
Expected and observed occurrences.

10. The expected number of occurrences, Ek, (assuming a normal distribu-
tion) and the observed number of occurrences, Ok, for 40 measurements
are given in Table 6.15. Use the χ2 test to determine the probability
that the discrepancies between the observed and expected data are due
to chance alone. The choices are (a) between 95 % and 90 %, (b) be-
tween 90 % and 50 %, (c) between 50 % and 5 %, and (d) between 5 %
and 0 %.

11. For the data values of 1, 3, 5, 7, and 9, determine, with 95 % confidence,
the values of the ranges that contain (a) the true mean, (b) the true
variance, and (c) the next measured value if one more data point is
taken.

12. A battery manufacturer guarantees that his batteries will last, on aver-
age, 3 years, with a standard deviation of 1 year. His claims are based
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upon a very large population of his ‘good’ batteries. A consumer watch
group decides to test his guarantee. Their small sample of his ‘good’
batteries indicates battery lifetimes (in years) of 1.9, 2.4, 3.0, 3.5, and
4.2. Determine (a) the percent confidence that the difference between
the watch group’s sample variance and manufacturer’s true variance is
due solely to random effects. Next, based upon the manufacturer’s bat-
tery population average life time and standard deviation, (b) determine
the probabilities that a battery lifetime will be less than 1.9 years and
(c) between 3 and 4 years.

13. R measurand values have been obtained under steady-state operating
conditions. An estimate of the value of the next measurand value, the
R + 1 value, is between 2 and 12, and an estimate of the true mean
value is between 2 and 4. Both estimates are made with 90 % confidence.
Determine (a) the value of R and (b) the sample variance.

14. Given that the mean and standard deviation are 10 and 1.5, respectively,
for a sample of 16, estimate with 95 % confidence, the ranges within
which are (a) the true mean and (b) the true standard deviation.

15. The sample standard deviation of the length of 12 widgets taken off an
assembly line is 0.20 mm. Determine the widgets population’s standard
deviation to support the conclusion that the probability is 50 % for any
difference between the sample’s and the population’s standard deviations
to be the result of random effects.

16. Determine the percent confidence that an experimenter should properly
claim if the estimated true variance of a variable is between 6.16 and
14.6, based upon 31 measurements and a sample standard deviation of
3.

17. Assuming that the performance of a class is normally distributed (which
in most cases it is not), (a) what is the probability that a student will
score above a 99 % on the final exam if the mean is 76 % and the
standard deviation is 11 %? (b) What if the mean is only 66 % but the
standard deviation increases to 22 %?

18. The sample mean of 13 bowling balls measured from a manufacturing
line is 10.12 lbf with a sample variance of 0.28 lbf2. Determine the range
(in N) that contains the true standard deviation of all the bowling balls
assuming 90 % confidence.

19. A student, working on the development of an airship, wishes to deter-
mine the quality of his pressure transducer. During a controlled air-ship
experiment, he measures the pressure (in psia) of 14.2, 14.2, 14.4, 14.8,
and 14.5. Determine the upper value of the range within the which the
next data point will be to the nearest hundredth at 95 % confidence.
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20. Satisfied with the pressure transducer, an aviator takes his airship to
an assumed altitude. However, he has no way of verifying the altitude.
Therefore, he decides to measure air pressure at altitude and compare
it to that in a table. He measures pressures (in psia) of 9.8, 9.9, 10.2,
9.0, 10.4, 10.1, 10.0, and 10.6. Determine the range that contains 95 %
of the actual pressures.

21. A student determines that the true mean of a set of 31 values is 301.23
with 99 % confidence, while his sample mean equaled 299.89. What is
the standard deviation of the sample? What is the standard deviation
of the means?

22. Based on a large data base, the State Highway Patrol has determined
that the average speed of Friday afternoon drivers on an interstate is
67 mph with a standard deviation of 4 mph. How many drivers of 1000
travelling on that interstate on Friday afternoon will be travelling in
excess of 72 mph?

23. A small piece of cloth was found at the scene of a crime. One suspect was
found wearing a sport coat having similar material. Ten fiber-diameter
measurement tests were conducted on each of the two samples. The di-
ameters (in mm) for cloth A were 3.0806, 3.0232, 2.9010, 3.1340, 3.0290,
3.1479, 3.1138, 2.9316, 2.8708, and 2.9927; for cloth B they were 2.9820,
2.9902, 3.0728, 2.9107, 2.9775, 2.9348, 2.9881, 3.2303, 2.9090, and 2.7979.
What is the percent confidence that the crime-scene cloth was from the
sport coat?

24. Using the data file heights.txt that contains the heights in centimeters
of 500 college students, determine and plot the running sample mean and
running sample standard deviation of the heights, that is, the sample
mean and sample standard computed for each N (1 through 500). Also,
provide the values for N = 10, N = 100, and N = 500.

25. The following problems use the data file signal.dat that contains two
columns, each with 5000 rows of data (the first column is the measured
velocity in m/s and the second column is the sample time in s). The
velocities were measured behind an obstruction that contained several
cables of different diameters. The data was taken over a period of 5 s at
a sample rate of 1 kHz (1000 samples/s). Assume that the sample rate
was fast enough such that the Nyquist sampling criterion was met. The
two M-files hf.m and chinormchk.m may be useful. Do the following by
using a given M-file, writing a program, or using a spreadsheet. (a) Plot
the histogram of the velocities presented in the first column in the data
file. Use Scott’s formula to determine the required number of bins. (b)
Plot the frequency distribution of the velocities. Use Scott’s formula.
(c) Plot the number of occurrences predicted by the normal distribution
in histogram format along with the actual number of occurrences (as
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done for the histogram above). This essentially amounts to overlaying
the predicted values on the histogram constructed for the first problem.
Use Scott’s formula. Assume that the mean and the standard deviation
of the normal distribution are the same as for the velocity data. (d) How
well do the velocities compare with those predicted, assuming a normal
distribution? What does it mean physically if the velocities are normally
distributed for this situation?
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Whenever we choose to describe some device or process with mathematical
equations based on physical principles, we always leave the real world behind,

to a greater or lesser degree. ... These approximations may, in individual
cases, be good, fair, or poor, but some discrepancy between modeled and real

behavior always exists.
E.O. Doebelin. 1995. Engineering Experimentation. New York: McGraw-Hill.

A measurement result is complete only if it is accompanied by a quantitative
expression of its uncertainty. The uncertainty is needed to judge whether the
result is adequate for its intended purpose and whether it is consistent with

other similar results.
Ferson, S., Kreinovich, V., Hajagos, J., Oberkampf, W. and Ginzburg, L. 2007.

Experimental Uncertainty Estimation and Statistics for Data Having Interval

Uncertainty. SAND2007-0939. Albuquerque: Sandia National Laboratories.
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7.1 Chapter Overview

Uncertainty is one part of life that cannot be avoided. Its presence is a con-
stant reminder of our limited knowledge and inability to control each and
every factor that influences us. This especially holds true in the physical
sciences. Whenever a process is quantified, by either modeling or experi-
ments, uncertainty is present. In the beginning of this chapter the uncertain-
ties present in modeling and experiments are identified. Agreement between
modeling and experiment is described in the context of uncertainty. Mea-
surement uncertainties are studied in detail. Conventional methods on how
to characterize, quantify, and propagate them are presented. The generic
cases of single or multiple measurements of a measurand or a result are con-
sidered. Then, numerical uncertainties associated with measurements are
discussed. Finally, uncertainty that results from a lack of knowledge about
a variable’s specific value is considered.

7.2 Uncertainty

Aristotle first addressed uncertainty over 2300 years ago when he pondered
the certainty of an outcome. However, it was not until the late 18th cen-
tury that scientists considered the quantifiable effects of errors in measure-
ments [1]. Continual progress on characterizing uncertainty has been made
since then. Within the last 55 years, various methodologies for quantifying
measurement uncertainty have been proposed [2]. In 1993, an international
experimental uncertainty standard was developed by the International Orga-
nization for Standards (ISO) [3]. Its methodology now has been adopted by
most of the international scientific community. In 1997 the National Con-
ference of Standards Laboratories (NCSL) produced a U.S. guide almost
identical to the ISO guide [4], “to promote consistent international methods
in the expression of measurement uncertainty within U.S. standardization,
calibration, laboratory accreditation, and metrology services.” The Ameri-
can National Standards Institute with the American Society of Mechanical
Engineers (ANSI/ASME) [5] and the American Institute of Aeronautics and
Astronautics (AIAA) [6] also have new standards that follow the ISO guide.
These new standards differ from the ISO guide only in that they use differ-
ent names for the two categories of errors, random and systematic instead
of Type A and Type B, respectively.

How is uncertainty categorized in the physical sciences? Whenever a
physical process is quantified, uncertainties associated with modeling and
computer simulation and/or with measurements can arise. Modeling and
simulation uncertainties occur during the phases of “conceptual modeling
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of the physical system, mathematical modeling of the conceptual model,
discretization and algorithm selection for the mathematical model, com-
puter programming of the discrete model, numerical solution of the com-
puter program model, and representation of the numerical solution” [7].
Such predictive uncertainties can be subdivided into modeling and numer-
ical uncertainties [10]. Modeling uncertainties result from the assumptions
and approximations made in mathematically describing the physical pro-
cess. For example, modeling uncertainties occur when empirically based or
simplified sub-models are used as part of the overall model. Modeling un-
certainties perhaps are the most difficult to quantify, particularly those that
arise during the conceptual modeling phase. Numerical uncertainties occur
as a result of numerical solutions to mathematical equations. These include
discretization, round-off, non-convergence, artificial dissipation, and related
uncertainties. No standard for modeling and simulation uncertainty has been
established internationally. Experimental or measurement uncertainties are
inherent in the measurement stages of calibration and data acquisition. Nu-
merical uncertainties also can occur in the analysis stage of the acquired
data.

The terms uncertainty and error each have different meanings in mod-
eling and experimental uncertainty analysis. Modeling uncertainty is de-
fined as a potential deficiency due to a lack of knowledge and modeling
error as a recognizable deficiency not due to a lack of knowledge [7]. Ac-
cording to Kline [8], measurement error is the difference between the
true value and the measured value. It is a specific value. Measurement
uncertainty is an estimate of the error in a measurement. It represents a
range of possible values that the error might assume for a specific measure-
ment. Additional uncertainty can arise because of a lack of knowledge of a
specific measurand value within an interval of possible values, as described
in Section 7.13.

By convention, the reported value of x is expressed with the same pre-
cision as its uncertainty, Ux, such as 1.25 ± 0.05. The magnitude of Ux

depends upon the assumed confidence, the uncertainties that contribute to
Ux, and how the contributing uncertainties are combined. The approach
taken to determine Ux involves adopting an uncertainty standard, such as
that presented in the ISO guide, identifying and categorizing all of the con-
tributory uncertainties, assuming a confidence for the estimate, and then,
finally, combining the contributory uncertainties to determine Ux. The types
of error that contribute to measurement uncertainty must be identified first.
The remainder of this chapter focuses primarily on measurement uncertainty
analysis. Its associated numerical uncertainties are considered near the end
of this chapter.
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FIGURE 7.1
Graphical presentation of a comparison between predictive and experimental
results.

7.3 Comparing Theory and Measurement

Given that both modeling and experimental uncertainties exist, what does
agreement between the two mean? How should such a comparison be illus-
trated? Conventionally, the experimental uncertainty typically is denoted
in a graphical presentation by error bars centered on measurement values
and the modeling uncertainty by dashed or dotted curves on both sides of
the theoretical curve. Both uncertainties should be estimated with the same
statistical confidence. An example is shown in Figure 7.1. When all data
points and their error bars are within the model’s uncertainty curves, then
the experiment and theory are said to agree completely within the assumed
confidence. When some data points and either part or all of their error bars
lay within the predictive uncertainty curves, then the experiment and the-
ory are said to agree partially within the assumed confidence. There is no
agreement when all of the data points and their error bars are outside of
the predictive uncertainty curves.

Does agreement between experiment and theory imply that both cor-
rectly represent the process under investigation? Not all of the time. Cau-
tion must be exercised whenever such comparisons are made. Agreement
between theory and experiment necessarily does not imply correctness. This
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issue has been addressed by Aharoni [11], who discusses the interplay be-
tween good and bad theory and experiments. There are several possibilities.
A bad theory can agree with bad data. The wrong theory can agree with a
good experiment by mere coincidence. A correct theory may disagree with
the experiment simply because an unforeseen variable was not considered or
controlled during the experiment. Therefore, agreement does not necessarily
assure correctness.

Caution also must be exercised when arguments are made to support
agreement between theory and experiment. Scientific data can be misused
[12]. The data may have been presented selectively to fit a particular hypoth-
esis while ignoring other hypotheses. Indicators may have been chosen with
units to support an argument, such as the number of automobile deaths per
journey instead of the number per kilometer travelled. Inappropriate scales
may have been used to exaggerate an effect. Taking the logarithm of a vari-
able appears graphically as having less scatter. This can be deceptive. Other
illogical mistakes may have been made, such as confusing cause and effect,
and implicitly using unproven assumptions. Important factors and details
may have been neglected that could lead to a different conclusion. Caveat
emptor!

Example Problem 7.1
Statement: Lemkowitz et al. [12] illustrate how different conclusions can be drawn

from the same data. Consider the number of fatalities per 100 million passengers for
two modes of transport given in the 1992 British fatality rates. For the automobile,
there were 4.5 fatalities per journey and 0.4 fatalities per km. For the airplane, there
were 55 fatalities per journey and 0.03 fatalities per km. Therefore, on a per km basis
airplane travel had approximately 10 times fewer fatalities than the automobile. Yet,
on a per journey basis, the auto had approximately 10 times fewer fatalities. Which of
the two modes of travel is safer and why?

Solution: There is no unique answer to this question. In fact, on a per hour basis,
the automobile and airplane have the the same fatality rate, which is 15 fatalities
per 100 million passengers. Perhaps driving for shorter distances and flying for longer
distances is safer than the converse.

7.4 Uncertainty as an Estimated Variance

When measurements are made under fixed conditions, the recorded values
of a variable still will vary to an extent. This implicitly is caused by small
variations in uncontrolled variables. The extent of these variations can be
characterized by the variance of the values. Further, as the number of ac-
quired values becomes large (N ≥ 30), the sample variance approaches its
true variance, σ2, and the distribution evolves to a normal distribution.
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Thus, if uncertainty is considered to represent the range within which an
acquired value will occur, then uncertainty can be viewed as an estimate of
the true variance of a normal distribution.

Consider the most general situation of a result, r, where r = r(x1, x2, ...)
and x1, x2, ..., represent measured variables whose distributions are normal.
In uncertainty analysis, a result is defined as a variable that is not measured
but is related functionally to variables that are measured, which are called
measurands. The result’s variance is defined as

σ2
r = lim

N→∞

[
1

N
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i=1

(ri − r′)2

]
, (7.1)

where N is the number of determinations of r based upon the set of x1, x2, ...
measurands. The difference between a particular ri value and its mean value,
r′, can be expressed in terms of a Taylor series expansion and the measur-
ands’ differences by
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In this equation the higher order terms involving second derivatives and
beyond are assumed to be negligible. Equation 7.2 can be substituted into
Equation 7.1 to yield
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The first two terms on the right side of Equation 7.3 are related to the
variances of x1 and x2, where
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and
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The third term is related to the covariance of x1 and x2, σx1,x2
, where
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When x1 and x2 are statistically independent, σx1x2
= 0. Substituting Equa-

tions 7.4, 7.5, and 7.6 into Equation 7.3 gives

σ2
r ' σ2

x1

(
∂r

∂x1

)2

+ σ2
x2

(
∂r

∂x2

)2

+ 2σx1x2

(
∂r

∂x1

)(
∂r

∂x2

)
+ ... . (7.7)

Equation 7.7 can be extended to relate the uncertainty in a result as a
function of measurand uncertainties. Defining the squared uncertainty u2

i as
an estimate of the variance σ2

i , Equation 7.7 becomes
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This equation shows that the uncertainty in the result is a function of the
estimated variances (uncertainties) ux1

and ux2
and their estimated covari-

ance ux1x2
. It forms the basis for more detailed uncertainty expressions that

are developed in the remainder of this chapter and used to estimate the
overall uncertainty in a variable. u2

c is called the combined estimated
variance. The combined standard uncertainty is uc. This is denoted
by ur for a result and by um for a measurand. In order to determine the
combined standard uncertainty, the types of errors that contribute to the
uncertainty must be examined first.

7.5 Systematic and Random Errors

When a single measurement is performed, a number is assigned that repre-
sents the magnitude of the sensed physical variable. Because the measure-
ment system used is not perfect, an error is associated with that number. If
the system’s components have been calibrated against more accurate stan-
dards, these standards have their own inaccuracies. The act of calibration
itself introduces further uncertainty. All these factors contribute to the mea-
surement uncertainty of a single measurement. Further, when the measure-
ment is repeated, its value most likely will not be the same as it was the
first time. This is because small, imperceptible changes in variables that af-
fect the measurement have occurred in the interim, despite any attempts to
perform a controlled experiment. Fortunately, almost all experimental un-
certainties can be estimated, provided there is a consistent framework that
identifies the types of uncertainties and establishes how to quantify them.
The first step in this process is to identify the types of errors that give rise
to measurement uncertainty.

Following the convention of the 1998 ANSI/ASME guidelines [5], the
errors that arise in the measurement process can be categorized into either
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systematic (bias) or random (precision) errors. Systematic errors some-
times can be difficult to detect and can be found and minimized through the
process of calibration, which is the comparison with a true, known value.
They determine the accuracy of the measurement. Further, they lack any
statistical information. The systematic error of the experiment whose re-
sults are illustrated in Figure 7.2 is the difference between the true mean
value and the sample mean value. In other words, if the estimate of a quan-
tity does not equal the actual value of the quantity, then the quantity is
biased. Random errors are related to the scatter in the data obtained un-
der fixed conditions. They determine the precision, or repeatability, of the
measurement. The random error of the experiment whose results are shown
in Figure 7.2 is the difference between a confidence limit (either upper or
lower) and the sample mean value. This confidence limit is determined from
the standard deviation of the measured values, the number of measure-
ments, and the assumed percent confidence. Random errors are statistically
quantifiable. Therefore, an ideal experiment would be highly accurate and
highly repeatable. High repeatability alone does not imply minimal error.
An experiment could have hidden systematic errors and yet highly repeat-
able measurements, thereby always yielding approximately the same, yet
inaccurate, values. Experiments having no bias but poor precision also are
undesirable. In essence, systematic errors can be minimized through careful
calibration. Random errors can be reduced by repeated measurements and
the careful control of conditions.

Example Problem 7.2
Problem Statement: Some car rental agencies use an onboard global positioning

system (GPS) to track an automobile. Assume that a typical GPS’s precision is 2 %
and its accuracy is 5 %. Determine the combined standard uncertainty in position
indication that the agency would have if [1] it uses the GPS system as is, and [2] it
recalibrates the GPS to within an accuracy of 1 %.

Problem Solution: Denote the precision uncertainty by up and the accuracy as ua.
The combined uncertainty, uc, obtained by applying Equation 7.8, is

uc =
√

u2
a + u2

p. (7.9)

For case [1], uc =
√

29 = 5.39. For case [2], uc =
√

5 = 2.24. So the re-calibration
decreases the combined uncertainty by 3.15 %.

Examine two circumstances that help to clarify the difference between
systematic and random errors. First, consider a stop watch used to measure
the time that a runner crosses the finish line. If the physical reaction times of
a timer who is using the watch are equally likely to be over or under by some
average reaction time in starting and stopping the watch, the measurement
of a runner’s time will have a random error associated with it. This error
could be assessed statistically by determining the variation in the recorded
times of a same event whose time is known exactly by another method. If
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FIGURE 7.2
Nine recorded values of the same measurand.

the watch does not keep exact time, there is a systematic error in the time
record itself. This error can be ascertained by comparing the mean value of
recorded times of a same event with the exact time. Further, if the watch’s
inaccuracy is comparable to the timer’s reaction time, the systematic error
may be hidden within (or negligible with respect to) the random error. In
this situation, the two types of errors are very hard to distinguish.

Next consider an analog panel meter that is used to record a signal. If the
meter is read consistently from one side by an experimenter who records the
reading, this method introduces a systematic error into the measurements.
If the meter is read head-on, but not exactly so in every instance, then the
experimenter introduces a random error into the recorded value.

For both examples, the systematic and random errors combine to deter-
mine the overall uncertainty. This is illustrated in Figure 7.2, which shows
the results of an experiment. A sample of N = 9 recordings of the measur-
and, x, were made under fixed operating conditions. The true mean value of
x, xtrue, would be the sample mean value of the nine readings if no uncer-
tainties were present. However, because of systematic and random errors,
the two mean values differ. Fortunately, an estimate of the true mean value
can be made to within certain confidence limits by using the sample mean
value and methods of uncertainty analysis.

7.6 Measurement Process Errors

The experimental measurement process itself introduces systematic and ran-
dom errors. Most experiments can be categorized either as timewise or
as sample-to-sample experiments. In a timewise experiment, measurand
values are recorded sequentially in time. In a sample-to-sample experiment,
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measurand values are recorded for multiple samples. The random error de-
termined from a series of repeated measurements in a timewise experiment
performed under steady conditions results from small, uncontrollable fac-
tors that vary during the experiment and influence the measurand. Some
errors may not vary over short time periods but will over longer periods.
So, the effect of the measurement time interval must be considered [5]. In
the analogous sample-to-sample experiment, the random error arises from
both sample-to-sample measurement system variability, and variations due
to small, uncontrollable factors during the measurement process.

Errors that are not related directly to measurement system errors can be
identified through repeating and replicating an experiment. In measurement
uncertainty analysis, repetition implies that measurements are repeated
in a particular experiment under the same operating conditions. Replica-
tion refers to the duplication of an experiment having similar experimental
conditions, equipment, and facilities. The specific manner in which an ex-
periment is replicated helps to identify various kinds of error. For example,
replicating an experiment using a similar measurement system and the same
conditions will identify the error resulting from using similar equipment. The
definitions of repetition and replication differ from those commonly found
in statistics texts (for example, see [14]), which consider an experiment re-
peated n times to be replicated n + 1 times, with no changes in the fixed
experimental conditions, equipment, or facility.

The various kinds of errors can be identified by viewing the experiment
in the context of different orders of replication levels. At the zeroth-
order replication level, only the errors inherent in the measurement system
are present. This corresponds to either absolutely steady conditions in a
timewise experiment or a single, fixed sample in a sample-to-sample ex-
periment. This level identifies the smallest error that a given measurement
system can have. At the first-order replication level, the additional random
error introduced by small, uncontrolled factors that occur either timewise
or from sample to sample are assessed. At the N th-order replication level,
further systematic errors beyond the first-order level are considered. These,
for example, could come from using different but similar equipment.

Measurement process errors originate during the calibration, measure-
ment technique, data acquisition, and data reduction phases of an experi-
ment [5]. Calibration errors can be systematic or random. Large systematic
errors are reduced through calibration usually to the point where they are
indistinguishable with inherent random errors. Uncertainty propagated from
calibration against a more accurate standard still reflects the uncertainty of
that standard. The order of standards in terms of increasing calibration er-
rors proceeds from the primary standard through inter-laboratory, transfer,
and working standards. Typically, the uncertainty of a standard used in a
calibration is fossilized, that is, it is treated as a fixed systematic error
in that calibration and in any further uncertainty calculations [13]. Data
acquisition errors originate from the measurement system’s components,



Uncertainty Analysis 239

including the sensor, transducer, signal conditioner, and signal processor.
These errors are determined mainly from the elemental uncertainties of the
instruments. Data reduction errors arise from computational methods, such
as a regression analysis of the data, and from using finite differences to ap-
proximate derivatives and integrals. Other errors come from the techniques
and methods used in the experiment. These can include uncertainties from
uncontrolled environmental effects, inexact sensor placement, instrument
disturbance of the process under investigation, operational variability, and
so forth. All these errors can be classified as either systematic or random
errors.

7.7 Quantifying Uncertainties

Before an overall uncertainty can be determined, analytical expressions for
systematic and random errors must be developed. These expressions come
from probabilistic considerations. Random error results from a large number
of very small, uncontrollable effects that are independent of one another and
individually influence the measurand. These effects yield measurand values
that differ from one another, even under fixed operating conditions. It is
reasonable to assume that the resulting random errors will follow a Gaus-
sian distribution. This distribution is characterized through the mean and
standard deviation of the random error. Because uncertainty is an estimate
of the error in a measurement, it can be characterized by the standard devi-
ation of the random error. Formally, the random uncertainty (precision
limit) in the value of the measurand x is

Px = tνPx ,C · SPx
, (7.10)

where SPx
is the standard deviation of the random error, tνPx ,C is Student’s

t variable based upon νPx
degrees of freedom, and C is the confidence level.

Likewise, the random uncertainty in the average value of the measurand x
determined from N measurements is

Px̄ = tνPx ,C · SPx̄
= tνPx ,C · SPx

/
√

N. (7.11)

Usually Equation 7.10 is used for experiments involving the single measure-
ment of a measurand and Equation 7.11 for multiple measurements of a
measurand. The degrees of freedom for the random uncertainty in x are

νPx
= N − 1. (7.12)

Systematic uncertainty can be treated in a similar manner. Although
systematic errors are assumed to remain constant, their estimation involves
the use of statistics. Following the ISO guidelines, systematic errors are
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assumed to follow a Gaussian distribution. The systematic uncertainty
(bias limit) in the value of the measurand x is denoted by Bx. The value
of Bx has a reliability of ∆Bx. Typically, a manufacturer provides a value
for an instrument’s accuracy. This number is assumed to be Bx. The value
of the reliability is an estimate of the accuracy and is expressed in units of
Bx. Hence, the lower its value, the more the confidence that is placed in the
reported value of the accuracy. Formally, the systematic uncertainty in the
value of x is

Bx = tνBx ,C · SBx
, (7.13)

where SBx
is the standard deviation of the systematic error. Equation 7.13

can be rearranged to determine SBx
for a given confidence and value of Bx.

For example, SBx
∼= Bx/2 for 95 % confidence. Finally, according to the ISO

guidelines, the degrees of freedom for the systematic uncertainty in x are

νBx
∼= 1

2

(
∆Bx

Bx

)−2

=
1

2

(
∆SBx

SBx

)−2

. (7.14)

The quantity ∆Bx/Bx is termed the relative systematic uncertainty of
Bx. More certainty in the estimate of Bx implies a smaller ∆Bx and, hence,
a larger νBx

. One-hundred percent certainty corresponds to νBx
= ∞. This

effectively means that an infinite number of measurements are needed to
assume 100 % certainty in the stated value of Bx.

Example Problem 7.3
Statement: A manufacturer states the the accuracy of a pressure transducer is 1 psi.

Assuming that the reliability of this value is 0.5 psi, determine the relative systematic
uncertainty in a pressure reading using this transducer and the degrees of freedom in
the systematic uncertainty of the pressure.

Solution: According to the definition of the relative systematic uncertainty,
∆Bx/Bx = 0.5/1 = 0.5 or 50 %. From Equation 7.14, the degrees of freedom for
the systematic uncertainty in the pressure are 1

2
(0.5)−2 = 2. This is a relatively lower

number, which reflects the high relative systematic uncertainty.

7.8 Measurement Uncertainty Analysis

Experimental uncertainty analysis involves the identification of errors that
arise during all stages of an experiment and the propagation of these errors
into the overall uncertainty of a desired result. The specific goal of uncer-
tainty analysis is to obtain a value of the overall uncertainty (expanded
uncertainty), Ux, of the variable, x, such that either the next-measured
value, xnext, or the true value, xtrue, can be estimated. The value of the
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next member of the sample of acquired data is represented by xnext. The
value of the mean of the population from which the sample was drawn is
given by xtrue. For the case of a single measurement or result based on x,
this is expressed as

xnext = x ± Ux (%C), (7.15)

in which the estimate is obtained with %C confidence. For the case of a
multiple measurement or result based on x, this becomes

xtrue = x̄ ± Ux (%C), (7.16)

in which x̄ denotes the sample average of x. For either case, the overall
uncertainty, Ux, can be expressed as

Ux = k · uc, (7.17)

where k is the coverage factor and uc the combined standard uncertainty.
According to the ISO guidelines, the coverage factor is represented by the
Student’s t variable that is based upon the number of effective degrees of
freedom. That is,

Ux = tνeff ,C · uc. (7.18)

This assumes a normally distributed measurement error with zero mean
and σ2 variance. A zero mean implies that all significant systematic errors
have been identified and removed from the measurement system prior to ac-
quiring data. How these uncertainties contribute to the combined standard
uncertainty and how they determine νeff depends upon the type of experi-
mental situation encountered. The value of νeff is determined knowing the
values of νPx

and νBx
given by Equations 7.12 and 7.14, respectively.

There are four situations that typify most experiments:

1. The single-measurement measurand experiment, in which the value of
the measurand is based upon a single measurement (example: a mea-
sured temperature).

2. The single-measurement result experiment, in which the value of a result
depends upon single values of one or more measurands (example: the
volume of a cylinder based upon its length and diameter measurements).

3. The multiple-measurement measurand experiment, in which the mean
value of a measurand is determined from a number of repeated measure-
ments (example: the average temperature determined from a series of
temperature measurements).

4. The multiple-measurement result experiment, in which the mean value
of a result depends upon the values of one or more measurands, each
determined from the same or a different number of measurements (exam-
ple: the mean density of a perfect gas determined from N1 temperature
and N2 pressure measurements).
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Two standard types of uncertainty analysis can be used for experiments,
general and detailed. Which type of uncertainty analysis applies to a partic-
ular experiment is not fixed. General uncertainty analysis usually applies to
the first two situations and detailed uncertainty analysis to the latter two.
Coleman and Steele [10] give a thorough presentation of both types.

General uncertainty analysis is a simplified approach that consid-
ers each measurand’s overall uncertainty and its propagation into the final
result. It does not consider the specific systematic and random errors that
contribute to the overall uncertainty. This type of analysis typically is done
during the planning stage of an experiment. It helps to identify sources of
error and their contribution to the overall uncertainty. It also aids in deter-
mining whether or not a particular measurement system is appropriate for
a planned experiment.

Detailed uncertainty analysis is a more thorough approach that iden-
tifies the systematic and random errors contributing to each measurand’s
overall uncertainty. The propagation of systematic and random errors into
the final result is computed in parallel. The framework of detailed uncer-
tainty analysis in this text is consistent with that presented in the ISO guide
[3]. This type of uncertainty analysis usually is done for more-involved ex-
perimental designs and follows the calibration, data acquisition, and data
reduction phases of an experiment.

In the following, each of the four common situations will be examined in
more detail using the uncertainty analysis approach that is most appropri-
ate.

7.9 General Uncertainty Analysis

General uncertainty analysis is most applicable to experimental situations
involving either a single-measurement measurand or a single-measurement
result. The uncertainty of a single-measurement measurand is related to its
instrument uncertainty, which is determined from calibration, and to the
resolution of instrument used to read the measurand value. The uncertainty
of a single-measurement result comes directly from the uncertainties of its
associated measurands. The expressions for these uncertainties follow di-
rectly from Equation 7.8.

For the case of J measurands, the combined standard uncertainty in a
result becomes

u2
r '

J∑

i=1

(θi)
2
u2

xi
+ 2

J−1∑

i=1

J∑

j=i+1

(θi) (θj) uxi,xj
, (7.19)
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where

uxi,xj
=

L∑

k=1

(ui)k(uj)k, (7.20)

with L being the number of elemental error sources that are common to
measurands xi and xj , and θi = ∂r/∂xi. θi is the absolute sensitivity
coefficient. This coefficient should be evaluated at the expected value of
xi. Note that the covariances in Equation 7.19 should not be ignored simply
for convenience when performing an uncertainty analysis. Variable interde-
pendence should be assessed. This occurs through common factors, such as
ambient temperature and pressure or a single instrument used for different
measurands.

When the covariances are negligible, Equation 7.19 for J independent
variables simplifies to

u2
r '

J∑

i=1

(θiuxi
)
2
, (7.21)

where uxi
is the absolute uncertainty. The values of the result’s uncer-

tainty will follow Student’s t distribution [3], based upon the number of
effective degrees of freedom, νeff , with

νeff = νr =
u4

r∑J
i=1(θ

4
i u4

xi
)/νi

=
[
∑J

i=1 θ2
i u2

xi
]2

∑J
i=1(θ

4
i u4

xi
)/νi

, (7.22)

where νi = Ni − 1 is the number of degrees of freedom for uxi
and

νeff ≤∑J
i=1 νi. This equation, known as the Welch-Satterthwaite formula,

was presented originally by Welch [9]. The value of νeff obtained from the
formula is rounded to the nearest whole number.

Equation 7.19 can be applied to estimate the uncertainty in a measur-
and. In this case, all the absolute sensitivity coefficients equal unity, and
Equation 7.19 reduces to

u2
m '

J∑

i=1

u2
xi

+ 2
J−1∑

i=1

J∑

j=i+1

uxi,xj
, (7.23)

where um is the measurand uncertainty. Further, when the covariances are
negligible, Equation 7.23 simplifies to

u2
m '

J∑

i=1

u2
xi

. (7.24)

The corresponding number of effective degrees of freedom becomes

νeff = νm =
u4

m∑J
i=1(u

4
xi

/νi)
=

[
∑J

i=1 u2
xi

]2
∑J

i=1(u
4
xi

/νi)
. (7.25)
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Example Problem 7.4
Statement: Two pressure transducers are used to determine the pressure difference,

∆P = P2−P1, between a wind tunnel’s reference pressure tap and a static pressure tap
on the surface of an airfoil placed inside the wind tunnel. Both transducers are identical
and have a reported accuracy of 1 %, as determined by the manufacturer’s calibration.
An experimenter decides to recalibrate these transducers against a laboratory standard
that has 0.3 % accuracy. Further, the recalibration method itself introduces an addi-
tional 0.5 % uncertainty. Determine the combined standard uncertainty in ∆P for two
situations: one when the experimenter does not recalibrate the transducers (case A)
and the other when she does (case B).

Solution: Both situations involve the determination of the uncertainty in a mea-
surand. When the transducers are not recalibrated, each transducer has an uncer-
tainty of 1 % and the uncertainties are independent. According to Equation 7.21,
u2
∆PA

= u2
P1

+ u2
P2

. Thus, u∆PA
=

√
0.012 + 0.012 ' 0.014 or 1.4 %. When

the transducers are recalibrated against the same standard, their uncertainties are
correlated. Hence, the covariant term in Equation 7.19 must be considered. Thus,

u2
∆PB

= u2
P1

+ u2
P2

+ 2θ1θ2uP1,P2
. Here θ1 =

∂uP1
∂u∆PB

= −1 and θ2 =
∂uP2

∂u∆PB
= 1.

The uncertainty resulting from the recalibration according to Equation 7.20 is

uP1,P2
=

2∑

k=1

(ui)k(uj)k = (uP1
)1(uP2

)1 + (uP1
)2(uP2

)2 = (0.3)(0.3) + (0.5)(0.5) ' 0.3 %.

Thus, applying Equation 7.19, u∆PB
=
√

0.012 + 0.012 − (2)(0.003) ' 0.013 or 1.3
%. So, the recalibration of the transducers reduces the uncertainty in the pressure
difference from 1.4 % to 1.2 %.

Because this situation involves the uncertainty of a measured difference, one of the
θi’s is negative. This reduces the uncertainty in the difference if the instruments are cali-
brated against the same standard under the same conditions (time, place, and so forth).
This reduction seems counterintuitive at first, that one can reduce the measurement
uncertainty of a difference through recalibration, which itself introduces uncertainty.
However, the uncertainty of a measured difference can be reduced because recalibration
using the same standard and conditions introduces a dependent systematic error. This
error effectively reduces the independent systematic errors of each instrument.

Each single-measurement situation is considered in the following.

7.9.1 Single-Measurement Measurand Experiment

Many times it is desirable to estimate the uncertainty of a single measurand
taken using a certain instrument. Typically this is done before conduct-
ing an experiment. The contributory errors are considered fossilized, hence
systematic. The expression for the combined standard uncertainty is Equa-
tion 7.23.

This particular type of uncertainty is known as the design-stage uncer-
tainty, ud, which is analogous to the combined standard uncertainty. Often
it is used to choose an instrument that meets the accuracy required for a
measurement. It is expressed as a function of the zero-order uncertainty of
the instrument, u0, and the instrument uncertainty, uI , as
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ud =
√

u2
0 + u2

I , (7.26)

which usually is computed at the 95 % confidence level.
Instruments have resolution, readability, and errors. The resolution of

an instrument is the smallest physically indicated division that the instru-
ment displays or is marked. The zero-order uncertainty of the instrument,
u0, is set arbitrarily to be equal to one-half the resolution, based upon 95
% confidence. Equation 7.26 shows that the design-stage uncertainty can
never be less than u0, which would occur when u0 is much greater than
uI . In other words, even if the instrument is perfect and has no instrument
errors, its output must be read with some finite resolution and, therefore,
some uncertainty.

The readability of an instrument is the closeness with which the scale
of the instrument is read by an experimenter. This is a subjective value.
Readability does not enter into assessing the uncertainty of the instrument.

The instrument uncertainty usually is stated by the manufacturer and
results from a number of possible elemental instrument uncertainties, ei.
Examples of ei are hysteresis, linearity, sensitivity, zero-shift, repeatability,
stability, and thermal-drift errors. Thus,

uI =

√√√√
N∑

i=1

e2
i . (7.27)

Instrument errors (elemental errors) are identified through calibra-
tion. An elemental error is an error that can be associated with a single
uncertainty source. Usually, it is related to the full-scale output (FSO) of
the instrument, which is its maximum output value. The most common
instrument errors are the following:

1. Hysteresis:

ẽH =
(eH,max

FSO

)
=

( |yup − ydown|max

FSO

)
. (7.28)

The hysteresis error is related to eH,max, which is the greatest deviation
between two output values for a given input value that occurs when per-
forming an up-scale, down-scale calibration. This is a single calibration
proceeding from the minimum to the maximum input values, then back
to the minimum. Hysteresis error usually arises from having a physical
change in part of the measurement system upon reversing the system’s
input. Examples include the mechanical sticking of a moving part of
the system and the physical alteration of the environment local to the
system, such as a region of recirculating flow called a separation bubble.
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This region remains attached to an airfoil upon decreasing its angle of
attack from the region of stall.

2. Linearity:

ẽL =
(eL,max

FSO

)
=

( |y − yL|max

FSO

)
. (7.29)

Linearity error is a measure of how linear is the best fit of the instru-
ment’s calibration data. It is defined in terms of its maximum deviation
distance, |y − yL|max.

3. Sensitivity:

ẽK =
(eK,max

FSO

)
=

( |y − ynom|max

FSO

)
. (7.30)

Sensitivity error is characterized by the greatest change in the slope
(static sensitivity) of the calibration fit.

4. Zero-shift:

ẽZ =
(eZ,max

FSO

)
=

( |yshift − ynom|max

FSO

)
. (7.31)

Zero-shift error refers to the greatest possible shift that can occur in the
intercept of the calibration fit.

5. Repeatability:

ẽR =

(
2Sx

FSO

)
. (7.32)

Repeatability error is related to the precision of the calibration. This is
determined by repeating the calibration many times for the same input
values. The quantity 2Sx represents the precision interval of the data
for a particular value of x.

6. Stability:

ẽS =

(
eS,max · ∆t

FSO

)
. (7.33)

Stability error is related to eS,max, which is the greatest deviation in the
output value for a fixed input value that could occur during operation.
This deviation is expressed in units of FSO/∆t, with ∆t denoting the
time since instrument purchase or calibration. Stability error is a mea-
sure of how much the output can drift over a period of time for the same
input.

7. Thermal-drift:
ẽT =

(eT,max

FSO

)
. (7.34)

Thermal-drift error is characterized by the greatest deviation in the
output value for a fixed input value, eT,max, that could occur during
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FIGURE 7.3
Elemental errors ascertained by calibration.

operation because of variations in the environmental temperature. Sta-
bility and thermal-drift errors are similar in behavior to the zero-shift
error.

The instrument uncertainty, uI , combines all the known instrument er-
rors,

uI =
√∑

e2
i = FSO ·

√
ẽ2
H + ẽ2

L + ẽ2
K + ẽ2

Z + ẽ2
R + ẽ2

S + ẽ2
T + ẽ2

other, (7.35)

where ẽother denotes any other instrument errors. All ẽi’s expressed in Equa-
tion 7.35 are dimensionless.

How are these elemental errors actually assessed? Typically, hysteresis
and linearity errors are determined by performing a single up-scale, down-
scale calibration. The results of this type of calibration are displayed in the
left graph of Figure 7.3. In that graph, the up-scale results are plotted as
open circles and the down-scale results as solid circles. The dotted lines are
linear interpolations between the data. Hysteresis is evident in this example
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by down-scale output values that are higher than their up-scale counterparts.
The best-fit curve of the data is indicated by a solid line. Both the hysteresis
and linearity errors are assessed with respect to the best-fit curve.

Sensitivity, repeatability, zero-shift, stability, and thermal-drift errors
are ascertained by performing a series of calibrations and then determining
each particular error by comparisons between the calibrations. The results
of a series of calibrations are shown in the right graph of Figure 7.3. The
solid curve represents the best-fit of the data from all the calibrations. The
dotted curves indicate the limits within which a calibration is repeatable
with 95 % confidence. The repeatability error is determined from the differ-
ence between either dotted curve and the best-fit curve. The dash-dot curves
identify the calibration curves that have the maximum and minimum slopes.
The sensitivity error is assessed in terms of the greatest difference between
minimum or maximum sensitivity curve and the best-fit curve. The dashed
curves denote shifts that can occur in the calibration because of zero-shift,
stability, and thermal-drift errors. Each error can have a different value and
is determined from the calibration curve having the greatest difference with
calibration data that occurs with each effect, with respect to the best-fit
curve.

The following two examples illustrate the effects of instrument errors on
measurement uncertainty.

Example Problem 7.5
Statement: A pressure transducer is connected to a digital panel meter. The panel

meter converts the pressure transducer’s output in volts back to pressure in psi. The
manufacturer provides the following information about the panel meter:

Resolution: 0.1 psi
Repeatability: 0.1 psi
Linearity: within 0.1 % of reading
Drift: less than 0.1 psi/6 months within the 32 ◦F to 90 ◦F range

The only information given about the pressure transducer is that it has “an accuracy
of within 0.5 % of its reading”.

Estimate the combined standard uncertainty in a measured pressure at a nominal
value of 100 psi at 70 ◦F. Assume that the transducer’s response is linear with an
output of 1 V for every psi of input.

Solution: The uncertainty in the measured pressure, (ud)mp, is the combination of
the uncertainties of the transducer, (ud)t, and the panel meter, (ud)pm. This can be
expressed as

(ud)mp =
√

[(ud)t]2 + [(ud)pm]2.

For the transducer,

(ud)t =
√

u2
It

+ u2
ot

= uIt = 0.005 × 100 psi = 0.50 psi.

For the panel meter,

(ud)pm =
√

u2
Ipm

+ u2
opm

.



Uncertainty Analysis 249

Now,

uopm = 0.5 resolution = 0.05 psi,

(7.36)

uIpm =
√

e2
1 + e2

2 + e2
3,

where

e1 (repeatability) = 0.1 psi

e2 (linearity) = 0.1 % reading = 0.001 × 100V/(1V/psi) = 0.1 psi, and

e3 (drift) = 0.1 psi/6 months × 6 months = 0.1 psi,

which implies that

uIpm = 0.17 psi,

(ud)pm = 0.18 psi,

(ud)mp =
√

0.502 + 0.182 = 0.53 psi.

Note that most of the combined standard uncertainty comes from the transducer. So,
to improve the accuracy of the measurement system, a more accurate transducer is
required.

Example Problem 7.6
Statement: An analog-to-digital (A/D) converter with the specifications listed be-

low (see Chapter 3 for terminology) is to be used in an environment in which the A/D
converter’s temperature may change by ±10 ◦C. Estimate the contributions of con-
version and quantization errors to the combined standard uncertainty in the digital
representation of an analog voltage by the converter.

EFSR 0 V to 10 V
M 12 bits
Linearity ±3 bits/EFSR
Temperature drift 1 bit/5 ◦C

Solution: The instrument uncertainty is the combination of uncertainty due to
quantization errors, eQ, and to conversion errors, ec,

(uI)E =
√

e2
Q + e2

I .

The resolution of a 12-bit A/D converter with a full scale range of 0 V to 10 V is given
by (see Chapter 2)

Q =
EFSR

212
=

10

4096
= 2.4 mV/bit.

The quantization error per bit is found to be

eQ = 0.5Q = 1.2 mV.

The conversion error is affected by two elements:
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linearity error = e1 = 3 bits× 2.4 mV/bit

= 7.2 mV.

temperature error = e2 =
1bit

5 ◦C
× 10 ◦C × 2.4 mV/bit

= 4.8 mV.

Thus, an estimate of the conversion error is

eI =
√

e2
1 + e2

2

=
√

(7.2 mV)2 + (4.8 mV)2 = 8.6 mV.

The combined standard uncertainty in the digital representation of the analog value
due to the quantization and conversion errors becomes

(uI)E =
√

(1.2 mV)2 + (8.6 mV)2

= 8.7 mV.

Here the conversion errors dominate the uncertainty. So, a higher resolution converter
is not necessary to reduce the uncertainty. A converter having smaller instrument errors
is required.

These two examples illustrate the process of design-stage uncertainty es-
timation. Once the components of the measurement system have been cho-
sen, uncertainty analysis can be extended to consider other types of errors
that can effect the measurement, such as temporal variations in the system’s
output under fixed conditions. This involves multiple measurements, which
are covered in Section 7.10.

7.9.2 Single-Measurement Result Experiment

The previous section considered estimating the uncertainties of a measurand.
But what about the uncertainty in a result? This uncertainty was introduced
beforehand and is given by Equation 7.21. From this equation, uncertainty
expressions can be developed for specific analytical relations [4]:

1. If r = Bx, where B is a constant, then

ur = |B|ux. (7.37)

If r is directly proportional to a measurand through a constant of pro-
portionality B, then the uncertainty in r is the product of the absolute
value of the proportionality constant and the measurand uncertainty.
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2. If r = x + ... + z − (u + ... + w), then

ur =
√

(ux)2 + ... + (uz)2 + (uu)2 + ... + (uw)2. (7.38)

If r is related directly to all of the measurands, then the uncertainty in
r is the combination in quadrature of the measurands’ uncertainties.

3. If r = (x...z)/(u...w), then

ur

|r| =

√(ux

x

)2

+ ... +
(uz

z

)2

+
(uu

u

)2

+ ... +
(uw

w

)2

. (7.39)

The quantity ur/|r| is the fractional uncertainty of a result. If r
is related directly and/or inversely to all of the measurands, then the
fractional uncertainty in r is the combination in quadrature of the mea-
surands’ fractional uncertainties.

4. If r = xn, then
ur

|r| = |n|ux

|x| . (7.40)

This equation follows directly from Equation 7.39.

Estimation of the uncertainty in a result is shown in the following ex-
ample.

Example Problem 7.7
Statement: The coefficient of restitution, e, of a ball can be determined by dropping

the ball from a known height, ha, onto a surface and then measuring its return height,
hb (as described in Chapter 11). For this experiment e =

√
hb/ha. If the uncertainty

in the height measurement, uh, is 1 mm, ha = 1.000 m and hb = 0.800 m, determine
the combined standard uncertainty in e.

Solution: Direct application of Equation 7.21 yields

ue =

√(
∂e

∂hb
uhb

)2

+

(
∂e

∂ha
uha

)2

.

Now,
(

∂e
∂hb

)
=

1/ha

2
√

hb/ha
and

(
∂e

∂ha

)
=

−hb/h2
a

2
√

hb/ha
. Substitution of the known values

into the above equation gives ue =
√

(5.59 × 10−4)2 + (4.47 × 10−4)2 = 7.16×10−4 =
0.0007.

Often there are experiments involving results that have angular depen-
dencies. The values of these results can vary significantly with angle because
of the presence of trigonometric functions in the denominators of their un-
certainty expressions. The following two problems illustrate this point.

Example Problem 7.8
Statement: A radar gun determines the speed of a directly oncoming automobile

within 4 %. However, if the gun is used off angle, another uncertainty arises. Determine
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FIGURE 7.4
Radar detection of a car’s speed.

the gun’s off-angle uncertainty, uoa, as a function of the angle at which the car is viewed.
What is the combined uncertainty in the speed if the off-angle, θoa, equals 70◦? Finally,
what is the overall uncertainty in the speed assuming 95 % confidence?

Solution: A schematic of this problem is shown in Figure 7.4. Assume that the
gun acquires a reading within a very short time period, ∆t. The actual speed, sac, is
the ratio of the actual highway distance travelled, Lac, during the time period to ∆t.
Similarly, the apparent speed, sap, equals Lap/∆t. From trigonometry,

Lac = Lap × sin(θ). (7.41)

Substitution of the speed definitions into this equation yields

sac = sap sin(θ). (7.42)

The off-angle uncertainty can be defined as

uoa =
| sac − sap |

sac
=

| sin(θ) − 1 |
sin(θ)

. (7.43)

Note that when θ = 90◦, sin(90◦) = 1, which yields uoa = 0. This is when the radar
gun is pointed directly along the highway at the car. When θ = 70◦, sin(70◦) = 0.940,
which yields uoa = (| 0.940 − 1 |)/0.940 = 0.064 or 6.4 %. This uncertainty must be
combined in quadrature with radar gun’s instrument uncertainty, uI = 0.04, to yield
the combined uncertainty, uc,

uc =
√

u2
I + u2

oa =
√

0.042 + 0.0642 = 0.075. (7.44)
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FIGURE 7.5
A light refraction experiment based on Snell’s law.

So, the combined uncertainty is 7.5 % or almost twice the instrument uncertainty. This
uncertainty increases as the off-angle increases. Assuming 95 % confidence, the overall
uncertainty is approximately twice the combined uncertainty or 15 %. Thus, assuming
that the indicated speed is 70 mph, the actual speed could be as low as approximately
60 mph (70 − 0.15 × 70) or as high as approximately 80 mph (70 + 0.15 × 70).

Example Problem 7.9
Statement: This problem is adapted from one in [4]. An experiment is constructed

(see Figure 7.5) to determine the index of refraction of an unknown transparent glass.
Find the fractional uncertainty, ∆n/n, in the index of refraction, n, as determined
using Snell’s law, where n = sin θi/ sin θr. Assume that the measurements of the angles
are uncertain by ±1◦ or 0.02 rad.

Solution: It follows that

∆n

n
=

√(
∂ sin θi

sin θi

)2

+

(
∂ sin θr

sin θr

)2

.

Now,

∂ sin θ =

∣∣∣∣
d sin θ

dθ

∣∣∣∣ ∂θ = | cos θ|∂θ (in rad).

So,

∂ sin θ

| sin θ| = | cot θ|∂θ (in rad).

These considerations yield the following uncertainties:

θi± 1◦ θr± 1◦ sin θi sin θr n ∂ sin θi
| sin θi|

∂ sin θr
| sin θr|

∆n
n

20 13.0 0.342 0.225 1.52 5 % 8 % 9 %
40 23.5 0.643 0.399 1.61 2 % 4 % 5 %
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Note that the percentage uncertainty in n decreases with increasing the angle of inci-
dence. In fact, as the angle of incidence approaches that of normal incidence (θi = 0◦),
the uncertainty tends to infinity.

Many times, experimental uncertainty analysis involves a series of uncer-
tainty calculations that lead to the uncertainty of a desired result. In that
situation, usually it is best to perform the analysis in steps, identifying the
uncertainties in intermediate results. This not only helps to avoid mistakes
made in calculations but also aids in identifying the variables that contribute
significantly to the desired result’s uncertainty. The following two examples
illustrate this point.

Example Problem 7.10
Statement: Determine the combined standard uncertainty in the density of air,

assuming ρ = P/RT . Assume negligible uncertainty in R (Rair = 287.04 J/kg·K). Let
T = 24 ◦C = 297 K and P = 760 mm Hg.

Solution: The uncertainty in the density of air (a result) becomes

uρ =

√(
∂ρ

∂T
uT

)2

+

(
∂ρ

∂P
uP

)2

=

√( −P

RT 2
uT

)2

+

(
1

RT
uP

)2

,

where

uP =
1

2
(1 mm Hg) =

1

2

(
1.01 × 105 Pa

760 mm Hg
× 1 mm Hg

)
=

1

2
(133 Pa) = 67 Pa,

and

uT = 0.5(1◦C) = 0.5(1 K) = 0.5 K.

Thus,

uρ =

[(
101325

(287.04)(297)2
(0.5)

)2

+

(
1

(287.04)(297)
(67)

)2
] 1

2

= [4.00 × 10−6 + 0.62 × 10−6]
1
2

= 2.15 × 10−3 kg/m3.

Finally,

ρ =
P

RT
=

101325

(287.04)(297)
= 1.19 kg/m3

⇒ uρ

ρ
=

2.15 × 10−3

1.19
= 0.19 %.

This is a typical value for the combined standard uncertainty in the density as de-
termined from pressure and temperature measurements in a contemporary laboratory.
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Example Problem 7.11
Statement: Consider an experiment in which the static pressure distribution around

the circumference of a cylinder in a cross flow in a wind tunnel is measured. Determine
the combined standard uncertainty in the pressure coefficient, Cp, as defined by the
equation

Cp ≡ P − P∞
1
2
ρV 2∞

. (7.45)

Assume that the pressure difference P − P∞ is measured as ∆p using an inclined
manometer with

u∆p = 0.06 in. H2O = 15 N/m2 (∆P = 996 N/m2),

uρ = 2.15 × 10−3 kg/m3 (ρ = 1.19 kg/m3), and

uV∞
= 0.31 m/s (V∞ = 40.9 m/s).

Solution: Now, as is clear from Equation 7.45, the pressure coefficient is a result
and is a function of the density, the change in pressure, and the freestream velocity. In
short,

Cp = f(∆p, ρ, V∞).
Therefore, applying Equation 7.21 yields

⇒ uCP
= [(

∂Cp

∂∆p
u∆p)2 + (

∂Cp

∂ρ
uρ)2 + (

∂Cp

∂V∞
uV∞

)2]
1
2

= [(
2

ρV 2∞
u∆p)2 + (− 2∆p

ρ2V 2∞
uρ)2 + (− 4∆p

ρV 3∞
uV∞

)2]
1
2

= [(
(2)(15)

(1.19)(40.9)2
)2 + (

(2)(996)(2.15 × 10−3)

(1.19)2)(40.9)2
)2 + (

(4)(996)(0.31)

(1.19)(40.9)3
)2]

1
2

= [2.27 × 10−4 + 3.27 × 10−6 + 2.30 × 10−4]
1
2

= 0.021.

Alternatively, Cp as the ratio of two transducer differential pressures,

Cp ≡ P − P∞
1
2
ρV 2∞

=
∆P

∆Pp−s
(∆p = 996 N/m2). (7.46)

Now, assume that u∆p = u∆pp−s
= 15 N/m2.

The equation for the uncertainty in Cp when Equation 7.46 is used becomes

uCp = [(
∂Cp

∂∆Pcyl
u∆Pcyl

)2 + (
∂CP

∂∆Pp−s
u∆Pp−s

)2]
1
2

= [(
1

∆Pp−s
u∆P )2 + (− ∆Pcyl

∆P 2
p−s

u∆Pp−s
)2]

1
2

= [2(
15

996
)2]

1
2

= 0.021.

The latter measurement approach is easier to determine Cp than the former. When
designing an experimental procedure in which the pressure coefficient needs to be de-
termined, it is preferable to ratio the two transducer differential pressures.
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Finally, one may be interested in estimating the uncertainty of a result
that can be found by different measurement approaches. This process is
quite useful during the planning stage of an experiment. For example, take
the simple case of an experiment designed to determine the volume of a
cylinder, V . One approach would be to measure the cylinder’s height, h,
and diameter, d, and then compute its volume based upon the expression
V = πd2h/4. An alternative approach would be to obtain its weight, W , and
then compute its volume according to the expression V = W/(ρg), where
ρ is the density of the cylinder and g the local gravitational acceleration.
Which approach is chosen depends on the uncertainties in d, h, w, ρ, and g.

Example Problem 7.12
Statement: An experiment is being designed to determine the mass of a cube of

Teflon. Two approaches are under consideration. Approach A involves determining the
mass from a measurement of the cube’s weight and approach B from measurements
of the cube’s length, width, and height (l, w, and h, respectively). For approach A,
m = W/g; for approach B, m = ρV , where m is the mass, W the weight, g the
gravitational acceleration (9.81 m/s2), ρ the density (2 200 kg/m3), and V the volume
(lwh). The fractional uncertainties in the measurements are W (2 %), g (0.1 %), ρ,
(0.1 %), and l, w, and h (1 %). Determine which approach has the least uncertainty in
the mass.

Solution: Because both equations for the mass involve products or quotients of
the measurands, the fractional uncertainty of the mass can be computed using Equa-
tion 7.39. For approach A

(
um

|m|

)

A

=

√
(uW

W

)2
+

(
ug

g

)2

=

√
(0.02)2 + (0.001)2 = 2.0 %.

For approach B, the fractional uncertainty must be determined in the volume. This is

uV

|V | =

√(ul

l

)2
+
(uw

w

)2
+
(uh

h

)2
=
√

3 × 0.012 = 1.7 %.

This result can be incorporated into the fractional uncertainty calculation for the mass

(
um

|m|

)

B

=

√(
uρ

ρ

)2

+
(uV

V

)2
=

√
(0.001)2 + (0.017)2 = 0.017 = 1.7 %.

Thus, approach B has the least uncertainty in the mass. Note that the uncertainties in
g and ρ both are negligible in these calculations.

7.10 Detailed Uncertainty Analysis

Detailed uncertainty analysis is appropriate for measurement situations that
involve multiple measurements, either for a measurand or a result. System-
atic and random errors are identified in this approach. Their contributions
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to the overall uncertainty are treated separately in the analysis until they
are combined at the end. Detailed uncertainty analysis is performed after a
statistically viable set of measurand values has been obtained under fixed
operating conditions. Multiple measurements usually are made for one or
both of two reasons. One is to assess the uncertainty present in an exper-
iment due to uncontrollable variations in the measurands. The other is to
obtain sufficient data such that the average value of a measurand can be
estimated. Thus, detailed uncertainty calculations are more extensive than
for the cases of a single-measurement measurand or result.

In general, for the situation in which both systematic and random er-
rors are considered, application of Equation 7.19 for a result based upon J
measurands leads directly to

u2
r =

J∑

i=1

θi
2S2

Bi
+ 2

J−1∑

i=1

J∑

j=i+1

θiθjSBi,Bj
+

J∑

i=1

θi
2S2

Pi
+ 2

J−1∑

i=1

J∑

j=i+1

θiθjSPi,Pj
,

(7.47)
where

S2
Bi

=

MB∑

k=1

(SBi
)2k, (7.48)

S2
Pi

=

MP∑

k=1

(SPi
)2k, (7.49)

SBi,Bj
=

LB∑

k=1

(SBi
)k(SBj

)
k
, (7.50)

and

SPi,Pj
=

LP∑

k=1

(SPi
)k(SPj

)
k
. (7.51)

MB is the number of elemental systematic uncertainties, MP is the num-
ber of elemental random uncertainties. (SBi

)k represents the k-th elemental
error out of MB elemental errors contributing to SBi

, the estimate of the
systematic error of the i-th measurand. Equation 7.48 is analogous to Equa-
tion 7.27 for the case of a single-measurement measurand. Further, LB is
the number of systematic errors that are common to Bi and Bj , and LP

the number of random errors that are common to Pi and Pj . S2
Bi

and S2
Pi

are estimates of the variances of the systematic and random errors of the
i-th measurand, respectively. SBi,Bj

and SPi,Pj
are estimates of the covari-

ances of the systematic and random errors of the i-th and j-th measurands,
respectively.

The number of effective degrees of freedom of a multiple-measurement
result, based upon the Welch-Satterthwaite formula, is

νr =
{∑J

i=1[θ
2
i S2

Bi
+ θ2

i S2
Pi

]}2

∑J
i=1

[
(θ4

i S4
Pi

)/νPi
) + (

∑MB

k=1 θ4
i (SBi

)
4
k/ν(SBi

)
k
)
] , (7.52)
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where contributions are made from each i-th measurand. The random and
systematic numbers of degrees of freedom are given by

νPi
= Ni − 1, (7.53)

where Ni denotes N measurements of the i-th measurand and

ν(SBi
)k

∼= 1

2

[
∆(SBi

)k

(SBi
)k

]−2

. (7.54)

When SBi
and SPi

have similar values, the value of νr, as given by Equa-
tion 7.52, is approximately that of νPi

if νBi
>> νPi

. Conversely, the value
of νr is approximately that of νBi

if νPi
>> νBi

. Further, if SBi
<< SPi

,
then the value of νr is approximately that of νPi

. The converse also is true.
Once νr is determined from Equation 7.52, the overall uncertainty in the

result, Ur, can be found. This can be expressed using the definition of the
overall uncertainty (Equation 7.18) and Equation 7.47 as

U2
r = t2νr,Cu2

r = B2
r + (tνr,CSr)

2 = B2
r + P 2

r , (7.55)

where

Br = tνr,C




J∑

i=1

θi
2S2

Bi
+ 2

J−1∑

i=1

J∑

j=i+1

θiθjSBi,Bj




1/2

(7.56)

and

Pr = tνr,C




J∑

i=1

θi
2S2

Pi
+ 2

J−1∑

i=1

J∑

j=i+1

θiθjSPi,Pj




1/2

. (7.57)

The first term on the right side of Equation 7.56 is the sum of the es-
timated variances of of the systematic errors. The second term is the sum
of the estimated covariances of the systematic errors. Likewise, for Equa-
tion 7.57, the first term is the estimated variance of the random errors and
the second term is the estimated covariance of the random errors. The co-
variance of two systematic errors is zero if the errors are not correlated, or, in
other words, they are independent of each other. Non-zero covariances arise
when the error sources are common, such as when two pressure transducers
are calibrated against the same standard. Correlated random errors can be
identified by examining the amplitude variations in time of two measurands.
When they follow the same trends, they may be correlated. Usually, how-
ever, the covariances of the systematic errors are assumed negligible in most
uncertainty analysis.
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When there are no correlated uncertainties,

u2
r =

J∑

i=1

θi
2S2

Bi
+

J∑

i=1

θi
2S2

Pi
, (7.58)

where

Br = tνr,C

[
J∑

i=1

θi
2S2

Bi

]1/2

(7.59)

and

Pr = tνr,C

[
J∑

i=1

θi
2S2

Pi

]1/2

. (7.60)

For the situation when an experiment is replicated M times and a mean
result is determined from the M individual results, the expression for Sr in
Equation 7.55 is replaced by either

Sr =

√√√√ 1

M − 1

M∑

k=1

(rk − r̄)2 (7.61)

or
Sr̄ = Sr/

√
M, (7.62)

depending upon which outcome is desired (r or r̄, respectively) [10]. The
Welch-Satterthwaite formula is then

νr =
{S2

r +
∑J

i=1(θ
2
i S2

Bi
)}2

(S4
r/νSr

) +
∑J

i=1

∑MB

k=1

[
(θ4

i (SBi
)4k)/ν(SBi

)k
)
] , (7.63)

with νSr
= M − 1.

Equations 7.47 and 7.52 can be applied to estimate the uncertainty in a
multiple-measurement measurand. For this case, these equations reduce to

u2
m =

J∑

i=1

S2
Bi

+ 2

J−1∑

i=1

J∑

j=i+1

SBi,Bj
+

J∑

i=1

S2
Pi

+ 2

J−1∑

i=1

J∑

j=i+1

SPi,Pj
(7.64)

and

νm =
{∑J

i=1[S
2
Bi

+ S2
Pi

]}2

∑J
i=1

[
(S4

Pi
/νPi

) + (
∑MB

k=1 (SBi
)
4
k/ν(SBi

)
k
)
] . (7.65)

Further simplification occurs where there are no correlated uncertainties.
Equation 7.64 becomes
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u2
m =

J∑

i=1

S2
Bi

+
J∑

i=1

S2
Pi

. (7.66)

When estimating the uncertainty in a mean value, SPi
is replaced in Equa-

tion 7.66 by SP̄i
, where

SP̄i
=

√√√√
MP∑

i=1

S2
Pi

NPi

. (7.67)

For most engineering and scientific experiments, ν ≥ 9 [10]. When this
is the case, it is reasonable to assume for 95 % confidence that tν,95

∼= 2
(when ν ≥ 9, tν,95 is within 10 % of 2). This implies that

Ux,95
∼= 2uc = 2

√
S2

Bi
+ S2

Pi
=
√

B2
i + P 2

i , (7.68)

using Equations 7.17, 7.10, and 7.13 where S2
Bi

is shorthand notation for∑N
i=1 S2

Bi
and S2

Pi
for
∑N

i=1 S2
Pi

. Equation 7.68 is known as the large-scale
approximation. Its utility is that the overall uncertainty can be estimated
directly from the systematic and random uncertainties. This is illustrated
in the following example.

Example Problem 7.13
Statement: A load cell is used to measure the central load applied to a structure.

The accuracy of the load cell as provided by the manufacturer is stated to be 2.3 N.
The experimenter, based upon previous experience in using that manufacturer’s load
cells, estimates the relative systematic uncertainty of the load cell to be 10 %. A series
of 11 measurements are made under fixed conditions, resulting in a standard deviation
of the random error equal to 11.3 N. Determine the overall uncertainty in the load cell
measurement at the 95 % confidence level.

Solution: The overall uncertainty can be determined using Equations 7.18 through
7.68. The standard deviations and the degrees of freedom for both the systematic
and random errors need to be determined first. Here νPx = N − 1 = 10 and, from
Equation 7.14, νBx = 1

2
(0.10)−2 = 50. Thus, at 95 % confidence, t10,95 = 2.228

and t50,95 = 2.010 for the random and systematic errors, respectively. Now SPx =
Px/t10,95 = 11.3/2.228 = 5.072 from Equation 7.10, and, from Equation 7.13, SBx =
Bx/t50,95 = 2.3/2.010 = 1.144. Substitution of these values into Equation 7.65 yields

νeff =
(5.0722 + 1.1442)2

(5.0724/10) + (1.1444/50)
= 11.02 ∼= 11.

Because νm ≥ 9, the large-scale approximation at 95 % confidence can be used, where

Ux,95
∼=
√

B2
i + P 2

i =
√

2.32 + 11.32 = 11.5 N.

In the following two sections, the application of the above equations to
multiple-measurement measurand and result experiments is presented.
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7.10.1 Multiple-Measurement Measurand Experiment

Consider the uncertainty estimation of a measurand involving multiple mea-
surements done to assess the contribution of temporal variability (temporal
precision error) of a measurand under fixed conditions. For this situation
the temporal variations of a measurand are treated as a random error and
all other errors are considered to be systematic. The following example il-
lustrates this process.

Example Problem 7.14
Statement: The supply pressure of a blow-down facility’s plenum is to be maintained

at set pressure for a series of tests. A compressor supplies air to the plenum through a
regulating valve that controls the set pressure. A dial gauge (resolution: 1 psi; accuracy:
0.5 psi) is used to monitor pressure in the vessel. Thirty trials of pressurizing the vessel
to a set pressure of 50 psi are attempted to estimate pressure controllability. The results
show that the standard deviation in the set pressure is 2 psi. Estimate the combined
standard uncertainty at 95 % confidence in the set pressure that would be expected
during normal operation.

Solution: The uncertainty in the set pressure reading results from the instrument
uncertainty, ud, and the additional uncertainty arising from the temporal variability in
the pressure under controlled conditions, u1. That is,

up =
√

u2
d + u2

1,

where u1 = Px = tν,P Sx according to Equation 7.10. The instrument uncertainty is

ud =
√

u2
o + u2

I ,

where

uo =
1

2
(1.0 psi) = 0.5 psi

uI = 0.5 psi

⇒ ud =
√

0.52 + 0.52 = 0.7 psi.

Also,

u1 = t29,95Sx = (2.047)(2) = 4.1 psi

where ν = N − 1 = 29 for this case. So,

up =
√

0.72 + 4.12 = 4 psi.

Note that the uncertainty primarily is the result of repeating the set pressure and not
the resolution or accuracy of the gauge.

Next, consider the multiple-measurement situation of estimating the un-
certainty in the range that contains the true value of a measurand. This is
shown in the following example in which the contributory systematic and
random errors are specified, having their elemental uncertainties already
summed using Equations 7.48 and 7.49.



262 Measurement and Data Analysis for Engineering and Science

Example Problem 7.15
Statement: The stress on a loaded electric-powered remotely piloted vehicle (RPV)

wing is measured using a system consisting of a strain gage, Wheatstone bridge, ampli-
fier, and data acquisition system. The following systematic and random uncertainties
arising from calibration, data acquisition, and data reduction are as follows:

Calibration: SB1
= 1.0 N/cm2 SP1

= 4.6 N/cm2 NP1
= 15 ⇒ νP1

= 14
Data Acquisition: SB2

= 2.1 N/cm2 SP2
= 10.3 N/cm2 NP2

= 38 ⇒ νP2
= 37

Data Reduction: SB3
= 0.0 N/cm2 SP3

= 1.2 N/cm2 NP3
= 9 ⇒ νP3

= 8

Assume 100 % in the values of all systematic errors and that there are no correlated
uncertainties. Determine for 95 % confidence the range that contains the true mean
value of the stress, σ′, given that the average value is σ̄ = 223.4 N/cm2.

Solution: The systematic variances are

S2
B = S2

B1
+ S2

B2
+ S2

B3
= 12 + 2.12 + 02 = 5.4 N2/cm4.

The random variances are

S2
P̄

=
SP1

NP1

2

+
SP2

NP2

2

+
SP3

NP3

2

=
4.62

15
+

10.32

38
+

1.22

9
= 4.4 N2/cm4.

It follows directly from Equation 7.66 that u2
σ = 5.4 + 4.4 = 9.8 N2/cm4. So, uσ =

3.1 N/cm2.
The number of effective degrees of freedom are determined using Equation 7.65,

which becomes

νσ =
[12 + 2.12 + 02 + 4.62 + 10.32 + 1.22]2

[(4.64/14) + (10.34/37) + (1.24/8)]
=

17982.8

336.4
= 53.5 = 54,

noting that each νBi
= ∞ because of its 100 % reliability. This yields t54,95

∼= 2.
Thus, the true mean value of the stress is

σ′ = σ̄ ± Uσ with Uσ = t54,95 × uσ = 6.2 N/cm2 (95 %),

where the range is ±6.2 N/cm2. Thus,

σ′ = 223.4 ± 6.2 N/cm2 (95 %).

7.10.2 Multiple-Measurement Result Experiment

The uncertainty estimation of a result based upon multiple measurements of
measurands can be made using Equations 7.47 through 7.54. This estimation
is slightly more complicated than for the multiple-measurement measurand
because it involves determinations of the absolute sensitivity coefficients.
The following example illustrates the process in which the true mean value
of a result is estimated.

Example Problem 7.16
Statement: This problem is adapted from [18]. An experiment is performed in which
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the density of a gas, assumed to be ideal, is determined from different numbers of
separate pressure and temperature measurements. The gas is contained within a vessel
of fixed volume. Pressure is measured within 1 % accuracy; temperature is measured
to within 0.6 ◦R. Twenty measurements of pressure (Np = 20) and ten measurements
of temperature (NT = 10) were performed, yielding

p̄ = 2253.91 psfa SPp = 167.21 psfa
T̄ = 560.4 ◦R SPT

= 3.0 ◦R

Here, psfa denotes pound-force per square foot absolute. Estimate the true mean value
of the density at 95 % confidence.

Solution: Assuming ideal gas behavior, the sample mean density, ρ̄, becomes

ρ̄ =
p̄

RT̄
= 0.074 lbm/ft3.

There two sources of error in this experiment. One is from the variability in the pressure
and temperature readings as signified by the values of SPp and SPT

given above. These
are random errors. The other is from the specified instrument inaccuracies. These are
systematic errors. These errors are

SBp = 1 % = 22.5 psfa SBT
= 0.6 ◦R

SPp̄ =
SPp√

20
= 37.4 psfa SPT̄

=
SPT√

10
= 0.9 ◦R

Here, the degrees of freedom are νP = 19 and νT = 9. Because the true mean value
estimate is made from multiple measurements, the random uncertainties are based upon
the standard deviations of their means. Thus, the combined random error becomes

SP̄ =

√
[
∂ρ

∂T
SPT̄

]2 + [
∂ρ

∂P
SPp̄ ]2 =

√
[
−p̄

RT̄ 2
SPT̄

]2 + [
1

RT̄
SPp̄ ]2

=
√

[1.2 × 10−4]2 + [1.2 × 10−3]2 = 0.0012 lbm/ft3.

Likewise, the combined systematic error becomes 0.0007 lbm/ft3. Using Equation 7.47,
assuming no correlated uncertainties, yields

uρ =
√

0.00122 + 0.00072 = 0.0014 lbm/ft3.

Further, assuming 100 % certainty in the stated accuracies of the instruments, the
effective number of degrees of freedom as determined from Equation 7.52 is

ν =
{[ ∂ρ

∂T
SPT̄

]2 + [ ∂ρ
∂P

SPp̄ ]2}2

[ ∂ρ
∂T

SPT̄
]4

νT
+

[ ∂ρ
∂P

SPp̄
]4

νP

= 23.

This yields t23,95 = 2.06.
Thus, the true mean value of the pressure is

ρ′ = ρ̄ ± Uρ with Uρ = t23,95 · uρ = 0.0029 lbm/ft3 (95 %),

where the range is ±0.0029 lbm/ft3. Thus,

ρ′ = 0.074 ± 0.003 lbm/ft3 (95 %),

which is an uncertainty of ±3.4 %.
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7.11 Uncertainty Analysis Summary

Most uncertainty estimation situations involve a single-measurement mea-
surand, a single-measurement result, a multiple-measurement measurand,
or a multiple-measurement result. Expressions for the uncertainty in either
a single- or multiple-measurement result contain absolute sensitivity coeffi-
cients. These coefficients are evaluated at typical measurand values. Those
expressions for the uncertainty in either a single- or multiple-measurement
measurand differ only in that the values of all absolute sensitivity coeffi-
cients become unity. When multiple measurements are considered, random
uncertainties are expressed in terms of the standard deviations of the means
of their random errors (Equation 7.11). This is the main difference between
the single- and multiple-measurement cases.

The objective of any uncertainty analysis is to obtain an estimate of
the overall uncertainty, Ux. The summary expression containing Ux involves
either xnext or xtrue (Equations 7.15 and 7.16). The overall uncertainty is
expressed as the product of Student’s t variable based upon the number of
effective degrees of freedom (evaluated with %C confidence), tνeff ,C , and
the combined standard uncertainty, uc (Equation 7.18). The values of νeff

and uc depend upon the particular uncertainty estimation situation. When
the effective number of degrees of freedom is greater than or equal to 9, the
overall uncertainty can be estimated using the large-scale approximation
(Equation 7.68) for 95 % confidence where Ux = 2uc. This greatly simplifies
the steps required to estimate Ux.

For single-measurement situations, generalized uncertainty analysis is
the most appropriate (Section 7.9). No differentiation is made between sys-
tematic and random uncertainties. Expressions are available for the com-
bined standard uncertainty of either a measurand or a result with (Equa-
tions 7.23 and 7.19) and without (Equations 7.24 and 7.21) correlated un-
certainties. These expressions involve standard uncertainties for the mea-
surands that originate primarily from instrument uncertainties determined
from previous calibrations and assessments. There are associated expres-
sions for the effective number of degrees of freedom (Equations 7.25 and
7.22 for a measurand and for a result, respectively).

The uncertainties for multiple-measurement situations are assessed best
using detailed uncertainty analysis (Section 7.10). Errors are categorized
as either systematic, SBi

, or random, SPi
. Expressions are developed for

the combined standard uncertainty of either a measurand or a result with
(Equations 7.64 and 7.47) and without (Equations 7.66 and 7.58) correlated
uncertainties. There are associated expressions for the effective number of
degrees of freedom (Equations 7.65 and 7.52 for a measurand and a result,
respectively).
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In summary, the overall uncertainty of either a measurand or a result
can be estimated using the following steps:

1. Determine which experimental situation applies. Is the uncertainty esti-
mate for a measurand or a result, and is it based upon single or multiple
measurements?

2. Identify all measurands and, if applicable, all results.

3. Identify all factors affecting the measurands and, if applicable, the re-
sults. What instruments are used? What information is available about
their calibrations? Are there any circumstances that lead to correlated
uncertainties, such as the same instrument used for two different mea-
surands?

4. Define all functional relationships between the measurands and, if appli-
cable, the results. What are the nominal values of each measurand and
result? Be sure to use the same system of units throughout all calcula-
tions.

5. If the uncertainty in a result is estimated, determine the values of the ab-
solute sensitivity coefficients from the functional relationships and nom-
inal values.

6. Identify all uncertainties. What are the instrument errors, systematic
errors, and random errors? Are there temporal or spatial variations in
the measurands that contribute to uncertainty?

7. Calculate and propagate all uncertainties for the measurands and, if ap-
plicable, the results. Proceed from estimates of the elemental uncertain-
ties and calculate the systematic and random uncertainties.

8. Propagate all uncertainties to obtain the combined standard uncertainty.

9. Determine the number of effective degrees of freedom.

10. Determine the value of the coverage factor based upon the assumed con-
fidence and the number of effective degrees of freedom. Use a value of
two for the coverage factor if 95 % confidence is assumed and νeff ≥ 9.

11. Determine the overall uncertainty.

12. Present your findings in the proper form. x ± Ux (%C).

Example Problem 7.17
Statement: Very accurate weight standards were used to calibrate a force-

measurement system. Nine calibration measurements were made, including repetition
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Applied Weight, W (N) Output Voltage, E (V)
1 1.0
2 3.0
3 5.0
4 7.0
5 9.1
5 8.9
5 8.9
5 9.1
5 9.0

TABLE 7.1
Force-measurement system calibration data.

of the measurement five times at 5 N of applied weight. The results are presented in
Table 7.1. Determine (a) the static sensitivity of the calibration curve at 3.5 N, (b)
the random uncertainty with 95 % confidence in the value of the output voltage based
upon the data obtained for the 5 N application cases, (c) the range within which the
true mean of the voltage is for the 5 N application cases at 90 % confidence, (d) the
range within which the true variance of the voltage is for the 5 N application cases at
90 % confidence, (e) the standard error of the fit based upon all of the data, and (f)
the design-stage uncertainty of the instrument at 95 % confidence assuming that 0.04
V instrument uncertainty was obtained through calibration.

Solution: The average value of the output voltage for the five values of the 5 N
case is 9.0 V. Thus, the data can be fitted the best by the line E = 2W + 1. (a)
The sensitivity of a linear fit is the slope, 2 V/N, which is the same for all applied-
weight values. (b) The random uncertainty for the 5 N cases with 95 % uncertainty
is P5N = tν,P=95 %SP,5N . Here, SP,5N = 0.1 V and ν = 4 with t4,95 = 2.770. This
implies P5N = 0.277 V. (c) The range within which the true mean value is contained
extends ±tν,P=90 %SP,5N/

√
N = 5 from the sample mean value of 9 V. Here, t4,90 =

2.132. So the range is from 9 − (2.132)(0.1)/
√

5 V to 9 + (2.132)(0.1)/
√

5 V, or from
8.905 V to 9.095 V. (d) The range of the true variance is

νS2
P,5N

χ2
α/2

≤ σ2
5N ≤

νS2
P,5N

χ2
1−α/2

.

P = 0.90, which implies α = 0.10. So, χ2
α/2

for ν = 4 equals 9.49 and χ2
1−α/2

equals

0.711. Substitution of these values yields

(4)(0.01)

9.49
≤ σ2

5N ≤ (4)(0.01)

0.711
,

or

4.22 × 10−3 V2 ≤ σ2
5N ≤ 56.26 × 10−3 V2.

This also gives 0.065 V ≤ σ2
5N ≤ 0.237 V. (e) The first four and one of the five 5 N

applied-weight case values are on the best-fit line. Therefore, only four of the five 5 N
case values contribute to the standard error of the fit. Thus

Syx =
√

(0.1)2 + (0.1)2 + (−0.1)2 + (0.1)2/(9 − 2) = 0.0756 = 0.1 V.

(f) The resolution of the voltage equals 0.1 V from inspection of the data. This implies
that uo = 0.05 V. This uncertainty is combined in quadrature with the instrument
uncertainty of 0.04 V to yield a design-stage uncertainty equal to 0.064 = 0.06 V.
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7.12 *Finite-Difference Uncertainties

There are additional uncertainties that need to be considered. These occur
when experiments are conducted to determine a result that depends upon
the integral or derivative of measurand values obtained at discrete loca-
tions or times. The actual derivative or integral only can be estimated from
this discrete information. A discretization (truncation) error results. For ex-
ample, consider an experiment in which the velocity of a moving object is
determined from measurements of time as the object passes known spatial
locations. The actual velocity may vary nonlinearly between the two loca-
tions, but it can only be approximated using the finite information available.
Similarly, an actual velocity gradient in a flow only can be estimated from
measured velocities at two adjacent spatial locations. Examples involving
integral approximations are the lift and drag of an object, determined from
a finite number of pressure measurements along the surface of the object,
and the flow rate of a fluid through a duct, determined from a finite number
of velocity measurements over a cross-section of the duct.

The discretization errors of integrals and derivatives can be estimated,
as described in the following section. Numerical round-off errors also can
occur in such determinations. For most experimental situations, however,
discretization errors far exceed numerical round-off errors. When measure-
ments are relatively few, the discretization error can be comparable to the
measurement uncertainty. There are many excellent references that cover
finite-difference approximation methods and their errors ([3], [22], [11], and
[24]).

7.12.1 *Derivative Approximation

If the values of a measurand are known at several locations or times, its
actual derivative can be approximated. This is accomplished by representing
the actual derivative in terms of a finite-difference approximation based
upon, most commonly, a Taylor series expansion. The amount of error is
determined by the order of the expansion method used.

Suppose f(x) is a continuous function with all of its derivatives defined
at x. The next, or forward, value of f(x + ∆x) can be estimated using a
Taylor series expansion of f(x + ∆x) about the point x. That is,

f(x + ∆x) = f(x) + ∆xf ′(x) +
(∆x)2

2
f ′′(x) +

(∆x)3

6
f ′′′(x) + . . . . (7.69)

Equation 7.69 can be rearranged to solve for the derivative

f ′(x) =
f(x + ∆x) − f(x)

∆x
− (∆x)

2
f ′′(x) − (∆x)2

6
f ′′′(x) + . . . . (7.70)
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The first term on the right side is the finite-difference representation of
f ′(x) and the subsequent terms define the discretization error. A finite-
difference representation is termed n-th order when the leading term in the
discretization error is proportional to (∆x)n. Thus, Equation 7.70 is known
as the first-order, forward-difference expression for f ′(x). If the actual f(x)
can be expressed as a polynomial of the first degree, then f ′′(x) = 0, the
finite-difference representation of f ′(x) exactly equals the actual derivative
and there is no discretization error. In general, an n-th order method is
exact for polynomials of degree n.

Example Problem 7.18
Statement: The velocity profile of a fluid flowing between two parallel plates spaced

a distance 2h apart is given by the expression u(y) = uo[1 − (y/h)2], where y is the
coordinate perpendicular to the plates. Determine the exact value of u(0.2h)/uo and
compare it with the finite-difference values obtained from the Taylor series expansion
that result as each term is included additionally in the series.

Solution: The exact value is found from direct substitution of y = 0.2h into the
velocity profile is u(0.2h)/uo|exact = 0.96. For the Taylor series given by Equation 7.69,
the derivatives must be computed. The result is u′(y) = −2uoy/h2, u′′(y) = −2uo/h2,
and u′′′(y) = 0. Noting that 0.2h = ∆x for this case, substitutions into Equation 7.69
yield u(0.2h)/uo|series = 1 − 0.08 + 0.04 + 0 + . . .. So, three terms are required in the
series in this case to give the exact result; fewer terms result in a difference between
the exact and series values.

Similarly, the first-order, backward-difference expression for f ′(x) is

f ′(x) =
f(x) − f(x − ∆x)

∆x
+

(∆x)

2
f ′′(x) − (∆x)2

6
f ′′′(x) + . . . . (7.71)

Equation 7.70 can be added to Equation 7.71 to yield

f ′(x) =
f(x + ∆x) − f(x − ∆x)

2∆x
− (∆x)2

6
f ′′′(x) + . . . , (7.72)

resulting in a second-order, central-difference expression for f ′(x). Other
expressions for second-order, central-difference, and central-mixed-difference
second and higher derivatives can be obtained following a similar approach
[22].

Usually second-order accuracy is sufficient for experimental analysis. As-
suming this, the discretization error, ed, of the first derivative approximated
by a second-order central-difference estimate using values at two locations
(x − ∆x and x + ∆x) is

ed ' f ′′′(x)
(∆x)2

6
, (7.73)

where f ′′′(x) is evaluated somewhere in the interval, usually at its maximum
value. A problem arises, however, because the value of f ′′′(x) is not known.
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FIGURE 7.6
The output plot of differ.m for nine (x,y) data pairs of a triangular waveform.

So, only the order of magnitude of ed can be estimated. Formally, the uncer-
tainty in a first derivative approximated by a second-order central-difference
method is

uf ′(x) ' Cf ′(x)(∆x)2, (7.74)

where Cf ′(x) is a constant with same units as f ′′′. Cf ′(x) can be assumed
to be of order one as a first approximation. The important point to note is
that the discretization error is proportional to (∆x)2. So, if ∆x is reduced
by 1/2, the discretization error is reduced by 1/4.

7.12.2 *Integral Approximation

Many different numerical methods can be used to determine the integral of
a function. The method chosen depends upon the accuracy required, if the
values of the function are known at its end points, if the numerical inte-
gration is done using equal-spaced intervals, and so forth. The trapezoidal
rule is used most commonly for situations in which the intervals are equally
spaced and the function’s values are known at its end points.
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The trapezoidal rule approximates the area under the curve f(x) over
the interval between a and b by the area of a trapezoid,

∫ b

a

f(x) =
(b − a)

2
[f(b) + f(a)] + E, (7.75)

where E = (∆x)3f ′′(x)/24, with f ′′(x) evaluated somewhere in the interval
from a to b. This rule can be extended to N points,

∫ b=xN

a=x1

f(x)dx = ∆x[
1

2
f(x1) + f(x2) + . . . + f(xN−1) +

1

2
f(xN )] +

N∑

i=1

Ei

= ∆x[
N∑

i=1

f(xi) − (
1

2
f(x1) +

1

2
f(xN ))] +

N∑

i=1

Ei, (7.76)

where ∆x = (b − a)/N . The total discretization error, ed, then becomes

ed =

N∑

i=1

Ei '
1

24

N∑

i=1

(∆x)3f ′′(x) =
N

24
(∆x)3f ′′(x) =

(b − a)3

24N2
f ′′(x). (7.77)

Thus, the uncertainty in applying the extended trapezoidal rule to approx-
imate an integral is

u∫ f(x) ' C∫ f(x)N(∆x)3, (7.78)

where C∫ f(x) is a constant with the same units as f ′′(x). C∫ f(x) can be
assumed to be of order one as a first approximation.

A numerical estimate of C∫ f(x) can be made if some expression for f ′′(x)
can be found. A second-order central second-difference approximation can
be used, where

f ′′(xi) =
f(xi+1) − 2f(xi) + f(xi−1)

(∆x)2
. (7.79)

This introduces an additional error of O[f ′′′′(xi)(∆x)2]. So, using Equa-
tion 7.79 does not improve the accuracy of the estimate; it simply provides
a convenient way to estimate f ′′(xi). Now the discretization error also can
be written alternatively as

ed =
(b − a)

24N

N∑

i=1

f ′′(xi)(∆x)2. (7.80)

Substitution of Equation 7.79 into Equation 7.80 gives

u∫ f(x) '
(b − a)

24N
{

N∑

i=1

[f(xi+1) − 2f(xi) + f(xi−1)]
2}1/2. (7.81)
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FIGURE 7.7
The output plot of integ.m for nine (x,y) data pairs of a triangular waveform.

Note that the terms with the brackets represent the discretization errors in
the individual f ′′ estimates, which are combined in quadrature.

The following three problems illustrate how uncertainties arising from
the finite-difference approximation of an integral factor into the uncertainty
of a result.

Example Problem 7.19
Statement: Continuing with the experiment presented in the previous example,

determine the uncertainties in the lift coefficient, CL, and the drag coefficient, CD,
of the cylinder. The lift and drag coefficients are determined from 36 static pressure
measurements around the cylinder’s circumference done in 10◦ increments.

Solution: The lift coefficient is given by the equation

CL = −1

2

∫
Cp(θ) sin(θ)dθ. (7.82)

Because there are only 36 discrete measurements of the static pressure, the integral in
Equation 7.82 must be approximated by a finite sum using the trapezoidal rule. The
uncertainty that arises from this approximation is considered in a later example in this
chapter. The general equation for the trapezoidal rule is

∫ b

a
f(x)dx ∼=

(b − a)

n
[
f(a)

2
+ f(x2) + . . . + f(xn−1) +

f(b)

2
].
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Applying this formula to Equation 7.82 yields

CL
∼= − π

72
[Cp(θ = 0) + 2(Cp(θ =

10π

180
) sin(

10π

180
)

+ . . . + Cp(θ =
350π

180
) sin(

350π

180
)

+ Cp(θ =
360π

180
) sin(

360π

180
)] (n = 36).

Because the uncertainty in calculating CL is an uncertainty in a result

uCL
=

√
(
∂CL

∂Cp
uCp )2 + (

∂CL

∂ sin θ
usin θ)2.

Now,

usin θ =
∂ sin θ

∂θ
uθ = uθ cos θ.

Therefore,

uCL
=
√

(uCp sin θ)2 + (Cp(θ)uθ cos θ)2.

This formulation must be applied to the finite-series approximation. Doing so leads to

uCL
=

π

72
[(sin(θ = 0)uCp )2 + (Cp(θ = 0) cos(θ = 0)uθ)2

+(2 sin(θ =
10π

180
)uCp )2 + (2Cp(θ =

10π

180
) cos(

10π

180
)uθ)2

+ . . .

+(2 sin(θ =
350π

180
)uCp )2 + (2Cp(θ =

350π

180
) cos(

350π

180
)uθ)2

+(sin(θ =
360π

180
)uCp )2 + (Cp(θ =

360π

180
) cos(

360π

180
)uθ)2]1/2.

This can be evaluated using a spreadsheet or MATLAB. For the case when uCp =
0.021 and uθ = π/360 (±0.5◦), uCL

= 0.0082. Likewise, uCD
can be evaluated. The

expression is similar to uCL
above but with cos and sin reversed. For uCp = 0.021 and

uθ = π/180 (±1.0◦), uCD
= 0.0081. Now assume that the experiment was performed

within a Reynolds number range that yields CD ∼ 1. Thus, percent uCD
∼= 0.8 %.

It is important to note that these uCL
and uCD

uncertainties do not include their finite
series approximation uncertainties. These are determined in a following example.

Example Problem 7.20
Statement: Determine the uncertainty in the drag of the cylinder that was studied

in the previous examples, where the drag, D, is defined as

D ≡ CD
1

2
ρV 2

∞Afrontal, (7.83)

with Afrontal = d · L.
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Solution: In the experiment 1
2
ρV 2

∞ was measured as ∆P . Thus,

uD = [(
∂D

∂CD
uCD

)2 + (
∂D

∂∆P
u∆P )2 + (

∂D

∂d
ud)2 + (

∂D

∂L
uL)2]1/2

= [(∆PdLuCD
)2 + (CDdLu∆P )2 + (CD∆PLud)2 + (CD∆PduL)2]1/2.

Now, given that

∆P = 4 in. H2O = 996 N/m2, u∆P = 15 N/m2

d = 1.675 in. = 0.0425 m, ud = 0.005 in. = 1.27 × 10−4 m

L = 16.750 in. = 0.425 45 m, uL = 0.005 in. = 1.27 × 10−4 m

CD
∼= 1, uCD

= 0.0092,

then

uD = [(996)(0.0425)(0.425 45)(0.0092)2

(1)(0.0425)(0.425 45)(15)2

(1)(996)(0.425 45)(1.27 × 10−4)
2

(1)(996)(0.0425)(1.27 × 10−4)
2
]1/2

= [0.1662 + 0.2712 + 0.0542 + 0.0052]1/2

= 0.32.

In order to get a percentage error, the nominal value of the drag is computed, where

D ∼= (1)(996)(0.0425)(0.42545) = 18.0 N.

Thus, the percentage error in the drag is 1.7 %, and D = 18.0 ± 0.3 N.

Example Problem 7.21
Statement: Recall the experiment presented in a previous example in which 36 static

pressure measurements were made around a cylinder’s circumference. Determine the
uncertainties in the lift and drag coefficients that arise when the extended trapezoidal
rule is used to approximate the integrals involving the pressure coefficient, where

CL = −1

2

∫ 2π

0
CP (θ) sin(θ)dθ

(7.84)

and

CD = −1

2

∫ 2π

0
CP (θ) cos(θ)dθ.

Compare these numerical uncertainties to their respective measurement uncertainties
which were obtained previously. Finally, determine the overall uncertainties in CL and
CD.

Solution: Equation 7.81 implies

u∫ f(x),CL
' 2π

24N
{

N∑

i=1

[g(θi+1) − 2g(θi) + g(θi−1)]
2}1/2

(7.85)
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and

u∫ f(x),CD
' 2π

24N
{

N∑

i=1

[h(θi+1) − 2h(θi) + h(θi−1)]2}1/2,

where

g(θ) = CP (θ) sin(θ),

h(θ) = CP (θ) cos(θ), and

N = 36.

These uncertainties can be evaluated using a spreadsheet or MATLAB, yielding
u∫ f(x),CL

= 0.0054 and u∫ f(x),CD
= 0.0042. These uncertainties are approximately

one-half of the CL and CD measurement uncertainties.

Combining the CL and CD measurement and numerical approximation uncertainties
gives

uCL
= [0.00822 + 0.00542]1/2 = 0.0098 and

uCD
= [0.00812 + 0.00422]1/2 = 0.0092.

7.12.3 *Uncertainty Estimate Approximation

In some situations the direct approach to estimating the uncertainty in a
result can be complicated if the mathematical expression relating the re-
sult to the measurands is algebraically complex. An alternative approach
is to approximate numerically the partial derivatives in the uncertainty ex-
pression, thereby obtaining a more tractable expression that is amenable to
spreadsheet or program analysis.

The partial derivative term, ∂q/∂xi, can be approximated numerically
by the finite-difference expression

∂q

∂xi
≈ ∆q

∆xi
=

q|xi+∆xi
− q|xi

∆xi
. (7.86)

This approximation is first-order accurate, as seen by examining Equa-
tion 7.70. Thus, its discretization error is of order ∆xf ′′(x). Use of Equa-
tion 7.86 yields the forward finite-difference approximation to Equation 7.21

uq ≈
√

(
∆q

∆x1
ux1

)2 + (
∆q

∆x2
ux2

)2 + ... + (
∆q

∆xk
uxk

)2. (7.87)

The value of ∆xi is chosen to be small enough such that the finite-
difference expression closely approximates the actual derivative. Typically,
∆xi = 0.01xi is a good starting value. The value of ∆xi then should be
decreased until appropriate convergence in the value of uq is obtained.
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Example Problem 7.22
Statement: In a previous example in this chapter, the uncertainty in the density

for air was determined directly by the expression

uρ =

√(
∂ρ

∂T
uT

)2

+

(
∂ρ

∂P
uP

)2

= 2.15 × 10−3 kg/m3,

where uP = 67 Pa, uT = 0.5 K, ρ = 1.19 kg/m2, T = 297 K, P = 101 325 Pa, and
air was assumed to be an ideal gas (ρ = P/RT ). Determine the uncertainty in ρ by
application of Equation 7.87.

Solution: The finite-difference expression for this case is

uρ ≈
√

(
∆ρ

∆P
uP )2 + (

∆ρ

∆T
uT )2,

where ∆ρ
∆P

= [ρ |P+∆P −ρP ]/∆P and ∆ρ
∆T

= [ρ |T+∆T −ρT ]/∆T . Letting ∆P = 0.01P

and ∆T = 0.01T yields ∆ρ
∆P

= [(P + ∆P )/RT − P/RT ]/∆P = 1/RT = ρ/P =

1.17 × 10−5 and ∆ρ
∆T

= [P/R(T − ∆T ) − P/RT ]/∆T = −ρ/(T + ∆T ) = 3.97 × 10−3.

Substitution of these values into the equation gives uρ =
√

0.62 × 10−6 + 3.93 × 10−6 =
2.13× 10−3 kg/m3. This agrees within 1 % of the value of 2.15× 10−3 found using the
direct method.

7.13 *Uncertainty Based upon Interval Statistics

In some measurements situations, specific values for part or all of the data
may not be known. Rather, only a range or interval of possible values is
known. This situation introduces another type of uncertainty, that due to a
lack of knowledge about the specific values of the data, known as epistemic
uncertainty. When all other experimental uncertainties are removed, epis-
temic uncertainty still remains and becomes the overall uncertainty. Thus, a
different approach beyond the current ISO method, which assumes lineariz-
ably small and normally distributed measurement uncertainties, is required
to handle this situation.

Ferson et al. [25] present such an approach that is based upon interval
statistics. The ISO method assumes that measurement uncertainty results
primarily from variability in the data that is caused by inherent random-
ness and/or finite sampling (termed aleatory uncertainty). Based upon this
method, additional measurements will reduce the lower bound of the uncer-
tainty estimate to the limit of design-stage uncertainties, which itself can
be minimized significantly. However, when epistemic uncertainty is present,
the situation can be different. The ISO method will underestimate the over-
all measurement uncertainty when epistemic uncertainty is present. Further,
additional data will not necessarily lead to a reduced uncertainty. The reader
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is referred to the report by Ferson et al. [25] and the monograph by Salicone
[26] for more detailed information.

Treating epistemic uncertainty, as explained in detail by Ferson et al.
[25], can be illustrated by examining a data set consisting of N outcomes,
each with a different range of possible values. The range for one outcome
possibly may overlap that of another. How the values are distributed within
a range is not specified. The outcomes can be represented as
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FIGURE 7.8
The p-box representation of the probability distribution function of the height
estimates (solid) with 95 % confidence limits (dashed).

where yLi
denotes the lower value of the range of the i-th estimate and yHi

the upper value, with i = 1, ..., N .

Consider the example in which the heights of six different people are
estimated visually by an observer as each person runs past a height scale
located 10 m from the observer. The height estimates in centimeters made
by the observer in ascending order are
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160, 168
162, 174
165, 177
172, 187
185, 193
191, 200




.

These results are displayed graphically in a p-box representation in Figure
7.8. Here, y represents the measure (magnitude) of the height and P (y) the
empirically established probability distribution function of the height. The
width of each box is the range for each height estimate and the height of
each box is 1/N (here, 1/6), as indicated by the solid-line bounds in the
figure. For example, based upon the observer’s estimates, there is a 50.0 %
probability that the observed heights were in the range from 160 cm (the
minimum height observed) to a height of from 172 cm to 177 cm (172 cm if
the lower bound at 50 % is used, and 177 cm if the upper bound at 50 % is
used), and 83.3 % probability that they were in the range from 160 cm to a
height of from 187 cm to 193 cm.

Confidence limits for P (y), making no assumption of the specific distribu-
tion function that governs the possible values, can be determined based upon
methods developed by Kolmogorov [27] and Smirnov [28]. These are termed
Kolmogorov-Smirnov (distribution-free) confidence limits. The lower, B(y),
and upper, B(y), limits for each estimate are given by

[B(y), B(y)] =

[min(1, SLN (y) + Dmax(α,N)),max(0, SRN (y) − Dmax(α,N))], (7.88)

where SLN is the fraction of the left end points of the estimate values that
are at or below the magnitude y, SRN is the fraction of the right end points
of the estimate values that are at or above the magnitude y, and Dmax is the
Smirnov statistic that is a function of α and N . Statistically, 100(1 − α) %
of the time, the confidence limits will enclose the distribution function of the
population from which the samples were drawn. When N is greater than
∼50 and α = 5 % (95 % confidence limits), Dmax(0.05, N) ≈ 1.36/

√
N .

For smaller values of N , the value of Dmax(α,N) can be obtained from a
statistical table [29], [30]. These confidence limits do not depend upon the
type of the distribution function, only that the distribution is continuous
and that the samples have been drawn randomly and independently from
the distribution.

Applying these methods to the above example of the height estimates,
assuming 95 % confidence and with Dmax(0.05, 6) = 0.525, yields the con-
fidence limits shown by the dashed-line bounds in Figure 7.8. For example,
95 % of the time when height estimates are made in the manner described
above, 50 % of the heights could be anywhere in the range from the mini-
mum possible height (theoretically 0 cm) to 200 cm. Clearly, these are very
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extensive bounds. Their extent results from the small sample size, here N =
6, and the distribution-free interval assumption. Larger sample sizes and/or
a specification of the interval distribution will reduce these limits. For ex-
ample, if N = 100, Dmax(0.05, 100) = 0.134, 95 % of the time when height
estimates are made, 50 % of the heights could be anywhere in the range
from the minimum possible height to ∼187 cm.

It is important to emphasize that these confidence limits, which are based
on a lack of knowledge about the specific values of the data, do not consider
additional uncertainties, such as instrument resolution and measurement ac-
curacy and precision. Ferson et al. [25] present a hybrid approach in which
the methods of interval statistics are combined with the standard uncer-
tainty method, thereby overcoming this limitation. Their results show that
the confidence limits are the most extensive (widest) when distribution-free
intervals are assumed. When normal-distribution intervals are assumed, the
confidence limits become less extensive (narrower). The current ISO method
gives the least extensive (narrowest) confidence limits because it assumes a
normal distribution and neglects epistemic uncertainty.
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7.14 Problem Topic Summary

Topic Review Problems Homework Problems
Basic Uncertainty 1, 3, 4, 8, 10, 12, 13, 8, 21, 23

14, 18, 20, 22, 23, 24
Result Uncertainty 5, 9, 19 1, 2, 7, 13, 14, 15, 16,

19, 21, 26, 27, 28
General Uncertainty 2, 6, 7, 9, 11, 15, 16, 3, 5, 9, 10, 11, 18,

17, 21 19, 23, 24, 25
Detailed Uncertainty 4, 6, 12

Finite-Difference Approach 17

TABLE 7.2
Chapter 7 Problem Summary

7.15 Review Problems

1. A researcher is measuring the length of a microscopic scratch in a mi-
crophone diaphragm using a stereoscope. A ruler incremented into ten-
thousandths of an inch is placed next to the microphone as a distance
reference. If the stereoscope magnification is increased 10 times, what
property of the distance measurement system has been improved? (a)
Sensitivity, (b) precision, (c) readability, (d) least count.

2. A multimeter, with a full-scale output of 5 V, retains two decimal dig-
its of resolution. For instance, placing the multimeter probes across a
slightly used AA battery results in a readout of 1.35 V. Through cali-
bration, the instrument uncertainties established are sensitivity, 0.5 %
of FSO, and offset, 0.1 % of FSO. What is the total design stage un-
certainty in volts based on this information to 95 % confidence? (Note:
The readout of the instrument dictates that the uncertainty should be
expressed to three decimal places.)

3. Three students are playing darts. The results of the first round are shown
in Figure 7.9, where the circle in the center is the bullseye. Circles =
Player 1; squares = Player 2; triangles = Player 3. In terms of hitting the
bullseye, which player best demonstrates precision, but not accuracy?
(a) Player 1 (circles), (b) Player 2 (squares), (c) Player 3 (triangles).
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FIGURE 7.9
Dartboard.

4. Compare the precision of a metric ruler, incremented in millimeters,
with a standard customary measure ruler, incremented into 16ths of an
inch. How much more precise is the more precise instrument? Express
your answer in millimeters and consider the increments on the rulers to
be exact.

5. For a circular rod with density, ρ, diameter, D, and length, L, derive an
expression for the uncertainty in computing its moment of inertia about
the rod’s end from the measurement of those three quantities. If ρ =
2008 ± 1 kg/m3, D = 3.60 mm ± 0.05 mm, and L = 2.83 m ± 0.01
m, then compute the uncertainty in the resulting moment of inertia to
the correct number of significant figures in the SI units of kilograms per
square meter. Significant figures are based on the measured quantities.
The formula for the moment of inertia of a circular rod about its end is
I = ρπ/12D2L3.

6. The velocity of the outer circumference of a spinning disk may be mea-
sured in two ways. Using an optical sensing device, the absolute uncer-
tainty in the velocity is 0.1 %. Using a strobe and a ruler, the uncertainty
in the angular velocity is 0.1 rad/s and the uncertainty in the diameter
of the disk is 1 mm. Select the measurement method with the least un-
certainty for the two methods if the disk is 0.25 m in diameter and is
spinning at 10 rpm.

7. Using a pair of calipers with 0.001 in. resolution, a machinist measures
the diameter of a pinball seven times with the following results in units
of inches: 1.026, 1.053, 1.064, 1.012, 1.104, 1.098, and 1.079. He uses
the average of the measurements as the correct value. Compute the
uncertainty in the average diameter in inches to one-thousandth of an
inch.
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8. Match the following examples of experimental error (numbered 1
through 4) and uncertainty to the best categorization of that example
(lettered a through d): (1) temperature fluctuations in the laboratory,
(2) physically pushing a pendulum through its swing during one exper-
imental trial, (3) the numerical bounds of the scatter in the distance
traveled by the racquet ball about the mean value, (4) releasing the
pendulum from an initial position so that the shaft has a small initial
angle to the vertical for each trial; (a) uncertainty, (b) systematic error,
(c) experimental mistake, (d) random error.

9. A geologist finds a rock of unknown composition and desires to measure
its density. To measure the volume, she places the rock in a cylinder,
which is graduated in 0.1 mL increments, half-filled with water, so that
the rock is submerged in the water. She removes the rock from the
cylinder and directly measures the rock’s mass using a scale with a
digital readout resolution of 0.1 g. No information is provided from the
manufacturer about the scale uncertainty. She records the volume, V,
and mass, m, as follows: V = 40.5 mL, m = 143.1 g. Determine the
percent uncertainty in the density expressed with the correct number of
significant figures.

10. In addition to the digital display, the manometer described in the pre-
vious problem has an analog voltage output that is proportional to
the sensed differential pressure in units of in inches of water. A re-
searcher calibrates the analog output by applying a series of known
pressures across the manometer ports and observing both the analog
and digital output for each input pressure. A linear fit to the data yields
P = 1.118E + 0.003, where P is pressure (in. H2O) and E is the analog
voltage (V). If for zero input pressure, the manufacturer specifies that
no output voltage should result, what magnitude of systematic error has
been found?

11. The mean dynamic pressure in a wind tunnel is measured using the
manometer described in the last two problems and a multimeter to mea-
sure the output voltage. The recorded voltages are converted to pres-
sures using the calibration fit presented in Problem 10. The resolution
of the multimeter is 1 mV and the manufacturer specifies the following
instrument errors: sensitivity = 0.5 mV and linearity = 0.5 mV. If 150
multimeter readings with a standard deviation of 0.069 V are acquired
with a mean voltage of 0.312 V, what is the uncertainty in the resulting
computed mean pressure in inches of water? Express the answer to the
precision of the digital readout of the manometer.

12. A technician uses a graduated container of water to measure the volume
of odd-shaped objects. The changes in the density of the water caused
by ambient temperature and pressure fluctuations directly contribute
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to (a) systematic error, (b) redundant error, (c) random error, or (d)
multiple measurement error.

13. A graduate student orders a set of very accurate weights to calibrate a
digital scale. The desired accuracy of the scale is 0.1 g. The manufac-
turer of the weights states that the mass of each weight is accurate to
0.04 g. What is the maximum number of weights that may be used in
combination to calibrate the scale?

14. A test engineer performs a first-run experiment to measure the time
required for a 2010 prototype car to travel a fourth of a mile beginning
from rest. When the car begins motion, a green light flashes in the
engineer’s field of vision, signaling him to start the time count with a
hand-held stopwatch. Similarly, a red light flashes when the car reaches
the finish line. The resulting times from four trials are 13.42 s, 13.05 s,
12.96 s, and 12.92 s. Outside of the test environment, another engineer
measures the first test engineer’s reaction time to the light signals. The
results of the test show that the test engineer over-anticipates the green
light and displays slowed reaction to the red light. Both reaction times
were measured to be 0.13 s. Compute the average travel time in seconds,
correcting for the systematic error in the experimental procedure.

15. A digital manometer measures the differential pressure across two in-
puts. The range of the manometer is 0 in. H2O to 0.5 in. H2O. The LED
readout resolves pressure into 0.001 in. H2O. Based on calibration, the
manufacturer specifies the following instrument errors: hysteresis error
= 0.1 % of FSO; linearity = 0.25 % of FSO; sensitivity = 0.1 % of
FSO. Determine the design stage uncertainty of the digital manometer
in inches of water to the least significant digit resolved by the manome-
ter.

16. The smallest division marked on the dial of a pressure gage is 2 psi. The
accuracy of the pressure gage as stated by the manufacturer is ±1 psi.
Determine the design-stage uncertainty in psi and express it with the
correct number of significant figures.

17. A student conducts an experiment in which the panel meter display-
ing the measurement system’s output in volts fluctuates up and down
in time. Being a conscientious experimenter, the student decides to es-
timate the temporal random error of the measurement. She takes 100
repeated measurements and finds that the standard deviation equals a
whopping 1.0 V! Determine the temporal random error in volts at 95 %
confidence and express the answer with the correct number of significant
figures.

18. Standard measurement uncertainty is (a) the error in a measurement,
(b) the probability of a measurement being correct, (c) the probability
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of a measurement not being correct, (d) an estimate of the range of
probable errors in a measurement, or (e) the sum of the systematic and
random errors.

19. If the uncertainties in the length and diameter of a cylinder are 2 % and
3 % respectively, what is the percent uncertainty in its volume expressed
with the correct number of significant figures?

20. Sixty-four pressure measurements have a sample mean equal to 200
N/m2 and a sample variance equal to 16 N2/m4. What is the percent
uncertainty in the pressure measurement if the only contributor to its
uncertainty is the random error?

21. A voltmeter having three digits displays a reading of 8.66 V. What per-
cent instrument uncertainty must the voltmeter have to yield a design-
stage uncertainty of 0.01 V at 8.66 V?

22. Determine the temporal precision error, in V, in the estimate of the aver-
age value of a voltage based upon nine measurements at 95 % confidence
and a sample variance of 9 V2.

23. Match the following examples of experimental error and uncertainty (1
through 4) to the type of uncertainty they correspond to (a through
d): (1) fluctuations in the humidity of the air during the summer while
conducting a month-long series of experiments, (2) holding a ruler at an
angle to the measurement plane for a series of measurements, (3) while
taking data, bumping into a table that holds a pendulum experiment, (4)
the numerical bounds of the scatter in the height a ball bounces during
measurements of its coefficient of restitution; (a) systematic error, (b)
experimental mistake, (c) random error, (d) uncertainty.

24. A student records a small sample of three voltage measurements: 1.000
V, 2.000 V, and 3.000 V. Determine the uncertainty in the population’s
true mean value of the voltage estimated with 50 % confidence. Express
your answer with the correct number of significant figures.

7.16 Homework Problems

1. The supply reservoir to a water clock is constructed from a tube of
circular section. The tube has a nominal length of 52 cm ± 0.5 cm, an
outside diameter of 20 cm ± 0.04 cm, and an inside diameter of 15 cm
± 0.08 cm. Determine the percent uncertainty in the calculated volume.
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2. A mechanical engineer is asked to design a cantilever beam to support
a concentrated load at its end. The beam is of circular section and has
a length, L, of 6 ft and a diameter, d, of 2.5 in. The concentrated load,
F , of 350 lbf is applied at the beam end, perpendicular to the length of
the beam. If the uncertainty in the length is ±1.5 in., in the diameter
is ±0.08 in., and in the force is ± 5 lbf, what is the uncertainty in the
calculated bending stress, σ? [Hint: σ = 32FL/(πd3).] Further, if the
uncertainty in the bending stress may be no greater than 6 %, what
maximum uncertainty may be tolerated in the diameter measurement if
the other uncertainties remain unchanged?

3. An electrical engineer must decide on a power usage measurement
method that yields the least uncertainty. There are two alternatives
to measuring the power usage of a DC heater. Either (1) heater resis-
tance and voltage drop can be measured simultaneously and then the
power computed, or (2) heater voltage drop and current can be mea-
sured simultaneously and then the power computed. The manufactur-
ers’ specifications of the available instruments are as follows: ohmmeter
(resolution 1 Ω and reading uncertainty = 0.5 %); ammeter (resolution
0.5 A and % reading uncertainty = 1 %); voltmeter (resolution 1 V and
% reading uncertainty = 0.5 %). For loads of 10 W, 1 kW, and 10 kW
each, determine the best method based on an appropriate uncertainty
analysis. Assume nominal values as necessary for resistance and current
based upon a fixed voltage of 100 V.

4. A new composite material is being developed for an advanced aerospace
structure. The material’s density is to be determined from the mass of a
cylindrical specimen. The volume of the specimen is determined from di-
ameter and length measurements. It is estimated that the mass, m, can
be determined to be within 0.1 lbm using an available balance scale, the
length, L, to within 0.05 in., and the diameter, D, to within 0.0005 in.
Estimate the zero-order design stage uncertainty in the determination
of the density. Which measurement would contribute most to the uncer-
tainty in the density? Which measurement method should be improved
first if the estimate in the uncertainty in the density is unacceptable?
Use nominal values of m = 4.5 lbm, L = 6 in., and D = 4 in. Next, mul-
tiple measurements are performed yielding the data shown in Table 7.3.
Using this information and what was given initially, provide an estimate
of the true density at 95 % confidence. Compare the uncertainty in this
result to that determined in the design stage.

5. High pressure air is to be supplied from a large storage tank to a plenum
located immediately before a supersonic convergent-divergent nozzle.
The engineer designing this system must estimate the uncertainty in
the plenum’s pressure measurement system. This system outputs a volt-
age that is proportional to pressure. It is calibrated against a transducer
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D̄ = 3.9924 in. m̄ = 4.4 lbm L̄ = 5.85 in.
SD = 0.0028 in. Sm = 0.1 lbm SL = 0.10 in.

N = 3 N = 21 N = 11

TABLE 7.3
Composite material data.

standard (certified accuracy: within ±0.5 psi) over its 0 psi to 100 psi
range with the results given below. The voltage is measured with a volt-
meter (instrument error: within ±10 µV; resolution: 1 µV). The engineer
estimates that installation effects can cause the indicated pressure to be
off by another ±0.5 psi. Estimate the uncertainty at 95 % confidence in
using this system based upon the following information given in Table
7.4.

E(mv): 0.004 0.399 0.771 1.624 2.147 4.121
p(psi): 0.1 10.2 19.5 40.5 51.2 99.6

TABLE 7.4
Storage tank calibration data.

6. One approach to determining the volume of a cylinder is to measure its
diameter and length and then calculate the volume. If the length and
diameter of the cylinder are measured at four different locations using
a micrometer with an uncertainty of 0.05 in. with 95 % confidence,
determine the percent uncertainty in the volume. The four diameters
in inches are 3.9920, 3.9892, 3.9961, and 3.9995; those of the length in
inches are 4.4940, 4.4991, 4.5110, and 4.5221.

7. Given y = ax2 and that the uncertainty in a is 3 % and that in x is 2 %,
determine the percent uncertainty in y for the nominal values of a = 2
and x = 0.5.

8. The lift force on a Wortmann airfoil is measured five times under the
same experimental conditions. The acquired values are 10.5 N, 9.4 N,
9.1 N, 11.3 N, and 9.7 N. Assuming that the only uncertainty in the
experiment is a temporal random error as manifested by the spread of
the data, determine the uncertainty (in ±N) at the 95 % confidence level
of the true mean value of the lift force.

9. A pressure transducer specification sheet lists the following instrument
errors, all in units of percent span, where the span for the particular
pressure transducer is 10 in. H2O: combined null and sensitivity shift
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= ±1.00, linearity = ±2.00, and repeatability and hysteresis = ±0.25.
Estimate (a) the transducer’s instrument uncertainty in the pressure
in units of inches of water and (b) the % instrument uncertainty in a
pressure reading of 1 in. H2O. (c) Would this be a suitable transducer
to use in an experiment in which the pressure ranged from 0 in. H2O to
2 in. H2O and the pressure reading must be accurate to within ± 10 %?

10. The mass of a golf ball is measured using an electronic balance that has
a resolution of 1 mg and an instrument uncertainty of 0.5 %. Thirty-one
measurements of the mass are made yielding an average mass of 45.3
g and a standard deviation of 0.1 g. Estimate the (a) zero-order, (b)
design-stage, and (c) first-order uncertainties in the mass measurement.
What uncertainty contributes the most to the first-order uncertainty?

11. A group of students wish to determine the density of a cylinder to be
used in a design project. They plan to determine the density from mea-
surements of the cylinder’s mass, length, and diameter, which have in-
strument resolutions of 0.1 lbm, 0.05 in., and 0.0005 in., respectively.
The balance used to measure the weight has an instrument uncertainty
(accuracy) of 1 %. The rulers used to measure the length and diameter
present negligible instrument uncertainties. Nominal values of the mass,
length, and diameter are 4.5 lbm, 6.00 in., and 4.0000 in., respectively.
(a) Estimate the zero-order uncertainty in the determination of the den-
sity. (b) Which measurement contributes the most to this uncertainty?
(c) Estimate the design-stage uncertainty in the determination of the
density.

12. The group of students in the previous problem now perform a series
of measurements to determine the actual density of the cylinder. They
perform 20 measurements of the mass, length, and diameter that yield
average values for the mass, length, and diameter equal to 4.5 lbm,
5.85 in., and 3.9924 in., respectively, and standard deviations equal to
0.1 lbm, 0.10 in., and 0.0028 in., respectively. Using this information
and that presented in the previous problem, estimate (a) the average
density of the cylinder in lbm/in.3, (b) the systematic errors of the mass,
length, and diameter measurements, (c) the random errors of the mass,
length, and diameter measurements, (d) the combined systematic errors
of the density, (e) the combined random errors of the density, (f) the
uncertainty in the density estimate at 95 % confidence (compare this to
the design-stage uncertainty estimate, which should be smaller), and (g)
an estimate of the true density at 95 % confidence.

13. Given King’s law, E2 = A + B
√

U , and the fractional uncertainties in
A, B, and U of 5 %, 4 %, and 6 %, respectively, determine the percent
fractional uncertainty in E with the correct number of significant figures.
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14. The resistivity ρ of a piece of wire must be determined. To do this, the
relationship R = ρL/A can be used and the appropriate measurements
made. Nominal values of R, L, and the diameter of the wire, d, are 50 Ω,
10 ft, and 0.050 in., respectively. The error in L must be held to no more
than 0.125 in. R will be measured with a voltmeter having an accuracy
of ±0.2 % of the reading. How accurately will d need to be measured if
the uncertainty in ρ is not to exceed 0.5 %?

15. The tip deflection of a cantilever beam with rectangular cross-section
subjected to a point load at the tip is given by the formula

δ = PL3

3EI , where I = bh3

12 .

Here, P is the load, L is the length of the beam, E is the Young’s modulus
of the material, b is the width of the cross-section, and h is the height
of the cross-section. If the instrument uncertainties in P , L, E, b, and h
are each 2 %, (a) estimate the fractional uncertainty in δ. This beam is
used in an experiment to determine the value of an unknown load, Px, by
performing four repeated measurements of δ at that load under the same
controlled conditions. The resulting sample standard deviation of these
measurements is 8 µm and the average deflection is 20 µm. Determine
(b) the overall uncertainty in the deflection measurements estimated at
90 % confidence assuming that the resolution of the instrument used to
measure δ is so small that it produces negligible uncertainty.

16. The resistance of a wire is given by R = Ro[1 + α(T − To)] where To

= 20 ◦C, Ro = 6 Ω ± 0.3 % is the resistance at 20 ◦C, α = 0.004/ ◦C
±1 % is the temperature coefficient of resistance, and the temperature
of the wire is T = 30± 1 ◦C. Determine (a) the normal resistance of the
wire and (b) the uncertainty in the resistance of the wire, uR.

17. Calculate the uncertainty in the wire resistance that was described in
the previous problem using the first-order finite-difference technique.

18. An experiment is conducted to verify an acoustical theory. Sixty-one
pressure measurements are made at a location using a pressure measure-
ment system consisting of a pressure transducer and a display having
units of kilopascals. A statistical analysis of the 61 measurand values
yields a sample mean of 200 kPa and a sample standard deviation of 2
kPa. The resolution of the pressure display is 6 kPa. The pressure trans-
ducer states that the transducer has a combined hysteresis and linearity
error of 2 kPa, a zero-drift error of 2 kPa, and sensitivity error of 1
kPa. (a) What classification is this experiment? Determine the system’s
(b) zero-order uncertainty, (c) instrument uncertainty, (d) uncertainty
arising from pressure variations, and (e) combined standard uncertainty.
Assume 95 % confidence in all of the estimates. Express all estimates
with the correct number of significant figures.
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19. A hand-held velocimeter uses a heated wire and, when air blows over the
wire, correlates the change in temperature to the air speed. The reading
on the velocimeter, vstd, is relative to standard conditions defined as
Tstd = 70 ◦F and Pstd = 14.7 psia. To determine the actual velocity,
vact, in units of feet per minute, the equation

vact = vstd[(460 + T )/(460 + Tstd)][Pstd/P ]

must be applied, where T is in oF and P is in psia. The accuracy of the
reading on the velocimeter is ±5.0 % or ±5 ft/min, whichever is greater.
The velocimeter also measures air temperature with an accuracy of ±1
◦F. During an experiment, the measured air velocity is 400 ft/min and
the temperature is 80 ◦F. The air pressure can be assumed to be at
standard conditions. Determine (a) the actual air velocity, (b) the un-
certainty in the actual air velocity, uvact

, and (c) the percent uncertainty
in the actual air velocity.

20. Compute the random uncertainty (precision limit) for each of the fol-
lowing and explain the reasoning for which equation was used.

(a) An engineer is trying to understand the traffic flow through a partic-
ularly busy intersection. In 2008, every official business day during the
month of September (excluding holidays and weekends) he counts the
number of cars that pass through from 10 AM until 1 PM. He found
that the number of cars averaged 198 with a variance of 36. He wishes
to know the uncertainty with 90 % confidence.

(b) A student wishes to determine the accuracy of a relative humidity
gauge in the laboratory with 99 % confidence. He takes a reading every
minute for one hour and determines that the mean is 48 % relative
humidity with a standard deviation of 2 %.

(c) The student’s partner enters the lab after the first student and wishes
to determine the relative humidity in the room with 99 % confidence
prior to running his experiments. He also takes a reading every minute
for one hour and determines that the mean is 48 % relative humidity
and the standard deviation is 2 %. (Assume he knows nothing about
what his partner has done.)

(d) An engineer designing cranes is working with a manufacturing en-
gineer to assess whether as-manufactured beams will be able to satisfy
a ten-year guarantee for normal use at which time they will need re-
furbishment or replacement. On the drawing he specified an absolute
minimum thickness of 3.750 in. The manufacturer measures 200 beams
off the assembly floor and they have an average thickness of 4.125 in.
with a standard deviation of 0.1500 in. Does the manufacturer have 99
% confidence that the as-manufactured beams will meet the ten-year
guarantee?
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21. The resistance of a wire is given by R = Ro [1 + α (T − To)] where To

and Ro are fixed reference values of 20 ◦C and 100 Ω ± 2.5 %, re-
spectively. The temperature coefficient is α = 0.004/◦C ± 0.1 %. The
development engineer is checking the resistance of the wire and mea-
sures the temperature to be T = 60 ◦C. When measuring the wire and
reference temperatures, the engineer used the same thermocouple that
had a manufacturer’s accuracy of ± 1 ◦C. (a) Determine the nominal
resistance of the wire and the nominal uncertainty. (b) Assess whether
the certainty was positively or negatively affected by using the same
thermocouple rather than two separate thermocouples with the same
nominal accuracy. Note: When calculating percentages of temperatures,
an absolute scale needs to be used.

22. An instrument has a stated accuracy of q %. An experiment is conducted
in which the instrument is used to measure a variable, z, N times under
controlled conditions. There are some temporal variations in the instru-
ment’s readings, characterized by Sz. Determine the overall uncertainty
in z.

23. A design criterion for an experiment requires that the combined standard
uncertainty in a measured pressure be 5 % or less based upon 95 %
confidence. It is known from a previous experiment conducted in the
same facility that the pressure varies slightly under ‘fixed’ conditions,
as determined from a sample of 61 pressure measurements having a
standard deviation of 2.5 kPa and mean of 90 kPa. The accuracy of the
pressure measurement system, as stated by the manufacturer, is 3 %.
Determine the value of the smallest division (in kPa) that the pressure
indicator must have to meet the design criterion.

24. A calibration experiment is conducted in which the output of a
secondary-standard pressure transducer having negligible uncertainty is
read using a digital voltmeter. The pressure transducer has a range of
0 psi to 10 psi. The digital voltmeter has a resolution of 0.1 V, a stated
accuracy of 1 % of full scale, and a range of 0 V to 10 V. The calibration
based upon 61 measurements yields the least-squares linear regression
relation V (volts) = 0.50P (psi), with a standard error of the fit, Syx,
equal to 0.10 V. Determine the combined standard uncertainty in the
voltage at the 95 % confidence level.

25. An inclined manometer has a stated accuracy of 3 % of its full-scale
reading. The range of the manometer is from 0 in. H2O to 5 in. H2O. The
smallest marked division on the manometer’s scale is 0.2 in. H2O. An
experiment is conducted under controlled conditions in which a pressure
difference is measured 20 times. The mean and standard deviation of
the pressure-difference measurements are 3 in. H2O and 0.2 in. H2O,
respectively. Assuming 95 % confidence, determine (a) the zero-order
uncertainty, u0, (b) the temporal precision uncertainty that arises from
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the variation in the pressure-difference during the controlled-conditions
experiment, and (c) the combined standard uncertainty, uc.

26. Determine the uncertainty (in ohms) in the total resistance, RT , that is
obtained by having two resistors, R1 and R2, in parallel. The resistances
of R1 and R2 are 4 Ω and 6 Ω, respectively. The uncertainties in the
resistances of R1 and R2 are 2 % and 5 %, respectively.

27. A student group postulates that the stride length, L, of a marathon
runner is proportional to a runner’s inseam, H, and inversely propor-
tional to the square of a runner’s weight, W . The inseam length is to be
measured using a tape measure and the weight using a scale. The esti-
mated uncertainties in H and W are 4 % and 3 %, respectively, based
upon a typical inseam of 70 cm and a weight of 600 N. Determine (a)
the percent uncertainty in L, (b) the resolution of the tape measure (in
cm), and (c) the resolution of the scale (in N).

28. Given that the mass, M , of Saturn is 5.68 × 1026 kg, the radius, R,
is 5.82 × 107 m, and g (m/s2) = GM/R2, where G = 6.6742 × 10−11

N·m2/kg2, determine the percent uncertainty in g on Saturn, assuming
that the uncertainties in G, M , or R are expressed for each by the place
of the least-significant digit (for example, uR = 0.01 × 107 m).
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Of all the principles that can be proposed for this purpose, I think there is
none more general, more exact, or easier to apply, than that which we have
used in this work; it consists of making the sum of the squares of the errors a

minimum. By this method, a kind of equilibrium is established among the
errors which, since it prevents the extremes from dominating, is appropriate
for revealing the state of the system which most nearly approaches the truth.

Adrien-Marie Legendre. 1805. Nouvelles méthodes pour la détermination des

orbites des comètes. Paris.

Two variable organs are said to be co-related when the variation of the one is
accompanied on the average by more or less variation of the other, and in

the same direction.
Sir Francis Galton. 1888. Proceedings of the Royal Society of London. 45:135-145.
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8.1 Chapter Overview

This chapter introduces two important areas of data analysis: regression
and correlation. Regression analysis establishes a mathematical relation
between two or more variables. Typically, it is used to obtain the best fit
of data with an analytical expression. Correlation analysis quantifies the
extent to which one variable is related to another, but it does not establish
a mathematical relation between them. Statistical methods can be used to
determine the confidence levels associated with regression and correlation
estimates.

We begin this chapter by considering the least-squares approach to re-
gression analysis. This approach enables us to obtain a best-fit relation
between variables. We focus on linear regression analysis first. The sta-
tistical parameters that are used to characterize regression are introduced
next. Then we consider regression analysis as applied to experiments along
with their associated uncertainties and confidence limits. We further exam-
ine correlation analysis by considering how a random variable is correlated
with itself and with another random variable. Finally, we examine extended
methods, including higher-order regression analysis and multi-variable linear
analysis.

8.2 Least-Squares Approach

Toward the end of the 18th century scientists faced an interesting problem.
This was how to find the best agreement between measurements and an
analytical model that contained the measured variables, given that repeated
measurements were made, but with each containing error. Jean-Baptiste-
Joseph Delambre (1749-1822) and Pierre-François-André Méchain (1744-
1804) of France, for example [1] and [2], were in the process of measuring
a 10◦ arc length of the meridian quadrant passing from the North Pole to
the Equator through Paris. The measure of length for their newly proposed
Le Système International d’Unités, the meter, would be defined as 1/10 000
000 the length of the meridian quadrant. So, the measured length of this
quadrant had to be as accurate as possible.

Because it was not possible to measure the entire length of the 10◦ arc,
measurements were made in arc lengths of approximately 65 000 modules
(1 module ∼= 12.78 ft). From these measurements, an analytical expression
involving the arc length and the astronomically determined latitudes of each
of the arc’s end points, the length of the meridian quadrant was determined.
The solution essentially involved solving four equations containing four mea-
sured arc lengths with their associated errors for two unknowns, the elliptic-
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ity of the earth and a factor related to the diameter of the earth. Although
many scientists proposed different solution methods, it was Adrien-Marie
Legendre (1752-1833), a French mathematician, who arrived at the most ac-
curate determination of the meter using the method of least squares, equal
to 0.256 480 modules (∼ 3.280 ft). Ironically, it was the more politically
astute Pierre-Simon Laplace’s (1749-1827) value of 0.256 537 modules (∼
3.281 ft) based upon a less accurate method that was adopted as the basis
for the meter. Current geodetic measurements show that the quadrant from
the North Pole to the Equator through Paris is 10 002 286 m long. This
renders the meter as originally defined to be in error by 0.2 mm or 0.02 %.

Legendre’s method of least squares, which originally appeared as a four-
page appendix in a technical paper on comet orbits, was more far-reaching
than simply determining the length of the meridian quadrant. It prescribed
the methodology that would be used by countless scientists and engineers to
this day. His method was elegant and straightforward, simply to express the
errors as the squares of the differences between all measured and predicted
values and then determine the values of the coefficients in the governing
equation that minimize these errors. To quote Legendre [1] “...we are led to
a system of equations of the form

E = a + bx + cy + fz + ..., (8.1)

in which a, b, c, f, ... are known coefficients, varying from one equation to
the other, and x, y, z, ... are unknown quantities, to be determined by the
condition that each value of E is reduced either to zero, or to a very small
quantity.”

In the present notation, for a linear system

ei = a + bxi + cyi = yci
− yi, (8.2)

where ei is the i-th error for each of i equations based upon the measurement
pair [xi, yi] and the general analytical expression yci

= a+ bxi with c = −1.
Using Legendre’s method, the minimum of the sum of the squares of the
ei’s would be found by varying the values of coefficients a and b. Formally,
these coefficients are known as regression coefficients and the process of
obtaining their values is called regression analysis.

8.3 Least-Squares Regression Analysis

Least-squares regression analysis follows a very logical approach in which
the coefficients of an analytical expression that best fits the data are found
through the process of error minimization. The best fit occurs when the sum
of the squares of the differences (the errors or residuals) between each yci
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FIGURE 8.1
Least-squares regression analysis.

value calculated from the analytical expression and its corresponding mea-
sured yi value is a minimum (the differences are squared to avoid adding
compensating negative and positive differences). The best fit would be ob-
tained by continually changing the coefficients (a0 through am) in the an-
alytical expression until the differences are minimized. This, however, can
be quite tedious unless a formal approach is taken and some simplifying
assumptions are made.

Consider the data presented in Figure 8.1. The goal is to find the values
of the a coefficients in the analytical expression yc = a0 + a1x + a2x

2 +
... + amxm that best fits the data. To proceed formally, D is defined as
the sum of the squares of all the vertical distances (the di’s) between the
measured and calculated values of y (between yi and yci

), as

D =

N∑

i=1

d2
i =

N∑

i=1

(yi − yci
)2 =

N∑

i=1

(yi − {a0 + a1xi + ... + amxm
i })2. (8.3)

Implicitly, it is assumed in this process that yi is normally distributed with a
true mean value of y′

i and a true variance of σ2
yi

. The independent variable xi

is assumed to have no or negligible variance. Thus, xi = x′, where x′ denotes
the true mean value of x. Essentially, the value of x is fixed, known, and
with no variance, and the value of y is sampled from a normally distributed
population. Thus, all of the uncertainty results from the y value. If this
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were not the case, then the yci
value corresponding to a particular yi value

would not be vertically above or below it. This is because the xi value
would fall within a range of values. Consequently, the distances would not
be vertical but rather at some angle with respect to the ordinate axis. Hence,
the regression analysis approach being developed would be invalid.

Now D is to be minimized. That is, the value of the sum of the squares
of the distances is to be the least of all possible values. This minimum is
found by setting the total derivative of D equal to zero. This actually is a
minimization of χ2 (see [3]). Thus,

dD = 0 =
∂D

∂a0
da0 +

∂D

∂a1
da1 + ... +

∂D

∂am
dam. (8.4)

For this equation to be satisfied, a set of m + 1 equations must be solved
for m + 1 unknowns. This set is

∂D

∂a0
= 0 =

∂

∂a0

N∑

i=1

d2
i ,

∂D

∂a1
= 0 =

∂

∂a1

N∑

i=1

d2
i ,

... , and

∂D

∂am
= 0 =

∂

∂am

N∑

i=1

d2
i . (8.5)

This set of equations leads to what are called the normal equations
(named by Carl Friedrich Gauss).

8.4 Linear Analysis

The simplest type of least-squares regression analysis that can be performed
is for the linear case. Assume that y is linearly related to x by the expression
yc = a0 + a1x. Proceeding along the same lines, for this case only two
equations (here m + 1 = 1 + 1 = 2) must be solved for two unknowns, a0

and a1, subject to the constraint that D is minimized.

When dD = 0,

∂D

∂a0
= 0 =

∂

∂a0

(
N∑

i=1

[yi − (a0 + a1xi)]
2

)
= −2

N∑

i=1

(yi − a0 − a1xi). (8.6)
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Carrying through the summations on the right side of Equation 8.6 yields

N∑

i=1

yi = a0N + a1

N∑

i=1

xi. (8.7)

Also,

∂D

∂a1
= 0 =

∂

∂a1

(
N∑

i=1

[yi − (a0 + a1xi)]
2

)
= −2

N∑

i=1

xi(yi − a0 − a1xi). (8.8)

This gives
N∑

i=1

xiyi = a0

N∑

i=1

xi + a1

N∑

i=1

x2
i . (8.9)

Thus, the two normal equations become Equations 8.7 and 8.9. These can
be rewritten as

ȳ = a0 + a1x̄ (8.10)

and

xy = a0x̄ + a1x2. (8.11)

From the first normal equation it can be deduced that a linear least-squares
regression analysis fit will always pass through the point (x̄, ȳ). Equations
8.7 and 8.9 can be solved for a0 and a1 to yield

a0 =

(
N∑

i=1

x2
i

N∑

i=1

yi −
N∑

i=1

xi

N∑

i=1

xiyi

)
/∆, (8.12)

a1 =

(
N

N∑

i=1

xiyi −
N∑

i=1

xi

N∑

i=1

yi

)
/∆, and (8.13)

∆ = N
N∑

i=1

x2
i −

[
N∑

i=1

xi

]2

. (8.14)

Linear regression analysis also can be used for a higher-order expres-
sion if the variables in expression can be transformed to yield a linear ex-
pression. This sometimes is referred to as curvilinear regression analysis.
Such variables are known as intrinsically linear variables. For this case,
a least-squares linear regression analysis is performed on the transformed
variables. Then the resulting regression coefficients are transformed back to
yield the desired higher-order fit expression. For example, if y = axb, then
log10 y = log10 a + b log10 x. So, the least-squares linear regression fit of the
data pairs [log10 x, log10 y] will yield a line of intercept log10 a and slope b.
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FIGURE 8.2
Regression fit of the model y = axb with data.

The resulting best-fit values of a and b can be determined and then used in
the original expression.

Example Problem 8.1
Statement: An experiment is conducted to validate a physical model of the form

y = axb. Five [x, y] pairs of data are acquired: [1.00, 2.80; 2.00, 12.5; 3.00, 25.2; 4.00,
47.0; 5.00 73.0]. Find the regression coefficients a and b using a linear least-squares
regression analysis.

Solution: First express the data in the form of [log10 x, log10 y] pairs. This yields
the transformed data pairs [0.000, 0.447; 0.301, 1.10; 0.477, 1.40; 0.602, 1.67; 0.699,
1.86]. A linear regression analysis of the transformed data yields the best-fit expression:
log10 y = 0.461 + 2.01 log10 x. This implies that a = 2.89 and b = 2.01. Thus, the best-
fit expression for the data in its original form is y = 2.89x2.01. This best-fit expression
is compared with the original data in Figure 8.2.

A similar approach can be taken when using a linear least-squares regres-
sion analysis to fit the equation E2 = A + B

√
U , which is King’s law. This

law relates the voltage, E, of a constant-temperature anemometer to a fluid’s
velocity, U . A regression analysis performed on the data pairs [E2,

√
U ] will

yield the best-fit values for A and B. This is considered in homework prob-
lem 7.
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8.5 Regression Parameters

There are several statistical parameters that can be calculated from a set of
data and its best-fit relation. Each of these parameters quantifies a different
relationship between the quantities found from the data (the individual
values xi and yi and the mean values x and y) and from its best-fit relation
(the calculated values).

Those quantities that are calculated directly from the data include the
sum of the squares of x, Sxx, the sum of the squares of y, Syy, and the sum
of the product of x and y, Sxy. Their expressions are

Sxx ≡
N∑

i=1

(xi − x)2 =

N∑

i=1

x2
i − Nx2, (8.15)

Syy ≡
N∑

i=1

(yi − y)2 =

N∑

i=1

y2
i − Ny2, (8.16)

and

Sxy ≡
N∑

i=1

(xi − x)(yi − y) =
N∑

i=1

xiyi − Nxy. (8.17)

All three of these quantities can be viewed as measures of the square of the
differences or product of the differences between the xi and yi values and
their corresponding mean values. Equations 8.15 and 8.17 can be used with
the normal equations of a linear least-squares regression analysis to simplify
the expressions for the linear case’s best-fit slope and intercept, where

b = Sxy/Sxx (8.18)

and

a = ȳ − bx̄. (8.19)

Those quantities calculated from the data and the regression fit include
the sum of the squares of the regression, SSR, the sum of the squares of
the error, SSE, and the sum of the squares of the total error, SST . Their
expressions are

SSR ≡
N∑

i=1

(yci
− y)2, (8.20)

SSE ≡
N∑

i=1

(yi − yci
)2, (8.21)

and
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SST ≡ SSE + SSR =
N∑

i=1

(yi − yci
)2 +

N∑

i=1

(yci
− y)2. (8.22)

All three of these can be viewed as quantitative measures of the square of the
differences between the ȳ and yi values and their corresponding yci

values.
SSR is also known as the explained variation and SSE as the unexplained
variation. Their sum, SST, is called the total variation. SSR is a measure of
the amount of variability in yi accounted for by the regression line and SSE
of the remaining amount of variation not explained by the regression line.

It can be shown further (see [5]) that

SST =

N∑

i=1

(yi − y)2 = Syy. (8.23)

The combination of Equations 8.22 and 8.23 yields what is known as the
sum of squares partition [5] or the analysis of variance identity [6]

N∑

i=1

(yi − y)2 =
N∑

i=1

(yi − yci
)2 +

N∑

i=1

(yci
− y)2. (8.24)

This expresses the three quantities of interest (yi, yci
, and y) in one equation.

An additional and frequently used parameter that characterizes the qual-
ity of the best-fit is the standard error of the fit, Syx,

Syx ≡
√

SSE

ν
=

√
SSE

N − 2
=

√∑N
i=1(yi − yci

)2

N − 2
. (8.25)

This is equivalent to the standard deviation of the measured yi values with
respect to their calculated yci

values, where ν = N − (m + 1) = N − 2 for
m = 1.

Example Problem 8.2
Statement: For the set of [x,y] data pairs [0.5, 0.6; 1.5, 1.6; 2.5, 2.3; 3.5, 3.7; 4.5,

4.2; 5.5, 5.4], determine x̄, ȳ, Sxx, Syy , and Sxy . Then determine the intercept and the
slope of the regression line using Equations 8.18 and 8.19 and compare the values to
those found by performing a linear least-squares regression analysis. Next, using the
regression fit equation determine the values of yci . Finally, calculate SSE, SSR, and
SST . Show, using the results of these calculations, that SST = SSR + SSE.

Solution: Direct calculations yield x̄ = 3.00, ȳ = 2.97, Sxx = 17.50, Syy = 15.89,
and Sxy = 16.60. The intercept and the slope values are a = 0.1210 and b = 0.9486
from Equations 8.19 and 8.18, respectively. The same values are found from regression
analysis. Thus, from the equation yci = 0.1210 + 0.9486xi the yci values are 0.5952,
1.5438, 2.4924, 3.4410, 4.3895, and 5.3381. Direct calculations then give SSE = 0.1470,
SSR = 15.7463, and SST = 15.8933. This shows that SSR + SSE = 15.7463 + 0.1470
= 15.8933 = SST , which follows from Equation 8.24.
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Historically, regression originally was called reversion. Reversion referred
to the tendency of a variable to revert to the average of the population from
which it came. It was Francis Galton who first elucidated the property of
reversion ([14]) by demonstrating how certain characteristics of a progeny
revert to the population average more than to the parents. So, in general
terms, regression analysis relates variables to their mean quantities.

8.6 Confidence Intervals

Thus far it has been shown how measurement uncertainties and those intro-
duced by assuming an incorrect order of the fit can contribute to differences
between the measured and calculated y values. There are additional uncer-
tainties that must be considered. These arise from the finite acquisition of
data in an experiment. The presence of these additional uncertainties af-
fects the confidence associated with various estimates related to the fit. For
example, in some situations, the inverse of the best-fit relation established
through calibration is used to determine unknown values of the indepen-
dent variable and its associated uncertainty. A typical example would be to
determine the value and uncertainty of an unknown force from a voltage
measurement using an established voltage-versus-force calibration curve. To
arrive at such estimates, the sources of these additional uncertainties must
be examined first.

For simplicity, focus on the situation where the correct order of the fit is
assumed and there is no measurement error in x. Here, σEy

= σy. That is,
the uncertainty in determining a value of y from the regression fit is solely
due to the measurement error in y.

Consider the following situation, as illustrated in Figure 8.3, in which
best fits for two sets of data obtained under the same experimental condi-
tions are plotted along with the data. Observe that different values of yi are
obtained for the same value of xi each time the measurement is repeated
(in this case there are two values of yi for each xi). This is because y is a
random variable drawn from a normally distributed population. Because x
is not a random variable, it is assumed to have no uncertainty. So, in all
likelihood, the best-fit expression of the first set of data, y = a1+b1x, will be
different from the second best-fit expression, y = a2 + b2x, having different
values for the intercepts (a1 6= a2) and for the slopes (b1 6= b2).

The true-mean regression line is given by Equation 8.45 in which x = x′.
The true intercept and true slope values are those of the underlying popu-
lation from which the finite samples are drawn. From another perspective,
the true-mean regression line would be that found from the least-squares
linear regression analysis of a very large set of data (N >> 1).
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FIGURE 8.3
Linear regression fits for two finite samples and one very large sample.

Recognizing that such finite sampling uncertainties arise, how do they
affect the estimates of the true intercept and true slope? The estimates for
the true intercept and true slope values can be written in terms of the above
expressions for Sxx and Syx [5],[6]. The estimate of the true intercept of the
true-mean regression line is

α = a ± tN−2,P Syx

√
1

N
+

x̄2

Sxx
. (8.26)

The estimate of the true slope of the true-mean regression line is

β = b ± tN−2,P Syx

√
1

Sxx
. (8.27)

As N becomes larger, the sizes of the confidence intervals for the true in-
tercept and true slope estimates become smaller. The value of a approaches
that of α, and the value of b approaches that of β. This simply reflects
the former statement, that any regression line based upon several N will
approach the true-mean regression line as N becomes large.

Example Problem 8.3
Statement: For the set of [x,y] data pairs [1.0, 2.1; 2.0, 2.9; 3.0, 3.9; 4.0, 5.1; 5.0,

6.1] determine the linear best-fit relation using the method of least-squares regression
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FIGURE 8.4
Various confidence intervals for linear regression estimates.

analysis. Then estimate at 95 % confidence the values of the true intercept and the
true slope.

Solution: The best-fit relation is y = 0.96 + 1.02x for N = 5 with Syx = 0.12,
Sxx = 10, x̄ = 3, and t3,95 = 3.1824. This yields α = 0.96 ± 0.40 (95 %) and β =
1.02 ± 0.12 (95 %).

The values of some other useful quantities also can be estimated [5], [6],
[7]. The estimate of the sample mean value of a large number of yi values
for a given value of xi, denoted by ȳi, and also known as the mean response,
is

ȳi = yci
± tN−2,P Syx

√
1

N
+

(xi − x̄)2

Sxx
. (8.28)

Note that the greater the difference between xi and x̄, the greater the un-
certainty in estimating ȳi. This leads to confidence intervals that are hy-
perbolic, as shown in Figure 8.4 by the curves labeled b (based upon 95 %
confidence), that are positioned above and below the regression line labeled
by a. The confidence interval is the smallest at x = x̄. Also, because of
the factor tν,P , the confidence interval width will decrease with decreasing
percent confidence.

The range within which a new y value, yn, added to the data set will be
for a new value xn is
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yn = ynci
± tN−2,P Syx

√

1 +
1

N
+

(xn − x̄)2

Sxx
. (8.29)

This interval is marked by the hyperbolic curves labeled d (based upon
95 % confidence). Note that the hyperbolic curves are farther from the
regression line for this case than for the mean response case. This is because
Equation 8.29 estimates a single new value of y, whereas Equation 8.28
estimates the mean of a large number of y values.

Finally, the range within which a yi value probably will be, with respect
to its corresponding yci

value, is

yi = yci
± tν,P Syx, (8.30)

where tν,P Syx denotes the precision interval. This expression establishes
the confidence intervals that always should be plotted whenever a regression
line is present. Basically, Equation 8.30 defines the limits within which P
percent of a large number of measured yi values will be with respect to
the yci

value for a given value of xi. Its confidence intervals are denoted
by the lines labeled c (based upon 95 % confidence) which are parallel to
the regression line. Equation 8.30 also can be used for a higher mth-order
regression fit to establish the confidence intervals. This is provided that ν
is determined by ν = N − (m + 1) and that the general expression for Syx

given in Equation 8.25 is used.
Several useful inferences can be drawn from Equation 8.30. For a fixed

number of measurements, N, the extent of the precision interval increases as
the percent confidence is increased. The extent of the precision interval must
be greater if more confidence is required in the estimate of yi. For a given
confidence, as N is increased the extent of the precision interval decreases.
A smaller precision interval is required to estimate yi if a greater number of
measurements is acquired.

Example Problem 8.4
Statement: For the set of [x,y] data pairs [0.00, 1.15; 1.00, 3.76; 2.00, 0.41; 3.00,

1.30; 4.00, 6.42; 5.00, 6.42; 6.00, 5.20; 7.00, 7.87] determine the linear best-fit relation
using least-squares regression analysis. Then estimate at 95 % confidence the intervals
of ȳi, yn, and yi according to Equations 8.28 through 8.30 for x = 2.00.

Solution: From Equation 8.28 it follows directly that ȳi = 2.68 ± 1.93. That is,
there is a 95 % chance that the mean value of a large number of measured yi values
for x = 2.00 will be within ±1.93 of the yci value of 2.68. Further, from Equation 8.29,
yn = 2.68 ± 4.95, which implies that there is a 95 % chance that a new measurement
of y for x = 2.00 will be within ±4.95 of 2.68. Finally, from Equation 8.30, yi = 2.68
± 4.56. The confidence intervals for this data set for the range 0 ≤ x ≤ 7 are shown in
Figure 8.4.

Another confidence interval related to the regression fit can be estab-
lished for the estimate of a value of x for a given value of y. This situation
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FIGURE 8.5
Regression fit with relatively large sensitivity.

is encountered when a calibration curve is used to determine unknown x
values. Figures 8.5 and 8.6 each display a linear regression fit of the data
(labeled by a) along with two different confidence intervals for P = 95 %. In
addition to the usual estimate of the range within which a yi value will be
with respect to its calculated value (labeled by b), there is another estimate,
the x -from-y estimate with its confidence interval (labeled by c). This new
estimate’s confidence interval should be greater in extent than that for the
y estimate. This is because additional uncertainties arise when the best fit
is used to project from a chosen y value back to an unknown x value.

The confidence interval for the estimate of x from y is represented by
hyperbolic curves. The uncertainty forming the basis of this confidence in-
terval results from three different uncertainties associated with y and the
best-fit expression: from the measurement uncertainty in y, from the uncer-
tainty in the true value of the intercept, and from the uncertainty in the true
value of the slope. The latter two result from determining the regression fit
based upon a finite amount of data. In essence, the hyperbolic curves can
be viewed as bounds for the area within which all possible finite regres-
sion fits with their standard y-estimate confidence intervals are contained.
When one projects from a chosen y value back to the x -axis, one does not
know upon which regression fit the projected x value is based. The chosen
y value could have resulted from an x value different than the one used to
establish the fit. This new confidence interval accounts for this. The three
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FIGURE 8.6
Regression fit with relatively small sensitivity.

contributory uncertainties cannot be combined in quadrature to yield the
final uncertainty because the intercept and slope uncertainties are not sta-
tistically independent from one another. So, a more rigorous approach must
be taken to determine this confidence interval. This was done by Finney [8],
who established this confidence interval to be

y = yc ± tν,P Syx

√
1

n
+

1

N
+

(x − x̄)2

Sxx
, (8.31)

where n denotes the number of replications of y measurements for a partic-
ular value of x (n = 1 for the examples shown in Figures 8.6 and 8.5).

A comparison of Figures 8.5 and 8.6 reveals several important facts.
When the magnitude of the uncertainty in y is relatively small, the confi-
dence limits are closer to the regression line. When there is more scatter in
the data, both intervals are wider. Fewer [x,y ] data pairs result in a rela-
tively larger difference between the confidence limits. The sensitivity of y
with respect to x (the slope of the regression line) plays an important role
in determining the level of uncertainty in x in relation to the x -from-y con-
fidence interval. Lower sensitivities result in relatively large uncertainties in
x. For example, the uncertainty range in x for a value of y = 4.0 in Figure
8.5 is from approximately 0.53 to 1.76, as noted by the arrows in the figure,



310 Measurement and Data Analysis for Engineering and Science

FIGURE 8.7
Regression fit with indicated x-from-y estimate uncertainty.

for a calculated value of x = 1.18. Note that the range of this uncertainty
is not symmetric with respect to the calculated value of x.

The M-file caley.m performs a linear least-squares regression analysis
on a set of [x, y, ey ] data pairs (where ey is the measurement error of y)
and plots the regression fit and its associated confidence intervals, as given
by Equations 8.30 and 8.31. This M-file was used to generate Figures 8.5
and 8.6. The M-file caleyII.m also determines the range in the x-from-y
estimate for a user-specified value of y, as shown in Figure 8.7. The M-file
caleyIII.m extends this type of analysis farther by determining the percent
uncertainty in the x-from-y estimate for the entire range of y values. It plots
the standard regression fit with the data and also the x-from-y estimate
uncertainty versus x. The two resulting plots are shown in Figure 8.8.

Caution should be exercised when claims are made about trends in the
data. Any claim must be made within the context of measurement uncer-
tainty that is assessed at a particular confidence level. An example is illus-
trated in Figure 8.9. The same values of five trials are plotted in each of
the two figures. The trend in the values appears to increase with increasing
trial number. In the top figure, the error bars represent the measurement
uncertainty assessed at a 95 % level of confidence. The solid line suggests an
increasing trend, whereas the dotted line implies a decreasing trend. Both
claims are valid to within the measurement uncertainty at 95 % confidence.
In the bottom figure, the error bars represent the measurement uncertainty
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FIGURE 8.8
Regression fit and x-from-y estimate uncertainty.

assessed at a 68 % level of confidence. It is now possible to exclude the claim
of a decreasing trend and support only that of an increasing trend. This,
however, has been done at the cost of reducing the confidence level of the
claim. In fact, if the level of confidence is reduced even further, the claim of
an increasing trend cannot be supported. Thus, a specific trend in compar-
ison with others can only be supported through accurate experimentation
in which the error bars are small at a high level of confidence.

8.7 Linear Correlation Analysis

It was not until late in the 19th century that scientists considered how to
quantify the extent of the relation between two random variables. Francis
Galton in his landmark paper published in 1888 [16] quantitatively defined
the word co-relation, now known as correlation. In that paper he presented
for the first time the method for calculating the correlation coefficient and
its confidence limits. He was able to correlate the height (stature) of 348
adult males to their forearm (cubit) lengths. This data is presented in Table
8.1. Galton designated the coefficient by the symbol r, which “measures the
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95 % confidence

68 % confidence

FIGURE 8.9
Data trends with respect to uncertainty.

closeness of co-relation.” This symbol still is used today for the correlation
coefficient.

Galton purposely presented his data in a particular tabular form, as
shown in Table 8.1. In this manner, a possible co-relation between stature
and cubit became immediately obvious to the reader, as indicated by the
larger numbers along the table’s diagonal. All that was left after realizing
a co-relation was to quantify it. Galton approached this in an ad hoc man-
ner by computing the mean value for each row (the mean cubit length for
each stature) as well as the overall mean (the mean cubit length for all
statures). He then expressed this data in terms of standard units (the num-
ber of probable measurement error units from the overall mean). He plotted
the standardized unit values for each row (the standardized cubit lengths)
versus the standardized unit value of the row (the standardized stature).
This yielded the regression of cubit length upon stature. He followed a sim-
ilar approach to determine the regression of stature upon cubit length by
interchanging the rows and columns of data. He then established the com-
posite best linear fit by eye and approximated the slope’s value to be equal
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16.5 17.0 17.5 18.0 18.5 19.0 19.5
C < < C < < C < < C < < C < < C < < C < < C
16.5 17.0 17.5 18.0 18.5 19.0 19.5

S > 71 - - - 1 3 4 15 7
71 > S > 70 - - - 1 5 13 11 -
70 > S > 69 - 1 1 2 25 15 6 -
69 > S > 68 - 1 3 7 14 7 4 2
68 > S > 67 - 1 7 15 28 8 2 -
67 > S > 66 - 1 7 18 15 6 - -
66 > S > 65 - 4 10 12 8 2 - -
65 > S > 64 - 5 11 2 3 - - -

64 > S 9 12 10 3 1 - - -

TABLE 8.1
Galton’s data of stature (S) versus cubit (C) length [16] (units of inches).

to 0.8, which was the regression coefficient. This approach was formalized
later by the statisticians Francis Edgeworth and Karl Pearson.

But what exactly is the correlation coefficient and how can it be calcu-
lated? This relates to the general process of correlation analysis. In this
section only linear correlation analysis is considered. In general, two ran-
dom variables, x and y, are correlated if x ’s values can be related to the y ’s
values to some extent. In the left graph of Figure 8.10, the variables show
no correlation, whereas in the right graph, they are correlated moderately.

The extent of linear dependence between x and y is quantified through
the correlation coefficient. This coefficient is related to the population vari-
ances of x and y, σx and σy, and the population covariance, σxy. The
population correlation coefficient is defined as

ρ ≡ σxy√
σxσy

, (8.32)

where
σxy ≡ E[(x − x′)(y − y′)] = E[xy] − x′y′, (8.33)

σx ≡
√

E[(x − x′)2], (8.34)

and
σy ≡

√
E[(y − y′)2]. (8.35)

E[ ] denotes the expectation or mean value of a quantity, which for any
statistical parameter q raised to a power m involving N discrete values is

E[qm] ≡ lim
N→∞

1

N

N∑

i=1

qm
i . (8.36)
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FIGURE 8.10
Uncorrelated and correlated data.

Two parameters, q and r, are statistically independent when

E[qm · rn] = E[qm] · E[rn], (8.37)

where m and n are powers.
The covariance is the mean value of the product of the deviations of x

and y from their true mean values. The population correlation coefficient is
simply the ratio of the population covariance to the product of the x and
y population variances. It measures the strength of the linear relationship
between x and y. When ρ = 0, x and y are uncorrelated, which implies
that y is independent of x. When ρ = ±1, there is perfect correlation, where
y = a ± bx for all [x,y ] pairs.

The sample correlation coefficient, r, is an estimate of the pop-
ulation correlation coefficient, ρ. That is, the population correlation
coefficient can be estimated but not determined exactly because a sample
is finite and a population is infinite. The sample correlation coefficient is
defined in a manner analogous to Equation 8.32 as

r =
Sxy√
SxxSyy

. (8.38)

Squaring both sides of this equation, substituting Equation 8.18 for the
slope of the regression line, and then taking the square root of both sides,
Equation 8.38 becomes
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b = r

√
Syy

Sxx
. (8.39)

Thus, the slope of the regression fit equals the linear correlation coefficient
times a scale factor. The scale factor is simply the square root of the ratio
of the the spread of the y values to the spread of the x values. So, b and r
are related closely, but they are not the same.

Using Equations 8.15, 8.16, and 8.17, Equation 8.38 can be rewritten as

r =

∑N
i=1 (xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2
∑N

i=1(yi − ȳ)2
. (8.40)

Equation 8.40 is known as the product-moment formula, which auto-
matically keeps the proper sign of r. From this, r is calculated directly from
the data without performing any regression analysis. It is evident from both
of the above equations that r is a function, not only of the specific xi and
yi values, but also of N . This point will be addressed shortly.

Example Problem 8.5
Statement: The Center on Addiction and Substance Abuse at Columbia University

conducted a study on college-age drinking. They reported the following average drinks
per week (DW) of alcohol consumption in relation to the average GPA (grade point
average) for a large population of college students: 3.6, A; 5.5, B; 7.6, C; 10.6, D or
F. Using an index of A = 4, B = 3, C = 2, and D or F = 0.5, determine the linear
best-fit relation and the value of the linear correlation coefficient.

Solution: Using the M-file plotfit.m, a linear relation with r = 0.99987 and GPA
= 5.77 − 0.50DW can be determined for the range of 0 ≤ GPA ≤ 4. These results are
presented in Figure 8.11.

A more physical interpretation of r can be made by examining the quan-
tity r2, which is known as the coefficient of determination. Note that r
given by Equation 8.38 says nothing about the relation that best-fits x and
y. It can be shown [5] that

SSE = Syy(1 − r2) = SST (1 − r2). (8.41)

From Equations 8.22 and 8.41, it follows that

r2 = 1 − SSE

Syy
=

SSR

Syy
. (8.42)

Equation 8.42 shows that the coefficient of determination is the ratio
of the explained squared variation to the total squared variation. Because
SSE and Syy are always nonnegative, 1 − r2 ≥ 0. So, the coefficient of
determination is bounded as 0 ≤ r2 ≤ 1. It follows directly that −1 ≤ r ≤ 1.
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FIGURE 8.11
College student alcohol consumption.

When the correlation is perfect, there is no unexplained squared variation
(SSE = 0) and r = ±1. Further, when there is no fit, all the yi values
are the same because they are completely independent of x. That is, all
yci

= y and, by Equation 8.21, SSE = 0. Thus, r = 0. Values of |r| > 0.99
imply a very significant correlation; values of |r| > 0.95 imply a significant
correlation. On the other extreme, values of |r| < 0.05 imply an insignificant
correlation; values of |r| < 0.01 imply a very insignificant correlation.

Another expression for r can be obtained which relates it to the results of
a regression analysis fit. Substituting Equations 8.16 and 8.20 into Equation
8.42 yields

r =

√√√√
∑N

i=1(yci
− ȳ)2

∑N
i=1(yi − ȳ)2

. (8.43)

This equation relates r to the yci
values obtained from regression analysis.

This is in contrast to Equation 8.40, which yields r directly from data. These
two equations help to underscore an important point. Correlation analysis
and regression analysis are separate and distinct statistical approaches. Each
is performed independently from the other. The results of a linear regression
analysis, however, can be used for correlation analysis.
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Caution should be exercised in interpreting various values of the linear
correlation coefficient. For example, a value of r ∼ 0 simply means that the
two variables are not linearly correlated. They could be highly correlated
nonlinearly. Further, a value of r ∼ ±1 implies that there is a strong linear
correlation. But the correlation could be casual, such as a correlation be-
tween the number of cars sold and pints of Guinness consumed in Ireland.
Both are related to Ireland’s population, but not directly to each other.
Also, even if the linear correlation coefficient value is close to unity, that
does not imply necessarily that the fit is the most appropriate. Although
the spring’s energy is related fundamentally to the square of its extension,
a linear correlation coefficient value of 0.979 results for Case 2 in section
8.9 when correlating a spring’s energy with its extension. This high value
implies a strong linear correlation between energy and extension, but it does
not imply that a linear relation is the most appropriate one.

Finally, when attempting to establish a correlation between two variables
it is important to recognize the possibility that two uncorrelated variables
can appear to be correlated simply by chance. This circumstance makes it
imperative to go one step more than simply calculating the value of r. One
must also determine the probability that N measurements of two uncorre-
lated variables will give a value of r equal to or larger than any particular
ro. This probability is determined by

PN (| r |≥| ro |) =
2Γ[(N − 1)/2]√
πΓ[(N − 2)/2]

∫ 1

|ro|

(1 − r2)(N−4)/2dr = f(N, r), (8.44)

where Γ denotes the gamma function. If PN (| r |≥| ro |) is small, then it is
unlikely that the variables are uncorrelated. That is, it is likely that they are
correlated. Thus, 1 − PN (| r |≥| ro |) is the probability that two variables
are correlated given | r |≥| ro |. If 1 − PN (| r |≥| ro |) > 0.95, then there
is a significant correlation, and if 1 − PN (| r |≥| ro |) > 0.99, then there
is a very significant correlation. Values of 1 − PN (| r |≥| ro |) versus the
number of measurements, N , are shown in Figure 8.12. For example, a value
of ro = 0.6 gives a 60 % chance of correlation for N = 4 and a 99.8 % chance
of correlation for N = 25. Thus, whenever citing a value of r it is imperative
to present the percent confidence of the correlation and the number of data
points upon which it is based. Reporting a value of r alone is ambiguous.

8.8 Uncertainty from Measurement Error

One of the major contributors to the differences between the measured and
calculated y values in a regression analysis is measurement error. This can
be understood best by examining the linear case.
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FIGURE 8.12
Probability of correlation.

For an error-free experiment in which the data pairs [xi, yi] are linearly
related, the best-fit relation would be

y′
i = α + βx′

i, (8.45)

in which α and β are the true intercept and slope, respectively, and y′
i is the

true mean value of yi associated with the true mean value of xi, x′
i. For an

experiment in which measurement errors are present one can write

xi = x′
i + εx (8.46)

and

yi = y′
i + εy, (8.47)

where xi and yi denote the actual, measured values and εx and εy their
measurement errors. Here, it is assumed that the value of all of the xi errors
is the same and equal to εx, and the value of all of the yi errors is the
same and equal to εy. That is, the xi and yi errors are independent of
the particular data pair. This is true if each of the yi measurements results
from an independent measurement situation. Using Equations 8.46 and 8.47,
Equation 8.45 becomes

yi = α + βxi + (εy − βεx) = yci
+ Ey. (8.48)
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The terms in parentheses represent the error term for yi, which is denoted
by Ey. Thus, the value of yci

will have an error of Ey with respect to its
measured value, yi. This error results from possible measurement errors in
x and y or both.

This error is characterized best through its variance, σ2
E . A subtle yet

important point is that the variance of xi is the same as that of εx and that
the variance of yi is the same as that of εy. This is because both x′

i and y′
i

have no error. Thus, the variance in xi is characterized by the variance in its
error. This also is true for yi. These variances are denoted by σ2

x and σ2
y. If

εy and βεx are statistically independent, then the variance of the combined
errors, σEy

, is given by [4]

σ2
Ey

= σ2
y + β2σ2

x. (8.49)

This equation is valid only when either εx = 0 or x is controlled such that
its randomness is constrained. If either of these conditions are not met, then
σ2

Ey
cannot be subdivided into these two components. Then, the individual

contributions of the εx and εy due to the difference between the measured
and calculated value of y cannot be ascertained.

So, measurement errors lead to variances in x and y. These variances
contribute to the combined variance, σEy

. It is σEy
that contributes to the

differences between the yi and yci
values.

8.9 Determining the Appropriate Fit

Even determining the linear best fit for a set of data and its associated pre-
cision can be more involved than it appears. How to determine a linear best
fit of data already has been discussed. Here, implicitly it was assumed that
the measurement uncertainties in x were negligible with respect to those
in y and that the assumed mathematical expression was the most appro-
priate one to model the data. However, many common situations involving
regression usually are more complicated. Examine the various cases that can
occur when fitting data having uncertainty with a least-squares regression
analysis.

There are six cases to consider, as listed in Table 8.2. Each assumes a
level of measurement uncertainty in x, ux, and in y, uy, and whether or
not the order of the regression is correct. The term correct implies that the
underlying physical model that governs the relationship between x and y has
the same order as the fit. The last two cases (5 and 6), in which both x and
y have comparable uncertainties (ux ∼ uy), are more difficult to analyze.
Often, only special situations of these two cases are considered [10]. Each of
the six cases is now discussed in more detail.
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Case ux uy Fit
1 0 0 correct
2 0 0 incorrect
3 0 6= 0 correct
4 0 6= 0 incorrect
5 6=0 6= 0 correct
6 6=0 6= 0 incorrect

TABLE 8.2
Cases involving uncertainties and the type of fit.

• Case 1: This corresponds to the ideal case in which there are no uncer-
tainties in x and y (ux = uy = 0) and the order of the fit is the same
as that of the underlying physical model (a correct fit). For example,
consider a vertically-oriented, linear spring with a weight, W, attached
to its end. The spring will extend downward from its unloaded equilib-
rium position a distance x proportional to W, as given by Hooke’s law,
W = −kx, where k is the spring constant and negative x corresponds
to positive displacement (extension). Assuming that the experiment is
performed without error, a first-order (linear) regression analysis would
yield a perfect fit of the data with an intercept equal to zero and a slope
equal to −k. Because there are no measurement errors in either x or y,
the values of the intercept and slope will be true values, even if the data
set is finite.

• Case 2: This case involves an error-free experiment in which the data
is fit with an incorrect order. For example, continuing with the spring-
weight example, the work done by the weight to extend the spring, W x,
could be plotted versus its displacement. This work equals the stored
energy of the spring, E, which equals 0.5kx2. A linear regression fit of
W x versus x would result in a fit that does not correspond to the correct
underlying physical model, as shown in Figure 8.13. A second-order fit
would be appropriate because E ∼ x2. The resulting differences between
the data and the linear fit come solely from the incorrect choice of the
fit. These differences, however, easily could be misinterpreted as the
result of errors in the experiment, as is the case for the data shown in
Figure 8.13. Obviously, it is important to have a good understanding
of the most appropriate order of the fit before the regression analysis is
performed.

• Case 3: For this case there is uncertainty in y but not in x and the
correct order of the fit is used. This is the type of situation encountered
when regression analysis first was considered. The resulting differences
between the measured and calculated y values result from the measure-
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FIGURE 8.13
Example of Case 2.

ment uncertainties in y. Consequently, a correct regression fit will agree
with the data to within its measurement uncertainty.

When the correct physical model is not known a priori, the standard
approach is to increase the order of the fit within reason until an accept-
able fit is obtained. What is acceptable is somewhat arbitrary. Ideally,
all data points inclusive of their uncertainties should agree with the fit
to within the confidence intervals specified by Equation 8.30. Although
an n-th order polynomial will fit n-1 data points exactly, this usually
does not correspond to a physically-realizable model. Very seldom does a
physical law involve more than a fourth power of a variable. In fact, high-
degree polynomial fits characteristically exhibit large excursions between
data points and have coefficients that require many significant figures
for repeatable accuracy [13]. So, caution should be exercised when using
higher-order fits. Whenever possible, the order of the fit should corre-
spond to the order of the physical model.

• Case 4: This case considers the situation in which there is uncertainty
in y but not in x and an incorrect order of the fit is used. Two un-
certainties in the calculated y values result in relation to the true fit.
One is from the measurement uncertainty in y and the other is from the
use of an incorrect model. Here it is difficult to determine directly the
contribution of each uncertainty to the overall uncertainty. A systematic
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FIGURE 8.14
Two regression fits of the same data.

study involving either more accurate measurements of y or the use of a
different model would be necessary to determine this.

Finally, there are two other cases that arise in which there is uncertainty
in both x and y. The presence of both of these uncertainties leads to a best
fit that is different from that when there is only uncertainty in y. This is
illustrated in Figure 8.14 in which two regression fits are plotted for the same
data. The dashed line represents the fit that considers only the uncertainty
in y that was established using a linear least-squares regression analysis.
The solid line is the fit that considers uncertainty in both x and y that
was established using Deming’s method (see [9]), which is considered in the
following case. It is easy to see that when uncertainty is present in both x
and y, a fit established using the linear least-squares regression analysis that
does not consider the uncertainty in x will not yield the best fit.

Whenever ux ∼ uy and no further constraints are placed on them, more
extensive regression techniques must be used to determine the best fit of
the data (for example, see [3]). This topic is beyond the scope of this text.
However, Mandel [10] has examined two special and practical situations
in which uncertainty is present in x and linear regression analysis can be
applied. These will now be examined.

• Case 5: The general situation for this case involves uncertainties in both
x and y and a correct order of the fit.
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For the first special situation in which the ratio of the variances of the
x and y errors, λ = σ2

x/σ2
y, is known a priori, a linear best-fit equation

can be determined using Deming’s method of minimizing the weighted
sum of squares of x and y. Further, estimates of the variances of the x
and y can be obtained.

The slope of the regression line calculated by this method is

b =
λSyy − Sxx +

√
(Sxx − λSyy)2 + 4λS2

xy

2λSxy
, (8.50)

and the intercept is given by the normal Equation 8.19.

The estimates for the variances of the x and y errors are, respectively,

S̃2
x = (

λ

1 + λb2
)
Syy − 2bSxy + b2Sxx

N − 2
(8.51)

and

S̃2
y = (

1

1 + λb2
)
Syy − 2bSxy + b2Sxx

N − 2
. (8.52)

Note that Equations 8.51 and 8.52 differ only by the factor λ. These
equations can be used to estimate the final uncertainties in x and y for
P percent confidence. These are the uncertainties in estimating x and y
from the fit (as opposed to the measurement uncertainties in x and y).
They are

uxfinal
= tN−2,P S̃x (8.53)

and

uyfinal
= tN−2,P S̃y. (8.54)

Using these equations, a regression fit can be plotted with data and its
error bars, as shown in Figure 8.15, in addition to determining values
of λ, uxfinal

and uyfinal
. These values are 0.25, ±4.0985, and ±2.0492,

respectively, for the data presented in the figure. The estimates for the
variances of x and y are S̃2

x = 0.7014 and S̃2
y = 2.8055. The estimates of

the final uncertainties in x and y appear relatively large at first sight.
This is the result of the relatively large scatter in the data. So, for a
specified value of x in this case, the value of y will be within ±4.0985
of its best-fit value 95 % of the time. Likewise, for a specified value of
y, the value of x will be within ±2.0492 of its best-fit value 95 % of the
time.
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FIGURE 8.15
Example of Case 5 when λ is known.

The second special situation considers when x is a controlled variable.
This is known as the Berkson case, in which the value of x is set as close
as possible to its desired value, thereby constraining its randomness. This
corresponds, for example, to a static calibration in which there is some
uncertainty in x but the value of x is specified for each calibration point.
For this situation a standard linear least-squares regression fit of the
data is valid. Further, estimates can be made for all of the uncertainties
presented beforehand for Case 3. The interpretation of the uncertainties,
however, is somewhat different [10]. The uncertainty in y with respect
to the regression fit must be interpreted according to Equation 8.49.

• Case 6: This is the most complicated case in which there are uncertain-
ties in both x and y and an incorrect order of the fit is used. The same
analytical approaches can be taken here as were done for the special
situations in Case 5. However, the interpretation of the uncertainties is
confounded further as a result of the additional uncertainty introduced
by the incorrect order of the fit.
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8.10 *Signal Correlations in Time

Thus far, the application of correlation analysis to discrete information has
been considered. Correlation analysis also can be applied to information
that is continuous in time.

Consider two signals, x(t) and y(t), of two experimental variables. As-
sume that these signals are statistically stationary and ergodic. These terms
are defined in Chapter 9. For a stationary signal, the statistical properties
determined by ensemble averaging values for an arbitrary time from the be-
ginning of a number of the signal’s time history records are independent of
the time chosen. Further, if these average values are the same as those found
from the time-average over a single time history record, then the signal is
also ergodic. So, an ergodic signal is also a stationary signal. By examin-
ing how the amplitude of either signal’s time history record at some time
compares to its amplitude at another time, important information, such as
on the repeatability of the signal, can be gathered. This can be quantified
through the autocorrelation function of the signal, which literally correlates
the signal with itself (thus the prefix auto). The amplitudes of the signals
also can be compared to one another to examine the extent of their co-
relation. This is quantified through the cross-correlation function, in which
the cross product of the signals is examined.

8.10.1 *Autocorrelation

For an ergodic signal x(t), the autocorrelation function is the average value
of the product x(t) · x(t + τ), where τ is some time delay. Formally, the
autocorrelation function, Rx(τ), is defined as

Rx(τ) ≡ E[x(t) · x(t + τ)] = lim
T→∞

∫ T

0

x(t)x(t + τ)dt. (8.55)

Because the signal is stationary, Rx(τ), its mean and its variance are inde-
pendent of time. So,

E[x(t)] = E[x(t + τ)] = x′ (8.56)

and

σ2
x(t) = σ2

x(t+τ) = σ2
x = E[x2(t)] − x′2. (8.57)

Analogous to Equation 8.33, the autocorrelation coefficient can be
defined as

ρxx(τ) ≡ E[(x(t) − x′)(x(t + τ) − x′)]

σ2
x

. (8.58)
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The numerator in Equation 8.58 can be expanded to yield

ρxx(τ) =
E[x(t) · x(t + τ)] − x′E[x(t + τ)] − x′E[x(t)] + x′2

σ2
x

. (8.59)

Substitution of Equations 8.55 and 8.56 into Equation 8.59 results in an
expression that relates the autocorrelation function to its coefficient

ρxx(τ) =
Rx(τ) − x′2

σ2
x

(8.60)

or
Rx(τ) = ρxx(τ)σ2

x + x′2. (8.61)

Some limits can be placed on the value of Rx(τ). Because −1 ≤ ρxx(τ) ≤
1, Rx(τ) is bounded as

−σ2
x + x′2 ≤ Rx(τ) ≤ σ2

x + x′2. (8.62)

Now it can be shown (see Chapter 5) that

E[x2] = σ2
x + x′2 (8.63)

by expanding E[(x − x′)2]. So, the maximum value that Rx(τ) can have is
E[x2]. It follows from Equation 8.55 that

Rx(0) = E[x2]. (8.64)

That is, the maximum value of Rx(τ) occurs at τ = 0. Using Equation 8.63
and the definition of the autocorrelation coefficient (Equation 8.60),

ρxx(0) = 1. (8.65)

Further, as τ → ∞, there is no correlation between x(t) and x(t+τ) because
x(t) is the signal of a random variable. That is,

ρxx(τ → ∞) = 0, (8.66)

which implies that
Rx(τ → ∞) = x′2. (8.67)

Finally, Rx(τ) is an even function because

Rx(−τ) = E[x(t)x(t − τ)] = E[x(t − τ)x(t)] = E[x(t∗)x(t∗ + τ)] = Rx(τ),
(8.68)

where t∗ = t − τ , noting x(t) is stationary. So, Rx(τ) is symmetric about
the τ = 0 axis.

A generic autocorrelation function and its corresponding autocorrela-
tion coefficient having these properties is displayed in Figure 8.16. Values
of Rx(τ) and ρxx(τ) that are greater than their respective limiting values
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FIGURE 8.16
Typical autocorrelation function and coefficient.

as τ → ∞ indicate a positive correlation at that particular value of τ . Con-
versely, a negative correlation is indicated for values less than that limiting
value. Values equal to the limiting value signify no correlation. Note that
ρxx(τ) experiences decreasing oscillations about a value of 0 as τ → ∞.
This always will be the case for a stationary signal provided there are no
deterministic components in the signal other than a nonzero mean.

Example Problem 8.6
Statement: Determine the autocorrelation coefficient for the signal x(t) = A sin(ωt).

Then plot the coefficient for values of ω = 1 rad/s and A = 1.

Solution: The autocorrelation function, only for the range 0 ≥ τ ≥ T/2π, needs to
be examined, because x(t) in this example is a periodic function of period T = 2π/ω.
Equation 8.55 for this periodic function becomes

Rx(τ) =
A2

T

∫ 2π/ω

0
sin(ωt) sin(ωt + φ)dt,

where φ = ωτ . Performing and evaluating the integral,

Rx(τ) =
A2

T
[sin2(ωt) cos(φ) + sin(ωt) cos(ωt) sin(φ)]

2π/ω
0 =

1

2
A2 cos(ωτ).

Now σx =
√

A/2, so, according to Equation 8.58,

ρxx = cos(ωτ).

The plot of ρxx(τ) for values of ω = 1 rad/s and A = 1 is presented in Figure 8.17.
It shows that the sine function has a positive, perfect autocorrelation at values of τ =
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FIGURE 8.17
Autocorrelation of a sine function.

T = 2π when ω = 1 and a negative, perfect autocorrelation at values of τ = T/2 = π.
Further, when τ = T/4 = π/2 or τ = 3T/4 = 3π/2 there is no correlation of the sine
function with itself.

8.10.2 *Cross-Correlation

Expressions for the cross-correlation function and coefficient can be devel-
oped in the same manner as that done for the case of autocorrelation.

For the stationary signals x(t) and y(t) there are two cross-correlation
functions defined as

Rxy(τ) ≡ E[x(t) · y(t + τ)] (8.69)

and
Ryx(τ) ≡ E[y(t) · x(t + τ)]. (8.70)

Rxy(τ) denotes the cross-correlation of x with y and Ryx(τ) that of y with
x. Further, because the signals are stationary

Rxy(τ) = E[x(t − τ)y(t)] = Ryx(−τ) (8.71)

and
Ryx(τ) = E[y(t − τ)x(t)] = Rxy(−τ). (8.72)
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FIGURE 8.18
Typical cross-correlation of two signals.

So, in general, Rxy(τ) 6= Ryx(τ) and both are not even with respect to τ .
The corresponding two cross-correlation coefficients are defined as

ρxy(τ) ≡ Rxy(τ) − x′y′

σxσy
(8.73)

and

ρyx(τ) ≡ Ryx(τ) − x′y′

σxσy
, (8.74)

where both coefficients are bounded between values of −1 and 1. Thus, both
functions are bounded between values of −σxσy + x′y′ and σxσy + x′y′.
Finally, as τ → ∞ both functions tend to the value of x′y′ because no
correlation between the random signals x(t) and y(t) would be expected at
that limit.

Typically, two signals will experience a maximum cross-correlation at
some value of τ = τo, which corresponds to a phase lag between the two
signals, where φ = ωτo. This is shown for a typical cross-correlation in
Figure 8.18.

Example Problem 8.7
Statement: Determine the cross-correlation coefficient ρxy(τ) for the the signals

x(t) = A sin(ωt) and y(t) = B cos(ωt). Then plot the coefficient for the value of ω = 1
rad/s.
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FIGURE 8.19
Cross-correlation of sine and cosine functions.

Solution: The cross-correlation function only for the range 0 ≤ τ ≤ T/2π needs
to be examined because x(t) and y(t) are periodic functions of period T = 2π/ω.
Equation 8.69 for these periodic functions becomes

Rxy(τ) =
AB

T

∫ 2π/ω

0
sin(ωt) cos(ωt + φ)dt,

where φ = ωτ . Performing and evaluating the integral,

Rxy(τ) =
AB

τ
[−1

4
ω cos(2ωt + φ) − 1

2
t sin(φ)]

2π/ω
0 =

−AB

2
sin(φ).

Now σx = A/
√

2 and σy = B/
√

2, so, according to Equation 8.73,

ρxy(τ) = − sin(ωτ).

Note the minus sign in this expression. The plot of ρxy(τ) for the value of ω = 1 rad/s
is given in Figure 8.19. For a delay time value of τ = π/2, ρxy(τ) = 1. This is because
the value of cos(t + π/2) exactly equals that of sin(t). Similar reasoning can be used to
explain the value of ρxy(τ) = −1 when τ = 3π/2, where the cosine and sine values are
equal but opposite in sign.

The M-file sigcor.m determines and plots the autocorrelations and
cross-correlation of discrete data that is user-specified. This M-file normal-
izes the correlations such that the autocorrelations at zero time lag are
identically 1.0. An example plot generated using sigcor.m for a file con-
taining eight sequential measurements of x and y data is shown in Figure
8.20. Note that both autocorrelations have a value of 1.0 at zero time lag.
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FIGURE 8.20
Autocorrelations and cross-correlation of discrete data.

8.11 *Higher-Order Analysis

Higher-order (m > 2) regression analysis can be performed in a manner
similar to that developed for linear least-squares regression analysis. This
will result in m + 1 algebraic normal equations. These can be solved most
easily using methods of linear algebra to obtain the expressions for the m+1
regression coefficients.

For higher-order regression analysis, the coefficients a0 through am in
the expression

a0 + a1xi + a2x
2
i + ... + amxm

i = yci
(8.75)

are found using the method of minimizing D as described in the previous
section. The resulting equations are
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a0N + a1

N∑

i=1

xi + a2

N∑

i=1

x2
i + · · · +am

N∑

i=1

xm
i =

N∑

i=1

yi,

a0

N∑

i=1

xi + a1

N∑

i=1

x2
i + a2

N∑

i=1

x3
i + · · · +am

N∑

i=1

xm+1
i =

N∑

i=1

xiyi,

a0

N∑

i=1

x2
i + a1

N∑

i=1

x3
i + a2

N∑

i=1

x4
i + · · · +am

N∑

i=1

xm+2
i =

N∑

i=1

x2
i yi,

... , and (8.76)

a0

N∑

i=1

xm
i + a1

N∑

i=1

xm+1
i + a2

N∑

i=1

xm+2
i + · · · +am

N∑

i=1

x2m
i =

N∑

i=1

xm
i yi.

In expanded matrix notation, the set of Equations 8.76 becomes




N
∑

xi

∑
x2

i · · · ∑
xm

i∑
xi

∑
x2

i

∑
x3

i · · · ∑
xm+1

i∑
x2

i

∑
x3

i

∑
x4

i · · · ∑
xm+2

i
...

...
...

. . .
...∑

xm
i

∑
xm+1

i

∑
xm+2

i · · · ∑
x2m

i







a0

a1

a2

...
am




=




∑
yi∑

xiyi∑
x2

i yi

...∑
xm

i yi




,

where the summations are from i = 1 to N . Or, in matrix notation, this
becomes

[E][a] = [F ]. (8.77)

[E], [a], and [F ] represent the matrices shown in the expanded form. The
solution to Equation 8.77 for the regression coefficients is

[a] = [E]−1[F ]. (8.78)

[E]−1 is the inverse of the coefficient matrix.

Example Problem 8.8
Statement: An experiment is conducted in which a ball is dropped with an initial

downward velocity, v0, from a tall tower. The distance fallen, y(m), is recorded at
time, t, intervals of one second for a period of six seconds. The resulting time, distance
data are 0, 0; 1, 7; 2, 21; 3, 48; 4, 81; 5, 131; and 6, 185. The distance equation is
y = y0 + v0t + 0.5gt2, where g is the local gravitational acceleration. This equation
is of the form y = a0 + a1t + a2t2. Using higher-order regression analysis, determine
the values of the regression coefficients a0, a1, and a2. From their values determine the
values of v0 and g. Finally, plot the data with the regression fit.
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FIGURE 8.21
Higher-order regression fit example.

Solution: The solution is obtained using MATLAB’s left-division method by typing
t\y, where [t ] is 



1 0 0
1 1 1
1 2 4
1 3 9
1 4 16
1 5 25
1 6 36




and [y] is 


0
7
21
48
81
131
185




.

The resulting regression coefficient matrix is


0.5238
0.3214
5.0833


 .

Thus, the best-fit expression is

0.5238 + 0.3214t + 5.0833t2 = y.

The data and Equation 8.11 are shown in Figure 8.21. Also, v0 = 0.3214 and g =
10.1666.
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8.12 *Multi-Variable Linear Analysis

Linear least-squares regression analysis can be extended to situations in-
volving more than one independent variable. This is known as multi-variable
linear regression analysis and results in m+1 algebraic equations with m+1
regression coefficient unknowns. This system of equations can be solved us-
ing methods of linear algebra.

Multi-variable linear regression analysis for a system of three indepen-
dent variables [15] with the regression coefficients a0 through a3 in the ex-
pression

a0 + a1xi + a2yi + a3zi = Rci
(8.79)

yields a system of four equations, which is

a0N + a1

N∑

i=1

xi + a2

N∑

i=1

yi + a3

N∑

i=1

zi =
N∑

i=1

Ri,

a0

N∑

i=1

xi + a1

N∑

i=1

x2
i + a2

N∑

i=1

xiyi + a3

N∑

i=1

xizi =

N∑

i=1

Rixi,

a0

N∑

i=1

yi + a1

N∑

i=1

xiyi + a2

N∑

i=1

y2
i + a3

N∑

i=1

yizi =
N∑

i=1

Riyi, and

a0

N∑

i=1

zi + a1

N∑

i=1

xizi + a2

N∑

i=1

yizi + a3

N∑

i=1

z2
i =

N∑

i=1

Rizi. (8.80)

In expanded matrix notation, the set of Equations 8.80 becomes
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 ,

where the summations are from i = 1 to N . Or, in matrix notation, this
becomes

[G][a] = [R]. (8.81)

[G], [a], and [R] represent the matrices shown in the expanded form. The
solution to Equation 8.81 for the regression coefficients is

[a] = [G]−1[R]. (8.82)
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[G]−1 is the inverse of the coefficient matrix.

Example Problem 8.9
Statement: An experiment is conducted in which the values of three independent

variables, x, y, and z, are selected and then the resulting value of the dependent variable
R is measured. This procedure is repeated six times for different combinations of x, y,
and z values. The [x,y,z,R] data values are [1,3,1,17; 2,4,2,24; 3,5,1,25; 4,4,2,30; 5,3,1,24;
6,3,2,31]. Determine the regression coefficients for the multi-variable regression fit of
the data. Then, using the resulting best-fit expression, determine the calculated values
of R in comparison to their respective measured values.

Solution: The solution is obtained using MATLAB’s left-division method by typing
G\R, where [G] for this example is




1 1 3 1
1 2 4 2
1 3 5 1
1 4 4 2
1 5 3 1
1 6 3 2




and [R] is 


17
24
25
30
24
31




.

The resulting regression coefficient matrix is



3.4865
2.0270
2.2162
4.3063


 .

Thus, the best-fit expression is

3.4865 + 2.0270x + 2.2162y + 4.3063z = R. (8.83)

The calculated values of R are obtained by typing G*ans after the regression coefficient
solution is obtained. The values are 16.4685, 25.0180, 24.9550, 29.0721, 24.5766, and
30.9099. All calculated values agree with their respective values to within a difference
of less than 1.0.
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8.13 Problem Topic Summary

Topic Review Problems Homework Problems
Regression Analysis 1, 2, 3, 4, 7, 8 1, 2, 3, 6, 8, 11, 12
Linearly Intrinsic 4, 5, 7, 9, 10

Regression Parameters 4, 5, 6 6

TABLE 8.3
Chapter 8 Problem Summary

8.14 Review Problems

1. Consider the following set of three (x, y) data pairs: (0, 0), (3, 2), and
(6, 7). Determine the intercept of the best-fit line for the data to two
decimal places.

2. Consider the following set of three (x, y) data pairs: (0, 0),(3, 0) and (9,
5). Determine the slope of the best-fit line for the data to two decimal
places.

3. Who is the famous mathematician who developed the method of least
squares?

4. Consider the following set of three (x, y) data pairs: (1.0, 1.7), (2.0,
4.3), and (3.0, 5.7). A linear least-squares regression analysis yields the
best-fit equation y = −0.10 + 2.00x. Determine the standard error of
the fit rounded off to two decimal places.

5. Consider the following set of three (x, y) data pairs: (1.0, 1.7), (2.0,
4.3), and (3.0, 5.7). A linear least-squares regression analysis yields the
best-fit equation y = −0.10 + 2.00x. Determine the precision interval
based upon 95 % confidence rounded off to two decimal places. Assume
a value of 2 for the Student-t factor.

6. An experimenter determines the precision interval, PI-1, for a set of data
by performing a linear least-squares regression analysis. This interval is
based upon three measurements and 50 % confidence. Then the same
experiment is repeated under identical conditions and a new precision
interval, PI-2, is determined based upon 15 measurements and 95 %
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confidence. The ratio of PI-2 to PI-1 is (a) less than one, (b) greater
than one, (c) equal to one, or (d) could be any of the above.

7. A strain gage-instrumented beam was calibrated by hanging weights
of 1.0 N, 2.0 N, and 3.0 N at the end of the beam and measuring the
corresponding output voltages. A linear least-squares regression analysis
of the data yielded a best-fit intercept equal to 1.00 V and a best-fit slope
equal to 2.75 V/N. At 1.0 N, the recorded voltage was 3.6 V and at 2.0
N it was 6.8 V. What was the recorded voltage at 3.0 N?

8. A linear least-squares regression analysis fit of the (x, y) pairs (0, 1), (1,
3.5), (2, 5.5), (3, 7), and (4, 9.5) must pass through (a) (0, 1), (b) (1,
3.5), (c) (2, 5.3), (d) (3, 8), or (e) (4, 9.5)? Why (give one reason)?

8.15 Homework Problems

1. Prove that a least-squares linear regression analysis fit always goes
through the point (x̄,ȳ).

2. Starting with the equation yi − ȳ = (yi − yci
) + (yci

− ȳ) and using

the normal equations, prove that
∑N

i=1(yi − y)2 =
∑N

i=1(yi − yci
)2 +∑N

i=1(yci
− y)2.

3. Find the linear equation that best fits the data shown in Table 8.4.

x: 10 20 30 40
y: 5.1 10.5 14.7 20.3

TABLE 8.4
Calibration data.

4. Determine the best-fit values of the coefficients a and b in the expression
y = 1 / (a + bx) for the (x, y) data pairs (1.00, −1.11), (2.00, −0.91),
(3.00, −0.34), (4.00, −0.20), and (5.00, −0.14).

5. For an ideal gas, pV γ = C. Using regression analysis, determine the
best-fit value for γ given the data shown in Table 8.5.

6. The data presented in Table 8.6 was obtained during the calibration of a
cantilever-beam force-measurement system. The beam is instrumented
with four strain gages that serve as the legs of a Wheatstone bridge. In
the table F (N) denotes the applied force, E(V) the measured output
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p (psi) V (in.3)
16.6 50
39.7 30
78.5 20
115.5 15
195.3 10
546.1 5

TABLE 8.5
Gas pressure-volume data.

voltage, and uE(V) the measurement uncertainty in E. Based upon a
knowledge of how such a system operates, what order of the fit would
model the physics of the system most appropriately? Perform a regres-
sion analysis of the data for various orders of the fit. What is the order of
the fit that has the lowest value of Syx? What is the order of the fit that
has the smallest precision interval, ±tν,P Syx, that is required to have
the actual fit curve agree with all of the data to within the uncertainty
of E?

F (N) E(V) uE(V)
0.4 2.7 0.1
1.1 3.6 0.2
1.9 4.4 0.2
3.0 5.2 0.3
5.0 9.2 0.5

TABLE 8.6
Strain-gage force-balance calibration data with uncertainty.

7. A hot-wire anemometry system probe inserted into a wind tunnel is
used to measure the tunnel’s centerline velocity, U . The output of the
system is a voltage, E. During a calibration of this probe, the data
listed in Table 8.7 was acquired. Assume that the uncertainty in the
voltage measurement is 2 % of the indicated value. Using a linear least-
squares regression analysis determine the best fit values of A and B in
the relation E2 = A + B

√
U . Finally, plot the fit with 95 % confidence

intervals and the data with error bars as voltage versus velocity. Is the
assumed relation appropriate?
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Velocity (m/s) Voltage (V)
0.00 3.19
3.05 3.99
6.10 4.30
9.14 4.48
12.20 4.65

TABLE 8.7
Hot-wire probe calibration data.

8. The April 3, 2000 issue of Time Magazine published the body mass
index (BMI) of each Miss America from 1922 to 1999. The BMI is de-
fined as “the weight divided by the square of the height”. (Note: The
units of the BMI are specified as kg/m2, which strictly is mass divided
by the square of the height.) The author argues, based on the data,
that Miss America may dwindle away to nothing if the BMI-versus-year
progression continues. Perform a linear least-squares regression analysis
on the data and determine the linear regression coefficient. How statis-
tically justified is the author’s claim? Also determine how many Miss
Americas have BMIs that are below the World Health Organization’s
cutoff for undernutrition, which is a BMI equal to 18.6. Use the data file
missamer.dat that contains two columns, the year and the BMI.

9. For the ideal gas data presented in Table 8.5, determine the standard
error of the fit, Sxy, for the best fit found using linear regression analysis.
Plot the best-fit relation of p as a function of V along with the data and
the precision intervals of 90 % and 99 % confidence, all on the same
graph.

10. Given the (x, y) data pairs (0, 0.2), (1, 1.3), (2, 4.8), and (3, 10.7), (a)
develop the expressions (but do not solve them) for variables x and y
such that a least-squares linear-regression analysis could be used to fit
the data to the non-linear expression y = axex + b, where a and b are
best-fit constants. Then, (b) determine the value of b.

11. The four (x, y) data pairs (2, 2), (4, 3), (6, 5), and (8, 6) are fitted using
the method of linear least-squares regression. Determine the calculated
y value through which the fit passes when x = 5 without doing the
regression analysis.

12. The data presented in the Table 8.8 was obtained during a strain-gage
force balance calibration, where F (N) denotes the applied force in N and
E(V) the measured output voltage in V. Determine a suitable least-
squares fit of the data using the appropriate functions in MATLAB.
Quantify the best fit through the standard error of the fit, Syx. Which
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F (N) E(V)
0.4 2.7
1.1 3.6
1.9 4.4
3.0 5.2
5.0 9.2

TABLE 8.8
Strain-gage force-balance calibration data.

polynomial fit has the lowest value of Syx? Which polynomial fit is the
most suitable (realistic) based on your knowledge of strain-gage system
calibrations? Plot each polynomial fit on a separate graph and include
error bars for the y-variable, with the magnitude of error bar estimated
at 95 % confidence and based on Syx. Use the M-file plotfit.m. This
M-file requires three columns of data, where the third column is the
measurement uncertainty in y. Table 8.8 does not give those, so they
must be added. Assume that each y measurement uncertainty is 5 %
of the measured E(V) value. Syx is actually the curve-fit uncertainty.
plotfit.m shows this uncertainty as dotted lines (not as error bars as in
the problem statement). The M-file plotfit.m also prints out the Syx

value and calculates the precision interval (±tν,P Syx) to help plot the
dotted lines. Calculate the y measurement uncertainties and use them
as a third column input to the M-file, then run plotfit.m for each order
of the curve fit desired. Also be sure to label the axes appropriately.



Bibliography

[1] S.M. Stigler. 1986. The History of Statistics. Cambridge: Harvard Uni-
versity Press.

[2] K. Alder. 2002. The Measure of All Things. London: Little, Brown.

[3] Bevington, P.R. and D.K. Robinson. 1992. Data Reduction and Error
Analysis for the Physical Sciences. New York: McGraw-Hill.

[4] J.R. Taylor. 1982. An Introduction to Error Analysis. Mill Valley: Uni-
versity Science Books.

[5] W.A. Rosenkrantz. 1997. Introduction to Probability and Statistics for
Scientists and Engineers. New York: McGraw-Hill.

[6] Montgomery, D.C., and G.C. Runger. 1994. Applied Statistics and Prob-
ability for Engineers. New York: John Wiley and Sons.

[7] Miller, I. and J.E. Freund. 1985. Probability and Statistics for Engineers.
3rd ed. Englewood Cliffs: Prentice Hall.

[8] D.J. Finney. 1952. Probability Analysis. Cambridge: Cambridge Univer-
sity Press.

[9] W.E. Deming. 1943. Statistical Adjustment of Data. New York: John Wi-
ley and Sons.

[10] J. Mandel. 1984. The Statistical Analysis of Experimental Data. New
York: Dover.

[11] S. Nakamura. 1996. Numerical Analysis and Graphic Visualization with
MATLAB. Englewood Cliffs: Prentice Hall.

[12] Press, W.H., Teukolsky, S.A., Vetterling, W.T., and B.P. Flannery. 1992.
Numerical Recipes, 2nd ed. Cambridge: Cambridge University Press.

[13] W.J. Palm, III. 1999. MATLAB for Engineering Applications. New York:
McGraw-Hill.

[14] F. Galton. 1892. Hereditary Genius: An Inquiry into its Laws and Con-
sequences. 2nd ed. London: Macmillan.

[15] Coleman, H., and W.G. Steele. 1999. Experimentation and Uncertainty
Analysis for Engineers. 2nd ed. New York: Wiley Interscience.

341



342 Measurement and Data Analysis for Engineering and Science

[16] F. Galton. 1888. Co-relations and their Measurement, Chiefly from An-
thropometric Data. Proceedings of the Royal Society of London 45: 135-
145.



9

Signal Characteristics

CONTENTS

9.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
9.2 Signal Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
9.3 Signal Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
9.4 Signal Statistical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
9.5 Fourier Series of a Periodic Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
9.6 Complex Numbers and Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
9.7 Exponential Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
9.8 Spectral Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
9.9 Continuous Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
9.10 *Continuous Fourier Transform Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
9.11 Problem Topic Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
9.12 Review Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
9.13 Homework Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

... there is a tendency in all observations, scientific and otherwise, to see
what one is looking for ...

D.J. Bennett. 1998. Randomness. Cambridge: Harvard University Press.

But you perceive, my boy, that it is not so, and that facts, as usual, are very
stubborn things, overruling all theories.

Professor VonHardwigg in Voyage au centre de la terra by Jules Gabriel Verne,

1864.

9.1 Chapter Overview

One of the key requirements in performing a successful experiment is a
knowledge of signal characteristics. Signals contain vital information about
the process under investigation. Much information can be extracted from
them, provided the experimenter is aware of the methods that can be used
and their limitations. In this chapter, the types of signals and their charac-
teristics are identified. Formulations of the statistical parameters of signals
are presented. Fourier analysis and synthesis are introduced and used to
find the amplitude, frequency, and power content of signals. These tools are

343



344 Measurement and Data Analysis for Engineering and Science

applied to continuous signals, first to some classic periodic signals and then
to aperiodic signals. In the following chapter, these methods are extended
to digital signal analysis.

9.2 Signal Characterization

In the context of measurements, a signal is a measurement system’s repre-
sentation of a physical variable that is sensed by the system. More broadly,
it is defined as a detectable, physical quantity or impulse (as a voltage, cur-
rent, or magnetic field strength) by which messages and information can be
transmitted [1]. The information contained in a signal is related to its size
and extent. The size is characterized by the amplitude (magnitude) and
the extent (timewise or samplewise variation) by the frequency. The ac-
tual shape of a signal is called its waveform. A plot of a signal’s amplitude
versus time is called a time history record. A collection of N time history
records is called an ensemble, as illustrated in Figure 9.1. An ensemble also
can refer to a set of many measurements made of a single entity, such as the
weight of an object determined by each student in a science class, and of
many entities of the same kind made at the same time, such as everyone’s
weight on New Year’s morning.

Signals can be classified as either deterministic or nondeterministic
(random). A deterministic signal can be described by an explicit math-
ematical relation. Its future behavior, therefore, is predictable. Each time
history record of a random signal is unique. Its future behavior cannot be
determined exactly but to within some limits with a certain confidence.

Deterministic signals can be classified into static and dynamic signals,
which are subdivided further, as shown in Figure 9.2. Static signals are
steady in time. Their amplitude remains constant. Dynamic signals are ei-
ther periodic or aperiodic. A periodic signal, y(t), repeats itself at regular
intervals, nT , where n = 1, 2, 3, .... Analytically, this is expressed as

y(t + T ) = y(t) (9.1)

for all t. The smallest value of T for which Equation 9.1 holds true is called
the fundamental period. If signals y(t) and z(t) are periodic, then their
product y(t)z(t) and the sum of any linear combination of them, c1y(t) +
c2z(t), are periodic.

A simple periodic signal has one period. A complex periodic signal has
more than one period. An almost-periodic signal is comprised of two or
more sinusoids of arbitrary frequencies. However, if the ratios of all possible
pairs of frequencies are rational numbers, then an almost-periodic signal is
periodic.
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FIGURE 9.1
An ensemble of N time history records.

Nondeterministic signals are classified as shown in Figure 9.3. Proper-
ties of the ensemble of the nondeterministic signals shown in Figure 9.1 can
be computed by taking the average of the instantaneous property values
acquired from each of the time histories at an arbitrary time, t1. The en-
semble mean value, µx(t1), and the ensemble autocorrelation function (see
Chapter 8 for more on the autocorrelation), Rx(t1, t1 + τ), are

µx(t1) = lim
N→∞

1

N

N∑

i=1

xi(t1) (9.2)

and

Rx(t1, t1 + τ) = lim
N→∞

1

N

N∑

i=1

xi(t1)xi(t1 + τ), (9.3)

in which τ denotes an arbitrary time measured from time t1. Both equations
represent ensemble averages. This is because µx(t1) and Rx(t1, t1 +τ) are
determined by performing averages over the ensemble at time t1.

If the values of µx(t1) and Rx(t1, t1 + τ) change with t1, then the sig-
nal is nonstationary. Otherwise, it is stationary (stationary in the wide
sense). A nondeterministic signal is considered to be weakly stationary
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FIGURE 9.2
Deterministic signal subdivisions (adapted from [2]).

FIGURE 9.3
Nondeterministic signal subdivisions (adapted from [2]).

when only µx(t1) = µx and Rx(t1, t1 + τ) = Rx(τ), that is, when only the
signal’s ensemble mean and autocorrelation function are time invariant. In a
more restrictive sense, if all other ensemble higher-order moments and joint
moments (see Chapter 5 for more about moments) also are time invariant,
the signal is strongly stationary (stationary in the strict sense). So, the
term stationary means that each of a signal’s ensemble-averaged statistical
properties are constant with respect to t1. It does not mean that the am-
plitude of the signal is constant over time. In fact, a random signal is never
completely stationary in time!

For a single time history, the temporal mean value, µx, and the temporal
autocorrelation coefficient, Rx(τ), are

µx = lim
T→∞

1

T

∫ T

0

x(t)dt (9.4)

and

Rx(τ) = lim
T→∞

1

T

∫ T

0

x(t)x(t + τ)dt. (9.5)

For most stationary data, the ensemble averages at an arbitrary time, t1,
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FIGURE 9.4
Various signals comprised of sines and cosines.

will equal their corresponding temporal averages computed for an arbitrary
single time history in the ensemble. When this is true, the signal is ergodic.
If the signal is periodic, then the limits in Equations 9.4 and 9.5 do not ex-
ist because averaging over one time period is sufficient. Ergodic signals are
important because all of their properties can be determined by perform-
ing time averages over a single time history record. This greatly simplifies
data acquisition and reduction. Most random signals representing stationary
physical phenomena are ergodic.

A finite record of data of an ergodic random process can be used in
conjunction with probabilistic methods to quantify the statistical properties
of an underlying process. For example, it can be used to determine a random
variable’s true mean value within a certain confidence limit. These methods
also can be applied to deterministic signals, which are considered next.

9.3 Signal Variables

Most waveforms can be written in terms of sums of sines and cosines, as will
be shown later in Section 9.5. Before examining more complex waveform
expressions, the variables involved in simple waveform expressions must be
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defined. This can be done by examining the following expression for a simple,
periodic sine function,

y(t) = C sin(nωt + φ) = C sin(2πnft + φ), (9.6)

in which the argument of the sine is in units of radians. The variables and
their units (given in brackets) are as follows:

• C: amplitude [units of y(t)]

• n: number of cycles [dimensionless]

• ω: circular frequency [rad/s]

• f : cyclic frequency [cycles/s = Hz]

• t: time [s]

• T : period (= 2π/ω = 1/f) [s/cycle]

• φ: phase [rad] where φ = 2π(t/T ) = 2π(θ◦/360◦)

Also note that 2π rad = 1 cycle = 360◦ and sin(ωt+π/2) = cos(ωt). The top
plot in Figure 9.4 displays the signal y(t) = sin(πt). Its period equals 2π/π
= 2 s, as seen in the plot. The above definitions can be applied readily to
determine the frequencies of a periodic signal, as in the following example.

Example Problem 9.1
Statement: Determine the circular and cyclic frequencies for the signal y(t) =

10 sin(628t).
Solution: Using the above definitions,

circular frequency, ω = 628 rad/s (assuming n = 1 cycle), and

cyclic frequency, f = ω/2π = 628/2π = 100 cycles/s= 100 Hz.

When various sine and cosine waveforms are combined by addition, more
complex waveforms result. Such waveforms occur in many practical situ-
ations. For example, the differential equations describing the behavior of
many systems have sine and cosine solutions of the form

y(t) = A cos(ωt) + B sin(ωt). (9.7)

By introducing the phase angle, φ, y(t) can be expressed as either a cosine
function,

y(t) = C cos(ωt − φ), (9.8)
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or a sine function,

y(t) = C sin(ωt − φ + π/2) = C sin(ωt + φ∗), (9.9)

where C, φ, and φ∗ are given by

C =
√

A2 + B2, (9.10)

φ = tan−1(B/A), (9.11)

and
φ∗ = tan−1(A/B), (9.12)

noting that φ∗ = (π/2) − φ. Reducing the waveform in Equation 9.7 to
either Equation 9.8 or Equation 9.9 often is useful in interpreting results.
The middle plot in Figure 9.4 shows the signal y(t) = sin(πt) + 0.8 cos(3πt).
This signal is complex and has two frequencies, ω1 = π and ω2 = 3π rad/s.
This leads to two periods, T1 = 2 s and T2 = 2/3 s. Because T1 = 3T2, the
period T1 will contain one cycle of sin(ω1t) and three periods of 0.8 cos(ω2t).
So, T2 = 2 s is the fundamental period of this complex signal. In general, the
fundamental period of a complex signal will be the least common multiple
of the contributory periods.

An interesting situation arises when two waves of equal amplitude and
nearly equal frequencies are added. The resulting wave exhibits a relatively
slow beat with a frequency called the beat frequency. In general, the sum
of two sine waves of frequencies, f and f + ∆f , combines trigonometrically
to yield a signal whose amplitude is modulated as the cos(∆f/2). The fre-
quency ∆f/2 is defined conventionally as the beat frequency. An example of
the resultant beating for the signal y(t) = sin(πt) + sin(1.15πt) is displayed
in the bottom plot of Figure 9.4. As can be seen, the signal repeats itself ev-
ery 13.33 s. This corresponds to a cyclic frequency of 0.075 Hz, which equals
∆f/2 (0.15/2). The phenomenon of producing a signal (wave) having a new
frequency from the mixing of two signals (waves) is called heterodyning
and is used in tuning musical instruments and in laser-Doppler velocimeters.

9.4 Signal Statistical Parameters

Signals can be either continuous in time or discrete. Discrete signals usually
arise from the digitization of a continuous signal, to be discussed in Chap-
ter 10, and from sample-to-sample experiments, which were considered in
Chapter 7. A large number of statistical parameters can be determined from
either continuous or discrete signal information. The parameters most fre-
quently of interest are the signal’s mean, variance, standard deviation, and
rms. For continuous signals, these parameters are computed from integrals
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Quantity Continuous Discrete

Mean x̄ = 1
T

∫ T

0
x(t)dt x̄ = 1

N

∑N
i=1 xi

Variance S2
x = 1

T

∫ T

0
[x(t) − x̄]2dt S2

x = 1
N−1

∑N
i=1[xi − x̄]2

Standard Sx =
√

1
T

∫ T

0
[x(t) − x̄]2dt Sx =

√
1

N−1

∑N
i=1[xi − x̄]2

Deviation

rms xrms =
√

1
T

∫ T

0
x(t)2dt xrms =

√
1
N

∑N
i=1 x2

i

TABLE 9.1
Statistical parameters for continuous and discrete signals.

of the signal over time. For discrete signals, these parameters are deter-
mined from summations over the number of samples. The expressions for
these properties are presented in Table 9.1. Note that as T → ∞ or N → ∞,
the statistical parameter values approach the true values of the underlying
process.

The choice of a time period that is used to determine the statistical pa-
rameters of a signal, called the signal sample period, depends upon the
type of waveform. When the waveform is periodic, either simple or complex,
the signal sample period should be the fundamental period. When the wave-
form is almost periodic or nondeterministic, no single signal sample period
will produce exact results. For this situation, it is best to keep increasing
the signal’s sample period until the statistical parameter values of interest
become constant to within acceptable limits.

Determining an appropriate sample period is not always straightforward.
The values of the running mean, variance, skewness, and kurtosis of two data
samples are shown in Figure 9.5. The adjective running implies that the
value of a statistical moment is averaged over the time period from an initial
time to each time of interest. The first sample, indicated by solid curves,
was drawn randomly from a normal population having a mean value of 3.0
and a standard deviation of 0.5. The second sample, indicated by dotted
curves, was the same as the first but with an additional amplitude decrease
in time equal to 0.001/s. The mean of the first sample reaches its final value
at approximately 100 s. The mean of the second sample exhibits a decrease
in time, which is linear after approximately 100 s. The variance, skewness,
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FIGURE 9.5
Statistical properties versus sample time.

and kurtosis values of both samples vary with respect to sample time and
between samples during most of the entire sample time. The variances of the
two samples agree up to approximately 300 s. Then, they deviate from one
another because of the second sample’s mean value decrease in time. This
example illustrates the complexity in determining an appropriate sample
time, especially if the signal being sampled has a gradual change in time
over the sample period in addition to short-time fluctuations.

Sometimes it is important to examine the fluctuating component of a
signal. The average value of a signal (its DC component) can be subtracted
from the original signal to reveal more clearly the signal’s fluctuating be-
havior (its AC component). This is shown in Figure 9.6, in which the left
plot is the complete signal (DC plus AC components), the middle plot is
the DC component and the AC component, each shown separately, and the
right plot is the AC component amplified 10 times.

The concepts of the mean, variance, and standard deviation were pre-
sented in Chapter 5. The root mean square (rms) is another important
statistical parameter. It is defined as the positive square root of the mean of
the squares. Its continuous and discrete representations are presented in Ta-
ble 9.1. The rms characterizes the dynamic portion (AC component) of the
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FIGURE 9.6
Subtraction of the mean value from a signal.

signal and the mean characterizes its static portion (DC component). The
magnitudes of these components for a typical signal are shown in Figure 9.7.
When no fluctuation is present in the signal, x(t) is constant and equal to
its mean value, x̄. So, xrms ≥ x̄ always. x2

rms is the temporal average of the
square of the amplitude of x.

The following two applications of the rms concept show its utility:

1. The total energy dissipated over a period of time by a resistor in a circuit
is

ET =

∫ t2

t1

P (t)dt = R

∫ t2

t1

[I(t)]2dt = R(t2 − t1)I
2
rms, (9.13)

where

I2
rms =

1

(t2 − t1)

∫ t2

t1

[I(t)]2dt. (9.14)

2. The temporal-averaged kinetic energy per unit volume in a fluid at a
point in a flow is
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FIGURE 9.7
A signal showing its mean and rms values.

Ē =
ρ

2(t2 − t1)

∫ t2

t1

[U(t)]2dt =
1

2
ρU2

rms, (9.15)

where

U2
rms =

1

(t2 − t1)

∫ t2

t1

[U(t)]2dt. (9.16)

Sometimes, the term rms refers to the rms of the fluctuating component
of the signal and not to the rms of the signal itself. For example, the fluc-
tuating component of a fluid velocity, u(t), can be written as the difference
between a total velocity, U(t), and a mean velocity, Ū(t), as

u(t) = U(t) − Ū(t). (9.17)

So, the rms of the fluctuating component is

urms =

[
1

t2 − t1

∫ t2

t1

{U(t) − Ū(t)}2dt

]1/2

, (9.18)

where

Ū(t) =
1

t2 − t1

∫ t2

t1

U(t)dt. (9.19)

By comparing Equations 9.16 and 9.18, it is evident that Urms 6= urms.

Example Problem 9.2
Statement: Determine the rms of the ramp function y(t) = A(t/T ) in which A is

the amplitude and T is the period.
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Solution: Because y(t) is a deterministic periodic function, the rms needs to be
computed for only one period, from t = 0 to t = T . Application of the rms equation
from Table 9.1 for y(t), which is a continuous signal, yields

yrms = [
A2

T 2(t2 − t1)

∫ t2

t1

t2dt]1/2 =
A2(t32 − t31)

3T 2(t2 − t1)
.

For t1 = 0 and t2 = T , the rms becomes

yrms =
A√
3

.

What is ȳ(t)? (Answer: A/2) What is the rms of a sine wave of amplitude A? (Answer:
A/

√
2)

9.5 Fourier Series of a Periodic Signal

Before considering the Fourier series, the definition of orthogonality must
be examined. The inner product (dot product), (x, y), of two real-valued
functions x(t) and y(t) over the interval a ≤ t ≤ b is defined as

(x, y) =

∫ b

a

x(t)y(t)dt. (9.20)

If (x, y) = 0 over that interval, then the functions x and y are orthogonal
in the interval. If each distinct pair of functions in a set of functions is
orthogonal, then the set of functions is mutually orthogonal.

For example, the set of functions sin(2πmt/T ) and cos(2πmt/T ), m =
1, 2, ..., form one distinct pair and are mutually orthogonal because

∫ T/2

−T/2

sin(2πmt/T ) cos(2πnt/T )dt = 0 for all m,n. (9.21)

Also, these functions satisfy the other orthogonality relations

y(t) =

∫ T/2

−T/2

cos(2πmt/T ) cos(2πnt/T )dt =

{
0 m 6= n
T m = n

(9.22)

and

y(t) =

∫ T/2

−T/2

sin(2πmt/T ) sin(2πnt/T )dt =

{
0 m 6= n
T m = n.

(9.23)

Knowing these facts is useful when performing certain integrals, such as
those that occur when determining the Fourier coefficients.
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Fourier analysis and synthesis, named after Jean-Baptiste-Joseph Fourier
(1768-1830), a French mathematician, now can be examined. Fourier showed
that the temperature distribution through a body could be represented by
a series of harmonically related sinusoids. The mathematical theory for this,
however, actually was developed by others [3]. Fourier methods allow com-
plex signals to be approximated in terms of a series of sines and cosines.
This is called the trigonometric Fourier series. The Fourier trigonometric
series that represents a signal of period T can be expressed as

y(t) =
A0

2
+

∞∑

n=1

(
An cos

[
2πnt

T

]
+ Bn sin

[
2πnt

T

])
, (9.24)

where

A0 =
2

T

∫ T/2

−T/2

y(t)dt, (9.25)

An =
2

T

∫ T/2

−T/2

y(t) cos

(
2πnt

T

)
dt n = 1, 2, ..., (9.26)

and

Bn =
2

T

∫ T/2

−T/2

y(t) sin

(
2πnt

T

)
dt n = 1, 2, ... . (9.27)

The frequencies associated with the sines and cosines are integer multi-
ples (n-th harmonics) of the fundamental frequency. The fundamental
or primary frequency, the first harmonic, is denoted by n = 1, the sec-
ond harmonic by n = 2, the third harmonic by n = 3, and so on. A0 is
twice the average of y(t) over one period. An and Bn are called the Fourier
coefficients of the Fourier amplitudes. The expression for An can be deter-
mined by multiplying both sides of the original series expression for y(t) by
cos(2πnt/T ), then integrating over one period from t = −T/2 to t = T/2.
The expression for Bn is found similarly, but instead, by multiplying by
sin(2πnt/T ). This is called Fourier’s trick.

The procedure by which the Fourier amplitudes for any specified y(t) are
found is called Fourier analysis. Fourier analysis is the analog of a prism
that separates white light (a complex signal) into colors (simple periodic
sine functions). Fourier synthesis is the reverse procedure by which y(t)
is constructed from a series of appropriately weighted sines and cosines. The
Fourier synthesis of a signal is useful because the amplitude and frequency
components of the signal can be identified.

A Fourier series representation of y(t) exists if y(t) satisfies the following
Dirichlet conditions:

1. y(t) has a finite number of discontinuities within the period T (it is
piece-wise differentiable).
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FIGURE 9.8
Even and odd functions.

2. y(t) has a finite average value.

3. y(t) has a finite number of relative maxima and minima within the
period T .

If these conditions are met, then the series converges to y(t) at the values of
t where y(t) is continuous and converges to the mean of y(t+) and y(t−) at
a finite discontinuity. Fortunately, these conditions hold for most situations.

Recall that a periodic function with period T satisfies y(t+T ) = y(t) for
all t. It follows that if y(t) is an integrable periodic function with a period
T , then the integral of y(t) over any interval of length T has the same value.
Hence, the limits from −T/2 to T/2 of the Fourier coefficient integrals can
be replaced by, for example, from 0 to T or from −T/4 to 3T/4. Changing
these limits sometimes simplifies the integration procedure.

The process of arriving at the Fourier coefficients also can be simplified
by examining whether the integrands are either even or odd functions. Ex-
ample even and odd functions are shown in Figure 9.8. If y(t) is an even
function, where it is symmetric about the y-axis, then g(x) = g(−x). Thus,

∫ T

−T

g(x)dx = 2

∫ T

0

g(x)dx. (9.28)

The cosine is an even function. Likewise, if y(t) is an odd function, where
it is symmetric about the origin, then g(x) = −g(−x). So,
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∫ T

−T

g(x)dx = 0. (9.29)

The sine is an odd function. Other properties of even and odd functions
include the following:

1. The sum, difference, product, or quotient of two even functions is even.

2. The sum or difference of two odd functions is odd.

3. The product or quotient of two odd functions is even.

4. The product or quotient of an even function and an odd function is odd.

5. The sum or difference of an even function and an odd function is neither
even nor odd, unless one of the functions is identically zero.

6. A general function can be decomposed into a sum of even plus odd
functions.

From these properties, Equation 9.24 and the Fourier coefficient equa-
tions, it follows that, when y(t) is an even periodic function, Bn = 0 and
y(t) has the Fourier series

y(t) =
A0

2
+

∞∑

n=1

(
An cos

[
2πnt

T

])
. (9.30)

This is called the Fourier cosine series. Further, when y(t) is an odd
periodic function, A0 = An = 0 and y(t) has the Fourier series

y(t) =

∞∑

n=1

(
Bn sin

[
2πnt

T

])
. (9.31)

This is called the Fourier sine series.

Example Problem 9.3
Statement: Find the frequency spectrum of the step function

y(t) =

{
−A −π ≤ t < 0
+A 0 ≤ t < π

Solution: This is an odd function, therefore A0 = An = 0.



358 Measurement and Data Analysis for Engineering and Science

Bn =
2

T

∫ T/2

−T/2
y(t) sin

(
2πnt

T

)
dt

note : ω =
2π

T
where T = 2π

=
1

π

[∫ 0

−π
(−A) sin(nt)dt +

∫ π

0
(A) sin(nt)dt

]

=
1

π

[[
A

n
cos(nt)

]0

−π

−
[

A

n
cos(nt)

]π

0

]

=
A

nπ
{1 − cos(−nπ) − cos(nπ) + 1}

=
2A

nπ
[1 − cos(nπ)]

= 4A/nπ for n odd

= 0 for n even.

Note that Bn involves only n and constants.

⇒ y(t) =
∞∑

n=1

Bn sin(nt)

=
∞∑

n=1

2A

nπ
[1 − cos(nπ)] sin(nt)

=
4A

π

∞∑

n=1,3,5,...

[
1

n
] sin(2πnft)

=
4A

π
[sin(t) +

1

3
sin(3t) +

1

5
sin(5t) + ...].

y(t) involves both n and t. The frequencies of each of the sine terms are 1, 3, 5, ..., in
units of ω (rad/s), or 1

2π
, 3

2π
, 5

2π
, ..., in units of f (cycles/s = Hz). Generally, this can

be written as fn = (2n−1)f1. Likewise the corresponding amplitudes can be expressed

as An = A1
(2n−1)

, where A1 = 4A/π. y(t) is shown in Figure 9.10 for three different

partial sums for A = 5.

The contributions of each of the harmonics to the amplitude of the square
wave are illustrated in Figure 9.9. The square wave shown along the back
plane is the sum of the first 500 harmonics. Only the first five harmonics
are given in the figure. The decreasing amplitude and increasing frequency
contributions of the next higher harmonic tend to fill in the contributions of
the previously summed harmonics such that the resulting wave approaches
a square wave.

The partial Fourier series sums of the step function are shown in Fig-
ure 9.10 for N = 1, 10, and 500. Clearly, the more terms that are included
in the sum, the closer the sum approximates the actual step function. Rel-
atively small fluctuations at the end of the step can be seen, especially in
the N = 500 sum. This is known as the Gibbs phenomenon. The inclu-
sion of more terms in the sum will attenuate these fluctuations but never
completely eliminate them.
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FIGURE 9.9
Contributions of the first five harmonics to the Fourier series of a step function.

A plot of amplitude versus frequency can be constructed for a square
wave, as presented in Figure 9.11 for the first eight harmonics. This figure
illustrates in another way that the Fourier series representation of a square
wave consists of multiple frequencies of decreasing amplitudes.

Example Problem 9.4
Statement: Find the frequency spectrum of the ramp function:

y(t) =

{
2At 0 ≤ t < 1/2
0 1/2 ≤ t < 1

with T = 1 s.

Solution: This function is neither even nor odd.

A0 =
2

T

∫ T/2

−T/2
y(t)dt =

2

1

[∫ 0

−0.5
0dt +

∫ 0.5

0
2Atdt

]
= 4A

t2

2

∣∣∣∣
0.5

0

=
A

2

An =
2

T

∫ T/2

−T/2
y(t) cos

2πnt

T
dt

= 2

∫ 0.5

0
2At cos

2πnt

T
dt

= 4A

{
cos(2πnt/T )

(2πn/T )2
+

t sin(2πnt/T )

(2πn/T )

}∣∣∣∣
0.5

0

because
∫

t cos mtdt = 1
m2 cos mt + t

m
sin mt (from integration by parts). Continuing,
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FIGURE 9.10
Partial Fourier series sums for the step function.

An = 4A

{
cos nπ − cos 0

(2πn/T )2
+

0.5 sin nπ − 0

(2πn/T )

}

= (4A)

(
T 2

4π2n2

)
(cos nπ − 1) =

A

π2n2
(cos nπ − 1).

Further,

Bn =
2

T

∫ T/2

−T/2
y(t) sin

2πnt

T
dt

= 2

∫ 0.5

0
2At sin

2πnt

T
dt

= 4A

{
sin(2πnt/T )

(2πn/T )2
− t cos(2πnt/T )

(2πn/T )

}∣∣∣∣
0.5

0

because
∫

t sin mtdt = 1
m2 sin mt − t

m
cos mt (from integration by parts).

So,

Bn = 4A

{
sin nπ − sin 0

(2πn/T )2
+

0.5 cos nπ − 0

(2πn/T )

}

= (4A)

(−0.5 cos nπ

(2πn/T )

)
=

−A

πn
cos nπ.
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FIGURE 9.11
Amplitude spectrum for the first eight terms of the step function.

Thus,

y(t) = A

(
1

4
+

∞∑

n=1

{
(cos nπ − 1)

π2n2
cos

2πnt

T
− cos nπ

πn
sin

2πnt

T

})

= A

(
1

4
+

∞∑

n=1

1

nπ

{
(−1 + (−1)n)

πn
cos

2πnt

T
− (−1)n sin

2πnt

T

})
.

This y(t) is shown (with A = 1) for three different partial sums in Figure 9.12.

9.6 Complex Numbers and Waves

Complex numbers can be used to simplify waveform notation. Waves, such
as electromagnetic waves that are all around us, also can be expressed using
complex notation.

The complex exponential function is defined as

exp(z) = ez = e(x+iy) = exeiy ≡ ex(cos y + i sin y), (9.32)
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FIGURE 9.12
Three partial Fourier series sums for a ramp function.

where z = x + iy, with the complex number i ≡
√
−1 and x and

y as real numbers. The complex conjugate of z, denoted by z∗, is
z∗ = x − iy. The modulus or absolute value of z is given by |z| =√

zz∗ =
√

(x + iy)(x − iy) =
√

x2 + y2, which is a real number. Using
Equation 9.32, the Euler formula results,

eiθ = cos θ + i sin θ, (9.33)

which also leads to

e−iθ = cos θ − i sin θ. (9.34)

The complex expressions for the sine and cosine functions can be found from
Equations 9.33 and 9.34,

cos θ =
1

2

[
eiθ + e−iθ

]
(9.35)

and

sin θ =
1

2i

[
eiθ − e−iθ

]
. (9.36)

A wave can be represented by sine and cosine functions. Such represen-
tations are advantageous because [1] these functions are periodic, like many
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waves in nature, [2] linear math operations on them, such as integration and
differentiation, yield waveforms of the same frequency but different ampli-
tude and phase, and [3] they form complex waveforms that can be expressed
in terms of Fourier series.

A wave can be represented by the general expression

y(t) = Ar cos
2π

λ
(x − ct) + iAi sin

2π

λ
(x − ct), (9.37)

in which Ar is the real amplitude, Ai the imaginary amplitude, x the dis-
tance, λ the wavelength, and c the wave speed. This expression can be
written in another form, as

y(t) = Ar cos(κx − ωt) + iAi sin(κx − ωt), (9.38)

in which κ is the (angular) wave number and ω the circular frequency. The
wave number denotes the number of waves in 2π units of length, where
κ = 2π/λ. The wave speed is related to the wave number by c = ω/κ.
The cosine term represents the real part of the wave and the sine term the
imaginary part. Further, the phase lag is defined as

α = tan−1(Ai/Ar). (9.39)

Equations 9.38 and 9.39 imply that

y(t) =
√

A2
r + A2

i cos(κx − ωt − α), (9.40)

in which the complex part of the wave manifests itself as a phase lag.

Example Problem 9.5
Statement: Determine the phase lag of the wave given by z(t) = 20ei(4x−3t).
Solution: The given wave equation, when expanded using Euler’s formula, reveals

that both the real and imaginary amplitudes equal 20. Thus, according to Equation
9.39, α = tan−1(20/20) = π/4 radians.

9.7 Exponential Fourier Series

The trigonometric Fourier series can be simplified using complex number
notation. Starting with the trigonometric Fourier series

y(t) =
A0

2
+

∞∑

n=1

(
An cos

[
2πnt

T

]
+ Bn sin

[
2πnt

T

])
(9.41)



364 Measurement and Data Analysis for Engineering and Science

and substituting Equations 9.35 and 9.36 into Equation 9.41 yields

y(t) =
A0

2
+

∞∑

n=1

(
An

2

[
einω0t + e−inω0t

]
+

Bn

2i

[
einω0t − e−inω0t

])
, (9.42)

where θ = nω0t = 2πnt/T . Rearranging the terms in this equation gives

y(t) =
A0

2
+

∞∑

n=1

(
einω0t

[
An

2
− iBn

2

]
+ e−inω0t

[
An

2
+

iBn

2

])
, (9.43)

noting 1/i = −i.
Using the definitions

Cn ≡ An

2
− iBn

2
(9.44)

and

C−n ≡ An

2
+

iBn

2
, (9.45)

this equation can be simplified as follows:

y(t) =
A0

2
+

∞∑

n=1

(
Cneinω0t + C−ne−inω0t

)

=
A0

2
+

−1∑

n=−∞

Cneinω0t +
∞∑

n=1

Cneinω0t. (9.46)

(9.47)

Combining the two summations yields

y(t) =

∞∑

n=−∞

Cneinω0t, (9.48)

where C0 = A0/2.
The coefficients Cn can be found by multiplying the above equation by

e−inω0t and then integrating from 0 to T . The integral of the right side
equals zero except where m = n, which then yields the integral equal to T .
Thus,

Cm =
1

T

∫ T

0

y(t)e−imω0tdt. (9.49)

What has been done here is noteworthy. An expression (Equation 9.41)
involving two coefficients, An and Bn with sums from n = 1 to n = ∞,
was reduced to a simpler form having one coefficient, Cn, with a sum from
n = −∞ to n = ∞ (Equation 9.48). This illustrates the power of complex
notation.
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FIGURE 9.13
A signal and its spectra.

9.8 Spectral Representations

Additional information about the process represented by a signal can be
gathered by displaying the signal’s amplitude components versus their cor-
responding frequency components. This results in representations of the
signal’s amplitude, power, and power density versus frequency, which are
termed the amplitude spectrum, power spectrum, and power den-
sity spectrum, respectively. These spectra can be determined from the
Fourier series of the signal.

Consider the time average of the square of y(t),

〈
[y(t)]2

〉
≡ 1

T

∫ T

0

[y(t)]2dt. (9.50)

The square of y(t) in terms of the Fourier complex exponential sums is



366 Measurement and Data Analysis for Engineering and Science

[y(t)]2 =

(
∞∑

m=−∞

Cmeimω0t

)(
∞∑

n=−∞

Cneinω0t

)
=

∞∑

m=−∞

∞∑

n=−∞

CmCnei(m+n)ω0t.

(9.51)
If Equation 9.51 is substituted into Equation 9.50 and the integral on the
right side is performed, the integral will equal zero unless m = −n, where,
in that case, it will equal T . This immediately leads to

〈
[y(t)]2

〉
=

∞∑

n=−∞

CnC−n = 2
∞∑

n=0

(
An

2
− iBn

2

)(
An

2
+

iBn

2

)

= 2

∞∑

n=0

(
A2

n

4
+

B2
n

4

)
= 2

∞∑

n=0

|Cn|2 =

∞∑

n=−∞

|Cn|2 , (9.52)

where y(t) is assumed to be real and
〈
[y(t)]2

〉
is termed the mean squared

amplitude or average power. Note that this equation is an approximation
to the actual mean squared amplitude whenever the number of summed
terms is finite. By comparing Equation 9.51 with the definition of the rms
for a discrete signal (see Table 9.1), it can be seen that the power is simply
the square of the rms. Recall also that the average power over a time interval
equals the product of the total energy expended over that interval and the
reciprocal of the time interval.

Equations 9.50 and 9.51 can be combined to yield Parseval’s relation for
continuous-time periodic signals

1

T

∫ T

0

[y(t)]2dt =
∞∑

n=−∞

|Cn|2 . (9.53)

This states that the total average power in a periodic signal equals the sum
of the average powers of all its harmonic components.

The n-th amplitude equals 2

√
|Cn|2 =

√
A2

n + B2
n. The plot of 2

√
|Cn|2

versus the frequency is called the amplitude spectrum of the signal y(t).

The ordinate units are those of the amplitude. The plot of |Cn|2 versus the
frequency is called the power spectrum of the signal y(t). The ordinate units
are those of the amplitude squared. The absolute value squared of the Cn

Fourier coefficient, which equals one-quarter of the amplitude squared, gives
the amount of power associated with the n-th harmonic. Both spectra are
two-sided because they involve summations on both sides of n = 0. They can
be made one-sided by multiplying their values by two and then summing
from n = 0 to ∞. The power density spectrum is the derivative of the
power spectrum. Its ordinate units are those of amplitude squared divided
by frequency. So, the integral of the power density spectrum over a particular
frequency range yields the power contained in the signal in that range.
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The spectra of a signal obtained by impulsively tapping a cantilever beam
supported on its end, shown in Figure 9.13, displays a dominant frequency
at approximately 30 Hz.

9.9 Continuous Fourier Transform

Fourier analysis of a periodic signal can be extended to an aperiodic signal
by treating the aperiodic signal as a periodic signal with an infinite period.
From Equation 9.24, the Fourier trigonometric series representation of a
signal with zero mean (A0 = 0) is

y(t) =
∞∑

n=1

(
An cos

[
2πnt

T

]
+ Bn sin

[
2πnt

T

])

=

∞∑

n=1

{
2

T

∫ T/2

−T/2

y(t) cos

(
2πnt

T

)
dt

}
cos

(
2πnt

T

)

+

∞∑

n=1

{
2

T

∫ T/2

−T/2

y(t) sin

(
2πnt

T

)
dt

}
sin

(
2πnt

T

)
. (9.54)

Noting ωn = 2πn/T and ∆ω = 2π/T , where ∆ω is the spacing between
adjacent harmonics, gives

y(t) =

∞∑

n=1

{
∆ω

π

∫ T/2

−T/2

y(t) cos(ωnt)dt

}
cos(ωnt)

+
∞∑

n=1

{
∆ω

π

∫ T/2

−T/2

y(t) sin(ωnt)dt

}
sin(ωnt). (9.55)

As T → ∞ and ∆ω → dω, ωn → ω and the summations become integrals
with the limits ω = 0 and ω = ∞,

y(t) =

∫ ∞

0

{
dω

π

∫ +∞

−∞

y(t) cos(ωt)dt

}
cos(ωt)

+

∫ ∞

0

{
dω

π

∫ +∞

−∞

y(t) sin(ωt)dt

}
sin(ωt). (9.56)

Equation 9.56 can be simplified by defining

A(ω) =

∫ +∞

−∞

y(t) cos(ωt)dt (9.57)
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and

B(ω) =

∫ +∞

−∞

y(t) sin(ωt)dt. (9.58)

A(ω) and B(ω) are the components of the Fourier transform of y(t). Note
that A(ω) and B(ω) have units of y/ω, whereas An and Bn in Equations
9.26 and 9.27, respectively, have units of y. A(ω) is an even function of ω and
B(ω) is an odd function of ω. Substituting these definitions into Equation
9.56 yields

y(t) =
1

π

∫ ∞

0

A(ω) cos(ωt)dω +
1

π

∫ ∞

0

B(ω) sin(ωt)dω

=
1

2π

∫ ∞

−∞

A(ω) cos(ωt)dω +
1

2π

∫ ∞

−∞

B(ω) sin(ωt)dω. (9.59)

Note that these integrals involve negative frequencies. The negative fre-
quencies are simply a consequence of the mathematics and have no mystical
significance.

The complex Fourier coefficient is defined as

Y (ω) ≡ A(ω) − iB(ω). (9.60)

Substituting the definitions of the Fourier coefficients gives

Y (ω) =

∫ +∞

−∞

y(t)[cos(ωt) − i sin(ωt)]dt =

∫ +∞

−∞

y(t)e−iωtdt. (9.61)

This equation expresses that Y (ω) is the Fourier transform of y(t). |Y (ω)|2
corresponds to the amount of power contained in the frequency range from
ω to ω + dω.

The inverse Fourier transform of Y (ω) can be developed. Note that

i

2π

∫ +∞

−∞

A(ω) sin(ωt)dω = 0, (9.62)

because A(ω) and sin(ωt) are orthogonal. Likewise,

−i

2π

∫ +∞

−∞

B(ω) cos(ωt)dω = 0, (9.63)

because B(ω) and cos(ωt) are orthogonal. These integral terms can be added
to those in Equation 9.59, which results in
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y(t) =
1

2π

∫ ∞

−∞

A(ω) cos(ωt)dω +
1

2π

∫ ∞

−∞

B(ω) sin(ωt)dω

+
i

2π

∫ ∞

−∞

A(ω) sin(ωt)dω − i

2π

∫ ∞

−∞

B(ω) cos(ωt)dω

=
1

2π

∫ ∞

−∞

[A(ω) − iB(ω)][cos(ωt) + i sin(ωt)]dω

=
1

2π

∫ ∞

−∞

Y (ω)eiωtdω. (9.64)

Equations 9.61 and 9.64 form the Fourier transform pair, which con-
sists of the Fourier transform of y(t),

Y (ω) =

∫ ∞

−∞

y(t)e−iωtdt, (9.65)

and the inverse Fourier transform of Y (ω),

y(t) =
1

2π

∫ ∞

−∞

Y (ω)eiωtdω. (9.66)

Equation 9.65 determines the amplitude-frequency characteristics of the sig-
nal y(t) from its amplitude-time characteristics. Equation 9.66 constructs
the amplitude-time characteristics of the signal from its amplitude-frequency
characteristics. Taking the inverse Fourier transform of the Fourier trans-
form always should recover the original y(t).

9.10 *Continuous Fourier Transform Properties

Many useful properties can be derived from the Fourier transform pair [3].
These properties are relevant to understanding how signals in the time do-
main are represented in the frequency domain. Examine the Fourier trans-
form

Y (ω) = 2πδ(ω − ωo), (9.67)

where δ(x) denotes the delta function, which has the properties
∫∞

−∞
δ(0) = 1

and
∫∞

−∞
δ(6= 0) = 0. Substitution of this expression into Equation 9.66

yields

y(t) =
1

2π

∫ ∞

−∞

2πδ(ω − ωo)e
iωtdω = eiωot. (9.68)

Thus, the Fourier transform of y(t) = eiωot is 2πδ(ω − ωo). This transform
occurs in those involving sine and cosine functions, which are the foundations
of the Fourier series.
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y(t) Y (ω) Property
ax1(t) + bx2(t) aX1(ω) + bX2(ω) linearity

x(t − to) X(ω)e−iωto time shifting
x(t)eiωot X(ω − ωo) frequency shifting

x(at) 1
|a|X(ω/a) time scaling

dx(t)
dt iωX(ω) time differentiation∫ t

−∞
x(τ)dτ πX(0)δ(ω) + 1

iω X(ω) integration
xe(t) Re[X(ω)] = a(ω) even signal
xo(t) iIm[X(ω)] = iB(ω) odd signal

x1(t)x2(t)
1
2π X1(ω) ∗ X2(ω) multiplication

x1(t) ∗ x2(t) X1(ω) + X2(ω) convolution

TABLE 9.2
Properties of the continuous Fourier transform.

As an example, consider the Fourier transform of y(t) = cos(ωot) and,
consequently, how that signal is represented in the frequency domain. Sub-
stituting the complex expression for the cosine function (Equation 9.35) into
Equation 9.65 gives

Y (ω) =
1

2

∫ ∞

−∞

[eiωot + e−iωot]e−iωtdt

=
1

2

∫ ∞

−∞

[eiωote−iωt + e−iωote−iωt]dt

= π[δ(ω − ωo) + δ(ω + ωo)], (9.69)

using Equations 9.67 and 9.68. This implies that the signal y(t) = cos(ωot)
in the time domain appears as impulses of amplitude π in the frequency
domain at ω = −ωo and ω = ωo.

In a similar manner, the Fourier transform of y(t) = x(t)eiωot becomes

Y (ω) =

∫ ∞

−∞

x(t)eiωote−iωtdt

=

∫ ∞

−∞

e−i(ω−ωo)tdt

= X(ω − ωo). (9.70)

The multiplication of the signal x(t) by eiωot is called complex modula-
tion. Equation 9.70 implies that the Fourier transform of x(t)eiωot results
in a frequency shift, from ω to ω − ωo, in the frequency domain.

The multiplication of two functions in one domain is related to the con-
volution the two functions’ transforms in the transformed domain. The con-
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volution of the functions x1(t) and x2(t) is

x1(t) ∗ x2(t) =

∫ t

0

x1(τ)x2(t − τ)dτ, (9.71)

in which the ∗ denotes the convolution operator. This leads immediately to
the multiplication and convolution properties of the Fourier transform that
are presented in Table 9.2. These two properties are quite useful because
one function often can be expressed as the product of two functions whose
Fourier transforms or inverse transforms are known.

Example Problem 9.6
Statement: Determine 3 ∗ sin 2ω.
Solution: Let X1(ω) = 3 and X2(ω) = sin 2ω. Thus, X1(τ) = 3 and X2(ω − τ) =

sin 2(ω − τ). Applying Equation 9.71 gives

3 ∗ sin 2ω =

∫ ω

0
3 sin 2(ω − τ)dτ =

3

2
cos 2(ω − τ)|ω

0
=

3

2
[1 − cos 2ω] .
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9.11 Problem Topic Summary

Topic Review Problems Homework Problems
Signal Characteristics 5, 6, 7, 8, 9, 11, 12 3, 7, 13, 15

Signal Parameters 1, 2, 10 1, 2, 3, 4, 7, 9, 10, 14
Fourier Series 3, 4 5, 6, 7, 8, 11, 12, 14

TABLE 9.3
Chapter 9 Problem Summary

9.12 Review Problems

1. Consider the deterministic signal y(t) = 3.8 sin(ωt), where ω is the cir-
cular frequency. Determine the rms value of the signal to three decimal
places.

2. Compute the rms of the dimensionless data set in the file data10.dat.

FIGURE 9.14
Triangular function.
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FIGURE 9.15
Rectangular function.

3. Find the third Fourier coefficient of the function pictured in Figure 9.14,
where h = 1. (Note: Use n = 3 to find the desired coefficient.) Consider
the function to be periodic. Respond to three significant figures.

4. What is the value of the power spectrum at the cyclic frequency 1 Hz
for the function given by the Figure 9.15? Respond to three significant
figures. (The desired result is achieved by representing the function on
an infinite interval.)

5. Which one of the following functions is periodic? (a) x(t) = 5 sin(2πt)
or (b) x(t) = cos(2πt) exp(−5t).

6. Which one of the following is true? A stationary random process must
(a) be continuous, (b) be discrete, (c) be ergodic, (d) have ensemble aver-
aged properties that are independent of time, or (e) have time averaged
properties that are equal to the ensemble averaged properties.

7. Which of the following are true? An ergodic random process must (a) be
discrete, (b) be continuous, (c) be stationary, (d) have ensemble aver-
aged properties that are independent of time, or (e) have time averaged
properties that are equal to the ensemble averaged properties.

8. Which of the following are true? A single time history record can be
used to find all the statistical properties of a process if the process is (a)
deterministic, (b) ergodic, (c) stationary, or (d) all of the above.

9. Which of the following are true? The autocorrelation function of a sta-
tionary random process (a) must decrease as |τ | increases, (b) is a func-
tion of |τ | only, (c) must approach a constant as |τ | increases, or (d)
must always be non-negative.
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10. Determine for the time period from 0 to 2T the rms value of a square
wave of period T given by y(t) = 0 from 0 to T/2 and y(t) = A from
T/2 to T .

11. Which of the following functions are periodic? (a) y (t) = 5 sin (5t) +

3 cos (5t), (b) y (t) = 5 sin (5t) e
t+2
12 , (c) y (t) = 5 sin (5t) + e

t+2
12 , (d)

y (t) = 15 sin (5t) cos (5t).

12. A speed of a turbine shaft is 13 000 revolutions per minute. What are its
cyclic frequency (in Hz), period (in s), and circular frequency (in rad/s)?

9.13 Homework Problems

1. Determine the autocorrelation of x(t) for (a) x(t) = c, where c is a
constant, (b) x(t) = sin(2πt), and (c) x(t) = cos(2πt).

2. Determine the average and rms values for the function y(t) = 30 +
2 cos(6πt) over the following time periods: (a) 0 s to 0.1 s, (b) 0.4 s to
0.5 s, (c) 0 s to 1

3 s, and (d) 0 s to 20 s.

3. Consider the deterministic signal y(t) = 7 sin(4t) with t in units of sec-
onds and 7 (the signal’s amplitude) in units of volts. Determine the
signal’s (a) cyclic frequency, (b) circular frequency, (c) period for one
cycle, (d) mean value, and (e) rms value. Put the correct units with
each answer. Below are two integrals that may or may not be needed:

∫
sin2(x)dx =

1

2
x − 1

4
sin(2x)

and ∫
cos2(x)dx =

1

2
x +

1

4
sin(2x).

4. For the continuous periodic function y(t) = y1(t)− y2(t), where y1(t) =
A(t/T )1/2 and y2(t) = B(t/T ), determine for one period (a) the mean
value of y(t) and (b) the rms of y1(t).

5. Determine the Fourier series for the period T of the function described
by

y(t) =
4At

T
+ A for − T

2
≤ t ≤ 0

and

y(t) =
−4At

T
+ A for 0 ≤ t ≤ T

2
.
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Do this without using any computer programs or spreadsheets. Show all
work. Then, on one graph, plot the three resulting series for 2, 10, and
50 terms along with the original function y(t).

6. Determine the Fourier series of the function

y(t) = t for − 5 < t < 5.

(This function repeats itself every 10 units, such as from 5 to 15, 15 to
25, ...). Do this without using any computer programs or spreadsheets.
Show all work. Then, on one graph, plot the three resulting series for 1,
2, and 3 terms along with the original function y(t).

7. Consider the signal y(t) = 2 + 4 sin(3πt) + 3 cos(3πt) with t in units of
seconds. Determine (a) the fundamental frequency (in Hz) contained in
the signal and (b) the mean value of y(t) over the time period from 0 s
to 2/3 s. Also (c) sketch the amplitude-frequency spectrum of y(t).

8. For the Fourier series

y(t) = (20/π)[sin(4πt/7) + 4 sin(8πt/7) + 3 sin(12πt/7) + 5 sin(16πt/7)],

determine the amplitude of the third harmonic.

9. Calculate the mean value of a rectified sine wave given by

y = |A sin 2πt
T |

during the time period 0 < t < 1000T .

10. Determine the rms (in V) of the signal y(t) = 7 sin(4t) where y is in
units of V and t is in units of s. An integral that may be helpful is∫

sin2axdx = x/2 − (1/4a) sin(2ax).

11. Determine the Fourier coefficients A0, An, and Bn, and the trigonometric
Fourier series for the function y(t) = At, where the function has a period
of 2 s with y(−1) = −A and y(1) = A.

12. Consider the following combination of sinusoidal inputs:

y (t) = sin (t) + 2 cos (2t) + 3 sin (2t) + cos (t) .

(a) Rewrite this equation in terms of only cosine functions. (b) Rewrite
this equation in terms of only sine functions. (c) What is the fundamental
period of this combination of inputs?
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13. Consider the signal

y (t) = A cos (ω1t) + A cos (ω2t) ,

where ω1 = 56/500 rad/hr and ω2 is 8 % greater in magnitude than ω1.
(a) What is the period of the corresponding slow beat in minutes (the
formal definition of slow beat)? (b) What is the period at which the slow
beat manifests itself in the output signal in minutes?

14. The following problems use the data file signal.dat that contains two
columns of data, each with 5000 rows (the first column is the measured
velocity in m/s, and the second column is the sample time in s). The
velocities were measured behind an obstruction that contained several
cables of different diameters. The data was taken over a period of 5 s
at a sample rate of 1 kHz (1000 samples/s). Assume that the sample
rate was fast enough such that the sampled signal represents the actual
signal in terms of its amplitude and frequency. The following M-files may
be useful: propintime.m and sstol.m. Write a program or spreadsheet
for this problem. (a) Plot the velocities versus time for the first 250 ms
using points (dots) for each data point. (b) Plot the running mean and
running rms versus time. (c) Determine the times at which the running
mean and also the running rms for them to remain within 1 %, 2 %, 3
%, and 4 % of their final values. Note that there will be different times
for each running value for each percent tolerance.

15. Determine the rms of one period of a square wave in which y(t) = 0
from t = 0 to t = 0.5 and y(t) = 2 from t > 0.5 to t = 1.0.
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For even the most stupid of men, by some instinct of nature, by himself and
without any instruction (which is a remarkable thing), is convinced that the
more observations have been made, the less danger there is of wandering

from one’s goal.
Jacob Bernoulli. 1713. Ars Conjectandi.

10.1 Chapter Overview

Today, most data is acquired and stored digitally. This format is advan-
tageous because of relatively rapid acquisition rates and minimal storage
requirements. Digital data acquisition, however, introduces errors. Fortu-
nately, these can be minimized with some foresight. So, how are signal ac-
quisition and analysis done digitally? What errors are introduced? How can
these errors be minimized such that the acquired information truly repre-
sents that of the process under investigation? Such questions are addressed
and answered in this chapter.

379
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FIGURE 10.1
Discrete sampling of an analog signal.

10.2 Digital Sampling

Consider the analog signal, y(t), shown in Figure 10.1 as a solid curve. This
signal is sampled digitally over a period of T seconds at a rate of one sample
every δt seconds. The resulting discrete signal, y(rδt), is comprised of the
analog signal’s amplitude values y1 through yN at the times rδt, where
r = 1, 2, ..., N for N samples. The discrete signal is represented by circles in
Figure 10.1. The accurate representation of the analog signal by the discrete
signal depends upon a number of factors. These include, at a minimum, the
frequency content of y(t), the time-record length of the signal, T = Nδt,
and the frequency at which the signal is sampled, fs = 1/δt = N/T .

Further assume that the signal contains frequencies ranging from 0 to
W Hz, which implies that the signal’s bandwidth is from 0 to W Hz.
The minimum resolvable frequency, fmin, will be 1/T = 1/(Nδt). If the
sampling rate is chosen such that fs = 2W , then, as will be seen shortly,
the maximum resolvable frequency, fmax, will be W = 1/(2δt). Thus, the
number of discrete frequencies, Nf , that can be resolved from fmin to fmax

will be

Nf =
fmax − fmin

δf
=

1/(2δt) − 1/(Nδt)

1/(Nδt)
=

N

2
− 1. (10.1)
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FIGURE 10.2
Amplitude-time-frequency mapping.

This implies that there will be N/2 discrete frequencies from fmin to and
including fmax. This process is illustrated in Figure 10.2.

Situations arise which introduce errors into the acquired information. For
example, if the sampling frequency is too low, the discrete signal will contain
false or alias amplitudes at lower frequencies, which is termed aliasing.
Further, if the total sample period is not an integer multiple of all of the
signal’s contributory periods, amplitude ambiguity will result. That is,
false or ambiguous amplitudes will occur at frequencies that are immediately
adjacent to the actual frequency. Thus, by not using the correct sampling
frequency and sampling period, incorrect amplitudes and frequencies result.
This, obviously, is undesirable.

How can these problems be avoided? Signal aliasing can be eliminated
simply by choosing a sampling frequency, fs, equal to at least twice the
highest frequency, fmax, contained in the signal. However, it is difficult to
avoid amplitude ambiguity. Its effect only can be minimized. This is accom-
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FIGURE 10.3
Frequency map to illustrate aliasing.

plished by reducing the magnitude of the signal at the beginning and the
end of the sample period through a process called windowing.

To fully understand each of these effects, the discrete version of the
Fourier transform must be considered. This transform yields the amplitude-
frequency spectrum of the discrete data. The spectrum can be determined
for the discrete representation of a known periodic signal, which best illus-
trates the effects of aliasing and amplitude ambiguity.

10.3 Aliasing

Ambiguities arise in the digitized signal’s frequency content whenever the
analog signal is not sampled at a high enough rate. Shannon’s sampling
theorem basically states that for aliasing not to occur, the signal should be
sampled at a frequency which is greater than twice the maximum frequency
contained in the signal, which often is termed the maximum frequency of
interest. That is, fs > 2fmax. At the sampling frequency fs = 2fmax, fmax

also is known as the Nyquist frequency, fN . So, fs = 2fN .
To illustrate analytically how aliasing occurs, consider the two signals

y1(t) = cos(2πf1t) and y2(t) = cos(2πf2t), in which f2 is chosen subject
to two conditions: [1] f2 = 2mfN ± f1 with m = 1, 2, ..., and [2] f2 > fN .
These conditions yield specific f2 frequencies above the Nyquist frequency,
all of which alias down to the frequency f1. The resulting frequencies are
displayed on the frequency map shown in Figure 10.3.

Assume that these two periodic signals are sampled at δt time incre-
ments, r times. Then

y1(t) = cos(2πf1t) becomes y1(rδt) = cos(2πrf1/fs), (10.2)

and
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FIGURE 10.4
The folding diagram.

y2(t) = cos(2πf2t) becomes y2(rδt) = cos(2πrf2/fs). (10.3)

Further reduction of Equation 10.3 reveals that

y2(rδt) = cos(2πr[2mfN ± f1]/fs)

= cos(2πrm ± 2πrf1/fs)

= cos(2πr(m ± f1/fs))

= cos(2πrf1/fs)

= y1(rδt). (10.4)

Thus, the sampled signal y2(rδt) will be identical to the sampled signal
y1(rδt), and the frequencies f1 and f2 will be indistinguishable. In other
words, all of the signal content at the f2 frequencies will appear at the f1

frequency. Their amplitudes will combine in quadrature with the signal’s
original amplitude at frequency f1, thereby producing a false amplitude at
frequency f1.

When aliasing occurs, the higher f2 frequencies can be said to fold into
the lower frequency f1. This mapping of the f2 frequencies into f1 is illus-
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trated by the folding diagram, as shown in Figure 10.4. The frequency, fa,
into which a frequency f is folded, assuming f > fn, is identified as follows:

1. Determine k, where k = f/fN . Note that fN = fmax = fs/2.

2. Find the value ka that k folds into, where ka occurs on the bottom line
(0 ≤ ka ≤ 1).

3. Calculate fa, where fa = kafN .

The following example illustrates aliasing.

Example Problem 10.1
Statement: Assume that there is an analog signal whose highest frequency of in-

terest is 200 Hz (=fN ), although there may be frequencies higher than that contained
in the signal. According to the sampling theorem, the sampling frequency must be set
at fs > 400 Hz for the digitized signal to accurately represent any signal content at
and below 200 Hz. However, the signal content above 200 Hz will be aliased. At what
frequency will an arbitrary aliased frequency appear?

Solution: According to the folding diagram, for example, the f2 frequencies of
350 (1.75fN ), 450 (2.25fN ), 750 (3.75fN ), and 850 (4.25fN ), all will map into
f1 = 50 Hz (0.25fN ). Likewise, other frequencies greater than fN will map down
to frequencies less than fN . A frequency of 334 Hz will map down to 67 Hz, and so
forth.

Thus, for aliasing of a signal not to occur and for the digitized signal not
to be contaminated by unwanted higher-frequency content, fN first must be
identified and then set such that fs > 2fN . Second, a filter must be used
to eliminate all frequency content in the signal above fN . In an experiment,
this can be accomplished readily by filtering the signal with an anti-alias
(low-pass) filter prior to sampling, with the filter cut off set at fN .

Example Problem 10.2
Statement: The signal y(t) = sin(2π10t) is sampled at 12 Hz. Will the signal be

aliased and, if so, to what frequency?
Solution: Here f = 10 Hz. For signal aliasing not to occur, the signal should be

sampled at a frequency that is at least twice the maximum frequency of interest. For
this case, the required sampling frequency would be higher than 20 Hz. Because the
signal actually is sampled at only 12 Hz, aliasing will occur. If fs = 12 Hz, then fN = 6
Hz, which is one-half of the sampling frequency. Thus, k = f/fN = 10/6 = 1.67.
This gives ka = 0.33, which implies that fa = 0.33fN = (0.33)(6) = 2 Hz. So, the
aliased signal will appear as a sine wave with a frequency of 2 Hz. This is illustrated
in Figure 10.5.
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FIGURE 10.5
Aliasing of y(t) = sin(2π10t) (solid curve is y(t); dashed curve is aliased signal
from sampling at 12 Hz).

10.4 Discrete Fourier Transform

The discrete Fourier transform is a method used to obtain the frequency
content of a signal by implementing the discrete version of the Fourier trans-
form. A more detailed discussion of the discrete and fast Fourier transforms
is presented in [2].

Consider a sample of the signal y(t) with a finite record length, T , which
is its fundamental period. This signal is sampled N times at δt increments of
time. N values of the signal are obtained, yn = y(rδt), where r = 1, 2, ..., N .
The discrete signal becomes

y(rδt) = y(t) · δ̃(t − rδt). (10.5)

The impulse function, δ̃, is defined such that δ̃(0) = 1 and δ̃( 6= 0) = 0.
Now recall the Fourier series representation of y(t),

y(t) =
A0

2
+

∞∑

n=1

(
An cos

[
2πnt

T

]
+ Bn sin

[
2πnt

T

])
, (10.6)

with the Fourier coefficients given by
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A0 =
2

T

∫ T

0

y(t)dt,

An =
2

T

∫ T

0

y(t) cos

(
2πnt

T

)
dt n = 1, 2, . . . ,∞,

(10.7)

and

Bn =
2

T

∫ T

0

y(t) sin

(
2πnt

T

)
dt n = 1, 2, . . . ,∞. (10.8)

Fourier analysis of a discrete signal is accomplished by replacing the follow-
ing in Equations 10.6 and 10.8:

1. The integrals over t in Equation 10.8 by summations over δt.

2. Continuous time t by discrete time rδt, where r = 1, 2, . . . , N .

3. T = Nδt, where N is an even number.

4. n from 1 to ∞ with k from 0 to N/2.

In doing so, An becomes ak, where

ak =
2

Nδt

N∑

r=1

y(rδt) cos

[
2πkrδt

Nδt

]
δt

=
2

N

N∑

r=1

y(rδt) cos

[
2πkr

N

]
k = 0, 1, . . . ,

N

2
. (10.9)

Likewise,

bk =
2

N

N∑

r=1

y(rδt) sin

[
2πkr

N

]
k = 1, 2, . . . ,

N

2
− 1 (10.10)

and

ck =
2

N

N∑

r=1

√
a2

r + b2
r. (10.11)

Note that k represents the discrete frequency and r the discrete sample
point. Each discrete sample point can contribute to a discrete frequency.
Every sample point’s contribution to a particular discrete frequency is in-
cluded by summing over all sample points at that frequency. This yields the
corresponding discrete expression for y(t),
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y(rδt) =
a0

2
+

(N/2)−1∑

k=1

(
ak cos

[
2πrk

N

]
+ bk sin

[
2πrk

N

])

+
aN/2

2
cos(πr). (10.12)

The last term corresponds to fmax = fN . The equations for ak and bk

comprise the discrete Fourier transform or DFT of y(rδt). The equation
y(rδt) is the discrete Fourier series.

A computer program or M-file can be written to perform the DFT, which
would include the following steps:

1. Fix k.

2. Evaluate 2πrk/N for all r.

3. Compute cos[2πrk/N ] and sin[2πrk/N ].

4. Compute y(rδt) cos[2πrk/N ] and y(rδt) sin[2πrk/N ].

5. Sum these values from r = 1 to N to give ak and bk as given in Equations
10.9 and 10.10.

6. Repeat for next k

7. After completing for all k, determine ck using Equation 10.11.

This method involves N 2 real multiply-add operations.

Alternatively, the DFT can be written using complex notation. Using the
Fourier coefficient definitions in Equation 10.8, and introducing Yn, which
was called Cn in Chapter 9, gives

Yn =
An

2
− i

Bn

2
. (10.13)

This leads to

Yn(t) =
1

T

∫ T

0

y(t)

[
cos

(
2πnt

T

)
− i sin

(
2πnt

T

)]
dt

=
1

T

∫ T

0

y(t) exp[−i(2πnt/T )]dt. (10.14)

By making the appropriate substitutions for T , δt, and n in Equation 10.14,
the discrete Fourier transform in complex form becomes



388 Measurement and Data Analysis for Engineering and Science

Yk =
1

Nδt

N∑

r=1

y(rδt) exp

[
−i

(
2πkrδt

Nδt

)]
dt

=
1

N

N∑

r=1

y(rδt) exp[−i(2πkr/N)]

=
1

N

N∑

r=1

yr exp[−i(2πkr/N)]. (10.15)

Again, k represents the discrete frequency and r represents the discrete
sample point. This method requires N 2 complex multiplications. Note also
that 2πrk/N can be replaced by 2πrfkδt because fk = k/T = k/(Nδt).

10.5 Fast Fourier Transform

The fast Fourier transform, or FFT, is a specific type of DFT that is
computationally faster than the original DFT. Danielson and Lanczos pro-
duced one such FFT algorithm in 1942. Cooley and Turkey developed the
most frequently used one in the mid-1960’s. Danielson and Lanczos showed
that a DFT of length N can be rewritten as the sum of two DFTs, each of
length N/2, one coming from the even-numbered points of the original N ,
the other from the odd-numbered points [3]. Equation 10.15 can be rear-
ranged to conform to this format as

Yk =
1

N

N−1∑

r=0

yr e−i( 2πrk
N ) (10.16)

=
1

N





(N/2)−1∑

r=0

y2r e−i[ 2π(2r)k
N ] +

(N/2)−1∑

r=0

y2r+1 e−i[ 2π(2r+1)k
N ]





=
1

N





(N/2)−1∑

r=0

y2r e−i[ 2πrk
(N/2) ] + W k

(N/2)−1∑

r=0

y2r+1 e−i[ 2πrk
(N/2) ]



 ,

where W k ≡ e−i[2πk/N ]. Equation 10.17 can be written in a more condensed

form, Yk = Y even
k + W kY odd

k , where Y even
k is the kth component of the

DFT of length N/2 formed from the even-numbered yk values and Y odd
k is

the kth component of the DFT of length N/2 formed from the odd-numbered
yk values. This approach can be applied successively until the last transforms
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FIGURE 10.6
DFT sequence for N = 8.

FIGURE 10.7
DFT sequence for N = 8 showing bit reversal.

have only one term each. At that point, the DFT of the term equals the term
itself, where Yk (for k = 0, r = 0, N = 1) = (1/1) y0 e−i·0 = y0 = Y0.

The sequence of the computational breakdown for N = 8 is displayed
in Figure 10.6. Symmetry is maintained when N = 2M . Here Y xxx

k are the
DFTs of length one. They equal the values of the discrete sample points,
y(rδt). For a given N , the particular yk values can be related to a pattern
of e’s and o’s in the sequence. By reversing the pattern of e’s and o’s (with
e = 0 and o = 1), the value of k in binary is obtained. This is called bit
reversal . This process is illustrated in Figure 10.7. The speed of this FFT is
∼ O(N log2 N) vs O(N2) for the DFT, which is approximately 40 000 times
faster than the original DFT!
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FIGURE 10.8
More efficient DFT sequence for N = 4.

Example Problem 10.3
Statement: For the case of N = 4, determine the four DFT terms y0, y1, y2 and

y3 for r = 0, . . . , N − 1.
Solution: Direct implementation of Equation 10.17 yields

Yk =
1

4

3∑

r=0

yr e−i(2πrk/4)

=
1

4

{
y0 + y1 e−i(2πk/4) + y2 e−i(2π2k/4) + y3 e−i(2π3k/4)

}

=
1

4

{
y0 + y2 e−i(2πk/2) + e−i(2πk/4) ·

[
y1 + y3 e−i(2πk/2)

]
.
}

Thus, the DFT could be performed computationally faster in the sequence, as
illustrated in Figure 10.8, by starting with the even (y0 and y2) and odd (y1 and y3)
pairs.

10.6 Amplitude Ambiguity

Amplitude ambiguity also arises when the sample time period, Tr, is not
an integer multiple of the fundamental period of the signal. If the signal
has more than one period or is aperiodic, this will complicate matters. For
complex periodic signals, Tr must be equal to the least common integer



Signal Analysis 391

FIGURE 10.9
Two repeated segments of the same random signal.

multiple of all frequencies contained in the signal. For aperiodic signals,
Tr theoretically must be infinite. Practically, finite records of length Tr are
considered and windowing must be used to minimize the effect of amplitude
ambiguity. Application of the DFT or FFT to an aperiodic signal implicitly
assumes that the signal is infinite in length and formed by repeating the
signal of length Tr an infinite number of times. This leads to discontinuities
in the amplitude that occur at each integer multiple of Tr, as shown in
Figure 10.9 at the time equal to 20 s. These discontinuities are step-like,
which introduce false amplitudes that decrease around the main frequencies
similar to those observed in the Fourier transform of a step function (see
Chapter 9).

Thus, the amplitudes of simple or complex periodic waveforms will be
accurately represented in the DFT when fs > 2fmax and Tr = mT1, where
m = 1, 2, ...,. T1 is the fundamental period (= 1/f1) and Tr the total sample
period (= Nδt = N/fs), which implies that N = m(fs/f1). If the latter con-
dition is not met, leakage will occur in the DFT, appearing as amplitudes
at f1 spilling over into other adjacent frequencies. Further, for DFT compu-
tations to be fast, N must be set equal to 2M , which yields 2M = m(fs/f1),
where m and N are positive integers. These conditions are summarized as
follows:

1. Set fmax = fN ⇒ fs = 2fmax, assuming that f1 and fmax are known.

2. Find a suitable N by the steps:

(a) Choose a value for m, keeping m ≥ 10).
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FIGURE 10.10
Signal and frequency spectrum with dt = 0.125 s.

(b) Is there an integer solution for M , where 2M = m(fs/f1)?

(c) If so, stop.

(d) If not, iterate until an integer M is found. Thus, N = 2M and
Tr = Nδt.

For aperiodic and nondeterministic waveforms, the frequency resolution δf
(= 1/Nδt) is varied until leakage is minimized. Sometimes, all frequencies
are not known. In that case, to avoid leakage, windowing must be used.

The following example illustrates the effect of sampling rate on the result-
ing amplitude-frequency spectrum in terms of either aliasing or amplitude
ambiguity.

Example Problem 10.4
Statement: Convert the analog voltage, E(t) = 5 sin(2πt) mV, into a discrete time

signal. Specifically, using sample time increments of (a) 0.125 s, (b) 0.30 s, and (c)
0.75 s, plot each series as a function of time over at least one period. Discuss apparent
differences between the discrete representation of the analog signal. Also, compute the
DFT for each of the three discrete signals. Discuss apparent differences. Use a data set
of 128 points.

Solution:

y(t) = 5 sin(2πt) ⇒ f = 1 Hz.
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FIGURE 10.11
Signal and frequency spectrum with dt = 0.3 s.

Aliasing will not occur when fs(= 1/dt) > 2f (f = 1 Hz). Amplitude ambiguity
will not occur when T = mT1 ⇒ m = fNdt (m : integer).

For part (a) fs > 2f and m = (1)(128)(.125) = 16 ⇒ no aliasing or amplitude
ambiguity. The result is shown in Figure 10.10, which was presented previously to
illustrate the FFT.

For part (b) fs > 2f ⇒ no aliasing, and m = (1)(128)(0.3) = 38.4 ⇒ amplitude
ambiguity will occur. This is displayed in Figure 10.11. The amplitude, however, is less
than the actual amplitude (here it is less than 4). Around that frequency the amplitude
appears to leak into adjacent frequencies.

For part (c) fs < 2f ⇒ aliasing will occur, and m = (1)(128)(0.75) = 96 ⇒ no
amplitude ambiguity will be present. This is shown in Figure 10.12. The aliased fre-
quency can be determined using the aforementioned folding-diagram procedure. Here,
fs = 4/3, fN = 2/3, and f = 1. This leads to k = 3/2, which implies ka = 1/2 using
the folding diagram. Thus, fa = (1/2)(2/3) = 1/3 Hz.

Now consider an example where both aliasing and amplitude ambiguity
can occur simultaneously.

Example Problem 10.5
Statement: Compute the DFT for the discrete time signal that results from sam-

pling the analog signal, T (t) = 2 sin(4πt) ◦C, at sample rates of 3 Hz and 8 Hz. Use a
data set of 128 points. Discuss and compare your results.
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FIGURE 10.12
Signal and frequency spectrum with dt = 0.75 s.

Solution:
T (t) = 2 sin(4πt) ⇒ 2 Hz.

For the sample rate of 3 Hz, fs = 2f ⇒ aliasing will occur and m = (1)(128)(1/3) =
42.67 ⇒ amplitude ambiguity will be present. The results are presented in Figure 10.14.
The aliased frequency occurs where the amplitude is maximum, at 1 Hz. This can
be determined using the aforementioned folding-diagram procedure. Here, fs = 3,
fN = 3/2, and f = 2. This leads to k = 4/3, which implies ka = 2/3 using the folding
diagram. Thus, fa = (2/3)(3/2) = 1. Also, note the distortion of the signal’s time
record that occurs because of the low sampling rate.

When the sampling rate is increased to 8 Hz, fs > 2f ⇒ no aliasing occurs.
Also m = (1)(128)(0.125) = 16 ⇒ no amplitude ambiguity occurs. This is shown in
Figure 10.13, which is the correct spectrum.

Analysis becomes more complicated when more than one frequency is
present in the signal. Next, consider an example that involves a signal con-
taining two frequencies.

Example Problem 10.6
Statement: Consider the signal y(t) = 3.61 sin(4πt + 0.59) + 5 sin(8πt). Plot y(t)

versus time and the resulting frequency spectrum for the following cases and discuss
what is observed with respect to aliasing and amplitude ambiguity:
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FIGURE 10.13
Signal and frequency spectrum with dt = 0.125 s.

(i) N = 100, fs = 50

(ii) N = 20, fs = 10

(iii) N = 10, fs = 5

(iv) N = 96, fs = 5

(v) N = 96, fs = 10

Solution: y(t) = 3.61 sin(4πt + 0.59) + 5 sin(8πt). So, f1 = 2 Hz and f2 = 4 Hz,
which implies that fmax = 4 Hz. If fs = 5 samples/s,

fs

f1
=

5

2
= 2.5 > 2 ⇒ no aliasing, and

fs

f2
=

5

4
= 1.25 < 2 ⇒ aliasing will occur.

To where will the 4 Hz component be aliased?

fN =
fs

2
=

5

2
= 2.5 Hz ⇒ f2

fN
=

4

2.5
= 1.6.

Using the folding diagram 1.6fN is folded down to 0.4fN = (0.4)(2.5) = 1 Hz. That is,
the 4 Hz component appears as a 1 Hz component.

But what about amplitude ambiguity? T1 = 1/f1 = 1/2 s, and T2 = 1/f2 = 1/4 s.
The total sample period, T , must contain integer multiples of both T1 and T2 so as not
to have amplitude ambiguity in both components. This can be easily met by having
T = mT1 = m/2 s (since T2 = T1/2). In essence, the least common integer multiple
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FIGURE 10.14
Signal and frequency spectrum with dt = 1/3 s.

of T1 and T2 is sought. Recalling that T = Nδt = N/fs, if m/2 = N/fs no amplitude
ambiguity will be present. That is, when N = fs(m/2) = (5/2)m, with m and N
integers, there will be no amplitude ambiguity. This occurs, for example, when m = 2
(with N = 5) and m = 4 (with N = 10). However, all the frequencies of interest should
be seen in the spectrum. The highest frequency of interest is fmax = fN = fs/2.
Because there are N/2 discrete frequencies and assuming that fmin = 0 needs to be
considered, this yields

fmax =
1

T
(
N

2
− 1) =

fs

2
=

fs

N
(
N

2
− 1) (T = N/fs).

Solving for N ,
N = 2fs/(fs − 4).

So, when fs = 5, N = 10/(5− 4). Thus, N = 10 is the minimum N needed to see both
components.

For case (i), the discrete signal and the amplitude-frequency spectrum are correct.
This is shown in Figure 10.15.

For case (ii), the spectrum remains correct and the discrete signal, although still
correct, does not represent the signal well because of the lower sampling rate. This is
illustrated in Figure 10.16.

For case (iii), the 4 Hz component is aliased down to 1 Hz and the 2 Hz component
is correct. No amplitude ambiguity has occurred. This is displayed in Figure 10.17.

For case (iv), amplitude ambiguity has occurred for both components and only the
4 Hz component is aliased down to 1 Hz. This is shown in Figure 10.18.

For case (v), amplitude ambiguity has occurred but not aliasing. This is presented
in Figure 10.19.
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FIGURE 10.15
Signal and frequency spectrum with N = 100, fs = 50.

FIGURE 10.16
Signal and frequency spectrum with N = 20, fs = 10.
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FIGURE 10.17
Signal and frequency spectrum with N = 10, fs = 5.

FIGURE 10.18
Signal and frequency spectrum with N = 96, fs = 5.
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FIGURE 10.19
Signal and frequency spectrum with N = 96, fs = 10.

10.7 *Windowing

Because either an aperiodic or random signal does not have a period, the
Fourier transform applied to such a signal’s finite record length produces
leakage in its spectrum. This effect can be minimized by applying a win-
dowing function. This process effectively attenuates the signal’s ampli-
tude near the discontinuities that were discussed previously in Section 10.6,
thereby leading to less leakage. The windowing function actually is a func-
tion that weights the signal’s amplitude in time. The effect of a windowing
function on the spectrum can be seen by examining the convolution of two
Fourier transforms, one of the signal and the other of the windowing func-
tion. This is considered next.

The discrete Fourier transform of y(t) can be viewed as the Fourier trans-
form of an unlimited time history record v(t) multiplied by a rectangular
time window u(t) where

u(t) =

{
1 0 ≤ t ≤ T
0 otherwise.
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FIGURE 10.20
Rectangular windowing.

This is illustrated in Figure 10.20. Now,

Yn(f, T ) =
1

T

∫ T

0

yn(t) exp[−i2πft]dt, (10.17)

which leads to

Y (f) =

∫ ∞

−∞

U(α)V (f − α)dα. (10.18)

This is the convolution integral [3]. So, the Fourier transform of y(t), Y (f),
is the convolution of the Fourier transforms of u(t) and v(t), which are
denoted by U(α) and V (f − α), respectively. For the present application,
u(t) represents the windowing function and y(t) is v(t). The record length is
denoted by T . Various windowing functions can be used. They yield different
amounts of leakage suppression.

The rectangular windowing function urect(t) has the Fourier transform
Urect(f), given by

Urect(f) = T

(
sin πft

πft

)
. (10.19)

The relatively large side lobes of |U(f)/U(0)| produce a leakage at frequen-
cies separated from the main lobe. This produces a distortion throughout the
spectra, especially when the signal consists of a narrow band of frequencies.
This is illustrated in Figure 10.21.
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FIGURE 10.21
The rectangular (boxcar) window.

It is better to taper the signal to eliminate the discontinuity at the
beginning and end of the data record. There are many types of tapering
windows available. The cosine-squared window, also known as the Hanning
window, is used most commonly. This is given by

uhanning(t) =
1

2

(
1 − cos

2πt

T

)
= 1 − cos2

(
πt

T
,

)
(10.20)

when 0 ≤ t ≤ T . Otherwise, uhanning = 0. Further,

Uhanning(f) =
1

2
U(f) +

1

4
U(f − f1) +

1

4
U(f + f1), (10.21)

where f1 = 1/T and U(f) is defined as before with

U(f − f1) = T

[
sin π(f − f1)T

π(f − f1)T

]
(10.22)

and

U(f + f1) = T

[
sin π(f + f1)T

π(f + f1)T

]
. (10.23)

The Hanning window is presented in Figure 10.22.
Finally, it should be noted that windows reduce the amplitudes of the

spectrum. For a given window, this loss factor can be calculated [2]. For
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FIGURE 10.22
The Hanning window.

the Hanning window, the amplitude spectrum must be scaled by the factor√
8/3 to compensate for this attenuation. Thus,

Yn(fk) = δt

√
8

3

N−1∑

n=0

ynk

(
1 − cos2

πn

N

)
exp

[
−i

2πkn

N

]
, (10.24)

with fk = k/(Nδt), where k = 0, 1, 2, . . . , N/2 and

Gy(fk) =
2

ndNδt

nd∑

i=1

|Yn(fk)|2. (10.25)

The recommended procedure [2] for computing a smoothed amplitude
spectrum is the following:

1. Divide data into nd blocks, each of size N = 2M .

2. Taper the data values in each block {yn} (n = 0, 1, 2, . . . , N − 1) with a
Hanning or other window.

3. Compute the N -point FFT for each data block yielding Yn(fk), adjusting
the scale to account for the tapering loss (for example, multiply by

√
8/3

for the Hanning window).

4. Compute Gy(fk) for nd blocks.
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10.8 Problem Topic Summary

Topic Review Problems Homework Problems
Sampling 1, 2, 5 1, 2, 3, 4, 5, 6, 7, 8, 9
Aliasing 4 2, 3, 4, 5, 6, 7, 8, 9,

Amplitude Ambiguity 3 2, 4, 7, 9

TABLE 10.1
Chapter 10 Problem Summary

10.9 Review Problems

1. Determine the number of discrete frequencies from the minimum to and
including the maximum frequency that will appear in an amplitude-
frequency plot of a signal sampled every 0.2 s. The signal’s minimum
frequency is 0.5 Hz.

2. Determine the frequency resolution of a signal sampled 256 times for a
period of 4 s.

3. Does windowing of a signal produce a signal with no amplitude distor-
tion?

4. Determine the aliased frequency, in Hz, of a 100-Hz sine wave sampled
at 50 Hz.

5. The frequency resolution, in Hz, of a signal sampled 256 times for a
period of 4 s is (a) 256 (b) 1/4, (c) 4/256, or (d) 4.

10.10 Homework Problems

1. A discrete Fourier transform of the signal B(t) = cos(30t) is made to
obtain its power-frequency spectrum. N = 4000 is chosen. Determine
(a) the period of B(t) (in s), (b) the cyclic frequency of B(t) (in Hz),
(c) the appropriate sampling rate (in samples/s), and (d) the highest
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resolvable frequency, fmax (in Hz). Finally, (e) if N = 4096 was chosen
instead, would the computations of the Fourier transform be faster or
slower and why?

2. Using a computer program written by yourself or constructed from avail-
able subroutines, calculate and plot the following: one plot containing
the continuous signal y(t) and its discrete version versus time, and the
other plot containing the amplitude spectrum of the discrete sample.
Provide a complete listing of the program. Do this for each of the cases
below. Support any observed aliasing or leakage of the sample by appro-
priate calculations. State, for each case, whether or not aliasing and/or
leakage occur. The continuous signal is given by

y(t) = 5 sin(2πt + 0.8) + 2 sin(4πt) + 3 cos(4πt) + 7 sin(7πt).

The cases to examine are (a) N = 100, T = 10 s, (b) N = 100, T =
18 s, (c) N = 100, T = 20 s, (d) N = 100, T = 15 s, and (e) N = 50,
T = 15 s, where N represents the number of sample points and T the
sample period.

3. Consider the signal y(t) = 5 + 10 cos(30t) + 15 cos(90t). Determine (a)
the frequencies (in Hz) contained in the signal, (b) the minimum sample
rate (in samples/s) to avoid aliasing, and (c) the frequency resolution
of the frequency spectrum if the signal is sampled at that rate for 2
seconds. Finally, sketch (d) the amplitude-frequency spectrum of y(t)
and (e) the amplitude-frequency spectrum if the signal is sampled at 20
samples/s.

4. A velocity sensor is placed in the wake behind an airfoil subjected to a
periodic pitching motion. The output signal of the velocity transducer
is y(t) = 2 cos(10πt) + 3 cos(30πt) + 5 cos(60πt). Determine (a) the
fundamental frequency of the signal (in Hz), (b) the maximum frequency
of the signal (in Hz), (c) the range of acceptable frequencies (in Hz) that
will avoid signal aliasing, and (d) the minimum sampling frequency (in
Hz) that will avoid both signal aliasing and amplitude ambiguity if 20
samples of the signal are taken during the sample period. Finally, if
the signal is sampled at 20 Hz, determine (e) the frequency content of
the resulting discrete series, y(δnt), and (f) the resulting discrete series
y(δnt).

5. The signal y(t) = 3 cos(ωt) has a period of 4 seconds. Determine the
following for the signal: (a) its amplitude, (b) its cyclic frequency, (c)
the minimum sampling rate to avoid aliasing, (d) its mean value over
three periods, and (e) its rms value over two periods. The formula∫

[cos(ax)]2dx = 1
a [− 1

2 cos(ax) sin(ax) + 1
2ax] may or may not be useful.
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6. At what cyclic frequency will the signal y(t) = 3 sin(4πt) appear if (a)
fs = 6 Hz, (b) fs = 4 Hz, (c) fs = 2 Hz, and (d) fs = 1.5 Hz?

7. For the deterministic signal y(t) = 2 + 3 sin(6πt) + 4 sin(18πt), sketch
the amplitude-frequency spectrum of y(t) (a) when the signal is sampled
at a rate of 24 Hz (indicate by solid lines) and (b) when it is sampled
at a rate of 12 Hz (indicate by dashed lines). Finally, (c) determine
the minimum sample period (in s) to avoid amplitude ambiguity in the
amplitude-frequency spectrum.

8. At what cyclic frequency will the signal y (t) = 12 cos (3πt) appear if
sampled at (a) fs = 6 Hz, (b) fs = 2.75 Hz, (c) fs = 3 Hz, and (d)
fs = 1 Hz?

9. Consider the signal z(t) = 3 cos(8πt)+4 sin(5πt+0.25). (a) Classify the
signal by its main division plus all subdivisions (for example, nondeter-
ministic/stationary/ergodic). Next, determine (b) the cyclic frequency
of each component, (c) the shortest sample period to avoid amplitude
ambiguity, and (d) the minimum sampling rate to avoid aliasing. Finally,
determine, if any, (e) the aliased frequencies if the signal is sampled at
7 Hz.
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Units thus resemble sports officials: the only time you pay real attention to
them is when something stupid happens.

Steve Minsky, “Measure for Measure,” Scientific American, August 2000, 96.

Scientists lost a $125 million spacecraft as it approached Mars last week
essentially because they confused feet and pounds with meters and kilograms,

according to the National Aeronautics and Space Administration.
“A Little Metric Misstep Cost NASA $125 Million,” International Herald Tribune,

October 2, 1999.

Maximum Height: 11’3”
3.4290 metres

A sign on a bus in Edinburgh, Scotland, September, 1998.
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11.1 Chapter Overview

This chapter introduces two important topics: systems of units and sig-
nificant figures. These topics often are considered too mundane to occupy
valuable lecture time and therefore are left to students to learn on their own
time. In fact, most students and their teachers spend very little time on
these topics. Consequently, they often cannot identify the proper units of a
particular dimension, convert its value from one system of units to another,
and express it with the proper number of significant figures. It cannot be
over-emphasized that it is essential for a good scientist or engineer to have
an excellent grasp of systems of units and significant figures.

11.2 English and Metric Systems

We live in a world in which we are constantly barraged by numbers and
units. Examples include 100 megabyte per second ethernet connections, 64
gigabyte USB flash drives, a pint of Guinness quaffed in an English pub by
an American tourist weighing 15 stones, 103 mile per hour fastballs, and over
two-meter-high aerial dunk shots. A visitor from the early 1900’s would have
no idea about what we are talking! We speak a foreign language that appears
confusing to most. But units and measures are not meant to confuse. They
were developed for us to communicate effectively, both commercially and
technically. They are the structure behind our technical accomplishments.
Without them, the Tower of Babel still would be under construction!

In the United States, two languages of systems currently are spoken.
These loosely are referred to as the English and the metric systems. This
bilingual situation can lead to some serious mistakes. A contemporary exam-
ple of this is the loss of a $125 million Mars Climate Orbiter on September
23, 1999, which was referred to in the headlines quoted at the beginning of
this chapter. Basically, one group of scientists calculated the thrust of the
orbiter’s engines in units of pounds, but NASA assumed the values were in
units of newtons. This led to approximately a 100 mile difference from its
intended orbit, causing the spacecraft to burn up during orbital insertion!
So, effective technical communication requires the abilities to speak the lan-
guage of both systems of units and to be able to translate between them.
Before studying each system, however, it would be good to delve into a little
of their history.

The English system of units evolved over centuries starting from the
Babylonians, followed by the Egyptians, Greeks, Romans, Anglo-Saxons,
and Norman-French. It was the Romans who introduced the base of 12 in
the English system, where one Roman pes (foot) equaled 12 Roman unciae
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(our inch). It was not until around the early 1500s that man began to
consider quantifying and standardizing dimensions such as time and length.
The yard, for example, has its origin with Saxon kings, whose gird was the
circumference of the waist. It was King Edgar who, in an apparent attempt
to provide a standard of measurement, declared that the yard should be
the distance from the tip of his outstretched fingers to his nose. Other royal
declarations, such as one made by Queen Elizabeth I defining the statute
mile to be 5280 feet (8 furlongs at 220 yards per furlong) instead of the
Roman mile (the distance of 1000 Roman soldier paces or 5000 feet), served
to standardize what has become known as the English system of units.

The metric system, on the other hand, was not burdened with units of
anthropometric origin, as was the English system. The metric system did not
arise until near the end of the Period of Enlightenment, around the end of the
17th century. Thus, its development followed a more rational and scientific
approach. Prior to its introduction, practically no single unit of measure
was consistent. Footplates abounded, which marked the lengths of the most
common footmeasures in Europe. In Rhineland, a foot was 31 centimeters,
whereas in Gelderland it was 27 centimeters. The pound in Amsterdam
was 494 grams. Slightly farther south in the Hague, it was 469 grams. This
presented considerable confusion and impeded intercity commerce.

In 1670, a decimal system based on the length of one arc minute of the
great circle of the earth was proposed by Gabriel Mounton. Jean Picard, in
1671, proposed that the length standard be defined as the length of a clock’s
pendulum whose period was a specified time. It was not until 1790 when
a commission appointed by the French Academy of Sciences developed and
formalized a decimal-based system defining length, mass, and volume. The
unit of length, the meter, equaled one ten-millionth of the distance from
the north pole to the equator along the meridian of the earth running from
Dunkerque, France, through Paris to Barcelona, Spain. The unit of mass,
the gram, was defined in terms of a liquid volume, where one gram equaled
the mass of one cubic centimeter of water at its temperature of maximum
density. The unit of volume, the liter, equaled one cubic decimeter. This
approach established mass and volume as supplementary units in terms
of a base unit (the meter), which was to a physical standard (the earth’s
circumference).

In 1866, the United States Congress made it lawful to use the metric
system in the United States in contracts, dealings, and court proceedings.
Various metric units were defined in terms of their English counterparts.
For example, the meter was defined as exactly 39.37 inches. In 1875, the
United States signed in Sèvres, France, along with 16 other countries, an
international treaty called the Metric Conversion. This treaty established a
permanent international bureau of standards and the standards for length
and mass. In 1893, the US customary units (those based on the English sys-
tem) were redefined in terms of their metric standards (which was opposite
the approach taken in 1866). The yard became exactly 0.9144 meters (hence,
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the foot became exactly 0.3048 meters and the inch became exactly 0.0254
meters) and the pound exactly 0.453 592 4 kilograms. Since the treaty, al-
most all world countries have officially accepted this system. Over the years
it was revised and simplified, eventually resulting in the Le Système Inter-
national d’Unités (International System of Units). This system, abbreviated
as SI, was adopted by the General Conference in 1960 and is what people
today call the metric system.

The United States made a valiant attempt to adopt the metric system
in 1975 with the Metric Conversion Act, which required Federal agencies to
use the metric system by 1992. Some signs along interstate highways showed
distances to cities in both English and metric units. Soft drinks appeared in
the market in liter bottles. A national chain of stores began selling metric
tools. Beyond that, however, little happened with the general public and
industry. Since then, most of these highways signs have disappeared. The
liter-size plastic bottles and the metric tools remain as epitaphs. As of 2010,
the United States, Liberia, and Myanmar are the only three countries out
of the 193 countries in the world that formally have not adopted the metric
system.

Today, the responsibility of maintaining the standards of measure in the
US rests with the National Institute of Standards and Technology (NIST).
NIST provides a wealth of information on systems of units and their origin
[1].

11.3 Systems of Units

The measurement of a physical quantity involves the process of assigning
a specific value with units to the physical quantity. The quantity has a di-
mension. Its unit determines its measure or magnitude. For example, a
sheet of European A4 paper is 210 millimeters wide by 297 millimeters long.
The dimension is length, the unit is millimeters, and the measures are 210
and 297. If this information is expressed in another system of units, the di-
mension still is length but the unit and measures will be different. There are
seven fundamental dimensions: length, mass, time, temperature, electri-
cal current, amount of substance, and luminous intensity.

A system of units is necessary to provide a framework in which phys-
ical quantities can be expressed and also related to one another through
physical laws. Five different systems of units are presented in Table 11.1. SI
is the universally accepted system. Unfortunately, the English Engineering
system (US Standard Engineering or old English) and the Technical English
system (US Customary or British Gravitational) still are championed by US
industry (vox clamantis in deserto). Use of the other two systems, Absolute
Metric and Absolute English, continues to appear in some publications.
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Physical quantities of different dimensions are related to one another
through equations in the form of definitions and natural laws. Consider, for
example, Newton’s second law: F = ma, where F denotes force, m mass,
and a acceleration. In SI, a gravitational force of 9.81 newtons (N) (9.806 65
exactly) is required for a 1 kilogram (kg) mass to accelerate by 9.81 meters
(m) per second (s) squared. The equation F = ma gives two equations,
a numerical equation that contains only the measures of the physical
quantities, 9.81 = 1 · 9.81, and a unit equation, N = 1 · kg · m/s2. The
units within a system are consistent or coherent if no numerical factors
other than 1 occur in all unit equations, as in this example.

A system of units is comprised of base, supplementary, and derived
units. Base units are dimensionally independent. There is a base unit for
every fundamental dimension contained in a particular system of units.
Supplementary units, such as the radian, are considered dimensionless and
do not represent a fundamental dimension. Derived units literally are de-
rived from the base and supplemental units and, therefore, are comprised of
products, quotients, and powers of base and supplemental units. In the SI
system, for example, the kilogram, meter, and second are base units. The
newton is a derived unit because it represents a force, which is derived from
the base units of mass times acceleration (as expressed by Newton’s second
law). Hence, a newton equals a kilogram times a meter divided by a second
squared (N = kg m/s2). The base units of the quantities listed in Table 11.1
are printed in normal font; those of the derived quantities are in italics.

Example Problem 11.1
Statement: Give the fundamental dimensions, unit, and measure of your weight in

the Technical English system and in the International system.

Solution: Assume an example weight of 172 pounds in the Technical English system.
Weight is a force, which is mass times the local gravitational acceleration. So, for both
the Technical English and International systems of units, the fundamental dimensions
of weight are mass, length, and time. The unit of force is lbf in the Technical English
system and N in the International system. The measure is 172 in the Technical English
system and 765, which equals 172/0.2248, in the International system.

Example Problem 11.2
Statement: In the English Engineering system 1 lbf is required to accelerate 1 lbm

32.174 ft/s2. Is this system of units consistent?

Solution: The unit equation for this circumstance is 1 lbf = 1 lbm × 32.174 ft/s2.
That is, 1 lbf equals 32.174 lbm × ft/s2. A numerical factor other than 1 (here 32.174)
appears in the unit equation, so the English Engineering system is not consistent.
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Example Problem 11.3
Statement: What are the base units of mass and of force in the Technical English

and English Engineering systems of units?
Solution: In both the Technical English and English Engineering systems of units,

force is a base unit and its unit is lbf. In the Technical English system, mass is a derived
unit, the slug. Its base units are lbf, ft, and s (1 slug = 1 lbf/1 ft/s2). In the English
Engineering system, mass is a base unit and its unit is lbm.

For SI there are seven base units corresponding to the seven fundamental
dimensions. These include the meter (m) for length, the kilogram (kg) for
mass, the second (s) for time, the kelvin (K) for temperature, the ampere (A)
for electric current, the mole (mol) for the amount of substance or quantity
of matter, and the candela (cd) for luminous intensity. The corresponding
fundamental symbols used for dimensional analysis are L for length, M for
mass, T for time, Θ for temperature, A for electric current, M for the
amount of substance or quantity of matter, and K for luminous intensity.
There are two supplemental units, the radian (rad), which defines a plane
angle, and the steradian (sr), which defines a solid angle. The seven base
and two supplementary units of the SI system are discussed further in the
following section. All other SI units are derived from these nine units, some
having symbols and some not. For example, the volt, denoted by the symbol,
V, is a derived SI unit that represents the electric potential. Expressed in
base units it equals kg m2/(s3 A).

There is a convention for the capitalization of unit abbreviations. A unit
abbreviation named in honor of a person begins with a capital letter. For
example, the pascal (Pa) is named after Blaise Pascal (1623-1662), and the
hertz (Hz) is named after Heinrich Hertz (1857-1894). All other units, when
spelled out, begin with lower-case letters, with a few exceptions. One is the
SI abbreviation for volume, the liter (L). This abbreviation is capitalized to
avoid confusion with the lower-case letter l and with the numeral 1.

A system of units can be created from a given number of base units. The
MKSA system of units (actually a subsystem of the SI system) is a consistent
system of units used for mechanics, electricity, and magnetism, that has the
four base units m, kg, s, and A. A coherent system for mechanics is the MKS
system having the three base units m, kg, and s. Many other systems abound
such as the electrostatic CGS and the electromagnetic CGS systems. Their
ubiquitous presence implicitly cautions us when converting from one system
of units to another and further supports the use of one consistent system
by everyone. Consider the beginning sentence in an article describing the
construction of Washington DC’s Metro transit system that appeared in the
July, 1976, Newsletter of the National Safety Council, “Mining recently has
been completed for a 2200-foot-long (670 millimeters) twin tunnel section...”
Apparently this system was designed for either humans or insects, depending
upon which system of units was used!



International Absolute English
Quantity System Metric Engineering

System System
(SI) (CGS) (EE)

Length meter (m) centimeter (cm) foot (ft)

Time second (s) second (s) second (s)

Mass kilogram (kg) gram (g) pound-mass (lbm) pound-mass

Force newton (N) dyne pound-force (lbf)

gc 1
kg·m
N·s2

1
g·cm

dyne·s2
32.174 lbm·ft

lbf·s2

TABLE 11.1
Five systems of units (adapted from [2] and [3])
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Now return to the five systems of units presented in Table 11.1. There
are basically four dimensions involved in each of these systems when used in
mechanics: length, time, mass, and force. The English Engineering system
is unique in that each of these four dimensions is defined to be indepen-
dent. That is, for this particular system, the foot, second, pound-mass, and
pound-force are base units. The unit for force is defined as the force with
which the standard pound-mass is attracted to Earth at a location where
the gravitational acceleration equals 32.1740 ft/s2. The four dimensions are
related through the equation F = m · a/gc, where F denotes the force in
units of lbf, m the mass in units of lbm, a the gravitational acceleration
(32.1740 ft/s2), and gc a constant that relates the units of force, mass,
length, and time. From this equation, for only the English Engineering sys-
tem, gc = 32.1740 lbm·ft/lbf·s2. Thus, this system is not consistent, as was
shown in a previous example problem.

Example Problem 11.4
Statement: A sounding rocket travelling at a constant velocity of 200 miles per hour

in steady, level flight ejects 0.700 lbm/s of exhaust gas from its exit nozzle. Determine
the rocket’s thrust, T , for both the English Engineering and International system of
units.

Solution: Thrust is the equal and opposite reaction to the force that the exhaust
gas exerts on the rocket nozzle. Because the rocket is traveling at a constant velocity,
Newton’s second law tells us that the thrust equals the velocity times the exhaust-gas
mass flow rate.

In the English Engineering system,

T = 200
mile

hour
× 5280

ft

mile
× 1

3600

hour

s︸ ︷︷ ︸
×0.700 lbm

s × 1

32.174

lbf × s2

lbm × ft︸ ︷︷ ︸
= 6.37 lbf.

293 ft
s gc

In the International system of units,

T = 293
ft

s
× 12

in.

ft
× 0.0254

m

in.︸ ︷︷ ︸
× 0.700

lbm

s
× 1

2.2046

kg

lbm︸ ︷︷ ︸
= 28.4 N.

89.3m
s 0.318

kg
s

Each of the other four systems derives one of its four dimensions from
the other three. The derived unit for each of these systems (force for three of
these systems and mass for one) is given in italics in Table 11.1. For example,
in the Absolute Metric system, the derived unit is the dyne, which, when
expressed in terms of the base units, becomes g·cm/s2. Note that each of
these four systems is consistent, as a consequence of this approach. This is
indicated by the numerical factor of 1 for gc.
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11.4 SI Standards

Next, examine the current definitions of the seven base and two supplemen-
tary units of the SI system.

The SI base unit of the dimension of time is the second (s). It is defined
as the duration of 9 192 631 770 cycles of the radiation associated with the
transition between two hyperfine levels of the ground state of cesium-133.
The conversion of this duration of cycles into time is accomplished by passing
many cesium-133 atoms through a system of magnets and a resonant cavity
driven by an oscillator into a detector (this device is called an atomic beam
spectrometer). Only those atoms that have undergone transition reach the
detector. When 9 192 631 770 cycles of a detected atom in transition have
occurred, the atomic clock advances 1 s.

The SI base unit of length is the meter (m). The meter was defined in
1983 to be the length that light travels in a vacuum during the interval of
time equal to 1/299 792 458 s. Although it is related to the dimension of time,
it is a base unit because it is not derived from other units. This definition
uncoupled the meter from its 200-year-old terrestrial origin. People certainly
have come a long way since defining the meter in terms of a geophysical
dimension that is changing constantly.

The SI base unit of mass is the kilogram (kg). This is the only base unit
still defined in terms of an artifact. The international standard is a cylinder
of platinum-iridium alloy kept by the International Bureau of Weights and
Measures in Sèvres, France. A copy of this cylinder, a secondary standard,
is at the NIST in Gaithersburg, Maryland, where it serves as the primary
standard in the United States. The kilogram is the only SI base unit linked to
a unique physical object. This will end soon when the kilogram is redefined
in terms of a more accurate, atom-based standard [10].

The kelvin (K) is the SI base unit of temperature. The kelvin is based
upon the triple point of pure water where pure water coexists in solid,
liquid, and vapor states. This occurs at 273.16 K and 0.0060 atmospheres of
pressure. Thus, a kelvin is 1/273.16 of the thermodynamic temperature of
the triple point of pure water. Absolute zero, at which all molecular motion
ceases, is 0 K.

The SI base unit of electric current is the ampere (A). The ampere
is defined in terms of the force produced between two parallel, current car-
rying wires. Specifically, an ampere is the amount of current that must be
maintained between two wires separated by one meter in free space in order
to produce a force between the two wires equal to 2 × 10−7 N/m of wire
length.

The mole (mol) is the SI base unit for the amount of substance. It is the
amount of substance of a system that contains as many elementary entities
as the number of atoms in 0.012 kg of carbon 12 (6.022 142 × 1023= Na).
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That is, 1 mol contains Na entities, where Na is Avogadro’s number. The
entities can be either atoms, molecules, ions, electrons, other particles, or
groups of such particles. The entities could even be golf balls! So, 1 mole of
carbon 12 has a mass of 0.012 kg, 1 mole of monatomic oxygen has 0.016 kg,
and 1 mole of diatomic oxygen has 0.032 kg. Each contains 6.022 142×1023

entities, which would be atoms for carbon 12 and for monatomic oxygen
and molecules for diatomic oxygen. The mass of 1 mole of a substance is
determined from its molecular (atomic) weight. Its SI units are kg/kg-mole.
The atomic mass unit, typically designated by the symbol amu, exactly
equals 1/12 the mass of one atom of the most abundant isotope of carbon,
carbon-12, which is 1.6603 × 10−27 kg. This unit of mass is called a dalton.

The SI base unit of luminous intensity is the candela (cd). One can-
dela is the luminous intensity, in a given direction, of a source that emits
monochromatic radiation of frequency 540 × 1012 hertz and that has a ra-
diant intensity in that direction of 1/683 watts per steradian. A 100 watt
light bulb has the luminous intensity of approximately 135 cd and a candle
has approximately 1 cd.

There are two SI supplementary (dimensionless) units, the radian (rad)
and the steradian (sr). The radian is based upon a circle and the steradian
upon a sphere. One radian is the plane angle with its vertex at the center
of the circle that is subtended by an arc whose length is equal to the radius
of the circle. Hence, there are 2π radians over the circumference of a circle.
The steradian is the solid angle at the center of a sphere that subtends an
area on the surface of the sphere equal to the square of the radius. Thus,
there are 4π steradians over the surface of a sphere.

The base units of time, electric current, and amount of substance are
the same in both the SI and English systems. The systems differ only in
the units for the dimensions of length, mass, temperature, and luminous
intensity. Presently, the level of accuracy for most base units is 1 part in 10
million [10].

11.5 Technical English and SI Conversion Factors

People working in technical fields today must learn both the Technical En-
glish and SI systems and be proficient in converting between them. This
is particularly true for the dimensions of mechanical, thermal, rotational,
acoustical, photometric, electric, magnetic, and chemical systems. The units
used in the SI and Technical English systems for these dimensions are pre-
sented in tables on the text web site. Often, the knowledge of one conversion
factor for each dimension is sufficient to construct other conversion factors
for that dimension. Table 11.2 lists some conversion factors between units
in SI, English Engineering, and Technical English. The SI units for electric
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Dimension Units with Factors
Length 1 m = 3.2808 ft

1 km = 0.621 mi
Volume 1 L = 0.001 m3 = 61.02 in.3

Mass 1 kg = 2.2046 lbm = 0.068 522 slug
Force 1 N = 0.2248 lbf

Work, Energy 1 kJ = 737.562 ft·lbf = 0.947 817 Btu
Power 1 kW = 1.341 02 hp = 3414.42 Btu/hr

Pressure, 1 atm = 14.696 psi = 101 325 Pa
Stress = 407.189 in. H2O = 760.00 mm Hg = 1 bar

Density 1 slug/ft3 = 512.38 kg/m3

K = ◦C +273.15
K = (5/9) × ◦F + 255.38

Temperature K = (5/9) × ◦R
◦F = (9/5) × ◦C + 32.0

◦F = ◦R - 459.69

TABLE 11.2
Some useful conversion factors

and magnetic systems are presented in Chapter 2. There are many electronic
work sheets available on the Internet that automatically perform unit con-
versions [11]. Also refer to the standards used for SI unit conversion [12].

11.5.1 Length

For the dimension of length, 1 in. equals 2.54 cm exactly. Using this conver-
sion, 1 ft = 0.3048 m exactly, 1 yd = 0.9144 m exactly and 1 mi = 1.609
344 km exactly. A 10 km race is approximately 6.2 mi. Note that a period
is used after the abbreviation for inch. This is the only unit abbreviation
that is followed by a period, so as not to confuse it with ‘in’, the English
preposition. No other unit abbreviations are followed by periods.

11.5.2 Area and Volume

For area and volume, the square, and the cube of the length dimension, re-
spectively, are considered. The SI units of area and volume are m2 and m3.
However, the liter (L), which equals 1 cubic decimeter or 1/1000 m3, often
is used. One L of liquid is approximately 1.06 quarts or 0.26 gallons. A 350
cubic inch engine has a total cylinder displacement volume of approximately
5.7 L. Curiously, when the American tourist drinks an English pint of Guin-
ness, he consumes 20 liquid UK ounces. A pint in his home country is 16
liquid ounces. In the United States, 1 liquid gallon (gal) = 4 liquid quarts
(qt) = 8 liquid pints (pt) = 16 liquid cups (c). Further, 1 liquid cup (c) =
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8 liquid ounces (oz) = 16 liquid tablespoons (Tbl) = 48 liquid teaspoons
(tsp). The liquid (fluid) ounce is a unit of volume. The ounce when specified
without the liquid prefix is a unit of mass, where 16 oz = 1 lbm.

11.5.3 Density

The SI unit for density is kg/m3. Most gases have densities on the order
of 1 kg/m3 and most liquids and solids on the order of 1000 kg/m3 to 10
000 kg/m3. For example, at 1 atm and 300 K air has a density of 1.161
kg/m3, water 1000 kg/m3, and steel 7854 kg/m3. The density of air can be
determined over the temperature range from approximately 160 K to 2200
K using the equation of state for a perfect gas, which is

ρ =
p

R · T =
p · MW
R · T , (11.1)

where ρ is the density, p the pressure, T the temperature, R the universal gas
constant equal to 8313.3 J/(kg-mole·K), MW the molecular weight, and R
the gas constant, which equals R/MW. For air, R = 287.04 J/(kg·K) based
upon its molecular weight of 28.966 kg/kg-mole. The density of air at sea
level is 1.2250 kg/m3. The density of water (±0.2 %) at 1 atm over the
temperature range from 0 ◦C to 100 ◦C is given by the curve fit [4]

ρ = 1000 − 0.0178|T − 4|1.7, (11.2)

where the density is expressed in units of kg/m3 and the temperature in
units of degrees Celsius.

11.5.4 Mass and Weight

The conversion of mass is straightforward. One lbm equals 0.453 592 4 kg
exactly. So, 1 slug is approximately 14.59 kg. In terms of base units, 1 slug
equals 1 lbf·s2/ft. Thus, the mass of the 15 stone American tourist in the
English pub is 6.52 slugs in the Technical English system and 210 lbm in
the English Engineering system (1 stone = 14 lbm).

Weight, which is a force, is the product of mass and acceleration. The
tourist’s weight is 210 lbf in both the Technical English and English En-
gineering systems. This seems confusing. The units and measures of the
tourist’s mass are different in these two systems. Yet, the weight units and
measures are the same! Such system conversion confusion usually arises
when those speaking the English system do not specify what dialect they
are using (Technical or Engineering). This invariably leads to the common
question, “Should the mass be divided by 32.2 to compute the force or not?”
The answer is yes if you are speaking English Engineering and no if you’re
speaking Technical English. Let us see why.
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To avoid confusion in problems involving mass, acceleration, and force
for the different systems, Newton’s second law can be written as F = ma/gc.
This effectively keeps the measures of the dimensions correct for all systems.
For consistent systems, the measure of gc is unity. So F = ma can be used
directly. For example, in the Technical English system 1 lbf will accelerate
1 slug at 1 ft/s2. For the inconsistent English Engineering system, gc equals
32.174 lbm ft/lbf s2. So, F = ma/gc must be used. For example, 1 lbf will
accelerate 32.174 lbm at 1 ft/s2 or 1 lbm at 32.174 ft/s2. By comparing the
units of mass between the two English systems, 1 slug = 32.174 lbm. Such
confusion usually compels unit-challenged individuals to learn the SI system
for the sake of simplification.

Example Problem 11.5
Statement: Compute for both the Technical English and International systems of

units the mass and weight of air at 300 K in a room with internal dimensions of 12 ft
× 12 ft × 10 ft.

Solution: The volume of the air in the room is 1440 ft3. The density of air at 1
atm and 300 K is 1.16 kg/m3 = 0.002 26 slug/ft3. So, in Technical English, the mass
of the air is 3.26 slugs and its weight is 3.26 slugs × 32.174 ft/s2 = 105 lbf. In SI the
mass is 47.6 kg and its weight is 47.6 kg × 9.81 m/s2 = 467 N. Also note that in the
English Engineering system the density of air would be equal to 0.0727 lbm/ft3. Thus,
in English Engineering, the mass of the air is 105 lbm and its weight is 105 lbm × g/gc

= 105 lbm × 32.174 ft/s2 / 32.174 lbm × ft/lbf × s2 = 105 lbf. Note that the force
in both the Technical English and English Engineering systems has the same measure
but the mass does not.

Keep in mind that for an object of a given mass, its acceleration and
weight change with distance from the center of the gravitational field of the
body to which it is attracted. The weight, w, of a body is related to its
mass, m, through Newton’s law of gravitational attraction as

w(z) = mgo

(
Rb

Rb + z

)2

= mg(z), (11.3)

where Rb is the radius of the body (Rb = 6 378 150 m for Earth), go the local
gravitational acceleration (go equals 9.806 65 m/s2 at sea level on Earth),
and z is the distance away from the body (z = 0 at sea level).

Example Problem 11.6
Statement: Compute the gravitational acceleration in SI units at an altitude of 35

000 ft, where commercial jet airplanes fly.
Solution: First the altitude is converted in the SI unit of meters. Here 35 000

ft/3.2808 ft/m = 10 668 m. Then, using the expression for g(z) from Equation 11.3
yields g(10 668 m) = 0.996 66 × go. So the change in the gravitational acceleration
from that at sea level is very small, less than a half of one percent.
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11.5.5 Force

The unit of force in SI is the newton (N), named after Sir Isaac Newton
(1642-1727). A force of 1 N accelerates a 1 kg mass at 1 m/s2. One N is
approximately 0.225 lbf. Curiously, this is the approximate weight of an
apple or, alternatively, the force felt by your hand when holding an apple.
So, if a popular hamburger chain converted to metric, then its quarter pound
hamburger would become a newton burger!

In the English Engineering system there are pounds of force and pounds
of mass, which are designated by lbf and lbm, respectively. In the Technical
English system there is only one pound, the pound-force, which is desig-
nated by lbf. The unit lbf (as opposed to lb) is used in Technical English to
designate the pound-force in order to avoid any ambiguity.

Force per unit area is pressure or stress. The SI unit for this is the pascal
(Pa), which equals one N/m2. One atmosphere, approximately 14.696 psia
(pounds per square inch absolute), equals 101.325 kPa. The pressure at the
center of the Earth is 5.8 × 107 kPa and that of the best laboratory vacuum
is 1.45 × 10−16 kPa [6].

Example Problem 11.7
Statement: At an altitude of 35 000 ft above sea level the atmospheric pressure is

205 mm Hg. Assuming that the typical area of an airplane’s passenger window is 80
in.2, determine the net force on the window during flight at that altitude.

Solution: Assume that the pressure inside the airplane is 1 atm = 760 mm Hg.
So, the force on the window will be outward because of the higher pressure inside the
cabin. The pressure difference will be equal to 760 mm Hg − 205 mm Hg = 555 mm
Hg = 10.7 lbf/in.2. Thus, the net outward force is (10.7 lbf/in.2) × (80 in.2) = 859 lbf
= 3.82 kN.

11.5.6 Work and Energy

The SI unit for work or energy is the joule (J), named after the British
scientist James Joule (1818-1889). Joule is best known for the classic exper-
iment in which he demonstrated the equivalence of energy and work. In fact,
energy is defined as the ability to do work. One J is 0.2288 calories (cal), or
approximately 0.738 ft·lbf, or approximately 9.48 × 10−4 Btus (British ther-
mal units). One Calorie (with a capital C, abbreviated Cal) is 1000 calories
= 1 kcal. Thus, 1 kJ = 0.2288 Cal.

Most people count Calories when on a diet. It takes approximately 0.016
J of work to lift a teaspoonful of ice cream from the table to your mouth (a
distance of approximately 1/3 m) to gain approximately 35 000 J of energy
from the ice cream. That is not much caloric expenditure for a lot of caloric
gain!
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Example Problem 11.8
Statement: A person eats a cup of high quality ice cream. How many miles would

the person have to jog to expend the energy he just consumed? How much weight would
he gain if he did not jog off the calories added by eating the ice cream?

Solution: For energy to be conserved and the person not to change weight, the
energy contained in the ice cream must equal the energy expended in jogging. Assume
that 100 Cal are expended for each mile jogged. A cup of ice cream contains approx-
imately 400 Cal. Thus, he would have to jog 4 miles. If he did not jog, the 400 Cal
would be converted into a mass of body fat whose weight is approximately 1/8 lbf on
earth. This is because 1 g of fat produces 9 Cal of energy. So, 400 Cal is converted into
44.4 g of body fat. The weight of this mass on earth is 0.436 N, which is approximately
1/8 lbf.

11.5.7 Power

Power is work or energy per unit time. The SI unit of power is the watt (W),
which is a joule per second (J/s). This is named after the British engineer
James Watt (1736-1819). Intensity usually refers to power per unit area, or
in SI units, W/m2. Flux often denotes intensity per unit time, or in SI units,
W/(m2·s) in many transport processes. However, be sure to check the units
when the term flux is used. For example, the “solar flux” at Earth’s surface
is approximately 1 370 W/m2, which is an intensity.

11.5.8 Temperature

The temperature scales are related as shown in Table 11.2. Water boils at
approximately 212 ◦F, 100 ◦C, 373.15 K, and 671.67 ◦R, depending upon the
local pressure. The unit ◦C denotes degrees Celsius (not degrees Centigrade,
which is no longer preferable) and K stands for kelvin (not degrees kelvin).
Note the lack of the degree symbol with K). The Kelvin and Rankine scales
are absolute (thermodynamic) temperature scales. An absolute temperature
is independent of the properties of a particular system and is based upon the
second law of thermodynamics. The temperatures 0 K and 0 ◦R represent
absolute zero. In the Kelvin scale, a value of 273.16 is assigned to the triple
point of water.

An International Practical Temperature scale (IPTS-68) was adopted in
1968 by the International Committee of Weights and Measurements. This
scale covers the temperature range from 13.81 K (the triple point of hydro-
gen) to 1377.58 K (the freezing point of gold at 1 atmosphere). It specifies a
series of 11 temperatures based upon the triple, freezing, and boiling points
of various substances, the temperature measurement instruments to be used
for calibration purposes over a specified temperature range, and the equa-
tions for interpolating temperatures among the 11 fixed points.
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Example Problem 11.9
Statement: Sir Isaac Newton developed his own temperature scale in 1701 where

water was “just freezing” at 0 units and “boyles vehemently” at 34.4 units. Six units of
his temperature scale corresponded to “air at midsummer.” What was the temperature
of the midsummer air in London in units of his contemporary Gabriel Fahrenheit’s
temperature scale?

Solution: From the temperature difference between the boiling and freezing of
water, it is known that 212 ◦F − 32 ◦F = 180 ◦F, which corresponds to 34.4 units
of Newton’s scale. Thus, the conversion factor from Newton’s to Fahrenheit’s units
is 5.23, assuming that both scales are linear in between the two temperatures. This
implies that the midsummer’s air is 6 × 5.23 ◦F/Newton unit + 32 ◦F = 63.4 ◦F.

11.5.9 Other Properties

The properties of gases, liquids, and solids can be expressed in terms of
base and supplementary units. Absolute or dynamic viscosity, µ, is a fluid
property that is related to the fluid’s shear stress (force per unit area), τ ,
and rate of shear strain (strain per unit time), dθ/dt, by the expression
τ = µdθ/dt. Thus, the fundamental dimensions of absolute viscosity are
ML−1T−1, and the SI base units are kg/(m·s). Kinematic viscosity, ν, is
the ratio of absolute viscosity to density, µ/ρ, and has the SI units of m2/s.
The absolute viscosity of air and water are affected weakly by pressure and
strongly by temperature. The absolute viscosity for air can be determined
using Sutherland’s law [4]

µ = µo

(
T

To

)3/2(
To + S

T + S

)
, (11.4)

where µo equals 1.71 × 10−5 kg/(m·s), To = 273 K, and S = 110.4 K for
air. The absolute viscosity for water (±1 %) can be determined by the curve
fit [4]

µ = µo exp

[
−1.94 − 4.80

(
To

T

)
+ 6.74

(
To

T

)2
]

, (11.5)

where µo equals 1.792×10−3 kg/(m·s) and To = 273.16 K.
The units of most properties can be found using an expression, typically

a physical law or definition, that relates the property to other terms in
which the units are known. For example, the gas constant, R, is related to
the speed of sound (distance per unit time), a, by the expression a =

√
γRT ,

where T is the temperature, and γ equals the ratio of specific heats, Cp/Cv.
Thus, the base units of R are m2/s2·K, or equivalently J/kg·K.

Note that Cp and Cv are functions of temperature. For air at 300 K,
Cp = 1.0035 kJ/(kg·K) and Cv = 0.7165 kJ/(kg·K), which yields γair = 1.4.
The temperature and pressure of the standard atmosphere of air at sea level
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are 288.15 K and 101 325 Pa, respectively. The speed of sound for air at these
conditions is 340.43 m/s. Variations of atmospheric pressure, temperature,
density, and speed of sound with altitude for the 1976 Standard Atmosphere
are available in graphical and computational forms [13].

Finally, a word of caution is necessary. A unit balance always needs to
be done when performing calculations involving unfamiliar quantities. Do
this even when working within one system of units and using units that
can be expressed directly in terms of base units. Conversion factors may
be needed, especially when dealing with electric and magnetic units. The
following example serves to illustrate this point.

Example Problem 11.10
Statement: Determine the charge in units of coulombs of a 1 µm diameter oil

droplet that is charged to the Rayleigh limit. Also express this in terms of the number
of elementary charges. The Rayleigh limit charge, qRay , is given by the expression

qRay =
√

2πσld3
p,

where σl = 0.04 N/m and dp denotes the droplet diameter.
Solution: Noting that dp = 1 × 10−6 m and making substitutions into the expres-

sion for charge in terms of SI units yields

qRay =
√

(2π)(0.04)(1 × 10−18) = 5.02 × 10−10
√

J · m.

But is this the value of qRay in units of coulombs? In other words, is the unit C equal

to the units
√

J · m ? The answer is no. A conversion factor of
√

4πεo that has units
of C/

√
J · m) is required, in which εo is the permittivity of free space that equals 8.85

× 10−12 F/m. This is because the units F/m equal the units C2/(J·m). The measure
of the conversion factor is 1.06 × 10−5. Another useful unit conversion is (4πεo)(V2)
= N. Thus,

qRay = 5.02 × 10−10
√

4πεo = (5.02 × 10−10)(1.06 × 10−5) = 5.32 × 10−15C.

The number of elementary charges, ne, equals qRay/e = 5.32 × 10−15/1.60 × 10−19

= 33 000.

11.6 Prefixes

Often it is convenient to use scientific notation to avoid writing very large
and very small numbers, as in the previous example. Positive and negative
powers of 10 are used to shorten numbers by moving the decimal point.
Examples are 1000 = 1 × 103, 0.001 = 1 × 10−3, and as seen earlier, 6.022
137 × 1023, which was used to represent 602 213 700 000 000 000 000 000.
Sometimes the notation E ± n is used to replace × 10n, particularly with
computer output where exponents cannot be generated. For example, 3.254
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Factor Prefix Symbol
1024 yotta Y
1021 zeta Z
1018 exa E
1015 peta P
1012 tera T
109 giga G
106 mega M
103 kilo k
102 hecto h
101 deka da
10−1 deci d
10−2 centi c
10−3 milli m
10−6 micro µ
10−9 nano n
10−12 pico p
10−15 femto f
10−18 atto a
10−21 zepto z
10−24 yocto y

TABLE 11.3
Prefixes for Units

× 108 = 3.254 E+8. Prefixes also can be used with units to shorten the
writing of numbers.

Table 11.3 lists the decimal prefixes to be used when expressing large or
small numbers as an alternative to using scientific notation. Using this ap-
proach, for example, the mass of the earth, which is 5.98 × 1024 kg becomes
5.98 Ykg. Along these lines, there are approximately 10π Ms in one year.

In some situations, the magnitude of the number goes beyond where
these prefixes can be used. Consider the estimate for the energy released in
the Big Bang, 1068 J. When using the American system of numeration (see
the Table of Numbers in a dictionary), this becomes 0.1 million vigintillion
J! This system uses Latin prefixes for the “illion” in the unit and follows the
simple formulation that number = 103(n+1), where n specifies the name of
the prefix. For example, the prefix “tri” means three, which corresponds to
the number 103(3+1) = 1012 or one trillion. Likewise, one quattuordecillion
(“qua” is 4 plus “dec”, which is 10) equals 103(4+10+1) = 1045. For really
large numbers, use the googol, which was “coined in the late 1930s by the
nine-year-old nephew of the American mathematician Edward Kasner when
he was asked to come up with the name for a very large number.” [14]. One



*Units and Significant Figures 427

googol equals 10100. Its cousin, one googolplex, equals 1010100

. Obviously,
the use of scientific notation usually is preferred in such cases unless you are
out to impress your colleagues with your extensive vocabulary!

Example Problem 11.11
Statement: The American system of numeration differs from the British system of

numeration, which also is used by most European countries. In the British system 106

is a ‘thousand thousands’, 109 is a ‘milliard’ and 1012 is a ‘billion’. Beyond a British
billion, the formulation is number = 106n, where n specifies the Latin name of the
prefix of ‘illion’. Determine whether a British billionaire is richer than an American
trillionaire.

Solution: For numbers equal to and beyond 1012, the formulations given for each
of the American and British systems can be used. Thus, the ratio of a British number
to an American number equal to and beyond 1012 will be given by the formulation
ratio = 106n/103(n+1) = 103(n−1). So, a British billionaire (n = 2) is actually a
thousand times richer than an American billionaire, provided that the exchange rate
between British pounds and American dollars is 1:1, which it is not. In fact, a British
billionaire is approximately 1600 times richer than an American billionaire and 1.6
times richer than an American trillionaire!

11.7 Significant Figures

The ubiquitous use of calculators and computers has led to assignments and
lab reports with far too many digits in every number! This situation begs for
us to revisit the concept of significant figures. This is especially important
because the number of digits present in a result implies the precision of the
result. It goes without saying that the proper use of significant figures is an
essential element in the presentation of both experimental and calculated
results and their uncertainties.

How is the number of significant figures determined? The number of
significant figures is the number of digits between and including the least
and the most significant digits. The leftmost nonzero digit is called the most
significant digit; the rightmost nonzero digit, the least significant digit.
If there is a decimal point in the number, then the rightmost digit is the
least significant digit even if it is a zero. These rules imply that the following
numbers have five significant figures: 1.0000, 2734.2, 53 267., 428 970, 10 101
and 0.008 976 0.

But what happens when no decimal point is present, a zero is the right-
most digit and it is significant? This situation is ambiguous and can be
avoided by expressing the number in scientific notation, where 428 970 be-
comes 4.289 70 × 105. The convention here is that all of the digits present
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in scientific notation are significant. In this case, there are six significant
figures.

How is a number rounded off to drop its insignificant figures? Again,
there are rules. To round off a number, the number first is truncated to its
desired length. Then the excess digits are expressed as a decimal fraction.
Depending upon whether this fraction is less than, equal to, or greater than
1/2 determines the fate of the least significant digit in our truncated number.
If it is greater than 1/2, we round up the least significant digit by one; if it is
less than 1/2, it is left alone. If the fraction equals 1/2, the least significant
digit is rounded up by one only if that digit is odd. This method reduces
any systematic errors that can arise if that number actually resulted from
a rounding at a previous step in the calculations. In this light, it is better
not to round off numbers during the sequential analysis of data and only
round off the final results. If numbers are rounded off every time during
many sequential calculations, the results are skewed and a systematic error
is introduced.

Example Problem 11.12
Statement: Round off the following numbers to three significant figures: 23 421,

16.024, 273.61, 5.6850 × 103, and 5.6750 × 103.
Solution: The answers are 23 400, 16.0, 274, 5.68 × 103, and 5.68 × 103. Note that

16.024 when rounded off to three significant figures is 16.0, where the 0 is significant
because it is to the right of the decimal point. Also note that the last two numbers
when rounded off to three significant figures become the same. This is because of our
rule for round-off when the truncated fraction equals 1/2.

The misuse of significant figures occurs everywhere, from the laboratory
reports of college students in Indiana to the buses in Edinburgh, Scotland.
Let’s examine the sign in the front of the Edinburgh bus that was presented
at the beginning of this chapter. The maximum height was 11’3” or 135
inches. There are three significant figures. So, the maximum height in meters
should be written as 3.43 m, not 3.4290 as shown having five significant
figures. If the maximum height in meters was treated to have the correct
number of significant figures, then the English system equivalent should have
been written as 11’3.00”.

Consider another example. The weight of a large steel cylinder is com-
puted from measurements of its diameter and length. Let its length, L,
be equal to 3.32 m (three significant figures) and its diameter, d, equal to
0.3605 m (four significant figures). Its volume, V , would be computed us-
ing the formula V = πd2L/4 and be equal to 0.339 m3. This results from
rounding off the computed value of 0.338 874 1... to the required number
of three significant figures. This is because the number of significant figures
in a computed result equals the minimum number of significant figures in
any number used in the computation. Now, to convert from this volume to
mass, suppose that the density of the steel ingot equals 7835 kg/m3. This
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yields a mass of 2660 kg (rounded off from 2655.0793). Note that although
the density has four significant figures, only three significant figures are re-
tained in the result. Converting to weight gives 26 000 N (rounded off from
26 037.4), assuming a gravitational acceleration of 9.806 65 m/s2. There are
three significant figures in the final result, although it appears that there
are only two. For this situation, the result should be expressed in scientific
notation as 2.60 × 104 N, which implies three significant figures.

Example Problem 11.13
Statement: Determine in the appropriate SI units the value with the correct number

of significant figures of the work done by a 1.460 × 106 lbf force over a 2.3476 m
distance.

Solution: There are four significant figures for the force and five for the distance.
Because work is the product of force and distance (assuming that the force is applied
along the direction of motion), work will have four significant figures. The SI unit of
work is the joule, where J = N·m. Now 1.460 × 106 lbf equals 6.495 × 106 N. So, the
work is 1.525 × 106 J or 1.525 MJ.

Finally, what happens to the number of significant figures when you are
converting from one unit of a dimension to another, say from inches to feet?
The number of significant figures does not change (assuming, which usually
is the case, that the conversion factors are known exactly).

For example, consider a distance measurement with an uncertainty of
0.125 in. In units of feet with the correct number of significant figures would
be 0.0104 ft. Note there are three significant figures in both numbers, even
though when converting to units of feet, inches are divided by 12 (which
appears to have only two significant figures). The number of significant
figures remains three because the conversion from inches to feet is an exact
conversion (it could be divided by 12.000 when converting from inches to
feet).

Example Problem 11.14
Statement: Convert 100.0185 ◦C to temperature in K.
Solution: The conversion factor from degrees Celsius to kelvin is K = 273.15 + ◦C.

At first hand it appears that there are only five significant figures in the conversion
equation. But this is not so because the conversion equation is exact. So, 100.0185 ◦C
= 373.1685 K, where both temperatures have seven significant figures.

Thus far, the rules for applying significant figures to numerical calcu-
lations appear straightforward. However, applying them directly to experi-
mental results and their uncertainties sometimes leads to ambiguous situa-
tions which require common sense and good judgment to resolve.
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When expressing a measured value with its associated uncertainty, the
precision should be the same between the measured value and its uncer-
tainty. This is an accepted convention in uncertainty analysis. In the previ-
ous example of determining the weight of the ingot, the two dimensions of
length had different numbers of significant figures. This could result from
using one type of instrument to measure the ingot’s length and another to
measure its diameter. The number of significant figures should correspond
with the uncertainty in the measurement. For example, if the uncertainty
in a measurement is ±0.05, then the measurement should be expressed with
the same precision, say 1.23 ± 0.05.

Next consider the following apparent dilemma. A measured temperature
of 54.0 ◦C is specified with its uncertainty of ±0.5 ◦C. Convert it into units
of kelvin. Following the rules of significant figures the temperature becomes
327 K, where three significant figures are maintained in the conversion. Now
our uncertainty of ±0.5 ◦C translates directly into an uncertainty of ±0.5 K
because the conversion relation between ◦C and K is linear. Thus, a change
in +0.5 ◦C or −0.5 ◦C from a temperature in ◦C is a change in +0.5 K
or −0.5 K from the corresponding temperature in K. But look at what has
happened. The measured temperature in K has lost the precision specified
by the uncertainty. If the level of precision must be the same between a mea-
sured value and its uncertainty, then the converted, measured temperature
needs to be 327.2 K. Following this convention, it appears that a significant
figure was gained in the process!

In the end there is no single, correct answer for this problem. It all de-
pends upon the purpose in performing the conversion. If temperature is only
computed, then the converted, measured temperature is 327 K according to
the rules of significant figures. If an experimental result is expressed with
its uncertainty, then the converted, measured temperature is 327.2 K ± 0.5
K according to convention in uncertainty analysis.

The relation between significant figures and measurement uncertainty
has been covered only briefly. This topic is important because many mea-
sured quantities are often reported with more significant figures than the
uncertainty of the instruments used to measure them. This consequently
leads to reporting the corresponding experimental results with more signifi-
cant figures than the measurement uncertainty. This approach is wrong and
can be very misleading when interpreting experimental results.
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11.8 Problem Topic Summary

Topic Review Problems Homework Problems
Units 1, 3, 4, 5, 6, 7, 8, 1, 7, 8, 9, 13, 16

18, 20, 23, 25
Conversions 1, 2, 6, 7, 9, 10, 11, 2, 3, 4, 5, 6, 7, 8, 9,

12, 13, 18, 19, 20, 24 10, 11, 12, 13, 14, 15, 17
Significant Figures 6, 14, 15, 16, 17, 21, 22 17

TABLE 11.4
Chapter 11 Problem Summary

11.9 Review Problems

1. What has the most mass? (a) one slug, (b) one kg, (c) one lbm, (d) one
g, (e) one N.

2. Four ounces weigh approximately how many newtons?

3. A scientist developing instruments for use in nanotechnology would be
most interested in measuring which of the following lengths? (a) the
mileage between San Francisco and New York, (b) the length of the leg
of an ant, (c) the diagonal of a unit cell of iron, (d) the chord of an
airfoil.

4. Which of the following is not equivalent to the SI unit of energy? (a)
kg·m2/s2, (b) Pa·m2, (c) N·m, (d) W·s.

5. The SI system has how many base units? (a) 2, (b) 3, (c) 4, (d) 7, (e)
250.

6. What is the weight in newtons of a mass of 51 slugs with the correct
number of significant figures?

7. An astronaut weighs 162 pounds on Earth (assume that Technical En-
glish is spoken). What is the astronaut’s mass (expressed in the appro-
priate SI unit and with the correct number of significant figures) on
the surface of Mars where the gravitational acceleration is 12.2 feet per
second squared?
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8. Which four base units are the same for both the SI and English Engi-
neering systems?

9. A robotic manipulator weighs 393 lbf (Technical English) on Earth.
What is the weight of the probe on the moon’s surface in newtons (to
the nearest tenth of a newton) if the lunar gravitational acceleration is
1/6 of that on Earth?

10. How much work is required to raise a 50 g ball 23 in. vertically upward?
Express your answer in units of ft-lbf to the nearest one-thousandth of
a ft-lbf.

11. How many molecules of water are there in 36 g of water?

12. If the Mars Rover weighs 742 N on Mars where g = 3.71 m/s2, what
would be its mass (in slugs) on Jupiter where g = 23.12 m/s2 expressed
with the correct number of significant figures?

13. The pressure acting on a 1.25 in2 test specimen equals 15 MPa. What
is the force (in N) acting on the specimen expressed with the correct
number of significant figures?

14. If w = (5.50/0.4)+0.06, what is the value of w with the correct number
of significant figures?

15. The number 4 578.500 rounded off to four significant figures is (a) 4580,
(b) 4579.0, (c) 4579, (d) 4578, or (e) 4570.

16. The number 001 001.0110 has how many significant figures? (a) 10, (b)
9, (c) 8, (d) 7, (e) 4.

17. The number 11.285 00 × 1012 has how many significant figures? (a) 5,
(b) 6, (c) 7, (d) 12, (e) 13.

18. A light-year is a unit that is used by astronomers. (a) What is the
dimension of this unit? (b) Is it a base, supplementary, or derived unit?
(c) What is the basic definition of this unit? (d) Convert 1.0 light-years
into SI base units, and round off the answer to four significant figures.

19. In the manual of a water pump, the pump performance is characterized
as 0.12 cipr, where cipr stands for ‘cubic inch per revolution’. Determine
the rpm (revolutions per minute) for this pump when the mass flow rate
is 36.87 g/s.

20. Which is the greatest pressure? (a) 1 atm, (b) 100 kPa, (c) 14 psia, (d)
2000 psfa.

21. What is the number of significant figures in the number product of the
numbers 037.0160 and

√
1234567? (a) 7, (b) 6, (c) 5, (d) 4.
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22. Determine 0.250350 rounded off to four significant figures.

23. What is the approximate weight of a regular-sized apple? (a) 4 lbf, (b)
1 lbm, (c) 1 N, (d) 4 slugs, (e) 1/9.81 kg.

24. Which is greater, 700 Btu/h or 55 cal/s?

25. A hot-wire anemometry probe is used to acquire an output voltage, E
(mV), as a function of velocity, U (m/s). The regression analysis deter-
mines that the linear relationship between voltage and velocity takes the
form

E2 = A + B
√

U.

What are the units of A and B?

11.10 Homework Problems

1. The following presents the original definitions of some of the more cus-
tomary English units. Try to guess the unit’s name for each: (a) the
distance from the outstretched fingers to the tip of the nose of King
Edgar, (b) the distance covered by 36 barleycorns laid end to end, (c)
the width of the thumb of a king or 3 barleycorns laid end to end, (d) the
distance a Roman soldier travelled in a thousand paces, (e) the length
of a Viking’s outstretched arms, (f) the amount of land that could be
plowed with a yoke of oxen in a day.

2. Determine your (a) mass in kilograms, (b) weight in newtons, (c) height
in meters, (d) volume in liters, and (e) density in kilograms per cubic
meter. Finally, (f) compare your density to that of water at standard
conditions.

3. Show that a quarter pound hamburger sold in a metric country would
be (approximately) a ‘Newton Burger’.

4. Show that 1 microcentury approximately equals 1 hr.

5. Compute how many seconds there are in one year and express this result
in scientific notation and a familiar numerical constant.

6. On Earth an astronaut weighs 145 pounds (assume Technical English
is spoken). Compute (a) this astronaut’s weight (in the appropriate SI
unit) on the surface of Mars where the gravitational acceleration is 12.2
ft/s2, (b) her mass on Mars in the appropriate Technical English unit,
(c) her mass on Mars in the appropriate SI unit, and (d) her mass on
Earth in the appropriate SI unit.
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7. The Reynolds number, Re, is a dimensionless number used in fluid me-
chanics and is defined as Re = ρV D/µ, where ρ is the fluid density, µ
the fluid absolute viscosity, V the fluid velocity, and D the characteristic
length dimension of the body immersed in the moving fluid. Because this
number has no units, it should be independent of the system of units
chosen for ρ, µ, V , and D. In the International system of units, ρ = 1.16
kg/m3, µ = 1.85 × 10−5 N·s/m2, V = 5.0 m/s, and D = 0.254 m. Using
this information, compute (a) values for ρ, µ, V , and D in the English
Engineering system, (b) Re based on the International System, and (c)
Re based on the English Engineering system.

8. The power coefficient, CP , for a propeller is a nondimensional number
that is defined as CP = P/(ρn3D5), where P is the power input to
the propeller, ρ the density of the fluid (usually air), n the propeller’s
revolutions per second, and D the propeller diameter. For ρ = 0.002 11
slug/ft3, n = 2400 rpm, D = 6.17 ft, and P = 139 hp, (a) express these
four values in SI units and (b) compute CP based on the SI units.

9. The advance ratio J for a propeller is defined as J = V/(nD), where
V is the velocity, n the propeller’s revolutions per second, and D the
propeller diameter. For V = 198 ft/s, n = 2400 rpm, and D = 6.17 ft,
(a) show that J is a nondimensional number by “balancing” the units
and (b) compute the value of J .

10. An engineering student measures an ambient lab pressure and temper-
ature of 405.35 in. H2O and 70.5 ◦F, respectively, and a wind tunnel
dynamic pressure (using a pitot-static tube) of 1.056 kN/m2. Assume
that Rair = 287.04 J/(kg · K). Determine with the correct number of
significant figures (a) the room density using the perfect gas law in SI
units (state the units with the answer) and (b) the wind tunnel velocity
using Bernoulli’s equation in units of ft/s. Bernoulli’s equation states
that for irrotational, incompressible flow the dynamic pressure equals
one-half the product of the density times the square of the velocity.

11. An engineer using a barometer measures the laboratory temperature
and pressure to be 70.0 ◦F and 29.92 in. Hg, respectively. He then con-
ducts a wind tunnel experiment using a pitot-static tube and an inclined
manometer to determine the wind tunnel velocity through Bernoulli’s
equation. He measures a pressure difference of 3.22 in. H2O. Determine
the tunnel velocity and express it with the correct number of significant
figures in units of m/s.

12. A capacitor consists of two round plates, each of radius r = 5 cm. The
gap between the plates is d = 5 mm. Determine the maximum charge
qmax of the capacitor in coulombs if the breakdown potential of the air
is Umax = 10 kV. Find the capacitor energy in both the International
(SI) and the English Engineering (EE) systems.
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13. A wheel of radius R = 50 cm and of mass m = 1 kg rolls on the surface
without slipping. The velocity of the center of the wheel is v = 5 m/s.
Determine the kinetic energy E of the wheel and its angular velocity ω.
What units are used for E and ω? Give the fundamental dimensions.

14. The average mass of the male human brain is 1361 g (Jerison, 1973).
Gravitational acceleration on the surface of Mars is 0.35 times that of
Earth. The mass of Mars is 10 % that of Earth. Determine (a) the
average weight (in lbf) of the male human brain on Mars, (b) the average
mass (in kg) of the male human brain on Mars, and (c) the kinetic energy
(in MJ) of the average male human brain the instant that it is launched
from Earth at a velocity of 1 km/s.

15. Express the gas flow rate of 100 sccm (standard cubic centimeters per
minute), which is a standard unit of measure in vacuum-based micro-
fabrication equipment, in (a) liters per minute and (b) cubic miles per
millisecond.

16. Guess the names of the following common units: (a) amount of seed to
sow an acre of ground, (b) distance from head to wrist, (c) distance
an arrow would fly, (d) distance walked on foot in one hour, (e) dis-
tance a shout would carry, (f) actual (approximate) distance seen when
squatting beneath a horse.

17. Given that the mass, M , of Saturn is 5.68 × 1026 kg, the radius, R,
is 5.82 × 107 m, and g (m/s2) = GM/R2, where G = 6.6742 × 10−11

N·m2/kg2, determine (a) the correct number of significant figures in g
and (b) the mass on Earth (in kg) of a rock that weighs 200 lbf on
Saturn.
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The horror of the moment, the King went on, I shall never forget. You will,
though, the Queen said, if you don’t make a memorandum of it.

Lewis Carroll. 1945. Alice’s Adventures in Wonderland. Racine: Whitman

Publishing Company.

... the computation leads to rather reasonable results at least for first
estimates.

From the draft of an anonymous student’s 2009 Ph.D. dissertation.

12.1 Chapter Overview

The queen was right. All is lost if you do not make a memorandum of
the results. This chapter describes the tools needed to help you prepare
for technical communication. Suggested formats for technical memos and
technical reports are presented. Guidelines for proper writing in general as
well as specific to technical memoranda are given. Graphical presentation is
discussed. Also, guidelines for oral technical presentations are summarized.
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12.2 Guidelines for Writing

A short list of critical writing rules is presented in this section. These rules
relate to neither the style nor the content of the writing. They only account
for the most fundamental aspects of clearly written communication. All
technical memoranda and reports must adhere to these rules. There are
many good texts that present the styles for writing, including Strunk and
White [1] and Baker [2].

12.2.1 Writing in General

• Words must be spelled properly.

– incorrect: Mispellings should be avoided.

– correct: Misspellings should be avoided.

• Sentence fragments must be avoided.

– incorrect: First, a look behind the scenes.

– correct: First, we will look behind the scenes.

• The subject and verb within the sentence must agree.

– incorrect: A motion picture can improve upon a book, but they
usually do not.

– correct: A motion picture can improve upon a book, but it usually
does not.

• Avoid abrupt changes in tense; past tense is best.

– incorrect: We weigh the sample . . . .

– correct: The investigators weighed the sample . . . .

• Avoid abrupt changes in person; third person is best.

– incorrect: We weigh the sample . . . .

– correct: The investigators weighed the sample . . . .

• Avoid abrupt changes in voice; active voice is best.

– incorrect: It was decided . . . .

– correct: The investigators decided . . . .
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• Contractions should be avoided.

– incorrect: Don’t use contractions.

– correct: Do not use contractions.

• Avoid splitting infinitives.

– incorrect: . . . to enable us to effectively plan our advertising . . . .

– correct: . . . to enable us to plan effective advertising . . . .

• Avoid dangling participles.

– incorrect: Going home, the walk was slippery.

– correct: When I was going home, the walk was slippery.

• Compound modifiers must be hyphenated properly.

– incorrect: . . . the red, hot flame . . . .

– correct: . . . the red-hot flame . . . .

• A sentence should not end with a preposition.

– incorrect: What did she write with?

– correct: With what did she write?

• Proper end punctuation must be used.

– incorrect: Be careful

– correct: Be careful.

12.2.2 Writing Technical Memoranda

Writing a good technical memorandum (also termed a memo) requires prac-
tice. Very few people have the innate ability to write memoranda well, espe-
cially technical memoranda. They learn to do so through experience. Some
guidelines can be followed that relate to style. The following suggestions
help to make a better document:

• Write technical memoranda in the third person.

• Use the past tense throughout technical memoranda.

• Limit the length of sentences. Break long sentences into shorter ones.
Scientists and engineers tend to write long sentences.
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• Segment ideas into paragraphs such that the reader is led through the
presentation in a smooth and effortless fashion.

• Type all memoranda. Choose a word-processing software package and
learn how to use it effectively. This will help to produce a profession-
ally presented document which usually includes text, figures, tables, and
equations.

• Proofread and check for spelling errors. It is best to have someone else
do the proofreading.

• Provide a plausible explanation based upon scientific principles when-
ever predictions and measurements differ. Mistakes or ‘human error’, for
example, are not acceptable reasons. Support any explanation by some
calculations.

• Report the average value with its uncertainty whenever reporting re-
sults based upon multiple measurements. Avoid simply listing all the
measured values.

• Use correct English. Do not confuse commonly used words such as ‘its’
and ‘it’s’. The former is possessive; the latter is a contraction. Other
examples include ‘affect’ and ‘effect’, ‘farther’ and ‘further’, ‘ensure’
and ‘insure’, ‘because’ and ‘since’, ‘approximately’ and ‘about’, and ‘de-
crease’ and ‘drop’.

One of the most frustrating experiences for a reader is to read a document
having many mistakes and missing essential information. Some absolute
rules can be established for writing technical memoranda. A memorandum
that violates any one of these rules is incomplete.

1. Every variable and symbol, either measured or analytical, must be iden-
tified.

2. Every variable’s units must be presented.

3. The proper number of significant figures must be used with all numbers.

4. Uncertainties must be given for every measured and predicted variable.
Nominal values must be included. The assumed confidence level must be
stated. Often it is easiest to present uncertainties in a table and include
supporting calculations in an appendix.

5. The physical concepts behind a model must be explained. Do not simply
present the model’s equations.
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6. Do not use relative words, such as ‘good’, ‘reasonable’, ‘acceptable’,
‘significant’, and so forth, when describing an agreement between val-
ues. See the second quotation at the beginning of this chapter as an
incorrect example. Quantitative statements must be made when making
a comparison, such as “x differed from y by z %.”

7. Each figure or table included must be referred to and discussed in the
text. Do not say “calibration data is shown in Figure 1” or “results are
presented in Figures 1 through 6” and then fail to discuss what is shown
in each figure.

8. Equations must be punctuated with commas or periods, as if they were
part of a sentence. Do not let them dangle in space.

9. A ‘0’ must be included in the front of the decimal point if no other
number is present. The decimal point can be missed by the reader when
the ‘0’ is absent.

10. All pages must be numbered consecutively except the cover sheet.

12.2.3 Number and Unit Formats

The presentation of numbers and units should follow specific formats [3].
A few of these guidelines that are very appropriate to presenting technical
information include the following:

• Use SI units. Give the equivalent values in other units in parentheses
following the SI unit values only if necessary.

• Avoid using unacceptable abbreviations such as sec for second, cc for
cubic centimeter, l for liter, ppm for parts per million. For example,
express 7 ppm as 7 µL/L.

• Include units for each number when using composite expressions, such as
those involving areas, volumes, and ranges. Volume, for example, would
be written as 2 m × 3 m × 5 m. The correct expression for a range of
values would be 23 L/s to 45 L/s. Use the word ‘to’ instead of a dash
when expressing a range. For example, write 5 to 10 rather than 5-10.

• Use Arabic numerals and symbols for units, such as “the mass was 15
kg.” Keep a space between the numeral and the symbol. This is also true
for percentages, which should be expressed as x % (note the space) and
not as x%. However, a degree sign indicating an angle does not have a
space between it and its symbol.

• Italicize quantity symbols, such as l, V, and t for length, volume, and
time, respectively.
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FIGURE 12.1
Graphical presentation of a comparison between predictive and experimental
results.

• Put unit symbols in Roman type. Subscripts and superscripts may be
in either Roman or italic type.

• When there are more than four digits in a number on either side of the
decimal marker, use spaces instead of commas to separate numbers into
groups of three, counting in both directions from the decimal marker,
such as 3.141 592 654.

• Express all logarithms using log, with their bases as subscripts, such as
loge(x) and log10(x). Do not use ln(x) for the natural logarithm.

• Use decimal prefixes with a number’s units, keeping its numerical value
between 0.1 and 1000, such as 1.05 MJ instead of 1.05 × 106 J.

• When forming adjectival phrases involving symbols for SI units, do not
use a hyphen. For example, write 2 kg laptop. When units are spelled
out, a hyphen is used. For example, write 2-kilogram laptop.

12.2.4 Graphical Presentation

The proper presentation of quantitative information is essential to good
technical communication. Most quantitative information is presented graph-
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FIGURE 12.2
The same function obtained using the MATLAB plot (top), semilogx (mid-
dle), and loglog (bottom) commands.

ically in a variety of ways [4]. The types of plots commonly used for the
graphical presentation of experimental data include Cartesian, semiloga-
rithmic, logarithmic, stem, stair, and bar formats.

The Cartesian plot is the most common type of plot, in which the values
of the dependent variable are plotted versus the values of the independent
variable. Typically one or two dependent variables are included in one plot,
having either two or three dimensions. An example of a Cartesian plot is
shown in Figure 12.1.

Some physical systems respond in an exponential manner to external
forcing. Many physical variables are related to one another through a power
law, either linear, quadratic, or higher order. Possible relations can be ascer-
tained by plotting the dependent variable versus the independent variable,
such as time. Figure 12.2 shows three graphical representations of the same
power-law relation. For y = a exp(bt), a semi-log plot with the y-axis as
the logarithmic axis gives a line of slope value b/ loge 10 and intercept value
log10 a. For y = axb, a log-log plot of y versus x will yield a line of slope
value b and intercept value log10 a.

Sometimes a series of values that were acquired sequentially needs to be
examined. This usually is done to observe the trend of the values in time.
Figure 12.3 displays three types of plots of the same data. A stem plot
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FIGURE 12.3
Ten sequential values plotted using the MATLAB stem (top), stairs (mid-
dle), and bar (bottom) commands.

extends a line from the abscissa up to the ordinate value that is designated
by a marker. A stairs plot connects lines from each ordinate value to the
next, mimicking a stairway. The bar plot gives a rectangular bar of a fixed
width for each ordinate value. The type of presentation determines which
plot is best.

Often when the amounts that contribute to a whole need to be displayed,
the pie chart is used. This graphically is in the shape of a circular pie, as
shown in Figure 12.4, in which each contributing amount is displayed as a
sector of the pie. Each sector’s area is its proportional contribution to the
total area. Usually, each sector has a different color.

Some data may follow an angular dependence, such as those representing
acoustic radiation or the surface pressure distribution around an object. A
polar plot, such as that shown in Figure 12.5, can be constructed for this
purpose. The magnitude of the variable for a given θ is plotted as a distance
from the origin. Data that represent cyclic processes will pass more than
once through the origin.

The following guidelines should be followed when constructing plots (re-
fer to Figure 12.1 as an example):
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FIGURE 12.4
A standard pie chart (left) and a pie chart with “exploded” areas (right).

• A title or caption must be present.

• Both the abscissa and ordinate must be labeled with the name of the
quantity plotted and its units in brackets or parentheses.

• Tick marks should be used on each side of both axes. Internal tick marks
are preferable.

• All curves must be labeled either on the plot using arrow indicators or
in the plot’s legend when more than one curve is plotted.

• Analytical results must be plotted as a solid curve. Do not use symbols.

• Numerical results must be plotted as a dashed or dotted curve. Do not
use symbols.

• Experimental results must be denoted with symbols and error bars, using
the same symbol for a given data set.

• Any curve representing an estimate must be presented with ± confidence
limit curves evaluated at P percent confidence.

12.3 Technical Memo

The format of a technical memo is similar to that commonly used in industry
and at national laboratories. It is a concise, formal presentation of findings
on a particular technical issue. It is not a comprehensive explanation of the
theoretical or experimental methods used, but rather it is a summary high-
lighting the results obtained. Typically, the body of a technical memo should
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FIGURE 12.5
A polar plot of 3sin(θ) centered along the θ = 90 axis and 2cos(θ) centered
along the θ = 0 axis.

not exceed two to three pages in length, excluding any supporting material
that usually is placed in appendices. The following format is suggested.

Date: 1/18/10
To: Professor P.F. Dunn
From: I.M.A. Student
Subject: Rocket Thrust Measurement

Summary: This should be one paragraph that summarizes the impor-
tant results and states the significant conclusions. When writing this section,
assume that this may be the only part of the technical memo that actually
is read. Thus, it needs to be self-contained and not refer to any other writ-
ten section, graphs, and tables that are contained in the body of the memo.
Key results must be presented. Values of important experimental parameter
ranges must be included. If theory also is presented, a quantitative state-
ment about agreement or disagreement with the experimental results needs
to be made.

Findings: This part covers in more detail what was summarized above.
Enough information must be provided such that an engineer at your level
could critically evaluate the approach and methods and understand how you
arrived at the results and conclusions, without your providing any informa-
tion beyond what is written. Only the most important figures and tables
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need to be included here. Supporting material such as additional plots, pro-
gram listings, or flow charts can be included as attachments (appendices) to
the memo. All figures and tables must be numbered and referenced properly
in the text. Include only the material that you consider necessary to sup-
port the conclusions. Never present results, especially in figures and tables,
that you do not specifically discuss in this section. Do not attach volumes
of computer-generated output without any explanation. The reader is im-
pressed not by the volume of data collected but by the value of it.

References: References must be numbered in consecutive order. Do
not include any references that are not cited in the memo. The following
reference format conforms to that specified by The Chicago Manual of Style
[5]:

Journal article references: 1. Student, N.O.D., and S.A.M. College. 2010.
Measurements through a Hard Semester. J. Heat Mass Transfer 11:548-556.

This includes the last names and first and middle initials of all of the
authors, the year of publication, the title of the article, the abbreviated title
of the journal (italicized), the volume number, and inclusive page numbers
of the article.

Book references: 2. M. A. Saad. 1992. Compressible Fluid Flow. 2nd ed.
New Jersey: Prentice Hall Inc.

The book title is italicized.

Appendices: These addenda contain supplementary material, such as
detailed derivations or calculations. They are not meant to contain a record
of everything that was done on the memo’s subject. Include only what is
needed to support material presented in the body of the memo. Do not place
the results here and then refer to them from the memo.

12.4 Technical Report

This section describes the format that typically is required for laboratory
reports. This format essentially parallels that of many journal publications.
Each of the following sections need to be included in the report. As stated
for the technical memo, write the report as if you were writing to another
engineer at your level. The suggested format is described below.

1. Title Sheet: List the class and its number, report title and number,
your name, all group members’ names, and the date. This is the cover sheet
of the report. It does not have a page number.
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2. Abstract: The primary purpose of the abstract is to provide the
reader with a brief and sufficient summary of the project and its results.
It is to be short (no more than approximately 100 words) and informative.
It must indicate clearly the nature and range of the results contained in
the report. The abstract must stand alone. No citing of numbered refer-
ences, symbols, and so forth, must be made unless they are obvious without
any reference to the report. The easiest procedure is to write the abstract
summarizing the entire body of the report after the report has been written.

3. Table of Contents: Each of the subsequent sections should be listed
with its corresponding first page number in the report.

4. List of Symbols (Nomenclature): English symbols are first listed
in alphabetical order, then Greek symbols in alphabetical order. Be sure
to describe adequately your nomenclature, for example, not just ‘viscosity’
but either ‘absolute (dynamic) viscosity’ or ‘kinematic viscosity’. Also note
that in some cases the mere descriptive name of the symbol is not sufficient.
For example, when listing coordinates be sure to specify the coordinates’ di-
rections with respect to some reference point. Also, when describing nondi-
mensional numbers, specify their definitions in terms of the other symbols
listed. The best procedure in gathering the nomenclature is to construct the
list of symbols after the body of the report has been written.

5. Introduction: This section introduces the reader to the nature of the
problem under investigation. It explains the history and relevance of such an
experiment and its application. Previously published papers relevant to the
experiment should be cited here. The general objectives of the experiment
should be stated. Do not simply summarize the experimental objectives.
Provide a guide for the reader as to what will follow in the report.

6. Approach: This section sometimes is referred to as methods or proce-
dure. It needs to describe briefly the experimental, analytical, and numerical
methods used to arrive at the results. There must be sufficient detail to per-
mit a critical evaluation of the methods used and replication of the results
by another party. It is not necessary, however, to give full descriptions of
all of the methods that are described in detail elsewhere, for example, how
a particular numerical integration scheme works step-by-step. Uncertainty
estimates for all parameters and procedures used to arrive at the results
must be provided. Usually, it is preferable to present these estimates in a
table. A block diagram or flow chart of the steps in the approach can be very
helpful to the reader. Alternatively, a step-by-step approach can be put in
narrative form. A flow chart should be included for each computer program
used. A listing of each program should be presented in an appendix and
documented with sufficient comments such that it can be followed easily by
the reader.

7. Results: The results of your experiment are presented here, usually
facilitated by graphs, figures, and tables. The findings of the experiment
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are presented but neither discussed nor evaluated in this section. Keep in
mind that you want to be concise when presenting the results. Put results
in graphical form whenever possible. Sample calculations can be put in an
appendix. When the results cover several aspects of the project, subdivide
this section such that each part deals with one major aspect. The results of
an uncertainty analysis must be provided. Detailed, supporting calculations
should be presented in an appendix. Mention specifically what is contained
in each figure and table. Do not say, for example, that “the results are shown
in figures 1 through 6,” and then fail to explain what is presented in each
figure.

8. Discussion: This section should include a discussion and evaluation
of the results obtained and their relation to other pertinent studies, if any.
The findings of your experiment are interpreted in this section. Express
your scientifically justified opinion in this section about the facts that were
presented in the previous section. Remember the distinction between fact
and opinion. Point out the limitations of how you approached the experiment
and how you would improve on your approach. Be constructively critical.
Describe what you have learned from the experiment.

9. Conclusions: Briefly conclude the major findings of your experiment.
Do not introduce anything new or continue to discuss the results.

10. References: These follow the same guidelines as for the technical
memo.

11. Appendices: These follow the same guidelines as for the technical
memo.

12.5 Oral Technical Presentation

Many technical societies now have web pages that provide instructions for
speakers [6]. The mode of oral presentation has changed considerably over
the past several years. Most professional presentations now are made using
standard software packages. The resulting, user-designed slides are projected
digitally. Thus, the visual format of the presentation becomes very impor-
tant.

The success of an excellent presentation lies in its organization, prepara-
tion, and delivery. The amount of time spent in preparing an oral presenta-
tion should be equivalent to that spent in writing a technical paper. Some-
times preparing an oral presentation is even more challenging. The listener
is not as attentive as a reader. Presentation time is limited. The presen-
ter must speak with confidence and enthusiasm for the talk to be effective.
Adequate time for preparation and practice must be spent to produce a
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FIGURE 12.6
Example slide with suggested font size.

professional and well-received presentation. Practice also allows timing to
be rehearsed.

Most presentations have two implicit goals: to deliver information and to
have the audience understand it. This requires that information be presented
clearly and concisely such that it is easily understood. The presentation
must be substantive, including a statement of the problem, followed by a
description of its solution, and the results.

Some guidelines for a good oral presentation are as follows:

• Start with a title slide, followed immediately by a slide that outlines the
talk.

• Break the body of the talk into sections, each making a specific point.

• Guide the listeners through the presentation by referring back to the
outline at appropriate times.

• Conclude with a slide that summarizes the main points.

• Minimize the number of words and information presented on a slide.
Keep it simple. Going into unnecessary detail will only lose the audience.

• Use an appropriate font size and type that is supported by a contrasting,
simple, and pleasing background. Place an 8 in. by 10 in. copy of a slide
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on the floor. You should be able to read it clearly while standing directly
over it. Refer to Figure 12.6 as an example.

• Follow the same rules for figures and equations that would be done for
a written document. Label the axes. Provide units. Define all variables.

• Use your notes as a guide. Do not read directly from them.

• Stay focused on the topic. Avoid rambling beyond what was planned.

• Watch the time. Pace yourself. Do not exceed the time allotment.

• Speak enthusiastically. Do not speak in a monotone. Vary the rate and
pitch.

• Try to stand near one place. Avoid walking aimlessly around.

• Avoid unconscious gestures, especially with your hands.

• Use a pointer to focus attention on an area of a slide. Do not uncon-
sciously wave the pointer around, especially a laser pointer, as it is very
distracting.

• Look directly at the audience. Do not look over peoples’ heads or stare
at the floor.

• Avoid using vocal pauses, such as “you know” and “ah”. Have someone
listen to a practice presentation and note the number of vocal pauses
made. You may be surprised at how many times you pause. Learn to
break the habit.

• If you make a mistake, correct it and go on. Avoid joking about it or
making excuses for it. Be confident!

• Finally, relax and enjoy giving the presentation. It represents your hard
work and interest.
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12.6 Problem Topic Summary

Topic Review Problems Homework Problems
Writing 1, 2

Formatting 1, 2, 3, 4, 5

TABLE 12.1
Chapter 12 Problem Summary

12.7 Review Problems

1. A technical memo should contain only the following sections: (a) ab-
stract, introduction, results, (b) abstract, results, conclusions, (c) in-
troduction, results, conclusions, (d) summary, list of symbols, results,
references, (e) summary, findings, references.

2. Technical memoranda are presented customarily in what tense? (a) fu-
ture, (b) passive, (c) past, (d) present, (e) subjunctive.

12.8 Homework Problems

1. Correct each of the following if it contains any format errors. (a) 2 − 3
m/s, (b) 35 %, (c) 23 045.62, (d) 1.2E-4 J, (e) 23.4kg.

2. Identify all of the instances of incorrect format in the sentence: A circular
arc’s angle of 47.2 ◦, which is 4.2 in. long, is equivalent to 4 × 10−3 sr
on a sphere.

3. The text below was taken from an abstract written to describe the results
of an experiment. For each numbered and underlined group, identify, if
any, the improperly formatted terms by providing the corresponding
correctly formatted versions.
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4. An experiment was conducted to determine the heat transfer from a
hot heat exchanger tube to air. The velocity of the air was set as (1)
20 ft./sec (240 in./sec). Its flow rate was (2) 525 liters/min. An optical
pyrometer recorded the surface temperature of the tube, (3) T , to be
(4) 2,000◦F . The temperature of the air was (5) 65% less.

5. The text below was taken from an abstract written to describe the results
of an experiment. For each numbered and underlined group, identify, if
any, the improperly formatted terms, and then provide the correspond-
ing correctly formatted versions.

An experiment was conducted to determine the cross-sectional (1)
(x and y) distribution of the velocity of air at various (2) z locations
along the length of a wind tunnel having a (3) 1 × 2 m cross-section.
The velocity measurements made were in the range of (4) 14-30 m/sec.
The air temperature, (5) T , was (6) 72◦F and the volumetric flow rate,
(7) Q, was set at (8) 30 liters/min ±2% for the entire duration of the
experiment.

6. Correct each of the following if it contains any format errors.

(a) 23 045.62, (b) 1.2E-4J, (c) 23.4kg.
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A

Glossary

absolute quantization error one-half the instrument resolution

absolute sensitivity coefficient change in a result due to an incremental
change in a particular variable

absolute uncertainty uncertainty in a particular variable

accuracy closeness of agreement between a measured and true value

active requiring no external power supply to produce a voltage or current

active filter filter composed of operational amplifiers, resistors, and capaci-
tors

aleatory caused by inherent randomness and/or finite sampling

aliasing false lower frequencies created by a sampling rate less than twice
the highest frequency of interest

almost-periodic comprised of two or more sinusoids of arbitrary frequencies

alternating current (AC) current varying cyclically in time

amplitude magnitude or size

amplitude ambiguity false amplitudes occurring in the amplitude spec-
trum at the fundamental and adjacent frequencies

amplitude spectrum plot of a signal’s amplitude versus frequency

analog continuous in time and magnitude

anode positively charged terminal that loses electrons

anti-alias filter filter that prevents signal aliasing

autocorrelation correlation of a signal with itself at various time delays

autocorrelation coefficient number between −1 and 1 that characterizes
the extent of autocorrelation

autocorrelation function function used to determine the autocorrelation

459
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balanced bridge Wheatstone bridge when the products of the cross-bridge
resistances are equal

bandpass filter filter passing a signal’s amplitude over a range of frequen-
cies, but neither above nor below that range

base center element of a transistor

base units dimensionally independent units

beat frequency relatively low frequency equal to one-half the difference in
two nearly equal frequencies

bias error see systematic error

binomial distribution discrete distribution describing the probability of
one of two possible outcomes

calibration process of comparing the response of an instrument to a standard
input over some range

calibration curve plot of a calibration’s input versus output data

capacitance ratio of the charge on one of a pair of conductors to the electrical
potential difference between them

cathode negatively charged terminal that gains electrons

central moments statistical moments calculated with respect to the cen-
troid or mean

central tendency tendency to scatter about an average value

charge electrical quantity representative of the excess or deficiency of elec-
trons

coefficient of determination square of the sample correlation coefficient

coherent no numerical factors other than 1 occur in all unit equations

collector one of the end elements of a transistor

combination the number of possible ways that members of a set can be
arranged irrespective of their order

combined estimated variance see combined uncertainty

combined standard uncertainty combination of all individual uncertain-
ties

complement see null set

complex having more than one period
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complex conjugate complex number with a complex part that is opposite
in sign to its complex number counterpart

conditional probability the probability of an event given that specified
events have occurred previously

consistent no numerical factors other than 1 occur for all unit equations in
a system of units

continuous without a break or cessation

control experiment an experiment in which all variables are identified and
can be controlled

conventional current flow current flow from anode to cathode

conventionalism process in which experiments are performed to illustrate
an aspect of nature

correlation analysis process of calculating the correlation coefficient

correlation coefficient number between −1 and 1 that characterizes the
amount of correlation

covariance mathematical function that characterizes the relationship be-
tween two random variables

coverage factor number representing an assured probability of occurrence
that multiplies the combined standard uncertainty to determine the
overall uncertainty

critically damped having a damping ratio of unity

cross-correlation correlation between two variables

cross-correlation coefficient number between −1 and 1 that characterizes
the extent of cross-correlation

cumulative probability distribution function see probability distribu-
tion function

current charge per unit time

cutoff frequency the frequency at which a signal’s amplitude is attenuated

damping ratio nondimensional parameter characterizing a second-order
system

decade frequency ratio of 10:1

deflection method method using a balanced Wheatstone bridge to achieve
an output voltage proportional to a change in resistance
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dependent affected by changes in an independent variable

degrees of freedom number of data points minus the number of constraints
used for the required calculations

derived type of unit composed of base and supplementary units

detailed uncertainty analysis uncertainty analysis that identifies the sys-
tematic and random errors contributing to each measurand’s overall
uncertainty and then propagates them into the final result

deterministic signal signal that is predictable in time or space, such as a
sine wave or a ramp function

digital having discrete values at discrete times or locations

dimension measure of spatial extent

direct current (DC) current constant in time

Discrete Fourier Transform (DFT) discrete representation of the Fourier
transform

discrete having values at distinct times or locations

discrete Fourier series discrete representation of a Fourier series

dynamic varying in time

dynamic calibration calibration using a time-dependent input

dynamic error error related to the amplitude difference between a system’s
input and output

electric field electric force acting on a positive charge divided by the mag-
nitude of the charge

electric potential potential energy per unit charge

electric power electric energy transferred per unit time

electric resistivity material property related to its resistance

emitter electrode in a transistor where electrons originate

ensemble collection of time history records

epistemic caused by a lack of knowledge

ergodic ensemble-averaged values equal the corresponding average values
computed over time from an arbitrary, single time history in the en-
semble
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even function function symmetric about the ordinate

event outcome

exhaustive space spanned by a set and its complement

expectation see expected value

expected value probabilistic average value

experiment act in which one physically intervenes with the process under
investigation and records the results

explorational conducted to explore an idea or possible theory

extraneous variable that cannot be controlled

fallibilism process in which experiments are performed to test the validity
of a conjecture

Fast Fourier Transform (FFT) method that recursively divides the sam-
ple points in one-half down to two-point samples before it performs the
Fourier transform

finite bounded or limited in magnitude or in spatial or temporal extent

first central moment mean

first-order replication level level that considers the additional random er-
ror resulting from small uncontrolled factors

Fourier analysis procedure that identifies the Fourier amplitudes of a signal

Fourier coefficients coefficients in a Fourier series

Fourier series series represented by sines and cosines of different periods
and amplitudes that are added together to form an infinite series

Fourier synthesis procedure that constructs a signal representation from a
series of appropriately weighted sines and cosines

Fourier transform mathematical transformation of a signal that gives the
signal’s amplitude versus frequency

Fourier transform pairs pair of equations consisting of the Fourier trans-
form and the inverse Fourier transform

fourth central moment see kurtosis

fractional uncertainty uncertainty in a result divided by the value of the
result
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frequency distribution plot of the number of occurrences of a certain value
divided by the total number of occurrences versus the value of the oc-
currence

frequency measure of a signal’s temporal variation

fundamental dimensions length, mass, time, temperature, electrical cur-
rent, amount of substance, and luminous intensity

Gaussian distribution see normal distribution

general uncertainty analysis simplified approach to uncertainty analysis
that considers each measurand’s overall uncertainty and its propagation
into the final result

high-pass filter filter that passes a signal’s amplitude above but not below
a specific frequency

histogram literally means picture of cells; plot of the number of occurrences
of a certain value versus the value of the occurrence

hysteresis difference in the indicated value obtained when approaching a
particular input value in increasing versus decreasing directions

impedance electrical resistance of a circuit containing linear passive compo-
nents (resistors, capacitors, and inductors)

impulse rapid change of a variable in time

independent not dependent upon another variable

inductivism process arriving at the laws and theories of nature based upon
facts gained from experiments

infer estimate statistically

instrument error sum of an instrument’s elemental errors identified
through calibration

intersection set of all members common to both sets

intrinsically linear variables variables in a higher-order equation that can
be transformed to yield a linear expression

inverse Fourier transform inverse of the Fourier transform that gives the
signal’s amplitude versus time

kurtosis fourth central moment normalized by the square of the variance

least significant digit rightmost nonzero digit

level of significance one minus the χ2 probability
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linear device device in which the output amplitude is linearly proportional
to its input amplitude

lognormal distribution continuous distribution of the logarithm of a nor-
mally distributed variable

loop closed path in a circuit going from one node back to itself without
passing through any intermediate node more than once

low-pass filter filter that passes a signal’s amplitude below but not above a
specific frequency

magnitude extent of dimension; size

magnitude ratio ratio of a dynamic system’s output amplitude to its input
amplitude

measure see magnitude

measurand measured variable

measurement error true, unknown difference between measured value and
true value

measurement uncertainty estimate of the error in a measurement

mode most frequently occurring value

modulus absolute value of a complex number

most significant digit leftmost nonzero digit

mutually exclusive two sets not sharing any common members

mutually orthogonal set in which each pair of functions is orthogonal

node point in a circuit where two or more elements meet

nondeterministic random

nonstationary not stationary (see stationary)

normal continuous distribution caused by a very large number of small, un-
controllable factors that influence the outcome

normal equations equations resulting from the method of least squares

normalized z-variable a nondimensional variable indicating the number of
standard deviations that a specific value deviates from the mean value

notch filter filter that passes a signal’s amplitude over a range of frequencies
above and below a specified range
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Nth-order replication level level at which more than one random error
beyond that in the first-order replication level is considered

null method use of a Wheatstone bridge to determine an unknown resis-
tance by having two of its other four resistances fixed and varying the
fourth until the bridge is balanced

null set set of all occurrences in which a desired event is not the outcome

numerical equation equation containing only the measures of physical
quantities

octave frequency ratio of 2:1

odd function function symmetric about the origin

order degree in a continuum of size or quantity

orthogonal property of two functions whose inner product is equal to zero
over an interval

outcome result of a test

over-damped having a damping ratio greater than unity

overall uncertainty measure of the uncertainty in a variable; the product
of the coverage factor and the combined standard uncertainty

parameter variable or function of variables that is fixed during an experi-
ment

passive requiring an external power supply to produce a voltage or current

pedagogical class of experiment designed to teach the novice or to demon-
strate something that is already known

periodic repeating itself in time

permutations number of ways that a set can be arranged respective of its
members’ order

phase lag lag of an output signal with respect to an input signal

Poisson distribution a continuous distribution describing rarely occurring
events

pooled formed into one set from a set of replicated experiments each involv-
ing multiple measurements

population collection of all possible values of a random variable

potential difference difference between two electric potentials
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power spectrum plot of a signal’s power versus frequency

precision variation of a variable’s values obtained by repeated measurements

precision error see random error

precision interval interval characterized by the product of a coverage factor
and a random uncertainty

probability number of specific occurrences over the total number of occur-
rences

probability density function (pdf) function when integrated yields the
probability

probability distribution function (PDF) integral of the probability den-
sity function; also known as the cumulative probability distribution func-
tion

ramp method method to perform electronically analog-to-digital conversion
by increasing a voltage and comparing it to the analog input signal’s
voltage

random having no particular order

random error error related to the scatter in the data obtained under fixed
conditions; also known as the precision error

random uncertainty estimate of the random error

random variable variable whose value has no deterministic relation to any
of its other values

range lower to upper limits of an instrument or test

reactance influence of a coil of wire upon an alternating current passing
through it that impedes the current

readability closeness with which the scale of the instrument is read

reduced-chi square variable χ2 variable normalized by the number of de-
grees of freedom

regression analysis process identifying the regression coefficients in the
method of least squares

regression coefficients coefficients found in the method of least squares

relative accuracy accuracy divided by the true value

relative systematic uncertainty ratio of the reliability of the systematic
uncertainty to the systematic uncertainty
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reliability estimate of the accuracy of a systematic uncertainty

repeatability ability to achieve the same value upon repeated measurement

repetition repeated measurements made during the same test under the
same operating conditions

replacement return of members to their set after selection, thereby allowing
for their re-occurrence

replicates experiments identical to the original

replication duplication of an experiment under similar operating conditions

resistance defined by Ohm’s law as the ratio of voltage to current

resolution smallest physically indicated division that an instrument displays
or is marked

result variable that is a function of one or more measurands

ringing frequency frequency at which a second-order system rings or con-
tinually oscillates

rise time time required for a first-order system to respond to 90 % of a step
change

root mean square (rms) positive square root of the mean of the squares

round off truncate a number to its desired length

sample subset of the population

sample mean mean of a sample

sample variance variance of a sample

sample-to-sample measurand values are recorded for multiple samples

scattergram discrete representation of an analog signal

scientific method method of investigation involving observation and theory
to test scientific hypotheses

second central moment the variance

sensor device that senses a physical stimulus and converts it into an impulse

sequential systematically increased

set group of all occurrences in which a desired event is the outcome

settling time time beyond which a second-order system’s response remains
within ±10 % of its steady-state value
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signal measurement system’s representation of the temporal variation of a
measurand

signal conditioning preparing the signal in its final form to be processed
optimally and then recorded

signal processing operating on a signal to obtain desired results

signal sample period time period used to determine the statistical proper-
ties of a signal

significant figures number of digits required to express a result

simple RC filter filter comprised of a resistor and a capacitor

skewness third central moment normalized by the cube of the standard de-
viation

source groups groups that help to categorize sources of error, which are
typically grouped as calibration, data acquisition, and data reduction

standard known value usually used as a basis of calibration

standard deviation square root of the variance, which characterizes the
width of the probability distribution

standard deviation of the means (SDOM) standard deviation of the
mean values obtained from groups of repeated measurements

standard error of the fit error characterizing the differences between data
and its curve fit

standardized normal variate nondimensional variable indicating the num-
ber of standard deviations that a variable deviates from its mean value

static steady in time

static calibration calibration performed when the system is static

static sensitivity slope of a static calibration curve at a particular input
value

stationary each of a signal’s ensemble-averaged statistical properties are
time invariant

statistics branch of applied mathematics concerned with the collection and
interpretation of quantitative data and the use of probability theory to
estimate population parameters

steady-state response the periodic part of a second-order system’s re-
sponse
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strongly stationary having all ensemble moments invariant with respect to
the record’s time

successive approximation method method to perform analog-to-digital
conversions electronically by subtracting the analog input signal from
a digital-to-analog converter’s output signal

supplementary nondimensional units that do not represent a fundamental
dimension

system of units system in which physical quantities can be expressed and
related to one another through physical laws

systematic error error related to the difference between a measured and
true value; sometimes called the bias error

systematic uncertainty estimate of the systematic error

third central moment see skewness

time history record plot of a signal’s amplitude versus time for a given
period of time

time lag delay in time between a signal’s input and output through a device

timewise experiment in which measurand values are recorded sequentially
in time

transducer device that changes an impulse into a desired quantity

transient response part of a second-order system’s response that decays in
time

transient solutions homogeneous solutions to a differential equation that
decay to zero in time

true mean value mean value of the population

true value error-free value of a variable

true variance variance of the population

uncertainty estimate of error in a variable

under-damped having a damping ratio less than unity

union set of all members of two sets that are in only one, only in the other,
or in both

unit precisely specified quantity in terms of which the magnitudes of other
quantities of the same kind can be stated
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unit equation equation in which only units are used or defined

validational experiment conducted to validate a specific hypothesis

variables physical quantities involved in the process that can undergo change
and thereby affect the process

variance statistical measure of the spread of values with respect to their
mean

variational experiment quantifying the mathematical relationships between
experimental variables

waveform actual shape of a signal

weakly stationary having the ensemble mean and autocorrelation invariant
with respect to the record’s time

Weibull distribution continuous distribution describing the time to failure
of a physical system

Wheatstone bridge electrical circuit consisting of four resistors in a specific
configuration and a voltage source

windowing mathematical method that reduces the magnitude of a signal’s
record at its beginning and end

zeroth central moment integral of the probability density function; equals
unity if the probability density function is normalized correctly

zeroth-order replication level level at which only measurement system er-
rors are present
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Symbols

Chapter 2:

AC alternating current

C capacitance

DC direct current

E electric field

ETh Thévenin open-circuit voltage

Fe electric force

I current

L inductance

P electric power

q charge

R resistance

T0 reference temperature

Z impedance

ZC capacitive reactance

ZL inductive reactance

ZTh Thévenin circuit impedance

∆Φ potential difference

ρ electric resistivity

ρ0 resistivity at reference temperature T0

Φ electric potential

473
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Chapter 3:

C capacitance

Ei input signal

Eo output signal

fc cutoff frequency

G gain

L inductance

R resistance

R0 resistance at reference temperature

T temperature

T0 reference temperature

α, β, γ coefficients of thermal expansion

∆t time lag

ε relative permittivity

ε0 permittivity of free space

η material constant

ν Poisson’s ratio

ρ resistivity

φ phase lag

Chapter 4:

A relative accuracy

Cv specific heat at constant volume

E total energy

F (t) input forcing function

h convective heat transfer coefficient

I current

K static sensitivity
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k spring constant

n order

M magnitude ratio

q charge

Q rate of heat transfer

R resistance

yh homogeneous solution

yp particular solution

β lag time

δ fractional dynamic error

ε absolute error

τ time constant

φ phase shift

ωd ringing frequency

Chapter 5:

⋃
union

⋂
intersection

| subject to the condition

Cn
m combinations of n objects taken m at a time

E[ ] or 〈 〉 expected value

fj frequency density

f∗
j normalized frequency density

Ku kurtosis

Pn
m permutations of n objects taken m at a time

p(x) probability density function

P (x) probability distribution function
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Pr[ ] probability of an event

S2
x sample variance

Sk skewness

x′ true mean of x or population mean

µm m-th central moment

σ2 true variance

Chapter 6:

p(x) probability density function

P (x) probability distribution function

p(z1) normal error function

Sx sample standard deviation

±tν,P Sx/
√

N precision interval of the true mean

x̄ sample mean

x′ mean value of population

{x̄} pooled mean

{Sx} pooled standard deviation

{Sx̄} pooled standard deviation of the means

{S2
x} pooled variance

{x̄} pooled weighted mean

{Sx}w pooled weighted standard deviation

{Sx̄}w pooled weighted standard deviation of the means

α level of significance

Γ gamma function

ν degrees of freedom

σ true standard deviation

σ2 true variance
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χ2 chi-square

χ̃2 reduced chi-square

Chapter 7:

Bi source bias limit

Bx systematic uncertainty

C confidence level

∆Bx/Bx relative systematic uncertainty

ei elemental instrument error (see text for specific types)

eI overall instrument error

FSO maximum or full-scale output

N number of measurements in a sample

Pi source precision index

Px random uncertainty

Px̄ random uncertainty in the average value of the measurand x

r result

tν,P Student’s t factor

u0 zeroth-order instrument uncertainty

uI instrument uncertainty

uc combined standard uncertainty

u2
c combined estimated variance

ud design-stage uncertainty

uN N -th order uncertainty

u2
r combined estimated variance

ur uncertainty in a result

ux uncertainty in x

Ux overall uncertainty
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x′ true mean value or population mean of x

Xtrue true value of x

x̄ sample mean of x

ν degrees of freedom

νBx
degrees of freedom for the systematic uncertainty

νPx
degrees of freedom for the random uncertainty

θi absolute sensitivity coefficient

Chapter 8:

D the sum of the squares of all the vertical distances between the measured
and calculated values used in regression analysis

di the i-th vertical distance between the i-th measured and calculated values

ei the error between the i-th calculated and measured values

G a coefficient matrix used in multi-variable linear analysis

R a coefficient matrix used in multi-variable linear analysis

r sample correlation coefficient

Rxx autocorrelation function

Rxy, Ryx cross-correlation functions

S̃2
x variance of the x errors

S̃2
y variance of the y errors

Syx standard error of the fit

SSE sum of the squares of the error

SSR sum of the squares of the regression

SST sum of the squares of the total error

tν,P Syx precision interval

x̄ sample mean

x̄2 sample mean of the sum of the squares

ȳi estimate of the sample mean
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y′
i true mean of yi

α true intercept

β true slope

Γ gamma function

ρ population correlation coefficient

ρxx population autocorrelation coefficient

ρxy, ρyx population cross-correlation coefficients

σxy population covariance

σx population variance of x

σ2
yi

population variance of yi

Chapter 9:

A0, An, Bn, Cn Fourier coefficients

Ai imaginary or complex amplitude

Ar real amplitude

A(ω) real component of the Fourier transform

B(ω) imaginary component of the Fourier transform

c wave speed

C amplitude

f cyclic frequency

i imaginary number =
√
−1

n integer

Rx(τ) temporal-averaged autocorrelation coefficient

Rx(t1, t1 + τ) ensemble-averaged autocorrelation coefficient

Sx sample standard deviation of x

S2
x sample variance of x

t time
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T fundamental period

x̄ sample mean value of x

xrms root-mean-square of x

Y (ω) complex Fourier coefficient

z complex number

z∗ complex conjugate

α phase angle resulting from complex amplitude

κ wave number

λ wavelength

µx temporal-averaged mean value

µx(t1) ensemble-averaged mean value

ω circular frequency

φ phase angle

Chapter 10:

A0, An, Bn, Cn Fourier coefficients

a0, ak, bk, ck discrete Fourier coefficients

f cyclic frequency

fa aliased frequency

f1 fundamental frequency

fN Nyquist frequency

fs sampled frequency

k folding diagram factor

ka folding diagram aliased factor

m positive integer

N number of sample points

T1 fundamental period
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Tr time-record length

u(t) windowing function

U(f) Fourier transform of the windowing function

Yk discrete Fourier transform

Y (f) Fourier transform

y(rδt) discretized signal

δf frequency increment

δt time increment

Chapter 11:

g gravitational acceleration

go local gravitational acceleration

m mass

MW molecular weight

p pressure

R gas constant

Rb radius of a body

R universal gas constant

S Sutherland constant

T temperature

To reference temperature

w weight

z distance

µ absolute viscosity

µo reference absolute viscosity

ρ density
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Review Problem Answers

The following lists the answers to the odd-numbered Review Problems.

Chapter 1: [1] independent; [3] a beaker of ice water; [5] to validate a
particular hypothesis and, in the process, to determine the range of validity
of that hypothesis; [7] (a) parameter, (b) independent, (c) independent or
extraneous, (d), (e), and (f) dependent

Chapter 2: [1] 4.0 µF; [3] 1 V; [5] 3.47 V; [7] current = Ampere; charge
= Coulomb; electric field work = Joule; electric potential = Volta; resistance
= Ohm; power = Watt; inductance = Henry; capacitance = Faraday; [9]
25.2 Ω; [11] 200; [13] deflection method; [15] compression on the lower-side
gage causes an increase in resistance; [17] 11 Ω; [19] (a) −50 W, (b) 33 W;
[21] 0.1 Ω/◦R; [23] < 100 Ω; [25] (d)

Chapter 3: [1] radiator fluid temperature = physical variable; ther-
mistor = sensor; Wheatstone bridge = transducer; car computer = signal
processor; [3] 0.47 Ω; [5] 34.2 µF; [7] (c)

Chapter 4: [1] the larger-diameter thermocouple; [3] 25 %; [5] zero; [7]
−84.3◦; [9] (b); [11] (d); [13] 250; [15] (a) zero, (b) second, (c) second, (d)
first, (e) first, (f) zero; [17] overdamped (R > 2

√
L/C), critically damped

(R = 2
√

L/C), underdamped (R < 2
√

L/C); [19] (a) −6.47 x 10−5, (b)
−5.74 × 10−5, (c) −4.20 × 10−5, thermistor; [21] 2; [23] 49.4

Chapter 5: [1] 31st-of-the-month birthday = 0.0192, August birthday
= 0.0849, February 29, 1979 birthday = 0, month-with-30-days birthday =
0.329; [3] 0.0625; [5] 1; [7] 2.4; [9] 0.4082; [11] (c); [13] the fourth central
moment; [15] 0.49 % with replacement, 0.47 % without replacement; [17] 31
%

Chapter 6: [1] 0.9544; [3] 0.1621; [5] 0.8742; [7] 0.149; [9] 99.94 %; [11]
10.82; [13] 28.6 %; [15] (d); [17] from 27 to 93; [19] 1 %; [21] 0.1359; [23]
0.1331; [25] both are nondimensional

Chapter 7: [1] readability; [3] player 3; [5] 0.004 59 kg m2; [7] 0.024 in.;
[9] 0.1 %; [11] 0.013; [13] 6; [15] 0.002; [17] 0.20 V; [19] 6 %; [21] 0.1 %; [23]
(1) with (c), (2) with (a), (3) with (b), (4) with (d)
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Chapter 8: [1] -0.50; [3] Legendre; [5] 0.98; [7] 9.1 V

Chapter 9: [1] 2.687; [3] 0.0450; [5] (a) periodic with 1 s period, (b)
aperiodic because of the exponential term; [7] (c), (d) and (e); [9] (b) and
(c); [11] (a) and (d) periodic, (b) and (c) aperiodic

Chapter 10: [1] 5; [3] 0 Hz; [5] (b)

Chapter 11: [1] (a); [3] (c); [5] (d); [7] 73.5 kg; [9] 291.3 N; [11] 12.04
× 1023; [13] 12 000 N; [15] (d); [17] (c); [19] 1125 rpm; [21] (b); [23] (c); [25]
A: mV2 and B: mV2/

√
m/s

Chapter 12: [1] (e)
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absolute quantization error, 87
absolute sensitivity coefficient, 243
absolute uncertainty, 243
accuracy, 236
active, 61
actuator, 60
aliasing, 381
ammeter, 38
ampere, 17, 417
amplifier

instrumentation, 77
amplitude, 344

mean squared, 366
amplitude ambiguity, 381
analog, 144
anode, 17
anti-alias, 384
atomic mass unit, 418
atomic weight, 418
autocorrelation, 325

coefficient, 325
function, 325

average
ensemble, 345

bandwidth, 116, 380
beat frequency, 349
binary numbers, 85
binomial, 155
bit reversal, 389

calibration, 104, 236
accuracy, 105
curve, 104
dynamic, 104
experiment, 104
precision, 105
random, 104

range, 104
sequential, 104
static, 104

candela, 418
cathode, 17
central moment, 160

first, 161
fourth, 162
m-th, 160
second, 161
third, 162
zeroth, 161

central tendency, 144
circuit

linear, 21
class intervals, 145
coefficient of determination, 315
combination, 172
combined estimated variance, 235
common-mode rejection ratio, 72
complex

Fourier coefficient, 368
complex modulation, 370
conditional probability, 167
conventionalism, 3
convolution, 371, 400
correlation analysis, 313
Coulomb’s law, 17
coverage factor, 241
critically damped, 121
cross-correlation, 328

coefficients, 329
functions, 328

current
alternating, 17
conventional, 17
direct, 17

cutoff frequency, 79

485
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decade, 125
decibel, 114, 115
deflection method, 31
degrees of freedom, 192

effective, 243
design of experiments, 213
devices

linear, 21
digital, 144
dimensions, 412

fundamental, 412
discrete, 144
distribution

Student’s t, 192
domain, 61

electric
capacitance, 20
charge, 16
current, 17
field, 18
inductance, 20
potential, 18
power, 20
resistance, 19
resistivity, 19

electromotive force, 20
emitter, 23
empiricism, 3
ensemble, 344
error

absolute, 104
dynamic, 106, 112
instrument (or elemental), 245,

247, 249
loading, 39
of the curve fit, 303
random, 236
relative, 105
systematic, 236
temporal precision, 261

estimate
biased, 236

Euler formula, 362
event, 165

exhaustive, 166
expected value, 160
experiment, 4

control, 6
controlled, 5
explorational, 8
pedagogical, 8
validational, 8
variational, 8

factorial design, 215
factors, 213
fallibilism, 3
filter

active, 78
band-pass, 78
digital, 78
high-pass, 78
low-pass, 78
nonrecursive digital, 83
notch, 78
passband, 78
passive, 78
recursive digital, 83
simple RC circuit as one, 78
stopband, 78

force
electric, 17

forcing function, 106
formula

Welch-Satterthwaite, 243
fossilized, 238, 244
four-wire method, 39
Fourier analysis, 355
Fourier coefficients, 355
Fourier series

discrete, 387
Fourier synthesis, 355
Fourier transform

components, 368
discrete, 387
fast, 388
inverse, 369
pair, 369

frequency, 104, 344
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center, 117
cut-off, 117

frequency density distribution, 149
frequency distribution, 149
function

even, 356
odd, 356

fundamental period, 349

gage factor
engineering, 66
local, 66

Gaussian distribution, 156

harmonic, 355
heterodyne, 349
histogram, 144

number of bins, 144, 146, 147
hypothesis testing, 209

impedance
electric, 33
matching, 42

impulse, 58
independence

statistical, 314
independent, 167
inductivism, 3
inner product, 354
intersection, 166
intrinsically linear variables, 300
inverting input, 74

joule, 18

kelvin, 417
kilogram, 417
Kirchhoff’s first law, 26
Kirchhoff’s second law, 26
kurtosis, 162

large-scale approximation, 260
level of significance, 201, 211
lognormal distribution, 156
loop, 27

closed, 75

feedback, 75
open, 74

magnitude, 104
magnitude ratio, 111
mean, 161
measurand, 5, 234, 237

multiple-measurement, 241
single-measurement, 241

measure, 412
measurement error, 231
measurement uncertainty, 231
MEMS, 70
meter, 417
method

ramp-conversion, 86
successive-approximation, 85

mode, 162
modeling error, 231
modeling uncertainty, 231
modulus, 362
mole, 417
molecular weight, 418
mutually exclusive, 166

newton, 17
noise

electrical, 43
interference, 43, 78
intrinsic, 43

non-inverting input, 74
normal error function, 188
normalized z variable, 186
Norton’s equivalent

circuit theorem, 36
null method, 31
null set, 165
numerical equation, 413

octave, 125
ohm, 19
Ohm’s law, 22
ohmmeter, 39
open loop, 74
operational amplifier, 72, 74, 75, 77
order of replication level, 238
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first-order, 238
nth-order, 238
zeroth-order, 238

orthogonal functions, 354
outcome, 165
over-damped, 121

parallel, 24
parameter, 5
passive, 61
period

fundamental, 344
permutation, 171
phase lag, 79, 114
Poisson distribution, 156
pooled mean, 207
pooled standard deviation, 208
pooled standard deviation of the

means, 208
pooled variance, 208
pooled weighted mean, 208
pooled weighted standard devia-

tion, 209
pooled weighted standard deviation

of the means, 209
population, 143
population correlation coefficient,

314
potential difference, 18
precision, 236
precision interval, 194, 307

of the true mean, 199
probability, 165
probability distribution function (PDF),

163
process, 213

strongly stationary, 346
product-moment formula, 315

radian, 418
rationalism, 3
reactance

capacitive, 34
electric, 33
inductive, 34

readability, 245
rectifier, 23
reduced chi-square variable, 201
regression analysis, 297
regression coefficients, 297
reliability, 240
repetition, 6, 238
replacement, 172
replication, 6, 238
resolution, 245
result, 234, 250

multiple-measurement, 241
single-measurement, 241

ringing frequency, 123
rise time, 111, 123
root mean square (rms), 351
round off, 428

sample, 143, 237
mean value, 143
variance, 143

sample correlation coefficient, 314
sample variance precision interval,

204
sample-to-sample, 6, 237
sampling

digital, 87
discrete, 87

scattergram, 144
scientific method, 3
scientific notation, 425
second, 417
sensor, 58

in situ, 61
invasive, 61
non-invasive, 60

sensors
MEMS, 70

series, 24
set, 165
settling time, 123
signal, 58, 144, 344

almost-periodic, 344
complex, 344
conditioner, 60
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deterministic, 344
ergodic, 325, 347
nondeterministic, 344
nonstationary, 345
periodic, 344
processor, 60
sample period, 350
simple, 344
static, 344
stationary, 325, 345
weakly stationary, 345

significant digits, 427
significant figures, 427
skewness, 162
spectrum

amplitude, 365
power, 365
power density, 365

SSE, 302
SSR, 302
SST, 302
standard, 104
standard deviation, 161
standard error of the curve fit, 303
standardized normal variate, 186
statistical inference, 143
statistical quantities, 143
steady-state response, 114
steradian, 418
strain gage, 32
system

English, 411
first-order, 109
higher-order, 125
linear, 84, 125
metric, 411
order of, 107
second-order, 118
time-invariant, 84
zero-order, 108

Thévenin equivalent
impedance, 36
voltage, 36

Thévenin’s equivalent

circuit theorem, 36
theory, 3
time constant, 109
time history record, 344
time lag, 79
timewise, 6, 237
transducer, 59
transient response, 114
transient solutions, 121
true mean value, 143
true value, 104
true variance, 143
two-wire method, 39
Type I error, 209
Type II error, 205, 209

uncertainty
aleatory, 275
combined standard, 235, 241
design-stage, 244
epistemic, 275
fractional, 251
overall, 240
random, 239
relative systematic, 240
systematic, 240

uncertainty analysis
detailed, 242
general, 242

under-damped, 121
union, 166
units, 412

base, 411, 413
derived, 413
equation, 413
prefixes, 425
supplementary, 411, 413
system of, 412

consistent, 413
SI, 417

variability, 144
variable

random, 143
variables, 5
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dependent, 5
extraneous, 5
independent, 5

variance, 161
voltmeter, 38

wave number, 363
waveform, 344
Weibull distribution, 156
Welch-Satterthwaite, 257
Wheatstone bridge, 29

deflection method, 31
null method, 31

window
Hanning, 401
rectangular, 399

windowing, 382
function, 399



Length 1 m = 100 cm 1 × 10−3 km 39.37 in. 3.281 ft 6.214 × 10−4 mi 3.937 × 104 mil

Area 1 m2 = 1 × 104 cm2 10.76 ft2 1550 in.2 2.471 × 10−4 acre 1 × 10−4 ha 3.861 × 10−7 mi

Volume 1 m3 = 1 × 106 cm3 1000 L 35.31 ft3 6.102 × 104 in.3 264.17 US gallon 1056.7 liquid qt

Time 1 s = 1000 ms 1.667 × 10−2 min 2.778 × 10−4 h 1.157 × 10−5 d 3.169 × 10−8 y 3 × 108 light m

Speed 1 m/s = 100 cm/s 3.281 ft/s 3.6 km/h 2.237 mi/h 1.944 nautical mi/h

Mass 1 kg = 1000 g 6.852 × 10−2 slug 2.2046 lbm 1 × 10−3 metric ton 6.023 × 1026 amu 500 carat

Mass Density 1 kg/m3 = 0.001 g/cm3 1.940 × 10−3 slug/ft3 6.242 × 10−2 lbm/ft3 1.123 × 10−6 slug/in.3 3.612 × 10−5 lbm/in.3

Weight, Force 1 N = 1 × 105 dyne 0.2248 lbf 7.233 pdl

Pressure 1 Pa = 10 dyne/cm2 9.869 × 10−6 atm 4.015 × 10−3 in. H2O 7.501 × 10−4 cm Hg 1.450 × 10−4 lbf/in.2 2.089 × 10−2 lbf/ft2

Energy, Work 1 J = 2.778 × 10−7 kW·h 9.481 × 10−4 Btu 1 × 107 erg 0.7376 ft·lbf 3.725 × 10−7 hp·h 0.2389 cal

Power 1 W = 0.001 kW 3.413 Btu/h 0.7376 ft·lbf/s 1.341 × 10−3 hp 0.2389 cal/s

Temperature 1 K = (5/9) × ◦F + 255.38 ◦C + 273.15 (5/9) × ◦R

Plane Angle 1 rad = 57.30◦ 3438′ 2.063 × 105′′ 0.1592 rev

UNIT CONVERSIONS

Derived Unit Symbol Base Units

Force N (newton) kg·m·s−2

Pressure Pa (pascal) kg·m−1·s−2

Energy, Work, Heat J (joule) kg·m2·s−2

Power W (watt) kg·m2·s−3

Electric Charge C (coulomb) A·s
Electric Potential Difference V (volt) kg·m2·s−3·A−1

Electric Resistance Ω (ohm) kg·m2·s−3·A−2

Electric Conductance S (siemens) kg−1·m−2·s3·A2

Electric Capacitance F (farad) kg−1·m−2·s4·A2

SI DERIVED UNITS EXPRESSED IN BASE UNITS



z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359

0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753

0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141

0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517

0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879

0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224

0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549

0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852

0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133

0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389

1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621

1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830

1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015

1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177

1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319

1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441

1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545

1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633

1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706

1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4758 .4761 .4767

2.0 .4772 .4778 .4783 .4788 .4793 .4799 .4803 .4808 .4812 .4817

2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857

2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890

2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916

2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936

2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952

2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964

2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974

2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981

2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986

3.0 .4987 .4987 .4987 .4988 .4988 .4988 .4989 .4989 .4989 .4990

3.5 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998

4.0 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000

ONE-SIDED NORMAL ERROR FUNCTION VALUES



ν χ2
0.99 χ2

0.975 χ2
0.95 χ2

0.90 χ2
0.50 χ2

0.05 χ2
0.025 χ2

0.01

1 0.000 0.000 0.000 0.016 0.455 3.84 5.02 6.63

2 0.020 0.051 0.103 0.211 1.39 5.99 7.38 9.21

3 0.115 0.216 0.352 0.584 2.37 7.81 9.35 11.3

4 0.297 0.484 0.711 1.06 3.36 9.49 11.1 13.3

5 0.554 0.831 1.15 1.61 4.35 11.1 12.8 15.1

6 0.872 1.24 1.64 2.20 5.35 12.6 14.4 16.8

7 1.24 1.69 2.17 2.83 6.35 14.1 16.0 18.5

8 1.65 2.18 2.73 3.49 7.34 15.5 17.5 20.1

9 2.09 2.70 3.33 4.17 8.34 16.9 19.0 21.7

10 2.56 3.25 3.94 4.78 9.34 18.3 20.5 23.2

11 3.05 3.82 4.57 5.58 10.3 19.7 21.9 24.7

12 3.57 4.40 5.23 6.30 11.3 21.0 23.3 26.2

13 4.11 5.01 5.89 7.04 12.3 22.4 24.7 27.7

14 4.66 5.63 6.57 7.79 13.3 23.7 26.1 29.1

15 5.23 6.26 7.26 8.55 14.3 25.0 27.5 30.6

16 5.81 6.91 7.96 9.31 15.3 26.3 28.8 32.0

17 6.41 7.56 8.67 10.1 16.3 27.6 30.2 33.4

18 7.01 8.23 9.39 10.9 17.3 28.9 31.5 34.8

19 7.63 8.91 10.1 11.7 18.3 30.1 32.9 36.2

20 8.26 9.59 10.9 12.4 19.3 31.4 34.2 37.6

30 15.0 16.8 18.5 20.6 29.3 43.8 47.0 50.9

40 22.2 24.4 26.5 29.1 39.3 55.8 59.3 63.7

50 29.7 32.4 34.8 37.7 49.3 67.5 71.4 76.2

60 37.5 40.5 43.2 46.5 59.3 79.1 83.3 88.4

70 45.4 48.8 51.7 55.3 69.3 90.5 95.0 100.4

80 53.5 57.2 60.4 64.3 79.3 101.9 106.6 112.3

90 61.8 65.6 69.1 73.3 89.3 113.1 118.1 124.1

100 70.1 74.2 77.9 82.4 99.3 124.3 129.6 135.8

CHI-SQUARE VARIABLE VALUES



ν tν,P=50 % tν,P=90 % tν,P=95 % tν,P=99 %

1 1.000 6.341 12.706 63.657

2 0.816 2.920 4.303 9.925

3 0.765 2.353 3.192 5.841

4 0.741 2.132 2.770 4.604

5 0.727 2.015 2.571 4.032

6 0.718 1.943 2.447 3.707

7 0.711 1.895 2.365 3.499

8 0.706 1.860 2.306 3.355

9 0.703 1.833 2.262 3.250

10 0.700 1.812 2.228 3.169

11 0.697 1.796 2.201 3.106

12 0.695 1.782 2.179 3.055

13 0.694 1.771 2.160 3.012

14 0.692 1.761 2.145 2.977

15 0.691 1.753 2.131 2.947

16 0.690 1.746 2.120 2.921

17 0.689 1.740 2.110 2.898

18 0.688 1.734 2.101 2.878

19 0.688 1.729 2.093 2.861

20 0.687 1.725 2.086 2.845

21 0.686 1.721 2.080 2.831

30 0.683 1.697 2.042 2.750

40 0.681 1.684 2.021 2.704

50 0.680 1.679 2.010 2.679

60 0.679 1.671 2.000 2.660

120 0.677 1.658 1.980 2.617

∞ 0.674 1.645 1.960 2.576

TWO-SIDED STUDENT’S t VARIABLE VALUES
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