

Expert Android Programming

Master skills to build enterprise grade Android applications

Prajyot Mainkar

BIRMINGHAM - MUMBAI

Expert Android Programming
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2017

Production reference: 1270917

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78646-895-6

www.packtpub.com

http://www.packtpub.com

Credits

Author
Prajyot Mainkar

Copy Editor
Dhanya Baburaj

Reviewer
Nanik Tolaram

Project Coordinator
Ritika Manoj

Commissioning Editor
Smeet Thakkar

Proofreader
Safis Editing

Acquisition Editor
Shweta Pant

Indexer
Rekha Nair

Content Development Editor
Aditi Gour

Graphics
Jason Monteiro

Technical Editor
Ralph Rosario

Production Coordinator
Shantanu Zagade

About the Author
Prajyot Mainkar is the Founder-Director of Androcid, a mobile app development company
based out of Goa, India. He is an android developer with experience of working on Android
development since Android's Froyo edition. Prajyot is also the chairman of Goa Chamber of
Commerce & Industry’s IT committee. Androcid was one of the winners of Goa CM's
Startup Award for the year 2017.

Prajyot is one of the few Intel Innovators in the country and has been a speaker at more
than 300 Android developer conferences across the globe, some of the prominent ones being
Droidcon Greece and Android Developer Days In Turkey.

Prajyot has always been passionate about teaching and was instrumental in building the
Android ecosystem in India during the early stage of Android penetration in India by
forming one of the premier Android communities in India--The Goa Android User's Group
under the Google Developer community. He is passionate about teaching Android
development and has been one of the drivers of introducing Android as curriculum at the
Goa University, which became one of the earliest Indian-based universities to have the
curriculum for Android development.

Recently, Prajyot was awarded as the young entrepreneur of the year by Business Goa and
one of the leading portals in India marked him as one of the top techies in India. He has
been a mentor to more than 100 companies, and he is part of India’s one of the leading start
up incubation centers--Startup Village--as a tech mentor of mobile development.

Popularly known as Android Man of Goa, Prajyot is a professional technology blogger and a
columnist on several portals and print media specially focusing on Smartphone trends.

He considers exploring new places as one of his passions and loves watching tennis. He
loves to play chess and tennis.

Specialties:Android Developer,Android Consultancy,Android Programming,
Mobile Startups, and Mobile app Development.

Firstly, I would like to thank my parents, Mr. Prakash V Mainkar and Mrs. Shital P.
Mainkar for inspiring me to write this book. Their constant motivation and support has
always been the key in this book journey. I would also like to thank the Androcid Team
(Mr. Laximan Chodankar and Mr. Vishal Vernekar) for always being there to support me,
and without whom this book would quite possibly not have happened. The team brings out
the best in you, and this book is just one such result.
I would also like to thank all the mentors and teachers who have been part of my life. Their
teachings have always been the key DNA for what I am today.

About the Reviewer
Nanik Tolaram works as senior Android platform engineer for BlocksGlobal in Australia,
where he is responsible for developing Screener (screener.digital) and Lumin
(mylumin.org). He is passionate about Android and is very active within both the local and
international Android developer community--from talks and teaching, to writing articles for
ODROID open source magazine (magazine.odroid.com). In his spare time, he loves
tinkering with electronics and studying human psychology and behavior. He lives in
Sydney, Australia, with his lovely wife and two beautiful boys.

http://mylumin.org/
http://magazine.odroid.com/

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1786468956.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1786468956
https://www.amazon.com/dp/1786468956
https://www.amazon.com/dp/1786468956
https://www.amazon.com/dp/1786468956
https://www.amazon.com/dp/1786468956
https://www.amazon.com/dp/1786468956
https://www.amazon.com/dp/1786468956
https://www.amazon.com/dp/1786468956
https://www.amazon.com/dp/1786468956
https://www.amazon.com/dp/1786468956
https://www.amazon.com/dp/1786468956
https://www.amazon.com/dp/1786468956
https://www.amazon.com/dp/1786468956

Table of Contents
Preface 1

Chapter 1: Understanding the Gradle System 7

Stepping into the Gradle world 7
Adding Gradle to your app 13
Adding a new Gradle library 14

Adding a Gradle identifier 14
Adding as a module 16

Summary 19

Chapter 2: Exploring Android Studio Developer Tools 20

APK Analyzer 20
Reducing the APK file size with APK Analyzer 21

Understanding basic battery drain 22
Batterystats and Battery Historian 24
Memory Monitor 29

Wondering what the various causes of memory increase are? 30
Logcat 31

Summary 32

Chapter 3: Leap into the Android Support Library 33

The Android Support Library 33
v4 Support Library 37
v7 Support Library 38
Multidex Support library 40
v8 Support Library 40
v13 Support Library 40
Annotations Support Library 41
Design Support Library 41
Custom Tabs Support Library 41

Summary 41

Chapter 4: Google Play Services 42

The architecture 42
Google Maps 52
Summary 55

[ii]

Chapter 5: Material Design 56

Wireframing and tools to gather feedback 56
Understanding the wireframing process (tangible and digital) 57

Material UI for Android developers 57
Building meaningful motions 58

Floating Action Button (FAB) 58
Implementing Search in Zomato 69

Building the UX Design 77
Understanding UX principles and how it's different from UI 77

Summary 81

Chapter 6: SOLID Android Development and Its Design Principles 82

Single Responsibility Principle 82
Open-Closed Principle 84
Liskov Substitution Principle 86
Interface Segregation Principle 88
Dependency Inversion Principle 89
Summary 90

Chapter 7: Understanding MVC, MVP, MVVM and Clean Arch Patterns 91

MVC (Model View Controller) 91
MVP (Model View Presenter) 93
MVVM 98
Clean Architecture Pattern 100

Understanding the layers of Clean Architecture 101
Summary 103

Chapter 8: Decision Making 104

How to begin 104
Creational patterns 105

Builder 105
Dependency injection 106
Singleton 107

Structural patterns 109
Adapter 109
Facade 111

Behavioral pattern 113
Command 113

Observer 113
Model View Controller 114
Model View Presenter 114
Model View View-Model 115

[iii]

Summing up MVP and MVC 115
Refactoring your app 116

What are the advantages of refactoring? 116
How is refactoring done? 116
When should you refactor? 117
What code needs to be refactored? 118

Bloaters 118
Object-orientation abusers 118
Change preventers 119
Dispensables 120
Data class 120
Couplers 120

How do I refactor my code? 121
Refactoring of methods 121

Extract method 121
Inline method 122

Extract variable 123
Inline temp 124
Replace temp with query 124
Split temporary variable 125
Remove assignments to parameters 126
Replace method with method object 127
Substitute algorithm 128

Summary 129

Chapter 9: Performance Matters 130

Improving display performances 130
Optimizing layouts 130

Optimizing layout hierarchies 131
Views on demand 138

Define a ViewStub 138
Improving scrolls and other elements in the app 139

Using a background thread 139
Holding view objects in a ViewHolder 140
Understanding network requests, computation and memory 141

Collecting, analyzing and optimizing the network and network traffic 142
Collection network traffic information 142

Taging network requests 142
Configuring a network test build type 144
Deploying the network test APK 144
Runing the network traffic tool 146
Analyzing Network Traffic Data 147
Analyzing network traffic types 149
Optimizing network use 151

Batching and Job Schedulers 156

[iv]

JobInfo 160
JobService 162
JobScheduler 165
Effective use of Extended Doze and Standby 165

Understanding Doze 166
Doze restrictions 167
Adapting your app to Doze 167

Understanding App Standby 168
Testing with Doze and App Standby 168
Threads and Pools 169

Specifying the Code to Run on a Thread 170
Creating a Thread Pool 171
Running Code on a Thread Pool Thread 175
Communicating with the UI Thread 177

Memory optimization 181
Treating Battery as part of user's experience 181

Understanding what causes battery drain 182
Why Battery Optimization is required? 182
Strategies for battery optimization 183

Effective consumption of battery in Zomato 184
Monitoring changes in charging state 185

Determining the current battery level 186
Improving app with battery analyser 187
Summary 189

Chapter 10: Building Restaurant finder 190

App sections 190
Splash, Login, and Signup (including Google and Facebook) 191
The Signup Flow 195
Discovery Screen 217
Database 226
Room 227

Summary 233

Chapter 11: Backend Service 234

Realtime Database 236
How to write a database structure 237
Add security to data structure 239

Firebase Cloud Messaging 246
Remote configuration 255
Authentication 259
Storage 259

[v]

Summary 259

Chapter 12: App Quality Service 260

Firebase Test Lab 264
Summary 267

Chapter 13: Grow Up 268

Dynamic links 268
App indexing 278
Admob 281

Banner Ads 283
Ad lifecycle event callbacks 284
Discouraged banner implementations 285
Recommended banner implementations 286
Interstitial Ads 287
Discouraged interstitial implementations 290
Interstitial ad implementations 298

Summary 298

Chapter 14: Testing 299

Testing Mechanisms (Functionality , Performance , Security , and
Compatibility) 299

Software Testing Life Cycle (STLC) 300
Organizing for Software Testing 301

Integration Testing 301
Top-down integration testing 302
Bottom-up integration testing 302
Regression testing 303
Smoke testing 303
Acceptance Testing 304
Alpha test 304
Beta test 304
Performance Testing 304
Security Testing 305
Compatibility Testing 305

Automating User Interface Tests 306
Testing UI for a single app 307
Testing App using Espresso in Android Studio 307
Setting up Espresso in Android Studio 307

Create an Espresso Test Class 307
Specifying a View Matcher 308
Performing Actions 309
Test your activities in isolation with Espresso Intents 312
Testing WebViews with Espresso Web 312
Verifying Results 313

[vi]

Testing UI for Multiple Apps 314
Set Up the UI Automator 315

Inspecting the UI on a device 315
Ensuring your Activity is accessible 316

Selector Specification 318
Performing Actions 319
Tools and Techniques: Espresso and Monkeyrunner 319
Robotium 320

The UI Animator 322
Espresso 324
Monkeyrunner 327

Summary 330

Chapter 15: Preparing for Google Play 331

Versioning Your App 332
Generating a signed APK 333

Preconfiguring to automatically Sign Your APK 336
Android Instant Apps 339
Alpha and Beta testing the App 340
Preparing App Store Listing 344
Device Catalog 348

App signing 348
Android Vitals 349

User Feedback and Analytics 356
Summary 364

Chapter 16: Understanding App Store Analytics for Optimization 365

Keep an eye on Google Play policies 366
Get your app title right 366
Effectively using keywords in description 367
Does your icon reflect the app theme? 369
Are your app screenshots nailing it? 370
Video can be a crowd puller 374
Responding to reviews 374
Are you LOCALizing? 375

Summary 376

Index 377

Preface

Introduction
The book deep dives into understanding the design, develop, and distribute mechanism of
building restaurant discovery app features that can be served "hot" to the end users. The
book highlights key elements of building the app using Google’s Material Design
guidelines. Building for performance is one of the aspects of a good app, and we have it
covered in this book. We will wrap up the book with how to publish to the Google Play
Store.

What this book covers
Chapter 1, Understanding Gradle, teaches developers how to prepare Android Studio and its
components for development. The developers will use Android Nougat 7.0 Edition for
development.

Chapter 2, Exploring Android Studio Developer Tools, explains that over the years, Android
Studio has received a lot of productivity updates. This chapter highlights how in-house
tools will get the best of productivity while building restaurant discovery app features.

Chapter 3, Leap into Android Support Library, focuses on Android N. Understanding support
library will offer a number of features that are not built into the framework. Using support
libraries will provide backward compatibility with the previous versions, providing some
useful UI element support.

Chapter 4, Google Play Services, enables developers to harness the latest APIs for Google
services used in food discovery apps such as Google Maps and Google Login.

Chapter 5, Material Design, explains that material design is almost over two years old now.
Understanding design principles and implementing them in the key features of the
restaurant discovery app are covered in this chapter.

Chapter 6, SOLID Android Development and its Design Principles, informs the readers that
Android apps often have complex interactions among application logic, UI views, data
models and controllers, and networking. This calls for a strong architecture planout. In this
chapter, there are more insights into SOLID Android architecture patterns.

Preface

[2]

Chapter 7, Understanding MVC, MVP, MVVM, and Clean Arch pattern, covers building a
clean architectural pattern while building the app.

Chapter 8, Decision making, focuses on which is the development architecture followed
while developing food discovery app and reasoning for the same.

Chapter 9, Performance Matters, we will discussed how performance, impacts the app
quality, followed by in ways by which we can target different elements of app performance
such as UI, and resources such as the battery. We also discussed the tools that we can use to
improve the app performance.

Chapter 10, Building Restaurant finder, in this we will understand the core techniques of
coding the different components and screens of the Zomato app by yourself. After reading
these topics, you understood what are the components required to develop certain sections
on a screen. Once you get a hold of these components, they can be reused in other screens
with similar requirements.

Chapter 11, Backend Service, looks at the development life cycle as having three different
phases: development, testing, and distribution. The first of these is building an app and
having the stuff you need to develop and support the app, which we have done in the
earlier chapters. The firebase will allow us to have the backend in place. It also sports Cloud
Messaging, which lets you deliver messages and notifications reliably at no cost.

Chapter 12, App Quality Service, helps developers understand how Firebase’s services can
assist developers improve app quality. Firebase Test Lab for Android enables developers to
catch bugs before ship. The apps can be tested on physical devices hosted in Google’s data
centers.

Chapter 13, Grow Up, says that Admob supports a number of engaging formats, including
video, natics, and interstitial ads. This chapter will help developers understand ads,
Firebase dynamic links, and app indexing.

Chapter 14, Testing, assists developers in testing the entire app flow and improving the
tests of the app. It will also highlight the best practices for testing and supported tools.

Chapter 15, Preparing for Google Play, focuses on how to prepare the store listing for the
app.

Chapter 16, Understanding App Store Analytics for Optimization, helps understand industry-
followed best practices for App Store optimization.

Preface

[3]

What you need for this book
Developers will be required to work with some of the following software:

Java
Android Studio IDE
Firebase

Who this book is for
This book is for mobile developers having some expertise in building android apps and
who wish to now take a leap into building app features that are part of restaurant spotting
app using the Android Nougat of Google.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: Here,
jsouza is the user John Souza's uid. So, to fetch his details the path would be
;/users/jsouza.

A block of code is set as follows:

A block of code is set as follows:
[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Preface

[4]

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample
/etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Firebase is a cloud based
backend-as-a-service (BaaS) service provided by Google that provides a structural way to
save your data very efficiently and also retrieve it at much faster speeds."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply email feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

http://www.packtpub.com/authors

Preface

[5]

Downloading the example code
You can download the example code files for this book from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your email address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/-Expert-Android-Programming. We also have other code bundles from
our rich catalog of books and videos available at https://github.com/PacktPublishing/.
Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https://www.packtpub.com/sites/default/files/
downloads/ExpertAndroidProgramming_ColorImages.pdf.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/-Expert-Android-Programming
https://github.com/PacktPublishing/-Expert-Android-Programming
https://github.com/PacktPublishing/-Expert-Android-Programming
https://github.com/PacktPublishing/-Expert-Android-Programming
https://github.com/PacktPublishing/-Expert-Android-Programming
https://github.com/PacktPublishing/-Expert-Android-Programming
https://github.com/PacktPublishing/-Expert-Android-Programming
https://github.com/PacktPublishing/-Expert-Android-Programming
https://github.com/PacktPublishing/-Expert-Android-Programming
https://github.com/PacktPublishing/-Expert-Android-Programming
https://github.com/PacktPublishing/-Expert-Android-Programming
https://github.com/PacktPublishing/-Expert-Android-Programming
https://github.com/PacktPublishing/-Expert-Android-Programming
https://github.com/PacktPublishing/-Expert-Android-Programming
https://github.com/PacktPublishing/-Expert-Android-Programming
https://github.com/PacktPublishing/-Expert-Android-Programming
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/ExpertAndroidProgramming
https://www.packtpub.com/sites/default/files/downloads/ExpertAndroidProgramming
https://www.packtpub.com/sites/default/files/downloads/ExpertAndroidProgramming
https://www.packtpub.com/sites/default/files/downloads/ExpertAndroidProgramming
https://www.packtpub.com/sites/default/files/downloads/ExpertAndroidProgramming
https://www.packtpub.com/sites/default/files/downloads/ExpertAndroidProgramming
https://www.packtpub.com/sites/default/files/downloads/ExpertAndroidProgramming
https://www.packtpub.com/sites/default/files/downloads/ExpertAndroidProgramming
https://www.packtpub.com/sites/default/files/downloads/ExpertAndroidProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ExpertAndroidProgramming_ColorImages.pdf

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http:/ /www. packtpub. com/ submit- errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https:/ /www. packtpub. com/ books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Understanding the Gradle

System
Google introduced Gradle and Android Studio in order to help make the development
process more streamlined. They wanted to ensure that it becomes easier for developers to
reuse code and also help them create build variants with ease. Having it closely integrated
with an IDE such as Android Studio ensured that Gradle has a good IDE integration
without making the build system dependent on the IDE.

In this chapter, we will discuss:

Setting up Gradle in Android Studio
Dependent libraries to be used in Android Studio, including Identifiers

If you have been using Eclipse, it's likely that some of you won't know of any alternative to
the default APK generation technique within the IDE. But, as such as alternative, you can
do this using the command line. The Android build system compiles app resources and
source code, and packages them into APKs that you can test, deploy, sign, and distribute.

Stepping into the Gradle world
Gradle is an open source build automation system that is based on the Apache ANT and
Maven concept. It introduces a Groovy-based Domain Specific Language (DSL) instead of
the XML which is primarily used by Apache Maven for declaring the project configuration.
Gradle was designed keeping in mind the support for multi-project builds which grow to be
quite a large size, and it supports incremental builds. Gradle does this by understanding
which parts of the build tree are up to date.

Understanding the Gradle System

[8]

This ensures that tasks dependent on those parts will not be re-executed. Gradle determines
which tasks need to be run and in which order, using Directed Acyclic Graph (DAG).

Gradle can automate the building, testing, publishing, deployment, and more of software
packages or other types of projects. Using the combination of the power and flexibility of
ANT and the dependency management and conventions of Maven, Gradle helps to build in
a more effective manner.

First, let's get familiarized with the Gradle environment inside Android Studio. To do that
we should first create a new Android Project. I assume you have Android Studio installed
by now. Here is the link in case you wish to know more about the install:
https://developer.android.com/studio/install.html

Now that you have the Android Studio installed, we will first create a new project,

Open Android Studio, create a New Project, and give a name to your project as seen in the
following figure:

https://developer.android.com/studio/install.html

Understanding the Gradle System

[9]

At the Target Android Devices screen, without making any changes, just click on Next:

Understanding the Gradle System

[10]

Next, at the Add an Activity to Mobile screen, select the Empty Activity option for now:

Understanding the Gradle System

[11]

Now, the Activity and an XML file will be generated by default. Just click Finish when
done:

Understanding the Gradle System

[12]

When the project load is complete, just change the view structure to Project. You may leave
it at Project Files by default:

Understanding the Gradle System

[13]

Once this is done open the build.gradle file. Here you will see the libraries that are
compiled in the project:

We have completed the launch of a blank project and we now should understand the basic
setup of the same. In the next section, we will talk about adding Gradle to this app.

Adding Gradle to your app
You can Gradle build script dependency to your app in the following way:

Open the file from your app module.

Understanding the Gradle System

[14]

Here, in the dependencies, add the Gradle identifier for a library that you want to import:

Let us consider the current Gradle library, for instance:

com.android.support:appcompat-v7:23.1.1

The components of this Gradle library could be distributed in sections to ease
understanding. Here are a few pointers to make note of:

com.android.support is the package name of the project
appcompat-v7 is the project name
23.1.1 is the version of the project

We have now completed the setup for Gradle in Android Studio. We will be using several
libraries in our App. In the next section, we will see how to add new Gradle Libraries.

Adding a new Gradle library
Making Android Development more awesome, Gradle allows us to incorporate libraries in
to Android Studio in different ways. Using these, developers can easily include their
libraries using Gradle dependencies. In this section we will discuss the following
techniques:

Adding a Gradle identifier
Adding as a module

Adding a Gradle identifier
To add a new Gradle library, find the Gradle identifier for the third party library, and add it
to the dependencies list.

Understanding the Gradle System

[15]

When you make changes to the build configuration files in your project, Android Studio
requires that you sync your project files so that it can import your build configuration
changes and run some checks to make sure your configuration won't create build errors.

To sync your project files, click Sync Now (as seen in the following figure) in the
notification bar (this appears when you make a change), or click Sync Project from the
menu bar. If Android Studio notices any errors with your configuration--for example, if
your code uses API features that are only available in an API level higher than your
compileSdkVersion-- the Messages window appears to describe the issue:

Next, we will discuss how libraries can be added using a module.

Understanding the Gradle System

[16]

Adding as a module
You can also add a library in Android Studio by adding it as a module. To add the module:

First, place the library code in any folder of your choice1.
Then, you need to Import the library as a module in your app. The figure below2.
shows the steps to add the library as a Module:

This will open a new window where you need to select the library that you have saved to
the directory. When you have selected the directory, click on Done. This will import the
external library into your project.
As an example, I have added the module crop image to my project, which appears in my
project folder.

Understanding the Gradle System

[17]

Next, we need to add the module to the app's dependency list. To do this, right click on the module that has
been added and click on the Open Module Settings option:

It will open a new window with your app module and library module in the list. Choose
you app module, and then select the dependency list.

Understanding the Gradle System

[18]

Next, click on the plus icon which will open another dialog with the module name. Select it
and click OK:

This will build the Gradle and add the module to the build.gradle, and it will be seen as
a compiled project here:

Understanding the Gradle System

[19]

Note that Core, UI and Util sub projects can also have their own build.gradle file,
depending on their specific needs. Alternatively, you can also define the dependencies of a
project in the root build.gradle file, as discussed in the preceding section. In this case, we
won't be focusing on these points.

Summary
We started the chapter by looking at what Gradle is and how it is important in project
development. We briefly looked at the Android Studio setup and how it can help in
building the system along with Gradle. After the introduction, we talked about how
developers can set up Gradle in Android Studio. We also created a new project in Android
and discussed how Gradle libraries can be added to the project.

In Chapter 2, Exploring Android Studio Developer Tools we will discuss some of the key
developer tools in Android Studio.

2
Exploring Android Studio

Developer Tools
According to Statista, one of the leading statistical analysis agencies, designing a
smartphone is ultimately a game of trade-offs: screen size vs. portability; battery life vs.
data speeds; appearance vs. sturdiness; to name just a few. To make these trade-offs, it's
important to know what the consumer wants.

Now that we know how to use Gradle, in this chapter we will discuss some of the tools that
provide help in building apps and also help in debugging and performance tooling. We will
discuss three important tools:

APK Analyzer: the tool to analyze the Android Application Package (APK) file
Battery Historian: shows the details of how the battery is used in the phone
Memory Analyzer: understanding memory patterns while using the app

APK Analyzer
An APK is an Android Application package file. Gradle, by default, builds a single APK, no
matter what libraries you include. This compiled and packaged file includes all of the
application's code (.dex files), manifest files, resources, and assets.

Exploring Android Studio Developer Tools

[21]

The library, within itself, comprises multiple copies of the same native code, optimized for
the different architecture. This means that the library is a native binary with multiple
architecture such as x86, x86_64, armeabi, and so on, all packed together. A developer can
easily run the command unzip <your_APK_name>.APK to understand the content of an
APK:

When your app, and the libraries it references, reaches a specific threshold, you encounter
build errors that point to the app's limit of the Android App Build Architecture. The most
recent Android build system displays an error, trouble writing output:

Too many field references: 152000; max is 65536.

You may try using --multi-dex option.

Looking closely at the log, the number 65536 has a significant reason for appearing. This
number represents the total number of references that can be invoked by the code within a
single Dalvik Executable (dex) bytecode file.

Both these error conditions display a common number: 65536. This number is significant in
that it represents the total number of references that can be invoked by the code within a
single dex bytecode file. If you have built an Android app and received this error, then
congratulations, you have a lot of code!

Reducing the APK file size with APK Analyzer
When users download the APK from the Play Store, the package manager is smart enough
to install only the code for the architecture it is installed on, but there is no relief for the data
consumed if the APK size is large. Memory space on the phone is a competitive area and to
make it worse, if users spot the large APK size they may well decide not to bother. Ensure
that your app utilizes memory in a way appropriate for making users download and retain
the app. The smaller you make your APK, the more likely it is for the user to at least
download the app in the first instance.

Exploring Android Studio Developer Tools

[22]

The APK file is a simple archive file and there's no way of compressing its size further.
Hence, the actions that need to be performed should be followed skillfully using some tools
like APK Analyser, before the build is shipped.

This tool helps to understand the contents and the sizes of the different components in your
APK. With the help of this tool, you can reduce the size of your APK, by identifying the raw
file size and estimated download size of each component that combine, to make up your
APK.

To use APK Analyser, select Build>AnalyzeAPK. Follow this step by selecting the APK you
want to take a closer look at. The tool will then output in the main Android Studio window,
so that you can explore the various components that make up the APK. Using this
information, you can nail down the areas where you think there's a loss of some excess
bytes.

You need to understand the contents and sizes of different components in your APK, avoid
64K referenced method limit issues with your dex files, diagnose ProGuard configuration
issues, view the merged AndroidManifest.xml file, and inspect the compiled resources
file. This feature can help you reduce your APK size (you'll see both the raw file size as well
as the download size of the various components). You can check out the official reference at
https://developer. android. com/ studio/ build/ shrink- code. html for more details
regarding the preceding topics.

Understanding basic battery drain
Earlier editions of Android OS used to run on Dalvik Runtime, which means apps used to
compile at execution time. Post-Lollipop edition, Android has switched to Android runtime
(ART), which means the apps are compiled beforehand, ensuring they are launched faster.
ART, as the runtime, executes the Dalvik Executable format and dex bytecode specification.
Apart from the launch, the entire consumer experience using the app is essential for app
retention. One important feature is the battery - a dear feature of the phone.

An app which is greedy for power often finds itself in the position of either being
uninstalled or lower rated when reviewed on the Google Play Store listing. Take a look at
some of the most popular apps on the Store, including Facebook, which has had
consistently bad reviews that quote battery drain as one of the top sources of user
dissatisfaction. If your app has the reputation of being a battery hog, that might incur a loss
of potential users that could otherwise be using the app. Android developers usually
neglect the way that their app could impact the battery life of the smartphone. Not that it
needs deeper insights in embedded systems, but a few tips can help you to appreciate the
impact of an app on battery life.

https://developer.android.com/studio/build/shrink-code.html
https://developer.android.com/studio/build/shrink-code.html
https://developer.android.com/studio/build/shrink-code.html
https://developer.android.com/studio/build/shrink-code.html
https://developer.android.com/studio/build/shrink-code.html
https://developer.android.com/studio/build/shrink-code.html
https://developer.android.com/studio/build/shrink-code.html
https://developer.android.com/studio/build/shrink-code.html
https://developer.android.com/studio/build/shrink-code.html
https://developer.android.com/studio/build/shrink-code.html
https://developer.android.com/studio/build/shrink-code.html
https://developer.android.com/studio/build/shrink-code.html
https://developer.android.com/studio/build/shrink-code.html
https://developer.android.com/studio/build/shrink-code.html
https://developer.android.com/studio/build/shrink-code.html
https://developer.android.com/studio/build/shrink-code.html
https://developer.android.com/studio/build/shrink-code.html
https://developer.android.com/studio/build/shrink-code.html
https://developer.android.com/studio/build/shrink-code.html

Exploring Android Studio Developer Tools

[23]

The battery is part of the user's experience.

If your app is one of the top drainers of the battery in the device, what's the best way to
figure it out? The battery setting menu has an information resource to diagnose battery
drain issues caused by mobile apps. Simply heading to Settings |Battery will provide the
user with the necessary information in a graphical format, comparing consumption against
time. The records are maintained since the last full charge status. There is also an interesting
statistical overview of the applications that have contributed to battery drain:

Clicking on the graphs opens an extended section that shows how much time your device
has spent in various cellular states. The different color patterns such as green, yellow, and
orange indicate the signal strength. It also provides other information like active time using
Wi-Fi, Device Awake time, and Screen On time.

Exploring Android Studio Developer Tools

[24]

A key observation you should make as a developer is of the state when your device is
awake but the screen is off. This might be the result of a Wakelock or alarm that uses the
device resources when the user might not be actively using the device. If this is frequently
seen, it calls for some optimization. We will be talking about the Wakelocks and their
impacts during the performance section of this book.

Batterystats and Battery Historian
The Android Settings menu options provide high level measurements of battery drain.
However, to gain more insight into battery consuming apps, there are some tools that can
be useful. Tools such as Batterystats and Battery Historian come in handy. Batterystats
collects battery data from your device, and Battery Historian converts that data into a
HTML visualization that helps you understand power consumption graphically.

Batterystats, was introduced in KitKat, but Lollipop brought a large dataset for the users
which included data about every Wakelock action on the device.

Please reset the data and enable full Wakelock reporting to receive comprehensive
information including how the device utilizes the battery, along with details about all the
running processes.

Here are some of the commands you can run after connecting your device:

adb shell dumpsys batterystats --reset (Resets all of the data in the
Battery Settings menu before generating the new dataset)
adb shell dumpsys batterystats --enable full-wake-history (Enables full
Wakelock reporting)
adb shell dumpsys batterystats --charged (Enables you to receive the data
since the phone was last fully charged)

Exploring Android Studio Developer Tools

[25]

If you wish to know what a Batterystats System Dump looks like, you can run the
command using the command line interface in Android Studio. Take a look at the sample as
follows:

We will be talking more about what each of these components mean during performance in
Chapter 15, Understanding App Store Analytics for Optimization later in the book, where we
will cover in detail how each of these elements help users to optimize the Android App for
better performance.

Google I/O 2015 saw the launch of an updated tool called Battery Historian 2.0 (Download
at: https://github. com/ google/ battery- historian). This was launched with new reports
completely rewritten in GO. This tool provides extensive information that helps you drill
down into battery data for your specific application.

To run the latest edition of Battery Historian, you will need Android Devices with versions
later than Android 5.0 and Golang version 1.8.1. Please follow the installation guide given
on the link above to complete the setup.

You can either save the file or check the output right from the terminal window. Exploring
each component, the following are the important keywords of the stats:

Battery History: This shows the time series of various power-relevant events,
such as the screen being on, radio signals and app launch. You can also get
details of each one of these using the Battery Historian graph, which we will
discuss in the next section.
Per-PID Stats: Shows how each process ran, including the wake time.

https://github.com/google/battery-historian
https://github.com/google/battery-historian
https://github.com/google/battery-historian
https://github.com/google/battery-historian
https://github.com/google/battery-historian
https://github.com/google/battery-historian
https://github.com/google/battery-historian
https://github.com/google/battery-historian
https://github.com/google/battery-historian
https://github.com/google/battery-historian
https://github.com/google/battery-historian
https://github.com/google/battery-historian
https://github.com/google/battery-historian

Exploring Android Studio Developer Tools

[26]

Statistics since last charge: This information provides an overall picture of what's
happening with the device, to ensure no external events are affecting your
experiments. Some of the statistics include, but are not limited to: phone signal
levels, screen brightness, signal scanning time, time on battery, time on battery
screen off, Wi-Fi signal levels, Wi-Fi idle time, and Wi-Fi Power drain (in mAh).
Estimated power use (mAh) by UID and peripheral: This is an extremely rough
estimate and its use should avoid consideration as an experiment data.
Per-app mobile ms per packet: Shows the Radio-awake-time divided by packets
sent - which means, since an efficient app transfers all its traffic in batches, the
lower the value, the better it is for the app's performance.
All partial wake locks: All app-held Wakelocks, by aggregate duration and
count.

Batterystats collects battery data from your device. It creates a dump of all the battery data
of a particular selected device using Android Debug Bridge (ADB) commands. Using these
Batterystats, the battery usage could be discovered using a Battery Historian, which would
create a HTML file for viewing the Batterystats results in a browser for user viewing.

A graphical representation from Battery Historian of the live Zomato App is shown in the
following screenshot:

Exploring Android Studio Developer Tools

[27]

Using the Battery Historian, important statistics can be drawn upon:

It shows you the processes from the device that consume your battery. Here, you
could compare the battery usage for each process.
It also shows you the tasks from an app that consume more of the battery, so that
you can take necessary action on them.

The preceding graph representation shows the readings, based on various categories of the
Historian. A few of the major categories to look out for, and to analyze regarding the
battery consumption for a device, are listed as follows:

Battery level: This shows the battery level of the device when it was recorded. It
is calculated in percent where 099 is 99% battery. It helps you determine how fast
the device battery drains out.
Screen: Shows whether the screen was ON.
Top: It shows the application that consumes the most battery usage. Currently
the Zomato App is at the top, as the records have been taken, resetting the battery
usage and using only the Zomato App.
Wake_lock: This is the most important field to check battery consumption. The
usual process of the App is to wake up, do a small amount of work, and then go
back to sleep. Waking up the app is very expensive to the battery. So if there are
lot of bars showing up, it might be a problem. In this case, the app was
continuously awake, hence showing a continuous wake_lock value.
Running: This shows if the CPU is awake. Here, it should be awake at the times
when you are doing some processing, and in sleep mode when not. If it shows as
running even if you are not performing any actions, it means there are
background processes that are making your CPU do a lot of processing, and
hence consuming the battery.
Wifi_running: Shows whether the Wi-Fi network was active.
Phone_signal_strength: Shows the signal strength of the mobile device network.

Exploring Android Studio Developer Tools

[28]

Let us now discuss how we can set up to plot Battery Historian for the App we are going to
build:

Download the open-source Battery Historion Python script from GitHub1.
(https:/ / github. com/ google/ battery- historian).
Unzip the file to extract the Battery Historian folder. Find the historian.py file2.
in the folder and move it to the desktop or another writable directory.
Connect your mobile device to your computer.3.
On your computer, open a terminal window.4.
Change the directory path to the path where you have saved historian.py. For5.
example, if it is on desktop, run:

 cd ~/Desktop

Shut down your running adb server :6.

 adb kill-server

Restart adb and check for connected devices: >adb devices. This will show the list7.
of devices.
If you don't see any devices, make sure your phone is connected and USB8.
Debugging is turned on, and then kill and restart adb.
Reset battery data gathering by running the command :9.

 >adb shell dumpsysbatterystats --reset

Resetting erases old battery collection data; otherwise, the output will be huge.10.
Disconnect your device from your computer so that you are only drawing current11.
from the device's battery.
Use the app for a while, until it gathers a sufficient amount of data for your use.12.
Reconnect your phone.13.
Make sure your phone is recognized:14.

 >adb devices

Dump all battery data. This can take a while:15.

 >adb shell dumpsysbatterystats> batterystats.txt

Create a HTML version of the data dump for Battery Historian:16.

 > python historian.py batterystats.txt > batterystats.html

https://github.com/google/battery-historian
https://github.com/google/battery-historian
https://github.com/google/battery-historian
https://github.com/google/battery-historian
https://github.com/google/battery-historian
https://github.com/google/battery-historian
https://github.com/google/battery-historian
https://github.com/google/battery-historian
https://github.com/google/battery-historian
https://github.com/google/battery-historian
https://github.com/google/battery-historian
https://github.com/google/battery-historian
https://github.com/google/battery-historian

Exploring Android Studio Developer Tools

[29]

Open the batterystats.html file in your browser.17.
The Battery Historian tool makes it simpler to dig into the data for one single18.
process. As a developer, you can easily spot battery drain functions using this
tool and work on its resolution. In the next section, we will discuss the memory
monitor tools.

Memory Monitor
When you hear the term memory management in an Android app, it is basically the
Random Access Memory (RAM). Managing the RAM is the most critical section in the
Android app development process, as the physical memory is often constrained. The
fundamental principle of memory management is to avoid a memory leak from your app.

In Android Studio there is a tool we can use to check the memory usage in the App. To
check this you could follow these steps:

Run your app on an Android device connected to an emulator.1.
Open the Android Monitor tab in Android Studio situated at the bottom window.2.
Open the Monitor section within it, and you are there.3.

Here you'll be able to continuously check the memory usage of the app as and when the
app is being used. The following image shows the memory usage for an app:

Exploring Android Studio Developer Tools

[30]

The preceding memory graph shows the memory used by a device against time. This graph
shows the memory usage in the app when any process is performed by the app, be it
loading data over the network, displaying an image, rendering a view on the screen, or
running a background task.

There are two graphs being plotted at the same time here, one with the allocated memory
that could be used by the device.

<p>OutOfMemoryException error is the most common cause of unconventional crashing
of an app due to memory leaks, and the Memory Monitor tool can help you to debug the
same.

Wondering what the various causes of memory
increase are?
In any app, the memory is bound to increase at various points of time as and when you use
it. Do not panic if the memory keeps on increasing when you do some stuff in the app, like
loading data over the network, displaying an image, rendering a view on the screen or
running a background task. It means that for whatever task you do in the app, for example
displaying an image onto the screen, the app needs to allocate some amount of space in the
RAM. Now, this allocation is for one particular process. Similar allocations will also happen
for other processes. These will increase the memory and, if not handled, may cause a
memory leak in your App.

For most of the Apps, Android has a Dalvik garbage collector, which takes care of the
memory allocations and releases the memory when done. This will help prevent memory
leaks.

By carefully understanding how your Android application handles memory operations,
you can ensure that the app is running efficiently on memory contained devices.
Eventually, this will also lead to a reduction in out-of-memory crashes.

Exploring Android Studio Developer Tools

[31]

Logcat
Android Studio has a logcat tab inside Android Monitor that prints system events, such as
when a garbage collection occurs, as well as messages your app prints with the Log class, to
assist with debugging. Logcat displays messages in real time and also keeps a history so
you can view older messages.

Log Log Level Description

Log.v(tag, message) Verbose Show all log messages (the default).

Log.d(tag, message) Debug Show debug log messages that are useful during
development only, as well as the message levels lower
in this list.

Log.i(tag, message) Information Show expected log messages for regular usage, as
well as the message levels lower in this list.

Log.w(tag, message) Warning Show possible issues that are not yet errors, as well as
the message levels lower in this list.

Log.e(tag, message) Error Show issues that have caused errors, as well as the
message level lower in this list.

Tag and message are the string data-type.

You can search for messages in the logcat by;

Typing a character sequence in the search field
Optionally selecting Regex if you want to use a regular expression search pattern

The logcat will reflect the changes accordingly.

Also finer searches can be done by finding the text within the searched text by using the
find option, clicking Ctrl + F on the keyboard.

Exploring Android Studio Developer Tools

[32]

Summary
Battery life is an excellent indicator of how your App performs. Apps without optimization
can severely impact the battery life of a device. We've walked though in-depth analysis of
battery drain in Android Apps. We also looked at Batterystats and the Historian tool to
analyse battery usage patterns. Additionally, we explored memory optimization to ensure
the app runs smoothly and stays off the memory leaking track.

In the next Chapter 3, Leap into the Android Support Library we will discuss Android
Support Libraries.

3
Leap into the Android Support

Library
One of the greatest strengths of the Android Platform is its support for a huge variety of
devices. These include smartphones, tablets, Smart Wears, smart TV's, and even cars. From
just a mobile computing platform, Google has used the powers of Android to a great and
deeper extent. Looking at the Android distribution, Android 4.x.x version caters for more
than 95% of its share. Comparing smartphone OS global market shares from Q1-09 to
Q2-16, Android has grown massively from 1.6% to 86.2%. According to Google, 6M+ users
are added every month, and that is a great number. At this pace, we can expect 630M users
by 2018.

In this chapter, we will look at the Android Support Library features and how they assist us
in the project.

The Android Support Library
Supporting multiple devices can pose issues, particularly when users expect apps to
function seamlessly on every device, in the same way. This expectation rises even when
users know very well that there is a significant difference in the software and hardware of
the phone. While Google releases, latest updates to Android, it is not necessarily true that
all OEMs follow up on this update on their smartphone. This leads to the fact that most of
the users tend to use releases which are approximately 15 months old or older.

Leap into the Android Support Library

[34]

If that is held true, developers would have to compromise a lot in order to support most of
their users, running several versions of Android. Fortunately, the Android team is aware of
this and endeavors to provide consistent help for the developer in this regard. This is a
tricky issue, especially considering the consistency of the app feature that shouldn't affect
the architectural structure. Google's Android team has a strategic answer to this: The
Android Support Library.

The Android Support Library is a collection of libraries, which are available on several API
levels, that help developers to focus on the unique parts of their app, supporting new
functionality and compatibility issues that might arise due to different versions running on
different devices.

Setting up Android Support Libraries in your development environment depends entirely
on what features you want to use and what range of Android platform versions you are
targeting with your application. The Android Support Repository package is provided as a
supplemental download to the Android SDK, and using the Android SDK manager you can
grab the same.

Please follow the steps given as follows to set up the Support Library files:

Open the Android SDK Manager option in Android Studio by selecting Tools >1.
Android > SDK Manager.

Leap into the Android Support Library

[35]

This will open the window as selected:

Leap into the Android Support Library

[36]

In the Support Repository option, select Android Support Repository. If you have opened
the standalone SDK Manager, this option would be in the Extras section, as shown in the
following image:

Click on the Install Package option2.

After downloading, the tool installs the Support library files to your existing Android SDK
directory. To view these library files, you can navigate to the following subdirectory of your
SDK:
<sdk_path_on_your_system>/extras/android/m2repository/com/android/suppo
rt/ directory

Leap into the Android Support Library

[37]

Android offers several support library features you can add to your project, specifically:

v4 Support library
v7 Support library
Multidex Support library
v8 Support library
v13 Support library
Annotations Support library
Design Support library
Custom Tabs Support library

Let us now take a look at what is offered by these individual support library features:

v4 Support Library
These libraries are designed to be used with Android v2.3 (API Level 9) and above. Here is
the list of supported libraries:

Support
Library

Description Gradle Dependency

v4 compat
library

Provides compatibility wrappers for a
number of framework APIs including
Context.obtainDrawable() and
View.performAccessibilityAction().

com.android.support:support-compat:24.2.1

v4 core-utils
library

Provides a number of utility classes, such
as AsyncTaskLoader and
PermissionChecker.

com.android.support:support-compat:24.2.1

v4 core-ui
library

Supports and implements a variety of UI-
related components, such as ViewPager,
NestedScrollView, and
ExploreByTouchHelper. We will be
using these primarily in our app.

com.android.support:support-core-ui:24.2.1

v4 media-
compat
library

Helps in backporting portions of the media
framework such as MediaBrowser and
MediaSession.

com.android.support:support-media-compat:24.2.1

Leap into the Android Support Library

[38]

v7 Support Library
Like the v4 libraries, these libraries are also designed to be used with Android v2.3 (API
Level 9) and above. Here is the list of supported libraries:

Support
Library

Description Gradle Dependency

v7
appcompat
library

This will be one library that
will play important role in
our project. This library
supports the Action Bar
Design pattern. Moreover, it
also includes support for
material design user interface
implementations. This library
depends on the v4 Support
Library. Some of the key
classes which are part of this
library are:
AppCompatActivity,
ActionBar,
AppCompatDialog, and
ShareActionProvider.

com.android.support:appcompat-v7:24.2.1

v7 cardview
library

A very important library that
supports card layout as
defined in Material Design
pattern. This allows us to
show up information in the
form of cards, which can be
supported on any device.

com.android.support:cardview-v7:24.2.1

v7
gridlayout
library

Sections in the Zomato App
such as Trending this week
use grid layout. Using this
library adds support for the
GridLayout class, which
allows you to arrange UI
elements using a grid styling.

com.android.support:gridlayout-v7:24.2.1

Leap into the Android Support Library

[39]

v7
mediarouter
library

Though we won't be using
this library, it provides
MediaRouter,
MediaRouteProvider, and
related media classes that
support Google cast. In short,
it supports streaming and
routing of media channels
from one device to external
devices.

com.android.support:mediarouter-v7:24.2.1

v7 palette
library

This library includes support
for the Palette class, which
extracts prominent colors
from an image. This is mainly
used in music applications.

com.android.support:palette-v7:24.2.1

v7
recyclerview
library

Supports adding of
RecyclerView class which will
help in efficiently displaying
large data sets within the
bounds of limited window of
data items.

com.android.support:recyclerview-v7:24.2.1

v7
Preference
Support
Library

This library helps in adding
preference objects, such as
CheckBoxPreference and
ListPreference, used by
the user while modifying the
UI settings

com.android.support:preference-v7:24.2.1

Leap into the Android Support Library

[40]

Google recommends including the v4 support and v7 appcompat libraries, because they
support a wide range of Android versions and provide APIs for recommended design
patterns.

Multidex Support library
In Chapter 2, Exploring Android Studio Developer Tools, we spoke about Dalvik Executable
(dex) files. This library provides support for building apps that support multiple dex files.
Apps that have references to more than 65536 methods would be required to use multidex
configuration. The gradle dependency identifier for this library is as follows:

com.android.support:multidex:1.0.0

v8 Support Library
This is compatible with Android 2.3 (API level 9) and higher and can be used
independently from other libraries. It has v8 renderscript library - which adds support for
the RenderScript computation framework.

For using this, you will need to add the following to your Gradle build script properties:

defaultConfig {
renderscriptTargetApi 18
renderscriptSupportModeEnabled true
}

v13 Support Library
This library is designed to be used for Android 3.2 (API level 13) and higher, and supports
fragment user interface patterns. It supports the FragmentCompat class and additional
fragment support classes. The gradle dependency identifier for this library is as follows:

com.android.support:support-v13:24.2.1

Leap into the Android Support Library

[41]

Annotations Support Library
This library provides support to add annotation metadata to your Apps. The gradle
dependency identifier for this library is as follows:

com.android.support:support-annotations:24.2.1

Design Support Library
This is one of the most crucial libraries of the project, which will allow you to add Material
Design Components and Patterns to your App, such as navigation drawer, Floating Action
Button (FAB), tabs, and snackbars. The gradle dependency identifier for this library is as
follows:

com.android.support:design:24.2.1

Custom Tabs Support Library
This package provides APIs for adding and managing custom tabs in the App. The gradle
dependency identifier for this library is as follows:

com.android.support:customtabs:24.2.1

Summary
In this chapter, we first discussed setting up the Android Support Library in the Android
Development Environment. We followed this by discussing several libraries that can help
developers to use libraries which can offer backward-compatible versions of new features.

In Chapter 4, Google Play Services, we will take you through Google Play Services and we
will discuss using several Google features in the app such as Maps and Google+ Sign in.

4
Google Play Services

Google Play Services is a boon to app development, especially helping developers with
Google-packed features such as Maps, Google+, Drive, Game services and Analytics. With
automatic platform updates distributed as an APK on the Google Play Store, developers can
easily receive the updates and more easily integrate Google features. In this chapter, we will
first see how the Google Play Service architecture works, followed by some of the APIs
supported in Google Play Services. This will be followed by learning to incorporate Google
Sign-in and Maps API. First, let's see what the architecture of Google Play Services looks
like:

The architecture
The Google Play Service Library contains APIs that provide an interface to the individual
Google services. This interface also allows you to obtain authorization from users to gain
access to these services using the users' credentials. These services include Google Drive,
Play Games and more. Since the library derives updates from Google Play, it does contain
APIs that help you resolve any issues at runtime. Sometimes you may have come across
apps that prompt you to update Google Play Services before proceeding. The Google Play
Service APK runs as a background service in the Android OS and you can interact with the
background service though the client library. The service performs the desired action on
your behalf.

Google Play Services

[43]

The table below shows the list of services provided by Google Play Services:

Google Play
Services API

Description

Google+ com.google.android.gms:play-services-plus:10.0.1

Google
Account
Login

com.google.android.gms:play-services-auth:10.0.1

Google
Actions, Base
Client Library

com.google.android.gms:play-services-base:10.0.1

Google
Address API

com.google.android.gms:play-services-identity:10.0.1

Google App
Indexing

com.google.android.gms:play-services-appindexing:10.0.1

Google App
Invites

com.google.android.gms:play-services-appinvite:10.0.1

Google
Analytics

com.google.android.gms:play-services-analytics:10.0.1

Google
Awareness

com.google.android.gms:play-services-contextmanager:10.0.1

Google Cast com.google.android.gms:play-services-cast:10.0.1

Google Cloud
Messaging

com.google.android.gms:play-services-gcm:10.0.1

Google Drive com.google.android.gms:play-services-drive:10.0.1

Google Fit com.google.android.gms:play-services-fitness:10.0.1

Google
Location and
Activity
Recognition

com.google.android.gms:play-services-location:10.0.1

Google Maps com.google.android.gms:play-services-maps:10.0.1

Google
Mobile Ads

com.google.android.gms:play-services-ads:10.0.1

Google Play Services

[44]

Google Places com.google.android.gms:play-services-places:10.0.1

Mobile Vision com.google.android.gms:play-services-vision:10.0.1

Google
Nearby

com.google.android.gms:play-services-nearby:10.0.1

Google
Panorama
Viewer

com.google.android.gms:play-services-panorama:10.0.1

Google Play
Game
services

com.google.android.gms:play-services-games:10.0.1

SafetyNet com.google.android.gms:play-services-safetynet:10.0.1

Android Pay com.google.android.gms:play-services-wallet:10.0.1

Android
Wear

com.google.android.gms:play-services-wearable:10.0.1

In the app we are working on, we would need Google services such as Google+ Login and
Google Maps. To begin with, you must first install the Google Play Services library (revision
15 or higher) for your Android SDK. Also, to include a specific dependency for your app,
proceed to add specific services in your app's build Gradle.

The various services provided by Google Play Services could be included in an Android
app using a Gradle path in the app's build.gradle. For example:

dependencies {
compile'com.google.android.gms:play-services:10.0.1'
}

Make sure these changes are saved and you click Sync Project with Gradle Files in the
toolbar. Since we are using the Google+ Sign in feature, we are required to provide SHA-1
of your signing certificate to create an OAUTH2 client and API key for your app. To
generate your SHA-1, please run the following command using the KeyTool utility
provided with Java:

keytool -exportcert -list -v \ -alias <your-key-name> -keystore<path-to-
production-keystore>

Google Play Services

[45]

Next, proceed to get the debug certificate fingerprint using the following command:

On Linux/Mac:

keytool -exportcert -list -v \ -alias androiddebugkey -keystore
~/.android/debug.keystore

And on Windows:

keytool -exportcert -list -v \
 -alias androiddebugkey -keystore %USERPROFILE%\.android\debug.keystore

The key tool utility should now prompt you to enter a password for the keystore. The
default password for the debug keystore is android. Post this, you will able to see the
fingerprint displayed onto the terminal.

To know more about signing your Android application, please do check this link:

https://developer.android.com/studio/publish/app-signing.html

Since we are looking to access Google APIs using the users' Google Accounts over HTTP,
we have to ensure that the users experience a secure and consistent experience in retrieving
an OAuth 2.0 token for your app. To make this possible, you need to register your Android
app with the Google Cloud Console by providing your app's package name and the SHA1
fingerprint of the keystore, using which you will sign the release APK.

To register your Android app with Google Cloud Console, follow these simple steps:

Login to Google Cloud Console: https://console.developers.google.com.1.
Click on Create project and enter the project name. In our case, we have named it2.
Zomato Project:

https://console.developers.google.com
https://console.developers.google.com

Google Play Services

[46]

Click Create. This will create a new project in your Google Developer Console.3.

Since we have created the project, we will now enable the APIs that are required for the
project. To enable the APIs, click on the library tab. Here you will see the list of all APIs that
can be added to the app.

Now, let's start by integrating Google+ Login into our app:

First go to the library tab in the Google developer console.1.
Select Google+ API under the Social APIs section and click Enable. Now, the2.
Google + API is enabled for this project.
Next go to the Credentials. Here we will be creating an OAuth credential for the3.
app so that the user can log in from the Android app. Before we create a new
credential, we have to fill in OAuth details of the app:

Google Play Services

[47]

After all of these details have been filled, go to the Credentials tab and click on4.
Create credential:

Google Play Services

[48]

Then, select the type of application where we are applying the Google+ Login. In5.
our case, it is an Android app, so we would select Android:

Then you will see an option to add the app's package name and signing-6.
certificate fingerprint.

Google Play Services

[49]

Now go to https:/ / developers. google. com/ identity/ sign- in/ android/ start7.
and click on GET A CONFIGURATION FILE:

>

Here you will see an option to select an app and enter the package name. Fill in8.
the details and click on Choose and configure services:

https://developers.google.com/identity/sign-in/android/start
https://developers.google.com/identity/sign-in/android/start
https://developers.google.com/identity/sign-in/android/start
https://developers.google.com/identity/sign-in/android/start
https://developers.google.com/identity/sign-in/android/start
https://developers.google.com/identity/sign-in/android/start
https://developers.google.com/identity/sign-in/android/start
https://developers.google.com/identity/sign-in/android/start
https://developers.google.com/identity/sign-in/android/start
https://developers.google.com/identity/sign-in/android/start
https://developers.google.com/identity/sign-in/android/start
https://developers.google.com/identity/sign-in/android/start
https://developers.google.com/identity/sign-in/android/start
https://developers.google.com/identity/sign-in/android/start
https://developers.google.com/identity/sign-in/android/start
https://developers.google.com/identity/sign-in/android/start
https://developers.google.com/identity/sign-in/android/start
https://developers.google.com/identity/sign-in/android/start
https://developers.google.com/identity/sign-in/android/start

Google Play Services

[50]

At this screen, enable Google Sign In and enter the signing-certificate fingerprint.9.
Then click on Generate configuration file:10.

Google Play Services

[51]

You can now download the google-services.json file, which we will be11.
using in the app for services like Google+ Sign In and other services enabled from
Google the console:

The google-services.json file is to be placed in the app directory in your project.

Now, add the dependency to your project-level build.gradle: Classpath
com.google.gms:google-services:3.0.0.

Also, add this plugin in your app-level build.gradle: Apply plugin
com.google.gms.google-services.

Finally, add the dependency into your app-level Gradle: Compile
com.google.android.gms:play-services-auth:9.2.1.

We have now completed the setup for Google Play Services for this app. In the next section
we will discuss the Android Architecture we would follow, along with discussion on the UI
patterns for this app.

Google Play Services

[52]

Google Maps
Google Maps is used in the app for finding the location of a place, or to navigate you to that
place. Integrating Google Maps in the app is simple; check out the steps below:

First we need to enable the Google Maps API from the Developer Console link: https:/ /
console.cloud.google. com. In your project page select Library; then, under Google Maps
APIs, select Google Maps Android API:

Next, enable the API so that it can be used in our application. After the Google Maps API is
enabled, we need to start integrating it into our app:

https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com

Google Play Services

[53]

In Android studio create a new Google Maps Activity:

After the activity is created, we need to create an API key from the developer console:

Google Play Services

[54]

Go to the credentials section in the developer console, and create a new API key:

Here, select Android app and enter your app's package name and Sha-1 certificate. After
saving the API key, use the key in your app.

Now in your app, add the dependency in your app's build.gradle file:

Compile com.google.android.gms:play-services-maps:10.0.1.

Create a string resource google_maps_key strings.xml with the value of the API key.
Save the file.

After adding, save the AndroidManifest.xml and re-build your application.

Google Play Services

[55]

Summary
We started the chapter by discussing what Google Play Services is and which Google Play
Services APIs are available. Next, we discussed Google Sign up, followed by Google Maps.

In the Chapter 5, Material Design, we will talk about Material Designs.

5
Material Design

Material design is a design language developed by Google's Design team to foster uniform
design guidelines for App developers. Google has set design principles as guidelines to
help developers work with material design for their apps. This principle sets up visual cues,
motion, and interaction design across platforms and devices, making it a unified design
belief. In this section, we will cover how to incorporate material design into your app.

Wireframing and tools to gather feedback
Wireframing is a technique to plan out the high-level screen hierarchy for your application
and display the forms that would be present in your app by providing some mode of
navigation, to allow users to effectively traverse your app flow. Some apps have wireframes
expressed in a tree structure, a graph, or a flowchart.

The methods of wireframing could vary based on the type and magnitude of the app, but
the standard patterns of wireframing remain the same. Also, there are varieties of tools that
could be used across different types of apps and different kinds of information that
represent the types of things users interact with in your app. Software engineers and data
architects often use entity-relationship diagrams (ERDs) to describe an application's
information model. We will understand and learn the various techniques of wireframing in
detail in this chapter.

Material Design

[57]

Understanding the wireframing process (tangible
and digital)
Before understanding the actual wireframing process, it will be nice to gather some initial
information about things that would help draw some effective wireframes. Once you
understand what your app will do, the first step is to list the screens present on the app step
by step. Doing this will give you a clear idea about the basic outline of the wireframing
screens required.

Wireframing is the step in a design process where screens are laid out creatively, by
arranging the UI elements to allow users to navigate through your app. These wireframing
screens need not be same as the final UI for the app. They could be somewhat rough
wireframes, which would give you an idea of what elements would be present on a screen.

The easiest and fastest way to get started is to sketch out your screens by hand using paper
and pencils. Once you begin sketching, you may uncover practicality issues in your original
screen map or the patterns you use. In some cases, patterns may apply well to a given
design problem in theory, but in practice they may break down and cause visual clutter or
interactional issues (for example, if there are two rows of tabs on the screen). If that
happens, explore other navigational patterns, or variations on chosen patterns, to arrive at a
more optimal set of sketches.

After you're satisfied with the initial sketches, it's a good idea to move on to digital
wireframing, using software such as Adobe Illustrator, Adobe Fireworks, OmniGraffle, or
any other vector illustration tools. When choosing a tool to use, consider the following
features:

Material UI for Android developers
Material design for Android includes implementation of visual, motion, and interactive
designs for your app on different devices. Android now includes support for material
design apps. To use material design in your Android apps, follow the guidelines defined in
the material design specification and use the new components and functionality available in
Android 5.0 (API level 21) and later versions.

Material Design

[58]

Building meaningful motions
In the following section, we will cover how to provide motions in our app to improve a
user's app experience. The Android library provides many components for giving a
material experience to the user. We will explain some of the components provided in the
Android library in this section.

Floating Action Button (FAB)
Floating Action Buttons are used for a special type of promoted action. They are
distinguished by a circled icon floating above the UI and have special motion behaviors
related to morphing, launching, and the transferring anchor point.

Floating action buttons come in two sizes: the default and mini. The size can be controlled
with the FABSize attribute. As this class descends from ImageView, you can control the
icon that is displayed via setImageDrawable(Drawable).

The background color of this view defaults to your theme's colorAccent. If you wish to
change this at runtime, you can do so via setBackgroundTintList(ColorStateList).

The FAB could be used to carry out different kinds of transitions on click. The following are
a few images that show the different places where the FAB could be used:

Material Design

[59]

Figure 1.2.1: Fab shows options for animating on top

It could show options in animating on top on click:

Material Design

[60]

Figure 1.2.2: Fab animates to bottom menu

Let's take a look at how to use the FAB in our Zomato code. Consider the restaurant details
screen where we have a FAB button present, as follows; the button can be used at various
different places:

Figure 1.2.3. FAB used in the Zomato place detail screen

Material Design

[61]

The FAB animation has a button. Clicking on the button opens up the bottom menu and
shows us the various options. Here, the transition from the FAB button to the bottom menu
forms the major chunk of its material aspect. The following is the complete transition
showing how the FAB gets converted to the bottom menu:

Figure 1.2.4. FAB button initially present on the screen

Material Design

[62]

Figure 1.2.5. Clicking on the FAB button

Material Design

[63]

Figure 1.2.6. The in-between transition of the FAB to menu animation

Material Design

[64]

Figure 1.2.7. The in-between transition of the FAB to menu animation

Material Design

[65]

Figure 1.2.8. The formation of the final bottom menu

Let's now look at how to implement FAB in our code. Firstly, make sure that you have
added the gradle dependency in your app's build.gradle file:

compile 'com.android.support:design:25.3.1'

Material Design

[66]

Then, in your layout where you need to place the FAB, place the following code:

<android.support.design.widget.FloatingActionButton
 android:id="@+id/FAB"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginBottom="?actionBarSize"
 android:layout_marginRight="20dp"
 android:src="@drawable/ic_add_white_24dp"
 app:backgroundTint="@color/colorPrimary"
 app:layout_anchor="@id/scrollView"
 app:layout_anchorGravity="bottom|end" />

Your FAB has been placed in your XML code, and your layout with the FAB is now ready.
The next step is to import and initialize it in your Java class:

import android.support.design.widget.FloatingActionButton;

If you are using Android Studio, the import will be handled automatically, and you don't
have to worry about it. Then, initialize the FAB as follows:

FloatingActionButton mFab;
mFab = (FloatingActionButton) findViewById(R.id.fab);

Once it is initialized, you need to handle what will happen when you click on the FAB
button:

mFab.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // Your code
 }
});

Now, the menu will appear when you click on the FAB button. The code for the on click of
the FAB is mentioned below. Refer to PlaceDetailActivity.java for better
understanding of this part of the flow:

mFab.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 mFabToolbar.expandFab();

 Animator bottomExpansion =
 ObjectAnimator.ofPropertyValuesHolder(bottomLay,
 PropertyValuesHolder.ofFloat(View.SCALE_X,
0f, 1f));
 bottomExpansion.setStartDelay(300);

Material Design

[67]

 bottomExpansion.setDuration(300);

 Animator bottomExpansionFade =
 ObjectAnimator.ofPropertyValuesHolder(bottomLay,
 PropertyValuesHolder.ofFloat(View.ALPHA,
0f, 1f));
 bottomExpansion.setStartDelay(300);
 bottomExpansion.setDuration(300);

 Animator overlayFade =
 ObjectAnimator.ofPropertyValuesHolder(tra_overlay,
 PropertyValuesHolder.ofFloat(View.ALPHA,
0f, 1f));
 overlayFade.setStartDelay(0);
 overlayFade.setDuration(600);

 bottomExpansion.addListener(new Animator.AnimatorListener() {
 @Override
 public void onAnimationStart(Animator animation) {
 bottomLay.setVisibility(View.VISIBLE);
 }

 @Override
 public void onAnimationEnd(Animator animation) {
 }

 @Override
 public void onAnimationCancel(Animator animation) {
 }

 @Override
 public void onAnimationRepeat(Animator animation) {
 }
 });

 overlayFade.addListener(new Animator.AnimatorListener() {
 @Override
 public void onAnimationStart(Animator animation) {
 tra_overlay.setVisibility(View.VISIBLE);
 }

 @Override
 public void onAnimationEnd(Animator animation) {

 }

 @Override
 public void onAnimationCancel(Animator animation) {

Material Design

[68]

 }

 @Override
 public void onAnimationRepeat(Animator animation) {

 }
 });

 AnimatorSet animSet = new AnimatorSet();
 animSet.playTogether(bottomExpansion, bottomExpansionFade,
overlayFade);
 animSet.start();

 }
});

Before the preceding activity, you need to initialize the FAB toolbar menu and set the FAB
to the toolbar, as follows:

mFabToolbar = (FooterLayout) findViewById(R.id.fabtoolbar);
mFabToolbar.setFab(mFab);

Once this is done, the animation of opening the menu will be executed smoothly. Also, we
need to close the bottom menu when clicking anywhere outside. For that, we need to define
an overlay layout, which when clicked on will contract the bottom menu to the FAB:

tra_overlay.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 tra_overlay.setVisibility(View.INVISIBLE);
 bottomLay.setVisibility(View.INVISIBLE);

 mFabToolbar.contractFab();
 }
});

Material Design

[69]

Implementing Search in Zomato
The search screen in Zomato opens up when you click on the search icon on the Toolbar on
the home page. Clicking on the search icon will produce a ripple effect, which helps a user
to get a better experience:

Figure 1.2.9. The search icon on the home screen with the ripple effect

Material Design

[70]

When you click on the search icon, it opens up a new screen of search. When this screen
opens up, there is a smooth transition that takes place as each of the components appears on
the screen. The search icon first opens up smoothly to form the toolbar:

Figure 1.2.10. The in-between transition when the search icon opens up smoothly

Material Design

[71]

The search icon's in-between transition shows that the ripple wave grows gradually until it
completely covers the toolbar:

Figure 1.2.11. The search icon completely opens up to form the toolbar

Material Design

[72]

Once the search icon translates to form the toolbar, the EditText translates down from the
top to the bottom and the quick search options simultaneously translate up, creating a
smooth transition effect:

Figure 1.2.12. The Search icon completely opens up to form the toolbar

Material Design

[73]

The XML layout of the search view is shown in the following code:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@color/app_bg_color">

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:background="@color/colorPrimary"
 android:gravity="center_vertical"
 android:minHeight="?attr/actionBarSize"
 android:orientation="horizontal">

 <ImageButton
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:background="?attr/selectableItemBackground"
 android:padding="10dp"
 android:onClick="closeClick"
 android:src="@drawable/im_close"
 android:tint="@color/white" />

 <LinearLayout
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:orientation="vertical"
 android:paddingLeft="8dp"
 android:paddingRight="8dp">

 <TextView
 android:id="@+id/title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Panaji"
 android:textColor="@color/white"
 android:textSize="18sp"
 android:textStyle="normal" />

 </LinearLayout>

Material Design

[74]

 </LinearLayout>

 <LinearLayout
 android:id="@+id/searchViewLay"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:background="@drawable/ripple_white_button"
 android:gravity="center"
 android:padding="10dp">

 <ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:padding="5dp"
 android:src="@drawable/im_search_72" />

 <EditText
 android:id="@+id/searchText"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:background="@color/transparent"
 android:hint="Type to filter by location"
 android:padding="10dp"
 android:textSize="14dp" />

 </LinearLayout>

 <RelativeLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <android.support.v7.widget.RecyclerView
 android:id="@+id/searchList"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

 </RelativeLayout>

 </LinearLayout>

</RelativeLayout>

Material Design

[75]

The major components on this screen are the EditText, for typing the text for searching.
Another important component is the RecyclerView, which displays the list of all the
details. Here, we are concerned more about the way the UX for the search gives a smooth
experience to a user. For this, various animations are used:

//ANIMATIONS
private void enterViews() {
 showTop(searchViewLay);
 showBottom(mightLike, new AnimatorListenerAdapter() {
 @Override
 public void onAnimationStart(Animator animation) {
 super.onAnimationStart(animation);
 }
 });
}

The enterViews method animates the are being used f

The showTop method inside the enterViews method is described as follows:

private void showTop(View view) {
 view.setVisibility(View.VISIBLE);
 Animator iconAnim = ObjectAnimator.ofPropertyValuesHolder(view,
 PropertyValuesHolder.ofFloat(View.TRANSLATION_Y, -
view.getHeight(), 0f));
 iconAnim.setDuration(VIEW_ANIMATION);
 iconAnim.start();
}

The showTop method makes the view visible. The view being passed to the method as a
parameter is the searchViewLayout, which means that it makes the search view visible.
Then it adds the animation to that particular search view layout. The animation is set to
make a translate animation, which means that the search view layout will be translated
along the Y axis for a distance of the searchViewLayout's height, for the duration of
VIEW_ANIMATION's time. Then, the animation is started using the start() method. The
following is the explanation of the showBottom method inside the enterViews method:

private void showBottom(View view, Animator.AnimatorListener listener) {
view.setVisibility(View.VISIBLE);
Animator iconAnim = ObjectAnimator.ofPropertyValuesHolder(view,
PropertyValuesHolder.ofFloat(View.TRANSLATION_Y, view.getHeight(), 0f));
iconAnim.setDuration(VIEW_ANIMATION);
iconAnim.addListener(listener);
iconAnim.start();
}

Material Design

[76]

The showBottom() method, similar to the showTop() method, will do the same translation
animation for the mightLike layout. This animation will have a listener, which will let you
know when the animation starts and when it ends. The exitViews() method will be called
when the search view has to be closed. These animations will show up just before the search
view closes:

//EXIT
private void exitViews() {
 hideTop(searchViewLay);
 hideBottom(mightLike, new AnimatorListenerAdapter() {
 @Override
 public void onAnimationStart(Animator animation) {
 super.onAnimationStart(animation);
 }

 @Override
 public void onAnimationEnd(Animator animation) {
 super.onAnimationEnd(animation);
 }
 });
 new Handler().postDelayed(new Runnable() {
 @Override
 public void run() {
 finish();
 overridePendingTransition(0, 0);
 }
 }, 50);

}

Here, both the searchViewLay and the mightLike layouts should be hidden, showing the
closing animations:

private void hideTop(final View view) {
 view.setVisibility(View.VISIBLE);
 Animator iconAnim = ObjectAnimator.ofPropertyValuesHolder(view,
 PropertyValuesHolder.ofFloat(View.TRANSLATION_Y, 0f, -
view.getHeight()),
 PropertyValuesHolder.ofFloat(View.ALPHA, 1f, 0f));
 iconAnim.setDuration(VIEW_ANIMATION);
 iconAnim.start();
}

Material Design

[77]

In the hideTop() method, the searchViewLay will be made to animate along the Y-axis in
the opposite direction with respect to the preceding translation:

private void hideBottom(final View view, Animator.AnimatorListener
listener) {
 view.setVisibility(View.VISIBLE);
 Animator iconAnim = ObjectAnimator.ofPropertyValuesHolder(view,
 PropertyValuesHolder.ofFloat(View.TRANSLATION_Y, 0f,
view.getHeight()),
 PropertyValuesHolder.ofFloat(View.ALPHA, 1f, 0f));
 iconAnim.setDuration(VIEW_ANIMATION);
 iconAnim.addListener(listener);
 iconAnim.start();
}

Building the UX Design
With the increased expectation of users who are becoming more accustomed to high quality
apps, and as UX plays a very important part in making a user's app experience better, it is
necessary to build a proper UX pattern. Android library provides many ways and built-in
libraries for building a good UX. Besides these, you need to build your own UX patterns
depending on the flow of your app. To build a good UX, you need to use animations in the
right places.

Understanding UX principles and how it's
different from UI
The user experience is very important for keeping a user engaged with the app by making
them understand what is happening on the screen. Here is another simple material aspect
of UX, where a user gets a very good experience when they click on view on the screen; the
UX shows a ripple effect when the user clicks on the view:

Material Design

[78]

Figure 3.1.2. The Ripple effect

The ripple effect starts from the point of contact with the screen. The ripple is high at the
point of contact and gradually decreases its force. Firstly, a user should know when they
click on a button and should not have a doubt whether they have clicked or not. Having
this effect gives a user a very good experience when they click on a button.

Material Design

[79]

Let's see how to integrate the ripple effect on the button click of any views. We will use the
CardView as the outermost clickable view. The following is the code to do that:

<android.support.v7.widget.CardView
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_margin="3dp"
 android:layout_weight="1"
 android:clickable="true"
 android:foreground="@drawable/place_foreground"
 android:padding="0dp"
 app:cardBackgroundColor="@color/white"
 app:cardCornerRadius="0dp"
 app:cardElevation="0dp"
 app:cardPreventCornerOverlap="false"
 app:cardUseCompatPadding="true"
 app:contentPadding="0dp">

We will use the foreground attribute of the CardView to make the ripple effect when the
user clicks on the CardView:

android:foreground="@drawable/place_foreground"

We will check the drawable file @drawable/place_foreground, placed in the drawable
folder:

<inset xmlns:android="http://schemas.android.com/apk/res/android"
 android:drawable="@drawable/place_foreground_selector"
 android:insetBottom="4dp"
 android:insetLeft="2dp"
 android:insetRight="2dp"
 android:insetTop="4dp" />

An inset is used when you need a background that is of smaller bounds than the actual
view's bounds. We need to set a drawable for the inset. The
place_foreground_selector drawable is used to do that:

<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_pressed="true">
 <shape android:shape="rectangle">
 <solid android:color="@color/place_item_ripple_color" />
 <corners android:radius="@dimen/card_corner_radius" />
 </shape>
 </item>
 <item android:state_enabled="true" android:state_focused="true">
 <shape android:shape="rectangle">

Material Design

[80]

 <solid android:color="@color/place_item_ripple_color" />
 <corners android:radius="@dimen/card_corner_radius" />
 </shape>
 </item>
</selector>

This drawable is a selector, which checks three states. state_pressed="true" is
executed when the view is clicked. At this point, the following shape is seen in the view:

<shape android:shape="rectangle">
 <solid android:color="@color/place_item_ripple_color" />
 <corners android:radius="@dimen/card_corner_radius" />
</shape>

It gives a color to the view, which is set is the colors.xml and has a corner radius, which is
set from the dimens.xml file present in the values folder. The color defined is the hex code
of the color that needs to be displayed when the view is pressed:

<color name="place_item_ripple_color">@color/white_ripple</color>
<color name="white_ripple">#96ffffff</color>

The ffffff color set is a white color, and 96 is the alpha value set to give transparency to
the white color. state_enabled="true" and state_focused="true" are states to check
when the view is enabled and focused. Only when these two conditions are satisfied, is the
shape drawn:

<shape android:shape="rectangle">
 <solid android:color="@color/place_item_ripple_color" />
 <corners android:radius="@dimen/card_corner_radius" />
</shape>

shape as defined here is a rectangle, as the CardView is a rectangle with rounded corners.
The drawable file-@drawable/place_foreground-is also placed in the drawable-
v21 folder. The @drawable/place_foreground file placed in the drawable folder is used
to generate the ripple effect in devices prior to Android version 21, as the ripple effect is not
supported on older versions of Android. For Android versions later than v21, the ripple
effect is built-in:

<ripple xmlns:android="http://schemas.android.com/apk/res/android"
 android:color="@color/place_item_ripple_color"
 android:drawable="@drawable/place_foreground_selector" />

Material Design

[81]

Here, the ripple is a built-in class, which defines the ripple effect. It needs to set a drawable
and a color. The ripple color is the same one defined earlier. Also, the
@drawable/place_foreground_selector drawable needs to be placed in the
drawable-v21 folder:

<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_pressed="true">
 <shape android:shape="rectangle">
 <solid android:color="@color/place_item_ripple_color" />
 </shape>
 </item>
 <item android:state_enabled="true" android:state_focused="true">
 <shape android:shape="rectangle">
 <solid android:color="@color/place_item_ripple_color" />
 </shape>
 </item>
</selector>

Both the @drawable/place_foreground_selector folders are similar, except that the
corners do not have to be specified.

Summary
Material design plays an important part in how a user is able to use an app easily, and
hence it makes sure that they use the app more often. In this chapter, we covered material
design and followed with the material design animation. We then processed this animation
to build animation in the app. In the next section, we will cover building the core features of
the foodspotting app.

6
SOLID Android Development

and Its Design Principles
SOLID is a mnemonic acronym that helps define the five basic object-oriented design
principles:

Single Responsibility Principle
Open-Closed Principle
Liskov Substitution Principle
Interface Segregation Principle
Dependency Inversion Principle

Single Responsibility Principle
The Single Responsibility Principle states that:

A class should have one, and only one, reason to change.

The idea behind this principle is to design a class that has one responsibility or various
methods with unique functionality. According to this principle, a method should not do
more than one task at a time. Each function must be designated a unique task.

Let's take, for example, the adapter of a recyclerView:

@Override
public void onBindViewHolder(final ViewHolder holder, final int position) {
 PlaceItem item = list.get(position);

 String name = item.getName() != null ? item.getName() : "";

SOLID Android Development and Its Design Principles

[83]

 String description = item.getDescription() != null ?
item.getDescription() : "";
 String location = item.getAddress() != null ? item.getAddress() : "";
 String rating = String.format("%.02f", item.getRating());
 String distance = item.getDistance()+"km";
 holder.name.setText(name);
 holder.location.setText(location);
 holder.description.setText(description);
 holder.rating.setText(rating);
 holder.distance.setText(item.getDistance());
 Picasso.with(context)
 .load(R.drawable.im_backdrop)
 .placeholder(R.drawable.placeholder_200)
 .error(R.drawable.placeholder_200)
 .into(holder.image);
}

The preceding code is the onBindViewHolder of the adapter of a recyclerView. It does
not satisfy the single responsibility principle, as we are formatting the values as we are
setting the text to the views. The onBindViewHolder of the recyclerView adapter is
mainly responsible for binding the view with the values of its object class.

In the preceding code, the onBindViewHolder is doing more tasks than it should. If we
have kept the same format in more than one place and there comes a need to make changes
to the format, then we will have to make the changes everywhere and this may result in
software logic duplication issues. If we don't update the code in some places, it may cause
an error. If the code was a logical change that had been replicated, the entire flow of the app
would change. To prevent this, we have to write the code in a way that we don't have to
make many changes if the features are changed.

As in the case of the preceding example, we can refactor it by the following:

@Override
public void onBindViewHolder(final ViewHolder holder, final int position) {
 PlaceItem item = list.get(position);

 holder.name.setText(CommonFunctions.checkNull(item.getName()));
holder.description.setText(CommonFunctions.checkNull(item.getDescription())
);
 holder.location.setText(CommonFunctions.checkNull(item.getAddress()));
 holder.rating.setText(CommonFunctions.formatRating(item.getRating()));
 holder.distance.setText(
CommonFunctions.formatDistance(item.getDistance()));

 Picasso.with(context)
 .load(R.drawable.im_backdrop)
 .placeholder(R.drawable.placeholder_200)

SOLID Android Development and Its Design Principles

[84]

 .error(R.drawable.placeholder_200)
 .into(holder.image);
}

Now, as can be seen, the code checking and formatting are not done in the
onBindViewHolder function but they are being done elsewhere. Due to this, the change of
the functionality or format can be done in the common function instead of each instance of
the code.

Open-Closed Principle
The Open-Closed Principle states that:

Software entities (classes, modules, functions, etc) should be open for extension, but closed for
modification.

This principle basically states that we have to design our modules, classes, and functions in
a way that when a new functionality is needed, we should not modify our existing code but
rather write new code that will be used by existing code

Now let us discuss the Open-Closed Principle in the following example.

Let us assume we are trying to calculate the area of some shapes. So let's take the example
of a rectangle and a circle. The classes for these have been formed in the following code:

public class Rectangle {
 private double length;
 private double height;
 // getters/setters ...
}

public class Circle {
 private double radius;
 // getters/setters ...
}

So a common function used to calculate the area of both the rectangle and the circle would
look something like this:

public class AreaManager {
 public double calculateArea(ArrayList<Object>... shapes) {
 double area = 0;
 for (Object shape : shapes) {
 if (shape instanceof Rectangle) {
 Rectangle rect = (Rectangle)shape;

SOLID Android Development and Its Design Principles

[85]

 area += (rect.getLength() * rect.getHeight());
 } else if (shape instanceof Circle) {
 Circle circle = (Circle)shape;
 area += (circle.getRadius() * cirlce.getRadius() * Math.PI;
 } else {
 throw new RuntimeException("Shape not supported");
 }
 }
 return area;
 }
}

As can be seen from the preceding function, as new shapes are introduced, the
calculateArea function will grow bigger and lots of handling and changes will be
required. This violates the Open/Closed Principle

A way to resolve this is by using a common interface:

public interface Shape {
 double getArea();
}

Both the rectangle and circle can implement this interface by which the method to calculate
the area will remain inside the object class instead of the AreaManager.

So now the rectangle and circle classes will look something like this:

public class Rectangle implements Shape {
 private double length;
 private double height;
 // getters/setters ...

 @Override
 public double getArea() {
 return (length * height);
 }
}

public class Circle implements Shape {
 private double radius;
 // getters/setters ...

 @Override
 public double getArea() {
 return (radius * radius * Math.PI);
 }
}

SOLID Android Development and Its Design Principles

[86]

Now, as the methods for calculating the areas are present inside the objects, the
AreaManager will look something like this:

public class AreaManager {
 public double calculateArea(ArrayList<Shape> shapes) {
 double area = 0;
 for (Shape shape : shapes) {
 area += shape.getArea();
 }
 return area;
 }
}

Now we can calculate the total area without ever needing to change the calculateArea
method. The same shape interface can be now used in new classes to calculate the area
without changing the AreaManager.

Liskov Substitution Principle
The Liskov Substitution Principle states that:

Child classes should never break the parent class' type definitions.

According to this principle, a subclass should override the parent class's methods in a way
that does not break functionality from a client's point of view.

According to this principle, if a class is extending another class, the functionality of the child
class should not conflict with that of its parent.

We can demonstrate this with the following example:

public class Rectangle {
 private double length;
 private double height;

 public void setLength(double length) {
 this.length = length;
 }

 public void setHeight(double height) {
 this.height = height;
 }

 public double getLength() {

SOLID Android Development and Its Design Principles

[87]

 return length;
 }

 @Override
 public double getHeight() {
 return height;
 }

 public double getArea() {
 return (length * height);
 }
}

Here we have a rectangle. As we know, a square is also a type of rectangle, so it can extend
the Rectangle class. Also we know that the height and the width of the square have to be
the same so the getter can be written like this:

public class Square extends Rectangle {

 @Override
 public void setHeight(double height) {
 this.length = height;
 this.height = height;
 }

 @Override
 public void setLength(double length) {
 this.length = length;
 this.height = length;
 }
}

As can be seen from the preceding definition, we can get a rectangle also from the square
implementation.

So now let's get an instance of Rectangle from the Square class:

Rectangle r = new Square();
r.setHeight(5);
r.setLength(10);

Now if we try to get the area, we will get 100 instead of 50, as a square has both the same
length and height, which is not the case with a rectangle, and this violates the Liskov
Substitution Principle.

SOLID Android Development and Its Design Principles

[88]

A simple example of the Liskov Substitution Principle would be a List and ArrayList. An
ArrayList implements a List but it does not change the basic functionality of the List.

Interface Segregation Principle
The Interface Segregation Principle states that:

No client should be forced to depend on methods it does not use.

According to this principle, if an interface has too many methods, then we need to divide
the interface into smaller interfaces with fewer methods. A simple example of this principle
is shown next.

Let us assume we are using a custom interface to detect various states of a view:

public interface ClickListener {
 public void onItemClickListener(View v, int pos);
 public void onItemLongClickListener(View v, int pos);
 public void onItemPressListener(View v, int pos);
 public void onSelectedListener(View v, int pos);
}

Now, while implementing this listener, we only want the onItemClickListener or the
onItemLongClickListener; the others are not required but we still have to use them in
the code. This violates the Interface Segregation Principle.

Now we can easily resolve this by splitting the interface into smaller interfaces, like this:

public interface ClickListener {
 public void onItemClickListener(View v, int pos);
 public void onItemLongClickListener(View v, int pos);
}
public interface HoldListener {
 public void onItemPressListener(View v, int pos);
 public void onSelectedListener(View v, int pos);
}

Now we will only initialize the ClickListener and use its methods instead of the old
interface where we had to utilize four methods. Here we have segregated them into two
different interfaces.

SOLID Android Development and Its Design Principles

[89]

Dependency Inversion Principle
The Dependency Inversion Principle states that:

1. High-level modules should not depend on low-level modules. Both should depend on abstractions.

2. Abstractions should not depend upon details. Details should depend upon abstractions.

The best way to explain this principle is by giving an example. Let's assume we have a
worker class that is a low level class and a Manager class that is a high level class. The
Manager class contains many complex functionalities which it implements along with the
Worker class, so the classes will look something like this:

class Worker {

 public void work() {
 //working
 }
}

class Manager {
 //--Other Functionality
 Worker worker;

 public void setWorker(Worker w) {
 worker = w;
 }

 public void manage() {
 worker.work();
 }
}

Here the Manager class has been implemented and is directly associated with the Worker
class due to which changes in the Worker class directly affect the Manager class.

If we have to add another class which would be a parent of the Worker class, and the
Worker class does similar work to that of the Manager class, it will require lots of changes.

To make it easier to add the Manager class, we will use interfaces:

interface IWorker {
 public void work();
}

class Worker implements IWorker{

SOLID Android Development and Its Design Principles

[90]

 public void work() {
 //working
 }
}

class SuperWorker implements IWorker{
 public void work() {
 //.... working much more
 }
}

class Manager {
 IWorker worker;

 public void setWorker(IWorker w) {
 worker = w;
 }

 public void manage() {
 worker.work();
 }
}

Now the both the worker and SuperWorker class implement the IWorker, while the
Manager class directly uses the IWorker to complete its functionality by which changes to
the Worker and SuperWorker do not affect the Manager class.

Summary
The SOLID principles are five principles that one should follow while coding. They are at
times tough to put into practice when it comes to the usage of each individual principle, but
making a habit of following these principles will keep your code readable, reusable, and
easy to maintain.

7
Understanding MVC, MVP,

MVVM and Clean Arch Patterns
A design pattern is a reusable form of a solution to a design problem. It is a style of coding
by which we can manage various components of the system we are making. Here we will
discuss four of those design patterns: MVC, MVP, MVVM, and Clean Arch.

MVC (Model View Controller)
This is one of the most widely used approaches in software development. The MVC consists
of three main components:

Model: The model represents the object in the application. This has the logic of
where the data is to be fetched from. This can also have the logic by which the
controller can update the view. In Android, the model is mostly represented by
object classes.
View: The view consists of the components that can interact with the user and is
responsible for how the model is displayed in the application. In Android, the
view is mostly represented by the XML where the layouts can be designed.
Controller: The controller acts as a mediator between the model and the view. It
controls the data flow into the model object and updates the view whenever data
changes. In Android, the controller is mostly represented by the activities and
fragments.

Understanding MVC, MVP, MVVM and Clean Arch Patterns

[92]

All of these components interact with each other and perform specific tasks, as shown in the
following figure:

Figure 2.2.1

It has been noticed that Android is not able to follow the MVC architecture completely, as
activity/fragment can act as both the controller and the view, which makes all the code
cluttered in one place. Activity/fragment can be used to draw multiple views for a single
screen in an app, thus all different data calls and views are populated in the same place.
Therefore, to solve this problem, we can use different design patterns or can implement
MVC carefully by taking care of conventions and following proper programming
guidelines.

The following shows a basic example of how MVC is used in Android :

Model:

public class LocationItem {
String name;
String address;
public LocationItem(String name, String address) {
this.name = name;
this.address = address;
}
public String getName() {
return name;
}
public String getAddress() {
return address;
}
}

Understanding MVC, MVP, MVVM and Clean Arch Patterns

[93]

View:

<TextView
android:id="@+id/name"
style="@style/HorizontalPlaceTitleTxtStyle"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />

Controller:

TextView name = (TextView)findViewById(R.id.name);
name.setText(LocationUtil.getLocationName(list.get(position)));
//Function In LocationUtil(Controller Class)
public class LocationUtil {
public static String getLocationName(LocationItem item) {
return item.getName();
}
}

To explain the MVC pattern components shown in the preceding code; the model here is
LocationItem, which holds the name and address of the location. The view is an XML file,
which contains a TextView, through which the name of the location can be displayed. The
activity, which is the controller, contains a LocationItem. It gets the name of the
LocationItem at a specific position in the list and sets it up in the view, which displays it.

MVP (Model View Presenter)
Model View Presenter (MVP) is derived from the MVC pattern. MVP is used to minimize
the high dependency on the view, which is the case in the MVC. It separates the view and
model by using the presenter. The presenter decides what should be displayed on the view.

Model: The model represents the objects in the application. This has the logic of
where the data is to be fetched from.
View: The view renders information to users and contains a UI Component .xml
file, activity, fragments, and dialog under the View Layer. It does not have any
other logic implemented.
Presenter: The presenter layer performs the task of the controller and acts as the
mediator between the view and model. But unlike the controller, it is not
dependent on the view. The view interacts with the presenter for the data to be
displayed, and the presenter then takes the data from the model and returns it to
the view in a presentable format. The presenter does not contain any UI
components; it just manipulates data from the model and displays it on the view.

Understanding MVC, MVP, MVVM and Clean Arch Patterns

[94]

The interaction between the various components of the MVP are shown in the following
figure:

Figure 2.2.2

In the MVP design, the presenter communicates with the view through interfaces. The
interfaces are defined in the presenter class, to which it passes the required data. The
activity/fragment or any other view component implements the interfaces and renders the
data in a way they want. The connection between the presenter and the view is one to one.

The following provides an example to enable a better understanding of the MVP design:

In this example, we will show how the MVP design can be used to display a list into a
recyclerview:

public interface LocationInteractor {

 interface OnLoadFinishedListener {
 void onSuccess(List<LocationItem> items);
 void onFailed();
 }
 void loadLocations(OnLoadFinishedListener listener);

}

Here we have a LocationInteractor class that is used by the presenter to communicate
with the model:

public class LocationInteractorImpl implements LocationInteractor {

 @Override
 public void loadLocations(final OnLoadFinishedListener listener) {

Understanding MVC, MVP, MVVM and Clean Arch Patterns

[95]

 RetroInterface.getRssFeedApi().getFeed("", new
Callback<LocationResponse>() {
 @Override
 public void success(LocationResponse locationResponse, Response
response) {
 if (listener != null) {
 if (locationResponse != null) {
 listener.onSuccess(locationResponse.getDetails());
 } else {
 listener.onFailed();
 }
 }
 }

 @Override
 public void failure(RetrofitError error) {
 if (listener != null) {
 listener.onFailed();
 }
 }
 });
 }
}

This is the LocationInteractorImpl class which is the model. This class interacts with
the presenter to provide the list of locations.

The loadLocations function is used by the presenter to interact with the model and fetch
the list of locations.

The model (LocationInteractorImpl) then uses the listener.onSuccess and
listener.onFailed methods to send results back to the presenter:

public interface LocationInterface {

 void showProgress();
 void hideProgress();
 void locationLoaded(List<LocationItem> items);
}

The LocationInterface class is used by the presenter to communicate with the view:

public interface LocationPresenter {
 void loadLocations();
 void onDestroy();
}

Understanding MVC, MVP, MVVM and Clean Arch Patterns

[96]

The LocationPresenter class is used by the view to communicate with the presenter.
Depending on the functions called by the view, the presenter will communicate with the
model and get the responses:

public class LocationPresenterImpl implements LocationPresenter,
LocationInteractor.OnLoadFinishedListener {

 private LocationInterface locationInterface;
 private LocationInteractor locationInteractor;

 public LocationPresenterImpl(LocationInterface locationInterface) {
 this.locationInterface = locationInterface;
 this.locationInteractor = new LocationInteractorImpl();
 }

 @Override public void loadLocations() {
 if (locationInterface != null) {
 locationInterface.showProgress();
 }
 locationInteractor.loadLocations(this);
 }
 @Override public void onDestroy() {
 locationInterface = null;
 }

 @Override
 public void onSuccess(List<LocationItem> items) {
 if (locationInterface != null) {
 locationInterface.locationLoaded(items);
 locationInterface.hideProgress();
 }
 }

 @Override public void onFailed() {
 if (locationInterface != null) {
 locationInterface.locationLoaded(null);
 locationInterface.hideProgress();
 }
 }
}

Understanding MVC, MVP, MVVM and Clean Arch Patterns

[97]

The LocationPresenterImpl class is the presenter class which communicates between
the view and the model. This class implements LocationPresenter with which the view
communicates with the presenter and the
LocationInteractor.OnLoadFinishedListener from which the model communicates
with the presenter.

When the view calls the loadLocations function of the presenter, the presenter interacts
with the model and calls the loadLocations method of the model, indicating that the
model is to return the list of locations to be displayed.

The onSuccess and onFailed functions are then called by the model after the list has been
fetched successfully or has failed. Then the presenter communicates with the view through
the locationLoaded function. Here, it passes the list that has been fetched by the model:

public class LocationListActivity extends Activity implements
LocationInterface{
 private ProgressBar progressBar;
 RecyclerView recyclerView;
 List<LocationItem> items;
 AddPlacesAdapter adapter;
 private LocationPresenter presenter;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_login);

 progressBar = (ProgressBar) findViewById(R.id.progress);
 recyclerView = (RecyclerView) findViewById(R.id.recyclerView);
 items = new ArrayList<>();
 adapter = new AddPlacesAdapter(this, items);
 adapter.setClickListener(new AddPlacesAdapter.ClickListener() {
 @Override
 public void onItemClickListener(View v, int pos) {
 //Handle Click events
 }
 });
 recyclerView.setLayoutManager(new LinearLayoutManager(this));
 recyclerView.setAdapter(adapter);
 presenter = new LocationPresenterImpl(this);
 presenter.loadLocations();
 }

 @Override
 protected void onDestroy() {
 presenter.onDestroy();
 super.onDestroy();

Understanding MVC, MVP, MVVM and Clean Arch Patterns

[98]

 }

 @Override
 public void showProgress() {
 progressBar.setVisibility(View.VISIBLE);
 }
 @Override
 public void hideProgress() {
 progressBar.setVisibility(View.GONE);
 }

 @Override
 public void locationLoaded(List<LocationItem> items){
 if(items!=null) {
 this.items = items;
 adapter.refresh(items);
 }
 }
}

The LocationListActivity is the view where all the interaction with the user will
happen. The view implements the LocationInterface, by which it gets the responses
from the presenter. The view uses an instance of the presenter:

presenter = new LocationPresenterImpl(this);

It then calls the presenter.loadLocations(); to tell the presenter that it wants the list of
locations to be displayed.

MVVM
MVVM stands for Model-View-View-Model. It is similar to the MVC model, the only
difference being it has two-way data binding with the view and view-model. The changes
in the view are being propagated via the view-model, which uses an observer pattern to
communicate between the view-model and the model. The view in this case is completely
isolated from the model.

Understanding MVC, MVP, MVVM and Clean Arch Patterns

[99]

The major advantage of using MVVM is it enables automatic changes in the view via the
view-model:

Figure 2.2.3

MVVM has the following components:

Model: The model represents the objects in the application. This has the logic of
where the data is to be fetched from.
View: The view is similar to the MVC pattern view, which renders information to
users and contains a UI Component .xml file, activity, fragments, and dialog
under the View Layer. It does not have any other logic implemented.
View-model: The view-model helps in maintaining the state of the view and does
changes to the model based on the inputs gained from the view.

Many views can be linked to one view-model, which creates a many-to-one relation
between the view and a view-model. Also, a view has information about the view-model
but the view-model does not have any information about the view. The view is not
responsible for the state of information; rather, that is being managed by the view-model
and the view and the model are only reflected via the changes made to the view-model.

In developer's terminology, one can say that the view-model is the interface between a
designer and a coder.

Understanding MVC, MVP, MVVM and Clean Arch Patterns

[100]

Clean Architecture Pattern
The Clean Architecture Pattern, in its simplest terms, means to write a clean code, by
separating it into layers, with the outer layer being your implementations and the inner
layer being the business logic. An interface connects these two layers, controlling how the
outer layers use the inner layers.

This kind of code architecture pattern is also known as Onion Architecture because of its
different layers, as seen in the following figure:

Figure 2.2.4

The inner layers have no idea about the outer layers. The outer layer uses the components
from the inner layers based upon its needs, meaning the outer layers are dependent on the
business logic implementations of the inner layers. Hence, the dependency points inwards.

Understanding MVC, MVP, MVVM and Clean Arch Patterns

[101]

Understanding the layers of Clean Architecture
Understanding the various layers present in this architecture helps to achieve a code
implementation that is clean and independent. I will outline the layers in the figure, but
focus more on the Clean Architecture core conceptual rules: The Dependency Rule,
Abstraction Principle, and communication between the layers:

Entities:
Entities form the core of your app, which means they define what exactly your
app is doing. Entities are basically objects created to make a data model to hold
the business logic and the functionality that would be carried out on it. Some of
the entities for an app could be a user entity, a restaurant entity, a place entity,
and so on.
Use cases:
Use cases are in the layer that forms objects using the core entities. The use cases
may contain one or more entities based upon their use. The use cases are a direct
object used for forming a business logic. A simple use case could be order, which
books a restaurant for a user. Hence, this use case may contain entities such as
user and restaurant.
Presenter:
This layer is the one that presents a use case for its use. This means that it may
have a business logic which would be using the entities to give an output data to
the UI for rendering.
UI:
This is basically the output that you see and is formed by the components such as
activities, fragments, views, adapters, and so on.

All of these components form the core of the architecture. This could be forming the way
the structure should look like when things are being coded. But a Clean Architecture
Pattern is formed only when some major principles are put to best use.

The crux of the Clean Architecture is formed by the following principles:

Dependency Rule:
The Dependency Rule makes up a major chunk of the Clean Architecture pattern.
What it says is that the outer layers should depend on the inner layers.
The inner layers should have no idea about the outer layers. But the outer layers
can use, or can see, or know about the components of the inner layers, and, based
upon their needs, could make use of them. It also means that the outer layers are
dependent on the business logic implementations of the inner layers. Hence, the
dependency points inwards, as shown in figure 2.2.4.

Understanding MVC, MVP, MVVM and Clean Arch Patterns

[102]

Abstraction Principle:
The Abstraction Principle says that as you are moving towards the center, the
code becomes more abstract as the inner circle contains business logic and the
outer circle contains implementation details. The inner layers are abstract because
the outer layer does not know anything about the business logic used by the
inner layers. It only knows the key features of what it does.
Let us have a simple example to understand this layer. Let us consider the case
where a user can increase or decrease the brightness of the device. The brightness
could be changed using a code that has already been written with some business
logic that is completely abstract. But the feature that we know is that changing
the slider values will increase or decrease the brightness of the device.
Communication between the layers:
The two layers need some kind of interface between them in order to enable
communication between the inner layers and the outer layers.
From the Dependency Principle, we know that the outer layers should
communicate with the inner layers, and to communicate with the inner layer, the
outer layer needs an interface. This interface acts as a communication mode
between the outer layers with the inner layers.
As mentioned by the dependency rule, the dependency points inwards; that is,
the outer layers communicate with the inner layers, but there is a small twist
here. The inner layers pass back the result to the outer layer after applying the
business logic; that is, the inner layers have an output port. The inner layer will
return a use case to the outer layer. The use case to be returned at the output port
could be decided by the inner layer. The inner layer would still not know, what
the outer layer will do with it.

To better understand the aforementioned principles, check out this code reference as an
example to show the Abstraction Principle. Consider the following line of code:

ratingTextView.setText(CommonFunction.formatRating(restaurant.getRating()))
;

This is a statement in Android code that displays the rating for a restaurant in a TextView
in an Android app. It seems to be a complex one when you just look at it but would be
really simple when split up in to sections.

ratingTextView is the TextView and .setText sets the text for this ratingTextView .

Understanding MVC, MVP, MVVM and Clean Arch Patterns

[103]

The rating value to be set needs to be provided to this ratingTextView and is decided by
restaurant.getRating(). Here restaurant is an object of the entity Restaurant and
.getRating() gives the rating value for that restaurant.
CommonFunction.formatRating formats the rating to a specific rounded value that
should be displayed in ratingTextView.

Once you have roughly understood this line of code, let me now explain to you how and
where the principles are being applied in this case. The formatRating is a function name
that does the work of taking the rating value as input, applying some business logic to it,
and giving back a result in the form of a specific rounded value. Now this business logic is
abstract to the outer layer. Hence, the Principle of Abstraction is applied.

The inner layer is a formatRating function that would take input as the rating value and
give output as a rounded value of the rating. The outer layer is just making a call to that
function to get a rounded value and then display it. The dependency is from the outer layer
to the inner layer, and the inner layer does not know what the outer layer is going to do
with the rounded value. Hence, the Dependency Rule is applied.

The outer layer has to call the inner layer function that is written in the CommonFunction
class. The CommonFunction class calls the formatRating function, which makes the
communication between the outer layer and the inner layer

The preceding example is applied at a code level with one statement. The same could be
applied at different levels where the outer layer and inner layers would be different.

Summary
What you can learn from the architectural patterns described in this chapter, is that you
keep the code segregated to avoid dependencies. What is asked from a user, what it does
internally, and what is presented back to the user are all independent pieces of code that are
linked to one another by a thin crust. All these patterns have some features in common.

8
Decision Making

Have you asked yourself some of the following questions anytime in your coding career?

Why do I code the way I code? Am I coding the correct way? If I am not coding the right way, what
is the right way to code? If you have ever asked yourself such questions, then that is the best
thing you might have ever done.

Decision making is a very important part of your coding career: deciding how to code and
what the best practices are, why to code following some standard patterns, and why not to
code in a certain way. I will help you classify the various patterns here.

How to begin
It is important to follow a proper code pattern to make your code structured, more efficient,
non-redundant, reusable, and less time-consuming when maintaining it. It is obvious that
you may revisit a code after a long time, for one reason or another.

In such a case, you should be happy that the code you have written is structured and easily
reusable for yourself. You should not have to spend time finding out all the dependencies of
the code that you are looking at.

To follow a proper structure and pattern, these are the strategies that you may need to use
while building your app structure:

Creational patterns
Builder
Dependency injection
Singleton

Decision Making

[105]

Structural patterns:

Adapter
Facade

Behavioral patterns:

Command
Observer
Model View Controller
Model View View-Model

Creational patterns
The creational pattern is the pattern to be followed for the creation of code.

It pertains to how you create an object, by making use of the existing code and by creating
an instance of the existing code. It's basically reusing code by creating objects instead of
repeating code.

Using a creational pattern, objects may be created making use of the existing code by
following some standard patterns.

Builder
The builder pattern separates the construction of a complex object from its representation.

This means that creating a construction makes use of a builder to build the structure. This
builder could be customized to create different representations of the same construction.

Consider the following piece of code to show an alert dialog in Android:

AlertDialog.Builder builder = new AlertDialog.Builder(this)
 .setTitle("Dialog Title")
 .setMessage("Description for the dialog.")
 .setNegativeButton("Cancel", new DialogInterface.OnClickListener() {
 @Override public void onClick(DialogInterface dialogInterface,
int i) {
 // Call back when "Cancel" button is clicked
 }
 })
 .setPositiveButton("OK", new DialogInterface.OnClickListener() {

Decision Making

[106]

 @Override public void onClick(DialogInterface dialogInterface,
int i) {
 // Call back when "OK" button is clicked
 }
 });
builder.show();

This AlertDialog.Builder helps you specify parts of your AlertDialog that matter to
you. For instance, you may input your own title and description that need to be created for
the dialog. Also, you can customize buttons such as OK and Cancel, and you can also
customize it to not show the Cancel button. With these customizations, the builder is
created. Once the builder is created, it is used to create the main construction; that is, the
AlertDialog.

The preceding code block produces the following alert:

Providing different inputs to the builder would give you different outputs.

Dependency injection
Dependency injection gives you the objects required by instantiating a new object. Here, the
new object created does not need customizations to be made use of. It can be directly made
use of in your code wherever you need it.

Android SDK provides you with many standard classes that may be made use of by
creating its objects. For example, a network class provided by Android,
ConnectivityManager, provides you with predefined functions to give you all the
network related data. You just need to create an object of that class and make use of the
functions provided by it to get the network data:

boolean haveConnectedWifi = false;
boolean haveConnectedMobile = false;

Decision Making

[107]

ConnectivityManager cm = (ConnectivityManager)
getSystemService(CONNECTIVITY_SERVICE);

NetworkInfo[] netInfo = cm.getAllNetworkInfo();
for (NetworkInfo ni : netInfo) {
 if (ni.getTypeName().equalsIgnoreCase("WIFI"))
 if (ni.isConnected())
 haveConnectedWifi = true;
 if (ni.getTypeName().equalsIgnoreCase("MOBILE"))
 if (ni.isConnected())
 haveConnectedMobile = true;
}
boolean isNetworkAvailable = haveConnectedWifi || haveConnectedMobile;

The preceding piece of code creates an object of the ConnectivityManager that is cm class,
and using this object, it gets the network info of the mobile device. It checks if the device
has mobile data available and also checks if it has Wi-Fi data available. Then, if it has at
least one network available, it saves it as a Boolean value in isNetworkAvailable, which
could be used in your code to check if the network is available.

Many other dependency injection codes are provided by the Android SDK, which provides
the network info, app info, stored data in SharedPreferences, load image, and so on.
These can be used anywhere in your code as per your requirements.

Singleton
The singleton pattern says that a class should have only a single instance that is globally
accessible.

A creation of an object of a class is useful when you require only one instance of the class.
An example of a class to create a singleton instance is shown here:

public class SingletonClass {
 private static SingletonClass instance = null;
 private SingletonClass() {
 // add your initialization data over here
 }
 public static SingletonClass getInstance() {
 if (instance == null) {
 instance = new SingletonClass();
 }
 return instance;
 }
}

Decision Making

[108]

The preceding class uses a static way of accessing the class, which will create only one
instance of the class, as its constructor method is not public. This prevents the creation of
multiple instances by making a check of the instance if it is null. In your code, you could
then access the singleton instance in the following manner:

SingletonClass.getInstance();

This will create the instance of the class only once, and you may use that instance anywhere
in your app.

You may also have functions in the SingletonClass making use of the singleton instance,
which will call it only once. In the following code, the same class is extended with a
function that you may write to add the functionality to be made use of only once:

public class SingletonClass {
 private static SingletonClass instance = null;
 private SingletonClass() {
 // add your initialization data over here
 }
 public static SingletonClass getInstance() {
 if (instance == null) {
 instance = new SingletonClass();
 }
 return instance;
 }

 private boolean isDebug = false;
 public void isDebugMode(boolean isDebugEnabled) {
 this.isDebug = isDebugEnabled;
 }
}

The additional code here is the isDebugMode function that accepts a Boolean and stores it
in a global variable, isDebug, of the class. This could be made use of later in the class. This
value could be set using the same instance in the following manner:

SingletonClass.getInstance().isDebugMode(true);

For the same instance, it sets the debug mode to true. This class could be extended
accordingly to handle many such singleton instances.

Decision Making

[109]

Structural patterns
These patterns are structured to understand exactly what they are doing, and can be made
use of in multiple places because of their organized patterns. They create objects in a
familiar arrangement that perform typical tasks. In Android, the structural patterns are
Adapter and Facade.

Adapter
The word adapter says it all: it adapts itself to be a bridge between the data source and the
type of view this data has to be displayed in; basically, the adapter view.

The data here might be of any kind, but it needs to be displayed in the same view, for which
an adapter plays an important role.

The following figure identifies how the adapter binds the data with the view:

The data could be in any form, such as List, ArrayList, Array, Cursor, and so on. This
kind of data needs to be displayed in the RecyclerView, Spinner, and so on, to display
the data in a list.

The adapter does not know what kind of data it is going to handle. It will handle and
display the type of data it is asked to display. For instance, if a user's list needs to be
displayed, then it will require the list of all the users whose lists need to be displayed.

Decision Making

[110]

The RecyclerView has its own adapter which can be used to display the data in the
RecyclerView. The following is the code of an adapter class, which explains how to
display a user's list using a RecyclerViewAdapter into a RecyclerView:

public class UserListAdapter extends
RecyclerView.Adapter<UserListAdapter.ViewHolder> {

 private Context context;
 private List<User> userList;

 public UserListAdapter(Context context, List<User> userList) {
 this.context = context;
 this.userList = userList;
 }

 @Override
 public ViewHolder onCreateViewHolder(ViewGroup parent, int viewType) {
 LayoutInflater inflater = LayoutInflater.from(parent.getContext());
 View view = inflater.inflate(R.layout.item_user, parent, false);
 return new ViewHolder(view);
 }

 @Override
 public void onBindViewHolder(final ViewHolder holder, final int
position) {
 final User user = userList.get(position);
 holder.nameTextView.setText(user.getName());
 }

 @Override
 public int getItemCount() {
 return userList.size();
 }

 class ViewHolder extends RecyclerView.ViewHolder {
 protected TextView nameTextView;
 public ViewHolder(View itemView) {
 super(itemView);
 nameTextView = (TextView)
itemView.findViewById(R.id.nameTextView);
 }
 }
}

Decision Making

[111]

In the code, there is a constructor that takes the userList as input:

public UserListAdapter(Context context, List<User> userList) {
 this.context = context;
 this.userList = userList;
 }

Then the item_user layout displays the list in a specified way:

View view = inflater.inflate(R.layout.item_user, parent, false);

It displays the name of the user in the list using:

holder.nameTextView.setText(user.getName());

Facade
A facade basically provides an interface so that all the other interfaces can be made use of
within it. It is a top layer interface that can be made use of in order to prevent a
functionality change affecting any view.

Fig something.something

The preceding figure shows the API interface that becomes a higher-level interface to all the
other interfaces, such as databases, servers, or file systems.

Decision Making

[112]

For an example of a facade, we will consider a Retrofit class that converts your HTTP API
into a Java interface:

public interface YourAppApi {
 @FormUrlEncoded
 @POST("/login")
 void login(
 @Field("email") String email,
 @Field("password") String password,
 Callback<RetroLogin> cb
);
}

The YourAppApi is the higher-level interface within which all the other interfaces will be
comprised. Here, an instance of the login API that takes the params as email and
password gives the response in the RetroLogin class is given:

RestAdapter restAdapter = new RestAdapter.Builder()
 .setLogLevel(RestAdapter.LogLevel.FULL)
 .setEndpoint("http://www.your_website_name.com/")
 .setClient(new OkClient(new OkHttpClient()))
 .build();

A RestAdapter is created to make the call to the API hosted on a server, which would be
the endpoint of your website. It would create an object of the RestAdapter class, which
you would be using to create the instance of the YourAppApi interface:

RestClient.YourAppApi appApiInstance =
restAdapter.create(RestClient.YourAppApi.class);

Using this appApiInstance, the login interface would be called using the following code:

appApiInstance.login(email, password,
 new Callback<RetroLogin>() {
 @Override
 public void success(RetroLogin retroLogin, Response response) {
 // Your code on successfully getting the response
 }

 @Override
 public void failure(RetrofitError error) {
 // Your code if any errors occur while getting the response
 }
 });

Decision Making

[113]

It would take the user's email and password and give out a response in JSON format that is
parsed into a model class provided by you. In our case, RetroLogin is the model class that
would be getting the response.

Behavioral pattern
This pattern helps you to define the behavior of your code, or why a particular code is
written in the way is has been written.

Command
When you write code, it should be commanding other code to give some expected result
based on the inputs that are provided. This type of pattern coding has some inputs called
parameters. They are being sent to some functionality to process the result and give it back
to us.

A simple example is the process of making toast. You provide the toaster with the bread.
The toaster does its work of heating the bread and gives out the result as toast.

Observer
The observer pattern is a pattern where multiple objects subscribed to one observer change
based on changes made on that observer.

It basically works like a one-to-many pattern, where changes made to the observer lead to
the necessary changes on all the subscribed objects.

The two major components here are the Observable and the Subscribers.

The Observable is a piece of code that contains a major chunk of functionality to perform a
task. Those who want to make use of this Observable need to subscribe to it. Those who
subscribe are called the Subscribers.

Subscribers listen to the Observable for the changes, and whenever changes happen to the
Observable, the Subscribers are notified.

Decision Making

[114]

Model View Controller
The Model View Controller (MVC) pattern is a pattern that divides the code into its three
components, we will briefly go through it here:

Model: The model represents the object in the application. This has the logic of
where the data is to be fetched from. This can also have the logic by which the
controller can update the view. In Android, the model is mostly represented by
object classes.

View: The view consists of the components that can interact with the user, and it
is responsible for how the model is displayed in the application. In Android, the
view is mostly represented by the XML where the layouts could be designed.

Controller: The controller acts as a mediator between the model and the view. It
controls the data flow into the model object and updates the view whenever data
changes. In Android, the controller is mostly represented by the activities and
fragments.

Model View Presenter
Model View Presenter (MVP) is derived from the MVC pattern. MVP is used to minimize
the high dependency on the view that is the case in the MVC. It separates the view and
model by using the presenter. The presenter decides what will be displayed on the view.
The MVP model is discussed as follows:

Model: The model represents the objects in the application. This has the logic of
where the data is to be fetched from.
View: The view renders information to users and contains the UI Component
.xml file, activity, fragments, and dialog come under the view layer. It does not
have any other logic implemented.
Presenter: This layer performs the task of the controller and acts as the mediator
between the view and the model. Unlike the controller, it is not dependent on the
view. The view interacts with the presenter for the data to be displayed, and the
presenter then takes the data from the model and returns it to the view in a
presentable format. The presenter does not contain any UI components; it just
manipulates the data from the model and displays it on the view.

Decision Making

[115]

Model View View-Model
The Model View View-Model (MVVM) is an improvement over the MVC model, as
discussed here.

The MVVM has the following components:

Model: The model represents the objects in the application. It has the logic of
where the data is to be fetched from.

View: The view is similar to the MVC pattern view, which renders information to
users and contains the UI Component .xml file, activity, fragments, and dialog
come under the view layer. It does not have any other logic implemented.

View-Model: This helps in maintaining the state of the view and does changes to
the model based on the inputs gained from the view.

Many views can be linked to one view-model, which creates a many-to-one relationship
between the view and the view-model. Also, a view has information about the view-model,
but the view-model does not have any information about the view.

Summing up MVP and MVC
Looking at the various patterns to code, you need to find the best practice to be used
depending on the use cases. Some of the coding patterns are formed based on the
architectural patterns followed by the inherited classes. In those cases, you are restricted to
follow one pattern, but there might be instances where you need to make use of certain
patterns based on the applicability.

The Model View Presenter pattern is based on the Model View Controller pattern. Since
they share several concepts, it can be hard to differentiate between them. The presenter and
the controller have a similar role. They are responsible for the communication between the
model and the view. That being said, the controller doesn't manage the model and the view
as strictly as the presenter does. Separating interfaces from logic in Android is not easy, but
the Model-View-Presenter pattern makes it a little easier to prevent our activities from
degrading into very coupled classes consisting of hundreds, or even thousands, of lines. In
large applications, it is essential to organize our code well. If not, it becomes impossible to
maintain and extend.

Decision Making

[116]

Refactoring your app
When you hear the term refactoring your app, you may get confused with what exactly is
going to get refactored in Android. It all compiles to code refactoring. To define it,
refactoring is the process of restructuring the code without changing the behavior of the
existing code. Refactoring improves the readability of the code. Also, it makes complex code
simple. What it also does is it reduces code duplication; it makes use of the same code at
two or more different places instead of writing the same code at those places.

What are the advantages of refactoring?
Refactoring is a process of improving your code without writing new functionality.

Refactoring helps to clean your code and use a simple code design for you app. Making
code simple makes it more readable and understandable. Hence, it also helps a third person
to quickly understand it.

A refactored code will follow the DRY principle; that is, Do not Repeat Yourself. Hence, it
will not have duplicated code. As there is no, or minimal, duplication in refactored code,
such code is very easy to maintain.

Also, you save a lot of time in the future if you have your code refactored, as you may reuse
the code written in multiple places without having to test it again for its functionality. Also,
it saves time when maintaining such code.

Another advantage of refactoring is it reduces the size of the classes, and this reduces the
size of your whole application.

How is refactoring done?
Refactoring can be done in various ways by doing a series of minor changes. With each of
these minor changes, the functionality is not affected, but the existing code is improved bit
by bit. And when these small bits are combined, it is refactored code.

Refactoring should abide by the following three key components. If the three components
are met, then you have correctly refactored your code:

New functionality should not be created during refactoring
After refactoring, all the existing test cases should be successfully executed
The code must be simple to read, understand, and use

Decision Making

[117]

When should you refactor?
Rule of Three:
This states that you must refactor your code if you write the same code, or
duplicate your code, for the third time.
For the first time, you write code to get done. The second time, when you write a
similar code, you know that it would be duplicate code, but you still write it
again. But if you are repeating the same code for a third time, you should be
refactoring that code.
When adding a feature:
You must refactor your code before adding a new feature to existing code that is
not refactored.
Refactoring helps in order to easily read and understand a piece of code. When a
piece of code is unclear, it takes a lot of effort to understand it and is time-
consuming. So the best time to refactor code that is not refactored is when adding
a new feature within that piece of code. This will help make things obvious for
you and easy to understand for those coming after you.
Refactoring also makes it a lot easier and smoother to add new features by
putting in minimal effort and therefore saving a lot of time.
When fixing a bug:
Again, you must refactor code when you are fixing a bug in the code that has not
been previously refactored.
A bug might be hidden in the deepest and innermost places of your code. And
having to find that bug in the code that is not refactored would be the deadliest
nightmare you would ever have. So the best thing to do when you need to find a
bug is to first check if the code is refactored, and if it is not, then do a code
refactor first and then try finding the bug. It will help save a lot of time and the
bug might find itself.
During code review:
Code review is a very important step for refactoring and is probably the last
chance to refactor your code before it's shared.
It's your responsibility to do a code review from your end before it is done by the
reviewer, and you should refactor as much as possible. The reviewer will then
review along with the author of the code and propose changes and decide,
together with the author, how difficult it will be to implement various refactoring
techniques.

Decision Making

[118]

What code needs to be refactored?
When code is not refactored, that code smells. There are different ways to identify the smell
of your code. What I mean is your unrefactored code can be classified into categories which
may then help you to identify how to refactor that code. We will go through these
categories one by one.

Bloaters
Bloaters are codes, methods, and classes that have increased largely in size and have
become hard to work with. They accumulate over time as the functionality increases and
nobody tries to resolve it:

Long method:
A long method is a method that contains too many lines of code. Generally, any
method longer than 10 lines is long.
Large class:
A class that contains many lines of code formed by many fields and methods.
Primitive obsession:
Primitive obsession occurs if primitives (for example, string and int) are used
instead of small objects for simple tasks (such as user first names, user last names,
user emails, user phone numbers, and so on). They could be clubbed in separate
objects, such as users use of string constants as field names for use in data arrays.
Long parameter list:
More than three or four parameters for a method is too many.
Data clumps:
Different parts of the code with identical groups of variables with similar causes.
These clumps should be turned into their own classes.

Object-orientation abusers
These pieces of code smell because the application of object-oriented programming
principles is not being applied on the code correctly:

Switch statements:
Your switch statement has been made complex, or the operator used is complex.
It could also occur if a sequence of if statements is used instead of a switch.

Decision Making

[119]

Temporary fields:
Temporary fields are being used in the code which are not used at all times, but
they get their values only under certain circumstances. If these circumstances do
not occur, then these objects or fields lead to code smell.
Refused bequest:
A subclass may have access to multiple methods from its parent class. But what if
it is actually using only a few of the methods from it, and the others are just
present because they are given to the subclass. If a subclass uses only some of the
methods and properties inherited from its parents, the unneeded methods may
simply go unused.
Alternative classes with different interfaces:
The code smells if two or more classes have the same functionality, but what
differs is only either the name of the class or the functions.

Change preventers
If you change the code in one place, then you will need to change it in the other places
where the code is dependent. This affects the development process because it requires
unnecessary additional handling, which is time consuming:

Divergent change:
If you have to make many unrelated methods while making a change in one class
then the change is divergent. For example, when adding a new restaurant type,
you have to change the methods for finding, and displaying, restaurants.
Shotgun surgery:
If you need to do a small modification at one place, then it requires that you make
many small changes to many different classes.
Parallel inheritance hierarchies:
When creating a subclass for a class, if it requires creating a subclass for another
class related to it, then it is parallel inheritance.

Decision Making

[120]

Dispensables
Dispensables are codes that are unnecessary or useless and can be directly removed to make
the code more understandable and efficient:

Comments:
Comments that are too large and unnecessary at multiple places in a method or a
class.
Duplicate code:
More than one codes that are almost identical used in different places.
Lazy class:
If a class is not performing any major functionality and the functionality written
seems to be unnecessary, then such a class should be deleted.

Data class
A data class refers to a class that contains only fields and crude methods for accessing them
(getters and setters). These are simply containers for data used by other classes. These
classes do not contain any additional functionality and cannot operate independently on the
data that they own:

Dead code:
If a variable, field, method, or class is not made use of anywhere in your code, or
if there is an old code that is no longer used, then that code is dead and should be
deleted using a good IDE.
Speculative generality:
A class, method, field, or parameter which was speculated to be made use of in
the future but was never made use of. Such unused code is categorized as
speculative generality.

Couplers
Excessive coupling between classes and methods leads to code smell that is categorized into
coupling smells:

Feature envy:
Data of another object is made use of by a method, more than its own data. Such
code smells after fields are moved to a data class.

Decision Making

[121]

Inappropriate intimacy:
One class uses the internal fields and methods of another class.
Message chains:
A code makes a series of calls, like one method calling another, and that method
in turn calling another method: method1() || method2() || method3().
Middle man:
If a class calls another class, and performs only the one function of calling the
other class, then the middle class smells.

How do I refactor my code?
Once you identify the category your smelling code falls into, it's time for you to refactor it
and remove all code smells. Here we will find how to do some minor tweaks in our code,
and they will solve a lot of your problems.

Refactoring of methods
One of the causes of code smells is the way in which methods are written: how the code has
been written in these methods, whether the methods have been written correctly, whether
some necessary methods have been written where they should be written, whether too
many unnecessary methods have been written, how complex a method has been made,
(making difficult to understand), or how long and extensive a method is made by adding
long code. Thus, the refactoring in these would comprise of solving the issues in these
methods. Some of these techniques are described next.

Extract method
What is the issue?
You have a long piece of continuous code that becomes too lengthy to be used as
a single piece of code. This long code does one kind of work but it is in between
or along with the other code that performs another functionality.
How do you solve it?
Create a new method and write the code in this new, separate method, which will
not affect the current functionality. This method can be called from the place
where you were actually writing the lengthy code. This will make the code get
clubbed into a method, and make it more readable.

Decision Making

[122]

Consider the following code, which hides the user views:

// Get the list of user images and store in list
List<Image> userImages = user.getImages();
// Hide my user details
firstNameTextView.setVisibility(View.GONE);
lastNameTextView.setVisibility(View.GONE);
emailTextView.setVisibility(View.GONE);

Here, hiding the user views could be clubbed into one method:

// Get the user details
List<Image> userImages = user.getImages();
hideUserViews();

private void hideUserViews() {
firstNameTextView.setVisibility(View.GONE);
lastNameTextView.setVisibility(View.GONE);
emailTextView.setVisibility(View.GONE);
}

Inline method
What is the issue?
When the content of a method is very small or it doesn't serve a purpose, keeping
it in that method and clubbing it along with some other piece of code.
How do you solve it?
Here, the method could be completely removed and the content from the method
could be directly replaced in the code where the method was called.

The inline method could be explained using the following code. We have a method to
check if the stock is limited. The stock is limited if the stock count is less than 10:

private boolean isLimitedStock(int count) {
if(isLessThanTen(count)) {
return true;
}
return false;
}

private boolean isLessThanTen(int count) {
return count<10;
}

Decision Making

[123]

Here, the isLessThanTen function is not serving much purpose, and the same conditional
check could be performed inside the isLimitedStock function itself in the following
manner:

private boolean isLimitedStock(int count) {
if(count<10) {
return true;
}
return false;
}

Extract variable
What is the issue?
An expression is too complicated to understand.
How do you solve it?
Divide the expression into separate parts and each part will have its result stored.
Later, you could combine these parts to get the final result. This will make the
expression easier to understand.

The following is an example of a complex validation step at the time of user registration. It
checks for multiple conditions to validate user data:

if (!firstname.isEmpty() && firstname.length() > 1 && !lastname.isEmpty()
&& lastname.length() > 1 && !email.isEmpty() && email.isValidFormat() &&
!password.isEmpty() && password.length()>6) {
return true;
}

Looking at it, it looks very complex. But if we segregate it into sections, then it becomes
simple to understand:

boolean isValidFirstName = !firstname.isEmpty() && firstname.length() > 1;
boolean isValidLastName = !lastname.isEmpty() && lastname.length() > 1;
boolean isValidEmail = !email.isEmpty() && lastname.isValidFormat();
boolean isValidPassword = !password.isEmpty() && password.length() > 6;

if (isValidFirstName && isValidLastName && isValidEmail && isValidPassword)
{
return true;
}

Decision Making

[124]

Inline temp
What is the issue?
The result of an expression, which is simple and direct to understand, is stored in
a temporary variable, and that variable is made use of only once.
How do you solve it?
Delete the temporary variable by making use of the expression itself, instead of
the variable.

Consider the example of an inline method here, where, and once again, whose
functions are finding if the stock is limited. The following code has been changed slightly to
explain the case of the inline temp:

private boolean isLimitedStock(int count) {
boolean isCountLessThan10 = count<10;
if(isCountLessThan10) {
return true;
}
return false;
}

Here, the variable isCountLessThan10 becomes a temporary variable that stores a
Boolean if that number is less than 10, and then directly uses it in the following condition to
check. It should be used with the expression directly, as seen previously:

private boolean isLimitedStock(int count) {
if(count<10) {
return true;
}
return false;
}

Replace temp with query
What is the issue?
A code or expression that gives a result has been stored in a temporary variable,
but that temporary variable has been made use of in multiple places in your code.
How do you solve it?
Since you are making use of the result from the expression or code, you should
create a new method that does the work of the expression, and this method has to
be called wherever required. Such a method may also be used in some other part
of the code at a later stage.

Decision Making

[125]

Consider the code that finds you the area of a rectangle. You know that the area of the
rectangle is the length multiplied by the breadth:

float areaOfRectangle = length * breadth;
if(areaOfRectangle>100) {
float amount = areaOfRectangle * 700;
}
else {
float amount = areaOfRectangle * 800;
}

Here, the area of the rectangle is used to find the amount. This should be replaced by a
method:

private float areaOfRectangle() {
return length * breadth;
}

Then this method should be made use of instead of the temporary variable:

if(areaOfRectangle()>100) {
float amount = areaOfRectangle() * 700;
}
else {
float amount = areaOfRectangle() * 800;
}

Split temporary variable
What is the issue?
One local variable inside a method saves values of different expressions for the
statements at various places.
How do you solve it?
Different variables need to be created for each of the statements inside the
method. The same variable should not be reused.

The following code makes use of the same local variable in a function:

private float getValue(int number) {
int tempValue = number*10;
if(tempValue>1000) {
// do something
}
tempValue = number / 5;
if(tempValue<20) {

Decision Making

[126]

// Do something
}
return tempValue;
}

The tempValue variable is first storing one value and then again, at a later point, storing
another value. Instead, a separate variable should be used to store the second value. This
helps at a later point when you revisit the code for rechecking, or have to do some changes
using this variable, as it would waive off the need for checking if the correct values are
stored in the variable at the point where the change or check needs to be performed:

private float getValue(int number) {
int tempValue = number*10;
if(tempValue>1000) {
// do something
}
int tempValueNew = number / 5;
if(tempValueNew<20) {
// Do something
}
return tempValueNew;
}

Remove assignments to parameters
What is the issue?
A new value is added to a parameter of a method.
How do you solve it?
A parameter value should not be replaced with any other value inside a method.
Instead, a new variable should be created that holds the same value as the
parameter value, if required.

The following code assigns a newly calculated value to the parameter:

private float getValue(int number) {
if(number>1000) {
number = number * 10;
}
return number;
}

Decision Making

[127]

Instead, a variable has to be used which would first hold the parameter's value:

private float getValue(int number) {
int numberTemp = number;
if(number>1000) {
numberTemp = number * 10;
}
return numberTemp;
}

This is important because in the near future, if you have to make changes to this method
and do some calculations using the parameter, you won't be able to make them, as you will
have lost the value of the original parameter after the reassignment.

Replace method with method object
What is the issue?
Here, the problem is similar to the problem you had for the extract method: the
code in a method has become too long, but in this case you cannot club the code
into a method, as the local variables are dependent on each other at multiple
places.
How do you solve it?
The whole code in the method can be compiled into a separate class, as a
dependent local variable could be made use of inside that class as per your needs.
So this is an extraction of the code into a class instead of a method.

The following code has some local variables that are interdependent of each other:

private void computeScale() {
int width = 10;
int height = 20;
int ratio = height/width;
if(width>height) {
ratio = width/height;
}
// Then using this 3 variables a complex computation is carried out
}

This could be solved by creating a separate class:

class Image {
int width;
int height;
int ratio;

Decision Making

[128]

public Image(int width, int height) {
this.width = width;
this.height = height;
calculateRatio();
}

private void calculateRatio() {
ratio = height/width;
if(width>height) {
ratio = width/height;
}
}

public int computeScale() {
// Return some value after calculation using the fields of this class
}
}

And then in the method, just call it to compute the value:

private void computeScale() {
int width = 10;
int height = 20;

int scale = new Image(width, height).computeScale();
}

Substitute algorithm
What is the issue?
The problem here is that the current algorithm written in your method is not the
best way to write it. You might have a better way to write the same algorithm.
How do you solve it?
Change the existing code in the method with a new code, without changing the
output of the method, but by changing the algorithm.

If we want to find the remainder of a division operation, the following code could be used:

private int getRemainder(int dividend, int divisor) {
int integerResult = dividend/divisor;
int remainder = dividend - integerResult * divisor;
return remainder;
}

Decision Making

[129]

It would give you the correct remainder value after the division. But is the algorithm used
here the best one to get the remainder? It is not, because the remainder could be found
using the mod operator directly. Therefore, change the algorithm written with this new one:

private int getRemainder(int dividend, int divisor) {
int remainder = dividend % divisor;
return remainder;
}

I know that the preceding code violates the inline temp technique, but I have kept it that
way so that you can understand it properly. The code could be written better in the
following way:

private int getRemainder(int dividend, int divisor) {
return dividend % divisor;
}

Summary
Refactoring becomes a very important part of your coding life cycle, as it is the one
responsible for keeping your code clean. Keeping your code clean is very important, as it
improves the readability of the code. It also has other advantages in that it makes your code
simple and reduces code duplication. It could reduce the number of lines in the code, thus
reducing the size of your whole final product. First, you need to understand and learn
where your code smells and what smell your code has. Then, apply the right refactoring
technique to remove the code smell. Thus, understanding the refactoring methods turns out
to be crucial.

9
Performance Matters

An app is dear to an end user, especially when it performs better than its expectations. A lot
of apps today are resource eaters. Even though they might be the best at the user interface
and experience, if they end up eating too many of resources of the phone, the app might just
face an uninstalled state within no time. The battery is one such dear factor to the user and
still remains a point of consideration while choosing a smartphone.

In this section, we will discuss several performance avenues in an app that we must cater to
to ensure that we are building a performance-centric app which is resource friendly. We
will list some of the tools we can use to improve the app performance too.

Improving display performances
After the UIs are designed, the most common issues developers face is the performance of
UIs on devices. This chapter will help to identify problems in an app's layout performance
and improve the UI responsiveness.

Optimizing layouts
Optimizing layouts becomes the most important part, as far as user experience is concerned,
because the layout is the aspect of the app which is finally seen by the user. They are the
interface between the user and the app. How the app looks and how it plays with the user's
experience is all decided by the layout. So, making the layout user friendly and optimized is
important.

Performance Matters

[131]

Optimizing layout hierarchies
Android has many standard layouts that can be used to design the layout. Using these
layouts means that each layout has to be added to your application. The app is also required
to initialize it, and the layout later requires to be drawn.

Layout hierarchy is making use a layout within another parent layout. For example, using
nested instances of RelativeLayout or LinearLayout. Using such nested layouts is a
very costly way of doing layout drawing work, because it requires a lot of processing to be
done. Furthermore, if LinearLayout uses the layout_weight parameter, then it is more
expensive, as each child needs to be measured twice. The android:layout_weight
attribute assigns a value to a view in terms of how much space it can occupy on the screen
and carries a default value of zero. A larger weight value means that it allows the layout to
be expanded to fill any remaining space in the parent view. It is more important to optimize
the layout when it is used in a list or a grid as, otherwise, it can lead to lagging of the view.

Optimization of such layouts requires us to perform stepwise checking of the layout and
improve it by changing the layout code wherever possible. Android Studio provides you
with tools to check for hierarchies in your layout, analyze them, and fix them based on the
analysis. Two of sthe tools provided are mentioned and explained below:

Hierarchy Viewer: Hierarchy Viewer is a tool that Android Studio provides to
analyze the layouts in Android. Once your layouts are ready, you need to inspect
those layouts in Hierarchy Viewer. Hierarchy Viewer allows you to analyze your
layout while your application is running. This tool finds out the cost for drawing
each of the layouts and analyzes the performance of each of the elements in the
layout.
The Hierarchy Viewer tool is present in Android Device Monitor. It asks user to
select running processes on a connected device or emulator. It then displays the
layouts from all these processes, in a layout tree. Once the hierarchy viewer
draws the layouts, it analyzes it and shows the performance of each layout using
traffic lights. The traffic lights on each block indicate its Measure, Layout, and
Draw performance. This can be understood by considering the example of an
item in RecyclerView:

Figure 5.1.1. Layout item of a RecyclerView.

Performance Matters

[132]

Consider Figure 5.1.1, which shows a layout used as an item in a RecyclerView.
The layout shows a bitmap image on the left and two TextViews to display text
on the right. As in a RecyclerView, the same layout has to be inflated multiple
times. Such a layout need to be optimized as it would otherwise increase the
performance.
Once you open Hierarchy Viewer, it will show a list of available devices and their
running components. Choose your component and click Hierarchy View to view
the layout hierarchy of the selected component. Figure 5.1.2 shows the Hierarchy
View of the above RecyclerView item:

Figure 5.1.2. Layout hierarchy for the layout in Figure 5.1.1 using nested instances of LinearLayout.

Performance Matters

[133]

The layout performance of the above view is slow, because of nested
LinearLayouts. The above layout has to be improved on performance by
changing the layout code and removing the nested layout in the code. This can be
done using a RelativeLayout instead of a LinearLayout, keeping the layout
design intact. When this design is converted to use RelativeLayout, the layout
becomes a two-level hierarchy. After changing the code and running the
Hierarchy Viewer the view is as shown in Figure 5.1.3:

Figure 5.1.3. Layout hierarchy for the layout in Figure 5.1.1, using RelativeLayout.

The nested view of the layout is removed in this case, and the performance of the
layout is improved. But this performance improvement is a small one,
considering this single layout. However, its value increases as it is used in a
RecyclerView, and this layout would be inflated multiple times.
The LinearLayout becomes inefficient because of its use of layout_weight,
which can slow down the speed of measurement. Hence, one should mostly
avoid the use of layout_weight wherever possible and use it only if it is of
utmost use.

Performance Matters

[134]

Lint:
Lint is another tool provided by Android to search for possible view hierarchy
optimizations. Lint is a tool that it is integrated into Android Studio and you
need to write rules which run automatically whenever you compile your
program. With Android Studio, lint can perform inspections for a specific build
variant or for all build variants. Some examples of lint rules are:

Use compound drawables: A LinearLayout which contains an
ImageView and a TextView can be more efficiently handled as a
compound drawable.
Merge root frame: If a FrameLayout is the root of a layout and
does not provide background or padding, it can be replaced with a
merge tag which is slightly more efficient.
Useless leaf: A layout that has no children or no background can
often be removed (since it is invisible) for a flatter and more
efficient layout hierarchy.
Useless parent: A layout with children that has no siblings, is not a
ScrollView or a root layout, and does not have a background, can
be removed and have its children moved directly into the parent
for a flatter and more efficient layout hierarchy.
Deep layouts: Layouts with too much nesting are bad for
performance. Consider using flatter layouts such as
RelativeLayout or GridLayout to improve performance. The
default maximum depth is 10.

Performance Matters

[135]

Lint has inspection profiles that can be configured within Android Studio by navigating to
the File | Settings | Project Settings option. The Inspection Configuration page appears
with the supported inspections:

Lint has the ability to automatically fix some issues, provide suggestions for others, and
jump directly to the offending code for review.

The layout optimization could also occur by reusing some layouts that are already present,
as that makes the layout more efficient. Reusing layouts allows you to create reusable
complex layouts, such as an action bar panel or a custom progress bar with a description.
Here, the elements of your application that are common across multiple layouts can be
extracted and managed separately and later be included in each layout. So, while you can
create individual UI components by writing a custom view, you can do it even more easily
by re-using a layout file. The methods to make a reusable layout are mentioned below.

Re-using layouts with <include/>:
This method of re-using of a layout can be done using an <include/> statement
in your XML code and including the already existing layout file into the current
layout.

Performance Matters

[136]

In order to create a reusable layout using <include/>, there are two
methods. One is by creating a new layout, which you know you will be
reusing, from scratch, and the second is to make a piece of existing code into
a separate layout file and later use it at another place.
If you know that you are making a reusable layout, then create a new XML
file and name the layout file my_reusable_layout.xml:

<FrameLayout xmlns:android="http:/ /schemas. android. com/ apk/ res/ android"
 xmlns:tools="http:/ /schemas. android. com/ tools"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:background="@color/black"
 tools:showIn="@layout/activity_main" >

 <ImageView android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/mylogo" />
 </FrameLayout>

The is exactly what the layout should look like, and that needs to be directly
included in the other layout file where it needs to be reused. That could be done
by using the <include> tag in the code where the layout has be included.
Reusing layout is a powerful feature that allows developers to create reusable
complex layouts. For example, if you are building a survey app which has a
layout which accepts Yes/No questions, or a custom progress bar with
description text, you can reuse the layout. A point to be noted is that any
elements of your app that are common across multiple layers can be extracted
and managed separately. Afterwards, they can be included in each layout.

The above layout is included in another layout, as shown in the code below:

 <LinearLayout xmlns:android="http:/ / schemas. android. com/ apk/res/ android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center_horizontal">

 <include layout="@layout/my_reusable_layout"/>

 <TextView android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/settings" />

 ...

 </LinearLayout>

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://schemas.android.com/tools
http://schemas.android.com/tools
http://schemas.android.com/tools
http://schemas.android.com/tools
http://schemas.android.com/tools
http://schemas.android.com/tools
http://schemas.android.com/tools
http://schemas.android.com/tools
http://schemas.android.com/tools
http://schemas.android.com/tools
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

Performance Matters

[137]

You can also override all the layout parameters of the included layout's root view
by specifying them in the <include/> tag. For example:

 <include android:id="@+id/my_reusable_id"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 layout="@layout/my_reusable_layout"/>

However, if you want to override layout attributes using the <include> tag, you must
override both android:layout_height and android:layout_width in order for other
layout attributes to take effect.

Use the <merge> Tag:
The layout can be also reused using the <merge/> tag; this helps to eliminate
redundant view groups in your view hierarchy. The merge is useful mostly when
your main layout is a vertical LinearLayout in which two consecutive views can
be reused in multiple layouts. In this case, the reusable layout in which you place
the two views requires its own root view. However, using another
LinearLayout as the root for the re-usable layout would result in a vertical
LinearLayout inside a vertical LinearLayout. This can slow performance.
Instead, a <merge> tag could be used to avoid this redundancy. A code example
of a merge has been show in the following code example below:

 <merge xmlns:android="http:/ /schemas. android. com/ apk/ res/ android">
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/ok"/>

 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/cancel"/>
 </merge>

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

Performance Matters

[138]

The <merge> tag is used to mitigate the number of the levels and to increase the
performance of rendering layout. The merge layout should also be included in
the layout using the <include> tag. When you include this layout in another
layout, the system ignores the <merge> element and places the two buttons
directly in the layout, in place of the <include/> tag. Note that <merge/> can
only be used as the root tag of an XML layout.

Views on demand
Some of the layouts need to be loaded in another layout only when required. Such layouts
are the ones which are loaded in the layout on demand. Loading views on demand
increases the performance of the layout, as the views are not present in the layout
beforehand. Hence, there is no processing of those layouts involved.

The performance of a layout is increased a lot more if the view that is included on demand
is a complex view. Also, the view might not be required until a certain condition is met and
it would be no use to include that view in the layout and hamper the performance. A few
examples of such views are item details, progress bars, and display messages.

This technique of loading views on demand can be implemented by defining a ViewStub
for complex and rarely used views.

Define a ViewStub
ViewStub is a lightweight view. It has no dimensions and, hence, doesn't draw anything on
the layout. This view is very cheap to inflate and include in a view hierarchy. Each
ViewStub needs to include the android:layout attribute to be included in the layout to
inflate. Instead of choosing to inflate views manually and add them to your view hierarchy
at runtime, use ViewStub. Its ease of use comes in very handy while developing. One point
to be noted here is that it does not support the <merge/> tag.

The following ViewStub is for a translucent progress bar overlay. It should be visible only
when the server call is to be made to fetch data:

<ViewStub
 android:id="@+id/stub_id"
 android:inflatedId="@+id/stub_import_id"
 android:layout="@layout/progress_layout"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="center" />

Performance Matters

[139]

The layout specified by the ViewStub can be called, either by making it visible by calling
setVisibility(View.VISIBLE) or by calling inflate():

findViewById(R.id.stub_id)).setVisibility(View.VISIBLE);

or

View myStubProgress = ((ViewStub) findViewById(R.id.stub_id)).inflate();

Once visible/inflated, the ViewStub element is no longer part of the view hierarchy. It is
replaced by the inflated layout and the ID for the root view of that layout is the one
specified by the android:inflatedId attribute of the ViewStub. The ID android:id
specified for the ViewStub is valid only until the ViewStub layout is visible/inflated.

Improving scrolls and other elements in the app
As seen earlier, an item of a list plays a very important part in the performance of a
RecyclerView. If the item view is made as efficient as possible, then the list will scroll very
smoothly; otherwise, there will always be a lag while scrolling the list. The list scroll will be
hampered more if the item view is very complex. Here, in the following section, we will
concentrate on improving this smoothness of scrolls in the app by focusing on some other
important aspects besides that.

The key to smooth scrolling is to keep the application's main thread free from heavy
processing. Any kind of network calls, disk access, and database access must not be
performed on the main thread.

Using a background thread
The tasks performed on the Android device in the foreground are all called the tasks on the
main thread. These include loading tasks and any kind of user action. If a heavy processing
task is performed on the main thread, then there will definitely be lag on the device. All
such tasks have to be performed in a background thread which does not affect the main
thread but still performs the task in the background. Once the background thread's task is
completed, it informs the main thread to perform an appropriate action with the result.
Using a background thread allows the main thread to focus on drawing the UI.
Android has a built-in class for performing tasks on the background thread. It is called
AsyncTask and provides a simple way to perform your work outside the main thread.
AsyncTask automatically queues up all the execute() requests and performs them
serially.

Performance Matters

[140]

An example of a class using AsyncTask is shown in the code below. The code below makes
a call to the Local database and fetches the profile information of a random profile:

// Using an AsyncTask to load the slow images in a background thread
new AsyncTask<ViewHolder, Void, Profile >() {
 private ViewHolder viewHolder;

 @Override
 protected Profile doInBackground(ViewHolder... params) {
 viewHolder = params[0];
 return MyLocalDb.getProfileData();
 }

 @Override
 protected void onPostExecute(Profile profile) {
 super.onPostExecute(result);
 if (profile!=null) {
 // If profile data has been correctly fetched then display the
name
 viewHolder.nameTextView.setText(profile.getName());
 }
 }
}.execute(holder);

The above code shows that the database access is done via the doInBackground method
and, once the data is fetched, then the onPostExecute method is called which is used to
display the details.

Holding view objects in a ViewHolder
Calling the findViewById() method frequently during the scrolling of RecyclerView,
can slow down performance and scrolling. This method looks up the elements after they are
inflated and then updates them. This could be avoided by not repeatedly calling the method
findViewById() but, instead, using a ViewHolder.

Performance Matters

[141]

A ViewHolder object stores each of the component views inside the tag field of the Layout,
so you can immediately access them without the need to look them up repeatedly. First,
you need to create a class to hold all sets of views. For example:

static class ViewHolder {
 TextView name;
 TextView aboutMe;
 ImageView image;
 ProgressBar progress;
 int position;
}

Then, populate the ViewHolder and store it inside the layout:

ViewHolder holder = new ViewHolder();
holder.name = (TextView) convertView.findViewById(R.id.name);
holder.aboutMe = (TextView) convertView.findViewById(R.id.aboutMe);
holder.image = (ImageView) convertView.findViewById(R.id.image);
holder.progress = (ProgressBar) convertView.findViewById(R.id.progress);
convertView.setTag(holder);

Once the ViewHolder saves these views, they can be reused in the code as and when
required.

Understanding network requests, computation and
memory
This chapter will highlight key areas of app performance, such as network requests,
computational algorithms, and memory leak issues. These components play an important
role in the performance of the app and can considerably reduce the speed of an app, if end-
to-end cases are not handled well. We will go through each of the topics one by one in order
to use the best practices to improve the performance of the app.

Performance Matters

[142]

Collecting, analyzing and optimizing the network
and network traffic
To collect, analyze and optimize the network, we would first look at how the network
traffic affects the app's performance. Every app will have a network call at some place in
their app. A network call is a delayed process, which means that it involves the time
between when the network call is made and when the response comes back to the user. This
in-between delay could vary depending on the speed of the network. Hence, properly
handling all these end-to-end cases is required for a better app performance.

Collection network traffic information
Collecting the network traffic flow data in an app is very important for optimizing the
network traffic on a device and the app, as it impacts battery life. In order to optimize that
traffic, you need to both measure it and identify its source. In order to communicate on a
network, it should make a request. This request could be from your app or from a user on
doing some action and triggering a request with the server. In order to monitor this traffic,
Android Studio has a network traffic tool known as DDMS.

Taging network requests
Optimization of network resource utilization has to be tracked and handled properly in an
app. Therefore, it is required that you check where your app is using the network, how your
app is making use of the network, and the frequency of its usage.
For performance analysis, network hardware should be divided into these categories:

User-initiated network requests: A network request that is initiated by the user
performing an action. For example, clicking on a button to fetch user profile
details.
App-initiated network requests: A network request that is initiated within your
app code without direct interaction by the user. For example, a call made by the
app to send the device details on to the server.
Server-initiated network requests: A network request that is initiated by a server
to your app without any interaction by the user. For example, a notification
coming up about a good restaurant near you.

Performance Matters

[143]

Categorizing these network initiators is important when trying to understand the source of
network use. Hence, these categories need tags to differentiate them. Based on the tags for
each of these three types of network traffic, a specified color is devised to each of them.
Later, in any graphical representation of network usage, these help to distinguish between
the types of network traffic initiator.

The three constants for the three types of categories could be mentioned in your app's
android code in the following manner:

public static final int USER_INITIATED_REQUEST = 0x1000;
public static final int APP_INITIATED_REQUEST = 0x2000;
public static final int SERVER_INITIATED_REQUEST = 0x3000;

Then, in all parts of your code, search and identify the three types of network categories.
You could use regular expression to find the network codes in your app. Android Studio
provides you with a way to find that:

Go to Edit | Find | Find in Path.1.
Paste the regular expression string given below in the input box in the dialog that2.
appears:
extends GcmTaskService|extends
JobService|extendsAbstractThreadedSyncAdapter|HttpUrlConnection
|Volley|Glide|HttpClient

Check the checkbox for Regular expression.3.
Check the checkbox for File mask(s) and type *.java.4.
Then click on the Find button.5.

Then, based on your findings, tag each of your apps, use of network traffic, the constants
that are defined using the method:

setThreadStatsTag(int)

The use case of tagging has been shown in the example below:

if (BuildConfig.NETWORK_TEST && Build.VERSION.SDK_INT >= 14) {
 try {
 TrafficStats.setThreadStatsTag(APP_INITIATED_REQUEST);
 // Once tag has been applied, network request has to be made
request
 } finally {
 TrafficStats.clearThreadStatsTag();
 }
}

Performance Matters

[144]

This method is supported from API level 14 and above, hence the check has to be made for
the same in the code.

The BuildConfig.NETWORK_TEST is a boolean value defined in your app's gradle
dependencies, as shown in the code below:

defaultConfig {
 ...
buildConfigField('Boolean', 'NETWORK_TEST', 'True')
}

Configuring a network test build type
You need to create an Android build to test your network performance. This build should
be as close as possible to the final production build. Now, create a test build for network
testing by creating a network_test build type, rather than using debug build type. To do
that, open your app's gradle file and in the buildTypes add the code shown below:

android {
 ...
 buildTypes {
 network_test {
 debuggable true
 }
 debug {
 // For debug buildType, debuggable is true by default
 }
 }
 ...
}

Deploying the network test APK
This step involves the deployment of the network_test build type APK generated, onto
the device. In order to do that, follow the steps below:

Connect your device to the system running Android Studio. Make sure that the1.
device comes up in the connected devices list in the Android Monitor section. If it
doesn't, then make sure you have enabled USB Debugging mode in the
Developer Options in the settings of your mobile device.

Performance Matters

[145]

Once the device is connected, select Build Variants on the left edge of the2.
window, in Android Studio. You will see a list of modules along with the build
variants:

Your configured buildType network_test will be visible in the list of build3.
variants. Choose that option. If it is not visible, then make sure you have synced
the project after writing the code in the build gradle file.

Performance Matters

[146]

Deploy the debuggable version of your app to your device by choosing Run |4.
Debug.
Run the network traffic tool (this will be mentioned in the next section).5.
The network traffic tool in Android Studio will show how the network resources6.
are used by your app in real time, while it is running.

Runing the network traffic tool
The network traffic tool will give you all the network traffic info of all the apps running on
a device. In order for the tool to give a reading of your app from the beginning, so that it
knows the start of the initial state for your app, you can clear the app data. After doing this,
all of your app's cached data will be cleared up, and it will need to perform any initial
network requests all over again. This will give you the complete network reading correctly.

Perform the steps below to run the network traffic tool and visualize the network requests:

Open the network traffic tool in Android Studio by navigating to Tools1.
|Android | Android Device Monitor. When asked, allow incoming network
connections.
In the Android Device Monitor window, click the DDMS button at the top. Then,2.
select the Network Statistics tab. If you don't see this tab, widen the window and
then try Window | Reset Perspective.
Select your app to debug from the list of debuggable apps on your device in the3.
Devices tab, then click the Start button in the Network Statistics tab.
Clear your app's data using the adb command: adb shell pm clear4.
com.zomato.app.
Use your package name instead of com.zomato.app.
The final step is to start your network debug app and open the app to run the test5.
cases of network traffic flow. Your plan should also allow for app idle time,
where the user is not interacting with the app, to allow app-initiated and server-
initiated network access to occur.

Repeat the test by clearing the app data and running your test plan again. Tagging helps
you to identify the type of request that is using a lot of network traffic, as it is distinguished
by colors. You can then, based on these findings, analyze the network usage in your app
and improve upon it.

Performance Matters

[147]

The Network Traffic for the Zomato app for the three types of network traffic is as shown in
Figure 5.2.1:

Figure 5.2.1

Analyzing Network Traffic Data
Some apps make network requests even when they are in an idle state, or after a certain
interval of time. It is important to analyze these types of network calls, as they affect the
performance of the app and the device. A lot of battery is consumed in starting up or
waking up the device and making a network call. If kept up for long periods, sending or
receiving data will cost a lot of battery. If the app is not accessing the network efficiently,
you should make sure that the network calls are grouped together with minimal calls and
have the maximum interval time between calls.

The network traffic tool, as seen in the previous section, gives the network traffic based on
various network types. Using this graphical tool, you can analyze a lot of network traffic
flow. For demonstration purposes, we have increased some server calls that make the app
make a lot of inefficient server calls more frequently.

Performance Matters

[148]

This network traffic flow is continuous and hence does not allow the device to switch to a
standby, low-power mode. Such network access behavior is likely to keep the device on for
extended periods of time, which is battery-inefficient.

Figure 5.2.2

Figure 5.2.2 shows an optimal network traffic pattern. Here, the network requests are sent
in bursts, separated by long periods of no traffic where the device can switch to standby.
The graphical representation in Figure 5.2.1 shows that with the same amount of work, it
can be made more efficient by clubbing the requests together and allowed the device to be
in standby most of the time.

Figure 5.2.3

Performance Matters

[149]

The best case would be to have the network calls after long periods, if possible, as seen in
Figure 5.2.3. It makes a network call after long periods of times as required. The app calls
with high network traffic data as shown in Figure 5.2.1 is very inefficient and should be
avoided; you need to optimize your network calls in your code.

Analyzing network traffic types
In order to analyze the different network traffic types, you need to understand the different
use cases of using the network traffic. For instance, making network calls for any user
actions like clicking a button is correct, as the app is in the foreground and the user knows
that the app is making use of the network. However, if your app is making network calls
when it is not in foreground, then there is network traffic flowing without the user's
consent; if used excessively, it could also affect the performance. In order to understand the
use case, the analysis of network traffic for different types becomes of the utmost
importance. We will understand the network types and analyze them:

User-initiated network traffic:
When a user interacts with an app, he expects the app to be working smoothly
and as fast as possible. There is a normal tendency of a user that, when an app
makes a network request as a result of some user action and there is no response
within 2 to 4 seconds, then the user will stop using the app. Hence, it is important
to analyze what network calls are being made upon any user action, how
frequently they are being made, and the amount of data that flows for the
network call.
As the number of requests made is not fixed and the period of making network
requests is not definite, it is very difficult to analyze this kind of network traffic
flow. However, it is important, because the user expects the app to be fast. Some
of the techniques that could be used in this case to optimize use of the network
are as follows:

Pre-fetch network data - In this technique of optimization, the data
is pre-fetched in the app on a user's action and used for the next
user action.
Check for connectivity - Check if your device has network
connectivity before making a network call.
Reduce the number of connections - Have a minimal number of
network calls.

Performance Matters

[150]

The details of the above optimization points will be discussed in a later section.

App-initiated network traffic:
Most network calls take place using this type of network traffic type, as it makes
up the major data that is displayed on any app from the server. Hence, it is
necessary to have optimal network usage. As with user initiated network traffic,
the amount of data sent over the network makes a lot of difference to
performance and user experience. As mentioned earlier, as a user expects quick
response for a better experience, the network call should have minimal
requirements for transferred data. The app also needs to make network calls
based on the period of inactivity. If the app is inactive, and there are calls being
made, then performance could be affected.. Some ways to optimize app-initiated
network traffic include:

Batch and schedule network Requests - the network requests have
to be made periodically with longer intervals to prevent excessive
battery usage.
Allow the system to check for connectivity - check for network
connectivity before making a network call to avoid a blank
network call that simply consumes battery.

The details of the above optimization points will be discussed in a later section.

Analyzing server-initiated network traffic:
Some network calls are initiated from the server to communicate with the app.
These have to be tackled in the server code effectively to avoid excessive battery
usage. Notifications from servers are the server-initiated network traffic type. If
there is consistent network activity from servers then, to allow the device to
switch into low power mode, the network calls must be spaced out.

Performance Matters

[151]

Optimizing network use
We have seen the different types of network traffic flow and how it could affect the
performance of the app and device if not handled correctly. We have also briefly looked at
points to optimize the network traffic in the app. Now, we will have a detailed
understanding of the optimization methods for different types of network traffic data.

Optimizing user-initiated network use:
A good experience to a user is when any app works as fast as possible. In the
user-initiated network, the request is made when the user does some kind of
action within the app. Here, we will see the methods that best improve the user
experience by optimally executing network calls when the user performs any
action.

Pre-fetch network data:
One method by which a user could get a quick response is by pre-
fetching the data required by a user to perform the next set of user
actions. This is done for logically anticipating all of the data required
by the app if the user does a particular action.
This method of fetching data is very effective and contributes to a
better performance of an app, as it reduces the battery power
consumption in the following ways:

It helps to reduce the number of independent data
transfers performed by the app.
The app performs pre-fetching of data only when the
device is awake by the user's action. This prevents the
overhead of waking up the device, as waking up a
device consumes a lot of battery.
As the data is pre-fetched, it reduces the number of
separate requests for data that would be otherwise
required, and which would wake up the device for each
call.

Performance Matters

[152]

Check for connectivity or listen for changes:
The second method of optimizing is avoiding making a very costly,
battery-draining call searching for a mobile signal. This can be done by
making a check to see if the device has a signal or connectivity. This
should be done only for a network call on a user action. If a scheduler
is used, then it performs that check automatically.

Android has a connectivity manager to check if any network connection
is present on a device. Using this, you could create your own function to
check if a device has any kind of network. If there is no network
connection, then it could directly inform the user about the lack of
connectivity on the device and save the battery by avoiding the network
call. The following is a code base where, using the connectivity manager,
the function checks if the device has internet connectivity:

 public static boolean isNetworkAvailable(Context context)
 {
 boolean haveConnectedWifi = false;
 boolean haveConnectedMobile = false;

 ConnectivityManager cm = (ConnectivityManager)
 context.getSystemService(context.CONNECTIVITY_SERVICE);
 NetworkInfo[] netInfo = cm.getAllNetworkInfo();
 for (NetworkInfo ni : netInfo) {
 if (ni.getTypeName().equalsIgnoreCase("WIFI"))
 if (ni.isConnected())
 haveConnectedWifi = true;
 if (ni.getTypeName().equalsIgnoreCase("MOBILE"))
 if (ni.isConnected())
 haveConnectedMobile = true;
 }
 return haveConnectedWifi || haveConnectedMobile;
 }

Performance Matters

[153]

A better approach to performing a user initiated request is to use a
scheduler. A scheduler performs a network request only if
connected to a network. If there is no connectivity, then they use a
technique called exponential back off to save battery. Here, each
time a connection attempt fails, the scheduler doubles the delay
before the next retry.
Another method for checking network connectivity is to use
Broadcast Receivers on Demand. In this technique, the device
listens for connectivity changes when the current activity is in the
foreground. If the app finds that network connectivity has been
lost, then it disables all of its receivers, except for the connectivity-
change receiver. The other receivers are only enabled when
connectivity is back.
Reduce the number of connections:
An obvious last method to avoid a battery drain and enhance the
user experience is by reducing the number of network calls. There
might be a case wherein two separate calls give separate data.
These could be clubbed into one single call, avoiding the additional
call. Reusing connections also makes the network react more
intelligently to congestion and network data issues.

Optimizing app-unitiated network use:
App-initiated network traffic is a type of network traffic that can be optimized a
lot, as it is controlled completely by your app. Here, you know how much and
what network resources are required and so can set a schedule for them with
significant periods of rest for the device, thus saving power:

Batch and schedule network requests:
On a mobile device, there are some heavy, battery-draining tasks,
like the process of making a network request, keeping the device
awake, waking up the device, and so on. The processing of these
tasks may use up a lot of battery. Hence, these tasks have to be
performed in batches by queuing them individually.
For making scheduled network requests, a network access
scheduler API could be used. The scheduler would queue and
process your app data requests to increase the efficiency of your
app. Schedulers group several requests together for the system to
process and thus save battery. They further improve efficiency by
delaying some requests until other requests wake up the device, or
waiting until the device is charging.

Performance Matters

[154]

Choose a batch-and-scheduling API:
There are several different APIs that are provided by Android to
perform the scheduling task. Android provides three different APIs
for your app to batch and schedule network requests, which are
listed in the following table with the most highly recommended
first:

Scheduler Requirements Implementation
Ease

GCM
Network
Manager

GCM Network Manager
requires that your app use the
Google Play services client
library, version 6.1.11 or
higher - use the latest
available version.

Straightforward

Job
Scheduler

Job Scheduler does not
require Google Play services,
but is available only when
targeting Android 5.0 (API
level 21) or higher.

Straightforward

Sync Adapter
for scheduled
syncs

Sync Adapter does not
require the Google Play
services client library and has
been available since Android
2.0 (API level 5).

Complex

Allow the system to check for connectivity:
This is one of the most dangerous battery drainers, as it performs
very heavy tasks and wakes up the device frequently. Here, the
device searches for the nearest network tower for connectivity. This
usually occurs while travelling from one network tower to another.
Searching for a cell signal is one of the most power-draining
operations there is.
Prevent this by using a scheduler, which automatically uses a
connectivity manager to check for connectivity before calling into
your app. As a result, if there's no network, the connectivity
manager conserves battery because it performs the connectivity
check itself, without loading the app to run the check. The battery
is also saved as a scheduler uses an exponential back off technique
which has already been mentioned previously.

Performance Matters

[155]

Optimizing server-initiated network use:
Server initiated network requests are tough to resolve from Android code. They
need to mostly be resolved from the server end, but whatever can be done from
the Android end has to be executed. A solution to this problem is for your app to
periodically poll the server to check for updates. An efficient approach would be
to notify your app when it has new data. This was never an easy job before the
introduction of the Google Cloud Messaging (GCM) service, which solves this
communication problem by allowing your servers to send notifications to
instances of your app wherever they are installed, enabling greater network
efficiency and lowering power usage.

Send server updates with GCM:
Google Cloud Messaging (GCM) is a mechanism used to transmit
brief messages from an app server to your app. GCM could be used
by your apps wherein the server sends a message to notify your
app that there is new data available. This approach eliminates
network traffic that your app would perform, by not contacting a
backend server for new data when no data is available.
GCM is more efficient because it prevents the polling method and
polling the server would involve a lot of network requests and thus
a lot of performance that would drain the battery. The GCM service
eliminates unnecessary connections where polling would return no
updates and it avoids running periodic network requests.
Also, GCM is a widely-used technology and is supported by many
apps. However, the newer version of sending the messages is using
Firebase Cloud Messaging (FCM), which has already been
covered in the previous section.

Performance Matters

[156]

Batching and Job Schedulers
In this section, we will discuss scheduling jobs which are not required to be completed
immediately, but can be done later when more resources are available.

Currently, Android has two APIs with which we can schedule jobs:

AlarmManager API
JobScheduler API

In AlarmManager API, we can schedule a task to be done by the system at a given time in
the future.

The AlarmManager requires a broadcast receiver to capture the task and perform the
required action. We can also schedule repetitive jobs which are to be performed at certain
intervals.

While we are scheduling an alarm, we must pass the type, the time when the alarm is
scheduled, and a PendingIntent.

The AlarmManager has two types of alarms:

RTC: In this type, the alarm is set as per the system times but will not be called if
the device is asleep.
RTC_WAKEUP: In this type, the alarm is set on the system time and it will wake the
device up when the alarm is scheduled.

The AlarmManager uses a PendingIntent to call a specific intent; the intent must pass a
call to a receiver class.

The various methods available with the AlarmManager are as follows:

Method Description

cancel(PendingIntent operation) This method removes any alarms
with a matching intent.

cancel(AlarmManager.OnAlarmListener listener) This method removes any alarm
scheduled to be delivered to the
given
AlarmManager.OnAlarmListener.

Performance Matters

[157]

set(int type, long triggerAtMillis,
PendingIntent operation)

This method schedules an alarm
with the given parameters
Int type : Type of alarm
Long triggerAtMillis : When the
alarm will trigger
PendingIntent operation : Intent
passed to be called on alarm

set(int type, long triggerAtMillis, String tag,
AlarmManager.OnAlarmListener listener,
Handler targetHandler)

This is a direct callback version of
set (int, long, PendingIntent).

setAlarmClock(AlarmManager.AlarmClockInfo
info, PendingIntent operation)

This method schedules an alarm
that represents an alarm clock.

setAndAllowWhileIdle(int type, long
triggerAtMillis, PendingIntent operation)

This methods is like set (int, long,
PendingIntent), but will be
allowed to execute even when the
system is in low-power idle modes.

setExact(int type, long triggerAtMillis,
PendingIntent operation)

This methods chedules an alarm to
be delivered precisely at the stated
time.

setExact(int type, long triggerAtMillis,
String tag, AlarmManager.OnAlarmListener
listener, Handler targetHandler)

This is a direct callback version of
setExact(int, long,
PendingIntent).

setExactAndAllowWhileIdle(int type, long
triggerAtMillis, PendingIntent operation)

This method is like setExact(int,
long, PendingIntent), but will be
allowed to execute even when the
system is in low-power idle modes.

setInexactRepeating(int type, long
triggerAtMillis, long intervalMillis,
PendingIntent operation)

This method chedules a repeating
alarm that has inexact trigger time
requirements; for example, an alarm
that repeats every hour, but not
necessarily at the top of every hour.

setRepeating(int type, long triggerAtMillis,
long intervalMillis, PendingIntent operation)

This method schedules a repeating
alarm.

setTime(long millis) This method sets the system wall
clock time.

Performance Matters

[158]

setTimeZone(String timeZone) This method sets the system's
persistent default time zone.

setWindow(int type, long windowStartMillis,
long windowLengthMillis, PendingIntent
operation)

This method schedules an alarm to
be delivered within a given window
of time.

setWindow(int type, long windowStartMillis,
long windowLengthMillis, String tag,
AlarmManager.OnAlarmListener listener,
Handler targetHandler)

This is a direct callback version of
setWindow(int, long,
PendingIntent).

As can be seen in the form above, the AlarmManager can be set with respect to time only
and no other conditions are being checked before it is first triggered.

Here is sample of how AlarmManager is initialized and used:

Initialize an alarm with a pending intent and set action so as to call the proper1.
receiver using the setAction method of intent:

private void createAlarm(Context context) {
Intent intent = new Intent(context, MyBroadcastReceiver.class);
intent.setAction("my.content.update.action");
PendingIntent pendingIntent = PendingIntent.getBroadcast(context,
100, intent, PendingIntent.FLAG_UPDATE_CURRENT);
Calendar calendar = Calendar.getInstance();
calendar.setTimeInMillis(System.currentTimeMillis());
calendar.add(Calendar.MINUTE,1); //To start first alarm after 1 minute
AlarmManager alarmMgr =
(AlarmManager)context.getSystemService(Context.ALARM_SERVICE);
alarmMgr.cancel(pendingIntent); // Cancel any pending alarms if required
int currentapiVersion = android.os.Build.VERSION.SDK_INT;
if (currentapiVersion >= Build.VERSION_CODES.KITKAT){
alarmMgr.setInexactRepeating(AlarmManager.RTC_WAKEUP,
calendar.getTimeInMillis(),
Constant.INTERVAL_ONE_MINUTES,
pendingIntent);
} else{
alarmMgr.setRepeating(AlarmManager.RTC_WAKEUP,
calendar.getTimeInMillis(),
Constant.INTERVAL_ONE_MINUTES,
pendingIntent);
}
}

Performance Matters

[159]

Next, we have to add the receiver to be called in the manifest:2.

<receiver android:name=".receiver.MyBroadcastReceiver">
<intent-filter>
<action android:name="my.content.update.action" />
</intent-filter>
</receiver>

We also add the receiver class to receive the intent:3.

public class MyBroadcastReceiver extends BroadcastReceiver {
private static final String TAG =
MyBroadcastReceiver.class.getSimpleName();
@Override
public void onReceive(Context context, Intent intent) {//Perform Action
}
}

Next, we will see how to use the JobScheduler.

The JobScheduler API was introduced in Android 5.0 Lollipop (API 21). The
JobScheduler operates at the system level, so it has many features by which it can
intelligently schedule and trigger the jobs that have been assigned.

The JobScheduler API does not work solely on time scheduled tasks, but checks whether
the correct conditions are met before triggering a task. The JobScheduler API runs on the
main thread of the application, so it can interact with the app more easily and reduce the
chances of being stopped by the system to free memory.

The JobScheduler consists of three main sections:

JobInfo

JobService

JobScheduler

Let us look into each one of them in detail.

Performance Matters

[160]

JobInfo
All the parameters that are to be used while scheduling the Job by the scheduler are defined
in the JobInfo class. We can use JobInfo.Builder to create an instance of JobInfo. This
builder requires the jobId and the service component as its parameters. JobId can be used
to uniquely identify jobs that are scheduled to perform a task. They can be also used to
monitor whether the job has been successfully called or not by the app when the conditions
are met.

The following are the parameters that can be set using the JobInfo class:

setBackoffCriteria (long initialBackoffMillis, int
backoffPolicy):
Back-off Criteria is the policy that checks when a job is finished or a retry is
requested. You can set the initial back off time and whether it is linear or
exponential.
The default is 30 sec and exponential.
The max back-off capacity is five hrs.
Also, setting this method for a job along with
setRequiresDeviceIdle(boolean) will throw an exception when you call
build(), as back off typically does not make sense for these types of jobs.
The back off policy can be set one of the two values:

JobInfo.BACKOFF_POLICY_LINEAR will use the same back
off time for the next retry attempt.
JobInfo.BACKOFF_POLICY_EXPONENTIAL

will retry after exponentially increasing the back off time.
setExtras(PersistableBundle extras):
A Bundle of extras. This lets you send specific data to your job. As this is
persisted, only primitive types are allowed.

Here is a code example of how a JobInfo object can be
initialized in the code:

setMinimumLatency(long minLatencyMillis):
A minimum amount of time your job should be delayed. Calling this method
for a periodic job will throw an exception when you call build().

Performance Matters

[161]

setOverrideDeadline(long maxExecutionDelayMillis):
A maximum amount of time to wait to execute your job. If you hit this time,
your job will be executed immediately regardless of your other parameters.
Calling this method for a periodic job will throw an exception when you call
build().
setPeriodic(long intervalMillis):
If you want the job to be repeated, you can specify the interval between
repeats. You are guaranteed to be executed within an interval but cannot
guarantee at what point during that interval this willl occur. This can
sometimes lead to jobs being run closely together. Setting this function on the
builder with setMinimumLatency(long) or setOverrideDeadline(long)
will result in an error.
setPersisted(boolean isPersisted):
You can persist the job across boot. This requires the
RECEIVE_BOOT_COMPLETED permission to be added to your manifest.
setRequiredNetworkType(int networkType):
The network type you want the device to have when your job is executed.
You can choose between:

NETWORK_TYPE_NONE: No network connection is required for
the job. This is the default value set for the job.
NETWORK_TYPE_ANY: This specifies that the Job requires an
internet connection, but it can be of any type, such as Wi-Fi,
mobile network, or any other type of connection.
NETWORK_TYPE_UNMETERED: This is specified when a job has to
be triggered when the network type is unmetered, for example,
Wi-Fi.
NETWORK_TYPE_NOT_ROAMING: This is added in API 24. It is
specified when network should not be roaming to trigger the
Job.

setRequiresCharging(boolean requiresCharging):
Whether or not the device should be charging.

Performance Matters

[162]

setRequiresDeviceIdle(boolean requiresDeviceIdle):
If the device should be idle when running the job. This is a great time to do
resource heavy jobs.

ComponentName serviceComponent = new ComponentName(context,
MyJobService.class);
JobInfo jobInfo = new JobInfo.Builder(0, serviceComponent)
.setBackoffCriteria(30*1000,JobInfo.BACKOFF_POLICY_EXPONENTIAL)
.setMinimumLatency(5 * 1000) // wait at least
.setOverrideDeadline(10 * 1000) // maximum delay
.setRequiredNetworkType(JobInfo.NETWORK_TYPE_UNMETERED) // require
unmetered network
.setRequiresDeviceIdle(true) // device should be idle
.setRequiresCharging(false) // we don't care if the device is charging or
not
.build();

Next, we will see about the JobService.

JobService
The JobService is the actual service that is going to run our Job. The new JobService
must be registered in the AndroidManifest with the BIND_JOB_SERVICE permission. This
service has different methods to implement than a normal service:

onStartJob(JobParameters params):
This method is what gets called when the JobScheduler decides to run your job
based on its parameters. You can get the jobId from the JobParameters and
you will have to hold on to these parameters to finish the job later.
The jobId can be used to identify each job.

Performance Matters

[163]

onStopJob (JobParameters params):
This will get called when your parameters are no longer being met. In our
previous example. this would happen when the user switches off of Wi-Fi,
unplugs, or turns the screen off on their device.

Here are some important things to know when using a JobService:

The JobService runs on the main thread:
It is your responsibility to move your work off-thread. If the user tries to open
your app while a job is running on the main thread. they might get an Android
Not Responding (ANR) error . This can be done by performing the tasks to be
done in the service in a background thread within the service itself, using a
Handler or an AsyncTask.
You must finish your job when it is complete:
The JobScheduler keeps a wake lock for your job. If you don't call
jobFinished (JobParameters params, boolean needsReschedule) with the
JobParameters from onStartJob (JobParameters params) the
JobScheduler will keep a wake lock for your app and burn the device's battery.
Even worse, the battery history will blame your app. So, remember to call
jobFinished when the job has completed its work.
You have to register your job service in the AndroidManifest:
If you do not, the system will not be able to find your service as a component and
it will not start your jobs. You'll never even know as this does not produce an
error.

Here is a code example to show how the JobService class looks:

Firstly, we add the service in the AndroidManifest:

<service
android:name=".service.MyJobService"
]android:permission="android.permission.BIND_JOB_SERVICE" />
Next, we create the service:
public class MyJobService extends JobService {
private static final String TAG = MyJobService.class.getSimpleName();
JobParameters params;
@Override
public boolean onStartJob(JobParameters params) {
MyLg.e(TAG, "Job Started");
this.params = params;
updateComplete();
return true;//Return
true if using background thread else return false

Performance Matters

[164]

}
@Override
public boolean onStopJob(JobParameters params) {
MyLg.e(TAG, "Job Force Stopped");return true;// Reschedule job return true
else return false
}
private void updateComplete() {
List<PhotoItem> allList =
DaoController.getPhotoItems(getApplicationContext());
if (allList.size() != 0) {
PhotoItem item = allList.get(0);
String finalName = "Photo" + new Date().getTime() + "U" +
SessionPreference.getUserId(getApplicationContext()) + ".jpg";
String path = item.getPath();
String tag = item.getTag();
item.setName(finalName);
item.setStatus(true);
uploadPhoto(item);
}else{
jobFinished(params, false);
}
}
private void uploadPhoto(final PhotoItem photo) {
String name = photo.getName();
String content = getImageFromPath(photo.getPath());
if(content!=null) {
RetroInterface.getImageApi().uploadImage(
""+content,
"" + name,
new Callback<NormalResponse>() {
@Override
public void success(NormalResponse menuDetailResponse, Response response) {
photo.setStatus(1);
DaoController.updatePhotoItems(getApplicationContext(), photo);
updateComplete();
}
@Override
public void failure(RetrofitError error) {
photo.setStatus(2);
DaoController.updatePhotoItems(getApplicationContext(), photo);
updateComplete();
}
});
}
else {
MyLg.e(TAG, "Could not decode image..");
photo.setStatus(1); //Skip Image
DaoController.updatePhotoItems(getApplicationContext(), photo);

Performance Matters

[165]

updateComplete();
}
}
}

From the above service, we upload a list of images sequentially.

Next, we will see how to schedule the Job using the JobScheduler class.

JobScheduler
We now have our JobInfo and our JobService, so it is time to schedule our job. All we
have to do is get the JobService the same way you would get any system service and
hand it our JobInfo with the schedule (JobInfo job) method.
After we have got the instance of the JobScheduler class, we have to call the schedule
method to schedule the job.

Here is a code example showing how the job has to be scheduled:

JobScheduler jobScheduler =
(JobScheduler)getSystemService(Context.JOB_SCHEDULER_SERVICE);
jobScheduler.schedule(jobInfo);

Effective use of Extended Doze and Standby
So far, you might have understood that improving the performance of an app is as simple
as saving as much of a device's battery as possible by using effective coding techniques.
Hence, in the latest versions of Android, starting from Android 6.0 (API level 23) there are
two power-saving features included which could extend battery life for users, by managing
how apps behave when a device is not connected to a power source:

Doze: Doze reduces battery consumption when the device is not being used for a
long time, by temporarily suspending the background tasks performed by CPU
and network calls for apps.
App Standby Standby temporarily suspends the background network calls for
apps that are not used or interacted with recently.

Performance Matters

[166]

To make sure that the latest versions of Android can make use of both these features
effectively, there need to changes made to your code if there is any performance deficit that
occurs due to improper code that violates use for these key features.

Understanding Doze
Doze mode in an Android device is a state which is satisfied if these three conditions are
met:

If the device screen is off.
If the user is not using the device for a period of time.
If the device is in a non-charging state.

In Doze mode, the device reduces the use of battery by restricting the apps from accessing
the network and prevents the apps from doing tasks that use the CPU of the device. It also
suspends all the apps jobs, syncs, and alarms. But doze mode gives a breather space to the
apps periodically. It exits the doze mode for a short period of time and allows the apps
complete their suspended tasks like syncs, jobs, and alarms, and lets apps access the
network.

Figure 5.2.4: Doze Mode

Performance Matters

[167]

Figure 5.2.4 above shows the doze mode for a device. We know that the doze mode exits
periodically; this is called the maintenance window. At the end of the maintenance window,
the device again moves in doze mode. If the device is not used for a very long time, the
maintenance window keeps on decreasing as the time progresses and thus reduces the use
of battery when the device is not connected to a charger. Doze mode is exited, as soon as the
user wakes up the device or if the device is connected to a charger; at this point all the
suspended tasks resume.

Doze restrictions
There are several restrictions applied to your app by the device when the device is in doze
mode. The restrictions are as follows:

Network access is suspended
The device ignores wake locks
Standard AlarmManager alarms are temporarily suspended to the next
maintenance window
The alarms could be overridden in doze mode by writing this statement in the
code: setAndAllowWhileIdle() or setExactAndAllowWhileIdle()
Wi-Fi scans are not performed
Sync adapters are not allowed to run
The system does not allow JobScheduler to run

Adapting your app to Doze
Doze mode may affect an app that uses some services that are controlled by Doze mode. In
such cases, there is a need to modify your code in such a way that your app works correctly
in Doze mode or after exiting doze mode. However, in a normal case Doze mode does not
differently affect app functionality. Mostly, the apps that make use of network, alarms, jobs,
and syncs are the apps that need to be well-tested for Doze mode. In those cases, the apps
should be able to efficiently manage activities during each maintenance window.

Doze mode is likely to affect activities that make use of AlarmManager and timers, because
alarms in Android 5.1 or lower do not fire when the system is in Doze. To schedule alarms
from Android 6.0 onwards, Android introduces two new AlarmManager methods:
setAndAllowWhileIdle() and setExactAndAllowWhileIdle(). With these methods,
you can set alarms that will fire even if the device is in doze.

Performance Matters

[168]

Doze mode also restricts the use of network access and hence may affect services like
showing notifications in an app. The solution for this is to make use of Firebase Cloud
Messaging (FCM) to get notifications from server if possible.

Understanding App Standby
The App Standby feature allows a device to determine if an app is idle. It checks if the user
is actively using the app or not by determining if the user touches the app for a certain
period of time and none of the following conditions applies:

The user explicitly launches the app.
The app has a process currently in the foreground (either as an activity or
foreground service, or in use by another activity or foreground service).

A foreground service for a task should be implemented only when a task executes
immediately or without interruption. For example, uploading a photo or playing music
even while the music-player app is not in the foreground. Foreground service should not be
used to determine whether your app is idle.

The Standby mode is exited when the user plugs the device for charging, allowing them to
freely access the network and to execute any pending jobs and syncs. If the device is idle for
long periods of time, the system allows idle apps network access around once a day. In a
Standby state, the app generates a notification that users see on the lock screen or in the
notification tray. All the other apps move into standby, but the device admin app never
enters App Standby, because it must remain available to receive data from a server at any
time.

Testing with Doze and App Standby
Your app may get affected by Doze mode and App Standby if you use some services. So,
your app needs to handle these cases to ensure that the app functions smoothly in these
conditions. Hence, it is required to test your app in these conditions. An app moves into
doze mode, or App Standby, after some time, but a developer cannot wait every time for
these conditions to occur. Therefore, it is required to simulate these conditions to test your
app fully in Doze and App Standby to ensure a great experience for users.

Performance Matters

[169]

You can test Doze mode by following these steps:

Make sure you have a hardware device or virtual device with an Android 6.0 or1.
higher system image.
Connect the device to your development machine and install your app.2.
Run your app and leave it active.3.
Now the device should be forced into idle mode. This can be done by running the4.
following command:

 $ adb shell dumpsys deviceidle force-idle

Observe the behavior of your app after you reactivate the device.5.
Verify that your app opens up smoothly and as expected without any issues6.
when it exits Doze mode.

To test App Standby mode with your app:

Make sure you have a hardware device or virtual device with an Android 6.0 or1.
higher system image.
Connect the device to your development machine and install your app.2.
Run your app and leave it active.3.
Now the app should be forced into App Standby mode. This can be done by4.
running the following commands:

 $ adb shell dumpsys battery unplug
 $ adb shell am set-inactive com.zomato.app true

Use your package name instead of com.zomato.app.

Now the app should be simulated to wake up using the following commands:5.

 $ adb shell am set-inactive com.zomato.app false
 $ adb shell am get-inactive com.zomato.app

Use your package name instead of com.zomato.app.

Observe the behavior of your app after waking it.6.
Verify if your app opens up smoothly and as expected without any issues when it7.
exits the standby mode. In particular, you should check if your app's notifications
and background jobs continue to function as expected.

Performance Matters

[170]

Threads and Pools
A thread is a path followed to execute any task in Android. The Android device functions
on a thread. Everything that you see on an Android device works on a thread called the
Main thread or a UI thread. If the UI thread performs the task of displaying the UI, then any
app functions smoothly. However, if you ask the UI thread to perform other long-running,
extensive data operations, then it will affect the performance of the app. The speed and
efficiency could be thus improved by splitting these into smaller operations and then
running each one of them on multiple threads. On a device that has a CPU with multiple
processors, it can run the threads in parallel, instead of making each sub-operation wait for
a chance to run its task.

Specifying the Code to Run on a Thread
A separate thread could be written to execute some operation using the functions from a
Runnable class. The Runnable class has a function, run(), in which you could write the
code that needs to be executed on a separate thread. Similarly, multiple runnable objects
could be created and could be run independently to perform their specified operation. The
runnable could also be passed to another object that can then attach it to a thread and run it.
One or more runnable objects that perform a particular operation are sometimes called a
task.

Threads and Runnable are encapsulated classes which form the base for creation of some
important classes that help to execute a task in a separate thread. A few examples of such
classes are AsyncTask, HandlerThread, IntentService, ThreadPoolExecutor, and so
on. These classes automatically manage threads and task queues and can even run multiple
threads in parallel.

In order to create a class on a separate thread using Runnable, create a new class that
implements Runnable as shown in the following code:

public class MyRunnable implements Runnable {
 ...
 @Override
 public void run() {
 /*
 * Write your code that needs to run on separate thread
 */
 ...
 }
 ...
}

Performance Matters

[171]

Then, override the run() method of this class and write your code that needs to be
executed on the separate thread. The Runnable won't be running on the UI thread, so it
cannot directly modify UI objects such as view objects.

In order to reduce the resource competition between the Runnable object's thread and the
UI thread.

Set the thread to use background priority by calling Process.setThreadPriority() with
THREAD_PRIORITY_BACKGROUND, at the beginning of the run() method.

Also, a reference to the Runnable object's Thread should be stored in the Runnable, by
calling Thread.currentThread().

The following snippet shows how to set up the run() method:

class MyRunnable implements Runnable {
...
 @Override
 public void run() {
 // Write this line to move the current Thread into the background
android.os.Process.setThreadPriority(android.os.Process.THREAD_PRIORITY_BAC
KGROUND);
 ...
 /*
 * Save the current Thread in the Task instance.
 */
 mTask.setMyThread(Thread.currentThread());
 ...
 }
...
}

Creating a Thread Pool
Multiple threads have to be created when you need to run multiple tasks simultaneously.
Android has built different classes for multi-threading. To run a task on different data, but
with only one execution running at a time, an IntentService has to be used.

Performance Matters

[172]

ThreadPoolExecutor could be used to automatically run tasks when the resources
become available, or to allow multiple tasks to run at the same time. This class runs a task
by adding it to the queue, when a thread in its pool becomes free. A thread pool can run
multiple parallel instances of a task, so you should ensure that your code is thread-safe.
Enclose variables that can be accessed by more than one thread in a synchronized block.
This approach will prevent one thread from reading the variable while another is writing to
it. Typically, this situation arises with static variables, but it also occurs in any object that is
only instantiated once.

A ThreadPoolExecutor could be started by creating an instantiation of
ThreadPoolExecutor in its own class. In this class, do the following:

Use static variables for thread pools: In your app, make use of a single instance of
your thread pool to control the whole class and its methods. Using the same
instance, execute different methods of the class. If you have different Runnable
types, you would have a thread pool for each one but each of these can be a
single instance. For example, create a global field declaration of the instance:

 public class MyManager {
 ...
 static {
 ...
 // Create a single static instance of MyManager class
 mInstance = new MyManager();
 }

Use a private constructor: You need to create a single instance of the constructor,
that is, to create a Singleton constructor. So, to satisfy this condition, make the
constructor private, which means that you don't have to enclose accesses to the
class in a synchronized block:

 public class MyManager {
 ...
 /**
 * The constructor is made private, so it is unavailable
 * to other classes, even in the same package.
 */
 private MyManager() {
 ...
 }

Performance Matters

[173]

Add tasks that have to be performed in the Runnable thread. These tasks must
be initiated by calling the methods in the thread pool class. Add a method in the
ThreadPool class that adds a task to a thread pool's queue as shown in the code
below:

 public class MyManager {
 ...
 // Used to fetch data from local database
 static public MyTask fetchData(LocalDb localDb) {
 ...
 // Adds a task to the thread pool for execution
 mInstance.
 mThreadPool.
 execute(mTask.getMyTaskRunnable());
 ...
 }

Then, create a Handler by instantiating it in the constructor. Attach the handler to
the app's UI thread as it safely calls the methods of UI objects:

 private MyManager() {
 ...
 // A new Handler object is created and
 // it is attached to the UI thread.
 mHandler = new Handler(Looper.getMainLooper()) {
 /*
 * handleMessage() method handles the operations
 * to be performed when it receives a new Message
 * to process.
 */
 @Override
 public void handleMessage(Message message) {
 ...
 }
 ...
 }
 }

The next step is to create a thread pool. You could do that by instantiating the
ThreadPoolExecutor class and defining an object of the class. The following
parameters are required to instantiate that class:

Performance Matters

[174]

Initial pool size and maximum pool size:
In order to define a pool, a definite pool size must be initially known. The
maximum pool size must also be known. If these are known. then only the pool
can be allocated with threads. The maximum number of threads that a thread
pool can have depends on the number of cores available for your device. This
number is available from the system environment at runtime, as shown:

public class MyManager {
 ... /*
 * Gets the number of available cores
 */
 private static int NUMBER_OF_AVAILABLE_CORES =
 Runtime.getRuntime().availableProcessors();
}

Keep alive time and time unit:
A thread should remain alive for a certain period of time, after which it shuts
down. This duration for which a thread will remain idle before it shuts down
needs to be mentioned using the time unit value.
A queue of tasks:
The third parameter is a queue of tasks that ThreadPoolExecutor takes. These
should be a queue of Runnable objects. A thread pool manager takes a Runnable
object from a first-in, first-out queue and attaches it to the thread. You provide
this queue object when you create the thread pool, using any queue class that
implements the BlockingQueue interface. To match the requirements of your
app, you can choose from the available queue implementations; to learn more
about them, see the class overview for ThreadPoolExecutor. This example uses
the LinkedBlockingQueue class:

public class MyManager {
 ...
private MyManager() {
 ...
 // Declare a queue of Runnables
 private final BlockingQueue<Runnable> mDecodeWorkQueue;
 ...
 // Instantiate the queue of Runnables
 // as LinkedBlockingQueue
 mThreadQueue = new LinkedBlockingQueue<Runnable>();
 ...
 }
 ...
 }

Performance Matters

[175]

Once the required parameters are initiated, instantiate a thread pool manager by
calling ThreadPoolExecutor(). Calling that would create a group of all the
threads as the initial pool size and the maximum pool size are the same:

private MyManager() {
 ...
 // Sets the keep alive time
 private static final int KEEP_ALIVE_TIME = 1;
 // Sets the Time Unit to seconds
 private static final TimeUnit KEEP_ALIVE_TIME_UNIT =
TimeUnit.SECONDS;
 // Create a thread pool manager
 mThreadPool = new ThreadPoolExecutor(
 NUMBER_OF_CORES, // Initial pool size
 NUMBER_OF_CORES, // Max pool size
 KEEP_ALIVE_TIME,
 KEEP_ALIVE_TIME_UNIT,
 mThreadQueue);
}

Running Code on a Thread Pool Thread
Once your thread pool has been created, you need to run your code on this thread pool. To
do this, you add the task to the pool's work queue. When a thread becomes available, the
ThreadPoolExecutor takes a task from the queue and runs it on the thread. The
ThreadPoolExecutor also allows you to stop the running task in case you find that the
task is not required anymore.

In order to start a task on a thread in a particular thread pool, you need to add the runnable
in the thread pool's work queue. To add it to the queue you need to pass the Runnable to
ThreadPoolExecutor.execute(). When an idle thread becomes available, the manager
takes the task that has been waiting the longest and runs it on the thread:

public class MyManager {
 public void addToQueue(MyTask mTask) {
// Adds the runnable to the queue
mThreadPool.execute(
mTask.getMyRunnable());
...
 }
 ...
}

Once the ThreadPoolExecutor begins the task defined by a Runnable on a thread, it
automatically calls the object's run() method.

Performance Matters

[176]

In order to stop a task, you need to interrupt the task's thread. For this, you need to know
which thread to stop. So, you need to save the handle to the current working thread when
the task is created, as shown in the following code:

class MyRunnable implements Runnable {
 // run method to execute the task
 public void run() {
 /*
 * Save the current Thread in the Task instance.
 */
 mTask.setMyThread(Thread.currentThread());
 ...
 }
 ...
}

Now that you know which thread has to be interrupted, call Thread.interrupt() to stop
that thread. Make sure that the thread has a lock, meaning that it should not be modified
outside your app's process. Do that by placing the access in a synchronized block as shown
in the following code:

public class MyManager {
 public static void stopAll() {
 /*
 * Creates an array of Runnables that is equal to
 * thread pool queue size
 */
 Runnable[] runnableArray = new Runnable[mThreadQueue.size()];
 // Populates the array with the Runnables
 mThreadQueue.toArray(runnableArray);
 // Saves runnable array length
 int runnableArrayLength = runnableArray.length;
 synchronized (mInstance) {
 // Loops through the array of runnable
 for (int index = 0; index < runnableArrayLength; index++) {
 // Gets the current thread
 Thread thread = runnableArray[index].mThread;
 // if the Thread exists, interrupt it
 if (thread!=null) {
 thread.interrupt();
 }
 }
 }
 }
 ...
}

Performance Matters

[177]

Thread.interrupt() stops the thread immediately in most cases, however it is better a
check if a thread has already been taken up for an interrupt, as some CPU intensive tasks
could slow the interrupt process:

/*
 * Checks if a Thread has already been interrupted
 */
if (Thread.interrupted()) {
 return;
}

Communicating with the UI Thread
A thread sometimes also needs to communicate with the UI thread, either in between the
execution of the thread or at the end of the execution of a thread. Only objects running on
the UI thread have access to other objects on that thread. Because tasks that you run on a
thread from a thread pool aren't running on your UI thread, they don't have access to UI
objects. For example, if you have the task of downloading a large file from a server, then
showing the progress of the download would be a good practice. In order to show this
progress, your thread must communicate with the UI thread to display the progress as a
percentage.

Data from a background thread could communicate with the UI thread using a Handler
running on the UI thread. Handler is part of the Android system's framework for managing
threads. A Handler object receives messages and runs code to handle the messages.

Handler could be instantiated in the constructor of the class that creates your thread pools.
Then connect this handler to the UI thread, instantiating it with the Handler(Looper)
constructor. This constructor uses a Looper object, which is another part of the Android
system's thread management framework, and makes the handler run on the same thread as
the Looper:

private MyManager() {
...
 // Defines a Handler object that's attached to the UI thread
 mHandler = new Handler(Looper.getMainLooper()) {
 /*
 * handleMessage() defines the operations to perform when
 * the Handler receives a new Message to process.
 */
 @Override
 public void handleMessage(Message message) {
 // Gets the task from the Message object.
 MyTask mTask = (MyTask) message.obj;

Performance Matters

[178]

 ...
 }
 ...
 }
}

The handleMessage() method receives a new message for a thread.

Then, the data has to be moved from a task object running on a background thread to an
object on the UI thread. Follow these steps to perform this movement of data:

Store data in the task object:1.
Store references to the data and the UI object in the task object. For example, in
the runnable , once your task gets completed successfully, save a status code, say
TASK_COMPLETE, in that runnable task:

 // A Runnable class to perform my task
 class MyRunnable implements Runnable {
 ...
 MyRunnable(MyTask task) {
 mTask = task;
 }
 ...
 // Runs the code for this task
 public void run() {
 ...
 // Perform all your tasks here.
 // Once the task is completed save the status task completion
 mTask.saveStatus(TASK_COMPLETE);
 ...
 }
 ...
 }

Performance Matters

[179]

Send status up the object hierarchy (MyTask objec):2.
Pass the task object and a status code to the object that instantiated the Handler.
For this, the runnable class could have another method, which could have access
to the next higher object in the hierarchy. The following code shows that the
status has been passed to the next higher hierarchy for it to be accessed by the UI
thread:

 public class MyTask {
 ...
 // Gets a handle to the object that creates the thread pools
 mManager = MyManager.getInstance();
 ...
 public void saveStatus(int status) {
 ...
 // Calls the generalized status method
 handleStatus(status);
 }
 ...
 // Passes the status to MyManager
 void handleStatus(int status) {
 /*
 * Passes a handle to this task and the
 * current status to the class that created
 * the thread pools
 */
 mManager.handleStatus(this, status);
 }
 ...
 }

Move data to the UI:3.
Send a Message containing the status and the task object to the Handler. The
Handler can also move the data to the UI object:

 public class MyManager {
 ...
 // Handle status messages from tasks
 public void handleStatus(MyTask task, int status) {
 Message mMessage = mHandler.obtainMessage(status, task);
 mMessage.sendToTarget();
 ...
 }
 ...
 }

Performance Matters

[180]

Finally, Handler.handleMessage() checks the status code for each incoming
message. If the status code is TASK_COMPLETE, then the task is finished, and any
task of displaying on the UI thread could be performed here:

 private MyManager() {
 ...
 mHandler = new Handler(Looper.getMainLooper()) {
 @Override
 public void handleMessage(Message message) {
 // Gets the task from the incoming Message object.
 MyTask mTask = (MyTask) message.obj;

 ...
 switch (message.what) {
 ...
 case TASK_COMPLETE:
 /*
 * Perform the task that you need
 * to perform on the UI thread here
 */
 mTask.getMyFinalTaskObject();
 break;
 ...
 default:
 /*
 * Pass along other messages from the UI
 */
 super.handleMessage(message);
 }
 ...
 }
 ...
 }
 ...
 }
...
}

Performance Matters

[181]

Memory optimization
Memory too plays an important role in the performance of an app. The memory
optimization standalone does not take part in improving the performance of the app, but it
helps in improving performance by helping the network traffic data to reduce considerably,
which affects battery consumption by the app.
The technique of memory optimization is done by reducing the amount of data sent or
received over a network connection. This reduces the duration of the connection, which
conserves battery. This can be done by using the following techniques:

Compress data, using a compression technique such as GZIP compression:
Make use of succinct data protocols. The binary serialization formats, such as
Protocol Buffers or FlatBuffers, offer a smaller packet size and faster encoding
and decoding time, whereas standard data sending techniques like JSON and
XML offer human-readability and language-flexibility, but are bandwidth-heavy
formats, with high serialization costs in the Android platform.
Cache files locally:
Caching is a very important way to reduce the network traffic. The app could
avoid downloading the same data again and again by caching the data in the
local database. Along with textual data, even the images could be cached. Always
cache static resources, including on-demand downloads such as full size images,
and cache them for as long as reasonably possible.
How would you sometimes know which data is cached and which is not? If your
app has a lot of static data, then that data has to be cached and the cached data
has to be reused. To check if the cached data is the latest data, you could make
one network call to check if the various static data in your app are updated to the
latest value using date. If some data is updated on the server, then only that data
should be fetched.
Optimize pre-fetch cache size:
Optimize the amount of network data transfer based on the type of network your
device is connected to, such as Wi-Fi, LTE, HSPAP, EDGE, GPRS. Based on these,
the amount of data that is pre-fetched could differ.

Treating Battery as part of user's experience
Battery hogging apps usually find only one acknowledgement uninstall.
When you're altering the frequency of your background updates to reduce the effect of
those updates on battery life, checking the current battery level and charging state is a good
place to start.

Performance Matters

[182]

The battery-life impact of performing application updates depends on the battery level and
charging state of the device. The impact of performing updates while the device is charging
over AC is negligible, so in most cases you can maximize your refresh rate whenever the
device is connected to a wall charger. Conversely, if the device is discharging, reducing
your update rate helps prolong the battery life.

Similarly, you can check the battery charge level, potentially reducing the frequency of or
even stopping your updates when the battery charge is nearly exhausted.

Understanding what causes battery drain
When we talk about battery drain we mostly concentrate on these areas:

Networking
Wakelocks
Sensors

This is mostly true, as calls to the server is one of the biggest contributors to draining users
battery. Wakelocks, followed by sensors, are the biggest contributors to draining the user's
battery life. GPS is one of the most commonly used sensors. Along with these, there are
other factors which can be tweaked to improve the user's battery life and lower the app's
battery usage. In the next section, we will discuss why and how we can help in saving user's
battery by making some changes in the code.

Why Battery Optimization is required?
Most of us may think that providing good UI and a better user experience in the app will be
enough for the users. Why should we be bothered about how much battery our app uses?
However, most users will think that, in spite of it being a great app, it is not worth keeping
an app which drains the battery when they use the app for a short amount of time in a day.

Most likely, they will give bad reviews and uninstall the app. With the bad review, any new
users will refrain from even installing the app. So, an app which is battery friendly is more
likely to retain users than an app that drains the user's battery.

So, despite what we think, it is one of the most important aspects of app development.
Next, we will see some methods which will help in saving a user's battery.

Performance Matters

[183]

Strategies for battery optimization
Here are some of the methods which we should keep in mind when reducing the power
consumption:

Follow different methodologies till the device is charging:
This should be the obvious point. We should perform tasks which are heavy on
the battery when the device is charging, so this will not count towards draining
battery. Unless the task has to be done right away, we can do these tasks when
more resources are available and the device is charging. This can be achieved by
checking the charging state of the device. Alternatively, in Android 5.0 Lollipop
(API 21) JobScheduler API was introduced, and this can be used to schedule
the Jobs when the conditions are satisfied. The BatteryManager can also be used
to monitor the battery status.
Performing batch tasks together:
There is power cost when we use sensors and threads. If we call these services
multiple times, it will cost more than calling them once and using the values
multiple times. For example, if we get the users coordinated from the GPS sensor
and use this value in multiple places, it will be much more cost effective than
getting the user's location multiple times. It is also better to do lots of work in one
go instead of doing the same job repeatedly. For example, if we have to update
some data on the server which can all be sent at once at a later point, we should
send the data in a bulk instead of calling the service multiple times, as calling
multiple smaller services is more battery draining than one big call.
Cache images:
We should always avoid downloading images from the server multiple times.
Instead, we should download the images once and store them in cache which we
can use later. For example, if we are displaying a gallery of images it is better to
load the images not seen by the user as users have a tendency to scroll through
the images more in such types of screen.
Batch operations to avoid waking a device repeatedly:
It is very common while developing to load only the data that is required on the
screen, but this results in calling the same services repeatedly and making our
device move from StandBy to Wake Up mode more often than required. This
transition from StandBy to Wake Up drains the device battery. A better approach
would be to load all the necessary data that may be required in most section of
the app once and store them in a local db, syncing them whenever necessary. This
will reduce unnecessary fetching from the server as the data is already present.

Performance Matters

[184]

Use Wakelocks and timers sparingly:
It is very common to use Wakelocks to run some processes at a later time, but this
causes the user's device to be woken up more frequently and spend less time
sleeping, which drains its battery. You could also forget to release the Wakelocks
after the tasks have been completed and hence drain the user's battery.
For this very reason, wherever when we are using Wakelocks we should use the
version of WakeLock.acquire() that takes a time-out and always remember to
release our WakeLocks. This does not, however, solve the problem of different
apps constantly waking up the device, which is where the JobScheduler API is
extremely useful. This API can batch jobs together for you with other apps, hence
avoiding the scenario where different apps are waking up the phone every few
minutes.
Battery drain by sensors:
The rule for most sensors is fairly straightforward: turn them off as soon as you
have the data that you need. Most sensors require you to subscribe or register for
updates; once you are done, you should unregister or unsubscribe in order to
prevent wasting battery.
If possible, we can also cache the data from the sensors and use them.
GPS is one of the most largely used sensors and one of the biggest reasons for the
draining of users' batteries. The best way to use this sensor would be to use the
user's last known location or request passive location updates if applicable and
avoid using the GPS altogether. If you have to use the GPS, determine whether a
coarse location is enough and unregister your location listener after coordinates
have been received.
If a fine location is needed, then we must set a timeout for listening for the user's
location, such as 30 seconds, after that we must unregister the listener to save
battery. If you need constant location updates, then set as large of an update
interval as is feasible.

Effective consumption of battery in Zomato
Effective and minimal battery usage has to be performed by any app. An app would be able
to do effective consumption of battery by determining the current charge status. Android
has a class for determining the current battery status of the app. The BatteryManager
broadcasts all battery and charging details in a sticky Intent that includes the charging
status.

Performance Matters

[185]

Using this battery manager, Zomato receives the charging status without registering a
BroadcastReceiver by calling registerReceiver and passing in null as the receiver, as
shown in the following code:

IntentFilter filter = new IntentFilter(Intent.ACTION_BATTERY_CHANGED);
Intent batteryStatus = context.registerReceiver(null, filter);

You'll be getting the batteryStatus intent, from which you can extract both the current
charging status and if the device is being charged. It also determines whether it's charging
via USB or AC charger:

// Are we charging / charged?
int status = batteryStatus.getIntExtra(BatteryManager.EXTRA_STATUS, -1);
boolean isCharging = status == BatteryManager.BATTERY_STATUS_CHARGING ||
 status == BatteryManager.BATTERY_STATUS_FULL;

// How are we charging?
int chargePlug = batteryStatus.getIntExtra(BatteryManager.EXTRA_PLUGGED,
-1);
boolean usbCharge = chargePlug == BatteryManager.BATTERY_PLUGGED_USB;
boolean acCharge = chargePlug == BatteryManager.BATTERY_PLUGGED_AC;

Zomato makes use of these statuses and accordingly makes changes in code to handle the
rate at which the network flows in and out of the app. If the device is connected to an AC
charger and you are using the app, then it maximizes the rate of your background updates,
but if the device is charging over USB, it reduces the rate of network flow and minimizes it
further if the battery is discharging.

Monitoring changes in charging state
It is very important for your app to monitor the changes in the charging state. If the device
is currently discharging, and then later kept for charging, it means that there is a change in
state and your app must know about this change as soon as it happens, so as to make
changes to the refresh rates of the background tasks in your app.

Performance Matters

[186]

The BatteryManager broadcasts an action whenever the device is connected or
disconnected from power. Using this, the, app gets the callbacks for the battery state when
opened. However, it is also required that it receives the callbacks even when the app is
closed and not running for handling background tasks. To receive those updates, register a
BroadcastReceiver in your manifest to listen for both events by defining the
ACTION_POWER_CONNECTED and ACTION_POWER_DISCONNECTED within an intent filter:

<receiver android:name=".BatteryStateReceiver">
 <intent-filter>
 <action android:name="android.intent.action.ACTION_POWER_CONNECTED"/>
 <action
android:name="android.intent.action.ACTION_POWER_DISCONNECTED"/>
 </intent-filter>
</receiver>

Then, write the implementation for receiving the updates in the receiver class. The further
process of getting the battery state is the same as mentioned above.

public class BatteryStateReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 int status = intent.getIntExtra(BatteryManager.EXTRA_STATUS, -1);
 boolean isCharging = status ==
BatteryManager.BATTERY_STATUS_CHARGING ||
 status == BatteryManager.BATTERY_STATUS_FULL;

 int chargePlug = intent.getIntExtra(BatteryManager.EXTRA_PLUGGED,
-1);
 boolean usbCharge = chargePlug ==
BatteryManager.BATTERY_PLUGGED_USB;
 boolean acCharge = chargePlug == BatteryManager.BATTERY_PLUGGED_AC;
 }
}

Determining the current battery level
A higher level of battery optimization could also be carried out by determining the
percentage of battery remaining on the device and accordingly reducing or increasing the
number of network tasks in the app.

Performance Matters

[187]

The current battery charge percentage could be found by extracting the current battery level
and scale from the battery status intent:

int level = batteryStatus.getIntExtra(BatteryManager.EXTRA_LEVEL, -1);
int scale = batteryStatus.getIntExtra(BatteryManager.EXTRA_SCALE, -1);

float batteryPercentage = level / (float)scale;

Using the battery percentage level, Zomato disables all the background updates when the
battery is critically low. It also reduces the brightness of the device according to the time of
day when the battery is very low. This helps a user use the app and device for more time
rather than consuming battery for tasks that won't matter much at the current point if the
phone switches off.

Although there are a lot of advantages to battery saving techniques to saving the battery,
the same techniques could lead to excessive use of battery if not handled well. Hence, it is
necessary to make use of battery monitoring techniques only for significant changes in
battery level and it should be handled for only few states of battery level, preferably at low
battery levels.

Low battery level states could be handled by using BatteryLevelReceiver which is
triggered whenever device battery becomes low or exits the low condition by listening for
ACTION_BATTERY_LOW and ACTION_BATTERY_OKAY:

<receiver android:name=".BatteryLevelReceiver">
 <intent-filter>
 <action android:name="android.intent.action.BATTERY_LOW"/>
 <action android:name="android.intent.action.BATTERY_OKAY"/>
 </intent-filter>
</receiver>

Improving app with battery analyser
An app should focus on preventing battery drain from occurring to improve the
performance of the app and the device. In order to reduce the battery usage of an app, the
battery usage of the app should be determined. For this purpose, a battery analyzer has to
be used to determine how your app uses battery and how performance could be improved.

Performance Matters

[188]

Battery Stats collects battery data from your device. It creates a dump of all the battery data
of a particular selected device using Android Debug Bridge (ADB) commands. Using these
battery stats, the battery usage could be found out using a battery historian which would
create a HTML file for viewing the battery stats results in a browser for user viewing.

A graphical representation battery historian of the live Zomato app is shown in the figure
below:

A detailed explanation of the above battery usage elements has been explained in an earlier
section of this book.

Performance Matters

[189]

Summary
In the first section of this chapter, we discussed how performance, impacts the app quality,
followed by in ways by which we can target different elements of app performance such as
UI, and resources such as the battery. We also discussed the tools that we can use to
improve the app performance.

In Chapter 10, Building Zomato, we will discuss testing the entire app flow and improving
the tests of the app. We will also learn the best practices for testing and supported tools.

10
Building Restaurant finder

This chapter will focus on development segment of the app based on the architecture we
discussed in the last segment. Since the UI/UX, architecture is planned in the previous
chapters, this chapter will take a deep dive into the core development of the app. Here, you
will go through the different screens in the app and will be able to understand how to write
the code logic behind implementing the screens in the app.

App sections
Development of each screen of Zomato involves writing of code in two major languages:
Java and XML. The code written in XML will mostly involve the UI designs for building the
layouts for each screen. It will also be used for writing code that involves styling and
theming of the different layouts used in the app, and also other miscellaneous purposes.

In the sections that follow, we will first understand the code to design the layout of the
screen and then implement the code logic for the screen. We will walk through each screen
starting from the Splash screen and the Login Screen.

Building Restaurant finder

[191]

Splash, Login, and Signup (including Google and
Facebook)
The Splash screen is the first screen of most of the apps. This screen usually has the app
logo displayed for a few seconds and then navigates to the next screen. The splash screen
can be also used to fetch static data from server at first launch.

Now, we will take a look at the XML layout for designing the splash screen:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/main"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:background="@color/theme_color"
android:gravity="center"
android:orientation="vertical">
<ImageView
android:id="@+id/bgImage"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerInParent="true"
android:scaleType="fitCenter"
android:src="@drawable/logo_splash" />
</RelativeLayout>

The preceding code snippet should be placed in an XML file named
activity_splash.xml. This file has to be present in the
Zomato\app\src\main\res\layout folder of your project. All the other layout files
should also be present in this same layout folder for a project.

There is ImageView that displays the app logo on the splash screen. The ImageView is
placed within RelativeLayout. To display the logo image, it has to be present within the
Zomato\app\src\main\res\drawable folder.

Building Restaurant finder

[192]

In Android Studio, the XML layout editor will form the layout and will be displayed as
shown:

Splash screen layout in Android Studio XML editor

Now, we will look at the Java code to implement the code written in the Splash Screen
Activity:

/**
* Splash Activity
* Starting activity at the beginning of the app
*/
public class SplashActivity extends AppCompatActivity {
private static final String TAG = SplashActivity.class.getSimpleName();
private static final long SPLASH_TIMEOUT = 2300;
private Context context = SplashActivity.this;
private Handler CloseHandler;
//TODO Fonts
private RelativeLayout activity_splash;
private ImageView bgImage;
private Handler handler;
private long startTime = new Date().getTime();
private Runnable CloseRun = new Runnable() {
@Override

Building Restaurant finder

[193]

public void run() {
if (SessionPreference.isLoggedIn(context)) {
startActivity(HomeActivity.getCallIntent(context));
finish();
return;
} else {
startActivity(StartActivity.getCallIntent(context));
finish();
return;
}
}
};
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_splash);
bgImage = (ImageView) findViewById(R.id.bgImage);
activity_splash = (RelativeLayout) findViewById(R.id.main);
startTime = new Date().getTime();
CloseHandler = new Handler();
tartRunnable();
handler = new Handler();
}
private void StartRunnable() {
CloseHandler.postDelayed(CloseRun, SPLASH_TIMEOUT);
}
@Override
public void onBackPressed() {
try {
CloseHandler.removeCallbacks(CloseRun);
} catch (Exception e) {
e.printStackTrace();
}
super.onBackPressed();
}
@Override
protected void onDestroy() {
super.onDestroy();
try {
Unbinding.unbindDrawables(findViewById(R.id.main));
} catch (Exception e) {
e.printStackTrace();
}
}
}

Building Restaurant finder

[194]

When the app launches, it will start the Splash Activity and execute the code in the
onCreate() method. Here, a handler is used to start the next activity after a few seconds. It
is shown in the following code snippet:

private Runnable CloseRun = new Runnable() {
@Override
public void run() {
if (SessionPreference.isLoggedIn(context)) {
startActivity(HomeActivity.getCallIntent(context));
inish();
return;
} else {
startActivity(StartActivity.getCallIntent(context));
finish();
return;
}
}
};

Once the timer executes, it will go to the Login Activity, and if user is already logged in,
it will go to the main dashboard.

In order for the Splash Screen to be the first activity to be launched in the app, you need to
define it in the AndroidManifest.xml file where all the screens are defined:

<activity
android:name=".activity.SplashActivity"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

The preceding code shows that the Splash activity has been defined in the Android manifest
file, and the following code snippet ensures that it is the first activity to be launched when
the app is launched:

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

Building Restaurant finder

[195]

The final output screen on the mobile of the splash screen will look like this:

Splash screen layout in Android Studio XML editor

The Signup Flow
From the Splash screen, the user goes to the Login/Signup screen. This screen provides the
user with option to Log in/Sign up using their email and password. It also provides users
with the option to log in/sign up using their Facebook and/or Google accounts. This screen
also has other prominent sections, which we will know about eventually. First, we will look
at the layout code of this screen. The layout will be on a similar basis as the splash screen
layout, with some additional components:

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:android_ex="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent"
ndroid:background="@color/app_bg_color">
<!--Main Screen-->
<RelativeLayout
android:layout_width="match_parent"

Building Restaurant finder

[196]

android:layout_height="match_parent">
<ImageView
android:id="@id/image"
android:layout_width="match_parent"
android:layout_height="150dp"
android:scaleType="centerCrop"
android:src="@drawable/im_backdrop" />
<LinearLayout
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_below="@id/image"
android:orientation="vertical">
<LinearLayoutandroid:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="1"
android:background="@color/white"
android:gravity="center"
android:orientation="vertical"
android:paddingTop="@dimen/dimen_login_logo_margin_view">
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center">
<ImageView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="10dp"
android:src="@drawable/ic_login_1" />
<TextView
style="@style/login_start_info_style"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/txt_login_1"
android_ex:isHtml="true" />
</LinearLayout>
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center">
<ImageView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="10dp"
android:src="@drawable/ic_login_2" />
<TextView
style="@style/login_start_info_style"
android:layout_width="wrap_content"
android:layout_height="wrap_content"

Building Restaurant finder

[197]

android:text="@string/txt_login_2" />
</LinearLayout>
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center">
<ImageView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="10dp"
android:src="@drawable/ic_login_3" />
<TextView
style="@style/login_start_info_style"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/txt_login_3" />
</LinearLayout>
</LinearLayout>
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical">
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:padding="5dp">
<TextView
android:id="@+id/mainSignUp"
style="@style/login_button_style"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:onClick="signUpClick"
android:text="Sign Up" />
<TextView
android:id="@+id/mainLogin"
style="@style/login_button_style"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_margin="5dp"
android:layout_weight="1"
android:onClick="logInClick"
android:text="Log in" />
/LinearLayout>
<LinearLayout
android:id="@+id/facebookLogin"
style="@style/facebook_button_style"
android:layout_width="match_parent"

Building Restaurant finder

[198]

android:layout_height="wrap_content"
android:onClick="facebookClick">
<ImageView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/com_facebook_button_icon" />
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="5dp"
android:text="Continue with Facebook"
android:textColor="@color/white" />
</LinearLayout>
<LinearLayout
android:id="@+id/sign_in_google"
style="@style/google_button_style"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:visibility="visible"
android:onClick="googleClick">
<ImageView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/im_google_icon"/>
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="5dp"
android:text="Continue with Google"
android:textColor="@color/black" />
</LinearLayout>
<!-- <com.google.android.gms.common.SignInButton
style="@style/button_style"
android:id="@+id/sign_in_google"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:visibility="visible"/>-->
<TextView
style="@style/login_footer_style"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/txt_login_start_footer" />
</LinearLayout>
</LinearLayout>
<ImageView
android:id="@+id/logo"
android:layout_width="@dimen/dimen_login_logo"
android:layout_height="@dimen/dimen_login_logo"

Building Restaurant finder

[199]

android:layout_below="@id/image"
android:layout_centerHorizontal="true"
android:layout_marginTop="@dimen/dimen_login_logo_margin"android:src="@mipm
ap/logo" />
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentRight="true"
android:layout_margin="10dp"
android:background="@drawable/tra_white_border"
android:clickable="true"
android:onClick="skipClick"
android:paddingLeft="5dp"
android:paddingRight="5dp"
android:text="SKIP" />
</RelativeLayout>
</RelativeLayout>

The preceding layout will give you an output shown in this figure:

Login/Signup Flow screen layout in Android Studio XML editor

Building Restaurant finder

[200]

We will explain the preceding layout code by splitting it into three sections. The top section
is an ImageView where an image is set from the drawable folder. Here, the ImageView is
rectangular in shape; hence, the image should also be a rectangular image. The sectional
image is shown as follows:

Login/Signup Flow screen's top section with image

Here, an important part to note is that this image should be displayed properly on all the
different size devices, and there are two ways to do this. One way is to fit the image exactly
within the ImageView bounds, which can be done by fitting the image's width and height
to the bound of ImageView using this code:

android:scaleType="fitXY"

In this case, the image might stretch on some devices with different device dimensions. In
order to avoid this stretch, the second option is to crop the image and fit it in the bounds of
the ImageView rectangle. There are different ways of cropping this image, but using the
centerCrop method for cropping is the best way to crop, because the image fits at least one
of the bounds of the ImageView and crops the other bound. For example, the image gets fit
width-wise and crops height-wise and fits in the center or it fits height-wise and crops
width-wise, and this is handled internally. To do this, the scaleType for the image should
be changed to centerCrop:

android:scaleType="centerCrop"

Building Restaurant finder

[201]

The next section in the layout is where there are three textual points with an image icon
beside each text:

Login/Signup Flow screen's middle section with image and text

This can be done by placing an ImageView and TextView in a LinearLayout with a
horizontal orientation, as seen in this code snippet:

<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center">
<ImageView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="10dp"
android:src="@drawable/im_browse_nearby" />
<TextView
style="@style/login_start_info_style"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/txt_login_2" />
</LinearLayout>
The TextView has been styled so that one common style can be used for all
the three TextViews. The style includes the TextView's size and color:
<style name="login_start_info_style"><item
name="android:textSize">12dp</item>
<item name="android:textColor">@color/txt_home_title_color</item>
</style>

Building Restaurant finder

[202]

The image icons are three different icons placed in the drawable folder. The texts are
placed in the strings.xml file. All the strings have to be placed in the strings.xml file. The
texts here have some of the words in bold. In order to make these bold, you may use HTML
tags to make these words bold using the tag in the string text:

<string name="txt_login_1"><View menus, photos and
reviews for restaurants around you</string>

Then, you need to display this text in the HTML format. In order to do that, you may set the
text from the Java code in the following manner:

login_1_textView.setText(Html.fromHtml(getString(R.string.txt_login_1),
Html.FROM_HTML_MODE_LEGACY));

Here, while displaying the text fetched from the strings.xml using the getString
method, it is specified that it is from Html using Html.fromHtml.

The next section has the Sign up, Log in, Continue with facebook, and the Continue with
Google buttons. The Signup and Login buttons will take you to the Sign up and the Login
screens respectively:

Login/Signup Flow screen's bottom section with login, signup, Facebook, and Google buttons

We will first see what happens when clicked on the Continue with facebook button. We
will check out how your app is connected to the Facebook API. As Facebook keeps
upgrading the way your app connects to it, you need to go the developer's site for Facebook
to check out the latest steps to integrate Facebook Login into your app. Check out https:/ /
developers.facebook. com/ docs/ android to get a step-by-step process for the same.

https://developers.facebook.com/docs/android
https://developers.facebook.com/docs/android
https://developers.facebook.com/docs/android
https://developers.facebook.com/docs/android
https://developers.facebook.com/docs/android
https://developers.facebook.com/docs/android
https://developers.facebook.com/docs/android
https://developers.facebook.com/docs/android
https://developers.facebook.com/docs/android
https://developers.facebook.com/docs/android
https://developers.facebook.com/docs/android
https://developers.facebook.com/docs/android

Building Restaurant finder

[203]

By clicking on "Continue with facebook", the Facebook APIs are called to connect the user to
their Facebook account. Once connected to Facebook, it responds with an access token on
successful login. The connection code is given here:

callbackManager = CallbackManager.Factory.create();
LoginManager.getInstance().registerCallback(callbackManager,
new FacebookCallback<LoginResult>() {
@Override
public void onSuccess(LoginResult loginResult) {
// App code
Log.d(TAG, "Get Facebook User Details");
handleFacebookAccessToken(loginResult.getAccessToken());
}
@Override
public void onCancel() {
Log.e(TAG, "Handle Facebook onCancel");
}
@Override
public void onError(FacebookException exception) {
Log.e(TAG, "Handle Facebook onError ");
exception.printStackTrace();
}
});

Using the AccessToken, fetch user's data like firstname, lastname, email and photo.

******* Code

Later, this data is sent to the Zomato server's database to log in or sign up a user.

On a similar basis, by clicking on Continue with Google, the Google APIs are called to
connect a user to their Google account. To set up connecting with Google in your app, you
require to follow the steps provided at
https://developers.google.com/identity/sign-in/android/start-integratin

g.

Once successfully connected to your Google account, it will provide you with the user's
data, such as first name, last name, email, and photo. Later, this data is sent to the Zomato
server's database to log in or sign up a user.

Building Restaurant finder

[204]

Clicking on the Login button will take you to to Login Screen for the user to log in to the
app using their email and password. We will check how the Login functionality works in
detail, but first, let's look at the layout of the login screen:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:background="@color/app_bg_color">
<!--Login up-->
<LinearLayout
android:id="@+id/logInLay"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:background="@color/app_bg_color"
android:orientation="vertical">
<!--ToolBar-->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical">
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:background="@color/colorPrimary"
android:gravity="center_vertical"
android:minHeight="?attr/actionBarSize"
android:orientation="horizontal">
<com.androcid.zomato.view.custom.TintableImageView
android:id="@+id/loginClose"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:background="@drawable/ripple_white_foreground"
android:clickable="true"
android:onClick="closeClick"
android:padding="10dp"
android:src="@drawable/im_close"
app:tint="@color/close_icon_color" />
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_centerInParent="true"
android:orientation="vertical"
android:paddingLeft="8dp"
android:paddingRight="8dp">
<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"

Building Restaurant finder

[205]

android:gravity="center"
android:text="Log in"
android:textColor="@color/white"
android:textSize="18sp"
android:textStyle="normal" />
</LinearLayout>
</RelativeLayout>
<View
android:layout_width="match_parent"
android:layout_height="4dp"
android:background="@drawable/shadow_toolbar" />
</LinearLayout>
<ScrollView
android:layout_width="match_parent"
android:layout_height="match_parent"
android:fillViewport="true">
<LinearLayout
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">
<LinearLayout
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="1"
android:orientation="vertical">
<LinearLayout
style="@style/facebook_button_padded_style"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:onClick="facebookClick">
<ImageView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/com_facebook_button_icon" />
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="5dp"
android:text="Continue with Facebook"
android:textColor="@color/white" />
</LinearLayout>
<LinearLayout
style="@style/google_button_style"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:onClick="googleClick">
<ImageView
android:layout_width="wrap_content"

Building Restaurant finder

[206]

android:layout_height="wrap_content"
android:src="@drawable/im_google_icon" />
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="5dp"
android:text="Continue with Google"
android:textColor="@color/black" />
</LinearLayout>
<TextView
style="@style/login_or_txt_style"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/txt_login_with_zomato" />
<RelativeLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:padding="10dp">
<TextView
android:id="@+id/logEmailHint"
style="@style/login_hint_txt_style"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Email" />
<EditText
android:id="@+id/logEmail"
style="@style/login_edittext_style"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_below="@id/logEmailHint"
android:layout_toLeftOf="@+id/logEmailCancel"
android:hint="Email or Username"
android:inputType="textEmailAddress" />
<ImageView
android:id="@+id/logEmailLine"
android:layout_width="match_parent"
android:layout_height="1dp"
android:layout_below="@id/logEmail"
android:src="@color/gray_7" />
<ImageView
android:id="@+id/logEmailCancel"
style="@style/login_cancel_button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignBottom="@id/logEmail"
android:onClick="cancelClick" />
</RelativeLayout>
<RelativeLayout

Building Restaurant finder

[207]

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:padding="10dp">
<TextView
android:id="@+id/logPasswordHint"
style="@style/login_hint_txt_style"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Password" />
<EditText
android:id="@+id/logPassword"
style="@style/login_edittext_style"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_below="@id/logPasswordHint"
android:layout_toLeftOf="@+id/logPasswordCancel"
android:hint="Password"
android:inputType="textPassword" />
<ImageView
android:id="@+id/logPasswordLine"
android:layout_width="match_parent"
android:layout_height="1dp"
android:layout_below="@id/logPassword"
android:src="@color/gray_7" />
<ImageView
android:id="@+id/logPasswordCancel"
style="@style/login_cancel_button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignBottom="@id/logPassword"
android:onClick="cancelClick" />
</RelativeLayout>
<TextView
android:id="@+id/logLogin"
style="@style/sign_in_button_style"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:onClick="logInClick"
android:text="Log in" />
<TextView
style="@style/login_forgot_txt_style"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:onClick="forgotPasswordClick"
android:text="@string/txt_forgot_password" />
</LinearLayout>
<TextView
style="@style/login_footer_style"

Building Restaurant finder

[208]

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/txt_login_footer" />
</LinearLayout>
</ScrollView>
</LinearLayout>
</RelativeLayout>

The Login screen has two EditText: one for taking the user's email and the other for
taking input of the user's password. Both are used to take textual input from the user; let's
consider the email EditText used in the preceding code:

<EditText
android:id="@+id/logEmail"
style="@style/login_edittext_style"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_below="@id/logEmailHint"
android:layout_toLeftOf="@+id/logEmailCancel"
android:hint="Email or Username"
android:inputType="textEmailAddress" />

inputType defines what kind of input has to be taken from a user. For an email EditText,
the inputType to be mentioned is textEmailAddress. This allows the different Android
devices to understand that the user will enter an email address, and so help the user by
changing the keyboard key positions. For instance, getting the @ key as a new button on
keyboard, allowing the user to easily type the email address.

Similarly, to take password input from the user, the inputType has to be changed to
textPassword, as shown in this snippet:

android:inputType="textPassword"

Setting this input type will make the edittext take hidden dotted password text.

Next we will see the how to set the Login button and make it clickable. We will see the code
snippet of the Login button:

<TextView
android:id="@+id/logLogin"
style="@style/sign_in_button_style"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:onClick="logInClick"
android:text="Log in" />

Building Restaurant finder

[209]

In this case, we have used Textview as a button for better styling. The button style can be
given to get the desired button UI. To make the button clickable, use the onClick method.
The onClick method has to be provided with a text value that will be the name of the
function. In this case, we have given the name as logInClick. Then, we need to create a
method with this name in the Login Activity:

public void logInClick(View view) {
if (validateData()) {
String email = logEmail.getText().toString();
String password = logPassword.getText().toString();
loginClick(email, password);
}
}

In this method, you need to write what needs to happen when the login button is clicked
on.

The first thing that needs to be done when the login button is clicked on is that it should
check for validations of email and password. Validations for login will include checking
whether the user has entered some email address and password:

private boolean validateData() {
if(TextUtils.isEmpty(logEmail.getText().toString())) {
logEmail.setError(getString(R.string.error_field_required));
return false;
}
if(TextUtils.isEmpty(logPassword.getText().toString())) {
logPassword.setError(getString(R.string.error_field_required));
return false;
}
return true;
}

Here, the TextUtils.isEmpty method checks for the length of the email string and
whether the length is greater than zero, then user has entered some text, else it returns false,
saying that the value of the string is empty. If the user has entered the email and password,
the email and password should be taken and an API call has to be made to the server for log
in the user. If the user has not entered an email and/or password, then they have to be
shown some error to enter it.

Making an API call to the server will be done by calling a URL and passing the parameters
required. This will be done using the REST client Retrofit. We will discuss Retrofit in detail
in the next section.

Building Restaurant finder

[210]

The Login screen will look on a mobile device, as shown:

Login Screen

The Signup Screen is opened after clicking on the Sign up button, which is similar to
clicking on the Login button. The signup layout will almost be the same as the Login layout,
with an addition of EditText to take the user's name. Let's see the layout of Signup screen:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:background="@color/app_bg_color">
<!--Sign up-->
<LinearLayout
android:id="@+id/signUpLay"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:background="@color/app_bg_color"
android:orientation="vertical">
<!--ToolBar-->

Building Restaurant finder

[211]

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical">
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:background="@color/colorPrimary"
android:gravity="center_vertical"
android:minHeight="?attr/actionBarSize"
android:orientation="horizontal">
<com.androcid.zomato.view.custom.TintableImageView
android:id="@+id/signupClose"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:background="@drawable/ripple_white_foreground"
android:clickable="true"
android:onClick="closeClick"
android:padding="10dp"
android:src="@drawable/im_close"
app:tint="@color/close_icon_color" />
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_centerInParent="true"
android:orientation="vertical"
android:paddingLeft="8dp"
android:paddingRight="8dp">
<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center"
android:text="Sign up"
android:textColor="@color/white"
android:textSize="18sp"
android:textStyle="normal" />
</LinearLayout>
</RelativeLayout>
<View
android:layout_width="match_parent"
android:layout_height="4dp"
android:background="@drawable/shadow_toolbar" />
</LinearLayout>
<ScrollView
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="1"

Building Restaurant finder

[212]

android:fillViewport="true">
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical">
<LinearLayout
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="1"
android:orientation="vertical">
<LinearLayout
style="@style/facebook_button_padded_style"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:onClick="facebookClick">
<ImageView
android:layout_width="wrap_content"
android:layout_height="wrap_content"android:src="@drawable/com_facebook_but
ton_icon" />
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="5dp"
android:text="Continue with Facebook"
android:textColor="@color/white" />
</LinearLayout>
<LinearLayout
style="@style/google_button_style"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:onClick="googleClick">
<ImageView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/im_google_icon" />
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="5dp"
android:text="Continue with Google"
android:textColor="@color/black" />
</LinearLayout>
<TextView
style="@style/login_or_txt_style"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="OR SIGN UP USING EMAIL" />
<RelativeLayout

Building Restaurant finder

[213]

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:padding="10dp">
<TextView
android:id="@+id/regNameHint"
style="@style/login_hint_txt_style"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Name" />
<EditText
android:id="@+id/regName"
style="@style/login_edittext_style"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_below="@id/regNameHint"
android:layout_toLeftOf="@+id/regNameCancel"
android:hint="Name"
android:inputType="textPersonName" />
<ImageView
android:id="@+id/regNameLine"
android:layout_width="match_parent"
android:layout_height="1dp"
android:layout_below="@id/regName"
android:src="@color/gray_7" />
<ImageView
android:id="@+id/regNameCancel"
style="@style/login_cancel_button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignBottom="@id/regName"
android:onClick="cancelClick" />
</RelativeLayout>
<RelativeLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:padding="10dp">
<TextView
android:id="@+id/regEmailHint"
style="@style/login_hint_txt_style"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Email" />
<EditText
android:id="@+id/regEmail"
style="@style/login_edittext_style"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_below="@id/regEmailHint"

Building Restaurant finder

[214]

android:layout_toLeftOf="@+id/regEmailCancel"
android:hint="Email"
android:inputType="textEmailAddress" />
<ImageView
android:id="@+id/regEmailLine"
android:layout_width="match_parent"
android:layout_height="1dp"
android:layout_below="@id/regEmail"
android:src="@color/gray_7" />
<ImageView
android:id="@+id/regEmailCancel"
style="@style/login_cancel_button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignBottom="@id/regEmail"
android:onClick="cancelClick" />
</RelativeLayout>
<RelativeLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:padding="10dp">
<TextView
android:id="@+id/regPasswordHint"
style="@style/login_hint_txt_style"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Password" />
<EditText
android:id="@+id/regPassword"
style="@style/login_edittext_style"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_below="@id/regPasswordHint"
android:layout_toLeftOf="@+id/regPasswordCancel"
android:hint="Password"
android:inputType="textPassword" />
<ImageView
android:id="@+id/regPasswordLine"
android:layout_width="match_parent"
android:layout_height="1dp"
android:layout_below="@id/regPassword"
android:src="@color/gray_7" />
<ImageView
android:id="@+id/regPasswordCancel"
style="@style/login_cancel_button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignBottom="@id/regPassword"

Building Restaurant finder

[215]

android:onClick="cancelClick" />
</RelativeLayout>
<TextView
android:id="@+id/regSignUp"
style="@style/sign_in_button_style"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:onClick="signUpClick"
android:text="Sign Up" />
<TextView
android:id="@+id/regLogin"
style="@style/login_forgot_txt_style"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:onClick="logInClick"
android:text="@string/txt_already_member" />
</LinearLayout>
<TextView
style="@style/login_footer_style"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/txt_register_footer" />
</LinearLayout>
</ScrollView>
</LinearLayout>
</RelativeLayout>

The additional EditText for taking user's name has a different inputType:

<EditText
android:id="@+id/regName"
style="@style/login_edittext_style"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_below="@id/regNameHint"
android:layout_toLeftOf="@+id/regNameCancel"
android:hint="Name"
android:inputType="textPersonName" />

The signup process will go through the same process as the Login flow, but there will be
more number of validations done before going on to sign up:

private boolean validateData() {
if (TextUtils.isEmpty(regName.getText().toString())) {
regName.setError(getString(R.string.error_field_required));
return false;
}
if (TextUtils.isEmpty(regEmail.getText().toString()) ||

Building Restaurant finder

[216]

!Validate.isValidEmail(regEmail.getText().toString())) {
regEmail.setError(getString(R.string.error_field_required));
return false;
}
if (TextUtils.isEmpty(regPassword.getText().toString()) ||
!Validate.isAtleastValidLength(regPassword.getText().toString(), 5)) {
regPassword.setError(getString(R.string.error_field_required));
return false;
}
return true;
}

Here, the name validation will be a direct check for an empty string. The email validation
will involve an additional validation along with an empty check. It requires checking
whether the email entered is a valid email format and not just any random text. For that,
you need to pattern match the entered email with a reference pattern:

public static boolean isValidEmail(String target) {
if (target.equals("")) {
return false;
} else {
if(android.util.Patterns.EMAIL_ADDRESS.matcher(target).matches())
{
String topLevelDomain = target.substring(target.lastIndexOf(".") + 1);
if(android.util.Patterns.TOP_LEVEL_DOMAIN.matcher(topLevelDomain).matches()
)
{
return true;
}
}
return false;
}
}

The Patterns class in Android has a predefined email validator to check whether the email
matches a standard email pattern. It also validates if the domain entered is a valid domain.

Once the validation process is complete and all the checks are successful, it goes to do the
server API call to sign up the user using Retrofit.

Building Restaurant finder

[217]

The Signup screen will look on a mobile device, as shown:

Sign up Screen

Discovery Screen
The next screen we will learn is the main dashboard screen or the Discovery Screen. The
Discovery screen shows different sections that have the restaurants you may like to visit or
restaurants you may like to go out for meal, and many more. Each of these sections scroll
horizontally and the fullscreen scrolls vertically. At the top, it also has the toolbar that
allows you to select a different location, and also a search button asks you to search through
the different places. We will look to implement each of these one by one.

Building Restaurant finder

[218]

First, we will look at the sections consisting of the restaurants. The main layout where all
these have to be placed is inside a NestedScrollView. A NestedScrollView, in simple
terms, is a view that is used to display scrollable content. All the scrolling sections will be
placed inside a NestedScrollView:

<android.support.v4.widget.NestedScrollView
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="1">
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical">
<!--Browse Nearby-->
<android.support.v7.widget.CardView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="@dimen/default_layout_margin">
<LinearLayout
android:id="@+id/browseNearby"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:background="@drawable/place_more_foreground"
android:clickable="true"
android:gravity="center_vertical"
android:padding="6dp">
<ImageView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/ic_browse_nearby" />
<TextView
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:paddingLeft="10dp"
android:paddingRight="10dp"
android:text="Browse Nearby Places"
android:textColor="@color/txt_home_title_color"
android:textSize="16sp" />
<ImageView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/im_next_right" />
</LinearLayout>
</android.support.v7.widget.CardView>
<!--You might Like-->
<LinearLayout

Building Restaurant finder

[219]

android:id="@+id/mightLike"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical">
<TextView
style="@style/HomeSubTitleTxtStyle"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/txt_might_like" />
<RelativeLayout
android:layout_width="match_parent"
android:layout_height="210dp"
android:gravity="center_vertical">
<android.support.v7.widget.RecyclerView
android:id="@+id/mightLikeList"
android:layout_width="match_parent"
android:layout_height="match_parent" />
</RelativeLayout>
</LinearLayout>
<!--Remaining Items-->
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical">
<TextView
style="@style/HomeSubTitleTxtStyle"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/txt_might_like" />
<android.support.v7.widget.RecyclerView
android:id="@+id/allItems"
android:layout_width="match_parent"
android:layout_height="wrap_content" />
</LinearLayout>
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical">
<include layout="@layout/layout_zomato_footer"/>
</LinearLayout>
</LinearLayout>
</android.support.v4.widget.NestedScrollView>

The static contents are placed in the different layouts. There are a total of four static sections
in the NestedScrollView.

Building Restaurant finder

[220]

The first section displays the Browse to Discover button. On clicking, it will take you to the
browse places screen. This layout is formed using a CardView:

<android.support.v7.widget.CardView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="@dimen/default_layout_margin">
<LinearLayout
android:id="@+id/browseNearby"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:background="@drawable/place_more_foreground"
android:clickable="true"
android:gravity="center_vertical"
android:padding="6dp">
<ImageView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/ic_browse_nearby" />
<TextView
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:paddingLeft="10dp"
android:paddingRight="10dp"
android:text="Browse Nearby Places"
android:textColor="@color/txt_home_title_color"
android:textSize="16sp" />
<ImageView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/im_next_right" />
</LinearLayout>
</android.support.v7.widget.CardView>

A CardView is a widget provided in the Android libraries, which is used to display a view
like a card. It has many properties such as elevation and shadow. Within the CardView,
another layout is placed to design the Browse Nearby places. Designing this layout has
already been understood in the previous topics.

Building Restaurant finder

[221]

The next section shows the code for the horizontal scrolling sections is as follows:

<LinearLayout
android:id="@+id/mightLike"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical">
<TextView
style="@style/HomeSubTitleTxtStyle"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/txt_might_like" />
<RelativeLayout
android:layout_width="match_parent"
android:layout_height="210dp"
android:gravity="center_vertical">
<android.support.v7.widget.RecyclerView
android:id="@+id/mightLikeList"
android:layout_width="match_parent"
android:layout_height="match_parent" />
</RelativeLayout>
</LinearLayout>

This section has horizontal scrolling layout, which is displayed using a RecyclerView. The
code for RecyclerView is this:

<android.support.v7.widget.RecyclerView
android:id="@+id/mightLikeList"
android:layout_width="match_parent"
android:layout_height="match_parent" />

RecyclerView is used to display list of items. The RecyclerView items can be placed in
the different positions supported. The orientation has to be provided from an
LayoutManager. In this case, we have used a LinearLayoutManager to set the orientation
of the list to be horizontal. It has to be set in the Java code by setting the layout manager to
the RecyclerView:

LinearLayoutManager llm
= new LinearLayoutManager(context, LinearLayoutManager.HORIZONTAL, false);
allList.setLayoutManager(llm);

After that, the next section has a RecyclerView, which has the remaining sections placed
within it:

<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"

Building Restaurant finder

[222]

android:orientation="vertical">
<TextView
style="@style/HomeSubTitleTxtStyle"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/txt_might_like" />
<android.support.v7.widget.RecyclerView
android:id="@+id/allItems"
android:layout_width="match_parent"
android:layout_height="wrap_content" />
</LinearLayout>
The RecyclerView can be added in your Java code, as shown:
First, declare your List, custom adapter, and RecyclerView:
List<PlaceDisplayItem> allList;
PlaceVerticalAdapter allAdapter;
RecyclerView allItems;
Then initialize each of them.
allList = new ArrayList<>();
allAdapter = new PlaceVerticalAdapter(context, allList);
allItems = (RecyclerView) findViewById(R.id.allItems);

The next step is to set up the Layout Manager. Here, we will use a GridLayoutManager
with vertical orientation:

GridLayoutManager llm = new GridLayoutManager(this, 3);
llm.setOrientation(GridLayoutManager.VERTICAL);

The Grid will be divided into three columns so that three restaurants fit in horizontally. So,
the grid will have at least three columns, and if the number of restaurants is more than
three, the fourth restaurant will be displayed in the next row. The next figure shows it more
clearly:

GridLayoutManager with three columns

Building Restaurant finder

[223]

Now, there will be a header before each of the horizontal layouts. These are not grids but a
single list item. However, we have used a Grid Layout with three columns. To show the
header layout as one item, we need to span the three columns into one; this can be done by
defining setSpanSizeLookup for the Layout Manager:

llm.setSpanSizeLookup(new GridLayoutManager.SpanSizeLookup() {
@Override
public int getSpanSize(int position) {
switch (allAdapter.getItemViewType(position)) {
case PlaceVerticalAdapter.TYPE_HEADER:
return 3;
case PlaceVerticalAdapter.TYPE_ITEM:
return 1;
case PlaceVerticalAdapter.TYPE_MORE:
return 3;
default:
return -1;
}
}
});

setSpanSizeLookup says that if the type of view to be displayed is a header layout, span
three columns of the grid to one. Here's an illustration of the same:

GridLayoutManager with three columns and span for one type of view

Building Restaurant finder

[224]

Now, let's look at how the different views are displayed from the Java code custom adapter.
We have used PlaceVerticalAdapter as the custom adapter where the header view and the
item restaurant views are differentiated:

@Override
public ViewHolder onCreateViewHolder(ViewGroup viewGroup, int viewType) {
View itemView = null;
if (viewType == TYPE_ITEM) {'itemView =
LayoutInflater.from(viewGroup.getContext()).inflate(R.layout.item_place_ver
tical, viewGroup, false);
} else if (viewType == TYPE_MORE) {
itemView =
LayoutInflater.from(viewGroup.getContext()).inflate(R.layout.item_place_mor
e, viewGroup, false);
} else if (viewType == TYPE_HEADER) {
itemView =
LayoutInflater.from(viewGroup.getContext()).inflate(R.layout.item_place_hea
der, viewGroup, false);
}
return new ViewHolder(itemView);
}

The different layouts are placed in three different XML layout files and are inflated as a
view using the LayoutInflater. Once the layouts are inflated, the different views in the
adapter view have to be initialized. They have been initialized in the ViewHolder:

public class ViewHolder extends RecyclerView.ViewHolder {
ImageView image;
TextView name;
TextView location;
TextView description;
TextView rating;
TextView distance;
public ViewHolder(View itemView) {
super(itemView);
image = (ImageView) itemView.findViewById(R.id.image);
name = (TextView) itemView.findViewById(R.id.name);
location = (TextView) itemView.findViewById(R.id.location);
description = (TextView) itemView.findViewById(R.id.description);
rating = (TextView) itemView.findViewById(R.id.rating);
distance = (TextView) itemView.findViewById(R.id.distance);
}
}

Building Restaurant finder

[225]

In the adapter, the respective views will be displayed based on the viewType that is
mentioned in the list. Accordingly, the code has to be written to handle the display in the
adapter based on the view type:

@Override
public void onBindViewHolder(final ViewHolder holder, final int position) {
PlaceDisplayItem displayItem = list.get(position);
if (displayItem.getType() == TYPE_ITEM) {
RestaurantItem item = displayItem.getRestaurantItem();
//TODO EXTRA
String name = item.getName() != null ? item.getName() : "";
String description = item.getDescription() != null ? item.getDescription()
: "";
String location = item.getLocation() != null ? item.getLocation() : "";
holder.name.setText(name);
holder.location.setText(location);
holder.description.setText(description);
holder.rating.setText(CommonFunctions.formatRating(item.getRating()));
holder.distance.setText(CommonFunctions.formatDistance(item.getDistance()))
;
if (!CommonFunctions.checkNull(item.getImage()).equals("")) {
Picasso.with(context)
.load(RetroInterface.IMAGE_URL+item.getImage())
.resize(200,200)
.placeholder(R.drawable.placeholder_200)
.error(R.drawable.placeholder_200)
.into(holder.image);
}
holder.itemView.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
if (clickListener != null) {
clickListener.onItemClickListener(view, position);
}
}
});
} else {
if (displayItem.getType() == TYPE_HEADER) {
MealTypeItem item = displayItem.getMealTypeItem();
holder.name.setText(item.getName());
holder.description.setText(item.getDescription());
}
}
}

Building Restaurant finder

[226]

Once the layout is ready and the data fetched from the server is loaded, the view will look
the following way in a mobile device:

Discovery Screen

Database
When data is fetched from the server, it needs to be saved to the local database for a
seamless user experience. The local database used is one provided by Google, known as
Room. Now, let's look how we integrate room into our code in detail.

Building Restaurant finder

[227]

Room
Development and description of this section, in detail, including code snippets of how it is
used in Zomato.

Room is a part of Android Architecture Components, which consists of three components:

Room1.
LiveData2.
ViewModel3.

Room is a persistence library that provides an abstraction layer over the existing SQLite
database. Room thus increases the security of the database, making it easier to access and
also makes it easier to set up and access the new database. All the commands are now
annotated, except the SELECT command that works with @Query.

To add room to our app, first we need to add the dependencies in the build.gradle file. First,
we need to add the following to our project level build.gradle file:

buildscript {
repositories {
maven { url 'https://maven.google.com' }
...
}
}
...
...
allprojects {
repositories {
maven { url 'https://maven.google.com' }
...
...
}
}

Next, we need to add the following dependencies to our app level build.gradle file:

compile 'android.arch.persistence.room:runtime:1.0.0-alpha1'
compile 'android.arch.lifecycle:extensions:1.0.0-alpha1'
annotationProcessor 'android.arch.persistence.room:compiler:1.0.0-alpha1'

After the following dependencies are added and gradle is synced. we are ready to use
Room in the app.

Building Restaurant finder

[228]

Let's now see how Room can be implemented in the app--using an example of searching a
location by its name.

Here, we enter the name of a place we want to set as our location. We make a server call to
get the list. This list is then stored in the database with the help of room.

This helps to quickly fetch possible places from the local Sqlite database instead of waiting
for the server to respond.

First, let's create Entity that will hold the data we want to store in a table. In room, instead
of creating DatabaseHelper, we add annotation to the model class itself to determine its
primary key:

@Entity
public class UserLocation {
@PrimaryKey(autoGenerate = true)
@SerializedName(Constant.ID)
int id;
@SerializedName(Constant.NAME)
String name;
@SerializedName(Constant.LATITUDE)
float latitude;
@SerializedName(Constant.LONGITUDE)
float longitude;
public UserLocation(int id, String name, float latitude, float longitude) {
this.id = id;
this.name = name;
this.latitude = latitude;
this.longitude = longitude;
}
public int getId() {
return id;
}
public String getName() {
return name;
}
public float getLatitude() {
return latitude;
}
public float getLongitude() {
return longitude;
}
public void setId(int id) {
this.id = id;
}
public void setName(String name) {
this.name = name;

Building Restaurant finder

[229]

}
public void setLatitude(float latitude) {
this.latitude = latitude;
}
public void setLongitude(float longitude) {
this.longitude = longitude;
}
}

In the preceding code snippet, the class name also has the @Entity annotation, which
represents that it is a model that will be saved in the Sqlite database, and the class name will
be used as the table name. If we want to use a table name different from the class name, we
have to specify with the table name such as @Entity(tableName = "user_location").

The next one is @PrimaryKey(autoGenerate = true). This represents that the variable
is a primary key, and if not set, it is to be autoincremented, just like in a normal database.

If we want to add indices and unique column check in the table, we need to add the indices
along with the Entity annotation, as follows:

@Entity (indices = {@Index("name"), @Index(value = {"name"})})

If the name of the column is different from the variable name, we can specify by setting the
@ColumnInfo annotation to that field as shown:

@ColumnInfo(name = "user_name")
String name;

Now that we have created an entity, let's create a Dao.

The Dao is an interface class that contains all the various types of query operations that can
be carried on in the table, that is, Insert, Delete, Select, and Update. To represent an
interface is a Dao interface, we specify the @Dao annotation to the class name. Here's the
Dao interface and how it is used:

@Dao
public interface UserLocationDao {
@Query("select * from UserLocation")
LiveData<List<UserLocation>> getAllUserLocations();
@Query("select * from UserLocation where name like :name order by
name")
LiveData<List<UserLocation>> getUserLocationsByName(String name);
@Insert(onConflict = REPLACE)
void addUserLocations(List<UserLocation> userLocations);
@Delete
void deleteUserLocation(UserLocation userLocation);
}

Building Restaurant finder

[230]

The @Insert annotation automatically insert the data in the database without us having to
write insert queries.

Similarly, we can delete data using the @Delete annotation.

To select, we use the @Query annotation and write the logic, which is to be used to select the
data just like in a normal SQlite database.

Here, we also have the LiveData; this keeps observing the database of any changes in the
data and automatically callbacks/informs the activity of the changes, due to which we do
not have to write separate code to check for changes in the table.

Next, let's create a database class that will contain all the entities and their corresponding
Dao classes.

For a database, we create an abstract class and add the @Database annotation with the list
of all the entity classes that are to be present in the database.

Here's an example of a database class:

@Database(entities = {UserLocation.class}, version = 1)
public abstract class AppDatabase extends RoomDatabase {
private static AppDatabase INSTANCE;
public static AppDatabase getDatabase(Context context) {
if (INSTANCE == null) {
INSTANCE = Room.databaseBuilder(context.getApplicationContext(),
AppDatabase.class, "zomato_room_db")
.build();
}
return INSTANCE;
}
public static void destroyInstance() {
INSTANCE = null;
}
public abstract UserLocationDao getUserLocationDao();
}

Here, as we have only one entity class, it is added in the entity list in the database
annotation--@Database(entities = {UserLocation.class}, version = 1).

The version represents the version of the database. After any changes are done to the entity
class or any new entity classes are added, we need to increase this value to reflect the
changes.

Building Restaurant finder

[231]

To access the various Dao methods, we use a viewmodel that is used in the activities as a
link between the activity and the Database class. The viewmodel consists of the methods
that will be used by the activities. The viewmodel must extend AndroidViewModel so as to
follow the room life cycle.

Here's the Viewmodel that is used in our example:

public class UserLocationViewModel extends AndroidViewModel {
private AppDatabase appDatabase;
public UserLocationViewModel(Application application) {
super(application);
appDatabase = AppDatabase.getDatabase(this.getApplication());
}
public LiveData<List<UserLocation>> getUserLocationsByName(String name){
return appDatabase.getUserLocationDao().getUserLocationsByName(name);
}
public void addUserLocations(final List<UserLocation> userLocations) {
new Thread(new Runnable() {
@Override
public void run() {
appDatabase.getUserLocationDao().addUserLocations(userLocations);
}
}).start();
}
}

Here, we first initialize the database in the constructor of the Viewmodel. Next, we will
write the various methods that are used by the activity.

The addUserLocations method is used to add the location to the local database, where as
getUserLocationsByName is used to fetch the list of locations.

Now, let's see how room will be used in the activity.

The room life cycle can only be used in activity/fragment.

The activity/fragment must implement the LifecycleRegistryOwner as it controls the life
cycle of the room objects.

Here's the implementation:

public class SelectLocationActivity extends
extends AppCompatActivity implements LifecycleRegistryOwner{
private final LifecycleRegistry mRegistry = new LifecycleRegistry(this);
@Override
public LifecycleRegistry getLifecycle() {
return mRegistry;

Building Restaurant finder

[232]

}
}

The preceding code helps in maintaining the life cycle of the room objects.

Now, let's see how we can use room to get the list of addresses after searching.

Here, we first initialize the viewmodel so that we can get an instance of the database and its
corresponding entity.

To get the instance of the viewmodel, we use the ViewModelProviders class. It uses the
instance of the activity to get the viewmodel.

Here's a sample code from our example:

Global instance of the viewmodel:1.

 UserLocationViewModel userLocationViewModel;

Initializing the viewmodel with the help of the ViewModelProviders class:2.

 userLocationViewModel=
 ViewModelProviders.of(this).get(UserLocationViewModel.class);

After the view model has been initialized, we can use it to fetch and insert the
userlocation items directly into the table of the Entity.

First, we make a server call to load the list of possible places that the user is searching for.
When we get the result instead of directly showing them to the user, we can insert them
into the table. As room uses Livedata to constantly observe the database for any changes,
if new/updated entries are made into the database, they are automatically fetched by room
callbacks.

Firstly, lets add those entries to our database. To add the entries, we make use of the
addUserLocations(final List<UserLocation> userLocations) function of the
UserLocationViewModel class.

Here's how we use the function:

userLocationViewModel.addUserLocations(userLocationResponse.getUserLocation
s());

In the preceding code sample, userLocationResponse is the response that we get from
the Retrofit that contains the list of all the corresponding user locations that the user is
searching for.

Building Restaurant finder

[233]

Next, to constantly check/call the live data to check for any changes in the database, we
make an instance of the LiveData class with UserLocation Entity:

LiveData<List<UserLocation>> liveData;
if (liveData != null) {
liveData.removeObservers(this);
}
liveData = userLocationViewModel.getUserLocationsByName("%" + search +
"%");
liveData.observe(this, new Observer<List<UserLocation>>() {
@Override
public void onChanged(@Nullable List<UserLocation> serviceItems) {
userLocations = serviceItems;
if (!(search.equals(""))) {
refreshList();
}
}
});

In the preceding code sample, we are creating an instance of LiveData of UseLocation.
Here, we are always listening for locations whose name contains the search parameter.

The liveData.observe function observes the database for any data that matches the
condition and returns the list in its onChanged method. After the list is returned, we can
show the list to the user by setting it to the adapter of the recyclerview.

Summary
The focus in this chapter was to understand the core techniques of coding the different
components and screens of the Zomato app by yourself. After reading these topics, you
understood what are the components required to develop certain sections on a screen. Once
you get a hold of these components, they can be reused in other screens with similar
requirements.

11
Backend Service

Firebase is a cloud-based backend-as-a-service (BaaS) service provided by Google that
provides a structural way to save your data very efficiently and also retrieve it at much
faster speeds. It acts like a complete backend database solution for your web or app. It is
very robust and handy to use and has features that make your app experience better in
various ways.

Firebase has grown to be a unified app platform for Android, iOS, and Mobile Web
development. Not only does it help to develop faster, but it also has inbuilt services that
help you improve app quality, acquire and engage users, and monetize apps. Firebase has
many features inbuilt which are very useful in a complete app development cycle. What
makes Firebase handy is that it does not need any server side configurations. Everything
gets handled from your app. Also it has a real time feature, meaning that what is updated in
one place gets updated everywhere else at real time. This makes the app experience really
wonderful.

The entire feature list provided by Firebase is shown in the image below. It provides you
with a single place to set up and manage services of your apps. Firebase provides you with
15 technologies that help you develop, grow, and earn from your mobile apps:

Develop1.

1. Backend services

1.1 Real-time database

1.2 Authentication

1.3 Hosting

1.4 Storage

Backend Service

[235]

1.5 Cloud messaging

1.6 Remote configuration

2. App quality services

2.1. Test Lab for Android

2.2. Crash reporting

Grow2.

1. Acquisition

1.1. Dynamic links

1.2. Invites

1.3. Adwords

2. Re-engagement

2.1. Notifications

2.2. App indexing

Earn3.

1. In-App ADs

1.1. Admob

Backend Service

[236]

Firebase features

Let us now walk through each of the services that we would be using in our app.

Realtime Database
The Firebase Realtime Database is a NoSQL cloud-hosted database. The data is stored as
JSON and it allows syncing of data across all the clients in real time. No matter which
platform you are building on, using Firebase, all your clients share one realtime database
instance. Firebase uses a data synchronization mechanism with which, every time the data
changes, any connected device can receive new updates within no time.

This is how the Firebase uses realtime sync, rather than just a typical HTTP request:

Realtime Sync of Data across several devices

Backend Service

[237]

One of the biggest pains for developers is to ensure data remains available, even when the
app is offline. Firebase-built apps allow apps to remain responsive when your device goes
offline. This is possible as Firebase Realtime Database SDK maintains your data to disk,
ensuring that it can be available while offline. It synchronizes the changes onto your device
which were missed when your device was offline. It also automatically facilitates merging
of any conflicts that might arise while syncing fresh content from the current server state.

Firebase allows expression-based rules which are known as Firebase Realtime Database
Security Rules. Using these rules, developers can define the structure for the data and when
this data can be read or written. This structure is simple and using the declarative rule
language you can not only structure the data but also define security rules. Using the
security rules you can secure your data stores. By default, read and write access to your
database is restricted, so only authenticated users can read or write data.

How to write a database structure
Firebase Database is based on NoSQL, which means there are no tables or records. With
every entry of new data set, the JSON tree gets updated with a new entry as a node with an
associated key. You can create and define your own keys, but they must be UTF-8 encoded.
The other specifications include a maximum of 768 bytes and the key cannot contain ., $, #,
[,], /, or ASCII control characters 0-31 or 127.

Let us take an example to see what this structure looks like. Consider in our app we are
maintaining a contact list of friends. A typical user profile is located at a path, such as
/users/$uid. The database entry for the user jsouza would look something like this:

{
 "users": {
 "jsouza": {
 "name": "John Souza",
 "contacts": { "shanep": true },
 },
 "shanep": { ... },
 "raverp": { ... }
}
}

Here, jsouza is the user John Souza's uid. So, to fetch his details the path would be
/users/jsouza. It would fetch all details of John Souza within this node.

Backend Service

[238]

When you look at the nested loop, one might be tempted to include nesting data in the
database. No doubt that is possible as Firebase Realtime Database allows nesting data up to
32 levels deep, which might be treated like the default structure. But imagine the case
wherein you have to fetch data at a location in your database and then it has to retrieve all
of its child nodes, when you might require only a little data from that node.

Let us consider the same code above, to understand this situation well.

If we are trying to get a user's name, we will have to retrieve data at /users/$uid, but
along with the user's name we will also get contacts and any other nodes that are present at
this level which are not currently required. Retrieving all of this data will consume time and
the user's mobile internet data. So, in order to fetch only the data which we require, we have
to change the structure of the database, as shown below:

{
"users": {
"jsouza": {
 "uId": "jsouza",
"name": "John Souza"
},
"shanep": { ... },
"raverp": { ... }
},
"contacts": {
"Jsouza": {
 "shanep": true
},
"shanep": { ... },
"raverp": { ... }
}
 }

Now, in the above structure we have separated the user details section from the user
contacts section. So, when we want to retrieve the user details we can get it from
/users/$uid node without any unnecessary data. Also, if we want to retrieve contacts, we
can call /contacts/$uid.

Backend Service

[239]

Add security to data structure
One thing that might need an observation here is that security rules cascade--which means
that, if you grant read or write privileges to a user on any node, you automatically grant
that user read or write privileges on all child nodes. If you ask to read a node which has
read permission, Firebase will return the entire node and all of its children. This means that
Firebase won't go down parsing through the node based on nested security. The same thing
applies with write actions. If you're allowed to write to a node, you're allowed to overwrite
everything. Looking at these points it might look like the cascading security rule is a
problem, but if you structure data according to the privileges that you want to grant, all will
be fine.

The following is an example about how we can write a security rule based on the above
data structure:

{
 "rules": {
 "users":{
"$uid": {
 ".read": "auth!=null && (data.child('uId').val()==auth.uid)",
 ".write": "auth != null && $uid === auth.uid"
}
 },
 "contacts":{
"$uid": {
 ".read": "auth != null",
 ".write": "auth != null && $uid === auth.uid"
}
 }
 }
}

auth means Authentication for a user. data means data present at that node.

Now, based on the rules written above, only authenticated users can perform the read and
write operations in the database. If a user is not an authenticated user, he will not be able to
read or write.

Now, in the user node, a user can read only his own details and does not have access to
other users' details, as we are checking this from:

(data.child('uId').val() == auth.uid),

Backend Service

[240]

Here, if ID, auth, and uid is the same as the data we are reading, then read is allowed.
Similarly, while writing in the user node, user can only write into his own node and cannot
change other users, details as we are comparing the node key value $uid with the
auth.uid value.

Now, in the contact node, a user can see all other user contacts but can only write in his own
contacts.

The Firebase team recommends using Flatten data structures as one of the best practices. If
the data is instead split into separate paths, it can be efficiently downloaded in separate
calls, as it is needed. Breaking your data up into its component parts enables you to query
just the data that is needed. You can avoid making join allowing the server to be responsible
for duplicating data appropriately.

Firebase database rules have a JavaScript-like syntax and come in four types:

.read

.write

.validate

.indexOn

Type Description

.read Describes if and when data is allowed to be read by users.

.write Describes if and when data is allowed to be written.

.validate Defines what a correctly formatted value will look like. It also checks
whether it has child attributes, and the data type.

.indexOn Specifies a child to index to support ordering and querying.

The Firebase team recently released a security rule generator named Bolt. This allows
developers to review the rules that it creates. You can check the following link to explore
this tool: https://github. com/ firebase/ bolt. Now, we'll look at how easy it is to integrate
it into an Android app.

https://github.com/firebase/bolt
https://github.com/firebase/bolt
https://github.com/firebase/bolt
https://github.com/firebase/bolt
https://github.com/firebase/bolt
https://github.com/firebase/bolt
https://github.com/firebase/bolt
https://github.com/firebase/bolt
https://github.com/firebase/bolt
https://github.com/firebase/bolt
https://github.com/firebase/bolt

Backend Service

[241]

Please follow the steps below to start the new project. Go to Firebase console: https:/ /
console.firebase. google. com/ . Please provide the Firebase name for your project. Note
that, when you create a project, it means that you have access to the container of features
such as database, user management, and remote config across your apps. Here are steps for
creating a new Firebase app:

First, open the Firebase console : https:/ / console. firebase. google. com/ :1.

Next, click on CREATE NEW PROJECT.2.
After entering the project name and selecting the country, click Create Project3.
and your new Firebase app will be ready.
After creating the new project, you will see the Firebase Dashboard for your app.4.
On the left side of the browser you will see the key areas of the Firebase features:

https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/

Backend Service

[242]

Firebase App Dashboard

Here, click on the Add Firebase to your Android app. This is to add Firebase to5.
the Android section of your app:

Backend Service

[243]

Next, you will be asked to enter the details of the app:6.

Adding Package name

Here we can see two fields: package name and SHA-1 certificate of your keystore. While
entering the package name it should be the same as the package name in the
AndroidManifest.xml file in your app.

Now the second part requires us to generate a SHA-1 certificate. To generate the signing-
certificate fingerprint, follow the steps below:

First, open your command prompt.1.
Now, as we are in development, we will use the debug.keystore to generate2.
the signing-certificate fingerprint.
For the debug.keystore the default alias is androiddebugkey and store3.
password used is android.

Backend Service

[244]

Now to get the signing-certificate fingerprint, from debug.keystore we run the4.
following command:

 keytool -list -v -keystore "C:\Users\%your
 name%\.android\debug.keystore" -alias androiddebugkey -
 storepass android -keypass android

This will generate the signing-certificate fingerprint which will be used to create5.
the credentials.
When the build is about to go into production we will use the live keystore/jks6.
file to generate the signing-certificate fingerprint.

This will create the credential file.

After both of these details have been filled, click on Add app. This will generate7.
the google-services.json file:

Download JSON file

Backend Service

[245]

Move the google-services.json file you just downloaded into your Android8.
app module root directory.
Now, we need to add dependencies in the build.gradle file of the app module:9.

Dependencies to build.gradle

First, we'll add rules in the root level build.gradle file, to include the google-10.
services plugin as follows:

 buildscript {
 // ...
 dependencies
 {
 // ...
 classpath 'com.google.gms:google-services:3.0.0'
 }
 }

Backend Service

[246]

Then, in your app's Gradle file (usually the app/build.gradle), we need to add11.
the apply plugin line to enable Gradle Plugin as follows:

 apply plugin: 'com.android.application'
 android {
 // ...
 }
 dependencies {
 //All the apps dependencies are written here
 compile 'com.google.firebase:firebase-core:10.0.1'
 }
 // Add this at the bottom of the file
 apply plugin: 'com.google.gms.google-services'

Firebase Cloud Messaging
Firebase Cloud Messaging (FCM), formerly known as Google Cloud Messaging, is a
revised version of the cross-platform messaging solution that empowers you to send
notifications at no cost. In the app, these services will be used to notify users such as in the
case of new offers or comments on restaurants feedback. Firebase inherits GCM's core
infrastructure but it simplifies client-side development.

In Google Cloud Messaging, developers had to write their own registration or subscription
retry logic, which now gets ruled out. Simply by writing a few lines of code, FCM can be
integrated into the app. It contains a server that is responsible for assigning an identifier
token to each device that is subscribed to send and receive notifications. This also ensures
that messages are sent and received by a particular device.

The following process takes place until the sending or receiving messages is initiated:

When the app is installed, the devices, say A or B, are asked for a token by1.
sending a request to Firebase Cloud Messaging.
The Firebase Cloud Messaging then generates and returns a token to identify2.
each of the devices. Please note that in the following cases this might lead to a
change in the registration token that you must have generated:

The app deletes Instance ID
The app is restored on a new device
The app is uninstalled/reinstalled
The app's data is cleared

Backend Service

[247]

The developer can save this token on the server and assign this token to the3.
specific user, if needed.
You can now use either the Firebase console or build logic on your service using4.
SDK to send messages to devices.

One of the key advantages of using FCM is that the Firebase console has a feature, Firebase
Notifications, like Facebook's Parse, before it was shut down.

Let us take a look at the notification section on the Firebase console. First, head to the
Firebase console URL and click on the Notification option in the left menu panel. For the
first time, you will be greeted with the welcome message helping you to understand more
about this notification section. Passing through this you will see the actual messaging
section for configuration. Click on New Message and you will see the following section as
shown below:

Create Message Section

Backend Service

[248]

Message text defines what text gets displayed in the notification. Message label is an
option field. Delivery date is either sending it right away or scheduling it one month in
advance. If you are scheduling the message one month in advance, you can also set the
specific time and, most importantly, the time zone of the recipient. When Time zone is set
to Recipient time zone, the message will be delivered to users based on their device's time
zone settings:

Setting Delivery date

The next section is the Target. The target is divided into three parts:

User segment: A selection of apps to choose from to package their applications.
You can also filter user groups, languages, and versions too. Setting up to target
multiple applications to deliver is also possible:

Topic: Topic of work is to be delivered to the user which allows them to
subscribe to that topic. Topic messaging supports unlimited topics and
subscriptions for each app. Take a case like a news app, wherein you have to
notify the user depending on the topic of preference, say politics, sports, and so
on. In this case, setting customized topic messaging could set the right tone for
messaging depending on users. Topic messages are optimized for throughput
rather than latency. Avoid using topic messaging if you wish to send messages to
multiple devices per user. You can opt for device group messaging in those cases.

Backend Service

[249]

Single device: Knowing the FCM registration token, you can send notification to
a specific device:

The console also allows an option of conversion tracking. Enable it to capture the key events
to evaluate notification effectiveness. The actions, like sent and opened, are provided by
default:

Backend Service

[250]

From the above screen, we can see few events that are captured by default, for sending a
notification from the Notification tab. These events are captured and stored automatically
each time a user interacts with the notification sent from the Notification tab.

But these events are not yet marked for conversion, which can be identified from the switch
button. For now, only first_open is marked for conversion which is set by default. If
other keys are to be made for conversion they can be made from this screen.

After the key has been marked for conversion, all the events which are captured can be seen
in the ATTRIBUTION tab under the CONVERSION EVENTS tab:

The events that are captured after making the key as marked for conversion will be shown
here.

If you wish to add optional events, you can set them up too, using the steps below:

In Firebase Analytics, click the Events tab then click Network Settings.1.
Click the Selector menu then click Enable conversion.2.
Once an event has been enabled as a conversion, it is available in Attribution ||3.
Conversion Events.
Attribution reporting begins for that event at the time you enable it as a4.
conversion.

Backend Service

[251]

Using the Advanced options, you can allow further customization to the messages you
send to the devices:

Here are the fields under the Advanced options section:

Title is generally shown to end users as the notification title. Custom data is the1.
key/value pairs that will be delivered with the message to your app.
Priority is either grouped as High or Normal. By default, the priority of2.
messaging is Normal. Normal priority messages won't open network connections
on a sleeping device, and their delivery may be delayed ensuring conservation of
the battery. In the case of High priority, FCM delivers the messages immediately.
This also makes sure that FCM service will wake a sleeping device when possible
and open a network connection to your app server.
Sound indicates a sound to play when the device receives a notification.3.
Typically, a sound file is used.

Backend Service

[252]

The Expires section defines how long the messages should be kept for redelivery.4.
The maximum expiry period is four weeks after the first delivery attempt. By
default, the messages are sent instantly, but there could be cases whereby the
device could be off or offline. In such circumstances, FCM might intentionally
delay messages to prevent an app from consuming excessive resources that might
have impact on battery life. Parameter time_to_live allows us to specify the
maximum lifespan of a message. It is supported in both HTTP and XMPP. The
value of this parameter must be of a duration from 0-2,419,200 seconds. This
value corresponds to the maximum period time for which FCM stores and tries to
deliver the message. By default, the maximum period is four weeks.

So far, we have handled the setting up of FCM for sending messages. In the section below,
we will discuss how to receive the messages. Firebase notifications behave differently
depending on whether the notification is triggered in the foreground or background state.
The table below explains the two states and their callback actions:

State Notification Data Both

Foreground onMessageReceived onMessageReceived onMessageReceived

Background System tray onMessageReceived Notification as System Tray data

With FCM, we can send two types of messages to the client.

Notification messages, sometimes thought of as display messages. These messages are
directly displayed on the user devices without any processing on the client app. These
messages have a predefined set of user-visible keys.

To send Notification messages we use the Notification tab in the Firebase console, which
has been discussed above. If the app is not in the foreground, it is directly displayed
without any processing from the app, otherwise if it processed by the notification service in
the onMessageReceived method where it is processed and notification is displayed.

Data messages, which are handled by the client app. These messages are sent from the
server using the FCM server API. For apps in both the foreground and the background, the
data message is received by the app in the onMessageReceived method.

The following is a small snippet to show how the onMessageReceived handles the FCM
message:

@Override
public void onMessageReceived(RemoteMessage remoteMessage) {
 // TODO(developer): Handle FCM messages here.
 Log.d(TAG, "From: " + remoteMessage.getFrom());
 // Check if message contains a data payload.

Backend Service

[253]

 if (remoteMessage.getData().size() > 0) {
 Log.d(TAG, "Message data payload: " + remoteMessage.getData());
 }
 // Check if message contains a notification payload.
 if (remoteMessage.getNotification() != null) {
 Log.d(TAG,"Message Notification Body: " +
remoteMessage.getNotification().getBody());
 }

 // Also if you intend on generating your own notifications as a result
of a received FCM
 // message, here is where that should be initiated. See sendNotification
method below.
}

In the app, we would also be using group messaging, for which the obvious choice of
course in FCM would be device group messaging. In this case, app servers can send a single
message to multiple instances of an app running on devices belonging to a group. The
strategy of distributing the message here is that all devices in a group share a common
notification key, which is the token that FCM uses. The limit on the data payload is 4KB
when sending to devices such as Android except in the case of iOS where the limit is 2KB.

Before sending the messages to the device group, we need to set it up in the FCM
notification console:

Obtain the registration token for each device you want to add into the group.1.
In the case of managing groups on the app's server, send a POST request that2.
provides a name for the group and a list of registration tokens for the devices.
Create the notification_key, which identifies the device group by mapping a3.
particular group to all of the group's associated registration tokens. The
maximum number of members allowed for a notification_key is 20.

To create a group, send a request to https:/ /android. googleapis. com/ gcm/ notification,
as shown below:

https://android. googleapis. com/ gcm/ notification

Content-Type:application/json
Authorization:key=API_KEY
project_id:SENDER_ID
{
 "operation": "create",
 "notification_key_name": "appUser-Chris",
 "registration_ids": ["id1", "id2", "id3", "id4", "id5", "id6"]
}

https://android.googleapis.com/gcm/notification
https://android.googleapis.com/gcm/notification
https://android.googleapis.com/gcm/notification
https://android.googleapis.com/gcm/notification
https://android.googleapis.com/gcm/notification
https://android.googleapis.com/gcm/notification
https://android.googleapis.com/gcm/notification
https://android.googleapis.com/gcm/notification
https://android.googleapis.com/gcm/notification
https://android.googleapis.com/gcm/notification
https://android.googleapis.com/gcm/notification
https://android.googleapis.com/gcm/notification
https://android.googleapis.com/gcm/notification
https://android.googleapis.com/gcm/notification
https://android.googleapis.com/gcm/notification
https://android.googleapis.com/gcm/notification
https://android.googleapis.com/gcm/notification
https://android.googleapis.com/gcm/notification
https://android.googleapis.com/gcm/notification
https://android.googleapis.com/gcm/notification
https://android.googleapis.com/gcm/notification
https://android.googleapis.com/gcm/notification
https://android.googleapis.com/gcm/notification
https://android.googleapis.com/gcm/notification
https://android.googleapis.com/gcm/notification
https://android.googleapis.com/gcm/notification

Backend Service

[254]

Both the SENDER_KEY and API_KEY can be found in the cloud messaging tab in the Settings
section:

The response for the above call will be a notification key, with which we can send
notification to this newly formed group:

{ "notification_key": "ART91bGHXQTB...9QgnYOURPwm0I3lmyqzk2TXQ" }

Now, in order to send a FCM message to this group we use the following:

https://fcm.googleapis.com/fcm/send

Content-Type:application/json
Authorization:key=API_KEY

{
 "to": "aUniqueKey",
 "data": {
 "hello": "This is a Firebase Cloud Messaging Device Group Message!",
 }
}

The unique key here can be either a topic, a device token of a user, a multiple device token,
or a notification key.

https://fcm.googleapis.com/fcm/send

Backend Service

[255]

Remote configuration
One more important feature that is powered by Firebase is remote configuration. This
allows app users to change the behavior and appearance of the app without the app being
updated. This is made possible by creating in-app default values that control this behavior.
By just changing the server-side parameter values, you can customize how the app looks or
behaves. The image below shows the example of the configurations:

Now, let us discuss how we can add remote configuration to our app.

To add remote configuration into the android app, first we have to add the following line in
the dependency section of the app level build.gradle file:

compile 'com.google.firebase:firebase-config:10.0.1'

After the app, has synced, we can how use the Config object which will help us to use the
remote configurations.

Next, let's create sample configurations on the Firebase Remote Configuration console
which will be used in the app:

Backend Service

[256]

After you have added the configuration, they will not be available in the app until they are
published. To publish the changes click on PUBLISH CHANGES and they will be available in
the app to use:

Now, in the app, create an XML file which will have all the default values of the remote
configuration. If the remote configurations have not yet loaded the values, then the default
values will be displayed instead. Store these XML files in the res/xml folder.

Here's a quick view of what the default value XML will look like:

<?xml version="1.0" encoding="utf-8"?>
<!-- START xml_defaults -->
<defaultsMap>
 <entry>
 <key>welcome_message</key>
 <value>Welcome to Your App</value>
 </entry>
 <entry>
 <key>latest_app_version</key>
 <value>1</value>
 </entry>
</defaultsMap>
<!-- END xml_defaults -->

Backend Service

[257]

Now, to use these values in the app, first we will initialize an instance of
FirebaseRemoteConfig:

mFirebaseRemoteConfig = FirebaseRemoteConfig.getInstance();

FirebaseRemoteConfigSettings configSettings = new
FirebaseRemoteConfigSettings.Builder()
 .setDeveloperModeEnabled(BuildConfig.DEBUG)
 .build();
mFirebaseRemoteConfig.setConfigSettings(configSettings);

Then we will set the default values to the configurations using the XML created before:

mFirebaseRemoteConfig.setDefaults(R.xml.remote_config_defaults);

Now, to fetch the configurations from the server, we need to call the fetch() method of
the remote configurations. Use the updated values into the app.

The following is a code sample to show how the fetch method is used:

// cacheExpirationSeconds is set to cacheExpiration here, indicating that
any previously
// fetched and cached config would be considered expired because it would
have been fetched
// more than cacheExpiration seconds ago. Thus the next fetch would go to
the server unless
// throttling is in progress. The default expiration duration is 43200 (12
hours).
mFirebaseRemoteConfig.fetch(cacheExpiration)
 .addOnCompleteListener(this, new OnCompleteListener<Void>() {
 @Override
 public void onComplete(@NonNull Task<Void> task) {
 if (task.isSuccessful()) {
 Toast.makeText(MainActivity.this, "Fetch Succeeded",
 Toast.LENGTH_SHORT).show();

 // Once the config is successfully fetched it must be
activated before newly fetched
 // values are returned.
 mFirebaseRemoteConfig.activateFetched();
 } else {
 Toast.makeText(MainActivity.this, "Fetch Failed",
 Toast.LENGTH_SHORT).show();
 }
 displayWelcomeMessage();
 }
 });

Backend Service

[258]

The displayWelcomeMessage() method is called to set the values of the remote
configurations.

Now, if we want to retrieve the values from the remote configurations we use the following
calls:

Call Return type

getBoolean(String key) Returns a boolean value corresponding to the given key.

getByteArray(String key) Returns a byte array value corresponding to the given
key.

getDouble(String key) Returns a double value corresponding to the given key.

getLong(String key) Returns a long value corresponding to the given key.

getString(String key) Returns a string value corresponding to the given key.

For more information regarding remote configuration methods, visit https:/ /firebase.
google.com/docs/ reference/ android/ com/ google/ firebase/ remoteconfig/
FirebaseRemoteConfig.

For example, if we want to retrieve the welcome_message from the remote configuration,
we make the following call:

String welcomeMessage = mFirebaseRemoteConfig.getString("welcome_message");

Here, welcome_message is the constant key where the message is stored and we call the
getString method as we know the value stored in the remote configuration corresponding
to it is a string value.

This feature can be best used when you want to force a user to update the app. You can
simply set the values, as shown in the table below:

Parameter Key Default Value

force_update_required False (or True)

force_update_new_version 1.0.1

force_update_app_url < URL of the All>

Depending on these values, the app will behave and force the user to update the app.

https://firebase.google.com/docs/reference/android/com/google/firebase/remoteconfig/FirebaseRemoteConfig
https://firebase.google.com/docs/reference/android/com/google/firebase/remoteconfig/FirebaseRemoteConfig
https://firebase.google.com/docs/reference/android/com/google/firebase/remoteconfig/FirebaseRemoteConfig
https://firebase.google.com/docs/reference/android/com/google/firebase/remoteconfig/FirebaseRemoteConfig
https://firebase.google.com/docs/reference/android/com/google/firebase/remoteconfig/FirebaseRemoteConfig
https://firebase.google.com/docs/reference/android/com/google/firebase/remoteconfig/FirebaseRemoteConfig
https://firebase.google.com/docs/reference/android/com/google/firebase/remoteconfig/FirebaseRemoteConfig
https://firebase.google.com/docs/reference/android/com/google/firebase/remoteconfig/FirebaseRemoteConfig
https://firebase.google.com/docs/reference/android/com/google/firebase/remoteconfig/FirebaseRemoteConfig
https://firebase.google.com/docs/reference/android/com/google/firebase/remoteconfig/FirebaseRemoteConfig
https://firebase.google.com/docs/reference/android/com/google/firebase/remoteconfig/FirebaseRemoteConfig
https://firebase.google.com/docs/reference/android/com/google/firebase/remoteconfig/FirebaseRemoteConfig
https://firebase.google.com/docs/reference/android/com/google/firebase/remoteconfig/FirebaseRemoteConfig
https://firebase.google.com/docs/reference/android/com/google/firebase/remoteconfig/FirebaseRemoteConfig
https://firebase.google.com/docs/reference/android/com/google/firebase/remoteconfig/FirebaseRemoteConfig
https://firebase.google.com/docs/reference/android/com/google/firebase/remoteconfig/FirebaseRemoteConfig
https://firebase.google.com/docs/reference/android/com/google/firebase/remoteconfig/FirebaseRemoteConfig
https://firebase.google.com/docs/reference/android/com/google/firebase/remoteconfig/FirebaseRemoteConfig
https://firebase.google.com/docs/reference/android/com/google/firebase/remoteconfig/FirebaseRemoteConfig
https://firebase.google.com/docs/reference/android/com/google/firebase/remoteconfig/FirebaseRemoteConfig
https://firebase.google.com/docs/reference/android/com/google/firebase/remoteconfig/FirebaseRemoteConfig
https://firebase.google.com/docs/reference/android/com/google/firebase/remoteconfig/FirebaseRemoteConfig
https://firebase.google.com/docs/reference/android/com/google/firebase/remoteconfig/FirebaseRemoteConfig

Backend Service

[259]

Authentication
Firebase Console allows app developers to securely identify a user's identity and securely
save user data in the cloud and provide a personalized experience for the user. The Firebase
Authentication SDK provides methods that support authentication using passwords and
popular login providers such as Google, Facebook, Twitter, and GitHub. Since it all
happens under the Firebase cloud, this service integrates with other Firebase services and
leverage industry standards like OAuth 2.0 and OpenID Connect, so that interaction with
storage is seamless. In the next section we will discuss more about the storage.

Storage
Firebase also supports built-in capabilities for app developers who wish to store and serve
contents such as photos, videos, or any other user-generated content. The Firebase is backed
by Google Cloud Storage. Uploads and downloads take place regardless of network quality.
Uploads and downloads are robust which means that it resumes from where they stopped,
ensuring saving of time and bandwidth of the user. Currently, the storage enables storing of
static files only. This storage operates on a pay-as-you-go model, which means that there is
no need to migrate from Firebase Storage to cloud storage or any other provider; Firebase
Storage scales automatically.

Summary
In the beginning of the chapter, we discussed Firebase's features: develop, grow, and earn.
We then ggive insights on the setting of Firebase console for the project. This was followed
by explaining features of backend, including Firebase Cloud Messaging and its setup.
Finally, we discussed other key features such as authentication and storage. In the next
section, we will discuss how Firebase can help developers to bring the best of app quality.

12
App Quality Service

One of the most awaited features released under Firebase at the Google I/O 2016 was crash
reporting in the beta stage. You can not only analyze the app crashes, but also understand
the crash behavioral pattern. This helps developers to understand the crash and find the
fixtures that can be deployed. To date, there have been several tools such as Crashlytics,
HockeyApp, Instabug, and many more that help us receive crash reports using a console.
There is a crash reporting tool for every occasion out there; then what's so special about
Firebase Crash Reporting? In this chapter we will discuss the features of Firebase Crash
Reporting.

Firebase Crash Analytics works with the new Google Play Services 9.0. Please follow the
steps below to integrate Firebase Crash Analysis tool into the app:

If you haven't set up Firebase Project, set it up by visiting http:/ /firebase.1.
google.com. Since we have already created the setup, we can skip this step.
Next, include the following lines to your root-level build.gradle file:2.

 buildscript {
 //...
 dependencies {
 // ...
 classpath 'com.google.gms:google-services:3.0.0'
 }
 }

Add a dependency in your build.gradle file using the following command:3.

 compile 'com.google.firebase:firebase-crash:10.0.1'

http://firebase.google.com
http://firebase.google.com
http://firebase.google.com
http://firebase.google.com
http://firebase.google.com
http://firebase.google.com
http://firebase.google.com
http://firebase.google.com

App Quality Service

[261]

To capture the crash, add a call to the static report method in the main activity:4.

 FirebaseCrash.report(new Exception("Demo Crash Marker"));

You can confirm if logging is enabled by checking the ADB Logs or Android Studio Logs.
There will be a message confirming that Crash Reporting is enabled, suggesting that the
setup has been completed. Firebase also allows you to log custom events in your error
reports and optionally the Logcat. If you want to track a log, but do not want the Logcat
output, you can pass a string as the argument, as shown below. If you want to create Logcat
output, you must also supply the log level and a tag:

FirebaseCrash.log("Activity Initiated");

It takes around few minutes for the crash reports to appear on the console dashboard, as
shwon figure shown below:

Firebase Crash Reporting Console

As seen in the above image, Firebase Console helps you provide crash details including key
features like what kind of errors: Fatal or Nonfatal; and their occurrence pattern along with
versions. The graph also indicates the number of users who have been impacted by this
crash. The timeline helps to judge the pattern frequency.

App Quality Service

[262]

From the dashboard shown above, you'll notice that there is something called Clusters.
This section helps developers by grouping exceptions with similar stack traces:

Unlike many other crash reporting tools, which allow one line to initialize crash reporting
all through the app, Firebase doesn't enable such a utility. To enable handling of your
uncaught exceptions, consider adding the following code block in your main application:

public void uncaughtException(Thread thread, Throwable ex)
{
 FirebaseCrash.report(ex);
}

Firebase Crash Analytics also allows to deobfuscate Proguard labels. We would be having
the final build with ProGuard, so we will need a mapping.txt, which gets generated at the
path below:

<project root>/<module name>/build/outputs/mapping/<build type>/<appname> -
proguard-mapping.txt

App Quality Service

[263]

Take a look at the screenshot below to learn more about the Upload mapping files section:

Uploading mapping files in the Firebase Crash Analytics section allows you to see
deobfuscated stack traces in the Crash Reporting interface. While testing, you can set up
Proguard for debug build types and then build with ./gradlew assembleDebug as shown
below:

debug {
 minifyEnabled true
 proguardFiles getDefaultProguardFile('proguard-android.txt'),
 'proguard-rules.pro'
}

Since this feature is in beta, we can expect more updates from Google in the near future. But
one of the key features it misses is to ensure marking the bugs are fixed. Some of the other
features missing or dependencies are:

Searching through the crashes becomes difficult, as the only information we get is1.
the location of the crash.
There is no grouping of the crashes under classes so we can find numerous2.
crashes that occurred from a single activity:

App Quality Service

[264]

Dependencies on Google Play Services on the device.3.
ProGuard/DexGuard mapping files have to be uploaded manually.4.
Unable to implant a listener in the session just after a crash has occurred.5.

In fact, since it is in beta, we can expect a few more misses too. But we admire one feature
the most: Integration with Firebase Analytics, which allows you to create a group of users
that experienced troubles when using the app. This feature can then be clubbed with a
notification system to notify users.

Firebase Test Lab
Growth of your app's user base depends on several factors and one of the crucial factors is
the quality of your application. According to Google, most of the apps given a one star
rating is directly related to app crashes and bugs in the app.

For many developers, it is challenging to find and resolve these bugs prior to releasing to
the market. As the Android ecosystem evolves, it becomes more challenging to adhere to
the quality of the app. Manually testing the app becomes more complex as the user base
increases; accessing devices that are unavailable in your country also becomes difficult.
Setting a pre-testing facility for testing is an expensive affair to begin with, and is an ever
evolving process in terms of continual maintenance.

App Quality Service

[265]

To help developers with seamless testing, Google has introduced Firebase Test Lab, which
is a cloud-based infrastructure for testing Android apps. This is an automated platform, the
same as what Google uses to test its own products. With easy steps, you can launch your
tests on Google's actual devices to test the quality of your apps. Firebase Test Cloud allows
you to select from a variety of device manufacturers and models, device configurations, and
different Android versions. Currently, this is only available for Blaze plan users on Firebase.
To learn more about the pricing, please check the following link: https:/ /firebase.
google.com/pricing/ .

Automation involves writing test cases and, if you have written these tests using Espresso,
UI Automator 2.0, or Robotium, you can begin running those tests on the Firebase Test
Cloud's hosted devices. Alternatively, you can use Espresso's Test Recorder tool to record
the test cases rather than writing them. All you have to do is launch the app in recording
mode and the test recorder will observe and remember your interactions. Post completion
of the recording, the tool generates test code in Espresso that duplicates those interactions.
Uploading these to Firebase Test Cloud will allow you to test recorded scenarios.

Now, we will discuss the steps to be taken while running these tests:

To access the Firebase Test Lab open the Test Lab tab in the Firebase app console.1.
Here, we will see two options: Robo test and instrumental test.2.
First, in Robo test we require the debug APK which can be found in3.
app/build/outputs/apk/.

Upload this APK, as shown below:

https://firebase.google.com/pricing/
https://firebase.google.com/pricing/
https://firebase.google.com/pricing/
https://firebase.google.com/pricing/
https://firebase.google.com/pricing/
https://firebase.google.com/pricing/
https://firebase.google.com/pricing/
https://firebase.google.com/pricing/
https://firebase.google.com/pricing/
https://firebase.google.com/pricing/
https://firebase.google.com/pricing/

App Quality Service

[266]

After the APK is loaded, Click CONTINUE. Here, you will find the options to test4.
the APK in various physical and virtual devices and Android versions. Select
which devices and the Android version you want to test the APK against and
click Start the test. After a couple of minutes you will see a full report of where
the app failed, what tests where performed, along with screenshots, warning
messages, and a video of the test performed.
Similarly, for instrumental tests, we require the debug and the test APK which5.
needs to be uploaded:

After the two APKs have been uploaded, the next steps are the same as that of the6.
Robo test.

App Quality Service

[267]

Summary
Many developers will agree that buggy and unresponsive apps lead to uninstalling of the
apps. But it is also the fact that testing on all the devices is a point of concern. Thus, it is
important to learn and gather information from the end users to bring the best of quality
back to the user. In the first part of this chapter, we detailed our how Firebase Crash
Analytics can be used to understand the buggy areas of the app. Using these reports,
developers can rework the buggy sections of the app before they ship new updates to the
users. In the last part of the chapter, we discuss how Firebase allows users to test the app
using Test Lab.

In Chapter 20, Grow Up, we will discuss how we can use Firebase Grow techniques to
ensure that we engage more users using the app and also tap.

13
Grow Up

Acquiring and engaging users are two of the most essential components that ensure the
success of an app. Most developers find it hard to acquire new users, which is one of the
keys to making the app reach millions. Equally important is how you make the user engage
with the app, so that the app is never out of focus.

Let us take an example of e-commerce apps which allow you several notifications, such as
holiday offers, coupon discounts, and many more. These are teasers for the user to use the
app again and probably make a purchase thereafter.

In this section, we will cover how two of these key components can be used using Firebase
services.

Dynamic links
A few years back, URLs were merely a trigger to take people to open web pages. As we
move towards mobile computing, links have evolved as per the trend. Today, they allow
you to go to specific content or a specific section within the app. This is similar to a concept
which most refer to as deep linking. For example, say if you received a link from a friend
and clicking the link can open the app, or if the Try our app button on a website could not
only take users to your app, but provide a way to specific content within the app for which
the app was installed. Not only does it engage users, it also personalizes the entire app
environment. With just one URL, you can not only send users right into the app, but also to
a specific section within the app.

Grow Up

[269]

In addition, Dynamic Links work across app installs: if a user opens a Dynamic Link, and
doesn't possess the app, the user will be taken to the app install page. Post installation, your
app starts and can access the link. These links work across several mediums such as email,
web, and social media referrals to ensure an increase in user acquisitions and retention. The
links can be configured to provide the best possible user experience. Dynamic Links help
developers to understand which initiatives and content drive growth. This is made possible
by Firebase's analytic console that allows you to gather insights on which links drive
installations or app use. You could also use referrer tracking to track growth channels.

One of the most promising examples of the Dynamic Links use cases is Google Maps. If you
search any location on the maps, you will able to see the data as given in the image below:

Google Maps Send to your phone feature

Grow Up

[270]

Clicking the option Send to your Phone will show up several options along with the
devices registered with Google. As an example, we have used Send as Email option. Once
this option is clicked, the email is sent and you will see the content of the email as shown
below:

Grow Up

[271]

Clicking on the option 'View In Google Maps' will open the location in Google1.
maps, and the marker would be pointing at the location you searched on the web.
This is a great asset for travelers:

Google Maps integration

Grow Up

[272]

Thus far, Branch Inc. is a lone player in the app deep linking space, and the company was
quick enough to have a How we are better comparison table as published here: https:/ /
blog.branch.io/firebase- dynamic- links- vs-branch- links- a-comparison:

Features Branch Links Firebase Links

String-built, Long links via Query Parameters Yes Yes

Google App Indexing Support Yes Yes

Single SDK Yes No

Rich attribution analytics Yes No

Web to app tools Yes No

Integrations with marketing channels/platforms Yes No

Support for over 6000 deep linking edge cases Yes No

Support for cross platform development tools Yes No

Industry-leading, SLA-backed technical support Yes No

As discussed earlier, Dynamic Links also help you to convert mobile web users to native
app users. With minimal effort, you can add a feature for a user by which, with just a click
of a link on the mobile web, the user is taken to the corresponding page in your app. It is no
matter if they have to go to the App Store or Google Play store to install it first.

https://blog.branch.io/firebase-dynamic-links-vs-branch-links-a-comparison
https://blog.branch.io/firebase-dynamic-links-vs-branch-links-a-comparison
https://blog.branch.io/firebase-dynamic-links-vs-branch-links-a-comparison
https://blog.branch.io/firebase-dynamic-links-vs-branch-links-a-comparison
https://blog.branch.io/firebase-dynamic-links-vs-branch-links-a-comparison
https://blog.branch.io/firebase-dynamic-links-vs-branch-links-a-comparison
https://blog.branch.io/firebase-dynamic-links-vs-branch-links-a-comparison
https://blog.branch.io/firebase-dynamic-links-vs-branch-links-a-comparison
https://blog.branch.io/firebase-dynamic-links-vs-branch-links-a-comparison
https://blog.branch.io/firebase-dynamic-links-vs-branch-links-a-comparison
https://blog.branch.io/firebase-dynamic-links-vs-branch-links-a-comparison
https://blog.branch.io/firebase-dynamic-links-vs-branch-links-a-comparison
https://blog.branch.io/firebase-dynamic-links-vs-branch-links-a-comparison
https://blog.branch.io/firebase-dynamic-links-vs-branch-links-a-comparison
https://blog.branch.io/firebase-dynamic-links-vs-branch-links-a-comparison
https://blog.branch.io/firebase-dynamic-links-vs-branch-links-a-comparison
https://blog.branch.io/firebase-dynamic-links-vs-branch-links-a-comparison
https://blog.branch.io/firebase-dynamic-links-vs-branch-links-a-comparison
https://blog.branch.io/firebase-dynamic-links-vs-branch-links-a-comparison
https://blog.branch.io/firebase-dynamic-links-vs-branch-links-a-comparison
https://blog.branch.io/firebase-dynamic-links-vs-branch-links-a-comparison
https://blog.branch.io/firebase-dynamic-links-vs-branch-links-a-comparison
https://blog.branch.io/firebase-dynamic-links-vs-branch-links-a-comparison
https://blog.branch.io/firebase-dynamic-links-vs-branch-links-a-comparison

Grow Up

[273]

Take a look at the following example of a use case, where a click on View in the Amazon
app would take the user to that context in the app. If the app doesn't exist, the user will first
be diverted to the respective store to install and then it will take them to the context:

If you are a first timer with Deep Linking, Google has an excellent kit here: https:/ /
developer.android. com/ training/ app- indexing/ deep- linking. html#adding- filters

https://developer.android.com/training/app-indexing/deep-linking.html#adding-filters
https://developer.android.com/training/app-indexing/deep-linking.html#adding-filters
https://developer.android.com/training/app-indexing/deep-linking.html#adding-filters
https://developer.android.com/training/app-indexing/deep-linking.html#adding-filters
https://developer.android.com/training/app-indexing/deep-linking.html#adding-filters
https://developer.android.com/training/app-indexing/deep-linking.html#adding-filters
https://developer.android.com/training/app-indexing/deep-linking.html#adding-filters
https://developer.android.com/training/app-indexing/deep-linking.html#adding-filters
https://developer.android.com/training/app-indexing/deep-linking.html#adding-filters
https://developer.android.com/training/app-indexing/deep-linking.html#adding-filters
https://developer.android.com/training/app-indexing/deep-linking.html#adding-filters
https://developer.android.com/training/app-indexing/deep-linking.html#adding-filters
https://developer.android.com/training/app-indexing/deep-linking.html#adding-filters
https://developer.android.com/training/app-indexing/deep-linking.html#adding-filters
https://developer.android.com/training/app-indexing/deep-linking.html#adding-filters
https://developer.android.com/training/app-indexing/deep-linking.html#adding-filters
https://developer.android.com/training/app-indexing/deep-linking.html#adding-filters
https://developer.android.com/training/app-indexing/deep-linking.html#adding-filters
https://developer.android.com/training/app-indexing/deep-linking.html#adding-filters
https://developer.android.com/training/app-indexing/deep-linking.html#adding-filters
https://developer.android.com/training/app-indexing/deep-linking.html#adding-filters
https://developer.android.com/training/app-indexing/deep-linking.html#adding-filters

Grow Up

[274]

Let's move the focus to the Firebase console now, to generate the Dynamic Links:

Add a dependency to the build.gradle file and1.
compile com.google.firebase:firebase-invites:10.0.1
In the Firebase console, open the Dynamic Links section. You will see a section2.
similar to the screenshot below:

If you observe closely, the project's Dynamic Links domain looks like
appcode_app.goo.gl. You can also create links manually by adding custom parameters to
the URL.

Next, click on New Dynamic Link and ensure that Generate Dynamic Link is3.
selected. Provide the Name and URL and then select the Android App. The link
is a well-formatted URL and defines the link your app will open. You could also
specify it to be a link to a your app's content, or a URL displaying a specific
welcome screen. The package name should be the package name of the Android
app to use to open the link.

Grow Up

[275]

Firebase also allows you to shorten the dynamic link using the option Shorten an4.
existing Dynamic Link.
Once the Android app is selected, three optional sections are seen:5.

Android fallback link is a link that is visited if the app is not installed or if it's installed but
does not meet the minimum version on an Android device. This is defined by the version
code, which has the minimum value version of your app that can open the link. The Custom
app location overrides the Fallback link, if specified explicitly.

After the link is generated, Firebase Console also allows you to use the analytics to
understand the traction:

Grow Up

[276]

Dynamic Links provide the best experience across different platforms. Not only does it
allow us to engage already existing users, it also allows us to send potential users to any
specific location within your app. This makes it possible to survive the install process and
ensure users see just the right content when they are boarded.

Let us now check how we can make the app's data deep-linkable. If you have already done
the app deep linking, this process might be familiar to you:

Start setting up Firebase and the Dynamic Link SDK as explained above. This will1.
allow Firebase to enable passing of data about the Dynamic Link after the app
installation.
Next, set up Open in app links to your web pages. This section will help users to2.
move from the mobile web to the native app, holding the context of the same
data. On each page of your website, dynamically generate a Dynamic Link. The
link parameter can be marked as the URL of the page it's on. The link might
look as follows:

 <a
href="https://yourapp.goo.gl/?link=https://yourapp.com/content?item%3D2345&
apn=co
 m.your.app&ibi=com.your.app">View in Your App

https://zomatoapp.goo.gl/?link=https://zomatoapp.com/content?item%3D2345&apn=com.zomato.app&ibi=com.zomato.app
https://zomatoapp.goo.gl/?link=https://zomatoapp.com/content?item%3D2345&apn=com.zomato.app&ibi=com.zomato.app
https://zomatoapp.goo.gl/?link=https://zomatoapp.com/content?item%3D2345&apn=com.zomato.app&ibi=com.zomato.app

Grow Up

[277]

Finally, open the linked content in the app, when the link is clicked. This is made3.
simple by Dynamic Links SDK. On Android, you use the getInvitation()
method to get data from the Dynamic Link:

 AppInvite.AppInviteApi.getInvitation(mGoogleApiClient, this,
 false).setResultCallback(/* ... */);

This can be followed by a callback action, in which you can get the data passed in the
Dynamic Links link parameter by calling the getDeepLink() method:

String link = AppInviteReferral.getDeepLink(intent);

Similarly, sharing content from your app with your friends is one of the ways to growth
hack app downloads. Not only it will allow new users on board, it will also re-engage
existing users. With Dynamic Links, you can create a great user-to-user sharing experience.
For example: users who receive content recommendations from their friends can click a
link, which can then take them to the shared content in your app. This link can be shared
across platforms and sharing is even possible whether or not their friends have your app
installed.

To set this up, the only change to the above steps is to configure a Share button, which will
generate Dynamic Links to be send to your friends using the app of your user's choice. In
Android, the Share button starts an activity with the ACTION_SEND intent:

Intent sendIntent = new Intent();
String text = "Please check this link for 20% food coupon: " +
myDynamicLink;
sendIntent.setAction(Intent.ACTION_SEND);
sendIntent.putExtra(Intent.EXTRA_TEXT, text);
sendIntent.setType("text/plain");
startActivity(sendIntent);

Finally, you need to receive the link that's passed to your app, so that you can display the
content. This is possible using the getInvitation() method:

AppInvite.AppInviteApi.getInvitation(mGoogleApiClient, this,
false).setResultCallback(/* ... */);

After that, in the callback, you can get the data passed in the Dynamic Link's LINK
parameter by calling the getDeepLink() method:

String link_to_send = AppInviteReferral.getDeepLink(intent);

Grow Up

[278]

App indexing
Ever tried searching flights tickets from Google Search on mobile? The search results would
include listings which are similar to the one below:

Grow Up

[279]

It shows a list of apps that might help you book tickets online. In fact, Google takes this
search to another level by showing apps that you have on your device and which can help
you plan. In this case, we had Cleartrip app installed and it showed an option Open On
Cleartrip.com:

In short, if the app is installed when users search for related content, they will launch the
app directly from the search results. Android apps support HTTP URLs and use association
to verify the relationship between an app and its website. Once this association is verified,
Google search indexes URLs that work for both, your site as well as your app, right from
the search results.

Grow Up

[280]

Take a look at some of the App indexing options provided by Google for App developers:

Type of App Indexing Description

Search Results Displays and promotes the app in search results.

App Installs App Install Card is displayed next to your website card. This
helps users to discover your app.

Auto Complete Helps users to see the app pages they have visited as suggested
results on the Google app.

Now On Tap Allows Now on tap's results to be showcased to the app users.

With the help of the App Indexing API, you can index user actions in your app. To know
how to set up this API in your code, please follow the steps below:

Add the following dependency to the build.gradle file:

compile 'com.google.android.gms:play-services-appindexing:10.0.1'

Import the following classes into the project:

import com.google.android.gms.appindexing.Action;
import com.google.android.gms.appindexing.AppIndex;
import com.google.android.gms.common.api.GoogleApiClient;

Next, add the App Indexing API calls to your project class. It asks for Title, Description,
URL, and type of relevant activities and builds the Action Object. You can add the snippet,
as shown in the example below:

protected void onCreate(Bundle savedInstanceState) {
 mClient = new
GoogleApiClient.Builder(this).addApi(AppIndex.API).build();
 mUrl = "http://yourcloneapp.com/food/goa-foods";
 mTitle = "Goa Foods";
 mDescription = "Check out the latest article on Goa Foods";
 }

You can also refer to the link below to learn more about these actions:

https://developers. google. com/ android/ reference/ com/ google/ android/ gms/
appindexing/Action#constant- summary

Finally, indicate the activity for initialization. Call the AppIndexApi.end() method after
the activity completes, and disconnects your client.

https://developers.google.com/android/reference/com/google/android/gms/appindexing/Action#constant-summary
https://developers.google.com/android/reference/com/google/android/gms/appindexing/Action#constant-summary
https://developers.google.com/android/reference/com/google/android/gms/appindexing/Action#constant-summary
https://developers.google.com/android/reference/com/google/android/gms/appindexing/Action#constant-summary
https://developers.google.com/android/reference/com/google/android/gms/appindexing/Action#constant-summary
https://developers.google.com/android/reference/com/google/android/gms/appindexing/Action#constant-summary
https://developers.google.com/android/reference/com/google/android/gms/appindexing/Action#constant-summary
https://developers.google.com/android/reference/com/google/android/gms/appindexing/Action#constant-summary
https://developers.google.com/android/reference/com/google/android/gms/appindexing/Action#constant-summary
https://developers.google.com/android/reference/com/google/android/gms/appindexing/Action#constant-summary
https://developers.google.com/android/reference/com/google/android/gms/appindexing/Action#constant-summary
https://developers.google.com/android/reference/com/google/android/gms/appindexing/Action#constant-summary
https://developers.google.com/android/reference/com/google/android/gms/appindexing/Action#constant-summary
https://developers.google.com/android/reference/com/google/android/gms/appindexing/Action#constant-summary
https://developers.google.com/android/reference/com/google/android/gms/appindexing/Action#constant-summary
https://developers.google.com/android/reference/com/google/android/gms/appindexing/Action#constant-summary
https://developers.google.com/android/reference/com/google/android/gms/appindexing/Action#constant-summary
https://developers.google.com/android/reference/com/google/android/gms/appindexing/Action#constant-summary
https://developers.google.com/android/reference/com/google/android/gms/appindexing/Action#constant-summary
https://developers.google.com/android/reference/com/google/android/gms/appindexing/Action#constant-summary
https://developers.google.com/android/reference/com/google/android/gms/appindexing/Action#constant-summary
https://developers.google.com/android/reference/com/google/android/gms/appindexing/Action#constant-summary
https://developers.google.com/android/reference/com/google/android/gms/appindexing/Action#constant-summary
https://developers.google.com/android/reference/com/google/android/gms/appindexing/Action#constant-summary
https://developers.google.com/android/reference/com/google/android/gms/appindexing/Action#constant-summary
https://developers.google.com/android/reference/com/google/android/gms/appindexing/Action#constant-summary

Grow Up

[281]

Admob
In this section, we will discuss what AdMob is, as well as the guidelines of using Admob in
an app. AdMob by Google helps you to monetize the app through in-app advertisements.
The ads can be displayed in various formats like banner ads, interstitial ads, native ads, or
video ads.

Before you can display ads in the app, you will need to create an AdMob account and
activate one or more ad unit IDs. These IDs are used in the app where the ad is to be
displayed.

Now, let's get started with adding AdMob in android.

The best way to use AdMob is with Firebase, but it is also available as a standalone for
those who don't want to use it with Firebase. Firebase provides analytics which can be used
to monetize the app more intelligently by seeing the user's behavior and the type of ads the
user likes. In the following explanation we will be describing how we can implement
AdMob with Firebase.

You are not allowed to click on your own live ads during development of
testing. It may lead to suspension of your AdMob account.

If you already have your AdMob account, link it to your Firebase app from the Firebase
console:

Grow Up

[282]

To start ads in Android, first we add the dependencies in the app level gradle file and sync
the gradle file from the Sync Now option:

compile 'com.google.firebase:firebase-ads:10.0.1'

After the syncing is complete, Ad objects will be available which can be used in your code to
display the ads. An Ad Unit ID is a unique identifier, given to an ad that needs to be
displayed in the app. Ads can be displayed at different sections of the app and each ad
should have a different Ad Unit ID.

For example, if we are displaying the ads in two sections of the app, then we need to have
two ads, each with its own Ad Unit Id. Keep all the Ad Unit Ids in the string.xml file,
so that we can have all the ids in one place. In case we have to change the ad id, we could
manage it faster in one place rather than opening the activities where the ads are present.

Now, let us discuss some guidelines that are to be followed while displaying ads in the app:

Think about the user experience while placing ads:
We should always consider the flow of our app when deciding where to place
our ads. The best place for the ads be placed is where the users are expected to be
less engaged with the app, such as when user is redirected to a new activity.
Do not force users to click the ad:
We should not use phrases such as click this ad or any other similar phrases.
We should not give any compensation or other incentives to user for clicking ads.
Giving incentives to users in any way to click on links and/or non-AdMob ads is
prohibited.
Reserve ad space during loading of app pages:
A fixed space needs to be dedicated to display an ad when a screen in the app is
displayed. Sometimes, ads may not load at the same time as your app content
due to bad internet connectivity. In this case, we have to ensure that the ads do
not cover or shift the content of the app, to prevent accidental clicks.
Avoid placing ads on the screens without any content:
Before implementing any ads, you should first consider user experience and the
type of interaction users may have with your app. Ads should not be placed on
screens with no content (for example, thank you, log in, exit, error pages, and so
on). These screens are the ones that the user sees upon starting the app, while he
is about to exit the app, or after performing a specific action on the screen. Ads
that are the main focus on these types of screens can confuse users into thinking
that the ads are actual part of the app, so we should avoid placing ads on such
screens. We should also avoid placing ads on an app screen when users do not
have their attention on the screen.

Grow Up

[283]

Refresh ads at proper intervals:
It is recommend that ads should persist for 60 seconds or longer, depending on
the functionality of the app, as this provides the best performance for both
advertisers and publishers. If the app is automatically refreshing the ads, make
sure that the ad requests are not made when the screen is off. Also, if users
navigate to and from pages with ads in an app over a short period of time, a new
ad request should not be made sooner than the recommended 60 second rate.
Ensure the right ad format for the right screen:
Make sure you use the right type of ad for the screen mode - landscape or
portrait. For instance, when we are placing a portrait ad when the app is in
landscape mode it may impact the performance of the ad. In these cases, we
should utilize smart banners to get the most appropriate ads for your apps.

Banner Ads
Banner ads are ads that cover a portion of the screen. To implement the banner ad we have
to add the view in the XML of the activity:

<com.google.android.gms.ads.AdView
 android:id="@+id/adView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:layout_centerHorizontal="true"
 ads:adSize="BANNER"
 ads:adUnitId="@string/banner_ad_unit_id" />

Here, adSize represents the size of the ad that we want to display and the adUnitId is the
ad ID that is to be displayed.

Grow Up

[284]

The various sizes that are supported by the banner ads are as follows:

Size Description AdSize Constant

320x50 Standard Banner BANNER

320x100 Large Banner LARGE_BANNER

300x250 IAB Medium Rectangle MEDIUM_RECTANGLE

468x60 IAB Full-Size Banner FULL_BANNER

728x90 IAB Leaderboard LEADERBOARD

Screen width x 32|50|90 Smart Banner SMART_BANNER

The FULL_BANNER and LEADERBOARD are only supported in tablet devices, whereas others
are supported in both tablets and phones.

The size of the ad can also be changed from the code, using the following code:

AdView adView = new AdView(this);
adView.setAdSize(AdSize.SMART_BANNER);

Here, we have set the size of the ad to Smart Banner.

Smart Banners are ad units that render banner ads on any screen size and in either
orientation. Smart Banners smartly detect the width of the phone and its current
orientation, so as to make the ad view for that size.

Ad lifecycle event callbacks
Now, let us discuss the ad lifecycle event callbacks. The ad object provides a listener to get
the status of various states of the ad. We can add a callback listener for the ad by using
AdView.setAdListener(). The various callbacks that are available from these listeners
are as follows:

public abstract class AdListener {
 public void onAdLoaded();
 public void onAdFailedToLoad(int errorCode);
 public void onAdOpened();
 public void onAdClosed();
 public void onAdLeftApplication();
}

Grow Up

[285]

onAdLoaded() is called when an ad is ready to be displayed.

onAdFailedToLoad(int errorCode) is called when an ad request failed; it also returns
the reason why the request failed. The error code usually is one of the following:

Error Code Description

ERROR_CODE_INTERNAL_ERROR Something happened internally, like, an invalid
response was received from the ad server while trying
to get the ad.

ERROR_CODE_INVALID_REQUEST The ad request was invalid; this usually occurs when
the ad unit ID was incorrect.

ERROR_CODE_NETWORK_ERROR The ad request was unsuccessful due to network
connectivity.

ERROR_CODE_NO_FILL The ad request was successful, but no ad was returned
due to lack of ad inventory.

onAdOpened() is called when an ad opens an overlay that covers the screen.

onAdClosed() is called when the user is about to return to the application after clicking on
the close button of the ad.

The onAdLeftApplication() is called when an ad leaves the application (for example, to
go to the browser).

Now we know how to display the ads, let's discuss some guidelines that are to be followed
while we are displaying banner ads in the app.

Discouraged banner implementations
Here are some examples of poor banner ad implementations that cause invalid activity, due
to the proximity of the ad to app clickable elements:

Avoid placing ads near Interactive Elements:
Placing the banner ads very close to the interactive elements is one of the biggest
causes of accidental clicks. We must try to place the ads in places with less user
interactivity on the screen to avoid accidental clicks. Some of the interactive
elements that cause such types of accidents are buttons, such as a next button or
a custom app menu bar interactive content like a text chat box, or an image in an
image gallery.

Grow Up

[286]

Refrain from placing ads between app items:
This type of of placement when the ad is placed between various interactive
elements. Users are likely to come across this banner ad multiple times with a
higher level of engagement with the app. So, they are more likely to click on the
banner ads accidentally.
Ads should not overlap the app content:
Banner ads should not float or hover over app content. If an app has a scrolling
view, banner ads should be placed over the content. Banner ads should not move
as a user scrolls through the content, as users may try to click on a section of the
view but may accidentally click on the banner ad.

Such banner ad placement can put your app or your account at risk if too many accidental
clicks occur, so it is recommend to avoid such an implementation.

Recommended banner implementations
Separate the ad from the interactive elements:
Separating the banner ad from app interactive elements helps reduce user
confusion and accidental clicks. It is important to provide some space/buffer
between ads and clickable elements to avoid accidental clicks.
Separate the ad from app content using a border:
Banner ads that remain fixed on the screen as the user scrolls through the content
can be placed either at top or bottom of the screen, as long as there is a
separator/border between the ad and the interactive elements. It's recommended
that the border should be non-clickable.
Reserve a fixed space for the ad:
Sometimes it may take time for the banner ads to load on the screen. So, to handle
the delay in the display of an ad even after the content has been loaded, a fixed
area where the ad is to be displayed should be kept so that whenever the ad gets
displayed it does not affect the other content of the screen.

Grow Up

[287]

Interstitial Ads
Interstitial ads are ads which occupy the full screen of the device.

The following are the steps involved in implementing an interstitial ad through your code.
First, we have to create an instance of the interstitial ad:

private InterstitialAd mInterstitialAd;

Then, we initialize the ad in the onCreate method of the activity:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_interstitial_ad);
 ...
 // Create the InterstitialAd and set the adUnitId (defined in
values/strings.xml).
 mInterstitialAd = newInterstitialAd();
 loadInterstitial();
}

private InterstitialAd newInterstitialAd() {
 InterstitialAd interstitialAd = new InterstitialAd(this);
 //Set the ID of Ad
 interstitialAd.setAdUnitId(getString(R.string.interstitial_ad_unit_id));
 interstitialAd.setAdListener(new AdListener() {
 @Override
 public void onAdLoaded() {
//Button Used to Display the AD
 mNextLevelButton.setEnabled(true);
 }

 @Override
 public void onAdFailedToLoad(int errorCode) {
//Button Used to Display the AD
 mNextLevelButton.setEnabled(true);
 }

 @Override
 public void onAdClosed() {
 // Proceed to the next level.
 goToNextLevel();
 }
 });
 return interstitialAd;
}

Grow Up

[288]

private void loadInterstitial() {
 // Disable the next level button and load the ad.
 mNextLevelButton.setEnabled(false);

 AdRequest adRequest = new AdRequest.Builder()
 .setRequestAgent("android_studio:ad_template").build();
 mInterstitialAd.loadAd(adRequest);
}

private void goToNextLevel() {
 // Show the next level and reload the ad to prepare for the level after.
 mLevelTextView.setText("Level " + (++mLevel));
 mInterstitialAd = newInterstitialAd();
 loadInterstitial();
}

Here, we load the ad, but it is not displayed until a user does some specific interaction with
the app. In the above case, until they click on the mNextLevelButton.

When the user clicks on the Next level button, the ad is displayed:

mNextLevelButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 showInterstitial();
 }
});

private void showInterstitial() {
 // Show the ad if it's ready. Otherwise toast and reload the ad.
 if (mInterstitialAd != null && mInterstitialAd.isLoaded()) {
 mInterstitialAd.show();
 } else {
 Toast.makeText(this, "Ad did not load", Toast.LENGTH_SHORT).show();
 goToNextLevel();
 }
}

Grow Up

[289]

The call mInterstitialAd.show() should not be made in the onAdLoaded() callback of
the ad listener. As the onAdLoaded() is an asynchronous method, there is no control on
when the onAdLoaded() callback would happen. This would be called when the loading of
the ad gets completed. Now, if the show() method is called on this callback, the display of
the ad would be dependent on the asynchronous loading of the ad instead of the app state,
which can be when the user is in the middle of another interaction with the app. This can
result in policy violations due to accidental clicks.

Instead, we recommend loading the ad earlier in the lifecycle of the application, then
polling interstitial.isLoaded() to see if the ad is ready to be shown. If it isn't ready,
we recommend moving to the next state in the application.

Here are some questions that one should ask while implementing the interstitial ad:

How will the user engage with the app when the ad is shown?
Will the user be surprised by the interstitial ad?
Is it the right time to show an interstitial ad?

Grow Up

[290]

Interstitial ads have certain guidelines while implementing them in the app. Here are some
of the key points:

Discouraged interstitial implementations
On app launch or app exit:

Avoid showing an interstitial ad when the user launches the app or when the
user is exiting the app. The best place to use interstitial ads is between the screens
of the app's content. Ads should not be placed when the app is running in the
background or outside the app's environment.

Here are some examples describing when an interstitial ad should not be shown:

Grow Up

[291]

In the preceding example shown, the user is shown an interstitial ad immediately after he
has launched the app; the normal loading occurs after the ad is closed. Another situation is
when the user tries to exit the app:

When the user is exiting the app, avoid showing the interstitial ads. Not only does it impact
the user's experience, it might impact its revisit changes too. Assuming that you still want to
use the ad, here is an alternative approach:

Grow Up

[292]

In this case, the user will see a screen of the app indicating that the app has launched and is
loading the details, during which an ad is displayed.

Ads shown repeatedly:
It is a bad practice to display an ad to a user too frequently, as there could be a
possibility that he clicks on the ads rather than actually experiencing the ad.
We should not display an ad to a user frequently, as there are chances that the
user may accidently click an ad.

Grow Up

[293]

Some of the implementations of this types are as follows:

Avoid showing ads after each app interaction:1.

Here, the user sees an interstitial ad after every interaction with app.

Placing back to back ads:2.

Grow Up

[294]

Here, the user sees two or more interstitial ads after performing an action. This might
confuse the user into thinking it is a part of the app and can cause an accidental click.

A simple way to avoid these cases is to keep track of when the last interstitial ad was
displayed and not show the user ads too often. Show ads only after the user has completed
a series of actions or at the end of the stage.

Ads shown unexpectedly:
Don't show the interstitial ad suddenly while the user is performing an action, as this may
often frustrate the user. The user should see the ads at logical breaks within our app, such
as when the user is about to complete a particular sequence of tasks, to make sure that the
user does not get surprised by the ad.

A common issue is that, even though you may intend for the ad to load in between page
content, the ad itself appears shortly after a new page of content has loaded due to carrier
latency. To prevent this from happening, it is recommend that you preload the interstitial
ad in advance and show the ad when the user performs an action.

Grow Up

[295]

Here are some examples showing the unexpected launch of interstitial ads:

Showing an ad after the app has been loaded:1.

Here, the user sees the ad after the app has been launched and content has been displayed
without any user interaction. This can lead to accidental clicks if the user was about to
perform an action.

Showing an ad after they have performed the action but content has already2.
loaded:

Grow Up

[296]

Here, after the user has performed an action on the home screen, they see the second screen
but, shortly afterwards, an ad is displayed.

In both of the above cases, the interstitial ad is displayed without an interaction from the
user, due to which the user may be surprised while performing an action in the app, leading
to accidental clicks.

Grow Up

[297]

Now we will show an example of how the above cases can be solved:

As shown in the above example, we are displaying the interstitial ad on the user's
interaction with the app and not without. As the user is not surprised by the display or ad,
this prevents accidental clicks. The user is able to follow the natural flow of the app after he
has closed the ad.

Grow Up

[298]

Interstitial ad implementations
How to place an ad in your app:
An interstitial ad could be placed between two tasks. It should be placed at a
point where the user's first task gets completed and they are about to start with
another.
For example, if your app has an order section involved, then an interstitial ad
could be shown to the user after the order process gets successfully completed
and they are about to go back to the products list page. It is recommended that
the interstitial ads appear before the page break, rather than after the page break.
In the case of a game app, the ad could be placed between the levels or stages of a
game, as a level or stage provides a break from the app. Using an interstitial ad at
a proper break point encourages a user to evaluate the ad instead of just ignoring
it.
A page break usually ends by asking the user to click on a Continue or Next
button, or a similar kind of button. Hence, it is important to show the interstitial
ad before that button to avoid accidental clicks. It will make a user see or click the
ad genuinely.

Some apps asks users to click on Continue buttons to proceed to the next pages. In such
apps, interstitial ads could be shown at places while the processing takes place. For
example, while the next page is being loaded, the ad could be shown alongside the loader.
Here, a user will avoid clicking on it accidentally.

Summary
In this chapter, we first discussed how Deep Linking can help to acquire and engage users.
This topic was followed by discussion on how app indexing can help users to visit the
specific content within the app from a webpage. This allows users to receive an in-app
content experience based on the searches made on Google. In the last section, we discussed
how developers can use AdMob to monetize their apps.

14
Testing

Mobile App testing needs a careful process of implementation. Starting small, this process
can progress into several large forms of execution. As per the Qualcomm Band Tracker,
battery life is something people look for in a phone, and, on average, 11 apps are installed
on a smartphone. Your app has to undergo serious testing to be among the top 11.

In this chapter, we will highlight some of the major testing techniques to be followed in the
development process.

Testing Mechanisms (Functionality ,
Performance , Security , and Compatibility)
Testing is an important part of the software development life cycle. A good strategy for
software testing is the designing of software test cases into a series of steps that need to be
well planned.

The strategy should include the steps to be taken, the effort, time, and resources that would
be required. A proper plan needs to be laid down with test case designs, rules, stages, time
estimation, complexity evaluation, milestones for verification, reporting, and progress
reporting.

Software testing has goals that vary, depending on factors such as, type of project,
magnitude of the project, and so on. But, some of the major goals that remain unified across
any testing plan are mentioned here:

Finding defects which may be created by the programmer while developing the1.
software.
To avoid any unwanted behavior when the product has been deployed.2.

Testing

[300]

To make sure that the final product is as per the business and user requirements3.
and specifications.
To gain the confidence of the customers by providing them with a quality4.
product.

Software Testing Life Cycle (STLC)
The Software Testing Life Cycle covers the entire process that defines various phases of
software testing. It has certain objectives and phases that can also be illustrated by the
following diagram:

Testing Cycle

The Software Testing Life Cycle proceeds outward. The process flow goes out from a
developer to a tester. Hence, the basic and the first tests have to be performed by the
developer who codes a section of the functionality, and then it proceeds outward toward
the tester. Given below are some of the key testing mechanisms:

Unit testing: In unit testing, the testing techniques are used to detect errors in a
software's individual component. They are instant test cases, which are
performed, mostly by the developer, on completion of a section or component
that could function independently.
Functional testing: Functional testing includes the testing of the actual
functionality of a components for any issues. It also involves validation testing of
the user inputs at various places.

Testing

[301]

Integration testing: Once the unit and functional tests of the individual
components are a success, all these sections have to be integrated. Upon
integration, there might be errors which could come up. Hence, the integration
testing becomes a necessity. It focuses on issues associated with verification and
program construction as components begin interacting with one another.
System testing: System testing involves the overall system elements properly. It
checks that the overall system function and performance has been achieved. It
performs the full testing and also considers the user experience.

Many software errors are eliminated before testing begins by conducting effective technical
reviews. Different testing techniques are appropriate at different points in time. The
developer of the software conducts testing and may be assisted by independent test groups
for large projects. Testing and debugging are different activities. Debugging must be
accommodated in any testing strategy.

Organizing for Software Testing
Specify and highlight the product requirement in clear format before testing
begins
Specify testing objectives explicitly
Identify categories of users for the software and develop a profile for each
Prepare the Test Plan and focus on rapid cycle testing
Use effective formal reviews as a filter prior to testing
Conduct formal technical reviews to assess the test strategy and test cases
Focus on continuous improvements to work on better test cases

Integration Testing
When giving the in depths about the integration testing, the testers should strive to identify
critical modules having the following requirements.

Testing

[302]

Top-down integration testing
The top-down integration technique tests the modules at a lower hierarchy that are not yet
integrated in the main code. The lower modules are simulated and are called stubs. The
preceding modules are integrated and tested, although the lower modules are not complete:

Top Down integration Testing

The preceding figure shows that the module 1, 2, and 3 are individually completed and
tested. Module 4, 5, 6, and 7 are not completed or tested. The top level modules 1, 2, and 3
are integrated and tested. The module 2 needs integration of modules 2, 4, and 5. Hence, the
modules 4 and 5 are simulated to stubs and then integrated. Similarly, the modules 3, 6, and
7 are integrated.

As the top-down integration gives a complete product before its completion, it gives the
overall idea of how the final product would look. Also, it could be used for demonstration
purpose. It could also help find any top level bugs in the product and could be rectified
earlier.

Bottom-up integration testing
The bottom-up integration testing is completing and testing the complete lower-level
modules, and then integrating the lower modules with the higher modules and testing the
integrated module:

Testing

[303]

Bottom Up integration Testing

The preceding figure shows the bottom-up integration testing flow. Here, the lower-level
modules 4, 5, 6, and 7 are tested and integrated with the higher-level modules and then
tested. For instance, the modules 4, 5, and 2 are completed, unit tested, and integrated and
then again tested after integration. It is similar for modules 6, 7, and 3. Then later, the
modules 2, 3, and 1 are integrated and tested.

Regression testing
Regression testing is testing the existing software that has been tested previously again,
after changes are made in same or some other modules, in order to find errors or bugs that
occur in the existing software.

Regression testing helps verifying if the existing module works correctly after integrating a
new one. It ensures that it does not error the existing working of a module and the existing
functionality is maintained.

Smoke testing
Smoke tests are performed on a build which is integrated to verify that the functionalities it
performs are as expected. It is also known as Build Verification Testing, which ensures that
the important functions of the build work correctly.

Testing

[304]

Acceptance Testing
Acceptance testing is making sure that the software works correctly for intended users in
his or her normal work environment. At times, the software might work well at the
development environment because of suitable conditions. But, it might not work well or as
expected when deployed at the client environment. Hence, the Alpha and Beta tests play an
important role to make sure the product works correctly in both environments.

Alpha test
The test of the complete software is tested by customer under the supervision of the
developer at the developer's site. We will be discussing this in detail when we talk more
about the Google Play Developer Console in Section 7.

Beta test
The test of the complete software is tested by the customer at his or her own site without the
developer being present. Google provides an option to run several Beta tests on the Google
Play, which we will be discussing in depth in Section 7.

Performance Testing
Performance testing is the process of determining the speed or effectiveness of a device.
This process can involve quantitative tests, such as measuring the response time at which
an app functions. Qualitative attributes such as reliability, scalability, and interoperability
may also be evaluated.

Performance testing can verify that a system meets the specifications claimed by its
manufacturer or vendor. The process can compare two or more devices in terms of
parameters such as speed, data transfer rate, bandwidth, throughput, efficiency, or
reliability.

Android Studio has an in-built tool to monitor the performance of the app. The Monitor
section in the Android Studio, which is already mentioned in the Chapter 2, Exploring
Android Studio Developer Tools, is a tool that could be used to test the performance of the app
at the developer level. It gives you how much memory is consumed by the app, and if it
frees up space upon usage of the memory. Along with memory, it also allows you to
monitor the network usage.

Testing

[305]

The performance testing has to be also carried out, by testing your app across different
devices with different device specifications. Testing of the app on a device with lower
memory is the best way to test your app for performance.

Security Testing
Security testing is one very important testing if your app contains sensitive data. It is
required that your app is completely secured over the network when you send any sensitive
data like a user's bank details across the network. Also, it is required that no sensitive data
is saved onto the device, and if saved it should be correctly encrypted.

An app that is not security tested could be vulnerable to attacks and the sensitive user data
could be compromised. Hence, various security testing mechanisms need to be followed to
make sure that your app is secured.

Compatibility Testing
Compatibility testing is testing your app across different devices. The app should be
displaying the data correctly across all these devices. It plays a very important role when
scalability is of utmost importance.

Compatibility across devices has many different classes. The testing on the devices must
satisfy conditions across devices like:

Screen Size: Your app must be displayed properly across different device sizes,1.
like a small phone, a normal size phone, or a tablet device.
Screen Resolution: The app must display data and images across the devices2.
with different resolutions. The most important test is image as different sizes of
same image are required on different resolution devices.
OS: The app should be functional across all the Android versions that are3.
mentioned to be supported by your app. There are different functionalities that
happen across different versions of Android. For example, additional permissions
are required on the latest versions of Android devices.
Orientation: If your app is functional in both portrait as well as landscape then,4.
the tests need to be performed to check if the app displays correctly in both
portrait and landscape mode. Also, a test needs to be made when the transition
between landscape mode to portrait mode and vice versa takes place.

Testing

[306]

Hardware Accessibility: Not all devices have all the hardware installed into5.
them. Hence, it is required to test on devices that do not support hardware, and
you are using it in your app. For example, if your app is making use of the mobile
camera, but a device is not having a camera, then the app might crash.

Automating User Interface Tests
User interface (UI) testing makes sure that the functional requirements and various features
of the app are working correctly. UI testing could be made using a human tester to test all
the cases of UI manually, and make sure that the app UIs function correctly as expected.
This will make sure that the test cases are checked and verified, but it would involve a lot of
time testing these cases one by one. Also, the human intervention for testing could mean,
they could miss out some critical complex tests. Hence, a much better approach to test the
UI components is automating the test cases by writing code snippets. The automated test
approach ensures that the tests are more reliable and efficient.

Android Studio has made a provision to write the UI test cases in code. The project has a
folder (src/androidTest/java) to write the automated test cases. After writing the test
cases in the Java class file, you need to run the test file on the target device. The app would
be running in the test mode and would work based on the test code that has been written.
Complex test scenarios could also be performed using the UI testing frameworks and
cannot be used to simulate user interactions on the target app.

UI test cases could depend on its own single app or it could depend on other multiple apps:

UI tests that depend on a single app: This test case depends on a single app, that1.
is, the app you are currently testing; it allows you to check if the correct output is
returned directly. Here, how the app acts or if it responds as expected needs to be
verified, when a user action is performed or the user inputs some data. You will
get the response of this test case directly and can fix it without any other
dependencies. Espresso is one of the UI testing frameworks, which will allow you
to simulate user actions.
UI tests that depend on multiple apps: This UI test case, as it says, depends on2.
multiple apps, where the correct behavior of the app depend on interactions
between the current app and other user or system apps. For instance, if your app
makes needs some pictures from the device, then it needs to access the gallery
app. For that, your app has to ask permission and use the app, and fetch the
gallery files required. UI Automator allows you to create test cases for multiple
app test cases.

Testing

[307]

Testing UI for a single app
Testing UI within a single app helps us ensure that the users will not encounter any
problems when using the app. We should always create a UI test case for each of the
sections of the app so that we can test them regularly to see the app is functioning correctly,
even after some changes are made in the app.

Testing App using Espresso in Android Studio
Espresso is a testing framework that is used to write test cases which can simulate user
actions on an app. It is provided by Android Testing Support Library and has APIs that can
be used in your code for simulation as per your needs. The Espresso tests can run on
devices running Android 2.3.3 (API level 10) and higher.

Espresso has a lot of advantages. It particularly does the synchronization of simulated
actions with the UI automatically, of the app that you are testing. Espresso can also know if
the main thread is active or in an idle state. This makes Espresso time independent, that is,
it will allow to run your test app sequences at the required time. This improves the
reliability of the test cases and also relieves you from having to add any timing
workarounds, such as Thread.sleep() in your test code.

Setting up Espresso in Android Studio
Before we start building the UI test cases with Espresso, we have to add the dependencies
into the build.gradle file of the app module as follows:

dependencies {
// Other dependencies ...
androidTestCompile 'com.android.support.test.espresso:espresso-core:2.2.2'
}

Once the gradle file is successfully synced, we can now start writing the Espresso test class.

Create an Espresso Test Class
First, we need to create a Java class in order to create an Espresso test case:

The onView() method could be used to find the UI component that you want to1.
test in the activity. It is to be used to find the UI component to test in case of an
AdapterView. For example, a sign-in Button or any button in the activity.

Testing

[308]

ViewInteraction.perform() or DataInteraction.perform() can be used2.
to simulate a specific user interaction to perform on that UI component.
For example, clicking on the sign-in button could be simulated by the perform()
method. Multiple actions on the same UI component can be sequentially
performed using a comma-separated list in the method argument.
The steps above can be repeated to simulate a user flow across multiple activities3.
in the app.
The ViewAssertions method checks if the UI reflects the expected state or4.
behavior, after these user interactions are performed.

The following code snippet shows how your test class may invoke this basic workflow:

ViewInteraction linearLayout = onView(
allOf(withId(R.id.browseNearby), isDisplayed()));
linearLayout.perform(click());

In the preceding snippet, we found a view with the R.id.browseNearby ID. First, check if
it is displayed in the current view or not. If it is present, we performed the click on that
view.

If the view was not present and we had performed the click on this view, it would have
thrown a NoMatchingViewException.

Specifying a View Matcher
You can specify a view matcher using the following approaches. The calling methods in the
ViewMatchers class is as follows:

If you want to find a view with the text that is given, we can use the withText()1.
to get the view. It can be used as shown in the following example:
onView(withText("Submit"));

Similarly, you can call withId() and provide the resource ID (R.id) of the view,2.
as shown in the following example: onView(withId(R.id.button_submit));

Android resource IDs are not always unique. Two ID names may be the same. Hence, in
this case if a resource ID is used by more than one view, Espresso throws an
AmbiguousViewMatcherException. Check https:/ /developer. android. com/ reference/
android/support/ test/ espresso/ AmbiguousViewMatcherException. html to know about
AmbiguousViewMatcherException.

https://developer.android.com/reference/android/support/test/espresso/AmbiguousViewMatcherException.html
https://developer.android.com/reference/android/support/test/espresso/AmbiguousViewMatcherException.html
https://developer.android.com/reference/android/support/test/espresso/AmbiguousViewMatcherException.html
https://developer.android.com/reference/android/support/test/espresso/AmbiguousViewMatcherException.html
https://developer.android.com/reference/android/support/test/espresso/AmbiguousViewMatcherException.html
https://developer.android.com/reference/android/support/test/espresso/AmbiguousViewMatcherException.html
https://developer.android.com/reference/android/support/test/espresso/AmbiguousViewMatcherException.html
https://developer.android.com/reference/android/support/test/espresso/AmbiguousViewMatcherException.html
https://developer.android.com/reference/android/support/test/espresso/AmbiguousViewMatcherException.html
https://developer.android.com/reference/android/support/test/espresso/AmbiguousViewMatcherException.html
https://developer.android.com/reference/android/support/test/espresso/AmbiguousViewMatcherException.html
https://developer.android.com/reference/android/support/test/espresso/AmbiguousViewMatcherException.html
https://developer.android.com/reference/android/support/test/espresso/AmbiguousViewMatcherException.html
https://developer.android.com/reference/android/support/test/espresso/AmbiguousViewMatcherException.html
https://developer.android.com/reference/android/support/test/espresso/AmbiguousViewMatcherException.html
https://developer.android.com/reference/android/support/test/espresso/AmbiguousViewMatcherException.html
https://developer.android.com/reference/android/support/test/espresso/AmbiguousViewMatcherException.html
https://developer.android.com/reference/android/support/test/espresso/AmbiguousViewMatcherException.html
https://developer.android.com/reference/android/support/test/espresso/AmbiguousViewMatcherException.html
https://developer.android.com/reference/android/support/test/espresso/AmbiguousViewMatcherException.html
https://developer.android.com/reference/android/support/test/espresso/AmbiguousViewMatcherException.html
https://developer.android.com/reference/android/support/test/espresso/AmbiguousViewMatcherException.html

Testing

[309]

The Hamcrest Matchers class has a method allOf(), which can be used to combine
multiple matchers, such as containsString() and instanceOf() to find the correct
view. This allows us to filter the match results more and gets the view with more accuracy,
as shown in the following example:

onView(allOf(withId(R.id.button_signin), withText("Submit")));

The not keyword can be used to filter views that don't correspond to the matcher as follows:

onView(allOf(withId(R.id.button_signin), not(withText("Save"))));

Once you import the Hamcrest Matchers class in your test class, you'll be able to use all of
these methods of that class. To import the class use the import the
org.hamcrest.Matchers package.

To improve the performance of an Espresso test case, we have to specify minimal matching
information to find a view. For example, if a view can be easily identifiable by its
description, we do not need to specify more details such as the type of view we are looking
for.

Performing Actions
When we are running test cases, it becomes very common to perform user interaction on
some views such as typing text in an edit text, clicking on a button, and so on. Espresso has
provided ViewInteraction.perform() or DataInteraction.perform() methods,
which are used to simulate such user interactions with the app's UI. These methods take
one or more ViewAction objects as arguments. After the actions have been provided,
Espresso then fires these actions in a sequence to the one that is provided. Espresso executes
them in the main thread itself so as to simulate real action.

The ViewActions class also has a list of methods which can be used to perform certain
actions. The methods specifies such actions as follows:

ViewActions.click(): This clicks on the view.
ViewActions.typeText(): This clicks on a view and enters a specified string.
ViewActions.scrollTo(): This scrolls the view. The target view must be
subclassed from ScrollView and the value of its android:visibilityproperty
must be VISIBLE. For views that extend AdapterView (for example, ListView),
the onData() method takes care of scrolling for you.
ViewActions.pressKey(): This performs a key press using a specified keycode.
ViewActions.clearText(): This clears the text in the target view.

Testing

[310]

If the target view is inside a ScrollView, perform the ViewActions.scrollTo() action
first to display the view in the screen before other proceeding with other actions. The
ViewActions.scrollTo() action will have no effect if the view is already displayed. An
example code with the preceding mentioned capabilities are as follows:

@LargeTest
@RunWith(AndroidJUnit4.class)
public class SplashActivityTest {
@Rule
public ActivityTestRule<SplashActivity> mActivityTestRule = new
ActivityTestRule<>(SplashActivity.class);
@Test
public void splashActivityTest() {
// Added a sleep statement to match the app's execution delay.
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
e.printStackTrace();
}
ViewInteraction appCompatTextView = onView(
allOf(withText("SKIP"), isDisplayed()));
appCompatTextView.perform(click());
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
e.printStackTrace();
}
ViewInteraction linearLayout = onView(
allOf(withId(R.id.browseNearby), isDisplayed()));
linearLayout.perform(click());
// Added a sleep statement to match the app's execution delay.
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
e.printStackTrace();
}
ViewInteraction tintableImageView = onView(
allOf(withClassName(is("com.androcid.zomato.view.custom.TintableImageV
ew")), isDisplayed()));
tintableImageView.perform(click());
// Added a sleep statement to match the app's execution delay.
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
e.printStackTrace();
}
ViewInteraction linearLayout2 = onView(

Testing

[311]

allOf(withId(R.id.bottom_menu_collection),
withParent(withId(R.id.bottomBar)),
isDisplayed()));
linearLayout2.perform(click());
// Added a sleep statement to match the app's execution delay.
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
e.printStackTrace();
}
ViewInteraction linearLayout3 = onView(
allOf(withId(R.id.bottom_menu_feed),
withParent(withId(R.id.bottomBar)),
isDisplayed()));
linearLayout3.perform(click());
// Added a sleep statement to match the app's execution delay.
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
e.printStackTrace();
}
ViewInteraction linearLayout4 = onView(
allOf(withId(R.id.bottom_menu_account),
withParent(withId(R.id.bottomBar)),
isDisplayed()));
linearLayout4.perform(click());
}
}

In the preceding example, we are traversing within the app performing clicks, which will
lead the users to a new screen with each click. If the view is not found at any of the
instances, then the test case will fail.

Testing

[312]

The flow of the screens is as shown in the following figure:

Test your activities in isolation with Espresso Intents
Espresso Intents helps us to validate intents sent out by an app. With Espresso Intents, you
can test an app, activity, or service in isolation by capturing outgoing intents, stubbing the
result, and sending it back to the component under test.

To begin testing with Espresso Intents, you need to add the following line to your app's
build.gradle file:

dependencies {
androidTestCompile 'com.android.support.test.espresso:espresso-
intents:2.2.2'
}

To test an intent, you need to create an instance of the IntentsTestRule class, which is
very similar to the ActivityTestRule class. The IntentsTestRule class initializes
Espresso Intents before each test, terminates the host activity, and releases Espresso Intents
after each test.

Testing WebViews with Espresso Web
Espresso Web allows you to test WebView components contained within an activity. It uses
the WebDriver API to inspect and control the behavior of a WebView.

Testing

[313]

To begin testing with Espresso Web, you need to add the following line to your app's
build.gradle file:

dependencies {
// Other dependencies ...
androidTestCompile 'com.android.support.test.espresso:espresso-web:2.2.2'
}

When creating a test using Espresso Web, you need to enable JavaScript on the WebView
when you instantiate the ActivityTestRule object to test the activity. In the tests, you can
select HTML elements displayed in the WebView and simulate user interactions, such as
entering text into a textbox and then clicking on a button. After the actions are completed,
you can then verify that the results on the Web page match the results that you expect.

Verifying Results
To verify/check whether the final result of the UI we can use the
ViewInteraction.check() or DataInteraction.check() method, to compare them
with some expected state.

We have to pass in a ViewAssertion object as the argument. If the assertion fails, Espresso
throws AssertionFailedError.

The ViewAssertions class provides a list of helper methods for specifying common
assertions. The assertions you can use include:

doesNotExist: This asserts that there is no view matching the specified criteria
in the current view hierarchy.
matches: This asserts that the specified view exists in the current view hierarchy
and its state matches some given Hamcrest matcher.
selectedDescendentsMatch: This asserts that the specified children views for
a parent view exist, and their state matches some given Hamcrest matcher.

The following is a simple example of how the test can be written to use the preceding
conditions:

@LargeTest
@RunWith(AndroidJUnit4.class)
public class SimpleIntentTest {
private static final String MESSAGE = "St Inez";
/* Instantiate an IntentsTestRule object. */
@Rule
public IntentsTestRule<HomeActivity> mIntentsRule =

Testing

[314]

new IntentsTestRule<>(HomeActivity.class);@Test
public void verifyMessageSentToMessageActivity() {
ViewInteraction appCompatTextView2 = onView(
allOf(withId(R.id.subtitle), withText("NEARBY"), isDisplayed()));
appCompatTextView2.perform(click());
// Types a message into a EditText element.
onView(withId(R.id.searchText))
.perform(typeText(MESSAGE), closeSoftKeyboard());
onView(withId(R.id.submit)).perform(click());
// Verifies that the DisplayMessageActivity received an intent
// with the correct package name and message.
// Check that the text was changed.
onView(withId(R.id.subtitle))
.check(matches(withText(MESSAGE)));
}
}

Testing UI for Multiple Apps
It is very rare that your app will not make use of some other apps in your phone or some of
the system apps present on your device. Hence, testing of such cases where your app has to
open another app, make use of that app, and come back, involves some more serious
testing. These test cases have to verify that the interactions happening across the other apps
are as expected.

When your app has interactions with other apps, it has to first call the other app from your
app, open the other app, and see if that app displays the expected behavior, that your app
wants it to do, and finally get the response from that other app, if required. If there is a
response that is returned from the other app, then it has to be verified and checked if it is as
expected by your app.

There could be two examples that I would give. The first in which your app does not
require any response back, and the second in which the response is required. An example of
a case where a response is required is when your app needs to use another app, such as
camera or gallery. We shall take an example of gallery app. Here, your app will require to
open the gallery, view all the gallery images, files, videos, and so on, as per your
requirement, and then use one or multiple images, files, and so on from gallery into your
app and display.

Another example is mail app that lets the user enter a subject, message, and recipients, and
launch the mail sending screen and send the mail to all recipients and then returns control
to the original app.

Testing

[315]

Such UI tests which involve using of multiple apps could be done using the UI Automator
testing framework provided by the Android Testing Support Library. The UI Automator
APIs allows you to interact with visible elements on a device, regardless of which Activity
is in focus. The test case can check a specific UI component by using descriptors such as the
text displayed. UI Automator tests can run on devices running Android 4.3 (API level 18) or
higher.

The UI Automator testing framework is an instrumentation-based API and works with
theAndroidJUnitRunner test runner.

Set Up the UI Automator
To setup the UI Automator we have to add the dependency in the build.gradle file of the
app module:

dependencies {
androidTestCompile 'com.android.support.test.uiautomator:uiautomator-
v18:2.1.1'
}

To optimize your UI Automator testing, you should first inspect the target app's UI
components and ensure that they are accessible. These optimization tips are described in
the next two sections.

Inspecting the UI on a device
We have to make sure that all the UI components, which we are going to be testing are
visible on the device. We also make sure that the UI Automator can access these UI
components. In order to check that, add the contentDescription line in your XML code:

android:contentDescription

This line makes sure that the UI components to be tested will have some visible texts for all
the labels.

We can use the uiautomatorviewer tool, which provides a visual interface that can be used
to inspect the hierarchy of the layout and the properties of a view in the UI components that
are visible on the device. For example, you can create a UI selector that matches a specific
visible property:

To launch the uiautomatorviewer tool:1.
Open your app on an actual device.2.

Testing

[316]

Then, connect that device to your development machine.3.
Open a terminal window and navigate to the <android-sdk>/tools/ directory.4.

Run the tool with this command: $ uiautomatorviewer

To view the UI properties for your application:

Click on the Device Screenshot button.in the uiautomatorviewer interface.1.
Then, hover over the snapshot in the left-hand panel to see the UI components2.
identified by the uiautomatorviewer tool. The properties are listed in the lower
right-hand panel and the layout hierarchy in the upper right-hand panel.
Optionally, click on the Toggle NAF Nodes button to see UI components that are3.
non-accessible to the UI Automator. Only limited information may be available
for these components.

Ensuring your Activity is accessible
Make sure that your activities are accessible to the UI Automator test framework. When the
Android accessibility features are present or have been used in your app, the UI Automator
works, and performs best. For instance, using View, or a subclass of View from the SDK or
Support Library, there is no need to separately implement accessibility support.

But, many apps have custom UI elements to provide a better UI for their app. For such kind
of apps, the UI Automator would not provide automatic accessibility. You need to explicitly
add accessibility for such UI components in the app.
If your app contains instances of a subclass of View that isn't from the SDK or Support
Library, you have to make sure that you add accessibility features to these elements by
completing the following steps:

Create a concrete class that extends ExploreByTouchHelper.1.
Associate an instance of your new class with a specific custom UI element by2.
calling setAccessibilityDelegate().

The following code snippet shows a test which would be getting an instance of UI Device
and simulate the press of the Home Button on the device:

@RunWith(AndroidJUnit4.class)
@SdkSuppress(minSdkVersion = 18)
public class ChangeTextBehaviorTest {
private static final String BASIC_SAMPLE_PACKAGE
= "com.androcid.zomato";
private static final int LAUNCH_TIMEOUT = 5000;

Testing

[317]

private static final String STRING_TO_BE_TYPED = "UiAutomator";
private UiDevice mDevice;
@Before
public void startMainActivityFromHomeScreen() {
// Initialize UiDevice instance
mDevice =
UiDevice.getInstance(InstrumentationRegistry.getInstrumentation());
// Start from the home screen
mDevice.pressHome();
// Wait for launcher
final String launcherPackage = mDevice.getLauncherPackageName();
Assert.assertThat(launcherPackage, CoreMatchers.notNullValue());
mDevice.wait(Until.hasObject(By.pkg(launcherPackage).depth(0)),
LAUNCH_TIMEOUT);
// Launch the app
Context context = InstrumentationRegistry.getContext();
final Intent intent = context.getPackageManager()
.getLaunchIntentForPackage(BASIC_SAMPLE_PACKAGE);
// Clear out any previous instances
intent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TASK);
context.startActivity(intent);
// Wait for the app to appear
Device.wait(Until.hasObject(By.pkg(BASIC_SAMPLE_PACKAGE).depth(0)),
LAUNCH_TIMEOUT);
}
}

The preceding example code would work only on devices with Android API level 18 and
higher. To make sure that this condition is satisfied, the following line in the code does that
for you:

@SdkSuppress(minSdkVersion = 18)

This is as required by the UI Automator framework.

The findObject() method is used to retrieve UiObject which represents a view that
matches a given selector criteria.

We can reuse the instances of UiObject that have been created in other parts of testing, as
needed.

Note that the UI Automator test framework searches the current display for a match every
time your test uses a UiObject instance to click on a UI element or query a property.

Testing

[318]

The following snippet shows how your test might construct UiObject instances that
represent a Skip button in an app:

UiObject skipButton = mDevice.findObject(new UiSelector()
.text("SKIP").className("android.widget.TextView"));
// Simulate a user-click on the OK button, if found.
try {
if (skipButton.exists() && skipButton.isEnabled()) {
skipButton.click();
}
} catch (UiObjectNotFoundException e) {
e.printStackTrace();
}

Selector Specification
The UiSelector class has multiple UI elements that can be used to display the UI
components in an app. It has a query for each element in the displayed UI on the target
device. Using these matching elements, we can identify each of the UI components. If more
than one element if found that is matching, the element if selected which is first found by
the class in the layout file.

Multiple UI Selector properties could be chained together to find the correct UI component
in the layout. Even after using all the multiple properties, if the UI component is not found,
then a UiAutomatorObjectNotFoundException exception is thrown by the class which
could be used to handle error cases.

The childSelector() method is used to nest multiple UiSelector instances.
For instance, if you need to find a ListView component from the layout in a currently
displayed UI, then you would need to use multiple properties to find that component as
seen in the code here:

UiObject appItem = new UiObject(new UiSelector()
.className("android.widget.ListView")
.instance(1)
.childSelector(new UiSelector()
.text("Apps")));

Using a Resource ID instead of using a text element or content Descriptor proves to be more
helpful when specifying a selector. The resource ID has to be used wherever possible, as
they have many advantages:

Not all elements have a text element (for example, icons in a toolbar).
Text selectors can lead to test failures if there are some minor changes to the UI,
but using resource ID would not affect any changes.

Testing

[319]

Using a resource ID could be used across multiple languages but a text element
may not scale across different languages.
Also, your text selectors may not match translated strings.
It can be useful to specify the object state in your selector criteria.

The checked() method: If you want to select a list of all checked elements so that you can
uncheck them, call this method with the argument set to true.

Performing Actions
The UiObject class has multiple methods, which could be used to perform user interactions
on the UI component.
The methods of the class are as follows:

click(): This clicks on the center of the visible bounds of the UI element.
dragTo(): This drags this object to arbitrary coordinates.
setText(): This sets the text in an editable field, after clearing the field's content.
Conversely, the clearTextField() method clears the existing text in an
editable field.
swipeUp(): This performs the swipe up action on UiObject. Similarly, the
swipeDown(), swipeLeft(), and swipeRight() methods perform
corresponding actions.

Tools and Techniques: Espresso and Monkeyrunner
Testing becomes an important part of the development life cycle. As seen, automation
testing becomes an important component of the cycle. Hence, it is a necessary to have good
automation testing tools.

There are many tools that can be used for automation testing for the UI in Android.

Espresso, Monkeyrunner, and Robotium are some of them.

Testing

[320]

Robotium
Robotium is an open source library that extends JUnit. It has many methods that can be
used for Android UI testing. It provides powerful and robust automatic black-box test cases
for Android apps (native and hybrid) and web testing. With Robotium, you can write
function, system, and acceptance test scenarios, and test applications where the source code
is available.

Robotium recorder is a tool which helps in writing robotium test classes. It can record all
the user interactions that have been made by the user on the app and create a test class,
which can be used to perform the test.

To start writing the test classes with Robotium, we first have to add the dependencies into
the build.gradle file:

dependencies {
androidTestCompile 'com.jayway.android.robotium:robotium-solo:5.6.3'
}

After the dependencies have been synced with the app, we can start writing the test classes.

Here is a basic example of Robotium:

public class RobotiumTest1 extends
ActivityInstrumentationTestCase2<SplashActivity> {
private Solo solo;
public RobotiumTest1() {
super(SplashActivity.class);
}
public void setUp() throws Exception {
super.setUp();
solo = new Solo(getInstrumentation());
getActivity();
}
@Override
public void tearDown() throws Exception {
solo.finishOpenedActivities();
super.tearDown();
}
public void testRun() {
//Wait for activity: 'com.androcid.zomato.activity.SplashActivity'
solo.waitForActivity(com.androcid.zomato.activity.SplashActivity.class,
2000);
//Wait for activity: 'com.androcid.zomato.activity.login.StartActivity'
assertTrue("com.androcid.zomato.activity.login.StartActivity is not
found!",
solo.waitForActivity(com.androcid.zomato.activity.login.StartActivity.class

Testing

[321]

));
//Click on SKIP
solo.clickOnText(java.util.regex.Pattern.quote("SKIP"));
//Wait for activity: 'com.androcid.zomato.activity.HomeActivity'
assertTrue("com.androcid.zomato.activity.HomeActivity is not found!",
solo.waitForActivity(com.androcid.zomato.activity.HomeActivity.class));
//Click on NEARBY St Inez, Panaji, Goa
solo.clickOnText(java.util.regex.Pattern.quote("NEARBY"));
//Wait for activity: 'com.androcid.zomato.activity.SelectLocationActivity'
assertTrue("com.androcid.zomato.activity.SelectLocationActivity is not
found!",
solo.waitForActivity(com.androcid.zomato.activity.SelectLocationActivity.cl
ass));
//Click on Empty Text View
solo.clickOnView(solo.getView(com.androcid.zomato.R.id.searchText));
//Enter the text: 'pa'
solo.clearEditText((android.widget.EditText)
solo.getView(com.androcid.zomato.R.id.searchText));
solo.enterText((android.widget.EditText)
solo.getView(com.androcid.zomato.R.id.searchText), "pa");
//Click on Collection
solo.clickOnView(solo.getView(com.androcid.zomato.view.custom.TintableImage
View.class, 1));
Timeout.setSmallTimeout(5000);
//Click on Collection
solo.clickOnView(solo.getView(com.androcid.zomato.R.id.bottom_menu_collecti
on));
//Wait for activity:
'com.androcid.zomato.activity.collection.CollectionActivity'
assertTrue("com.androcid.zomato.activity.collection.CollectionActivity is
not found!",
solo.waitForActivity(com.androcid.zomato.activity.collection.CollectionActi
vity.class));
//Set default small timeout to 14750 milliseconds
Timeout.setSmallTimeout(14750);
//Click on Feed
solo.clickOnView(solo.getView(com.androcid.zomato.R.id.bottom_menu_feed,
1));
//Wait for activity: 'com.androcid.zomato.activity.FeedActivity'
assertTrue("com.androcid.zomato.activity.FeedActivity is not found!",
solo.waitForActivity(com.androcid.zomato.activity.FeedActivity.class));
//Click on Account
solo.clickOnView(solo.getView(com.androcid.zomato.R.id.bottom_menu_account,
1));
//Wait for activity:
'com.androcid.zomato.activity.AccountActivity'assertTrue("com.androcid.zoma
to.activity.AccountActivity is not found!",
solo.waitForActivity(com.androcid.zomato.activity.AccountActivity.class));

Testing

[322]

//Click on Home
solo.clickOnView(solo.getView(com.androcid.zomato.R.id.bottom_menu_home,
1));
//Click on RelativeLayout Barbeque Nation Panaji, Goa Best dine out
experience ever!
solo.clickInRecyclerView(0, 0);
//Wait for activity: 'com.androcid.zomato.activity.PlaceDetailActivity'
assertTrue("com.androcid.zomato.activity.PlaceDetailActivity is not
found!",
solo.waitForActivity(com.androcid.zomato.activity.PlaceDetailActivity.class
));
}
}

The UI Animator
The UI Animator is a tool that can be used to test the Android app. The UI animator
framework allows you to test the UI of your native Android apps on one or more devices.
Another advantage of uiautomator is that it runs JUnit test cases with special privileges,
which means test cases can span across different processes. It also provides five different
classes for developers to use, including:

com.android.uiautomator.core.UiCollection;

com.android.uiautomator.core.UiDevice;

com.android.uiautomator.core.UiObject;

com.android.uiautomator.core.UiScrollable;

com.android.uiautomator.core.UiSelector

The UI Animator only works on Android devices with API level 16 or higher. Another
downside of uiautomator is that it doesn't support webview, with no way to directly access
Android objects.

To start using the UI Animator for testing, we must first add the following dependencies
into the build.gradle file:

dependencies {
androidTestCompile 'com.android.support.test.uiautomator:uiautomator-
v18:2.1.1'
}
A basic example of the use of the UI animator is given here:
@RunWith(AndroidJUnit4.class)
@SdkSuppress(minSdkVersion = 18)
public class UIAnimatorTest {private static final String

Testing

[323]

BASIC_SAMPLE_PACKAGE= "com.androcid.zomato";
private static final int LAUNCH_TIMEOUT = 5000;
private static final String STRING_TO_BE_TYPED = "UiAutomator";
private UiDevice mDevice;
@Before
public void startMainActivityFromHomeScreen() {
// Initialize UiDevice instance
mDevice =
UiDevice.getInstance(InstrumentationRegistry.getInstrumentation());
// Start from the home screen
mDevice.pressHome();
// Wait for launcher
final String launcherPackage = mDevice.getLauncherPackageName();
Assert.assertThat(launcherPackage, CoreMatchers.notNullValue());
mDevice.wait(Until.hasObject(By.pkg(launcherPackage).depth(0)),
LAUNCH_TIMEOUT);
// Launch the app
Context context = InstrumentationRegistry.getContext();
final Intent intent =
context.getPackageManager().getLaunchIntentForPackage(BASIC_SAMPLE_PACKAGE)
;
// Clear out any previous instances
intent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TASK);
context.startActivity(intent);
// Wait for the app to appear
mDevice.wait(Until.hasObject(By.pkg(BASIC_SAMPLE_PACKAGE).depth(0)),
LAUNCH_TIMEOUT);
}
@Test
public void checkPreconditions() {
assertThat(mDevice, notNullValue());
}
@Test
public void testChangeText_sameActivity() {
UiObject skipButton = mDevice.findObject(new UiSelector()
.text("SKIP").className("android.widget.TextView"));
// Simulate a user-click on the OK button, if found.
try {
if (skipButton.exists() && skipButton.isEnabled()) {
skipButton.click();
}
} catch (UiObjectNotFoundException e) {
e.printStackTrace();
}
}
@Test
public void testChangeText_newActivity() {
// Type text and then press the button.

Testing

[324]

mDevice.findObject(By.res(BASIC_SAMPLE_PACKAGE, "editTextUserInput"))
.setText(STRING_TO_BE_TYPED);
mDevice.findObject(By.res(BASIC_SAMPLE_PACKAGE, "activityChangeTextBtn"))
.click();
// Verify the test is displayed in the Ui
UiObject2 changedText = mDevice
.wait(Until.findObject(By.res(BASIC_SAMPLE_PACKAGE, "show_text_view")),
500 /* wait 500ms */);
assertThat(changedText.getText(), is(equalTo(STRING_TO_BE_TYPED)));
}
}

From the preceding test class, we demonstrated how we can check whether the UI that was
intended to be used exists or is enabled using the .exists() and .isEnabled() methods,
and we performed actions on the view using the .click() method.

Espresso
Espresso is a testing framework that has many APIs that can be used to perform UI testing
of Android apps. With the latest 2.0 release, it has now become a part of the Android
Support Repository, which makes it easier to create automated testing support for your
project. It is supported from the API level 8 and above. It's quite reliable, synchronizing
with the UI thread, and it's fast because there is no need for any sleeps (tests run on same
millisecond when an app becomes idle).

To add Espresso in the app, we have to add the following dependencies into the app
module's build.gradle file:

dependencies {
androidTestCompile 'com.android.support.test.espresso:espresso-core:2.2.2'
}
Here is a simple example of how to write the Test classes with Espresso:
@LargeTest
@RunWith(AndroidJUnit4.class)
public class SplashActivityTest {
@Rule
public ActivityTestRule<SplashActivity> mActivityTestRule = new
ActivityTestRule<>(SplashActivity.class);
@Test
public void splashActivityTest() {
// Added a sleep statement to match the app's execution delay.
// The recommended way to handle such scenarios is to use Espresso idling
resources:
//
https://google.github.io/android-testing-support-library/docs/espresso/idli

Testing

[325]

ng-resource/index.html
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
e.printStackTrace();
}
ViewInteraction appCompatTextView = onView(
allOf(withText("SKIP"), isDisplayed()));
appCompatTextView.perform(click());
// Added a sleep statement to match the app's execution delay.
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
e.printStackTrace();
}
ViewInteraction linearLayout = onView(
allOf(withId(R.id.browseNearby), isDisplayed()));
linearLayout.perform(click());
// Added a sleep statement to match the app's execution delay.
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
e.printStackTrace();
}
ViewInteraction tintableImageView = onView(
allOf(withClassName(is("com.androcid.zomato.view.custom.TintableImageV
ew")), isDisplayed()));
tintableImageView.perform(click());
// Added a sleep statement to match the app's execution delay.
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
e.printStackTrace();
}
ViewInteraction linearLayout2 = onView(
allOf(withId(R.id.bottom_menu_collection),
withParent(withId(R.id.bottomBar)),
isDisplayed()));
linearLayout2.perform(click());
// Added a sleep statement to match the app's execution delay.
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
e.printStackTrace();
}
ViewInteraction linearLayout3 = onView(
allOf(withId(R.id.bottom_menu_feed),
withParent(withId(R.id.bottomBar)),

Testing

[326]

isDisplayed()));
linearLayout3.perform(click());
// Added a sleep statement to match the app's execution delay.
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
e.printStackTrace();
}
ViewInteraction linearLayout4 = onView(
allOf(withId(R.id.bottom_menu_account),
withParent(withId(R.id.bottomBar)),
isDisplayed()));
linearLayout4.perform(click());
}
@LargeTest
@RunWith(AndroidJUnit4.class)
public class SimpleIntentTest {
private static final String MESSAGE = "St Inez";
/* Instantiate an IntentsTestRule object. */
@Rule
public IntentsTestRule<HomeActivity> mIntentsRule =
new IntentsTestRule<>(HomeActivity.class);
@Test
public void verifyMessageSentToMessageActivity() {
ViewInteraction appCompatTextView2 = onView(
allOf(withId(R.id.subtitle), withText("NEARBY"), isDisplayed()));
appCompatTextView2.perform(click());
// Types a message into a EditText element.
onView(withId(R.id.searchText))
.perform(typeText(MESSAGE), closeSoftKeyboard());
//onView(withId(R.id.submit)).perform(click());
// Verifies that the DisplayMessageActivity received an intent
// with the correct package name and message.
// Check that the text was changed.
onView(withId(R.id.subtitle))
.check(matches(withText(MESSAGE)));
}
}
}

Testing

[327]

Monkeyrunner
Monkeyrunner is a testing tool that has been designed to test applications on devices at a
functional level and also for running unit test cases. This framework has been designed in
Python so that all the cases have to be written in Python; the framework can control the
Android device or an Android Emulator by writing codes in Python. It does not require the
Android code to control the device.

Monkeyrunner has its APIs, which could be used to install an Android app on a device and
take user input. It could also take the screenshot of the device and save the screenshots in its
workstation.

In order to run the monkeyrunner, it has a tool which is also known as the monkey tool. The
monkey tool runs in an adb shell directly on the device or emulator and generates pseudo-
random streams of user and system events. The monkeyrunner tool controls devices and
emulators from a workstation by sending specific commands and events from an API.

The monkeyrunner tool provides the following features for Android testing:

Multiple device control: The Monkeyrunner API can run across multiple devices
at the same time. The same test cases could be tested on multiple emulators or
devices that are connected when test cases are running. The devices have to be
attached physically at once but the code has to connect each device separately
and then run the test at once on all devices.
Functional testing: The Monkeyrunner can do an automated test of an entire
Android application. The inputs could be provided, while testing using
keystrokes or touch events. Then, monkeyrunner will provide you with
screenshots of the results.
Regression testing: The Monkeyrunner can do the regression testing in an
automated fashion by comparing the resulting screenshots of a test case with
some reference screenshots that are correct.
Extensible automation: The Monkeyrunner can be used for controlling any
Android device using the extensive range of APIs that are provided by the
Monkeyrunner API toolkit. It can also be called from the standard Python OS and
subprocess modules to call Android tools in turn, such as Android Debug Bridge.
Your own classes can also be added to the monkeyrunner API.

Testing

[328]

An implementation of Python that uses the Java programming language, Jython, allows the
monkeyrunner API to interact with the Android framework. In Jython, the Python syntax
itself can be used to access constants, classes, and methods of the API.

An example code sample of a Jython program is shown here:

from com.android.monkeyrunner
 import MonkeyRunner, MonkeyDevice

 device = MonkeyRunner.waitForConnection()

 device.installPackage('ZomatoProject/bin/Zomato.apk')

 package = 'com.android.zomato'

 activity = 'com.android.zomato.MainActivity'

 runComponent = package + '/' + activity

 device.startActivity(component=runComponent)

 result = device.takeSnapshot()

 result.writeToFile('ZomatoProject/screenshot1.png','png')

The preceding Python program connects to an Android device, installs the apk, and then
takes a screenshot of the device and saves.

First it waits for a connection to the device using the following:

device = MonkeyRunner.waitForConnection()

Then, it installs the Zomato apk as follows:

device.installPackage('ZomatoProject/bin/Zomato.apk')

This is the activity which needs to start. It appends the package with the activity and starts
that component:

activity = 'com.android.zomato.MainActivity'
 runComponent = package + '/' + activity
 device.startActivity(component=runComponent)

Testing

[329]

Here, it takes a snapshot of the device: result = device.takeSnapshot()

It then saves it in a file in the workstation:
result.writeToFile('ZomatoProject/screenshot1.png','png')

Monkeyrunner API: The Monkeyrunner API is contained in three modules in the
package com.android.monkeyrunner.
MonkeyRunner: The MonkeyRunner class has utility methods for running
monkeyrunner programs. It has methods for connecting monkeyrunner to a
device or emulator and for creating UIs for a monkeyrunner program.
MonkeyDevice: This MonkeyDevice is the actual representation class of a device
or an emulator. It has methods for installing and uninstalling packages, starting
an activity, sending keyboard or touch events to an application and running test
packages.
MonkeyImage: This MonkeyImage class is used to take the screen capture image.
It has methods for capturing screens, converting bitmap images to various
formats, comparing two MonkeyImage objects, and writing an image to a file.
Access monkeyrunner classes: All the classes from the MonkeyRunner APIs
have to be imported into the code manually. The monkeyrunner tool does not
import these modules automatically. To import a module using the Python from
statement:

 from com.android.monkeyrunner import <module>

Here, <module> is the classname you want to import. You can import more than one
module in the same from statement by separating the module names with commas.

Running monkeyrunner: The MonkeyRunner programs can be run from a file, or
interactively by entering monkeyrunner statements. The monkeyrunner tool is
found in the tools/subdirectory of your SDK directory.

Testing

[330]

The syntax of the monkeyrunner command is as follows:

monkeyrunner -plugin <plugin_jar><program_filename><program_options>

Supported on Robotium UI Animator Espresso

Android Yes Yes Yes

iOS No No No

Scripting Language Java Java Java

Creation Tools Robotium Recorder UI Animator Viewer Espresso Test Recorder

Supported API levels All 16 and greater 8 and greater

Summary
We started the section leaning about how the testing is done in Android Apps and glancing
through some of the general concepts of testing. These topics were followed by several
Android development testing support tools that allow us to test Android apps more
effectively, including UI Animator, Espresso, and Monkeyrunner.

Moving ahead, we will be discussing some the performance strategies that can be
implemented in the Android app. Some of the key elements under consideration will be
memory, battery, and data optimization.

Mobile App testing needs a careful process of implementation. Starting small, this process
can progress into several large forms of execution. As per the Qualcomm Band Tracker,
battery life is something people look for in a phone, and on an average, 11 apps are installed
on a smartphone. Your app has to undergo serious testing to be among the top 11.

In this chapter, we will highlight some of the major testing techniques to be followed in the
development process.

15
Preparing for Google Play

When you are ready to release your application, you will need to configure, build, and test
a release version of your application. The configuration task is simple; it involves basic code
clean up and code modification tasks that may optimize the app. The build process is
similar to the debug process, which can be accomplished by Java SE Development and
Android SDK tools. Finally, the testing of the app in a real-world condition will ensure that
the build functions as expected against the cases.

In the preceding section, we described several techniques to test the app. At this moment,
we have the app that has already undergone testing. However, before we distribute this
Android application, we need to prepare it for release. In this chapter, we will take a look at
release preparation.

The publishing process (Source: Google)

Once we are done, we will need to prepare the application for the final release. In this
process, we will generate a signed APK file, which can be used to distribute the app directly
to the user, or can be published and distributed through an application marketplace, such
as Google Play and Amazon Store.

Preparing for Google Play

[332]

Versioning Your App
Versioning of the app is a critical course of the app release, as it maintains information on
app upgrades and maintenance strategy. When users install the app, it provides
information on details of the version and what this particular version has to offer. This also
applies for users who install updates of an app that is installed on their devices. Services
through which you will publish your app will also need to display the version to users. The
publishing service may also check the app version to determine compatibility and perform
the upgrade/downgrade action accordingly. Since the Android System does not use app
version information to enforce restrictions on upgrading, downgrading, or the compatibility
of third party apps, the developer has to configure this setting. Using the minSDKVersion
setting, you can allow an app to specify the minimum system API with which the app is
compatible.

[PACKT] Defining the app version directly in the <manifest> element, the version values
in the Gradle build file will override the settings in the manifest. Removing these version
values from <manifest> will allow greater flexibility and potential overwriting when the
manifest files are merged during the build process. Defining version settings in the Gradle
build file instead helps to manage the build variations better.

You can define the values for the version settings in the Gradle build files. These values are
then merged into the app's manifest file during the build process. Two settings are
available, and you have to set both their values:

versionCode: An integer used as an internal version number. This just indicates1.
that there is a new version of the app available other than the previous one, and
this number is not shown to the user. Typically, the first version of the app is set
as 1 and gets increments for subsequent releases. The greatest value Google Play
allows for versionCode is 2100000000.
versionName: A string value, which is typically the version number shown to2.
the users. This can be defined as a raw string or a reference to a string resource.

 android {
 ...
 defaultConfig {
 ...
 versionCode 2
 versionName "1.1"
 }

Preparing for Google Play

[333]

In the preceding snippet, the defaultConfig block has two values, versionCode and
versionName. versionCode's value indicates that the current APK contains the second
release of the app, and the versionName value of 1.1 indicates that it will appear to the
users as version 1.1 after they install or upgrade it.

Now that we have set the versionCode and versionName, we can proceed to generate the
build. In the next section, we will learn about generating a signed APK.

Generating a signed APK
The Android ecosystem requires that app APKs be digitally signed with a certificate before
they can be installed on Android devices. Only after generating a signed APK, can we
upload the APK on Google Play for people to install. This section will explain how to
generate a signed APK using Android Studio. This section will also cover creating and
storing your certifications. Android Studio allows you to manually generate the signed
APKs, either one at a time or for multiple build variants at once.

Perform the following steps to generate the build using a manual sign procedure:

In Android Studio, click on Build | Generate Signed APK from the menu.1.
In the next section, select the Module you would like to release and click on Next:2.

Selecting a build module

Preparing for Google Play

[334]

If you already have the Key store generated, you may proceed to select the3.
Choose existing button and select the key from the specific path. Then, enter the
Key store password, Key alias, and Key password. If you do not have the key,
click on the Create New button:

Generate signed APK

When you click on the Create New button, you will note the following option:4.

The New Key Store key generation

Preparing for Google Play

[335]

Key store path is the path where you want your key store to be generated. Ensure that the
password is secure enough to protect the key. Alias is a name indicator of your key store.
The Validity should be set in years and defines the period for which the key is valid. For
example, selecting 25 years makes the key valid for 25 years, and you can sign app updates
with the same key throughout the span of that period.

On the Generate Signed APK Wizard window, select a keystore and private key5.
and enter the passwords for both.
Finally, set the APK generation folder along with the type of the build: release or6.
debug:

The generate signed APK final step

The following is a screenshot of the APK generation folder for Android Studio 2.3.3
(Windows):

Preparing for Google Play

[336]

When the process is completed, the APK will be generated in the destination path7.
you selected in the preceding step. This APK will be a ready-to-publish APK on
publishing channels such as Google Play. In case you are making any changes to
the app in the near future, the APK should be signed with the same certification
throughout the lifespan of your app:

The generate signed APK confirmation in Log

So far, we have discussed how to manually process the signed APK. In the next segment,
we will discuss how to preconfigure the automatic generation of the signed APK.

Preconfiguring to automatically Sign Your
APK
Android Studio allows you to configure your project in such a way that you can sign your
release APK automatically during the build process, by creating a signing configuration and
assigning it to your release build type. To create a signing configuration and assign it to
your release build type, follow these steps:

Preparing for Google Play

[337]

In the Project window, right-click on your app and click on Open Module1.
Settings:

Pre Configuration of Automatic Signing Procedure

Preparing for Google Play

[338]

On the Project Structure window, under Modules in the left panel, select the 2.
module you would like to sign:

The preconfiguration of Automatic Signing Procedure

Next, click on the Signing tab and then click on add (+) to add a key.3.
Select your key store file, enter a name for this signing configuration, and enter4.
the required information:

The preconfiguration of Automatic Signing Procedure

Under the Build Types tab, click on the release build. In the options list in5.
Signing Config, select the signing configuration you just created.
Next, click on OK, and the setup is complete.6.

Preparing for Google Play

[339]

Now, every time you build your release build type using Android Studio, the IDE will sign
the APK automatically, bypassing all the steps we did in the preceding Generating Signed
APK section. This signing will happen based on the signing configuration you specified.
You can find the signed APKs in the build | outputs | apk folder inside your project
directory for the module you are building the signed APK for.

In the next segment, we will discuss how to upload the app for Beta Testing, wherein we
will discuss how to set Alpha and Beta testers for the App.

Android Instant Apps
Sometimes, users need to experience the app before actually installing it on their device.
That not only saves space and time but also makes users check out the app before they find
it worthy of being installed on their device. With the same intention in mind, Google's
Android team launched Android Instant Apps. This option can be seen under Release
Management | Android Instant Apps, in the Google Play Developer Console:

The support for Android Instant Apps begins from Android v6.0 (API Level 23) through
Android O. This feature is available across more than 40 countries. The Android team is
also looking to expand the support to Android v5.0 (API level 21) devices too.

Preparing for Google Play

[340]

As an app developer, you can add APKs for production release, pre-release testing or the
managing development process during testing:

Android Instant Apps in Google Play Development Console

Alpha and Beta testing the App
The Google Play Developer Console will allow users to test the app, by giving them an
opportunity to fix any technical glitches or user experience issues before the app goes live to
a larger set of users. This approach sets a tone in releasing the right version to the users.
One point to be noted here is that feedback from the test users does not affect your app's
public rating.

Preparing for Google Play

[341]

Here are some key tips to keep in mind while engaging users to test:

Ensuring that the users join your tests requires that they have a Google account1.
(@gmail.com) or G Suite account to join. To enable this, you will have to navigate
to Google Play Developer Console, select the app you want in the left panel,
select Release Management | App Releases. Here, you can select either the
Alpha release or Beta release, depending on the step of testing you wish to
proceed with. In either of the two cases, you can have Open Testing, Closed
Group Testing, or Testing using Google Groups or Google+ communities. The
following screenshot shows an example of Beta Testing. Consider Closed Testing
if you want to run a test with a smaller group, whereas Open Testing should be
considered if you want to run a test with a large group and surface your app's
beta version on the Play Store. Under Closed Testing, the app developer can
create a set of user's lists based on emails. Google Play testing can also be built
around a Google+ community or Groups, which set a central place where you
and your team can interact with your testers. The URL then can be shared with
the testers, where they can click on Become a Tester option. This will allow them
to install the app on their Android device:

Beta testing

Preparing for Google Play

[342]

Keep an eye on the APK versions in testing. For an APK to be available to alpha2.
testers, it must have a higher version number than your beta or production
version, whereas in Beta testing, the APK must have a higher version number
than your production version.
Ensure that you set up the Pricing And Distribution option for the app properly.3.
Any changes to this section can affect your app's current and future production
and its alpha and beta versions. To set this up, navigate to the Store Presence |
Pricing and Distribution option. The following screenshot shows some of the
setting options available. Under manage countries, users can select the countries
where the app can be made available for download:

Pricing and distribution

One of the most useful features that this panel offers is how the App developers4.
can limit distribution to specific operators within a country:

Preparing for Google Play

[343]

Carrier-based availability for the app

You can run a closed alpha and an open beta test on your app concurrently.5.
However, one thing to be noted is that if you run an open alpha test, you can't
use the open or closed beta track.
Choose to opt in for Pre-Launch reports. This is one of the best features Google6.
allows in the Play Developer console. After you upload and publish an alpha or
beta APK, the test devices will automatically launch and crawl your app for
several minutes. This crawl will perform several basic actions every few seconds
on your apps, such as typing, tapping, and swiping. Reports of the pre-launch
will be available in the Pre-launch section of your Play Console. Using this
feature, the developer can see screenshots from devices that use different
Android versions, languages, and screen resolutions. This will help them to
understand how the app looks on different devices. This report also helps to
identify security issues found after scanning your app's APK file for a set of
known vulnerabilities:

Opt-in for the prelaunch report

Preparing for Google Play

[344]

Preparing App Store Listing
App Store Listing allows users to understand the kind and details of the app you have
developed. Flaunting the title, descriptions, and images, this page is one of the most crucial
one to tempt a user to download your app on their device:

Play Store Listing

Preparing for Google Play

[345]

Some of the most basic options include Title, Short Description, Full Descriptions and
Graphic Assets for each of Phones, Tablets, Wearables, and Android TV:

Graphical assets for the app

Preparing for Google Play

[346]

The developer can also select the application type and category based on the theme of the
app. Google plays a crucial role in streamlining the content ratings for Apps and games on
Google Play Store. Using the content rating system, one can communicate familiar and
locally relevant content ratings to your users. This improves app engagements by targeting
the right audience for your app's content:

Content rating for the app

Preparing for Google Play

[347]

Google also allows users to Experiment with your store listing. This is nothing but a feature
to run an A/B test on your app's store listing page:

Google Play Store Experiments

You can either run global or localized Tests:

Global Experiments: You can experiment with graphics in your app's default1.
store listing language. This enables developers to experiment with variants of
their app's icons, features graphics, screenshots, and promo videos. If your app's
store listing is only available in one language, this experiment page will be shown
to all the users. However, in the case where the developers have added any
localized graphic assets in a specific language and the app's default language is,
say, English, the user's viewing in any other language will be excluded from the
experiments.
Localized: Primarily intended for experimenting with text and graphics.Using2.
this experiment option, you can experiment with your app's icons, feature
graphics, screenshots, promotional videos, and/or your app's descriptions in up
to five languages. In case the store listing is only available in one language, the
default language will be the obvious choice.

Preparing for Google Play

[348]

Device Catalog
Device Catalog is one of the best features available in Google Play Developer Console. Once
you upload at least one APK, this section allows you to view the catalog of available devices
and review which of the available devices in the market are compatible with your app.
These statistics allow you to prevent any app crashes that might occur on specific devices:

The device catalog

To understand the lists of included and excluded devices, perform the following steps:

Sign in to your Play Console and select the app.1.
On the left side of the page menu, click on Release management | Device2.
catalog.
Select the All, Supported, and Excluded tabs.3.

To provide amazing experience to the end users, it is important that app developers review
this section clearly to understand the supported and excluded devices.

App signing
Google has introduced a service called Google Play App Signing, which enabled developers
to store their app signing keys on Google's server. This helps to prevent the risk of keys
getting lost or maliciously destroyed or multiple apps using the same keys, as sometimes
happens.

Preparing for Google Play

[349]

Once you hand over the keys to Google, it will help you keep them the same with a trust.
Google will then sign your apps with your key on your behalf. Google ensures that your
key gets encrypted using a tool before its transmission to their secure key handling server.
This step takes place when you sign them with your new Upload Key and push them to
play.

Note that once you agree to opt in for App Signing, it is a permanent change. You cannot
withdraw or remove your keys from their cloud servers. It means that you would have to
rerelease the app again separately if you want to opt out of this service.

Android Vitals
Poor app performance can badly impact how a user communicates with your app. Most of
the one star-rated apps on Google Play suffer a lot of stability issues. If developers can take
care of this aspect, not only will it improve the discoverability of the app but it can also help
users to engage better with your app. Google launched a new section in the Google Play
Developer Console that helps developers to understand their app's stability, battery usage,
and render time on real devices.

Stability of the app depends on the following two factors:

Application Not Responding (ANR): ANR is one of the most annoying irritants that can
easily frustrate any user. ANR occurs when a UI thread of an Android app is blocked for
too long. If the app is running in the foreground, the system displays a dialog to the user
with an option for the user to force quit the app. The ANR occurs mainly when one of the
following conditions occurs:

While your activity is in the foreground, your app fails to respond to an input
event or BroadcastReceiver (such as key press or screen touch events) within
the time frame of 5 seconds
While you do not have an activity in the foreground, your BroadcastReceiver
hasn't completed the execution within the stipulated amount of time

Handling ANRs are important, especially since one cares about retentions and bad reviews.
Android Vitals has a provision to help developers to monitor when ANRs occur and report
occurrences of the same.

Crash Rate: It is the best to tackle crashes before your app goes live to the masses. The best
way to ensure stability is to run Pre-Launch reports on your app, which will test your alpha
or beta apps on the physical devices so that you can identify and fix the issues before the
app is launched. We will discuss pre-launch reports later in this chapter.

Preparing for Google Play

[350]

Android Vitals has a provision to show you the percentage of users experiencing crashes in
your app. Statistically, it will show you the percentage of daily sessions during which your
users experienced at least one crash on your app. A session here refers to a day during
which your app was used.

When an app crashes, Android System terminates the app's process and displays a dialog to
let the user know about this stoppage, as follows:

Real-time ANRs

Crashes are often caused due to several reasons such as unhandled exceptions, resource
exhaustion, and other unexpected states. It is also important to know that the app need not
be in the foreground for the crash to occur. Any app component, even components such as
broadcast receivers or content providers that are running in the background, can stimulate
an app crash. Tackling the crashes requires meticulous handling and one of the most
important steps is to understand the root cause for this case. The following are some of the
tips that can help you to understand crashes better:

Reading and understanding the stack traces
Creating a crash-environment to reproduce the same crash occurrence
Understanding the Memory Errors and Network Exceptions, which are critical

Preparing for Google Play

[351]

To help developers understand the quality of the app, Android Vitals displays information
that provides great insights on crash analytics. On this screen, you can filter as per the
duration: last 24 hours, last 7 days, last 24 days, last 30 days, and last 60 days. You can also
filter as per different Android Versions and the production versions:

Crash overview

Preparing for Google Play

[352]

Clicking on each of these clusters will allow you to see respective analytics of the crash. It
shows the crash occurrence details for the clicked cluster along with the numbers, such as
total reported occurrences, reports of crashes this week, number of unique users who
experienced a crash from this particular cluster, and the last reported crash:

Cluster overview

This dashboard also provides information for this cluster on the app version, the Android
app version, and the devices. You can also see the entire stack trace of the total number of
crashes for this particular cluster, for each device:

Preparing for Google Play

[353]

Analytics by the app version, OS version, and device

Battery is dear to the user, and most of the app developers do not unnecessarily keep device
radio and CPU on, which can impact the battery performance. Android Vitals allows you to
identify two major causes of the battery drain:

Excessive Wakeups: Wakeups occur when alarms produce time-based activities,
which prevent an idle device from sleeping. Android Vitals allows you to
understand whether such occurrences are seen. It maps the percentage of battery
sessions during which the user experiences more than 10 wakeups per hour. This
data is collected only when the device is not charging and a session is calculated
between two full charges of a device. Fixing the problem is not as tedious as it
looks. Earlier versions of Android Platform had the AlarmManager, but the
implementation of JobScheduler or Firebase JobDispatcher has
overshadowed AlarmManager over time. Avoid using AlarmManager to
schedule background tasks, especially the tasks that involve repeating or network
background tasks. One of the key advantages of using JobScheduler or Firebase
JobDispatcher is batching. Using batching, you can run simultaneous jobs so
that the battery consumption is reduced. This implementation can also be
triggered based on criteria, such as running the jobs under specific conditions
such as Wi-Fi availability or the charge state of the device. These tasks can also be
maintained in a persistent state; that is, jobs that are marked persistent will
continue to run even after the device is rebooted.

Preparing for Google Play

[354]

Stuck Partial Wake Locks: Wake Locks occur when an app has your system
working so hard that it won't allow it to sleep. In Android Vitals, you can see the
percentage of battery sessions during which users witnessed at least one wake
lock of more than 1 hour. Like in the case of Wake Ups, this data is also based on
the period between two full charges of a device. Data is collected only when the
device is off the charger and the screen is off. One thing that needs to be noted is
that some apps do require long wake locks, such as in the case of streaming
service apps.

The speed at which your app renders on the screen can largely contribute to the experience
of using the app. It not only can make a user engaged with the app, but if not rightly
rendered, it can stimulate bad reviews on the app store. Android Vitals provides
information on two of the key aspects of performance rendering:

Slow Rendering: To ensure that the app is smooth, your app should render
frames in under 16 ms to achieve 60 FPS (frame per second). The UI rendering is
a process of generating a frame from your app and publishing it on the screen. A
slow UI rendering can force the system to skip frames, and this will make users to
witness stuttering in your app, known as jank.
Frozen Frames: Frozen Frames can make your app appear to be stuck or
unresponsive to user inputs for a full second, even when the frame is undergoing
rendering. Theoretically, frozen frames are the UI frames that take longer than
700 ms to render. Sometimes, an app can take a longer duration, especially when
starting or transitioning to a different screen, because your app must inflate
views, lay out the screen, and trigger the initial draw from scratch.

Android Vitals automatically monitors the app for jank and displays the information that
can help developers improve app quality. Under Slow Rendering analytics, the section
displays the percentage of daily sessions during which users experienced more than 50
percent of frames with a render time higher than 16 ms. On the other hand, Android Vitals
displays Frozen Frames as the percentage of daily sessions during which users found more
than 01 percent of frames with a render time higher than 700 ms.

Preparing for Google Play

[355]

If you use ProGuard to optimize and obfuscate your APK files, Android Vitals allows you
to upload the app's ProGuard deobfuscation file to deobfuscate future stack traces for any
specific APK version. Under the Android Vitals | Deobfuscation Files option in Google
Play Developer Console, you can upload the ProGuard deobfuscation files for each of the
versions, as follows; these mapping files may be used to share a detailed crash and analytics
data:

Uploading deobfuscation files in Android Vitals

Preparing for Google Play

[356]

User Feedback and Analytics
Valuing customer opinion is one of the essential ways to understand how well your app has
been received. Google has recently updated the console to help app developers to
understand the ratings and reviews from the app users. The dashboard gives developers
clear indicators of the total ratings and the average ratings of their app. It also shows the
total ratings with the reviews for a better understanding on how many users have left a
review:

Rating analytics dashboard

The reviews help to understand the way users use keywords. These keywords play an
important role in App Store Optimization.

Preparing for Google Play

[357]

The overview dashboard also shows rating-based filters, as shown in the following image;
the user can sort the options based on ratings and periods, for example, Last Day, Last
Week, and Last Month:

A breakdown of the rating

Preparing for Google Play

[358]

In the Review Analysis section under User Feedback, you can see how users review your
application in relation to a specific category. This data is exclusive to app developers and
not visible to the users. The Updated rating, as shown in the following screenshot, shows
the way your app's ratings and reviews were updated, including the effect your replies had
on those updates:

Updated rating analytics

There are two reports-Benchmarks and Topics-that analyze how each topics impact the
app's overall rating.

Benchmarks: This section displays the app's ratings for a fixed set of topics and
compares these ratings with apps in a similar category. For example, if the app is
of the News category type, then this benchmark will display ratings based on
similar apps in the News & Magazines category. This analysis is available for
reviews written in English:

Preparing for Google Play

[359]

Benchmarks display

This section defines certain data points to the review analytics. The following table explains
each of the points in detail:

Data points Value

Common Topics: A
fixed set of topics
relevant to most apps
in the same Google
Play category

• Design: Reviews that mention the app's visuals (for example, looks
nice, good graphics, and so on)
• Profile: Reviews that quote the app's sign-up experience (for
example, signup, login, can't logout, can't login, and so on)
• Resource usage: Reviews that specify the app's impact on hardware
consumption (for example, battery, memory, data, and so on)
• Speed: Reviews that mention the app speed (for example, slow,
fast, and so on)
• Stability: Reviews that mention app failures (for example, crashes,
bugs, freezing, and so on)
• Uninstalls: Reviews that reason why uninstallation has taken place
(for example, uninstall, uninstalling, uninstalled, and so on)
• Update: Reviews that mention quotes about the latest app version
(for example, version, update, and so on)
• Usability: Reviews that mention the user's experience while using
the app (for example, user friendly, hard to navigate, and so on)

Average Rating The most negative reviews will be marked in a red color with a
rating of 1. On the other hand, be positive reviews with a rating
of 5 will be green.

Preparing for Google Play

[360]

Number of reviews The number of reviews associated with that topic. The line chart
displays the change in volume over the length of time selected.

Effect on rating Red bars bring down your rating, and green bars indicate
improvement in your rating. The width of the colored bar shows
how much that topic impacts your overall rating.

Additionally, the statistics also show data about your app in the Peer comparison mode
against some of the other apps in the same category. The following table explains both the
categories:

Type Description

Rating versus
Peers

Points at the ratings compared to other apps in the same category. For
example, if your score for your app Speed is 2.3 against the benchmark
difference of +1.0, the other apps will be at 3.3.

Number
versus Peers

How the number of reviews per topic compares to apps that are on the
Google Play store in the same category. For example, if your app has 2,000
reviews for stability with a volume difference of 0.5x, the similar apps in
the same category will show average review volume as 4,000.

Topics: This sections details your app's ratings for a set of dynamic words
mentioned in the app's review. It is supported for reviews written in English,
Spanish, and Japanese. Clicking on any of these translated topics leads to the
Reviews section with that tag highlighted:

Preparing for Google Play

[361]

A review topic analysis

The Review Analysis section shows a list of all the reviews that have been published by the
users using your app. The Dashboard overview provides the average rating of the app, and
the section also has an option to filter the reviews based on the options, as follows:

A filter of reviews

Preparing for Google Play

[362]

One of the most interesting features of this filter is the ADD DEVICE FILTER option,
which allows app developers to see the reviews based on users specific to a particular
device. For example, if you wish to see reviews given by users using the Moto X phone,
simply click on ADD DEVICE FILTER, search for the phone, and save the filter to show up
the results.

The dashboard also allows you to reply to each of these comments and share the reviews.
Each comment by the user is complemented with options that help developers understand
the nature of the device and its system configurations. Simply click on the MORE option to
get a detailed preview of the configuration:

Review and replies

A lot of app users tend to change their rating and update the reviews based on how their
problem is attended. For example, let's consider that your app had sign-up issues and you
have received a 1 star rating. After updating your app, if the user is satisfied and the issue is
fixed, they might want to change the ratings and reviews. The entire history trail of how the
users have updated the ratings and the reviews can be seen in this section.

Preparing for Google Play

[363]

Google Play Developer Console makes it simple to understand the updated comments, with
a small tag marking UPDATED in the left section of each updated comment to make the
app developer notice the comment. The orange colored marking shows the updated
comments, whereas the dashed lines show the scrapped lines from the user's previous
comments.

In the Beta Feedback section, users can privately send app developers message, based on
the testing done on the Alpha and Beta versions of the app. This is applicable when you run
an open alpha or beta testing program for your app.

Review and rating changelog

Preparing for Google Play

[364]

Summary
At the start of the chapter, we discussed how to generate a signed APK. Once the signed
APK was generated, we discussed how to prepare this APK for alpha/beta testing options
on the Google Play Listing. In the final section, we glanced through some of the options
available on the Google Play Store Listing for an app, where we highlighted the basic
options along with Store experiment features, which allow users to experiment with the
store listing.

16
Understanding App Store
Analytics for Optimization

When you are ready with your app listing, one of the most essential components that plays
an important role in the success of the app is the visibility of the app, among other players
in the similar domain of app. Google Play Search is key for users to find relevant and
popular apps for their Android device. For this very fact, it is important to constantly
improve your app store listing and perform optimization steps to help your app be
discovered by users on Google Play.

App Store Optimization (ASO) is a continuous process of improving the characteristics of
the app for creating visibility for the app and stimulating more downloads from app stores.
To achieve this, app developers need to focus on several factors, such as app name,
keywords, descriptions, graphical assets, and promotional video.

There are a couple of myths surrounding ASO, and one of the most common ones is
performing ASO just once. Some of the people think that ASO can be done just once and
then, forgotten about. Remember that every day, there are many apps that get published on
the app store, and it is important to monitor the keywords' ranking regularly. We highly
recommend keeping a long-term marketing strategy that must be in line with continuously
monitoring keywords over the lifetime of your app.

Understanding App Store Analytics for Optimization

[366]

Now that we have spoken about keywords in the first myth, the second myth is just about
it--over dependence on keywords. There's no doubt that keywords are essential while
searching the app, but you also need to make the app visually appealing so that it tempts
users to download it. The visual cue can impact the user's interest in downloading the app,
especially if the app has a beautiful app icon and compelling screenshots. Sometimes, these
elements can help convince users to choose your app over your competitors', irrespective of
how popular the other app is.

One fact that can't be denied is that most apps are downloaded via organic downloads.
Though many of the app developers also choose paid marketing to get downloads, ASO
still holds the key to tempting user's' download interest. ASO is also a very cost-effective
way of getting more downloads.

Let's discuss some of the key ways to improve the ASO of an app.

Keep an eye on Google Play policies
Before starting to talk about ASO, it is important to know who's the boss. Google has certain
guidelines for apps and games that get published on Play Store. It is important to know the
same, to allow users to download legitimate apps from the store, which are under the policy
terms of Google Play. The details of the policy can be read at https:/ /play. google. com/
about/developer-content- policy/ .

Get your app title right
Google Play Store allows the app name to be up to 30 characters. The algorithm
understands the keywords in the title of the app in a better way than from any other source.
This is the very reason you have to be very selective in choosing your keywords. The
question to ask yourself is Does my app hint what the app could be doing? Using a keyword in
the app title can be another way, but it depends, on a case-to-case basis. Take a look at
keyword density patterns to understand what keywords will go with the title of the app.

https://play.google.com/about/developer-content-policy/
https://play.google.com/about/developer-content-policy/
https://play.google.com/about/developer-content-policy/
https://play.google.com/about/developer-content-policy/
https://play.google.com/about/developer-content-policy/
https://play.google.com/about/developer-content-policy/
https://play.google.com/about/developer-content-policy/
https://play.google.com/about/developer-content-policy/
https://play.google.com/about/developer-content-policy/
https://play.google.com/about/developer-content-policy/
https://play.google.com/about/developer-content-policy/
https://play.google.com/about/developer-content-policy/
https://play.google.com/about/developer-content-policy/
https://play.google.com/about/developer-content-policy/
https://play.google.com/about/developer-content-policy/
https://play.google.com/about/developer-content-policy/
https://play.google.com/about/developer-content-policy/

Understanding App Store Analytics for Optimization

[367]

For example, let's take the case of the game Candy Crush Saga; the name is good enough to
hint what the game could be doing:

Title hinting the app's theme

Effectively using keywords in description
Most of the searched keywords are pulled from the description of the app, and Google
allows up to 4,000 characters for the description of the app. Google does not permit apps to
have improper, misleading, irrelevant, or excessive metadata in the app. The same applies
for titles, icons, screenshots, and promotional images. Google does not allow users to even
post testimonials on the app's description.

Having settled the mentioned points, also ensure that the description reads in mobile-
friendly mode. This doesn't just allow users to read, but also allows better formatting
presence. Try to use more effective keywords in the description. Also, based on your
competitive keywords, try to change the description more often to match market demands
on how people search for the app in your category.

When given the privilege of 400 characters, the chances of users reading all of it is rare. We
highly recommend presenting the first three lines of your app description in the most
appealing manner. This doesn't just catch the attention of users but also tempts them to
download.

Understanding App Store Analytics for Optimization

[368]

The Google Play app description also allows formatting of text. As in the following case,
Candy Crush Saga description uses bullet points and paragraphs to format the content
well. This content is also mobile friendly for the users:

Formatting description more effectively for readability

You can also test out using long trail keywords in the descriptions. Many of the app
developers follow single word characters without use of long trails, which can be effective
and less widely used, hence producing a competitive edge.

Understanding App Store Analytics for Optimization

[369]

Does your icon reflect the app theme?
App icons are the most impactful element of the app. Though it is simple to put down, it's
equally difficult to build an icon that speaks all about an app. The best way you can come to
a conclusion is by either building an app like a branded icon if you have an established
brand, or by elaborating on what the app does:

Effective App Icons

In the preceding figure, you can see several examples from Nike. Since the brand is known
worldwide, it uses the Nike symbol in almost all the apps they have on the Google Store.
This allows them to put a relation in the user's mind that these are Nike apps. On the other
hand, take a look at the icon of Temple Run. The app is not just clear on the desktop view
but also, when scaled down on mobile, retains its resolution. However, in the case of Slide
the NUMBER, the app icons shrinks and it's hard to understand what the app icon is about.
One thing we would like to recommend is to not be afraid to experiment with variations of
graphical assets after the first version.

Understanding App Store Analytics for Optimization

[370]

Are your app screenshots nailing it?
The most obvious choice for many app developers is putting up the same screenshots of
how the app looks. This may not be a great strategy. Screenshots are a great way to make
your app appealing to prospective users. Like they say, pictures speak a thousand words;
have a great blend of app screenshots. Take a close look at how the screenshots look on the
mobile app as eventually, many users will search the app via the mobile Google Play app.
Take a look at some of the cool screenshots here:

Appealing screenshots for your app

If you are still tempted to use app screenshots, there are some techniques you can use to
present it with awesomeness, such as the following example, wherein the app flaunts the
key features of the app along with the screenshots, but in a well-presented manner. The app
developers highlight the key features in the bright-bold manner to catch attention and use
the keywords that they can relate to photo capture apps:

Understanding App Store Analytics for Optimization

[371]

Using the app screenshots

Another interesting way to show off the screenshots is using emotional connections.
Nothing connects with users better than emotional bonding. Use the emotional bond to
tempt users to install the app. Some apps even share the awards that the app has been
rewarded with.

Understanding App Store Analytics for Optimization

[372]

Both the preceding cases can be best explained by the following app screenshot:

Emotion as a weapon of tempting

Some of the most common errors made by the app developers are underestimating the
value of the screenshots, as in the following case, wherein even though the app screenshots
are great, there is a repetition of the screenshot:

Short of images? Do not repeat

Understanding App Store Analytics for Optimization

[373]

Say a strict no to the following kind of screenshots that are pure cases of being heartless. No
matter how many app features you may have, if the screenshots are not appealing, there is a
lesser chance for it to be downloaded. Also, avoid screenshots with text-heavy content, as
shown:

Avoid text-heavy screenshots

Here are some of the best practices you can keep in mind when you prepare the store listing
for your app:

Have at least 5-6 screenshots of the app. Make the first three screenshots the most1.
appealing ones as they are the ones that will be glanced at most often.
Ensure that individual screenshots communicate one benefit each of your app.2.
This keeps users to check the screenshots, rather than spending time reading the
description.
Keep screenshots clean, bright, and easy to read. Use the best of resolutions.3.

Use emphasis, magnification, or pointers to specific areas in the screenshot to show off the
key aspects of the app.

Understanding App Store Analytics for Optimization

[374]

Video can be a crowd puller
Though not many apps use the feature, it is an essential feature in the kitty. If your app has
multiple features that can't be shown just by screenshots, videos can be handy. The first
thing to remember is to keep videos as short as possible. Embed lovely music that just
catches user's' attention. If you are using voiceover, ensure that it is clear to understand:

Promotional videos in app listings

In the case of games, many choose to have multiple videos to show features of the app. If
you still wish to create a longer video, aim at telling a story to the user. This can be an
effective way to create visual impact.

Responding to reviews
Reviews is one of the best ways to know how people search for the app. Some of the
keywords in the comment can hint at how people speak about your brand in the public.
Check out mediums such as Twitter and Facebook to know how they use your app name
and what context are they speaking about. Use the keywords of the app in comments
wherever applicable.

There's no that doubt positive ratings and reviews can encourage customers to download or
purchase your app. However, also ensure that you are responding to negative comments.
By delivering great responses, you can turn up your rating as well.

There are several types of people who post their reviews and ratings. Ensure that you
handle each case well. For example, in the case of people who talk highly technically about
the app, avoid responding in depth; keep the communication crisp and get in touch with
them offline by asking them their email.

Understanding App Store Analytics for Optimization

[375]

One of the most common mistakes people make is buying paid reviews and rating services
from several sites. Avoid this to ensure legitimate reviews on your app; there's nothing
more special than actual users reviewing your app. It doesn't just allow you to receive
feedback, but also allows you to learn from the criticisms posted.

Keep a close eye on the reviews and rating section analytics, which provide you with an
amazing analysis on how the ratings have been given:

Review analysis

Are you LOCALizing?
Localization is the process of translating your app, which enables users to understand the
context of the app across the specific region. For example, if your app is targeted to be used
in Germany, having support for this locale can be an added boon. If you are launching the
app, you may not think of going international right away. You can use experiments to
understand what kind of users are accessing the app and from which countries; based on
that, you can tweak your app pages.

You can just localize the elements of your app that appear on the app stores. This includes
app descriptions, keywords, and screenshots.

Understanding App Store Analytics for Optimization

[376]

There was an interesting case shared by Google on how localization of one of the Indian
Maker Zombie Ragdoll, as illustrated, increased the app installations:

Local support in Zombie Ragdoll

The app makers understood that 80% of installs came from non-English language users,
which tempted them to use local support in the app. The preceding screenshot makes this
case clear.

Summary
The chapter started with helping users understand why ASO is important, followed by
some of the tips that developers can leverage for improving the ASO. One thing to
remember is that conditions in the App Store change constantly, so it is important for the
app makers to adhere to them to stay on top of the changes and the growing mobile
ecosystem.

Index

A
Admob
 ads displaying, guidelines 282
 banner ads 283
 using 281
AlarmManager
 methods 156
Android Application Package (APK) 20
Android Debug Bridge (ADB) 26, 188
Android Instant Apps 339
Android Not Responding (ANR) 163
Android Support Library
 about 33
 annotations support library 41
 custom tabs support library 41
 design support library 41
 multidex support library 40
 v13 support library 40
 v4 support library 37
 v7 support library 38
 v8 support library 40
Android Vitals
 key aspects, of performance rendering 354
 major causes, identifying of battery drain 353
annotations support library 41
APK Analyzer
 about 20
 used, for reducing APK file size 21
APK
 signing configuration, creating 336, 338, 339
app indexing
 about 278
 reference 280
app sections
 login 191
 Signup 191

 Signup flow 195, 203
 Splash 191
App Standby
 about 168
 used, for testing 168
App Store Listing
 preparing 344, 345, 346, 347
App Store Optimization (ASO) 365
app, stability factors
 Application Not Responding (ANR) 349
 crash rate 349, 350, 352
app-unitiated network
 use, optimizing 153
app
 alpha testing 340, 342
 Android Instant Apps 339
 beta testing 340, 342
 refactoring 116
 versioning 332, 333
architecture, Google Play Services 42
authentication 259

B
backend-as-a-service (BaaS) 234
banner ads
 about 283
 ad lifecycle event callbacks 284
 discouraged banner implementations 285
 discouraged interstitial implementations 290
 interstitial ad implementations 298
 interstitial ads 287
 recommended banner implementations 286
battery analyzer
 used, for improving app 187
battery consumption, Zomato
 about 184
 changes, monitoring in charging state 185

[378]

 current battery level, determining 186
battery drain
 about 22
 optimization, strategies 183
Battery Historian
 about 24
 open-source Python script, download link 28
 reference 25
Batterystats 24
behavioral pattern
 about 113
 command 113

C
categories, for analyzing battery consumption
 battery level 27
 phone_signal_strength 27
 running 27
 screen 27
 top 27
 wake_lock 27
 wifi_running 27
categories, of unrefactored code
 bloaters 118
 change preventers 119
 couplers 120
 data class 120
 dispensables 120
 object-oriented abusers 118
Clean Architecture Pattern
 about 100
 layers 101
clusters 262
code
 refactoring, need for 118
 refactoring, ways 121
command, behavioral pattern
 Model View Controller (MVC) 114
 Model View Presenter (MVP) 114
 Model View View-Model (MVVM) 115
 observer pattern 113
computation 141
conditions, compatibility testing
 hardware accessibility 306
 orientation 305

 OS 305
 screen resolution 305
 screen size 305
creational pattern
 about 105
 builder pattern 105
 dependency injection 106
 singleton pattern 107
crux principles, Clean Architecture Pattern
 abstraction principle 102
 communication layers 102
 dependency rule 101
custom tabs support library 41

D
data messages 252
database 226
decision making 104
deep linking
 about 268
 reference 272, 273
Dependency Inversion Principle 89
design support library 41
Developer Console
 reference 52
Device Catalog 348
digital wireframing 57
Directed Acyclic Graph (DAG) 8
discovery screen 217
display performance
 App Standby feature 168
 batching 156
 battery drain, causes 182
 Doze and App Standby, used for testing 168
 elements, improving 139
 Extended Doze and Standby, using 165
 improving 130
 job schedulers 156, 165
 jobInfo 160
 JobService 162
 memory optimization 181
 network traffic, analyzing 142
 network traffic, collecting 142
 network traffic, optimizing 142
 network, analyzing 142

[379]

 network, collecting 142
 network, optimizing 142
 optimizing layouts 130
 pools 170
 scrolls, improving 139
 thread 170
 views on demand 138
Do not Repeat Yourself (DRY) 116
Domain Specific Language (DSL) 7
doze mode
 about 166
 app, adapting to 167
 limitations 167
 used, for testing 168
dynamic links 268

E
entity-relationship diagram (ERD) 56
Espresso 324
Espresso Test Class
 actions, performing 309
 activities, testing with Espresso Intents 312
 creating 307
 results, verifying 313
 View Matcher, specifying 308
Espresso Web
 WebViews, testing 312
extract variable
 about 123
 assignments, removing to parameters 126
 inline temp 124
 method, replacing with method object 127
 split temporary variable 125
 substitute algorithm 128
 temp, replacing with query 124

F
features, monkeyrunner
 extensible automation 327
 functional testing 327
 multiple device testing 327
 regression testing 327
Firebase Cloud Messaging (FCM) 155, 246, 252,

254

Firebase console

 reference 241
Firebase Test Lab 264, 265, 266
Firebase
 about 260
 URL 260
Floating Action Button (FAB)
 used, for building motions 58, 59, 60, 61, 66

G
Google Cloud Console
 reference 45
Google Cloud Messaging (GCM) 155
Google Maps 52
Google Play App Signing 348
Google Play policies
 about 366
 app screenshots 370, 371, 372, 373
 app, naming 366, 367
 brand icon 369
 keywords, using in description 367, 368
 localization 375, 376
 reference link 366
 reviews, responding 374, 375
 video, using 374
Google Play Services
 about 42
 architecture 42, 51
Google Play Store experiments
 global 347
 localized 347
Gradle library
 adding 14
 adding, as module 16
 Gradle identifier, adding 14
Gradle
 about 7, 13
 adding, to app 13
 installation link 8

I
Interface Segregation Principle 88

L
layers, Clean Architecture Pattern
 entities 101

[380]

 presenter 101
 UI 101
 use cases 101
Liskov Substitution Principle 86
localization 375
logcat tab 31

M
material design
 about 56
 for Android developers 57
 motions, building 58
 UX design, building 77
memory
 battery hogging apps 181
 increasing, causes 30
 monitoring 29
methods
 refactoring 121
Model View Controller (MVC) pattern
 Controller 91, 114
 Model 91, 114
 summarizing 115
 View 91, 114
Model View Presenter (MVP)
 Model 93, 114
 Presenter 93, 114
 summarizing 115
 View 93, 114
Model View View-Model (MVVM)
 about 98
 advantage 99
 Model 99, 115
 View 99, 115
 View-Model 99, 115
monkeyrunner
 about 327
 features 327
motions
 building 58
 building, with Floating Action Button (FAB) 58,

59, 60, 61, 66
 search, implementing in Zomato 69, 70, 71, 72,

75, 76, 77
multidex support library 40

multiple apps
 UI, testing 314

N
network requests
 about 141
 tagging 142
network test APK
 deploying 144
network test build type
 configuring 144
network traffic
 app-initiated network traffic 150
 data, analyzing 147
 executing 146
 information, collecting 142
 server-initiated network traffic, analyzing 150
 types, analyzing 149
 user-initiated network traffic 149
network use
 optimizing 151
notification messages 252

O
Open-Closed Principle 84
optimizing layouts
 about 130
 hierarchies 131

P
per-app mobile ms per packet 26
Per-PID Stats 25
pools 170
pricing, Firebase
 reference link 265
proper structure and pattern
 following 104

R
Random Access Memory (RAM) 29
Realtime Database
 about 236
 database structure, writing 237, 238
 security, adding to data structure 239, 246

[381]

refactoring, of methods
 extract method 121
 inline method 122
refactoring
 about 116
 advantages 116
 need for 117
 performing 116
remote configuration
 about 255, 258
 reference 258
reports
 Benchmarks section 358, 359
 Review Analysis section 361
 Topics section 360
Robotium 320
room 227

S
scrolls
 background thread, using 139
 improving 139
search
 implementing, in Zomato 69, 70, 71, 72, 73, 75,

76, 77
server-initiated network
 use, optimizing 155
signed APK
 generating 333, 334, 335, 336
Single Responsibility Principle 82
Software Testing Life Cycle (STLC)
 about 300
 functional testing 300
 integration testing 301
 system testing 301
 unit testing 300
software testing
 acceptance testing 304
 alpha test 304
 beta test 304
 bottom-up integration testing 302
 compatibility testing 305
 integration testing 301
 organizing 301
 performance testing 304

 regression testing 303
 security testing 305
 smoke testing 303
statistics since last charge 26
storage 259
structural patterns
 about 109
 adapter 109
 facade 111

T
tangible wireframing 57
testing 299
Thread Pool Thread
 code, executing 175
Thread Pool
 creating 171
thread
 about 170
 code for execution, specifying 170

U
UI animator 322
UI Automator
 setting up 315
UI test cases
 App, testing with Espresso in Android Studio 307
 depending, on multiple apps 306
 depending, on single app 306, 307
 Espresso, setting in Android Studio 307
UI Thread
 communicating with 177
UI
 actions, performing 319
 activity accessibility, ensuring 316
 Espresso 319
 inspecting, on device 315
 monkeyrunner 319
 selector specification 318
 testing, for multiple apps 314
User Feedback and Analytics 356, 357
user interface (UI) tests
 automating 306
user-initiated network
 use, optimizing 151

UX design
 building 77
 principles 77, 79, 81

V
v13 support library 40
v4 support library 37
v7 support library 38
v8 support library 40
ViewHolder
 view objects, holding 140
views on demand
 loading 138
 ViewStub, defining 138

W
wireframing
 about 56
 digital wireframing 57
 process 57
 tangible wireframing 57

Z
Zomato
 app sections 190
 battery consumption 184
 search, implementing 69, 70, 71, 72, 75, 76, 77

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Understanding the Gradle System
	Stepping into the Gradle world
	Adding Gradle to your app
	Adding a new Gradle library
	Adding a Gradle identifier
	Adding as a module

	Summary

	Chapter 2: Exploring Android Studio Developer Tools
	APK Analyzer
	Reducing the APK file size with APK Analyzer

	Understanding basic battery drain
	Batterystats and Battery Historian
	Memory Monitor
	Wondering what the various causes of memory increase are?
	Logcat

	Summary

	Chapter 3: Leap into the Android Support Library
	The Android Support Library
	v4 Support Library
	v7 Support Library
	Multidex Support library
	v8 Support Library
	v13 Support Library
	Annotations Support Library
	Design Support Library
	Custom Tabs Support Library

	Summary

	Chapter 4: Google Play Services
	The architecture
	Google Maps
	Summary

	Chapter 5: Material Design
	Wireframing and tools to gather feedback
	Understanding the wireframing process (tangible and digital)

	Material UI for Android developers
	Building meaningful motions
	Floating Action Button (FAB)
	Implementing Search in Zomato

	Building the UX Design
	Understanding UX principles and how it's different from UI

	Summary

	Chapter 6: SOLID Android Development and Its Design Principles
	Single Responsibility Principle
	Open-Closed Principle
	Liskov Substitution Principle
	Interface Segregation Principle
	Dependency Inversion Principle
	Summary

	Chapter 7: Understanding MVC, MVP, MVVM and Clean Arch Patterns
	MVC (Model View Controller)
	MVP (Model View Presenter)
	MVVM
	Clean Architecture Pattern
	Understanding the layers of Clean Architecture

	Summary

	Chapter 8: Decision Making
	How to begin
	Creational patterns
	Builder
	Dependency injection
	Singleton

	Structural patterns
	Adapter
	Facade

	Behavioral pattern
	Command
	Observer
	Model View Controller
	Model View Presenter
	Model View View-Model

	Summing up MVP and MVC
	Refactoring your app
	What are the advantages of refactoring?
	How is refactoring done?
	When should you refactor?
	What code needs to be refactored?
	Bloaters
	Object-orientation abusers
	Change preventers
	Dispensables
	Data class
	Couplers

	How do I refactor my code?
	Refactoring of methods
	Extract method
	Inline method

	Extract variable
	Inline temp
	Replace temp with query
	Split temporary variable
	Remove assignments to parameters
	Replace method with method object
	Substitute algorithm

	Summary

	Chapter 9: Performance Matters
	Improving display performances
	Optimizing layouts
	Optimizing layout hierarchies

	Views on demand
	Define a ViewStub

	Improving scrolls and other elements in the app
	Using a background thread
	Holding view objects in a ViewHolder
	Understanding network requests, computation and memory

	Collecting, analyzing and optimizing the network and network traffic
	Collection network traffic information
	Taging network requests
	Configuring a network test build type
	Deploying the network test APK
	Runing the network traffic tool
	Analyzing Network Traffic Data
	Analyzing network traffic types
	Optimizing network use

	Batching and Job Schedulers
	JobInfo
	JobService
	JobScheduler
	Effective use of Extended Doze and Standby
	Understanding Doze
	Doze restrictions
	Adapting your app to Doze

	Understanding App Standby
	Testing with Doze and App Standby
	Threads and Pools
	Specifying the Code to Run on a Thread
	Creating a Thread Pool
	Running Code on a Thread Pool Thread
	Communicating with the UI Thread

	Memory optimization
	Treating Battery as part of user's experience

	Understanding what causes battery drain
	Why Battery Optimization is required?
	Strategies for battery optimization

	Effective consumption of battery in Zomato
	Monitoring changes in charging state
	Determining the current battery level

	Improving app with battery analyser
	Summary

	Chapter 10: Building Restaurant finder
	App sections
	Splash, Login, and Signup (including Google and Facebook)
	The Signup Flow
	Discovery Screen
	Database
	Room

	Summary

	Chapter 11: Backend Service
	Realtime Database
	How to write a database structure
	Add security to data structure

	Firebase Cloud Messaging
	Remote configuration
	Authentication
	Storage
	Summary

	Chapter 12: App Quality Service
	Firebase Test Lab
	Summary

	Chapter 13: Grow Up
	Dynamic links
	App indexing
	Admob
	Banner Ads
	Ad lifecycle event callbacks
	Discouraged banner implementations
	Recommended banner implementations
	Interstitial Ads
	Discouraged interstitial implementations
	Interstitial ad implementations

	Summary

	Chapter 14: Testing
	Testing Mechanisms (Functionality , Performance , Security , and Compatibility)
	Software Testing Life Cycle (STLC)
	Organizing for Software Testing
	Integration Testing
	Top-down integration testing
	Bottom-up integration testing
	Regression testing
	Smoke testing
	Acceptance Testing
	Alpha test
	Beta test
	Performance Testing
	Security Testing
	Compatibility Testing

	Automating User Interface Tests
	Testing UI for a single app
	Testing App using Espresso in Android Studio
	Setting up Espresso in Android Studio

	Create an Espresso Test Class
	Specifying a View Matcher
	Performing Actions
	Test your activities in isolation with Espresso Intents
	Testing WebViews with Espresso Web
	Verifying Results

	Testing UI for Multiple Apps
	Set Up the UI Automator
	Inspecting the UI on a device
	Ensuring your Activity is accessible
	Selector Specification

	Performing Actions
	Tools and Techniques: Espresso and Monkeyrunner
	Robotium

	The UI Animator
	Espresso
	Monkeyrunner

	Summary

	Chapter 15: Preparing for Google Play
	Versioning Your App
	Generating a signed APK

	Preconfiguring to automatically Sign Your APK
	Android Instant Apps
	Alpha and Beta testing the App
	Preparing App Store Listing
	Device Catalog
	App signing
	Android Vitals

	User Feedback and Analytics

	Summary

	Chapter 16: Understanding App Store Analytics for Optimization
	Keep an eye on Google Play policies
	Get your app title right
	Effectively using keywords in description
	Does your icon reflect the app theme?
	Are your app screenshots nailing it?
	Video can be a crowd puller
	Responding to reviews
	Are you LOCALizing?

	Summary

	Index

