@ CONTROL ENGINEERING SERIES 55

Genetic
Algorithms
in engineering
systems

Edited by
A. M. S. Zalzala

and
P. J. Fleming

The Institution of Electrical Engineers

IEE CONTROL ENGINEERING SERIES 55

Series Editors: Professor D. P. Atherton
Professor G. 1. Irwin

Genetic algorithms
in engineering
systems

Other volumes in print in this series:

Volume 2
Volume 8
Volume 14
Volume 15

Volume 16
Volume 18
Volume 19
Volume 20
Volume 21
Volume 23
Volume 26

Volume 27
Volume 28
Volume 30
Volume 31
Volume 32
Volume 34
Volume 35
Volume 36
Volume 37

Volume 38
Volume 39
Volume 40
Volume 41
Volume 42

Volume 43
Volume 44

Volume 45
Volume 46

Volume 47
Volume 48

Volume 49
Volume 50
Volume 51

Volume 52
Volume 53

Volume 54

Elevator traffic analysis, desigh and control G. C. Barney and S. M. dos Santos
A history of control engineering, 1800-1930 S. Bennett

Optimal relay and saturating control system synthesis E. P. Ryan

Self-tuning and adaptive control: theory and application

C. J. Harris and S. A. Billings (Editors)

Systems modelling and optimisation P. Nash

Applied control theory J. R. Leigh

Stepping motors: a guide to modern theory and practice P. P. Acarnley
Design of modern control systems D. J. Bell, P. A. Cook and N. Munro (Editors)
Computer control of industrial processes S. Bennett and D. A. Linkens (Editors)
Robotic technology A. Pugh (Editor)

Measurement and instrumentation for control M. G. Mylroi and G. Calvert
(Editors)

Process dynamics estimation and control A. Johnson

Robots and automated manufacture J. Billingsley (Editor)

Electromagnetic suspension—dynamics and control P. K. Sinha

Modelling and control of fermentation processes J. R. Leigh (Editor)
Multivariable control for industrial applications J. O'Reilly (Editor)

Singular perturbation methodology in control systems D. S. Naidu
Implementation of self-tuning controllers K. Warwick (Editor)

Robot control K. Warwick and A. Pugh (Editors)

Industrial digital control systems (revised edition) K. Warwick and D. Rees
(Editors)

Parallel processing in control P. J. Fleming (Editor)

Continuous time controller design R. Balasubramanian

Deterministic control of uncertain systems A. S. |. Zinober (Editor)

Computer control of real-time processes S. Bennett and G. S. Virk (Editors)
Digital signal processing: principles, devices and applications

N. B. Jones and J. D. McK. Watson (Editors)

Trends in information technology D. A. Linkens and R. |. Nicolson (Editors)
Knowledge-based systems for industrial control J. McGhee, M. J. Grimble and
A. Mowforth (Editors)

Control theory—a guided tour J. R. Leigh

Neural networks for control and systems K. Warwick, G.'W. Irwin and K. J. Hunt
(Editors)

A history of control engineering, 1930-1956 S. Bennett

MATLAB toolboxes and applications for control A. J. Chipperfield and

P. J. Fleming (Editors)

Polynomial methods in optimal control and filtering K. J. Hunt (Editor)
Programming industrial control systems using IEC 1131-3 R. W. Lewis
Advanced robotics and intelligent machines J. O. Gray and D. G. Caldwell
(Editors)

Adaptive prediction and predictive control P. P. Kanjilai

Neural network applications in control G. W. Irwin, K. Warwick and K. J. Hunt
(Editors)

Control engineering solutions: a practical approach P. Albertos, R. Strietzel and
N. Mort (Editors)

Genetic algorithms
in engineering
systems

Edited by
A. M. S. Zalzala

and
P. J. Fleming

The Institution of Electrical Engineers

Published by: The Institution of Electrical Engineers, London,
United Kingdom

© 1997: The Institution of Electrical Engineers

This publication is copyright under the Berne Convention and the
Universal Copyright Convention. All rights reserved. Apart from any fair
dealing for the purposes of research or private study, or criticism or
review, as permitted under the Copyright, Designs and Patents Act, 1988,
this publication may be reproduced, stored or transmitted, in any forms or
by any means, only with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms
of licences issued by the Copyright Licensing Agency. Inquiries
concerning reproduction outside those terms should be sent to the
publishers at the undermentioned address:

The Institution of Electrical Engineers,
Michael Faraday House,

Six Hills Way, Stevenage,

Herts. SG1 2AY, United Kingdom

While the editors and the publishers believe that the information and
guidance given in this work is correct, all parties must rely upon their own
skill and judgment when making use of it. Neither the editors nor the
publishers assume any liability to anyone for any loss or damage caused
by any error or omission in the work, whether such error or omission is
the result of negligence or any other cause. Any and all such liability is
disclaimed.

The moral right of the authors to be identified as authors of this work has

been asserted by them in accordance with the Copyright, Designs and
Patents Act 1988.

British Library Cataloguing in Publication Data

A CIP catalogue record for this book
is available from the British Library

ISBN 0 85296 902 3

Printed in England by Bookcraft, Bath

Contents

1 Introduction to genetic algorithms A. Chipperfield

1.1

1.2

1.3
1.4

1.5
1.6

1.7
1.8

What are genetic algorithms?
1.1.1 Overview of GAs
1.1.2 GAs versus traditional methods
Major elements of the GA
1.2.1 Population representation and initialisation
1.2.2 The objective and fitness functions
1.2.3 Selection
1.2.3.1 Roulette wheel selection methods
1.2.3.2 Stochastic universal sampling
1.2.4 Crossover (recombination)
1.2.4.1 Multipoint crossover
1.2.4.2 Uniform crossover
1.2.4.3 Other crossover operators
1.2.4.4 Intermediate recombination
1.2.4.5 Line recombination
1.2.4.6 Discussion
1.2.5 Mutation
1.2.6 Reinsertion
1.2.7 Termination of the GA
Other evolutionary algorithms
Parallel GAs
1.4.1 Global GAs
1.4.2 Migration GAs
1.4.3 Diffusion GAs
GAs for engineering systems
Example application: gas turbine engine control
1.6.1 Problem specification
1.6.2 EA implementation
1.6.3 Results
1.6.4 Discussion
Concluding remarks
References

2 Levels of evolution for control systems J. |. Grefenstette

2.1

Introduction

vi

“o

Genetic algorithms in engineering systems

2.2
2.3
24

2.5
2.6
2.7
2.8

2.1.1 Evolutionary algorithms

2.1.2 Control system applications

2.1.3 Overview

Evolutionary learning: parameters
Evolutionary learning: data structures
Evolutionary learning: program level
2.4.1 Knowledge representation

2.4.2 Rule strength

2.4.3 Mutation operators

2.4.4 Crossover in SAMUEL

2.45 Control applications of SAMUEL
Evolutionary algorithms for testing intelligent control systems
Summary

Acknowledgment

References

Multiobjective genetic algorithms C. M. Fonseca and P. J. Fleming

3.1
3.2

3.3
3.4
3.5
3.6
3.7

Multiobjective optimisation and preference articulation
How do MOGAs differ from simple GAs?

3.2.1 Scale-independent decision strategies

3.2.2 Cost to fitness mapping and selection

3.2.3 Sharing

3.2.4 Mating restriction

3.2.5 Interactive optimisation and changing environments
Putting it all together

Experimental results

Concluding remarks

Acknowledgment

References

Constraint resolutions in genetic algorithms R. Pearce

4.1
4.2
4.3
4.4
4.5

4.6
4.7
4.8

Introduction

Constraint resolution in genetic algorithms
Problems in encoding of constraints

Fuzzy encoding of contraints

Fuzzy logic

4.5.1 Membership

4.5.2 Rules

4.5.3 Defuzzification

4.5.4 Example

4.5.5 Advantages of fuzzy logic

4.5.6 Uses of fuzzy logic

Fuzzy logic to resolve constraints in genetic algorithms
Engineering applications of the technique [9]
Discussion

46
48
49
49
51
52
54
54
55
55
56
57
60
60
60

63
64
64
65
67
67
70
70
70
73
74
76
76

79
79
79
82
83
84
84
86
87
87
89
90
90
95
97

Contents vii

4.9 Acknowledgments 98
4.10 References 98
Towards the evolution of scaleable neural architectures S. Lucas 99
5.1 Introduction 99
5.2 Encoding neural networks in chromosomes 100
5.3 Evolutionary algorithms 103
5.4 Active weights and the simulation of neural networks 105
5.5 A set based chromosome structure 107

5.5.1 Setinterconnections 108

5.5.2 Example chromosome 108

5.56.3 Results 111

5.5.4 Scaleability 112
5.6 Conclusions 113
5.7 Acknowledgment 114
5.8 References 114

Chaotic systems identifcation R. Caponetto, L. Fortuna, M. Lavorgna

and G. Manganaro 118
6.1 Background 119
6.1.1 Chua’s oscillator 119
6.1.2 Synchronisation of nonlinear systems 121
6.1.3 Genetic algorithms 123
6.2 Synchronisation-based identification 124
6.2.1 Description of the algorithm 124
6.2.2 Identification of Chua’s oscillator 126
6.3 Experimental examples 127
6.4 Conclusions 131
6.5 References 132
Job shop scheduling 7. Yamada and R. Nakano 134
7.1 Introduction 134
7.2 Disjunctive graph 135
7.2.1 Active schedules 137
7.3 Binary representation 138
7.3.1 Local harmonisation 139
7.3.2 Global harmonisation 140
7.3.3 Forcing 140
7.4 Permutaion representation 141
7.4.1 Subsequence exchange crossover 141
7.4.2 Permuation with repetition 142
7.5 Heuristic crossover 143
7.5.1 GT crossover 144
7.6 Genetic enumeration 145

7.6.1 Priority rule based GA 145

vili Genetic algorithms in engineering systems

7.6.2 Shifting bottleneck based GA
7.7 Genetic local search
7.7.1 Neighbourhood search
7.7.2 Multistep crossover fusion
7.7.3 Neighbourhood structures for the JSSP
7.7.4 Scheduling in the reversed order
7.7.5 MSXF-GA for the job shop scheduling
7.8 Benchmark problems
7.8.1 Muth and Thompson benchmark
7.8.2 The ten tough benchmark problems
7.9 Other heuristic methods
7.10 Conclusions
7.11 References

146
147
147
148
150
152
154
155
155
156
158
158
158

Evolutionary algorithms for robotic systems: principles and implemenations

A. M. S Zalwala, M. C. Ang, M. Chen, A. S. Rana and (. Wang
8.1 Optimal motion of industrial robot arms
8.1.1 Formulation of the problem
8.1.2 Simulation of case studies
8.1.2.1 A two DOF arm
8.1.2.2 Asix DOF arm
8.1.3 Parallel genetic algorithms
8.2 A comparative study of the optimisation of cubic polynomial
robot motion
8.2.1 Background
8.2.2 Motion based on cubic splines
8.2.3 The genetic formulations
8.2.4 The objective functions
8.2.4.1 Pareto-based GA
8.2.4.2 Weighted-sum GA
8.2.5 Parameter initialisation
8.2.6 Evaluating the population
8.2.6.1 Ranking
8.2.6.2 Fitness assignment
8.2.6.3 Sharing scheme
8.2.7 Selection scheme
8.2.8 Shuffling
8.2.9 Recombination mechanisms
8.2.10 Modified feasable solution converter
8.2.11 Time intervals mutation
8.2.12 Simulation results
8.2.12.1 Case 1: Pareto-based GA
8.2.12.2 Case 2: Pareto-GA versus flexible polyhedron
search
8.2.12.3 Case 3: weighted-sum GA
8.3 Maultiple manipulator systems

161
162
163
165
165
167
169

170
170
171
171
172
172
172
173
174
174
174
175
175
175
175
176
177
177
178

180
180
182

10

8.4

8.5
8.6
8.7
8.8

Aerodynamic inverse optimisation problems S. Obayashi

9.1

9.2

9.3

9.4
9.5

8.3.1 Problem formulation

8.3.2 Encoding of paths as strings
8.3.3 Fitness function

8.3.4 The GA operators

8.3.5 Simulation results for two 3DOF arms

Contents

Mobile manipulator system with nonholonomic constraints

8.4.1 Multicriteria cost function

8.4.2 Parameter encoding using polynomials

8.4.3 Fitness function

8.4.4 Genetic evolution

8.4.5 Simulation results

Discussions and conclusions
Acknowledgment

References

Appendix

8.8.1 Motion based on cubic splines
8.8.2 Physical limits

8.8.3 The feasable solution converter (time scaling)

Direct optimisation of airfoil

9.1.1 Approximation concept

9.1.2 Results of direct optimisation
Inverse optimisation of the airfoil

9.2.1 Coding

9.2.2 Simple GA with real number coding

9.2.3 Fitness evaluation: objective and constraints

9.2.4 Construction of fitness function
9.2.5 Inverse design cycle

9.2.6 Results of airfoil design

Inverse optimisation of the wing

9.3.1 Pressure distribution for the wing
9.3.2 MOGA

9.3.4 Results of wing design

Summary

References

Genetic design of VLSI layouts V. Schnecke
10.1 Introduction
10.2 Physical VLSI design

10.2.1 Macro cell layouts

10.2.2 Placement

10.2.3 Routing

10.2.4 Previous genetic approaches

10.3 A GA for combined placement and routing

ix

183
184
184
186
187
190
191
192
193
193
194
195
197
198
199
199
201
202

203
206
206
206
210
210
212
213
214
215
217
218
219
220
221
225
226

229
229
230
231
233
233
235
236

X Genetic algorithms in engineering systems

10.4
10.5
10.6
10.7

Index

10.3.1 The genotype representation
10.3.2 Floorplanning

10.3.3 Integration of routing

10.3.4 Computation of the global routes
10.3.5 Hybrid creation of the initial population
10.3.6 Crossover

10.3.7 Mutation

10.3.8 Selection

Results

Conclusions

Acknowledgments

References

237
238
239
239
241
242
242
245
245
249
251
252

254

Preface

Genetic algorithms (GAs) are general-purpose search and
optimisation methods applicable to a wide variety of reallife
problems. These algorithms are based on certain concepts of
biological evolution, and represent the search space of a coded
population of potential solutions. The population is then manipulated
according to the survival of the fittest principle, hence converging to
an optimal solution.

GAs can be applied in many fields but the theoretical innovations
and practical applications in engineering systems are the subject of
this volume. This book arises from the highly successful 1st IEE/IEEE
international conference on Genetic algorithms in engineering systems:
innovations and applications (GALESIA ‘95), held at the University of
Sheffield, UK. Being the only one of its kind, the conference reflected
the wide interest in the area, presenting new theories in optimisation,
scheduling, control, system identification, neural networks and other
fields. The applications side of the event included areas such as
aerospace, robotics, utilities, signal processing and manufacturing.

The contributions presented in this book are extended versions of
commissioned papers from some of the highest quality contributions
to the conference. Chosen for their experience in the field, the
authors are drawn from academia and industry worldwide. The
chapters cover the main fields of work as well as presenting tutorial
material in this important subject, which is currently receiving
considerable attention from engineers.

The book starts with a broad survey of the current trends and
techniques used in GAs, and the many variations from the original GA
are discussed to illustrate how this powerful and versatile search and
optimisation method is applicable to a broad range of activities.
Chapter 1 also includes a brief discussion of the biological origins of
GAs. Chapter 2 looks at the range of representation levels at which
algorithms can be applied to intelligent control systems, including
evolving control parameters, complex structures and rules. The focus
of the chapter, however, is on evolving control rules embodied in the

xii Genetic algorithms in engineering systems

SAMUEL system, a machine learning program that uses a GA and
other competition-based heuristics to improve a set of control rules.
Chapter 3 aims to illustrate how an existing GA can be modified and
set up to explore the relevant trade-offs between multiple objectives
with a minimum of effort. Most engineering problems are
characterised by several noncommensurable and often competing
objectives to be optimised, but usually have no unique, perfect
solution due to the trade-offs involved. Simple experimental results
are included for the purpose of illustration. Chapter 4 considers the
problem of including multiple constraints in a large, ill-behaved
search space, which is a common difficulty in all optimisation
techniques applied in different areas, such as design, scheduling,
system identification and control, or any of the myriad of areas to
which genetic algorithms have been applied. In this chapter, this is
addressed through a fuzzy logic method, reported as part of a genetic
algorithm search.

Evolving the learning behaviours of neural networks is the topic
covered by Chapter 5. It reports that the successful evolution of
scaleable neural architectures is dependent on the encoding scheme,
i.e. how the neural network is represented in the chromosome, and
describes a simulation model that is capable of supporting learning
behaviours in a unified fashion. Chapter 6 presents a new method to
identify the parameters of nonlinear circuits, based on the concepts of
synchronisation. This method is formulated as a global optimisation
problem using a genetic algorithm. Three experimental examples are
reported for estimating the five dimensionless parameters of the
chaotic Chua’s oscillator. The productivity of manufacturing processes
is discussed in Chapter 7, with algorithms given for job shop
scheduling. This is a much researched problem in operations
research, where the objective is the optimal allocation of shared
resources over time to competing activities. The authors illustrate
their work with several benchmark problems.

Chapter 8 addresses the principles of the use of evolutionary
algorithms in the motion planning of robotic systems. In addition, the
implementation of these principles is reported for single mani-
pulators, multiple arms and mobile arms. The authors emphasise the
need for a tailorfit design of the genetic structure (coding,
parameters and objectives), and present comparative results for single
and multiple objective optimisation formulations. Chapter 9 discusses
the characteristics of aerodynamics through wing shape design
problems, where it is demonstrated that distribution of the objective

Preface xiii

function can be extremely rough even in a simplified problem.
Comparisons are reported with gradient-based optimisation,
simulated annealing and GAs, as applied to the airfoil shape design
using the approximation concept; the GA being the best for
aerodynamic optimisation. Finally, Chapter 10 presents a genetic
algorithm for a combinatorial optimisation problem: the design of
VLSI macro cell layouts; the main feature being the total integration
of the global routing into the placement process. Together with a
hybrid method for the creation of the initial individuals, the approach
contains detailed features with the chosen genotype representation
being a tree with additional information for all nodes defining details
for routing and sizing of the modules.

Ali Zalzala
Peter Fleming
(Sheffield 1997)

Contributors

Chapter 1

A Chipperfield

Department of Automatic Control
and Systems Engineering

The University of Sheffield

Mappin Street

Sheffield

S13]D UK

Chapter 2

J J Grefenstette

Code 5510

Naval Research Laboratory
Washington DC 20375 USA

Chapter 3

C M Fonseca and P J Fleming

Department of Automatic Control
and Systems Engineering

The University of Sheffield

Mappin Street

Sheffield

S13]D UK

Chapter 4

R Pearce

Rolis-Royce Applied Science
Laboratory

PO Box 31

Derby

DE24 8B] UK

Chapter 5

S Lucas

Department of Electronic
Systems Engineering

University of Essex

Wivenhoe Park

Colchester

C0O435Q UK

Chapter 6

R Caponetto and M Lavorgna
SGS Thomson Microelectronics
Stradale Primosole 50

95121 Catania Italy

L Fortuna and G Manganaro
DEES University of Catania
V.e A. Doria 6

95125 Catania Italy

Chapter 7

T Yamada and R Nakano

NTT Communication Science
Laboratories

2 Hikaridai, Seika-cho

Soraku-gun

Kyoto 619-02 Japan

Chapter 8

A M S Zalzala, M C Ang, M Chen,
A S Rana and G Wang

Department of Automatic Control
and Systems Engineering

The University of Sheffield

Mappin Street

Sheffield

S13]D UK

Chapter 9

S Obayashi

Department of Aeronautics
and Space Engineering

Tohoku University

Sendai 980-77 Japan

Chapter 10

V Schnecke

Department of Mathematics
and Computer Science

University of Osnabruck

Albrechstrasse 28

D-49069 Osnabruck Germany

Chapter 1
Introduction to
genetic algorithms
A. Chipperfield

In 1859 Charles Darwin (1809-82) published an extremely
controversial book whose full title is On the origin of species by means of
natural selection, or the preservation of favoured races in the struggle for life,
which is now popularly known as The origin of species. He suggested that
a species is continually developing, his controversial thesis implying
that man himself came from ape-like stock. During his explorations,
Darwin was impressed by the variations between species. He noticed
that in almost all organisms there is a huge potential for the
production of offspring as, for example, eggs and spores, but that only
a small percentage survive to adulthood. He also observed that within
a population there is a great deal of variation. This led him to deduce
that those variants which survived the struggle to adulthood were,
presumably, the ones most fit to do so. Supposing that individual
variation could be inherited by offspring, Darwin saw evolution as the
natural selection of inheritable variations.

Around the same time, Gregor Mendel (1822-84) investigated the
inheritance of characteristics, or traits, in his experiments with pea
plants. By examining hybrids from different strains of plant he
obtained some notion of the interactions of characters. For example,
when crossing tall plants with short ones, all the resulting hybrids were
tall regardless of which plant donated the pollen. Mendel declared
that the character, or gene as they later came to be known, for the tall
plant was dominant and that the gene for shortness was recessive.
Although Mendel’s experiments laid the foundations for the study of
genetics, it was not until 30 years after his death that Walter Sutton
(1877-1916) discovered that genes were part of chromosomes in the
nucleus.

However, Darwin’s theory emphasised the role of continuous
variation within species. In contrast, distinct differences between
species are not uncommon in nature, i.e. discontinuous variation.
Hugo de Varis (1848-1935) observed that in a population of cultivated
plants, strikingly different variants would occasionally appear. To

2 Genetic algorithms in engineering systems

explain this discontinuous variation, de Varis developed a theory of
mutation. Superficially, the new science of genetics seemed to support
the mutation theory of evolution against orthodox Darwinism. With
greater understanding of the structure of genes, geneticists came to
realise how subtle the effects of mutation could be. If a characteristic
is determined by a single gene, mutation may have a dramatic effect;
but if a battery of genes combines to control that characteristic,
mutation in one of them may only have a negligible effect. It is clear,
therefore, that there is not a sharp distinction between mutation and
Darwinian theory of evolution as they overlap. The principle of
selection does, however, remain sound.

Genetic algorithms (GAs) are stochastic search and optimisation
methods based on the metaphors of natural biological evolution
described above. Broadly, they are part of the larger class of
evolutionary algorithms (EAs) [1] which also includes evolutionary
programming (EP) [2], evolution strategies (ES) [3] and genetic
programming (GP) [4]. EAs operate with a population of potential
solutions to a problem, applying the principles of survival of the fittest,
reproduction and mutation to producing successively better
approximations to the solution. At each iteration of an EA, a new
generation of approximations is created by the processes of selection
and reproduction leading to the evolution of populations of
individuals which are better suited to their environment — the problem
domain — than the individuals from which they were created, just as it
occurs in natural adaptation.

This Chapter starts with an overview of the basic mechanics of GAs and
highlights their major differences when compared to traditional and
enumerative search and optimisation techniques. The main components
of the GA are then described in some detail and various alternative
approaches to the major procedures are considered. After a brief
discussion of other evolutionary algorithms, parallel models of the GA
are then considered and itis shown how it may be possible to improve the
performance of the algorithm even when it is implemented on a
sequential computer. Next, considerations commonly arising in
engineering systems and the manner in which they may be treated
through the application of GAs are discussed. Finally, an example of the
use of a GA in aircraft engine controller configuration design is
presented to demonstrate how GAs may be applied to problems for
which there are currently no other direct methods of solution.

Introduction to genetic algorithms 3

1.1 What are genetic algorithms?

The GAis a stochastic global search method that mimics the metaphor
of natural biological evolution [5]. GAs operate on a population of
potential solutions applying the principle of survival of the fittest to
produce (hopefully) better and better approximations to a solution.
At each generation, a new set of approximations is created by the
process of selecting individuals according to their level of fitness in the
problem domain and breeding them together using operators
borrowed from natural genetics. This process leads to the evolution of
populations of individuals which are better suited to their
environment than the individuals that they were created from.

1.1.1 Overview of GAs

Individuals, or current approximations, are encoded as strings,
chromosomes, composed over some alphabet(s), so that the
genotypes (chromosome values) are uniquely mapped onto the
decision variable (phenotypic) domain. The most commonly used
representation in GAs is the binary alphabet {0, 1} although other
representations can be used, e.g. ternary, integer, real-valued etc. For
example, a problem with two variables, x; and x,, may be mapped onto
the chromosome structure in the following way:

1001011011:01001011101101

X Xo

where x, is encoded with ten bits and x, with 15 bits, possibly reflecting
the level of accuracy or range of the individual decision variables.
Examining the chromosome string in isolation yields no information
about the problem which we are trying to solve. It is only with the
decoding of the chromosome into its phenotypic values that any
meaning can be applied to the representation. However, as described
below, the search process will operate on this encoding of the decision
variables, rather than the decision variables themselves, except, of
course, where real-valued genes are used.

4 Genetic algorithms in engineering systems

Having decoded the chromosome representation into the decision
variable domain, it is possible to assess the performance, or fitness, of
individual members of a population. This is done through an objective
function that characterises an individual’s performance in the
problem domain. In the natural world, this would be an individual’s
ability to survive in its present environment. Thus, the objective
function establishes the basis for selection of pairs of individuals which
will be mated together during reproduction.

During the reproduction phase, each individual is assigned a fitness
value derived from its raw performance measure given by the objective
function. This value is used in the selection process to bias it towards
fitter individuals. Highly fit individuals, relative to the whole
population, have a high probability of being selected for mating
whereas less fit individuals have a correspondingly low probability of
being selected.

Once the individuals have been assigned a fitness value, they can be
chosen from the population, with a probability according to their
relative fitness, and recombined to produce the next generation.
Genetic operators manipulate the characters (genes) of the
chromosomes directly, using the assumption that certain individual’s
gene codes, on average, produce fiiter individuals. The recombination
operator is used to exchange genetic information between pairs, or
larger groups, of individuals. The simplest recombination operator is
that of single-point crossover.

Consider the two parent binary strings:

P,=00011110
P,=10100011

If an integer position, i, is selected uniformly at random from the
range [1, F1], where [is the string length, and the genetic information
exchanged between the individuals about this point, then two new
offspring strings are produced. The two offspring below are produced
when the crossover point ¢ = 4 is selected:

0,=00010011
0,=10101110

This crossover operation is not necessarily performed on all strings in
the population. Instead, it is applied with a probability P, when the
pairs are chosen for breeding. A further genetic operator, called
mutation, is then applied to the new chromosomes, again with a set
probability, P,. Mutation causes the individual genetic representation
to be changed according to some probabilistic rule. In the binary

Introduction to genetic algorithms 5

string representation, mutation will cause a random bit to change its
state, 0 @ 1 or 1 & 0. So, for example, mutating the seventh bit of O,
leads to the new string:

O0mm=00010001

After recombination and mutation, the individual strings are then, if
necessary, decoded, the objective function evaluated, a fitness value
assigned to each individual and individuals selected for mating
according to their fitness, and so the process continues through
subsequent generations. In this way the average performance of
individuals in a population is expected to increase, as good individuals
are preserved and bred with one another and the less fit individuals
die out. The GA is terminated when some criteria are satisfied, e.g. a
certain number of generations completed, a mean deviation in the
performance of individuals in the population or when a particular
point in the search space is encountered.

1.1.2 GAs versus traditional methods

From the above discussion, it can be seen that the GA differs
substantially from more traditional search and optimisation methods.
The four most significant differences are:

e GAs search a population of points in parallel, not a single point.

e GAs use probabilistic transition rules, not deterministic ones.

e GAs work on an encoding of the parameter set rather than the
parameter set itself (except where real-valued individuals are used).

® GAs do not require derivative information or other auxiliary
knowledge; only the objective function and corresponding fitness
levels influence the directions of search.

It is important to note that the GA can provide a number of potential
solutions to a given problem and the choice of final solution is left to
the user. In cases where a particular problem does not have a unique
solution, for example in multiobjective optimisation where the result
is usually a family of Pareto-optimal solutions, the GA is potentially
useful for identifying these alternative solutions simultaneously.

1.2 Major elements of the GA

The simple genetic algorithm (SGA) is described by Goldberg [6] and
is used here to illustrate the basic components of the GA. A pseudocode
outline of the SGA is shown in Figure 1.1. The population at time ¢ is

6 Genetic algorithms in engineering systems

represented by the time-dependent variable P, with the initial
population of random estimates being P(0). Using this outline of a GA,
the remainder of this Section describes the major elements of the GA.

procedure GA
begin
t=0;
initialize P(t);
evaluate P(1);
while not finished do
begin
t=t+1;
select P(t) from P(t-1);
reproduce pairs in P(t);
evaluate P(t);
end
end.

Figure 1.1 A simple genetic algorithm

1.2.1 Population representation and initialisation

GAs operate simultaneously on a number of potential solutions, called
a population, consisting of some encoding of the parameter set.
Typically, a population is composed of between 30 and 100 individuals,
although, a variant called the micro GA uses very small populations,
~ten individuals, with a restrictive reproduction and replacement
strategy in an attempt to satisfy real-time execution requirements [7].

The most commonly used representation of chromosomes in the
GA is that of the single-level binary string. Here, each decision variable
in the parameter set is encoded as a binary string and these are
concatenated to form a chromosome (see the example in Section 1.1).
The use of Gray coding has been advocated as a method of
overcoming the hidden representational bias in conventional binary
representation as the Hamming distance between adjacent values is
constant [8]. Empirical evidence of Caruana and Schaffer [9] suggests
that large Hamming distances in the representational mapping
between adjacent values, as is the case in the standard binary
representation, can result in the search process being deceived or
unable to efficiently locate the global minimum. A further approach
of Schmitendorgf et al. [10], is the use of logarithmic scaling in the
conversion of binary-coded chromosomes to their real phenotypic
values. Although the precision of the parameter values is possibly less

Introduction to genetic algorithms 7

consistent over the desired range, in problems where the spread of
feasible parameters is unknown a larger search space may be covered
with the same number of bits than when using a linear mapping
scheme, thus allowing the computational burden of exploring
unknown search spaces to be reduced to a more manageable level.

Although binary-coded GAs are most commonly used, there is an
increasing interest in alternative encoding strategies, such as integer
and realvalued representations. For some problem domains, it is
argued that the binary representation is in fact deceptive in that it
obscures the nature of the search [11]. In the subset selection
problem [12], for example, the use of an integer representation and
look-up tables provides a convenient and natural way of expressing the
mapping from representation to problem domain. Consider the
travelling salesperson problem, the task being to find the shortest
route visiting all the cities from a given set exactly once. By using
integer labels, each candidate solution can be uniquely represented as
a permutation of these elements. For example, in a seven-ity tour,
both (2,7, 1, 3,5, 6,4} and {6, 4, 7, 1, 5, 3, 2} represent paths between
the cities. Thus, the chromosomes used in a GA to solve this problem
would contain seven integers, each integer corresponding to a city in
the tour.

The use of real-valued genes in GAs is claimed by Wright [13] to
offer a number of advantages in numerical function optimisation over
binary encodings. Efficiency of the GA is increased as there is no need
to convert chromosomes to phenotypes before each function
evaluation, less memory is required as efficient floating point internal
computer representations can be used directly, there is no loss in
precision by discretisation to binary or other values and there is
greater freedom to use different genetic operators. The use of real-
valued encodings is described in detail by Michalewicz {14] and in the
literature on evolution strategies (see, for example, [15]).

Having decided on the representation, the first step in the SGA is to
create an initial population. This is usually achieved by generating the
required number of individuals using a random number generator
which uniformly distributes numbers in the desired range. For
example, with a binary population of N, individuals whose
chromosomes are L,, bits long, N,; X L,, random numbers uniformly
distributed from the set {0, 1} would be produced.

A variation is the extended random initialisation procedure of
Bramlette [11] whereby a number of random initialisations are tried
for each individual and the one with the best performance is chosen

8 Genetic algorithms in engineering systems

for the initial population. Other users of GAs have seeded the initial
population with some individuals that are known to be in the vicinity
of the global minimum (see, for example, [16] and [17]). This
approach is, of course, only applicable if the nature of the problem is
well understood beforehand or if the GA is used in conjunction with a
knowledge based system.

1.2.2 The objective and fitness functions

The objective function is used to provide a measure of how individuals
have performed in the problem domain. In the case of a minimisation
problem, the most fit individuals will have the lowest numerical value
of the associated objective function. This raw measure of fitness is
usually only used as an intermediate stage in determining the relative
performance of individuals in a GA. Another function, the fitness
function, is normally used to transform the objective function value
into a measure of relative fitness [18], thus:

Fx)=g(f(x))

where f is the objective function, g transforms the value of the
objective function to a non-negative number and F is the resulting
relative fitness. This mapping is always necessary when the objective
function is to be minimised as the lower objective function values
correspond to fitter individuals. In many cases, the fitness function
value corresponds to the number of offspring which an individual can
expect to produce in the next generation. A commonly used
transformation is that of proportional fitness assignment (see, for
example, [6]). The individual fitness, F(x), of each individual is
computed as the individual’s raw performance, f(x;), relative to the
whole population, i.e.:

F(x)= f(;)

Nind

2 (x)

=l
where N,, is the population size and x, is the phenotypic value of
individual :. Although this fitness assignment ensures that each
individual has a probability of reproducing according to its relative
fitness, it fails to account for negative objective function values.

A linear transformation which offsets the objective function [6] is

often used prior to fitness assignment, such that:

F(x) = af(x) + b

Introduction to genetic algorithms 9

where a is a positive scaling factor if the optimisation is maximising
and negative if we are minimising. The offset & is used to ensure that
the resulting fitness values are non-negative.

The use of linear scaling and offsetting outlined above is, however, a
possible cause of rapid convergence. The selection algorithm (see
below) selects individuals for reproduction on the basis of their
relative fitness. Using linear scaling, the expected number of offspring
is approximately proportional to that individual’s performance. As
there is no constraint on an individual’s performance in a given
generation, highly fit individuals in early generations can dominate
the reproduction causing rapid convergence to possibly suboptimal
solutions. Similarly, if there is little deviation in the population, then
scaling provides only a small bias towards the most fit individuals.

A further method of transforming the objective function values to
fitness measures is power law scaling [6]. Here, the scaled fitness is
taken as some specified power, k, of the raw fitness, f.

F(x) = fix)’

The value of k is, in general, problem dependent and may be
dynamically changed during the execution of the GA to shrink or
stretch the range of fitness measures as required.

Baker [19] suggests that limiting the reproductive range, so that no
individuals generate an excessive number of offspring, prevents
premature convergence. Here, individuals are assigned a fitness
according to their rank in the population rather than their raw
performance. One variable, SP, is used to determine the bias, or
selective pressure, towards the most fit individual and the fitness of the
others is determined by:

F(x)=2—SP+2(SP—-1) x—1
Mnd—l

where ¥, is the position in the ordered population of individual 2.

For example, for a population size of N,,= 40 and selective pressure
of SP=1.1, individuals are given a fitness value in the range [0.9, 1.1].
The least fit individual has a fitness of 0.9 and the most fit is assigned
a fitness of 1.1. The increment in the fitness value between adjacent
ranks is thus 0.0051.

1.2.3 Selection

Selection is the process of determining the number of times, or trials,
a particular individual is chosen for reproduction and, thus, the

10 Genetic algorithms in engineering systems

number of offspring that an individual will produce. The selection of
individuals can be viewed as two separate processes:

(1) determination of the number of trials an individual can expect to
receive;

(2) conversion of the expected number of trials into a discrete number
of offspring.

The first part is concerned with the transformation of raw fitness
values into a real-valued expectation of an individual’s probability of
reproducing and is dealt with in the previous subsection as fitness
assignment. The second part is the probabilistic selection of
individuals for reproduction based on the fitness of individuals relative
to one another, and is sometimes known as sampling. The remainder
of this subsection will review some of the more popular selection
methods in current usage.

Baker [20] presented three measures of performance for selection
algorithms, bias, spread and efficiency. Bias is defined as the absolute
difference between an individual’s actual and expected selection
probability. Optimal zero bias is therefore achieved when an
individual’s selection probability equals its expected number of trials.
Spread is the range in the possible number of trials that an individual
may achieve. If f{(z) is the actual number of trials that individual ¢
receives, then the minimum spread is the smallest spread that
theoretically permits zero bias, i.e:

flyellet(s)J, et(s) 1)

where et(7) is the exgected number of trials of individual 7, Let(2) Jis the
floor of ei(i) and ez,‘(i)_l is the ceiling. Thus, although bias is an
indication of accuracy, the spread of a selection method measures its
consistency.

The desire for efficient selection methods is motivated by the need
to maintain a GA’s overall time complexity. It has been shown in the
literature that the other phases of a GA (excluding the actual objective
function evaluations) are O(L;.N..) or better time complexity. The
selection algorithm should thus achieve zero bias while maintaining a
minimum spread and not contributing to an increased time
complexity of the GA.

1.2.3.1 Roulette wheel selection methods

Many selection techniques employ a roulette wheel mechanism to
probabilistically select individuals based on some measure of their

Introduction to genetic algorithms 11

performance. A realvalued interval, Sum, is determined as either the
sum of the individuals’ expected selection probabilities or the sum of
the raw fitness values over all the individuals in the current
population. Individuals are then mapped one-to-one into contiguous
intervals in the range [0, Sum]. The size of each individual interval
corresponds to the fitness value of the associated individual. For
example, in Figure 1.2 the circumference of the roulette wheel is the
sum of all six individuals’ fitness values. Individual 5 is the most fit
individual and occupies the largest interval, whereas individuals 6 and
4 are the least fit and have correspondingly smaller intervals within the
roulette wheel. To select an individual, a random number is generated
in the interval [0, Sum] and the individual whose segment spans the
random number is selected. This process is repeated until the desired
number of individuals have been selected.

1%

Figure 1.2 Roulette wheel selection

The basic roulette wheel selection method is stochastic sampling
with replacement (SSR). Here, the segment size and selection
probability remain the same throughout the selection phase and
individuals are selected according to the procedure outlined above.
SSR gives zero bias but a potentially unlimited spread. Any individual
with a segment size > 0 could entirely fill the next population.

Stochastic sampling with partial replacement (SSPR) extends upon
SSR by resizing an individual’s segment if it is selected. Each time an
individual is selected, the size of its segment is reduced by 1-0. If the
segment size becomes negative, then it is set to 0-0. This provides an
upper bound on the spread of Tet(i)!. However, the lower bound is
zero and the bias is higher than that of SSR.

12 Genetic algorithms in engineering systems

Remainder sampling methods involve two distinct phases. In the
integral phase, individuals are selected deterministically according to
the integer part of their expected trials. The remaining individuals are
then selected probabilistically from the fractional part of the
individual’s expected values. Remainder stochastic sampling with
replacement (RSSR) uses roulette wheel selection to sample the
individual not assigned deterministically. During the roulette wheel
selection phase, individuals’ fractional parts remain unchanged and,
thus, compete for selection between spins. RSSR provides zero bias
and the spread is lower bounded. The upper bound is limited only by
the number of fractionally assigned samples and the size of the
integral part of an individual. For example, any individual with a
fractional part > 0 could win all the samples during the fractional
phase. Remainder stochastic sampling without replacement (RSSWR)
sets the fractional part of an individual’s expected values to zero if it is
sampled during the fractional phase. This gives RSSWR minimum
spread, although this selection method is biased in favour of smaller
fractions.

1.2.3.2 lStochastic universal sampling

Stochastic universal sampling (SUS) is a single-phase sampling
algorithm with minimum spread and zero bias. Instead of the single
selection pointer employed in roulette wheel methods, SUS uses N
equally spaced pointers, where Nis the number of selections required.
The population is shuffled randomly and a single random number in
the range [0,Sum/N] is generated, ptr. The N individuals are then
chosen by generating the N pointers spaced by 1, [ptr, ptr+ 1, ..., ptr +
N-1], and selecting the individuals whose fitnesses span the positions
of the pointers. An individual is thus guaranteed to be selected a
minimum of times Let(i)] and no more than 'et(3)!, thus achieving
minimum spread. In addition, as individuals are selected entirely on
their position in the population, SUS has zero bias. For these reasons,
SUS has become one of the most widely used selection algorithms in
current GAs.

1.2.4 Crossover (recombination)

The basic operator for producing new chromosomes in the GA is that
of crossover. Like its counterpart in nature, crossover produces new
individuals which have some parts of both parents’ genetic material.
The simplest form of crossover is that of single-point crossover,

Introduction to genetic algorithms 13

described in the overview of GAs in Section 1.2.1. In this Section, a
number of variations on crossover are described and discussed and the
relative merits of each reviewed.

1.2.4.1 Multipoint crossover

For multipoint crossover, m crossover positions, k; € {1, 2, ..., I-1}, where
k; are the crossover points and /is the length of the chromosome, are
chosen at random with no duplicates and sorted into ascending order.
Then, the bits between successive crossover points are exchanged
between the two parents to produce two new offspring. The section
between the first allele position and the first crossover point is not
exchanged between individuals. This process is illustrated in Figure 1.3.

The idea behind multipoint, and indeed many of the variations on

Figure 1.3 Multipoint crossover

the crossover operator, is that the parts of the chromosome
representation that contribute most to the performance of a particular
individual may not necessarily be contained in adjacent substrings
[21]. Further, the disruptive nature of multipoint crossover appears to
encourage the exploration of the search space, rather than favouring
convergence to highly fit individuals early in the search, thus making
the search more robust [22].

1.2.4.2 Uniform crossover

Single and multipoint crossover define cross points as places between
loci where a chromosome can be split. Uniform crossover [23]
generalises this scheme to make every locus a potential crossover point.
A crossover mask, the same length as the chromosome structures, is
created at random and the parity of the bits in the mask indicates

14 Genetic algorithms in engineering systems

which parent will supply the offspring with which bits. Consider the
following two parents, crossover mask and resulting offspring:

P, =1011000111
P. =0001111000
Mask =0011001100
O, =0011110100
O =1001001011

Here, the first offspring, O, is produced by taking the bit from P, if the
corresponding mask bit is 1, or the bit from P, if the corresponding
mask bit is 0. Offspring O, is created using the inverse of the mask or,
equivalently, swapping P, and Ps.

Uniform crossover, like multipoint crossover, has been claimed to
reduce the bias associated with the length of the binary representation
used and the particular coding for a given parameter set. This helps to
overcome the bias in single-point crossover towards short substrings
without requiring precise understanding of the significance of
individual bits in the chromosome representation. Spears and De Jong
[24] have demonstrated how uniform crossover may be parameterised
by applying a probability to the swapping of bits. This extra parameter
can be used to control the amount of disruption during recombina-
tion without introducing a bias towards the length of the
representation used. When uniform crossover is used with real-valued
alleles, it is usually referred to as discrete recombination.

1.2.4.3 Other crossover operators

A related crossover operator is that of shuffle [25]. A single cross point
is selected, but before the bits are exchanged, they are randomly
shuffled in both parents. After recombination, the bits in the offspring
are unshuffled. This too removes positional bias as the bits are
randomly reassigned each time crossover is performed.

The reduced surrogate operator [21] constrains crossover to always
produce new individuals wherever possible. Usually, this is
implemented by restricting the location of crossover points such that
crossover points only occur where gene values differ.

1.2.4.4 Intermediate recombination

Given a realvalued encoding of the chromosome structure, inter-
mediate recombination is a method of producing new phenotypes

Introduction to genetic algorithms 15

around and between the values of the parents’ phenotypes [26].
Offspring are produced according to the rule:

0,= P, X a(P,- P)

where «a is a scaling factor chosen uniformly at random over some
interval, typically [-0.25, 1.25] and P, and P, are the parent
chromosomes (see, for example, [26]). Each variable in the offspring
is the result of combining the variables in the parents according to the
above expression with a new a chosen for each pair of parent genes.
In geometric terms, intermediate recombination is capable of
producing new variables within a slightly larger hypercube than that
defined by the parents but constrained by the range of a as shown in
Figure 1.4(a).

E o0 1 < Area of possible offspring .\.
~ i o
§ E o E @ Parents § \.\
1 ! . . \
| 1 . Potential offspring
e @ %
e a Q
Gene | p—
¢ b

Figure 1.4 Geomelric effect of recombination operators

a intermediate recombination
b line recombination

1.2.4.5 Line recombination

Line recombination [26] is similar to intermediate recombination,
except that only one value of a is used in the recombination. Figure
1.4(b) shows how line recombination can generate any point on the
line defined by the parents within the limits of the perturbation, a, for
a recombination in two variables.

1.2.4.6 Discussion

The binary operators discussed in this Section have all, to some extent,
used disruption in the representation to help improve exploration

16 Genetic algorithms in engineering systems

during recombination. Although these operators may be used with
real-valued populations, the resulting changes in the genetic material
after recombination would not extend to the actual values of the
decision variables, although offspring may, of course, contain genes
from either parent. The intermediate and line recombination
operators overcome this limitation by acting on the decision variables
themselves. Like uniform crossover, the real-valued operators may also
be parameterised to provide a control over the level of disruption
introduced into offspring.

For discrete-valued representations, variations on the recombina-
tion operators may be used that ensure that only valid values are
produced as a result of crossover [27]. In particular, for problems such
as bin packing and graph colouring, it has been shown that crossover
operators which exploit domain specific knowledge may be employed
to improve the efficiency of the GA [28]. The wider application of
evolutionary computing methods to a greater range of problem
domains has resulted in a large number of special purpose operators.
However, as Baxter et al. report [29], repeated experimentation with
operator probabilities may be necessary if any real benefit is to be
gained from their use.

1.2.5 Mutation

In natural evolution, mutation is a random process where one allele of
a gene is replaced by another to produce a new genetic structure. In
GAs, mutation is randomly applied with low probability, typically in the
range 0-001 and 0-01, and modifies elements in the chromosomes.
Usually considered as a background operator, the role of mutation is
often seen as providing a guarantee that the probability of searching
any given string will never be zero and acting as a safety net to recover
good genetic material which may be lost through the action of
selection and crossover [6].

The effect of mutation on a binary string is illustrated in Figure 1.5
for a ten-bit chromosome representing a real value decoded over the
interval [0, 10] using both standard and Gray coding and a mutation
point of three in the binary string. Here, binary mutation flips the
value of the bit at the loci selected to be the mutation point. The effect
of mutation on the decision variable, of course, depends on the
encoding scheme used. Given that mutation is generally applied
uniformly to an entire population of strings, it is possible that a given
binary string may be mutated at more than one point.

Introduction to genetic algorithms 17

mutation point — binary Gray
Originalstring 0 0{0f1 1 0 0 0 1 0 09659 0.6634
Mutatedstring 0 0{0[1 1 0 0 0 1 0 22146 18439

,.
1
i
l
H
L

Figure 1.5 Binary mutation

With nonbinary representations, mutation is achieved by either
perturbing the gene values or random selection of new values within
the allowed range. Wright [13] and Janikow and Michalewicz [30]
demonstrate how real-coded GAs may take advantage of higher
mutation rates than binary-coded GAs, increasing the level of possible
exploration of the search space without adversely affecting the
convergence characteristics. Indeed, Tate and Smith [31] argue that
for codings more complex than binary, high mutation rates can be
both desirable and necessary and show how, for a complex
combinatorial optimisation problem, high mutation rates and non-
binary coding yielded significantly better solutions than the normal
approach.

Many variations on the mutation operator have been proposed. For
example, biasing the mutation towards individuals with lower fitness
values to increase the exploration in the search without losing
information from the fitter individuals [32] or parameterising the
mutation such that the mutation rate decreases with the population
convergence [33]. Miihlenbein and Schlierkamp-Voosen [26] have
introduced a mutation operator for the real-coded GA that uses a non-
linear term for the distribution of the range of mutation applied to
gene values. It is claimed that by biasing mutation towards smaller
changes in gene values, mutation can be used in conjunction with
recombination as a foreground search process. Other mutation
operations include that of trade mutation [12], whereby the
contribution of individual genes in a chromosome is used to direct
mutation towards weaker terms, and reorder mutation [12], which
swaps the positions of bits or genes to increase diversity in the decision
variable space.

1.2.6 Reinsertion

Once a new population has been produced by selection and recom-
bination of individuals from the old population, the fitness of the
individuals -in the new population may be determined. If fewer
individuals are produced by recombination than the size of the

18 Genetic algorithms in engineering systems

original population, then the fractional difference between the new
and old population sizes is termed a generation gap [34]. In the case
where the number of new individuals produced at each generation is
one or two, the GA is said to be steady state [35] or incremental [36].
If one or more of the most fit individuals is deterministically allowed
to propagate through successive generations then the GA is said to use
an elitist strategy.

To maintain the size of the original population, the new individuals
have to be reinserted into the old population. Similarly, if not all the
new individuals are to be used at each generation or if more offspring
are generated than the size of the old population then a reinsertion
scheme must be used to determine which individuals are to exist in the
new population. An important feature of not creating more offspring
than the current population size at each generation is that the
generational computational time is reduced, most dramatically in the
case of the steady-state GA, and that the memory requirements are
smaller as fewer new individuals need to be stored while offspring are
produced.

When selecting which members of the old population should be
replaced the most apparent strategy is to replace the least fit members
deterministically. However, in studies, Fogarty [37] has shown that no
significant difference in convergence characteristics was found when
the individuals selected for replacement were chosen with inverse
proportional selection or deterministically as the least fit. He further
asserts that replacing the least fit members effectively implements an
elitist strategy as the most fit will probabilistically survive through
successive generations. Indeed, the most successful replacement
scheme was one that selected the oldest members of a population for
replacement. This is reported as being more in keeping with
generational reproduction as every member of the population will, at
some time, be replaced. Thus, for an individual to survive successive
generations, it must be sufficiently fit to ensure propagation into
future generations.

1.2.7 Termination of the GA

Because the GA is a stochastic search method, it is difficult to formally
specify convergence criteria. As the fitness of a population may remain
static for a number of generations before a superior individual is
found, the application of conventional termination criteria becomes
problematic. A common practice is to terminate the GA after a
prespecified number of generations and then test the quality of the

Introduction to genetic algorithms 19

best members of the population against the problem definition. If no
acceptable solutions are found, the GA may be restarted or a fresh
search initiated.

1.3 Other evolutionary algorithms

Although similar at the highest level, many variations exist in EAs.
Evolutionary programming (EP) [2], arising from the desire to
generate machine intelligence, typically uses a representation tailored
to the problem domain. For example, in numerical optimisation
vectors of realvalued numbers would be used and combinatorial
problems would employ ordered lists. Given a population size of N, all
N individuals are selected as parents and a representation specific
mutation operator used to generate N offspring. The N offspring
would then be evaluated and the next generation selected using a
fitness-based probabilistic function on these 2N individuals. The
mutation operator in EP is often adaptive and different adaptation
rates may be used for each decision variable within an individual.

Evolution strategies (ES) [3] originally employed a population size
of one individual, mutation and selection. Schwefel [38] used real-
valued representation for individuals and introduced recombination
and population sizes of greater than one individual. Parents are
randomly selected and recombination and mutation used to produce
more than N offspring. Selection is then used to select either the N
best offspring or the Nbest individuals from the parents and offspring
to make up the next generation. Unlike EP, recombination is an
important operator in ES.

Genetic algorithms (GAs) traditionally use the more domain
independent binary representation although other representations
are now being employed. Selection of parents is probabilistic, based
on a fitness function and N children are produced from the N parents
using mutation and recombination operators. These offspring are
then the new population. In GAs, recombination is considered to be
the primary operator and mutation a background process. Genetic
programming [4] uses EAs to evolve more complex structures such as
Lisp expressions or neural networks to solve specific problems. For a
comprehensive discussion of the differences between the various EAs,
the interested reader is referred to [1].

20 Genetic algorithms in engineering systems

1.4 Parallel GAs

Given the preceding description of the GA, it is clear that the GA may
be parallelised in a number of ways. Indeed, there are numerous
variations on parallel GAs, many of which are very different from the
original GA presented by Holland [5]. Most of the major differences
are encountered in the population structure and the method of
selecting individuals for reproduction. The motivation for exploring
parallel GAs is manifold. One may wish to improve speed and
efficiency by employing a parallel computer, apply the GA to larger
problems or try to follow the biological metaphor more closely by
introducing structure and geographic location into the population. As
this Section will show, the benefits of using parallel GAs, even when
run on a sequential machine, can be more than just a speed up in the
execution time.

In deciding whether a parallel GA is useful for a specific problem,
the trade off between population diversity, in terms of the population
size, versus the execution time needs to be considered. For example, a
small population size will yield a short execution time but may mean
that some areas of the search space are not investigated because of the
lack of genetic diversity in the population. This may mean that only
suboptimal solutions are found, or, in the worst case, no satisfactory
solutions are obtained. Large populations, on the other hand, may
maintain diversity in the population but at the expense of execution
time. Depending on the nature of the problem being addressed,
excessive diversity may also mean that the GA is unable to find a
satisfactory solution due to selective pressure driving reproduction
towards suboptimal points. In many cases, due to the structure of the
population and the use of local selection rules, parallel GAs offer an
attractive mechanism for allowing diversity to exist within a population
without unduly affecting the convergence characteristics of the GA.
For some classes of problem, for example those characterised by
multimodal search spaces or multiobjective formulations, the parallel
GA can be shown to be more effective than the sequential GA,
allowing multiple, equally satisfactory, solution estimates to coexist in
the global population simultaneously.

In the remainder of this Section we describe a number of parallel
GAs and use three broad categories to classify them: global, migration
and diffusion. These categories reflect the different ways in which
parallelism is exploited in the GA and the nature of the population
structure and recombination mechanisms used. The global GA treats

Introduction to genetic algorithms 21

the entire population as a single breeding unit and aims to exploit the
algorithmic parallelism inherent in the GA. Migration GAs divide the
population into a number of subpopulations, each of which is treated
as a separate breeding unit under the control of a conventional GA.
To encourage the proliferation of good genetic material throughout
the whole population, individuals migrate between the sub-
populations from time to time. Generally, the migration GA is
considered coarse grained. The diffusion GA treats each individual as
a separate breeding unit, the individuals it may mate with being
selected from within a small local neighbourhood. The use of local
selection and reproduction rules leads to a continuous diffusion of
individuals over the population. The diffusion GA is usually
considered fine grained.

1.4.1 Global GAs

Examination of the pseudocode outline of the sequential simple GA
given in Figure 1.1 reveals that a significant proportion of the com-
putation in a GA is composed of taking pairs of individuals, combining
them to form new offspring, applying mutation and evaluating a cost
function. Taking a population size of, say, 50 and assuming that
reproduction of two individuals creates two new offspring, then the
inner loop of Figure 1.1 contains 25 discrete operations that may be
performed concurrently at each generation. The worker/farmer
architecture in Figure 1.6 demonstrates how this geometric
parallelism may be exploited by a parallel computer.

The GA farmer node initialises and holds the entire population,
performs selection and assigns fitness to individuals. The worker
nodes recombine individuals, apply mutation and evaluate the
objective function for the resulting offspring. Goldberg [6] describes
a similar scheme, the synchronous master-slave, whereby a hybrid GA
uses a local search routine at each worker to further refine the
estimates generated at each node. Others, notably Fogarty and Huang
[36] and Dodd et al. [39] use the processor farm for the evaluation of
objective functions only.

Although the farmed GA does not embrace all of the parallelism
inherent in the GA, near linear speed up has been reported in cases
where the objective function is significantly more computationally
expensive than the GA itself. In particular, when the objective function
being minimised is of low computational cost, then there is potentially
a bottleneck at the farmer while fitness assignment and selection are
performed. The computational efficiency, of course, depends on the

22 Genetic algorithms in engineering systems

balance between the cost of the parallel parts of the GA and the
sequential elements. Thus, the farmed GA may be inefficient if the
objective function evaluation times vary greatly.

GA FARMER
selection
fitness assignment

WORKER 1 WORKER 2 WORKER N
recombination recombination recombination
mutation mutation °** | mutation
function evaluation function evaluation function evaluation

Figure 1.6 A worker/farmer GA

Goldberg [6] also describes a semisynchronous master-slave GA that
overcomes this potential bottleneck by relaxing the requirement for
strict synchronous operation. Here, individuals are selected and
inserted into the population as and when the worker nodes complete
their tasks. However, both the synchronous and semisynchronous
models are potentially unreliable because of the dependence on the
single farmer process.

A more robust extension to the worker/farmer implementations is
the asynchronous, concurrent GA [6]. Using a number of identical
processors, genetic operators and objective function evaluations are
performed independently of one another on a population stored in a
shared memory. This requires that no individual be accessed by more
than one processor simultaneously. Although more complicated to
implement than the conventional farmed GAs described above, this
scheme is highly tolerant of processor and memory failure. Even if
only one processor and some of the shared memory are functioning,
it is still possible for useful processing to be performed.

1.4.2 Migration GAs

The GA as described thus far operates globally on a single population.
That is, individuals are processed probabilistically on their
performance in the population as a whole and any individual has the
potential to mate with any other individual in the entire population.

Introduction to genetic algorithms 23

This treatment of the population as a single breeding unit is known as
panmixia.

In natural evolution, species tend to reproduce within subgroups of
the entire population, isolated to some extent from one another, but
with the possibility of mating occurring across the boundaries of the
subgroups. A population distributed amongst a number of semi-
isolated breeding groups is known as polytypic. Humans, for example,
are polytypic in that they consist of groups of the species isolated from
one another geographically, culturally and economically. Although
breeding may occur between individuals from different subgroups of
the species, it is much more likely that individuals from within the
same group will reproduce together.

- -~Each node (GAi)
WHILE not finished

SEQ
. Selection
. Reproduction
. Evaluation
PAR

. Send emigrants
. Receive immigrants

a
Figure 1.7 A migration GA

a pseudocode outline
b a possible implementation

The migration or island model of the GA introduces geographic
population distribution by dividing a large population into many
smaller semi-isolated subpopulations or demes. Each subpopulation is
a separate breeding unit using local selection and reproduction rules
to locally evolve the species. From time to time, migration of
individuals occurs between subpopulations such that individuals from
one population are introduced into another subpopulation. The
pattern of migration limits how much genetic diversity can occur in
the global population. This pattern of migration is determined by the
number of individuals migrated, the interval between migration and
the migration paths between subpopulations. This movement of
individuals between demes is often termed the stepping stone model.

The traditional sequential GA can readily be extended to encompass
the migration model. A pseudocode outline of the modified algorithm

24 Genetic algorithms in engineering systems

for the migration GA is shown in Figure 1.7(a). The population is
divided into a number of subpopulations each of which is evolved by
an independent GA. Additional routines are included to exchange
individuals between subpopulations according to the communications
topology employed and global termination criteria introduced. Figure
1.7(b) shows a possible implementation of the migration GA and some
of the migration paths between the population islands.

Grosso [40] first introduced a geographically isolated population
structure in 1985 using an island model of the GA with five
independent subpopulations. From his study, he found that semi-
isolated populations improved the performance of the GA in terms of
the quality of solution and the number of function evaluations
required. He asserted that limited migration of individuals between
subpopulations was more effective than either complete sub-
population interdependence or independence.

Tanse [41] also reported on a migration GA in 1987. He studied the
migration model and compared its performance with a partitioned
GA, i.e. a GA whose population is divided into subpopulations which
evolve entirely independently with no migration between subpopu-
lations. The GA was implemented on a hypercube machine which
employed custom VAX-like CPUs. This implementation used two new
parameters to specify the migration interval, at which generation
migration should take place, and the migration rate, the number of
individuals transferred between subpopulations. In early experiments
[41], Tanse selected individuals for migration probabilistically from
the subset of the subpopulation whose fitness was at least equal to the
average fitness of the subpopulation. Likewise, individuals were
selected for replacement by immigrants probabilistically from the
subset of individuals whose fitness was no greater than the average for
that subpopulation. Later [42], it appears that a new strategy was
adopted. At a migration generation each node produced more
offspring than the current subpopulation size. The migrants were then
uniformly selected from the offspring and removed from the
subpopulation, thus maintaining the correct subpopulation size. The
receiving subpopulation uniformly replaced individuals with
immigrants. The philosophy behind this approach is that the most fit
individuals are more likely to reproduce and are therefore most likely
to migrate. The actual migration took place bidirectionally along one
dimension of the hypercube, selected on the basis of the generation
number. Thus, the neighbour selected to receive individuals from a
node will also send its migrants to that node.

Introduction to genetic algorithms 25

The results presented by Tanse showed a near-linear speed up when
compared against a sequential GA with a population size equal to the
sum of the individual subpopulations. Comparing the migration GA
with the partitioned GA, the migration GA consistently found superior
individuals and had a higher average fitness over the entire
population. However, due to the limited number of test functions, no
conclusion can be drawn about the general effect of the migration rate
and interval. The effect of the mutation and crossover operators used
with the migration GA was also investigated. The results indicate that
it is feasible to use different crossover and mutation rates on different
nodes, allowing the balance between exploration and exploitation to
be varied locally, but with migration ensuring that good individuals
should survive in at least some subpopulations.

Similar results to Tanse are reported by Starkweather et al. [43] and
Cohoon et al. [44]. Starkweather’s GA has a number of notable
differences from the implementations described so far. Rather than
using a generational GA in which most or all of the population is
replaced at each generation, this parallel GA was based on Whitley’s
GENITOR program ([35] which uses one-at-a-time reproduction
replacing a single individual at each reproduction step. The migration
GA was applied to a wide range of problems including neural network
optimisation, a mapping problem and a 105-city travelling salesman
problem. In all test cases, the migration GA produced better results
than a comparable sequential one. When the migration GA was
implemented on a sequential machine it was found that it would find
better solutions and execute faster than a standard GA with the same
population size on a number of test cases. In addition, the use of an
adaptive mutation rate, initially high and reducing with generations,
was found to improve the convergence characteristics of the GA.

In 1991, Mihlenbein et al. [45] described a real-valued parallel GA
for use as a black-box solver in high-dimensional optimisation
problems. A conventional single-point crossover operator was
employed that operated directly on the ANSI-IEEE floating-point
representation of the decision variables. The mutation operator
worked only on the fractional part of a variable’s representation; thus
mutation is exponentially biased towards producing a new individual
in the region of the original rather than one a larger numerical
distance away. In experiments, the parallel GA was able to find global
solutions to problems of up to a dimension of 400.

The distributed breeder GA of Mihlenbein and Schlierkamp-Voosen
[26], rather than modelling the natural and self-organised evolution of

26 Genetic algorithms in engineering systems

the earlier parallel GA described above, is based on a model of rational
selection in human breeding groups. Whereas the parallel GA models
natural selection, the breeder GA models artificial selection. Using
influences from evolution strategies [3] and GAs, the breeder GA selects
the best T % of a population, where T is a predefined parameter, and
randomly mates them until sufficient offspring are produced. As well as
ensuring that no individuals mate with themselves, the fittest individual
also survives into the following generation. This selection and
reproduction process is known as truncation selection as only a subset
of each generation is used as potential parents.

The breeder GA operates on populations of real-valued individuals
and has new genetic operators designed specifically for this representa-
tion, such as intermediate and line recombination, which have been
described earlier. The parallel GA uses a local hill-climbing algorithm on
certain individuals to improve a current local estimate. In the breeder
GA, the mutation operator was found to be almost as effective as local hill
climbing but was much less complex and computationally demanding to
implement. In all cases, the breeder GA was found to be more effective
than the earlier parallel GA and managed to solve numerical
optimisation problems of dimension 1000.

Clearly, the migration model of the GA is well suited to parallel
implementation on MIMD machines. Given the range of possible
population topologies and migration paths between them, efficient
communications networks should be possible on most parallel
architectures from small multiprocessor platforms to clusters of
networked workstations. The semi-isolation of subpopulations and
limited communication between them also encourage a high degree
of fault tolerance. In a well designed migration GA, in the event of the
loss of individual subpopulations or communications paths between
them, the GA can still perform useful computation.

The migration GA has generally been reported as a more efficient
search and optimisation method than conventional sequential GAs.
From the preceding text, it should be clear that this is the effect of local
selection and migration rather than paralle] implementation. However,
the migration GA is slightly more complex to use as further parameters
are introduced to control migration between subpopulations.

1.4.3 Diffusion GAs

An alternative model of a distributed population structure is provided
by the diffusion GA. Whereas migration introduces discontinuities
into the population structure with barriers between the borders of the

Introduction to genetic algorithms 27

islands containing the subpopulations, diffusion treats the population
as a single continuous structure. Each individual is assigned a
geographic location on the population surface and is allowed to breed
with individuals contained in a small local neighbourhood. This
neighbourhood is wusually chosen from immediately adjacent
individuals on the population surface and is motivated by the practical
communication restrictions of parallel computers. The diffusion GA is
also known as the neighbourhood, cellular or fine grained GA.

Figure 1.8 shows a pseudocode outline of the diffusion GA. Consider
the population distribution shown in Figure 1.9(a) where each
individual, I, is assigned a separate node on a toroidal-mesh parallel
processing network. The Figure shows that there are no specific islands
in the population structure, rather a contiguous geographic distribution
of individuals; however, there is potential for a similar effect. Given that
mating is restricted to adjacent processors, then individuals on distant
processors may take as many generations to meet and mate as
individuals in different subpopulations in the island model. Wright [46]
refers to this form of isolation within a species as isolation by distance.
From Figure 1.8, each individual is first initialised, either randomly or
using a heuristic, and its performance evaluated. Each node then sends
its individual to its neighbours and receives individuals from those
neighbours. For example, in Figure 1.9(a), individuals I;, sends a copy
of itself to L, L, ;s and I, and receives copies of the individuals on
those nodes. The purpose of this communication is to provide a pool of
potential mates from the incoming individuals. Thus, selection of a
mate for individual [;, is made on the basis of a neighbourhood fitness
over the individuals I, I;, I;5 and I,,. Reproduction involves the usual
crossover and mutation operators and is used to produce a single
individual to replace the parent residing on the node. However, rules
may be applied to retain the original parent if neither of the offspring
is sufficiently fit to replace it.

At initialisation, the distribution of genetic material over the
population surface is random, assuming that the population has not
been seeded heuristically. After a few generations, local clusters of
individuals with similar genetic material and fitness may appear in the
population giving rise to virtual islands. This phenomenon is shown in
Figure 1.9(b) where the shading is used to represent individuals with
similar genetic material. The drift in the population caused by local
selection tends to reduce the number of clusters whilst increasing
their size over generations as the most fit individuals diffuse over the
population.

28 Genetic algorithms in engineering systems

— Each node (li,j)

WHILE not finished

SEQ

... Evaluate

PAR
... Send self to neighbours
... Receive neighbours

... Select mate

... Reproduce

Figure 1.8 Pseudocode outline of a diffusion GA

I—EZ]' II,Z 11,3 %’ I1.5
i
ot
e e
Isg Is2 Is3 ﬂ ks

1

X i
S i

FHEE
L
|

—]
w
w
Y
w
o

| e

-

-

L
i
1
1

a b
Figure 1.9 A diffusion GA

a neighbourhood communications
b virtual islands

The first attempt at a massively-parallel fine-grained GA known to
the author was by Robertson [47] in 1987. Robertson used a SIMD
connection machine and assigned one individual per processor.
However, global selection and recombination was performed on the
host machine and the individual processors were only used for
function evaluation implementing a massive processor farm (Section
1.4.1). Even considering the large communications overhead of this
scheme, the objective function evaluation was significantly large for
huge speed up to be reported. By 1989 a more subtle and appropriate
scheme for the connection machine was presented by Manderick and
Spiessens [48] and later implemented on an AMT DAP [49].

Introduction to genetic algorithms 29

Individuals were again placed on separate processors in a planar grid,
but a local selection strategy based on a neighbourhood fitness
distribution was used. This first diffusion algorithm was not only
motivated by the desire to use the connection machine’s architecture
more effectively, but also to align the GA more closely with natural
biological evolution. Spiessens and Manderick argue that in nature
there is no global selection or fitness distribution. Rather, natural
selection is a local phenomenon where individuals find a mate in their
local environment. Their implementation is similar to that described
here with the exception that one parent is chosen from the local
neighbourhood probabilistically on the basis of the neighbourhood
fitness function and recombined with a randomly selected mate within
the same locality. This implementation was tested on the De Jong test-
bed functions and compared with a conventional GA. The results
indicate that the lower selective pressure, due to the local selection
mechanism, encourages greater exploration of the search space and
helps inhibit the early domination of the population by good
individuals. The results also show that the parallel GA is more effective
when the objective function is multimodal.

Davidor [50] in his version of the diffusion GA, called ECO GA, used
a 2D grid with wraparound to produce a population surface in which
each individual had eight neighbours. He used a one-ata-time
reproduction strategy and allowed the offspring produced by a
particular neighbourhood to replace probabilistically an individual in
the vicinity of its parents. Davidor also described the phenomena of
niche and speciation where the virtual islands on the population
surface represent near local optima.

An interesting variation on local selection is given by Collins and
Jefferson [51]. Instead of selecting a mate from within a small local
neighbourhood, an individual takes a random walk and selects a mate
from individuals encountered on the way. This was found to be highly
efficient in the graph partitioning problem and demonstrated a
capability of finding multiple optima in a single population. In addition,
four metrics were used to measure the differences in evolutionary
dynamics between polytypic and panmictic populations. They were the
diversity of alleles and genotypes, an inbreeding coefficient measuring
the similarity between parents and speed and robustness.

More recently a number of researchers have focused on the nature of
the population structure and its effect on the diffusion and convergence
characteristics of the GA. For example, Baluja [52] reports on a
comparative study of neighbourhood topologies. Three topologies are

30 Genetic algorithms in engineering systems

considered: a linear neighbourhood, a two-dimensional toroidal array
and alinear neighbourhood with a rightward discontinuity. When tested
on a wide range of test-bed problems the toroidal array neighbourhood
consistently outperformed the other population structures. However,
for some problems the linear neighbourhoods were found to produce
the best convergence pattern. Baluja argues that these results are due to
a combination of the effect of genetic mobility and total population size.
In particular, the parameters of the different implementations, such as
crossover and mutation rates, were held constant and not tuned to a
particular neighbourhood structure. However, in an earlier study,
Georges-Schleuter [53] observed that as the borders in one-dimensional
population structures are smaller than those in two dimensions, local
niches once established tend to survive for longer periods.

The diffusion model provides a finer grain of parallelism than that
of the worker/farmer and island models. It is suitable for
implementation on a wide range of parallel architectures from single-
bit digital array processors (DAPs) and massively parallel SIMD
machines like the connection machine, to MIMD computers, such as
transputer networks. There are even reports in the literature of fine-
grained GAs being implemented on clusters of networked
workstations [54].

The basic operator to support the diffusion model is that of a local
neighbourhood selection mechanism. From the examples of diffusion
models presented in this Section it is clear that this local selection
results in performance superior to that of global and migration GAs
with comparable population sizes. Good solutions are found faster,
requiring fewer function evaluations, and different solution niches
may be established in the same evolutionary cycle. Furthermore,
diffusion appears to implement a more robust search in the presence
of deceptive or GA-hard objective functions.

1.5 GAs for engineering systems

As the GA does not require derivative information or a formal initial
estimate of the solution region and because of the stochastic nature of
the search mechanism, GAs are capable of searching the entire
solution space with more likelihood of finding the global optimum
than conventional optimisation methods. Indeed, conventional
methods usually require the objective function to be well behaved,
whereas the generational nature of GAs can tolerate noisy and

Introduction to genetic algorithms 31

discontinuous function evaluations, For these and other reasons, the
engineering community has been quick to see the potential of GAs.

A number of considerations commonly arising in control
engineering problems, and the way in which these are treated through
the application of GAs are discussed below.

Representation: Continuous decision variables may be handled either
directly through real-valued representations and the appropriate
genetic operators or by using binary representation schemes and
standard genetic operators. In the case of binary representations, real
values can be approximated to the necessary degree with a fixed-point
binary scheme. In most engineering problems, however, it is the
relative precision of the parameters that is significant rather than
absolute precision. In such cases, the logarithm of the parameter may
be encoded reducing the number of bits and hence memory usage.
Alternatively, a direct floating-point representation may be used.
Discrete decision variables can be encoded using either binary or n-ary
representation. When functions can be expected to be locally
monotonic with respect to such variables, the use of Gray coding is
known to better exploit that monotonicity. This consideration also
applies to binary representations of continuous decision variables. In
cases where a mixture of discrete and continuous decision variables is
to be used, it is feasible to use a mixed representation provided that
care is taken to ensure that the genetic operators used function
correctly over the set of encodings chosen. However, encoding all of
the parameters using a single binary representation can simplify the
operation of the EA.

Scale: The concept of fitness is central to all EA approaches. Given that
many optimisation problems are characterised by a real-valued
objective function, these values must be converted into a non-negative
fitness value if they are to be handled correctly by the EA. Early work
on GAs concentrated on the use of offsetting objective function values
so that selection could be based directly on an individual’s
performances within a population [6]. The use of scaling retains an
individual’s relative performance and also attempts to bias the
selective pressure towards better individuals although still allowing
relatively unfit individuals the potential to reproduce. Alternatively, by
discarding the relative differences between individuals’ raw per-
formances and only considering them on their rank in a population, a
constant selective pressure may be applied throughout the
evolutionary process. Offsetting and scaling can result in more and
more individuals receiving fitnesses with relatively small differences as

32 Genetic algorithms in engineering sysiems

the population converges. The rank-based methods maintain a
constant selective pressure towards good individuals throughout the
convergence process and are claimed to bring a number of other
advantages [35]. Additionally, rank-based schemes also offer a
convenient mechanism for considering multiple objectives
simultaneously and this is discussed in Chapter 3.

Constraints: Most engineering problems are subject to constraints. For
example, actuators have finite limits on the loads which can move and
positions they can reach and control loops are usually required to be
stable. EAs can handle constraints in a number of ways. The most
efficient and direct method is to embed these constraints in the
coding of the individuals. Where this is not possible, penalty functions
may be used to ensure that invalid individuals have fitnesses which
reflect that they are low performers. However, appropriate penalty
functions are not always easy to design for a given problem and may
affect the efficiency of the search [55]. An alternative approach is to
consider constraints as design objectives and recast the problem as a
multiobjective one. Again, this is discussed in Chapter 3.

Adaptation: The vast majority of applications of EAs have concentrated
on their use as a function optimiser. However, EAs have been shown to
be well suited to tracking time-varying systems [56], i.e. ones in which
the optimum fitness or fitness criterion changes over time. Such
changes typically occur as a result of a change in the external
environment, e.g. a change in operating conditions, or due to system
changes, e.g. wear of mechanical components. The EA has the
advantage over many conventional methods of being able to respond
to such changes by exploiting the diversity of the individuals in the
current population. If there is insufficient diversity in the population,
then new material can be readily introduced by replacing some
individuals with randomly initialised individuals.

Software: Although there exist many good public-domain genetic
algorithm packages, such as GENESYS [57] and GENITOR [35], none
of these provides an environment which is immediately compatible
with existing tools in the control domain. The MATLAB Genetic
Algorithm Toolbox [58] aims to make GAs accessible to the control
engineer within the framework of an existing CACSD package. This
allows the retention of existing modelling and simulation tools for
building objective functions and allows the user to make direct
comparisons between genetic methods and traditional procedures. By
building the EAs on a standard computer aided control system design

Introduction to genetic algorithms 33

(CACSD) package, EAs can be made available to control engineers as
a powerful tool to complement those already in use. The NeuralWorks
Professional II/Plus neural network software from NeuralWare Inc.
now comes with a genetic reinforcement learning system that
augments the standard training procedures using an EA to avoid
getting stuck in local optima and it can be expected that many CACSD
and CAE packages will have EA tools available in the near future.

1.6 Example application: gas turbine engine control

From the preceding Sections, it is clear that the GA is substantially
different from conventional enumerative and calculus-based search
and optimisation techniques. In this Section, an example is presented
which demonstrates how the GA may be used to address a problem
that is not amenable to efficient solution via these conventional
methods. The problem is to find a set of control loops and associated
controller parameters for an aircraft gas turbine engine control system
to meet a number of conflicting design criteria [59].

The mechanical layout of a typical twin spool gas turbine engine is
shown in Figure 1.10. Each spool comprises a number of compressor
and turbine stages and is aerothermodynamically coupled to the
other. Air is drawn into the fan (or LP compressor) through the inlet
guide vanes, which are used to match the airflow to the fan
characteristics, and compressed. The air is then further compressed by
the HP compressor before being mixed with fuel and combusted and
then expelled through the HP and LP turbines. A portion of the air
from the fan exit may bypass the HP compressor and turbines and be
mixed with the combusted air/fuel mixture before being ejected
through the jet pipe and nozzle to produce thrust.

The characteristics of operation of a fixed cycle gas turbine engine,
such as specific thrust and specific fuel consumption, are fundamental
to the engine design. The design thus becomes a compromise between
meeting the conflicting requirements for performance at different
points in the flight envelope and the achievement of low life-cycle
costs, while maintaining structural integrity. However, variable
geometry components, such as the inlet guide vanes (IGV) and nozzle
area (NOZZ), may be used to optimise the engine cycle over a range
of flight conditions with regard to thrust, specific fuel consumption
and engine life, assisting in the reduction of life-cycle costs [60].

Dry engine control of a conventional gas turbine engine is normally

34 Genetic algorithms in engineering systems

based on a single closed-loop control of fuel flow (WFE) for thrust
rating, engine idle and maximum limitary and acceleration control.
The closed-loop concept provides accuracy and repeatability of
control of defined engine parameters under all operating conditions,
and compensates automatically for the effects of engine and fuel
system ageing.

fan pressure ratio
(FPR)

fan speed | HP compressor bypass duct Mach no. turbine blade temperature

(NL) speed (NH) | (DPUP) (TBT)
v = v n

inlet guide vane fuel flow nozzle area
(IGV) (WFE) (NOZZ)

engine pressure ratio (EPR)

Figure 1.10 A gas turbine engine

It is usual for any variable geometry in these engines to be
positioned according to commands scheduled against appropriate
engine and/or aircraft parameters. These schedules often need to be
complex functions of several parameters, and adjustments may be
required frequently to achieve the desired performance. Clearly,
success of this open-loop mode of control is reliant on the positional
accuracy achievable as there is no self trimming to account for ageing
as in closed-loop modes. This results in penalties of reduced engine
life and higher maintenance costs.

1.6.1 Problem specification

The object of the design problem is to select a set of sensors and design
a suitable controller for a manoeuvre about a particular operating
point while meeting a set of strict performance criteria. Figure 1.11
shows the basic simulation model used for this example. A linearised

Introduction to genetic algorithms 35

model of the Rolls-Royce Spey engine, with inputs for fuel flow, exhaust
nozzle area and HP inlet guide vane angle, is used to simulate the
dynamic behaviour of the engine. Sensors provided from outputs of the
Spey engine model are high and low pressure spool speed (NH and
NL), engine and fan pressure ratios (EPR and FPR) and bypass duct
Mach number (DPUP). These sensed variables can be used to provide
closed-loop control of WFE and NOZZ. Three inputs are provided;
input one is the demand reference signal and is translated by the power
lever angle (PLA) resolver to provide the reference signal for the fuel
flow control loop, and inputs two and three determine the measured
parameters used to provide closed loop control. In this example, the
nozzle area demand signal is derived from the fan working line, and
positioning of the HP IGVs is directly scheduled against the HP spool
speed. The possible control loops are thus:

WFE NL
NH
EPR
NOZZ open-loop schedule
FPR
DPUP

giving nine possible controller configurations.

For simplicity, each loop is to be controlled by a PI controller and a
single 50% thrustrating operating point considered at sea level static
conditions. The system is required to meet the following design
objectives:

70% rise-time £ 1.0 s
10% settling time < 1.4 s
XGN 240 KN

TBT <1540 K
ILPSM=>10%

WFE sensitivity < 2 %
y<1

O Ot W OO N =

where objectives 1 and 2 are in response to a change in thrust demand
of 33.33% to 66.66%, XGN is the engine gross thrust, TBT the
maximum turbine blade temperature, LPSM the fan surge margin and
the WFE sensitivity is a result of a one per cent error in the sensed
control parameter. Additionally, the system should be closed-loop
stable (objective 7).

36 Genetic algorithms in engineering systems

>
D > - Thrust loop

Demand { + -
2 - P1 fuel control { 7

Sensors
Thrust .
loop PLA resolver
3 HPIGV Actuators
Nozzle Spey engine
loop XGN
Nozzie loo

il

Figure 1.11 Simulation model

1.6.2 EA implementation

The basic simulation model was developed in the MATLAB/
SIMULINK CACSD package and the associated performance measure-
ments determined by simulation. Additionally, further models were
constructed for the sensitivity and stability objectives. Actuators were
modelled as first order systems with appropriate time constants and
sensor parameters derived from the linear engine model outputs. To
include realistic acceleration protection, input demands were rate
limited.

A structured chromosome representation [56] was employed to
allow the controller parameters for all possible control loops to reside
in all individuals, Figure 1.12. Here, high-level genes, labelled WFE
and NOZZ, are used to determine which control loops, and hence
sensors, of Figure 1.11 are used. Associated with each control loop are
the parameters for the corresponding PI controller, {Pj, Ii}. Note that
as the NOZZ loop may be open-loop scheduled, there are no P2, and
12, parameters. In this manner, the chromosome may contain a
number of good representations simultaneously, although only the set
defined by the high-level genes will be active.

Multiobjective ranking, fitness sharing and mating restrictions are
used with standard GA routines to implement the multiobjective genetic
algorithm (MOGA) [61]. Multiobjective ranking is based upon the
dominance of an individual and how many individuals outperform it in
objective space, combined with goal and priority information. In this
example, the goals were set to the values given in Section 1.6.1 and all

Introduction to genetic algorithms 37

objectives were assigned the same priority. In cases where objectives are
assigned different priorities, higher priority objectives are optimised in a
Pareto fashion until their goals are met at which point the remaining
objectives are optimised. Fitness sharing, implemented in the objective
domain favours sparsely populated regions of the trade-off surface and
may be combined with mating restrictions to reduce the production of
low performance individuals by encouraging the mating of individuals
similar to one another. A full discussion of MOGAs may be found in
Chapter 3.

WFE NOzZZ
NL NH EPR FPR DPUP
P 1o A, PT/2|\12 Péﬁ‘ Fél\&

Figure 1.12 Structured chromosome representation

In the example presented here, a binary MOGA with a population
of 70 individuals was employed. The integer variables for WFE and
NOZZ loop selection were encoded with eight bits and each controller
parameter with 16 bits. Finally, lists of nondominated solutions for
each controller configuration were maintained throughout the exe-
cution of the MOGA.

1.6.3 Results

Figure 1.13 illustrates a typical trade-off graph for Spey engine
controller designs, each line representing a non-dominated solution
found by the MOGA. The x axis shows the design objectives, the y axis
the performance of controllers in each objective domain and the
crossmarks in the Figure show the design goals.

In Figure 1.13, only the preferred individuals, those that satisfy the
design goals, are shown. When no individuals satisfy all the design
goals, the nondominated or Pareto optimal solutions are displayed.
Trade-offs between adjacent objectives result in the crossing of the
lines between them whereas concurrent lines indicate that the
objectives do not compete with one another. For example, the power
rating and TBT (objectives 3 and 4) appear to compete quite heavily
although the rise time and settling time (objectives 1 and 2) do not
exhibit the same level of competition.

38 Genetic algorithms in engineering systems

a
Objective

Tr Ts XGN TBT LPSM WEE Y

Figure 1.13 Sample trade-off graph

The information contained in such trade-off graphs can be applied
in a number of ways. For example, the transient response and thrust
margins can be used to help establish derates from the nominal
engine model and set suitable performance commitments when
nonideal components and control are employed in production. The
LPSM may be seen as a measure of the stability of the controlled
engine and used to assess the adequacy of the control in conjunction
with the stability objective. TBT and sensitivity may be used with
nominal engine data to establish mechanical design criteria and fed
back into the engine design process. For example if TBT needed to be
increased then the turbine design may require further refinement.

Having satisfied the design goals or established which are
unattainable, the control engineer is now free to assess the relative
merits of each controller design. Figure 1.14 shows trade-off graphs for
the nondominated solutions found for each controller type grouped
for the main fuel control loop. This data may be used to examine
control, performance and other aspects of the system design.

From the trade-offs shown in Figure 1.14, it can be seen that NL
control provides the best step response characteristics but suffers from
a relatively high degree of sensitivity to sensor error. The sensitivity
margin may be improved, for example, by selecting a better type of
sensor for NL. The lowest power controllers were also found
indicating that although a good thrust mapping to PLA can be
achieved, there is less scope for compensation on a nonideal engine.

On the other hand, the NH controllers minimise the TBT at the
expense of a slower response to changes in demand. This may allow
the use of cheaper turbine materials, for example, if the other

Introduction to genetic algorithms 39

Obj:ct itve
Tr Ts XGN TBT LPSM WFE Y
a

1 2 2 Ob]:ctlve & é ”
Tr Ts XGN TBT LPSM WFE Y
b
L >< _

Ob]:c((ve
Tr Ts XGN TBT LPSM WFE Y
c

Figure 1.14 Trade-offs for WFE control loops
a all NL controllers
b all NH controllers
¢ all EPR controllers

40 Genetic algorithms in engineering systems

performance criteria are satisfactory or indicate a longer engine life
expectancy and a reduced cost of ownership. Sensitivity to sensor error
is better than with NL control and higher thrust ratings may also be
achieved.

EPR control results in the least sensitivity to sensor error and allows
a larger LPSM to be maintained. Step response times are generally the
slowest although better TBT control could be achieved over NL
control. Improvements in the step response could be achieved, but at
the expense of reduced LPSM and increased TBT.

1.6.4 Discussion

This control system design example has illustrated an application for
which the use of GAs offers a number of significant advantages over other
search and optimisation methods. The problem considered contained a
mixture of discrete and continuous decision variables (i.e. the control
loops and controller parameters) and the GA was able to deal with them
in a simple, straightforward manner. Selecting the controller gains using,
say, gradient-based optimisation would require the formulation of nine
different optimisation problems. If more potential closed-loop controls
had been considered, or if the control structure was allowed to vary, then
it is easy to imagine that even relatively trivial problems would be beyond
the coverage of most other techniques.

Operating on a population of solution estimates, the GA is often
able to identify a number of potential solutions to a given problem.
This is particularly important for the example presented here where
the problem considered was multiobjective. The use of MOGA
extensions allows us to build a picture of the trade-offs and conflicts
which exist between the different design objectives. Thus, we can
select a final solution with greater confidence that it will satisfy all of
our design criteria and is the most suitable for a particular application.

1.7 Concluding remarks

This Chapter has presented a broad survey of the current trends and
techniques used in GAs. Many variations from the original GA have
been discussed, such as representation and reproduction strategies,
and a broad overview of parallel implementations has been given.
Clearly, from the material presented in this text, it can be seen that the
GA is a powerful and versatile search and optimisation method
applicable to a broad range of activities.

Introduction to genetic algorithms 41

The remainder of this book is dedicated to the practical application
of GAs in engineering systems. It is hoped that this volume will convey
to the reader a feeling for the wide variety of engineering applications
of this versatile technique and encourage individuals to explore the
potential of genetic algorithms in their own field.

1.8 References

1 Spears, W. M., De Jong, K. A., Back, T. , Fogel, D. B. and de Garis, H.:
‘An overview of evolutionary computation’. Machine learning.
ECML-93 European conference on Machine learning, lecture notes in
artificial intelligence, No. 667, pp. 442-459, 1993

2 Fogel, L. J., Owens, A. J. and Walsh, M.].: Artificial intelligence through
simulated evolution (Wiley Publishing, New York, 1966)

3 Rechenberg, L.: Evolutionsstrategie: optimierung technischer systeme nach
prinzipien der biologischen evolution (Frommann-Holzboog, Stuttgart,
1973)

4 Koza,]J. R.: Genetic programming: On the programming of computers by
means of natural selection (MIT Press, Cambridge, Massachusetts, 1992)

5 Holland, J.: Adaptation in natural and artificial systems (University of
Michigan Press, 1975)

6 Goldberg, D. E.: Genetic algorithms in search, optimisation and machine
learning (Addison Wesley Publishing Company, January 1989)

7 Karr, C. L.: Design of an Adaptive Fuzzy Logic Controller Using a
Genetic Algorithm. Proc. 4th int. conf. on Genetic algorithms, pp.
450-457, 1991

8 Holstien, R. B.: Artificial genetic adaptation in computer control systems.
PhD thesis, Department of Computer and Communication Sciences,
University of Michigan, Ann Arbor, 1971

9 Caruana, R. A,, and Schaffer, J. D.: Representation and Hidden Bias:
Gray vs. Binary Coding. Proc. 6th int. conf. Machine learning,
pp.153-161, 1988

10 Schmitendorgf, W. E., Shaw, O., Benson R. and Forrest, S.: ‘Using
genetic algorithms for controller design: simultaneous stabilisation
and eigenvalue placement in a region’. Technical report no. C592-9,
Dept. Computer Science, College of Engineering, University of New
Mexico, 1992

11 Bramlette, M. F.: ‘Initialization, mutation and selection methods in
genetic algorithms for function optimisation’. Proc. 4th int. conf. on
Genetic algorithms, pp. 100-107, 1991

12 Lucasius, C. B., and Kateman, G.: “Towards solving subset selection

42 Genetic algorithms in engineering systems

problems with the aid of the genetic algorithm’, in Parallel problem
solving from nature 2, Manner, R. and Manderick, B. (eds.),
Amsterdam: North-Holland, 1992), pp. 239-247

13 Wright, A. H.: ‘Genetic algorithms for real parameter optimisation’,
in Foundations of genetic algorithms, Rawlins, J. E. (ed.) (Morgan
Kaufmann, 1991), pp. 205-218

14 Michalewicz, Z.: Genetic algorithms + data structures = evolution programs
(Springer Verlag, 1992)

15 Back, T., Hoffmeister, F., and Schwefel, H.-P.: ‘A survey of evolution
strategies’. Proc. 4th int. conf. on Genetic algorithms, pp. 2-10, 1991

16 Grefenstette,]J. J.: ‘Incorporating problem specific knowledge into
genetic algorithms’, in Genetic algorithms and simulated annealing,
Davis, L. (ed.) (Morgan Kaufmann, 1987)

17 Whitley, D., Mathias, K. and Fitzhorn, P.: ‘Delta coding: an iterative
search strategy for genetic algorithms’. Proc. 4th int. conf. on Genetic
algorithms, pp. 77-84, 1991

18 DeJong, K. A.: Analysis of the behaviour of a class of genetic adaptive systems.
PhD thesis, Dept. of Computer and Communication Sciences,
University of Michigan, Ann Arbor, 1975

19 Baker, J. E.: ‘Adaptive selection methods for genetic algorithms’.
Proc. Istint. conf. on Genetic algorithms, pp. 101-111, 1985

20 Baker, J. E.: ‘Reducing bias and inefficiency in the selection
algorithm’. Proc. 2nd int. conf. on Genetic algorithms, pp. 14-21, 1987

21 Booker, L.: ‘Improving search in genetic algorithms’, in Genetic
algorithms and simulated annealing, Davis, L. (ed.) (Morgan Kaufmann
Publishers, 1987), pp. 61-73.

22 Spears, W. M., and De Jong, K. A.: ‘An analysis of multi-point
crossover’, in Foundations of genetic algorithms, Rawlins, J. E. (ed.)
(Morgan Kaufmann, 1991) pp. 301-315

23 Syswerda, G.: ‘Uniform crossover in genetic algorithms’. Proc. 3rd int.
conf. on Genetic algorithms, pp. 2-9, 1989

24 Spears, W. M., and De Jong, K. A.: ‘On the virtues of parameterised
uniform crossover’. Proc. 4th int. conf. on Genetic algorithms,
pp.230-236, 1991

25 Caruana, R. A,, Eshelman, L. A,, and Schaffer, J. D.: ‘Representation
and hidden bias II: eliminating defining length bias in genetic search
via shuffle crossover’, in Eleventh international joint conference on artificial
intelligence, Sridharan, N. S. (ed.) (Morgan Kaufmann, 1989), vol. 1,
pp- 750-755

26 Mubhlenbein, H., and Schlierkamp-Voosen, D.: ‘Predictive Models for
the Breeder Genetic Algorithm’, Evolutionary Computation, 1, (1), pp.
25-49, 1993

Introduction to genetic algorithms 43

27 Furuya, H., and Haftka, R. T.: ‘Genetic algorithms for placing
actuators on space structures’. Proc. 5th int. conf. on Genetic
algorithms, pp. 536-542, 1993

28 Falkener, E.: ‘A new representation and operators for genetic
algorithms applied to grouping problems’, Evolutionary Computation,
2, (2), pp. 123-144, 1994

29 Baxter, M. J., Tokhi M. O. and Fleming, P.].: ‘An investigation of the
heterogeneous mapping problem using genetic algorithms’. Proc.
UKACC Control 96, 1, pp. 448- 453, 1996

30 Janikow, C. Z., and Michalewicz, Z.: ‘An experimental comparison of
binary and floating point representations in genetic algorithms’,
Proc. 4th int. conf. on Genetic algorithms, pp. 31-36, 1991

31 Tate, D. M., and Smith, A. E.: ‘Expected allele convergence and the
role of mutation in genetic algorithms’, Proc 5th int. conf. on Genetic
algorithms, pp.31-37, 1993

32 Davis, L.: ‘Adapting operator probabilities in genetic algorithms’.
Proc. 3rd int. conf. on Genetic algorithms, pp. 61-69, 1989

33 Fogarty, T. C.: “Varying the probability of mutation in the genetic
algorithm’. Proc. 3rd int. conf. on Genetic algorithms, pp. 104-109, 1989

34 De Jong, K. A., and Sarma, J.: ‘Generation gaps revisited’, in
Foundations of genetic algorithms 2, Whidey, L. D. (ed.), (Morgan
Kaufmann, 1993)

35 Whitley, D.: “The GENITOR algorithm and selection pressure: why
rank-based allocations of reproductive trials is best’. Proc. 3rd int.
conf. on Genetic algorithms, pp. 116-121, 1989

36 Huang, R., and Fogarty, T. C.: ‘Adaptive classification and control-rule
optimisation via a learning algorithm for controlling a dynamic

system’, Proc. 30th conf. Decision and control, Brighton, England, pp.
867-868, 1991

37 Fogarty, T. C.: ‘An incremental genetic algorithm for real-time
learning’. Proc. 6th int. workshop on Machine learning, pp. 416-419,
1989

38 Schwefel, H. -P.: Numerical optimisation of computer models, (John Wiley
and Sons, New York, 1981)

39 Dodd, N., Macfarlane, D., and Marland, C.: ‘Optimisation of artificial
neural network structure using genetic techniques implemented on
multiple transputers’, in Transputing *91, Welch, P., Stiles, D., Kunii, T.
L. and Bakkers, A. (eds.) (IOS Press, 1991), vol. 2, pp. 687-700

40 Grosso, P. B.. Computer simulation of genetic adaptation: parallel
subcomponent interaction in a multilocus model. PhD thesis, University of

Michigan, 1985

44 Genetic algorithms in engineering systems

41 Tanse, R., ‘Parallel genetic algorithm for a hypercube’. Proc. 2nd int.
conf. on Genetic algorithms, pp. 177-183, 1987

42 Tanse, R.: ‘Distributed genetic algorithms’. Proc. 3rd int. conf. on
Genetic algorithms, pp.434—439, 1989

43 Starkweather, T., Whitley, D. and Mathias, K., ‘Optimisation using
distributed genetic algorithms”, in Proc. Parallel Problem Solving From
Nature 1, Lecture Notes in Computer Science No. 496 (Springer-Verlag,
1990) pp. 176-185

44 Cohoon, J. P, Martin, W. N. and Richards, D. S.: ‘A multi-population
genetic algorithm for solving the K-partition problem on hyper-
cubes’. Proc. 4th int. conf. on Genetic algorithms, pp. 244-248, 1991

45 Muhlenbein, H., Schomisch M. and Born, J. ‘The parallel genetic
algorithm as a function optimizer’, Parallel Comput. (17), pp. 619-632,
1991

46 Wright, S.: Evolution and the genetics of populations (University of
Chicago Press, 1969), vol. 2

47 Robertson, G.: ‘Parallel implementation of genetic algorithms in a
classifier system’, in Genetic algorithms and simulated annealing, Davis, L.
(ed.) (Pitman, London, 1987), pp. 129-140

48 Manderick, B., and Spiessens, P. ‘Fine-grained parallel genetic
algorithms’. Proc. 3rd int. conf. on Genetic algorithms, pp. 428-433,
1989

49 Spiessens P., and Manderick, B.: ‘A massively parallel genetic
algorithm: implementation and first analysis’. Proc. 4th int. conf. on
Genetic algorithms, pp. 279-286, 1991

50 Davidor, Y: ‘A naturally occurring niche and species phenomenon:
the model and first results’. Proc. 4th int. conf. on Genetic algorithms,
pp. 257-263, 1991

51 Collins, R. J., and Jefferson, D. R.: ‘Selection in massively parallel
genetic algorithms’. Proc. 4th int. conf. on Genetic algorithms, pp.
249-256, 1991

52 Baluja, S.: ‘Structure and performance of fine-grain parallelism in
genetic search’, Proc. 5th int. conf. on Genetic algorithms, pp. 155-162,
1993

53 Georges-Schleuter, M.: ‘Comparison of local mating strategies in
massively parallel genetic algorithms’, in Parallel problem solving from
nature 2, Manner, R. and Manderick, B. (eds.), (Amsterdam: North-
Holland, 1992), pp. 553-562)

54 Maruyama, T., Hirose, T. and Konagaya, A.: ‘A fine-grained parallel
genetic algorithm for distributed parallel systems’. Proc. 5th int.
conf. on Genetic algorithms, pp. 184-190, 1993

Introduction to genetic algorithms 45

55 Richardson, J. T., Palmer, M. R,, Liepins, G., and Hilliard, M.:
‘Some guidelines for genetic algorithms with penalty functions’.
Proc. 3rd int. conf. on Genetic algorithms, pp. 191-197, 1989

56 Dasgupta D., and McGregor, D. R.: ‘Nonstationary function
optimisation using the structured genetic algorithm’, in Parallel
problem solving from nature 2, Manner, R. and Manderick, B., (eds.),
(Amsterdam: North-Holland, 1992) pp. 145-154.

57 Grefenstette, J. J.: ‘A user’s guide to GENESIS version 5.0°, Technical
Report, Navy Centre for Applied Research in Artificial Intelligence,
Washington D.C., USA, 1990

58 Chipperfield, A. J., Fleming, P. J. and Fonseca, C. M.: ‘Genetic
algorithm tools for control systems engineering’. Proc. Ist int. conf.
on Adaptive computing in engineering design and control, Plymouth
Engineering Design Centre, UK, 21-22 September, pp. 128-133,
1994

59 Chipperfield A. J. and Fleming, P. J.: ‘Systems integration using
evolutionary algorithms’. Proc. UKACC Control *96, 1, pp. 705-710,
Exeter, UK, 1996

60 Garwood, K. R. and Baldwin, D. R. ‘The emerging requirements
for dual and variable cycle engines’, 10th int. symp. on Air breathing
engines, RAE-TMP-1220, 1992

61 Fonseca, C. M., and Fleming, P. J.: ‘An overview of evolutionary
algorithms in multiobjective optimisation’, Evolutionary Computing,
3, (1), pp. 1-16, 1995

Chapter 2
Levels of evolution for
control systems
J. J. Grefenstette

2.1 Introduction

Evolutionary algorithms (EAs) are general purpose search and
learning methods that can be applied to a variety of problems relating
to control systems. This Chapter focuses on the range of repre-
sentation levels at which evolutionary algorithms can be applied to
control systems, including evolving control parameters, evolving
complex control structures and evolving control rules. The discussion
also outlines the use of evolutionary algorithms for testing intelligent
control systems. In this case, the EA is used to identify weaknesses in a
control system by searching for challenging test cases.

2.1.1 Evolutionary algorithms

Evolutionary algorithms are heuristic search and learning algorithms
based on principles derived from biological evolution. Although many
variations exist, an outline of the general idea is shown in Figure 2.1.
One key aspect of evolutionary algorithms is that, unlike most
traditional search methods, EAs maintain a population of candidate
solutions rather than a single candidate. The population evolves
through a process of (1) selecting the more highly fit individuals for
replication, (2) mutating these individuals to create new alternative
candidate solutions and (3) recombining individuals with other in-
dividuals to create new combinations of features.

During the past two decades, many variations of this general
approach have been studied. Particular styles of EAs are known by
such names as genetic algorithms (GA), evolution strategies (ES) and
evolutionary programming (EP). Although the GA community
initially focused on simple string representations which support
general purpose problem solving and binary recombination operators
like crossover, the ES community has generally focused on

Levels of evolution for control systems 47

engineering applications involving function optimisation, relying on
sophisticated mutation operators to create variants in the population.

Initialize and evaluate the population

Y

— Acceptable solution found?
No + Yes
Reproduce selected parents s?:llﬁﬁg:x
\i

Recombine/Mutate

Y

Evaluate new solutions

Y

Update population

Figure 2.1 Outline of an evolutionary algorithm

Evolutionary programming focuses on the evolution of finite-state
models for prediction and control.

Some specific dimensions along which EAs differ are:

e How individual candidate solutions are represented: e.g., bit strings,
real-valued vectors, rules.

e How the population is updated: e.g., generational or incremental
updates.

e How individuals are selected for reproduction: e.g., proportional
selection, rank-based selection, tournament selection, threshold
selection, (W, A) and (u + \) selection.

e How parent individuals are mated: e.g., n-point, uniform, arithmetic
CrOSSOVer.

e How individuals are mutated: e.g., bit flipping, hill climbing,
knowledge-based changes.

e How other parameters of the algorithm are set: e.g., population size,
operator rates.

Some of these topics are covered in Chaper 1 of this volume. For a
detailed discussion of these issues in evolutionary algorithms, see [1].
We now turn to some general issues arising in EA applications in
control.

48 Genetic algorithms in engineering systems

2.1.2 Control system applications

Evolutionary algorithms offer a general purpose tool which can be used
across the entire spectrum of control system applications, some of which
are illustrated in Figure 2.2. Applications to control systems include
control system parametric design [9, 3, 7, 26], system identification [17,
25], systems integration [2] and adaptive control [20]. See [4] for a
recent survey of applications of evolutionary algorithms to control
systems engineering.

Control

Control EA
arameters

EA Rules

Symbolic rules
Fuzzy rules

Neural net weights
Decision rule thresholds
Fuzzy membership functions
etc.

Control

EA

Job shop schedules
Neural net structures

e Structures

Test
Scenarios

EA

Environmental conditions
System faults

Finite state machines
etc.

etc.
Figure 2.2 Control system applications of evolutionary algorithms

Before applying an evolutionary algorithm to any problem, two
requirements must be met. First, a performance measure must be
available to serve as the basis for the fitness calculation by the EA. For a
control system, the performance measure might be a function of the
stability of the system, the efficiency of the system, or some other
measure. Although it is possible to have a fitness function based on
human judgement, the efficiency of the search will be greatly enhanced
if the fitness function is computed by an automated process. In some
cases, developing a suitable automated fitness function for a real control
system is difficult. For example, an intelligent control system for an
autonomous vehicle might be required to diagnose internal system faults
and respond appropriately. Developing an automated critic for such a
system presents a significant challenge.

Secondly, it must be feasible to compute many evaluations of the candi-
date solutions. During its run, the EA will typically consider hundreds or

Levels of evolution for control systems 49

thousands of candidate solutions. For many real control systems, e.g.,
power plants, experimenting with many alternative settings for control
variables may be very costly, time consuming or dangerous. Therefore,
evolutionary algorithms are usually applied to a system model rather
than to a running control system. Ideally, the system model captures all
the relevant features of the actual system that are needed to compute an
accurate performance measurement. It is also desirable that the system
model be much faster to evaluate than the actual system. Unfortunately,
these requirements often tend to conflict in practice. Nonetheless,
advances in digital simulation technology are likely to make it feasible to
create increasingly more realistic models of complex control systems in
the future.

2.1.3 Overview

Most applications of evolutionary algorithms deal with the
optimisation of a set of parameters. However, the basic principles
upon which evolutionary systems operate, namely, survival of the fittest
and inheritance with variation, can be applied to a much richer set of
representations. The remainder of this Chapter emphasises the
different levels of representation that an EA might use to optimise a
control system, including:

e evolving numeric control parameters
e cvolving complex control structures
e evolving control rules.

These approaches are not mutually exclusive, since a given EA might
address a combination of these levels. The intent here is to suggest to
the potential user a broader range of applications than parameter
optimisation alone.

After a brief consideration of the first two levels, the focus will be on
the approach to evolving control rules embodied in the SAMUEL
system [13]. The discussion then turns to use of evolutionary
algorithms for testing intelligent control systems. In this case, the EA
is used to identify weaknesses in a control system by searching for
challenging test cases.

2.2 Evolutionary learning: parameters
Many control system applications of evolutionary algorithms address

the problem of tuning numeric parameters [1, 2, 3, 9, 10, 15, 20, 26],
as shown in Figure 2.3. The process to be controlled consists of a black

50 Genetic algorithms in engineering systems

box with a (perhaps large) set of control parameters. These
parameters serve as control knobs that must be set in the right
configuration to optimise the performance of the process. In many
cases of interest, there are complex and poorly understood
interactions among the control parameters, so finding an optimal or
near-optimal setting presents a difficult search problem.

Individual 1 [a“q An I au l au I ass | a‘j a‘L}\
Indivic.iua|2 [am—[amJ 8 l W | s I s [Az |\ Control System

= olofololelole
individual n | a"q an | 3w | am | s Lans Fm /

Figure 2.3 Evolving control parameters

An evolutionary algorithm can be applied to this problem in a
relatively straightforward way by letting each individual specify a
setting for each control parameter. Parameter settings may be
represented either by bit strings or real-valued alleles. Individuals are
evaluated by running the control process using the specified settings
and measuring its performance. Mutation consists of altering
individual parameter settings. Recombination involves combining
parameters taken from different parents.

This approach to evolving control parameters can be applied to a
range of rather distinct underlying control systems. In traditional
three-term PID controllers, the control parameters may include
various gain parameters in the control law [20]. Genetic algorithms
have also been used to learn the parameters for dynamic neural
networks for robotic control [28] and the control parameters for a
reactive robotic navigation system [18]. The following example typifies
the use of evolutionary algorithms for tuning control parameters.

In [15], the control system consists of a fuzzy logic controller (FLC).
An FLC uses fuzzy rules such as:

if ¢ is LARGE and ¢, is SMALL then a, is MEDIUM

where ¢ is a condition variable and @ is an action variable. The
linguistic terms SMALL, MEDIUM and LARGE may be defined
separately for each condition and action variable using fuzzy
membership functions, as shown in Figure 2.4. Fuzzy membership
functions are usually determined by a few parameters, e.g., the
endpoints (LB and UB in Figure 2.4) of the range of condition
variable values which match the linguistic variable, with the highest
membership value corresponding to the centre of that range.

Levels of evolution for control systems 51

MEMBERSHIP
VALUE SMALL MEDIUM LARGE

0 | | | |
Small_LB Med (B Small UB Large LB Med_UB Large_UB

INPUT VALUE

Figure 2.4 Fuzzy membership functions

In Reference 15 the fuzzy control rules in the FLC are specified in
advance. A genetic algorithm is used to search for parameters of the
membership functions of the linguistic variables which yield high-
performance fuzzy control laws, using the representation shown in
Figure 2.5.

Individual £ | s] Small_LB [Small_UB| Med_LB | Med_UB [Large LB Large_UB] o

Figure 2.5 Representation of fuzzy membership parameters

This volume contains several other applications of EAs to the
parameter optimisation problem. These examples illustrate that
evolutionary algorithms can be useful for optimising the parameters of
an impressively wide class of control architectures.

2.3 Evolutionary learning: data structures

In some cases, the control process may depend on data structures that
are more complex than simple lists of numeric parameters. A factory
control system may require a schedule which assigns jobs to machines.
A delivery control system may require a cost-efficient route to a large
number of delivery sites. Evolutionary algorithms have been widely
applied to such combinatorial optimisation problems in which the task
is to search a space of permutations or other complex data objects, as
shown in Figure 2.6. In this case, each individual in the EA’s
population specifies the data structure (e.g., schedule, route, etc.)
which serves as input to the control system. As before, individuals are
evaluated by running the control process (or a simulation) using the

52 Genetic algorithms in engineering systems

Data Task
Structure Program

A

v

. Data S
Individuaf 1 Structure Task Priority: (ACD G ..)
Individual 2 Data Task Priority: (CDAG ...)
Structure y

- Data o
Individual n Structure Task Priority: (BC G D..))

Figure 2.6 Evolving control structures

specified data structures and evaluating its performance.

An important consideration in this approach is that the genetic
operators, such as mutation and recombination, need to be defined
appropriately for the chosen representation. The classical genetic
operators of random mutation and cut and splice crossover may not
yield meaningful results on representations of permutations. For
example, if the permutations:

(ABCDEF)and (ACEFBD)
undergo one-point crossover after the third position, the results are:
(ABCFBD)and (ACEDEF)

In this case, neither offspring is a legal permutation. Numerous
specialised crossover operators have been developed to deal with
order-based representations [8], with the goals of guaranteeing that
offspring always represent legal structures, but still inherit as much
information as possible from their parents. Recent examples of
using genetic algorithms to evolve complex control structures
include References 6 and 27.

2.4 Evolutionary learning: program level

It may be desirable to give an evolutionary algorithm even more

Levels of evolution for control systems 53

flexibility to alter the control rules of a system. Figure 2.7 illustrates
one approach using a genetic algorithm to learn control rules. Each
individual in the population consists of a set of rules. Individuals are
evaluated by inserting the rules into the control program (or
simulation model of the control program) and measuring the
performance of the resulting controller over some period of time.
Using this measurement as a fitness value, the genetic algorithm
selects high-performance rule sets for replication, mutation and
recombination. Mutation of rules consists of altering the conditions,
the actions or both. Recombination consists of exchanging rules
between selected parents. Over time, clusters of rules that are
associated with consistently high performance can be expected to
spread throughout the population, yielding an improved set of
control rules.

There are several variations on this general approach. Genetic
algorithms operating on pattern-matching production systems were
developed by Smith [24]. In genetic classifier systems {14], the
individuals each consist of a single rule and the control program consists
of the entire population of rules. In genetic programming [16], each
individual consists of a tree-structured expression in a suitable language
(e.g., LISP) and crossover consists of the exchange of subtrees between
parent expressions. The remainder of this Section examines a particular
approach to evolving control rules in more detail.

SAMUEL is a machine learning program that uses a genetic
algorithm and other competition-based heuristics to improve a set of
control rules. The system explores alternative behaviours in simulation

IF a and b and ¢ THEN A
Individual 1 IFdand e a:)d ¢ THENB
H
IFgandr THEN C
Individual 2 IFsande agd c THEN B
L]
L]
[]
L]
®
IF aand band c THEN A
- IF eand ¢ THEN B
Individual n .

Figure 2.7 Evolving IFF-THEN programs

54 Genetic algorithms in engineering systems

and modifies its rules based on this experience. SAMUEL is designed
for problems in which the payoff is delayed in the sense that payoff
occurs only at the end of an episode which may span several decision
steps. The primary features of SAMUEL are:

e A high-level rule language.

e Individual rules carry utility estimates based on experience; these
estimates are used for conflict resolution.

e Genetic learning occurs at the level of rule sets, with specialised
crossover and mutation operators.

The next Sections explain these features in more detail.

2.4.1 Knowledge representation

A distinctive feature of SAMUEL is that it employs a symbolic,
attribute-value rule language, rather than the low-level representations
adopted by many genetic algorithm-based systems. A typical control
rule in SAMUEL is:

RULE R,
IF time > 5
AND bearing = [ahead OR left]
AND 1000 < range < 2000
THEN set turn = 45 (strength 1.0)
AND set speed = high (strength 0.5)

Attributes can be either real-valued variables (e.g., time, range, turn)
or nominal variables (e.g., bearing, speed). SAMUEL also supports
fuzzy variables [5].

SAMUEL’s rule language allows the user to specify an initial set of
control rules which serves as a starting point for the genetic algorithm.
The use of a symbolic rule language in SAMUEL is also intended to
facilitate the incorporation of traditional machine learning methods
into the system where appropriate. Experience with SAMUEL
illustrates that genetic algorithms can be used to improve partially
correct control rules, as well as to learn rules from scratch [21].

2.4.2 Rule strength

The strength in the rule estimates the utility of taking the specified
action in situations matched by the rule’s conditions. Rule strengths
are modified through experience. When payoff is obtained, the
strengths of all active rules (i.e., rules which suggested the actions
taken during the current payoff period) are incrementally adjusted to

Levels of evolution for control systems 55

reflect the current payoff. Over the course of many payoff episodes,
the strengths of all active rules converge to the expected levels of
payoff [11]. This observation motivates the use of rule strength as the
deciding factor in conflict resolution. That is, if a number of rules
suggest different actions at a given time, SAMUEL selects an action
associated with a high strength rule.

2.4.3 Mutation operators

The high-level rule language used by SAMUEL provides an
opportunity to alter rules using heuristic machine learning methods,
in addition 10 random mutations. SAMUEL incorporates several
symbolic rule modification operators, including:

e Specialisation: restricts the range in the conditions of a rule.
e Generalisation: expands the range in the conditions of a rule.
e Merge: combines two overlapping rules.

These mutation operators are Lamarckian in the sense that
individual rules are modified based on the experience of the control
strategy in the test environment. These changes are then passed along
as ‘genetic material’ to subsequent generations of control strategies.
The experience triggers for rule modification include:

e Specialisation: apply when low-strength general rules lead to good
results. That is, the original rule appears to be over-generalised.

e Generalisation: apply when high-strength rules partially match.
That is, the rule appears to be too specific.

e Merge: apply to two high-strength control rules which recommend
the same action whose conditions overlap sufficiently.

Once created, a rule survives intact unless its rule set is not selected for
reproduction or the rule is explicitly deleted by the deletion operator,
which is applied to inactive, subsumed, or low-strength rules.

2.4.4 Crossover in SAMUEL

In SAMUEL, crossover forms new control rule sets by exchanging
groups of rules between the selected parent rule sets. Rules that fire in
sequence during a successful episode are inherited as a group, as
shown in Figure 2.8. That is, crossover treats a successful rule sequence
as a group during recombination. In this way, the offspring rule sets
are likely to inherit some of the beneficial behaviour patterns of their
parents. Of course, the success of the new combination of rules in the
offspring depends on all of the other rules in the rule set.

56 Genetic algorithms in engineering systems

Experience of Parent A:

Episode 1: Ry; = Ry Ry A5 H’gh Payoﬂ
Episode 2: Ry, > Ris = Ris = Rus Low Payoff
Experience of Parent B:

Episode 1: Ry; = Ry > Ry — Rys Low Payoff
Episode 2: Ry = Ry = Ry = Ry, High Payoff

Possible Offspring:
{ X R/\j‘, RAI 3 RA7; R\5 EERERES RB6 > RBZ: RB4 3 e }

Figure 2.8 Crossover in SAMUEL

2.4.5 Control applications of SAMUEL

SAMUEL has been demonstrated on a variety of control tasks
including evading a predator, stalking a prey, tracking moving targets
and robotic navigation and collision avoidance [13].

In a recent study [22], SAMUEL was used to learn control rules for
an autonomous mobile robot for a task in which the goal was to guide
another mobile robot to a specified area. The control rules were
learned under simulation, and the resulting rules were then used to
control an operational mobile robot. Adding to the difficulty of this
task, the control rules were required to avoid collisions with other
objects in the world.

In this task, one robot played the role of a shepherd and the other
robot represented a sheep. The sheep reacted to the presence of
" nearby objects by moving away from them. Otherwise, the sheep
moved in a random walk. The shepherd’s task was to control its own
translation and steering to get the sheep to move into a pasture. Both
robots were controlled by reactive rule sets which mapped current
sensors into appropriate motion commands. Figure 2.9 shows an
example of part of a SAMUEL rule set for the shepherd robot. Only
the shepherd’s rules were learned.

The performance of an individual rule set was calculated by averaging
its relative success in the shepherding task over 20 episodes, in which
each episode began with the sheep and the shepherd placed in random
inital positions and orientations, and ended when the sheep entered
the pasture, time expired, or a collision occurred. Over a period of 200
generations, SAMUEL improved the control rules for this task from an
initial level of about 40 % successful to about 75 % successful.

Levels of evolution Jor control systems 57

RULE 1

IF front-sonar < 30
AND bearing > 10
THEN set turn = 20 (strength 1.0)

RULE 2
IF frontir < 5
THEN set speed =-10 (strength 0.7)

Figure 2.9 Control rules for mobile robots

In order to verify the learned behaviours, the learned rules were
used to control the actual shepherd robot. The shepherd robot and
the sheep robot were placed in random locations and orientations
within our laboratory environment, and the resulting performance
recorded. In operational tests the shepherd robot succeeded in
forcing the sheep robot to the desired location in 67 % of the
episodes. Failures included the shepherd losing track of the sheep and
communication failures between the computer and the robots,
neither of which were accounted for in the simulation model.
Removing these cases from consideration, the observed success rate
was 73 %, very close to the success rate obtained under simulation.

Future work with SAMUEL will continue examining the process of
building robotic systems through evolution. Scaling up will require
better understanding of how multiple interacting behaviours can be
evolved simultaneously. Other open problems include how to evolve
hierarchies of skills and how to enable the robot to evolve new fitness
functions as the need for new skills arises.

2.5 Evolutionary algorithms for testing intelligent control
systems

The testing of control systems represents an important opportunity
for evolutionary algorithms. Control systems for complex systems
such as power plants or autonomous vehicles are likely to be based
upon incomplete models of the plant and its operating
environment. It may be difficult to predict the precise set of
environmental conditions in which the plant will need to operate.
Furthermore, intelligent control systems may include components
such as expert systems which may include heuristic rules. As a result,

B8 Genetic algorithms in engineering systems

testing and validation of such control systems may exceed the scope
of current testing methods. However, if a simulation model of the
plant is available, then an evolutionary algorithm can be used to
help explore the range of conditions under which a control system
will succeed or fail. One way of using an EA to test an intelligent
control system is shown in Figure 2.10. The system incorporates four
subsystems:

1 An evolutionary algorithm.

2 A model of the plant.

3 An intelligent control system for the plant.

4 A critic that evaluates the control system output.

The EA generates a population of test cases. The test cases may
represent controllable parameters of the plant (e.g., control system
setpoints, valve positions, pumps online), fault modes (e.g., pump
failures, sensor failures) and environmental conditions (e.g.,
ambient air temperature). Each member of the population of test
cases is submitted to the plant model. The plant model simulates the
response of the plant to that input and generates a set of plant
parameters, which represent the resulting state of the plant given
the specified test cases.

The plant parameters are then presented to the intelligent control
system, which diagnoses the cause of any performance problems in
the plant and provides recommendations for appropriate control
actions. The diagnoses and recommendations are submitted to the
critic, which calculates a numerical value representing their quality.
Based on a fitness function that is inversely related to the value
returned by the critic, the EA generates additional test cases based
on the fittest sets of current testing inputs and the cycle repeats.
Since the fitness function used by the EA is inversely related to the
quality of the expert system recommendation, the EA in effect
searches for test cases which cause the expert system to behave
poorly. That is, the EA is playing ‘devil’s advocate’ to the intelligent
control system.

This general method can be applied to a wide variety of control
systems. Initial tests have included an automatic pilot for a flight
simulator which controls a plane landing on an aircraft carrier, an
intelligent controller for an experimental autonomous underwater
vehicle [23] and an expert system for coal power plants [19]. Key
issues for the successful application of this approach include:

Levels of evolution for control systems 59

Intelligent
Plant Response
'\I;ladntl 0 - Control
oce System
A
Test Inputs Diagnosis and

Recommendations

Genetic

"
Algorithm|™® Quality Critic

Figure 2.10 FEvolving test cases

1

Development of the plant model. Ideally, the plant model should
accurately predict the state of the plant for any test case presented
to it by the evolutionary algorithm. Building a computational
model for a complex plant presents many challenges, especially if
it must predict plant behaviour for situations which are rarely seen
during normal operation of the plant. To further complicate
matters, the plant model must be computationally efficient, since
the EA will require the evaluation of hundreds of test cases during
the evolutionary process.

Specification of test cases. Ideally, the EA should only generate test
cases which represent plausible situations for the plant. Unrealistic
combinations of plant parameters, fault modes and environmental
conditions should be avoided. On the other hand, the point of
using an EA is that we want it to find unusual combinations of
events which might escape consideration of other testing methods.
Design of the critic. The critic must evaluate the performance of
the intelligent control system. Some aspects may be easy to meas-
ure (e.g., did the autopilot crash the plane?), but performance
relative to an unknown ideal may be very difficult to measure (e.g.,
how well could the control system have performed, given this set
of fault modes?).

Despite these challenges, evolutionary algorithms appear to be a
promising addition to current methods for testing and evaluating
complex systems.

60 Genetic algorithms in engineering systems

2.6 Summary

The intent of this Chapter has been to outline some ways of applying
evolutionary algorithms to control systems. It has been shown that
EAs may interact with control systems at many levels, including the
control parameter level, the levels of data structures such as schedules
and routes, and the decision rule level. The SAMUEL system
represents one approach to evolving control programs represented as
IF-THEN rules. SAMUEL has advantages which include the ability to
specify initial control rules as a starting point for the learning system
and the ability to combine heuristic learning and genetic search.
Finally, the use of evolutionary algorithms to search for challenging
test cases for control systems was briefly described. Further
developments along these lines can be expected to reduce the cost
and effort required to build control systems with expert performance
in complex domains.

2.7 Acknowledgment

This work is supported by the Office of Naval Research.

2.8 References

1 Baeck, T. and Schwefel, H.-P.: ‘An overview of evolutionary algorithms
for parameter optimisation’, Evolutionary Computation, 1, (1), pp 1-23

2 Bramlette, M., and Bouchard, E.: *Genetic algorithms in parametric
design of aircraft’, in Handbook of genetic algorithms, Davis, L. (ed.),
(Van Nostrand Reinhold: New York, 1991), pp 109-123

3 Chipperfield, A. and Fleming, P.: ‘Gas turbine engine controller
design using multiobjective genetic algorithms’. Proc. First IEE/IEEE
international conference on Genetic algorithms in engineering systems:
innovations and applications (GALESIA 95), Sheffield, UK, 1995, PP
214-219

4 Chipperfield, A., and Fleming, P.: Genetic algorithms in control
systems engineering’, [.of Computers and Control, 24, (1), 1996

5 Cobb, H. G, and Grefenstette, J. J.: ‘Evolving fuzzy logic control
strategies using SAMUEL: an initial implementation’. NCARAI
technical report AIC-95-045, December 1995

Levels of evolution for control systems 61

6 Cox, L. A, Davis, L., and Qiu, ¥Y: ‘Dynamic anticipatory routing in
circuitswitched telecommunications networks’, in Handbook of genetic
algorithms, Davis, L. (ed.) (Van Nostrand Reinhold: New York, 1991),
pp. 124-143

7 Dakev, N. V. and Chipperfield, A.: H-inf design of an EMS control
system for a Maglev vehicle using evolutionary algorithms’. Proc. First
IEE/IEEE international conference on Genetic algorithms in engineering
systems: innovations and applications (GALESIA 95), Sheffield, UK,
1995, pp. 226231

8 Davis, L. (ed.) Handbook of Genetic Algorithms (Van Nostrand Reinhold:
New York, 1991)

9 De Jong, K. A.: ‘Adaptive system design: a genetic approach’, IEEE
Trans. Syst. Man Cybern. 1980, 10, (9), pp. 566-574

10 Grefenstette, J. J.: ‘Optimisation of control parameters for genetic
algorithms’, IEEE Trans Syst. Man Cybern. 1986, 16(1), pp. 122-128

11 Grefenstette, .].: Credit assignment in rule discovery system based on
genetic algorithms. Machine Learning 1988, 3(2/3), pp. 225-245

12 Grefenstette, J. J.: ‘Genetic learning for adaptation in autonomous
robots’. Proc. of the sixth international symposium on Robotics and
manufacturing (ASME Press, New York, 1996)

13 Grefenstette, J. J., Ramsey, C. L. and Schultz, A. C.: ‘Learning
sequential decision rules using simulation models and competition’,
Mach. Learn, 1990, 5, (4), pp. 355-381

14 Holland, J. H.: ‘Escaping brittleness: the possibilities of general-
purpose learning algorithms applied to parallel rule-based systems’,
in Michalski, R.S., Carbonell, J. G. and Mitchell, T. M. (eds.): Machine
learning: An artificial intelligence approach (vol. 2) (Morgan Kaufmann,
1986)

15 Karr, C. L.: ‘Design of an adaptive fuzzy logic controller using a
genetic algorithm’. Proceedings of the fourth international
conference on Genetic algorithms, San Mateo, CA, 1991, pp. 450-457,
(Morgan Kaufmann)

16 Koza, J. R.: Genetic programming (MIT Press, 1992)

17 Kristinsson, K. and Dumont, G.: ‘System identification and control
using genetic algorithms’. IEEE, Trans. Syst. Man Cybern., 1992, 22, (5),
pp- 1033-1046

18 Ram, A., Arkin, R., Boone, G. and Pearce, M.: ‘Using genetic
algorithms to learn reactive control parameters for autonomous
robotic navigation’, Adapt. Behav. 1994, 2, (3), pp. 277-305

19 Roache, E., Hickok, K., Loje, K., Hunt, M. and Grefenstette, J.:
Genetic algorithms for expert system validation, Proceedings of the

62 Genetic algorithms in engineering systems

1995 Western Multiconference Society for Computer Simulation, Las
Vegas, NE, January 1995

20 Salami, M., and Cain, G.: ‘An adaptive PID controller based on
genetic algorithm processor’. Proc. first IEE/IEEE international
conference on Genetic algorithms in engineering systems: innovations and
applications (GALESIA 95), Sheffield, UK, 1995, pp. 8893

21 Schultz, A. C. and Grefenstette, J. J.: ‘Improving tactical plans with
genetic algorithms’. Proceedings IEEE conference on Tools for AT 90,
Washington, DG, 1990, pp. 328-334

22 Schultz, A. C., Grefenstette,].]J. and Adams, W.: ‘Learning complex
robotic behaviors’. Proc. of the sixth international symposium on
Robotics and manufacturing (ASME Press, New York, 1996)

23 Schultz, A. C., Grefenstette, J. J. and De Jong, K. A.: ‘Test and
evaluation by genetic algorithms’, IEEE Expert, 8, (5), pp. 9-14, 1993

24 Smith, F. F.: ‘Flexible learning of problem solving heuristics through
adaptive search’. Proceedings of the eighth international joint
conference on Artificial intelligence, Karlsruhe, Germany 1983, pp.
422-425 (Morgan Kaufmann)

256 Tan, K., Li, Y, Murray-Smith, D. and Sharman, K.: ‘System
identification and linearisation using genetic algorithms with
simulated annealing’. Proc first IEE/IEEE international conference
on Genetic algorithms in engineering systems: innovations and applications
(GALESIA 95), Sheffield, UK, 1995, pp. 164-169

26 Varsek, A., Urbacic, T. and Filipic, B.: ‘Genetic algorithms in
controller design and tuning’, IEEE Trans. Syst. Man Cybern., 1993, 23,
(5), pp. 1330-1339

27 Yamada, T., and Nakano, R. ‘A genetic algorithm with multi-step
crossover for job-shop scheduling problems’. Proc. first IEE/IEEE
international conference on Genetic algorithms in engineering systems:
inmovations and applications (GALESIA 95), Sheffield, UK, pp. 146-151

28 Yamauchi, B., and Beer, R.: ‘Sequential behavior and learning in
evolved dynamical neural networks,” Adapt. Behav., 1994, 2, (3),
pp. 219-246

Chapter 3
Multiobjective genetic algorithms

C. M. Fonseca and P. J. Fleming

The populations of current approximations maintained by genetic
algorithms (GAs) and other evolutionary approaches confer the ability
to concurrently search for multiple solutions to given problems. This
is particularly relevant in engineering, where multiple and often
conflicting objectives seldom define optimal solutions uniquely.
However, this ability is overlooked in most current applications of GAs
in engineering, and GAs are used simply for their generality and
robustness as an alternative to, but in the same spirit of, more
restrictive conventional optimisers. Different objectives are thus
analytically combined into a single function prior to optimisation, and
the GA applied.

This Chapter aims to illustrate how an existing GA can be modified
and set up to explore the relevant trade-offs between multiple
objectives with a minimum of effort. Although Pareto and Pareto-like
ranking schemes [1, 2] can be easily implemented, current guidelines
on the associated set up of techniques such as sharing and mating
restriction [3, 2] are intricate and/or based on more or less rough
assumptions about the cost landscape, which has not contributed to
their popularity.

However, if fitness sharing is reinterpreted as a technique involving
the estimation of the population density at the points defined by each
individual by so-called kernel methods [4], the setting of the sharing
parameter comes to depend only on the size and current distribution
of the population, and not on the problem. Kernel density estimation
[4], a technique from statistics and data analysis, will be introduced
and shown to find direct application in sharing and mating restriction,
simplifying implementation and avoiding the introduction of any
more tunable parameters in the GA formulation.

After a brief introduction to multiobjective optimisation and a
discussion of preference articulation in GAs, the main differences
between single-objective and multiobjective GAs are highlighted, and
the conversion of an existing GA into a multiobjective GA is described

64 Genetic algorithms in engineering systems

by means of an example. Simple experimental results are presented
towards the end of the Chapter for the purpose of illustration.

3.1 Multiobjective optimisation and preference
articulation

Most engineering problems are characterised by several noncom-
mensurable and often competing objectives to be optimised. Due to
the trade-offs involved, such problems usually have no unique, perfect
solution. Instead, they admit a set of equally valid, or nondominated,
alternative solutions, which is known as the Pareto-optimal set [5].
These solutions are such that improvement in any objective can only
be achieved at the expense of degradation in other objectives, and can
only be discriminated on the basis of expert knowledge of the
problem. This may include the understanding of the importance of
certain objectives relative to others or the need to meet given
specifications, for example.

Although nondominated solutions can generally be obtained
through optimisation, expressing informal design preferences in
terms of a sufficiently well behaved cost function, as expected by many
conventional optimisers, is not always easy. In particular, unimodality
requirements imply that all decisions must be made prior to
optimisation. If the solution produced by the optimizer is not
satisfactory, the cost function must be changed and the process
repeated.

On the other hand, genetic algorithms only require that the cost (or,
alternatively, the utility) of each individual be determined with respect
to the current population so as to permit the broad ranking of the
population. Individuals need only be rated better than, similar to, or
worse than others, effectively allowing the decision maker to delay
otherwise uninformed decisions until sufficient insight into the
problem has been gained. At that point, the decision maker can adjust
the current decision strategy, as the population evolves.

3.2 How do MOGAs differ from simple GAs?

In single-objective GAs, individual performance, as measured by the
objective function, and individual fitness are so closely related that the
objective function is sometimes referred to as the fitness function. The

Multiobjective genetic algorithms 65

two are, however, not the same. In fact, whereas the objective function
characterises the problem and cannot be changed at will, assigned
fitness is a direct measure of individual reproductive ability (i.e.,
expected number of offspring), forming an integral part of the GA
search strategy.

This distinction becomes all the more important when
performance is measured in terms of a vector of objective values,
because fitness must remain a scalar. In this case, fitness assignment
is a more elaborate process. For the sake of generality, the necessary
scalarisation of the objective vectors may be viewed as a
multicriterion decision making problem involving a (finite) number
of candidates, the individuals in the population [2, 6]. Individuals
are thus assigned a measure of their utility indicating whether they
perform better, worse or similarly to others, and possibly also how
much better or worse. If the utility measure conveys only ordinal
information, then fitness must be assigned through ranking.
Otherwise, ranking or proportional fitness assignment may be used.
This setup is general enough to include problems where individual
performance must be assessed through pairwise comparison [7],
such as when evolving game-playing programs.

Since the solution of a multicriterion decision making problem
depends only on the vectorial performance of the available
candidates and on the preferences of the decision maker, and not
on any subsequent search or optimisation, utility is also essentially
different from fitness. In particular, techniques such as sharing
affect the individuals’ fitness, but not their utility or cost.

3.2.1 Scale-independent decision strategies

In the total absence of information concerning the relative
importance of the objectives, Pareto dominance is the only basis on
which an individual can be said to perform better than another.
Therefore, nondominated individuals must all be considered best
performers, and thus be assigned the same cost [1], e.g., zero.
Deciding on the performance of dominated individuals is a more
subjective matter. One may, for example, assign to them a cost
proportional to how many individuals in the population dominate
them (Figure 3.1), in which case nondominated individuals would
also be treated as desired. This is essentially the Pareto ranking
scheme proposed in [2].

66 Genetic algorithms in engineering systems

)

Figure 3.1 Pareto ranking

Another popular Pareto ranking scheme [1], also known as non-
dominated sorting [8], consists of removing the nondominated
individuals (here also ranked zero, for ease of comparison) from
contention, finding the nondominated individuals in the remaining
population and assigning them rank 1, and so forth, until the whole
population is ranked. Both of these approaches guarantee that non-
dominated individuals are all ranked best, and that individuals are
consistently assigned better ranks than those which they dominate.
However, the first ranking scheme does appear to be easier to
interpret and analyse mathematically [6].

When goal and/or priority information is available for the
objectives, it may become possible to discriminate between some non-
dominated solutions. For example, if degradation in objective
components which meet their goals does not go beyond the goal
boundaries, and results in the improvement of objective components
which do not yet satisfy the corresponding goals, then it should be
accepted. Similarly, in a dual priority setup [6], it is only important to
improve on high priority objectives (i.e., constraints) until the
corresponding goals are met, after which improvement should be
sought for the remaining objectives. These considerations have been
formalised [6] in terms of a transitive relational operator
(preferability), based on Pareto dominance, but which selectively
excludes objectives according to their priority and to whether or not
they meet their goals.

For simplicity, only one level of priority will be considered here. The
full, multiple priority version of the preferability operator is described
in detail in [6]. Consider two objective vectors ¥ and 7 and a goal

Multiobjective genetic algorithms 67

vector g’ Also, let @ (wsmile) and 4 (ufrown) denote the components
of @ which meet their goals and those which do not, respectively.
Assuming minimisation, one can write:

,Zzﬁsg? 4 A"& ‘11>§ @
where the inequalities apply componentwise. This is equivalent to:

View,usgAView,u>g

where u, and g represent the components of # and g respectively.
Then, 4 is said to be preferable to 7 given gif and only if:

() () A (75 (27 1)

where dp<tdenotes @ dominates 8. In other words, % will be preferable
to 7if and only if one of the following is true:

(i) The violating components of % dominate the corresponding
components of 7.

(i) The violating components of % are equal to the corresponding
components of 7, but 7 violates at least another goal.

(ili) The violating components of % are equal to the corresponding
components of 7, but ¥ dominates 7 as a whole.

Like Pareto dominance, this relation can be used to rank the
individuals in a population by one of the methods described above.

3.2.2 Cost to fitness mapping and selection

Once cost has been assigned, selection can proceed in much the usual
way. Suitable alternatives include rank-based cost to fitness mapping
[9] followed by stochastic universal sampling [10] (or even roulette
wheel selection) and tournament selection also based on cost, as
reported in [11, 12].

Exponential rank-based fitness assignment is illustrated in Figure 3.2.
Individuals are sorted by cost (the values are those from Figure 3.1) and
first assigned fitness values according to an exponential rule (narrower
bars). Then, a single value of fitness is derived for each group of
individuals with the same cost, through averaging (wider bars).

3.2.3 Shaning

Although all preferred individuals are assigned the same fitness, their
actual number of offspring, which must obviously be an integer, may

68 Genetic algorithms in engineering systems

1.5

11

Assigned fitness

0.51 |

e

|

|

|
| [
| ¢
' !
| 1
1 |
| '
' '
0 [
| '
))
L L

0 [¢]
Rank values

Figure 3.2 Rank-based fitness assignment

differ. The imbalance can easily accumulate with the generations and
result in the population drifting towards an arbitrary region of the
trade-off surface, a phenomenon known as genetic drift [13]. In
addition, recombination and mutation may be less likely to produce
individuals in certain regions of the trade-off surface (e.g., the
extremes) than in others, causing the population to cover only a small
part of it.

Fitness sharing [14], originally introduced to promote the sampling
of multiple fitness peaks, helps to counteract genetic drift by
penalising individuals due to the presence of other individuals in their
neighbourhood. The niche count of each individual is initially set to
zero and then incremented by a certain amount for every individual in
the population, including itself. The contribution of an individual to
another’s niche count is dictated by a sharing function, which is a
function of their mutual distance in genotypic, phenotypic or
objective space. Raw fitness values are then weighted by the inverse of
the niche counts and subsequently normalised by the sum of the
weights, before selection. In this way, the total fitness in the population
is redistributed (and thus shared) by the individuals. Fitness can also
be shared only between individuals with the same raw fitness, by
computing partial weight totals and performing the normalisation
within each group of such individuals [2].

The use of fitness sharing has been restricted by the difficulty
found in determining the appropriate niche size, i.e., how close

Multiobjective genetic algorithms 69

together individuals should be for degradation to occur. Current
guidelines either make assumptions about the number and
distribution of peaks in the cost landscape [3], or rely on the
estimation of the (maximum) size of the trade-off surface based on
the properties of the Pareto set [2].

However, niche count computation (explained above) turns out to
be remarkably similar to the kernel density estimation methods [4]
known to statisticians. Basically, density estimates are computed in
exactly the same way as niche counts, except for a constant factor. The
parallel is drawn in Table 3.1.

Table 3.1 The analogy between sharing and kernel estimation

Fitness sharing Kernel density estimation
sharing function kernel function

niche size (o shae) smoothing parameter (h)
niche count density estimate

As in sharing, the choice of the smoothing parameter is ultimately
subjective, but guidelines have been developed for certain kernels,
such as the standard normal probability density function and the
Epanechnikov kernel. The latter can be written as [4]:

1. 2
K(d/h)= §cﬂ_ (n+2) [1+(d/m)’] if d/n<1

0 otherwise

where 7 is the number of decision variables, ¢, is the volume of the unit
n-dimensional sphere and d/k is the normalised Euclidean distance
between individuals. The parameter % is the smoothing parameter
analogous to 0. Note that this kernel is, apart from the constant
¢, (n+2)/2, a particular case of the family of power law sharing
functions proposed by Goldberg and Richardson [14].

According to Silverman [4], a good choice (approximately optimal
in the least mean integrated squared error sense if the population
follows a multivariate normal distribution) of the smoothing
parameter for the Epanechnikov kernel K(d) is:

h=[8¢," (n+4) (2Vm)"/N]

1/{n+)

for a population with N individuals and identity covariance matrix.
Populations with arbitrary sample covariance matrix S can simply be
sphered (or normahsed) by multiplying each individual by a matrix R
such that RR'=S . This implies that the niche size (which depends on

70 Genetic algorithms in engineering systems

h and S) can be constantly, and automatically, adapted to suit the
population at each generation, regardless of what the cost function
may be.

These results can be used directly to perform sharing in Euclidean
decision variable spaces. It might be possible to develop guidelines
based on the same principles for other types of spaces.

3.2.4 Mating restriction

Mating restriction consists of biasing the way in which individuals are
paired for recombination [3]. As the population distributes itself
along the trade-off surface, recombining arbitrary pairs of individuals
may be conducive to the formation of a large number of unfit
offspring, or lethals. To address this issue, mating can be restricted,
where possible, to individuals within a given distance 0., from each
other. Following the common practice of setting 0 . = O individuals
may be allowed to mate only if they lie within a distance % from each
other in the sphered space used for sharing.

3.2.5 Interactive optimisation and changing environments

As the GA population evolves and trade-off information is acquired,
the decision maker may wish to see the population concentrate on a
smaller region of the trade-off surface, or even back off and move on
to a totally different region. This can be achieved simply by changing
the goals supplied to the GA at the cost assignment stage, which in
turn affects the ranking of the population and modifies the cost
landscape. The GA must then be able to respond quickly to such
preference changes.

Introducing a small percentage (10-20 %) of random individuals at
each generation has been shown to make the GA more responsive to
sudden changes in the fitness landscape [15]. This technique can be
easily incorporated in a multiobjective GA.

3.3 Putting it all together

The implementation of a multiobjective GA incorporating the
techniques described in the previous Section will now be considered.
Matlab [16] pseudocode for a simple, aggregating, GA is given in
Figure 3.3. Individual chromosomes (the rows of matrix Chrom) are

Multiobjective genetic algorithms 71

initially generated at random, and then decoded, producing the
corresponding vectors of decision variables, in matrix DVar. Evaluation
is made in two steps: objective vectors are computed first (rows of
ObjV), and then aggregated to produce a scalar measure of cost for
each individual (the components of vector Cost). Fitness is assigned
through ranking, with given selective pressure, SP. Individuals are
selected using SUS (stochastic universal sampling), recombined and
mutated, and a new generation begins. Functions multobjfun and
aggregate are written by the user, the former defining the problem
and the latter implementing a fixed decision strategy, such as a
weighted sum. The remaining functions implement the GA itself, and
are not far from those found in the current version of the GA Toolbox
for Matlab [17].

Chrom = creatpop(NIND, LIND);

while Gen < MAXGEN
DVar = decode(Chrom);
ObjV = multobjfun(DVar);
Cost = aggregate(ObjV),
Fitn = ranking(Cost, SP);
Ix = sus(Fitn);
SelCh = Chrom(lx, :);
SelCh = xover(SelCh, XOVRY),
Chrom = mutate(SelCh, MUTRY);
Gen = Gen + 1;

end

Figure 3.3 A simple aggregating GA

Preference-based multiobjective ranking (rank_prf in Figure 3.4)
comes as a drop-in replacement for aggregate which may take two
optional parameters: a goal vector, GoalV, and a vector indicating the
priority of the objectives, PriorV (not used in the example).

Niche counts NicheC are computed using a kernel estimator based
on the Epanechnikov kernel. DVar is passed to the function twice
because it constitutes simultaneously the sample data and the points
where the population density needs to be estimated. The estimation
function also returns the default smoothing parameter Sigma (%) and
a matrix R such that DVar*R has identity covariance matrix, both of
which are used at a later stage in mating restriction. The ranking
function now uses NicheC to perform sharing between individuals with
equal cost as an integral part of the fitness assignment procedure.

72 Genetic algorithms in engineering systems

Chrom = creatpop(NIND, LIND);

while Gen < MAXGEN
DVar = decode(Chrom);
ObjV = muitobjfun(DVar);
Cost = rank_prf(ObjV, GoalV);
[NicheC, Sigma, R] = epanechnikov(DVar, DVar);
Fitn = ranking(Cost, SP, NicheC);
Ix = sus(Fitn, NIND - NImmigr);
SelCh = Chrom(Ix, :);
SelDV = DVar(lx, :);
Permix = pairup(SelDV * R, Sigma);
SelCh = SelCh(Permix, :);
SelCh = xover(SelCh, XOVR),
Chrom = [mutate(SelCh, MUTRY);

creatpop(Nimmigr, LIND) ;

Gen = Gen + 1;

end

Figure 3.4 A multiobjective GA

Since a small number Nimmigr of individuals in the new population
will consist of random immigrants, only NIND-NImmigr individuals are
selected from the old population. Mating restriction is implemented
by reordering the individuals in the population so that consecutive
pairs of chromosomes in SelCh correspond, where possible, to
individuals within a required distance Sigma of each other in
normalised decision variable space. (The parental population is
rotated and scaled according to the same transformation, R, used for
niche count computation.) The random immigrants are appended to
the population after mutation, having to survive selection before
being allowed to recombine. This will be most likely whenever the
fitness landscape changes and the GA population is no longer adapted
to it.

As can be easily seen, the only additional GA parameter in this
second version of the GA is the number of random immigrants to be
inserted in the population at each generation, the setting of which is
not critical. Random immigrants make the GA more exploratory and
thus more responsive to sudden preference changes, as long as a
balanced amount of exploitation can still be maintained. In particular,
selective pressure should probably be increased slightly, to
compensate for the fact that the insertion of random immigrants into
the population reduces the expected number of offspring of the best
individual by NImmigr/NIND.

Multiobjective genetic algorithms 73

3.4 Experimental results

Several applications of multiobjective GAs have been reported in the
literature, mainly related to control engineering. In an independent
study, Whidborne et al. [18] have compared a multiobjective GA based
on the preferability relation to other interactive multiobjective
approaches such as the method of inequalities, and noted the
tendency for the MOGA to produce solutions very similar to each
other. However, they also pointed out that the GA did not include
sharing or mating restriction.

To show how sharing and mating restrictions together can
significantly contribute to the performance of the GA, consider the
minimisation of the following two objectives:

fils) =1 - CXP_i["E(x,-— 1/\/n)2]
PRI SRS

which are defined for any number of decision variables n. The
minimum of f is located at (x,,...xn)=(1/\/n,‘..,l/\/n) for all n, and that
of f, is located at (xl,...x,,)=(—1/\/n,...,—1/\/n). Due to the symmetry of
the two functions, the Pareto-optimal set clearly corresponds to all
points on the line defined by:

x=x= =2, A =1 /N n<x<1 /N

A simple genetic algorithm with a population size of 100
individuals, binary chromosomes, reduced-surrogate shuffle
crossover and binary mutation was used to approach this problem
for n=8. Decision variables were Gray-encoded as 16-bit strings in
the interval [-2,2] and concatenated to form the chromosomes.
Multiobjective ranking was performed as described and illustrated
earlier in Figure 3.1.

Running this GA for 100 generations, without sharing or mating
restriction, shows how the population tends to concentrate on a small
region of the trade-off surface (Figure 3.5). Nondominated
individuals are marked with filled circles (®) and other individuals
with empty circles (o). The solid line represents the best
approximation to the real trade-off surface (dashed line) known as a
consequence of the GA run.

74 Genetic algorithms in engineering systems

Generation 100

@ Nondominated individuals

O Dominated individuals

—DBest trade off found (cumulative)
— — Actual Pareto set

Figure 3.5 Multiobjective GA without sharing or mating restriction

If, however, sharing and mating restrictions are implemented in the
decision variable domain as in the example in Figure 3.4, the
population is able to remain distributed across the whole trade-off
surface. This can be seen in Figure 3.6.

The population can also be driven to sample a given region of the
trade-off surface by setting goals accordingly. Figure 3.7 shows the
distribution of the population after setting the goals and running the
GA for another 50 generations. Most of the population can be seen to
be concentrated in the preferred region of the trade-off surface, as
desired.

An application of the multiobjective GA described here in the
design of controllers for gas turbine engines is reported in [19].

3.5 Concluding remarks

Although multiobjective genetic algorithms are still undergoing
development, their application to real world problems is becoming
increasingly feasible. In combination with a suitable graphical user
interface, multiobjective GAs can become a powerful, and possibly

Multiobjective genetic algorithms 75

Generation 100

... X8)

f2(x1,.

y2=

OO 0.5 1

@® Nondominated individuals

O Dominated individuals

—Best trade off found (cumulative)
— — Actual Pareto set

Figure 3.6 Multiobjective GA with sharing or mating restriction

interactive, decision support tool, allowing a decision maker to learn
about the problem before committing to a final decision.

Due to the multisolution nature of most multiobjective problems,
fitness sharing is needed to maintain diversity in the population.
However, guidelines on how to set the sharing parameter have been
too dependent on suppositions about the fitness landscape which are
difficult to make in any practical setting. Understanding sharing as
something similar to density estimation can make the use of sharing,
and thus that of multiobjective GAs, more practical. More elaborate
density estimation techniques, such as adaptive kernel density
estimation [4], may further improve the quality of sharing. On the
other hand, nearest-neighbour estimators may be easier to extend to
nonEuclidean spaces, and thus be more appropriate to ordering and
grouping problems, for example.

Finally, multiobjective evolutionary optimisation is a much broader
area than reported here, and the interested reader is referred to [20]
for an overview.

76 Genetic algorithms in engineering systems

Generation 150

' og%o
(91.92)

+

%@

o

0

@ Preferable individuals

O Non-preferable individuals
—Best trade off found (cumulative)
— — Actual Pareto set

Figure 3.7 Zooming in on a region of the trade-off surface by setting goals accordingly

3.6 Acknowledgment

The authors wish to acknowledge the support of the UK Engineering
and Physical Sciences Research Council (grant GR/J70857).

3.7 References

1 Goldberg, D. E.: Genetic algorithms in search, optimisation and machine
learning (Addison-Wesley, 1989)

2 Fonseca, C. M., and Fleming, P. J.: ‘Genetic algorithms for multi-
objective optimisation: Formulation, discussion and general-
isation,” in Genetic algorithms: proceedings of the fifth international
conference, Forrest, S. (ed.) (Morgan Kaufmann, 1993), pp. 416-423

3 Deb, K, and Goldberg, D. E.: ‘An investigation of niche and species
formation in genetic function optimisation,’ in Proceedings of the third
international conference on genetic algorithms Schaffer, J. D. (ed.),
(Morgan Kaufmann, 1989), pp. 42-50.

4 Silverman, B. W.: Density estimation for wtatistics and eata analysis,
vol. 26 of Monographs on statistics and applied probability. (Chapman
and Hall, 1986)

Multiobjective genetic algrithms 77

5 Ben-Tal, A.: ‘Characterisation of Pareto and lexicographic optimal
solutions,’ in Multiple criteria decision making theory and application
Fandel, G. and Gal, T. (eds.), vol. 177 of Lecture Notes in Economics and
Mathematical Systems, (Springer-Verlag, 1980), pp. 1-11

6 Fonseca, C. M., Multiobjective genetic algorithms with application to
control engineering problems, Ph.D. Thesis, Dept. Automatic Control
and Systems Eng., University of Sheffield, Sheffield, U.K., 1995

7 Uppuluri, V. R. R,, ‘Prioritisation techniques based on stochastic
paired comparisons,’” in Multiple criteria decision making and risk
analysis using microcomputers, Karpak, B. and Zionts, S., (eds.), vol. 56
of NATO ASI Series F: Computer and Systems Sciences, (Springer-Verlag,
1989), pp. 293-303

8 Srinivas, N. and Deb, K., ‘Multiobjective optimisation using
nondominated sorting in genetic algorithms,” Evolutionary
Computation, vol.2, 1994

9 Baker,]. E.: ‘Adaptive selection methods for genetic algorithms,’ in
Genetic algorithms and their applications: proceedings of the first
international conference on genetic algorithms Grefenstette, J. J., (ed.)
(Lawrence Erlbaum, 1985) pp. 101-111

10 Baker, J. E.: ‘Reducing bias and inefficiency in the selection
algorithm,” in [21], pp. 14-21.

11 Cieniawski, S. E.: ‘An investigation of the ability of genetic
algorithms to generate the tradeoff curve of a multi-objective
groundwater monitoring problem,” Master’s thesis, University of
Ilinois at Urbana-Champaign, Urbana, Illinois, 1993

12 Ritzel, B. J., Eheart, J. W. and Ranjithan, S.: ‘Using genetic
algorithms to solve a multiple objective groundwater pollution
containment problem,” Water Resour Res, 30, pp. 1589-1603, 1994

13 Goldberg, D. E. and Segrest, P.: ‘Finite markov chain analysis of
genetic algorithms,” in [21], pp.1-8.

14 Goldberg, D. E. and Richardson, J.: ‘Genetic algorithms with
sharing for multimodal function optimisation,’ in [21], pp. 41-49

15 Grefenstette, J. J.: ‘Genetic algorithms for changing environments,’
in Parallel problem solving from nature, 2, Maenner, R. and Manderick,
B. (eds.), (North-Holland, 1992), pp. 137-144

16 The MathWorks, Inc., Matlab Reference Guide, August 1992

17 Chipperfield, A., Fleming, P., Pohlheim, H. and Fonseca, C.,
‘Genetic algorithm toolbox user’s guide,” Research report 512,
Dept. Automatic Control and Systems Eng., University of Sheffield,
Sheffield, U.K,, July 1994.

18 Whidborne, J. F., Gu, D.-W. and Postlethwaite, I.: ‘Algorithms for the

78 Genetic algorithms in engineering systems

method of inequalities — a comparative study,” in Proc. American
Conitrol Conference, Seattle, USA, 1995
19 Chipperfield, A. J. and Fleming, P. J. ‘Multiobjective gas turbine

engine controller design using genetic algorithms,” IEEE Trans. Ind.
Electron, 45 (5) pp. 583-587, 1996

20 Fonseca, C. M. and Fleming, P. J. ‘An overview of evolutionary
algorithms in multiobjective optimisation,” Evolutionary
Computation, 3, pp. 1-16, Spring 1995

21 Grefenstette, J. J. (ed.): Genetic algorithms and their applications:

proceedings of the second international conference on genetic algorithms
(Lawrence Erlbaum, 1987)

Chapter 4
Constraint resolution in
genetic algorithms

R. Pearce

4.1 Introduction

Most real world optimisation problems have constraints. Solutions that
appear to be very good on the basis of the objective criteria, may be
unacceptable for some other reason. For example, a design optimised
to minimise cost must also meet stress and manufacturing
requirements. If the cheapest design buckles under load or is
impossible to make, then it is not an acceptable solution. What is
actually required is the cheapest design that meets these additional
criteria.

The problem of including these constraints into a search is common
to all optimisation techniques. In linear problems, optimal solutions
may be found by following the constraint boundaries. Constraint
satisfaction methods are used to find solutions in highly constrained
problems, although they are impractical for finding the optimum if
the search space is large.

It is clear, however, that other methods are required for applying
constraints to the large, ill-behaved spaces typically searched by a
genetic algorithm. These constraints are important in solving
applications, whether design, scheduling, system identification or
control, or any of the myriad of areas to which genetic algorithms have
been applied.

4.2 Constraint resolution in genetic algorithms

When an optimisation problem is subject to constraints, then these
must be incorporated into the search algorithm. There are a number
of ways to ensure that the constraints are taken into account during
the optimisation. It may be possible to restrict the search to valid
regions of the search space. The maximum and minimum of each

80 Genetic algorithms in engineering systems

parameter in the chromosome string are set to sensible values in the
light of knowledge about the system. In addition, the chromosome
may be encoded or manipulated in a way which prevents the
generation of invalid solutions. Unable to generate solutions that do
not meet the constraint criteria, the algorithm avoids wasting effort
evaluating solutions which would not be acceptable.

However, in many cases, some calculation is required to determine
whether constraints have been met. Examples of this could be the
power output of a generator or the stresses within a component. As
these values are a function of the solution as a whole, there is no way
of preventing the optimiser generating solutions which violate these
constraints. Therefore, the search is directed to valid regions by
penalising the fitness of solutions that violate the constraints [3].
Setting the fitness of any invalid solution to zero ensures that only valid
solutions are considered for breeding and that the final solution will
meet the constraints. However, this can result in valuable information
being lost from the gene pool as invalid solutions may still contain fit
schema.

penalty

-
: valid zone :

N
invalid zone invalid zone

Figure 4.1 Fixed penalty for constraint violation

It is more usual to reduce the fitness by a finite amount. The lower
fitness reduces the solution’s chance of breeding with respect to those
that do meet the constraints. However, the genes still have a chance of
being passed on to successive generations. The method of using a
fixed penalty (see Figure 4.1) for any degree of violation is rarely

Constraint resolution in genetic algorithms 81

applied as it provides no ranking of solutions which violate the
constraint. This is because a solution which has only just failed to meet
a constraint is penalised to the same extent as one that has missed by
a long way. This is less important if the constraints are easily met.
However, if it is hard to find a solution that meets the constraints, then
the search will flounder around the search space until, by chance, it
lands in a valid region.

. valid zone : valid zone :

invalid zone invalid zone invalid zone invalid zone

Figure 4.2 Variable penalty for constraint violation

a linear variation of penalty with constraint violation
b stepped penalty with constraint violation

Itis more common to use a graduated scale of penalty, proportional
to the magnitude of the constraint violation. The form of the penalty
will depend on the problem and the importance of the constraint. For
example, it may be linear (see Figure 4.2(a)), polynomial, exponential
or stepped (see Figure 4.2(b)) [4]. The stepped approach will tend to
give the same rank to several solutions (like the single step function of
Figure 4.1) unless the step width is small with respect to the
discretisation of the objective. The exponential form is closely
equivalent to simulated annealing [5], where solutions which violate
constraints may be selected with a probability that varies exponentially
with the size of the violation. In all cases, as the search moves towards
solutions that meet the constraints, the penalties reduce. Solutions
that only just fail to meet the constraints have an increased chance of
being used as parents. Hence, the search will move towards valid
regions in the search space.

82 Genetic algorithms in engineering systems

4.3 Problems in encoding of constraints

There is a significant degree of tuning required to balance the effects
of the constraints and the objective function. The magnitude of the
penalty and its variation with the degree of violation have to be
adjusted to give the required response over the entire search space.
Furthermore, it may be appropriate to adjust the magnitude of the
penalty during the course of the optimisation. A small penalty widens
the size of the target volume early during the search, and a large
penalty late in the search forces closer adherence to all the constraints.
When setting up the objective function and constraints it is important
to remember that a genetic algorithm will only seek to maximise its
fitness. If the effect of a constraint violation is to increase the fitness to
a level that compensates for the incurred penalty, then this will occur.
In this way, trade off can occur between constraints, or between the
objective value and constraints. In some cases, this may be desirable,
in others not so. The difficulty is in controlling the objective function
to give the required characteristics.

Also important is the relative weighting of the constraints. It may be
more critical to meet some constraints than others. Some constraints
(hard constraints) may need to be met at any cost, regardless of their
effect on fitness or other constraints. Other constraints (soft
constraints) may be more flexible, acting like a wish list of attributes to
which the user would like the solutions to conform. The magnitude
and importance of these constraints may be either independent of
other constraints and objectives or interrelated. In other words, a
minor violation on one soft constraint may be acceptable if it gives a
significant benefit in terms of fitness, or if other constraints have been
comfortably met. This form of reasoning is difficult to hard encode
into the objective function. It is also difficult to verify once encoded,
as the logic is hidden. This is illustrated in the following equation:

cons;

datum,

fitness = objective + Y +(cons, *consy)

Even if a valid balance between the objective and constraint values is
obtained, there may be a number of residual problems.

There may be no solution that can satisfy all the constraints. In this
case, the constraints become objectives in themselves, with the genetic
algorithm attempting to minimise the violations. Under these
circumstances, the relative weighting of the constraints and the degree

Constraint resolution in genetic algorithms 83

to which constraint achievements affect the acceptability of other
constraint violations becomes particularly important. For example, if
it is not possible to meet all the stress and thermal constraints in the
design of a component, then stress constraints may be relaxed in
regions of low temperatures. A solution that has just failed in one
constraint may be considered as being worse than one that has just
failed to meet two other constraints if the first constraint is a critical
one. The degree to which a violation is acceptable may depend on how
many or which other constraints have been met, or the degree to
which it benefits the objective value. For example, a slightly higher
stress in a critical region of a component may be more significant than
if it was in a less critical region.

There may be insufficient data and hard constraints to identify a
unique solution. However, qualitative guides may be available to direct
the search towards the desired region. This frequently exists in the
form of engineering judgement. This is the knowledge used by people
experienced in the field that directs their path during a manual
optimisation. This could be something like ‘I would expect those two
parameters to be about equal’, or that ‘the length of one arm of the
component will probably be about twice the length of the other arm’.

The problem may be ill conditioned and so very sensitive to noise
[8]. This can make it difficult to solve accurately analytically. There
may be a few qualitative constraints available to reduce the effect of
the ill-conditioned nature.

In all the cases, mathematical descriptions of the constraints can be
difficult to formulate and more difficult to audit.

4.4 Fuzzy encoding of constraints

During manual optimisation, knowledge and engineering judgement
are applied to determine the overall quality of the solution. This is
rarely done in absolute numerical terms, but rather in a qualitative
manner. The engineer takes into account all aspects of the design to
decide whether a solution is better than another. The engineer may be
prepared to compromise his requirements in some aspects when the
ideal is unattainable. These compromises are usually formed by
approximately classifying the various aspects in respect to the
requirements. Hence, a design that has greatly exceeded the pressure
requirements might be allowed a very small violation of a temperature
requirement. These descriptions will correspond to approximate

84 Genetic algorithms in engineering systems

ranges of values, but there are no hard cut offs. A small violation does
not become a large violation simply because it has increased from 0-9
to 1-1 if the boundary between the two has been set to 1-0. We think
of the classifications in fuzzy terms, because that is the way that our
brains work.

The use of these qualitative judgements to resolve objectives and
constraints has the potential for resolving many of the areas of
concern given in Section 4.3. Initial studies have been performed on
a number of artificial toy problems as well as a genuine real world
application in industry. These are described in later Sections (Sections
4.6 and 4.7). In order to facilitate this understanding, the following
section gives a brief, and nonmathematical, overview of fuzzy logic.

4.5 Fuzzy logic

Conventional logic is based on the idea that a statement is either true
or false. In some cases, this division is valid. A light switch is either on
or off, an individual either owns a car or does not. However, generally,
this sort of categorisation is alien to the way we think. If you ask
whether someone is old or young, or whether some water is hot or
cold, the answer will vary for each person who is asked. Typically, an
answer will be qualified with statements such as ‘quite’, ‘very’,
‘slightly’, ‘almost’. As humans, we understand what is meant. But how
can a computer also learn to understand these qualitative terms?

The answer to this question is fuzzy logic. Fuzzy logic was first
developed in the 1960s by Lofti Zadeh. He also developed a
mathematical framework for it, known as fuzzy set theory. This
framework employs a continuously valued logic, utilising all values in
the range 0 to 1 and including all the functions available in
conventional logic. In fact, conventional set theory can be viewed as a
proper subset of fuzzy set theory [10].

4.5.1 Membership

A collection of objects may be considered to be a set. In conventional
crisp set theory, an object is either wholly a member of a set or it is not.
To use the example of car ownership ~ someone either owns a car or
they do not; they are either in the set of car owners, or they are not.
This clearly defined distinction can be illustrated in a Venn diagram
(Figure 4.3). In set theory this is described by the principles of
membership, where the membership value is a real number in the

Constraint resolution in genetic algorithms 85

range of 0 to 1. For crisp sets, if an item is part of a set, it has a
membership of 1; if it is not part of the set, it has a membership of 0.
There are no intermediate values. So, a person with a car has a
membership of 1 of the set of car owners, whereas someone who does
not have a car, has a membership of 0 of that set.

Set of people

Set of car owners

membership set of

membership of set of
car owners = (

car owners = 1

Figure 4.3 Venn diagram showing crisp sets

In fuzzy logic, memberships can take values between these two
extremes. This represents the degree to which an item can be
considered to be a member of the set. So it is not necessary to decide
whether water at 67°C is hot or warm. It can be thought of as being
both, to a greater or lesser extent. The same is true for water at 85°C,
although that will have a higher membership of hot than the cooler
water. This is illustrated in Figure 4.4. A membership set for hot can be
generated. It might be decided that 100°C is definitely hot
(membership 1 of the set hot) and 50°C is definitely not hot
(membership 0 of the set hot). A line may be drawn between these two
extremes, representing a linear increase in the membership with
temperature. From this, it can be seen that 67°C has a membership of
0-34 and 85°C has a membership of 0-7 of the set hot.

It should be noted that a membership of hot to degree 0-7 is quite
different from saying that there is a probability of 0-7 that something
is hot. There may be no uncertainty about the temperature, just about
the label to attach to that temperature. The fuzzy logic operations
described here are identical to a statistical interpretation of
membership as ‘what is the chance that an independent observer
would classify that as being hot?’.

86 Genetic algorithms in engineering systems

The shape of the membership sets can be triangular, trapezoidal,
sigmoidal, Gaussian {2], etc., depending on the application. The shape
is an approximation to the distribution of degree of belief that the class
truly represents the parameter value presented, i.e. the probability that
an observer would classify that temperature as hot. The sets overlap each
other to provide a continuous function across the range. Therefore, a
value will usually have a membership of more than one set.

membership

4 Hot
1.0

T .

i
1
|
!
|
1
l
!
1
I

67 85

50 100 temperature

Figure 4.4 Membership of water at 67°C and 85°C of the set hot

4.5.2 Rules

In conventional logic, the effects of the membership of sets are
combined using rules based on operators such as AND, OR and NOT.
Using these operators, truth tables can be created to give the
appropriate output for all the possible input combinations.

Fuzzy logic also uses the logical operators OR, AND and NOT to
combine membership sets. However, as the inputs are continuous over
the range 0 to 1, it is not possible to generate a truth table. Therefore
other methods are used to evaluate the functions. The AND operator
may be taken as the minimum of the two input membership values,
the OR operator as the maximum of the two input memberships and
the NOT operator as one minus the input membership. This is known
as max-min inferencing.

Alternatively, the product may be used to evaluate the AND
operator, and a method based on the sum minus product for the OR
operator. The product version of AND is consistent with the statistical
interpretation of membership described in Section 4.5.1. There are a
number of other interpretations for the operators that may be found
in the literature [6].

Constraint resolution in genetic algorithms 87

4.5.3 Defuzzification

Applying a series of rules will result in a number of different outcomes
being fired to varying degrees. The final stage is to translate the fuzzy
memberships into a crisp value. This is the value used for the final
decision. There are two main methods of defuzzifying the data. These
are the centroid (or composite moment) method and the height (or
composite maximum) method. Statistically, this is equivalent to
choosing different mean weightings of a distribution [7].

The centroid method uses the centroid of the combined output
- fuzzy sets. This is affected by all the results given by the rules and
weights those most strongly activated. The height method uses the
average of the output values of the scaled output membership
functions, weighted by the heights of scaled membership functions.

4.5.4 Example

Fuzzy logic is a simple, practical method of manipulating uncertain
information. Its implementation is best illustrated using an example -
in this case a controller for determining the correct speed for driving
a car around a bend in the road. In order to calculate the correct
speed to drive around a bend, a large amount of accurate data would
be required. This would include the angle of the bend, camber of the
road, coefficient of friction between the tyres and the road surface and
so forth. If a change in speed is required, then a whole further set of
calculations arise to determine how much to move the accelerator
pedal to give the required acceleration or deceleration. When a driver
approaches a corner he or she does not do this detailed calculation. If
that level of mathematics was required, then none of us would drive.

Instead we are able to make decisions based on fuzzy logic, using the
incomplete and qualitative data available to us. As we approach the
corner, we ask, ‘am I going too fast?’. If the answer is yes, a little, we
might ease off the accelerator a bit. If the answer is yes, much too fast,
then we will remove our foot from the accelerator altogether (and
probably brake). Our decision is based on a series of rules, taking into
account the various data which we have at our disposal.

Imagine that we are approaching the bend. The first stage in our
decision making process might be to categorise our current speed as fast,
medium or slow. This is illustrated in Figure 4.5. In this case, we have
chosen the membership sets to be triangular. If the car speed is 35 mph,
this could be considered as being fast to degree 0-25 and medium to
degree 0-75.

88 Genetic algorithms in engineering systems

Having decided, in fuzzy terms, what the speed of the car is, we can
perform similar analyses on the other factors. For example, we can
classify the bend as sharp, quite sharp, medium, quite gentle and
gentle (there is no limit on the number of membership sets), or the
road surface as dry, damp and wet.

membership

Siow Medium Fast

025 """

1
f — . >
i

35
Figure 4.5 Fuzzifying car speed on a bend

Having fuzzified the data, the next stage is to write down a series of
rules that describe the required response of the system. Many of these
rules are intuitively obvious. For example, for our car example, a rule
might be:

IF (speed is fast) AND (bend is sharp) THEN (reduce throttle)
Others might be:

IF (speed is medium) AND (road surface is dry) THEN (keep throttle
constant)

IF (bend is sharp) OR (road surface is wet) THEN (reduce throttle)
F Fast AND

0.6
025

THEN
028

throttle

Figure 4.6 Evaluation of a rule using the fuzzy AND operator

Constraint resolution in genetic algorithms 89

To evaluate the first rule, we take the minimum of the membership of
‘speed is fast’ and of ‘bend is sharp’. If ‘speed is fast’ is true to degree
0-25, and ‘bend is sharp’ is true to degree 0-6, then the output of the
rule will be that ‘reduce throttle’ is true to degree 0-25. This is
illustrated in Figure 4.6. As the other rules are evaluated, then other
outcomes will be fired to varying extents.

membershup

A

Reduce Constant Increase

speed

Output value = centroid

Figure 4.7 Defuzzification

For simple examples it is quite common to use the minimum and
maximum operators instead of the more rigorous product and (sum-
product) operators. The simplifying assumption is qualitatively correct
and the linear membership has already moved the operation away
from full rigour.

These outcomes are resolved by defuzzification. There are a number
of methods of doing this, e.g. the centroid method illustrated in
Figure 4.7. Using this technique, the fuzzy set values are translated into
a crisp value. This value can then be output from the fuzzy system.

4.5.5 Advantages of fuzzy logic

There are a number of advantages of fuzzy logic over conventional
modelling methods. The IFF-THEN-ELSE rule base is easily understood
and readily modified by the nonspecialist user. As a result of this,
generating the model does not rely on strong knowledge of computer
programming or the mathematics that are required by traditional
methods. This typically makes a fuzzy logic model faster to develop
than a mathematical model. The clear linguistic statements also
ensure that the rules used to reach a decision are visible to those using
the system, and easily verified.

90 Genetic algorithms in engineering systems

Fuzzy logic is able to handle highly nonlinear and noisy systems. This
can eliminate the problems encountered by many traditional methods
by mode-switching phenomena, such as hysteresis, control gain
changes, etc.

A good qualitative understanding of the system to be modelled is
required in order to develop a good fuzzy system. However, during use,
the response of fuzzy systems only degrades gradually as the quality of
the knowledge base degrades, making the system very robust.

The response is fast and requires only modest computing power,
with a standard desktop PC typically being adequate. Hence, fuzzy
logic can run at speeds comparable to those of algebraic equations.

4.5.6 Uses of fuzzy logic

Fuzzy logic has been applied to a range of applications in a wide variety
of fields. These include information processing, control, robotics,
decision making and support, analysis, diagnosis and prediction.
Examples of applications are voice and character recognition; power
scheduling; elevator control; industrial plant control; control of focus,
exposure and zoom in cameras; car active suspension; stock portfolio
management; and information compression.

4.6 Fuzzy logic to resolve constraints in genetic algorithms

Consider the example where a genetic algorithm is being used to
obtain a best estimate of the parameters a, b, cand d in the equation:

y=acos(4x) + bsin(x) + ex+ d

and it is known that d lies in the range —100 to 100 and g, band clie in
the range -300 to 300.

If you have four accurate data points, then these parameters can
easily be obtained. However, if only three data points are known, then
a range of solutions will fit the data. This is illustrated by doing a
number of genetic algorithm optimisations using the data points (0-1,
11-5241), (0-4, 5-6842) and (0-9, 0-78186). The objective was
calculated on the basis of least squares, and this range of results is
illustrated in Figure 4.8. The solutions are fairly evenly distributed
over the set of possible solutions.

However, additional knowledge may be available that further narrows
down the set of solutions. This knowledge may not be precise, but a
qualitative indication of what is expected. For example, the approximate

Constraint resolution in genetic algorithms 91

location of a minimum or maximum, or an approximate relationship
between some parameters may be known. This additional information,
coupled with the original data, can be sufficient to determine a single
solution or small set of potential solutions to the problem.

25

-15

Figure 4.8 Solutions of genetic algorithm search for parameters using only three
data points

The quality of the solution in terms of its distance from the known
data points can still be calculated using least squares. However, that
value can then be fuzzified, by finding its membership of fuzzy sets
which describe how well the objective has been met (EXCELLENT,
GOOD, OK, BAD and VERY BAD). Triangular, asymmetric sets were
used in this case and these are shown in Figure 4.9. This gave a
qualitative assessment of how well the solution had achieved its
objective of passing through the given data points.

membership
|

GOOD OK BAD VERY BAD

EXCHLL]

Figure 4.9 Fuxzy sets Jor quality of match to data points

92 Genetic algorithms in engineering systems

An example of additional knowledge that may be used to direct the
search is that it might be known that the magnitude of parameter 4 is
about twice the magnitude of parameter c. Or, in mathematical terms:

[2¢] = 2]

Hence, there are now two aspects to the optimisation. Solutions that
pass through or close to the data points are good, but only if the
relationship between parameters b and ¢ is as expected. How well the
solution met the additional constraint was calculated and turned into
a fuzzy description of the degree to which the constraints had been
met. These sets are illustrated in Figure 4.10.

A series of rules was then generated that described the way in which
the membership values from the two fuzzy sets combined. Examples of
these are:

IF (match is excellent) AND (constraint is met) THEN (solution is
excellent)

IF (match is excellent) AND (constraint is just missed) THEN
(solution is good)

IF (match is very bad) AND (constraint is met) THEN (solution is
bad)

IF (match is very bad) AND (constraint is badly missed) THEN
(solution is very bad)

The memberships from the fuzzy sets were applied to these rules. The

minimum method was used to represent the AND operator. The

overlapping fuzzy sets meant that for every solution, multiple rules

were fired to some degree. The final solution was obtained by

defuzzifying the outputs from the rules by the centroid method.
membership

A

ST MISSED BADLY MISSED
MET MISSED

|
0.2 10 15 (12cl-/b{ymean

[=]

Figure 4.10 Fuzzy sets for quality of meeting additional constraint (parameter
equivalence)

Constraint resolution in genetic algorithms 93

Using this evaluation, a genetic algorithm was used to generate
optimal solutions. The genetic algorithm used was conventional with
one-point crossover, mutation and inversion. Real number
representation was used for the chromosome strings. Selection was by
the roulette wheel method and elitism was applied to the population
replacement. A small population of 50 was used in a single population,
over 800 generations.

X

Figure 4.11 Solutions of genetic algorithm search using three data points and
additional parameter conditions (parameter equivalence)

300
b
200
100 o
d
0 4
a
-100 +
c
b

-200

type 1 tvpe 2 type 3

solution solution solution
-300

Figure 4.12 Representative solutions of the three clusters

94 Genetic algorithms in engineering systems

The genetic algorithm was able to generate solutions which passed
close to the three data points and with parameters b and ¢ in the
approximate ratios required. The solutions from this fall into three
groups. This grouping is visible on the plot of the solutions in x-y space
(Figure 4.11). It was also illustrated by using a K-mean clustering
algorithm [1]. The K-mean method searches for groupings in the data
and calculates the mean of each group. The parameters of the
equation were used for the clustering. The forms of the solutions in
the three groups are shown in Figure 4.12. It can be seen that the
three groups are quite distinct from each other. The solutions in each
cluster were of similar quality in terms of matching the three data
points, and meeting the additional parameter condition.

A similar exercise was performed using the same three data points,
this time adding knowledge of the approximate location of a
minimum on the curve. The location of the minimum was taken to be
between about x = 0-74 and x = 0-76. As in the previous example, fuzzy
sets were used to describe the quality of the solution in terms of its
ability to match the data points. The additional requirement was based
on the distance of the actual minimum from the required zone (in
fact, the sets were taken as the distance from the centre of the required
zone, x = 0-75). These sets are shown in Figure 4.13.

membership

A

BADLY MISSED

pong

0 001 015 03 05 distance of
minimum from

x=0.75

Figure 4.13 Fuzzy sets for quality of meeting additional constraint (location of
minimum,)

The genetic algorithm was run using the same configuration as
before. The solutions generated by the algorithm over several runs are
shown in Figure 4.14.

Constraint resolution in genetic algorithms 95

The membership sets and the rules used in this example were not
tuned to give optimal performance, but represented a best guess. The
fact that the genetic algorithm was able to generate solutions using
them illustrates the robustness of the technique.

25

-15

Figure 4.14 Solutions of genetic algorithm search using three data points and
additional parameter conditions (location of minimum)

4.7 Engineering applications of the technique [9]

In modern gas turbine engines, in order to improve efficiency, the
gases passing over the turbine blades are at very high temperatures.
This makes it necessary to cool the turbine blade by passing cooler air
through a series of passages in the blade. A typical configuration is
shown in Figure 4.15. The design of these passages is very important
as the airflows affect engine efficiency. The airflows through the
passages are modelled using a computer model. However, this model
requires calibration against the performance of the actual
manufactured blade. Hence, a number of experiments are performed
on the blade to determine the actual air flows in the passages. The
computer model is then tuned to give results which accurately
represent the manufactured blade performance. The parameters used
to tune the model are the coefficients of friction within the passages,
the discharge coefficients at the outlets and the inlet losses.
Traditionally, this tuning has been done by manually adjusting the
model parameters to fit each experiment in turn. However, this is a time

96 Genetic algorithms in engineering systems

consuming process and can result in the solution becoming stuck in a
local optimum. Genetic algorithms were considered to be an alternative
method of performing the optimisation due to their robustness and
ability to avoid local optima. The genetic algorithm used was a conven-
tional algorithm with multiple populations and crossover, mutation and
inversion operators [3]. The objective was to match the predicted air
mass flows through the passages with those obtained in the experiments.

The results from an initial study were promising. The genetic
algorithm repeatedly found solutions with very small deviations from the
experimental values. However, over a number of runs, the genetic
algorithm located a significant number of different solutions of
comparable fitness. This was due to the fact that the problem was
underconstrained as a number of criteria used by the designers to
determine the quality of a solution had been left out. However, when
these were included as hard constraints, the genetic algorithm was
unable to find a solution.

Discussions with the designers made it clear that these criteria were
guidelines. In an ideal case, all these criteria would be attainable. In
practice, noisy data and uncertainty in the model means that engineering
judgement is used to determine whether the solution is acceptable.

Figure 4.15 Section through a turbine blade showing cooling passages

For example, ideally the model should give a precise match of the
experimental data for all configurations and pressures used during the
test. However, in practice the engineer applies tolerances on the
deviations and the patterns of deviation to determine whether the
solution gives a good overall fit or not.

Constraint resolution in genetic algorithms 97

Additional information relates to the relationship between the
coefficients applied to adjacent passages. Although these coefficients
are unlikely to be exactly the same, they would be expected to be
similar. A nominal tolerance on the difference in the coefficients of
passages in close proximity may be set to, say, ten per cent. In practice,
a slightly higher difference may be acceptable if this gives better
matches on the air mass flows. However, it may be acceptable for one
pair of rows to lie outside the nominal tolerance, but for all the pairs
to lie at the edge of the tolerance bounds is a less likely scenario.

As a result of this, a set of rules was generated to describe the quality
of the solution and these were included in the objective function. The
genetic algorithm was run a number more times, using these
constraints. As before, the solutions had a very good match between
the model predictions and the experimental results. However, there
was more consistency in the solutions as the constraints served to
narrow the search down to regions which gave results that better
matched the engineers’ judgement of desirable characteristics.

Work is ongoing on this application to extend and refine the
rulebase and set definitions.

4.8 Discussion

Fuzzy logic is a well established method for resolving qualitative
information in a logical manner. There are a large number of
products on the market and in industry that use fuzzy logic,
particularly in the area of control.

Fuzzy logic has a number of attributes which could potentially be of
benefit in fitness calculations in genetic algorithms.

The linguistic classifications and rules used by fuzzy logic are easily
understood. Therefore, the effect of the constraints on the fitness
function is visible to the user rather than being obscured in an
arbitrary mathematical function. This makes the fitness evaluation
routines more easily verified and modified. It also reflects the way that
a human would approach the problem.

A fuzzy logic routine does not require long evaluation times. The
additional time to perform an analysis is usually insignificant
compared with the time to evaluate a typical engineering objective
calculation. This is particularly important as the evaluation function is
called many times during a genetic algorithm run.

Although the method has only been tested as part of a genetic

98 Genetic algorithms in engineering systems

algorithm search, the fuzzy logic could serve to create a continuous,
well behaved search space for other optimisation techniques. Work is
continuing to better understand the use of fuzzy logic in this area and
its benefits to optimisation in industrial applications.

4.9 Acknowledgments

I would like to thank the following Rolls-Royce personnel for their
assistance in the turbine blade work — Graham Purchase and Chris
Barnes for technical advice and Chris Bradley for computing support.

I would particularly like to thank Colin Silvester for his advice on the
use of fuzzy logic, and Dr P. H. Cowley for his assistance in preparing
this Chapter and advice on the techniques.

4.10 References

1 Bishop, C. M.: ‘Neural networks for pattern recognition’ (Oxford
University Press, 1995)

2 Brown, M. and Harris, C.: Neurofuzzy adaptive modelling and control’
(Prentice-Hall International Editions, 1994)

3 Goldberg, D. A.: ‘Genetic algorithms in search, optimisation and machine
learning (Addison-Wesley, 1989)

4 Homaifar, A., Qi, C. X. and Lai, S. H.: ‘Constrained optimisation via
genetic algorithms’, Simulation, 62, (4) pp. 242-254, April 1994

5 Ingber, L.. ‘Simulated annealing: practice versus theory’, Math.
Comput. Model. 18, (11) pp. 29-57, 1993

6 Klir, G. J., and Folger, T. A.: ‘Fuzzy sets, uncertainty, and information’
(Prentice-Hall International Editions, 1992)

7 Kosko, B.: ‘Neural networks and fuzzy systems (Prentice-Hall
International Editions, 1992)

8 Kreyszig, E.: ‘Advanced engineering mathematics (John Wiley & Sons,
4th ed., 1979)

9 Pearce, R, and Cowley, PH.: ‘Use of fuzzy logic to overcome
constraint problems in genetic algorithms’. First IEE/IEEE
international conference on Genetic algorithms in engineering systems:
innovations and applications, pp. 13-17, 1995

10 Silvester, C. F,, and Ma, K.: ‘An introduction to fuzzy logic’. Technical
report RR(OH) 1326, Rolls-Royce plc., 1994

Chapter 5
Towards the evolution of scaleable
neural architectures

S. Lucas

5.1 Introduction

There has been a great deal of interesting work published on evolving
neural networks in the last few years, some of which is mentioned
below. Nearly all previous work, however, has concentrated on
evolving a particular neural network to solve a particular problem.
When a suitable solution is evolved, then all we have is a suitable
solution for a particular problem. The work reported here offers a
significant departure from that theme, and presents a simple system
which allows the evolution of scaleable neural architectures.
This is important for two reasons:

e Evolutionary search is computationally expensive. When evolving
solutions to complex problems, it might be better to evolve solutions
to small examples of the problem, then for the real application,
scale up some of the best evolved solutions to the real problem size.

* Having evolved good solutions to a problem, it would be good to
apply them to similar problems of a different size. By allowing this,
we allow maximum possible reuse of neural network modules.

There are two obvious ways in which this sort of scaleable reuse may be
achieved. The first way is through iterated modularity. That is, a parti-
cular module that performs a specific task is used many times. For
example, in a neural network computer vision system, it would be
appropriate to employ identical edge detection modules at regular
intervals in the input space. The second way we may achieve scaleability
is through learning: instead of encoding in the chromosome 2 solution
to a specific problem, we can instead encode a general architecture
which is able to learn solutions to problems for itself. There is a parallel
here with the different kinds of behaviours observed in living organisms.
Generally speaking, simple behaviours can be genetically preprogram-

100 Genetic algorithms in engineering systems

med into the organism, whereas more complex behaviours have to be
learned during the life of the organism — for this, the organism can only
be genetically preprogrammed with the ability to learn these behaviours.

A neural architecture is a class or type of neural network, such as a
perceptron or multilayer perceptron. Many neural architectures have
more than one mode of behaviour; note that to completely specify an
architecture, we must fully specify each mode of behaviour. For
example, all supervised feedforward neural architectures have two
modes of behaviour: a training mode and a recognition mode. During
training, an input vector is presented to the network, and the network
uses its current setup to compute an output vector. This is the
feedforward part. The next step is to apply the supervisory signal (target
vector), calculate the error between the output and target vectors and
compute updates to the network parameters in order to minimise this
error. This step is the feedback part. To completely specify a supervised
feedforward architecture, we should specify both its feedforward
(recognition) and feedback (training) behaviours. The main result of
this Chapter is that given the feedforward part of a neural network, we
can evolve the feedback part, and hence its learning behaviour.

The key to the successful evolution of scaleable neural architectures
is the encoding scheme i.e. how the neural network is represented in
the chromosome. The potential benefits of an evolutionary approach
in conjunction with a good encoding are:

® Current neural architectures are limited in application by the ability
and imagination of their designers; an evolutionary approach is not
necessarily bounded by such limitations.

¢ Evolutionary techniques can be used to select the best architecture
for a given problem, as well as the details of that architecture.

5.2 Encoding neural networks in chromosomes

There are two distinct methods of encoding neural networks in
chromosomes: direct and indirect. These are depicted in Figures 5.1
and 5.2, respectively.

In the direct case, we can identify a direct correspondence between
each part of the chromosome and each part of the network. There are
still many possible ways of directly specifying a network. The
chromosome can directly specify the network structure and the
network weights, or it can be used to specify just part of the network.
For example, given the exact structure of a multilayer perceptron, i.e.
the number of layers and the number of units in each layer, we can

Towards the evolution of scaleable neural architectures 101

encode all the weights in a chromosome and use a GA to evolve a set
of weights which solves a particular problem. Another example of a
direct encoding would be a totally general description of a network
which simply listed the function of each node (with possibly a variable
number of nodes) and the connection weights between each node.
The only constraint that makes an encoding direct is that there exists
a one-to-one correspondence between each element of the
chromosome and each variable element of the network.

The indirect encoding method is where no such correspondence
exists. All indirect encodings that have been presented in the

-

Figure 5.1 A direct encoding scheme

@mowm

999 mapping
o process

LTS genotype
Figure 5.2 An indirect encoding scheme

102 Genetic algorithms in engineering systems

literature have the property that small chromosomes can generate
large networks. The argument is then often made that, since the size
of the search space has been reduced, so a GA is more likely to find a
good solution. In fact, the size of a search space alone is no indicator
of how easy that space is to search — the shape of the space is also
important.

Evolutionary methods have been used most extensively in
conjunction with a direct encoding, and there are hundreds of papers
in the literature that have adopted this approach. Some have used a
fixed architecture, and evolved only the weights of that architecture
[1, 2], others have evolved both the structure and the weights [3, 4].
Interesting neural solutions have been evolved to problems in time
series prediction [5, 6], playing tic-tac-toe [2] and in evolving
dynamical networks which learn to output simple sequences [1]. This
latter approach is of particular relevance to the work reported here,
since a learning behaviour was evolved. However, due to the use of a
direct encoding, the learning behaviour is not transferable to other
problems of a different size. Furthermore, although the direct
encoding method has the virtue of simplicity it scales poorly, and
hence is only suited to evolving relatively small networks.

For this reason there has been some interesting work done on
indirect encoding, where the chromosome is used to drive some kind
of network construction algorithm. Such methods have the property
that small chromosomes can grow massive neural networks.

Some of the earliest work in this area was reported by Kitano in 1990
[7], and has since been followed up with superior network generation
languages and grammars designed by Gruau [8, 9], Boers and Kuiper
[10], Muhlenbein and Zhang [11, 12] and Sharman et al. [13]. All of
these, however, either use the GA (operating on strings or graphs in
the neural description language or chromosome) to evolve a hard-
wired neural network, or use the GA to evolve a good topology (or
evolve a good topology and weight set) which is then trained by error
back propagation or simulated annealing.

Kitano [14] has also developed a unified framework in which the
network structure and weights are allowed to evolve, and followed this
up with a more biologically detailed simulation [15]. Even in [14],
however, despite claims that all details of the network are allowed to
evolve, this is not quite true, since the learning algorithm is fixed in
advance to be error back propagation - although the network
topology and initial weights are evolved.

In contrast to this, the author {16, 17, 18] has shown how it might

Towards the evolution of scaleable neural architectures 103

be possible to evolve the learning algorithm within the same unified
framework in which the other network details are evolved. The work
reported here goes one step further than the previous work by actually
demonstrating the evolution of learning behaviour for a perceptron-
type network, and then showing that the learning behaviour evolved
for learning one problem can be subsequently reapplied to a
completely different problem. There are two distinct features of the
evolutionary framework reported here that make this possible and
practical: the active weight model and a setbased chromosome
structure. These are discussed below.

Related work of interest is that of Montana [19] with his strongly
typed genetic programming (STGP), which he uses to evolve
programs that explicitly operate on vector, matrix and list data
structures, as well as simpler data types. Within this framework he
evolves (among other things) the algorithm for updating the input
tracking estimate in a Kalman filter.

Finally, on the subject of encoding, we present some ideals which
artificial chromosomes used for neural architecture evolution should
aspire to:

e The chromosome should be modular. This will allow evolution to
proceed by putting together existing building blocks in new ways as
well as developing new building blocks.

¢ The chromosome should be human readable - after spending a
good deal of time evolving a novel solution to an interesting
problem, it would be a shame if we could only appreciate it at the
connection-matrix level.

¢ The chromosome should be parameterised. Hence, having evolved a
new type of architecture for a class of problem, we should be able to
parametrically alter it to tackle related problems of a different size.

5.3 Evolutionary algorithms

Some grand claims have been made for the ability of genetic
algorithms to perform efficient search [20]:

‘Indeed, the number of strings in a given region increases at a rate
proportional to the statistical estimate of that region’s fitness. A
statistician would need to evaluate dozens of samples from thousands or
millions of regions to estimate the average fitness of each region. The
GA manages to achieve the same result with far fewer strings and
virtually no computation.’

104 Genetic algorithms in engineering systems

Such claims are terribly optimistic, and the ‘no free lunch’ theorem of
Wolpert and Macready [21] offers grounds for treating such claims
with a good deal of caution. This states that when averaged over the
space of all possible cost functions, there is no reason to prefer one
search algorithm to another. In other words, there is no way that the
GA could possibly offer this super efficient search in all search spaces.

The important question, of course, is which algorithms perform best
on the kind of search spaces that we encounter when solving problems
of interest to us.

The key point of evolutionary search algorithms is that they base
the search only on evaluation of the cost function, and pay no
attention to the intrinsic properties of the models being evolved.
There are two main branches of evolutionary algorithms: random hill
climbers, and population based search methods (most of which use
crossover to combine individuals) — the latter most commonly known
as genetic algorithms [22]. The random hill climber is a special case
of simulated annealing [23, 24] at zero temperature. Despite the
claims of Holland [20], most studies have either found little
preference for one or the other type of algorithm [25], or found that
the random hill climber performs best most of the time [26, 27]. The
big problem with random hill climbing strategies is that they can get
stuck in deep local minima. In [27] a dynamically changing
representation was used to overcome this problem — this is essentially
similar to the macro-mutation model of Jones [28]. Both methods
offer the possibility of (effectively) taking large steps to escape local
minima. Culberson [29] devised several cost functions, and showed
some that favoured random hill climbing mutation only, and others
that favoured crossover.

Also, there have been some studies regarding what makes a problem
hard for a GA to solve. Jones and Forrest [30] describe the fitness
distance correlation measure as a reasonably reliable indicator of how
hard a problem will be for a GA to solve. Altenberg [31] reports that
one of the keys to a GA being successfully deployed is the fitness
correlation between parents and their offspring.

Regarding the training of neural networks, some authors have
reported that in many cases random hill climbing (or GA with
mutation only) simply fails to find a solution on many problems, even
as simple as XOR. For example, Robbins e al. [32] found that
crossover was necessary to evolve weight sets for an MLP to solve the
XOR problem. More recent work has offered counter evidence to this
type of claim [33, 34].

Towards the evolution of scaleable neural architectures 105

In the experience of the author, error back propagation with
multiple random starts nearly always outperforms evolutionary search
for sets of optimal weights for particular problems (such as XOR,
spirals or pattern recognition data), in terms of CPU time required to
find a solution of a given quality. Hence, it is of interest to evolve not
just a solution to a specific problem, but to evolve a network that can
learn to solve many kinds of problem.

In general, it seems that the choice of representation and the choice
of operators on that representation play a more important role than
whether a population based GA or a random hill climber is used as the
search algorithm. A classic example of this is the travelling salesman
problem. Whether we use a random hill climber or a population based
GA to solve it is largely immaterial — the most critical effect on the
efficiency of the search is that an inversion operator be used to macro-
mutate the routes, as used by Lin [35] for example.

5.4 Active weights and the simulation of neural networks

This Section introduces an alternative way of viewing a neural
network, called the active weight model. This is the key to evolving
neural networks that have intrinsic learning behaviours. The
traditional passive weight model is depicted in Figure 3. Here the
active computing units are connected by passive connection weights
which have no way of modifying themselves. This leads to the standard
view of neural networks, such as multilayer perceptrons, where the
learning algorithm is separated from the actual network.

The active weight equivalent network of the one passive weight net
in Figure 5.3 is shown in Figure 5.4. Under the active weight model, all
connections between neurons are unity — traditional connection
weights can be modelled by feeding the weight value together with the
cell output into a product neuron, and connecting the output of the
product neuron to the input of the summation cell.

The big advantage of the active weight model is that we can now
simulate any neural network with one simple algorithm:

repeat (for life of network)
Vie N
o:-=f{(I)

106 Genetic algorithms in engineering systems

® Nis a set of neurons.
¢ ith neuron computes function f which maps from the set of input
values [, to an output value o,

Inputs

Figure 5.3

Figure 5.4

output

weights

®

The standard way of viewing a neural network: the neurons (represented
by shaded circles) are the active computation elements and the weights
connecting them are passive, requiring a separate algorithm to update them

The active weight view of a neural network. All connection weights are
now unity and remain so throughout the life of the neural network. By
utilising product neurons, however, the output values of some ordinary
neurons can now behave just like connection weights — these weight-store
neurons are shown here with values to make this network behave just like
the one shown in Figure 5.1. The advantage is that, under this strategy,
learning behaviour becomes an intrinsic property of the neural network
and does not require a separate algorithm

Towards the evolution of scaleable newral architectures 107

An active weight learning perceptron is depicted in Figure 5.5. This
has the least mean squares learning rule built into it, i.e. when
simulated by the above algorithm this network performs gradient

descent to minimise the LMS error between the output cells and the
target cells.

Paiin e o
outputs (writd— targets | re.\h (read (read
/ P O
TN 1
foriy ”
el =
Gorind Y y i
W \ o
1. . . t
sum and sigmoids (-) T -) crrors
z Z L
Pl I T
P . . \\'mghl-updi;uc.a
m (m) (n PN A NS R
A AT () (1m) (1) (11
connections e N

o T

inputs weight-stores

Figure 5.5 The learning perceptron. The shaded neurons read from the input stream
or write to the output stream. Connections to the threshold unit are not
shown in order to simplify the diagram. The 3 and IT units compute the
sums and products of all their inputs respectively. This perceptron trains
itself using the delta rule, provided that the cells are updated set by set
working clockwise from the inputs to the weight stores

The import of this is significant; the active weight model allows us to
in principle evolve learning algorithms, just by specifying network
topologies. We now have to concentrate our efforts on efficient ways of
specifying complex topologies.

5.5 A set based chromosome structure

This Section describes one possible approach towards efficiently
specifying (and hence evolving) all aspects of a neural network. It is
Jjust an initial step down this road ~ future specification languages will
need to be more explicitly modular and offer different modes of
behaviour for the network.

The set-based chromosome is split into four distinct parts. For a
given problem some of the genes within a chromosome must be fixed.
In effect, this allows the search for a fit individual to be concentrated
within a particular species of network. By fixing certain genes we can

108 Genetic algorithms in engineering sysiems

ensure that all chromosomes generated will give rise to networks
which at least have a structure which is viable for solving the problem.
It is a waste of CPU time to bother looking at networks that have the
wrong number of outputs, for example.

The first part consists of a list of size declarations. The value of each
size expression is allocated to successive integers.

A list of set declarations comprises the second part. Each set is
declared as being of a given type, and of a given size. The size is
specified by an integer which refers to a size declaration from the first
part of the chromosome. The types allowed at the moment permit
summation, product, difference, read, sigmoid, constant and sumstore
neurons (which sum all their inputs together with their previous
value). Also, there is a mergeset, with the purpose of simply
amalgamating two other sets.

The third part is a list of connections between sets, whose nature is
described below.

The fourth part of the chromosome is a list of input/output
connections for any phenotypes grown from this chromosome.
Without this part the created networks would be isolated from any
interaction with the system in which they are evolved.

5.5.1 Set interconnections

At present, set connections may be one of two types, called Div and
Mod, after the operators used to calculate which node in set a to
connect to which node in set b. Figure 5.6 illustrates this. Set a is a
sumset of size 3, set b is a sumset of size 2, set ¢ is a prodset of size 6
and set d is a sumset of size 2. The interconnections are as follows: (c
a Mod) (c b Div) (d ¢ Div).

By appropriate use of Div and Mod connection specifiers in
conjunction with sets of arithmetic operators, any of the standard
vector/matrix operations are possible, plus many other nonstandard
ones. For example, the set ¢ represents ¢ = ab™ in standard vector
notation.

5.5.2 Example chromosome

We now look at an example chromosome template for evolving a
single layer perceptron with learning behaviour (see Table 5.1). Most
of the chromosome for this network has to be fixed to ensure that we
search a viable space of networks.

Towards the evolution of scaleable neural architectures 109

Table 5.1 The four segments of the chromosome. The first part declares the
possible sizes of each set, the second part declares the composition of each set, the
third part declares the groups of connections between neurons of each set, and
the fourth and final part declares the external connections

Size Def Parameter name
0 inputs
1 1
2 outputs
3 1+inputs
4 (1+inputs) *outputs

Set Function Size Var Comment
0 readset 0 the set of inputs
1 constant 1 a set with a single constant unit
2 mergeset 3 the augmented input set
3 readset 2 target vector
4 prodset 4 connections
5 accset 2 synaptic activity at output
6 sigset 2 sigmoid of synaptic activity
7 diffset 2 difference between output and target
8 any type {0,1,2,3,4} randomly chosen set type and size
9 sumstore 4 the weight stores
Connection To From Type
0 2 0] Mod
1 2 1 Mod
2 4 2 Mod
3 4 9 Mod
4 5 4 Div
5 6 5 Mod
6 7 3 Mod
7 7 6 Mod
8 8 any set {Mod, Div}
9 8 any set {Mod, Div}
10 9 any set {Mcd, Div}

External Name Set number
inputs 0
targets 3
outputs 6

110 Genetic algorithms in engineering systems

We have a set of I inputs which are augmented with a constant unit
that always outputs 1.0, to allow each output to have a different bias
depending on the weight connecting it with the constant unit.
Therefore, if we have O outputs, we need a set of Wweights where W
= 0 X (1 + I). This is shown in the first part of the chromosome.

Hence, any viable solution network must include sets of these sizes.
For the next part we must declare some necessary sets, and allow other
sets (in fact just one in this case) to be chosen randomly. The following
set declarations are commented on to aid understanding.

a| ()
Al

I1
I [(ID)(I1

o Yo

Figure 5.6 Hlustration of how the set connection operators work

The only set definition that is subject to evolutionary change is that
of set 8. This was chosen because a solution was known to exist using
this number of sets. For future work, more open-ended experiments
are intended. The third part of the chromosome shows the groups of
connections between sets. At the moment, each set has an arity of zero,
one or two. Readsets have an arity of zero, indicating that they must
not take inputs from any other sets in the network — this would destroy
their purpose, which is to take inputs from sources external to the
network. Accsets (accumulator set) and Sumstores each have an arity
of one. Accsets are used to define a set of neurons whose purpose is
each to accumulate a sum of their inputs. Sumstores are identical
except that they also include in the summation their previous output.
The set of connections is also mostly fixed, with the only variability
allowed in connections 8, 9 and 10.

Finally, the connection between the neural network and the system
that calls it is set up. Most supervised networks can be seen in black

Towards the evolution of scaleable neural architectures 111

box terms as taking information from the outside world via their
inputs and their targets and returning information via their outputs.
The final part of the chromosome simply specifies which sets perform
these input/output functions.

Note that, by fixing many of the details of the chromosome in this
way, we are making the actual search space tiny relative to that
explored by most evolutionary algorithms. The work presented here is
Jjust a demonstration of a concept — larger search spaces will be tackled
in future work.

5.5.3 Results

Initial results demonstrate that learning behaviour can be evolved
within this framework. The aim was to evolve networks that could learn
simple linearly separable functions such as AND and NOR etc. The
chromosome template discussed above was used to generate a random
chromosome. This was then adapted using a random hill-climbing
procedure, or just used in a pure random search. Future work will also
involve experimentation with conventional population GAs, although
it should be noted that these do not necessarily outperform random
hill-climbing methods.

The fitness function was simply the mean square error averaged over
one complete pass through all the data (i.e. one epoch), measured just
once after 12 epochs through the AND dataset. Hence, the fittest
possible individual would have a score of zero. The fitness of the delta
rule was found to be 0-009, and the best individual found by the
random hill climber had a fitness of 0-004. Figure 5.7 shows the
behaviour of some individuals chosen from one run of the algorithm,
including the best one that was found in this particular case after 9718
steps. A network was considered to have learnt the problem if its
average squared error fell below 0-01 for the final epoch. All the
networks that were able to learn the AND data, were also able to learn
the NOR data to a similar degree. This proved that we had evolved
networks that could learn datasets of a given size and nature, and not
just evolved a network for a specific dataset.

One interesting and slightly worrying aspect of the results is that, so
far, pure random search has outperformed random hill climbing —
although it is too early to draw any concrete conclusions on this point.
Given ten runs of the experiment, allowing a maximum of 10 000
fitness evaluations, the random hill climber only found a solution two
times out of ten (but did so with a mean of 289 steps). Pure random
search found a solution every time within 10 000 evaluations, with a

112 Genetic algorithms in engineering systems

mean of 2152 fitness evaluations. This is probably due to the highly
discontinuous nature of the search space that follows from using set-
based chromosomes, in that changing the function of a set or the
source set of one of its inputs typically has a dramatic effect on
network behaviour.

0.8 T T T T T T T T T

0.7 b

06 | g

Figure 5.7 Plots of mean square error with respect to cycle number for some randomly
chosen networks (0 and 1), together with the best one that was evolved
(best). Each cycle represents a complete update of the network, with a new
input/iarget pair being presented for each cycle. There were four patterns in
the data set, representing the AND function — this accounts for the
periodicity of length four. Each network was run for 12 epochs — hence 48
oycles in all. Note that for the best network, the ervor quickly becomes very
small for all the patterns — indicating that it has learned the data well

5.5.4 Scaleability

The claim is that since the chromosomes are parameterised, all that,
we need to do to apply the evolved chromosome to a problem of a
different size is to change the values of the relevant parameters — in
this case, the number of inputs and the number of outputs. This was
tested as follows.

Some of the best solutions to the above problem i.e. networks with
behaviours which led them to learn simple Boolean functions were then
applied to a different type of problem (an OCR problem) of a different

Towards the evolution of scaleable neural architectures 113

size: recognising handwritten digits, where the inputs were a 16-
dimensional radial mean vector [36, 37], and the output was a l-out-of-
N coding of the character class (hence, ten-dimensional output vector).
The data set contained 1669 characters distributed between the ten
classes. Here we just quote results on this dataset. A 1-nearest-neighbour
weighted Euclidean classifier recognised this set with 77 % accuracy.
Normally, of course, we would quote results on some standard database,
and use a disjoint training and testing set, but here the only purpose was
to demonstrate that the network could learn, to some extent, a
completely different problem to that for which it had been evolved.

Most of the networks that were able to learn the Boolean function
failed dismally to learn the OCR data—some getting around 12 %
correct, others getting only about five characters out of 1669 correct
—thus having learned to perform particularly badly at the problem
(since we would expect to get around 167 (i.e. ten per cent) correct
just by outputting the same thing all the time, or randomly guessing).
This poor performance was either because they had a set with an
incorrect size variable, or because the connection types were wrong.
Both of these types of error can produce network configurations
which happen to be correct for problems of a particular size, but that
are not correct in the general case. This sort of problem can be
averted by including problems of different sizes in the set of problems
on which the networks are originally evolved.

Some of the networks, however, were able to learn the OCR data to
areasonable degree — correctly classifying 60 % of the characters. This
shows that a general learning behaviour had been evolved — one
applicable to a variety of problems.

5.6 Conclusions

Given the structure of a single-layer perceptron as a starting point, a
learning behaviour has been evolved. The chromosome that describes
the network is parameterised. This allows the chromosome to specify
neural networks for other problems of a related nature, but requiring
a different size of neural network. Future work will concentrate on
evolving learning behaviours for more complicated, more useful
networks, and also in evolving new classes of neural networks, together
with their learning behaviours. Although this is not the first time that
learning behaviours for neural networks have been evolved (see, for
example [38, 39]), the manner in which it has been done is more

114 Genetic algorithms in engineering systems

elegant, unified and, most importantly, more open ended than
previous approaches, where the nature of the learning rule has been
fixed in advance and only its parameters optimised.

The use of a set-based chromosome goes some way towards making
the evolved solution well structured and amenable to human under-
standing. This is hardly an issue with the simple types of network evolved
in this Chapter, but will become more important as more complex and
interesting architectures are evolved. To this end the author is currently
working on a modular specification language (i.e. chromosome
language) which will be more readable than the set-based chromosome,
and will also allow network modules to have different behaviours — this
allows us to conveniently run the network in nonlearning mode when
appropriate. Initial calculations indicate that by using this scheme it will
be possible to evolve learning behaviours for multilayer networks such
as multilayer perceptrons and radial basis function networks — plus
many other kinds of neural architecture not yet dreamed of.

5.7 Acknowledgment

This work was supported by UK EPSRC grant GR/]86209.

5.8 References

1 Yamauchi, B., and Beer, R.: ‘Sequential behaviour and learning in
evolved dynamical neural networks’, Adapt. Behav., 2, pp.219-246,
1994

2 TFogel, D.: ‘Using evolutionary programming to create networks that
are capable of playing tic-tac-toe’. Proceedings of IEEE international
conference on Neural networks, San Francisco, 1993, pp. 875-880

3 Dasgupta, D., and McGregor, D.: ‘Designing application specific
neural networks using the structured genetic algorithm’. Proceedings
of COGANN-92 — IEEE international workshop on Combinations of
genetic algorithms and neural networks, Baltimore, 1992, pp. 87-96

4 Marti, L.: ‘Genetically generated neural networks II: searching for an
optimal representation’. Proceedings of the international joint
conference on Neural networks (Baltimore *92), San Diego, CA, 1992, pp.
1, 221-226

5 McDonell J., and Waagen, D.: ‘Neural network structure design by
evolutionary programming’. Proceedings of the third annual conference on

Towards the evolution of scaleable neural architectures 115

evolutionary programming, Fogel, D., and Atmar, W. (eds.), (Evolu-
tionary Programming Society, 1993) pp. 79-89

6 McDonell, J., Page, W., and Waagen, D.: ‘Neural network construc-
tion using evolutionary search’, in Proceedings of the third annual
conference on evolutionary programming, Sebald, A., and Fogel, L. (eds.),
(World Scientific, 1994) pp. 9-16

7 Kitano, H.: ‘Designing neural networks using genetic algorithm with
graph generation system,’ Complex Syst. 4, pp. 461-476, 1990

8 Gruau, F.. ‘Cellular encoding of genetic neural networks,’
Laboratoire de I'Informatique du Parallelisme technical report 92-21,
Ecole Normale Superieure de Lyon, 1992

9 Gruau, F.: ‘Automatic definition of modular neural networks,” Adapt.
Behav., 3, pp. 151-183, 1994

10 Boers, E., and Kuiper, H.: ‘Biological metaphors and the design of
modular artificial neural networks.” Masters thesis, Department of
Computer Science and Experimental and Theoretical Psychology,
Leiden University, the Netherlands, 1993

11 Muhlenbein, H., and Zhang, B.: ‘Synthesis of sigma-pi neural
networks by the breeder genetic programming,’ in Proceedings of
IEEE international conference on Evolutionary computation, Orlando
1994, pp. 318-323

12 Zhang, B., and Muehlenbein, H.: ‘Balancing accuracy and parsimony
in genetic programming’. Evolutionary Computation, 3, pp. 17-38,
1995

13 Sharman, K., Esparcia-Alcazar, A., and Li, Y.: ‘Evolving signal
processing algorithms by genetic programming’. Proceedings of IEE
1stinternational conference on Genetic algorithms in engineering systems:
innovations and applications, London: 1995, pp. 473—-480

14 Kitano, H.: ‘Neurogenetic learning: an integrated model of designing
and training neural networks using genetic algorithms’, Physica D, 75,
pp. 225-238, 1994

15 Kitano, H.: ‘A simple model of neurogenesis and cell differentiation’,
Artificial Life, 2, pp. 79-99, 1995

16 Lucas, S.: ‘Growing adaptive neural networks with graph grammars’.
Proceedings of European symposium on Artificial neural networks
(ESANN °95), Brussels, 1995, pp. 235-240

17 Lucas, S.: “Towards the open-ended evolution of neural networks’.
Proceedings of IEE Ist international conference on Genetic algorithms
in engineering systems: innovations and applications, London: 1995, pp.
388-393

18 Lucas, S.: ‘Evolving neural network learning behaviours with set-

116 Genetic algorithms in engineering systems

based chromosomes’. Proceedings of European symposium on
Artificial newral networks (ESANN °96), Brussels, 1996, pp. 291-296

19 Montana, D.: ‘Strongly typed genetic programming’. Evolutionary
Computation, 3, pp. 199-230, 1995

20 Holland, J.: ‘Genetic algorithms’, Sci. Am., July, 1992

21 Wolpert, D., and Macready, W.: ‘No free lunch theorems for search’.
Santa Fe Institute technical report SFI-TR-95-02-010, 1995

22 Goldberg, D.: Genetic algorithms: in search, optimisation and machine
learning (Addison Wesley, 1989)

23 Metropolis, N., Rosenbluth, A, Rosenbluth, M., Teller, A., and Teller,
E.: ‘Equations of state calculations by fast computing machines’, J.
Chem. Phys., pp. 1087-1092, 1953

24 Kirkpatrick, S., Gelatt, S., and Vechi, M.: ‘Optimisation by simulated
annealing’, Science, 220, pp. 671-680, 1983

25 Ackley, D.: ‘An empirical study of bit vector function optimisation’, in
Genetic algorithms and simulated annealing, Davis, L. (ed.), (Morgan
Kaufman, 1987), pp. 170-204

26 Mitchell, M., Holland, J., and Forrest, S.: ‘When will a genetic
algorithm outperform hill climbing?’ in Advances in neural information
processing systems 6, Cowan, J., Tesauro, G., and Alspector, J. (eds.),
(Morgan Kaufman, 1994), pp. 51-58

27 Kingdon,]., and Dekker, L.: “The shape of space’. Proceedings of IEE
Istinternational conference on Genetic algorithms in engineering systems:
innovations and applications, London, 1995, pp. 543-548

28 Jones, T.: ‘Crossover, macromutation and population-based search’,
in Proceedings of the sixth international conference on genetic algorithms,
Eshelman, L. (ed.), (Morgan Kaufman, 1995), pp. 73-80

29 Culberson, J.: ‘Mutation-crossover isomorphisms and the construc-
tion of discriminating functions’, Evolutionary Computation, 2, 1994,
pp. 279-311

30 Jones, T., and Forrest, S.: ‘Fitness distance correlation as a measure of
problem difficulty for genetic algorithms’, in Proceedings of the sixth
international conference on genetic algorithms, Eshelman, L., (ed.),
(Morgan Kaufman, 1995), pp. 184-192

31 Altenberg, L.: “The evolution of evolvability in genetic programming’,
in Advances in genetic programming, Kinnear, K. (ed.), (MIT Press,
1994)

32 Robbins, G., Plumbley, M., Hughes, J., Fallside, F., and Prager, R.:
‘Generation and adaptation of neural networks by evolutionary
techniques (gannet)’, Neural Computing and Applications, 1, pp. 23-31,
1993

Towards the evolution of scaleable neural architectures 117

33 Fogel, D., and Stayton, L.: ‘On the effectiveness of crossover in
simulated evolutionary optimisations’, BioSystems, 32, pp. 171-182,
1994

34 Porto, V., Fogel, D., and Fogel, L.: ‘Alternative neural network
training methods’, IEEE Expert, June, pp. 16-22, 1995

35 Lin, S.: ‘Computer solutions of the travelling salesmen problem’, Bell
Syst. Tech. J., 44, p. 2245, 1965

36 Yamamoto, K., and Mori, S.: ‘Recognition of hand-printed characters
by an outermost point method’, Pattern Recognit., 12, pp. 229-236,
1980

37 Lucas, S., Vidal, E., Amiri, A., Hanlon, S,, and Amengual, A:: ‘A
comparison of syntactic and statistical techniques for off-line ocr’, in
Lecture notes in artificial intelligence (862): grammatical inference and
applications, (Springer-Verlag, 1994), pp. 168-179

38 Bengio, S., Bengio, Y, and Cloutier, J.: ‘Use of genetic programming
for the search of a new learning rule for neural networks’.
Proceedings of IEEE international conference on FEvolutionary
computation, Orlando, 1994, pp. 324-327

39 Chalmers, D.: ‘The evolutions of learning: an experiment in genetic
connectionism’, in Proceedings of the 1990 connectionist models summer
school, Touretzky, D., Elman, J. Sejnowski, T., and Hinton, G. (eds.),
(Morgan Kaufman, 1990)

Chapter 6
Chaotic systems identification

R. Caponetto, L. Fortuna, M. Lavorgna, G. Manganaro

Increasing interest has recently been devoted to the synchronisation
of nonlinear circuits (SNC) with particular attention to the case of
chaotic circuits [1-4]. Some techniques have been developed for
forcing two (or more) identical non-linear dynamic circuits, starting
from different initial conditions, to synchronise, namely to follow
identical trajectories (asymptotically, at least). This is particularly
interesting if the circuits behave chaotically because of their sensitive
dependence on initial conditions. However, if some conditions on the
so-called conditional Lyapunov exponents are satisfied [1-2] then
these circuits can be successfully synchronised. Synchronisation
principles have been applied to realising analogue masking systems for
secure communication [2]; however SNC is a very promising subject
with potential applications to nonlinear systems, signal processing and
control.

In this Chapter a new application for the synchronisation techniques
is introduced. They have been used to estimate the unknown
parameters of a nonlinear chaotic dynamic circuit whose mathematical
model is known. In particular, the Pecora-Carroll system decomposition
and the cascaded synchronisation approach have been considered
[1-3]. A circuit with unknown parameters is used as master in a
synchronisation set up and another circuit, with the same mathematical
model, is used as slave to estimate the parameters. Identification has
been formulated as an optimisation problem: the parameters of the
slave have to be chosen in order to minimise a performance index
defined so that it has a minimum if the two circuits are synchronised,
that is, if they have the same parameter set. Optimisation of the
performance index has been efficiently accomplished by means of a
genetic algorithm (GA) [5-6]. This method has been used to estimate
the parameters of Chua’s oscillator [7] which is known for its diversity of
dynamic behaviour. In particular its dimensionless state equations have
five dimensionless parameters corresponding to seven circuit
parameters [8]. The proposed approach has been used to estimate all of
these dimensionless parameters.

Chaotic systems identification 119

In the following Sections, some background concepts are first
summarised, then the new synchronisation based identification
approach is introduced. Finally, some examples, corresponding to
different attractors from Chua’s oscillator, are presented.

6.1 Background

In this Section Chua’s oscillator, the Pecora-Carroll synchronisation
technique and the basic philosophy of genetic algorithms are briefly
recalled. The main concepts and terminology are discussed.

6.1.1 Chua’s oscillator

Chua’s oscillator has been extensively studied because of its extremely
wide variety of dynamic behaviour together with its relatively simple
mathematical model [7]. The oscillator is composed of two capacitors,
one inductor, two resistors and a piecewise linear resistor, as shown in
Figure 6.1, and is easily realisable.

my

R
Wr—— n]
Ry 1 -\- A+ Va v
; E A
L C2 Cl1 5 5
= Ng :

m,

Figure 6.1 Chua’s oscillator

It is considered to be a canonical circuit [8] and a benchmark for
studying nonlinear dynamics. Its dimensionless state equations are:

x=a(y—l(x))
y=x—y+z (6.1)
z=—By—yz

with
U(x) = my = 0.5(mo — my) (Jx + 1| =[x — 1)) (6.2)

120 Genetic algorithms in engineering systems

x, y and z being the state variables and «, B, vy, my, m the five

dimensionless system parameters.
The well known double scroll attractor is observed in Chua’s

oscillator if:
a=9,B=14286,v=0,m=-1/7, m =2/7 {6.3)

Its phase portrait in the x—y plane is shown in Figure 6.2. Two other
different attractors from Chua’s oscillator are shown in Figures 6.3 and
6.4 respectively; these have been obtained by using the two following
sets of parameters [7]:

o = —4.08585, B =2, vy = 0, m, = ~0.142857, m, = 0.285714 (6.4)
a = 6.579, B = 10.989, y = ~0.0447, m, = —0.18197, m, = 0.3477 (6.5)

In the following these two attractors will be referred to as attractor
no.l and attractor no. 2, respectively.

Figure 6.2 Phase portrait of the double scroll attractor in the x5y plane

Chaotic systems identification 121

Figure 6.4 Phase portrait of attractor no. 2 from Chua’s oscillator in the x—2z plane

6.1.2 Synchronisation of nonlinear systems
Synchronisation of nonlinear systems is defined as follows [2].

Definition 6.1: Let us consider two (or more) nonlinear systems
(N22):
%= fi(%) (6.6)
where x, € R", fR"> R" and 1N, if:
lim|x(2) — x,(2)|=0 (6.7)

with #j N systems are synchronised.

In this Chapter just two systems will always be considered, N= 2; these

122 Genetic algorithms in engineering systems

are usually called the master and the slave systems. Many different
techniques have been developed to obtain the synchronisation of
these two systems [2]; one of these is the Pecora-Carroll approach
[1-3], with which a nonlinear dynamic system is considered:

u=flu) (6.8)

This is partitioned into two subsystems, u = u(v, w):

v = g(v, w)
w= h(v, w) (6.9)

where v= (Up,... %), § = (fi(u) ... fu(W)), W= (UnetseosUn) , B= (frns (%) ... fu12)).

The partition is arbitrary since the equations can be reordered. A new
system, w', can now be considered, which is created by duplicating the
w system, and the set of variables, v, can be substituted by the
corresponding v system:

w' = h(y, v') (6.10)

In this way the ' system is driven by the u system by means of the v
variables; w’ is called the response system. If all the conditional
Lyapunov exponents are less than zero, then the response system will
synchronise with the master.

This synchronisation scheme can be developed further. The v
subsystem can also be reproduced, creating the ¢’ subsystem and
driving it with the »’ variables. The complete slave system is therefore:

v" = g(v", w)
w' = h(v, uf') (61D
If all the conditional Lyapunov exponents of the (', ') systems are
negative, then the master (eqn. 6.9) and the slave (eqn. 6.11) will
synchronise and, in particular, ¥’ = v as t—ee.

This last set up is called the cascaded synchronisation scheme [3].

An interesting result is the fact that the two systems may be
synchronised even in presence of noise or if the driving signal has
been altered by a filter [3].

Chaotic systems identification 123

6. 1.3 Genetic algorithms

GAs are general-purpose global optimisation techniques based on
randomised search and incorporating some aspects of iterative
algorithms [4-5].

These algorithms have been inspired by Darwin’s theory of
evolution: when considering a population which evolves in a particular
environment, only the fittest individuals will be able to reproduce,
handing down their chromosomes. The descendants of the original
population will inherit the qualities that better fit the environment.
GAs implement optimisation strategies based on simulation of these
natural laws, in order to obtain the fittest individual in the
evolutionary sense. Adopting this analogy, the optimal solution
corresponds to the fittest individual. GAs search for the optimum
starting from a population of points of the function domain (not a
single one). This reduces the probability of finding local minima.
Moreover, GAs do not require knowledge of the first derivative of the
objective function or other auxiliary information. Finally, GAs use
probabilistic transition rules during iteration. Adopting a natural
analogy, variables involved in optimisation are codified in a particular
structure similar to that of a chromosome. For example, a parameter
can be translated into a string of / elements (&bit digits) which will be
manipulated by appropriate operators during the evolution of the
algorithm. Each string is characterised by a real value, a fitness, strictly
connected to the function to be optimised and used to select the more
promising elements of the population. The basic string operators that
will be applied are:

® Reproduction — consists of duplicating a string.

e Crossover — given two different strings, the operator consists of
exchanging substrings defined by some randomly chosen markers.

* Mutation — a variation of a randomly chosen bit, belonging to a
selected string.

Reproduction is used to improve the number of fittest individuals in
the population, crossover to recombine genetic information between
different parents, and mutation to introduce new information into the
knowledge base. The strings to which operators apply are chosen
according to their fitness. The selection procedure can be imple-
mented by adopting many approaches; the most commonly used are
the bias roulette wheel and rank-based selection.
A basic step-by-step genetic algorithm is:

124 Genetic algorithms in engineering systems

1 Choose at random a fixed number of elements representing the
initial population.

2 Evaluate their fitness.

3 Choose the elements of the population according to their actual
probabilities.

4 Apply operators, with the respective probabilities, onto chosen
elements, obtaining new elements called offspring.

5 Evaluate the fitness of the string obtained.

6 Create a new population using offspring.

7 Go to step 3 until a stop criterion is verified.

6.2 Synchronisation-based identification

In this Section a new approach to chaotic system parameter
identification is described, which is based on the Pecora-Carroll
cascaded synchronisation approach. The novel identification
procedure is fairly general and has been applied to Chua’s oscillator as
an example because of its above mentioned characteristics. By using
the new approach, the chaotic circuit, whose parameters have to be
estimated, is considered as a master system and one (at least) of its
state variables is used as a driving signal for an identical circuit used as
a slave system. The slave system responds to the driving signal
following a state trajectory which depends on this input signal and on
its parameters that, in general, are different from the master unknown
parameters. The distance between the master’s state variable, used to
drive the slave, and its corresponding slave’s state variable, is used to
define a performance index.

When the master and the slave have the same parameter set they
then synchronise, and their corresponding state variables are
asymptotically equal. This means that, in this case, the performance
index reaches its global minimum.

6.2.1 Description of the algorithm

In this subsection a more formal description of the new algorithm is
given.

Let us consider a nonlinear circuit or system whose mathematical
model is supposed to be known, although its parameters are unknown
and have to be estimated. Moreover, let us suppose that it is an
autonomous circuit or system (this hypothesis is not restrictive,
because it is well known that a nonautonomous system can be

Chaotic systems identification 125

described by an autonomous model augmenting its original model
with suitable additional variables and equations [9-10]). A state
representation of this system is considered:

% = flx) (6.12)

with xe R". As explained in subsection 6.1.2, this system can be divided
into two subsystems n=(v,w):

v = g(v, w)
w= h{v, w) (6.13)
where v = (U,), g= (fi(4) e fu(1), W= (Upryeestn)y B = (frus(%),...
f«(u)). This partitioned system can be used to realise a cascaded
synchronisation scheme as discussed above. Eqns. 6.13 represent the
master system, and the slave x” = (¢, w'), driven by:

1}!! - g(vﬂ, w/)

o = h(v,) (6.14)

This set up is shown in the block diagram of Figure 6.5.

master slave
N T

v & v -

14

w w
W F— W' e—

vV
v

Figure 6.5 The adopted synchronisation scheme

In the slave system, the runknown parameters p= (p_1,..,p_r) can be,
at first, arbitrarily assigned.

Let us suppose that vare the only variables available from the master
system and that:

{(D(RLk=0,1,...M (6.15)
is its corresponding sampled time series (8 being the sampling time).

Analogously {¢/' (k)} is the time series corresponding to ¢/".
Let us introduce the following index:

126 Genetic algorithms in engineering systems

Definition 6.2: Let us define the distance between v and 7" as:

Ip) = \/f{ D= D" (p)) +...+(bm — ot (p))?) (6.16)

]

It is clear that this definition is independent of the nature of the time
series, so the potential chaotic features are not a problem.

Our identification problem can therefore be formulated as an
optimisation problem. In fact, the master and the slave will
synchronise if and only if they have identical parameters and, in this
case, as from definition 6.2, the index in eqn. 16 has the global
minimum. Therefore the parameters p must be changed according to
this goal; GAs have been used to achieve this. In particular, a GA in a
standard form has been adopted [5]. Besides reproduction, one point
crossover and mutation, the elitist strategy has also been utilised.

The time series in eqn. 15 is used to drive a simulated slave system
whose parameters are chosen by a GA-based program. It is worth
noting that the time discretisation, which is necessary for computer
simulation of the slave, inevitably introduces a numerical error that is
an increasing function of the discretisation step size. This aspect has to
be taken into account in order to evaluate the quality of the obtained
results.

6.2.2 Identification of Chua’s oscillator

The above procedure is now applied to the case of Chua’s oscillator.

The driving signal can be chosen among x, y and z the proper
choice depending on the conditional Lyapunov exponents and so on
the considered systems parameters. This means that, in order to
obtain synchronisation, some parameter choices require the x variable
to be the driving signal and some others require y or z In the
following, the case in which x is used as the driving signal is discussed.
However, the procedure is quite general and an example in which the
zvariable is used to drive the slave systems is presented in the following
Section. The state eqns. 1 can be partitioned into two subsystems: the
first one, composed pf x only, and the second one, composed of yand
z. Using the above terminology, v = x while w = (y, z); then, the slave
(driven by x) is described as:

Chaotic systems identification 127

#"= aly' = ()
¥ =x—9y"+2’ (6.17)
Z‘ ’ = Byl — ,yZ/
where the r = 5 parameters are p = (a,B,y,m, m) and the objective

index is:
1) = NiG- ()7 (6.18)

k=

=

The slave system has been simulated by using a fixed step size fourth-
order Runge-Kutta algorithm; this step size has been chosen to be
equal to the sampling time, 8, of the driving time series, .

6.3 Experimental examples

In this Section three different examples of the application of the new
method to Chua’s oscillator are reported. The parameters of the
Chua’s oscillator used as master circuit have been fixed to known
values, and the identification procedure has been applied in order to
recover these values from only the given time series.

In the first case the parameters have been chosen to obtain a double
scroll attractor, that is: o = 9, B = 14-286, v = 0, my, = —0-142857, m, =
0-285714. The sampling time has been chosen as 8 = 0-1 and M= 2000
samples have been considered. x has been used as the synchronisation
signal. The results of the identification are shown in Table 6.1 together
with the parameters of the adopted genetic algorithm.

In order to evaluate the obtained results, the attractor generated by
the master system and that obtained with the estimated parameters,
when they are disconnected, have been overlapped in Figure 6.6; in
Figure 6.7 the synchronisation signals x and %", both with
synchronisation error ¢ = x —x’, are shown.

128 Genetic algorithms in engineering systems

Figure 6.6 Quverlapped attractors of the separated master and slave systems in the x-
y plane. The dotted line refers to the master and the solid one is used for

the slave
z i b o bl TR bkl 4
A {jv(bp’\”ﬂ LY {f‘xf;{*v‘a{‘;fv"\lp’\"m\ i
o LA RO A o R R A Vvl
s \\m{\!\'\l‘ \A \l‘\[\p\f \A{‘\ﬂ.} \‘14}‘ \,‘}1{1\; hl \n:{\ﬁ\f Sl \,A} _
L WWY Wl W W W

Figure 6.7 Upper trace: overlapped variables x and x” of the master and slave systems
for the double scroll. The dotted line refers to the master and the solid one
is used for the slave. Lower trace: synchronisation ervor e = x-x"

In the second example the parameters have been chosen to obtain
the attractor shown in Figure 6.3, that is: a = —4-08585, 8 = -2,y =0,
mo=—-0-142857, m, = 0-285714. In this case the sampling time has been
chosen as 8 = 0-1 with M = 2000 samples and the results are shown in
Table 6.1.

Chaotic systems identification 129

Figure 6.8 Overlapped attractors of the separated master and slave systems in the
x—y plane for attractor no.1. The dotted line refers to the master and the
solid one is used for the slave

N I T N N N N N N B Iy
A A
° \ Wloand Wi b < AT PN P B PN
VAV VAR AV AT Y \[\l YRRV ER'AY IR AV AN O\ Loy
. B \v’ \J Vo /7 \J V\J]
O |

Figure 6.9 Upper trace: overlapped variables z and z” of the master and slave
systems for attractor no. 1. The dotled line refers to the master and the
solid one is used for the slave. Lower trace: synchronisation error e = 22"

In this second example synchronisation can only be accomplished
by using the zvariable as the driving signal. Again the original attractor
and the one corresponding to the estimated parameter set have been
overlapped as shown in Figure 6.8; in Figure 6.9 the synchronisation
signals z and #’, both with the synchronisation error e=z—', are shown.

In the last case the parameters have been chosen to obtain attractor
no.2, that is: a = 6-579, B = 10-989, v = —0-0447, m, = -0-18197, m; =
0-3477.

The sampling time has been chosen as 8 = 0-01 and M = 6000

130 Genetic algorithms in engineering systems

samples have been considered. x has been used as the synchronisation
signal. The results of the identification are shown in Table 6.1 together
with the parameters of the adopted genetic algorithm.

as " i
s L] os 1 iy 1 s

Figure 6,10 Overlapped attractors of the separated master and slave systems in the
x—y plane for attractor no.2. The dotted line refers to the master and the
solid one is used for the slave

j}]ﬁq fﬁﬂ“? ;‘fﬁfﬁﬁﬂﬂﬂqﬁ
S \\;‘{ f\\:’} \\; | \\/’{ : \f V ! \\f g \\/’ \j \\,5 " \f{ i

Figure 6.11 Upper trace: overlapped variables x and x” of the master and slave
systems for attractor no.2. The dotted line refers to the master and the
solid one ts used for the slave. Lower trace: synchronisation error e = x—x"

Chaotic systems identification 131

Table 6.1 Parameters and results of the three examples

Example 1 Example 2 Example 3

Master Slave Master Slave Master Slave
a=9 a=977 a =-4.088 a=-4113 a=6579 a=16195
b = 14286 b= 14619 b=-2 b=-2157 b = 10-898 b =10-695
g=0 g = 0157 g=0 g =-0013 g=-00447 g =-0041

me=-014285 my=-0122 my=-01428 mo=-01221 my=-0-1197 m, =-0-17
m = 0285716 m, =0:277 m, = 0285714 m, =14922 m =03477 m =035

index value index value index value
fp) = 1-5721 lp) = 1-4922 f(p) = 2-0539
GA parameters GA parameters GA parameters
popsize = 100 popsize = 100 popsize = 80
gen. = 100 gen. = 140 gen. = 200
p.cros. = 06 p. cros. =06 p. cros. = 06
p. mut. = 0-03 p. mut. = 0-006 p. mut. = 0-001

In order to evaluate the obtained results, the attractor generated by
the master system and that obtained with the estimated parameters,
when they are disconnected, have been overlapped in Figure 6.10; in
Figure 6.11 the synchronisation signals x and &', both with the
synchronisation error ¢ = x-¥", are shown.

The accuracy of the estimation process can be increased if more
samples, smaller step sizes and more generations are used. Of course
this implies increased computational costs so a trade off is necessary.
Moreover, some dynamics are more difficult to estimate, that is, the
parameters of the master must be very close to those of the slave in order
to obtain the correct synchronisation. This feature is related to the so-
called structural stability [10] of the considered dynamic, namely to the
feature of the system which retains its qualitative properties under small
perturbations of the parameters or of the model.

6.4 Conclusions

In this Chapter a new method of identifying the parameters of
nonlinear circuits has been presented, based on the concepts of
synchronisation of nonlinear circuits. The new procedure has been
formulated as a global optimisation problem and it has been solved by
using a genetic algorithm.

132 Genetic algorithms in engineering systems

The method has been applied to the estimation of the five dimen-
sionless parameters of the chaotic Chua’s oscillator and three
experimental examples have been reported. The accuracy of the
method has also been discussed.

The advantages of the introduced algorithm are numerous; among
these is its intrinsic low sensitivity to noise due to the robustness of the
synchronisation framework [3].

With the proposed approach a circuit model for chaotic behaviour
could be obtained. In fact, many different attractors have been
observed in nonlinear circuits and the introduced strategy represents
a useful tool for determining the parameters of a circuit model which
best fit a chaotic time series [11]. Moreover, it could be used to
estimate the parameters of the nonlinear circuit used as a modulator
in a chaotic carrier cryptography system.

6.5 References

1 Pecora, L. M. and Carroll, T. L.: ‘Synchronization in chaotic systems’,
Phys. Rev. Lett. 64, pp. 821-824, 1990

2 Hasler, M.: ‘Synchronization principles and applications’, ISCAS’94
tutorials, pp.314-327, 1994

3 Carroll, T. L.: ‘Communicating with use of filtered, synchronized,
chaotic signals’, JEEE Trans. Circuits Syst. Fundam. Theory Appl., 42, (3)
pp- 105-110, 1995

4 Cuomo, K. M, Oppenheim A. V, and Strogatz, S. H.:
‘Synchronization of Lorenz-based chaotic circuits with applications to
communications’, IEEE Trans. Circuits Syst. Analog Digit. Signal Process.
II, 40, (10), pp.626-633, 1993

5 Goldberg, D. E.: Genetic algorithms in search, optimization and machine
learning (Addison Wesley, 1989)

6 Caponetto, R,, Fortuna, L., Graziani, S., and Xibilia, M. G.: ‘Genetic
algorithms and applications in system engineering: a survey’, IEEE
Trans. Instrum. Meas. 15 (3), pp. 143-156, 1993

7 Madan, R.: Chua’s circuit: A paradigm for chaos, (World scientific pub.
co., Singapore, 1993)

8 Chua, L. O.: ‘Global unfolding of Chua’s circuit’, [EICE Trans.
Fundam. Electron. Commun. Comput. Sci. E76-A, pp.704-734, 1993

9 Parker, T. S., Chua, L. O.: ‘Chaos: a tutorial for engineering’, Proc.
IEEE, 75, (8), pp. 982-1008, 1987

10 Guckenheimer, J., and Holmes, P.: Nonlinear oscillations, dynamical
systems, and bifurcations of vector fields (Springer-Verlag, 1983)

Chaotic systems identification 133

11 Baglio, S., Cristaudo, R., Fortuna, L., and Manganaro, G.:
‘Complexity in an industrial flyback converter’, | Circuits, Sys.
Comput., 1995

Chapter 7
Job shop scheduling

T. Yamada and R. Nakano

7.1 Introduction

Scheduling is the allocation of shared resources over time to
competing activities, and has been the subject of a significant amount
of literature in the operations research field. Emphasis has been on
investigating machine scheduling problems where jobs represent
activities and machines represent resources; each machine can process
at most one job at a time.

Table 7.1 A 3X3 problem

job operations routing (processing time)
1 1(3) 2(3) 3(3)
2 1(2) 3(3) 2(4)
3 2(3) 1(2) 3 (1)

The n X m minimum makespan general job shop scheduling
problem, hereafter referred to as the JSSP, can be described by a set of
n jobs {J}h<x. which is to be processed on a set of m machines {M}i<cxn
Each job has a technological sequence of machines to be processed.
The processing of job J on machine M, is called the operation O,.
Operation O, requires the exclusive use of M, for an uninterrupted
duration p,, its processing time. A schedule is a set of completion times
for each operation {¢}ig<n1<- Which satisfies those constraints. The time
required to complete all the jobs is called the makespan L. The
objective when solving or optimising this general problem is to
determine the schedule which minimises L. An example of a 3 X 3
JSSP is given in Table 7.1. The data includes the routing of each job
through each machine and the processing time for each operation (in
parentheses).

The Gantt chart is a convenient way of visually representing a
solution of the JSSP. An example of a solution for the 3x3 problem in
Table 7.1 is given in Figure 7.1.

Job shop scheduling 135

A . R
Lo e RN

3 e —
ﬂ [;%yy e //"‘
3 Q&g% R
e b 4
0 2 4 6 8 10 12 fime

Figure 7.1 A Gantt chart representation of a solution for a 3 X 3 problem

The JSSP is not only #%P-hard, but it is one of the worst members in
the class. An indication of this is given by the fact that one 10 X 10
problem formulated by Muth and Thompson [18] remained unsolved
for over 20 years.

Besides exhaustive search algorithms based on branch and bound
methods, several approximation algorithms have been developed. The
most popular ones in practice are based on priority rules and active
schedule generation [21]. A more sophisticated method called
shifting bottleneck (SB) has been shown to be very successful [1].
Additionally, stochastic approaches such as simulated annealing (SA),
tabu search {11,33] and genetic algorithms (GAs) have been recently
applied with good success.

This Chapter reviews a variety of GA applications to the JSSP. We
begin our discussion by formulating the JSSP by a disjunctive graph.
We then look at domain independent binary and permutation
representations, followed by an active schedule representation with
GT crossover and the genetic enumeration method. Section 7.7
discusses a method for integrating local optimisation directly into GAs.
Section 7.8 discusses performance comparison using the well known
Muth and Thompson benchmark and the more difficult ten tough
problems.

7.2 Disjunctive graph

The JSSP can be formally described by a disjunctive graph G= (V, CU
D), where:

136 Genetic algorithms in engineering systems

e Vis a set of nodes representing operations of the jobs together with
two special nodes, a source (0) and a sink *, representing the
beginning and end of the schedule, respectively.

® (s a set of conjunctive arcs representing technological sequences
of the operations.

* Dis a set of disjunctive arcs representing pairs of operations which
must be performed on the same machines.

The processing time for each operation is the weighted value
attached to the corresponding nodes. Figure 7.2 shows this in a graph
representation for the problem given in Table 7.1.

conjunctive arc (technological sequences) .
-~ » disjunctive arc (pair of op on the same machine)

P~ Pii= pu=1
O,-j ran operz:ltion. of job { on machine j
pij : processing time of Oj;

Figure 7.2 A dis:'unﬁtive graph of a 3 X 3 problem
conjunctive arc (technological sequences)
-&--»disjunctive arc (pair of operations on the same machine)
O;: an operation of job i on machine j
pi processing time of Oy

Job shop scheduling can also be viewed as defining the ordering
between all operations that must be processed on the same machine,
i.e. to fix precedences between these operations. In the disjunctive
graph model, this is done by turning all undirected (disjunctive) arcs
into directed ones. A selection is a set of directed arcs selected from
disjunctive arcs. By definition, a selection is complete if all the
disjunctions are selected. It is consistent if the resulting directed graph
is acyclic.

A schedule uniquely obtained from a consistent complete selection
by sequencing operations as early as possible is called a semiactive
schedule. In a semiactive schedule, no operation can be started earlier
without altering the machining sequences. A consistent complete
selection and the corresponding semiactive schedule can be
represented by the same symbol Swithout confusion. The makespan L
is given by the length of the longest weighted path from source to sink

Job shop scheduling 137

in this graph. This path, %, is called a critical path and is composed of
a sequence of critical operations. A sequence of consecutive critical
operations on the same machine is called a critical block.

The distance between two schedules Sand T can be measured by the
number of differences in the processing order of operations on each
machine [19]. In other words, it can be calculated by summing those
disjunctive arcs that have directions which are different between S and
T. We call this distance the disjunctive graph (DG) distance. Figure 7.3
shows the DG distance between two schedules. The two disjunctive
arcs drawn by thick lines in schedule (b) have directions which differ
from those of schedule (a), and therefore the DG distance between
(a) and (b) is 2.

DG distance = 2

Figure 7.3 The DG distance between two schedules

7.2.1 Active schedules

The makespan of a semiactive schedule may often be reduced by
shifting an operation to the left without delaying other jobs. Such
reassigning is called a permissible left shift and a schedule with no more
permissible left shifts is called an active schedule. An optimal schedule
is clearly active so it is safe and efficient to limit the search space to the
set of all active schedules. An active schedule is generated by the GT
algorithm proposed by Giffler and Thompson [13], which is described
in algorithm 7.2.1. In the algorithm, the earliest starting time ES(0) and
earliest completion time EC(O) of an operation O denote its starting
and completion times when processed with the highest priority amongst
all currently schedulable operations on the same machine. An active
schedule is obtained by repeating the algorithm until all operations are
processed. In Step 3, if all possible choices are considered, all active
schedules will be generated, but the total number will still be very large.

Figure 7.4 shows how the GT algorithm works. In the figure, O, is
identified as O, and M, as M,. Then, O, is selected from the conflict set
and scheduled. After that, the conflict set and earliest starting times of
operations are updated.

188 Genetic algorithms in engineering systems

7.3 Binary representation

As described in the previous Section, a (semiactive) schedule is
obtained by turning all undirected disjunctive arcs into directed ones.
Therefore, by labelling each directed disjunctive arc of a schedule as 0
or 1 according to its direction, a schedule can be represented by a
binary string of length mn(n — 1)/2. Figure 7.5 shows a labelling
example, where an arc connecting O, and O, (¢ < k) is labelled as 1 if
the arc is directed from O; to Oy (so O; is processed prior to Oy) or 0,
otherwise. It should be noted that the DG distance between schedules
and the Hamming distance between the corresponding binary strings
can be identified through this binary mapping.

Algorithm 7.2.1 GT algorithm

1 Let D be a set of all the earliest operations in a technological
sequence not yet scheduled and O, be an operation with the
minimum EC in D: O, = arg min{O € D [EC(O)}.

2 Assume ¢ — 1 operations have been scheduled on M. A conflict set
C[M,3] is defined as: C[M,i] = {0, € D10, on M, ES(O,)<EC(O,)}.

3 Select an operation O € C[M,1].

4 Schedule O as the ith operation on M, with its completion time
equal to EC(0).

Operation with the minimum earliest
completion time (EC) Updated
1

J1

J2

J3

J4

J5

J6

Figure 7.4 Giffler and Thompson’s active schedule generation

Job shop scheduling 139

A conventional GA using this binary representation was proposed by
Nakano and Yamada [19]. An advantage of this approach is that
conventional genetic operators, such as one-point, two-point and
uniform crossovers can be applied without any modification. However,
a resulting new bit string generated by crossover may not represent a
schedule, and such a bit string would be called illegal. There are two
approaches for this problem: one is to repair an illegal string and the
other is to impose a penalty for the illegality. The following Sections
will elaborate on one example of the former approach.

Figure 7.5 Labelling disjunctive arcs

7.3.1 Local harmonisation

A repairing procedure that generates a feasible bit string, as similar to
an illegal one as possible, is called the harmonisation algorithm [19].
The Hamming distance is used to assess the similarity between two bit
strings. The harmonisation algorithm goes through two phases: local
harmonisation and global harmonisation. The former removes the
ordering inconsistencies within each machine, and the latter removes
the ordering inconsistencies between machines.

Local harmonisation works separately for each machine: thus, the
following merely explains how it works for one machine. Here we are
given an original illegal bit string. The bit string indicates the
processing priority on the machine and may include an ordering
inconsistency within the machine, for example, job 1 must be prior to
job 2, job 2 must be prior to job 3, but job 3 must be prior to job 1.
The local harmonisation can eliminate such a local inconsistency. At
first, the algorithm regards the operation having the highest priority
as the one to process first. When there is more than one candidate, it
selects one of them. Then it removes the priority inconsistencies
relevant to the top operation. By repeating the above, the local

140 Genetic algorithms in engineering systems

inconsistency can be completely removed. Local harmonisation goes
halfway towards generating a feasible bit string.

7.3.2 Global harmonisation

Global harmonisation removes ordering inconsistencies between
machines. It is embedded in a simple scheduling algorithm. First, the
scheduling algorithm is explained. Given the processing priority
generated by the above local harmonisation as well as the
technological sequences and processing time for each operation, the
scheduling algorithm polls jobs, checking if any job can be scheduled,
and schedules an operation of a job that can be scheduled. It stops if
no more jobs can be scheduled due to a global inconsistency, i.e. a
deadlock happens. Global harmonisation is called whenever such a
deadlock occurs.

The algorithm works as follows. For each job, j, the algorithm
considers next (j), the job j operation to be scheduled next, and next
(j).machine, the machine which processes next(j). The algorithm
calculates how far in the processing priority it is from
next(next(j) .machine), the next operation on the machine, to next(j).
The algorithm selects the job with the minimum distance. When there
is more than one candidate, it selects one of them. Then it removes
the priority inconsistencies relevant to the permutation, and returns
control to the scheduling algorithm.

Thus the scheduling algorithm generates a feasible bit string in
cooperation with the global harmonisation. It is not always guaranteed
that the above harmonisation will generate a feasible bit string closest
to the original illegal one, but the resulting one will be reasonably

- close and the harmonisation algorithms are quite efficient.

7.3.3 Forcing

An illegal bit string produced by genetic operations can be considered
as a genotype, and a feasible bit string generated by any repairing
method can be regarded as a phenotype. Then the former is an
inherited character and the latter is an acquired one. Note that the
repairing stated above is only used for fitness evaluation of the original
bit string; that is, repairing does not mean the replacement of bit
strings.

Forcing means the replacement of the original string with a feasible
one. Hence, forcing can be considered as the inheritance of an
acquired character, although it is not widely believed that such

Job shop scheduling 141

inheritance occurs in nature. Since frequent forcing may destroy
whatever potential and diversity of the population, it is limited to a
small number of elites. Such limited forcing brings about at least two
merits: a significant improvement in the convergence speed and the
solution quality. Experiments have shown how it works [19].

7.4 Permutation representation

As described in Section 7.2, the JSSP can be viewed as an ordering
problem just like the travelling salesman problem (TSP). For example,
a schedule can be represented by the set of permutations of jobs on
each machine, in other words, m partitioned permutations of
operation numbers, which is called a job sequence matrix. Figure 7.6
shows a job sequence matrix of the same solution as that given in
Figure 7.1. The advantage of this representation is that the GA
operators used to solve the TSP can be applied without further
modifications, because each job sequence is equivalent to path
representation in the TSP.

M] M2 MB
123 312 213

Figure 7.6 A job sequence matrix for a 3 X 3 problem

7.4.1 Subsequence exchange crossover

A crossover operator called the subsequence exchange crossover
(SXX) was proposed by Kobayashi, Ono and Yamamura [15]. The
SXX is a natural extension of the subtour exchange crossover for TSPs
presented by the same authors [14]. Let two job sequence matrices be
P and p;. A pair of subsequences, one from p, and the other from p,
on the same machine, is called exchangeable if and only if the two
halves consist of the same set of jobs. The SXX searches for
exchangeable subsequence pairs in g and p on each machine and
interchanges each pair to produce new job sequence matrices k and
k.. Figure 7.7 shows an example of the SXX for a 6 X 3 problem.

142 Genetic algorithms in engineering systems

M M, M,
Ppl23456 321564 235614
p; 621345 326451 635421

.
k_2___456 325164 263514
k 12345 326415 356421

Figure 7.7 Subsequence exchange crossover (SXX)

If all jobs in a job subsequence s, in p, on a machine are positioned
consecutively in s in p;, s and s are exchangeable. By checking for all
% in py systematically, if there exists a corresponding s in p, all of the
exchangeable subsequence pairs in $, and p, on the machine can be
enumerated in O(7n?) [29], so the SXX requires a computational
complexity of O(mn?).

Although a job sequence matrix obtained from the SXX always
represents valid job permutations, it does not necessarily represent a
schedule. To obtain a schedule from illegal offspring, some repairing
mechanism such as the global harmonisation described in Section 7.3
is also required. Instead of using global harmonisation, the GT
algorithm is used as a repairing mechanism, together with the
described forcing, to modify any job sequence matrix into an active
schedule. A small number of swap operations designated by the GT
algorithm are applied to repair job sequence matrices.

7.4.2 Permutation with repetition

Instead of using an m-partitioned permutation of operation numbers,
like the job sequence matrix defined in the previous subsection,
another representation which uses an unpartitioned permutation with
m repetitions of job numbers was employed by Bierwirth [6]. In this
permutation, each job number occurs m times. By scanning the
permutation from left to right the kth occurrence of a job number
refers to the kth operation in the technological sequence of this job
(see Figure 7.8). In this representation, it is possible to avoid schedule
operations whose technological predecessors have not been scheduled
yet. Therefore, any individual is decoded to a schedule, but two or
more different individuals can be decoded to an identical schedule.

Job shop scheduling 143

A job permutation 132132213
is decoded l l l l l l
to M ;1 2 3
a schedule M2 3 1 2
Mg 2 13

Figure 7.8 A job sequence (permutation with repetition) for a 3 X 3 problem is
decoded to a schedule, which is equivalent to the one in Figure 7.1

The well used order crossover and partially mapped crossover for
TSP are naturally extended for this representation (they are called the
generalised order crossover (GOX) and generalised partially mapped
crossover (GPMX)). A new precedence preservative crossover (PPX)
is also proposed in [7]. The PPX perfectly respects the absolute order
of genes in parental chromosomes. A template bit string £ of length
mn is used to define the order in which genes are drawn from p, and
p. A gene is drawn from one parent and it is appended to the
offspring chromosome. The corresponding gene is deleted in the
other parent (see Figure 7.9). This step is repeated until both parent
chromosomes are empty and the offspring contains all genes involved.
The idea of forcing described in Section 7.3 is combined with the
permissible left shift described in Section 7.2.1; new chromosomes are
modified to active schedules by applying permissible left shifts.

Po 322 232YXZ3
h{@ 0111000

K v
/),233

k@21 121233

Figure 7.9 Precedence preservative crossover (PPX)
7.5 Heuristic crossover

The earlier Sections were devoted to representing solutions in generic
forms such as bit strings or permutations so that conventional
crossover operators could be applied without further modifications.
Because of the complicated constraints of the problem, however,
individuals generated by a crossover operator are often infeasible and
require several steps of a repairing mechanism. The following
properties are common to these approaches:

144 Genetic algorithms in engineering systems

Algorithm 7.5.1 GT crossover

1 Same as Step 1 of algorithm 7.2.1.

2 Same as Step 2 of algorithm 7.2.1.

3 Select one of the parent schedules {p,p:} according to the value of
H, as p= pm. Select an operation O € C[M,,i] that has been scheduled
in p earliest among C[M, 1].

4 Same as Step 4 of algorithm 7.2.1.

® Crossover operators are problem independent and they are
separated from schedule builders.

* An individual does not represent a schedule itself but its gene codes
give a series of decisions for a schedule builder to generate a
schedule.

Obviously one of the advantages of the GA is its robustness over a wide
range of problems with no requirement for domain specific adapta-
tions. Therefore, the crossover operators should be domain
independent and separated from domain specific schedule builders.
However, from the viewpoint of performance, it is often more efficient
to directly incorporate domain knowledge into the algorithm to skip
wasteful intermediate decoding steps. Thus the GT crossover
proposed by Yamada and Nakano [30] has the following properties
instead:

® The GT crossover is a problem dependent crossover operator that
directly utilises the GT algorithm. In the crossover, parents
cooperatively give a series of decisions to the algorithm to build new
offspring, namely active schedules.

¢ An individual represents an active schedule, so there is no repairing
scheme required.

7.5.1 GT crossover

Let Hbe a binary matrix of size » X m [30, 10]. Here H, = 0 means that
the ¢th operation on machine rshould be determined by using the first
parent and H, = 1 by the second parent. The role of H, is similar to
that of h described in Section 7.4.2. Let the parent schedules be p, and
p as always. The GT crossover can be defined by modifying Step 3 of
algorithm 7.2.1 as shown in algorithm 7.5.1. It tries to reflect the
processing order of the parent schedules to their offspring. It should
be noted that if the parents are identical to each other, the resulting
new schedule is also identical to the parents. In general, the new

Job shop scheduling 145

schedule inherits partial job sequences of both parents in different
ratios depending on the number of 0s and 1s contained in H.

The GT crossover generates only one schedule at once. Another
schedule is generated by using the same H but changing the roles of
o and p. Thus, two new schedules are generated that complement
each other. The outline of the GT crossover is described in Figure
7.10.

HHHHHHHHHH]
Wbty

Figure 7.10 GT crossover

Mutation can be put into algorithm 7.5.1 by occasionally selecting
the nth (n > 1) earliest operation in C[M,,i] with a low probability
inversely proportional to » in Step 3 of algorithm 7.5.1.

7.6 Genetic enumeration

A method for using the bit string representation and simple crossover
used in simple GAs, and at the same time incorporating problem
specific heuristics, was proposed by Dorndorf and Pesch [12, 22].
They interpret an individual solution as a sequence of decision rules
for domain specific heuristics such as the GT algorithm and the
shifting bottleneck procedure.

7.6.1 Priority rule based GA

Priority rules are the most popular and the simplest heuristics for
solving the JSSP. They are rules used in Step 3 of algorithm 7.2.1 to
resolve a conflict by selecting an operation O from the conflict set
C[M,i]. For example, a priority rule called SOT rule (shortest

146 Genetic algorithms in engineering systems

operation time rule) selects the operation with the shortest processing
time from the conflict set. Twelve such simple rules are used in [12,
22] including SOT rule, LRPT rule (longest remaining processing
time rule) and FCFS rule (first come first serve rule) such that they are
partially complementary in order to select each member in the
conflict set.

Each individual of the priority rule based GA (P-GA) is a string of
length mn-1, where the entry in the ith position represents one of the
12 priority rules used to resolve the conflict in the ith iteration of the
GT algorithm. A simple crossover that exchanges the substrings of two
cut strings is applied.

Algorithm 7.6.1 The shifting bottleneck procedure (SB I)

1 Set §=(J and make all machines unsequenced.

2 Solve a one-machine scheduling problem for each unsequenced
machine.

3 Among the machines considered in Step 2, find the bottleneck
machine and add its schedule to S. Make the machine sequenced.

4 Reoptimise all sequenced machines in S.

5 Go to Step 3 unless Sis completed; otherwise stop.

7.6.2 Shifting bottleneck based GA

The shifting bottleneck (SB) proposed by Adams et al [1] is a
powerful heuristic for solving the JSSP. In this method, a one-machine
scheduling problem (a relaxation of the original JSSP) is solved for
each machine not yet sequenced, and the outcome is used to find a
bottleneck machine, i.e. a machine having the longest makespan.
Every time a new machine has been sequenced, the sequence of each
previously sequenced machine is subject to reoptimisation. The SB
consists of two subroutines: the first one (SB I) repeatedly solves one-
machine scheduling problems; the second one (SB II) builds a partial
enumeration tree where each path from the root to a leaf is similar to
an application of SB 1. The outline of the SB I is described in
algorithm 7.6.1. Please refer to [1, 2, 33] as well as [12, 22] for more
details.

Besides using the genetic algorithm as a metastrategy to optimally
control the use of priority rules, another genetic algorithm described
in Dorndorf and Pesch [12, 221 controls the selection of nodes in the
enumeration tree of the shifting bottleneck heuristic; it is called the
shifting bottleneck based genetic algorithm (SB-GA). Here, an

Job shop scheduling 147

individual is represented by a permutation of machine numbers
l...m, where the entry in the ith position represents the machine
selected in Step 3 in place of a bottleneck machine in the ith iteration
of algorithm 7.6.1. A cycle crossover operator is used as the crossover
for this permutation representation.

7.7 Genetic local search

It is well known that GAs can be enhanced by incorporating local
search methods, such as neighborhood search, into them. The result
of such an incorporation is often called genetic local search (GLS)
[26]. In this framework, an offspring obtained by a recombination
operator, such as crossover, is not included in the next generation
directly but is used as a seed for the subsequent local search. The local
search moves the offspring from its initial point to the nearest locally
optimal point, which is included in the next generation.

This Section briefly reviews the basics of neighbourhood search,
neighbourhood structures for the JSSP and an approach to
incorporating a local neighbourhood search into a GA to solve the
problems.

7.7.1 Neighbourhood search

Neighbourhood search is a widely used local search technique to solve
combinatorial optimisation problems. A solution x is represented as a
point in the search space, and a set of solutions associated with x is
defined as neighbourhood N(x). N(x) is a set of feasible solutions reach-
able from x by exactly one transition, i.e. a single perturbation of x.

An outline of a neighbourhood search for minimising V(x) is
described in algorithm 7.7.1, where x denotes a point in the search
space and V(x) denotes its evaluation value.

Algorithm 7.7.1 Neighbourhood search

¢ Select a starting point: X = X = Xy

do 1 Select a point y € N(x) according to the given criterion based
on the value V(y). Set x = y.
2 If V(x) < V(x.,) then set x,, = x.

until some termination condition is satisfied.

148 Genetic algorithms in engineering systems

The criterion used in Step 1 in algorithm 7.7.1 is called the choice
criterion, by which the neighbourhood search can be categorised. For
example, a descent method selects a point y € N(x) such that V(y) <
V(x). A stochastic method probabilistically selects a point according to
the metropolis criterion, i.e. y € N(x) is selected with probability 1 if
W(y) < V(x); otherwise, with probability:

P(y) = exp(~AV/T), where AV= V(y) — V(%) (7.1)

Here, P is called the acceptance probability. Simulated annealing
(SA) is a method in which parameter T (called the temperature)
decreases to zero following an annealing schedule as the iteration step
increases.

Algorithm 7.7.2 Multistep crossover fusion (MSXF)

* Let g, p. be parent solutions.
* Setx=po=gq
do ¢ For each member y € N(x), calculate d(y, p).
¢ Sort y € N(x) in ascending order of d(y, p,).
do 1 Select y from N(x) randomly, but with a bias in favor of ¥,
with a small index 1.
2 Calculate V(y) if y; has not yet been visited.
3 Accept y with probability one if V(y) < V(x), and with
P.(y;) otherwise.
4 Change the index of y, from i to n, and the indices of y,
(k€ {i+], 1+2,...,n}) from kto k- 1.
until y; is accepted.
¢ Set x =y,
e If V(x) < V(g) then set g = x.
until some termination condition is satisfied.
* gis used for the next generation.

7.7.2 Multistep crossover fusion

Reeves has been exploring the possibility of integrating local
optimisation directly into a simple GA with bit string representations
and has proposed the neighbourhood search crossover (NSX) [23].
Let any two individuals be x and z An individual y is called
intermediate between x and z, written as x & y < z, if and only if d(x,
z) = d(x, y) + d(y, z) holds, where x, y and z are represented in binary
strings and d(x, y) is the Hamming distance between x and y. Then the

Job shop scheduling 149

kth-order two neighbourhood of x and z is defined as the set of all
intermediate individuals at a Hamming distance of & from either x or
z. Formally,

Ni(x, z) ={yl x O y O zand (d(x, y) = kor d(y, z) = k)}

Given two parent bit strings, f, and p,, the neighbourhood search
crossover of order k (NSX,) will examine all individuals in Ni(ps, 1),
and pick the best as the new offspring.

Yamada and Nakano extended the idea of the NSX to make it
applicable to more complicated problems such as job shop scheduling
and proposed the multistep crossover fusion (MSXF): a new crossover
operator with a built in local search functionality {31, 32, 34]. The
MSXF has the following characteristics compared to the NSX.

e It can handle more generalised representations and
neighbourhood structures.

¢ It is based on a stochastic local search algorithm.

¢ Instead of restricting the neighbourhood by a condition of
intermediateness, a biased stochastic replacement is used.

A stochastic local search algorithm is used for the base algorithm of
the MSXF. Although the SA is a well known stochastic method and has
been successfully applied to many problems as well as to the JSSP, it
would be unrealistic to apply the full SA to suit our purpose because it
would consume too much time by being run many times in a GA run.
A restricted method with a fixed temperature parameter T = ¢ might
be a good alternative. Accordingly, the acceptance probability used in
algorithm 7.7.1 is rewritten as:

P(y) = exp (— _A}_V) , AV= V(y)-V(x), ¢: const (7.2)

Let the parent schedules be p, and p,, and let the distance between any
two individuals x and y in any representation be d(x, y). If x and y are
schedules, then d(x, y) is the DG distance. Crossover functionality can
be incorporated into algorithm 7.7.1 by setting % = p and adding a
greater acceptance bias in favour of y € N(x) having a small d(y, p).
The acceptance bias in the MSXF is controlled by sorting N(x)
members in ascending order of d(y, f1) so that y, with a smaller index
¢ has a smaller distance d(y, p). Here d(y, p) can be estimated easily
if d(x, p) and the direction of the transition from x to y; are known; it
is not necessary to generate and evaluate y. Then y, is selected from
N(x) randomly, but with a bias in favour of y with a small index, ¢ The
outline of the MSXF is described in algorithm 7.7.2.

150 Genetic algorithms in engineering systems

In place of d(y, 1), one can also use sign(d(y, p) — d(x, p1)) + r to
sort N(x) members in algorithm 7.7.2. Here sign(x) denotes the sign
of x: sign(x) = 1 if x> 0, sign(x) = 0 if x = 0, sign(x) = -1 otherwise. A
small random fraction r is added to randomise the order of members
with the same sign. The termination condition can be given, for
example, as the fixed number of iterations in the outer loop.

The MSXEF is not applicable if the distance between p and p, is too
small compared to the number of iterations. In such a case, a mutation
operator called the multistep mutation fusion (MSMF) is applied
instead. The MSMF can be defined in the same manner as the MSXF
is except for one point: the bias is reversed, i.e. sort the N(x) members
in descending order of d(y, p1) in algorithm 7.7.2.

7.7.3 Neighbourhood structures for the JSSP

For the JSSP, a neighbourhood N(S) of a schedule S can be defined as
a set of schedules which can be reached from S by exactly one
transition (a single perturbation of S).

- AS neighborhood |
‘ exchange a pair of consecutive operations

moving an 6perallon to the beg]nnlng
\ or the end of the block

Figure 7.11 Permutation of operations on a critical block

As shown in Section 7.3, a set of solutions of the JSSP can be mapped
to a space of bit strings by marking each disjunctive arc as 1 or 0
according to its direction. The DG distance and the Hamming
distance in the mapped space are equivalent, and the neighbourhood
of a schedule Sis a set of all (possibly infeasible) schedules whose DG
distances from S are exactly one. Neighbourhood search using this

binary neighbourhood is simple and straightforward but not very
efficient.

Job shop scheduling 151

More efficient methods can be obtained by introducing a transition
operator that exchanges a pair of consecutive operations only on the
critical path and forms a neighbourhood [16, 25]. The transition
operator was originally defined by Balas in his branch and bound
approach [4]. We call this the adjacent swapping (AS) neigh-
bourhood. DG distances between a schedule and members of its AS
neighbourhood are always one, so the AS neighbourhood can be
considered as a subset of the bit string neighbourhood.

S.H'_p_:

Figure 7.12 Sy and Sy, generation

Another very powerful transition operator was used in [9, 11]. The
transition operator permutes the order of operations in a critical block
by moving an operation to the beginning or end of the critical block,
thus forming a CB neighbourhood.

A schedule obtained from S by moving an operation within a block
to the front of the block is called a before candidate, and a schedule
obtained by moving an operation to the rear of the block is called an
after candidate. A set of all before and after candidates N ¢(S) may
contain infeasible schedules. The CB neighbourhood is given as:

N¢(S) ={S' € N'¢ (S) | §' is a feasible schedule}

It has been experimentally shown by [35] that the CB neighbourhood
is more powerful than the former one.

Active CB neighbourhood

As explained above, before or after candidates are not necessarily
executable. In the following, a new neighbourhood similar to the CB
neighbourhood is used, each element of which is not only executable,
but also active and close to the original. Let S be an active schedule
and B, be a critical block of S on a machine M, where the front and
the rear operations of B,y are the kth and the hth operations on M,

152 Genetic algorithms in engineering systems

respectively. Let O, be an operation in By, that is the pth operation
on M. Algorithm 7.7.3 generates an active schedule Sy, (or Suu.) by
modifying Ssuch that O, is moved to the position as close to the front
position k (or the rear position k) of By, as possible. Parts of the
algorithm are due to [11]. The new active CB neighbourhood ANY(S)
is now defined as a set of all S, and Sy, over all critical blocks:

ANC(S) = U (8" € (Suphips U {SupihigenS % S}

B, kM

7.7.4 Scheduling in the reversed order

Algorithm 7.2.1 and all its variations determine the job sequences
from left to right in temporal order. This is because active schedules
are defined to have no extra idle periods of machines prior to their
operations. However, the idea described below enables the same
algorithms to determine the job sequences from right to left with only
small modifications.

In general, a given problem of the JSSP can be converted to another
problem by reversing all of the technological sequences. The new
problem is equivalent to the original one in the sense that reversing
the job sequences of any schedule for the original problem results in
a schedule for the reversed problem with the same critical path and
makespan. It can be seen, however, that an active schedule for the
original problem may not necessarily be active in the reversed
problem: the active quality is not necessarily preserved.

Algorithm 7.7.3 Modified GT algorithm generating Sy, 0 Sups

1 Same as Step 1 of algorithm 7.2.1.
2 Same as Step 2 of algorithm 7.2.1.
3 Do CASE 1 (or CASE 2) to generate Sy, (or Sy,)
CASE 1: S, generation
e [fk<i< pand O,n € C[M,], then set O= O, .
¢ Otherwise, select an operation O € C[M, ¢ that has been
scheduled in § earliest among C[M,, i].
CASE 2: S, generation
e If i= hor C[M, 7] ={0,,), then set O= O, .
® Otherwise, select an operation O € C[M,i] \ O,y that has been
scheduled in § earliest among C[M,i] \ O, .
4 Same as Step 4 of algorithm 7.2.1.

Job shop scheduling 153

job routing
1 2(3) 1(4)
2 2(2) 14)
Figure 7.13 A simple 2 X 2 problem

For example, the simple 2 X 2 problem described in Figure 7.13 is
considered. Figure 7.14(1) shows a solution of this problem, which is
active and no more left shifts can improve its makespan. Figure
7.14(2), obtained by reversing Figure 7.14(1), is not active and can be
improved by a left shift which moves job 1 prior to job 2 on machine
2, resulting in Figure 7.14(3). Finally Figure 7.14(4) is obtained by
reversing Figure 7.14(3) again, which is optimal. As things turn out,
Figure 7.14(1) is improved by moving job 1 posterior to job 2 on
machine 2, resulting in Figure 7.14(4).

Although repairing a semiactive schedule to an active state improves
the makespan, it can be seen from the example above that there
sometimes are obvious improvements that cannot be attained only by
left shifts. We call a schedule left active if it is an active schedule for the
original problem and right active if it is such for the reversed problem.
It sometimes happens that a reserved problem is easier to solve than
the original. Searching only in the set of left (or right) active schedules
may bias the search towards the wrong direction and result in poor
local minima. Therefore, left active schedules as well as right active
ones should be taken into account together in the same algorithm. In
most local search methods, many schedules are generated in a single
run; therefore, it would be better to apply this reversing and repairing
method periodically to change the scheduling directions rather than
to reverse and repair every schedule each time it is generated.

(1) (@))
M J2 Ji Ml J2

M:| Ji (J2| L=i3 F m B 2l I
\ . L_—J
(4) @))
M; J2 Ji M Ji J2

~T
- \. J

Figure 7.14 Schedule reversal and activation

154 Genetic algorithms in engineering systems

7.7.5 MSXF-GA for job shop scheduling

The MSXF is applied to the JSSP by using the active CB
neighbourhood and the DG distance previously defined. Algorithm
7.7.4 describes the outline of the MSXF-GA routine for the JSSP using
the steady state model proposed in [24, 28]. To avoid premature
convergence even under a small population condition, an individual
whose fitness value is equal to that of someone in the population is not
inserted into the population in Step 4.

A mechanism to search in the space of both the left and right active
schedules is introduced into the MSXF-GA as follows. First, there are
equal numbers of left and right active schedules in the initial
population. The schedule ¢ generated from p, and p by the MSXF
ought to be left (or right) active if p, is left (or right) active, and with
some probability (0-1 for example) the direction is reversed.

Algorithm 7.7.4 MSXF-GA for the [SSP

¢ Initialise population: randomly generate a set of left and right active
schedules in equal number and apply the local search to each of
them.
do 1 Randomly select two schedules py, p from the population with
some bias depending on their makespan values.
2 Change the direction (left or right) of p by reversing the job
sequences with probability P.
3 Do step 3(a) with probability P, or otherwise do step 3(b).

(a) If the DG distance between p,, f, is shorter than some
predefined small value, apply MSMF to p, and generate ¢.
Otherwise, apply MSXF to p, p. using the active CB
neighbourhood N(p,) and the DG distance and generate a
new schedule ¢.

(b) Apply algorithm 7.7.1 with acceptance probability given by
eqn. 7.2 and the active CB neighbourhood.

4 If ¢'s makespan is shorter than the worst in the population, and
no one in the population has the same makespan as ¢, replace

the worst individual with 4.

until some termination condition is satisfied.

® Output the best schedule in the population.

Figure 7.15 shows all of the solutions generated by an application of
(a) the MSXF and (b) a stochastic local search computationally

Job shop scheduling 155

equivalent to (a) for comparison. Both (a) and (b) started from the
same solution (the same parent f), but in (a) transitions were biased
toward the other solution p,. The x axis represents the number of
disjunctive arcs whose directions are different from those of p on
machines with odd numbers, i.e. the DG distance was restricted to odd
machines. Similarly, the y axis representing the DG distance was
restricted to even machines.

7.8 Benchmark problems

The two well known benchmark problems with sizes of 10 X 10 and 20
X 5 (known as mtl0 and mt20) formulated by Muth and Thompson
[18] are commonly used as test beds to measure the effectiveness of a
certain method. The mtl0 problem used to be called a notorious
problem, because it remained unsolved for over 20 years; however it is
no longer a computational challenge.

Applegate and Cook proposed a set of benchmark problems called
the ten tough problems as a more difficult computational challenge
than the mtl0 problem, by collecting difficult problems from
literature, some of which still remain unsolved [3].

7.8.1 Muth and Thompson benchmark

Table 7.2 summarises the makespan performance of the methods
described in this Chapter. This Table is partially cited from [6]. The
conventional GA has only limited success and is outdated. It would be
improved by being combined with the GT algorithm and/or the
schedule reversal. The other results, excluding the MSXF-GA results,
are somewhat similar to each other, although the SXX-GA is an
improvement over the GT-GA in terms of speed and the number of
times needed to find optimal solutions for the mt10 problem. The SB-
GA produces better results using the very efficient and tailored
shifting bottleneck procedure. The MSXF-GA, which combines a GA
and local search, obtains the best results.

For the MSXF-GA, the population size = 10, constant temperature ¢
= 10, number of iterations for each MSXF = 1000, P,=0-1 and P.= 0-5
are used. The MSXF-GA experiments were performed on a DEC
Alpha 600 5/226 which is about four times faster than a Sparc Station
10, and the programs were written in the C language. The MSXF-GA
finds the optimal solutions for the mt10 and mt20 problems almost
every time in less than five minutes on average.

156 Genetic algorithms in engineering systems

(a) Multi-Step Crossover Fusion (b) Stochastic Local Search §“ i

Best (957) * 3% S? X

Swr{)&ﬁl)

18 B {1t
Target 951) Dt (P33 Target (951)
Py , , . Py

19 20 30 40 50 e o0 10 0 30 40 50 60

Figure 7.15 Distribution of solutions generated by an application of (a) MSXF and
(b) a short-term stochastic local search

Table 7.2 Performance comparison using the MT benchmark problems

1963 Muth-Thompson test problems 10x10 20%x5

1991 Nakano/Yamada conventional GA 965 1215

1992 Yamada/Nakano Giffler-Thompson GT-GA 930 1184
Dorndorf/Pesch priority rule based P-GA 960 1249
Dorndorf/Pesch shifting bottleneck SB-GA 938 1178

1995 Kobayashi/Ono subsequence exchange crossover 930 1178
[Yamamura SXX-GA

1995 Bierwirth generalised permutation GP-GA 936 1181

1996 Yamada/Nakano multistep crossover fusion MSXF-GA 930 1165

7.8.2 The ten tough benchmark problems

Table 7.3 shows the makespan performance statistics of the MSXF-GA for
the ten difficult benchmark problems proposed in [3]. The parameters
used here were the same as those for the MT benchmark except for the
population size = 20. The algorithm was terminated when an optimal
solution was found or after 40 minutes of CPU time passed on the DEC
Alpha 600 5/266. In the table, the column labelled 1b shows the known
lower bound or known optimal value (for 1a40) of the makespan, and the
columns labelled bst, avg, var and wst show the best, average, variance
and worst makespan values obtained, over 30 runs, respectively. The
columns labelled 7, and ¢, show the number of runs in which the
optimal schedules are obtained and their average CPU times in seconds.
The problem data and lower bounds are taken from the OR-library [5].
Optimal solutions were found for half of the ten problems, and four of

Job shop scheduling 157

them were found very quickly. The small variances in the solution
qualities indicate the stability of the MSXF-GA as an approximation
method.

Table 7.3 Results of the ten tough problems

prob size b bst avg var wst Noot Lot
abz7 20315 655 678 6925 094 703 - -
abz8 20315 638 686 7031 1-54 724 - -
abz9 20315 656 697 7196 153 732 - -
la21 15310 - *1046 10499 057 1055 9 687-7
la24 15310 ~ *935 9388 (34 941 4 864-1
{a25 20310 ~ *977 9796 040 984 9 7656
la27 20310 - *1235 12536 1-56 1269 1 2364:75
[a29 20310 1130 1166 11819 1-31 1195 - -
la38 15315 - *1196 11984 071 1208 21 1051-3

tad0 15315 *1222 1224 12279 043 1233 - -

Figure 7.16 shows a performance comparison of with and without
the MSXF using the 1a38 problem. A total of 100 runs was done for
each under the same conditions used in Table 7.3. The solid line gives
the MSXF-GA results and the dotted line gives the equivalent GLS
results using a short-term stochastic local search. The y axis shows the
CPU time at which each run is terminated and the x axis shows the run
numbers which are sorted in ascending order according to the CPU
times. The CPU time value = 2400 means that the run was terminated
before it found the optimal schedule. The experiments with the MSXF
outperformed those without the MSXF both in terms of the CPU time
and in the number of successful runs.

2500 T T —— T

g

without MSXF ¢

[}
J
2

with MSXF

CPU time (sec.)
g

6 10 20 30 40 50 60 70 80 90 100
No. of runs

Figure 7.16 Performance comparison using the 1a38 15 X 15 problem

158 Genetic algorithms in engineering systems
7.9 Other heuristic methods

Local search based meta-heuristics are commonly applied to the JSSP
such as simulated annealing (SA) and tabu search (TS). Van Laarhoven
et al. [16] proposed an SA approach by using the AS neighbourhood
described in Section 7.7.3. Matsuo et al. proposed a similar SA approach
but with more control. Taillard proposed a TS approach that uses the
same neighbourhood. Dell’Amico and Trubian extended and improved
Taillard’s TS method using CB neighbourhood. More recently, Nowicki
and Smutnicki [20] proposed a still more powerful TS method. Yamada
and Nakano proposed an SA approach combined with the shifting bottle-
neck and improved the best solutions for the two problems abz9 and 1a29
of the ten tough problems [33]. Balas and Vazacopoulos proposed the
guided local search procedure and combined it with the shifting
bottleneck, which at present outperforms most existing methods. For
more comprehensive reviews, please refer to [17], [27] and [8].

7.10 Conclusions

The first serious application of GAs to solve the JSSP was proposed by
Nakano and Yamada using a bit string representation and
conventional genetic operators. Although this approach is simple and
straightforward, it is not very powerful. The idea of using the GT
algorithm as a basic schedule builder was first proposed by Yamada
and Nakano [30] and by Dorndorf and Pesch [12, 22] independently.
The approaches by both groups and other active schedule-based GAs
are suitable for middle-size problems; however, it seems necessary to
combine each with other heuristics such as the shifting bottleneck or
local search to solve larger-size problems.

To solve larger-size problems effectively, it was crucial to incorporate
local search methods which use domain-specific knowledge. The
multistep crossover fusion (MSXF) was proposed by Yamada and
Nakano as a unified operator of a local search method and a
recombination operator in genetic local search. The MSXF-GA
outperforms other GA methods in terms of the MT benchmark and is
able to find near-optimal solutions for the ten difficult benchmark
problems, including optimal solutions for five of them.

7.11 References

1 Adams,]., Balas, E., and Zawack, D.: “The shifting bottleneck procedure
for job shop scheduling’, Manage. Sci., 34, (3), pp. 391-401, 1988

10

11

12

13

14

15

16

17

18

19

Job shop scheduling 159

Applegate. D.: Jobshop benchmark problem set (Personal Communication,
1992)

Applegate, D., and Cook, W.: ‘A computational study of the jobshop
scheduling problem’, ORSA J. Comput., 3(2), pp. 149-156, 1991

Balas, E.: ‘Machine sequencing via disjunctive graphs: an implicit
enumeration algorithm’, Oper. Res., 17, pp. 941-957, 1969

Beasley, J. E.: ‘Orlibrary: distributing test problems by electronic mail’,
Oper. Res., 41, pp. 1069-1072, 1990

Bierwirth, C.: ‘A generalized permutation approach to job shop
scheduling with genetic algorithms’, OR Spektrum, 17, pp. 87-92, 1995
Bierwirth, C., Mattfeld, D., and Kopfer, H.: ‘On permutation
representations for scheduling problems’. In 4th PPSN, 1996

Blazewicz, J., Domschke, W., and Pesch, E.: ‘The job shop scheduling
problem: conventional and new solution techniques’, Oper Res., pp.
1-33, 1996

Brucker, P, Jurisch, B., and Sievers, B.: ‘A branch & bound algorithm for
the job-shop scheduling problem, Discrete Appl. Math., 49, pp. 107-127,
1994

Davidor, ¥, Yamada, T., and Nakano, R.: ‘The ecological framework II:
Improving GA performance at virtually zero cost’. Proceedings of bth
ICGA, pp. 171-176, 1993

Dell’Amico, M., and Trubian, M.: ‘Applying tabu search to the job-shop
scheduling problem’, Ann. Oper. Res., 41, pp. 231-252, 1993

Dorndorf, U., and Pesch, E.: ‘Evolution based learning in a job shop
scheduling environment’, Comput. Oper. Res., 22, pp. 25-40, 1995

Giffler, B., and Thompson, G.L.: ‘Algorithms for solving production
scheduling problems’, Oper. Res., 8, pp. 487-503, 1960

Yamamaru, M., T,, Ono, and Kobayashi, S.: ‘Character-preserving genetic
algorithms for traveling salesman problem’, (in Japanese), J. Jpn. Soc.
Artif. Intell., 7, pp. 1049-1059, 1992

Kobayashi, S., Ono, 1., and Yamamura, M.: ‘An efficient genetic
algorithm for job shop scheduling problems’. Proceedings of 6th ICGA,
pp. 506-511, 1995

van Laarhoven, PJM., Aarts, EH.L., and Lenstra, J.K.: ‘Job shop
scheduling by simulated annealing’, Oper. Res., 40,(1), pp. 113-125, 1992
Mattfeld, D. C.: Evolutionary search and the job shop; investigations on genetic
algorithms for production scheduling (Physica Verlag, Heidelberg, Germany,
1996)

Muth, J.F., and Thompson, G.L.: Industrial scheduling (Prentice-Hall,
Englewood Cliffs, NJ, 1963)

Nakano, R., and Yamada, T.: ‘Conventional genetic algorithm for job
shop problems’ Proceedings of 4th ICGA, pp. 474479, 1991

160 Genetic algorithms in engineering sysiems

20 Nowicki, E., and Smutnicki, C.: ‘A fast taboo search algorithm for the job
shop problem’, Manage. Sci., 1995

21 Panwalkar, S. S., and Iskander, W.: ‘A survey of scheduling rules’, Oper
Res., 25, (1), pp. 45-61, 1977

22 Pesch, E.: Learning in automated manufacturing: a local search approach
(Physica-Verlag, Heidelberg, Germany, 1994)

23 Reeves, C., R.: ‘Genetic algorithms and neighbourhood search’, in
Evolutionary computing, AISB workshop (Leeds, UK), pp. 115-130, 1994

24 Syswerda, G.: ‘Uniform crossover in genetic algorithms’. Proceedings of
3rd ICGA, pp. 2-9, 1989

25 Taillard, E.D.: ‘Parallel taboo search techniques for the job-shop
scheduling problem’, ORSA J. Comput., 6,(2), pp. 108-117, 1994

26 Ulder, N.L.J., Pesch, E., van Laarhoven, P.J.M.,, Bandelt, H. J., and Aarts,
E.H.L.: ‘Genetic local search algorithm for the traveling salesman
problem’, proceedings of 1st PPSN, pp. 109-116, 1994

27 Vaessens, R.J.M.: ‘Generalized job shop scheduling: complexity and local
search’. Dissertation, University of Technology Eindhoven, 1995

28 Whitley, D.: ‘The genitor algorithm and selection pressure: why rank-
based allocation of reproductive trials is best’. Proceedings of 3rd ICGA,
pp. 116-121, 1989

29 Yagiura, M., Nagamochi, H., and Ibaraki, T.: “Two comments on the
subtour exchange crossover operator’, J. Jpn. Soc. Artif. Intell., 10, pp.
464-467, 1995

30 Yamada, T., and Nakano, R.: ‘A genetic algorithm applicable to large-
scale job-shop problems’, proceedings of 2nd PPSN, pp. 281-290, 1992

31 Yamada, T., and Nakano, R.: ‘A genetic algorithm with mult-step
crossover for job-shop scheduling problems’. Proceedings of first
IEE/IEEE international conference on Genetic algorithms in engineering
systems: innovations and applications, GALESIA ’95, pp. 146151, 1995

32 Yamada, T., and Nakano, R.: ‘A fusion of crossover and local search’.
Proceedings of IEEE international conference on Industrial technology
(ICIT 96), 1996

33 Yamada, T., and Nakano, R.: Job-shop scheduling by simulated annealing
combined with deterministic local search (Kluwer academic publishers, MA,
USA, 1996)

34 Yamada, T., and Nakano, R.: ‘Scheduling by genetic local search with
multi-step crossover. Proceedings of 4th PPSN, 1996

35 Yamada, T., Rosen, B.E., and Nakano, R.: ‘A simulated annealing
approach to job shop scheduling using critical block transition
operators’. Proc. IEEE int. conf. on Neural Networks, Orlando, Florida, pp.
4687-4692, 1994

Chapter 8
Evolutionary algorithms for robotic

systems: principles and implementations
A. M. S. Zalzala, M. C. Ang, M. Chen, A. S. Rana and Q. Wang

This Chapter addresses the principles of the use of evolutionary
algorithms in the motion planning of robotic systems. In addition, the
implementation of these principles is then reported for single
manipulators, multiple arms and mobile arms.

A general form of the robot control loop is shown in Figure 8.1. The
required job is first divided by the task planner producing a number
of consecutive tasks, followed by the motion planner which gives a
time history of positions, velocities and accelerations sufficient and
necessary to realise each task. Once the desired motion elements are
available, they are used to produce the commands for the individual
joint loops via the control module, which may or may not include the
inverse model of the system. The motion is realised by applying the
control commands to the robot system and a feedback module
provides the actual motion elements to cater for any uncertainties
and/or changes in the system parameters and/or environment set up.
The algorithms reported in this Chapter are mainly concerned with
the motion planning block of Figure 8.1.

Intelligence
]
Environment Task Lt Motion || Contrel [_| Robot On-board
Sensors Planning Planning Action Sensors

I

Figure 8.1 Overview of a robot integrated system

Although the basic ideas behind a genetic algorithm are well
defined, particularly for binary-based populations, the deployment of
an evolutionary scheme to provide for a solution to particular

162 Genetic algorithms in engineering systems

problems is far from being straightforward. In robotrelated
applications, the choice of operators and objective formulation, let
alone the initial coding of the problem, are of vital importance.
However, the design of these evolutionary components may vary
amongst problems (e.g. planning or control) and systems (e.g. multi-
dimensional articulated chains or 2D mobile vehicles).

The following Sections report on work carried out within the
Robotics Research Group at the University of Sheffield aiming to
investigate the design of evolutionary structures for the optimisation
of robot operations. Although the choice of an evolutionary scheme is
considered as a problem-related approach based on both system and
environment requirements, the basis of a successful evolutionary
algorithm is identified as the appropriate choice of genetic coding,
genetic parameters and optimised objective function. The basic
assumptions on genetic structures remain valid [8], but extra (or
modified) parameters, more efficient chromosome representations
and problem-tailored cost functions prove fundamental in the
provision for accurate and efficient implementation.

8.1 Optimal motion of industrial robot arms

Trajectory planning of manipulators requires the provision of a time
history of motion for the arm to accomplish a specific task. However,
there are infinite trajectories, in the joint space, for a robotic
manipulator to move from one position to another, and a decision
should be made on which trajectory to use according to some
specified criteria. In addition to other criteria, the motion may be
optimised considering the travel time, energy consumption and/or
environmental constraints. Nonetheless, the need to combine more
than one criteria in the optimisation process may prove difficuit due
to the often conflicting natures of the considered criteria.

Optimum trajectory planning was attempted by many researchers, with
some of the early works on minimum-time motion using either a
simplified dynamic model (e.g. [1]) or no dynamics at all (e.g. [2]). This
continued to be the trend in most of the literature, with constraints on
motion consisting of purely kinematic bounds on positions and their
derivatives. However, a joint-space tessellation and a graph search
scheme was presented (3], planning for optimal-time motion via an
exhaustive search method. The full dynamic models of the manipulator
and actuator torque limits were both taken into consideration in arriving

Evolutionary algorithms for yobotic systems: principles and implementations 163

at the time-optimal trajectory. However, only a two-joint arm was
considered and the authors reported a vast increase in the search time
when the tessellated grid increases in size. This approach in [3] appears
to be the ultimate solution for this type of planning problem, but seems
to have been rendered inefficient by the excessive computations
involved.

In robotics, GAs have mainly been used in path planning and
decision making on collision avoidance. The GAs’ randomised,
although structured, exchange mechanism exploits historical
information to speculate on new search points with expected
improved performance. The direction of the search is influenced only
by the objective function associated with the individuals’ fitness levels.
GAs search for optimum solutions globally, thus avoiding getting
trapped in a local minimum considered as a common handicap in
conventional methods [4]. Other benefits include GAs’ feasibility to
be paralleled on a distributed multiprocessor system [5], thus
providing for one main requirement in a real-time implementation.

8.1.1 Formulation of the problem

Manipulator trajectories consist of finite sequences of positions (joint
angles) and it is suitable to code these into a string of the format:

9 mo1

Iswpos 1

where 0, is the jth intermediate position node of the ith link, and n is
the number of intermediate position nodes and is 16 in this
simulation. The value swpos is the switch position (its decimal value
varies from 1 to n—1) information chromosome, which is used for the
heuristic search. The objective is to minimise the travel time. The end
velocities should ideally be zeros if the arm is required to rest at the
end of the motion. Thus, these velocity constraints are incorporated as
penalties, resulting in the following objective function:

J=Yh+ K‘_ilvf,\
=l i=1

164 Genetic algorithms in engineering systems

where 4k, is the time interval for the jth segment of motion and is
calculated by the dynamic scaling scheme and A, is a weighting factor
(equal to 0-1 in this application). The fitness of a chromosome is

denoted by:

J
fitness = 2:0 ~ Tax]
where [is the objective function value and is the maximum objective
value in the same generation of populations. This definition ranges
the fitness from 1-0 to 2-0, and the chromosome is then made to
perform reproduction, crossover and mutation.

Rather than minimising time, some applications require the
minimisation of torque values applied to the arm’s motors. In this
case, a new weighting factor, A, is introduced with a value of 0-06.
Thus, a combined objective function was designed as:

0B/ =S h +\. 31, + Ni]v};l
j=l f=1 i=l

During reproduction, the number of occurrences of the same
trajectories selected for crossover is limited, which encourages higher
interaction among different trajectories. To prevent any path
dominating the population and leading to premature convergence,
only a specific number of copies of the same trajectory are allowed to
remain in the population after reproduction, and extra copies are
replaced by new trajectories.

Single point crossover was adopted as an initial study. After choosing
a crossing site in one parent string, crossover is performed only if the
crossover site of the second parent is within certain proximity of the
circle centred at the first crossing site. In all, ten crossover sites are
randomly generated and checked to meet this restriction; if none
does, then crossover fails.

In the following example, the crossover rate is chosen as 0-8, i.e. 80
percent of the pairs are going to do crossover. Let two parents have the
following formats:

Evolutionary algorithms for robotic systems: principles and implementations 165

Di>haseio G 0,1.8,5,.-.0.....9,,

Go1>qns g9, 0,,05,,....05,...,0,,

qml ’qml""’ q’nb ""’qum 9/nl ’67112’ ’em()’ ' “’e/nn
[1101] [1011]

and suppose the crossover position for the trajectory is randomly
chosen as 6 and the crossover position for the switch position swpos is

2 (can be between 1 and 4). As a result, the two offspring have the
following forms:

010152416024y, G122 0-8160-01,

921 ’ezz yeesl gy Gay, q> ’qzz"“’elﬁ*""BZn

eml ’eml ""’qm(z ""’qum qm] ’qml ""’emﬁ ""’emn
[1111] [1001]

Mutation is practised in such a way as to slightly alter the position of
one via point on the trajectory, as shown in Figure 8.2. Thus, the
current position, g, is altered by offset ds (set to 0-0125 rad) according
to the mutation rate, with the direction of variation randomly chosen.
The mutation is repeated for every element of the string matrix.

7 G
e 1

q -1
Figure 8.2 The mutation scheme

8.1.2 Simulation of case studies
8.1.2.1 A two DOF arm

The manipulator considered here is a classical two joint planar arm. In
this simulation, the optimisation of time with end point velocity
penalty is considered, and the effect of gravitation is not taken into

166 Genetic algorithms in engineering systems

account. The required planning is for the motion of joint one moving
from 0 to 1 and joint two moving from -2 to -1 (radians). The
maximum generation size was set to 600, and the best objective found
was 0-4046 seconds at iteration 462. The best switch position, swpos,
was near the middle of the time axis of the grid. Figure 8.3 shows the
history of the objective value against the number of generations.
Figures 8.4-8.6 show the near time-optimal trajectories searched by
the GA in position, velocity and acceleration profiles, respectively,
where the solid lines are for joint one and the dashed lines for joint
two. Figure 8.7 shows all joints within their limit boundaries, with joint
one only enjoying bang-bang motion.

Objective
0.465
0.46
0.455
0.45
0.445
0.44
0.435
0.43
0.425
0.42
0.415
0 100 200 300 400 500 600
generation
Figure 8.3 Objective history
joint trajectories Joint velocities
1.5 7 _,\
‘] /
L1 L] Y
05) 5 \
0 // 4 / \ &
RA RA 3
p 05 o / \
s 2
-1 - | A AN
\
s A R // N
2 -1 P
25 2
2'0 005 01 015 02 025 03 035 04 045 0 005 01 015 02 025 03 035 04 045
time time

Figure 8.4 Minimum-time path Figure 8.5 Joint velocities

Evolutionary algorithms for robotic systems: principles and implementations 167

Joint acceleraons

150 joint torcues
10
100 J—i_ rj-r{—
i N
50,
o _‘“Hd:’L L\ o
s/s
o J_f) 4 |t me —LL
iy R ES : _
. 17 o]
-1000 005 0t 015 02 025 03 035 04 045 ¢ 005 01 Q15 02 025 03 035 04 045
ime time
Figure 8.6 Joint accelerations Figure 8.7 Joint torque information

The performance of the proposed genetic planner is compared
against another method reported in the literature [6]. For all four

cases suggested in [6], the genetic planner outperformed the other, as
shown in Table 8.1.

Table 8.1 Comparing travel time values with Dissanayake (1991)

Initial positions Final positions Travel time results
(rad) (rad) (sec)
O Ox O, 0., Dissanayake [6] this chapter
Motioncase 1 000 -200 100 -1-00 0-6711 0-4046
Motioncase2 100 -100 000 -2-00 06732 0-4123
Motioncase 3 1-32 -264 280 -237 0-6404 0-3970
Motioncase 4 280 -237 132 -264 06185 0-3927

8.1.2.2 A six DOF arm

In this Section, simulation results are reported for the PUMA 560 arm
considering the different objective functions given in Section 8.1.1.
The start and end positions used in all seven case studies for all six
joints are given in Table 8.2.

Table 8.2 The motion start and end points (radians)

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

Start -0-3 0-4 -0-18 00 -0-05 0-05
End 0-51 -0-42 0-58 0-87 0-64 0-84

168 Genetic algorithms in engineering systems

The GA parameters are chosen as follows:

¢ The maximum number of similar members in the new population,
criteria = 4.

e The absolute number of grid variations allowed during an
intermediate position mutation, variation = 2.

¢ The maximum number of similar members allowed to crossover
during a reproduction, samemax = 6.

e The crossover rate, xor= 0-80.

¢ The mutation rate for varying intermediate point co-ordinates,
pmutr=0.10.

* The maximum generation na = 300.

The first case study considers time optimisation with velocity
constraints, and the best objective value was 0-431 seconds at iteration
70. To provide for a study of the effect of using combined optimisation
criteria in robot motion planning, other case studies are included
along with the above, as shown in Table 8.3. One important parameter
in any algorithm using grid search is the actual size of the grid
representing the searched space, as the complexity of the search
increases exponentially with the number of points in a chosen grid.
Thus, it is always sensible to have a certain trade off between search
resolution and computation time (note case 7 in Table 8.3). As
expected, all cases where the optimisation is constrained by a near-
zero end-point velocity exhibit a higher motion time. The presence of
such constraint is important, however, if motion is to be planned via
successive segments, as is the case for a pointlook-ahead motion
planner. The motion profiles for all six joints of the PUMA are shown
in Figure 8.8 for case 5 of Table 8.3.

Table 8.3 Simulation results of different case studies for the PUMA

Case Grid Optimisation criteria Parameters Motion No. of

no. sizé time torque VEIOOMY Np+z+
» timegenerations

constraints (s)
1 16316 vyes no yes — 01 0431 70
2 16316 vyes no no — — 0-475 255
3 16316 no yes yes 006 Ot 0-502 248
4 16316 no yes no 0.06 — 0-307 220
5 16316 ves yes yes 0.06 01 0-873 280
6 16316 vyes yes no 006 ~— 0-367 285
7 25325 yes no yes — 01 0-421 40 000

Evolutionary algorithms for robotic systems: principles and implementations 169

six joint trajectories

T T

05p

agk— ; R
Figure 8.8 Near minimum time PUMA motion (position profile)

8.1.3 Parallel genetic algorithms

The main motivation for exploring parallel GAs is to improve speed
and efficiency by employing a parallel computer. Migration GAs divide
the population into a number of subpopulations, each of which is
treated as a separate breeding unit under the control of a
conventional GA. To encourage the proliferation of good genetic
material throughout the whole population, good individuals migrate
between the subpopulations from time to time. In natural evolution,
species tend to reproduce within subgroups. Although it is expected
that individuals from within the same group will reproduce together,
occasional migration of individuals occurs between subpopulations
such that individuals from one population are introduced into
another subpopulation. Using a set of three processors to house three
separate subpopulations, a duplicate of the best chromosome of each
servant group is immigrated to the root group, and the less important
chromosome on the root processor is replaced. The semi-isolation of
subpopulations and limited communication between them also
encourages a high degree of fault tolerance along with efficient
utilisation of processors. Table 8.4 indicates the superiority of a three-
group parallel GA as compared to a sequential GA.

Table 8.4 Performance comparison

Approach Generations no.

Sequential GA 2000
Parallel GA on 3 transputers 70

170 Genetic algorithms in engineering systems

8.2 A comparative study of the optimisation of cubic
polynomial robot motion

This Section is concerned with the motion optimisation of a SCARA
robot subject to kinematics constraints, where two methods are used,
namely: genetic-based algorithms and the flexible polyhedron search.
Both methods use cubic spline functions to generate motion profiles. In
formulating the GAs, tailorfit operators and procedures were used to
seek an application-dependent structure. In addition, an initial evalua-
tion is reported in the form of comparisons between a Pareto-based and
weighted-sum (parametric) approaches to multicriteria optimisation.
Case study results are summarised for the RTX robot with six joints.

8.2.1 Background

Robotic motion planning is an optimisation problem, in which a robot
path or trajectory has to be planned based on different optimisation
criteria. Due to the competition between various optimisation criteria,
a multicriteria motion planning problem typically displays many local
minima, and conventional optimisation methods often fail to tackle it.
Genetic algorithms search for a solution through a population and
may therefore avoid being trapped in local minima.

The application of GAs in multiobjective optimisation is a major
interest in GA research. Current multiobjective GA approaches
include the classical aggregation of the different objectives into a
single function, population-based non-Pareto approaches and the
most recent work on the ranking schemes based on the definition of
Pareto optimality [7]. Pareto-based ranking was first proposed by
Goldberg [8], as a means of assigning equal probability of repro-
duction to all Pareto opﬂmum individuals. However, this is not the
only technique required for the Pareto-based multiobjective GAs.
There are additional niche formation methods which must be
included to prevent the population converging to one peak, a
phenomenon know as genetic drift, as described below.

The flexible polyhedron search is one of the unconstrained non-
linear optimisation techniques [9]. It is used for the minimisation of a
function of 7 variables and depends on the comparison of function
values at the n+1 vertices, followed by the replacement of the vertex
with the highest value by another point. This method is widely used by
researchers since it does not assume the function to be differentiable
and continuous over the range of interest, and has the additional

' Also called efficient point, nondominated or admission solution.

Evolutionary algorithms for robotic systems: principles and implementations 171

advantage that the user can be sure of the design variables taking only
positive values. This method has been adopted [2] to optimise the best
(minimum) combination of time intervals subject to constraints on joint
velocities, accelerations and jerks for a PUMA type robot with six joints.

8.2.2 Motion based on cubic splines

The objective here is to construct joint trajectories which fit a number
of joint displacements at a sequence of time instants by using cubic
polynomial functions. Further, the motion has to comply with the
maximum bounds on position and its derivatives. Thus, the

multicriteria objective to optimise is:

A = max (1 ,)\,,2\/)\2,3\/)\3)

The derivation and use of the above equation is explained in [2] and
included briefly in the Appendix for completion.

8.2.3 The genetic formulations

The formulation of the multiobjective GAs is described in some details in
the following Sections. The general procedure is depicted in Figure 8.9.

I Initialisation of parameters J

v

r Generate Initial PopulationJ

[Evaluate the Initial Population]

Y

do {
Selection
Recombination
Update-generation
Evaluate
Record the best-time trajectory
Pareto-Ranking
Fitness Assignment and Sharing
}

while (generation < maximum generation)
Report

Figure 8.9 Outline of the genetic procedure

172 Genetic algorithms in engineering systems

8.2.4 The objective functions
8.2.4.1 Pareto-based GA

The objective vector is set as:

n-1

minimise { 24, 1-\;, 1-\; } subject to constraint: As <1

i=1
where & is the ith time interval, 1-\, is the criticality to the velocity
constraints, 1-\, is the criticality to acceleration constraints. The
criticality is a measure of how close a trajectory is to the joints’ velocity
and acceleration limits.

8.2.4.2 Weighted-sum GA

Two types of weighting methods are considered in this case study,
namely a normalised objective function and a non-normalised
function.

(@) The formulation of objective function in normalised form can be
written as:

minimise { wfitwfitunf; }

subject to jerk constraints, i.e. As < 1, where ;= 1-\, and fi= 1-\,. The
weight coefficients w; operate on the ith objective function and can be
interpreted as the relative worth of that objective when compared to the
other objectives. The weights are normalised so that the total is equal to
1, and the two objective values for £ and f are in the range [0,1].

The objective function f is calculated as a relative value to the range
of motion time [MIN, MAX]. Assume the upper bound of travel time,
MAX, is the maximum trajectory motion time obtained from the initial
population, and the lower bound of the travel time, MIN, is the
maximum time among the six joints when they travel at their velocity
limits between start and end points, i.e. 8; and 6,,. Thus:

i\"vg

where j = 1,..., N represent the six joints and VG is the velocity
constraint imposed on joint j. Note that the lower bound of the
motion time calculation has not taken into account the zero velocity
and acceleration values imposed at the start and end positions. Hence,
the function f; is set as:

Evolutionary algorithms for robotic systems: principles and implementations 173

7t

Xh ~ MIN
ﬁ = =1
MAX - MIN
(b)Some researchers have not adopted the concept of normalising the
objectives when using weighting methods in their studies [3,4], and
the objective functions are arbitrarily weighted with different values.
To compare with the normalised formulation, the non-normalised
objective function is formulated as:

n=1

minimise { @, XA + wofs+ wsfs |
i=1

subject to jerk constraints, where w; is the weight of objective f.

8.2.5 Parameter initialisation

The definitions of the used genetic parameters are listed in Table 8.5,
and these are referred to in the following Sections.

Table 8.5 The GA parameters

Parameter Description

maxgen maximum generation

maxintervalf(n-1) maximum time interval

maxjoint maximum joint number

maxknot/n maximum knot number

maxpop maximum population size

SEED constant integer to initialise the random number generator
sp selective pressure

pcross crossover probability

pinject injection probability

pmutate BGA (breeder genetic algorithm) mutation probability
pmutate_time time mutation probability

reserve_num number of best trajectory to be kept, it is set to 1, (when

performing BGA with truncation scheme, it is also the
number of selected parents)
cross_over_dis_meter maximum distance to perform crossover for joint 1 (Zed)
cross_over_dis_radianmaximum distance to perform crossover for joints 2-6

vi velocity at the start position
al acceleration at the start position
vn velocity at the end position
an acceleration at the end position

sizeC the number of constraints
inc time step for generating motion profiles

174 Genetic algorithms in engineering systems

8.2.6 Evaluating the population

The population performance is evaluated with each trajectory in the
population receiving a fitness value prior to the selection process.

8.2.6.1 Ranking

All trajectories are ranked based on their total travelling time and how
critical they are to the joints’ velocity and acceleration limits, based
upon Pareto ranking. Using the Pareto optimality definition, a point x
is said to be nondominated if not dominated by any other point. Thus,
an individual can be ranked by counting the number of other
individuals dominating it [7]. Hence, the nondominated trajectories
that are the best performers will be assigned with highest rank, i.e.
zero. When all individuals in the population are ranked, the fitness
values will be assigned to them according to their rank. This can be
done by interpolating some linear or exponential function from the
best individual (rank = 0) to the worst individual (rank < N). Following
that, same rank individuals will receive the same fitness values by
averaging the total values assigned to them.

Therefore, fitness values are assigned according to an individual’s
rank in the population, thus ensuring that the population will strive
for all the three objectives: smallest travel time and achieving the two
limits allowable.

8.2.6.2 Fitness assignment

The fitness of trajectories is obtained on the basis of their relative
fitness in the population rather than their raw performances. The
trajectories are first sorted into a descending order based on their
Pareto rank. Then by interpolating between the best ranked individual
and the worst ranked individual, each trajectory fitness value can be
calculated as follows:

x—1
F(x)=2-sp+2(sp-1) Maspop— 1
where ¥, is the position in the ordered population of trajectory 7 [10].
This rank-based fitness assignment provides only a small bias towards
the most fit trajectories so that no trajectory will generate an excessive
number of offspring and thus prevent premature convergence. sp is
the selective pressure and defines the maximum number of offspring
that the best trajectory can reproduce.

Evolutionary algorithms for robotic systems: principles and implementations 175

8.2.6.3 Sharing scheme

Fitness sharing uses a sharing parameter to control the extent of
sharing, or in other words, it is a measure of the maximum distance
between individuals which could form niches [7]. Trajectory fitness
will be increased or decreased depending on similarity with other
trajectories. After calculating the share count, the new total fitness
values in the population will be altered and the value is usually
different from the total fitness before share count.

8.2.7 Selection scheme

Selection scheme is a process for determining the number of trials for
which a particular individual is chosen for reproduction. The selection
technique adopted in this project is based on stochastic universal
sampling (SUS) [11]. This method uses a single spin and N equally
spaced pointers, where N is the population size. The actual selection
process begins with the generation of a random number, say p, from
the range [0, sum/N], of which sum is the total fitness values of the
population. The N trajectories are then chosen by generating the N
pointers spaced by sum/N. Hence, N trajectories, whose fitnesses span
the positions of the pointers, will be selected. The selected trajectories
are then shuffled randomly before recombination. Note, however, that
the number to be selected for this particular problem is not equal to
N and a modification has been introduced.

8.2.8 Shuffling

After the selection stage, the selected individuals’ indexes are sorted
because of the previous fitness assignment procedure. It is therefore
necessary to perform a shuffling procedure before the recombination
process. This can be done by using a set of randomly generated
numbers. By using the sorting procedure to sort the random numbers
into an ascending order, the initially sorted indexes will be
randomised and the selected individuals will be rearranged according
to the randomised indexes.

8.2.9 Recombination mechanisms

The selected trajectories will be paired up for crossover or
recombination subject to their mating distance and crossover
probability. Self mating is not allowed in the program. Three different
genetic operators are implemented from the Breeder GA [12].

176 Genetic algorithms in engineering systems

Considering two parents X = (%, ...,%) and y = (y, ...,5), then the
offspring z = (2, ...,z,) may be composed in the following ways:

(a) Discrete recombination: z = {x} or {y}, where x; or y,;are chosen with
probability 0.5. ,

(b) Extended intermediate recombination: z = x + ; (3.~ %), ¢ =1,...,n;
where a ; is chosen randomly in the interval [-0-25,1-25].

(c) Extended line recombination: z = x; + o; (y.— %), ¢ =1,...,n, where a
is chosen randomly in the interval [-0-25,1-25].

In addition, a path redistribution/relaxation operator is used [13]. A
robot trajectory consists of joint angles which may produce a large
position jump in the offspring strings after conventional crossover.
Therefore, this operator is proposed where cubic splines are fitted to
the offspring’s via points with each time interval set to unity. The path
length is then computed as the Euclidean distance between the start
and end via points along the splines as:

SV (3 (00)

where j = 1, ..., m and At is chosen to be a small number, 7 is the
number of via points and m is the number of robot joints. Joint knots
are redistributed evenly over these splines at equal intervals. The paths
are then relaxed by moving each via point by a small step towards the
point which will bisect the line between its neighbouring points as:
where i =1, ..., nand 8 is a positive random number less than one.

8.2.10 Modified feasible solution converter

6,0+,
eﬁ = 9]-,- + 8 <£—2—J’]— 9]»,-)

When a travel time is produced following the process of population
generation or recombination, the time value is evaluated using the
feasible solution procedure, as described in Section 8.2.3. Then, the
total time intervals are scaled such that the motion time of an
individual trajectory is optimal and does not violate the kinematics
constraints. Thus, the optimisation is re-stated as:

A= max()\l,?\/)\2,\/ As)

Evolutionary algorithms for robotic systems: principles and implementations 177

If X > 1 then & should be increased to A to satisfy the limits of the
velocities, accelerations and jerks. Also, if O0< A <l then A can be
contracted to Ah; to obtain the time-optimal joint paths. The
correspondingl velolcity, acceleration and jerk values are scaled by the

factors of 1/)\, /)\2, A respectively.

8.2.11 Time intervals mutation

The offspring’s initial time is given from the parent and it will be
passed through the modified version of feasible solution converter
n—-181

1 times. Each pass, a time interval will be selected randomly and
increased or decreased depending on the criticality of that interval. If
the interval is critical, i.e. very close to the limit, the time will be
increased (to slow down), otherwise the time will be decreased (to
speed up). The decrement and increment values are selected
randomly between ranges of [0-75, 1] and [1, 1-25], respectively. Only
the smallest time intervals will be used as the offspring travelling time.
If n-1 trials are not successful, the offspring will accept the parental
trajectory travel time, scaled appropriately with the factor obtained via
the converter.

8.2.12 Simulation results

The algorithms have been tested for the RTX robot with six-joint motion
planning in the configuration space. The case study is listed in Table 8.6,
with the model parameters and constraints listed in Tables 8.7 and 8.8.

Table 8.6 Initial and final configurations

Column Shoulder Elbow Yaw Pitch Roll

(m) (rad) (rad) (rad) (rad) (rad)
Initial configuration 0-4 /6 /3 -1t/2 0 -T/4
Final configuration 0-8 /6 /3 /2 /6 /4

Table 8.7 Link paramelers

Joint ¢ 0 o a d; Lower bound Upper bound
1 0° 0° 0 0 -61 mm +881 mm
2 0° 0° a -d -90° +90°
3 0° 0° as -d; -180° +151°
4 0° 0° 0 0 -110° +110°
5 0° 90° 0 0 -8° +94°
6 90° 90° 0 ds -132° +181°
- - 0° +90°

gripper - -

178 Genetic algorithms in engineering systems

Table 8.8 Velocity, acceleration and jerk constraints

Zed? Shoulder Elbow Yaw Pitch Roll
Velocity 0.1116 0.1654 1.2092 1.9715 1.3780 1.2412
Acceleration 1.7755 6.2018 14.081 31.055 28.063 26.180
Jerk 297.59 894,67 3718.9 3377.6 3933.1 41727

Note: The zed velocity, acceleration and jerk are in m/s, m/s* and m/s’,
respectively. The other joint angle velocities, accelerations and jerks are in rad/s,
rad/s? and rad/s’ respectively.

8.2.12.1 Case 1: Pareto-based GA

(a) Breeder genetic algorithm (BGA) operators

The three BGA recombination operators, namely, discrete, extended
intermediate and extended line recombination operators, are tested
to determine the best among them. Crossover probability is set to
(peross=0-9). The performance for BGA genetic operators is shown in
Table 8.9. The results are obtained by using a population size of 200,
with 100 as the maximum number of generations.

Table 8.9 Results from BGA genetic operators

Minimum time(s)

Discrete recombination 4-3381
Intermediate recombination 4-1497
Line recombination 4-0854

(b) Path redistribution-relaxation operator

The path redistribution-relaxation operator is used with a different
population size, and 0.9 crossover probability. The injection rate
adopted [13] is 10 % of the population size while in this simulation,
the injection rate is 2.5 %. The results for 100 generations with
different population size are shown in Table 8.10.

Table 8.10 Results for path redistribution-relaxation operator

Population size Minimum time(s)

100 3-9530
200 3:9335
300 3-9049

? zed is also known as column.

Evolutionary algorithms for robotic systems: principles and implementations 179

(¢) Comparisons

From the above case studies, one can conclude that the extended line
recombination operator is the best among the three BGA genetic
operators and that the path redistribution-relaxation operator
performs better than the BGA recombination operators. A further
simulation is carried out for 300 population size and 500 generations
with crossover probability of 0-9 and injection of eight new trajectories
in each generation. The results are shown in Table 8.11, indicating
improved optimisation with larger population and generation for both
BGA and redistribution-relaxation operators. However the results also
show that the redistribution-relaxation operator still produces the best
motion time (smallest) with bigger population and generation.

Table 8.11 Path redistribution-relaxation operator versus BGA recombination

operators
Path Line Discrete Intermediate
redistribution- recombination recombination recombination
relaxation
3.8743 sec 3.8894 sec 4.0144 sec 4.0404 sec

(d) Truncation selection

To complete the study of the BGA operators, truncation selection has
been tested with the consideration of sharing but without mating
restriction. Hence, T % best rank individuals are selected and mated
randomly in each generation to produce the new population. The
smallest time trajectory will remain in the population. The results
shown in Table 8.12 are obtained with a 200 population size and 100
maximum generation. T % is chosen in the range of 10~-50 % [12].

Table 8.12 Performance of the BGA operators without mating restriction

Truncation Discrete Intermediate Line
threshold recombination recombination recombination
percentage(T %) (s) (s) (s)

10 4-0404 4-0884 4-0373

20 4-4436 4-10831 4-0817

30 4-2443 4-2164 4-0648

40 4-2344 42160 4-1575

50 47487 4-1698 4-1319

The results above show that, by using truncation selection, the motion
time is better than without it if the threshold percentage is small for

180 Genetic algorithms in engineering systems

recombination (note Table 8.9). However, the time obtained by using
the redistribution-relaxation operator is still better than that by
truncation selection. Table 8.12 also shows again that extended line
recombination is indeed the best BGA operator for the minimum time
motion planning problem for a nonmating environment.

8.2.12.2 Case 2: Pareto-GA versus flexible polyhedron search

The optimal paths reported in Table 8.11 are fed into the FPS
program, and the outcome is given in Table 8.13. Although the GA
yielded better optimisation of time, the procedure did require longer
computation time than with FPS.

Table 8.13 Pareto-based GA versus flexible polyhedron search

Operator responsible for Minimum Results from flexible
the optimal path time(s) polyhedron search method(s)
Path redistribution-relaxation 3-8743 4-4870
Line recombination 3-:8894 4-1253
Discrete recombination 4-0144 4-1325
Intermediate recombination 4-0404 41141

8.2.12.3 Case 3: weighted-sum GA

(@) Normalised formulation

Several combinations of weights have been tried and the results for a
200 population size for 100 maximum generation are listed in Table
8.14. Only the path redistribution-relaxation operator has been
applied in the tests for the weighted-sum GA.

Table 8.14 Results for normalised formulation

Weights(w;, ws, ws) Minimum time(s)

(0-1,01,0-8) 3-9804
(0-2,0-2,0-6) 40106
(0-2,0-6,0-2) 4-0044
(0-6,0-2,02) 4-0124
(0-05,0-15,0-8) 4-0121
(0-1,0:0,0:9) 3-9531
(0-1,08,0-1) 40109
(0-8,0-1,0-1) 3-9673
(0-3,0-3,0-4) 3-9570
(0.3,0-4,0-3) 3-9628
(0-4,0-3,0-3) 3-9875

(0-5,0-2,0-3) 3-9807

Evolutionary algorithms for robotic systems: principles and implementations 181

From the results shown in Table 8.14, when compared to the
redistribution-relaxation operator of Pareto-based GA under the same
population and generation size, the optimum motion time produced
by Pareto-based GA is slightly more optimal (3-9335 seconds).
Weighted-sum GA using weights of 01, 0-0 and 0-9 managed to obtain
the best motion time of 3-9531 seconds. However, this result actually
considers only two objective functions, and cannot be used to compare
with the results obtained using Pareto-based GA. In this case, the best
motion time for normalised weight is 3-9570 seconds, obtained using
weights of 0-3, 0-3 and 0-4 for w;, u, and us respectively.

The effect of the different number of generations is indicated in
Figure 8.10, with Table 8.15 showing the effect of changing the size of
the genetic population.

Table 8.15 Effects of different population size*

R
3.96 S
3.95 {
_.3.94 {
0
o 3.93 ¢
E

- 3.92
3.91 ¢
3.9 i |
3.89 k= : e

100 200 300 400 500 1000
Generation Size

Figure 8.10 Generation size versus motion time

Population size Minimum time(s)
100 4-0149
200 3-9804
300 39630

* Results obtained are using weights of (0-1,0-1,0-8) and 100 generation size.

182 Genetic algorithms in engineering systems

(b) Non-normalised formulation

A set of non-normalised weights is also simulated. The results obtained
when considering different combinations of weights are shown in
Table 8.16, and show no motion time improvement in comparison
with the normalised approach.

(¢) Choice of weights

Moving from one set of weights to another may result in skipping a
nondominated point. In other words, it is quite possible to miss using
weights that would lead to extreme points (optima). Consequently, the
most that should be expected from the weighting method is an
approximation of the nondominated set. Although this approach may
yield meaningful results only when solved many times for different
values of weights, the results reported in this case show the difficulty of
realising a solution. Normalised formulation has narrowed down the
scope for searching for the appropriate combination of weights, but
the range of joint travel times is only an approximation.

Table 8.16 Results for non-normalised formulation*

Weights(w,wz,s) Minimum time(sec)

(400,200,400) 39984
(0-01,30,4000) 4-0057
(0-001,0-008,0-001) 4-0075
(5,4,1) 4-0260
(5,4,20) 3.9881
(5,1,20) 3-9441
(5,10,20) 4-0000
(5,0,20) 4-0066
(5,2,20) 39485
(4,1,20) 4-0209
(6.,1,20) 3-9847
(8,1,20) 4-0034

* Results obtained using a population size of 200 and 100 generations.

8.3 Multiple manipulator systems

The problem of path planning of multiarm robots is different from
that of single arm robots in that one arm may act as an obstacle to
another arm. So the motion has to be planned for the two arms

Evolutionary algorithms for robotic systems: principles and implementations 183

simultaneously. If the robots have to avoid collision with static
obstacles in the workspace, and the additional constraints due to the
restricted range in which the joint angles can be displaced are
considered, the path planning problem becomes very complex for the
conventional planners to solve [16,17]. GAs have been applied
successfully to this problem, since they are able to handle different
constraints by incorporating them in their fitness function. Although
the formulation is given for two planner robots (see Figure 8.11), the
simulation results are reported for two PUMA robots in 3D space, thus

Q,
V7
Fm(‘
o vt o o.ﬂ‘?"m
N fiefah
/ via-powt
/e
niial
Configuration:
ay
(a) (b

Figure 8.11 (a) Operational space for two planner arms with two links, (b) via-points
in configuration space

indicating the generality of the algorithm.

8.3.1 Problem formulation

Path planning is carried out in configuration space of the manipu-
lator. The entire path of the robot is considered simultaneously as a
string of via points {pg,Pys+--sPj--sP N} joining the initial configuration
pp and the final configuration ppx; where p; is the ith via point given
by the ordered pair (6:,8:) and Nis the total number of via points on
the path. These via points are then fitted with parametric cubic
splines. Repeated modification is carried out to the position of the via
points through an evolutionary search to find a collision free path.

In order to determine collision between the manipulator and the static
obstacles, both the manipulator and the obstacles are approximated with
touching circles. The distance between the centres of these circles and
the static obstacles is checked. If this distance happens to be less than the
sum of the radii of the circles, the manipulator is colliding with the
obstacle; otherwise, it lies in the free space. An alternative to this is to use

184 Genetic algorithms in engineering systems

neural networks for collision detection [22]. The input to the neural
networks is the joint angles of the manipulator, and the output varies
between 0 and 1, depending upon whether the manipulator lies in free
space or is colliding with the obstacle.

8.3.2 Encoding of paths as strings

For Nvia points, the paths are encoded directly as chromosomes of the
evolutionary program as:

PripzicPiriPiiPuricPaa
where p; is the vector forming the ith gene in the chromosome, and
represents the ith via point on the path in the configuration space of
the manipulator, and ! is the concatenation operator. Thus, each gene

in the chromosome consists of a vector with floating point
components.

8.3.3 Fitness function
Different objectives to be minimised by the evolutionary algorithm are:

Cy = Penalty on the length of the path in configuration space given by

N
Cl = Z\/(Gl,—ﬂu,-.l))“’ + (62{_62(1‘—1))2) where N is the total number
i=1
of via points and p; (0, 6,;) is the ith via point on the path of the
manipulator.

Cg = Penalty on the uneven distribution of via points on the path
defined as

N
C2 = Y|ld—d||, where d, = Euclidean distance between ith and
i=1

N
(--1)th via point, and d = é}Zd,-.
C3 = Penalty on collision with the obstacles,

Cg = max(K); i=1,2,.,(A-1),

1 if the manipulator collides with the
obstacle in the ith configuration
0 otherwise

where K, = {

Evolutionary algorithms for robotic systems: principles and implementations 185

This latter function is referred to as a hard-threshold collision func-
tion since it only tells whether the manipulator is colliding with the
obstacle or not, and does not give any information as to how far the
manipulator is from the obstacle. The value of the function steps from
0 to 1 when the manipulator moves from free space into the cobstacle
without a gradual slope.

Thus, the fitness function is formulated in two ways:

(i) Linear combination of objectives.
(ii) Prioritisation of objectives.

(2) Linear combination of objectives
The objective function to be maximised is given by a linear combina-

tion of objectives as:
G

Cl average

G, G

average C“ average

g=k1 +k‘2 (32

where k,, k, and k, are positive constants and Ci g Comernge 20A. Coauerse ATE
the averages of the penalties on path length, the uneven distribution
of via points on the path and collision with the obstacles, respectively,
calculated for the initial population at the beginning of the search.
The fitness function is again formulated in two ways. In the first case,
the fitness function is formulated as:

F _ { Cm{lx—g if g <C'max
- 0 otherwise

where C,, is a positive constant. It may be pointed out that if the hard
threshold collision detection is chosen, then the maximum value of G
would be 1, so the value of Gy, is taken to be equal to 1 in order to
give it the same weight as the other objectives. The normalisation of all
the penalties by dividing them by their respective initial averages
provides a way of visualising the weight associated with each penalty
easily, thus making it easy to choose the values of ki, k and ks. The
value of ks is kept relatively high, since collisions are to be avoided at
all costs. The value of k, on the other hand, is kept very low, since the
via points are redistributed evenly by one of the operators (the
redistribution operator) in the algorithm. The value of C,.. is chosen
so that it is higher than the expected value of gat all times.

One problem associated with selection based on this type of fitness
function is that a string with a relatively high fitness could fill up the
entire population very quickly, thus resulting in a premature

186 Genetic algorithms in engineering systems

convergence of the algorithm to a suboptimal solution. To counter
this problem, a ranking of the population has been investigated, in
which the strings in the population are not chosen according to their
fitness value, but according to their rank among the population. The
rank of an individual depends upon its fitness in a descending order
in the population. A linear ranking has been used, in which the rank
varies from a maximum value to a minimum value.

(¢t) Prioritisation of objectives

Among the three objectives defined, the collision avoidance is a
constraint, whereas the other two objectives, i.e. penalty on the path
length and penalty on the uneven distribution of via points, are
objectives to be minimised. One way of handling these two different
types of objective is to formulate a fitness function depending on the
priority of the objective. Highest priority is assigned to the collision
avoidance, and minimisation is performed first on this objective. The

other objectives are minimised at a lower priority. The fitness function
is defined as:

Cl - C.\‘t
-C

¢,
C

2average

e, | =2

g = max| [k, c

+k,

laverage st 3average

where C, is the length of straight line path in configuration space
between the initial configuration and the final configuration, and the
fitness function F is defined as above. The value of % is kept higher
than that of both &, and &, to give it a higher priority.

8.3.4 The GA operators

The following operators are used in the evolutionary algorithm:

(a) Reproduction: the strings are reproduced for the next generation
based on their fitness function. A weighted roulette wheel is used
to select the strings from an old population for a new population.

(b) Crossover: the individuals in the population reproduced from the
old population based on their fitness are grouped at random into
pairs of parent strings. Some crossover site is chosen at random
among two parent strings. A cross-over is then performed by
switching position of the via points between this site and the two
parent strings to produce two offspring strings. This operation is
carried out with a certain probability and only if the distance
between the crossover sites is less than a certain value.

Evolutionary algorithms for robotic systems: principles and implementations 187

(c) Redistribution: the via points are fitted with parametric cubic
splines and then redistributed over these splines at equal distance
to make the distribution even.

(d) Relaxation: the path is then made to behave like a stretched string
and relax under the strain (see Figure 8.12).

(e) Mutation: in order to carry out the mutation (which is done at a
probability of mutation_probability) any gene (via point) in the
chromosome is selected, and random values within a specific
range are added to all the components in the gene.

(f) Regeneration: new trajectories are generated and are injected into
the population after every generation.

¥
o

path before
relaxation\\‘?

Ao . path after
I relaxation

Figure 8.12 Effect of relaxation on the path, indicating the change in the position of
via points on the path

8.3.5 Simulation results for two 3DOF arms

The parameter values given in Table 8.17 were used for the algorithm,
and the initial and final configurations for the robots are given in
Table 8.18. In addition, the bounds on the displacement of the joint
angles are given in Table 8.19. Figure 8.13 shows the motion of the two
arms in operational space and Figure 8.14 show the history of the
fitness function and the paths in operational space, respectively.

188 Genetic algorithms in engineering systems

Table 8.17 Values of parameters used in the evolutionary search algorithm for two
3DOF arms moving in 3D space with static obstacles in the environment

ki 200
ko 50
ks 200
K 200
ks 50
Corax 1000
population size 100
new_lrajectories 10
keep_best 1
cross_over_distance 100°
cross_over_probability 1.0
mutation_probability 0.001

Table 8.18 Initial and final configurations for two 3DOF manipulators moving in
3D operational space

Initial value Final value
0, 15° 150°
0. -15° -15°
0, -30° 30°
o -150° -15°
o -18° -15°
o3 30° -30°

Table 8.19 Lower and upper bounds on the joint angle displacements for the two

3-DOF manipulators
Lower bound Upper bound
0, 0)d 180°
oy -180° 0°
92 and (¢ 73 ‘300 300

0; and as -45° 45°

Evolutionary algorithms for robotic systems: principles and implementations 189

Figure 8.13

700

650

600

550

Fitness

500

450

400

350

—

20

Generations

40

()

60

75

40 - 1 -

200

-40 -200

(b

Figure 8.14 (a) History of the fitness function and (b) paths in the configuration
space of two 3DOF manipulators

190 Genetic algorithms in engineering systems

8.4 Mobile manipulator system with nonholonomic
constraints

A mobile platform with an onboard manipulator, as shown in Figures
8.15 and 8.16, is considered in this Section. The manipulator has one
rotational link and two planar links. The platform has two driving
wheels (the centre ones) and four passive wheels (the corner ones).
The two driving wheels are independently driven by two motors.

Figure 8,15 A mobile platform with an Figure 8.16 Top view of the mobile
onboard manipulator platform

The kinematic relations for a mobile manipulator can be
represented as:

X.(t) = XP(t) + Xm/p ((D(t))

where X,(¢) is the given Cartesian trajectory of the end effector in the
world frame, X,(#) is the Cartesian position trajectory of the platform
in the world frame, X,,, (®(#)) represents the vector of the position of
the end effector with respect to the platform reference frame and @ is
the vector of manipulator joint angles, which are usually constrained
by independent upper and lower bounds. The platform is subject to
the no slipping nonholonomic constraint

- #5in0 + xcosd =0

i.e., the platform must move in the direction of the axis of symmetry.
Note that the position (z, x) and the heading angle 0 of the platform are
not independent of each other due to the nonholonomic constraint.

Evolutionary algorithms for robotic systems: principles and implementations 191

8.4.1 Multicriteria cost function

Various optimisation criteria can be applied in the trajectory
generation of the mobile manipulator system. In this study, total
actuator torque minimisation and maximising the manipulator’s
manipulability measure are considered. The total actuator torque over
the time interval starting at ¢ = , and ending at ¢ = ¢ is defined as:

fi= f ,Z TT dt
where 7 is the actuator torque vector and is constrained by
independent upper and lower bounds. The manipulability measure
can be regarded as a distance measure of the manipulator
configuration from singular configurations at which the manipula-
bility measure becomes zero. At or near a singular configuration, the
end point of the manipulator may not easily move in certain
directions. Maximising manipulability keeps the manipulator away
from singular points and provides more velocity transmission ratio in
all directions. The manipulator manipulability measure is defined as

[14]:
o = Vdet(J(D)] (D))

where J(®) is the manipulator Jacobian matrix and @ is the vector of
manipulator joint angles. The total cost function is thus defined as:

f= sf,if,'rTT dt+)\f,z (w,— w)dt

where o, is a given positive real number not less than the possible
maximum manipulability, € and A are the relative weightings between
the two criteria, which are under the control of users. For obstacle
avoidance, a geometric analysis method [15] is applied. For simplicity,
the boundaries of the platform, the manipulator and the obstacles are
represented by a number of straight lines. If any boundary line of the
robot intersects with any boundary line of the obstacles, collision
occurs and the robot path will be modified.

The optimal trajectory-generating problem is thus stated as follows:
given the trajectory of the end effector of the manipulator, search for
near optimal trajectories for the platform and the manipulator joints
to minimise the total actuator torque and maximise the manipulability
with a nonholonomic constraint and obstacle avoidance.

192 Genetic algorithms in engineering systems

8.4.2 Parameter encoding using polynomials

Generally it is desirable for a robot joint or the platform to move along
a smooth trajectory because smooth motion needs less energy and
avoids structural resonance. Thus, the initial joint and platform
trajectories are represented by polynomials which are continuous and
have continuous first derivatives. Suppose the initial and final
positions and velocities of a trajectory are given, then at least a three
order polynomial is needed to represent it. In order to have some free
parameters which can be chosen to optimise the trajectory, a higher
order polynomial is chosen, namely a fifth order. Suppose a
generalised joint trajectory is represented by a fifth order polynomial
as follows:

0(0) = ap+ ot + ot + ast® + agtt+ast®, KIS
y

The angles and velocities at the beginning and the end of a trajectory
are given as: 0,=0(4), 0, = 6(2), &=0(%)=0, § =H(2)=0. Two additional
constraints are required to determine the parameters of the above
polynomial. Here the initial and ending accelerations of a joint
trajectory are introduced as the additional constraints required. The
2mn, initial and ending accelerations of the n, chosen joint trajectories
are encoded in the genetic algorithm. The binary genetic string is thus
generated as follows:

{al();alf"")a'i()’aif)"wan,ﬂyan‘/}

where ay and a; are the initial and ending accelerations of the ith
chosen generalised joint trajectory. Here, the n, generalised joint
trajectories for encoding can be chosen randomly. Then, the
polynomial trajectory of each encoded generalised joint can be
determined by the generated initial and ending accelerations
combined with the angle and velocity constraints at the beginning and
the end of each trajectory.

After the trajectories of the encoded joints have been determined,
the remaining generalised joint trajectories can be calculated in the
following way. Discretise the time interval starting at ¢ = 0 and ending
at ¢ = {into N+1 equal sections. Beginning with the starting position,
the joint value at each via point of each remaining trajectory is
calculated from the end effector’s Cartesian trajectory by using the
inverse kinematics combined with the nonholonomic constraints. The
joint values at the N via points can be represented as:

{ ei,l’ 91’,2---,01',}—1'3 ei,j"--ei,N }

Evolutionary algorithms for robotic systems: principles and implementations 193

where 0;; is the joint value of the ith joint at the jth via point and i
represents one of the remaining joints which is not encoded. At the
same time, the joint value at every via point is checked to see whether
it meets the joint lower and upper bound. In the case where there are
obstacles in the working space, the geometric method is applied to
check whether, in any position, the platform trajectory collides with
the obstacles. If at any via point any trajectory violates the kinematic
constraints or collides with obstacles, the joint value of this trajectory
at this via point is discarded and a new joint value is regenerated as
follows until a valid value is produced:

ei.j = 9:‘,,‘-1 + 7 A

where 0,; is the randomly produced new joint value at point j, and 0,;,
is the joint value at point #1, A, is a small given positive number and
7, is a randomly generated integer from a known range.

8.4.3 Fitness function

For this problem, the fitness function is defined as:

F= fou=f~ 1o

where fis the cost function defined in Section 4.1, f... is a properly
selected positive real number not less than the maximum value of f,
and f, is a torque penalty which is f../20 when any trajectory violates
the upper or the lower torque bounds, and otherwise is set to 0.

8.4.4 Genetic evolution

A reproduction approach is applied to the selection of strings for the
next generation. In order to reduce the stochastic error associated
with the selection, the stochastic remainder sampling scheme without
replacement is applied. Other strategies applied include fitness scaling
and random migration.

The crossover operation is applied as follows. Members of the newly
reproduced strings are paired at random. For each pair of selected
strings, with a probability of p, a cross position is selected at random.
The two new strings are created by swapping parts of the strings from
the selected position to the last position. The result is that two new sets
of initial and ending accelerations are formed, that is, two new sets of
joint trajectories are produced.

The mutation operator changes individual strings on a bit by bit
basis, with a very small probability p,.. Once a mutation is performed in

194 Genetic algorithms in engineering systems

a string, a new set of boundary accelerations are formed. The main
purpose of mutation is to bring in new information and to protect
against loss of some potentially useful genetic material gained during
reproduction and crossover.

The fitness values of the new population’s strings are evaluated, and
the process continues until a predefined number of generations is
reached. Since all initial joint trajectories are represented as
polynomials, smooth trajectories are produced and a low cost for each
trajectory is expected. Therefore, the genetic algorithm requires a
smaller population and converges to a near optimum in fewer
generations than by via point representation.

8.4.5 Simulation results

A case study of a system with a PUMA-like three-link manipulator
mounted on a mobile platform is considered. One typical set of
genetic parameters used in testing the system is: population size n =50,
generation number g = 40, crossover probability p. = 0-8, mutation
probability p, = 0-03 and the number of bits for each real acceleration
in the genetic string is 16. The cost function f (of Section 8.4.1) was
used in evaluating the fitness with weightings € = 1 and A = 1. All the
simulations were conducted on a Sun Sparc station and the
computation time was less than 100 seconds.

‘Two simulations are reported, one without obstacles (case 1) and
another with a rectangular obstacle placed in the workspace of the
platform (case 2), with the two resulting motions shown in Figures
8.17 and 8.18, respectively.

Figure 8.17 Case 1 — motion without an ~ Figure 8.18 Case 2 — motion with
obstacle obstacle avoidance

The results for case 1 are: total manipulability measure is 22:532 (w,,
is chosen as 30), total torque is 16-106 and the total cost is 23-574. For
case 2, the manipulability measure is 24-733 and the total torque is

Evolutionary algorithms for robotic systems: principles and implementations 195

20-131 with a total cost of 25:397. Although the manipulability is
better in case 2 than in case 1 due to obstacle avoidance, the total cost
is higher in case 2. The manipulability is shown in Figure 8.19, with the
planned trajectories in Figure 8.20, both for case 2 of the simulations.

m anipulability
1.5 T v v v

1.4

1.3

1.2

11

1

0.9

0'80 1 2 3 4 5
time (sec)

Figure 8.19 Manipulability of the manipulator (case 2)

mani‘pglalor trajectory (rad) plmorvg trajoctory{m rad)
1 e ST ~-..
1.5 ’”° =
0.5 -
o | x4 ,,’
-0.5 /7 Z
4 0.5 - Pd
15 - - -
1. P i <
..... - o= Joint 4 0 P e m e =T X direction
2 b= «-s Joint “=- Y direction
25 -~ Joint € 0.5 -.-. heading angle
! 2 time (sec)3 4 5 o ! zﬁma (sac}a 4 s
(a) (b)

Figure 8.20 (a) Platform trajectories, (b) manipulator trajectories (case 2)

8.5 Discussions and conclusions

The search for minimum-time motion for an articulated mechanical
arm by tessellating the joint space involves a heavy computational
burden. In this work, evolutionary algorithms are used to tackle this
problem. A genetically-based motion planner is formulated for a six-
joint articulated arm considering all physical constraints. In addition,
different optimisation objectives were considered, namely minimum

196 Genetic algorithms in engineering systems

motion time, constrained motor torque values and constrained end
point velocities. The applicability and efficiency of the proposed
algorithm are demonstrated via several simulations on the PUMA
manipulator. Further work on the planner has allowed investigations
into initial population assembly and trajectory decoding mechanisms,
thus leading to much enhanced performance. The algorithm was also
implemented using a migration-type parallel GA with the population
distributed into three small subgroups. Each subgroup contributes the
best chromosome to the root processor, thus outperforming the
sequential planning algorithm.

In comparing the Pareto GA, breeder GA, weighted-sum GA and the
flexible polyhedron search methods, based on comprehensive
simulations for the RTX robot, the following points were observed.

1 The customised path redistribution-relaxation operator has
produced the best performance in the case studies among all tested
operators, supporting the idea of custom-building operators to the
requirements of an application.

2 Breeder GA operators can perform better in a nonBGA
environment (e.g. truncation selection environment).

3 Results produced by the weighted-sum GA depend on the weight
given to the objective function, generation size and population size.
Hence there are too many parameters to be tested to obtain an
optimum solution. The difficulties with setting these initialisation
parameters are high and time-consuming.

4 Both GA methods, weighted-sum and Pareto-based, require a
significant amount of processing time to obtain the optimum
motion time, although FPS requires much less computation.

5 Pareto-based GA appears to have an edge in optimisation over
weighted-sum GA, because it can produce a better optimum motion
time (although small in comparison) using smaller generation and
population sizes.

6 The optimality of the motion time is improving with population and
generation size. However, a compromise is needed to ensure
limiting processing time for complex cases.

An offline approach to time optimal path planning of multiarm
robotic systems based on evolutionary programming has been
presented. The path is represented by a string of via points between
the initial and final configuration in joint space, with the trajectories
between these via points interpolated by cubic splines. Repeated path
modification by changing the position of the via points is carried out

Evolutionary algorithms for robotic systems: principles and implementations 197

by the evolutionary algorithm to search for a global near-time optimal
solution. The strength of this algorithm lies in the fact that the
planning can be extended to include additional constraints (such as
energy minimisation) by incorporating them into the fitness function.
In addition, unlike variational calculus techniques, the algorithm does
not get stuck at local minima. The proposed algorithm also suits time-
optimal motion planning of redundant manipulator systems, where
collisions between links can be avoided by considering them as moving
obstacles. Moreover, since only forward kinematics is used in collision
avoidance, no singularities are encountered, which are inherent in
inverse kinematics of redundant manipulators. The algorithm has
been extended to include static obstacles in the workspace, and its
application to practical systems is being investigated. An interesting
area which needs to be explored is determining how close the bounds
on torque values can be set to the actual saturation limit so as to
provide enough play for the controller to account for the uncertain-
ties in the model of the practical systems.

The optimal trajectory generation problem for a mobile
manipulator system with nonholonomic constraints and obstacle
avoidance is a nonlinear multicriteria optimisation problem, where
the solution space is discontinuous and contains local minima. A
robust genetic algorithm is applied to solving this problem with torque
minimisation, manipulability maximisation and obstacle avoidance.
More criteria can easily be combined into the cost function.
Computational efficiency of the genetic algorithm is achieved by
applying a polynomial method. Although only simulations for a
mobile 3DOF robot are reported here, the algorithm has been
successfully implemented on Sheffield’s LongArm system comprising
a B12 mobile and a 2DOF arm.

Further details on the reported algorithms can be found in the
literature [18-25], or by accessing the group’s web site on
http://www.shef.ac.uk/rrg.

8.6 Acknowledgment

Parts of the reported work were supported by the Engineering and
Physical Sciences Research Council (grant GR/J15797).

198 Genetic algorithms in engineering systems

8.7 References

1 Kahn, M. E,, and Roth B.: ‘The nearminimum-time control of open-
loop articulated kinematic chains’. AIM 106. Stanford: Stanford
Artificial Intelligence Laboratory, 1971

2 Lin, C-S., Chang, P-R. and Luh, J. ¥ S.. ‘Formulation and
optimisation of cubic polynomial trajectories for industrial robots’,
IEEE Trans., AC-28, (12), pp. 1066-1073, 1983

3 Sahar, G., and Hollerbach, J. M.: ‘Planning of minimum-time
trajectory for robot arms’, Int. J. Robotics Res., 5, (3) pp. 91-100, 1986

4 Micalewicz: Genetic algorithms + data structures = evolution programs
(Springer-Verlag, 1992)

5 Chipperfield, A. J., and Fleming P. J.: ‘Parallel genetic algorithms: a
survey’. Research report, Univ. of Sheffield, May 24, 1994

6 Dissanayake, M. W. M. G,, Goh, G. J., and Phan-Thien, N.: ‘Time-
optimal trajectories for robot manipulators’, Robotica, 9, pp- 131-138,
1991

7 Fonseca, C. M., and Fleming, P. J.: ‘An overview of evolutionary
algorithms in multiobjective optimisation’, Evolutionary Computation.,
3, (1), pp. 1-16, 1995

8 Goldberg, D. E.: Genetic algorithms in search, optimisation & machine
learning (Reading: Addison-Wesley Publishing Company, Inc., 1989)

9 Himmelblau, D. M.: Applied non-linear programming (New York:
McGraw-Hill, Inc., 1972)

10 Whitley, D.: ‘The GENITOR algorithm and selection pressure: why
rank-based allocation of reproductive trials is best’, in proceedings of
the third international conference on Genetic algorithms, Schaffer, J. D.
(ed.) (Morgan Kaufmann, 1989), pp. 116-121

11 Baker, J. E.: ‘Reducing bias and inefficiency in the selection
algorithm’, in Proceedings of the second international conference on genetic
algorithms, Grefenstette, J. J. (ed.) (Lawrence Erlbaum Associates,
Publishers, 1987) pp. 14-21

12 Muhlenbein, H., and Schlierkamp-Voosen, D.: ‘Predictive models for
the breeder genetic algorithm, I: continuous parameter
optimisation’, Evolutionary Computation, 1, (1), pp. 25—49, 1993

13 Rana, A.S., and Zalzala, AM.S.: ‘Near time-optimal collision-free
motion planning of robotic manipulators using an evolutionary
algorithm’, Robotica, 14, pp. 621-32, 1996

14 Yamamoto, Y., and Yun, X.: ‘Co-ordinating locomotion and
manipulation of a mobile manipulator’, IEEE Trans. Autom. Control,
39, (6), June, pp. 1326-32, 1994

Evolutionary algorithms for robotic systems: principles and implementations 199

15 Ifggvyg)er, A., and Woodwark, J.: A programmer’s geometry (Butterworths,

16 Hwang, Y. K., and Ahuja, N.: ‘Gross motion planning ~a survey’, ACM
Comput. Surv., 24, (3) Sept. 1992

17 Latombe, J. C.: Robot Motion Planning (Kluwer Academic Publishers,
Amsterdam, 1991)

18 Chen, M., and Zalzala, AM.S.: ‘Dynamic modelling and genetic-
based motion planning of mobile manipulator systems with
nonholonomic constraints’, Control Eng. Pract., 5, (1), pp. 39-48, 1997

19 Chen, M., and Zalzala, AM.S.: ‘A genetic approach to the motion
planning of redundant mobile manipulator systems considering
safety and configuration’, J. Robot. Syst., 1997

20 Wang, Q., and Zalzala, AM.S.: ‘Genetic algorithms for PUMA robot
motion control: a practical implementation’, Int. J. Mechatronics, 6, (3)
pp. 349-65, 1996

21 Zalzala, AM.S., and Fleming, PJ.: ‘Genetic algorithms: principles &
applications in engineering systems’, Int. J. Neural Network World, 6, pp.
803-20, 1996

92 Rana, A.S., and Zalzala, AM.S.: ‘A neural network based collision
detection engine for multi-arm robotic systems’, Proc. 5th Int. Conf.
Articifical Neural Networks, IEE Conference 440, 1997, pp.140-45

93 Rana, A.S., and Zalzala, AM.S.: ‘An evolutionary planner for near
time-optimal collision-free motion of multi-arm robotic
manipulators’, Proc. UKACC int. conf. on Control, 1, pp. 29-35,
Exeter, 1996

24 Wang, Q., and Zalzala, A.M.S.: ‘Investigations into robotic multi-joint
motion considering multi-criteria optimisation using genetic algo-
rithms’. Proc. IFACworld congress, A, pp. 301-6, San Fransisco, 1996

25 Wang, Q., and Zalzala, AM.S., ‘Investigations into the decoding of
genetic based robot motion considering sequential and parallel
formulations’. Proc. UKACC int. conf. on Control, 1, pp. 442-7,
Exeter, 1996

8.8 Appendix
8.8.1 Motion based on cubic splines

The objective here is to construct joint trajectories which fit a number
of joint displacements at a sequence of time instants by using cubic
polynomial functions. Consider a vector of via points for the jth joint
along some initial path as [0, (%), 6.(%),0; (t.)1, where ¢, < <t <t, <

200 Genetic algorithms in engineering systems

.. <t,s <t,, <t,is an ordered time sequence, indicating that the position
of the jth joint at time ¢ = # is 8;(£). Let »; and w; denote the velocity
and acceleration of joint j at knot . At the initial time ¢ = ¢ and the
terminal time ¢ = ¢, the joint displacement, joint velocity and joint
acceleration are 6;, v;, w; and 6, v;,, w;, respectively. In addition, joint
positions 6, at ¢ =¢, for k£ = 3, 4,..., n-2 are also specified, However, 8,
and, 0;,, are the two extra knots required to provide the freedom for
solving the cubic polynomials. For simplicity, the subscript j for jth
joint is dropped since the result is the same for all the joints. From
Reference 6, the acceleration vector w of knots is obtained as follows:

Aw=b (8.1)
where: w = {wy, ws,Wy...,Wos, Whe, Wor]
r 2 7
3h‘+2h2+—li‘— h, 0 0
h,]
,2
b= 2k, +h) 0 0
hy
A= 0 hy 0 0
ht
0 0 A, st h,y) By =
hu—l
2
i 0 0 h,, 3h,_ ~2h,_,+ ;—i
r -
8,
, h h1 h2 0 +hlv,+—-wl -hw,
h,
L3 6, +hy, +—w,]+———
h, 3 by hy h.
95 _64 _94 _63
b= h, I,

1 2
fpns)

hey) {1 L)y .6

3 " hn—2 hn-—3 " hn-3

wn wn-—l

_+ - h=— n
hn—2

h

n-1

Evolutionary algorithms for robotic systems: principles and implementations 201

and
h=ta—t(t=12,.,n-1) (8.2)
wi(t)= f—;lf—’w +%w‘“ (8.3)
v,(t)= —ZLh‘i(tM —t) +-;i;§(t -ty +(1—*“—£%—*l]— (%—hTw) (8.4)
8,()= -glii-(ti,,, ~1)’ +%%~L(t -1,) +(%’;‘—‘—MT“)(t ~1,)

where i = 1,..., n-1. The positions, velocities and accelerations can
therefore be obtained, provided that each time interval A is known.

The optimal time solution for the time interval vector X should be
obtained with the corresponding knot velocities and accelerations
computed from the above equations, and the jerks are the rate of
change for the corresponding accelerations. The resulting via point
velocities, accelerations and jerks may or may not violate their limits
and should be compared with their own limits to obtain the time-
optimal path satisfying the joint constraints.

8.8.2 Physical limits

Note that there are six joints that must be considered simultaneously
and there are three constraints, i.e. velocity, acceleration and jerk
limits for each joint. For convenience, let:

VG = velocity constraint for joint j
WG = acceleration constraint for joint j
JG = jerk constraint for joint j

Q' (f) =velocity for joint j between knot i and #+1
" () acceleration for joint j between knot i and 1

1

Q”: (9 =jerk for joint jbetween knot i and #+1

X = (hi, hoy..., has), the vector of time intervals

Q:() =piece wise cubic polynomial trajectory for joint j
between knot ¢ and é+1

W = acceleration of joint jat knot ¢

The acceleration in eqn. 8 3 can therefore be rewritten as:

202 Genetic algorithms in engineering systems
and also the velocity function in eqn. 8.4 can be rewritten as:

-t t-t
Q;,'(t)= Hh w; + h W;in

i

W Wi 6,m hw, 6, hw,
0=t =0+t o Py (e

i i

n-1

The objective thus is to minimise XA, subject to constraints:
i=1

Q' {()ISVC, 1Q()ISWG and 1Q""(8) IS]C
forj=1,2,.,Nandi=1,2,., n-1.

8.8.3 The feasible solution converter (time scaling)

If the correct time intervals are guessed, then w; can be uniquely
determined from eqn. 8.1. However, if constraints on joint velocities,
accelerations and jerks are not satisfied, then time intervals [A,, h,,...,
h..] should be expanded to bring the unsatisfied velocities,
accelerations, and jerks to their constrained values. Now let:

j/VC}

I/WC :l: m?aniax|wﬁ|/WCj]

A =max[max
i et i)V

ji

A, = max[
j IE[I tul]v'

Jji

Wi~ W
i el g i

A= max(l,?»,,%/;\—z-ﬂ/x:)'

If the time interval h; is replaced by Ak for ¢ =1,2,... n-1, then the
velocity, aceleration and jerk will be replaced by factors of /)\, /)\2,
/}\3, respectively. These changes assure the satisfaction of constraints
on velocities, accelerations and jerks.

A= max[max IQ;(tjl JC j] = maxl:max
] 1

/Jc,.]

Chapter 9
Aerodynamic inverse

optimisation problems
S. Obayashi

Development of an aerodynamic shape optimisation method is
important for the commercial aircraft industry to improve the design
efficiency in today’s competitive environment. With the aid of
computational fluid dynamics (CFD), various aerodynamic design
techniques have been proposed. CFD codes compute the flows around
aircraft, and thus designers of an aircraft can predict its aerodynamic
performance from the flow solution. Existing CFD codes have been
coupled with various optimisation algorithms to obtain better
aerodynamic design.

Among the numerical optimisation algorithms, gradient-based
methods have been used widely. The optimum obtained from these
methods will be a global optimum, if the objective and constraints are
differentiable and convex [1]. In practice, however, it is very difficult
to prove differentiability and convexness. One can only hope for a
local optimum in a neighbour of the initial point, provided that the
gradient is well defined. Therefore, one must start the design from
various initial points to see if one can obtain a consistent optimum and
therefore have reasonable assurance that this is the true optimum. In
this sense, the gradient-based methods are not robust.

Evolutionary algorithms, in particular, genetic algorithms (GAs), are
known to be robust optimisation algorithms [2] and have been
enjoying increasing popularity in the field of numerical optimisation
in recent years. GAs are search algorithms based on the mechanics of
natural selection and natural genetics. One of the key features of GAs
is that they search from a population of points, not a single point. In
addition, they use objective function information (fitness value), not
derivatives or other auxiliary knowledge. These features make GAs
robust and thus attractive to practical engineering applications. GAs
have been applied to aeronautical problems in several ways, including
the parametric and conceptual design of aircraft [3,4], preliminary
design of turbines {5], topological design of nonplanar wings [6] and
aerodynamic optimisation using CFD [7-10].

204 Genetic algorithms in engineering systems

With an appropriate choice of optimisation algorithm, aerodynamic
numerical optimisation methods are categorised into two classes [11]:
direct and inverse numerical optimisation methods. The direct
numerical optimisation methods are formed by coupling aerodynamic
analysis methods with numerical optimisation algorithms. They
minimise (or maximise) a given aerodynamic objective function by
iterating directly on the geometry. The geometry is represented by a
general function, such as polynomial and cubic splines, by a linear
combination of known airfoils, or by a basic shape plus a combination
of typical geometry perturbations.

In this Chapter, the direct approach to airfoil shape optimisation is
first considered to evaluate performance of the existing optimisation
algorithms. One of these is the gradient-based method (GM). Another
is simulated annealing (SA) [12]. SA is a heuristic strategy for
obtaining near-optimal solutions, and derives its name from an
analogy to the annealing of solids. The other is GA, one of the
evolutionary algorithms. The design result demonstrates the
superiority of GA for aerodynamic optimisation among the others.

Applicability of GAs to CFD problems, however, was limited by the
fact that they were the direct numerical optimisation methods. CFD is
a typical example of large-scale simulations. The direct approach
requires CFD evaluation of each member of the population at every
generation in GAs. As a result, it requires a tremendous amount of
computational time. The inverse approach will therefore alleviate the
computational time for engineering purposes.

The inverse numerical optimisation methods deal with pressure
distributions rather than the geometry, to minimise, for example, drag
under given lift and pitching moment. Since pressure is the primary
force acting on aircraft, one can design desired aerodynamic
characteristics by specifying pressure distributions. Once the target
pressure distribution is optimised, corresponding geometry can be
determined by the inverse methods.

Inverse methods themselves form a class of powerful design tools.
These methods solve the classical inverse problem of determining the
aerodynamic shape which will produce given pressure distributions.
However, they leave the user with the problem of translating his design
goals into properly defined pressure distributions exhibiting the
required aerodynamic characteristics [13]. Although skilful designers
are capable of producing successful designs, design efficiency can be
improved by providing the designer with tools for target pressure
specification. For this purpose, numerical optimisation of target pressure

Aerodynamic inverse optimisation problems 205

distributions has been studied in [14] and | 15]. This approach avoids
most of the limitations of the standard inverse methods and requires
considerably less computational effort than the direct numerical
optimisation approach. The main topic of this Chapter is the
development of the inverse optimisation method using GA.

In the following, optimisation of wing shape is considered among
aircraft components, since wing shape has the primary impact on the
aircraft performance. The design of wings usually proceeds in two
steps. First, the midspan section of the wing called the airfoil is
designed. Since a typical wing for commercial aircraft has a longer
span than its chord, wing performance can be predicted by the
sectional shape in the midspan. This reduces the three-dimensional
design problem into a two-dimensional one.

In [10], a genetic algorithm (GA) has been applied to optimise
target pressure distributions around airfoils for inverse design
methods. Pressure distributions are parameterised by B-spline
polygons and the airfoil drag is minimised under constraints on lift,
airfoil thickness and other design principles. Once target pressure
distribution is obtained, corresponding airfoil geometry can be
computed by an inverse design code by Takanashi [16] coupled with a
Navier-Stokes solver [17].

Once the airfoil shape is designed, the next step of the wing design
process is to determine the variation of the designed airfoil in the
spanwise direction. The design principles for this step are essentially
twofold. One is to preserve the two-dimensional performance as much
as possible. This is easily achieved by the inverse method by specifying
the same chordwise pressure distribution along the wing span. The
other is to minimise the induced drag essential to the three-
dimensional wing. The incompressible flow theory predicts that the
minimum induced drag is achieved by an elliptical lift distribution
(the lift per unit span varies elliptically along the span) [18].
Therefore, the elliptical lift distribution is the key design principle for
three-dimensional wing shape optimisation.

The two design principles described above, however, contradict each
other in general. Since the sectional lift is given by the chordwise
pressure distribution, the elliptical lift distribution can be materialised
by specifying the same chordwise pressure distribution along the wing
span only if the wing has an elliptic planform. (The planform of a wing
is defined as the shape of the wing when viewed from directly above.)
Because of the manufacturing cost, however, modern commercial
aircraft usually use a tapered wing instead of an elliptic wing.

206 Genetic algorithms in engineering systems

Therefore, target pressure distributions should be optimised to
minimise the induced drag, that is, to achieve the elliptical lift
distribution for a tapered wing as well as to reduce the viscous drag for
airfoil sections of the wing using the previous two-dimensional
approach. This will lead to multiobjective optimisation. As a multi-
objective GA (MOGA), we have adapted the Pareto-based ranking
method by Fonseca and Fleming [19]. The design result will be given
for a typical transonic wing.

9.1 Direct optimisation of airfoil

9.1.1 Approximation concept

The airfoil design is to determine the contour y for both upper and lower
surfaces at every chordwise location. The way of expressing the y co-
ordinates determines the choice of design variables. Following [1], let’s
store airfoil designs in vectors Y7, Y2,..., YN, where these vectors contain
the co-ordinates of the upper surface followed by those of the lower
surface at given chordwise locations. They correspond to the existing
airfoil shapes as the basis vectors. Thus an airfoil shape is defined as:

Y: a1Yl+agY2+...+aNYN (9.1)

The design variables are now a, through ay. This greatly reduces the
number of design variables, say, compared with having the pointwise
values of the y co-ordinates over 50 chordwise locations. In the
following, four basic airfoil shapes are used (N=4). As defined in [1],
Y', Y% Y?and Y*indicate NACA2412, NACA64,-412, NACA65,-415 and
NACA64,A215, respectively.

9.1.2 Results of direct optimisation

To simplify the present acrodynamic optimisation problem, low speed
airfoils are considered, assuming that the flow field is governed by the
two-dimensional, incompressible, inviscid flow equation. A simple
panel method described in [20] can be used for the flow analysis.

Now let’s consider the lift maximisation problem. The objective
function can be defined as the lift coefficient to be maximised. The
only constraint used here is the maximum airfoil thickness, which
must be 15 % of the chord. The angle of attack is fixed at six degrees
for the flow analysis.

Aerodynamic inverse optimisation problems 207

First, lift maximisation is considered with two design variables, a, for
NACAZ2412 and @, for NACA64,-412, for demonstration purposes (thus
a = a, = 0). Since only two design variables are used, we can easily
visualise the distribution of the objective function, lift coefficient G, as
shown in Figure 9.1 where -5 < a;, @ < 5 and the lift coefficients are
computed at an interval of 0-2 in both @ and @, coordinates. The
negative value of the lift is replaced by zero.

The resulting distribution of the aerodynamic performance is highly
irregular. Recall that both of the basis airfoils have 12 % thickness. The

—>

NACAB4:-412 NACA2412

Figure 9.1 Lift distribution in design space

design variables are expected to approximately satisfy the relation:

15

a+ @ 12 (9.2)
to increase the airfoil thickness from 12 % to 15 %. However, the lift
distribution is not smooth throughout eqn. 9.2 because of the different
cambers and thickness distributions of the two basis airfoils. In
addition, the Figure indicates that the maximum lift is achieved when
a, = a, = 5. However, this is not acceptable because the airfoil thickness
will be about 120 % of the chord. Since the flow equation is linearised

208 Genetic algorithms in engineering systems

and only two design variables are involved, one might expect a smooth
distribution of the objective function. On the contrary, the resulting
distribution has sharp, distinct, multiple peaks. This is a typical
situation where GM will not work.

To see the effect of the constraint, the objective function is now
redefined by using a penalty function with the airfoil thickness to
chord t/cas:

F =C, .exp[-100 x!t/ ¢-0-151] (9.3)

The corresponding function distribution is shown in Figure 9.2.
Although the distinct, multiple peaks are greatly reduced, now most of
the design space has zero objective function value. The design space
with positive objective function values is found only in the narrow
ridge along with eqn. 2 and it still contains five local extrema. This is
another typical situation where GM will have a difficulty. In these
situations, 2 mechanism to locate a global optimum is required. The
combination of mutation and recombination of GA will be effective in
finding an optimal solution. On the other hand, the hill-climbing
strategy of GM is practically inapplicable to this problem.

Now the next test case considers lift maximisation with a full set of
four design variables. The same constraint and flow condition were
used. This time three optimisation methods, GM, SA and GA, were
actually run for comparison. For GM, the feasible direction method in
ADS V3.0, a FORTRAN program for automated design synthesis [21],
was used. For SA, the code listed in [12] was used. For GA, the simple
GA in [2] was adapted with the real number coding.

Figure 9.3 summarises the optimum lift values obtained from all
three methods. For the GM and SA cases, four apparent initial designs
are used. The lift coefficient of the GA case is 2:46, which is the best
of the three and much higher than those of the previous two
optimisation cases. Although both GA and SA are capable of getting
out of local extrema, GA outperforms SA. This is because GA uses a
population for simulated evolution, and SA uses a single design for
annealing. Thus, the result of GA depends on the initial design less
than that of SA. In addition, although SA produced consistent results
against different initial points, the results of GM strongly depend on
the initial points. GM failed to find an optimum when starting from
the third initial design by reaching a negative thickness of the airfoil.

Figure 9.4 shows comparison of number of function evaluations
required for the three methods. For the GM and SA cases, the sum of
four runs (corresponding to four different initial designs) was plotted.

Aerodynamic inverse optimisation problems 209

—

1,

a
I
NACAG64:-412 NACA2412

Figure 9.2 Objective function distribution (lift coefficient with a penalty for airfoil
thickness)

M GM
Ky sA

o

Ce

Figure 9.3 Comparison of design results among GM, SA and GA

It confirms that GA is the most time-consuming method. However, if
we use GM or SA, we have to run it starting from many different initial
designs to obtain a comparable result to that of GA. Since there are no
guidelines for how to choose the initial design, it has to be an
exhaustive, random search. As a result, GM and SA will not have any
advantage in efficiency. Overall, GA is the best choice for this test case.

In general, aerodynamic performance is sensitive to geometries. So
far, any theory of fluid dynamics cannot tell us how to choose design
variables which will guarantee the convexness of the objective
function. In compressible flows, the objective function itself may be

210 Genetic algorithms in engineering systems

discontinuous due to shock waves. Thus, the distribution of the
objective function will be quite unexpected and the resulting
aerodynamic optimisation problem will be very difficult. In this
situation, a global search algorithm is indispensable and thus GA is
preferred for the aerodynamic optimisation.

9.2 Inverse optimisation of the airfoil

GA

N
N
N

o

M\

e e e e e erey
0 10 20 30 40 S0 60 70 80
Work unit (GM=1)

Figure 9.4 Comparison of number of function evaluations among GM, SA and GA

Target pressure optimisation for the airfoil is considered in this
Section. As shown in the previous Section, GA will lead to the best
solution for aerodynamic optimisation. However, it requires a
tremendous number of computations. For engineering purposes, the
direct approach will be too expensive. Therefore, inverse optimisation
is developed to alleviate the computational time.

9.2.1 Coding

Genetic algorithms simulate evolution by selection. Design candidates
are considered as individuals in the population. An individual is
characterised by genes represented as a string of parameters. Here, an
individual is a pressure distribution. Therefore, a coding scheme is
required to specify a pressure distribution in terms of a string of
parameters.

One of the parameterisation techniques recommended for ab initio
designs is B-spline parameterisation [22]. The B-spline curve can be

Aerodynamic inverse optimisation problems 211

constructed so that the first and last points coincide with those of the
defining polygon. Thus, pressure distributions are split into two
curves, corresponding to pressure distributions on the upper and
lower surfaces of an airfoil, respectively. As shown in Figure 9.5, seven
points are used to define a B-spline polygon, specifying the pressure
coefficient at the stagnation point G, = 1 at x = 0 (since the inverse
method does not solve the stagnation point exactly) and the pressure
coefficient at the trailing edge C, = C,, (by user specification) at x =1
(assuming the chord length unity).

——TARGET PRESSURES
—o—B-SPLINE POLYGON

-

05

0 ' -~ R

- \ >

05 ‘

1

15 i i

02 0 02 04 06 08 1 12

xc

Figure 9.5 B-spline polygons and corresponding pressure distributions

Among 14 points for defining upper and lower C, curves, ten points
are free to move. The xand y (y = G,) coordinates of those points are
the design variables and thus we have 20 design variables in total.
Although standard GAs are characterised by the use of the binary
coding for design variables, a real (decimal) number is used for
simplicity.

Initial population is generated randomly in the region of 0 < x < 1
and-1-5 < y< 1. Besides the leading and trailing edges, one more point
of the seven-point B-spline polygon is initially confined on the yaxis to
describe a steep C, drop near the leading-edge region, that is, to obtain
a large leading-edge radius typical for a supercritical airfoil [23]. To
create each individual, the lower C, curve is first generated based on
constraints mentioned later. Then, the upper C, curve is generated so
as to satisfy approximately the rest of the constraints. If the resulting

212 Genetic algorithms in engineering systems

lift differs from the specified lift by less than 10 %, the corresponding
string of parameters is assigned to an individual as genes. If it differs
by more than 10 %, the string of parameters is discarded and
regenerated. This process is repeated until 100 individuals are created.

9.2.2 Simple GA with real number coding

At each generation (iteration) of GA, the fitness value (objective
function value) of every individual is evaluated and used to specify its
probability of reproduction. A new population is generated from
selected parents by performing specific operators on their genes.
These operators are briefly explained in the following.

A simple GA is composed of three operators [2]: reproduction,
crossover and mutation. Reproduction is a process in which individual
strings are copied according to their fitness values. This implies that
strings with a higher value have a higher probability of contributing
one or more offspring in the next generation. A typical reproduction
operator is the roulette wheel method described in [2]. The
reproduction process produces a mating pool as a result. Then
crossover proceeds in two steps. First, members in the mating pool are
mated at random. Second, each pair of strings undergoes partial
exchange of its strings at a random crossing site. This results in a pair
of strings of a new generation. Mutation is a bit change of a string that
will occur during the crossover process at a given mutation rate.
Mutation implies a random walk through the string space and it plays
a secondary role in the simple GA.

A simple crossover operator for real number strings is the average
crossover [24] which would compute the arithmetic average of two
real numbers provided by the mated pair. A weighted average can be
used as:

Childl = r*Parentl + (1-r)*Parent2
Child2 = (1-n)*Parentl + r*Parent2 (9.4)

where Childl, 2 and Parentl, 2 denote 20 design variables of the
children (members of the new population) and parents (a mated pair
of the old generation), respectively. The uniform random number r (0
< r< 1) is regenerated for every design variable. Because of eqns. 9.4,
a number of the initial population is assumed even.

Mutation takes place at a probability of ten per cent (when a
random number satisfies 71 < 0.1). Eqns. 9.4 will then be replaced by:

Aerodynamic inverse optimisation problems 213

Childl = r*Parentl + (1-7)*Parent2 + (12-0-5) /5
Child2 = (1-r)*Parentl + 7*Parent2 + (+3-0-5)/5 (9.5)

where r2 and r3 are also random numbers for determining the
amount of mutation.

9.2.3 Fitness evaluation: objective and constraints
In this Chapter, we define the optimisation problem as:

Minimise: drag coefficient C,

Subject to: 1 lift coefficient G, = specified
2 airfoil thickness ¢ = specified
3C,<0at0-1<x<0-6and §AC,, 1dx>0-1
4 max G, <0-4

0.6<x<1

5 Cp suction peak S Cp

6 4Gy I =()
dx lo.a<x<05

7 4G <9.5
dx

8 number of inflection points < 2

To specify airfoil thickness ¢ approximately, a formula is taken from
[15] as:

2
t=—V1 ~ Mij Cp,u + Cp,) dx

9.6
2 0 2 ©-0

where M. is the freestream Mach number. Constraints 5 and 6 aim to
reproduce the sonic-plateau pressure distributions described in [23].
Constraint 7 was taken from the observation of C, plots in [23] to avoid
a separation of the boundary layer.

Drag is calculated as the sum of viscous and wave drag. When the
flow is attached, the profile drag can be calculated from a knowledge
of the potential flow pressure distributions and location of transition
from laminar to turbulent flow. Locations of transition are left for user
specification. When no shock wave is present, wave drag is ignored.

The Squire-Young relation is an empirical relation between drag
based on the momentum thickness of the boundary layer and the
potential velocity [25]. The momentum thickness can be estimated
from an integral equation of the turbulent boundary layer. The viscous

214 Genetic algorithms in engineering systems
drag is estimated as

Um\ 9.7

where 0, is the momentum thickness at the trailing edge, U, is the
potential velocity at the trailing edge and U. is the freestream velocity.
See [25] for more detail.

The optimisation took about three minutes on an SGI Indy
workstation using 1000 successive generations with 100 individuals in
the population. It is far less than the computational time necessary for
the inverse design as mentioned later.

9.2.4 Construction of fitness function

GAs need to define an objective to be maximised. An inverse of the
drag coefficient is taken as the objective here. Then, all the constraints
are required to be combined with the objective. There are eight
constraints in the fitness evaluation Section. Constraints 1 and 2 are
equality constraints and constraints 3 to 8 are inequality constraints.
The equality constraints are multiplied to the objective as an
exponential function to reject the individuals which do not satisfy the
specified lift and airfoil thickness. The inequality constraints are
expressed so as to increase their values when violated and the inverse
of their sum is added to the objective with penalty.
The final form of the objective is given as:

. 107
Fitness = (%:; + 2—;)-270) -exp(~100 x EC) (9.8)

where ICand EC denote the sum of inequality constraints and equality
constraints, respectively. For IC, constraints 3 to 8 are represented as:

Aerodynamic inverse optimisation problems 215
IC=10000 x [min(f3$] G| dx, 0-1)-0-1]?

+5 [max(G,, 0-4}-0-4]*

0-6<x<1

+3X [max‘ sucuonpeak,]. 0) 1 O]

(9.9)
+40000x [Ll—-min(M 14)]
2 >

+0-001x [max<dcp,n,2. 5)_2. 5] 2
dx

+0-01xexp[Number of inflection points]

Cp,ulx = O-S—Cp,ulx =01

where slope =
P 0-4

+ 1. For EC, constraints 1 and 2 are
represented as:

EC= max(l bpecificd = tcalculaledl ’ 10_4)

+ max(l CISPeciﬁed - Clcalculaledl > 10—4) (910)
-0-01

where the differences below 10 are ignored for the optimisation.

9.2.5 Inverse design cycle

Once the present GA finds an optimum target pressure distribution, a
corresponding airfoil geometry can be obtained by an inverse design
method (Figure 9.6). Here the inverse design code WinDes is used
[16]. The code can solve both two- and three-dimensional problems.
WinDes uses the following iterative procedure. Suppose the initial
geometry and surface pressure distributions obtained from any CFD
analysis code are given. First, pressure differences are calculated from
the given initial and target pressure distributions. From these pressure
differences, corresponding geometry corrections can be computed
from the integral equations discretised at the panels on the geometry.
An improved geometry is then obtained from the initial geometry and
the computed geometry corrections. Finally, the CFD code is used
again to check how close the resulting pressure distributions are to the
target distributions. If the differences are still large, the process will be

216 Genetic algorithms in engineering systems

iterated. In practice, ten to 20 iterations are sufficient to obtain the
final geometry.

The advantage of this method is that the required analysis code is
arbitrary and any type of analysis method, even experimental, can be
used. In this Chapter, two and three-dimensional Navier-Stokes codes,
LANS2D [26] and LANS3D [17], were used. The latest version of
these codes uses the third-order upwind in the right-hand side.

In the present inverse design method, grid generation around the

Initial Airfoll

Flow Conditions

Target C; WinDes

Figure 9.6 Flowchart of the present design procedure

modified geometry is required at every iteration. In order to automate
the inverse design loop, a grid generator has to be robust and efficient.
An algebraic grid generation code described in [26] is used because of
its robustness and efficiency. The two-dimensional C-type mesh
contains 131 times 51 grid points in the chordwise and normal (to the
surface) directions, respectively. In the three-dimensional case, the C-
H topology is used, applying the two-dimensional grid generation at
each spanwise section. The three-dimensional grid contains 30
sections in the spanwise direction.

Use of WinDes, LANS2D/3D, and the algebraic grid generator
constructs an automated loop for the inverse design with reasonable
computational requirements. These codes were implemented on a

Aerodynamic inverse optimisation problems 217

CRAY (C90/161024 supercomputer at Institute of Fluid Science,
Tohoku University. The inverse design of an airfoil for ten cycles
required about 30 minutes on C90 using a single processor.

9.2.6 Results of airfoil design

In the first test case, the flow condition was set to the freestream Mach
number of 0-75 and the Reynolds number of ten million. In the
Navier-Stokes computation, the Baldwin-Lomax turbulence model
[27] was used. Angle of attack was set to zero. Locations of transition
were fixed at five and ten per cent chord for upper and lower surfaces,
respectively. The lift was specified as 0-5 and the trailing-edge pressure
coefficient was set to 0-15. Figure 9.7 shows the optimisation history of
the present GA. The optimum was obtained after about 450
generations.

0.51 0.01
0.5 Ay ’ 0.0098
[—¢]
0.49 0.0096
o ‘lv 0
]
0.48 |%.... %} 0.0094
?f._ . —
0.47 ILIDEIINIY o0.0092
0.46 0.009
0 100 200 300 400 500
Gereraton

Figure 9.7 Optimisation history of lift and drag of the best fit in generation

Figure 9.8 shows the target pressure distribution obtained from the
present GA, the designed geometry obtained from the inverse method
and the corresponding pressure distribution obtained from the
Navier-Stokes computation. The optimised pressure distribution has a
sonic plateau to avoid a shock wave on the upper surface of the airfoil
and a rear loading region typical for the supercritical airfoils. In the
inverse design cycle, the initial geometry was chosen as the NACA0012
airfoil. In total nine iterations were required to obtain the final
geometry.

218 Genetic algorithms in engineering systems

GA, estimated { NS, designed] NS, SC(2)-0610'
[+ 0.500 0.502 0.446
C, 9.29E-3 1.17E-2 1.17E-2
1 T T T T 04
‘ 1l?esign
i o Target
05 G i P ; 03
o* 0 \” *) 02
05 0.1
1 ’/ 0 g
15 0.1
02 0 0.2 0.4 0.6 0.8 1 12
xlc

Figure 9.8 Design results and comparison of aerodynamic performance for the
airfoil case

In Figure 9.8, the attached table shows a comparison of the
aerodynamic performances among the target (indicated as GA,
estimated), the inverse design result (indicated as NS, designed) and
a modified supercritical airfoil (indicated as NS, SC(2)-0610'). The
SC(2)-0610 airfoil is taken from [23]. Although it has a blunt trailing
edge, the geometry is modified to have a sharp trailing edge for
comparison purposes. The drag obtained from the target optimisation
was underestimated due to the simplified calculation of the viscous
drag. Comparing the NS (Navier-Stokes) results, the present design
shows higher L/D (lift to drag) ratio than the modified SC(2)-0610
airfoil.

9.3 Inverse optimisation of the wing

Once the airfoil shape is designed, the next step of the wing design is
to determine the variation of the designed airfoil in the spanwise
direction. The design principles for this step are essentially twofold as
mentioned at the beginning of this Chapter. One is to preserve the
two-dimensional performance as much as possible. This is easily
achieved by the inverse method by specifying the same chordwise
pressure distribution along the wing span. The resulting wing has the
straight isobar pattern of pressure contours on the wing surface.

The other is to minimise the induced drag. If the wing has lift, the
average pressure over the bottom surface of the wing is greater than

Aerodynamic inverse optimisation problems 219

that over the top surface. Consequently, there is some tendency for the
air to flow around the wingtips from the high to low-pressure sides.
This flow establishes wingtip vortices. These vortices induce a small
downward component of air velocity in the neighbourhood of the
wing itself. Because the local relative wind is canted downward, the lift
vector itself is tilted back; hence it contributes a certain component of
force parallel to the freestream, that is, a drag force.

Since the induced drag becomes one half to two thirds of the total
drag during climb, reduction of the induced drag is an important goal
for the three-dimensional wing design. According to the incompres-
sible flow theory, the minimum induced drag is achieved by an
elliptical lift distribution [18]. Therefore, the elliptical lift distribution
is the key design principle for wing shape optimisation.

The induced drag is strongly influenced by the planform of a wing.
Planform is directly related to aspect ratio and taper ratio of a wing.
Taper ratio has a great effect on the spanwise lift distribution and thus
there is an optimal taper ratio for a wing to minimise the induced drag
[28]. Tapered wings have been adopted for the majority of aircraft
nowadays since they offer a compromise solution on account of their
low induced drag, high maximum lift, low structural weight, good
stowing provisions for the undercarriage and reasonable manufactur-
ing cost. The present design method will minimise the induced drag
for any taper ratio and thus it will provide more design opportunities
for wing shapes.

9.3.1 Pressure distribution for the wing

Target pressure distribution for the three-dimensional wing can be
obtained by specifying the chordwise pressure distributions at several
spanwise sections. Planform shape of a wing is usually determined by
other means and thus a typical wing planform of a transonic transport
aircraft is assumed here.

The present objective of the wing design is to minimise the induced
drag. This is achieved by elliptical lift distribution in the spanwise
direction of the wing. The constraint in the total lift will specify an
elliptical lift distribution uniquely. Thus, the objective function can be
given by differences of the sectional lifts to the elliptic distribution at
the several spanwise sections. The three-dimensional optimisation
problem is now defined as:

Minimise: 1 difference of the spanwise lift distribution to the
elliptic distribution

220 Genetic algorithms in engineering systems

2 two-dimensional drag coefficient C; at each spanwise
section
Subject to: additional constraints for chordwise pressure distribu-
tion at each spanwise section

We can further redefine the constrained problem to the uncon-
strained multiobjective optimisation problem as:

Minimise: 1 difference of the spanwise lift distribution to the
elliptic distribution
2 two-dimensional drag coefficient C, at each spanwise
section
3 penalty function for chordwise pressure distribution at
each spanwise section in Section 9.2.4.

9.3.2 MOGA

Before implementing the Pareto ranking approach for the present
MOGA, we have tried a few other ways of constructing a GA for the
present multiobjective optimisation. First, a simple GA was used by
combining three objective functions into a single one. However, this
approach not only failed to search Pareto-optimal solutions, but also
produced premature convergence. Certain spanwise sections had
unacceptable chordwise pressure distributions for the airfoil section.
Next, the vector evaluated genetic algorithm (VEGA) [29] was
adapted to the present problem. As pointed out in [30], however, the
solution was extremely good for one objective but not for the others.
These experiences led us to Fonseca-Fleming’s Pareto ranking method
[19].

In the present MOGA, the third objective for the penalty function is
used to pool the top 30 % individuals in the population. Then
Fonseca-Fleming’s Pareto ranking method is applied to these
individuals by using the first and second objectives. A selection
operator is defined by using the nonlinear function suggested in [31].
Crossover and mutation operators are defined similar to those in
Section 9.2.2. The elite strategy is also used to preserve the best
individual for each objective. After 200 generations, the best solution
in terms of the first objective is selected from the Pareto-optimal set as
the optimal solution.

As mentioned in Section 9.2.1, random creation of initial
population produces infeasible solutions due to the severe constraints.
Thus, we first ran the two-dimensional GA by using only the

Aerodynamic inverse optimisation problems 221

constraints to evolve a population of feasible solutions. Then we
distributed the sectional pressure distribution to the six spanwise
sections from the root to the 83-3 % span so as to give the elliptical lift
distribution approximately. To do this, we only changed the pressure
on the lower surface of the airfoil. In this way, we were able to
implicitly satisfy the first design principle for the wing mentioned in
the beginning, that is, to maintain the two-dimensional performance.
The straight isobar pattern of pressures on the upper surface of the
wing is expected to produce drag divergence at the same Mach
number along the wing span and thus the resulting drag divergence
Mach number of the wing will be similar to that of the airfoil section.
The population of 210 individuals was used as the initial population of
the present MOGA.

Once the present MOGA finds an optimum target pressure
distribution, corresponding wing geometry can be obtained by an
inverse design method similar to the airfoil case. The inverse design
code, Navier-Stokes code, and algebraic grid generator were
implemented on an NEC SX-4 supercomputer at the Department of
Aeronautics and Space Engineering, Tohoku University. The inverse
design for one cycle required about 45 minutes of single CPU time
(most of the time is used for the Navier-Stokes computation).

9.3.4 Results of wing design

As a model wing for a transonic transport aircraft, the simple, swept
and tapered wing shown in the left-hand side of Figure 9.9 is
considered for shape optimisation. The wing has a sweep angle of 20-4
deg, an aspect ratio of 7-38 and a taper ratio of 0-3. It should be noted
that this taper ratio is small because such a wing has approximately an
elliptical lift distribution.

The elliptical lift distribution was monitored at six locations from
the root to the 83-3 % span, as indicated. The inverse solver used the
same spanwise locations for the geometry correction. For the Navier-
Stokes grid, the modification of wing geometry was linearly
interpolated between those sections. In the tip region, the same airfoil
section was used outside of the 83-3 % section, while the wing twist was
linearly extrapolated. The tip region is usually designed by other
means and thus the optimisation of this region is not considered here.

The right-hand side of Figure 9.9 shows the computed pressure
contours on the upper surface of the wing designed by the inverse
method based on the target pressure distribution optimised by the
present MOGA. The flow condition had a freestream Mach number of

222 Genetic algorithms in engineering systems

0-75, the Reynolds number based on the root chord of 10" and an
angle of attack of 0 deg. The resulting straight isobar pattern satisfies
the first design principle well and thus indicates good performance at
higher Mach numbers. On the other hand, it shows a minor oscillation
near the leading edge toward the root section. Although the airfoil
sections vary very much from the root to 16:7 % section, a linear
interpolation is used to create a Navier-Stokes grid for brevity. To treat
the root region as well as the tip region more precisely, an elaborate
procedure may be necessary.

83.3%
66.7%
50%
33.3%

16.7%

Root

Planform Design

Figure 9.9 Wing planform and computed pressure distribution on the designed

wing

Figure 9.10 shows the computed lift distribution of the designed
wing in comparison to the elliptic distribution. The result is found to
satisfy the second design principle closely. Figure 9.11 shows the target
chordwise pressures obtained from the present MOGA, the resulting
airfoil shape of the wing and the corresponding pressures computed
by the Navier-Stokes solver at the 16-7 %, 50-0 % and 83-3 % spanwise
sections. It confirms that the inverse problem is solved satisfactorily
except at the leading edge near the root section. The discrepancy of
the pressure profiles there corresponds to the oscillation found in
Figure 9.9.

Aerodynamic inverse optimisation problems 223

0.5

0.4 I o N
\

0.3 AN

0.2 \

Design \
0.1 O Elliptic
0 3

0 0.5 1 1.5 2 2.5
(Root) Spanwise length (Tip)

Sectional lift

Figure 9.10 Sectional lift distribution in the spanwise direction

Figure 9.12 summarises the aerodynamic performance of the
designed wing in terms of the lift to drag ratio. For comparison
purposes, two other wings were designed by the inverse method. The
design indicated as ‘alternate’ was obtained by changing the upper
surface pressures when distributing the two-dimensional pressure
distributions to the six spanwise sections for the initial population.
Then the same MOGA was run. This procedure allows a wide variation
in the pressure distributions in the spanwise direction. The resulting
wing satisfies the second design principle, for an elliptic distribution,
better than the present design but not the first principle. Thus, it
performs better at the design point but worse at higher Mach
numbers.

The other design indicated as ‘isobar’ was obtained by specifying a
straight isobar pattern on both upper and lower surfaces of the wing.
The resulting wing satisfies the first design principle of the wing
exactly but not the second one. However, this is the standard design
procedure for transonic wings. The reduction of the induced drag
simply relies on the use of a proper taper ratio. In fact, due to the
present taper ratio of 0-3, this wing gives good performance similar to
the present design. Since the geometries of the two are completely
different, this result confirms that the present design gives a Pareto-
optimal solution under the contradicting design principles for the
wing.

224 Genetic algorithms in engineering systems

H o Target
05 o, 0.3
" ;
& o /7 \\) 02
05 01
[— o 5
83.3%
15 i 1 0.1
02 0 02 04 06 08 1 12
xe
1 : 0.4
05 03
-~
g o Vs ’ 02
05 0.1
1 : o5
50.0% 5
15 L 0.1
02 0 02 04 06 08 1 12
xe
1 — 0.4
05 0.3
'.'-'-\
& o V4 \ ’ 0.2
05 |- 401
1 0o 5
16.7%
15 i 0.1

02 0 02 04 06 08 1 12
x/c

Figure 9.11 Designed airfoil sections and corresponding pressure distributions

25
Present
'''' Alternate
24 S © Iisobar M
-4
23 I
\
a Q-\é“\‘—-‘)
S 22 ;
21 :
20
0.65 0.7 0.75 0.8 0.85

Mach number

Figure 9.12 Comparison of L/D performances

Aerodynamic inverse optimisation problems 225

9.4 Summary

Characteristics of aerodynamic optimisation have been discussed
through wing shape design problems. It has been demonstrated that
distribution of the objective function can be extremely rough even in
a simplified problem. In such a situation, GA (genetic algorithm) is
expected to be more effective than a simple hill-climbing strategy.

Three optimisation algorithms, the GM (gradientbased method),
SA (simulated annealing) and GA, were first applied to the airfoil
shape design using the approximation concept to compare their
performances. Although GA is time consuming, its result is superior to
those of the others. Since the other algorithms will require many trials
starting from various initial designs to obtain a comparable result, they
will not have any advantage in efficiency. The result suggests that GA
is the best option for aerodynamic optimisation.

To alleviate the large computational time necessary for GA, the
inverse optimisation method has been developed to optimise target
pressure distributions. GA is applied to find a pressure distribution
which minimises the airfoil drag under constraints on lift, airfoil
thickness and other design principles. Once the target pressure is
given, the corresponding geometry can be found by an inverse code
coupled with a Navier-Stokes solver.

MOGA based on Fonseca-Fleming’s Pareto ranking method has
been developed to optimise the three-dimensional target pressures for
the aerodynamic inverse design of wing shape. The optimisation
problem was formulated to minimise the induced drag for the wing as
well as to minimise the viscous drag for airfoil sections. Performances
of both the simple GA and VEGA were found unsatisfactory to the
three-dimensional optimisation problem.

The resulting procedure was successfully applied to transonic wing
design. The standard design procedure for transonic wings has
previously focused on materialising the straight isobar pattern over the
wing. Reduction of the induced drag merely relied on the use of a
proper taper ratio for the wing planform.

The present design procedure allows the minimisation of the
induced drag for an arbitrary wing planform with any taper ratio. This
will provide more design opportunities for wing shapes in terms of
better aerodynamic performance, lighter structural weight and less
expensive manufacturing costs.

226 Genetic algorithms in engineering systems

9.5 References

1 Vanderplaats, G. N.,: Numerical otimization techniques for engineering
design: with applications (McGraw-Hill, Inc., New York, 1984)

2 Goldberg, D. E.: Genetic algorithms in search, optimization & machine
learning (Addison-Wesley Publishing Company, Inc., Reading, Jan.
1989)

3 Bramlette, M. F, and Cusic, R.: ‘A comparative evaluation of search
methods applied to the parametric design of aircraft’. Proceedings of
the third international conference on Genetic alrgorithms (Morgan
Kaufmann Publishers, Inc., San Mateo, June 1989) pp. 213-218

4 Crispin, Y.: ‘Aircraft conceptual optimization using simulated
evolution’. AIAA paper 94-0092, Jan. 1994

5 Powell, D. J., Tong, S. S,, and Skolnick, M. M.: ‘EnGENEous domain
inependent, machine learning for design optimization’. Proceedings
of the third international conference on Genetic alrgorithms (Morgan
Kaufmann Publishers, Inc., San Mateo, June 1989) pp. 151-159

6 Gage, P, and Kroo, L.: ‘A role for genetic algorithms in a preliminary
design environment’. AJAA paper 93-3933, August 1993

7 Gregg, R. D., and Misegades, K. P.: “Transonic wing optimization
using evolution theory’. ATAA paper 87-0520, Jan. 1987

8 Quagliarella, D., and Cioppa, A. D.: ‘Genetic algorithms applied to
the aerodynamic design of transonic airfoils’. AIAA paper 94-1896,
June 1994

9 Yamamoto, K., and Inoue, O.: ‘Applications of genetic algorithm to
aerodynamic shape optimization’. AIAA paper 85-1650-CP, a
collection of technical papers, 12th AIAA Computational fluid dynamics
conference, CP956, San Diego, CA, June 1995, pp. 43-51

10 Obayashi, S; and Takanashi, S.: ‘Genetic optimization of target
pressure distributions for inerse design methods,” ATAA J. 34, (5) pp.
881-886, 1996

11 van den Dam, R. F,, van Egmond, J. A., and Slooff, J. W.: ‘Optimization
of target pressure distributions’. Special course on inverse methods
for airfoil design for aeronautical and turbomachinery applications,
AGARD Report 780, reference 3, Nov. 1990

12 Press, W. H., et al: Numerical recipes in FORTRAN: the art of scientific
computing (Cambridge University Press, Cambridge, 1992, 2nd edn.)

13 Labrujére, Th. E., and Slooff, J. W.: ‘Computational methods for the
aerodynamic design of aircraft components’, Ann. Rev. Fluid Mech. 25,
pp.183-214, 1993

14 van den Dam, R. F.: ‘Constrained spanload optimization for mimum

Aerodynamic inverse optimisation problems 227

drag of multi-lifting surface configuration’. Computational methods
for aerodynamic design (inverse) and optimization, AGARD
conference proceedings 463, reference 16, March 1990

15 van Egmond, J. A: ‘Numerical optimization of target pressure
distributions for subsonic and transonic airfoil design’.
Computational methods for aerodynamic design (inverse) and
optimization, AGARD conference proceedings 463, reference 17,
March 1990

16 Takanashi, S.: ‘Iterative three-dimensional transonic wing design
using integral equations’, J. Aérer. 22, (8) pp. 655-660, 1985

17 Fujii, K., and Obayashi, S.: ‘Navier-Stokes simulations of transonic
flows over a practical wing configuration’, AIAA J, 25, (3), pp-
369-370, 1987

18 Anderson, Jr., J. D.: Introduction to flight (McGraw-Hill Inc., NY, 1989)
pp. 216-222

19 Fonseca C. M., and Fleming, P. J.: ‘Genetic algorithms for
multiobjective optimization: formulation, discussion and
generalization’. Proceedings of the 5th international conference on
Genetic algorithms (Morgan Kaufmann Publishers, Inc., San Mateo,
July 1993), pp. 416423

20 Katz, J., and Plotkin, A.: Low speed aerodynamics: from wing theory to panel
methods (McGraw-Hill Inc., New York, 1991, international edn.)

21 Vanderplaats, G. N.: ‘ADS — a FORTRAN program for automated
design synthesis, version 3.00°. ‘Engineering Design Optimization,
Inc., 1988

22 Rogers, D. F, and Adams, J. A.: Mathematical elements for computer
graphics (McGraw-Hill, Inc., New York, 1990, 2nd. edn.)

23 Harris, C. D.: ‘NASA supercritical airfoils — a matrix of family-related
airfoils’. NASA TP-2969, March 1990

24 Davis, L.: Handbook of genetic algorithms (Van Nostrand Reinhold,
1990)

25 Young, A. D.: Boundary layers (AIAA Education Series, Washington, D.
C., 1989)

26 Matsushima, K., Obayashi, S., and Fujii, K.: ‘Navier-Stokes
computations of transonic flow using the LU-ADI method’. AIAA
paper 87-0421, Jan. 1987

27 Baldwin, B. S., and Lomax, H.: ‘Thin-layer approximation and
algebraic model for separated turbulent flows’. AIAA paper 78-257,
January 1978

28 Torenbeek, E.: Synthesis of subsonic airplane design (Kluwer Academic
Publishers, Dordrecht, 1982) pp. 232-237

228 Genetic algorithms in engineering systems

29 Schaffer, J. D.: ‘Multiple objective optimization with vector evaluated
genetic algorithm’. Proceedings of the Ist international conference
on Genetic algorithms, 1985, pp. 93~100

30 Tamaki, H., Kita H., and Kobayashi, S.: ‘Multi-objective optimization
by genetic algorithms: a review’. Proceedings of 1996 IEEE
international conference on Evolutionary computation, 1996, pp.
517-522

31 Michalewicz, Z.: Genetic algorithms + data structures =evolution programs
(Springer-Verlag, Berlin, 1994, 2nd extended edn.) pp. 57-58

Chapter 10
Genetic design of VLSI layouts

V. Schnecke

10.1 Introduction

Genetic algorithms (GAs) are well known as a robust optimisation
method for a large range of design applications. This robustness is
caused by the fact that a genetic algorithm works with a coding of the
optimisation problem rather than the problem itself. It deals with a set
of individuals, which represent candidate solutions to the optimisation
problem. Generally, there is a distinction between the phenotype
representation, which defines the real appearance of the individual,
and the genotype, which encodes the genetic information needed for
a full characterisation of the solution.

In many applications a set of continuous parameters has to be
optimised. There the genotype representation usually is a string of
genes (bits or floats) that define the values for those parameters. The
genetic algorithm traverses the space of the representations by
creating new individuals out of others when combining parts of the
strings during recombination, or mutating single genes randomly. The
individuals created by those operations are correct codings of
admissible solutions and build the population for the next generation.

For some combinatorial optimisation problems a string-type
genotype coding is also possible, but not every string represents a
feasible solution. When the gene strings (chromosomes) of two
individuals are crossed during recombination, it is unlikely that the
resulting offspring represent correct solution encodings. There are
generally two ways of dealing with this problem: incorrect individuals
might be accepted and inserted into the population. When computing
their fitness, a penalty must be added to take care that these individuals
get a lower chance during the selection process. This yields
convergence to a population of only correct individuals during the
optimisation. Another way of getting rid of the incorrect individuals is
to prevent their formation by including problem-specific knowledge in
the operators such that they always produce correct offspring. Thisisin
contrast to the definition of the simple GA introduced in the common

230 Genetic algorithms in engineering systems

textbooks [8, 11]. It is illusory to see the GAs as an optimisation tool
which can solve any problem with standard operators, after encoding
its solutions in a string of Os and 1s. For real-world discrete optimisation
problems much more effort has to be taken, as will be shown in this
Chapter.

The application that will be described represents a combinatorial
optimisation problem in the design cycle for VLSI-chips. Modules of
a chip have to be placed on the layout surface and signal nets have to
be routed on the space between these modules. The phenotype is a
complete layout which defines the geometrical arrangement of the
modules and the routes for the interconnection wires. Such a
complex phenotype cannot be encoded in a string of elementary
datatypes. The chosen genotype representation is a tree with
additional information for all nodes defining details for routing and
sizing of the modules. Although the execution of the genetic
operators on a tree structure is rather straightforward, care must be
taken to produce only correct offspring. In addition to this, there are
some examples of exploiting problem-specific knowledge during the
application of the operators. Together with a hybrid method for the
creation of the initial individuals, the described approach contains
many detailed features to make it work. But in most cases this is the
only way to enable genetic algorithms to deal with real-world
combinatorial optimisation problems.

10.2 Physical VLSI design

VLSI (very large scale integration) refers to a technology which enables
the integration of more than a million transistors on a single chip. The
design cycle for these VLSI chips consists of different consecutive steps
from high-level synthesis (functional design) to production (packaging)
[19]. All these steps contain many non-numerical, compute bound
problems. Conceivably the most complex task of all is the physical
design. This process can be characterised as the transformation of a
circuit description into a physical layout. The layout describes the
geometric representation of all components of the circuit and the
shapes of the interconnection wires. Out of this layout, the masks for the
different layers needed for fabrication are constructed.

Treating circuits with some hundreds of thousands of transistors has
only become possible by the availability of CAD-tools. Because of the
growing complexity of the design process, there is a strong interest in

Genetic design of VLSI layouts 231

tools for physical design automation with no or only little human
interaction. Automation of the design process increases the level of
integration and enhances the chip performance. Further, it reduces
the time to market, which is perhaps the most important reason for
the steady strong interest in new approaches to VLSI physical design
automation.

10.2.1 Macro cell layouts

For the layout design of microprocessors, which represent the largest
circuits, the macro cell design style is used. This is the most complex
style, and is mainly applied to mass produced chips, because it yields
highly optimised layouts. Semicustom layout generation, used for
standard cells or gate arrays, deals with more restrictions, thus
reducing complexity of the design task, but also decreases the quality
(level of integration) of the layouts [13].

At the beginning of the physical design process the circuit is
partitioned to generate some ten macro cells, which represent
functional units. On the border of each cell, terminals (pins) are

height

Figure 10.1 A fixed cell (left) and a flexible cell with the corresponding shape
Sfunction (right)

located for the connection of the signal nets. A netlist specifies the
connectivity of the cells. From the designers’ point of view there exist
two different kinds of macro cells: fixed cells have fixed dimensions
and fixed terminal positions on their borders (Figure 10.1, left);
flexible cells have different implementations with different aspect
ratios, resulting from the hierarchical construction of the cells. These
implementations are defined either by the area and upper and lower
bounds for the width or height of the cell, or by a shape function [12],

232 Genetic algorithms in engineering systems

which describes the admissible shapes, i.e. the relation of area and
aspect ratio. Figure 10.1, right, shows a flexible cell which consists of
four subcells. The shape function is characterised by three minimal
shapes, but every point above the curve defines an admissible
implementation for this cell. Because the terminal positions of a
flexible cell vary with its different implementations, in this case only a
list of nets for each of its borders is given.

During layout generation the cells have to be placed on the layout
surface and the signal nets must be routed on the space between the
cells. At the border of the layout, pads have to be placed for the 1/0O
connections of the chip. The main objective is the minimisation of the
area of the rectangle which circumscribes all components; further
there are timing constraints that enforce maximal admissible
wirelengths for some nets. Due to its complexity, the generation of
macro cell layouts is usually done in various substeps:

1 During the floorplanning phase the cells have to be placed on the
layout surface and exact implementations for the flexible cells
must be chosen.

2 After placement, the global routing is done. In this step the loose
routes for the signal nets are determined.

3 In the detailed routing, the exact routes for the interconnection
wires in each channel between two macro cells must be computed.

4 The last step is the compaction of the layout, where it is
compressed in all dimensions so that the total amount of area is
reduced.

This classical approach to layout generation is strongly serial with
many interdependencies between the substeps. For example, while
placing the cells, there must be an estimated amount of space reserved
around them to enable the completion of the routing later on. In the
case of fault estimation, the routing cannot be completed inside the
reserved routing regions. This is either realised during the computa-
tion of the global routes, or during channel routing. In the latter case
the layout generation process has to backtrack and different global
routes for some nets have to be chosen. If even global routing is
impossible, the cells need to be rearranged, i.e. the process has to
backtrack to the floorplanning task.

As mentioned before, the division of the layout generation process
results from the complexity of the whole optimisation problem.
Nevertheless, most of the sub-tasks are still intractable so that only
heuristic approaches can be used.

Genetic design of VLSI layouts 233

10.2.2 Placement

During placement the macro cells are positioned on the layout surface
in such a manner that no cells overlap each other and that there is
enough space left between them to complete the interconnections
later on. Floorplanning is a generalisation of the placement problem.
It deals with flexible cells which have to be sized during (or after)
placement to yield a layout with an overall minimal area. A floorplan
is a partitioning of the layout surface into different rooms, inside
which the flexible cells are placed.

Several approaches to the placement or floorplanning problem
exist. Here an overview of the (nongenetic) solution methods is given;
for more details see the textbook of Sait and Youssef [13] or the survey
of Shahookar and Mazumder [18].

One of the early techniques is force-directed placement. Here, cells
that are connected by common nets exert an attractive force which is
proportional to the number of these nets and the distance between
the cells. The ideal positions for the cells are computed numerically by
solving a set of equations, which corresponds to finding an
equilibrium in a minimum energy state.

Partition based methods recursively divide the set of cells. At the
same time, the available chip area is partitioned and each set of cells
is assigned to one of the components. By using a mincut heuristic, the
number of cut nets in each division is minimised, which yields highly
connected cells to be placed near together. The major drawback of
this approach is that the locations of the external connections are not
considered during placement of a subcircuit.

A very popular technique for computing the placement is simulated
annealing [17, 20]. This is an iterative improvement method, which
simulates the behaviour of atoms during the cooling schedule of
molten metals. It starts with a randomly created arrangement of the
cells and successively computes new configurations by moving or
exchanging cells. A new solution is accepted depending on its quality
and on the temperature. During the early stage of optimisation, when
this value is rather high, even inferior new solutions are accepted,
which prevents the optimisation from getting stuck in a local
optimum. Simulated annealing yields high quality placements but with
an excessive amount of computation time.

10.2.3 Routing

The aim of the routing phase is to find the geometrical layouts for all

234 Genetic algorithms in engineering systems

nets. During the floorplanning phase, space on the layout surface is
provided for the routing of the signal nets. This space can be described
as a collection of routing regions. Each region has a fixed capacity, i.e. a
maximum number of wires that can be routed through this region, and
a number of terminals, i.e. pins on the borders of the adjacent cells.

Due to the complexity, the routing is done in two subphases. In global
routing, each net is assigned to particular routing regions. A common
way to compute this allocation is based on graph algorithms. Here the
total routing space is described by a graph: the edges of this graph
represent the routing regions and are weighted with the corresponding
capacities; the vertices are the connections between two regions. Global
routing is described by a list of routing regions for each net of the
circuit, with none of the capacities of any routing region being
exceeded (Figure 10.2). The main objective is to find a global routing
with a minimum estimated overall wiring length. For two terminal nets
shortest paths algorithms are used, and for nets with three or more
terminals 2 minimum rectangular steiner tree is computed. The
described technique is usually cited as the sequential approach to the
global routing; other approaches are based on integer-programming,
hierarchical decomposition, or random search techniques such as
simulated annealing or genetic algorithms [10, 13].

i

(o)

Figure 10.2 A routing graph (left) and a global route for a three terminal net (right)

After global routing; is completed, the number of nets routed
through each routing region is known. In the detailed routing phase,
the exact shapes for the wires have to be determined (Figure 10.3).
This is done incrementally, i.e. one channel is routed at a time in a
predefined order.

The complexity and routability of a layout depends on the number
of layers which can be used for the completion of the inter-

Genetic design of VLSI layouts 235

Figure 10.3 The detailed routing inside a channel

connections. In macro cell layouts there are usually two layers and the
routing is done using the manhattan-model, i.e. there are only
horizontal and vertical line segments. The simplest model is the
restricted manhattan-routing, where one layer is used for the vertical,
the other for the horizontal wires and the nets change the layer when
changing their direction. For detailed routing there exist solutions
based on greedy methods, graph algorithms or hierarchical
approaches [13, 19].

10.2.4 Previous genetic approaches

Although VLSI design is usually cited as a typical application domain
for GAs, there only exists a handful of research papers dealing with
layout optimisation.

The classical work has been done by Cohoon et al. [3, 4]. They
present a parallel genetic algorithm for floorplan design and use a
weighted sum of the total area and the estimated wirelength as the
objective function. A placement is described by a binary slicing tree
with the leaves representing the cells and the inner nodes defining the
cut directions. The genotype is encoded as a normalised polish
expression resulting from a post-order traversal of this tree. They have
implemented different recombination operators, which work either
on this string without considering the structure of the tree, or directly
transmit subtrees from the parents to the offspring. Results are
presented for artificial circuits with up to 25 cells.

Chan et al. [2] introduced a bitmatrix representation. The layout
area is divided into a number of quadratic regions. Placement for a
single cell is represented by binary encoding of the information about
the occupied squares and the orientation of this cell. The total
placement information is combined in a bit matrix, each line in this
matrix describing the placement for a single cell. Cells are allowed to

236 Genetic algorithms in engineering systems

overlap each other during optimisation, which is approached by
adding a penalty to the fitness of an incorrect individual. Routing is
included by estimating the wirelength and crossover is done by
constructing an offspring out of the quarterised parent matrices. The
authors present results for benchmark circuits with up to 49 cells.

Esbensen [5] describes a GA for macro cell placement where the
genotype is encoded as a binary tree, but his approach is not restricted
to slicing floorplans (Figure 10.4). Each node of the tree represents a
cell and, due to a given node order, a placement can gradually be
generated by decoding the genotype. The quality of a placement is
determined by the layout area; for layouts with equal area an estimated
wirelength is taken into consideration. Later Esbensen and Mazumder
[6] combined this algorithm with simulated annealing which
produced better results than the previous GA. Due to complexity
constraints, only (real) circuits with up to 11 cells and 203 nets are
computed.

Figure 10.4 A slicing (left) and a nonslicing floorplan (right)

10.3 A GA for combined placement and routing

As described in Section 10.2.1, the global routing is usually computed
after placing the modules, and during placement an estimated
amount of routing area is added between the modules. The global
routes are determined with respect to the fixed capacities of these
routing regions. In the following an integrated genetic approach to
the optimisation of macro cell layouts is presented. Here a placement
is encoded as a binary tree, and the exact positions of the modules are
not fixed before global routing. Due to this there are no restrictions

Genetic design of VLSI layouts 237

during the computation of the global routes and so the shortest paths
are always chosen for the signal nets.

10.3.1 The genotype representation

A slicing floorplan is a rectangular floorplan which can be recursively
partitioned into two parts by either a horizontal or vertical cut (Figure
10.4, left). The hierarchy of these cuts and thus the arrangement of
the rooms in that floorplan can be defined by a binary slicing tree. As
shown in Figure 10.5, for a particular placement the leaves of this tree
represent the macro cells (blocks), and each inner node describes a
partial placement (metablock) composed of the building blocks
characterised by their successors.

Figure 10.5 A placement (left) and its genotype representation as a binary slicing tree
(right)

The binary slicing tree is an essential part of the genotype coding
and the structure of this tree defines the relative placement of the
blocks. The tree is constructed in a bottom up fashion by composing
a metablock out of the two blocks characterised by the children of
each inner node. Although the right block is always positioned upon
the block defined by the left child, different orientations for both
blocks are considered during the floorplanning process.

238 Genetic algorithms in engineering systems

10.3.2 F lomplcmm'ng

When combining two blocks during the construction of the tree of an
individual, their orientations are fixed. Both blocks are rotated to
minimise the amount of wasted space inside the metablock, and to
maximise the number of common nets on their channel borders. For
flexible blocks, different shapes exist for the resulting metablock
depending on the admissible implementations for both blocks. Fixing
the implementations for the blocks contained inside the metablock
would avoid this problem. Unfortunately, it is not clear at this time,
which shapes are globally optimal. Only local decisions can be made,
for example those implementations for the blocks may be chosen
which minimise the wasted space inside this meta-block. Locally this is
the best choice, but a different shape might be better to minimise the
area of the whole layout. Due to this, all shapes for a metablock
yielding from the combination of two flexible blocks after fixing their
orientations are stored. Continuing this process down to the root of
the tree does not produce an exponential growth for the number of
stored shapes, because there are a lot of redundant implementations
for the metablocks. Figure 10.6 presents the shape function for a meta-
block that consists of two flexible blocks, one with two and the other
with three different implementations, which yields six combinations.
Because half of these possible shapes are covered by others, only three
implementations for the metablock have to be stored.

Figure 10.6 Combining the two flexible blocks yields three nonredundant
implementations for the resulting metablock

Genetic design of VLSI layouts 239

After the construction of the last metablock, which is defined by the
root, the tree represents a complete layout. Since there is a shape
function for the root node, this single tree defines several layouts with
different shapes. Out of these implementations, the layout with the
minimal area can be determined. During a top-down traversal of the
tree, in each inner node those implementations for both successors
can be identified, and these add up to the optimal shape for the meta-
block represented by this node. After this traversal of the tree for all
flexible blocks, those shapes which make up an optimal layout are
chosen, i.e. the flexible blocks have been sized.

10.3.3 Integration of routing

Although global routes for the signal nets are determined later, during
placement routing these can already be considered. When fixing the
orientations of two blocks during the composition of a metablock,
those orientations can be chosen which reduce the routing space
inside that partial layout that is characterised by this metablock. For
that purpose, the maximal channel width is estimated by inserting a
track for each net, which has to connect terminals at both blocks, or —
when combining metablocks —inside both metablocks. The number of
tracks is then reduced by the number of nets, which have terminals on
both sides of the channel. Thus the estimated channel width is
minimal for those orientations that enable the direct connection of a
maximal number of nets inside the channel. This channel width is
added to the height of the metablock, and those orientations are
chosen which yield a minimal area metablock. If the resulting meta-
block is flexible, all sixteen possible shape functions are computed,
and the channel width is added to them (Figure 10.7). In this case
those orientations are chosen that define the minimal area for the
average of all implementations encoded in this shape function.

10.3.4 Computation of the global routes

After the construction of the tree and the floorplan, the routing graph
as shown in Figure 10.8 (left) is constructed. As in the usual method
of computing global routing (see Section 10.2.3), the routing space is
now represented by a set of routing regions. Such a region may be a
channel between two blocks, or a partition of a channel inside a
metablock which combines two metablocks. In the latter case a region
is a section in the channel which is bounded by two orthogonal
adjacent channels, i.e. it describes the tract on which two cells have

240 Genetic algorithms in engineering systems

addition of
routing space
to shape function
of the meta-block
%

Figure 10.7 The insertion of routing space inside a metablock (top), and its addition
to the shape function (bottom)

contact inside this channel. To compute a global route for a net, the
shortest paths between its terminals in the routing graph are
determined. In contrast to the usual computation of global routing as
described in Section 10.2.3, the channels do not have any fixed
capacities, but only an estimated width. The exact positions of the
blocks are not fixed at this time, and thus only pseudo-optimal shortest
paths are computed. After the computation of all global routes for
each region the number of nets routed through it is known. For each
net inside a region one track is added, which leads to the addition of
an upper bound for the actual demand of routing space. The width of
a channel is now set to the width of the widest of all regions that
represent this channel. Because after floorplanning the exact terminal
positions on all blocks are known, instead of adding a special track for
each net, a better heuristic can be used to reduce the channel width.

When all channel widths are determined, a bottom up traversal of
the slicing tree is done to add the channel width to the height of each
metablock. Then the area of the routing space on the border of the
layout is added to the layout area. After that, the shape for the root
describes the total layout area, which defines the fitness of the
corresponding individual.

Genetic design of VLSI layouts 241

Figure 10.8 A routing graph (left), the width for the regions after the computation of
the global routes (middle) and the resulting channel widths (right)

10.3.5 Hybrid creation of the initial population

Because of the large size of the search space it is profitable to start with
a nonrandomly created initial population which already contains high
quality building blocks. A special heuristic — iterated matching,
introduced by Fritsch and Vornberger [7] — is used during the
creation of the initial individuals to ensure that in each level of the
tree those blocks or metablocks which share a maximal number of
common nets are paired. In the first iteration, when the lowest level of
the tree is computed, a complete graph is constructed: the vertices
represent the blocks, and each edge is weighted with a value that
describes the number of shared nets for the blocks characterised by its
adjacent vertices. A matching in this graph is a set of edges such that
no vertex is incident to more than one edge. Figure 10.9 presents an
example with four blocks. In I - III the three matchings consisting of
two edges are shown. The weight of a matching is the sum of the edge
weights of the comprised edges. The maximum weight matching, II,
characterises a set of block pairings with global maximal quality, i.e.
with an overall maximal number of connected signal nets inside the
partial layouts combined at this level.

In the second iteration, the next level of the tree is constructed by
performing the same computation for a graph with vertices
representing metablocks consisting of two blocks each. This process is

242 Genetic algorithms in engineering systems

iterated until the last two metablocks are joined at the root of the tree
to build the complete layout.

10

6+7=13 6+11=17 4+10=14

Figure 10.9 A matching graph with four blocks, three possible matchings and the
maximum weight matching (1I)

10.3.6 Crossover

Crossover is the most important search operator in genetic algorithms.
It is a sexual recombination operator which constructs one or two
individuals (offspring) out of the genetic information encoded in two
parent individuals. The obvious way for the creation of offspring out
of two tree-structured individuals is to combine some disjunct subtrees
of both parents to a tree for the offspring.

Figure 10.10 presents the application of the crossover operator. Out
of two parent individuals one offspring is produced. A set of disjunct
subtrees in both parents is chosen randomly and builds a pool of
building blocks out of which a new individual is composed. If the
leaves of these subtrees do not represent all modules of the circuit, the
missing blocks are inserted into this pool. During the composition of
the upper levels of the offspring tree, iterated matching can be
applied again. For the newly created metablocks, the orientations of
the combined blocks are fixed to yield minimal area shapes as
described in Section 10.3.3.

10.3.7 Mutation

In simple genetic algorithms, mutation is the less used but not the less
important operator in comparison to crossover. Each gene in an
offspring which has been created by crossover can be mutated with
respect to the mutation probability (or mutation rate) which is usually

Genetic design of VLSI layouts 243

proportional to the size of the problem (length of the chromosome).
The mutation operator produces genetic information, which might be
new to the population, or reintroduces information that has been
eliminated by selection, but might be helpful during the current state
of the search process.

iterated malching

or
disjunct subtrees random composition

— 7\
N L b

Figure 10.10 The crossover operater chooses disjunct subtrees in both parents and
combines them to form an offspring tree

There are three mutation operators which are applied with different
frequencies. They change the structure of the slicing tree by exchanging
leaves or subtrees, moving subtrees to other positions in the tree, or
changing the orientation of blocks or metablocks. Figure 10.11 (top)

244 Genetic algorithms in engineering systems

shows the effect of an operator which exchanges two parts of the tree.
Part A represents a single block, and subtree B contains two blocks. On
the phenotype level, this corresponds to exchanging the cell defined by
block A with the placement for the set of cells characterised by subtree
B. The second mutation operator (Figure 10.11, bottom) picks up a part
of the tree (block A) and inserts it at a different position (x). This
corresponds to cutting a cell or a partial layout out of the complete
layout and moving it to a different place. The last mutation operator
changes the orientation of a block or a metablock inside a tree. As
mentioned in Section 10.3.3, the orientations have been fixed during
the construction of each new metablock due to local decisions, i.e. those
orientations have been chosen which add up to a minimal area shape
for this metablock. However, globally a different orientation for a block
or metablock might be better.

exchanging leaf A
with subtree B

inserting subtree A
al position x

Figure 10.11 The two basic mutations: exchanging (top) or moving (bottom) subtrees

Genetic design of VLSI layouts 245

10.3.8 Selection

For the mating of individuals during crossover, truncation selection is
used, i.e. only the better individuals are selected for recombination.
For mutation any of the individuals in the population can be chosen
with equal probability. A steady state type of GA is used: thus an
individual may survive for longer than only one generation. At the end
of each generation individuals are replaced if the quality of the
offspring is better.

10.4 Results

The algorithm has been tested on reallife circuits chosen from a
layout benchmark suite which was released for design workshops in
the early 90s and is often referenced in the literature as the MCNC-
benchmarks. The benchmarks were originally maintained by MCNC
(North Carolina’s Microelectronics, Computing and Networking
Center), but are now located at the CAD Benchmarking Laboratory
(CBL) at North Carolina State University [1]. These benchmarks are
problems from the field of full custom macro cell layout; the
characteristics of the circuits are shown in Table 10.1. Although
circuits xerox, ami33 and ami49 are original problems, ami33_3,
ami49.3, ami33_5 and ami49_5, are adaptations of these circuits with
all cells having three and five different shapes, respectively.

Table 10.1 The benchmark circuits
xerox ami33 ami33-3 ami33.5 amid9 amid9-3 amid9-5

#cells 10 33 33 33 49 49 49
#shapes per cell 1 1 3 5 1 3 5

#nets 203 123 123 123 408 408 408

#terminals 698 452 452 452 958 958 958

1/O terminals 2 42 42 42 22 22 22

cell area [mm?] 194 1-16 1-16 116 351 351 35.1

All results presented in this Section are computed on a Parsytec
GC/PP parallel computer with Motorola MPC 601 PowerPC
processors. The parallel version of the GA executes the sequential GA
on a number of islands, with individuals migrating between these
islands every three generations. Each island holds a subpopulation of
ten individuals.

246 Genetic algorithms in engineering systems

Figure 10.12 shows a layout for circuit am#49, a problem with only
fixed-size cells. The layout does not include the 22 pads and the
interconnection wirings for the nets which are connected to them. As
can be gathered from Table 10.1, nearly all of the signal nets are two
terminal nets. The total layout area is 58-9mm?; about 40% of this area
is not occupied by the cells and thus represents routing space or
wasted area.

T i
e "sf’/

e T]

Figure 10.12 Layout for ami49 generated by the GA

Table 10.2 shows statistical data for a set of 1000 randomly generated
initial layouts for circuits with fixed macro cells. It shows the benefit of
iterated matching during the creation of the initial individuals. It can
be seen that the standard deviation in those cases where the
individuals are created through the use of this heuristic is quite small
compared to this value for randomly generated trees. This is because
iterated matching is a deterministic process that always pairs the same
blocks in each individual. Variation is only caused by routing because
here different orientations are used for the blocks during their
composition.

Genetic design of VLSI layouts 247

Table 10.2 The statistics for 1000 generated individuals showing the use of the
iterated matching heuristic

area Xerox ami33 amid9
[mm?] random match random match random match
best 33.9 49.8 5.78 6.45 85.0 85.7
worst 76.3 52.5 16.75 9.41 226.1 115.4
avg 455 51.0 10.16 7.51 132.2 98.0
o 6.4 0.7 1.83 0.68 23.9 8.2

Figure 10.13 presents the performance of the genetic algorithm for
circuit amz 49; the fitness of the best individual averaged over ten runs
is shown. The upper curve describes the progress of the layout area for
runs of the algorithm starting with populations of totally randomly
generated individuals and does not use iterated matching during
crossover. The lower curve describes the performance of runs which
have started with a set of individuals that have been generated by
application of iterated matching, and iterated matching is used during
crossover, too. For this circuit the convergence of the GA is clearly
better when using the iterated matching heuristic. In comparison to

during their composition

90.0}

]
[}
[}
[}
1
[}
1

layout

area 70.0

[mm]

60.01

iterated matching

200 400 600 800 1000 1200 1400
generation

Figure 10.13 Performance with respect to the iterated matching heuristic for the
creation of the initial individuals and during crossover (ami49, avg. of
ten runs each, 16 islands)

248 Genetic algorithms in engineering systems

this, for circuit ami33 (Figure 10.14) iterated matching is only
beneficial in the early stage of optimisation. Here, after 300
generations, the version of the GA that randomly pairs blocks during
recombination clearly outperforms the other. Thus it would be
advantageous to adapt the use of iterated matching during the
optimisation process, depending on the number of blocks, the
number of generations, and the success of the recombination
operator.

3.3+
3.2
layout 31 -
area
mim
fmm?) iterated matching
3.04 ST
2.0 random creation

100 200 300 400 500 600 700 800 900
generation

Figure 10.14 The performance of the algorithm for circuit ami33 (avg. of ten runs, 16
islands)

Table 10.3 The maximal and average number of shapes for the oot block and all
metablocks of 1000 randomly generated individuals

#shapes ami33-3 ami33-5 amid9_3 amid8._5

max 39 75 58 92
root 186 516 407 63-1
avg 69 13-8 89 14-6

As stated in Section 10.2.2, for circuits with flexible cells it is useful
to store all nonredundant layout alternatives for the metablocks in
shape functions. Table 10.3 presents the number of shapes for the root
block and for all metablocks of 1000 randomly generated trees. It can
be seen from these values that even for the circuit ami49..5, where
each of the 49 blocks can take five different shapes, such an approach

Genetic design of VLSI layouts 249

is practicable since the average number of root shapes is only 63.
Figure 10.15 shows the benefit of storing shape functions for the
metablocks for circuit ami33_3 with 33 flexible cells, each having three
different implementations. Considering Table 10.3 one can assume
that for this circuit each individual represents a layout with 18-6 shapes
on average and that the average number of shapes in an inner node
might be about seven. In comparison to the performance of the full
version of the GA (lower curve), the performance of runs without
shape functions for the metablocks is shown. In this case (upper
curve), when combining two flexible blocks, only the locally optimal
shape for a metablock is stored, i.e. the shape with minimal area
(minimal waste inside this metablock). Obviously, the version which
stores all alternatives for the metablocks clearly outperforms the other
one.

4.01
3.8
3.6
3.4
layout = 1
area 3.04
[mm?] 2.8 only best
’ combination
2.6 stored
2.44
2.2 shape-functions also
for meta-blocks
400 800 1200 1600 2000 2400

generation

Figure 10.15 The benefit of shape functions for metablocks, average of ten runs with
eight islands (ami33_3)

10.5 Conclusions

In this Chapter, a genetic algorithm for a real-world combinatorial
optimisation problem — the design of VLSI macro cell layouts — has
been presented. The main feature of this approach is the total
integration of global routing into the placement process. During

250 Genetic algorithms in engineering systems

floorplanning estimated channel widths are added to the shapes of the
partial layouts; after sizing, the positions of the cells on the layout
surface are still flexible. Thus, computation of the global routes can be
done without any restrictions, and an individual defines a completely
routable placement.

To enable the GA to deal with this complex optimisation problem,
many details have been incorporated, the essential differences of this
approach in contrast to simple GAs being:

¢ A problem-specific genotype representation as a binary tree.

* Nonstandard genetic operators which directly work on the tree
structure and only produce admissible individuals.

¢ Implicit optimisation due to the use of problem-specific knowledge
during the construction of the individuals.

® A special heuristic to create high-quality individuals for the initial
population and during recombination.

When designing a genetic algorithm for a complex optimisation
problem, most effort has to be put into finding a proper coding for the
solutions to the problem. There exist several examples in the
literature for possible representations one can choose. Mitchell
summarised this in her recent book ([11], p. 155): “... when one wants
to apply the GA to a particular problem, one faces a huge number of choices
about how to proceed, with little theoretical guidance on how to make them.’ In
common GAs the chromosome, which represents the coding, is a
string of elementary datatypes. Often binary strings are chosen,
because these were originally motivated by Holland’s minimal
alphabet theory to enhance the implicit parallelism [9]. Most of the
theoretical work on GAs is based on binary coding. For many
continuous parameter optimisation problems a string of floats, like
that used in the Evolution strategies [16], is the better choice. But for
combinatorial problems such as macro cell layout optimisation, a
more complex coding has to be used. Since the search space is
discrete, care has to be taken to generate only admissible individuals
during the optimisation process. For that purpose, problem-specific
operators have to be designed which make use of problem specific
knowledge. During offspring creation, this knowledge can be used for
implicit optimisation.

One of the main properties of problems like the one presented in
this Chapter is that even partial solutions or parts of the chromosome
can be evaluated. For example, during the composition of a meta-
block, all possible orientations for both blocks are checked, and the

Genetic design of VLSI layouts 251

orientations yielding the highest quality metablock of all are chosen.
Here a local decision is made depending on the fitness of a partial
solution. In contrast to this is the composition of two flexible blocks to
a metablock. At that time, the globally optimal shape for the
metablock cannot be determined. Storing all nonredundant
implementations for the metablock in a shape function is an example
of another way to include problem specific knowledge to support the
GA to create high quality individuals during the optimisation process.
However, when using hybrid techniques, there is always the risk of only
incompletely sampling the solution space, as was shown for the use of
iterated matching. Although it was very beneficial for one problem, it
was disadvantageous for another. Additionally, the profit of incorpora-
ting heuristics might depend on the stage of the optimisation process.
To handle this, adapting the use of the heuristic during the search is
necessary.

Enhancing the performance of the search can also be done by
restricting the search space, as is done during routing. Before
including deterministic computation of the global routes based on
shortest paths, research was done on optimising the routing using the
GA together with the placement [14]. The benefit of that approach
was the fact that, e.g. after recombination, the routes inside the
inherited partial layouts do not need to be recomputed, only the
routing for nets connecting terminals in both parts has to be done.
Optimisation of the global routes using the GA is certainly possible,
provided that special operators for modification of the routing are
added. Because of the enormous growth of the search space due to the
huge number of possible routes for each net, this approach is
impracticable if one expects the GA to produce a good solution within
a realistic time bound. Of course, computing the shortest paths in the
current implementation takes more than half of the total runtime of
the GA, but finally it saves a lot of time, since it drastically reduces the
number of generations needed before converging on an optimal
solution.

10.6 Acknowledgments

This work has been supported by the German Federal Ministry for
Education, Science, Research and Technology (BMBF) as part of the
project ‘HYBRID—application of parallel genetic algorithms in
combinatorial optimisation” under grant 01 IB 405 E3. The author

252 Genetic algorithms in engineering systems

thanks the Paderborn Center for Parallel Computing (PC?) for the
opportunity to use the parallel machines located there. Special thanks

to

Oliver Vornberger, Frank Lohmeyer and Frank M. Thiesing for

many helpful suggestions.

10.7 References

1

2

9

10

11
12

13

CBL, CAD Benchmarking Laboratory, North Carolina State
University, http://www.cbl.ncsu.edu/www/CBL_Home.htm].

Chan, H,. Mazumder, P.,, and Shahookar, K.: ‘Macro-cell and module
placement by genetic adaptive search with bitmap-represented
chromosome’, Integr. VLSI . 12, pp. 49-77, 1991

Cohoon, J. P, and Paris, W. D.: ‘Genetic placement’, Proc. of IEEE
int. conf. on CAD, pp. 422-425, 1986

Cohoon, J. P, Hegde, S. U.,, Martin, W. N., and Richards, D. S.:
‘Distributed genetic algorithms for the floorplan design problem’,
IEEE Trans., CAD 10, (4), pp. 483-492, 1991

Esbensen, H.: ‘a genetic algorithm for macro cell placement’, Proc. of
the European Design Automation Conference, pp. 52-57, 1992
Esbensen, H., and Mazumder, P.: ‘SAGA: A unification of the genetic
algorithm with simulated annealing and its application to macro-cell
placement’. Proc. of the 7th int. conf. on VLSI design, pp. 211-214,
1994

Fritsch, A., and Vornberger, O.: ‘Cutting stock by iterated matching’,
in Operations research prroceedings, selected papers of the int. conf. on OR 94,
Derigs, U., Bachem, A., Drexl, A. (eds.) (Springer Verlag, 1995), pp.
92-97

Goldberg, D. E.: Genetic algorithms in search optimisation & machine
learning (Addison-Wesley, 1989)

Holland, J. H.: Adaptation in natural and artificial systems (MIT Press,
1992)

Lengauer, T.: Combinatorial algorithms for integrated circuit layout (John
Wiley Sons, 1990)

Mitchell, M.: An introduction to genetic algorithms (MIT-Press, 1996)
Otten, R.: ‘Efficient floorplan optimisation’, Proc. of int. conf. on
Computer Design, pp. 499-502, 1983

Sait, S. M., and Youssef, H.: VLSI physical design automation: theory and
practice (McGraw-Hill, 1995)

14 Schnecke, V., and Vornberger, O.: ‘Genetic design of VLSI-layouts’.

Proc. first IEE/IEEE int. conf. on GAs in engineering systems: innovations

Genetic design of VLSI layouts 253

and applications, GALESIA *95, IEE Conference Publication No. 414,
pp. 430-435, 1995

15 Schnecke, V., and Vornberger, O.: ‘A genetic algorithm for VLSI
physical design automation’. Proc. 2nd. int. conf. on Adaptive
computing in engineering design and control, ACEDC ’96, University of
Plymouth, Parmee, I. C. (ed.), pp. 53-58, 1996

16 Schwefel, H.-P.: Evolution and optimum seeking (John Wiley & Sons, New
York, 1995)

17 Sechen, C., and Sangiovanni-Vincentelli, A.: The timberwolf
placement and routing package’, IEEE |. Solid-State Circuits, SC-20, pp.
510-522, 1985

18 Shahookar, K., and Mazumder, P.: ‘VLSI cell placement techniques’,
ACM Comput. Surv., 23, (2), pp. 143-220, 1991

19 Sherwani, N.: Algorithms for VLSI physical design automation (Kluwer
Academic Publishers, 1993)

20 Wong, D. F.,, Leong, H. W,, and Liu, C. L.: Simulated annealing for VLSI
design (Kluwer Academic Publishers, 1988)

Index

absolute and relative precision
31

acceptance probability 148

active critical block
neighbourhood 151-152

active schedules 137

active weights 105-107

actuators 32

adaptation 32

adaptive control 48

adjacent swapping
neighbourhood 151

aerodynamics, inverse
optimisation problems
203-228

aircraft design 203

airfoil
design 217-218
direct optimisation 206-210
inverse optimisation 210-218

asynchronous concurrent
genetic algorithms 22

automatic pilot 58-59

automation of chip design 231

B-splines 205, 211

Baldwin-Lomax turbulence
model 217

before and after candidates 151

benchmark tests 155-157, 245

bias 10,17

bin packing problems 16

binary chromosomes 73

binary encoding 3, 6

binary recombination operators
46

binary representation 139

binary slicing tree 237

binary string, mutation 15

biological metaphor 1-3, 20, 29,
46, 123, 169

bit flipping 47

bit string, illegal 139, 140

bit string representation 47, 158

black box 25, 49-50

Boolean functions, learning 113

breeder genetic algorithms
25-26, 175, 178, 196

candidate solutions 46, 47, 229
cascaded synchronisation 118,
122,124
cb neighbourhood 158
cellular genetic algorithms 27
chaotic carrier 132
chaotic circuit 124
chaotic systems identification
118-133
chaotic time series 132
chromosomes
binary 73, 250
criteria 103
encoding 100-103, 123
parameterised 114
set-based 107-114
see also strings

Chua’s oscillator 119-121, 124,
126-127, 132
closed-loop control 34, 35, 40
coarse and fine grained genetic
algorithms 21, 27
coding schemes 210-212, 250
collision avoidance 56, 163, 183
collision detection 183
collision function 185
communication, secure 118
computational burden
computational fluid dynamics
204
evolutionary search 99
genetic algorithms 18, 225,
251
and inverse optimisation 210
robotics 204
simulated annealing 233
computational fluid dynamics
203
computer vision system 99
conditional Lyapunov exponents
118, 122, 126
conflict set 145
connection machine 28, 29
constraints
in airfoil design 206, 208
encoding 28, 82-83
in engineering problems 32
fitness evaluation 213-214
fuzzy encodings 83-84
hard and soft 82, 96
resolution 79-98
robotic motion 201
continuous and discrete
decision variables 31, 40
control engineering 73
control loops 32
contro] parameters 50
control rules and structures 49

Index 255

control systems 46-62, 118
convergence
criteria 18
genetic algorithms 194, 247
premature 185-186, 220
cost function 21, 63, 64, 104,
162, 191
cost-to-fitness mapping 67
costs, minimising 79
critic design 59
critical block 151
critical path 136
crossover 12-16, 123, 186
cycle 147
generalised order 143
generalised partially mapped
143
GT 144-145
heuristic 143-145
multipoint 13
neighbourhood search 148
and permutations 52
precedence preservative 143
and SAMUEL 55-56
in search algorithms 104
single-point 4, 12-13, 93, 164,
194
subsequence exchange (SXX)
141-142, 155, 156
uniform 13-14
see also recombination
crossover fusion, multistep
148-150, 154-158
crossover operator 123, 186,
193-194, 242
crossover rate 164
cryptography system 132
cubic polynomial, robot motion
170-182
cubic splines 170, 171, 196,
199-201, 204

256 Genetic algorithms in engineering systems

cycle crossover 147

Darwin, Charles 1

decision support tool 73

decision variables, continuous
and discrete 31, 40

defuzzification 87, 89

delivery control system 51

demes 23

design, automation 231

diffusion genetic algorithms 21,
26-30

direct optimisation, airfoil
206-210

discrete recombination 14

disjunctive graph 135-138, 150

distributed breeder genetic
algorithm 25-26

distributed multiprocessor
system 163

diversity, excessive 20

double scroll attractor 120, 128

drag 213, 218, 219, 225

ECO genetic algorithm 29
edge detection 99
efficiency 10
elitist strategy 18, 93
encoding
binary 3, 6
chromosome 123
constraints 82-83
correct and incorrect
229-230
direct and indirect 101
genotype 235
strategies 6-8
strings 3, 184, 192
engineering applications of
genetic algorithms 30-33, 47,
95-97, 203

engineering judgement 83, 97

environmental conditions 58,
70

Epanechnikov kernel 69, 71

error back propagation 102,
105

euclidean spaces 70

evaluation of population
174-175

evaluation times 97

evolution strategies 2, 19, 46

evolutionary algorithms 2, 19,
31-32, 103-105
for robotic systems 161-202
for testing intelligent control

systems 57-60

evolutionary learning
data structures 51-52
parameters 49-51
program level 52-57

evolutionary programming (EP)
2,19, 46

evolutionary search,
computational burden 99

extended line recombination
operator 179

extended random initialisation
7-8

extrema, local 104, 123, 170,
197, 208

factory control system 51

fault modes 58

feasible solution procedure
176-177, 202

fine grained genetic algorithms
28-29

fine grained parallelism 30

first come first served rule 146

fitness assignment 174

fitness evaluation 97, 229

constraints 213-214
fitness function 8-9, 31, 64-65,
164, 184-186, 193
automated 48
construction 214-215
fitness scaling 193
fitness selection 80
fitness sharing 36, 68, 175
fitness value 4, 5, 53, 203
flexible polyhedron search 170,
180, 196
float string 250
floating-point representation 25
floor planning 235, 238-239,
250
force-directed placement 233
forcing 140-141
function optimisation 32
fuzzy encodings, constraints
83-84
fuzzy logic 84-95
practical applications 97
fuzzy logic controller 50-51

Gantt chart 134, 135

gas turbine engine
control 33-40
design 73, 95-97, 203

generalised order crossover 143

generalised partially mapped
crossover 143

generation gap 18

GENESYS 32

Genetic Algorithm Toolbox,
MATLAB 32, 70

genetic algorithms (GA)
advantages 5, 40, 208, 225
binary representation 19, 46,

139

coarse and fine grained 21,

27, 28-29

Index 257

constraint resolution 79-98
convergence 194, 247
engineering applications
30-33, 203
and fuzzy logic 90-95
incremental 18
in job shop scheduling 135
major elements 5-19
multiobjective 171
and neural networks 101-102
operators 186-187
in optimisation 118-119,
123-124
parameters 173
robustness 203, 229
software 32-33
steady state 18
termination 5, 18-19
in VSLI design 236-245
genetic classifier systems 53
genetic design of VLSI layouts
229-253
genetic drift 68, 170
genetic enumeration 145-147
genetic evolution 193-194
genetic information 243
genetic local search 147-155
genetic programming 2, 53
GENITOR 25, 32
genotype
encoding 229, 235
as illegal bit string 140-141
geometric analysis 191
geometry, and aerodynamic
performance 209-210
global genetic algorithms
19-20, 21-22
global harmonisation 140, 142
global minimum 8
global optimisation 30
global search 3, 210

258 Genetic algorithms in engineering systems

gradient-based methods 203,
204, 208, 225

graph colouring problems 16

Gray coding 6, 15, 31, 73

GT algorithm 137, 144-146, 155

GT crossover 144-145

Hamming distance 6, 138, 139,
148, 149, 150

harmonization algorithm 139

heuristic crossover 143-145

heuristic methods 143-145, 158

hill climbing 47

hybrid techniques 241, 251

hypercube machine 24

ill conditioned problems 83
illegal bit string 139, 140
immigrants, random 70, 72
incorrect encodings 229
incremental genetic algorithms
18
initial population, non-random
241
initialisation 6-8
integer representations 6-8
interactive optinisation 70
interated matching 241
intermediate recombination
14-15
inverse methods 203-228
inversion 93
island model 24, 27, 30
see also mutation model
isolation by distance 27
iterated matching 246, 247
iterated modularity 99

job shop scheduling 134-160
joint trajectories 199-201
joint-space tessellation 162, 195

K-mean clustering algorithm 94
Kalman filter 103

kernel methods 63, 69, 73
knowledge representation 54
knowledge-based changes 47

Lamarckian mutation operators
55

layout optimisation 235

learning perceptron 107, 108,
111

lift maximisation 206-207

line recombination 15

linguistic classifications in fuzzy
logic 89, 97

LISP 19, 53

local extrema 104, 123, 170,
197, 208

local harmonization 139

local hill-climbing algorithm 26

local search 149, 154

logarithmic scaling 6-7

logical operators 86, 92

longest remaining processing
time rule 146

machine intelligence 19
macro cell layouts 231-233
macro-mutation 104, 105
makespan 134, 136, 155, 156
Manhattan model 235
manipulator trajectories 163
mapping problems 25
master—slave genetic algorithms
21, 22
mating restrictions 36, 47, 70,
72,73
Matlab
Genetic Algorithms Toolbox
32,70
Simulink 36

max—min inferencing 86
Mendel, Gregor 1
micro genetic algorithms 6
migration genetic algorithms
21, 22-26, 196
MIMD 26, 30
minima see extrema
minimisation problem 8
mobile manipulator, non-
holonomic constraints
190-195
modelling 99
moving targets, tracking 56
multiobjective function 20, 29
multiobjective genetic
algorithms (MOGA)
in engineering systems 36-37,
40, 63-78, 206
formulation 171
Pareto ranking 220-221, 225
multiobjective optimisation 64,
170
multiobjective ranking 36
multiple manipulator systems
182-189
multipoint crossover 13
multistep crossover fusion
148-150, 155
multistep crossover fusion
genetic algorithms 154-158
multistep mutation fusion 150
mutation 16-17, 50, 93, 164
binary string 15
of rules 53
mutation genetic algorithms 21
mutation methods 47
mutation operator 4, 47, 52, 55,
123, 187, 242-244

n-point mating 47
natural selection 1, 29

Index 259

Navier-Stokes methods 205,
216-218, 221, 222, 225
neighbourhood communications
28
neighbourhood genetic
algorithms 27
neighbourhood search 147-148,
150
neighbourhood search crossover
148
neighbourhood structures
150-151
neighbourhood topologies
29-30
network construction algorithm
101
neural architectures, scaleable
99-117
neural networks
collision detection 183
encoding 100-103
and genetic programming 19
hard wired 101
and migration genetic
algorithm 25
reuse 99
in robotic control 50
simulation 105-107
software 33
NeuralWorks software 33
niche count 72
niche formation 170
niche size 70
no free lunch theorem 104
non-dominated sorting 66
non-holonomic constraints
190-195, 197
non-linear optimisation 170
non-linear systems 121-122
non-normalised weights 182
non-Pareto approaches 170

260 Genetic algorithms in engineering systems

NP-hard problems 135

numeric control parameters 49

numeric parameters 49-51

numerical optimisation 203,
204

objective function
aerodynamic 204
and constraints 82
discontinuous 210
estimation 5, 203
and fitness 4, 8-9, 64, 164
normalised and non-
normalised 172-173
objective vectors 65-67
objectives, prioritisation 186
OCR problem 113
offsetting objective function 31
open-loop control 34
operator rates 47
optimal motion, of industrial
robot arms 162-169
optimisation
global 251
high-dimensional 25
non-linear 170
performance index 118
order-based representations 52

pairwise comparison 65

panmixia 23, 29

parallel computing 20, 21, 26,
30, 169, 245, 250

parallel genetic algorithms
20-30, 169

parameter encoding, polynomial
192-193

parameter initialisation 173

parametric design of control
systems 48

Pareto dominance 65, 66

Pareto genetic algorithms 170,
172, 178-180, 196

Pareto optimal solutions 5, 37,
63, 64, 73, 223

Pareto ranking 170, 174, 206,
220, 225

passive weights 105-107

path planning 163, 183-184

path redistribution/relaxation
operator 176, 178, 179, 180,
196

pattern-matching production
systems 53

Pecora—Carroll synchronisation
118, 119, 122, 124

penalties 32, 80-81, 82, 229

perceptron 100, 105, 107,
113-114

performance comparison 156,
179

performance index optimisation
118

performance measures 10, 48

permissible left shift 137

permutation with repetition
142-143

permutation representation 141

permutations, and crossover 52

phenotype 229, 230

physical design of VSLI chips
230-236

PID controllers 50

placement 233, 236-245

plant parameters 58

polynomial parameter encoding
192-193

polytopy 23

polytypic populations 29

population based search
methods 104, 105

population evaluation 174-175

population representation 6-8

population size 47

power law scaling 9

power law sharing 69

power plants 49, 57

precedence preservative
crossover 143

precision, absolute and relative
31

predator evasion 56

preferability operator 66

preference articulation 64

preference-based multiobjective
ranking 70

pressure distribution 204, 205,
219-220

prey stalking 56

prioritisation of objectives 186

priority rule based genetic
algorithms 145-146

probability density function 69

problem, hardness 104

proportional selection 47

PUMA 168, 194, 196

random hill climbing 104, 105,
111, 112

random migration 193

random search 112

rank-based methods 9, 32, 47

ranking 64, 65, 66, 71, 174-175,
186

real-number coding 212-213

real-valued representation 6-8,
31, 47, 93

recognition mode 100

recombination 14, 50, 53,
175-176, 229
see also crossover

recombination operator, binary
46

Index 261

redistribution operator 185, 187
reduced surrogate operator 14,
73
regeneration operator 187
reinsertion 17-18
relaxation operator 187
remainder sampling methods
12
remainder stochastic sampling
with replacement (RSSR) 12
remainder stochastic sampling
without replacement (RSSWR)
12
reorder mutation 17
repair mechanism 142
representation, real-valued 31
reproduction 123, 164, 169, 186
reproduction operator 212
reproductive ability 65
reversed order scheduling
152-153
robotic systems
building 57
control 50, 161
cubic polynomial motion
170-182
evolutionary algorithms
161-202
motion planning 161
navigation system 50, 56
optimal arm motion 162-169
roulette wheel selection
methods 10-12, 67, 93, 186,
212
routing 234-235, 236-245
rule strength 54-55
Runge-Kutta algorithm 127

sampling 10, 251
SAMUEL 49, 53-57, 60
scale 31-32

262 Genetic algorithms in engineering systems

scale-independent decision
strategies 65-67
scaleable neural architectures
99-117
SCARA robot, motion
optimisation 170
scheduling, reverse order
152-153
search methods
efficient 103-105
evolutionary 99
population based 104, 105
search space 20, 101, 250
selection methods 9-12, 47, 175
semiactive schedule 136
semisynchronous master—slave
genetic algorithms 22
set interconnections 108
set membership, fuzzy 84-86
set theory 84-86
set-based chromosome structure
107-114
shape functions 248
shape optimisation 203
sharing 67-70, 73, 175
shifting bottleneck (SB) 135,
146-147, 155, 156, 158
shortest operation time rule
145-146
shuffle 14, 175
signal processing 118
SIMD 28, 30
simple genetic algorithm (SGA)
5-6
simulated annealing
in aerodynamics 204, 225
and constraints 81
in job shop scheduling 135,
158
performance comparison 208
in placement 233

and random hill climbing 104
schedule 148
in training 102
Simulink, Matlab 36
single-point crossover 4, 12-13,
93, 164, 194
six-dof arm 167-168
slicing and non-slicing
floorplans 236, 237
software 32-33
solutions
optimal 93
unique 83
valid 80
spread 10
Squire-Young relation 213
steady state genetic algorithms
18
stepping stone model 23
stochastic sampling with partial
replacement (SSPR) 11
stochastic sampling with
replacement (SSR) 11
stochastic search 3, 18
stochastic universal sampling
12, 67,175
strings
binary representation
138-139
encoding 3, 123, 163, 184,
192
representations 46, 93
strongly typed genetic
programming (STGP) 103
structural stability 131
structured chromosome
representation 36
subsequence exchange crossover
(SXX) 141-142, 155, 156
sychronisation-based
identification 124-127

synchronisation of nonlinear
circuits (SNC) 118, 121-122

synchronous master—slave
genetic algorithms 21

system identification 48

system modelling 49, 57-59,
95-97

systems integration 48

tabu search 135, 158
tailor-fit operators 170
termination, of genetic
algorithms 5, 18-19
test cases b9
testbed functions 29, 155
three-dof arms 187-189
threshold selection 47
tic-tac-toe 101
time intervals mutations 177
time series
chaotic 132
prediction 101
topology 101-103
torque minimisation 164, 191
tournament selection 47
tracking of time-varying systems
32
trade mutation 17
trade-off 37, 38, 39, 70
training mode 100
trajectory planning 162-169
transputers 30

Index 263

travelling salesman problem 7,
25, 141

truncation selection 26,
179-180, 196, 245

turbine see gas turbine

two-dof arm 165-167

uniform crossover 13-14

uniform mating 47

updating, generational or
incremental 47

utility measure 65

variation, continuous and
discontinuous 2

vector evaluated genetic
algorithms (VEGA) 220, 225

vector of objective values 65-67

vehicles, autonomous 48, 57, 59

virtual islands 27-28, 29

VLSI layouts, genetic design
229-253

VSLI chips, physical design
230-236

weighted-sum genetic algorithms
170, 172-173, 180182, 196

weighting factors 164, 182

WinDes 215, 216

wing shape 203, 205, 221-224

worker/farmer architecture 21,
22, 30

AAAAAAAN

Genetic Algorithms in engineering systems

This book comprises ten invited expert contributions on the theory and
applications of genetic algorithms in a variety of engineering systems. In
addition to addressing the simple formulation of GAs, the chapters include
original material on the design of evolutionary algorithms for particular
engineering applications. Chosen for their experience in the field, the
authors are drawn from both academia and industry worldwide, and provide
extensive insight into their respective fields. The volume is suitable for
researchers and postgraduates who need to be up-to-date with developments
in this important subject, as well as practitioners in industry who are eager
to find out how to solve their particular real-life problems.

Ali Zalzala is a lecturer in control engineering at the University of
Sheftield with particular interest in industrial automation. Through the
Robotics Research Group, he manages an active programme on the
advanced real-time control of intelligent systems. In addition to the
development of industry-supported systems, research is carried out on
the applications of soft computing techniques and distributed processing
in robotics, manufacturing processes and prosthetic devices. His work is
supported by grants from EPSRC, ESPRIT as well as industry. Over the
last few years, he has published over 70 papers in journals and international
conference proceedings.

Peter Fleming is a professor of industrial systems and control at the
University of Sheftield and head of the Department of Automatic Control
and Systems Engineering. His control and systems engineering interests
include control applications of genetic algorithms and optimisation, software
for control system design and implementation, and distributed and parallel
processing for real-time control and instrumentation. These interests have
led to the development of close links with a variety of industries in sectors
such as aerospace, power generation, food processing and manufacturing. He
is director of the Rolls-Royce University Technology Centre for Control
and Systems Engineering and has authored over 150 publications, including
four books.

The Institution of Electrical Engineers
Michael Faraday House, Six Hills Way ISBN 978-0-852-96902-3

Stevenage, Herts. SGI 2AY
ISBN 0 85296 902 3

Printed in the United Kingdom

	Genetic algorithms in engineering systems
	Contents
	Preface
	Contributors
	1 A. Chipperfield: Introduction to genetic algorithms
	1.1 What are genetic algorithms?
	1.1.1 Overview of GAs
	1.1.2 GAs versus traditional methods

	1.2 Major elements of the GA
	1.2.1 Population representation and initialisation
	1.2.2 The objective and fitness functions
	1.2.3 Selection
	1.2.3.1 Roulette wheel selection methods
	1.2.3.2 Stochastic universal sampling

	1.2.4 Crossover (recombination)
	1.2.4.1 Multipoint crossover
	1.2A.2 Uniform crossover
	1.2.4.3 Other crossover operators
	1.2.4.4 Intermediate recombination
	1.2.4.5 Line recombination
	1.2.4.6 Discussion

	1.2.5 Mutation
	1.2.6 Reinsertion
	1.2.7 Termination of the GA

	1.3 Other evolutionary algorithms
	1.4 Parallel GAs
	1.4.1 Global GAs
	1.4.2 Migration GAs
	1.4.3 Diffusion GAs

	1.5 GAs for engineering systems
	1.6 Example application: gas turbine engine control
	1.6.1 Problem specification
	1.6.2 EA implementation
	1.6.3 Results
	L 6.4 Discussion

	1.7 Concluding remarks
	1.8 References

	2 J. J. Grefenstette: Levels of evolution for control systems
	2.1 Introduction
	2.1.1 Evolutionary algorithms
	2.1.2 Control system applications
	2.13 Overview

	2.2 Evolutionary learning: parameters
	2.3 Evolutionary learning: data structures
	2.4 Evolutionary learning: program level
	2.4.1 Knowledge representation
	2.4.2 Rule strength
	2.4.3 Mutation operators
	2.4.4 Crossover in SAMUEL
	2.4.5 Control applications of SAMUEL

	2.5 Evolutionary algorithms for testing intelligent control systems
	2.6 Summary
	2.7 Acknowledgment
	2.8 References

	3 C. M. Fonseca and P. J. Fleming: Multiobjective genetic algorithms
	3.1 Multiobjective optimisation and preference articulation
	3.2 How do MOGAs differ from simple GAs?
	3.2.1 Scale-independent decision strategies
	3.2.2 Cost to fitness mapping and selection
	3.2.3 Sharing
	3.2.4 Mating restriction
	3.2.5 Interactive optimisation and changing environments

	3.3 Putting it all together
	3.4 Experimental results
	3.5 Concluding remarks
	3.6 Acknowledgment
	3.7 References

	4 R. Pearce: Constraint resolution in genetic algorithms
	4.1 Introduction
	4.2 Constraint resolution in genetic algorithms
	4.3 Problems in encoding of constraints
	4.4 Fuzzy encoding of constraints
	4.5 Fuzzy logic
	4.5.1 Membership
	4.5.2 Rules
	4.5.3 Defuzzification
	4.5.4 Example
	4.5.5 Advantages of fuzzy logic
	4.5.6 Uses of fuzzy logic

	4,6 Fuzzy logic to resolve constraints in genetic algorithms
	4.7 Engineering applications of the technique [9]
	4.8 Discussion
	4.9 Acknowledgments
	4.10 References

	5 S. Lucas: Towards the evolution of scaleable neural architectures
	5.1 Introduction
	5.2 Encoding neural networks in chromosomes
	5.3 Evolutionary algorithms
	5.4 Active weights and the simulation of neural networks
	5.5 A set based chromosome structure
	5.5.1 Set interconnections
	5.5.2 Example chromosome
	5.53 Results
	5.5.4 Scaleability

	5.6 Conclusions
	5.7 Acknowledgment
	5.8 References

	6 R. Caponetto, L. Fortuna, M. Lavorgna, G. Manganaro: Chaotic systems identification
	6.1 Background
	6.1.1 Chua's oscillator
	6.1.2 Synchronisation of nonlinear systems
	6.1.3 Genetic algorithms

	6.2 Synchronisation-based identification
	6.2.1 Description of the algorithm
	6.2.2 Identification of Chua's oscillator

	6.3 Experimental examples
	6.4 Conclusions
	6.5 References

	7 T. Yamada and R. Nakano: Job shop scheduling
	7.1 Introduction
	7,2 Disjunctive graph
	7.2.1 Active schedules

	7.3 Binary representation
	7.3.1 Local harmonisation
	7.3.2 Global harmonisation
	7.3.3 Forcing

	7.4 Permutation representation
	7.4.1 Subsequence exchange crossover
	7.4.2 Permutation with repetition

	7.5 Heuristic crossover
	7.5.1 GT crossover

	7.6 Genetic enumeration
	7.6.1 Priority rule based GA
	7.6.2 Shifting bottleneck based GA

	7.7 Genetic local search
	7.7.1 Neighbourhood search
	7.7.2 Multistep crossover fusion
	7.7.3 Neighbourhood structures for the JSSP
	7.7.4 Scheduling in the reversed order
	7.7.5 MSXF-GA for job shop scheduling

	7.8 Benchmark problems
	7.8.1 Muth and Thompson benchmark
	7.8.2 The ten tough benchmark problems

	7.9 Other heuristic methods
	7.10 Conclusions
	7.11 References

	8 A. M. S. Zalzala, M C. Ang, M. Chen, A. S. Rana and Q. Wang: Evolutionary algorithms for robotic systems: principles and implementations
	8.1 Optimal motion of industrial robot arms
	8.1.1 Formulation of the problem
	8.1.2 Simulation of case studies
	8.1.2.1 A two DOF arm
	8.1.2.2 A six DOF arm

	8.1.3 Parallel genetic algorithms

	8.2 A comparative study of the optimisation of cubic polynomial robot motion
	8.2.1 Background
	8.2.2 Motion based on cubic splines
	8.2.3 The genetic formulations
	8.2.4 The objective functions
	8.2.4.1 Pareto-based GA
	8.2.4.2 Weighted-sum GA

	8.2.5 Parameter initialisation
	8.2.6 Evaluating the population
	8.2.6.1 Ranking
	8.2.6.2 Fitness assignment
	8.2.6.3 Sharing scheme

	8.2.7 Selection scheme
	8.2.8 Shuffling
	8.2.9 Recombination mechanisms
	8.2.10 Modified feasible solution converter
	8.2.11 Time intervals mutation
	8.2.12 Simulation results
	8.2.12.1 Case 1: Pareto-based GA
	8.2.12.2 Case 2: Pareto-GA versus flexible polyhedron search
	8.2.12.3 Case 3: weighted-sum GA

	8.3 Multiple manipulator systems
	8.3.1 Problem formulation
	8.3.2 Encoding of paths as strings
	8.3.3 Fitness function
	8.3.4 The GA operators
	8.3.5 Simulation results for two 3DOF arms

	8.4 Mobile manipulator system with nonholonomic constraints
	8.4.1 Multicriteria cost function
	8.4.2 Parameter encoding using polynomials
	8.4.3 Fitness function
	8.4.4 Genetic evolution
	8.4.5 Simulation results

	8.5 Discussions and conclusions
	8.6 Acknowledgment
	8.7 References
	8.8 Appendix
	8,8.1 Motion based on cubic splines
	8.8.2 Physical limits
	8.8.3 The feasible solution converter (time scaling)

	9 S. Obayashi: Aerodynamic inverse optimisation problems
	9.1 Direct optimisation of airfoil
	9.1.1 Approximation concept
	9.1.2 Results of direct optimisation

	9.2 Inverse optimisation of the airfoil
	9.2.1 Coding
	9,2.2 Simple GA with real number coding
	9.2.3 Fitness evaluation: objective and constraints
	9.2.4 Construction of fitness function
	9.2.5 Inverse design cycle
	9.2.6 Results of airfoil design

	9,3 Inverse optimisation of the wing
	9.3.1 Pressure distribution for the wing
	9.3.2 MOGA
	9.3.3 Results of wing design

	9.4 Summary
	9.5 References

	10 V. Schnecke: Genetic design of VLSI layouts
	10.1 Introduction
	10.2 Physical VLSI design
	10.2.1 Macro cell layouts
	10.2.2 Placement
	10.2.3 Routing
	10.2.4 Previous genetic approaches

	10.3 A GA for combined placement and routing
	10.3.1 The genotype representation
	10.3.2 Floorplanning
	10.3.3 Integration of routing
	10.3.4 Computation of the global routes
	10.3.5 Hybrid creation of the initial population
	10.3.6 Crossover
	10.3.7 Mutation
	10.3.8 Selection

	10.4 Results
	10.5 Conclusions
	10.6 Acknowledgments
	10.7 References

	Index

