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Introduction

Technical book writing is a simple job. Pick a topic that appeals to you, spend
some time understanding it, browse the net for some additional information and
then keep writing till the time you do not reach the end. Easier said than done!

In fact nothing can be farther from the truth. For one, choosing the right subject is
pretty confusing with so many subjects and technologies taking so big strides in
the recent years. Secondly, none of them is so easy to master in a few months and
thirdly presenting what you have understood in a simple manner is not everybady's
cup of tea.

| have realized all these facts more emphatically while writing this book, because |
have been writing this book for last 10 years!! It all began with attempting to write
articles that would explain Quick Sort algorithm and Threaded Binary Trees. Once |
had a critical mass of written material | thought of compiling it in the form of a
book.

| however wanted the book to be a different data structures book. Different in the
sense that, it should go beyond merely explaining how typical data structures like
stacks, queues and linked lists work. | wanted the readers to experience sorting of
an array, traversing of a doubly linked list, construction of a binary tree, etc.

| had a hell of a time imagining, understanding and programming these compli-
cated data structures. | wanted that the readers of this book should not be required
to undergo that agony. And today | am satisfied that | have been able to achieve
this through the downloadable DVD. It lets the reader experience the working of
different data structures through carefully prepared animations. | have pinned my
hopes that the readers would appreciate this approach. The DVD is available at

| have tried to make this book different in one more way. Instead of merely learning

how to perform different operations on a linked list, | think one can appreciate it

SCRIBD

Q & Aa

better if one comes to the practical applications of it. There are numerous such
examples and | have also tried to provide animations for most of them on the
downloadable DVD.

Apart from this | have tried to explain all data structures with examples and figures.
| have also provided exercises at the end of each chapter to hone your skills.

In the 3'd edition | have done a major overhaul of all chapters. | have made the
Analysis of Algorithms chapter more comprehensible by explaining this difficult
topic with numerous examples. | hope the readers would like this approach.

| have also eliminated those algorithms and programs that are not commonly used
and are of only academic importance. In this edition you would also find a lot con-
sistency in the style of programming adopted while implementing different algo-
rithms.

Yashavant Kanetkar
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Chapter 01
Analysis of Algorithms
JUSTIFYING THE MEANS

Why This Chapter Matters?

The dictum “ends justify the means” doesn’t hold good in Computer Science. Just
because we got the right answer (end) does not mean that the method (means)
that we employed to obtain it was correct. In fact, the efficiency of obtaining the

correct answer is largely dependent on the method employed to obtain it. Hence

scientific analysis of performance of the method is very important.

SCRIBD
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The method of sclving a problem is known as an algorithm. More precisely, an

algorithm is a sequence of instructions that act on some input data to produce de-

sired output in a finite number of steps. An algorithm must have the following
properties:

(a) Input - An algorithm must receive some input data supplied externally.

(b) Output - An algorithm must produce at least one output as the result.

(c) Finiteness - No matter what the input might be, the algorithm must terminate
after a finite number of steps. For example, a procedure which goes on per-
forming a series of steps infinitely is not an algorithm.

(d) Definiteness - The steps to be performed in the algorithm must be clear and
unambiguous.

(e) Effectiveness - One must be able to perform the steps in the algorithm without
applying any intelligence. For example, the step—Select three numbers which

form a Pythagorean triplet—is not effective.

© —9
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Why Analyze Algorithms?

Multiple algorithms may exist for solving a given problem. To determine which

algorithm is more efficient than others, we need to analyze the algorithms. This

analysis is done by comparing the time and/or space required for executing the

algorithms. In this chapter we would analyze algorithms on the basis of time. We

would carry out space based analysis in later chapters.

While doing time based analysis of algorithms we do not use conventional time

units like seconds or minutes required for executing the algorithms. There are two

reasons for this.

(a) A worse algorithm may take less time units to execute if we move it to a faster
computer, or use a more efficient language.

(b) We are interested in relative efficiency of different algorithms rather than the
exact time for one.

So instead of time units we consider the number of prominent operations that are

carried out by the algorithm. For example, in a searching algorithm we would try to

determine the number of comparisons that are done to search a value in a list of

values. Or in an algorithm to add two matrices, we might determine the number of

arithmetic operations it performs.

Once we identify the prominent operations in an algorithm, we try to build a func-

tion that relates this number of operations to the size of the input. Once these

functions are formed for algorithms under consideration, we can compare them by

comparing the rate at which the functions grow as the input gets larger. This

growth rate is critical since there are situations where one algorithm needs fewer

operations than the other when the input size is small, but many more when the

input size becomes larger.

Thus analysis of algorithms gives us a scientific reason to determine which algo-

rithm should be chosen to solve the problem.

© ——o
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What to Consider, What to Ignore?

It is very important to decide which operations to consider and which operations to

ignore while analyzing an algorithm. For this we must first identify which is the sig-
nificant time consuming operation(s) in the algorithm. Once that is decided, we
should determine which of these operations are integral to the algorithm and
which merely contribute to the overheads. There are two classes of operations that
are typically chosen for the significant operation—comparison or arithmetic.
For example, in Searching and Sorting algorithms the important task being done is
the comparison of two values. While searching the comparison is done to check if
the value is the one we are looking for, whereas in sorting the comparison is done
to see whether values being compared are out of order.
The arithmetic operations fall under two groups—additive and multiplicative. Addi-
tive operators include addition, subtraction, increment, and decrement. Multi-
plicative operators include multiplication, division, and modulus. These two
groups are counted separately because multiplication operations take longer time
to execute than additions.
Let us now see which operations we should ignore while analyzing an algorithm.
Suppose we have an algorithm that counts the number of characters in a file. This
algorithm is given below.
Count=0
While there are more characters in the file do

Increment Count by 1

Get the next character
End while
Print Count
If there are 500 characters present in the file we need to initialize Count once,

check the condition 500 + 1 times (the +1 is for the last check when the file is

SCRIBD
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empty), and increment the counter 500 times. Thus the total number of operations
would be

Initializations -1

Increments - 500

Conditional checks - 500 +1

Printing -1

As can be seen from these numbers, the number of increments and conditional
checks are far too many as compared to number of initialization and printing
operations. The number of initialization and printing operations would remain
same for a file of any size and they become a much smaller percentage of the total
as the file size increases. For a large file, the number of initialization and printing
operations would be insignificant as compared to the number of increments and
conditional checks. Thus, while analyzing this algorithm the initialization operation

should be ignored.

© —
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Cases to Consider During Analysis

Choosing the input to consider when analyzing an algorithm can have a significant

impact on how an algorithm will perform. For example, if the input list is already 2:

sorted, some sorting algorithms will perform very well, but other sorting algo-

rithms may perform very poorly. The opposite may be true if the list is randomly ar- 3

ranged instead of sorted. Hence, multiple input sets must be considered while ana-
lyzing an algorithm. These include the following:

(a) Best Case Input - This represents the input set that allows an algorithm to per-

4.
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Determine the number of different groups into which all possible input
sets can be divided.

Determine the probability that the input will come from each of these
groups.

Determine how long the algorithm will run for each of these groups. All
of the input in each group should take the same amount of time, and if
they do not, the group must be split into two separate groups.

Calculate average case time using the formula:

. N J R £ . . m
form quickest, i.e. this input the algorithm takes shortest time to execute, as it A(n) = Z P *f‘-

causes the algorithms to do the least amount of work. For example, for a
searching algorithm the best case would be if the value we are searching for is
found in the first location that the search algorithm checks. As a result, this
algorithm would need only one comparison irrespective of the complexity of
the algorithm. No matter how large is the input, searching in a best case will re-
sult in a constant time. Since possibility of best case input for an algorithm
would usually be very small, the best case analysis of an algorithm is often not
done.

(b) Worst Case Input - This represents the input set that allows an algorithm to
perform slowest. Worst case is an important analysis because it gives us an
idea of the maximum time an algorithm will ever take. Worst case analysis re-
quires that we identify the input values that cause an algorithm to do the most
work. For example, for a searching algorithm, the worst case is one where the
value is in the last place we check or is not in the list. This could involve com-
paring the key to each list value for a total of N comparisons.

(c) Average Case Input - This represents the input set that allows an algorithm to
deliver an average performance. Average-case analysis is a four-step process.

These steps are as under:

© —
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where,

n = Size of input

m = Number of groups

p; = Probability that the input will be from group i

t= Time that the algorithm takes for input from group i.
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Rates of Growth

While analyzing algorithms, more than the exact number of operations performed

by the algorithm, it is the rate of increase in operations as the size of the problem
increases that is of more importance. This is often called the rate of growth of the
algorithm. What happens with small sets of input data is not as interesting as what
happens when the data set gets large.

Table 1-1 shows rate of growth for some of the common classes of algorithms for a
wide range of input sizes. You can observe that there isn't a significant difference
in values when the input is small, but once the input value gets large, there are big
differences. Hence, while analyzing algorithms, we must consider what happens
when the size of the input is large, because small input sets can hide rather dra-

matic differences.

Table 1-1. Rate of increase in common algorithm classes.

The data in Table 1-1 also illustrates that the faster growing functions increase at
such a rate that they quickly dominate the slower-growing functions. Thus, if the
algorithm’s complexity is a combination of a two of these classes, we can safely ig-
nore the slower growing terms. On discarding these terms, we are left with what we
call the order of the function or related algorithm. We usually consider one algo-
rithm to be more efficient than another if its worst case running time has a lower
order of growth.

Based on their order, algorithms can be grouped into three categories:

(a) Algorithms that grow at least as fast as some function

(b) Algorithms that grow no faster

(c) Algorithms that grow at the same rate

The categeries (a), (b), (c) mentioned above are commonly represented using
Asymptotic Notations Big Omega Q (g(n)), Big Oh O (g(n)) and Big Theta 6 (g(n)),

respectively. These notations are discussed below in detail.
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Asymptotic Notation for Analysis of Algorithms

The Big Omega category of functions are not of much interest to us since for all
values of n greater than some threshold value n, all the functions inQ have values
that are at least as large as g. That is, all functions in this category grow as fastas g
or even faster. Using Asymptotic Notation this is represented as

f(n)>=cg(n)

where ¢ is some constant > 0 and n >= n,>=1

Thus g(n) represents the best case or the lower bound. If there are positive con-
stants n andc such that at and to the right of n, value of f{n) always lies on or

above g(n). This relationship has been shown graphically in Figure 1-1(a).

_— t2g(n)
[t
|~ agin)
|ng n
(a) BigQ (b) BigO (c) Big©

Figure 1-1. Asymptotic representation of functions.

The Big Oh class of functions would be of interest to us as it represents the class
of functions that grow no faster thang. This means that for all values of n greater
than some threshold n. all the functions in O have values that are no greater than
g. Thus g(n) represents the worst case or upper bound. So, none of the functions
in this class grow faster than g.

Using Asymptotic Notation this is represented

asf(n) <=cg (n)

@ﬁ
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where ¢ is some constant > 0 and n >= n,>=1

Thus if there are positive constants n, and ¢ such that at and to the right of n
value of f{n) always lies on or below g(n). This relationship has been shown graph-
ically in Eigure 11(b).

Big Theta represents the class of functions that are bounded by g{n) on either side.
This means that for all values of n greater than some threshold ng all the func-
tions in P have values that are greater than c,g(n) and less than c,g(n). Using
Asymptotic Notation, this is represented as

¢, 8 <=1 (n) <=c,8(n

where < and c, are some constants > 0 and n >= ng >=1

Thus, if there are positive constants n, < and <, such that at and to the right of
ny value of f{n) always is bounded by g(n) on either side. This relationship has

been shown graphically in Eigure 1-1(c)

While analyzing algorithms we are on the lookout for an algorithm that does better
than the one that we are considering. Since big theta category represents a class of

functions that grow at the same rate as the function g this category is usually not of

interest to us.

6% read
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Asymptotic Analysis Examples Substituting f{n) and g{n) in this expression, we get

Let us now see some examples of asymptotic analysis that we learnt above. We en<=sn+3<=c,n

would consider one example of each category— 03, O and 6. This inequality is satisfied, for €, =hc,=6 and for all value of n >=13.
Example 1-1 Sofore =1,c2=6,n_ =3 fln) =6 (g(n))

If f{n) =5n + 3 and g(n) = n, can we say f{n) = Q (g(n))?

We can say f{n) = Q(g(n)) if we can find some ¢ and n, such that
fin)>=cg(n)c>0,n> n,>=1

Substituting f{n) and g(n) in this expression, we get

5n+3>=cn

This equation is satisfied, for € =1 and for all values of n >=1.

So we can say fore =1, n,=1, f(n) = Q(g(n))

Note that g(n) can also be log n or log log n which grow slower than n.
But tightest lower bound is n. So f{n) = ((n).

Example 1-2

If f{n) = 5n + 3 and g(n) = n, can we say f{n) = O (g(n))?

We can say f{n) = O (g(n)) if we can find some ¢ and n, such that

fln) <=cg(n), wherec >0, n> n,>=1

Substituting f{n) and g(n) in this expression, we get

5n+3<=cn

This equation is satisfied, for ¢ = 6 and for all value of n »>=3.
Sofore=6, n, =3 fln) = O (g(n))

Note that g(n) can also be n? n?, 2N which grow faster than n, But tightest upper
bound is n. So fin) = O (n).

Example 1-3

Iff{n) = 5n + 3 and g(n) = n, can we say f{n) = 0 (g(n))?

We can say f(n) = O (g{n)) if we can find some e, and n, such that

c, g(n) <=f{n) <=c, g[n), wherec;, ¢, >0, n>n_>=1.

@ﬁ
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Suppose two algorithms have rate of growth represented by functions 10onleg n
and 2nlog n respectively. Ignoring the constants order of growth of both algo-
rithms would be nlog n. So both algorithms are asymptotically same. Hence we
can't judge which one is better.

While doing Asymptotic Analysis we always consider input size n greater than
some constant value n,. But, in reality, we may never supply input bigger than Ny
In such cases, an asymptotically slower algorithm may perform better than an
asymptotically faster algorithm.

From these examples we can conclude that asymptotic analysis is not perfect, but
it still remains the best way available. Hence, it is widely used while analyzing algo-

rithms.

@ﬁ
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Comparison of Growth Rates

Comparison of some growth rates is obvious. For example, we can intuitively say
n® grows faster than n?, which grows faster than n. But we may not be so sure when
we compare growth rates of function 2M and n2. In such cases we need to follow
following steps:

(a) If anything is common, cancel it out

(b) Take log of both sides and then compare

(c) Replace n with some large value of power of 2

(d) Compare the two functions

Note that if functions differ by constant value, then asymptotically they are same;
they differ only in actual value.

Let us take a few examples to fix our ideas.

Example 1-4

Which of the following two functions is greater?

f(n) = 2N and g(n) = n2

Take log of both functions n Iog2 22 chg2 n

nlog: 2 2logan

n 2*log;n

- 2*log2'®
- 2*100
ye 200

So, g(n) < f{n). Or in other words we can say g(n) = O(f{n)).
Example 1-5

Which of the following two functions is greater?

f(n) =3 and g(n) = 2N

Take log of both sides

@ﬁ
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nlog: 3 nlog; 2
logz 3 logz 2

So, g(n) < f(n)

g(n) = 0(f(n) )

Example 1-6

Which of the following two functions is greater?
filn)=nZand g(n) =n |c>g2 n

Cancel outn

2
n nlogzn

n log; n

So, g(n) <f(n)

g(n) = O( f(n) )

Example 1-7

Which of the following two functions is greater?
fin) =nand g(n) = (Iog2 n)100

Take log of both functions

logz2 n 100 * log; logz n
Substitute n = 2128

log: 2" 100 * log; log: 2%
128 100 * log;128
128 100 * log22’

128 100* 7

So, f[n) < g{n)

Let us substitute n = 21024

logz g 100 * log log e
1024 100 * log 1024
1024 100 * log 2"
1024 100 * 10

1024 1000

So, f(n) > g{n)

3 pages (1 min) leftin this chapter { PAGE320F429 >
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So, after some value of n, f{n) > g(n)

Example 1-8

Which of the following two functions is greater?
If f{n) = nlog n and g(n)=nlogn

Take log of both functions

logn *logn log n +log log n
Substitute n = 21024

log glo log g log g log log g
1024 * 1024 1024 + 10

So, f(n) > g(n)

@ﬁ
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Determining Time Complexity
From the Asymptotic Analysis discussed previously, we know that we would be
interested in Big O as it represents the worst case time complexity. So, let us take a
few examples to calculate the time complexity. Note that the functions in the fol-
lowing examples are in pseudo code form and not as syntactically correct C code.
Example 1-9
fun()
{

inti;

for(i=1ton)

printf ( "Hello\n" ) ;

}
Here printf{) would be executed n times so time complexity is O(n).

Example 1-10

fun()

{
inti,j;
for(i=1ton)

{
for(j=1ton)

printf ( "Hello\n" ) ;

}

Here printf{) would be executed n? times so time complexity is O(n?).

Example 1-11

@ﬁ
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fun(intn)
{
inti=1;
for(i=1;i*i<=n;i++)
printf ( "Hello\n" ) ;
}
The condition used in the loop i * i <= n, which is same as i <= Vn. So printf{)
would get executed Vn times. So time complexity is O (Vn).
Example 1112
fun (intn)
{
inti=1,s=1;
while (s<=n)
{
H+;
S=5+i;
printf ( "Hello\n" ) ;

}

Here we can't say that the loop would be executed n times because value of s is
being incremented in steps of i and not in steps of 1. In this function values of i
and s would get incremented as per the following pattern:

i=1,2,3, 4,5 ..k

£§=1,36,10,15 21, ...

By the time s becomes greater than n, loop would go around k times.

When i =1, s = sum of first 1 Natural numbers

When i =2, s = sum of first 2 Natural numbers

When i = 3, s = sum of first 3 Natural numbers
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When i =k, s = sum of first k Natural numbers.
When loop stops s > n.
This means
k(k+1)/2>n
or (k2+k) /2>n
lgnaring the lower order terms k2 > n
So, number of iterations k will be vin
So, time complexity is O (Vn).
Example 1113
fun (intn)
{
inti,j, k;
for(i=1;i<=n;i++)
{
for (j=1;j<=i;j++)
{
for(k=1;i<=50;i++)
printf ( "Hello\n" ) ;

}

Let us analyse how many times each loop in this function gets executed.

Fori=1,]loop executes 1 time and k loop executes 50 times.

Fori=2,]loop executes 2 times and k loop executes 2 * 50 times.
Fori=3, | loop executes 3 times and k loop executes 3 * 50 times.
Fori=n, jloop executes n times and k loop executes n * 50 times.

So, printf{) would get executed

50+2*50+3%50+...+n%50times

@ﬁ
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=50 % (1+2+3+..+n)times
=50%n (n+1)/2)times
Ignoring the lower order terms and the coefficients, time complexity would be O
(n?).
Example 114
fun (intn)
{ . .

inti;

for(i=1;i<n;i=i*2)

printf ( "Hello\n" ) ;

}
In this function the value of i is incremented as per the following pattern:
i=124,816,..n
Or
j=20 21 22 93 54 2k
When all iterations are over 2k would be equal to n. Sa k would be equal to Iog2 n.
So printf{) would get executed chg2 n times. Hence time complexity would be O
(Il:g2 n).
Note that had the incrementation been done using the expression i =1 ¥ 3, time
complexity would be O (Iog3 n). Likewise, had it been done using i =i * 4, time

complexity would be O (Ing4 n).
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Types of Algorithms

Though the problems might be very different it is possible that the algorithms used
to solve them are similar. For example, the two problems—counting elements in a
list and checking whether a value exists in a list are different. Still the algorithms
for both are very similar. Hence algorithms are often classified as per their charac-
teristics rather than the problem that they are attempting to solve. Given below is a
list of some common types of algorithms. | do not intend to explain characteristics
of these algorithms here. Some of them are explained in chapters to follow.

(a) lterative algorithms

(b) Recursive algorithms

(c) Backtracking algorithms

(d) Divide and conquer algorithms

(e) Dynamic programming algorithms

(f) Creedy algorithms

(g) Branch and bound algorithms

(h) Brute force algorithms

(i) Randomized algorithms

@ﬁ
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Chapter Bullets
Summary of chapter

(a) Algorithm is a method of accomplishing a task in a finite number of steps.

(b) An algorithm must have input, output, finiteness, definiteness and effec-
tiveness.

(c) Analysis of an algorithm involves determining time requirement or memory
space requirement.

(d) Asymptotic analysis evaluates an algorithm’s performance in terms of input
size. It calculates how time / space increases with input size.

(e) Asymptotic notation describes 3 rates of growth Big Q, Big O and Big 8.

(f) Usually Big O analysis of an algorithm is done, as it determines the worst case
time complexity.

(g) Though Asymptotic Analysis is not perfect, it is still the best way available to
analyze algorithm's performance.

(h) Time complexity of a function can be found out by determining the number of
times the dominant operation is being performed in the function.

(i) Order of growth of two functions can be compared by taking log of functions

and substituting a large value in place of n.

@ﬁ
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Check Your Progress
Exercise - Level |
[A] Pick up the correct alternative for each of the following questions:
(a) If algorithm A1 is asymptotically more efficient than algorithm Az, then which of
the following statement is correct?
(1) A1 would be more efficient for all inputs
(2) A1 would be more efficient for all inputs except small inputs
(3) A1 would be more efficient for all inputs except large inputs
(4) Az would be more efficient for small inputs
(b) The correct increasing order of Asymptotic complexity of 4 functions given
below is
funi (n) =2n
funz (n) =n3/2
fun3 (n) = nlog n
fung (n) = n” (log n)
(1) fun3, funz, fung, fum
(2) fun3, funz, fum, fung
(3) funz2, fun3, fum, funsg
(4) funz2, funs, fung, fum
(c) Four functions fum (), funz(), fun3() and fung() use four different for loops given
below, where n = o.
for(i=0;i<n;i++)
for(i=0;i<n;i+=2)
for(i=1;i<n;i*=2)
for(i=n;i>-1;i/=2)
Which function would be most efficient?

(1) fum

@ﬁ
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(2) fun2

(3) fun3

(4) fung

(d) Which of the following is not O (n2)?

(1) 125* n+12099

(2) n3.14

(3)310%n

(4) n3 [ ¥

(e) Consider the following function fun(): double fun (int n)
double fun (intn)
{
inti;
double sum ;
if(n==0)
return 1.0 ;
else
{
sum=0.0;
for(i=0;i<n;i++)
sum +=fun(i);
return sum ;

The time complexity of the above function is:
(1O ()

(2) O (n)

(31O (n)

(4) © (nn)

(f) Consider the following function with n >=m.
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intged (intn,intm)
{

if(n%m==0)
returnm ;
n=n%m;

returnged (m, n ) ;

How many recursive calls are made in the above function?
(1) 8 (log n)

(2) @ ()

(3) 8 (log log n)

(4) © (sart (n)

[B] Two different procedures are written for a given problem. One has a computing
time given by 21 and that for the other is n3. Specify the range of n for which
each would be suitable.

[C] Compare the two functions n? and 2N [ 4 for various values for n. Determine
when the second becomes larger than the first.

[D] Which of the following function grow faster?

i.vnorlogn?

log

. n n
ii.n " orlogn ?

Prove your claim.

@ﬁ
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Sharpen Your Skills

Exercise - Level Il

[E] Determine the time complexity of the following algorithms:

(a) fun(int n)
{

int old, new, term, n;

old = new =1;

printf (“%d %6d”, old, new);
for (i=1;i<=n; i++)

{

term = old + new;

printf (“%d", term);

old = new;
new = term;
}
j
(b) fun (int n)
{
for (i=1;i<=n; i++)
{
for (j=1;j==1;j++)
{

for (k=1; k<=j; k++)
printf (“Hello\n™);
}
1
}

@ﬁ
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(c) fun (intn)
{

i=1
while (i <= n)
{
X++;
i+4+;
}
1
(d) int fun (int n)
{
inti, j, count=o0:
for(i=n;i>o0;i/=2)
{
for (j=0;]<i; j++)
count = count + 1;
}
return count;
}
{e) int fun (int n)
{
inti, j, count=o0;
for (i=0;i<n;i++)
{
for (i=i;j>o0;j-)

count = count + 1;
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return count;

}
(f) fun (int n)
{

inti, j=0;

for (i=0;i<n; ++i)
{
while (j < n)
i
1

1

(g) int fun (int n)

{
inti, j, k=o0;
for (i=n/2;i<=n;i++)
{

for (j=2;j<=n;j=j*2)
k=k+nj2;

}

return k;

}

(h) fun (int n)

{
intj;
i=n

while (j <= n)

{

@ﬁ

5 pages (2 min) leftin this chapter

€5 SCRIBD 0 =

i=i%z
printf (“Hello\n");
1
1
(i) fun (int n)
{
inti,j;
for(i=n,j=0;i>0;i[=2,]+=1)
printf (“Hello\n™);

1
(j) fun (int n)
{

inti,j, k;

for (i=1;i<=n;i++)
for (j=1i; j <=n; j++)
for (k=j+1; k<=n; k++)
printf (“Hello\n");

1
(k) fun (int n)
{
inti,j, k;
for (i=1;i<=n;i++)
{
for (j=1j<=i%i j++)
{

for (k=1;i<=n/f2; i++)
printf (“Hello\n™);
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}
}
1
(1) fun (int n)
{
inti, j, k;
for (i=njz;i<=n;i++)
{
for (j=1;j <=n/fz; j++)
{
for (k=1;i<=n; k=k*2)
printf (“Hello\n™);
}
}
}
{m) fun (int n)
{
inti, j, k;
for (i=n/2;i<=n;i++)
{
for (j=1j<=n;j=2%]j)
{
for (k=1; i<=n; k=k*2)
printf (“Hello\n");
}
1
}

@ﬁ
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(n) fun{int n)
{
J Assumen >=2
inti, j, k;
while (n>1)
n=n fz;
1
(o) fun(int n)
{
inti, j;
for (i=1:1<=n;i++)
{
for(j=1j<=n;j=j+1i)
printf (“Hello\n");
}
1
(p) fun()
{
inti,j,n k;
n=(22)k;
for (i=1;i<=n;i++)
{
=2
while (j <=n)
{
=i
printf (“Hello\n™);
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}
}
[F] Arrange the following functions in ascending order of their growth rate:
funi = 2N
funz = n3/2
fun3=nlogn
fung=nlogn
[G] Determine which of the following function is faster:
f[n}=n3for0<n<10000

= n’ for n >= 10000

g(n)=nfor0<n<100
=n3 forn > 100

@ﬁ
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Coding Interview Questions

Exercise Level Il

For each of the following pairs of functions f(n) and g(n), either f(n) = O[g(n)] or
2(n) = O[f(n)], but not both. Determine which the case is for each of the following
pairs:

(a) f(n)=(n"-n)/2,g(n)=6n

(b) f(n)=n+2+n,gln)=n

(c) fln)=n+nlogn,g(n)= nvn
(d) f(n)=n’+3n+4,g(n)=n’

(e) f(n)=nlogn,gn)=nn/2

(f) f(n)=n+logn,g(n) = vn

(g) f(n)=2(logn)% g(n) = log n+1
(h) f(n)=4n log n+n, g(n) = (n*-n)/2

QO —@
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Case Scenario Exercise
Growth rates

List the following functions from highest to lowest order. If any are of the same

order, circle them on your list.

2" log logn n’+ logn logn n’+5n°
2t n’ n’ nlogn (log n)?
Jn 6 n! n 3/2)"

QO —
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Chapter o2 Data Structure is a way of organizing data in such a way that we can perform opera-
Arrays tions on the data in an effective way. Same data can be stored in different data
FRIENDS ARE FRIENDS structures. Each data structure has its own benefits and limitations. A data struc-

ture is not related with any specific language. All data structures can be imple-

Why This Chapter Matters?
¥ hishapteriatiers mented through languages like C, C++, Java, C#, Python, etc. In this book we

Array is one data structure that has been used more than any other. Arrays are would be using C language to implement various data structures.

simple yet reliable and are used in more situations than you can count. Yet they Data structures are classified into two categories—linear and nonlinear. The ele-

have problems that are typical to thern, which at times lead to serious performance ments in a linear data structure form a sequence, whereas elements in a nonlinear

issues. They are like old friends. You accept and live with their qualities—good as data structure do not.

well as bad. There are two ways of representing linear data structures in memaory— Array based
lists (simply called arrays) and Linked Lists. In array the linear relationship between
elements is established by storing its elements in sequential memory locations. In
linked list the linear relationship is established through pointers or links. In a
linked list each node contains the data and the address of the next node. Eigure

2-1(a) and Figure 2-1(b) show the representation of an array and a linked list.

@ﬁ
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(b) Linked list of 4 integers

34 5 -6 12 9
(a) Array of & integers
Data Pointer to next Node
-6

id— Node

.

Arrays are useful when the number of elements to be stored is fixed. They are easy
to traverse, search and sort. On the other hand, linked lists are useful when num-
ber of data items in the collection is likely to vary. Linked lists are difficult to main-

tain as compared to an array. We would discuss linked lists in more detail in Chap-

ter3.

©
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Arrays

An Array is a finite collection of similar elements stored in adjacent memory loca- Operation | Description

tions. An array containing n number of elements is referenced using an index that T Prtscesskig siach elmmant i the aivey

varies from © to n - 1. For example, the elements of an array arr[n] containing n ele- Sl Bt s Reoctliony o sl et i sy e

ments are denoted by arr[o], arr[1], arr[2], ..., arr[n-1], where o is the lower bound of Insertion 7 S (. S—

the array, n -1 is the upper bound and of the array and o, 1, 2, etc. are indices of the - ;
Deletion Removing an element from an array

array. A sample arrangement of array elements is shown in Eigure 2-2. X . .
Sorting Organizing the array elements in some order
Merging Combining two arrays into a single array

alo) al1) al2] al3) al4] als] Reversing | Reversing the elements of an array

34 1 5 -6 12 9

Table 2-1. Operations performed on arrays.

Let us now see a program that shows how to perform these operations on an array.

Figure 2-2, Elements in an array with their indices.
Honest Solid Code {C}

There are several operations that can be performed on an array. These operations Program 2-1. Implementation of various array operations

are listed in Table 2-1. #include <stdio.h>

#define MAX 5

void insert (int #, int pos, int num);
void del (int #, int pos);

void reverse (int #);

void display (int *);

void search (int *, int num);

int main()

{

© @
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intarr[5];

insert (arr, 1, 11);

insert (arr, 2, 12);

insert (arr, 3, 13);

insert (arr, 4, 14);

insert (arr, 5, 15);

printf (“Elements of Array:\n");
display (arr);

del (arr, 5);

del (arr, 2);

printf (“After deletion:\n");
display (arr);

insert (arr, 2, 222);

insert (arr, 5, 555);

printf (“After insertion:\n");
display (arr);

reverse (arr);

printf (“After reversing:\n");
display (arr);

search (arr, 222);

search (arr, 666);

return o;

}

/# inserts an element num at given position pos */
void insert (int *arr, int pos, int num)

{

© @

5 pages (3 min) leftin this chapter

€5 SCRIBD 0 =

/# shift elements to right */
inti;

for (i=MAX-1; i >=pos: i-)

arrf[i]=arrfi-1];
arr[i] = num;

}

/* deletes an element from the given position pos */
void del (int *arr, int pos)
{
/# skip to the desired position */
int i;
for (i = pos; i < MAX; i++)
arrfi-1]=arri];
arfi-1]=o0;
}
/# reverses the entire array */
void reverse (int *arr)
{
int i;
for (i=0;i< MAX [ 2; i++)
{
int temp = arr[i];
arrfi]=arr[ MAX -1-i];
arrf MAX - 1-i] =temp;
}
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}

/% searches array for a given element num */
void search (int *arr, int num)
{
int i;
for (i=0; 1< MAX; i++)
{
if (arr[i] ==num)
{
printf (“Element %d is at %dth position\n”, num, i +1);
return;
}
}
printf (“Element %d is absent\n", num);

1

/* displays contents of a array */
void display (int *arr)
{

int i;

for (i=0; i< MAX; i++)

printf (“%d\t", arr[ i ]);

printf (“\n™);
}
Qutput:

© D
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Elements of Array:

11 12 13 14 15
After deletion:

11 13 14 0O 0
After insertion:

11 222 13 14 555
After reversing:

555 14 13 212 11
Element 222 is at 4th position
Element 666 is absent

In this program we have created an array arr which contains 5 ints. We have passed
the base address of this array to functions insert(), del{), display(), reverse() and
search() to perform different operations on the array.

The insert() function takes two arguments, the position pes at which the new num-
ber has to be inserted and the number num that has to be inserted. In this func-
tion, firstly through a loop, we have shifted the numbers from the specified posi-
tion, one place to the right of their existing position. Then we have placed the num-
ber num at position pos.

The del() function deletes the element present at the given position pes. For this
we have shifted the numbers placed after the position from where the number is to
be deleted, one place to the left of their existing positions. The number at position
pos is then overwritten with o.

In reverse() function we have reversed the entire array by swapping the elements
arr[o] with arr[4], arr[1] with arr[3] and so on. Note that swapping should continue
for MAX / 2 times only, irrespective of whether MAX is odd or even.

The search() function searches the array for the specified number. For this the
comparison is carried out until either the list is exhausted or a match is found. If

the match is not found then the function displays the relevant message.
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In the display() function, the entire array is traversed to display the elements of the

array.

© &
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A 2-dimensional array is a collection of elements placed in m rows and n columns.

The syntax used to declare a 2-D array includes two subscripts, of which one spec-

ifies the number of rows and the other specifies the number of columns of an

array. These two subscripts are used to reference an element in an array. For exam-

ple, arr[3][4] is a 2-D array containing 3 rows and 4 columns and art[o][2] is an ele-

ment placed at oth row and 2nd column in the array. The two-dimensional array is

also called a matrix. The pictorial representation of a matrix is shown in Figure 2-3.

COLUMN
0 1 2 3
0 12 1 9 23
ROW
1 14 7 11 121
2 6 78 15 34

Figure 2-3. Representation of a 2-D array.
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Row Major and Column Major Arrangement

Rows and columns of a matrix are only a matter of imagination. When a matrix gets
stored in memory all its elements are stored linearly since computer's memory can
only be viewed as consecutive units of memory locations. This leads to two pos-
sible arrangements of elements in memory-Row Major Arrangement and Column
Major Arrangement. Figure 2-4 illustrates these two possible arrangements for a

2-D array.

inta[3][4]=({
{12,1,-9,23),
{14,7,11,121},
{6,78,15,34}

b

Row Major Arrangement

0" row 1" row -

12 1 -9 23 14 7 1T |3 | 78 | 15 | 34

502 506 510 514 518 522 526 530 534 538 542 546

Column Major Arrangement

le—— 0" col —le— 1% col —le—— 2™ col —>la—— 3" col —»

12 14 6 1 7 78 -9 11 15 23 | 121 | 34

502 506 510 514 518 522 526 530 534 538 542 546

Mote: Each integer occupies four-bytes

Figure 2-4. Possible arrangements of 2-D array.
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Since the array elements are stored in adjacent memory locations we can access
any element of the array once we know the base address (starting address) of the
array and number of rows and columns present in the array.

For example, if the base address of the array shown in Eigure 2-4 is 502 and we
wish to refer the element 121, then the calculation involved would be as follows:
Row Major Arrangement

Element 121 is present at a[1][3]. Hence location of 121 would be
=502+1%4+3=502+7=530

In general, for an array a[m][n] the address of element a[i][j] would be Base address
+iFn+]

Column Major Arrangement

Element 121 is present at a[1][3]. Hence location of 121 would be
—502+3%3+1=502+10=542

In general for an array a[m][n] the address of element a[i][j] would be Base address

+j*m+i. Note that C language permits only Row Major Arrangement.

15% read
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COMMON MATRIX OPERATIONS

Common matrix operations are addition, multiplication and transposition. The fol-

lowing program demanstrates these different matrix operations.

Honest Solid Code {C}

Program 2-2. Implementation of common matrix operations
#include <stdio.h>

#define MAX 3

void create (int[3][3]);
void display (int[3][3]);
void matadd (int[3][3],int[3][3], int[31[3]);

void matmul (int[3][3],int[3][3], int[3]1[31]);
void transpose (int[3][3],int[3][3]);

int main ()

{
intmati[3][3], mat2[3][3], mat3[3][3], mat4[3][3], mats[3][3];

printf (“Enter elements for first array:\n");
create (mat1);

printf (“Enter elements for second array:\n");
create (mat2);

printf (“First Array:\n");

display (mat1);

printf (“Second Array:\n");

display (mat2);

matadd (mat1, matz, mat3);

printf (“After Addition:\n");

SCRIBD
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display (mat3);
matmul (mat1, matz, mat4);

printf (“After Multiplication:\n"):

display (mat4);
transpose (mat, matsg);
printf (“Transpose of first matrix:\n");
display (mats);
return o;

1

[* creates matrix mat %/

void create (int mat[3][3])

{
inti, j;
for (i=0; i< MAX; i++)
{
for (j = 0; ] < MAX; j+4)
{

printf (“Enter the element:");
scanf (“%d”, &mat[i][j]);
}
1
printf (“\n™);
1

/* displays the contents of matrix */

void display (int mat[3][3])
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{ for (i=0; i< MAX; i++)
inti, j; {
for (i=o0; i< MAX; i++) m3[k][i]=0;
{ for (j=0;j < MAX; j++)
for (j=0;j < MAX; j++) m3[kI[i]+=mlk][j]*m2[jI[i};
printf (“%d\t", mat[i][j]); 1
printf (“\n"); 1
} 1
) /* obtains transpose of matrix m */
/* adds two matrices m1 and m2 */ void transpose (int m1[3][3], intm2[3][3])
void matadd (int m1[3][3], intm2[3][ 3], intm3[3][3]) {
{ inti,j;
inti, j; for (i=0; 1< MAX; i++)
for (i =0; i< MAX; i++) {
{ for (j = 0; j < MAX; j++)
for (j=0;j < MAX; j++) m2[i][j]=m[j][i];
m3[i][j]=m[i][j]+m2[i][j]; }}
! Output:
! Enter elements for first array:
/% multiplies two matrices m1 and m2 *#/ Enter the element: 1
void matmul (int mi[3][3], int m2[3][3], int m3[31[3]) Enter the element: 2
{ Enter the element: 3
inti, j, k; Enter the element: 2
for (k= 0: k < MAX; k++) Enter the element: 1
{ Enter the element: 4
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Enter the element: 4 First Array:
Enter the element: 3 1 B 3
Enter the element: 2 2 1 4
4 3 2
Enter elements for second array:
Second Array:
Enter the element: 3 3 2 3
Enter the element: 2 a 3 2
Enter the element: 3 1 3 1
Enter the element: 4 After Addition:
Enter the element: 3 4 4 6
Enter the element: 2 6 4 6
Enter the element: 1 S 6 3 .
" After Multiplication:
14 17 10
Enter the element: 1 14 19 12
260 22 20
Transpose of first matrix:
1 2 -
2 y | 3
3 4 2

In this program we have defined functions create() to create an array of ints and
function display() to display elements of a matrix.

The function matadd() adds the elements of two matrices mat1 and mat2 and
stores the result in the third matrix mat3. Similarly, the function matmul() multi-
plies the elements of matrix mat1 with the elements of matrix mat2 and stores the
result in mat4. The function transpose(), transposes a matrix. A transpose of a ma-
trix is obtained by interchanging the rows with corresponding columns of a given

matrix. The transposed matrix is stored in mats.
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Multidimensional Arrays
A 3-dimensional array can be thought of as an array of arrays of arrays. Figure 2-5
shows a 3-D array, which is a collection of three 2-D arrays each containing 4 rows

and 2 columns.

2" 2-D Array » 3 9
1% 2-D Array 3 2
0"2-DArray —————»{ 2 8
0 6
4 7
.|

Figure 2-5. Representation of a 3-D array.

This array can be defined as:
inta[3][4][2]={
{{2,8}{0,6}{4,7}{1,5}}
{{3,2}{8,6}{1,6}{4,5}}
} {{3,91{1,8},{6,5},{4,0}}
The outer array has three elements, each of which is a 2D array, which in turn holds

four 1D arrays containing two integers each. Note that the arrangement shown in

Eigure 2-5 is only conceptually true. In memeory the same array elements are stored

linearly as shown in Eigure 2-6.
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—— 0™ 2-D array ——>—— 1" 2-D array ——»1e—— 2™ 2-D array —»

2|8lolela7]|1]|5|3]2]8[6]1]6]a]|5[3]a]1]|8]6]|5[a]0

402 434 466

Figure 2-6. Memory representation of a 3-D array.

As stated earlier, C permits only a Row Major arrangement for multi- dimensional

arrays. Let us determine the location of element g in the array shown in Figure 2-6.
Element g is present at a[2][o][1] indicating that it is present in o th row, 15t column
of 2nd 2-D array. Hence address of g would be

4O24+2F4F24+0%24+1=402+17 =470

For any 3-D array a[x]ly][z] arranged in Row Major fashion the element ali][jllk] can
be accessed using Base address + i*y %z +j%z+ k.

The formula for Column Major arrangement would be Base address +i*y *z + k=
y+j.

On similar lines for a 4-D array a[w][x][ylz] the element a[i][j]lk][l] can be accessed
using following formulae:

Row Major: Base address +i “*x*y*z+j*yFz+k*z+]|

Column Major : Base address + i *x*y*z+j*y~z+|*y+k
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Arrays and Polynomials
Polynomials like X4 + 2X3 + 7X2 + 10X - 8 can be maintained using an array. The

g

simplest way to represent a polynomial of degree is to store the coefficient of
(n + 1) terms of a polynomial in an array. For this each element of the array should
consist of two values—coefficient and exponent. While storing the polynomial it is
assumed that the exponent of each successive term is less than that of the pre-
vious term. Once we build an array to represent a polynomial, we can use it to per-
form common polynomial operations like addition and multiplication. The fol-

lowing program demonstrates how we can store polynomials and add them.

Honest Solid Code {C}

Program 2-3. Implementation of polynomial addition
#include <stdio.h>

#define MAX 10

struct term
{
int coeff; int exp;
I
struct poly
{
structtermt[10];

int noofterms;

%

void initpoly (struct poly *);
void polyappend (struct poly *, int ¢, int e);
struct poly polyadd (struct poly, struct poly);

© ®
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void display (struct poly);

int main()

{
struct poly p1, p2, p3;
initpoly (&p1);
initpoly (&p2);
initpoly (&p3);
polyappend (&p1, 1, 7);
polyappend (&p1, 2, 6);
polyappend (&p1, 3, 5);
polyappend (&p, 4, 4);
polyappend (&p1, 5, 2);
polyappend (&p2, 1, 4);
polyappend (&p2, 1, 3);
polyappend (&pz, 1, 2);
polyappend (&p2, 1,1);
polyappend (&p2, 2, 0);
p3 = polyadd (p1, p2);
printf (“First polynomial:\n”);
display (p1);
printf (“Second polynomial:\n");
display (p2);
printf (“Resultant polynomial:\n”);
display (p3);

return o;

}

6 pages (4 min) leftin this chapter { PAGET40F429 >

Aa

17% read



/* initializes elements of struct poly #/
void initpoly (struct poly *p)

{

int i;
p -> noofterms = ¢;
for (i=0; 1< MAX; i++)
{
p->1[i].coeff=o;
p->ti]exp=0;
}
}

/% adds the term of polynomial to the array t */
void polyappend (struct poly *p, int ¢, int e)
{

p ->t[ p -> noofterms J.coeff=c;

p-=>1t[ p -> noofterms J.exp = &;

(p -> noofterms) ++;

}

/* displays the polynomial equation */
void display (struct poly p)
{
intflag=o0,1i;
for (i = 0; i < p.noofterms; i++)
{
if (p.t[i].exp !=0)

© ®
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printf (“%d x"%d +", p.t[ i |.coeff, p.t[ i ].exp);
else
{
printf (“%d”, p.t[ i ].coeff);
flag=1;
}
}
if (Iflag)
printf (“\b\b");
printf (“\n™);
1

/* adds two polynomials p1 and p2 #/
struct poly polyadd (struct poly p1, struct poly p2)
i

inti,j, g

struct poly p3;

initpoly (&p3);
if (p1.noofterms > pz.noofterms)
¢ = pl.noofterms;
else
c = p2.noofterms:
for (i=0, ] =0:i <= ¢; p3.noofterms++)
{
if (p1.t[ i |.coeff == 0 && p2.t[ j |.coeff — 0)
break;
if (p1.t[i].exp >= p2.t[] .exp)
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{
if (p1.t[i].exp == p2.t[ j ].exp)
{
p3.t] p3.noofterms |.coeff = p1.t[ i J.coeff + p2.t[ j ].coeff;
p3.t[ p3.noofterms J.exp = p1.t[ i J.exp;
4
j++
}
else
{
p3.t] p3.noofterms .coeff = p1.t[ i |.coeff:
p3.t] p3.noofterms J.exp = p1.t[ i J.exp;
i++;
}
}
else
{
p3.t{ p3.noofterms |.coeff = p2.1 j ].coeff;
p3.t[ p3.noofterms J.exp = p2.1[ ] |.exp;
it
}
}
return p3;
}
Output:
First polynomial:

137 + 26 + 3005 + 4 x4 + 5 xf2

2 pages (2 min) leftin this chapter
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Second polynomial:

1 iy pafo M # 2

Resultant polynomial:

1XA7+2xM0+ 3xME+ 5N H1 XM+ BxM2 1M +2

In this program the structure poly contains another structure element of the type
struct term. This structure stores the coefficient and exponent of the term of a poly-

nomial. The element noofterms stores the total number of terms that a variable of
the type struct poly is supposed to hold. The function pelyappend() adds the term

of a polynomial to the array t. The function polyadd() adds the polynomials repre-

sented by variables p1 and p2. The function display() displays the polynomial.

In main(), we have called the function polyappend() several times to build two poly-
nomials represented by variables p1 and pz. Next, the function polyadd() is called.

While doing so we have passed p1 and p2 and collected their sum in in p3. In this

function, arrays representing the two polynomials are traversed. While traversing,

the polynomials are compared on a term-by-term basis. If the exponents of the two

terms being compared are equal then their coefficients are added and the result is
stared in the third polynomial. If the exponents of two terms are not equal then the
term with the bigger exponent is added to the third polynomial. If the term with an
exponent is present in only one of the two polynomials then that term is added as

it is to the third polynomial.

Lastly, the terms of the resulting polynomial are displayed using the function

display().

PAGE 78 OF 429 > 18% read



©

7 pages (3 min) leftin this chapter

MULTIPLICATION OF POLYNOMIALS

Let us now see a program that carries out multiplication of two polynomials.

Honest Solid Code {C}

Program 2-4. Implementation of polynomial multiplication
#include <stdio.h>

#define MAX 10

struct term
{
int coeff;
int exp;
k
struct poly
{
structtermt[10];
int noofterms;
5
void initpoly (struct poly #);
void polyappend (struct poly *, int, int);
struct poly polyadd (struct poly, struct poly);
struct poly polymul (struct poly, struct poly);
void display (struct poly);

int main()

{
struct paoly p1, p2, p3;
initpoly (&p1);
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initpoly (&p2);

initpely (&p3);

polyappend (&p1, 1, 4);
polyappend (&p1, 2, 3);
polyappend (&p1, 2, 2);
polyappend (&p1, 2,1);
polyappend (&p2, 2, 3);
polyappend (&p2, 3, 2);
polyappend (&p2, 4, 1);

p3 = polymul (p1, p2);

printf (“First polynomial:\n");
display (p1);

printf (“Second polynomial:\n");
display (p2);

printf (“Resultant polynomial:\n");
display (p3);

return o;

/¥ initializes elements of struct poly */
void initpoly (struct poly *p)
{

int i;

p -> noofterms = o;

for (i=0; i< MAX; i++)

p->t[i].coeff=0;

PAGE 80 OF 429 >

Aa

19% read



p->t[i]exp=o0;
}
1

/* adds the term of polynomial to the array t */
void polyappend (struct poly *p, int ¢, int e)
{

p > t[ p -> noofterms J.coeff=c;

p ->t[ p -> noofterms J.exp = e;

(p -> noofterms) ++;

}

/* displays the polynomial equation */
void display (struct poly p)
{
int flag = o, i;
for (i = 0; i < p.noofterms; i++)
{
if (p.t[i].exp |=0)
printf (“%d x"%d +", p.t[ i |.coeff, p.t[ i .exp);
else
{
printf (“%d", p.t[ i ].coeff);
flag=1;
}
}
if (Iflag)
printf (“\b\b");

© ®
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printf (“\n™);
1

/* adds two polynomials p1 and p2 */
struct poly polyadd (struct poly p1, struct poly p2)
{

inti, j, g

struct poly p3;

initpoly (&p3);

if (p1.noofterms > p2.noofterms)

¢ = pl.noofterms;

else

¢ = p2.noofterms;

for (i=0, =0 <=c; p3.noofterms++)

{
if (p1.t[i].coeff==0 && p2.t ] ].coeff == @)
break;
if (p1.t[i].exp = p2.t[j .exp)
{
if (p1-t[ i ].exp == p2.t[ j .exp)
{
p3.t[ p3.noofterms |.coeff = p1.i] i J.coeff + p2.1] j |.coeff;
p3.t[ p3.noofterms J.exp = p1.t[ i J.exp;
i++;
i+
}
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else
{
p3.t] p3.noofterms J.coeff = p1.t[ i |.coeff:
p3.t] p3.noofterms J.exp = p1.t[ i J.exp;
i++;
}
}
else
({
p3.t[ p3.noofterms |.coeff = p2.1 j ].coeff;
p3.t] p3.noofterms l.exp = p2.1[ ] |.exp;
i+
}
}
return p3;

}

/* multiplies two paolynomials p1 and p2 */
struct poly polymul (struct poly p1, struct poly p2)
{

int coeff, exp;

struct poly temp, p3;

initpoly (&temp);

initpoly (&p3);

if (p1.noofterms |= 0 && p2.noofterms I= o)

inti;

© o
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for (i = 0; i < pr.noofterms; i++)
{

int j;

struct poly p;

initpoly (&p);
for (j=0; j < p2.noofterms; j++)
{

coeff = p1.t[ i J.coeff * p2.i] j ].coeff;
exp =put[il.exp + p2.t[j].exp;
polyappend (&p, coeff, exp);

}

if (il=0)

{
P3 = polyadd (temp, p);
temp = p3;

}

else
temp = p;
}

}

return p3;
1
Output:
First polynomial:
1xM +2xh3+ 2 xh2 + 2 0M
Second polynomial:

2 %3+ 3xM2 44 M
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Resultant polynomial:

27 + 7xM6 + 14 x5 +18 ¥4 + 14 %03 + B xM2

As in the previous program, here too we have called polyappend() function several
times to build the two polynomials which are represented by the variables p1 and
p2. To carry out multiplication the function pelymul() is called and p1 and p2 are
passed to it. It returns the product of polynomials p1 and p2 which we have col-
lected in p3.

In polymul() function, first we have checked that whether the two polynomials p
and p2 are non-empty. If they are not then the control goes in a pair of for loop.
Here, each term of first polynomial contained in p1 is multiplied with every term of
second polynomial contained in p2. While doing so, we have called polyappend()
to add the terms to p. The first resultant polynomial is stored in temporary variable
temp of the type struct poly. There onwards the function polyadd() is called to add
the resulting pelynomials.

Lastly, the terms of the resulting polynomial are displayed using the function

display().
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Chapter Bullets
Summary of chapter

(a) Array is a collection of similar elements stared in adjacent memory locations.

(b) Arrays cannot grow or shrink dynamically. Hence they are useful in situations
where number of elements stored in it is fixed.

(c) Common array operations include traversal, searching, sorting, insertion, dele-
tion, merging and reversal.

(d) Two-dimensional arrays can be arranged in memory either in row- major or col-
umn-major fashion.

(e) All matrix operations like transpose, addition, multiplication can be imple-
mented using two-dimensional arrays.

(e) Array of structures can be used to store a polynomial and to perform poly-

nomial operations like addition and multiplication.
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Check Your Progress

Exercise - Level |

[A] Fill in the blanks:

(a) A data structure is said to be if its elements form a sequence.

(b) An Array is a collection of elements stored in memory
locations.

(c) Index of an array containing n elements varies from to

(d) A 2-D array is also called :
[B] Pick up the correct alternative for each of the following questions:
(a) To traverse an array means
(1) To process each element in an array
(2) To delete an element from an array
(3) To insert an element into an array
(4) To combine two arrays into a single array
(b) A program P reads in 500 integers in the range [0..100] representing the scores
of soo students. It then prints the frequency of each score above 5o. What
would be the best way for P to store the frequencies?
(1) An array of 50 numbers
(2) An array of 100 numbers
(3) An array of 500 numbers
(4) A dynamically allocated array of 550 numbers
(c) Which of the following operations is not O(1) for an array of sorted data. You
may assume that array elements are distinct.
(1) Find the ith largest element
(2) Delete an element
(3) Find the ith smallest element
(4) All of the above

© ®
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Exercise - Level Il

[C] Answer the following:

(a) Find the location of the element a[i][2][2][1] from a 4-D integer array al4][3][4][3]
if the base address of the array is 1002.

(b) Design a data structure for a banking system where the maximum number of
clients is 150. Information to be stored about clients— name, address, account
no., balance, status as Low/Medium/High depending on balance.

(c) Design a data structure for Income Tax department to hold information for
maximum 200 persons. Information to be stored about persons—Income Tax
no., tax amount, name, address, whether tax paid or not for previous year,
group as High/Low depending on amount of tax to be paid and category which
would vary from 1 to 10.

[D] Write programs for the following:

(a) Write a program to find out the maximum and the second maximum number
from an array of integers.

(b) Build an array called chess to represent a chessboard and write a function that
would be capable of displaying position of each coin on the chessboard.

(c) There are two arrays A and B. A contains 25 elements, whereas, B contains 30
elements. Write a function to create an array C that contains only those ele-

ments that are common to A and B.
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Coding Interview Questions

Exercise Level II1

(a) The Mode of an array of numbers is the number m in the array that is repeated
most frequently. If more than one number is repeated with equal maximal fre-
quencies, there is no mode. Write a program that accepts an array of numbers
and returns the mode or an indication that the mode does not exist.

(b) Write a program to delete duplicate elements from an array of 20 integers.

(c) A square matrix is symmetric if for all values of i and j a[i][j] = a[j][i]. Write a pro-

gram, which verifies whether a given 5 x 5 matrix is symmetric, or not.
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Case Scenario Exercise

Orthogonal Matrix

A square matrix is said to be Orthogonal if the matrix obtained by multiplying the
matrix with its transpose is an identity matrix. In other words, if A is a matrix and T
is its transpose, then matrix B obtained by multiplying A with T is called orthogonal
if it is an identity matrix. An identity matrix is a square matrix in which the elements
in the leading diagonal are 1. Write a program that receives a square matrix and
determines whether it is Orthogonal or not.

Orthogonal matrices have applications in field of numerical linear algebra.

Case Scenario Exercise

Longest increasing sub-sequence

One of the interesting problems in Computer Science is to find the longest increas-
ing subsequence in a given sequence. The subsequence should be as long as pos-
sible and its elements must be in ascending order. The subsequence elements
need not be in adjacent locations and the elements need not be unique.

For example, in the following sequence

0,8,4,12,2,10,6,14,1,9,5,13,3,11, 7,15

the longest increasing subsequence is

0,2, 6,9, 11,15

This subsequence has length six; the input sequence has no seven- member in-
creasing subsequences. The longest increasing subsequence in this example is not
unique. o, 4, 6, 9, 11, 15 or 0, 4, 6, 9, 13, 15 are other increasing subsequences of
equal length in the same input sequence.

Write a program to obtain the longest increasing subsequence in a given sequence.
Longest increasing subsequences have applications in fields of random matrix the-

ory, representation theory, and physics.
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Chapter 03
Linked Lists
STAY CONNECTED

Why This Chapter Matters?

United we stand, divided we falll More united and connected we are, more is the
flexibility and scalability. Same is true with linked lists. Linked lists are used at
numerous places in Computer Science. The flexibility and performance they offer is

worth the pain of learning them.
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For storing similar data in memory we can use either an array or a linked list. Ar-

rays are simple to understand and elements of an array are easily accessible. But

arrays suffer from the following limitations:

- Arrays have a fixed dimension. Once the size of an array is decided it cannot be
increased or decreased during execution.

- Insertion of a new element in an array is tedious because during insertion each
element after the specified position has to be shifted one position to the right.

- Deletion of an existing element in an array is inefficient because during deletion

each element after the specified position has to be shifted one position to the left.

Linked list overcomes all these disadvantages. A linked list can grow and shrink in
size during its lifetime. Thus, there is no maximum size of a linked list. Also, unlike
arrays, while inserting or deleting elements in a linked list shifting of existing ele-

ments is not required.
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What is a Linked List

While the elements of an array occupy contiguous memory locations, those of a
linked list are not constrained to be stored in adjacent locations. The order of the
elements is maintained by explicit links between them. For instance, the marks ob-

tained by different students can be stored in a linked list as shown in Eigure 3.

Typical Node
|data link
| 14 ~ 30 = 25 — 42 N

Figure 3-1. Linked list.

Observe that the linked list is a collection of elements called nodes, each of which
stores two items of information—an element of the list and a link. In Eigure 3-1, the
data part of each node consists of the marks obtained by a student and the link
part contains address of the next node. Thus the link part is a pointer to the next

node. Hence it is shown using an arrow. The NULL (N) in the last node indicates

that it is the last node in the list.
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Operations on A Linked List

Several operations can be performed on linked lists. This includes building a linked
list by adding new node (at the beginning, at the end or in the middle of the linked
list), deleting a node, display contents of all nodes, etc. The following program
shows how to implement these operations. Go through the program carefully, a

step at a time to understand the working of these operations.

Honest Solid Code {C}
Program 3-1. Implementation of various linked list operations
#include <stdio.h>
#include <stdlib.h>
struct node
{

int data; struct node * link;
k
void append (struct node **, int);
void addatbeg (struct node **, int);
void addafter (struct node *, int, int);
void display (struct node #);
int count (struct node #);

void del (struct node **, int);

int main ()

{

struct node *p;

p = NULL; /* empty linked list #/

printf (“No. of elements in the Linked List = %d\n", count (p));
append (&p, 14);
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append (&p, 30);

append (&p, 25);

append (&p, 42);

append (&p, 17);

display (p);

addatbeg (&p, 99); addatbeg (&p, 88); addatbeg (&p, 77);
display (p);

addafter (p, 3, 41); addafter (p, 6, 89); addafter (p, 10, 60);
display (p);

printf (“No. of elements in the Linked List = %d\n”", count (p)); del (&p, gg); del
(&p, 42); del (&p, 10);

display (p);
printf (“No. of elements in the linked list = %6d\n", count (p)); return o;

}

/* adds a node at the end of a linked list */
void append (struct node *#q, int num)
{
struct node *temp, *r;
if (*q==NULL) /* if the list is empty, create first node */
{
temp = (struct node *) malloc (sizeof (struct node));
temp -> data = num;
temp -> link = NULL;
*q=temp;
}

else
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{ struct node *temp, *r; int i;

temp = *q; temp = q;

/% go to last node */ /* skip to desired portion */

while (temp -> link I= NULL) for (i=0;i<loc; i++)

temp = temp == link; {

/* add node at the end */ temp = temp -> link;

r = (struct node *) malloc (sizeof (struct node)); /* if end of linked list is encountered */

r-> data = num; if (ternp == NULL)

r-> link = NULL; {

temp > link =r; printf (“There are less than %d elements in list\n", loc);
1 return:

} }
}

/* adds a new node at the beginning of the linked list */ TSt e nnda s

void addatbeg (struct node **q, int num)
{
struct node *temp;

/* add new node */

r = (struct node *) malloc (sizeof (struct node));
r-> data = num:

r-> link = temp -> link;

temp > link =r;

}

temp = (struct node *) malloc (sizeof (struct node));
temp -> data = num;
temp -> link = *q; /#* displays the contents of the linked list #*/
#q =temp; void display (struct node *q)
} i
/* traverse the entire linked list */

while (q = NULL)
void addafter (struct node *q, int loc, int num) {

/# adds a new node after the specified number of nodes */

{ printf (“%d", q -> data);
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q=q->link; [ if node to be deleted is the first node in the linked list */
} if (temp == *q)
printf (“\n™); #q =temp -> link;
1 [+ deletes the intermediate nodes in the linked list */

else

/* counts the number of nodes present in the linked list */ IO A
int count (struct node * q)

{

intc=o0;

free (temp); [* free the memory occupied by the node */
return;

}

* traverse the entire linked list *
/ / /* traverse the linked list till the last node is reached */

while (q 1= NULL) else
[ {
q-q->link; old = temp; /* old points to the previous node */
s temp = temp -> link; /* go to the next node */
} }
return c; }
} printf (“Element %6d not found\n", num);
1
/* deletes the specified node from the linked list */ Output:

void del (struct node **q, int num) No. of elements in the Linked List =0

{ 1430254217
struct node *old, *temp; 77 88 9914 30 25 42 17
778899 4114 30 89 254217 60

No. of elements in the Linked List = 11

temp = *q;

while (temp l= NULL)
{ Element 10 not found
if (temp -> data == num) 77 88 4114 30 89 25 17 60

{ No. of elements in the linked list=g

© 3
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To begin with we have defined a structure for a node. It contains a data part and a
link part. The variable p has been declared as pointer to a node. We have used p as
pointer to the first node in the linked list. No matter how many nodes get added to
the linked list, p would continue to point to the first node in the list. When no node
has been added to the list, p has been set to NULL to indicate that the list is empty.
The append() function has to deal with two situations:
(a) The node is being added to an empty list.
(b) The node is being added at the end of an existing list.
In the first case, the condition
if (*q — NULL)
gets satisfied. Hence, firstly memory is allocated for the node using malloc(). Then
data and the link part of this node are set up using the staternents
temp -> data = num;
temp -> link = NULL;
Lastly, p is made to point to this node, since the first node has been added to the
list and p must always point to the first node. Note that since q contains address of
P, #q is nothing but equal to p.
In the other case, when the linked list is not empty, the condition
if (*q == NULL)
will fail, since #q (i.e. p is non- NULL). Now temp is made to point to the first node
in the list through the statement
temp = *q;
Then using temp the entire linked list is traversed using the statements
while (temp -> link I= NULL)

temp = temp -> link;
The position of the pointers before and after traversing the linked list is shown in

Eigure 3:2.

SCRIBD
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p temp
- -EIE
P temp r
14 30 25 42 | N
node being
added
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Figure 3-2. Working of append() function.

Each time through the loop the statement temp = temp -> link makes temp point to
the next node in the list. When temp reaches the last node the condition temp ->
link I= NULL will fail. Once outside the loop, we allocate memory for the new node
through the statement

r = (struct node *) malloc (sizeof (struct node));

Then this new node’s data part is set with num and link part with NULL. Note that
this node is now going to be the last node in the list.

Now we need to connect the previous last node (pointed to by temp) with the new
last node (pointed to by r). This is done through the statement

temp -> link =r;

How does the statement temp = temp -> link makes temp point to the next node in
the list? Let us understand this with the help of an example. Suppose in a linked

list containing 4 nodes, temp is pointing to the first node. This linked list is shown

in Figure 3:3.
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temp

ZD’DI |14|100I |30|400I |25

200 100 400

SOOI |42| N I
500

Figure 3-3. Connection of nodes.

Instead of showing the links to the next node we have shown the addresses of the

next node in the link part of each node.

When we execute the statement

temp = temp == link;

The right hand side yields 100. This address is now stored in temp. As a result,

temp starts pointing to the node present at address 100. In effect, the statement
has shifted temp so that it has started pointing to the next node in the list.

Let us now understand the addatbeg() function. Suppose there are already 5 nodes
in the list and we wish to add a new node at the beginning of this existing linked

list. This situation is shown in Figure 3-4.

temp

!
L [l ] Fl=] F-{=] J-{vn]

Before Addition

T

temp
[+]

i
B - E )

After Addition
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Figure 3-4. Working of addatbeg() function.

For adding a new node at the beginning, firstly memory is zallocated for this node

and data is stored in it through the statement

temp -> data = num;

Now we need to make the link part of this node point to the existing first node.
This has been achieved through the statement

temp -> link = *q;

Lastly, this new node must be made the first node in the list. This has been at-

tained through the statement

#q = temp;

The addafter() function permits us to add a new node after a specified number of
node in the linked list.

To begin with, through a loop we skip the desired number of nodes after which a

new node is to be added. Suppose we wish to add a new node containing data as
41 after the 3rd node in the list. The position of pointers once the control reaches
outside the for loop is shown in Eigure 3-5(a). Now memory is allocated for the

node to be inserted and 41 is stored in the data part of it.
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5 — link between 77 and 14 is severed. So now 77 no longer points to 14, it points to 41.
l l The display() and count() functions are straight forward. | will leave them for you to
understand.
99 88 77 14 30
That brings us to the last function in the program i.e. del(). In this function through
r the while loop, we have traversed through the entire linked list, checking at each
node, whether it is the node to be deleted. If so, we have checked if the node being
- deleted is the first node in the linked list. If it is so, we have simply shifted p (which
is same as *q) to the next node and then deleted the earlier node.
(a) Before Insertion If the node to be deleted is an intermediate node, then the position of various
temp pointers and links before and after the deletion is shown in Figure 3-6.
I p old temp
l } |
OEROE R O
node to be deleted
(b) After Insertion (a) Before Deletion
p old
Figure 3-5. Working of addafter() function. l l
All that remains to be done is readjustment of links such that 41 goes in between | i | I | x | I s I I | g { = I
77 and 14. This is achieved through the statements temp

r-= link = temp -> link;

temp == link=r; - This node
gets deleted

The first statement makes link part of node containing 41 to point to the node con-

taining 14. The second statement ensures that the link part of node containing 77 (b) After Deletion

points to the node containing 41. On execution of the second statement the earlier

© ®
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Figure 3-6. Working of del() function.
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More Linked Lists

A common and a wrong impression that beginners carry is that a linked list is used
only for storing integers. However, a linked list can virtually be used for storing any

similar data. For example, there can be a linked list of floats, a linked list of names,

or even a linked list of records, where each record contains name, age and salary of

an employee. These linked lists are shown in Eigure 3:7.

e e -

Linked list of floats

|Ashok| —H Rajan ‘ —'—Dl Vijay | —I—-[ Sanjayl N I

Linked list of names

IA]aleISDDUJ —I—'IRama|3D|9600| —I—‘
L{Nimish[ 28 | 3000 ] —I—-| Renu | 25 | 7000 | N I

Linked list of Structures / Records

Figure 3-7. Different types of linked list.
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Reversing the Links

Having had a feel of linked list, let us now explore some more operations that can
be performed on a linked list. How about reversing the links in the existing linked
list such that the last node becomes the first node and the first becomes the last?

Here is a program that shows how this reversal of links can be achieved.

Honest Solid Code {C}

Program 3-2. Program to reverse a linked list
#include <stdio.h>

#include <stdlib.h>

struct node

{

int data; struct node #link;

>

void addatbeg (struct node **, int);
void reverse (struct node **);

void display (struct node #);

int count (struct node #);

int main()
{

struct node *p;

p = NULL; /* empty linked list */

addatbeg (&p, 7); addatbeg (&p, 43); addatbeg (&p, 17); addatbeg (&p, 3);
addatbeg (&p, 23); addatbeg (&p, 5);

display (p);

reverse (&p);

SCRIBD

display (p);

return o;

1

/* adds a new node at the beginning of the linked list */
void addatbeg (struct node **q, int num)
i
struct node *temp;
/* add new node */
temp = (struct node *) malloc (sizeof (struct node));
temp -> data = num;
temp -> link = #q;
*q=temp;

!

void reverse (struct node *¥x)
{
struct node *q, *r, *s;
q="x
r=NULL;
/* traverse the entire linked list */

while (q l= NULL)

{
s=r;
r=gq;
q=q->link;
r->link =s;
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1 r which is of the type struct node * is initialized to a NULL value. Since r contains

=r NULL, s would also contain NULL. Now r is assigned q so that r also starts point-

} ing to the first node. Finally r > link is assigned s so that r -> link becomes NULL,
which is nothing but the link part of the first node.

/7 displays the contents of the linked list #/ ) ) .
But if we store a NULL value in the link part of the first node then the address of

void display (struct node *q)
{
[* traverse the entire linked list */
while (q 1= NULL)
{
printf (“%d", q -> data);

the second node will be lost. Hence, before storing a NULL value in the link part of
the first node, q is made to point to the second node through the statement
q=q->link;

During the second iteration of the while loop, r points to the first node and q
points to the second node. Now the link part of the second node should point to

the first node. This is done through the same statements

q=q->link; s=r:
}
r=q
intf (\nm-
printf (“\n"); r->link = s;
! Since r points to the first node, s would also point to the first node. Now r is as-
Output:
i signed the value of q so that r now starts pointing to the second node. Finally r -
2 1
AT link is assigned with s so that r == link starts pointing to the first node. But if we
743173235

store the value of s in the link part of second node, then the address of the third
The function reverse() receives the parameter struct node ** x, which is the ad- : : : .
node would be lost. Hence, before storing the value of s in r -> link, q is made to
dress of the pointer to the first node of the linked list. To traverse the linked list a i .
point to the third node through the statement
variable q of the type struct node * is required. We have initialized q with the value ——
fx. So q also starts pointing to the first node. '
N T A While traversing the nodes through the while loop each time q starts pointing to
To begin with, we need to store the NULL value in the link part of the first node, y . s y
the next node in the list and r starts pointing to the previous node. As a result,

which is done through the statements y ) :
when the while loop ends all the links have been adjusted properly such that last

s=r;
. node becomes the first node and first node becomes the last node.
r=q; ’ i . . .
c:- i Finally, once outside the while loop, the statement *x =r, is executed. This ensures
r-=link =s;

that the pointer p now starts pointing to the node, which is the last node of the

© ®

4 pages (2 min) leftin this chapter £ PAGE 112 OF 429 > 26% read




original list. This is shown in Figure 3-8.

q r=NULL

|

EIiE R i el

a

r q s=NULL

5 N 23 3 17 N
5 r q

5 N I 23 3 17 N
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A Few More Operations append (&first, 4);

If you think carefully you can list out so many operations that can be performed on printf (“First List:\n");

a linked list. For example, concatenating one linked list at the end of another, delet- display (first);

ing all nodes present in a linked list, modifying certain elements in a linked list, etc. printf (“No. of ele. in first Linked List = %d\n", count (first));
Given below is a program for concatenation of linked list and erasing all nodes in append (&second, g);

the list. append (&second, 6);

append (&second, 7);
Honest Solid Code {C}

append (&second, 8);
Program 3-3. Program to concatenate and erase a linked list

printf (“Second List:\n");
#include <stdio.h>

display (second);
#include <stdlib.h>

printf (“No. of ele. in second Linked List = %d\n", count (second));
struct node

{

int data; struct node *link:
5

void append (struct node **, int);

/* the result obtained after concatenation is in the first list */

concat (&first, &second);

printf (“Concatenated List:\n");

display (first);

printf (“No. of elements before erasing = %d\n", count (first));
void concat (struct node **, struct node **);

first = erase (first);
void display (struct node #);

int count (struct node #); printf (“No. of elements after erasing = %d\n", count (first));
struct node * erase (struct node *); return o;
int main() :
{ /* adds a node at the end of a linked list =/
struct node *first, *second; void append (struct node **q, int num)
first = second = NULL; /* empty linked lists */ {
append (&first, 1); struct node *temp;
append (&first, 2); temp = *q;
append (&first, 3); if (*q==NULL) /* if the list is empty, create first node */

© .
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*q = (struct node *) malloc (sizeof (struct node));
temp =*q;

i

else

{

/% go to last node */

while (temp -> link = NULL)
temp = temp -> link;

/* add node at the end */

temp -> link = (struct node *) malloc (sizeof (struct node)):

temp = temp -> link;
}
/* assign data to the last node */
temp -> data = num;
temp -> link = NULL;
}

/* concatenates two linked lists */
void concat (struct node **p, struct node **q)
{

struct node *temp;

[* if the first linked list is empty */

if (*p — NULL)

#p = g
else

{

© ®
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/¥ if both linked lists are non-empty */
if (#q I= NULL)
{

temp = *p; /* points to the starting of the first list */

[* traverse the entire first linked list */
while (temp -> link = NULL)
temp = temp -> link;
temp -> link = *q; /* concatenate the second list after the first */
I
}
!

/= displays the contents of the linked list #/
void display (struct node *q)
{
/* traverse the entire linked list =/
while (g = NULL)
{
printf (“%d", g -> data);
q=q->link;
1
printf (“\n™);
1

/* counts the number of nodes present in the linked list #*/

int count (struct node *q)

{
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intc=o0; Second List:
* traverse the entire linked list * 678
5

while (q 1= NULL) Nao. of elements in the second Linked List = 4

{ Concatenated List:

q=q->link; 12345678

o+ No. of elements in Linked List before erasing =8
1 No. of elements in Linked List after erasing =0
return c;

}

/* erases all the nodes from a linked list */
struct node * erase (struct node *q)
{
struct node *temp;
/¥ traverse till the end erasing each node */
while (g = NULL)
{

temp =g;
q=q->link;
free (temp); /* free the memory occupied by the node */
}
return NULL;
}
Output:
First List:

1234
No. of elements in the first Linked List = 4
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Recursive Operations on Linked List

In C, it is possible for the functions to call themselves. A function is called ‘recur-
sive' if a statement within the body of a function calls the same function. Some of
the operations that are carried out on linked lists can be easily implemented using
recursion. These include counting the number of nodes present in a linked list,
comparing two linked lists, copying one linked list into another, adding a new node
at the end of the linked list, etc.

Given below are the functions for carrying out each of these operations. These
functions are pretty straight-forward. Hence, | would omit the discussion about
working of each of them. You can call these functions from main() after creating

suitable linked lists using the addatend() function discussed in earlier section.

Honest Solid Code {C}
Program 3-4. Recursive functions to count nodes in a linked list, comparing two
linked lists, cloning a linked list and adding a new node at the end of a linked list
/* counts the number of nodes in a linked list */
int length (struct node *q)
{

static int |;

/= if list is empty or if NULL is encountered */

if (g == NULL)
return (0);
else

{

| =1+ length (q -= link);
return (1);

}

SCRIBD
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/* compares 2 linked lists. Returns 1 if they are equal, 0 otherwise */
int compare (struct node *g, struct node *r)
{
static int flag;
if ((q — NULL) && (r — NULL))
flag=1;
else

{
if (q == NULL || r == NULL)

flag=o0;

if (q->data l=r->data)
flag=o;

else

compare (q -> link, r > link);
1
return (flag);

!

/* copies a linked list into another */
void copy (struct node *q, struct node **s)
{
if (q l= NULL)
{
#s5 = (struct node *) malloc (sizeof (struct node));
(*s) -> data = q -> data;
(*s) - link = NULL;
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copy (g -= link, &((*s) -> link));
}
}

/* adds a new node at the end of the linked list =/
void addatend (struct node *#s, int num)
{
if (*s == NULL)
{
*s = (struct node *) malloc (sizeof (struct node));
(*s) -> data = num;
(*s) == link = NULL;
}
else

addatend (&((*s) -> link), num);
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Doubly Linked Lists

In the linked lists that we have used so far each node provides information about
where is the next node in the list. It has no knowledge about where the previous
node lies in memory. If we are at say the 15th node in the list, then to reach the 14
th node we have to traverse the list right from the first node. To avoid this we can
store in each node not only the address of next node but also the address of the
previous node in the linked list. This arrangement is often known as a ‘Doubly

Linked List’ and is shown in Figure 3-9.

Typical Node

|prev data | next

Figure 3-9. Doubly linked list.
The following program implements the Doubly Linked List (DLL).

Honest Solid Code {C}

Program 3-4. Program to implement a doubly linked list
#include <stdio.h>

#include <stdlib.h>

[* structure representing a node of the doubly linked list #/

struct dnode

{

© @
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struct dnode *prev; int data; struct dnode * next;
b
void d_append (struct dnode *%, int);
void d_addatbeg (struct dnode *#, int);
void d_addafter (struct dnode *, int, int);
void d_display (struct dnode *);
int d_count (struct dnode #);

void d_delete (struct dnode **, int);

int main()
{
struct dnode *p;
p = NULL; /* empty doubly linked list */
d_append (&p, 1); d_append (&p, 2); d_append (&p, 14); d_append (&p, 17);
d_append (&p, 99); d_display (p);
printf (“No. of elements in the DLL = %d\n”", d_count (p));
d_addatbeg (&p, 33); d_addatbeg (&p, 55);
d_display (p);
printf (“No. of elements in the DLL = %d\n", d_count (p));
d_addafter (p, 4, 66); d_addafter (p, 2, 96);
d_display (p);
printf (“No. of elements in the DLL = %d\n", d_count (p));
d_delete (&p, 55); d_delete (&p, 2); d_delete (&p, 93);
d_display (p);
printf (“No. of elements in the DLL = %d\n", d_count (p));

return o;
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/* adds a new node at the end of the doubly linked list */

void d_append (struct dnode **s, int num)

{

struct dnode *r, #q = *s;

/% if the linked list is empty */

if (*s = NULL)

{
[*create a new node */
*s = (struct dnode *) malloc (sizeof (struct dnode));
(*s) -> prev = NULL;
(*s) -> data = num;
(#s) -= next = NULL;

}

else

{
[ traverse the linked list till the last node is reached */
while (g -> next |= NULL)

q=q -> next;

[ add a new node at the end */
r = (struct dnode *) malloc (sizeof (struct dnode));
r-> data = num;
r-> next = NULL;
r-> prev=q;

q->next=r,;

© &
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/* adds & new node at the begining of the linked list */
void d_addatbeg (struct dnode **s, int num)
{
struct dnode *q;
/* create a new node */
q = (struct dnode *) malloc (sizeof (struct dnode));
/* assign data and pointer to the new node */
q-» prev = NULL;
q->data = num;
q-> next = *s;
/* make new node the head node */
(*s) -> prev=gq;
*s=gq;

!

/* adds a new node after the specified number of nodes */
void d_addafter (struct dnode *q, int loc, int num)
{
struct dnode *temp;
inti;
/# skip to desired portion */
for (i=0;i<loc; i++)
{
q=q-> next;
/= if end of linked list is encountered */
if (q==NULL)
{

PAGE 125 OF 429 > 29% read



printf (“There are less than %d elements\n", loc);
return;
}

i

/* insert new node */

q=q-> prey;

temp = (struct dnode *) malloc (sizeof (struct dnode));

temp -> data = num;

temp -> prev=gq;

temp -> next = q > next;

temp -> next -> prev = temp;

q-> next = temp;

}

/* displays the contents of the linked list #/
void d_display (struct dnode *q)

{

/* traverse the entire linked list */
while (g = NULL)

{
printf (“%62d\t", q -> data);
q=q->nexk;
}
printf (“\n");
}

/# counts the number of nodes present in the linked list */

int d_count (struct dnode * q)
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{
intc=o0;

/* traverse the entire linked list =/

while (g = NULL)
{
q=q->next;
c++;
}

return c;

}

/#* deletes the specified node from the doubly linked list */
void d_delete (struct dnode *=s, int num)
{

struct dnode *q = *s;

/* traverse the entire linked list =/

while (g = NULL)

{

[* if node to be deleted is found */

if (q->data = num)

{
[ if node to be deleted is the first node */
if (q == *s)
{

-

s = (*s) > next;

[*s) > prev = NULL;
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else

{
[ if node to be deleted is the last node */
if (g -> next == NULL)
q -> prev -> next = NULL;
else

/* if node to be deleted is any intermediate node */
{
q -> prev -> next = q > next;
q -> next -> prev = q -> prev;
}
free (q);

}

return; /* return back after deletion */

}
q=q->next; /* go to next node */
}
printf (“%d not found.\n", num);
}
Qutput:
11 2 14 17 99
No. of elements inthe DLL=5
55 33 11 2 14 17 9
No. of elements in the DLL=7
55 33 96 11 2 66 14 17 O
No. of elements in the DLL =9
33 9% 11 66 14 17
No. of elements inthe DLL=6
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Let us now understand the different functions that we have defined in the program.
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M—QEM‘U Case |: Addition to an empty linked list

The d_append|) function adds a node at the end of the existing list. It also checks p

the special case of adding the first node if the list is empty.

This function accepts two parameters. The first parameter s is of type struct p=*s=NULL ““
dnode** which contains the address of the pointer to the first node of the list or a New node
NULL value in case of empty list. The second parameter num is an integer, which Before Addition After Addition

is to be added in the list.
Case |I: Addition to an existing linked list

s

To begin with we initialize q which is of the type struct dnode * with the value

stored at s. This is done because using q the entire list is traversed if it is non- r L ’

empty. l l l

If the list is empty then the condition N |11 < 14 17 N | 99 | I
if (*s == NULL) New node

. i ) Before Appending
gets satisfied. Now memory is allocated for the new node whose address is stored

-]
-

4]
in #s (i.e. p). Using s a NULL value is stored in its prev and next links and the l l

value of num is assigned to its data part. | N | 11 I: 2 I :l 14 | I !l | 17 ': | 99| N I

If the list is non-empty then through the statements
while (q > next = NULL)

After Appending

q=q > next;

q is made to point to the last node of the list. Then memory is allocated for the Highsginiaieam s R i
node whose address is stored in r. A NULL value is stored in the next part of this
node, because this is going to be last node. Now what remains to be done is to link
this node with rest of the list. This is done through the statements

r-> prev =g;

q->next=r;

The statement r -> prev = q makes the prev part of the new node r to point to the

previous node q. The statement q -> next = r makes the next part of q to point to

the last node r. This is shown in Eigure 3:10.
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Function d_addatbeg()

The d_addatbeg() function adds a node at the beginning of the existing list. This
function accepts two parameters. The first parameter s is of type struct dnode®*
which contains the address of the pointer to the first node and the second param-
eter num is an integer, which is to be added in the list.

Memory is allocated for the new node whose address is stored in q. Then num is
stored in the data part of the new node. A NULL value is stored in prev part of the
new node as this is going to be the first node of the list. The next part of this new
node should contain the address of the first node of the list. This is done through
the statement

q-> next = *s;

Now what remains to be done is to store the address of this new node into the
prev part of the first node and make this new node the first node in the list. This is
done through the statements

(*s) -> prev=g;

s=q;

These operations are shown in Figure 3-11.

Q

A

i As

q

Addition of new node at the beginning
Related Function: d_addatbeg( )

i’

New node

P q

—
[— o

Before Addition

N 33| I Nlll I!l |2 I'l 14 I:l 17|NI

After Addition

Insertion of new node after a specified node
Related Function: d_addafter( )

14 2 14| N

temp

New node

Before Insertion
temp

| !

Z 4o

11 2 66

After Insertion
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Function d addafm'{j, At the end, we change the next part of q to make it point to the new node, and this
The d_addafter() function adds a node at the specified position of an existing list. is done through the statement
This operation of adding a new node in between two existing nodes can be better q - next = temp;

understood with the help of Figure 3-11.

This function accepts three parameters. The first parameter q points to the first
node of the list. The second parameter loc specifies the node number after which
the new node must be inserted. The third parameter num is an integer, which is to
be added to the list.

A loop is executed to reach the position where the node is to be added. This loop
also checks whether the position loc that we have mentioned, really occurs in the
list or not. When the loop ends, we reach the loc position where the node is to be
inserted. By this time q is pointing to the node before which the new node is to be
added.

The statement

q=q-> prev;

makes q to point to the node after which the new node should be added. Then
memory is allocated for the new node and its address is stored in temp. The value
of num is stored in the data part of the new node.

The prev part of the new node should point to q. This is done through the state-
ment

temp -> prev=gq;

The next part of the new node should point to the node whose address is stored in
the next part of node pointed to by q. This is achieved through the statement

temp -> next = g -> next;

Now what remains to be done is to make prev part of the next node (node pointed
by q -> next) to point to the new node. This is done through the statement

temp -> next -> prev = temp;

© ®
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Function d_delete()
The function d_delete() deletes a node from the list if the data part of that node

Case I: Deletion of first node

matches num. This function receives two parameters. The first parameter is the ad-

dress of the pointer to the first node and the second parameter is the number that l ” | = | I 'l | T | | | \ 5 | | | | o | a I

is to be deleted.

We run a loop to traverse the list. Inside the loop the data part of each node is Before Deletion

compared with the num value. If the num value matches the data part in the node P4

then we need to check the position of the node to be deleted. l l

If it happens to be the first node, then the first node is made to point to the next | i | i | —EI— | z | —m— | i | " I
part of the first node. This is done through the statement Aftér Blistion

*5 = (¥35) -> next;
Case II: Deletion of last node
Then, a value NULL is stored in prev part of the second node, since it is now going
to become the first nede. This is done through the statement

EA . l
(*s) -> prev = NULL; |N |11| ﬂ |2| H ‘66| H |14| I‘-II

If the node to be deleted happens to be the last node, then NULL is stored in the

next part of the second last node. This is done through the statements Before Deletion

if (q > next == NULL)

q-> prev > next = NULL; | N |11| —EI_ | 2 | —m_ |66| N I

If the node to be deleted happens to be any intermediate node, then the address of

the next node is stored in the next part of the previous node and the address of the After;Deletion
previous node is stored in the prev part of the next node. This is done through the
statements Figure 3-12. Working of d_delete() function.

q -> prev -> next = q -> next;

q-> next -> prev =q -> prev;

Finally the memory occupied by the node being deleted is released by calling the
function free(). Figure 3-12 shows the working of the d_delete() function.
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Chapter Bullets

Summary of chapter

(a) Linked List is a linear data structure used to store similar data.

(b) Unlike an array, in a linked list there's no need to specify how many elements
you're going to store ahead of time. One can keep adding elements as long as
there's enough memory in the machine.

(c) Linked list is implemented using structure data type.

(d) Linked list may be singly linked or doubly linked.

(e) Singly linked lists have a single pointer pointing to the next node in the list. The
last pointer is empty or points to null, signaling the end of the list.

(f) Doubly linked lists have two pointers, one pointing to the next node and one
pointing to the previous node. The first node's previous pointer points to null

and the last node’s next pointer points to null to signal the end of the list.

© &

1 page (<1 min) left in this chapter { PAGE 138 OF 429

>

Q

A
]

Aa

32% read



©

Check Your Progress

Exercise - Level |

[A] State whether the following statements are True or False:

(a) Linked list is used to store similar data.

(b) All nodes in the linked may be in non-contiguous memory locations.

(c) The link part of the last node in a singly linked list always contains NULL.

(d) In a singly linked list, if we lose the location of the first node it is as good as
having lost the entire linked list.

(e) Doubly linked list facilitates movement from one node to another in either
direction.

(f) A doubly linked list will occupy less memory as compared to a corresponding
singly linked list.

(g) If we are to traverse frem first node to last node it would be faster to do so if
the linked list is singly linked instead of doubly linked.

(h) In a structure used to represent the node of a doubly linked list it is necessary

that the structure elements are in the order backward link, data, forward link.
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Sharpen Your Skills
Exercise - Level Il
[B] Answer the Following:
(a) Write a program that reads the name, age and salary of 10 persons and main-
tains themn in a linked list sorted by name.
(b) There are two linked lists A and B containing the following data:
A:3,7,10,1516, 9,22 17, 32
B:16,2, 0,13, 37 8, 10,1, 28
Write a program to create:
- A linked list C that contains only those elements that are common in linked
list A and B.
- A linked list D which contains all elements of A as well as B ensuring that
there is no repetition of elements.
(c) There are two linked lists A and B containing the following data:
A:7,53,1 20
B:6,2532,1,9
Write a function to combine the two lists such that the resulting list contains
nodes in the following elements:
7, 6,5 25, 3,32,1,11,20, 9

You are not allowed to create any additional node while writing the function.
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Coding Interview Questions

Exercise Level II1

(a) A linked list contains some positive numbers and some negative numbers.
Using this linked list write a program to create two new linked lists, one con-
taining all positive numbers and the other containing all negative numbers.

(b) Write a program to delete duplicate elements in a linked list.
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Case Scenario Exercise

Polynomials using Linked List

Polynomials like 5x* + 2x3 + 7x2 + 10x - 8 can be maintained using a linked list. To
achieve this, each node should consist of three elements, namely coefficient, expo-
nent and a link to the next term. Assume that the exponent of each successive term
is less than that of the previous term. Write a program to build a linked list to
represent a polynomial and find the value of the polynomial if value of x is input

through the keyboard.

Case Scenario Exercise

Polynomial operations using Linked List

Polynomials like 5x* + 233 + 7x2 + 10x - 8 can be maintained using a linked list. To
achieve this, each node should consist of three elements, namely coefficient, expo-
nent and a link to the next term. Assume that the exponent of each successive term
is less than that of the previous term. Write a program to build a linked list to
represent a polynomial and perform common polynomial operations like addition

and multiplication.
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Chapter o4
Sparse Matrices
LEAN IS BETTER

Why This Chapter Matters?

Computer’s memory is a costly resource. We have to use it judiciously. Sparse
matrices often eat away lot of costly memory space. This chapter explains how to

conserve this memory and still work with matrices as usual.

© o
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71 percent of earth is occupied by water, leaving a meagerly 29 percent for land. It
is only natural that we need to conserve the available space. Nobody should oc-
cupy more space than what they deserve to occupy, be it animals, man, plants or
matrices. There is no point in wasting costly space in computer's memory in stor-
ing elements that do not deserve a place in it. Sparse matrix is the case in point.

If many elements from a matrix have a value o then the matrix is known as a sparse
matrix. There is no precise definition of when a matrix is sparse and when it is not,
but it is a concept, which we can all recognise intuitively. If the matrix is sparse we
must consider an alternate way of representing it rather than the normal row major
or column major arrangement. This is because if majority of elements of the matrix
are o then an alternative through which we can store only the non-zero elements
and keep intact the functionality of the matrix can save a lot of memory space. Eig-

ure 4-1 shows a sparse matrix of dimension 7 x 7.

Columns

0 ;| 2 3 4 5 6

0 0 0 0 5 0 0 0

Rows
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Figure 4-1. Representation of a sparse matrix of dimension 7 x 7.

A common way of representing non-zero elements of a sparse matrix is the 3-tuple

forms. In this form each non-zero element is stored in a row, with the 15t and 2nd
element of this row containing the row and column in which the element is present
in the original matrix. The 37d element in this row stores the actual value of the
non-zero element. For example the 3-tuple representation of the sparse matrix
shown in Figure 4-1 is given below.
int spmat[10][3] = {

7,7,9,

0,3;-5;

1,1,4,

16,7,

2,4,9,

3,13,

3,3,2

4,0,11,

42,2,

6,28

}

There are two ways in which information of a 3-tuple can be stored:
- Arrays
- Linked List

In both representations information about the non-zero elements is stored. How-
ever, as the number of non-zero elements in a sparse matrix may vary, it would be

efficient to use a linked list to represent it.
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Let us see a program that accepts elements of a sparse matrix and creates an array

containing 3-tuples of non-zero elements present in the sparse matrix.

Honest Solid Code {C}

Program 4-1. Sparse Matrix in 3-tuple form
#include <stdio.h>

#include <stdlib.h>

#define MAX1 3

#define MAX2 3

struct sparse
{

int #sp;

int row;
k
void initsparse (struct sparse *);
void create_array (struct sparse *);
void display (struct sparse);
int count (struct sparse);
void create_tuple (struct sparse *, struct sparse);
void display_tuple (struct sparse);

void delsparse (struct sparse *);

int main()

{

struct sparse s1, 52;

intc;

© ®
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initsparse (&s1);
initsparse (&s2);

'

create_array (&s1);
printf (“Elements in Sparse Matrix:");

display (s1);

c = count (s1);

printf (“Number of non-zero elements: %d\n\n", c);

create_tuple (&sz, s1);
printf (“Array of non-zero elements:”);

display_tuple (s2);

delsparse (&s1);
delsparse (&s2);

return o;

/* initialises element of structure */

void initsparse (struct sparse *p)

{
p->sp=NULL;

}

/* dynamically creates the matrix of size MAX1 x MAX2 */

void create_array (struct sparse *p)

{

intn, i;
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p->sp = (int *) malloc (MAX1 * MAXz2 * sizeof (int));

for (i =0; i< MAX1 * MAX2; i++)

{
printf (“Enter element no. %d:", i);
scanf (“%d”, &n);
*(p->spri)=m;

}

printf (“\n");

1

/* displays the contents of the matrix */
void display (struct sparse p)
{

inti;

/¥ traverses the entire matrix */
for (i =0; i< MAX1 * MAX2; i++)
{
[ positions the cursor to the new line for every new row #/
if (i % MAX2 — o)
printf (“\n");
printf (“%d\t", * (p.sp + i});
}
printf (“\n\n");
}

/* counts the number of non-zero elements */

©
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int count (struct sparse p)

{

intcnt =0, i;

for (i=0; i< MAX1 * MAX2; i++)
{
if (% (psp+1i)l=0)
cnt++;

}

return cnt;

}

/¥ creates an array that stores information about non-zero elements */

void create_tuple (struct sparse *p, struct sparse s)

{

intr=o,c=-1,1=-1,1i:
p ->row = count (s) + 1;

p ->sp = (int *) malloc (p -> row * 3 * sizeof (int));
* (p->sp+0) = MAXy;
* (p->sp+1) = MAX2;

*(p->sp+2)=p->row-1;

| =2;

'

for (i=0; i < MAX1 * MAXz; i++)
{

oy
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[* sets the row and column values */ if (i % 3 ==0)
if (((i %6 MAX2) == 0) && (i I=0)) printf (“\n");
{ printf (“%d\t”, * (p.sp + i));
r++; }
c=0; }
}
/#* deallocates memory */
/* checks for non-zero element row, column and non-zero element value is void delsparse (struct sparse *p)
assigned to the matrix */ {
if (* (s.sp+1i) l=0) free (p == sp);
{ '
l++; Qutput:
“p-=>sp+l=r; Enter element no. 0: 0
[++: Enter element no. 1: 2
Fp-=sp+l)=c Enter element no. 2: o
l4++; Enter element no. 3: 9
p-=sp+l)==(ssp+i); Enter element no. 4: 0
} Enter element no. 5:1
1 Enter element no. 6: 0
} Enter element no. 7: 0

Enter element no. 8: -4
/* displays the contents of 3-tuple */

void display_tuple (struct sparse p)

{

inti;

for (i=0;i < p.row * 3; i++)

{

© ®
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Elements in Sparse Matrix: In the first statement we have obtained the count of non-zero elements present in

o 2 L, the given array. To that count we have added 1. The first row (i.e. oth row) in this
9 0 1 : ‘
0 0 4 array stores the information about the total number of rows, columns and non-
zero elements present in the given array. From second row (i.e. 15t row) onwards
Number of non-zero elements: 4 this array stores the row and column position of a non-zero element and the value
of the non-zero element. Since the number of rows in the array depends on the
Array of non-zero elements: number of non-zero elements in the given array we have created the array dynam-
3 3 4 ically. The number of columns in this array would always be 3. The oth column
0 1 2 stores the row number of the non-zero element. The 15t column stores the column
1 0 9 number of the non-zero element and the 2nd column stores the value of non-zero
1 2 1 element.
2 2 4

Lastly, the display_tuple() function displays the contents of 3-tuple.
In this program we have designed a structure called sparse. In the create_array()

function, we have dynamically created a matrix of size MAX1 x MAX2. The values
for the matrix are accepted through keyboard. The display() function displays the
contents of the sparse matrix and the count() function counts the total number of
non-zero elements present in sparse matrix.

The create_tuple() function creates a 2-D array dynamically. But, the question arises
as how much memory should get allocated for this array? Since each row in the 3-

tuple form represents a non-zero element in the original array the new array should
contain as many rows as the number of non-zero elements in the ariginal matrix.
From the 3- tuple form we must be able to build the original array. Hence the very

first row in the new array should contain number of row, number of columns and

number of non-zero elements in the original array. In the program we have deter-
mined the size of the new array through the following statements:

p -=row = count (s) + 1;

p->sp = (int *) malloc (p -> row * 3 * sizeof (int));

© ®
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Common Matrix Operations

Common matrix operations are addition, multiplication, transposition, etc. Let us
see how these operations are carried out on a sparse matrix implemented as an
array. Note that each program that we are going to discuss now consists of func-
tions— create_array(), create_tuple(), display(), display_tuple{) and count(). We
have already seen the working of these functions in previous program. Hence we

shall discuss only the function(s) that perform given matrix operation.
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TRANSPOSE OF A SPARSE MATRIX

Following program accepts elements of a sparse matrix, creates a 3- tuple form of
non-zera elements present in the sparse matrix and then obtains a transpose of the

sparse matrix from the 3-tuple form.

Honest Solid Code {C}

Program 4-2. Transpose of a Sparse Matrix
#include <stdio.h>

#include <stdlib.h>

#define MAX1 3

#define MAX2 3

struct sparse
{

int *sp;

int row;

5

void initsparse (struct sparse #);

void create_array (struct sparse *);

void display (struct sparse);

int count (struct sparse);

void create_tuple (struct sparse *, struct sparse);
void display_tuple (struct sparse);

void transpose (struct sparse *, struct sparse);
void display_transpose (struct sparse);

void delsparse (struct sparse #);

SCRIBD

A
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int main()

{

struct sparse s[ 3 ];
intc, i
for (i=0;i<=2;i++)
initsparse (&s[i]);
create_array (&s[o]);

printf (“Elements in Sparse Matrix:");
display (s[o]);

c=count (s[o]);

printf (“Number of non-zero elements: %d\n\n", c);

create_tuple (&s[1],s[o]);
printf (“Array of non-zero elements:”);

display_tuple (s[1]);

transpose (&s[2],s[1]);
printf (“Transpose of array:”);

display_transpose (s[2]);

for (i=0;i<=2;i++)
delsparse (&s[i]);

return o;
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/* initialises structure elements */ for (i=0; 1< MAX1 * MAX2; i++)

void initsparse (struct sparse *p) {

{ /= positions the cursor to the new line for every new row */
p->sp=NULL; if (i % MAX2 — o)

} printf (“\n");

printf (“S&d\t", * (s.sp + i));
}
printf (“\n\n");
}

/# dynamically creates the matrix of size MAX1 x MAX2 */
void create_array (struct sparse *p)
{
intn, i
/* counts the number of non-zero elements */

->sp=(int* Il MAX1 * MAX2 * sizeof (int));
P ->sp = (int ¥) malloc ( sizeaf (inf)); int count (struct sparse s)

for (i = 01 < MAX1 * MAX2; i++4) {
{ intcnt=o0, j;
printf (“Enter element no. %d:”, i); for (i=0; i < MAX1 * MAX2; i++)
scanf (“%d”, &n); {
if (% (s.sp+i)l=0)
*(p>spri)=n;
} )
printf (“\n");
: )

cnt4++;

return cnt;

/* displays the contents of the matrix */ /* creates an array that stores information about non-zero elements */

void display (struct sparse s) void create_tuple (struct sparse *p, struct sparse s)

{ {

inti; intr=o0,c=-1,1=-1,i;

[ traverses the entire matrix */

© ®
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p ->row = count (s} + 1; #(p-zsp+l) =% (s.sp+i);
}
1
1

p -> sp = (int *) malloc (p -> row * 3 * sizeof (int));

* (p->sp + 0) = MAX;

* (p-=sp+1) = MAXz;

#(p->sp+2)=p->row-1; /* displays the contents of 3-tuple */
void display_tuple (struct sparse p)

{

|=2;

for (i =0; i< MAX1 * MAX2; i++)

int i
{
o+ for (i=0; i< p.row * 3; i++)
{
[* sets the row and column values */ i (1% 3 =0)
i 1% =y il=
it (((i % MAX2) == 0) && (i = 0)) printf (4\n");

printf (“%ed\t”, * (p.sp + i));
1
printf (“\n\n");
1

/* checks for non-zero element row, column and non-zero element value is 3 ; .
/* obtains transpose of an array */
assigned to the matrix */ . .
void transpose (struct sparse *p, struct sparse s)

if (* (s.sp+1) l=0) (

{

int x, q, pos_1, pos_2, col, elem, ¢, y;

l++;

lp-sp+l)=n /* allocate memory */

-+ p ->sp = (int *) malloc (s.row * 3 * sizeof (int));
*p=>sptl) =g p -> rOW = 5.row;

-+

5}

/* store total number of rows, cols and non-zero elements */
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*(p->sp+0)="%*(s.sp+1);
*(p->sp+1) =" (ssp+0);

* (p->sp+2) =% (s.5p+2);

col=* (p-=sp+1);

elem =* (p -> sp + 2);

if (elem <=0)

return;

xX=1;

for (c = 0; c < col; c++4)
{
for (y =1; y <= elem; y++)
{
q=y*3+7y
if (* (s.sp+q)==c¢)
{
pos_2=X*%3+0;

pos_1=y*3+ 1,
* (p->sp+ pos_2) =% (s.sp + pos_1);

pos_2=X%3+1,
poOS_1=y% 3+ 0;

* (p->sp + pos_2) =¥ (s.sp + pos_1);

pos_2=x%342;

pos 1=y% 3+2;

©
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*(p->sp+pos_2) =% (s.sp + pos_1);

}

/* displays 3-tuple after transpose operation */
void display_transpose (struct sparse p)

{

int i;

for (i=0; i< p.row * 3; i++)
{
if (i %3 =0)
printf (“yn");
printf (“%d\t”, * (p.sp + i});
}
!

/* deallocates memory */

void delsparse (struct sparse *p)

{
free (p -> sp);

1
Output:

Enter element no. 0: 4
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Enter element no.

8 ]
Enter element no. 2:1

Enter element no. 3: 0
Enter element no. 4: 0
Enter element no. 5: 3

Enter element no. 6: -2
Enter element no. 7: 0

Enter element no. &: 0
Elements in Sparse Matrix:

B ¢ R
o 0 3
=2 0 o

Number of non-zero elements: 4

Array of non-zero elements:
4

[T s s R F]
OoONNO W
=

Transpose of array:

3 3 &
0o 0 4
g ZF =2
2 @
2. =2 3

In the transpose() function first we have allocated memory required to store the
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elements in the target 3-tuple. Next we have stored the total number of rows, col-
umns and non-zero elements that this 3-tuple will hold. This is achieved through
the following three statements:

*({p->sp+0)=%(s.sp+1);

*{p->sp+1)=%(s5p+0);

*“(p>=sp+2)="(s.5p+2);

Naote that, here in p -> sp, the place where total number of rows should get stored
we have stored total number of columns. Similarly in place where total number of
columns should get stored we have stored total number of rows. This is because in

case of transpose operation total number rows become equal to total number of
columns and vice versa.

The transpose operation is carried out through a pair of for loops. The outer for
loop runs till the non-zero elements of col number of columns (of source 3-tuple)

are not scanned. In the inner for loop first we have obtained the position at which
the column number of a non-zero element is stored (in the source 3-tuple) through
the statement:

qQ=y*3+7y

Then we have checked whether the column number of a non-zero element matches
with the column number currently being considered i.e. c. If the two values match
then the information is stored in the target 3-tuple through the statements given
below:

pos_2=x%3+0;

pos_ 1=y %3+1;

*(p->sp+pos_2) =% (s.sp + pos_1);

The variable pos_2 is used for the target 3-tuple, to store the position at which data
from source 3-tuple should get copied. Similarly, the variable pos_1 is used for the

source 3-tuple, to extract data from it. The third statement copies the column
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position of a non-zero element from source 3-tuple to the target 3-tuple. This col-
umn number gets stored at the row position in target 3-tuple.

On similar lines the row position of a non-zero element of source 3-tuple is copied
at the column position of the target 3-tuple through the following statements:
pos_2=x%3+1;

pos_1=y%3+0;

* (p->»sp + pos_2) =¥ (s.sp + pos_1);

Finally, the non-zero value from source 3-tuple is copied to the target 3- tuple
through the following statements:

pos_2=%x%*3+2;

pos_1=y*3+2;

* (p->sp + pos_2) =¥ (s.sp + pos_1);

The target 3-tuple thus obtained is nothing but a transpose of an array that user has
entered through create_array() function. But the target 3- tuple stores the infor-
mation of non-zero elements. The elements in this 3-tuple are then displayed by

calling display_transpose() function.
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ADDITI F SPARSE MATRICES

Let us now see a program that carries out addition of two sparse matrices repre-

sented in 3-tuple form. Here is the program...

Honest Solid Code {C}

Program 4-3. Addition of Sparse Matrices
#include <stdio.h>

#include <stdlib.h>

#define MAX1 3

#define MAX2 3

#define MAXSIZE g

#define BIGNUM 100

struct sparse
{

int *sp;

int row;

int *result;

%

void initsparse (struct sparse *);

void create_array (struct sparse *);

int count (struct sparse);

void display (struct sparse);

void create_tuple (struct sparse *, struct sparse);

void display_tuple (struct sparse);

void addmat (struct sparse #, struct sparse, struct sparse);

void display_result (struct sparse);

SCRIBD
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void delsparse (struct sparse *);

int main()

{
struct sparse s[5 ;
int i;
for (i=0; i <= 4; i++)
initsparse (&s[i]);
create_array (&s[o]);

create_tuple (&s[1],s[o]);
display_tuple (s[1]);

create_array (&s[2]);

create_tuple (&s[ 3], s[2]);
display_tuple (s[3]):
addmat (&s[ 4], s[1], s[3]);

printf (“Result of addition of two matrices:");
display_result (s[ 41]);

for (i=0; i <= 4; i++)
delsparse (&s[i]);
return o;

}

/* initialises structure elements */
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void initsparse (struct sparse #*p)
{

p->sp = NULL;

p -> result = NULL;
}

/# dynamically creates the matrix */
void create_array (struct sparse *p)

{

intn, i

/[ allocate memory */
p->sp = (int *) malloc (MAX1 * MAXz2 * sizeof (int));
/* add elements to the array */
for (i = 0; i <« MAX1 * MAXz2; i++)
{
printf (“Enter element no. %d:", i);
scanf (“%d”, &n);

Fp->spri)=n;

}
printf (“\yn");

}

/* displays the contents of the matrix */
void display (struct sparse s)

{

inti:

©
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/* traverses the entire matrix */
for (i=0; i < MAX1 * MAXz2; i++)
{
[* positions the cursor to the new line for every new row */
if (i % MAX2 — 0)
printf (“\n");
printf (“Sed\t", * (s.sp +i));
}
printf (“\n\n");
1

/* counts the number of non-zero elements */

int count (struct sparse s)

{

intcnt=o0, i;

for (i=0; i< MAX1 * MAX2; i++)
{
if (% (s.sp+1i)l=0)
cnt++;

}

return cnt;

1

/¥ creates an array that stores information about non-zero elements */

void create_tuple (struct sparse *p, struct sparse s)

{

intr=0,c=-1,1=-1,1i:
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[* get the total number of non-zero elements and add 1 to store total no. of
rows, cols, and non-zero values */

p ->row = count (s) + 1;

/* allocate memory %/

p ->sp = (int *) malloc (p -> row * 3 * sizeof (int));

/* store information about total no. of rows, cols, and non-zero values */
* (p->sp + 0) = MAX3;
* (p->sp+1) = MAXz2;

*(p-=sp+2)j=p->row-1;

|=2;

'

/* scan the array and store info. about non-zero values in the 3-tuple */
for (i=0; i< MAX1 * MAX2; i++)
{

o+

[ sets the row and column values */

if (((i % MAX2) == 0) && (i 1= 0))

/* checks for non-zero element row, column and non-zero element value is
assigned to the matrix */

if (% (s.sp+1i) l=0)

© ®
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l++;

#p>sptl)=n
l++;
“p>sptl)=c
l++;
*(p->sp+l)=*(ssp+i);
1
1

1

/* displays the contents of the matrix */
void display_tuple (struct sparse s)

{

inti,j;

/* traverses the entire matrix */

printf (“Elements in a 3-tuple:\n");

j= (% (ssp+2) *3) + 3

for (i=0;i<j; i++)
{
/¥ positions the cursor to the new line for every new row */
if (i % 3 —0)
printf (“\n");
printf (“Sed\t”, * (s.sp +i));
1
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printf (“\n\n"); else
} rowa = cola = BIGNUM;
/* carries out addition of two matrices */ /* check if | « max. non-zero values in second 3-tuple and get the values */
void addmat (struct sparse #*p, struct sparse s1, struct sparse s2) if (j <= bmax)
{ {

inti=1,j=1k=1; rowb =% (s2.sp +] * 3+ 0);

intelem=1; colb="* (s2.sp+j*3+1);
int max, amax, bmax; valb =# (s2.sp+j * 3+ 2);
int rowa, rowb, cola, colb, vala, valb; 1

else

* get the total ber of non- lues fi both matrices *
[ get the total number of non-zero values from both matrices */ rowb = colb = BIGNUM:

e

amax =¥ (sl.sp + 2);

bmax = * (s2.5p + 2); /* if row no. of both 3-tuple are same #/
max = amax + bmax; if (rowa = rowb)
[ allocate memory for result */ {

p -> result = (int *) malloc (MAXSIZE * 3 * sizeof (int));
/¥ if col no. of both 3-tuple are same */

while (elem <= max) if (cola == colb)
{ {
[* check if i < max. non-zero values in first 3-tuple and get the values */ /* add tow non-zero values store in result */
if (i <= amax) % (p->result + k * 3+ 0) = rowa;
{ *(p->result+ k*3+1) =cola;
rowa == (sl.sp+i%3+0); * (p-=result + k * 3+ 2) = vala + valb;
cola=%* (stsp+i¥®3+1); i++;
it

vala="* (s1.sp+i*3+2);

}

max--;

}
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/% if col no. of first 3-tuple is < col no. of second 3-tuple, then add info. as it * (p-=result+ k* 3+ 2) =vala;
is to result =/ i+
if (cola < colb) ket

{ }

* (p->result + k * 3+ 0) = rowa;
& iR | /% if row no. of first 3-tuple is > row no. of second 3-tuple, then add info. as it
* (p->resu * = cola;
is b It*
# (p->result + k* 3+ 2) =valg; L
if (rowa > rowb)

{

% (p->result+ k * 3+ 0) = rowb;

i++;

}

/% if col no. of first 3-tuple is > col no. of second 3-tuple, then add info. as it is to * (p->result+ k*3+1) =colb;
result #/ % (p->result+ k* 3+ 2) =valb;
if (cola > colb) ++;
{ kt++;
#(p->result+ k * 3+ 0) =rowb; 1
*(p->result+ k*3+1)=colb; elem++;
% (p->result + k * 3+ 2) —valb; 1
j++
} /* add info about the total no. of rows, cols, and non-zero values that the resul-
i tant array contains to the result */

'

} * (p->result + 0) = MAX;
* (p-> result + 1) = MAXz;

/% if row no. of first 3-tuple is < row no. of second 3-tuple, then add info. as it
* (p => result + 2) = max;

}

is to result */
if (rowa < rowb)
{ /= displays the contents of the matrix */

¥ (p->result+ k #* 3+ 0) = rowa; void display_result (struct sparse s)

# (p-=result+ k* 3+1) = cola;

© ®
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{ Enter element no. 5: 0

inti: Enter element no. 6: 4
Enter element no. 7: 0
/* traverses the entire matrix */ T
for (i=0;i< (¥ (soresult + 0+ 2) +1) * 3; i++)
{

[ positions the cursor to the new line for every new row #/

if (i %63 =0)

printf (“\n");

printf (“%d\t", * (s.result + i));
}
printf (“\n\n");

}

/* deallocates memory */
void delsparse (struct sparse *p)
{
if (p-=sp = NULL)
free (p == sp);
if (p-=>resultl= NULL)
free (p > result);
}
Output:
Enter element no. 011
Enter element no. 1: 0
Enter element no. 2: 2
Enter element no. 3: 0

Enter element no. 4: 3
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Elements in a 3-tuple: firstly we have obtained the total number of non-zero elements that the target 3-

3 3 i tuple would hold. This has been achieved through the following statements:
o0 3 3 amax =% (s1.sp + 2);

3 | 1 3 bmax = * (s2.5p + 2);

2 0 4

max = amax + bmax;

Then we have allocated memory for the target 3-tuple that would store the result
Enter element no.

Enter element no.
Enter element no.
Enter element no.
Enter element no.
Enter element no. 5:
Enter element no. 6:
Enter element no. 7:
Enter element no. 8:

obtained from addition. Through a while loop we have carried out the addition

operation. The variables i and j are used as counters for first 3-tuple (pointed to by

o Ol

0
0
0
{]; sl.sp) and second 3-tuple (pointed to by s2.sp) respectively. Then we have re-
2 trieved the row number, column number and the non-zero value of ith and jth non-
0 zero element respectively. The following cases are considered while performing
9 addition.

0 (a) If the row numbers as well as column numbers of the non-zero values retrieved
Elesrients ina 3-tuple: from first and second 3-tuple (pointed to by si.sp and s2.sp respectively) are
same then we have added two non-zero values vala and valb. The row number

3 3 3 rowa, column number cola and vala + valb is then copied to the target 3-tuple

1 g ; poited to by result.

2 1 o9 (b) If column number of first 3-tuple is less than the column number of second 3-
tuple, then we have added the information about the ith non-zero value of first

Result of addition of two matrices: 3-tuple to the target 3-tuple.

3 g i (c) If column number of first 3-tuple is greater than the column number of second

6 2 2 3-tuple, then we have added the information about the jth non-zero value of

+ T SR © second 3-tuple to the target 3-tuple.

11 3 (d) If row number of first 3-tuple is less than the row number of second 3-tuple,

: é i then we have added the information about the ith non-zero value of first 3-tuple

2 1 9 to the target 3-tuple.

The function addmat() carries out addition of two sparse matrices. In this function () If row number of first 3-tuple is greater than the row number of second 3-tuple,
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then we have added the information about the jth non-zero value of second 3-
tuple to the target 3-tuple.
Finally, the total number of rows, columns and non-zero values that the target 3-
tuple holds is stored in the zeroth row of the target 3-tuple (pointed to by result).
The function display_result() displays result of the addition operation.
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Linked Representation of a Sparse Matrix

Representing a sparse matrix as an array of 3-tuples suffers from one important
limitation. When we carry out addition or multiplication it is not possible to predict
beforehand how many elements in the resultant matrix would be non-zero. As a re-
sult, it is not possible to predict the size of the resultant matrix beforehand. Instead
of an array we can represent the sparse matrix in the form of a linked list.
In the linked list representation a separate list is maintained for each column as
well as each row of the matrix, i.e. if the matrix is of size 3 x 3, then there would be 3
lists for 3 columns and 3 lists for 3 rows. A node in a list stores the information
about the non-zero element of the sparse matrix. The head node for a column list
stores the column number, a pointer to the node, which comes first in the column,
and a pointer to the next column head node. Thus the structure for column head
node would be as shown below:
struct cheadnode
{

struct node *down;

int colno;

struct cheadnode *next:
K
A head node for a row list stores, a pointer to the node, which comes first in the
row list, and a peinter to the next row head node. The structure for row head node
would be as shown below:
struct rheadnode
{

struct rheadnode *next;

int rowno;

struct node *right;
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b
A node on the other hand stores the row number, column number and the value of
the non-zero element of the sparse matrix. It also stores a pointer to the node that
is immediately to the right of the node in the row list as well as a pointer to the
node that is immediately below the node in the column list. The structure for a
node would be as shown below:
struct node
{

int row;

int col;

int val:

struct node *down;

struct node *right;
b
In addition to this a special node is used to store the total number of rows, total
number of columns, a pointer to the first row head node and a pointer to the first
column head node. The information stored in this special node is used for travers-
ing the list. The structure of this special node would be as shown below:
struct spmat
{

struct rheadnode *hirstrow;

int noofrows;

int noofcols;

struct cheadnode *firstcol;
b

It a particular column list is empty then the field doewn of the column head node
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would be NULL. Similarly if a row list is empty then the field right of the row head

node would be empty. If a node is the last node in a particular column list or a par-
ticular row list then the field down or the field right of the node would be NULL.

Figure 4-2 gives pictorial representation of linked list of a sparse matrix of size 3 x

3.

chead([0] chead|[1] chead|(2]
]3] ol J—inls] [2]~]
meadiol| (o | B ofo]2 o[2]7
- ‘ N|N

rhead{l]l_‘ 1 | :I_.E 1]o|n

Figure 4-2. Linked Representation of a sparse matrix.
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Other Forms of a Sparse Matrix Figure 4-3. Different forms of Sparse matrices.
A square sparse matrix can be of following types:

Diagonal Where the non-zero elements are stored
on the leading diagonal of the matrix.

Tridiagonal Where the non-zero elements are placed
below or above the leading diagonal.
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Chapter Bullets
Summary of chapter

(a) If many elements from a matrix have a value o then the matrix is known as a
sparse matrix.

(b) A common way of representing non-zero elements of a sparse matrix is the 3-
tuple form.

(c) Sparse matrix can be represented using either an array or a linked list.

(d) A square spare matrix may take the form of a Diagonal, Tridiagonal, Lower

Triangular or Upper Triangular matrix.

© ®

1 page (<1 min} left in this chapter £

PAGE 185 OF 429 > 43% read



il
)

€5 SCRIBD Q 52 As

Check Your Progress

Exercise - Level |
[A] Pick up the correct alternative for each of the following questions:
(f) A matrix is called sparse when
(1) Most of its elements are non-zero
(2) Most of its elements are zero
(3) All of its elements are non-zero
(4) None of the above
(g) In the linked representation of a sparse matrix the head node for a column list
stores
(1) A pointer to the next column head node
(2) A pointer to the first node in column list
(3) Column number
(4) All of the above
(h) A sparse matrix can be lower-triangular matrix
(1) When all the non-zero elements lie only on the leading diagonal.
(2) When all the non-zero elements lie above leading diagonal.
(3) When all the non-zero elements lie below leading diagonal.

(4) Both (3) and (4)
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Sharpen Your Skills

Exercise - Level Il

[B] Answer the following:

(a) Write a program to build a sparse matrix as an array. Write functions to check if
the sparse matrix is a square, diagonal, lower triangular, upper triangular or
tridiagonal matrix.

(b) Write a program to subtract two sparse matrices implemented as an array.

(c) Write a program to build a spare matrix as a linked list. The program should
provide functions for following operations:

(i) Store an element when the row number, column number and the value is
provided

(i) Retrieve an element for given row and column of matrix

(iii) Add two sparse matrices

(iv) Subtract two sparse matrices
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Coding Interview Questions

Exercise Level II1
Write a program that carries out multiplication of two sparse matrices through

their 3-tuple form and stores the result in another sparse matrix in 3-tuple form.
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Case Scenario Exercise

Linked representation of Sparse Matrix

Write a program that stores sparse matrix in the linked list form. The skeleton code
for this program is given below. You are required to define different functions
whose prototypes are given in the skeleton code and the call these functions from
main().

#define MAX1 3

#define MAX2 3

/* structure for col head node */
struct cheadnode
{
int colno;
struct node *down;
struct cheadnode *next;
k
/*# structure for row head node */ struct rheadnode
{
int rowno;
struct node *right;
struct rheadnode *next;
%
/* structure for node to store element */
struct node
{
int row, col, val;

struct node *right;

struct node *down;
b
/% structure for special head node */
struct spmat
{
struct rheadnode *firstrow;
struct cheadnode *firstcol;
int noofrows;
int noofcols;
b
struct sparse
{
int *sp;
int row;
struct spmat #smat;
struct cheadnode #chead] MAXz2 ];
struct rheadnode *rhead] MAX1];
struct node *nd;
b
void initsparse (struct sparse *);
void create_array (struct sparse *);
void display (struct sparse);
int count (struct sparse);
void create_triplet (struct sparse *, struct sparse);
void create_llist (struct sparse *);
void insert (struct sparse *, struct spmat *, int, int, int);

void show_llist (struct sparse);
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void delsparse (struct sparse *);
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Chapter o5
Stacks
OF WADS OF NOTES

Why This Chapter Matters?

Be it items in a store, books in a library, or notes in a bank, the moment they
become more than handful we start stacking them neatly. Similarly, while
maintaining data in an orderly fashion it is placed in a stack. Stack data structure is
used widely for storing variables, managing function calls, evaluating arithmetic
expressions, etc. Hence it is important to understand this data structure

thoroughly.
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Stack is a data structure in which addition of new element or deletion of an existing
element always takes place at the same end. This end is known as top of stack. This
situation can be compared to a stack of plates in a cafeteria where every new plate
added to the stack is added at the top . Similarly, every new plate taken off the stack
is also from the top of the stack. When an item is added to a stack, the operation is
called push , and when an item is removed from the stack the operation is called
pop . These operations are shown in Eigure 5-1 . Because of the nature of push and

pop operations Stack is also called last-in-first-out (LIFO) list.

top—» 11

top—™

8
top—» -4 -4 -4

topEI 2 2 2
I m

top = NULL Push 2 Push -4 Push 8 Push 11

top—>| 11

8 top—» 8

4 4 § top— 4

Pop Pop Pop Pop

top = NULL

Figure 5-1. Insertion and deletion of elements in a Stack.

A stack data structure can be maintained as an array or as a linked list. The
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following sections discuss these implementations.
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Stack as an Array push (&s, -4);

Stack contains an ordered collection of elements. An array is used to store ordered push (&s, 8);

list of elements. Hence, a stack can be implemented using an array. However, we push (&s, 11);

are required to declare the size of the array before using it. So when we use it to

store elements of a stack the stack can grow or shrink within the memory reserved =pop{al;
if (n 1= NULL)

for the array. Let us now see a program that implements a stack using an array.
printf (“ltem popped: %6d\n", n);

Honest Solid Code {C}

e &s):
Program 5-1. Stack as an array n=pop (&s);

S
#include <stdio.h> if (n 1= NULL)

B A printf (“Item popped: %d\n", n);

= 8s):
struct stack m=spopiiy;
( if (n 1= NULL)
int arr] MAX printf (“ltem popped: %d\n", n);
int top; n=pop (&s);
E
void initstack (struct stack #); if (n I= NULL)
void push (struct stack *, int item); printf (“Item popped: %d\n", n);
int truct stack *);
int pop (struct stack #); .
int main() if (n!=NULL)
{ printf (“ltem popped: $%6d\n", n);
struct stack s;
return o;
intn;
}

initstack (&s);
push (&s, 2):

/* intializes the stack */

void initstack (struct stack *s)

© @

4 pages (2 min) leftin this chapter £ PAGE 193 OF 429 > 45% read



€5 SCRIBD Q 5 A=

{ }
s ->top =-1; Output:
1 Iltem popped: 1
ltem popped: 8

/* adds an element to the stack #*/
ltem popped: -4

void push (struct stack *s, int item)

{
if (s = top = MAX-1)
{
printf (“Stack is full\n");

Item popped: 2
Stack is empty
In this program we have defined a structure called stack. The push() and pop()
functions are respectively used to add and delete items from the top of the stack.

The actual storage of stack elements is done in an array arr. The variable top is an
return;

}

s -> top++;

index into this array. It contains a value where the addition or deletion is going to
take place in the array, and thereby in the stack. To indicate that the stack is empty
to begin with, the variable top is set with a value -1 by calling the function
initstack().

Every time an element is added to stack, it is verified whether such an addition is

s > arr| s ->top | = item;
}

J# removes an element from the stack #/ possible at all. If it is not, then the message ‘Stack is full’ is displayed. Since we

int pop (struct stack #s) have declared the array to hold 10 elements, the stack would be considered full if

{ the value of top becomes equal to g.
int data; In main() we have called push() function to add 4 elements to the stack. Then we
if (s => top — -1) have removed these elements from the stack by calling the pop() function. When
{ we call pop() for the 5“" time, there are no elements present in the stack and top

printf (“Stack is empty\n"): has a value -1 in it. Hence the ‘Stack is empty’ gets displayed.

return NULL;
}
data=s->arr[s->top];
s -> top--;

return data;
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In the earlier section we had used arrays to store the elements that get added to the

stack. However, when implemented as an array it suffers from the basic limitation

of an array—that its size cannot be increased or decreased once it is declared. As a

result, one ends up reserving either too much memory or too less memory for an

array and in turn for a stack. This problem can be overcome if we implement a

stack using a linked list.

Each node in the linked list contains the data and a pointer that gives location of

the next node in the list. The pointer to the beginning of the list serves the purpose

of the top of the stack. Figure 5-2 shows the linked list representation of a stack.

top
-6
T
9 I

10
—

Figure 5-2. Representation of stack as a linked list.
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Let us now see a program that implements stack as a linked list.

Honest Solid Code {C}
Program 5-2. Stack as a linked list
#include <stdio.h>

#include <stdlib.h>

struct node
{
int data;
struct node *link;
b
void push (struct node *%, int);
int pop (struct node **);

void delstack (struct node *%);

int main()
{
struct node #s = NULL;

int n;

push (&s, 14);
push (&s, -3);
push (&s, 18);
push (&s, 29);
push (&s, 31);
push (&s, 16);

n = pop (&s);
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if (n!=NULL)
printf (“Item popped: %d\n", n);

n = pop (&s);
if (n 1= NULL)
printf (“Item popped: %6d\n", n);

n = pop (&s);
if (n 1= NULL)
printf (“ltem popped: %d\n", n);

delstack (&s);

return o;

}

/# adds a new node at beginning of linked list */
void push (struct node **top, int item)
{

struct node *temp;

temp = (struct node *) malloc (sizeof (struct node));

if (ternp == NULL)
printf (“Stack is full\n");

temp -> data = item;
temp -> link = *top;

*top = temp;

©
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/#* deletes a node from beginning of linked list */

int pop (struct node **top)

{
struct node *temp;

int item;

if (*top == NULL)

{
printf (“Stack is empty\n");
return NULL;

}

temp = *top;
item = temp -> data;

*top = (*top) -> link;

free (temp);

return item;

}

/* deallocates memaory %/

void delstack (struct node **top)

{

struct node *temp;

if (*top == NULL)

return;

while (*top l= NULL)
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{
temp = *top;
*top = (*top) > link;
free (temp);

}

}
Qutput:

ltem popped: 16

ltem popped: 31

Iltem popped: 2g

Here we have declared a structure called node. The variable s is a pointer to the
structure node. Initially s is set to NULL to indicate that the stack is empty. In every
call to the function push() we are creating a new node dynamically. As long as there
is enough memory for dynamic allocation, temp would never become NULL. If
value of temp happens to be NULL then that would be the stage when stack would
become full.

After, creating a new node, the pointer s should point to the newly created item of
the list. Hence we have assigned the address of this new node to s using the point-
er top.

In the pop() function, first we are checking whether or not a stack is empty. If so,
then a message ‘Stack is empty’ gets displayed. If the stack is not empty then the

topmost item gets removed from the list.
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Applications of Stacks

Stacks are often used is in evaluation of arithmetic expression. An arithmetic ex-
pression consists of operands and operators. The operands can be constant or
variables. The operators used in an arithmetic expression can be +, -, * and /.

While writing an arithmetic expression, the operator is placed between two oper-
ands as shown in the examples below.

A+B=C

A*B-C

A+B/C-D

A3B+C

This way of representing arithmetic expressions is called infix notation. While
evaluating an infix expression usually the following operator precedence is used:

- Highest priority: Exponentiation ($)

- Next highest priority: Multiplication (*) and Division (/)

- Lowest priority: Addition (+) and Subtraction (-)

If we wish to override these priorities we can do so by using a pair of parentheses
as shown below.

(A+B)*C

A% (B-C)

(A+B)/ (C-D)

The expressions within a pair of parentheses are always evaluated earlier than other
operations.

To make evaluation of an arithmetic expression easy, a polish mathematician Jan
Lukasiewicz suggested a notation called Polish notation. As per this notation, an
expression in infix form can be converted to either prefix or postfix form and then
evaluated. In prefix notation the operator comes before the operands. In postfix

notation, the operator follows the two operands. These forms are shown below.

SCRIBD
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A+ B - Infix form

+ A B - Prefix form

A B + - Postfix form

The prefix and postfix expressions have three features:

- The operands maintain the same order as in the equivalent infix expression

- Parentheses are not needed to designate the expression unambiguously.

- While evaluating the expression the priority of the operators is irrelevant.

The stack data structure is used while carrying out the conversion of an expression

given in one form to another.

47% read



= €5 SCRIBD 0 2 A ¢
Infix to Postfix Conversion initinfix (&p);
Let us now see a program that converts an arithmetic expression given in an infix printf (“Enter an expression in infix form:\n");
form to a postfix form. zets (expr);
Honest Solid Code {C} setexpr (&p, expr);
Program 5-3. Infix to Postfix conversion convert (&p);
#include <stdio.h>
Fae - printf (“The pastfix expression is:\n");
h .

#include <ctype.h= st (Rl
#define MAX 50 vetiirg:
struct infix }
{ [* initializes structure elements */

char target] MAX]; void initinfix (struct infix *p)

char stack] MAX ]; {

char #s, #t; p > top = -1;

inf top; strepy (p -> target, *");
15 strepy (p -> stack, “");
void initinfix (struct infix #); p->t—p->target;
void setexpr (struct infix *, char *); P>
void push (struct infix *, char); char pop (struct infix #); }
void convert (struct infix *); int priority (char);
void show (struct infix); /# sets s to point to given expression %/

void setexpr (struct infix *p, char *str)

int main() {
{ p->s=str;

struct infix p; }

char expr[ MAX ];
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/* adds an operator to the stack */
void push (struct infix *p, char ¢)
{
if (p-> top == MAX)
printf (“Stack is full\n");
else
{
p -> top++;
p->stack[p >top]=¢
1
1

/* pops an operator from the stack */

char pop (struct infix *p)

{

if (p-»top ==-1)

{
printf (“Stack is empty\n");
return -1;

}

else

{
char item = p > stack[ p > top |;
p > top—;
return item;

}

}

SCRIBD
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/* converts the given expression from infix to postfix form */

void convert (struct infix *p)

{

char opr;

while (*(p ->s))

{
it ((p>5) =" [l (p >5) —"\t)
{
p > s++;
continue;
}
if (isdigit (*(p ->5)) || isalpha (*(p -> s)))
{
while (isdigit (*(p -> s)) || isalpha (*(p -> s)))
{
*p->t) =*(p->s);
p-> s++;
p->t++;
}
}
it ((p > 5) == ()
{
push (p, *(p->s));
p > s++;
}
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if(*(p-=>5) =—="F[| *(p-=s) ="+ |[*(p->s) —="/"||
*p=>s)="%"||*(p-=>s) =""||*(p-=>s) =="5)
{
if (p-=top l=-1)
{
opr = pop (p);

while (priority (opr) >= priority (*(p -> s)))
{
*(p=>t)=opr;p >t
opr = pop (p);
t
push (p, opr);
push (p, #(p -> 5));
}
else
push (p, *(p ->s));
p-> s+t

}

if (+(p > 5) == ')
{
opr =pop (p);
while ((opr) I='(')
{

*(p->1) =opr;
(p->1)—op
p -> t++;

opr = pop (p);

€5 SCRIBD

}
p-> st+;
1
1
while (p -> top I=-1)
{
char opr = pop (p);
*(p->t) = opr;
p->t++;
}

#(p > 1) = \0;
}

/* returns the priority of an operator */
int priority (char c)
{
if (c =='$')
return 3;
o= llc=" llc=="%)
return 2;
else
{
iffc=="+"]c=")
return 1;
else

return o;
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/* displays the postfix form of given expr. */
void show (struct infix p)
{

printf (“%s", p.target);
}
Output:
Enter an expression in infix form:
482%3-3+8/4/(1+1)
Stack is empty
The postfix expression is:
42%3%3-84/1+/+
This program contains a structure called infix. The elements target and stack are
used to store the postfix string and to maintain the stack respectively. The char
pointers s and t are used to store intermediate results while converting an infix ex-
pression to a postfix form. The variable top points to the top of the stack.
During program execution when user enters an arithmetic expression the function
setexpr() assigns the base address of the string to char pointer s.
Next, the function convert() gets called. This function converts the given infix ex-
pression to postfix expression. This function scans every character of the string in
a while loop and performs one of the following operation depending on the type of
character scanned.
(a) If the character scanned happens to be a space then that character is skipped.
(b) If character scanned is a digit or an alphabet, it is added to the target string

pointed to by t.
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(c) If the character scanned is a closing parentheses then it is pushed to the stack
by calling push() function.

(d) If the character scanned is an operator, then firstly, the topmost element from
the stack is retrieved. Through a while loop, the priorities of the character
scanned (i.e. *(p -> s)) and the character popped opr are compared. Then fol-
lowing steps are performed:

(i) If opr has higher or same priority as the character scanned, then opr is
added to the target string.

(ii) If opr has lower precedence than the character scanned, then the loop is
terminated. opr is pushed back to the stack. Then, the character scanned
(*(p -> s)) is also pushed to the stack.

(e) If the character scanned is an opening parenthesis, then the operators present
in the stack are popped through a loop. The loop continues till it does not en-
counter a closing parenthesis. The popped operators are added to the target
string pointed to by t.

In the convert() function we have called functions push(), pop(), priority(). The
push() function adds a character to the stack, whereas the pop() function removes
the topmost item from the stack. The prierity() function returns the priority of oper-
ators used in the infix expression. $ (exponentiation) has the highest precedence,
followed by #, / and +, -. The function returns integer 3 for $, 2 for * or /, 1 for + or -
and o for any other character.

The while loop in convert() gets terminated if the string s is exhausted. By then

some operators may still be in the stack. These operators should get added to the

postfix string. This is done once the control reaches outside the while loop in the
convert() function. Lastly, the converted expression is displayed using the show()

function.

The steps performed in the conversion of a sample infix expression 4 $2#%3-3+8
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Infix Expression: 45$2*3-3+8/4/(1+1)
Char Scanned Stack Contents | Postfix Expression
4 Empty 4
$ $ 4
2 S 42
- * 425
3 * 4253
- - 4253+
3 = 4253*3
+ - 4253*3-
8 - 4253*3-38
/ +/ 42$3*3-8
4 +/ 42$3*3-84
/ +/ 4253*3-84/
( +/( 4253*3-84/
1 +/ ( 4253*3-84/1
+ +/ (+ 4253*3-84/1
1 +/ [+ 4253*3-84/11
) o 4283*3-84/11+
4283*3-84/11+/+

Table 5-1. Conversion of Infix to Postfix form.
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Postfix to Prefix Conversion

Let us now see a program that converts an expression in postfix form to a prefix

form.

Honest Solid Code {C}

Program 5-4. Postfix to Prefix conversion

#include <stdio.h>

#include <string.h>

#define MAX 50

struct postfix

{
char stack[ MAX ][ MAX ], target] MAX J;
chartempi[ 2], temp2[2];
char stn[ MAX ], strz[ MAX ], str3[ MAX];
inti, top;

I

void initposthx (struct postfix *):

void setexpr (struct postfix *, char *);

void push (struct postfix *, char #);

void pop (struct postfix *, char #);

void convert (struct postfix #);

void show (struct postfix);

int main()

{
struct postfix g;
char expr[ MAX ];

SCRIBD

initposthx (&q);

printf (“Enter an expression in postfix form:\n”);

gets (expr);
setexpr (&q, expr);

convert (&q);
printf (“The Prefix expression is:\n");
show (q);

return o;

1

/* initializes the elements of the structure */
void initpostfix (struct posthx *p)
{

p->i=0;

p->top=-1;

strepy (p -> target, *7);

!

/* copies given expr. to target string */
void setexpr (struct postfix *p, char *c)

{

strepy (p -> target, c);

!

/* adds an operator to the stack #/
void push (struct postfix *p, char *str)

{
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if (p->top == MAX-1)
printf (“Stack is full\n");
else
{
p -> top++;
strepy (p -> stack[ p -> top ], str);
}
}

/* pops an element from the stack */
void pop (struct postfix *p, char *a)
{
if (p->top ==-1)
printf (“Stack is empty\n");
else
{
strepy (a, p -> stack[ p -> top ]);
p -> top--;
}
}

/* converts given expr. to prefix form */
void convert (struct postfix *p)
{
while (p -> target{ p > i] = ‘\e’)
{
[* skip whitespace, if any */
if (p->target{p->i]==")

€5 SCRIBD Q 5 A=

p->i++;

if(p -> target[ p > 1] =="'%"|| p > target[ p > i ] ==+ ||
p->target[p->i]==""||p->target[p->i]="+"]|
p->target[p->i]=="/||p->target[p-=i]=="%)

{

pop (p, p-> str2);
pop (p, p -> str3);
p->tempifo]=p->target[p->i];
p-=tempi[1]="\o’;
strepy (p -= str1, p -= temp);
strcat (p -> str, p > str3);
strcat (p -> str1, p -> str2);
push (p, p -> str);
}

else

{
p-=tempifo]=p->target[p->i];
p->tempi[1]="\0’;
strcpy (p -> tempz, p -> temp1);
push (p, p > tempz2);

}

p->i++;

}
1

/= displays the prefix form of expr. */
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void show (struct postfix p)

{

char *temp = p.stack[ o |;

while (*temp)
{
printf (“%c”, *temp);
temp++;
1
i

Output:

Enter an expression in postfix form:

42%3%3-84/11+ [+

The Prefix expression is:

+-%%24233//84+11

In this program the structure postfix contains character arrays like temp1, tempz,

str1, str2, str3 to store the intermediate results. The character arrays stack and tar-

get are used to maintain the stack and to store the final string in the prefix form re-

spectively.

In the convert() function the string containing expression in postfix form is

scanned through a while loop till the string target is not exhausted. Following steps

are performed depending on the type of character scanned.

(a) If the character scanned is a space then that character is skipped.

(b) If the character scanned contains a digit or an alphabet, it is pushed to the
stack by calling push() function.

(c) If the character scanned contains an operator, then the topmost two elements

are popped from the stack. These two elements are then stored in the array

©
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temp1. A temporary string temp2 containing the operator and the two operands
is formed. This temporary string is then pushed on the stack.
The converted prefix form is stored at the oth position in the stack. Finally, the
show() function displays this prefix form. The steps performed in the conversion of
a sample postfix expression 42 $3%3-84/ 11+ / + to its equivalent prefix ex-

pression is shown in Table 5-2.

Postfix Expression: 4253*3-84/11+/+
Char. Scanned Stack Contents

4 4

2 42

$ $42

3 $42 3

i *$423

3 *$423,3

- -*54233

8 -*$4233,8

4 -*54233,84

/ -*$4233,/84

1 -*$4233,/84,1

i L -*$4233,/84,1,1

+ -*54233,/84,+11

/ -*5$4233,//84+11

+-54233//84+11
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Table 5-2. Conversion of Infix to Postfix form.
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Other Inter-Conversions

We have seen conversion of infix to postfix form and postfix to prefix form. It is

¢5 SCRIBD

also possible to carry out other conversions as well. Figure 5-3 summarizes the

operations to be performed to carry out these inter- conversions.

Conversion | Scanfrom | Token |Operation
Into Post | Left to Right | Operand |Add to expression
Operator |Priority

Add to stack / delete

Add to stack / delete

Push to stack

Into Pre Right to Left (
)
Post to Pre | Left to Right | Operand
PosttoIn |Left to Right
Pre to Post |Right to Left
Operator
Pre to In Right to Left

Pop stack into s1

Pop stack into s2

| Construct expression

Push expression on stack

PostABS PreSAB
Pre—$s251 Post—s1s25
s1 —» s1 —M»
22— A In-s25s1 [s2 — A In—s15s2
2 pages (<1 min) left in this chapter £ PAGE 219 OF 429

>

Q

Figure §-3. Summary of inter-conversion of expressions.

A
¥y

Aa

51% read



s

Evaluation of Postfix Expression

The virtue of postfix notation is that it enables easy evaluation of expressions. To
begin with, the need for parentheses is eliminated. Secondly, the priority of the
operators is no longer relevant. The expression can be evaluated by making a left to
right scan, stacking operands, and evaluating operators using operands popped
from the stack and finally placing the result onto the stack. This evaluation is much
simpler than attempting a direct evaluation of infix notation. Let us now see a pro-

gram to evaluate a postfix expression.

Honest Solid Code {C}

Program 5-5. Evaluation of Postfix expression
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <ctype.h>

#define MAX 50

struct postfix
{
int stack] MAX ];
int top, nn;
char *s;
b
void initpostfix (struct postfix *);
void setexpr (struct postfix *, char #);
void push (struct postfix *, int);
int pop (struct postfix *);

void calculate (struct postfix #);

©
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void show (struct postfix);

int main()

{

struct postfix q;
char expr MAX ];

initpostfix (&q);

printf (“Enter postfix expression to be evaluated:\n");

gets (expr);
setexpr (&q, expr);

calculate (&q);
show (q);

return o;

!

/* initializes structure elements */

void initposthx (struct posthx #p)
{

p->top=-1;

!

/* sets s to point to the given expr. */

void setexpr (struct postfix *p, char *str)

{

p->s=str;

1
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/* adds digit to the stack */
void push (struct postfix *p, int item)
{
if (p-=>top == MAX-1)
printf (“Stack is full\n");
else
{
p -> top++;
p -> stack[ p > top | = item;
1
}

/* pops digit from the stack */
int pop (struct postfix #p)
{
int data;
if (p-=top =—=-1)
i
printf (“Stack is empty\n");
return NULL;
}

data = p -> stack[ p > top |;
p > top—;
return data;

}

/* evaluates the postfix expression */

©
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void calculate(struct postfix *p)

{
int n1, n2, n3;

while (%(p -> s))

{
[ skip whitespace, if any */
if (*(p->s) =" *(p ->s) = "\t)
{
p -> s++;
continue;
}

[ if digit is encountered */
if (isdigit (*(p ->s)))
{

p->nn=%*(p->s)

o
'

push (p, p->nn);
1

else

{
/% if operator is encountered */
m = pop (p);
nz =pop (p);
switch (%(p -> s))
{
case ‘+':

n3=n2+ni;
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break;

case -":
n3 =n2-ni;
break:

case ‘f":
n3=nzfniy
break;

case ‘%' :
n3=nz%*ni,
break;

case ‘%’ :
n3=n29% ni;
break;

case ‘§':
n3 = (int) pow ((double) n2, (double) m1);
break;

default :
printf (“Unknown operator\n™);
exit (1);

}
push (p, n3);
t

p-> s++;

}
}

[ displays the result =/
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void show (struct postfix p)
{

p-nn =pop (&p);

printf (“Result is: %d\n", p.nn);
}
Output:
Enter postfix expression to be evaluated:
4283%3-84/11+ [+
Result is: 46
In this program the structure postfix contains an integer array stack, to store the
intermediate results of the operations and top to store the position of the topmost
element in the stack. The evaluation of the expression gets performed in the caleu-
late() function.
During execution the user enters an arithmetic expression in posthx form. In the
caleulate() function, this expression gets scanned character by character. If the
character scanned is a blank space, then it is skipped. If the character scanned is
an operand, then first it is converted to a digit form (from string form), and then it
is pushed onto the stack. If the character scanned is an operator, then the top two
elements from the stack are popped, an arithmetic operation is performed between
them and the result is then pushed back onto the stack. These steps are repeated
as long as the string s is not exhausted. The show() function displays the final re-
sult. These steps can be better understood if you go through the evaluation of a

sample postfix expression shown in Table 5-3.
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Postfix Expression: 4253*3-84/11+/+

Char. Scanned

Stack Contents

4

4,2

16

4
2
$
3

16,3

*

48

48, 3

45

45,8

45,8,4

45,2

= |~ |& |00

45,2,1

45,2,1,1

45,2,2

45,1

46 (Result

Table 5-3. Evaluation of Postfix expression.
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Chapter Bullets

Summary of chapter

(a) Stack data structure is a LIFO list in which addition of new elements and dele-
tion of existing elements takes place at the same end.

(b) Addition of a new element to a stack is called push operation.

(c) Deletion of an existing element from a stack is called pop operation.

(d) Stack data structure can be implemented using an array or a linked list.

(e) If stack is implemented as a linked list, push operation is like adding a new
node at the beginning of the linked list.

(f) If stack is implemented as a linked list, pop operation is like deleting an existing
node from the beginning of the linked list.

(g) Stack data structure has many applications like keeping track of function calls,

storing local variable, evaluation of arithmetic expression, etc.
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Check Your Progress (2) is a postfix expression
Exercise - Level | (3) is a prefix expression
[A] Fill in the blanks: (4) is a stack expression

(a) A stack is a data structure in which addition of new element or deletion of an

existing element always takes place at an end called

(b) The data structure stack is also called list.
(c) In notation the operators precedes the two operands.
(d) In notation the operator follows the two operands.

[B] Pick up the correct alternative for each of the following questions:
(a) Adding an element to the stack means
(1) Placing an element at the front end
(2) Placing an element at the top
(3) Placing an element at the rear end
(4) None of the above
(b) Pushing an element to a stack means
(1) Removing an element from the stack
(2) Searching a given element in the stack
(2) Adding a new element to the stack
(4) Sorting the elements in the stack
(c) Popping an element from the stack means
(1) Removing an element from the stack
(2) Searching a given element in the stack
(3) Adding a new element to the stack
(4) Sorting the elements in the stack
(d) The expression A B *

(1) is an infix expression
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Sharpen Your Skills

Exercise - Level Il
[C] Transform the following infix expressions into their equivalent postfix expres-
sions:
(A-B)*(D/F)
A+BAD)J(E-F)+GC
A% (B+D)/E-F*(G+H/K)
(A+B)#(C-D)SE*F
(A+B)*(CS(D-E)+F)/Q)S(H-))
[D] Transform the following infix expressions into their equivalent prefix expres-
sions:
(A-B)*(D/F)
A+BAD)J(E-F)+ G
A*(B+D)/E-F*(G+H/K)
[E] Transform each of the following prefix expression to infix.
+A-BC
++A-*SBCD/+EF*GHI
+-$ABC*D*EFG
[F] Transform each of the following postfix expression to infix.
ABC+-
AB-C+DEF-+5
ABCDE-+S$*EF*-

© B
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Coding Interview Questions
Exercise Level II1

[G] Write programs for the following:
(a) Copying contents of one stack to another.

(b) To check whether in a string containing an arithmetic expression, the opening

and closing parenthesis are well- formed or not.

©

1 page (<1 min} left in this chapter

{ PAGE 231 OF 429

>

Q

A
¥y

Aa

54% read



ii
)

€5 SCRIBD

Case Scenario Exercise

Prefix to postfix and infix forms
Write a program to convert an arithmetic expression in prefix form to equivalent

infix and postfix forms. Refer Figure 5-4 for the steps to be carried out in each of

these conversions.
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Chapter o6
Queues
AWAIT YOUR TURN

Why This Chapter Matters?

Whether it is a railway reservation counter, a movie theatre or print jobs submitted
to a network printer there is only one way to bring order to chaos—form a queue. If
you await your turn patiently, there is a more likelihood that you would get a better
service. In a computer system too there are queues of tasks (programs) waiting for
the printer, or for access to disk storage, or for usage of CPU, etc. Understand this

chapter thoroughly to be able to implement queues.

SCRIBD

Q & Aa

Queue is a linear data structure that permits insertion of new element at one end
and deletion of an element at the other end. The end at which the deletion of an
element takes place is called front , and the end at which insertion of a new ele-
ment takes place is called rear .

The first element that gets added into the queue is the first one to get removed
from the list. Hence, queue is also referred to as first-in-first- out (FIFO) list. The
name ‘queue’ comes from the everyday use of the term. Consider a queue of peo-
ple waiting at a bus stop. Each new person who comes takes his or her place at the
end of the line, and when the bus arrives, the people at the front of the line board
first. The first person in the line is the first person to leave it. Figure 6-1 gives a

pictorial representation of a queue.

n logn [nlogn n’ n’ 2"
1 0.0 0.0 1.0 1.0 2.0
2 1.0 2.0 4.0 8.0 4.0
5 23 11.6 25.0 125.0 32.0
10 3.3 33.2 100.0 1000.0 1024.0
15 3.9 58.6 | 225.0 3375.0 32768.0
20 4.3 86.4 | 400.0 8000.0 1048576.0
30 4.9 147.2 | 900.0 27000.0 1073741824.0
40 5.3 | 2129 | 1600.0 | 64000.0 1099511627776.0

50 5.6 | 282.2| 2500.0 | 125000.0 | 1125899906842620.0

Figure 6-1. Pictorial representation of a queue.
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In Figure 6-1, 34 is the first element and 42 is the last element added to the queue.

Similarly, 34 will be the first element to get removed and 42 will be the last element

to get removed from the queue.
Queue, being a linear data structure can be represented using either an array or a

linked list. These implementations are discussed in following sections.
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Queue as an Array

Representing a queue as an array would have the same problem that we discussed
in case of stack in Chapter 5. An array can store a fixed number of elements.
Queue, on the other hand keeps on changing as we remove elements from the
front end or add new elements at the rear end. Declaring an array with a maximum
size would solve this problem. The maximum size should be large enough for a
queue to expand or shrink. Let us now see a program that implements queue as an

array.

Honest Solid Code {C}

Program 6-1. Implementation of queue as an array
#include <stdio.h>

#define MAX 10

struct queue
{
intarrf MAX];
int front, rear;
I
void initq (struct queue *);
void addq (struct queue *, int);

int delq (struct queue *);

int main ()

{

struct queue g;

intn;

©
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initq (&);
addq (&q, 34);
addq (&q, 12);

addq (&4, 53);
addq (&q, 61);

n

= delg (&q);

if (n 1= NULL)

n

printf (“Item deleted: %d\n", n);

= delq (&q);

i (n 1= NULL)

n

printf (“Item deleted: S6d\n", n);

=delq (&q);

i (n 1= NULL)

n

printf (“Item deleted: %d\n", n);

= delq (&q);

i (n 1= NULL)

n

printf (“Item deleted: %d\n", n);

= delq (&q);

if (n l= NULL)

printf (“Item deleted: %d\n", n);

return o;

}
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/* intializes the queue */ (
void initq (struct queue *pq)

{

pq == front = -1;

printf (“Queue is Empty\n");
return NULL;
}

pq -> rear =-1;

} data = pg->arr| pg->front ];
5 S N
/* adds an element to the queue */ ppeal pealtant |~

if (pg->front == pg-
void addq (struct queue *pq, int item) B Pty S

{
if (pg->rear == MAX - 1)

{
printf (“Queue is full\n");

pg->front = pq->rear = -1;
else
pg->front++;

return data;

!

return;
Output:
I ltem deleted: 34
pg->rear++; ltem deleted: 12
pg-=arr| pg->rear | = item; ltem deleted: 53

ltem deleted: 61
Queue is Empty

Here we have declared a structure queue containing an array arr to store queue ele-

if (pg-=front ==-1)

pq->front = o;

ments and variables front and rear to monitor the two ends of the queue. The initial

/% removes an element from the queue */ values of front and rear are set to -1, through the function initq() to mark the queue
int delq (struct queue *pq) as empty. The functions addq() and delq() are used to perform addition and dele-
i tion operations on the queue.

int data: In addq() firstly it is ascertained whether an addition is possible or not. Since the

array indexing begins with o the maximum number of elements that can be stored

if (pq->front — 1) in the queue are MAX - 1. If these many elements are already present in the queue

© &

5 pages (3 min) leftin this chapter £ PAGE 238 OF 429 > 55% read




s

then it is reported to be full. If an element can be added to the queue then value of
rear is incremented and the new item is stored in the array.

If the item being added to the queue is the first element (i.e. if variable front has a

SCRIBD
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sure that another attempt to delete should be met with an ‘empty queue’ message,
front and rear both are reset to -1 to indicate emptiness of the queue.

The deletion of elements from a queue is illustrated in Eigure 6-3.

value -1) then as soon as the item is added to the queue front is set to o indicating - n— Frant o
that the queue is no longer empty. L ¢ l l
The addition of an element to the queue is illustrated in Eigure 6-2.
34 12 53 61 0 12 53 61
EMPRE o Sank e g = < Before Deletion After Deletion
‘Frin:lrear frcint rclar P— - Roit srasr
Add 34 34 | Add12 | 34 | 12 I l 8 | 5 5| 8 I gl 8|86 ®
— —
front rear front rear Before Deletion After Deletion
l l ¢ l front rear front rear
Add 53 34 12 53 Add 61 34| 12 53 61 l L l l
0 0 53 61 I 0 0 0 61
5 s Before Deletion After Deletion
Figure 6-2. Addition of an element to a queue.
front rear
Let us now see how the delq() function works. Before deleting an element from the i i
queue it is first ascertained whether there are any elements available for deletion. If
: : ; 0 0 0 61 0 0 0 0
not, then the queue is reported as empty. Otherwise, an element is deleted form

After Deletion
front=-1, rear=-1

arr| front |. Before Deletion

Imagine a case where we add 10 elements to the queue. Value of rear would now be

9. Suppose we have not deleted any elements from the queue, then at this stage the

value of front would be 0. Now suppose we go on deleting elements from the Figure 6-3. Deletion of elements from a queue.

queue. When the tenth element is deleted the queue would fall empty. To make
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Qur program has got one limitation. Suppose we go on adding elements to the
queue till the entire array gets filled. At this stage the value of rear would be MAX -
1. Now if we delete 5 elements from the queue, at the end of these deletions the
value of front would be 5. If now we attempt to add a new element to the queue
then it would be reported as full even though in reality the first five slots of the
queue are empty. To overcome this situation we can implement a queue as a cir-

cular queue, which would be discussed later in this chapter.

© ®
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Queue as a Linked-List struct node *front;
Queue can also be represented using a linked list. Linked lists do not have any re- struct node *rear;
strictions on the number of elements it can hold. Space for the elements in a linked E
list is allocated dynamically, hence it can grow as long as there is enough memory void initqueue (struct queue *);
available for dynamic allocation. Eigure 6-4 shows the representation of a queue as void addq (struct queue %, int);
a linked list. int delq (struct queue #);
void delgueue (struct queue #);
front rear int main()
! ! {
34 12 53 61 N struct queue a;
intn;

initqueue (&a);

Figure 6-4. Representation of a queue as a linked list.

addq (&a, 34);

Let us now see a program that implements the queue as a linked list. addq (&a, 12);
addq (&a, 53);

Honest Solid Code {C} addq (&a, 61):

Program 6-2. Implementation of queue as a linked list

#include <stdio.h> n =delq (&a);
if (n 1= NULL)

struct node

{

printf (“Item deleted: %d\n", n);

int data; n = delq (&a);
struct node *link; if (n l= NULL)
k printf (“Item deleted: %d\n", n):

struct queue

: n = delq (&a);

© &
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if (n!=NULL)
printf (“Item deleted: %d\n", n);

delqueue (&a);
return ©;

}

/¥ initialises data member */
void initqueue (struct queue *q)
{

q-> front = q -> rear = NULL;
}

[* adds an element to the queue */

void addq (struct queue *q, int item)

{

struct node *temp;

temp = (struct node *) malloc (sizeof (struct node));

if (temp == NULL)
printf (“Queue is full\n");

temp -> data = item;

temp -> link = NULL;

if (q = front — NULL)
{

q->rear = q -> front = temp;

return;

SCRIBD aQ 2

}

q-= rear -> link = temp;
q->rear = q -> rear -> link;

}

/* removes an element from the queue */
int delq (struct queue * q)
{

struct node *temp;

int item;

if (g -> front == NULL)
{
printf (“Queue is empty\n");
return NULL;
}
item = q -> front -> data;
temp = q -> front;
q-> front = g -> front -> link;
free (temp);

return item;

/#* deallocates memory */

void delqueue (struct queue #q)

{

struct node *temp;

©
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if (g -=front == NULL) because the memory allocated for the existing nodes in the list must be de-

return; allocated.

while (q -> front I= NULL)

{

temp = q -> front;

q-> front = g -> front -> link;

free (temp);

1
1
Output:
ltem deleted: 34
ltern deleted: 12
ltem deleted: 53
In this program the structure queue contains two elements front and rear, both are
of the type pointers to structure node. To begin with, the queue is empty hence
both front and rear are set to NULL.
The addgq() function adds a new element at the rear end of the list. If the element
added is the first element, then both front and rear are made to point to the new
node. However, if the element added is not the first element then only rear is made
to point to the new node, whereas front continues to point to the first node in the
list.
The delq() function removes an element from the list which is at the front end of
the list. Removal of an element from the list actually deletes the node to which
front is pointing. After deletion of a node, front is made to point to the next node
that comes in the list, whereas rear continues to point to the last node in the list.

The function delqueue() is called before main() comes to an end. This is done
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Circular Queue

The queue that we implemented using an array suffers from one limitation. In that
implementation there is a possibility that the queue is reported as full (since rear
has reached the end of the array), even though in actuality there might be empty
slots at the beginning of the queue.

To overcome this limitation we can implement the queue as a circular queue. Here
as we go on adding elements to the queue and reach the end of the array, the next
element is stored in the first slot of the array (provided it is free).

More clearly, suppose an array arr of n elements is used to implement a circular
queue. As we go on adding elements to the queue we will reach arr] n-1 . We can-
not add any more elements to the queue as we have reached the end of the array. If
some elements in the queue are deleted the slots at the beginning of the queue will
fall vacant. If now any new elements are to be added to the queue, instead of re-
porting that the queue is full we fill the slots at the beginning of the array with new
elements being added to the queue.

In short, just because we have reached the end of the array the queue would not be
reparted as full. The queue would be reported as full only when all the slots in the
array stand occupied.

Let us now see a program that performs the addition and deletion operation on a

circular queue.

Honest Solid Code {C}

Program 6-3. Implementation of circular queue
#include <stdio.h>

#define MAX 8

struct queue

{

SCRIBD

int arr] MAX;

int front, rear;
b
void initg (struct queue *);
void addq (struct queue *, int);
int delq (struct queue #);
void display (struct queue *);

int main()
{
struct queue g;

intn;

/* initialise circular queue */
initq (&q);

addq (&q, 14);

addq (&q, 22);

addq (&q, 13);

addq (&q, -6);

addq (&g, 25);

addq (&q, 21);

addq (&g, 17);
maddq (&q, 18);
printf (“Elements in the circular queue:\n");

display (&q);

n = delq (&q);
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if (n!=NULL)
;printf (“ltem deleted: %6d\n”, n});

n =delq (&q);
if (n 1= NULL)
printf (“Item deleted: %6d\n", n);

printf (“Elements in the circular queue after deletion:\n");

display (&q);

addq (&q, 9);
addq (&q, 20);

printf (“Elements in the circular queue after addition:\n");

display (&q);

return o;

}

/¥ initializes an empty queue %/
void initg (struct queue *pq)
{
int i;
pg->front = pg->rear = -1;
for (i=0;i< MAX; i++)
pg-=arr[i]=0;

1

/# adds an element to the queue */

void addq (struct queue *pq, int item)

©
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{
if ((pg->rear =— MAX - 1 && pq->front — 0} ||

(pg-=rear + 1 == pg->front))

{
printf (“Queue is full\n");

return;

}

if (pg->rear == MAX - 1)
pg->rear = 0;
else

(pg-=rear)++;
pg-=arr] pg->rear | = item;

if (pg->front ==-1)
pg->front = o;

}

/* removes an element from the queue */
int delq (struct queue *pq)

{

int data;

if (pg-=front = 1)
{

printf (“Queue is empty\n");
return NULL;
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1 Output:

Elements in the circular queue:

data = pg->arr[ pg->front ]; A RS

2 >front] =0;
pg->art[ pg->front | = 0; ltem deleted: 14

if (pg->front — pg->rear) ltem deleted: 22

{ Elements in the circular queue after deletion:
pq->front = -1; 0013-625211718
pq-srear =-1; Elements in the circular queue after addition:
} 92013-625211718
else Here the array arr is used to store the elements of the circular queue. The functions
{ addq() and delq() are used to add and remove the elements from the queue respec-
if (pq->front == MAX - 1) tively. The function display() displays the existing elements of the queue. The initial
pg->front = o; values of front and rear are set to -1, to mark the queue as empty.
else In main(), first we have called the addq() function 8 times to insert elements in the

(pg->front)++; circular queue. In this function, following cases are considered before adding an

} element to the queue.

etiracdata: (a) First we have checked whether or not the array is full. The message ‘Queue is

} full” gets displayed if front and rear are in adjacent locations with rear following

the front.
L e (b) If the value of front is -1 then it indicates that the queue is empty and the ele-

void display (struct queue *pq) ment to be added would be the first element in the queue. The values of front

{ and rear in such a case are set to 0 and the new element gets placed at the oth
inti; position.
for (i —0; i< MAX; i++) (c) It may also happen that some of the positions at the front end of the array are
printf (“%d\t", pg->arr[i ); vacant. This happens if we have deleted some elements from the queue, when
printf (“\n"); the value of rear is MAX - 1 and the value of front is greater than o. In such a

1 case the value of rear is set to 0 and the element to be added is added at this

© @
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(d) The element is added at the rear position in case the value of front is either

equal to or greater than © and the value of rear is less than MAX - 1.

Thus, after adding 8 elements the value of frent and rear become o and 7 respec-

tively. The display() function displays the elements in the queue. Figure 6-5 shows

the circular queue after adding 8 elements.

18

14

rear

front

front=0
rear=7

Figure G-5. Circular queue after addition of 8 elements.

Next we have called delq() function twice to remove 2 elements from the queue.

The following conditions are checked while deleting an element.

(a) First we have checked whether or not the queue is empty. The value of front in

our case is 7, hence an element at the front position would get deleted.

(b) Next, we have checked if the value of front has become equal to rear. If it has,

then the element we wish to remove is the only element of the queue. On re-

moval of this element the queue would become empty and hence the values of

front and rear are set to -1.

©
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On deleting an element from the queue the value of front is set to o if it is equal to
MAX - 1. Otherwise front is simply incremented by 1. Eigure 6-6 shows the circular

queue after deleting two elements from the queue that was earlier filled with 8 ele-

o |

ments.

rear

front=2
rear=7

front

Figure 6-6. Circular queue after deleting two elements.
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Deque
The word deque is a short form of double-ended queue and defines a data struc-
ture in which items can be added or deleted at either the front or rear end, but no

changes can be made elsewhere in the list. Thus a deque is a generalization of both

a stack and a queue. Eigure 6-7 shows the representation of a deque.

front rear

L L

Deletion ¢—| 34 12 53 61 9 '— Insertion

5 e

Insertion Deletion

Figure 6-7. Representation of a deque.

There are two variations of a deque—an Input-restricted deque and an Output-
restricted deque.

An Input restricted deque restricts the insertion of elements at one end only, but
the deletion of elements can be done at both the ends of a queue.

On the contrary, an output-restricted deque, restricts the deletion of elements at

one end only, and allows insertion to be done at both the ends of a deque.
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Priority Queue
A priority queue is a collection of elements where the elements are stored accord-

ing to their priority levels. The order in which the elements should get added or re-

moved is decided by the priority of the element. Following rules are applied to

maintain a priority queue.

(a) The element with a higher priority is processed before any element of lower pri-
ority.

(b) If there are elements with the same priority, then the element added first in the
queue would get processed.

Priority queues are used for implementing job scheduling by the operating system

where jobs with higher priorities are to be processed first. Another application of

priority queues is simulation systems where priority corresponds to event times.
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Chapter Bullets
Summary of chapter

(a) Queue data structure is a FIFO list in which addition of new elements takes
place at the rear end of the queue and deletion of existing elements takes place
at its front end.

(b) Queue data structure can be implemented using an array or a linked list.

(c) If queue is implemented as a linked list, then addition operation is like adding a
new node at the end of the linked list.

(d) If queue is implemented as a linked list, then deletion operation is like deleting
an existing node from the beginning of the linked list.

(e) There exist special types of queues like deque and priority queues.
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Check Your Progress

Exercise - Level |

[A] Fill in the blanks:

(a) For a queue built using an array and containing n elements, the value of front
would be and rear would be

(b) In a circular queue implemented using an array and holding 5 elements, if front
is equal to 3 and rear is equal to 4, then the new element would get placed at

position.

(c) A queue is called when addition as well as deletion of elements can
take place at both the ends.

(d) An is a queue in which insertion of an element takes place at one end
only but deletion occurs at both the ends.

(e) An is a queue in which insertion of an element takes place at both

the ends but deletion occurs at one end only.
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Sharpen Your Skills

Exercise - Level Il
[B] Choose the correct alternative for the following:
(a) Queueisa
(1) Linear data structure
(2) Non-linear data structure
(3) Both (1) and (2)
(4) None of the above
(b) The end at which a new element gets added to a queue is called
(1) front
(2) rear
(3) top
(4) bottom
(c) The end from which an element gets removed from the queue is called
(1) front
(2) rear
(3) top
(4) bottom
[C] Which of the following applications would be suitable for a queue.
(1) A program is to keep track of patients as they check into a clinic, assigning
them to doctors on a first-come, first-served basis.
(2) An inventory of parts is to be processed by part number.
(3) A dictionary of words used by spelling checker is to be created.
(4) Customers are to take numbers at a bakery and be served in order when

their numbers come up.
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Coding Interview Questions

Exercise Level II1

[D] Write programs for the following:

(a) Write a program to represent a deque using a linked list. Also write functions to
add and delete elements from the deque.

(b) Write a menu-driven program to simulate processing of batch jobs by a com-
puter system. The scheduling of these jobs should be handled using a priority
queue. The program should allow user to add or remove items from the queue.
It should also display current status i.e. the total number of items in the queue.

(c) Write a program to copy one queue to another when the queue is implemented

as a linked list.
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Case Scenario Exercise

Priority Queues

Suppose there are several jobs to be performed with each job having a priority
value of 1, 2, 3, 4, etc. Write a program that receives the job descriptions and the
priorities. Create as many queues as the number of priorities and queue up the
jobs into appropriate queues. For example, suppose the priorities are 1, 2, 3, and 4
and the data to be entered is as follows:

ABC, 2, XYZ, 1, PQR, 1, RTZ, 3, CBZ, 2, QQQ, 3, XXX, 4, RRR, 1

Then arrange these jobs as shown below:

Qu: XYZ, 1, PQR, 1, RRR, 1

Q2: ABC, 2, CBZ, 2

Q3:RTZ, 3,QQQ, 3

Qa4 30K, 4

The order of processing should be: Q1, Q2, Q3, Q4. Write a program to simulate

the above problem.
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Chapter o7
Trees
OF HERBS, SHRUBS AND BUSHES

Why This Chapter Matters?

Nature is man's best teacher. In every walk of life man has explored nature, learnt
his lessons and then applied the knowledge that nature offered him to solve
every-day problems that he faced at work- place. It isn't without reason that there
are data structures like Trees, Binary Trees, Search Trees, AVL Trees, Forests, etc.
Trees are non-linear data structures. They have many applications in Computer

Science, hence you must understand them comprehensively.

©
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If large input data is stored in a linked list then time required to access the data is
prohibitive. In such cases a data structure called Tree is used. This data structure is
often used in constructing the file systems and evaluation of arithmetic expres-
sions. This data structure gives a running time of O (log n) for most operations.

Like linked lists, a tree also consists of several nodes. Each node may contain links
that point to other nodes in the tree. So a tree can be used to represent a person

and all of his descendants as shown in Eigure 7-1.

RAHUL

glele

i
' 3 .

SANJAY SAMEER NISHA
NULL 1
I e

* ¥ l r

ABHA AT MADHU NEHA Ji
NULL NULL NULL nu i

Figure 7-1. A tree structure.

Note that each node in this tree contains a name for data and one or more pointers
to the other tree nodes. Although a tree may contain any number of pointers to the
other tree nodes, a large number of have at the most two pointers to the other tree

nodes. Such trees are called Binary trees.
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Binary Trees Figure 7-2. Binary tree.

Let us begin our study of binary trees by discussing some basic concepts and
) Let us now learn some terminology used in association with binary trees.
terminology.

A binary tree is a finite set of elements that is either empty or is partitioned into RStant, Jehiid - the oot of il bl tieetand DX Ehe deat i Jeftionapht

b-tree then, A i t of B and B is left or right child of A.
three disjoint sub-sets. The first sub-set contains a single element called the root of e e e e e
Leaf: A node that has no children (such as D, G, H, or | in Eigure 7-2(a)) is called a
leaf.

Ancestor, Descendant : Any node n1, is an ancestor of node n2 (and n2 is a descen-

the tree. The other two sub-sets are themselves binary trees, called the left and
right sub-trees of the original tree. A left or right sub-tree can be empty.

Each element of a binary tree is called a node of the tree. The tree shown in Figure

. . ) ) . dant of n1) if m is either the parent of n2 or the parent of some ancestor of n2. For

7-2(a), consists of nine nodes with A as its root. Its left sub-tree is rooted at B and

le, in the t h in Fi -2(a), Ai tor of C.

its right sub-tree is rooted at C. This is indicated by the two branches emanating SEmET S tessiomipfpme T Sanasesio

Climbing, Descending : Th t of the tree is at the t d the | t the bot-

from A to B on the left and to C on the right. The absence of a branch indicates an i e T TS s e e e

tom. Going from the | to th t is called climbing the tree, and going fi

empty sub-tree. For example, the left sub-tree of the binary tree rooted at C and the L A A T I RO L S T R BB RMIB N
th tto the | is called di ding the tree.

right sub-tree of the binary tree rooted at E are both empty. The binary trees rooted CIODhI eSS TR cosaanang eee

SED. G H i L have conptyright anid it subtrass: Degree of a node : The number of nodes connected to a particular node is called
the degree of a particular node. For example, in Figure 7-2(a) the node B has a de-

Figure 7-2(b), illustrates a structure that is not a binary tree.

gree 3. The degree of a leaf node is always one.

Level : The root of the tree has level 0. Level of any other node in the tree is one

o ° more than the level of its parent. For example, in the binary tree shown in Eigure
7-2(a), node E is at level 2 and node H is at level 3.
o o o o Depth : Depth of a node is the maximum number of links from root to that node.
The depth of a binary tree is the maximum level of any leaf in the tree. This equals
o o ° o o the length of the longest path from the root to any leaf. Thus the depth of the tree

o o o ° o shown in Figure 7-2(a) is 3.
Height : Height of a node is the maximum number of links from that node to leaf

node. Height of a binary tree is height of its root node.

(a) Binary Tree (b} Invalid Binary Tree Strictly binary tree : If every non-leaf node in a binary tree has non- empty left and

right sub-trees, the tree is termed a strictly binary tree. Thus the tree shown in

© @
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Figure 7-3(a) is a strictly binary tree.
Complete binary tree : A complete binary tree (refer Eigure 7-3(b)) has maximum
number of possible nodes at all levels except the last level, and all the nodes of the

last level appear as far left as possible.

(a) Strictly Binary Tree (b) Complete Binary Tree

Figure 7-3. Strictly and Complete binary tree.
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Representation of Binary Trees in Memory
There are two ways by which we can represent a binary tree—Linked representation

and Array representation. Both these ways are discussed below.
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Linked Representation of Binary Trees
In liked representation each node contains addresses of its left child and right

child. If a child is absent, the link contains a NULL value. For example, in Eigure
7-4 the link fields of node C contain the address of the nodes F and G. The left link
field of node E contains the address of the node H. Similarly, the right link con-
tains a NULL as E has no right child. The nodes D, F, G and H contain a NULL

value in both their link fields, as these are the leaf nodes.

SI=

(vlofnirzleln] [nlefn] [nvcln]

Figure 7-4. Linked representation of a Binary tree.
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When a binary tree is represented by arrays three separate arrays are required. One
array arr stores the data fields of the trees, The other two arrays lc and rc represents
the left child and right child of the nodes. Figure 7-5 shows these three arrays,

which represents the tree shown in Eigure 7-4.

arr [ A B C D E F G o' | "o H

rc

Figure 7-5. Array representation of a binary tree.

The array lc and re contains the index of the array arr where the data is present. If
the node does not have any left child or right child then the element of the array lc
or rc contains a value -1. The oth element of the array arr contains the root node
data. Some elements of the array arr contain ‘\o’ which represents an empty child.
Suppose we wish to find the left and right child of the node E. Then we need to find
the value present at index 4 in array le and re since E is present at index 4 in the
array arr. The value present at index 4 in the array le is g, which is the index posi-
tion of node H in the array arr. So the left child of the node E is H. The right child
of the node E is empty because the value present at index 4 in the array rcis -1.

We can also represent a binary tree using one single array. For this, numbers are
given to each node starting from the root node— 0 to root node, 1 to the left node

of the first level, then 2 to the second node from left of the first level and so on. In
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other words, the nodes are numbered from left to right level by level from top to

bottom. Figure 7- 6(a) shows the numbers given to each node in the tree. Note that

while numbering the nodes of the tree, empty nodes are also taken into account.

{a) Numbering of nodes in Binary Tree

a[0] a[1] al2] a[3] al4] a[5] al6] a[7] a[8] a[9]
E F G | "o | "o HI

a| A B C D

a[10] a[11] a[12] a[13] a[14] a[15] a[16] a[17] a[18] a[19] a[20]

(V| | N Y YN YW

(b) Array representation of Binary Tree

Figure 7-6. Array representation of binary tree using one array.

It can be observed that if n is the number given to the node then its left child is at
position (2n + 1) in the array and right child at position (2n + 2). If any node doesn't

have a left or a right child then an empty node is assumed and a value 0’ is stored

{ PAGE2700F 429 >
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at that index in the array.
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Binary Search Trees
Binary search tree (BST) is a variant of binary tree in which the nodes are arranged

in a particular manner. A BST has the property that all the elements in the left sub-
tree of a node n are less than n and all the elements in the right sub-tree of n are

greater than or equal to n. Eigure 7-7 shows a few BSTs.

Figure 7-7. Sample BSTs.
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Operations on a Binary Search Tree

There are many operations that can be performed on binary search trees. Insertion,
Traversal, Searching and Deletion are the most basic amongst them. Let us now

discuss these operations in detail.
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Insertion of a Node
While inserting a node in a BST the value being inserted is compared with the root

node. A left sub-tree is taken if the value is smaller than the root node and a right
sub-tree if it is greater or equal to the node. This operation is repeated at each level
till a node is found whose left or right sub-tree is empty. Finally, the new node is

appropriately made the left or right child of this node.

If the input list is 3, 9, 1, 4, 7, 11, then Eigure 7-8 shows the stepwise insertion of

new nodes in a BST.

Step 1 Step 2 Step 3
Step 4 Step 5 Step 6

Figure 7-8. Creation of a Binary Search Tree.
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Traversal of a BST

The traversal of a BST is to visit each node in the tree exactly once. There are three
popular methods of BST traversal— in-order traversal, pre-order traversal and post-
order traversal. In each of these methods nothing needs be done to traverse an
empty BST.

Recall that each sub-tree of a BST is a BST itself. Thus, traversing a BST involves
visiting the root node and traversing its left and right sub-trees. The only difference
among the methods is the order in which these three operations are performed.

To traverse a non-empty BST in pre-order, we perform the following three opera-
tions:

(1) Visit the root

(2) Traverse the left sub-tree in pre-order

(3) Traverse the right sub-tree in pre-order

To traverse a non-empty BST in in-order (or symmetric order):

(1) Traverse the left sub-tree in in-order

(2) Visit the root

(3) Traverse the right sub-tree in in-order

To traverse a non-empty BST in post-order:

(1) Travesrse the left sub-tree in post-order

(2) Traverse the right sub-tree in post-order

(3) Visit the root

Figure 7-9 shows the order of visiting nodes using these traversal methods for the

given BST.

SCRIBD

A
]

Aa

o @ Inorder: 5, 6,7, 8, 10,13, 17, 18, 20

o Prorder: 20, 17, 6, 5, 8, 7, 10, 13, 18

Postorder : 5, 7, 13, 10, 8, 6, 18, 17, 20

Figure 7-9. Traversals of binary tree.
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Searching of a Node

To search any nade in a binary tree, initially the value to be searched is compared
with the root node. If they match then the search is successful. If the value is
greater than the root node then searching process proceeds in the right sub-tree of
the root node, otherwise, it proceeds in the left sub-tree of the root node.

BST search operation is very efficient because while searching an element we do
not need to traverse the entire tree. At every node, we get a hint regarding which
sub-tree to search in. For example, in the BST shown in Figure 7-8 step 6, if we
have to search for 7, then we know that we have to scan only the right sub-tree
since 7 is greater than 3. Likewise, when we descend down the tree and reach g we
have to search only its left sub-tree as 7 is less than g.

Since at every step we eliminate half of the sub-tree from the search process the
average search time is O(Iogzn). Same applies to insertion or deletion of an ele-
ment in a BST. As against this, in a sorted array, even though searching can be
done in O(\ogzn) time, insertion and deletion times are high. In contrast, insertion
and deletion of elements in a linked list is easier, but searching takes O(n) time.
Due to this efficiency BSTs are widely used in dictionary problems where insertion,

deletion and search are done on the basis of some indexed key value.
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DELETI F A NODE

While deleting a node from a BST there are four possible cases that we need to
consider. These are discussed below.

Case (a): Node to be deleted is absent.

If on traversing the BST the node is not found then we merely need to display the
message that the node is absent.

Case (b): Node to be deleted has no children

In this case since the node to be deleted has no children the memory occupied by
it should be freed and either the left link or the right link of the parent of this node
should be set to NULL. Which link should be set to NULL depends upon whether
the node being deleted is a left child or a right child of its parent.

Case (c): Node to be deleted has one child

In this case we have to adjust the pointer of the parent of the node to be deleted
such that after deletion it points to the child of the node being deleted. This is

shown in Figure 7-10.

Node to be deleted - 17

(=) @
@ @ @ @®

& @
®

(a) Before Deletion (b) After Deletion
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Figure 7-10. Deletion of a node that has only one child.
Case (d): Node to be deleted has two children
This is a more complex case. Consider node 23 shown in Eigure 7-11(a). The in-
order successor of the node 23 is node 45. The in-order successor should now be
copied into the node to be deleted and a pointer should be set up pointing to the
in-order successor (node 45). The in-order successor would always have one or

zero child. This in-order successor should then be deleted using the same proce-

dure as for deleting a one child or a zero child node.

Node to be deleted - 23

(=) ®
@ © &)

(a) Before Deletion (b) After Deletion

Figure 7-11. Deletion of a node that has both left and right child.

A program that implements the different operations on a BST is given below:

Honest Solid Code {C}
Program 7-1. Implementation of various BST operations
#include <stdio.h>

#include <stdlib.h>
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#define TRUE
#define FALSE o

struct btreenode

{
struct btreenode *leftchild;
int data;
struct btreenode *rightchild;

5

void insert (struct btreenode **, int);

void inorder (struct btreenode #);

void preorder (struct btreenode #sr);

void postorder (struct btreenode *sr);

int search (struct btreenode *, int);

void del (struct btreenode **, int):

void locate (struct btreenode **, int, struct btreenode **, struct btreenode **, int

=%

int main()

{
struct btreenode *bt;
inti=0,a[]={20,17,6,18,8,5,7,10,13 };
int flag;

bt = NULL; /* empty tree */
while (i <= 8)
{

insert (&bt, a[i]);

SCRIBD aQ 2

i+4;
}
printf (“BST after insertion:");
printf (“\nlnorder:™);
inorder (bt);
printf (“\nPreorder:”);
preorder (bt);
printf (“\nPostorder:");
postorder (bt);

flag = search (bt, 13);
if (flag —1)

printf (“\nNode 13 found in BST");
else

printf (“\nNode 13 not found in BST");

del (&bt, 10);
printf (“\nBST after deleting 10:\n");
inorder (bt);

del (&bt, 14);
printf (“\nBST after deleting 14:\n");

inorder (bt);

del (&bt, 8);
printf (“\nBST after deleting &:\n");
inorder (bt);
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del (&bt, 13);
printf (“\nBinary tree after deleting 13:\n");
inorder (bt);

return ©;

}

/* inserts a new node in BST */
void insert (struct btreenode **sr, int num)
{

if (#sr — NULL)

{

#sr = (struct btreenode *) malloc (sizeof (struct btreenode));

(*sr)-=leftchild = NULL;
(*sr)->data = num;
(*sr)-=rightchild = NULL;
}
else /* search the node to which new node will be attached #*/
{
[* if new data is less, traverse to left */
if (num < (*sr)->data)
insert (&((*sr)-=leftchild), num);
else
[+ else traverse to right #/

insert (&((*sr)->rightchild), num);

©
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/#* traverse BST in Left-Root-Right fashion */

void inorder (struct btreenode *sr)

{
if (sr l= NULL)

{
inorder (sr-=leftchild);

printf (“%6d", sr->data);
inorder (sr-=rightchild);
1
'

/#* traverse BST in Root-Left-Right fashion */
void preorder (struct btreenode *sr)

{
if (srl= NULL)
{
printf (“%d", sr->data);
preorder (sr->leftchild);
prearder (sr->rightchild);

}
1

/* traverse BST in Left-Right-Root fashion */

void postorder (struct btreenode #*sr)

{
if (st = NULL)

{

9 pages (5 min) leftin this chapter
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postorder (sr-=leftchild);
postorder (sr->rightchild);
printf (“%d", sr->data);
1
}

/# search BST */
int search (struct btreenode *sr, int num)
{
while (sr l= NULL)
{
if (num == sr->data)
return 1;
else if (num < sr->data)
sr = sr->leftchild:
else
sr = sr->rightchild:
}

return 0;

}

/* deletes a node from the BST */

void del (struct btreenode **root, int num)

{

int found;

struct btreenode *parent, *x, *xsucc;

[* if tree is empty */

©
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if (*root == NULL)

{
printf (“Tree is empty\n”);
return;

}
parent = x = NULL;

[* search the node to be deleted */

locate (root, num, &parent, &x, &found);

/% if the node to deleted is not found */
if (found == FALSE)
{
printf (“\nNode to be deleted not found\n™);

return;

}

/* if the node to be deleted has two children */
if (x->leftchild I= NULL && x->rightchild = NULL)
{

parent =x;

xsucc = x->rightchild;

while (xsucc->leftchild I= NULL)
{

parent = xsucc;

xsucc = xsucc->leftchild;

}
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x->data = xsucc->data;
X = XSUCC;

}

/% if the node to be deleted has no child #/
if (x-=leftchild == NULL && x->rightchild == NULL)
{
if (parent->rightchild == x)
parent-=rightchild = NULL;
else

parent->leftchild = NULL;

free (x);
return;

1

/¥ if the node to be deleted has only right child */
if (x-=leftchild == NULL && x->rightchild = NULL)
{
if (parent->leftchild = x)
parent->leftchild = x->rightchild;
else

parent->rightchild = x->rightchild;

free (x);
return;

}
/% if the node to be deleted has only left child =/

©
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if (x->leftchild l= NULL && x->rightchild == NULL)
{
if (parent-=leftchild — x)
parent->|eftchild = x->leftchild;
else

parent->rightchild = x->leftchild;

free (x);
return;
1
'

/#* returns address of the node to be deleted, address of its parent and whether
node is found or not */

void locate (struct btreenode **root, int num, struct btreenode **par,

struct btreenode **x, int *found)

{

struct btreenode *q;

q=*root;
*found = FALSE:
*par = NULL;

while (q I= NULL)

{
/¥ if the node to be deleted is found */
if (g->data = num)

{
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#found = TRUE; In main(), bt, the pointer to the root node of BST is set to NULL indicating the BST

x=q; is empty to begin with. Then the insert() function is called repeatedly to insert

return; nodes in the BST. Two arguments are passed to insert(}—address of pointer to the
} root node of BST and data that is to be inserted.

In the insert{) function it is ascertained whether BST is empty or not. If it is empty
*par =q;

if (g->data » num)

then a new node is created and the data to be inserted is stored in it. The left and

i right child of this new node is set with a NULL value, as this is the first node being
q = g->leftchild;

inserted.
else

If BST is not empty then the current node is compared with the data to be inserted
q = g->rightchild;
}

}
OQutput:
BST after insertion:

and insert() function is called recursively to insert the node in the left/right sub-
tree. Thus insert() continues to move down the levels of BST until it reaches a leaf

node. When it does, the new node gets inserted in the left/right sub-tree.

The function inerder() is called to traverse BST as per in-order traversal. This func-

tion receives address of the root node. A condition is checked whether the pointer

Inorder: 56 7 810131718 20 ) ! . . . .
is NULL. If the pointer is not NULL then a recursive call is made first for traversing

Preorder: 658 8

TERICER 20 MR Se] TR the left sub-tree and then for traversing the right sub-tree. In between these two
Postorder: 5713108 61817 20
Node 13 found in BST

BST after deleting 10:

recursive calls, the data of the current node is printed.
The functions preorder() and postorder() work in the same manner except for a

small difference. In case of the function preorder() initially node’s data is printed
5678131718 20

Node to be deleted not found

then the recursive calls are made for the left and right sub-trees. On the other

hand, in case of postarder() firstly the recursive calls for left and right sub-trees are

BST after deleting 14: made and then the node’s data is printed.
5678131718 20 The function search() searches for the given data in the BST. The searching is done
BST after deleting 8: in a while loop. If the node is found then 1 is returned. If not, then we either go to

567131718 20 the left or right sub-tree depending upon whether the node being searched has a

Binary tree after deleting 13: value less than or greater than the current node’s data. If control goes beyond the

5671718 20 while loop it means that node being searched is not present in the BST. In this
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case O is returned.

The del() function is used to delete a node in BST. It calls the function locate() to
search the node to be deleted. If the node is found, locate() sets up the address of
the node to be deleted in x, address of its parent in parent and TRUE/FALSE in
found depending upon whether the node is found or not. If node to be deleted is
not found then an appropriate message is displayed.

If the node to be deleted is found then one of the following four cases would arise:
(a) the node has two children

(b) the node has no child

(c) the node has only right child

(d) the node has only left child

How each of these cases is tackled has already been discussed in the previous sec-

tion.
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Reconstruction of a Binary Tree

If we know the sequence of nodes obtained through in-order/pre- order/post-order
traversal it may not be feasible to reconstruct the binary tree. This is because two
different binary trees may yield same sequence of nodes when traversed using
post-order traversal. Similarly, in-order or pre-order traversal of different binary
trees may yield the same sequence of nodes. However, we can construct a unique
binary tree if the results of in-order and pre-order traversal are available. Let us
understand this with the help of following set of in-order and pre-order traversal re-
sults:

In-order traversal: 4, 7,2, 8,5,1, 6,9, 3

Pre-order traversal: 1,2, 4,7, 5, 8,3, 6,9

We know that the first value in the pre-order traversal gives us the root of the bi-
nary tree. So the node with data 1 becomes the root of the binary tree. In in-order
traversal, initially the left sub-tree is traversed then the root node and then the right
sub-tree. So the data before 1 in the in-order list (i.e. 4, 7, 2, &, 5) forms the left sub-
tree and the data after 1 in the in-order list (i.e. 6, 9, 3) forms the right sub-tree. In
Figure 7-12(a) the structure of tree is shown after separating the tree in left and
right sub-trees.

Now look at the left sub-tree. The data in pre-order list is 2, so the root node of the
left sub-tree is 2. Hence data before 2 in the in-order list (i.e. 4, 7) will form the left
sub-tree of the node that contains a value 2. The data that comes to the right of 2 in
the in-order list (i.e. 8, 5) forms the right sub-tree of the node with value 2. Figure
7-12(b) shows structure of tree after expanding the left and right sub-tree of the

node that contains a value 2.
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In:4,7,2,8,5
Pre:2,4,7,5,8

(a) Step 1

(d) Step 4

(f) Step &

{e) Step S

Figure 7-12. Reconstruction of a binary tree.
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Now the next data in pre-order list is 4, so the root node of the left sub- tree of the
node that contains a value 2 is 4. The data before 4 in the in- order list forms the
left sub-tree of the node that contains a value 4. But as there is no data present be-
fore 4 in in-order list, the left sub-tree of the node with value 4 is empty. The data
that comes to the right of 4 in the in-order list (i.e. 7) forms the right sub-tree of
the node that contains a value 4. Figure 7-12(c) shows structure of tree after ex-
panding the left and right sub-tree of the node that contains a value 4.

In the same way one by one all the data are picked from the pre-order list and are
placed and their respective sub-trees are constructed. Figure 7-12(d) to 7-12(f)

shows each step of this construction process.
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Threaded Binary Tree

In the linked representation of a binary tree, many nodes contain a NULL pointer,
either in their left or right fields or in both. Instead of wasting space in storing a
NULL pointer, it can be efficiently used to store pointer to the in-order predecessor
or the in-order successor of the node. These special pointers are called threads and
binary trees containing threads are called threaded binary trees.

In threaded binary trees the pointers that point to in-order successor of a node are
called right threads. Likewise, pointers that point to in-order predecessor of a node
are called left threads. The threads are typically denoted using arrows as shown in

Figure 7-13.

(a) Binary Tree

(b) Threaded Binary Tree

Figure 7-13. Threaded binary tree.

Figure 7-13(b) shows a head node containing a value -gg9g. The entire binary tree is

shown as the left child of this head node. The right link of the head node points to
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itself. This head node is useful while creating programs for threaded binary tree.
For example, while traversing the tree we can start with head node, visit each node
and stop the traversal when we reach the head node once again. Note that in Figure
7-13(b). predecessor of node D and successor of node | point to the head node as
they happen to be first and last node in the in-order traversal sequence.
In a program to help us distinguish between a pointer and a thread, the structure
that represents a node contains two additional fields, leftflag and rightflag. If they
contain a true they represent a thread, and if they contain a false, then they repre-
sent a pointer to a child node. The structure declaration for a node would be as
shown below.
struct thtree
{

enum boolean leftflag;

struct thtree *left;

int data;

struct thtree *right;

enum boolean rightflag;
b

A threaded binary tree created using this structure is shown in Eigure 7-14.

© ®
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struct thtree #*right;
enum boolean rightflag;
b
void insert (struct thtree **, int);

void inorder (struct thtree *);

int main()

{

struct thtree *th_head;

HEOEE SN SOk

f ‘-
) th_head = NULL; /* empty tree */
Y e

insert (&th_head, 11);

Figure 7-14. Threaded binary tree showing links and threads.

insert (&th_head, g);
insert (&th_head, 13);

Let us now write a program that inserts nodes in a threaded binary tree and visits insert (&th_head, 8);

each node in in-order traversal.

Honest Solid Code {C}

Program 7-2. Implementation of threaded binary tree
#include <stdio.h>

#include <stdlib.h>

enum boolean { link, thread };
struct thtree
{
enum boolean leftflag;
struct thiree *left;
int data;

insert (&th_head, 10);
insert (&th_head, 12);
insert (&th_head, 14);
insert (&th_head, 15);
insert (&th_head, 7);

printf (“Threaded binary tree:\n");
inorder (th_head);

return o;

1

/¥ inserts a node in a threaded binary tree */

©
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void insert (struct thiree **s, int num)

{

struct thtree *p, *z, *head = *s;

z = (struct thtree *) malloc (sizeof (struct thtree)); z->leftflag = thread;

z->data — num;

z->rightflag = thread;

/% if tree is empty */
if (*s == NULL)
{

head = (struct thtree *) malloc (sizeof (struct thtree));

[* entire tree is treated as left sub-tree of the head node */
head-=leftflag = link;

head-=left = z; /* z becomes leftchild of the head node */
head-=data = -9999; /* no data */

head-=right = head; /* right link points to head node %/
head->rightflag = link;

*s = head;
z->left = head:;
z-=right = head;

}
else /* if tree is non-empty */

{
p = head->left;

[ traverse till we reach head */

SCRIBD
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while (p I= head)

{
if (p->data > num)
{
if (p->leftflag I= thread) /* check for a thread #/
p = p->left;
else
{
z->left = p->left;
p-=left = z;
p-=leftflag = link;
z->rightflag = thread;
z->right = p;
return;
}
1
else
{
if (p->data < num)
{
if (p->rightflag I= thread)
p = p->right;
else
{

z->right = p->right;
p->right = z;

5 pages (3 min) leftin this chapter

<

PAGE 297 OF 429 >

Aa

69% read



p->rightflag = link;
z->leftflag = thread;

z->left = p;

return;

}
}
}

/* traverses the threaded binary tree in inorder */

void inorder (struct thtree *root)

{

struct thtree *p;

p = root->left;
while (p = root)

{
while (p-=leftflag == link)
p = p-=left;

printf (“Sad\t", p->data);

while (p->rightflag == thread)
{

p = p-=right;

if (p==root)

SCRIBD Q 52 As

break;
printf (“Sad\t", p->data);
1
p = p->right;
}

!
Output:

Threaded binary tree:

789101112131415

Now, a brief explanation about the program. We have used an enumerated data
type boolean to store information whether the pointer is a thread or a link. If
leftflag/ rightflag is a thread it means that the node has no left/right child.

To insert a new node in the threaded BST, the insert() function is called. It first
checks for an empty tree. If the tree is empty then firstly a head node is created.
Then the node being inserted is made its left sub-tree with both links set up as
threads. Otherwise, the node is inserted at an appropriate place by traversing the
tree such that the BST nature of the tree is preserved.

The threaded binary tree's in-order traversal is different than a normal tree in the
sense that we do not have to stack the pointers to nodes visited earlier so as to
reach them later. This is avoided by using the threads to ancestors. The procedure
to achieve this is as follows:

This procedure begins by first going to the left sub-tree of the head node. Then
through a while loop we follow the left pointers until a thread to a predecessor is
found. On encountering this thread, we print the data for the leftmost node. Next,
through another while loop we follow the thread back up to the ancestor node and
print this ancestor node’s data. This way we continue to move up till rightflag is a

thread. When we reach a link we go to the right child and again follow the same

© 3
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procedure by checking its left sub-tree.
As we follow these steps we are sometimes likely to reach the head node, and that

is the time to stop the procedure.
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AVL Trees

We know that height of a BST is the maximum number of edges from leaf node to
root node. Note that if we change the order of insertion of nodes in a BST, we may
get BSTs of different heights. As a confirmation, you may try creating two BSTs
using the insertion order as 30, 40, 10, 50, 20, 5, 35 and 50, 40, 35, 30, 20, 10, §. In
the first case you would get a BST of height 2 and in the second case a BST of
height 6.

Also, search time in a BST depends upon its height. Searching is efficient if the
heights of both left and right sub-trees of any node are equal. However, frequent
insertions and deletions in a BST are likely to make it unbalanced. The efficiency of
searching is ideal if the difference between the heights of left and right sub-trees of
all the nodes in a BST is at the most one. Such a binary search tree is called a Bal-
anced BST. It was invented in the year 1962 by two Russian mathematicians—C.
M. Adelson-Velskii and E. M. Landis. Hence such trees are also known as AVL

trees. Figure 7-15 shows some examples of AVL trees.

Figure 7-15. AVL trees.

The balance factor of a node is calculated as height of the left sub-tree minus

height of the right sub-tree of the node. The balance factor of any node in an AVL
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BST should be -1, © or 1. If it is other than these three values then the tree is not
balanced.

To re-balance and make it an AVL tree the nodes need to be properly adjusted. This
is done by doing one of the 4 types of rotations—Left rotation, Right rotation, Left
Right rotation and Right Left rotation. Of these, first two involve a 1 step process,
whereas the next two involve a 2 step process.

Eigure 7-16 shows LL, RR, LR and RL imbalances and how to correct them by doing

appropriate rotations.
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LL Imbalance Rotation @ 30

Figure 7-16. LL, RR, LR and RL imbalances and rotations.
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In general on inserting a new node in an AVL BST we should carry out the following
steps:

Step 1: Calculate balance factors of all nodes

Step 2 : Identify type of imbalance

Step 3 : Perform rotation(s)

Let me explain the imbalances and the rotations with the help of cases shown in
Eigure 7-16. Let us take the first case. Assume that BST already contains nodes 30
and 20. When we insert node 10, it is inserted to the left of 30 and to the left of 20.
Now calculate the balance factors. They turn out to be 2, 1 and o for nodes 30, 20
and 10 respectively. Out of these, balance factor 2 is unacceptable. Since this was
caused by inserting 10 to the left of 30 and to the left of 20, this imbalance is called
LL imbalance. To correct it, we need to do right rotation about 30. Imagine as if
there is string attached to node 30 and we are pulling it to the right. The resultant
BST has balance factors 0, 0 and 0. Thus the tree is now balanced. On similar lines
RR imbalance and the left rotation can be explained.

In the third case when we insert 20 it is inserted to the left of 30 and to the right of
20. Balance factors turn out to be 2, -1 and o for nodes 30, 10 and 20 respectively.
To correct the imbalance we need to perform a left rotation around 10. The resul-
tant BST has balance factors of 2, 1 and 0. To correct the imbalance we should now
perform a right rotation around 30. The resultant BST has satisfactory balance fac-
tors. On similar lines the RL imbalance can be explained.

In all the four cases discussed above there was only one node that caused the
imbalance. In some other case if 2 nodes are unbalanced then we need to rotate

about the first ancestor that caused imbalance.
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Binary Heap
Binary heap is a complete binary tree. It means all its levels are completely filled ex- e o

cept perhaps last and at the last level nodes are as much to left as possible.

There are two types of heaps. If the value present at any node is greater than all its o ° : o e

children then such a tree is called as the max heap or descending heap. In case of a

min heap or ascending heap the value present in any node is smaller than all its e 0 e e e

children. Figure 7-17 shows these two types of heaps. E :>

) (=) (5] (=) =
e e o o @ e e Figure 7-18. Heapify operation.

Note that in the binary tree shown in Eigure 7-18 node 13 and node g were violating

(a) Max heap (b) Min heap the heap property. While heapifying 13, maximum out of 13, 1, and go is go. Since

go is the right child it is exchanged with 13. As against this, while heapifying g,
Bl 5397 e o eiaic. maximum (25) turns out to be the left child. So 25 is exchanged with g. Since after
exchange 13 and g became child nodes, we did not have to heapify them further.

One of the common operations carried out while using a binary heap is heapifi- Figure 7-19 shows a case where further heapification is necessary.

cation of a node. While heapifying a node in a max heap, we need to ensure that all
its children satisfy the heap property—Parent »= Left child, Right child. This oper-
ation involves following steps:

(a) Pick maximum out of given node, and its left and right child

(b) If maximum is root, do nothing

(c) If maximum is left, exchange root with left and heapify left node

(d) If maximum is right, exchange root with right and heapify right node

These operations are shown in Figure 7-18.

© o
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Figure 7-19. Multi-step heapify operation.

Let us now see how see how we can create max heap out of a binary tree program-

matically. We will be using an array to store the nodes in the binary tree.

Honest Solid Code {C}

Program 7-3. Construction of max heap
#include <stdio.h>

void heapify (int [], int, int);

int main()

©

s
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{
intarr[]={1,2,9,1332517,1,90,57 )

inti, size;
size = 10;

for (i=size /2-1;i>=0; i

heapify (arr, size, i):

for (i=0; i< size; i ++)
printf (“Sed\t", an i ]);
1

void heapify (int arr[ ], int sz, int i)

{

int largest, Ich, rch, t;

lch=2%i+1;

rch=2%i+32;

if (Ich >=sz)

return;

largest = i;
/% if left child is larger than root */
if (Ich < sz && arr[ Ich | > arr[ largest ])

largest = Ich;

/* if right child is larger than largest so far */
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if (rch < sz && arr[rch | > arr[ largest ])

largest = rch;

/% if largest is not root */
if (largest I=i)
{

t=arr[i];

arri] =arr| largest |;

arr largest | = t;

[ heapify the affected sub-tree */
heapify (arr, sz, largest);
}
}
Output:
9057251311 917123
On execution of the program the binary tress shown in Eigure 7-20(a) gets con-

verted into a max heap shown in Eigure 7-20(b).
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(a) Binary tree (b) Max heap

Figure 7-20, Conversion of binary tree to max heap.

The program begins by declaring an array that represents the binary tree. We know
that in array representation of a binary tree, a node at location i has its left and right
child at locations (2i + 1) and (2i + 2) respectively. Next, in the for loop we have re-
peatedly called heapify() moving level by level from leaf towards root, and at any
level from right to left, starting from node at location size [ 2 - 1. The heapify() func-
tion finds the largest out of given node, and its left and right child.

If the given node turns out to be largest then it does nothing. But if left/right child
turns out to be largest it exchanges the given node with left/right child and then
proceeds to heapify the left/right child.

Binary heap is used in many areas of computer science. Some of these are listed
below.

(a) Finding minimum spanning tree

(b) Finding the shortest path in a network of cities

(c) Implementing priority queues

(d) Merging K sorted arrays
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Chapter Bullets
Summary of chapter

(a) Tree is a non-linear data structure.

(b) Each node in a binary tree can have o, 1 or 2 children.

(c) Unlike trees in nature a binary tree has root at the top and leaves at the bottom
with root node at level o.

(d) Depth of a node is largest number of links from root to that node.

(e) Height of a node is largest number of links from leaf node to that node.

(f) A binary tree can be traversed in in-order, pre-order and post-order fashion

(g) If we know any two sequences out of in-order, pre-order and post- order, it is
possible to construct the binary tree.

(h) A binary tree can be represented using array representation or linked represen-
tation.

(i) BST and AVL trees are special types of binary trees. They are created with an aim
to improve the efficiency of working with binary trees.

(j) The property parent >= child is satisfied for all nodes in a max heap, and parent

<= child for all nodes in a min heap.
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Check Your Progress

Exercise - Level |

[A] State whether the following statements are True or False:

(a) A binary tree whose non-leaf nodes have left and the right child is a complete
binary tree.

(b) The number of nodes attached to a particular node in a tree is called the degree
of the node.

(c) To reconstruct a unigue binary tree the in-order and pre-order lists are required.

(d) The balance factor of a node in an AVL tree is 1 if the height of the left sub-tree
is one less than the height of the right sub-tree.

[B] Fill in the blanks:

(a) In a threaded binary tree the address of the in-order predecessor and in-order

successor are stored in and child of the leaf node re-

spectively.
(b) In any node of B-tree of order n the minimum required values and children are

and respectively.

(c) In a heap if the largest element is present at the root node then it is called as

the heap.

© D
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Sharpen Your Skills

Exercise - Level Il

[C] Answer the Following:

(a) Write a program that finds the height of a binary tree.

(b) Write a program that counts the number of nodes in a binary tree and the num-
ber of leaf nodes in a binary tree.

(c) Given a binary tree, create another binary tree that is mirror image of the given
tree.

(d) Write a program that implements the non-recursive form of the functions

inorder(), preorder() and postorder().
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Coding Interview Questions

Exercise Level II1

[D] Answer the Following:

(a) Civen any number, write a program to find whether that number is present in
the binary tree. If present then find the level at which it is present.

(b) Given two binary trees, write a program that finds whether
- the two binary trees are similar
- the two binary trees are mirror images of each other.

(c) Write a program that finds the number of nodes in a binary tree at each level.

(d) Write a program that traverses a binary tree level by level, from left towards
right.

(e) Write a function to insert a node t as a left child of any node s in a threaded bi-

nary tree.
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Case Scenario Exercise

Dictionary implementation

We wish to maintain a dictionary of words as a binary tree. Each node should con-
tain a word, its meaning, a synonym and an antonym. There must be a provision to
insert a word, search a word and delete a word. It should be also possible to print

the entire dictionary in alphabetical order.
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Chapter o8 The only non-linear data structure that we have seen so far is tree. A tree in fact is a
Gra;ﬁ special type of graph. Graphs are data structures which have wide-ranging appli-
SPREAD YOUR TENTACLES cations in real life. These include analysis of electrical circuits, finding shortest

routes between cities, building a navigation system such as Google Maps, etc. To

VWkspiThii=Chaptes MASiters! be able to understand and use the graph data structure one must first get familiar

Networking! Be it any walk of life, that's the keyword today. Better your network, with the definitions and terms used in association with graphs. These are dis-

farther you would reach, and farther you spread your tentacles, better would be cussed below.
your network. And the crux of building and managing a network is hidden in a
subject as innocuous as data structures in a topic called Graphs. Naturally, you

must learn it to the best of your ability.
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Definitions and Terminology

A graph consists of two sets v and e, where v is a finite, non-empty set of vertices
and e is a set of pairs of vertices. The pairs of vertices are called edges. A Graph
can be of two types: Undirected graph and Directed graph.

In an undirected graph the pair of vertices representing any edge is unordered.
Thus, the pairs (v1, v2) and (v2, v1) represent the same edge.

In a directed graph each edge is represented by a directed pair <v1, v2>. v1 is the
tail and v2 the head of the edge. Therefore, <v2, vi> and <v1, v2> represent two dif-
ferent edges. A directed graph is also called Digraph. In Eigure 81 the graph G1 is
an undirected graph whereas graph G2 is a directed graph.

G1 - Undirected Graph G2 - Directed Graph

Set of vertices={1,2,3,4}
Setofedges={(1,2),(1,3),(1.4),
(2,3),(2,4),(3,4)}

Set of vertices={1, 2,3}
Set of edges ={ <1, 2>, <2, 1>,<2,3>}

Figure 8-1. Directed and undirected graphs.

Note that the edges of a directed graph are drawn with an arrow from the tail to the
head.

When GCoogle Maps uses graph, each intersection is a vertex and each segment of
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road is an edge. Any useful information may be associated with both vertices and
edges. For example, a navigation system could associate a GPS coordinate with

each vertex and distance and speed limit with each edge.
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Adjacent Vertices and Incident Edges

In an undirected graph if (v1, v2) is an edge in the set of edges, then the vertices v1
and v2 are said to be adjacent and the edge (v1, v2) is incident on vertices v1 and
v2. In Figure 82, vertex 2 in G1 is adjacent to vertices 1, 3, and 4. The edges inci-
dent on vertex 3 in G1 are (1, 3), (2, 3) and (4, 3).

It <v1, v2> is a directed edge, then vertex v1 is said to be adjacent to vz while vz is
adjacent from v1. The edge <v1, v2= is incident on v1 and v2. In Eigure &2, in G2,
vertices 1 and 3 are adjacent to vertex 2, whereas, vertex 2 is adjacent from vertex 1.

Also, the edges incident on vertex 2 are <1, 2>, <2,1>and <2,3 >.
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Graph Representations

There are many ways of representing a graph in memory. Often, it will turn out that
one of these representations will be better than others for a given application. The
most commonly used representations for graphs are

(a) Adjacency matrix

(b) Adjacency lists

(c) Adjacency multi-lists

Each of these representations is discussed below.
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Adjacency Matrix

An adjacency matrix of a graph is a 2-dimensional array of size n x n (where n is the
number of vertices in the graph) with the property that a[i][j] =1 if the edge (v vl]
is in the set of edges, and a[i][j] = o if there is no such edge. The adjacency matri-

ces for two sample graphs are shown in Eigure 8-2.

As can be seen from Eigure 82, the adjacency matrix for an undirected graph is
symmetric. The adjacency matrix for a directed graph need not be symmetric. The
space needed to represent a graph using its adjacency matrix is n? locations. About
half of this space can be saved in the case of undirected graphs by storing only the

upper or lower triangle elements of the matrix.

12 3 4
3 0 10 1
2 1 0 31 1
3 10 6
4 1100

( a ) Adjacency matrix for undirected graph

-
O=O -
oo N
e o W

( b ) Adjacency matrix for directed graph

©

Figure 8-2. Adjacency matrices.
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Adjacency Lists —
This is a vertex based-representation. In this representation we associate with each vi| — 4| N
vertex a linked list of vertices adjacent to it. Normally an array is used to store the o
of
vertices. Each array element contains the vertex label, any other related infor- I

val —

2
=B
mation, plus a pointer to a linked list of nodes containing adjacent vertices. The o‘ o vi| E

array provides random access to the adjacency list for any particular vertex. The

adjacency lists for two sample graphs are shown in Eigure 8-3.

The advantage of this representation is that we can quickly find all the edges asso-
ciated with a given vertex by traversing the list, instead of having to look through Im) i aeeener M OnundestRR R

possibly hundreds of zero values to find a few ones in a row of an adjacency ma-
trix. vi| — N
—
v2| N I
—
vi| —

( b ) Adjacency lists for directed graph

T

4

Figure 8-3. Adjacericy lists.

In this representation, for an undirected graph each edge-information appears

twice. For example, in Figure 8-3(a), vertex 1 and 2 are adjacent, hence vertex 2 ap-

pears in the list of vertex 1 and vertex 1 appears in the list of vertex 2.

Also, for a digraph it is easy to find the vertices adjacent to a given vertex. For

example in Figure 8-3(b) to find vertices adjacent to vertex 2, we simply have to fol-

low adjacency list of vertex 2. However, if we are to find out vertices from which to
which 2 is adjacent , we have to scan the adjacency lists of all vertices. In Eigure

&-3(b). on scanning all the lists, we can conclude that vertex 1 is the only vertex that

© &
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is adjacent from vertex 2. This inefficiency related to a digraph can be rectified by

using an adjacency multi-list representation.

© ®
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Adjacency Multi-lists

An adjacency multi-list is an edge-based representation rather than a vertex-based
representation. Each node that represents an edge consists of 5 fields. Of these,
2nd and 4th field are related and 314 and 5th field are related. We would scon see
the relationship.

Like adjacency list, an array of vertices is also maintained. Each array element

points to a suitable edge node.

Next link for V; | Next link for V,

| Flag| Vi | V

vl—4:| 1|2 |E|E]E

Vs - 4 1|3 |E | Es I E;
ol A AL [0 ]=]e
Ve | 2 3 Es | Es I Es

|24NE5E5

N

34| N|NJE

Figure 8-4. Adjacency multi-lists for undirected graph.

While constructing the multi-lists for graph shown in Figure 8-4 firstly the fields v,
and Vj are filled in the 6 edge nodes, E toE. Then we start with vertex 1. This ver-

tex has 3 incident edges E.E, and E 3 Hence the 15t element of vertices array is

SCRIBD
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made to point to edge E. Then the edge node for E ;s searched for vertex 1. It is
found in v, field of E, Since the next incident edge for vertex 1 is E 5 the fourth
field of node E issetup with pointer to edge node E,. Then node E,is examined
for vertex 1. Here also 1 is found in field V. Hence pointer to node E_ is set up in
fourth field of node E 5 Then E3 is searched for vertex 1. It is found in field Vi
Since there are no more edges incident on vertex 1 hence fourth field of node E3 is
set with NULL.

Let us understand this process for vertex 2 as well. Vertex 2 has 3 incident edges
E, E4 and Es. So to begin with, the 2nd element of vertices array is made to point
to edge E. Then E is searched for vertex 2. 1 is found in Vj field of E, Since the
next incident edge for vertex 2 is E4 the fifth field of node E , is setup with pointer
to edge node E . Then node E  is examined for vertex 2. Here 2 is found in field V
- Hence the fourth field of node E4 is setup with pointer to edge ES. Then E5 is
searched for vertex 2. It is found in field V. Since there are no more edges incident
on vertex 2 hence fourth field of node E_is set with NULL.

It this procedure is carried out systematically for all other vertices then the adja-
cency multi-lists shown in Eigure 8-4 would get created. If we traverse these lists
for each element of the vertex array then we can find out the sequence of incident
edges for each vertex. These sequences are given below.

Vertex 1: E1’ Ez, E3

Vertex 2 : E1, Eﬁr' E5

2 E4’ E6

Vertex 4 : E3' E5' E 6

On similar lines we can also create adjacency multi-lists for a directed graph. Only

Vertex3: E

difference being, there would be two elements for each vertex in the array of ver-
tices—one when the vertex is head of an edge and another when it is a tail. This is

shown in Eigure 8-5.
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tail head
|Flag Vi | V) | Nextlink for V; NenlinkfoerI
@ [

Ex E Vi _s 1|2 |B|E]E
o Va | A 1|2 |E|EJE
@ -

Ve -1

Figure 8-5. Adjacency multi-lists for directed graph.

If we traverse the lists shows in Figure 8-5 for each element of the vertex array, then

we the sequence of incident edges for each vertex would be as follows. These se-
quences are given below.

Vlh : E2

Vie'hy

Vo ERE

© 3
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Graph Traversals

Given the root node of a binary tree, one of the most common operations per-
formed is visiting every node of the tree in some order. Similarly, given a vertex in a
directed or undirected graph we may wish to visit all vertices in the graph that are
reachable from this vertex. This can be done in two ways—using the Depth First

Search and the Breadth First Search algorithm. Let us now understand these algo-
rithms.
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DEPTH FIRST SEARCH

In this algorithm we start at a vertex and move as far as we can down one path
from the vertex before exploring the other paths. This requires some way of mark-
ing vertices so that we do not visit them more than once. This is done by using an
array of vertices initialized to false values before the search. As each vertex is vis-
ited, the corresponding element in the array is set to true. Note that pre-order tra-
versal of a binary tree is nothing but a depth first search.

Depth first search of an undirected graph proceeds as follows. We start at any ver-
tex v. The start vertex v is visited. Next an unvisited vertex w adjacent to v is se-
lected and a depth first search from w is initiated. When a vertex u is reached such
that all its adjacent vertices have been visited, we back up to the last vertex visited
which has an unvisited vertex w adjacent to it and initiate a depth first search from
w. The search terminates when no unvisited vertex can be reached from any of the

visited ones.

[
[
w
-~
w
o
~
]

0~ oW W
R-N-F-N-T -
COOKHHMHODM
QDO
~FOO0OOOOMKO
HFOOOOOKFHO
HOO0OO0DOHOO
HOO0OO0OROO
Ok kMkEEHODO

Adjacency Matrix

Figure 8-6. Graph and its adjacency [ists.
Figure 8-6 shows a graph and its adjacency lists. If a depth first search is initiated

SCRIBD

from vertex v, then the vertices of this are visited in the order V1, Vz, \

V.V, V..

&
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The depth first search algorithm is implemented in the program given below.

Honest Solid Code {C}

Program 8-1. Implementation of Depth First Search algorithm
#include <stdio.h>

void dfs (int[8][&], int, int [ 8], int);

int main()

{
intarr[8][8]={0}
intvisited[8]={0 };

arfo][1]=ar1][o]=1;
arffo][2]=arf2][o]="1;
ar[1][3]=ar3][1]-1;
ar[1][4]=ar4][1]
ar{2][5]=ar5][2]=1;
arff[2][6]=arr[6][2]=1;
an[3][7]=ar713]=1%
arf4][7]=arf7]4]=1;
arr[5][7]=ar7][5] =1
ar[6][7]=arr7][6]=1;

%

dfs (arr, 8, visited, o);

return o;

}
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void dfs (int a[ 8 ][], int sz, int vis[ 8 ], int idx)
{

inti;
vis[idx]=1;
printf (“S6d”, idx +1);

/* go to all columns of idx row */
for (i=0;i<sz; i++)
{
if (vis[i] == 0 &8 a[ idx J[i] == 1)
dfs (a, sz, vis, i);
1
1
Output:
12485637

The program uses adjacency matrix to create the graph shown in Figure 8-6. Once

the matrix is created, the function dfs() is called that visits each vertex and marks it

as visited by storing a value in the visited array.
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Breadth First Search

Starting at vertex v and marking it as visited, breadth first search differs from depth
first search in that all unvisited vertices adjacent to v, are visited next. Then unvis-

ited vertices adjacent to these vertices are visited and so on. A breadth first search

beginning at vertex v, of graph shown in Eigure 8-6 would first visit V.
and V_. Next verticesV , V ,\f"6 and V_ will be visited and finally Vg.

Note that level-order traversal of a binary tree is nothing but breadth first search.

The following program implements this algorithm.

Honest Solid Code {C}

Program 8-2. Implementation of Breadth First Search algorithm
#include <stdio.h>

#define MAX 10

struct queue

{
int arr] MAX ], front, rear;
5
void addq (struct queue *, int);
int delg (struct queue *);
int isempty (struct queue *);

void bfs (int [8][8], int, int [&]);

int main ()

{
intar[8][8]={o}
intvisited[ 8] = {0 };

©

a and then Vz
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arffo][1]=arf1][o]=1;
arffo][2]=ar2][o]=1;
an[1][3]=ar[3][1]=1;
a1l 4]=ar4101]
arf2][5]=ar5][2]
arfz][6]=arr[6][2]=1;
ar[3][7]=ar{7][3]=17
ar[4][7]=ar{7][4]=1;
ar[5][7]=ar{7][5] =1
an{61[7]-an{716]=1;

Y

[

bfs (arr, 8, visited);

return o;

1

void bfs (inta[ 8][ 8], int sz, int vis[8])
{
struct queue g;

int idx, i;

q.front = q.rear =-1;
addq (&q, o);
while (lisempty (&q))
{

idx = delg (&q);

if (vis[idx]==0)

{

5 pages (2 min) leftin this chapter
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vis[idx]=1;
printf (“%ad”, idx +1);
for (i=o0;i< sz i++)

{

if (vis[i ] == 0 && a[ idx][i]=—=1)
addg (&q, i);
}
}
}
1

/* adds an element to the queue #*/

void addq (struct queue *pq, int item)

{
if (pg->rear == MAX - 1)
{
printf (“Queue is full\n");
return;
}
pg->rear++;

pg-=arr| pg->rear ] = item;

if (pg->front == -1)
pg->front = o;

}

/* removes an element from the queue */

©
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int delg (struct queue *pq)
{

int data:

if (pg->front == -1)

{
printf (“Queue is Empty\n");
return NULL;

1

data = pg->arr| pg->front |;

pg->arr| pg->front ] = o;

if (pg->front == pg->rear)
pg->front = pq->rear = -1;

else

pg->frant++:

return data;

}

int isempty (struct queue *pq)
{
if (pg->front = -1 && pg-=rear == 1)
return 1;
else
return ©;
!
Output:
12345678
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The function bfs() visits each vertex and marks it visited. The functions isempty(),

addq() and delq() are called for maintaining the queue of vertices.

© ®

1 page (<1 min} left in this chapter £ PAGE 336 OF 429 > 78% read



€5 SCRIBD 0 2 A

Spanning tree

<
'o‘ o ° ° (a) Graph (b} DFS spanning tree (c) BFS spanning tree
0303 OO0 0JOR,0,0XOR020
" Figure 8-8. Graph and its depth / breadth first search spanning tree.
& @ ® ®

The spanning tree is useful in analysis of electrical circuits, shortest route prob-

A spanning tree of a graph is an undirected tree consisting of only those edges that

are necessary to connect all the vertices in the original graph. Figure 8-7 shows a

graph some of its spanning trees.

{2} Graph {B) Spwrning Srees lems and designing hydraulic [ road [ cable | computer network.
A graph may have weights on its edges. For example, if vertices A and B represent
Figure 8-7. Craph and its spanning trees. cities in a road network, then the weight on edge AB may represent cost of visiting

B from A, or vice versa.
A spanning tree has a property that for any pair of vertices there exists only one

The cost of a spanning tree is the sum of costs of the edges in that tree. A min-
path between them, and the insertion of any edge to a spanning tree form a unique

[ imum cost spanning tree has cost less than or equal to cost of all other spanning
cycle.

trees. Figure &9 shows a graph, its spanning trees and the minimum cost span-
The particular spanning tree for a graph depends on the criteria used for generating

ning tree.
it. The spanning tree resulting from a call to depth first tree is known as depth first
spanning tree. Similarly, a spanning tree resulting from a call to breadth first tree is

known as a breadth first spanning tree. Figure 8-8 shows a graph and its DFS and
BFS spanning trees.

© &
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{a) Graph Cost=9
O—®
7 7 1
@90 ©-©
Cost=14 Cost=11

g
Cost=8
4
1
2
Cost=7

Figure 8-9. Graph and its depth [/ breadth first search spanning tree.

One method to determine a minimum cost spanning tree has been given by

Kruskal. This method is discussed below.
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Kruskal’s Algorithm

In this algorithm a minimum cost spanning tree T is built edge by edge. Edges are

considered for inclusion in T in increasing order of their costs. An edge is included

1
2
in T if it does not form a cycle with edges already in T. Let us understand this with
the help of an example. o o
Consider the graph shown in Eigure 8-10. To find the minimum cost of spanning Graph Nikiviom cost Epanaing ree
tree the edges are inserted into tree in increasing order of their costs. To begin with
edge 4-3 is inserted as it has the lowest cost 1. Then the edge 4-2 is inserted which Edge Cost Tree Action

has a cost 2. The next edge in the order of cost is 3-2, but it is rejected as it forms a

cyclic path between the vertices 2, 3 and 4. Then the edge 4-1 is inserted and it is @ @ @ @
accepted as it forms a non-cyclic path. 3
® @

The minimum cost of spanning tree is given by the sum of costs of the existing 43 B

edges, i.e. the edges that are inserted while building the spanning tree of minimum

cost. In our case it is found to be 7. @
42 a5 3 1 Include
32 3 Forms a cycle 2-3-4 Reject
@
4-1 4 2 1 Include

Figure 8-10. Minimum cost spanning tree using Kruskal's algorithm.
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Prim’s Algorithm

There is one more method to find the minimum cost spanning tree for a weighted o 4 o
undirected graph. This is known as Prim's algorithm. The steps involved in it are 1
given below. #

© ©

(a) Choose any vertex.

(b) Add it to the spanning tree vertex set and remove it from graph vertices set.

Graph Minimum cost spanning tree
(c) Identify the vertices connected with the chosen vertex.
(d) Compare the weights of edges connecting the chosen vertex and identified ver- Graph vertices set Action | ST vertices set Resultant tree
tices.
(e) Choose connected edge which has minimum weight. {1,2,3,4} Nickide {1} @
(f) Add it to the spanning tree vertex set.
vertex set or if it forms a cycle. {2,3,4) Include 4 {1,4}) 2 i
This algorithm has been implemented on a sample graph in Eigure 811, The check @

mark indicates the vertex that is included after comparison.

12,3} include 3 {1,4,3) |l

v
While choosing a vertex we should not choose a vertex already in the spanning tree Q__

<

{2} Include 2 {1.4.3,2)

Figure 8-11. Minimum cost spanning tree using Prim's algorithm.

© @
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Shortest Path

A minimal spanning tree gives no indication about the shortest path between two
nodes. Rather only the overall cost is minimized. In real life we are required to find
shortest path between the two cities. For example, an airliner would be interested
in finding most economical route between any two cities in a given network of

cities. The algorithm to find such a path was first proposed by E.W.Dijkstra.

© &
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DIJKSTRA'S ALGORITHM 3, cost of visiting node 4 from node 2 will be current cost + actual distance, i.e. 5+
This algorithm works for a directed as well as an undirected graph. Kruskal, Prim 2 = 7. The final result of this process is shown in tabular form in Figure 8-11.

and Dijkstra algorithms are greedy algorithms. Typically, greedy algorithms build a

solution piece by piece. At every step, they make a choice that looks best at that I
moment. Note that if a problem is solvable using greedy algorithm, it is usually the
best solution.

The steps involved in Dijkstra’s algorithm are given below.

(a) Mark all nodes as unvisited by creating a set of all the unvisited nodes.

(b) Assign distance values—o to initial node, infinity to others.

(c) Set the initial node as current node and identify all of its unvisited neighbors.

Step 3

(d) Calculate neighbor’s distances from current node.

(e) Assign smaller of newly calculated and current distance.

(f) Mark the current node as visited. Path | Seq. Length
(g) Set smallest distance unvisited node as new current node. 111 |11 7

1-2 1-2 5
(h) Go back to step (c). 13 | 1.2.43 8
Dijkstra’s algorithm can be best understood with the help of an example. Consider 14 | 124 7
the weighted digraph shown in Eigure 8-12. Let us begin with node 1 as the initial
node. Set its distance value to 7 and distance value of other nodes to 8. These val-

Step 4 Step S Result

ues are shown in Eigure 8-12 in boxes. Treat node 1 as the current node, so its

neighbors will be nodes 2, 3 and 4. Recalculate the distance values by comparing . . 2 _ :
Figure 8-12. Implementation of Dijkstra’s algorithm.
existing values with actual distances and set the lower of the two. For example, cur-

rent distance value of node 2 is 8 and actual distance is 5. So lower of the two, i.e. § Note that we have found shortest path of all vertices from vertex 1. On similar
is set up as the new distance value. Distance values of nodes 3 and 4 would remain lines, if we choose any other vertex as the starting vertex then we can find shortest
8 as there is no path from node 1 to nodes 3 and 4. Now mark node 1 as visited. distance of other vertices from the chosen vertex.

Next, compare the distances of nodes 2, 3 and 4 from node 1. They are 5, & and 8. The following program shows how to find the shortest path between any two ver-
Smallest amongst them is 5. So consider node 2 as the current node and repeat the tices.

sarmne procedure again as shown in steps 3, 4 and §in Eigure 8-12. Note that in step

© &
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Honest Solid Code {C} Output:
Program 8-3. Implementation of Dijkstra's algorithm Adjacency matrix of cost of edges:
!inc‘l_‘.lﬂelsmwo‘hs 7 5 999 999
#define INF 999
;nlmmnll 7 999 999 2
el 999 3 999 999
intcost[4][4]=
7,5.0,0, 4 599 ‘3 999
7,0,0,2,
0,3,0,0,
4,0,1,0 5 2 A
; Adjacency matrix of lowest cost between the vertices:
intl,jkn=4; s 5 8 7
for (i=0;i<n;i+)
| 6 6 3 2
for(j=0;j<n;je+)
f 9 3 6 5
if {cost] 1 ][] =0 4 4 - 4 6
anf i1[1]=INE;
t"ﬂ‘m[_‘[ — In the program the array cost[ ] is defined which is adjacency matrix of the cost of
Hul= il
; ] edges. In the array some values are o indicating that there is no direct path be-
O tween the two vertices. One more array arr] ] is defined which to begin with holds
:m" Ryl the value that the array cost[ ] holds. The only difference is instead of o it holds a
for {j=0;j<n;je+ )
prind:";‘::l\lt",irrli'jfll‘ value ggg, which is defined as INF (infinity). Then through nested for loops the
printf { "\n" ) ;
) lowest value is assigned to each element of the array arr[ | if the value already
for (k=0;k<n;ke+) present is found to be greater.
{
for{i=0;l<m;h+)
{
for{i=0;j<n;j++)
W{areli][j]>ar I[[k]+arr[k][i])
anfil{jl=arfi][k]+arlk][i];
)
1
}
printf {"\n" ) ;
printf [ "Adjacency matrix of loveest cost between the vertices:\n" ) ;
for(i=0;1<n;i++)
for(j=0;j«n;++)
printf { "Y%ed\t", art[1][j11;
printf { 0" ) ;
]
return O ;
1
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Topological Sorting

Topological sorting is a special sorting technique that is relevant only for a Di-
rected Acyclic Graph (DAG). If a DAC is represented using an array, then after sort-
ing for every directed edge uv, u comes before v in the array. Note that for same
DAG multiple solutions may exist.

Let us understand the sorting procedure using a sample DAG shown in Eigure 813.
We have to maintain a boolean array of vertices called visited| ]. Initially, all ele-

ments of this array are set to false indicating that we haven’t visited any vertices.

Stack

o o o Stack
s 8

EBlelninlw| o

Q.1 23 %5 ¢ - - T
[elelefefele][rfr]r]r]r]r]
Depth First Search: 0. 1,4, 2,5,3 visited| | visited| ]
Topological sort: 0, 3,2, 5,1, 4

Directed Acyclic Graph

Before sorting After sorting

Figure 8-13. Implementation of Topological sort

Next, we have to start at a vertex with in-degree as o, i.e. a vertex with no incoming
edges. Suppose we start with vertex 0. So set value of visited[ 0 | to true. From o
we can go to 1, 2, or 3. Suppose we decide to visit 1. So set visited[ 1] to true. From
1 we can move further to 4, so set visited[ 4 ] to true. From 4 we cannot move any

further, so we push 4 in a stack. Now go back to previous vertex, i.e. vertex 1. From

SCRIBD

Q & Aa

1 only vertex we can visit is 4 and it already stands visited. So push vertex 1 on the
stack and go back to its previous vertex, i.e. 0. From o we can visit 1, 2 or 3. Of
these, we have already visited 1, so let us now visit 2. Set visited[ 2 ] to true. From 2
we can visit either 4 or 5. But 5 has already been visited, so visit § and set visited[ 4
] to true. Repeat this procedure till all vertices are visited. By that time the contents
of the stack will be as shown in Eigure 8-13. If we unwind the stack and print each
element that is popped, we get the topological order of vertices. Confirm that in
this order for every directed edge uv, u occurs before v.

Note that topological sorting is not same as DFS. As shown in Figure 8-13, the se-

quence of vertices of DFS and topological sort are different.
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Chapter Bullets

Summary of chapter

(a) There are two types of graphs—directed graph and undirected graph.

(b) A graph can be represented using an adjacency matrix, adjacency lists or adja-
cency multi-lists.

(c) There are two algorithms for graph traversal—depth first search and breadth
first search.

(d) A spanning tree is an undirected tree consisting of only those edges that are
necessary to connect all vertices in the original graph.

(e) Minimum cost spanning tree can be obtained using Kruskal's algorithm or

Prim’s algorithm.

(f) The shortest path between vertices in a weighted directed graph can be obtained

using Dijkstra's algorithm.

©
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Check Your Progress

Exercise - Level |

[A] State whether the following statements are true or false:

(a) If w1 and v2 are two vertices of a directed graph G, then the edges <v1, v2> and
<v2, V1= represent the same edge.

(b) For a graph there can exist only those many spanning trees as the number of
vertices.

(c) To find minimum cost spanning tree edges are inserted in increasing order of
their cost.

(d) The number of elements in the adjacency matrix of a graph having 6 vertices is
36.

(e) If V is the number of vertices and E is the number of edges in a graph, the time
complexity to calculate the number of edges of the graph represented using an
adjacency matrix is O(V2).

(f) If V is the number of vertices and E is the number of edges in a graph, time
Complexity of Depth First Search is O(V + E).

(g) If V is the number of vertices and E is the number of edges in a graph, time
Complexity of Breadth First Search is O(V + E).

(h) Adjacency matrix of any graph is always symmetric.

(i) Dijkstra’s Algorithm works for both negative and positive weights.
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Exercise - Level Il

[B] Choose the correct alternative for the following:

(a) For an adjacency matrix of a directed graph the row sum is the
gree of a vertex and the column sum is the
(1) in, out
(2) out, in
(3) in, total
(4) total, out

degree of the vertex.
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(2) Queue
(3) Linked List

(4) None of the mentioned

de- (f) The data structure used in implementation of Breadth First Search is?

(1) Stack

(2) Queue

(3) Linked List

(4) None of the mentioned

Aa

(g) Joshi wants to visit 5 cities starting from Mumbai with an aim to minimize the

(b) What is the maximum number of possible non-zero values in an adjacency ma-

trix of a simple graph with n vertices?
(1) (n*(n-1)) /2

@@ (n*n+1)) /2

B)n*(n-1)

(4)n*n+1)

(c) Breadth First Search is equivalent to which of the traversal in the Binary Trees?

(1) Pre-order Traversal
(2) Post-order Traversal
(2) Level-order Traversal
(4) In-order Traversal
(d) Depth First Search is equivalent to which binary tree traversal?
(1) Pre-order Traversal
(2) Post-order Traversal
(3) Level-order Traversal
(4) In-order Traversal
(e) The data structure used in implementation of Breadth First Search is

(1) Stack

©

cost of travel. Which of the following algorithm should he use?
(1) Depth First Search

(2) Kruskal's algorithm

(3) Prim’s algorithm

(4) Dijkstra's algorithm
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Coding Interview Questions

Exercise Level II1
[C] Answer the following:
(a) What would be the sequence of nodes if the graph shown is Figure 8-14(a) is

traversed using DFS algorithm starting at vertex 62

(a) (b)

Figure 8-14. Graphs.

(b) What would be the sequence of nodes if the graph shown is Eigure 8-14(b), is

traversed using BFS algorithm starting at vertex 5?

(c) Create a minimum spanning tree for graph shown in Eigure &-14(c) using

Kruskal's algorithm.

(d) Create a minimum spanning tree for graph shown in Eigure 8-14(c) using

Prim’s algorithm.

(e) If a graph is represented using an adjacency matrix, write a program that finds

- the number of vertices in a graph.

- the number of adjacent vertices for a given vertex.

©
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Case Scenario Exercise
Kruskal's and Prim'’s algorithm
Write a program to implement Kruskal's and Prim's algorithms. Also analyze the

time complexity of each implementation.

© @
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Chapter 09
Searching and Sorting
SEEK ME OUT, SORT ME OUT

Why This Chapter Matters?

It would be an interesting statistic to find out how much time pre-computer-age
generations spent in searching things and arranging them in an order. What a
colossal waste it must have been to do these things manuallyl When history of
computing is written ‘searching’ and ‘sorting’ would be right there at the top, as

entities responsible for changing the way people do work.

©
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We often spend time in searching some thing or the other. If the data is kept prop-
erly in some sorted order then searching becomes very easy. Think of searching a
word’s meaning from an unordered list of words and then you will appreciate the
way a dictionary is designed. In this chapter we are going to discuss different types

of searching and sorting methods. Let us start with searching methods.
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Searching

Searching is an operation that finds the location of a given element in a list. The
search is said to be successful or unsuccessful depending on whether the element
that is to be searched is found or not. Here, we will discuss two standard searching

methods—Linear search and Binary search.
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LINEAR SEARCH

This is the simplest method of searching. In this method, an element is searched
in the list sequentially. This method can be applied to a sorted or an unsorted list.
Searching in unsorted list starts from the oth element and continues until the ele-
ment is found or the end of list is reached. As against this, searching in an ascend-
ing order sorted list starts from oth element and continues until the element is
found or an element whose value is greater than the value being searched is
reached.

Following program implements linear search method for an unsorted as well as a

sorted array.

Honest Solid Code {C}
Program g-1. Implementation of Linear Search algorithm

#include <stdio.h>

int searchinsorted (int [], int, int);

int searchinunsorted (int [], int, int);

int main()

{
int unsortedarr[] = { 11, 2, 9,13, 57, 25,17, 1,90, 3 };
int sortedarr[]=1{1, 2, 3, 9,11, 13,17, 25,57, 90 };

int num, pos;
printf (“Enter number to search:”);
scanf (“%d", &num);
pos = searchinunsorted (unsortedarr, 10, num);

if (pos ==-1)

©
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printf (“Number is not present in the array\n");
else

printf (“Number is at position %d in the array\n", pos);

printf (“Enter number to search:");
scanf (“%6d”, &num);
pos = searchinunsorted (sortedarr, 10, num);
if (pos=-1)
printf (“Number is not present in the array\n");
else

printf (“Number is at position %d in the array\n", pos);

int searchinunsorted (int arr[ ], int size, int num)

{
int i
for (i=0; i < size; i++)
{
if (arr[i]==num)

return i;

return -1;

!

int searchinsorted (int arr[], int size, int num)

{

int i
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if (num > arr[ size-11]) The number of comparisons in case of sorted list might be less as compared to the
return -1; unsorted list because the search may not always continue till the end of the list.

The performance of linear search algorithm can be measured by counting the num-
for (i=0;1 < size; i++)

{

ber of comparisons done to locate an element. In the worst case, in an array of size
n, this algorithm would carry out n comparisons to reach a conclusion whether the
if (arr[ i ] > num) element being searched is present in the array or not. Hence worst case time com-
return -1: plexity of this algorithm is O (n).
if (arr[i]==num)

return i;

return -1;
1
Output:
Enter number to search: 13
Number is at position 3 in the array
Enter number to search: 100
Number is not present in the array
In the program, num is the number that is to be searched in the array. While
searching in unsortedarr, inside the for loop each time ar i ] is compared with
num. If any element is equal to num, it means that the element is found. Hence its
position in the array is returned. If control reaches beyond the for loop, it means
that the element is not present in the array. In this case -1 is returned. We have re-
turned -1, because no element can be present at position -1 in the array.
While searching in a sorted array, search starts at the oth element and ends when
the element is found or any element of the list is found to be greater than the ele-

ment to be searched.

© ®
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BINARY SEARCH
Binary search method is very fast and efficient. This method requires that the list of

elements be in sorted order. In this method, to search an element we compare it
with the element present at the center of the list. If it matches then the search is
successful. Otherwise, the list is divided into two halves—one from oth element to

the center element (first half), and another from center element to the last element
(second half). As a result, all the elements in first half are smaller than the center
element, whereas, all the elements in second half are greater than the center ele-
ment.

The searching will now proceed in first or second half depending upon whether the

element is smaller or greater than the center element. Same process of comparing
the required element with the center element and if not found then dividing the ele-
ments into two halves is repeated for the first half or second half. This procedure is

repeated till the element is found or the division of half parts gives one element.

Let us understand this with the help of Figure g-1.

arr{ ] num

1 2 3 9 11 13 17 25 57 90 57 I
‘ X 2 3 ] 11 13 17 25 57 90 | 57 I

| 4§ 4 3 9 11 13 17 25 57 90 I l 57

Figure 9-1. Binary search.

Suppose an array consists of 10 sorted numbers and 57 is element that is to be

©
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searched. The binary search method when applied to this array works as follows:

(a) 57 is compared with the element present at the center of the list (i.e. 11). Since
57 is greater than 11, the searching is restricted only to the second half of the
array.

(b) Now 57 is compared with the center element of the second half of array (i.e.
25). Here again 57 is greater than 25 so the searching now proceeds in the ele-
ments present between 25 and go.

(c) This process is repeated till 57 is found or no further division of sub- array is
possible.

Following program implements the binary search algorithm.

Honest Solid Code {C}
Program g-2. Implementation of Binary Search algorithm
#include <stdio.h>

int binarysearch (int [], int, int);

int main()
i
intarr[]={1,2,3,9,1,13,17,25 57,90}

int num, pos;

printf (“Enter number to search:");
scanf (“%d”, &num);
pos = binarysearch (arr, 10, num);
if (pos==-1)
printf (“Number is not present in the array\n");
else

printf (“Number is at position %d in the array\n”, pos);
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return o;

}

int binarysearch (int a[], int size, int num)

{

int lower, upper, mid;

lower = 0;

upper = size;

while (lower <= upper)
{
mid = (lower + upper) [ 2;
if (num == a[ mid])
return mid;
if (num > a[mid])
lower = mid + 1;
if (num < a[mid])

upper = mid - 1;

return -1;

}

OQutput:

Enter number to search: g7

Number is at position & in the array

In 15t iteration the algorithm works with n elements

In 2nd iteration it works with n / 2 elements

SCRIBD Q 52 As

In 3d iteration it works with (n / 2) / 2 elements

In 4th iteration it works with ((n [ 2) [ 2) / 2 elements

This goes on till we reach an iteration where number of elements being worked
upon becomes 1. Suppose k iterations would be required to reach input size of 1.
Thus,

n/ PLE

Taking log of both sides we get,

ICJg2 2k = log 20

Therefore, k = Iog2 n.

During each iteration maximum of 3 comparisons are done. Thus number of com-
parisons in binary search is limited to 3 * ]og2 n. Ignoring the constant 3, the time
complexity will be O [h:lg2 n).

Thus a binary search gives better performance than linear search. The disadvantage
of binary search is that it works only on sorted lists. So if searching is to be per-

formed on an unsorted list then linear search is the only option.
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RE RSIVE BINARY SEARCH {

We have used a while loop to implement the binary search algorithm in Program mid = (lower + upper) [ 2;
g-2. It is also possible to implement this algorithm using recursion. This recursive if (num =— a[ mid])
implementation is given below. return mid;

if (num > a[mid])

Honest Solid Code {C}

Program g-3. Implementation of Recursive Binary Search algorithm

lower = mid + 1;

if (num < a[mid])
#include <stdio.h> i

upper = mid - 1;
int rechinsearch (int [], int, int, int);

return recbinsearch (a, num, lower, upper);

int main() }

{

intar{]={1,2,3,9,11,13,17,25 57,90 }; return -;
int num, pos; }

In recbinsearch() we compare num with the middle element. If it matches with mid-
printf (“Enter number to search:"); . ) i )
dle elerment, we return the index mid. Otherwise if num is found to be greater than
scanf (“%d", &num);
the mid element, then num can only lie in right half subarray after the mid element.
pos = recbinsearch (arr, num, o, 10); i ) . . }
2 So we call recbinsearch() for right half of the array. Finally, if num is found to be
if (pos ==-
u ) smaller than the mid element, then num can only lie in left half subarray before the
printf (“Number is not present in the array\n"); ) )
mid element. So we call recbinsearch() for left half of the array.
else ) ) ) : d ;
To find time complexity of recursive binary search algorithm, let us consider 3
printf (“Number is at position %d in the array\n", pos); i
cases shown in Figure g-2.

int recbinsearch (int a[ ], int num, int lower, int upper)

{

int mid;

if (lower <= upper)

© @
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al0] all] af2)

a[3] al4] al5] al6]

ald] a[9]

|1|2|3|9|11|13[17|25|5?|90I

{1,2.3,9,11,13,17,25,57,90 }
num=57, lower=0, upper=9

mid=4

A,
{13,17,25,57,90}

num=57, lower=5, upper=9

mid=7
Y
157,90}

nums=57, lower=8, upper=9

mid=8

57 found

Case (a)

{1,2,39,11,13,17,25,57,90 }
num=25, lower=0, upper=9

mid=4

{13,17,25,57,90}
nums=25, lower=5, upper=9

mid=7

25 found

Case (b)

{1,2,3,9,11,13,17,25,57,90 }
num=100, lower=0, upper=9

mid=4

{13,17,25,57,90}
num=100, lower=5, upper=9

mid=7

{57,90}
num=100, lower=8, upper=9

mid=8

{90}
num=100, lower=9, upper=9

mid=39

lower=10, upper=9
lower > upper. Search ends
100 not found

Case (c)

Figure 9-2. Progress of recursive Binary search.

In case (a) it takes 3 comparisons to search §7. In case (b) it takes 2 comparisons

to search 25. Lastly, in case (c), it takes 4 comparisens to reach a conclusion that

100 in not present in the array. So, we can conclude that, in worst case, it does Iogz

n comparisons. Note that value of log ,101s between 3 and 4. To get exact number

of comparisons the input array size must be a power of 2. We can safely conclude

that that the time complexity of recursive binary search algorithm is O (Iog2 n).

Q
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Sorting
Sorting refers to arranging elements of a set in some order. There are different
methods that are used to sort the data in ascending or descending order. These

methods can be divided into two categories. They are as follows:

©
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Internal Sorting

If all the data to be sorted can be accommadated at a time in memory then internal

sorting methods are used.

© ®
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External Sorting
When the data to be sorted is so large that some of the data is present in the mem-

ory and some is kept in auxiliary memory (hard disk, tape, etc.), then external sort-

ing methods are used. Let us begin with internal sorting methods.

Q
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Internal Sorting

There are different types of internal sorting algorithms. We will discuss the com-
mon algorithms here. These algorithms sort the data is ascending order. With a

minor change we can also sort the data in descending order.

© ®
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BUBBLE SORT 3
In this method, firstly oth and 15t elements are compared. If oth element is found | 25 | 17 | 31 [ 13 ‘ 2 I | 17 | 25 | 13 ‘ 2 I ‘ 31 I
to be greater than the 15t element then they are interchanged. Next, the 1 5t element —
; i nd ifiti il
is compared with the 2N element, if it is found to be greater, then they are inter | 17 | 25 | 31 l 13 { 5 I | 7 | 2% | 12 | 5 I 11 I
changed. In the same way all the adjacent pairs of elements are compared and
interchanged if required. At the end of this iteration the largest element gets placed ¥ ¥
P |17‘25|31|13|2I |17|13|25]2I 31
at the last position.
Similarly, in the second iteration the comparisons are made till the last but one ele- —
ment and this time the second largest element gets placed at the second last posi- | 17 ‘ 25 | 13 | 31 I 2 I | 17 | 13 | 2 I | 25 ‘ 31 I
tion in the list.
Once all such iterations are completed the list becomes a sorted list. This can be l 17 [ 25 J 13 [ 5 I l 11 I
easily understood with the help of Eigure o-3.
First iteration Second Iteration
| 17 | 13 | 2 I { 25 I 31 I 13 2z 17 15 | 31
|13|17|2I|25‘31I |2‘13|17‘25|31I
| 13 | 2 I | 17 | 25 ‘ 31 I
Third Iteration Fourth Iteration

Figure 9-3. Bubble sort at work.

Suppose an array arr consists of 5§ numbers. The bubble sort algorithm works as

follows:

(a) In the first iteration the oth element 25 is compared with 15t element 17 and

since 25 is greater than 17, they are interchanged.

© 3
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(b) Now the 15t element 25 is compared with 2nd element 31. But 25 is less than 31,

so are not interchanged.

(c) This process is repeated until (n - 2)nd element is compared with (n - 1)th ele-

ment and interchanged if required.

(d) At the end of the first iteration, the (n - 1)th element holds the largest number.
(e) Now the second iteration starts with the oth element 17. The above process of

comparison and interchanging is repeated but this time the last comparison is

made between (n - 3)'d and (n - 2) Nd elements.

(f) If there are n elements in the array then (n - 1) iterations need to be performed.

The following program implements the bubble sort algorithm.

Honest Solid Code {C}

Program g-4. Implementation of Bubble Sort algorithm
#include <stdio.h>

void bubblesort (int [], int);

int main()

{
intar{]={2517,31,13,2};

inti;

printf (“Bubble sort\n");
printf (“Array before sorting:\n");
for (i=0;i<g5; i++)

printf (“%d\t", arr[ i ]);

bubblesort (arr, 5);

printf (“\nArray after sorting:\n");

©
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for (i=0;i <5 i++)
printf (“Sad\t”, arr[i]);

return o;

}

void bubblesort (int a[ ], int size)

{

int i, j, temp;

for (i=0;i<size-1; i++)
{

for (j=o0;j<size-i-1;j++)

ifaljl>alj+1])
{
temp —a[j;
a[jl=alj+1];
a[j+1]=temp;
}
}
}
1
Output:
Bubble sort
Array before sorting:

251731132
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Array after sorting:
213172531
The elements compared in bubble sort are always adjacent. Hence each time the
elements compared are a[j] and a[ j +1]. If the element a[ j ] is found to be greater
than a[ j + 1] then they are interchanged.
If we wish to arrange the numbers in descending order then we need to make a
small change in the condition, as shown below:
if@ljl<alj+1])
{
/* exchange a[j | with a[ j+1]%/
1
When the array has 5 elements the number of comparisons that would be made in
each iteration would be as follows:
15t iteration - 4 comparisons
2nd jteration - 3 comparisons
3rd iteration - 2 comparisons
4ﬂ" iteration - 1 comparison
So, in general, for an array of n elements the number of comparisons will be n (n -

1) / 2. So time complexity of selection sort algorithm is O (n?).

© ©
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ELECTION RT

This is perhaps the simplest method of sorting. In this method, to sort the data in | 25 | 17 | 31 [ 13 ‘ 2 I | 2 I ‘ 25 | 31 | 17 | 31 I
ascending order, the oth element is compared with all other elements. If the oth —

element is found to be greater than the compared element then they are inter- | 7 ‘ 96 | 2 l 13 { 5 I u | > | 31 | 3 | 13 I
changed. So after the first iteration the smallest element gets placed at the oth

position. The same procedure is repeated for the 1 5t element and so on. This . A
procedure can be best understood with the help of Eigure g-4. | Y ‘ - | . | # | - I u ‘ i | - | s | i I

¥ ¥
1325 [ 31| 7 zl | 2 13I|31 25 17'
l 2 I I 25 | 31 [ 17 | 13]

First iteration Second Iteration
IZJBI[31|25|1?I \2|15‘17I|31|25I
| 2 | 13 I | 25 | 31 ‘ 17 I | 2 ‘ 13 | 17 ‘ 25 | 31 I

|2|13|17I|31‘25I

Third Iteration Fourth Iteration

Figure 9-4. Selection sort at work.

Suppose an array arr consists of § numbers. The selection sort algorithm works as

follows:

(a) In the first iteration the oth element 25 is compared with 15t element 17 and

since 25 is greater than 17, they are interchanged.

© 2
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(b) Now the oth element 17 is compared with 2nd element 31. But 17 is less than 31,
so are not interchanged.

(c) This process is repeated till oth element is compared with rest of the elements
and interchanged if necessary.

(d) At the end of the first iteration, the oth element is the smallest element.

(e) Now the second iteration starts with the 15t element 25. The above process of
comparison and swapping is repeated.

(f) So if there are n elements in the array, then after (n - 1) iterations the array is
sorted.

The following program sorts the given list using selection sort algorithm.

Honest Solid Code {C}
Program g-5. Implementation of Selection Sort algorithm
#include <stdio.h>

void selectionsort (int [], int);

int main()

{
intarr[]={2517,3,13,2}
inti;
printf (“Selection sort\n");
printf (“Array before sorting:\n");
for (i=0;i<g5; i++)
printf (“%d\t", arr[ i ]);

selectionsort (arr, 5);

printf (“\nArray after sorting:\n");

s
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for (i=0;i <5 i++)
printf (“Sad\t”, arr[i]);

return o;

}

void selectionsort (int a[], int size)

{

int i, j, temp;

for (i=0;i<size-1; i++)
{
for (j =i+ 1; ] <size; j++)
{
if(alil>alj])
{
temp=alil;
ali]=alj];
alj]=temp;
}
}
1
}
Output:
Selection sort
Array before sorting:
2517 31132

Array after sorting:

©
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21317253
Here, a[i]is compared with a[ j ]. If the element a[ i ] is found to be greater than a
] then they are interchanged. The value of j is starting from i + 1, as we need to
compare any element with all elements following it.

When the array has 5 elements the number of comparisons made in each iteration
will be as follows:

15t iteration - 4 comparisons

2nd jteration - 3 comparisons

3rd iteration - 2 comparisons

4ﬂ" iteration - 1 comparison

So, in general, for an array of n elements the number of comparisons will be n (n -

1) [ 2. So time complexity of selection sort algorithm is O (n?).

© @
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This algorithm works by inserting each element at an appropriate position in the
array. The array is divided into two sets—one contains sorted values and another
contains unsorted values. To begin with, the element at oth position is in the sort-
ed set and the rest are in the unsorted set. During each iteration, the first element
in the unsorted set is picked up and inserted at the correct position in the sorted
set. The correct position is determined by traversing the sorted set from right to
left and comparing the picked element with the elements in the sorted set. During
comparison if it is found that picked element can be inserted then space is created
for it by shifting the other elements one position to the right. Let us understand

this algorithm with the help of Figure g-s5.
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| 251y 31 | 13 2

17 [ 13 2 I

=

f Insert 17 here

| 25 25 31 13 2

First Iteration

No insertion necessary

as31>25

Second Iteration

| 45 3% =8 2 I

13|1? 25|31|2I

‘ 17 25 31 31 2 | 13 17 25 31 31
17 25 25 31 2 I 13 17 25 25 31

Insert 13 here

Third Iteration

—

13|1?|17|31

2]

— ¢
f Insert 2 here

13 13 17 31

Fourth Iteration

Figure 9-5. Insertion sort at work.

Given below is the explanation of insertion sort algorithm for an array of 5 ele-

ments shown in Figure g-5:

(a) In the first iteration the 15t element 17 is compared with the oth element 25

Since 17 is smaller than 25, 17 is inserted at oth place. Before that the oth ele-

ment 25 is shifted one position to the right.

(b) In the second iteration, the 2nd element 31 is compared with element before it,

6 pages (4 min) leftin this chapter { PAGE3850F429 >

90% read



€5 SCRIBD

i.e. 25. Since 31 is greater than 25, nothing is done as 31 is at its correct posi- for (i=0;i <5 i++)
tion. printf (“Sad\t”, arr[i]);
(c) In the third iteration, the 3'd element 13 is compared successively with 31, 25,
and 17. Since, 13 is smaller than all of them, they are shifted to right by one Lol
position and then 13 is inserted. }
(d) In the fourth iteration the 4th element 2 is compared with elements 31, 25, 17 void insertionsort (int a[ ], int size)
and 13. Since, 2 is smaller than all of them, these elements are shifted to right {
by one position and then 2 is inserted. int i, j, temp;

At the end of 4th iteration, the array becomes a sarted array. The following program

implements the insertion sort algorithm:

{
Honest Solid Code {C} temp=ali];
Program g9-6. Implementation of Insertion Sert algerithm i
#include <stdio.h> while (j >=0 && a[j] > temp)
void insertionsort (int [], int); {
int main()
i
{
intarr[]={25,17,3,13, 2 }; !
inti; a[j+1]=temp;
printf (“Insertion sort\n"): !
printf (“Array before sorting:\n"); J
Output:

for (i=0;i<g5; i++)
printf (“%d\t", arr[ i ]);

insertionsort (arr, 5); 251731132
Array after sorting:

printf (“\nArray after sorting:\n");

for (i=1;i< size; i++)

a[j+1]=a[j];

Insertion sort

Array before sorting:

A
]

©
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213172531

In the program the outer for loop is starting from 1 as the unsorted set starts at 15t
position. The inner loop is used for comparison to decide the position where the
picked element (temp) and for shifting the elements one position to the right to
make room for inserting the picked element.

Let us consider best case and worst case for analyzing the time complexity of this
algorithm. The best case is when the array is already sorted and the worst case is
when the array elements are in descending order. The important operations to be
considered in this algorithm are comparison to determine where the element
should be inserted and movement to create space for inserting the element.

In the best case the number of comparisons and maovements will be as shown
below.

fori=1, 1 comparison + © movement = 1

fori=2, 1 comparison + © movement =1

fori=3, 1 comparison + 0 movement =1

fori = 4, 1 comparison + 0 movement =1

fori=n, 1 comparison + 0 movement =1

So total number of operations will be 1+ 1 + 1 + 1.... This sum will be equal to n.
Thus time complexity in best case will be O (n).

In the worst case the number of comparisons and movements will be as shown
below.

fori=z2, 1 comparison + 1 movement =2

for i = 3, 2 comparisons + 2 movements = 4

fori=3, 3 comparisons + 3 movements = 6

fori = 4, 3 comparisons + 3 movements = 8

SCRIBD aQ 2

fori=n, n-1 comparisons + n - 1 movements=2(n - 1)
If we add all this, we get

2+4+6+8+..+2([n-1)
=2{1+2+3++4...+(n-1))

=2(n(n-1)/2)

=0 (n?)

Thus time complexity in best case will be O (n?).

©
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QUICK SORT

Quick sort is a very popular sorting method. It is also known as partition exchange
sort. The basis of this algorithm is that it is faster and easier to sort two small ar-
rays than one large array. Thus the basic strategy of quick sort is to divide and con-
quer.

Consider a stack of papers each bearing name of a student and we wish to sort
them by name. We can use the following approach. Pick a splitting value, say L
(known as pivet element) and divide the stack of papers into two piles, A-L and
M-Z (note that each pile may not contain the same number of papers). Then take
the first pile and sub-divide it into two piles, A-F and G-L. The A-F pile can be fur-

ther broken down into A-C and D-F. This division process goes on until the piles

are small enough to be easily sorted. The same process is applied to the M-Z pile.
Eventually, all the small sorted piles can be stacked one on top of the other to pro-
duce an ordered set of papers.

This strategy is based on recursion—on each attempt to sort the stack of papers,
the pile is divided and then the same approach is used to sort each smaller pile (a
smaller case).

The quick sort algorithm can be explained with the help of Eigure 5-6. In this figure

i

the element marked by =" is the pivot element and the element marked by ‘—' is

the element whose position is finalized.
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25

17

90

17

| 11| 29| 3 [s2]|25]17] 19|13 I
| 11 2 9 3 57 25 17 1 90 13 I
11 2 9 3 1 25 17 57 30 13
g 3
| 11| 2| 9|32l 17|57]|9]13 I
‘ 1 2 9 3 I 11 I| 25 17 57 a0 13

Figure 9-6. Quick sort.

The array in Eigure g-6 consists of 10 elements. The quick sort algorithm works as

follows:

(a) In the first iteration, we take the oth element, i.e. 11, as a pivot element and

place it at its final position such that all elements to the left of it are less than 11
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and all elements to the right of it are greater than 11. To divide the array in this int main()
way we use two index variables, p and q. {
(b) Using index variable p we move in the array from left to right in search of an intarr[]1={1,2,9,1357,2517,1,90,3};
element greater than 11. In our case p is incremented till we reach 13. inti;
(c) Similarly, using q we move in the array from right to left in search of an element
) ) printf (“Quick sort\n");
smaller than 11. In our case q is not decremented even once because 3 is less
printf (“Array before sorting:\n");
than 11.
. : ; s for (i=0;i<10; i++)
(d) Now 13 and 3 are interchanged. Again, from their current positions p and q are
) . printf (“%d\t", an i ]);
incremented and decremented respectively and exchanges are made appro-
priately if desired. quicksort (arr, 0, g);
(e) The process ends when p exceeds q. In our case, this happens when p reaches
25 and q reaches 1. printf (“Array after sorting:\n");
(f) Now, the oth element 11 is interchanged with the value at index g, i.e. 1. for{l —ay 1= )
(g) The array is thus divided into two sub-arrays—elements to the left of 11 and ele- printf (“%6d\t", arr[i]);
ments to the right of 11, with 11 at its final position.
return o;
(h) Now the same procedure is applied to the two sub-arrays and then to the sub- }
arrays of these sub-arrays. As a result, at the end when all sub-arrays contain
only one element, the original array gets sorted. void quicksort (int a[], int lower, int upper)
Note that it is not necessary that the pivot element must be the o th element. We {
can choose any other element as pivot. The program given below implements the int i
quick sort algorithm.
if (upper > lower)
Honest Solid Code {C} {
Program g-7. Implementation of Quick Sort algorithm i = split (a, lower, upper);
#include <stdio.h> quicksort (a, lower, i -1);
quicksort (a, i + 1, upper);
void quicksort (int [], int, int); }
int split (int [], int, int);
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int split (int a[ ], int lower, int upper)

{

int p, g, num, temp;

p =lower+1;
q—upper;

num = a[ lower [;

while (q >=p)
{

while (a[ p] < num)

Pt

while (al g ] = num)

q-;
if (9> p)

{
temp=alp];
apl=alql;
a[q]=temp;

}
}

temp = af lower |;
a[lower]=2a[q];

a[ g ] =temp;

SCRIBD Q 52 As

return g;
}
Output:
Quick sort
Array before sorting:
1129135725171 90 3
Array after sorting:
1239111317 2557 go
The first and last indexes passed to quicksort() reflect the part of the array that is
being currently processed. In the first call we pass o and g, since there are 10 inte-
gers in our array.
In the function quicksort(), a condition is checked whether upper is greater than
lower. If the condition is satisfied then only the array will be split into two parts,
otherwise, the control will simply be returned. To split the array into two parts the
function split() is called.
In the function split(), to start with the two variables p and q are assigned the val-
ues lower + 1 and upper. Then a while loop is executed that checks whether the in-
dexes p and q have crossed each other. If they haven't then inside the while loop
two maore nested while loops are executed to increase the index p and decrease the
index q. Then it is checked whether q is greater than p. If so, then the elements
present at pﬂ“ and qth positions are interchanged.
Finally, when the control returns to the function quicksort() two recursive calls are
made to function quicksort(). This is done to sort the two split sub-arrays. As a re-
sult, after all the recursive calls when the control reaches the function main() the

arrays becomes sorted.
In quick sort we choose a pivot and then split the array into sub-arrays. Then we

again choose a pivot element in each of these sub-arrays and further split them.
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The best case in quick sort would be when we always choose the middle element of
the array as the pivot element. Suppose to reach a sub-array of 1 element we have
to do k iterations.

Then, n [ 2k =1.

Taking log of both sides we get,

Iog2 2k —log 50

Therefore, k = Iog2 n.

In each of these k iterations for splitting the array we have to do n comparisons.
Hence the total number of comparisons in quick sort will be n * |t:|g2 n. So time
complexity of quick sort in best case is O (Iogz n).

The worst case in quick sort will occur when the input is an array which is already
sorted. In this case if we take the first element as pivot then there won't be any left
sub-array. Except the pivot, all elements will be in right sub-array. Same thing will

happen at each level. So while splitting there will be n comparisons at level 1, n -1
comparison at level 2, n - 3 comparisons at level 3, etc. So totally there will be n *

(n +1) [ 2 comparisons. So time complexity will be O {n?).
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BINARY TREE SORT

Binary tree sort uses a binary search tree (BST). In this algorithm, each element in
the input list is inserted in a BST. During insertion the element being inserted is
compared with nodes in the BST starting with the root node and moving towards
the leaf nodes. If the element is less than node, then it is placed in the left branch,
otherwise in the right branch. After all elements are inserted in the BST, it is tra-
versed in in- order (left, root, right) to get the elements in ascending order.

Let's understand this in more details. Suppose arr is an array that consists of 10

distinct elements. The elements are as follows:
n, 2,9,13, 57,2517, 1,99, 3

The BST that can be built from these elements is shown in Eigure g-7.

(8)
@ @
@ ©® @
© © @
G

Input list :
11,2,9,13,57,25,17,1,90,3

In-order traversal :
1,2,3,9,11,13,17, 25,57,90

Figure 9-7. Binary Tree sort at work.

The binary tree sort algorithm works as follows:

(a) To construct the binary search tree, we start with the o th element 11. It is made

the root of the tree.

©
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(b) While inserting the 15t element, i.e. 2, 2 is compared with the root node 11.
Since 2 is less than 11 it is made the left child of the roct node 11.

(c) While inserting the 2nd element of the list, i.e. 13, it is compared with the root
element 11. Since 13 is greater than 11 it is made the right child of the root node
1.

(d) Similarly, all other elements are placed in their proper position in the binary
search tree.

(e) Now to get the elements in the sorted order, the tree is traversed in in-order
and the elements are restored in the array.

The following program implements the binary tree sort algorithm.

Honest Solid Code {C}

Program g-8. Implementation of Binary Tree Sort algorithm
#include <stdio.h>

#include <stdlib.h>

struct btreenode

{
struct btreenode *leftchild;
int data;
struct bireenode *rightchild;

k

void binarytreesort (int [], int);
void insert (struct btreenode **, int);

void inorder (struct btreenode #, int [], int #);

int main()
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intar[]={n, 2, 9,13 57, 2517,1,90,3 };
inti;
printf (“Binary Tree sort\n”);
printf (“Array before sorting:\n");
for (i=0;i<10; i+4)
printf (“Sed\t”, arr[i]);

binarytreesort (arr, 10);

printf (“Array after sorting:\n");
for (i=0;i<10;i+4)

printf (“Sad\t", arr[ i]);

return o;

}

void binarytreesort (int a[ ], int size)

{

struct btreenode *bt;
inti;
bt = NULL;

for (i = 0; i < size; i++)
insert (&bt, a[i]);

i=0;
inorder (bt, a, &i);
}

SCRIBD aQ 2
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void insert (struct btreenode **pr, int num)
{

if (*pr — NULL)

{

#pr = (struct btreenode *) malloc (sizeof (struct btreenode));

(*pr)-=leftchild = NULL;
(*pr)->data = num;
(*pr)->rightchild = NULL;

1

else

{
if (num < (*pr)->data)

insert (&((*pr)-=leftchild), num);

else

insert (&((*pr)->rightchild), num);

1
1
void inorder (struct btreenode #pr, int a[ ], int *p)
{

if (pr 1= NULL)

{

inorder (pr->leftchild, a, p);
a[ *p ] = pr->data;
Hp=¥p +1;

inorder (pr->rightchild, a, p);

©

4 pages (3 min) leftin this chapter

<

PAGE 400 OF 429 >

Aa

93% read



©

2 pages (2 min) leftin this chapter £

}
Output:

Binary Tree sort Array before sorting:

112913572517190 3

Array after sorting:

1239111317 2557 g0

The binarytreesort() function calls insert() function for each element in the array to
construct the BST, and inorder() function to visit the constructed BST in in-order
fashion.

In the insert() function it is ascertained whether BST is empty or not. If it is empty
then a new node is created and the data to be inserted is stored in it. The left and
right child of this new node is set with a NULL value, as this is the first node being
inserted.

If BST is not empty then the current node is compared with the data to be inserted
and insert() function is called recursively to insert the node in the left/right sub-
tree. Thus insert() continues to move down the levels of BST until it reaches a leaf
node. When it does, the new node gets inserted in the left/right sub-tree.

The inorder() function receives address of the root node of BST, address of the
array and an index where each visited element of BST should be inserted in the
array. In the function a condition is checked whether the pointer is NULL. If the
pointer is not NULL then a recursive call is made first for the left child and then for
the right child. The values passed are the address of the left and right children that
are present in the pointers leftchild and rightchild respectively. In between these
two calls the data of the current node is stored in the array.

In binary tree sort there are two distinct steps—creation of BST and visiting it in in-
order. The worst case will be if the array is already in sorted order. Let us discuss

the time complexity in this case.
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While constructing the BST, to insert 15t element of this array into BST we have to
perform 1 comparison, to insert 2Nd element we have to do 2 comparsions, to in-
sert 37d element we have to do 3 comparisons. So to insert n elements it has to do
n (n+1) / 2 comparisons.

If there are n elements in the list there will be n nodes in the BST. While performing
in-order traversal of the BST we perform maximum of 3 comparisons for any node.
For n nodes the maximum number of comparisons will be 3n.

So, total number of comparisons for this algorithm willbe n (n+1) /2

+3 n. Ignoring constants and lower order terms, time complexity of binary tree sort
will be O (n2).

The drawback of the binary tree sort is that additional space is required for building
the BST.

PAGE 402 OF 429 >

94% read



€5 SCRIBD Q 5 A=

MERGE SORT

Like Quick sort, Merge sort is also a recursive algorithm. It goes on splitting the I 8 | - ]11'13'57| I 2 l L |17|25I90’ [ . | - |11|13|57‘ | 3 l 2 |17|25|90|
array into sub-arrays till we get sub-arrays of size 1. Then it compares elements of | : | | | | | | | | | | [ 2 | g [ | | | ] | | | |
1-element sub-arrays to merge them into a 2- element sorted array. Then it merges o Step 2

two such 2-element sorted sub- arrays to build a 4-element sorted sub-array. This I 2 | 9 |11|13157| | 1 I 3 |17|25|90§ | 2 | 9|11|13|5?| | 1 | 3 |17|25|90|
process continues up the ladder till we get a complete sorted array. | 1 | 2 lil l | | I | l | [ 1 I 2 l 3 |i| | 1 I | l |
This merging process for two 5-element sorted sub-arrays is shown in Eigure g-8. Step 3 Step 4

In the first step elements 2 and 1 are compared. Of these, 1 is smaller. Hence it is

[2]9[12]13]s7] [1]3[27]25]90] [2]a]a1[13]s7] [1]3]a7]25]00]

transferred to the sorted array. Then 2 and 3 are compared, and so on. | think you

getthepicturenou{_ |1|2|3|9111| | | | | | [1|2]3|9|11|§| l | I |
Note that, if during comparison end of one of the sub-arrays is reached, then the e s
remaining elements from the other sub-array are copied into the third list. [ 2 | 9 |11|13I57l | 1 [ 3 |17|25|90| | 2 [ 9 |11[13|57l | 1 | 3 |1?I25]90|
[1[2]a]ofufusfar] | | | [1]2]s]e]ufus[rr[as] | |
Step 7 Step 8

[2]9]1a]1a[s7] [1]3]17]2s]e0] [2]9[11]13]s7] [1]3[17]25]e0]

[1]2]3]9[n]13]azr]as[s7] | [1]2]3]9]11]13]17]25]57]e0]

Step 9 Step 10

Figure 9-8. Merge sort at work.

The following program implements the merge sort algorithm.

Honest Solid Code {C}
Program g-g. Implementation of Merge Sort algorithm
#include <stdio.h>

#include <stdlib.h>

© ®
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void mergesort (int [], int, int);

void merge (int [], int, int, int);

int main ()

{
intarr[]={11,2,9,13,57,2517,1,90,3 };
inti;
printf (“Merge sort\n");
printf (“Array before sorting:\n");
for (i=0;i<10; i+4)
printf (“S&d\t", arri]);

mergesort (arr, 0, g);

printf (“Array after sorting:\n");
for (i=0;i<10; i+4)

printf (“Sed\t", arr[i]);

return o;

}

void mergesort (int arr[ ], int lower, int upper)

{

int mid;

if (lower < upper)

{
mid = (lower + upper) [ 2;

mergesort (arr, lower, mid);

©
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mergesort (arr, mid + 1, upper);
merge (arr, lower, mid, upper);
}
1

void merge (int arr ], int lower, int mid, int upper)

{

int size, *b, first, second, idx, i

size = upper - lower + 1;

b = (int *) malloc (size * sizeof (int));

first = lower;
second = mid + 1;

idx =05

while (first <= mid && second <= upper)
{
if (arr[ first ] <= arr[ second ])
{
bl idx ] = arr| first ];
first++; idw++;
}
else
{
b[idx | = arr| second J;
second++; idx++;

}

Aa

4 pages (2 min) leftin this chapter

<

PAGE 406 OF 429 >

95% read



il
)

€5 SCRIBD Q 52 As

! 1239113172557 90

The logic of merge() function is similar to the polynomial addition logic discussed
while (first <= mid)

{
b[idx ] = arr[ first ];
idx++; first++;

}

in Chapter 2. The two sub-arrays being merged are part of the original array arr| ].

They are identified as two separate sub-arrays using lower, mid and upper. The first
sub-array is from index lower to mid, and the second from mid + 1 to upper. For
the purpose of merging another array b[ ] is created dynamically. Once array b[ ]

contains the sorted elements, they are copied back into original array arr] ] and the

while (second <= upper) memory occupied by b[ ] is freed.

I Suppose art| ] is an 8-element array. At level 1 we will split it into sub- arrays— arr]
b[idx ] = arr] second J; o]toarr[3]and arr| 4 ] to arr] 7 ]. At the next level, we will split the first sub-array
idx++; second++; into two sub-sub-arrays—one from arr[ 0 ] to arr[ 1] and second from arr[ 2 ] to arr|

} 3 ]. So how many levels would we have if we are to reach 1-element sub-arrays?

Well, it would be Iog2 8, or in general Iogz n. At each level we are doing n compar-

idx = 0; isons for merging. So time complexity of merge sort algorithm would be O (n It:g2

for (i = lower; i <= upper; i++) n).

arr[i]=b[idx];
idx++:
1
free (b);
}
OQutput:
Merge sort
Array before sorting:
1129135725171 90 3

Array after sorting:

© =
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In this algorithm a binary heap is used. Recall from Chapter 7 that all levels of a bi-
nary heap are completely filled except perhaps last and at the last level nodes are as
much to left as possible. In a max-heap the value at the root of any sub-tree is
greater than or equal to the value of either of its sub-trees.

Heap sort is an improvement over the binary tree sort. Unlike a binary tree sort, it
does not create a new binary tree from the input list. Instead it builds a heap by ad-
justing the position of elements within the array itself. Thus, it sorts the array in-
place, without needing any extra space.

Given below are the steps involved in the heap sort algorithm.

(a) Build a max heap of array elements

(b) Swap Root element with last array element

(c) Build max heap excluding last element

(d) Decrease heap length by 1

(e) Repeat steps (b), (c), (d) until array gets sorted

Let us now understand this procedure with the help of an example. Suppose an
array contains elements 11, 2, g, 13, 57, 25, 17, 1, 90, and 3. A binary heap represen-
tation of this array is shown in Eigure 9-8. To convert this binary heap into a max-
heap we need to repeatedly heapify the nodes in it. While heapifying a node in a
max heap, we need to ensure that all its children satisfy the heap property—Parent
== Left child, Right child. This operation involves following steps:

(a) Pick maximum out of given node, and its left and right child

(b) If maximum is root, do nothing

(c) If maximum is left, exchange root with left and heapify left node

(d) If maximum is right, exchange root with right and heapify right node

These operations are shown in Figure g-9.
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(2) ® 0 @

(1) )@ @ @)
-)

@ &0 G) @)

Heapify 13,9

Figure 9-9. Heapify operation.
Note that in the binary tree shown in Figure g-g node 13 and node g are violating
the heap property, so we need to heapify them. While heapifying 13, maximum out
of 13, 1, and go is go. Since go is the right child it is exchanged with 13. As against
this, while heapifying 9, maximum (25) turns out to be the left child. So 25 is ex-
changed with . Since after exchange 13 and g became child nodes, we did not have
to heapify them further.

The following program implements the heap sort algorithm:

Honest Solid Code {C}
Program g-10. Implementation of Heap Sort algorithm

#include <stdio.h>

void heapsort (int [], int);
void heapify (int [], int, int);

int main()
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intar[]={n, 2, 9,13 57, 2517,1,90,3 };
inti;
printf (“Heap sort\n");
printf (“Array before sorting:\n");
for (i=0;i<10; i+4)
printf (“Sed\t”, arr[i]);

heapsort (arr, 10);

printf (“Array after sorting:\n");
for (i=0;i<10;i+4)
printf (“Sad\t", arr[ i]);
1

void heapsort (int arr[], int size)

{

inti, t;

/* create max heap */
for (i=size [2-1;i>=0;i-)

heapify (arr, size, i);

for (i =size-1;i>=0; i)

{
[* move current root to end */
t=arrfo];

arrffo]=arrfi];

©
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arr[i]=t;

/* heapify the reduced heap */
heapify (arr, i, 0);
}
!

void heapify (int arr[], int sz, int i)

{

int largest, Ich, rch, t;

lch=2%i+1;

rch=2%i+2;

if (Ich >=sz)

return;
largest = i;

/* if left child is larger than root */
if (Ich < sz && arr[ Ich | > arr[ largest ])

largest = Ich;

/% if right child is larger than largest so far */
if (rch < sz && arr[ rch | = arr[ largest ])

largest = rch;

/% if largest is not root #/
if (largest I=i)
{

Aa
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t=arr[i]; Once the max-heap is created the current root node is moved to the end and heapi-

; fy() is called once again to heapify the reduced heap.
S i1
sl =gl Let us now analyze the time complexity of heap sort algorithm. For this we must
arr| largest ] =t;

argest] first consider the time complexity of heapify() function. In the worst case, while

/* heapify the affected sub-tree */ heapifying a value it does Iog2 n comparisons. This is equal to the height of a com-
heapify (arr, sz, largest); plete binary tree. Since we are calling this function n times in heapsort(), the time
1 complexity of heap sort algorithm will be O (n It:g2 n).
1
Qutput:
Heap sort

Array before sorting:

1129135725171903

Array after sorting:

1239111317 2557 90

The program begins by declaring an array that represents the binary tree. We know
that in array representation of a binary tree, a node at location i has its left and right
child at locations (2i + 1) and (2i + 2) respectively.

Next, in the heapsort{) function in a for loop we have repeatedly called heapify()
moving level by level from leaf towards root, and at any level from right to left,
starting from node at location size [ 2 - 1. The heapify() function finds the largest
out of given node, and its left and right child. If the given node turns out to be
largest then it does nothing. But if left/right child turns out to be largest it ex-
changes the given node with left/right child and then proceeds to heapify the left/
right child.

Note that in the program we do not physically construct this binary tree by estab-
lishing the link between the nodes. Instead, we imagine this tree and then readjust

the array elements to form a heap.

© .
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Chapter Bullets

Summary of chapter

(a) Searching an element in a list can be done using linear search or binary search
algorithm.

(b) Binary search algorithm is more efficient than linear search algorithm.

(c) Binary search algorithm expects the elements of a list in ascending order.

(d) Binary search can be done iteratively or recursively.

(e) Internal sorting is used when the input data can be accommeodated in memory.

(f) External sorting is used when data is so huge that all of it cannot be stored in
mermory at a time.

(g) Common internal sorting algorithms include bubble sort, selection sort, inser-

tion sort, quick sort, merge sort, binary tree sort and heap sort.
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Check Your Progress

Exercise - Level |

[A] State whether the following statements are True or False:

(a) Sorting is the method of arranging a list of elements in a particular order.
(b) Linear search is more efficient than the binary search.

(c) Merge sort needs additional space to sort an array.

(d) Binary tree sort needs additional space to sort an array.

(e} Time complexity of Quick sort is O (n Icng2 n).

(f) Insertion sort is more efficient than Heap sort.
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Sharpen Your Skills

Exercise - Level Il
[B] Answer the Following:
(a) What is the difference between an internal sorting and external sorting?

(b) Write a program that determines the first occurrence of a given sub-array within
it.

©

T
1 page (<1 min} left in this chapter £ PAGE 418 OF 429 > 97% read




©

Coding Interview Questions
Exercise Level II1

[C] Answer the Following:

(a) Suppose an array contains n elements. Given a number x that may occur sev-
eral times in the array. Find

- the number of occurrences of x in the array

- the position of first occurrence of x in the array.

(b

=

Write a program that implements insertion sort algorithm for a linked list of
integers.

(c) Write a program that sorts the elements of a two-dimensional array row wise /
column wise.
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Case Scenario Exercise

External Sorting

External sorting is useful for sorting huge amount of data that cannot be accom-

modated in the memory all at a time. So data from the disk is loaded into memory

part by part and each part that is loaded is sorted and the sorted data is stored into

some intermediate file. Finally, all the sorted parts present in different intermediate

files are merged into one single file.

Initially the original file (file number 1) is partitioned into two files (file number 2

and 3). Then one item is read from each file (file number 2 and 3) and the two

items are written in sorted order in a new file (file number 4). Once again one item

is read from each partitioned files (file number 2 and 3) and these two items are

written in sorted order in another new file (file number 5). Thus alternate pair of

sorted items are stored in the file number 4 and s. This procedure is repeated till

the partitioned files (file number 2 and 3) come to an end.

Now following procedure is repeated twice:

(a) Read one item from file number 4 and 5 and write them in sorted order in file
number 2.

(b) Read one item from file number 4 and 5 and write them in sorted order in file
number 3.

Note that instead of creating two new files, the partitioned files (2 and 3) are being

reused.

After this the following procedure is repeated 4 times:

(a) Read one item from file number 2 and 3 and write them in sorted order in file
number 4.

(b) Read one item from file number 2 and 3 and write them in sorted order in file
number 5.

In this way alternately items are moved from a pair of partitioned files to the pair of
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new files and from pair of new files to a pair of partitioned files. This procedure is
repeated till the time we do not end up writing entire data in a single file. When this
happens all the items in this file would be in sorted order.

Write a program that implements the external sort algorithm.
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SEARCH IT OUT Big Oh, 7
Big Omega, 7
A Big Theta, 7

Adjacency list, 210
Adjacency matrix, 209
Algorithm, 2

Brute Force algorithm, 15
Analysis of algorithms, 1

average case input, §

best case input, 4,

rate of growth, 5

worst case input, 5
Array

Two-dimensional array, 31

column major order, 31

matrix operations, 33

multi-dimensional, 37

one-dimensional, 27

polynomials, 38, 42

row major order, 31
Asymptotic notation, 7
AVL tree, 197

balance factor, 197

imbalance, 198

rotation, 168, 199

Binary search, 179

Binary search tree, 177
deletion, 180
insertion, 177
searching, 179,

Binary tree, 172
ancestor, 173
array representation, 175
linked list representation, 174
balanced, 197
complete, 174, 199
degree, 173
depth, 174
descendant, 173
height, 174
in-order traversal, 178
leaf, 173
level, 174
mernory representation, 176
post-order traversal, 178
pre-order traversal, 178
reconstruction, 18g

strictly, 174
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threaded, 191
Binary tree sort, 257
Breadth frist search, 216
Brute Force algorithm, 15

Bubble sort, 242

[ 5]
Circular

queue, 161

D
Data structures
linear, 28
non-linear, 172, 208
Depth first search, 214
deque, 167
input-restricted, 167
output-restricted, 168
Dijkstra’s algorithm, 224
Doubly linked list, 72

E

External sorting, 242
edge, 208

G

Graph

Dijkstra’s algorithm, 224

SCRIBD o 2

Kruskal's algorithm, 221
Prim's algorithm, 222
adjacency list, 210
adjacency matrix, 209,
breadth first search, 216
depth first search, 214
digraph, 208

directed, 208

edge, 208

shortest path algorithm, 224
spanning tree, 219
undirected, 208

vertex, 208

H

Heap, 199
construction, 200
max-heap, 199
min-heap, 199,

Heap sort, 265

|
infix form, 128
to postfix form, 128
to prefix form, 140
Insertion sort, 249

Internal sorting, 242
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Kruskal’ algorithm, 221

L

Linear search, 234,

Linked list, 52
doubly, 72
operations, 53, 66
recursive operations, 70

reversal, 62

M

matrix, 31

Matrix operations
addition, 33
multiplication, 33
on sparse, 94
transpose, g5

Merge sort, 261

P
Polish notation, 128
postfix form, 128
evaluation, 141
to infix form, 140
to prefix form, 135
prefix form, 128

Polynemials, 38
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addition, 38
multiplication, 42
Prim’s algorithm, 222

priority queue, 168

Q

Queue
as array, 152
as linked list, 157
circular, 161
deque, 167
FIFO, 152
priority, 168

Quick sort, 252

s
Searching
tree, 179
binary search, 236
in BST, 179
in sorted list, 234
in unsorted list, 234
linear search, 234
Selection sort, 246
Shortest path algorithm, 224
Sorting, 242
binary tree, 257
bubble, 242
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G

external, 242, 271, Stack operations
heap, 265 pop, 120
insertion, 249, push, 120
internal, 242,
T
merge, 261
it 52 Threaded binary tree, 191

Tree, 172
selection, 246 172

AVL t 1
Spanning tree, 219, ree, 197

bi ht
breadth first, 220 Inary search tree, 177

bi tree, 172
depth first, 220 inary tree, 172

. tree
Kruskal's algorithm, 221

i deletion, 180
minimum cost, 220

i tion, 1
Sparse matrix, 88 insertior, 177,

tuple, 89, traversal, 178

T searching, 179,
as linked list, 112
diagonal, 114
lower triangular, 114
tridiagonal, 114
upper triangular, 114

Stack, 120
as array, 120
as linked list, 123
LIFO, 120
pop, 120
push, 120

top, 120
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How to use the Downloadable DVD

Since these days most laptops do not have a DVD drive, we haven't enclosed the
DVD with the book. Instead its contents have been made available for download.
They can be downloaded using any one of the following links:

https: //drive.google.com/drive [folders/1Pe3gB5RwTcUoCpzliCrwisiCTM31SkT

OR

http://bit.ly/2TdCT8S

Download all the files shown when you visit this link.

Once downloaded, you can install the contents by double-clicking the file CD-
Start.exe. Follow the instructions that will appear on the screen.
Once the installation is over you can access the animations as well as the sample

programs.
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